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Introduction

Italiano

I processi frazionari integrati arfima(p, d, q), introdotti contemporaneamente nei lavori
di Granger and Joyeux (1980) e di Hosking (1981), o�rono uno strumento utile e �essibile
per modellare la struttura di dipendenza di secondo ordine (funzioni di autocovarianza e di
autocorrelazione) di una serie storica osservata. La letteratura è ricca di articoli su stima
e identi�cazione del data generating process (d'ora in poi abbreviato con dgp): sulla stima
parametrica del parametro di memoria lunga d e dei parametri della parte autoregressiva
e a media mobile, ricordiamo i lavori di Yajima (1985), Fox and Taqqu (1986) e Dahlhaus
(1988, 1989); sulla stima semi-parametrica del parametro di memoria lunga d sono da
ricordare gli articoli di Hurst (1951), Geweke and Porter-Hudak (1983), Higuchi (1988),
Robinson (1995a) e Hurvich et al. (1998). Nonostante la letteratura sia ricca di articoli,
è ancora di�cile de�nire quale sia il metodo migliore per l'identi�cazione e la stima dei
parametri del dgp; a seconda della situazione ogni soluzione o�re vantaggi e svantaggi.
Gli stimatori parametrici (di Whittle e di massima verosimiglianza) sono asintoticamente
Normali e sono più e�cienti degli stimatori semi-parametrici ma, in caso di non corretta
speci�cazione del modello, i risultati possono essere disastrosi fornendo stime altamente
distorte. D'altra parte gli stimatori semi-parametrici (local Whittle, GPH, metodo dei
ranghi riscalati solo per citarne alcuni) permettono di stimare il parametro di memoria
lunga d indipendentemente dalla parte arma con lo svantaggio di un tasso di convergenza
inferiore, o(n−1/2) invece di o(n−1) nel caso parametrico. Agiakloglou et al. (1993) hanno
mostrato che la presenza di memoria corta introduce distorsione nello stimatore GPH
(Geweke and Porter-Hudak, 1983), specialmente quando il parametro autoregressivo φ è
vicino alla soglia di non-stazionarietà.

Una generalizzazione dei processi arfima sono i processi di Gegenbauer, introdotti da
Hosking (1981) e poi studiati da molti autori comeWoodward et al. (1989), Woodward et al.
(1998), Giraitis and Leipus (1995), Smallwood and Beaumont (2004), Sadek and Khotan-
zad (2004) e Caporale and Gil-Alana (2006). Stimatori parametrici e semi-parametrici
sono stati sviluppati in letteratura. Uno dei maggiori problemi è la massimizzazione in
spazio multidimensionale della funzione di verosimiglianza perché non esiste una soluzione
in forma chiusa e le procedure numeriche esistenti sono computazionalmente lunghe. E-
sistono stimatori semi-parametrici che possono essere usati per ottenere dei buoni valori
iniziali e per cercare di identi�care l'ordine del dgp.

Nell'ambito delle serie storiche sono stati sviluppati negli ultimi anni vari metodi boot-
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strap, si pensi ad esempio a metodi come il model-based resampling, il block bootstrap (Kün-
sch, 1989), l'autoregressive-aided periodogram bootstrap (Kreiss and Paparoditis, 2003), il
local bootstrap (Paparoditis and Politis, 1999), il sieve bootstrap (Kreiss, 1992), il para-
metric bootstrap (Andrews et al., 2006), il kernel bootstrap (Dahlhaus and Janas, 1996;
Franke and Härdle, 1992) e il phase scrambling (Theiler et al., 1992). La replicazione di
serie con metodi bootstrap apre la via ad interessanti applicazioni come lo sviluppo di
test o l'approssimazione della distribuzione di tali test. Una vasta letteratura, inoltre,
si occupa della costruzione di intervalli di con�denza basati sulle replicazioni bootstrap
(Arteche and Orbe, 2005; Efron, 1979, 1982, 1987a,b; Hall, 1988, 1992b). Rimane ancora
aperto il problema di replicare la struttura di dipendenza di una serie a memoria lunga di
tipo arfima(p, d, q).

In questa tesi sviluppiamo un nuovo metodo bootstrap per serie storiche, l'ACF boot-
strap, basato su un risultato di Ramsey (1974), che genera serie surrogate a partire dalla
funzione di autocorrelatione campionaria. La tesi è suddivisa in cinque capitoli: i primi due
capitoli sono una rassegna della letteratura esistente, gli ultimi tre contengono i contributi
innovativi della tesi.

Il primo capitolo descrive i processi a memoria lunga, le proprietà asintotiche delle fun-
zioni di autocorrelazione e autocovarianza campionarie, i più comuni stimatori parametrici
e semi-parametrici e, in�ne, processi di Gegenbauer. Il secondo capitolo è dedicato ad una
rassegna dei principali metodi bootstrap per serie storiche.

Nella prima parte (Capitolo 3) introduciamo un nuovo metodo bootstrap per serie
storiche. Applichiamo tale metodo per migliorare le performance di stimatori semi-parame-
trici del parametro di memoria lunga d in processi arfima(0, d, 0) in termini di minore
errore standard, minore errore quadratico medio e migliore copertura degli intervalli di con-
�denza. L'assunzione di Gaussianità è alquanto restrittiva, tuttavia mostriamo, per mezzo
di un'estesa simulazione Monte Carlo, che l'ACF bootstrap funziona anche in assenza di
questa ipotesi. In particolare il metodo proposto sembra essere robusto rispetto a code pe-
santi e asimmetria. Altro campo di applicazione è la costruzione di intervalli di con�denza
per il parametro di memoria d. Nel caso dello stimatore parametrico di Whittle gli intervalli
basati sulla distribuzione bootstrap hanno una copertura più vicina a quella teorica se la
serie è relativamente corta (n = 128, 300). Per gli stimatori semi-parametrici il bootstrap
migliora la copertura degli intervalli per d quando il dgp è un processo arfima(1, d, 0).

La seconda parte della tesi (Capitolo 4) è dedicata allo studio del comportamento
asintotico delle funzioni di autocorrelazione e di autocovarianza campionarie con lo scopo
di dare un supporto teorico alla consistenza dell'ACF bootstrap nel replicare la memoria
lunga.

In�ne nel Capitolo 5, proponiamo un algoritmo per stimare non-parametricamente i
processi di Gegenbauer con uno o due periodicità (uno o due picchi nella densità spettrale).
L'ACF bootstrap è utile anche in questo contesto per fornire la stima della distribuzione del
parametro di frequenza η. La sua distribuzione asintotica viene fornita per gli stimatori
proposti da Chung (1996) e Sadek and Khotanzad (2004), ma è talmente complessa da
essere quasi inutilizzabile. Lo scopo di questa parte del lavoro è proporre una procedura
per indenti�care persistenze stagionali e fornire dei buoni valori iniziali per massimizzare
la funzione di verosimiglianza.
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English

Fractionally integrated processes arfima(p, d, q), introduced by Granger and Joyeux
(1980) and Hosking (1981) independently, o�er a useful tool to model the second order
dependence structure (autocovariance and autocorrelation functions) of an observed time
series. The literature is rich of paper on identi�cation of the data generating process (dgp,
from now on) and estimation of the parameters: Yajima (1985),Fox and Taqqu (1986)
and Dahlhaus (1988, 1989) wrote papers on parametric estimate of the memory parameter
d, whereas Hurst (1951), Geweke and Porter-Hudak (1983), Higuchi (1988), Robinson
(1995a) and Hurvich et al. (1998) developed semi-parametric estimation methods. It is
not possible to de�ne the best method, according to the situation each method o�ers
advantages and drawbacks. Parametric estimators are asymptotically Normal and they
are the most e�cient, however in the case of misspeci�cation of the model the estimates
might be dramatically biased. On the other hand, semi-parametric estimators o�er the
possibility of estimating the long memory parameter from the short memory part with the
drawback of a slower convergence rate (o(n−1/2) or less) than with parametric techniques
(o(n−1)). Moreover, Agiakloglou et al. (1993) showed that the GPH (Geweke and Porter-
Hudak, 1983) is biased in presence of arma parameter near the non-stationary area.

A generalisation of arfima processes are the Gegenbauer processes, introduced by
Hosking (1981) and then studied by Woodward et al. (1989), Woodward et al. (1998),
Giraitis and Leipus (1995), Smallwood and Beaumont (2004), Sadek and Khotanzad (2004)
and Caporale and Gil-Alana (2006). Also in this case parametric and semi-parametric
technique are available in the literature. One the main problem is the maximization in
a multidimensional space of the likelihood function because there is not a close form and
the existing numerical procedures are quite burdensome. Semi-parametric procedures play
and important role to compute good starting values to maximize the likelihood function
and to identify the order of the dgp.

In the last years many bootstrap methods for time series have been developed, such as
the model-based resampling, the block bootstrap (Künsch, 1989), the autoregressive-aided
periodogram bootstrap (Kreiss and Paparoditis, 2003), the local bootstrap (Paparoditis
and Politis, 1999), the sieve bootstrap (Kreiss, 1992), the parametric bootstrap (Andrews
et al., 2006), the kernel bootstrap (Dahlhaus and Janas, 1996; Franke and Härdle, 1992)
and the phase scrambling (Theiler et al., 1992). Bootstrap methods for time series have
been widely used to build con�dence intervals especially when asymptotic theory does
not provide satisfactory results (Arteche and Orbe, 2005; Efron, 1979, 1982, 1987a,b; Hall,
1988, 1992b). The problem is still open when we want to replicate the dependence structure
of a long memory process such as arfima(p, d, q).

In this thesis we develop a new bootstrap method for time series, the ACF bootstrap,
based on a result of Ramsey (1974), that generates the surrogate series from the observed
autocorrelation function. The thesis is divided in �ve chapters: the �rst two chapters
review some literature, the last three chapters are new contributions.

The �rst chapter reviews the literature on long memory processes, the properties of
their sample autocorrelation and autocovariance functions, the most common parametric
and semi-parametric estimators and, shortly, Gegenbauer processes. In the second chapter,
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we introduce brie�y some bootstrap methods for time series.
In Chapter 3 we introduce the new bootstrap method. We apply the ACF bootstrap

to improve the performance of semi-parametric estimators for the memory parameter d for
arfima(0, d, 0) processes in terms of smaller standard error, smaller mean squared error
and better coverage for con�dence intervals. Since the condition of Gaussianity of the
observed process is very restrictive, we show, by means of Monte Carlo simulation, that
the method is consistent even relaxing this hypothesis. In particular the method seems
to be robust against fat tails and asymmetry. Another application is building con�dence
intervals for the memory parameter d. For the parametric Whittle estimator, the con�dence
intervals based on the bootstrap distribution have a closer coverage to the theoretical level if
the time series is relatively short (n = 128, 300). For semi-parametric estimators, applying
bootstrap improves coverage of con�dence intervals for d when the dgp is a arfima(1, d, 0)
process.

In Chapter 4 we study the asymptotic behaviour of sample autocovariance and autocor-
relation functions of a long memory processes. This results are useful to give a theoretical
support for the consistency of the method in replicating long memory.

Last, in Chapter 5, we propose an algorithm to estimate non-parametrically the pa-
rameters of a Gegenbauer process with one and two peaks in the spectral density. The
bootstrap method will be useful to give an estimate of the distribution of the frequency
parameter η. Its asymptotic distribution is given for the estimators proposed by Chung
(1996) and Sadek and Khotanzad (2004) but it is very complicate and di�cult to handle.
The main aim is proposing a method to identify seasonal persistences and provide starting
values for maximize a (penalized) likelihood function.



Chapter 1

Long memory processes

In this chapter we introduce long memory processes: this is a wide class of processes,
however there are some main common features that can be found in all of them. Long
memory was noticed in some processes because the decaying rate of the variance of the
sample mean was proportional to n−α, with α ∈ (0, 1), while the usual rate for a sample of
i.i.d. observations or weakly correlated data is n−1, where n is the series length. Another
common feature in these series is that the autocovariance function decays to zero very
slowly, as if very distant observations in the past still a�ect present behaviour of the
series. Moreover, even though the series may look stationary ovk,erall there appears to
be local trends and long periods with very large (or very small) observations without
persistent cycles. The variance of the sample mean of correlated data depends also on the
autocorrelations

var(X̄) =
σ2

n2

n∑
i,j=1

ρ(i, j) = σ2 (1 + δn(ρ))
n

,

where δn(ρ) = n−1
∑

i 6=j ρ(i, j), with ρ(i, j) =E[(Xi − µ)(Xj − µ)] and µ =E[Xi]. This
term is zero for non-correlated sequences. For weakly correlated data δn(ρ) is constant
for each n. However, there exist processes where δn(ρ) increases with the sample size,
a�ecting the decaying rate of the variance of the sample mean: in these cases the usual
variance of the sample mean, i.e. the variance of the single observation divided by the
sample size, is too small. These considerations lead to the belief that in some series the
autocovariance function in�uences the sample variance so strongly as to change its decaying
rate. On the other hand, con�dence intervals for the sample mean X̄ based on the Normal
approximation

X̄ ± zα/2sn−1/2, s =

√√√√ 1
n

n∑
j=1

(Xj − X̄)2

are too short. From a quantitative point of view it is also possible to notice a pole near the
zero frequency in the spectral density of the process. Another consideration, from Baillie

5
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(1996), is about the integration rate: these series are consistent neither with I(0) process
nor with I(1) process. Their behaviour is somehow in between the two processes.

Fields like hydrology and climatology are rich with examples of long memory time series
(Baillie, 1996). One of the most famous examples is the Nile minima: in Figure 1.1 there
are the yearly minima water levels of the Nile River for the years 1871 − 1970, measured
at the Roda Gauge near Cairo (Beran, 1994, p. 22). Another example is the series of the
tree ring data studied by Baillie (1996), shown in Figure 1.2: the series reports the annual
tree ring measurement from Mount Campito from 3436BC to 1969AD for a total of 5405
observations. In Figure 1.3 there is the autocorrelation function of the tree ring data and
it is possible to see that it decays to zero very slowly and also after more than 100 lags it is
still signi�cantly di�erent from zero. Hurst (1951) analysed the persistence in hydrological
and geophysical time series and to him it is due the Hurst estimator of the self-similarity
parameter. This will be discussed shortly.

Figure 1.1: Yearly minima water levels of the Nile River for the years 1871 − 1970,
measured at the Roda Gauge near Cairo (Beran, 1994, p. 22).

More recently, measured tra�c generated by modern high-speed communication net-
works exhibits long memory behaviour: Leland et al. (1994) showed that data collected on
several Ethernet LAN's at the Bellcore Momstown Research and Engineering Center are
statistically self-similar. The link between long memory and self-similarity will be clear
later in this chapter in Section 1.1.

In the last twenty years a wide literature has been dedicated to the study of this
type of memory structure, especially since the two papers of Granger and Joyeux (1980)
and Hosking (1981) introduced, separately, the concept of fractional integration in time
series analysis, by allowing the parameter d in an arima(p, d, q) to assume non-integer real
values. Before them fractional Brownian motion and fractional Gaussian noise had been
introduced by Mandelbrot and van Ness (1968) (see below, this chapter).

As we just showed, fractional di�erenced processes have been widely used in diverse
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Figure 1.2: Series of tree ring data measurement from Mount Campito between 3436BC
and 1969AD for a total of 5405 observations.

Figure 1.3: Autocorrelation of the tree ring data, the series is given in Figure 1.2.
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�elds, thus there are principally three di�erent names for the measure of long memory in a
process. The quantity H ∈ (0, 1) is called Hurst exponent or self-similarity parameter and
is universally recognized by the literature on self-similar processes and fractional Brownian
motion. The parameter d ∈ (−0.5, 0.5) is the memory parameter and is due to the litera-
ture about integrated arima(p, d, q) processes since when Granger and Joyeux (1980) and
Hosking (1981) introduced the idea of considering a real non-integer value for d. Lastly
α ∈ (0, 2) indicates the convergence rate to zero of the variance of the sample mean of a
long memory process. The relations between these parameter are given by

d = H − 1
2 and

α = 1− 2d.

In particular, long memory is observed for 0 ≤ d ≤ 0.5, i.e. 0.5 ≤ H ≤ 1 and 0 ≤ α ≤ 1.
We will introduce each of them in more detail throughout this chapter.

Now we are ready to give a mathematical de�nition of long memory processes (Beran,
1994).

Definition 1.1 Let Xt be a stationary process for which the following holds. There
exists a real number α ∈ (0, 1) and a constant cρ > 0 such that

lim
k→∞

ρ(k)
cρk−α

= 1

or alternatively,

ρk ∼ cρk−α as k →∞.

Then Xt is called a stationary process with long memory or long range dependence or strong
dependence, or a stationary process with slowly decaying or long range correlations.

Definition 1.2 Let Xt be a stationary process for which the following holds. There
exists a real number α ∈ (0, 1) and a constant cf > 0 such that

lim
ω→0

f(ω)
cf |ω|α−1

= 1

or alternatively,

f(ω) ∼ cf |ω|α−1 as ω → 0,

where f(ω) is the spectral density of the process Xt.
Then Xt is called a stationary process with long memory or long range dependence or

strong dependence.

Since the convergence rate of the autocorrelation function implies that, for a long memory
process, the sum is not �nite, i.e.

∑∞
k=−∞ ρ(k) =∞, some authors use this property as a

de�nition for long memory.
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It is possible to distinguish two principal long memory Gaussian processes. They have
the same origin but one is de�ned in the continuous time and is called fractional Gaussian
noise, whereas the second is its discrete version and is called fractionally integrated noise.
We discuss them in Sections 1.1 and 1.2. In Section 1.3 we review literature concerning
asymptotics on the sample autocovariance and autocorrelation functions: we will need
these results to show the consistency of the ACF bootstrap for long memory processes
(Chapter 3). Section 1.4 is dedicated to the problem of estimation and identi�cation of
long memory.

1.1 Fractional Gaussian noise

Fractional Gaussian noise is part of the very wide family of self-similar processes. For
sake of completeness, we will give a brief introduction to the concept of self-similarity, also
in view of a better understanding of long memory in general, and of estimation methods
for the memory parameter in particular. In the following we will index the process X(t)
instead of Xt, because we want to distinguish between continuous and discrete processes.

1.1.1 Self-similar processes

A de�nition of self-similar process can be found in Samorodnitsky and Taqqu (1994),
as follows.

Definition 1.3 The real valued process X(t)1, t ∈ T , is self-similar with index H > 0
(H-ss) if, for all a > 0, the �nite-dimensional distributions of X(at) are identical to the
�nite-dimensional distributions of aHX(t); i.e., if for any k ≥ 1, t1, . . . , tk ∈ T and any
a > 0,

(X(at1), X(at2), . . . , X(atk))
d= (aHX(t1), aHX(t2), . . . , aHX(tk)), (1.1)

where H is the self-similarity parameter (and plays a key role in the study of these pro-
cesses).

Self-similarity is connected with the idea of fractals: these objects exhibit the same
pattern, type of structure, on all scales. Nature is full of fascinating examples of self-
similar processes: mountains, waves, leaves, �y's paths. Each branch of the fern leaf in
Figure 1.4 repeats on a smaller scale throughout the whole leaf. The fractal originated
by a Mandelbrot set2 in Figure 1.5 shows the same pattern in each enlargement and it is
virtually possible to keep enlarging it so that the pattern will repeat endlessly.

The botanist Robert Brown observed with a microscope the erratic path of pollen par-
ticles �oating in water. Restricting the path to one dimension we obtain the simplest of

1In the context of this thesis, the notation Xt is used for a discrete process where t assumes integer
values, t = 0,±1,±2, . . ., whereas X(t), t ∈ T , is a more general notation where T can be an interval of
the real set R, i.e. X(t) is a continuous process.

2The Mandelbrot set is generated by a quadratic recurrence equation. Starting with a set of points
z0 = C in the complex plane, zn+1 = z2

n + C (for a de�nition of Mandelbrot set see, e.g., Devaney, 1999).
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Figure 1.4: Fern leaves are an example of nature self-similarity (source from webpage
http://en.wikipedia.org/wiki/Fractal, 24th September 2006).

(a) ×1 (b) ×6

(c) ×100 (d) ×2000

Figure 1.5: The Mandelbrot Set at four di�erent enlargements (source from web pages
http://en.wikipedia.org/wiki/Fractal and http://en.wikipedia.org/wiki/Self-similarity, 24th

September 2006).
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fractals, called the Brownian motion in honour of the botanist. This is the most important
self-similar process and is at the heart of many di�erent self-similar processes (Crilly et al.,
1991). It plays a similar role to that of the Normal distribution in probability. The follow-
ing de�nitions are respectively Beran (1994) (for an alternative de�nitio of the Brownian
motion see, e.g. Rogers and Williams, 1979).

Definition 1.4 Let B(t) be a stochastic process with continuous sample paths and such
that

(i) B(t) is Gaussian,

(ii) B(0) = 0 almost surely,

(iii) B(t) has independent increments, i.e. ∀t, s ≥ 0 B(t)−B(s) is independent of B(u),
0 ≤ u ≤ min(t, s),

(iv) E[B(t)−B(s)] = 0, and

(v) Var[B(t)−B(s)] = σ2|t− s|.

Then B(t) is called Brownian motion. If σ2 = 1, then we have the standardized Brownian
motion.

Generalizing Brownian motion we obtain fractional Brownian motion (fBm) with self-
similarity parameter H.

Definition 1.5 Let a > 0 be a positive scaling constant, and de�ne a weight function
wH by

wH(t, u) = 0 for t ≤ u,
wH(t, u) = (t− u)H

1
2 for 0 ≤ u < t,

wH(t, u) = (t− u)H
1
2 − (−u)H

1
2 for u < 0.

Also, let B(t) be a standardized Brownian motion. For 0 < H < 1, let BH(t) be de�ned by
the stochastic integral

BH(t) = a

∫
wH(t, u)dB(u), (1.2)

where the convergence of the integral is to be understood in the L2 norm with respect to the
Lebesgue measure on the real numbers. Then BH(t) is called fractional Brownian motion
with self-similarity parameter H.

Fractional Brownian motion has self-similarity parameter 0 < H < 1: this interval
guarantees stationary increments. For H = 1/2 we have Brownian motion.

In the following example we introduce the Rosenblatt process because it is the limiting
distribution of the sample autocorrelation function of some long memory processes (refer
to Section 1.3).
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Example 1.6 The Rosenblatt process. Another example of a self-similar process of order
H with stationary long memory increments is the Rosenblatt process (??; Albin, 1998a,b;
Leonenko and Anh, 2001; Tudor, 2006), that, we will see later, plays an important role
in the so-called Non Central Limit Theorem. It is a special case of Hermite processes, a
Wiener-Itô stochastic integral with respect to the Brownian motion B(y),

ZkH(t) = c(H, k)
∫

Rk

∫ t

0

 k∏
j=1

(s− yi)
−( 1

2
+ 1−H

k )
+

 dsdB(y1) . . . dB(yk),

where x+ = max(x, 0) and c(H, k) is a normalizing constant. In the bidimensional case,
when k = 2, we have the Rosenblatt process

ZH(t) = c(H, 2)
∫

R2

∫ t

0
[(s− y1)+(s− y2)+]−(1−H2 )dsdB(y1)dB(y2).

Unfortunately there is not a close form for the marginal distribution of this process, the
Rosenblatt distribution, it is only possible to write the characteristic function

E{eitY } = exp


∞∑
k=2

(2it)k

2k

∫
x∈[0,1]k

|x1 − xk|2H
k∏
j=2

|xj − xj−1|2H
 .

1.1.2 From fractional Brownian motion to fractional Gaussian noise

Fractional Gaussian noise (fGn) is de�ned as the sequence of stationary increments of
the fractional Brownian motion

Yt = BH(t+ 1)−BH(t), t = 0,±1, . . .

where BH(t) was given in (1.2). It can be also thought as the (1/2−H) fractional derivative
of continuous time white noise.

The following proposition provides the form of the autocovariance function and of the
spectral density for a fractional Brownian motion; the proposition and its proof can be
found in Samorodnitsky and Taqqu (1994).

Proposition 1.7 The fractional Gaussian noise has autocovariance function

γk =
σ2

2
(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
, k = 0,±1, . . .

and spectral density

f(ω) =
σ2

C2(H)
|eiω − 1|2

∞∑
k=−∞

1
|ω + 2πk|2H+1

, −π ≤ ω ≤ π
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where

C(H) =
(

π

HΓ(2H) sinHπ

)1/2

(1.3)

or, equivalently,

f(ω) =
σ2
∫∞
0 cosxω(sin2(x/2))x−2H−1dx∫∞
0 ω(sin2(x/2))x−2H−1dx

, −π ≤ ω ≤ π.

The same authors proved that the autocovariance function of a fractional Gaussian
noise decays hyperbolically and that its spectral density has a pole at the zero frequency:
thus fractional Gaussian noise exhibits long memory.

Proposition 1.8 Let Xt be fractional Gaussian noise. Then

γk ∼ σ2
0H(2H − 1)k2H−2 as k →∞

for H 6= 1/2, and

f(ω) ∼ σ2
0|ω|1−2H

C2(H)
as ω →∞

where C(H) was de�ned in Formula (1.3).

We should say that, for H = 1/2, fractional Gaussian noise is white noise, and because
it is Gaussian it is i.i.d..

1.2 Fractionally integrated processes

Until the works of Granger and Joyeux (1980) and Hosking (1981) linear time series
were divided into stationary short memory and non-stationary (or integrated of order 1)
time series. The former type of processes is the arma(p, q) and is a useful tool to model
short memory behaviour. It is the stationary solution of the stochastic di�erence equation

Φ(B)(Xt − µ) = Θ(B)εt

where µ is the mean of the process, B is the backward shift operator BXt = Xt−1, εt is
white noise (0, σ2), Φ(z) = 1− φ1z − . . .− φpzp and Θ(z) = 1 + θ1z + . . .+ θqz

q. For the
process to be identi�able, Φ(·) and Θ(·) must have no common roots, and to be causal and
invertible, the two polynomials must have all roots outside the unit circle Φ(z) 6= 0 and
Θ(z) 6= 0 for |z| ≤ 1 (for more details on arma processes, see, e.g. Brockwell and Davis,
1991; Chat�eld, 1996; Wei, 1990). Without loss of generality we can assume from now on
that Xt has µ = 0 and ε has unit variance. The spectral density of an arma(p, q) process
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is given by

f(ω) =
σ2

2π
|Θ(e−iω)|
|Φ(e−iω)|

, −π ≤ ω ≤ π,

where σ2 = 1.

Box and Jenkins (1976) introduced non-stationary linear time series as a generalisation
of arma processes, in the sense that Yt is arima(p, d, q), for a positive integer d, if after
di�erencing Yt a �nite number of time (exactly d) we obtain an arma process Xt as de�ned
in Formula (1.4):

∇dXt = Yt

Φ(B)∇dXt = Θ(B)εt. (1.4)

where ∇Xt = (1−B)Xt. Here, d is also allowed to take negative integer values and in this
case we obtain an arma(p, q) by integrating the process exactly d times. arima(p, d, q)
processes are also called I(d), i.e. integrated processes of order d. In this view arma(p, q)
processes are a special case with d = 0 and they are I(0). Another very common case
is given by d = 1 when the series Xt is non-stationary but the di�erenced series, Yt =
Xt−Xt−1, is an arma process. Even though this class of processes is quite �exible because
it can describe reasonably well the data generating process in many situations, some series
are neither I(0) nor I(1): their behaviour seems to be in between these two cases. For
this reason Granger and Joyeux (1980) and Hosking (1981) considered, independently, the
possibility for d to assume any real number.

Fractional di�erenced processes possess many good qualities as highlighted by Hosking
(1981): they are �exible enough to allow modelling of both short term and long term
dependent behaviour and it is quite easy to generate a synthetic series from the model.

Of particular interest is the so-called fractionally integrated noise FI(d), i.e. arfi-

ma(0, d, 0) de�ned as the stationary solution of

∇dXt = εt.

The interesting range of values for d is (−0.5, 0.5). It guarantees that the process is
invertible (d > −0.5) and stationary (d < 0.5). When the parameter lies outside this
interval we can integrate or di�erentiate the series an appropriate number of time until we
fall in this range. We have long memory when d is positive, while for d negative it is said
there is intermediate memory or antipersistency. For d = 0 the process Xt is a white noise.

It is possible to approximate a fractionally integrated noise with an arma process of
large p, q order, but the approximation is quite poor: estimating many parameters leads to
uncertain statistical inference and also their interpretation becomes complex and di�cult.
The theorem in Hosking (1981), stated below, provides a good summary of the properties
of an arfima(0, d, 0) process. In the following we will use the Gamma function de�ned in
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Brockwell and Davis (1991) for every real number as

Γ(x) =


∫∞
0 tx−1e−tdt x > 0,
∞ x = 0,
x−1Γ(1 + x) x < 0.

Theorem 1.9 Let Xt be an FI(d) process.

(a) When d < 0.5, Xt is stationary and has an in�nite moving-average representation

Xt =
∞∑
j=0

ψjεt−j ,

where

ψj =
Γ(j + d)

Γ(j + 1)Γ(d)
=

∏
0<k≤j

k − 1 + d

k
∼ jd−1

Γ(d)
. (1.5)

(b) When d > −0.5, Xt is invertible and has in�nite autoregressive representation

∞∑
j=0

πjXt−j = εt,

where

πj =
Γ(j − d)

Γ(j + 1)Γ(−d)
=

∏
0<k≤j

k − 1− d
k

∼ j−d−1

Γ(−d)
.

(c) The spectral density of Xt is f(ω) = (2 sin(ω/2))−2d/2π for 0 < ω ≤ π and f(ω) ∼
ω−2d as ω → 0.

(d) The autocovariance function of Xt is

γk = E(XtXt−k) =
Γ(k + d)Γ(1− 2d)

Γ(k + 1− d)Γ(1− d)Γ(d)
,

the autocorrelation function of Xt is

ρk =
γk
γ0

=
Γ(k + d)Γ(1− d)
Γ(k + 1− d)Γ(d)

,

and

ρk ∼ k2d−1 Γ(1− d)
Γ(d)

as k →∞.
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It can be shown that the asymptotic behaviours of the autocorrelation functions of
arfima(p, d, q) and FI(d) are the same, because the e�ect of the short memory parameter
is negligible for distant lags.

The literature is full of estimators for these processes and we will introduce the most
important later in this chapter. However it is interesting to highlight that parametric
methods estimate all the parameters, ϑ = (σ2, φ1, . . . , φp, d, θ1, . . . , θq), simultaneously,
whereas semiparametric methods are usually concerned with estimating the long term
behaviour. Both cases are of interest and either can outperform the other depending on
the situation.

1.3 Asymptotics for the autocorrelation function

In this section we review the literature of asymptotic results for the distribution of the
sample autocorrelation (and autocovariance) function of linear Gaussian processes. The
importance of these results will be clear in Chapter 4, when we will study the asymp-
totic behaviour of sample autocovariance and autocorrelation functions of long memory
processes.

A linear Gaussian process can be expressed in the form

Xt =
∞∑
j=0

ψjεt−j (1.6)

where εt is a Gaussian white noise and ψj is a sequence of constant, such that
∑∞

j=0 ψ
2
j <∞

(Priestley, 1988). This class of processes includes stationary autoregressive moving average,
fractional integrated and Gegenbauer processes.

The pioneering paper was written by Bartlett (1946), when he investigated the prop-
erties of the autocorrelation function of stationary linear processes. He started from the
simple autoregressive model of order 1, Xt = ρXt−1 +εt, and generalised �rst to an autore-
gressive process of any order and �nally to linear processes as de�ned by Equation (1.6).
The formulas, he gave in this paper, are very imprtant in the literature and are known as
Bartlett's formulas

cov(γ̂k, γ̂j) '
1
n

{ ∞∑
i=−∞

(γiγi+k−j + γiγi+k+j) + κγkγj

}
(1.7)

cov(ρ̂k, ρ̂j) '
1
n

∞∑
i=−∞

(ρiρi+k−j + ρiρi+k+j + 2ρkρjρ2
i

−2ρkρiρi+j − 2ρjρiρi+k) (1.8)
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and the variance

var(γ̂k) '
1
n

{ ∞∑
i=−∞

(γ2
i + γi+kγi−k) + κγ2

k

}
(1.9)

var(ρ̂k) '
1
n

{ ∞∑
i=−∞

(ρ2
i + ρi+kρi−k)− 4ρkρiρi−k + 2ρ2

kρ
2
i

}
(1.10)

of the sample autocovariance and autocorrelation functions, where κ is the excess of kur-
tosis3 and κ = 0 if εt is Normal.

The following important result is due to Anderson and Walker (1964). They showed
the asymptotic Normality of the estimator of the autocorrelation function for a class of
linear stationary processes. They de�ned the estimator of the autocorrelation function as
rk = γ̃k/γ̃0, with

γ̃k =
1

n− k

n−k∑
t=1

(Xt − µ)(Xt+k − µ) (1.11)

if the mean of the process µ is known, and otherwise r∗k = γ̃∗k/γ̃
∗
0 , with

γ̃∗k =
1

n− k

n−k∑
t=1

(Xt − X̄)(Xt+k − X̄)

where X̄ is the sample mean. They showed that any set of sample autocorrelations n1/2(rk−
ρk) of �nite s dimension is asymptotically s-variate Normal with zero mean and non-
singular covariance function

W = (wkj) = cov(ρ̂k, ρ̂j), (1.12)

where cov(ρ̂k, ρ̂j) is given in formula (1.8). The result we give in the following is valid also
when we divide by n in formula (1.11).

Theorem 1.10 Let Xt be a linear stochastic process, de�ned by

(Xt − µ) =
∞∑

i=−∞
ψiεt−i, t = 0,±1,±2, . . . ,

where
∑∞

i=−∞ |ψi| < ∞ and
∑∞

i=−∞ |i|ψ2
i < ∞ and εt is a set of independently and

3The excess of kurtosis is given by

κ4 =
k4

µ2
2

− 3,

where µ2 and k4 are the second and fourth order moments of Xt (Abramowitz and Stegun, 1972).
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identically distributed random variables with E(εt) = 0 and E(ε2t ) = σ2 < ∞. Let rk =
γ̃k/γ̃0, k = 1, 2, · · · , n − 1. Then the joint distribution of n1/2(rk − ρk), 1 ≤ k ≤ s ≤ n,
tends to an s-variate Normal distribution N(0,W ) when n → ∞, where W is given in
(1.12).

Corollary 1.11 Under the conditions of the theorem the joint distribution of n1/2(r∗k−
ρk), 1 ≤ k ≤ s ≤ n, tends to N(0,W ) when n→∞ where W is given in (1.12).

The next contribution is due to Cavazos-Cadena (1994) that proved the same result of
Anderson and Walker (1964) under slightly weaker conditions, i.e. squared summability of
the in�nite moving average representation coe�cients ψi (see Formula (1.5)) and squared
integrability of the spectrum.

Assumption 1.12 The innovations εt are independent and identically distributed with
zero mean and variance 1.

Assumption 1.13 ψi is non-null(ψi 6= 0), for some i = 0, 1, . . ., and

∞∑
i=0

ψ2
i <∞.

Assumption 1.14 The spectral density is squared integrable∫ π

−π
f(ω)2dω <∞.

In the following two theorems Wk, k = 0, 1, . . ., is a sequence of i.i.d. random variables
with a standard Normal distribution.

Theorem 1.15 Suppose that Assumptions 1.12-1.14 hold true and that

E(ε4) <∞. (1.13)

Then, for every positive integer h

(i) as n→∞,

n1/2(γ̂0 − γ0, . . . , γ̂h − γh)→ (Y0, Y1, . . . , Yh)

where

Yj = (γjK)W0 +
∞∑
k=1

(γk+j + γk−j)Wk, j ≥ 0,

and K = (E(ε4)− 1)1/2;
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(ii) as n→∞,

n1/2(ρ̂1 − ρ1, . . . , ρ̂h − ρh)→ (R1, . . . , Rh) (1.14)

where

Rj =
∞∑
k=1

(ρk+j + ρk−j − 2ρkρj)Wk, j ≥ 1. (1.15)

In his second result, Cavazos-Cadena (1994) relaxes the condition given in formula
(1.13) introducing a restriction on the sequence of ψi (see theorem below). This means
that, under these restrictions, the sample autocorrelation and the sample autocovariance
functions are asymptotically Normal even if the process is not Gaussian. In the following
theorem two new quantities are introduced

v̂ =
∑n

t=1 ε
2
t /n, if

∑n
t=1 ε

2
t 6= 0,

v̂ = 1 otherwise

and

γ̄k =
γ̂k
v̂
, k ∈ Z.

Theorem 1.16 Suppose that Assumptions 1.12-1.14 hold true and that

m
∑
|k|>m

ψ2
k → 0 as m→∞.

Then, for every positive integer h

(i) as n→∞,

n1/2(γ̄0 − γ0, . . . , γ̄h − γh)→ (Ȳ0, Ȳ1, . . . , Ȳh)

where

Ȳj =
∞∑
k=1

(γk+j + γk−j)Wk, j ≥ 0;

(ii) as n→∞,

n1/2(ρ̂1 − ρ1, . . . , ρ̂h − ρh)→ (R1, . . . , Rh)

where Rj is de�ned in Formula (1.15).

Another small step is due to He (1996): he extended existing results and was able to
show that also arfima processes with 0 < d < 0.25 have asymptotic Normality for sample
autocorrelation function.
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Assumption 1.17 The sequence ψi satis�es, for some τ > 1/2,

mτ
∑
|k|>m

ψ2
k → 0 as m→∞.

Theorem 1.18 Let Xt be de�ned by Equation (1.6) with spectral density f(ω) being
squared integrable and Assumption 1.17 being valid for some τ > 1/2. Suppose that εt is a
strictly stationary martingale di�erence white noise with variance σ2 and satis�es one of
the following conditions:

(i) E(ε2t |εs; s < t) = σ2 a.s. for all t (no garch e�ects);

(ii) εt is ergodic, E(ε2t ε
2
s) = σ4 for all s 6= t, and E(ε2t εt+jεt+k) = 0 for any j, k ≥ 0,

j 6= k.

Then for any positive integer h the result (1.14) is true.

Eventually, Hosking (1996) gave the asymptotic distribution of the autocorrelation
and autocovariance functions for arfima processes as de�ned by Equation (1.4). He
showed that the sample autocovariance and autocorrelation functions are Normal when
0 < d ≤ 1/4, even though with di�erent convergence rates, while the limiting distribution
for larger values of d, i.e. 1/4 < d < 1/2, is a Rosenblatt distribution (see Example (1.6))
with cumulants given in the following theorems.

Theorem 1.19 Let Xt satisfy Formula (1.6) and

γk ∼ λk2d−1, λ > 0, 0 < d < 1/2, k →∞
ψi ∼ δid−1 δ > 0, i→∞.

(i) If 1/4 < d < 1/2 and ε ∼ N(0, σ2) holds, let Ck = n1−2d(γ̂k − γk); then as n → ∞,

Ck − Cl
p→ 0 for k 6= l and the common limiting distribution of the Ck has r-th

cumulant

κr = λr2r−1(r − 1)!Kr, (1.16)

where

K1 = − 2
2d(1 + 2d)

,

and

Kr =
∫ 1

0
· · ·
∫ 1

0
g(y1, y2) . . . g(yr−1, yr)g(yr, y1)dx1 . . . dxr, (1.17)

for r ≥ 2, with

g(x, y) = |x− y|2d−1 − {x2d + (1− x)2d + y2d + (1− y)2d}/2d
+2/{2d(1 + 2d)}.
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(ii) Under the same conditions of (i), let Rk = n1−2d(ρ̂k − ρk)/(1− ρk); then as n→∞,

Rk − Rl
p→ 0 for k 6= l and the common limiting distribution of the Rk has rth

cumulant γ−r0 κr with κr de�ned by (1.16).

(iii) If d = 1/4 and ε ∼ N(0, σ2) holds, let Ck = (n/ log n)1/2(γ̂k − γk); then as n → ∞,

Ck − Cl
p→ 0 for k 6= l and the common limiting distribution of the Ck is N(0, 4λ2).

(iv) Under the same conditions of (iii), let Rk = (n/ log n)1/2(ρ̂k − ρk)/(1− ρk); then as

n → ∞, Rk − Rl
p→ 0 for k 6= l and the common limiting distribution of the Ck is

N(0, 4(λ/γ0)2).

(v) If 0 < d < 1/4 and E(ε4) < ∞ holds, let Ck = n1/2(γ̂k − γk); then as n → ∞, any
�nite subset of the Ck has a limiting distribution that is multivariate Normal with
mean zero and covariances given by formula (1.7).

(vi) Under the same conditions of (v), let Rk = n1/2(ρ̂k− ρk); then as n→∞, any �nite
subset of the Rk, k ≥ 1, has a limiting distribution that is multivariate Normal with
mean zero and covariances given by formula (1.8).

1.4 Estimation methods for long memory processes

There exists a wide literature about the problem of identifying and estimating an
arfima(p, d, q) process. The book of Beran (1994) gives a good overview on all these
methods.

We will consider three of the most common estimators, the Whittle estimator and two
semiparametric estimators, the local Whittle and the method of Geweke-Porter-Hudak
(GPH in the following). For sake of completeness we will give a brief introduction to other
less common estimators.

In this section we will indicate the true value of the parameter with a zero subscript,
e.g. ϑ0 or d0, and its estimate with ·̂, e.g. ϑ̂ or d̂. Also, f(ω) is the spectral density and
I(ωj) is the periodogram

I(ωj) =
1

2π
γ̂0 +

1
π

(n−1)∑
k=−(n−1)

γ̂k cosωjk,

at the Fourier frequencies ωj = 2πj/n with j = 1, . . . , [(n − 1)/2]. The squared brackets
[·] indicate the biggest integer less than or equal the number in it.

1.4.1 The exact Maximum Likelihood Estimator

If εt in Equation (1.4) is Gaussian, it is possible to write the joint distribution of
Xn = (X1, . . . , Xt, . . . , Xn) as

h(Xn;ϑ) =
1

(2π)n/2
|Tn(ϑ)|−1/2 exp

{
−1

2
Z′T−1

n (ϑ)Z
}
,
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where Z = (Xn − µ̂1), ϑ = (σ2, d, φ1, . . . , φp, θ1, . . . , θq) is the vector of parameters of
dimension m = p + q + 2, µ̂ is a consistent estimate of the mean of the process (e.g., the
sample mean X̄), 1 is a column vector of ones and Tn(ϑ) is the Toeplitz matrix of generic
element j, k

Tn;j,k(ϑ) =
∫ π

−π
f(ω;ϑ) exp{iω(r − s)}dω j, k = 1, 2, . . . , n,

with f(ω;ϑ) the spectral density of the process Xt where we highlight the dependence on
the parameter ϑ.

From the log-likelihood function

Ln(X;ϑ) = log h(X; µ̂, ϑ) =

− 2
n

log 2π − 1
2

log |Tn(ϑ)| − 1
2
Z′T−1

n Z

it is possible to derive the set of �rst partial derivatives that has to be solved to �nd the
maximum likelihood estimator (MLE in the following).

Asymptotic normality of the MLE has been studied by Dahlhaus (1988, 1989) and Ya-
jima (1985). The last one for fractional integrated processes arfima(0, d, 0) with Gaussian
and non-Gaussian innovations.

The following assumptions are necessary for the results of consistency and asymptotic
Normality of the maximum likelihood and the Whittle (introduced in the next section)
estimators.

Assumption 1.20 Let Xt, t ∈ Z, be a stationary Gaussian sequence with mean µ and
spectral density f(x, ϑ), ϑ ∈ Θ ⊂ Rm, where µ and ϑ are unknown parameters. Let µ0 and
ϑ0 be the true parameters of the process where ϑ0 is in the interior of Θ which is assumed to
be compact. If ϑ 6= ϑ′ the set {x : f(x, ϑ) 6= f(x, ϑ′)} is supposed to have positive Lebesgue
measure, otherwise the model is not identi�able.

Assumption 1.21 Suppose g(ϑ) =
∫ π
−π log f(x, ϑ) can be di�erentiated twice under the

integral sign.

Assumption 1.22 Suppose f(x, ϑ) is continuous at all (x, ϑ), x 6= 0, f−1(x, ϑ) is con-
tinuous at all (x, ϑ), and

f(x, ϑ) = O(|x|−α(ϑ)−δ) as x→ 0,

where 0 < α(ϑ) < 1.

Assumption 1.23 Suppose ∂/∂ϑjf
−1(x, ϑ), ∂2/∂ϑj∂ϑkf

−1(x, ϑ) and ∂3/∂ϑj∂ϑk∂ϑl
f−1(x, ϑ) are continuous at all (x, ϑ)

∂

∂ϑj
f−1(x, ϑ) = O(|x|α(ϑ)−δ) as x→ 0, 1 ≤ j ≤ p,
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∂2

∂ϑjϑk
f−1(x, ϑ) = O(|x|α(ϑ)−δ) as x→ 0 1 ≤ j, k ≤ p

and

∂3

∂ϑjϑkϑl
f−1(x, ϑ) = O(|x|α(ϑ)−δ) as x→ 0 1 ≤ j, k, l ≤ p.

Assumption 1.24 Suppose ∂/∂xf(x, ϑ) is continuous at all (x, θ), x 6= 0, and

∂

∂x
f(x, ϑ) = O(|x|−α(ϑ)−1−δ) as x→ 0.

Assumption 1.25 Suppose ∂2/∂x∂ϑjf(x, ϑ) is continuous at all (x, ϑ), x 6= 0, and

∂2

∂x∂ϑj
f−1(x, θ) = O(|x|−α(ϑ)−1−δ) as x→ 0, 1 ≤ j.

Assumption 1.26 Suppose ∂3/∂2x∂ϑjf(x, θ) is continuous at all (x, ϑ), x 6= 0, and

∂3

∂2x∂ϑj
f−1(x, θ) = O(|x|−α(ϑ)−2−δ) as x→ 0, 1 ≤ j.

Assumption 1.27 Suppose ∂/∂xf−1(x, ϑ) and ∂2/∂2xf−1(x, ϑ) are continuous at all
(x, ϑ), x 6= 0, and(

∂

∂x

)k
f−1(x, ϑ) = O(|x|α(ϑ)−k−δ) k = 0, 1, 2.

Assumption 1.28 The above constant can be chosen independently of ϑ (not of δ).

Assumption 1.29 Assume α is continuous. Furthermore, there exists a constant C
with

|f(x, ϑ)− f(x, ϑ′)| ≤ C|ϑ− ϑ′|f(x, ϑ′)

uniformly in all x and all ϑ, ϑ′ with α(ϑ) ≤ α(ϑ′) where | · | denotes the Euclidean norm.

Theorem 1.30 Suppose Assumptions 1.20, 1.22, 1.23 and 1.27-1.29 hold and µ̂ is a
consistent estimate of µ0. Then

ϑ̂
p→ ϑ0.

Theorem 1.31 Suppose Assumptions 1.20, 1.22, 1.23 and 1.27-1.29 hold and µ̂ is an
n(1−α(ϑ0))/2-consistent estimate of µ0. Then

√
n(ϑ̂− ϑ0) d→ N(0, T−1

n ).

Even though this estimator is asymptotically Normal, it has the drawback of requiring
a very large computational burden for maximizing a system of m equations and inverting
the n× n Toeplitz matrix Tn.
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1.4.2 The Whittle estimator

Fox and Taqqu (1986) introduced a maximum likelihood method based on the frequency
domain, i.e. the MLE is found by maximizing

1
σ

exp
{
−ZT−1

n Z
2nσ2

}
.

They followed a suggestion of Whittle (1951), who proposed to use an approximation to
invert the Toeplitz matrix Tn(ϑ). By Parseval's relation it is possible to show that a good
approximation for Tn is given by the matrix An(ϑ) of generic element j, k

aj,k(ϑ) =
1

(2π)2

∫ π

−π
exp{i(j − k)x} [f(x, ϑ)]−1 dx.

This estimator extends the results of Hannan (1973), who applied Whittle's method to the
estimation of the parameters of arma models. Fox and Taqqu's result, later generalized
by Dahlhaus (1989) to the exact maximum likelihood estimator, is the basis of one of
the most used methods for estimating the long (and short, if both are present) memory
parameters in Gaussian time series. Giraitis and Surgailis (1990) generalized the result of
Fox and Taqqu in order to prove the asymptotic normality of Whittle's estimator relaxing
the Gaussianity assumption.

The exact maximum likelihood estimator has the drawback of requiring a large com-
putational burden and it might also cause computational problems when calculating the
autocovariances needed to evaluate the likelihood function (Sowell, 1992). These di�cul-
ties do not occur when using the Whittle estimator, which has the further advantage of
not requiring the estimation of the mean of the series (generally unknown in practice). Be-
sides, under some regularity assumptions (Dahlhaus, 1989; Fox and Taqqu, 1986) ful�lled
by arfima(p, d, q) processes, it is possible to prove that the Whittle estimator has the
same asymptotic distribution as the exact maximum likelihood estimator and it converges
to the true values of the parameters at the usual rate of n−1/2. Eventually, for Gaussian
processes the Whittle estimator is asymptotically e�cient in the sense of Fisher.

If the Whittle approximation to the log-likelihood function is used, the parameter
vector ϑ = (σ2, d, φ1, . . . , φp, θ1, . . . , θq) is estimated by minimizing, with respect to ϑ, the
estimated variance of the underlying white noise process:

σ2(ϑ) =
1

2π

[(n−1)/2]∑
j=1

I(ωj)
f(ωj , ϑ)

,

where f(ωj , ϑ) indicates the spectral density of the arfima process at the Fourier fre-
quency ωj .

Theorem 1.32 If f(x, ϑ) satis�es Assumptions 1.22 and 1.24, then with probability 1

lim
N→∞

ϑ̂N = ϑ0 and lim
N→∞

σ̂2
N = σ2

0.
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Theorem 1.33 If Assumptions 1.21-1.26 are satis�ed, then the random vector
√
n(ϑ̄n−

ϑ0) tends in distribution to a Normal random vector with mean 0 and covariance matrix
4πW−1(ϑ0), with

wjk(ϑ) =
∫ π

−π
f(x, ϑ)

∂2

∂ϑj∂ϑk
f−1(x, ϑ)dx.

Example 1.34 Let Xt be an arfima(0, d, 0) process with d ∈ (−0.5, 0.5), then the Whit-
tle estimate for d can be found minimizing the function

σ2
n(d) =

1
n(2π)2

n∑
j,k=1

(Xj − X̄)(Xk − X̄)
∫ π

−π

ei(j−k)x

f(x; d)
dx,

where f(x, d) is the spectral density of a FI(d) process. Moreover, according to Theorem
(1.33) d is asymptotically normally distributed with variance

4π∫ π
−π(log(2− 2 cosω))2dω

=
6
π2
≈ 0.6079.

The drawback of this estimator is that it is necessary to assume the parametric form of
the spectral density to be known a priori, i.e. specify the order of the arma polynomials, p
and q, and decide if including the long memory behaviour. If the speci�ed spectral density
function is not the correct one (as it is often the case) the estimated parameters may be
dramatically biased. On the other hand, it can be di�cult to detect long memory together
with the correct orders p and q of the short memory part. Usually, the short memory is
dominated and confounded by the long term behaviour of the series.

1.4.3 The local Whittle estimator

The local Whittle estimator is a semi-parametric estimator of the memory parameter
d developed by Robinson (1995a) following a suggestion of Künsch (1987). Robinson
demonstrated that the local Whittle estimator is asymptotically more e�cient than the
GPH (later in this Chapter) in the stationary case, although it is not de�ned in closed
form and numerical optimization methods are needed to calculate it.

The advantage of semi-parametric methods, like the local Whittle and the GPH (in-
troduced in the next section), is that the speci�cation of the model is not really necessary
because the only information we need is the behaviour of the spectral density near the
origin. Furthermore, the long memory parameter can be estimated separately from the
short memory part.

It can be found minimizing the following objective function:

R(d) = log

 1
m

m∑
j=1

ωdj I(ωj)

− d 1
m

m∑
j=1

logωdj , (1.18)

where m is an integer less than n/2.
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For the results on consistency and asymptotic normality of the local Whittle we need
to state some assumptions.

Assumption 1.35 As ω → 0+,

f(ω) ∼ G0ω
−2d0 ,

where G0 ∈ (0,∞) and d0 ∈ (∆1,∆2), with −0.5 < ∆1 < ∆2 < 0.5.

Assumption 1.36 In a neighbourhoood (0, δ) of the origin, f(ω) is di�erentiable and

d

dω
log f(ω) = O(ω−1) as ω → 0 + .

Assumption 1.37 We have

xt − E[x0] =
∞∑

j=−∞
αjεt−j ,

∞∑
j=0

α2
j <∞,

where

E(εt|Ft−1) = 0, E(ε2t |Ft−1) = 1, a.s., t = 0,±1, . . . ,

in which Ft is the σ-�eld of events generated by εs, s ≤ t, and there exists a random
variable ε such that Eε2 <∞ for all η > 0 and some K > 0, P (|εt| > η) ≤ KP (|ε| > η).

Assumption 1.38 As n→∞,

1
m

+
m

n
→ 0,

i.e. m has to go to in�nity but at a slower rate than n.

Assumption 1.39 For some β ∈ (0, 2],

f(ω) ∼ G0ω
2d0(1 +O(ωβ)) as ω → 0+,

where G0 ∈ (0,∞) and d0 ∈ [∆1,∆2].

Assumption 1.40 In a neighbourhood (0, δ) of the origin, α(ω), the Fourier transform
of Xt, is di�erentiable and

d

dω
α(ω) = O

(
|α(ω)|
ω

)
as ω → 0 + .

Assumption 1.41 Assumption 1.36 holds and also

E(ε3t |Ft−1) = µ3, a.s., E(ε4t ) = µ4, t = 0,±1, . . . ,

for �nite constant µ3 and µ4.
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Assumption 1.42 As n→∞,

1
m

+
m1+2β(logm)2

n2β
→∞.

Theorem 1.43 Let Assumptions 1.35-1.38 hold. Then

d̂
p→ d0 as n→∞.

Theorem 1.44 Let Assumptions 1.39-1.42 hold. Then

m1/2(d̂− d0) d→ N

(
0,

1
4

)
as n→∞.

Notice that the convergence rate depends onm1/2, the number of frequencies considered
in the estimate. Thus, the local Whittle estimate is much less e�cient than parametric
estimates, like, for example, the Whittle, when they happen to be based on a correct model,
but it is asymptotically more e�cient than the GPH estimate.

1.4.4 The Geweke-Porter-Hudak estimator

The GPH was introduced by Geweke and Porter-Hudak (1983) and is one of the best
known methods to estimate in a semi-parametric way the fractional parameters d of long
range dependence behaviour.

This method was �rst introduced by Geweke and Porter-Hudak (1983) for the Gaussian
case when d belongs to (−1/2, 0) and then it was extended by Robinson (1995b).

Assume that the process Xt, t = 1, 2, . . . , n, is an arfima(p, d, q) model as de�ned in
Equation (1.4), then we can observe that the spectral density of this model is proportional
to (4 sin2(ω/2))−d near the origin, i.e.

f(ω) ∼ cf (4 sin2(ω/2))−d, (1.19)

when ω tends to 0. Since the periodogram I(ωj) is an asymptotically unbiased estimate
of the spectral density, that is

lim
ω→0

E[I(ωj)] = f(ωj),

it is possible to estimate d applying the least squares method to the equation

log(I(ωj)) = log{σ2fε(0)2π} − d log{4 sin2(ωj/2)}+ uj , (1.20)

where uj , j = 1, 2, . . . , [n/2] are i.i.d. error terms. Robinson (1995b) showed that it is pos-
sible to consider −2 logωj instead of − log(4 sin2(ωj/2)) because the results are equivalent
at the �rst-order.

Equation (1.19) is an asymptotic relation that holds only in a neighbourhood of the
origin; thus, if we use this relation from all periodogram ordinates (−π < ω < π), the
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estimator of d can be highly biased. Geweke and Porter-Hudak (1983) proposed to con-
sider only the �rst

√
n frequencies for the estimate since d is the memory parameter and

in�uences mostly the lower frequencies. The higher frequencies are in�uenced by the short
memory arma part.

Under some regularities conditions Hurvich et al. (1998) and Robinson (1995b) have
shown the asymptotic Normality of the GPH estimator

√
m(d̂− d0) ∼ N

(
0,
π2

24

)
,

where m is the number of frequency considered in the estimation and has to respect m =
o(n4/5) and log2 n = o(m).

The main drawback of this estimator is its large standard deviation. Moreover Agiak-
loglou et al. (1993) showed that it is biased in presence of arma parameters near the
non-stationary boundary.

An interesting advantage with respect to the Whittle is that both GPH and the local
Whittle estimators can be easily applied without bothering about the arma part of the
process.

1.4.5 The R/S estimator

The R/S estimator was widely used by the famous hydrologist Hurst (1951) in his
investigations of the Nile River's �ow (see Figure 1.1). He noticed the so-called Joseph
e�ect, i.e. long periods of abundant water and long periods of low level. The problem
was linked to the building of the ideal reservoir for the water. He could describe the ideal
capacity with the adjusted range statistic R(t, k) given by

R(t, k) = max
0≤i≤k

[
xt+i − xt −

i

k
(xt+i − xt)

]
− min

0≤i≤k

[
xt+i − xt −

i

k
(xt+i − xt)

]
that can be standardized by

S(t, k) =

√√√√k−1

t+k∑
i=t+1

(xi − x̄t,k)2,

where x̄t,k = k−1
∑t+k

i=t+1 xi. The ratio is called the rescaled adjusted range or R/S-statistic

Q = Q(t, k) = R/S =
R(t, k)
S(t, k)

.

Plotting logQ(t, k) against k we should obtain a straight line. In the case of uncorrelated
data the slope is around 1/2, whereas in the presence of long memory it assumes larger
values, between 1/2 and 1. These empirical results are con�rmed by two theorems of
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Mandelbrot (1975). The �rst theorem is an asymptotic result for k−
1
2Q(t, k) valid for short

memory processes, whereas the second shows similar asymptotic properties for k−HQ(t, k)
for processes converging to fractional Brownian motion.

Theorem 1.45 Let Xt be such that X2
t is ergodic and t−1/2

∑t
s=1Xs converges weakly

to Brownian motion as t→∞. Then as k →∞,

k−
1
2Q

d→ ξ

where ξ is a nondegenerate random variable.

Theorem 1.46 Let Xt be such that X2
t is ergodic and t−H

∑t
s=1Xs converges weakly to

fractional Brownian motion as t→∞. Then as k →∞,

k−HQ
d→ ξ

where ξ is a nondegenerate random variable.

The R/S statistic has the nice property of being robust against heavy tails if the domain
of attraction is a stable distribution with 0 < α < 2.

Definition 1.47 A random variable Y is stable if, for every k, there are independent
random variables Y1, . . . , Yk with the same law as Y and constants ak > 0, bk such that

Y1 + · · ·+ Yk
d= akY + bk.

It can be proved that Ak = k1/α with 0 < α ≤ 2 and the number α is called the index of
the stable law (for more details, see Revuz and Yor, 1994).

Theorem 1.48 Let Xt be i.i.d. random variables with E(X2
t ) = ∞ and such that they

are in the domain of attraction of stable distributions with index 0 < α < 2. Then the
conclusion of Theorem 1.45 holds.

Unfortunately there is not an asymptotic theory for Q, which makes it di�cult, for
example, to build con�dence intervals. It is open the question of selecting the cut-o� point
for k and results may vary a lot for increasing values of it. Lastly, Bhattacharya et al.
(1983) showed that this estimator lacks robustness against departures from stationarity:
in particular it can give misleading results in the presence of a slowly decaying trend.

1.4.6 Variance-type estimator

This estimator was introduced by Taqqu et al. (1995) and then developed by Giraitis
et al. (1999) and Teverovsky and Taqqu (1997),

d̂m =
1
2

(
1− logS2

m

logm

)
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with

S2
m =

[
n

m

]−1 [n/m]∑
k=1

X(m)
k −

[
n

m

]−1 [n/m]∑
j=1

X
(m)
j


where X

(m)
k is the aggregated series of order m,

X
(m)
k =

1
m

m∑
t=1

Xt+(k−1)m, k = 1, 2, . . . .

Since the bias of the variance-type estimator is of order no less than (log n)−1, it can be
useful only in very long series.

There exists a central limit theorem for the variance-type estimator if 0 < d < 0.25. For
larger values, i.e. 0.25 < d < 0.5, the convergence rate depends on the unknown parameter
and its limiting distribution is not Normal but depends on the Rosenblatt process (see
Example 1.6), thus is relatively intractable.

1.4.7 Higuchi's method

Higuchi (1988) modi�ed a method introduced by Burlaga and Klein (1986) where the
authors try to calculate the fractal dimension. A curve is said to be fractal if f(ω) ∼ ω−D,
where D is the fractal dimension and is related to the Hurst exponent H by the equation
D = H + 1. In particular, he changed the way of calculating the length of a curve because
the previous method by Burlaga and Klein (1986) gave very biased results for values of
the parameter H approaching 1. Interestingly, its formula remembers the formula for the
absolute variation of a generic real function.

Given a �nite time series Yt, t = 1, 2, . . . , n, consider the series of partial sums Xt =∑t
i=1 Yt. For example if Yt is a fractional Gaussian noise then Xt is fractional Brownian

motion.

Let the length of the curve be de�ned as

Lm(k) =
1
k


[n−mk ]∑

i=1

∣∣Xm+ik −Xm+(i−1)k

∣∣
 n− 1[

n−m
k

]
k


where (n−1)/([(n−m)/k]k) is a normalization factor, m and k are two integers indicating
the initial time and the interval time, respectively. If Xt is a fractal curve then 〈L(k)〉 ∼
k−H−1, with 〈L(k)〉 the average value over k sets of Lm(k). Plotting 〈L(k)〉 and k on
double logarithmic scale, we obtain a straight line and it is possible to obtain an estimate
of H with the least squares method.

This estimator has two main drawbacks. On one hand, there is no result on its asymp-
totic distribution and properties; on the other, it can be useful only with quite long series
because of its bias with small sample sizes.
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1.5 Models with seasonal persistence

In this section we give a brief summary of models with seasonal persistencies, and then
we describe in more detail Gegenbauer processes with k factors. In recent years many
processes, scalm, arfisma and garma processes, to model seasonal long memory have
been developed together with di�erent estimation methods.

Arteche and Robinson (2000) considered scalm (Seasonal/Cyclical Asymmetric long
memory) processes. This kind of process can model persistent seasonality with di�erent
increasing and decreasing rates, given by a peak in the spectrum which is not symmetric.
scalm processes are useful to model economic cycles, where growing periods are slower
than periods of recession: this asymmetric feature can be captured by this model very
realistically. They proposed to use a generalized version of GPH and local Whittle to
estimate the parameters.

arfisma(p, d, q)×(P,D,Q)S processes are a generalization of short memory seasonal
behaviour given by

(1−B)d(1−BS)DXt = εt, (1.21)

where in this instance p = q = P = Q = 0, and they have been studied in many papers (for
the complete model, see Reisen et al., 2006). They are not very �exible because they have
singularities in the spectrum at each seasonality as shown in Figure 1.6. Palma and Chan
(2005) studied the asymptotic properties of the exact maximum likelihood estimator and
used arfisma to model internet tra�c data. Reisen et al. (2006) proposed several methods
to estimate the parameters: the regression method, i.e., a generalization of GPH (Geweke
and Porter-Hudak, 1983); an adaptation of the semi-parametric estimator proposed by
Arteche and Robinson (2000); and two parametric methods, the penalized (Whittle) and
the exact maximum likelihood estimators.

1.5.1 Gegenbauer processes

A more �exible option is given by the k-factor Gegenbauer arma class that allows
k peaks in the spectrum at any frequencies but not necessarily at regular intervals as
in the arfisma. The story of garma processes starts with Hosking (1981), Woodward
et al. (1989) and Giraitis and Leipus (1995). Other papers are Woodward et al. (1998),
Smallwood and Beaumont (2004), Sadek and Khotanzad (2004) and Caporale and Gil-
Alana (2006). These papers proposed to estimate the parameters of a Gegenbauer process
using the maximum likelihood. However there are many problems to consider. Firstly,
we will see that not all estimators have the same convergence rate and this can be very
problematic. Secondly, maximizing the likelihood function is absolutely burdensome: it is
necessary to consider a grid of values in a multidimensional space and it becomes onerous
when there are more than two Gegenbauer frequencies. Lastly, the risk of misspeci�cation
is high since the short memory part is usually confounded with long memory behaviour
and it can be recognized in the residuals after �ltering the long memory behaviour. The
�rst paper on these processes was written more than twenty years ago; however the existing
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(a) arfisma(0, 0, 0)(0, 0.3, 0)4 (b) arfisma(0, 0, 0)(0, 0.3, 0)12

(c) arfisma(0, 0.4, 0)(0, 0.3, 0)4 (d) arfisma(0, 0.4, 0)(0, 0.3, 0)12

Figure 1.6: Spectral density of a process with representation (1.21).
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literature is not very extensive and model identi�cation and parameter estimation are still
open problems.

The form of a k frequency Gegenbauer arma process is given by

k∏
j=1

(1− 2ηjB +B2)dj (Xt − µX) = εt (1.22)

where µX is the mean of the process, d = (d1, d2, . . . , dk) are the seasonal long memory
parameters, η = (η1, η2, . . . , ηk) are the Gegenbauer frequencies and εt is an arma(p, q)
process Φ(B)εt = Θ(B)at, with at Gaussian white noise. Each Gegenbauer polynomial
has an in�nite expansion given by

(1− 2ηiz + z2)−di =
∞∑
j=0

C
(di)
j (ηi)zj ,

for |z| ≤ 1 and |ηj | ≤ 1, where

C
(di)
j (ηi) =

[j/2]∑
k=0

(−1)k(2ηi)j−2kΓ(λ− k + j)
k!(j − 2k)!Γ(λ)

,

and the coe�cients C
(di)
j can be easily computed via the recursion (Chung, 1996)

C
(di)
j (ηi) = 2ηi

(
di − 1
j

+ 1
)
C

(di)
j−1(ηi)−

(
2
di − 1
j

+ 1
)
C

(di)
j−2(ηi).

For the process to be stationary and invertible it is required that |di| < 0.5 if |ηi| < 1, and
|di| < 0.25 if ηi = ±1, apart from the conditions on the arma part (see Section 1.2).

The autocovariance function of a one-factor Gegenbauer process is given by

γk = σ2
∞∑
j=0

C
(d)
j (η)C(d)

j+k(η).

Gray et al. (1994) showed that, in this simple case, the autocorrelation function has a slow
decaying rate

ρk ∼ k2d−1 cos(2πkω0),

where ω0 = (cos−1 η)/2π is called the G-frequency.

In the case with more than one frequency the autocovariance function is much more
complicated and there is not a closed form. However it is possible to compute a good
approximation of γk by integrating the spectral density

γk = 2
∫ 0.5

0
f(ω) cos(2πωk)dω
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where

f(ω) = σ2
a

∣∣∣∣Θ(e−iω)
Φ(e−iω)

∣∣∣∣ k∏
j=1

[4(cosω − ηj)2]−dj , (1.23)

where σ2
a is the variance of the white noise at.

There are few papers on estimating techniques and model identi�cation for garma
processes. Woodward et al. (1998) proposed an algorithm to maximize the log-likelihood
function

logL(X;µ, α) =
1
2

log |Σ(α)| − 1
2

(X − µ1)TΣ(α)−1(X − µ1), (1.24)

where α = (φ1, . . . , φp, θ1, . . . , θq, d1, η1, . . . , dk, ηk, σ
2) is the vector of the parameters and

Σ(α) is the covariance matrix. The algorithm is as follows

1. Determine the values of {d1, η1, . . . , dk, ηk} to be considered in a grid search by po-
sitions and magnitudes of the peaks in the spectrum.

2. Backcast the time points −1,−2, . . . ,−M + 1 using a high order ar model, where
M is a su�ciently large number.

3. For each combination {d1, η1, . . . , dk, ηk}, carry out the transformation

Wt =
k∏
j=1

(
t+M−1∑
l=0

C
(dj)
l Bl

)
Xt,

to obtain the arima process Wt.

4. Calculate the arima-based likelihood value for Wt.

5. The combination {d1, η1, . . . , dk, ηk} which is associated with the largest likelihood
value is the approximate maximum likelihood estimator.

6. Calculate the AIC (Akaike, 1974) for Wt based on the obtained approximate maxi-
mum likelihood estimates.

7. To identify p and q the �rst �ve steps can be repeated with di�erent values of p, q.
The one associated with the minimum AIC value is selected as the model.

This algorithm uses three approximations: at step one estimating past values through a
high order ar procees, at step three by truncating the sum to estimate the process Wt and
at step six by using the likelihood function for Wt instead of Xt. Sadek and Khotanzad
(2004) proposed a similar procedures without step 1.
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Smallwood and Beaumont (2004) estimated the parameter by maximizing the condi-
tional sum of squares (CSS)

L(α) = −n
2

log(2π)− n

2
log(σ2)− 1

2σ2

n∑
t=1

ε2t . (1.25)

They highlight that this method has some nice properties compared to the other two:

• it can be easily extended with non-normal or garch residuals, under the assumption
that the sequence εt is a martingale di�erence4;

• they proved asymptotic normality for the estimates.

One of the main problems in estimating garma processes derives from the di�erent con-
vergence rates of the estimates. Even though δ̂ = (d̂1, . . . , d̂k, φ̂

′, θ̂′) and η̂∗ = (η̂1, . . . , η̂k)
have independent asymptotic distributions, the elements of δ̂ are Op(n−1/2), whereas η̂i is
Op(n−1) if |η̂i| < 1 and Op(n−2) if |η̂i| = 1. The grid search might not produce consistent
and e�cient estimators. Smallwood and Beaumont (2004) proposed a grid search over
η∗ combined with a non-speci�ed gradient method over δ. �ne grid for η, good starting
values.

All algorithms to maximize likelihood functions use a grid of values for dj , ηj , j =
1, . . . , k, however for increasing values of k the computational burden becomes enormous.

It is well known that parametric estimation methods are more e�cient than non-
parametric procedures; however in the case of garma processes it is almost impossible
to identify the process a priori. As a �rst step it is better to use non-parametric methods
to identify long run and short run behaviours separately: thus the non-parametric pro-
cedures are exploratory and in a second step some parametric procedure can be used to
compute more e�cient estimates. We propose an identi�cation algorithm in a later chapter
of this thesis.

4The sequence Yt is a martingale di�erence if

E[Yt|Z0, . . . , Zt−1] = 0,

where Zt is a martingale (Hall and Heyde, 1980).
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Chapter 2

Bootstrap methods

Bootstrap methods were �rst introduced by Efron (1979) and they have developed
quickly since then. They owe their popularity to the ease of use together with the advent
of powerful calculators and nowadays they are useful in a wide range of problems, con-
�dence intervals, hypothesis testing and distribution estimation are only some examples.
Originally, they were born to easily compute measures of accuracy for a statistic of inter-
est because we usually can only compute explicitly them for some quantities, such as the
standard deviation for the sample mean. For a review of the bootstrap methodology, see
Hinkley (1988). Monographs on the topic include Efron and Tibshirani (1993), Davison
and Hinkley (1997), Shao and Tu (1995) and Lahiri (1992).

Bootstrap techniques for a sample y1, . . . , yn of i.i.d. data are very simple. Suppose that
we are interested in a parameter θ such that θ̂ = T (y1, . . . , yn), where T (·) is a statistic.
The i.i.d. bootstrap resamples with replacement from y1, . . . , yn to obtain the bootstrap
sample y∗1,b, . . . , y

∗
n,b, b = 1, . . . , B. By virtue of the plug-in principle, we can compute the

bootstrap estimate θ̂∗b = T (y∗1,b, . . . , y
∗
n,b). The set of θ̂

∗
b is called the bootstrap distribution

of θ̂ and can be used for the purposes mentioned above.

Unfortunately, things are not so easy with non-i.i.d. data and this technique destroys
completely the dependence structure of any autocorrelated sequence of data. Other ways
of resampling must be found to reproduce the dependence structure and to obtain a new
series with dependence characteristics similar to the observed one. Li and Maddala (1996)
discussed the di�culties found in the use of bootstrap for time series models, and gave
some guidelines. Time series violate the i.i.d. assumption thus the observations are not
exchangeable. They also highlight that the bootstrap leads to an improvement only with
asymptotically pivotal statistics. More recently, Bühlmann (2002) reviewed and compared
some bootstrap methods for time series illuminating some theoretical aspects of the pro-
cedure as well as their performance on �nite-sample data. Politis (2003) showed that
bootstrap methods allows to estimate consistently the variance of the sample autocorre-
lation function ρ̂k. The only explicit estimates available are Bartlett's formulas (Equa-
tions (1.7)(1.10)) but they are valid only for linear processes. For non-linear processes
the variance of ρ̂k is intractable involving in�nite sums of fourth-order cumulants. Under
stationarity assumptions, bootstrap leads to higher-order accuracy when estimating the

37
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distribution of the sample mean.
Bootstrap methods for time series can be categorized into time domain and frequency

domain methods. In the former group we �nd, for example, the parametric bootstrap, the
block bootstrap (Künsch, 1989), the sieve bootstrap (Kreiss, 1992), the autoregressive-
aided periodogram bootstrap (Kreiss and Paparoditis, 2003) and a local bootstrap in the
time domain (Paparoditis and Politis, 2002). Examples of methods belonging to the latter
group are the phase scrambling (Theiler et al., 1992), a local bootstrap in the frequency
domain (Paparoditis and Politis, 1999) and the kernel bootstrap (Dahlhaus and Janas,
1996; Franke and Härdle, 1992).

In Sections 2.1-2.6 of this chapter we will give a brief introduction to the main methods
developed: the block bootstrap, the model-based resampling, the phase scrambling, the sieve
bootstrap, the local bootstrap and the log-periodogram regression. In spite of the great
number of papers on bootstrap techniques for time series, the problem of replicating time
series is still open since these techniques are not always satisfactory especially if the time
series exhibits long range dependence.

Section 2.7 gives an overview of the use of bootstrap in building con�dence intervals
that usually provides better results and in some cases it also has a faster convergence rate.
There is a wide literature on the topic: examples are the works of Efron (1982, 1987a,b,c);
Hall (1988, 1992b); Li and Maddala (1996).

2.1 Resampling blocks

The block resampling or moving block bootstrap (MBB) is a generalisation of the
resampling scheme for i.i.d. observations. The time series is divided in blocks B1, . . . ,Bk
for some integer k, where the choice of the blocks will be discussed in the next paragraphs.
The pseudo series is obtained by resampling the blocks with replacement B∗1, . . . ,B∗k′ , for
some integer k′ such that the total length is n (or close to it). Distant observations are
independent thus blocks can be treated as independent observations, as in the i.i.d. case,
but the dependence structure within each block is preserved. This method can be used
with stationary time series and is particularly appropriate when the series exhibits short
range behaviour or the dependence structure is non-linear and the linear approximation is
very poor (see the next section for more details).

The MBB is characterized by two main features: the choice of block length and whether
blocks are overlapping or non-overlapping blocks. Many authors have proposed di�erent
procedures for dividing the blocks. The procedures proposed in the literature have di�erent
names corresponding to di�erent techniques, however we highlight the common denomina-
tor that all methods sample blocks of consecutive observations.

Given an observed stationary series X1, . . . , Xn, Künsch (1989) developed a MBB with
overlapping blocks B1, . . . ,Bn−l de�ned by

Bj = (Xj , . . . , Xj+l−1), j = 1, . . . , n− l,

where l is the block length. The overlapping blocks have a side e�ect because the �rst
and last l − 1 observations are sampled less frequently than the rest. An alternative to
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this inconvenience is given in Carlstein (1986), where the author proposed non-overlapping
blocks B′1, . . . ,B′n−l, with

B′j = (X(j−1)l+1, . . . , Xjl), j = 1, . . . , b,

where lb ≤ n. Figure 2.1 shows the di�erence between overlapping and non-overlapping
blocks.

Assuming that we are interested in describing a population through a parameter θ, the
length of the block l a�ects its bootstrap distribution. Longer blocks reduce the variance
of the estimator but increase the bias because there are fewer blocks to sample. Thus,
choosing the block's length is a trade-o� between variance and bias. Also the dependence
plays an important role and we expect to need longer blocks to capture stronger depen-
dence. Carlstein (1986) proposed to minimise the mean squared error of the statistic θ of
interest. However, this is often not possible, especially when nothing is known about θ a
priori. Künsch (1989) agrees with Carlstein that the choice of l is a very delicate issue and
highlights the importance that the length l→∞ as n→∞ but at a slower rate, l/n→ 0.

Figure 2.1: Overlapping and non-overlapping blocks in the MBB.

The MBB produces pseudo series that might not be stationary and exhibit artefacts
where resampled blocks are linked together (Bühlmann, 2002). Moreover, the bootstrap
estimate of the mean is biased, i.e. E[X̄∗|{Xt}] 6= X̄, where {Xt} is the observed series.
Politis and Romano (1994) described the stationary bootstrap where the length of each
block is geometrically distributed with parameter p, thus the block's average length is 1/p.
To choose all the observations with the same probability they consider the data to be in
a circle, i.e. X1 follows Xn. This expedient avoids both the drawback of non-stationary
pseudo series and the bias of mean and variance bootstrap estimates. From simulation
results it appears that the choice of p is less problematic then the choice of l, in the sense
that a wrong value has a smaller deleterious impact in the �nal result.

MBB is a very general method and is very easy to implement, however is more sensitive
to the block length than the sieve bootstrap (refer to Section 2.4) to the model selection.



40 Bootstrap and approximation methods for long memory processes

2.2 Parametric bootstrap

If we know that the data have been generated from a linear process, e.g. an arma(p, q),
it is possible to estimate the residuals of the process. Under the assumption that the
model is correctly speci�ed, the residuals are independent and identically distributed: this
is a perfect environment in which to apply i.i.d. bootstrap. The pseudo series is built
recursively using the bootstrapped residuals and the estimated parameters. The main
steps of the parametric bootstrap are as follows.

(a) Fit an appropriate model to the data, e.g. an ar(p), choosing the best model ac-
cording to an appropriate criterion (AIC, BIC, etc.);

(b) estimate the residuals based on the model;

(c) bootstrap the residuals with i.i.d. bootstrap;

(d) use the estimates and the bootstrapped residuals to build up iteratively the pseudo-
series.

Even though the procedure looks quite easy there are many di�erent ways to perform
it and special care is needed if data are non-stationary. We will give some details on
the parametric bootstrap for stationary autoregressive and autoregressive moving average
stationary processes. However it is possible to use a parametric bootstrap for unstable and
explosive autoregressive processes (more details can be found in Lahiri, 1992).

The literature is full of works on the model based bootstrap. Swanepoel and van Wyk
(1986) used bootstrap methods to build con�dence bands for the spectral density. An
interesting work is that of Bose (1988). He showed that the bootstrap distribution of the
autoregressive parameters is more e�cient than the normal approximation. Datta and
Sriram (1997) approximated the least squares distribution of the parameter φ1 of an ar(1)
that is valid for any value of φ1 even though bootstrap procedures usually fails for unstable
processes, i.e. when φ1 = ±1.

The general ar(p) model is of the form

Φ(B)(Xt − µ) = εt

where Φ(B) is de�ned as in Formula (1.4), εt is a sequence of i.i.d. random variables with
zero mean and variance σ2. Without loss of generality we can assume that µ = 0 and
σ2 = 1. Under these assumptions, the residuals can be estimated by

ε̂t = Xt − φ̂1Xt−1 − · · · − φ̂pXt−p, t = p+ 1, · · · , n,

where φ̂i are consistent estimators, e.g. based on least squares. Lahiri (1992) suggests to
centre the residuals

ε̃t = ε̂t − ε̄t, t = p+ 1, · · · , n,
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where ε̄t =
∑n

t=p+1 ε̂t/(n− p). Assuming that the centred residuals are i.i.d. it is possible
to generate the bootstrap innovations ε∗t by randomly sampling with replacement from
ε̃p+1, · · · , ε̃n. The bootstrap series is obtained recursively:

X∗t = φ̂1X
∗
t−1 + · · ·+ φ̂pX

∗
t−p + ε∗t ,

where it is common sense to consider a burning-in If the residuals are Normally distributed
it is possible to generate the bootstrap errors from a Normal distribution with zero mean
and variance estimated by the estimated residuals σ̂2 = v̂ar(ε̃t).

Bootstrapping an arma process Φ(B)Xt = Θ(B)εt is very similar to bootstrapping a
pure autoregressive process. The formula to estimate the residuals becomes

ε̂t =
t∑

j=1

θ̃j−1

(
−

p∑
k=0

φ̂kXt+1−j−k

)

where
∑∞

j=0 θ̃jzj = (θ̂(z))−1, φ̂k, k = 1, . . . , p, and θ̂j , j = 1, . . . , q, are consistent estima-

tors of the autoregressive and moving average parameters and φ̂0 = −1.
This method is appropriate for a narrow class of processes, i.e. linear processes, and

gives very good results when the model is correctly speci�ed, otherwise the resampled series
will not have the same properties as the observed process (Davison and Hinkley, 1997).

2.3 Phase scrambling

Theiler et al. (1992) introduced a bootstrap method for surrogate data based on the
Fourier transform and we will base the discussion in this Section mainly on their results.
This method is also known as phase scrambling (Davison and Hinkley, 1997) and the
Fourier bootstrap (Braun and Kulperger, 1997). It has been used to assess non-linearity
and non-stationarity of time series under the hypothesis of linearity (see also, Barnett,
2002; Theiler and Prichard, 1996). Under the null hypothesis of linearity of the process
Xt, they generate a pseudo series that, on average, has the same second order structure of
Xt, i.e., same spectrum and autocovariance function.

The discrete Fourier transform of a real times series is composed of a real part and an
imaginary part,

H(ωj) =
n∑
t=1

Xt exp{−iωjt} =
n∑
t=1

Xt(cosωjt− i sinωjt).

The second order structure of the time series is completely captured by the periodogram
I(ωk) = |H(ωk)|2 /n or equivalently by the modulus |H(ωk)|. The rest of the information
carried by the series is in the phase:

ψj = tan−1 IH(ψj)
RH(ψj)

= tan−1

∑n
t=1Xt sinωjt∑n
t=1Xt cosωjt

,
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where I is the imaginary part and R is the real part of the discrete Fourier transform. It is
possible to show that the phases are independent and uniformly distributed in the interval
(0, 2π) under the assumption that the data come from a linear Gaussian process. This is
the perfect environment to apply an i.i.d. bootstrap.

The Unwindowed Fourier transform (FT) algorithm was proposed by Theiler et al.
(1992):

1. compute the discrete Fourier transform of Xt;

2. randomise the phase: ψ∗j ∼ U(0, 2π);

3. symmetrize the phase, ψ(f) = −ψ(−f);

4. multiply each complex amplitude by eiψ;

5. apply the inverse Fourier transform to obtain the surrogate series Xt

X∗t = R

√2
n

n∑
j=1

I(ωk) exp{iψ∗j − 2πijt/n}

 .

The authors noted that this algorithm produces spurious low and high frequency e�ects.
One solution is to multiply the series Xt by a function w(t) = sin(πt/n), which eliminates
jump discontinuities by vanishing at the endpoints, t = 0 and t = n (Windowed Fourier
transform algorithm, WFT). However, this algorithm also introduces a spurious low fre-
quency from the power spectrum of w(t) itself, that has a peak at the zero frequency.
The Amplitude Adjusted Fourier transform (AAFT) algorithm is suitable especially if the
observed series Xt is a monotonic non-linear transformation of a linear Gaussian process,
i.e. Xt = g(Zt) with g(·) a non-linear monotonic function and Zt linear Gaussian process:

1. generate n random values Yi from a standard Normal distribution;

2. order these values so that Yt has the same rank as Xt;

3. apply the FT or WFT algorithm to Yt, obtaining Y
∗
t ;

4. reorder Xt so that X∗t has the same rank as Y ∗t .

Departure from Gaussianity can, in general, a�ect bootstrap methods, thus Davison
and Hinkley (1997) proposed the rescaled surrogate algorithm for data with very asym-
metric marginal distributions. As in the AAFT, they apply the FT to a more symmetric
transformation of the data:

1. let Yt = Φ−1(rt/(n+ 1)) where rt is the rank of Xt in the original series;

2. apply the standard algorithm to Yt and obtain Y ∗1 , . . . , Y
∗
n ;

3. X∗t = Xr′t
where r′t is the rank of Y ∗t .
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A very interesting paper is that of Nur et al. (2001) where the authors applied the two
di�erent algorithms to assess the convergence of Markov Chain Monte Carlo algorithms.
They also performed a wide Monte Carlo experiment and showed that the rescaled surro-
gate algorithm performs quite well with highly non-linear series even though the bootstrap
series are more symmetric than the original one.

Braun and Kulperger (1997) showed the validity of the method for Gaussian sequences
without the need of selecting a model for the data. Their contribution is useful for esti-
mating variances and covariances but it does not work for the mean of the process since
the series has to be centred before applying the algorithm. The most interesting result is a
central limit theorem for the series itself. The surrogate version Y ∗t of the centred observed
series Yt = Xt−X̄ converges to a Normal distribution with zero mean and same variance γ0

as Xt. Moreover, a subset of observations Y ∗t1 , . . . , Y
∗
tk
, for any integer k, is asymptotically

distributed as a k−variate Normal distribution with mean 0 and covariance matrix

Σ =


γ0 γ12 · · · γ1k

γ12 γ0 · · · γ2k
...

...
. . .

...
γ1k γ2k · · · γ0

 ,
where

γ0 = lim
n→∞

1
n

n∑
t=1

X2
t

and

γij = lim
n→∞

1
n

n∑
t=1

XtXt+i−j

Phase scrambling is an appealing bootstrap method with interesting applications, e.g.,
�nding non-linearities in the data or testing for convergence of Monte Carlo Markov Chain.
This bootstrap method has never been used to replicate long memory, however there is no
evidence against or in favour.

2.4 Sieve bootstrap

All invertible linear processes have an ar(∞) representation,

∞∑
j=0

πjXt−j = εt, with π0 = 1.

Kreiss (1992) used this property to build a bootstrap method that can replicate linear pro-
cesses. The idea is approximating the observed process Xt with an ar process and, based
on this model, apply a procedure similar to the parametric bootstrap introduced in Section
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(2.2). In a later paper, Bühlmann (1997) wrote that, by viewing such autoregressive ap-
proximations as a sieve for the underlying in�nite-order process, the bootstrap procedure
is model-free and may still be regarded as non-parametric. The sieve bootstrap is com-
putationally simple and yields a (conditionally) stationary bootstrap sample that does not
exhibit artefacts in the dependence structure. The variance of the mean exhibits a higher
convergence rate if the dependence between distant observations decreases su�ciently fast.
The method covers linear processes with representation given by

Xt − µXt =
∞∑
j=0

ψjεt−j , ψ0 = 1, t ∈ Z,

where {ψj}∞j=0 decays exponentially,
∑∞

j=0 ψ
2
j < ∞ and {εt}t∈Z is an i.i.d. sequence with

E[εt] = 0.
Given the sample X1, X2, . . . , Xn, the algorithm follows some easy steps, as follows.

1. Fit an ar process, using the Yule-Walker equations as suggested by Bühlmann (1997)
(for more detail, see Brockwell and Davis, 1991). The order of the model p(n) must
increase at the same rate with the sample size, p(n) = o(n). The order p can be
chosen in two di�erent ways: the easiest method is selecting p on the basis of the
AIC criterion. Otherwise, it is also possible to choose p such that the spectral density
estimate of the residuals is constant, i.e. the residuals are white noise. Testing for
white noise does not distinguish between independent and uncorrelated innovations.

2. Estimate the residuals of the best ar �tted model:

ε̂t,n =
p(n)∑
j=0

φ̂j,n(Xt−j − X̄), φ̂0,n = 1 (t = p+ 1, . . . , n),

where X̄ is the sample mean and φ̂j,n are the estimates of the autoregressive coe�-
cients.

3. Centre the residuals

ε̃t,n = ε̂t,n −
n∑
t=1

ε̂t,n
n− p(n)

.

4. Resample the residuals with i.i.d. bootstrap ε̂∗1, . . . , ε̂
∗
n.

5. At last, each bootstrap replicate can be calculated using the recursion:

p(n)∑
j=0

φ̂j,n(X∗t−j − X̄) = ε̂∗t

where ε̂∗t are the bootstrapped residuals.
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Bickel and Bühlmann (1999) proposed to use a kernel density estimate for the distri-
bution of the residuals

f̂ε̂ = (n− p)−1
n∑

t=p+1

K

(
x− ε̂t,n

h

)

where h = h(n) is a bandwidth with h = h(n) → 0, h(n)−1 = o(n) as n → ∞. The
bootstrapped residuals are resampled from

ε∗t i.i.d. ∼ f̂ε̂(x+ µ̂ε)

where µ̂ε =
∫∞
−∞ xf̂ε̂(x)dx.

In a later paper, Bühlmann (1998) applied the method in the presence of a trend, i.e.
Xt = s(t) + Yt. Assuming that the trend is deterministic, he estimated s(t) using both
least squares in a parametric model or with a non-parametric smoother. He applies the
sieve bootstrap to Ŷt = Xt − ŝ(t) obtaining X∗t = Y ∗t + ŝ(t).

In a very recent working paper Kapetanios and Psaradakis (2006) studied the properties
of the sieve bootstrap for a class of linear processes with long range dependence. The
authors established the �rst order asymptotic validity of the sieve bootstrap in the case
of the sample mean and sample autocovariances. Their Monte Carlo experiment is not
complete, as they considered small values of d = 0.1, 0.2 and they did not show any results
for the autocorrelation function. The bootstrap estimates for the memory parameter d are
more biased and with a larger variance than the Monte Carlo estimates. Recently, Franco
and Reisen (2007) have applied the sieve method to bootstrap long memory processes and
Poskitt (2007) has investigated the consequences of applying the sieve bootstrap under
regularity conditions that are su�ciently general to encompass both fractionally integrated
and non-invertible processes.

2.5 Local bootstrap

Paparoditis and Politis (1999) have proposed the non-parametric local bootstrap for
weakly dependent stationary processes. It produces bootstrap versions of the periodogram
I(ωj) of the observed process Xt, so that it is useful when the aim is to make inference
through the spectrum, e.g. con�dence intervals for the memory parameter d in the case
of long memory. The local bootstrap is consistent for ratio statistics, kernel estimators of
the spectral density, Whittle estimators and parametric �ts in the frequency domain.

For stationary time series with a bounded spectral density (see, Beran, 1994, page
77), it is well known that, given m distinct frequencies 0 < ω1 < . . . < ωm < π, the
periodogram ordinates f(ω1), . . . , f(ωm) computed at these frequencies are asymptotically
independent and exponentially distributed. On the other hand, if the spectral density
is a smooth function of ω, the behaviour of the ordinates at any frequency ωj is very
similar to the frequencies in a small neighbourhood. The idea underlying the algorithm is
very simple: the local bootstrap samples locally the frequencies of the periodogram. The
neighbourhood of ωj has to be such that it gets narrower and at the same time includes
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an increasing number of frequencies as the sample size goes to in�nity.

Given the time series X1, · · · , Xn, the local bootstrap algorithm that generates boot-
strap replicates I∗(ωj), j = 0, 1, · · · , [n/2], of the periodogram can then be described as
follows.

1. Select a resampling width kn where kn = k(n) ∈ N and kn ≤ [n/2]. We want that
kn →∞ and kn = o(n) as n→∞.

2. De�ne i.i.d. discrete random variables J1, J2, · · · , J[n/2] taking values in the set {−kn,
−kn+1, · · · , kn} with probability pkn,s, i.e., P (Ji = s) = pkn,s for s = 0,±1, · · · ,±kn.
The probabilities pkn have to be chosen such that pkn,s = pkn,−s,

∑kn
s=−kn pkn,s = 1

and
∑kn

s=−kn p
2
kn,s
→ 0 as kn →∞.

3. The bootstrap periodogram is de�ned by I∗(ωj) = IX(ωJj+j) for j = 1, 2, · · · , n/2,
I∗(ωj) = I∗X(−ωj) for ωj ≤ 0 and for ωj = 0 we set I∗(0) = 0.

Paparoditis and Politis (1999) have shown the asymptotic consistency in the d2 metric
of the local bootstrap: this implies convergence in distribution and convergence of the �rst
two moments (for more details, see Bickel and Freedman, 1981).

Silva et al. (2006) applied the local bootstrap to the estimation of the long memory
parameter d and, by means of simulations, compare its performance with that of other
bootstrap approaches. The authors established the e�cacy of the local bootstrap in terms
of low bias, short con�dence intervals and low CPU times.

2.6 Log-periodogram regression bootstrap

This method has been introduced by Arteche and Orbe (2005) to improve the e�ciency
of the GPH estimator in presence of short memory behaviour. The applicability of the
method is speci�c only to the GPH estimator of the memory parameter.

It assumes the residuals of the regression model given in Equation (1.20) to be inde-
pendent and identically distributed. The three steps to obtain the bootstrap distribution
of d̂ are quite straightforward.

1. Calculate the least-squared estimates of a = log{σ2fε(0)2π} and d to estimate the
residuals ûj = log(I(ωj))− â+ d̂ log(4 sin2(ωj/2));

2. resample B bootstrap samples from the residuals ûj . Using the empirical distribution
function of the residuals we obtain the corresponding bootstrap dependent variable
log(I(ωj,N )) = â− d̂ log(4 sin2(ωj/2)) + û∗j ;

3. estimate d from the new models and compute its bootstrap distribution.

Even if the method is very speci�c, it gave nice results on building con�dence intervals
for d and we will compare its performance with the new bootstrap introduced in a later
chapter of this thesis.
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2.7 Bootstrap con�dence intervals

One of the typical applications of bootstrap methods is the construction of con�dence
intervals. There are more reasons to use bootstrap for con�dence intervals. When the
estimator converges slowly to its asymptotic distribution, even with a large sample size
the approximation is very rough. The normal approximation fails, especially when the
distribution is very asymmetric. On the other hand, a small sample size gives poor results
even when the convergence of the estimator is optimal.

Con�dence intervals for the memory parameter are still an open problem and in the
recent literature bootstrap methods were often used to solve it. Estimators of the long
memory parameter are either very complicated to evaluate or they hardly converge to the
normal distribution so that, sometimes, the traditional con�dence intervals based on their
asymptotic distribution give poor results. The problem is more complicated in the presence
of short memory. Agiakloglou et al. (1993) proved that in this case the semi-parametric
estimator GPH can be seriously biased and also the coverage of con�dence intervals are
badly in�uenced. On the other hand, misspeci�cation is one of the worst drawbacks of
parametric estimators based on the likelihood functions. Bootstrap methods help avoiding
all these problems (for a review of bootstrap con�dences intervals, refer to Efron, 1982; Li
and Maddala, 1996).

In the following we introduce brie�y the most common con�dence intervals for the
memory parameter d, describing their principal advantages and drawbacks.

1. Asymptotic distribution of d̂: this interval is based on the asymptotic distribution of
d̂ and is symmetric by construction, given by

CIse(1− α) = d̂± zα/2se(d̂),

where zα is the 100α percentile of the standard normal distribution.

2. Percentile con�dence intervals:

CIpc(1− α) =
(
d̂∗α/2, d̂

∗
1−α/2

)
,

where d∗α is the 100α percentile of the bootstrap distribution of d̂∗. This interval can
be asymmetric but it is equal-tailed.

3. Percentile-t con�dence intervals (Hall, 1988, 1992a)

CIpt(1− α) =
(
d̂− se(d̂)t̂1−α/2, d̂− se(d̂)t̂α/2

)
,

where tα is the 100α percentile of t = (d̂∗− d̂)/ŝe(d̂∗). Percentile-t has been criticized
because it produces bad results if the estimate of the variance is poor and because it
is not invariant to transformations.
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4. Bias corrected con�dence intervals (BC, for more details, see Efron, 1982),

CIBC(1− α) =
(
d̂∗(M+1)(α̂/2); d̂

∗
(M+1)(1−α̂/2)

)
where

α̂

2
= Φ(2k0 + zα

2
) and 1− α̂

2
= Φ(2k0 + z1−α

2
)

with k0 = Φ−1(P (d̂∗ ≥ d̂)) the bias-correction parameter.

5. Accelerated bias corrected con�dence intervals (BCα, for more details, see Efron,
1987a,b),

CIBCα(1− α) =
(
d̂∗(α̃/2); d̂

∗
(1−α̃/2)

)
where

α̃

2
= Φ

(
k0 +

k0 + zα/2

1− s
(
k0 + zα/2

))

and

1− α̃

2
= Φ

(
k0 +

k0 + z1−α/2

1− s
(
k0 + z1−α/2

))

6. Bootstrap standard error con�dence intervals

CIse∗(1− α) = d̂± zα/2se∗(d̂∗).

The coverage errors for methods 1,2 and 4 is O(n−1/2), for methods 3 and 5 O(n−1).
Bootstrap methods are an excellent way of approximating the limiting distribution of

an estimator. This is the case, for example, when the limiting distribution is unknown.
However, bootstrap approximation can give better results under normality assumptions
when the sample size is small and the distribution seems to be very asymmetric or the
convergence rate is slow.

2.8 Conclusions

In the �rst two chapters of this thesis we described long memory processes and boot-
strap methods for time series. We pointed out that identi�cation and estimation of long
memory is still an open problem even though the existing literature is very rich. Para-
metric estimators are very e�cient but they require the speci�cation of the model a priori
including the short memory part and misspeci�cation is always a danger. This is not an
easy task because short and long memory confound each other when they are both present.
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Semi-parametric methods can be used to estimate and test for long memory without spec-
ifying the short memory behaviour but they have very high standard deviation and their
convergence rate is n−1/2+ε, for some ε > 0 (usually ε = 1/4, so that the rate is n−1/4),
whereas parametric estimates have convergence rate of n−1/2.

We described a generalization of long memory processes developed to model seasonal
persistences where there is a peak in the spectrum at some unknown frequency. We are
interested in Gegenbauer processes with a peak at the zero frequency and one at an un-
known frequency. Even more than with arfima processes, the identi�cation of these
processes is very di�cult. On the other hand, parametric estimators proposed until now
imply a computational burden that increases enormously for each new frequency we want
to estimate.

We introduced the delicate issue of bootstrapping correlated data. Many methods have
been developed in the last twenty years: they usually give satisfactory results with short
memory linear and non-linear processes. It is still quite di�cult to replicate long memory.

This thesis will to develop a new bootstrap method. It is valid for all linear Gaussian
stationary processes: this includes arma, seasonal arma, arfima and garma processes.
Thus, it is possible to use it to replicate not only short memory but also long memory
and seasonal persistent behaviours. We are interested in particular in applying a boot-
strap method to improve the performance of semi-parametric estimators of the memory
parameter d.

In the next chapters we will try to answer the following problems.

1. Improve the performance of semi-parametric estimators for the memory parameter
d for arfima(p, d, q) and for pure long memory processes FI(d) in terms of smaller
standard error, smaller mean squared error and better coverage error for con�dence
intervals.

2. Give a theoretical support for the consistency of the method in replicating long
memory.

3. The conditions to use the bootstrap methods include Gaussianity of the process. This
is a very restrictive assumption and we will show, by means of simulation, that the
method is consistent even without Gaussianity. In particular the method is robust
against fat tails, outliers and asymmetry.

4. Propose an algorithm to estimate non-parametrically the parameters of a Gegenbauer
process with one or two peaks in the spectral density; the bootstrap method will be
useful to give an estimate of the distribution of the frequency parameter η since its
asymptotic distribution is unknown for the estimators we will consider. The main
aim is proposing a method to identify seasonal persistences and provide starting
values for maximize a (penalized) log-likelihood function.
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Chapter 3

ACF bootstrap for long memory

processes

In the �rst two chapters of this thesis, we introduced long memory processes and boot-
strap methods for time series. Despite the existence of a wide literature on these topics, at
the moment there are no satisfactory bootstrap methods to replicate long memory. On the
other hand, short and long memory can confound each other when the parameters describ-
ing the short memory behaviour are near the boundary of non-stationarity. Parametric
estimators are very e�cient when the model is correctly speci�ed but exhibit large biases
otherwise, whereas semi-parametric and non-parametric estimators have large standard
deviations and slow convergence rates.

In this chapter, we propose a new method based on the empirical autocovariance func-
tion and the Durbin-Levinson algorithm that seems to give satisfactory performance when
improving the e�ciency of semi-parametric estimators of the memory parameter d, es-
pecially with Gaussian long memory processes. Even though the method is equivalent
to a Cholesky decomposition, its applicability is wider. Especially with long series, the
Cholesky decomposition has to handle very large matrices and the most powerful calcula-
tors can have problems. On the contrary, the method we introduce is iterative and avoids
the problem of large matrices.

The ACF bootstrap, as we call it, is based on a result of Ramsey (1974) (see below)
and requires Gaussianity of the observed process Xt. This assumption is quite restrictive,
however we will show that some deviations from Normality do not a�ect materially the
method.

We apply this new method to improve the e�ciency of two semi-parametric estimators
of the long memory parameter d: the GPH estimator proposed by Geweke and Porter-
Hudak (1983), and the local Whittle estimator proposed by Robinson (1995a). The para-
metric Whittle estimator (Fox and Taqqu, 1986) is used as benchmark (for more detail on
these estimators, see Section 1.4).

We assess the validity of ACF bootstrap in three di�erent scenarios:

• ACF bootstrap improves the performance of semi-parametric estimators of the mem-
ory parameter;

51
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• we show, by mean of simulation, that the proposed method is robust against non-
Gaussian innovations, asymmetry and fat tails, and

• bootstrap methods are widely used to build con�dence intervals with a coverage level
closer to the nominal level than con�dence intervals obtained by applying asymptotic
results.

In the �rst scenario we perform an extensive Monte Carlo experiment for di�erent
values of the memory parameter d. We compare ACF bootstrap performance with the
performance of local and sieve bootstraps in terms of reduction of standard error and
mean squared error of the estimates.

We conduct experiments on processes to test consistency of ACF bootstrap when the
observed series is non-Normal, using Chi-squared innovations with one degree of freedom
to test against skewness and Student t innovations (with four and six degrees of freedom)
to test against fat tails.

In the last part of the chapter we aim to improve the coverage of con�dence intervals
for the memory parameter d in two di�erent situations. Firstly, we consider the Whittle
estimator. Even though the Whittle estimator is asymptotically Normal, if the assumption
of correctly speci�ed model is satis�ed, then con�dence intervals based on short series
(n = 128, 300) have an actual coverage lower than the nominal coverage level. Secondly,
we study the confounding e�ects when both long and short memory are present in the
series. It has already been highlighted by Agiakloglou et al. (1993) that short memory
introduces bias in the GPH estimates, and also the coverage of con�dence intervals is
a�ected. On this topic, Arteche and Orbe (2005) developed a bootstrap method and
improved the performance of the GPH estimator but their solution is designed speci�cally
for this estimator, and therefore does not apply to other estimators currently in use (see
Section 2.6 for more detail).

The plan of the chapter is the following. In Section 3.1 we describe the new bootstrap
method. Section 3.2 assesses the validity of the method for long memory Gaussian and non-
Gaussian processes in an extensive Monte Carlo experiment. The problem of con�dence
intervals for the memory parameter d is developed in Section 3.3. We conclude and discuss
future developments in Section 3.4.

3.1 ACF bootstrap

The new bootstrap method is based on a theorem of Ramsey (1974) that derives the
distribution of Xt conditionally on the past values X0, . . . , Xt−1 of the process. Its distri-
bution is Normal with mean and variance given in the theorem if the observed process is
Gaussian itself. Without loss of generality we can assume that Xt is zero mean process.

Theorem 3.1 Let Xt be a Gaussian, wide-sense stationary1 time series with mean µ
and variance γ0. Then the conditional distribution of Xt given X0, · · · , Xt−1 is Gaussian

1The process Xt is said to be wide-sense stationary if �rst and second moments are independent of
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with mean and variance given by

mt = E(Xt|X0, · · · , Xt−1) =
t∑

j=1

φtjXt−j ,

vt = Var(Xt|X0, · · · , Xt−1) = γ0

t∏
j=1

(1− φjj), (3.1)

where φjj is the jth partial autocorrelation and φtj is the jth autoregressive coe�cient in
an autoregressive �t of order t.

The coe�cients φtj and φjj can easily be obtained through the Durbin-Levinson recur-
sion (see, e.g., Brockwell and Davis, 1991):

φtt = Nt/Dt (3.2)

φtj = φt−1,j − φttφt−1,t−j , j = 1, · · · , n− 1, (3.3)

where

N0 = 0
D0 = 1

Nt = ρt −
t−1∑
j=1

φt−1,jρt−j

Dt = Dt−1 −N2
t−1/Dt−1.

and ρt is the autocorrelation function of Xt at lag t.

The hypotheses of Theorem 3.1 admit all processes with an ma-in�nite representation,
e.g., stationary arma processes, arfima processes with |d| < 0.5 and Gegenbauer pro-
cesses with |dj | < 0.5 if |ηj | 6= 1 and |dj | < 0.25 if |ηj | = 1. This result has been used
widely to generate some particular type of processes. Giraitis et al. (2001) showed the
validity of the result for arfima(p, d, q) processes. Woodward et al. (1998) �rst used it
to generate a k-factor garma because generating through truncation of the ma-in�nite
representation does not have good convergence properties, even when considering 290 000
terms.

Instead of using a theoretical autocovariance function, the idea is to use the empirical
autocorrelation function of an observed time series Xt to generate bootstrapped copies
through the conditional mean and the conditional variance. From now on we will call this
new procedure the ACF bootstrap. The steps to generate a bootstrap series are:

time, i.e. ∀t = 0,±1,±2, . . .

E[Xt] = µ,

E[(Xt − µ)(Xt+k − µ)] = γk.
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1. compute the empirical autocorrelation function, ρ̂k, from the observed time series
Xt;

2. perform the Durbin-Levinson recursion, given in Equations (3.2) and (3.3), for φ̂tt
and φ̂tj based on the empirical autocorrelation function;

3. calculate vt based on Equation (3.1) and m∗t as follows

m∗t = E(X∗t |X∗0 , · · · , X∗t−1) =
t∑

j=1

φ̂tjX
∗
t−j ,

and thus m∗t depends on the past values of the bootstrap series and the observed
autocorrelation function of the original one; and

4. generate a starting value of X∗0 from an N(0, v0) distribution where v0 is the sample
variance of Xt;

5. generate the bootstrap replicate of X∗t from N(m∗t , vt); and

6. repeat step 4 and 5 until t = n, where n is the series length.

It is interesting to notice that the conditional means m∗t depend on each bootstrap time
series, whereas the conditional variances vt are determined from the observed process and
do not change for each bootstrap replication. The steps 3 to 6 have to be repeated for
b = 1, . . . , B, where B is the total number of bootstrap replicates. We omit the b subscript
in the following when it is clear that we are referring to bootstrap replicates and the double
subscript (e.g. X∗t,b) would be redundant.

Under the assumption of Gaussianity, the ACF bootstrap has some nice properties
concerning the second order structure, periodogram, autocovariance and autocorrelation
functions.

First, we show that the autocovariance function γ∗j of the bootstrap series is asymp-
totically unbiased, that is to say,

E[γ∗k ] = E[X∗tX
∗
t−k] = EE[γ∗k |{Xt}] = EE[X∗tX

∗
t−k|{Xt}]

= E

[(
n− k
n

)
γ̂k

]
=
(
n− k
n

)
E[γ̂k] =

(
n− k
n

)2

γk.

Because the periodogram is a linear transformation of the autocovariance function, also
the bootstrap periodogram is asymptotically unbiased:

E [I∗(ωj)] = EE [I∗(ωj)|{Xt}]

= E

 n−1∑
k=−(n−1)

γ∗k cosωk

 =
n−1∑

k=−(n−1)

(
n− k
n

)2

γk cosωk.
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Last, if we consider each bootstrap series X∗t as a single observation, we can notice that
they are independent and identically distributed conditionally on the observed series Xt.
Besides, the i.i.d. property is preserved if we consider any transformation f of the data.
This allows us to have an estimate of the distribution of f(Xt) no matter how complicated
the function f is, and it will be useful in the next Sections.

3.2 Monte Carlo results

In this section we conduct experiments with simulated data to assess the validity of the
ACF bootstrap method with respect to the existing techniques in literature. In particular,
we apply the proposed bootstrap method to long memory time series. We use the ACF,
the sieve and the local bootstraps to replicate the observed series Xt, and GPH and local
Whittle estimators to estimate the long memory parameter d.

As we said in the Introduction, we are interested in fractionally integrated processes,
and especially in improving the performance of two semi-parametric estimators for the
memory parameter d: the GPH and the local Whittle. Both of them estimate the parameter
d through the periodogram of the observed series. We use the Whittle estimator as a
benchmark since it is a parametric estimator used without the risk of misspeci�cation,
given the parametric assumptions in our simulation, thus it is the most e�cient.

In the case of the GPH, it is straightforward to write the estimator in the following
form, to highlight that this estimator is a weighted average of the �rst m periodogram
ordinates:

d̂ =
1
mK

m∑
j=1

pj log I(ωj), (3.4)

where usually m = b
√
nc, K =Var(sin2(ωj/2)) and pj = sin2(ωj/2) − E[sin2(ωi/2)], for

j = 1, . . . , n. It is possible to use the bootstrap in two ways: estimate the memory
parameter for each bootstrap replicate and then take the average value, namely

1d̂gph =
1
B

B∑
b=1

d̂gph,b

=
1

mBK

B∑
b=1

m∑
j=1

pj log I∗b (ωj)

=
1
mK

m∑
j=1

pj

(
log

B∏
b=1

I∗b (ωj)

)1/B

, (3.5)

or plug into Equation (3.4) the average value of the bootstrap periodograms obtaining

2d̂gph =
1
mK

m∑
j=1

pj log
1
B

B∑
b=1

I∗b (ωj). (3.6)
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The only di�erence between 1d̂gph and 2d̂gph is that the former estimate is the geometric
mean of the bootstrap periodograms whereas the latter is the arithmetic mean. (This may
have implications for their standard errors, and hence their relative e�ciency.)

The same can be done when estimating d with the local Whittle, even though it is not
possible to write it in a closed form because this estimator has to be found by maximization
of the objective function R(d) (see Equation (1.18)).

Even though we have two options when estimating the memory parameter we choose
to use only the �rst (Equation (3.5)), i.e. we consider the average values of the estimates
of each bootstrap series d̂∗i =

∑B
b=1 d̂

∗
b,i/B with i = GPH, lW for the following reasons. In

some exploratory simulations we noticed that their standard deviations are approximately
the same. Moreover, this solution is more informative because it allows to have the boot-
strap distribution of the memory parameter that can be used for di�erent purposes, e.g.
to build con�dence intervals in many di�erent ways.

In the simulation study we generated series by I(d) models for di�erent values of
the long memory parameter, d = 0.1, 0.2, 0.3, 0.4, 0.45, and increasing sample sizes, n =
200, 500, 1000.

The series are generated using the recursive Durbin-Levinson algorithm (see Brockwell
and Davis, 1991). For each model we consider S = 2000 realizations and B = 1000
bootstrap replications. For each estimation method we calculate the Monte Carlo estimate,
i.e.,

d̂ =
1
S

S∑
j=1

d̂j ,

where d̂j is the estimated value for a single realization obtained with one of the estimators
(Whittle, GPH, local Whittle) or the average of two thousand bootstrap estimates given
by Equation (3.5) (plugging in GPH and local Whittle). To compare the performance of
estimators and bootstrap methods, we compute standard errors

ŝe(d̂) =

√√√√ 1
S − 1

S∑
j=1

(d̂j − d̂)2

and mean squared errors

ˆMSE(d̂) = Var(d̂) + Bias(d̂)2 =
1

S − 1

S∑
j=1

(d̂j − d̂)2 + (d̂− d)2

The results are presented in Tables 3.1-3.4 where also the Whittle estimator is included
as a benchmark. The tables report results on d̂ (in boldface), standard error of d̂ (italic font)
and MSE of d̂ (normal font) for the three estimators treated and for the three bootstrap
methods.

The Monte Carlo estimates are in accordance with known results (see, for example,
Bisaglia and Guègan, 1998). As we expected, the Whittle estimator largely outperforms
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all the others, since it is a parametric estimator in the best conditions, i.e., the estimates
are based on the correctly speci�ed parametric model.

Comparing the bootstrap methods, it is evident that the sieve bootstrap exhibits the
worst performance. With regard to the other two methods, both give satisfactory results
compared with the same estimators in the Monte Carlo simulations: the ACF is a slightly
more biased but its standard deviation and the mean squared error are always smaller than
using the local bootstrap.

Table 3.4 reports the gain, namely

GAIN% =
ŝe(d̂i)− ŝe(d̂∗i )

ŝe(d̂i)
× 100 (3.7)

(where i = GPH, lW) calculated as a percentage, when using the ACF and local bootstraps
with respect to the Monte Carlo estimates, for the GPH and local Whittle bootstrap
estimator. The results con�rm that the gain is always greater for the ACF bootstrap
even if it decreases with increasing the series length. It is interesting that for the local
bootstrap if d assumes large values, the gain is almost irrelevant for n = 500 and negative
for n = 1000.

In conclusion to this section, the ACF bootstrap is promising for long memory Gaussian
processes. It helps to improve the e�ciency of some semi-parametric estimators (GPH and
local Whittle) that usually have large standard deviations, and outperforms the other two
bootstrap methods considered. The method is open to future developments:

• con�dence intervals based on bootstrap approximation are largely used;

• developing a test for long memory based on the bootstrap sample distribution of the
parameter d instead of using the asymptotic results; and

• it would be interesting to prove the consistency of ACF bootstrap with long memory
Gaussian processes from a more theoretical point of view.

3.2.1 Non-Gaussian innovations

The assumption of Gaussianity is very restrictive and it would be interesting to see
how much deviations from Normality a�ect the performance of the proposed bootstrap
methods even though Gaussianity is one of the assumptions of Theorem 3.1. To this
end we perform some simulations to compare the estimators when the observed process is
non-Gaussian. We consider two di�erent deviations from Normality. To test robustness
against asymmetry, we generate long memory processes with Chi-squared innovations with
one degree of freedom, giving skewness γ1 = 2

√
2. To test robustness against fat tails, we

use the Student t distributions with four and six degrees of freedom: the former does not
have the fourth moment �nite, the latter has excess of kurtosis γ2 = 3.

In Tables 3.5-3.7 we report the results. All the estimates, Monte Carlo and bootstrap,
are very similar to the results obtained with Gaussian innovations, in terms of both stan-
dard error and mean squared error. This suggests that ACF bootstrap can be useful also
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relaxing the Gaussianity assumption. There is not the danger of obtaining bad results
when there the suspect of non-Gaussian innovations and it is not necessary to correct or
exclude extreme values. Also in this case the standard error and the mean squared error
are smaller for the bootstrap estimates. These results are very important in view of ap-
plying the method to replicate the dependence structure of heteroskedastic data, such as
white noise with garch e�ects or stochastic volatility processes.

3.3 Bootstrap con�dence intervals for the memory parameter

We dedicate the last section of this chapter to study the performance of the ACF
bootstrap to build con�dence intervals for the memory parameter (for more details on
bootstrap intervals, see Section 2.7). This is an interesting problem directly connected
with the problem of testing the hypothesis of existence of long memory. According to the
paper of Arteche and Orbe (2005), we build con�dence intervals based on the percentile
and the percentile-t methods because they turned out to be the best. We add con�dence
intervals based on Normal approximation with bootstrap standard error (for a review, see
Section 2.7). We build con�dence intervals in two di�erent scenarios.

Firstly, we analyse the �nite sample performance of the Whittle estimator in build-
ing con�dence intervals for the memory parameter and test whether or not they can be
improved by building con�dence intervals based on bootstrap replications.

In the second scenario we examine con�dence intervals for d based on semi-parametric
estimators with the presence of the short memory part. As we already pointed out, it is
useful to estimate and study long range behaviour separately from short range memory,
because the two behaviours tend to confound each other and it can be di�cult to distinguish
between them. This is not possible with parametric estimators since we need to specify
the whole model a priori. On the other hand, Agiakloglou et al. (1993) showed that the
GPH estimator is in�uenced by the short memory part and its bias increases when the
parameters of the short memory part approach non-stationarity boundary. We compare
the ACF bootstrap with the local bootstrap. We do not use the sieve bootstrap since it
gave quite poor results in the previous studies (see Section 3.2). In their paper Arteche and
Orbe (2005) reduced the coverage error of con�dence intervals for the memory parameter
built with the GPH estimator. Their method is speci�cally designed for, and limited to,
the GPH estimator. The methodology proposed in this thesis, the ACF bootstrap, has a
more general applicability and can be used not only with the GPH estimator but also with
other estimators of d, such as the local Whittle and the Whittle estimators.

3.3.1 Finite sample performance of ACF bootstrap

Even if the Whittle estimator is very e�cient, in case of correct speci�cation of the
model, its performance in estimating long memory for small samples is not very good. Also
the nominal level of con�dence intervals for the memory parameter d is usually far from
the actual level. Especially when detecting long range behaviour, it is necessary to have
quite long series. We deem that bootstrap methods can improve the coverage level and
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give satisfactory results with �nite sample sizes. We compare Monte Carlo results of the
Whittle estimator with the results given applying the ACF and local bootstraps.

Following the simulation plan of Arteche and Orbe (2005), we run simulations with
n = 128, 300, 1000 and d = 0, 0.2, 0.45,−0.45. The results are given in Table 3.9. For small
values of the parameter, d = 0, 0.2, the three con�dence intervals based on ACF bootstrap
are all better than the Monte Carlo intervals. The best results are given by the percentile
method. For larger values of d in absolute value, it appears to be more di�cult to have
actual coverage close to the nominal, but the intervals obtained with the standard deviation
and with percentile of ACF bootstrap outperform the asymptotic results especially for small
sample sizes. Overall the best intervals are built with the standard deviation estimated
using the ACF bootstrap, in particular in the most common coverage probabilities, 95 and
99%.

The con�dence intervals built with the local bootstrap give very poor results. Only
the percentile-t method gives reasonable results for d = 0, 0.2 but these intervals are very
similar to the Monte Carlo and it is not worth using a bootstrap method if it does not lead
to any improvement.

3.3.2 The in�uence of the short memory part

It is known that the semi-parametric estimators, which we introduced above, are biased
in the presence of short memory behaviour. This a�ects also the coverage level of con�dence
intervals. In this work we aim to improve con�dence intervals for the memory parameter
when the data generating process is a simple arfima(1, d, 0), given by

(1−B)d(1− φB)Xt = εt,

where |φ| < 1 to assure stationarity. The problem is when φ gets close to unity: short
memory and long memory confound each other and it is really di�cult to distinguish the
e�ects of the two parameters and consequently to build reliable con�dence intervals for d.
Figure 3.1 shows the spectral densities on the logarithmic scale of three processes: ar(1),
arfima(1, d, 0) and arfima(0, d, 0), with d = 0.4 and φ = 0.8. Their behaviours near the
zero frequency are quite similar and it is logical to expect problems to discriminate if the
peak is generated by a strictly positive d or by a value of φ approaching unity. Arteche and
Orbe (2005) proposed a solution to the problem of the bias introduced by short memory
behaviour in the estimation of d, bootstrapping the log-periodogram, however the method
can be applied only to the GPH estimator.

Since in the �rst part of the chapter we showed that the ACF bootstrap can replicate
long memory behaviour, it is rational to think that it could also improve the coverage level
of con�dence intervals.

The Monte Carlo experiments were run for all combinations of n = 128, 300, 1000,
d = 0, 0.2, 0.45,−0.45 and φ = 0, 0.2, 0.4, 0.6, 0.8. The number of bootstrap replicates was
B = 1000 and each experiment was repeated S = 2000 times. The results are given in
Tables 3.10-3.17.

The results are summarized in the following list:
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Figure 3.1: Spectral densities of three di�erent processes in logarithmic scale: FI(0.3)
with f(ω) = (2 sin(ω/2))−2d (blue line), ar(1), φ = 0.8, with f(ω) = (1+φ2− 2φ cos(ω))−1

(green line), arfima(1,0.3,0), ψ = 0.8, with f(ω) = (1 + φ2 − 2φ cos(ω))−1(2 sin(ω/2))−2d

(red line).
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• the log-periodogram regression is still the best method to build con�dence intervals
through the GPH for the memory parameter but the ACF bootstrap is not much
worse;

• the local bootstrap give results similar to the Monte Carlo, thus it is not useful for
this problem; and

• the ACF bootstrap gives satisfactory results applied to the GPH estimator but not
as good as the log-periodogram; however it is the best method to build con�dence
intervals when estimating d with the local Whittle.

3.4 Conclusions

In this chapter we presented a new bootstrap method for time series, ACF bootstrap.
The Monte Carlo experiments showed that

• the ACF bootstrap is better than some existing bootstrap methods, local and sieve

bootstrap. It outperformed both of them in terms of reduction of standard error and
mean squared error of the estimates of d;

• the method is robust against deviations from Normality, like asymmetry (Chi-squared
distribution with one degree of freedom) and extreme values (Student t distribution
with four and six degrees of freedom);

• nominal coverage for con�dence intervals for d based on the asymptotic distribution
of the Whittle estimator are improved by using ACF bootstrap especially when the
sample size is small, such as n = 128; also in this case the method we proposed
outperformed the local bootstrap; and

• in the presence of short memory the ACF gave some improvements to the local
Whittle, whereas the log-periodogram regression by Arteche and Orbe (2005) is still
the best solution to build con�dence interval with GPH estimator.

In conclusion, we can state that the ACF bootstrap is very promising in the variety of
scenarios analysed and it is also open to future development.

This chapter is not exhaustive on the possible applications of ACF bootstrap. Some
future developments can be

• building test statistic to detect long memory;

• building test statistic to distinguish long memory from structural break, or regime
switching, models.
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n = 200 n = 500 n = 1000
d GPH LW GPH LW GPH LW

0.1 26.05 24.82 19.67 21.25 21.79 19.66
43.23 39.03 32.96 36.31 36.93 34.84

0.2 23.11 22.91 20.38 18.60 18.56 14.75
38.92 40.66 33.92 32.50 31.13 24.86

0.3 22.82 20.71 19.99 13.45 18.31 7.75
37.75 34.40 33.55 20.58 31.48 9.41

0.4 21.43 17.28 20.37 9.91 18.49 5.25
35.17 25.83 34.01 11.61 31.51 3.35

0.45 22.61 15.83 18.11 6.74 17.60 4.49
36.81 21.12 31.08 5.96 32.25 5.16

n = 200 n = 500 n = 1000
d GPH LW GPH LW GPH LW

0.1 6.17 13.39 3.26 10.31 2.31 9.34
11.80 21.58 6.33 18.24 4.45 17.30

0.2 6.21 12.53 3.90 8.84 1.34 6.88
12.06 23.50 7.59 16.69 2.12 12.55

0.3 5.37 10.53 3.02 5.60 1.10 2.41
10.12 19.14 5.99 9.62 2.32 3.47

0.4 5.49 8.17 3.69 3.40 1.94 0.45
10.42 14.12 7.23 5.14 3.55 -0.68

0.45 3.98 5.43 2.77 0.94 1.41 -0.61
7.11 8.14 5.66 0.40 4.00 -1.36

Table 3.4: Percentage of gain (see Equation (3.7))comparing the Monte Carlo results of
estimators GPH and local Whittle (LW) with the bootstrap results in terms of standard
deviation (italic) and mean squared error (normal font): in the �rst part of the table there
is the gain using the ACF bootstrap, whereas in the second part there is the gain using the
local bootstrap.
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(a) GPH

(b) local Whittle

Figure 3.2: Percentage gain in term of MSE for (a) GPH and (b) local Whittle for the
memory parameter d = 0.1, 0.2, 0.3, 0.4, 0.45, sample size n = 200, 500, 1000 and di�erent
bootstrap methods (ACF, local and sieve bootstrap.
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Monte Carlo ACF Local B.

d Whittle GPH LW GPH LW GPH LW

0.0816 0.0978 0.1158 0.0630 0.1286 0.0906 0.1264

0.1 0.0558 0.2230 0.1303 0.1655 0.0977 0.2111 0.1146
0.0035 0.0498 0.0172 0.0288 0.0104 0.0446 0.0138

0.1818 0.1974 0.1940 0.1577 0.1897 0.1837 0.1949

0.2 0.0608 0.2294 0.1571 0.1705 0.1192 0.2145 0.1367
0.0040 0.0526 0.0247 0.0309 0.0143 0.0463 0.0187

0.2804 0.3051 0.2908 0.2607 0.2696 0.2859 0.2830

0.3 0.0606 0.2299 0.1760 0.1763 0.1413 0.2174 0.1592
0.0041 0.0529 0.0311 0.0326 0.0209 0.0475 0.0256

0.3856 0.4091 0.3896 0.3605 0.3549 0.3832 0.3745

0.4 0.0621 0.2274 0.1824 0.1772 0.1523 0.2123 0.1680
0.0041 0.0518 0.0334 0.0329 0.0252 0.0453 0.0289

0.4360 0.4628 0.4387 0.4088 0.3972 0.4319 0.4207

0.45 0.0627 0.2266 0.1861 0.1769 0.1568 0.2156 0.1745
0.0041 0.0515 0.0348 0.0330 0.0274 0.0468 0.0313

0.0913 0.0995 0.1096 0.0787 0.1170 0.0948 0.1155

0.1 0.0361 0.1753 0.1066 0.1324 0.0837 0.1699 0.0960
0.0014 0.0307 0.0115 0.0180 0.0073 0.0289 0.0095

0.1911 0.1997 0.1935 0.1743 0.1865 0.1921 0.1927

0.2 0.0361 0.1755 0.1279 0.1396 0.1058 0.1696 0.1177
0.0014 0.0308 0.0164 0.0201 0.0114 0.0288 0.0139

0.2932 0.3072 0.2940 0.2764 0.2727 0.2946 0.2852

0.3 0.0370 0.1678 0.1353 0.1352 0.1186 0.1618 0.1271
0.0014 0.0282 0.0183 0.0188 0.0148 0.0262 0.0164

0.3949 0.4092 0.3950 0.3770 0.3661 0.3926 0.3834

0.4 0.0367 0.1705 0.1399 0.1379 0.1276 0.1667 0.1365
0.0014 0.0292 0.0196 0.0195 0.0174 0.0278 0.0189

0.4448 0.4633 0.4447 0.4266 0.4128 0.4460 0.4335

0.45 0.0382 0.1675 0.1389 0.1348 0.1284 0.1621 0.1377
0.0015 0.0282 0.0193 0.0187 0.0179 0.0263 0.0192

Table 3.5: Simulated series with Chi-squared 1 d.f.innovations: results of the esti-
mators (Whittle, GPH and local Whittle, LW) analysed with memory parameter values
d = 0.1, 0.2, 0.3, 0.4, 0.45, bootstrap replications B = 1000 and simulation replications
S = 2000: average value (boldface), standard error (italic), mean squared error (normal
font). In the upper part n = 200, whereas in the lower part n = 500.
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Monte Carlo ACF Local B.

d Whittle GPH LW GPH LW GPH LW

0.0822 0.0995 0.1232 0.0686 0.1344 0.0915 0.1325

0.1 0.0554 0.2334 0.1328 0.1744 0.1005 0.2189 0.1168
0.0034 0.0545 0.0182 0.0314 0.0113 0.0480 0.0147

0.1779 0.2050 0.2014 0.1632 0.1968 0.1924 0.2026

0.2 0.0614 0.2304 0.1623 0.1791 0.1265 0.2174 0.1437
0.0043 0.0531 0.0263 0.0334 0.0160 0.0473 0.0206

0.2796 0.2936 0.2869 0.2538 0.2681 0.2771 0.2805

0.3 0.0625 0.2347 0.1816 0.1861 0.1462 0.2231 0.1641
0.0043 0.0551 0.0332 0.0368 0.0224 0.0503 0.0273

0.3832 0.4092 0.3890 0.3593 0.3544 0.3819 0.3729

0.4 0.0644 0.2310 0.1852 0.1788 0.1530 0.2157 0.1691
0.0044 0.0534 0.0344 0.0336 0.0255 0.0469 0.0293

0.4365 0.4650 0.4407 0.4094 0.3995 0.4368 0.4237

0.45 0.0623 0.2382 0.1941 0.1864 0.1629 0.2219 0.1804
0.0041 0.0570 0.0378 0.0364 0.0291 0.0494 0.0332

0.0899 0.1008 0.1076 0.0747 0.1150 0.0960 0.1140

0.1 0.0376 0.1698 0.1035 0.1316 0.0814 0.1645 0.0921
0.0015 0.0288 0.0108 0.0180 0.0068 0.0271 0.0087

0.1907 0.1980 0.1913 0.1710 0.1842 0.1898 0.1899

0.2 0.0374 0.1759 0.1259 0.1386 0.1027 0.1691 0.1137
0.0015 0.0309 0.0159 0.0201 0.0108 0.0287 0.0130

0.2933 0.3023 0.2902 0.2728 0.2701 0.2915 0.2830

0.3 0.0365 0.1720 0.1362 0.1359 0.1184 0.1667 0.1289
0.0014 0.0296 0.0186 0.0192 0.0149 0.0279 0.0169

0.3950 0.4104 0.3924 0.3767 0.3642 0.3948 0.3819

0.4 0.0372 0.1716 0.1413 0.1386 0.1282 0.1638 0.1371
0.0014 0.0295 0.0200 0.0198 0.0177 0.0268 0.0191

0.4448 0.4645 0.4474 0.4288 0.4154 0.4448 0.4344

0.45 0.0375 0.1678 0.1401 0.1366 0.1306 0.1623 0.1374
0.0014 0.0284 0.0196 0.0191 0.0183 0.0264 0.0191

Table 3.6: Simulated series with Student t 4 d.f. innovations: results of the esti-
mators (Whittle, GPH and local Whittle, LW) analysed with memory parameter values
d = 0.1, 0.2, 0.3, 0.4, 0.45, bootstrap replications B = 1000 and simulation replications
S = 2000: average value (boldface), standard error (italic), mean squared error (normal
font). In the upper part n = 200, whereas in the lower part n = 500.
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Monte Carlo ACF Local B.

d Whittle GPH LW GPH LW GPH LW

0.0808 0.0987 0.1227 0.0662 0.1330 0.0909 0.1317

0.1 0.0544 0.2303 0.1336 0.1735 0.1009 0.2167 0.1166
0.0033 0.0530 0.0184 0.0312 0.0113 0.0470 0.0146

0.1793 0.1930 0.1930 0.1551 0.1897 0.1820 0.1940

0.2 0.0626 0.2296 0.1602 0.1758 0.1234 0.2138 0.1407
0.0044 0.0528 0.0257 0.0329 0.0153 0.0461 0.0198

0.2799 0.3082 0.2902 0.2598 0.2685 0.2896 0.2825

0.3 0.0625 0.2254 0.1724 0.1754 0.1376 0.2116 0.1548
0.0043 0.0509 0.0298 0.0324 0.0199 0.0449 0.0243

0.3834 0.4084 0.3865 0.3580 0.3519 0.3845 0.3722

0.4 0.0622 0.2307 0.1871 0.1804 0.1556 0.2155 0.1725
0.0041 0.0533 0.0352 0.0343 0.0265 0.0467 0.0305

0.4372 0.4719 0.4462 0.4138 0.4034 0.4402 0.4275

0.45 0.0626 0.2349 0.1924 0.1834 0.1620 0.2214 0.1791
0.0041 0.0557 0.0370 0.0350 0.0284 0.0491 0.0326

0.0908 0.1006 0.1099 0.0778 0.1175 0.0961 0.1167

0.1 0.0369 0.1740 0.1075 0.1336 0.0848 0.1699 0.0970
0.0014 0.0303 0.0117 0.0183 0.0075 0.0289 0.0097

0.1913 0.2021 0.1938 0.1740 0.1858 0.1946 0.1927

0.2 0.0369 0.1700 0.1254 0.1332 0.1022 0.1647 0.1150
0.0014 0.0289 0.0158 0.0184 0.0106 0.0271 0.0133

0.2918 0.3029 0.2891 0.2740 0.2690 0.2910 0.2818

0.3 0.0363 0.1714 0.1353 0.1366 0.1174 0.1669 0.1288
0.0014 0.0294 0.0184 0.0193 0.0147 0.0279 0.0169

0.3943 0.4065 0.3909 0.3733 0.3626 0.3913 0.3798

0.4 0.0382 0.1731 0.1435 0.1407 0.1307 0.1656 0.1396
0.0015 0.0300 0.0207 0.0205 0.0185 0.0275 0.0199

0.4455 0.4635 0.4470 0.4288 0.4153 0.4442 0.4345

0.45 0.0388 0.1756 0.1432 0.1410 0.1320 0.1705 0.1415
0.0015 0.0310 0.0205 0.0203 0.0186 0.0291 0.0203

Table 3.7: Simulated series with Student t 6 d.f. innovations: results of the esti-
mators (Whittle, GPH and local Whittle, LW) analysed with memory parameter values
d = 0.1, 0.2, 0.3, 0.4, 0.45, bootstrap replications B = 1000 and simulation replications
S = 2000: average value (boldface), standard error (italic), mean squared error (normal
font). In the upper part n = 200, whereas in the lower part n = 500.
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n = 200 n = 500
ACF Local B. ACF Local B.

d GPH LW GPH LW GPH LW GPH LW

0.1 25.80 25.03 5.36 12.07 24.48 21.50 3.11 9.98
42.20 39.88 10.27 19.77 41.49 36.36 6.05 17.52

0.2 25.64 24.12 6.48 12.99 20.47 17.29 3.35 7.98
41.31 42.09 12.05 24.29 34.60 30.65 6.39 15.21

0.3 23.30 19.72 5.42 9.53 19.40 12.35 3.54 6.05
38.27 32.75 10.21 17.44 33.17 19.26 7.03 10.72

0.4 22.09 16.50 6.66 7.91 19.13 8.85 2.24 2.49
36.39 24.39 12.48 13.53 32.97 11.17 4.52 3.63

0.45 21.94 15.76 4.86 6.24 19.52 7.52 3.23 0.86
35.97 21.26 9.13 9.95 33.70 7.42 6.89 0.43

0.1 25.27 24.38 6.21 12.11 22.47 21.43 3.07 11.04
42.34 38.01 11.90 19.25 37.66 36.50 5.98 19.47

0.2 22.25 22.07 5.65 11.46 21.18 18.43 3.88 9.66
37.04 39.23 10.91 21.59 35.16 32.21 7.28 18.13

0.3 20.68 19.53 4.93 9.67 21.01 13.05 3.07 5.36
33.26 32.50 8.73 17.68 35.12 19.99 5.82 9.34

0.4 22.60 17.40 6.60 8.73 19.18 9.24 4.54 2.95
37.09 25.98 12.29 14.85 33.08 11.46 9.12 4.44

0.45 21.73 16.07 6.82 7.06 18.55 6.81 3.27 1.95
36.08 22.97 13.22 11.98 32.57 7.10 7.03 2.67

0.1 24.67 24.51 5.91 12.72 23.19 21.13 2.32 9.78
41.10 38.66 11.31 20.48 39.37 35.68 4.53 16.90

0.2 23.44 23.02 6.85 12.19 21.66 18.48 3.13 8.30
37.62 40.43 12.70 22.89 36.30 32.43 6.07 15.78

0.3 22.18 20.17 6.12 10.21 20.31 13.25 2.62 4.78
36.34 33.15 11.78 18.62 34.21 20.04 4.94 8.12

0.4 21.80 16.85 6.59 7.80 18.74 8.86 4.32 2.69
35.62 24.65 12.41 13.25 31.68 10.52 8.32 3.73

0.45 21.92 15.80 5.74 6.91 19.71 7.77 2.90 1.18
37.20 23.28 11.74 12.01 34.46 9.11 6.17 1.22

Table 3.8: Percentage of gain comparing the Monte Carlo results of estimators GPH and
local Whittle with the bootstrap results in terms of standard deviation (italic) and mean
squared error (normal font) for fractional integrated non-Gaussian (Chi-squared with 1 d.f.
and Student t with 4 and 6 d.f.) processes: �rst part series with Chi-squared 1 d.f. innova-
tions, second part series with Student t 4 d.f. innovations, third part series with Student t
6 d.f. innovations.
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ACF bootstrap local bootstrap

d n 1− α MC SD P PT SD P PT

90 78.60 91.85 89.80 79.75 73.50 70.60 78.60

128 95 85.95 96.10 94.60 86.75 80.80 77.90 85.30

99 94.35 98.90 98.60 94.95 89.50 86.80 93.45

90 85.25 95.05 93.25 86.30 77.05 75.80 85.85

0 300 95 91.65 97.65 97.40 91.95 85.45 82.70 91.75

99 97.15 99.85 99.60 97.55 93.75 92.40 96.80

90 88.35 96.10 95.70 88.80 80.70 80.00 88.80

1000 95 93.70 98.55 98.10 94.10 87.55 86.55 93.80

99 98.55 99.60 99.60 98.80 95.40 94.65 98.55

90 81.45 93.35 91.15 82.90 75.75 72.70 82.25

128 95 89.05 96.60 95.15 89.95 83.45 79.25 88.75

99 95.30 98.85 98.50 94.95 91.90 89.65 95.20

90 84.90 94.80 92.90 85.70 77.80 76.05 85.50

0.2 300 95 91.40 97.55 96.75 92.05 85.05 83.00 92.15

99 97.25 99.70 99.15 97.55 93.35 91.75 97.55

90 87.15 95.40 94.65 87.90 79.45 79.00 87.75

1000 95 93.05 98.65 97.85 93.40 86.95 85.55 93.20

99 98.90 99.75 99.60 98.75 95.10 94.00 98.70

90 85.75 94.05 91.35 63.25 73.50 75.40 64.20

128 95 91.00 96.75 95.40 66.60 81.75 82.75 68.05

99 95.95 99.20 98.65 70.40 88.85 90.60 72.25

90 89.85 92.25 93.60 65.35 71.25 77.50 68.00

0.45 300 95 93.40 96.30 96.60 68.50 78.60 84.40 71.30

99 97.65 99.15 99.20 71.60 88.35 93.35 74.65

90 88.15 92.50 95.80 77.85 77.90 80.90 81.15

1000 95 93.70 95.85 98.50 81.05 84.90 87.55 84.70

99 98.95 98.45 99.65 83.30 93.25 95.35 86.75

90 96.00 93.75 97.60 46.35 65.50 75.75 49.85

128 95 97.70 96.70 99.30 48.35 72.15 82.00 51.50

99 99.45 98.55 100.00 50.00 80.20 89.55 52.95

90 94.85 92.70 97.95 59.60 68.40 79.60 63.20

−0.45 300 95 97.70 96.25 99.05 61.25 76.10 86.30 65.10

99 99.30 98.95 99.85 63.35 84.35 93.40 67.20

90 86.25 90.70 96.40 73.70 74.65 78.70 77.95

1000 95 91.90 94.30 99.00 76.15 81.15 85.30 81.50

99 99.35 98.40 100.00 79.30 89.70 93.90 84.25

Table 3.9: Observed coverage (%) of the Whittle estimator relative to a con�dence inter-
val with 1−α nominal level for di�erent values of the parameter d = 0, 0.2, 0.45,−0.45 and
di�erent sample sizes n = 128, 300, 1000 computed using Monte Carlo (MC), bootstrap stan-
dard deviation (SD), percentile (P), percentile t (PT) methods and two di�erent bootstrap
procedures (ACF and local bootstrap).
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(a) d = 0

(b) d = 0.2

Figure 3.3: Actual coverage of con�dence intervals of Whittle estimator with con�dence
1 − α = 0.95, memory parameter d = 0, 0.2, series length n = 128, 300, 1000, di�erent
bootstrap methods (ACF and local bootstrap) and di�erent methods to build the interval
(bootstrap standard error, percentile and percentile t).
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(a) d = 0.45

(b) d = −0.45

Figure 3.4: Actual coverage of con�dence intervals of Whittle estimator with con�dence
1−α = 0.95, memory parameter d = 0.45,−0.45, series length n = 128, 300, 1000, di�erent
bootstrap methods (ACF and local bootstrap) and di�erent methods to build the interval
(bootstrap standard error, percentile and percentile t).
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ACF bootstrap local bootstrap log-periodogram
φ MC SD P PT SD P PT SD P PT

90 85.70 94.95 97.70 72.60 83.10 82.80 78.85 91.10 81.50 85.50
0 95 90.90 98.15 99.30 80.05 88.30 81.90 83.65 94.85 88.10 91.00

99 96.40 99.85 100.00 91.05 94.30 88.75 90.10 98.50 94.40 95.95

90 85.80 95.75 97.35 73.55 84.25 84.30 78.95 91.80 82.35 85.90
0.2 95 91.25 98.20 99.15 81.45 88.45 82.25 84.50 94.60 87.65 91.05

99 96.35 99.75 99.90 91.60 94.15 89.20 89.50 97.95 93.90 96.05

90 86.50 95.15 98.25 71.00 79.55 84.45 79.25 88.85 82.90 86.40
0.4 95 91.80 97.50 99.55 80.25 85.20 80.35 85.45 93.05 88.95 91.75

99 97.25 99.60 99.95 92.05 92.65 87.40 91.70 97.85 95.45 96.95

90 81.25 88.00 96.10 65.45 69.20 36.85 74.20 80.55 77.35 80.75
0.6 95 88.15 94.00 99.20 74.15 76.75 72.95 80.90 86.80 84.35 86.60

99 95.60 98.70 100.00 88.10 86.00 81.75 88.85 94.65 93.30 94.60

90 50.50 57.75 72.75 39.65 34.70 21.90 47.65 45.25 46.90 48.95
0.8 95 61.90 70.05 89.00 46.80 42.50 40.20 56.05 55.35 57.55 59.85

99 80.15 89.70 99.40 64.45 56.15 51.75 69.15 74.25 72.90 76.30

90 88.65 96.00 96.85 75.60 86.05 86.95 83.90 93.95 85.85 88.40
0 95 93.75 98.30 98.75 83.80 90.15 83.60 89.85 97.15 91.75 93.50

99 97.90 99.50 99.90 93.75 95.25 90.05 94.70 99.25 96.90 97.85

90 89.00 96.40 96.95 74.80 85.60 87.60 83.35 93.80 86.50 88.90
0.2 95 93.35 98.30 99.25 82.60 90.15 84.20 88.85 96.85 91.90 92.90

99 97.75 99.75 99.90 93.40 95.50 91.90 94.05 99.10 96.95 97.55

90 88.55 95.80 97.55 74.35 83.05 88.60 84.50 92.55 86.80 88.50
0.4 95 94.05 98.00 99.05 83.60 87.30 82.20 89.70 96.55 92.30 93.65

99 98.00 99.65 100.00 94.40 93.60 90.15 95.25 99.10 96.95 97.90

90 85.70 92.65 97.35 71.65 78.10 40.60 81.65 88.55 83.60 85.50
0.6 95 92.30 96.10 99.30 80.95 83.00 78.65 87.65 93.20 90.75 92.05

99 98.20 99.25 100.00 91.55 90.25 87.10 94.40 98.20 97.15 97.45

90 65.40 69.95 83.55 50.30 48.90 57.05 62.35 62.35 63.85 63.75
0.8 95 75.05 80.40 93.25 59.85 55.80 54.50 70.85 71.85 73.55 73.20

99 89.20 93.25 99.60 76.15 68.55 64.55 83.50 86.70 86.90 86.50

Table 3.10: Observed coverage (%) of the GPH estimator relative to a con�dence interval
with 1−α nominal level (second column) for d = 0, di�erent values of φ = 0, 0.2, 0.4, 0.6, 0.8
computed using Monte Carlo (MC), bootstrap standard deviation (SD), percentile (P), per-
centile t (PT) methods and three di�erent bootstrap procedures (ACF, local bootstrap and
log-periodogram regression): upper part with sample size n = 128, lower part with sample
size n = 300.



Chapter 3: ACF bootstrap for long memory processes 75

ACF bootstrap local bootstrap log-periodogram
φ MC SD P PT SD P PT SD P PT

90 86.15 96.40 96.50 74.30 85.40 84.45 78.55 92.30 82.25 86.10
0 95 90.95 98.20 98.35 82.40 90.40 82.80 84.30 95.30 88.25 90.70

99 96.80 99.80 99.95 92.65 95.70 89.75 90.15 98.30 94.35 96.15

90 85.65 95.05 96.30 71.85 84.05 82.35 78.40 90.95 82.10 85.85
0.2 95 91.20 97.95 98.25 80.65 88.60 82.30 83.80 94.25 87.95 90.90

99 95.90 99.50 99.85 91.10 94.15 89.05 89.85 97.40 93.80 95.35

90 85.95 94.00 96.80 71.65 79.60 48.00 78.55 88.40 82.85 85.70
0.4 95 91.50 96.75 99.15 80.65 84.90 80.75 84.15 93.00 88.60 90.75

99 97.05 99.45 99.95 91.95 92.75 88.40 90.80 97.40 94.75 96.10

90 81.05 88.05 96.30 63.60 68.35 29.55 71.95 79.15 77.20 79.85
0.6 95 87.90 93.20 99.00 73.60 75.85 74.10 78.90 86.05 84.80 86.20

99 95.55 98.20 99.90 87.45 85.80 82.35 87.90 94.55 92.85 94.65

90 51.65 59.70 77.15 38.30 37.20 39.50 47.90 47.00 48.65 50.90
0.8 95 63.50 70.95 90.30 48.25 43.55 45.10 55.30 56.65 58.65 60.30

99 79.85 89.05 99.45 64.15 58.20 54.85 66.90 74.00 73.90 76.95

90 86.70 95.80 95.70 74.20 85.90 85.60 81.80 92.95 84.05 86.85
0 95 91.95 97.80 98.20 82.40 89.80 82.35 87.60 95.95 90.00 92.00

99 97.55 99.60 99.60 92.80 94.95 90.15 93.70 98.60 96.40 97.20

90 87.25 96.10 95.60 74.75 85.35 86.85 82.00 93.45 84.95 87.00
0.2 95 92.85 98.40 97.80 82.95 89.35 81.60 88.50 96.30 90.75 93.10

99 97.45 99.80 99.70 93.55 95.40 90.15 94.50 99.05 96.15 97.35

90 87.90 95.70 96.95 74.20 84.50 47.90 83.35 92.20 85.30 87.95
0.4 95 93.80 98.10 99.05 83.85 88.80 83.75 89.05 96.00 91.85 93.65

99 98.75 99.90 99.90 94.50 94.85 90.60 95.60 99.30 98.20 98.55

90 85.30 92.10 97.20 71.80 75.80 79.05 80.30 86.95 83.90 85.05
0.6 95 92.30 95.90 98.70 79.90 82.25 80.20 85.85 91.85 90.25 91.15

99 98.00 99.35 99.95 91.00 90.25 87.90 93.35 97.80 96.45 97.15

90 64.40 70.20 85.05 49.95 49.15 77.45 59.45 61.00 62.10 61.85
0.8 95 74.70 80.10 94.65 58.90 55.50 57.20 68.85 71.45 73.55 72.75

99 89.95 94.25 99.60 75.85 70.50 68.55 81.70 87.00 87.90 87.15

Table 3.11: Observed coverage (%) of the GPH estimator relative to a con�dence in-
terval with 1 − α nominal level (second column) for d = 0.2, di�erent values of φ =
0, 0.2, 0.4, 0.6, 0.8 computed using Monte Carlo (MC), bootstrap standard deviation (SD),
percentile (P), percentile t (PT) methods and three di�erent bootstrap procedures (ACF, lo-
cal bootstrap and log-periodogram regression): upper part with sample size n = 128, lower
part with sample size n = 300.
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ACF bootstrap local bootstrap log-periodogram
φ MC SD P PT SD P PT SD P PT

90 85.40 95.65 95.20 71.60 84.40 68.25 77.30 91.10 82.10 85.80
0 95 91.30 97.60 98.10 80.30 89.85 82.45 82.60 95.15 88.10 90.80

99 96.75 99.80 99.70 92.15 95.35 89.55 90.00 98.15 94.30 96.05

90 85.15 94.75 96.20 72.05 84.20 37.35 76.65 89.35 81.80 84.85
0.2 95 90.90 97.25 98.35 80.10 89.25 83.25 82.45 93.40 87.70 90.60

99 96.95 99.40 99.75 91.00 95.05 90.00 89.35 97.90 94.85 96.65

90 86.60 94.10 96.55 71.20 81.80 50.05 76.70 87.80 83.05 86.10
0.4 95 92.10 96.80 98.45 80.00 87.70 84.55 83.10 93.40 89.25 91.50

99 96.65 99.55 99.80 90.65 94.45 90.45 90.30 97.40 94.60 96.20

90 81.30 87.45 97.95 63.60 70.45 73.35 70.40 79.25 77.20 79.60
0.6 95 88.30 93.20 99.40 72.85 78.60 78.50 77.75 86.20 85.70 86.95

99 95.80 98.10 100.00 85.30 88.30 86.35 86.45 94.80 93.15 94.80

90 51.70 58.15 82.85 37.40 38.80 57.80 42.40 46.55 47.55 49.95
0.8 95 63.25 71.60 95.45 44.80 46.85 51.05 50.20 56.45 58.60 60.55

99 81.40 89.95 100.00 61.85 63.45 63.10 65.15 75.10 75.05 77.20

90 86.95 95.45 95.10 74.70 85.25 73.55 81.20 91.55 84.70 86.90
0 95 92.15 97.95 97.40 82.25 89.95 83.65 86.65 95.55 90.50 92.05

99 97.20 99.70 99.45 92.55 95.20 90.70 93.00 98.55 96.05 97.40

90 88.35 95.20 96.15 74.40 85.00 32.00 82.40 92.05 86.35 87.60
0.2 95 93.15 97.40 98.90 82.70 89.90 85.00 88.70 95.15 91.10 92.75

99 98.20 99.60 99.85 92.95 95.05 91.55 94.35 98.70 97.35 97.90

90 87.90 93.80 96.45 74.45 83.20 78.65 81.25 89.80 85.50 86.75
0.4 95 92.65 96.85 98.90 81.10 88.05 84.75 87.30 94.15 91.60 92.20

99 97.70 99.30 99.70 91.95 94.45 91.55 93.50 98.10 96.80 97.05

90 85.60 91.75 96.75 69.25 77.30 84.10 77.20 86.95 83.40 84.70
0.6 95 91.45 96.05 98.55 78.25 83.25 82.15 84.95 92.15 90.20 90.95

99 97.30 99.45 99.80 90.00 92.20 90.10 92.75 97.30 96.50 96.80

90 62.85 69.80 85.50 47.90 48.45 71.90 55.65 60.80 61.55 61.65
0.8 95 73.65 81.00 95.85 57.00 57.20 59.15 64.80 69.65 71.85 70.95

99 87.70 93.95 99.85 72.60 72.10 71.50 78.40 85.25 86.30 85.30

Table 3.12: Observed coverage (%) of the GPH estimator relative to a con�dence in-
terval with 1 − α nominal level (second column) for d = 0.45, di�erent values of φ =
0, 0.2, 0.4, 0.6, 0.8 computed using Monte Carlo (MC), bootstrap standard deviation (SD),
percentile (P), percentile t (PT) methods and three di�erent bootstrap procedures (ACF, lo-
cal bootstrap and log-periodogram regression): upper part with sample size n = 128, lower
part with sample size n = 300.
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ACF bootstrap local bootstrap log-periodogram
φ MC SD P PT SD P PT SD P PT

90 86.40 95.40 99.30 68.55 81.75 60.95 79.80 90.50 83.20 86.40
0 95 91.40 98.00 99.85 78.70 86.95 80.05 85.55 94.30 88.95 91.25

99 96.95 99.60 100.00 89.90 93.65 87.85 91.00 98.00 94.70 96.45

90 84.95 94.30 98.75 68.95 80.45 81.85 79.45 89.35 81.95 85.10
0.2 95 90.55 97.40 99.85 78.20 85.75 78.95 85.55 93.25 87.40 90.25

99 96.65 99.85 100.00 89.65 92.45 86.60 90.45 97.50 93.85 96.00

90 85.50 91.35 98.10 69.95 77.05 84.80 80.40 85.90 81.40 84.85
0.4 95 91.10 95.50 99.65 78.10 82.95 76.15 85.95 91.55 87.95 90.15

99 96.25 99.15 100.00 89.55 90.60 84.70 91.95 96.55 94.35 95.60

90 79.50 86.55 94.50 63.75 65.15 78.45 76.55 77.00 75.30 79.00
0.6 95 87.25 92.65 98.60 73.35 72.10 66.90 83.15 84.90 83.60 86.15

99 94.45 98.10 99.90 87.30 82.90 76.10 90.80 93.40 92.05 93.70

90 47.60 55.30 63.85 39.85 34.25 41.25 50.65 42.95 44.55 46.40
0.8 95 60.15 68.40 82.80 48.30 41.55 35.75 59.60 52.20 54.70 56.95

99 79.60 87.65 98.25 66.45 54.20 45.55 72.35 71.95 71.60 75.00

90 87.30 94.55 98.40 72.55 81.90 72.70 84.05 91.10 85.30 87.00
0 95 92.45 97.55 99.85 79.40 86.40 81.20 89.60 94.75 91.00 92.15

99 98.30 99.75 100.00 90.30 93.05 88.30 94.75 98.85 97.45 97.90

90 87.75 94.30 98.45 70.35 79.55 87.00 83.65 91.10 85.05 87.50
0.2 95 93.00 97.00 99.90 79.15 85.50 79.45 89.30 94.65 91.40 92.50

99 97.50 99.50 100.00 90.50 93.05 88.70 94.60 98.45 96.15 97.05

90 85.80 93.35 97.95 71.25 79.20 85.95 82.65 89.05 82.85 85.25
0.4 95 92.10 96.85 99.55 79.85 84.75 78.40 88.60 93.50 90.00 91.55

99 97.50 99.50 100.00 90.25 91.90 87.50 93.90 98.00 96.60 97.05

90 83.95 90.85 96.15 69.65 73.10 83.80 82.20 85.20 81.80 82.85
0.6 95 90.90 95.55 99.00 79.00 78.80 73.95 87.90 91.05 89.55 90.10

99 97.25 99.20 99.95 91.00 88.05 84.10 94.10 97.25 96.00 96.65

90 61.80 68.50 75.60 53.30 46.35 59.80 64.95 58.95 60.15 60.40
0.8 95 73.40 79.05 89.40 62.50 54.85 48.95 73.65 69.40 71.85 70.95

99 88.80 92.95 99.40 77.65 67.35 60.65 85.90 85.70 86.25 86.10

Table 3.13: Observed coverage (%) of the GPH estimator relative to a con�dence in-
terval with 1 − α nominal level (second column) for d = −0.45, di�erent values of
φ = 0, 0.2, 0.4, 0.6, 0.8 computed using Monte Carlo (MC), bootstrap standard deviation
(SD), percentile (P), percentile t (PT) methods and three di�erent bootstrap procedures
(ACF, local bootstrap and log-periodogram regression): upper part with sample size n = 128,
lower part with sample size n = 300.
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(a) n = 128

(b) n = 300

Figure 3.5: Actual coverage of con�dence intervals of GPH estimator with con�dence
1 − α = 0.95, memory parameter d = 0, 0.2, 0.45,−0.45, autoregressive parameter φ =
0, 0.2, 0.4, 0.6, 0.8, series length n = 128, 300, 1000, di�erent bootstrap methods (ACF and
local bootstrap) and di�erent methods to build the interval (bootstrap standard error and
percentile).
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ACF bootstrap local bootstrap
φ MC SD P PT SD P PT

90 71.55 94.75 94.65 60.25 84.90 76.20 61.95
0 95 79.10 96.65 97.90 61.10 88.65 81.80 66.00

99 89.05 98.75 99.70 61.20 93.55 88.45 68.40

90 72.15 95.20 94.70 60.85 88.00 77.15 63.25
0.2 95 79.40 97.20 97.80 61.70 91.00 82.55 67.00

99 90.20 98.90 99.60 61.70 94.75 89.45 70.15

90 74.00 93.95 96.30 60.85 82.45 75.70 63.75
0.4 95 81.75 96.05 98.50 61.30 87.90 81.95 68.70

99 90.65 98.65 99.75 61.45 92.90 88.80 71.90

90 63.60 85.35 94.95 50.95 71.10 70.15 55.15
0.6 95 72.50 89.55 98.55 51.75 77.25 75.05 59.10

99 85.25 95.15 99.85 51.80 85.20 82.10 61.95

90 25.75 43.50 69.45 18.25 31.10 40.20 22.35
0.8 95 33.35 52.15 84.00 18.45 37.45 46.10 24.15

99 49.20 65.95 97.85 18.50 48.00 54.30 25.25

90 75.70 97.50 94.45 72.05 89.25 75.25 70.80
0 95 83.45 98.60 97.30 75.45 92.35 81.50 76.40

99 93.65 99.60 99.45 76.15 96.55 89.05 81.85

90 78.60 97.10 94.20 73.60 89.65 77.15 71.80
0.2 95 84.90 98.70 97.35 77.40 92.75 82.90 78.10

99 93.45 99.55 99.55 78.45 96.70 91.00 83.40

90 76.45 97.05 95.35 71.60 87.70 76.70 70.90
0.4 95 84.80 98.50 97.90 75.65 90.65 83.20 77.05

99 93.95 99.65 99.40 76.30 95.55 89.95 83.35

90 73.35 93.95 95.40 68.35 82.25 74.75 67.60
0.6 95 82.75 96.85 97.95 71.70 86.70 81.45 74.05

99 92.70 98.95 99.70 72.90 93.40 88.65 80.35

90 41.70 66.45 80.70 37.25 46.45 49.75 39.25
0.8 95 51.30 74.75 91.00 40.05 53.80 57.05 45.70

99 69.50 87.30 98.65 40.70 67.70 68.60 52.15

Table 3.14: Observed coverage (%) of the local Whittle estimator relative to a con�dence
interval with 1−α nominal level for d = 0, di�erent values of φ = 0, 0.2, 0.4, 0.6, 0.8 computed
using Monte Carlo (MC), bootstrap standard deviation (SD), percentile (P), percentile t
(PT) methods and two di�erent bootstrap procedures (ACF and local bootstrap): upper part
with sample size n = 128, lower part with sample size n = 300.
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ACF bootstrap local bootstrap
φ MC SD P PT SD P PT

90 72.05 94.25 93.65 60.00 84.95 75.75 59.85
0 95 80.20 97.55 96.90 60.55 88.25 81.90 63.05

99 93.75 99.50 99.55 60.60 92.40 89.45 65.60

90 72.20 92.40 94.20 56.60 84.50 76.00 58.30
0.2 95 79.45 95.60 96.85 57.30 87.45 82.35 60.35

99 93.90 99.00 99.45 57.30 90.95 89.00 63.40

90 72.15 89.75 95.15 53.20 80.40 76.25 56.80
0.4 95 80.05 95.30 97.90 53.55 84.00 82.15 58.55

99 95.90 98.55 99.70 53.55 88.70 88.95 60.55

90 63.15 79.40 94.25 42.15 66.55 69.95 46.65
0.6 95 72.30 88.65 97.80 42.40 71.45 75.80 47.85

99 97.60 96.05 99.80 42.45 77.90 83.25 49.15

90 26.55 36.30 72.35 12.50 28.80 42.95 14.75
0.8 95 33.30 49.90 86.10 12.55 33.75 48.65 14.95

99 99.80 70.50 98.05 12.55 42.50 57.15 15.05

90 76.75 94.65 92.80 67.55 87.80 76.40 69.35
0 95 84.20 96.40 96.60 70.40 91.20 82.75 73.10

99 95.45 98.45 99.15 71.85 94.50 90.45 76.40

90 76.25 94.40 92.55 68.25 88.80 74.95 70.60
0.2 95 83.45 96.35 96.45 71.95 91.00 80.05 73.45

99 95.10 98.80 99.05 73.20 94.10 88.45 77.40

90 77.05 93.05 95.05 65.70 85.55 76.65 68.75
0.4 95 84.60 95.10 97.70 68.80 88.60 83.75 71.60

99 96.90 98.60 99.65 69.75 93.15 91.00 74.65

90 72.85 86.80 95.45 58.25 76.70 74.90 62.70
0.6 95 81.00 90.75 98.05 60.85 81.00 82.10 65.55

99 98.10 96.95 99.65 61.50 87.40 89.80 67.45

90 41.75 53.20 83.00 26.20 41.55 51.30 31.40
0.8 95 50.90 61.30 92.00 26.65 47.40 60.35 32.20

99 99.70 78.55 99.05 26.90 57.55 72.40 32.75

Table 3.15: Observed coverage (%) of the local Whittle estimator relative to a con�dence
interval with 1−α nominal level for d = 0.2, di�erent values of φ = 0, 0.2, 0.4, 0.6, 0.8 com-
puted using Monte Carlo (MC), bootstrap standard deviation (SD), percentile (P), percentile
t (PT) methods and two di�erent bootstrap procedures (ACF and local bootstrap): upper part
with sample size n = 128, lower part with sample size n = 300.
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ACF bootstrap local bootstrap
φ MC SD P PT SD P PT

90 82.75 99.80 92.50 40.85 87.55 76.85 38.80
0 95 87.80 99.85 96.65 44.00 89.90 82.25 41.60

99 93.00 100.00 99.35 45.20 92.95 88.45 44.25

90 86.35 99.80 94.20 41.00 89.25 77.25 39.30
0.2 95 89.55 99.90 96.50 44.25 90.65 83.00 41.60

99 94.50 100.00 99.00 44.90 92.70 90.50 43.75

90 89.40 99.85 95.35 38.40 87.85 80.10 38.30
0.4 95 92.35 99.90 97.90 40.25 89.75 85.40 39.95

99 95.95 100.00 99.40 41.45 92.15 91.75 41.55

90 94.75 99.65 95.90 27.90 77.05 75.00 27.25
0.6 95 96.30 99.75 98.80 29.35 80.10 81.00 28.35

99 98.35 99.85 99.90 30.00 82.65 89.20 29.75

90 99.00 91.00 78.30 6.55 47.20 48.75 6.65
0.8 95 99.25 93.70 89.85 6.70 50.10 55.70 6.70

99 99.55 97.40 99.15 6.80 53.75 66.70 7.20

90 86.90 99.55 92.90 46.55 87.70 77.60 46.35
0 95 90.95 99.90 96.80 49.95 90.15 84.35 49.40

99 95.80 99.95 99.05 53.10 92.70 91.00 52.55

90 88.60 99.40 94.55 43.30 88.85 78.85 43.15
0.2 95 91.65 99.65 97.50 46.30 90.60 85.20 45.55

99 96.45 99.80 99.40 50.10 92.85 92.30 48.90

90 90.15 99.25 95.05 42.90 86.95 79.90 42.65
0.4 95 94.10 99.50 98.35 45.85 89.40 86.10 44.75

99 97.70 99.75 99.60 47.95 91.90 92.50 47.75

90 93.35 99.10 94.90 35.05 81.35 77.85 34.90
0.6 95 95.25 99.70 98.20 36.15 84.15 83.75 36.55

99 97.70 99.90 99.90 37.95 87.60 91.40 37.80

90 98.90 88.00 82.35 10.60 50.50 53.50 11.10
0.8 95 99.30 91.50 91.85 11.00 54.30 62.75 11.40

99 99.80 95.50 99.00 11.40 59.60 75.05 11.90

Table 3.16: Observed coverage (%) of the local Whittle estimator relative to a con�dence
interval with 1 − α nominal level for d = 0.45, di�erent values of φ = 0, 0.2, 0.4, 0.6, 0.8
computed using Monte Carlo (MC), bootstrap standard deviation (SD), percentile (P), per-
centile t (PT) methods and two di�erent bootstrap procedures (ACF and local bootstrap):
upper part with sample size n = 128, lower part with sample size n = 300.
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ACF bootstrap local bootstrap
φ MC SD P PT SD P PT

90 86.95 95.55 99.00 42.70 79.05 75.95 43.65
0 95 91.05 97.95 99.80 46.80 84.70 81.70 47.00

99 96.00 99.60 99.95 50.15 89.95 87.60 50.50

90 84.85 94.75 98.30 42.70 83.50 76.05 43.05
0.2 95 88.85 97.85 99.50 46.50 88.10 80.35 47.05

99 95.70 99.75 100.00 51.60 93.25 86.75 50.80

90 80.30 92.20 97.25 45.65 80.75 73.45 46.10
0.4 95 85.20 96.35 99.15 49.65 86.55 78.85 50.20

99 92.85 99.15 100.00 54.70 93.00 85.05 55.15

90 67.45 85.05 93.75 47.20 67.70 64.60 48.20
0.6 95 73.85 93.05 97.35 53.00 75.95 69.95 54.65

99 85.55 98.35 99.75 60.20 85.65 76.65 61.55

90 23.55 47.65 61.65 23.95 29.30 32.30 24.85
0.8 95 30.65 62.85 78.70 29.45 38.05 38.95 31.35

99 45.55 84.30 96.05 37.10 55.20 47.00 41.75

90 88.40 95.80 97.85 49.00 79.50 77.75 50.45
0 95 92.00 98.55 99.80 52.45 84.90 82.60 53.80

99 96.85 99.95 100.00 56.85 91.35 89.20 57.90

90 87.40 95.70 97.90 48.15 84.40 75.10 48.35
0.2 95 92.00 98.60 99.55 51.70 89.20 81.45 52.30

99 96.80 99.80 100.00 56.65 94.50 88.45 56.60

90 84.70 93.90 97.35 51.05 81.95 74.00 50.45
0.4 95 89.60 97.90 99.15 55.40 87.35 80.30 54.65

99 95.85 99.70 100.00 60.65 92.95 86.85 60.40

90 78.05 92.30 95.50 50.80 76.60 71.85 51.75
0.6 95 84.50 96.55 98.30 56.35 83.20 77.70 56.85

99 93.80 99.50 99.90 64.80 90.45 85.00 64.70

90 39.90 66.00 73.70 35.40 43.70 43.80 37.45
0.8 95 48.45 79.50 85.45 44.35 53.30 51.60 44.90

99 67.20 94.45 97.55 60.85 68.90 62.65 60.55

Table 3.17: Observed coverage (%) of the local Whittle estimator relative to a con�dence
interval with 1 − α nominal level for d = −0.45, di�erent values of φ = 0, 0.2, 0.4, 0.6, 0.8
computed using Monte Carlo (MC), bootstrap standard deviation (SD), percentile (P), per-
centile t (PT) methods and two di�erent bootstrap procedures (ACF and local bootstrap):
upper part with sample size n = 128, lower part with sample size n = 300.
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(a) n = 128

(b) n = 300

Figure 3.6: Actual coverage of con�dence intervals of local Whittle estimator with con-
�dence 1 − α = 0.95, memory parameter d = 0, 0.2, 0.45,−0.45, autoregressive parameter
φ = 0, 0.2, 0.4, 0.6, 0.8, series length n = 128, 300, 1000, di�erent bootstrap methods (ACF
and local bootstrap) and di�erent methods to build the interval (bootstrap standard error,
percentile and percentile t).
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Chapter 4

Edgeworth expansion for the sample

autocorrelation function

In the previous chapter we developed a new bootstrap method for long memory time
series. The ACF bootstrap (as it is called) is based on a result of Ramsey (1974) and
generates a surrogate series X∗t through the sample autocorrelation function ρ̂k, using the
Durbin-Levinson algorithm. The validity of the method for fractionally integrated noise
FI(d) (see Section 1.2) was supported by an extensive simulation experiment. However
it would be interesting to assess formally the validity of ACF bootstrap by showing that
the surrogate autocovariance γ̂∗k function and autocorrelation ρ̂∗k function, i.e., the second
order functions of {X∗t }, converge in some appropriate mode to the sample autocovariance
γ̂k function and autocorrelation ρ̂k function, respectively, and then also to the theoretical
values γk and ρk.

Throughout this chapter, we distinguish between weak long memory (weakly dependent
process) with 0 ≤ d ≤ 0.25 and strong long memory (strongly dependent process) with
0.25 < d < 0.5, because the value of the memory parameter determines the asymptotic
behaviours of sample autocovariance and autocorrelation functions (refer to Section 1.3).

The sample autocovariance and autocorrelation functions of weakly dependent pro-
cesses are asymptotically Normally distributed, whereas their limiting distribution for
strongly dependent processes, the Rosenblatt distribution, is quite complicated and dif-
�cult to handle (refer to Section 1.3 for a detailed description of the asymptotics of the
sample autocovariance and autocorrelation functions).

We wish to study the normalised quantities Ck = n1−2d(γ̂k − γk) and Rk = n1−2d(ρ̂k −
ρk)/(1 − ρk) for strong long memory processes with the help of Edgeworth expansions
(Section 4.1). The aim of the study is to understand how the sample autocovariance
and autocorrelation functions behave asymptotically for increasing values of d, and to say
something about the convergence rate.

In the second part of this chapter we investigate the convergence of the bootstrap
autocorrelation function for long memory processes. We compared the sample and the
bootstrap autocorrelation functions in terms of standard deviation and bias.

The chapter is organised as follows. In Section 4.1, we brie�y introduce Edgeworth
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and Cornish-Fisher expansions and we study, by means of simulation, the properties of
sample autocovariance and autocorrelation functions of fractionally integrated processes.
In Section (4.2) we show that the ACF bootstrap can replicate the second order dependence
structure of any long memory processes (0 < d < 0.5)) with Gaussian and non-Gaussian
innovations. We conclude the chapter and propose some future development in Section
4.3.

4.1 Edgeworth and Cornish-Fisher expansions

Asymptotic Normality is a common and desirable property of estimators. However this
is not always the case and Edgeworth expansions can be a useful tools to investigate or
correct asymptotic distributions. Not all estimators satisfy assumptions for a central limit
theorem or sometimes convergence is so slow that the Normal approximation turns out to
be very poor. In this chapter we investigate if it is possible to correct with Edgeworth
expansions the asymptotic distribution of the sample autocovariance and autocorrelation
functions of fractionally integrated processes with 0.25 < d < 0.5. We aim to �nd how
many terms of the expansion really in�uence the convergence and how far from Normality
sample autocovariance and autocorrelation functions of strong long memory processes lie.

The idea of an Edgeworth expansion is to approximate the distribution of a statistic
by the Normal distribution plus some correction terms, which depend on the cumulants of
the statistic of interest. The general formula for an Edgeworth expansion to approximate
distributions of estimates θ̂ of unknown quantities θ0 is given by

P

{
n1/2

(
θ̂ − θ0
σ

)
≤ x

}
= Φ(x) + n−1/2p1(x)φ(x) + . . .+ n−j/2pj(x)φ(x) + . . . ,

where n is the sample size, σ the standard deviation of θ̂, Φ(·) and φ(·) are the standard
Normal distribution and density function, respectively, pj(·) is a polynomial depending on
cumulants up to order 3j−1 and is an odd or even function according to whether j is even
or odd, respectively (Hall, 1992b).

In our case we want to study the normalised quantities Ck = n1−2d(γ̂k − γk) and
Rk = n1−2d(ρ̂k−ρk)/(1−ρk) because we know that they are asymptotically distributed as
a Rosenblatt distribution (see Section 1.3). We aim to see how far from Normality these
two quantities depart and if the �rst two terms of Edgeworth expansions correct the non-
Normality adequately for the following reasons. Higher order correction terms become very
unstable because of all the cumulants we need to estimate and, in any case, Hall (1992b)
(pg. 94) already warned that the results based on high order correction are unattainable.
In the literature there are not many papers on this topic, besides the work of Hosking
(1996). The Rosenblatt distribution is quite complicated and if the sample distributions
are not very far from Normality then it could be easier to prove that the ACF bootstrap
is a consistent method for long memory Gaussian processes.

From the paper of Hosking (1996), we know that the normalisation constant is n1−2d
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and we approximate the asymptotic distributions by Edgeworth expansion as

P (C∗k ≤ z) = Φ(z) +
∑∞

j=1

(
n1−2d

)−j
Pj(z)φ(z),

P (R∗k ≤ z) = Φ(z) +
∑∞

j=1

(
n1−2d

)−j
pj(z)φ(z),

where C∗k = Ck/
√
var(Ck), R∗k = Rk/

√
var(Rk) and Pj and pj are de�ned in Section 1.3.

In the simulation study we do not divide Ck and Rk by their standard deviations: only
when asymptotic Normality is assessed the variance is given by the well known Bartlett's
formulas (see Section 1.3). However, the scale in not important because we compare
the Monte Carlo distribution with the Normal distribution and the Normal distribution
corrected with Edgeworth expansion in terms of quantiles, thus we do not need to divide
by the standard error. For our purpose it is more useful to have an approximation of
the quantiles of the distribution to have a graphical insight through Q-Q plots. They
can be calculated through Cornish-Fisher expansions, the inverse formula of Edgeworth
expansions, given by

C∗k,α = zα +
∑∞

j=1

(
n2d−1

)j
Qj(zα), (4.1)

R∗k,α = zα +
∑∞

j=1

(
n2d−1

)j
qj(zα), (4.2)

where C∗k,α, R
∗
k,α and zα are the α-level quantiles of C∗k , R

∗
k and of the Normal distribution

respectively, and Qj and qj are de�ned in Section 1.3.

We compare the distributions of Ck and Rk with three di�erent levels of approximations
based on formulas (4.1) and (4.2). The �rst is the Normal approximation where we shall
not consider any correction. In the second and third cases, respectively, we consider up to
the �rst and up to the second terms:

C∗k,α=̇1Ck,α = zα +
(
n2d−1

)
Q1(zα),

R∗k,α=̇1Rk,α = zα +
(
n2d−1

)
q1(zα), (4.3)

C∗k,α=̇2Ck,α = zα +
(
n2d−1

)
Q1(zα) +

(
n2d−1

)2
Q2(zα),

R∗k,α=̇2Rk,α = zα +
(
n2d−1

)
q1(zα) +

(
n2d−1

)2
q2(zα). (4.4)

The coe�cients Q1 and Q2 are given by

Q1(x) = −P1(x)

Q2(x) = P1(x)P ′1(x)− 1
2
xP1(x)2 − P2(x),
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where P1 and P2 are the Edgeworth expansion's coe�cients with

P1(x) = −1
6
k3(x2 − 1)

P2(x) = −x
{

1
24
k4(x2 − 3) +

1
72
k2

3(x4 − 10x2 + 15)
}

and k3 and k4 are the third and fourth order cumulants

k3(γ̂k) = E{(γ̂k − E[γ̂k])3} (4.5)

k4(γ̂k) = E{(γ̂k − E[γ̂k])4} − 3Var{γ̂k}2. (4.6)

The same relationship is valid between q1, q2 and p1, p2 with the third and fourth cumulants
of ρ̂k.

For more details about Edgeworth and Cornish-Fisher expansions refer to Hall (1992b)
and Barndor�-Nielsen and Cox (1989).

4.1.1 Numerical Experiments

In this section we present the results of a wide numerical experiment. The aim of
the experiment is to compare the distribution of the normalised sample autocovariance
function, Ck (k = 0, 1, 2, 5, 10), and sample autocorrelation function, Rk (k = 1, 2, 5, 10),
of a strong long memory process with three di�erent theoretical distributions: the Normal
distribution and two corrected distributions, calculated using equations (4.3) and (4.4).

The Monte Carlo experiment consists of generating S = 20000 series of length n =
300, 1000 and 2000 for di�erent values of the memory parameter d = 0.26, 0.27, . . . , 0.49.
We use simulated data for two purposes. Firstly, we calculate the normalised sample auto-
covariance and autocorrelation functions, Ck and Rk, for each series, obtaining estimates
of their distributions. Secondly, we thus obtain reliable estimates of the third and fourth
cumulants of Ck and Rk, based on formulas (4.5) and (4.6). The theoretical third and
fourth cumulants are too burdensome to evaluate numerically, being the solutions of the
multiple integral of equation (1.17). As we already explained in Section 4.1, Ck and Rk
were not normalised in the simulations by their standard errors, because we are interested
in comparing the quantiles of the distributions, so the scale is not important.

We preliminarily explore the data through Q-Q plots of the standard Normal distribu-
tion, of 1Ck and of 2Ck versus Ck. In the case of the autocovariance function, see Figures
(4.1)-(4.3), the data are clearly non-Normal, and non-Normality is more pronounced for
larger values of the memory parameter. On the other hand, it seems that for longer series
the distribution of the sample autocovariance function gets closer to the Normal distribu-
tion. When we analyse the e�ects of the Cornish-Fisher corrections, we �nd that the �rst
correction has a visible impact: the Normal distribution with one correction term is closer
to the sample distribution. The second correction has almost no impact, suggesting that
only the �rst correction is signi�cant: we do not draw the second order correction in the
graphs because it would superimpose the �rst order correction. For longer series, when the
distribution of the sample autocovariance function is closer to normality, the contribution
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of Cornish-Fisher is smaller. Similar Q-Q plots, given in Figures (4.4)-(4.6), of the auto-
correlation function seem noticeably di�erent. The sample autocorrelation function has
a distribution quite close to Normality, and a slight deviation can be observed for larger
values of the parameter, i.e., d = 0.45, 0.49. The contributions of both the �rst and the
second correction terms seemed to be irrelevant from a graphical point of view. It must
be underlined that, for d = 0.49, the convergence of the autocorrelation function is so
slow that the correction is not well estimated and the �rst order correction is behaving in a
unusual way. Another indication of the slow convergence rate of the sample autocovariance
and autocorrelation functions can be noticed in the ordinates of the �gures: it should be
centred around zero, however when the value of the memory parameter d increases, the
bias becomes huge for both the sample autocovariance and the autocorrelation functions.
This issue was already investigated by Newbold and Agiakloglou (1993).

An interesting insight of the sample distribution is given by Figure 4.7: for increasing
values of d (abscissa) and di�erent sample sizes, there is the estimate of the sample kurtosis
(part a) and of the sample skewness (part b) for the autocovariance and autocorrelation
functions. The two quantities are positively correlated with the memory parameter d in the
case of the autocovariance function meaning that the sample distribution becomes more
skewed and heavy tailed, whereas they remain approximately constant and with values
closed to the Normal distribution in the case of the sample autocorrelation function.

As a second step we investigate if the improvements pointed out with the graphical
analysis are statistically signi�cant. We studied three standard linear regression models,
where the dependent variable Y is the quantile of the sample autocovariance (autocorre-
lation) function while the covariate changes:

Model 1: Y = α0 + α1X1 + ε1,

Model 2: Y = β0 + β1X2 + ε2, (4.7)

Model 3: Y = τ0 + τ1X3 + ε3,

where X1 is the quantile of the Normal distribution, whereas X2 and X3 are the quantiles
of the Normal distribution corrected with one and two terms, respectively, of the Cornish-
Fisher expansion. As expected the R squared values are all close to unity with R2(Y,X1) <
R2(Y,X2) < R2(Y,X3). We cannot use the F test to compare the three models because
they are not nested. An alternative is o�ered by the Cox test. This test statistic is Normally
distributed if the errors εi, i = 1, 2, 3, are Gaussian. Even though this is not the case, in
Appendix A we introduce brie�y the Cox test and we show, by means of simulation, that
Normality of the test is not violated. We refer to the Cox test with Ŝk,1 and ŝk,1 when we

compare the �rst two models, Ŝk,2 and ŝk,2 for the second and the third, where k indicates
the lag, capital letter for sample autocovariance function and lower case letter for sample
autocorrelation.

In Tables 4.1-4.3 we report the observed results of the test for the sample autoco-
varaince function: for each value of the long memory parameter, in the �rst column there
is the value of the test Ŝk,1 (ŝk,1) when we compare the Normal approximation with the
�rst order approximation (�rst and second model of Equations (4.7)), while the second
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(a) kurtosis

(b) skewness

Figure 4.7: Sample kurtosis k4(x) = E{(x − E[x])4} − 3Var{x}2 and sample skewness
k3(x) = E{(x − E[x])3} for increasing values of d = 0.26, 0.27, . . . , 0.49 of the sample
autocorrelation and autocovariance function for di�erent series length n = 300, 1000, 2000.
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column reports the values of the test Ŝk,2 (ŝk,2) when we compare the �rst and the second
order approximations (second and third model of Equations (4.7)). These values have to
be compared with the 5% quantile of the Normal distribution, i.e., ±1.96. For the auto-
covariance function the �rst order correction term is signi�cant, as we already noticed in
the Q-Q plots. The second order term is not signi�cant for values of d smaller than 0.42.
However, the correction of the second term becomes less signi�cant, when increasing the
sample size, suggesting that, asymptotically, the second term is negligible for any value of
the memory parameter d.

In Tables 4.4-4.6 we report the observed results of the test for the sample autocorrelation
function. The results for the sample autocorrelation function are controversial. The second
order correction is not as signi�cant as for the autocovariance function. From the Q-Q plot
it seemed that the sample autocorrelation function is quite close to Normality; however the
observed values of the Cox test indicate that the �rst order correction is very signi�cant.

We conclude this section by noting that, from the Q-Q plots, the sample autocorrelation
function seems closer to Normality than the sample autocovariance function; however the
�rst order correction is signi�cant in both cases. This is not a surprise since the sample
distributions are very asymmetric and the �rst correction depends on moments up to the
third order and corrects asymmetry, whereas the second order correction depends on the
moments up to the fourth order and correct tails. As regards the convergence rate of
the sample autocovariance function, it really depends on the value of d: the larger it is
the slower the convergence. Increasing the sample size diminishes the importance of the
correction.

4.2 Comparing sample and bootstrap autocorrelation func-

tions

The previous section gave a detailed insight into the asymptotic behaviour of the sample
distribution of the second order dependence structure of a long memory time series. Now
that we can compare the sample autocovariance and autocorrelation functions with their
bootstrap estimates, we now wish to show that the ACF bootstrap is consistent for long
memory processes because it can replicate their second order structure. This statement
is supported by the observed average values and standard deviations of γ̂k, γ̂

∗
k , ρ̂k and ρ̂∗k

and by comparing their distributions.

We run a wide simulation experiment and compare the sample autocorrelation function
with the bootstrap autocorrelation function. For sake of completeness we consider the range
of values of d = 0.1, 0.15, 0.2, . . . , 0.45 and increasing series lengths n = 100, 200, . . . , 2000.
We repeat the same experiment with innovations distributed as Chi-squared with one
degree of freedom, and Student t with four and six degrees of freedom, to support our
belief that ACF bootstrap can replicate the second order structure of a process Xt even
when the innovations are non-Gaussian.

In Figures 4.8 and 4.9 we show the empirical densities of the sample and bootstrap
variance and autocovariance function. From the densities of the variance, it is interesting
to notice that the distribution is quite skewed and for large values of d it is also quite biased.
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Increasing the sample size from 1000 to 2000 the density moves to the right signi�cantly.
Also for the autocorrelation at lag one, there is bias for d = 0.4, 0.45. In both cases the
bootstrap densities seem to follow the Monte Carlo pattern, but there are fewer extreme
values and the distributions are a bit more concentrated.

The results for all sample sizes considered are given in Tables 4.10 and 4.11. We report
in the �rst column the di�erence between the Monte Carlo sample autocorrelation function
and the bootstrap estimate, ρ̂k − ρ̂∗k. The bootstrap variance*** is biased downward. The
bias is positively correlated with the strength of the long memory and negatively correlated
with the sample size. However, for sample sizes larger than 1000 the bias is always less than
2%. In terms of standard deviation, using the bootstrap technique there is on average an
improvement and its order is positively correlated with the value of the memory parameter.

4.3 Conclusions

In this chapter we investigated deeply the asymptotic behaviour of the sample auto-
covariance and autocorrelation functions of a strong long memory Gaussian process, i.e.,
0.25 < d < 0.5. We had some nice results, as follows.

The sample autocovariance function is not Normal, however we have a signi�cant im-
provement correcting the Normal distribution with the �rst term of the Cornish-Fisher ex-
pansion. Deviation from Normality gets smaller when increasing the sample size, whereas
it is more evident for stronger long memory processes; also the second order correction
term has a more important contribution.

The sample autocorrelation function is closer to Normality and small deviation from
Normality can be detected for very large values of the memory parameter, i.e., d > 0.4. In
this case the Cornish-Fisher corrections seem not to give any contribution from a graphical
point of view (Figures (4.4)-(4.6), even though a signi�cant contribution is detected by the
Cox test.

By means of simulation, we showed that the ACF bootstrap can replicate the second
order structure of a long memory Gaussian process. The method gave satisfactory results
also with non-Gaussian processes, indicating that at least the second order structure is
preserved, and asymmetry or extreme values in the innovation distribution do not a�ect
the performance dramatically.

This work is open to future interesting developments:

• it is a good starting point to try to prove theoretically the consistency of ACF
bootstrap, and

• given the good results on non-Gaussian time series, it is probably possible to prove
that the ACF bootstrap replicates second order structure of linear processes no mat-
ter what innovations drive the data generating process.
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Figure 4.8: Plots of the density of the sample and the bootstrap variance for di�erent
values of d = 0.05, 0.1, 0.2, 0.3, 0.4, 0.45 and di�erent series length. The red line is for the
sample autocorrelation function with n = 1000, the yellow line is for n = 2000. The dotted
lines are the bootstrap autocorrelation densities.
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Figure 4.9: Plots of the density of the sample autocorrelation function and the bootstrap
autocorrelation function at lag k = 1 for di�erent values of d = 0.05, 0.1, 0.2, 0.3, 0.4, 0.45
and di�erent series length. The red line is for the sample autocorrelation function with
n = 1000, the yellow line is for n = 2000. The dotted lines are the bootstrap autocorrelation
densities.
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lag d = 0.26 d = 0.27 d = 0.28 d = 0.29

0 -35.04 0.40 -32.02 0.27 -30.56 0.20 -30.13 0.13

1 -29.96 0.20 -29.64 0.14 -29.56 0.07 -29.31 0.03

2 -29.44 0.17 -29.24 0.10 -29.33 -0.01 -29.34 0.04

5 -28.34 0.03 -28.60 -0.08 -28.71 -0.17 -28.93 -0.05

10 -27.24 -0.19 -28.06 -0.21 -27.81 -0.38 -28.07 -0.27

lag d = 0.30 d = 0.31 d = 0.32 d = 0.33

0 -29.82 -0.03 -29.22 -0.14 -29.28 -0.38 -29.17 -0.29

1 -29.47 -0.07 -29.17 -0.12 -28.78 -0.47 -29.33 -0.24

2 -29.27 -0.12 -29.01 -0.21 -28.72 -0.54 -29.26 -0.31

5 -28.79 -0.24 -28.95 -0.27 -28.69 -0.70 -29.06 -0.43

10 -28.26 -0.35 -28.06 -0.54 -28.28 -0.79 -28.64 -0.56

lag d = 0.34 d = 0.35 d = 0.36 d = 0.37

0 -29.30 -0.21 -29.08 -0.40 -28.58 -0.89 -29.01 -0.63

1 -29.32 -0.25 -29.16 -0.39 -28.57 -0.93 -29.14 -0.63

2 -29.29 -0.32 -29.21 -0.41 -28.64 -0.94 -29.14 -0.68

5 -29.18 -0.37 -28.97 -0.57 -28.68 -0.99 -28.95 -0.86

10 -29.03 -0.50 -28.64 -0.72 -28.50 -1.15 -28.81 -1.01

lag d = 0.38 d = 0.39 d = 0.40 d = 0.41

0 -29.20 -0.64 -28.61 -1.36 -28.96 -1.09 -28.91 -1.58

1 -29.33 -0.61 -28.60 -1.44 -29.09 -1.04 -29.13 -1.38

2 -29.33 -0.67 -28.78 -1.40 -29.22 -0.98 -29.25 -1.33

5 -29.28 -0.79 -28.47 -1.64 -29.15 -1.14 -29.20 -1.48

10 -29.04 -1.03 -28.39 -1.70 -28.95 -1.35 -29.05 -1.78

lag d = 0.42 d = 0.43 d = 0.44 d = 0.45

0 -29.03 -1.30 -28.98 -1.54 -28.88 -2.19 -29.09 -2.11

1 -29.19 -1.25 -29.13 -1.48 -29.02 -2.12 -29.27 -1.91

2 -29.29 -1.23 -29.19 -1.46 -29.06 -2.08 -29.30 -1.94

5 -29.32 -1.32 -29.19 -1.56 -29.12 -2.11 -29.42 -1.90

10 -29.17 -1.56 -29.31 -1.57 -29.11 -2.14 -29.44 -1.98

lag d = 0.46 d = 0.47 d = 0.48 d = 0.49

0 -28.91 -2.62 -29.50 -1.57 -29.17 -2.74 -29.22 -3.11

1 -29.07 -2.45 -29.58 -1.52 -29.25 -2.62 -29.33 -2.93

2 -29.14 -2.36 -29.69 -1.45 -29.34 -2.52 -29.34 -2.93

5 -29.25 -2.33 -29.73 -1.53 -29.43 -2.57 -29.46 -2.82

10 -29.12 -2.65 -29.69 -1.74 -29.43 -2.72 -29.57 -2.81

Table 4.1: Cox test to compare the Monte Carlo distribution of the sample autocovari-
ance function of a long memory process (equation (1.4)) for di�erent values of the memory
parameter d at di�erent lags, k = 0, 1, 2, 5, 10, for n = 300.
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lag d = 0.26 d = 0.27 d = 0.28 d = 0.29

0 -29.96 0.18 -29.45 0.09 -29.44 0.10 -29.14 0.05

1 -29.50 0.12 -29.32 0.07 -29.33 0.08 -29.26 0.04

2 -29.38 0.12 -29.37 0.07 -29.20 0.06 -29.33 0.02

5 -29.30 0.10 -28.58 0.02 -29.36 0.05 -28.86 0.00

10 -29.06 0.09 -28.26 -0.05 -28.99 0.04 -28.73 -0.03

lag d = 0.30 d = 0.31 d = 0.32 d = 0.33

0 -29.10 0.02 -28.62 -0.06 -28.74 -0.19 -29.12 -0.21

1 -29.22 0.01 -28.96 -0.04 -29.01 -0.18 -29.04 -0.24

2 -29.40 0.01 -28.66 -0.09 -29.12 -0.16 -29.01 -0.24

5 -29.40 -0.02 -28.87 -0.07 -28.92 -0.18 -29.28 -0.21

10 -29.23 -0.05 -28.77 -0.10 -29.23 -0.19 -29.27 -0.21

lag d = 0.34 d = 0.35 d = 0.36 d = 0.37

0 -29.29 -0.15 -28.92 -0.28 -29.04 -0.41 -29.12 -0.65

1 -29.40 -0.16 -29.19 -0.26 -29.14 -0.37 -29.10 -0.67

2 -29.53 -0.12 -29.30 -0.24 -29.23 -0.36 -29.22 -0.66

5 -29.46 -0.15 -29.17 -0.30 -29.53 -0.31 -29.44 -0.57

10 -29.43 -0.21 -29.24 -0.31 -29.12 -0.48 -29.35 -0.60

lag d = 0.38 d = 0.39 d = 0.40 d = 0.41

0 -29.29 -0.52 -28.86 -0.80 -28.51 -1.12 -29.09 -1.05

1 -29.36 -0.52 -28.89 -0.82 -28.73 -1.05 -29.21 -1.01

2 -29.37 -0.53 -28.99 -0.80 -28.81 -1.02 -29.29 -0.96

5 -29.36 -0.59 -29.18 -0.73 -28.98 -0.98 -29.27 -1.04

10 -29.47 -0.58 -29.31 -0.69 -29.01 -0.99 -29.33 -1.04

lag d = 0.42 d = 0.43 d = 0.44 d = 0.45

0 -29.23 -0.98 -28.97 -1.52 -29.34 -1.28 -29.14 -1.94

1 -29.20 -1.01 -29.06 -1.46 -29.38 -1.29 -29.22 -1.89

2 -29.25 -1.01 -29.09 -1.46 -29.41 -1.27 -29.19 -1.96

5 -29.36 -1.02 -29.25 -1.40 -29.52 -1.20 -29.32 -1.85

10 -29.48 -0.98 -29.39 -1.34 -29.66 -1.13 -29.39 -1.85

lag d = 0.46 d = 0.47 d = 0.48 d = 0.49

0 -29.16 -1.85 -29.07 -2.57 -28.86 -3.52 -29.45 -2.30

1 -29.19 -1.83 -29.12 -2.53 -28.87 -3.50 -29.47 -2.30

2 -29.21 -1.84 -29.10 -2.56 -28.92 -3.43 -29.48 -2.28

5 -29.26 -1.83 -29.09 -2.62 -29.03 -3.28 -29.51 -2.27

10 -29.30 -1.85 -29.22 -2.52 -29.08 -3.19 -29.57 -2.27

Table 4.2: Cox test to compare the Monte Carlo distribution of the sample autocovari-
ance function of a long memory process (equation (1.4)) for di�erent values of the memory
parameter d at di�erent lags, k = 0, 1, 2, 5, 10, for n = 1000.
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lag d = 0.26 d = 0.27 d = 0.28 d = 0.29

0 -29.13 0.12 -28.88 0.07 -28.65 0.07 -28.67 0.04

1 -29.07 0.10 -28.93 0.06 -29.29 0.06 -28.81 0.02

2 -29.20 0.10 -28.61 0.07 -29.24 0.05 -28.87 0.02

5 -29.06 0.09 -28.70 0.04 -28.91 0.06 -28.96 0.01

10 -28.46 0.07 -29.46 0.04 -29.59 0.04 -28.95 -0.01

lag d = 0.30 d = 0.31 d = 0.32 d = 0.33

0 -28.76 0.03 -28.96 0.00 -29.09 -0.07 -28.75 -0.12

1 -29.01 0.02 -29.20 0.00 -29.15 -0.07 -29.09 -0.10

2 -29.19 0.02 -29.07 -0.02 -29.13 -0.07 -29.11 -0.10

5 -29.02 0.01 -29.05 -0.03 -29.23 -0.08 -28.93 -0.13

10 -29.44 0.00 -28.99 -0.05 -29.47 -0.07 -29.14 -0.12

lag d = 0.34 d = 0.35 d = 0.36 d = 0.37

0 -28.90 -0.20 -29.05 -0.20 -28.88 -0.34 -29.18 -0.38

1 -29.29 -0.15 -29.15 -0.20 -29.10 -0.31 -29.13 -0.40

2 -29.20 -0.17 -29.15 -0.20 -29.20 -0.31 -29.25 -0.40

5 -29.23 -0.19 -29.08 -0.24 -29.13 -0.35 -29.31 -0.38

10 -29.15 -0.21 -29.16 -0.24 -29.30 -0.31 -29.35 -0.41

lag d = 0.38 d = 0.39 d = 0.40 d = 0.41

0 -28.77 -0.65 -28.71 -0.78 -29.00 -0.75 -29.00 -1.06

1 -28.76 -0.66 -28.74 -0.78 -29.04 -0.73 -29.01 -1.07

2 -28.96 -0.61 -28.83 -0.75 -29.08 -0.74 -29.01 -1.06

5 -29.08 -0.57 -28.83 -0.77 -29.18 -0.72 -29.04 -1.09

10 -29.14 -0.58 -28.81 -0.82 -29.24 -0.72 -29.08 -1.08

lag d = 0.42 d = 0.43 d = 0.44 d = 0.45

0 -28.95 -1.26 -29.22 -1.23 -29.18 -1.22 -29.14 -1.61

1 -29.01 -1.23 -29.25 -1.20 -29.22 -1.21 -29.19 -1.59

2 -29.05 -1.21 -29.32 -1.16 -29.24 -1.21 -29.18 -1.60

5 -29.12 -1.18 -29.38 -1.12 -29.27 -1.21 -29.15 -1.66

10 -29.15 -1.18 -29.50 -1.07 -29.38 -1.15 -29.24 -1.60

lag d = 0.46 d = 0.47 d = 0.48 d = 0.49

0 -29.31 -2.00 -29.05 -2.42 -29.08 -2.82 -28.98 -3.25

1 -29.36 -1.94 -29.08 -2.40 -29.12 -2.77 -29.02 -3.19

2 -29.39 -1.93 -29.13 -2.35 -29.12 -2.78 -29.04 -3.18

5 -29.47 -1.81 -29.13 -2.36 -29.13 -2.77 -29.05 -3.17

10 -29.55 -1.76 -29.24 -2.27 -29.25 -2.64 -29.09 -3.16

Table 4.3: Cox test to compare the Monte Carlo distribution of the sample autocovari-
ance function of a long memory process (equation (1.4)) for di�erent values of the memory
parameter d at di�erent lags, k = 0, 1, 2, 5, 10, for n = 2000.
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lag d = 0.26 d = 0.27 d = 0.28 d = 0.29

1 -21.09 0.00 -24.99 -0.57 8.99 -0.66 -17.71 0.01
2 -23.06 0.00 -23.70 0.00 -28.28 -0.13 -24.23 -0.14
5 -28.76 0.01 -27.65 -0.02 -29.28 0.00 -29.00 0.00
10 -28.12 -0.04 -28.32 -0.08 -29.14 -0.03 -29.32 -0.03

lag d = 0.30 d = 0.31 d = 0.32 d = 0.33

1 -16.44 0.06 -13.31 -0.06 -18.64 -0.20 -12.49 -0.68
2 -25.35 0.02 -26.97 -0.05 -22.93 -0.03 -26.27 -0.14
5 -29.96 -0.01 -29.70 -0.01 -29.49 -0.01 -29.49 0.00
10 -29.80 -0.01 -28.98 -0.05 -29.71 0.00 -29.84 -0.02

lag d = 0.34 d = 0.35 d = 0.36 d = 0.37

1 -4.07 -0.20 17.92 -2.70 -18.16 -0.97 -24.68 0.01
2 -25.08 -0.12 -27.46 -0.04 -19.18 -0.40 -25.61 -1.34
5 -29.48 -0.01 -29.89 0.00 -29.99 0.00 -29.00 0.00
10 -29.89 -0.01 -29.62 -0.11 -29.64 -0.02 -30.24 0.00

lag d = 0.38 d = 0.39 d = 0.40 d = 0.41

1 -20.85 -0.07 -14.84 0.16 -23.18 -0.93 -22.79 -3.36
2 -26.02 -0.10 -25.04 -0.53 -22.33 -0.99 -25.50 -2.30
5 -29.84 -0.06 -29.98 -0.23 -29.63 -0.22 -29.62 -0.52
10 -30.20 -0.01 -30.26 -0.09 -30.27 -0.03 -30.30 -0.05

lag d = 0.42 d = 0.43 d = 0.44 d = 0.45

1 -26.14 -1.22 -23.66 -6.61 -25.28 -5.75 -27.62 -1.16
2 -21.96 -4.64 -20.27 -9.41 -25.41 -12.63 -22.62 -8.78
5 -29.25 -1.02 -27.15 -2.16 -26.81 -1.72 -25.25 -5.09
10 -29.93 -0.15 -29.29 -0.47 -29.45 -0.45 -28.68 -0.90

lag d = 0.46 d = 0.47 d = 0.48 d = 0.49

1 -26.65 -2.29 -30.40 -9.32 -39.23 -22.16 129.91 -27.57
2 -17.17 -9.83 -15.77 -19.81 -19.60 -55.67 103.68 -12.60
5 -23.65 -6.64 -20.49 -15.24 -12.41 -214.04 71.80 -8.23
10 -28.15 -1.51 -27.62 -4.45 -49.55 -98.48 87.08 -21.60

Table 4.4: Cox test to compare the Monte Carlo distribution of the sample autocorrela-
tion function of a long memory process (equation (1.4)) for di�erent values of the memory
parameter d at di�erent lags, k = 1, 2, 5, 10, for n = 300.
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lag d = 0.26 d = 0.27 d = 0.28 d = 0.29

1 -25.85 0.02 -21.33 -0.29 -24.42 -0.02 -20.74 -0.55
2 -26.41 -0.02 -24.59 -0.15 -28.40 0.01 -26.22 -0.05
5 -29.08 0.01 -28.42 -0.04 -29.50 0.01 -29.14 -0.03
10 -29.38 0.01 -28.15 -0.05 -29.40 -0.02 -28.82 -0.07

lag d = 0.30 d = 0.31 d = 0.32 d = 0.33

1 -19.86 -0.36 -24.51 -0.11 -26.24 -0.01 -26.44 -0.12
2 -24.18 -0.26 -27.46 -0.02 -27.84 -0.07 -28.62 -0.02
5 -28.21 -0.05 -29.00 -0.01 -29.03 -0.03 -28.88 -0.07
10 -28.99 -0.04 -29.27 -0.04 -29.85 -0.01 -29.26 -0.05

lag d = 0.34 d = 0.35 d = 0.36 d = 0.37

1 -25.70 -0.27 -24.23 -0.27 -22.50 -0.36 -25.35 -0.23
2 -28.27 -0.13 -26.05 -0.15 -23.82 -0.26 -27.14 -0.12
5 -29.36 -0.07 -28.84 -0.05 -28.91 -0.02 -28.78 -0.07
10 -29.15 -0.12 -30.13 -0.01 -29.83 -0.01 -29.77 -0.03

lag d = 0.38 d = 0.39 d = 0.40 d = 0.41

1 -24.65 -0.45 -27.11 -0.06 -27.90 -0.06 -28.83 -0.03
2 -27.51 -0.14 -29.19 -0.03 -29.07 -0.01 -29.70 -0.02
5 -29.15 -0.06 -30.11 0.00 -29.62 -0.01 -30.18 0.00
10 -29.58 -0.06 -29.79 -0.04 -30.25 0.00 -30.41 0.01

lag d = 0.42 d = 0.43 d = 0.44 d = 0.45

1 -26.78 -0.26 -29.56 -0.17 -27.11 -0.10 -28.86 -0.04
2 -28.43 -0.10 -29.25 -0.06 -29.34 0.00 -29.87 -0.18
5 -29.63 -0.04 -30.10 -0.03 -30.21 0.00 -29.83 -0.10
10 -30.04 -0.03 -30.34 -0.02 -30.20 0.00 -30.24 -0.14

lag d = 0.46 d = 0.47 d = 0.48 d = 0.49

1 -26.04 -0.01 -27.18 -1.71 -22.52 -12.70 28.63 -10.73
2 -27.97 -0.51 -27.27 -2.58 -27.51 -13.88 35.08 -9.36
5 -29.40 -0.64 -28.27 -1.59 -32.02 -6.48 33.53 -8.76
10 -29.67 -0.42 -28.94 -1.01 -32.25 -6.77 27.72 -7.08

Table 4.5: Cox test to compare the Monte Carlo distribution of the sample autocorrela-
tion function of a long memory process (equation (1.4)) for di�erent values of the memory
parameter d at di�erent lags, k = 1, 2, 5, 10, for n = 1000.
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lag d = 0.26 d = 0.27 d = 0.28 d = 0.29

1 -23.13 -0.06 -27.27 -0.02 -26.47 -0.07 -26.53 -0.02
2 -27.52 -0.01 -25.52 -0.09 -26.29 -0.09 -26.98 -0.08
5 -29.01 0.00 -26.22 -0.08 -27.71 -0.03 -28.25 -0.04
10 -29.12 0.01 -29.00 0.00 -26.90 -0.12 -28.74 -0.02

lag d = 0.30 d = 0.31 d = 0.32 d = 0.33

1 -25.87 -0.10 -25.08 -0.12 -27.12 -0.03 -28.50 -0.07
2 -28.32 -0.01 -27.21 -0.07 -28.43 -0.01 -29.22 -0.02
5 -29.83 0.00 -28.14 -0.04 -29.08 -0.01 -28.88 -0.07
10 -29.73 -0.01 -28.93 -0.03 -29.68 0.00 -28.69 -0.11

lag d = 0.34 d = 0.35 d = 0.36 d = 0.37

1 -26.53 -0.15 -26.94 -0.07 -27.02 -0.14 -27.93 -0.06
2 -27.91 -0.12 -28.70 -0.03 -27.78 -0.10 -29.01 -0.03
5 -29.43 -0.05 -28.90 -0.04 -28.67 -0.06 -28.62 -0.09
10 -29.69 -0.04 -29.40 -0.03 -29.11 -0.05 -29.45 -0.07

lag d = 0.38 d = 0.39 d = 0.40 d = 0.41

1 -28.15 -0.11 -26.37 -0.20 -28.44 -0.05 -29.43 -0.02
2 -28.50 -0.10 -28.08 -0.09 -28.42 -0.10 -29.50 -0.02
5 -29.11 -0.10 -28.80 -0.05 -29.33 -0.04 -29.58 -0.01
10 -29.29 -0.08 -29.22 -0.04 -29.73 -0.03 -29.97 0.00

lag d = 0.42 d = 0.43 d = 0.44 d = 0.45

1 -27.94 -0.04 -28.27 -0.05 -29.59 0.00 -30.03 0.01
2 -28.77 -0.04 -29.05 -0.02 -30.06 0.00 -30.05 0.02
5 -28.85 -0.07 -29.86 0.01 -30.03 0.00 -30.36 0.02
10 -29.72 -0.01 -29.75 -0.05 -30.41 0.01 -30.43 0.03

lag d = 0.46 d = 0.47 d = 0.48 d = 0.49

1 -29.58 0.00 -29.06 -0.01 -29.44 -0.03 -20.20 -5.23
2 -29.99 0.00 -29.19 0.00 -30.10 -0.30 -25.85 -7.65
5 -29.89 0.00 -29.50 -0.05 -30.10 -0.29 -28.31 -9.86
10 -30.29 -0.03 -29.76 -0.04 -30.22 -0.49 -35.97 -15.91

Table 4.6: Cox test to compare the Monte Carlo distribution of the sample autocorrela-
tion function of a long memory process (equation (1.4)) for di�erent values of the memory
parameter d at di�erent lags, k = 1, 2, 5, 10, for n = 1000.
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Chapter 5

Semi-parametric estimators for

Garma processes

5.1 Introduction

In Chapter 1 of this thesis we highlighted that identi�cation and estimation of sea-
sonal persistences are still open problems. The existing parametric estimators are quite
e�cient, even though there are not many asymptotic results (Sadek and Khotanzad, 2004;
Smallwood and Beaumont, 2004; Woodward et al., 1998). On the other side, the main
problem is the identi�cation of the data generating process, in particular the number and
the position of the peaks in the spectral density and the short memory behaviour. With-
out a good speci�cation of the model the maximum likelihood estimates might be very
biased. Semi-parametric techniques can be useful in an exploratory stage, providing a
better understanding of the data generating process.

Among the processes developed to model seasonal persistences, we choose one of the
most �exible, the Gegenbauer process introduced in Section 1.5 with representation given
in Equation (1.22) and spectral density (1.23). For the sake of simplicity, we limit the
study to Gegenbauer processes with k ≤ 2 and with εt Gaussian white noise. An example
is given in Figure 5.1 with k = 2, where one peak is at the zero frequency, η1 = 1, and the
other at ω2 = arcos η2, 0 ≤ ω2 ≤ π1.

In this study we propose an algorithm to identify seasonal persistences and long mem-
ory behaviour, using semi-parametric techniques. We also apply the bootstrap technique
introduced in Chapter 3 to improve the performance of the semi-parametric estimators
and to have the bootstrap distributions of the estimates. The algorithm and the bootstrap
method can be used not only to identify the model, but also to provide good starting values
to maximize the likelihood function (see Equations (1.24) and (1.25)).

Even if the Gegenbauer frequency is usually known, we want to see how the estimation
of the frequency in�uences the other estimates. In the case ηi are known, the existing semi-
parametric estimation procedures (the generalised GPH and the generalised local Whittle

1We indicate with 0 < ω < π the frequency of the spectral density and with −1 < η < 1 the Gegenbauer
frequency. The two parameters are linked by the relationship ω = arcosη.
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Figure 5.1: Spectral density of a process with representation (1.22) with k = 2, d1 = 0.3,
d2 = 0.22 and η1 = 1, η2 = 0.6. It is possible to see the two poles, one at the zero frequency,
ω1 = arcos1 = 0, and the other at ω2 = arcos 0.6 = 0.9273.
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proposed by Arteche and Robinson, 2000) are consistent and asymptotically Normal. We
will observe that, when we have to estimate the frequency, also the estimates of the memory
parameters are a�ected.

The chapter is organised as follows. In Section 5.2 we introduce the estimation pro-
cedures. In Section 5.3 we describe the Monte Carlo experiments, then we provide and
comment the results. In Section 5.4 we conclude the chapter and provide future develop-
ments.

5.2 Estimation procedures

To estimate the memory parameter d, we use generalized versions of semi-parametric
estimators, the GPH and the local Whittle. These estimators were generalized by Arteche
and Robinson (2000) in the asymmetric case (see Section 1.5) but we simplify them to the
symmetric case.

The case studied by Arteche and Robinson (2000) assumed that the position of the
peak, η, was known, whereas we want to study the case when we do not know its position.
The simultaneous estimation of the two parameters (di, ηi) is an interesting issue. The
Gegenbauer frequency η is easier to locate if the long memory parameter d is larger,
whereas we need to know η (or at least to have a good estimate) to estimate d. Also in the
parametric estimation procedures, special care is needed because the convergence rates of
the two parameters are di�erent (Smallwood and Beaumont, 2004).

However, we notice that we are allowed to estimate the spectrum at any frequency
even though the asymptotic properties of the periodogram at the Fourier frequencies (ωj =
2πj/n) are more interesting:

• pg.405 Priestley (1988): cov{I(ω1), I(ω2)} = O(1/n2) if Xt is normal and |ω1 ±
ω2| >> 2π/n;

• under the conditions ωj ± ωj′ 6= 2πl, (l ∈ Z), theorem 3.7 of Beran (1994) provides
the asymptotic result

[I(ω1), . . . , I(ωm)] d→ [f(ω1)ξ1, . . . , f(ωm)ξm],

where ξ1, . . . , ξm are independent exponential random variables with mean 1;

• proposition 10.3.2 of Brockwell and Davis (1991) shows that asymptotic independence
is valid for any group of frequencies 0 < ω1 < . . . < ωm < π without any assumption
on m.

These properties allow us to generalize GPH and local Whittle at any frequency. The
generalized GPH estimator is given by

d̂i =

∑m
j=1 vj log I(ωi + ωj)∑m

j=1 v
2
j

,
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where vj = log |j| −
∑m

l=1 log l/m (Arteche and Robinson, 2000) and ωi the Fourier fre-
quency corresponding to the peak in the spectral density. From now on we use the simpler
notation ωj = 2πj/n for the Fourier frequencies. The generalized local Whittle is found
by minimizing the function

R(dj) = log

 1
m

m∑
j=1

ω2di
j I(λi + ωj)

− 2di
m

m∑
j=1

logωj .

In the asymmetric case, Arteche and Robinson (2000) considered both sides of the peak to
build a test for asymmetry. For simplicity we consider only the right side of the symmetric
peak. If η is known, both estimators are asymptotically Normal.

The main issue is �nding a good procedure to identify the frequency with the peak.
We consider the following two solutions.

• A very intuitive procedure is selecting through a graphical analysis an interval where
there could be a peak, then compute the periodogram for a very �ne grid of values of
η and choose the frequency η corresponding to the highest periodogram estimates.

• Since the periodogram is not a consistent estimator of the spectral density, as an
alternative we choose the frequency with the same procedure of the previous point
after smoothing the periodogram. The issue of smoothing the periodogram opens a
vast discussion about the choice of the best window and the optimal width, however
as an exploratory work we do not go into details and use the Parzen window2.

In the case with two peaks we develop two di�erent procedures. Both estimators are
semi-parametric and it is not necessary to specify the model, thus we can estimate the
couple (d1, η1) independently from the couple (d2, η2). It is our belief that the closer the
Gegenbauer frequencies are, the more di�cult it is to distinguish the existence of two peaks
and we already mentioned that the short memory part (see Section 3.2) introduces bias to
semi-parametric estimators. For these reasons, we expect the estimates to be more biased
and to in�uence each other. To take this dependence into account, we develop the following
algorithm, that estimates the couple (dj , ηj), j = 1, 2, after �ltering from the other couple:

1. estimate (d1, η1) with the procedure above;

2. �lter the series Yt = (1− 2η̂1B +B2)d̂1Xt;

3. estimate (d2, η2) on the �ltered series Yt;

2The Parzen window is de�ned as follows

w(j) = 1− 6
(

2j
n

)2 (
1− 2|j|

n

)
, 0 ≤ |j| ≤ n

4

w(j) =
(
1− 2|j|

n

)3

, 0 ≤ |j| ≤ n
4

where n is the series length. The smoothed periodogram is calculated after multiplying the sample auto-
covariance function by the wights w(j).
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4. �lter the series Zt = (1− 2η̂2B +B2)d̂2Xt;

5. estimate (d1, η1) on the �ltered series Zt;

6. back to step 2 until some convergence criterion is satis�ed.

Since we have only a �nite series, in step two and four we need to approximate the �lter.
We think that it is not adequate to use the ar-in�nite representation because we are forced
to truncate the series and it is known that for a good approximation a large number of
terms is required (Woodward et al., 1998). An option is given by the theorem of Ramsey
(1974) given in Chapter 3. We are allowed to use this result because we assume Normality
and the values of the parameters (d, η) lie in the stationary subset. The theorem provides
the distribution of Xt conditionally on the past values. We can use the di�erence between
the conditional mean and the observed value as an estimate of the �ltered series. Let the
�rst value of the �ltered series be Ŷ1 = X1 (the procedure is the same for estimating Zt).

Ŷt = Xt − m̂t, t = 2, . . . , n,

where

m̂t = E[Xt|X0, · · · , Xt−1] =
t∑

j=1

φ̂tjXt−j

and φ̂tj are based on the estimated parameters (d̂i, η̂i), i = 1, 2 (for more detail, refer
to Chapter 1). After some preliminary results we noticed that few cycles of the iterative
procedure are enough to reach a convergence and after few cycles (between �ve and ten)
the results do not change. The algorithm does not a�ect too much the CPU time: in
the following we report the average and the standard deviation of CPU time in seconds
for di�erent series length using the algorithm to estimate a two-factor Gegenbauer process
with number of cycles j = 10:

n mean st.dev.
300 5.3540 0.0078
500 8.9764 0.0094
1000 19.0530 0.0128.

5.3 Results

We use the ACF bootstrap to replicate the series and compare with Monte Carlo
results to see if the bootstrap brings any improvement to the estimating technique. First,
we estimate the parameters in each surrogate series and then we consider the average of
the estimates. As second option, we estimate the periodogram in each surrogate series and
then we use the average value of the periodograms to estimate the parameters (see Section
3.2, Equations (3.5) and (3.6) for more details).
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5.3.1 One-factor Gegenbauer process

First we consider the case of one frequency, we simulate Gegenbauer processes with
d = 0.2, 0.4 and η = 0.6, 0.7, 0.8, 0.9. The results are given in Tables 5.2-5.5. For the
estimation of one-frequency Gegenbauer process we summarize the results in the following.
Increasing the sample size standard error and mean squared error slowly decrease and also
the estimates are less biased. However, the convergence appears to be quite slow. The
position of the peak in�uences the estimates, the closer η is to one, the larger the standard
error and the mean squared error are: this happens because the periodogram is estimated
over more values of the sample autocovariance function. The �rst bootstrap method (B1)
is more biased than the Monte Carlo estimates but its standard error and its mean squared
error are much smaller. The second bootstrap method (B2) has the same standard error
as the �rst method but its estimates are very closed to the true value of the parameter
especially for d = 0.2 but also for d = 0.4 this method gives on average better estimates.
The choice of the Gegenbauer frequency η a�ects the estimates of the memory parameter
d: it appears that it is better to estimate the frequency smoothing the periodogram in
terms of less biased estimates, but the standard error and the mean squared error are both
smaller without smoothing the periodogram. The local Whittle gives on average more
biased estimates but with a smaller standard error than the GPH. The second bootstrap
estimate is better using the local Whittle without smoothing the periodogram, whereas the
�rst bootstrap method is better using the local Whittle and smoothing the periodogram.
Overall we can say that the best combination of techniques is estimate with the local
Whittle, smooth the periodogram and apply the �rst bootstrap method.

As regard the estimation of the frequency the results are given in Table 5.6. The bias
is negligible and does not depend on the technique used. In terms of standard deviation it
is de�nitely clear that the �rst bootstrap method outperforms the other two estimates.

5.3.2 Two-factor Gegenbauer process

The simulations of the previous paragraph con�rm the validity of the semi-parametric
estimators (GPH and local Whittle) and show the advantage of applying the ACF boot-
strap. Now we extend the results to two-factor Gegenbauer processes.

It is quite common in the data to �nd long memory and a seasonal persistent com-
ponent, i.e. to observe a spectrum like in Figure 5.1 with a peak at zero frequency and
a peak at an unknown frequency. We run a wide experiment on this special case of the
process solution of Equation (1.22) with k = 2. We set di�erent values of the memory
parameter d1 = 0.2, 0.4, d2 = 0.2, η1 = 1 and η2 = 0.6, 0.7, 0.8, 0.9. The results are given
in Tables 5.7-5.10. Increasing the series length the estimates converge, they are less biased
and with smaller standard deviation; however the convergence appears to be quite slow.
As we expected, the long memory parameters in�uence each other, when d1 = 0.4 the
estimates of d2 are always larger than when d1 = 0.2, other conditions being equal. On
the other side with η approaching one both estimates become less accurate. The Monte
Carlo estimates are quite good, in the sense that their bias is small, even if the standard
deviation is quite large. The algorithm (MC2) improves the estimates of d1 in terms of
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smaller bias and smaller standard error whereas d2 is very biased; we must highlight that
the algorithm starts estimating �rst d1 and this could in�uence the estimates. It would
be interesting to investigate if the estimates are very di�erent starting the algorithm from
d2. Applying the ACF bootstrap helps to decrease the standard errors of the estimates. In
the case of d2 also the bias is reduced especially with the second technique (B2), whereas
for d1 the estimates based on bootstrap are not reliable. Between the GPH and the local
Whittle, the latter has a smaller standard error. In terms of bias we observe approximately
the same for both of d2, whereas in the case of d1 the estimates are so biased that the
technique cannot be considered reliable.

Another little step in the generalization brings us to consider a two-factor Gegenbauer
process with both peaks away from the zero frequency, i.e. ηi 6= 1, i = 1, 2. We choose
quite closed peaks because this is the problematic case when the peaks most in�uence
each other: the four models are given in Table 5.1. We run simulations with series length
n = 300, 500.

d η

1st model (0.40 0.2) (0.9 0.7)
2nd model (0.40 0.2) (0.9 0.8)
3rd model (0.45 0.2) (0.8 0.6)
4th model (0.45 0.2) (0.8 0.7)

Table 5.1: Values of the parameters η = (η1, η2) and d = (d1, d2) considered in the simu-
lations.

The results, given in Tables 5.12-5.15, are interesting. The bias is in most cases quite
large suggesting the need of longer series to identify the peaks and estimate accurately
the parameters. Also in this case estimating the Gegenbauer frequencies after smoothing
the periodogram improves the memory parameter estimates in terms of smaller bias and
standard error.

As in the previous experiment, the standard error increases when the Gegenbauer
frequencies get closer. On the other hand, the bias is huge if we estimate the parameters
independently. Applying the algorithm it is possible to correct the estimates removing the
bias almost completely.

It is very interesting to notice that the algorithm (MC2) seems to work better when
ηi 6= 1, i = 1, 2, i.e. there is not a pole at the zero frequency. Both estimates, d1 and d2,
are much less biased and their standard errors are smaller.

Using the ACF bootstrap does not improve the estimates of the memory parameter, the
Monte Carlo estimates still outperform the bootstrap. However, the bootstrap technique
can be used for the distribution estimations of the frequency parameter. We suggest to
use the bootstrap estimate of the frequency and in a second step the semi-parametric
estimators, generalized GPH and local Whittle, for the memory parameters di, i = 1, 2.
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5.4 Conclusions

In this chapter we showed the performance of two semi-parametric estimators, the
generalized GPH and local Whittle, for Gegenbauer processes when we do not know the
position of the frequency η. It was clear that the long memory parameters in�uence each
other especially when the two Gegenbauer frequencies are close to each other. Thus, special
care is required in these cases. The recursive algorithm given in Section 5.2 gave some good
results especially when there is not a pole at the zero frequency.

Overall, we think that a combination of the Monte Carlo estimates, the bootstrap
method and the recursive algorithm proposed in this chapter is the best solution to avoid
bias but also to decrease the standard errors of the estimates. In particular, the algorithm
gives good results if ηi 6= 1, whereas it is better to estimate the long memory parameter
associated to the zero frequency (η = 1) with a semi-parametric estimator applying a
bootstrap technique to decrease its standard error (see Chapter 3).

It is quite common to �nd in high frequency data more than seasonalities, i.e. more
than two peaks in the spectral density. Thus, it would be interesting to extend the results
of this chapter to k > 2 in a future work.

We smoothed the periodogram to estimate the Gegenbauer frequencies η and in most
cases we had better results than with the raw periodogram. However, we considered only
one type of window and we do not know how much the choice of Parzen window in�uences
the results. Thus, an open problem is investigating the in�uence of the choice of the
smoothing window on the estimates of the Gegenbauer frequencies η but also on the long
memory parameters d.
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η MC1 gph lw B1 B2

0.8 0.8003 0.7999 0.8000 0.8002 0.8005

0.0095 0.0096 0.0096 0.0003 0.0096
0.9 0.9004 0.8998 0.8998 0.9006 0.9002

0.0086 0.0087 0.0087 0.0003 0.0088
0.8 0.8007 0.8001 0.8002 0.8006 0.8008

0.0094 0.0095 0.0095 0.0003 0.0096
0.9 0.9009 0.8998 0.8998 0.9011 0.9012
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0.9 0.8998 0.8991 0.8993 0.9006 0.9002

0.0118 0.0117 0.0118 0.0004 0.0102
0.8 0.8013 0.8006 0.8006 0.8011 0.8014

0.0127 0.0127 0.0127 0.0004 0.0111
0.9 0.9012 0.8997 0.9000 0.9014 0.9016

0.0113 0.0115 0.0115 0.0004 0.0097

0.8 0.8002 0.7997 0.7997 0.8004 0.8002

0.0108 0.0108 0.0108 0.0003 0.0113
0.9 0.9005 0.8998 0.8999 0.9007 0.9005

0.0098 0.0099 0.0099 0.0003 0.0101
0.8 0.8006 0.7998 0.7999 0.8005 0.8010

0.0101 0.0101 0.0101 0.0003 0.0104
0.9 0.9013 0.8995 0.8998 0.9011 0.9014

0.0095 0.0095 0.0095 0.0003 0.0098

Table 5.11: Estimates of the Gegenbauer frequency η for two-factor Gegenbauer process
(1 − B)d1(1 − 2ηB + B2)d2Xt = εt, for di�erent values of η = 0.8, 0.9, di�erent Monte
Carlo procedures (MC1, MC2-gph, MC2-lw), B1 and B2 bootstrap estimates, where n is the
sample size, 300 bootstrap replications, 1000 repetitions of the experiment, average value
(boldface), standard error (italic): in the top part of the table the Gegenbauer frequency is
estimated from the raw periodogram, whereas in the bottom part the Gegenbauer frequency
is estimated after smoothing periodogram.
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η MC1 gph lw B1 B2

0.6 0.6016 0.6005 0.6005 0.6011 0.6013

0.0117 0.0118 0.0118 0.0004 0.0102
0.7 0.7007 0.7000 0.6999 0.7009 0.7006

0.0118 0.0118 0.0118 0.0004 0.0101
0.7 0.7029 0.7010 0.7011 0.7021 0.7024

0.0116 0.0116 0.0117 0.0004 0.0100
0.8 0.8021 0.8009 0.8008 0.8019 0.8021

0.0111 0.0111 0.0110 0.0004 0.0093

0.6 0.6010 0.6006 0.6006 0.6008 0.6009

0.0101 0.0102 0.0102 0.0003 0.0105
0.7 0.7007 0.7001 0.7001 0.7006 0.7007

0.0095 0.0094 0.0094 0.0003 0.0097
0.7 0.7019 0.7001 0.7001 0.7015 0.7019

0.0099 0.0099 0.0099 0.0003 0.0100
0.8 0.8023 0.8010 0.8009 0.8017 0.8024

0.0094 0.0095 0.0095 0.0003 0.0096

η MC1 gph lw B1 B2

0.6 0.6020 0.6007 0.6007 0.6014 0.6015

0.0137 0.0138 0.0138 0.0005 0.0117
0.7 0.7003 0.6996 0.6997 0.7007 0.7000

0.0135 0.0135 0.0135 0.0004 0.0119
0.7 0.7027 0.6997 0.6996 0.7024 0.7025

0.0136 0.0136 0.0135 0.0004 0.0117
0.8 0.8029 0.8014 0.8011 0.8021 0.8027

0.0126 0.0129 0.0129 0.0004 0.0110

0.6 0.6009 0.5999 0.6000 0.6008 0.6007

0.0114 0.0112 0.0112 0.0004 0.0117
0.7 0.7008 0.7001 0.7001 0.7008 0.7009

0.0112 0.0113 0.0113 0.0003 0.0116
0.7 0.7028 0.7011 0.7009 0.7024 0.7037

0.0112 0.0113 0.0113 0.0004 0.0116
0.8 0.8018 0.8004 0.8003 0.8017 0.8021

0.0103 0.0103 0.0103 0.0003 0.0108

Table 5.16: Estimates of the Gegenbauer frequency η1 for two-factor Gegenbauer process∏2
j=1(1 − 2ηjB + B2)djXt = εt, for di�erent values of d1 = 0.4, 0.45, d2 = 0.2, 0.3, η1 =

0.8, 0.9 and η2 = 0.6, 0.7, 0.8, di�erent Monte Carlo procedures (MC1, MC2-gph, MC2-lw),
B1 and B2 bootstrap estimates, where n is the sample size, 300 bootstrap replications, 1000
repetitions of the experiment, average value (boldface), standard error (italic): in the top
part of the table the Gegenbauer frequency is estimated from the raw periodogram, whereas
in the bottom part the Gegenbauer frequency is estimated after smoothing periodogram.
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η MC1 gph lw B1 B2

0.8 0.7997 0.7998 0.7998 0.7999 0.7999

0.0068 0.0068 0.0068 0.0003 0.0050
0.9 0.9000 0.9001 0.9001 0.8999 0.9001

0.0061 0.0060 0.0060 0.0002 0.0045
0.8 0.7996 0.7999 0.7997 0.7997 0.7996

0.0068 0.0068 0.0068 0.0003 0.0051
0.9 0.8999 0.9001 0.9001 0.8998 0.8999

0.0065 0.0065 0.0064 0.0003 0.0048

0.8 0.8000 0.8000 0.8000 0.7999 0.7999

0.0046 0.0046 0.0046 0.0002 0.0046
0.9 0.9001 0.9001 0.9002 0.9001 0.9001

0.0046 0.0046 0.0046 0.0002 0.0045
0.8 0.8000 0.8001 0.8001 0.7999 0.7999

0.0046 0.0046 0.0046 0.0002 0.0046
0.9 0.9001 0.9002 0.9002 0.9000 0.9001

0.0046 0.0046 0.0046 0.0002 0.0047

η MC1 gph lw B1 B2

0.8 0.8004 0.8005 0.8005 0.7999 0.7999

0.0081 0.0081 0.0081 0.0003 0.0061
0.9 0.9001 0.9002 0.9002 0.9001 0.8999

0.0081 0.0081 0.0080 0.0003 0.0064
0.8 0.8000 0.8005 0.8004 0.7999 0.7999

0.0082 0.0082 0.0082 0.0003 0.0065
0.9 0.8995 0.9000 0.8999 0.8997 0.8998

0.0077 0.0076 0.0076 0.0003 0.0057

0.8 0.7997 0.7999 0.7999 0.7997 0.7997

0.0064 0.0063 0.0063 0.0003 0.0063
0.9 0.8999 0.9001 0.9001 0.9002 0.8999

0.0061 0.0061 0.0061 0.0003 0.0062
0.8 0.7996 0.8000 0.7999 0.7997 0.7995

0.0064 0.0064 0.0064 0.0003 0.0065
0.9 0.8999 0.9001 0.9001 0.9001 0.8999

0.0059 0.0060 0.0060 0.0002 0.0060

Table 5.17: Estimates of the Gegenbauer frequency η2 for two-factor Gegenbauer process∏2
j=1(1 − 2ηjB + B2)djXt = εt, for di�erent values of d1 = 0.4, 0.45, d2 = 0.2, 0.3, η1 =

0.8, 0.9 and η2 = 0.6, 0.7, 0.8, di�erent Monte Carlo procedures (MC1, MC2-gph, MC2-lw),
B1 and B2 bootstrap estimates, where n is the sample size, 300 bootstrap replications, 1000
repetitions of the experiment, average value (boldface), standard error (italic): in the top
part of the table the Gegenbauer frequency is estimated from the raw periodogram, whereas
in the bottom part the Gegenbauer frequency is estimated after smoothing periodogram.



Appendix A

Cox test for two di�erent linear

models

In this section we shall give a brief introduction to the Cox test for two di�erent linear
models (for more details, refer to Plasmans, 2006). This test can be used to compare two
non-nested linear models {

Y = α1X1 + ε1
Y = α2X2 + ε2,

(A.1)

where ε1 and ε2 are Gaussian errors. The test statistic is

ŝ0 =
n

2
log

Y ′M1Y

Y ′M0Y + α̂′1X
′
1M1X1α̂1

where α̂1 is the maximum likelihood estimator of α1, n is the sample size and

M0 = In −X1(X ′1X1)−1X ′1

M1 = In −X2(X ′2X2)−1X ′2

with In the identity matrix of order n. Under the normality assumption the test is normally
distributed with asymptotic variance given by Pesaran (1974)

σ̂2(ŝ0) =
σ̂2

0

ˆ̃σ4
10

α̂′1X
′
1M
′
1M0M1X1α̂1

where σ̂2
0 = Y ′M0Y/n and ˆ̃σ2

10 = σ̂2
0 + α̂′1X

′
1M1X1α̂1/n. If ŝ0 is signi�cantly larger than

zero (smaller than zero), the �rst model in (A.1) outperforms the second (the second
outperforms the �rst). If ŝ0 is not signi�cantly di�erent from zero the two models have
the same goodness of �t.

The Cox test is valid under the hypotheses of normality and independence of the errors.
In our case neither of these assumptions is valid. We performed a bootstrap investigation
on the Cox test to check how far from normality is its distribution if we relax normality
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and independence hypotheses.
For d = 0.35 and for R1 (autocovariance at lag 1) we estimate the distribution of

the Cox tests tR1,1 and tR1,2 through a bootstrap resampling of [Yi, X1,i, X2,i, X3,i]. Both
distributions appear normal from the Q-Q plots of Figure (A.1), thus we can consider valid
the asymptotic normality of the test.

(a) (b)

Figure A.1: Q-Q plots of the bootstrap distribution of the Cox test for d = 0.35 and lag
= 1: (a) test between the �rst and the second linear models given in equation (4.7), (b) test
between the second and the third linear models given in equation (4.7).
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