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Abstract

The vitreous humour is the substance that fills the posterior chamber. The
vitreous body ensures the adherence of the retina to the underlying layers and
acts as a barrier for heat and drug transport between the anterior and the
posterior segments of the eye. In the medical literature many authors have
postulated the existence of a connection between the fluid dynamics within
the vitreous chamber during eye movements (especially when the substance
filling the chamber is a liquid) and the occurrence of the retinal detachment.

In the present PhD Thesis the vitreous humour dynamics is studied by
means of both an experimental and a numerical point of view.

The experiments consist in the measurement of the velocity field on the
equatorial plane of a magnified model of the vitreous chamber using PIV tech-
niques. The vitreous chamber has been modeled by means of a cavity carved in
a rigid Perspex container. Two different geometries were used: a spherical ge-
ometry and a deformed geometry, which closely resembles that of the real eye.
The model is filled with Glycerol, a highly viscous Newtonian fluid, and it is
mounted on the shaft of a computer controlled motor, which rotates according
to a generic time law. Visualizations of the fully three-dimensional flow show
that the primary flow occurs on planes perpendicular to the axis of rotation.
Secondary flows can be detected, the magnitude of which is however three or
four orders smaller than the primary flow. In the case of spherical geometry,
theoretical results, based on a simplified solution, are shown to be in very good
agreement with the experimental findings. The maximum value of the shear
stress at the wall does not significantly depend on the amplitude of saccadic
movements but is strongly influenced by the vitreous viscosity. Velocity fields
are found to be strongly influenced by the deformed geometry of the domain.
When using the deformed model the formation of a vortex in the vicinity of
the lens is invariably observed. The path described by this vortex during a
period of oscillation is found to depend on the Womersley number of the flow.

The second part of the Thesis is devoted to the formulation of a numerical
model which provides a direct numerical simulation of the flow of a viscous
fluid inside an oscillating sphere. The problem is formulated in the primi-
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tive velocity-pressure form. Replacing the continuity equation by the Poisson
equation for the pressure supported by an independent condition of integral
character an uncoupled formulation of the problem is derived. The equations
are discretized in time by means of a non-fractional-step scheme. A spectral
technique is used to transform the original problem in a sequence of ordinary
differential problems for the coefficients of a spherical harmonics expansion of
the variables. Spectral techniques have been tested on a simplified problem
providing encouraging results.



Sommario

L’umor vitreo è la sostanza che riempie la camera posteriore dell’occhio. Esso
assicura l’aderenza della retina agli strati sottostanti e costituisce una barri-
era per il trasporto di calore o sostanze tra la camera anteriore e la camera
posteriore dell’occhio. Molti autori nella letteratura medica hanno ipotizzato
una connessione tra la dinamica del vitreo durante i movimenti oculari (spe-
cialmente nei casi in cui la sostanza che riempie la camera è un liquido) e
l’insorgenza del distacco retinico.

Nella presente Tesi di Dottorato lo studio della dinamica del vitreo oculare
è stato affrontato secondo un approccio sperimentale e numerico.

Gli esperimenti hanno riguardato la misura dei campi di moto che si real-
izzano sul piano equatoriale di un modello in scala amplificata della camera
vitrale attraverso l’utilizzo della tecnica PIV. La camera vitreale è stata model-
lata per mezzo di una cavità ricavata in un contenitore rigido di perspex. I
contenitori usati hanno due diverse geometrie: una sferica e una sferica de-
formata che riproduce verosimilmente la reale conformazione della camera. Il
modello è stato riempito con glicerina, un fluido newtoniano ad elevata vis-
cosità, e montato sull’albero di un motore che è stato fatto ruotare secondo
una generica legge di tipo.

Attraverso visualizzazioni del moto tridimensionale si è osservato come il
moto principale si sviluppi su piani ortogonali all’asse di rotazione. Sono stati
anche osservati moti secondari la cui intensità risulta essere di tre-quattro or-
dini di grandezza inferiori al moto principale. Nel caso di modello sferico i risul-
tati sperimentali sono stati confrontati con una teoria semplificata mostrando
un buon accordo con quest’ultima. Il massimo valore della tensione tangenziale
è risultato non dipendere in modo significativo dall’ampiezza del movimento
ma di essere influenzato dalla viscosità del fluido interno alla camera. I campi
di moto sono fortemente influenzati dalla geometria del dominio. Usando il
contenitore deformato in tutti gli esperimenti è stata osservata la formazione di
un vortice. Il percorso descritto dal vortice durante un periodo di oscillazione
è risultato dipendere dal numero di Womersley del moto.

La seconda parte della Tesi è dedicata alla formulazione di un modello nu-
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merico consistente in una simulazione numerica diretta del moto di un fluido
viscoso all’interno di una sfera oscillante. Il problema è formulato nelle vari-
abili primitive pressione-velocità. Sostituendo l’equazione di continuità con
l’equazione di Poisson per la pressione, associata ad una condizione al contorno
indipendente di tipo integrale, si è ricavata una formulazione disaccoppiata dl
problema. Le equazioni sono state discretizzate nel tempo per mezzo di uno
schema non frazionario. Il problema originale è stato trasformato attraverso
una tecnica spettrale in una sequenza di problemi alle derivate ordinarie per i
coefficienti di espansione in armoniche sferiche delle variabili del problema. Le
tecniche spettrali sono state testate per la soluzione di un problema semplifi-
cato fornendo risultati confortanti.



Preface

The anatomical shape of the human eyes is approximately spherical. They
consist of two main chambers: the anterior and the posterior chamber sep-
arated by the lens and enclosed by the eye wall. The anterior chamber is
filled with aqueous humour a physiological liquid whose mechanical charac-
teristics are similar to those of water. In the posterior chamber a substance
called vitreous humour is located. The vitreous humour is an homogeneous gel
but ageing can produce significant mechanical changes in vitreous consistency,
leading to a partial liquefaction of the vitreous. This process may involve the
entire posterior chamber and frequent occurs in eyes that are nearsighted (my-
opia). Vitreous cavity can be filled with a liquid also in vitrectomy surgery,
when the surgeon replace a cloudly vitreous with a salt solution or a silicon
oil. Most of the eye globe volume is occupied by fluids, therefore many of
the problems related with the eye’s functioning are of a strictly fluid dynamic
nature. Aqueous humour circulation in the anterior chamber has been studied
by several authors. Vitreous dynamics has not been extensively studied yet,
even though many authors have postulated a connection between the actions
exerted by vitreous motion during eyes movements and the pathogenesis of
retinal detachment. On the other hand the vitreous motion may influence
heat and drug transport between the anterior and the posterior segments of
the eye. Quite a few papers in the medical literature have faced the problem
of analyzing the transport phenomena within the vitreous cavity.

In the first part of the present work we present the results of an exper-
imental model of vitreous motion, firstly within a spherical cavity and then
in a deformed sphere chamber that closely resembles the real vitreous cavity
shape. The experimental conditions reproduce the case of liquefied vitreous
or tamponade fluid used in some surgical treatments (e.g. vitrectomy). In
these cases hydrodynamic events within the vitreous cavity are expected to
be the most intense. A Newtonian fluid is, in fact employed, thus the elastic
properties of the vitreous are disregarded at this stage. Visualizations of the
whole flow field were made in order to prove some theoretical assumptions for
the model. Measures of velocity fields on the equatorial plane were made by
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means of PIV technique to investigate the vitreous fluid dynamic and derive
the shear stress on wall during eye movements.

With the P.I.V. experimental set-up at our disposal we were able to recon-
struct the vitreous motion on the equatorial plane of the model, but we cannot
quantify the fully 3D velocity field inside the entire chamber (only qualitative
visualizations were made experimentally). In order to exceed the limits of the
experimental model we use a numerical model.

In the second part of the present work we describe the some preliminary
results of numerical model which solves, with a spectral technique, the 3D
problem of motion inside a rotating spherical crown. The numerical model
solves the Navier Stokes equations in the primitive formulation form, where the
incompressibility constraint is replaced by the Poisson equation. A boundary
condition of integral character are derived for the pressure, obtaining a system
of split-equations for the pressure and velocity to be solved independently
and in sequence, after having solved the metharmonic problem providing the
metharmonic function to be inserted in the integral condition for the pressure.
The shape of the investigated domain suggest the expansion of the unknown
in series of spherical harmonics. The original time dependent problem reduce
to a sequence of stationary problem for the coefficients of the expansion that
are function only of the radial coordinate. The problem is solved by means of
a tau projection spectral method after having used a further expansion of the
coefficients in terms of Chebyshev polynomials.



Part I

An experimental model

1





Introduction to part I

The largest structure of the eye is the posterior chamber the shape of which is
approximately spherical. The vitreous humour is the substance that fills the
posterior chamber. The vitreous body gives the eye its shape. Being in con-
tact with the retina it helps to keep it in place by pressing it against the under
layers. Moreover, it acts as a barrier between the anterior and the posterior
segments of the eye for heat and drug transport [14]. In normal condition the
vitreous is a gel, Lee et al.(1992)[12] have studied the rheology of vitreous,
showing that it behaves like a viscoelastic material. However, with advancing
age the vitreous partially or completely loses its elastic properties, as a conse-
quence of a liquefaction process. In the medical literature many authors have
supposed a connection between the fluid dynamic within the vitreous chamber
and the retinal detachment (RD). In fact, during the rapid rotations of the
eyes, the actions exerted by the relative motion of the eye wall respect to the
substance filling the posterior chamber can be quite intense and constitute an
important factor in inducing the rhegmatogenous retinal detachment. This
pathology occurs when the fluid infiltrates into the subretinal space through a
hole, tear, or break in the retina raising it from the underlying layers. Myopia
is a risk factor for the RD, especially when for aging or pathologies the vitreous
is liquified or replaced by salt solution or a silicon oil during a surgery called
vitrectomy. The vitreous motion may also influence heat and drug transport
between the anterior and the posterior segments of the eye. This phenomenon
is poorly studied and all authors have always interpreted it in terms of a diffu-
sion process disregarding the convective transport due to eye motion. Medical
observations show that if vitreous mixing is intense enough, advection may be
by far a more efficient process.

The above mentioned reasons have motivated the research on the dynam-
ics of the vitreous motion induced by eye rotations. Regarding to the vitreous
actions on the retina Lindner (1933) [13] performed hydrodynamic experi-
ments aimed at understanding the structure of the flow field induced by eye
rotations within the vitreous chamber, once a retinal tear has occurred. The
above experiments were later reconsidered and extended by Rosengren and
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Östrelin(1976) [21]. Both authors point out the importance of eye rotations
on the vitreous dynamics. However, their works only provide a qualitative
picture of the hydrodynamic events within the vitreous chamber because their
experimental approach did not permit quantitative measurements of the fluid
velocity to be performed. They also underline the importance of the lens,
the presence of which confers an irregular shape to the chamber and hence
may significantly modify flow field characteristics. Nevertheless, both authors
used a cylindrical glass container, filled with water, with a thin transparent
membrane covering the inner wall with the aim to model the vitreous cham-
ber, disregarding the real shape of the posterior cavity and the scale effects
arising from the magnified size of the model. Greater insight into real geome-
try configuration in vitreous dynamic is provided by the work of David et al
(1998)[7]. The authors studied analytically the motion of a viscoelastic fluid
within a periodically rotating sphere, adopting simplifying assumptions on the
flow characteristics. Their results clarify most of the features of the flow field,
showing, in particular, that the fluid motion in the inner part of the domain is
out of phase with respect to the wall motion. Moreover, David et al (1998)com-
puted the shear stress at the wall and showed that it increases with the sphere
radius. The latter observation was interpreted by the authors as a possible
explanation of the more frequent occurrence of retinal detachments in myopic
eyes, typically characterized by a larger size. Recently Repetto et al.(2004)[19]
have proposed an analytical model attempting to interpret one of the possible
mechanisms whereby tensile stresses may be generated on the retina, possibly
leading to a retinal break. The authors have studied the liquefied vitreous’
dynamics in the presence of vitreous membranes. Their results suggest that
vitreous membrane oscillations may be resonantly excited by small-amplitude,
high-frequency eye movements, called ’microsaccades’, which may thus induce
high stresses on the retina and eventually cause its detachment.

In the present Thesis, we present the results of a series of experiments
on vitreous motion. The vitreous chamber has firstly been modelled as a
spherical cavity, magnified with respect to the real geometry, carved within a
perspex cylinder and able to rotate according to a prescribed time law. The
cavity has been filled with glycerol, which is a high viscosity Newtonian fluid;
thus, the elastic properties of physiological vitreous are disregarded in this first
experimental approach to the problem. However, David et al (1998)[7] reported
that the elastic component plays a fairly minor role on the flow field within the
eye globe with respect to the viscous one. Moreover, according to the authors’
results, the elastic component of the vitreous behaviour does not influence the
maximum shear stress at the wall, which is the most important quantity to be
evaluated in order to understand the connection between vitreous motion and
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retinal detachment. The flow field has been experimentally measured, on the
equatorial plane orthogonal to the axis of rotation, through the PIV technique.
This allowed us to obtain the spatial structure of the flow field in such a plane
with great detail. Moreover, the time evolution of the flow can also be suitably
described. Two sets of experiments have been carried out. The first one is
aimed at verifying the results of David et al (1998)[7] for purely viscous fluids;
therefore, the eye model is rotated according to a sinusoidal time law. Real
saccades have a much more complex time behaviour, though, and can hardly
be described in terms of a simple sine function. Therefore, in a second set of
experiments it has been adopted, a time law for the container angular velocity
that correctly reproduces the main features of real large amplitude saccadic
movements. Saccades with different amplitudes (from 10◦ to 50◦) have been
studied. The second set of experiments provides important insight both into
the structure of the flow field occurring within the eye and into the shear
stresses exerted by the vitreous on the retina during real saccadic movements.

As a matter of fact, however, the vitreous chamber is not spherical but
rather concave in the anterior part, due to the presence of the lens. Even a weak
departure from the spherical shape may induce strong changes in the flow field
and, in turn, it may significantly affect the shear stress distribution at the wall;
this evidence was already underlined by Lindner (1933)[13] and Rosengren and
Östrelin(1976) [21] studies. The only attempt to account for this effect is due
to Repetto (2006)[18]. The latter analysis is carried out analytically in the
limit of low viscosity fluid and the vitreous cavity is described as a weakly
deformed sphere. The author’s results show that the irregular shape of the
domain produces a complex and strongly three-dimensional flow field, which
is responsible of an intense mixing. This result shows that the motion of the
vitreous induced by eye rotation is responsible for a convective transport and,
if vitreous mixing is intense enough, advection may be by far a more efficient
process than the diffusive one. The stress distribution at the wall, which is
not computed in the author’s model since the flow within the boundary layer
at the wall is not accounted for, is also expected to be strongly affected by the
shape of the vitreous chamber.

With regard to the vitreous motion effect on heat and drug transport be-
tween the anterior and the posterior segments of the eye the reader is referred
to H.Lund-Andersen (2003)[14] for a thorough review. As far as the transport
of solutes is concerned in vivo measurements are possible by using fluorescein
as a tracer and performing vitreous fluorophotometry. Such measurements are
invariably interpreted in terms of a diffusion process, with the aim of determin-
ing an overall diffusion coefficient. The diffusive process of heat transfer within
the vitreous body has been studied numerically by many authors [22] ,[6]e.g..
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All the existing works consider the transport processes within the vitreous as
being purely diffusive. Neverthless, the convective transport may be impor-
tant in transport of solutes: this idea is somehow supported by the clinical
observation that, in normal conditions, the vitreous is much more efficient as a
transport barrier than in the case of liquefied vitreous or in vitrectomised eyes
and, in both the aforementioned circumstances, the fluid dynamic processes
in the vitreous cavity are much more intense even though admittedly, however
the diffusive coefficient of the healthy vitreous may also be different from the
one of the liquefied vitreous or of tamponade fluids.

The second kind of experiments related in the present contribution were
made with a model which closely resembles the real shape of vitreous chamber,
showing an indentation which simulate the presence of the lens. The cavity is
filled with the same fluid used in spherical model experiments and measure-
ments of quantitative flow fields on the equatorial plane of the model were
made with PIV technique. The result of this second model experiments were
published in 2007 on ”Physics in Medicine and Biology” [23].

The first part of this Thesis is organized as follow: in the first chapter the
eye and its movements are described with particular attention on the char-
acteristics of vitreous humour and the metric of the saccadic movement; in
chapter 2 a theoretical overview of the problem is given both in the case of
the spherical geometry and the deformed geometry; chapter 3 describes the
principles of PIV technique; in chapter 4 the experimental set-up used during
the experiment is presented; finally chapter 5 is dedicated to the experiments
made for the spherical and deformed sphere model and their results; the ex-
perimental model description ends with conclusions and future developments
of the study.



Chapter 1

The human eye and its
movement

The eye is our window on the world. In this chapter the human eye is described
under the anatomical and the physiological aspect. Then, the attention is fo-
cused on the characteristics of the possible movement, in particular the sac-
cade, and on the dynamics of vitreous humour, the fluid filling the posterior
chamber of this organ.

1.1 Anatomy of the human eye

The eye is the organ of sight (vision) in humans and animals. The eye trans-
forms light waves into visual images. Eighty percent of all information received
by the human brain come from the eyes. These organs have almost spherical
shape and are housed in the eye (orbital) sockets in the skull. The human eye-
ball is not perfectly round as its anterior-posterior axis (about 2.3 centimeters)
is slightly longer than the crossing axis. The eye wall consists of three layers:
the sclera, the choroid, and the retina.

The sclera, the outer fibrous layer, encases and protects the eyeball. In the
center of the anterior portion of the sclera there is the cornea, which projects
slightly forward. A delicate membrane, the conjunctiva, covers the cornea,
that is the visible portion of the sclera. Underneath the sclera lies the choroid.
It is composed of a dense pigment and numerous blood vessels that nourish the
internal tissues of the eye. At the front end of the choroid, there is the ciliary
body that runs like a ring around the visible portion of the eye and contains
some muscles that are connected by ligaments to the lens behind the iris. The
iris is the visible portion of the choroid. It gives the eye its color, which varies
depending on the amount of pigment present in the choroid. Dense pigment
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Figure 1.1: Anatomical Structure and eye components

makes the iris brown, while little pigment makes the iris blue. If there is no
pigment the iris is pink, as in the eye of a white rabbit or in albino persons.
In bright light, muscles in the iris constrict the pupil, reducing its radius and
governing the amount of light entering the eye. Conversely, the pupil dilates
(enlarges) in dim light, increasing the amount of light entering. The pupil
also dilates in consequence of extreme fear, head injuries, and certain drugs.
The lens is a crystal-clear, flexible biconvex body sitting behind the iris. The
entire surface of the lens is smooth and shiny, contains no blood vessels, and is
encased in an elastic membrane. The muscles of the ciliary body hold the lens
in place and contracting and relaxing cause the lens to become fatten or thin.
The lens’ shape changes focuses light on the retina, the photo-sensitive part of
eye. The retina is the innermost layer of the eye, it begins at the ciliary body
and encircles the entire interior portion of the eye. The retina contains millions
of sensitive nerve cells, (called rods and cones) which convert light energy into
electrical signals sent to the brain via the optic nerve. Rods cannot detect
color, but they are the first cells to detect movement, function chiefly in dim
light, allowing limited night vision. Cones function best in bright light and
are sensitive to color. In each eye there are about 126 million rods and 6
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million cones. In the posterior part of retina, in the center of macula there is
the fovea (1.5 mm) where the highest concentration of cone photo-receptors
is located. The cavities between the cornea and the iris and between the iris
and the lens are filled with a clear watery fluid known as aqueous humor. This
fluid aids good vision by helping to maintain eye’s shape, providing support
for the internal structures, supplying nutrients to the lens and cornea, and
disposing of the eyes’ cellular waste. The large cavity in back of the lens (the
center of the eyeball) is filled with a clear gel-like substance called vitreous
humor. It helps to maintain the shape of the eye and to support its internal
components. The vitreous humor is 99 percent water and contains no cells. It
is transparent as it is crossed by light on its way to the retina. Sight process
begins when light waves enter the eye through the cornea, pass through the
pupil, then come across the lens behind the iris. The lens focuses light onto the
retina, and nerve cells in retinas, convert light energy into electrical impulses.
These impulses are then carried by the optic nerve to the brain where they are
interpreted as images.

1.1.1 Characteristics of vitreous humour

The posterior chamber is the largest structure of the eye and its shape is ap-
proximately round. This cavity is delimitated by the retina behind and by the
lens in front. The vitreous humour is the substance which fills the posterior
chamber. The vitreous body gives the eye its shape; being in contact with
the retina helps to keep it in place by pressing it against the choroid. More-
over, it acts a barrier between the anterior and the posterior segments of the
eye for heat and drug transport (Lund-Andersen 2003 [14]). It is crossed by
light waves and its refractive index is 1.34, like the aqueous humour. The gel
in the vitreous chamber is quite stagnant, unlike the aqueous humour which
is continuously replenished. Therefore, if blood, cells or other byproducts of
inflammation get into the vitreous, they will remain there unless removed sur-
gically. Vitreous humour property were investigated by Sebag (1992) and other
studies by Balazs (1961) and Buchsbaum et al.(1984). It shows like a transpar-
ent, colorless, gelatinous mass, composed mainly by water with very few cells
and macromolecules (salts, sugars, vitrosin, hyaluronic acid and a network of
collagen fibers). Hyaluronic acid and collagen are responsible of gelatinous
consistency of vitreous. No blood vessels are present in this body but in axial
direction the ialoid channel, heritage of ialoid artery that nourishes the lens
in foetus, crosses the cavity. The normal vitreous is an homogeneous gel in
youth, but its ageing can produce significant mechanical changes in vitreous
consistency, leading to a progressive degeneration of the gel structures, mainly
in the center of eye. In fact the collagen fibres are held apart by electrical
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charges that tend to reduce. with ageing, and the fibres may clump together.
Cells and other organic clusters float freely within the vitreous humour and
are perceived in the visual field as spots or fibrous strands. This process of
liquefaction may involve the entire posterior chamber and it’s reasonable to
suppose that a similar phenomenon can modify the action of the vitreous on
the eye wall due to the relative motion induced by rapid eye’s rotations. Vit-
reous liquefaction frequently occur in eyes that are nearsighted (myopia). It
can also occur after injuries to the eye or inflammation in the eye (uveitis).
Vitreous cavity can be filled by a liquid also in vitrectomy surgery, when the
surgeon replace a cloudly vitreous with a salt solution or a silicon oil. When
vitreous is partially or completely liquefied its motion can be quite intense
and, as a consequence of the intense action of vitreous on the retina, retinal
detachment can occur. Many authors have supposed a connection between the
retinal detachment and the fluid dynamic within the vitreous chamber. Vit-
reous rheology was investigated by Lee et al.’s(1992)[12], who measured the
viscoelastic property of human, bovine and swine vitreous humour in three
different location. They found remarkable difference in these properties in the
center, in the top and in the bottom of the cavity. The rheology of vitreous can
be explained with a model of four parameters called Burgers’ model. It deals
with a Maxwell element with elastic modulus µM and viscosity ηM connected
with a Kelvin element with elastic modulus µK and viscosity ηM like shown in
(1.2).

Figure 1.2: Rheological Burgers’ model

Maxwell’s element represents the elastic and the viscous response of the
material while the Kelvin element describes the elastic delayed response, pro-
duced by the rendering of the previous deformation of big polymeric chains.
The deformation time law J(t) can be derived measuring the deformations
induced by a constant load using a creep test:

J(t) = JM + JK [1− exp(−t/τK)] + t/ηM (1.1.1)
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Where:

• JM is the instantaneous elastic response (given by the Maxwell element);

• JK is the delayed response (given by the Kelvin element);

• τK is the time delay.

The qualitative shape of this function is shown in 1.3:

Figure 1.3: Time response of a viscoelastic fluid to a constant stress

Lee et al used a magnetic microrheometer, able to take measurement in
little volumes, to perform the creep test. To stress the vitreous humour they
put inside it, metallic micro-spheres (Ø approximately 200 m) and then move
them by the action of a magnetic field produced by a couple of electromagnets
located in the extremes of the sample. The results of Lee et al. are shown in
Tab. 1.1.

Anterior segment Central segment Posterior segment

Kelvin µK 2.5 1.27 1,21
Model ηK 3.67 7.27 3.01
Maxwell µM 1.398 2.18 4,86
Model ηM 0.313 0.352 4.7

Table 1.1: Values of the Burgers’ rheological model of the human vitreous for
different eye regions
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1.2 Common eye’s pathologies

Farsightedness and nearsightedness are common vision disorders. They occur
because of a defect in the shape of the eyeball or in the refractive power (ability
to bend light rays) of the lens. In these cases, the image perceived from the
eye is distorted because the parallel rays of light that enter the eye do not
fall perfectly on a tiny hollow (called the fovea) in the retina at the back of
the eye.Options for correcting these problems are standard eyeglasses, contact
lenses or refractive surgery.

Astigmatism, another common vision disorder, happens when the cornea
(sometimes the lens) has an uneven curvature. As a result, some light rays
entering the eye focus on the fovea while others focus in front or behind it.
Like farsightedness and nearsightedness, astigmatism can be corrected with
eyeglasses or contact lenses.

A common pathology is cataract which consists in opacity or cloudiness of
the lens which alters the amount of light entering the eye. The most common
cataracts are senile cataracts. If not treated, cataract may cause blindness.
Clear vision can be restored by a relatively simple surgical procedure in which
the entire lens is removed and an artificial lens is implanted.

A serious vision disorder is the glaucoma characterized by increased pres-
sure within the eyeball, caused by a buildup of aqueous humor, which is pre-
vented for some reason from properly draining. Connections are present be-
tween pathologies like diabetes or a malfunctioning thyroid gland and this
kind of eye disease. Glaucoma leads to permanent blindness if not treated.
The condition can be controlled with drugs that either increase the outflow of
aqueous humor or decrease its production.

A widely diffused eye disorder is retinal detachment. It happens when
the retina peels away from its underlying layer. Initial detachment may be
localized, but without rapid treatment the entire retina may detach, leading
to vision loss and blindness. Some diseases like myopia or diabetes predispose
to the development of a retinal detachment.

Many of the previously described vision disorder are age-related.

1.2.1 The retinal detachment

The retina adheres firmly to the vitreous body but it does not present any
adherent to the choroid. A retinal detachment is a pathology consisting in
separation of the retina from its attachments to its underlying tissue within
the eye. Most retinal detachments are a result of a retinal break, hole, or tear.
These retinal breaks may occur when the vitreous gel pulls loose or separates
from its attachment to the retina, usually in the peripheral parts of the retina.
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Figure 1.4: Eye affected by vitreous and retinal detachment

This mechanism is called vitreous detachment and is frequent in middle-
aged people, in which the vitreous loses its consistence going to a partial liq-
uefaction. Sometimes during this process the vitreous exerts traction on the
retina, and if the retina is weak, it will tear. Most retinal breaks are not a
result of injury, apart from vitreous detachment, also intense flow to the eye
or hereditary predisposition can cause retinal tears. When there is a retinal
tear or break retinal detachment easily occurs. The presence of the tear in
fact allows the liquefied vitreous humour to pass through the break and to
penetrate between the retina and the choroid.

In medical literature we can find three kind of different retinal detachments:

1. The rhegmatogenous retinal detachment (RRD), is the most com-
mon form of retinal detachment and occurs when a hole, tear, or break in
the retina allows fluid to pass from the vitreous space into the subretinal
space. The symptoms of this kind of pathology are floating spots, light
flashes, peripheral visual loss and central blurring of vision.

2. The Exudative retinal detachment (ERD), occurs due to inflamma-
tion, injury or vascular abnormalities that results in fluid accumulating
underneath the retina without the presence of a hole, tear, or break.
Diabetes is a risk factor for this form of retinal detachment. Exudative
retinal detachment can derive from many other diseases like tumours,
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Figure 1.5: Example of vision in a subject with rhegmatogenous retinal de-
tachment

inflammation and macular degenerative conditions. The symptoms as-
sociated with exudative retinal detachment are moderate vision loss or
a visual field deficit.

3. The Tractional retinal detachment (TRD) is caused by the pull of
the fibrovascular tissue to the sensory retina from the retinal pigment
epithelium. Tractional retinal detachments are typically asymptomatic.
Diabetic retinopathy is considered to be the most common cause of trac-
tional retinal detachment.

A rapid diagnosis and treatment of vitreous detachment and retinal tear
can prevent a retinal detachment. One time retinal detachment has occurred
there are several methods of treating this pathology, mainly dealing with the
reattaching retinal strip around a tear to the choroid.

The most recent and mainly employed treatments are laser and cryopexy,
which both avoid surgical operations. These treatments create a scar/adhesion
around the retinal hole to prevent fluid from entering the hole and accumulat-
ing behind the retina. This is made burning the area surrounding the break
(laser) or freezing it (cryopexy).
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The surgical approaches to to repairing a retinal detachment are substan-
tially three:

1. Scleral buckle This treatment consists in positioning one or more sili-
cone bands (bands, tyres) to the outside of the eyeball in correspondence
to the retinal hole. The bands push the wall of the eye inward against
the retinal hole, closing the hole and allowing the retina to re-attach.

Figure 1.6: Eye with a scleral bulkle

2. Vitrectomy is a treatment consisting in the removal of the vitreous gel
and its substitution with gas bubble (SF6 or C3F8 gas) or silicon oil.

3. Pneumatic retinopexy This treatment involves injecting a gas bubble
into the vitreous cavity after which laser or freezing treatment is applied
to the retinal hole. The patient’s head is positioned in a way such that
the gas bubble reasts against the retinal tear. This operation is generally
performed in the doctor’s office under local anesthesia.

After treatment patients gradually regain their vision over a period of a
few weeks, although the visual acuity may not be as good as it was prior to
the detachment. However, if left untreated, total blindness could occur in a
matter of days after detachment occurrence.
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1.3 Movements of human eye

Eyes are subject to various movements. They can move both in the same
direction or in different direction: in any case they play like an unique sys-
tem thanks to the perfect coordination of ocular muscles. Moreover, the nerve
centers, make the fusion of retinoic images felt by the two eyes, allowing the
stereoscopic vision of the world. Each eye is controlled by six individual mus-
cles called extraocular muscles (to distinguish them from the interior ones).
The extraocular muscles attach via tendons to the sclera at different places.
Each muscle is responsible for keeping the eye fixated in a direction and also
for coordinating the individual eye with the other eye. Normally, in fact,
both eyes move together, receive the same image on corresponding locations
on both retinas, and the brain fuses these images into one three-dimensional
image. The exception is in strabismus which is a disorder where one or both
eyes deviate out of alignment, most often outwardly (exotropia) or toward the
nose (esotropia). There are four basic muscles for up-and-down and in-and-out
motion. These are the rectus muscles (superior, inferior, lateral and medial).
The other two muscles are the oblique muscles (superior and inferior). These
muscles are responsible for rotational movements that, when combined with
the rectus muscles, allow us to look in any direction.

Figure 1.7: Extraocular eye muscles

Each eye can rotate around its three axis doing the movements specified in
Tab.(1.2.



1.3 Movements of human eye 17

Muscle Main action Secondary action

Lateral Rectus Abduction -
Medial Rectus Adduction -
Superior Rectus Elevation Adduction - Intortion
Inferior Rectus Depression Adduction - Extortion
Superior Oblique Depression Abduction - Intortion
Inferior Oblique Elevation Abduction - Extortion

Table 1.2: Ocular muscles and their actions

Rotations around vertical axis are called adduction when they are in nose
direction, while they are called abduction when they are directed toward the
external.

1.3.1 The saccade

In this work we are concerned with a special kind of movement called ”saccadic
movement”, that, for their characteristics effect the most severe condition of
motion within the vitreous chamber. The saccades are little, fast concurrent
movements that happen when the eyes go from a point of the visual field to
another . You do it, for example, reading this page, moving your eyes from
the beginning of the line to successive points of the line stopping the look for
short instants on them and then coming back to the subsequent line.

Figure 1.8: Saccadic movements of amplitude 5, 10, 20, 30, 40 e 50 degrees;
position (upper graphic) and velocity (lower graphic).
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Their kinematic characteristics are reported in detail in Becker(1989). The
main features of saccadic movements are a very high initial angular acceleration
(up to 30000 deg/s2) that suddenly starts the movement, a somewhat less
intense deceleration that is nevertheless capable of inducing a very efficient
stop of the movement. The velocity peak increases correspondingly to the
saccade amplitude up to a saturation value corresponding to 400 - 600 deg/s.
Saccade amplitude ranges from 0.05 deg (microsaccades, usually spread in a
random manner around the peered object) to 80 - 90 deg, which is the physical
limit of the orbit (notice that saccades of large amplitude are unusual as such
extension are usually accompanied by head rotation). We can describe the
metric of saccade using three fundamental characteristics: the amplitude A,
the duration D, the peak angular velocity ωp and the acceleration time tp i.e.
the time required to reach the peak velocity starting to the rest.

Duration

Saccade duration is related to the amplitude of movements. According to
Becker (1989) if we consider the whole interval of possible amplitudes in phys-
iological condition the relationship between D and A is non linear, but nar-
rowing the amplitude range from 5. to 50 deg the relationship is very well
described by the following linear law:

D = D0 + dA (1.3.1)

In equation 1.3.1 D is measured in seconds and A in degrees.

According to measurements performed by the author the slope d approxi-
mately assumes the value of 2.5 ms/deg and the intercept D0 typically ranges
between 20 and 30 ms.

Some authors propose for microsaccades a non linear dependence in accor-
dance with the following power law

D = CAk (1.3.2)

with C > 0 and A < 1.

For big amplitude saccades linear relationship can be used with a good
accordance, taking in account that in normal conditions, such movements are
accompanied by head rotations.
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Figure 1.9: Saccades duration related to their amplitude, according to some
authors who have measured them with different techniques:BAH Bahill (1981),
measurements on 13 subjects with infrared technique; BAL Balloh (1975),
observation on 25 subjects, EOG; BE1 Becker (not published), 26 subjects
population, EOG, the function is contained inside a 95% confidence band ;
BE2 Becker (not published), 6 subjects, EOG, measurements with head able
to rotate; JUR Jurgens e Becker (not published), 10 subject; ROB Robinson
(1964), 3 subjects.

Velocity

The average angular velocity during a saccadic movement depends on ampli-
tude and saccade duration and is defined as:

ω̄ =
A

D
(1.3.3)

On the contrary the peak velocity is independent of the duration and mea-
surements suggest that the ratio ωp

ω̄
between the peak and the mean velocities

attains a fairly constant value. Becker (1989) suggests the following estimate:

ωp

ω̄
≈ 1.64 (1.3.4)

The Figure 1.10 below shows that the peak velocity initially increases pro-
portionally to saccade amplitude, then it asintotically tents to a limit value
for larger amplitudes.
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Figure 1.10: Peak velocity related to saccade amplitude. The lines are referred
to the authors of figure 1.3.1 and BOG is referred to Boghen et al.(1974), 15
subjects observations, EOG with infrared, function contained inside a 95%
confidence band.

Acceleration

The experimental data show that small amplitude saccades (smaller than 10
deg ) follow an almost symmetrical time law, the acceleration time being ap-
proximatively equal to 0.45 D. The dimensionless acceleration time tp

D
varies

linearly with increasing saccade amplitudes, to the value tp
D
≈ 0.25 for sac-

cades of 50 deg. Experimental studies show that, for amplitudes of about 10
deg, peak acceleration goes about 30000 deg/s2 while for larger amplitudes it
can reaches 35000 deg/s2.

Time law for saccades

Some author (see David (1989) [7]) have suggested to use a periodic time law
to reproduce the saccade. This approximation is quite good for low saccades
amplitude.

In order to reproduce the time law ϕ(t), in the present work, it is described
the angular displacement of the eye during the saccade, employing a fifth
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degree polynomial function, of the form:

ϕ(t) = c0 + c1t + c2t
2 + c3t

3 + c4t
4 + c5t

5 (1.3.5)

The six coefficients are computed imposing the following constraints:

ϕ(0) = 0

ϕ(D) = A

ϕ̇(0) = 0

ϕ̇(tp) = ωp

ϕ̈(tp) = 0 (1.3.6)

where D, ωp and tp are evaluated by the relationships described above and
superscript dots denote time derivatives.

The resulting functions ϕ(t) and ω(t) = ∂ϕ(t)
∂t

are shown in Figure 1.11 a)
and b) and they satisfactorily reproduce the main features of real saccadic
movements as reported by Becker (1989).

(a) (b)

Figure 1.11: Polynomial saccade position (a) Polynomial saccade velocity (b)
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Chapter 2

Theoretical background

In this chapter a mathematical model is presented both for the motion inside
a sphere and a deformed sphere. The cavity rotates around its axis with
a defined time law, under simplified conditions listed below. The treatment
refers to David et al (1998)[7] for the spherical model and to Repetto (2006)[18]
for the sphere with the indentation simulating the lens presence.

2.1 A spherical model

David et al (1998)[7] have proposed a simplified analytical model for the motion
of a viscoelastic fluid within a periodically rotating sphere, which will shortly
be described in the following for the case of a purely viscous fluid. The eye
is supposed to be a sphere, with interior radius R0. The indentation caused
by the lens presence is disregarded as the different dimensions of three ocular
axis. Let us consider a system of spherical coordinates (r, θ, ϕ), with θ and ϕ
the elevation angular coordinate and the azimuthal coordinate, respectively.
Let us also assume that the sphere rotates about the vertical axis θ = 0, π, as
shown in Fig. 2.1.

If the flow field is described in terms of the velocity components (ur, uθ, uϕ)
the Navier-Stokes equations for a purely viscous fluid are:

[
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(2.1.1)
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Figure 2.1: Spherical system of coordinate used in the analytical model of
David et al. (1998)[7]
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(2.1.3)

where F represents mass forces acting on the fluid volume and P is the
pressure.

To (2.1.1), (2.1.2) and (2.1.3) equations no slip boundary conditions on the
wall have to be associated (in r=0 symmetry conditions have to be considered
that lead to uk = 0, for k = r, θ, φ, ϕ:
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ur = 0 (r = R0) (2.1.4)

uθ = 0 (r = R0) (2.1.5)

uϕ = u sin(ωt) sin θ (r = R0) (2.1.6)

Then introducing the dimensionless variables:

u∗ =
u

U
(2.1.7)

r∗ =
r

R0

(2.1.8)

t∗ = tω (2.1.9)

P ∗ =
P

ρU2
(2.1.10)

where R, U = ωpR and ω = 1/T are respectively a length, velocity and time
scales.

In the following P is assumed to be dynamic pressure and the dimensionless
variables are intended without *. The equations (2.1.1) , (2.1.2) , (2.1.3) in a
dimensionless form result:
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where α =

√
ωR2

0

ν
is the Womersley dimensionless number, ratio between

the characteristic length scale of the flow domain (R0), and the thickness of
the boundary layer at the wall, which order is

√
ν
ω
. Re = uR0

ν
is the Reynolds

number. At low Reynolds numbers, viscous effect are predominant and allow
to neglect all the terms multiplying Re.

Moreover, for the symmetry of the domain all the ϕ derivatives are ne-
glected. Equations (2.1.11), (2.1.12) and (2.1.13) can be rewritten in a simpli-
fied form:
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(2.1.16)

The authors assume that the flow field is axis-symmetrical, as a consequence
of the symmetry of the domain, and that the velocity vectors lay anywhere on
planes perpendicular to the axis of rotation. We will prove that this assumption
is correct, being the secondary flow induced by the curvature of the wall,
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consisting in two toroidal vortices, at least three or four orders of magnitude
smaller than the circumferential flow both in the case of periodic rotations
and in the case of saccadic movements. The simplifying assumptions adopted
by David et al (1998) [7] imply that ur = uθ = 0 and that uϕ does not
depend on ϕ. Notice that the above assumptions can be formally justified on
a mathematical ground only in the case of small values of the Reynolds number,
i.e. when the nonlinear terms in the Navier Stokes equations can be neglected.
In the experiments performed the Reynolds number (computed adopting the
maximum wall velocity and the sphere radius) ranges between 1 and 10. This
implies that the above assumptions are not strictly mathematically justified.

David et al.(1998) considered the case of periodic sinusoidal rotations, ac-
cording to experimental results of Weber e Daroff (1972):

uϕ = u sin(ωt) sin θ (2.1.17)

where ω is the angular frequency of movement and U is the maximum tangen-
tial velocity. As the uϕ problem is linear and uncoupled, the authors sought a
separable solution in the form:

uϕ = eiωtg(r) sin θ + c.c. (2.1.18)

where c.c. denotes the complex conjugate and the dependance of the solution
from sin θ arises from the boundary condition at the wall (2.1.4). The solution
for the function g is found in the following form:

g(r) = cj1(kr) (2.1.19)

where j1 is the spherical Bessel function of the first kind and order 1. The
coefficient k in the equation 2.1.19 is defined as:

k =

√
2

2
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√
ω

ν
(2.1.20)

The constant c can be determined imposing the boundary condition at the
side wall and takes the following values:

c =
1

2j1(kR)
(2.1.21)

c = − i

2j1(kR)
(2.1.22)

depending on whether F(t) is equal to cos(ωt) or sin(ωt). As pointed out
by David et al (1998), the above basic solution can be used to build up more
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complicated ones induced by sphere rotations that are not sinusoidal in time.
Indeed, periodic functions F(t), with period T , can be Fourier decomposed in
the form:

F (t) = c0 +
∞∑

n=1

cn cos

(
2πn

T
t

)

+ sn sin

(
2πn

T
t

)

(2.1.23)

In the present case, in order to reproduce saccadic eye movements, we have
employed a time law consisting of a sequence of rotations described by the fifth-
order polynomial function 1.3.5 followed by a period of no motion long enough
to allow for a complete stop of the fluid motion. In this case, the coefficients
c0, cn and sn can be readily determined analytically and the solution for the
ϕ component of the velocity can be written in the form:
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) (2.1.24)

2.1.1 Theoretical predictions

Examples ofuϕ profiles on the equatorial plane of the sphere, along the radius
for different instants during a period are reported in figure 2.2, 2.3 and 2.4.
All the variables have been made dimensionless with their maximum 1.

As we can see in figure 2.2, 2.3 and 2.4 the thickness of boundary layer at
the wall increases decreasing the Womersley number, this result corresponds
to the weakening of viscous effects, whose relative magnitude with respect to
the inertial forces is contained in α definition. Velocity profiles highlight the
existence of a phase lag between the motion of the fluid in the deeper regions
of the sphere and that close to the wall.

Tangential stresses at the wall can be derived by the velocity profiles trough
the relation:

τrϕ =
∂uϕ

∂r
− uϕ

r
(2.1.25)

Notice that in the 2.1.25 the term 1
r

∂ur

∂ϕ
was omitted having assumed that the

radial component is negligible respect to the circumferential one.

1Dimensionless time, obtained dividing the dimensional time by the period of rotation,

ranges between 0 e 2π.
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Figure 2.2: Dimensionless uϕ profiles for α = 5 along the radius

Figure 2.3: Dimensionless uϕ profiles for α = 10 along the radius

Figure 2.5 shows the dimensionless tangential stresses:

τ ∗rϕ =
τrϕR0

µU
(2.1.26)

at the wall versus the time, for different values of α. The superscript * in the
2.1.26 denotes the dimensionless stress.
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Figure 2.4: Dimensionless uϕ profiles for α = 20 along the radius

Figure 2.5: τrϕ for different α versus time

David et al.(1998) supposed that the maximum tangential stress is propor-
tional to the Womersley parameter according to the following relation:

max(τrϕ) = k ∗ α (2.1.27)

in which k is a constant ∼ 1.
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Maximum tangential stresses obtained by the authors with the (2.1.27) are
listed in table 2.1 for α = 5, 10 and 20 respectively.

α Maximum value of τrϕ

5 4.25
10 9.25
20 19.26

Table 2.1: Maximum tangential stress at the wall for different α.

The theoretical predictions highlight that tangential stresses increase pro-
portionally to the radius:

α =

√

ωR2
0

ν
∝ R0 (2.1.28)

according with the fact that RD often occurs in myopic eyes characterized by
an antero-posterior axis dimension longer than the normality.
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2.2 A deformed sphere model

As previously explained in chapter 1 the shape of the anterior part of the
vitreous chamber of a real eye significantly differs from a sphere due to the
presence of the lens. Repetto (2006) [18] investigated from an analytical point
of view the vitreous motion inside a weakly deformed sphere assuming the
vitreous to be liquefied. The analysis is carried out in the limit of low viscosity
Newtonian incompressible fluid so that the boundary layer is thin close to the
wall and the core flow is irrotational2. Because of the previous hypothesis,the
boundary layer does not separate during a saccadic movement. The eye globe
is modelled as a rigid deformed sphere rotating about its vertical axis. The
vertical cross section of the considered domain is shown in figure 2.6

Figure 2.6: Vertical cross section of the considered domain

The mathematical problem is formulated employing the system of polar
spherical coordinates (r, θ, ϕ) shown in figure 2.1 and referring to a fixed frame.
We can define the velocity potential Φ as follow:

u = ∇Φ (2.2.1)

where u = (ur, uθ, uϕ) is the velocity. Fluid incompressibility implies that

2The viscous layer at the wall spreads over a thickness of the order of
√

νt, where ν and

t are the kinematic viscosity of the fluid and time, respectively. For a low viscosity fluid

-say like water- and a time scale like saccadic one the viscous layer is at least one order of

magnitude lower than eye radius.
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the velocity potential must be a harmonic function, i.e.:

∇2Φ = 0 (2.2.2)

The boundary conditions impose vanishing flux through the eye wall, defined
by a radial coordinate R(θ, ϕ, t). The equations governing the fluid flow, in
term of velocity potential, can then be written in the dimensional form:
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= f(t) (2.2.5)

having introduced the dynamic pressure P through the Bernoulli equation
(2.2.5) in the case of an unsteady irrotational flow. In the previous equations
α(t) is the angular position in time with respect to a reference position, ρ is the
fluid density and f(t) an arbitrary function eventually vanishing by suitably
redefining the potential function.

Then introducing the dimensionless variables:

r∗ = r

R
R∗ = r

R
(2.2.6)

Φ∗ = Φ

ωpR
2 (2.2.7)

P∗ = p

ρω2
PR2 (2.2.8)

t∗ = ωpt (2.2.9)

where R is the sphere radius and ωp is the peak angular velocity during a
saccadic movement (see chapter 1). Here dimensionless variables present a
superscript asterisk that, for simplicity, will be omitted in the follow. Making
the following change of variable:

φ = ϕ− α(t) (2.2.10)

the position of the wall is no longer time dependent.
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The set of equations (2.2.3), (2.2.4) and (2.2.5) can be rewritten in the
dimensionless form with the above assumptions.
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= 0 (2.2.11)
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= 0 (2.2.13)

The shape of the domain considered is that of a sphere with unit radius,
conveniently deformed. Being the sphere center located in the origin of a
cartesian system of axis, let us consider the R(θ, ϕ) function such that:

R (θ, ϕ) = 1 + δR1 (θ, ϕ) (2.2.14)

where δR1(θ, ϕ) represents the deviation of the actual domain geometry from
the sphere. The parameter δ corresponds to the maximum value of this devi-
ation and was assumed equal to 0.15. The function R1(θ, ϕ) can be expanded
in spherical harmonics (see for further information Appendix B):

R1 =
∞∑

m=0

∞∑

n=m

amn cos (mϕ)P
m
n (cos θ) (2.2.15)

in which Pm
n (cos θ) are the associated Legendre functions (see for further in-

formation Appendix D):

Pm
n (x) =

(
1− x2

)m/2 dm

dxm
Pn (x) (2.2.16)

As shown in appendix D the expansion coefficients amn can be easily com-
puted by integrating the (2.2.15), using the orthogonal properties of Legendre
functions. Now, let us expand the unknowns p and Φ in a power series of δ:

Φ = Φ0 + δΦ1 +O
(
δ2
)

(2.2.17)

P = P0 + δP1 +O
(
δ2
)

(2.2.18)

The above expansion allow us to linearize the problem (2.2.11), (2.2.12) and
(2.2.13) by substituting the variables with their expansion 2.2.17 restricted to
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the first order of approximation. This procedure is strictly valid only for δ ≪ 1,
while δ = 0.15, nevertheless, the solution in this case is worth to perceive the
principal features of the fluid dynamic and to be analytical. Solutions at
further order of approximation, will be conveniently found in a numerical way.
The solution at O(δ0) order is the trivial: Φ0 = 0 and p0 =contant. This
agree with the fact that in absence of the adherence condition at the wall, no
motion is generated inside a rotating sphere. The equation at the first order
of approximation are:

∇2Φ1 = 0 (2.2.19)

∂Φ1

∂r
= −∂α

∂t

∂R1

∂ϕ
( r = 1) (2.2.20)

P1 = −
∂Φ1

∂t
+
∂α

∂t

∂Φ1

∂ϕ
(2.2.21)

Expanding the first order coefficient Φ1 of the velocity potential such that:

Φ1 =
∞∑

m=0

∞∑

n=m

Φmn sin (mϕ)P
m
n (cos θ) (2.2.22)

and substituting the expansion in the 2.2.19, the problem reduces to a sequence
of ordinary differential equations in the expansion coefficient Φmn:

d

dr

(

r2dΦmn

dr

)

− n (n+ 1)Φmn = 0 (2.2.23)

dΦmn

dr
= mamn

∂α

∂t
( r = 1) (2.2.24)

Φmn = 0 ( r = 0) (2.2.25)

Notice that to solve the first equation of the second order we have to impose
two boundary conditions, one is provided at the external boundary and the
other is a regularity condition at the center of the chamber. The problem
2.2.23 admits the following solutions:

Φmn = amn
∂α

∂t

m

n
rn (2.2.26)

From which it is possible to compute the velocity potential and derive the
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components of the velocity fields.
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Finally from the linearized Bernoulli equation we obtain the solution for
the pressure:

p =
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(2.2.30)
Notice that the p solution is composed by a term proportional to the an-

gular acceleration and a term dependent from the angular velocity.

2.2.1 Theoretical predictions

In the following, some results of the above theoretical model are summarized,
for further information the reader is referred to Repetto (2006) [18]. Theoreti-
cal predictions show that the real shape of the domain plays a significant role,
being responsible of an intense flow with remarkably different characteristics
from the viscous flow occurring within a rotating sphere. The presence of the
lens indentation actually produces a high three-dimensional motion within the
vitreous chamber and generates significant vertical velocity components which
would not be observed if the eye globe were purely spherical. A flow partic-
ularly intense is generated close to the lens as we can observe in figure 2.7
reporting the absolute and relative flow field induced on the horizontal plane
by a counterclockwise rotation of the eye globe.

Notice that in the region close to the lens, the velocity is in the opposite
direction with respect to the motion of the wall. Moreover a less intense ve-
locity field is also generated in the posterior region of the vitreous chamber
having velocity vectors again directed in the opposite sense with respect to
the wall velocity. The three-dimensional character of the flow may play an
important role in producing vitreous mixing. The velocity distribution at the
wall suggests that, if the non-spherical character of the domain is accounted
for, also the shear stress at the wall may be significantly modified with respect
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Figure 2.7: Absolute (a) and relative (b) velocity fields on the horizontal plane,
induced by a counterclockwise rotation of the eye globe.

to the perfectly spherical case. Moreover an indication of the possible occur-
rence of boundary layer separation can be simply obtained considering the
two-dimensional flow on the equatorial plane orthogonal to the axis of rota-
tion produced by an impulsive rotation. In the case of low viscosity vitreous,
eye rotation with amplitude larger than about 15◦ are expected to produce
boundary layer separation with consequent formation of a wake region within
the eye globe.
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Chapter 3

Principles of PIV

PIV is a visualization techniques for quantitative measurement in flow fields.
Features of PIV make it unique as it allows to capture the whole velocity field
instantaneously without interfering with it. The PIV technique, in fact, works
non intrusively. This allows the application of PIV even in high speed flows
with shocks or in boundary layers close to the wall, where the flow may be
disturbed by the presence of probes.

Moreover PIV can be used to indirectly obtain information on other im-
portant physical quantities of a fluid such as its density, temperature, con-
centration or test optical instrument performances. Although the theoretical
principle of this technique has already been known for a long time, only recent
technical progress in optics, lasers, video and computers makes it suitable to
be employed in measurements of complex flow fields.

PIV supplies indirect velocity measurements of tracer particles seeded in-
side the observed fluid, by means of comparison of position that particles
assume in photo images taken at subsequent time instant. The experimental
set-up of a PIV system typically consists of several sub-systems.

An accurate system of illumination is required to light a plane inside the
flow fields at least twice within a short time interval. Illumination is usually
provided by a laser that produces light beams, which are appropriately adapted
by a system of lens and glasses to be a light plane. The light scattered by the
particles is recorded either on a single frame or on a sequence of frames by one
or more cameras. All components ( motor, laser, camera ) of PIV system must
be synchronized.

The displacement of the particle images between the light pulses has to be
determined through evaluation of the PIV recordings. In order to elaborate
images to obtain required information P.I.V. technique avails of sophisticated
processing algorithms. PIV images are divided in small subareas called ”inter-
rogation areas”, supposed to have homogeneous velocity. For each interroga-

39
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Figure 3.1: Main components of a PIV experimental set-up

tion area variation of particles position between subsequent images is observed
by means of statistical methods ( auto- and cross- correlation). The projec-
tion of the vector of the local flow velocity into the plane of the light sheet
is calculated taking in account the time delay between the two images. The
great amount of data needs a powerful post-processing system.

Features which mainly influence the quality of PIV acquisitions are:

• Illumination A compromise between the dimension of particles (big
particles better scatter light) end their faithfully reproduction of flow
field ( small particles less interfere with the flow) has to be found. This
problem is quite significant for application in gas flows while in liquid
flows larger particles can usually be accepted. Thus, light sources of
lower peak power can be used here.

• Duration of illumination pulse The duration of the illumination
light pulse must be short enough that the motion of the particles is
”frozen”during the pulse exposure to avoid blurring of image (“no streaks”).

• Time delay between illumination pulses ∆t: It must be long enough
to be able to determine the displacement between the images of tracer
particles with sufficient resolution and short enough to avoid particles
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with an out-of-plane velocity component to leave the light sheet between
subsequent illumination.

• Distribution of tracer particles in the flow. For qualitative flow
visualization certain areas of the flow are made visible by marking a
stream tube in the flow with tracer particles (smoke, dye). For PIV
the situation is different: a homogeneous distribution of medium density
is desired for high quality PIV recordings in order the obtain optimal
evaluation. No structures of the flow field can be detected on a P.I.V.
recording of high quality.

• Density of tracer particles on the PIV recording It’s a funda-
mental factor in clear understanding of images. Three different types of
image density can be distinguished. If the particles concentration is low,
the image of individual particle can be detected. This kind of images
requires tracking methods for evaluation ( Particle Tracking Velocimetry
PTV). A medium image particles density is required in standard PIV
technique. In this case the image of particles can be detected as well,
however is no longer possible to identify image pairs by visual inspection
of the recording, statistic method are used. If particles density is high
is not even possible to detect single particles as they overlap forming
speckles. This situation is called Laser Speckle Velocimetry (LSV).

Figure 3.2: (a) Low density of tracer particles (P.T.V.) (b) Mean density of
tracer particles (P.I.V.) (c) High density of tracer particles (L.S.V)

• Size of interrogation areas The size of the interrogation area must be
small enough to neglect velocity gradients inside it. As the processing
of an interrogation area furnish one velocity vector the number of the
independent velocity vector is determined by the number of interrogation
window.
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3.1 PIV components set-up

Here we briefly explain the main features of the PIV components with par-
ticular reference to the experimental set-up used for the experiments below
described.

3.1.1 Tracer particles

PIV technique is based on the direct determination of the two fundamental
dimension of the velocity: length and time. On the other hand the velocity of
fluid is indirectly determined being the particles velocity seeded in the flow to
be measured. Therefore, fluid mechanical properties of the particles have to
be accurately checked in order to avoid significant discrepancies between fluid
and particles motion.

Figure 3.3: Images of hollow glass particles to an electronic microscope

A primary source error is in fact the different response to the gravitational
forces in the cases the particles and the fluid have different density. In practical
situation this can be avoided by a correct choice of particles. For a single
spherical particle moving in a viscous fluid at very low Reynolds numbers the
velocity due to gravitational forces is derived from the Stokes drag law:

Ug = d2
p

(ρp − ρ)

18µ
g (3.1.1)

where g is the acceleration due to gravity, µ is the dynamic viscosity of the
fluid and dp is the diameter of the particle. This velocity has to be added to
the velocity of fluid which drags the particle, resulting delayed.

Us = Up − U = d2
p

(ρp − ρ)

18µ
a (3.1.2)
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where Up is the particle velocity, that typically follows an exponential law
if particle density is greater than fluid density.

Up(t) = U

[

1− exp

(−t
τs

)]

(3.1.3)

being τs the relaxation time given by:

τs = d2
p

ρp

18µ
(3.1.4)

τs is a convenient measure for the adaptation of the particles to the fluid
velocity even in the cases in which Stokes law does not apply.

When applying PIV to liquid flows the problem of finding particles with
matching densities are usually not severe, solid particles with adequate me-
chanical properties can often be found. Difficulties arise in applications in
gases, taking in account that the particle diameter should be not too small to
allow a good light scattering. Since the intensity and the contrast of the PIV
recording are proportional to the light scattered by particles required quality
of images can be reached by acting on laser light power or optical properties of
tracer particles. Light scattered by a particle depends on its refractive indices,
its size, shape and orientation. The light intensity as can be seen from all Mie
scattering diagrams, spread in all directions. When a large number of particles
are affected by light multiscattering effect magnify the local scattering.

3.1.2 Laser

Lasers are devices able to produce an intense beam by amplifying light through
a process called stimulated emission. Lasers are widely used in PIV application,
as light sources, for their ability to emit monochromatic1, spatially coherent
and collimated2 light with high energy density, easily converted in light sheets
for illuminating and recording particles image without chromatic aberrations.

A fundamental understanding of laser physics is based on the basic rela-
tionship between electrons and the nucleus in an atomic model. The current
model of stimulated emission is described by quantum physics, which defines
different energy levels of electrons while revolving around the nucleus in differ-
ent levels of orbit. In this model, a stable electron is a normal state makes a
transition to a higher but unstable energy level by absorbing a photon whose

1 Radiation emitted by lasers has a well defined frequency coincident whit the character-

istic frequency of atoms of the active substance present in the laser.
2The light either is emitted in a narrow, low-divergence beam, or can be converted into

one with the help of optical components such as lenses
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Figure 3.4: Typical scheme of working of a three level laser

frequency is ν = ∆E/h, where ∆E is the difference of energy between the two
levels and h is the Plank constant. This unstable electron with high energy
ultimately may return spontaneously to the original stable level. Alternately,
this emission can be induced by a forced interaction between one photon and
the unstable electron in order to release a new photon ( stimulated emission
), which is the basis of laser energy.

A laser primarily consists of three main components:

1. an active medium that is the component where the laser radiation is
generated;

2. a stimulation (excitation) mechanism that is the power source of
the laser pump;

3. an optical chamber that provides to amplify and collimate the light.

The function of active medium is to supply a source of stimulated atoms,
molecules, and ions. It is a material of controlled purity, size, concentration,
and shape, which amplifies the beam through the process of stimulated emis-
sion. It may be in a solid, gaseous or liquid state. The active medium absorbs
pump energy, which raises some electrons into higher-energy (”excited”) quan-
tum states. Particles can interact with light both by absorbing photons or by
emitting photons. If the emission is stimulated the photon is emitted in the
same direction as the light that is passing by. When the number of particles
in an excited state exceeds the number of particles in some lower-energy state,
population inversion is achieved and the amount of stimulated emission due
to light that passes through is larger than the amount of absorption. Hence,
the light is amplified. Different types of lasers are named according to what is
used as an active medium. Lasers, with a solid state of active medium are the
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Figure 3.5: Scheme of main components of a laser

Nd:YAG (Yttrium-Alluminium-Garnet crystal with incorporated Nd3+ ions),
ruby, and diode lasers. Lasers using a gaseous active medium are the CO2,
argon, and helium-neon lasers. The helium-neon laser is used as an aiming
beam in lasers with an invisible3 beam (as in the CO2 lasers) in order to cre-
ate a visible beam. A laser with a liquid active medium uses organic dye. The
activation status of the laser medium is operated by the operation mode of the
laser device. Three operational modes are currently available. In the contin-

uous mode, the active medium is kept in a stimulated mode, which provides
constant and stable energy. In the pulsed mode, the active medium is inter-
mittently activated for a very short time. However, a much higher maximum
of instantaneous energy is delivered with pulses compared to the continuous
mode in which average power output is greater. In Q-switched mode, very short
pulses of the laser are produced in a controlled manner, which is obtained with
a shutter positioned between the active medium and the partial reflector. In
this mode, pulses range from 10 ns to 10 µs.

The second component devoted to supply the energy required for the am-
plification is called pump. It provides the energy that is used to activate the
medium. The energy is supplied as an electrical current or as light at a differ-
ent wavelength or have chemical form. Such light may be provided by a flash
lamp or perhaps another laser.

The optical chamber contains the active medium and it is used to direct
the output and also to provide feedback from amplification and collimation.
The cavity consists in reflective surfaces so that the light passes through the
active medium more than once before it is emitted from the output aperture or
lost to diffraction or absorption. As light circulates through the cavity, passing

3Not all the electromagnetic radiations be able to emit with a laser are in the visible

spectrum: hence there are infrared lasers, ultraviolet lasers, X-ray lasers, etc.
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through the active medium, if the amplification in the medium is stronger than
the resonator losses, the power of the circulating light can rise exponentially.
The result is the generation of stationary waves under the condition:

L =
mλ

2n
(3.1.5)

in which n is the refractive index, m is an integer number and L the resonator
length. Since the frequency ν, according to the transition νh = E2 − E1

does not correspond to an exactly one wavelength, but rather to a spectrum
of a certain band width ∆ν which can be filled by different wavelengths or
frequencies.Therefore, the resonator can oscillate in many axial modes with
distinct frequencies.

Besides these major components of the laser, it must contain a cooling
system, a delivery system from the laser to the operative field, a control unit
in order to operate power output (frequency and duration of exposure and spot
size), and a remote control. Delivery system are important in the selection of
the laser. They can be articulated arm (for the CO2 laser), optical fibers (for
near-infrared and visible lasers) or a connection between laser and microscope.

3.1.3 Light sheet optics

The domain of measurement must be lighted with a thin sheet of light. The
essential element for the generation of a light sheet is a cylindrical lens. When
using lasers with a sufficiently small beam diameter and divergence one cylin-
drical lens can be sufficient in order to create a light sheet of appropriate
characteristics. With Nd:YAG lasers a combination of cylindrical and spher-
ical lenses are usually required. As usual combination consists in a diverging
lens, used to refract the light beam in a fan shape, associated with a converging
lens devoted to focus the light to an appropriate thickness. A third lens can
be inserted in order to generate a light sheet of a constant height.

An adequate choice of the optic system prevent the formation of focal lines,
to be avoided especially with high power lasers as the air close to the focal point
will be ionized and the dust particles will be burned if the area in the vicinity
of the line is not covered or evacuated. Sometimes the experimental set-up
requires the presence of other optical device such as glasses or optical groups.

3.1.4 Digital camera

The recent progress in digital imaging have provided an attractive alterna-
tive to the photographic methods of PIV recording. Modern digital cameras
have substituted traditional cameras because of many advantages they present,
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Figure 3.6: Example of combination of lens for laser beam adapting to a sheet

starting from the immediate availability of images as well as a complete avoid-
ance of photochemical processing. Focusing phase, exposure regulation and
choice of framing are the same in both type of camera. Image in traditional
camera was fixed on photo film while in digital camera it is stored on a Charge
Couple Device (CCD). The CCD is an electronic sensor that can convert light
into electrical charge. Today there is a variety of electronic image sensors
available. They are arranged either in form of a line or in a rectangular array.
The individual CCD element in the sensor is the pixel whose dimension are
approximately 10x10 µm2. The CCD is built on a semiconducting substrate
(typically silicon) with metal conductors on the surface, an insulating oxide
layer, an n-layer (anode) and a p-layer (cathode) below that. When a photon
of proper wavelength enters the p-n junction of the semiconductor an electronic
hole pair is generated. While the hole is absorbed by the p layer, the electron
migrates following the gradient of electric field toward its minimum where it is
stored. Electrons continue to accumulate for the duration of the pixel exposure
to light. A pattern of points with different light intensity is created in this way,
this constitute the digitalized image, saved in camera memory or transferred to
a computer. Pixel storage capability is limited, when the number of electrons
exceeds the maximum , the additional electrons migrate to the neighboring
pixels (overexposure) leading to image blooming.
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3.2 PIV recording techniques

Different approaches to PIV recording are possible:

• methods which capture the illuminated flow on a single frame (single-
frame/single-multi-exposure);

• methods which provide a single illuminated image for each illumination
pulse(multi-frame/ single-multi exposure).

The principal distinction between the two branches is that the single-frame
method, without any additional effort, does not retain information on their
temporal order of the illumination pulse giving rise to a directional ambiguity
in the recovered displacement vector. Using this approach on the same image
we find the marks left by the particles during one or more period of exposure.
For clarity in the fig. (3.7) examples of single-frame acquisition are reported:

Figure 3.7: Single frame technique of recording

Multi-frame recording preserves the temporal order of the particles images.
Particles position in subsequent instants is registered on different image.

The choice of the recording method to be employed in recordings is strictly
related to the techniques used in the subsequent phase of image evaluation.
The most frequent approach consists in registration of images separated by
a time interval (∆t) called ”pulse separation”. This parameter is decided
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Figure 3.8: Multi frame technique of recording

by the operator according to the magnitude of velocity fields, the domain of
measurement dimensions and the camera spatial resolution. A correct value
of pulse separation avoid that particles leave their interrogation window and
allow to easily identify their displacement.

Sampling frequency of images depends exclusively on the technical charac-
teristics of camera and laser.

3.3 Image evaluation methods

In order to extract the displacement between two pattern of particle images
some sort of interrogation scheme is required. For the image evaluation statis-
tical approach is used: the measurement domain is divided in interrogation ar-
eas, each resulting vector represents the displacement of the group of particles
contained inside the interrogation window supposed to have an homogeneous
behaviour.

3.3.1 Pre processing operations

Before proceed to the image evaluation one has to decide the dimension of
the grid superimposed to the images and the number of grid’s nodes on which
velocity vectors have to be referred.

Moreover, when the PIV measurements are performed over domains smaller
than the entire image plane, or with irregular shape (i.e. the recordings shape
is in this case rectangular), one has to superimpose to the images a mask con-
sisting in a black figure covering the parts of the image out of the measurement
domain, before starting in images processing.
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3.3.2 Particle Image Locations

A single exposure recording consists of a random distribution of particle im-
ages, which correspond to the pattern of N tracer particles inside the flow. At
the time instant t the statistical distribution of particles can be described by
the random variable:

Γ =
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(3.3.1)

where the vector:

Xi =





Xi

Yi

Zi



 (3.3.2)

are the coordinate of the position of a tracer particle in a 3N -dimensional
space. On the image plane the coordinate of the image position vector of the
particle i at time t are given by:

xi =

(
xi

yi

)

(3.3.3)

Figure 3.9: Schematic representation of geometric imaging

For simplicity we assume that the particle position coordinates and the
image position coordinates are related by a constant magnification factor M
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such that:
Xi =

xi

M
(3.3.4)

Yi =
yi

M
(3.3.5)

3.3.3 Image Intensity Field

The image is interpreted like the result of the convolution of the geometric
image and the impulse response of the imaging system. For infinite small
particles and perfectly aberration-free well focused lenses the amplitude of the
response can mathematically be described by the square of the first order Bessel
function the so-called Airy function A good approximation of this function for
a real system of lenses is represented by a Gaussian function:

τ = K exp

(−8|x|2
d2

r

)

(3.3.6)

where:

K =
8τ0
πd2

r

(3.3.7)

The convolution product of τ(x) with the geometric image of the tracer
particle at the position xi therefore describes the image of a single particle
located at position Xi. As the distribution of the real point is discrete, to
describe the geometric image of each particle a Dirac delta-function shifted to
position xi is used. Thus, the image intensity field of the first exposure may
be expressed by:

I(x,Γ) = τ(x)
N∑

i=1

V0(Xi)δ(x− xi) (3.3.8)

Because of τ(x) is a real function:

τ(x− xi) = τ(x) ∗ δ(x− xi) (3.3.9)

the 3.3.8 can be rewritten such that:

I(x,Γ) =
N∑

i=1

V0(Xi)τ(x− xi) (3.3.10)

being V0(Xi) the transfer function giving the light energy of the image of
an individual particle i inside the interrogation volume Vi and its conversion
into an electronic signal or optical transmissivity. τ(x) is considered to be
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identical for every particle position. The visibility of a particle depends on
many parameters as, for example, the scattering properties of the particle, the
light intensity at the particle position, the sensitivity of the recording optics
and the sensor or film at the corresponding image position.V0(X) just describes
the shape, extension, and location of the actual interrogation volume:

V0(X) =W0(X, Y )I0(Z) (3.3.11)

where I0(Z) is the intensity profile of the laser light sheet in the Z direction
and W0(X, Y ) is the projection of the interrogation window on the light sheet.

3.3.4 Correlation of PIV recording

The main mathematical tool in evaluating PIV images is the correlation. The
auto-correlation (i.e. the degree of similarity of the image with itself), of
the single-frame/single-exposure intensity field can be described by the auto-
correlation function, derived by associating to each point a numerical value
corresponding to its light intensity:

RI(s,Γ) = 〈I(x,Γ)I(x+ s,Γ)〉 =
1

aI

∫

aI

N∑

i=1

V0(Xi)τ(x− xi)
N∑

j=1

V0(Xj)τ(x− xj)dx

(3.3.12)

where aI is the size of the interrogation area and s is the displacement
vector on the correlation plane. The terms i = j represent the correlation
of each particle with itself while the terms i 6= j represent the correlation of
images of different particle and therefore constitute a randomly distributed
noise in the correlation plane.

The auto-correlation function has a primary peak in correspondence to
the s=0 displacement (self-correlation) and secondary peaks. One of these
corresponds to the effective displacement of the particle.

Taking in account the multiple-frame/single-exposure PIV recordings, the
images are evaluated by locally cross-correlation. We consider, now two record-
ings made at a time instant t and t′ = t + ∆. In the following, a constant
displacement D of all particles inside the interrogation volume is assumed, so
that the particle locations during the second exposure at time t′ are given by:

X ′
i = Xi +D =





Xi +Dx

Yi +Dy

Zi +Dz



 (3.3.13)
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Figure 3.10: Composition of peaks in the auto-correlation function, accord-
ing to Adrian: RI(s,Γ) = RC(s,Γ) + RF (s,Γ) + RP (s,Γ), where RC(s,Γ) is
the mean intensity I convolution, RF (s,Γ) is representative of the noise com-
ponents for the terms with i 6= j and RP (s,Γ) is the auto-correlation peak
positioned in (0,0) in the correlation plane
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We furthermore assume that the particle image displacements are given by:

d =

(
MDx

MDy

)

(3.3.14)

If we first consider identical light sheet and windowing characteristics, the
cross-correlation function of two interrogation areas can be written as:

RII(s,Γ, D) =
1

aI

∑

i,j

V0(Xi)V0(Xj +D)

∫

aI

τ(x− xi)τ(x− xj + s− d)dx

(3.3.15)

Hence, for a given distribution of particles inside the flow, the displacement
correlation peak reaches a maximum for s = d.

Therefore the location of this maximum yields the average in-plane dis-
placement, and thus, as we know the time interval between the two images, we
are able to evaluate the U and V components of the velocity inside the flow.

In the case of a unique image containing the particle position in subse-
quent time instant (single-frame/multiple-exposure), we have to evaluate cross-
correlation of intensity of the first set of particles with itself immortalized at
the successive instant.

This technique has the disadvantage of ambiguity in displacement direc-
tion. Moreover if the time interval between two successive recording is low,
superimposition of particles mark are possible, making image interpretation
hard to do.

3.4 Post processing of images

Investigations employing the PIV technique usually result in a great number
of images which must be further processed. Thus, it is quite obvious that
a fast, reliable and fully automatic processing of the PIV data is essential.
Before incoming to the final results PIV data follow a process consisting in the
following steps.

• Validation of the raw data. After automatic evaluation of the PIV
recordings, a visual inspection of images shows a certain number of in-
correctly determined velocity vectors (so-called outliers). Vectors that
have to be substituted have clearly anomalous characteristics respect to
the neighboring vectors, like length or direction significantly different.
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Figure 3.11: Composition of peaks in the cross-correlation function. where
RD(s,Γ, D) represents the correlation of the images with itself (terms with
i=j)
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Figure 3.12: Auto-correlation function components for the single-
frame/double-exposure mode
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The presence of incorrect vectors inside the flow fields derive from error
in evaluating the cross-correlation function. Scatters, fault in surfaces
crossed by the beam of light, rumor generated from too many particles,
velocity gradients are common sources of error. In order to detect these
incorrect data many validation methods have been proposed in litera-
ture. Some of these methods are based on correlation function peaks, on
knowledge of general pattern and values of flow field, or apply filters or
mobile mean processes. The main characteristic these algorithms must
have is to work automatically.

• Replacement of the incorrect data. For most post-processing al-
gorithms (e.g. calculation of vector operators) complete data fields are
required. Therefore, the gaps (data drop-outs) in the experimental data
left by the previous procedure have to be filled with other data. This
purpose can be achieved with procedures of bilinear interpolation using
the vectors in the vicinity to the one that has been removed or weighted
mean with the ”Gaussian window” technique.

• Data reduction. PIV is a largely productive technique, as result of PIV
evaluations one obtains thousands of data. It is quite difficult to inspect
such a number of velocity vector maps and to describe their fluid mechan-
ical features. Usually techniques like averaging (in order to extract the
information about the mean flow and its fluctuations),conditional sam-

pling (in order to distinguish between periodic and non periodic parts of
the flow), and vector field operators (e.g. vorticity, divergence in order
to detect structures in the flow) are applied.

• Analysis of the information. At present this is the most challenging
task for the user of the PIV technique. PIV being the first technique to
offer information about complete instantaneous velocity vector fields al-
lows new insights in old and new problems of fluid mechanics. New tools
for analysis such as proper orthogonal decomposition (POD) or neural

networks are applied to PIV data.

• Presentation and animation of the information. A number of soft-
ware packages—commercially available as well as in-house developed—
are obtainable for the graphical presentation of the PIV field data. It is
also very important to support the understanding of a human observer
of the main features of the flow field. This can be done by contour plot-

ting, color coding, etc. Animation of PIV data is very useful for a better
understanding in the case of time series of PIV recordings or 3D data.
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3.5 Flow fields analysis

The results of the previous elaborations are vector maps, on a regular grid,
usually referred to a cartesian system of coordinate. Components of velocity
vector are registered for each node of the grid. Sometimes commercial software
used to elaborate PIV measurements supply further information like: spatial
derivative of velocity, mean of data on all registered velocity fields, standard
deviation and other statistical information. By elaborating velocity data is
then possible evaluate shear stress, actions on boundary, pressure fields...



Chapter 4

Experimental set-up

In this chapter we give a description of the experimental set-up. The aim
of the experiments is the measurements of the flow fields inside a magnified
model of vitreous cavity. The eye globe has been modeled by means of two
semi-spherical cavities of 40 mm radius ( scaling about 4:1 the real dimensions
of normal human eye ), carved into two halves of a plastic cylinder of external
radius equal to 120 mm. The cavity was filled with a 98 % pure glycerol
solution, a Newtonian fluid with high viscosity. The cylinder was mounted on
the shaft of a computer controlled motor which rotates according to prescribed
time law. The rotation of the shaft was synchronized with a two-dimensional
Particle Image Velocimetry (PIV) acquisition system that was employed to
measure two-dimensional velocity fields on the equatorial plane of the model.
For a description of the main feature of this technique the reader is referred
to chapter 3; a thorough examination of this subject is given in [17].

4.1 Design of the experiments

4.1.1 Scaling effect

The experiments have been performed with a magnified model of the vitreous
chamber; therefore, scale effects need to be properly accounted for. If we
make equation 2.1.1, 2.1.2 and 2.1.3 dimensionless, scaling the variables (u by
U = ωpR, being ωp the peak angular velocity, t by T , where T a characteristic
time scale of globe rotation, and r by R) like previously shown in 2.1.7 we found
only one relevant dimensionless parameter, namely the Womersley number:

a =

√

R2

νT
(4.1.1)
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In the case of periodic rotations it is a natural choice to replace T by 2π/ω,
where ω is the angular velocity, as the characteristic time scale. With this
substitution a reduces to the form:

α =

√

R2ω

ν
(4.1.2)

as it appears in David et al (1998)[7]:
For the above reasons α is the parameter which has been conserved in the

passage from the prototype to the model. Thus we impose:

R2ω

ν
=
R2

pωp

νp

(4.1.3)

where the subscript p indicates the variables referred to the prototype.
Once a particular eye movement has been selected equation (4.1.3) allows

us to determine a relationship between T and Tp, i.e. the scaling of time, which
reads:

T =
R2

R2
p

νp

ν
Tp (4.1.4)

4.2 The experimental models and the rotating

system

4.2.1 Experimental model of vitreous chamber

The experiments described in the present work have been made with two dif-
ferent model of posterior chamber:

• a spherical model

• a deformed sphere model which takes in account the presence of the
lens in the anterior part of the chamber

Both models consist in a cavity of 4.08 cm radius carved in a perspex
cylinder (refractive index 1.48), with external diameter 12 cm and 18 cm high.
The model is divided in two halves.

A hole on the top of the cylinder allow its filling with the experimental fluid
seeded whit tracer particles. The cavity insulation is assured by two strips put
around the model, while the contact surface of the two halves hare covered by
vaseline.
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Figure 4.1: Picture of the spherical model

4.2.2 Experimental fluid

Interior cavity model has been filled with a 98 % pure glycerol solution. This
liquid has newtonian behaviour and high viscosity. The solution relative den-
sity is almost 1,256 and its refractive index is 1,474. This value matches the
index of refraction of the perspex used for the container, thus excluding any
deformation in the images due to refraction of light rays when they cross the
curved interface between two materials. Strong dependence of glycerol (i.e. the
fluid used in experimentation) viscosity on the external temperature (see table
4.1 ) has taken in account by periodical measurement of liquid viscosity by a
viscometer, during experiments, in order to continuously monitor its possible
variations. Moreover each session of experiments have been made employing
the time strictly necessary, in order to assure the same environment conditions
avoiding viscosity fluctuations during the experiment.

0o C 20o C 60o C
Water 1.8 1.0 0.65
Glycerol 10000 1410 81

Table 4.1: Kinematic viscosity values related to external temperature for water
and glycerol
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Viscosity measurements were hold on with a sphere drop viscosimeter,
model 356-0001 Haake, a picture of which is taken in figure 4.2.

Figure 4.2: Picture of the viscometer used to monitor viscosity values

4.2.3 Tracer particles

The tracer particles used during the experiments are hollow glass sphere with
diameter variable between 2 and 20 µm and refractive index of 1.52. The par-
ticles density is about 1.15 g/cm3 nearly matching the density of the working
fluid, assuring the drag velocity of the particles to be negligible with respect
to the motion of the fluid. Particles were seeded into the glycerol and carefully
mixed to guarantee an uniform distribution inside the fluid before the fluid
was inserted inside the cavity. The adequate quantity of tracer particles to be
introduced inside the fluid was evaluated by means of the analysis of images
taken in the initial test experiments.

To fill the model chamber a medical drip suitably modified was employed.
The system consists in a glass container of 500 cm3 capability, with a gum
cap, on which a surgical needle and a small metal pipe have been inserted and
connected with a gum duct ( interior diameter 5 mm )ending with a needle,
to be introduced into the cavity.
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4.2.4 Model rotating system

The models were mounted on a support directly connected with the shaft of
an electrical brushless motor (mod. G404−550 MOOG with T200 control) by
means of four screws. On the top of the support we put a black disc directed
to increase the contrast between the equatorial images of the model and the
background. The motor allowed the eye model to rotate around its vertical
axis, according to an assigned temporal law. The motor was governed by the
computer, and allows oscillations from ±5◦ to 20 Hz and from ±50◦ to 1 Hz.

The engine can operate in:

• Current (Torque) Mode: requiring a torque couple in Volt (until 10
Volt);

• Velocity Mode: requiring the velocity law to follow;

• Position Mode: requiring a position law.

4.3 Feature of the PIV apparatus

In the figure 4.6 a scheme of the experimental apparatus is reported. Equatorial
plane of the model rotating with a prescribed time law was enlighten with a
pulse laser beam. At the same time of laser pulse a digital camera mounted on
the model rotation axis at about 1 m over its equatorial plane takes couples of
picture to be processed with cross-correlation analysis as described in chapter
3.

4.3.1 Laser and optics

Measurements domain enlightenment was provided by a couple of lasers. Dur-
ing the PIV experimentation we used two 30 Hz Nd:Yag lasers called ”Gem-
ini YAG”, individually manageable through two different consoles. The light
beam has a wavelength of 532 nm (green) and was converted into a sheet of
0.5 mm thickness and with planar dimensions sufficient to illuminate the area
of interest.

In order to adapt the beam to experimental requirement a system of two
lens and two glasses with a 45◦ slope has been used. Both lens are cylindrical
and have rectangular shape. The characteristics of the lens are listed below:

• plane-convex lens: focal f=700 mm

• plane-concave lens: focal f=70 mm
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Figure 4.3: Sketch of the lateral view of the experimental apparatus

Figure 4.4: Picture of Gemini YAG lasers used in experiments

Laser optics needs to be placed with care in a stable position. This aim
was reached by the use of an optical table consisting a aluminium frame of 600
x 1200 mm and 51.5 mm thickness, covered with a steel layer. On the surface
of the optical table a square pattern of hole spaced out of 25 mm allows to
place the optical components with screw, trolley or magnetic connections.
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Figure 4.5: Experimental set-up of laser optics

4.3.2 Digital camera

The images used in PIV measurements were taken with the digital camera
SONY,SharpVISION 1300DE. Camera was positioned on the model axis 100
cm over the measurement plane. The characteristics of CCD sensor Sony
ICX085AL mounted on digital camera are listed in the table 4.2:

Pixel dimension 6.7× 6.7 [µm]
Sensor area 10.0(H)× 8.7(V ) [mm]
Sensor dimension 11[mm] diagonale
Spatial resolution 1300(H)× 1030(V )
Read-out noise 7-8 e−

Sensor capability 16000 e−

Spectral response 290 - 1000 [nm]
Dynamic range 12 bit
Antiblooming ¿ 1000
Dark current ¡ 0.1 [e−/pixel/s]
Sensitivity 4350 [e−/lux/mm2/s]

Table 4.2: CCD sensor characteristics

4.3.3 Synchronization devices

A perfect synchronization among the different component of a PIV apparatus
is fundamental. Connection of components are realized with cables connected
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to two terminals. These devices constitute an expansion of gates of computer
controlling the components.

Figure 4.6: Terminal used in connecting PIV apparatus components

4.4 Image acquisition

The recording of images have been taken with a multi-frame single-exposure
approach. The sampling rate employed in the experimental measurements
was set such to obtain 40 vector fields within a period of sinusoidal movement
and 20 flow fields in a single duration of a saccadic movement, in the case
of experiments performed with a spherical model, while we obtain 100 vector
fields within a sine period for the lowest frequency experiments and 50 flow
fields in a single sine period for the highest frequency runs with the deformed
sphere model.

4.5 Post Processing

The results of the previous elaborations are vector maps, on a regular grid,
usually referred to a cartesian system of coordinate. Components of velocity
vector are registered for each node of the grid. The PIV setting used to ana-
lyze the images in terms of cross correlation yielded to a spatial resolution of
about one velocity vector per 1.5mm2. Each velocity field (u(x, y, t); v(x, y, t))
obtained by PIV recordings was measured 60 times. An ensemble average
(U(x, y, t);V (x, y, t)) was then determined and the corresponding root mean
square values uRMS and vRMS evaluated. Averaging of the velocity fields per-
mit to obtain feasible measured velocity fields by means of the random errors
correction.
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4.6 Creation of a polar grid

Vector fields were transformed into polar coordinates, which is a more natural
choice for the geometry of the investigated domain. The polar grid reproduces
the mask domain. The grid consist in evenly spaced radial sectors with an
unevenly spacing along the radius (i.e. ∆r is not a constant) in order to assure
that all the elements have the same area. The velocity components resulting
from PIV processing of the images have been arranged on the polar grid by
means of interpolation. Each interpolated vector has been computed using a
number of 12-20 vectors on the original cartesian grid. Notice that the presence
of the mask produces vectors identically equal to zero in the areas external to
the measurement domain. This could false the interpolation results near the
external boundary. This effect was controlled introducing a great number of
velocity vectors honoring the boundary condition:

U(R) = Uboundary (4.6.1)

The interpolated vectors were obtained considering a little area Ss cen-
tered in the node xb containing Ns velocity vectors. Different interpolation
techniques were tested. Finally we adopted the method suggested in Agui and
Jemenez (1987)[2] and Stuer and Blaser (2000) [24]. The interpolated vec-
tor in the generic node xb is evaluates using the Adaptive Gaussian Window
technique:

u(xb) =

N∑

i=1

αiui

N∑

i=1

αi

(4.6.2)

where:

αi = exp

(−(xb − xi)
2

H2

)

(4.6.3)

and the dimension of the gaussian window H is:

H = 1.24∆s (4.6.4)

being ∆s =
S
N
the dimension of the single areal element, ratio between the

whole domain area and the number of interpolated vectors (remind that the
polar grid had constructed with elements with the same extension).

According to Miller (1976) [15] the error on the estimate of the interpo-
lated vectors has been evaluated by the Jackknife technique, resulting lower
than that obtained in computing the averaged U and V . This result guarantees
that the interpolation procedure do not introduce further errors on experimen-
tal data. Jackknife technique consists in evaluating Ns times the vectors ûb
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using time by time the algorithm 4.6.2 having neglected one of the Ns vectors
contained inside the area Ss. This allow to compute the variance σ(ub):

σ(ub) =

√
√
√
√Ns − 1

Ns

Ns∑

i=1

(ûb − ub)
2 (4.6.5)

In spherical model simulations, in view of the axial symmetrical shape
of the domain, we have performed an average of the circumferential velocity
uϕ along ϕ. From the measured velocity profiles we have derived tangential
stresses, by differentiation of the velocity using a finite least-squares scheme.



Chapter 5

Experiments description and
results

In this chapter we describe the experiments brought to completion using a
magnified model of vitreous chamber and their results. The experimentation
was carried out with two different models of vitreous chamber. The first model
has a spherical shape. The second model has a shape closely resembling to the
real one, being deformed on one side in order to simulate the presence of the
lens. Sinusoidal and saccadic time law were used to move the models around
its axis. Velocity fields on the equatorial plane of the models were measured
by means of the PIV technique.

5.1 Flow visualization

The choice of taking measurements of velocity fields on the equatorial plane
orthogonal to the axis of rotation was justified by the assumption that the
secondary flow generated during the model rotations can be neglected respect
to the tangential flow. Moreover such a plane is a plane of symmetry of the
motion; therefore, one expects the velocity vectors to lie on it. In order to
evaluate the magnitude of secondary flow and to prove the accuracy of the
assumption of purely axis-symmetrical flow we made qualitative flow visual-
izations by means on a colored dye inserted into the cavity during its motion.
A blue dye was injected close to the wall just above the equatorial plane in
the spherical model. The evolution of dye motion during the model rota-
tions allowed us to visualize the secondary flow induced by the curvature of
the wall. This secondary flow, observed both for periodic and saccadic move-
ments, consists of two toroidal mirror vortices, located in the northern and
southern hemispheres, respectively. In the upper hemisphere, particles close
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to the equatorial plane move towards the globe center, then proceed upwards
to descend back close to the curved wall. In the lower hemisphere, particles
after moving towards the globe center, descend to the bottom of the cavity
and then go up again close to the wall. All the experiments were recorded
by a digital camera. Propagation of such a vortices was found of some im-
portance only with repeated high frequency rotations in conditions far from
the real characteristics of eye movements. The intensity of the secondary flow,
however, is at least three to four orders of magnitude smaller than that of
the circumferential flow in the case of periodic rotations and even smaller for
saccadic movements. Thus, flow measurements on the equatorial plane of a
rotating cavity can be considered a good representation of the motion even
if they cannot perceive the out of plane components of the secondary flow,
which can be neglected respect the circumferential flow. In figure 5.2 frames
of vertical planes at different times are shown for a periodic experiment.

Figure 5.1: Snapshots of vertical planes, in false colors, at different times of
the visualization in a periodic experiment. Time grows from top left to bottom
right, the time interval between two successive frames is 8 s, which corresponds
to 20 periods of the sinusoidal rotation (A = 20◦, f = 2.5Hz).
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5.2 A spherical model

A first set of experiments has been performed with a spherical model consisting
in a cavity of 4.08 cm radius carved in a perspex cylinder (refractive index 1.48),
with external diameter 12 cm and 18 cm high. For practical reasons connected
with the model realization and cleaning after experiments the model has been
built in two halves.

Figure 5.2: Picture of the spherical model

A thin pipe dug on the top of the cylinder allow its filling with the exper-
imental fluid seeded with tracer particles. The two halves of the model were
recomposed by two plastic and iron strips put around the cylinder and the
contact surface of the two halves have been covered by vaseline to guarantee
the cavity has been tight closed. The movement of the eye globe was simulated
assigning either:

• a sinusoidal time law

• or a polynomial temporal law.

5.2.1 Periodic movements

The first set of experiments, performed with periodic rotations of the model,
was aimed at validating the experimental apparatus under relatively simple
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conditions and verifying the feasibility of theoretical results of David et al
(1998)[7] for purely viscous fluids. Notice, moreover, that a sinusoidal rotation
may be thought in a highly simplified way, as a sequence of saccadic movements
with alternate directions and with a duration of half the period of rotations
(see figure??). In table 5.1, the relevant parameters of the whole set of the
periodic experiments performed are reported.

Exp. # A [deg] a f [Hz] ν [10−4m2/s]
sin-1 10 5.25 1.0 3.79
sin-2 20 3.99 1.0 6.58
sin-3 5 4.10 1.0 6.25
sin-4 10 2.77 0.5 6.79
sin-5 10 4.27 1.25 7.16
sin-6 30 3.94 1.0 6.73
sin-7 40 4.01 1.0 6.50
sin-8 10 5.07 1.5 6.11
sin-9 10 5.41 1.75 6.26
sin-10 10 3.75 0.75 5.58
sin-11 20 5.0 1.5 6.29
sin-12 10 5.52 2.0 6.87
sin-13 10 6.14 2.5 6.94
sin-14 5 3.79 1.0 7.33
sin-15 10 4.21 1.25 7.37
sin-16 20 5.80 2.5 7.76
sin-17 10 5.61 2.0 6.64
sin-18 10 4.66 1.5 7.22
sin-19 10 5.01 1.75 7.13
sin-20 20 4.71 1.5 7.08
sin-21 10 6.12 2.5 6.98

Table 5.1: Main parameters of the experiments performed with periodic rota-
tions.

The sampling rate employed in the experimental measurements was set such
to obtain 40 vector fields within a period. Each velocity field (u(x, y, t), v(x, y, t))
on the equatorial plane, was measured 60 times. Examples of some resulting
velocity field are shown in figure 5.3 and 5.4.

Moreover, we have performed an average of the circumferential velocity uϕ

along ϕ justified by the axial symmetrical shape of the domain. Figure 5.5
shows the experimental profiles of the averaged circumferential velocity along
the radial direction plotted at different times for experiments sin-10 and sin-16.
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Figure 5.3: Example of two-dimensional interpolated velocity field of periodic
experiment (A=10◦, f=1.75 Hz) together with contours of the circumferential
velocity: velocity field corresponding to the maximum peripheral velocity

5.2.2 Discussion of the results

The experimental results show that a significant phase lag characterizes the
motion of fluid in the most internal regions with respect to the motion close
to the wall. The motion of the fluid during a period can be split into three
different phases. As we can see in figure 5.6, in the first phase (red lines)
velocity profiles are in phase and the maximum velocity along the radius is
located at the wall. In the second phase (green and blue lines) the boundary
velocity inverted and the maximum velocity migrate toward the most internal
regions of the fluid domain. The last phase (yellow lines) shows a sensitive
phase lag between the fluid layers close to the wall and the internal ones char-
acterized by circumferential velocity with opposite directions. Experimental
observations agree with the theoretical results found by David et al (1998)[7].
It also appears that, for larger values of the Womersley number (experiment
sin-16), the oscillating boundary layer at the wall is thick and the fluid par-
ticles in the most inner region are subjected to small amplitude oscillations.
As far as the Womersley number decreases (experiment sin-10) the envelope of
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Figure 5.4: Example of two-dimensional interpolated velocity field of periodic
experiment (A=10◦, f=1.75 Hz) together with contours of the circumferen-
tial velocity: velocity field measured immediately after the inversion of the
peripheral velocity

Figure 5.5: Experimental profiles of the averaged circumferential velocity uϕ

along the radius at different times, with interval equal to 1/40 of the period.
(a) Experiment sin-10; (b) Experiment sin-16.



5.2 A spherical model 75

Figure 5.6: Picture of velocity profiles along the radius. With red, green, blue
and yellow color have been highlighted different phases of profiles evolution.

the velocity profiles progressively tends to a linear shape. Figure 5.7 reports
the amplitude of speed oscillations, scaled by its maximum value as a function
of the dimensionless radial coordinate r/R for some experiments. Referring to
the notation employed in section 2.1 the curves in figure 5.7 present the mod-
ulus of the dimensionless function g∗ = g(r)/ |g(R)| with g defined in equation
(2.1.19). Each profile is associated with a different value of α, varying from
2.77 (experiment sin-4) to 6.12 (experiment sin-21). The agreement between
measurements and theoretical predictions is fairly good for all values of a.
Weak discrepancies may be partly due to the simplified assumptions adopted
in the theoretical model and partly to measurement errors. In figure 5.8 a
more detailed comparison is shown for experiments sin-10 and sin-16. In this
case both the real Re and imaginary Im parts of the dimensionless function
g∗ are plotted. Notice that the ratio Im(g∗)/Re(g∗) denotes the tangent of
the phase lag φ with respect to the wall motion at each point in the radial
direction. The agreement between measurements and theoretical predictions
appears quite satisfactory for all the experiments.
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Figure 5.7: Radial profiles of the dimensionless function |g∗| = g(r)/ |g(R)|, for
different runs. Symbols represent experimental measurements and continuous
lines the corresponding theoretical distributions.

Figure 5.8: Comparison between the experimental and theoretical distributions
of the functions |g∗| = g(r)/ |g(R)|, its real part Re(g∗) and its imaginary
part Im(g∗). Symbols denote experimental data, continuous lines theoretical
predictions.

5.2.3 Saccadic movements

The second set of experiments performed with the spherical model concerned
rotations according to saccadic movements. The angular time law employed to
describe the saccades is that in subsection 1.3.1 in chapter 1. One time it has



5.2 A spherical model 77

been decided saccade amplitude the duration of the movement is computed
adopting equation 1.3.1. The corresponding duration that had to be used in
the model is obtained multiplying the duration D of the prototype by the
factor (R/Rp)

2(νp/ν). Each saccadic movement is followed by a time of rest
with a duration of five saccade duration, thus allowing a complete stop of the
fluid motion. In the table 5.2 are collected the main characteristics of this set
of experiments.

Model Prototype
Exp. # A [deg] D [s] ωp [deg s

−1] ν [10−4m2/s] D [s] ωp [deg s
−1]

sac-1 10 0.1024 160.11 7.9 0.050 328.0
sac-2 15 0.1297 189.70 7.8 0.0625 393.6
sac-3 20 0.1536 213.48 7.9 0.075 437.33
sac-4 25 0.1793 228.73 7.9 0.0875 468.57
sac-5 30 0.2023 243.20 8.0 0.10 492.0
sac-6 35 0.2334 245.91 7.8 0.1125 510.22
sac-7 40 0.2529 259.42 8.0 0.1250 524.80
sac-8 45 0.3007 245.41 7.4 0.1375 536.73
sac-9 50 0.3468 236.45 7.0 0.1375 546.67
sac-10 30 0.2043 240.77 7.92 0.10 492.0
sac-11 40 0.2470 265.58 8.19 0.1250 524.80
sac-12 20 0.1428 229.69 8.5 0.0750 437.33
sac-13 10 0.1018 161.12 7.95 0.050 328.0
sac-14 15 0.1386 177.54 7.3 0.0625 393.60

Table 5.2: Main parameters of the experiments performed with saccadic move-
ments.

The sampling rate employed in the experimental measurements was set
such to obtain 20 vector fields within a saccade. According to the periodic
experiments each velocity field (u(x, y, t), v(x, y, t)) on the equatorial plane,
was measured 60 times.

5.2.4 Discussion of the results

As we can see in figure 5.9 reporting the experimental velocity profiles along
the radial direction at different times for experiments sac-12 and sac-11 which
reproduce a small amplitude (10 deg) and a large amplitude (40 deg) saccade,
starting from rest, fluid motion is initially confined within a narrow region
close to the wall and the thickness of such a region increases with time. As
in periodic rotations three different phases of motion can be identified during
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a single saccade. During the first acceleration phase of duration tp, velocity
profiles have the same concavity and the maximum velocity is located at the
wall (solid lines). During the following phase of deceleration of the wall, the
maximum of the velocity detaches from the boundary and progressively moves
towards the center (dashed lines). The last phase describes the fluid motion
dissipation from the time t = D when the wall stops and the velocity profile go
to the rest. During the decay phase velocity profiles become more symmetrical
because the maximum velocity moves towards the point r = R/2.

Figure 5.9: Experimental profiles of the averaged circumferential velocity ((a)
and (b)) along the radius at different times with interval equal to 1/20 of the
saccade duration D. (a): run sac-13 (D = 0.1018 s); (b) run sac-11 (D = 0.2470
s). Solid lines correspond to profiles measured during the acceleration phase
of the saccade (t < tp), while dashed lines to profiles measured during the
deceleration phase.

Figures 5.10 (a) and (b) show the shear stress τrϕ along the radial coordi-
nate, corresponding to the velocity distributions previously shown in figures
5.9(a) and (b). The shear stress is computed according to the relationship:

τrϕ = µ

(
∂uϕ

∂r
− uϕ

r

)

(5.2.1)

using the experimental circumferential averaged velocity profiles. In the above
relationship µ represents the dynamic viscosity of the fluid. It appears that,
during a saccadic movement, the wall is subject both to positive and nega-
tive shear stresses, though the maximum shear stress at the wall is invariably
positive. In other words, quite intuitively, the fluid acts at the boundary with
stresses mainly in the opposite direction with respect to the wall motion.
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Figure 5.10: Experimental profiles of the shear stress τrϕ along the radius at
different times with interval equal to 1/20 of the saccade duration D. (a): run
sac-13 (D = 0.1018 s); (b) run sac-11 (D = 0.2470 s). Solid lines correspond to
profiles measured during the acceleration phase of the saccade (t < tp), while
dashed lines to profiles measured during the deceleration phase.

Figure 5.11: Dimensionless maximum value reached in time by the circumfer-
ential velocity uϕ at each point in the radial direction for different experiments.
(b) Dimensionless time tmax/D at which the maximum tangential velocity is
reached at each point in the radial direction for different experiments. Symbols
denote experimental data, lines theoretical predictions.

The comparison between experimental results and theoretical predictions
of equation (2.1.24) are in good agreement as we can see in figure 5.11 (a)
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where the maximum velocity scaled by the corresponding maximum veloc-
ity at the wall ΩpR is plotted along the dimensionless radial coordinate r/R.
Each curve corresponds to saccades with a different amplitude. Continuous
lines represent results obtained through the theoretical solution 2.1.24, sym-
bols indicate the correspondent experimental results. Notice that in spite of
the general agreement the theory slightly overestimates the maximum veloc-
ities. This figure shows that the envelope of the velocity profiles is thicker
for larger saccades: small saccades induce in the deeper regions of the cavity
a motion weaker than one driven by larger saccades. This is mainly due to
the dependence of saccade duration from amplitude, thus larger saccades are
longer and the boundary layer starting at the wall has more time to grow. In
figure 5.11 (b) we report the dimensionless time tmax/D at which the maximum
value of velocity is attained, for each value of the dimensionless radius. The
agreement appears fairly good; the weak irregularity of experimental data is
due to the relatively coarse temporal discretization of the saccadic movement
( only 20 flow fields during a saccade duration). Note that the agreement is
less satisfactory in the inner part of the domain. We can explain this results
with the fact that in such a region the velocity is very small and affected by
a greater relative experimental error. Obviously, at the wall (r/R = 1) the
maximum velocity is attained at the acceleration time, so that tmax = tp.

Since the agreement between theoretical predictions and experimental re-
sults has proved to be satisfactory for all the experiments, the theoretical
model can be employed to obtain some information on problems that are of
potential clinical relevance. Let us first consider the dependence of the maxi-
mum shear stress at the wall τmax from the saccade amplitude. In figure 5.12
(a) the dimensional value of τmax is plotted versus the saccade amplitude A.
All quantities refer to the prototype, i.e. to the real scale eye. The three
curves are relative to different values of the kinematic viscosity of the fluid.
In all cases it appears that the maximum shear stress at the wall does not
strongly depend on the amplitude of eye rotations. This result, which is not
obvious, bears some practical importance. Indeed, small amplitude saccadic
movements are, by far, more frequent than large ones. Therefore, according to
the present results, small amplitude eye rotations stress the retina more than
large movements and should be regarded as the most potentially dangerous
ones. Finally, in figure 5.12 (b) the dependence of the maximum shear stress
at the wall τmax is plotted versus the viscosity of the fluid for different saccade
amplitudes. Kinematic viscosity ν ranges between 10−6 (approximatively the
viscosity of the completely liquefied vitreous) and 5× 10{− 3} (relative to the
most viscous silicon oil employed during vitrectomy). The figure shows that
τmax significantly increases with the fluid viscosity up to a value, for the most
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viscous case, which is more than twice than that reached in the physiological
case (ν ∼ 10{ − 4}). Thus, from a purely mechanical point of view, in order
to minimize the stresses on the retina it would be preferable to employ low
viscosity tamponade fluids.

Figure 5.12: (a) Dependence of the maximum shear stress at the wall τmax
from saccade amplitude A for different fluid viscosities. (b) Maximum shear
stress at the wall τmax as a function of the kinematic viscosity of the fluid ν
for different saccade amplitudes.
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5.3 A deformed sphere model

The second type of model that has been employed in the experiments has a
shape alike to the vitreous chamber of the real eye . Information coming from
medical observations and theoretical results (see [18] and section 2.2), show
that a weak deviation from the spherical shape may induce great difference in
flow fields and consequently in fluid mixing. A set of chamber models have
been specifically designed for this purpose from a careful analysis of several
images of normal human eyes, taken from ultrasound and magnetic resonance
scans. As we can observe in figure 5.13, a normal eye shape moves aside from
a sphere because the antero-posterior axis is slightly shorter than the other
two and the lens produces an indentation such that, in the anterior segment,
the domain concavity faces inward.

Figure 5.13: Equatorial section of normal eyes taken with RNM

This latter feature is significant on the flow characteristics more than the
different length of eye axis, thus we decide to take it in account into the
experiments. The eyes models consist in a spherical cavity of radius R = 40.8
mm carved in a perspex cylinder, with a deformation on one side simulating
the lens, modeled as a spherical indentation. We have at our disposal three
deformed model with ”lens” jutting toward the center of the cavity of a length
δ, (i.e. the maximum radial distance of the actual geometry from the outer
spherical boundary) equal to the 15, 20 and 30 % of the model radius R.

Most of the experiments were conducted employing the “large lens” con-
tainer (δ/R = 0.3) since it is the one which most closely resembles the real
shape of the vitreous cavity. In order to understand the influence of cavity
shape on the basic features of the flow field we restrict the experimental con-
ditions to sine rotations.
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(a) (b)

Figure 5.14: Deformed sphere model geometrical shape and realization

5.3.1 Periodic movements

We focus our attention on sinusoidal rotations of the eye model, with period
T , frequency f and amplitude A. We have performed three series of exper-
iments:

• In the first set,denoted as s1, we have reproduced sinusoidal rotations
with the same amplitude and variable frequency, spanning in this way a
range of Womersley number values from about 4.5 up to 15. This range
is representative of real eye movements with the viscosity of the normal
or liquefied vitreous; the motion in eyes in which the vitreous has been
replaced by tamponade fluids may fall within this range as well. In the
case of vitrectomized eyes, when the vitreous cavity is eventually filled
with aqueous humour, much higher values of the Womersley number
may be reached. Limitations of the experimental apparatus, however,
precluded the possibility to investigate these conditions.

• A second set of experiments, denoted as s2, had the purpose to study
the role of the amplitude of rotations for a fixed Womersley number

• The third set s3 was aimed at investigating the effect of different lens
sizes.
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In table 5.3 the dimensional and dimensionless parameters for each of the
performed experiments are reported. The sampling rate chosen in the present
experiments was such to produce 100 vector fields within a period for the lowest
frequency experiments and 50 flow fields in a single period for the highest
frequency runs.

Exp. # A [deg] α f [Hz] ν [10−4m2/s] δ/R
1-s1 20 4.32 1 5.59 0.3
2-s1 20 5.97 2 5.87 0.3
3-s1 20 7.60 3 5.43 0.3
4-s1 20 8.74 4 5.48 0.3
5-s1 20 9.79 5 5.45 0.3
6-s1 20 10.87 6 5.31 0.3
7-s1 20 11.74 7 4.98 0.3
8-s1 20 12.96 8 4.50 0.3
9-s1 20 14.49 9 4.48 0.3
10-s1 20 12.39 10 6.81 0.3
11-s1 20 15.03 11 5.01 0.3
1-s2 10 3.63 1 7.91 0.3
2-s2 10 7.27 4 7.91 0.3
3-s2 10 9.62 7 7.91 0.3
4-s2 20 3.71 1 7.60 0.3
5-s2 20 7.37 4 7.60 0.3
6-s2 20 9.82 7 7.60 0.3
7-s2 30 3.69 1 7.70 0.3
8-s2 30 7.37 4 7.70 0.3
9-s2 30 9.82 7 7.70 0.3
10-s2 40 3.71 1 7.70 0.3
11-s2 40 7.37 4 7.70 0.3
12-s2 40 9.82 7 7.70 0.3
1-s3 20 8.48 4 5.40 0.2
2-s3 20 8.48 4 5.40 0.15

Table 5.3: Main parameters of the experiments performed.

Notice that the necessary image masking before image processing in this
case has been almost complicated, because the irregular boundary of the mea-
surements domain is rotating during the experiment. Each pair of images
has been preprocessed before performing the cross-correlation analysis, apply-
ing an edge detection algorithm able to recognize the actual boundary of the
measurement domain. In particular, a technique based on the search of the
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zero-crossings of the image intensity Laplacian has been implemented with
very good results.

Each flow fields was measured 50 times in order to obtain the averaged
velocity fields [u(x, y, t), v(x, y, t)].

5.3.2 Results discussion

Description of flow fields

Figure 5.15: Flow fields on the equatorial plane at 4 different times (α = 4.32,
a = 20◦). Contour lines refer to the scalar function Γ defined by equation
(5.3.1). (a) t ≃ 0 (maximum container angular velocity), (b) t ≃ 1/4T , (c)
t ≃ 1/2T , (d) t ≃ 3/4T .

In figure 5.15a-d, two-dimensional velocity vector fields are shown at dif-
ferent times for the run exp-1-s1 (α = 4.32 and a = 20◦). At a first glance it
appears that the indentation at the anterior part of the vitreous cavity model
significantly affects the flow field. In particular, approximately at time t = 0,
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i.e. when the container reaches the maximum angular velocity, a vortex struc-
ture is present close to the lens. Spatial and temporal evolution of the vortex
was enlightened by plotting contour lines of the function Γ defined in a generic
point P by equation:

Γ(P ) =

∫∫

S

sin θMdS, (5.3.1)

where S is an area surrounding P , the generic point M lies in S, θM repre-

sents the angle between the velocity vector in M and the radius vector
−−→
PM .

This scalar function presented in Graftieaux (2001) [11] ranges between [−1, 1]
and its local maximum identifies the vortex center. Among the different tech-
niques of vortex identification available in the literature this algorithm has
proved to be particularly efficient in the present case. Other methods based
on the Okubo-Weiss parameter and the swirling strength value (i.e. the eigen-
value of the tensor of the velocity gradients) that have been implemented, not
being invariant to the reference system rotations, proved to be incapable of
distinguishing the vortical structure from the average motion, rotating itself.
In our PIV measurements the area S has a square shape, contains 20 mea-
sured velocity vectors and is centered at the point P . Notice that, as stated by
Graftieaux (2001), the number of points contained in the area S has a weak
influence on the location of the maxima of the function Γ.

From the observation of the sequence of plots reported in the figures 5.15 a-d
it appears that the vortex is generated close to the lens and then it progressively
migrates towards the center of the eye where it is eventually dissipated. A
new vortex is then generated close to the lens with an opposite sign of rotation
during the second half of the period. The generation of such a vortical structure
is invariably observed during all the experiments performed, regardless of the
amplitude of the sinusoidal motion, of the Womersley number, and of the size of
the lens. An example of flow field at higher values of the Womersley number is
reported in figure 5.16a-d (corresponding to run exp-7-s1, α = 11.74, a = 20◦).

The path followed by the vortex, relative to the container, however, is
strongly dependent on α. At low values of α (figure 5.15 a-d) the flow is
symmetrical with respect to the indentation, no wake effect is observed in the
rear part of the moving lens and, in this case, the vortex migrates roughly
along a straight pattern from the apex of the lens towards the center of the
globe. As the Womersley number of the flow increases, differences between the
flow in the regions upstream and downstream of the lens become visible (see
figure 5.16 a-d) and such an asymmetry of flow conditions is responsible for a
deviation of the vortex path. In this case the vortex does not move towards
the center nor the trajectory it follows is straight. Consequently, at each cycle,
the dissipation of the vortex occurs alternatively in a region under or below
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Figure 5.16: Flow fields on the equatorial plane at 4 different times (α = 11.74,
a = 20◦). Contour lines refer to the scalar function Γ defined by equation
(5.3.1). (a) t ≃ 0 (maximum container angular velocity), (b) t ≃ 1/4T , (c)
t ≃ 1/2T , (d) t ≃ 3/4T .

the antero-posterior axis.

The differences between vortex trajectories at low and high values of the
Womersley number are clearly shown in figure 5.17 (left). In the figure the
path relative to the container covered by the vortex, identified by the position
of the vortex core, is shown for different experiments varying α and keeping A
constant. It appears that increasing the value of α the deviation of the vortex
trajectory from the straight line connecting the apex of the lens to the center
of the container become stronger. Moreover, for given values of α and A, the
size of the indentation does not strongly influence the evolution of the vortical
structures, as shown in figure 5.17 (right).

The vortex structure described above originates at time t = 0 (correspond-
ing to the maximum container angular velocity)when there is a region, fairly
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Figure 5.17: Trajectories relative to the container wall covered by the vortex
centre during a cycle. Left: different values of the Womersley number α (a =
20◦, δ/R = 0.3). Right: different values of δ/R (a = 20◦, f = 4 Hz, α ∼ 8.5).

close to the lens, where velocity vectors are directed in the opposite direction
with respect to the wall motion and, consequently, also with respect to the
velocity of the fluid located in the immediate vicinity of the wall. A similar
flow pattern close to the lens can be inferred from the theoretical predictions
of Repetto (2006) [18], obtained in the limit of low values of the fluid viscosity.
The irrotational flow within the weakly deformed rotating sphere considered
by the author is such that, close to the lens, the velocity is in the opposite di-
rection with respect to the motion of the wall. If the flow within the boundary
layer adjacent to the wall is accounted for this situation leads to the generation
of a vortex structure similar to that observed in our experiments.

Particles trajectories

Particle trajectories can be obtained from the PIV measurements by integrat-
ing in time the measured velocity fields. The time integration is performed
adopting an explicit fourth-order Runge-Kutta scheme and spatial velocity
vectors are interpolated using a cubic polynomial interpolation algorithm. The
above numerical integration is a delicate operation and might be affected by
errors due to several reasons: first, we integrate an experimental velocity field
that is affected by some error; second, the spatial resolution might not be suf-
ficient to describe small scale effects and third, the temporal interval is fixed
by the PIV acquisition rate. Nevertheless the computed trajectories represent,
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with a good approximation, the paths followed by a fluid particle inside the do-
main. A better evaluation of the particle trajectories can be 0bviously achieved
by a direct measurement of the trajectories by means of Particle Tracking Ve-
locimetry technique. In figure 5.18 a particle paths relative to the container,
sampled with a time step equal to the cycle period T , are plotted starting from
different initial locations within the domain. In the case shown in the figure
the Womersley number is equal to 11.74 and the rotations amplitude is 20◦.
A quite interesting pattern appears. Starting from different positions on the
equatorial plane the particles tend to move towards a region located close to
the anterior segment of the eye model. Clearly, for continuity to be satisfied,
in such a region an ejection of fluid must occur in the direction orthogonal
to the measurement plane according to the secondary flow observed for the
spherical chamber and forecasted by theoretical results. Notice that quite a
few periods of rotation (of the order of a hundred cycles on the average) are
required for a full trajectory to be completed by a particle. The existence of
a region of particle concentration is nicely shown in figure 5.18b, which is an
instantaneous picture shot after having rotated the container for some tens of
cycles. The light curves which can be observed are due to an initially higher
concentrations of particle tracers in certain regions of the domain. Notice that
these curves represent streaklines rather than particle trajectories. However,
since we are dealing with a periodic motion and the trajectories are built sam-
pling every of rotation period, streaklines and trajectories coincide in this case,
see for instance Ottino (1989) [16].

In figures 5.19 particle paths relative to different values of the Womersley
number are reported. For whatever value of α, particles tend to concentrate in
the anterior part of the eye globe, regardless of their initial position. However,
at low values of the Womersley number, i.e. when the flow field is remarkably
symmetrical with respect to the axis y = 0, particles tend to concentrate close
to the apex of the lens. On the other hand, as the value of the Womersley
number increases, the generation of two distinct cells clearly appears, probably
generated by the flow incipient asymmetry. The pattern of the cells is sym-
metrical with respect to the axis y = 0, and the cells seem to (slightly) move
apart as α increases. This is possibly related to the different paths followed
by the vortical structures during the container rotation, as discussed above.

The above observations show that the flow field generated by the container
rotations has a very complex three-dimensional structure. A three-dimensional
flow field was also observed in the case of a perfectly spherical rotating con-
tainer, consisting in two slowly-rotating toroidal vortices whose formation is
essentially induced by the spherical shape of the container. However, the ver-
tical velocity components associated with such three-dimensional structures
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(a) (b)

Figure 5.18: (a)Relative particle paths sampled every cycle; (b) Flow field
structure visualisation obtained by injecting a higher particle concentration at
a certain position. (α = 11.74, a = 20◦).

are found to be various orders of magnitude (∼ 4) smaller than the velocity
components on planes perpendicular to the axis of rotation. In the present
case, the vertical fluid ejections described above, which are entirely related to
the presence of the indentation in the anterior part of the cavity, generate a
much more intense overall mixing of the fluid and are likely to be responsible
of strong convection processes within the vitreous cavity.

This confirms the hypothesis that advective transport within the vitreous
cavity is probably much more efficient than pure diffusion when the vitreous
dynamics is intense enough, i.e. when the vitreous has lost its elastic properties
(as a consequence of vitreous liquefaction or vitreous substitution with purely
viscous tamponade fluids).
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Figure 5.19: Relative particle paths sampled every cycle for different values
of the Womersley number and constant amplitude a = 20◦. From top left to
bottom right α = 4.32, 7.60, 9.79 and 11.74.

Shear stress at the wall

The distribution of the tangential stress τt at the wall on the equatorial plane
has been computed considering only the deviatoric part of the stress tensor Td,
namely Td = 2µD for a Newtonian fluid, with µ being the dynamic viscosity
of the fluid andD the rate of strain tensor defined as the symmetric part of the
velocity gradient tensor ∇u. The evaluation of Td requires the determination
of first spatial derivatives of the measured velocity field. It is well known
that this is a quite delicate operation since derivation enhances measurement
noise. Derivatives of the generic velocity component are computed through
the second order scheme known as least square. Starting from the discretized
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boundary F of the equatorial plane, obtained with the edge detection algorithm
described above, we have computed numerically the normal inward unit vector
n = −∇F/|∇F| and the tangential unit vector t = (ny,−nx) (positive when
rotating in the counter clockwise direction with respect to the center). The
tangential stress τt is then obtained as (n ·Td) · t.

Figure 5.20: Distribution of the dimensionless tangential stress τt/(ρω
2R2) as a

function of the angle ϑ/π along the four different concentric boundaries shown
in the central panel. a = 20◦; (a) α = 4.32, (b) α = 8.74, (c) α = 11.74, (d)
α = 15.03. The correspondence between shear stress profiles and the boundary
is indicated in the central legend.

The stress distribution within the equatorial plane orthogonal to the axis
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of rotation have been evaluated along concentric curves depicted in figure 5.20,
labeled 1, 2, 3 and 4 moving toward the center of the eye. These curves are
obtained by progressively contracting the wall profile to the axis of rotation.
All such curves are spanned by the angular coordinate ϑ, the origin of which
is assumed such that ϑ = π at the apex of the lens. The figures 5.20a-d show
the maximum and minimum tangential stresses reached during a cycle along
such curves. Notice that, from the clinical point of view, the most interesting
quantities to be evaluated are the extremal values of the shear stress on the
retina, i.e. on the cavity walls. The labels in the legend of figures 5.20a-d allow
to associate each shear stress distribution with the curve on which the stress is
computed. In all plots the shear stress is made dimensionless with the quantity
ρω2R2. Each plot is relative to a different value of the Womersley number and
the amplitude of the rotations A is kept constant. It clearly appears that the
presence of the lens has a great influence on the shear stress distribution at the
wall, especially at low values of the Womersley number. In particular, a clear
stress peak is invariably observed close to the lens, where the maximum shear
stress may well be up to five times larger than in most of the container wall.
On the other hand, within the range 0.7 < φ/π < 1.3 the extreme values of the
shear stress at the wall reached during each cycle remain fairly constant. As
we move towards the center of the eye model the influence of the lens weakens
and the shear stress distribution tends to become constant. Notice that the
shear stress peaks at the wall have different locations for different values of
the Womersley number of the flow. In particular, at low α, the maximum
tangential stress is located almost exactly at the lens (ϑ = π) as shown in
figure 5.20a. As α increases (figures 5.20b-d) the location of the maximum
shear stress progressively moves away from the lens in the upstream direction.
This is a further effect of the asymmetry of the flow field with respect to the
lens which is observed at high values of the Womersley number.

Finally, in figures 5.21 the maximum dimensional shear stress at the wall
τmax, reached during the entire period is shown as a function of the Womersley
number (left) and of the amplitude of the container rotations (right). As one
might expect it appears that τmax increases, almost linearly, with both α and
A.
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Figure 5.21: Maximum value of the dimensional tangential stress τmax on the
boundary of the eye globe model as a function of the Womersley number α
(left panel, a = 20◦) and of the amplitude of rotations a (right).



Chapter 6

Conclusions and future
development

This first part of PhD Thesis deals with the study of the vitreous humour
dynamic during eye rotations through experimental measurements of the flow
field on a model of the vitreous chamber. Mechanical problems related to
vitreous dynamics are extremely complicated, but their understanding is fun-
damental since it seems ascertained they are in connection with the occurrence
of retinal detachment. As it often happens in attempting to model biological
systems, the first approach to the problem is fairly idealized. One time the
basic features of the phenomenon have been clarified we can eventually pro-
ceed to progressively complicate the scenario. The present work is based on
the following main simplifying assumptions:

• the vitreous chamber has been considered a rigid cavity;

• the vitreous body has been modeled as a purely viscous homogeneous
fluid.

The vitreous chamber model consists in a cavity carved in a perspex cylinder
rotating around its axis with a prescribed time law. Preliminary flow visual-
izations permitted to evaluate the consistency of a secondary flow inside the
chamber and justify the practical choice to take measurements only on the
equatorial plane of the model orthogonal to the rotation axis. Velocity flow
field have been measured with the PIV technique.

The experiments have been performed with two different models of the
vitreous chamber:

• a spherical model;

• a deformed sphere model with an indentation simulating the lens
presence.

95
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With the spherical model two set of experiments were performed, impos-
ing to the container a sine rotation and a polynomial time law reproducing the
features of the real saccade. The first set of experiments was aimed to prove
the feasibility of the theoretical predictions provided by David et al.(1998) [7]
in the case of purely viscous fluid filling a sphere rotating with a periodic time
law. Experimental results and theoretical predictions are found to be in good
agreement: in particular we found that:

• a significant phase lag characterizes the motion of fluid in the most in-
ternal regions respect to the motion close to the wall;

• for larger values of the Womersley number, the oscillating boundary layer
at the wall is thick and the fluid particles in the most inner region are
subject to small amplitude oscillations.

• As far as the Womersley number decreases the envelope of the velocity
profiles along the radius progressively tends to a linear shape.

In the second set of experiments real saccadic movements were reproduced.
Such experiments show that:

• by analogy with the periodic rotations the motion of fluid in the most
internal regions is out of phase respect to the motion close to the wall;

• fluid motion is generated at the wall, it spreads towards the center of the
domain and, finally,it is dissipated;

• the maximum shear stress at the wall is not strongly dependent on the
saccade amplitude, while it seems to increase significantly with the fluid
viscosity .

The latter result implies that small amplitude eye rotations, being by far
more frequent than large ones, are mainly responsible for the generation of
stresses on the retina. Moreover, the dependence of maximum shear stress
at the wall on the fluid viscosity, leads to the conclusion that, from a purely
mechanical point of view, low viscosity tamponade fluids should be adopted
after vitrectomy, in order to minimize the stresses on the retina. Thus, even in
the quite simple conditions considered here, information which are potentially
relevant from the clinical point of view have been obtained.

The second model employed during the experimentation allow us to focus
our attention on the effect of the vitreous cavity shape on flow character-
istics. Theoretical results provided by Repetto (2006) [18] suggest that the
irregular shape of the vitreous chamber due to the presence of the lens in the
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anterior segment of the eye, is responsible for the generation of a complex
three-dimensional flow field. The lens presence was found to be more influ-
ent on the flow field than the different length of the three eye axis. A set of
chamber models have been thus specifically designed for this purpose from a
careful analysis of several images of normal human eyes, taken from ultrasound
and magnetic resonance scans. The deformed sphere model consists in a
spherical cavity with an indentation with its apex facing inward. Such a model
has been moved only with periodic rotations. The experimental measurements
come to the following results:

• in all experiments, the generation and migration of a vortex structure
within the eye has been observed;

• the vortex path has been tracked in time, showing its strong dependence
on the Womersley number of the flow: at low values of a such parameter
the flow is symmetrical with respect to the indentation, during the mo-
tion the vortex migrates roughly along a straight pattern from the apex
of the lens towards the center of the globe; as the Womersley number
increases the flow in the regions upstream and downstream of the lens
becomes different and a deviation of the vortex path is observed.

• Particle trajectories computed from the measured flow fields show that
particles on the equatorial plane orthogonal to the axis of rotation tend
to concentrate within narrow regions located close to the lens;

• a strong stress concentration was found in the region close to the lens,
which is essentially related to the larger speeds reached in that region
due to the concavity of the wall.

The generation of a vortex during each half period of rotation has a strong
influence both on the shear stress distribution on the vitreous chamber wall
and on the mixing processes taking place within the vitreous. The presence of
regions of particles concentration suggests that in such areas the fluid is ver-
tically ejected and this produces a highly three-dimensional circulation within
the vitreous cavity. This clearly indicates the existence of an efficient mixing
process which leads to the conclusion that advection should be accounted for
in order to study transport phenomena within the vitreous cavity (in medical
literature mixing processes have invariantly been interpreted in terms of a dif-
fusion phenomena). As a matter of fact advection induced by such a complex
flow field will invariably produce a highly non-isotropic transport, which can
be hardly described by means of a single diffusion coefficient as done in all
existing studies on the subject.
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The present work provides a detailed description of the flow field within
the vitreous cavity on the equatorial plane and demonstrates the existence
of interesting hydrodynamic phenomena which will deserve future attention.
Three-dimensional measurements (not very easy to conduct) and numerical
simulations will be needed to complete the picture. Moreover, a next step
in experiments will consist in the visco-elastic fluid employment, in order to
better model the real physiological conditions.
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A numerical model
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Introduction to part II

As shown in the first part, experimental observations, though limited to the
equatorial plane, provide a deep insight into the flow inside the posterior cham-
ber of the eye. Although some clinical information have been already derived
from the experimental models of the vitreous chamber, the PIV experimental
set-up used to perform the experiments was obviously not able to appreciate
three-dimensional flow inside the cavity. Besides, a more detailed knowledge
of this class of flows is necessary to understand, for example, the actions of the
fluid on the vitreous chamber wall or the mixing processes dynamics taking
place inside the chamber.

Some analytical tools have been developed by Repetto (2006) [18], that
allow for a successful description of the 3D oscillating flow inside the eye cham-
ber, which are however limited to small amplitude oscillations.

The second part of the present work is dedicated to the formulation of a
numerical model of the viscous flow inside an oscillating sphere. Spherical
geometries in fluid dynamics have been deeply investigated for external flows.
On the contrary, quite a few studies have been carried out for the case of
internal flows.

The numerical model is based upon the work of Quartapelle et al. (1995)
[41], who used a spectral technique to solve the Navier Stokes equations in
primitive velocity-pressure form. The incompressibility constraint in the gov-
erning equation is replaced by the Poisson equation for the pressure. This
approach allows the derivation of an uncoupled formulation by joining the
Poisson equation with an independent condition of integral character for the
pressure. The latter requires the evaluation of a set of metaharmonic functions,
which, in turn, are solutions of the metaharmonic (Helmoltz) problem.

The equations are discretized in time by means of a non-fractional-step
scheme. Non-linear terms are evaluated in an explicit manner using the three-
level Adams-Bashforth method while the linear terms are accounted implicitly
using the Crank-Nicolson method. A spectral technique is used to transform
the original problem in a sequence of stationary problem for the coefficients of
some suitable expansion. In this regard, the shape of the investigated domain
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suggest the expansion of the unknown in series of spherical harmonics (see
Mohlenkamp (1995) [37] and [38]). A suitable transform of variables allows to
calculate, once and for all, an analytic solution for the metaharmonic problem,
while the problem for the pressure and the velocity are solved by means of a
tau projection spectral method having expanded the coefficients in terms of
Chebyshev polynomials.

The second part of the present work is organized as follows: chapter 7

contains a description of the numerical methods used to solve PDEs and pro-
vides an overview of the necessary mathematical tools with special focus on
spectral methods; in chapter 8 the problem is formulated, describing the time
discretization adopted and introducing the integral condition for the pressure,
modal equations for the Navier-Stokes problem in the specific case of a spher-
ical gap are then introduced; in chapter 9 the structure of the numerical code
is detailing described, finally in chapter 10 the solution of the metaharmonic
problem is presented as a test case.



Chapter 7

Numerical methods for PDEs

A wide class of physical processes such as heat conduction, fluid flow, and
sound propagation is described by suitable PDEs. Unfortunately, analytical
solutions of PDEs are rarely found, as the available analytical techniques (such
as variables separation) are limited in use. Moreover, even if the general in-
tegral is known, a particular integral depending on boundary conditions is
typically required to solve the problem. Numerical methods allows to com-
pute an approximation fN of the exact solution f and to estimate the error
(f − fN), obtained by substituting f with fN .

In the present chapter the most common numerical technique to solve PDEs
are described and compared. For further information on this topic the reader
is referred to Boyd (2000) [28] and Quarteroni (2008) [44] .

7.1 Numerical methods for PDEs

Partial differential equations are differential equations containing derivatives
of unknown function with respect to more than one variable. If we denote
with f(x, t) the unknown function depending on (d+1) independent variables
x = (x1, . . . , xd) and t, a generic PDE reads:

P(f, g) = F

(

x, t, f,
∂f

∂t
,
∂f

∂x1

, . . . ,
∂f

∂xd

, . . . ,
∂p1+...+pd+ptf

∂xp1

1 . . . ∂xpd

d ∂t
pt
, t

)

= 0 (7.1.1)

being g the set of data from which the PDE depends on, and p1, . . . , pd, pt ∈
N. The order of the PDE corresponds to the maximum order of the partial
derivatives appearing in 7.1.1, therefore it is equal to the maximum value
assumed by p1 + . . .+ pd + pt. When the equation 7.1.1 depends only linearly
on the unknown f and its derivatives, the equation is called linear. In this
case:

P(αf + βv, g) = αP(f, g) + βP(v, g) (7.1.2)
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A function f = f(x1, . . . , xd, t) is a solution or particular integral of the
7.1.1 if an identity is found when substituting it and its derivatives in 7.1.1.
The whole set of solutions of 7.1.1 is called the general integral.

Numerical techniques to solve PDEs have massively developed together
with the evolution of computer technology and can be considered as the most
fundamental tool to solve the differential problems pertaining all the fields of
science and engineering. Among the families of numerical methods for PDE
we recognize the following:

• finite difference method, in which functions are represented by their
values at certain grid points and derivatives are approximated through
differences of these values;

• finite element method, where functions are represented in terms of
basis functions and the PDE is solved in its integral (weak) form;

• finite volume method, which divides space into regions or volumes
and computes the change within each volume by considering the flux
(flow rate) across the surfaces of the volume.

• spectral method, which represents functions as a sum of particular
basis functions, usually represented by orthogonal functions.

7.1.1 Finite Difference Methods

The finite difference method (FD) is often regarded as the simplest nu-
merical method to solve differential equations. This technique is based on
the transformation of continuous domain of the unknowns in a grid of points
(usually evenly spaced) and so in a discrete domain .

Let h and k be some fixed space and time step, respectively. Set xj = jh
and tn = nk, for any integers j and n, a spatial and time discretization defining
a regular grid or mesh of the integration domain. The continuous function
f(x, t) can be approximated by grid functions fn

j = f(xj, tn). The original
problem can be thus expressed in term of the fn

j .
The simplest kind of finite procedure is based on relationship that express

fn+1
j as a function of neighboring grid values at time steps n and n−1 (explicit
case) or n+ 1 (implicit case).

In finite difference method the derivatives appearing in the PDE are re-
placed with approximately equivalent difference quotients. That is, because
the first derivative of a function f is, by definition, the limit of the incremental
ratio:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(7.1.3)
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then a reasonable approximation for the first derivative, for some (small) value
of h, would be:

f ′(x) ≈ f(x+ h)− f(x)

h
(forward scheme) (7.1.4)

which can be easily shown to correspond to a Taylor expansion truncated at
first order in h. The error committed substituting 7.1.4 to the exact derivatives
is therefore of order O(h2). First derivative can also be expressed by:

f ′(x) ≈ f(x)− f(x− h)

h
(backward scheme) (7.1.5)

f ′(x) ≈ f(x+ h)− f(x− h)

2h
(centered scheme) (7.1.6)

Similarly, the second derivative:

f ′′(x) = lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
(7.1.7)

can be replaced by:

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
(7.1.8)

where the error involved is now of O(h3).
Replacing all of the derivatives in a differential equation with their discrete

counterparts reduces it to a recurrence expression for all the spatial and tem-
poral grid nodes involving the value of the unknowns at the grid point and
their value in the neighboring points. This means that the solution of the
differential equation can be found solving an algebraic system of equations in
the mesh nodes. The problem can be solved in a direct or indirect manner
according to the assumed discretization scheme using appropriated boundary
conditions.

The Finite Different Methods are usually classified as:

1. Explicit: when the PDE can be solved directly using the appropriated
boundary conditions and proceeding forward in time through small in-
tervals. Convergence is assured for specifics size of increments interval
length.

2. Implicit: when the PDE can be solved indirectly by solving a system of
simultaneous linear equations. Convergence is always assured.
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The error between the finite difference approximation and the exact so-
lution arises essentially from two sources: the round-off error (produced by
computer rounding of decimal quantities) and the truncation error (due to the
difference between the exact solution of the finite difference equation and the
exact quantity), which is proportional to some power of the step size. Sev-
eral discretization schemes of different accuracy exist, the choice of the best
numerical scheme depends on the differential structure of the PDE.

7.1.2 Finite Element Methods

Finite element techniques are a good choice for solving PDE when the geometry
of the domain is complicated, the domain changes in time, the desired accuracy
varies over the domain, or when the solution lacks smoothness. The finite
element method (FEM) consists in finding approximate solutions of partial
differential equations (PDE) as well as of integral equations. In order to apply
the finite element methods one has first to reformulate the original boundary
value problem in its weak, or variational form. A little number of computations
is usually required for this step. Secondly, one has to discretize the weak form
of the problem in a finite dimensional space. After this second step, one usually
ends up with a large but finite dimensional linear problem whose solution will
approximately solve also the original BVP. This finite dimensional problem is
then implemented on a computer.

Let us take for example the following simple one-dimensional problem:

P1 :

{

f ′′(x) = g(x) in (0, 1),

f(0) = f(1) = 0,
(7.1.9)

where g is given, f is an unknown function of x, and f ′′ is the second derivative
of f with respect to x. To convert this problem in its variational, or weak form
we observe that if f is a solution of 7.1.9, then for any smooth function v that
satisfies the displacement boundary conditions, i.e. v = 0 at x = 0 and x = 1,
we have:

∫ 1

0

g(x)v(x) dx =

∫ 1

0

f ′′(x)v(x) dx (7.1.10)

= −
∫ 1

0

u′(x)v′(x) dx = −φ(u, v)

This is the variational form of the problem, equivalent to 7.1.9. In fact, if
f with f(0) = f(1) = 0 satisfies 7.1.10 for every smooth function v(x) then
one may show that this f will also solve 7.1.9.
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Multi-dimensional problems can be reduced to their weak formulation using
Green’s theorem. The function v(x) belongs to a finite dimensional subspace
V of H1

0 , i.e. the Hilbert space of the solution. For the finite element method
we take V to be a space of piecewise linear functions. For example, for the
problem 7.1.9, we take the interval (0, 1), choose n values of x with 0 = x0 <
x1 < · · · < xn < xn+1 = 1 and we define V by:

V = {v : [0, 1]→ R : v is continuous, v|[xk,xk+1] is linear for
k = 0, ..., n, and v(0) = v(1) = 0} (7.1.11)

Notice that functions in V are not differentiable according to the elementary
definition of calculus. Indeed, if v ∈ V then the derivative is typically not
defined at any x = xk, k = 1, . . . , n. However, the derivative exists at every
other value of x and one can use this derivative for the purpose of integration
by parts.

In the one-dimensional case the basis, for each control point xk is the
piecewise linear function vk ∈ V whose value is 1 at xk and zero at every
xj, j 6= k, i.e.,

vk(x) =







x−xk−1

xk −xk−1
if x ∈ [xk−1, xk],

xk+1−x

xk+1−xk
if x ∈ [xk, xk+1],

0 otherwise,

(7.1.12)

for k = 1, . . . , n.
If we expand the functions g and f on vk basis:

f(x) =
n∑

k=1

fkvk(x) g(x) =
n∑

k=1

gkvk(x) (7.1.13)

then problem 7.1.9 becomes:

−
n∑

k=1

ukφ(vk, vj) =
n∑

k=1

fk

∫

vkvj for j = 1, . . . ., n (7.1.14)

If we denote by f and g the column vectors (f1, . . . , fn)
T and (g1, . . . , gn)

T ,
and if we let L = (Lij) and M = (Mij) be matrices whose entries are Lij =
ϕ(vi, vj) and Mij =

∫
vivj then we may rewrite 7.1.14 as:

−Lu =M f (7.1.15)

Most of the entries of L and M are zero because the basis functions vk

are non-zero only over a small number of nodes. So we have to solve a linear
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system in the unknown f where most of the entries of the matrix L, which
we need to invert, are zero. Such matrices are known as sparse matrices, and
there are efficient solvers for such problems. In addition, L is symmetric and
positive definite, so techniques like the conjugate gradient method are favored.
For problems that are not too large, sparse LU decompositions and Cholesky

decompositions still work quite well.

7.1.3 Spectral method

Spectral methods for partial differential equations were originally developed
by meteorologists. By the present time, thank to the progress of computer
technology and the development of methods to treat nonlinearities, spectral
methods have become the prevailing numerical technique to solve certain prob-
lem of CFD (such as three-dimensional direct and large eddy simulations of
turbulent flows, laminar turbulent transition, etc.) and constitute a valid al-
ternative of other numerical techniques for many other applications. The basic
idea of spectral methods is to assume that the unknown f(x) can be ex-
panded in terms of some global and, usually orthogonal test functions P (x).

f(x) ≈
N∑

i=0

fiPi(x) (7.1.16)

that are required to ensure that the differential equation for the original func-
tion is satisfied as closely as possible by its the truncated series expansion.
This is achieved by minimizing the residual (i.e. the error committed replac-
ing the solution with its approximation) with respect to a suitable norm. The
original partial differential problem reduces then, to the research of expansion
coefficients values through the solution of algebraic or ordinary differential
equations. The choice of the test functions distinguishes between the three
most commonly used spectral schemes, namely, the collocation, Galerkin and
tau approaches.

• In the collocation approach the test functions are translated Dirac delta
functions centered at special points called collocations nodes. Collocation
approach is also denoted as interpolating or pseudospectral. Being:

f(x) ≈ pN(x) =
N∑

i=0

aiδ(x− xi) (7.1.17)

an approximation of the function f(x), solution of a differential equation,
the coefficients an are found by requiring that the residual function is
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identically equal to zero at the collocation nodes:

R(xi, a0, a1, . . . , aN) = 0 i = 0, 1, . . . , N (7.1.18)

This means that this technique requires the differential equation being
exactly satisfied at the collocation or interpolation points. Increasing the
number of points, where R(x; an) is forced to vanish, the residual will
become smaller and smaller in the gaps between neighboring collocation
points and the approximation pN(x) will smoothly converge to f(x).

• In the spectral Galerkin approach, the test functions are orthogonal
basis functions which are infinitely smooth and individually satisfy the
boundary conditions. Galerkin’s methods is also denoted as non-interpolating

or orthogonal collocation. There is no grid of interpolation points. The
exact solution of the differential equation f(x) is then approximated by:

f(x) ≈ pN(x) =
N∑

i=0

aiPi(x) (7.1.19)

where Pi(x) are orthogonal functions. The expansion coefficients ai are
computed by multiplying 7.1.19 by the basis functions and integrating,
making use of the orthogonality properties of Pi(x).

• Spectral tau methods are similar to Galerkin’s. The exact solution of
the differential equation f(x) is approximated by:

f(x) ≈ pN(x) =
N∑

i=0

aiPi(x) (7.1.20)

where Pi(x) are orthogonal functions. The expansion coefficients ai are
computed by integration. The difference between Galerkin and tau meth-
ods is that none of the test functions needs to satisfy the boundary con-
ditions. Hence a supplementary set of equations is used to apply the
boundary conditions.

Spectral methods are distinguished non only by the choice of the test func-
tions used but also by the particular choice of the basis on which the solution
is to be expanded. The most frequently used basis functions are Fourier series,
Chebyshev polynomials, and Legendre polynomials. Nevertheless, the choice
of the best basis functions depends to the problem conditions. A more detailed
discussion on this topic is presented in section 7.3.1. In the following, with the
aim of understanding the essence of spectral methods, some classical numerical
analysis on topics like polynomial interpolation, function approximation, and
Gaussian integration will be reviewed in sections 7.2, 7.3 and 7.4, respectively.
A more complete treatment on these topics can be found in [28].
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7.1.4 Comparison between Spectral Methods and Finite
Difference Methods

Finite difference methods approximate the unknown f(x) by a sequence of
overlapping polynomials which interpolate f(x) at a set of grid points. The
derivative of the local interpolant is used to approximate the derivative of
f(x). The result takes the form of a weighted sum of the values of f(x) at the
interpolation points.

Figure 7.1: Three types of numerical algorithms. The thin, slanting lines
illustrate all the grid points (black circles) that directly affect the estimates
of derivatives at the points shown above the lines by open circles. The thick
black vertical lines in the bottom grid are the subdomain walls.

The most accurate schemes are tipycally centered ones. For example quadratic,
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three-point interpolation and quartic, five-point interpolations give:

df

dx
=
[f(x+ h)− f(x− h)]

2h
+O(h2) (7.1.21)

df

dx
=
[−f(x+ 2h) + 8f(x+ h) + f(x− 2h)]

12h
+O(h4) (7.1.22)

Notice that the order of magnitude of the error committed replacing these
expressions to the exact derivatives is proportional to h2 and h4, respectively.

Similarly, the finite element and spectral collocation algorithms approxi-
mate derivatives as a weighted sum of grid point values. However, in finite
difference and finite element methods only those points which lie within a
given subdomain contribute directly to the derivative approximations in that
subdomain1.

For a given number N of grid points pseudospectral differentiation has an
accuracy of order O(hN), much greater than finite difference 3-point formulas,
or even 5-point formulas. The high accuracy of spectral method depends on
the fact that the basis functions can be differentiated analytically and since
each spectral coefficient an is determined by all the grid point values of f(x),
to equal the accuracy of the pseudospectral procedure for N = 10, one would
need a tenth-order finite difference or finite element method. As the number
of nodes increases, the pseudospectral method benefits in two ways. First, the
interval h between grid points becomes smaller: this would cause the error
to rapidly decrease even if the order of the method were fixed. Unlike finite
difference and finite element methods, however, the order is not fixed. When,
for example, N increases from 10 to 20, the error becomes O(h20) in terms of
the new, smaller h. Since h is O( 1

N
), we have:

pseudospectral error ≈ O

[(
1

N

)N
]

(7.1.23)

The error is decreasing faster than any finite power of N because the power
in the error formula is always increasing, too. This is the so-called infinite

order or exponential convergence. for comparison, we may recall that the
finite difference counterpart of the 7.1.23 is:

finite difference quadratic error ≈ O

[(
1

N

)2
]

(7.1.24)

1Because the solution in one subdomain is matched to that in the other subdomain, there

is an indirect connection between derivatives at a point and the whole solution.
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7.1.5 Comparison between Spectral Methods and Finite
Element Methods

Spectral methods and Finite Element Methods are closely related. The main
difference between them is that in Spectral Methods the solution is approxi-
mated as a linear combination of continuous functions that are generally de-
fined and infinitely differentiable over the whole domain of solution (for ex-
ample sinusoids or Chebyshev polynomials), while in Finite Element method
the solution is approximated as a linear combination of piecewise functions
that are nonzero only over subdomains. Because of this, it is said that Spec-
tral methods take a global approach while, on the contrary, Finite Element
Methods are local.

Finite Elements Methods have the advantages to convert differential equa-
tions into matrix equations that are sparse2, because only a handful of basis
functions are non-zero in a given sub-interval. Moreover the local character
of trial functions make them well suited for handling complex geometries, es-
pecially in multi-dimensional problems where the little sub-intervals become
little triangles or tetrahedra which can be fitted to irregularly-shaped bod-
ies. The principal disadvantage of finite element methods is the low accuracy
because each basis function is a polynomial of low degree. When accuracy
is an issue three different strategies are available for FEMs. The first is to
subdivide each element so as to improve resolution uniformly over the whole
domain. This is usually called h-refinement because h is the common symbol
for the size or average size of a subdomain. The second alternative is to refine
only in regions of steep gradients where high resolution is needed. This is the
called r-refinement. The third option is to keep the subdomains fixed while
increasing the degree of the polynomials in each subdomain. This strategy is
called p-refinement, where p is the degree of the interpolating polynomials, is
in some sense precisely that employed by Spectral Methods.

Spectral Methods generate algebraic equations with full matrices, but in
compensation, the high order of the basis functions ensures the highest accu-
racy for a given N . In fact, if there are N + 1 grid points, the derivatives of
the functions are calculated from a polynomial of degree N and the same poly-
nomials are used in all the nodes. Local methods produce derivatives with an
accuracy order α equal to the order of local polynomial used to approximate
the solution minus one, with an error decreasing as 1/nα, whereas the error
from the spectral methods decreases exponentially. As spectral method use
global information they are most useful when the geometry of the problem is

2Sparse matrix equations can be solved in a fraction of the computational cost of problems

of similar size with full matrices even if computational accuracy can become an issue.
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fairly smooth and regular. Nowadays, the development of fast iterative matrix-
solvers is making Spectral Methods much more efficient than Finite Element
Methods in many applications.

7.2 Interpolation of functions

In engineering or science applications, data collected from sampling, experi-
mentation or numerical processes are usually discrete and their physical mean-
ings are not always well known. To estimate the outcomes and, eventually, to
have a better insight of the physical phenomenon, an analytical functional
form that fits the field data is desirable. Interpolation techniques mind to
this task. The process through which one constructs a function which closely
fits a collection of discrete data is called curve fitting or regression. Interpo-
lation is a specific case of curve fitting, in which the interpolating function
must go exactly through the data points. Interpolation provides a means of
estimating the function at intermediate points and deriving analytically fur-
ther information on physical quantity related to the original one. There are
many different interpolation techniques. Most common methods use polyno-
mials for fitting the data. This choice is justified by the fact that polynomials
are easy to handle and are the only functions that a computer can evaluate
exactly. Trigonometric functions, sines and cosines, give rise to trigonometric
interpolation and related Fourier methods, useful with data characterized by
a periodic behaviour. Before choosing an appropriate interpolation algorithm
one has to take in account the accuracy of the method, its computational
cost and the interpolating function features. Consider for example that, local
interpolation based on a small number of neighbor points gives interpolated
values f(x) that in general do not have continuous derivatives. So, in situation
where continuity of derivatives is a concern, one must use an interpolation
technique whose coefficients are determined non-locally in order to guarantee
the smoothness of the interpolated function. The number of points (minus
one) used in an interpolation scheme is called order of the interpolation. No-
tice that increasing the order does not necessarily increase the accuracy of the
formula, especially in polynomial interpolation. In such interpolated functions
high order of interpolation give rise to Runge’s phenomenon which consists in
a oscillation of the function between the tabulated values especially close to
the endpoints.

In the following we discuss the main feature of some common interpolation
methods.
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7.2.1 Linear interpolation

Linear interpolation is the simplest method pertaining to polynomial interpo-
lation. Given a collection of point (xi, yi) the interpolating function consists in
a concatenation of linear interpolants between each pair of data points. Given
two data points, say (xA, yA) and (xB, yB) the linear interpolant function is:

y(x) = yA −
(yB − yA)

(xB − xA)
(x− xA) (7.2.1)

Facing an easy implementation, linear interpolation is not is not very accu-
rate unless the tabulated points are very, very close together and presents the
disadvantage that the interpolated functions are not differentiable in nodes.

7.2.2 Polynomial interpolation

Polynomial interpolation is a generalization of linear interpolation referred to
interpolant polynomials with order equal to the number of the abscissas minus
one. Generally, if we have n+1 data points, we look for a polynomial p of
degree at most n going through all the data points:

p(xi) = yi i = 0, ..., n (7.2.2)

If the interpolation polynomial is in the form:

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0. (7.2.3)

Substituting the constraint 7.2.2 in 7.2.3, we obtain a system of linear
equations in the coefficients ak. The system in matrix-vector form reads:








xn
0 xn−1

0 xn−2
0 . . . x0 1

xn
1 xn−1

1 xn−2
1 . . . x1 1

...
...

...
...

...
xn

n xn−1
n xn−2

n . . . xn 1















an

an−1
...
a0







=








y0

y1
...
yn








(7.2.4)

The matrix of coefficients of this system of equations is usually referred to as a
Vandermonde matrix. Its determinant is nonzero, which proves the interpolant
polynomial 7.2.3 exists and it is unique.

The solution of the linear system 7.2.4 can be a costly operation. In order
to avoid this drawback the interpolation polynomial can be expressed using
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the Lagrange form:

p(x) =
(x− x1) (x− x2) ... (x− xn)

(x0 − x1) (x0 − x2) ... (x0 − xn)
y0 +

(x− x2) (x− x2) ... (x− xn)

(x1 − x0) (x1 − x2) ... (x1 − xn)
y1+

+...+
(x− x0) (x− x1) ... (x− xn−1)

(xn − x0) (xn − x1) ... (xn − xn−1)
yn = L0y0 + L1y1 + ...+ Lnyn

(7.2.5)

where Li are the Lagrange polynomial defined such that

Li(x) =

j
∏

l=1,l 6=i

x− xl

xi − xj

. (7.2.6)

The interpolating polynomial 7.2.5 consists in n+1 terms each a polynomial of
degree n costructed to be zero at all of the xi except one, at which it assume
the value yi. Choosing Lagrange form of the interpolating polynomial you
don’t have to compute expansion coefficients by solving 7.2.4 anymore, but
you have to compute all the n+ 1 Lagrange polynomials.

With polynomial interpolation the interpolant is a polynomial defined over
the entire interval x0, ..., xn and thus infinitely differentiable. Thus, the con-
vergence of the interpolating polynomial to the interpolated function is not
assured and does not improve increasing the order of the polynomial. In the
case of equidistant nodes the uniform convergence is not even guaranteed for
infinitely differentiable functions. One classical example, due to Carl Runge,
is the function f(x) = 1

1+x2 considered on the interval [−5, 5]. As we can see
in figure 7.2.2 the interpolation error ‖f−pn‖ grows without bound as n tends
to infinity especially near the endpoints.

Possible solutions to this problem could be:

• use high order polynomial defined over interpolation intervals much greater
than the desired one, from which extract the selected interval and cut
the worse region of approximation;

• use an optimal distribution of interpolation nodes: choosing the points
of intersection of the Chebyshev polynomial of order n as interpolation
nodes we obtain the interpolating polynomial coinciding with the best
approximation polynomial;

• use piece defined polynomials of low order to interpolate the data.

The latter choice leads to the spline interpolation.
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Figure 7.2: Runge function f(x) and its interpolant polynomials of order 5, 9
and 15

7.2.3 Spline interpolation

Spline interpolation uses low-degree polynomials to interpolate a collection of
data by splitting the domain in small intervals, and chooses the polynomial
pieces such that they fit smoothly together. The most useful kind of spline is
the cubic one. Let xii = 0, ..., n be a set of n+1 points, we can construct a
cubic spline with n piecewise cubic polynomials between the data points. The
spline function:

S(x) =







S0(x), x ∈ [x0, x1]
S1(x), x ∈ [x1, x2]

. . .
Sn−1(x), x ∈ [xn−1, xn]

(7.2.7)

interpolating the function f, has to respect the following constraint:

• the spline has to go exactly trough the data points, S(xi) = yi

• the splines have to join up, Si−1(xi) = Si(xi), i = 1, ..., n

• twice continuous differentiation must be allowed and the derivatives have
to be continuous S ′i−1(xi) = S ′i(xi) and S

′′
i−1(xi) = S ′′i (xi)
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Since for one cubic polynomial of degree three, there are four conditions,
using n data points we need of 4n conditions. However, the interpolating
property gives us n + 1 conditions, and the conditions on the interior data
points give us n+1−2 = n−1 data points each, summing to 4n−2 conditions.
We require two other conditions. Several choice are possible depending on the
problem nature. You can impose first derivative values at the boundary or
second derivatives to be zero on boundary (giving rise to natural splines), or
chose periodic conditions.

Like polynomial interpolation, spline interpolation incurs a smaller error
than linear interpolation and the interpolant is smoother. However, the inter-
polant is easier to evaluate than the high-degree polynomials used in polyno-
mial interpolation. It also does not suffer from Runge’s phenomenon.

7.3 Approximation of functions

A problem closely related with function interpolation is the approximation of
a complicated function with simpler functions.

Suppose we know the function but it is too complex to evaluate efficiently.
Then we could pick a few known data points from the complicated function,
by sampling it in particular points called nodes, and try to interpolate those
data points to construct a simpler function. Notice that when approximating
a function, the constraint that the interpolant has to go exactly through the
data points can be relaxed, introducing other constraints such as to approach
the data points as closely as possible (least squares approximation).

In the previous section 7.2 it has been shown that a collection of data
points can be interpolated by polynomials according to different techniques.
Another possibility consists in approximating the functions with generalized
Fourier series, which are, approximations based upon summation of a series of
orthogonal polynomials.

f(x) =
N∑

n=0

anpn(x) (7.3.1)

where the zeros of the polynomials selected as functional basis define the
nodes of interpolation.

Orthogonal polynomials are classes of polynomials pn(x) defined over a
range [a, b] that obey an orthogonality relation:

∫ b

a

w(x)pm(x)pn(x)dx = δmnhn (7.3.2)
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where w(x) is a weighting function and δmn is the Kronecker delta. If hn = 1,
then the polynomials are not only orthogonal, but orthonormal. Orthogonal
polynomials provide a natural way to expand functions on a complete orthog-
onal basis and have attractive applications in solving differential equations.
A table of common orthogonal polynomials is given below, where w(x) is the
weighting function and

hn =

∫ b

a

w(x)[pn(x)]
2dx (7.3.3)

Polynomials Interval w(x) hn

Legendre Polynomials [-1,1] 1 2
2n+1

Chebyshev Polynomials of the first kind (-1,1) 1√
1−x2

{
π for n = 0
π
2
otherwise

Laguerre Polynomials [0,∞) e−x 1

Hermite Polynomials (−∞,∞) e−x2 √
π2nn!

Table 7.1: Orthogonal polynomials commonly used like basis of function ex-
pansion (from [25], pp. 774-775)

7.3.1 Choice of basis functions

A good functional basis φi used to expand the function f(x) must have a
number of properties:

• independence of φi basis functions;

• completeness, which means that any solution can be represented to arbi-
trarily high accuracy by taking the truncation N to be sufficiently large;

• easiness to compute;

• rapid convergence (uniform convergence) to the original function f(x)

Fourier series and orthogonal polynomials satisfy all the previous conditions.
The choice of the best basis mainly depends on the geometry of the problem
and on boundary conditions. In the table 7.2 the most suitable choice of
orthogonal basis according to problem conditions is reported:

Notice that normally, boundary and initial conditions are not a major com-
plication for spectral methods. For example, when the boundary conditions
require the solution to be spatially periodic, the sines and cosines of a Fourier
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Condition Basis Set
f(x) is periodic Fourier series

f(x) is periodic and symmetric about x = 0 Fourier cosine

f(x) is periodic and antisymmetric about x = 0 Fourier sine

x ∈ [a, b] and f(x) is non periodic
{
Chebyshev polynomial
Legendre polynomials

y ∈ [0,∞] and f(x) decays exponentially as y →∞ Laguerre functions

y ∈ [−∞,∞] and f(x) decays exponentially as y →∞ sinc functions
Hermite functions

f(x) is defined over a sphere Spherical Harmonics

Table 7.2: Best choice of orthogonal basis for different problem conditions

series (which are the natural basis functions for all periodic problems) auto-
matically and individually satisfy the boundary conditions. For non-periodic
problems, if boundary conditions are explicit they have to be expanded in term
of the orthogonal basis.

7.4 Numerical integration

Numerical integration constitutes a family of algorithms for calculating an
integral using numerical techniques, and by extension, the term describes also
the numerical solution of differential equations. The numerical computation
of an integral is sometimes called quadrature. There are a wide range of
methods available for numerical integration. A good source of information
for such techniques is Press et al.(1992)[40]. There are several reasons that
may lead to perform a quadrature. The resort to numerical integration is
necessary if the integrand is known only at certain points. Otherwise, the
analytical formula of the integrand may be known, but it may be difficult or
impossible to find an antiderivative that is an elementary function. Moreover,
it may be possible to find an antiderivative symbolically, but it may be easier
to compute a numerical approximation than to compute the antiderivative,
for example when the antiderivative is given as an infinite series or product,
or its evaluation requires a special function which is not available. The usual
approach in numerical integration consists in converting the integral into a
sum, involving the integrand evaluated in certain points multiplied for suitable
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weights:

b∫

a

f(x)dx =
N∑

i=1

wif(xi) (7.4.1)

A large class of quadrature rules is provided by substituting the integrands
with interpolating functions (typically polynomials) which are easy to inte-
grate. Interpolation with polynomials evaluated at equally-spaced points in
interval [a, b] yields the Newton-Cotes formulas. The 2- and 3-point formu-
las are called the trapezoidal rule and Simpson’s rule, respectively. The 5-
point formula is called Boole’s rule. A generalization of the trapezoidal rule is
Romberg integration, which can yield accurate results for many fewer function
evaluations.

If we allow the intervals between interpolation points to vary, we find an-
other group of quadrature formulas, called Gaussian quadrature formulas. A
Gaussian quadrature rule is typically more accurate than any Newton-Cotes
rule which requires the same number of function evaluations, if the integrand
is smooth.

7.4.1 Newton-Cotes formulas

Newton-Cotes formulas computed 7.4.1, using sampling values of f(x) evalu-
ated at N nodes xi, which are evenly spaced. The weights wi are variable and
chosen so that the quadrature is exact for all polynomials of order up to N−1.
A quadrature formula that uses the value of the function f(x) at the endpoint
a and b of the integration interval is called closed, while the formulas which
estimate 7.4.1 using only internal nodes (strictly between a and b) are called
open formulas.

Let h be the constant step between the abscissas x0, x1, ..., xN so that:

xi = x0 + ih i = 0, 1, ..., N (7.4.2)

In the following some of the most common closed formulas are listed.

Closed formulas

Trapezoidal rule

This rule allow to compute the definite integral of a function f(x) between two
points x1 and x2 by approximating the function with the straight line passing
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trough f(x1) and f(x2).

x2∫

x1

f(x)dx = h

[
1

2
f1 +

1

2
f2

]

(7.4.3)

Equation 7.4.3 is a two points formula. It is exact for polynomials up
to and including degree 1. The result of this rule is, in fact, the area of the
trapezoid under the straight line between the abscissas x1 and x2.

Simpson’s rule

This is a three point formula, and evaluate exactly integrals of polynomials
up to degree 2:

x3∫

x1

f(x)dx = h

[
1

3
f1 +

4

3
f2 +

1

3
f3

]

(7.4.4)

Note that the formula gives the integral over an interval of size 2h, so that the
coefficients add up to 2.

The four and five points formula are reported below:

Simpson’s 3
8
rule

x4∫

x1

f(x)dx = h

[
3

8
f1 +

9

8
f2 +

9

8
f3 +

3

8
f4

]

(7.4.5)

Bode’s rule
x5∫

x1

f(x)dx = h

[
14

65
f1 +

64

45
f2 +

24

45
f3 +

64

45
f4 +

14

65
f5

]

(7.4.6)

We can use equations 7.4.3, 7.4.4, 7.4.5 and 7.4.6 many times to do the
integration over the interval (x1, xN) using from time to time the necessary
number of nodes, non overlapping, according to the selected rule and then add
the results, obtaining composite or extended formulas:

Extended trapezoidal rule

xN∫

x1

f(x)dx = h

[
1

2
f1 + f2 + f3 + ...+ fN−1 +

1

2
fN

]

(7.4.7)



122 Numerical methods for PDEs

Extended Simpson’s rule

xN∫

x1

f(x)dx = h

[
1

3
f1 +

4

3
f2 +

2

3
f3 +

4

3
f4 + ...+

2

3
fN−2 +

4

3
fN−1 +

1

3
fN

]

(7.4.8)

7.4.2 Gaussian Quadrature

When the functions are known analytically instead of being tabulated at
equally spaced intervals, the best numerical method of integration is called
Gaussian quadrature ( see Gatteschi [31] and [32] ). The Gaussian quadra-
ture is a rule constructed to yield an exact result for polynomials of degree
up to (2N − 1)3 by a suitable choice of the abscissas xi and weights wi for
i = 1, ..., N . This result is achieved if the function f(x) is well approximated
by a polynomial function within the range [a, b] that is to say the function
have to be smooth, without singularities in [a, b]. However, if the integrated
function can be written as f(x) = W (x)g(x), where g(x) is a polynomial or
close to polynomial, and W (x) is a weighting function which can be singular,
then:

b∫

a

f(x)dx =

b∫

a

W (x)g(x)dx =
N∑

i=1

wig(xi) (7.4.9)

The fundamental theorem of Gaussian quadrature states that the optimal
abscissas of the N-point Gaussian quadrature formulas are precisely
the roots of the orthogonal polynomial for the same interval and
weighting function. Some possible choices of integrating gaussian rules are
listed in the table 7.3 below.

Interval W(x) Quadrature rule

[-1,1] 1 Gauss-Legendre
(-1,1) 1√

1−x2 Gauss-Chebyshev

[0,∞) e−x Gauss-Laguerre

(−∞,∞) e−x2
Gauss-Hermite

Table 7.3: Intervals and weighting function in typical gaussian quadrature
rules

3The correspondent Newton-Cotes rule on N equally-spaced points integrates precisely

the N − 1 degree polynomial.
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Note that the nodes vary in location for different orders of the quadrature
rule, so that function evaluations cannot be reused as the order increases.

The rough approach to determine the weights and nodes of a Gaussian
quadrature rule for a particular weight function consists of solving 2N simul-
taneous nonlinear equations:

∑N
k=1wkf1(xk) =

∫ b

a
f1(x)W (x)dx

∑N
k=1wkf2(xk) =

∫ b

a
f2(x)W (x)dx

...

∑N
k=1wkf2N(xk) =

∫ b

a
f2N(x)W (x)dx

(7.4.10)

where fi(x) are monomials of order i−1. These equations are nonlinear because
the unknown nodes appear inside the arguments of the functions fi(x). Solving
such a nonlinear system in general is difficult, so mathematicians developed
more sophisticated methods for finding the weights and nodes. The classical
approach is based on the theory of orthogonal polynomials.

7.4.3 Orthogonal polynomials and Gaussian quadrature

Using the weight function W (x), the following inner product is defined:

〈f, g〉 =
∫ b

a

f(x)g(x)W (x)dx. (7.4.11)

A set of orthonormal polynomials pn(x) satisfies

〈pm, pn〉 =
{
1 m = n
0 otherwise.

(7.4.12)

Such polynomials can be constructed by Gram-Schmidt orthogonalization of
the monomials 1, x, x2, .... The goal is to find nodes and weights such that

∫ b

a

f(x)W (x)dx =
N∑

k=1

wkf(xk) + ǫ (7.4.13)

is exact (ǫ = 0) if f(x) is a polynomial of degree 2N − 1 or less. Let f(x) be
a polynomial of degree 2N − 1. Dividing by the orthogonal polynomial pN(x)
gives

f(x) = pN(x)QN−1(x) +R(x), (7.4.14)
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where R is a remainder polynomial of degree N−1. Multiplying by the weight
function and integrating both sides, the following equation is obtained:

∫ b

a

f(x)W (x)dx =

∫ b

a

pN(x)QN−1(x)W (x)dx+

∫ b

a

R(x)W (x)dx. (7.4.15)

The second term is zero, since QN−1 can be expressed as a linear combination
of the orthogonal polynomials p0, p1, ..., pN−1, and so must be orthogonal to
pN . Hence, it is:

∫ b

a

f(x)W (x)dx =

∫ b

a

R(x)W (x)dx. (7.4.16)

Now, let the nodes xk be the N roots of pN(x); from equation (7.4.14) it can be
obtained that f(xk) = R(xk). Now a special set of polynomials is introduced,
the Lagrange polynomials

Lk(x) =
N∏

l=1,l 6=k

x− xl

xk − xl

. (7.4.17)

These functions are equal to 1 at x = xk and 0 at all the other points xl for
l 6= k. Because of this property, they are called interpolatory functions. Since
R(x) is of order N − 1, it can be written as a sum of Lagrange polynomials,
so that

R(x) =
N∑

k=1

f(xk)Lk(x). (7.4.18)

Combining this expression with equations (7.4.13) and (7.4.16) leads to

∫ b

a

f(x)W (x)dx =
N∑

k=1

f(xk)

[∫ b

a

Lk(x)W (x)dx

]

︸ ︷︷ ︸

,

weights wk

(7.4.19)

where the terms in square brackets can be identified as the weights wk. To sim-
plify the computation of the weights, we can express the Lagrange polynomials
in terms of orthogonal polynomials as

Lk(x) =
pN(x)

(x− xk)p′N(xk)
. (7.4.20)

It is easy to see from the way the nodes are chosen that this polynomial is
zero at all of the nodes except for xk, so that the polynomial on the right hand
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side has the same N − 1 zeros as Lk. It is also easy to see that it is equal to
one at x = xk. Because a polynomial of order N − 1 is completely determined
by N specified values, the function on the right must be equal to Lk. This
leads to the following prescription for the weights and nodes of the Gaussian
quadrature rule:

1. The pn are orthonormal polynomials with respect to the weight function
W on the interval [a, b];

2. The nodes are given by the zeros of the N−th order orthogonal polyno-
mial: pN(xk) = 0, k = 1, 2, ..., N ;

3. the weights are given by the relation

wk =

∫ b

a

pN(x)

(x− xk)p′N(xk)
W (x)dx, (7.4.21)

or, in a more convenient form

wk = −
AN

AN−1

〈pN−1, pN−1〉
pN−1(xk)p′N(xk)

, (7.4.22)

where An is the coefficient of x
n in pn(x).

A convenient tool to compute the nodes xi and weights wi of Gaussian
quadrature rules, is the three-term recurrence relation satisfied by the set of
orthogonal polynomials associated to the corresponding weight function. If,
for instance, pn is the monic orthogonal polynomial of degree n (the orthogonal
polynomial of degree n with the highest degree coefficient equal to one), one
can show that such orthogonal polynomials are related through the recurrence
relation:

pn+1(x) + (Bn − x)pn(x) + Anpn−1(x) = 0, n = 1, 2, . . . (7.4.23)

Nodes and weights can be computed from the eigenvalues and eigenvectors
of an associated linear algebra problem. if xi is a root of the orthogonal
polynomial pn then, using the previous recurrence formula for k = 0, 1, . . . , n−1
and because pn(xi) = 0, we have:

JP̃ = xiP̃ (7.4.24)

where P̃ = [p0(xi), p1(xi), ..., pn−1(xi)]
T and J is the so-called Jacobi matrix:

J =











B0 1 0 . . . . . . . . .
A1 B1 1 0 . . . . . .
0 A2 B2 1 0 . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . AN−2 BN−2 1
. . . . . . . . . . . . AN−1 BN−1











(7.4.25)
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The nodes of gaussian quadrature can therefore be computed as the eigenvalues
of a tridiagonal matrix.

The error of the Gaussian quadrature rule 7.4.9 can be stated as follows:

∫ b

a

ω(x) f(x) dx−
N∑

i=1

wi f(xi) =
f (2N)(ξ)

(2N)!
(pN , pN) (7.4.26)

or some ξ in (a, b), where pN is the orthogonal polynomial of order N.

7.4.4 Gauss-Legendre quadrature

If W (x) = 1 and [a, b] = [−1, 1], the orthogonal polynomials are Legendre
polynomials (see Appendix D):

P0(x) = 1
P1(x) = x

P2(x) =
1

2
(3x2 − 1)

...

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

(7.4.27)

The nodes can be found using a zero-finding algorithm such as the Newton’
s method or the Newton Rapson method. The weights as given by equation
(7.4.22) can be simplified using the identities:

∫ 1

−1

|Pn(x)|2dx =
2

2n+ 1
, (7.4.28)

(x2 − 1)P ′n(x) = nxPn(x)− nPn−1(x), (7.4.29)

AN

AN−1

= 2− 1

N
. (7.4.30)

Hence, the weights become

wk =
2

(1− x2
k)[(P

′
N(xk)]2

, (7.4.31)

which is convenient for numerical evaluation.
A helpful fact in implementing a root finder for the Legendre polynomials

is that the zeros of Pn+1 are in between those of Pn(x), so the zeros of one
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value of n can be used as starting guesses for the zeros of Pn+1. Alternately,
the approximation

xk ≃ cos[π(k − 1/4)/(N + 1/2)] (7.4.32)

can be used. To compute the derivative of Pn(x), a central difference approx-
imation could be used, but it is better to use the recursion relation (7.4.23).

Note that Gauss-Legendre quadrature can be extended to any integration
interval [a,b], by introducing the new variable ξ, such that

x =
b− a

2
ξ +

a+ b

2
. (7.4.33)

Hence, we can write
∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f(ξ)dξ (7.4.34)

and compute the nodes and the weights according to the classical Gauss-
Legendre procedure. The nodes and the weights of the integration over the
interval [a, b] can then be derived by applying the following relations:

xk = x(ξk) and ŵk =
b− a

2
wk. (7.4.35)

7.4.5 Gauss-Chebyshev quadrature

If W (x) = 1√
1−x2 and [a, b] = [−1, 1], the orthogonal polynomials are Cheby-

shev polynomials (see Appendix C):

T0(x) = 1
T1(x) = x
T2(x) = (2x2 − 1)
Tn(x) = arccos(ncosx)

(7.4.36)

Nodes xi and weights wi for such polynomials are analytic:

xi = cos

(
π

2

2i− 1

n

)

, i = 1, . . . , n. (7.4.37)

and
wi =

π

n
(7.4.38)

Gauss-Chebyshev quadrature can be applied to any integration interval
[a,b], by introducing the new variable ξ, such that

x =
b− a

2
ξ +

a+ b

2
. (7.4.39)
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Hence, we can write:

∫ b

a

f(x)dx =
b− a

2

∫ 1

−1

f(ξ)dξ (7.4.40)

and compute the nodes and the weights according to the classical Gauss-
Chebyshev procedure.

7.4.6 Gaussian Quadrature over an unit sphere

The quadrature rule presented above refers to one-dimensional integration. In
order to apply the Gaussian integration for surface integrals on a unit sphere,
we need to separate the two-dimensional integration of the angular flux into
two one-dimensional integrations (see Atkinson (1982) [26], Keiner et al.(2008)
[35] and Graf et al.(2009) [33]).

Let f(θ, ϕ) be a real function defined on a unit sphere, where θ, is the
polar angle, 0 ≤ θ ≤ π and ϕ, is the azimutal angle, 0 ≤ ϕ ≤ 2π. We want to
estimate:

I(f) =

∫

Ω

f(θ, ϕ) dΩ =

π∫

0

2π∫

0

f(θ, ϕ) sin θ dθdϕ (7.4.41)

Since the weighting function for 7.4.41 is W (x) = 1 the integral is approx-
imated by:

IN(f) =
π

N

2N∑

j=1

N∑

i=1

wif(θi, ϕj) (7.4.42)

where the nodes θi are chosen so that xi = cos(θi) are the Gauss-Legendre
nodes and wi are the Gauss-Legendre weights on [−1, 1]. The points ϕj are
evenly spaced in [0, 2π] with spacing π

N
.

With this choice of nodes points and weights, Im(f) integrates exactly any
polynomial f(θ, ϕ) up to degree 2N .

Integrations in θ and ϕ directions can be calculated in the meantime or
in sequence. Particularly, if function f(θ, ϕ) involve spherical Harmonics (see
appendix B ), in θ direction we use a Gauss-Legendre quadrature, while in ϕ
direction we use a discrete Fourier transform.
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7.5 Discrete Transforms

Numerical solution of PDEs requires the functions appearing in the equations
to be discretized with different techniques according to the method chosen to
solve the equations. In particular, spectral techniques substitute the original
problem for the functions unknown with a sequence of problem for the coeffi-
cients of the expansion. Such coefficients can be found by suitable transforms,
which utilize the orthogonality properties of the basis expansion to extract an
expression for the coefficients. The transform can be also inverted and used
to reconstruct the functions starting from the coefficients in terms of discrete
values .

7.5.1 Discrete Fourier Transform

The discrete Fourier transform (DFT) is a kind of Fourier transform that
transforms one function into another, which is called the frequency domain
representation, or simply the DFT, of the original function. The DFT requires
an input function that is discrete and whose non-zero values have a limited
(finite) duration.

Consider a complex continuous function f(x) sampled at N + 1 evenly
spaced time steps xk = 0, 1, . . . , N . Denoting with ∆ the interval between two
consecutive samples, its reciprocal 1

∆
is called sampling rate.

The sequence of the N+1 values assumed by the function f(x) at the steps
xk = 0, 1, . . . , N can be expressed by means of the relation:

f(xk) =
1

N + 1

N∑

n=0

Fne
− 2πi

(N+1)
kn (7.5.1)

in which the coefficients Fn are the amplitudes of the modes in the frequency
domain. Equation 7.5.1 is called Inverse Discrete Fourier Transform. Fn

coefficients can be evaluated by means of the Discrete Fourier Transform,
according to the formula:

Fn =
N∑

k=0

f(xk)e
2πi

(N+1)
kn (7.5.2)

Fn coefficients are derived from the 7.5.1 using the discrete orthogonality prop-
erties of Fourier series. This transform, does not depend on any dimensional
parameter, such as ∆ and maps N + 1 complex number (the f(xk) ) into
N + 1 complex numbers (the Fn ). If the function f(x) is real, the imaginary
parts of 7.5.1 are identically equal to zero, producing an output which is half
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redundant. In fact, the resulting transform Fn with n = 0, 1, . . . , N satisfies
FN−n = F ∗n , being F

∗
n the complex conjugate. In this case the real part of the

coefficients can be stored in a complex array of half dimension, alternatively
it is possible to reformulate the Discrete Fourier Transform and its Inverse
Transform as a sum of sine and cosine functions with real coefficients using
Euler’s formula:

f(xk) =
N∑

n=1

F c
n cos

[
π

N + 1
nk

]

+
N∑

n=1

F s
n sin

[
π

N + 1
nk

]

+ F c
0 (7.5.3)

F c
n =

2

N + 1

N∑

k=1

f(xk) cos

[
π

N + 1
nk

]

(7.5.4)

F s
n =

2

N + 1

N∑

n=1

f(xk) sin

[
π

N + 1
nk

]

(7.5.5)

F c
0 =

1

N + 1

N∑

k=1

f(xk) (7.5.6)

7.5.2 Discrete Legendre Transform

A real continuous function f(x) defined on the interval [−1, 1] can be expanded
in series of Legendre polynomials :

f(x) =
∞∑

i=0

liPi(x) (7.5.7)

The expansion coefficients li of 7.5.7 can be calculated using the orthogonality
properties of Legendre polynomials obtaining:

li =
2N + 1

2

1∫

−1

f(x)Pi(x)dx (7.5.8)

In practical application the series 7.5.7 reduces to a summation on a finite
number of element:

fN(xk) =
N∑

i=0

liPi(xk) (7.5.9)

and it is called Inverse Discrete Legendre Transform. The coefficients li are
computed by means of a Gaussian quadrature of 7.5.8:

li =
2N + 1

2

N∑

k=0

f(xk)Pi(xk)wk (7.5.10)
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in which xk are the Legendre nodes, which are the zeros of PN+1, contained
inside the interval (−1, 1), and the wk are the Legendre weights. 7.5.10 is the
Discrete Legendre transform DLT and allows to transfer N + 1 values in the
real domain to N + 1 amplitudes of the modes of expansion in the Legendre
basis.

A similar procedure have to be followed if the function is expanded in terms
of Associated Legendre Functions Pm

n (x). In this case, fixing the value of the
m index:

fm(x) =
N∑

i=0

liP
m
i (x) (7.5.11)

the coefficients li are easily calculated using the orthogonality relation for the
Associated Legendre Functions leading to:

li =
2N + 1

2

(n−m)!

(n+m)!

N∑

k=0

f(xk)P
m
i (xk)wk (7.5.12)

where xk and wk are the Legendre nodes and weights respectively.

7.5.3 Discrete Chebyshev Transformation

Let us consider a Chebyshev expansion:

f(x) =
∞∑

i=0

ciTi(x) (7.5.13)

and its truncated series fN(x):

fN(x) =
N∑

i=0

ciTi(x) (7.5.14)

approximation of the continuous function f(x), defined on the interval [−1, 1].
fn(x) is the truncated series of Chebyshev of f(x) and it coincides with f(x)
at the Chebyshev nodes, defined as:

xk = cos(θk) = cos

(
(2k + 1)π

2(N + 1)

)

k = 0, 1, . . . , N (7.5.15)

The coefficients ci of 7.5.14 expansion are the amplitude of the modes of
the function f(x) in the Chebyshev polynomials basis. They can be easily
computed adopting the discrete orthogonality procedure leading to:

ci =
2

N

N∑

k=0

f(xk)Ti(xk) =
2

N

N∑

k=0

f(cos(θk)) cos(iθk) (7.5.16)
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which is the Discrete Chebyshev Transform DCT. Thanks to its trigonometric
structure DCT is similar to DFT and both can be evaluated by means of FFT
algorithm. The 7.5.14 is the Inverse Discrete Chebyshev Transform allowing
to reconstruct the original function starting from the coefficients ci . See [30]
for a wide treatment of Chebyshev polynomials in numerical analysis.

7.5.4 Spherical Harmonics Transform

A generic real scalar function f(θ, ϕ) defined over a unit sphere can be ex-
panded in spherical harmonics ( see appendix B ):

f(θ, ϕ) =
nl∑

l=0

l∑

m=−l

flmYlm(θ, ϕ) = (7.5.17)

=
nl∑

l=0

l∑

m=−l

flm

√

(2l + 1)

4π

(l −m)!

(l +m)!
Pm

l (cos θ)e
imϕ

Notice that expanding f(θ, ϕ) on SH basis, its θ and φ dependence has been
separated. The expansion coefficients flm of 7.5.17, can be calculated using
the orthogonality properties of spherical harmonics, which involves a product
Gaussian integration according to 7.4.42.

The structure of spherical harmonics suggest to treat the θ and φ terms
separately and in sequence. A scheme of the transform procedure is reported
below:

DFT on f(θ, ϕ)
⇓

f c
m(θ)f

s
m(θ)f

c
0(θ)

DLT on fm(θ)
⇓
flm
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Firstly, let us isolate the ϕ dependence:

f(θ, ϕ) =
nl∑

l=0

l∑

m=−l

flmYlm(θ, ϕ) = (7.5.18)

=
nl∑

l=0

l∑

m=−l

flm

√

(2l + 1)

4π

(l −m)!

(l +m)!
Pm

l (cos θ)

︸ ︷︷ ︸

fm(θ)

eimϕ =

=
nl∑

m=−nl

fm(θ)e
imϕ =

=
nl∑

m=1

f c
m(θ) cos(mϕ)+

nl∑

m=1

f s
m(θ) sin(mϕ)+f

c
0(θ)

Since the function f(θ, ϕ) is real, and for spherical harmonics properties f−m =
f∗m (the star indicates the complex conjugate ), negative values ofm index are
redundant. Thus, using Euler’s formula we replace the summation of imaginary
exponential function with real sine and cosine functions sums extended up to
half terms. Now, the coefficients f c

m(θ), f
s
m(θ) and f

c
0(θ) can be evaluated by

means of a Discrete Fourier Transform.
Coefficients flm are then calculated using a Discrete Legendre Transform

in θ direction, for f c
m(θ), f

s
m(θ) and f

c
0(θ) functions.

Function f(θ, ϕ) can be reconstructed using 7.5.18, reminding that:

f c
m(θ) =

nl∑

l=0

flm

√

(2l + 1)

4π

(l −m)!

(l +m)!
Pm

l (cos θ) (7.5.19)

f s
m(θ) =

nl∑

l=0

flm

√

(2l + 1)

4π

(l −m)!

(l +m)!
Pm

l (cos θ) (7.5.20)

f c
0(θ) = fl0

√

(2l + 1)

4π
P 0

l (cos θ) (7.5.21)
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Chapter 8

Problem formulation

This chapter provides an overview of the governing equations for the problem
of the flow of a viscous fluid inside a bounded surface. Several equivalent for-
mulations are presented. Among these, the time discretized primitive variables
formulation when the incompressibility constraint is replaced by the Poisson
equation is critically examined following Quartapelle (1993) [43]. In order to
obtain a system of split-equations, condition of integral character are derived
for the pressure according to Quartapelle et al. (1986) [42].

8.1 Incompressible Navier-Stokes equations

The motion of a viscous incompressible fluid is governed by the Navier-Stokes
equations:

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u (8.1.1)

∇ · u = 0 (8.1.2)

in which u is the velocity, p the pressure and ν the kinematic viscosity. This
”classical” formulation made in the primitive variable u and p can be suit-
ably replaced by an equivalent expression in term of the two scalar unknowns
vorticity ζ and stream function ψ, where:

ζ = ∇× u (8.1.3)

Using non-primitive variables several equivalent formulations are possible,
for example:

∂ζ

∂t
+∇× (ζ ×∇× ψ) = ν∇2ζ (8.1.4)

135
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−∇2ψ = ζ (8.1.5)

The choice of the formulation (in primitive/non-primitive variables, inter-
mediate character formulation) depends on the particular numerical approach
chosen to solve the problem, together with the space and time discretization
method.

Working with primitive variables, a convenient formulation of the problem
involves the use of Poisson equation 8.1.6 in substitution of the continuity
equation:

∇2p = f (8.1.6)

where f is a real function.
The convenience of this approach consists in the possibility to derive un-

coupled formulation of the incompressible equations as later better explained
in section 8.2.

To make the formulation of the problem complete then, you have to specify
boundary and initial conditions. Boundary conditions are often of a no-slip
kind. These conditions consist in prescribing the value of the velocity at the
boundary:

u |S = vS(xS, t) (8.1.7)

where S is the boundary of the volume V occupied by the fluid and xS ∈ S. If
the boundary of the fluid domain is a solid wall, vS is the velocity of the wall.
Notice that no boundary condition for the pressure is prescribed and it would
be incorrect to impose one together with the velocity boundary condition for
the reasons explained later. In some applications, because of the particular
shape of the fluid domain inflow or outflow boundaries, velocity boundary
condition different from 8.1.7 are convenient. In these situations the pressure
can be supplemented by boundary conditions of Neumann or Dirichlet type.

Finally, the initial condition consists in the specification of the velocity field
vo at the initial time t = 0

u |t=o = vo(x) (8.1.8)

Moreover, the incompressibility constraint implies that the initial condition
and the boundary conditions cannot be assigned in an arbitrary and indepen-
dent way. The boundary velocity vS must satisfy for all t > 0 the global
condition: ∮

n · vSdS = 0 (8.1.9)

following from the integration of the continuity equation 8.1.2 over V using
the divergence theorem1.

1The symbol
∮

denotes the integral over the closed surface S



8.2 Time discretized pressure-velocity equations 137

In 8.1.9 and in the following, n denotes the outward unit normal to the
boundary S. The initial velocity field vo is assumed to be solenoidal like any
instantaneous velocity field:

∇ · vo = 0 (8.1.10)

Finally, the following compatibility conditions are stated for the boundary and
the initial conditions vS and vo:

n · vS |t=o = n · vo |S (8.1.11)

The set of equations 8.1.1,8.1.2, with the initial and boundary conditions
8.1.8, 8.1.7, 8.1.9, 8.1.10 and the compatibility condition 8.1.11, admits so-
lutions (u(x, t), p(x, t)) with the pressure field determined up to an arbitrary
additive function of time.

8.2 Time discretized pressure-velocity equa-

tions

Introducing the characteristic length L and velocity U, we consider the prob-
lem in a dimensionless form with variables scaled such those2:

x =
x∗

L
(8.2.1)

u =
u∗

U
(8.2.2)

t = t∗
U

L
(8.2.3)

p =
p∗

ρU2 (8.2.4)

Reminding that the ratio ν
LU

indicates the Reinolds number, the dimen-
sionless equations take the following form:

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u (8.2.5)

∇ · u = 0 (8.2.6)

The governing equations 8.2.5 are discretized in time by mean of a non-
fractional-step scheme. Let us indicate the unknown velocity and pressure
fields at the new time level with u = un + 1 and p = pn + 1. The non-linear

2Here the superscript * indicates the dimensional variables.
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term in 8.1.1 is evaluated in an explicit manner with the three-level Adams-
Bashforth method:

(u · ∇)u = 3

2
(un · ∇)un − 1

2

(
un−1 · ∇

)
un−1 (8.2.7)

The linear terms are taken in account in a fully implicit manner using the
Crank-Nicolson method:

∇p = 1

2
∇

(
pn+1 + pn

)
(8.2.8)

∇2u =
1

2
∇2

(
un+1 + un

)
(8.2.9)

∇ · u = 1

2
∇ ·

(
un+1 + un

)
(8.2.10)

where the superscript n , n−1 and n+1 in the 8.2.7 and 8.2.8-10 are the values
of the variables u and p at the corresponding time steps. Adopting 8.2.7 and
8.2.8-10 discretizing schemes we have:

(
−∇2 + γ

)
u = −∇p+ f (8.2.11)

∇ · u = 0 (8.2.12)

u |S = vS(xS, t) (8.2.13)

in which, γ = 1/ν∆t, while the source term f is given by:

f =
(
∇2 + γ

)
un − Re

[
3 (un · ∇)un −

(
un−1 · ∇

)
un−1

]
(8.2.14)

This formulation of the problem is usually referred to as generalized or time-
discretized unsteady Stokes problem.

Taking the divergence of the momentum equation 8.2.11 and using the
continuity equation 8.1.2 we derive the Poisson equation for the pressure:

∇2p = ∇ · f (8.2.15)

This equation can be introduced in order to eliminate the continuity equation
but unfortunately, due to the lack of proper boundary conditions for p, is
not completely equivalent with the incompressibility condition. In fact, the
fulfillment of the Poisson equation is only a necessary condition for u to be
solenoidal. In order to ensure the mass conservation a constraint imposing the
equivalence of the primitive variable system containing the Poisson equation
for pressure and the original Navier-Stokes problem is required. However,
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Kleiser and Schumann (1980) demonstrated that, if we impose the boundary
condition ∇·u |S = 0, then the harmonicity of ∇·u is guaranteed in the whole
domain. The resulting time-discretized Navier-Stokes problem consists of the
elliptic boundary value problem below:

(
−∇2 + γ

)
u = −∇p+ f (8.2.16)

∇2p = ∇ · f (8.2.17)

u |S = vS ∇ · u |S = 0 (8.2.18)

Besides these equations also the following compatibility constraints have
to be satisfied:

∮

n · vSdS = 0 (8.2.19)

n · vS |t=o = n · vo |S (8.2.20)

According to the above scheme the solution of the time-dependent Navier-
Stokes problem is reduced to the solution of a sequence of unsteady Stokes
problem. The main difficulty encountered in the solution of the above system
is due to the absence of boundary conditions on the pressure. In fact, in the
form written above, because of the lack of independent boundary condition for
the pressure, problem 8.2.16 is a coupled system of equations, that is to say
that pressure and velocity have to be solved simultaneously.

8.3 Pressure integral conditions

The incompressibility constraint impose that the velocity field must be solenoidal
everywhere and at every time step. Nevertheless, the motion of a fluid is gov-
erned by the complete Navier-Stokes equations, which, in general, don’t ensure
the velocity field to be divergence free. The assumption of the incompressibility
of the flow is in fact an external constraint imposed on the governing equation.
It can be accomplished only by considering the pressure as a free variable nec-
essary to satisfy this constraint. This implies that the pressure is deprived of its
thermodynamic meaning. From this point of view the incompressibility con-
straint constitutes a violation of the thermodynamic principles, nevertheless,
the incompressible Navier -Stokes equations can be suitably used to describe
a wide class of fluid dynamic phenomena when thermodynamic properties of
the fluid are negligible.

Ultimately, lack of a boundary condition for the pressure prevents a direct
solution of the problem as a system of split elliptic equations, to be integrated
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in sequence. However, proper condition for p are obtained by considering
the vector Green identity for the metaharmonic (Helmholtz) elliptic operator
∇2

γ = (∇2 − γ):

∫
(
u · ∇2

γv− v · ∇2
γu

)
dV =

=

∫

(n · u∇ · v− n · v∇ · u+ n× u · ∇ × v− n× v · ∇ × u)dS
(8.3.1)

in which n is the outward normal unit vector on S. Now, since −∇p+ f =
(−∇2 + γ)u = −∇2

γu the Green identity 8.3.1 implies that the pressure field
satisfies the following integral condition:

∫

(−∇p+ f) b dV =

∫

(n · vS∇ · b+ n× vS · ∇ × b)dS (8.3.2)

for any vector b solution of the metaharmonic (Helmholtz) problem:

(
−∇2 + γ

)
b = 0

∫

n · bdS = 0 n× b |S = 0 (8.3.3)

Notice that the explicit treatment of the advection term in Navier-Stokes
produces equations with an independent boundary condition for the pressure
not involving the unknown velocity field un+1. The number of independent
fields b that are solutions of 8.3.3 is equal to that of the boundary points.
These conditions allow to reformulate the problem 8.2.16 in split form:

∇2pn+1 = −∇ · fn (8.3.4)

−
∫

∇pn+1 · b dV = −
∫

fn · b dV +

∫
(
n · vn+1

S ∇ · b+ n× vn+1
S · ∇ × b

)
dS

(8.3.5)
(
∇2 − γ

)
un+1 = −∇pn+1 + fn (8.3.6)

un+1 |S = vn+1
S (8.3.7)

Equations 8.3.4 constitute a general factorized form of the Navier-Stokes
equations for the primitive variables and can be solved in sequence. The solu-
tion proceeds as follows:

1. Solution of the metaharmonic problem in order to find vector field b
values to introduce in the integral condition for the pressure;

2. Solution of the Poisson equation with the integral condition for the pres-
sure;
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3. Solution of the momentum equation supplemented by the boundary con-
dition for the velocity of ordinary Dirichlet type.

The imposition of the integral condition for the pressure assures on one
hand that the pressure field is compatible with the no-slip velocity condition
given on the solid boundary and, on the other hand, that the velocity field at
the time step n + 1 is exactly solenoidal, as required by the incompressibility
condition.

8.4 Modal formulation of the unsteady Stokes

problem

Let us consider the problem of a fluid moving in the region between two con-
centric spheres of radius r1 and r2. The geometric shape of the fluid domain
suggests as natural, the choice of a spherical system of coordinates (r, θ, ϕ)3.
Pressure and Velocity variables are expanded in series of scalar and vector
spherical harmonics respectively, which constitute a convenient orthogonal
bases in this reference system:

p (r, θ, ϕ) =
L∑

l=0

l∑

m=−l

plm (r)Ylm (θ, ϕ) (8.4.1)

u (r, θ, ϕ) =
L∑

l=0

l∑

m=−l

[
ur

lm (r)Plm (θ, ϕ) + uθ
lm (r)Blm (θ, ϕ) + uϕ

lm (r)Clm (θ, ϕ)
]

(8.4.2)
The functions Ylm (θ, ϕ) appearing in 8.4.1 are the scalar orthonormal

spherical harmonics, while the vectorial functions (Plm (θ, ϕ) ,Blm (θ, ϕ) ,Clm (θ, ϕ))
are the vector spherical harmonics4. Notice that this expansion permits to sep-
arate the radial dependence (present only in the expansion coefficients) from
the angular one (in the expanding basis functions. Moreover, this operation
allows the transformation of the original three-dimensional partial differential
equations into a set of ordinary differential equations for the expansion coef-
ficients, which are function only of the radial variable. In a similar way, the
integral conditions for the pressure transforms into one-dimensional definite

3For formulation of Navier-Stokes equations in spherical coordinates the reader is referred

to the chapter 2 in the first part of this Thesis, while a collection of differential operator

written in spherical coordinate can be consulted in appendix A
4Scalar and vector spherical harmonics definitions, properties and applications are dis-

cussed in appendixB
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integrals on the radial variable. According to the expressions of the differ-
ential operators for scalar and vector fields expanded in spherical harmonics
contained in appendix B the time-discretized Stokes problem 8.3.4 then trans-
forms into the following system of equations:

Dlplm =

(
d

dr
+
2

r

)

f r
lm−

sl

r
f θ

lm (8.4.3)

−
r2∫

r1

(
dplm

dr
br +

sl

r
plmb

θ

)

r2dr = −
r2∫

r1

(
f r

lmb
r + f θ

lmb
θ
)
r2dr

+

[

vr
Slmr

2

(
d

dr
+
2

r

)

br − vθ
Slmr

2

(
sl

r
br − d

dr
bθ
)]∣

∣
∣
∣

r2

r1

(8.4.4)

(−Dl + γI)ulm = −∇plm + flm (8.4.5)

ulm (r1) = vSlm (r1) ulm (r2) = vSlm (r2) (8.4.6)

where:

Dl =
d2

dr2
+
2

r

d

dr
− l(l + 1)

r2
l = 0, 1, 2, . . . (8.4.7)

Dl =





Dl − 2
r2 2Sl

r2 0
2Sl

r2 Dl 0
0 0 Dl



 (8.4.8)

In the equations above the subscript lm indicate the coefficients of 8.4.1
and 8.4.2 expansions; moreover, the terms flm(r) and vSlm(r) are the expansion
coefficients of the source term f(r, θ, φ) and of the boundary velocity vS(r, θ, φ)
respectively.

8.4.1 Solution of the modal equations

The solution of the modal incompressible Navier-Stokes problem consists in
the research of the expansion coefficients of pressure and velocity. The scalar
unknown plm(r), can be determined independently and before the velocity
ulm(r), as solution of the modal Poisson problem in addition with its integral
boundary condition. In the general case there are two of such conditions pro-
vided by the solutions of the metaharmonic problem as better explained in
the following. The problem defining ulm(r) is instead a standard two-points
boundary value problem of a vector type. The first two components ur

lm and
uθ

lm are coupled together because of the structute of the differential operator
Dl, whereas the u

ϕ
lm component is uncoupled. This latter component is inde-

pendent from the pressure and has only the role to ensure the fulfillment of
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the incompressibility condition. As far the unexpanded differential problem,
the solution of the modal equations proceed as follows:

1. Solution of the metaharmonic problem in order to find vector field b
values to introduce in the integral condition for the pressure;

2. Solution of the Poisson equation with the integral condition for the pres-
sure;

3. Solution of the momentum equation supplemented by the boundary con-
dition for the velocity of ordinary Dirichlet type.

8.4.2 Solution of the metaharmonic problem

In the general case, the metaharmonic differential problem has two linearly
independent solutions according with the number of solid boundaries physically
existing in the problem. This will lead to the formulation of two different
integral conditions for the pressure problem. The differential operator Dl

appearing in the metaharmonic problem depends only on the index l, and the
right hand side of the equation is homogeneous. It follow that the problem
is independent on the m index and we obtain a distinct differential problem
for each value of l, irrespective of the value of m. The modal equation of the
metharmonic problem in the vector form, for l > 0 is the following:

(Dl + γI)bl(r) = 0 (8.4.9)

to solve alternatively with the following set of linearly independent boundary
conditions:

1) brl (r1) = 1 brl (r2) = 0 bθl (rj) = 0 bϕl (rj) = 0 j = 1, 2 (8.4.10)

2) brl (r1) = 0 brl (r2) = 1 bθl (rj) = 0 bϕl (rj) = 0 j = 1, 2 (8.4.11)

The problem 8.4.9 can be written in its components:

(

Dl −
2

r2
− γ

)

brl (r) + 2
Sl

r2
bθl (r) = 0 (8.4.12)

2
Sl

r2
brl (r) + (Dl − γ) bθl (r) = 0 (8.4.13)

(Dl − γ) bϕl (r) = 0 (8.4.14)

Notice that the problem for the ϕ component is homogeneous with homoge-
neous boundary condition, so that bϕl (r) vanishes. The problems for b

r
l (r) and
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bθl (r) are coupled together. Introducing the similarity transformation:

(
βr

l

βθ
l

)

= Sl

(
brl
bθl

)

where Sl =

( (
l

2l+1

)1/2 (
l+1
2l+1

)1/2

(
l+1
2l+1

)1/2 −
(

l
2l+1

)1/2

)

(8.4.15)

the equations in r and θ components of 8.4.12 can be written in uncoupled
form for the unknowns βr

l and β
θ
l :

(Dl−1 − γ) βr
l (r) = 0 (8.4.16)

(Dl+1 − γ) βθ
l (r) = 0 (8.4.17)

to solve with the following set of linearly independent boundary conditions:

first set → βr
l (r1) =

(
l

2l + 1

)1/2

βr
l (r2) = 0 βθ

l (r1) =

(
l + 1

2l + 1

)1/2

βθ
l (r2) = 0

(8.4.18)

second set → βr
l (r1) = 0 βr

l (r2) =

(
l

2l + 1

)1/2

βθ
l (r1) = 0 βθ

l (r2) =

(
l + 1

2l + 1

)1/2

(8.4.19)

An analytic solution of 8.4.16, with the boundary conditions 8.4.18 in term
of Bessel functions can be found considering the change of variable:

r → x = γ1/2r β(r)→ B(r) = r1/2β(r) = γ−1/4x1/2β(γ−1/2x) (8.4.20)

With the above transformation the equations 8.4.16 become:

Bl−1/2B
r
l (x) = 0 (8.4.21)

Bl+3/2B
θ
l (x) = 0 (8.4.22)

where B is the modified Bessel operator of order l+1/2 for the variable x:

Bl+1/2 = x2 d
2

dx2
+ x

d

dx
−
[
x2 + (l + 1/2)2

]
(8.4.23)

Being Iα(x) and Kα(x) the modified Bessel functions of the first and sec-
ond kind respectively, solution of the modified Bessel function of order α, the
solution of 8.4.21 problem are the following:

Br
l (x) = alIl−1/2(x) + blKl−1/2(x) (8.4.24)

Bθ
l (x) = clIl+3/2(x) + dlKl+3/2(x) (8.4.25)
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where the coefficients al, bl, cl and dl are found imposing the boundary condi-
tions:

first set → Br
l (x1) = r

1/2
1

(
l

2l + 1

)1/2

Br
l (x2) = 0 (8.4.26)

Bθ
l (x1) = r

1/2
1

(
l + 1

2l + 1

)1/2

Bθ
l (x2) = 0

second set → Br
l (x1) = 0 Br

l (x2) = r
1/2
2

(
l

2l + 1

)1/2

(8.4.27)

Bθ
l (x1) = 0 Bθ

l (x2) = r
1/2
2

(
l + 1

2l + 1

)1/2
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8.4.3 Solution of the problem for the pressure

The problem for the pressure coefficients of expansion 8.4.1 is solved by means
of a tau spectral method. The second order differential operator Dl is firstly
transformed into a constant coefficients operator using the following radial
variable transformation:

x = x(r) =
ln
(

r2

r1r2

)

ln
(

r2

r1

) → r = r(x) = r1e
(x+1)/α where α =

2

ln
(

r2

r1

) (8.4.28)

which leads to the following relationships:

r
d

dr
→ x

d

dx
r2 d

2

dr2
→ α2 d

2

dx2
−α d

dx
D

(x)
l = r2Dl → α2 d

2

dx2
−α d

dx
− l(l+1)

(8.4.29)

The modal equations 8.4.3 for the pressure with the above transformation
reduce to the following:

[

α2 d
2

dx2
− α

d

dx
− l(l + 1)

]

plm(x) = r(x)

[(

α
d

dx
+ 2

)

f r
lm(x)− Slf

θ
lm(x)

]

(8.4.30)

−
+1∫

−1

r(x)2
[

α
dplm(x)

dx
brl (x) + Slplm(x)b

θ
l (x)

]

dx = (8.4.31)

−
+1∫

−1

r(x)3
[
f r

lm(x)b
r
l (x) + f θ

lm(x)b
θ
l (x)

]
dx+

+ α

{

vr
s lmr(x)

(

α
d

dx
+ 2

)

brl (x)− vθ
s lmr(x)

[

Slb
r
l (x)− α

dbθl (x)

dx

]}∣
∣
∣
∣

+1

−1

Notice that the radial streching 8.4.28 allows to transform the second-
order differential operator Dl into a constant coefficients operator but it im-
plies also the introduction of variables coefficients in the right-hand side of
the equation 8.4.30. In order to solve the equation 8.4.30 with the bound-
ary condition 8.4.31, a tau projection method is used. Firstly all the func-
tions appearing in the 8.4.28 are expanded in series of Chebyshev polynomials
Tn(x) = cos(n arccos(x)) (see Appendix C for a wide exposure of Chebyshev
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polynomials properties):

flm(x) =
N∑

n=0

flmnTn(x) (8.4.32)

plm(x) =
N∑

n=0

plmnTn(x) (8.4.33)

(8.4.34)

After introducing the expansion 9.2.6 in the 8.4.30, the final form of the equa-
tions for the pressure Chebyshev coefficients can be obtained substituting the
Chebyshev polynomials derivatives with their expansion in term of Chebyshev
polinomials. Multiplying the equations for the term Tq(x)√

1−x2 and integrating be-

tween [−1; 1] we can use the orthogonality properties of such polynomials and
the equations for the pressure coefficients become:

α2

N∑

k=0

plmk

1∫

−1

Tq(x)

1− x2







2k

k−1
2∑

j=1

j∑

i=1

4jT2i−1(x) dx k odd

2k

k−2
2∑

j=0

(2j + 1)

[

1 + 2
j∑

i=1

T2i(x)

]

dx k even

︸ ︷︷ ︸

II

+

(8.4.35)

+α
N∑

k=0

plmk

1∫

−1

Tq(x)

1− x2







k

[

1 + 2

k−1
2∑

j=1

T2j(x)

]

dx k odd

2k

k
2∑

j=1

T2j−1(x)dx k even

︸ ︷︷ ︸

I

+

− [l(l + 1)]
N∑

k=0

plmk

1∫

−1

Tq(x)Tk(x)√
1− x2

dx

︸ ︷︷ ︸

O

=

N∑

j=0










αf r
lmj

1∫

−1

Tq(x)T
′
j(x)r(x)√
1− x2

dx

︸ ︷︷ ︸

Dqj

+
(
2f r

lmj − Slf
θ
lmj

)
1∫

−1

Tq(x)Tj(x)r(x)√
1− x2

dx

︸ ︷︷ ︸

Cqj
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with the boundary integral condition:

− Reα
N∑

k=0

plmk

1∫

−1

T ′k(x)b
r
l (x)r

2(x)dx

︸ ︷︷ ︸

H′
k

−ReSl

N∑

k=0

plmk

1∫

−1

Tk(x)b
θ
l (x)r

2(x)dx

︸ ︷︷ ︸

Hk

=

(8.4.36)

= −
N∑

k=0

f r
lmk

1∫

−1

Tk(x)b
r
lm(x)r

3(x)dx

︸ ︷︷ ︸

Kk

−
N∑

k=0

f θ
lmk

1∫

−1

Tk(x)b
θ
lm(x)r

3(x)dx

︸ ︷︷ ︸

Kk

+

(8.4.37)

+ α

{

vr
Slmr(x)

(

α
d

dx
+ 2

)

brlm − vθ
Slmr(x)

(

Slb
r
lm − α

d

dx
bθlm

)}∣
∣
∣
∣

1

−1

(8.4.38)

where:

II =







k odd







q odd → πkδ(2i−1),q

k−1
2∑

l= q+1
2

4l

q even → 0

k even







q odd → 0

q even → 2πkδ2i,q

k
2∑

l= q
2

(2l + 1)

I =







k odd

{
q odd → 0
q even → kπδ2j,q

k even

{
q odd → kπδ(2j−1),q

q even → 0

O =

{
π
2
δq,k

πδq,0

(8.4.39)

The integrals Dqj, Cqj can be evaluated by means of a Gauss-Chebyshev
quadrature formula:

Dqj =

1∫

−1

r(x)Tq(x)T
′
j(x)√

1− x2
dx =

1∫

−1

u(x)√
1− x2

dx =
π

N + 1

N+1∑

k=1

u(xk) (8.4.40)

Cqj =

1∫

−1

r(x)Tq(x)Tj(x)√
1− x2

dx =

1∫

−1

v(x)√
1− x2

dx =
π

N + 1

N+1∑

k=1

v(xk) (8.4.41)
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and the points xk are the Chebyshev nodes.
The integrals H ′

k, Hk and Kk are instead evaluated by means of a Gauss-
Legendre quadrature formula:

H ′
k =

1∫

−1

T ′k(x)b
r
l (x)r

2(x)dx =

1∫

−1

u(x)dx =
N+1∑

k=1

wku(xk) (8.4.42)

Hk =

1∫

−1

Tk(x)b
θ
l (x)r

2(x)dx =

1∫

−1

v(x)dx =
N+1∑

k=1

wkv(xk) (8.4.43)

Kk =

1∫

−1

Tk(x)b
r
l (x)r

3(x)dx =

1∫

−1

ω(x)dx =
N+1∑

k=1

wkω(xk) (8.4.44)

where wk and xk are the Legendre weights and nodes respectively.
The resulting linear system of equations for the pressure coefficients plmk

with the addition of the associated integral conditions (one for each boundary
and each lm mode) in the first two rows, has an upper triangular coefficients’
matrix, with the coefficients distributed according to a regular pattern. This
allows to transform the matrix according to a quasi-pentadiagonal profile by
means of suitable linear combinations. Finally, the problem can be solved by
factorizing the matrix with a UL decomposition starting from the bottom and
proceeding to the top of the matrix.
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8.4.4 Solution of the problem for the velocity

The velocity problem can be solved independently, after having solved the
pressure problem, by means of a tau projection method, similar to the above
described technique used for the pressure problem. The application of the
8.4.28 radial stretching to the velocity equations leads to the following modal
equations:

(

−D(x)
l + γr2(x)I

)

ulm(x) = −r(x)∇(x)
l plm(x) + r2(x)flm(x) (8.4.45)

ulm(−1) = v1
Slm ulm(1) = v2

Slm (8.4.46)

where:

D
(x)
l =






D
(x)
l − 2 2Sl 0

2Sl D
(x)
l 0

0 0 D
(x)
l




 and ∇(x)

l =





α d
dx

Sl

0



 (8.4.47)

Notice that the problem for the components ur
lm and uθ

lm is coupled. The
original formulation can be split in the r and θ uncoupled components using
the similarity transformation:

(
U r

lm

U θ
lm

)

= Sl

(
ur

lm

uθ
lm

)

where Sl =

( (
l

2l+1

)1/2 (
l+1
2l+1

)1/2

(
l+1
2l+1

)1/2 −
(

l
2l+1

)1/2

)

(8.4.48)

Applying the transformation 8.4.48 we obtain:

(

−D(x)
l + 2 + γr2(x)

)
[(

l

2l + 1

)1/2

U r
lm(x) +

(
l + 1

2l + 1

)1/2

U θ
lm(x)

]

(8.4.49)

−2Sl

[(
l + 1

2l + 1

)1/2

U r
lm(x)−

(
l

2l + 1

)1/2

U θ
lm(x)

]

=

− r(x)α
dplm(x)

dx
+ r2(x)f r

lm(x)

−2Sl

[(
l

2l + 1

)1/2

U r
lm(x) +

(
l + 1

2l + 1

)1/2

U θ
lm(x)

]

(8.4.50)

+
(

−D(x)
l + γr2(x)

)
[(

l + 1

2l + 1

)1/2

U r
lm(x)−

(
l

2l + 1

)1/2

U θ
lm(x)

]

=

− r(x)Slplm(x) + r2(x)f θ
lm(x)
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Adding or subtracting the 8.4.49 to the 8.4.50 after suitable scaling, the prob-
lem can be finally reformulated in the split form :

(

D
(x)
l − γr2(x)− 2l

)

(2l + 1)1/2 U r
lm(x) = (8.4.51)

r(x)

[

αl1/2dplm(x)

dx
+ Sl (l + 1)1/2 plm(x)

]

− r2(x)
[

l1/2f r
lm(x)− (l + 1)1/2 f θ

lm(x)
]

(

D
(x)
l − γr2(x)− 2 (l + 1)

)

(2l + 1)1/2 U θ
lm(x) = (8.4.52)

r(x)

[

α (l + 1)1/2 dplm(x)

dx
− Sll

1/2plm(x)

]

− r2(x)
[

(l + 1)1/2 f r
lm(x)− l1/2f θ

lm(x)
]

The velocity equation in the ϕ direction is originally already uncoupled:

(

−D(x)
l + γr2(x)

)

uϕ
lm(x) = r2(x)fϕ

lm(x) (8.4.53)

In this manner, the three-dimensional vector problem is split into a se-
quence of three uncoupled scalar one-dimensional problem for the velocity
components U r

lm, U
θ
lm and uϕ

lm.

Now, introducing a truncated expansion of the functions appearing in the
8.4.51, 8.4.52 and 8.4.53 in terms of Chebyshev polynomials, such as:

flm(x) =
N∑

n=0

flmnTn(x) (8.4.54)

plm(x) =
N∑

n=0

plmnTn(x) (8.4.55)

ulm(x) =
N∑

n=0

ulmnTn(x) (8.4.56)

the final form of the equations for the velocity Chebyshev coefficients can
be obtained substituting the Chebyshev polynomials derivatives with their
expansion in term of Chebyshev polinomials. Multiplying the equations for
the term Tq(x)√

1−x2 and integrating between [−1; 1] we can use the orthogonality
properties of such polynomials. In the following the equations for the three
components of the velocity are reported with an indication of their structure
and matrix of coefficients aspect.
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Equation for U r
lm

(2l + 1)1/2α2

N∑

k=0

U r
lmk

1∫

−1

Tq(x)

1− x2







2k

k−1
2∑

j=1

j∑

i=1

4jT2i−1(x) dx k odd

2k

k−2
2∑

j=0

(2j + 1)

[

1 + 2
j∑

i=1

T2i(x)

]

dx k even

︸ ︷︷ ︸

II

+

(8.4.57)

+ (2l + 1)1/2α
N∑

k=0

U r
lmk

1∫

−1

Tq(x)

1− x2







k

[

1 + 2

k−1
2∑

j=1

T2j(x)

]

dx k odd

2k

k
2∑

j=1

T2j−1(x)dx k even

︸ ︷︷ ︸

I

+

− (2l + 1)1/2γ

N∑

k=0

U r
lmk

1∫

−1

Tq(x)Tk(x)r
2(x)√

1− x2
dx

︸ ︷︷ ︸

Eqk

−(2l + 1)1/2 [l(l − 1)]
N∑

k=0

U r
lmk

1∫

−1

Tq(x)Tk(x)√
1− x2

dx

︸ ︷︷ ︸

O

=

l1/2α

N∑

j=0

plmk

1∫

−1

Tq(x)T
′
j(x)r(x)√
1− x2

dx

︸ ︷︷ ︸

Dqj

+Sl(l + 1)1/2

N∑

j=0

plmk

1∫

−1

Tq(x)Tj(x)r(x)√
1− x2

dx

︸ ︷︷ ︸

Cqj

l1/2

N∑

j=0

f r
lmk

1∫

−1

Tq(x)Tj(x)r
2(x)√

1− x2
dx

︸ ︷︷ ︸

Eqj

+(l + 1)1/2

N∑

j=0

f θ
lmk

1∫

−1

Tq(x)Tj(x)r
2(x)√

1− x2
dx

︸ ︷︷ ︸

Eqj

where:

II =







k odd







q odd → πkδ(2i−1),q

k−1
2∑

l= q+1
2

4l

q even → 0

k even







q odd → 0

q even → 2πkδ2i,q

k
2∑

l= q
2

(2l + 1)

(8.4.58)
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I =







k odd

{
q odd → 0
q even → kπδ2j,q

k even

{
q odd → kπδ(2j−1),q

q even → 0

O =

{
π
2
δq,k

πδq,0

(8.4.59)

The integrals Cqj, Dqj and Eqj can be evaluated by means of a Gauss-
Chebyshev quadrature formula:

Cqj =

1∫

−1

r(x)Tq(x)Tj(x)√
1− x2

dx =

1∫

−1

u(x)√
1− x2

dx =
π

N + 1

N+1∑

j=1

u(xj) (8.4.60)

Dqj =

1∫

−1

r(x)Tq(x)T
′
j(x)√

1− x2
dx =

1∫

−1

v(x)√
1− x2

dx =
π

N + 1

N+1∑

j=1

v(xj) (8.4.61)

Eqj =

1∫

−1

r2(x)Tq(x)Tj(x)√
1− x2

dx =

1∫

−1

ω(x)√
1− x2

dx =
π

N + 1

N+1∑

j=1

ω(xj) (8.4.62)

(8.4.63)

and the points xk are the Chebyshev nodes.
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Equation for U θ
lm

(2l + 1)1/2α2

N∑

k=0

U θ
lmk

1∫

−1

Tq(x)

1− x2







2k

k−1
2∑

j=1

j∑

i=1

4jT2i−1(x) dx k odd

2k

k−2
2∑

j=0

(2j + 1)

[

1 + 2
j∑

i=1

T2i(x)

]

dx k even

︸ ︷︷ ︸

II

+

(8.4.64)

+ (2l + 1)1/2α

N∑

k=0

U θ
lmk

1∫

−1

Tq(x)

1− x2







k

[

1 + 2

k−1
2∑

j=1

T2j(x)

]

dx k odd

2k

k
2∑

j=1

T2j−1(x)dx k even

︸ ︷︷ ︸

I

+

− (2l + 1)1/2γ
N∑

k=0

U θ
lmk

1∫

−1

Tq(x)Tk(x)r
2(x)√

1− x2
dx

︸ ︷︷ ︸

Eqk

+

− (2l + 1)1/2 [(l + 1)(l + 2)]
N∑

k=0

U θ
lmk

1∫

−1

Tq(x)Tk(x)√
1− x2

dx

︸ ︷︷ ︸

O

=

(l + 1)1/2α
N∑

j=0

plmk

1∫

−1

Tq(x)T
′
j(x)r(x)√
1− x2

dx

︸ ︷︷ ︸

Dqj

−Sll
1/2

N∑

j=0

plmk

1∫

−1

Tq(x)Tj(x)r(x)√
1− x2

dx

︸ ︷︷ ︸

Cqj

(l + 1)1/2

N∑

j=0

f r
lmk

1∫

−1

Tq(x)Tj(x)r
2(x)√

1− x2
dx

︸ ︷︷ ︸

Eqj

+l1/2

N∑

j=0

f θ
lmk

1∫

−1

Tq(x)Tj(x)r
2(x)√

1− x2
dx

︸ ︷︷ ︸

Eqj

In which the underscript terms are the same in 8.4.57.
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Equation for uϕ
lm

α2

N∑

k=0

uϕ
lmk

1∫

−1

Tq(x)

1− x2







2k

k−1
2∑

j=1

j∑

i=1

4jT2i−1(x) dx k odd

2k

k−2
2∑

j=0

(2j + 1)

[

1 + 2
j∑

i=1

T2i(x)

]

dx k even

︸ ︷︷ ︸

II

+

(8.4.65)

+α
N∑

k=0

uϕ
lmk

1∫

−1

Tq(x)

1− x2







k

[

1 + 2

k−1
2∑

j=1

T2j(x)

]

dx k odd

2k

k
2∑

j=1

T2j−1(x)dx k even

︸ ︷︷ ︸

I

+

− γ
N∑

k=0

uϕ
lmk

1∫

−1

Tq(x)Tk(x)r
2(x)√

1− x2
dx

︸ ︷︷ ︸

Eqk

− [l(l + 1)]
N∑

k=0

uϕ
lmk

1∫

−1

Tq(x)Tk(x)√
1− x2

dx

︸ ︷︷ ︸

O

=

−
N∑

j=0

fϕ
lmk

1∫

−1

Tq(x)Tj(x)r
2(x)√

1− x2
dx

︸ ︷︷ ︸

Eqj

In which the underscript terms are the same in 8.4.57 and 8.4.64.

The matrix of coefficients for the velocity problem is full for each com-
ponent, for γ > 0 for the presence of Eqj integral. Except for this term the
pattern of the matrix of coefficients is similar to the pressure problem one.
Each components of the velocity problem associated with its boundary condi-
tions, suitably expanded in Chebyshev series is calculated solving the system
of equations by means of a standard LU decomposition.
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8.4.5 First mode equations

For the first mode with l = 0 and m = 0 the modal equations reduce to the
following:

D0p00 =

(
d

dr
+
2

r

)

f r
00 (8.4.66)

−
r2∫

r1

(
dp00

dr
brl=0

)

r2dr = −
r2∫

r1

(f r
00b

r
l=0)r

2dr

[

vr
S00r

2

(
d

dr
+
2

r

)

brl=0

]∣
∣
∣
∣

r2

r1

(−Dl + γ)u00 = −
dp00

dr
+ f r

00 (8.4.67)

ur
00 (r1) = vr

S00 (r1) ur
00 (r2) = vr

S00 (r2) (8.4.68)

where only the radial component of the vector mode is non-zero. For this mode
the metaharmonic problem assume the following scalar form:

(−Dl + γ) br0 = 0 (8.4.69)

r2
1b

r
0(r1) = r2

2b
r
0(r2) 6= 0 (8.4.70)

which has only one linear independent solution.
To find an analytic solution of the metaharmonic problem 8.4.69 the

following variable transformation is required:

r → x = γ1/2r br0(r)→ B0r(x) = r1/2br0(r) = γ−1/4x1/2br0(r)(γ
−1/2x)

(8.4.71)
which permit to reformulate the problem in the new variable such as:

B3/2B
r
0(x) = 0 (8.4.72)

where B3/2 is the modified Bessel operator of order 3/2, whose solution is:

Br
0(x) = a0I3/2(x) + b0K3/2(x) (8.4.73)

where a0 and b0 must satisfy the boundary conditions:

x
3/2
1 Br

0(x1) = x
3/2
2 Br

0(x2) 6= 0 (8.4.74)

The problem 8.4.66 for the pressure defines p00(r) up to an arbitrary
additive constant. To determine the unknown p00(r) uniquely, the value at a
single point, say r0, r1 ≤ r0 ≤ r2, must be fixed by imposing a supplementary
condition of the type p00(r0) = C, with C a constant. Writing equation 8.4.66
in the factored form:

(
d

dr
+
2

r

)
dp00

dr
=

(
d

dr
+
2

r

)

f r
00 (8.4.75)
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Assuming L =
(

d
dr
+ 2

r

)
a further quadrature of 8.4.75 leads to the following

result:

L
dp00

dr
= Lf r

00; L

(
dp00

dr
− f r

00

)

= 0;

Lφ = 0→ dφ

dr
+
2φ

r
= 0→ dφ

φ
= −2dr

r
→ ln

(
φ

φ0

)

= −2 ln
(
r

r0

)

→ φ = φ0

(r0
r

)2

→
(
dp00

dr
− f r

00

)

=
B

r2

(8.4.76)

where B is the constant of integration, whose value is determined by the inte-
gral condition for the pressure, which can be written as follow:

−
r2∫

r1

Bbr00dr =

[

vr
S00r

2

(
d

dr
+
2

r

)

brl=0

]∣
∣
∣
∣

r2

r1

(8.4.77)

Because of the existence of the constraint 8.1.9, br00(r1)r
2
1 = br00(r2)r

2
2 = K,

where K is a problem datum (for example K = 0), so that:

−
r2∫

r1

Bbr00dr = K

[(
d

dr
+
2

r

)

brl=0

]∣
∣
∣
∣

r2

r1

(8.4.78)

using the fundamental theorem of calculus the 8.4.78 becomes:

−B
r2∫

r1

br00dr = K

r2∫

r1

d

dr

(
d

dr
+
2

r

)

brl=0 (8.4.79)

−B
r2∫

r1

br00dr = K

r2∫

r1

γbrl=0 = Kγ

r2∫

r1

brl=0

Hence B = Kγ and the solution of 8.4.76 is obtained by integrating:

(
dp00

dr

)

= f r
00 −

γK

r2
(8.4.80)

using the supplementary condition: p00(r0) = C. The problem for the first
mode of the velocity u00(r) does not differ from the problem for the generic
mode lm and it is treated in the following.
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Chapter 9

The numerical code

A schematic representation in form of block diagram of the main sections of
the numerical code is shown in the figure below:

Figure 9.1: Block Diagram of the main sections of the numerical code

159
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In the following sections each part of the code is described in detail. All
the constant, variables and operators are defined in double precision. The
basis of the code is constituted by suitable functions and subroutines that
compute Chebyshev, Legendre polynomials and Spherical harmonics functions,
transform and make the inverse transform of scalar and vector functions on
these basis, solve linear system of equations. Many other routines have been
used to make basic operations such as the factorial of an integer. These routines
are trivial and will be not described in the following for simplicity. When
possible NR routines have been conveniently adapted and used inside the code.

9.1 Initialization

9.1.1 Definition of the discrete grid

The numerical code requires the domain to be discretized in a regular grid.
The flow field is represented in a spherical system of reference and have been
discretized in r, θ and ϕ directions independently.

• In r direction (in which the r coordinate varies between r1 and r2) the grid
has nr points, included the extremal. In this direction the independent
variable r is firstly resized to the range (−1, 1) by means of the linear
transformation:

yr = yr(r) =
ln
(

r2

r1r2

)

ln
(

r2

r1

) → r = r(yr) = r1e
(yr+1)/α with α =

2

ln
(

r2

r1

)

(9.1.1)
The transformed radial variables yr assumed the values −1 and +1 at
the extremal r1 and r2, and in the internal points coincides with the
nc = (nr − 2) Chebyshev nodes:

yri = cos

(
π

2

2i− 1

nc

)

, i = 1, . . . , nc. (9.1.2)

• θ coordinate is the polar angle and is comprised in the in range (0, π),
where the values 0 and π correspond to the poles of the sphere. In this
direction the discrete grid has nθ points corresponding to the Legendre
nodes internal to the range (−1, 1), of the transformed variables yt with:

yt = yt(θ) = cos(θ) → θ = θ(yt) = arccos(−yt) (9.1.3)
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The nθ Legendre nodes are calculated by means of the NR subroutine
gauleg.f90. The extremal points corresponding to the values yt = −1
and yt = 1 are singular points and thus are excluded from the grid.

• ϕ coordinate is the azimutal angle and varies in the in range (0, 2π). In
this direction the discrete grid has nϕ = (2nθ − 1) evenly spaced points
with spacing dϕ = 2π

nϕ
in the discrete variable yp.

9.1.2 Preprocessing

In preprocessing section the code computes several quantities that are required
for the transform and inverse transform operations. Such operations are nec-
essary to evaluate the non linear term inside the main loop and to reconstruct
the flow fields starting from the plm and ulm modes of pressure and velocity
expansions in scalar and vector spherical harmonics. Moreover, in this part
the code computes some integrals that are required in pressure and velocity
problem solver routine to evaluate the right hand side of the governing equa-
tions.

Spherical harmonics scalar Ylm and vector Plm, Blm, Clm basis functions
depends on θ and ϕ coordinates and from l and m indices. In order to evaluate
such functions in the yt and yp discrete nodes, we isolate the dependence from
θ and ϕ. The dependence from ϕ in spherical harmonics basis is contained in
complex exponential functions while the θ dependence is contained inside the
Associated Legendre functions and their first derivatives.

Inside the code we do in sequence the following operations::

• Calculation of the Associated Legendre Functions (ALF) Pm
l (yt) for each

combination of l - m indices using the recurrence relation for m ≥ 0:

(l −m)Pm
l+1(yt) = (2l − 1)ytP

m+1
l (yt)− (l +m− 1)Pm

l (yt) (9.1.4)

reminding that:

P 0
0 (yt) = 1 (9.1.5)

P 0
1 (yt) = x (9.1.6)

The Associated Legendre Functions with m < 0 have been calculated
using the property:

P−m
l (yt) = (−1)m (l −m)!

(l +m)!
Pm

l (yt) (9.1.7)
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• Calculation of the First Derivative of the Associated Legendre Functions
(DALF) Pm′

l (yt) for each combination of l -m indices using the recurrence
relation :

√

1− y2
tP

m′

l (yt) = (l −m+ 1)Pm
l+1(yt)− (l + 1)ytP

m
l (yt) (9.1.8)

reminding that:

P 0′

0 (yt) = 0 (9.1.9)

P 0′

1 (yt) = 1 (9.1.10)

• Calculation of the Scalar Spherical Harmonics Ylm(yt, yp) (defined as
complex(DPC)) using its definition, reminding that m ≤ l:

Ylm(yt, yp) = Nlm P
m
l (yt) e

imϕ (9.1.11)

• Calculation of the Vector Spherical Harmonics:

– Plm(yt, yp) (defined as complex(DPC)) using its definition, remind-
ing that m ≤ l:

Plm(yt, yp) = Nlm P
m
l (yt) e

imϕr̂(yt, yp) (9.1.12)

– Blm(yt, yp) (defined as complex(DPC)) using its definition, remind-
ing that m ≤ l:

Blm(yt, yp) =
1

Sl

Nlm P
m′

l (yt)e
imϕθ̂(yt, yp) (9.1.13)

+
1

Slsen(θ)
Nlm P

m
l (yt)(−im)eimϕϕ̂(yt, yp)

– Clm(yt, yp) (defined as complex(DPC)) using its definition, remind-
ing that m ≤ l:

Clm(yt, yp) =
1

Slsen(θ)
Nlm P

m
l (yt)(−im)eimϕθ̂(yt, yp) (9.1.14)

+
1

Sl

Nlm P
m′

l (yt)e
imϕϕ̂(yt, yp)

Ylm ,Plm, Blm, Clm values for each yt and yp nodes and l and m indices are
stored in matrix with four indices and are ready to be passed to the routines
that do the transform and the inverse transform of scalar and vector quantities
inside the main loop.
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This section of the code ended with the evaluation of the integrals Cqj, Dqj,
Eqj, H

′
k, Hk and Kk appearing in the governing equations for the pressure and

the velocity and inside the integrals condition for the pressure problem. Such
integrals are evaluated by means of Gauss-Chebyshev quadrature formulas
(Cqk, Dqk and Eqk) and Gauss-Legendre quadrature formulas (H ′

k, Hk and
Kk), according to what has been described in 8.4.60,8.4.42, 8.4.43 and 8.4.44.
All these integrals contain a direct dependence from the radial variable, and
have to be evaluated for each index q, k and for each radial node. In particular
Cqk, Dqk and Eqk integrals involve the variable yr and the Chebyshev polyno-
mials or their first derivatives evaluated in Chebyshev nodes. H ′

k, Hk and Kk

integrals implies the integrand functions to be evaluated in Legendre nodes.
This suggests the introduction of another discrete variable yl varying into the
range (−1, 1) in the radial direction and assuming Legendre nodes values. In
the extremal nodes −1 and 1 the variable yl assumes the values:

yl(−1) = −1 (9.1.15)

yl(1) = 1

The internal nleg nodes are evaluated using NR gauleg.f90 subroutine, that
supplies also the nleg Legendre weights wi required for the H ′

k, Hk and Kk

integrals evaluation.

9.1.3 Solution of the metaharmonic problem

The metaharmonic problem solution is necessary to built the integral condition
for the pressure problem which allows to solve the problem for plm modes before
and independently from the velocity problem. Metaharmonic functions br and
bθ (bϕ is identically equal to zero) depend only on the l index of Spherical
Harmonics variables expansion, and are calculated by means of the analytic
procedure presented in section 8.4.2, involving the modified Bessel Functions
of half-odd order of the first and second kind Iα(x) and Kα(x) (these functions
can be evaluated using NR bessij.f90 and bessik.f90 routines).

Notice that the metaharmonic function appear in the integral conditions in-
side the integrals H ′

k and Hk, that are calculated by means of Gauss-Legendre
quadrature formulas as shown in 8.4.42 and 8.4.43. This means that the func-
tions br and bθ have to be evaluated in nleg = (nr−2) Legendre nodes along the
radius, while the nodes in r direction, as previously remembered, are Cheby-
shev nodes.
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9.1.4 LU decomposition of the coefficients matrices

To solve the pressure and the velocity problem, the solution of linear systems
for the spherical harmonics coefficients of the unknowns are required. Such
linear systems for the pressure modes plm and for the modes of each component
of the velocity U r

lm, U
θ
lm and uϕ

lm are in the form:

Aqk · xk = Bq (9.1.16)

where:

• Aqk is the coefficients’ matrix with dimensions (nc × nc), being nc =
(nr− 2) the number of Chebyshev modes in which the variables p and u
are expanded. The first two rows of Aqk coincide with integral/boundary
conditions and the remaining rows contain the first (nc − 2) left hand
side of equations 8.4.35, 8.4.57, 8.4.64 and 8.4.65.

• xk is the vector of unknowns, containing the nc pressure or velocity
Chebyshev modes.

• Bq is a vector containing the right hand side of the integral/boundary
conditions in the first two rows and of the first (nc− 2) equations 8.4.35,
8.4.57, 8.4.64 and 8.4.65 in the remaining rows.

The coefficients matrices Aqk vary only with l indices and are independent
on the time step, therefore we calculate and invert them with an LU decompo-
sition out of the solving loop once and for all (for this purpose NR LUdcmp.f90
routine have been used).

To construct matrix Aqk we do in sequence the following operations:

1. Calculation of the matrix of coefficientsAAqk for the nc equations 8.4.35,
8.4.57, 8.4.64 and 8.4.65.

2. Calculation of the left hand side of the integral/boundary conditions.

3. Forward displacement of the rows of AAqk of two rows and replacement
of the first rows with the integral/boundary conditions.

The matrix AAqk has a slightly different form according to the problem
that we are treating:

• For plm problem matrix AAqk can be calculated such as:

AAp
qk = α2Mqk + αNqk − l(l + 1)α2Qqkδqq (9.1.17)
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in which the terms Mqk, Nqk and Qqk coincide with the terms II, I
and O in the 8.4.35. The resulting matrix is upper triangular with the
coefficients distributed with a regular pattern according with the parity
of the rows and column q and k indices, as shown in 8.4.39.

• For U r
lm problem matrix AAqk can be calculated such as:

AAr
qk =

√

(2l + 1)
[
α2Mqk + αNqk − γEqk − l(l − 1)α2Qqkδqq

]

(9.1.18)
in which the terms Mqk, Nqk and Qqk coincide with the terms II, I
and O in the 8.4.57 and the term Eqk is calculated by means of a Gauss
Chebyshev quadrature as shown in 8.4.60.

• For U θ
lm problem matrix AAqk can be calculated such as:

AAr
qk =

√

(2l + 1)
[
α2Mqk + αNqk − γEqk − (l + 1)(l + 2)α2Qqkδqq

]

(9.1.19)

• For uϕ
lm problem matrix AAqk can be calculated such as:

AAr
qk = α2Mqk + αNqk − γEqk − l(l − 1)α2Qqkδqq (9.1.20)

The matrices for the three velocity components are full for the presence of the
Eqk matrix.

As concerning the calculation of the left hand side of the integral/boundary
conditions:

• In the case of pressure problem, the left hand side of the integral con-
ditions involves summations of the integrals H ′

k and Hk containing the
metaharmonic functions calculated in the previous section, that can be
calculated in this phase according to the 8.4.42 and 8.4.43.

• On the other hand the left hand side of the boundary conditions for
the velocity consist in a sequence of Chebyshev polynomials of order
coinciding with the column index k, evaluated in yr = −1 and yr = 1
respectively.

The last operation can be performed inside a loop on the q and k, rows
and columns indices.

The resulting matrices of coefficients for the three velocity components can
be decomposed by a standard LU decomposition and are ready to be passed
to the velocity problem solver routine inside the main loop.

The matrixAp
qk for the pressure is firstly reduced to a nearly penta-diagonal

profile by means of suitable linear combinations as shown in [43], and then
decomposed by a LU decomposition.
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9.2 Main loop

The core of the numerical code consists in the time loop which calculates the
spherical harmonics’ coefficients of expansion for pressure and the velocity
variables at each time step of the numerical simulation. The original time
dependent Navier-Stokes problem is reduced to the solution of a sequence of
unsteady Stokes problem. The dependence from the time is contained in the
velocity boundary conditions and inside the definition of the non linear forcing
term f defined in equation 8.2.14, whose value at time step (n+1) depends on
the value of p and u variables at the time n and (n− 1).

The time propagation of the flow inside a rotating spherical cap requires
the definition of an initial condition for the variables assumed equal to the
state of rest.

9.2.1 Solution of the pressure problem

The pressure problem results consist in the solution by means of a LU back
substitution of the linear system:

Ap
qk · plmk = Bp

q (9.2.1)

whose coefficients’ matrix (independent from the time step) has already been
decomposed in a LU form in the Initialization phase.

The pressure problem solver routine has to compute the known term Bp
q at

the actual time step and to solve the system 9.2.1 resulting from the application
of a tau Chebyshev spectral method to the Poisson equation.

The vector Bp
q has nc terms. It contains the right hand side of the integral

conditions corresponding to the two independent solutions of the metahar-
monic problem in the first two rows and the known term of the first (nc− 2)
equations 8.4.35 in the remaining rows.

In this phase it must be noted that the radial stretching 9.1.1 simplify the
coefficients’ matrix but complicate the term Bp

q .

In analogy with the sequence of operations followed for the construction of
the coefficients’ matrix:

1. We calculate the vector BBp
q for the nc equations 8.4.35.

2. We have to determine the left hand side of the integral conditions.

3. The rows of BBp
q are moved forward of two rows and the first two rows

are filled with the integral conditions.
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The vector BBp
q for the nc equations 8.4.35 has the following expression:

BBp
q =

nc−1∑

j=0

[αf r
lmjDqj + (2f r

lmj − Slf
θ
lmj)Cqj] (9.2.2)

where the matrix Cqj and Dqj have already been calculated in the prepro-
cessing phase. The terms f r

lmj and f
θ
lmj are the non linear source terms r and

θ components, depending on pressure and velocity values at the time steps
before the actual one. f r

lmj and f
θ
lmj are evaluated at the end of each time step

in the main loop.
With regard to the integral conditions right hand side terms, they involve

summations of the integral Kk which has been evaluated in preprocessing
phase, the f r

lmj and f
θ
lmj terms and the term:

α

{

vr
Slmr(x)

(

α
d

dx
+ 2

)

brlm − vθ
Slmr(x)

(

Slb
r
lm − α

d

dx
bθlm

)}∣
∣
∣
∣

1

−1

(9.2.3)

which has to be calculated in the extremal point −1 and 1. The evaluation
of this term requires some care: it contains the r and θ components of the
boundary velocity vr

Slm and vθ
Slm, the values of metaharmonic functions and

their first derivatives at the boundary. In particular the first derivatives
dbr

lm

dx

and
dbθ

lm

dx
can be easily calculated expanding the functions brlm and bθlm in Leg-

endre polynomials and using the following properties:

dPk(yt)

dyt

=







1 +

k−1
2∑

j=1

(4j + 1)P2j(yt) k odd

k
2∑

j=1

(4j − 1)P2j−1(yt) k even

(9.2.4)

reminding that:

Pk(−1) =
{
+1 k even
−1 k odd

Pk(+1) = +1 ∀ k
(9.2.5)

Now we have all the elements to construct the vector Bp
q .

Such vector together with the coefficients’ matrix Ap
qk is then passed to the

LU backsubstitution routine (we use NR LUbksb.f90 routine) that provides the
plmk Chebyshev modes of each single spherical harmonics mode plm expansion.

Finally the spherical harmonics mode plm is calculated by means of the:

plm(x) =
nc−1∑

k=0

plmkTk(x) (9.2.6)
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9.2.2 Solution of the velocity problem

The velocity problem solution is similar to pressure problem one. The coef-
ficients’ matrix (independent from the time step), for each one-dimensional
problem for the ulm components has already been calculated and decomposed
in a LU form in the Initialization phase.

The velocity problem solver routine has to compute the known term Bu

q at
the actual time step and to solve the system:

Au

qk · ulmk = Bu

q (9.2.7)

resulting from the application of a tau Chebyshev spectral method to the
governing equation.

The vectorBu

q has nc terms. It contains the right hand side of the boundary
conditions in the first two rows and the known term of the first (nc − 2)
equations 8.4.57, 8.4.64 and 8.4.65 in the remaining rows.

As usual to construct the vector Bu

q :

1. We calculate the vector BBu

q for the nc equations 8.4.57, 8.4.64 and
8.4.65.

2. We have to determine the left hand side of the bundary conditions.

3. The rows of BBu

q are moved forward of two rows and the first two rows
are filled with the integral conditions.

The vector BBu

q for the three different velocity components U r
lm, U

θ
lm and

uϕ
lm has a slightly different form:

• For U r
lm component, BB

Ur
lm

q have been calculated by means of the ex-
pression:

BB
Ur

lm
q = l1/2α

nc−1∑

j=0

plmkDqj + Sl(l + 1)1/2

nc−1∑

j=0

plmkCqj (9.2.8)

+ l1/2

nc−1∑

j=0

f r
lmkEqj + (l + 1)1/2

nc−1∑

j=0

f θ
lmkEqj

in which the integrals Cqj, Dqj and Eqj have been calculated in prepro-
cessing phase while plmk, f

r
lmk and f

θ
lmk are the pressure and non linear

term f Chebyshev coefficients of expansion.
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• For U θ
lm component, BB

Ur
lm

q have been calculated with the relation:

BB
Uθ

lm
q = (l + 1)1/2α

nc−1∑

j=0

plmkDqj − Sll
1/2

nc−1∑

j=0

plmkCqj (9.2.9)

+ l + 1)1/2

nc−1∑

j=0

f r
lmkEqj + l1/2

nc−1∑

j=0

f θ
lmkEqj

• Finally, uϕ
lm components BB

uϕ
lm

q have been computed according to:

BB
uϕ

lm
q = −

nc−1∑

j=0

fϕ
lmkEqj (9.2.10)

Boundary conditions right hand side terms are easy to compute in this
case, because of the Dirichelet kind of these conditions. The values assumed
of such conditions depends on the time law of motion imposed at the exter-
nal boundary (the internal one corresponding to radial coordinate r = r1 is
supposed to be immobile). Such time law could be for example:

• Uniform rotation, in the form vs = (0, 0, constant)

• Periodic rotation, in the form vs = (0, 0, Asen(ωt))

Once the boundary velocity time law has been decided, it has to be decomposed
in its spherical harmonics modes (this operation has to be performed at each
time step, updating each time the value of vs), by means of a call of the vector
spherical harmonics transform routine. Lastly, the modes vslm have to be
expanded in Chebyshev polynomials obtaining nc vslmk coefficients, using the
Chebyshev transform routine.

With the elements calculated above the code is able to construct the vector
Bu

q .

Such vector together with the coefficients’ matrix Au

qk is then passed to the
LU backsubstitution routine (we use NR LUbksb.f90 routine) that provides the
ulmk Chebyshev modes of each single spherical harmonics mode ulm expansion.

Remind that the problem for the original ur
lm and uθ

lm components of the
velocity is coupled and we have solved the velocity problem for the uncou-
pled variables U r

lm and U θ
lm, obtained using the similarity transform 8.4.48.

Therefore, to obtain ur
lm and uθ

lm components, a call to the inverse similarity
transform routine is necessary.
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Finally the spherical harmonics modes ulm are calculated by means of the:

ulm(x) =
nc−1∑

k=0

ulmkTk(x) (9.2.11)

9.2.3 Non linear term evaluation

In this section of the main loop is concentrated the time dependence of the
variables from their previous history. Non linear term f evaluation is the thorny
and demanding operation of the entire algorithm.

The evaluation of f requires several transform and inverse transform of p
and u variables in spherical harmonics and for its complexity is performed in
splitting f expression in three parts.

fn+1 = (∇2 + γ)un

︸ ︷︷ ︸

an

−3Re (un · ∇)un

︸ ︷︷ ︸

bn

+Re (un−1 · ∇)un−1

︸ ︷︷ ︸

bn−1

(9.2.12)

where:

an = (∇2 + γ)un (9.2.13)

bn = (un · ∇)un = cn − dn (9.2.14)

cn = ∇
(
un · un

2

)

(9.2.15)

dn = un × (∇× un) (9.2.16)

In order to obtain the function fn+1, is then necessary to determine the vector
function an in each grid’s node, at the time n and the vector function bn, in
each grid’s node, at the time n and (n− 1).

In particular the amplitudes fn+1
lmk have to be determined, proceeding, as

usual, with a spherical harmonics expansion in the directions (θ, ϕ) and using
a Chebyshev polynomials expansion for the radial coordinate dependence.

fn+1 are unambiguously determined once we have calculated almk, clmk and
dlmk, omitting the time index n and (n− 1) for simplicity.

The terms almk, clmk and dlmk are faced separately.
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dlmk evaluation

d = u× (∇× u) = u× ω =

∣
∣
∣
∣
∣
∣

r̂ θ̂ ϕ̂
ur uθ uϕ

ωr ωθ ωϕ

∣
∣
∣
∣
∣
∣

= (9.2.17)

= (uθωϕ − uϕωθ)r̂+

+ (uϕωr − urωϕ)θ̂+

+ (urωϕ − uϕωr)ϕ̂

therefore: 





dr = (uθωϕ − uϕωθ)
dθ = (uϕωr − urωϕ)
dϕ = (urωϕ − uϕωr)

(9.2.18)

The expressions 9.2.18 can be calculated using the values assumed by u
and ω components on the grid’s points (yr, yt, yp), and then transforming the
results in spherical harmonics and Chebyshev modes again.

The vector ω = ∇×u is calculated by means of equation B.2.9 obtaining:






ωr
lm(r) =

Sl

r
uϕ

lm(r)
ωθ

lm(r) =
(

d
dr
+ 1

r

)
uϕ

lm(r)
ωϕ

lm(r) =
Sl

r
ur

lm(r)−
(

d
dr
+ 1

r

)
uθ

lm(r)
(9.2.19)

that can be computed expanding the ur
lm(r), u

θ
lm(r) and u

ϕ
lm(r), in r direction

by means of Chebyshev polynomials expansions.
In detail:

nc−1∑

k=0

ωr
lmkTk(x) = Sl

nc−1∑

k=0

uϕ
lmk(r)Tk(x)

r(x)
(9.2.20)

Multiplying the equations for the term Tq(x)√
1−x2 and integrating between

[−1; 1] we obtain:

ωr
lmq = Sl

nc−1∑

k=0

uϕ
lmk(r)

1∫

−1

Tk(x)Tq(x)

r(x)
√
1− x2

dx = Sl

nc−1∑

k=0

uϕ
lmk(r)I

1
kq (9.2.21)

Analogously we have:

ωθ
lmq =

nc−1∑

k=0

uϕ
lmk(r)





1∫

−1

Tk(x)Tq(x)√
1− x2

dx+ I1
kq



 = (9.2.22)

=
nc−1∑

k=0

uϕ
lmk(r)

[
I0
kq + I1

kq

]



172 The numerical code

and

ωϕ
lmq =

nc−1∑

k=0

[
Slu

r
lmk(r)I

1
kq − uθ

lmk(r)(I
1
kq + I0

kq)
]

(9.2.23)

clmk evaluation

c = ∇
(u · u

2

)

= ∇
(
U

2

)

(9.2.24)

Reminding that the gradient of a scalar function expanded in spherical
harmonics can be calculated by means of B.2.2 obtaining:







crlm(r) =
1
2

dUlm(r)
dr

cθlm(r) =
1
2

Sl

r
Ulm(r)

cϕlm(r) = 0

(9.2.25)

in which Ulm(r) modes have to be expanded in Chebyshev polynomials leading
to the following expressions: B.2.2 obtaining:







crlmk(r) =
1
2

nc−1∑

k=0

Ulmk(r)I
1
kq

cθlmk(r) =
Sl

2

nc−1∑

k=0

Ulmk(r)I
1
kq

cϕlmk(r) = 0

(9.2.26)

Ulmk can be calculate making in each grid point (yr, yt, yp) the scalar prod-
uct :

U(yr, yt, yp) = urur + uθuθ + uϕuϕ (9.2.27)

and then expanding the variable U firstly in spherical harmonics and then in
Chebyshev polynomials.

almk evaluation

a = (∇2 + γ)u (9.2.28)

Expanding in spherical harmonics we obtain:







ar
lm(r) =

(
D2

l − 2
r2 + γ

)
ur

lm(r) +
2Sl

r2 u
θ
lm(r)

aθ
lm(r) =

2Sl

r2 u
r
lm(r) + (D2

l + γ)uθ
lm(r)

aϕ
lm(r) = (D2

l + γ)uϕ
lm(r)

(9.2.29)
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in which ulm(r) modes have to be expanded in Chebyshev polynomials leading
to the following expressions:

ar
lmk(r) =

nc−1∑

k=0

ur
lm(r)

1∫

−1

T ′′k (x)Tq(x)√
1− x2

dx+ 2
nc−1∑

k=0

ur
lm(r)

1∫

−1

T ′k(x)Tq(x)

r(x)
√
1− x2

dx+

(9.2.30)

+ (l(l + 1) + 2)
nc−1∑

k=0

ur
lm(r)

1∫

−1

Tk(x)Tq(x)

r2(x)
√
1− x2

dx+ γur
lm(r)

1∫

−1

Tk(x)Tq(x)√
1− x2

+

+ 2Sl

nc−1∑

k=0

uθ
lm(r)

1∫

−1

Tk(x)Tq(x)

r2(x)
√
1− x2

dx =

=
nc−1∑

k=0

ur
lm(r)I

2a
kq + 2

nc−1∑

k=0

ur
lm(r)I

1a
kq + (l(l + 1) + 2)

nc−1∑

k=0

ur
lm(r)I

0a
kq + γur

lm(r)I
0
kq+

+ 2Sl

nc−1∑

k=0

uθ
lm(r)I

0a
kq

aθ
lm(r) = 2Sl

nc−1∑

k=0

ur
lm(r)I

0a
kq +

nc−1∑

k=0

uθ
lm(r)I

2a
kq + 2

nc−1∑

k=0

uθ
lm(r)I

1a
kq+ (9.2.31)

+ l(l + 1)
nc−1∑

k=0

uθ
lm(r)I

0a
kq + γuθ

lm(r)I
0
kq

aϕ
lm(r) =

nc−1∑

k=0

uϕ
lm(r)I

2a
kq + 2

nc−1∑

k=0

uϕ
lm(r)I

1a
kq + l(l + 1)

nc−1∑

k=0

ulmϕ(r)I
0a
kq+

(9.2.32)

+ γuϕ
lm(r)I

0
kq

9.2.4 Updating of variables

At the end of the time loop the variables p and u have to be updated so that
the above described procedure to calculate f term can be revised at each time
step. The updating procedure consists in throwing away the actual variables
value at (n− 1) time step and doing the following allocations:

pn−1 = pnpn = pn+1un−1 = unun = un+1 (9.2.33)
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9.3 End of program

9.3.1 Output and Postprocessing

The numerical code provide the solution of pressure and velocity problems
using a tau spectral method, allowing to reconstruct the three-dimensional
flow field inside a spherical cap rotating around its axis with a prescribed time
law. The output of the code consists in the pressure and velocity fields at each
time of the simulation disposed on a regular grid in the variable (yr, yt, yp).

The data can be then post-processed to calculate derived quantities such
as vorticity and shear stresses.



Chapter 10

A test case: solutions of the
metaharmonic problem

The metaharmonic problem:

(
−∇2 + γ

)
b = 0

∫

n · bdS = 0 n× b |S = 0 (10.0.1)

has been used as a test problem to verify the feasibility and the efficiency of
the algorithms used for the solution of the complete problem. This choice
is motivated by the fact that the differential operator of the metaharmonic
problem is the same as the one for the velocity problem and that an analytic
solution was indeed available. The analytic solution1 of the problem has
been compared with a finite difference solution , with first order derivatives,
and two spectral solution, obtained by expanding the unknown function b
in terms of Chebyshev polynomials and Legendre polynomials.

10.0.2 Finite difference solution

Let us consider the modal equations for the metaharmonic problem in their
uncoupled form for the unknown βr

l and β
θ
l :

r2d
2βr

l

dr2
+ 2r

dβr
l

dr
−

[
γr2 + l(l − 1)

]
βr

l = 0 (10.0.2)

r2d
2βθ

l

dr2
+ 2r

dβθ
l

dr
−

[
γr2 + (l + 1)(l + 2)

]
βθ

l = 0 (10.0.3)

Now we discretize the derivatives appearing in the 10.0.2 by means of a

1see chapter 8 for the details of the analytic solution
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centered finite difference scheme:

dF(x)

dx
=
Fi+1 − Fi−1

2∆x
+O(∆x) (10.0.4)

d2F(x)

dx2
=
Fi+1 − 2Fi + Fi−1

∆x2
+O(∆x2) (10.0.5)

After some algebraic calculation the 10.0.2 become:
(
r2 + 2r∆r

)
βr

l(i+1) −
(
2r2 + 2r∆r + l(l − 1)∆r2 − γr2∆r2

)
βr

l(i) + r2βr
l(i−1) = 0

(10.0.6)
(
r2 + 2r∆r

)
βθ

l(i+1) −
(
2r2 + 2r∆r + (l + 1)(l + 2)∆r2 − γr2∆r2

)
βθ

l(i) + r2βθ
l(i−1) = 0

(10.0.7)

with the boundary conditions:

first set → βr
l (x1) =

(
l

2l + 1

)1/2

βr
l (x2) = 0 (10.0.8)

βθ
l (x1) =

(
l + 1

2l + 1

)1/2

βθ
l (x2) = 0

second set → βr
l (x1) = 0 βr

l (x2) =

(
l

2l + 1

)1/2

(10.0.9)

βθ
l (x1) = 0 βθ

l (x2) =

(
l + 1

2l + 1

)1/2

The problem 10.0.2 is a linear system of equation for all the evenly spaced
points xi, with i = 0, 1, . . . , N along the radius. Denoting the coefficients of
βl(i+1), βl(i) and βl(i−1) with the concise notation a, d and b respectively, and
the right hand side of the equations with c:

bβl(i−1) + dβl(i) + aβl(i+1) = c (10.0.10)

the matrix form of the system is:











d1 a1 0 0 . . . 0
b2 d2 a2 0 . . . 0
0 b3 d3 a3 . . . 0
0 0 b4 d4 0
...

...
0 . . . . . . . . . bN dN























βl(1)

βl(2)

βl(3)

βl(4)
...

βl(N)












=












c1
c2
c3
c4
...
c5












(10.0.11)

The tridiagonal structure of this system suggests the use of the Thomas algo-
rithm to solve the problem.



177

10.0.3 Spectral solution: Chebyshev expansion

To solve the metaharmonic problem 10.0.2 with a Chebyshev spectral method,
the functions βr

l and β
θ
l have to be expanded in terms of Chebyshev polyno-

mials.

βr
l (x) =

N∑

i=0

βr
i Ti(x) (10.0.12)

βθ
l (x) =

N∑

i=0

βθ
i Ti(x) (10.0.13)

This expansion is allowed in the range [−1; 1], so we have firstly to introduce
a coordinate transformation to resize the radial domain of the problem to such
an interval:

x = x(r) =
ln
(

r2

r1r2

)

ln
(

r2

r1

) → r = r(x) = r1e
(x+1)/α where α =

2

ln
(

r2

r1

)

(10.0.14)
Besides mapping the domain r1 ≤ r ≤ r2 to Chebyshev one −1 ≤ x ≤ 1,

this transformation make the coefficients of the differential operator in the
10.0.2 to become constant, in fact:

r
d

dr
→ x

d

dx
r2 d

2

dr2
→ α2 d

2

dx2
− α

d

dx
r2Dl → α2 d

2

dx2
− α

d

dx
− l(l + 1)

(10.0.15)
Substituting the 10.0.15 in the 10.0.2 we find:

α2d
2βr

l

dx2
+ α

dβr
l

dx
−
[
γ(r1e

(x+1)/α)2 + l(l − 1)
]
βr

l = 0 (10.0.16)

α2d
2βr

l

dx2
+ α

dβr
l

dx
−
[
γ(r1e

(x+1)/α)2 + (l + 1)(l + 2)
]
βθ

l = 0 (10.0.17)

Introducing the expansion 10.0.12 in the 10.0.16 we obtain:

α2

N∑

k=0

βr
lk

d2Tk(x)

dx2
+ α

N∑

k=0

βr
lk

dTk(x)

dx
(10.0.18)

−
[
γ(r1e

(x+1)/α)2 + l(l − 1)
]

N∑

k=0

βr
lkTk(x) = 0

(10.0.19)
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α2

N∑

k=0

βθ
lk

d2Tk(x)

dx2
+ α

N∑

k=0

βθ
lk

dTk(x)

dx
(10.0.20)

−
[
γ(r1e

(x+1)/α)2 + (l + 1)(l + 2)
]

N∑

k=0

βθ
lkTk(x) = 0

Finally we multiply the equations for the term Tq(x)√
1−x2 and integrate between

[−1; 1]. In order to use the orthogonality properties of Chebyshev polynomials,
first and second derivatives of these polynomials have to be written in terms
of Chebyshev polynomials themselves, this was achieved by calculating the
analytic form of the derivatives and introducing the recurrence relation:

2xTn(x) = Tn+1(x) + Tn−1(x) (10.0.21)

After some algebraic calculation the equations are reformulated such as:

α2

N∑

k=0

βr
lk

1∫

−1

Tq(x)

1− x2







2k

k−1
2∑

j=1

j∑

i=1

4jT2i−1(x) dx k odd

2k

k
2∑

j=1

(2j + 1)

[

1 + 2
j∑

i=1

T2i(x)

]

dx k even

︸ ︷︷ ︸

II

+

(10.0.22)

+α
N∑

k=0

βr
lk

1∫

−1

Tq(x)

1− x2







k

[

1 + 2

k−1
2∑

j=1

T2j(x)

]

dx k odd

2k

k
2∑

j=1

T2j−1(x)dx k even

︸ ︷︷ ︸

I

+

− [l(l − 1)]
N∑

k=0

βr
lk

1∫

−1

Tq(x)Tk(x)√
1− x2

dx

︸ ︷︷ ︸

O1

−γ
N∑

k=0

βr
lk

1∫

−1

r2(x)Tq(x)Tk(x)√
1− x2

dx

︸ ︷︷ ︸

O2

= 0
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α2

N∑

k=0

βθ
lk

1∫

−1

Tq(x)

1− x2







2k

k−1
2∑

j=1

j∑

i=1

4jT2i−1(x) dx k odd

2k

k
2∑

j=1

(2j + 1)

[

1 + 2
j∑

i=1

T2i(x)

]

dx k even

︸ ︷︷ ︸

II

+

(10.0.23)

+α
N∑

k=0

βθ
lk

1∫

−1

Tq(x)

1− x2







k

[

1 + 2

k−1
2∑

j=1

T2j(x)

]

dx k odd

2k

k
2∑

j=1

T2j−1(x)dx k even

︸ ︷︷ ︸

I

+

− [(l + 1)(l + 2)]
N∑

k=0

βθ
lk

1∫

−1

Tq(x)Tk(x)√
1− x2

dx

︸ ︷︷ ︸

O1

−γ
N∑

k=0

βθ
lk

1∫

−1

r2(x)Tq(x)Tk(x)√
1− x2

dx

︸ ︷︷ ︸

O2

= 0

where:

II =







k odd







q odd → πkδ(2i−1),q

k−1
2∑

l= q+1
2

4l

q even → 0

k even







q odd → 0

q even → 2πkδ2i,q

k
2∑

l= q
2

(2l + 1)

I =







k odd

{
q odd → 0
q even → kπδ2j,q

k even

{
q odd → kπδ(2j−1),q

q even → 0

O1 =

{
π
2
δq,k

πδq,0

(10.0.24)

and the integral O2 can be evaluated by means of a Gauss-Chebyshev quadra-
ture formula:

1∫

−1

r2(x)Tq(x)Tk(x)√
1− x2

dx =

1∫

−1

u(x)√
1− x2

dx =
π

N + 1

N+1∑

k=1

u(xk) (10.0.25)
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and the points xk are the Chebyshev nodes.
The 10.0.23 equations with the 10.0.24 define a system of equations with

the variation of q between 0 and N , being N + 1 the number of Chebyshev
nodes inside the range [−1, 1]. The matrix of coefficients of such a system is
complete for the presence of the O2 terms, while other terms form a pattern
in the upper triangular part of the matrix. The problem can be solved using
a standard LU decomposition.
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10.0.4 Spectral solution: Legendre expansion

To solve the metaharmonic problem 10.0.2 with a Legendre spectral method,
the functions βr

l and β
θ
l have to be expanded in terms of Legendre polynomials.

βr
l (x) =

N∑

i=0

βr
i Pi(x) (10.0.26)

βθ
l (x) =

N∑

i=0

βθ
i Pi(x) (10.0.27)

Similarly to the Chebyshev spectral solution, firstly we need to scale the
domain r1 ≤ r ≤ r2 to the range [−1; 1]. This is achieved by the coordinate
transformation 10.0.14.

Substituting the 10.0.15 in the 10.0.2 we find the equations 10.0.16 where
the functions βr

l and βθ
l are expanded in terms of Legendre polynomials ob-

taining:

α2

N∑

k=0

βr
lk

d2Pk(x)

dx2
+ α

N∑

k=0

βr
lk

dPk(x)

dx
(10.0.28)

−
[
γ(r1e

(x+1)/α)2 + l(l − 1)
]

N∑

k=0

βr
lkPk(x) = 0

α2

N∑

k=0

βθ
lk

d2Pk(x)

dx2
+ α

N∑

k=0

βθ
lk

dPk(x)

dx
(10.0.29)

−
[
γ(r1e

(x+1)/α)2 + (l + 1)(l + 2)
]

N∑

k=0

βθ
lkPk(x) = 0

The expansion coefficients βr
lk and β

θ
lk can be found by solving the system

of equations obtained multiplying the equations 10.0.28 for the term Pq(x)
and integrating between [−1; 1]. This operation is necessary to take advantage
of the orthogonality properties of Legendre polynomials, after expressing the
first and second derivatives of Legendre polynomials in terms of Legendre
polynomials themselves, by means of the recurrence relation:

P ′n+1(x)− P ′n−1(x) = (2n+ 1)Pn(x) (10.0.30)
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After some algebraic calculation the equations are reformulated such as:

α2

N∑

k=0

βr
lk

1∫

−1

Pq(x)







k−1
2∑

j=1

(4j + 1)
j∑

i=1

(4i− 1)P2i−1(x) dx k odd

k
2∑

j=1

(4j − 1)

[

1 +
j−1∑

i=1

(4i+ 1)P2i(x)

]

dx k even

︸ ︷︷ ︸

II

+

(10.0.31)

α

N∑

k=0

βr
lk

1∫

−1

Pq(x)







1 +

k−1
2∑

j=1

(4j + 1)P2j(x) dx k odd

k
2∑

j=1

(4j − 1)P2j−1(x)dx k even

︸ ︷︷ ︸

I

+

− [l(l − 1)]
N∑

k=0

βr
lk

1∫

−1

Pq(x)Pk(x)dx

︸ ︷︷ ︸

O1

−γ
N∑

k=0

βr
lk

1∫

−1

r2(x)Pq(x)Pk(x)dx

︸ ︷︷ ︸

O2

= 0

α2

N∑

k=0

βθ
lk

1∫

−1

Pq(x)







k−1
2∑

j=1

(4j + 1)
j∑

i=1

(4i− 1)P2i−1(x) dx k odd

k
2∑

j=1

(4j − 1)

[

1 +
j−1∑

i=1

(4i+ 1)P2i(x)

]

dx k even

︸ ︷︷ ︸

II

+

(10.0.32)

α
N∑

k=0

βθ
lk

1∫

−1

Pq(x)







1 +

k−1
2∑

j=1

(4j + 1)P2j(x) dx k odd

k
2∑

j=1

(4j − 1)P2j−1(x)dx k even

︸ ︷︷ ︸

I

+

− [(l + 1)(l + 2)]
N∑

k=0

βθ
lk

1∫

−1

Pq(x)Pk(x)dx

︸ ︷︷ ︸

O1

−γ
N∑

k=0

βθ
lk

1∫

−1

r2(x)Pq(x)Pk(x)dx

︸ ︷︷ ︸

O2

= 0
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where:

II =







k odd







q odd → 2δ(2i−1),q

k−1
2∑

l= q+1
2

(4l + 1)

q even → 0

k even







q odd → 0

q even → 2δ2i,q

k
2∑

l= q
2

(4l − 1)

I =







k odd

{
q odd → 0
q even → 2δ2j,q

k even

{
q odd → 2δ(2j−1),q

q even → 0
O1 = 2

(2q+1)

(10.0.33)

and the integral O2 can be evaluated by means of a Gauss-Legendre quadrature
formula:

1∫

−1

r2(x)Pq(x)Pk(x)dx =

1∫

−1

u(x)dx =
N+1∑

k=1

wk u(xk) (10.0.34)

where wk and xk are the Legendre weights and nodes respectively.
The system of equations defined by 10.0.32 with the variation of q between

0 and N , being N+1 the number of Legendre nodes inside the range [−1, 1] has
a matrix of coefficients with the same pattern as Chebyshev spectral solution
one. The problem can be solved using a standard LU decomposition.
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10.0.5 Comparison between the different methods used
to solve the metaharmonic problem

Figure 10.1 reports a comparison between the analytic solution of the meta-
harmonic problem in terms of Bessel function and the solution obtained by
solving the system 10.0.11 with a finite difference technique varying the num-
ber of points ( assumed evenly spaced) along the radius.

Figure 10.1: Comparison between the analytic solution for the radial compo-
nent of the metaharmonic problem (red line) and the finite difference solution
obtained using different number of points along the radius. Horizontal axis is
plotted in log scale.

Horizontal axis has been plotted in log scale. Notice that the in the vicinity
of the first boundary r = r1 where the metaharmonic function assumes non zero
values the accordance between the finite difference and the analytic solution is
not very good when using few points, even if the FD solution is able to capture
the general behaviour of the function. The accordance between the solution
become satisfactory with 50 points.

Figures 10.2 and 10.3 report the comparison between the analytic solution
and the spectral solution for the Chebyshev and the Legendre approximation
respectively, obtained using a different number of nodes along the radius.

Remind that the number of nodes and the number of modes used to recon-
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Figure 10.2: Comparison between the analytic solution for the radial com-
ponent of the metaharmonic problem (red line) and the spectral Chebyshev
solution obtained using 5 - 6 - 8 - 10 and 12 modes

struct the function are related together, in fact:

nr = nmodes + 2 (10.0.35)

The accordance between the approximating solution and the exact one is
very good in both cases, even using few modes to reconstruct the solution, no
relevant difference can be appreciated between the two methods. Notice, in
fact, that 10 modes are sufficient to describe faithfully the exact solution. Let
us indicate with f the analytic solution and with fn the numerical solution
calculated with different techniques. In order to verify the convergence be-
tween the numerical and the analytic solution the relative error rerr defined
according to:

rerr =
‖f − fn‖
‖f‖ (10.0.36)

is introduced.

‖f‖ denotes the L2 norm of f(x), which has been calculated in the three
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Figure 10.3: Comparison between the analytic solution for the radial com-
ponent of the metaharmonic problem (red line) and the spectral Legendre
solution obtained using 5 - 6 - 8 - 10 and 12 modes

examined case with the following expression:

‖f‖2 =
1

N + 1

N+1∑

i=1

[f(xi)]
2 Finite Difference (10.0.37)

‖f‖2 =
π

N + 1

N+1∑

i=1

[f(xi)]
2 Spectral Chebyshev (10.0.38)

(10.0.39)

where, xi = cos[(i− 1)π/N ], i = 1, 2, . . . , N + 1 are the Chebyshev nodes.

‖f‖2 =
N+1∑

i=1

wi [f(xi)]
2 Spectral Legendre (10.0.40)

where, xi and wi are the Legendre nodes and weight respectively. The error
committed approximating the exact solution with the numerical one depends
on the number of the points along the radius (and also on their distribution,
the best one is the Chebyshev nodes distribution) for finite difference technique
and on the number of modes used to reconstruct the solution for spectral tech-
niques. Figure 10.4 shows the relative error related to the number of nodes for
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the three numerical methods used to solve the metaharmonic problem, referred
to the reconstructed metaharmonic function. The errors trend confirms a low
convergence of Finite Difference solution, while spectral methods are faster.

Figure 10.4: Relative error committed approximating the analytic solution
with the numerical one related to the number of points along the radius. Finite
Difference red dots, Spectral Chebyshev blue dots, Spectral Legendre green
dots

Finally we report three tables containing a comparison of rerr on the single
l mode of the metaharmonic function expansion, calculated for the three nu-
merical solutions. Table 10.1 reports the numerical errors rerr for the Finite
Difference solution calculated with an increasing number of points. The results
confirm the slow convergence of the Finite Difference to the analytic solution.

Table 10.2 reports the numerical errors rerr for the Spectral Chebyshev
solution calculated with an increasing number of points.

Table 10.3 reports the numerical errors rerr for the Spectral Legendre so-
lution calculated with an increasing number of points.

The results demonstrate that Spectral methods are able to gain an high
precision using few (Chebyshev / Legendre ) modes to reconstruct the single
l modes. A slight worsening is noticed for l increasing maybe caused by the
computer precision that conflicts with the solution trend. For great value of
l, in fact, the analytic solution approximately assumes zero values on all the
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N points rerr l = 1 rerr l = 3 rerr l = 10
10 7.4(10−2) 2.0(10−2) 4.6(10−2)
12 4.9(10−2) 3.3(10−2) 3.5(10−2)
14 2.8(10−2) 4.7(10−2) 4.4(10−2)
16 5.9(10−2) 6.0(10−2) 5.4(10−2)
18 1.0(10−2) 7.2(10−2) 6.7(10−2)
20 1.5(10−2) 8.2(10−2) 8.1(10−2)
50 7.3(10−2) 3.5(10−3) 6.5(10−2)
100 5.4(10−3) 8.6(10−3) 3.5(10−3)
200 2.9(10−3) 2.6(10−3) 8.8(10−3)
500 9.4(10−4) 7.1(10−4) 5.3(10−4)

Table 10.1: Numerical error for Finite Difference solution for modes l = 1,
l = 3 and l = 10

N points rerr l = 1 rerr l = 3 rerr l = 10
8 7.3(10−2) 4.4(10−1) 9.8(10−1)
10 5.1(10−3) 1.1(10−1) 8.1(10−1)
12 5.0(10−4) 2.1(10−2) 4.9(10−1)
14 1.5(10−4) 2.9(10−3) 2.4(10−1)
16 4.1(10−5) 3.2(10−4) 4.1(10−2)
18 1.1(10−5) 2.9(10−5) 1.5(10−2)
20 2.6(10−6) 2.1(10−6) 5.0(10−3)
50 4.1(10−11) 2.2(10−12) 5.4(10−13)
100 4.0(10−11) 2.0(10−12) 6.0(10−13)

Table 10.2: Numerical error for Spectral Chebyshev solution for modes l = 1,
l = 3 and l = 10

range.
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N points rerr l = 1 rerr l = 3 rerr l = 10
8 9.1(10−2) 7.9(10−1) 7.1(10−1)
10 7.5(10−3) 2.2(10−1) 2.3(10−1)
12 9.4(10−4) 4.0(10−2) 1.2(10−1)
14 2.7(10−4) 5.7(10−3) 5.8(10−2)
16 7.4(10−5) 6.3(10−4) 2.5(10−2)
18 1.9(10−5) 5.6(10−5) 1.0(10−2)
20 4.3(10−6) 4.1(10−6) 3.8(10−3)
50 1.5(10−8) 1.6(10−8) 1.8(10−8)
100 1.0(10−9) 1.1(10−8) 1.2(10−8)

Table 10.3: Numerical error for Spectral Legendre solution for modes l = 1,
l = 3 and l = 10
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Chapter 11

Conclusions and future
development

The second part of this PhD Thesis is devoted to the formulation of a numerical
model of the viscous flow inside an oscillating sphere. The purpose of the
numerical is to describe quantitatively the three-dimensional behaviour of the
flows, overcoming the limits of the physical model described in the first part
of the present work.

The numerical model used a spectral technique to solve the Navier Stokes
equations in primitive velocity-pressure form. The incompressibility constraint
in the governing equation has been replaced by the Poisson equation for the
pressure. This approach allows the derivation of an uncoupled formulation by
joining the Poisson equation with an independent condition of integral charac-
ter for the pressure. The latter requires the evaluation of a set of metaharmonic
functions, which, in turn, are solutions of the metaharmonic (Helmoltz) prob-
lem.

The equations are discretized in time by means of a non-fractional-step
scheme. Non-linear terms are evaluated explicitly while the linear terms are
accounted implicitly. The pressure and velocity variables are expanded in series
of spherical harmonics in the angular directions θ and ϕ. This operation allow
to transform the original problem in a sequence of stationary problems for
the coefficients of the expansion which depend only from the radial direction.
The solution is calculated by means of a tau projection spectral method, after
having expanded the coefficients in terms of Chebyshev polynomials.

The mathematical formulation of the numerical model required a special
effort and allow us to built a numerical code, whose structure is described in
chapter 9 which didn’t provide any results because of the lack of time. The tests
carried out on a simplified problem (the metaharmonic problem) demonstrate
that spectral techniques are efficient and feasible.
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192 Conclusions and future development

In the near future the efforts made to formulate the complete problem will
allow to obtain flow fields inside a rotating sphere and could be developed to
extend the treatment to the deformed sphere.
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Appendix A

Differential operators in
spherical coordinates

This appendix contains the expression of differential operators in spherical
coordinates for scalar and vector functions. General definitions about basis,
volume and area element in those coordinates are also included.

A.1 Definitions

The spherical basis consists of the vectors:

r = sin θ cosφi+ sin θ sinφj+ cos θk

θ = cos θ cosφi+ cos θ sinφj− sin θk (A.1.1)

φ = − sinφi+ cosφjk

The volume element in spherical coordinates is:

dV = r2 sin θdrdθdφ (A.1.2)

The area element on a sphere with r constant is:

dSr = r2 sin θdθdφ (A.1.3)

The area element on a cone with θ constant is:

dSθ = r sin θdrdφ (A.1.4)

The area element on the half plane with φ constant is:

dSφ = rdθdr (A.1.5)
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A.2 Differential operators

A.2.1 Gradient

The gradient of a scalar field f(r, θ, φ) in spherical coordinates is given by:

∇f(r, θ, φ) = ∂f

∂r
r+

1

r

∂f

∂θ
θ +

1

r sin θ

∂f

∂φ
φ (A.2.1)

A.2.2 Divergence

The divergence of the vector field F = Frr+Fθθ+Fφφ in spherical coordinates
is:

∇ · F =
1

r2 sin θ

∂

∂r

(
(
r2 sin θFr

)
+

∂

∂θ
(r sin θFθ) +

∂

∂φ
(rFφ)

)

(A.2.2)

A.2.3 Curl

The curl of the vector field above mentioned F = Frr+Fθθ+Fφφ in spherical
coordinates is:

∇× F =
1

r sin θ

(

cos θFφ + sin θ
∂Fφ

∂θ
− ∂Fθ

∂φ

)

r+

+
1

r sin θ

(
∂Fr

∂φ
− sin θFφ − r sin θ

∂Fφ

∂r

)

θ+ (A.2.3)

+
1

r
Fθ + r

∂Fθ

∂r
− ∂Fr

∂θ
φ

A.2.4 Laplace operator

The Laplace operator of the scalar field f in spherical coordinates is given by:

∆f =
1

r2

∂

∂r

(

r2∂f

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

r2 sin θ

∂2f

∂φ2
(A.2.4)

while the Laplace operator for the vector field F assumes the form:

∆F = ∆Fr −
(
2Fr

r2
− 2

r2 sin θ

∂ (sin θFθ)

∂θ
− 2

r2 sin θ

∂Fφ

∂φ

)

r+

+

(

∆Fθ −
Fθ

r2 sin2 θ
− 2 cos θ

r2 sin θ

∂Fφ

∂φ
+

2

r2

∂Fr

∂θ

)

θ+ (A.2.5)

+

(

∆Fφ −
Fφ

r2 sin2 θ
− 2 cos θ

r2 sin θ

∂Fθ

∂φ
+

2

r2 sin θ

∂Fr

∂φ

)

φ



Appendix B

Spherical Harmonics

Spherical harmonics (SH) are the angular portion of a set of solutions to
Laplace’s equation represented in a system of spherical coordinates. In this
system they form an orthogonal basis. Spherical harmonics have many theo-
retical and practical applications, we can mention: the computation of atomic
orbital electron configurations in quantum mechanics, the representation of
gravitational and magnetic fields of planetary bodies and stars , and the char-
acterization of the cosmic microwave background radiation in celestial mechan-
ics. Here Spherical Harmonics are introduced from a theoretical perspective
and then we show some attractive applications.

B.1 Definitions

B.1.1 Scalar spherical harmonics

Spherical harmonics satisfy the spherical harmonic differential equation given
by the angular part of Laplace’s equation written in spherical coordinates
reported below. They are complex, continuous functions of θ and ϕ variables.

∆f =
1

r2

∂

∂r

(

r2∂f

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂f

∂θ

)

+
1

r2 sin θ

∂2f

∂ϕ2
= 0 (B.1.1)

The combination of Φ(ϕ) and Θ(θ) solutions obtained from the B.1.1 using
separation of variables, scaled with a normalization factor defines the spherical
harmonics:

Y m
l (θ, ϕ) =

√

2l + 1

4π

(l − |m|)!
(l + |m|)! P

|m|
l (cos θ) eimϕ (B.1.2)
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where P
|m|
l (cos θ) is an associated Legendre polynomial and the normalization

is chosen such that:

2π∫

0

π∫

0

Y m
l (θ, ϕ)Ȳ m′

l′ (θ, ϕ) sin θdθdϕ = δmm′δll′ (B.1.3)

being Ȳ m′

l′ (θ, ϕ) the complex conjugative of Y m′

l′ (θ, ϕ).
SH have the following properties:

Y 0
l (θ, ϕ) =

√

2l + 1

4π
Pl(cos θ) (B.1.4)

Y −m
l (θ, ϕ) = (−1)m Ȳ −m

l (θ, ϕ) (B.1.5)

where Pl(cos θ) is a Legendre polynomial.

B.1.2 Vector spherical harmonics

Vector spherical harmonics (VSH) are an extension of the scalar spherical har-
monics for the use with vector fields. In scientific literature several conventions
have been used to define the VSH. We follow that of Barrera et al.(1985)[27].
Being Y m

l (θ, ϕ) a scalar spherical harmonic we define three VSH:

Plm (θ, ϕ) = r̂ (θ, ϕ)Ylm (θ, ϕ) l ≥ 0 (B.1.6)

Blm (θ, ϕ) =
1

sl

r∇Ylm (θ, ϕ) , l > 0 (B.1.7)

Clm (θ, ϕ) =
1

sl

∇× [~r(θ, ϕ)Ylm(θ, ϕ)] , l > 0 (B.1.8)

where r̂ is the unitary vector along the radial direction, ~r represents the po-
sition vector of the point with spherical coordinate and sl =

√

l (l + 1). The
harmonics B00 and C00 are both equal to 0. The radial factors are included
to guarantee that the dimensions of the VSH are the same as the ordinary
spherical harmonics Y m

l (θ, ϕ) and that the VSH are independent of the radial
spherical coordinate. By the form of gradient and curl operator Blm (θ, ϕ) and
Clm (θ, ϕ) spherical harmonics can be furthermore split in the the θ̂ and ϕ̂
directions as shown below:

Plm (θ, ϕ) = r̂ (θ, ϕ)P rr
lm (B.1.9)

Blm (θ, ϕ) = θ̂ (r, ϕ)Bθθ
lm + ϕ̂ (r, θ)Bθϕ

lm (B.1.10)

Clm (θ, ϕ) = θ̂ (r, ϕ)Cϕθ
lm + ϕ̂ (r, θ)Cϕϕ

lm (B.1.11)
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The vector spherical harmonics are orthonormal over the unit sphere:

2π∫

0

π∫

0

Plm (θ, ϕ) P̄l′m′ (θ, ϕ) sin θdθdϕ = δll′δmm′ (B.1.12)

2π∫

0

π∫

0

Blm (θ, ϕ) B̄l′m′ (θ, ϕ) sin θdθdϕ = δll′δmm′ (B.1.13)

2π∫

0

π∫

0

Clm (θ, ϕ) C̄l′m′ (θ, ϕ) sin θdθdϕ = δll′δmm′ (B.1.14)

2π∫

0

π∫

0

Plm (θ, ϕ) B̄l′m′ (θ, ϕ) sin θdθdϕ = 0 (B.1.15)

2π∫

0

π∫

0

Blm (θ, ϕ) C̄l′m′ (θ, ϕ) sin θdθdϕ = 0 (B.1.16)

2π∫

0

π∫

0

Clm (θ, ϕ) P̄l′m′ (θ, ϕ) sin θdθdϕ = 0 (B.1.17)

in which,as usual, being the overwritten bar denotes the complex conjugative
functions. This vector basis is also orthogonal in the usual three-dimensional
way:

Plm (θ, ϕ) ·Blm (θ, ϕ) = 0 (B.1.18)

Plm (θ, ϕ) ·Clm (θ, ϕ) = 0 (B.1.19)

Blm (θ, ϕ) ·Clm (θ, ϕ) = 0 (B.1.20)

and this implies that:

r̂ (θ, ϕ)×Clm (θ, ϕ) = Blm (θ, ϕ) (B.1.21)

r̂ (θ, ϕ)×Blm (θ, ϕ) = −Clm (θ, ϕ) (B.1.22)

Like scalar spherical harmonics, VSH have the following symmetry prop-
erty:

Pl−m (θ, ϕ) = (−1)mP̄lm (θ, ϕ) (B.1.23)

Bl−m (θ, ϕ) = (−1)mB̄lm (θ, ϕ) (B.1.24)

Cl−m (θ, ϕ) = (−1)mC̄lm (θ, ϕ) (B.1.25)
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B.2 Differential operators for functions expanded

in SH

In differential problem characterized by a spherical geometry the expansion of
the unknowns in scalar or vector spherical harmonics allows to transform the
original partial differential problem in a set of ordinary differential equations
for the coefficients of expansion, dependent only by the radial coordinate r.
In order to obtain the representation of the problem in modal equations we
need of explicit expression of the differential operator for functions expanded
in spherical harmonics. Here the expression of differential operators for scalar
and vector functions are presented:

B.2.1 Differential operators for scalar functions expanded
in SH

Let f (r, θ, ϕ) be a scalar function expanded in scalar SH:

f (r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

plm (r)Ylm (θ, ϕ) (B.2.1)

Gradient

The gradient of the function f(r, θ, φ) is given by:

∇f (r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

[∇flm (r)Ylm (θ, ϕ) + flm (r)∇Ylm (θ, ϕ)]

=
∞∑

l=0

l∑

m=−l

[
dflm (r)

dr
Plm (θ, ϕ) + flm (r)

sl

r
Blm (θ, ϕ)

]

(B.2.2)

which suggests the introduction of the vector differential operator:

∇l =





d
dr
sl

r

0



 (B.2.3)

acting on the coefficient of B.2.1 expansion.
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Laplace operator

The Laplace operator of the scalar field f is such as:

∇2f (r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

[(
d2

dr2
+
2

r

d

dr
− s2

l

r2

)

flm (r)Ylm (θ, ϕ)

]

=
∞∑

l=0

l∑

m=−l

[(Dlflm (r))Ylm (θ, ϕ)] (B.2.4)

having assumed:

Dl =

(
d2

dr2
+
2

r

d

dr
− s2

l

r2

)

(B.2.5)

B.2.2 Differential operators for vector functions expanded
in VSH

Let F (r, θ, ϕ) be a vector field expanded in scalar SH:

F (r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

[
F r

lm (r)Plm (θ, ϕ) + F θ
lm (r)Blm (θ, ϕ) + Fϕ

lm (r)Clm (θ, ϕ)
]

(B.2.6)

Divergence

The divergence of the vector field F is:

∇ · F (r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

[(
d

dr
+
2

r

)

F r
lm (r) +

sl

r
F θ

lm (r)

]

Ylm (θ, ϕ)

=
∞∑

l=0

l∑

m=−l

[∇l · Flm (r)]Ylm (θ, ϕ) (B.2.7)

where:

∇l =





(
d
dr
+ 2

r

)

−Sl

r

0



 (B.2.8)
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Curl

The curl of the vector field above mentioned vector field is:

∇× F (r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

sl

r
Fϕ

lm (r)Plm (θ, ϕ)+

+
∞∑

l=0

l∑

m=−l

(
d

dr
+
1

r

)

Fϕ
lm (r)Blm (θ, ϕ)+

+
∞∑

l=0

l∑

m=−l

[
sl

r
F r

lm (r)−
(
d

dr
+
1

r

)

F θ
lm (r)

]

Clm (θ, ϕ) =

=
∞∑

l=0

l∑

m=−l

(RlF (r, θ, ϕ))VSHlm (θ, ϕ) (B.2.9)

where:

Rl =





0 0 sl

r2

0 0
(

d
dr
+ 1

r

)

sl

r2 −
(

d
dr
+ 1

r

)
0



 (B.2.10)

and the termVSHlm indicates the vector spherical harmonics (Plm,Blm,Clm).

Laplace operator

Finally the Laplace operator for the vector field F assumes the form:

∇2F (r, θ, ϕ) =
∞∑

l=0

l∑

m=−l

[(

Dl −
2

r2

)

F r
lm (r) +

2sl

r2
F θ

lm (r)

]

Plm (θ, ϕ)

+

[
2sl

r2
F r

lm (r) +DlF
θ
lm (r)

]

Blm (θ, ϕ) + [DlF
ϕ
lm (r)]Clm (θ, ϕ) =

=
∞∑

l=0

l∑

m=−l

(DlF (r, θ, ϕ))VSH (θ, ϕ) (B.2.11)

in which:

Dl =





Dl − 2
r2

2sl

r2 0
2sl

r2 Dl 0
0 0 Dl



 (B.2.12)
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B.3 Applications of SH

Spherical Harmonics arise from a generalization of Fourier Series in one di-
mension higher. Consequently, many beautiful properties of Fourier Series are
valid also for Spherical Harmonics. Like Fourier Series are a basis for the circle,
Spherical Harmonics are a basis for the sphere. Both these functions have the
property that eigenspaces are rotation-invariant, this results is a consequence
of the Laplace operator (whose solutions generate these functions) invariance
with the coordinates. The rotation invariance implies that if we know the ex-
pansion of a function, we can compute the expansion of any of its rotations
by applying a sparse matrix. For spherical harmonics expansion the rotation
matrix (called Wigner rotation matrices) consists of blocks along the diagonal,
with a (2n + 1) × (2n + 1) block for each n. If we have a band width limita-

tion n < N then the matrix has to be applied
∑
(2n+ 1)2 =

(
4N3−N

3

)

times

instead of [
∑
(2n+ 1)]2 = N4 times. Moreover, if we work with operators

with are linear and rotation-invariant Fourier Series and Spherical Harmon-
ics diagonalize such operators making them trivial to apply. The wide use
of these function in a large class of differential problems, involving round or
spherical geometry, is justified by the fact that many operators corresponding
to physical processes are coordinate invariant.
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Appendix C

Chebyshev polynomials

This appendix resumes Chebyshev polynomials definitions, properties and ap-
plications, for futher informations the reader is referred to the Special Function
section of Abramovitz and Stegun [25].

C.1 Definitions

Chebyshev polynomials are a set of orthogonal polynomials solution of the
Chebyshev differential equations:

(
1− x2

) d2y

dx2
− x

dy

dx
+ n2y = 0 (C.1.1)

in which n is a non-negative integer. Chebyshev Polynomials are usually de-
noted by Tn(x).

They can be defines also by the trigonometric identity:

Tn(x) = cos(n arccosx) = cosh(n arccoshx) (C.1.2)

whence:

Tn(cos θ) = cos(nθ) (C.1.3)

having assumed x = cos θ.

The polynomials are either even or odd functions of x for even or odd orders
n, that is to say:

T2n(x) = T2n(−x) (C.1.4)

T2n+1(x) = −T2n+1(−x) (C.1.5)
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according to the invariance of the C.1.1 respect to the transformation which
exchange x with −x. Chebyshev Polynomials are defined, continuous and
limited in the range [−1, 1]:

max
x∈[−1,1]

|Tn(x)| = 1 (C.1.6)

The first few polynomials are shown below:

T0(x) = 1 T4(x) =
(
8x4 − 8x2 + 1

)

T1(x) = x T5(x) =
(
16x5 − 20x3 + 5x

)

T2(x) =
(
2x2 − 1

)
T6(x) =

(
32x6 − 48x4 + 18x2 − 1

)

T3(x) =
(
4x3 − 3x

)
T7(x) =

(
64x7 − 112x5 + 56x3 − 7x

)

Figure C.1: Graphic of the first Chebyshev Polynomials in the range [-1,1]

Notice that on the interval [−1, 1] all of the extrema have values that are
either -1 or 1.

C.1.1 Recurrence formula

A convenient tool to define Chebyshev polynomials is the recurrence relation:

Tn+1(x) = 2xTn(x)− Tn−1(x) (C.1.7)
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C.1.2 Properties

Chebyshev Polynomials are orthogonal functions in [−1, 1] with respect to the
weight 1√

1−x2 :

1∫

−1

Tm(x)Tn(x)
dx√
1− x2

=







0 n 6= m
π n = m = 0
π/2 n = m 6= 0

(C.1.8)

A Chebyshev polynomial with degree n has n different simple roots, also
called Chebyshev nodes, in the interval [−1, 1]. The roots of Tn(x) are:

xi = cos

(
π

2

2i− 1

n

)

, i = 1, . . . , n. (C.1.9)

C.1.3 Applications

Chebyshev polynomials are important in approximation theory because their
roots, also called Chebyshev nodes, are the best nodes in polynomial interpola-
tion (see Chapter ). In fact, the resulting interpolation polynomial minimizes
the problem of Runge’s phenomenon and provides an approximation that is
close to the polynomial of best approximation to a continuous function un-
der the maximum norm. Chebyshev polynomials form a complete orthogonal
basis, so that a function defined on the interval [−1, 1] can be expanded in
Chebyshev series:

f(x) =
∞∑

i=0

fiTi(x) (C.1.10)

whose partial sum:

f(x) =
N∑

i=0

fiTi(x) (C.1.11)

is very useful in the approximation of functions and in solution of differential
equations with spectral methods. The coefficient fi of D.1.13 expansion can be
determined through the application of an inner product thank to the Cheby-
shev polynomials orthogonality. Since a Chebyshev series is related to a Fourier
cosine series through a change of variables, all of the theorems, identities, etc
that apply to Fourier series have a Chebyshev counterpart.
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Appendix D

Legendre functions

This appendix is dedicated to the Legendre functions presentation. Definitions,
properties and applications are briefly discussed, for a wide treatment the
reader is referred to the Special Function section of Abramovitz and Stegun
[25].

D.1 Legendre Polynomials

D.1.1 Definitions

The Legendre polynomials, sometimes called Legendre functions of the first
kind, Legendre coefficients, or zonal harmonics, are solutions to the Legendre
differential equation:

(
1− x2

) d2f

dx2
− 2x

df

dx
+ n (n+ 1) f = 0 (D.1.1)

When n is a real number the solutions of D.1.1 are called Legendre Functions
of degree n while if n is a non-negative integer, the Legendre Functions are
often referred to as Legendre Polynomials. In this last case, the polynomials
may be denoted by Pn(x).

Legendre polynomials are also generated by the Rodriguez formula:

Pn(x) =
1

2nn!

dn

dxn

(
x2 − 1

)n
(D.1.2)

or by the contour integral:

Pn(x) =
1

2πi

∮
1√

1− 2tx+ t2
t−n−1dt (D.1.3)
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where the contour encloses the origin and is traversed in a counterclockwise
direction. The polynomials are either even or odd functions of x for even or
odd orders n, that is to say:

P2n(x) = P2n(−x) (D.1.4)

P2n+1(x) = −P2n+1(−x) (D.1.5)

according to the invariance of the D.1.1 respect to the transformation which
exchange x with −x. The first few polynomials are shown below:

P0(x) = 1 P4(x) =
1

8

(
35x4 − 30x2 + 3

)

P1(x) = x P5(x) =
1

8

(
63x5 − 70x3 + 15x

)

P2(x) =
1

2

(
3x2 − 1

)
P6(x) =

1

16

(
231x6 − 315x4 + 105x2 − 5

)

P3(x) =
1

2

(
5x3 − 3x

)
P7(x) =

1

16

(
429x7 − 693x5 + 315x3 − 35x

)

Figure D.1: Graphic of the first Legendre Polynomials in the range [-1,1]

D.1.2 Recurrence formulas

Legendre polynomials and their derivatives agree with the following recursive
formulas.

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (D.1.6)
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P ′n+1(x)− xP ′n(x) = (n+ 1)Pn(x) (D.1.7)

xP ′n(x)− P ′n−1(x) = nPn(x) (D.1.8)

P ′n+1(x)− P ′n−1(x) = (2n+ 1)Pn(x) (D.1.9)

(
x2 − 1

)
P ′n(x) = nxPn(x)− nPn−1(x) (D.1.10)

The first one is an easy tool, useful in numerical computation, to obtain
Legendre polynomials starting from P0(x) and P1(x). The others allow to
compute Legendre polynomials derivatives by means of known derivatives or
polynomials.

D.1.3 Properties

Legendre Polynomials are defined and continuous over the whole real axis,
but restricting our attention on the range [−1, 1] Legendre Polynomials are
orthogonal functions.

1∫

−1

Pl(x)Pn(x)dx = 0 m 6= n (D.1.11)

1∫

−1

(Pn(x))
2 dx =

2

2n+ 1
(D.1.12)

Moreover, in the range [−1, 1] Legendre Polynomials Pn(x) have n distinct
roots, all internal to the interval. In this context the variable x is often replaced
by cosθ which automatically scales the domain to this interval.

D.1.4 Applications

Legendre polynomials form a complete orthogonal basis, so that a function
defined on the interval [−1, 1] can be expanded in Legendre series:

f(x) =
∞∑

i=0

fiPi(x) (D.1.13)

whose coefficient fi can be determined through the application of an inner
product thank to the Legendre polynomials orthogonality.
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D.2 Associated Legendre functions

From the Legendre polynomials can be generated another important class of
functions for physical problems, the associated Legendre functions. These
functions are of great importance in quantum physics because they appear
in the solutions of the Schrodinger equation in spherical polar coordinates.
Moreover, the associated Legendre functions can be used to construct another
important set of functions, the spherical harmonics, which are used in many
physical problem involving spherical symmmetry1.

D.2.1 Definitions

The associated Legendre functions are solutions of the associated Legendre
differential equation:

(
1− x2

) d2f

dx2
− 2x

df

dx
+

(

n (n+ 1)− m2

1− x2

)

f = 0 (D.2.1)

Here we restrict our attention to the cases in which n and m are non negative
integers. The associated Legendre functions may be denoted by Pm

n (x).
Associated Legendre functions can be derived by the Rodriguez formula:

Pm
n (x) =

(1− x2)
m/2

2nn!

dm+n

dxm+n

(
x2 − 1

)n
=

(
1− x2

)m/2 dm

dxm
Pn(x) (D.2.2)

Notice that:

P 0
n(x) = Pn(x) (D.2.3)

Pm
n (x) = 0 if m > n (D.2.4)

The first few polynomials are shown below:

P 1
1 (x) = (1− x2)1/2 P 1

3 (x) =
3

2
(5x2 − 1)(1− x2)1/2

P 1
2 (x) = 3x(1− x2)1/2 P 2

3 (x) = 15x(1− x2)

P 2
2 (x) = 3(1− x2) P 3

3 (x) = 15(1− x2)3/2 (D.2.5)

D.2.2 Recursive formulas

Associated Legendre functions respect the following recursive formulas.

(n+ 1−m)Pm
n+1(x) = (2n+ 1)xPm

n (x)− (n+m)Pm
n−1(x) (D.2.6)

Pm+2
n (x) =

2(m+ 1)x

(1− x2)1/2
Pm+1

n (x)− (n−m)(n+m+ 1)Pm
n (x) (D.2.7)

1Spherical Harmonics theory, properties and applications are given in appendixB
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D.2.3 Properties

Associated Legendre functions are orthogonal in the range [−1, 1]:
1∫

−1

Pm
l (x)P

m
n (x)dx = 0 m 6= n (D.2.8)

1∫

−1

(Pm
n (x))

2 dx =
2

2n+ 1

(n+m)!

(n−m)!
(D.2.9)
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