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Introduction

Thesis Outline

This thesis presents several results pertaining two rather distinct research
topics within the broader area of the so-called “Switched Systems”.

The first part of the work features a deep investigation of the structural
properties, namely reachability and zero-controllability, of “Positive Switched
Systems”, both for the discrete-time and the continuous-time case.

All the notation relative to this contribution is defined in Chapter 1.

Together with considerations on the motivational aspect, in Chapter 2,
the familiar concepts of reachability and zero-controllability are properly de-
fined within the context of positive switched systems.

Then, several results are presented, first dealing with the discrete-time
case, and subsequently addressing the continuous-time one.

More specifically, in Chapter 3, the zero-controllability of a discrete-time
positive switched system is proved to be equivalent to the mortality property
of the set of system matrices; some sufficient conditions for this property
to hold are then provided, together with an algorithm designed to find the
correct switching sequence, if any, which is needed to drive any positive state
vector to the zero vector.

In Chapter 4 the reachability issue for discrete-time positive switched
systems is addressed. First, the problem is restated into a geometric form,
then the property of monomial reachability, known to be equivalent to the
reachability for standard (meaning non-switched) positive systems, but only
necessary in our setting, is fully explored and characterized.

All the chapters from 5 to 8 tackle with the continuous-time case.

In particular, in Chapter 5 the possibility for a continuous-time positive
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switched system to be zero-controllable is ruled out.

The reachability issue is first addressed in Chapter 6 where, similarly
to the discrete-time case, we investigate the monomial as well as the pat-
tern reachability property, which represent two necessary conditions for the
general reachability of the system. Then, in Chapter 7, a useful sufficient
condition for the reachability is provided; a geometric equivalent description
of a reachable system is also introduced. Finally, further contributions to the
problem of finding conditions ensuring the reachability of a continuous-time
positive switched system are presented in Chapter 8, where the useful con-
cept of asymptotic exponential cone of a Metzler matrix (an ordered set of
Metzler matrices) is first defined and then fully characterized.

Results pertaining to a different stream of research 1 are included in the
chapters 9 and 10.

More specifically, in Chapter 9 the case when a traditional Linear Time
Invariant plant is controlled by a switching multicontroller whose transfer
function may commute among different ones, each of them stabilizing the
system, is considered. In particular, we focus our interest on the design of
the function, called Reset Map, ruling the update of the multicontroller state
vector at every switching time. It turns out that a proper choice of it may
deeply improve the controlled system transient behaviour.

The application of the same principles is then suggested in Chapter 10 in
the context of non-switching reset controllers. The result presented within
this chapter represents a substantial enhancement with respect to the tra-
ditional approach which is known in the literature under the name of Reset
Control Strategy.

The Appendix, besides a series of technical results which are preliminary
to those presented in this thesis, features an extensive contribution to the
study of the exponential of a Metzler matrix. This topic has been initially ad-
dressed as a mathematical mean for solving certain specific problems within
the setting of positive switched systems. Indeed, the analysis of reachabil-
ity property for continuous-time positive switched systems requires a deep
knowledge of the behaviour of these exponential matrices. For this reason,
we decided to include the results in the Appendix. However, we believe that
they deserve some interest by themselves, as their significance and extension
exceed by far what we needed for their initial application.

1The material included in these chapters comes from a joint work with Prof. J.P.
Hespanha, University of California at Santa Barbara, USA.



Introduzione

Contenuto della tesi

Questa tesi contiene alcuni risultati riguardanti due distinti argomenti di
ricerca, entrambi collocabili all’interno della vasta area di studio inerente ai
cosiddetti “sistemi a commutazione”.

La prima parte di questo lavoro rappresenta un’approfondito studio delle
proprietà strutturali, ovvero raggiungibilità e contrallabilità a zero, dei “sis-
temi positivi a commutazione”, sia nel contesto di sistemi a tempo discreto
sia in quello di sistemi a tempo continuo.

La notazione utilizzata in questo contributo è esaurientemente definita
nel Capitolo 1.

Assieme a considerazioni di natura motivazionale, nel Capitolo 2 ven-
gono definiti i familiari concetti di raggiungibilità e controllabilità a zero nel
contesto dei sistemi positivi a commutazione.

Nel proseguo della tesi sono raccolti vari risultati, dapprima relativi al
caso dei sistemi a tempo discreto, e quindi di quelli a tempo continuo.

Più specificatamente, nel Capitolo 3, viene provata l’equivalenza tra la
controllabilità a zero dei sistemi positivi a commutazione a tempo discreto e
la nota proprietà di mortalità dell’insieme delle matrici di sistema; vengono
poi fornite alcune condizioni sufficenti per la controlabilità di tali modelli
matematici, assieme ad un algoritmo in grado di individuare la corretta se-
quenza di commutazione, qualora essa esista, che è necessaria per condurre
ogni vettore di stato positivo allo stato finale nullo.

Nel Capitolo 4 viene affrontata la questione relativa alla raggiungibilità
dei sistemi positivi a commutazione a tempo discreto. Inizialmente, il prob-
lema viene riformulato in un contesto puramente geometrico, quindi viene
dettagliatamente esplorata la proprietà della cosiddetta “raggiugilità mono-
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mia”, equivalente alla “raggiungiblità” semplice per i sistemi positivi stan-
dard (ovvero non a commutazione), condizione semplicemente necessaria nel
nostro contesto.

I Capitoli dal 5 al 8 sono dedicati allo studio dei sistemi a tempo continuo.

In particolare, nel Capitolo 5 si dimostra come un sistema positivo a
commutazione a tempo continuo non possa mai risultare controllabile a zero.

La questione della raggiungibilità è inizialmente affrontata nel Capitolo
6 dove, come nel caso discreto, vengono approfondite le proprietà di rag-
giungiblità monomia e di pattern, che assieme rappresentano due condizioni
necessarie per la raggiungibilità generale del sistema. Successivamente, nel
Capitolo 7, viene ricavata una utile condizione sufficiente per la raggiungi-
bilità, ed infine viene fornita in termini puramente geometrici una caratter-
izzazione equivalente di un sistema raggiungibile. In ultima analisi, ulterori
contributi alla soluzione del problema di trovare condizioni che assicurino la
raggiungibilità dei sistemi positivi a commutazione a tempo continuo vengono
illustrati nel Capitolo 8, dove vengono definiti e completamente caratterizzati
gli utili concetti di cono esponenziale asintotico di una matrice di Metzler (di
un insieme ordinato di matrici di Metzler).

Nei capitoli 9 e 10 vengono invece presentati i risultati ottenuti in un
diverso contesto di ricerca 2

Con più precisione, nel Capitolo 9 viene contemplato il caso di un tradizionale
sistema Lineare Tempo-Invariantethe che viene controllato da un multicon-
trollore a commutazione, la cui funzione di trasferimento può variare tra
quella di diversi modelli, ciascuno dei quali risulti stabilizzante per il dato
sistema. In particolare, ci siamo concentrati sulla scelta della funzione,
detta funzione di aggiornamento, che controlla l’aggiornamento del vettore
di stato del multicontrollore ad ogni istante di commutazione. La nostra
ricerca mostra chiaramente come un’accurata scelta di tale oggetto matem-
atico possa influenzare in maniera importante il comportamento in regime
transitorio del sistema controllato.

Gli stessi principi vengono poi applicati nel Capitolo 10 al contesto dei sis-
temi non a commutazione. I risultati presentati costituiscono un sostanziale
progresso rispetto all’approccio tradizionalmente conosciuto in letteratura
come Controllo a reset.

L’Appendice, oltre a contenere una serie di risultati tecnici preliminari

2Il materiale incluso in questi capitoli è frutto di un lavoro condotto assieme al Prof.
J.P. Hespanha, presso l’Università della California, Santa Barbara, USA.
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a quelli illustrati nella tesi, è anche arricchita da un esauriente contrib-
uto relativo allo studio della forma esponenziale di una matrice di Metzler.
L’argomento è stato inizialmente affrontato in quanto strumento matematico
atto a risolvere specifici problemi nel contesto dei sistemi positivi a commu-
tazione a tempo continuo, particolarmente nello studio della raggiungibilità.
Per tale ragione, abbiamo deciso di includere questi risultati nell’Appendice.
Va notato d’altronde come la generalità dei contributi presentati vada ben
oltre la semplice applicazione al caso in esame nel presente lavoro.





Chapter 1

Notation

Before starting, we introduce here some useful notation.

For every k ∈ N, we set 〈k〉 := {1, 2, . . . , k}. In the sequel, the (i, j)th
entry of some matrix A is denoted by [A]i,j. If A is block partitioned, we
denote its (i, j)th block either by block(i,j)[A] or by Aij. In the special case
of a vector v, its ith entry is [v]i and its ith block is blocki[v]. Given a block
partitioned matrix A with blocks Aij, i, j ∈ 〈ℓ〉, for every i and j with i ≤ j,
we will denote by A{i,j} the following submatrix of A:

A{i,j} :=











Aii Ai,i+1 . . . Aij

Ai+1,i Ai+1,i+1, . . . Ai+1,j

...
. . .

...
Aji . . . . . . Ajj











. (1.1)

Given an ordered set of real numbers {λ1, λ2, . . . , λn}, we define

diag(λ1, . . . , λn) :=











λ1 0 . . . 0
0 λ2 0
...

...
0 . . . 0 λn











.

Given a matrix A ∈ Rq×r, by the zero pattern of A we mean the set of
index pairs corresponding to its zero entries, namely

ZP(A) := {(i, j) : [A]i,j = 0}.
For a column vector v (corresponding to r = 1), the zero pattern is accord-
ingly defined as

ZP(v) := {i : [v]i = 0}.
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Conversely, the nonzero pattern is the set of indices corresponding to the non-
zero entries of a matrix A (a vector v) and it is denoted by ZP(A) (ZP(v)).

If v is an n-dimensional vector and S = {i1, i2, . . . , ir}, with i1 < i2 <

· · · < ir, is a subset of {1, 2, . . . , n}, we denote by vS the r-dimensional
vector such that [vS ]k = [v]ik , k = 1, 2, . . . , r, namely the restriction of v to
the entries with indices in S. Moreover, PS ∈ Rn×r is the selection matrix
which singles out the columns indexed on S, such that vS = P T

S v.

We let ei denote the ith vector of the canonical basis in Rn (where n is
always clear from the context), whose entries are all zero except for the ith
one which is unitary. We say that a vector v ∈ Rn is an i-monomial vector
if it has the same nonzero pattern as ei, namely ZP(v) = ZP(ei) = {i}. To
every subset S of {1, 2, . . . , n} we may associate the nonnegative vector

eS :=
∑

i∈S

ei,

which is the only vector having non-zero pattern equal to S and whose non-
zero entries are all unitary.

The symbol R+ denotes the semiring of nonnegative real numbers. By
a nonnegative matrix we mean a matrix whose entries are all nonnegative
and hence in R+. A nonnegative matrix A is typically denoted, for the sake
of compactness, by means of the notation A ≥ 0. If A ≥ 0 and at least
one entry is positive, A is a positive matrix1 (A > 0), while if all its entries
are positive it is a strictly positive matrix (A ≫ 0). The same notation is
adopted for nonnegative, positive and strictly positive vectors.

In our context, a monomial matrix is a nonsingular square nonnegative
matrix whose columns are (of course, distinct) monomial vectors. A mono-
mial matrix can always be seen as the product of a permutation matrix and
a diagonal matrix with positive diagonal entries. Also, we denote by 1̄ the
vector (whose size is clear from the context) with all entries equal to 1. The
spectral radius of a positive matrix A is defined as the modulus of its largest
eigenvalue, and denoted by ρ(A). The Perron-Frobenius Theorem [4, 10, 37]
ensures that ρ(A) is always an eigenvalue of A+, corresponding to a positive
eigenvector.

1In the literature, see, e.g., [26, 47], positive matrices have also been referred to as
semi-positive matrices, while strictly positive matrices as positive matrices.
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Definition 1.1 Given a matrix function M(t), t ∈ R+, (in particular, a
vector function) taking values in R

k×p
+ , a real number λ and a nonnegative

integer m, we say that M(t) has the pseudo-exponential growth rate (λ,m)
if there exists a strictly positive matrix M∞ ∈ R

k×p
+ such that

lim
t→+∞

M(t)

eλt tm

m!

= M∞.

When so, we write M(t) ∼ eλt tm

m!
.

A Metzler matrix is a real square matrix, whose off-diagonal entries are
nonnegative. If A is an n×n Metzler matrix, then there exist a nonnegative
matrix A+ ∈ Rn×n

+ and a nonnegative number α such that A = A+ − αIn.
As a consequence, the spectrum of A, σ(A), is obtained from the spectrum
of A+ by simple translation. This ensures, in particular, that [48]:

• λmax(A) = ρ(A+) − α ∈ σ(A) is a real dominant eigenvalue, by this
meaning that λmax(A) > Re(λ),∀ λ ∈ σ(A), λ 6= λmax(A);

• there exists a nonnegative eigenvector v1 corresponding to λmax(A).

To every n×nMetzler matrix A we associate [10, 47] a directed graph G(A)
of order n, with vertices indexed by 1, 2, . . . , n. There is an arc (j, i) from j

to i if and only if [A]ij 6= 0. We say that vertex i is accessible from j if there
exists a path (i.e., a sequence of adjacent arcs (j, i1), (i1, i2), . . . , (ik−1, i)) in
G(A) from j to i (equivalently, ∃ k ∈ N such that [Ak]ij 6= 0). Two distinct
vertices i and j are said to communicate if each of them is accessible from
the other. Each vertex is assumed to communicate with itself. The concept
of communicating vertices allows to partition the set of vertices 〈n〉 into
communicating classes, say C1, C2, . . . , Cℓ. Given an index i ∈ {1, . . . , n}, we
let C(i) be the index of the irreducibility class the vertex i belongs to (w.r.t.
the directed graph G(A)). A directed graph G(A) is strongly connected if it
consists of a single communicating class.

The reduced graph R(A) [47] associated withA (with G(A)) is the (acyclic)
graph having the classes C1, C2, . . . , Cℓ as vertices. There is an arc (j, i) from
Cj to Ci if and only if block(i,j)[A] 6= 0. With any class Ci we associate two
index sets:

A(Ci) := {j : the class Cj has access to the class Ci}
D(Ci) := {j : the class Cj is accessible from the class Ci}.
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Each class Ci is assumed to have access to itself. Any (acyclic) path (i1, i2),
(i2, i3), . . . , (ik−1, ik) in R(A) identifies a chain of classes (Ci1 , Ci2 , . . . , Cik),
having Ci1 as initial class and Cik as final class.

An n×nMetzler matrix A is reducible if there exists a permutation matrix
P such that

P TAP =

[

A11 A12

0 A22

]

,

where A11 and A22 are square (nonvacuous) matrices, otherwise it is irre-
ducible. It follows that 1 × 1 matrices are always irreducible. In general,
given a square Metzler matrix A, a permutation matrix P can be found such
that

P TAP =











A11 A12 . . . A1ℓ

A22 . . . A2ℓ

. . .
...
Aℓℓ











, (1.2)

where each Aii is irreducible. (1.2) is usually known as Frobenius normal form
ofA [37]. Clearly, the directed graphs G(A) and G(P TAP ) are isomorphic and
the irreducible matrices A11, A22, . . . , Aℓℓ correspond to the communicating
classes C1, C2, . . . , Cℓ of G(P TAP ) (coinciding with those of G(A), after a
suitable relabelling).

When dealing with the graph of a matrix in Frobenius normal form (1.2),
we will let Ci = {(n1+n2+· · ·+ni−1)+1, (n1+· · ·+ni−1)+2, . . . , (n1+· · ·+
ni−1)+ni} denote2 the ith communicating class of G(A), associated with Aii.
For every i ∈ 〈ℓ〉, A(Ci) ⊆ {i, i + 1, . . . , ℓ}, while D(Ci) ⊆ {1, 2, . . . , i} = 〈i〉,
so that A(Ci) ∩ D(Ci) = {i}. On the other hand, if i > j then A(Ci) ∩
D(Cj) = ∅, while if i < j then A(Ci) ∩ D(Cj) 6= ∅ ⇔ i ∈ D(Cj) ⇔ j ∈
A(Ci). Also, a class Ci is initial if A(Ci) = {i}, and it is distinguished [47] if
λmax(Aii) > λmax(Ajj) for every j ∈ D(Ci), j 6= i. If A is irreducible (G(A)
has a single communicating class), then λmax(A) is a simple eigenvalue and
the corresponding nonnegative eigenvector v1 is strictly positive. Moreover,
the only nonnegative eigenvector or generalized eigenvector of A is v1 (and
its positive mutiples). The cyclicity index c(A) [4] of an irreducible matrix
A is the greatest common divisor of the lengths of the cycles in G(A). If
c(A) = 1, A is primitive.

We introduce a basis of eigenvectors and generalized eigenvectors of a
Metzler matrix A, whose nonzero patterns are related to the block-triangular

2We assume, by definition, n0 := 0.
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structure of the Frobenius normal form of A. Such a vector basis will be
rather useful for describing and investigating the asymptotic behavior of the
exponential matrix eAt.

Definition 1.2 Let A be an n×n Metzler matrix in Frobenius normal form
(1.2). An ordered family Be = {v1,v2, . . . ,vn} of linearly independent eigen-
vectors and generalized eigenvectors of A is said to be an echelon basis for A
if

• vj, j ∈ C1, are n1 (possibly generalized) eigenvectors with ZP(vj) ⊆ C1;

• vj, j ∈ C2, are n2 (possibly generalized) eigenvectors with ZP(vj) ⊆
C1 ∪ C2 and ZP(vj) ∩ C2 6= ∅;

• . . .

• vj, j ∈ Cℓ, are nℓ (possibly generalized) eigenvectors with ZP(vj) ⊆
C1 ∪ C2 ∪ · · · ∪ Cℓ and ZP(vj) ∩ Cℓ 6= ∅.

When so, we say that the vector vj ∈ Be corresponds to the class Ci if j ∈ Ci,
or, equivalently, blocki[vj] 6= 0 and blockh[vj] = 0 for every h > i.

Notice that if vj ∈ Be is a generalized eigenvector of A of order (also
called “height” [22, 23]) k corresponding to the class Ci and to the eigen-
value λ ∈ σ(A), then blocki[vj] is a generalized eigenvector of Aii (of course,
corresponding to the same eigenvalue λ, which thus must be in σ(Aii) and
possibly in the spectrum of some other diagonal block) of order not greater
than k.

Given a set of n-dimensional matrices A := {A1, A2, . . . , Ap}, positive
integers l, k ∈ Z+, with l ≤ k, and a sequence {σ(t)}t∈N with σ(t) ∈ 〈p〉, we
set

Aσ

∣

∣

k−1

l
:=

{

Aσ(k−1)Aσ(k−2) . . . Aσ(l), if l < k;

In, if l = k.

Clearly, for every nonnegative integer h such that l ≤ h ≤ k − 1, we have

Aσ

∣

∣

k−1

l
= Aσ

∣

∣

k−1

h+1
Aσ

∣

∣

h

l
.

If the matrices in A are n× n Metzler matrices, to every S ⊆ {1, . . . , n}
we associate the set IS := {i ∈ 〈p〉 : ZP(eAieS) = S}.
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Basic definitions and results about cones may be found, for instance, in
[4]. We recall here only those facts that will be used within this work. A set
K ⊂ Rn is said to be a cone if αK ⊂ K for all α ≥ 0; a cone is convex if it
contains, with any two points, the line segment between them. A convex cone
K is solid if the interior of K is nonempty, and it is pointed if K∩{−K} = {0}.
A closed, pointed, solid convex cone is called a proper cone. A cone K is
said to be polyhedral if it can be expressed as the set of nonnegative linear
combinations of a finite set of generating vectors. This amounts to saying
that a positive integer k and an n × k matrix C can be found, such that K
coincides with the set of nonnegative combinations of the columns of C. In
this case, we adopt the notation K := Cone(C). A proper polyhedral cone K
in Rn is said to be simplicial if it admits n linearly independent generating
vectors. In other words, K := Cone(C) for some nonsingular square matrix
C. When so, a vector v belongs to the boundary of the simplicial cone
K = Cone(C) if and only if v = Cu for some nonnegative vector u, with
ZP(u) 6= ∅.

To efficiently introduce our results, we also need some definitions bor-
rowed from the algebra of non-commutative polynomials [44]. Given the
alphabet Ξ = {ξ1, ξ2, . . . , ξp}, the free monoid Ξ∗ with base Ξ is the set of all
words w = ξi1ξi2 · · · ξik , k ∈ N, ξih ∈ Ξ. The integer k is called the length of w
and is denoted by |w|, while |w|i represents the number of occurencies of ξi
in w. If w̃ = ξj1ξj2 · · · ξjp

is another element of Ξ∗, the product is defined by
concatenation ww̃ = ξi1ξi2 · · · ξimξj1ξj2 · · · ξjp

. This produces a monoid with
ε = ∅, the empty word, as unit element. Clearly, |ww̃| = |w|+|w̃| and |ε| = 0.

C〈ξ1, ξ2, . . . , ξp〉 is the algebra of polynomials in the noncommuting in-
determinates ξ1, ξ2, . . . , ξp. For every family of p matrices in Cn×n, A :=
{A1, A2, . . . , Ap}, the map ψ defined on {ε, ξ1, ξ2, . . . , ξp} by the assignments
ψ(ε) = In and ψ(ξi) = Ai, i = 1, 2, . . . , p, uniquely extends to an algebra mor-
phism of C〈ξ1, ξ2, . . . , ξp〉 into Cn×n (as an example, ψ(ξ1ξ2) = A1A2 ∈ Cn×n).
If w is a word in Ξ∗ (i.e. a monic monomial in C〈ξ1, ξ2, . . . , ξp〉), the ψ-image
of w is denoted by w(A1, A2, . . . , Ap). Finally, w ∈ Ξ∗ is an annihilating word
for the matrix family A if w(A1, A2, . . . , Ap) = 0.



Chapter 2

Switched Positive Systems

Switched linear systems have attracted the interest of several scientists, in
the last ten years. Initially treated as special cases of the broader class of
hybrid systems, they have later gained complete autonomy and have been
the object of an in-depth analysis. While the first contributions were almost
exclusively concentrated on the stability and stabilizability properties [34,
55], nowadays several other issues have been investigated and, in particular,
structural properties, like reachability, controllability and observability have
been explored [20, 51, 54, 56].

Despite of the numerous research efforts, these issues still offer a quite
interesting set of open problems. Indeed, structural properties have found
a rather complete characterization for the class of continuous-time switched
systems and for the class of reversible discrete-time switched systems (by this
meaning that the system matrices of all the subsystems among which the
system commutes are nonsingular). The non-reversible discrete-time case,
however, still deserves investigation, since necessary and sufficient conditions
for reachability (and observability) have been provided only under certain
structural constraints (see, e.g., [16]). However, it must be pointed out that
some interesting properties of the controllable sets for (both reversible and
non-reversible) discrete-time switched systems have been investigated in the
pioneering works of Conner and Stanford [30, 31, 49].

Positive systems, on the other hand, are linear systems in which the
state variables are always positive, or at least nonnegative, in value. These
systems have received considerable attention in the literature, as they natu-
rally arise in various fields such as bioengineering (compartmental models),
economic modelling, behavioral science, and stochastic processes (Markov
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chains), where the state variables represent quantities that may not have
meaning unless nonnegative. The theory of positive systems [17] is deep and
elegant, and firmly built upon the classical positive matrix theory, which has
its cornerstone in the celebrated Perron-Frobenius theorem [4]. While in the
past the positivity constraint has often been ignored or accomodated in or-
der to take advantage of the well-developed theory of linear systems, in the
last two decades system issues have been addressed specifically for positive
systems, by taking advantage of the powerful tools coming out of positive
matrix theory and, even more, of graph theory. In particular, the analysis of
controllability and reachability properties of positive discrete-time systems
has been the object of a noteworthy interest [9, 13, 53].

Switched positive systems deserve investigation both for theoretical rea-
sons and for practical applications. Indeed, switching among different system
models naturally arises as a way to mathematically formalize the fact that the
system laws change under different operating conditions. This is true, e.g.,
when resorting to compartmental models; each of them may satisfactorily
capture the behavior of a physiological system only under specific working
conditions, so when these conditions change the system model has to switch
to a different structure. For instance, the insulin-sugar metabolism [11, 28]
is captured by two different compartmental models: one for the steady-state
and the other for describing the evolution under perturbed conditions (fol-
lowing an oral assumption or an intravenous injection).

Similarly, different positive systems, which arise when discretizing lin-
ear differential equations describing processes whose state variables are tem-
peratures, pressures, population levels, etc., may undergo different working
conditions and, consequently, switch among different mathematical models.

2.1 Continuous-time Positive Switched Sys-

tems

A continuous-time switched positive system is described by the following
equation

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t), t ∈ R+, (2.1)

where x(t) and u(t) denote the n-dimensional state variable and the m-
dimensional input1, respectively, at the time instant t, σ is a switching se-

1The extension of the current analysis to the case when the input size varies as σ(t)
varies within P is rather straightforward and does not affect at all the results presented
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quence, taking values in a finite set P = {1, 2, . . . , p}.
We assume that the switching sequence is piece-wise constant, and hence

in every time interval [0, t] there is a finite number of discontinuities, which
corresponds to a finite number of switching instants 0 = t0 < t1 < · · · < tk <

t. Also, we assume that, at the switching time tℓ, σ is right continuous. For
each i ∈ P, the pair (Ai, Bi) represents a continuous-time positive system,
which means that Ai is an n×nMetzler matrix andBi is an n×m nonnegative
matrix.

Given a time interval [0, t[ and a switching sequence σ : [0, t], correspond-
ing to a set of switching instants {t0, t1, . . . , tk} satisfying 0 = t0 < t1 <

· · · < tk < t, we first observe that the state at the time instant t, starting
from the initial condition x(0) and under the action of the soliciting input
u(τ), τ ∈ [0, t[, can be expressed as follows:

x(t) = eAik
(t−tk) . . . eAi0

(t1−t0)x(0)+

+eAik
(t−tk) . . . eAi1

(t2−t1)

∫ t1

t0

eAi0
(t1−τ)Bi0u(τ)dτ+

+eAik
(t−tk) . . . eAi2

(t3−t2)

∫ t2

t1

eAi1
(t2−τ)Bi1u(τ)dτ+

+ . . .+

∫ t

tk

eAik
(t−τ)Biku(τ)dτ,

(2.2)

where iℓ = σ(tℓ), ℓ = 0, 1, . . . , k.

The definitions of controllability and reachability for switched positive
systems may be given by suitably adjusting the analogous definitions given
in [20, 51], in order to introduce the nonnegativity constraint on the state
and input variables.

Definition 2.1 A state xf ∈ Rn
+ is said to be (positively) reachable if there

exist some time instant tf > 0, a switching sequence σ : [0, tf ] → P and
an input u : [0, tf ] → Rm

+ that lead the state trajectory from x(0) = 0 to
x(tf ) = xf .

A switched positive system is said to be (positively) reachable if every state
xf ∈ Rn

+ is (positively) reachable.

In the sequel, we will omit the specification “positively”, since it is clear
that we will steadily work under this assumption.

in this paper.
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Definition 2.2 A state x0 ∈ Rn
+ is said to be zero controllable if there exist

some time instant tf > 0, a switching sequence σ : [0, tf ] → P and an input
u : [0, tf ] → Rm

+ that lead the state trajectory from x(0) = x0 to x(tf ) = 0.

A switched positive system is said to be zero controllable if every state
x0 ∈ Rn

+ is zero controllable.

2.2 Discrete-time Positive Switched Systems

A discrete-time positive switched system is described by a first-order differ-
ence equation of the following type:

x(t+ 1) = Aσ(t)x(t) +Bσ(t)u(t), t ∈ Z+, (2.3)

where x(t) and u(t) denote the n-dimensional state variable and the m-
dimensional input variable, respectively, at the time instant t, while σ is
a switching sequence, defined on Z+ and taking values in a finite set P =
{1, 2, . . . , p}. For each i ∈ P, the pair (Ai, Bi) represents a discrete-time
positive system, which means that Ai ∈ Rn×n

+ and Bi ∈ Rn×m
+ .

The definitions of controllability and reachability for discrete-time pos-
itive switched systems may be given by suitably adjusting the analogous
definitions given in [20, 56], in order to introduce the nonnegativity con-
straint on the state and input variables. As for continuous-time systems, in
the sequel, the specification “positively” will be omitted.

Definition 2.3 A state xf ∈ Rn
+ is said to be reachable at time k ∈ N if

there exist a switching sequence σ : [0, k − 1] → P and an input sequence
u : [0, k− 1] → Rm

+ that lead the state trajectory from x(0) = 0 to x(k) = xf .
System (2.3) is said to be reachable if every state xf ∈ Rn

+ is reachable at
some time instant k.

Definition 2.4 A state x0 ∈ Rn
+ is said to be zero controllable at time k ∈ N

if there exist a switching sequence σ : [0, k − 1] → P and an input sequence
u : [0, k − 1] → Rm

+ that lead the state from x(0) = x0 to x(k) = 0. System
(2.3) is said to be zero controllable if every state is zero controllable at some
time instant k.
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Since reachability and zero controllability properties always refer to a
finite time interval, focusing on the value of the state at the final instant
k, only the values of the switching sequence σ within [0, k − 1] are relevant.
So, we refer to the cardinality of the discrete time interval [0, k − 1] as to
the length of the switching sequence σ and we denote it by |σ| (in this case,
|σ| = k).

When reachability (zero controllability) property is ensured, a natural
goal one may want to pursue is that of determining the minimum number
of steps required to reach (to control to zero) every nonnegative state. This
leads to the definition of reachability (controllability) index.

Definition 2.5 Given a reachable (zero controllable) switched system (2.3),
we define its reachability index (controllability index) as

IR := sup
x∈Rn

+

min{k : x is reachable at time k} (2.4)

(IC := sup
x∈Rn

+

min{k : x is zero controllable at time k}). (2.5)

As we will see, while for zero controllable systems the index IC always
takes finite values, reachable systems can be found endowed with an infinite2

IR. This fact represents a significant difference with respect to both standard
switched systems and positive systems.

It is first convenient to provide the explicit expression of the state at any
time instant k ∈ N, starting from the initial condition x(0), under the effect
of the input sequence u(0), u(1), . . . , u(k− 1), and of the switching sequence
σ(0), σ(1), . . . , σ(k − 1). It turns out (see, for instance, [20]) that

x(k) = Aσ

∣

∣

k−1

0
x(0)+Aσ

∣

∣

k−1

1
Bσ(0)u(0)+Aσ

∣

∣

k−1

2
Bσ(1)u(1)+· · ·+Bσ(k−1)u(k−1).

(2.6)

2It is worthwhile to underline that even when IR is infinite, each single nonnegative
state can be reached in a finite number of steps. However, such a number of steps may be
arbitrarily high. This concept must not be confused with the weak reachability property
of positive systems [53], which allows to reach certain states only asymptotically.





Chapter 3

Zero Controllability of

Discrete-time Positive Switched

Systems

As for standard positive systems, the nonnegativity of the soliciting input
constrains the forced component of the state evolution in (2.6) to be nonneg-
ative. As a consequence, the goal of forcing to zero the nonnegative initial
state x(0) is by no means simplified by the use of a nonnegative input, and
either the free state evolution goes to zero in a finite number of steps, or
there is no way to control to zero the initial state.

3.1 Existence of an annihilating word

Differently from the standard positive case, where zero controllability is sim-
ply equivalent to the nilpotency of the system matrix [13, 53], when dealing
with switched systems we have some spare degree of freedom to exploit: the
switching sequence σ. Of course, if the system is zero controllable, each
nonnegative initial state may be controlled to zero in a minimum number of
steps, by choosing a switching sequence σ tailored to the specific state or,
more precisely, to its nonzero pattern. However, as shown in Proposition 3.1,
below, zero controllability property is equivalent to the existence of a single

switching sequence σ of length k such that Aσ

∣

∣

k−1

0
= 0. This amounts to

saying that some w ∈ Ξ∗ exists, with |w| = k, such that w is an annihilating
word for {A1, A2, . . . , Ap}, i.e. w(A1, A2, . . . , Ap) = 0.

In the literature, the existence of such an annihilating word is known
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as mortality of the set of matrices [6]. The problem of deciding whether a
certain set of matrices is mortal or not is known to be NP-complete, and an
approach for building an algorithm for the mortality problem for matrices
with nonnegative entries has been suggested in [5] (p. 286), where it is also
remarked that the problem can be reduced to the analogous one with boolean
entries.

Proposition 3.1 For the switched system (2.3), the following facts are
equivalent:

i) the system is zero controllable;

ii) there exists w ∈ Ξ∗ such that w(A1, A2, . . . , Ap) = 0n×n;

iii) there exists w̃ ∈ Ξ∗ such that w̃(A1, A2, . . . , Ap) is nilpotent.

Proof: i) ⇒ ii) If the system is zero controllable, then, in particular,
x(0) = 1̄ is zero controllable. Hence there exists a switching sequence σ

such that Aσ

∣

∣

k−1

0
1̄ = 0. But then, Aσ

∣

∣

k−1

0
= Aσ(k−1) . . . Aσ(1)Aσ(0) = 0, thus

proving ii).

ii) ⇒ i) and ii) ⇔ iii) are obvious.

It is worthwhile noticing that if w = ξi1ξi2 . . . ξim corresponds to a nilpo-
tent matrix then every word obtained from w by means of circular permu-
tation of its symbols, namely ξikξik+1

. . . . . . ξimξi1 . . . ξik−1
, with 1 < k ≤ m,

corresponds to a nilpotent matrix, too. This is due to the fact that if
(Ai1Ai2 . . . Aim)n = 0 then

(

AikAik+1
. . . AimAi1 . . . Aik−1

)n
= 0.

A set of necessary conditions for the existence of an annihilating word is
presented.

Proposition 3.2 If there exists some annihilating word w ∈ Ξ∗ and we let
I = {i1, i2, . . . , ir} be the set of distinct indices in P such that |w|i > 0, then

i) Ai1∗Ai2 ∗· · ·∗Air is nilpotent, where ∗ represents the Hadamard product
(entry by entry) of the r matrices;

ii) there is at least one index i ∈ I such that the matrix Ai has at least
one null column (one null row).
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Proof: Assume w.l.o.g. that all matrices Ai’s explicitly appear in
w(A1, A2, . . . , Ap), and hence I = P .

i) Let P be a permutation matrix that reduces the nonnegative matrix A :=
A1 ∗ A2 ∗ · · · ∗ Ap to Frobenius normal form, i.e.,

P TAP = (P TA1P ) ∗ (P TA2P ) ∗ . . . ∗ (P TApP ) =







Q1 ⋆ ⋆
. . . ⋆

Qr






,

where every diagonal block Qi is either 01×1 or irreducible. If A is not nilpo-
tent, then ∃ i such that Qi is nonzero and irreducible [53]. Let Ci be the
communicating class corresponding to Qi. Consider, now, the digraph as-
sociated with P TAP , and let h be an arbitrary vertex in Ci. By the irre-
ducibility of Qi (the strong connectedness of Ci), for every k > 0, there is
a path of length k in D(P TAP ), starting from vertex h and reaching some
other vertex h̃ in Ci. Since the arcs of this path belong to D(P TAiP ) for
every index i, this means that for every h ∈ Ci and every k > 0 we may find
a path of length k starting from h, consisting of arcs arbitrarily selected in
the various D(P TAiP ), and leading to some other vertex in Ci. But then,
∀w ∈ Ξ∗, the vector w(A1, . . . , Ap)eh has (at least) one nonzero entry corre-
sponding to some index h̃ corresponding to Qi, thus contradicting condition
w(A1, A2, . . . , Ap) = 0. As a consequence, A must be nilpotent.

ii) Notice, first, that if the ith column of BC, with B,C ∈ Rn×n
+ , is zero,

then either the ith column of C is zero, or B has at least one zero column.
So, if w(A1, . . . , Ap) is the zero matrix, and w = ξi1ξi2 . . . ξik , then either Ai1

or Ai2 . . . Aik has a zero column. So, by recursively applying this reasoning,
we show that there exists il ∈ I such that Ail has a zero column.

On the other hand, if BC = 0 then CTBT = 0, and the result applies
also to the rows.

3.2 Zero controllability algorithm

In this section, a “branch and bound” procedure, which allows to test whether
an annihilating word exists, is presented. This procedure proves to stop
within 2n steps. So, not only is the procedure computationally useful, but it
provides an upper bound on the index IC .
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In order to sketch a compact algorithm, we introduce the following defi-
nition.

Definition 3.3 Given A ∈ Rn×n
+ , the positive kernel of A is

ker+(A) :=
{

v ∈ Rn
+ : Av = 0

}

.

ker+(A) is a polyhedral (convex) cone generated by a subset of the canon-
ical basis. Indeed, upon setting I := {i ∈ {1, 2, . . . , n} : ei ∈ ker+(A)}, it
is easily seen that v =

∑n

i=1 vi ei ∈ Rn
+ belongs to ker+(A) if and only if

v =
∑

i∈I vi ei. So, ker+(A) may be uniquely associated to the index set I of
the canonical vectors which generate it. In the following, given a word w ∈
Ξ∗, we denote by Iw the index set corresponding to ker+(w(A1, A2, . . . , Ap)).
Clearly, w is an annihilating word if and only if Iw = {1, 2, . . . , n}. The
following lemma will be useful in the sequel.

Lemma 3.4 Let w1 and w2 be in Ξ∗. If Iw1 ⊆ Iw2, then Iw1w ⊆ Iw2w for
each w ∈ Ξ∗.

Proof: If Iw1 ⊆ Iw2 then ker+(w1(A1, . . . , Ap)) ⊆ ker+(w2(A1, . . . , Ap)),
and hence, for every matrix product w(A1, . . . , Ap) and every x ∈ Rn

+, con-
dition

w1(A1, . . . , Ap)w(A1, . . . , Ap)x = 0

implies
w2(A1, . . . , Ap)w(A1, . . . , Ap)x = 0.

This equivalently means that Iw1w ⊆ Iw2w.

Algorithm: The variables we deal with are the integer Length, the set
ActiveWords and, for each “active word” w ∈ Ξ∗ (namely, every element of
ActiveWords), the Index Set Iw of the associated positive kernel.

Step 1: Initialization. Set:

• Length:= 0.

• ActiveWords:={ε}, ε being the empty word, corresponding to the iden-
tity matrix In.

• The active word ε is associated with the index set I1 = ∅.
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Step 2: Analysis of the active words of maximum length. We define:

AWLength := ActiveWords ∩ {w ∈ Ξ∗ : |w| = Length}.

If AWLength = ∅, then the algorithm stops and no annihilating word exists.
Otherwise, ∀w ∈ AWLength introduce the p new words wξi, i = 1, . . . , p, and
their associated index set Iwξi

.
Step 3: Update of ActiveWords. Set Length := Length+ 1, and ordinately
consider every word w̃ = wξi with w ∈ AWLength−1. If Iw̃ coincides with
{

1, . . . , n
}

, the algorithm stops and w̃ is an annihilating word of length
Length. Otherwise, compare Iw̃ with the index sets of all active words. If
there exists an active word w such that Iw ⊇ Iw̃, then neglect w̃ and move to
the following word. If not, set ActiveWords := ActiveWords ∪ {w̃}. When
all words w̃ = wξi, with w ∈ AWLength−1, have been considered, go back to
step 2.

We want to show that the algorithm stops, providing an annihilating word
of minimum length, if any. To this end, observe that two conditions cause
the algorithm to stop:
Case 1: A word w̃ is found, associated with Iw̃ = {1, . . . , n}. If so, w̃ is
clearly an annihilating word of minimal length, as all words of smaller length
were not associated with that index set.
Case 2: There exists k ∈ Z+ such that all w ∈ AWk produce new words
w̃ = wξi with Iw̃ ⊆ Iŵ,∃ ŵ ∈ ActiveWords. In this case, it is not worth
further exploring the words of higher length, as, indeed, by Lemma 3.4, they
would be associated with positive kernels which could never be greater than
those already obtained, and hence could never coincide with Rn

+.

Finally, since the index sets Iw are all subsets of {1, 2, . . . , n}, the max-
imum number of distinct index sets we may encounter in this algorithm is
exactly 2n and the maximum value that the variable Length may achieve
is exactly 2n. This case occurs if and only if for every value of Length

there is only one active word, and the index set {1, . . . , n} is obtained for
Length = 2n − 1.

We provide, below, a simple example where the bound on IC is reached.

Example 3.5 Consider the positive system, switching among the following
subsystems:

(A1, B1) =

([

0 0
1 1

]

,

[

1
0

])

, (A2, B2) =

([

0 1
1 0

]

,

[

0
1

])

,



28 Zero Controllability of Discrete-time Systems

(A3, B3) =

([

0 1
0 1

]

,

[

0
1

])

.

It is a matter of simple computation to show that A3A2A1 = 0; more specifi-
cally in this case our algorithm produce Iε = ∅, I3 = {1}, I32 = {2} I321 =
{1, 2}. However every product involving only two matrices turns out to be
different from the null matrix, hence in this case IC = 3 = 22 − 1.



Chapter 4

Reachability of Discrete-time

Positive Switched Systems

4.1 Preliminary remarks and a sufficient con-

dition

It is immediately seen from eq. (2.6) that, when the initial condition x(0) is
zero and the input sequence u(·) is nonnegative, the state at the time instant
k belongs to the polyhedral cone generated by the (columns of the) matrices

Aσ

∣

∣

k−1

l
Bσ(l−1), as l ranges from 1 to k, namely to the cone generated by the

columns of the discrete-time reachability matrix associated with the switching
sequence σ of length k:

Rk(σ) :=
[

Bσ(k−1) Aσ

∣

∣

k−1

k−1
Bσ(k−2) . . . Aσ

∣

∣

k−1

2
Bσ(1) Aσ

∣

∣

k−1

1
Bσ(0)

]

.

When dealing with standard discrete-time switched systems, it has been
proved [20] that the system is reachable if and only if there exists a single
switching sequence σ (of length say k) such that Im (Rk(σ)) = Rn. For posi-
tive switched systems, instead, this represents an obvious sufficient condition
for reachability, but not a necessary one (see Example 4.2, below). Even the
weaker condition that there exists a finite number of switching sequences of
finite lengths, such that the union of the cones generated by the columns of
their reachability matrices covers the positive orthant, is only sufficient for
the system reachability (see Example 4.3, below).

Proposition 4.1 If there exist switching sequences σ1, σ2, . . . , σℓ (of lengths
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k1, k2, . . . , kℓ, respectively) such that
⋃ℓ

i=1 Cone (Rki
(σi)) = Rn

+, the switched
system (2.3) is reachable.

Example 4.2 Consider the positive system, switching among the following
subsystems:

(A1, B1) =

([

1 0
1 0

]

,

[

1
0

])

, (A2, B2) =

([

0 2
0 1

]

,

[

0
1

])

.

It is clearly seen that, upon setting σ1(0) = σ1(1) = 1, and σ2(0) = σ2(1) = 2,
we get

Cone (R2(σ1)) ∪ Cone (R2(σ2)) = Cone

([

1 1
0 1

])

∪ Cone

([

0 2
1 1

])

= R2
+.

Consequently, the system is reachable. However, every single switching se-
quence σ (of length k) corresponds to a reachability matrix Rk(σ) having
only one monomial column. Consequently, either e1 or e2 does not belong to
Cone (Rk(σ)), which thus can never coincide with R2

+.

Example 4.3 Consider the positive system, switching among the following
subsystems:

(A1, B1) =

([

0 0
0 0

]

,

[

1
0

])

, (A2, B2) =

([

1 1
0 1

]

,

[

0
1

])

.

It is clearly seen that every 1st monomial vector xf =
[

x1 0
]T
, x1 > 0, can be

reached in a single step, by setting σ1(0) = 1 (and u(0) = x1). On the other

hand, for every xf =
[

x1 x2

]T ≥ 0, with x2 > 0, there exists a sufficiently
large k ∈ Z+, k ≥ 2, such that

xf ∈ Cone

([

0 1 2 . . . k − 1
1 1 1 . . . 1

])

= Cone(Rk(σ2)),

where σ2(i) = 2, for every i ∈ [0, k − 1]. In particular, from equation (2.6)
together with the expression of Rk(σ2) we may deduce that x1(k) ≤ (k −
1)x2(k). Thus, xf can be reached in a minimum of k =

⌈

x1

x2

⌉

+ 1 steps. As
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a particular case, when x1 = 0 (hence k = 1) it is sufficient to set u0 = x2;
if k > 1, then xf can be reached by setting

u0 = x1

k−1
,

ui = 0, i = 1, 2, . . . , k − 2,
uk−1 = x2 − u0,

where the nonnegativity of uk−1 is ensured by the definition of k. So, xf can
be reached in k steps. This ensures that

R2
+ = Cone(R1(σ1))

⋃

(

∪+∞
k=0Cone(Rk(σ2))

)

,

and hence the system is reachable. However, since every nonnegative vector
in R2

+ which is not a 1-monomial vector can only be reached by steadily setting
the switching sequence to the value 2, we may deduce that:
1) for every finite k∈Z+, Cone(R1(σ1))∪Cone(Rk(σ2)) 6= R2

+, thus proving
that Proposition 4.1 gives only a sufficient condition;
2) there is no upper bound on supx∈R2

+
min{k : ∃ σ with |σ| = k s.t. x ∈

Cone(Rk(σ))} = IR. Consequently, the system is reachable, but IR is not
finite.

4.2 Monomial Reachability

We introduce here the following definition (extending the classical one given
for positive system, see for instance [13]).

Definition 4.4 The switched system (2.3) is said to be monomially reach-
able if every monomial vector αei ∈ Rn

+, α ∈ R+, α 6= 0, i = 1, 2, . . . , n, is
reachable.

While the reachability property for positive systems is equivalent to the
monomial reachability, for positive switched systems, instead, monomial
reachability is an obvious necessary condition, but it is not sufficient. This
is due to the fact that different monomial vectors can be reached by means
of different switching sequences. Monomial reachability is easily captured.
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Proposition 4.5 The switched system (2.3) is monomially reachable if and
only if there exists some positive integer N such that the discrete-time reach-
ability matrix in N steps

RN =
[

w(A1, . . . , Ap)B1 w(A1, . . . , Ap)B2 . . . w(A1, . . . , Ap)Bp

]

w∈Ξ∗

0≤|w|≤N−1

includes an n× n monomial submatrix.

Proof: Monomial reachability is equivalent to the possibility of reaching
every canonical vector ei, i = 1, 2, . . . , n. However, ei is reachable if and
only if there exist k ∈ Z+, a switching sequence σ : [0, k − 1] → P and a
nonnegative input sequence u(0), u(1), . . . , u(k− 1), such that (2.6) holds for
x(0) = 0 and x(k) = ei. Since each vector appearing in the right-hand side
of (2.6) is nonnegative, such an identity holds if and only if there exists ℓ

such that Aσ

∣

∣

k−1

ℓ
Bσ(ℓ−1)u(ℓ − 1) is an i-monomial vector. This, in turn, is

possible if and only if one of the columns of Aσ

∣

∣

k−1

ℓ
Bσ(ℓ−1) is an i-monomial.

So, there must be some wi ∈ Ξ∗ and ji ∈ P such that wi(A1, A2, . . . , Ap)Bji

has an i-monomial column. Since this applies to each i ∈ 〈n〉, the proposition
statement holds for N := maxi |wi| + 1.

As a further consequence of monomial reachability, we can obtain a new
necessary condition for the reachability of discrete-time systems.

Corollary 4.6 If the system (2.3) is monomially reachable (and hence, a
fortiori, if it is reachable), then the matrix [A1 A2 . . . Ap | B1 B2 . . . Bp]
has an n× n monomial submatrix.

Proof: If the system is reachable, for all i there exist wi ∈ Ξ∗ and ji ∈ P
such that wi(A1, A2, . . . , Ap)Bji

has an i-monomial column. So, if |wi| = 0
then Bji

includes an i-monomial vector, otherwise if wi = ξik . . . ξi1 , with
k ≥ 1, then Aik has an i-monomial column.

At this point a natural question arises: if the system is monomially reach-
able and we let N denote the minimum nonnegative integer such that RN

includes an n×n monomial matrix, what is the maximum value that N may
reach?
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If the system is monomially reachable, for every i ∈ 〈n〉, there exists a
matrix Bji

, a specific column b in Bji
, and some word w ∈ Ξ∗, such that

w(A1, . . . , Ap)b is an i-monomial vector. So, the problem can be equiva-
lently stated as: given an n-dimensional vector b ≥ 0 and n× n nonnegative
matrices, A1, A2, . . . , Ap, find an upper bound on the minimum length of the
word w ∈ Ξ∗ such that ZP(w(A1, . . . , Ap)b) = {i}, provided that such a word
exists.

For the sake of compactness, in the sequel we adopt the following short-

hand notation: given a switching sequence σ, we set bk := Aσ

∣

∣

k

1
b, for every

k ≥ 0.

Proposition 4.7 Let i be an element of 〈n〉. If for every word w ∈ Ξ∗, with
|w| ≤ 2n − 2, ZP(w(A1, . . . , Ap)b) 6= {i}, then ZP(w(A1, . . . , Ap)b) 6= {i} for
every word w ∈ Ξ∗. Hence, if system (2.3) is monomially reachable, then
R2n−1 contains an n× n monomial submatrix.

Proof: Suppose, by contradiction, that

Wi := {w ∈ Ξ∗ : ZP(w(A1, . . . , Ap)b) = {i}} 6= ∅,

but the word of minimum length in Wi, say w̄, has length k := |w̄| >
2n − 2. Let σ be the switching sequence corresponding to w̄, meaning that

Aσ

∣

∣

k

1
= w̄(A1, . . . , Ap). Consider, now, the finite sequence bj = Aσ

∣

∣

j

1
b, for

j = 0, . . . , k. By the assumption, ZP(bk) = {i}. Clearly, ZP(bj) 6= ∅ for every
j (otherwise it would be bk = 0). Since the family of the bj’s consists of at
least 2n vectors, and n-dimensional vectors may exhibit only 2n − 1 distinct
nonzero patterns (excluding the empty one), two indices ℓ1 < ℓ2 ≤ k may be

found such that ZP(Aσ

∣

∣

ℓ1

1
b) = ZP(bℓ1) = ZP(bℓ2) = ZP(Aσ

∣

∣

ℓ2

1
b). But then,

it is easily seen that a switching sequence σ′ of length k′ = k − (l2 − l1) < k

exists such that ZP(Aσ′

∣

∣

k′

1
b) = ZP(Aσ

∣

∣

k

l2+1
Aσ

∣

∣

l1

1
b) = {i}, a contradiction.

In order to show that the bound provided by Proposition 4.7 is tight, we
will provide an example of a reachable (and hence monomially reachable)
system for which the discrete-time reachability matrix R2n−1 contains an
n× n monomial submatrix, but, for every k < 2n − 1, Rk does not.

For the sake of simplicity, in the remaining part of the section, we replace
each vector (matrix) with the vector (matrix) with entries in the boolean
algebra B = {0, 1}, endowed with the same zero pattern. We briefly recall
here that the rules for addition and multiplication in B are:
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+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

Example 4.8 Consider all distinct proper subsets of {1, 2, . . . , n}, namely
all Sj ∈ P({1, 2, . . . , n}) with 0 ≤ |Sj| ≤ n − 1, and suppose that they
are ordered according to their cardinality. This means that S0 = ∅, all sets
Sj for j = 1, . . . , n, have |Sj| = 1, and so on. Of course many different
orderings satisfy this condition, simply consider one among them. We now
accordingly define the vector sequence {b̃j}j=0,1,...,2n−2, where b̃j is the (only)
vector in Bn with ZP(b̃j) = Sj (notice that we are constraining the zero
pattern to coincide with Sj, and hence the nonzero pattern ZP(b̃j) to coincide
with {1, 2, . . . , n} \ Sj). It follows that b̃j 6= 0 for every j, b̃0 = 1̄ and
b̃2n−2 = ei for some i.

Let Aj ∈ Bn×n, j ∈ {1, 2, . . . , 2n−2}, be defined according to the following
rule:

[Aj]rc :=

{

0, if
(

r ∈ ZP(b̃j)
)

and
(

c 6∈ ZP(b̃j−1)
)

;

1, otherwise.
(4.1)

Consider the discrete-time system (2.3), switching among (Aj, b̃0), with j =
1, . . . , 2n−2. It is just a matter of simple computation to check that by assum-

ing σ(j) = j for j = 1, 2, . . . , 2n − 2, we obtain Aσ

∣

∣

j

1
b̃0 = AjAj−1 . . . A1b̃0 =

Aj b̃j−1 = b̃j for j = 0, 1, . . . , 2n−2, and hence ei is reached at time k = 2n−1
(by means of a switching sequence σ defined on [1, 2n−2], and hence of length
2n − 2). It remains to show that no sequence of shorter length reaching ei

can be built for this system. To this end, consider the following lemma.

Lemma 4.9 By referring to the set of matrices Ai’s, i = 1, 2, . . . , 2n − 2,
previously defined, for every j ∈ {1, 2, . . . , 2n −2}, if q 6= j, then Aq b̃j−1 = b̃k
with k ≤ j − 1.

Proof: Suppose that j ∈ {1, 2, . . . , 2n − 2} is assigned. Then two situa-
tions may arise:

Case q < j: suppose that an index c ∈ ZP(b̃q−1) exists such that c ∈
ZP(b̃j−1). Since, by definition (4.1), if [b̃q−1]c = 0, then the cth column of Aq

coincides with 1̄, it follows that Aq b̃j−1 = 1̄ = b̃0 and the statement holds.

Suppose, now, that q < j, but for every h ∈ ZP(b̃q−1) we have h ∈
ZP(b̃j−1) (namely, ZP(b̃q−1) ( ZP(b̃j−1)). We want to show that the vectors
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b̃q and Aq b̃j−1 exhibit the same zero pattern. Since the zero patterns uniquely
identify the (binary) vectors in the sequence {b̃j}, this will imply that b̃q =
Aq b̃j−1.

From (4.1) we deduce that:

a) If r ∈ ZP(b̃q), then [Aq]rc = 1 for every c. Since b̃j−1 6= 0, it follows
that [Aq b̃j−1]r = 1 and r ∈ ZP(Aq b̃j−1).

b) If r ∈ ZP(b̃q), then [Aq]rc = 1 implies c ∈ ZP(b̃q−1) ( ZP(b̃j−1). So, for
every index c, [Aq]rc = 1 implies [b̃j−1]c = 0 and hence [Aq b̃j−1]r = 0
or, equivalently r ∈ ZP(Aq b̃j−1).

This means that ZP(Aq b̃j−1) = ZP(b̃q) and hence Aq b̃j−1 = b̃q. So, in this
case, k = q ≤ j − 1.

Case q > j: certainly there exists c ∈ ZP(b̃j−1) such that c ∈ ZP(b̃q−1).
But this implies the cth column of Aq is 1̄ and, as a consequence, Aq b̃j−1 =
1̄ = b0. Thus, again, k = 0 ≤ j − 1.

By the previous lemma, if we try to change the sequence {b̃j}, by applying
to the vector b̃j−1, for some j ∈ {1, 2, . . . , 2n − 2}, a matrix Aq with q 6= j,
we obtain a vector b̃k that we have already encountered in the sequence. So,
even if another switching sequence may exist, eventually leading to the vector
ei, its length is necessarily greater than 2n − 2.

So, the switching sequence σ we have provided in Example 4.8 is the
shortest which allows to reach ei, and, consequently, the bound given in
Theorem 4.7 is tight.





Chapter 5

Controllability of

Continuous-time Positive

Switched Systems

The nonnegativity constraint on the initial state and on the input signal rules
out the possibility of controlling to zero the state trajectory in the continuous-
time case. So, switched positive systems cannot be zero-controllable.

Proposition 5.1 The continuous-time switched positive system (2.1) is
never zero controllable.

Proof: Consider equation (2.2) in Section 2. If system (2.1) were zero
controllable, then for every x(0) ≥ 0 there would be a time instant tf > 0, a
switching function σ on [0, tf ] (defining an index sequence {i0, . . . , ik}) and a
nonnegative input signal u(·) such that x(tf ) = 0. This would require every
term of the sum in (2.2) to be the null vector. However, the matrix product
eAik

(tf−tk) . . . eAi0
(t1−t0)is always nonsingular, so eAik

(tf−tk) . . . eAi0
(t1−t0)x(0) =

0 ⇔ x(0) = 0. Consequently, the only state that can be controlled to zero
is the zero state and the claim is proved.

Remark 5.2 Proposition 5.1 shows that a switched positive system (2.1)
is never zero controllable in the usual sense, namely within a finite time
interval. If we try to weaken Definition 2.2, by allowing tf to take an infinite
value, we actually deal with the stabilizability problem. Such an issue goes
beyond the purposes of the present thesis.





Chapter 6

Necessary Conditions for

Reachability

Accordingly to how we dealt with the reachability issue in the context of
Discrete-time positive switched systems, we first introduce some preliminary
necessary condition for the reachability of Continuous-time Positive Switched
Systems.

6.1 Monomial Reachability

A first necessary condition for reachability naturally descends from the fact
that, among all nonnegative vectors, monomial vectors in particular have
to be reachable. We refer to this condition as to “monomial reachability”.
As in the discrete-time case, and as shown in Example 6.8 below, monomial
reachability does not ensure reachability.

Definition 6.1 A continuous-time positive switched system (2.1) is said to
be monomially reachable if every monomial vector αei ∈ Rn

+, α ∈ R+, α 6=
0, i = 1, 2, . . . , n, is reachable.

Monomial reachability admits a family of interesting equivalent condi-
tions.

Proposition 6.2 For the continuous-time positive switched system (2.1) the
following equivalent conditions hold:
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i) the system is monomially reachable;

ii) ∀ i ∈ {1, . . . , n} there exist w ∈ Ξ∗ and some index j(i) ∈ {1, 2, . . . , p},
such that w(eA1 , eA2 , . . . , eAp)eAj(i)Bj(i) has an ith monomial column;

iii) ∀ i ∈ {1, . . . , n} there exists an index j(i) such that ei is an eigenvector
of Aj(i) (i.e. Aj(i)ei = αiei for some αi ≥ 0, and hence the ith column
of Aj(i) is either an ith monomial vector or the zero vector) and one of
the columns of Bj(i) is, in turn, an ith monomial vector;

iv) ∃N ∈ N such that the continuous-time reachability matrix in N steps

RN =
[

w(eA1 , . . . , eAp)eA1B1| . . . |w(eA1 , . . . , eAp)eApBp

]

w ∈ Ξ∗

0 ≤ |w| ≤ N − 1

has an n× n monomial submatrix.

Proof: If system (2.1) is monomially reachable, then ∀ i ∈ {1, 2, . . . , n}
there exist a time instant t̄i, a switching sequence σi : [0, t̄i] → P , and a
nonnegative input sequence ui(τ), τ ∈ [0, t̄i], that steer the system state from
x(0) = 0 to x(t̄i) = ei. By resorting to equation (2.2), with x(0) = 0, t = t̄i,
u = ui and x(t̄i) = ei, it is clear that in order to reach ei it is necessary and
sufficient that at least one of the matrix products

eAik
(t̄i−tk)eAik−1

(tk−tk−1) . . . eAil
(tl+1−tl)

∫ tl

tl−1

eAil−1
(tl−τ)Bil−1

ui(τ)dτ (6.1)

is an ith monomial vector. Note, first of all, that, by the properties of
the exponential of a Metzler matrix given in Lemma A.2, if the above ma-
trix product is an ith monomial vector, then the first exponential matrix
in (6.1), eAik

(t̄i−tk), must have the ith column which is an ith monomial
vector and, in turn, eAik−1

(tk−tk−1) . . . eAil
(tl+1−tl)

∫ tl
tl−1

eAil−1
(tl−τ)Bil−1

ui(τ)dτ

must be an ith monomial vector. So, by proceeding in this way, we show
that all exponential matrices eAir−1

(tr−tr−1) have the ith column which is
an ith monomial vector and

∫ tl
tl−1

eAil−1
(tl−τ)Bil−1

ui(τ)dτ is an ith monomial

vector. This integral expression, however, is obtained by integrating a vec-
tor of continuous and nonnegative functions. So, it can be an ith mono-
mial vector only if eAil−1

(tl−τ)Bil−1
ui(τ) is an ith monomial column for every

τ < tl. This proves that eAik
(t̄i−tk)eAik−1

(tk−tk−1) . . . eAil
(tl+1−tl)eAil−1

(tl−τ) Bil−1

has a column which is an ith monomial vector, namely, by Lemma A.2,
eAikeAik−1 . . . eAileAil−1Bil−1

has a column which is an ith monomial vector.
This way we have shown that monomial reachability implies ii).
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In order to prove that ii) implies iii), recall that when

eAik . . . eAileAil−1Bil−1

has a column which is an ith monomial vector, then the same holds true
for eAil−1Bil−1

, as it was shown in the first part of the proof. This, in turn,

implies that the ith column of eAil−1 is an ith monomial vector and at least
one of the columns of Bil−1

is an ith monomial vector. But the ith column

of eAil−1 is an ith monomial vector if and only if the ith column of Ail−1
is

either zero or an ith monomial vector. This proves iii). Conversely, if iii)
holds, then the matrix eAj(i)Bj(i) has an ith monomial column, and condition
ii) holds.

Suppose now that iii) holds. But then iv) is verified for N = 1. Indeed,
observe that the only word w ∈ Ξ∗ : |w| = 0 is the empty word ε and, by
iii), we certainly know that the matrix

R1 =
[

eA1B1| . . . |eApBp

]

has an n× n monomial submatrix.

Finally, if iv) holds, than for every i ∈ {1, . . . , n} a matrix product
w(eA1 , . . . , eAp)eAjBj, for some j ∈ P, can be found having among its columns
an ith monomial vector. Note that, according to the previous reasonings, the
matrix product eAjBj itself must exhibit an ith monomial column. Let k be
the index corresponding to this ith monomial column, such that eAjBjek =
βei, for some β > 0 (note that ek ∈ Rm

+ , while ei ∈ Rn
+). But then, in

order to design a switching sequence and a nonnegative input such that any
ndimensional ith monomial vector αei, α > 0 can be reached it suffices to

set σ(t) = j and u(t) =
αek

∫ tf
0
eAσ(τ)(tf−τ)Bσ(τ)dτ

(see equation (2.1)).

The following necessary condition for the monomial reachability of posi-
tive switched systems is now straightforward (its proof follows the same line
of reasoning of the proof of Corollary 4.6 in Section 4.2).

Corollary 6.3 If the continuous-time positive switched system (2.1) is mo-
nomially reachable, then the matrix

[

eA1B1 e
A2B2 . . . e

ApBp

]

has a mono-
mial submatrix.
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Remark 6.4 Clearly, the result of Proposition 6.2 applies also to the spe-
cial case when |P| = 1, namely when we are dealing with (non-switched)
continuous-time positive systems. So, if a continuous-time positive system
(A,B) is reachable, then A = diag(λ1, . . . , λn), with λi ≥ 0, and B contains
an n × n monomial submatrix. On the other hand, it is immediately seen
that a continuous-time positive system endowed with such a special structure
is reachable. So, we have obtained a characterization of reachable positive
systems.

Proposition 6.5 A continuous-time positive system ẋ(t) = Ax(t) + Bu(t)
is reachable if and only if A = diag(λ1, . . . , λn), for some λi ≥ 0, and B

contains an n× n monomial submatrix.

Remark 6.6 It is worthwhile noticing that condition ii) in Proposition 6.2
necessarily constrains the matrix Aj(i) to be reducible. Consequently, all sub-
systems (Ai, Bi) with Ai irreducible play no role in the monomial reachability.

Proposition 6.2 is immediately stated for single-input systems in the fol-
lowing simpler form.

Corollary 6.7 If a single-input n-dimensional switched continuous-time
positive system (2.1) is reachable, then there exists a relabeling of the p sub-
systems (Ai, bi), i ∈ P, such that that

Aiei = αiei and bi = βiei, for i = 1, . . . , n, (6.2)

where αi ≥ 0 and βi > 0. So, in particular, p must be greater than or equal
to n.

Unfortunately, monomial reachability is not sufficient for reachability.
Indeed, consider the following example.
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Example 6.8 Consider the continuous-time positive switched system (2.1),
switching among the following p = 3 subsystems

(A1, B1) =

(





1 0 1
0 1 1
0 0 1



 ,





1 0
0 1
0 0





)

(A2, B2) =

(





1 0 0
1 1 0
1 0 1



 ,





0 0
1 0
0 1





)

(A3, B3) =

(





1 1 0
0 1 0
0 1 1



 ,





1 0
0 0
0 1





)

.

Clearly, the necessary condition of Proposition 6.2 is satisfied. We aim to
show, however, that the switched system is not reachable. To this end, prelim-
inarily observe that ZP(eAit) = ZP(eAi) = ZP(Ai), for each i ∈ {1, 2, 3} and
every t > 0. So, it is clear that if i 6= k then ZP(eAiτieAkτk) = ∅, ∀ τi, τk > 0.
Consequently, each nonnegative vector xf with ZP(xf ) 6= ∅, cannot be reached
by switching the system structure between two different subsystems. For both
subsystems, however, the only reachable states with nontrivial zero pattern
are monomial vectors. So the system is not reachable.

What may be regarded as somewhat surprising is that Proposition 6.2 can
be “reversed” when the system size is n = 2. Indeed, suppose that condition
ii) of Proposition 6.2 holds. Then either one of the following two situations
arises:

Case 1. There exists an index i ∈ P such that Ai is diagonal and the corre-
sponding input matrix Bi has an n×n monomial submatrix. By Proposition
6.5, the ith subsystem is reachable and hence the whole switched system is
trivially reachable.

Case 2. There exist two indices, say 1 and 2, for the sake of simplicity,
and two monomial vectors ej1 and ej2 such that

(A1, B1ej1) =

(

[

a1 ⋆

0 ⋆

]

,

[

b1
0

]

)

, (A2, B2ej2) =

(

[

⋆ 0
⋆ a2

]

,

[

0
b2

]

)

,

where a1, a2 ≥ 0, b1, b2 > 0, while ⋆ denotes a nonnegative entry. Since
in the following we will use only the specific columns B1ej1 and B2ej2 , we
will assume that each matrix Bi consists of that single column. Monomial
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reachability is trivially verified. Consider now any vector xf ≫ 0, and assume
that u(·) is piece-wise constant and described as follows:

u(τ) =

{

u1, for τ ∈ [0, 1[,

u2, for τ ∈ [1, 1 + t],
(6.3)

where the positive values of u1, u2 and t will be chosen later. Notice that the
expression of the forced component of the state evolution at the time instant
1 + t, after two switching instants 0 = t0 < t1 = 1 < 1 + t, by assuming that
σ(t0) = 1 and σ(t1) = 2 is:

x(1 + t) = eA2t

∫ 1

0

eA1(1−τ)B1u1dτ +

∫ 1+t

1

eA2(1+t−τ)B2u2dτ (6.4)

= eA2t

∫ 1

0

ea1τdτ · b1u1e1 +

∫ t

0

ea2τdτ · b2u2e2.

Assume that t > 0 has been fixed, and notice that
∫ 1

0
ea1τdτ · b1u1e1 and

∫ t

0
ea2τdτ · b2u2e2 are a 1-monomial vector and a 2-monomial vector, respec-

tively, whose nonzero entries may be arbitrarily assigned by suitably choosing
u1 and u2. On the other hand, due to Lemma A.24, it is possible to choose t
such that the first column of eA2t is a nonnegative vector arbitrarily close to
the monomial vector e1. As a result, for every choice of xf ≫ 0 it is possible
to choose t > 0 arbitrarily small so that xf belongs to the cone generated by
eA2te1 and e2. This implies that

xf = eA2t

∫ 1

0

eA1(1−τ)B1u1dτ +

∫ 1+t

1

eA2(1+t−τ)B2u2dτ

for suitable u1, u2 and t.

So, we have proved the following result.

Proposition 6.9 A continuous-time positive switched system (2.1) of size
n = 2 is reachable if and only if ∀ i ∈ {1, 2} there exists an index j ∈ P
such that ei is an eigenvector of Aj and one of the columns of Bj is, in turn,
an i-monomial vector (namely (6.2) holds for suitable αi ≥ 0 and βi > 0,
i = 1, 2).

The following proposition provides a sufficient condition for reachability.
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Proposition 6.10 If there exists a permutation π of the set {1, 2, . . . , n},
such that ∀ k ∈ {1, . . . , n} there exists an index ik ∈ P such that all the
π(1)th, π(2)th, . . ., π(k)th columns of Aik are ordinately equal to α1 eπ(1),
α2 eπ(2), . . ., αk eπ(k), for suitable α1, . . . , αk ≥ 0, and one of the columns of
Bik is, in turn, a π(k)-monomial vector then the system is reachable.

Proof: For the sake of simplicity, we assume that π is the identical
permutation, that leaves all the elements of {1, 2, . . . , n} invariant. Notice
that ∀ k ∈ {1, . . . , n} the matrix product eAineAin−1 . . . eAikBik contains a
k-monomial column. Consequently,

[

eAinBin e
AineAin−1Bin−1 . . . e

Ain . . . eAi1Bi1

]

has an n × n monomial submatrix. We now show that this fact implies
reachability. Actually, let xf be an arbitrary vector in Rn

+. Consider equa-
tion (2.2) and assume that x(0) = 0, the switching instants are tℓ = ℓ for
ℓ = 0, 1, . . . , n−1, and the final time instant is tf = n. Set σ(t) := iℓ+1 when
ℓ ≤ t < ℓ+ 1. Finally, assume that the input signal u(τ) is defined as follows:
in every time interval [ℓ, ℓ + 1[ the jth entry of u(τ) is constant and posi-
tive if eAin . . . eAiℓBiℓej is an ℓ-monomial vector and ℓ ∈ ZP(xf ), otherwise
assume it is zero. By suitably choosing the positive values of the uj’s in ev-
ery interval [ℓ−1, ℓ[, ℓ = 1, . . . , n, we can obtain xf through equation (2.2).

It is worth to observe that the sufficient condition given in Proposition
6.10 guarantees something more than simple reachability. Indeed, as the
proof shows, it ensures that there exists a single switching path along which
every vetor in Rn

+ can be reached. In fact, in the sequel, we will refer to the
matrix

[

eAinBin e
AineAin−1Bin−1 . . . e

Ain . . . eAi1Bi1

]

=: R(i1, i2, . . . , in)

as to the continuous-time reachability matrix associated with the switching
sequence (i1, i2, . . . , in) (the switching times are necessarily t0 = 0 < t1 =
1 < · · · < tn−1 = n− 1).

6.2 Pattern reachability

The concept of monomial reachability may be extended to the broader con-
cept of “pattern reachability”. Indeed, one may wonder which types of
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nonzero patterns may be reached (starting from zero initial conditions), by
resorting to suitable nonnegative inputs and switching sequences, indepen-
dently of the specific values taken by the positive entries associated with the
nonzero patterns. This, of course, represents a necessary preliminary step
toward the investigation of the more challenging reachability property.

Definition 6.11 An n-dimensional continuous-time positive switched sys-
tem (2.1) is said to be pattern reachable if for every (non-empty) subset S
of 〈n〉 there exists a positive vector xf ∈ Rn

+, with ZP(xf ) = S, such that xf

is reachable.

Proposition 6.12 An n-dimensional continuous-time positive switched sys-
tem (2.1) is pattern reachable if and only if for every S ⊆ {1, 2, . . . , n} there
exist k ∈ N and indices i0, i1, . . . , ik ∈ P such that the cone generated by
the columns of the continuous-time reachability matrix associated with the
switching sequence (i0, i1, . . . , ik), i.e.

R(i0, . . . , ik) =
[

eAikBik . . . eAik. . .eAi0Bi0

]

,

contains a vector v with ZP(v) = S.

Proof: Let S be a subset of {1, 2, . . . , n} and let xf be any nonnegative
vector with ZP(xf ) = S. The vector xf is reachable if and only if there exist
a time instant tf > 0, a switching sequence σ : [0, tf ) 7→ P , and a nonnegative
input sequence u(τ), τ ∈ [0, tf ), that steers the system state from x(0) = 0
to x(tf ) = xf . By resorting to equation (2.2), with x(0) = 0 and x(tf ) = xf ,
it is clear that in order to reach xf it is necessary and sufficient that there
exists a finite number of nonzero matrix products in (2.2) of the following
type

eAik
(tf−tk) . . . eAil

(tl+1−tl)

∫ tl

tl−1

eAil−1
(tl−τ)Bil−1

u(τ)dτ (6.5)

which sum up to xf . We may easily observe that, when our interest is
only in nonzero patterns, the role of the nonnegative input u(t) in every
time interval [tl−1, tl) is just that of “selecting” the columns of Bil−1

. So,
it can always be assumed positive and constant (say ul−1), with either zero
or unitary entries. On the other hand, due to the fact that the integral of
eAil−1

(tl−τ)Bil−1
ul−1 has the same zero pattern as eAil−1

(tl−tl−1)Bil−1
ul−1, and
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that the zero pattern of the exponential matrix at any positive time instant
coincides with its zero pattern at the time instant t = 1 (see Lemma A.2), it
follows that a nonnegative vector v with ZP(v) = ZP(xf ) = S is reachable
if and only if there exists a finite number of nonzero matrix products of the
following type

eAikeAik−1 . . . eAileAil−1Bil−1
ul−1 (6.6)

which sum up to v. But this amounts to saying that v belongs to the (polyhe-
dral) cone, Cone(R(i0, i1, . . . , ik)), generated by the columns of R(i0, . . . , ik).

An interesting fact about pattern reachability is that, in order to reach
any nonzero pattern S ⊆ {1, 2, . . . , n}, the system needs to switch no more
than |S| times (including the initial configuration).

Proposition 6.13 If an n-dimensional continuous-time positive switched
system (2.1) is pattern reachable, then for every S ⊆ {1, 2, . . . , n} there ex-
ist k < |S| and indices i0, i1, . . . , ik ∈ P such that Cone(R(i0, i1, . . . , ik))
contains a nonnegative vector v with ZP(v) = S.

Proof: We prove this result by induction on the cardinality r of the set
S. If r = |S| = 1, then S = {i}, for some index i ∈ {1, 2, . . . , n}, and we are
dealing with ith monomial reachability. As we have seen in Proposition 6.2,
ith monomial reachability is equivalent to the existence of some index j ∈ P
such that Ajei = αei, for some α ≥ 0 and there exists k ∈ {1, 2, . . . ,m}
such that Bjek is an ith monomial vector. Consequently, ei = eAjBjekuk,

for some suitable uk > 0. This ensures that we need a switching sequence of
length r = 1 in order to reach vectors with a single positive entry.

We assume, now, by induction, that given any subset S ′ of {1, 2, . . . , n},
with |S ′| < r, there exists a vector v′ ≥ 0 with ZP(v′) = S ′ that can be
reached by means of a switching sequence of length not greater than |S ′|.
We aim to prove that the result extends to all subsets S of {1, 2, . . . , n},
with |S| = r. Indeed, let v be a nonnegative vector, with ZP(v) = S, which
is reachable by means of a switching sequence (i0, i1, . . . , ik), and hence

v = eAikeAik−1 . . . eAi1eAi0Bi0 ū0 + · · · + eAikeAik−1Bik−1
ūk−1 + eAikBik ūk,

for suitable ūi ≥ 0, with ū0 6= 0 (if ū0 = 0 the switching sequence can surely
be shortened). Since each of these terms is left multiplied by eAik , it follows
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the sum can be expressed as eAikBk with

Bk := eAik−1 . . . eAi0Bi0 ū0 + · · · + eAik−1Bik−1
ūk−1 +Bik ūk.

By Lemma A.7, then

S = ZP(v) = ZP(eAikBk) ⇒ S = ZP(eAik eS)

and S ⊇ ZP(Bk). Set Sk := S and Sk−1 := ZP(Bk). As we have seen,
Sk ⊇ Sk−1. We distinguish the following three situations:

a) ZP(Bik ūk) ⊆ ZP(eAik−1 . . . eAi1eAi0Bi0 ū0 + · · · + eAik−1Bik−1
ūk−1) and

Sk = Sk−1;

b) ZP(Bik ūk) ⊆ ZP(eAik−1 . . . eAi1eAi0Bi0 ū0 + · · · + eAik−1Bik−1
ūk−1) and

Sk ) Sk−1;

c) ZP(Bik ūk) 6⊆ ZP(eAik−1 . . . eAi1eAi0Bi0 ū0 + · · · + eAik−1Bik−1
ūk−1).

In the case a), ZP(eAik−1 . . . eAi1eAi0Bi0 ū0+· · ·+eAik−1Bik−1
ūk−1) = ZP(Bk) =

Sk−1 = Sk = S. Consequently, we have found a shorter switching sequence
(i0, i1, . . . , ik−1) allowing to reach a vector ṽ with ZP(ṽ) = S and we may
consider, again, this shorter switching the sequence at the light of the possible
three cases.

In the case b), we have

ZP(eAik−1 . . . eAi1eAi0Bi0 ū0 + · · · + eAik−1Bik−1
ūk−1) = ZP(Bk) = Sk−1 ( S.

So, on the one hand, the nonnegative vector

ṽ := eAik

(

eAik−1 . . . eAi0Bi0 ū0 + · · · + eAik−1Bik−1
ūk−1

)

satisfies ZP(ṽ) = Sk = S. On the other hand, condition |Sk−1| < r allows to
apply the inductive hypothesis and hence to find a vector w, with ZP(w) =
Sk−1 = ZP(eAik−1 . . . eAi1eAi0Bi0 ū0 + · · · + eAik−1Bik−1

ūk−1), and a switching
sequence (j0, j1, . . . , jl), with l + 1 ≤ |Sk−1| ≤ r − 1, such that

w = eAjl . . . eAj1eAj0Bj0u0 + · · · + eAjlBjl
ul

for suitable ui ≥ 0. Since

S = ZP(eAikBk) = ZP(eAik (w +Bik0)),
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we have found a switching sequence (j0, j1, . . . , jl, ik) of length not greater
than r that allows to reach the pattern S.

Finally, if we are in the case c), there exists some index ℓ ∈ ZP(Bik ūk) ⊆ S
such that ℓ 6∈ ZP(eAik−1 . . . eAi1eAi0Bi0 ū0 + · · · + eAik−1Bik−1

ūk−1). Conse-
quently,

ZP(eAik−1 . . . eAi1eAi0Bi0 ū0 + · · · + eAik−1Bik−1
ūk−1) ( S.

So, we may apply the inductive hypothesis and find a vector w with

ZP(w) = ZP(eAik−1 . . . eAi0Bi0 ū0 + · · · + eAik−1Bik−1
ūk−1)

and a switching sequence (j0, j1, . . . , jl), with l+1 ≤ |ZP(eAik−1 . . . eAi0Bi0 ū0+
· · · + eAik−1Bik−1

ūk−1)| ≤ r − 1, such that

w = eAjl . . . eAj1eAj0Bj0u0 + · · · + eAjlBjl
ul

for suitable ui ≥ 0. Since

S = ZP(eAikBk) = ZP(eAik (w +Bik ūk)),

we have found a switching sequence (j0, j1, . . . , jl, ik) of length not greater
than r that allows to reach the pattern S.

We are, now, in a position to provide the final characterization of pattern
reachability. Even though the result could be easily given for multiple input
systems, for the sake of simplicity we state it for single input systems.

Proposition 6.14 A single-input positive switched system (2.1) is pattern
reachable if and only if for every set S ⊆ {1, . . . , n} there exist an integer
ℓ ≤ |S|, indices j1, j2, . . . , jℓ, and a subset sequence S0 ⊆ S1 ⊂ S2 ⊂ · · · ⊂
Sℓ = S, such that

ZP(eAjheSh−1
) = Sh, ∀ h ∈ 〈ℓ〉 (6.7)

∅ 6= ZP(Bj1) ⊆ S1. (6.8)

Proof: If system (2.1) is pattern reachable, then, by Proposition 6.13,
for every S ⊆ {1, . . . , n} there exist k < |S|, indices i0, i1, . . . , ik ∈ P, and a
positive vector v, with ZP(v) = S, such that

v = eAikeAik−1 . . . eAi1eAi0Bi0u0 + · · · + eAikeAik−1Bik−1
uk−1 + eAikBikuk,
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where, w.l.o.g., the scalars u0, u1, . . . , uk take values in {0, 1}, and k is the
smallest such index. Set ℓ := min{d ≥ 1 : uk−d+1 = 1}, and jh := ik−ℓ+h for
h = 1, 2, . . . , ℓ. Then:

v=eAjℓeAjℓ−1 . . . eAj1

[

eAik−ℓ . . .eAi0Bi0u0+. . .+e
Aik−ℓBik−ℓ

uk−ℓ+Bj1uk−ℓ+1

]

.

Set B0 := eAik−ℓ . . . eAi1eAi0Bi0u0+· · ·+eAik−ℓBik−ℓ
uk−ℓ+Bj1uk−ℓ+1 and Bh :=

eAjhBh−1, h = 1, 2, . . . , ℓ. Notice that Bℓ = v. Set, finally, Sh := ZP(Bh). By
recursively applying Lemma A.7, we can prove that

S = ZP(v) = ZP(Bℓ) ⊇ ZP(Bℓ−1) · · · ⊇ ZP(B1) ⊇ ZP(Bj1).

On the other hand, all the inequalities Sh ⊇ Sh−1, h = 2, 3, . . . , ℓ, must be
strict, otherwise the sequence could be shortened. Therefore ℓ ≤ |S| and
(6.7) holds. Finally, condition S1 ⊇ S0 = ZP(B0) ⊇ ZP(Bj1) ensures that
(6.8) holds.

Assume, now, that (6.7)-(6.8) hold. We prove that the system is pattern
reachable by induction on s := |S|. To this end, consider, first the case s = 1,
namely S = {i} for some i ∈ {1, . . . , n}. If so, ℓ = 1 and there exists an index
j1 and sets S0 = S1 = S such that ZP(eAj1ei) = {i}, and ∅ 6= ZP(eBj1 ) = {i}.
So, by Proposition 6.2, the system is monomially reachable.

Suppose, now, that for every set S ′ of cardinality smaller than s, there
exists a reachable vector v′ with ZP(v′) = S ′. Consider an arbitrary set S of
cardinality s and let ℓ, j1, . . . , jℓ,S0,S1, . . . ,Sℓ be the corresponding indices
and sets as they appear in the proposition’s statement. Consider the (possibly
empty) set S ′ = S0 \ ZP(Bj1) whose cardinality is smaller than s. By the
inductive assumption, there exist indices i0, i1, . . . , ik in P such that the cone
generated by the columns of the reachability matrix R(i0, i1, . . . , ik) includes
a vector v′ with ZP(v′) = S ′ (if S ′ = ∅, simply choose v′ = 0). Let u be a
binary vector such that ZP(R(i0, i1, . . . , ik)u) = S ′. Then, the vector

v = eAjℓeAjℓ−1 . . . eAj1 [R(i0, i1, . . . , ik)u+Bj1 ]

satisfies ZP(v) = S. This ensures that a vector with nonzero pattern S is
reachable through the switching sequence (i0, i1, . . . , ik, j1, j2, . . . , jℓ).



Chapter 7

Reachability of

Continuous-time Single-Input

Positive Switched Systems

As a result of the pattern reachability analysis, given a single-input switched
system (2.1), switching among p positive subsystems (Ai, bi), i ∈ P, a positive
vector v, with ZP(v) = S, is reachable only if there is an index j = j(S) ∈ P
such that ZP(eAj(S)eS) = S. Consequently, a necessary condition for reacha-
bility is that, for every S ⊆ 〈n〉, the set IS := {i ∈ 〈p〉 : ZP(eAieS) = S} 6= ∅.
Note that, if S = 〈n〉, IS = P , and the previous condition is trivially satis-
fied.

In this section we focus on the derivation of necessary and/or sufficient
conditions for reachability, by restricting our attention to single-input sys-
tems and, occasionally, on single-input systems of size n which commute
among p = n subsystems. As we have seen, this represents the minimum
number of subsystems among which a single-input positive switched system
has to commute in order to be reachable.

7.1 A sufficient condition

The first result of the section is a sufficient condition for reachability.

Proposition 7.1 Consider a positive switched system (2.1), commuting
among p single-input subsystems (Ai, bi), i ∈ P. If ∀S ⊆ 〈n〉, ∃ j(S) ∈ IS
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such that
ZP(bj(S)) ⊆ S, with |ZP(bj(S))| = 1,

then the switched system is reachable.

Proof: Given any positive vector v ∈ Rn
+, set r := |ZP(v)|. Set, now,

Sr := ZP(v), and let j(Sr) be an index which makes the Proposition assump-
tion satisfied, and hence ZP(eAj(Sr)eSr

) = Sr, and {ir} := ZP(bj(Sr)) ⊆ Sr.

For each h ∈ 〈r − 1〉, we may recursively define sets Sh and indices ih, as

Sh := Sh+1 \ {ih+1}, {ih} := ZP(bj(Sh)).

Notice that, by the way the sets Sh are defined, |Sh| = h. Moreover, when
h 6= q we have j(Sh) 6= j(Sq). Now, we show that by suitably choosing a final
time instant tr > 0, the values of the switching instants ti, i = 0, 1, . . . , r− 1,
with 0 = t0 < . . . < tr−1 < tr, and positive input values ūi in every time
interval [ti−1, ti), we may ensure that

v = eAj(Sr)(tr−tr−1)e
Aj(Sr−1)(tr−1−tr−2) . . . eAj(S2)(t2−t1)

∫ t1

t0

eAj(S1)(t1−τ)d τ bj(S1)ū1

+ . . . +

∫ tr

tr−1

eAj(Sr)(tr−τ)d τ bj(Sr)ūr (7.1)

By the previous considerations, every term in (7.1) has a nonzero pattern
included in S. Moreover, by Lemma A.24, it is easy to conclude that, since
every exponential matrix can be made as close as we want to the identity
matrix and since bj(Sℓ) is an iℓ-monomial vector, then each positive term

eAj(Sr)(tr−tr−1)e
Aj(Sr−1)(tr−1−tr−2)

. . . e
Aj(Sℓ+1)(tℓ+1−tℓ)

∫ tℓ

tℓ−1

eAj(Sℓ)
(tℓ−τ)d τ bj(Sℓ) (7.2)

can be made as close as we want to the monomial vector eiℓ (and, of course,
its nonzero pattern is included in S), by suitably choosing the time intervals
between two consecutive switching instants sufficiently small. If we assume
that the switching time instants are given, in order to ensure that the afor-
mentioned terms are desired approximations of selected monomial vectors,
the only values we have to choose are the constant values ūℓ, and the prob-
lem we have to solve can be seen as that of solving an algebraic equation of
the following type: Aū = v̄, where v̄ ∈ Rr

+ is the (strictly positive) vector
consisting of the nonzero entries of v, A ∈ Rr×r

+ is the positive matrix whose
columns are those terms (7.2) (approximating the monomial vectors) which
pertain to the indices in S, and ū is the vector containing the associated
input vectors ūℓ. By Lemma A.23, this linear equation admits a positive
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solution, and hence the vector v ∈ Rn
+ is reachable.

Remark. It is worthwhile noticing that, when the previous sufficient condi-
tion holds, all states in Rn

+ are reached by resorting to a suitable switching
sequence (i1, i2, . . . , ik) and by applying a nonnegative input which is surely
nonzero during the last switching interval (when the system has commuted
to the ikth subsystem). Of course, this is not the general case, and a state
may be reached even by eventually leaving the system freely evolve (meaning
that no soliciting input is applied during the last part of the time interval),
meanwhile commuting from one subsystem to another. Consequently, the
above condition is only sufficient for reachability, as shown in the following
example.

Example 7.2 Consider the positive switched system (2.1), switching among
the following three subsystems

(A1, B1) =

(





1 1 0
0 1 0
0 1 1



 ,





1
0
0





)

(A2, B2) =

(





1 0 0
1 1 1
1 0 1



 ,





0
1
0





)

(A3, B3) =

(





1 1 0
0 1 0
0 0 1



 ,





0
0
1





)

.

Note that the hypothesis of Proposition 7.1 is fulfilled ∀S 6= {1, 2}. Therefore,
in order to show that the switched system is reachable, we only need to prove
that every vector v with ZP(v) = {1, 2} is reachable. Observe now that

eA3t =





et t et 0
0 et 0
0 0 et



 .

Hence, given v =





v1

v2

0



, with v1, v2 6= 0, set t = v1

v2
+ 1, t1 = 1, t0 = 0.

Introduce the piece-wise constant input function and the switching sequence:

u(t) =







v2

(e−1)e
v1
v2

, for 0 ≤ t < t1;

0, for t1 ≤ t < t;
σ(t) =

{

2, for 0 ≤ t < t1;

3, for t1 ≤ t < t.

By referring to equation (2.2), we get

x(t) = eA3(t−t1)

∫ t1

t0

eA2(t1−τ)B2u(τ)dτ+

∫ t

t1

eA3(t−τ)B3u(τ)dτ
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= e
A3

v1
v2

∫ 1

0





0
e1−τ

0



 dτ
v2

(e− 1)e
v1
v2

+ 0 =
v2 (e− 1)

(e− 1)e
v1
v2







v1

v2
e

v1
v2

e
v1
v2

0






= v.

As a consequence, the switched system is reachable.

7.2 A geometric characterization of reacha-

bility

Aiming to provide an equivalent condition for reachability, we first introduce
a technical lemma which allows us to use, when dealing with single-input
systems, only piece-wise constant input signals.

Lemma 7.3 Consider an n-dimensional monomially reachable positive
switched system (2.1), switching among n single-input subsystems (Ai, bi), i ∈
〈n〉, with1

Aiei = αiei, bi = βiei, ∃ αi ≥ 0 and βi > 0. (7.3)

Given t > 0, v ∈ Rn
+, k ∈ N, time instants 0 = t0 < t1 < . . . < tk < t and

indices i0, i1, . . . , ik ∈ 〈n〉, if there exists a nonnegative input u(·) such that:

v = eAik
(t−tk)eAik−1

(tk−tk−1) . . . eAi1
(t2−t1)

∫ t1

t0

eAi0
(t1−τ)bi0u(τ)dτ

+ . . .+

∫ t

tk

eAik
(t−τ)biku(τ)dτ, (7.4)

then there exists a piece-wise constant input u(·), taking some suitable con-
stant value ui ≥ 0 in every time interval [ti, ti+1), such that

v = eAik
(t−tk)eAik−1

(tk−tk−1) . . . eAi1
(t2−t1)

∫ t1

t0

eAi0
(t1−τ)bi0dτ · u0

+ . . .+

∫ t

tk

eAik
(t−τ)bikdτ · uk. (7.5)

1Notice that this assumption is by no means restrictive, since, by Proposition 6.2, we
can always reduce ourselves to this case by means of a simple relabeling.
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Proof: By the assumption (7.3), eAitbi = eαitβiei,∀t ∈ R+. Conse-
quently,

∫ ti+1

ti

eAi(ti+1−τ)biu(τ)dτ =

∫ ti+1

ti

eαi(ti+1−τ)βieiu(τ)dτ

=

[∫ ti+1

ti

eαi(ti+1−τ)u(τ)dτ

]

· βiei, (7.6)

where the term inside the square brackets is a nonnegative number. But
then, a nonnegative coefficient ui can always be found such that

∫ ti+1

ti

eαi(ti+1−τ)u(τ)dτ =

∫ ti+1

ti

eαi(ti+1−τ)dτ · ui. (7.7)

This immediately implies the lemma statement.

From the previous lemma, we get the following Proposition.

Proposition 7.4 Consider an n-dimensional positive switched system (2.1),
switching among n single-input systems (Ai, bi), i ∈ 〈n〉, and suppose that for
every index i ∈ 〈n〉 the pair (Ai, bi) satisfies (7.3). The system is reachable
if and only if for every positive vector v ∈ Rn

+ there exist k ∈ N, strictly
positive intervals τ1, . . . , τk and switching values i0, i1, . . . , ik ∈ 〈n〉, such that

v ∈ Cone[eAik
τkbik |eAik

τkeAik−1
τk−1bik−1

| . . . |eAik
τk . . . eAi1

τ1eAi0
τ0bi0 ]

= Cone[eik |eAik
τkeik−1

| . . . |eAik
τk . . . eAi1

τ1ei0 ].

Proof: By the assumption on the n subsystems (Ai, bi), the identity

Cone[eAik
τkbik |eAik

τkeAik−1
τk−1bik−1

| . . . |eAik
τk . . . eAi1

τ1eAi0
τ0bi0 ] =

Cone[eik |eAik
τkeik−1

| . . . |eAik
τk . . . eAi1

τ1ei0 ]

immediately follows. So, in the sequel, we only refer to the latter expression.

[Necessity] If the system is reachable, then ∀ v ∈ Rn
+ there exist parameters

t, tj, ij (endowed with suitable properties) and an input u(·) ∈ R+ such that:

v = eAik
(t−tk)eAik−1

(tk−tk−1) . . . eAi1
(t2−t1)

∫ t1

t0

eAi0
(t1−τ)bi0u(τ)dτ

+ . . .+

∫ t

tk

eAik
(t−τ)biku(τ)dτ. (7.8)
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But then, by Lemma 7.3, this means that there exist suitable uj ≥ 0 such
that

v = eAik
(t−tk)eAik−1

(tk−tk−1) . . . eAi1
(t2−t1)

∫ t1

t0

eAi0
(t1−τ)bi0dτ · u0

+ . . .+

∫ t

tk

eAik
(t−τ)bikdτ · uk = eAik

τkeAik−1
τk−1 . . . eAi1

τ1ei0ci0 +. . .+ eikcik ,

where tk+1 := t, τj := tj+1 − tj and cij =
∫ tj+1

tj
e

αij
(tj+1−τ)

βijdτ · uj. Hence,

v ∈ Cone[eik |eAik
τkeik−1

| . . . |eAik
τk . . . eAi1

τ1ei0 ]. (7.9)

[Sufficiency] Conversely, suppose that for every positive vector v we can find
k ∈ N, intervals τ1, . . . , τk > 0 and switching values i0, i1, . . . , ik ∈ 〈n〉, such
that (7.9) holds. Let cij , j = 0, 1, . . . , k, be nonnegative coefficients such that

v = eAik
τkeAik−1

τk−1 . . . eAi1
τ1ei0ci0 + . . .+ eikcik . Set, now, t0 := 0, t1 := 1 and

tj+1 := tj + τj for every j ∈ 〈k〉. Then, by assuming

uj :=
cij

∫ tj+1

tj

e
αij

(tj+1−τ)
dτβij

, we get

eAik
(tk+1−tk)eAik−1

(tk−tk−1) . . . eAi1
(t2−t1)

∫ t1

t0

eAi0
(t1−τ)bi0 u0 dτ + . . .+

+

∫ tk+1

tk

eAik
(t−τ)bik uk dτ = eAik

τkeAik−1
τk−1 . . . eAi1

τ1ei0ci0 +. . .+eikcik = v

thus proving that v is reachable.

We are now ready to provide an algebraic equivalent characterization of
the reachability property for n-dimensional positive switched systems (2.1),
commuting among n single-input subsystems.

Proposition 7.5 Given an n-dimensional positive switched system (2.1),
commuting among n single-input subsystems (Ai, bi), i = 1, 2, . . . , n, the fol-
lowing facts are equivalent:

i) the switched system (2.1) is reachable;

ii) for every proper subset S ⊂ 〈n〉 we have:
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iia) if |S| = 1, then ∃ j(S) ∈ IS such that (ZP(eAj(S)eS) = S and)
ZP(bj(S)) = S;

iib) if |S| > 1, then IS 6= ∅, and either

1. ∃ j(S) ∈ IS such that2 ZP(bj(S)) ⊂ S, or

2. ∀ v ∈ Rn
+, with ZP(v) = S, there exist m ∈ N, τ1, . . . , τm >

0 and i1, . . . , im ∈ IS , such that v can be obtained as the
nonnegative combination of no more than |S| − 1 columns
of eAimτm . . . eAi1

τ1PS , where PS is the selection matrix which
selects all the columns corresponding to the indices 3 appearing
in S.

Proof: i) ⇒ ii) Suppose, first, that system (2.1) is reachable. Since
condition iia) is equivalent to monomial reachability, its necessity has already
been proved, and we may assume, as usual, that each pair (Ai, bi) satisfies
(7.3).

Now, let S be any subset of 〈n〉 with cardinality |S| > 1, and let v be
any positive vector with nonzero pattern ZP(v) = S. By the reachability
assumption and by Proposition 7.4, there exist k ∈ N, positive intervals
τ0, τ1, . . . , τk, switching values i0, i1, . . . , ik ∈ 〈n〉 (with ij 6= ij+1 w.l.o.g.),
and nonnegative coefficients cij , j = 0, 1, . . . , k, such that

v= eAik
τk . . . eAi1

τ1eAi0
τ0bi0ci0 + ..+ eAik

τkeAik−1
τk−1bik−1

cik−1
+ eAik

τkbikcik

= eAik
τk
[

eAik−1
τk−1 . . . eAi1

τ1eAi0
τ0bi0ci0 + . . .+ bikcik ] . (7.10)

Clearly, by Lemma A.7, ZP(eAikeS) = S. So, the set IS is nonempty. If there
exist j(S) ∈ IS such that ZP(bj(S)) ⊂ S we fall in case 1. of iib). Suppose,
now, that ∀ j(S) ∈ IS ,ZP(bj(S)) 6⊂ S. Consequently, in (7.10), cik = 0, and
hence (7.10) becomes v = eAik

τkBk, with

Bk := eAik−1
τk−1 . . . eAi1

τ1eAi0
τ0bi0ci0 + eAik−1

τk−1bik−1
cik−1

. (7.11)

From Lemma A.7, Sk := ZP(Bk) ⊆ S. Now, either Sk ( S or Sk = S.

(i) If Sk ( S, then v lies on a face of Cone(eAji
τkPS),∃ τk > 0, namely it

can be obtained by combining no more than |S|−1 columns of eAji
τkPS .

2Note that condition iia) together with the fact that we are switching among n subsys-
tems ensure that ZP(bj(S)) 6= ∅.

3Notice that since ZP(eAih eS) = S for h = 1, 2, . . . ,m, the polyhedral cone
Cone(eAim

τm . . . eAi1
τ1PS) is generated by |S| linearly independent vectors whose nonzero

pattern is included in S. Indeed, Cone(PT
S eAim

τm . . . eAi1
τ1PS) is a simplicial cone in R

|S|
+

and it coincides with Cone(eÃim
τm . . . eÃi1

τ1), Ãih
= PT

S Aih
PS .
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(ii) If Sk = S then ZP(eAik−1eS) = S, which, in turn, implies that ik−1 ∈
IS . But since ZP(bik−1

) 6⊂ S (and hence cik−1
= 0), it follows that

we can iterate this reasoning until we find some index ℓ such that
ik, ik−1, . . . , iℓ ∈ IS , iℓ−1 6∈ IS and v = eAik

τk . . . eAiℓ
τℓBℓ, for some suit-

able Bℓ with ZP(Bℓ) = Sℓ ( S. Consequently, again, v can be obtained
by combining no more than |S| − 1 columns of eAik

τk . . . eAiℓ
τℓPS .

In both cases we fall in case 2. of iib).

ii) ⇒ i) Let us see, now, whether condition iia) and iib) are also sufficient
for reachability. We prove this fact by induction on the cardinality of the
nonzero pattern |S| = |ZP(v)| of any vector v ∈ Rn

+. If |S| = 1, condition
iia), corresponding to monomial reachability, ensures that v is reachable.

Suppose now that, under the assumptions ii), every positive vector w,
with |ZP(w)| < s, is reachable. Let v be a positive vector with |S| =
|ZP(v)| = s. If for the set S the case 1. applies, it has been already
proved in Proposition 7.1 that v is reachable. Suppose now that only case
2. holds. Then ∃m > 0, ∃ i1, . . . , im ∈ IS , ∃ τ1, . . . , τm > 0 such that v
is obtained by combining no more than r − 1 columns of eAimτm . . . eAi1

τ1PS

and hence ∃w ≥ 0, with ZP(w) ( S (and therefore |ZP(w)| < r), such that
v = eAimτm . . . eAi1

τ1w. Since vector w is reachable for hypothesis, also v is.
Indeed, upon reaching w, we switch ordinately to the subsystems i1, i2, . . . , im
and leave the system freely evolve at each stage for a lapse of time equal to
τi.



Chapter 8

Further results on the

Reachability of

Continuous-Time Single-Input

Positive Switched Systems

Not every condition provided in Proposition 7.5 can be easily verified. Specif-
ically, there is no obvious way of testing whether indices i1, . . . , im and posi-
tive time intervals τ1, . . . , τm can be found, such that a given vector v > 0,
with ZP(v) = S, can be obtained by combining less than |S| columns of
eAimτm . . . eAi1

τ1PS .

It is important to note that this situation corresponds to the case when
some vector v can be reached only by means of some nonnegative input func-
tion u(t) which must be set equal to zero during the time interval τ1, . . . , τm
corresponding to the last m commutations of the system (2.1), thus letting
the system freely evolve during this lapse of time.

We start in Section 8.1 by analyzing in depth the case when only during
the last commutation no soliciting input acts on the switched system (2.1).
In Section 8.2 we will deal with the general case when multiple switchings
take place, meanwhile no input acts on the system. Finally, in Section 8.3
the case of systems presenting special properties is investigated.
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8.1 The asymptotic exponential cone:

the single matrix case

As a first step toward the general problem solution, in this section we ex-
plore the restrictive case when m = 1. In other words, we are interested
in investigating when a positive vector v, with S := ZP(v) of cardinality
s, can be expressed as the positive combination of at most s − 1 columns
of eAj(S)τPS , for some suitable j(S) ∈ IS and τ > 0 (as usual, PS is the
selection matrix that singles out the columns indexed on S). Notice, though,
that this is equivalent to investigating when the restriction of v to its positive
entries (which is a strictly positive vector, say vS , of size s) belongs to the
boundary of the simplicial cone, Cone[P T

S e
Aj(S)τPS ]. Thus, our problem may

be restated in a just apparently restrictive, but in fact absolutely general,
formulation, by assuming S = 〈n〉 and IS = P (and, consequently, vS = v).

Problem Statement: Given an n × n Metzler matrix A, search for
conditions ensuring that every strictly positive vector v ∈ Rn

+ can be obtained
as

v = eAτu, ∃ τ > 0, and u ∈ Rn
+ with ZP(u) 6= ∅. (8.1)

To solve this problem, we introduce a new concept which turns out to be
very meaningful for our investigation.

Definition 8.1 Given an n× n Metzler matrix A, we define its asymptotic
exponential cone, Cone∞(eAt), as the polyhedral cone generated by the vectors
v∞

i , which represent the asymptotic directions of the columns of eAt, i.e.

v∞
i := lim

t→∞

eAtei

‖eAtei‖
, i = 1, 2, . . . , n. (8.2)

It is not hard to prove that Cone∞(eAt) always exists, it is a polyhedral
convex cone in Rn

+, and it is never the empty set. Moreover, except for the
case of a diagonal matrix A (in which case Cone(eAt) = Cone∞(eAt) = Rn

+

for every t ≥ 0), we have for every 0 < t1 < t2 < +∞:

Rn
+ = Cone(eA·0) ) Cone(eAt1) ) Cone(eAt2) ) Cone∞(eAt).

Notice, also, that while Cone(eAt) is a simplicial cone for every t ≥ 0,
Cone∞(eAt) is typically not, since it is not generally solid.
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In this section we investigate the relationship between the asymptotic ex-
ponential cone and the boundary of the cone generated by a single exponen-
tial matrix. By making use of this characterization and of the fundamental
result of Proposition 7.5, we will be able to provide a family of sufficient
conditions for reachability.

Lemma 8.2 Given an n×n Metzler matrix A and a strictly positive vector
v ∈ Rn

+, the following facts are equivalent:

i) there exists τ > 0 such that v belongs to ∂Cone(eAτ );

ii) v 6∈ Cone∞(eAt).

Even more, if any of the above equivalent conditions holds, there exists a
unique τ > 0 such that v belongs to ∂Cone(eAτ ).

Proof: i) ⇒ ii) If there exists τ > 0 such that v belongs to ∂Cone(eAτ ),
then v = eAτu, for some u ≥ 0 with ZP(u) = S ( 〈n〉. We want to prove
that for every δ > 0 the vector v does not belong to Cone(eA(τ+δ)) and hence,
a fortiori, it does not belong to Cone∞(eAt). If this were the case, then

v = eAτu = eAτ [eAδw],

for some nonnegative w. By the invertibility of eAτ , this would mean u =
eAδw. Since ZP(u) = S, by Lemma A.7, it must be ZP(eAτeS) = S. But
then ZP(eAτu) should be S, too, thus contradicting the strict positivity as-
sumption on v.

ii) ⇒ i) Conversely, suppose that v ≫ 0 and v 6∈ Cone∞(eAt). Notice,
then, that v is an internal point of Cone(eAt)

∣

∣

t=0
= Rn

+. By the continuity of

the exponential matrix and the fact that Cone(eAt) is monotonically decreas-
ing with t (in the sense of the inclusion chain mentioned before), it follows
that there exists t̄ > 0 such that v 6∈ Cone(eAt̄). Define a distance function
d(t) between the vector v and Cone(eAt) as:

d(t) := inf{‖v − eAtx‖ : x ≥ 0}.

Clearly, d(0) = 0 and d(t̄) > 0, moreover d(t) is a continuous function. So,
once we define τ := sup{t ≥ 0 : d(t) = 0}, it is easily seen that v ∈ Cone(eAτ )
(as polyhedral cones are closed sets) and it must lie on the boundary of the
cone, namely on some “face”, otherwise it would contradict the definition of
τ . This further proves that τ = max{t ≥ 0 : d(t) = 0}.
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Suppose now, by contradiction, that there exist τ1, τ2 > 0, with τ1 6=
τ2, such that v = eAτ1u1 = eAτ2u2, for some positive vectors u1,u2 with
nontrivial zero patterns. If we assume, w.l.o.g., τ2 > τ1, then from the
previous identity one gets u1 = eA(τ2−τ1)u2, which ensures (see Lemma A.2
in the Appendix)

ZP(u1) = ZP(eA(τ2−τ1)u2) = ZP(eAτ2u2) = ZP(v),

a contradiction.

As an immediate corollary of Lemma 8.2, we get.

Corollary 8.3 Given an n× n Metzler matrix A, the following are equiva-
lent:

i) ∀v ≫ 0 there exists τ > 0 such that v belongs to ∂Cone(eAτ );

ii) Cone∞(eAt) ⊆ ∂Rn
+;

iii) there exists some index r ∈ 〈n〉 such that r ∈ ZP(v∞
j ) for every j ∈ 〈n〉

(with v∞
j as in eq.(8.2 )).

Note that, if A is an irreducible matrix, it admits only one positive eigen-
vector of unitary norm, which is strictly positive and corresponds to the dom-
inant eigenvalue [4]. Therefore Cone∞(eAt) collapses into a one dimensional
cone (a ray) which lies in the interior of the positive orthant. So, condition
ii) in Corollary 8.3 cannot be fulfilled, unless A is a reducible matrix.

At this point, we want to analyze when either one of the equivalent con-
ditions in Corollary 8.3 is verified. Equivalently, we want to derive a charac-
terization of the condition Cone∞(eAt) 6⊆ ∂Rn

+.

Proposition 8.4 Let A be an n×n Metzler matrix in Frobenius normal form
(1.2). Cone∞(eAt) 6⊆ ∂Rn

+ if and only if every initial class is distinguished.

Proof: [Sufficiency] Suppose that for every class Cj, j ∈ 〈ℓ〉, which
is initial λmax(Ajj) > λmax(Akk) for every k ∈ D(Cj). Let j be an arbitrary
index in 〈ℓ〉. If Cj is an initial class, then for every index i such that C(i) = Cj

(namely, i ∈ Cj), blockj[v
∞
i ] ≫ 0 (see Proposition A.10). On the other hand,
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when Cj is not an initial class, and we let Ch be an initial class accessing Cj,
then for every index i such that C(i) = Ch, blockj[v

∞
i ] ≫ 0. This proves that

for every j ∈ 〈ℓ〉 there is at least one vector v∞
i with blockj[v

∞
i ] ≫ 0, and

this ensures that Cone∞(eAt) 6⊆ ∂Rn
+.

[Necessity] Assume, by contradiction, that there is one initial class Cj, j ∈ 〈ℓ〉,
such that λmax(Ajj) ≤ λmax(Akk) for some k ∈ D(Cj). Let i be an arbitrary
index in 〈n〉. If i 6∈ Cj then blockj[e

Atei] = 0 and hence blockj[v
∞
i ] = 0 (see

Theorem A.16). On the other hand, if i ∈ Cj then there exists h < i such that
blockh[e

Atei] strictly dominates blockj[e
Atei]. Consequently, blockj[v

∞
i ] = 0.

This ensures that all vectors v∞
i have the jth block identically zero, and this

implies that Cone∞(eAt) ⊆ ∂Rn
+.

By making use of Proposition A.17 and of Lemma A.21, in the Appendix,
the derivation of the following characterization is straightforward.

Lemma 8.5 Given an n× n Metzler matrix A,

i) for every i ∈ 〈n〉, the ith generating vector of Cone∞(eAt), v∞
i , is a pos-

itive eigenvector (of unitary norm) of A, corresponding to the dominant
eigenvalue of some distinguished class; as a consequence, Cone∞(eAt)
is A-invariant and therefore eAt-invariant ∀ t ≥ 0.

ii) A positive eigenvector v of A, corresponding to some eigenvalue λ ∈
σ(A), can be expressed as the nonnegative combination of all those
eigenvectors v∞

i which correspond to the eigenvalue λ, and hence v

belongs to Cone∞(eAt).

iii) Cone∞(eAt) coincides with the (polyhedral convex) cone in Rn
+ generated

by the set of positive eigenvectors of A. Even more, Cone∞(eAt) is the
polyhedral cone generated by a full column rank positive matrix.

Proof: i) Follows immediately from Proposition A.17. Note that the
vectors ṽi, i = 1, . . . , ℓ, of eq. (A.10) in Proposition A.17 are the asymptotic
directions defined in eq. (8.2)1.

1As a matter of fact, while the vector v
∞
i represents the asymptotic directions the ith

column aligns to, the vector ṽi represents the asymptotic direction all the columns of the
ith class align to.
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ii) Suppose w.l.o.g. that ‖v‖ = 1 and that A is in Frobenius normal form
(1.2). Since eAtv = eλtv, it is easily seen that

lim
t→+∞

eAtv

‖eAtv‖ = lim
t→+∞

eλtv

‖eλtv‖ = lim
t→+∞

v = v.

On the other hand, by resorting to Proposition A.19, we may say that, when
t tends to +∞, then

eAtv ≈
∑

i∈I

v∞
i [v]i m(t),

where

• m(t) is the dominant mode within the set
{

eλjt t
mj

mj !
: j ∈ ZP(v)

}

, with

λj = max{ λmax(Akk) : k ∈ D(C(j))} and mj +1 the maximum number
of classes Ck with λmax(Akk) = λj that lie in a single chain starting
from C(j) in R(A);

• I := {i ∈ ZP(v) : mi(t) = m(t)}.

Consequently, lim
t→+∞

eAtv

‖eAtv‖ =

∑

i∈I v∞
i [v]i

‖∑i∈I v∞
i [v]i‖

. So, it must be

v =

∑

i∈I v∞
i [v]i

‖∑i∈I v∞
i [v]i‖

,

which concludes the proof of ii).

iii) Let V be the set of all positive eigenvectors of A. By the previous point
ii), Cone(V ) ⊆ Cone∞(eAt).
On the other hand, Cone∞(eAt) = Cone(v∞

1 ,v
∞
2 , . . . ,v

∞
n ) ⊆ Cone(V ), and

hence Cone(V ) = Cone∞(eAt).

By resorting to Proposition 7.5 and Corollary 8.3, we get the following
sufficient condition for reachability.

Proposition 8.6 Consider an n-dimensional positive switched system (2.1),
commuting among n single-input subsystems (Ai, bi), i = 1, 2, . . . , n, and sup-
pose that, for every proper subset S ⊂ 〈n〉, |IS | = 1, namely there exists a
unique index j(S) ∈ 〈n〉 such that ZP(eAj(S)eS) = S. Then the system is
reachable if and only if the following two conditions hold:
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a) the system is monomially reachable;

b) for every S, with r := |S| > 1, either

– ZP(bj(S)) ⊆ S or

– Cone∞
(

P T
S e

Aj(S)tPS

)

⊆ ∂Rr
+,

where PS is the selection matrix which selects all the columns corre-
sponding to the indices belonging to S.

Proof: [Sufficiency] Notice, first, that if Cone∞
(

P T
S e

Aj(S)tPS

)

⊆ ∂Rr
+,

then, by Corollary 8.3, for every strictly positive vector vS ∈ Rr
+ there exists

τ > 0 such that vS ∈ ∂Cone
(

P T
S e

Aj(S)τPS

)

. So, as a consequence of condition

ZP(eAj(S)eS) = S, for every positive vector v ∈ Rn
+, with ZP(v) = S, there

exists τ > 0 such that v = eAj(S)τPSuS , with ZP(uS) 6= ∅. Consequently,
assumptions a) and b) imply conditions iia) and iib) of Proposition 7.5, and
reachability follows.

[Necessity] By comparing the proposition statement with the result of
Proposition 7.5, it remains to prove that if the system is reachable and for
every S ⊂ 〈n〉 there is a single index j(S) such that ZP(eAj(S)eS) = S, then
condition ∅ 6= ZP(bj(S)) 6⊆ S implies Cone∞

(

P T
S e

Aj(S)tPS

)

⊆ ∂Rr
+. Indeed,

let v > 0 with ZP(v) = S. By referring to the same notation employed in
the proof of Proposition 7.5, we have that v = eAj(S)τkBk, with τk > 0 and

Bk := eAik−1
τk−1 . . . eAi1

τ1eAi0
τ0bi0ci0 + . . .+ eAik−1

τk−1bik−1
cik−1

, (8.3)

for suitable indices iℓ (with iℓ 6= iℓ+1), positive time intervals τℓ and nonneg-
ative coefficients cℓ. From Lemma A.7, it follows that Sk := ZP(Bk) ⊆ S,
and the uniqueness of j(S) ensures that Sk ( S. So, v = eAj(S)τkPSuS ,
∃ uS ≥ 0, with ZP(uS) 6= ∅. But since this must be true for every vector
v ∈ VS := {v : ZP(v) = S}, then every vS ∈ Rr

+, with vS ≫ 0, must lie on
the boundary of Cone(P T

S e
Aj(S)τPS) for some τ = τ(vS) > 0. By Corollary

8.3, then, it must be Cone∞
(

P T
S e

Aj(S)tPS

)

⊆ ∂Rn
+.

We are ready to derive, at this point, a sufficient condition for reachability
which is based on the structure of the cones Cone∞

(

P T
S e

Aj(S)tPS

)

.

Proposition 8.7 Consider an n-dimensional positive switched system (2.1),
commuting among n single-input subsystems (Ai, bi), i = 1, 2, . . . , n, and sup-
pose that the system is monomially reachable. If for every proper subset
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S ⊂ 〈n〉, with |S| ≥ 2,

∩i∈ISCone∞(eP T
S AiPSt) ⊆ ∂R

|S|
+ , (8.4)

then the system is reachable.

Proof: Monomial reachability ensures that all monomial vectors are
reachable. On the other hand, consider the case of any vector v with
S = ZP(v) of cardinality greater than 1 and let vS be the restriction of
v to the indices corresponding to S. If (8.4) holds, than, by the strict pos-
itivity of vS , there exists at least one index j = j(vS) ∈ IS such that
vS 6∈ Cone∞(eP T

S AjPSt). Thus, by Lemma 8.2, there exists τ > 0 such that
vS ∈ ∂Cone(eP T

S AjPSτ ) and v is reachable.

8.2 Asymptotic exponential cone:

the multiple exponential case

Analogously to the single matrix case, we introduce here the following defi-
nition

Definition 8.8 Given an ordered set of n×n Metzler matrices Ai1 , . . . , Aim

and a positive vector ᾱ = (α1, . . . , αm), we define their asymptotic exponen-
tial cone along ᾱ

Coneᾱ
∞

(

eAi1
t . . . eAim t

)

as the polyhedral cone generated by the (normalized) vectors v∞
i which rep-

resent the asymptotic directions of the columns of eAi1
α1t . . . eAimαmt, i.e.

v∞
i := lim

t→∞

eAi1
α1t . . . eAimαmtei

‖eAi1
α1t . . . eAimαmtei‖

, i = 1, 2, . . . , n. (8.5)

Again, Coneᾱ
∞

(

eAi1
t . . . eAim t

)

is a polyhedral convex cone in Rn
+, and it

is never the empty set. However, no monotonicity property can be generally
guaranteed, as it happens for a single matrix exponential.

One may wonder why there is the need for introducing a whole family
of asymptotic cones corresponding to a certain index family {i1, i2, . . . , im}.
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The reason is that, unfortunately, different directions ᾱ may lead to different
asymptotic cones. So, while in the single exponential case we are dealing
with a single cone, when considering m exponentials we are typically dealing
with a family of cones. This simple example clarifies this point.

Example 8.9 Consider the two Metzler matrices

A1 =

[

1 1
0 2

]

, A2 =

[

6 1
0 4

]

.

It is a matter of simple computation to show that, for any ᾱ = (α1, α2) ∈ R2
+,

we get

eA1α1teA2α2t =

[

e(α1+6α2)t e(α1+6α2)t + e(2α1+4α2)t + l.t.
0 e(2α1+4α2)t

]

where “l.t.” (“lower terms”) denotes terms which are surely dominated by
the two terms appearing in the (1, 2)-entry. Consequently, we distinguish the
following three cases:

(i) α1 + 6α2 > 2α1 + 4α2, namely α1 < 2α2: if so,

Coneᾱ
∞(eA1teA2t) = Cone

([

1
0

])

;

(ii) α1 + 6α2 = 2α1 + 4α2, namely α1 = 2α2, in which case

Coneᾱ
∞(eA1teA2t) = Cone

([

1 2
0 1

])

;

(iii) α1 + 6α2 < 2α1 + 4α2, namely α1 > 2α2, for which

Coneᾱ
∞(eA1teA2t) = Cone

([

1 1
0 1

])

.

It is easily seen, though, that even if ᾱ may vary continuously in Rm
+ ,

the number of asymptotic cones is necessarily finite, as it depends on which
mode dominates each column in the matrix product eAi1

α1teAi2
α2t . . . eAimαmt.

Since the dominant modes are obtained by multiplying the dominant modes
of each single entry of the various factors eAih

αht, the number of possible
combinations as ᾱ varies in Rm

+ is necessarily finite.
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In this section we explore the properties of the cones generated by an or-
dered family of exponential matrices, along certain directions. As illustrated
in Example 8.9, once the indices i1, i2, . . . , im ∈ P have been chosen, we are
dealing with a family of asymptotic exponential cones, and not a single one.
Nonetheless, the order of the indices constrains the asymptotic cone to lie
within the asymptotic cone related to the first index i1.

Proposition 8.10 Given a set A = {A1, . . . , Ap} of Metzler matrices and
indices i1, i2, . . . , im ∈ P, we have that, for every ᾱ = (α1, α2, . . . , αm)

Coneᾱ
∞(eAi1

t . . . eAim t) ⊆ Cone∞(eAi1
t).

Proof: Assume, initially, ᾱ = 1̄. Notice, first, that for every i ∈ 〈n〉
the jth entry of the vector v̂i(t) := eAi2

t . . . eAim tei, if nonzero, takes the
following form

[v̂i(t)]j = cji e
λjit

tmji

mji!
+ [v̂i]j,rem(t), (8.6)

with cji > 0 and limt→+∞
[v̂i]j,rem(t)

e
λjit t

mji

mji!

= 0.

So,

lim
t→+∞

eAi1
t . . . eAim tei

‖eAi1
t . . . eAim tei‖

= lim
t→+∞

eAi1
tv̂i(t)

‖eAi1
tv̂i(t)‖

for some vector v̂i(t) whose nonzero entries take the form (8.6). If we assume
that Cone∞(eAi1

t) = Cone(v∞
1 , . . . ,v

∞
n ), by making use of the expression of

eAi1
t given in Proposition A.17, we may say that, when t that tends to +∞,

eAi1
tv̂i(t) ≈

∑

h∈H

v∞
h chi m(t),

where

• m(t) is the dominant mode among
{

mj(t)e
λjit t

mji

mji!
: j ∈ ZP(v̂i(t))

}

;

• H := {h ∈ ZP(v) : mh(t)e
λhit tmhi

mhi!
= m(t)}.

Consequently,

lim
t→+∞

eAi1
tv̂i(t)

‖eAi1
tv̂i(t)‖

=

∑

h∈H v∞
h chi

‖∑h∈H v∞
h chi‖

.

So, it must be

lim
t→+∞

eAi1
t . . . eAim tei

‖eAi1
t . . . eAim tei‖

=

∑

h∈H v∞
h chi

‖∑h∈H v∞
h chi‖

.
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Consequently, all generators of Cone(1,1,...,1)
∞ (eAi1

t . . . eAim t) are nonnegative
combinations of the generators of Cone∞(eAi1

t), which concludes the first
part of the proof.

Now, setting Āih := Aihαh, we can follow the same proof as before, upon
noticing that Cone∞(eĀi1

t) = Cone∞(eAi1
α1t) = Cone∞(eAi1

t). This will al-
low to prove the general statement.

Unfortunately, the result of Lemma 8.2 for the asymptotic cone of a single
exponential matrix can be only partially extended, thus getting the following
proposition.

Proposition 8.11 Given a set A = {A1, . . . , Ap} of Metzler matrices and a
strictly positive vector v ∈ Rn

+, let m be in N and let i1, i2, . . . , im be indices
in P. If v 6∈ Coneᾱ

∞(eAi1
t . . . eAim t), for some ᾱ = (α1, α2, . . . , αm) ∈ Rm

+ ,
then ∃ τ̄1, . . . , τ̄m > 0 such that v ∈ ∂ Cone(eAi1

τ̄1 . . . eAim τ̄m).

Proof: As in the previous proof, consider initially ᾱ = 1̄. Suppose
that v 6∈ Cone1̄

∞(eAi1
t . . . eAim t). Surely though, v is an internal point of

Cone(eAi1
0 . . . eAim0). By the continuity of the exponential matrices, the

boundary surface of Cone(eAi1
t . . . eAim t) evolves continuously with t ≥ 0.

So, if we define a distance d(t) between the vector v and Cone(eAi1
t . . . eAim t)

as:

d(t) := inf{‖v − eAi1
t . . . eAim tx‖ : x ≥ 0}.

Clearly, d(0) = 0 and d(+∞) > 0, moreover d(t) is a continuous func-
tion. So, once we define τ := sup{t ≥ 0 : d(t) = 0}, it is easily seen that
v ∈ Cone(eAi1

τ . . . eAimτ ) (as polyhedral cones are closed sets) and it must lie
on the boundary of the cone, namely on some face, otherwise it would contra-
dict the definition of τ . This further proves that τ = max{t ≥ 0 : d(t) = 0}.
The extension to the more general statement proceeds along the same lines,
by assuming Āih := Aihαh and τh = αhτ̄h.

This immediately brings, as a corollary, a sufficient condition for the
problem solution.

Corollary 8.12 Consider a set A = {A1, . . . , Ap} of n×n Metzler matrices
and a nonnegative vector v ∈ Rn

+. Set S := ZP(v), and let PS denote the
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(column) selection matrix corresponding to the indices in S, and vS = P T
S v

the subvector obtained by restricting v to the entries corresponding to S. If

vS 6∈
⋂

m≥1

⋂

i1,...,im∈IS

⋂

ᾱ∈Rm
+

Coneᾱ
∞(P T

S e
Ai1

t . . . eAim tPS),

then ∃ i1, i2, . . . , im ∈ IS and τ1, . . . , τm > 0 such that v = eAi1
τ1 . . . eAimτmu,

with ZP(u) ( S.

Unfortunately, up to now, we have not been able to reverse the statement
of Proposition 8.11.

8.3 Special Cases

There are some special cases, though, when we are able to forecast that each
strictly positive vector lies in the boundary of some cone generated by the
product of some exponential matrices.

Proposition 8.13 Consider a set A = {A1, . . . , Ap} of n×n pairwise com-
muting Metzler matrices and a nonnegative vector v ∈ Rn

+. Set S := ZP(v),
and let PS , vS and IS be as in Corollary 8.12. Then, the following facts are
equivalent:

i) ∃ i1, i2, . . . , im ∈ IS and τ1, . . . , τm > 0 such that v = eAi1
τ1 . . . eAimτmu,

with ZP(u) ( S;

ii) ∃ i1, i2, . . . , im ∈ IS such that vS 6∈ Cone∞(P T
S e

Ai1
t . . . eAim tPS);

iii) vS 6∈ ⋂m≥1

⋂

i1,i2,...,im∈IS
Cone∞(P T

S e
Ai1

t . . . eAim tPS).

Proof: i) ⇒ ii) Consider the subvector vS . By recursively applying
Lemma A.7, we can say that there exists a permutation matrix P such that

P Tv =

[

vS

0

]

, P TAikP =

[

AS,k ∗
0 ∗

]

, k = 1, 2, . . . ,m, P Tu =

[

uS

0

]

,

(8.7)

with AS,k of size |S| × |S| and uS ∈ R
|S|
+ , with R := ZP(uS) ( S. Moreover,

vS = eAS,1τ1 . . . eAS,mτmuS ≫ 0.
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Note that the commutativity of the matrices Ai’s ensures the commutativ-
ity of the matrices AS,i and hence of the corresponding exponential matrices.
Also, Cone∞(P T

S e
Ai1

t . . . eAim tPS) = Cone∞(eAS,1t . . . eAS,mt).

We want to show that, for every δ1, δ2, . . . , δm > 0, the vector vS does
not belong to

Cone
(

eAS,1(τ1+δ1). . . eAS,m(τm+δm)
)

= Cone(eAS,1τ1. . . eAS,mτmeAS,1δ1. . . eAS,mδm).

If this were the case, and hence there would be some wS ≥ 0 such that

vS = eAS,1τ1 . . . eAS,mτm

(

eAS,1δ1 . . . eAS,mδm

)

wS ,

then, by the invertibility of the exponential matrices, it would be

uS =
(

eAS,1δ1 . . . eAS,mδm

)

wS .

By Lemma A.2, it must be ZP
(

eAS,1δ1 . . . eAS,mδmeR

)

= R.

But then ZP(eAS,1τ1 . . . eAS,mτm uS) = ZP(vS) should be R, too, thus contra-
dicting the strict positivity assumption on vS .
In particular, the previous result holds if we consider mtuples (δ1, . . . , δm)
such that

δi =
(

∑

j 6=i

τj

)

+ t, t ∈ R+, i ∈ {1, 2, . . . ,m}.

So, once we set τ :=
∑m

j=1 τj, we have proved that

vS 6∈ Cone(eAS,1(τ+t) . . . eAS,m(τ+t))

for every t ∈ R+. As a result, vS 6∈ Cone∞(eAS,1(τ+t) . . . eAS,m(τ+t)) =
Cone∞(eAS,1t . . . eAS,mt), since

lim
t→+∞

eAS,1(τ+t) . . . eAS,m(τ+t) · ej

‖eAS,1(τ+t) . . . eAS,m(τ+t) · ej‖
= lim

t→+∞

eAS,1t . . . eAS,mt · ej

‖eAS,1t . . . eAS,mt · ej‖
= v∞

j .

So, being vS strictly positive, vS 6∈ Cone∞(eAS,1t . . . eAS,mt).

ii) ⇒ i) Has been proved in Corollary 8.12.

ii) ⇔ iii) is obvious.
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Lemma 8.14 Let A1, A2 ∈ Rn×n be two Metzler matrices and let v be
a strictly positive vector in Rn

+. If 2 Cone(v) = Cone∞(eA2t), and v ∈
Cone∞(eA1t), but it is not an eigenvector of A1, then for every τ1 > 0 there
exists τ2 > 0 such that v ∈ ∂Cone(eA1τ1eA2τ2).

Proof: This amounts to proving that for every τ1 > 0 there exists τ2 > 0
such that

v = eA1τ1eA2τ2u ⇔ e−A1τ1v = eA2τ2u,

for some u > 0 with ZP(u) 6= ∅. We first observe that for every τ1 > 0, w :=
e−A1τ1v is not a multiple of v and hence it does not belong to Cone∞(eA2t).
On the other hand, since v ∈ Cone∞(eA1t), then v is an internal point of
Cone(eA1t), for every t ≥ 0. So, in particular, v is an internal point of
Cone(eA1τ1), which amounts to saying that v = eA1τ1u1 for some u1 ≫ 0.
Clearly, by the invertibility of the exponential matrix, w = u1 ≫ 0. So,
we have shown that w is a strictly positive vector which does not belong to
Cone∞(eA2t). This implies that w ∈ ∂Cone(eA2τ2) for some τ2 > 0, and hence
w = eA2τ2u, for some u > 0 with ZP(u) 6= ∅. This completes the proof.

The previous technical result leads to the following sufficient condition
for reachability

Proposition 8.15 An n-dimensional continuous-time positive switched sys-
tem (2.1), commuting among n single-input subsystems (Ai, bi), i = 1, . . . , n,
is reachable if for every proper subset S ⊂ 〈n〉 we have:

a) if |S| = 1, then ∃ j(S) ∈ IS such that ZP(bj(S)) = S;

b) if |S| > 1, then either

1. ∃ j(S) ∈ IS such that ZP(bj(S)) ⊂ S,

or

2. ∃ ji(S), jk(S) ∈ IS such that P T
S Aji(S)PS is irreducible and its

strictly positive eigenvector (of unitary modulus) is not an eigen-
vector of P T

S Ajk(S)PS .

2Note that this happens if and only if A2 is irreducible, and when so v is a (strictly
positive) dominant eigenvector.
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Proof: We only need to show that condition b) - 2. implies condition iib
- 2) in Proposition 7.5.

To this end, let v be a positive vector with S = ZP(v) of cardinality
greater than 1, and notice that, under assumption b)-2., there exists ji ∈ IS

such that Cone∞(P T
S Aji

PS) coincides with the cone generated by a single
strictly positive vector w.

Let vS be the restriction of v to the indices corresponding to S. If vS 6= w,
then vS 6∈ Cone∞(eP T

S Aji
PSt), and hence there exists τ > 0 such that vS ∈

∂Cone(eP T
S Aji

PSτ ). This ensures that v is reachable. If vS = w, then either
vS 6∈ Cone∞(eP T

S AjPSt) for some other j ∈ IS (and if so, by repeating the pre-
vious argument, we may say that vS ∈ ∂Cone(eP T

S AjPSτ ),∃ τ > 0, and hence
v is reachable), or for every j 6= i, j ∈ IS , we have vS ∈ Cone∞(eP T

S AjPSt).
For one such index jk ∈ IS , though, vS is not an eigenvector of P T

S Ajk
PS .

So, by applying Lemma 8.14, we may say that there exist τk, τi > 0 such that

vS = eP T
S Ajk

PSτkeP T
S Aji

PSτiuS ,

for some positive vector uS , with ZP(uS) 6= ∅. This ensures, again, that v is
reachable.

Lemma 8.16 Let A be an n × n Metzler matrix in Frobenius normal form
(1.2), and let Cj1 , . . . , Cjr

be the distinguished classes3 in G(A). We know
that if ṽi, i ∈ 〈r〉, is the positive eigenvector corresponding to the dominant
eigenvalue λmax(Aji ji

) of the distinguished class Cji
, then Cone∞(eAt) is the

cone generated by the full column rank positive matrix V∞ = [ṽ1 . . . ṽr].

Suppose that the s ≤ r distinct eigenvalues the previous eigenvectors cor-
respond to are ordered as λ1 < λ2 < · · · < λs . Define, for every k = 1, . . . , s,
the following sets:

• Ik := {i ∈ 〈r〉 : ṽi is an eigenvector corresponding to λk};

• Dk :=
⋃

i∈Ik
D(Cji

);

• V := {k ∈ 〈s〉 :
⋃

j≥k Dj 6= 〈ℓ〉}.

Then, for any k ∈ 〈s〉, there exists a positive vector c ∈ Rr
+ satisfying

3Note that we do not introduce any specific ordering within the set of indices
{j1, . . . , jr}.
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• V∞c is strictly positive;

• k := min{i ∈ 〈s〉 : ZP(c) ∩ Ii 6= ∅}.

if and only if k 6∈ V.

Proof: Notice, first, that since ṽi, i ∈ 〈r〉, is the eigenvector correspond-
ing to the dominant eigenvalue of the distinguished class Cji

, its nonzero
pattern obeys the following rules (see Proposition A.10):

blockk[ṽi] =

{

≫ 0, if k ∈ D(Cji
);

0, otherwise.
(8.8)

For any index k ∈ 〈s〉, the set Dk represents the set of indices of those
classes that are reached by (at least) one distinguished class corresponding
to λk. Clearly, as Ik is the set of indices in {1, 2, . . . , r} such that ṽi is an
eigenvector corresponding to λk, then, by (8.8), ZP(

∑

i∈Ik
ṽi) = Dk. Finally,

V represents the set of all indices k ∈ 〈s〉 for which

ZP





∑

i∈Ik∪Ik+1∪···∪Ir

ṽi



 6= 〈n〉, namely
∑

i∈Ik∪Ik+1∪···∪Ir

ṽi is not strictly positive.

As a consequence, if k ∈ V, then there is no way of finding some c ∈ Rr
+

such that V∞c ≫ 0 and k := min{i : ZP(c) ∩ Ii 6= ∅}.
Conversely, if k 6∈ V, there exists c ∈ Rr

+ such that k := min{i :
ZP(c) ∩ Ii 6= ∅} and V∞c ≫ 0.

Remark 8.17 Note that the hypothesis requiring the matrix A to be in Frobe-
nius normal form is not necessary at all to conclude the result, even though
it greatly simplifies the notation of the proof.

Proposition 8.18 Let A1 and A2 be two n×n Metzler matrices, and adopt
the same notation as in Lemma 8.16, where all the symbols ṽ1, . . . , ṽr, λ1, . . . ,

λs, Ik,V now refer to the matrix A1, and we assume λ1 < · · · < λs. If each
positive eigenvector of A1 belonging to ∪k 6∈VKk, with

Kk := Cone({ṽi, i ∈ Ik}),
does not belong to Cone∞(eA2t), then for every strictly positive vector v ∈ Rn

+

there exists τ1, τ2 ≥ 0 such that v ∈ ∂Cone(eA1τ1eA2τ2).
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Proof: We already know from Lemma 8.2 that the result is true for every
v 6∈ Cone∞(eA1t)∩Cone∞(eA2t), by setting either τ1 or τ2 equal to zero. Pick
now v ∈ Cone∞(eA1t)∩Cone∞(eA2t). For two positive time instants τ1, τ2 to
exist such that v = eA1τ1eA2τ2u for some u ∈ ∂Rn

+, a time instant τ1 must
exist such that the vector w(τ1) := e−A1τ1v does not belong to Cone∞(eA2t).

Since v ∈ Cone∞(eA1t) = Cone(V∞), it can be expressed as v =
∑r

i=1 ciṽi.
On the other hand, by the strict positivity of v it also follows that k :=
min{i : ZP(c) ∩ Ii 6= ∅} does not belong to V (this comes directly from the
definition of the set V itself). As a consequence, if we express v as

v =
∑

i∈Ik

ciṽi +
∑

i∈Ik+1

ciṽi + · · · +
∑

i∈Is

ciṽi,

then

w(τ1) =

(

∑

i∈Ik

ciṽi

)

e−λkτ1 +





∑

i∈Ik+1

ciṽi



 e−λk+1τ1 + · · ·+
(

∑

i∈Is

ciṽi

)

e−λsτ1 .

As τ1 goes to +∞, w(τ1) will converge to the eigenvector w(+∞) :=
∑

i∈Ik
ci

ṽi, corresponding to the eigenvalue λk, k 6∈ V.

But then, by the proposition’s assumptions, w(+∞) 6∈ Cone∞(eA2t), and
since Cone∞(eA2t) is a closed set, it is possible to find some 0 < τ̄1 < +∞ such
that for every τ1 > τ̄1, w(τ1) 6∈ Cone∞(eA2t). So, by Lemma 8.2, for every
such τ1 it will be possible to find some τ2 > 0 such that w(τ1) ∈ ∂Cone(eA2τ2),
and hence v ∈ ∂Cone(eA1τ1eA2τ2).





Chapter 9

Optimal Reset Map for

Switched Systems

When dealing with the control of complex systems, multiple conflicting re-
quirements on the closed-loop system often make a single linear time-invariant
(LTI) controller unsuitable [7]. In this context, a convenient solution con-
sists of designing several LTI controllers with transfer functions {kp(s) : p ∈
P}, each one of them designed to meet only some specifications, and then
switching between them in order to achieve the best overall performance
[24, 25, 50, 33]. In this chapter we do not address the problem of how to
select a “suitable” switching sequence, but instead focus on how to guaran-
tee stability of the switched closed-loop and how to obtain the best possible
performance for an externally given desired sequence of controllers.

9.1 Background and problem formulation

Consider a linear time-invariant process Σ, with transfer function g(s) from
the input u(t) to the output y(t), and let {kp(s)}p∈P be a finite family of
controller transfer functions from the tracking error eT (t) := r(t) − y(t) to
the control input u(t), where r(t) denotes a piecewise constant reference
signal, all of them stabilizing the plant Σ. The switched system considered
here arises from the feedback interconnection of the plant Σ to be controlled
with a multicontroller C(σ) whose inputs are the usual tracking error eT (t) as
well as a piecewise constant switching signal σ : [0,+∞) → P that roughly
determines which should be the controller transfer function at time t (cf.
Figure 9.1). In particular, given an n-dimensional state space realization
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Figure 9.1: Controller architecture

(Ep, Fp, Gp, Hp) for each kp(s), p ∈ P, the state xmult(t) of the multicontroller
C(σ) evolves according to

{

ẋmult(t) = Eσ(t)xmult(t) + Fσ(t)eT (t)

u(t) = Gσ(t)xmult(t) +Hσ(t)eT (t)
(9.1)

on any time interval on which the switching signal σ(t) remains constant,
and according to

xmult(t) = F (xmult(t
−), σ(t−), σ(t), r(t)), (9.2)

at every time t, called a switching time, at which σ(t) is discontinuous. The
function F (·) is called the reset map and, given a signal z(·), we denote by
z(t−) its limit from the left at time t, limτ↑t z(τ). All signals are assumed to
be continuous from the right. One should emphasize that even if each kp(s)
stabilizes the process, as the value of σ(t) switches within P the stability of
the closed loop may be lost [25, 33].

A wide body of literature is available on conditions for the uniform sta-
bility of switched systems [14, 35, 34, 33] and on the optimal control of such
systems [52, 58, 39, 2, 57, 3]. However, the special structure given by the feed-
back interconnection of a multicontroller with a non-switching plant provides
a special structure that is usually not taken into account in the previously
mentioned works.

Besides the choice of the controller transfer functions kp(s) and the selec-
tion of the switching signal σ(t), there are two additional degrees of freedom
available to the designer of the multi-controller: the selection of state space
realizations for each controller and the construction of the reset map. A
study of how these choices affect system stability appeared in [25], which ad-
dressed the problem of finding realizations and reset maps for a given family
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of stabilizing controller transfer functions such that the closed-loop system
remains uniformly stable for every switching signal σ(t). However, [25] does
not explore the performance implications of the controller realizations and
reset maps. In addition, this reference only considers very special types of
reset maps.

The more recent paper [50] considers a similar setup and suggests the
creation of several “candidate” control signals vp(t), p ∈ P, one for each
controller, by letting each individual controller evolve continuously without
resets. Then the switching signal σ(t) selects which one among the vp(t)’s
should be actually employed for control purposes. In order to get a smoother
transient response, the piecewise continuous signal v(t) := vσ(t)(t) thus ob-
tained is filtered in order to generate a continuous control input u(t).

Inspired by the control scheme proposed in [25], we deal with the issue of
appropriately designing the reset map, so that the closed-loop switched sys-
tem produces transients that minimize a given cost function, while preserving
the (input-to-state) stability of the closed-loop switched system. Simulation
results compare the performance of our switching controller with those in
[25] and [50].

For simplicity we restrict our attention to asymptotically stable single
input single output (SISO) processes Σ. However, all the results presented
here could be generalized to not necessarily stable multiple input multiple
output processes (MIMO) processes, following the approach in [25].

The construction of the multicontroller follows [25] and is inspired by the
Youla-Kucera parametrization of all the stabilizing controllers. This param-
eterization motivates us to express each controller transfer function as

kp(s) =
qp(s)

1 − qp(s)g(s)
, (9.3)

which can be viewed as a positive feedback interconnection between a system
with transfer function g(s) and an asymptotically stable system with transfer
function

qp(s) =
kp(s)

1 + g(s)kp(s)
.

Note that qp(s) is indeed asymptotically stable because kp(s) stabilizes g(s)
(see Figure 9.2).
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Let (A,B,C) denote a stabilizable and detectable npl-dimensional re-
alization for the process transfer function g(s) and select stabilizable and
detectable realizations (Ap, Bp, Cp, Dp) for each qp(s), p ∈ P. The (not nec-
essarily minimal) realizations for all the qp(s) should have the same dimension
ncn and all the Hurwitz matrices Ap should admit the squared-norm of the
state as a Lyapunov function, which is to say that

Ap + AT
p < 0, ∀p ∈ P. (9.4)

This is always possible because of [25, Lemma 7]. In view of the diagram
in Figure 9.2, each transfer function kp(s) has a realization (Ep, Fp, Gp, Hp)
with

Ep :=

[

Ap BpC

BCp A+BDpC

]

, Fp :=

[

Bp

BDp

]

, (9.5)

Gp :=
[

Cp DpC
]

, Hp := Dp. (9.6)

The proposed multicontroller Cσ has state xmult(t) := [xcn(t)
T xcopy(t)

T ]T ,
which evolves according to (9.1) on any time interval on which σ(t) remains
constant and

xmult(t) =

[

xcn(t)
xcopy(t)

]

=

[

F (xmult(t
−), σ(t−), σ(t), r(t))
xcopy(t

−)

]

(9.7)

at every switching time t. Note that (9.7) slightly differs from (9.2), since in
the former the reset map F (·) only affects the component xcn of the state of
C(σ). In (9.7), the component xcopy of the state of C(σ) remains continuous
and it will actually converge to the process state xpl(t). In fact, it follows
from (9.1) and (9.7) that

ẋcopy(t) = Axcopy(t) +Bu(t) (9.8)

for all times and, because we are assuming that A is asymptotically stable,
we indeed have that xcopy(t) converges to xpl(t), regardless of the control
signal u(t).

Figure 9.2: Controller kp(s)
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Connecting the plant Σ with realization (A,B,C) with the multicontroller
C(σ), through the negative feedback interconnection in Figure 9.1, results in
a switched system with a state x(t) := [xpl(t)

T xcn(t)
T xcopy(t)

T ]T that evolves
according to

ẋ(t) = Âσ(t)x(t) + B̂σ(t)r(t), y(t) = Ĉσ(t)x(t) (9.9)

on any time interval on which σ(t) remains constant and

x(t) =





xpl(t)
xcn(t)
xcopy(t)



 =





xpl(t
−)

F (x(t−), σ(t−), σ(t), r(t))
xcopy(t

−)



 (9.10)

at every switching time t. The matrices in (9.9) are defined by

Âp :=





A BCp BDpC

−BpC Ap BpC

−BDpC BCp A+BDpC



 , B̂p :=





BDp

Bp

BDp





Ĉp :=
[

C 0 0
]

, ∀p ∈ P.

with all the Âp Hurwitz, since kp(s) stabilizes g(s).

The remainder of this chapter is focused on the goal of selecting an appro-
priate reset map F (·) that achieves optimal transient performance at switch-
ing times, while maintaining (9.9)–(9.10) stable. The issue of optimizing
transient performance is the subject of the next section.

9.2 An optimal definition of the reset map

Suppose that at time t = t0 the switching signal jumps from σ(t−0 ) = p to
σ(t0) = q. Our goal is to select the post-switching state defined by the reset
map

xcn(t0) = F (xmult(t
−
0 ), p, q, r(t0)) (9.11)

so as to optimize the resulting transient performance, as measured by a
quadratic cost of the following form

J =

∫ t1

t0

(

eT (t)TReT (t) + ẏ(t)TWẏ(t) + u(t)TKu(t)
)

dt

+
(

x(t1) − x∞
)T
T
(

x(t1) − x∞
)

(9.12)



82 Optimal reset map for switched systems

where R,W,K, T are appropriately selected symmetric positive semi-definite
matrices and

x∞ := −Â−1
q B̂q r(t0). (9.13)

The choice of the matricesR,W,K, T allows one to penalize the tracking error
magnitude, output rate of change, control effort, and final state magnitude,
respectively. In performing this optimization, it will be assumed that the
switching signal σ(t) and the reference r(t) remain constant and equal to q
and r(t0), respectively, over the optimization horizon [t0, t1]. If σ(t) turns
out to switch again before t1, the value to which xcn was reset at time t0,
will generally not be optimal. However, we will later make sure that even
in this case, stability is guaranteed. Note that the vector x∞ that appears
in the terminal term in (9.12) is the steady-state value to which x(t) would
converge as t→ ∞ if both σ(t) and r(t) were to remain constant.

9.2.1 Optimization of transient performance

To find the value of xcn(t0) that minimizes (9.12) we need to introduce some
notation. Let Qq denote the symmetric solution to the following Lyapunov
equation

QqÂq + ÂT
q Qq = −Pq, (9.14)

where Pq := ĈT
q RĈq+Â

T
q Ĉ

T
q WĈqÂq+C̃

T
q KC̃q ≥ 0 and C̃q :=

[

−DqC Cq DqC
]

.

Such solution exists and is at least positive semi-definite because Âq is a Hur-
witz matrix.

Set ∆ := t1 − t0 and introduce the positive semi-definite matrix Mq :=

Qq − eÂT
q ∆(Qq + T )eÂq∆ and the vector

gT
q := 2r(t0)

T
[

(

−RĈq + B̂T
q Ĉ

T
q WĈqÂq +DT

q KC̃q+

+QqB̂
T
q Qq

)(

I − eÂq∆
)

Â−1
q +

+ B̂T
q

(

eÂT
q ∆(ÂT

q )−1(Qq − T ) − (ÂT
q )−1Qq

)

eÂq∆
]

.

We will further need to block-partition the symmetric matrices Mq and the
vectors gq according to the partition in (9.10) of the state vector:

Mq =





M
q
11 M

q
12 M

q
13

M
q
21 M

q
22 M

q
23

M
q
31 M

q
32 M

q
33



 , gq =





g
q
1

g
q
2

g
q
3







Optimal Reset Map 83

t

0

0

1

1 2 3 4 5 6 7 8 9

-1

-2

-3

-4

-5

-6

(a) R = I, W 6= 0, K,T = 0
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(b) R = I, W,K, T = 0

Figure 9.3: Transient responses for different weighting matrices and different
durations for the optimization interval [t0, t1]. Details on the process and
controllers being switched can be found in Section 9.5. In both plots there
is a single controller switching at time t0 = 4 sec.

and perform a singular value decomposition of

M
q
22 =

[

U
q
1 U

q
2

]

[

Λq 0
0 0

] [

(V q
1 )T

(V q
2 )T

]

(with Λq nonsingular). We are now ready to provide the solution to the
minimization problem considered above.

Theorem 9.1 Assuming that σ(t) = q and r(t) = r(t0), ∀t ∈ [t0, t1], the
global minimum to (9.12) with smallest norm is given by

x∗cn(t0) = V
q
1 Λ−1

q (U q
1 )T ·

[1

2
g

q
2 −

(

(M q
12)

Txpl(t0) +M
q
23xcopy(t0)

)

]

. (9.15)

Figure 9.3 depicts the result of numerical simulations, illustrating how
varying the length of the optimization interval may influence the system’s
behavior. It generally happens that the transient response improves as we
increase the optimization interval. It should be noted that all the results in
this section hold for an infinite horizon, as we make t1 → ∞ in (9.12), in

which case all the matrix exponentials eÂq∆ above become the zero matrix.

Proof: [Theorem 9.1] We start by computing the criterion J in (9.12)
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along a solution

x(t) = eÂq(t−t0)x(t0) +

∫ t

t0

eÂq(t−τ)B̂q · r(t0) dτ,

u(t) = C̃qx(t) +Dqr(t),

∀t ∈ [t0, t1]. In what follows, ∗ stands for additive terms that do not depend
on the value of xcn(t0). Straightforward algebra shows that the terminal term
in (9.12) is given by

(

x(t1) − x∞
)T
T
(

x(t1) − x∞
)

= x(t0)
T eÂT

q ∆TeÂq∆x(t0)+

+ 2r(t0)
T B̂T

q e
ÂT

q ∆(ÂT
q )−1TeÂq∆x(t0) + ∗ (9.16)

and that the integral term in (9.12) is given by

∫ t1

t0

(

eT (t)TReT (t) + ẏ(t)TWẏ(t) + u(t)TKu(t)
)

dt

=

∫ t1

t0

(

r(t0)
T
(

R + B̂T
q Ĉ

T
q WĈqB̂q +DT

q KDq

)

r(t0)

+ x(t)TPqx(t) + cTq x(t)
)

dt+ ∗

=

∫ t1

t0

(

x(t)TPqx(t) + cTq x(t)
)

dt+ ∗, (9.17)

where Pq has been already defined and cTq = 2r(t0)
T (−RĈq +B̂T

q Ĉ
T
q WĈqÂq +

DT
q KC̃q). The computational of the integral in (9.17) is fairly standard:

∫ t1

t0

(

x(t)TPqx(t) + cTq x(t)
)

dt

=

∫ t1

t0

(

2 r(t0)
T B̂T

q Qqx(t) −
d

dt
(xTQqx) + cTq x(t)

)

dt

=

∫ t1

t0

(2 r(t0)
T B̂T

q Qq + cTq )x(t) dt− xTQqx
∣

∣

t1

t0

=

∫ t1

t0

(2 r(t0)
T B̂T

q Qq + cTq )eÂq(t−t0)x(t0)dt− xTQqx
∣

∣

t1

t0
+ ∗

= x(t0)
T
(

Qq − eÂT
q ∆Qqe

Âq∆
)

x(t0)−

−
(

(

cTq + 2r(t0)
TQqB̂

T
q Qq

)(

I − eÂq∆
)

Â−1
q

+ 2r(t0)
T B̂T

q (eÂT
q ∆ − I)(ÂT

q )−1Qqe
Âq∆
)

x(t0) + ∗ (9.18)
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Combining (9.16) and (9.18), we conclude that

J = x(t0)
TMqx(t0) − x(t0)

Tgq + ∗,

but since our optimization is only performed on the component xcn(t0) of
x(t0), we further re-write

J = xcn(t0)
TM

q
22xcn(t0) + xcn(t0)

T

(

2((M q
12)

Txpl(t0) +M
q
23xcopy(t0) − g

q
2

)

+ ∗. (9.19)

Since M q
22 is positive semi-definite, (9.19) is convex on xcn(t0) and any vector

x∗cn(t0) satisfying the first order condition

M
q
22x

∗
cn(t0) =

1

2
g

q
2 − (M q

12)
Txpl(t0) −M

q
23xcopy(t0) (9.20)

provides a global minimum to J [8]. In general, (9.20) may not be solvable,
but in our specific problem it can be proved that it always is (see Lemma
A.25) and the minimum norm solution to (9.20) is given by (9.15).

9.2.2 Choice of the reset map

Since the optimal value for x∗cn(t0) in (9.15) depends on the process state
xpl(t0) that is generally not accessible, we cannot directly use the expression
in (9.15) to define the optimal reset map in (9.11). However, as mentioned
in Section 9.1, the component xcopy(t) of the multicontroller state converges
exponentially fast to the process state xpl(t), for every control input u(t). If
we then replace xpl(t0) by xcopy(t0) in (9.15), we obtain an “asymptotically
correct” minimum to (9.12), which justifies the following reset map

F (xmult(t
−
0 ), p, q, r(t0)) := V

q
1 Λ−1

q (U q
1 )T ·

(1

2
g

q
2 − (M q

12)
Txcopy(t

−
0 ) −M

q
23xcopy(t

−
0 )
)

. (9.21)

Since F (·) is a function of the “past” value of xmult, the right-hand side of
(9.21) must only depend on the “past” value of xcopy. However, this is not a
problem because xcopy(t0) = xcopy(t

−
0 ), in view of (9.10).
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9.3 Stable reset map

Although the reset map (9.21) minimizes the criteria (9.12), it may not nec-
essarily result in a stable switched system. This is mainly because the op-
timization assumed that no further switching would occur in the interval
[t0, t1].

If one were willing to exclude the possibility of consecutive switching times
separated by less than a given positive constant τD — a condition often re-
ferred to as dwell-time switching — then it would be possible to compute
a sufficiently large τD for which the switched system (9.9)–(9.10) would be
stable. However, here we do not want to make such an assumption on σ(t).
Instead, we want to appropriately modify the reset-map so as to guaran-
tee stability for every piecewise continuous switching signal σ(t), without
significantly compromising the optimality of the reset map.

Suppose, as in Section 9.2, that at a time t = t0 the switching signal jumps
from σ(t−0 ) = p to σ(t0) = q. We will show that stability under arbitrary
switching can be achieved if we require that, at the switching time t0, there
should be no increase in the distance between xcn and its steady-state value
obtained from (9.13). Formally, this can be expressed as follows

‖xcn(t0) −Kqr(t0)‖2 ≤ ‖xcn(t
−
0 ) −Kqr(t0)‖2, (9.22)

where Kq := −
[

0ncn×npl
Incn×ncn 0ncn×npl

]

Â−1
q B̂q. Often this constraint will

be satisfied by choosing the global minimum to (9.12) with norm closest to
Kqr(t0), which is given by

x∗cn(t0) = V
q
1 Λ−1

q (U q
1 )T ·

·
(1

2
g

q
2 − (M q

12)
Txpl(t

−) −M
q
23xcopy(t

−)
)

+

+ V
q
2 (V q

2 )TKqr(t0). (9.23)

When compared with (9.15), (9.23) includes the term V
q
2 (V q

2 )TKqr(t0), which
is the projection of Kqr(t0) into the kernel of M q

22. Therefore (9.23) still
satisfies the first-order condition (9.20).

When (9.23) does not satisfy (9.22), we will need to find the minimum
of (9.12) subject to the quadratic inequality (9.22). In view of (9.19), this is
a convex quadratic optimization, subject to a convex quadratic constraint,
which can be solved numerically very efficiently. As opposed to when (9.23)
already satisfies (9.22), in this case the constraint (9.22) may lead to some
increase in the value of the criteria (9.12).
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9.4 Stability

The switched system (9.9)–(9.10) is said to be uniformly input-to-state stable
(ISS) for a smooth input r(t) if there exist constants λ, c0, c1, c2 > 0 such that,
for every differentiable r(t) and every piecewise constant switching signal
σ(t), the following inequality holds along solutions to (9.9)–(9.10):

‖x(t)‖ ≤ c0e
−λt‖x(0)‖ + c1 sup

τ∈[0,t)

‖r(τ)‖ + c2 sup
τ∈[0,t)

‖ṙ(τ)‖. (9.24)

The following result confirms that the constraint (9.22) does guarantee closed-
loop stability.

Theorem 9.2 The switched system (9.9)–(9.10) is uniformly ISS for a smooth
input r(t) if the reset map satisfies the following inequality for every p, q ∈ P,
every xmult := [xT

cn x
T
copy]

T , and every r0:

‖F (xmult, p, q, r0) −Kqr0‖2 ≤ ‖xcn −Kqr0‖2. (9.25)

Proof: 9.2 Consider the signal e(t) defined by

e(t) = r(t) − y(t) + Cxcopy(t), ∀t ≥ 0. (9.26)

Because of (9.8) and the fact that the process is asymptotically stable, we
conclude that xcopy(t) converges exponentially fast to the process state xpl(t).
Consequently Cxcopy(t) converges to the process output y(t) and we have that

‖e(t) − r(t)‖ ≤ de−γt‖x(0)‖, (9.27)

for appropriate positive constants d, γ > 0. One should emphasize that (9.27)
holds regardless of the control input u(t), the switching signal σ(t), and any
resets to xcn(t).

The importance of the signal e(t) defined in (9.26) stems from the fact
that, along solutions to (9.9)–(9.10), the state xcn(t) evolves according to

ẋcn(t) = Aσ(t)xcn(t) +Bσ(t)e(t)

on any time interval on which σ(t) remains constant and

xcn(t) = F (xmult(t
−), σ(t−), σ(t), r(t)),

at every switching time t. Suppose now that we define

v(t) := ‖xcn(t) −Kσ(t)r(t)‖2.
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On any interval on which σ(t) remains constant and equal to some p ∈ P,
we have that

v̇ = xcn(t)
T (Ap + AT

p )xcn(t)

+ 2xcn(t)
T (Bpe(t) −Kpṙ(t) − AT

pKpr(t))

− 2r(t)TKT
p (Bpe(t) −Kpṙ(t)).

Because of (9.4) and using fairly standard square completion arguments, it is
possible to find a sufficiently small constant µ and sufficiently large constants
d1, d2, d3 (independent of the value of p) such that

v̇(t) ≤ −µv(t) + d1‖e(t)‖2 + d2‖r(t)‖2 + d3‖ṙ(t)‖2.

Since v(t) does not increase at switching times because of (9.25), we conclude
that

v(t) ≤ e−µtv(0) + d1

∫ t

0

e−µ(t−τ)‖e(τ)‖2dτ

+
d2

µ
sup

τ∈[0,τ)

‖r(τ)‖2 +
d3

µ
sup

τ∈[0,τ)

‖ṙ(τ)‖2.

From this and (9.27), we conclude that ‖xcn(t)‖ satisfies an inequality like
(9.24). It remains to show that the remaining components xpl(t) and xcopy(t)
of the overall state x(t) also satisfy such inequalities. To this effect note that
the input u(t) to the process and to the system (9.8) can be written as

u(t) = Cσ(t)xcn(t) +Dσ(t)e(t)

[cf. (9.1), (9.5)–(9.6), and (9.26)] and therefore u(t) also satisfies an inequality
like (9.24). Finally, since xpl(t) and xcopy(t) are the states of asymptotically
stable LTI systems driven by u(t), these states also satisfy an inequality like
(9.24).

9.5 Simulation results

In this section we compare the transients due to switching for the multicon-
trollers proposed here, in [50], and in [25].

Consider a process with transfer function g(s) = 10
s+1

and two controllers
with transfer functions given by (9.3) with

q1(s) =
2s2 + 5s+ 3

100s2 + 120s+ 30
, q2(s) =

6s2 + 46s+ 40

100s2 + 160s+ 400
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among which one would like to switch. This process and controller trans-
fer functions appeared in [50]. The subsequent figures show the output and
reference signals of the resulting closed-loop switched system. In Figure 9.4
the blue dotted lines show the output y(t) of the system for the controller
switching strategy suggested in [50], whereas the red solid lines show y(t) for
the multicontroller proposed here. Figure 9.5 compares the multicontroller
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(a) Switching times: 2, 4, and 5 sec
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(b) Switching time: 4 sec

Figure 9.4: Transient responses for the multicontroller proposed here (red
solid line) and for the multicontroller proposed in [50] (blue dotted line).
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proposed here with the two solutions proposed in [25], which correspond to
(i) a reset to zero of xcn(t) at every switching and (ii) maintaining xcn(t)
continuous at every switching instant. In all simulations the use of the mul-
ticontroller proposed here resulted in a significant performance improvement.

It is worth to notice that in all the simulations presented here, the global
optimal reset values given by (9.23) automatically satisfied the constraint
(9.22). In fact, this was the case in every simulation that we encountered.

Complete reset of x
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x
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Figure 9.5: Transient responses for the multicontroller proposed here and
for the two alternative multicontrollers proposed in [25]. The plot shows the
transients due to three control switchings at times 2, 4, and 5 sec.



Chapter 10

Optimal Reset Map: an

extension to the non-switched

case

The tools developed in Chapter 9 find a natural application also in the context
of non-switched system. Indeed, even when dealing with the control of LTI
plant, multiple conflicting requirements on the closed-loop system often make
a single LTI controller unsuitable [7]-[36]. Several nonlinear approaches have
been suggested therefore in the literature in order to overcome the limitation
of these simple controllers; among these, an important class to be considered
is that of the hybrid controllers (see for instance [1]). A particularly simple
yet effective hybrid approach to this problem is known as the reset control
strategy. The basic structure of a reset control system can be described as a
feedback interconnection of the LTI plant Σ to be controlled together with an
hybrid controller C evolving according to the linear dynamics of a selected
LTI controller, yet whose state undergoes a reset whenever its output and
input satisfy certain conditions. The time instants at which the controller
state resets occur are called reset times. First introduced in [12] (Clegg
integrator), and subsequently developed by various authors (see for instance
[27]-[32]), only in more recent years the stability issues for reset controllers
has been addressed (see [40]-[41]).

The approach here suggested extends the original ideas of the reset control
theory by introducing a function, called reset map, that defines at every
reset time how the controller state vector must be updated, depending on
its previous value and on the measure of the reference signal. According to
this, not only resets to zero of the state variable are allowed, but a much
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wider range of value is now feasible. It is worthwhile to observe that, the
asymptotic performance of the closed loop being utterly determined by the
choice of the LTI controller (once the system Σ is given), only the transient
behaviour of the controlled system may be conceivably improved.

In this chapter, the problem of suitably choosing the reset map function
for a given plant-controller pair is addressed. An integral cost function is
first defined whose goal is to capture, in an analytical sense, the concept of
“good transient behaviour”. Then, the choice of the reset map is formulated
as an optimization problem with respect to the aforementioned cost function.
A procedure leading to a convenient selection of the reset times is then also
presented in the same form of a minimization problem, again by referring
to the same cost function. Together with the analytical tools required for
an efficient numerical solution of this latter problem, a sub-optimal strat-
egy is also provided, greatly reducing the computational effort involved in
the optimization procedure. For an overview on the existing results on opti-
mization problems in the context of hybrid systems, the reader is referred to
[57, 2, 39, 58] and to references therein.

Simulation results are presented, clearly illustrating the advantages of the
proposed solution if compared both to the classic LTI approach and to the
standard reset control theory.

10.1 Problem

Consider a linear lime invariant process Σ, with transfer function g(s) from
the input u(t) to the output y(t), and let C be a stabilizing LTI controller
of transfer function k(s) from the tracking error eT (t) := r(t) − y(t) to the
control input u(t), where r(t) denotes a piecewise constant reference signal.
The controlled system F arising from the negative feedback interconnection
of Σ with C (see fig. 10.1) can be obviously still described by means of an
LTI model. In this section it will be carefully specified how, starting from the
equations of the processes Σ and C, a new system of hybrid nature can be
constructed, significantly improving the performance of the simple feedback
interconnection characterizing F.

For simplicity, we restrict our attention to asymptotically stable SISO
processes Σ. However, all the results presented here could be generalized to
not necessarily stable MIMO processes 1.

1One can resort, for instance, to an approach close to that presented in [25]
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From the Youla-Kucera parametrization of all the stabilizing controllers
(see for instance [15]), it is well known that the controller transfer function
can be expressed as

k(s) =
q(s)

1 − q(s)g(s)
; (10.1)

which can be viewed as a positive feedback interconnection between a system
with the same transfer function g(s) as the process (called internal model of
the process) and an asymptotically stable system with transfer function

q(s) =
k(s)

1 + g(s)k(s)
. (10.2)

Note that q(s) is asymptotically stable because k(s) stabilizes g(s) (see Fig
10.2). Pick now some minimal realizations (A,B,C) for g(s) and (Aq, Bq, Cq,

Dq) for q(s). Note that the realization of the transfer function g(s) is sup-
posed to be the same both in the real plant Σ and in its internal copy within
the controller C. Let A ∈ Rnpl×npl and Aq ∈ Rncn×ncn ; let also xpl(t), xcn(t)
and xcopy(t) represent the state variables respectively of the plant Σ, of the
process of transfer function q(s) and of the internal model of the plant. Once

we set xC :=

[

xcn(t)
xcopy(t)

]

, the controller C can then be described by the fol-

lowing system of equations:

ẋC(t) =

[

Aq BqC

BCq A+BDqC

]

xC(t) +

[

Bq

BDq

]

eT (t); (10.3)

Figure 10.1: Controlled system F layout

Figure 10.2: Implementation of the controller C
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with u(t) =
[

Cq DqC
]

xC(t) +DqeT (t). (10.4)

Introduce an ordered (possibly infinite) set S := {t1, t2, . . . , tn} of pos-
itive time instants, called reset times. We are now ready to define a new
controller Creset, whose dynamics is described by eqs. (10.3)-(10.4) for every
time instant t 6∈ S, and whose state is supposed to be updated at every reset
time t ∈ S according to:

xC(t) =

[

xcn(t)
xcopy(t)

]

=

[

F (xC(t−), r(t))
xcopy(t

−)

]

. (10.5)

The function F (·, ·) is called the reset map of our system. It is worth to
observe that only a part of the state of the controller actually undergoes
the action of the reset map; this is because xcopy(t) is supposed to track at
every instant the value of xpl(t), which is a continuous function of time. In
(10.5), the component xcopy of the state of C(σ) remains continuous and it
will actually converge to the process state xpl(t). In fact, it follows from
(10.3) and (10.5) that

ẋcopy(t) = Axcopy(t) +Bu(t) (10.6)

for all times and, because we are assuming that A is asymptotically stable, we
indeed have that xcopy(t) converges to xpl(t), regardless of the control signal
u(t). Clearly the process Creset exhibits an hybrid nature, and we will refer
to it in the remainder as to the linear-based reset controller for our plant Σ.
The stabilizing properties of such a controller will be investigated in section
10.4. By connecting the controller Creset to the plant Σ according to the
usual negative feedback layout of Fig. 10.1, we get another hybrid system
which will be denoted as the reset control system.

Finally, upon setting x(t) :=
[

xpl(t)
T xcn(t)

T xcopy(t)
T
]T

, the reset control
system can be described by the following state space realization:

ẋ(t) =





A−BDqC BCq BDqC

−BqC Aq BqC

−BDqC BCq A+BDqC



x(t) +





BDq

Bq

BDq



r(t)

=: Âx(t) + B̂r(t); (10.7)

together with
y(t) =

[

C 0 0
]

x(t) =: Ĉx(t). (10.8)

at every time instant t 6∈ S, while at every reset time t ∈ S:

x(t) =





xpl(t)
xcn(t)
xcopy(t)



 =





xpl(t
−)

F (xC(t−), r(t))
xcopy(t

−)



 . (10.9)
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In order to precisely define our goal, we introduce the following:

Definition 10.1 The system described by (10.7)-(10.8)-(10.9) is said to be
asymptotically stable if, for every bounded piecewise constant reference signal
r(t), the state variable x(t) remains bounded for every possible choice of the
set S. We also require the state x(t) to decay to zero when r(t) ≡ 0, for all
the admissible S.

The problem here addressed is that of suggesting a convenient choice for
the reset map F (·, ·) and for the reset times S in order to:

(i) Guarantee the asymptotic stability of (10.7)-(10.8)-(10.9).

(ii) Achieve an optimal transient behaviour with respect to a criteria to be
specified shortly.

10.2 Optimal definition of the reset map

Observe that, referring to (10.7)-(10.8)-(10.9), the following vector:

x∞ := −Â−1B̂ r (10.10)

represents the steady-state value to which x(t) would converge as t → +∞
if both r(t) was to remain constant (and equal to r) and no resets occur.

Indeed, because of the stability of the closed loop system, asymptotically
ẋ(t) → 0 and since ẋ = Âx + B̂r, the result easily follows. Note that Â is
Hurwitz, hence invertible. In the remainder of the chapter, we will refer to
(10.10) as to the steady state value of the state vector. Consider the vector
x∞ to be partitioned accordingly to the partition already introduced for x(t).
Acordingly, the steady state value of the input variable u(t) is equal to

u∞ := Cqx
∞
cn +Dqr. (10.11)

Choose now t0 ∈ S and let t1 > t0 be given; assume, then, that t 6∈ S and
r(t) = r for every t ∈]t0, t1[.

We define now a cost function J = J
(

F (·, ·)
)

to be minimized. Hence,
with the usual meaning of the symbols, introduce

J =

∫ t1

t0

eT (t)TReT (t)+ ẏ(t)TWẏ(t)+ (u(t)−u∞)TK(u(t)−u∞)dt, (10.12)
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where R,W,K, T are symmetric positive definite matrices and all the sig-
nals involved are subject to (10.7)-(10.8)-(10.9). The choice of the matrices
R,W,K, allows to individually penalize the contributions due respectively
to the tracking error magnitude, to the output signal oscillations and to the
control effort. Note that in the interval ]t0, t1[ the reset control system be-
haves actually as a regular LTI system described by eq. (10.7)-(10.8). From
now on, the explicit indication of the time-dependency of the signals involved
in the definition of J will be omitted.

Our goal hence can be conveniently formalized by means of the following:

Problem 10.2 Select the post-reset state defined by the reset map:

xcn(t0) = F (xC(t−0 ), r(t0)) (10.13)

so as to minimize the cost function J in (10.12).

In order to state the next result, we need to introduce some notation. Let
Q be the solution of the Lyapunov equation

QÂ+ ÂTQ = −P, (10.14)

where P = ĈTR Ĉ+ÂT ĈTW ĈÂ+C̃TK C̃ = P T ≥ 0 and C̃ := [−DqC Cq DqC].
Observe that such solution always exists and it is at least positive semi-
definite because Â is a Hurwitz matrix.

Introduce now the symmetric positive semi-definite matrix

G = R + D̃TKD̃ + B̂T ĈTWĈB̂

where

D̃ = Cq[0ncn×npl
I 0ncn×npl

]Â−1B̂,

and the following vector

g =
(

2rT (−R Ĉ + B̂T ĈTW ĈÂ+ D̃TK C̃ + B̂TQ)Â−1
)T
. (10.15)

Set ∆ = t1 − t0. Easy but tedious computations lead to the following:

J = ∆ · rTGr + gT
(

(eÂ∆ − I)x(t0) +
(

Â−1(eÂ∆ − I) − ∆I
)

B̂r
)

−x(∆, x(t0))TQx(∆, x(t0)) + x(t0)
TQx(t0) (10.16)
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where x(∆, x(t0)) represents the state variable computed according to eqs.
(10.7)-(10.8) at time t = ∆, starting from the initial condition x(0) = x(t0),
namely

x(∆, x(t0)) = eÂ∆x(t0) +

∫ ∆

0

eÂ(∆−τ)B̂ · r dτ. (10.17)

In what follows, ∗ stands for additive terms that do not depend on the
value of xcn(t0). Notice that the choice of F (·, ·) only affects the value of
xcn(t0).

J = gT (eÂ∆ − I)x(t0) − x(∆, x(t0))
TQx(∆, x(t0)) + x(t0)

TQx(t0) + ∗
= g̃Tx(t0) + x(t0)

TMx(t0) + ∗ (10.18)

where

g̃ :=
(

gT (eÂ∆ − I) − 2rT B̂T (eÂT ∆ − I)Â−TQeÂ∆
)T

and

M = Q− eÂT ∆QeÂ∆.

We will further need to block-partition the symmetric matrices M and the
vector g̃ according to the partition in (10.7) of the state vector:

M =





M11 M12 M13

M21 M22 M23

M31 M32 M33



 , g̃ =





g̃1

g̃2

g̃3





and perform a singular value decomposition of

M22 =
[

U1 U2

]

[

Λ 0
0 0

] [

(V1)
T

(V2)
T

]

(with Λ diagonal and nonsingular). Introduce the pseudo inverse of M22,
namely M †

22 = V1Λ
−1UT

1 . We claim now the following.

Theorem 10.3 Assuming that r(t) = r(t0), ∀t ∈ [t0, t1], the global minimum
to (10.12) with smallest norm is given by

x∗cn(t0) = M
†
22

( g̃2

2
− [MT

12 0 M23]x(t
−
0 )
)

. (10.19)
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Proof: From eq. (10.18), by eliminating all the terms not depending on
xcn(t0) we get

J = xcn(t0)
TM22xcn(t0)+

+ [2(xpl(t0)
TM12 + xcopy(t0)

TMT
23) − g̃T

2 ]xcn(t0) + ∗. (10.20)

Observe that, since M22 = MT
22 ≥ 0, the function in (10.20) turns out to

be convex; as a consequence, any vector x⋆
cn(t0) satisfying the first order

necessary condition

2M22x
⋆
cn(t0) = g2 − 2 (MT

12xpl(t0) +M23xcopy(t0)) (10.21)

represents a global minimum for J (see, for instance, [8]). In general, of
course, eq. (10.21) may not be solvable, but in our specific context it can be
proved that it always is (see Lemma A.26 in the Appendix), and the mini-
mum norm solution is given by (10.19).

10.2.1 Choice of the reset map

Since the optimal value for x∗cn(t0) in (10.19) depends on the process state
xpl(t0), we cannot directly use the expression in (10.19) to define the optimal
reset map in (10.13). However, as mentioned in Section 10.1, the component
xcopy(t) of the multicontroller state converges exponentially fast to the process
state xpl(t), for every control input u(t). If we then replace xpl(t0) by xcopy(t0)
in (10.19), we obtain an “asymptotically correct” minimum to (10.12), which
justifies the following reset map

F (xC(t−0 ), r(t0)) := M
†
22 ·
( g̃2

2
− (MT

12 +M23)xcopy(t
−
0 )
)

. (10.22)

Since F (·) is a function of the “past” value of xC, the right-hand side of
(10.22) must only depend on the “past” value of xcopy. However, this is not
a problem because xcopy(t0) = xcopy(t

−
0 ), in view of (10.5). Note that the

dependence on r(t0) is actually hidden in the construction of the matrices M
and g̃.

10.2.2 Infinite time horizon optimization

Observe that, as a particular case, we have that, as t1 approaches +∞,
M = Q and g̃ = −g. Up to this semplification, all the aforementioned
results remain of course still valid.
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Figures 10.3 and 10.4 depict the results of numerical simulations, illus-
trating how varying the length of the optimization interval may influence
the system’s behavior. The dotted line represents the reference signal r(t),
while the continuous lines plots the output variable y(t) corresponding to
various choices for t1. The captions specify under what kind of choice for
the parameters R, W, K, T the simulations have been runned. It generally
happens that the transient response improves as we increase the optimization
interval.
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Figure 10.3: Using R = I, W 6= 0, K,T = 0 and different values for t1
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Figure 10.4: Using R = I, W,K, T = 0 and different values for t1
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10.2.3 Non-minimum norm solution

As we previously mentioned, there might exist more than one optimal solu-
tion to Problem 10.2, depending on whether the matrix M22 is strictly posi-
tive definite or simply positive semi-definite. In the case when the uniqueness
of the solution is not guaranteed, it is more reasonable to consider, instead
of the minimum norm solution (10.19), the one closest (for instance in the
sense of the square norm of the distance) to the asymptotic vector x∞cn(t0).
It can be easily verified that, with the usual meaning of the symbols, this
latter is given by

F (xC(t−0 ), r(t0)) :=

= M
†
22

( g̃2

2
− (MT

12 +M23)xcopy(t
−
0 )
)

+ V2V
T
2 x

∞
cn(t0), (10.23)

where the matrix V2V
T
2 is the projection matrix of Rncn on Ker(M22).

10.3 Choice of the reset times

10.3.1 Optimal choice

Suppose that a finite reset time set S = {t1, t2, . . . , tℓ} is given, together with
the initial condition x(0) = x0 and a constant value for the reference signal
r(t) ≡ r. It is therefore possible to explicitly compute the value of the cost
function J in eq. (10.12) when the optimal reset map provided in Theorem
10.3 is used at every reset time.

Let x(τ, x̃) be defined as in eq. (10.17) and let xhyb(τ) be the value of
the state variable of the hybrid system (10.7)-(10.8)-(10.9) computed at time
t = τ starting from the initial condition x(0) = x0 when the optimal reset
map of Theorem 10.3 is used at every reset time in S.

If follows that:

J =
ℓ+1
∑

i=1

(

∆ir
TGr + gT

(

(eÂ∆i − I)xhyb(ti−1) +
(

Â−1(eÂ∆i − I) − ∆i · I
)

B̂r

)

−

−x(∆i, x
hyb(ti−1))

TQx(∆i, x
hyb(ti−1)) + xhyb(ti−1)

TQxhyb(ti−1)
)

(10.24)

where t0 := 0, tℓ+1 := ∞ and ∆i = ti − ti−1.

But then, it is possible to choose the reset times t1, . . . , tℓ so as to minimize
the cost J . A numerical approach is clearly required for this optimization
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problem. The Newton descent method may be useful for this purpose, and
an explicit expression for the partial derivative of the cost function J with
respect to any reset time ti, i = 1, . . . , ℓ can be easily computed.

Indeed the following hold:

∂xhyb(ti)

∂tj
=































0, j > i

A∗Â eÂ∆i(xhyb(ti−1) − x∞), j = i

(

j+1
∏

k=i

A∗eÂ∆k
)

(ÂA∗ + A∗Â)·

·(xhyb(tj−1) − x∞), j < i

(10.25)

together with

∂x(∆i, x
hyb(ti))

∂tj
=



































0, j > i

Â eÂ∆i(xhyb(ti−1) − x∞), j = i

−∂x(∆i, x
hyb(ti))

∂ti
+

+eÂ∆i ∂xhyb(ti−1)
∂tj

, j = i− 1

eÂ∆i ∂xhyb(ti−1)
∂tj

, j < i− 1.

(10.26)

where

A∗ =





I 0 0

−M †
22M

T
12 0 −M †

22M23

0 0 I



 .

10.3.2 Suboptimal strategy

However, the solution of a multi-variable optimization problem might become
quite demanding from a computational point of view; besides, an a-priori
knowledge of the number ℓ of reset times required in order to obtain the
desired behavior may be an unrealistic assumption. Another feasible strategy
then is to consider, instead of a single multi-variable optimization process,
the suboptimal multi-step single-variable procedure described below.

The first reset time t1 can be chosen by solving the minimization problem
of the function in eq. (10.24) with ℓ = 1. Then, any other reset time
ti, i = 2, 3, . . . can be computed recursively by again considering the one
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dimensional minimization of the same function where the initial condition x0

is chosen to be the value of the hybrid state x(t) evaluated at t = ti−1.

Even if, in general, this approach prevents us from actually minimizing
the value of the cost function J , given a certain number of allowed reset
times ℓ, nonetheless our simulations show that the performances achieved
with the multi-step method do not significantly differ from the optimal ones.
See section 10.5 for some examples.

10.4 Stability

Consider the control scheme depicted in Fig. 10.1 and Fig. 10.2. What
we aim to prove here is that the approach suggested at the end of section
10.3, namely the multi-step single-variable optimization strategy, allows the
reset control sysem to be asymptotically stable. According to Definition 10.1,
there are two different conditions that need to be verified.

Suppose first r(t) = r 6= 0 and note that once r is assigned, then the
value of u∞ is also uniquely determined. Since already with the original
non-resetting LTI controller the cost function J turns out to exhibit a finite
value (when t0 = 0 and t1 = +∞), it follows that also with the multi-
step strategy of section 10.3 the same property still holds. But this implies
eT (t), u(t)−u∞ ∈ L2

2. Observe that y(t) is a continuous function. It should
be also noted that even if u(t) may fail to be continuous at the reset times,
still it is at least a piecewise continuous signal; moreover, the expression of
u(t) betwen two consecutive reset times only involves linear combinations
of elementary modes of the kind tkeλt, for some k ∈ N and λ ∈ C, and
also, as the structure of eq.(10.22) clearly reveals, to every finite pre-reset
state xcopy corresponds a finite post-reset state xcn. We can then claim that
finite escape time phenomena are prohibited for u(t); equivalently, u(t) is
a bounded signal in every finite interval [τ0, τ1] ⊂ [0,+∞[. Now, being u∞

and r(t) constant, from eT (t), u(t) − u∞ ∈ L2 it follows that u(t) and y(t)
are bounded signals on [0,+∞[. Hence, being g(s) a stable transfer function
and (A,B,C) a minimal realization of it, ŷ(t) is bounded too, as well as the
signals xpl(t) and xcopy(t). As a further consequence, also e(t) is a bounded
signal. It is eventually possible to prove (see Proposition 10.4) that, under
this assumption, when the multi-step strategy of section 10.3 is employed
also the state xcn(t) of the hybrid reset controller remains bounded, thus
ensuring the first property required by Definition 10.1.

2A causal signal y(t) belongs to the vector space L2 if (
∫ +∞

0
y2(t)dt)

1

2 < +∞
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Proposition 10.4 Let S = {t0, t1, . . . } be a discrete (possibly infinite) or-
dered set of time instants such that there exists δ > 0 having the property
that for every i ∈ {1, 2, . . . }, ti − ti−1 > δ. Given an hybrid system described
by the following equations











ẋ(t) = Ax(t) +Bu(t) t 6∈ S
x(t) = Rx(t−) t ∈ S
y(t) = Cx(t)

(10.27)

where A is a Hurwitz matrix and the pair (A,C) is observable, then

(i) y(t), u(t) bounded imply x(t) bounded.

(ii) y(t), u(t) ∈ L2 imply x(t) converging to the zero vector.

Proof: This result is essentially a consequence of the Squashing Lemma
in [38]. Note first that system (10.27) is equivalent to the following one

{

ẋ(t) = (A− LC)x(t) +Bu(t) + Ly(t), t 6∈ S
x(t) = Rx(t−), t ∈ S (10.28)

where L is a matrix of appropriate dimensions and y(t) is now interpreted as
a second input. Because of the observability of the pair (C,A), the Squashing
Lemma in [38] guarantees that, for every choice of λ > 0, it is always possible
to find an output-injection matrix L such that

‖e(A−LC)t‖ ≤ e−λt. (10.29)

Consider first the case when ‖R‖ ≤ 1. It is then sufficient to consider any
matrix L making A − LC Hurwitz in order to verify the correctness of the
statement.

Assume now ‖R‖ > 1. Choose the matrix L such that eq. (10.29) is

satisfied with λ = ln‖R‖
δ

. Then it follows that

‖e(A−LC)t‖ ≤ 1

‖R‖ t
δ

≤ 1

‖R‖⌊ t
δ
⌋
. (10.30)

This implies that while at every reset time t ∈ S, when u, y ≡ 0, the norm
of the state vector may increase of a factor not greater than ‖R‖, during
the reset-free interval between two consecutive reset times (which, by hy-
pothesis, must have length greater than δ) the same norm should decrease
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at least of the same factor. But then point (i) is immediately proved. To
conclude (ii), it is sufficient to observe that in order for y(t) and u(t) to
be L2, they must also be asymptotically converging to zero, since they are
continuous in every finite interval between any two consecutive reset times.

Proposition 10.4 also allows us to conclude that when r(t) ≡ 0, and as
a consequence y(t), u(t), eT (t) and e(t) are signals in L2, then all the state
sub-vectors xpl(t), xcopy(t) and xcn(t) are converging to the zero vector.

All the previous considerations lead to the following.

Theorem 10.5 The system described by equations (10.7)-(10.8)-(10.9) where
the reset map in (10.9) is the optimal one suggested in (10.19) is asympoti-
cally stable in the sense of Definition 10.1.

10.5 Simulation results

Consider a process with transfer function g(s) = 10
s+1

and a controller with
transfer function given by (10.1) with

q(s) = 10−1 3s2 + 23s+ 20

5s2 + 8s+ 20
. (10.31)

The subsequent Figs. 10.5-10.6 show the comparison between the outputs
produced by applying the real optimal procedure described in section 10.3.1
in order to determine the optimal value (red line) for the reset times, and the
suboptimal one suggested in section 10.3.2 (blue line). The two plots refer
to different choices of the parameters R,W,K.

Referring to the same process and controller transfer functions, in Fig.
10.7 three different outputs are displayed, referring to the case when no reset
control strategy is applied, when only one reset time is allowed (whose value
has been computed following the approach in section 10.3.1 or 10.3.1, which
are identical in this case) and finally, when two reset times are allowed (whose
values have been computed following the approach in 10.3.1). It is appar-
ent that, even with a very limited number of reset times, the performance
immediately shows a drastic improvement.
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Figure 10.5: R = 10, W = 10, K = 0
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Appendix A

Technical results

In order to obtain necessary and sufficient conditions for the reachability of
continuous-time positive switched systems, it seems mandatory to prelimi-
narily clarify the zero pattern and dominant modes of eAt, t ∈ R+, when A is
Metzler, and to investigate how the boundary of the cone generated by the
columns of eAt evolves, as t goes from 0 to +∞.

To achieve this goal, we need to introduce some new tools and to de-
rive some new results, within the broad research area of nonnegative matrix
theory, which enable use to explore the zero pattern and the elementary
modes of the exponential of a Metzler matrix. In doing this, we can re-
sort to a series of significant results obtained by Hershkowitz, Rothblum,
Schneider and others, and pertaining M -matrices (occasionally, Z-matrices)
[18, 21, 23, 42, 43, 46, 47, 29] or block triangular matrices [22]. All these
results are collected in this Appendix, together with the others which are
preliminary to the ones presented in this thesis.

The first result is rather standard in linear system theory, and hence we
omit the proof.

Lemma A.1 Let v(k) be a generalized eigenvector of A ∈ Rn×n of order
k corresponding to the eigenvalue λ and set v(k−i) := (A − λIn)iv(k), for
i = 1, 2, . . . , k − 1. Then, at every time instant t ∈ R, we have

eAtv(k) = eλtv(k) + t · eλtv(k−1) + · · · + tk−1

(k − 1)!
· eλtv(1).
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Lemma A.2 Let A be a Metzler matrix, then

i) eAt ≥ 0, ∀ t ≥ 0, and if A is irreducible then eAt ≫ 0 for every t > 0;

ii) ZP(eAt) = ZP(eA) for every t > 0;

iii) if a column of eA is an ith monomial vector, then it must be the ith
column (the nonzero entry must be on the main diagonal of eA).

iv) if v and w are two nonnegative vectors with the same nonzero pattern
(i.e., ZP(v) = ZP(w)), then ZP(eAtv) = ZP(eAtw) for every t ≥ 0.
So, in particular, if S := ZP(v), then ZP(eAtv) = ZP(eAteS) for every
t ≥ 0.

Proof: i) has been proved in [4].

To prove ii), assume A = A+ − αIn, with A+ ≥ 0 and α ≥ 0. Clearly,
the nonzero pattern of

eAt = e−αteA+t = e−αt

[

In + A+t+ A2
+

t2

2!
+ . . .

]

(A.1)

remains the same for every t > 0, so, in particular, it coincides with ZP(eAt)
for t = 1. Eq. (A.1) clearly shows that at least the ith entry of each ith
column of eA must always be nonzero, hence iii) follows; iv) is obvious.

The previous lemma allows us to address the case when A is reducible.

Proposition A.3 Let A be an n × n Metzler matrix in Frobenius normal
form (1.2). Then, at every time instant t > 0

eAt =: A(t) =











A11(t) A12(t) . . . A1ℓ(t)
A22(t) . . . A2ℓ(t)

. . .
...

Aℓℓ(t)











, (A.2)

where Aii(t) is strictly positive for every i, while for i 6= j the matrix Aij(t)
is either strictly positive or zero. Specifically,

Aij(t) =

{

≫ 0, if i ∈ D(Cj) (⇔ j ∈ A(Ci));

0, otherwise.
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Proof: The block-triangular structure of A(t) (and hence the fact that
Aij(t) = 0 for i > j) is obvious, so we are remained to showing the nonzero
pattern properties of the blocks Aij(t) for i ≤ j. Condition i ∈ D(Cj) holds
if and only if for every vertex r in Ci and every vertex s in Cj there is a path
of length say k = k(r, s) from s to r, namely [Ak]rs > 0 for some k ∈ Z+, or,
equivalently, [eA]rs > 0. This amounts to saying that i ∈ D(Cj) if and only
if Aij(1) ≫ 0 and hence, by Lemma A.2 point ii), if and only if Aij(t) ≫ 0
for every t > 0.

Remark A.4 The previous result is consistent with the fact that the graph
of the positive matrix eA (and hence of eAt, ∀ t > 0) is just the reflexive and
transitive closure of G(A). Indeed, from equation (A.1), evaluated at t = 1,
it immediately follows that G(eA) is obtained from G(A) by adding loops and
every arc (j, i) such that the vertex j has access to i in G(A).

The “on/off” situation of the blocks of A(t) (by this meaning that they
are either strictly positive or zero) entails immediate consequences on the
zero pattern of the free state evolution of system (2.1), starting from any
nonnegative initial condition.

Corollary A.5 Let A be an n×n Metzler matrix in Frobenius normal form
(1.2), and let v be a positive vector in Rn

+. Set1

J := {j ∈ 〈ℓ〉 : Cj ∩ ZP(v) 6= ∅} and I := ∪j∈JD(Cj).

Then, for every t > 0, ZP(eAtv) = ∪i∈ICi.

Proof: As nonzero blocks in A(t) are strictly positive, we have that for
any i ∈ 〈ℓ〉

blocki[e
Atv] =

ℓ
∑

j=i

Aij(t) · blockj[v] 6= 0

if and only if there exists j ∈ {i, i+1, . . . , ℓ} such that both Aij(t) 6= 0 (hence
Aij(t) ≫ 0) and blockj[v] 6= 0 (and if so, blocki[e

Atv] ≫ 0). This amounts

1The set J is also known [22, 47] as the support of v. Notice that, in the general case,
supp(v) 6= ZP(v) and they coincide for each vector v if and only if each class consists of
a single vertex, namely R(A) = G(A).
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to saying that there exists j ∈ 〈ℓ〉 such that i ∈ D(Cj) and Cj ∩ ZP(v) 6= ∅.
So, we have shown that blocki[e

Atv] 6= 0 if and only if i ∈ I, and when so,
blocki[e

Atv] ≫ 0.

Remark A.6 From the previous corollary, it immediately follows that the
nonzero pattern of eAtv is the same at every time instant t > 0, and it always
includes ZP(v). Even more, ZP(eAtv) is always the union of the indices
corresponding to the classes Ci, i ∈ I, which, in turn, includes ∪j∈JCj. So, as
a general result, we have for t > 0

ZP(eAtv) = ∪i∈ICi ⊇ ∪j∈JCj ⊇ ZP(v).

Lemma A.7 Let A be an n × n Metzler matrix in Frobenius normal form
(1.2). If v ∈ Rn

+ and S ⊆ 〈n〉, then

ZP(eAt̄v) = S, ∃t̄ > 0 ⇒







ZP(eAteS) = S, ∀t > 0,

ZP(v) ⊆ S.
(A.3)

Proof: By Lemma A.2, part ii), if ZP(eAt̄v) = S, ∃t̄ > 0, then
ZP(eAtv) = S, ∀t > 0. So, from Corollary A.5, it immediately follows
that S = ZP(eAtv) ⊇ ZP(v). To prove that ZP(eAteS) = S for every t > 0,
set, as in Corollary A.5,

J := {j ∈ 〈ℓ〉 : Cj ∩ ZP(v) 6= ∅} and I := ∪j∈JD(Cj).

We know that ZP(eAtv) = S = ∪i∈ICi. On the other hand, we can analo-
gously define

J ′ := {j ∈ 〈ℓ〉 : Cj ∩ ZP(eS) 6= ∅} and I ′ := ∪j∈J ′D(Cj),

so that ZP(eAteS) = ∪i∈I′Ci. We want to prove that I ′ = I. This follows
immediately from the fact that

J ′ = {j ∈ 〈ℓ〉 : Cj ∩
(

∪i∈ICi

)

6= ∅} = I,

and hence I ′ = ∪j∈ID(Cj) = I.
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Lemma A.8 Every n×n Metzler matrix A in Frobenius normal form (1.2)
admits an echelon basis.

Proof: Since the diagonal block A11 ∈ Rn1×n1 admits n1 linearly inde-
pendent (generalized) eigenvectors, v

[i]
1 , i = 1, . . . , n1, we first select the n1

(generalized) eigenvectors of A

vi :=











v
[i]
1

0
...
0











, i = 1, . . . , n1.

Consider, now, the square matrix

[

A11 A12

0 A22

]

∈ R(n1+n2)×(n1+n2).

This matrix has, in turn, n1 + n2 linearly independent (generalized) eigen-

vectors, of size n1 + n2. If we choose the vectors

[

v
[i]
1

0

]

, i = 1, . . . , n1, as

the first n1 of them, then other n2 generalized eigenvectors can be found and
they necessarily have at least one nonzero entry corresponding to the indices
of C2 (otherwise they could not be linearly independent from the first ones).
So, they take the following form:

vi :=

[

v
[i]
1

v
[i]
2

]

, v
[i]
2 6= 0, i = n1 + 1, . . . , n1 + n2.

It is then straightforward to complete these last n2 vectors, by means of
n − (n1 + n2) zeros, to (generalized) eigenvectors of A. So far, we have
obtained n1 + n2 linearly independent (generalized) eigenvectors of A. By
proceeding in this way we get the desired family of generalized eigenvectors.

The preceding Lemma can also be obtained as a corollary of the Extension
Lemma given in [22], which can be restated, according to the previous setting
and notation, as follows:

Let Ã be an n×n singular Metzler matrix in Frobenius normal form (1.2),
let i be an index in 〈ℓ〉 such that Ãii is singular, and let j be in Ci. For each

vector, say v
[j]
i , in the generalized nullspace (i.e. the generalized eigenspace



112 A. Technical results

corresponding to the zero eigenvalue) of Ãii there exists a vector vj in the

generalized nullspace of Ã which is a weak i-combinatorial extension of v
[j]
i ,

by this meaning that

• blocki[vj] = v
[j]
i ;

• ZP(vj) ⊆ ∪k∈D(Ci)Ck ⊆ ∪k≤iCk.

So, once this lemma is applied to each singular Metzler matrixA−λIn, λ ∈
σ(A), the result follows.

Remark A.9 i) The result could also be obtained as an extension of the
weakly preferred basis theorem (Theorem 4.9 in [22]) stating that if Ã is
a singular (upper) block-triangular matrix, then a basis for the generalized
eigenspace of Ã corresponding to its zero eigenvalue can be found, whose
vectors satisfy the zero pattern constraints described within the previous proof
(together with additional conditions, which are of no interest for the present
analysis). Clearly, by applying the Theorem to each matrix A − λIn, as λ
varies within σ(A), we immediately get the desired echelon basis.

ii) It can be shown that not every family of n linearly independent gener-
alized eigenvectors of A can be reduced, by means of a simple permutation, to
an echelon basis for A. In particular, not every Jordan basis for A, namely a
family of n linearly independent generalized eigenvectors ordered by chains,
i.e., B = {v(k)

h } h=1,2,...,q
k=1,2,...,nh

, with v
(k)
h a generalized eigenvector of order k cor-

responding to the eigenvalue λh, and v
(k−1)
h = (A − λhIn)v

(k)
h , is equivalent,

up to a permutation, to an echelon basis. This is the case, for instance, of
the diagonal matrix

A =





1 0 0
0 2 0
0 0 1



 which admits as a Jordan basis , for instance,

B =











1
0
1



 ,





0
1
0



 ,





2
0
1











,

which cannot be reduced, by simple permutation, to an echelon basis.

However, it is not difficult to show (one may resort, for instance, to
Lemma 3.6 in [22]) that an echelon basis for A which is also a Jordan basis
always exists.
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An echelon basis Be can be endowed with nice additional properties.

Proposition A.10 Let A be an n × n Metzler matrix in Frobenius normal
form (1.2), and let

Be := {v1,v2, . . . ,vn1 ,vn1+1, . . . ,vn} = ∪ℓ
i=1 ∪j∈Ci

vj

be any echelon basis for A (satisfying the ordering and nonzero pattern as-
sumptions of Lemma A.8). Assume that the first vector of each class Ci, i ∈
〈ℓ〉, namely vn1+···+ni−1+1, is a (possibly generalized) eigenvector of A corre-
sponding to λmax(Aii), and denote it in the sequel as

vn1+···+ni−1+1 =: vCi
=

























w
[i]
1

w
[i]
2
...

w
[i]
i

0
...
0

























, where w
[i]
i 6= 0. (A.4)

Then, (possibly modulo a change of sign of all the entries of vCi
) we have

that

i) w
[i]
i is a strictly positive eigenvector of Aii corresponding to λmax(Aii),

and

ii) for i ≥ 2, if it is possible to define the index

ki := min{j < i : for every r ∈ {j, j + 1, . . . , i− 1}
either (a) r ∈ D(Ci) and λmax(Arr) < λmax(Aii)

or (b) r 6∈ D(Ci) and λmax(Aii) 6∈ σ(Arr)},

then in (A.4) all blocks w
[i]
r , for r = ki, ki + 1, . . . , i − 1, satisfy the

following condition:

w[i]
r =

{

≫ 0, if r falls in case (a);

0, if r falls in case (b).
(A.5)
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Proof: Let m be the order of vCi
as generalized eigenvector of A corre-

sponding to λmax(Aii).

i) Of course, (A − λmax(Aii)In)mvCi
= 0 implies, in particular, (Aii −

λmax(Aii)I)
mw

[i]
i = 0. This means that w

[i]
i 6= 0 is a generalized eigenvector

(of some order k, with 1 ≤ k ≤ m) of Aii corresponding to λmax(Aii). Since

λmax(Aii) is a simple eigenvalue of Aii, it follows that w
[i]
i is an eigenvector.

On the other hand, sinceAii admits a strictly positive eigenvector correspond-
ing to λmax(Aii) (which is uniquely determined up to positive multiplicative

coefficients), w
[i]
i can always be assumed strictly positive.

ii) Suppose that i ≥ 2 and the index ki may be defined, and consider the
submatrix A{ki,i} of A (see (1.1)). By definition of ki, λmax(Aii) is a simple
eigenvalue of A{ki,i}. So, since vCi

is a generalized eigenvector of order m of
A corresponding to λmax(Aii), then











w
[i]
ki

w
[i]
ki+1
...

w
[i]
i











is an eigenvector of A{ki,i} corresponding to the same eigenvalue. Even more,
Ci represents a distinguished class of the directed graph associated with
A{ki,i}. So, we may apply2 Theorem 3.7 in [47] (see, also, [19, 29]), and

deduce that since w
[i]
i ≫ 0, then all blocks w

[i]
r , for r = ki, ki + 1, . . . , i − 1,

(which are uniquely determined by w
[i]
i because λmax(Aii) 6∈ σ(A{ki,i−1})) sat-

isfy (A.5). This completes the proof.

Remark A.11 i) Theorem 3.1 in [47] for M-matrices can be obtained as
a corollary of the previous proposition in the special case, when we consider
only classes Ci for which ki = 1.

ii) One may wonder under what conditions there exists an echelon basis
of A whose vectors (either eigenvectors or generalized eigenvectors) are all
positive. It is clear that since the last nonzero block of a vector vi in Be,

2As a matter of fact, the result was obtained for nonnegative matrices and hence it
applies, in its original formulation, to any matrix A+ ≥ 0 such that A = A+ − αIn,∃ α ≥
0, and, correspondingly, to the real eigenvalue α + λmax(Aii) ∈ σ(A+). However, its
adjustment to the case of a Metzler matrix is rather straightforward.
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corresponding to some class Cj, is a (possibly generalized) eigenvector of the
irreducible matrix Ajj, the only way to ensure that blockj[vi] ≥ 0 for every
choice of vi is to impose that Ajj has size nj = 1. So, a necessary condi-
tion for an echelon basis to have positive vectors is that all communicating
classes consist of a single vertex (i.e., A, in Frobenius normal form, is upper
triangular); equivalently, ℓ = n and hence vi = vCi

∀ i.
Assume, now, that A is upper triangular. If ki = 1 for every i ∈

{2, . . . , ℓ} = {2, . . . , n}(i.e. each class Ci is a distinguished class for the
graph associated with the submatrix A{1,i}, defined in (1.1)), then all nonzero
entries (= blocks of unitary size) of vi are necessarily positive. So, we have
shown that if ℓ = n and ki = 1 for every i ≥ 2, then A admits a positive eche-
lon basis. Even more, the basis thus obtained consists of positive eigenvectors
and hence is a Jordan basis.

If all the eigenvalues of A are distinct, the previous one is also a necessary
condition: indeed, a positive echelon basis exists only if ℓ = n and ki = 1 for
every i ≥ 2. In the general case, however, this is not true and we can derive
a weaker sufficient condition by resorting to the preferred basis theorem for
Z-matrices as it has been derived in [23]. Indeed, by restating that result
according to our notation and for Metzler matrices, we get:

Fact: (Corollary 5.16 in [23]) Let A be an n × n Metzler matrix in
Frobenius normal form (1.2), and let λ ∈ σ(A) be a real eigenvalue of A.
Let Eλ(A) be the generalized eigenspace of A corresponding to λ and set
S := {i ∈ 〈ℓ〉 : λ ∈ σ(Aii)}. Then the following facts are equivalent:

i) Eλ(A) has a nonnegative basis;

ii) Eλ(A) has an S-preferred basis3;

iii) for every j ∈ ∪i∈SD(Ci), λmax(Ajj) ≤ λ.

(Notice that, as an immediate consequence of point iii) in the previous
corollary, an S-preferred basis may exist only corresponding to those eigen-
values λ ∈ σ(A) which are dominant for the diagonal blocks in which they
appear, which means that S ≡ {i ∈ 〈ℓ〉 : λ = λmax(Aii)}). So, to ensure the
existence of an echelon basis for A consisting of positive vectors, it is suffi-
cient that (the Frobenius normal form of) A is an upper triangular matrix,

3For the formal definition of an S-preferred basis we refer to Definitions 4.1 and 4.7
in [23]. For the present discussion, and according to the previous notation, it is sufficient
to recall that if {x1,x2, . . . ,xr} is an S-preferred basis of Eλ(A) then, in particular, for
every i ∈ 〈r〉, blockj [x

i] is strictly positive if j ∈ D(Ci) and zero otherwise.
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and that for every i ∈ 〈n〉, the vertex i has access only to vertices j ≤ i with
ajj ≤ aii. It is worthwhile noticing, however, that the echelon basis obtained
under these assumptions may not be a Jordan basis. Consider, for instance,
the two simple triangular matrices:

A1 =





2 1 0
0 2 0
0 0 2



 and A2 =





2 1 1
0 2 0
0 0 2



 .

For neither of them the indices k2 and k3 can be defined, but it is easily seen
that both A1 and A2 satisfy the previous sufficient condition and hence admit
a nonnegative echelon basis: the canonical basis {e1, e2, e3}. However, such
a basis is a Jordan basis just for A1, while any echelon basis of A2 which
satisfies the constraints of Proposition A.10 and is a Jordan basis takes the
following form:

Be =











a

0
0



 ,





∗
b

0



 ,





∗
−c
c



}







,

where a, b and c are positive real numbers, while ∗ denotes an arbitrary real
number, and hence it cannot be nonnegative.

iii) It is worthwhile to conclude the section by providing a general com-
ment about the relationship between the echelon basis here introduced and the
preferred basis treated in [23], for instance. First of all, an echelon basis of a
Metzler matrix A is a basis of the whole vector space Rn consisting of (gen-
eralized) eigenvectors. It yields information on the zero/nonzero patterns of
all the eigenvectors in the basis. It also yields information on the positive
entries of eigenvectorscorresponding to the dominant eigenvalues λmax(Aii)
of the diagonal blocks in a Frobenius normalform. Moreover, it exists for any
Metzler matrix.

On the other hand, the existence of a preferred basis, as considered in
[23], is always ensured only for the generalized eigenspace corresponding to
λmax(A). It may exist, under suitable conditions, also for the generalized
eigenspaces corresponding to the other eigenvalues λmax(Aii), but in the gen-
eral case we cannot ensure the existence of a basis of Rn which is obtained
as the union of preferred bases.

Also, a preferred basis consists of positive vectors, but it is not necessarily
a Jordan basis (this problem has been investigated in [42] for M-matrices and
dominant eigenvalues). An echelon basis which is a Jordan basis always exists
and Proposition A.10 points out which structural and positivity properties can
always be ensured.
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Proposition A.12 Let A ∈ Rn×n be an irreducible Metzler matrix and let
B = {v1, . . . , vn} be a basis of Rn consisting of eigenvectors and general-
ized eigenvectors of A, with v1 being the strictly positive eigenvector of A
corresponding to λmax(A). Then every v ∈ Rn

+,v > 0, can be expressed as
v = c1 v1 + . . .+ cn vn, for suitable complex coefficients ci, with c1 > 0.

Proof: Suppose that v = c1 v1 + . . . + cn vn is a positive vector and let
w ≫ 0 be a left eigenvector of A corresponding to λmax(A). Since all vectors
vi, i ≥ 2, correspond to eigenvalues distinct from λmax(A), then wTvi = 0 for
every i ≥ 2. Consequently, conditions wTv1 > 0 and 0 < wTv = c1 · wTv1,
together, ensure that c1 > 0.

Corollary A.13 Let A be an n × n Metzler matrix in Frobenius normal
form (1.2) and let Be = {v1,v2, . . . ,vn} be an echelon basis for A satisfying
the assumptions of Proposition A.10. If z̃ =

∑n

i=1 civi, ci ∈ C, is a positive
vector with ZP(z̃) ⊆ ∪k

i=1Ci and ZP(z̃)∩Ck 6= ∅, then the (possibly generalized)
eigenvector of A corresponding to λmax(Akk) and to the class Ck, i.e. vCk

:=
vn1+···+nk−1+1, is weighted with a positive coefficient in the expression of z̃.

Proof: Assume that z̃ is block partitioned as follows

z̃T =
[

zT
1 zT

2 . . . zT
k 0 . . . 0

]

.

It is clearly seen that ci = 0 for all i > n1 + n2 + · · · + nk, since all (linearly
independent) vectors vi for i > n1 + n2 + · · ·+ nk have nonzero components
corresponding to the classes Cj, j > k. Moreover, it is worth to observe that,
due to the structure of the echelon basis,

zk = blockk[z̃] =
∑

i∈Ck

ci · blockk[vi].

Recall now that all subvectors blockk[vi], i ∈ Ck, are the (possibly general-
ized) eigenvectors of Akk. As a consequence, since zk > 0, from Proposition
A.12 we can conclude that cn1+···+nk−1+1 > 0 and hence the vector vCk

is
weighted by a positive coefficient.

Before proceeding, we need to recall here a known result (see [43] and,
for instance, [47], Corollary 7.5, and references therein) which, within our
framework and according to our notation, easily leads to the following:
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Lemma A.14 Given a Metzler matrix A in Frobenius normal form (1.2),
the size of the largest Jordan block relative to the dominant eigenvalue of A,
λmax(A), is equal to the maximum number of classes Ck with λmax(Akk) =
λmax(A) that lie in a single chain in R(A).

Proposition A.15 Let A ∈ Rn×n be a Metzler matrix in Frobenius normal
form (1.2), and let i and j be indices in 〈ℓ〉 such that A(Ci) ∩ D(Cj) 6= ∅.
Then

i) the only modes
tm

m!
eλt appearing in Aij(t) are those corresponding to

eigenvalues λ ∈ σ(Akk), with k ∈ A(Ci) ∩ D(Cj).

Moreover, set

λ∗i,j := max{λmax(Akk) : k ∈ A(Ci) ∩ D(Cj)},

and let m̄i,j + 1 be the maximum number of classes Ck with λmax(Akk) = λ∗i,j
that lie in a single chain from Cj to Ci in R(A). Then,

ii) for each h ∈ Ci and k ∈ Cj we have

[eAt]h,k ∼ tm̄i,j

m̄i,j!
eλ∗

i,jt,

namely,
tm̄i,j

m̄i,j!
eλ∗

i,jt is the dominant mode in the expression of the (h, k)th

entry of eAt.

Proof: i) Partition the set 〈ℓ〉 into the following three disjoint sets

R := A(Ci) ∩ D(Cj) = {k1, k2, . . . , kr},
R1 := D(Cj) \R,
R3 := 〈ℓ〉 \ (R ∪R1),

with i = k1 < . . . < kr = j. If ri := |Ri|, i = 1, 3, then r1 + r + r3 = ℓ.

Consider now a permutation matrix P such that in

Â := P T AP =





Â11 Â12 Â13

0 Â22 Â23

0 0 Â33



 (A.6)
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• Â11 is block-triangular, and its diagonal blocks are the r1 matrices Aii

with i ∈ R1,

• Â33 is block-triangular, and its diagonal blocks are the r3 matrices Aii

with i ∈ R3, and

•

Â22 =















Aii Aik2 . . . . . . Aij

0 Ak2k2 . . . . . . Ak2j

0 0
. . . . . .

...
0 0 0 Akr−1kr−1 Akr−1j

0 0 0 0 Ajj















.

Correspondingly we get

eÂt =







eÂ11t ∗ ∗
0 eÂ22t ∗
0 0 eÂ33t






, (A.7)

and since Aij(t) = block(i, j)[e
At] = block(r1+1, r1+r)[e

Ât] = block(1, r)[e
Â22t]

it is easy to conclude that the only modes
tm

m!
eλt appearing in Aij(t) are

those corresponding to eigenvalues λ ∈ σ(Akk), with k ∈ A(Ci) ∩ D(Cj) =
{k1, k2, . . . , kr}.

Since the expression of Aij(t) is completely determined by the time evo-

lution of the matrix eÂ22t, in the sequel of the proof we will uniquely focus
on this latter, and simplify our notation by assuming A = Â22, (i, j) = (1, ℓ)
and A(C1)∩D(Cℓ) = 〈ℓ〉. Consequently, λ∗i,j will be replaced by λmax(A) and
m̄i,j by m̄, the maximum number of classes Ck with λmax(Akk) = λmax(A)
that lie in a single chain in R(A) minus 1.

ii) By Lemma A.14, none of the elementary modes
tm

m!
eλt appearing in the

expression of the entries of eAt can dominate
tm̄

m̄!
eλmax(A)t. So, in particular,

for every h ∈ C1 and k ∈ Cℓ:

lim
t→∞

[eAt]h,k

tm̄

m̄!
eλmax(A)t

<∞. (A.8)

Let Be = {v1, . . . ,vn} be an echelon basis for A which is a Jordan basis and
satisfies the additional conditions of Proposition A.10. Let vl ∈ Be be the
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generalized eigenvector of order m̄+ 1 corresponding to λmax(A) of smallest
index (i.e. l is minimum among the indices of all vectors in Be which are
generalized eigenvectors of order m̄+ 1 corresponding to λmax(A)). Clearly,
vl = vCg

for some class Cg. Moreover v := (A − λmax(A)In)m̄vCg
is still in

Be and, precisely, it is an eigenvector of A corresponding to λmax(A) and to
some class Cb (so that v = vCb

). Notice that, by Lemma A.1,

eAtvCg
= eλmax(A)tvCg

+ t · eλmax(A)t(A− λmax(A)In)vCg
+ . . .

+
tm̄

m̄!
· eλmax(A)t(A− λmax(A)In)m̄vCg

= eλmax(A)tvCg
+ · · · + tm̄

m̄!
· eλmax(A)tvCb

.

On the other hand, since the class C1 is accessible from every other class, and
hence, in particular, from Cb, and λmax(Abb) = λmax(A) > λmax(Ahh) for every
h < b such that h ∈ D(Cb) (if not, we would have more than m̄i,j +1 classes in
the chain corresponding to λmax(A), a contradiction), by Proposition A.10,
block1[vCb

] ≫ 0.

Let k be an arbitrary index in Cℓ, and set eAek =:
[

wT
1 . . . wT

g . . . wT
ℓ

]T
.

Since every class is accessible from Cℓ, e
Aek ≫ 0. By Corollary A.13 , the

vector
z̃T :=

[

wT
1 . . . wT

g 0 . . . 0
]T

has a positive projection on the generalized eigenvector vCg
. Consequently,

for every h ∈ C1 and every k ∈ Cℓ, and sufficiently large t, we get

[eAt]h,k = eT
h e

Atek = eT
h e

A(t−1)
[

eAek

]

≥ eT
h e

A(t−1)z̃

∼ eT
h

[

tm̄

m̄!
eλmax(A)tvCb

]

=
tm̄

m̄!
eλmax(A)t [block1[vCb

]]h . (A.9)

So, putting together (A.8) and (A.9), we get the result.

As an immediate corollary of Proposition A.15, we obtain the following
result, which extends to the continuous-time case a result that in the dis-
crete time case was always true for (nonnegative) matrices with primitive
diagonal blocks, but could not be true in the general case (unless introduc-
ing a smoothing factor, which compensates for the periodic patterns due to
nontrivial cyclicity indices of the diagonal blocks). The result was nicely
described in [47] and we will paraphrasize here Schneider’s comment: the
pseudo-exponential growth of the (i, j)th block of eAt is determined by the
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hardest path from Cj to Ci in R(A): a chain that not only reaches the highest
peaks (of dominant eigenvalue λ∗i,j) but also the maximum number of peaks
of that height (m̄i,j + 1).

Theorem A.16 Let A ∈ Rn×n be a Metzler matrix in Frobenius normal
form (1.2). For any pair of indices i and j in 〈ℓ〉, we have:

• if A(Ci) ∩ D(Cj) = ∅, then Aij(t) = 0;

• if A(Ci) ∩ D(Cj) 6= ∅, then Aij(t) ∼ eλ∗
i,jt t

m̄i,j

m̄i,j!
, where λ∗i,j and m̄i,j are

defined as in Proposition A.15.

An interesting decomposition of the exponential matrix eAt, which high-
lights the dominant mode of each column and the expression of the associated
vector coefficient, can be obtained as an immediate corollary of Theorem
A.16.

Proposition A.17 Let A be an n × n Metzler matrix in Frobenius normal
form (1.2). Then there exist (not necessarily distinct) positive eigenvectors

of unitary modulus of A, ṽj ∈ Rn
+, and real modes mj(t) =

tm̄j

m̄j!
eλ∗

j t, with

λ∗j ∈ R and m̄j ∈ Z+, j ∈ 〈ℓ〉, and strictly positive row vectors ci ∈ R1×ni
+

such that

A(t) = eAt =
[

ṽ1 ṽ2 . . . ṽℓ

]





m1(t)
m2(t)

...
mℓ(t)





[

c1
c2

...
cℓ

]

+ Alc(t),

(A.10)
and for every i ∈ 〈n〉 if we let Cj be the class of vertex i, then

lim
t→+∞

Alc(t)ei

mj(t)
= 0.

Moreover,
λ∗j = max{λmax(Akk) : k ∈ D(Cj)},

and m̄j + 1 is the maximum number of classes Ck with λmax(Akk) = λ∗j that
lie in a single chain from Cj in R(A). Also, ṽj is a positive eigenvector of A
corresponding to λ∗j .
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Remark A.18 i) Observe that, by referring to Definition 8.1, ṽj = v∞
j .

As a consequence, Cone∞(eAt) = Cone(
[

ṽ1 ṽ2 . . . ṽℓ

]

).

ii) A weaker formulation of Proposition A.17, which does not require the
matrix A to be in Frobenius normal form (1.2), is the following

Proposition A.19 Let A be an n × n Metzler matrix. Then there
exist nonnegative eigenvectors of A, vj ∈ Rn

+,vj 6= 0, and real modes

mj(t) = t
kj

kj !
eλjt, with λj ∈ σ(A) ∩ R and kj ∈ Z+, j = 1, 2, . . . , n, such

that

eAt =
[

v1 . . . vn

]







m1(t)
. . .

mn(t)






+ Alc(t), (A.11)

with lim
t→+∞

Alc(t)ej

mj(t)
= 0, ∀ j ∈ {1, . . . , n}.

Even more, we can always assume vj = v∞
j for every index j ∈

{1, . . . , n}.

Lemma A.20 Given an n-dimensional Metzler matrix A in Frobenius nor-
mal form (1.2), let V := {ṽ1, ṽ2, . . . , ṽℓ} be the set of all the asymptotic direc-
tions of the columns of eAt, corresponding to the various classes C1, . . . , Cℓ,
as they are defined in Proposition A.17. Then either all vectors in V are
linearly independent or, if they are not, one at least of such vectors can be
expressed as a positive combination of the others.

Proof: We know from Proposition A.17 that each ṽj is a positive eigen-
vector of A, corresponding to some eigenvalue λ∗j and to some class Cj. Ob-
serve that eigenvectors corresponding to distinct eigenvalues are linearly in-
dependent. As a consequence, V is linearly dependent only if there exists
some eigenvalue λ such that the set of (not necessarily distinct) eigenvec-
tors in V which correspond to λ, say Vλ := {ṽi1 , . . . , ṽis}, s ≤ ℓ, is linearly
dependent.

Express the set Vλ as the union of two subsets Vλ := Vdist∪Vrem, with Vdist

containing those eigenvectors of Vλ which correspond to some distinguished
class Ci, and the second one including those eigenvectors of Vλ which do not
correspond to a distinguished class.

Since the asymptotic direction of a column corresponding to a distin-
guished class Cj always exhibits a strictly positive jth block, and from any
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distinguished class Cj one cannot access any other distinguished class corre-
sponding to the same eigenvalue (thus having the corresponding entries all
equal to zero (see [45])), it necessarily follows that the vectors in Vdist are all
linearly independent. So, if Vλ is a set of linearly dependent vectors, then it
must be Vrem 6= ∅.

Choose ṽj ∈ Vrem, and let Cj be the communicating class corresponding
to ṽj. Since ṽj is an eigenvector corresponding to λ, Cj must access at
least one distinguished class whose dominant eigenvalue is λ. If m̄j + 1
is the maximum number of distinguished class with dominant eigenvalue
λ which can be encountered along a chain of classes starting from Cj and
there exist k such chains, then by Proposition A.17, ṽj is necessarily a linear
combination of the k linearly independent eigenvectors (belonging to Vdist)
which correspond to λ and to those k distinguished classes.

Now, since each one of these eigenvectors, as previously observed, has one
strictly positive block which is zero in all the other eigenvectors, in order for
ṽj to be positive such a linear combination must have only positive coeffi-
cients. By applying this reasoning to all vectors in Vrem, we can claim that
the cone generated by the vectors in Vλ is equal to the cone generated by the
vectors in Vdist alone.

Lemma A.21 Resorting to the same hypothesis and notation of Proposi-
tion A.17, the minimum number r of distinct eigenvectors {v̂1, v̂2, . . . , v̂r}
one can pick up in the set {ṽ1, ṽ2, . . . , ṽℓ} so that Cone ({v̂1, v̂2, . . . , v̂r}) =
Cone ({ṽ1, ṽ2, . . . , ṽℓ}) coincides with the number of distinguished classes in
R(A).

Proof: Note that, given any index i ∈ {1, . . . , n} such that i ∈ Cj, the
vector ṽj represents the normalized asymptotic value of the ith column of
eAt, namely

ṽj = lim
t→+∞

eAtei

‖eAtei‖
. (A.12)

Hence, by referring to the decomposition of the monomial vector ei as the
linear combination of (possibly generalized) eigenvectors of the Echelon basis
Be, and to Lemma A.1, we can immediately conclude that each eigenvector ṽj

must be the linear combination of nonnegative eigenvectors of A, relative to
possibly different distinguished classes, all sharing the same spectral radius
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λ∗j . It can be proved that whenever vj turns out to be the linear combina-
tion of more than one nonnegative eigenvectors, all the non-zero coefficient
of such combination are positive (see Lemma A.20). So we can remove all
the linearly dependent vectors from {ṽ1, ṽ2, . . . , ṽℓ} thus showing that the
cone generated by the set obtained by picking only one eigenvector for every
distinguished class in R(A) is equivalent to Cone ({ṽ1, ṽ2, . . . , ṽℓ}).

Remark A.22 By the previous comment we also deduce that a necessary
and sufficient condition for Cone∞(eAt) to be solid (namely to have n lin-
early independent generators) is that the influence graph associated with the
matrix A has all classes which consist of a single vertex and each of them is
distinguished.

Lemma A.23 Let v ∈ Rn
+ be strictly positive and set

vmin := min
i=1,2,...,n

[v]i > 0.

Let A ∈ Rn×n
+ be a nonsingular square matrix, with strictly positive diagonal

entries, i.e. [A]ii ≫ 0 ∀i ∈ {1, . . . , n}, and off-diagonal entries satisfying

[A]ij ≤
vmin√

n‖A−1‖ ‖v‖ , ∀ i 6= j, (A.13)

where ‖ · ‖ is the euclidean norm. Then A−1v ≥ 0 or, equivalently, the
equation Ax = v in the indeterminate x has a (uniquely determined) positive
solution.

Proof: Since A is nonsingular, the equation Ax = v necessarily has a
unique solution x = A−1v. It only remains to show that x ∈ Rn

+. Note,
first, that ‖x‖ = ‖A−1v‖ ≤ ‖A−1‖ ‖v‖. Now, ∀ j ∈ {1, . . . , n}, [v]j =
∑n

k=1[A]jk [x]k, and hence

[x]j =
[v]j−([A]j1[x]1+. . .+[A]j j−1[x]j−1+[A]j j+1[x]j+1+. . .+[A]jn[x]n)

[A]jj
.

Consequently, [x]j ≥ 0 ⇔ ([v]j−([A]j1[x]1+. . .+[A]j j−1[x]j−1+[A]j j+1[x]j+1

+ . . . + [A]jn[x]n)) ≥ 0. Upon setting Amax := max{[A]hk : h 6= k},
and by resorting to the inequality

∑n

i=1 |[x]i| ≤
√
n ‖x‖, after some com-

putations one gets [v]j − ([A]j1[x]1 + . . . + [A]j,j−1[x]j−1 + [A]j,j+1[x]j+1 +
. . . + [A]jn[x]n) ≥ vmin − (Amax

∑n

i=1 |[x]i|) ≥ vmin − (Amax

√
n‖x‖) ≥ vmin −

(Amax

√
n‖A−1‖ ‖v‖) ≥ 0, and hence the claim is proved.
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Lemma A.24 Given an n× n Metzler matrix A, for every ε > 0 there exists
t > 0 such that (1 − ε)In ≤ eAt ≤ In + ε1n1

T
n , namely

{

(1 − ε) ≤ [eAt]ii ≤ (1 + ε),

0 ≤ [eAt]ij ≤ ε, for i 6= j.

Proof: Being Metzler, A can be expressed asA = −αI+A+, for some α ≥
0 and A+ ≥ 0. Thus, [eAt]ij = e−αt[eA+t]ij = e−αt

[

In+A+t+A
2
+

t2

2!
+. . .

]

ij
. Fi-

nally, the continuity of the function eAt, together with the fact that eA0 = In
and eA+t − In ≥ 0 for t > 0, ensure that (A.24) holds for some t > 0.

Lemma A.25 Referring to the setting and notation of Theorem 9.1, (9.20)
is always solvable.

Proof: Let w := 1
2
g

q
2 − (M q

12)
Txpl(t0)−M

q
23xcopy(t0) and assume by con-

tradiction that there is no solution x∗cn(t0) to the equation M
q
22x

∗
cn(t0) = w,

which means that w 6∈ ImM
q
22 = (KerM q

22)
⊥, where (KerM q

22)
⊥ denotes the

orthogonal complement of KerM q
22. In this case, there must exist a vector

z ∈ KerM q
22 such that wT z 6= 0. If we then set xcn(t0) = αz in (9.19), we

obtain J = −2αwT z + ∗. However, this would lead to a negative value for J
for α sufficiently large, which leads to a contradiction since J ≥ 0.

Lemma A.26 Referring to the setting and notation of Theorem 10.3, (10.21)
is always solvable.

Proof: The proof goes exactly along the lines of the proof of Lemma
A.25.
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