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RIASSUNTO DELLA TESI

INTRODUZIONE

La PET (dall’inglese Positron Emission Tomography, ovvero tomografia ad emissione
di positroni) è una tecnica sviluppatasi a partire dagli anni ’70 per l’analisi in vivo di
importanti processi biologici. Essa permette la quantificazione di parametri fisiologici
significativi quali, ad esempio, consumo locale di glucosio e flusso sanguigno. Nella
PET un tracciante radioattivo che decade per emissione positronica viene sintetizzato
tramite opportune procedure chimiche e iniettato nel soggeto sotto esame, in dosi tali
da garantire la non tossicità. Il cuore della complessa strumentazione utilizzata per la
misurazione è costituito da cristalli scintillatori in grado di rilevare i due fotoni che ven-
gono emessi quando un positrone, emesso dal tracciante, collide con un elettrone della
materia del tessuto circostante; un processo di annichilazione positrone-elettrone ha cosi’
luogo e le due particelle si trasformano in pura energia, dando luogo a due fotoni. Da
queste misurazioni, attraverso sofisticati algoritmi di ricostruzione che tengono conto
di fenomeni complessi quali quelli di attenuazione, scattering e dead time, si riesce a
localizzare con precisione la posizione in cui l’evento di emissione del positrone ha avuto
luogo, e, in definitiva, si riesce a ricostruire la distribuzione nel tempo del tracciante
nell’area di interesse.

Dopo la ricostruzione l’immagine è pronta per l’analisi quantitativa, comunemente
detta kinetic modelling, essenziale perchè da essa si ricavano i parametri di interesse
fisiologico, detti parametri cinetici. Questa analisi può essere effettuata a livello di ROI
(Region Of Interest, cioè regioni anatomicamente omogenee quali ad esempio cervel-
letto, talamo, ippocampo) o a livello di pixel. In quest’ultimo contesto i parametri
cinetici vengono calcolati per ciascuno delle centinaia di migliaia (talvolta milioni) di
pixel che costituiscono l’immagine 3D e vengono generate le cosiddette mappe paramet-
riche. L’analisi a livello di pixel è caratterizzata da problemi dovuti al fatto che la TAC
(Time Activity Curve, cioè l’andamento della concentrazione del tracciante in funzione
del tempo) di un generico pixel è tipicamente affetta da un significativa quantità di
rumore, e questo può provocare la non convergenza degli algoritmi usati per stimare i
parametri cinetici, o può dar luogo a valori non fisiologici degli stessi. A livello di ROI,
d’altro lato, il rumore è trascurabile poichè quando si calcola la TAC di una ROI come
media delle TACs dei pixel di quella ROI si ha un effetto di regolarizzazione dovuto al
fatto che l’operazione di media ha un chiaro impatto di attentuazione del rumore. Le
mappe parametriche, tuttavia, hanno un’ importanza notevole poichè sono caratterizzate
da un’alta risoluzione spaziale e quindi consentono l’individuazione di aree patologiche,
quali una lesione localizzata, un’occlusione, la presenza di una piccola massa tumorale,
che potrebbero non essere rilevabili a livello di ROI.

Scopo della presente tesi è stato quello di analizzare metodiche per l’analisi a livello di
pixel che consentano una generazione di mappe parametriche più affidabili, condizione
importante specie per il loro utilizzo in ambito clinico. In particolare è stata analiz-
zata e ulteriormente sviluppata una metodica, già proposta in letteratura, denominata
ridge regression (RR) ed è stato inoltre proposto e testato un metodo matematico, com-
pleamente nuovo in ambito PET, denominato GTS (Global-Two-Stage) appartenente
al gruppo degli approcci di popolazione. L’idea di fondo di queste metodiche, che le fa
rientrare nella famiglia degli approcci Bayesiani, è, semplificando, quella di non utlizzare
nella stima dei parametri di un dato pixel solo e soltanto la TAC del pixel, ma di incorpo-
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rare in qualche modo informazioni derivanti dagli altri pixel al fine di ottenere un globale
effetto di regolarizzazione penalizzando, ad esempio, le TACs particolarmente rumorose.
Le procedure Bayesiane richiedono di calcolare un valore atteso µ, detto prior, per il vet-
tore dei parametri, assieme alla matrice di covarianza ∆ che è indice dell’affidabilità del
prior; prior e covarianza associata verranno poi utilizzati nella stima finale dei parametri
del modello analizzato, che, nel caso generale, si otterrano minimizzando una funzione
del tipo

[y − h(p)]′Σ−1[y − h(p)] + (p− µ)′∆−1(p− µ)

in cui y indica il vettore dei dati misurati, Σ la matrice di covarianza dell’errore di
misura e h(p) la funzione non lineare che esprime i dati in funzione dei parametri incog-
niti. Mentre nell’ottica del tradizionale WNLLS (Weighted NonLinear Least Squares),
il vettore dei parametri p è quello che minimizza

[y − h(p)]′Σ−1[y − h(p)]

in ottica Bayesiana, quindi, un termine aggiuntivo che incorpora l’informazione a priori
è presente.

MATERIALI E METODI

L’analisi delle metodologie considerate (RR, sia nella sua versione lineare che in quella
non-lineare, e GTS) è stata svolta in due fasi. E’ stata inizialmente effettuata un’analisi
su dati simulati; questo si è rivelato necessario poichè, per calcolare indici che quantif-
icano la correttezza delle stime finali quali BIAS e Root Mean Square Error (RMSE),
la conoscenza dei ”veri” parametri è necessaria e per far ciò i dati devono necessaria-
mente essere simulati, poichè, nei dataset reali, il ”vero” valore dei parametri non è noto.
Questa analisi è l’oggetto dei capitoli 2 (RR) e 3 (GTS). I traccianti utilizzati per le sim-
ulazioni, [11C]MP4A (RR lineare), [18F]FDG (GTS nel caso lineare) e [11C]WAY100,635
(RR non-lineare e GTS nel caso non-lineare) sono fra i più diffusi nella PET; in partico-
lare [18F]FDG è molto usato in quanto permette di stimare il consumo locale di glucosio
a livello tessutale e fornisce quindi significative indicazioni sul metabolismo cellulare in
vivo. Nella generazione dei dati simulati notevole attenzione è stata prestata nel creare
mappe con una distribuzione dei parametri il più possibile identica a quella reale, e nel
generare pixel TACs con un livello di rumore paragonabile a quello che sperimentalmente
si riscontra. Le perfomances delle varie metodiche proposte sono state poi confrontate
con quelle dell’appropriato ”gold standard”, cioè del metodo comunemente più usato
per la stima parametrica per il traccinate sotto esame (ad esempio WNLLS o metodo di
Patlak). Nel capitolo 4 l’interesse è stato rivolto ad un ricco dataset reale del tracciante
[11C]-(R)-PK11195, molto usato nello sutdio di patologie quali Alzheimer, Huntington
ed altre, in quanto esso è legato al livello di attivazione delle cellule microgliali cerebrali,
e di conseguenza al grado di infiammazione cerebrale. Il metodo standard di confronto,
in questo contesto, è stato il SRTMV (Simplfied Reference Tissue Model, modificato
per includere le componenti vascolari) e il confronto fra le performance dei vari algo-
ritmi è stato effettuato sulla base della valutazione visiva della mappe risulatanti, sulla
correlazione fra i parametri stimati dalle TACs di alcune ROIs e quelli ottenuti come
media dai pixel delle stesse ROIs, e sulla capacità di differenziare fra sani e malati
poichè il dataset comprendeva scan sia di soggetti affetti dalla malattia di Huntington
e che di soggetti sani. Di particolare rilievo è l’ultimo criterio, in quanto una migliore
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Figure 1: Il RMSE per il parametro k3, mediato su tutti i pixel, ottenuto con RLS,
SRRSC e GRRSC è rappresentato per le fette n◦27(sinistra) e n◦20(destra).

differenziazione sano-malato, effettuata nel caso del [11C]-(R)-PK11195 sulla base di un
parametro detto Binding Potential (BP) che quantifica il livello di legame del tracciante,
è chiaramente un fatto positvo in quanto garantisce diagnosi più affidabili e meno affette
da errori.

RISULTATI

L’analisi di dati simulati ha indicato che RR e GTS provocano sempre la diminuzione
del RMSE, lasciando il BIAS sostanzialmente invariato o persino riducendolo. La figura
1, ad esempio, illustra la riduzione del RMSE per il parametro k3 per le simulazioni rela-
tive al tracciante [11C]MP4A. Il ”gold standard” per [11C]MP4A, RLS, è confrontato con
due versioni della linear ridge regression, SRRSC and GRRSC per simulazioni relative a
due diverse fette dell’immagine (n◦21 e n◦27). Chiaramente, in generale, i miglioramenti
dipendono dal tracciante, dal livello di rumore e del parametro cinetico analizzato.

L’analisi del ricco data set di [11C]-(R)-PK11195 ha mostrato come RR e GTS ren-
dano le mappe parametriche molto più regolari rispetto al SRTMV. La figura 2 mostra,
ad esempio, mappe del parametro BP ottenute con SRTMV (sinistra) e GTS (destra):
si noti come nella mappa GTS regioni anatomicamente omogenee (ad esempio il cervel-
letto) si riescano nettamente a distinguere all’interno della mappa stessa.

I metodi proposti si sono inoltre rivelati particolarmente efficaci nell’incrementare
la differenziazione fra sani e malati, effettutata a livello di pixel a partire dalle mappe
parametriche. Questo fatto è illustrato nella figura 3, che rappresenta la percentuale di
pixel riconosciuti come ”malati” nel confronto fra HD e soggetti sani, per lo standard
SRTMV, per due diverse versioni di non linear ridge regression (NLRR3a e NLRR3b),
per il GTS e per LRR.
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DISCUSSIONE

I metodi bayesiani sono un utile strumento per migliorare la qualità delle mappe para-
metriche. La ridge regression (RR) è stata finora l’unico metodo proposto nella PET
per affrontare il problema della generazione di mappe più affidabili in ottica bayesiana.
In questa tesi un confronto sistematico fra i metodi di ridge regression, che non era mai
stato fatto nel passato, è stato realizzato. Alcune nuove procedure per l’applicazione
della RR a problemi non lineari basate sulla linearizzazione dell’equazione non lineare
e/o sull’uso della cosiddetta cluster analysis sono state inoltre proposte e confrontate.
In aggiunta, la metodica del global-two-stages GTS, nuova in campo PET, è stata per
la prima volta applicata per la formazione di immagini parametriche.

I capitoli 2 e 3 hanno indicato, attraveso l’analisi di dati simulati, che RR e GTS
provocano sempre la diminuzione del RMSE, lasciando il BIAS sostanzialmente invari-
ato o persino riducendolo. I miglioramenti possono variare da poco significativi -se le
mappe originali sono già di buona qualità- a notevoli; in ogni caso, comunuqe, nessuna
diminuzione delle prestazioni è stata mai notata in termini di BIAS e RMSE. Contraria-
mente alla ridge regression lineare, differenti versioni di ridge regression non lineare sono
state esaminate. Il metodo che è stato selezionato come ottimale richiede, per calcolare
i priors a livello di pixel, di eseguire il fit del modello appropriato al tracciante di inter-
esse sulle TACs determinate attraverso cluster analysis. Nell’applicazione ad immagini
reali tridimensionali, il calcolo del prior può essere effettuato tramite l’uso di atlanti
anatomici che vanno impiegati per associare ad un generico pixel i parametri della ROI
alla quale quel pixel appartiene.

Il GTS ha due impostazioni che sono in qualche modo a discrezione dell’utente. Le
prestazioni del GTS non hanno mai mostrato di dipendere significativamente dal metodo
impiegato per arrestare le iterazioni; in ogni caso, il criterio di terminazione consistente
nell’arrestare l’algortimo quando la differenza relativa del parametro di interesse fra
l’iterazione corrente e la precedente è più bassa dell’1% per almeno il 90% degli individui
nella popolazione considerata si è rivelato essere robusto in ogni situazione esaminata.
I risultati, d’altro lato, hanno dimostrato una significativa dipendenza dalla tecnica di
segmentazione impiegata per suddividere il gruppo di pixel in sottopopolazioni omoge-
nee, alle quali applicare poi separatamente l’algoritmo. Se l’immagine è normalizzata, gli
atlanti stereotassici possono essere impiegati per generare le sottopopolazioni costituite
dei pixel che appartengono alla stessa ROI. A volte, tuttavia, la normalizzazione non
può essere realizzata perché non c’è nessuna risonanza magnetica disponibile, o perché
essa causerebbe una perdita indesiderata di risoluzione spaziale se l’immagine è stata
acquisita su di uno scanner ad alta risoluzione. In questo caso una segmentazione di
ogni fetta dell’immagine in un piccolo numero di sottopopolazioni, effettuata in base al
parametro di interesse, è una buona soluzione alternativa che consente di effettuare il
GTS su popolazioni relativamente omogenee.

L’analisi del ricco data set di [11C]-(R)-PK11195 ha mostrato come RR e GTS ren-
dano le mappe parametriche molto più regolari rispetto al SRTMV: ciò era del tutto
previsto poichè i metodi bayesiani hanno un effetto di regolarizzazione. Inoltre, i metodi
proposti si sono rivelati particolarmente efficaci nell’incrementare la differenziazione fra
sani e malati, effettutata a livello di pixel a partire dalle mappe parametriche, e questo è
notevolmente significativo in ottica diagnostica, in quanto elevate sensitività e specificità
sono requisiti essenziali per applicazioni in ambito clinico.

La ridge regression e il global-two-stage, in conclusione, sono metodi preziosi per il
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miglioramento delle mappe parametriche nella PET. Entrambe le metodiche possono
essere impegate con pressochè ogni tipo di tracciante e modello, ed hanno quindi una
vasta gamma di applicabilità. I metodi proposti, inoltre, hanno un costo computazionale
basso che li rende adatti alla formazione di immagine parametriche, anche con i recenti
scanner che forniscono immagini ad elevatissima risoluzione caratterizzate quindi da un
altissimo numero di pixel (anche un milione).
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INTRODUCTION

PET (Positron Emission Tomography) is a widely used technique for the in-vivo anal-
ysis of important biological processes in both animals and humans. In PET, radioactive
tracers which decay by positron emission are injected -or, less frequently, inhaled- and
specific scintillator crystals are employed to detect the two 511 Kev photons which are
generated when any emitted positron collides with any electron of the surrounding mat-
ter, thus annihilating. The distribution of the injected tracer over time in the area of
interest is then derived from these measurements through sophisticated reconstruction
algorithms which keep into account, and correct for, several complex phenomena such
as scattering, dead time, tissue attenuation.

After the process of reconstruction the PET image is ready for quantitative anal-
ysis that allows to compute from the image parameters with a physiological meaning,
such as blood flow, rate of glucose consumption, amount of binding of the tracer to its
specific receptors. The basic principles of PET quantitative analysis, which is called
kinetic modelling, were established in a series of papers dating back to the early 80s
and extending to the mid 90s. PET kinetic modelling, besides the image itself, requires
the knowledge of the so-called input function: this can be either the time course of the
tracer concentration in plasma or the time course of the tracer concentration in an ap-
propriate region, called reference region, devoid of receptors specific for the tracer under
examination. The basic dogma of PET kinetic analysis states that the known input
function and the image are to be analyzed through an appropriate model to extract
the corresponding so-called kinetic parameters, whose number and biological meaning
depend on the method and model applied. Most of these parameters have a biological
meaning (e.g uptake of the tracer into the tissue, clearance of the tracer) and their
accurate quantification is essential for the application of PET in clinical practise.

The methods developed to perform kinetic modelling may require an assumption on
the compartmental structure describing the tracer under investigation (”compartmen-
tal analysis”) or may not make specific assumptions on this structure (”data-driven”
approaches like Patlak plot, Logan plot, spectral analysis, basis pursuit). In addition,
the quantitative determination of kinetic parameters can be made either at ROI level
(Region-Of-Interest, e.g. cerebellum, thalamus, putamen, basal ganglia) or at pixel level.
Pixels are used here as synonym of voxels -the three-dimensional (3D) elements of the
reconstructed image. Kinetic modelling -i.e. the estimation of kinetic parameters- at
pixel level is performed using the values of radioactive concentration of the tracer as a
function of the scan time (time activity curve or TAC) of each pixel separately. The
TAC of a given ROI, computed as average of the pixels belonging to that region, is
instead used in ROI analysis, which is characterized by more robust results since the
average of the pixels TACs in the region of interest is employed, with a dramatic noise
reduction. Pixel-by-pixel maps, however, are of paramount importance since they are
characterized by a much higher spatial resolution. A phenomenon such as a lesion in
a subsection of a cerebral structure may be invisible if only ROI analysis is performed
whereas it may become evident at visual inspection if a pixel-wise analysis is carried out.
In addition pixel-by-pixel analysis is essential, for instance, to compare 3D parametric
maps of healthy subjects to the corresponding maps of ill subjects in order to determine
which areas are those most affected by a specific disease, or which tracers are the best
in differentiating between healthy and ill subjects in the process of diagnosis of a given
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disease. The drawback of pixel-by-pixel analysis is the increased amount of noise of pixel
TACs with respect to ROI TACs; this fact may lead to problems in the numerical identi-
fication of the kinetic parameters under investigation (e.g. no numerical convergence of
the algorithm used or non-physiological values of the results). Another practical aspect
that should be addressed carefully is computational time. If a ROI analysis typically
involves a dozen of regions for each subject at most, with the current scanner resolution
the number of pixels of a human brain may reach the number of 500.000 and the issue
of the time required to perform kinetic analysis at each pixel becomes relevant.

To address the issue of the generation of parametric maps -i.e. maps that associate
to each pixel of the image a specific kinetic parameter- Bayesian techniques have been
taken into consideration in this thesis. A Bayesian approach, loosely speaking, requires
to determine an appropriate expected value for the parameters to be identified (the so-
called prior) with a corresponding covariance matrix which is an index of the reliability
of the prior. In the process of parameter estimation, then, to the term which in the
usual Weighted Non Linear Least Squares (WNLLS) keeps into account measured data,
a term containing the prior and its covariance is added. The parameter vector is then
calculated to minimize the sum-of-squares ”distance” not only from the data -as in
conventional weighted least squares- but also from the prior, the latter suitably weighted
through the covariance matrix associated to the prior. In this thesis, the mathematical
theory of WNLLS and Bayesian methods will be presented in Chapter 1, which was
consequently named ”Background” chapter. A first simple example of Bayesian method
is also presented in order to illustrate the potentialities of this class of methods.

Few Bayesian approaches are currently used in PET : one remarkable example is
given by ridge regression. Ridge regression techniques are analyzed in Chapter 2, where
the theory behind these methods is presented and examples of applications on simulated
data are given. In the so-called ”linear ridge regression” the kinetic model is fitted to
each pixel TAC separately, and then the prior is computed by averaging the parameter
estimates of the pixels located in the neighbourhood of the pixel of interest. Simulated
data from the tracers [11C]MP4A and [18F]FDG were employed to test the algorithm.
In the ”non-linear” version of ridge regression the issue of computational time prevents
from applying the same principles of linear ridge regression. A feasible approach to
overcome this problem is based on the preliminary use of clustering algorithms, which
yield clusters whose TACs are fitted to the model of interest and whose resulting kinetic
parameters are used as priors for the analysis at pixel level. A first-order linearization
of the non-linear model around an appropriate preliminary estimate of the parameter
vector, besides, may be used to transform the original problem into a linear problem,
thus reducing computational time. These two principles can be applied together, or
separately, and the three resulting versions of non-linear ridge regression were tested on
simulated [11C]WAY100,635 data. In the end an example of the potentiality of non-linear
ridge regression on a real [18F]FDG data set is presented, as ridge regression allowed to
estimate parameters at pixel level even for the 5k model employed to describe kinetics
of [18F]FDG in human skeletal muscle.

Another possible approach to improve the quality of parametric maps is based on
techniques originally developed in the pharmacokinetic/pharmacodynamic sector and
globally referred to as ”population” approaches, which are new to the field of PET.
These techniques are described in Chapter 3. With these methods all the homogenous
subjects which underwent the same experimental protocol are studied together, with
the aim of identifying, in each subject, the individual kinetic model parameters. The
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intersubject homogeneity is then exploited to improve the parameter estimates for those
subjects for which standard WNLLS yielded unreliable estimates or failed to converge.
The population parameter estimation paradigm -i.e. poor individual data sets borrow
strength from the others if there is some homogeneity- can be clearly applied in a num-
ber of situations different from the one just described. In the case considered here, the
”subjects” are pixels instead on individuals, and the ”population” can be considered as
made of those pixels belonging to a same ROI, or slice, or showing some homogeneity
according to a given criterion. The attention was focused on Two-Stages iterative algo-
rithms Global-Two-Stages (GTS) and ,to a minor extent due to computational reasons,
Iterative-Two-Stages (ITS). It is a matter of controversy whether GTS can be considered
or not a Bayesian approach. These methods update at every iteration the estimates of
each element of the population deriving the prior as an average from the population,
and the covariance of the prior from the population parameter variability and reliability.

As in Chapter 2 for ridge regression, performances of GTS were assessed by means of
simulations on synthetic data sets also in Chapter 3, comparing the proposed approaches
to the appropriate ”gold standard” for the analysis at pixel level and using Bias and
Root Mean Square Error as indices to evaluate the algorithms. Even though there is
no consensus on the ideal method for generating realistic simulated data, the use of
such data was unavoidable; in fact, the need to know ”real” parameters was central to
understand if, and to which extent, the use of the proposed approaches lead to more
correct and reliable parameter estimates.

After testing their performances on simulated data, ridge regression and GTS were
applied to real 3D [11C]-(R)-PK11195 images and Chapter 4 contains the corresponding
results. One of the most used approach in kinetic modelling, the simplified reference
tissue model SRTM, in a different version keeping into account also the vascular volume
component (SRTMV), was used as method of comparison. In the large data set ana-
lyzed the use of simple visual inspection of parametric maps and of correlation between
parameters estimated at ROI and pixel level were employed as criteria to evaluate the
algorithms. The correlation between Binding Potential (BP), one of the most important
kinetic parameters, estimated through SRTMV, and the same parameter computed with
the analyzed Bayesian approaches was also considered together with the variability of
this kinetic parameter within a given ROI. In addition, the ability to efficiently differen-
tiate between healthy subjects and patients (in the specific case patients suffering from
Huntington disease) was also taken into account.

Before concluding it is worth to shortly summarize the main purposes PET is used
for. Many neurodegenerative diseases (e.g. Alzheimer’s s disease, AD), nowadays, are
diagnosed on the basis of psycological tests; it has been shown, however, that for many
of them PET guarantees a better specificity -ability to correctly diagnose an ill subject-
and sensitivity -ability to correctly diagnose an healthy subject. PET, besides, allows in
some cases to differentiate between similar diseases, diagnosis that ii some cases couldn’t
be possible otherwise. This is possible thanks to the fact that, for the most diffused
neurodegenerative diseases, specific tracers with different uptake in presence or absence
of the neuropathological condition have been developed, allowing to distinguish between
ill and healthy subjects. In addition, there is accumulating evidence supporting the idea
that PET could be used to get a reliable diagnosis before clinical symptoms manifest,
which is particularly interesting in that early diagnosis allows an early treatment. It
is quite obvious how these potentialities can also be used, for instance, to evaluate the
effectiveness a newly developed drug or treatment, and how, therefore, the impact of
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PET in the world of health care is central.
In conclusion, the problem of a fast and reliable estimation of kinetic parameters at

pixel level is central for every tracer used in PET. Bayesian approaches, through the
use of a-priori information which can reduce the impact of noise, can be successfully
employed to obtain more reliable parametric maps. It is important to point out that
both ridge regression based algorithms and population approaches lend themselves to be
used with virtually every tracer and model, even though performances clearly depend
on several factors such as level of noise and model complexity. Given the high number
of tracers developed to test the various neurotransmitter systems (e.g [11C]raclopride
and [18F]fallypride for the dopaminergic system, [11C]DASB and [11C]WAY100,635 for
the serotoninergic and so on) the possibility to generate more reliable parametric maps
has an important impact in daily clinical practise for diagnosis, for the assessment of
efficacy of newly developed drugs, for the possibility to predict the future appearance
of a given disease with the consequent possibility of a preventive and therefore more
effective treatment.
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Chapter 1

Background on Bayesian
estimators

1.1 Introduction

As already stated in the introductory part, a Bayesian approach requires to integrate
some kind of a-priori information into the model of interest to get in the end more
reliable or more physiological values for the parameters of interest. A question naturally
arises: how do we get the a-priori information which is used in the process of parameter
estimation?

A first strategy makes uses of reasonable assumptions which do not rely on the
measured data; for instance one can postulate that the parameter vector has a Gaussian
distribution, with known expected value and covariance matrix. This approach has
the evident drawback that the assumptions, albeit in general reasonable, may not be
appropriate for the data set analyzed and may lead to erroneous results.

A second possible approach requires to use first the measured data alone and then
to derive, from the first estimation process, appropriate parameter and/or covariance
estimates that will be then used in the subsequent final estimation. Basically the a-
priori knowledge is derived from the data itself; both ridge regression and population
approaches are examples in this sense. This simple yet effective concept will be now
briefly illustrated with one example derived from [1], whereas the mathematical details of
Bayesian approaches, and of the maximum-a-posteriori (MAP) estimator in particular,
will be described in the following paragraph.

The simplified reference tissue model (SRTM), proposed for the first time in [2],
is one of the most diffused approaches for kinetic analysis in brain studies. The basic
assumption of the SRTM is that there exists a region, called reference region, devoid of
receptors specific for the tracer under examination, so that the compartment associated
to the specific binding can be considered absent in the reference region; all other cerebral
regions are referred to as target regions. The parameters that can estimated are R
[unitless], k2,TAR [min−1] and BP [unitless], where R is the relative delivery, which is
the ratio of the influx constant between the target region and the reference region, and
k2,TAR and BP indicate respectively the outflux rate and the binding potential of the
target region. Having denoted with K1 the influx rate from plasma to tissue, another
assumption of SRTM is

K1,TAR

k2,TAR
=

K1,REF

k2,REF
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which allows to write
k2,TAR = k2,REF R

with
R =

K1,TAR

K1,REF

as explained before. Therefore the model can be re-parameterized, using R, k2,REF and
BP (SRTM2) by substituting to k2,TAR (k2,REF R). The application of SRTM2 to a
given set of ROIs or pixels should in theory provide the same value of k2,TAR for each
ROI or pixel whereas, due to noise and to the approximations inherent into the model
applied, this doesn’t happen. In [1], through the use of both simulated and real data sets
of [18F ]FCWAY, [11C]flumazenil, and [11C]raclopride, SRTM2 was first applied to all the
pixels of the brain. Then k2,REF was fixed to the global median computed considering
all pixels but those of the reference region; the median was chosen as it was less biased
than the mean being less sensitive to outliers. SRTM2 was then applied again, this time
with k2,REF fixed, and relevant noise reduction in R and BP parametric maps were thus
obtained.

This is a very interesting example of Bayesian approach in which the a-priori infor-
mation -the value of k2,REF - is derived from the data. Especially in presence of noisy
kinetics and therefore especially at pixel level, as a matter of fact, reducing the number
of parameters to be estimated by fixing one of them normally gives rise to more reliable
estimates of the others. It is probably straightforward to point out that fixing the pa-
rameter to an incorrect value may lead to completely wrong results so each assumption
should be checked carefully.

1.2 Mathematical formulation of Bayesian approaches

1.2.1 WNLLS estimate

Consider a generic dynamic model with m unknown parameters p1, p2, .....pm and assume
that N samples collected at times t1, t2, .....tN of a signal which brings information on
the parameter vector are available. Assume also that the following equation, written in
vectorial form as

y = h(p) + e (1.1)

holds, where e is assumed to be a zero mean Gaussian random vector made of random
variables e1, e2, .....eN describing the additive errors affecting the measurements, and y is
a N-dimensional column vector containing the measured data. For the sake of simplicity
the explicit dependence on time will be omitted : in other words instead of indicating
the function of m parameters pi as h(p,ti) ,i=1,2,.....N, or h(p,t), the simpler h(p) will be
employed. Indicated with Σ the covariance matrix of the measurement error, assumed
to be known at least up to a proportionality constant, the Weighted NonLinear Least
Squares (WNLLS) estimate of the vector p is the one which minimizes the cost function:

[y − h(p)]′Σ−1[y − h(p)] (1.2)

which is the weighted distance between the observed data y and fitted data h(p). In gen-
eral h is a non-linear function of p and the minimization problem (1.2) has to be solved
through iterative and computationally expensive algorithms such as Gauss-Newton’s, or
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better, through modified versions of it. If h is a linear function of p -i.e. h(p)=Xp holds,
where X is an appropriate Nxm matrix- the well-known expression

p = (X ′Σ−1X)−1(X ′Σ−1y) (1.3)

provides the desired solution allowing to compute p quickly. In PET Σ is known up to
a proportionality factor, i.e.

Σ = σ2W−1 (1.4)

with W known and σ2 unknown. Inserting this expression into (1.2) and (1.3) and
neglecting the constant σ2, which is irrelevant in the determination of the point of
minimum, one obtains

[y − h(p)]′W [y − h(p)] (1.5)

p = (X ′WX)−1(X ′Wy) (1.6)

which represent respectively the function to be minimized in PET and the WNLLS
estimate of the parameter vector when the model is linear. Under the previous set
of hypothesis on e -e1, e2, .....eN independent from each other, Gaussian distributed
with zero mean- the WNLLS estimate of p coincides with its maximum-likelihood (ML)
estimate.

σ2, whose knowledge is necessary for the computation of the covariance matrix of p,
can be estimated a-posteriori evaluating (1.5) in correspondence of its minimum. This
value is called WRSS (Weighted Residuals Sum of Squares) and an unbiased estimator
of σ2 is given by

WRSS

N −m
(1.7)

As to the uncertainty of estimates, the covariance matrix of the vector pWLS esti-
mated according to the WNLLS criterion can be approximated as:

(S′Σ−1S)−1 (1.8)

where S is the so-called sensitivity matrix, i.e. the Nxm matrix whose element in position
(i, j) is the derivative of h(p,t) with respect to ti and pj evaluated in correspondence of
the final estimate of p. This expression for the covariance matrix is an underestimation
of the real, though unknown, covariance, whereas it becomes an exact expression in the
case of linear models for which, besides, S becomes equal to X.

1.2.2 Bayesian estimate

A different way to address the estimation of p is to exploit not only the measured data
y but also other information that is assumed to be known on p. This kind of approaches
in which an assumption on the probability distribution of p is made are called Bayesian.
More generally, the expression ”Bayesian methods” is used when any kind of a-priori
information on the parameter vector is assumed known and used for the estimation;
in this paragraph, however, the word Bayesian will be used in its narrower meaning,
and the probability distribution of p will be assumed known. This assumption allows
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to write the probability density function of the parameter vector given the data (the
so-called posterior distribution)

f(p|y) (1.9)

that, according to Bayes’s rule, is proportional to

f(y|p)f(p) (1.10)

with the proportionality constant independent from p. The first factor in (1.10) ,as a
consequence of the hypothesis on e, is normally distributed with mean h(p) and covari-
ance Σ, whereas the second factor depends on the assumption on the distribution of
h(p).

The most common way to estimate p is to select the one which maximizes (1.10).
This kind of estimator is called maximum-a-posteriori (MAP) estimator in that it is the
one which maximizes the posterior probability density function. A closed-form solution
for the MAP estimator does not exist since the structure of equation (1.10) depends on
the probability distribution of p.

Another possible way to exploit (1.10) in the estimation process consists in setting p
equal to the mean of the posterior distribution, i.e. to

∫
Rn f(p|py) p dp. This approach,

however, is typically too expensive computationally and seldom used; from now on the
MAP estimator only will be considered.

Under the common additional assumption that p is a multivariate Gaussian random
vector, with mean µ and covariance matrix ∆, the vector which maximizes (1.10), i.e.
the MAP estimator of p, is the one which minimizes :

[y − h(p)]′Σ−1[y − h(p)] + (p− µ)′∆−1(p− µ) (1.11)

where this expression is simply obtained by taking the natural logarithm of (1.10) and
omitting the terms independent on p. In (1.11), the cost function consists of two terms.
The first equals the cost function of the WNLLS estimator; the second term weights
the adherence of the estimate to the available a-priori knowledge. If the elements of
the covariance matrix ∆ are ”small”, i.e. the prior is reliable, the elements of ∆−1 are
”large”, and the second term in (1.11) becomes the most important: the final estimate
of p will be then close to µ as any variation of pMAP from µ, being multiplied by ∆−1,
would give rise to a high increase of the cost function. If, on the other side, the elements
of ∆ are ”large” the final estimate pMAP will be determined mainly by the first term of
(1.11), and the MAP estimator of p will be consequently close to the WLS estimator of
p.

Being (1.11) a non-linear function of the parameter vector, a closed-form solutions
of (1.11) does not exist and iterative algorithms, such as Gauss-Newton’s, need to be
employed. If, however , the original model is linear -h(p) = Xp- the MAP estimator of
p becomes:

(X ′Σ−1X + ∆−1)−1(X ′Σ−1y + ∆−1µ) (1.12)

The existence of a closed-form solution significantly reduces the time required to es-
timate p , and this is particularly important when generating parametric maps since the
estimation needs to be performed at each and every pixel and the issue of computational
time therefore becomes central. It is important to point put again that the closed-form
solution (1.6) for the WNLLS problem exists only if the model is linear and, analogously,
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the closed-form solution (1.12) for the MAP estimator holds only if p is assumed to be
Gaussian distributed and the model is linear.

As to the uncertainty of estimates, the MAP estimator is characterized by the ad-
ditional presence of the covariance matrix of the prior, if compared to the WNLLS
estimator. In fact, the approximate expression for ΣMAP is

(S′Σ−1S + ∆−1)−1 (1.13)

As before, (1.13) becomes the exact expression when the model is linear. The final
estimate of pMAP has a ”smaller” covariance matrix with respect to pWLS as a conse-
quence of the introduction of the a-priori information which reduces the uncertainty of
estimates: it is sufficient to compare (1.8) and (1.13) considering the case in which p is
scalar to realize this simple fact.

Always referring to the case of PET in which Σ is known up to a proportionality
factor according to (1.4), the value of σ2 needs to be estimated also in the Bayesian
framework because the exact expression of Σ is required for the computation of the final
covariance matrix (1.13). To solve this problem it is sufficient to perform a preliminary
WNLLS fit and to compute an estimate of σ2 according to (1.7): Σ can be then easily
derived and (1.13) used.

1.3 A simple example of a Bayesian approach

Assume that one of the m parameters of the vector p (the j-th) is fixed to p0
j , thus leaving

(m-1) parameters to be estimated. This fact can be seen in the Bayesian framework in
the following way. Let’s get back to the basic equation (1.11) and set the j-th element
of the prior u to the desired value p0

j and the others to arbitrary values. Let’s set also
all the elements of ∆−1 to 0, except for the element in position (j, j) which we set to a
”very big” value M: loosely speaking, this is equivalent to assume a null variance for the
j-th element of the prior and an infinite variance for the others. With this choice the
Bayesian term of (1.11) -the second term of (1.11)- becomes M(pj−p0

j )
2. In conclusion,

while the estimate of all parameters but the j-th will be free and determined only by
the data, the final estimate of pj will be necessarily equal to the prior p0

j because any
difference of pj from this value would determine a huge increase in the cost function due
to the presence of the multiplicative constant M.

Having shown that fixing a parameter can be seen as a simple particular case of
Bayesian inference, we give here a simple example of the benefits that, in certain sit-
uations, can be obtained when one of the kinetic parameters is fixed. To illustrate
this aspect the tracer N-methyl-4-piperidin acetate ([11C]MP4A) was considered ([3],
[4]). This tracer will be described in depth in the following chapter, and, for now,
it is sufficient to know that its kinetics is accurately described by a two-compartment
three-constant irreversible model with K1 [ml/ml/min] representing the rate of tracer
influx from plasma to tissue, k2 [min−1] the rate of outflux from tissue to plasma, and
k3 [min−1] the rate of tracer hydrolysis performed by the enzyme acetylcholinesterase
(AChE). k3 is the most important parameter because it allows to differentiate between
healthy subjects and subjects suffering from pathologies as Alzheimer’s disease.

Indicated with CREF the time course of the cerebellum, used as reference region,
and with R [unitless] the ratio between the target and reference region K1 values, it can
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Figure 1.1: The summed image for an healthy subject for a slice with high AChE activity
is displayed.

be shown ([5]) that the equation

C(t) = RCREF (t) + Rk3

∫ t

0
CREF (x)dx− (k2 + k3)

∫ t

0
C(x)dx (1.14)

holds, with C(t) indicating the time course of the region or pixel of interest. Using
weighted linear regression, one can easily estimate R, k2 and k3.

For this tracer the cerebellum is a reference region with a meaning very different
from the usual, in that the uptake of the tracer in the reference, instead of being lower
than in the other regions due to the absence of specific binding as it is usually, it is
so high that the model in the cerebellum can be approximated as a one compartment
irreversible model with only one rate constant K1. (1.14) is based on this assumption.

It is known, however, that (1.14) heavily underestimates k3 in regions with high
AChE activity, that is in regions with high k3; this is something which can create
problems due to the importance of this parameter for [11C]MP4A. Figure (1.1) displays
the summed image for an healthy subject for a slice with high AChE activity (slice
n◦16 out of the 35). The expression ”summed” image stands for the image in which for
each pixel the values of the TACs are summed in order to get an idea of the areas with
high and low uptake. Figure (1.2) shows the k3 parametric image obtained using (1.14):
while there should be agreement between high AChE activity -that is high values of the
summed image- and high k3 values, not only this agreement is totally absent but areas
with high AChE activity are characterized by low or even negative k3 estimates.

Let’s now fix, for each pixel, k2 to the median (or mean, the difference is negligible)
of the values obtained in the whole slice from the preliminary application of (1.14).
(1.14) can be rearranged as follows

C(t) + k2

∫ t

0
C(x)dx = RCREF (t) (1.15)

+Rk3

∫ t

0
CREF (x)dx + k3

∫ t

0
C(x)dx
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Figure 1.2: k3 parametric map obtained using (1.14) is displayed.

The left side of (1.15) is now known, as k2 is fixed. To estimate R and k3 from (1.15) one
could think to apply a simple linear regression as the model is linear. This is not possible
as one would obtain three parameters, whereas there are only two free parameters (R
and k3).

A basis function approach, on the other hand, can be successfully employed. If k3 is
fixed to a value k∗3, (1.15) becomes an estimation problem linear in the parameter R, as
expressed by

C(t) + (k∗3 + k2)
∫ t

0
C(x)dx = R(CREF (t) + k∗3

∫ t

0
CREF (x)dx) (1.16)

with the left side known and the right side known, apart from R.
As k3 is clearly unknown, the estimation must be performed for each value belonging

to a predefined grid covering the physiological range for k3, and in the end the value
of R which gave rise to the smallest weighted sum of residuals is kept, together with
the corresponding k3. A grid comprised of 30 values for k3 was employed here. This
technique was applied to every pixel and, due to its linear nature, it allowed to quickly
compute new parametric maps for k3. Figure (1.3) displays the k3 parametric image
obtained using this approach: it is evident how it is much more resembling the summed
image (1.1) than the preliminary parametric map (1.2).

The most natural idea, probably, would have been to fix k2, for each pixel, not the
global median but to the specific k2 value obtained for that pixel from the application
of (1.14); this approach, however, didn’t yield noticeable improvements with respect to
RLS. No differences, besides, were seen between the proposed and standard approaches
when regions with low AChE activity were considered because (1.14) provided in that
case estimates of good quality.
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Figure 1.3: k3 parametric map obtained using (1.15) is displayed.

1.4 Discussion

In this chapter, after presenting the basic principles of WLS, the basic idea of Bayesian
approaches -employ for the estimation of the parameters of interest some kind of a-priori
information- was introduced and mathematically formalized. The use of such approaches
may lead to dramatic improvements of final estimates, especially when measured data
are characterized by high noise. In the case of PET, therefore, these approaches are
more suitable for pixel analysis due to the higher noise of pixel TACs with respect to
ROI TACs.

Few Bayesian approaches have been employed in the case of PET in the past. There
is only one remarkable example: ridge regression, introduced in [6], and then brilliantly
developed in [7], [8] and [9]. Other examples of Bayesian approaches, developed by
Kimura and colleagues, are described in [10], [11], [12], but these techniques have a
narrower range of application because their use is confined to specific combination of
compartmental models and tracers.

In addition it is important to recall here that the methodologies that will be presented
in the following chapters -ridge regression and population approaches- are much more
general and powerful than the simple strategy of fixing a value for an element of the
parameter vector. In fact, these methods address all the parameters -not only one-
eliminating the arbitrariness in the choice of the parameter to be fixed, and the weight
of the prior is not arbitrarily a-priori specified as here, but suitably computed.
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Chapter 2

Ridge regression: theory and
validation on simulated data

2.1 Linear ridge regression

The Ridge Regression with Spatial Constraint method (RRSC) was originally applied to
PET in [6] by O’Sullivan and Saha and then developed by Zhou and co-workers in both
its linear ([7],[8]) and non-linear ([9]) versions. The main idea behind these methods is
to improve parametric images by penalizing both local spatial variation of parameters
and noisy pixel kinetics.

In linear ridge regression, which will be considered in this paragraph and in the
following one, parameters are estimated for each pixel first using conventional LLS
(Linear Least Squares) minimizing the usual function

(y −Xp)′W (y −Xp) (2.1)

where W denotes a NxN square matrix containing appropriate weights. The parametric
maps thus obtained are then smoothed using for each pixel a window of size 5x5 or 3x3
with equal weights in it, centered in the pixel, so that a prior p0 of the parameter vector
p is obtained for every pixel; an equivalent way to indicate this smoothing process is
to say that the maps are filtered with a median filter. Parameter estimation is then
performed again, but this time a Bayesian term derived from the previous preliminary
estimation process is added. The function to minimize becomes:

(y −Xp)′W (y −Xp) + (p− p0)′H(p− p0) (2.2)

with H determining the weight of the Bayesian term.
Two versions of linear ridge regression have been proposed: they are simplified ridge

regression with spatial constraints (SRRSC) and generalized ridge regression with spatial
constraints (GRRSC). If we let m be the number of elements of the parameter vector,
the diagonal ridge matrix H is calculated for SRRSC as

hi =
mσ2

(p− p0)′(p− p0)
∀i (2.3)

and for GRRSC as

hi =
σ2

(pi − pi0)2
i = 1, 2, .....m (2.4)
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where the noise variance of the data σ2 is estimated for each pixel from the residuals
of the preliminary weighted regression as in (1.7). Before the application of (2.2) the
elements of H are spatially smoothed with the same median filter employed to compute
p0. This second smoothing is not strictly necessary for the application of the algorithm,
but final parametric maps become more regular when the median filter is applied also
to the elements of H.

The difference between the two methods is that GRRSC makes use of different
weights for each parameter while SRRSC does not. The ridge matrix H is therefore
a generic diagonal matrix for GRSSC while it is a multiple of the identity matrix for
SRRSC.

According to the previous equations, the higher the estimated variance is, the higher
the values of H are, and the more important the Bayesian term which appears in (2.18)
is in the computation of p ; this is totally coherent with the idea that the higher the
variance for a given pixel is, the greater the importance that should be given to the prior
is, as measured data are not very reliable in the computation of p for the specific pixel
due to the initial poor fit.

Similar considerations hold for the denominator of (2.3) and (2.4). Small local spatial
variations of the estimates of p, i.e. a small denominator in (2.3) and (2.4), give rise to
high values of the elements of H; the Bayesian term acquires in this case more weight
consistently with the idea that small local spatial variations of the estimates are an
indicator of reliability of the prior.

The assumption on the linearity of the original problem is not essential. In fact,
”linear” ridge regression can be applied to non-linear models as well. The only issue
that limits the applicability of this procedure for non-linear problems is computational,
since a non-linear fit is to be performed twice at each pixel to solve first (2.1) and then
(2.2), with h(p) instead of Xp. Computational time, which is already high for non-linear
procedures, is therefore doubled making the procedure unfeasible. In the linear case, on
the other side, the total computational effort is negligible because closed form solutions
for (2.1) and (2.2) do exist. They are respectively

p = (XT WX)−1(XT WY ) (2.5)

identical to (1.6), and

pridge = (XT WX + H)−1(XT WY + Hp0) (2.6)

.
The last equation has a structure very similar to (1.12) which gives the MAP es-

timate in the linear case when the prior is assumed normally distributed. The only
differences is that W in (2.6) is not the inverse of the covariance matrix of the error Σ
but just proportional to it, and that H, to correctly balance the weight of data and prior,
is computed to keep this fact into account. Apart from this difference in the structure
of the covariance matrices, the identical structure of relation between (1.12) and (2.6)
allows to interpret the parameter estimate of linear ridge regression as a MAP estimator
with a normal prior.
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2.2 Evaluation of linear ridge regression

2.2.1 Indices for performance evaluation

To be able to quantitatively compare two or more different estimation methods the
”correct” values of the parameters to be estimated should be known in advance so that
indices which evaluate their performances can be computed. When real data sets are
used this is not possible since the ”correct” values of the parameters of interest are
unknown. It is often necessary, therefore, to generate simulated data which resemble as
much as possible real data, with the only difference that the correct parameter values
underlying the simulated data are known.

Let p0 be the true value of a parameter of interest and assume that this parameter
is estimated from simulated data N times, with different noise conditions. Suppose that
the probability distribution of the noise added to the simulated data is the same among
the N repetitions, but that the actual values change between repetitions, leading to
different final estimates for p.

The two most important indices for the evaluation of performances are percentage
BIAS%

BIAS% = 100
1
p0
{ΣN

i=1(pi − p0)
N

} (2.7)

which keeps into account the possible systematic over(under)estimation of the given
parameter (the lower its absolute value is the better the estimation method is) and
Root Mean Square Error RMSE%

RMSE% = 100
1
p0
{ 1
N

√
(ΣN

i=1(pi − p0)2)} (2.8)

which quantifies the average difference between the estimate pi and the correct value
p0, irrespectively of its sign. Clearly the lower the RMSE% is, the better the given
algorithm is.

Sometimes BIAS% and RMSE% are considered not in percentage form, i.e. p0 does
not appear at the denominator of either (2.7) or (2.8). The percentage form is however
more meaningful: a bias of 0.1 min−1 for a given kinetic parameter k0 for instance,
has clearly a different impact if the real value of k0 is 0.2 min−1 or if it is 1 min−1.
From now on the percentage forms only will be used and referred to simply as BIAS
and RMSE; for the sake of space the percentage sign will be omitted.

Another important index is the Coefficient of Variation (CV) which quantifies the
reliability of a parameter independently on its correctness (i.e. independently on p0). Let
σ2 be the variance associated to a estimated parameter p̂i computed from the covariance
matrix of the parameter vector. This variance is, in general, not only data-dependent
but also model-dependent, and the CV for the given parameter is defined as the ratio
between the standard deviation and the parameter estimate

100
σ

p̂i
(2.9)

2.2.2 The tracer [11C]MP4A

To test linear ridge regression N-methyl-4-piperidin acetate ([11C]MP4A)was employed.
[11C]MP4A is a tracer that is used with PET for diagnosis and assessment of progression
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of Alzheimer’s disease and other brain pathologies such as dementia with Lewy bodies.
As specified in the previous chapter, the different steps of [11C]MP4A kinetics can be
adequately quantified by using a two-compartment three-rate constant model ([3]), with
K1[ml/ml/min] representing the rate of tracer influx into the brain, k2[1/min] the rate
of outflux from the brain, and k3[1/min] the rate of tracer hydrolysis performed by the
enzyme acetylcholinesterase (AChE). As for most tracers, the gold-standard method
to estimate kinetic parameters of [11C]MP4A is WNLLS, with the plasmatic tracer
concentration as input function to the model.

It can be shown, see for instance [13], that , the concentration C(t) in a given ROI
or pixel of a tracer like [11C]MP4A described by an irreversible two-compartment three-
constant model (2T-3K),assuming the blood component Vb equal to 0, can be expressed
as:

C(t) =
K1k2

k2 + k3

∫ t

0
Cpl(x)e−(k2+k3)(t−x)dx +

K1k3

k2 + k3

∫ t

0
Cpl(x) dx (2.10)

where Cpl denotes the measured plasmatic concentration of the tracer. An alternative
expression of (3.15) proposed by Blomquist ([14]), which is based on the integration of
the differential equations leading to (3.15), is

C(t) = K1

∫ t

0
Cpl(x)dx + K1k3

∫ t

0

∫ φ

0
Cpl(x)dx dφ − (k2 + k3)

∫ t

0
C(x)dx (2.11)

which allows to estimate kinetic parameters by means of weighted linear least squares.
The use of the plasmatic tracer concentration, however, requires measurements of

the tracer concentration and of its metabolites. These measurements are invasive to
patients and require also considerable technical expertise. The quest for alternative
but equally reliable methods for parameter estimation has led to the development of
a reference-based method. Reference Least Squares (RLS) is a method developed for
[11C]MP4A and based on (2.11) to avoid the use of Cpl in (2.11). [11C]MP4A molecules,
after entering the cerebellum, are rapidly transformed into the hydrophilic metabolite
[11C]MP4OH because AChE activity is very high: this results in a high k3 in that
region. If k3 is high enough, the 2T-3K model can be adequately approximated by a
one-compartment one-rate constant irreversible model described by

CREF (t)
dt

= K1,REF Cpl(t) (2.12)

where CREF denotes cerebellar activity as, for this tracer, cerebellum is named reference
region, and K1,REF is the value of K1 in this region.

In addition, cerebellar TAC CREF shows a rapid increase after the tracer injection
and a plateau level which begins when plasma [11C]MP4A radioactivity is almost zero,
suggesting that CREF could be used to approximate the time integral of the arterial
input function according to:

CREF (t) = K1,REF

∫ t

0
Cpl(x)dx (2.13)

which is nothing but the integrated form of (2.12) and which can be easily written as
∫ t

0
Cpl(x)dx =

CREF (t)
K1,REF

(2.14)
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Sometimes the striatum is used as reference region for [11C]MP4A. Cerebellum is
in general preferred for its higher volume, which results in smoother TAC, and for its
typically slightly higher k3.

Inserting (2.14) into (2.11) one gets:

C(t) = p1CREF (t) + p2

∫ t

0
CREF (x)dx + p3

∫ t

0
C(x)dx (2.15)

with p1=K1/K1,REF = R, p2=R k3 and p3=−(k2+k3). Using weighted linear regression
one can estimate p1, p2 and p3 without the need for blood sampling and then evaluate
R, k2, k3 from R=p1 , k3=p2/p1 , k2=p3-k3.

2.2.3 Generation of simulated [11C]MP4A data

In order to apply the principles of both ridge regression and population methodologies
it was necessary to generate simulated slices of a PET scan. It is very important that
the simulated data reproduce accurately real data in terms of amount of noise of pixel
kinetics and in terms of the spatial distribution of kinetic parameters, because, otherwise,
results are likely to be misleading. Several procedures have been used in literature to
create synthetic data set, some of them making use of ad-hoc simulation softwares. An
approach robust in terms of both criteria just cited -appropriate noise and appropriate
parameter distribution- is described here.

Simulated [11C]MP4A dynamic images were created to reproduce the time activity
curves of an healthy subject at pixel level. Parametric maps of K1, k2, k3 were first
computed by quantifying the real [11C]MP4A image of one normal subject using his
plasmatic input function and the gold standard WNLLS with weights equal to

∆i

Ci
(2.16)

with ∆i indicating the duration of the i-th frame and Ci the measured decay-corrected
concentration at frame i for the pixel under examination. These are the standard weights
employed when the plasmatic input function is used in the process of parameter esti-
mation. These maps were then slightly smoothed by a 2D-Gaussian filter to get more
regular parametric images: the resulting maps were regarded as the ”real” parametric
maps to which compare results to.

Two whole simulated slices were generated: slice n◦27 out of the 35 of the image, in
the upper part of the brain, was chosen as representative ”average” slice containing a
large amount of cerebral cortex, whereas slice n◦20 was selected because of the presence
of regions with high AChE activity (i.e. thalamus). Error-free continuous time activity
curves were created for each pixel using these maps and the measured plasmatic input
function according to the standard equation (3.15). These curves were then sampled
at the midtimes of the frames of the real scanning protocol used for the [11C]MP4A
dataset: the scan durations were 6x0.5 min, 2x1 min, 2x2.5 min, 10x5 min, for a total
of 20 frames and 60 minutes.

For each pixel, 100 noisy TACs were then generated adding, to the error-free TACs,
Gaussian noise with zero mean and variance equal to

α
Ci

∆i
(2.17)
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with Ci and ∆i as before. The variance was clearly set proportional to the inverse of
the weights used in the process of parameter estimation. To choose reliable values for α
- constant for each pixel but varying from pixel to pixel due to differences in the spatial
position- α-maps were generated during the quantification of the real [11C]MP4A image
by computing for each pixel α=WRSS/(N-m) as in (1.7), where WRSS is the value of
the weighted cost function evaluated at its minimum, N the number of frames and m the
number of model parameters (20 and 3, respectively, in our case). These maps were then
used in the process of noise generation: in this way simulated activity curves resembled
real ones not only as to the amount of noise but also as to the differences in noise due
to pixel position.

A critic to the procedure employed could be made: why add to the noise-free TACs
independent (among pixels) random samples, if it is known that the reconstruction algo-
rithms create a spatial correlation between noise of adjacent pixels? The fact is that no
simple but effective method to model noise correlation among pixels is available. Even
though the statistics of PET noise is well known at sinograms level -i.e. at the level of
raw data before the application of reconstruction algorithm- no mathematical model of
noise spatial correlation is available which starts from noiseless pixel TACs.

2.2.4 Results

Results are presented graphically in figure (2.1), which displays the average BIAS and
figure (2.2), which shows the average RMSE for both slices. Emphasis was put on k3,
which, as explained, is the most important parameter for [11C]MP4A as it allows to
differentiate between healthy and ill subjects.

GRRSC always outperformed SRRSC, as expected, as it is a more flexible method-
ology in that it makes use of different weights for the different parameters; the amount
of improvement varied from slight to moderate.

The second and more important fact was that GRRSC provided noticeable improve-
ments with respect to standard RLS both in terms of BIAS and RMSE reduction.
The increase of computational cost, as explained previously, was negligible. With the
performances of the computer employed in the simulations it took roughly 15 seconds
to generate results for a single slice with RLS, and therefore roughly 30 seconds with
GRRSC or with SRRSC (15 of which for the preliminary RLS estimation). The slight
BIAS of slice n◦27, for instance, was completely annulled by GRRSC and the heav-
ier negative BIAS of slice n◦20 was halved. Results presented in [15], besides, showed
that among all the several methodologies available for the quantification of [11C]MP4A
without arterial blood sampling, the application of GRRSC to RLS provides an optimal
trade-off between performances and speed. Figure (2.3) displays the parametric map
of the parameter k3 of one repetition of the simulated slice n◦27 for RLS, SRRSC and
GRRSC. It is evident how GRRSC provided much smoother and regular parametric
maps with respect to RLS and, to a minor extent, also when compared to SRRSC. This
holds true also for the other kinetic parameters: figure (2.4), for instance, compares
parametric maps of the relative delivery R obtained with RLS and GRRSC for slice
n◦27.
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Figure 2.1: k3 BIAS averaged over all pixels, obtained with RLS, SRRSC and GRRSC
is displayed for slice n◦27(left) and n◦20(right).
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Figure 2.2: k3 RMSE averaged over all pixels, obtained with RLS, SRRSC and GRRSC
is displayed for slice n◦27(left) and n◦20(right).
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Figure 2.3: The parametric map of k3 of one repetition of the simulated slice n◦27
obtained with RLS(left), SRRSC(left) and GRRSC(down) is displayed.
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Figure 2.4: The parametric map of the relative delivery R of one repetition of the sim-
ulated slice n◦27 obtained with RLS(left)and GRRSC(right) is displayed.
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Figure 2.5: Average RMSE(left) and BIAS(right) of k3 obtained with RLS, SRRSC and
GRRSC for the portion of slice n◦20 containing the thalamus are displayed.

It is well known (see for instance [5]) that RLS performs poorly when the parameter
k3 of the target region is high and that in this case k3 estimates are characterized by
a negative bias. The thalamus is a region characterized by a high AChE activity and
therefore by high values of k3: RLS estimates of this parameter in that region were
consequently affected by a systematic negative BIAS. This explains the global negative
BIAS of slice n◦20, which is due to the presence of the thalamic region in it. Figure (2.5)
reports, as previously, BIAS and RMSE but only for the portion of slice n◦20 containing
the thalamus (mask drawn manually). It can be seen that, besides the obvious worsening
of performances, in this case the amount of improvement is very limited due to poor
initial estimates.

The conclusion is that linear ridge regression techniques are powerful instruments to
improve the reliability of parametric maps. Generalized ridge regression is preferable to
simplified ridge regression due to its flexibility in weighting differently the contribution
of the Bayesian term for each parameter. Large BIAS and RMSE reductions were
observed and resulting parametric maps appeared smoother at visual impact. The
amount of improvement ranged from moderate to significant according to the parameter
under examination. When initial estimated were very poor however -as for the case of
thalamic k3- the amount of improvement brought by these methods was low because of
the intrinsic limits of the linear method from which ridge regression techniques started.
Although these conclusions were derived only on the basis of only one simulated data
set it is likely that they are tenable for most tracers, also because they are coherent with
what found in ([7] and in [8]). The amount of improvement, on the other side, will be
clearly dependent on the complexity of the considered model and on the noise level of
the data analyzed.

2.3 Non-linear ridge regression

In this paragraph non linear problems, in which measured data are a generic non linear
function h(p) of the parameters of interest, will be considered. It is known that any
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non linear problem can be suitably rewritten in a linear form h(p)=Xp, but that the
estimation of the linearized version gives rise to bias in the parameter estimates, due
to the correlation between the measurement noise and the noise of the columns in the
matrix X containing terms dependent on the pixel TAC. In [17] Feng and colleagues
proposed a method, called GLLS (Generalized Linear Least Squares), which can be
used to correct for the bias introduced by the linearization process. One could think
to apply the linearization and GLLS to any non linear problem, employing then linear
ridge regression. GLLS, however, hasn’t been validated on complex models, such as
the two-compartment 4-constant model, and hasn’t found a wide diffusion in the PET
world. The need to consider non linear models, therefore, appears necessary.

As pointed out previously, linear ridge regression can be employed for non-linear
models as well. Instead of minimizing a function like (2.2), the function to consider
assumes now the form:

[y − h(p)]′W [y − h(p)] + (p− p0)′H(p− p0) (2.18)

For each pixel, therefore, a non-linear estimation has to be performed twice, the first time
using measured data only to compute p0 and H, the second to find the point of minimum
of (2.18). This procedure is not feasible at pixel level, especially when generating 3D
parametric maps, because it is too time consuming.

2.3.1 Prior based on WNLLS: NLRR1

If in (2.18), however, h(p) is substituted by its first order Taylor expansion around the
point p∗, with p∗ equal to the preliminary estimate at the pixel of interest, preliminary
computed through WNLLS, the second estimation problem becomes linear and can be
efficiently solved. This version of Non Linear Ridge Regression was called NLRR1.

The most reasonable way to address the problem is to approximate the non-linear
function h(p, ti), i = 1, 2, ...N through

h(p∗) + S∆p (2.19)

with p∗ equal to the WNLLS estimate of the parameter vector made using the pixel
data only, ∆p equal to the mx1 column vector (p− p∗), and with S, the Nxm sensitivity
matrix, containing at each row the gradient of h(p, ti) evaluated at p∗. H can then
be computed exactly as for ridge regression -either in its Simplified, or, preferably,
Generalized form- and in the same way the prior can be estimated, smoothing the initial
WNLLS parametric maps through a filter of size 3x3 centered in the pixel of interest,
with equal weights for the pixels in it. This same filter was used for all the versions of
NLRR (see the following paragraphs), as well as it was used for linear ridge regression.

Substituting to h(p) the approximation expressed by (2.19), and (∆p + p∗) to p into
(2.18), one gets

Q(∆p) = (y − h(p∗)− S∆p)′W (y − h(p∗)− S∆p)+ (2.20)

(∆p− (p0 − p∗))′H(∆p− (p0 − p∗))

This equation is linear in the unknown parameter ”increment” ∆p. Its solution is given
by

θ = (ST WS + H)−1[S′W (y − h(p∗)) + H(p0 − p∗)] (2.21)
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The previous equation is the usual expression for the point of minimum of linear function
with a linear Bayesian term as in (2.6), the only difference being the fact that, here, the
”data” are represented by the difference (y − h(p∗)) between the measured and fitted
data and that the unknown variable is the increment ∆p rather than the parameter
vector itself.

Besides testing the simple Gauss-Newton approach proposed, in which the increment
∆p is given by (2.21) and the final estimate is therefore given by p∗ + ∆p, a modified
version of the algorithm -the same proposed in [9] and originally developed in [16]- was
also employed. An additional scalar parameter ρ was computed as:

0.75Q(0)−Q(0.5θ) + 0.25Q(θ)
Q(0)− 2Q(0.5θ) + Q(θ)

(2.22)

and the final estimate pfinal was then computed, for each pixel, as p∗ + ∆p. ∆p, this
time, is computed as ρ θ: the ”direction” of the increment does not change, but the
amount varies as it is modulated by ρ.

Whatever method is used for the computation of the increment ∆p, pfinal will be a
sum of the solution of the standard WNLLS problem p∗ and of a term ∆p depending
on the prior, determined averaging the preliminary estimates obtained with WNLLS in
the neighbourhood of the pixel of interest.

2.3.2 Priors based on clusters: NLRR2

In the previous paragraph the assumption that one and only one non-linear problem
can be solved at each pixel, due to computational reasons, was implicitly made. In
NLLR1 the non linear function h(p) was minimized to determine p∗ from which the
prior was computed, and then the problem was linearized to avoid the second non
linear minimization. Why not compute the prior differently so that the only non linear
minimization assumed to be available can be used in the end, in the formulation (2.18)
in which the Bayesian term is comprised? This version of ridge regression was called
NLLR2.

To compute appropriate priors, cluster analysis can be an elegant and efficient solu-
tion. Clustering means subdiving the voxels of a given slice or region into homogeneous
groups; typically, but not necessarily, voxels are divided on the basis of their TACs.
Clustering algorithms can be partitioned between ”hard” and ”soft”: ”hard” clustering
algorithms ([18]) assign each pixel to one and only one cluster, while ”soft” algorithms
([19]) compute for each pixel a set of N positive weights which are proportional to the
probability that the pixel belong to each of the N clusters. Both strategies are feasible
for the computation of the prior.

Each cluster must include an adequate number of pixels so that each mean kinetics
Ci(t), i=1,2....N, has a high signal-to-noise ratio for WNLLS model fitting. In fact, the
step after clusterization is to fit the model appropriate for the tracer under examination
to the kinetics of every cluster means: a parameter vector pi is thus obtained for each
cluster.

If a ”hard” algorithm was used we associate then to each pixel the parameter vector
of the cluster to which the pixel was assigned to: this criterion to assign priors will be
called ”direct attribution” technique. If a ”soft” method was used a linear combination
of the parameter vectors of the clusters, with weights derived from the clusterization
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Figure 2.6: Example of how a dynamic MP4A image was segmented employing hierachi-
cal cluster analysis with 6 clusters

algorithm, can be instead reasonably employed. Being more reliable, the ”hard” hier-
archical cluster analysis ([18]) was employed to segment the image both for the direct
attribution technique and for CRM (see below in this paragraph); the same technique
was also used for the algorithm described in the following paragraph.

The last step is to smooth the resulting parametric image to compute for each pixel
an estimate pj

0 of the parameter vector that is to be used both as prior and as starting
point for the minimization of (2.18).

Figure (2.6) shows an example of how a dynamic MP4A image was segmented by
hierachical cluster analysis with 6 clusters. Notice how symmetrical the clusters are and
how well the striatum was segmented.

σ2, which is necessary for the construction of H in ridge regression, can be estimated
considering the WRSS between the TAC of the j-th pixel and the fitted kinetics Cj

computed using the prior pj
0 at the pixel. With this technique pixels with noisy TACs,

which will therefore give rise to high values of σ2, will consistently have priors with high
strength and viceversa.

Another possible way to estimate priors from clusters was proposed in [9]. From pi

one can compute the fitted kinetics C∗
i (t) of each cluster. A set of N positive weights πi

is then to be calculated, at each pixel, from

Cj(t) =
N∑

i=1

πiC
∗
i (t) (2.23)

j=1,2,........M ,where Cj(t) indicates the noisy kinetics of the j-th pixel. The problem can
be efficiently solved using the Non-Negative Linear Least Squares algorithm (NNLLS).
A preliminary prior is then computed simply as

∑N
i=1 πipi∑N
i=1 πi

and the resulting parametric image is spatially smoothed to yield for each pixel an
estimate pj

0 of the parameter vector that is used as prior and also as starting point
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for the algorithm. σ2 can be computed as above. This formulation was called in [9]
Component Representation Model (CRM).

Basically, whereas with the direct attribution technique the parameter vector of the
cluster is assigned directly to the pixels belonging to that cluster, in the CRM the
parameter vector of a generic pixel is computed as weighted sum of the parameters of
the clusters, with weight depending on the similarity between the pixel TAC and the
clusters TACs.

Both approaches for the attribution of the prior to each pixel were tested. To test
how heavily results depended on the number N of clusters employed, the algorithm was
tested with N=3,6,9 respectively.

2.3.3 Elimination of non linear minimizations: NLRR3

In [9] a different version of NonLinear Ridge Regression was developed to totally avoid
non linear minimizations (NLRR3). The prior is computed from cluster analysis as in
the previous paragraph and the usual minimization problem expressed by (2.18) has
then to be solved. The second non-linear estimation, which yields the final parameter
estimates, is avoided as the original non linear problem is linearized around the current
estimate. The significant difference with respect to the linear case, NLRR1, NLRR2
is that the ridge regression matrix H, in NLRR3, is not computed and kept fixed but
it is calculated iteratively. At each iteration H is computed from the residuals of the
linearized problem; then the parameter vector is estimated using this time the Bayesian
component as well. The process -linearization + computation of H + Bayesian solution-
is then iterated until a convergence criterion is satisfied.

At iteration (j + 1), j = 0, 1, 2, ..., the non-linear function h(p, ti), i = 1, 2, ...N is
approximated through

h(pj) + Sj∆p (2.24)

as before, where pj is the estimate of the parameter vector at the previous iteration, ∆p
is equal to (p − pj), and Sj is the sensitivity matrix evaluated at pj . At each fixed ti,
(2.24) represents the first order Taylor expansion of the scalar function h(p, ti) around
the point pj .

Substituting to h(p) this approximation and to p (∆p + pj) into (2.18) one gets

Q(∆p) = [y − h(pj)− Sj∆p]′W [y − h(pj)− Sj∆p] (2.25)

+(∆p− (p0 − pj))′H(∆p− (p0 − pj))

which is totally equivalent to (2.20). This equation is linear in the unknown parameter
”increment” ∆p, with the remaining issue that H is unknown. An estimate of the
residuals at the current iteration, which is essential for the estimation of H, can be
computed considering only the first addend Φ of (2.25), (the first line of (2.25)). Being
Φ a linear function of ∆p, the expression for point of minimum of Φ exists in closed-form
and it is given by

(Sj ′WSj)−1[Sj ′W (y − h(pj))] (2.26)

The computation of ∆p allows to estimate the WRSS as

[Sj∆p− (y − h(pj))]′W [Sj∆p− (y − h(pj))] (2.27)

which can be used to compute σ2 from WRRS/(N-m), as in (1.7).
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Being the prior p0 already known from cluster analysis and being an estimation of
the variance σ2 now available, (2.3) and (2.4) -depending on the choice to use SRRSC
or GRRSC- allow to compute the ridge regression matrix H for each pixel. The mini-
mization of (2.25) becomes now a linear problem in the parameter increment ∆p with
everything else known. Analogously to (2.21), its solution is given by

θ = (Sj ′WSj + H)−1[Sj ′W (y − h(pj)) + H(p0 − pj)] (2.28)

so that the new estimate pj+1 is set for each pixel to pj + θ.
As in NLRR1, the modified version Gauss-Newton approach proposed in [16] was

also tested. The additional parameter ρ was computed as before as:

0.75Q(0)−Q(0.5θ) + 0.25Q(θ)
Q(0)− 2Q(0.5θ) + Q(θ)

(2.29)

and the final estimate pj+1 set, for each pixel, to pj + ∆p, with ∆p given by ρ θ.
Following [9] a global relative convergence criterion was used. Iterations were con-

sidered to have converged if the total pixelwise cost function, summing over all pixels,
changed less than a pre-specified threshold ε (e.g. 1%). In other words, the algorithms
ended when ∣∣∣∣

ΣQ(∆p)− Σ(Q(0))
ΣQ(0)

∣∣∣∣ < ε (2.30)

where Q(∆p) is the same of (2.25) and the sum is performed over all pixels.
Even though the mathematical details may appear heavy, the rationale underlying

the proposed approach is simple. The prior is computed fitting the non linear model of
interest to the kinetics of a handful of clusters, exactly as in NLRR2. At the generic
iteration j, then, for each pixel, the non linear function is linearized with a first order
Taylor expansion around the current value of the parameter vector and the corresponding
linear problem is solved computing the optimum increment ∆p. The associated residuals
and the values of the parameters vectors at the current iterations allow a computation
of the ridge matrix at each pixel as in linear ridge regression. A second and definitive
estimation of ∆p is then performed including the Bayesian term. The process is then
iterated and convergence is declared when the overall variation of the cost functions is
sufficiently low.

NLRR2 and NLRR3 compute the priors from clusters in the same way -either with
direct attribution of the prior of the appropriate cluster to the pixel or via CRM- and
keep it fixed during the rest of the algorithm. However, while NLRR2 simply uses
the prior to create a non-linear function in a standard Bayesian framework, NLRR3,
through an iterative linearization of the non-linear problem at each pixel around the
current estimate, updates the ridge matrix H at every iteration from the values of
residuals and parameters vectors at the current iteration. In NLRR2, priors derived
from clusters are also used to compute σ2 and consequently H, which is then kept fixed.
Aside from performance assessment, which will be discussed in the following paragraph,
an obvious advantage of NLRR3 over NLLRR2 (and over NLLRR1) is computational
as no solution of any non linear problem is required. This brings about a significant
reduction of computational time.
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2.4 Evaluation of non-linear ridge regression

2.4.1 The tracer [11C]WAY100,635

To test Non Linear Ridge Regression algorithms, synthetic data of the tracer [11C]WAY100,635
were generated. This tracer was chosen both because it is widely used in PET and par-
ticularly because its 2T-4K model, with two reversible compartments and four rate
constants, is by far the most diffused for neuroreceptorial studies. WAY100,635 (N-(2-
(4-(2-methoxyphenyl)-1-piperazinyl) ethyl)-N-(2-pyridinyl) cyclohexane carboxamide) is
a serotonin 1A antagonist with high affinity and selectivity for serotonin 1A receptors
as described in [20].

The differential equations describing the model are:

Cf+ns(t)
dt

= K1Cpl(t)− (k2 + k3)Cf+ns(t) + k4Cs(t) (2.31)

Cs(t)
dt

= k3Cf+ns(t)− k4Cs(t) (2.32)

with initial conditions Cs(0) = Cf+ns(0)=0. In (2.31) and (2.32), Cpl is the plasma
tracer concentration corrected for metabolites, Cf the concentration of free ligand, Cns

the concentration of nonspecifically bound ligand and Cs the concentration of specifically
bound ligand. The free and non specific compartments are merged in one compartment,
called non-displaceable compartment, to make the model a-priori uniquely identifiable.
K1 [ml/ml/min] and k2 [min−1] are, respectively, the rates of transfer to the free plus non
specifically bound ligand compartment from plasma and to plasma from the free plus
non specifically bound ligand compartment, while k3 and k4 [min−1] are the constants of
transfer to and from the specifically bound compartment. The measurement equation,
assuming negligible blood volume, is:

C(t) = Cs(t) + Cf+ns(t)

In addition to K1, k2, k3, k4, it is also possible to estimate the binding potential BP

BP = f
Bmax

Kd
=

k3

k4

where f, Bmax and Kd represent, respectively, the free fraction of the tracer in the non-
displaceable compartment, the local maximum concentration of receptors and the local
dissociation rate constant of the reaction between the tracer and its specific receptors.
C(t) can be expressed as a non-linear function of the micro-parameters K1, k2, k3, k4

([13]), which, assuming Cpl known, as in our case, can then be estimated through WN-
LLS.

The generation of simulated TACs was performed using the same principles described
in (2.2.3). For completeness the procedure is described again here. A random healthy
subject was chosen in the data set presented in [22]; slice n◦23 out of the 45 of the
image was selected and used for the generation of simulated maps. WNLLS was used
to estimate model parameters for each pixel of that slice in the real PET image using
the measured plasma TAC. Both in the quantification of the original image and in the
analysis of simulated data, weights were set equal to Ci/∆i, with Ci and ∆i indicating
the concentration of the noise free TAC at frame i and the duration of the i-th frame.
The estimates at each pixel were then kept fixed and used together with the plasma
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TAC to generate error-free continuous time activity curves, which were then sampled at
the midtimes of the frames of the real scanning protocol used for the [11C]WAY100,635
dataset. Noisy TACs were then generated adding to the error-free TACs Gaussian noise
with zero mean and variance equal to

α
Ci

∆i

with Ci and ∆i as above. To choose reliable values for α - constant for each pixel but
varying from pixel to pixel- α-maps were generated during the analysis of the real image
by setting for each pixel α=WRSS/(N-m), where WRSS is the value of the weighted
cost function evaluated at its minimum, N the number of frames and m the number of
model parameters (34 and 4 respectively).

2.4.2 Results

Results, presented as usual through BIAS and RMSE, are visualized in Figure (2.7) and
(2.8) for 5 different methods: standard WNLLS (1), NLRR1 (2), NLRR2 with CRM to
compute priors (3) and NLRR3 with the two different techniques previously described
to estimate priors, direct attribution and CRM (4 and 5). For all the algorithms making
use of clustering (NLRR2 and NLRR3), results refer to the case of 6 clusters. For
both NLRR1 and NLRR3 the modified version of Hurtley ([16]) yielded performances
significantly better than standard Gauss-Newton method, and only results computed
with Hurtley’s approach are therefore reported.

The results deserve a few comments:

• Although changes in BIAS did not follow a clear pattern, reductions of RMSE with
respect to standard WNLLS were observed, with all ridge regression methods, for
3 out of 4 parameters. Reductions ranged from medium to relevant.

• On the basis of RMSE, the best results were obtained with NLRR2 and NLLRR3,
with either method for computing the prior when NLRR3 was used.

• Maps generated with NLRR2 appeared, at a visual assessment, too smooth and
resembled original images less than NLRR3 images. WNLLS maps, as expected
from RMSE indices, were the noisiest and least regular. These facts are illustrated
in Figure (2.9).

Table (2.1) and (2.2) contain RMSE and BIAS computed through NLRR3 with
direct attribution of the priors, for different values of the number of clusters employed
for the computation of the priors. Notice how results got worse with increasing values
of the number of clusters employed, which is probably due to the fact that a higher
number of clusters give rise to a poorer WNLLS fit of the cluster mean kinetics due
to the higher noise of the TACs. Results corresponding to 3 and 6 clusters, however,
were quite similar, whereas there was a relevant worsening with N=9. The use of a
low number of clusters seems therefore advisable, and, as long as this number is kept
low, no strong dependence of results on the number of clusters is expected. Employing
one cluster would make no sense -all pixels would be assigned the same priors and the
algorithms NLRR2 and NLRR3 couldn’t work; the use of two clusters only, similarly,
does not seem to allow a sufficient differentiation of priors among pixels. Therefore the
minimum advisable number is three.
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Figure 2.7: BIAS averaged over all pixels for the four kinetic parameters of the simulated
[11C]WAY100,635 data set. Results are displayed respectively for WNLLS, NLRR1,
NLRR2 with CRM, and NLRR3 with two different criteria for computing priors (direct
attribution and CRM.)
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Figure 2.8: RMSE averaged over all pixels for the four kinetic parameters of the simu-
lated [11C]WAY100,635 data set. Results are displayed respectively for WNLLS, NLRR1,
NLRR2 with CRM, and NLRR3 with two different criteria for computing priors (direct
attribution and CRM.)
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Figure 2.9: ”True” K1 parametric map (upper left), NLLS map (upper right), NLRR2-
CRM map (lower left), and NLRR3-CRM map(lower right) are displayed for one repe-
tition of the simulated [11C]WAY100,635 data set.

RMSE 3 cluster 6 cluster 9 cluster
K1 34.4 35.2 46.0
k2 39.7 42.6 47.5
k3 32.5 33.7 38.7
k4 35.0 38.5 58.9

Table 2.1: RMSE of NLRR3 with direct attribution of the priors for different values of
the number of clusters employed for the computation of the priors.

BIAS 3 cluster 6 cluster 9 cluster
K1 -19.2 -20.1 -14.5
k2 -5.4 -6.6 -11.3
k3 1.1 -1.3 -4
k4 -11.4 -13.3 -39.7

Table 2.2: BIAS of NLRR3 with direct attribution of the priors for different values of
the number of clusters employed for the computation of the priors.
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2.4.3 Comments on computational cost

The issue of computational cost was raised several times before, but it was never analyzed
quantitatively. In the linear ridge regression section it was stated that it took roughly
thirty seconds to generate maps for a single simulated slice. Even though it was doubled
with respect to RLS, in the linear case computational time remains low and does not
constitute a problem, even in application to 3D parametric imaging.

In the non-linear scenario the situation is different. With the performances of the
computer employed for the analysis it took roughly one hour to generate maps for a
simulated [11C]WAY100,635 slice. This value, clearly, depends also on other settings such
as the tolerance threshold employed to declare convergence at each non linear problem
and on the number of pixels included in the analysis. The total computational time
required by NLRR1 and NLRR2 was, in the same way, one hour, as the additional cost
for solving the linearized problems at each pixel (phase 2 of NLRR1) or for computing
priors from clusters (phase 1 of NLRR2) were negligible if compared to that of the non
linear minimizations. With NLRR3, on the other side, it took roughly fifteen minutes
to obtain results for one simulated slice, which was mainly required for the precise
computation of the sensitivity matrix at each pixel. This value refers to the case of one
iteration; the total cost is clearly proportional to the number of iterations performed by
the algorithm.

Even if computational time depends remarkably on the tracer, model and settings,
it is clear that NLRR3, avoiding the solution of non linear problems, is very appealing
from a computational point of view, especially thinking of possible application to 3D
generation of parametric maps.

2.4.4 Discussion on NLRR

Keeping into account all the comments presented in the results and computational cost
paragraphs, the conclusion is that NLRR3, with the use of a low number of clusters, is
the best solution. To compute the priors no noticeable difference was noticed between
CRM or direct attribution, but it is probably advisable the use of CRM in that it is
slightly more flexible in the attribution of priors. As to the number of iterations required,
it was noticed that, even though it may take not few iterations to reach convergence
with the threshold fixed to 1%, after one or two iterations results were very stable in
terms of BIAS and RMSE, and therefore performing a fixed low number of iterations (1
or 2) is a good solution to achieve good results and save computational time.

2.5 Parametric imaging of [18F]FDG in skeletal muscle

It may happen that the estimation problem, when the number of parameters is too high,
can not be solved at pixel level but only at ROI level due to the lower noise of ROI TACs.
In other words when pixel TACs are used, the numerical procedure employed to estimate
the parameters of interest may fail to converge to a solution due to the noise level which
is too high in relation to the complexity of the model. One possible solution is to simplify
the model reducing the number of parameters; this typically causes, however, a loss of
physiological information.

In paragraph (2.3) several versions of non linear ridge regression were presented.
NLRR1 requires a preliminary fit of pixel TACs to compute the prior and is therefore
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unsuitable in this situation, as these fits are assumed unfeasible. The third version
of non-linear ridge regression (NLRR3) can instead be used to overcome this problem.
NLRR3 was chosen over NLRR2 -which could have been used as well- because, as pointed
out in paragraph (2.3), it provides more reliable parametric maps and requires a much
lower computational time.

To exemplify this issue real data from a 90 minutes [18F]FDG scan of human skeletal
muscle were considered. A detailed discussion on the tracer [18F]FDG, on its model and
on simplified procedures for parameter estimation will be given in the following chapter.
For the purpose of this paragraph it is sufficient to know that it has been shown in
[28] that a five-constant three-compartment irreversible model (5K-model) is the most
appropriate to describe the kinetics of [18F]FDG in human skeletal muscle. In this model
K1 and k2 represent, respectively, the rate of delivery of the tracer to the extracellular
pool from the blood pool and viceversa, k3 and k4 the delivery to the intracellular
pool from the extracellular pool and viceversa, and k5 is the rate of phoshorylation of
[18F]FDG. Assuming the blood volume fraction Vb equal to 0, five coefficients remain to
be identified using standard WNLLS; at pixel level, at least with the available data set
(described in [27]), the minimization problem does not converge to a solution. Figure
(2.10) displays a random pixel TAC; notice the high level of noise which prevents the
identification. The natural simplification of the 5K model leads to the traditional 3K
model, in which the extracellular and intracellular compartments of the 5K model are
merged together. The simpler three-constant two-compartment irreversible model (3K)
is the most used for [18F]FDG studies in brain, but, when applied to human skeletal
muscle, the 3K model brings about a loss of physiological information as the extracellular
and intracellular compartments are merged together. For skeletal muscle therefore, the
use of the 5K model is preferable when its identification is possible.

A [18F]FDG scan of an healthy subject in basal state was considered (see [27] for
details on protocol) and a random slice out of the 62 transaxial slices of the PET image
was selected in the middle (slice n◦30). After manually creating a mask comprising
only pixels belonging to the image (i.e. to the legs of the subject) a hierarchical cluster
algorithm was applied to segment those pixels into 3 homogeneous clusters and the
corresponding mean TACs were computed averaging the appropriate pixel TACs.

Figure (2.11) shows how pixels were divided: note how well the algorithm worked,
with the 3 clusters roughly corresponding to the outer, central and inner part of the
leg. After that the 5K parameter model was fitted to the 3 clusters kinetics with the
measured plasmatic tracer concentration of the subject used as input for the model and
weights expressed by

∆ti
CROI

i

(2.33)

After that, NLRR3 was implemented with the direct attribution criterion to deter-
mine priors.

Figure (2.12) and figure (2.13) display the results obtained for the kinetic parameters
K1 and k4, respectively. On the left is the initial parametric image that was used as prior
and on the right the output of the NLRR3 (Generalized version). Different scales were
employed for the representation of the same map, because if the same scale had been
used one image would have been characterized by a high loss of details. As expected
the images representing the priors are smoother and characterized by a significant loss
of details with respect to NLRR images. The final parametric image of K1 obtained
with NLRR3 was of good quality and anatomical aspects such as the presence of the
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Figure 2.10: A randomly chosen pixel TAC is displayed; notice the high level of noise,
which makes the application of the 5K model prohibitive.

Figure 2.11: The segmentation of pixels into 3 clusters by means of hierarchical cluster-
ization is displayed.

bones (upper part, right leg especially) and of the vascular components (veins and
arteries, center of both legs) became visible only in the map computed with NLRR3. k4

parametric maps computed with NLRR3, on the other side, despite showing a certain
symmetry and being more detailed than the corresponding k4 priors, preserved a high
degree of noisiness and irregularity. The same considerations could have been drawn for
k3 and k5; k4 was chosen just for the sake of space.

The conclusion is that, in this context, non-linear ridge regression is a powerful tool in
that it allows to compute parametric maps that couldn’t be created with conventional
WNLLS. The quality of these parametric maps, judged by visual assessment, clearly
depends on the amount of noise in the original image and, for a given data set, on the
specific kinetic parameter considered.
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Figure 2.12: The parameter K1 is displayed. On the left is the initial parametric image
that was used as prior and on the right the output of the NLRR3. Note that different
scales were employed.
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that was used as prior and on the right the output of the NLRR3. Note that different
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2.6 Discussion

In this chapter the mathematical theory of ridge regression in both its linear and non
linear versions was introduced and its performances assessed through simulated data
sets. Linear ridge regression was employed in the form presented in [7]; for the non-linear
counterpart, besides employing the original version ([9]), two alternatives, NLLRR1
and NLRR2, making use respectively of linearization of the non linear problem and of
clusterization to compute priors were tested. In the end, however, the original form of
NLRR, NLRR3, with a low number of clusters and a fixed low number of iterations (1 or
2), emerged as the best approach, especially keeping into account its low computational
cost.

Being Generalized Ridge Regression as simple as Simplified Ridge Regression from
the point of view of the equations and of computational burden, the use of the former
is preferable as it has a higher degree of flexibility allowing weights of the prior to be
different for each kinetic parameter.

Parametric maps obtained using ridge regression were characterized by much lower
RMSE with BIAS almost unchanged; at visual assessment they appeared more regu-
lar than those obtained with the ”gold standard” employed (Weighted Least Squares
in its linear or non linear form). However, as shown in the [11C]MP4A analysis, if
original estimates are characterized by a too high BIAS and/or a too high RMSE, the
improvements brought by ridge regression may be low, because it starts from initial es-
timates which are too poor. In addition, the example of application of non-linear ridge
regression on the 5K model employed to describe [18F]FDG in human skeletric muscle
illustrated the power of this analytical tool, which allowed to compute parametric maps
that couldn’t be created with conventional WNLLS. The quality of these maps, judged
by visual assessment, clearly depends on the amount of noise in the original image and
on the specific kinetic parameter considered.

A word on the computational cost is in order. Linear ridge regression simply requires
another linear problem to be solved a each voxel, and in this case, even if doubled,
computational time remains in any case low. The version of non linear ridge regression
which emerged as optimal (NLRR3), suitably and brilliantly combining clusterization
at the beginning and iterative linearizations avoids the solution of non linear problems
and appears very appealing from the point of view of computational time.
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Chapter 3

Population approaches: theory
and validation on simulated data

3.1 A few general ideas

As already pointed out previously, pixel-by-pixel quantification may yield unreliable
parameter estimates due to the noise of PET data at pixel level. Another possible way
to address this problem is provided by the so-called ”population” approaches, which are
techniques originally developed in the pharmacokinetic/pharmacodynamic sector (see
for instance [23]). Population methodologies, as suggested in [24], can be divided into
two broad classes. If sufficient measurements are available for each individual to allow
the estimation of individual parameter estimates, such estimates may be used as building
blocks for further inference: this kind of approach is called a Two-Stage (TS) method.
If such data are not available, methods based on linearization (First Order FO, or First
Order Conditional Expectation FOCE) must be employed.

In PET, normally, dynamic data allow the estimation of kinetic parameters at pixel
level. Therefore, emphasis was put on the two-stages methods with emphasis on the
Global-Two-Stage (GTS) and, to a minor extent, on the Iterative-Two-Stage (ITS).

In the population scenario all the homogenous subjects which underwent the same
experimental protocol are studied together, with the aim of identifying, in each sub-
ject, the individual kinetic model parameters. The intersubject homogeneity is then
exploited to improve the parameter estimates for those subjects for which standard
WNLLS yielded unreliable estimates or failed to converge. The population parameter
estimation paradigm, i.e. poor individual data sets borrow strength from the others if
there is some homogeneity, can be clearly applied in a number of situations different from
the classical one just described. In the case considered here, for instance, the ”subjects”
whose estimates are to improve are pixels instead of individuals and the ”population”
can be considered as made of those pixels belonging to a same ROI or slice or, more
generally, showing some homogeneity according to a certain criterion. From now on the
expression ”individuals” or pixels will be used interchangeably, to refer to the members
of the population.

The population paradigm is not completely new in the field of PET as [25] describes
a possible application to dynamic PET data. In that work, however, interest was ad-
dressed to analysis at ROI level and no study was performed to assess the applicability
at pixel level. Besides, only ITS was studied; as already pointed out this method has
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a very high computational burden and its application for improving parametric maps
is totally unfeasible. The analysis centered on GTS and the application at pixel level,
therefore, constitute a new and original approach to PET studies.

3.2 The two-stages methods

3.2.1 TS

After obtaining an initial estimate of the parameter vector for each of the M individuals
using WNLLS according to the model under investigation and individual data separately,
the TS method requires to compute the mean population vector simply averaging the
M estimates as

ppop =
1
M

M∑

i=1

pi (3.1)

and the sample population covariance matrix as

Σpop =
1
M

M∑

i=1

(pi − ppop)(pi − ppop)′ (3.2)

No update of the estimates of the individual parameter vector is obtained and the
method is therefore useless if one aims at improving the individual parametric estimates.
No use of the individual covariance matrices is made, leading to a biased estimate of
Σpop. TS has been mentioned both for the sake of completeness and for it is the basis
of ITS and GTS.

The last equation can sometimes be found in the form

Σpop =
1

M − 1

M∑

i=1

(pi − ppop)(pi − ppop)′ (3.3)

because
1

M − 1

M∑

i=1

σ2

is an unbiased estimator for the variance of M independent identically distributed ran-
dom variables each of which with variance σ2, whereas

1
M

M∑

i=1

σ2

is slightly downward biased. In the case considered here, assuming to work with a high
number of pixels, the difference is totally negligible.

A schematic representation of the steps performed by ITS and GTS algorithms will
be given in the following two paragraphs.
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3.2.2 ITS

Iteration 0 Calculate an initial estimate of the parameter vector p0
i and of its covariance

matrix Σ0
i for each of the M individuals -typically through WNLLS estimation- using

individual data separately. The prime refers to the number of iteration. In the applica-
tion of this method to pixels of a PET image, the computation of Σ0

i through WNLLS
requires the a-posteriori estimation of σ2 according to (1.7).

Iteration k (k=1,2,...): Compute the mean population vector pk
pop averaging the M

individual estimates pk−1
i obtained at iteration (k-1) as

pk
pop =

1
M

M∑

i=1

pk−1
i (3.4)

and compute the population covariance matrix

Σk
pop =

1
M

M∑

i=1

Σk−1
i +

1
M

M∑

i=1

(pk−1
i − pk

pop)(p
k−1
i − pk

pop)
′ (3.5)

The first term of Σk
pop reflects the uncertainty of the individual estimates while the

second keeps into account the inter-subject variability. Obtain then, for each individual,
new estimates pk

i for the parameter vector, minimizing (1.11) which we report here with
an appropriate change of notation

[y − h(p)]′Σ−1[y − h(p)] + (p− pk
pop)

′(Σk
pop)

−1(p− pk
pop) (3.6)

in which the mean population vector pk
pop and the population covariance matrix Σk

pop

were used as the natural substitute to the prior µ and covariance of the prior ∆. Compute
the new covariance matrix Σk

i for each individual using (1.13), which is reported here
with a simple change of notation,

Σk
i = [(Sk

i )′Σ−1
i Sk

i + (Σk
pop)

−1]−1 (3.7)

where Sk
i and Σi are the sensitivity matrix at pixel i and iteration k and the error

covariance matrix at pixel i (independent on the iteration number).
Repeat until convergence or until a fixed number of iterations has been performed.

3.2.3 GTS

Iteration 0 As for ITS, calculate an initial estimate of the parameter vector p0
i and of

its covariance matrix Σ0
i for each of the M individuals.

Iteration k(k=1,2,...): Compute the mean population vector pk
pop and the popula-

tion covariance matrix Σk
pop according to (3.4) and (3.5) as for ITS. Obtain then new

individual estimates pk
i of the parameter vector as:

pk
i = [(Σ0

i )
−1 + (Σk

pop)
−1]−1[(Σ0

i )
−1p0

i + (Σk
pop)

−1pk
pop] (3.8)

which is equivalent to (1.12), the closed-form solution for the MAP estimator in case
the model is linear and X = In, with In denoting the identity matrix of dimension n.
Compute the new individual covariance matrix Σk

i as

[(Σ0
i )
−1 + (Σk

pop)
−1]−1 (3.9)

Repeat until convergence or until a fixed number of iterations have been performed.
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3.2.4 Comparison between ITS and GTS

The differences between ITS and GTS are evident. For GTS the measured data of each
individual are used only once at the beginning, in the process of estimation of p0

i and
Σ0

i , which are then kept fixed throughout the algorithm. In ITS, on the other side,
individual data are used at each step, since there is the need to minimize (3.6) at each
iteration to obtain pk

i . An important consequence is that, when the original model is
non linear, for ITS a non-linear minimization has to be performed to solve (3.6) at each
iteration for each individual making the algorithm computationally cumbersome. If the
model is non-linear therefore, ITS is unfeasible due to its computational cost when the
number of individuals becomes high, as it would be for the generation of parametric
maps. This problem does not hold for GTS, as (3.8) provides a closed-form formula to
estimate pk

i .
Whereas the interpretation of ITS in a Bayesian framework is straightforward -to

the usual cost function one adds a term penalizing the distance from the prior, the
population parameter mean- the closed form expression (3.8) of GTS deserves further
explanation. By simple algebraic manipulation (3.8) can be written as:

(Σ0
i )
−1(pk

i − p0
i ) = (Σk

pop)
−1[−(pk

i − pk
pop)] (3.10)

This new expression lends itself to a very elegant interpretation. At iteration k the
estimate pk

i of individual i is the one such that the weighted difference between pk
i

itself and the initial parameter estimate of that individual p0
i equals the opposite of

the weighted difference between pk
i and the population average at that iteration pk

pop.
As pk

i is somewhere in the middle between p0
i and pk

pop the two quantities (pk
i -p

0
i ) and

(pk
i -p

k
pop) have different signs and this explains the presence of the sign minus in (3.10)

to make the equality hold. The weights clearly equals, from (3.10), the inverse of the
appropriate covariance matrices: in the scalar case for instance, the smaller the variance
is, the higher its inverse is and therefore the higher the weight is.

It is interesting to notice that GTS and ITS do coincide when the model is linear.
In fact, in this case h(p) can be written as Xp and the closed-form solution of

(y −X p)′Σ−1(y −X p)

becomes
(X ′Σ−1X)−1(X ′Σ−1y) (3.11)

with covariance matrix equal to
(X ′Σ−1X)−1 (3.12)

Substituting (3.11) and (3.12) to p0
i and Σ0

i respectively into (3.8) -which is the expres-
sion necessary to obtain pk

i according to GTS- one obtains:

(X ′Σ−1
i X + (Σk

pop)
−1)−1(X ′Σ−1

i yi + (Σk
pop)

−1pk
pop) (3.13)

But (3.13) is also the closed-form solution of the MAP estimator when the model is
linear, as expressed by (1.12), and it therefore gives the minimum of (3.6), which is the
function to be minimized by ITS to compute the estimates of single individuals at each
iteration.
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3.3 Important remarks on ITS and GTS

It is interesting to discuss what happens if the WNLLS estimation made using individual
data only, which is the preliminary step for both algorithms, fails to converge for one or
more individuals in the population due to noisy data and/or to the complexity of the
model. Can these estimates be computed through a population approach? It is quite
clear from (3.8) that GTS is useless for this purpose in that it requires, at each iteration,
the preliminary estimates that are assumed not to be available for some individuals, who
are therefore to be discarded from the analysis. With ITS, on the other side, the use
of (3.6) may lead to the estimation of the parameter vector pk

i even if p0
i couldn’t be

computed for individual i as the original function couldn’t be minimized. It may also
happen, even if it is not common, that pi can’t be estimated at the k-th iteration due
to the failure of minimization of (3.6), while at (k+1)-th iteration the estimation is
obtained. The introduction of the Bayesian term may, in other words, have a positive
impact for the estimation of the parameter vector for some of the individuals for which
individual data only were not sufficient for this purpose.

3.3.1 Termination criteria

There are two issues that should be addressed carefully in the application of these
iterative approaches in that they heavily affect the final estimates. One is the criterion
employed to stop the algorithms. One can finish either when a fixed number of iterations
has been performed or when the relative difference of every element of the parameter
vector of each individual between the current and the previous iteration is lower than
a fixed threshold (e.g. 1%). These criteria can obviously be combined or modified ; for
instance one can stop when the relative difference of any parameter between the current
and the previous iteration is lower than the threshold, but only for a predefined fixed
percentage of individuals, e.g. 90%. Different criteria were tested in order to select the
best one.

The issue of convergence -whether the algorithm converges to a solution or diverges-
is slightly different from that of termination. If ”convergence” is defined in the most
natural way as the iteration at which the relative variation of the parameter of interest
with respect to the previous one is lower than a specified ”small” threshold for all pixels,
one can see how convergence and termination are issues strictly related. One could also
be tempted to use the just defined convergence criterion as termination criterion. If a
too strict criterion to declare convergence is used (e.g. a low threshold such as 0.01%) it
may happen -and it often did happen with the simulated data analyzed- that final maps
are characterized by very high bias. In other words, convergence in its narrower meaning
does not necessarily mean better results in terms of RMSE and BIAS. Therefore less
stringent criteria to terminate iterations were heuristically defined and tested.

3.3.2 Segmentation into sub-populations

The other important aspect to address is the decision concerning how to construct the
”population(s)”. In an application in which all the individuals involved can be considered
homogeneous according to a certain criterion (e.g. age, experimental protocol used, kind
of disease) it is natural to consider them as part of a unique population. If, on the other
side, homogeneity does not hold, it is more convenient to group the subjects into two or
more homogeneous sub-populations; if for instance data from healthy and ill subjects
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are available it is natural to treat the healthy subjects and the patients separately as
two distinct groups. Unfortunately, the decision is often not so straightforward.

In applications to parametric maps, a natural and elegant way to address the issue
is to group pixels on an anatomical basis, that is to consider pixels which are part of
the same ROI (cerebellum, thalamus, occipital cortex ..) as belonging to the same
sub-population. This approach requires therefore to associate to each ROI the set of
pixels which are part of that ROI, which is a time-consuming and not automatic task
-results will vary depending on the user performing the segmentation- besides requiring
noticeable technical expertise. The possibility to make to this procedure automatic
through the normalization of the given image into a stereotaxic space and the use of a
predefined atlas will be described later. Even if it may be difficult to employ if applied to
the whole 3D image -if one is not making use of the normalization and of the stereotaxic
atlas- the use of anatomical criteria may become feasible, for instance, if interest is
addressed in a few specific cerebral areas (e.g. striatum in Huntington disease), as it
sometimes happens.

A simpler approach is to consider as part of the same population pixels belonging
to the same slice (transaxial slice) of the reconstructed PET image: in this case the
homogeneity criterion is spatial vicinity. In a given slice of a reconstructed image,
however, there is commonly a great tissular heterogeneity as gray matter, white matter,
cerebro-spinal fluid, skull and blood pool are all present. A third possible approach, less
coarse than the previous one, is therefore to further subdivide pixels of the same slice
by means of clustering algorithms which can group them on the basis of their entire
TAC or on the basis of the value of one kinetic parameter. All these methods have been
considered and will be presented in detail later.

3.4 Comparison between ridge regression and Two-Stages
algorithms

After presenting the mathematical formulation of linear and non-linear ridge regression
(RR) in Chapter 2, and of Two-Stages algorithms in the previous paragraphs, it is
interesting now to compare them in order to highlight their similarities and differences.
To better appreciate the relationship between RR and TS algorithms it is convenient to
divide the basic equation (2.18), which expresses the function to minimize in RR, by σ2.
It is obvious that the point of minimum is not influenced by the division by a constant
and therefore (2.18) is totally equivalent to

[y − h(p)]′Σ−1[y − h(p)] + (p− µ)′Γ−1(p− µ) (3.14)

in which Σ−1 was employed instead of W/σ2 from (1.4) and in which the symbol Γ−1

was used for H/σ2 .

3.4.1 Analogies

• The prior is simply computed as mean of the parameters of the population (TS)
or of the pixels in the neighborhood of the pixel of interest (RR).

• If (3.14), which is the function to be minimized in RR as just shown, is compared
to (1.11), which is the function minimized by ITS at every iteration, it appears
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clear that the structure of the two expressions is the same. The first term in both
equations, besides, is identical; the only difference is that the prior covariances
(indicated on purpose with Γ−1 for RR and with ∆−1 for ITS) are different.

3.4.2 Differences

• In RR, prior and prior covariance are different for each pixel whereas they are
common for all the pixels of the population in TS approaches.

• Ridge regression methodologies (except NLRR3) compute the parameters only
once, whereas TS approaches are iterative, and the estimation of individual pa-
rameters, prior and covariances is performed several times until a convergence
criterion is satisfied.

• In both RR -always referring to the formulation (3.14)- the covariance of the prior
Γ has on its diagonal the squared differences between the individual parameter pi

and the prior pi0 (averaged over all parameters for SRRSC, see (2.4) and (2.3)). In
TS methods the covariance matrix ∆ (previously referred to as Σk

pop to indicate its
dependence on the iteration number k), contains as in RR the squared differences
between the individual parameter pi and the prior as expressed by the second
term of equation (3.5). In this case, however, these difference are averaged over
all the pixels of the population. As the first term of (3.5) shows, besides, in the
covariance matrix Σk

pop the reliability of the individual parameter estimates are
taken into account, which is not true for RR.

In conclusion, if one think of RR as a particular case of population approach in which
each pixel has its own population - the one comprised by the pixels in its neighborhood-
one can notice that the similarities between RR and TS algorithms are high. The itera-
tive nature of TS methods and the difference in the construction of the prior covariance,
which in the case of TS keeps into account also the reliability of individual estimates
besides their variability, are, however, elements of undeniable difference.

3.5 The tracer [18F]FDG

Most of the simulations of this chapter will deal with the tracer [18F]FDG (fluorodeox-
iglucose). It is therefore worth to give a brief introduction on this tracer, on its model
and on a simplified technique for estimating its kinetic parameters.

[18F]FDG is an analog of glucose, which means that, although it is related to glu-
cose, the parameters which characterize its kinetics are different from those of glucose.
Nonetheless it is by far the most used tracer to study glucose metabolism in vivo and
also one of the most used tracers in PET.

It was previously stated that a five-constant three-compartment irreversible model
(5K-model) is the most appropriate to describe the kinetics of [18F]FDG in skeletal
muscle. In the 5K-model the two reversible compartments represent [18F]FDG in the
extracellular and intracellular fluids whereas the irreversible compartment quantifies
[18F]FDG phoshorylated ([18F]FDG-6P). For [18F]FDG brain studies the simpler three-
constant two-compartment irreversible model (3K) is on the other hand used. The
different structure is due to the particular physiological conditions in the human brain
created by the presence of the blood-brain barrier. In the 3K-model the reversible
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compartment represents [18F]FDG in the tissue pool, with no distinction between in-
tracellular and extracellular pools. K1 [ml/ml/min] is the delivery from the blood to
the tissue pool, but k2 [min−1] and k3 [min−1], however, do not have in the 3K model a
clear physiological meaning as they are combination of k2,k3,k4,k5 of the 5K model. k2

[min−1], therefore, does not represent the rate of delivery from the tissue to the blood
pool, and, analogously, k3 [min−1] is not simply the rate of tracer phoshorylation. As for
[11C]MP4A, assuming for the sake of simplicity the blood volume component Vb equal
to 0, the concentration of the tracer in a given pixel or ROI at time t (time 0 being the
beginning of the scan), is given by

C(t) =
K1k2

k2 + k3

∫ t

0
Cpl(x)e−(k2+k3)(t−x)dx +

K1k3

k2 + k3

∫ t

0
Cpl(x) dx (3.15)

where Cpl denotes the measured plasmatic concentration of the tracer. A similar but
more complicated equation relates the 5 parameters of the 5K model to the measured
concentration.

An important parameter for [18F]FDG is the so-called irreversible uptake rate con-
stant Ki [ml/ml/min], which equals the amount of tracer which enters the irreversible
compartment for unity of time and unity of volume: basically the parameter quantifies
the rate at which, in stationary conditions, the tracer is irreversibly trapped In the case
of [18F]FDG this parameter is related to the intensity of the phosphorylation process, the
rate at which glucose is metabolized into cells. In fact, Ki is proportional to Metabolic
local Rate of Glucose consumption MRGlu [mg/dl/min] according to

MRGlu =
Ki Cgl

LC
(3.16)

where LC [unitless] is the Lumped Constant which summarizes the differences between
[18F]FDG and glucose kinetic parameters ([28]) and where Cgl [mg/dl] represents glucose
concentration in plasma. Ki has therefore an important biological meaning, being more
relevant that any single kinetic parameter itself. The relation between Ki and the kinetic
parameters is given by

Ki =
K1k3

k2 + k3

for the 3K model and by

Ki =
K1k3k5

k2k4 + k2k5 + k3k5

for the 5K model.

3.5.1 Patlak plot

Patlak plot is one of the most popular approaches for the quantification of irreversible
tracers. The method can be applied to irreversible models only (i.e. models which have
at least one compartment in which the tracer is irreversibly trapped) and requires to
consider the discrete quantities

xi =
∫ ti

0
Cpl(τ)dτ/Cpl(ti)

and
yi = CTarget(ti)/Cpl(ti)
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for every scan time ti greater than an appropriate t* such that, for all t greater than
t*, all the reversible compartments are in equilibrium. CTarget(ti) indicates the tracer
concentration in a ROI or pixel at frame i, while, Cpl(t), as usual, denotes the time course
of the tracer concentration in plasma. The method allows to estimate the irreversible
uptake rate constant Ki previously described.

The assumption made by Patlak method is that there exists an instant t* such that,
for t greater than t*, all the reversible compartments are in equilibrium. In other words
the ratio of the tracer concentrations of any reversible compartment to the plasmatic
compartment is assumed constant for all t greater than t*, or, equivalently, the time-
derivative of the tracer concentration of all reversible compartment is assumed to be
equal to zero for t greater than t*. This is typically verified within the duration of the
scan, although the determination of the smallest t* is not easy.

The central idea in Patlak plot is that the relation between y and x defined before,
for t bigger than t*, can be shown to be linear with slope equal to the irreversible uptake
rate constant which can therefore be estimated using linear least squares.

If t1 is such that the equilibrium hypothesis is verified, t2 greater than t1 is assumed
to be a valid value as well. It is therefore safer to use a high value for t* especially
when the scan length is high allowing to plot a sufficient number of points for x and y
even with a large t*. In fact, the use of a value lower than the minimum t* may lead
to BIAS in the estimation of Ki. The choice of t*, on the other side, must be such that
the number of mid-scan values greater than t* is not too low, as this would give rise to
unreliable estimates for Ki in the linear least squares estimation.

3.6 Performances of Two-Stages algorithms

In this section performances of ITS and GTS on a simulated data set will be compared
analyzing the influence of factors such as

• noise level of data

• intrinsic variability of the population

• number of subjects forming the population

• amount of data available for each subject

on the overall performances of the algorithms.
The simulations described here are addressed to the study of general aspects of pop-

ulation techniques; an analysis more focused on realistic PET data will be the presented
later on in this chapter.

3.6.1 Generation of the basic simulated data set

A real data set comprised of 8 healthy subjects which underwent a 90-minutes [18F]FDG
scan of their legs was used to construct the simulated data set ([27]). The 3K model was
used because, as explained later in this paragraph, the estimation of kinetic parameters
was performed both at ROI and at pixel level, and the identification of the 5K model
is not feasible at pixel level, as previously illustrated. The blood volume component Vb

was set equal to 0. ROIs were placed over the anterior tibialis and soleus muscles of
the subjects using the corresponding MRI scans and in this way the corresponding ROI
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TACs were extracted from the image; the soleus muscle only, however, was used in the
analysis. Further details on the experimental protocol and procedure used to acquire
the images can be found in [27].

The 3 kinetic parameters K1, k2 and k3 were estimated for each subject using the
gold standard WNLLS with the measured plasmatic concentration time course. A multi-
variate Gaussian distribution was then assumed for the parameter vector K=[K1,k2,k3],
with mean µ set equal to the mean of the 8 estimated parameter vectors Ki, i=1,2,..8,
and covariance Σ simply computed as 1

8 Σ(Ki − µ)(Ki − µ)′.
A simulated data set made of 1000 subjects was then created using the measured

plasmatic concentration time course of one of the eight subject and random samples
drawn from the previous multivariate Gaussian distribution for the parameter vector
K. 5 repetitions were performed obtaining in this way 5000 simulated TACs; in other
words 5 populations of 1000 subjects each were created. These continuous TACs were
then sampled to yield discrete TACs according to the time grid employed for the real
[18F]FDG data set: 8 frames of 0.5 minutes each, 9 of 1 minute, 8 of 4 minutes and 9 of
5 minutes for a total of 90 minutes and 34 frames.

To simulate noise levels resembling the ones which are seen at ROI and pixel level
respectively, (1.7) was used to estimate the proportionality coefficient σ2. More precisely,
for the ROI level, σ2

ROI was obtained averaging the 8 values σ2
i computed for each subject

after the WNLLS estimation of the soleus TACs. For the pixel level noise of a single slice
of the PET scan of a subject randomly chosen was used: WNLLS and the the measured
plasmatic concentration function were employed to estimate parameters, thus obtaining
an estimate of σ2 at each pixel, whose average was set equal to σ2

pixel. This simulated
data set, with pixel level noise, will be referred to as basic or high noise data set.

Performance were assessed employing the usual RMSE and BIAS criteria, consider-
ing the single kinetic parameter K1, k2, k3 or, alternatively, the macro-parameter Ki,
which is of particular importance for [18F]FDG. Results were averaged over the 5 popu-
lations. Results of the different simulations were not presented each time all the kinetic
parameters, but one among K1, k2, k3 and Ki was chosen according to which one best
illustrated the aspect under examination.

A reasonable observation is that little can be inferred from these simulations regard-
ing applications to real PET data at pixel level. Which is, for instance, the correlation
between the parameter variability of the pixels of a given slice or region on one hand and
the inter-subject parameter variability used for this simulated data set, on the other?
The obvious answer is that there is no correlation and that these simulations were de-
signed in this way only in order to illustrate some general aspects of the TS methods.
Application to PET data simulated at pixel level will be presented later in this chapter.

Variation of the basic simulated data set

As stated above, several settings were changed with respect to the basic case in order
to study the behavior of the algorithms in different conditions.

Intrinsic variability of the population
To change the level of homogeneity of the population two new sets of kinetic parameters
were generated, both with Gaussian distribution with the same mean value as above,
but with a covariance matrix respectively equal to 0.25Σ (more homogeneous popula-
tion) and to 4Σ (more inhomogeneous population), where Σ is the covariance matrix
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of the basic data set. These values were chosen in order to reduce and to increase the
standard deviations by a factor 2 each time. After that, TACs were generated in the
way described above. In this analysis, as well as in the following ones, GTS only was
considered as ITS provided similar results in the first set of simulations, but its compu-
tational burden was much higher.

Number of subjects forming the population
As to the dependance on the number of subjects forming the population, the basic data
set was used again, but this time the 1000 simulated subjects, instead of being used
together, were divided into 10 groups of 100, 20 groups of 50, and 100 groups of 10
subjects respectively. GTS was then applied each time using these new sub-populations
separately, and final results were computed by averaging the results of each subpopula-
tion.

Amount of data available for each subject
In the end, to test what happens with a reduced scan time, two new sets of WNLLS
estimates were computed, using only the first 28 and 25 frames out of the 34, which cor-
respond to a scan time of 60 and 45 minutes respectively. GTS was then applied to these
new estimates and to their corresponding variances to study what happens when poorer
initial WNLLS estimates are available. The aim was to assess the potential applicability
of population approaches to reduce the scan time in real applications.

3.6.2 Results: different noise levels

The first outcome of the analysis was, as expected, that for noise level typical of ROIs
the estimates provided by GTS and ITS coincide with those computed with WNLLS.
In other words, when signal-to-noise ratio is high, the estimates provided by WNLLS
alone are already of good quality and the application of TS methods is simply useless
in that it does not determine any appreciable difference.

Noticeable improvements, on the other side, were observed when noise level typical
of pixels was considered. Figure (3.1) and (3.2) show, respectively, RMSE and BIAS for
WNLLS, ITS and GTS. The relative reduction of RMSE, for instance, was roughly of
25%; ITS and GTS, besides, yielded almost identical performances.

Due to the results of this preliminary analysis, which is totally coherent with what
was expected, ”pixel” TACs only will be considered in the rest of the paragraph.

ITS and GTS computational cost

Therefore, having provided performances similar to GTS, ITS was not be considered
any more in the rest of the thesis as its computational cost makes it totally unsuitable
when interest is addressed in generating parametric maps.

3.6.3 Results: population homogeneity

Figure (3.3) displays RMSE for the parameter K1 for the low and high level of population
variability. Horizontal lines refer to WNLLS results, whereas curved lines display the
performances of GTS as a function of the iteration number. It can be seen that, for
the low level of population variability, WNLLS gave a value of 53% whereas the error
of GTS, at its minimum, reached 37% with a relative decrease of 32%. For the high
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Figure 3.1: RMSE for Ki [ml/ml/min], computed first with WNLLS and subsequently
with GTS and ITS, is displayed for the pixel level noise simulation.
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Figure 3.2: BIAS for Ki [ml/ml/min], computed first with WNLLS and subsequently
with GTS and ITS, is displayed for the pixel level noise simulation.
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population variability the relative decrease was only of 19%, from 59% of WNLLS to
48% of GTS. The results, as expected, illustrate the obvious idea that a lower population
homogeneity is associated to lower improvements of TS with respect to WNLLS because
of the higher intrinsic population variability. This simple results suggests that attention
should be given to population homogeneity when applying GTS, as lower parameter
variability is typically associated to higher potential improvements.

0 2 4 6 8 10 12 14 16 18 20
35

40

45

50

55

60

GTS low

GTS high

NLLS low

NLLS high

ITERATIONS

R
M

S
E

K
1

Figure 3.3: RMSE for K1 [ml/ml/min], , computed first with WNLLS and subsequently
with GTS, is displayed for the high and low levels of population variability.

3.6.4 Results: number of subjects forming the population

Figure (3.4) and (3.5) display respectively RMSE and BIAS for Ki, for different pop-
ulation sizes, computed with GTS. The main outcome was that performances of the
algorithm were monotonously dependent on the number of subjects forming the popu-
lation: the higher the number, the better the results.

3.6.5 Results: amount of data available for each subject

The effect of reducing the scan length on GTS is illustrated in figure (3.6). The per-
centage reduction of RMSE between WNLLS and GTS, expressed by

100(
RMSEWNLLS −RMSEGTS

RMSEWNLLS
) (3.17)

is displayed for K1, k2 and k3 for the 3 different scan lengths (90,60 and 45 minutes)
employed to compute WNLLS estimates. GTS RMSE clearly depends on the iteration
number; here its minimum value was taken. The selection of the best stop criterion will
be the object of the following paragraphs. The bottom line is that, except for k3 RMSE
reduction which remained substantially unchanged, the shorter the scan time was, the
higher the improvement was.
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Figure 3.4: RMSE of Ki [ml/ml/min], computed with GTS, is displayed for different
population sizes.
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Figure 3.5: BIAS of Ki [ml/ml/min], computed with GTS, is displayed for different
population sizes.
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Figure 3.6: The percentage reduction of RMSE between GTS and WNLLS, as expressed
by (3.17), is displayed for K1, k2 and k3 for the 3 different scan lengths (90, 60 and 45
minutes) employed to compute WNLLS estimates.

3.6.6 Brief summary of the main outcomes

The main results of the previous simulations can be summarized as follows. No dif-
ference between traditional WNLLS and the population approaches was noticed when
considering data with a noise level typical of ROIs. In that case the estimates provided
by WNLLS alone are already of good quality. Appreciable improvements took place
instead when noisier data were considered, with a large decrease of RMSE and BIAS.

The use of more homogeneous and inhomogeneous populations, as expected, pro-
vided improvements respectively of higher and lower extent with respect to the case of
”medium” homogeneity.

Interesting was the fact that performances were monotonously dependent on the
number of individuals in the populations: the higher the number, the better the results.
It is clear that, in a real application not only to PET data but also in a more general
pharmacokinetic scenario, increasing the number of subjects lead to a more inhomo-
geneous population, and therefore a trade-off between these two different requirements
should be searched.

Last, the application of GTS to WNLLS estimates obtained from a reduced scan
time yielded even larger improvements, according to the general principle that, within
certain limits, the worst the initial estimates are, the higher the improvement of GTS
is. The reason is that parameter estimates which are unreliable, completely or partly,
are to a certain extent ”corrected” by the application of the algorithm.

3.7 Pixel level simulations: linear case

The simulations of the previous paragraph were performed in order to illustrate some
general aspects of the two-stages-methods. Little, however, can be inferred from them
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regarding applications to real PET data, except for the fact that population approaches
can be helpful only at pixel level.

3 important questions, however, remain unanswered. Is the parameter variability in-
herent in the pixels of a given slice or region low enough to allow to employ population
approaches successfully? Which is the optimal tradeoff between the need for homogene-
ity on one side and the need to employ ”big” populations on the other? Which is the
best criterion to stop the iterative algorithms? In the last paragraph, little attention was
paid to these aspects, and especially to the last one, as results were presented as a func-
tion of the iteration number. In real application, clearly, one and only one final estimate
is required and the need for a stop criterion which is optimal from the BIAS/RMSE
point of view and relatively independent on the dataset/tracer used is crucial.

3.7.1 Simulated data set

One subject of the [18F]FDG data set presented in the previous paragraph and described
in [27] was employed to generate the simulated pixel TACs. As the subject considered
was studied under fasting conditions, this first data set will be referred to as ”basal state”
data set. The procedure employed to generate realistic TACs was already described but
will be nonetheless recalled here. A random slice in the middle of the field of view (slice
n◦30 out of the 62) was selected and the measured plasmatic function of the subject was
employed to compute K1, k2 and k3 at each pixel using the standard weights Deltai Ci

and WNLLS for the estimation. The 3 rate constants just computed and the plasmatic
function were then employed at each pixel to generate noise-free TACs using the time
protocol of the real scan. Gaussian noise with zero mean and variance equal to α Ci/ ∆i

was then added. To generate TACs with a noise level similar to that of real data α-maps
were generated during the quantification of the original [18F]FDG image, by computing
for each pixel α=WRSS/(N-m) as in (1.7), where WRSS, as usual, is the value of the
weighted cost function evaluated at its minimum, N the number of frames and m the
number of model parameters (34 and 3 respectively in this case). These maps were then
used in the process of noise generation.

In an identical way the same slice of another subject who underwent a [18F]FDG scan
during a euglycemic insulin infusion at 30 mU/min per m2 of Body Surface Area was
employed to create a simulated ”insulin” dataset. 100 repetitions of both slices (basal
and insulin) obtained adding different random samples with the statistic distribution
just described were generated

Patlak plot was used both as the method to which compare results to and for the
generation of the initial parameter and variance estimates from which GTS starts. Being
Patlak model linear in the parameters of interest, in this context GTS coincides with
ITS, as previously explained. The irreversible uptake rate constant was used in the
simulation as the parameter for performance assessment. The last 12 frames were used
for the application of Patlak plot: this corresponds to a t* of 33 min for the stationary
state.

3.7.2 Segmentation

As pointed out previously, there are two settings in the application of population ap-
proaches that are user-dependent and which may strongly affect final results: the criteria
used respectively to group pixels into sub-populations and to declare convergence.
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As to the strategy employed for the segmentation, several possibilities were tested.
First GTS was applied to all the pixels of the image: this approach will be referred to
as GTSraw. Then segmentation based on hierarchical cluster analysis using pixel TACs
was performed, with the employment of 2 and 3 clusters (the use of one clusters would
correspond to the use of GTSraw).

In the end, pixels were segmented into 2 and 3 clusters using, this time, the prelim-
inary estimates of Ki obtained through the application of Patlak approach -that would
be in any case the starting point for the application of GTS. In other words after ap-
plying Patlak method to get an estimate of Ki at each pixel, these values were used
to segment the images into 2 or 3 sub-populations. This method was called GTSpop,
where ”pop” stands for the populations into which pixels were segmented. The idea is
that if one is interested in a specific kinetic parameter α and the need arises to segment
pixels according to their homogeneity with respect to α, clusterization based on dynamic
data may not be totally appropriate because, if two pixels have ”similar” TACs, they do
not necessarily have similar values of α. In this ”static” segmentation scenario besides,
hierarchical cluster analysis was tried but then discarded. First the method is very time-
consuming and secondly, due to the unavoidable presence of outliers in the parametric
image used for the segmentation, it often happened that one or more clusters were com-
prised of just few pixels with unreasonably high or low initial estimates whereas all the
remaining were clustered together. A simple division of the physiological range of the
kinetic parameter of interest, computed according to Patlak preliminary estimates, into
a number of intervals equal to the desired number of clusters, was instead used. This
simple procedure allowed to segment pixels into clusters homogeneous with respect to
the parameter of interest in a very efficient fashion.

5 different segmentations (none, 2 based on dynamic data, 2 based on the subdivision
of preliminary estimates) were therefore performed for each repetition and GTS was then
employed with each sub-population treated separately in the realization of the algorithm.
A low number of clusters was employed because the number of the considered pixels in
the images was low (400-500). A higher number is probably more appropriate when
performing analysis on brain images.

3.7.3 Termination criteria

For all the techniques employed results were first computed as a function of the iteration
cycle.

Three different stop criteria were then tested (variation less than 1% for Ki for at
least 90%, 95% and 99% of individuals of each sub-population). These versions of the
algorithms with the use of a stop criterion will be called GTSraw* and GTSpop*, respec-
tively. As there is no single ”optimal” number of iterations, because it clearly depends
on factors such as the amount of noise and on the compartmental model analyzed, it
is not reasonable to employ a fixed number of iterations for all tracers. The search for
a stable criterion to terminate the algorithm, which is fairly tracer and noise indepen-
dent, is therefore important. The simulations performed with other tracers (see next
paragraph) are interesting in this sense in that they allowed to test whether a criterion
that seems appropriate -maybe optimal- in one situation remains robust with different
compartmental model, amount of noise, parameters considered and estimation technique
employed.
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Figure 3.7: The segmentation of one simulated slice of the insulin data set into 3 clusters
is displayed. Above is the segmentation based on the irreversible uptake rate constant,
below hierarchical clusterization based on pixel TACs.

3.7.4 Results

A first comparison between results obtained using clusters based on pixel TACs and
those based on the preliminary Patlak estimates showed that, even if differences were
sometimes negligible, the ”static” segmentation based on the irreversible uptake rate
rate yielded slightly better performances. In the rest of the paragraph, therefore, results
(RMSE and BIAS) obtained with the TAC-based segmentation will be omitted for the
sake of space. In addition, no noticeable difference was noticed between results obtained
with 2 and 3 populations, and only those corresponding to n=3 will be presented. Some
differences, on the other side, were found between GTSpop and GTSraw, and therefore
results corresponding to both methods will be discussed.

Figure (3.7) shows the output of the segmentation of one simulated slice for the
insulin data set. In the upper part the segmentation based on the irreversible uptake
rate constant is presented, in the lower part of the figure the division based on the
application of hierarchical clusterization to pixel TACs is presented. Note the quality
of the clusterization, with the image segmented in three zones corresponding roughly to
the outer, central and inner part of the legs; note also the similarity between the two
different techniques of segmentation, which, on the other side, provided different results
for the basal data set.

The stop criterion which was selected as the best one was the 90% one -variation
less than 1% for at least 90% of the pixels of the population under examination; results
presented here refer to this criterion. But, as illustrated below, where evaluation indices
are plotted as a function of the iteration number, results stabilized quickly after a few
iterations (2-3) and the differences between RMSE and BIAS obtained after 3 and after
20 iterations were never larger than 3%-4%. This is a positive fact in that it shows how
GTS, at least with these simulated data sets, is robust with respect to the number of
iterations performed, and, consequently, to the criterion used to stop the algorithms.
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Figures (3.8) and (3.9) show BIAS and RMSE for the basal state simulation. The
dotted line refers to plain Paltak method, dashed lines correspond to GTS-based meth-
ods when a convergence criterion was used, and the solid lines represent performances of
GTSpop and GTSraw as a function of the iterations. Figures (3.10) and (3.11) represent
the same parameters for the insulin data set, with the same symbology.
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Figure 3.8: BIAS for the simulation in the basal state is displayed. The dotted line refers
to Paltak method, dashed lines correspond to GTS-based methods when a convergence
criterion was used, and the solid lines represent performances of GTSpop and GTSraw
as a function of the iterations.

GTS-based approaches differed from Patlak method in terms of BIAS only slightly;
in the basal state data set GTSpop yielded performances better than GTSraw, which
gave rise to a slight increase of BIAS. Noticeable improvements were noticed instead
in terms of RMSE. Considering for instance GTSpop*, decreases from 49.1% to 39.7%
(relative reduction of roughly 20%) in the basal data set and from 28.3% to 19.2%
(relative reduction of roughly 30%) in the insulin data set were noticed. GTSpop always
outperformed GTSraw, even though differences were typically slight.

Differences between GTSpop* and GTSraw* on one side and their iterative counter-
parts on the other were low, never higher than 3%.

A few iterations (3 to 6) were necessary to achieve convergence, with higher values
for GTSraw because a more heterogeneous population clearly requires more iterations
to stabilize.

3.7.5 Comparison with linear ridge regression

Figure (3.12) displays the irreversible rate constant for one simulated slice of the basal
data set. The map obtained with Patlak method is on the upper left part, GTSpop
map on the upper right, and linear ridge regression map -which was computed for
completeness to allow a visual comparison- is located in the lower section. Notice the
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Figure 3.9: RMSE for the simulation in the basal state is displayed. The dotted line refers
to Paltak method, dashed lines correspond to GTS-based methods when a convergence
criterion was used, and the solid lines represent performances of GTSpop and GTSraw
as a function of the iterations.
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Figure 3.10: BIAS for the insulin data set is displayed. The dotted line refers to Patlak
method, the dashed line corresponds to GTS-based methods when a convergence crite-
rion was used (GTSpop* gave a result equal to GTSraw*), and the solid lines represent
performances of GTSpop and GTSraw as a function of the iterations.

64



0 2 4 6 8 10 12 14 16 18 20
16

18

20

22

24

26

28

30

ITERATIONS

R
M

S
E

Patlak

GTSpop*

GTSpop

GTSraw*

GTSraw

Figure 3.11: RMSE for the insulin data set is displayed. The dotted line refers to Paltak
method, dashed lines correspond to GTS-based methods when a convergence criterion was
used, and the solid lines represent performances of GTSpop and GTSraw as a function
of the iterations.

improvement in terms of regularity brought by both GTS and ridge regression. Graphic
differences for the simulated insulin data set were of lower amount, as original Patlak
images were already of high quality.

Table (3.1) compares results obtained using GTS and linear ridge regression, in its
generalized version. From it emerges a slight superiority of GTS in terms of both BIAS
and RMSE. Both methods, however, left mean BIAS basically unchanged while reducing
average RMSE.

GTSpop*(basal) GRRSC(basal) GTSpop*(insulin) GRRSC(insulin)
RMSE 39.7 43.9 19.2 24.5
BIAS 3.7 9.3 5.2 4.7

Table 3.1: Comparison of performances of GTS and linear ridge regression on the
simulated [18F ]FDG data sets

3.8 Pixel level simulations: nonlinear case

In order to test performances of GTS when applied to different tracers and models,
another simulated data set was analyzed. In particular, as in the previous paragraph a
linear method was considered, the standard 2T-4K reversible model which is commonly
used in receptorial studies was considered to study GTS in a non linear scenario and
WNLLS was used as the method of comparison. The same simulated [11C]WAY100,635
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Figure 3.12: The irreversible rate constant for one simulated slice of the basal data
set, obtained respectively with Patlak method (left), GTSpop (right) and linear ridge
regression (down), is displayed.
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data set employed for the evaluation of non linear ridge regression (see Chapter 2) was
used also here; this allowed also a comparison between the performances of GTS and of
non linear ridge regression algorithms. Besides considering GTSraw (all pixels together
in the algorithm) GTSpop was used with the number of sub-populations n set first to
3 and then to 6 and 9 in order to test the dependence of results on the number of
sub-populations used. For [11C]WAY100,635, segmentation was performed separately
for each kinetic parameter and was based on the preliminary estimates provided by
WNLLS; no TAC-based clusterization was made in this case.

3.8.1 Results

A good independence of results on the iteration number was noticed. The robustness
of GTS with respect to the number of iterations performed, and, consequently, with
respect to the stop criterion, which was also found for the synthetic [18F]FDG data, was
therefore confirmed. Results presented here refer only to the case when a stop criterion
was used. As for the [18F]FDG data sets iterations were stopped when the relative
variation of the parameter of interest was less than 1% for at least 90% of the pixels of
the population under examination.

In addition, as displayed in tables (3.2) and (3.3), no remarkable difference was
noticed between results obtained with the use of 3,6 and 9 populations. Results corre-
sponding to n=3, however, were the best both from in terms of the RMSE and BIAS
and when referring to GTSpop, from now on, the case n=3 will be implicitly considered.
Noticeable differences, on the other side, were found between GTSpop and GTSraw,
and therefore results corresponding to both methods will be discussed.

K1 k2 k3 k4

n=3 61.0 65.4 31.3 16.7
n=6 66.3 71.8 34.5 16.9
n=9 68.1 72.3 36.2 16.8

Table 3.2: Comparison of performances of GTSpop for different number of sub-
populations (n=3,6,9) on the simulated [11C]WAY100,635 data set: average RMSE is
displayed.

K1 k2 k3 k4

n=3 15.0 9.8 -6.6 1.2
n=6 18.7 16.9 -2.7 1.7
n=9 19.8 17.6 -1.3 1.9

Table 3.3: Comparison of performances of GTSpop for different number of sub-
populations (n=3,6,9) on the simulated [11C]WAY100,635 data set: average BIAS is
displayed.

Figures (3.13) and (3.14) show BIAS and RMSE for the four kinetic parameters
K1, k2, k3 and k4. Black bars refer to standard WNLLS, gray to GTSraw and white to
GTSpop, with a subdivision of the pixel population into 3 clusters. It emerged that:
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• Whereas GTSpop gave always satisfactory results in terms of BIAS, GTSraw
yielded poor performances for k2 and k3. The reason is that, when grouping non
homogeneous pixels as the ones of a whole slice, the final estimates of those pixels
whose initial estimates are characterized by a large variance may deviate towards
the estimates of those pixels with an initial low variance, potentially giving rise to
a bias that may be more or less significant according to the homogeneity of the
initial image.

• Differently from what found for the [18F ]FDG data sets, GTSraw outperformed
GTSpop in terms of RMSE: for K1 and k2 RMSE reduction when GTSraw was
employed was relevant.

• No difference between GTS-based algorithms and WNLLS was noticed for k4,
which was the best estimated parameter. This confirms what found for the analysis
at ROI level: population approaches change little or nothing if original estimates
are of good quality, i.e. have an associated small variance.
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Figure 3.13: BIAS for [11C]WAY100,635 data is displayed. Black bars refer to standard
WNLLS, gray to GTSraw and white to GTSpop, with a subdivision of the population
into 3 clusters.

3.8.2 Comparison with non linear ridge regression

Although GTS always yielded improvements in terms of RMSE, the results presented
in the previous paragraphs can not be considered totally satisfactory. GTSraw provided
the largest reduction of RMSE, but, with approach, 2 of the 4 parameters were, on
average, heavily underestimated. GTSpop, on the other side, didn’t increase BIAS but
reduction of RMSE were low for K1 and k2.

If for the [18F]FDG data set, as previously illustrated, GTS emerged as slightly
superior to ridge regression, for [11C]WAY100,635 data the situation is inverted. This
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Figure 3.14: RMSE for [11C]WAY100,635 data is displayed. Black bars refer to standard
WNLLS, gray to GTSraw and white to GTSpop with a subdivision of the population into
3 clusters.

can be seen from tables (3.4) and (3.5) which summarize results already presented,
displaying the usual RMSE and BIAS for both GTS-based approaches and for NLRR3
with CRM to compute priors, which was selected as the best approach in the non linear
ridge regression section. Differences are particularly clear for K1 and k2 RMSE.

Figure (3.15) displays, using the same color scale for the different figures, the ’true’
k3 parametric map (upper left), and those obtained for one synthetic slice using GTSraw
(upper right), GTSpop (lower left) and NLLRR3 (lower right); k3 was chosen because
it illustrates particularly well the differences of final parametric maps. It emerges that
non linear ridge regression provided the most appealing map. GTSraw map is too
smooth and high k3 estimates are shrunk towards the global mean, thus causing a loss
of physiological information and the BIAS previously described. GTSpop map resemble
the ”true” one more than GTSraw, but it has the drawback that pixels seem to be
categorized into 3 groups, corresponding to the 3 sub-populations into which they were
segmented. In other words each pixel estimate seems to be determined exclusively by the
mean of the corresponding group, with a consequent loss of possibly important details.

K1 k2 k3 k4

GTSraw 48.3 44.2 30.2 16.7
GTSpop 61.0 65.4 31.3 16.7
NLRR3 34.4 37.1 32.5 35.1

Table 3.4: Comparison of performances of GTS (raw and pop) and non linear ridge
regression (version 3 with CRM to compute priors) on the simulated [11C]WAY100,635
data set: average RMSE is displayed.
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K1 k2 k3 k4

GTSraw 4.1 -32.0 -21.5 -1.6
GTSpop 15.0 9.8 -6.6 1.2
NLRR3 -19.2 -12.3 1.1 -11.4

Table 3.5: Comparison of performances of GTS (raw and pop) and non linear ridge
regression (version 3 with CRM to compute priors) on the simulated [11C]WAY100,635
data set: average BIAS is displayed.

3.9 Recovery of information in unreliable scans

It has been shown that population approaches and, more generally, Bayesian methods are
not useful when working at ROI level because in this scenario the quality and accuracy
of parametric estimates is typically of good level due to the low noise of ROI TACs.
In this paragraph, however, an interesting application of ridge regression and GTS at
region-of-interest level is presented.

It may happen for a variety of reasons that a PET scan must be interrupted before
the end, for instance because the patient suddenly starts to suffer from claustrophobia
or needs to be helped due to an unexpected event (cough, tremor...). This is clearly
more likely to happen for longer scans and therefore for tracers labelled with 18F, and to
a minor extent, for tracers labelled with 11C . This problem does not arise for instance
for [15O]H2O, whose scans last typically 5-8 minutes because of the very short half-life
of 15O. It may also happen, more generally, that the last part of the scan is totally
unreliable; imagine for instance that the patient has moved too much so that no re-
alignment algorithm is able to correct for this sudden and unexpected movement. These
conditions are not infrequent especially considering that many scans are performed on
elderly subjects and that many of them are selected in that they show some neurologic
pathology, which makes their motion and behavior less controllable.

Are these scans to be totally discarded from the quantitative analysis? Or is it
possible to recover, at least partially, some of the information making use of the fact
that these ”problematic” patients show a certain degree of homogeneity with other
patients for whom there is a complete and reliable scan available?

To investigate this problem a simulated data set was generated. [18F]FDG was
selected and the real [18F]FDG data set previously described was considered, with
8 healthy subjects who underwent a 90-minutes scan of their legs used to construct
the simulated data set. It was stated several times before that a five-constant three-
compartment irreversible model (5K) provides the most appropriate description of the
kinetics of [18F]FDG in the skeletal muscle and this model was therefore employed here.
A ROI was placed over the soleus muscles of each subject using his/her MRI scan and
in this way the corresponding time activity curve was extracted from the image.

It was clearly necessary to simulate a distribution for the parameter vectors which
resembled as much as possible the real situation, otherwise results would not have been
realistic, causing underestimation or overestimation of the potential benefits of Bayesian
approaches. To achieve this goal the 5 kinetic parameters -Vb was set to 0- were esti-
mated in the usual way using the measured plasmatic tracer concentration and standard
WNLLS. Mean µ and sample covariance Ω of the parameter vector K were then com-

70



 

 

0

0.1

0.2

0.3

0.4

0.5

 

 

0

0.1

0.2

0.3

0.4

0.5

 

 

0

0.1

0.2

0.3

0.4

0.5

 

 

0

0.1

0.2

0.3

0.4

0.5

Figure 3.15: The ”true” k3 parametric map (upper left), and those obtained for one
simulated slice using GTSraw (upper right), GTSpop (lower left) and NLLRR3 (lower
right)are displayed, using the same color scale for all the figures.
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puted, with Ω set to 1
8Σ(Ki − µ)(Ki − µ)T and Ki equal to the parameter vector of

the i-th subject. A multivariate Gaussian distribution with mean µ and covariance Ω
was then employed to generate 1000 simulated parameter vectors (or, alternatively, 1000
simulated subjects). A randomly selected real plasmatic curve was used to create the
corresponding 1000 noise free TACs using the parameters just generated and the same
time protocol of the real scan. Noise was added as previously explained by summing for
each subject and frame Gaussian noise with zero mean and variance equal to

σ2 Ci

∆i

with Ci and ∆i indicating respectively the concentration of the noise free TAC at frame
i and the duration of the i-th frame. The proportionality constant σ2 was set equal to
the mean of σ2

i among the subjects, with σ2
i computed from the WNLLS fit of the soleus

TAC as in (1.7).
To simulate the scenario of reduced scan times, 4 sets of kinetic parameters were

estimated for each subject assuming as available the full scan (90 minutes, set 1), 60
minutes (set 2), 41 minutes (set 3) and 33 minutes (set 4). As in real situations the
number of subjects undergoing the same study (same scanner, scan protocol, tracer) is
not high, the 1000 simulated subjects were divided into groups made of N individuals.
N was initially set to 10 and later on, for GTS only, to 4,6,8,20 to test the dependence
of results on this parameter.

For each of the 3 reduced scan length, each of the populations of N individuals was
considered as made of 1 subject with a reduced scan length and the remaining (N-1)
with the full scan length; this was repeated for all subjects. These populations were used
in the construction of the prior for both ridge regression and GTS as explained later.
Results were evaluated as usual in terms of BIAS and RMSE: those obtained applying to
every population ridge regression and GTS were compared to the ones derived using for
each subject only data from the reduced scan, with no use of the information available
from the other subjects.

3.9.1 Adaptation of GTS to the problem

GTS was modified to keep into account the specificity of the problem. It wouldn’t
make sense to employ the algorithm in its original form as it was previously presented,
because in that case all parameter estimates would be modified, even the ones belonging
to subjects for whom the complete scan is available. The goal is, on the other hand, to
modify and potentially improve the estimates of the subject(s) for whom only the first
part of the scan is reliable. The 2 basic GTS equations [3.8] and [3.9] for the computation
of the parameter vector pk

i and corresponding covariance matrix Σk
i of individual i at

iteration k, which are presented here

[(Σ0
i )
−1 + (Σk

pop)
−1]−1[(Σ0

i )
−1p0

i + (Σk
pop)

−1pk
pop]

[(Σ0
i )
−1 + (Σk

pop)
−1]−1

were still used. This time, however, only the parameter vector and covariance matrix
corresponding to the subject with the reduced scan were modified, whilst the other (N-1)
were kept unchanged. In this way the only variations in the mean parameter vector pk

pop

and covariance matrix Σk
pop were clearly due only to modifications of the parameters
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associated to the subject with the reduced scan. As to the stop criterion, iterations
were ended when the relative difference, between the current iteration and the previous
one of all kinetic parameters was lower than 1% for the subject under examination, as
validated previously.

3.9.2 Adaptation of ridge regression to the problem

As stated in the previous subsection, the goal in this scenario is to modify only the
estimates of the subject(s) for whom the first part of the scan is available and it is
therefore obvious to apply ridge regression only to them, consistently with what said for
GTS. The standard equation for GRRSC (2.4), recalled here,

hi =
σ2

(pi − pi0)2
i = 1, 2, .....M

was employed here as well to compute H so that final estimates were estimated mini-
mizing (2.18)

[y − h(p)]′W [y − h(p)] + (p− p0)′H(p− p0)

The only difference was that, instead of considering the voxels belonging to the 3x3
window centered in the voxel of interest to compute both the prior and the weights
in the ridge matrix, in this context the real subjects’ estimates were employed for both
purposes. In other words the 3x3 group of pixels employed in classic ridge regression was
substituted, here, by the N-individual population. The prior p0 and σ2, therefore, were
simply computed averaging the estimates of the subjects belonging to the population
made of N individuals to which the subject with the reduced scan belongs to.

3.9.3 Results

Results were presented using the macroparameter

Ki =
K1k3k5

k2k4 + k2k5 + k3k5

to compare ”real” and estimated values. Ki.
Figure (3.16) displays average BIAS and RMSE for standard WNLLS (black), GRRSC

(gray) and GTS (white) with the number N of individuals set to 10. Improvements were
evident in terms of both indices and they clearly increased with decreasing scan time,
when the initial estimates were poorer and the Bayesian paradigm was more helpful in
improving them. The negative BIAS present for short scan times, in particular, was re-
narkably reduced by both approaches. GTS provided better performances with respect
to GRRSC, but the difference was slight.
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Figure 3.16: BIAS and RMSE averaged over the 1000 simulated subjects are displayed for
standard WNLLS (black), GRRSC (gray) and GTS (white) with N=10 and 3 different
reduced scan times.
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No improvements took place when N was equal to 4; in this case the number of
individuals was too low. With N set to 6 improvements were already noticed according to
the principle, previously illustrated, that as long as homogeneity is preserved, the higher
the number of individuals is, the higher improvements are. Performances therefore got
better for increasing values of N, but the amount was so slight that differences between
the case N=6 and N=20 were negligible.

A reduced scan length of 75 minutes was also considered, but in this case WNLLS
provided the best results; it is clear that, when only few frames (2-4) are missing, the
application of standard WNLLS yields the best results because the scan time is still
sufficient to get estimates of good quality.

Some words caution on the idea of ”homogeneity” are in order: even though this
concept hasn’t been quantitatively characterized it is clear, for instance, that if the
scanned subjects comprise ill and healthy individuals, or young and elderly subjects, the
application of these algorithms may be problematic. The use of the suggested approaches
is therefore advisable only when the subjects analyzed form an homogeneous group at
least from the point of view of age and health condition.

In general Bayesian algorithms are useless at ROI level because estimates are typi-
cally more than satisfactory. This paragraph, however, has shown an interesting appli-
cation of ridge regression and population techniques in this scenario. The outcome of
the analysis was that, as long as there is a certain homogeneity between the scanned
subjects and as long as their number is not too low, ridge regression or GTS can be
successfully employed to provide estimates that are better than the ones that would
be obtained using only the data from the scan of reduced length. Improvements were
clearly more relevant for shorter scans and didn’t show much dependence on the number
of subjects employed for the application of Bayesian algorithms.

3.10 Discussion

The simulations presented in the previous paragraphs didn’t allow to conclude unequiv-
ocally that ridge regression is better than GTS, or viceversa. Some ideas can however
be inferred;

• While BIAS didn’t not show a clear trend, there was an unequivocal reduction of
RMSE when ridge regression or GTS were used with respect to standard WNLLS.
This reduction ranged from slight to very large; in no case there was an increase
of RMSE.

• While ridge regression gave, in general, improvements that were relatively constant
with respect to the parameter and tracer analyzed, GTS yielded performances that
were less stable, its improvements ranging from high to slight.

• In general GTSpop is advised over GTSraw because the use of the latter may cause
an unacceptable loss of resolution and anatomical details of the final parametric
maps due to the shrinking of ”high” and ”low” estimates towards the global mean
value. This can not happen with GTSpop due to preliminary segmentation; what
may happen with GTSpop, however, is that there is shrinking of estimates to-
wards the mean of each subpopulation. These effects were not evident at all for
the [18F]FDG simulation but noticeable for [11C]WAY100,635 data.
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GTS, differently from RR, has to two user-dependent settings which can strongly
influence final results. Performances of GTS didn’t show to be significantly dependent
on the method employed to stop iterations; in any case, the criterion to end when the
relative difference of the parameter of interest was lower than 1% for at least 90% of
the individuals in the considered population proved to be quite robust in every situation
tested.

Results, on the other side, appeared to be more dependent on the segmentation
technique employed. A segmentation of each slice of the image into a small number
of clusters performed on the basis of each parameter separately, is a good solution
which keeps computational time low and allows to perform GTS on more homogeneous
populations. Fortunately, it was found both in [18F]FDG and in [11C]WAY100,635
simulations that BIAS and RMSE were not significantly dependent on the number of sub-
populations employed to segment the image. Alternatively, if the image is normalized
to a stereotaxic space, a predefined atlas (see chapter 4) can be employed to create sub-
populations made of pixels belonging to the same anatomical ROI. This last solution
eliminates the need for the choice of the number of sub-populations to be employed, and
integrates anatomical information into parametric maps, which are both very positive
facts.

The comparison between RR and GTS on the basis of RMSE of the two simulated
data sets ([18F]FDG and [11C]WAY100,635) showed that sometimes GTS performed
slightly better, while sometimes the contrary happened; in any case differences were
never relevant.
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Chapter 4

Applications to a clinical
dataset:[11C]-(R)-PK11195

In the previous chapters ridge regression and population approaches have been applied
to simulated data sets only in order to assess their performances when ”real” kinetic
parameters were known. The conclusion was that these methodologies allow to obtain
better results with a little increase of computational time. The amount of the improve-
ment may be low or high depending on the level of noise and on the complexity of
the kinetic model employed. The simple general rule is that, within certain limits, the
poorer the initial estimates are, the higher the improvement is.

In this chapter application of ridge regression and GTS to real clinical data sets is
presented. It is not straightforward to compare different methodologies when applied to
real data sets. The criteria chosen to compare parametric maps generated with different
methods were

• simple visual assessment

• correlation between the kinetic parameters averaged over all pixels of a given ROI
and the same parameters estimated from the TAC of that ROI

• ability to differentiate between healthy and ill subjects or pixels measured by
sensitivity and specificity

4.1 Introduction to [11C]-(R)-PK11195

Most of the chapter will deal with results concerning the tracer [11C]-(R)-PK11195 which
therefore deserves a brief introduction.

[11C]-(R)-PK11195 is a selective ligand for the peripheral benzodiazepine receptor,
or binding site (PBBS). PBBS is a protein abundant in peripheral organs, particularly
in adrenal glands and kidney but also in heart and lungs ([29]). In the normal brain
PBBS is expressed in the endothelium and smooth muscles of intra-cerebral arteries and
in the endothelial walls of the veins.

What is important, in relation to [11C]-(R)-PK11195, it is that PBBS is also ex-
pressed in activated microglia ([30]). Microglia are the intrinsic cerebral immune system
and they are involved in the response to traumatic, inflammatory, degenerative and
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neoplastic disease. Simplifying the complicated and still not totally understood under-
lying biological mechanisms, microglia express PBBS not in resting state but only when
in activated state. [11C]-(R)-PK11195, therefore, binding to PBBS, most of which are
expressed by activated microglia, serves as a very generic indicator of neuronal damage
in the central nervous system. ([31]) .

Quantification of [11C]-(R)-PK11195 PET studies has been approached in the great
majority of cases by the application of the simplified reference tissue model (SRTM)
([32], [33]). Only a recent work ([34]) has studied [11C]-(R)-PK11195 modelling when the
plasmatic input is measured, but all the other works in the last 10 years employed SRTM,
which was therefore considered here. In the past either the cerebellum or clustering
algorithm were employed to compute the reference TAC, but, in both cases, problems
were found because of the inclusion of voxels associated to regions containing PBBS,
which are expressed in the whole brain. In a recent work it has been demonstrated
that a supervised selection algorithm which compares the TAC of each pixel with a
database of tissue kinetics (normal gray and white matter, vascular, muscle, skull and
pathological tissue with high active microglia density) is able to define a reference gray
matter tissue devoid of specific PBBS binding and is therefore the best methodology
to extract the reference region ([35]). To extract the reference TACs employed in this
thesis, the supervised algorithm proposed in [35] was always employed.

All the [11C]-(R)-PK11195 studies analyzed here were performed on an ECAT EX-
ACT 3D (CTI/Siemens) PET camera with 23.4 cm axial field of view, 95 transaxial
planes, spatial resolution of 4.8 mm full width at half maximum (FWHM) (transax-
ial) and 5.6 mm FWHM (axial). Three-dimensional sinograms of emission data were
then acquired over 60 minutes as 18 time frames (30s background frame, 1x15s-frame,
1x5sframe, 1x10s-frame, 1x30s-frame, 4x60s-frames, 7x300s-frames and 2x600s-frames).
Volumetric T1 weighted MRIs images were obtained on a 1.0 TeslaPicker HPQ scan-
ner (Picker, Cleveland, OH) at the Robert Steiner MR Unit, Hammersmith Hospital,
London.

The data set used consisted of 9 patients suffering from Huntington’s disease (HD)
and 12 age-matched normal controls (NC), described more deeply in [36]. The MRI
of each patient was co-registered with his-her PET summed image using Statistical
Parametric Mapping SPM5 (Functional Imaging Laboratory, Wellcome Department of
Imaging Neuroscience, UCL, London). The co-registered MRIs were then normalized to
the MNI/ICBM512 space (Montreal Neurological Institute stereotaxic space) and the
parameters obtained from the normalization process for each subject were applied to
each frame of the PET image to obtain a normalized dynamic PET image. Region of
interest TAC extraction was performed on the normalized PET images using Hammer-
smith maximum probability atlas ([37]). This atlas assigns to the main cerebral regions
(e.g. cingulate gyrus, cerebellum, thalamus) the set of voxels which belong to each re-
gion: every ROI is divided between its left and right part for a total of 66 ROIs. This
assignation is made on the MNI stereotaxic space; in other words the atlas is a ma-
trix with dimensions [91,109,91], with only a subgroup of the 91x109x91 voxels assigned
to a specific ROI. The normalization process, therefore, was necessary in order to be
able to apply the atlas to the images; in this way TAC extraction could be performed
automatically and without the need for specific anatomical competence.
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4.2 Inclusion of the vascular components into the SRTM

4.2.1 Standard SRTM equation

The classical SRTM equation

CTar(t) = RCRef (t) + (k2 − k2R

1 + BP
)
∫ t

0
CRef (x)e−

k2
1+BP

(t−x)dx (4.1)

with CTarand CRef indicating respectively the time course of the target and reference
regions, is used to estimate the ratio R of delivery constants KTar

1 /KRef
1 , the rate of

outflux of the tracer k2 and the binding potential BP. Equation (4.1) is non-linear in
the parameter vector [R, k2, BP ]; the well-known ”basis function method” (BFM) ([38])
is typically applied to it in order to reduce its computational cost. The basis function
method requires to fix a value for the parameter ϑ = k2

1+BP , to compute the convolution
integral ∫ t

0
CRef (x)e−(

k2
1+BP

(t−x))dx

which appears on the right side of (4.1) and then to solve the estimation problem ex-
pressed by (4.1), problem which becomes linear in the parameter vector [

p1, p2] = [R, k2 − k2R

1 + BP

] once ϑ is fixed. The procedure is repeated for each value of ϑ belonging to a predefined
grid and for each of these values the problem, linear in the unknown vector [p1, p2], is
solved. through the usual expression

p = (X ′WX)−1(X ′Wy)

with X Nx2 matrix with CRef (t) and
∫ t
0 CRef (x)e−

k2
1+BP

(t−x)dx in its columns, y contain-
ing the N measured data, and W NxN diagonal matrix containing suitable weights. The
weights for all the analysis performed for [11C]-(R)-PK11195 were set equal to the scan
interval lengths ∆i. Plausible values for ϑmin and ϑmax are typically determined from
the knowledge of physiological values for k2 and BP for the tracer under examination
and then a grid of 50 or more values is used. At the end the value of ϑ∗ which gave
rise to the smallest weighted sum of residuals is retained, together with p∗1 and p∗2, the
solution of the linear problem corresponding to ϑ∗ . The estimate of R, k2 and BP is
then easily achieved by suitably combining the values of ϑ∗, p∗1 and p∗2 according to

R = p∗1

k2 = p∗2 + ϑ∗R

BP =
k2

ϑ∗
− 1

To obtain a model which is completely linear one has simply to integrate the standard
differential equations regulating the SRTM model in order to make the first derivatives
disappear thus obtaining:

CTar(t) = RCRef (t) + k2

∫ t

0
CRef (x)dx− ϑ

∫ t

0
CTar(x)dx (4.2)
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with ϑ = k2
1+BP as above. This approach is faster than the previous one because at

each pixel one and only one linear problem has to be solved whereas a larger number
is needed (at least greater than 20-30 depending on the settings) when applying SRTM
with a basis function approach. The linearized equation (4.2), unfortunately, has a
well-known drawback in that, when applied to noisy TACs such those at pixel levels, it
provides biased estimates of parameters. Using the usual notation y=Xp+e to express
the linear problem, the NxM known matrix X is not, in this case, noise free in that one
of its column contains the integral of the noisy pixel TAC. The usual expression

p = (X ′WX)−1(X ′Wy)

which is used to compute the parameter estimates yields biased estimates as a conse-
quence of the correlation between the measurement error e and the error of the column
in X. The noisier the TAC is, the higher the bias is: the linearized version of SRTM was
not employed to avoid such phenomenon.

4.2.2 Modifications of the standard SRTM equation

An implicit assumption of the SRTM is that VB
T = VB

R = 0, with VB indicating the
vascular fraction within the region or pixel of interest (the primes T and R stand for
target and reference respectively). This simplification may be totally legitimate but,
depending on the tracer, it may in certain situations be inappropriate. For instance,
when analyzing healthy and ill subjects together, the implicit assumption of a constant
vascular fraction in healthy conditions and in disease may not be correct. In the case of
[11C]-(R)-PK11195 this would be equivalent to postulate an identical PBBS expression
in the vascular components in normal and ill conditions, which may be questionable. To
modify the standard SRTM to keep this fact into account (this new model will be referred
to as SRTMV), (4.1) can be easily transformed as follows. Consider the equations

CTar
Meas(t) = (1− VB

T )CTar
True(t) + VB

T CB(t) (4.3)

and
CRef

Meas(t) = (1− VB
R)CRef

True(t) + VB
RCB(t) (4.4)

which express the measured concentrations in target and reference regions as a function
of the ”true” (unknown) concentrations and of the vascular term,with CB(t) indicating
the whole blood tracer time course. Solving (4.3) and (4.4) for CTar

True and Cref
True

and inserting the results into (4.1) one obtains

CTar(t) = VB
T CB(t) +

1− VB
T

1− VB
R
{ R(CRef (t)− VB

RCB(t))+ (4.5)

+(k2 − k2R

1 + BP
)
∫ t

0
(CRef (x)− VB

RCB(x))e−
k2

1+BP
(t−x)dx }

The parameters to be estimated in this new framework are R, k2 and BP as be-
fore, plus VB

T and VB
R, the blood volume fractions in the target and reference region

respectively. (4.5) can be used to estimated the parameters through WNLLS: with this
approach, however, VB

R is attributed for every target region or pixel of interest a differ-
ent value whereas it does have a fixed, albeit unknown, value. Besides, the application
to WNLLS with 5 unknown parameters often yielded unreliable values for VB

T and VB
R.
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As suggested in [39], where (4.5) was first proposed, fixing VB
R to a reasonable value

makes the estimation of the remaining four parameters more stable. According to [39]
a standard value of 0.05 corresponding to 5% was used here. In [40] it is shown that,
although the value of VB

R is monotonically dependent on the value fixed for VB
T , the

other 3 parameters are almost independent on VB
R and this is particularly important

since the analysis presented here was centered on BPs.
(4.5) can be used to estimate the other parameters as with SRTM. Once VB

R is fixed,
the estimation problem expressed by (4.5) can be solved by means of a basis function
method, with

ϑ =
k2

1 + BP

as above and

[p1, p2, p3] = [VB
T , R(1− VB

T ), (1− VB
T )(k2 − k2R

1 + BP
)]

.
It easily follows that

VB
T = p1

R =
p2

1− VB
T

k2 =
p3 + Rϑ

1− VB
T

BP =
k2

ϑ
− 1

which must be employed for the computation of R, k2, VB
T and BP .

A grid of 50 equally spaced values between 0 and 0.5 was employed ϑ. The use of a
higher number of values (100) was tested but didn’t yield noticeable differences in terms
of the resulting parametric maps and was therefore discarded for computational reasons.

4.2.3 Estimation of the whole blood TAC

The whole blood time activity curve CB(t) was not available from invasive measurements
and had to be estimated from the image itself. For this purpose the following algorithm
was employed. In the whole brain the 10 pixels with the maximum value in the first
5 frames -which are the ones where the blood tracer concentration has its peak- were
selected. The mean of the selected pixel TACs was used as CB(t). This simple procedure
is renarkably faster than any approach based on cluster or on manual selection of the
vascular components, besides being user’s independent. The choice to select 10 pixels
(and not more than 10 or less) was based on a compromise between the need to obtain a
sharp peak for CB(t) -which would require to use the smallest possible number of pixels-
and the need to obtain reliable and regular curves. Kinetic parameters for each subject
were also computed estimating CB(t) using the 5 and 20 pixels with the highest values
in the first frames to test the robustness of the algorithm with respect to the number of
pixels employed for the estimation of CB(t).

The procedure used for the extraction of the blood component from images is far
less sophisticated than others that are available for a more accurate estimation of the
blood tracer concentration time course. They make either use of cluster analysis ([41])
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or of accurate definition of the vascular region with appropriate correction for spill-
over and partial volume ([42]) or of resolution of non-linear problems to determine the
arterial concentration for each subject ([43]). However, these procedures often requires
one or more blood sample making them slightly invasive. Besides, as the estimated
arterial input function was used in those works as the forcing function of the system,
its estimate had to be absolutely reliable. In SRTMV, the forcing function is CRef (t)
and parameter estimates are much less dependent on CB(t) . Hence, in this context a
reliable approximation of the whole blood tracer concentration only was necessary and
the simple yet effective algorithm described was selected due to its computational speed
and simplicity. This approach, besides, displayed a renarkable robustness with respect
to the number of pixels employed for the blood TAC computation when V T

B and BPs
obtained with different CB(t) were compared ([40]).

4.3 Application of ridge regression

4.3.1 Non linear version

SRTM and SRTMV are non-linear models and the simplest idea, therefore, is to apply
non-linear ridge regression. In Chapter 2 it was shown on simulated data how NLRR3
provided the optimal results at the lowest computational cost among the non linear ridge
regression methods. This version of NLRR, with the use of the component representation
model CRM to compute priors, was therefore implemented.

The linearization of (4.5) -i.e. the computation of the sensitivity matrix S- which
is central in the application of NLRR. Two of the four parameters, k2 and BP , appear
both outside and inside the integral in (4.5) and the computation of the derivatives of
(4.5) with respect to them, even if not difficult, may be tricky. The possibility to switch
the derivative and integral operators, necessary for deriving with respect to k2 and BP ,
is legitimate in the case of a regular function as (4.5). For the sake of space the known
functions

(CRef (t)− VB
RCB(t))

and ∫ t

0
(CRef (x)− VB

RCB(x))e−(
k2

1+BP
(t−x))dx

. will be denoted with g(t) and h(t), respectively, and the derivatives of (4.5) with
respect to the four parameters R, k2, BP, Vb are reported here for completeness.

∂f

∂R
=

1− VB
T

1− VB
R

g(t)− k2

1 + BP
h(t) (4.6)

∂f

∂k2
=

1− VB
T

1− VB
R
{ (1− R

1 + BP
)h(t) + (k2 − k2R

1 + BP
) (4.7)

[− t

1 + BP
h(t) +

∫ t

0
g(x)e−

k2
1+BP

(t−x) x

1 + BP
dx] }

∂f

∂BP
=

1− VB
T

1− VB
R
{ k2R

(1 + BP )2
h(t) + (k2 − k2R

1 + BP
) (4.8)

[
k2

(1 + BP )2
th(t)−

∫ t

0
g(x)e−

k2
1+BP

(t−x)x
k2

1 + BP
dx] }
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∂f

∂VB
T

= CB(t)− 1
1− VB

R
g(t) (4.9)

Each derivative is time dependent, as it is to be computed in the correspondence of
the N mid-scan times yielding a column vector. The four column vectors together form
the Nx4 sensitivity matrix S.

Computation of priors

The computation of priors is an issue which deserves a deeper analysis as, clearly, final
estimates are heavily dependent on priors and, besides, the computation of priors on
three-dimensional images deserves further comments. In NLRR3, the version which
emerged as the optimal one and which was used here, priors are computed fitting the
appropriate kinetic model to clusters’ TACs.

Which is, however, the best way to cluster a 3D image? Segmenting all voxels
together is computationally not feasible, at least with the clusterization technique which
was employed. In fact, hierarchical cluster analysis is very time consuming and its
computational time, besides, is non linearly dependent on the number of elements to
be clustered: a two-fold increase of voxels to be segmented may give rise to a five to
eight fold increase of computational time. The clusterization of hundreds of thousand
of voxels is far beyond the possibility of current computers.

The most reasonable idea would probably be to cluster each slice separately. Even
if feasible, this approach would cause, in any case, a relevant increase of computational
cost, as, in this application, one should cluster 91 slices. To cluster each slice separately
would have required, on the computer employed, roughly one hour and a half for each
subject. Is this really necessary? Isn’t enough to consider a single slice which contains
voxels with renarkably different kinetics (gray matter voxels, white matter voxels, blood
pool voxels)? This is the approach which was employed and which proved to work
reasonably well, at least from a visual inspection of the parametric maps of the priors.
The only thing to check was that the resulting final cluster TACs -the standard number of
6 clusters was employed- were not all similar to each other but were, in a certain sense,
representative of the different brain tissues in order to obtain, before the application
of CRM, sets of kinetics parameters reasonably different from each other. One slice
was sufficient to achieve this goal with all the subjects considered. A drawback of
the suggested approach, however, was that results were dependent on the slice chosen.
Slight differences were noticed, as expected, when two contiguous slices were employed
for the generation of priors but differences became noticeable to the naked eye when two
slices far apart from each other (e.g. slice n◦1 and n◦40) were employed. Slice n◦15 was
heuristically selected and employed for all subjects. In the previous chapters the different
versions of NLRR were referred to as NLRR1, NLRR2, NLRR3. As stated above, only
NLRR3 with CRM was used here; the method just described for the computation of
priors -clusterization of one slice before CRM- will be referred to as NLRR3a.

Alternatively, one could consider the additional information provided by the anatom-
ical atlas, which allows to automatically extract a set of ROI TACs. In this new version
of NLRR3 (NLRR3b) pixels which, according to the atlas, belonged to a specific ROI,
were simply assigned, as prior, the kinetic parameters derived fitting the TAC of that
ROI. Priors for pixels which were not assigned to a specific ROI, were, on the other
side, derived exactly as in NLRR3a. In other words the two methods computed priors
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differently only for those pixels which the atlas assigned to a specific ROI, for which the
parameter vector of that ROI was used as prior.

In NLRR3b, therefore, the same priors were assigned to all pixels of the same ROI.
One could fear that the basic equation to compute the ridge matrix in GRRSC, reported
here,

hi =
σ2

(pi − pi0)2
i = 1, 2, .....m (4.10)

can not be employed because the denominator of (4.10) is 0 for all parameters, as the
prior pi0 is computed averaging the estimates in the neighbourhood of the pixel of
interest and, if these estimates are all equal to each other as in NLRR3b, one would get
pi = pi0. This does not happen because, as explained in paragraph (2.3.3), (4.10) is not
employed directly on parametric maps of priors, but after the computation of

∆p = (S′WS)−1[S′W (y − h(p))] (4.11)

with S denoting the appropriate sensitivity matrix at pixel i, y the TAC and p the prior
at the same pixel. The parameter vector p is then updated as p + ∆p, and (4.10) can
then be successfully applied. All these details were already presented, but were reported
here again in order to clear potential doubts that may have risen.

After the initial attribution of priors, the two version of NLRR3 (NLRR3a, NLRR3b)
worked in the same way according to the algorithm described previously.

4.3.2 Linear version

Although SRTM and SRTMV are non-linear models the basis function approach can be
successfully employed to linearize the problem allowing to employ linear ridge regression
even in presence of a Bayesian term. To analyze the more general case, SRTMV was
considered, as already said ; equations concerning SRTM are simpler and can be ob-
tained by setting VB

T =VB
R=0. With the same identical notation of above (ϑ = k2

1+BP ,
[p1, p2, p3]=[VB

T , R(1− VB
T ), (k2 − k2R

1+BP )(1− VB
T )]) ,and with the additional position

C∗(t) = 1
1−VB

R ( CRef (t)−VB
RCB(t) ) = known quantity, (4.5) can be trivially rewritten

as
CTar(t) = p1CB(t) + p2C

∗(t) + p3

∫ t

0
(C∗(x)e−(ϑ(t−x))dx (4.12)

This is just a change of notation to reduce the length of the equation. Once the elements
of p = [p1, p2, p3] are estimated through a basis function approach, the prior p0 and the
3x3 ridge matrix H can be computed at each pixel as explained in the linear ridge
regression section. For each fixed value of ϑ belonging to a predefined reasonable set,
as above, if we let X be the matrix whose columns X(i), i=1,2,3 are respectively given
by CB(t), C∗(t),

∫ t
0(C∗(x)e−(ϑ(t−x))dx ,the estimate of p in the linear ridge regression

framework is the one which minimizes the cost function

(y −Xp)W (y −Xp)′ + (p− p0)H(p− p0)′ (4.13)

which is given by

poptimal(ϑ) = (X ′WX + H)−1(X ′Wy + Hp0) (4.14)

with W as usual denoting a diagonal matrix containing the weights. At the end the value
of ϑ whose correspondent poptimal(ϑ) gave rise to the minimum of the cost function (4.13)
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is retained and the elements of β = [R, k2, BP, VB
T ] are computed exactly as explained

before. The simple yet effective idea to ”linearize” the original model by setting ϑ, the
parameter which makes the model non-linear , to a fixed value is therefore used here
as well with the only difference that the selected value ϑoptimum is now the one which
realizes the optimum trade-off between the weighted distance from the measured data y
and from the prior p0. The application of linear ridge regression to SRTMV, ”linearized”
through the application of BFM, will be referred to as LRR (linear ridge regression) to
distinguish it from the non linear version version described in the previous paragraph.

4.4 Application of GTS

The application of GTS deserves some special comments as well because several strate-
gies are, in principle, feasible and only the one which was selected as the most appropriate
was employed.

One possible method is to perform the population analysis on the vector p =
[p1, p2, p3] and then, from the new values of p computed using GTS, evaluate the el-
ements of β = [R, k2, BP, VB

T ] which are the ones of interest. This approach, however,
leaves unchanged the value of ϑoptimum determined from the application of the basis
function method to the measured data only. One could think to apply GTS also to the
value of ϑoptimum computed at each pixel from the preliminary application of the BFM,
but this is not possible since this method does not allow to compute the variance of this
parameter, which is essential for the application of population algorithms. More reliable
estimates for p obtained through the application of GTS, therefore, do not necessarily
result in better estimates for β, more precisely for k2 and BP which need ϑoptimum to
be computed; the reason is that the ”new” values of p and the ”old” value of ϑoptimum

are combined together. This approach was tried but then discarded.
The already mentioned equations

VB
T = p1

R =
p2

1− VB
T

k2 =
p3 + Rϑ

1− VB
T

BP =
k2

ϑ
− 1

allow to compute at each pixel not only the elements of β but also their associated
variance. To achieve this goal the linear transfer model (LTM) was applied. With the
LTM one computes an approximation of the variance of a parameter which is function of
one or more parameters for which the covariance matrix is available. Let y be a known
function y = f(x1, x2) of two parameters x1 and x2 and assume that a point estimate
x∗1 and x∗2 of x1 and x2 and of their covariance matrix is also available.

The LTM approximates the variance of y σ2
y, according to

(
∂f

∂x1
)2σ2

x1 + (
∂f

∂x2
)2σ2

x2 +
∂f

∂x1

∂f

∂x2
covx1x2 (4.15)

where the partial derivatives of f are computed in correspondence of x∗1 and x∗2. It is
straightforward how (4.15) can be generalized to the case of 3 or more variables: with
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3 variables there will be 6 terms, 3 with the squared of the first derivatives and 3 with
the mixed derivatives.

In the case of SRTMV, x1,x2 and x3 are represented by p1, p2, p3 and, assuming a
basis function method is employed, the covariance matrix of the parameter vector p is
computed from the usual expression

Σp = σ2(X ′WX)−1

used for the linear models in PET. Applying (4.15) to compute the variances of the
parameters of interest it follows easily, for instance, that

σ2
VB

= σ2
p1

and

σ2
R =

σ2
p2

(1− VB)2
+

σ2
VB

p2
2

(1− VB)4

In the same way variances for k2 and BP can be computed.
Using this method the variances associated to each parameter were derived and GTS

was then applied separately for each of the 4 kinetic parameters R, k2, BP, VB
T using

the criterion determined in the simulation phase to stop the algorithm (see Chapter 3,
relative variation less than 1% for at least 90% of the pixels of the population).

4.5 Computational cost

Before starting the analysis of results a word is in order on the computational cost of
the different algorithms. With SRTMV and the BFM approach, it took roughly half an
hour to generate complete parametric maps for one subject. The obvious idea which
allowed to save a lot of computational time was to compute the convolution integrals
for the different values of ϑ only once at the beginning of the algorithm, as they are
not pixel-dependent. LRR with BFM, therefore, required the same identical time to
generate the final maps because the same approach was used. The application of GTS
itself required less than 5 minutes for slice. It is recalled, however, that if GTS or LRR
are to be employed, the computational cost of SRTMV itself is to be taken into account,
as this is the preliminary step for both GTS and LRR.

This is not true for NLRR3 approaches, which do not require any preliminary esti-
mation. Although these algorithms are based on appropriate linearizations of non-linear
problems, they require a precise computation of the sensitivity matrix at each pixel and
iteration, which is very time-consuming. Only one iteration was performed but one
hour, nonetheless, was required on average to generate final maps.

Among the Bayesian approaches, therefore, GTS emerged as the fastest one. This
is not a negligible issue, especially when generating 3D parametric maps (all the values
reported refer to a single slice only...).

4.6 Examples of parametric maps

In this section examples of parametric maps obtained using SRTMV, ridge regression, in
both non linear (NLRR3a, NLRR3b) and linear (LRR) versions, and GTS are displayed
for each of the 4 kinetic parameters. These images deserve a few comments.
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• Maps obtained with any Bayesian method are, as expected, more regular at visual
inspection than SRTMV maps.

• Linear ridge regression maps are the most similar to the original SRTMV maps;
they seem to have obtained from SRTMV through a process of smoothing.

• In NLRR3b and GTS maps the employment of the anatomical information of the
atlas can clearly be seen. The structure of the cerebellum, for instance, can be
easily singled out from any parametric map, and especially from BP and Vb maps.
The possibility to single out anatomical structures from parametric maps clearly
depends on the parameter and slice considered. Slice n◦21 was selected in order
to highlight this interesting aspect, which was evident for all subjects. This effect
was present for most slices, although the amount was lower than for the presented
slice.

• Vb maps are those which are more heavily modified by the application of ridge
regression and GTS: the reason is that these are the noisiest and least regular
maps, as can be realized from visual inspection. The application of Bayesian
algorithms has, for this parameter, the most significant regularizing effect.
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Figure 4.1: Parametric maps of R for one slice of a HD patient (slice n◦21). The
basic SRTMVb map is compared to NLRRa and NLRRb maps (middle left and right
respectively) and to LRR and GTS maps (lower left and lower right respectively.

88



0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

0

0.05

0.1

0.15

0.2

0.25

Figure 4.2: Parametric maps of k2 for one slice of a HD patient (slice n◦21). The
basic SRTMVb map is compared to NLRRa and NLRRb maps (middle left and right
respectively) and to LRR and GTS maps (lower left and lower right respectively.
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Figure 4.3: Parametric maps of BP for one slice of a HD patient (slice n◦21). The
basic SRTMVb map is compared to NLRRa and NLRRb maps (middle left and right
respectively) and to LRR and GTS maps (lower left and lower right respectively.
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Figure 4.4: Parametric maps of Vb for one slice of a HD patient (slice n◦21). The
basic SRTMVb map is compared to NLRRa and NLRRb maps (middle left and right
respectively) and to LRR and GTS maps(lower left and lower right respectively.
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4.7 Correlation between ROI and pixel estimates

If a model is not linear it is not rigorously true, even in absence of noise, that the mean
ppixel of N kinetic parameters computed using N pixel TACs Ci(t) i=1,2,.....N, is equal
to the parameter pROI computed from the ROI TAC CROI(t), having defined CROI(t) as
ΣCi(t)/N . A large correlation between pROI and ppixel, however, is index of reliability
of a parametric map.

Using the stereotaxic atlas, 10 ROI TACs were automatically extracted. The 10
ROIs were cerebellum, lateral occipital lobe, anterior cingulate gyrus, posterior cingu-
late gyrus, frontal lobe-middle frontal gyrus, posterior temporal lobe, parietal lobe, tha-
lamus, occipital lobe-lingual gyrus and occipital lobe-cuneus. For each of the 12 healthy
subjects and each ROI, the 4 kinetic parameters were then computed using (4.5), for a
total of 120 estimates. Parameters computed from ROI TACs were compared to those
obtained averaging the corresponding parameters at pixel level, using the anatomical
atlas to associate to each ROI its corresponding pixels. A coefficient η was computed
for R, k2, BP, Vb and for each of the 5 methods (SRTMV, NLRR3a, NLRR3b, LRR and
GTS) assuming the parameters derived from ROI analysis as the noise-free variables.

η was defined as:

100
1
N

Σ
|ppixel − pROI |

|pROI | (4.16)

where || denotes the absolute value and p indicates a generic kinetic parameter, with
pROI and ppixel as above. The sum was performed over all ROIs and subjects for a
total of N=120 elements. Basically η quantifies the distance from the identity line of
the element of coordinates (pROI , ppixel) in the x-y plane. An η of 10, for instance,
indicates that, on average, the difference between ppixel and its corresponding pROI is of
10%. This index was preferred to the classic Pearson’s correlation coefficient because the
latter is related to the existence of a generic linear correlation between a set of (xi, yi),
whereas the aim, here, was to quantify how much the set (pROI,i, ppixel,i) was close to
the identity line.

Figure (4.5) summarizes the results; η is displayed for the 4 parameters and the
5 methods employed. Values of η bigger than 150 (=150%) were bound to 150 for
illustration purposes.

• In SRTMV, as expected, R is the best estimated parameter at pixel level, followed
by BP, k2 and Vb.

• LRR gave results which were very similar to standard SRTMV- except for the im-
provement in Vb correlation- consistently with the fact that LRR maps significantly
resembled SRTMV maps.

• Between NLRR methods, NLRR3b outclassed NLRR3a in terms of BPs. This is
particularly important as the binding potential is the most important parameter.

• GTS yielded the same results of SRTMV in terms of R and BP, whereas improve-
ments were relevant for k2 and Vb.

Globally NLRR3b and GTS provided the best results.
These ideas are further illustrated in Figures (4.6) and (4.7) which show plots of

the relative delivery R and of the blood fraction Vb evaluated at ROI level (x axis) and
pixel level (y axis) for SRTMV (left) and GTS (right). Whereas the good correlation
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between RROI and Rpixel in SRTMV was basically left unchanged by GTS, there was a
renarkable improvement when Vb was considered, consistently with what shown before.

A final comment is in order. The evaluation criterion here was the correlation be-
tween estimates at ROI level and those at pixel level, computed averaging estimates of
pixels in the same ROI. The use of this criterion implicitly favoured NLRR3b and GTS.
In fact, these methods employed the same anatomical information used in the evaluation
criterion -the assignation of a given pixel to a specific ROI according to the atlas- to
compute priors and construct the ”populations”, respectively. This explains why these
algorithm provided the best performances according to the described criterion.

0
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E
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R k2 BP Vb

SRTMV

NLRR3a

NLRR3b

LRR

GTS

Figure 4.5: The coefficient η is displayed for each of the 4 parameters and each of the 5
methods used to generate parametric maps.

4.8 Additional analysis on binding potentials

One of the most important potentialities offered by PET, as stated in the introduction,
is its ability to diagnose a certain neuro-degenerative disease with more certainty than
with current methods.

Ill subjects have, on average, higher BPs due to the higher binding of [11C]-(R)-
PK11195, which is caused by the higher amount of activated microglia which is on its
turn related to the level of neuro-inflammatory response. In this context the expression
”ill subject” is used to refer to a person suffering from HD, Alzheimer’s disease, or other
neurodegenerative conditions (e.g. dementia with Lewy bodies) characterized by some
kind of neuro-inflammatory response, which can be highlighted by [11C]-(R)-PK11195.
From now on, therefore, the analysis will be focused on BP only as it is the key parameter
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Figure 4.6: Plot of the relative delivery R evaluated at ROI and pixel level (x and y axis
respectively) is displayed for SRTMV (left) and GTS (right).
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Figure 4.7: Plot of the blood fraction Vb evaluated at ROI and pixel level (x and y axis
respectively) is displayed for SRTMV (left) and GTS (right).
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in this context.

4.8.1 Correlation with SRTMV BPs

In this subsection the correlation between BP estimated through SRTMV, the method
of comparison, and those computed with the different Bayesian approaches will be an-
alyzed. Figure (4.8) displays the correlation between the BPs computed with SRTMV,
sorted and reported along the x axis, and those estimated through NLRR3a, NLRR3b,
LRR and GTS, respectively. The BPs displayed belong to pixels of the cerebellum of
a randomly chosen HD subject. Similar plots for different ROIs and subjects, however,
yielded almost identical trends. The identity line is reported in yellow. The same range
for the y-axis was employed for 3 out of the 4 graphs; for LRR a wider range (-1:4) was
used. The plots highlight interesting aspects of the different methods, some of which
were already presented in the previous paragraphs.

It was previously stated that LRR is the least ”invasive” approach; consistently,
it yielded the best correlation with SRTMV, with BPs aligned along the identity line.
This fact can be interpreted positively -the method changes little of the original maps
providing at the same time smoother final maps- or negatively, as, for instance, negative
and therefore non-physiological values of BPs, were still present.

The two plots of NLRR methods look very similar; negative values were eliminated,
whereas high values of SRTMV BPs are significantly reduced. These facts are clearly
positive -unreliable values (negative or too high) are corrected- but a tendency of un-
derestimating too much high BPs is visible. NLRR3a performed better than NLRR3b,
which provided a lot of outliers.

GTS plot is of particular interest; as in NLRR negative values were corrected and
higher values reduced, but the amount of the reduction was lower for high BPs, which is
a positive fact. The plots appears of higher quality at visual inspection with respect to
NLRR plots; BPs with the most physiological values (range 0.3-1) align almost perfectly
along the identity line. Pearson’s correlation coefficient, besides, was 0.72 for GTS,
whereas it was only 0.26 and 0.1 for NLRR3a and NLR3b respectively.

The conclusion is that, once again, LRR emerged as the least invasive approach.
GTS, in this context, performed remarkably better than NLRR algorithms, yielding
higher correlations and correcting for non-physiological values without underestimating
too much high BPs.

4.8.2 BP variability within a certain ROI

Figure (4.9) displays mean BPs, estimated with SRTMV and the 4 Bayesian approaches
for 3 normal controls NC and 3 HD patients. Results refer to the putamen; almost
identical trends, however, were found when different regions were studied and results
are displayed for putamen only for the sake of space. In the lower part of the figure the
standard deviations of BPs for the same ROI and subjects are displayed.

LRR, as usual, gave mean BPs which were always very similar to the corresponding
SRTMV BPs; GTS BPs were very related to SRTMV BPs, although slightly lower.
NLRR3b BPs were well correlated with SRTMV BPs, but consistently lower. NLRR3a
BPs didn’t show a clear trend when compared to SRTMV BPs.

The lower section of figure (4.9) unequivocally shows how NLRR approaches and
GTS gave an incredible reduction of BP variation. Standard deviation were reduced
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Figure 4.8: Plot of the correlation between SRTMV BPs and the corresponding BPs
estimated with the 4 Bayesian approaches analyzed for pixels of cerebellum of a HD
patient. The identity line is displayed in yellow.
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to one fifth-one sixth, on average. This fact could already be inferred from the visual
assessment of parametric maps but here it has been quantitatively assessed. As usual
LRR results were almost identical to SRTMV results.

4.9 Differentiation between healthy and HD subjects

It is very important, thinking of possible application of PET in a clinical environment,
to study what happens to the ability to differentiate between healthy and ill subjects
when different methodologies are employed.

When analyzing different images it is not correct, in general, to make pixel-by-pixel
comparisons because two pixels in the same position (x,y,z) do not necessarily correspond
to the same anatomical component, due to unavoidable differences in the position of the
scanned subjects inside the PET scanner; the normalization to the same stereotaxic
space, however, made the pixel-by-pixel comparison performed here a more robust and
reliable approach.

4.9.1 Statistical tests employed

T-test

The comparison of HD and NC was performed using first a simple t-test on a pixel
basis in order to classify each pixel as ”ill” or ”healthy”. It is recalled here that a t-
test assumes that two groups of random samples x1, x2, ...., xN y1, y2, ...., yM , normally
distributed with mean x and y, respectively, and the same variance σ2, are available.
The test can assess if x is statistically different from y. A test statistics is computed as

x̃− ỹ

σ
√

1
N + 1

M

(4.17)

where x̃ and ỹ are the sample mean of x1, x2, ...., xN and y1, y2, ...., yM and σ in (4.17)
is the sample standard deviation defined as the square root of

(N − 1)s2
x + (M − 1)s2

y

N + M − 2
(4.18)

with s2
x sample variance of the x1, x2, ...., xN set, simply defined as

∑N
i=1(xi − x̃)2

N − 1
(4.19)

This test statistics, under the null hypothesis x= y has a t-distribution with N+M-
2 degrees of freedom and can be easily employed to compute an appropriate p-value.
A one-tailed test x > y, where the x variable stands for the BPs of the HD subjects
and y for the BPs of the NC subjects, was considered here, and therefore the p-value
was simply the area on the right of the test statistics in the t-distribution with N+M-2
degrees of freedom. Low p-values indicate that the alternative hypothesis should be
accepted.

A t-test was performed on the BPs of each pixel separately, comparing BPs of HD
to BPs of NC. A threshold of 0.01 was employed to declare ”activation”; p-values lower
than 0.01, in other words, were considered as indicators of a significant difference at any
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Figure 4.9: Mean BPs, estimated with SRTMV and the 4 Bayesian approaches, and
the corresponding standard deviations for 3 normal controls NC and 3 HD patients are
displayed in the upper and lower part of the figure respectively. The BPs belong to pixels
of putamen.
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given pixel between the HD and NC BPs. No Bonferroni correction was performed; the
idea was to compare different methods in the same identical conditions rather than keep
the total Type 1 error at a fixed threshold using Bonferroni correction, FWE (Family
Wise Error) or FDR (False Discovery Rate).

Wilcoxon rank-sum test

The assumption of normal distribution of binding potentials may be uncorrect. If so,
the results provided by the t-test may be not reliable. A well-known non-parametric
alternative is provided by the Wilcoxon rank-sum test. The only assumption of the
test is that the random samples x1, x2, ...., xN y1, y2, ...., yM are drawn from continuous
distributions X and Y with the same shape and spread, the only possible difference
between the two being the values of their means x and y; no normality assumption is
required. The (N+M) values x1, x2, ...., xN , y1, y2, ...., yM have to be sorted in increasing
order so that ranks from 1 to (N+M) can be assigned to each element. The test statistics
value w is computed summing the rank associated to the N xi (here the X distribution
was chosen, but this clearly quite arbitrary). Clearly a high value of w indicates that it
is likely that x is greater than y and viceversa. Under the null hypothesis x = y the rank
of any xi is equally likely to be any of the values 1,2,....(N+M): its mean is therefore
(N+M+1)/2, and the mean of W (the random variable of the sum of ranks of xi, from
which w is drawn) is therefore µ=N(N+M+1)/2. It can also be shown that the variance
of W is σ2= MN(N+M+1)/12. This is always true, independently on N and M; if both
N and M are greater than 8 ([44]) it is a good approximation to assume W Gaussianly
distributed thanks to the central limit theorem. This is true in this case as N=n◦ of HD
subjects=9, M=n◦ of NC=12. (W-µ)/σ is therefore normally distributed with mean 0
and variance 1 and p-values can then be easily derived using (w-µ)/σ as test statistics.
In the considered case the Wilcoxon rank-sum test was performed at each pixel under
the alternative hypothesis that the mean x of HD BPs was greater than the mean y of
NC BPs. A threshold of 0.01 was employed to declare ”activation”, as before.

4.9.2 Sensitivity and specificity

It is essential, when considering a certain estimation method, to analyze its ability to
classify correctly ill and healthy subjects in order to provide a reliable diagnosis. This
fact can be quantified through the use of the sensitivity Se and specificity Sp. In this
context Se can be defined as the ratio of the ill subjects correctly classified as ill to the
total number of ill subjects; analogously Sp is the ratio of the healthy subjects correctly
classified as healthy to the total number of healthy subjects. These indices are clearly
comprised between 0 and 1 and the closer they are to 1, the better the method is.
Basically one would like a method with a high sensitivity - a high ability to detect ill
subjects, and a high specificity -high probability to classify correctly healthy subjects.

Se and Sp were introduced considering the correct or incorrect classification of indi-
viduals. The same identical definitions hold for pixels and, in this context, Se and Sp
will be considered as applied to pixels, which were classified as ”ill” or ”healthy” on the
basis of statistical tests described above.

To assess both Se and Sp analysis was addressed to the putamen and the cerebellum.
Huntington’s disease is known to severely affect the striatum, of which putamen is

a part. The neuro-inflammatory response is clearly present also in other areas of the
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brain, but in the striatum the presence of a higher amount of activated microglia in HD
patients with respect to NC is a well-known fact. The implicit assumption that ALL
pixels of the putamen were ”ill” was made; the increase in the number of pixels classified
as such, therefore, was considered as an increase of specificity of the analyzed method.
The cerebellum was considered in order to study what happens in regions in which there
is, on average, a higher pattern of microglial activation in HD but with a lower extent
than in striatum.

To quantify Sp a one-sided t-test was performed for each pixel of putamen and
cerebellum: the comparison was made between each NC and the group made by the
other 11 NC. Under the implicit assumption that all pixels of NC are ”healthy”, and
should be classified as such, the number of ”active” pixels was employed to quantify
specificity: clearly the lower this number, the higher the specificity and the better the
algorithm were.

4.9.3 Results: sensitivity

Figures (4.10) and (4.11) display the percentage of active pixels (p lower than 0.01) of
cerebellum and putamen, for SRTMV and the 4 Bayesian approaches, determined using
a standard t-test and Wilcoxon rank-sum test, respectively.

The figures highlight a very significant fact: except for LRR, which, as usual, gave
results identical to those of SRTMV, the other Bayesian approaches yielded incredible
increases of sensitivity. The number of ”active” pixels in putamen, which as explained
before, can be considered as a reliable indicator of sensitivity, became more than 3
times, 5 times and 8 times respectively with NLRR3a, GTS, NLRR3b if compared to
SRTMV. Almost identical results were obtained when non-parametric Wilcoxon was
used. Similar trends were noticed for the cerebellum. The most relevant increase took
place when NLRR3b was employed; despite this fact, GTS emerged as the optimal
method. In fact, the high number of ”active” pixels detected in cerebellum by NLRR3b
was, at least in part, caused by false positives; GTS, besides, gave higher percentage
of active pixels for putamen with both tests, whereas NLRR3b gave results of difficult
interpretation (cerebellum more active than putamen) when Wilcoxon rank-sum test
was employed.

4.9.4 Results: specificity

Table (4.1) contains the percentage of pixels in the cerebellum classified as ”ill” for each
NC computed through a one-tailed t-test. At every pixel, each NC BP was compared
to the group made by the other 11 NC: under the assumption that all pixels of NC
are ”healthy”, and should be classified as such, low numbers are indicators of good
performances in terms of specificity. As usual LRR gave results almost identical to
those of the standard SRTMV; apart the anomalous behaviour of NC12 -all methods
gave more than 10% of ”ill” pixels according to the described criterion for this subject-
GTS and, especially, the two versions of NLRR gave a remarkable increase of specificity
which is evident from the reduced number of pixels classified as ”ill”.
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Figure 4.10: Percentage of active pixels (p lower than 0.01) are displayed for cerebellum
and putamen for SRTMV and the 4 Bayesian approaches. T-test was used to compute
p-values.
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Figure 4.11: Percentage of active pixels (p lower than 0.01) are displayed for cerebellum
and putamen for SRTMV and the 4 Bayesian approaches. Wilcoxon rank-sum test was
used to compute p-values.
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SRTMV NLRR3a NLRR3b LRR GTS

NC1 1.83 0 0.08 1.79 0.05
NC2 3.41 0.62 1.43 2.84 5.32
NC3 2.54 1.95 0.32 2.49 0.39
NC4 2.26 0 0.06 2.33 0.1
NC5 1.28 0 0.01 1.58 0.05
NC6 1.76 0 0.04 2.06 0.13
NC7 1.37 0.15 0.17 1.53 0.19
NC8 4.6 7.08 1.70 4.73 0.74
NC9 3.07 0.08 2.29 3.02 0.51
NC10 4.73 0 0.04 4.72 0.39
NC11 7.13 4.85 0.81 6.92 8.81
NC12 11.51 22.55 24.35 10.19 22.81

Table 4.1: Percentage of pixels in the cerebellum classified as ”ill” for each NC computed
through a one-tailed t-test. Low number are indicators of good performances.
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4.10 Summary of main results on [11C]-(R)-PK11195

The analysis of a real rich [11C]-(R)-PK11195 data set comprising subjects suffering from
Huntington’s disease HD and age-matched normal controls NC showed how RR and GTS
yielded parametric maps much more regular at visual inspection with respect to SRTMV,
which is SRTM modified to include the vascular components. NLRR was implemented
in two different versions. Clusterization of an appropriate slice, followed by CRM was
employed to compute priors in NLRR3a; in NLRR3b clusterization was combined to
the use of the anatomical atlas to assign to pixels of a specific ROI the parameters of
that ROI as prior. Ridge regression was employed also in a version linearized through
the application of the basis function method. GTS was applied separately to each
kinetic parameter, with variance estimates obtained applying the linear transfer model
to the preliminary SRTMV estimates. In this way a different number of iterations was
employed for each parameter to satisfy the 1%-90% criterion, according to the idea that
a poorly estimated parameter requires more iterations to stabilize.

Maps obtained with any Bayesian method were, as expected, more regular at visual
inspection than SRTMV maps. LRR maps were the most similar to original SRTMV
maps and seemed to have obtained from SRTMV maps through a process of smoothing.
In NLRR3b and GTS maps the employment of the anatomical information of the atlas
could clearly be seen. The structure of the cerebellum, for instance, could be easily
singled out from any parametric map, and especially from BP and Vb maps. The possi-
bility to single out anatomical structures from parametric maps clearly depended on the
parameter and slice considered. Vb maps were those which were modified the most by
the application of Bayesian approaches: the reason is that these were the noisiest and
least regular maps.

Analysis of the correlation between BPs estimated with SRTMV, on one side, and
BPs computed with the various Bayesian methods, on the other, showed once again
that LRR gave BPs very well correlated to SRTMV whereas NLRR methods corrected
for negative or unreasonably high BPs, despite showing a certain tendency of underesti-
mating high BPs. GTS provided the best results, correcting for non-physiological values
without underestimating too much high BP values and keeping the middle values sub-
stantially unchanged. The standard deviation of BPs distribution within a given ROI,
besides, was dramatically reduced when NLRR approaches and GTS were analyzed.

Voxel-wise differentiation between healthy and ill subjects remarkably increased
when NLRR and GTS were applied, which is a very positive fact from a diagnostic
point of view. Analysis was focused on putamen, a region in which it is known HD
patients have a higher level of activated microglia and in which, consequently, a higher
level of [11C]-(R)-PK11195 binding is present. In fact, in this region the increment of
voxel-wise statistical difference is an equivocal sign of good performance, while in other
ROIs this may be related to an increase of the so-called false positives (voxels which
are not ”active” but which are recognized as such). The number of ”active” pixels in
putamen, which as explained before, can be considered as a reliable indicator of sen-
sitivity, became more than 3 times, 5 times and 8 times respectively with NLRR3a,
GTS, NLRR3b if compared to SRTMV. Almost identical results were obtained when
non-parametric Wilcoxon was used and similar trends were noticed for the cerebellum.
The most relevant increase took place when NLRR3b was employed; despite this fact,
GTS emerged as the optimal method. In fact, the high number of ”active” pixels de-
tected in cerebellum by NLRR3b was, at least in part, caused by false positives; GTS,
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besides, gave higher percentage of active pixels for putamen with both tests, whereas
NLRR3b gave results of difficult interpretation (cerebellum more active than putamen)
when Wilcoxon rank-sum test was employed. The increase of sensitivity, fortunately,
was not followed by a decrease of specificity.

4.11 Discussion

After testing Ridge Regression RR and GTS on simulated data, in this chapter perfor-
mances of these methods on real data were assessed.

First, an interesting application of NLRR to the 5K model applied to a [18F]FDG
data set was presented. NLRR allowed to compute parameter estimates which could not
be obtained at all when pixel TACs only were employed, because parameter identification
failed to converge. Quality of parametric maps, however, varied according to the kinetic
parameter.

The analysis of the [11C]-(R)-PK11195 data set yielded, as main outcome, that
voxel-wise differentiation between healthy and ill subjects remarkably increased when
NLRR and GTS were applied. The reason is that Bayesian methods have an impact
on parametric maps similar to that of smoothing, which is known to increase statistical
difference due to the augmented level of regularity. In fact, smoothing is commonly
performed before the application of t-test or non-parametric tests at voxel level to in-
crease statistical power; the level of smoothing, however, is totally arbitrary leading to
increases of sensitivity which are consequently highly dependent on the level of smooth-
ing. The application of GTS and NLRR eliminates this element of arbitrarity, leading
at the same time to the desired increase of sensitivity.

The analysis described in this chapter showed how LRR was the least invasive
Bayesian approach, as all indices computed from LRR maps were similar to those of
the original maps. NLRR methods yielded in general good performances, but some-
times their results were of difficult interpretation. GTS globally emerged as the optimal
approach: parametric maps appeared smoother and characterized by anatomical in-
formation, non-physiological values were corrected while good correlation with original
estimates was conserved, and, in the end, a significant and regular increase of sensitivity
was noticed. GTS, therefore, outclassed NLRR procedures mainly in that it provided
more robust results. The only drawback of GTS, in this context, was that pixels which
were not assigned by the atlas to a specific ROI were left unchanged by the algorithm.

The anatomical atlas was heavily used to implement GTS and NLRR3b. What
if this information can not be used? The MRI of the scanned subject, for instance,
may not be available, or, if high resolution scanners are used, one may not want to
perform normalization in order not to lose precious spatial resolution. In this case
NLRR3a, with priors derived from clusters’ TACs can be used instead of NLRR3b. The
segmentation of each slice into a certain number of more homogeneous ”populations”
before the application of GTS is, on the other side, the advised preliminary step before
the application of population approaches. In this case, clearly, no anatomical information
will be present in final parametric maps, and results, in general, will depend, at least
partially, on the parameter considered and number of clusters used.
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CONCLUSIONS

The generation of parametric maps is an important step in the analysis of dynamic
PET data. Pixel-by-pixel maps allow, for instance, to single out pathological areas
which may not be characterized if ROI analysis only is performed. This happens be-
cause at ROI level only the mean of pixel TACs is considered, and therefore differences
due to abnormal conditions may cancel out, or at least be significantly attenuated, when
averaging the TACs of pixels of a given ROI. ROI analysis, besides, requires to define
a-priori the set of anatomical regions to be analyzed; it may happen that a patholog-
ical event (a lesion, an occlusion, the presence of a small tumoral mass) is located in
areas outside those comprised in the analysis. Parametric maps, in conclusion, are of
paramount importance for their ability to locate regions characterized by pathological
or abnormal conditions.

Analysis at pixel level, on the other side, is inevitably associated to a high compu-
tational cost; with the performance of current computers and with the development of
ad-hoc algorithms (Basis Function Method, Generalized Linear Least Squares), however,
this issue seldom constitutes a problem.

A harder challenge is posed by the high noise of pixel TACs which may give rise to
unreliable or non-physiological values for the resulting kinetic parameters. To address
this issue Bayesian approaches can be used successfully. Ridge regression (RR) has
been the only method proposed in PET to overcome this problem in a Bayesian frame-
work. In this thesis a comprehensive comparison between ridge regression methods was
performed, which was never done in the past. Besides, several new Non Linear Ridge
Regression algorithms based on linearization of the non linear problem and/or on the
use of cluster analysis to compute priors were proposed and systematically compared to
each other. In addition, a novel Two-Stage algorithm (GTS) was proposed and applied
for the first time to PET parametric imaging. The most appealing feature of GTS is the
fact that it can be employed with any tracer and model and has therefore a very wide
range of applicability. The method has also a low computational cost which makes it
suitable for the application to parametric imaging, even with the current high resolution
scanners, for which the number of pixels can reach the number of one million.

Chapters 2 and 3 showed through the use of simulated data that RR and GTS
always give rise to the decreases of Root Mean Square Error leaving BIAS substantially
unchanged or even reducing it. The improvements may range to low -if the original maps
are already of good quality- to very relevant; in any case, no decrease of performances
was ever noticed in terms of BIAS and RMSE.

In contrast with linear ridge regression, for which one and only one robust algorithm
is available, several versions of non-linear ridge regression were tested. The approach
which was selected as the optimal requires to compute priors at pixel level from the
preliminary fit of the kinetic model of interest to cluster TACs. In real application to
normalized 3D images, clusterization can be combined by the use of anatomical atlases
which can be employed to associate to most pixels the parameters of the ROI they
belong to.

GTS has two user-dependent settings which can strongly influence final results. Per-
formances of GTS didn’t show to be significantly dependent on the method employed
to stop iterations; in any case, the criterion to end when the relative difference of the
parameter of interest was lower than 1% for at least 90% of the individuals in the con-
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sidered population proved to be quite robust in every situation tested. Results, on the
other side, appeared to be more dependent on the segmentation technique employed. If
the image is normalized, stereotaxic atlases can be employed to create sub-populations
made of pixels belonging to the same ROI; in this way, besides, anatomical information
is incorporated into parametric maps. Sometimes, however, normalization can not be
performed because no MRI is available or because this would cause an unwanted loss of
spatial resolution if the image was acquired on a high-resolution scanner. In this case a
segmentation of each slice of the image into a small number of clusters, performed on
the basis of the parameter(s) of interest, is a good alternative solution which allows to
perform GTS on populations relatively homogeneous.

Analysis of a real rich [11C]-(R)-PK11195 data set showed how RR and GTS yielded
parametric maps much more regular at visual inspection with respect to SRTMV, which
is SRTM modified to include the vascular components. This was totally expected as
Bayesian approaches have a regularizing effect. Linear ridge regression maps significantly
resembled original SRTMV maps, showing a higher degree of smoothness. Non-Linear
Ridge Regression and GTS maps, on the other side, were remarkably different from
original maps. Differences were evident not only in the spatial distribution of kinetic
parameters but also in terms of their numerical values: negative or unreasonably high
values of binding potentials, for instance, were corrected by the application of these
algorithms, even though a certain tendency of underestimating high BPs was noticed.

An important outcome was that voxel-wise differentiation between healthy and ill
subjects increased of 3 to 6 times when applying NLRR and GTS, which is a positive fact
from a diagnostic point of view. The reason is that Bayesian methods have an impact
on parametric maps similar to that of smoothing, which is known to increase statistical
difference due to the increased level of regularity. In this context focus was put on
putamen, as in Huntington’s disease it is well-known that this a region severely affected
by the disease and therefore increase of statistical differences in this ROI was considered
as an unequivocal sing of increased sensitivity. Fortunately no decrease of specificity
took place, making these approaches optimal candidates when interest is addressed in
diagnosis from parametric maps.

The comparison between RR and GTS on the basis of RMSE showed that sometimes
GTS performed slightly better and sometimes the contrary happened; in any case dif-
ferences were never relevant. From the analysis of [11C]-(R)-PK11195 GTS, in general,
emerged as the most powerful tool yielding attractive final maps which incorporated
the a-priori anatomical information and providing results which appeared more robust
than NLRR results. The application of GTS, however, can be sometimes risky as wrong
choices regarding the construction of populations may lead to unreliable final parametric
maps.

The conclusion is that the application of ridge regression or of GTS is a powerful
tool for improving PET parametric maps. These methods can be employed with any
tracer and model, and are therefore very appealing for their wide range of applicability.
The amount of improvement significantly depends on the tracer, model, noise level,
estimation method: the general simple principle is that, within reasonable limits, the
worst the initial estimates are, the higher the improvement is.
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