
Abstract

Next Generation Sequencing (NGS) technologies have a great impact both at
economical and at research level, with the increasing of data production and
the cost reduction and. This new kind of techniques allow the sequencing of
thousands of genomes from humans to microbes and they open entirely new
areas of biological inquiry, including the investigation of ancient genomes, of
human disease, the characterization of ecological diversity, and the identifi-
cation of unknown etiological agents. The application field could be divided
into three main arguments: genomic tasks (genome assembly, SNPs and
structural variations), transcriptome analysis (gene prediction and annota-
tion, alternative splicing discovering) and epigenetic problems. The new
technologies also offer challenges in experimental design, data management
and analysis. In particular, it is desirable to have analysis keep pace with
data production, and thus new bioinformatics tools are being developed.
Three platforms for DNA sequencing read production are in reasonably
widespread use: the Roche/454, the Illumina/Solexa Genome Analyzer and
the Applied Biosystems SOLiDTM System. The Roche/454 is the first
to achieve commercial introduction (in 2005) and it uses an innovative
sequencing technology known as pyrosequencing. It produces sequences 300-
400 bases, longer than Illumina/Solexa (about 70 bases) and SOLiD/Applied
Biosystem (about 50 bases), but with a lower high throughput.
During my Ph.D., the Next Generation Sequencing has become a wide
spread practice and the aim of my research is the development of new proper
tools. I hoped to create useful programs, that would be able to transform
the large amount of produced raw data into useful information for biology
tasks in few time. With my research and my algorithms, I collaborated to
the development and solution of two of the most challenging and studied
applications: genome assembly and gene prediction.
De novo sequencing is the starting point of any possible genetic analysis with
the creation of the original genomic sequence. This explain why de novo
sequencing and genome assembly are very important and studied problems.
With Next Generation Sequencing the task has began even more challenging:
the reduced time and cost allows to sequence even long organisms. When I
started my Ph.D., there were only few programs that were able to perform
de novo assembly, and among these the most used were Newbler, Velvet and
Cabog.
My aim was to improve the current state of the art, developing a new
assembly tool that use the strengths and overcome the weaknesses of the
cited programs. Moreover, the new program should be able to work with any

ii

kind of data (Next Generation Sequencing and other available evidences),
and to produce a well-defined genome assembly. Many efficient assembler
have been implemented yet, but quite all of them are able to produce only
unconnected fragments (contigs) of the original genome. In many cases, they
were not able to realize the final scaffolding: set of well ordered and oriented
contigs. Only few of them performs this task, that is useful to move toward
the finishing of the assembly. The idea is to work in this direction: the
development of a platform that is able to correctly order and orient a set
of contigs, connected among them through mate-pairs, into scaffolds. The
tool would be able to control the “consistency” of the starting assembly and
correct the error of the links, to produce a genome sequence and reduce the
background noise. The best strategy is to create contigs using Roche/454
reads and Newbler assembler, and mate-pair reads with Illumina or SOLiD.
Gene prediction is a well studied and known problem. Over the past, a lot
of program have been developed (Jigsaw, GeneID, GeneSplicer, Genscan,
Glimmer, SNAP, TigrScan, Twinscan,...), and the reached results allow to
predict quite all genes with a high specificity and sensibility level. After an
accurate analysis, I found that a common weak point of all the programs was
the requirement of a starting training set, from which learning the rules of the
organism gene structure, used for the future prediction. Unfortunately, very
often this set is not available and it is necessary to create a new one, using
information coming from similar organism or from other source of evidences
(EST, proteins,...) . My idea was to use Next Generation Sequencing
data to create a starting set of proper genes, sequencing the transcriptome,
aligning the produced reads on the genome sequence and discovering the
exons and introns to reconstruct the gene structure.

Sommario

La commercializzazione delle nuove tecnologie di sequenziamento (NGS, Next
Generation Sequencing), ha avuto un grande impatto sia a livello economico
sia biologico, grazie alla significativa riduzione dei tempri di produzione e
dei costi, e all’aumento della quantità di dati ottenuti. Le nuove tecniche di
sequenziamento hanno permesso di ricreare il genoma di migliaia di organismi,
sia piccoli come i microbi, sia grandi come il genoma umano, aprendo nuove
aree di ricerca. Ad esempio, ora è possibile studiare il DNA antico, fare
ricerca su malattie genetiche, studiare caratteristiche e differenze evolutive
tra organismi,... I nuovi metodi si possono applicare a tre campi principali:
genomico (come l’assemblaggio dei genomi, la ricerca di SNPs e variazioni
strutturali), trascrittomico (per eseguire la predizione genica, l’annotazione
e lo studio di splicing alternativi) ed epigenetico.
I sequenziatori di nuova generazione hanno apportato cambiamenti anche
a livello bioinformatico. Infatti, con l’acquisizione di moli di dati sempre
più grandi, si è reso necessario affrontare il problema della loro gestione dal
punto di vista sia di tempo computazionale per analizzarli sia di memoria
richiesta per immagazzinarli. Inoltre, si è resa necessaria l’implementazione
di strumenti in grado di elaborare i dati grezzi ottenuti, per trasformali in
utili informazioni da applicare nelle analisi biologiche.
Attualmente le tre piattaforme di sequenziamento più utilizzate sono Ro-
che/454 , Illumina/Solexa Genome Analyzer, e Applied Biosystems SOLiDTM.
Il primo sequenziatore ad essere commercializzato nel 2005 fu il 454. Si basa
su tecniche di sequenziamento innovative (pyrosequencing) ed è in grado
di produrre sequenze lunghe 300-400 basi, con una buona qualità media.
Tuttavia il 454 non raggiunge i livelli di produzione di altri sequenziatori,
come SOLiD ed Illumina, che in poco tempo sono in grado di produrre milioni
di sequenze, anche se di dimensioni minori (circa 50 e 70 basi rispettivamente
per SOLiD e Illumina).
L’idea del mio dottorato è di applicare le conoscenze matematiche ed informa-
tiche allo studio di nuove tecniche per l’utilizzo dei dati di nuova generazione
in problemi biologici. Lo scopo è di sviluppare dei programmi in grado di
elaborare grandi quantità di dati in poco tempo. Con la mia ricerca ho
collaborato all’implementazione di metodi per la risoluzione di problemi di
assemblaggio e di predizione genica.
Il sequenziamento de novo e successivamente l’assemblaggio sono un punto
fondamentale per l’analisi del genoma di un organismo. Attualmente il pro-
blema dell’assemblaggio è un problema ancora aperto e ampiamente studiato:
non esistono ancora programmi in grado di ricostruire un genoma completo

ii

partendo da reads prodotte con un sequenziamento di nuova generazione.
Esistono software come Newbler, Velvet e Cabog che producono lunghi fram-
menti di sequenza (contigs), ma tra loro disgiunti e di cui non si conosce la
corretta posizione occupata all’interno del genoma d’origine. Alla maggior
parte dei programmi manca una fase di “scaffolding” e “finishing”, in cui tutti
i frammenti prodotti con l’assemblaggio vengono ordinati e orientati, creando
gli scaffolds. Il mio scopo era di realizzare un metodo di scaffolding, Consort,
e di analisi per il miglioramento dell’assemblaggio ottenuto. Il programma
richiede come dati di input un insieme di contigs prodotti assemblando le
reads 454 con il Newbler, e un insieme di mate-pairs generati con il SOLiD.
La predizione genica è stata la mia seconda area di ricerca. E’ un problema
ben studiato e negli anni moltissimi programmi sono stati sviluppati per
predire efficientemente i geni contenuti in un genoma. Tra questi i più
utilizzati e conosciuti sono: Jigsaw, GeneID, GeneSplice, Genscan, Glimmer,
SNAP, TigrScan, Twinscan. La maggior parte dei software richiede un insieme
di dati di allenamento dal quale apprendere le caratteristiche per eseguire
la successiva predizione, che molto spesso non sono disponibili. Pertanto, si
devono creare a partire da genomi simili. Tuttavia, questa soluzione non è
sempre applicabile, anche se molto spesso lavora bene e permette di ottenere
buon risultati. Infatti, se l’organismo studiato è nuovo e non se ne conoscono
altri di abbastanza vicini, si rischia di non avere i i dati richiesti. La mia
ricerca in quest’area si applica allo sviluppo di un metodo di creazione di un
insieme di dati di allenamento a partire da sequenze di trascriptoma dello
stesso organismo. L’idea è di allineare le reads prodotte sul genoma e di
estrarre tutte le regioni individuate, che sono potenziali geni. L’algoritmo
implementato ha mostrato la possibilità di ricavare insieme di dati sicuri
con questa tecnica. Tuttavia, il metodo è soggetto alla predizione di molti
falsi positivi a causa dell’elevato rumore di fondo. Per evitare di creare un
training set poco affidabile, è preferibile essere molto stringenti nei criteri di
selezione dei geni.

Contents

1 Sequencing milestone 1
1.1 The beginning: Sanger sequencing 2
1.2 Sequencer characteristic . 4
1.3 Next Generation Sequencing (NGS) 5
1.4 Next Generation Sequencers 9

1.4.1 Roche (454) sequencer 9
1.4.2 Illumina Genome analyzer 12
1.4.3 Applied Bioststems SOLiDTM Sequencer 14

1.5 Sanger vs Next Generation Sequencers 17
1.6 Fragment and Mate-pair library 18

2 Gene Prediction 21
2.1 Introduction . 21

2.1.1 Ab initio or intrinsic approach 23
2.1.2 Similarity-based or extrinsic approach 24
2.1.3 Combiner methods . 25

2.2 A new gene prediction approach 26
2.3 CreateGene: a tool for

gene training set creation . 27
2.3.1 Pre-processing step: data preparation 28
2.3.2 Processing step: coding region detection 29

iii

iv

2.3.3 Post-processing step: gene reconstruction 34

2.4 Results and considerations . 35

3 Genome Assembly e Scaffolding 39

3.1 Assembly and Scaffolding problems 39

3.2 Assembly techniques . 44

3.2.1 Greedy Graph-Based Approach 45

3.2.2 Overlap/Layout/Consensus (OLC) Approach 46

3.2.3 The de Bruijn Graph Approach 48

3.2.4 Scaffolding approach 50

3.2.5 Other software . 51

3.3 ConSort: a new scaffolding approach 51

3.4 ConSort requirements . 53

3.5 ConSort algorithm . 55

3.5.1 Input data . 57

3.5.2 Spectral Correction . 58

3.5.3 Pre-alignment pairing 60

3.5.4 Trimming . 62

3.5.5 Alignment . 63

3.5.6 Pairing . 65

3.5.7 Redundancy . 70

3.5.8 Consistency analysis 71

3.5.9 Make Arcs . 89

3.5.10 Scaffolding Engine . 93

3.5.11 Gap filling . 102

3.6 Testing ConSort: the results 103

3.7 System considerations and Conclusions 113

A File Format 117

A.1 FASTA and multi-FASTA . 117

A.2 GFF alignment . 118

A.3 Pairing . 119

v

A.4 Make Arcs . 119

Bibliography 126

1
Sequencing milestone

DNA sequencing is the process by which the nucleotide sequence of DNA
molecule is determined. This represents the first crucial step for further ge-
nomic analysis. Why DNA sequencing is so important? Why the sequencing
technology improvements are so critical? And why it is necessary to continue
the sequencing improvements both at biochimical and at bioinformatics level?
Genome sequencing tools allow the decipheration of whole genomes, opening
entirely new areas of biological inquiries which include the investigation of
ancient genomes, of comparative genomics, of human disease, the characteri-
zation of ecological diversity, and the identification of unknown etiological
agents. Among all the possible applications, the primary justification for the
improvement efforts of the last years is the biomedical field research: the
idea that the technology could become so affordable that sequencing the
full genomes of individual patients would be warranted from a health-care
perspective.
Unfortunately, sequencing is not yet an easy task, and it requires a lot of
money and time. The great importance of these new genomic tasks justifies
all studies and researches that have been performed to improve the sequencing
process, both at economical and production level, from the Sanger DNA
sequencing technology to the current Next Generation Sequencing (NGS)
era. The principal aim is to reduce the sequencing cost of several orders of
magnitude. At the same time, the development of new ad hoc bioinformatics
tools for sequencing data allows to overcome and partially solves the biological
limitations.
The next sections presents at first an overview of the existing sequencing
technologies, from the beginning, with Sanger DNA sequencing, until the
recent next generation sequencers; then it will follow a brief comparative
discussion about the present available sequencers, their advantages and

1

2 Chapter 1. Sequencing milestone

disadvantages, their points of strength, weaknesses and limitations, and their
contribution in genomic project and research.

1.1 The beginning: Sanger sequencing

The genome sequencing era began in the mid-1970s when Frederick Sanger,
a biochemist at Cambridge University in England, theorized an ingenious
method for sequencing chains of DNA. Few years later, the technique was
performed, and in 1977 Frederick Sanger and Alan R. Coulson published
two methodological papers on the rapid determination of DNA sequence
with chain-terminating inhibitors, known as Sanger Sequencing [1]. At the
same time in the United States, Walter Gilbert and Allan Maxam were
developing a somewhat similar sequencing method known as Maxam and
Gilbert Sequencing [2]. The first method dramatically improved the earlier
DNA sequencing techniques developed by Maxam and Gilbert, and it began
the new sequencer, becoming the only used DNA sequencing method for
over 30 years, until the coming of Next Generation Sequencing era. Over
these years, the refinements to reduce sequencing cost and production time
brought to semi-automatic Sanger-biochemistry.
In the original Sanger method, the DNA strand is used as a template, and a

Figure 1.1: Synthetic chain-terminator
chemistry. Each chain terminates when
a chain terminator (dideoxynucleoside
triphosphate) with a base-specific fluores-
cent dye attached to it is incorporated (col-
ored letters). The signal is detected elec-
trophoretically, and it can be viewed as a
trace that displays intensity (i) with re-
spect to time of detection (t) (modified by
Bentley D. [3]).

DNA polymerase moves over it (from
3’ to 5’) to generate the comple-
mentary strand. To determine the
DNA sequence, four different PCR
reactions are prepared, each contain-
ing a certain amount of radioactive
labeled dideoxynucleoside triphos-
phate (ddNTP) analogs to one of the
four nucleotides (ATP, CTP, GTP
or TTP). This allows to prematurely
truncate the synthesis each time an
analog is incorporated in the reac-
tion. The result is a pool of DNA
fragment of different length, each of
them ending with the nucleotide that
is specific for that reaction. With
a gel electrophoresis, the four reac-
tions are separated into four lanes,
and the sequence of the original tem-
plate is determined, evaluating the
position of the different spots in the
gel. Later on, four base-specific fluo-

1.1. The beginning: Sanger sequencing 3

rescent dyes were developed allowing to sequence in a unique PCR reaction a
DNA fragment (see Figure 1.1). In Figure 1.2, there is a schematic workflow
of Sanger sequencing method.
The main project made on Sanger sequencing method was the Human Genome
Project (HGP). This was a biological milestone, that, after many years of
hard work, brought to the development of high-throughput, high capacity
production of DNA sequencing and associated finishing (gap closure and
sequencing quality improvement) pipeline. The experience gained and the
problem encountered during the project suggested that important improve-
ments and innovative technologies should be introduced in the sequencing
approach.
Two approaches were used for genome sequencing: BAC-based sequencing
(BAC) and whole-genome sequencing (WGS). In the first approach almost
30,000 large bacterial artificial chromosome (BAC) clones were used. Each BAC-based

sequencing (BAC)BAC contained approximately 100 kb human genome fragment, and all
together they provided an overlapping set of path through each human
chromosome, creating the final physical map [4]. Each clone was amplified
in bacterial culture, isolated in large quantities, and sheared to produce
size selected pieces of approximately 2 or 3 kb. Then, the DNA fragments
were cloned into plasmid libraries that were sequenced to obtain a depth
of coverage generally equal to 8. The assembly of all produced sequences
recreated the BAC insert sequence in contigs (contiguous stretches of assem-
bled sequence reads). In the final step, the produced contigs were refined,
performing gap closure and sequence quality improvement (finishing), that
generally produced a single contiguous stretch of high-quality sequence (typi-
cally with less than 1 error per 10,000 bases).
The last improvements on the sequencing technologies and on the assembly
purpose led to theorize and then apply the whole-genome sequencing (WGS) whole-genome

sequencing (WGS)approach. In this new method, the genomic DNA is sheared directly into
several distinct size classes and placed into plasmid and fosmid subclones.
Oversampling the ends of these subclones to generate paired-end sequencing
reads provides the necessary linking information to fuel whole genome as-
sembly algorithms. This allows a more rapid sequencing process, but highly
polymorphic or highly repetitive genomes remain quite fragmented after
assembly.
After all the improvements, with Sanger sequencing is now possible to achieve
read-lengths (contiguous region of DNA sequence) of up to ∼1,000 bp, an
accuracy per-base as high as 99.999%, and a cost on the order of $0.50 per
kilobase.
The requirement of sequencing the whole genome of human and many
other organisms in quickly brought to the automation and parallelization
of some sequencing steps, and the creation of centers with hundreds of

4 Chapter 1. Sequencing milestone

DNA sequencing instruments. In spite of these, the time required for the
sequencing as weel as the cost, the sequencing required time, and the cost
were still too high to allow the sequencing of all organisms. A new DNA
sequencing technology was required.

1.2 Sequencer characteristic

At the end of 1990s, the general common idea was the aim of very innovative
changes in the sequencing technology. This highlights some questions: how
evaluate the improvements? Which are the parameters or properties that
characterize a sequencer? Which are the changes that could improve the
technology?
The parameters that answer the questions are: cost, throughput, accuracy
and completeness. The challenging task was to realize new sequencers that
improve one or more of these characteristics, without compromising the
others. Unfortunately, the efforts spent to decrease project cost or to increase
throughput very often brought to a reduction in accuracy or completeness.
The sequencing cost is one of the most problematic aspects to consider in
the development of new sequencing technologies. Only with a cost reduction,The sequencing cost
it would be possible to sequence every desired organism. The massive
parallelization is the most effective parameter to control cost changes. The
possibility to perform more reactions per experiment, reduces the required
time and the costs. The higher the data density is, the less are the costs,
which are also a significantly reduction in the volume of the used reagents,
one of the principal causes of sequencing cost.
The sequencer throughput is another important characteristic to control,
interrelated with the cost. It depends on the speed of detection and theThe sequencing

throughput degree of parallelization. Moreover, the amount of produced sequences per
run determine the genome coverage (how many times a base is covered on
average), and consequently the final cost of the project. For a good and
secure analysis, it is preferred an high coverage. So, this requires to find the
right balance between the sequence coverage that can be reached and the
reliability of the performed analysis.
Finally, there are two other important characteristics to evaluate in a se-
quencer: the average quality and the length of the produced sequences. TheSequences accuracy

and length sequence quality determines the accuracy of the analysis. If the produced
sequence is full of sequencing errors, it requires a higher coverage to determine
and solve the errors.
The sequence length depends on the problems encountered during the se-
quencing. For example, the sequencing is compromised when the DNA
polymerase finds long homopolymeric (a long stretch of the same nucleotide)

1.3. Next Generation Sequencing (NGS) 5

or hairpin structure in templates. The sequence is truncated and it is not easy
to evaluate the correct stretch length. Low complexity or repeated regions
are other problematic situations, in which is not easy to determine the right
final assembly, and long sequences aid in the sequence resolution. In a perfect
situation, a set of long sequences of high accuracy will provide a high level
of completeness. Unfortunately, as told before, a good high-throughput and
cost reduction compromise sequence length. The sequence length depends on
genomic task. For resequencing problem, an acceptable trade off is that the
sequence would be long enough, and sufficiently accurate to align uniquely to
the correct position in the reference. A statistics evaluation and simulation
showed that 25-30 bases long is a good length threshold, under which is not
advised to go [3] and [5]. For de novo assembly, the threshold goes up to 100
bases long, even if with mate-pair or paired-end technology, that generate
two genome fragments separated by a known distance, it is possible to use
also sequences 25-30 bases long. The information contained in the paired
sequences allows a decrease of the required sequence length.

1.3 Next Generation Sequencing (NGS)

Next Generation Sequencing (NGS) era began in 2005, when the first new
generation sequencer was commercially introduced. It was the GS 20 sequen-
cer, developed by 454 Life Sciences (Roche). In few years, other platform
were developed. The new technology is also known with the name of “second
generation sequencers”, with respect to Sanger sequencing methods that
are called “first generation sequencers”. The new sequencers are able to
produce a large amount of sequences, called reads (contiguous regions of
DNA sequence) in a single experiment, reducing costs and production time.
This opens entirely new areas of biological inquiry.
Even if all platforms are quite different in the sequencing approach, their
workflows are conceptually similar, and it could be summarized as follow
(see Figure 1.2):

1. DNA fragmentation: library is prepared, randomly fragmenting the
genomic DNA;

2. In vitro adaptor ligation: common adaptor are ligated to the pro-
duced fragments;

3. Generation of polony array: clonally clustered amplicons are ge-
nerated for sequencing purpose. The available techniques are: in situ
polonies, emulsion PCR or bridge PCR. At the end, PCR amplicons
are spatially clustered on a single location, or on a planar substrate;

6 Chapter 1. Sequencing milestone

4. Cyclic array sequencing: the sequencing process consists of alter-
nating cycles of enzyme-driven biochemistry and imaging-based data
acquisition.

Figure 1.2: Comparative workflow: first versus second-generation sequencing. (a)
The Sanger sequencing workflow. genomic DNA is fragmented, then cloned to a
plasmid vector and used to transform E. coli. Cycle sequencing creates the sequenced
truncated fragments, with the ddNTP nucleotide at the end (one for each base).
Finally, the four-channel emission spectrum is used to generate a sequencing trace.
(b) Next Generation Sequencing workflow. DNA is fragmented, and adaptors are
added ad the ends of the fragments. Fragments are fixed on arrays, and finally they
are sequenced with cycle array sequencing. (Jay Shendure and Hanlee Ji [6]).

The platform technologies could be classified into one of four categories:

1.3. Next Generation Sequencing (NGS) 7

microelectrophoretic, sequencing by hybridization and sequencing by synthesis
methods.

Microelectrophoretic.
Even if the method is far away from the high-throughput and low cost of all
next generation sequencers, microelectrophoretic method is still used, and a
lot of work has been done to perform it. It is based on Sanger sequencing,
and it achieves a high accuracy and long sequence production, that are two
important aspects to consider for a good sequencing project.
The idea was to optimize Sanger sequencing method, trying to reduce the
costs and to automate the process. This was applied using a 384-capillary
automated sequencing machine, used to perform the separation of fluores-
cently labeled DNA sequencing fragments generated by the Sanger cycle
sequencing reaction.
With microelectrophoretic sequencing method, it is possible to generate up
to ∼1,000 bp raw sequences, with an accuracy of 99.99% with as few as three
raw reads covering a given nucleotide. An heavily optimized sequencing
centres could achieve a throughput of ∼24 bases/second per instrument.
The two most important advantages are the reduction of the reagent volumes
and the ability to generate long sequences, with a high accuracy level.
Unfortunately, the system presents a too low highthroughput, and it is costly
and very conservative with respect to parallelization, therefore it could not
be considered a relatively good option.

Sequencing by hybridization
This approach uses a set of differential hybridization of oligonucleotide

Figure 1.3: Sequencing by hybridisation.
Four oligonucleotides, each identical except
for the central base, are immobilized on
arrays, each in its own location (Bentley
D. [3]).

probes to decode a target DNA se-
quence (Figure 1.3). The easier ap-
proach is to immobilize the DNA
that is to be sequenced on a mem-
brane or glass chip, and then to carry
out serial hybridizations with short
probe oligonucleotides (for example,
7-bp oligonucleotides). The probes
are designed to have a common part
and they differ only for few bases.
This information could be used to
infer the unknown sequence.
An advantage of sequence by hybridization is the large amount of sequence
that could be sequenced. It is possible to achieve a great level of paralle-
lization. The high-throughput could be used for SNPs detection, and all
applications that require a lot of data for a valid statistics.

8 Chapter 1. Sequencing milestone

On the other hand, it is very important to design ad hoc probes, that avoid
cross-hybridization to incorrect targets as a result of repetitive elements or
chance similarities. The accuracy of base-calling relies on the ability of the
method to discriminate between exact matches and single base mismatches.
Some oligonucleotide sets will work better than others because the hybridi-
sation characteristics of each set will vary depending on base composition,
although there are experimental conditions that have been used to reduce
this effect.

Sequencing by synthesis
In this class, there are all methods that amplify DNA molecules in spatially
separate locations in a highly parallel array. Then, the produced sequences
are used as templates for sequencing. The use of an array assures that all
templates are ordered, and they could be easily located in a coordinate
system.
There are two different sequencing by synthesis methods: pyrosequencing

Figure 1.4: Pyrosequencing. Template
(black letters) is attached to a bead sur-
face (shaded), and a primer directs DNA
synthesis, which involves addition of one
deoxynucleoside triphosphate per sequenc-
ing cycle. When dNTP comes in contact
with the enzyme luciferase, light is pro-
duced (modified by Bentley D. [3]).

and fluorescently labeled sequenc-
ing. In the pyrosequencing, whenPyrosequencing
a nucleotide is incorporated into
the growing DNA strand, pyrophos-
phate is released and it is enzymat-
ically converted to ATP. When the
ATP comes into contact with the en-
zyme luciferase, light is produced. A
significant limit of this technology
is the correct synthesis of the ho-
mopolymeric regions. In fact, the
signal intensity must be correlated
with the number of bases incorpo-
rated. The signal intensity variation
is not measurable for long homopoly-
meric regions, and consequently, it is
not easy to correctly determine the
number of equal bases that compose
the region.

1.4. Next Generation Sequencers 9

The fluorescently labeled sequencing utilizes a dense array of small

Figure 1.5: Fluorescently labeled se-
quencing. Template (black letters) is at-
tached to a flat surface (shaded), and poly-
merase and a mix of four base-specific flu-
orescently labeled reversible chain termi-
nators is added. The polymerization is
halted, and a laser excites the bounds, and
the signal is recorded (modified by Bentley
D. [3]).

adapter molecules covalently bound
to a glass surface. DNA template is Fluorescently labeled

sequencingthen bounded to a small percentage
of these adapters, and the fragments
are replicated with several rounds of
PCR. The final result is a very dense
cluster of DNA templates bounded
to the adapters. The sequencing pro-
cess starts, adding fluorescently la-
beled reversible dNTP terminators,
and DNA polymerase. When the
dNTP is added at the correct posi-
tion, the polymerization is temporar-
ily halted, and the unincorporated
reagents are then washed away. A
laser excites the bound fluorescent
labels, and the signal is recorded.
The process could start a new cycle,
using another dNTP.

1.4 Next Generation Sequencers

Three platforms for DNA sequencing actually are in reasonably widespread
use: the Roche/454 1, the Illumina/Solexa Genome Analyzer 2, and the
Applied Biosystems SOLiDTM System 3. The other existing platforms, like
Helicos, have a less impact at the commercial and biological level.
The three platforms significantly differ in the type of sequencing chemistry
they use, and this causes different strength and weakness points. They are
briefly described below.

1.4.1 Roche (454) sequencer

The first sequencer commercially was Roche (454) GS 20 introduced (in
2005). It is based on pyrosequencing, which uses the pyrophosphate molecule
released on nucleotide incorporation by DNA polymerase. This event fuels a
downstream set of reactions that ultimately produces light from the cleavage
of oxyluciferin by luciferase (see Section 1.3 for a more detailed description).

1http://www.454.com/
2http://www.illumina.com/technology/sequencing_technology.ilmn
3http://www.appliedbiosystems.com/absite/us/en/home/applications-

technologies/solid-next-generation-sequencing.html

10 Chapter 1. Sequencing milestone

The 454 sequencing workflow begins with the DNA library preparation 1.6.
The DNA is fragmented, and 454-specific adapters are ligated to the DNA
fragments. The produced fragments are mixed with a population of agarose
beads, that have on the surface oligonucleotides complementary to the
adapter on the fragment library. This allow the bead association with a
single fragment. Then there is a library amplification step, on which each
bead is isolated into individual oil-water micelles that also contain PCR
reactants, and thermal cycling (emulsion PCR) of the micelles produces
approximately one million copies of each DNA fragment on the surface of
each bead. Finally, the sequencing step: beads are arrayed into a picoliter
plate (PTP; a fused silica capillary structure), providing a fixed location
for each fragment. Enzyme-containing beads that catalyze the downstream
pyrosequencing reaction steps are then added to the PTP and the mixture
is centrifuged to surround the agarose beads. The plate is seated on the
opposite CCD camera, that records the light emitted by each bead each time
a new dNTP is added.
As told before, the main drawback of this method is due to the difficulty of
the pyrosequencing technique to solve long homopolymeric regions. Over
the point of detector saturation it is not possible to count how many equal
dNTPs are added. So, these regions are prone to base insertion or deletion
errors, during the sequencing. By contrast, thanks to the addition of a single
dNTP each time, substitution errors are rarely encountered in these reads.
The current 454 sequencing system is Genome Sequencer FLX System, with
long-read GS FLX Titanium chemistry. It is able to generate more than
1,000,000 individual reads with high-quality read length of 400 bases per
10-hour instrument run. Soon, a new sequencer will produce reads longer
than the previous ones, approaching 1,000 bases. Even if it is not able to
reach a high-throughput respect other sequencers, the high quality and length
of the produce sequences allow to use this technique to solve many genomic
tasks, re-sequencing, de novo sequencing and transcriptome analysis.

1.4. Next Generation Sequencers 11

Figure 1.6: The three main steps of 454 Workflow: library preparation,
fragmentation and adapter ligation; fragment amplification with Emulsion
PCR; sequencing step with pyrosequencing technique (Mardis E. [7]).

12 Chapter 1. Sequencing milestone

Briefly, the performance parameters of the Genome Sequencer FLX Titanium
system are 4:

• Obtain more comprehensive data: generate more than 1,000,000
individual reads with improved Q20 read length of 400 bases per 10-hour
instrument run;

• Expand project capabilities: It combines long single reads and
Long-Tag Paired end reads to completely assemble genomes-often
within a single run.

• Reduce cost per result: ultra-high throughput delivers the data at
an affordable price while longer reads reduce over-sampling require-
ments;

• Increase productivity: genomic libraries are constructed in hours
in a single tube;

• Driving results, not the accumulation of data files: a package
of easy-to-use software tools is included, for an easy data interpretation
and analysis.

1.4.2 Illumina Genome analyzer

In the 2006, a new sequencer was produced, Illumina Genome analyzer. It is
based on sequencing-by-synthesis and it uses a fluorescently labeled method.
As in the 454 workflow, the Illumina process starts with a DNA library
preparation, in which DNA is randomly fragmented, and Illumina-specific
adaptor are ligated at both ends of the fragments. The fragments are attached
at the surface of a flow cell, on which there are oligos that bound with the
adaptors on the fragments. The amplification step is performed with a bridge
PCR: DNA polymerase is used to produce clusters of approximately one
million copies of the original fragment. This allow to reach the required
signal intensity for base detection during the sequencing. The sequencing
implies that the four nucleotides are simultaneously added to the flow cell
channels, along with DNA polymerase, for incorporation into the oligo-
primed cluster fragments. The process is halted to perform an imaging
step for the acquisition of each base incorporation. Then the 3’ blocking
group could be removed and the next incorporation steps continue. See
http://www.illumina.com/pages.ilmn?ID=203 for an animation of this
process.

4 http://454.com/products-solutions/system-benefits.asp

http://www.illumina.com/pages.ilmn?ID=203
http://454.com/products-solutions/system-benefits.asp

1.4. Next Generation Sequencers 13

Figure 1.7: The three main steps of Illumina Workflow: library
preparation, fragmentation and adpter ligation; fragment amplification
with bridge PCR; sequencing step with fluorescently labeled sequencing
(Mardis E. [7]).

14 Chapter 1. Sequencing milestone

Figure 1.8: Genome Analyzer IIx Per-
formance Parameters.

Illumina produces reads that are
shorter than 454, only around
100 bases long, but with high-
throughput. Read-lengths are limi-
ted by multiple factors that cause
signal decay and dephasing, such as
incomplete cleavage of fluorescent la-
bels or terminating moieties. The
dominant error type is substitution,
due to the simultaneously addition
of all the four nucleotides in the re-
action mix, rather than insertions or
deletions of the 454 platform.
The last commercialized sequencer
is Genome AnalyzerIIx 5 . It offers a
powerful combination of 2 x 150 bp
read lengths and up to 640 million
paired-end reads per flow cell, en-
abling a broad range of high-throughput sequencing applications. Evidenced
by a vast number of peer-reviewed publications in an ever-broadening range
of applications, Illumina sequencing technology with the Genome AnalyzerIIx
is a proven platform for genomic discovery and validation.

1.4.3 Applied Bioststems SOLiDTM Sequencer

Applied Biosystem SOLiDTM Sequencer was commercialized in October 2007.
It is based on sequencing-by-ligation, as mentioned in the name Sequencing
by Oligo Ligation and Detection, SOLiD. It is quite different from the
others next generation sequencers, because it develops a color space system:
the produced sequences are not represent of bases as usual, but by colors.
SOLiD Sequencing process starts with the sample preparation: library
is fragmented and two oligo adaptor-linked are attached at the fragment
boundaries. The fragments are subsequently bound to 1µm magnetic beads,
that present complementary oligos, and each bead-DNA complex is amplified
by emulsion PCR.
After the amplification step, the beads are covalently attached to the surface
of a specially treated glass slide, that is placed into a fluidics cassette within
sequencer. The SOLiD System is able to process two slides each time: mean
while in a slide are added sequencing reactants, in the other the imaging
process is performed, and viceversa
SOLiD system develops a 2-bases encoding system (see Figure 1.9): a pool

5 http://www.illumina.com/systems/genome_analyzer_iix.ilmn

http://www.illumina.com/systems/genome_analyzer_iix.ilmn

1.4. Next Generation Sequencers 15

Figure 1.9: Principles of two base encoding (modified by Mardis E. [8]).

of probes with dual bases encoding, and 4 fluorescent dyes. Each probe is a
semi-degenerate 8-mer oligonucleotides with a specific pattern: the first 3
bases are degenerate (n), the last three are universal (z), and the 4th and
5th bases are the two bases to interrogate. With four bases (A, C, G, T),
there are 1024 different dinucleotide combinations, that correspond to 1024
different probes. Each dye is associated to 4 dinucleotides, so a single color
could encode for 4 different dinucleotides. This allows to control the possible
errors caused during the sequencing, in fact a base is determined by two
colours, and errors bring inconsistency in the produced sequence.
When a matching 8-mer hybridizes to the DNA fragment sequence adja-
cent to the universal primer 3’ end, DNA ligase seals the phosphate back-
bone. After the ligation step, a fluorescent readout identifies the fixed
base of the 8-mer depending on the cycle number. A subsequent chem-
ical cleavage step removes the sixth through eighth base of the ligated
8-mer by attacking the linkage between bases 5 and 6, thereby removing
the fluorescent group and enabling a subsequent round of ligation. The
process occurs in steps that identify the sequence of each fragment at five
nucleotide intervals. A second round of sequencing starts with the hy-
bridization of an n-1 positioned universal primer, and subsequent rounds of
ligation-mediated sequencing, and so on. An overview of the SOLiD work-
flow is presented at http://marketing.appliedbiosystems.com/images/
Product/Solid_Knowledge/flash/102207/solid.html.
SOLiD produces reads that are much shorter than all other sequencers (50
bases), and around 300 million reads per run. The color space solution has
been of great impact both at bioinformatics and informatics infrastructures.
A lot of work and ad hoc tools have been developed to manage this data.
SOLiD produces a very high-throughput and its 2-base enconding system
allows to determine and correct quite all sequencing errors. Moreover, this

http://marketing.appliedbiosystems.com/images/Product/Solid_Knowledge/flash/102207/solid.html
http://marketing.appliedbiosystems.com/images/Product/Solid_Knowledge/flash/102207/solid.html

16 Chapter 1. Sequencing milestone

Figure 1.10: SOLiD Workflow: a fragment is bounded to the magnetic bead,
amplified by emulsion PCR and covalently attached to the glass slide. The se-
quencing step is performed using 16 different probes, with an associated flourescent
dye. The probes are ligated, then there is a flourescent detection phase, and finally
probes are removed for the next ligation (modified by Mardis E. [7]).

1.5. Sanger vs Next Generation Sequencers 17

discriminates an error from a polymorphism event.
The last commercialized sequencer is SOLiDTM 4 System 6, 7, 8. Its benefits
are:

• Scalable system: The SOLiDTM 4 System provides 100 GB for the
$6,000 Quality Genome;

• Superior accuracy: More than 80% of the bases have quality values
>30 for higher confidence in results;

• Uniform coverage: ad hoc reagents improve coverage to enable the
discovery of rare variants in (GC/AT-rich) regions of the genome for
fewer false negatives;

• Expanded application support: The use of barcoded paired-end
sequencing that detects somatic mutations, novel splice variation, and
fusion transcripts with less input material;

• Automated sample preparation: 80% reduction in hands-on time.

1.5 Sanger vs Next Generation Sequencers

Next Generation Sequencing have a great impact at biological level and
open a new field of reserch. There are three main advantages of second-
generation relative to Sanger sequencing. First of all, the construction and
clonal amplification of library in vitro solve several bottlenecks that restrict
the Sanger sequencing. Then, array-based sequencing enables a much higher
degree of parallelism than conventional capillary-based sequencing. This
allows to obtained, in parallel hundreds of millions of sequencing reads.
Finally, the immobilization of template DNA on planar surface allows to use
a less quantity of reagent volume, reducing the costs.
The advantages of second-generation DNA sequencing are currently offset
by several disadvantages. The most important is the final read length, that
is much shorter than Sanger one, and raw accuracy that is lower than the
achieved quality in conventional sequencing. Both of these disadvantages
could be solved increasing the produced sequence coverage or developing new
tools that work on this direction.

6main page: https://products.appliedbiosystems.com/ab/en/US/adirect/ab;
jsessionid=W1JwNlkVThGQhTzlhQhnJ9GTnMRyK1TmwZrTQzpJVJgqsrXGmRpQ!1265730959?
cmd=catNavigate2&catID=607061

7product description: https://products.appliedbiosystems.com/ab/en/US/
adirect/ab?cmd=catNavigate2&catID=607061&tab=DetailInfo

8product benefits: http://www.appliedbiosystems.com/absite/us/en/
home/applications-technologies/solid-next-generation-sequencing/
next-generation-systems/solid-4-system.html?abhomepage=eur

https://products.appliedbiosystems.com/ab/en/US/adirect/ab;jsessionid=W1JwNlkVThGQhTzlhQhnJ9GTnMRyK1TmwZrTQzpJVJgqsrXGmRpQ!1265730959?cmd=catNavigate2&catID=607061
https://products.appliedbiosystems.com/ab/en/US/adirect/ab;jsessionid=W1JwNlkVThGQhTzlhQhnJ9GTnMRyK1TmwZrTQzpJVJgqsrXGmRpQ!1265730959?cmd=catNavigate2&catID=607061
https://products.appliedbiosystems.com/ab/en/US/adirect/ab;jsessionid=W1JwNlkVThGQhTzlhQhnJ9GTnMRyK1TmwZrTQzpJVJgqsrXGmRpQ!1265730959?cmd=catNavigate2&catID=607061
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=607061&tab=DetailInfo
https://products.appliedbiosystems.com/ab/en/US/adirect/ab?cmd=catNavigate2&catID=607061&tab=DetailInfo
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-4-system.html?abhomepage=eur
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-4-system.html?abhomepage=eur
http://www.appliedbiosystems.com/absite/us/en/home/applications-technologies/solid-next-generation-sequencing/next-generation-systems/solid-4-system.html?abhomepage=eur

18 Chapter 1. Sequencing milestone

The above consideration suggest that, by now, it does not exist a sequencer
that is absolutely better than the others. In fact, each of them has different
characteristics that advantage it in some applications, and disadvantage in
others. So, before the realization of any kind of genomic, it is important
to determine which is the best sequencing technology for the task, and
sometimes, it is possible to apply a mixed approach, using more than one
technology in the same project. For small-scale projects in the kilobase-
to-megabase range, Sanger sequencing method remains the technology of
choice for the immediate future. While, large-scale projects depend entirely
on next-generation sequencing. There are important differences among the
next generation sequencing platforms themselves (see Table 1.11). Some
applications (e.g., resequencing) may be more tolerant of short read-lengths
than others (e.g., de novo assembly). This suggests that in some applications
the high-throughput of SOLiD and Illumina platforms are to prefer to the
long reads produced by 454 technology. In other cases, it is more useful to
use less reads, but of a greater length.

Figure 1.11: Comparing metrics and performance of next-generation DNA
sequencers (Mardis E. [7]).

1.6 Fragment and Mate-pair library

The DNA sequencing could be performed creating two different kind of
libraries: the “fragment library” and the very useful “paired-end” or “mate-
pair” tag library (PET). In the first case, the library is prepared with a
DNA fragmentation into pieces of specific length. In the second application,
paired-end reads are produced. Paired-ends are short paired tags (20-50
base pairs) extracted from the two ends of target DNA fragments, that are
linked and sequenced to create the tag library. After the sequencing, the
tags are paired, and then mapped on the genome reference, allowing to find
the boundaries of the target DNA fragments in the genome landscape and to
their relative orientation and separation. The paired-ends have a separation
estimate, provided by software, as the fragments size distribution measured
on a so called library of reads.
There are multiple methods for constructing PET structures (see Figure 1.12),
and all available new sequencing platforms can sequence it. The original PET

1.6. Fragment and Mate-pair library 19

Figure 1.12: Schematic view of PET methodology (Fullwood M. J. [9]).

method was “cloning-based” using plasmid (cosmid, fosmid or BAC) vectors
to link 5’ and 3’ tags. A recent alternative involves a direct circularization
of the target DNA fragments with linker oligonucleotides that covalently
join the two ends of a DNA fragment. Before Next Generation Sequencing
instruments, the traditional method for short tag sequencing was to concate-
nate the tags into long stretches of DNA, using Sanger sequencing methods.
Now, the next generation sequencers work well with paired-end constructs,
because they could produce a large amount of short reads, as required in

20 Chapter 1. Sequencing milestone

paired-end sequencing. Each platform develop a particular paired-end se-
quencing protocol, as briefly show in Figure 1.12.
Roche/454 links two units of paired-end tags together to form a diPET
template, that will be sequenced. Using this approach it is able to generatePaired-end in

Roche/454 half of million paired-end sequences in a single run. Illumina/Solexa is able to
perform paired-end sequencing in three way. First, it can sequence paired-end
constructs made from long DNA fragments (cDNA or genomic DNA). ItPaired-end in

Illumina/Solexa prepares on the flow cell the single-strand DNA templates and it executes
the first reads. After that, it synthesided the second-strand DNA to read the
other direction. The second approach is to sequence the entire paired-end tag
construct, since the sequencer can read more than 75bp. Finally, the third
approach is to bypass paired-end tag construction and sequence the two ends
of DNA fragments using the paired-end sequencing method described above.
Although this last approach is simple and straightforward, it is limited to
short DNA fragments that can be amplified by bridging PCR on the surface
of the flow cells, and therefore, only short fragments of a few hundred base
pairs can be paired-end sequenced by this method. For longer DNA frag-
ments, paired-end sequencing has to be done through making paired-end tag
libraries first. The first approach is able to produce long paired-end library
(LPE) of thousand of bases, that are called in Illumina system mate-pair
library. The last approach produces only short paired-end library, that are
insert of few hundred of bases, called paired-ends. SOLiD/Applied Biosystem
sequences paired-ends in a easy way. It cuts the two ends of a fragments,
and it attacks at the ends of an internal adaptors. After that, it adds twoPaired-end in

SOLiD/Applied
Biosystem

new adaptors at both ends and the first tag is read using the primer that
primes onto the flanking adaptor, while the second tag is sequenced from
the middle linker of the paired-end construct.
All the three most used next generation technologies have advantages and
disadvantages. Roche/454 seems to be the best sequencer to use, but it is too
expensive, due to the reagent cost for running. Illumina/Solexa is cheap and
high-throughput, but paired-end sequencing takes up to a week of running
time. Finally, SOLiD/Applied Biosystem is cheap and probably has the
highest throughput but also the slowest runs. Thanks to the high-throughput
and low cost, Illumina/Solexa and SOLiD/Applied Biosystem are the most
used sequencers for paired-end creation.
Paired-end libraries are essentially to perform a de novo accurate assembly of
small and large genome, using next generation sequencing data, due to their
ability to span repeats longer than individual reads. Besides, they are very
useful in finishing task after the assembly execution. In fact, they help the
gap closure procedure, suggesting which are the reads that fall in the gaps.
Paired-end reads are very often used to study genome structural variation,
like insertion or deletion of genome sequences, or chimeric regions, and in
transcriptome analysis.

2
Gene Prediction

During the first year of my Ph.D., I have been involved in the study of gene
prediction problem, with the aim of developing a new tool able to create a
training set of secure genes for an organism with Next Generation Sequencing
data. As it will be soon explain in the following introduction section (see
Section 2.1), the task is not easy to solve, and I encountered a lot of different
difficulties. Moreover, the issue has yet been well handled, and I tried to
contribute with a very innovative and useful technique, as described in the
Sections 2.2, 2.3, 2.4

2.1 Introduction

Gene prediction (or gene finding) is the problem of identifying stretches of
sequence (gene) in genomic DNA that are biologically functional, and to
define their internal structure. This is one of the first and most important
steps in understanding the genome of a species once it has been sequenced.
However, this task is not keeping pace with the large amount of raw data
coming from the sequencing of many organisms (both in the plant and animal
kingdoms) over the last years. The Next Generation Sequencing technologies
have further increased the amount of produced data, with the consequence
urgent need of very accurate and fast tools that elaborate them. For all of
these reasons, gene prediction problem has become a central issue in the field
of bioinformatics.
Gene finding in a prokaryotic genome is an easier task compared to eukaryotic
gene prediction, because of the presence of a higher gene density and the
absence of introns in their protein coding sequences. This fact explains why
the first problem has quite been solved, while the second one is yet a very
challenging task, as described below.

21

22 Chapter 2. Gene Prediction

An eukaryotic gene is composed by a transcribed region and cis-regulate
factors for the gene expression, such as the promoter one.

Figure 2.1: The gene transcription and
translation process in eukaryotic organism.

This last control both the initiate
site and the extent for the transcrip-
tion of protein coding regions, and it
is mostly found in the 5’ end of the
gene. The genes are separated by in-
tergenic regions, and they are inter-
nally composed by coding sequences
(exons), alternated with noncoding
ones (introns), that are removed be-
fore the translation process by the
splicing mechanisms. Very often in-
trons contain stop codons, and this
complicates the gene finding pro-
cess and the searching of the exact
exon boundaries. The coding regions
are limited at 5’ and 3’ by the un-
translated terminal regions (UTRs),
which seem to play a role in the post-transcriptional regulation of gene
expression, such as the regulation of translation and the control of mRNA
decay.
Genes are also composed by many specific functional sites (also called signals),
that regulate transcription (transcription factor binding sites and TATA
boxes), splicing (donor and acceptor sites and branch points), polyadenylation
(poly(A) site) and translation (initiation site, generally ATG with exceptions,
and stop codons). All these sites have to be discovered during the gene
prediction process. The eukaryotic genes may code for multiple proteins
thanks to the presence of alternative promoters or terminators, or through
alternative splicing mechanisms. Moreover, very often the gene finders predict
a lot of false positive genes for eukaryotic organism. Finally, small exons
cannot be recognized using any of the composition-based methods that are
successful for prokaryote coding regions. All these considerations explain why
finding protein-coding genes in eukaryotic genomic sequences with in-silico
methods remains an important challenge in computational genomics, despite
many years of intensive research studies.
Existing approaches fall into two groups with respect to the technique
they utilize: intrinsic or ab initio methods and extrinsic or similarity-based
ones. The first class uses only the information contained in the input
genomic sequence: it searches for typical patterns that generally characterize
coding boundaries, and other signals inside and outside gene regions. Some
programs that implement these strategies are Genscan [10], Augustus [11],

2.1. Introduction 23

HMMGene [12] and GeneID [13]. The second type applies the information
coming from external sources as EST and proteins, as done by GeneWise [14].

2.1.1 Ab initio or intrinsic approach

These techniques use the statistical properties of particular patterns and
signals, extracted from the genomic sequence of the studied organism. They
are classified into consensus (or signal sensors) and nonconsensus (or content
sensors) methods.
The first group searches for a match with a consensus short sequence motif,
that could be of the following type [15]: Consensus

methods
• Transcriptional signals: the most often used signals are the initiator or

cap, located at the transcription start site (TSS), and the A+ T_rich
TATA-box, typically around 30 bp upstream of the TSS;

• Translational signals: one of the most important signal is the ‘Kozak
signal’ that is located immediately upstream of the initial ATG;

• Splicing signals: they are characteristic patterns positioned at the
5’ and 3’ ends of the intros, called donor and acceptor splice sites
respectively. The most frequent motif is the GT and AG, also known
as canonical sites; the other variants are similar to this one, but occur
with lower frequency.

A large number of programs implement this technique, using weight matrices
in place of the perfect consensus sequence. The match between the position
in the pattern with a residue in the matrix gives a specific cost [16], that
characterizes its goodness, and that will be used for the further similarity
score computation. Some examples of these tools are GeneSplicer [17] and
Splieceview [18].
The second group of ab initio techinique is based on the study of the different
statistical and conservative properties, that characterize and discriminate the Nonconsensus

methodscoding sequence (exons) from the non-coding ones (intronic, untranslated
and intergenic regions). There are several measures that could be used, but
the most utilized is the hexamer composition. This is the better parameter
to distinguish between the two kind of regions, as reported by Fickett and
Tung [19], and applied in Sorfrind program [20]. The Markov model chain is
one of the most frequent statistical approach applied in the computation of
this measure. It is a stochastic model assuming that the probability of the
appearance of a given base (A, C, G or T) at a given position, Xi depends
only on the k previous nucleotides Xi−1, ..., Xi−k, for some constant k,
that is called the order of the Markov model. This means that a fifth-order

24 Chapter 2. Gene Prediction

Markov model captures local dependencies in sequence, at the level of the
hexamer.
Indeed coding regions tend to have higher C +G content compared to non
coding regions. These differences can help the prediction problem.
The ab initio methods could be further classified into trained methods (e.g.
Glimmer [21]), that use unbiased sets of coding regions, and untrained
ones (e.g. Genescan [10]), which utilize statistical properties in order to
discriminate genes.

2.1.2 Similarity-based or extrinsic approach

Extrinsic or similarity-based approaches make use of information coming
from external evidences that are compared to the reference genome. This is
why they are also called comparative gene prediction methods. The basic
assumption is that the functional regions are more conserved than non-
functional ones. So, the similarities found aligning the external evidences
(as proteins, EST, or information about similar organisms) to the genomic
sequence, discriminate the coding stretches from the not coding ones, and
infer the gene structure. Sometimes it is possible to use EST or proteins
coming from the studied genome, that give a real evidence about the coding
regions. Unfortunately, this point of strength is also a weakness one: if the
used information is not accurate, or the quality of the input database is low,
the performed prediction could be compromised.
As mentioned above, similarity-based techniques generally use three kinds of
reference sequences:

• The proteins are an useful information, and they could be found in
SwissProt and PIR database. Almost 50% of the genes could be
predicted with this strategy, but the presence of untranslated regions
requires the application of other methods;

• The ESTs (expressed sequence tags) are another evidence, to compare
to the cDNA (complementary DNA);

• The comparison at genomic level between similar organisms is another
approach, that strictly depends on the similarity level between the two
organism.

ESTs and proteins could be aligned locally using BLAST family tools, or
globally using program like GeneWise [14].

2.1. Introduction 25

Figure 2.2: The table summarizes some gene prediction programs, reporting the
organism on which they could be used, the base strategy and the online link, where
it is possible to find them (modified by Hwan J. [22]).

2.1.3 Combiner methods

Extrinsic or ab initio methods alone are not able to predict all genes. Only
approximately half of them can be found by homology with other evidences
contained in online databases. To find the remaining 50%, a good solution is
to use prediction methods. The integration of the results obtained by more
different evidences and tools allows to produce a more accurate prediction.
A new class of programs was growing parallel to these ones based on this
idea: the combiner methods.
Some examples of programs that apply a mix approach are:

• GenomeScan [23], that extends GeneScan, using blast alignments with
protein sequences;

• HMMGene, that has an improved version that integrates into the HMM
information coming from BLAST alignments of the query sequence
with cDNA, EST and protein sequences [24];

• Combiner, that creates the consensus of the predictions coming from
several individual gene finders [25], searching for contradictions and
consensus to produce one output gene structure;

26 Chapter 2. Gene Prediction

• Jigsaw, that is the most interesting program in the combiner class
methods [26]. Its idea is to integrate the information coming from
different kind of sources: EST, cDNA, aligned proteins, gene prediction
coming from prediction programs,... It is composed by an initial
learning phase, in which it learns from a training set, how safe is
each input source. This phase assigns a score to each evidence, that is
proportional to the ability to predict the training set genes. Successively,
there is the prediction phase, that integrates the information coming
from each source, considering the assigned scores, and predicts the
genes.

In the Table 2.2, there is a brief list of the most used gene prediction programs.
For each of them, it is specified the type of the organism for which they are
trained, the kind of algorithm that it applies, the web site from which it is
possible to download it, and the evidences that it uses.

2.2 A new gene prediction approach

As mentioned in the previous section, many efficient programs were able to
predict quite all genes (high sensibility), reducing the number of false positive
(high specificity). The gene prediction problem seemed to be quite solved,
and it seemed not useful the development of a new tools. However, a very
challenging and important task was not yet implemented: the creation of an
ad hoc training set of well known genes. Indeed the prediction programs use
this kind of information, to learn the rules that define gene structure to be
applied in the prediction phase.
This is the weak point for all these methods: for new sequenced organism
there are no available training set, and the programs do not work.
To overcome this problem, the naive idea is to employ the genes of a very
similar and well known organism, that could simulate equal characteris-
tics. However, even if this solution is very often applied with good results,
sometimes it is not safe and feasible, because of the risk of a not strictly
related knowledge acquisition. A better solution would be the creation of
the training set from the considered organism itself, but this requires a lot
of very expensive experimental work. The research moved on this direction:
how could be used this solution in few time and low cost?
The creation of a training set of genes requires the identification of the
segments that compose them and their structure, as the coding regions.
Consequently, the gene training set creation problem has become the identi-
fication of these elements in few time and low cost. The coding regions are
portions of DNA sequences that code for proteins, and that compose the
transcriptome of the organism. Its sequencing, and the mapping of the ob-
tained reads over the genome give the evidence about these regions displaced

2.3. CreateGene: a tool for
gene training set creation 27

over the DNA. After that, the only task to perform is their extraction and
reconstruction. As said before, next generation sequencers work in few time
and low cost, producing a large amount of data, as required. This was the
idea that seemed to solve the training set creation problem in an efficient
way, and that suggested the development of this new tool.
There are some useful considerations to do before to explain the implemen-
tation of the method. The not expression of all genes suggests a limit: the
method is not able to detect all of them; however, it does not want to perform
a complete gene prediction, but its only aim is the creation of a secure train-
ing set, for the future prediction with the yet existing programs. Another
consideration to do is about the state of the RNA during the sequencing: it
could be not mature, and it could contains little pieces of introns. So, it is
necessary to use information coming from the coding regions boundaries to
create the correct gene structure.
The above analysis and all the done observations brought to a very innovative
solution for the problem, with the application of Next Generation Sequencing
data. The next step is the development of the idea, with the implementation
of an useful tools for the creation of gene training set, proving the reliability
of the thought method. I tested and improved my program on Vitis vinifera
organism, that was studied in my laboratory in the project of “gene prediction
and genome annotation”.

2.3 CreateGene: a tool for
gene training set creation

CreateGene produces a set of secure genes for a studied organism, to use
for the training phase of gene prediction programs. It requires a set of
transcriptome reads of the organism, that would be mapped over the related
genome sequence, to evidence the coding regions.
A basic requirement for this tool is a low computational time and allocation of
RAM memory, to be run even on desktops, without particular computational
power. Moreover, it is important that the code will be easily maintained, and
it will be possible to easily add, delete or change the code without a complete
de novo implementation. To satisfy the basic requirements, CreateGene has
been developed with a modular structure: each module realizes a specific
function, and all together they solve the create training set problem. They
are organized in a pipeline divided into three phases: an initial pre-processing
step on which data is prepared; an execution step that parses the signal
created by reads alignment, and detects the coding regions; finally, post-
processing step determines the gene structure. In the next sections, the three
stages will be described.

28 Chapter 2. Gene Prediction

2.3.1 Pre-processing step: data preparation

This phase elaborates the RNA-seq input reads, preparing them for the next
coding regions detection. So, the first argument to deal with is the choice of
the suitable sequencer to use for this task (see Chapter 1). Is it preferable
to have a large amount of short reads, as with SOLiD/Applied Biosystem
and Illumina/Solexa, or to produce few but longer ones, as with Roche/454?
For this kind of application, the first situation is better than the second one,
because of the greater amount of produced data that help the discrimination
from background noise. This could be due to the presence of sequencing
errors inside reads, that mislead the alignments, with the result of some false
covered regions. The probability to have a wrong read alignment due to its
errors is lower than a correct one. It is even lower the possibility to have
two or more wrong alignments in the same place. Consequently with an
high-throughput, the difference of the coverage (the number of reads that
cover the region) between the false regions and the real ones, is greater, and it
is easier to discriminate between them, detecting only the correct evidences.
The second argument to discuss concerns the alignment of large quantity of
short reads into the genome. A transcriptome mapped on it has its coding
regions divided by introns (see Figure 2.3, a); therefore, the mapped reads
could be classified into two groups: the reads that align inside the coding
regions (like the green ones in the Figure 2.3, b), that create the coverage
signal; the reads that align between two coding regions divided by an introns
(like the red ones in the Figure 2.3, b), that are spliced in two pieces. As it
will soon describe, this second type is very important, because it gets the
information about the relationships between coding regions.
The mapping tool should be very efficient: it should work with short reads,
even in color space (for SOLiD/Applied Biosystem reads); it should align
read allowing splicing and mismatches; finally, it should run with few memory
and in a low computational time. It was used PASS [27], developed in our
laboratory, because it was easier to modify its functionality and adapt to the
problem requirements. It is able to work in a multi-threading modality, par-
allelizing the short read mapping, and decreasing the required computational
time. PASS allows a fixed maximum number of mismatches and gaps in the
alignment (at least four mismatches and zero gaps for this analysis), and
it stores all rejected reads. Moreover, it is used the best-hit function: if a
read maps in different places with different scores (that is determined by the
number of required mismatches and gaps), PASS returns the only alignments
that have the best score value. A reads could be labeled as ‘unique’, if it
maps only once in the genome with the best score, ‘not unique’ otherwise.
The PASS output format is GFF (General Feature Format 1), see Figure 2.4.

1http://www.sanger.ac.uk/resources/software/gff/spec.html

http://www.sanger.ac.uk/resources/software/gff/spec.html

2.3. CreateGene: a tool for
gene training set creation 29

Figure 2.3: On the left side, it is showd how a transcript maps on the genome: its
coding regions are divided by introns. On the right side there is the representation
of the two classes of reads: the reads that align inside a coding regions, and reads
that aligned on a splice junction.

Figure 2.4: An example of a line of a file in GFF (General Feature Format)
format. The first field is the name of the sequence, on which there is the feature; the
fourth and fifth fields are the start and end position of the feature in the sequence.

It is a standard format, studied to be easily parsed and processed. It is a
tabular file, composed by nine fields, each of them describing a particular
feature, and each line contains all the information about a single alignment.
In the first column there is the name of the sequence that contains the
alignment (it could be a chromosome, a scaffold, a contig,...), and in the
fourth and fifth ones, there are the start and end position.
With a genome viewer, like GBrowse (Generic Genome Browser 2) it is easy
to plot the aligned reads on the genome, Figure 2.5. These tracks are called
signals. In each position, the height of the curve corresponds to the number
of reads that align and cover that position.

2.3.2 Processing step: coding region detection

The processing phase requires the analysis of the signal produced in the
previous phase, for the gene extraction. How parse the signal, to extract
them and their structure? As mentioned before, higher it is the signal, and

2http://gmod.org/wiki/Ggb

http://gmod.org/wiki/Ggb

30 Chapter 2. Gene Prediction

Figure 2.5: A screenshot of the genome viewer GBrowse , on which some tran-
scriptome reads have been loaded. The first track contains the genome, with its
coding regions and non-coding ones. The other green and red tracks are the reads
aligned on the genome.

higher is the probability that the covered bases belong to a coding region.
Nevertheless, there could be misleading scenario, caused by the background
noise. The module should discriminate the two cases.
A sharp look at the signal plotted on the GBrowse, like in the Figure 2.5,
highlights some problematic situations, to consider for a good use of the
data. The signal is full of fluctuations, and the transition from a non-coding
region to a coding one and vice versa, is not well defined. This could be due
to the occurrence of wrong alignments, which causes background noise, and
has to be filtered out.
A naive solution is the definition of a threshold: all the regions that have
a coverage lower than the set value will be discarded, and only the other
ones will be used. This strategy is very quickly to implement: the threshold
depends on the produced coverage and on the genome type, and consequently
it is not secure to determine an absolute value that works in each case. It
would be better to estimate it for each experiment; Indeed the signal height
depends on the genes expression level, and on the introduced sequencing
errors. For example, there could be genes with a good coverage, because of
their high expression level; differently, other genes can have a lower expression
level, that has not to be confused with the background noise. So, in the same
experiment, not all regions are equally represented and could be correctly
predicted. However the aim of the project is not to predict all the genes
but only a secure subset of genes. For this reason it is better to filter more
positive regions than to introduce negative ones.
The above considerations led to the development of a very simple method,

2.3. CreateGene: a tool for
gene training set creation 31

that evaluate a local threshold for each covered stretch of bases. It is a
searching graph based approach, and it has been organized into two phases.
In the first one, the stretches of adjacent bases with an associated non-
zero score are clustered into homogeneous regions. Then, the created groups
become the nodes of a graph, and the spliced reads are the edges that connect
them. The most probable gene structure is discovered and reconstruct in the
graph, using a searching algorithm. The gene discovering problem becomes
the search of the best path(s) through the graph. Before a more detailed
explanation of the method, it will be explained some basic notions about
graph and cluster analysis theory.

Figure 2.6: A representation of a di-
rected (a) and undirected (b) graph. The
graph is composed by nodes (or vertices)
and edges (or arcs). A connection between
two nodes, represented by an edge, defines
a relationship between the two nodes.

A graph G = (V,E) is a mathemat-
ical abstraction, used for object rela-
tionship representation. It is defined
by a set of nodes V = {v1, ..., vn}
(also called vertices), used to repre-
sent the objects, and a set of edges
E = {(vi, vj)|vi, vj ∈ V } (also
called arcs), that are the relations
between them. Generally, a graph
is drawn as a set of dots for the ver-
tices, linked by lines or curves for
the edges (see Figure 2.6). If the
arcs could be traversed only in one
direction, it is a directed graph, undirected otherwise. Starting from a node,
and moving across the arcs, it is possible to visit the graph, across the paths.
A simple path is a collection of distinct nodes: each node of it should be
crossed exactly once.
The cluster analysis, or clustering, is the assignment of a set of objects (in
this case bases) into subsets (called clusters), so that the elements in the
same group have similar characteristics. For this application, it is used
an hierarchical algorithms, with an agglomerative (“bottom-up”) approach:
initially, each base is a separate cluster, and they are iteratively merged into
successively larger ones, using a distance measure. At the end of the process,
each class should contain a stretch of at least two contiguous bases. This
technique requires a good score system: which is the better distance measure,
that define the similarity between bases?
For each base, the used score is the sum of all the reads that cover it,
differentiating for the alignment type. Generally, a read that uniquely aligns
has a greater probability to be correct than another one that maps on multiple
positions over the genome. Anyway, a sequence could be rich of repetitive
regions, stretches of equal motif, that allow multiple alignments of the reads,
that do not have to be confused with the background noise. Also these case
can be resolved as the reads map together in these positions, producing a

32 Chapter 2. Gene Prediction

higher coverage compared to background noise due to wrong matches.
Finally, a read could perfectly align without mismatches (all the bases match
the sequence) or with some (one or more bases does not match). An alignment
with less or none mismatches is more accurate and secure than with a lot of
them. All these information are used to divide the alignments by type, and
to rank them by importance, simplifying the discrimination process between
false and true coding regions.

Figure 2.7: An example of base score.
Four reads cover the base a: two reads
uniquely align with one mismatch, one
read uniquely aligns with zero mismatches,
and the last not uniquely aligns with three
mismatches.

The score for each base is a vector
of eight values, organized in decrea-
sing order as follow: in the first four
values will be counted all reads that
uniquely align on that position, with
zero, one, two or three mismatches
respectively, while in the successively
four there are the not unique alig-
nments with zero, one, two or three
mismatches (see Figure 2.7). If there
are no reads that cover a base, its
associated score is the zero vector−→0 = (0, ..., 0). All the bases that are covered at least by a base are called
non-zero bases.

Figure 2.8: An example of two points in
the two_dimensional space R2, and the
angle that they form.

Each base with the associated vec-
tor score represents a point in the
R8. There are some measure that
could be used to evaluate the dis-
tance between two points in the real
space. One of the most used is the
Eucledian one, also called inner prod-
uct (see Figure 2.8), that evaluate
the two points similarity as it was a
ruler. It is defined by the equation:

d(−→v ,−→u) =

√√√√ n∑
i=1

viui

As shown in Figure 2.8, if the point S2 is moved through its straight line into
S3, the distance with the point S1 increases, from d1 to d2; anyway, they
belong at the same straight line. Consequently, the measure is influenced by
the expression level of the studied region. The cosine value is independent
from this effect, and it is able to control the only similarity between the
two points, evaluating the angle between the two straight lines that contain
them. If the points are moved through it, the angle is the same, and the

2.3. CreateGene: a tool for
gene training set creation 33

cosine measure does not change. If two bases have the same score, they will
be coincident with a zero angle, and the cosine would be one. Greater is
the distance between the two points, and greater is the angle between them.
The cosine of the angle θ is defined as follows:

cos(S1, S2) = cos θ =
−→s1 · −→s2
‖−→s1‖‖−→s2‖

and its value fluctuates in the real interval [−1, 1] ∈ R. This measure is very
often used in the search engine system, to evaluate the similarity between
two documents, without be influenced by their length.
All the above notions allow to define the cluster analysis for this problem.
The approach starts with all the reads aligned over the genome. For each
base, it computes the associated score, as explained above (see Figure 2.7).
Then, it finds all non-zero regions contained in the genome. A non-zero
region is a stretch of contiguous non-zero bases (I = bi...bi+m, bj 6=

−→0 for
each j = i, ..., i + m), that borders with zero-bases at each ends (bi−1 =
bi+m+1 = −→0).
The clustering phase divides each non-zero region I into a set of smaller
homogeneous regions. A cluster is defined as a stretch of contiguous bases
ci = bi...bi+m with an associated score, that is equal to the number and
type of read aligned on them. The cluster score is the normalized sum of all
distances between the points of the cluster:

score(c) = score(v1, ..., vn) = 2
∑
i,j cos(vi, vj)
n(n+ 1) 1 ≤ i, < j,≤ n (2.1)

and it fluctuates in the real interval [−1, 1].
The clustering analysis system starts at time zero with a base for each cluster.

C = {cj |cj = {bj}}, j = i, ..., i+m,

and the system is defined as

S = {Ck|k = 1, ..., N},

where N is the number of clusters. For each group it is computed the
associated score, that initially is equal to 1, because there is only an element
for each set. The system energy is defined by the sum of all the cluster scores,
normalized by the number of them, N :

Et = 1
N

N∑
k=1

score(ck),

34 Chapter 2. Gene Prediction

At each time t, the clustering process merges the nearest couple of clusters,
that are the cluster that less change the system energy. The process goes
on until the energy variation is limited by a certain threshold, otherwise it
stops.

|Et − Et−1| < τ

At the end, the set of computed clusters represent the homogeneous segments
that are contained in the starting non-zero region. The wrong covered bases
would be disjoint by the correct ones, and it would be possible to filtered
them away for the further analysis.
All the obtained clusters become the nodes of the graph. Each couple of
nodes that has at least a splicing read that connects them, is linked by an
edge, whose weight is the number of splicing reads that join them. The graph
is divided into connected components, that are subset of nodes in which exists
at least a path that links each couple of them. The components represent
the gene contained in the genome, and would have a high associated score, or
they could be background noises, and would be composed by few nodes and
would have low coverage. Each subgraph is studied to reconstruct the coding
regions contained in it, or to filter the error cases. In presence of alternative
splicing, a gene could assume more than one possible configuration, creating
several best paths.

2.3.3 Post-processing step: gene reconstruction

All the gene structures found in the previous phase are checked to control if
they satisfy the biological constraints, confirming their real nature of genes.
If at most one biological constraint is not satisfied, the gene is rejected. The
algorithm aims to find only good genes, applying a strict filtering policy that
rejects the ambiguous and uncorrect regions.
The used biological signals are:

• The analysis of the splicing sites.
If two nodes are connected by an arc, in the two linked borders there
should be a splicing site definition. These are the donor and acceptor
sites, that define the boundaries between coding regions and introns.
As said above, there are more probable patterns than other ones, as
AC-GT (canonical motif). For this purpose, only the more frequent
ones are used. The splicing reads would help the splicing sites definition:
if there are some inconsistency between the read alignment, this would
reveal wrong or critical situations, that will not be considered.

• The transcription starting site (TSS) and transcription ending site.

2.4. Results and considerations 35

They define respectively the starting and ending position for the tran-
scription process The translation process translate each codon, that
is a sequence of three adjacent nucleotides, into an amino acid that
will compose the final protein. This suggests that the number of bases
contained in the transcriptome region, from the TSS site to the end
without the introns, should be a multiple of three.

All these constraints are controlled, and an operation of border correction is
performed to adjust the genes with respect the biological rules. All the genes
that do not satisfy at least one constraints are rejected. At the end of the
process, it is returned a list of probable genes, with the correct structure.

2.4 Results and considerations

The tool has been tested on Vitis vinifera genome. The transcriptome
of leaf and root has been sequenced with SOLiD/Applied Biosystem and
Illumina/Solexa. The first one produced about 26 and 20 millions of reads
respectively for root and leaf, while with the second one were obtained about
39 and 34 millions of reads respectively for root and leaf. All sequences
have been aligned using PASS tool [27], as reported on Tables 2.1, 2.2 and
2.3. The produced Solexa reads aligned better than the SOLiD ones. It is
important to remember that this data were produced in the 2008, and that
SOLiD was just commercialized.

SOLiD/Applied Biosystem

Aligned reads Number of
reads % Alignments

ROOT_WTA 2, 169, 275 25, 857, 577 8.39

LEAF_WTA 2, 741, 068 19, 655, 622 13.95

Table 2.1: In the table there are the results obtained for leaf and root with
SOLiD/Applied Biosystem sequencing. There are the number of aligned reads, the
number of total produced reads, and the alignment percentage.

The testing phase was performed running the program on the Vitis vinifera
genome, using the leaf and root reads, and some EST alignments. The
produced set of genes was compared with the gene prediction version v1,
produced by the “Vitis v. genome analysis consortium”. This was the best
available prediction for the organism. The specificity and sensibility value
were used to determine the correctness and accuracy of the method. The
sensibility defines the percentage of true predicted genes that were found
over all real ones:

36 Chapter 2. Gene Prediction

Illumina/Solexa

Aligned reads Number of
reads % Alignments

s_1_sequence.txt 2,669,028 3,053,393 87.41

s_2_sequence.txt 2,819,402 3,163,511 89.12

s_3_sequence.txt 2,819,294 3,160,627 89.2

s_4_sequence.txt 2,757,313 3,101,816 88.89

Total 11,065,037 12,479,347 88.67

s_1_sequence.txt 2,766,711 3,170,119 87.27

s_2_sequence.txt 2,794,762 3,187,711 87.67

s_3_sequence.txt 2,755,649 3,148,048 87.54

s_4_sequence.txt 2,634,039 3,102,762 84.89

s_6_sequence.txt 2,697,526 3,110,350 86.73

s_7_sequence.txt 2,653,092 3,120,558 85.02

s_8_sequence.txt 2,718,824 3,149,248 86.33

Total 19,020,603 21,988,796 86.50

Table 2.2: In the table there are the results obtained for leaf with Illumina/Solexa
sequencing. There are the number of aligned reads, the number of total produced
reads, and the alignment percentage.

Sn = TP

TP + FN

The specificity is the percentage of true positive predicted genes over the
whole obtained by the method.

Sp = TP

TP + FP

Both the measures are very important to determine how many true and
false positive genes can be detected by the tool. Figure 2.9 shows that the
specificity is quite high for all the experiments. As mentioned in the above
discussion, not all genes could be predicted because generally not all of them
are expressed during the sequencing. So, the obtained results seem to be
very interesting. On the other side, the computed sensibility value is quite

2.4. Results and considerations 37

Illumina/Solexa

Aligned reads Number of
reads % Alignments

s_7_sequence.txt 4,292,061 4,886,384 87.84

s_8_sequence.txt 4,110,733 4,691,451 87.62

Total 8,402,794 9,577,835 87.73

s_1_sequence.txt 3,580,690 4,096,989 87.40

s_2_sequence.txt 3,658,856 4,179,039 87.55

s_3_sequence.txt 3,648,523 4,189,381 87.09

s_4_sequence.txt 3,597,991 4,136,629 86.98

s_6_sequence.txt 3,724,635 4,245,154 87.74

s_7_sequence.txt 3,698,637 4,235,932 87.32

s_8_sequence.txt 3,715,641 4,242,177 87.59

Total 25,624,973 29,325,301 87.38

Table 2.3: In the table there are the results obtained for root with Illumina/Solexa
sequencing. There are the number of aligned reads, the number of total produced
reads, and the alignment percentage.

Figure 2.9: In the graph there are the sensibility and specificity results
obtained with the new prediction program.

38 Chapter 2. Gene Prediction

low, and this suggests that the tool predict a lot of false positive genes.
Unfortunately, this is a problem because the starting purpose was to predict
only the safe ones. This should be due to the presence of a great background
noise, that is not easy to discriminate from the low expressed coding regions.
Moreover, sometimes there could be pseudo genes, that are dysfunctional
relatives of known genes, that have lost their protein-coding ability, or that
are otherwise no longer expressed in the cell. They could be similar to still
expressed ones, and they introduce two similar sequences in the genome,
with the consequent alignment of the reads both in the correct and pseudo
position. During the prediction phase, both of the positions are detected,
but the last one is a false positive, and it increases the number of noises,
decreasing the sensibility. The idea to solve this problem is to rank all genes
using coverage value, and to filter all too low expressed ones. This would
reject a lot of good results, but it could allow to reach a better sensibility.

3
Genome Assembly e Scaffolding

The assembly, and in particular the genome scaffolding, has been the second
project in which have been involved. This issue has always been very complex
(Section 3.1), and it has become even more challenging with the introduction
of the next generation sequencing. The usual assembly techniques could
not be used, and new ones should be found, that were able to work with
large amount of data in few times and low cost. The state of the art in
the 2009 (Section 3.2) provided a set of programs that did not satisfy the
above requirements. This suggested the implementation of a new approach,
called ConSort, that performs a good assembly, taking advantages from
the available tools and overcoming their limits. The idea and the designed
algorithm are described in Sections 3.3, 3.4 and 3.5.

3.1 Assembly and Scaffolding problems

The current sequencing technology can only produce little pieces of a sequence
in contiguous and short reads, that can be put together to reconstruct the
starting fragment. This process is called assembly.
The assembly could be referred to genome and transcriptome assembly. Even Genome and

Transcriptome
assembly

if the process could seem the same, and int both cases there are a set of
sequences to map for the reconstruction of the original one; however, they
have different aspects and characteristics. At first sight, transcriptome
assembly is more computationally tractable than genome one, due to the
smaller size of the target. Nevertheless, the different expression level of the
transcriptome during the sequencing, that depends on the initial state of the
used tissue, complicates the discrimination between background noise and
correct reads. Here, it will be introduced the genome assembly problem, and
the applied approaches for the creation of the best consensus sequence in

39

40 Chapter 3. Genome Assembly e Scaffolding

few time, with low cost, and without introducing errors. For a more detailed
explanation of the transcriptome one see Birol et. al 2009 [28] and Kumar
et al 2010 [29].
As regards the genome assembly can be divided into two approach: compar-
ative and de novo assembly [30].
The first approach uses the sequence of an organism, closely related to theComparative and

de novo assembly considered one, as a guide during the reconstruction process. It is a much
easier task than the other one, because it is sufficient to align the set of
reads on the reference in order to characterize a newly sequenced organism.
It is very often used in resequencing projects, where a reference genome is
available, but it is not applicable to organisms that are sequenced for the first
time, for which it is required a de novo approach. The aim is the genome
reconstruction without consultation of previously resolved sequence.
Mathematically, the de novo genome assembly problem can be proved to be
difficult, falling within a class of problems (NP-hard) for which no efficient
computational solution is known [31]. In this situation, an heuristic approach
is the only method that allow to speed up the process, to find a good enough
solution, without requiring an impractical exhaustive search.
The comparative and the de novo approaches are not exclusive: even if a
reference genome is available, some regions that differ significantly from it
(e.g. large insertions) can only be reconstructed through de novo assembly.
In the next sections, it will be discussed only this last class of methods.
The de novo genome assembly problem is like a jigsaw puzzle, where eachDe novo problems
read is a piece, and the final aim is to correctly position them. Unfortunately,
it is a more complicated task, because the pieces, could contain sequencing
errors, polymorphic situations (like SNPs), could be placed in more than one
position (repetitive regions), or could be contamination of other organisms,
and it is not easy or sometimes even impossible to correctly place them.
The highlight problems and limitations could be solved as follow:

• Sequencing errors
Very frequently the sequencer could wrongly identify several bases of
a read, inserting, deleting or substituting some of them. To obtain a
high-quality assembly, overcoming this problem, it is useful to apply a
redundant coverage, in which on average every nucleotide is sequenced
many times. The probability to have an error on the same nucleotide
is generally low, and more reads that confirm it will give a quite sure
consensus.

• Repeated region
They are similar or sometimes equal stretches of genome, that mislead
the mapping of the reads, causing multiple alignments, for which it
is not easy to find the best position. Generally, the assembly stops

3.1. Assembly and Scaffolding problems 41

on them, producing a set of disconnected pieces, divided by undefined
gaps. The repeated region has always been the central challenging
problem. Without repeats and with a good coverage value, an accurate
assembly could be created in few time and without errors.

The magnitude of the problem depends on the used sequencing techno-
logy, that determines the length of the produced reads. If they were
one base long, each of them would be repeated. On the other hand,
if they could be long as the chromosome from one end to the other,
repeats would pose no problem at all. In the middle, there are all the
other sizes. The fraction of unique sequences increases with the read
length, until eventually each of them is unique. If DNA fragments
in the genome were random (which they are not), then the expected
number of occurrences for any read would decrease exponentially as
its length increasing, dramatically reducing the number of repeats in
the genome. However, the complexity of real organisms makes some
regions nearly impossible to be correctly assembled, with short reads.
Consequently, the sequence length play a central rule in this problem.

If the produced reads are shorter than the length of the repeats, then
all of them are not able to entirely span such regions. In this case the
assembler program generate a very fragmented genome sequence, that
can complicate the further analysis, as the gene prediction and genome
annotation. In fact, in a fragmented situation, the genes can be divided
into disjoint scaffolds, or they could be missed in the repetitive regions.
The problem could be partially solved using paired-ends, pairs of reads
with a constraint on their relative orientation and distance in the
genome (see Section 1.6). Paired-ends allow to jump the repeats, join
together separated stretches of bases, and help the gap filling. The
feasibility and success of this technique depends on the insert average
size. If it is lower than the gap size, a read could fall on it without
joining together the fragments.
Even with paired-end approach it is difficult to solve the repeat problem,
and to reconstruct these regions. In fact, the assemblers collapse them
in unique fragments, reducing or even losing the genomic complexity.

• Contamination problem
Sometimes the sequenced DNA could be contaminated by others orga-
nisms and it could be important to discriminate them before assembly.
Even this task depends on the read length and it becomes particularly
problematic when they are too short.

The above discussion has introduced all the problematics involved in the
assembly, and the difficulty in the development of a good strategy. The most
used technique is the concatenation of the reads with the longest overlap,

42 Chapter 3. Genome Assembly e Scaffolding

to form a contiguous sequence, called contig. This process is iterated more
and more, each time merging the sequences with the longest overlap, untilContig
all of them are used. At the end, a set of disjoint contigs is created, whose
position over the genome is not defined. As mentioned before, their length
and correctness depend on many factors: the complexity of the genome,
the number and length of the repeated regions, the quality of the produced
reads, the amount of sequencing errors, the produced coverage and finally
the used assembler. An assembler could be conservative at all, stopping in
ambiguous situation and producing shorter, but more correct contigs. At
the other extreme, it could solve critical points creating longer, but probably
misassembled contigs.
The created assembly is always far away to be the original genome sequence
and a finishing step is required to create the chromosomes. The scaffolding
process is used to find the correct order and orientation between all contigs,
creating scaffolds (or sometimes called supercontigs or metacontigs). TheyScaffolding
are characterized by a set of ordered and oriented contigs, with stretches
of N’s that define the gaps between them. This step is very important to
close the gaps, and it is performed using the paired-ends or genetic maps
information.
The Sanger method is able to produce very long reads, that could be assem-
bled applying overlapping techniques and is proper for the repetitive regionsSequencers and assem-

blers resolution. Anyway, it is too expensive and it requires a lot of time without
not allowing to sequence all genomes, even very large. On the other hand,
the next generation sequencers seem to overcome this limitation, generating
a large amount of data in few time and reducing cost. Unfortunately, the
produced reads are too short for the existing de novo techniques and repeti-
tive problems: new approaches should be designed to solve this limitation
and open the sequencing era to new organism.
From the early 90’s, some small and large genome have been sequenced,
initially with Sanger methods and then applying Next Generation Sequencers.Sequenced genome
In the 1995, the first bacterial genome was published (Haemophilus influen-
zae) with Sanger technology [33]. It requires 24,304 reads of an average
length around 460bp. In 2001, the Human Genome Sequencing Consortium
published the human genome project [34]. It required about 30 million reads,
with length up to 800 bp, using Sanger sequencing technology and auto-
mated capillary sequencers. Other sequencing projects were published using
this technique, but very often all the effort was moved on next generation
sequencing approach.
The initial assembly consisted on mapping short reads to a reference genome.
James Watson [35] genome was sequenced with 454 unpaired reads, while
some individuals of African [36], Asian [37], and Korean [38] were all se-
quenced with Illumina. A combined approach was used to sequence the
draft assembly of grapevine [39] (Vitis vinifera, genome size about 500 Mb),

3.1. Assembly and Scaffolding problems 43

Figure 3.1: The de novo assemblies of next generation sequencing projects (Schatz
M. C. [32]).

44 Chapter 3. Genome Assembly e Scaffolding

combining the Sanger method with the 454 reads. While, the draft genome
sequence of cucumber [40], Cucumis sativus, was obtained using a combina-
tion of Sanger and Illumina sequencing.
The first de novo assembly exclusively NGS was recently performed on the
large genome of giant panda (Ailuropoda melanoleura), by the Beijing Genome
Institute [41]. It has been used only Illumina reads averaging 52 bp and
was done with the SOAPdenovo assembler. Finally, the last two published
genomes have been the genome of woodland strawberry [42], Fragaria vesca,
sequenced using Roche/454, Illumina/Solexa and SOLiD/Applied Biosys-
tem, and the genome of Theobroma cacao [43], sequenced with Roche/454,
Illumina/Solexa and Sanger sequencers.
See Figure 3.1 for a brief summary about de novo short read assemblies.
In the next section, there will be an introduction about the basic assembly
approaches, and the current state of the art. Although, even if a lot of work
has been done yet, both at sequencing and assembly level, it is clear that
genome assembly is not a solved problem, and older technologies, like Sanger,
have not to be dismissed.

3.2 Assembly techniques

The assembly techniques are divided into three categories: Greedy Graph-
based, Overlap/Layout/Consensus (OLC), and de Bruijn Graph. All of them
create a graph (see Section 2.3) using the reads or k-mers (extracted from
them), and reconstruct the assembly searching for the best path. This kind
of problem is made solvable in polynomial time through the application of
ad hoc heuristics or approximation algorithms.
As mentioned in the previous sections, the reads produced with next genera-
tion sequencers are very short (about 30-100 bp), and contain sequencing
errors, or can belong to polymorphic and repetition regions. These charac-
teristics result in the formation of particular structure in the graph, that are
labeled as (see Figure 3.2):

• Spurius: the path is divided into two alternative ones, a short and
long one, caused by sequencing errors toward the end of the read;

• Bubbles: the path diverges and then converges again, due to the
errors or polymorphisms contained inside the assembled reads;

• Frayed rope pattern: two paths converge and successively diverge,
because of the repeats within the target genome;

• Cycles: the path converges on themselves, when there are repeated
regions in the target, as short tandem repeats.

3.2. Assembly techniques 45

Figure 3.2: A representation of all possible
problems in short read assembly. (a) “Spurius”:
the main path is divided into two alternative
paths; (b) “Bubbles”: the main path diverges
and converges; (c) “Frayed rope pattern”: paths
that converge and then diverge.

All the previous situations can occur together, creating very complex graph
structure, that are often very difficult to solve without the introduction of
artifacts and errors. The goodness of an assembly is measured computing its
size and accuracy. The first one is usually given by statistics including N50 Assembly

quality
measure

value, maximum, average and combined total length:

N50 = li :
i∑

j=N
lj = L · 50%, l1 ≤ l2... ≤ lN

where li is the length of the i contig, N is the total number of contig, and
L is the size of the genome. The accuracy is often given by the degrees of
mate-constraint satisfaction and violation.

3.2.1 Greedy Graph-Based Approach

In general, a greedy approach is based on the assumption that at each stage
it is necessary to make the locally optimal solution with the aim to arrive
at the global one. Not all problems could be solved using this approach,
because there are situation in which the global optimal solution could not
be reached, falling in local suboptimal points.
The basic idea is to concatenate reads or pieces of yet assembled sequences

46 Chapter 3. Genome Assembly e Scaffolding

that overlap, to reconstruct the original genome sequence. This means that
the prefix of a read shares sufficient similarity with the suffix of another one.
The basic operation is repeated over and over again, until not other overlaps
exist, and the sequencing process is finished. In a greedy approach the next
overlap to consider is defined by the next-highest scoring one. This value is
given by the length of the common region and its identity level (percentage
of base pairs shared by the two reads). As said before, this strategy could
not always reach the optimal global solution. In fact, it could happen that a
read is used to create a contig, but it could have helped other ones to grow
even larger, and so the algorithm stops at a local maximum. For example, a
greedy approach may misassembled repeated regions.
Some programs based on this method are:

• SSAKE, Short Sequence Assembly by progressive K-mer search and 3’
read Extension [44] (2006).
It was the first assembler developed to work with short-reads. It was
able to assembly millions of unpaired sequences of uniform length,
using a prefix tree, on which the longest possible overlaps between two
of them was searched. It uses the high-coverage to check and solve
sequencing errors contained toward the end of the read.

• VCAKE, Verified Consensus Assembly by K-mer Extension [45] (2007).
It works very similar to SSAKE, but it makes significant improvements
in handling error, using high depth of coverage.

• SHARCGS, SHort-read Assembler based on Robust Contig extension
for Genome Sequencing [46] (2007).
It operates on uniform-length, high-coverage, and unpaired short reads,
with high accuracy and speed. SHARCGS is more robust in hardly
errors, and virtually never generates misassemblies. In a preprocessing
phase, all reads are filtered by quality, to remove all the sequencing
errors. Then, the reads are assembled with a greedy approach similar
to the one explained above, and the produced contigs are merged in
the post processing step, to create the final assembly.

3.2.2 Overlap/Layout/Consensus (OLC) Approach

The Overlap/Layout/Consensus (OLC) approach was designed to work with
large genomes and long sequences, like Sanger or 454 reads. Some example of
software that develop this strategy are Celera Assembler [47], Arachne [48, 49],
CAP and PCAP [50], Newbler [51], CABOG [52, 53] and Edena [54].
In an overlap graph, the nodes are the reads and the arcs are their overlaps.
The paths are the potential contigs. If there were no sequencing errors and

3.2. Assembly techniques 47

too long repetitive regions, the graph will have an unique path, that will be
the final chromosome.
Three operations are used in an overlap graph:

1. Overlap computation
The overlaps must be pre-computed, requiring a series of computa-
tionally expensive all-against-all pair-wise sequence alignments. For a
more efficient execution, it is used a seed to find all similar keywords
contained in the reads. When an overlap is discovered, and a minimum
percent of identity is satisfied, an extension phase tries to find if the
sequences align.

2. Layout stage
The overlap graph is created, and this leads to an approximate read
layout. This could require a large amount of computer memory to
store all the nodes and edges.

3. Consensus stage
The most probable consensus is searched moving through the graph,
performing the contig creation. This step can be parallelized: each con-
nected components of the graph (that is each contig) can be separately
processed, reducing the required computational time.

The most used and well-known OLC programs are:

• Newbler (454 Life Sciences).
It is the most used assembler program. It is able to create very long and
error-free contigs, using unpaired reads of approximately 100-400 bp.
In the first phase it generates unitigs from reads. Initial miniassembly
uses good overlaps, and it is the starting point for the next assembly,
that merges the overlapping unitigs into contigs. It is able to build
scaffolds from paired-end data.

• CABOG, Celera Assembler with the Best Overlap Graph [52] (2008).
It is a revised pipeline of the Celera Assembler, modified for combination
of ABI 3730 and 454 FLX reads. It parses the native SFF files produced
by the 454 FLX pyrosequencing machines, discarding 454 reads that
include at least one unresolved base (the letter N). After that, it
recognizes mated reads as those that contains 454 linker sequences,
from which it generates one or two shorter, linker-free pseudo reads,
plus a distance constraint set to the estimated mean separation.

48 Chapter 3. Genome Assembly e Scaffolding

3.2.3 The de Bruijn Graph Approach

The OLC methods cannot be used with short read: all the attempts done to
use the existing assemblers with this new kind of data failed or performed
very poorly. The main cause is the request of a minimum read length, or a
minimum amount of the overlap that is too long for short reads. Moreover, the
huge amount of produced data required a lot of memory and computational
time to work with OLC existing programs. It was necessary to develop a
new technique that would be able to work with short reads and perform very
well.

Figure 3.3: A starting sequence and the
associated k-mer graph, with k = 4.

The de Bruijn graph (DBG) ap-
proach is widely applied to the short
reads (Solexa and SOLiD) assembly
problem. The method has been
developed outside the biology field.
The original aim was to represent
strings from a finite alphabet, where
the nodes are all the strings of a
fixed-length, and the edges are the
perfect overlaps between them. In the assembly problem, it is used a variant
of the de Bruijn graph, called k-mer graph. All the words of fixed-length k
that are found in the input reads become the nodes of the graph, and the
edges are their fixed-length overlaps (see Figure 3.3). The graph contains a
path that corresponds at each original sequence that has produced it. In an
ideal scenario without errors and repeats, the k-mer graph would contain an
unique Eulerian path, that visits each edge exactly once. In the reality, it is
more complicated, and it can contain cycles and alternative paths, that have
to be evaluated for the creation of the more probable assembly. The main
factors that complicate the k-mer graph are:

1. DNA is double stranded
Each sequence could be represented in the forward or reverse form,
requiring a double quantities of nodes to manage them. This suggest
to use both forward and reverse k-mer in the same nodes.

2. Repeats
There are a lot of different kind of repeats, like tandem, inverted, imper-
fect repeats. They introduce cycles in the k-mer graph, complicating
its structure.

3. Palindrome
A Palindrome is a sequence that is its own reverse complement. This
kind of sequence induce paths that fold back on themselves.

3.2. Assembly techniques 49

4. Sequencing errors
The errors could introduce alternative paths or internal bubbles.

The de Bruijn graph has very interesting properties that make it very
attractive for assembly problem with a large amount of short reads. The k-
mer graph requires a limited amount of memory, that is independent from the
number of used reads. Moreover, the method does not require all-against-all
overlap discovery, and it compress redundant sequences.
Only the assembly programs based on de Bruijn graph have demonstrated
the ability to assembly very short reads. The best assemblers that apply
this approach are: Euler [55, 56, 57] and all its variants like EULER-SR [58]
and EULER-USR [59], Velvet [60], ABySS [28, 61], AllPaths [62, 63] and
SOAPdenovo [64].

• Euler software.
It was firstly developed to work with Sanger sequences, and then was
modified to work even with short reads, initially Roche/454 , then also
Illumina/Solexa and SOLiD/Applied Biosystem. The method is so
called by the Eulerian approach on which it is based. It starts with a
filtering phase in which it tries to solve all sequencing errors, filtering
the reads with low probability. Then, it works on the created graph,
solving the still present sequencing errors and repeat situations.

• Velvet.
It is able to manipulate de Bruijin graph efficiently both to eliminate
errors and solve repeats. It starts with the construction of the graph,
using hash-table structure to speed up the operations, and to reduce
the computational time.

Figure 3.4: A schematic repre-
sentation of the de Bruijn graph
implemented in Velvet assembly
(Zerbino D. R. [60]).

It provided a graph such as that one shows in Figure 3.4. After that, it
executes a simplification phase, on which it simplify the graph without

50 Chapter 3. Genome Assembly e Scaffolding

loss of information. The basic idea is to merge together all the adjacent
nodes that have exactly one outer and one inner edge. Then, the final
phase corrects all errors and solves all repeats that are present in the
graph, creating an eulerian path.

• ABySS, Assembly By Short Sequencing.
It is a parallel assembler for short reads. It is able to work with a
limited memory allocation and few computational time, thanks to the
parallelization of the operations into a multi-threading execution. It
develops a simplification of Euler and Velvet graph.

• AllPaths. It has been developed to work with Illumina/Solexa paired-
end reads. It is organized into three steps: first of all, it performs a
preprocessing phase, on which it tries to solve sequencing errors present
in the k-mer, using a filter based on quality and k-mer frequency. Then,
it construct all possible “unipaths”, computing the perfect overlaps
between the reads, seeded by k-mers. Finally, it creates the k-mer
graph, and it starts the problem solution, applying heuristics, to find
which is the more probable path.

• SOAPdenovo.
It is a new implementation of the yet existing SOAP program, for
short read assembly. It works like all the other ones based on de
Bruijn approach, and it tries to solve sequencing errors and repeats,
constructing the most probable assembly.

3.2.4 Scaffolding approach

In the above section, all the assembly methods and the developed programs,
that works mostly with unpaired short reads, have been described. Their
idea is to start from a large amount of reads, produced by the next generation
sequencers, and to find the best overlap between them.
The scaffolding approach is a finishing method to complete the assembly.
The basic idea is to start from a set of pre-assembled reads, and to use the
paired-end or mate-pairs to find the right order and orientation of the contigs,
creating the final scaffolding.

• Bambus [65].
It is a flexible scaffolder, that works with different kind of sources, like
mate-pairs or paired-end sequences, but even other information coming
from independent mapping. It is able to manage large genome. It is
a graph-based approach, on which the contigs are the nodes of the
graph, and the paire-end are the edges, that link adjacent contigs. It
is organized into two phases:

3.3. ConSort: a new scaffolding approach 51

– it orients all contigs, finding a consistent orientation between
them, constrained by the mate-pair information. It is important
to solve all the inconsistent situation that could happen, that can
be caused by erroneous constraints or by misassembled contigs.

– it orders all the oriented contigs, finding their correct position in
the scaffolds. It tries to solve bubbles and cycles caused by back-
ground noises and repeats, to find the more probable scaffolding.

• SOPRA [66].
It is a scaffolding algorithm for paired-end reads, based on statistical
optimization. It starts with a pre-processing phase, on which it tries to
check the consistency of the input contigs, using statistical approach.
After that, it creates the graph and it tries to find the best scaffolds.

3.2.5 Other software

Other programs have been developed to work with short reads, and to help
the assembly process, like EagleView and MAIA.

• EagleView [67].
It is a genome assembly viewer for next generation sequencing tech-
nologies. The aim was to develop a very efficient tool, able to visualize
a large amount of short reads, like Consed [68] for Sanger sequences.
The viewer would help the assembly problem resolution, showing how
the reads overlaps between them, and allowing to hypothesize possible
assembly solutions.

• MAIA [69], Multiple Assembly IntegrAtor.
The program is a genome assemblies integrator. The basic idea is
that each assembler developed a different technique, and it could have
disadvantages and advantages, different from other approaches. So, if
severals assemblies obtained with different programs are integrated, it
is possible to take advantage from their positive characteristics and
perform a better final assembly.

3.3 ConSort: a new scaffolding approach

Without errors or repeated regions, the assembly process will generate the
original genome sequence, starting from a set of reads. Unfortunately, this
situation is very far from the reality, and the assembly produces a set of
contigs, whose position over the genome is undefined. To find their correct
order and orientation, it is necessary a scaffolding phase. A lot of very

52 Chapter 3. Genome Assembly e Scaffolding

efficient programs have been designed and implemented to assembly large
amount of short reads; although, few of them perform the scaffolding phase,
and none returns a finished assembly. Nowadays, this is realized through
laboratory experiments: it would be helpful to have an efficient, automated
and robust scaffolding tool.
A set of contigs and their relationships can be used as starting point for a
scaffolding phase. The first one is produced by the existing assemblers, while
the second kind of information can be extracted by mate-pair and paired-end
libraries.

Figure 3.5: A schematic representation
of the genome, with the contigs and the
paired-end mapped on them. The paired-
end links together the two contigs, defining
the order and orientation.

A paired-end is a couple of reads
that constrains two genome points,
defining their relative position and
distance (see Section 1.6). If the
paired-end reads are mapped on the
set of contigs, they will give the in-
formation about their connections
(see Figure 3.5), order and orienta-
tion. In an ideal situation, on which all contigs are linked together without
errors, the scaffolding problem is not difficult to perform. Starting from a
contig, and following all the connections, it will create the final sequence.
However, in the reality there are wrong connections or lack of information
that complicate the problem. This is solvable using a large amount of links
that confirm the connections and discriminate the background noise. Next
Generation Sequencers are able to produce a lot of paired-ends in quickly
few time and inexpensively.
This method works with any kind of starting contig sets, and paired-end
libraries; anyway, it is suggested to apply the following strategy:

• contigs: sequenced and assembled respectively with 454 and Newbler.
They will be longer and more error-free than the ones obtained with
other technologies. The length of the produced reads helps to avoid
misassemblies due to low complexity or repetitive regions. Moreover,
Newbler has been designed ad hoc to work with 454 reads and correct
its possible errors.

• mate-pair library: sequenced with SOLiD (or Illumina).
For this application, the read length is less important than the amount
of produced data. The SOLiD/Applied Biosystem technology, with the
color space implementation, performs a double control on the produced
bases (see SOLiD properties explained in Section 1.4), and provides a
better sequencing errors control.

The described idea is developed in a new scaffolding tool, ConSort, Contig
Sorting. It is a set of algorithms for the genome scaffolding and the recon-

3.4. ConSort requirements 53

struction of the “original” genome sequence. It starts from a set of contigs,
generally obtained assembling next generation sequencing data, and from
a set of mate-pair or paired-end libraries. It checks the contig consistency,
it filters paired-end errors, and it orders and orients contigs into the final
scaffolds, discriminating from background noise. With ConSort, we want to
demonstrate that the scaffolding approach, starting with 454 contigs and
SOLiD parired-end libraries, is a nice method to achieve good results.

3.4 ConSort requirements

The development of ConSort started with the analysis of the compulsory and
desired requirements, suggested by the study of all the problems to solve and
functions to realize. They are divided into implementation and functional
requirements.
The first group defines the properties of execution and the characteristics of
implementation that the tool should have:

• Low memory and CPU usage
ConSort will work with a lot of data, coming from contigs and paired-
end libraries, and it is important to avoid the two typical bottlenecks:
the use of a huge amount of RAM memory, that is not always available,
and the large computational time. To satisfy the requirements, it
was designed a data structure that can be stored in memory, even
for desktop computer, and can be easily use with low simple basic
operations, without requiring too much computational time.

• Easy maintenance: modular structure
The program could be modified and updated: some new features should
be added, deleted or substituted. This should be realized fast and
without changing the whole code.
A modular architecture satisfies this requirements, allowing an easily
maintenance of the code. ConSort functions are organized into modules:
each of them realizes a specific task, and all together they obtain
the scaffolding. Each module is like a “black-box”: the performed
operations are invisible outside, and only the input and output format
are known. All the modules are organized into a pipeline, and they
communicate and share data using well designed interfaces. So, the
changing of a module, satisfying the defined data format, does not
compromise the functioning of the other ones.

• Expandable: easy update
A lot of new information could be produced, like information coming
from new sequencers, or other source of evidence. The program should

54 Chapter 3. Genome Assembly e Scaffolding

be able to adapt to the changes and use new kind of information,
improving the performance. As explained above, the modular structure
satisfies this requirement.

• Robustness: conservative but innovative
It is to decide the correct balance between a conservative method
that does not introduce errors, stopping in ambiguous situation, and
an innovative one that solves the problems, with the risk of error
introduction. ConSort should be able to work out ambiguous situation,
deciding which is the more probable solution where possible. All the
taken decisions are stored in a output file, that can be used for a manual
validation of the produced output. This allows not to lose information.

The second class of requirements contain all features and functions that
should be performed by ConSort :

• Input data
It uses Newbler assembly and SOLiD paired-end format, and it can be
easily updated to work with Illumina/Solexa data. A parsing module
designed on this file format will recognize and extract the required
information.

• Output
The output would be the file with the scaffolding sequence and the list
of all used information and taken decision.

• Contig consistency
To produce a consistent assembly, it is important to correct the starting
data: misassembled contigs. A consistency module will integrate all
the available information to revise the wrong contigs.

• Paired-end library elaboration
Even the paired-ends can contain wrong bases, and it is necessary to
realize a package of modules that pre-elaborate them, filtering all errors
and computing the library insert length. This estimation could be
easily obtained looking at the library preparation phase, but in this
case only a range of values can be derived, therefore it is preferable to
extract them from the paired-end analysis.

• More than one input library
ConSort should be able to work with more than one paired-end library,
because of the advantage to work with different insert length, that can
solve various gap sizes.

• Scaffolding
This is the main requirement: ConSort should order and orient all

3.5. ConSort algorithm 55

contigs in the final scaffolds, evaluating the distance between them. All
the other functions help this step, preparing the data and information
for its execution.

• Gap filling
This is a fundamental function for the finishing phase: the gaps among
contigs should be filled to complete the genome sequence.

3.5 ConSort algorithm

The previous requirements have been integrated and developed in ConSort:
a modular structure that realizes the scaffolding process using contigs and
mate-pairs libraries. It has been implemented on C++, and supported on
Linux.
In Figure 3.6 is drawn the pipeline developed in ConSort, with all modules
and their organization. This is a high level view, that shows the workflow and
interaction among the functions, but their internal organization is hidden.
This will be explained in more detailed in the next sections.
ConSort starts with a set of contigs and paired-end libraries in input, and
performs the following operations:

1. Spectral Correction.
It analyzes the input paired-end (or mate-pair) libraries to correct
sequencing errors. So far, this module can be used for SOLiD data
only.

2. Redundancy.
The module normalizes the mate-pair libraries, to save only a copy for
each identical paired-end type. It is very important to filter these data,
to reduce background noise.

3. Pre-Pairing.
In some cases, the paired-ends are made of only one end, due to
sequencing errors, and they cannot be used for the scaffolding aim. For
this reason, they are not useful information and could be deleted. The
module realizes this function, and at the end only the paired reads are
used.

4. Trimming.
The paired-end reads are then filtered by quality, discarding the reads
with a low global quality, or removing the low quality bases at the end
of a sequence. This phase allows to reduce the background noise, and
increase the number of alignments, removing the low quality bases.

56 Chapter 3. Genome Assembly e Scaffolding

Figure 3.6: A schematic workflow of the modular pipeline developed in ConSort.
(A) and (E) are respectively the input and output data. The other points show
the modules used for: the paired-end analysis and elaboration (B); the contig
consistency (C); the finishing phase (D).

3.5. ConSort algorithm 57

5. Alignment and Pairing.
The workflow aligns and pairs the pre-elaborated reads on the contigs,
reconstructing the pairing. At the end two class of mate-pairs are
produced: the inner pairs, that have both pairs of the couple aligned in
the same contigs, and the outer ones, that align between two disjoint
contigs. The module computes the library length distribution: the
mean value and its standard deviation.

6. Consistency.
The consistency analysis is performed with the information coming
from the mate-pairs that aligns on the contigs. The misassembly and
errors are detected, and the useful information to solve them are stored
in an output file, that will be used by the scaffolding phase to correct
them and produce the final assembly.

7. Make arcs.
The mate-pairs are transformed into arcs. Each of them is a cluster of
all links that connected the same contigs.

8. Scaffolding.
This phase solves the ‘tangle” situations, to perform a correct scaffolding.
It applies the information extracted during the previous steps, to
analyze and solve the ambiguous situations. If there are not enough
evidence to untie the knots, the critical points are broken, and scaffold
elongation terminates.

9. Gap filling.
This is the last step toward the final scaffolding. It is applied to close
the gaps and complete the genome sequence.

3.5.1 Input data

Contigs

They represent the result of the assembly of reads produced by an assembler,
like Newbler. The given file should have a multiple sequence FASTA format,
obtained concatenating several single FASTA files, one for each contig. This
is a text-based format for storing either nucleotide or peptide sequences, in
which base or amino acids are represented using single-letter codes.
The file begins with a single-line description, generally introduced by a “>”
(greater-than), and it contains the sequence name (contig in this case), its
length and eventually other optional information. For example, Newbler
specifies the number of reads that have been used to assemble the contig. In
the following lines, the stretch of letters defines the sequence data.

58 Chapter 3. Genome Assembly e Scaffolding

Paired-end (or mate-pair) libraries

ConSort works with one or more paired-end libraries. It is important to
keep them divided by length, for a more accurate analysis. For each paired-
end library, there are four associated files. Each read of the mate-pair has
associated a couple of files: one containing the sequence of the read, the
other one the quality file (multi-FASTA format).

3.5.2 Spectral Correction

As explained in the Chapter 1, the reads produced by next generation
sequencers very often contains errors. This can compromise the further
analysis and increase the background noise (see Section 3.5.5 for a more
detailed discussion). For example, a read with errors cannot align losing
information, or it can align in wrong position and with mismatches producing
wrong evidence.
An error correction phase is fundamental to reduce the number of wrong or
low quality bases, and to improve other analyses. It is known that SOLiD
and Illumina sequencers make substitution errors, rather than insertion and
deletion one, consequently only the substitution cases are considered and
solved. Moreover, with a high amount of reads each base is covered many
times, and the probability that some or all sequences have an error in the
same position is very low. Each read is produced independently from the
others, and even the error events occur independently. Consequently, there is
no reasons to have an error in one position confirmed by all the other reads.
Anyway, if the sequenced genome is heterozygous, there could be SNPs
(Single Nucleotide Polymorphisms) occurrence: some position could have
more than one correct base value. Consequently, it could happen that two
reads align in the same position, with different values, both of them correct.
In this situation, the reads would be divided into two groups: half confirms a
base and the other half the other one. With the SOLiD double color encoded
system, SNPs can be easily discriminated from errors. In fact, while an error
in the sequence changes the correct phase of the colors, and the equivalent
base sequence, a SNP changes only two colors and a base in the equivalent
sequence, like in the example of Figure 3.7.
SAET (SOLiD Accuracy Enhancer Tool) 1 has been used to perform the
spectral correction. It is able to increase the number of mapped reads by 40
to 50%, and to work with the genome of complex organisms. It implements a
modified version of th spectral alignment error correction algorithm proposed
by Pevzner (2001). It extends the original technique, introducing quality
information and developing the color-space properties, as described above.

1ABI Applied package

3.5. ConSort algorithm 59

Figure 3.7: A comparison between two reads that differ for a
single position, due to a SNPs (a) or due to a sequencing error
(b). A SNP changes two colors, and the produced sequences
mismatch only in the SNP position, while in case on error,
the two sequences are different starting from the error itself.

System requirements: memory and computational time

The module works in a multi-threading configuration, reducing the compu-
tational time, and it does not require too much memory. In fact, it uses
temporary files on which storing partial results, allowing not to store every-
thing in memory. In the used system, the module runs in 4 hours, using 10
processors, and elaborating 300 million reads. It requires about 48GB
of RAM memory for 1Gbp region.

Input parameters

Type Explanation Format

number
of CPU

the number of available CPU, to determine the
parallelization level (number of thread that could
be used). This value depends on the used system

integer
value

60 Chapter 3. Genome Assembly e Scaffolding

Type Explanation Format

genome
length

an approximate value of the genome length, that
is used for the computation of the average cover-
age. This value is given by the contig assembler

integer
value

sequence
file

the file with the sequences to correct multi-
FASTA

quality
file

the file with the qualities associated to the se-
quence file

multi-
FASTA

Output

Type Explanation Format

sequence
file

the sequence file with the corrected bases multi-
FASTA

quality
file

the quality file with the updated qualities multi-
FASTA

3.5.3 Pre-alignment pairing

As explained in Section 1.6, a mate-pair (or paired-end) is made of two ends,
that constraints two pieces of the genome with a relative orientation and
separation. The name of the reads of each couple differs only for the suffix
value, that allows to discriminate which part is considered. For example, for
SOLiD mate-pair reads are used F3 and R3. The notation help the pairing
phase: the two separated reads can be joined in the couple.
In some cases, the paired-ends are made of only one end, due to sequencing
errors. Consequently, all the pairs could be divided into two groups:

• single reads: the reads that have lost their paired end. They are
computationally not interesting, because they do not give pairing
information.

• paired reads: the reads that are paired. These will be used for further
analysis.

3.5. ConSort algorithm 61

The module performs the pairing: it divides the paired-ends into the two
groups, considering the case in which a paired-end is made of two reads, and
the case in which only one end exists. This step is very useful to reduce
the amount data to elaborate, discarding all of them cannot be used for the
further analysis. In fact, the scaffolding task works with paired-ends, and all
the single reads cannot be used in the workflow.
This phase executes another interesting function: it changes the data format,
merging the sequences and quality information in a single file. This allow
to speed up the next steps of the pipeline. The data are transformed into a
compressed format, fastq 2, that allows to reduce the storage memory. It is a
textual file, similar to the multi-FASTA, in which each sequence is introduce
by a comment line, followed by the bases and the quality ones.
The module runs in a couple of hours per run, and it did not require too
much memory.

Input parameters

Parameter Explanation Format

Paired-end_1
sequence file

the file with the sequences for the
first half of the mate-pair

multi-FASTA

Paired-end_1
quality file

the file with the qualities for the first
half of the mate-pair

multi-FASTA

Paired-end_2
sequence file

the file with the sequences for the
second half of the mate-pair

multi-FASTA

Paired-end_2
quality file

the file with the qualities for the sec-
ond half of the mate-pair

multi-FASTA

Output

Type Explanation Format

paired_1 the file with the sequences and the
qualities for the first half of the mate-
pair, that are paired after the se-
quencing

fastq

2http://maq.sourceforge.net/fastq.shtml

http://maq.sourceforge.net/fastq.shtml

62 Chapter 3. Genome Assembly e Scaffolding

Parameter Explanation Format

single_1 the file with the sequences and quali-
ties for the first half of the mate-pair
that are not paired after the sequenc-
ing

fastq

paired_2 the file with the sequences and the
qualities for the second half of the
mate-pair, that are paired after the
sequencing

fastq

single_2 the file with the sequences and qual-
ities for the second half of the mate-
pair that are not paired after the
sequencing

fastq

3.5.4 Trimming

The spectral correction module tries to correct the sequencing error, but
sometimes not all the errors could be corrected. For example, if the coverage
is too low, it is not easy to discriminate sequencing errors from SNPs, and it
is better to maintain the called base. A similar situation happens when it is
not clear which is the “best base”: if in a genomic position a type of base is
not confirmed by more reads than other types, no decision could be taken,
and it is safer not to change it, introducing possible new errors.
The sequencing errors are very often related with the low quality of the
considered base. In general, the sequencer efficiency decreases with the
length of the reads. As the read grows, the quality decreases. Very often,
reads are characterized by a good average quality in the middle, and a low
quality at the ends. Sometimes, there could be reads with a global low
quality, due to some problems occurred during the sequencing.
A read full of unidentified errors, or with a general low quality can wrongly
align, increasing the background noise, or not align at all, losing information.
If a read has some wrong bases at the ends, it is not possible to align it
allowing only few mismatches, and the read information will be lost. But, if
the low quality bases at the ends of the read are removed, its quality will
improve and it would be easier to align it. This is the basic aim of the
trimming module: trying to study an average quality for each reads, filtering
all reads that have a global quality lower than a certain fixed threshold, or
removing only the bases at the ends characterized by low quality value.
The trimming phase uses two windows to evaluate the global quality of a
read, and the quality at its ends. The first window (W) runs over the reads

3.5. ConSort algorithm 63

and computes the average quality of all the bases contained in the window.
If it is found at least a window, whose average quality is lower than a fixed
threshold (T), the read is rejected. Otherwise, a second trimming phase is
applied, using a shorter window (w), that works at both ends: from 5’ end
toward the 3’ and vice versa. For each window position, it is computed the
average quality, and if this is lower than a fixed threshold (t), the window is
moved one step on, and the process continues. The process stops when it is
found a window whose average quality is lower than the fixed threshold, or
until the read length is less than a fixed threshold l.
It is not easy to determine the correct value of all the parameters.

• The quality threshold could be determined by the sequencer proper-
ties. For example, the technical characteristics of SOLiD sequencers
determine that under a quality value equal to 9, the bases are not
reliable.

• The window length can be statistically computed, evaluating the varia-
tions of the percentage of alignments over a randomly computed sample
of data using different window values.

• The minimum value of the read length is very difficult to fix. It is known
that the longer is the read, the more precise could be the alignment:
the probability to fall in repetitive regions or to align in multiple places
decreases. The long reads have a high specificity level, but the longer
is the read, and the more difficult is to align it if there are errors inside.
Anyway, shorter reads are easier to align, even if they can decrease
their specificity. Consequently, the idea to trim the ends, deleting the
wrong bases and allowing to align a shorter but correct read is very
interesting and useful. Nevertheless, it is important to control the
amount of background noise that it could be introduced reducing the
read length.

The module is integrated in the PASS package, that computes the correct
parameters value, as it was previously explained. Before the alignment PASS
performs the trimming operations for each read, filtering the read if it has
no good quality, or removing the low quality bases at the ends. To perform
this operation, PASS uses the file with all the sequences and the file with
the associated qualities. For each read, it stores the information about the
read fragment that has been saved.

3.5.5 Alignment

The module aligns all the reads on the reference genome (the set of contigs
in this case), searching for the best alignment, which has the best score (less

64 Chapter 3. Genome Assembly e Scaffolding

number of mismatches). Due to the presence of SNPs or yet not corrected
errors, the alignment is performed allowing a certain number of mismatches.
Moreover, as discussed in the previous sections, a genome could have many
repeated regions, that are quite similar among them. So, there could be
reads that fall in these regions and align in more than one position. Even
this possibility has to be considered, and multiple alignments are allowed
This module is performed using PASS [27], a tool developed in my laboratory,
that is able to align a large amount of short reads, (generated with Solexa,
SOLiD or 454 technologies). PASS is able to work in a multi-threading
operational mode, parallelizing the process and reducing the computational
time. Unfortunately, it loads into RAM memory all the genome of the studied
organism, and for large genome requires a lot of memory. It is proportional
to the length of the used organism.

Input parameters

Type Explanation Format

number
of CPU

the number of available CPU, to determine the
parallelization level (number of thread that could
be used). This value depends on the used system

integer
value

reference
genome
file

the genome sequence to use as reference, on
which reads will be mapped

multi-
FASTA

reads to
align

the file of the reads to align (sequences and qual-
ities)

multi-
FASTA
or fastq

identity
percent-
age

the minimum percentage of identity that a read
alignment should have to be considered a good
alignment

multi-
FASTA

gaps the maximum number of allowed gaps integer

b only the best-hit alignment are used character
‘b’

Output

In output, PASS stores in a GFF format file all the useful information about
the alignment: the name of the contig where the read aligns; the start, end

3.5. ConSort algorithm 65

position and strand of the alignment; the number of bases of the alignment;
some useful information about the alignment, like the name of the read, the
trimming and quality information.

Type Explanation Format

alignment
file

the file contains all the aligned reads GFF
format

aligned
reads

the file contains all the reads aligned fastq

log file the file contains a log of all operation performed
during the analysis, and some statistics about
the alignment

txt

not-
aligned
reads

the file contains all the reads that do not align fastq

3.5.6 Pairing

The alignment module finds the best alignment for each read, if this exist,
but it does not consider the original paired-end nature of the reads. Each end
is separately aligned, and a pairing step should be performed, to reconstruct
the pairs. This module realizes this function: it pairs and classifies the
paired-ends using the order, orientation and distance information. At the
end, it computes the library length distribution. This module has been
realized using the tool PASS_pair of the PASS package.

Paired-end pairing and classification

The genome is composed by a set of disjoint sequences, contigs, and the way
by which the paired-ends align and pair on them, produces three classes of
paired-ends.

• “pair-IN”: the paired-ends that have both ends mapped on the same
contig;

• “pair-OUT”: the ends matches on different contigs;

• “single”: only one end of the mate-pair maps.

The main difference between the first two classes is due to the applicability
of the biological constraint to the first class, that cannot be used for the

66 Chapter 3. Genome Assembly e Scaffolding

second one. For a paired-end of the pair-IN class the distance, the order and
the orientation can be computed and controlled; while, for the other class,
these values are undefined, and all related considerations cannot be applied
here. Moreover, it is not easy to filter the background noise present in this
class, and to evaluate this kind of paired-ends. The pair-IN class is used to
compute the library length distribution, while the pair-OUT is used to create
connections between contigs, that would be used in the scaffolding process.
Another possible paired-end classification considers an alignment characteris-
tic: a read could map with an uniquely best alignment or could not align
on the genome. The intersection of the two classifications returns the first
paired-end division:

• unique pair in: the paired-ends that uniquely align on the genome,
inside the same contig;

• not unique pair in: the paired-ends that not uniquely align on the
genome, inside the same contig;

• unique pair out: the paired-ends that uniquely align on the genome,
and that are divided between two contigs;

• not unique pair out: the paired-ends that not uniquely align on the
genome, and that are divided between two contigs;

• unique single: the single reads that uniquely align on the genome;

• not unique single: the single reads that does not uniquely align on the
genome.

These classes can be further divided. For the paired-ends of the pair-IN class,
the distance and the orientation can be studied, and this allow to determine
if the paired-end is correct or not. Using this result, paired-ends could be
divided into correct or wrong paired-ends for distance or orientation.
The not unique pair out could be divided into two subclasses: the class where
only one of the two reads of the mate does not align uniquely (one not unique
pair out) and that one where both reads do not align uniquely (both not
unique pair out). The Pairing module stores all paired-ends in the correct
class, as explained in more detail in the output section (see Section 3.5.6).

Library length distribution

In the scaffolding phase, the insert length of the library is a very important
information to use for the evaluation of contig distances, as it will be seen
in the Make arcs Section 3.5.9. Consequently, it is very important to use a

3.5. ConSort algorithm 67

correct value. During the experimental preparation of a paired-end library, it
is known which is the size range of the inserts. This gives an idea about the
insert length, but a lot of experimental variables can influence it, misleading
the evaluation. To overcome this problem, it is possible to find a better value
analyzing the pair-IN. In fact, for all the paired-ends that fall in this class it
is possible to compute the real distance, and this allow a better evaluation
of the insert length value.

Figure 3.8: The normal (or Gaussian)
distribution N(µ, σ), where µ is the aver-
age value, and σ is the standard deviation.
As the figure above illustrates, 68% of the
values lie within 1 standard deviation of
the mean; 95% lie within 2 standard de-
viations; and 99.7% lie within 3 standard
deviations.

The plotting of all paired-end dis-
tances gives the library distribution.
In an ideal situation, the library
preparation should produce a Gaus-
sian curve, with the an value (µ)
and the related standard deviation
(σ). The curve is composed by a
central region where falls the great
majority of the data, that give the
insert length value to use, and two
smaller regions at right and left,
where fall the errors (chimeric in-
sert) or less probable values (see Fi-
gure 3.8). Anyway, often the distri-
bution has different shapes, due to
many possible experimental and computational factors.

Figure 3.9: Three possible asymmetric shapes of the curve: (a) the curve is
unbalanced to left, due to a lack of small paired-ends; (b) and (c) large quantities
of short paired-ends remain in the library during the sequencing.

First of all, the shape of the curve strictly depends on the problems occurred
during the experimental steps of the library preparation. For example, it
is possible that paired-ends of small length remain in the cut gel-slice: this
will unbalance the curve on the left side or produce another little Gaussian
at the left of the main one (see points (b) and (c) of Figure 3.9). On the
other hand, it could happen that many long paired-ends enter during library
preparation, and only a small quantity of short one, with the creation of an
asymmetric curve (see point (a) of Figure 3.9). In both cases, the Gaussian
has an asymmetric shape, and the average length and standard deviation

68 Chapter 3. Genome Assembly e Scaffolding

are misled.
Even the computational estimation of the the library length could be sub-
jected to some problems. In this phase, it is applied the idea that paired-ends
map and pair on the same contigs, implicitly assuming that contigs are large
enough to contain the paired-ends. The assumption is not always satisfied:
the used contigs could be very short with respect to the the library length,
because of the low sequence coverage of the reads used for the assembly.
The result is that only the smaller paired-ends are able to map and pair
on the contigs, and the computed curve does not represent the complete
distribution, but only a part.
The considerations and problems should be take into account during the
insert length evaluation. When there is an asymmetric Gaussian, the average
length value can be misled, and influenced by the largest part of the curve.
This can be detected, comparing the mean value with the median: the more
is their distance and the more is the curve asymmetry.
When the library is greater than the average length of the contig, the insert
evaluation should be corrected, computing the statistic for the only biggest
contigs. In this class will be entered all the greatest paired-ends, and the
smallest ones do not influence the mean value computation.
First of all the module plots all paired-ends of the pair-IN class, to determine
the shape and characteristics of the distribution. It computes an initial mean
value µ, and the standard deviation σ. Then, it detects if the computed
insert length evaluation is correct, or it tries to correct it. It fixes the µ and
σ value, and it computes the interval D = [d1, d2] on which paired-end could
be considered good pairs. Finally, it performs the paired-end classification:

• it determines if the paired-end is an unique or not paired-end;

• it determines if the paired-end is a pair-IN , pair-OUT or single;

• For pair-IN , it controls distance and orientation:

– wrong orientation → unique wrong strand or not unique wrong
strand;

– wrong distance, that means that paired-end length is out of the
interval D → unique wrong distance or not unique wrong distance;

• For pair-OUT it divides all the mates in unique, one not unique and
both not unique;

• single class is divided into unique and not unique.

3.5. ConSort algorithm 69

Input

The required data are the output of the alignment program.

Type Explanation Format

R3 read file the file with R3 read of the paired-end aligned GFF

R3 read file the file with F3 read of the paired-end aligned GFF

reference
genome file

the genome sequence to use as reference, on
which reads have been mapped

multi-
FASTA

library type this set of parameters defines if the data are
paired-ends or mate-pairs, and the sequencer
that have produced it

string

Output

Type Explanation Format

UNIQUE
PAIR

the set of all paired-end reads that uniquely
align on the genome, in the same contig, with
a correct order, orientation, and which dis-
tance respects the library insert length.

GFF

UNIQUE
WRONG D

the set of all paired-end reads that uniquely
align on the genome, in the same contig, with
a correct order, orientation, but with a wrong
distance value respect the to library insert
length.

GFF

UNIQUE
WRONG S

the set of all paired-end reads that uniquely
align on the genome, in the same contig, with
a wrong orientation

GFF

NOT
UNIQUE
PAIR

the set of all paired-end reads that perform
multiple alignment on the genome, in the
same contig, with a correct order, orienta-
tion, and which distance respects the library
insert length.

GFF

70 Chapter 3. Genome Assembly e Scaffolding

Type Explanation Format

NOT
UNIQUE
WRONG D

the set of all paired-end reads that perform
multiple alignment align on the genome, in the
same contig, with a correct order, orientation,
but with a wrong distance value respect the
to library insert length.

GFF

NOT
UNIQUE
WRONG S

the set of all paired-end reads that perform
multiple alignment align on the genome, in
the same contig, with a wrong orientation

GFF

DISCARDED
PAIR

all reads that map on the same contig, by that
do not enter in any of the previous classes

GFF

UNIQUE
SINGLE

all half of the pairs, that uniquely align on
the genome, and that does not have the other
half aligned

GFF

NOT
UNIQUE
SINGLE

all half of the pairs, that perform multiple
alignments and that does not have the other
half aligned

GFF

UNIQUE
PAIR OUT

the set of all the pairs that uniquely align on
the genome, in two disjoint contigs

GFF

ONE NOT
UNIQUE
PAIR OUT

the set of all the pairs that have one half that
uniquely align on the genome, in two disjoint
contigs, and the other half performs multiple
alignments.

GFF

BOTH
NOT
UNIQUE
PAIR OUT

the set of all the pairs that have one half
that uniquely align on the genome, in two
disjoint contigs, and both halves have multiple
alignments

GFF

log file in the file there are all the performed oper-
ations, and some statics about pairing (as
explained before)

txt

3.5.7 Redundancy

Sometimes, there could be some regions that are more sequenced than the
others, that causes the production of identical mate-pairs, and the consequent
presence of regions more covered than others. The redundancy introduces a
wrong coverage, and could mislead the further analysis that are based on
the number of reads that confirm some evidences. It is useful to normalize

3.5. ConSort algorithm 71

the starting set of data, and to consider only a mate-pair for each group of
equal pairs.

This problem can be solved at two different level of the pipeline: after the
spectral correction, or after the pairing phase. The first application is the
best one, because it consider the original reads, after the error corrections,
and only the equal ones are rejected. Anyway, in case of reads with low
quality at the ends, it can happen that the bases would be wrong, and this
does not allow to correctly delete the redundancy step. So, it seems to
be reasonable to apply this module after the pairing, and to delete all the
mate-pairs which alignment is equal.

Input parameters

Type Explanation Format

unique pair the file with the unique pair data GFF

unique pair
out

the file with the unique pair out data GFF

Output

Type Explanation Format

unique pair
no red

the unique pair file without redundancy GFF

unique pair
out no red

the unique pair out file without redundancy GFF

log file in the file there are all the performed opera-
tions, and the statics about the percentage of
filtered redundancy

txt

3.5.8 Consistency analysis

Sometimes the assemblers can wrongly merge together stretches of conti-
guous bases that do not correspond to the original sequence. This effect,
called misassembly, can be caused by different reasons: the presence of many
repeated and low linguistic complexity regions, the large quantity of inserted

72 Chapter 3. Genome Assembly e Scaffolding

sequencing errors, or the uncorrect decisions taken during the assembly
process. For example, the Roche/454 is prone to insertions and deletions,
because it is not able to correctly determine the length of long homopoly-
meric region, stretches of identical bases (see Section 1.4.1). On the other
hand, the Illumina/Solexa and SOLiD/Applied Biosystem are subjected to
substitutions (see Section 1.4.2 and Section 1.4.3). Furthermore, for example
the Newbler assembler is often not able to determine the correct sequence of
repetitive regions, or it collapses them into a unique consensus. Therefore,
the produced set of contigs should be checked before the scaffolding phase,
to avoid all the ambiguous and inconsistent situations and to create a final
uncorrect assembly.
The purpose of the consistency module is the analysis of each contig to dis-
cover if there are some evidences about the presence of possible misassembled
regions. At the end, it will be filled a list with all the found information,
that could be used in the scaffolding phase, to solve the ambiguous situation
and find the most probable solution, if it exists.

Misassembly classification

Figure 3.10: In the figure, the misassemblies classes are shown: insertion,
deletion, substitution, chimeric and inversion.

3.5. ConSort algorithm 73

There can be different types and causes of misassembly, organized into the
following cases (see Figure 3.10):

• Insertion: a wrong segment is contained inside a contig, probably due
to the very repeated or low complexity nature of the points of insertion,
which can mislead the assembly. To correct the problem, the wrong
part has to be sliced off, and the left ones are to be joined, obtaining
two new sequences.

• Deletion: a stretch of sequence is not assembled in a contig, and the
insertion of the lack piece in the proper position will make it consistent.
This is a difficult task, because the missed part could not have been
sequenced, consequently it is not present among the available data,
or it could not have been correctly assembled. Eventually the absent
sequence could be reconstructed, but this is an hard operation. All
these considerations explain the greater degree of complication presents
in this problem with respect to the previous one.

• Substitution: contig contains a wrong part of the sequence, that can
be substitute with the right one. This is the fusion of the insertion
and deletion cases. The correct piece has been swapped with a similar
but wrong one, due to the lack of the correct one, or other assembly
problems. The solution requires to take away the mistaken segment,
and to insert the missed one in the right position.

• Chimeric regions: the contig is composed by two disjoint portions,
that have been erroneously merged together, due to the similarity of
their boundaries. The identification of the cut at the breakpoint, where
the two not adjacent genomic regions have been erroneously joined
would solved the problem, and two separated consistent sequences will
be produced.

• Inversion: the contig is composed by the right pieces, but the orienta-
tion of one of them is wrong. To solve the problem, the region should
be flipped inside the contig.

Evidences

Looking at the genome sequence alone, the only analysis that could be per-
formed is about its degree of complexity, but this does not detect potential
misassemblies. Accordingly, other ad hoc evidences should be computed for
this task. Which kind of information could be used in this regard? And, is
it possible to extract it from the yet existing data, without requiring other
sequencing or experimental analysis?
The available assembly is provided with the measure about how many reads

74 Chapter 3. Genome Assembly e Scaffolding

have been used to create each contig and each base. This is very useful for
discovering the repetitive nature of the genome, but alone it is not interesting
for the misassembly itself. On the contrary, the paired-end libraries seem to
well model this problem. In fact, their mapping and pairing on the genome
are interrupted in the inconsistent regions, underlining some potential struc-
tural errors. If two segments have been wrongly merged together by the
assembler, there would be no mate-pairs that connect them; differently, there
will be other links that show the bonds with the correct pieces positioned
away on the genome.
This discussion demonstrates that all the needed information could be ex-
tracted from the available data, answering the above questions. Taking into
account of all the evidences coming from the paired-end libraries and the
genome sequence, the following tracks could be obtained:

• (local) physical coverage: it determines, for each base of a contig,
the number of times it is spanned by mate-pair reads. In case of
conistency, this value would be quite homogeneous over all the genome,
except at most for the ends of the contigs, where obviously there is
a lack of data. All the other significant signal variations could hide
problematic situations, and are to be further investigated. As a matter
of fact, whereas a misassembly occurs, the physical coverage can fall
even to zero, and the amount of fluctuation strictly depends from
library length and type of problem.
This trace is computed using the mate-pairs contained in the unique
pair class, because it is less probable that the single alignments could
be wrong, and only the bond inside the same contig could give a safe
pairing. If there is more than one library, they are separately elaborated,
because in this way it is easier to make more specific considerations
about the critical regions. Each track defines for each base of each
contig its physical coverage value.

• indel information: it evaluates the library distribution shift from
the expected one, in presence of insertions and deletions.
In the first case the increase of the average insert length will be related
to the the extension of the inserted sequence, and the curve moves on
the right; in the second case the average will decrease with the same
law, shifting to the left. When the suspected regions are deleted or
added, the library will have once again its usual shape. In theory, it is
always feasible to detect an insertion of any length, because the moving
on the right is possible up to infinity. However, this is not an easy task,
and greater is the insertion and more difficult is the analysis. Whereas,
there is a lower bound for discovering the deletion that is imposed by
the library length, since the distribution cannot move under zero.
This track is also based on another interesting observation: in presence

3.5. ConSort algorithm 75

Figure 3.11: (a) insertion case: the curve moves on right; (b)
deletion case: the curve moves to left.

of assembly errors variations, the reads that map the point of misas-
sembly are spliced into two non adjacent regions. This is a difficult
analysis to execute, due to the hitch of the splicing alignment and its
low reliability. In fact, for short reads, it is not easy to find the correct
splicing alignment. However, if this information is confirmed by many
reads, it achieves a higher level of confidence, and it could be used in
the problem analysis.
This track is computed using two kind of mate pairs: the unique pair,
and the unique pair wrong distance. If the variation is too small with
respect of the library length, the mate pairs fall in the first class, and
they detect small insertions and deletions; while, for greater indels,
the data are classified as wrong distance links, and they discover large
insertions and deletions. For the middle case, in which the variation of
size is around the library length, the information would be taken from
both the classes. The output information contains all the potential
misassemblies found.

• outer pairing: it computes all the possible connections among contigs,
using the unique pair out class. As said before, the uniquely aligned
mate-pairs are more probably error free. In an ideal situation, the
order, orientation and distance calcolated for a mate-pair should be
consistent with all the other ones. In presence of misassemblies, there
will be anomalous links inside the contigs, that sometimes could not
respect the above constraints, highlighting critical situations.
All the mate-pairs are grouped into different clusters defined by: the
couple of contigs they link, the reciprocal order and orientation. The
track is composed by a set of arrows, one for each cluster, mapped on
the contigs, with the following associated properties:

– the pointing direction: 5’ or 3’, according to the mate-pairs;

76 Chapter 3. Genome Assembly e Scaffolding

– the associated weight: defined by the class cardinality;
– their size: it is equal to the length of the region covered by all the

links of the cluster.

• low complexity index: it studies the decreasing of linguistic com-
plexity of the genome. This measure determines the degree of sequence
variability: the complexity decreases in presence of long stretches of
repetitive short patterns.
The signal is determined from the genome sequence itself. Each position
has an associated value, computed counting all different patterns, of all
sizes, contained in a window W = w1...wl of a fixed length l, centered
on the evaluated base. The used formula is:

complexity =
l∑

i=1
|{s ⊂W : s = s1...si : sj ∈ {A,C,G, T}}|

• repetitiveness index: it is a very interesting and useful measure,
because it shows the level of repetitiveness present in the genome.
In the repeated sequences, quite often it is not possible to align the
reads uniquely, with the consequent lack of mate-pairs information.
Without the calculation of this index, it is not easy to understand
if the absence of data is due to assembly or to alignment problem.
For example, if the reads cannot be mapped, there will be a decrease
of the physical coverage due to a repetitive region rather than to a
misassembly.
The track defines for each base the repetitive level on the genome of a
window centered on it [70]. The higher is the value and the higher is
its repetitiveness.
At first sight, this measure could be confused with the previous one,
and they could seem complementary. If the complexity signal decreases,
the repetitiveness index increases. However, they are quite different
and independent, and this explain the necessity of computing and
using both of them. For example, there could be a very low complex
pattern that is placed only once in the genome, and so it has both a
low complexity value and even a low repetitive index.

Algorithm

In the previous section all the available evidences used to perform the
consistency analysis has introduced. Each of them covers specific aspects of
the problem, and their integration into a common program will be a useful
tool for misassembly detection. Nevertheless, even if a lot of information
confirm the same hypothesis, the resolution remains an hazardous issue for

3.5. ConSort algorithm 77

many reasons: often it is not sure to have discovered a real inconsistency; it
is possible that the supposed solution could be not right; it is very difficult
to determine how to correct a critical region, without introducing others
unwanted artifacts. This explains why this module does not directly repair
the contigs, but it just saves all the found information into a list of evidences.
The correction phase will be performed during the scaffolding, where there
will be a global vision of all contigs and their relationships, that could help
the adjustments.
The developed algorithm parses the input tracks, and merges together the
shown information to discover all possible hidden misassemblies. It tries to
characterize each potential critical region, defining: its type, its size, and
all the considerations that have highlighed and confirmed it. It is organized
into a set of steps and controls, that are synthesized in the below framework.
For each contig, it executes the following operations:

1. it checks if there is at least an evidence about a potential inconsis-
tency, otherwise the contig is labeled as correct, and the workflow is
terminated. The signals could be a decrease of the physical coverage, a
shif of the library distribution from the expected value, an anomalous
connections between contigs, or some information about particular
repeated patterns.

2. if some characteristic factors have been detected, it continues the
analysis trying to determine if it is a misassembly or not. In the second
case, it stores all the suspicious evidence, that could be useful in the
scaffolding process.

3. If it is an inconsistent situation, it starts the problem analysis:

(a) it determines the kind of misassembly: insertion (small, medium
or large), deletion (small, medium or large), substitution, chimeric
region or inversion (small, medium or large).

(b) it studies how to solve the problem: each kind of situation is
characterized by different evidences, and for each of them it has
been designed a special set of rules and controls to apply. These
will be explained below.

(c) finally, it stores all the extracted information in the output list.

A frequent event is the absence of some information due to the lack of data
and not to the presence of errors. The problem becomes more complicated,
and it could be more difficult to formulate a correct hypothesis. The following
discussion is focused on the analysis of each possible misassembly, with all
the evidences that could show it, and what can happen in absence of some of
them. It is supposed to work with any one mate-pair library: the discussion
could be easily generalized to a variable number of libraries.

78 Chapter 3. Genome Assembly e Scaffolding

Large insertion

As it has already said before, this problem can be further divided into large
(or medium) insertion, if its length is greater or equal to µ+nσ, or small one
if it is lower than the fixed value. The two cases will be studied separately,
due to the different kind of evidences that detect them. In this section, it
will be discussed the first one, represented in Figure 3.12.

Figure 3.12: The figure shows an example of large insertion, with all the infor-
mation brought by the tracks in such situation. The contig is composed by the two
correct parts C1 and C2, connected to the insertion I, around the points A and B,
where the physical coverage falls to zero. If the insertion is around µ+ n · σ, the
mate-pairs can fall in the unique wrong distance class, or they can be borderline
links of the unique pair one.

• Physical coverage.
In an ideal situation, the presence of a large insertion in the middle
of the contig is marked by two points (A and B) where the physical
coverage falls to zero, at 5’ and 3’ end of the central region (the circled
ones in the Figure 3.12). This is due to the mate-pairs that cannot
match between misassembled stretches of bases.
There are several variants of the previous one, due to the nature of the
sequence, and to the length of the three separated regions contained in
the contig (indicated as C1, I, C2 in the figure). This would determine
the presence or not of physical coverage.

– if one or both of the two external regions C1 and C2 are too small
(≤ µ+ nσ) for the used library (N = (µ, σ)), they could not have
internal signal. This situation has zero physical coverage, and

3.5. ConSort algorithm 79

the two points A end B could exist only if the central region has
physical coverage.
The indel signal could balance this lack of information, as it will
shortly show.

– The fact that the central region is large enough to contain mate-
pairs would assure a certain value of physical coverage. In fact,
if this does not happen, it could be due or to the borderline
length of I, that could be verified comparing it with the library
insert length, or to the low complexity or repeated nature of the
sequence, that will be confirmed by the specific signals.

• indel information.
In general, the nature of the large insertion classifies the mate-pairs,
that connect the two external regions of the contig C1 and C2, as
unique pair wrong distance. The shift of the library distribution to the
left is equal to the length of the region I. If the original contig length
(C1 concatenated to C2, without I) is too small, it happens that do not
exist mate-pairs that connect the two sequences, and even this signal
gives no information.
All the mate-pairs that align in the critical points A and B would be
spliced into two pieces, confirming that the internal region is worng. If
this evidence is supported by enough spliced reads, they will help the
identification of the breakpoints with quite high precision. Therefore,
cutting of the I region, and pasting the C1 and C2 sequences generate
the right contig.

• outer pairing.
In the real genome, the inserted regions is linked to other pieces external
to the contig. This causes the possible presence of some mate-pairs that
link the middle segment with the correct ones. This information is very
useful both to confirm that there is a misassembly, and to understand
which is the right position of this sequence in the genome.

• low complexity and repetitive indexes.
A misassembly is very often caused by repetitive or low complexity
regions that have misled the assembler. The consequence is that
where there is an inconsistent contig, the wrong segments are probably
identified by a decrease of the first index, and an increase of the second
one. This does not mean that each time there is a similar behavior,
there would be a problematic region. These signals are very useful to
confirm the formulated hypotheses, and they are always available.

80 Chapter 3. Genome Assembly e Scaffolding

Small insertion

This second case of the insertion problem is more difficult to discover than
the previous one. In fact, in this situation the intrusive region I is too small
to be detected with the usual evidences, and at first sight the contig looks
very similar to a consistent one, as shown in Figure 3.13.

Figure 3.13: The figure shows an example of small insertion, with the evidence
of all the tracks. The contig is composed by the two correct parts C1 and C2,
connected to a small insertion I, around the points A and B, where there is a
decrease of the physical coverage.

• Physical coverage.
In a standard situation, some mate-pairs will be able to jump the middle
region due to its small size, and the physical coverage does not fall
to zero. Consequently, there is not the usual evidence that underlines
the presence of a possible misassembly. Anyway, the tiny dimension
of the central sequence does not allow the pairing of mate-pairs inside
it, and the region does not contribute to the physical coverage value.
Moreover, very often the fragments of C1 and C2, adjacent to I, are
quite repeated, and the mate-pairs hardly map on them, inducing a
further decreasing of the physical coverage.
Sometimes, it could happen that the two part C1 and C2 would be
very small, and mate-pairs cannot map on them. This causes a lack
of physical coverage in this region and it complicates the analysis of
significant signal variation in the misassembled region.
The discussion highlights the difficulties to detect this kind of problem
using this signal: the lower physical coverage in the interested region
could be confused with its normal fluctuation. The detected variations

3.5. ConSort algorithm 81

could be not due to the presence of a critical region, but to the lack
of information caused by sequencing or alignment problems, that does
not allow to detect the misassembly presence.

• indel information.
This signal is more useful than the previous one, because it is given by
the local variation of the library length. In this case, the mate-pairs are
not classified on average as unique pair wrong distance, because their
size does not get out from the fixed range (µ + nσ). Anyway, there
could be some arcs that are placed in the right part of the distribution,
at the limit of the accepted interval, and the added insertion has moved
them in the wrong distance class. But, this should be isolated cases,
that could be not easily distinguish from background noise. In general,
all the mate-pairs should fall in the unique pair class.
Finally, the splicing phenomenon around the C1 and C2 regions confirms
the evidence of a possible misassembly and it helps the identification
of the breakpoints.

• outer pairing.
This track provides the same information given for the large insertion
problem explained before. The middle region could be connected
to other contigs through mate-pairs, but this happens with a lower
probability, due to the small size of the insertion. Besides, if this
fragment is a consensus of repeated sequences, the reads would hardly
map there. In conclusion, very often this track is not available in this
situation.

• low complexity and repetitive indexes.
These two indexes give the information about the nature of the se-
quence. With high probability, the small region has a certain level of
repetitiveness, that explains the alignment difficulties and the lack of
the other tracks.

Large deletion

Even in this case, the problem has to be divided into two ones, depending
on the size of the deleted region. If its length is greater than µ+ nσ, it is
classified as large deletion problem, otherwise it is classified as small one.
The two situations have different characteristics and evidences, and they are
studied separately. In the Figure 3.14, there is a schematic example of a
large delition case with all the tracks.

• Physical coverage.
The physical coverage behavior is very similar to the one found in the

82 Chapter 3. Genome Assembly e Scaffolding

Figure 3.14: The figure shows an example of large deletion, with the evidence of
all the tracks. The contig is composed by the two correct parts C1 and C2, that
are wrongly connected in the A point, where there is drop to zero of the physical
coverage. The correct composition requires the insertion of the D region between
the previous ones.

large insertion problem. Even in this case, it usually falls to zero around
the misassembly, but there is only one critical point A rather than two
as in the other case. The signal decrease is justified by the deletion
dimension: it is too large to be jumped by the mate-pairs. This also
explains why the mate-pairs do not usually fall in the wrong distance
class, and if there are some of them, they would be isolated cases, and it
would be very difficult to distinguish them from the background noise.
If one or both of the C1 and C2 regions are smaller than the library
length, there would be zero physical coverage, with the consequent lack
of signal, and no evidence about the critical region.

• indel information.
In presence of a large deletion, the unique pair class does not change
its mean value. The only visible effect is due to the reads that are
spliced in the misassembled point A.

• outer pairing.
If available, this track identifies which is the deleted region. In fact,
the mate-pair will connect both C1 and C2 with the same piece D (as
seen in figure), and this is shown by a couple of arrows that map in
the middle of the contig.
This evidence is not always available due to two possible reasons: the
deleted region has not be assembled, and it is absent from the released
genome, or it exist, but it has a high level of repetitiveness detectable
in the next tracks. In both cases, the mate-pairs cannot match there

3.5. ConSort algorithm 83

and the visible phenomenon is a set of unpaired reads that map around
the misassembled point, classified as unique single.

• low complexity and repetitive indexes.
The behavior is the same explained for the previous cases.

Small deletion

This is the second case of the deletion problem. In this situation, few bases
have been deleted from the contig, and could be separately assembled (see
Figure 3.15).

Figure 3.15: The figure shows an example of small deletion, with the evidence of
all the tracks. The contig is composed by the two correct parts C1 and C2, that are
wrongly connected in the A point, where there is a low fluctuation of the physical
coverage. The correct composition requires the insertion of the D region between
the previous ones.

• Physical coverage.
The signal has a shape very similar to that assumed in the small
insertion problem. Even in this case, there is a low decrease of the
physical coverage, that could be confused with the normal fluctuation
of the signal. This is due to the ability of the mate-pairs to jump a
small deleted region and map inside the contig. The links that connect
the D region with C1 and C2, are not present in the signal, causing
its drop around the critical point A. These fluctuations are not so
significant to be safely discriminated against usual background noise
or lack of data.

• indel information.
In this case the mate-pairs that are able to jump the deleted region

84 Chapter 3. Genome Assembly e Scaffolding

would have a lower length, than the correct one. If the change is very
small, the mate-pairs are still classified as unique pair, while if it is quite
large, they fall in the unique wrong distance class. In the first case, it
would be difficult to determine the distribution variation, while in the
second one, it would be easier. In both situations the alignment of the
spliced reads could confirm the presence of a misassembled region.

• outer pairing.
The behavior for this track is equal to the previous one studied in the
large deletion problem. Even in this case, the mate-pairs could show
which is the deleted region to add the contig. But, the probability to
have this kind of information is very low, and sometimes there is only
the evidence of a set of single reads mapped around the breakpoint A.

• low complexity and repetitive indexes.
The behavior is the same explained for the previous cases.

Chimeric region

Sometimes the assembler links together too disjoint regions, causing a
chimeric situation, as seen in Figure 3.16.

Figure 3.16: A schematic representation of a chimeric situation, in which two
disjoint contigs have been merged together, in A.

• Physical coverage.
The union of two disjoint regions causes a decrease to zero of the
physical coverage in a unique breakpoint A, like for the deletion prob-
lem. The different nature of the two fragments does not allow the

3.5. ConSort algorithm 85

mapping of mate-pairs between them, with the consequent expected
lack of information both in the unique pair and wrong distance classes.
Sometimes, it could happen that one or both of the two pieces are too
small to allow the mapping of the mate-pair inside them. This causes
a general low or zero physical coverage in all the contigs, and it is not
possible to detect the chimeric region.

• indel information.
In this case, the type of misassembly does not provide a signal. There is
no shift of the library distribution, or mate-pairs that do not correctly
pair. This justifies why for this class the track does not give any
contribution in the detection of the problem.

• outer pairing.
If it is available, this is very useful for the determination of the chimeric
region, and to discover which are the correct connections. Like for the
deletion case, even in this situation there will be arrows that link it
with other contigs. Anyway, while in the the previous case the arrows
connect the same regions, the misassembled and deleted ones, here
they link different contigs.

• low complexity and repetitive indexes.
The behavior is the same explained for the previous cases.

Large inversion

This situation is very similar to the large insertion one. Even in this case, an
internal misassembled regions influence the correct mapping of the paired-
ends. The event can be divided into: large (or medium) inversion, if its
length is greater or equal to µ+ nσ, or small one if it is lower than the fixed
value. The two cases will be studied separately, due to the different kind of
evidences that detect them. In this section, it will be discussed the first one,
represented in Figure 3.17.

• Physical coverage.
The discussion is very similar to the large insertion one. In a general
configuration, the physical coverage falls to zero in two points A and
B, that correspond to the two points in which the internal fragment
has been wrongly oriented. In this case, the mate-pairs are able to
span around A and B, but in wrong strands. Consequently, the unique
wrong strand class will be filled, and this will help the discrimination
between large insertion and inversion case.
If the insertion is quite enough large as hypothesized, its internal
physical coverage could arise, as for the large insertion case. Finally, if

86 Chapter 3. Genome Assembly e Scaffolding

Figure 3.17: A schematic representation of a large inversion situation, in which
a piece of the contig has been uncorrectly oriented.

the two external regions C1 and C2 are shorter than the library insert
length, they could not present physical coverage.

• indel information.
In this situation, the wrong data are classified in the unique wrong
strand class. This is another evidence that highlights the inversion
origin of the misassembly rather than the insertion one.
Besides, the reads that fall in the breakpoints will perform a splicing
alignment, dividing between them.

• outer pairing.
Due to the fact that the inversion region belongs to the contig, there
will not be connections that suggest anomalous situations. In the large
insertion situation, the outer pairing will help to discover the inserted
region, and to correctly place it.

• low complexity and repetitive indexes.
The behavior is the same explained for the previous cases.

Small inversion

This is the second case of inversion, and as the previous one, it is very similar
to the corresponding small insertion, as the Figure 3.18 shows.

• Physical coverage.
The mate-pairs could be able to jump the inversion region, and conse-
quently it is not easy to see a zero physical coverage. The only visible
phenomenon is the fluctuation of the curve in the breakpoints A and
B and probably the signal level decreases. If the contig is large enough

3.5. ConSort algorithm 87

Figure 3.18: A schematic representation of a small inversion situation, in which
a piece of the contig has been uncorrectly oriented.

with respect to the library insert length, the unique wrong strand class
will contain all the mate-pairs that wrongly aligned on it.

• indel information.
The discussion is similar to the previous one. The mate-pairs that fall
around the breakpoint regions, will be classified as unique pair wrong
strand.

• outer pairing.
Even in this case, the signal is not present, because the inversion region
belongs to the contig, and it has only a wrong orientation.

• low complexity and repetitive indexes.
The behavior is the same explained for the previous cases.

Other ambiguous cases

There could be some situations that are very ambiguous, presenting all the
misassembly characteristics, but they are only problematic regions, as the
cases described below, shown in Figure 3.19

• Physical coverage.
There is a decrease to zero of the physical coverage, in one ore more
internal regions of the studied contigs, but all the other tracks do not
give information about possible misassemblies. This situation could
be explained looking at the low complexity and repeated signals. It
could happen that in some very difficult stretches of bases, that are
very repeated or low complex ones, the reads are not able to map. The

88 Chapter 3. Genome Assembly e Scaffolding

Figure 3.19: In the figure is represented an ambiguous situation in which the
contig seems to be misassembled, due to the low physical coverage and all the
outer pairing. However, it is only a very repeated region, as could be seen the low
complex and repetitive indexes.

consequence is a lack of data during the creation of this signal, but
this does not mean that there is a critical situation.

• outer pairing.
There could be contigs that contain wrong arrows. The typical situation
involves a very long fragment, in which a lot of repetitive sequence
have been collapsed, and all the outer evidences align in these positions.
This case has not to be confused with an insertion of a wrong region,
and it is confirmed by the repetitive signal, which value will be very
high in these points.

3.5. ConSort algorithm 89

Input

Type Explanation Format

UNIQUE
PAIR

see output of the Pairing module GFF

UNIQUE
PAIR OUT

see output of the Pairing module GFF

UNIQUE
WRONG D

see output of the Pairing module GFF

UNIQUE
SINGLE

see output of the Pairing module GFF

reference
genome file

the genome sequence, on which reads have
been mapped

multi-
FASTA

Output

Type Explanation Format

misassembly
file

file with all information about contig misas-
semblies

GFF

evidence file for each misassembly, it defines all evidence
that confirm it

GFF

3.5.9 Make Arcs

As suggested by the name, the “Make arcs” module creates the connections
(also called arcs, see Figure 3.20) between contigs, using the unique pair out
class of data (see Section 3.5.6). An arc is obtained as the sum of all the
paired-ends that join the same couple of contigs, and it is defined by the
following parameters:

• gap value: it is an evaluation of the distance between the linked contigs;

• order and orientation: these are the information about which contig
comes before, and in which orientation (5’-3’ or 3’-5’);

• weight: it is the number of paired-ends that connect the couple of
contigs.

90 Chapter 3. Genome Assembly e Scaffolding

Figure 3.20: An arc (red line) between two connected contigs,
obtained by the sum of the five paired-ends (black lines) that induce
it. Contig A comes before contig B, with the 5’ 3’ orientation.

How is it possible to extract all the above information from the unique
pair out class? To simplify the following discussion, it will be used the
SOLiD notation: the two ends of a mate-pair are called respectively R3 and
F3. During the alignment phase, both of them can align in the positive
or negative strand, and there are four possible events: R3 aligned in plus
(R3/+) or minus (R3/-), and F3 aligned in plus (F3/+) or minus (F3/-).
The read pairing produces one of the possible combinations reported in the
table below:

Paired-end Paired-end

R3/+ F3/+ F3/+ R3/+

R3/+ F3/- F3/+ R3/-

R3/- F3/+ F3/- R3/+

R3/- F3/- F3/- R3/-

For each couple of linked contigs, the algorithm divides all the involved
paired-ends into the eight classes, that are then collapsed into four ones. In
fact, thanks to the symmetric nature of the problem, shown in Figure 3.21,
the combinations can be pairwise associated. Some statistical tests have
confirmed that during the mate-pair division process, the corresponding
counters have been filled by the same percentage.
After that, the paired-ends are labeled as correct or not, evaluating their
length. It is not easy to define a distance measure for disjoint contigs, where
the gap between them is unknow. However, it is possible to fix a threshold
(τ), over which the data are not valid.

τ = µ+ n · σ

where µ and σ are respectively the mean value and the standard deviation
computed for the library distribution, and n is a parametric value that
defines the percentage of considered mate-pairs (generally n = 2 or 3). The

3.5. ConSort algorithm 91

Figure 3.21: The figure shows how the eight combination classes of paired-end
could be reduced into four ones, due to the symmetrical nature of classes. For each
class it is defined the induced order and orientation.

paired-end is wrong if the length of the two pieces of the contigs spanned
by the pair is greater than the parameter τ . This phenomenon could be
explained by several reasons:

• introduction of background noises due to incorrect paired-end alignment.
In this case, only few paired-ends should be wrong: if the paired-end
would be an error, it would be an isolated case.

• a wrong distance evaluation caused by misassembled contigs. The
consistency phase should have found some evidence about it.

• inaccuracy in the library length measure. If the used average insert has
been wrongly evaluated, all paired-ends should have the same behavior.

For each class, the module divides the correct and uncorrect paired-ends, and
for each division, it computes the induced gap length. In an easier approach,
the distance between two contigs is computed as follow:

distancei = µ− 1
N

N∑
i=1

li (3.1)

where µ is the average insert length of the library; N is the number of
paired-ends of the same class that connect the two contigs; and li is the
the number of contig bases covered by the paired-end i. At the end of this
process, a couple of contig has four associated counters, one for each class,
and the division between good and not good paired-ends.

92 Chapter 3. Genome Assembly e Scaffolding

In an ideal error-free situation, each couple of contigs would have an unique
kind of connection with a correct distance. But, in presence of contig mis-
assembly, or wrong paired-ends, more than one counter could be filled for
each couple, and some of them could have a wrong associated distance. In
these situations, the module should filter the error, and decide which is the
correct connection. To do this, it considers that the most probable situation
is associated to the largest counter.

The developed algorithm applies the operations:

IF ∃!ci : ci 6= 0

IF τmin ≤ |{pj ∈ ci : d(pj) ≤ µ+ n · σ}| ≤ τmax → good arc;
ELSE no good arc;

ELSE IF τ ≤ maxi|{pj∈ci:d(pj)≤µ+n·σ}|∑
i
|{pj∈ci:d(pj)≤µ+n·σ}| → good arc;

ELSE no good arc;

The connection has an associated set of four counters C = {c1, ..., c4}, where
ci is the number of paired-ends of the class i, that connect the two contigs,
and i are the four possible contig connection combinations. Each counter
could be divided into two sub counters: one contains the number of paired-
ends that respect the average insert value, while the other one considers the
number of wrong paired-ends. The set thresholds are defined as: τmin is the
minimum number of reads, τmax maximum number of reads, τ = µ+ n · σ.

Input

Type Explanation Format

insert
length

an evaluation of the library insert length
(mean value)

integer

library error the error of the library (standard deviation) integer

contig list a file with the list of all contigs to consider header
file

minimum the threshold of the minimum number of avail-
able arcs, to accept the arc

integer

maximum the threshold of the maximum number of avail-
able arcs, to accept the arc

integer

3.5. ConSort algorithm 93

Output

Type Explanation Format

good arc file the file with all good connections between the
contigs

txt

no good arc
file

the file with all rejected connections between
contigs

txt

log file the file with all the done operations txt

3.5.10 Scaffolding Engine

As suggested by the name itself, this engine is the heart of the program:
it integrates all the recovered information into ordered and oriented set of
consistent scaffolds. This is a tricky task due to the presence of a lot of
ambiguous situations, in which it is not clear how contigs stay together.
ConSort tries to extricate such doubtful scenarios and to solve inconsistent
cases, but at the same time, whenever it meets uncertain solutions, it applies
a conservative policy, avoiding the introduction of unwanted artifacts. It
isolates the critical contigs, stopping the scaffold elongation, and it records the
taken decisions. All the evidences and hypotheses used for the troubleshooting
are stored in an output file, that will be very useful for a manual validation
of the obtained results.
The graph is the mathematical structure that best models the scaffolding
problem: the contigs are the nodes, while the mate-pairs form the arcs. More Graph

problemprecisely, it is a directed graph with a topological order, in which: each contig
occupies a fixed position in the space, it has an orientation, two of them could
not share the same position if they are not similar, and the path moves in 5’
versus 3’ direction. In an ideal scenario, the graph could be decomposed into
disjoint components, each of them representing a scaffold. Each component
contains exactly two external and some internal nodes. The first ones are the
initial and final points of the unique maximum linear path, that visits all the
other contigs exactly once (see Figure 3.23 (a)). The research could be easily
performed, beginning from the first node, and following the path until the
last one is reached. This could be done in a polynomial time, proportional to
the number of nodes contained in the scaffold. Unfortunately, the reality is
very far from the theory, and the obtained network very often could be more
complicated, falling in the NP-hard (non-deterministic in polynomial-time)
class problem. Such a situation could be made feasible only using heuristic
and approximation algorithms, that reduce the computational time.

94 Chapter 3. Genome Assembly e Scaffolding

With the graphical tool Cytoscape 3, the obtained overview was plotted (an
example in Figure 3.22), and this showed the intricate shape of the graph. It
was composed by some isolated cases with single or few joined nodes, and a
big tangle of super-connected contigs. This last one, called decision node,
has more than one inner and/or outer arc. In the first case, the lack of
information does not allow to place it in the correct scaffold, but nothing
can be yet done to overcome the problem. While, the second situation could
be studied, and if there are enough evidences, it is possible to simplify it,
solving the found ambiguities, and extracting the linear path.

Figure 3.22: In the figure, the graph of all nodes and their con-
nections shows its complicated structure: a big tangle and some
isolated nodes.

As discussed in “Consistency analysis” Section 3.5.8, there are many reasons
that cause a such situation, as sequencing errors, inconsistent paths and
misassembled contigs. All of these are extrinsic motivations, that are only
due to the sequencing and assembling phases, and for this reason, their
level of resolution is strictly dependent on the quantity of available data.
If there are enough evidences, they could be easily detected, and all useful
information could be extracted for the future correction. Beyond this class,
there is the intrinsic one, that is characterized by the genome composition,
and its degree of repetition and complexity. This case is much more difficult

3http://www.cytoscape.org/

http://www.cytoscape.org/

3.5. ConSort algorithm 95

to solve, and sometimes even with a large amount of available data, it is not
possible to find a good solution. It is essential to discover and define how all
the previous factors could influence and complicate the shape of the graph.
This allows to recognize them during the scaffolding phase, and execute ad
hoc operations for their simplification.
In Figure 3.23, there is a schematic overview of all the possible shapes
assumed by the graph: Problem

classification
(a) Linear path. It is the ideal graph, composed by two external contigs,

that delimit the internal ones, and it has an unique maximum linear
path: the output scaffold.

(b) Bubble. In this situation, the path could diverge before the misas-
sembled contigs, and converge again after them. This is a theoretical
situation, that depends on the library insert size. In fact, if the deletion
is inside of an extended contig, and the mate-pairs are not long enough,
the blue dashed arrows do not exist, and only the red ones underline the
problem. If even these last ones are not available, it is not possible to
discover the deleted region. Anyway, this situation could happen even
if not all connection information are available, and it is not well-known
how order the contigs.

(c/d) Repeats. There are two possible cases: the repeats are in the same
scaffold (c), and the other ones that are positioned on separated paths
(d.1). The first group causes a loop inside the graph, and it could be
solved duplicating the repeat in the correct places. In the second one,
the path converges in the critical contig, and then it diverges again. In
fact, the only shared region is the repeated one, otherwise the scaffolds
would be separated. To untie the knot, the common region has to be
duplicated and inserted in both the paths.

(d) Frayed rope. Three different kinds of misassembly induce the same
graph structure: the above discussed repeats (d.1), the insertion (d.2)
and the chimeric problems (d.3). The path converges in the critical
region, and then it diverges again. In fact, in all the cases the behavior
is the same: the paths should be separated, but they are linked together
through the shared sequence. For the last two cases, the shared sequence
should be further analyzed and deconvoluted in such a way to generate
two correct scaffolds.
the wrong region has to be cut away, and insert in the correct scaffold.
The information coming from the consistency analysis will suggest the
nature of the misassembly, and how it is possible to solve it.

(e) Short dead-end branch. This last situation is caused by sequencing or
assembly errors, that produce two similar but disjoint contigs. The

96 Chapter 3. Genome Assembly e Scaffolding

Figure 3.23: In the figure, there are all the shape assumed by the graph, in presence
of misassembled contigs, repeats or errors. The symbols stand for: I is the inserted
region; D is the deletion region; C is a piece of the chimeric region and R is a
repeated region.

graph contains an alternative path, composed by a short one with
the error inside, and a greater good one. With a similarity analysis
between contigs, it is possible to solve the problem, and reconstruct
the correct scaffold, deleting the wrong path.

3.5. ConSort algorithm 97

ConSort is organized into two main steps: the pre-elaboration phase, on which
the starting graph is created, and some local optimization are performed; the Scaffolding

algorithmscaffolding phase, that tries to solve the ambiguous cases, and to transform
the produced graph in a set of disjoint and linear components: the final set
of scaffolds. In the next sections below, the two steps will be explained in
more detail.

Phase I: Graph creation and compression

The creation of the starting graph, with all the contigs and their connections,
is a fundamental step to perform before the ambiguity resolution phase. In
fact, the global achieved knowledge provides a problem overview that is very
important for a complete analysis: a more restricted sight could penalize the
scaffolding creation, falling in a local optimal solution.
Each node of the graph is characterized by the size of the represented contig
and a list of all information about its internal consistency. Moreover, it
has an associated state, used in the graph creation, that defines the level
achieved in the process. There are three possible labels:

• free: it has not yet inserted in the graph, and consequently not yet
explored;

• pending: it is connected to a previously inserted node;

• inserted: it has been added in the graph, with a fixed order and
orientation.

Each arc is defined by the weight parameter, computed counting the number
of mate-pairs that confirm the link: the higher is this value, the more probable
is the connection. It has an associated length, that is equal to the size of the
gap between the two adjacent nodes. Finally, it determines the type of link,
specifying the order and orientation between contigs: 5’-3’, 5’-5’, 3’-5’, 3’-3’
(see Section 3.5.9). Each edge could be visited exactly once during the graph
creation phase.
To create the graph, the following steps are applied:

Until there are free nodes in the component:

1. choose the next node to insert (insertion policy)
2. insert the node in the graph, in the compressed organization,

setting all pending nodes;
3. if the inserted node was previously pending, perform the close

path process, with optimization.

98 Chapter 3. Genome Assembly e Scaffolding

• Insertion policy.
There are two possible insertion policy to use for the graph creation:
“depth first search” (DFS) and “breadth first search” (BFS). The first
approach expands each time the first inserted child, going deeper and
deeper inside the graph, as suggested by the name. When the last
visited node has no children, it comes back at the previous level, and
continues the exploration with the next one. The other method visits
all the nodes of a level before going down to the next deeper one.
For the insertion problem, it is used a revised and adapted version of the
breadth first search method, that well models the scaffolding problem.
Each arc is marked as already visited, once it has been used for the
first time. This allows to avoid endless research, caused by multiple
loops, introduced in the graph by repeats and errors. Moreover, the
insertion policy selects the more probable connected node as the next
one to expand. This corresponds to the link with the greater weight.
Each time a node is linked to a previously inserted one, that presents
another path starting or ending on that side, a fork is created and a
new alternative path begins.

• Graph compression.

The possible graph structures described above (see Figure 3.23), high-
light the most interesting kind of nodes are the decision ones. They are
the critical points, from which alternative paths diverge or converge,
that have to be untied for the scaffolding solution. On the other hand,
the easiest class is the internal one, that does not require any kind of
decision. Consequently, a linear path could be represented by a unique
node, which size is the sum of all the contained contig and gap lengths.
The transformation simplifies the problem structure, compressing all
the redundant information. The obtained graph is more essential, it
requires less computational time to move on it, and it shows only the
critical points.

• Close path process.

Each time a node is inserted in the graph, all the other ones linked but
yet free are set as pending. Whenever during the insertion a pending
node is about to be expanded, a close path event occurs: a already
visited walk is confirmed by a new evidence. This is a very important
situation, in which it is possible to verify if all the information are
consistent, or if there are some errors to investigate. Moreover, a local
optimization step could be performed to adjust the path.
There are two kinds of such events, pictured in Figure 3.24: the arc

3.5. ConSort algorithm 99

Figure 3.24: In the figure, the are the
two kinds of close path events: (a) arc
bubble and (b) path bubble.

and the path bubble. The first case is induced by a link: the last
expanded node of a linear path is connected with a previously inserted
one, closing the walk on it. The orientations and orders induced by all
the involved arcs must be coherent, otherwise the nodes are labeled as
problematic, and they will be solved in the further analysis. In case of
consistency, the optimization process can be performed to adjust the
gap length, as it will be soon described.
The second type produces a real bubble, in which there are two paths
that diverge from a node, and then converge again in the same one.
This could be due to a deletion problem, or to a lack of mate-pairs
that has not allowed to insert the contig in a single path. The first
situation is more complicated to resolve, and it will be left to the next
phase. In the second case, the module controls if the two paths could
be integrated in only one, satisfying the order, orientation and distance
requirements. If this is possible, a new merged path is created, and
an optimization step is performed; otherwise, the paths are marked as
critical, and they will be studied in the second step of the algorithm.

• Optimization phase.

The sub-module performs a path length adjustment, integrating all the
information coming from the mate-pairs. In an optimal situation, all
the arcs would estimate the same gap size, and this no improvements
should be required. In the reality, the probability at this event is very
low, and it is important to find the best trade off among the distances
suggested by all the involved edges.

The optimization problem is defined by the quadruplet Π =< C,G,A, p >,
where:

– C = {c1, ..., cn}: is the set of n involved nodes, the contigs;

100 Chapter 3. Genome Assembly e Scaffolding

– G = {g1, ..., gn−1}: is the set of gaps among the nodes, the dis-
tances between a couple of contigs;

– A = {a1, ..., am}: is the set of arcs that subtend the gaps;
– p : A×N → R: is the penalty function, that returns for each couple

(arc, length) the associated score. This is proportional to the
distance from the mean value defined by the library distribution:
the greater is the value and the greater is the penalty.

Each configuration of G is defined by a (n − 1)-upla of gap sizes
(sj =< gj1, ..., g

j
n−1 >), whose associated score is defined by the sum of

all the penalties paid for the arcs, as follows:

score(sj) =
m∑
i=1

p(ai|sj)

The set of all possible configuration S = {s1, ..., sM} is called the space
of solutions, and the optimization problem becomes the searching of
the best configuration s, with the minimum associated score:

s = arg min
sj ,j=1,...,M

score(sj)

The minimization problem could require a lot of time in the research of
the best solution, due to the large space dimension. For this reason, the
application of an heuristic reduces the computational time, searching
only into the region where it is more probable to find the best solution.
These are the performed steps:

1. The algorithm starts with a local optimal configuration at time
zero, s0. This has the greater number of arcs with zero associated
score, and all the others ones (the remaining h) are to be improved.
The optimal configuration is also the first selected one, from which
starting the research.

2. At each time t, from the selected configuration other h are gene-
rated, avoiding repetition. Each one is obtained decreasing the
score of an arc not yet optimal. The new found configurations are
inserted in the set of not yet visited one, and the associated score
is computed. If between them there is a (n-1)-upla with a better
score than the current one, it is updated.

3. A pruning function is performed to discard all the new inserted
configurations, from which it is not possible to derive a new one
with a score better than the current optimal value.

3.5. ConSort algorithm 101

4. The next node to expand is selected in and removed from the set
of not yet visited configurations. This will have the best associated
score.

5. The process is iterated from point (2), until there are nodes to
visit; then, it terminates with the optimal value equal to the
current one.

This first step requires a computational time proportional to n · logn for
the creation of the graph, plus the optimization phase execution, where n is
the number of inserted contigs. The optimization phase is variable, and it
depends on the nature of the the problem.

Phase II: problems resolution and scaffolding creation

This is the more complicated phase of the algorithm, where the ambiguities
have to been solved to find consistent scaffolds. But, at the same time, it is
not desirable to introduce new errors or artifacts.
All the critical nodes present in the compressed graph are to be analyzed
and solved, as follows:

1. For each node, the adjacent ones and connected arcs are extracted.

2. If the extracted structure belongs to one previously defined (3.23)), it
is solved using all the available consistency information and the defined
rules.

If the available information are not enough to solve the problem, the
path is broken, and all the information and decisions are stored in the
output file, otherwise the graph is adjust, correcting the nodes and
connections, and performing optimization distances.

3. If the extracted structure is unknown, the path is broken and all the
used decisions are stored in the output file.

The phase requires a computational time proportional to the number of
critical points, that at least will be equal to the total number of contigs,
plus the time required for the optimization phase. The allocated memory
depends on the number of used contigs, arcs and information.

102 Chapter 3. Genome Assembly e Scaffolding

Input

The scaffolding modules returns the file with the assembly, and all information
about the used evidences.

Type Explanation Format

contig list a file with all contigs multi-
FASTA

arcs list the file with all the arcs txt

evidence list the file with all information about inconsistent
situations

GFF

Output

Type Explanation Format

scaffolding a file with all scaffolds multi-
FASTA

decision list the file with all taken decision during the
tangle resolution, and information that have
suggested them

GFF

3.5.11 Gap filling

The aim of this last module is the filling of the gaps between contigs. In fact,
the scaffolding found the correct order and orientation among them, and it
evaluates their distance, but it does not determine the sequence of the gap.
The general idea is to substitute the stretch of N’s with the correct sequence.
The module could be organized into a bioinformatical followed by a bio-
logical phase. The first one uses the unique single paired-ends, that have

Figure 3.25: In the figure, it is repre-
sented the gap filling process.

only one end aligned. This means
that the other one can fall in the
gap, for which the sequence is un-
known, or it has been discarded dur-
ing the alignment, because it re-
quires too much mismatches to be
mapped. The first case produces a
set of reads that could align, but the

3.6. Testing ConSort: the results 103

corresponding genomic region is not assembled region and are anchored on
the genome by the other side (see Figure 3.25). After the detection of all
these paired-ends, they can be assembled creating the consensus sequence,
reducing if possible the gap length or even close it. The process produces
a set of new contigs, that can be added in the scaffolding. So, the module
will perform an integration of the new obtained sequencing in the previous
scaffolding.
At the end, the biological phase would be performed. It consists in a set of
PCR, that should be suggested by the ConSort output, in term of primer
design and length of the produced fragments, that will help in the definition
of all not closed gap yet.

Input

Type Explanation Format

genome se-
quence

the set of all produced scaffolds, with N’s multi-
FASTA

pairing out-
put

all the files produced in the pairing phase GFF

Output

Type Explanation Format

genome se-
quence

the set of all produced scaffolds, with less N’s,
if possible

multi-
FASTA

3.6 Testing ConSort: the results

ConSort has been tested on the tomato (Solanum lycopersicum) genome,
which has been obtained in the “International Tomato Genome Sequencing
Project” 4. The project began in 2004, and it is an international consortium
including participants from Korea, China, the United Kingdom, India, the
Netherlands, France, Japan, Spain, Italy and the United States. The first
tomato genome draft is going to be released. I used all the produced data to

4http://solgenomics.net/genomes/Solanum_lycopersicum/index.pl

http://solgenomics.net/genomes/Solanum_lycopersicum/index.pl

104 Chapter 3. Genome Assembly e Scaffolding

study, test and improve ConSort, and a lot of work has been done in this
direction.
The test has been performed on a 8 dual core system with 72GB of RAM,
with Linux openSUSE operating system platform. With this computating
power, it is possible to execute the whole ConSort pipeline in about a week,
parallelizing the independent operations. The program starts with a set
of assembled contigs and mate-pair libraries, and it returns the output
scaffolding.

454 input data

The project was performed using the GS-FLX Titanium Roche/454 sequencer
to create the starting set of contigs. The consortium produced about a 25 x
coverage of whole genome shotgun (WGS) fragments and paired-end libraries
of ∼350 bp. The last one were divided into: 3kb and 20kb (LPE). All the
data have been incrementally assembled using Newbler 2.3, achieving the
following results:

Scaffold Metrics Large Contig Metrics

Measure Value Measure Value

Number of Scaffolds 7,409 Number of Contigs 62,716

Number of Bases 794,608,225 Number of Bases 748,398,241

Average Scaffold size 107,249 bp Average Contig size 11,933 bp

N50 Scaffold size 4,487,776 bp N50 Contig size 48,653 bp

Larger Scaffold size 20,687,090 bp Larger Contig size 575,502 bp

All Contig Metrics

Number of Contigs 118,692 Number of Bases 762,497,151

SOLiD input data

Two mate-pair libraries were used for the scaffolding:

• 2kb insert length: about 800 millions of reads of 25 + 25 bp long were
produced using SOLiD 3;

• 10kb insert length: about 1,200 millions of reads of 50 + 50 bp were
produced, using SOLID 3.

3.6. Testing ConSort: the results 105

In the below table, there is a detailed report about all produced data.

2kb mate-pair library 10kb mate-pair library

F3 R3 F3 R3

RUN_1 196,585,507 196,698,072 312,753,851 313,076,508

RUN_2 211,325,578 211,960,463 316,643,202 317,395,412

where RUN_1 and RUN_2 indicate the sequencing two of the two slides of
the same library, while F3 and R3 represent the name of the two mate-pair
reads, in SOLiD notation.
To have a general idea about the quantity of available data, the achieved
sequence and physical coverage was computed. The first value measures the
number of times a base is covered on average, determined by the formula:

sequence coverage = rl · nr
L

where rl is the read length, nr is the total number of reads, and L is the
genome length. The greater is this value, and the higher is the probability
that each base would be covered enough to have a good confidence on the
information hold by the reads that map there.
The second quantity estimates on average how many times a base is spanned
by the mate-pairs, as defined in the formula:

physical coverage = il · nc
L

where il is the experimentally estimated library insert length, and nc is the
average value of potential couples.

The used assembly and the starting mate-pair library achieve good coverage
values: 26.8 x sequence and 1070 x physical coverage for the 2kb library,
and 82.6 x sequence and 8254 x physical coverage for the 10kb one. The
parameter were set to:

• rl = 25bp and 50bp;

• il = 2kb and 10kb;

• nr is given by the sum of all the reads, 816, 569, 620 and 1, 259, 868, 973;

• nc = is the average number of couples for both runs, 407, 911, 085 and
629, 397, 053;

106 Chapter 3. Genome Assembly e Scaffolding

• L= is the number of total bases contained in all the contigs, 762, 497, 151.

Originally, other two libraries were produced respectively of 6kb and 7kb
size. The analysis showed that the first one was very redundant (about 90%
of redundancy), and so it was discarded. While, during the creation of the
second one, some sequencing problems brought to the production of one only
end of the mate-pair, and consequently, it was not possible to use it for the
pairing aim.

Spectral correction

The first step of the pipeline applied the error correction to the SOLiD data.
This phase has been performed in four hours of 10 cpu work for each set of
reads, and it did not require a considerable quantity of RAM memory.

Pre-pairing

The module divides the paired-ends into the two groups: the paired-ends
that are made of two reads, and the one that are composed by a single read.
This last kind of data is useless for the future analysis, that is based on
paired-reads. The number of reads that are not coupled is a small percentage,
less than 0.5%, as it could be seen in the Table 3.1.

Trimming and alignment

The trimming and alignment phase were executed in 10 hours of computation
time for each mate-pair class, using 16 cpu and about 30GB of RAM.
The trimming was performed using the following parameters: w = 2 (external
window size), t = 7 (associated quality threshold) and l = 20 (minimum read
length) for the 2kb library; w = 2, t = 17 and l = 20 for the 10kb one. The
alignment was run with the same parameter values for the two libraries, set
to: at most 90% of identity for each accepted alignment, zero gaps and the
best-hit options (only the best alignment are returned).
In the table below, the obtained results are shown. They have been divided
per library and RUN. The row meaning is:

• single: number of unpaired reads;

• filter : number of reads that have been discarded by the trimming step;

• no_filter : number of not filtered reads;

• total = the total number of input reads, equal to the sum of the above
rows (single + filter + no_filter);

3.6. Testing ConSort: the results 107

• aligned = number of not filtered reads, that have been aligned.

2kb mate-pair library 10kb mate-pair library

F3 R3 F3 R3

1

single 396,470 509,035 105,405 428,062

filter 40,321,545 39,212,063 69,896,969 99,678,523

no_filter 155,867,492 156,976,974 242,751,477 212,969,923

total 196,585,507 196,698,072 312,753,851 313,076,508

aligned 121,170,782 128,758,109 176,665,593 181,509,260

2

single 271,611 906,496 370,049 1,122,259

filter 48,620,011 47,494,896 36,084,069 39,556,655

no_filter 162,433,956 163,559,071 280,189,084 276,716,498

total 211,325,578 211,960,463 316,643,202 317,395,412

aligned 122,982,237 135,601,290 185,574,495 177,448,682

Table 3.1: The table contains the pairing, trimming and alignment results. The
data have been divided per library, RUN, and type of reads.

The Table 3.2 shows that good results have been obtained with the input
data elaboration. Only few reads have been discarded, about 10-20% for all
the cases, and about 60-70% of reads were successfully aligned. This means
that the starting libraries have a good quality, which can be obtained during
the spectral correction and trimming phases.

Pairing

The pairing was performed computing the average insert size µ and standard
deviation σ of each library. After that, all the mate-pairs were classified
as explained in Section 3.5.6. The accepted distance length was defined
considering the interval µ± 3σ, who are around 99.7% of all the data. All
the links, whose distance fell in the range, were classified as unique pair,
while all the other were put in the unique pair wrong distance. This last
group is populated by background noise, or data that map on misassembled
contigs, and consequently their length has been changed. At the end of this
process, the following results were obtained:
As it was expected, the shorter library has a lower standard deviation than
the greater one, ant it is more precise in the mate-pair length evaluation.

108 Chapter 3. Genome Assembly e Scaffolding

2kb mate-pair
library

10kb mate-pair
library

F3 R3 F3 R3

1

single 0.20 0.26 0.03 0.14

filter 20.51 19.94 22.35 31.84

no_filter 79.29 79.81 77.62 68.02

aligned 61.64 65.46 56.49 57.98

2

single 0.14 0.46 0.12 0.36

filter 24.73 24.15 11.54 12.63

no_filter 82.63 83.15 89.59 88.39

aligned 62.56 68.94 59.34 56.68

Table 3.2: The table contains the percentage of the unpaired, discarded and
aligned reads in respect to initial total number of reads.

2kb mate-pair
library

10kb mate-pair
library

RUN_1 RUN_2 RUN_1 RUN_2

Mean value 1,048 1,049 8,155 8,152

Std. deviation 97 97 955 955

unique pair 51,564,576 58,316,542 68,820,506 67,540,962

unique single 34,190,792 37,094,222 78,974,981 93,858,722

unique wrong
distance

1,731,500 1,954,277 1,808,897 1,695,186

unique pair out 14,488,566 11,988,744 40,470,074 39,597,626

This is very useful for the gap estimation the: lower is the standard deviation
value, and the higher is the accuracy of the evaluation. This is shown in the
Figure 3.26 and 3.27: the 2kb library has a more tight curve, than the 10kb
one.
Moreover for both libraries, the cardinality of the unique pair is greater than
the unique pair out, but evaluating the percentage of the unique pair with
respect to the unique pair out, this is greater for the 2kb library than the
10kb one. Even this result was expected, because the short library can be

3.6. Testing ConSort: the results 109

more easily maps inside contigs than the greater one.
The library distribution was computed with all the mate-pairs that map on
the same contig. For each library and each run, the corresponding curves
were plotted, as shown in Figure 3.26 and 3.27.

Figure 3.26: The distribution of the two run of the 2kb library.

Figure 3.27: The distribution of the two run of the 10kb library.

The step required about four hours per run, using few memory and only a

110 Chapter 3. Genome Assembly e Scaffolding

cpu.

Redundancy

The redundancy was performed merging together the corresponding files of
the two runs for each library. It was executed on the unique pair and unique
pair out file, and the output results show that the 2kb and 10kb library were
respectively about 20% and 40%redundant.
With the performed data elaboration, all data have been cleaned and filtered,
and only the good ones have be used for further analysis. The real coverages
values that have been computed are: 79,27 x physical and 3,90 x sequence
for the 2kb library, and 273,87 x physical and 3,88 x sequence for the 10kb
one.
The module runs in two hours per file library, requiring about 30% of memory
to allocate the whole genome and all the other useful information. At the
end, it produced the not redundant files, one for each type of class and
library.

Consistency

The module was firstly proved on simulated data, using the physical coverage
track of the 2kb library, to demonstrate that it is able to recognize the
misassembled contigs.
First of all, the data set was created, selecting some well assembled contigs,
and introducing a fixed number of bases inside them. After that, the lengths
of the insertion were selected dependently to the library average size of
the library (about 1,000 bp) and the standard deviation , equal to 97. In
Figure 3.28, the obtained results are shown. The enclosed region shows how
the physical coverage decreases to zero, with the increase of the length of
the contig.

• insert length = 300 bp. A small insertion minor or equal to 3σ, is
not easily identified by noise of variation of the library length. In fact,
as it could see in the Figure 3.28, the signal variation with respect to
the original one could be confused with the normal fluctuation of the
curve. This is due to the borderline situation, in which the mate-pair
could still fall in the unique pair class, even if not all fallen.

• insert length = 500 bp. In this case, the insertion is greater than
the allowed range for the mate-pair value, and the variation could be
easily detected.

• insert length = 1000 bp. This is equal to the previous situation.

3.6. Testing ConSort: the results 111

Figure 3.28: In this figure is shown the physical coverage behavior for the original
contig (the upper one), and the modified one (the following ones), with the inserted
bases of 300 bp, 500 bp and 1,000 bp.

The insertion size is still too small to allow the mapping of the mate-
pairs on it.

The first test demonstrated that the strategy applied for the consistency
analysis works well, and it was possible to continue the controls. The next
validation phase was performed on a real test set. In this case, it was found a
contig labeled as misassembled by the module, and it was manually controlled.
The Figure 3.29 is a screenshot of the GBrowse centered in the region. It is
composed by: the signal with all contigs, their position, length, order and
orientation, the physical coverage (2 and 10 kb), the outer pairing (2 and
10 kb), the low complexity and repetitive (RAP) indexes.

112 Chapter 3. Genome Assembly e Scaffolding

Figure 3.29: The GBrowse screenshot shows the misassembled contig. The red
rectangle encloses the region in which the physical coverage falls to zero, highlighting
the potential misassembly.

The rectangle encloses the region of zero physical coverage for the 2 and
10 kb library. The first one shows an evident decreasing of the signal, and
an unique critical point, suggesting that this could be a deletion or chimeric
situation. The starting contig is divided into two segments: the left part
C1 of about 210 kb, and the right one C2 of about 4-5 kb. The second
fragment is smaller than the longer insert library, and this explains why the
physical coverage is not detected. The outer pairings analysis shows that C1
and C2 are connected to other disjoint contigs, confirming the hypothesis
of a misassembled contig. Besides, these links involved different contigs,
and consequently the misassembly could be a chimeric region, rather than
a deletion problem. Finally, the repetitive index shows the presence of a
degenerate stretch of bases, around the critical point.

Scaffolding

It is not easy to test the performance of the scaffolding module on a new
genome. In fact, it does not exist a genome to use as reference one. A simple
solution would be a comparative test, in which the obtained sequences are
controlled with the output of other assemblers. Unfortunately, this is not a
feasible idea to evaluate the real performances of the program, because they
are not able to correctly assembly the whole genome, creating a valid test
set.

3.7. System considerations and Conclusions 113

In the beginning of the tomato genome project, a set of BAC clones were
sequenced with the Sanger method, and were used to construct a draft of
euchromatic regions of the genome. This is a good test set to use for the
validation. From the output of ConSort and Newbler were extracted the
contigs that mapped on a BAC-based already sequenced region of around
500kbp, and the estimated distanced were compared. The obtained results
are displayed in the Table 3.3.

Name of
the

ordered
contigs

Real
gap
size

Gap
size
(1kb)

Mate-
pair

number
(1kb)

Gap
size
(8kb)

Mate-
pair

number
(8kb)

Newbler
gap

53074-
53073 4401 ND 0 4173 28 3732

53073-
53072 195 158 31 -12 94 663

53072-
53071 -50 -89 16 -495 48 538

53071-
24639 -25 -58 15 -464 9 /

24639-
53070 -39 -15 28 27 12 /

53071-
53070 2042 ND 0 1924 38 917

Table 3.3: In the table there is a brief test set on which the performance on gap
estimation of ConSort and Newbler have been tested.

The results show that ConSort works bitter well than Newbler, in fact it is
always able to give a better evaluation of the gap size. Moreover, Newbler
loses some contigs, creating bigger gaps, that are filled by small ones instead
recovered by ConSort . It can be said, the 2kb library is more accurate than
10kb one, due to its lower standard deviation.

3.7 System considerations and Conclusions

As could be seen in the previous sections, ConSort is a complete and efficient
program both at functional and at executional level. It orders and orients all
the contigs, trying to solve the ambiguous and very complicated situations
that could occur. At the same time, it is very conservative, because it does

114 Chapter 3. Genome Assembly e Scaffolding

not introduce unwanted errors and artifacts. Moreover, it records all data
used in the taken decisions, to allow an easy and manually check-up of the
obtained scaffolding. It performs all these operations in a reasonable time
and with few memory allocation. Below, it will be briefly summarized the
weaknesses, strength, properties and characteristics of the method.

• ConSort functions: consistency and finishing.
ConSort has been integrated with two useful functions: consistency
analysis and finishing process. The first one corrects all the errors
present in the starting assembly, taking advantage from all the available
data, and not requiring further ones. This feature is very important
because it revises the existing genome sequence, solving possibly prob-
lems, and overcoming the limits of the sequencers and assemblers that
have produced it.
The second skill is the gap closure execution: it reconstructs the correct
sequence and defines the real distance between contigs where and when
it is possible. The process is very interesting, because it allows to
reduce the number of N’s present in the sequence, and to reconstruct
the original genome.

• Output scaffolding quality.
The results of the produced scaffolding depend very strictly on the
goodness of the starting set of contigs and of the assembler used to
produce them. This is due to the nature of ConSort, that based its
analysis on already existing assembly. If the produced 454 coverage
is too low, the created fragments will be very short, and not all the
genome could be covered with a consequent high level of large gaps.
ConSort could not resolve this problem, because if there are few input
data, reasonably it is not able to create something out of nothing. On
the other hand, if the used assembler is not able to correctly create the
consensus, it would introduce a lot of errors, reducing the final quality
of the assembly. If there are enough mate-pair libraries of different
length, its consistency function is able to solve misassembly present in
the genome, and to improve the quality of the final sequence.

• Number of produced scaffolds.
The output number of produced scaffolds derives from the goodness
of the starting assembly, the number of mate-pair libraries, and the
variability of their insert size. It is not easy to determine the best
library value, because this depends on the average gap length, that is
initially unknow. If the genome is composed by very spread contigs,
with great distance between them, it is required a set of mate-pairs with
very long insert, to connect them. As a matter of fact, if the library
length is lower than the smallest gap, the final number of scaffolds

3.7. System considerations and Conclusions 115

would be equal to the starting number of contigs: ConSort is not able
to create any connections.

• ConSort vs. Newbler.
ConSort scaffolding is more accurate than Newbler one, in fact it is able
to well estimate the gap length, and to resolve inconsistency. However,
even this performance closely depends on the used mate-pair libraries:
if they have a large standard deviation error, the gap evaluation is
worst than the value achieved with more precise libraries, as could
be seen in the comparison between 2kb and 10kb ones on the tomato
genome test.

• Repeat problem.
The new developed tool is subjected to error in the solution of very
complicated repeats. Sometimes, with the mate-pairs information, it is
able to determine some repeated regions and find the correct solution.
Very often it is forced to stop the scaffold, and start a new one, avoiding
the repeated sequence.

• Code maintenance
ConSort could be easily maintained, adding, deleting or changing each
module any time, without a complete code re-implementation, thanks
to its modular organization. Each module performs a specific function,
and it shares well defined data with the other ones. This is very useful
both to update existing module with more efficient techniques, and to
introduce new features. Besides, this allows an easy program updating,
that could evolve with the sequencing technologies. Finally, it does not
require too computational time or memory.

In conclusion, by now ConSort is strictly dependent on the performance,
quantity and quality of the used data, contigs and mate-pair libraries. How-
ever, it is able to overcome some limits of the technologies on which it is
based, as the inconsistency or the gaps, improving the assembly quality.
For the future, a lot of work has still to be done. First of all, the scaffolding
module has to be expanded to manage repeats and ambiguous situations.
Then, the gap filling function is to be implemented and tested. Finally, with
the boost of the throughput produced by the sequencers and their more
sophisticated techniques, it will soon require an integration of the new kind
of data into the pipeline, to increase the achieved performance.

A
File Format

In the appendix, there is a more detailed explanation about all the file format
used for each module in the ConSort pipeline.

A.1 FASTA and multi-FASTA

A FASTA format is a text-based format for representing either nucleotide
sequences or peptide sequences, in which base pairs or amino acids are
represented using single-letter codes. A sequence in FASTA format begins
with a single-line description, followed by lines of sequence data. The line
description generally starts with a “>” (greater-than), and it contains the
sequence name (contig in this case), sequence length and other possible
information.
For example, Newbler uses this format:

>contig00001 length=2856 numreads=56
TTGACAAGTCAACCCATCACCAATCCCATCACTTCCAAACATATACCACAAGGAAATACA
AAAAGGTGTGAATGGAAAATGAAGAGTTGTGACTTCTATTTAAAGTTGTGACTTTTGTGA
....
>contig00002 length=1348 numreads=140
CGCATTCCATACACTTAACAAAAGTTTAGAAATCCACTTGCCTCATTTAGTCGAACAATC
AAAGTTGTGAATTTTATGAAAGGTGACAACCTTTCTGAAAGACTGTGATTTTTCCAAAGG
...

The first field after the “>” symbol (contig00001 and contig00002 in the
example) is the name of the produced contig, followed by the length of the
contig (length=2856), and the number of reads (numreads=56) that have
been used to assembled the contig. The comment line is followed by the lines

117

118 Chapter A. File Format

with the sequence (TTGAC...). After that, there is the second contig, with
the same format, and so on.

A.2 GFF alignment

PASS stored the alignment in a GFF (General Feature Format) file format 1.
It is a tabular file, composed by nine fields:

<seqname> <source> <feature> <start> <end> <score> <strand>
<frame> [attributes] [comments]

It was developed to be a standard format in the feature information storing,
that allows people to maintain all the data in a well-organized and easy to
parse file.
PASS adapts this to its output, and it creates for each alignment a line with
the nine fields, as it is shown in the example:

SL2.30ct18209 pass match 4057 4102 44 - .
ID=2339196:0:0;Name=1_1000_1017_R3 S1E45A18L45;P="46-1";
Q="27 23 16 9 12 24 21 12 10 8 17 23 18 17 23 26 22 16
17 23 24 13 12 12 14 22 22 23 21 24 26 19 12 17 23 25 19
12 17 21 21 22 18 17 20 23 ";Note="M:2 -> 4/4 ?/A 10/10
%?/T,G:0 ->";BS=1;Hits=1;

The meaning of its fields is:

1. The name of the sequence: in this case it is the name of the contig that
contains the alignment.

2. The source of the feature: it is the name of the program that has pro-
duced or the source from which it has been extracted the information.

3. The feature type name: for the alignment its value is “match”, to
identify the type of the information. It is constant for each line.

4. start and end: are respectively the initial and the final points of the
alignment. The first value must be less than or equal the second one.

5. score: it specifies the number of bases that have been aligned.

6. strand: one of ‘+’, ‘-’ or ‘.’. The first and second symbols are used to
define an alignment respectively in the positive and negative strand,
while the last one is used when the information lack.

1http://www.sanger.ac.uk/resources/software/gff/spec.html

http://www.sanger.ac.uk/resources/software/gff/spec.html

A.3. Pairing 119

7. frame: one of ’0’, ’1’, ’2’ or ’.’. It indicates the frame of the used region,
in this case it is used the last symbol, because it is not avoidable.

8. attribute: in the last field all the comments and features that are not
stored in the previous fields. PASS inserts the fields:

• a line identifier value: that has to be unique for all the file;
• the name of the reads;
• trimming information (e.g. “S1E45A18L45”): S and E are respec-
tively the first and last not trimmed base of the reads, A is its
the average quality and L is its the final length;
• quality base (e.g. Q=“27 23 16 9...”): for each base it reports the
quality of its sequencing;
• matching (e.g. “Note="M:2 -> 4/4 ?/A 10/10 %?/T,G:0 ->"”:
the number of mismatches (M:2) and it defines the position, the
wrong base and its quality;
• number of alignment.

A.3 Pairing

PASS_pair uses a modified version of the GFF format used by PASS. The
meaning of the fields are the same, but the lines are not independent. For
example, for the UNIQUE_PAIR file, that stores the information about each
paired-end, each couple of lines contains respectively one read of the pair.
For a more detailed explanation about the program and its output format,
see http://pass.cribi.unipd.it/cgi-bin/pass.pl.

A.4 Make Arcs

The “Make arcs” module produces the output in a tabular file, as seen in
the example below:

{}
contig00011 contig00012 3 5 288 26 14
ok_counter="7 0 0 0 0 0 0 7"; ok_distance="282 0 0 0 0 0 0 294";
ko_counter="0 0 0 0 0 0 0 0"; ko_distance="0 0 0 0 0 0 0 0"; ";

The meaning of its fields is:

• contig00011: the name of the first contig that composes the arc;

http://pass.cribi.unipd.it/cgi-bin/pass.pl

• contig00011: the name of the second contig that composes the arc;

• 3 5: the two ends that look each other in the connection;

• 288: the gap length;

• 26: the standard deviation for the arc;

• 14: the number of mate-pairs that create the arcs;

• comment field: it contains the classification of the mate-pairs in the
eighth counters, described in the Section 3.5.9. This is divided into
mate-pairs that respect the library length constraint or not.

120

Bibliography

[1] F Sanger, S Nicklen, and A R Coulson. Dna sequencing with chain-
terminating inhibitors. 1977. Biotechnology, 24:104–108, 1992.

[2] A M Maxam and W Gilbert. A new method for sequencing dna. 1977.
Biotechnology, 24:99–103, 1992.

[3] D R Bentley. Whole-genome re-sequencing. Curr Opin Genet Dev,
16(6):545–552, Dec 2006.

[4] J D McPherson et al. (International Human Genome Mapping Consor-
tium). A physical map of the human genome. Nature, 409(6822):934–941,
Feb 2001.

[5] N. Whiteford, N. Haslam, G. Weber, A. Prugel-Bennett, J. W. Essex,
P. L. Roach, M. Bradley, and C. Neylon. An analysis of the feasibility
of short read sequencing. Nucleic Acids Res., 33:e171, 2005.

[6] J Shendure and H Ji. Next-generation dna sequencing. Nat Biotechnol,
26(10):1135–1145, Oct 2008.

[7] Elaine R. Mardis. Next-generation DNA sequencing methods. Annual
review of genomics and human genetics, 9(1):387–402, June 2008.

[8] E R Mardis. The impact of next-generation sequencing technology on
genetics. Trends Genet, 24(3):133–141, Mar 2008.

[9] M J Fullwood, C L Wei, E T Liu, and Y Ruan. Next-generation
dna sequencing of paired-end tags (pet) for transcriptome and genome
analyses. Genome Res, 19(4):521–532, Apr 2009.

121

[10] C Burge and S Karlin. Prediction of complete gene structures in human
genomic dna. J Mol Biol, 268(1):78–94, Apr 1997.

[11] M Stanke and S Waack. Gene prediction with a hidden markov model
and a new intron submodel. Bioinformatics, 19 Suppl 2:215–225, Oct
2003.

[12] A Krogh. Two methods for improving performance of an hmm and
their application for gene finding. Proc Int Conf Intell Syst Mol Biol,
5:179–186, 1997.

[13] G Parra, E Blanco, and R Guigó. Geneid in drosophila. Genome Res,
10(4):511–515, Apr 2000.

[14] E Birney and R Durbin. Using genewise in the drosophila annotation
experiment. Genome Res, 10(4):547–548, Apr 2000.

[15] C. B. Burge and S. Karlin. Finding the genes in genomic DNA. Curr.
Opin. Struct. Biol., 8:346–354, Jun 1998.

[16] David Haussler. Computational genefinding. Trends in Biotechnology,
16(Supplement 1):12 – 15, 1998.

[17] M Pertea, X Lin, and S L Salzberg. Genesplicer: a new computational
method for splice site prediction. Nucleic Acids Res, 29(5):1185–1190,
Mar 2001.

[18] I.B. Rogozin and L. Milanesi. Analysis of donor splice signals in different
organisms. J. Mol. Evol., 45:50–59, 1997.

[19] J W Fickett and C S Tung. Assessment of protein coding measures.
Nucleic Acids Res, 20(24):6441–6450, Dec 1992.

[20] G B Hutchinson and M R Hayden. The prediction of exons through
an analysis of spliceable open reading frames. Nucleic Acids Res,
20(13):3453–3462, Jul 1992.

[21] S L Salzberg, A L Delcher, S Kasif, and O White. Microbial gene
identification using interpolated markov models. Nucleic Acids Res,
26(2):544–548, Jan 1998.

[22] J. H. Do and D. K. Choi. Computational approaches to gene prediction.
J Microbiol, 44(2):137–144, April 2006.

[23] R F Yeh, L P Lim, and C B Burge. Computational inference of homolo-
gous gene structures in the human genome. Genome Res, 11(5):803–816,
May 2001.

122

[24] A Krogh. Using database matches with for hmmgene for automated
gene detection in drosophila. Genome Res, 10(4):523–528, Apr 2000.

[25] J E Allen, M Pertea, and S L Salzberg. Computational gene prediction
using multiple sources of evidence. Genome Res, 14(1):142–148, Jan
2004.

[26] J E Allen and S L Salzberg. JIGSAW: integration of multiple sources
of evidence for gene prediction. Bioinformatics, 21(18):3596–3603, Sep
2005.

[27] D Campagna, A Albiero, A Bilardi, E Caniato, C Forcato, S Manavski,
N Vitulo, and G Valle. Pass: a program to align short sequences.
Bioinformatics, 25(7):967–968, Apr 2009.

[28] I Birol, S D Jackman, C B Nielsen, J Q Qian, R Varhol, G Stazyk, R D
Morin, Y Zhao, M Hirst, J E Schein, D E Horsman, J M Connors, R D
Gascoyne, M A Marra, and S J Jones. De novo transcriptome assembly
with abyss. Bioinformatics, 25(21):2872–2877, Nov 2009.

[29] S Kumar and M L Blaxter. Comparing de novo assemblers for 454
transcriptome data. BMC Genomics, 11:571–571, 2010.

[30] M Pop. Genome assembly reborn: recent computational challenges.
Brief Bioinform, 10(4):354–366, Jul 2009.

[31] E W Myers. Toward simplifying and accurately formulating fragment
assembly. J Comput Biol, 2(2):275–290, 1995.

[32] M C Schatz, A L Delcher, and S L Salzberg. Assembly of large genomes
using second-generation sequencing. Genome Res, 20(9):1165–1173, Sep
2010.

[33] R D Fleischmann, M D Adams, O White, R A Clayton, E F Kirkness,
A R Kerlavage, C J Bult, J F Tomb, B A Dougherty, and J M Mer-
rick. Whole-genome random sequencing and assembly of haemophilus
influenzae rd. Science, 269(5223):496–512, Jul 1995.

[34] J C Venter, M D Adams, E W Myers, P W Li, and Mural et al. The
sequence of the human genome. Science, 291(5507):1304–1351, Feb
2001.

[35] D A Wheeler, M Srinivasan, M Egholm, Y Shen, L Chen, and et al. The
complete genome of an individual by massively parallel dna sequencing.
Nature, 452(7189):872–876, Apr 2008.

[36] D R Bentley, S Balasubramanian, H P Swerdlow, G P Smith, J Milton,
and et al. Accurate whole human genome sequencing using reversible
terminator chemistry. Nature, 456(7218):53–59, Nov 2008.

123

[37] J Wang, W Wang, R Li, Y Li, G Tian, and et al. The diploid genome
sequence of an asian individual. Nature, 456(7218):60–65, Nov 2008.

[38] J I Kim, Y S Ju, H Park, S Kim, and et al. A highly annotated whole-
genome sequence of a korean individual. Nature, 460(7258):1011–1015,
Aug 2009.

[39] R Velasco, A Zharkikh, M Troggio, D A Cartwright, and A et al. Cestaro.
A high quality draft consensus sequence of the genome of a heterozygous
grapevine variety. PLoS One, 2(12), 2007.

[40] S Huang, R Li, Z Zhang, L Li, and et al. The genome of the cucumber,
cucumis sativus l. Nat Genet, 41(12):1275–1281, Dec 2009.

[41] R Li, W Fan, G Tian, H Zhu, and et al. The sequence and de novo
assembly of the giant panda genome. Nature, 463(7279):311–317, Jan
2010.

[42] V Shulaev, D J Sargent, R N Crowhurst, T C Mockler, O Folkerts, and
et al. The genome of woodland strawberry (fragaria vesca). Nat Genet,
Dec 2010.

[43] X Argout, J Salse, J M Aury, M J Guiltinan, G Droc, and et al. The
genome of theobroma cacao. Nat Genet, Dec 2010.

[44] R L Warren, G G Sutton, S J Jones, and R A Holt. Assembling millions
of short dna sequences using ssake. Bioinformatics, 23(4):500–501, Feb
2007.

[45] W R Jeck, J A Reinhardt, D A Baltrus, M T Hickenbotham, V Magrini,
E R Mardis, J L Dangl, and C D Jones. Extending assembly of short
dna sequences to handle error. Bioinformatics, 23(21):2942–2944, Nov
2007.

[46] J C Dohm, C Lottaz, T Borodina, and H Himmelbauer. Sharcgs, a fast
and highly accurate short-read assembly algorithm for de novo genomic
sequencing. Genome Res, 17(11):1697–1706, Nov 2007.

[47] E W Myers, G G Sutton, A L Delcher, I M Dew, D P Fasulo, and et al.
A whole-genome assembly of drosophila. Science, 287(5461):2196–2204,
Mar 2000.

[48] S Batzoglou, D B Jaffe, K Stanley, J Butler, S Gnerre, E Mauceli,
B Berger, J P Mesirov, and E S Lander. Arachne: a whole-genome
shotgun assembler. Genome Res, 12(1):177–189, Jan 2002.

[49] D B Jaffe, J Butler, S Gnerre, E Mauceli, K Lindblad-Toh, J P Mesirov,
M C Zody, and E S Lander. Whole-genome sequence assembly for
mammalian genomes: Arachne 2. Genome Res, 13(1):91–96, Jan 2003.

124

[50] X Huang and S P Yang. Generating a genome assembly with pcap.
Curr Protoc Bioinformatics, Chapter 11, Oct 2005.

[51] J R Miller, S Koren, and G Sutton. Assembly algorithms for next-
generation sequencing data. Genomics, 95(6):315–327, Jun 2010.

[52] J R Miller, A L Delcher, S Koren, E Venter, B P Walenz, A Brownley,
J Johnson, K Li, C Mobarry, and G Sutton. Aggressive assembly of
pyrosequencing reads with mates. Bioinformatics, 24(24):2818–2824,
Dec 2008.

[53] S Koren, J R Miller, B P Walenz, and G Sutton. An algorithm for
automated closure during assembly. BMC Bioinformatics, 11:457–457,
2010.

[54] D Hernandez, P Francois, L Farinelli, M Osteras, and J Schrenzel. De
novo bacterial genome sequencing: millions of very short reads assembled
on a desktop computer. Genome Res, 18(5):802–809, May 2008.

[55] P A Pevzner, P A Pevzner, H Tang, and G Tesler. De novo repeat
classification and fragment assembly. Genome Res, 14(9):1786–1796,
Sep 2004.

[56] P A Pevzner, H Tang, and M S Waterman. An eulerian path approach
to dna fragment assembly. Proc Natl Acad Sci U S A, 98(17):9748–9753,
Aug 2001.

[57] P A Pevzner and H Tang. Fragment assembly with double-barreled
data. Bioinformatics, 17 Suppl 1:225–233, 2001.

[58] M J Chaisson and P A Pevzner. Short read fragment assembly of
bacterial genomes. Genome Res, 18(2):324–330, Feb 2008.

[59] M J Chaisson, D Brinza, and P A Pevzner. De novo fragment assembly
with short mate-paired reads: Does the read length matter? Genome
Res, 19(2):336–346, Feb 2009.

[60] D R Zerbino and E Birney. Velvet: algorithms for de novo short read
assembly using de bruijn graphs. Genome Res, 18(5):821–829, May
2008.

[61] J T Simpson, K Wong, S D Jackman, J E Schein, S J Jones, and I Birol.
Abyss: a parallel assembler for short read sequence data. Genome Res,
19(6):1117–1123, Jun 2009.

[62] J Butler, I MacCallum, M Kleber, I A Shlyakhter, M K Belmonte, E S
Lander, C Nusbaum, and D B Jaffe. Allpaths: de novo assembly of
whole-genome shotgun microreads. Genome Res, 18(5):810–820, May
2008.

125

[63] I Maccallum, D Przybylski, S Gnerre, J Burton, I Shlyakhter, A Gnirke,
J Malek, K McKernan, S Ranade, T P Shea, L Williams, S Young,
C Nusbaum, and D B Jaffe. Allpaths 2: small genomes assembled
accurately and with high continuity from short paired reads. Genome
Biol, 10(10), 2009.

[64] R Li, H Zhu, J Ruan, W Qian, X Fang, Z Shi, Y Li, S Li, G Shan,
K Kristiansen, S Li, H Yang, J Wang, and J Wang. De novo assembly of
human genomes with massively parallel short read sequencing. Genome
Res, 20(2):265–272, Feb 2010.

[65] M Pop, D S Kosack, and S L Salzberg. Hierarchical scaffolding with
bambus. Genome Res, 14(1):149–159, Jan 2004.

[66] A Dayarian, T P Michael, and A M Sengupta. Sopra: Scaffolding algo-
rithm for paired reads via statistical optimization. BMC Bioinformatics,
11:345–345, 2010.

[67] W Huang and G Marth. Eagleview: a genome assembly viewer for
next-generation sequencing technologies. Genome Res, 18(9):1538–1543,
Sep 2008.

[68] D Gordon, C Abajian, and P Green. Consed: a graphical tool for
sequence finishing. Genome Res, 8(3):195–202, Mar 1998.

[69] J Nijkamp, W Winterbach, M van den Broek, J M Daran, M Reinders,
and D de Ridder. Integrating genome assemblies with maia. Bioinfor-
matics, 26(18):433–439, Sep 2010.

[70] D. Campagna, C. Romualdi, N. Vitulo, M. Del Favero, M. Lexa, N. Can-
nata, and G. Valle. RAP: a new computer program for de novo iden-
tification of repeated sequences in whole genomes. Bioinformatics,
21:582–588, Mar 2005.

126

	Sequencing milestone
	The beginning: Sanger sequencing
	Sequencer characteristic
	Next Generation Sequencing (NGS)
	Next Generation Sequencers
	Roche (454) sequencer
	Illumina Genome analyzer
	Applied Bioststems SOLiDTM Sequencer

	Sanger vs Next Generation Sequencers
	Fragment and Mate-pair library
	Gene Prediction
	Introduction
	Ab initio or intrinsic approach
	Similarity-based or extrinsic approach
	Combiner methods

	A new gene prediction approach
	CreateGene: a tool for gene training set creation
	Pre-processing step: data preparation
	Processing step: coding region detection
	Post-processing step: gene reconstruction

	Results and considerations

	Genome Assembly e Scaffolding
	Assembly and Scaffolding problems
	Assembly techniques
	Greedy Graph-Based Approach
	Overlap/Layout/Consensus (OLC) Approach
	The de Bruijn Graph Approach
	Scaffolding approach
	Other software

	ConSort: a new scaffolding approach
	ConSort requirements
	ConSort algorithm
	Input data
	Spectral Correction
	Pre-alignment pairing
	Trimming
	Alignment
	Pairing
	Redundancy
	Consistency analysis
	Make Arcs
	Scaffolding Engine
	Gap filling

	Testing ConSort: the results
	System considerations and Conclusions

	File Format
	FASTA and multi-FASTA
	GFF alignment
	Pairing
	Make Arcs
	 Bibliography

