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ABSTRACT 

This thesis describes the Ph.D. research project in Bioengineering for Computational Proteomics 

carried out during the last three years (January 2008 - January 2011). Activities focused on 

design and development of methods for the analysis of Quantitative Mass Spectrometry-based 

Proteomics data.  

The Introduction briefly elucidates the main themes developed in the thesis and how the work 

was schemed. It reviews the computational issues associated to both data handling and 

quantification, and introduces the solutions proposed in the following. 

The first two chapters are introductory to the Proteomics and Mass Spectrometry field. The 

objective is to provide the reader with the information needed to understand Quantitative Mass 

Spectrometry-based Proteomics. In particular, Chapter 1 explains how proteomics was born, as 

the –omics science of proteins. Then proteomics main applications and goals are illustrated, 

which are ranging from clinics and pharmaceutics to systems biology. Chapter 2 shows the main 

technologies and instrumentation exploited in Mass Spectrometry-based proteomics. The most 

common experimental setups are reported: among them, the Liquid Chromatography-Mass 

Spectrometry (LC-MS) technique is thoroughly explained since it is the principal technique for 

Quantitative Mass Spectrometry-based Proteomics. 

The third Chapter presents the main concepts necessary to introduce the reader to the main 

topic of the PhD research Project, that is the development of bioinformatics tools for the 

handling and quantification of Mass Spectrometry-based Quantitative Proteomics data, focusing 

on LC-MS quantitative data and their analysis. Indeed, LC-MS data are highly informative for 

quantification aims, but challenging to parse. Data features that were pivotal for the design of 

the proposed solutions (i.e., the 3D structure of LC-MS data and the high quality profile 

acquisition) are highlighted.  

In the fourth Chapter, the state of art both for data handling and quantification is described and 

available standard data formats and software are illustrated as well as related open challenges. 

In Chapter 5, the dataset used to carry out the analyses is technically described. It consists of LC-

MS data from a labeled controlled mixture of proteins with known quantification ratios, 

acquired in profile acquisition mode and in triplicates. 
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In particular, this thesis presents 2 software solutions to address the handling and quantification 

of Quantitative Mass Spectrometry-based Proteomics data: mzRTree and 3DSpectra, 

respectively.  

Chapter 6 presents the solution proposed for the data handling issue. The proposal is a scalable 

2D indexing approach implemented through an R-tree-based data structure, called mzRTree, 

that relies on a sparse matrix representation of the dataset, which is appropriate for LC-MS data, 

and more in generally for MS-based proteomics data. mzRTree allows efficient data access, 

storage and enables a computationally sustainable analysis of profile MS data. 

Regarding the quantification, which is one of the most relevant problem in mass spectrometry-

based proteomics, Chapter 7 illustrates the solution proposed for the quantification problem: 

3DSpectra. It is an innovative quantification algorithm for LC-MS labeled profile data 

exploiting both the 3-dimensionality of data and the profile acquisition. 3DSpectra fits on 

peptide data the 3D isotopic distribution model shaped by a Gaussian Mixture Model including a 

noise component, using the Expectation-Maximization approach. This model enables the 

software to both recognize the borders of the 3D isotopic distribution and reject noise. 

3DSpectra is a reliable and accurate quantification strategy for labeled LC-MS data, providing 

significantly wide and reproducible proteome coverage. 

In the conclusion section of this thesis future and ongoing research work, regarding further 

development of both the mzRTree data structure and 3DSpectra quantification software, are 

discussed. 



9 
 
 

SOMMARIO 

La presente tesi descrive il progetto di ricerca in Bioingegneria per la Proteomica 

Computazionale svolto durante i tre anni di dottorato (Gennaio 2008 - Gennaio 2011). L’attività 

di ricerca è stata incentrata sulla progettazione e lo sviluppo di metodi per l’analisi di dati di 

Proteomica basata su Spettrometria di Massa. 

Nell’introduzione si illustrano brevemente i temi principali trattati nella tesi, fornendo così lo 

schema del lavoro svolto. Si considerano quindi i 2 problemi principali associati all’analisi dati, 

cioè la gestione e quantificazione dei dati, e vengono presentate le soluzioni descritte nel 

prosieguo. 

I primi due capitoli sono introduttivi al settore della Proteomica e della Spettrometria di Massa. 

L’obiettivo è fornire al lettore tutte le informazioni necessarie per meglio comprendere la 

Proteomica Quantitativa basata su Spettrometria di Massa. Il Capitolo 1 spiega in che modo sia 

nata la Proteomica, ossia come il complemento proteico del genoma. Dopodiché, si espongono 

le principali applicazioni legate alla Proteomica e i suoi obiettivi, spaziando dagli aspetti clinici, 

alla farmaceutica, fino alla biologia dei sistemi. Il secondo Capitolo invece è legato agli aspetti 

tecnici e mostra le principali tecnologie e strumentazioni usate in Proteomica basata su 

Spettrometria di Massa. I setup sperimentali più comuni sono quindi illustrati e, tra tutti, ci si 

focalizza in particolare sulla Spettrometria di Massa abbinata a Cromatografia Liquida (LC-MS), 

che è la principale tecnica per esperimenti di Proteomica Quantitativa basata su Spettrometria di 

Massa. 

Il terzo Capitolo presenta i concetti fondamentali necessari per introdurre il lettore al tema 

principale del progetto di ricerca di Dottorato, ossia lo sviluppo di metodi bioinformatici per la 

gestione e la quantificazione di dati di Proteomica Quantitativa basata su Spettrometria di 

Massa, in particolare per l’analisi di dati quantitativi di LC-MS.  Infatti, i dati di LC-MS hanno un 

alto contenuto informativo per scopi quantitativi, però sono estremamente problematici da 

analizzare. Sono quindi riassunti i setup sperimentali per la Proteomica Quantitativa basata su 

LC-MS così come le caratteristiche dei dati che sono state determinanti per lo sviluppo delle 

soluzioni proposte (ossia la struttura 3D dei dati LC-MS e l’alto contenuto informativo dei dati 

profile). 
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Nel quarto Capitolo vengono descritti lo stato dell’arte, sia per la gestione che la quantificazione 

dei dati, e i relativi problemi aperti, che verranno trattati nei capitoli seguenti dove si 

propongono possibili soluzioni.  

Il Capitolo 5 è interamente dedicato alla descrizione tecnica dei dati utilizzati per validare le 

metodologie proposte. Si tratta di dati LC-MS generati da una mistura di proteine tracciate ed a 

rapporti di quantificazione note. Di ogni esperimento sono disponibili tre repliche. 

In particolare, questa tesi presenta 2 software per la gestione e la quantificazione di dati di 

Proteomica Quantitativa basata su Spettrometria di Massa.  

Il Capitolo 6 presenta la soluzione proposta per risolvere i problemi di gestione dati. Si tratta di 

un approccio di indicizzazione 2D scalabile che è stato implementato tramite una struttura dati 

basata sull’R-tree, chiamata mzRTree, e si basa sulla rappresentazione del dataset come matrice 

sparsa, che ben si adatta a dati di LC-MS e più in generale di Spettrometria di Massa. Nello 

specifico, mzRTree consente di accedere e memorizzare efficientemente i dati, rendendo così 

possibile un’analisi computazionalmente sostenibile di dati profile.  

Per quel che concerne la quantificazione, il Capitolo 7 illustra la soluzione proposta per il 

problema della quantificazione, 3DSpectra, un innovativo metodo di quantificazione che sfrutta 

sia la 3-dimensionalità dei dati LC-MS, sia l’alto contenuto informativo dei dati profile. 3DSpectra 

applica infatti un approccio 3D al riconoscimento della distribuzione isotopica del peptide da 

quantificare basato sul fit tramite l’algoritmo Expectation-Maximization di un Modello 3D a 

Mistura di Gaussiane. Tale modello consente di identificare i bordi del segnale da quantificare e 

di rigettare il rumore presente. 3DSpectra incorpora un’affidabile ed accurata strategia di 

quantificazione per dati LC-MS tracciati e acquisiti in modalità profile. Soprattutto, 3DSpectra 

offre, a livello di quantificazione, un’estesa e riproducibile copertura del proteoma. 

Nella sezione conclusiva della tesi si discute il lavoro futuro e in corso, che riguarda 

essenzialmente ulteriori sviluppi sia della struttura dati, mzRTree, che del software di 

quantificazione, 3DSpectra. 
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INTRODUCTION 

Mass spectrometry-based proteomics plays an ever-increasing role in different biological and 

medical fields, but, as an emerging field, it still requires reliable tools for the storage, exchange 

and analysis of experimental data. Over the last years, a wide range of techniques have become 

available, which can generate a huge quantity of data potentially able to address relevant 

questions, e.g., to identify proteins in a biological sample (qualitative approach), to quantify 

their concentration (quantitative approach), to monitor post-translational modifications, to 

measure individual protein turnover, to infer on interactions with other proteins, transcripts, 

drugs or molecules. The improved proteomics technologies enable researchers to address 

fundamental biological problems in a systems biology context but, without efficient 

bioinformatics tools, high-throughput proteomics data handling and analysis are difficult and 

error-prone. Thus, a major challenge facing proteomic research is how to manage the 

overwhelming amount of data in order to extract the qualitative and/or quantitative information 

on proteome and still to keep down computational costs both for data handling and processing. 

This holds especially for quantitative proteomics, since, in order to achieve reliable 

quantifications, it needs highly informative but challenging to parse profile data, such as profile 

Liquid Chromatography-Mass Spectrometry (LC-MS) datasets, which are considered the only 

data source rich enough to perform a meaningful data analysis.  

 

DATA HANDLING 

Data hostage held by different instrument proprietary formats slows down the evolution of 

proteomics, mainly because comparisons among different experiments or analytical methods 

often turn out to be unfeasible. In order to facilitate data exchange and management, the 

Human Proteome Organization (HUPO) established the Proteomics Standards Initiative (PSI). 

HUPO-PSI released the Minimum Information About a Proteomics Experiment (MIAPE) reporting 

guidelines and proposed mzData  which, as mzXML, is an eXtensible Markup Language (XML) 

based data format, developed to uniform the community data. Recently, merging the best 

features of each of these formats, the HUPO introduced mzML as a unique data format. XML-

based data formats are characterized by intuitive language and a standardized structure. At the 

state of art, the adoption of these formats is widespread among the proteomics research 
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groups, also thanks to the extensive support of instrument and database searching vendors, and 

the availability of converters from proprietary data formats. In spite of their success, the 

currently adopted formats suffer from some limitations: the impossibility to store raw data; the 

lack of information on the experimental design, necessary for regulatory submission; the lack of 

scalability on data size, which is a bottleneck for the analysis of profile data. Above all, the 1-

dimensional (1D) data indexing provided by these formats considerably penalizes the analysis of 

datasets embodying an inherent 2-dimensional (2D) indexing structure, such as 3D LC-MS data. 

LC-MS provides intensity  data on a 2D (t, m/z) domain, since LC separates proteins along 

retention time dimension (temporal index) based on their chemical-physical properties, while 

MS separates proteins based on their mass over charge (m/z index) ratios. MS experiments 

usually have a “temporal” index related to the experimental time at which the MS acquisition 

takes place (e.g., a scan in mzML format). Thus, we can conceptually view an LC-MS (or, more 

generally, MS) dataset as a matrix, where the rows are indexed by retention times (scan if MS), 

the columns by m/z values, and the indexed values are intensities. Hence, a generic entry can be 

denoted as (rt, mz; I), where rt and mz are the row and column indices, and I is the intensity 

value. Therefore, MS data can be accessed by means of either an m/z range, or a temporal 

range, or a combination of them, defining different range queries. On LC-MS data, these 

accesses provide respectively chromatograms, spectra, and peptide data, whereas on generic 

MS data, they provide a set of sub-spectra belonging to the specified range. An elevated number 

of range queries are required during data analysis, thus optimizing them would significantly 

improve computational performance. Depending on the downstream analysis, data can be 

retrieved as a 2D or a 3D signal. Most research groups develop, often in a sub-optimal way, 

intermediate data structures optimized for accesses on a privileged dimension: the lack of a gold 

standard for data analysis delayed the development of a standard data format optimized for 

computation, indeed. For instance, accredited software packages like Maspectras or MapQuant 

make use of the method-specific intermediate data structures Chrom and OpenRaw, 

respectively: the former is optimized for a chromatogram based access, the latter for a spectra 

based access.  

During PhD research activities, a novel data structure, called mzRTree, was developed to 

efficiently access high-throughput LC-MS profile datasets. It combines a hybrid sparse/dense 

matrix representation of the data and a scalable index based on the R-tree. In this thesis, it is 

experimentally shown that mzRTree supports efficiently both 1D and 2D data accesses. In 

particular, mzRTree significantly outperforms Chrom and OpenRaw on small and large peptide 
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range queries, yielding in some cases orders of magnitude improvements. Furthermore, it still 

ensures best performance on the accesses for which the other data structures are optimized, 

i.e., chromatograms for Chrom and spectra for OpenRaw. The experiments also provide 

evidence that mzRTree is more space efficient than Chrom and OpenRaw, and exhibits good 

scalability on increasing dataset densities. Therefore, mzRTree is suitable for high density/large 

size proteomics data, such as profile data, considered as the most informative and hence the 

most suitable to tackle quantification aims. At present, profile data size reaches several GBs, and 

it is expected to further raise, as far as instrument accuracy and resolution increase: even a 

narrow range of m/z values can be challenging to manage when analyzing these data. Thus, the 

adoption of mzRTree for data storage could make profile data accessible for analysis purposes: it 

prevents out-of-memory errors, often occurring with huge profile proteomics datasets, and 

reduces the need for (and the costs of) extraordinary computational infrastructures and their 

management. Actually, profile data are often the only data source rich enough to carry out a 

meaningful analysis, e.g., in quantitative proteomics based on stable isotope labeling. However, 

costs involved with profile data handling often outweigh their benefits. mzRTree could revert 

this relationship. 

 

QUANTIFICATION 

During the last decade many research groups developed quantification software to analyze their 

own data: most of this software accepts few data formats often generated by a single 

instrument, data should be produced under a particular experimental workflow, and their 

quantification performance has been poorly assessed. Conversely, some of them, developed for 

a widespread use, such as the freely available ASAPRatio or the licensed Mascot Distiller, 

showed good performance and are commonly used among proteomic research laboratories. At 

the state of art, quantitative LC-MS data have usually been analyzed throughout a 2D approach: 

all intensities belonging to a defined m/z range related to a peptide were integrated to get a 

unique chromatogram of the elution profile. Such an approach, reducing a 3D signal to a 2D 

signal does not involve just a complexity reduction, but, above all, the loss of the LC-MS 

instrumentation resolving power and therefore the waste of meaningful information, causing 

neighboring peaks to overlap on the LC dimension: as a result we can achieve unreliable 

quantifications. Hence the need to develop a 3D approach. In fact, the 2D-LC-MS separation (t, 



14 
 
 

m/z), raising resolving power, minimizes the overlapping of neighbouring peptides, while the 

profile acquisition mode enhances the signal informative content, consequently the 

quantification gets more accurate.  

Therefore, during this PhD research project, both data features were exploited and 3DSpectra, 

an innovative quantification software for LC-MS labeled profile data, was developed under 

MATLAB environment. 3DSpectra features an optimized profile data handling, by means of 

mzRTree, and a hybrid 2D and 3D data analysis approach, where a 2D signal processing on both 

chromatograms and spectrograms is coupled to a 3D peaks borders recognition step. 3DSpectra 

makes use of a priori information, provided by search engines, to quantify identified peptides, 

whose metadata are stored in a peptide library. It fits on peptide data the isotopic distribution 

shaped by a 2D Gaussian Mixture Model (GMM) including a noise component, using the 

Expectation-Maximization (EM) approach, in order to statistically define its boundaries. Data 

outlying the borders or belonging to the noise component are discarded from subsequent 

analysis. After signal processing, information gathered from metadata is used to weight the 

isotopic peaks contribution to the volume under the curve (VUC) of the isotopic distribution. The 

quantification is computed as the ratio of the peptide VUC to its isotopic partner VUC. 3DSpectra 

performance has been assessed employing real profile data from a controlled mixture of labeled 

proteins mixed at different ratios in triplicates and acquired in enhanced profile mode. 

Quantification performance on this dataset has already been published showing that ASAPRatio 

(MASPECTRAS implementation) reaches the best performance compared to MSQuant and 

PepQuan. Consequently we compared 3DSpectra only to ASAPRatio (MASPECTRAS 

implementation). The comparison focused on the following quantification quality parameters: 

accuracy, precision, efficiency, reproducibility and reliability. In order to make the comparison as 

fair as possible both methods have been run starting from the same peptide identifications. 

3DSpectra quantifies, on differentially expressed ratios, 2 to 4 times more peptides than 

ASAPRatio, resulting in a 100% to 300% gain in quantification efficiency (i.e., the number of 

quantified peptides). Furthermore, the wider proteome coverage here comes with no tradeoff: 

3DSpectra, indeed, reaches the same performance as ASAPRatio for quantification accuracy, 

precision and reliability. In fact, quantifications provided by 3DSpectra and ASAPRatio for every 

ratio are not statistically different (Kolmogorov-Smirnov test). The much wider peptidome 

coverage coupled to the same quantification accuracy and precision of ASAPRatio, as provided 

by 3DSpectra, could be crucial for biomarkers discovery studies. Likewise, the quantification 

reproducibility, e.g., the ability to reliably quantify the same peptide across experimental 
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replicates, could be pivotal as well. In fact, it could help classification algorithms in distinguishing 

differentially expressed peptides between control and unhealthy samples, especially when 

several samples are available per every class. 3DSpectra achieves a significantly higher 

reproducibility of its peptide quantifications across experimental replicates, quantifying 30% 

more peptide occurrences than ASAPRatio does, still ensuring the same quantification accuracy 

and precision. Moreover, 3DSpectra Deming regressions between light and heavy volumes 

showed on mean higher linearity (Pearson correlation coefficient) than ASAPRatio and 

comparable Root Mean Squared Error on the same peptides, hence the two methods feature 

the same quantification reliability. In conclusion, 3DSpectra, compared to ASAPRatio, provides a 

reliable quantification strategy and a wider and more reproducible proteome coverage at the 

level of peptide quantification.  

In the next chapters we will go deeply through all the computational and methodological issues 

here introduced, which have been studied during this Ph.D. research project. 
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1  PROTEOMICS  

The term “proteome” refers to the collection of proteins within a cell, tissue, or entire organism 

and was first coined to describe large-scale protein identification and amino acid analysis: it 

represents the entire complement of proteins expressed by a cell under a specific set of 

conditions at a specific time.  

Proteomics is the large-scale study of proteins focused on their structures, functions and 

regulatory physiological pathways. For physiologists and physicians interested in the regulation 

of bodily functions, an understanding of genes and their products is crucial to unrevealing the 

underlying mechanisms of disease. Comprehending the regulation of both normal physiology 

and pathology requires an investigation of genes, gene transcripts, proteins, and metabolites, 

which have been termed the genome, transcriptome, proteome, and metabolome, respectively. 

Perhaps the most important step in the expression of a gene occurs at the level of protein 

synthesis, since the protein product of a gene is what will ultimately be responsible for most 

biological functions.  

In order to fully understand proteomics, one must first understand what proteins are. A protein 

is a macromolecule that consists of a long chain of amino acids. This amino acid chain is 

translated according to RNA sequence that, in turn, is transcribed from DNA. This progression 

from DNA to RNA and then RNA to protein is often known as the central dogma of molecular 

biology.  

There are four “levels” of protein structure. The first, called primary structure, is the sequence of 

amino acids that makes up a protein. Twenty different amino acids make up the standard 

protein alphabet utilized by organisms. Secondary structure includes local interactions between 

groups of amino acids, forming structures such as α-helices and β-sheets (see Figure 1-1 where 

they are respectively represented in red and blue).  
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FIGURE 1-1 THE FEATURES SHOWN IN RED REPRESENT ALPHA-HELICES, AND BLUE REPRESENTS ΒETA-SHEETS. 

 

Tertiary structure is the overall three dimensional conformation of a protein, which can include 

interaction between secondary structure units. Often, the active form of a protein will actually 

consist of multiple smaller protein units which combine to yield quaternary structure. 

Ultimately, the order of amino acids and interactions between them determines the three-

dimensional structure the protein will eventually take on. This 3-D structure determines the 

function of the protein. The process of going from primary structure to tertiary or quaternary 

structure is often called folding and docking. 

Besides protein identification, proteomics also encompasses the regulation of protein synthesis 

at the translational level, the study of factors regulating the folding of peptides, and interactions 

among proteins. The complexity of proteomics is further magnified by the fact that protein 

expression is tissue specific, and its function is modulated by a variety of factors: it varies among 

different tissues as well as different physiological conditions, such as age, sex, fasting and 

feeding, changes in diet, physical activity, medications, pregnancy, disease status, etc. 
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Understanding how multitudes of proteins change under these conditions will be a great 

challenge to physiologists and clinicians. 

Proteomics has recently demonstrated its utility in understanding cellular processes on the 

molecular level as a component of systems biology approaches and for identifying potential 

biomarkers of various disease states [1,2]. The large amount of data generated by utilizing high 

efficiency (e.g. chromatographic) separations coupled to high mass accuracy mass spectrometry 

for high-throughput proteomics analyses presents challenges related to data processing, 

analysis, and display. Exploration of a proteome depends not only on establishing robust high-

throughput methods for sample analysis, but also on finding solutions to the subsequent 

challenge of extracting the desired information from the vast quantities of data that are 

commonly produced in both systems biology and candidate biomarker discovery efforts. 

Therefore the state of bioinformatics is critical for interpretation of the vast amount of 

information emerging from proteomic research. To unravel the underlying systems biology 

mechanism there is a compelling need for greater integration of proteomic research with 

genomic, metabolic, and functional studies. Actually an omics-integration, able to figure out 

unknown biological inferences, is what systems biology is trying to realize. In Figure 1-2, the 

systems biology paradigm is represented. Here, cells are subjected to specific (e.g. genetic or 

pharmacological) perturbations within the space of the system studied and the effects of the 

perturbations on the cells are recorded using systematic genomic and proteomic methods of 

analysis. Proteomic data that are particularly informative include quantitative protein profiles, 

profiles of regulatory modifications and protein interaction networks. The data are integrated 

and reconciled with prior models describing the studied system and discrepancies between the 

observed data and the model are used to design new perturbations, which are analyzed by 

means of systematic measurements. The process is repeated iteratively until model and 

observed data converge. A systems level understanding of organisms is likely to increasingly 

impact biomedical research, drug discovery, nutrition science, and clinical practices [3]. The 

ability to broadly measure biological macromolecules, especially proteins, in a high-throughput 

manner is essential for delineating complex cellular networks and pathways and the response of 

these pathways to biological stressors.  
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FIGURE 1-2 SCHEMATIC REPRESENTATION OF THE SYSTEMS BIOLOGY PARADIGM.  

 

While the genome of an organism may be considered static, the expression of that genome as 

gene products (i.e. proteome) is constantly changing due to the influence of environmental and 

physiological conditions. For example, both mRNAs and proteins can be expressed, modified, 

and degraded at substantially different rates. Thus, measuring the changes in protein expression 

in response to cellular stressors provides important information on the underlying processes. 

This information can lead to a better understanding of disease processes in humans, which can 

aid in the development of novel drug therapies. In this regard there is broad interest in 

identifying proteins as potential biomarkers for a wide range of diagnostic and clinical 

applications. 

In the following of this chapter several cutting edge applications of proteomics research are 

illustrated, such as the identification of new proteins, the discovery of biomarkers, the analysis 

of post-translational modifications (PTMs), proteins turnover, protein-protein interaction, drugs 

discovery and the role of proteomics in the systems biology field. 
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1.1 A BRIEF HISTORY 

The term proteome was coined by the Macquarie University PhD candidate Mark Wilkins first in 

1994 in the symposium: "2D Electrophoresis: from protein maps to genomes" in Siena, Italy. The 

term arose out of Wilkins’s search for an alternative to the phrase “the protein complement of 

the genome”. Actually the term proteome is a blend of proteins and genome and Wilkins used it 

to describe the entire complement of proteins expressed by a genome, cell, tissue or organism. 

Subsequently this term has been specified to contain all the expressed proteins at a given time 

point under defined conditions. The word “proteome” is now firmly established in mainstream 

scientific language, and while Wilkins and co-workers are rightly credited for formalising 

“proteomics” as a unique discipline, the origins of proteomics can be traced back to the 1970-

80s.  

Proteomics has its roots in analytical biochemical techniques used for protein separation. The 

first high resolution protein separations were achieved by two-dimensional gel electrophoresis 

(2DE) in 1975, long before global differential analysis of mRNA expression was possible. 

Proteomic pioneers such as Leigh Anderson saw the potential of 2-D gels in the late 70s, as a 

mechanism to conduct proteomic studies of blood proteins and leukocytes. The first 

computerised 2-D gel image analysis platform was developed to quantitate changes in 2-D gel 

protein spot levels. While the separation of hundreds of proteins using 2-D gels was welcomed, 

and changes in protein abundance between samples could be quantitated, frustration also grew 

with the lack of useful tools to identify proteins of interest. Furthermore, 2-D gel reproducibility 

hindered the expansion of the technique until the introduction of immobilized pH gradients 

(IPGs) in 1982, and the much improved second generation IPGs in the late 80s. This coincided 

with the development of mass spectrometry ionization techniques for peptides, allowing protein 

identification and characterisation on a large scale. Meanwhile, since the 1970s, it has been 

suggested to build up protein databases and many of the analytical methods nowadays used for 

the analysis of genomics and proteomics data were born, like reverse strategies based on 

subtractive pattern analysis, multivariate statistics, clustering algorithms. Unfortunately they 

couldn’t implement those concepts basically because 2DE was just a qualitative technique.  

However, it was not until the mid-90s that mass spectrometry (e.g. MALDI-MS, ESI-MS/MS that 

we will discuss later on) became a mainstream technique for protein identification. Finally 

protein chemists have been able to create sequence databases and thus database search tool. In 
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the following years, with the decoding of several genomes, the size of translated protein 

databases ballooned. In the meantime the gel-independent approach to proteomics (i.e. LC-

MS/MS) took place thanks to its ability to handle extremely complex peptide mixtures and to 

facilitate high-throughput experiments (see Figure 1-3) combining very high resolution and high 

efficiency separations with very high accuracy and high-resolution mass spectrometry.  

 

 

 

FIGURE 1-3 A NICE PICTURE INTUITIVELY EXPLAINING THE DIFFERENCE BETWEEN THE CLASSICAL CHEMIST 

APPROACH AND THE HIGH-THROUGHPUT PROTEOMICS ONE. 

 

Significant technological advances in proteomics approaches and instrumentation, as well as in 

related bioinformatics data analysis, have been achieved over the past decade (see Figure 1-4). 

In proteomic labs it is now possible to robustly separate complex protein mixtures with high 

resolution, extract the proteins of interest and interrogate them with mass spectrometry, and 

then ultimately search protein databases using mass spectral data to identify proteins with high 

confidence.  
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FIGURE 1-4 THE PROTEOMICS TIMELINE. IT DESCRIBES THE ONCOMING OF DIFFERENT TECHNOLOGIES AND 

RESOURCES, SUCH AS BIOINFORMATICS, MASS SPECTROMETRY AND THE GENOME SEQUENCING, TO THE 

PROTEOMICS FIELD.  

 

 

  



24 
 
 

1.2 APPLICATIONS & GOALS  

Proteomics has a wide range of applications and they are all focused on the biomedical research 

field because understanding the proteome, the structure and function of each protein and the 

complexities of protein-protein interactions will be critical for developing the most effective 

diagnostic techniques and disease treatments in the future. 

 

1.2.1 NEW PROTEINS IDENTIFICATION  

Proteomics is often considered the next step in the study of biological systems, after genomics. 

It is much more complicated than genomics, mainly because while an organism's genome is 

rather constant, a proteome differs from cell to cell and constantly changes through its 

biochemical interactions with genome and environment. One organism has radically different 

protein expression in different parts of its body, different stages of its life cycle and different 

environmental conditions. Another major difficulty is the complexity of proteins relative to 

nucleic acids: in human there are about 25.000 identified genes but an estimated number of 

more than 500.000 proteins, mostly unknown, that are derived from these genes. Increased 

complication derives from mechanisms such as alternative splicing, protein modification 

(glycosylation, phosphorylation) and protein degradation. These processes modify the proteome 

during the instrumental acquisition time: every protein concentration is constantly modulated 

by the balance of different appearance/disappearance rates due to the above mentioned 

processes. The number of proteins in any tissue is likely to be in the tens of thousands, and the 

expression levels of these proteins span at least six orders of magnitude. In such a complexity it 

is evident that we know just a smaller subsets of the existing proteins and moreover we 

identified the most expressed (i.e., concentrated), that are, almost ever, the less informative. 

Thus a consistent effort in proteomics research nowadays is directed in identifying new, less 

expressed proteins that can deal with important biological functions or conditions. 

 

1.2.2 POST-TRANSLATIONAL MODIFICATIONS (PTMS) ANALYSIS 

Almost all proteins are modified from their pure translated amino-acid sequence, by the so-

called post-translational modification: there’s a branch of proteomics called protein modification 



25 
 
 

that studies the modified forms of proteins. Post-translational modification (PTM) is the 

chemical modification of a protein after its translation. It is one of the latest steps in protein 

biosynthesis for many proteins. A protein (also called a polypeptide) is a chain of amino acids. 

During protein synthesis, 20 different amino acids can be incorporated in proteins. After 

translation, the post-translational modification of amino acids extends the range of functions of 

the protein by attaching to it other biochemical functional groups such as acetate, phosphate, 

various lipids and carbohydrates, by changing the chemical nature of an amino acid  or by 

making structural changes, like the formation of disulfide bridges. Also, enzymes may remove 

amino acids from the amino end of the protein, or cut the peptide chain in the middle. Other 

modifications, like phosphorylation, are part of common mechanisms for controlling the 

behaviour of a protein, for instance activating or inactivating an enzyme. 

Direct analyses of protein modifications are important, since they cannot be predicted from 

genomic data. Protein modification studies often centre on signal transduction pathways, since 

signals are most often transmitted by protein modifications such as phosphorylation. There are 

several types of experiments required for a proteomic approach to study protein modifications. 

Functional changes of proteins in cells occur because of modification by the attachment of 

groups such as phosphates, sulphates, carbohydrates, and lipids. There are more than 100 

different types of post-translational modifications that can occur to proteins: two of the most 

important are phosphorylation and glycosylation. Specialized methods have been developed to 

study phosphorylation (phosphor-proteomics) and glycosylation (glycol-proteomics). 

Phosphoproteomics is a branch of proteomics that identifies, catalogs, and characterizes 

proteins containing a phosphate group as a post-translational modification. Glycoproteomics is a 

branch of proteomics that identifies, catalogs, and characterizes proteins containing 

carbohydrates as a post-translational modification. Phosphorylation/ glycosylation is a key 

reversible modification that regulates protein function, sub-cellular localization, complex 

formation, degradation of proteins and therefore cell signaling networks. With all of these 

modification results, it is assumed that up to 30% of all proteins may be. 

Compared to expression analysis, proteomics provides two additional layers of information. 

First, it provides clues on what protein or pathway might be activated because a change in 

phosphorylation/glycosylation status almost always reflects a change in protein activity. Second, 

it indicates which proteins might be potential drug targets. While proteomics will greatly expand 
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knowledge about the numbers and types of phosphor/glycol-proteins, its greatest promise is the 

rapid analysis of entire phosphorylation/glycosylation based signaling networks. 

 

1.2.3 PROTEINS TURNOVER 

Most of the recent developments in proteomics have focused on improving the 

technology for protein identification and quantification. Another aspect of protein 

regulation that must be considered and incorporated into a comprehensive proteomic 

analysis is protein turnover, the combination of protein synthesis and breakdown. 

Protein turnover, also known as protein accretion, is the balance between protein 

synthesis and protein degradation [4]. More synthesis than breakdown indicates an 

anabolic state that builds lean tissues, whereas more breakdown than synthesis 

indicates a catabolic state that burns lean tissues. The balance between synthesis and 

breakdown determines the protein concentration in the cell or tissue. Quantification of 

proteins in the absence of turnover information may overlook some proteins that are 

affected by a particular biological condition. For example, the concentration of a protein 

may not change much, but the rate of turnover can be altered by a condition of interest. 

In such a situation, the function of the protein may change as older, damaged copies are 

replaced with newer proteins. A promising approach to solve this problem is to measure 

the synthesis rate by using in vivo metabolic labeling  of proteins with isotope-labeled 

amino acids and measuring the increment of the protein-bound isotopic enrichment 

during a study period. The calculation of synthetic rate of the protein also requires the 

isotopic enrichment in the precursor pool. The technology for large-scale measurement 

of synthetic rates of individual proteins remains to be established, although some 

individual protein synthetic rates can be measured in tissue samples. Protein breakdown 

is also essential to maintain the quality of proteins and their functional integrity. 

Proteins within cells are continually being degraded to amino acids and replaced by 

newly synthesized proteins. This is a highly regulated process that prevents 

accumulation of non-functional and potentially toxic proteins.  
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A simple and accurate method to study protein breakdown on a protein-by-protein basis has yet 

to be developed. Protein degradation can be measured across a tissue bed or at whole body 

level. In vivo measurement of degradation rates of individual proteins is fraught with many 

problems. 

It is important to determine the rate of breakdown of individual protein with a high degree of 

accuracy and precision to understand the selectivity of the proteolytic process whereby different 

proteins are committed to breakdown at significantly different rates. Although protein synthesis 

and breakdown are co-ordinately regulated in the physiological state, their mechanisms are 

independent. This difference in regulation explains the marked disparity that is sometimes seen 

between transcriptome and proteome data. For example, changes in mRNA levels can affect 

protein synthesis, which may or may not result in a change in protein concentration, depending 

on how protein breakdown is affected. 

 

1.2.4 PROTEIN-PROTEIN INTERACTION 

Interaction proteomics concerns the investigation of protein interactions on the atomic, 

molecular and cellular levels: it is an interesting field because the interaction among proteins is 

related to all the signalling processes in the cellular regulatory pathways. Thus understanding 

those proteins interactions networks would help in the comprehension of the molecular 

signalling. Protein-protein interaction prediction is a field combining bioinformatics and 

structural biology in an attempt to identify and catalogue interactions between pairs or groups 

of proteins. Understanding protein-protein interactions is also important in investigating 

intracellular signalling pathways. 

There are many characteristics of a protein-protein interaction that are important. Obviously, it 

is important to know which proteins are interacting. In many experiments and computational 

studies, the focus is on interactions between two different proteins. However, you can have one 

protein interacting with other copies of itself (oligomerization), or three or more different 

proteins interacting. The stoichiometry of the interaction is also important – that is, how many 

of each protein involved are present in a given reaction. Some protein interactions are stronger 

than others, because they bind together more tightly. The strength of binding is known as 

affinity. Proteins will only bind each other spontaneously if it is energetically favourable. Energy 
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changes during binding are another important aspect of protein interactions. Many of the 

computational tools that predict interactions are based on the energy of interactions. 

Recently there has been a strong focus on predicting protein interactions computationally. 

Foreseeing the interactions can help scientists to predict pathways in the cell, potential drugs 

and antibiotics, and protein functions. However, it is a difficult problem. Proteins are large 

molecules, and binding between them often involves many atoms and a variety of interaction 

types, including hydrogen bonds, hydrophobic interactions, salt bridges, and more. Proteins are 

also dynamic, with many of their bonds able to stretch and rotate. Therefore, predicting protein-

protein interactions requires a good knowledge of the chemistry and physics involved in the 

interactions. Consequently protein-protein interaction model are very useful for drug design, 

since drugs tries to modify, during its clearance time, the biological signalling in order to achieve 

a therapeutic effect. Bioinformatics and functional proteomic methods take advantage of the 

known protein structures recorded in the Protein Data Bank database and use information from 

protein homology, protein functional domains, pathway profiling, and the shape, to model the 

interaction conformations between two or more proteins and to predict and validate protein 

complex formation. This approach has been widely used in the computer-aided drug design 

process. The challenge in this field is the limited number of proteins with known structure 

because of the difficulties in obtaining enough proteins with crystallographic purity. 

 

1.2.5 BIOMARKERS DISCOVERY 

One of the major aim of proteomics is to recognize biomarkers, which are patterns of proteins 

expression levels that can give a prediction for an early diagnosis, a prognosis or a therapy. The 

idea is that, since the biological mechanism of life regulation relies on proteic signals, thus, if you 

understand which will be the system response given a certain proteic signal, then you can 

predict on the system even if you don’t know at all the complexes regulatory pathways 

underlying to its working. The biomarker discovery is developed studying the differential proteic 

expression comparing, for instance, healthy vs. unhealthy subjects. It borrowed basically the 

methods implemented for the gene differential expression analysis. For some poor prognostic 

malignancies, such as pancreatic and ovarian cancers, early diagnosis and surgery are the best 

therapeutic approaches. There are no specific and highly sensitive biomarkers available for these 

diseases. A self-trained pattern recognition algorithm has been proven capable of identifying 
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proteomic patterns in MS signal to completely segregate cancer from normal, although no 

specific proteins were identified. These pattern recognition algorithms involve complicated 

neural networking technologies, but it is needed a specificity and sensitivity increase. The 

specificity is a statistical measure of how well a binary classification test correctly identifies the 

negative cases, or those cases that do not meet the condition under study. For example, given a 

medical test that determines if a person has a certain disease, the specificity of the test to the 

disease is the probability that the test indicates “negative” if the person does not have the 

disease. That is, the specificity is the proportion of true negatives to all negative cases in the 

population. It is a parameter of the test. High specificity is important when the treatment or 

diagnosis is mentally and/or physically harmful for the patient. Sensitivity, or recall rate, is a 

statistical measure of how well a binary classification test correctly identifies a condition, 

whether this is medical screening tests picking up on a disease. The results of the screening test 

are compared to some absolute gold standard; for example, for a medical test to determine if a 

person has a certain disease, the sensitivity to the disease is the probability that if the person 

has the disease, the test will be positive. The sensitivity is the proportion of true positives of all 

diseased cases in the population. It is a parameter of the test. High sensitivity is required when 

early diagnosis and treatment is beneficial, and when the disease is infectious. 

Several techniques allow to test for proteins produced during a particular disease, which helps 

to diagnose the disease quickly. Techniques include western blot, immunohistochemical 

staining, enzyme linked immunosorbent assay (ELISA) or mass spectrometry. If proteomics will 

detect a set of biomarkers for every disease it will be easier, more comfortable and time-earning 

to make a diagnosis, in the brightest occurrence it will be possible just analyzing the serum. Thus 

it could be also money saving for the hospitals and a real pre-diagnosis will be likely for all the 

population. The research is still working on it, but interesting results have been reached until 

now. Most studies deal with cancer: ovarian cancer, prostate cancer, breast cancer, kidney 

cancer, colon cancer. For instance, proteomic analysis of kidney cells and cancerous kidney cells 

is producing promising leads for biomarkers for renal cell carcinoma and developing assays to 

test for this disease. In kidney-related diseases, urine is a potential source for such biomarkers. 

Recently, it has been shown that the identification of urinary polypeptides as biomarkers of 

kidney-related diseases allows to diagnose the severity of the disease several months before the 

appearance of the pathology.  
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In Alzheimer’s disease, elevations in beta secretase creates amyloid/beta-protein, which causes 

plaque to build up in the patient's brain, which causes dementia. Targeting this enzyme 

decreases the amyloid/beta-protein and so slows the progression of the disease. A procedure to 

test for the increase in amyloid/beta-protein is immunohistochemical staining, in which 

antibodies bind to specific antigens or biological tissue of amyloid/beta-protein.  

Heart disease is commonly assessed using several key protein based biomarkers. Standard 

protein biomarkers for CVD include interleukin-6, interleukin-8, serum amyloid A protein, 

fibrinogen, and troponins. cTnI cardiac troponin I increases in concentration within 3 to 12 hours 

of initial cardiac injury and can be found elevated days after an acute myocardial infarction. A 

number of commercial antibody based assays as well as other methods are used in hospitals as 

primary tests for acute MI. We hope in the future to develop similar proteomic based tests for 

all the diseases. 

 

1.2.6 PROTEOMICS FOR DRUGS DISCOVERY 

The recent boom of the proteomics field, or the analysis of the ever dynamic proteome, has 

brought many advances with respect to the very nature of how the current drug discovery 

process is undertaken. The potential the field of proteomics brings in, for identifying proteins 

involved in disease pathogenesis and physiological pathway reconstruction, facilitates the ever 

increasing discovery of novel drug targets, their respective modes of action mechanistically, and 

their biological toxicology. 

The challenge in the drug discovery process is to find the exact causes of an underlying disease 

and find a way to negate them or bring them to normal levels. A mechanistic understanding of 

the nature of the disease in question is essential if we aim at elucidating any target-specific 

remedy for it. While the causes of many documented clinical problems greatly vary in their 

nature and origin, the consequences are mostly found at the protein level, involving protein 

function, protein regulation, or protein-protein interactions. Indeed, identification of potential 

new drugs for the treatment of disease relies on genome and proteome information to identify 

proteins associated with a disease. For example, if a certain protein is implicated in a disease, its 

3D structure provides the information to design drugs to interfere with the action of the protein. 

A molecule that fits the active site of an enzyme, but cannot be released by the enzyme, will 
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inactivate the enzyme. This is the basis of new drug-discovery tools, which aim to find new drugs 

to inactivate proteins involved in disease.  

Recent advances in applied genomics helped in the target identification process, since it allowed 

for high throughput screening of expressed genes. As genetic differences among individuals are 

found, researchers expect to use these techniques to develop personalized drugs that are more 

effective for the individual. However, studies have shown that there is a poor correlation 

between the regulation of transcripts and actual protein quantities. The reasons for this are that 

genome analysis couldn’t account for post-translational processes such as protein modifications 

and protein degradation. Therefore, the methods employed in the drug-discovery process 

started to shift from genomics to proteomics. Analysis of the dynamic proteome, as opposed to 

the static genome, will certainly bring a much more accurate approach to identify not only 

applicable biomarkers that will aid in diagnosis, but also effective remedies for diseases of 

varying origins. 

The field of proteomics faces some daunting challenges, in comparison to genomics, for several 

reasons. First, protein science lacks an analogue of the polymerase chain reaction (PCR), which 

can generate many copies of a single, native molecule in vivo (nucleic acids in the case of PCR). 

However, several recent approaches have been applied in an effort to ameliorate the situation. 

Methods of chemical synthesis exist, being limited by yield, particularly when it comes to 

synthesizing lengthy peptides. In-vivo expression synthesis methods exist as well, however, this 

approach cannot be applied to producing proteins which may alter normal cellular function. 

Also, cell-free synthesis ribosome kits can be employed for accurate and rapid protein synthesis, 

though the intrinsic presence of ribosome inactivating enzymes contributes to the instability of 

these systems. Second, in contrast to DNA, protein levels vary significantly depending on cell 

type and environment. Third, protein abundance is not directly correlated to protein activity, 

which, in fact, is often determined by post-transcriptional modifications such as phosphorylation 

The ideal proteomics technique suited for drug discovery would have the following features: it 

should be able to separate membrane proteins and detect low abundance proteins, two abilities 

not quite yet realized, yet required in current separations and analytical techniques. 

Furthermore, it should be able to identify protein activity independently of protein abundance. It 

also should reveal protein-protein and protein-small-molecule interactions. This method should 

also be implemented easily, be automatable, and perform at high-throughput speed. Proteomics 

researchers are addressing these issues, and new methods are being developed. 
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1.2.7 CELLULAR PROTEOMICS AND SYSTEMS BIOLOGY 

Cellular proteomics is a new branch of proteomics aiming to map the location of proteins and 

protein-protein interactions in whole cells during key cell events. It uses techniques such as X-ray 

Tomography and optical fluorescence microscopy.  

Systems biology has been enabled by recent advances in multi-disciplinary scientific disciplines 

that allow for the parallel large-scale measurement of biomolecules, such as mRNA, proteins and 

metabolites. Understanding the detailed physiology of cells, tissues and entire organisms 

afforded by this approach will lead to a more comprehensive understanding of basic cellular 

events and their coordination. This comprehensive investigative approach represents a major 

shift in scientific paradigm, and over time will clearly have a major impact on how scientific 

analysis will be conducted. 

The recent few years have seen a growing interest in defining and establishing the emerging 

discipline of systems biology. While it is difficult to clearly define such a rapidly evolving 

discipline, characteristic trends are becoming apparent that allow a definition of what systems 

biology plans to accomplish. System biology endeavours to understand the detailed coordinated 

workings of entire organisms, with the ultimate goal to detect differences between health and 

disease, or to understand how cells or entire organisms react to the environment. Its ultimate 

goal is to understand the dynamic networks of regulation and interactions that allows cells and 

organisms to live in a highly interactive environment, and to understand how perturbations in 

the system cause disease. 

The critics of systems biology are ready to point out that "omic" approaches are not a substitute 

for hypothesis driven research, because a systems analysis does not provide a testable 

hypothesis but is more like a "fishing expedition", yielding undetermined information of a 

collective of molecules. However, this view-point does not do the discipline justice, because 

large scale investigative approaches can be hypothesis driven. For instance, one can form more 

global hypotheses such as a cell line or tissue changes protein expression/modification patterns 

in response to a drug stimulus, and that these changes are causally related to a toxic response to 

the drug. Using integrated molecular tools, these induced changes can readily be measured and 

compared to an appropriate experimental control. Cluster and correlation analysis of these data 

will then readily describe the dynamics of molecular changes in response to a perturbation of 

the system, in this case a drug challenge. Taken at face value, this collective information will 
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provide the researcher with a foundation to create better-informed hypotheses. This then 

accelerates the discovery process by avoiding the sequential trial and error approach that often 

plague classical experimentation. The real issue is that high-throughput approaches, such as 

gene expression analysis, proteomics, and metabolomics (the quantification and identification of 

metabolites and their modifications) provide only part of the cellular picture, namely the 

collective of molecules in a cell. 

While the integration of all omics information can provide great insights into how genetic and 

proteomic programs are modulated, the information alone does not provide any mechanistic 

details of how these molecules catalyze chemical reactions. The latter information can only be 

obtained through reductionist approaches, for example through the structural and functional 

analyses of proteins and the reconstitution of biological processes in vitro, which can 

scientifically prove function and mechanism. Knowledge about tissue specific and subcellular 

protein localization, together with quantitative information about local or cellular abundance, 

will add further detail that allows the interpretation and assessment of which machineries are 

localized where and if a given mechanism is likely to be significant to a particular process. 
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2  MASS SPECTROMETRY-BASED PROTEOMICS 

Mass spectrometry (MS)-based proteomics, providing information about the qualitative and 

quantitative content of a biological sample, has become the technique of choice for acquiring 

data in the proteomics research field. This chapter is meant to illustrate all the main steps of a 

MS-based proteomics workflow. 

2.1 SAMPLE PREPARATION 

As technological progresses are made in the field of proteomics, it is seen that advances are 

necessary in the preparation of protein samples. Over time, changes will take place in protein 

structure that could potentially alter experimental results; many problems can arise from 

improper handling of proteins. Contaminants in samples can cause results to be skewed, and 

may even damage equipment. Uneven labeling could compromise quantification reliability.  

Sample preparation is becoming particularly critical in the case of high throughput techniques 

involving Mass spectrometry (MS). In these protocols, the conditions of a sample in one stage 

may directly conflict with the efficacy of a second stage. A number of issues arise in this respect; 

including sample fractionation, clean-up, labeling, etc. Thus, there is an increasing demand for 

automated and streamlined sample preparation tools for protein and peptide extraction 

upstream of MS. The particular MS experiment will ultimately dictate the degree and types of 

necessary preparations. Nevertheless, some concepts, such as fractionation, can be applied to 

any MS experiment, whereas labeling  is used only for relative quantification, which will be 

illustrated in the next chapter. 

Therefore, the first step to any proteomics experiment, particularly MS, is to reduce the 

complexity of the sample, or fractionate the sample. The goal of fractionation is usually to 

remove the “highly abundant components of the proteome” followed by “subsequent 

fractionation of the moderate to low abundance proteins” in order to produce a concentrated 

sample of proteins with the potential to be clinically relevant. A protein sample can be 

fractionated on the basis of size, charge, hydrophobicity, and/or binding affinity. These qualities 

are often the basis of the many available kits capable of enriching a sample by partitioning out 

highly abundant proteins from a sample such as serum.  
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The clean-up of a protein sample is more crucial prior to introduction to the mass spectrometer 

than in most other proteomics experiments, primarily because of the sensitivity of the 

technology, but also because dirty samples can be quite detrimental to the machine. In terms of 

MS sensitivity, it is necessary to remove the detergents, ion suppressing salts, and other 

substances commonly used in proteomic sample preparation as they can compromise analysis. 

Protein samples need to be denatured prior to any digestion with proteases so the protease will 

have as much access to targeted amino acids as possible [5]. Proteases cleavage is needed for 

reducing protein to peptides, which can be detected by the MS since the m/z ratios of their 

isotopes belong to the mass acquisition range of the spectrometer. Endoproteinase Lys-C (Lys-C) 

and trypsin are proteases used for digesting proteins into a population of peptides that can be 

identified by the mass spectrometer. Lys-C cleaves on the c-terminal side of lysine and the 

resulting peptides are larger than tryptic peptides. Trypsin has a high specificity, it cleaves on the 

c-terminal side of lysine and arginine amino acids. Since maximal amino acid coverage of the 

protein is required, it is best to digest the sample with several proteases, so the resulting 

peptides are more likely to contain amino acid information from the entirety of the protein. The 

selection of proteases depends greatly upon the amino acid sequence of the target protein.  
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2.2 PROTEIN SEPARATION 

In chemistry and chemical engineering, a separation process is used to transform a mixture of 

substances into two or more compositionally-distinct products. Almost every element or 

compound is found naturally in an impure state such as a mixture of two or more substances. To 

obtain a pure protein sample, a protein must be isolated from all other proteins and cellular 

components. A task that is equally challenging is keeping the protein in its active form. When 

purifying proteins it is necessary to simulate the pH, salt concentration and reducing conditions 

in which they normally are. In the process of obtaining an active and pure sample it is 

convenient to minimize the number of steps taken in order to maximize the yield at the end of 

the separation. Finally, since proteins are subject to fast degradation rates, it is also critical to 

obtain our sample as quickly as possible. All these components of protein separations can be 

successfully achieved by a group of separation methods collectively known as chromatography. 

There are other separation techniques, e.g., electrophoresis and centrifugation, but 

chromatography is of utmost importance for MS-based proteomics research. In next paragraphs, 

some of the chromatographic techniques commonly coupled to MS will be described. 

 

2.2.1 CHROMATOGRAPHIC SEPARATION 

Chromatography makes use of an insoluble stationary phase and a mobile phase: the mobile 

phase is commonly a liquid solution which contains the protein to be isolated. The stationary 

phase on the other hand is made up of a grouping of beads, usually based on a carbohydrate or 

acrylamide derivative, that are bound to ionic charged species, hydrophobic characters, or 

affinity ligands. Successful chromatography design depends upon the selection of an appropriate 

stationary phase. There are several properties of proteins that can be taken advantage of for 

separating proteins. Different types of chromatography take advantage of different properties. 

Proteins can be separated by size, shape, hydrophobicity, affinity to molecules or charge. The 

most common form of chromatography used in proteomics is probably Column 

chromatography. In column chromatography (represented in Figure 2-1), a mixture of proteins in 

solution is applied to the top of a cylindrical column filled with a permeable solid matrix 

immersed in solvent. A large amount of solvent is then pumped through the column. Depending 

on the type of chromatography, proteins with certain characteristics will bind to the stationary 

phase while those lacking the sought characteristics will remain in the mobile phase and pass 
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through the column. The final step involves displacing the protein from the stationary phase, 

also known as elution, by introducing a particle which will compete with the protein binding site 

on the stationary phase. Because different proteins are retarded to different extents by their 

interaction with the matrix, they can be collected separately as they flow out from the bottom. 

Indeed, the column is usually coupled to a detection device such as a mass spectrometry device.  

Today various commercial column are readily available. The mobile phase can be either liquid or 

gas.  

Gas chromatography is very widely used in analytical chemistry. It has less application to 

proteomics because the technique requires high temperatures which are often unsuitable for 

the large polymers involved in proteomics. Gas chromatography depends on the partition 

equilibrium between a solid stationary phase and a gaseous mobile phase. It is almost always 

performed in a tube. The stationary phase usually consists of solid beads packed into a column 

adhered to a capillary tube.  

A more useful mobile phase in proteomics is one that is in a liquid state. All of the techniques 

discussed in this paragraph involve liquid chromatography. In this technique, there is 

traditionally a partition equilibrium between a solid stationary phase and a liquid mobile phase. 

Liquid chromatography is either carried out in a column or a plane. The stationary phase is 

almost always solid, however, there are examples of chromatography experiments in which the 

stationary phase is in another state.  

Separation of highly complex mixture can be a very difficult task. The mixture can be distributed 

according to their molecular mass, chemical composition, functionality and architecture. A single 

chromatography experiment may be inefficient in separating our proteins of interest. In 2D 

chromatography, different techniques are essentially combined to achieve a higher degree of 

separation. This can be done by an offline technique, where the result of one chromatography is 

injected manually into a second column chromatography or an online method, where the two 

columns are directly coupled through switches.  
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FIGURE 2-1 A CHROMATOGRAPHIC COLUMN SYSTEM WITH SOLID MATRIX. THE STATIONARY PHASE IS IN A COLUMN. 

THE MOBILE PHASE ENT ERS THE COLUMN AND FLOWS OUT AT A CONSTA NT RATE. AS IT FLOWS OUT OF THE 

COLUMN ANY PROTEIN THAT HASBEEN ELUTED IN TH E MOBILE PHASE CAN B E DETECTED.  

 

2.2.1.1 ION EXCHANGE CHROMATOGRAPHY 

Ion exchange chromatography (IC) is probably the most frequently used chromatographic 

technique for the separation and purification of proteins, polypeptides, nucleic acids, 

polynucleotides and other charged biomolecules based on the charge properties of the 

molecules. The reasons for the success of ion exchange are its widespread applicability, its high 

resolving power, its high capacity and the simplicity and controllability of the method. Ion 

exchange chromatography retains analyte molecules based on ionic interactions (see Figure 2-2). 

The stationary phase surface displays ionic functional groups that interact with analyte ions of 

opposite charge. The charged stationary phases are named according to the types of charged 

particles that bind to them. This type of chromatography is further subdivided into cation 

exchange chromatography and anion exchange chromatography: 
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 Cation-exchange chromatography retains positively charged cations because the 

stationary phase displays a negatively charged functional group such as a phosphoric 

acid; 

 Anion-exchange chromatography retains negatively charged anions using positively 

charged functional group such as a quaternary ammonium cation. 

Proteins have numerous functional groups that can have both positive and negative charges. Ion 

exchange chromatography separates proteins according to their net charge, which is dependent 

on the composition of the mobile phase. By adjusting the pH or the ionic concentration of the 

mobile phase, various protein molecules can be separated. For example, if a protein has a net 

positive charge at pH 7, then it will bind to a column of negatively-charged beads, whereas a 

negatively charged protein would not. By changing the pH so that the net charge on the protein 

is negative, it will be eluted too.  

Elution by changing the ionic strength of the mobile phase is a more subtle effect: it works as ion 

from the mobile phase will interact with the immobilized ion in preference over those on the 

stationary phase. This shields the stationary phase from the protein binding (and vice versa) and 

allows the protein to elute. 

 

FIGURE 2-2 ION-EXCHANGE COLUMNS ARE  PACKED WITH SMALL BEADS CARRYING EITHER POSITIVE OR NEGATIVE  

CHARGES THAT RETARD PROTEINS OF THE OPPOSITE CHARGE. THE ASSOCIATION BETWEEN A P ROTEIN AND THE 

MATRIX DEPENDS ON TH E PH AND IONIC STRENGTH OF THE SOLUTION PASSING DOWN THE COL UMN.  
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2.2.1.2 AFFINITY CHROMATOGRAPHY 

Affinity chromatography is one of the most commonly used techniques as it is very selective and 

effective at isolating proteins. The technique relies on unique interaction between a molecules 

with a ligand bounded to the matrix (see Figure 2-3). These matrices include interaction 

between those pairs: antigen-antibody, enzyme-substrate, receptor-ligando, nucleic acid binding 

protein-nucleic acid and polysaccharide/glycoprotein-lectin. Developing an effective affinity 

chromatography method involves finding a ligand that is specific enough and creating suitable 

conditions for the binding between the target protein and the ligand as well as to release the 

protein. Since only the specific target sample can bind to the stationary phase, no fine-tuned 

elution gradient is necessary.  

 

 

FIGURE 2-3 ONE WAY TO MAKE THE BOUND PROTEIN ELUTE IS TO INTRODUCE FREE LIGAND THAT WILL BIND TO THE 

TARGET MOLECULE (UPPER PANEL).  THE BOUND PROTEIN CAN BE ELUTED BY INTRODUCING ANOTHER PROTEIN 

THAT WILL OUTCOMPETE  THE TARGET PROTEIN AND BIND TO THE LIGAND (PANEL BELOW).  
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2.2.1.3 NORMAL PHASE CHROMATOGRAPHY 

Normal phase chromatography (NP) separates analytes based on polarity. This method uses a 

polar stationary phase and a non-polar mobile phase, and is used when the analyte of interest is 

fairly polar in nature. The polar analyte associates with and is retained by the polar stationary 

phase. Adsorption strengths increase with increase in analyte polarity, and the interaction 

between the polar analyte and the polar stationary phase (relative to the mobile phase) 

increases the elution time. Use of more polar solvents in the mobile phase will decrease the 

retention time of the analytes while more hydrophobic solvents tend to increase retention 

times. Particularly polar solvents in a mixture tend to deactivate the column by occupying the 

stationary phase surface. This is somewhat particular to normal phase because it is most purely 

an adsorptive mechanism (the interactions are with a hard surface rather than a soft layer on a 

surface). 

NP chromatography had fallen out of favour in the 1970's with the development of reversed-

phase chromatography because of its lack of reproducibility of retention times. 

 

2.2.1.4 REVERSED PHASE CHROMATOGRAPHY 

Reversed Phase chromatography (RP) is a separation technique based on the solubility of the 

protein. The term “reverse” was derived from its predecessor named “normal” phase 

chromatography, which utilized a polar stationary phase. In reverse phase, the stationary phase 

is packed with non-polar hydrocarbon, typically C4, C8 or C18. This creates a hydrophobic 

stationary phase, in contrast with the polar stationary phase of the NP. The mobile phase on the 

other hand, contains polar organic solvents such as methanol, butanol, isopropanol, acetonitrile 

and isopropanol. Utilization of these polar solvents introduces very harsh conditions for the 

protein, thus the method will generally work well for smaller and more stable proteins. All 

peptides and proteins carry a mix of hydrophilic and hydrophobic amino acids, but those with 

high net hydrophobicity will be able to participate in hydrophobic interactions with the 

stationary phase. As mixtures of proteins are applied to the column, polar proteins will elute first 

while non-polar proteins will bind to the column. Proteins in the mixture that have a high 

percentage of exposed hydrophobic amino acid residues will be adsorbed to the hydrophobic 

stationary phase. Other proteins in the mixture will be washed out. Elution of the bound 

hydrophobic protein can be accomplished by increasing the concentration of organic solvent, 



43 
 
 

which increases the retention time of a particular component. Reverse phase chromatography is 

commonly coupled with mass spectrometry in an effort to quantify the protein that is eluted 

from the column and is the method used to generate the dataset we will analyze in this work. 

For the sake of exhaustiveness the dataset have been separated using nanoRP-HPLC applied on a 

Ultimate 2 Dual Gradient HPLC system.   

 

2.2.1.5 HIGH-PERFORMANCE/PRESSURE LIQUID CHROMATOGRAPHY 

High-performance/pressure liquid chromatography (HPLC) is a form of column chromatography 

used frequently in biochemistry and analytical chemistry. HPLC is used to separate components 

of a mixture by using a variety of chemical interactions between the substance being analyzed 

(analyte) and the chromatography column. The basic operating principle of HPLC is to force the 

analyte through a column of the stationary phase (usually a tube packed with small round 

particles with a certain surface chemistry) by pumping a liquid (mobile phase) at high pressure 

through the column. The internal diameter (ID) of an HPLC column is a critical aspect that 

determines quantity of analyte that can be loaded onto the column and also influences 

sensitivity. Larger columns are usually seen in industrial applications, low ID columns have 

improved sensitivity and lower solvent consumption at the expense of loading capacity. The 

sample to be analyzed is introduced in small volume to the stream of mobile phase and is 

retarded by specific chemical or physical interactions with the stationary phase as it traverses 

the length of the column. The amount of retardation depends on the nature of the analyte, 

stationary phase and mobile phase composition. The time at which a specific analyte elutes 

(comes out of the end of the column) is called the retention time and is considered a reasonably 

unique identifying characteristic of a given analyte. The use of pressure increases the linear 

velocity (speed) giving the components less time to diffuse within the column, leading to 

improved resolution in the resulting chromatogram (that is the temporal representation of the 

eluting substance). Common solvents used include any miscible combinations of water or 

various organic liquids (the most common are methanol and acetonitrile). Water may contain 

buffers or salts to assist in the separation of the analyte components, or compounds such as 

Trifluoroacetic acid which acts as an ion pairing agent. 

A further refinement to HPLC has been to vary the mobile phase composition during the 

analysis, this is known as gradient elution. A normal gradient for reversed phase 
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chromatography might start at 5% methanol and progress linearly to 50% methanol over 25 

minutes, depending on how hydrophobic the analyte is. The gradient separates the analyte 

mixtures as a function of the affinity of the analyte for the current mobile phase composition 

relative to the stationary phase. This partitioning process is similar to that which occurs during a 

liquid-liquid extraction but is continuous, not step-wise. In this example, using a water/methanol 

gradient, the more hydrophobic components will elute (come off the column) under conditions 

of relatively high methanol; whereas the more hydrophilic compounds will elute under 

conditions of relatively low methanol. The choice of solvents, additives and gradient depend on 

the nature of the stationary phase and the analyte. Often a series of tests are performed on the 

analyte and a number of generic runs may be processed in order to find the optimum HPLC 

method for  the analyte, which gives the best separation of peaks. Most traditional HPLC is 

performed with the stationary phase attached to the outside of small spherical silica particles 

(very small beads). These particles come in a variety of sizes with 5μm beads being the most 

common. Smaller particles generally provide more surface area and better separations, but the 

pressure required for optimum linear velocity increases by the inverse of the particle diameter 

squared. This means that changing to particles that are half as big in the same size of column will 

double the performance, but increase the required pressure by a factor of four. High 

performance liquid chromatography has proven itself to be very useful in many scientific fields, 

yet forces scientists to consistently choose between speed and resolution.  

 

2.2.1.6 ULTRA PERFORMANCE LIQUID CHROMATOGRAPHY 

Ultra performance liquid chromatography (UPLC or uHPLC) eliminates the need to choose and 

creates a highly efficient method that is primarily based on small particle separations. uHPLC 

systems have been developed to take into account all the advantages that small particle 

separations currently have over HPLC. Many of these advantages are primarily based on the 

theories behind liquid chromatography. In general, increasing the efficiency of a separation will 

also increase its resolution. Since both efficiency and optimum flow rate are inversely 

proportional to particle size, a decrease in the particle size will increase efficiency and speed up 

the flow rate. The particles are specifically designed to withstand wide ranges of pressure and 

pH, have a high load capacity, and improve efficiency. Other innovations to the chromatography 

method include a high pressure solvent delivery system, to take into account the smaller particle 

size, fast injection cycle sample management, and specialized detectors with fiber optic flow cell 
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design. The lower bead size is the true reason for uHPLC increased flow rate and resolution. This 

can be shown mathematically using Deemter's equation: H = A + B/µ + Cµ. H being the plate 

height and µ being the particle size. The A, being a constant, is independent of flow rate (it is 

referred to as the “Eddy diffusion term”). The B constant is the diffusion coefficient, and C is the 

"analyte mass transfer" coefficient. As µ decreases, the A and C values needed for a similar H 

value decrease, allowing for higher resolution. This also reduces the effect of the C value on the 

H value, yielding faster separations for similar resolutions. Note uHPLC out classes HPLC in all 

aspects, and is expected to replace HPLC in the near future.  

 

2.2.2 SEPARATION BY ELECTROPHORESIS 

Gel electrophoresis is used to differentiate molecular entities depending on their physical 

characteristics such as size, shape, or isoelectric point as they move through a gel by an electrical 

current. Gel electrophoresis is used as an analytical technique or as a preparatory technique to 

purify molecules before they are used for other methods like mass spectrometry. It is based on 

the principle that, when charged molecules are placed in an electric field, they migrate toward 

either the positive or negative pole depending on their charge. Since nucleic acids are negatively 

charged due to their phosphate groups they migrate toward the anode. Unlike nucleic acids, 

since proteins can have either a net positive or a net negative charge they can migrate to either 

of the poles depending on the charge. Protein can have different charges and complex shapes, 

primary, secondary, tertiary, and quaternary structure and that make migration through the gel 

have extremely different rates during electrophoresis. 

 

2.2.2.1 POLYACRYLAMIDE GEL ELECTROPHORESIS 

Polyacrylamide gel electrophoresis (PAGE) is commonly used separating proteins. PAGE can be 

used to purify proteins prior to other proteomics techniques or to analyze information on the 

mass, the charge on proteins, and/or presence of a protein. Due to these complex structures, 

proteins are usually denatured, or broken down to simple primary structures in the presence of 

a detergent such as sodium dodecyl sulfate (SDS), which imparts a negative charge on proteins, 

and thus allow for proper migration. The quantity of SDS bound and the size of the protein are 

relative to each other, thus this method separates proteins mainly based on molecular weight. 
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Two-dimensional PAGE (2-D PAGE) differentiates proteins in the first dimension by isoelectric 

point and in the second dimension by molecular weight. Native PAGE separates proteins by 

mass/charge ratio without denaturing them. 

 

2.2.2.2 SDS-PAGE 

SDS-PAGE is a very common method of gel electrophoresis for separating proteins by mass. It 

was first employed by U.K Laemmli and known as Laemmli method. The proteins are dissolved in 

sodium dodecyl sulfate (SDS), a detergent that breaks up the interactions between proteins, and 

then electrophorised. The smallest molecules move through the gel faster, while larger 

molecules take longer and result in bands closer to the top of the gel. The gel used for SDS-PAGE 

is made out of acrylamide, which forms cross-linked polymers of polyacrylamide. Standard gels 

are typically composed of two layers, the stacking gel (top layer) and separating or resolving gel 

(lower layer). The stacking layer contains a low percentage of acrylamide and has low pH, while 

the acrylamide concentration of the separating gel varies according to the samples to be run and 

has higher pH. The differences in pH and acrylamide concentration at the stacking and 

separating gel provide better resolution and sharper bands in the separating gel. 

The gel is submerged in the buffer and proteins denatured by SDS are applied to one end of a 

layer of gel. Buffer provides uniform pH and ions for conducting electric potential. The proteins 

which are negatively charged migrate across the gel to the positive pole when an electricity is 

applied through the gel. Short proteins move fast because they can easily pass through the gel 

pores, while larger molecules move slowly. Due to differential migration based on their size, 

larger proteins are close to the top of the gel while smaller proteins move to bottom of the gel. 

After a given period of time, proteins might have separated roughly according to their sizes. 

Proteins of known molecular weight (marker proteins) can be run in a separate lane in the gel 

for calibration. 

After the electrophoresis run, the gel is stained with silver stain or Coomassie Brilliant Blue for 

visualization of the proteins. Within the gel different proteins will be seen as separate spots or 

bands depending on their sizes on staining. The molecular weight of a protein in the band can be 

estimated by comparing it with the marker proteins of known molecular weights. The separated 

proteins can be cut from the gel and further analyzed by other proteomics techniques. 
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2.2.2.3 2D ELECTROPHORESIS 

2-D electrophoresis begins with 1-D electrophoresis but then separates the molecules by a 

second property in a direction 90 degrees from the first. In 1-D electrophoresis, proteins (or 

other molecules) are separated in one dimension, so that all the proteins/molecules will lie 

along a lane but be separated from each other by a property (e.g. isoelectric point). The result is 

that the molecules are spread out across a 2-D gel. Because it is unlikely that two molecules will 

be similar in both properties, molecules are more effectively separated in 2-D electrophoresis 

than in 1-D electrophoresis. However 1-D gel electrophoresis (e.g. SDS-PAGE) is more commonly 

used. The two dimensions that proteins are separated into using this technique are isoelectric 

point and mass. To separate the proteins by isoelectric point, a gradient of pH is applied to a gel 

and an electric potential is applied across the gel, making one end more positive than the other. 

At all pHs other than their isoelectric point, proteins will be charged. If they are positively 

charged, they will be pulled towards the more negative end of the gel and if they are negatively 

charged they will be pulled to the more positive end of the gel. The proteins applied in the first 

dimension will move along the gel and will accumulate at their isoelectric point. That is, the 

point at which the overall charge on the protein is 0 (i.e. a neutral charge). Before separating the 

proteins by mass, they are treated with sodium dodecyl sulfate along with other reagents (SDS-

PAGE in 1-D). This denatures the proteins (that is, it unfolds them into long, straight molecules) 

and binds a number of SDS molecules roughly proportional to the protein's length. Because a 

protein's length (when unfolded) is roughly proportional to its mass, this is equivalent to saying 

that it attaches a number of SDS molecules roughly proportional to the protein's mass. Since the 

SDS molecules are negatively charged, the result of this is that all of the proteins will have 

approximately the same mass-to-charge ratio as each other. In addition, proteins will not 

migrate when they have no charge (a result of the isoelectric focusing step) therefore the 

coating of the protein in SDS (negatively charged) allows migration of the proteins in the second 

dimension (SDS is not compatible for use in the first dimension as it is charged and a nonionic or 

zwitterionic detergent needs to be used). In the second dimension, an electric potential is again 

applied, but at a 90 degree angle from the first field. The proteins will be attracted to the more 

positive side of the gel proportionally to their mass-to-charge ratio. As previously explained, this 

ratio will be nearly the same for all proteins. The migration will be slowed by frictional forces. 

The gel therefore acts like a molecular filter when the current is applied, separating the proteins 

on the basis of their molecular weight with larger proteins being retained higher in the gel and 

smaller proteins being able to pass through the sieve and reach lower regions of the gel. The 
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result is a gel with proteins spread out on its surface. These proteins can then be detected by a 

variety of means, but the most commonly used stains are silver and Coomassie staining (see 

Figure 2-4). In this case, a silver colloid is applied to the gel. The silver binds to cysteine groups 

within the protein. The silver is darkened by exposure to ultra-violet light. The darkness of the 

silver can be related to the amount of silver and therefore the amount of protein at a given 

location on the gel. This measurement can only give approximate amounts, but is adequate for 

most purposes. 

 

FIGURE 2-4 COOMASSIE STAINED 2D GELS FOR 2D ELECTROPHORESIS.  

 

2.2.3 SEPARATION BY CENTRIFUGATION 

Centrifugation is one of the most important and widely applied research techniques in 

biochemistry, cellular and molecular biology, and in medicine. In the field of proteomics it plays 

a vital role in the fundamental and necessary process of isolating proteins. This process begins 

with intact cells or tissues. Before the proteins can be obtained, the cells must be broken open 
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by processes such as snap freezing, homogenization by high pressure, or grinding with liquid 

nitrogen. Once the cells have been opened up all of their contents; including cell membranes, 

RNA, DNA, and organelles will be mixed in the solvent with the proteins. Centrifugation is 

probably the most commonly used method for separating out all the non proteic material. 

Within the centrifuge samples are spun at high speeds and the resulting force causes particles to 

separate based on their density. Moreover the use of density gradients externally applied has 

become almost routine in centrifugal fractionation of particle mixtures and purification of 

subcellular organelles and macromolecules. The basic idea behind the density gradient approach 

is that the mixture of particles to be separated is placed onto the surface of a vertical column of 

liquid, the density of which progressively increases from top to bottom, and then centrifuged. 

Although the particles in suspension are individually denser than the liquid at the top of the 

gradient, the average density for the sample (i.e., particles plus suspending liquid) is lower; only 

under such conditions could the sample zone be supported by the top of the density gradient. 

We won’t go through this kind of separation techniques anymore since our focus is 

chromatography. For more detailed information about it see some of the countless review on it. 
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2.3 MASS SPECTROMETRY 

Mass spectrometry (MS) is an analytical technique used to measure the mass-to-charge ratio of 

ions. The technique had its beginnings in J.J. Thomson's vacuum tube where, in the early part of 

the century, the existence of electrons and "positive rays" was demonstrated. Thomson, the 

physicist, observed in his book "Rays of Positive Electricity and Their Application to Chemical 

Analysis" that the new technique could be used profitably by chemists to analyze chemicals. 

Despite this far-sighted observation, the primary application of mass spectrometry remains in 

the realm of physics for nearly thirty years. It was used to discover isotopes, to determine their 

relative abundance, and to measure their exact atomic masses, with a precision of 1 part in 106 

or better. These important fundamental measurements laid the foundation for later 

developments in different fields ranging from geochronology to biochemical research. 

MS is used to find the composition of a physical sample by generating a mass spectrum 

representing the relative concentrations (i.e. intensities) of the masses of sample components 

(see Figure 2-5). The mass spectrum is measured by the mass spectrometer. More specifically, a 

mass spectrometer is an instrument that measures the masses of individual molecules that have 

been converted into ions, i.e., molecules that have been electrically charged. The unit of mass is 

often referred to by chemists and biochemists as the Dalton (Da for short), and is defined as 

follows: 1 Da=(1/12) of the mass of a single atom of the isotope of carbon-12 (12C). This follows 

the accepted convention of defining the 12C isotope as having exactly 12 mass units. A mass 

spectrometer does not actually measure the molecular mass directly, but rather the mass-to-

charge ratio of the ions formed from the molecules. A useful unit for this purpose is the 

fundamental unit of charge, the magnitude of the charge on an electron. It follows that the 

charge on an ion is denoted by the integer number z of the fundamental unit of charge, and the 

mass-to-charge ratio m/z therefore represents Daltons per fundamental unit of charge. In many 

cases, the ions encountered in mass spectrometry have just one charge (z=1) so the m/z value is 

numerically equal to the molecular (ionic) mass in Da.  
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FIGURE 2-5 THE TOLUENE MASS SPECTRUM. ON THE Y COOR DINATE WE HAVE THE COUNTS OF IONS (I.E. INTENSITY)  

AND ON THE X COORDINATE THERE ARE THE M/ Z RATIO [Da]. 

 

All mass spectrometers consist of three basic parts: an ion source, a mass analyzer, and a 

detector system (see Figure 2-6). The stages within the mass spectrometer are: 

1. Producing ions from the sample (ionization source);  

2. Separating ions based on mass-to-charge ratio (mass analyzer); 

3. Detecting the number of ions of each mass produced (detector); 

4. Collecting, processing and analyzing the results and generating the mass spectrum (data 

system). 
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The sample which may originate as solid, liquid, solution or vapor, is presented to the ionization 

source. The sample, which may be a solid, liquid, or vapor, enters the vacuum chamber of the 

MS through an inlet. Depending on the type of inlet and ionization techniques used, the sample 

may already exist as ions in solution, or it may be ionized in conjunction with its volatilization or 

by other methods in the ion source. After ionizing the sample, the ions of the sample are passed 

to the mass analyzer region where separation based on the mass-to-charge ratio occurs. Once 

separated by the analyzer, the ions then enter the detector portion of the mass spectrometer. At 

this point, the machine calculates the mass-to-charge ratio and the relative abundance of each 

of the different ions. From this information, a spectrum graph can be created. Most mass 

spectrometers are maintained under a vacuum to improve the chances of ions traveling from 

ionization source to detector without interference by collision with air molecules.  

 

2.3.1 THE IONIZATION SOURCE 

The ion source is the mass spectrometer component which ionizes the sample to be analyzed. 

Ionization mainly serves to present the sample as vaporized ions which can be acted upon by the 

mass analyzer and measured by the ion detector. Formation of gas phase samples ions is an 

essential prerequisite to the mass sorting and detection processes that occur in a mass 

spectrometer.  

There are many different methods available to ionize samples, such as positive or negative ion 

modes. The ionization method chosen should depend on the type of sample and the type of 

FIGURE 2-6 SCHEME OF THE FUNCTIONAL BLOCKS OF A MASS SPECTROMETER.  
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mass spectrometer. There are two main classes of ionization methods, electron and chemical. 

Electron ionization involves application of an electrical current to the sample to induce 

ionization. Chemical ionization involves interaction of the sample with reagent molecules to 

induce ionization. Ions produced are often denoted with symbols that indicate the nature of the 

ionization: for example, [M+H]+ is used to represent a molecule which is protonated.  

The development of new ionization sources has been pivotal for the application of MS to 

biological samples and, therefore, the birth of the MS-based proteomics. Early mass 

spectrometers required a sample to be a gas: this was a great limit for its applicability to 

biological samples. In 2002, the Nobel Prize in Chemistry was received by John Bennett Fenn for 

the development of a soft ionization technique for liquid solutions, electrospray ionization (ESI) 

(see Figure 2-7), and Koichi Tanaka for the development of soft laser desorption (SLD) in 1987. 

An improved SLD method, matrix-assisted laser desorption/ionization (MALDI), was developed in 

1987 by Franz Hillenkamp and Michael Karas. ESI and MALDI made it possible to apply mass 

spectrometry to samples in liquid solutions or embedded in a solid matrix.  

In particular, soft ionization techniques were pivotal for proteomics research. "Soft" in the 

context of ion formation means forming ions without breaking chemical bonds. Indeed, in 

biological studies where the analyst often requires that non-covalent molecule-protein or 

protein-protein interactions are representatively transferred into the gas-phase, the formation 

of gas-phase ions without extensive fragmentation is mandatory. Two soft ionization methods 

commonly used in proteomics are ‘Matrix Assisted Laser Desorption Ionization’ or MALDI and 

‘Electrospray Ionization’ also known as ESI.  

 

FIGURE 2-7 A NANO-ELECTROSPRAY ION SOURCE (NANO-ESI).  
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2.3.1.1 ELECTROSPRAY IONIZATION 

Electrospray ionization (ESI) is a very popular electron ionization technique in mass spectroscopy 

for ionizing samples before they are measured. ESI works well with heavier compounds and is 

therefore often used in proteomics. In particular, it overcomes the propensity of these 

molecules to fragment when ionized. Electrospray can be simply considered an interface for 

transferring ions from the solution phase to the gas phase. The development of electrospray 

ionization for the analysis of biological macromolecules was rewarded with the attribution of the 

Nobel Prize in Chemistry to John Bennett Fenn in 2002 [6,7].  

The ESI source has undergone continued development since the earliest examples, but the 

general arrangement, as reported in Figure 2-8, has remained basically the same.  

 

 

FIGURE 2-8 A SCHEME REPRESENTING THE ESI WORKFLOW. ESI IS AN ATMOSPHERIC PRESSURE IONIZATION 

TECHNIQUE. IONS ARE FORMED IN SO LUTION (DROPLETS) AND THEN THE DROPLETS ARE EVAPORATED WITH A 

DRYING GAS (NEBULISED) IN THE PRESENCE O F A STRONG ELECTROSTATIC FIELD. THIS WILL DISASSOCIATE 

MOLECULES , INCREASE THE CHARGE CONCENTRATION. EVENTUALLY THE REPULSIVE FORCE BETWEEN IONS WITH 

LIKE CHARGES EXCEEDS  THE COHESIVE FORCES AND IONS ARE EJECTED IN TO THE GAS PHASE.  

 

The analyte is introduced to the source in solution either from a syringe pump or as the eluent 

flow from liquid chromatography. The analyte solution flow passes through an electrospray 

needle, where a high potential difference is applied with respect to the counter electrode (from 

2.5 to 4 kV). This forces the spraying of charged droplets from the needle with a surface charge 

of the same polarity to the charge on the needle. Since the droplets have the same charge, they 

are repelled from the needle towards the source sampling cone on the counter electrode. As the 
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droplets traverse the space between the needle tip and the cone and solvent evaporation 

occurs. As the solvent evaporation occurs, the droplet shrinks until it reaches the point that the 

surface tension can no longer sustain the charge (the Rayleigh limit) at which point a "Coulombic 

explosion" occurs and the droplet is ripped apart. This produces smaller droplets that can repeat 

the process as well as naked charged analyte molecules. These charged analyte molecules (they 

are not strictly ions) can be singly or multiply charged.  

ESI is a very soft method of ionization as very little residual energy is retained by the analyte 

upon ionization (see Figure 2-8). This is why ESI-MS is such an important technique in 

proteomics. 

 

 

FIGURE 2-9 A SCHEME REPRESENTING THE ION FORMATION IN ESI. 

 

There are many variations on the basic electrospray technique, that generally offer better 

sensitivity than it. Two important ones are microspray (µ-spray) and nanospray. The primary 

difference is in the reduced flow rate of the analyte containing liquid, µLiters/minute and 

nLiters/minute respectively; this causes many other differences, such as the reduced internal 

diameter of the tubing or lack of nebulization gas. 
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2.3.1.2  MATRIX-ASSISTED LASER DESORPTION IONIZATION 

Matrix-assisted laser desorption ionization (MALDI) is a soft ionization technique used in mass 

spectrometry, allowing the analysis of biomolecules (biopolymers such as proteins, peptides and 

sugars) and large organic molecules (such as polymers and other macromolecules), which tend 

to be fragile and fragment when ionized by more conventional ionization methods. It is most 

similar in character to electrospray ionization both in relative softness and the ions produced, 

although MALDI causes much fewer multiply charged ions. Most ions are found in the +1 charge 

state [M+H]+. The ionization is triggered by a laser beam (normally a nitrogen laser). A matrix is 

used to protect the biomolecules from being destroyed by direct laser beam and to facilitate 

vaporization and ionization.  

The term matrix-assisted laser desorption ionization (MALDI) was coined in 1985 by Franz 

Hillenkamp, Michael Karas and their colleagues [8,9]. The breakthrough for large molecule laser 

desorption ionization came in 1987 when Koichi Tanaka of Shimadzu Corp. and his co-workers 

used what they called the “ultra-fine metal plus liquid matrix method” [10]. Tanaka received 

one-quarter of the 2002 Nobel Prize in Chemistry for demonstrating that, with the proper 

combination of laser wavelength and matrix, a protein can be ionized. The availability of small 

and relatively inexpensive nitrogen lasers operating at 337 nm wavelength and the first 

commercial instruments introduced in the early 1990s brought MALDI to an increasing number 

of researchers.  

The identity of suitable matrix compounds is determined to some extent by trial and error, but 

they are based on some specific molecular design considerations. They are of a fairly low 

molecular weight, to facilitate vaporization, but are large enough, with a high enough vapor 

pressure, not to evaporate during sample preparation or while standing in the spectrometer.  

They are acidic, therefore act as a proton source to encourage ionization of the analyte. They 

have a strong optical absorption in the UV, so that they rapidly and efficiently absorb the laser 

irradiation. They are functionalized with polar groups, allowing their use in aqueous solutions. 

The matrix solution is mixed with the analyte (e.g. protein-sample): the organic solvent allows 

hydrophobic molecules to dissolve into the solution, while the water allows for water-soluble 

(hydrophilic) molecules to do the same. This solution is spotted onto a MALDI plate that usually 

is a metal plate designed for this purpose (see Figure 2-10). The solvents vaporize, leaving only 

the re-crystallized matrix, but now with analyte molecules spread throughout the crystals. Thus 

the matrix and the analyte are said to be co-crystallized in a MALDI spot.  
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FIGURE 2-10 SAMPLE TARGET FOR MALDI.  

 

The laser hits the spot on the crystallized matrix and transfers energy from the matrix molecule 

to the sample. This energy transfer vaporizes the sample, sending a plume of ions into the 

MALDI source. This plume of ions is then collected and held in the source until a pulse sends 

them all out simultaneously (see Figure 2-11). If the MALDI is attached to a Time of Flight (TOF) 

mass analyzer these ions are then sent down the TOF tube and are separated according to their 

velocity (light ions hitting first). The TOF mass analyzer will be described in the following of this 

chapter. 

 

 

FIGURE 2-11 SCHEMATIC REPRESENTATION OF HOW MALDI IONIZE THE SAMPLE. MOST OF THE IONS ARE FOUND IN THE +1 CHARGE 

STATE [M+H]
+
.  
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2.3.1.3 SURFACE-ENHANCED LASER DESORPTION IONIZATION 

Surface-enhanced laser desorption ionization (SELDI) is a variation of MALDI that uses a target 

modified to achieve biochemical affinity with the analyte compound [11]. In MALDI, a protein or 

peptide sample is mixed with the matrix molecule in solution and small amounts of the mixture 

are deposited on a surface and allowed to dry. The sample and matrix co-crystallize as the 

solvent evaporates. In SELDI the protein mixture is spotted on a surface modified with a 

chemical functionality. Some proteins in the sample bind to the surface, while the others are 

removed by washing. After washing the spotted sample, the matrix is applied to the surface and 

allowed to crystallize with the sample peptides. Binding to the SELDI surface acts as a separation 

step. The subset of proteins that binds to the surface are easier to analyze. Common surfaces 

include weak-positive ion exchange, hydrophobic surface, metal-binding surface, strong anion 

exchanger. Surfaces can also be functionalized with antibodies, other proteins, or DNA.  

SELDI is used to detect proteins in tissue samples, blood, urine, or other clinical samples.  

Samples spotted on a SELDI surface are typically analyzed using the TOF mass analyzer. A laser 

ionizes peptides from crystals of the sample/matrix mixture. The ions are accelerated through an 

electric potential and down a flight tube. A detector measures ions as they reach the end of the 

tube. The mass-to-charge ratio of each ion can be determined from the length of the tube, the 

kinetic energy given to ions by the electric field, and the time taken to travel the length of the 

tube. 

 

2.3.2 THE MASS ANALYZER 

The analyzer uses dispersion or filtering to sort ions according to their mass-to-charge ratios or a 

related property. The most widely used analyzers are sectors, quadrupole mass filters, 

quadrupole ion traps, Fourier transform ion cyclotron resonance spectrometers, and time-of-

flight mass analyzers. 

Mass analyzers separate the ions according to their mass-to-charge ratio. All mass 

spectrometers are based on dynamics of charged particles in electric and magnetic fields in 

vacuum where the Lorentz’s force law (2-1) and the Newton's second law of motion (2-2) apply: 
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F = q (E + v x B)   2-1   

 

F = ma    2-2   

                      

where F is the force applied to the ion, m is the mass of the ion, a= ̇ is the acceleration, q is the 

ionic charge, E is the electric field, and  v x B is the vector cross product of the ion velocity and 

the magnetic field. Equating the above expressions for the force applied to the ion yields: 

 

(m/q) a = E + v x B              2-3   

 

This differential equation 2-3 is the classic equation of motion of charged particles. Together 

with the particle's initial conditions it completely determines the particle's motion in space and 

time and therefore is the basis of every mass spectrometer. It immediately reveals that two 

particles with the same physical quantity m/q behave exactly the same. So what equation (2-3) is 

basically saying is that the mass to charge ratio acts as a determinant of acceleration of the ion, 

which can also be represented as the addition of the electric field plus the cross product of the 

ion velocity and magnetic field.  

 

2.3.2.1 SECTOR FIELD MASS ANALYZER 

A sector field mass analyzer (see Figure 2-12) uses an electric and/or magnetic field to affect the 

path and/or velocity of the charged particles: it changes the direction of ions that are 

accelerated through the mass analyzer. The ions enter a magnetic or electric field which bends 

the ion paths depending on their mass-to-charge ratios, deflecting the more charged and faster, 

lighter ions. Under ideal conditions ions of different masses will separate physically in space into 

different beams. Ions of larger m/z follow larger radius paths than ions of smaller m/z values so 

ions of differing m/z values are dispersed in space. By changing the ion trajectories through 

variations of the magnetic field strength, ions of different nominal mass-to-charge ratios can be 

focused on a detector. The ions eventually reach the detector and their relative abundances are 

measured. The analyzer can be used to select a narrow range of m/q or to scan through a range 
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of m/q to catalog the ions present. Double focusing mass spectrometers use a combination of 

magnetic and electrical fields to focus and sort ions. 

 

 

FIGURE 2-12 A SECTOR FIELD FROM A FINNIGAN MAT MASS SPECTROMETER.  

 

2.3.2.2 TIME-OF-FLIGHT MASS ANALYZER 

The Time-of-flight (TOF) is a mass analyzer that allows ions to flow down a field free region [12]. 

This allows the ions with a greater velocity, lighter ions, to hit the detector first. TOF is especially 

compatible with MALDI (or SELDI) due to the fact that it needs a pulsed source for ions emission. 

Ions are generated in the MALDI source and then all are pulsed into the TOF at the same exact 

time. This results in all the ions receiving the same initial kinetic energy. Therefore, the ions with 

the lower mass will have a higher velocity and reach the detector first; whereas the ions with the 

higher mass will have slower velocity and hit the detector last. The time that it takes for the 

particle to reach the detector at a known distance is measured and it is the so called time of 

flight. It will depend on the mass-to-charge ratio of the particle (heavier particles reach lower 

speeds). From the time of flight and the known experimental parameters it is possible to 

compute the mass-to-charge ratio of the ion. 

 

2.3.2.3 FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS ANALYZER 

Fourier transform ion cyclotron resonance (FTICR) is a type of mass analyzer which determines 

the mass-to-charge ratio of ions based on the cyclotron frequency of the ions in a fixed magnetic 
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field [13]. The ions are trapped in a Penning trap (a magnetic field with electric trapping plates) 

where they are excited to a larger cyclotron radius by an oscillating electric field perpendicular 

to the magnetic field. The excitation also results in the ions moving in phase, so you can imagine 

them moving like in packets. The signal is detected as an image current on a pair of plates which 

the packet of ions passes close to as they cycle around. The resulting signal is called a free 

induction decay (FID) transient or interferogram and consists of a superposition of sine waves. 

The useful signal is extracted from this data using the properties of the Fourier transform in 

order to obtain a mass spectrum. FTMS has the advantage of high sensitivity (since each ion is 

'counted' more than once) and much high resolution and thus precision. 

 

2.3.2.4 THE ORBITRAP 

One of the most recently introduced mass analyzers is the Orbitrap [14-17]. Here, ions are 

electrostatically trapped in an orbit around a central, spindle-shaped electrode. Ions are injected 

tangentially into the electric field between the electrodes and trapped because their 

electrostatic attraction to the inner electrode is balanced by centrifugal forces. Thus, ions cycle 

around the central electrode in rings. In addition, the ions also move back and forth along the 

axis of the central electrode. Therefore, ions of a specific mass-to-charge ratio move in rings 

which oscillate along the central spindle. The frequency of these harmonic oscillations is 

independent of the ion velocity and is inversely proportional to the square root of the mass-to-

charge ratio. This oscillation generates a current in the detector plates which is recorded by the 

instrument. The frequencies of these currents depend on the mass to charge ratios of the ions in 

the Orbitrap. Mass spectra are obtained by Fourier transformation of the recorded image 

currents. Orbitraps have a high mass accuracy (1-2 ppm), a high resolving power (up to 200,000) 

and a high dynamic range (around 5000) [18]. Like FTICR-MS the Orbitrap resolving power is 

proportional to the number of harmonic oscillations of the ions, as a result the resolving power 

is inversely proportional to the square root of m/z and proportional to acquisition time. Given 

that a transient is the duration that the time domain signal is acquired for, the resolving power 

decreases further as the m/z value increases so that at 4 times the m/z value the resolving 

power has halved. Approximately 0.1 seconds per transient is required for data processing, thus 

a 0.1 second transient has a cycle time of 0.2 seconds.  
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Further improvements on the Orbitrap technology have been achieved during last decade. 

OrbitrapXL and the newest Orbitrap Velos feature faster acquisitions, higher resolutions and 

accuracies than their common ancestor. 

 

2.3.2.5 THE QUADRUPOLE MASS ANALYZER 

The quadrupole mass analyzer [19] is essentially a mass filter that is capable of transmitting only 

the ion of choice. A mass spectrum is obtained by scanning through the mass range of interest 

over time. The quadrupole consists of four parallel metal rods. Each opposing rod pair is 

connected together electrically and a radio frequency (RF) voltage is applied between one pair of 

rods and the other. A direct current voltage is then superimposed on the RF voltage. Ions travel 

down the quadrupole in between the rods. Only ions of a certain m/z will reach the detector for 

a given ratio of voltages: other ions have unstable trajectories and will collide with the rods. This 

allows selection of a particular ion, or scanning by varying the voltages and thus the selected 

ions. 

These types of mass spectrometers excel at applications where particular ions of interest are 

studied because they can stay tuned on a single ion for extended periods of time. One place 

where this is useful is in liquid chromatography-mass spectrometry or gas chromatography-mass 

spectrometry where they serve as exceptionally high specificity detectors. Quadrupole 

instruments are often reasonably priced and make good multi-purpose instruments, but they 

provide lower resolution than double focusing instruments. 

 

2.3.2.6 THE QUADRUPOLE ION TRAP MASS ANALYZER 

A quadrupole ion trap [20] exists in both linear and 3D (Paul Trap, QIT) varieties and refers to an 

ion trap that uses DC (direct current) and radio frequency (RF) oscillating AC (alternating current) 

electric fields to trap ions. The invention of the 3D quadrupole ion trap itself is attributed to 

Wolfgang Paul [21]  who shared the Nobel Prize in Physics in 1989 for this work.  

The quadrupole ion trap mass spectrometer (see Figure 2-13) operates on a principle similar to a 

quadrupole mass filter. However, it does not operate as a filter. Rather, the ion trap stores ions 

for subsequent experiments and analysis. It uses fields generated by RF (and sometimes DC) 

voltages applied to electrodes arranged in a sandwich geometry. The 3D trap itself generally 
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consists of two hyperbolic metal electrodes with their focuses facing each other and a hyperbolic 

ring electrode halfway between the other two electrodes. The ions are trapped in the space 

between these three electrodes by AC (oscillating, non-static) and DC (non-oscillating, static) 

electric fields. The AC radio frequency voltage oscillates between the two hyperbolic metal end 

cap electrodes if ion excitation is desired; the driving AC voltage is applied to the ring electrode. 

The ions are first pulled up and down axially while being pushed in radially.  

 

FIGURE 2-13 A SCHEME REPRESENTAT ION OF A QIT.  

The ions are then pulled out radially and pushed in axially (from the top and bottom). In this way 

the ions move in a complex motion that generally involves the cloud of ions being long and 

narrow and then short and wide, back and forth, oscillating between the two states (see Figure 

2-14). The quadrupole ion trap has two configurations: the three dimensional form described 

above and the linear form made of 4 parallel electrodes.  
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FIGURE 2-14 IN THE LEFT UPPER IMAGE THERE IS A 3D VISUALIZATION OF A QIT. IN THE RIGHT UPPER IMAGE YOU 

CAN SEE THE IONS TRAJECTORY THROUGHOUT THE QUADRUPOLE. BELOW, ON THE LEFT YOU SEE THE 

REPRESENTATION OF TH E POTENTIAL ENERGY SURFACE, WHILE ON THE RIGHT THERE IS A DEPICTION OF THE 

ELECTROMAGNETIC FIEL D IN THE TRAP (THOSE PINK LINES YOU SEE ARE THE EQUIPOTENTIAL LINES IN THE TRAP).  

 

A linear quadrupole ion trap (LTQ) (see Figure 2-15) is similar to a QIT, but traps ions in a 2D 

quadrupole field, instead of a 3D quadrupole field as in a QIT. Linear ion trap uses a set of 

quadrupole rods to confine ions radially and a static electrical potential on end electrodes to 

confine the ions axially. The linear form of the trap can be used as a selective mass filter or as an 

actual trap by creating a potential well for the ions along the axis of the electrodes. Advantages 

of the linear trap design are increased ion storage capacity, faster scan times, and simplicity of 
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construction, although quadrupole rod alignment is critical, adding a quality control constraint to 

their production. LTQ is the quadrupole used to generate our dataset. 

 

 

FIGURE 2-15 A LTQ SCHEME.  

 

The subsequent Figure 2-16, borrowed from [3], graphically summarizes the main kind of mass 

spectrometers used nowadays in proteome research. 

 

 

FIGURE 2-16 MASS SPECTROMETERS USED NOWADAYS IN PROTEOME RESEARCH.  
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2.3.3 THE DETECTOR 

The final element of the mass spectrometer is the detector: the ions which pass through the 

analyzer are now separated by the desired methods. The detector records the charge induced or 

current produced when an ion passes by or hits a surface. In a scanning instrument the signal 

produced in the detector during the course of the scan versus where the instrument is in the 

scan (at what m/q) will produce a mass spectrum, a record of ions as a function of m/q. Due to 

the fact that the number of ions entering the detector at any given moment is extremely small, 

signal amplification is often necessary. Typically, some type of electron multiplier is used, though 

other detectors including Faraday cups and ion-to-photon detectors are also used. Microchannel 

Plate Detectors are commonly used in modern commercial instruments. In FTICR-MS and 

Orbitrap, the detector consists of a pair of metal surfaces within the mass analyzer/ion trap 

region which the ions only pass near as they oscillate. No DC current is produced, only a weak AC 

image current is produced in a circuit between the electrodes. In the following the most used 

detectors will be described. 

 

2.3.3.1 THE FARADAY CUP 

A faraday cup is a metal (i.e. conductive) cup designed to catch charged particles in vacuum. The 

resulting current can be measured and used to determine the number of ions or electrons 

hitting the cup. The Faraday cup (see Figure 2-17) is named after Michael Faraday who first 

theorized ions around 1830. When a beam or packet of ions hits the metal it gains a small net 

charge while the ions are neutralized. The metal can then be discharged to measure a small 

current equivalent to the number of impinging ions. Essentially the faraday cup is part of a 

circuit where ions are the charge carriers in vacuum and the faraday cup is the interface to the 

solid metal where electrons act as the charge carriers (as in most circuits). By measuring the 

electrical current (the number of electrons flowing through the circuit per second) in the metal 

part of the circuit the number of charges being carried by the ions in the vacuum part of the 

circuit can be determined. Faraday cups are not as sensitive as electron multiplier detectors, but 

are highly regarded for accuracy because of the direct relation between the measured current 

and number of ions. 
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FIGURE 2-17 A FARADAY CUP SCHEME. 

 

2.3.3.2 ELECTRON MULTIPLIERS 

An electron multiplier (continuous dynode electron multiplier) is a vacuum-tube structure that 

multiplies incident charges. In a process called secondary emission, a single electron can, when 

bombarded on metal (or PbO coated surface) induce emission of roughly 1 to 3 electrons. If an 

electric potential is applied between this metal plate and yet another, the emitted electrons will 

accelerate to the next metal plate and induce secondary emission of still more electrons. This 

can be repeated a number of times, resulting in a large shower of electrons all collected by a 

metal anode, all having been triggered by just one. Therefore, another name for electron 

multipliers is avalanching ion detector: 12 stages of acceleration will usually give a gain in 

current of 10 million electrons. The avalanche can be triggered by any charged particle hitting 

the starting electrode with sufficient energy to cause secondary emission. It could also be 

triggered by a photon causing vacuum photoemission of at least one electron. In a 

photomultiplier tube (see Figure 2-18), a photo-emissive surface is followed by an electron 

multiplier with several sequential multiplying electrodes called dynodes.  
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FIGURE 2-18 A PHOTOMULTIPLIER TUBE SCHEME. 

 

Because these electrodes are separate from each other, this might be called a "discrete-dynode" 

multiplier. A voltage divider chain of resistors is usually used to place each dynode at a potential 

100-200V more positive than the previous one. A "continuous-dynode" structure is feasible if 

the material of the electrodes has a high resistance, so that the functions of secondary-emission 

and voltage-division are merged; this is often built as a funnel of glass coated inside with a thin 

film of semi-conducting material, with negative high voltage applied at the wider input end, and 

positive voltage near ground applied at the narrower output end. Electrons emitted at any point 

are accelerated a modest distance down the funnel before impacting the surface, perhaps on 

the opposite side of the funnel. At the destination end a separate electrode (anode) remains 

necessary to collect the multiplied electrons. In mass spectrometry electron multipliers are often 

used as a detector of ions that have been separated by a mass analyzer of some sort. They are 

typically of the continuous-dynode type, and may have a curved horn-like funnel shape.  

 

2.3.3.3 MICRO-CHANNEL PLATE DETECTORS 

A micro-channel plate (MCP) (see Figure 2-19) is a planar component used for detection of 

particles (electrons or ions) and impinging radiation (ultraviolet radiation and X-rays). It is closely 

related to an electron multiplier, as both intensify single particles or photons by the 

multiplication of electrons via secondary emission. Each microchannel is a continuous-dynode 

electron multiplier, in which the multiplication takes place under the presence of a strong 

electric field. A particle or photon that enters one of the channels through a small orifice is 
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guaranteed to hit the wall of the channel due to the channel being at an angle to the plate and 

thus the angle of impact. The impact starts a cascade of electrons that propagates through the 

channel, which amplifies the original signal by several orders of magnitude depending on the 

electric field strength and the geometry of the micro-channel plate. After the cascade, the 

microchannel takes time to recover (or recharge) before it can detect another signal. The 

electrons exit the channels on the opposite side where they are themselves detected by 

additional means, often simply a single metal anode measuring total current. In some 

applications each channel is monitored independently to produce an image. Phosphors in 

combination with photomultiplier tubes have also been used.  

 

 

FIGURE 2-19 DUAL MICROCHANNEL PLATE DETECTOR SCHEMATIC. 
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2.4 COMMON MASS SPECTROMETER CONFIGURATIONS 

When all of the elements (source, analyzer and detector) of a mass spectrometer are combined 

to form a complete instrument and the specific configuration becomes common a new name, 

often an abbreviation of one or more of the internal components, becomes attached to the 

specific configuration and can become more well-known than the specific internal components. 

Sometimes the use of the generic "MS" actually implies a very specific mass analyzer and 

detection system, which is always sector based. In other cases there are common configurations 

that may be implied but not necessarily. An important enhancement to the mass resolving and 

determining capacity of mass spectrometry is the combination of mass spectrometry with 

analysis techniques that resolve mixtures of compounds in a sample based on other 

characteristics before introduction into the mass spectrometer.  

 

2.4.1 MALDI-MS 

Matrix Assisted Laser Desorption Ionization mass spectrometry (MALDI-MS) [9] deals with 

thermo labile, non-volatile organic compounds and those of high molecular mass. It is used in for 

the analysis of proteins, peptides, glycoproteins, oligosaccharides, and oligonucleotides. 

MALDI is based on the usage of matrix complexed with a given sample molecule that is 

bombarded with a laser in order for the sample molecule to form a sample ionization. The 

sample is normally mixed into a high absorbable matrix with as little matrix as possible as the 

matrix will also become excited and come off and ionize as well. The matrix itself acts as a 

substance which infuses the sample as well as a transformer for the laser's energy into excitation 

energy to allow for the vaporization of the sample ions and matrix ions from the surface of the 

matrix. Most commercially available MALDI mass spectrometers are now a pulsed nitrogen laser 

of wavelength 337 nm. In order to obtain proper charge-mass ratios and calculate a mass 

spectrum the type of mass spectrometer most widely used with MALDI is the TOF (time-of-flight 

mass spectrometer), mainly due to its large mass range. The TOF measurement procedure is also 

ideally suited to the MALDI ionization process since the pulsed laser takes individual 'shots' 

rather than working in continuous operation. MALDI-TOF instruments (see Figure 2-20) are 

typically equipped with an "ion mirror", deflecting ions with an electric field, thereby doubling 

the ion flight path and increasing the resolution. Commercial reflectron TOF instruments reach 
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today a resolving power m/Δm of well above 20'000 FWHM (full-width half-maximum, Δm 

defined as the peak width at 50% of peak height).  

 

 

2.4.2 SELDI-MS 

Surface Enhanced Laser Desorption Ionization mass spectrometry is a modification of the 

procedure used in MALDI-MS. Instead of mixing the UV sensitive matrix with the protein sample, 

the protein sample is spotted on a plate which has some surface binding characteristics such as a 

chromatographic array. The target surfaces, to which the proteins and matrices are applied to, 

are coated with various activated and patented chemistries. Therefore, it is possible to 

fractionate proteins within a mixture, or particular classes of proteins, on the chip or array 

surface prior to analysis. The spots are then washed to remove impurities and weakly bound 

proteins. The UV matrix is then added to the spot and allowed to co-crystallize. After the 

ionization with the UV laser, the ions are analyzed using a TOF mass analyzer, in the same 

manner as MALDI. The reason for fractionating samples prior to analysis is not only to make the 

analysis much simpler but also because it minimizes sample loss and allows smaller amounts of 

proteins to be analyzed. Actually, the ionization of some proteins are suppressed by the 

presence of other proteins in higher concentrations that suppresses the ionization of proteins of 

lower abundance, or proteins that suppresses the ionization of glyco- and phosphoproteins etc. 

SELDI provides on-chip separation as well as the capability to perform enzymatic reactions 

directly on the chip. However, there are concerns about the reproducibility of SELDI-TOF mass 

FIGURE 2-20 A MALDI-TOF INSTRUMENT.  
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spectra, especially when normal post processing techniques frequently used with MALDI such as 

baseline correction are applied. Environmental sources of variation such as humidity can also 

play a large role. 

 

2.4.3 LIQUID CHROMATOGRAPHY-MS 

Liquid chromatography mass spectrometry (LC-MS) is an analytical technique that combines 

physical separation via liquid chromatography with mass analysis via mass spectrometry. It is the 

technique of choice for quantitative mass spectrometry-based proteomics because it yields high 

quality data. LC-MS separates compounds chromatographically before they are introduced to 

the ion source and mass spectrometer, by means of using liquid mobile phases which ultimately 

must be volatilized before entering the MS. The mobile phase is liquid, usually a combination of 

water, organic solvents, and samples instead of gases. The method of coupling high performance 

liquid chromatography (HPLC) can also be performed with MS. A HPLC simply uses a smaller 

column that is highly chemically modified to separate on a more precise level than normal LC. 

Once a sample is injected it goes through a column which separates it based on charge and goes 

into a drying chamber where the sample is volatilized by a drying gas such as nitrogen. The ions 

are then collected into a gas capillary where they are collected to be injected further in the 

system. When the ions proceed out of the gas capillary, the ions go through an area where 

collision activated dissociation occurs between a skimmer and the capillary, causing the ions to 

exit individually. The area where the gas capillary and the skimmer meet is the area where 

volatilization begins. From the capillary, the liquid ions are put through a "Taylor cone". The 

Taylor cone creates the effect of a fine filament of liquid that volatilizes into a gaseous form by 

changing its stable liquid droplets to unstable liquid droplets before changing them to gas phase 

ions. The samples then proceed to an inlet for the mass spectroscopy machine into a quadrupole 

where they are further separated by charge to mass and then moved to a detector to obtain a 

mass spectrum. The bottom-up LC-MS approach to proteomics generally involves protease 

digestion (usually by trypsin enzyme) followed by LC-MS with peptide mass fingerprinting or LC-

MS/MS (tandem MS) to derive sequence of individual peptides.  

LC-MS-based methods are very powerful and in certain aspects superior or complementary to 

other approaches such as 2D electrophoresis, for instance. In particular, LC-MS-based methods 

are capable of capturing both intracellular proteins and membrane proteins and seem to 
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perform especially well for the latter. Since a biological sample can be a mix of thousands of 

different proteins this feature is crucial for proteomics. 

 

 

 

FIGURE 2-21 LC-MS WORKFLOW: (A) GROWTH AND ISOLATION OF THE  BIOLOGICAL SAMPLE;  (B) PROTEINS IN THE 

SAMPLE ARE DIGESTED BY PEPTIDASES;  (C)  SEPARATION OF RESULTING PEPTIDES BY GRADIENT CHROMATOGRAPHY 

WITH AS A FIRST STEP AN ION EXCHANGE CHROMATOGRAPHY;  (D) SECO ND SEPARATION STEP IN A REVERSE PHASE 

COLUMN WITH A GRADIE NT APPLIED (E);  (F) THE ELUATE ENTERS A QUADRUPOLE AND IN PART REACH THE 

DETECTOR; (G) DATA V ISUALIZATION IN 3D.  

 

The LC-MS workflow is illustrated in Figure 2-21, [22]. In the first step of the processing pipeline, 

protein molecules are cut into smaller fragments (i.e. peptides), e.g., by the enzyme trypsin. 

Trypsin cuts at well-defined positions in the amino acid chain (after lysine and also after arginine 

if not followed by proline), such that the sequences of potential fragments are known when the 
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protein sequence is known. In order to examine the peptides individually, we need to separate 

them.  

Peptide separation is performed by liquid chromatography. A solvent containing the peptides is 

forced through a separation column (loading). The column contains the stationary phase that 

binds the peptides. Afterwards, the peptides are washed out of the column by the mobile phase 

(eluting). The weaker a peptide is bound to the substrate, the faster it gets washed out. Thus, 

peptides can be separated by their binding properties (e. g. hydrophobicity). The output data of 

the LC step alone can be displayed using a 2D plot, the chromatogram, where intensity in counts 

per second is plotted over time.  

The masses of the separated peptides can be determined individually using mass spectrometry. 

MS separates ions by their mass-to-charge ratios. As previously pointed out, In order to analyze 

peptides by MS, it is necessary to ionize them. Online ionization is realized by ESI. Then, 

molecules are accelerated and handed to the mass analyzer. The mass analyzer steers the 

particles to a detector based on their m/z ratio. The detector measures intensity in counts per 

second. The MS output can be displayed by one 2D plot, the mass spectrum, for each time step. 

The mass spectrum shows intensity over mass-to-charge ratio (or m/z-ratio).  
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2.5 TANDEM MASS SPECTROMETRY 

In the more modern methods of ionization, like ESI or MALDI, spectra often only contain the 

ionized molecule with very little fragmentation data and consequently the spectra are of little 

use for structural characterization of proteins. In these cases, induced fragmentation is required 

using collision induced dissociation (CID) and tandem mass spectrometry (MS/MS). 

Fragmentation of gas-phase ions is essential to tandem mass spectrometry and occurs between 

different stages of mass analysis. There are many methods used to fragment the ions and can 

result in different types of fragmentation and thus different information about the structure and 

composition of the molecule. One of the most commonly available tandem mass spectrometers 

is the triple quadrupole (QQQ) instrument. Here tandem MS is illustrated referring to QQQ, but 

the general concept is easily extensible to a broader range of mass spectrometers. 

Tandem mass spectrometry (MS/MS) involves multiple steps of mass selection or analysis, 

usually separated by some form of fragmentation. A tandem mass spectrometer is one capable 

of multiple rounds of mass spectrometry. Multiple stages of m/z separation can be accomplished 

with individual mass spectrometer elements separated in space or in a single mass spectrometer 

with the MS steps separated in time.  

In tandem mass spectrometry in space, the separation elements are physically separated and 

distinct, although there is a connection between the elements to maintain high vacuum. These 

elements can be sectors, transmission quadrupole, or time-of-flight.  

In a tandem mass spectrometry in time instrument, the separation is accomplished with ions 

trapped in the same place, with multiple separation steps taking place over time. A quadrupole 

ion trap or FTMS instrument can be used for such an analysis. Trapping instruments can perform 

multiple steps of analysis, which is sometimes referred to as MSn (MS to the n). Often the 

number of steps, n, is not indicated, but occasionally the value is specified; for example MS3 

indicates three stages of separation. You can realize such an experiment using a triple 

quadrupole instrument. 

Tandem mass spectrometry enables a variety of experiments. Although it allows for many 

uniquely designed experiments some types of experiments are commonly used and built into 

many commercial mass spectrometers. Examples of these include precursor ion scan, product 

ion scan and neutral loss scan mode.  
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2.5.1 PRECURSOR ION SCAN MODE 

In precursor ion scan mode, MS2 is used to measure the occurrence of a particular fragment ion 

(i.e., m/z value) and MS1 is scanning all the m/z values (see Figure 2-22). The resulting spectrum 

records the ions that are the precursors of the fragments produced in the fragmentation 

reaction operated by MS2. This experiment is used to detect specific motifs within unknown 

molecules. In-source fragmentation is often used in addition to tandem mass spectrometry to 

allow for two steps of fragmentation in a pseudo MS3-type of experiment.  

 

2.5.2 PRODUCT ION SCAN 

Post-source fragmentation or product ion analysis is most often what is being used in a tandem 

mass spectrometry experiment: a mass analyzer can isolate one peptide from many entering a 

mass spectrometer. It is carried out to analyze only a preselected precursor ion.  

The first stage of mass spectrometry (MS1) is set to select a particular m/z and the second stage 

(MS2) records the mass spectrum of the fragments. The mass spectrum represents the 

fragments of the ion (or ions) of that particular m/z; this turns the mass spectrometer into an 

extremely selective detector when used in conjunction with a separation method, such as liquid 

chromatography mass spectrometry, for example. This offers a much improved sensitivity in 

comparison with the full MS acquisition.It works almost the same as MRM except here you 

analyze all the fragment ions.  

 

2.5.3 NEUTRAL LOSS SCAN 

In the neutral loss scan both MS1 and MS2 are in operation, but MS2 selects the same m/z as 

MS1, less the mass of the neutral. The resulting mass spectrum represents all m/z values that 

lose the neutral by fragmentation.   



77 
 
 

 

FIGURE 2-22 (1) PRODUCT ION SCAN SCHEMATIC, (2)  PRECURSOR ION SCAN SCHEMATIC, (3)  NEUTRAL LOSS SCAN. 

 

A peptide sequence tag obtained by tandem mass spectrometry can be used to identify a 

peptide in a protein database. A notation has been developed for indicating peptide fragments 

that arise from a tandem mass spectrum (see Figure 2-23). Peptide fragment ions are indicated 

by a, b, or c if the charge is retained on the N-terminus and by x, y or z if the charge is 

maintained on the C-terminus. The subscript indicates the number of amino acid residues in the 

fragment. Superscripts are sometimes used to indicate neutral losses in addition to the 

backbone fragmentation, for loss of ammonia and for loss of water. Although peptide backbone 

cleavage is the most useful for sequencing and peptide identification other fragment ions may 

be observed under certain conditions.  
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FIGURE 2-23 PEPTIDE FRAGMENTATIO N NOTATION.  

.  
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3 BIOINFORMATICS FOR QUANTITATIVE MS-BASED 

PROTEOMICS  

During the last decade, it has become available a wide range of technologies which can generate 

a huge quantity of data potentially able to address relevant questions, e.g., to identify proteins 

in a biological sample, to quantify their concentration, to monitor post-translational 

modifications, to measure individual protein turnover, to infer on interactions with other 

proteins, transcripts, drugs or molecules. Consequently the access, analysis and interpretation of 

the enormous volumes of MS-based quantitative data are a crucial issue for the advancement of 

proteomics research. 

In this chapter we describe the main bioinformatics topics related to quantitative mass 

spectrometry-based proteomics data. In particular, we focus on the main quantification 

strategies to produce quantitative data and on data analysis, especially for profile LC-MS data, 

which are considered the most appropriate data for quantification aims [23]. 
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3.1 QUANTITATIVE MS-BASED PROTEOMICS  

Mass spectrometry (MS)-based proteomics plays an ever-increasing role in systems biology, 

providing information about the qualitative and quantitative content of a biological sample. 

Since the proteome is involved in functional expression and regulation of systems, MS-based 

proteomics has become the technique of choice to acquire data to unravel and model biological 

systems (see Figure 3-1 here below, borrowed from [24]). A major step forward in this direction 

took place when MS-based proteomics moved ahead from a qualitative approach to a 

quantitative approach, enabling the association of protein identifications to their quantitative 

content. Quantitative proteomics is indeed pivotal for many systems biology related fields, such 

as biomarkers discovery, where researchers aim to recognize differential expression at the 

proteome and/or genome level: preliminary works suggested that protein abundances are more 

conserved than transcript abundances (2). The cutting edge proteomic technologies will enable 

researchers to address fundamental biological problems in a systems biology context [1]. In 

order to properly answer several biological questions, many hypothesis-driven experimental 

workflows have been designed [25].   

 

 

FIGURE 3-1 THE TWO MOST COMMON PROCESSES FOR QUANTITATIVE PROTEOME ANALYSIS ARE SHOWN. IN THE 

FIRST (TOP), 2DE IS USED TO SEPARATE AND TO QUANTIFY PROTEINS, AND SELECTED PROTEINS ARE THEN ISOLATED 

AND IDENTIFIED BY MASS SPECTROMETRY. IN THE SECOND (BOTTOM),  LC-MS/MS IS USED TO ANALYZE ENZYME 

DIGESTS OF UNSEPARATED PROTEIN MIXTURES,  AND ACCURATE QUANTIF ICATION IS ACHIEVED BY LABELING THE 

PEPTIDES WITH STABLE  ISOTOPE.  
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3.1.1 QUANTIFICATION STRATEGIES 

Regarding the quantification strategies, mainly developed to realize biomarkers discovery 

studies, we could distinguish three approaches, as illustrated in Figure 3-2: 

1. the differential stable isotope labeling approach, which analyzes, in the same Liquid 

Chromatography-Mass Spectrometry (LC-MS) run, peptide A and its heavy isotope A*, 

detected by their characteristic mass difference Δm/z (red) but it heavily depends on the 

labeling strategy; 

2. the spectral counting approach, which computes abundance values counting the number 

of times a peptide has been identified by tandem mass spectrometry (MS/MS) and 

compares these across experiments (green) but it is very susceptible to instrument 

sensitivity;  

3. the label-free approach, which extracts peptide signals by tracking corresponding isotopic 

patterns (along their chromatographic elution profile) across many LC-MS runs (blue) but 

it has high technical requirements for ensuring reproducibility and perform tracking. 

 

FIGURE 3-2 LC-MS QUANTIFICATION STRATEGIES:  THE SPECTRAL COUNTING APPROACH (GREEN);   THE DIFFERENTIAL 

STABLE ISOTOPE LABEL ING APPROACH (RED); THE LABEL-FREE APPROACH (BLUE). 
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3.1.1.1 STABLE ISOTOPE AND ISOBARIC LABELING  

Quantitative proteomics allows for the determination of both the identity and relative quantity 

of particular components across different samples. Stable isotopes labeling [24] is ideal for use in 

quantitative proteomics because “light” and “heavy” isotopes have the same chemical behavior 

and properties and their mass shift is easily detectable by the mass spectrometer. Since they are 

chemical identical, those labeled peptides coelute, thus samples can be merged labeled with 

“light” and “heavy” isotope tags and to process them in a single run. The comparison (i.e., ratio) 

of the relative intensities of the “heavy” versus “light” labeled peptides in the MS signal provides 

the quantification. Isotopic labeling strategies enable the highly accurate quantification of LC-MS 

experiments since analysis is performed on single LC-MS runs where peptide pairs can be very 

accurately detected by distinct mass shifts characteristic to the utilized label (see Figure 3-3). 

 

 

FIGURE 3-3 ISOTOPIC LABELING IN QUANTITATIVE PROTEOMICS (A);  THE MASS SH IFT HELPS TO DISTING UISH THE 

SIGNALS BELONGING TO THE DIFFERENT ISOTOPE TAGS (B).  
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STABLE ISOTOPE-LABELED AMINO ACIDS IN CELL CULTURE 

SILAC (stable isotope-labeled amino acids in cell culture) [26] involves a metabolic incorporation 

of isotopically heavy amino acids into proteins Figure 3-4. In SILAC labeling two populations of 

cells are grown in the same type of culture medium, except that in one set, one or more 

essential amino acids are replaced by a version containing heavy atoms (e.g. 13C): for this reason 

is considered an “in vivo” kind of labeling. Specifically, cell cultures are grown in media 

containing either light 12C or heavy 13C labeled arginine and lysine to metabolically incorporate 

the modified amino acids into proteins through the metabolic cycle. The generated isotopic 

peptide pairs are then detected by mass shifts of multitudes of 6 mass units. Since the label is 

added at a very early stage of the experiment, this technology circumvents the introduction of 

additional error sources through extra experimental sample processing steps. However, SILAC 

labeling is largely limited to biological material that can be grown in culture and thus is not 

generally applicable to tissues, body fluids, or clinical applications. Recently, metabolic 

conversion of the stable isotope labeled peptide has also been reported, resulting in the added 

label in unexpected amino acids [27]. 

 

FIGURE 3-4 SILAC AND ICAT SCHEMATICS.  
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ISOTOPE CODED AFFINITY TAGGING  

Another common technique, which instead is “in vitro”, is ICAT (isotope coded affinity tagging) 

[24] which involves a chemical attachment of isotopic tags to proteins or peptides in solution 

Figure 3-4. The nature of ICAT tag may vary a lot, but the reagents are generally composed of a 

reactive group used to covalently attach the tag to peptides, a linker group containing the 

isotope, and an affinity handle such as biotin (see Figure 3-5, borrowed from [28]). All different 

reagents specifically target cysteine groups. The labeled peptides differ in their molecular weight 

by 8 mass units, and in newer versions by 9 mass units. More recently, a number of variants of 

this concept have been developed in which sets of reagents differ in specificity, structure, mass 

difference, and number of isotopic forms.  

 

FIGURE 3-5 SCHEMATIC REPRESENTATION OF THE ICAT LAB ELLING STRATEGY.  

 

ISOTOPE CODED PROTEIN LABELS 

In the isotope coded protein labels (ICPL) strategy, two protein mixtures obtained from two 

distinct cell states or tissues are first individually reduced and alkylated to denature the proteins 

and to ensure easier access to free amino groups that are subsequently derivatised with the 

deuterium free (light) or deuterium containing (heavy) form, respectively, of the ICPL reagent (se 

Figure 3-6). After combining both mixtures, any separation method can be adopted to reduce 

the complexity of the sample on the protein level and, after digestion, on the peptide level 

followed by high throughput MS/MS.  
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The ICPL strategy is based on stable isotope labeling of free amino groups in intact proteins and 

has the capability to become the basis for comprehensive high-throughput proteome analysis 

for several reasons. First, employing Nic- NHS (nicotinoyloxy succinimide) as a labeling reagent 

enhances MS sensitivity, making this tag ideally suited for the analysis of low abundant proteins 

or when the amount of the sample is limited. Second, the ICPL strategy enables multiplexed 

analysis of three samples in one single assay for increased throughput. Third, the number of 

lysine residues of labeled peptides, that can be easily calculated from the mass gap of an isotope 

peptide pair, serves as a strong constraint in database searches. Fourth, since ICPL is based on 

stable isotopic labeling of intact proteins at a very early stage, there are essentially no limitations 

in terms of compatibility with separation and analyzing techniques or protein samples to handle. 

Other protein isotope labeling approaches described to date, in particular the ICAT strategy, 

have also been shown to correctly quantify the abundance of proteins in complex mixtures. 

However, the main limitation of these techniques results from their specificity for the rare 

sulfhydryl groups in proteins. As a consequence, these approaches fail to quantify a considerable 

number of proteins that contain no or only a few cysteine residues. Conversely, the ICPL method 

has the potential to quantify almost every protein. ICPL approach is based on isotopic labeling of 

intact proteins and is accordingly compatible to all protein or peptide separation techniques 

currently employed in proteome research. 



86 
 
 

 

FIGURE 3-6 OVERVIEW OF THE ICPL WORKFLOW. ANY SEPARATION METHOD CAN BE EMPLOYED TO REDUCE 

COMPLEXITY ON THE PROTEIN LEVEL (E.G. 1-DE OR 2-DE, FREE FLOW ELECTR OPHORESIS (FFE), LC) AND, AFTER 

PROTEOLYSIS, ON THE PEPTIDE LEVEL (E.G. MULTIDIMENSIONAL LC) FOLLOWED BY MS/ MS.  
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ISOBARIC LABELING OF PEPTIDES 

The 8-plex iTRAQ labeling allows the simultaneous quantification of eight biological samples 

[29]. The isobaric (i.e., having the same mass) reagent reacts with primary amino groups and 

produces in the MS/MS fragmentation spectrum eight different unique reporter groups, one per 

reagent flavor, at 113, 114, 115, 116, 117, 118, 119, and 121 m/z. iTRAQ labeling does not 

increase the sample complexity because the reagent is based, and relies, compared to isotopic 

labeling, on a fully MS/MS-dependent workflow. Therefore, after mixing, in MS1, the peptides 

appear as a single precursor. However, when fragmented during MS2, in addition to the normal 

fragment ions, the reporter regions dissociate to produce ion signals which provide quantitative 

information regarding the relative amount of the peptide in the samples. Thus, only peptides are 

quantified that were subjected to CID fragmentation and could be successfully assigned to a 

peptide sequence. In the figure below the scheme of isobaric labeling is illustrated and 

compared to the one of isotopic labeling. Once the reporter ions are recognized and the ratio 

computed, downstream analysis is the same as for isotopic labeling, as shown in Figure 3-7. 

 

 

FIGURE 3-7 THE QUANTIFICATION PRINCIPLES OF ISOBARIC AND ISOTOPIC LABELING ARE SCHEMATICALLY 

ILLUSTRATED. ISOBARIC LABELING GENERATES  IN THE MS/MS SPECTRA  DIFFERENT REPORTER IONS THAT ARE USED 

TO CALCULATE PEPTIDE  ABUN- DANCE VALUES BETWEEN DIFFERENT SAMPLES. ISOTOPIC APPROACHES 

DIFFERENTIALLY LABEL  PEPTIDES OR PROTEINS  FROM TWO SAMPLES (GREEN/ BLUE) TO PRODUC E ISOTOPIC PAIRS 

OF CHARACTERISTIC  MASS SHIFTS.  
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3.1.1.2 SPECTRAL COUNTING 

The concept of semi quantitative analysis was introduced for shotgun proteomics, in which the 

instrument control system of the mass spectrometer autonomously selects a subset of peptide 

precursor ions detected in a survey scan (MS1 scan) for collision induced fragmentation (CID) 

following predetermined rules (typically, the 1–5 most intense precursor ions) [30]. This 

quantification strategy is based on the hypothesis that the MS/MS sampling rate of a particular 

peptide, i.e., the number of times a peptide precursor ion is selected for CID in a large data set, 

is directly related to the abundance of a peptide represented by its precursor ion in the sample 

mixture [31]. This approach, also termed spectral counting, therefore transforms the frequency 

by which a peptide is identified into a measure for peptide abundance. Spectral counts of 

peptides associated with a protein are then averaged into a protein abundance index. Spectral 

counting approaches have most frequently been used for the analysis of low to moderate mass 

resolution LC-MS data and serve therefore as a convenient, fast, and intuitive quantification 

strategy. A critical point in spectral counting is how spectral counts are computed if only a small 

number of peptide identifications are available. It especially holds for the quantification of low-

abundance proteins since the selection of precursor masses for MS/MS analysis in shotgun 

experiments is skewed toward peptides of high abundance and the identification of low-

abundant peptides is very irreproducible between LC-MS experiments. Corresponding 

abundance indexes of such low-abundant proteins are therefore unreliable since they are 

obtained from spectral counts of only a small number of peptide identifications. 

 

3.1.1.3 LABEL-FREE 

With the evolution of mass spectrometers toward high mass precision instruments, label-free 

quantification of LC-MS data has become a very appealing approach for the quantitative analysis 

of biological samples. Typically, peptide signals are detected at the MS1 level and distinguished 

from chemical noise through their characteristic isotopic pattern. These patterns are then 

tracked across the retention time dimension and used to reconstruct a chromatographic elution 

profile of the monoisotopic peptide mass. The total ion current of the peptide signal is then 

integrated and used as a quantitative measurement of the original peptide concentration. In 

principle, every peptide signal within the sensitivity range of the MS analyzer can be extracted 

and incorporated into the quantification process independent of MS/MS acquisition [32]. This 

leads to an increased dynamic range of the peptide detection and largely reduces the 
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undersampling problem common to the previously described MS/MS-based approaches. Label-

free strategies were in most cases applied to data acquired on mass spectrometers equipped 

with the new generation of time-of flight, Fourier transform-ion cyclotron resonance, or 

Orbitrap mass analyzers. Measurements on these MS platforms reach very high resolution 

power and mass precision.  

In contrast to differential labeling, every biological specimen needs to be measured separately in 

a label-free experiment. The extracted peptide signals are then mapped across few or multiple 

LC-MS measurements using their coordinates on the mass to charge and retention time 

dimension. The efficiency of the peptide tracking depends on the available mass resolution of 

the utilized mass spectrometer. Data from high mass precision instruments greatly facilitate this 

process and increase the certainty of matching correct peptide signals across runs. In addition to 

the m/z dimension, the retention time coordinate is used to map corresponding peptides 

between runs. Therefore, the consistency of the retention time values over different LC-MS runs 

is a crucial factor and has led to the development of various alignment methods to correct 

chromatographic fluctuations [32]. Finally, sophisticated normalization methods are important 

to removing systematic artifacts in the peptide intensity values between LC-MS measurements. 

 

3.1.2 MS SETUP FOR QUANTIFICATION 

LC-MS-based techniques are commonly used for quantitative analyses. Indeed, LC-MS has paved 

the way to quantify a large number of peptide elements of biological samples in an automated 

and high-throughput mode. Here below the main 3 setups for running the MS experiment are 

briefly illustrated. In particular, tandem MS arrangements are different from an approach to the 

other and are chosen in relation to the aim of the experiment itself. 

 

3.1.2.1 FULL MS SCAN MONITORING 

Proteomic studies are commonly performed using a shotgun approach, in which the sample 

proteins are enzymatically degraded to peptides, which are then analyzed by mass spectrometry 

(MS). Data are collected in full MS scan mode. Thereby, a subset of the peptides present in the 

sample is automatically and in part stochastically selected by the mass spectrometer in a process 

referred to as data-dependent precursor selection. The simplest method to quantify analytes by 
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LC-MS is the use of eXtracted Ion Chromatograms (XIC). Data are processed post-acquisition, to 

reconstruct the elution profile for the ion(s) of interest, with a given m/z value and a tolerance. 

XIC peak heights or peak areas are used to determine the analyte abundance. 

 

3.1.2.2 SELECTED ION MONITORING 

Selected ion monitoring is performed on scanning mass spectrometers, by restricting the 

acquisition mass range around the m/z value of the ion(s) of interest. The narrower the mass 

range, the more specific the SIM assay. SIM experiments are more sensitive than XICs from full 

scans because the MS is allowed to dwell for a longer time over a small mass range of interest. 

Several ions within a given m/z range can be observed without any discrimination and 

cumulatively quantified; quantification is still performed using ion chromatograms. 

 

3.1.2.3 SELECTED REACTION MONITORING 

Selected reaction monitoring (SRM), also called multiple reaction monitoring, is emerging as a 

technology that ideally complements the discovery capabilities of shotgun strategies by its 

unique potential for reliable quantification of analytes of low abundance in complex mixtures 

[33-36]. In an SRM experiment, a predefined precursor ion and one of its fragments are selected 

by the two mass filters of a triple quadrupole instrument and monitored over time for precise 

quantification. 

 

 

FIGURE 3-8 SRM SCHEMATIC. TWO MASS ANALYZERS ARE USED AS STATIC MASS FILTERS, TO MONITOR A 

PARTICULAR FRAGMENT ION OF A SELECTED PR ECURSOR ION, WHEREAS THE SECOND MASS ANALYZER IS USED AS A 

COLLISION CELL.  
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SRM exploits the unique capabilities of triple quadrupole MS for quantitative analysis. In SRM, 

the first and the third quadrupoles act as filters to specifically select predefined m/z values 

corresponding to the peptide ion and a specific fragment ion of the peptide, whereas the second 

quadrupole serves as collision cell (see the schematic in Figure 3-8). Several such transitions 

(precursor/fragment ion pairs) are monitored over time, yielding a set of chromatographic traces 

with the retention time and signal intensity for a specific transition as coordinates. The two 

levels of mass selection with narrow mass windows result in a high selectivity, as co-eluting 

background ions are filtered out very effectively. Unlike in other MS-based proteomic 

techniques, no full mass spectra are recorded in triple quadrupole-based SRM analysis. The non-

scanning nature of this mode of operation translates into an increased sensitivity by one or two 

orders of magnitude compared with conventional ‘full scan' techniques. In addition, it results in 

a linear response over a wide dynamic range up to five orders of magnitude. This enables the 

detection of low-abundance proteins in highly complex mixtures, which is crucial for systematic 

quantitative studies. Proteins of interest can be detected with a much increased sensitivity and 

at a higher throughput than other techniques.  

A figure from [37] summarizing several quantification methods is reported in Figure 3-9. Some of 

them weren’t explained here, since only the most common strategies were illustrated. 

 

 

FIGURE 3-9 A FIGURE SUMMARIZING  SEVERAL QUANTIFICATION STRATEGIES:  SORTED ACCORDING TO THE PRESENCE 

OF LABEL, THEN WHERE THE LABEL DISCRIMINATES THE PEPTIDES (MS LEVEL) AND FINALLY WHERE THE LABEL IS 

APPLIED.  
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3.2 DATA ANALYSIS 

In this paragraph we aim to provide an overview of the data processing involved in the 

quantitative MS-based proteomics field, highlighting the potential pitfalls, strengths and 

sensitive points. Indeed, with the availability of mass spectrometry methods to analyze complex 

biological samples at a large-scale level a necessity arose for computational methods to analyze 

and statistically evaluate data generated from LC-MS experiments, thus catalyzing a new 

research direction in the field of bioinformatics. 

 

3.2.1 LC-MS DATA 

Profile LC-MS datasets are considered the most suitable MS-based data for quantification aims 

(8). In this paragraph we focus on their main features: the 3D structure and the profile 

acquisition mode. 

3.2.1.1 3D STRUCTURE 

The output data of the LC step alone can be displayed using a 2D plot, the chromatogram, where 

intensity in counts per second is plotted over time. MS output can be displayed by one 2D plot, 

the mass spectrum, for each time step. This 2D plot shows intensity (i.e., counts per second 

measured by the detector) over mass-to-charge ratio (or m/z-ratio). Data coming out of a liquid 

chromatograph is a function over time. When delivering the data from the detector to a 

computer system, the values are given at discrete points in time that are not distributed 

equidistantly. The number of points can be in the range of many thousands.  The data coming 

out of the mass spectrometer is a function over the m/z-ratio. The intensity is measured in 

counts per time and stored as an intensity list for discrete m/z-ratios: the m/z-ratios are not 

distributed equidistantly, either. Their number depends on the experimental setup and can be in 

the range of tens to hundreds of thousands. Instead of generating two-dimensional graphs for 

each point in time, we use a three-dimensional setup, where the intensity is shown as a height 

field over the dimensions time and m/z-ratio. 

Therefore, LC-MS provides intensity data on a 2D (t, m/z) domain, since LC separates proteins 

along retention time dimension (temporal index) based on their chemical-physical properties, 

while MS separates proteins based on their mass over charge (m/z index) ratios. Unfortunately, 
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the m/z-ratios vary from one point in time ti to the subsequent point in time ti+1, and even the 

number of values in the m/z-ratio dimension varies significantly. Thus, when looking at a two-

dimensional domain with the dimensions being m/z ratio and time, data positions are scattered 

in one dimension and non-equidistant in the other dimension. 

Generally, all kind of MS experiments have a “temporal” index related to the experimental time 

at which the MS acquisition takes place, even if the LC separation is not coupled to the MS. Thus, 

we can conceptually view an LC-MS (or, more generally, MS) dataset as a matrix, where the rows 

are indexed by retention times (scan if MS), the columns by m/z values, and the entries are 

intensity values (see Figure 3-10). A generic entry is denoted as (rt, mz; I), where rt and mz are 

the row and column indices, and I is the intensity value.  

 

FIGURE 3-10 A 3D REPRESENTATION OF AN LC-MS MAP: RED CIRCLES ARE PICKING THE DATA FEATURES REFERRING 

TO PEPTIDE DISTRIBUTIONS.  

 

3.2.1.2 PROFILE VS CENTROID ACQUISITION MODE 

The profile acquisition mode is an almost continuous acquirement of the observed ion current. 

Profile mode data is the most informative way to save and store the data, it is the raw signal 

acquired during the mass spectrometric experiment itself. Many researchers regard raw/profile 

data as the only data source rich enough to perform a meaningful quantitative analysis [23]. 

Rather than retaining abundance information, peaks are frequently centroided. Centroid mode 

mass spectrum is created when the mass spectrometer software is instructed to automatically 

find the centroid of all peaks as they are recorded. It is frequently used to reduce the size of an 
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LC-MS dataset as it is recorded. Centroid mass spectra contain discrete peaks of zero width and 

most of their original informative content is permanently lost (see Figure 3-11). Such a step is 

suboptimal for downstream data analysis: underlying methodologies of machine learning and 

statistical techniques are intended to account for random variation caused by noise, and their 

performance is likely deteriorated by using them with centroided MS data. Incorporating richer 

information would likely improve analytical performance, albeit at the cost of more 

computation. 

 

FIGURE 3-11 A MASS SPECTRUM REPRES ENTED IN PROFILE MODE (LEFT SIDE) AND THE CORRESPONDING CENTROID 

MODE DATA (RIGHT SIDE).  

 

3.2.2 LC-MS DATA ANALYSIS 

Regarding signal processing we can recognize three major steps to understand how a data 

analysis start-to-finish approach should be designed: 

1. low-level processing involves raw LC-MS signal with some basic pre-processing, such as m/z 

quantization, filtering, formation of a data matrix and background subtraction to minimize noise;  

2. mid-level processing steps, such as data normalization, alignment in time, peak detection, 

peak quantification, peak matching, and error models, to facilitate profile comparisons;  

3. high-level processing is applied to data that has been fully massaged for use in conjunction 

with machine-learning techniques (for sample classification and biomarker discovery) or more 
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traditional statistical techniques such as significance testing of individual features (e.g., peptide 

abundance), multiple testing, and choice of feature space. 

The substantial collection of methods developed for processing non chromatographic MS data 

(e.g. MALDI and SELDI studies) is in many cases transferable to LC-MS data, which are commonly 

viewed as a time series of static MS spectra. Most of the low- and mid-level processing methods 

reported to date, however, have been performed parenthetically as a means to the larger goal 

of sample classification or biomarker discovery and hence have not been rigorously studied. 

Here we describes only aspects related to low level processing, which is necessary as a 

preliminary step to perform the quantitative data analysis considered in the following of this 

thesis. 

 

3.2.2.1 LOW-LEVEL PROCESSING 

Given LC-MS data structure it appears natural to convert LC-MS datasets into a matrix format, 

with columns representing m/z values and rows representing time (or scan). This matrix 

formation often involves binning nominal m/z values, because retaining all m/z possible values 

would lead to a huge, sparsely populated, matrix, while time values can normally be left 

unchanged because these are usually not too numerous and because many m/z values typically 

correspond to a given time point.  

 

BINNING: QUANTIZATION OF M/Z VALUES 

An optimal bin width would be large enough to keep the matrix tractable and not too sparse, but 

small enough that individual m/z values remain informative (i.e., not collapsing information too 

much). Such trade-off depends on the MS instrumentation used to acquire data. As a binning 

strategy it is possible to opt for evenly spaced bins in either native or log m/z space.  

Binned intensity can be computed taking the mean or the summation of the intensity values in 

the bin. Binning can be seen as a sort of sub-sampling, or a low-pass filtering process, which 

removes part of the spiky nature of the MS data. 

No methods have been reported for evaluating optimal bin width, nor for determining the 

sensitivity of further calculations to this parameter. The choice of the “bin width” plays a major 
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role in the subsequent analysis, since it can heavily shrink the original data dimensionality. There 

is no rule which gives an a priori information on which choice will yield the best results, and 

while a large value for the “bin width” helps in reducing the original signal size, it may also lead 

to the loss of relevant peaks. If possible, it is therefore better to keep data in their raw form, 

which is the most informative.  

 

BACKGROUND SUBTRACTION AND SIGNAL SMOOTHING 

Given that LC-MS is subject to background chemical and electronic noise, together with systemic 

contaminants in the LC mobile phase (column solvent), methods for noise reduction and signal 

enhancement are commonly used. Fortunately signal filtering is a mature field from which a 

variety of techniques are applicable. The theory of digital signal processing is based on the 

assumption that data were sampled at regular time intervals, which is not necessarily the case 

for many LC-MS experiments, even if there are experimental efforts to obtain a uniform 

sampling rate. Filtering may nevertheless be useful, provided extra care is taken to account for 

uneven sampling rate.  

Conceptually, signal filtering and baseline subtraction can be performed in both time (scan 

number) and m/z dimension. At the state of art two are the approaches mostly applied: either 

subtracting a fitted, additive baseline model or applying digital filters to smooth and enhance 

the MS signal. 

Various filters for data smoothing along the LC time axis have been implemented including: 

simple “moving average,” median, moving geometric mean filters, loess smoother (a moving 

window filter with tricubic kernel of weights), or the Savitzky-Golay filter, which preserves high-

frequency content, like peaks, by fitting a high-order polynomial to the data over a local window 

[38].  

Manual delineation of background is a subjective, tedious, and error-prone process, and 

inconsistent with high-throughput analysis. Moreover even if the Savitzky-Golay filter is widely 

used, it would be necessary the establishment of a robust, but computationally fast, statistically 

based method to set its parameters trying to avoid over fitting. 
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Since filtering efforts published to date were performed only on one data dimension, it will be 

interesting to see if filtering independently in both axes (time and m/z) or simultaneously with a 

3D approach is more beneficial [32]. 

 

3.2.2.2 MID-LEVEL PROCESSING 

Extracting peaks from LC-MS signal both reduces the dimensionality of the data, which can 

simplify downstream analysis, and gives intuitive meaning to data features: it is advantageous to 

detect and quantify two-dimensional peptide peaks in LC-MS signal for use as input to 

classification algorithms, biomarker discovery, or global proteomic comparisons using a unified 

reporting schema.  

 

PEAK DETECTION 

Peak detection has generally been performed in a rather ad hoc manner, with little evaluation of 

the efficiency of the diverse methods or parameter choices. The algorithms employed to date 

make no use of a priori or learned information with regards to peak shape, along either the time 

or m/z dimensions, and in some cases ion intensity values are only exploited very indirectly. 

Rather than retaining abundance information, peaks are frequently binarized, because it helps to 

overcome noise in the signal. Such a step is lossy and is likely suboptimal for downstream 

analysis: underlying methodologies of machine learning and statistical techniques are intended 

to account for random variation caused by noise, and their performance is likely deteriorated by 

using them with binarized MS data. Incorporating richer information would likely improve 

analytical performance, albeit at the cost of more computation. 

Peak detection, followed by quantification, even if done optimally, does not guarantee linearity 

of peak signal relative to analyte concentration due to possible ion suppression effects. Different 

compounds have differential ionization capabilities and therefore intensity of your ion is not a 

direct correlation to concentration. Nevertheless, compelling evidence of linearity of extracted 

LC-MS peak intensities, at least for spiked reference proteins, has been established using certain 

data processing methods and technological platforms [39-41] . 
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In such an undefined scenario, groups of researchers made their proposal, creating very 

different methods to handle somehow the peak detection and quantification issues: here below 

there are some fascinating examples. 

Radulovic et al. used an iterative coarse-to-fine strategy to extract two dimensional (in time and 

m/z) peaks from LC-MS data [41]. Neighbouring points in the data matrix deemed to be signal 

were combined to form peaks at the roughest level, and then iteratively through each of the 

more refined levels, with a bisection method used to avoid spurious peak mergers. 

Wang et al. detected LC-MS peaks based on coinciding local signal maxima, in time and m/z; 

local maxima are defined as an increase in ion abundance greater than a pre-specified threshold 

over a predefined range [40]. Peaks were then quantified either by summing intensity over the 

component elution time or based on the maximum peak height. 

Leptos et al. in the Mapquant [42] segmented the 2-D map obtained visualizing the LC-MS data 

using the watershed segmentation algorithm [43]. The function implementing this algorithm 

returns a 2-D labelled non-gray-scale map that has the form of a mosaic, which, along with the 

noise-filtered 2-D-map from the previous step and information about the rectangular 

circumscribed boundaries of the segment, can be used to cut out a so-called segment map. 

Peaks that are well resolved are confined into individual segment maps whereas overlapping 

peaks are confined into common segments. The latter is possible through a morphological 

opening operation of the noise-filtered 2-D-map prior to segmentation. The peak detection 

algorithm uses concepts from mathematical morphology such as the structuring element theory. 

 

PEAK MATCHING 

Peak matching is another related topic relevant to quantitative proteomic comparisons. Reliable 

peak matching is crucial for label-free approaches to quantification. To measure reproducibility 

of peptide signal, experimental peaks must be matched across LC-MS datasets.  

Naive methods, based on simple proximity (in time or m/z dimension), are reported to be 

effective [40].   

For instance, Radulovic et al. used MS/MS-derived sequence identities to verify the correct 

matching of ~200 putative peptides across multiple samples [41]. However, given that MS/MS 
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targets prominent peaks, this assessment is likely biased. Incorporation of prior knowledge of 

peak shape, instrument m/z drift, and a more-probabilistic formulation might significantly 

improve the effectiveness of peak detection, quantification, and matching. 

A good alignment among datasets would help a better and easier peak matching. 

 

DATASETS ALIGNMENT 

A challenging task is to compare multiple LC-MS profiles matching corresponding peptide 

features (i.e., peak matching) from different experiments, that, for example, can be used to 

identify discriminating peptides between distinct biological groups or to quantify peptides in 

label-free approaches. Because the sequence identifications of the peptide are often unavailable 

at this stage, one relies on RT and m/z to match corresponding peptides across different 

samples. However, the retention time of a specific peptide depends on instrument conditions as 

well as the underlying composition of the mixture; variation in RT between experiments is often 

non-negligible even when all samples are processed by the same LC-MS system. LC fractionation 

is inherently variable since considerable dispersion could affect peptide retention times. Elution 

patterns can become locally compressed and/or expanded in complex, nonlinear ways by 

differences in chromatography performance due to changes in ambient pressure and 

temperature. Even under ideal conditions, MS duty cycles are finite and sampling is not 

necessarily constant, resulting in spectral capture at different time points across an eluting peak 

even between repeat analyses. This variation can affect peak discrimination and global 

proteomic comparisons. Thus, to maximize the benefits of LC-MS, one needs to deal with the 

inherent variability in the time axis (i.e., recorded retention time or scan headers). To a lesser 

extent, m/z of a peptide also varies as a result of instrument noise, although this is far less of a 

problem than variations in time. For these reasons, a prerequisite for quantitative analysis of 

multiple LC-MS experiments is to align output data with respect to both RT and m/z. 

Time and m/z axes can be aligned independently or simultaneously, though the latter has not 

been reported in the literature and would be more easily applied after peak detection. 

Furthermore, if aligning in time only, one may wish to use scalar time series rather than the 

vector time series most readily available from the data (e.g., total ion current (TIC) as scalar time 

series versus a vector of all m/z values at each time point), or even more general representation 

schemes, such as a reduced-dimensionality vector time series as obtainable for example by PCA. 
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Two main groups of existing methods for datasets alignment can be distinguished.  

The first group align raw spectrum data before peak detection. These methods search for 

optimal warping functions to map RT of one experiment to that of another. Since the warping 

function only accounts for “global” variation in RT, these methods may not always align 

individual peptides.  

The second group of alignment methods use the detected feature lists, and allow some variation 

in RT of individual peptides. However, since this method relies on the detected peak and does 

not take advantage of the raw spectrum information, the alignment decisions are vulnerable to 

inaccuracy in the peak detection step. In addition, both groups of methods are formulated to 

work on data sets that are similar to each other, and may produce bias when analyzing different 

samples, such as cancer and non-cancer serum. In order for LC-MS-based analysis to become a 

routine procedure in biomedical research, a computationally efficient and robust alignment 

procedure must be developed. 

“Peptide Element Alignment” (PETAL) [44] uses both raw spectrum data and peak detection 

results to simultaneously align features from multiple LC-MS experiments. PETAL first creates 

spectrum elements to represent the relative intensity profiles of individual peptides. It then 

models the variation in retention time and the instrument noise in intensity measurements that 

produce error in the m/z values. Peptides detected in different LC-MS data are aligned if they 

are represented by the same element. By considering each peptide separately, this method 

offers greater flexibility than simply matching retention time between profiles. In addition, 

PETAL treats all experiments symmetrically and avoids the possible biases that may result from 

choosing one experiment as a template. Actually most algorithms used to date require a 

template, specified a priori, to which all time series are pre-aligned: suboptimal template choice 

could result in poor alignments, thus it would be wise to avoid that way. 

 

DATA NORMALIZATION 

High-throughput mass spectrometry technology offers a powerful means of analyzing biological 

samples. The ability of MS to identify and precisely quantify thousands of proteins from complex 

samples is expected to broadly affect biology and medicine. However, MS systems are subject to 

considerable noise and variability that is not fully characterized or accounted for. Thus, as we 
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have just described, it is important and necessary to properly conduct data pre-processing steps 

such as signal filtering, peak detection, alignment in time and mass charge ratio, and amplitude 

normalization before reliable conclusions can be made from the data.  

Since MS signals are frequently corrupted by either systematic or sporadic changes in abundance 

measurements, overall peak amplitudes measured in one replicate may be elevated with respect 

to another, and may also have systematic changes within an experiment, across time, due to a 

change in column or ESI performance. In such cases, the data need to be normalized to make the 

experiments comparable. 

Furthermore, in many MS experiments, the instrument may have trouble detecting the weak 

signals of low-abundance peptides. Even if the instrument detects the signal, the peak intensities 

may be too low to be distinguished from background noise during data processing. Therefore, 

the lower the ion abundance, the more likely the peptide will be “missing” in the MS output 

data. Ignoring such non-random missing pattern may introduce significant bias into subsequent 

analyses: Wang et al. proposed [45] a novel probability model to describe the missing behaviour, 

which accounts for this type of intensity-dependent missing events. 

The simplest and classical approach to normalization would be to multiply all abundance values 

in one experiment by some constant factor, but in general, it may be necessary to perform more 

detailed corrections. Normalization of MS data can be performed either by coercing m/z 

intensity values to be comparable across experiments (low-level processing), or by altering peak 

abundance to be comparable (mid-level processing). In general, one aims to normalize not only 

replicates, but also experimental data of distinct biological origin, such as serum profiles from 

cancer patients and healthy case controls. The underlying assumption behind normalization is 

that the overall MS abundance of either all features (peaks or time-m/z pairs), or subsets of 

these, should be equal across different experiments. Given this assumption, one can determine 

the ratio of overall abundance of a chosen set of features between two experiments for use as a 

multiplicative correction factor, and then normalize an entire set of experiments by arbitrarily 

choosing one of them as a reference to which all others are normalized, obviously such an 

approach is biased and error-prone.  

Global normalization refers to cases where all features are simultaneously used to determine a 

single normalization factor between two experiments; by globally normalizing signal intensities 

across multiple samples, we aim to identify and remove systematic variation arising because of 
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differential amounts of sample loaded into the LC-MS system, protein degradation over time, or 

variation in the sensitivity of the instrument detector. It is natural to assume that the sample 

intensities are all related by a constant factor. A common choice for this re-scaling coefficient is 

the sample mean or median. This choice is based on the assumption that the number of features 

whose measurements change is few compared to the total number of features. Therefore, the 

distribution of the measurements of all the features should be roughly the same across different 

experimental runs. However, in MS experiments, because of the limitation of detector sensitivity 

and the unavoidable instrument noise, ions below a certain intensity level may hardly be 

detected, which leads to non-random missing of peptide features in the result. Thus, it is not 

appropriate to use overall mean or median for re-scaling. In order to avoid the possible bias due 

to non-random missing events, it is possible to use the top N ordered statistics of feature 

intensities in each sample, where N is a parameter chosen by user, but this choice can be 

misleading [45]. 

Local normalization, instead, refers to cases where a subset of features are used at a time 

(different subsets for different parts of the data). Locality can be defined by, say, similarity in 

m/z values, time (scan headers), or abundance (peak intensity) levels. For example, in an 

abundance-dependent, local normalization, peaks of similar abundance within the same MS 

experiment would be scaled in a similar way, while peaks of different abundance are scaled in a 

different way. If the mean of all features is made to agree across all experiments, it is referred to 

as a global mean normalization. While several groups have opted for global abundance 

normalization, in the case of LC-MS data it may be necessary to normalize locally in time [46], 

because chromatography can produce irregular fluctuations in signal.  

Many of the normalization techniques applicable to LC-MS data have also been applied to the 

results of microarray experiments [47]. With gene expression profiles, the genes used for 

normalization have sometimes been restricted to so-called “housekeeping” genes presumed to 

remain constant across the experimental conditions. An analogous concept was applied to LC-

MS data by Wang et al. [40], whereby a constant intensity ratio between pairs of experiments 

was computed based on reference peaks. These authors noted, however, that the use of all 

detected peaks provided similar results. Moreover it is very difficult to find stable peaks (i.e., 

“housekeeping”) across experiments.  

Normalization is often evaluated by calculating the coefficient of variation (CV) between peaks 

across different experiments after normalization. While reasonable CVs (e.g., 30%) are 
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commonly reported, a comparison to CVs from pre-normalized data is often not provided. 

Moreover, because no systematic comparison of these various normalization techniques has 

been reported, it is difficult to assess their relative merits. 
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4 BIOINFORMATICS CHALLENGES  

In this chapter are described the main bioinformatics open issues related to the quantification 

and handling of quantitative mass spectrometry-based proteomics data. In particular, we focus 

on profile LC-MS data, which are considered the most appropriate data for quantification aims 

[23]. Even though quantitative MS-based proteomics significantly progressed, it is undermined 

by the lack of reliable bioinformatics methodologies and tools for the storage and analysis of 

experimental data. In fact, without efficient bioinformatics tools, high-throughput proteomics 

data handling and analysis could be difficult and error-prone. Expert manual analysis is 

incompatible with the tens of thousands of spectra collected in a single experiment and is 

inconsistent. Moreover, the data hostage held by different instrument proprietary formats slows 

down the evolution of proteomics, mainly because comparisons among different experiments, 

or analytical methods, often become unfeasible. These comparisons depend critically on 

transparent file structures for data storage, communication and visualization. Only once suited 

tools are tested, validated and widely accepted it will become feasible to apply quality standards 

for protein identification, quantification and other measurements and to compare 

complementary proteomic datasets generated in different laboratories.  

At the state of art, most of the biological content held by the sample cannot be accessed, either 

for technical limitations or data analysis issues: ionization sources and mass spectrometry 

sensitivity needs to be enhanced; whereas the search engines (e.g., Mascot (4), Sequest (5),…) 

identification efficiency is commonly limited to a 30% of all peptides belonging to the sample, 

hence search engines and databases need to be improved (6); furthermore, the quantification 

efficiency (i.e., the number of quantified peptides) further reduces the proteome coverage at 

the quantification level (see Figure 4-1). 
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FIGURE 4-1 PROTEOME COVERAGE AT  A GLANCE:  USUALLY, O NLY THE HIGHER ABUNDANCE PROTEINS ARE COVERED 

BY IDENTIFICATION AND QUANTIFICATION.  

 

Therefore, a major challenge facing proteomic research is how to manage the overwhelming 

amount of data in order to extract the qualitative and/or quantitative information on proteome 

and still to keep down computational costs both for data handling and processing. This holds 

especially for quantitative proteomics, since, in order to achieve reliable quantifications, it needs 

highly informative profile data, such as profile Liquid-Chromatography (LC) MS ones.  
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4.1 DATA HANDLING  

The Human Proteome Organization (HUPO) established the Proteomics Standards Initiative (PSI) 

with the aim of enhancing data data comparison, exchange and verification. Established in April 

2002 as a working group of the HUPO, the PSI aims to define community standards for data 

representation in proteomics to overcome the current fragmentation of proteomics data and to 

facilitate data comparison, exchange and verification. The vast amount of data associated with a 

single experiment can become problematic at the point of publishing and disseminating results. 

Only by comparing separate experiments (e.g., cells at different states, tumour cells versus 

normal cells) precious information concerning complex diseases can be unrevealed. Fortunately, 

the community has recognized and tackled the problem through the development of standards 

for the capturing and sharing of experimental data. The need for common formats to allow data 

exchange between both public and commercial database systems was recognized, as was a 

growing need for the establishment of public data repositories in which the ever increasing 

amount of published data can be deposited and retrieved by scientists working in the field and 

wishing to further analyze this information.  

Inherent differences in the use of a variety of instruments, different experimental conditions 

under which analyses are performed, and potential automatic data pre-processing steps by the 

instrument software can influence the actual measurements and therefore the results after 

processing. Processing steps typically involve semi-automatic computational analysis of the 

recorded mass spectra and sometimes also of the associated metadata (e.g., elution 

characteristics if the instrument is coupled to a chromatography system). A score, rank or 

confidence measure can be assigned to the result of the processing. Additionally, most 

instruments output has a very specific and often proprietary format. These proprietary formats 

are then typically transformed into so-called peak lists to be analysed by identification and 

characterisation software. Data reduction such as peak centroiding and deisotoping is often 

performed during this transformation from proprietary formats to peak lists. In addition, these 

peak list file formats lack information about the precursor MS signals and about the associated 

metadata (i.e., instrument settings and description, acquisition mode, etc.) compared to the files 

they were derived from. The peak lists are then used as inputs for subsequent analysis. The 

many different and often proprietary formats make integration or comparison of mass 

spectrometer output data difficult or impossible, and the use of the heavily processed and data-

poor peak lists is often suboptimal. 
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HUPO-PSI released the Minimum Information About a Proteomics Experiment (MIAPE) reporting 

guidelines [48] in an effort to define the minimum set of information about a proteomics 

experiment that would be required by the community to share their work. The overall MIAPE 

standard is composed of several parts, subject to ongoing development, that describe steps for 

the sample processing before entering the mass spectrometer (gels, chromatography, etc.), 

information about the specific mass spectrometer used and the settings and results for the 

database searches [49]. Some of these consist only of working drafts which can be rapidly 

changed. As well as the MIAPE standard, large repositories for proteomics data have emerged, 

for example the Proteome Experimental Data Repository (PEDRo) [50], the PRoteomics 

IDEntifications database (PRIDE) [51,52], the Peptide Atlas database [53-55] and, lastly SRM 

Atlas [56]. There is indeed a need for public repositories that contain information from whole 

proteomics experiments; making explicit both where samples came from, and how analyses of 

them were performed (see Figure 4-2, borrowed from [48]). Proteomics data should therefore 

ideally be accompanied by contextualizing 'metadata' (essentially 'data about the data'), making 

explicit both where samples came from and how analyses were performed. MIAPE was preceded 

by the "minimum information about a microarray experiment" (MIAME) guidelines [57], which 

deal specifically with transcriptomics data. The microarray community similarly defined the 

critical information necessary to effectively describe a microarray experiment. MIAME has 

become an accepted community standard; the original paper had been cited in >1,100 published 

papers (source: Google Scholar), many of which describe MIAME-compliant software 

development.  
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FIGURE 4-2 (1)  DATA AND METADATA ARE GENERATED BY AN EXPERIMENT; (2) SOFTWARE COLLECTS THE DATA AND 

METADATA, EITHER BY IMPORTING FROM COMPUTER-CONTROLLED INSTRUMENTS OR FROM MANUAL DA TA ENTRY;  

(3) MIAPE SPECIFIES THE DATA AND METADAT A TO BE REQUESTED BY  THE SOFTWARE TOOL; (4)  A CONTROLLED 

VOCABULARY SUPPLIES CLASSIFIERS VIA THE SOFTWARE; (5) THE SOFTWARE USES A DATA FORMAT SPECIFICATION 

WHEN EXPORTING A MIAPE-COMPLIANT DATASET;  (6) THE DATASET IS STORED IN A MIAPE-COMPLIANT DATABASE 

AND ASSIGNED AN ACCESSION NUMBER;  (7)  A PAPER, INCLUDING THE APPROPRIATE ACCESSION NUMBER, IS 

PUBLISHED IN A JOURNAL. 



110 
 
 

4.1.1 STANDARD DATA FORMATS 

The PSI-Mass Spectrometry Standards working group defines community data formats and 

controlled vocabulary terms facilitating data exchange and archiving in the field of proteomics 

mass spectrometry. They proposed mzData [58], which, as mzXML [59], is an eXtensible Markup 

Language (XML) [60] based data format, developed to uniform data. mzData was developed by 

PSI-MSS, whereas mzXML was developed at the Seattle Proteome Center (SPC) at the Institute 

for Systems Biology (ISB). It is recognized that the existence of two separate formats for 

essentially the same thing generates confusion and extra programming effort. In order to 

overcome the competition between them, the PSI, with full participation by ISB, recently 

introduced mzML as a unique data format [61], merging the best features of each of these 

formats. Finally they kept on developing a controlled vocabulary, MS CV, to be used with the 

previous file formats. XML-based data formats are characterized by intuitive language and a 

standardized structure. Here below all of them will be briefly described referring to their 

specifications documentation, publicly released by the HUPO-PSI (see Appendix A). 

 

4.1.1.1 MZDATA 

The mzData standard captures mass spectrometry output data as peak list information. mzData 

is an XML format for representing mass spectrometry data in such a way as to completely 

describe the instrumental aspects of the experiment (see Figure 4-3). The key feature of the 

format is the use of external controlled vocabularies to allow data from different instruments 

and experimental designs to be shared in a common format. mzData's aim was to unite the large 

number of current formats into a single format. It is not a substitute for the raw file formats of 

the instrument vendors. Some vendors, if not all, provide software transforming their raw files 

to mzData. There are already a number of programs which can use mzData. The format is 

extensible to allow the description of new instrument types; however, only mass spectrometers 

were included in its final and last documentation release. 

mzData was meant to also be able to hold MIAPE information related to MS experiments. 

Parameters in mzData are stored using a generic parameter type which allows the use of either a 

controlled vocabulary term (cvParam) or a user defined term (userParam). The cvParam element 

must contain a term which is a member of a controlled vocabulary named in a cvLookup 
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element. User-specified parameters are generic name-value elements with no reference to a 

formal controlled vocabulary. 

 

 

FIGURE 4-3 THIS SCHEMA CAN CAPT URE THE USE OF A MASS SPECTROMETER, THE DATA GENERATED, AND THE 

INITIAL PROCESSING OF THAT DATA (TO THE LEVEL OF THE PEAK LIST). PEAK LISTS ARE PROCESSED DATA FROM A 

MASS SPECTROMETRY EXPERIMENT.  

 

In order to keep the file size of mzData limited, mzData format requires primary data (m/z and 

intensity) to be represented as base64 encoded binary using the W3C Schema base64Binary 

type [62]. To use this type, additional information is needed to decode the array properly (see 

Figure 4-4).  

 

 

FIGURE 4-4 THE STEPS TO STORE DATA ARE REPRESENTED IN BLUE; THE STEPS TO EXTRACT DATA ARE REPRESENTED 

IN RED. 
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The mzData format encapsulates binary data in an element called “data”. Only IEEE-754 floats 

are allowed in this element, however either the 32-bit or 64-bit precision floating point 

representation may be used. To improve cross platform interoperability, both byte orders are 

allowed with order specified in the “endian” attribute. Finally, the number of floating point 

numbers stored in the encoded array is specified in the “length” attribute. 

mzData has been released and is stable at version 1.05. It is now deprecated in favour of mzML, 

the current standard data format.  

 

4.1.1.2 MZXML 

mzXML is an open data format for storage and exchange of mass spectroscopy data, developed 

at the Seattle Proteome Center, at the Institute for Systems Biology. mzXML provides a standard 

container for MS and MS/MS proteomics data or multiple mass spectrometric (MSn) data, based 

on XML. Raw, proprietary file formats from most vendors can be converted to the open mzXML 

format.  

XML cannot directly incorporate binary data and the conversion to a human readable clear text 

representation is not possible without a significant size increase. This problem is addressed in 

the mzXML format by encoding the (m/z, intensity) binary pairs in base64, as for mzData. As a 

general idea, mzXML is very similar to mzData. 

The second limitation of XML representation of MS data is a consequence of some XML parsers 

that read a document sequentially, from the beginning of the file to the end. Therefore the 

mzXML schema is wrapped by a second schema, which indexes the position of each scan in a 

given XML file (see Figure 4-5, from [63]). At parsing time, this index can be used to adjust the 

input stream to a scan-specific offset. 
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FIGURE 4-5 SCHEMA FOR THE INDEX ED MZXML FORMAT. IN THE MZXML FORMAT THE  ACCESS IS ADDRESSED BY 

INDEXING THE POSITION OF EACH SCA N IN THE DOCUMENT. THEREFORE SPECTRUM DATA CAN BE ACCESSED BY THE 

SCAN NUMBER. NO ACCE SS INDEXING ON THE M/Z DIMENSION IS PROVIDED. 

 

The following is a focus on the most relevant part of the mzXML schema represented in Figure 

4-6. The ‘parentFile’ element stores a chronological list of all files used to generate a given 

instance document. The ‘msInstrument’ element stores the specifications of the MS instrument 

(e.g., resolution, manufacturer, model, ionization type, mass analyzer type, detector type) and 

acquisition software used to generate the data. A ‘nameValue’ element provides a means to 

store laboratory-specific instrument modifications. Even in a vendor-neutral representation, it is 

important to preserve this information because the analytical software should account for the 

strengths and weaknesses of different instruments. The ‘dataProcessing’ element describes any 

type of data processing (e.g., centroiding, noise reduction, peak finding) performed during the 

creation of the current instance document. The ‘scan’ element has attributes to describe, among 

others, the retention time, the MS level, the polarity of the ion source, the ionization energy and 

the mode of acquisition (e.g., full, selected ion monitoring, selected reaction monitoring) for the 

scan being described. The ‘scan’ element contains a reference to itself, which provides an 

intuitive way to store scans sharing a common ancestor (e.g., a common survey scan). It features 

seven sub-elements: the ‘scanOrigin’ element, the ‘precursorMz’ element, the ‘maldi’ element, 

the ‘peaks’ element, the ‘nameValue’ element and the ‘comment’ element (for an example see 

Figure 4-7). 
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FIGURE 4-6 OVERVIEW OF THE MZXML SCHEMA VERSION 2.0 . THIS VERSION IS CO MPATIBLE WITH LC-ESI-MSN AND 

WITH MALDI-MSN EXPERIMENTS.  

 

The ‘scanOrigin’ sub-element stores the details of the integration process if the current scan has 

been created by merging multiple scans. The ‘precursorMz’ sub-element stores the m/z, 

intensity, charge state, width of the selection window and collision energy values for the 

precursor ion fragmented in the current scan. Multiple instances of the ‘precursorMz’ sub-

element per scan element can be included to account for fragmentation spectra possessing 

more than one precursor ion (e.g., as in shotgun sequencing experiments with fragments 

generated by in-source decay [64]). The ‘maldi’ sub-element stores those parts of data from a 

MALDI experiment that can vary between multiple scans acquired on the same spot (e.g., the 

laser intensity or the duration of the laser excitation). The ‘peaks’ sub-element contains the m/z 

intensity pairs as base64-encoded binary data. This element can store raw as well as processed 
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m/z intensity pairs. The ‘nameValue’ sub-element can be used to add entries to the instance 

document without having to change the schema. This allows different laboratories to have 

personalized instance documents, while referring to a centralized common schema. 

 

 

FIGURE 4-7 MZXML INSTANCE DOCUMENT IF THE MS INSTRUMENT WAS SET TO DO O NE MS SURVEY SCAN (YELLOW) 

FOLLOWED BY 3 MS/MS SCANS (RED) AND ONE MS/MS/MS SCAN (LIGHT BLUE) SELECTED FROM THE  SECOND MS/MS 

SCAN. 

 

4.1.1.3 MZML 

mzML is a new format which aims to merge the best elements of mzXML and mzData, and 

represents a joint effort of the HUPO/PSI committee, SPC/ISB, instrument vendors, and other 

proteomics software groups. mzML is intended to replace all earlier formats. mzML is a common 

open format to record the output of mass spectrometers prior to database searching or other 

downstream processing of the spectra. It is designed to hold the data output of a mass 

spectrometer as well as a systematic description of the conditions under which this data was 

acquired and transformed. The mzML schema is designed to contain all the information for a 

single MS run, including meta data about the spectra plus all the spectra themselves, either in 

centroided (peak list) or profile mode. The primary focus of the model is to support long-term 

archiving and sharing, rather than day-to-day laboratory management, although the model is 

extensible to support context-specific details. In order to properly describe mass spectrometry 

data output and the experimental context mzML includes: the actual data acquired, to a 
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sufficient precision, as well as its associated metadata; and an adequate description of the 

instrument characteristics, its configuration and possible pre-processing steps applied.  

The header at the top of the file encodes information about the source of the data as well as 

information about the sample, instrument and software that processed the data. The element 

<mzML> is the root element for the Proteomics Standards Initiative (PSI) mzML schema, which is 

intended to capture the use of a mass spectrometer, the data generated, and the initial 

processing of that data (to the level of the peak list). The element <spectrum> captures the 

generation of a peak list (including the underlying acquisitions). Also describes some of the 

parameters for the mass spectrometer for a given acquisition (or list of acquisitions). The mzML 

specification also supports the <chromatogram> element, which is very similar to the 

<spectrum> element. It is capable of containing a full description of and the data for a 

chromatogram. The chromatogram may be simply be a total ion current (TIC) chromatogram of 

an ordinary MS1 or MS/MS run, or a chromatogram corresponding to a Q1,Q3 pair in a SRM run. 

Selected reaction monitoring (SRM) is the major new technology that is supported by mzML that 

was not supported by both previous formats. There was considerable discussion on how to 

encode SRM experiments: as tiny MS/MS-like spectra or directly as complete chromatograms. 

The decision was made that each SRM scan is to be encoded as a mini MS/MS-like spectra with a 

precursor corresponding to the Q1 m/z and a small spectrum encoding one or more Q3 m/z 

values that correspond to the Q1 m/z. We note that these mini scans may be a single 

(centroided) value per Q3 m/z, or the mini scans may be profile mode scans surrounding the Q3 

m/z. For example, it is entirely permissible to monitor two Q3 m/z values for a single Q1 m/z, 

and encode profile mode scans for both Q3 regions in a single spectrum. It has been resolved 

that all SRM runs must be encoded as mini MS/MS-like spectra using the <spectrum> element. 

Optionally, the same information may also be encoded using the <chromatogram> elements as a 

speed-enhancing feature. At present, it has been decided that SRM output may not be encoded 

only in the <chromatogram> form. The goal is to avoid having two different ways of encoding 

the same data. Readers can always count on the mini MS/MS-like spectra and may only 

optionally support the <chromatogram> constructs. This was merely a policy decision, not one 

dictated by the schema. The mzML model is described in the XML schema showed in Figure 4-8. 
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FIGURE 4-8 HIGH LEVEL OVERVIEW OF THE XML ELEMENTS FOR MZML. EACH BOX REPRESENTS AN XML ELE MENT, 

NESTED WITHIN OTHER ELEMENTS AS SHOWN. MZML MAY BE ENCLOSED IN A  SPECIAL INDEXING WRAPPER SCHEMA 

TO ALLOW RANDOM ACCESS INTO THE FILE, ALLOWING SOFTWARE TO PULL OUT ONE OR MORE ARBITRARY 

SPECTRA. EACH SPECTRUM CONTAINS A HEADER  WITH SCAN INFORMATIO N AND OPTIONALLY PRECURSOR 

INFORMATION, FOLLOWED BY TWO OR MORE BASE64-ENCODED BINARY DATA ARRAYS. CHROMATOGRAM S MAY BE 

ENCODED IN MZML IN A SPECIAL ELEMENT THAT CONTAINS ONE OR MORE  CVPARAMS TO DESCRIBE THE TYPE OF 

CHROMATOGRAM, FOLLOWED BY TWO BASE64-ENCODED BINARY DATA ARRAYS. 

The main difference between the two original formats, aside from the primary intent described 

above, is the design philosophy of flexibility. The mzData format was designed to be quite 

flexible via the extensive use of a controlled vocabulary. It was hoped that the actual xsd schema 

could remain stable for many years while the accompanying controlled vocabulary could be 

frequently updated to support new technologies, instruments, and methods of acquiring data. 

On the other hand, mzXML was designed with a very strict schema with most auxiliary 

information described in enumerated attributes. This simplified software implementations as 

there was only one way to present various attributes and the validity of the documents could be 

easily checked with industry-standard XML validators. 
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The main challenge in uniting these two formats was therefore resolving the opposing 

philosophies rather than fundamental technical issues. The result is a format that contains the 

best aspects of the two original formats so that it may be widely adopted and will resolve the 

current problems. 

One of the aspects of mzXML that enabled its very swift adoption was a ready set of open source 

tools that implemented the format. With these tools many users were able to immediately begin 

using the format without coding their own software. Therefore, to insure that mzML is a format 

that will quickly be adopted and implemented uniformly, the format is presented with several 

tools that write, read, and validate the format. 

The byte-offset index that allowed random access to arbitrary spectra within the file was 

retained for mzML. mzML documents themselves do not have an index. A reference 

implementation is provided for indexing as a wrapper schema for an mzML document.  

The mzData format was a far more flexible format than mzXML. The support of new 

technologies could be added to mzData files by adding new controlled vocabulary terms, while 

mzXML often required a full schema revision. This is evidenced by mzData still being at version 

1.05 while mzXML is currently at version 3.1. However, mzData did suffer from a problem of 

inconsistently used vocabulary terms and there appeared several different dialects of mzData, 

encoding the same information in subtly different ways. This was not usually a problem for 

human inspection of the file, but caused difficulty writing and maintaining reader software. This 

problem should be solved for mzML by releasing a semantic validator with the data format (see 

Figure 4-9). This semantic validator enforces many rules as to how controlled vocabulary terms 

are used, not only making sure that the terms are in the CV, but also that the correct terms are 

used in the correct location in the document and the required terms are present the correct 

number of times. This allows greater flexibility in the schema, but enforces order in how the CV 

terms are used. This will require the discipline of using the semantic validator, not just an XML 

validator. The result is that new technologies or information can be accommodated with 

adjustments to the controlled vocabulary and validator, not to the schema. Opinions differ on 

whether this is a benefit or a curse. 
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FIGURE 4-9 A SCHEMATIC REPRESENTATION OF THE SEMANTIC VALIDATOR. IT IS AVAILABLE AS A WEB PAGE 

(HTTP://EDDIE.THEP.L U.SE/PRODAC_VALIDATO R/VALIDATOR.PL)  OR AS A STANDALONE TOOL.  

 

A comprehensive collection of terms have been defined (mostly extracted from vocabulary and 

definitions of the IUPAC nomenclature book [65]) and structured in an mzML-friendly way, 

hopefully facilitating the browsing of the terms. Almost all first-level branch terms (the direct 

children of the root term) have a homonymous XML element in mzML. Their children, the 

second-level terms, are relevant topics or categories which need CV support for their 

description. The leaf nodes under their respective parent categories should be used in a cvParam 

(further details in Figure 4-10) under the appropriate XML element in mzML schema. 

Although the structure of the CV and the mzML schema are related, the details of which terms 

are allowed/recommended in a given schema section is reported in the mapping file.  The 

mapping file is a list of associations between a cvParam element in a specific schema and the 

branches of the CV terms expected in that location. This file is read and interpreted by the 

validator, checking that the data annotation is consistent. The mapping file needs to be checked 

and eventually updated when the CV terms or structure are changed. 

 

Ontology Access 
component 

Validator layer 

Actual validator implementation 

CV rule reader 
component 

OLS – http://www.ebi.ac.uk/ols 

OBO file 

CV mapping file 

Xpath based 
XML indexer 
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XML file to validate 

Ontology config file 

Object rules file 
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FIGURE 4-10 MUCH OF THE METADATA ENCODED IN THE MZML IS IN THE FORM OF CV PARAMS, AN XML ELEMENT 

THAT PROVIDES A REFE RENCE TO A SPECIFIC  CONCEPT WITHIN THE PSI MS CONTROLLED VOCABULARY. EACH TERM 

HAS AN EXPLICIT AND DETAILED DEFINITION, AND MAY HAVE INFORMATION ABOUT ITS DATA TYPE AND WHAT KIND 

OF UNITS IT REQUIRES, IF ANY. THE CONTROLLED VOCABULARY IS EDITED IN OBO FORMAT WITH THE OBO-EDIT 

SOFTWARE AND IS READ IN BY MOST READERS A ND WRITERS OF MZML. THE CONTROLLED VOCABULARY CAN BE 

EASILY ADJUSTED AND EXTENDED WITHOUT MODIFYING THE SCHEMA. 

 

It was decided that all list elements would have a count attribute. The reason is that parsers 

implemented in languages where memory allocation or array sizing is important, it is a nice 

performance enhancement to have a count attribute indicating how many elements there are in 

the list. Although it was felt that this is an easy target for creating inconsistent files (i.e., writing 

out a count=”5” attribute followed by 6 items in the list), this was deemed to be rare and in the 

vast majority of cases the value can be relied on. The code would need to handle cases where 

the count was incorrect, but this is no more difficult than not knowing the value ahead of time. 

As it has been seen before, mass spectra can be profile and centroided. Profile spectra represent 

the scanned data in an approximately regularly spaced format, sometimes with gaps. Centroided 

spectra present the scanned data only by specifying the location and intensity of individual 

detected peaks, usually after subjecting the profile spectrum to a peak-picking algorithm. The 

mzML format can encode either format with the specification of the proper controlled 
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vocabulary term indicating which one. However, it is not allowed to encode the same spectrum 

in both profile and centroided modes in the same file. This is because the id attribute should 

nominally be the same and may not be duplicated. The recommended workflow if both spectra 

are desired is to encode the profile spectra in one file and the peak-picked data in a second file 

(with appropriate annotations as to what was done). It is permissible to have some spectra in 

one mode and different ones in another; for example MS level 1 spectra may be profile mode, 

while MS level 2 spectra may be peak picked in the same file. 

 

4.1.2 COMPUTATIONAL ISSUES 

At the state of art, the adoption of these formats is widespread among the proteomics research 

groups, also thanks to the extensive support of instrument and database searching vendors, and 

the availability of converters from proprietary data formats. In spite of their success, the 

currently adopted formats suffer from some limitations [63]: the impossibility to store raw data 

[23]; the lack of information on the experimental design, necessary for regulatory submission; 

the lack of scalability with respect to data size, a bottleneck for the analysis of profile data. 

Above all, the 1-dimensional (1D) data indexing provided by these formats considerably 

penalizes the analysis of datasets embodying an inherent 2-dimensional (2D) indexing structure, 

such as Liquid Chromatography-MS (LC-MS) ones. 

Minimizing the computational time to access these huge datasets plays a key role in the progress 

of LC-MS data mining, and can be of help also in a variety of other MS techniques, since MS 

experiments usually have a “temporal” index related to the experimental time at which the MS 

acquisition takes place (e.g., a scan in mzXML). Depending on the downstream analysis, MS data 

can be retrieved as 2D or 3D signal by means of different accesses, based on either a m/z range, 

or a temporal range, or a combination of them, defining different range queries. On LC-MS data, 

these accesses provide respectively chromatograms (2D), spectra (2D), and peptide data (3D), 

whereas on generic MS data, they provide a set of sub-spectra belonging to the specified range. 

An elevated number of range queries are required during data analysis, thus an optimized data 

access strategy would significantly improve computational performance.   

Most research groups develop, often in a sub-optimal way, intermediate data structures 

optimized for accesses on a privileged dimension, depending on the downstream analysis. The 
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lack of a standard procedure for data analysis delayed the development of a standard data 

format optimized for computation. For instance, accredited software packages like Maspectras 

[66,67] and MapQuant [42] make use of the method-specific intermediate data structures 

Chrom and OpenRaw, respectively: the former is optimized for a chromatogram based access, 

the latter for a spectra based access. Chrom is a textual data format where each row stores one 

chromatogram. Raw data are stored in binary data files organized in three functionally distinct 

folders, contained within a parent folder named after the LC/MS experiment. These folders are: 

a global parameters folder (labeled PARAM), an MS spectra archive folder (labeled MS1), and an 

MS/MS spectra archive folder (labeled MS2). In a recent work [68] Khan et al. provide evidence 

that the use of a spatial indexing structure, namely the kd-tree, is suitable for handling large LC-

MS datasets and supporting the extraction of quantitative measurements. The authors 

emphasize the effectiveness of the kd-tree for performing analyses based on range queries but 

they do not compare explicitly the range query performance of the kd-tree with that attainable 

by other known data structures. Moreover, their experimental assessment is carried out only on 

centroid datasets and does not consider profile data, which, as the literature often remarks, are 

the most informative [23], especially for quantitative analysis, but also the most challenging to 

handle. For this reason one of the objectives of this thesis was to develop a data structure to 

efficiently access profile data. 
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4.2 QUANTIFICATION 

Quantification is one of the most important open issues in mass spectrometry-based proteomics 

[37,69-71]. Although reliable protocols are typically available to carry out the quantification from 

the initial samples up to the measurements on the mass spectrometer, the limiting factor in an 

analysis pipeline today is often found at the stage of data processing. Indeed, people often rely 

on software applications they do not fully understand or that provide precious little 

documentation or background information (the notorious black-box problem that pervades 

several aspects of data processing in high-throughput fields such as proteomics). As a result, 

users often fail to perceive correctly the strengths and limitations of their data processing tools, 

and the areas of application where they perform optimally. In the following, some of the most 

important among available software will be illustrated. 

 

4.2.1 AVAILABLE SOFTWARE 

A sizable number of software tools is now available that support quantification of LC-MS 

experiments. As is common to many research fields, software development is a dynamic process 

and proceeds in conjunction with technical advances of analytical instruments. LC-MS software 

tools are developed for specific generations or types of mass spectrometers and may produce 

high-quality results only with data generated by a limited number of MS platforms. These 

utilized platforms consequently define the theoretical limits of the computational LC-MS analysis 

(sensitivity and specificity). Therefore, it is often not trivial to choose an appropriate program 

suitable for the quantification of data generated by a specific instrument. Moreover, no 

comparison among them was ever provided by literature. 

During the last decade, many research groups developed quantification software to analyze their 

own data. Most of these tools accept few data formats often generated by a single instrument, 

while data need to be produced under a strictly defined experimental workflow. Conversely, 

some tools have been developed for a widespread use, such as the freely available ASAPRatio 

[72] (embedded in the Trans Proteomic Pipeline [73]) and MaxQuant [74], or the licensed 

Mascot Distiller [75]. They showed good quantification performance and are commonly used 

among proteomic research laboratories.  
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The different tools for quantitative proteomics have different strengths and weaknesses. 

Recently, a software called Rover [37,76], has been released, which enables to compare 

different quantification methods.  

Figure 4-11 and Figure 4-12 are tables borrowed from [37], which report the existing software 

for differential and label free quantification strategies, respectively. 

 

 

FIGURE 4-11 THE TABLE SUMMARIZES  SOFTWARE PROGRAMS FOR THE QUANTIFICATION OF DIFFERENTIAL LABELING 

EXPERIMENTS. SOFTWARE COMPATIBILITY TO O THER LABELING TECHNIQUES IS SHOWN WHERE A PROGRAM IS 

EITHER LIMITED TO A CERTAIN LABEL (SPECIFIC)  OR APPLICABLE TO DIFFERENT LABELING STRATEGIES (GE NERIC). 

FOR SOME TOOLS, THE COLUMN “COMPATIBLE LABELS” SUMMARIZES FOR WHICH ISOTOPIC LAB ELS THE PROGRAM 

HAS ALREADY BEEN TES TED. 
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FIGURE 4-12 OVERVIEW OF LC-MS QUANTIFICATION PROGRAMS FOR LABEL-FREE QUANTIFICATION.  SOFTWARE 

FEATURES SUCH AS PROGRAM PORTABILITY AND AVAILABILITY, DATA COMPATIBILITY, AND INTEGRATION OF MS/MS 

INFORMATION (MS/MS) ARE SUMMARIZED. MS/M S: IF THE SOFTWARE PROVIDES FUNCTIONALIT Y FOR THE 

INTEGRATION OF MS/MS INFORMATION. RAW: SOFTWARE IMPORTS LC -MS DATA FROM INSTRUMENT RAW FILES.  

 

4.2.1.1 ASAPRATIO 

ASAPRatio (Automated Statistical Analysis of Protein Abundance Ratios) [77] performs 

quantification after peptide sequence identification and verification. It collects this information 

from output files of the INTERACT [73] data organizing tool: peptide sequences, scan numbers, 

charge states at their identification, corresponding proteins and experiment data files. It has the 

flexibility required for the analysis of data generated from peptides labeled with multiple and 

diverse isotopic tags and its quantification performance has been assessed in the published 

results. Both peptide identifications and quantifications were manually validated. It made use of 

the signals recorded for the different isotopic forms of peptides of identical sequence. It 

performs numerical and statistical methods, such as Savitzky-Golay smoothing filters, statistics 

for weighted samples, and Dixon’s test for outliers.  

Here, ASAPRatio will be thoroughly described because it is the most important quantification 

method for the quantification of the data we are analyzing. Indeed, in the following, a 

quantification software for ICPL data will be proposed and its quantification performance will be 

assessed by the comparison to the one reached by ASAPRatio. 
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Its procedure to determine protein quantification and profiling consists of 4 steps. 

Step 1 is the evaluation of a peptide abundance ratio for each peptide identified by MS/MS 

and database searching (see Figure 4-13). 

 If both the peptide and its isotopic partner have acceptable elution peaks, an 

abundance ratio is calculated as the ratio of the two corresponding elution peak 

areas, which are calculated from the averages of the raw and the smoothed 

chromatograms.  

 If one or both of the peak areas were set to zero, the abundance ratio is set to 1:0 or 

0:1 or denoted “unquantifiable”. 

 The ratio error is propagated from the area errors, which is calculated from the 

signal difference of the raw and the smoothed chromatograms. 

 For each observed charge state, the ASAPRatio program calculates an abundance 

ratio. Every ratio weighted by the sum of the two corresponding elution peak areas 

is then used to calculate a peptide abundance ratio and its standard deviation by 

statistical methods for weighted samples.  

 If there are at least three abundance ratios, Dixon’s test is applied to eliminate any 

outliers prior to statistical analysis. 

The result of step one of the process is a weighted abundance ratio for each observation of an 

identified peptide. 
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FIGURE 4-13 THE FIGURE ILLUSTRATES THE EVALUATION OF  A PEPTIDE ABUNDANCE RATIO. R SYMBOL IS THE RATIO 

COMPUTED AS THE WEIGHTED SUM OF ALL ABUNDANCE RATIOS OF PEPT IDE OCCURRENCES IN DIFFERENT CHARGE 

STATES. THE WEIGHTS W ARE GIVEN BY THE SUMMATION OF THE PEPT IDE AREA IN THE LIGH T AND HEAVY FORM. 

THE RATIO FOR EACH CHARGE STATE IS THE R ATIO OF THE AREA RELATED TO THE LIGHT FORM OF THE PEPT IDE TO 

THE AREA OF THE AREA RELATED TO THE HEAVY  FORM OF THE PEPTIDE.  

 

Step 2 is the evaluation of a “unique peptide ratio” for each identified peptide sequence. 

Since in a dataset there are multiple independent observations of the same peptide, ASAPRatio 

evaluates peptide’s contribution to the “unique peptide ratio” obtained from all the measured 

peptide abundance ratios of the peptide itself. Such an evaluation takes place in 2 substeps: 

 Peptide abundance ratios (as in Step1) of all peptides identified during the same RP 

elution peak (different isotopic forms/charge states) are first grouped together to 

calculate an abundance ratio for the RP peak. 
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 Abundance ratios of different RP peaks (either in different chromatographic fractions or 

at different elution times during the same RP run) weighted by the areas of the 

corresponding RP elution peaks are used to calculate the unique peptide ratio.  

If there are at least three individual ratios, Dixon’s test is applied to identify outliers. The result 

of this step of the process is a weighted unique abundance ratio for each identified peptide. 

Step 3 is the evaluation of protein abundance ratio for each identified protein.  

 Statistical methods for weighted samples are applied to calculate the protein abundance 

ratio and its associated standard deviation from all of its corresponding unique peptide 

ratios. 

 The unique peptide ratios are weighted by their errors. 

 If three or more unique peptides are identified for a protein, Dixon’s test is applied to 

identify any outlier peptides. An interface using CGI programming is available for users 

to verify protein abundance ratios. 

The result of this step of the process is a weighted protein abundance ratio for each identified 

protein for which at least one peptide has been identified and quantified. 

Step 4 is the evaluation of the significance of abundance change for each identified protein. 

In quantitative proteomics, protein abundance ratios are typically used to identify differentially 

expressed proteins without considering the effect of the confidence level. This could be 

misleading for the identification of changes of protein expression in different cell states. 

ASAPRatio features a statistical approach which is valid if the expression level of a large number 

of identified proteins does not change between the two cell states: 

A distribution of the logarithm (base=10) of all unique peptide ratios in an LC-ESI-MS/MS 

experiment is first generated: 

 the dominant peak in the distribution is attributed to proteins of unchanged abundance 

and the ASAPRatio program fits the peak with a normal distribution (central limit 

theorem) 

 The probability of the protein not changing in abundance is described statistically by the 

p value making data of large-scale protein profiling experiments comparable. 
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The result of this final step of the process is a calculated significance of abundance change for 

each identified protein. 

Figure 4-14, from [72], summarizes ASAPRatio algorithm main steps. 

 

 

FIGURE 4-14 FLOWCHART OF ASAPRAT IO PROCEDURE TO DETERMINE PROTEIN QUANTIFICATION. 
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4.2.1.2 MASPECTRAS 

MAss SPECTRometry Analysis System (MASPECTRAS) [66,67] is a platform for management and 

analysis of proteomics LC-MS/MS data. MASPECTRAS is based on the Proteome Experimental 

Data Repository (PEDRo) [50] relational database schema and follows the guidelines of the 

Proteomics Standards Initiative (PSI). This is a web-based platform with a back-end database and 

it relies on the Java 2 Enterprise Edition development platform. The platform is scalable and 

enables the outsourcing of computationally intensive tasks to a computing cluster. The data 

model captures data concerning experimental design and at all other subsequent steps leading 

up to evaluation and result export (see Figure 4-15). The MASPECTRAS imports and parses 

search results from SEQUEST [78], Mascot [79], Spectrum Mill, X! Tandem, and OMSSA and 

accepts mzXML and most instrument data formats. The capability to import and parse data from 

five search engines makes the platform universal and independent of the workflow performed 

by the proteomics research group. 

 

 

FIGURE 4-15 SCHEMATIC OVERVIEW O F THE ANALYSIS PIPEL INE OF MASPECTRAS.  

 

The system is not confined to a specific manufacturer and can therefore be used in labs 

equipped with different instruments. Moreover, MASPECTRAS is a system that provides the 
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basis for consensus scoring between MS/ MS search algorithms. Peptides are validated using 

PeptideProphet [80] and the corresponding proteins clustered based on Markov clustering and 

multiple alignments. Then the peptides are quantified by the ASAPRatio algorithm, and the 

results stored in the database and exported to the public repository PRIDE [51]. Here below the 

implementation of ASAPRatio embedded in MASPECTRAS will be thoroughly described, since it 

will be used in the following of this thesis to validate the quantification performance of a newly 

proposed method. 

To gain quantitative information the raw data from the mass spectrometer must be analyzed. 

The virtual chromatograms are calculated from the raw data; these are then smoothed and 

afterwards used to calculate the peak area. In order to be able to implement improvements of 

the ASAPRatio algorithm it was reprogrammed for the Java programming language. In 

MASPECTRAS implementation the m/z range for the chromatogram is user-definable. The 

chromatogram of one charge state is calculated by the summation of the ion intensities, 

smoothed tenfold by repeated application of the Savitzky-Golay smooth filtering method. For 

each isotopic peak, center and width are determined. The peak width is primarily calculated by 

using the standard ASAPRatio algorithm and for further peak evaluation an additional algorithm 

for recognizing peaks with saddle points has been implemented. With this algorithm, a valley (a 

local minimum of the smoothed signal) is recognized to be part of the peak and added to the 

area. The calculated peak area is determined as the average of the smoothed and the 

unsmoothed peak. Background noise, which is estimated from the average signal amplitude of 

the peak's neighborhood (50 chromatogram value pairs above and below the respective peak's 

borders), is subtracted from this value. The peak error is estimated as the difference between 

the smoothed and the unsmoothed peaks. A calculated peak area is accepted when the 

calculated peak area is bigger than the estimated error and the peak value is at least twice the 

estimated background noise. The peak area is otherwise set to zero. The calculation takes place 

automatically in the course of the analysis pipeline of MASPECTRAS. The identified peptides are 

combined into groups (peptides having the same sequence and same modification). These 

groups are then further subdivided according to their charge state. For each subgroup the 

median over the masses of the found peptides is calculated. For the calculation of the 

chromatogram this median is taken as the center of the m/z range, and not the in silico 

calculated ideal value. The reason for this approach is that the results generated by mass 

spectrometer are subject to variable error that is dependent on the instrument that is used. 

Normally, the error in m/z direction remains more or less constant for a given peptide. Despite 



132 
 
 

this, median is chosen, because it allows more robust identification of outliers and false 

positives. The calculation can take place in MASPECTRAS directly or on a computing cluster, 

according to the number of peptides requiring quantitation. The threshold for job delegation can 

be set in a configuration file. A threshold is useful because the transfer of big MS raw data files is 

time-consuming and not feasible for a small number of peptides. Starting with approximately 50 

peptides the gain in time increases almost in linear proportion to the number of processors 

used. After the calculation is finished, the retrieved peak areas are assigned to the peptides in 

the database and permanently stored. This module has been implemented as an adduct to the 

rest of the pipeline. The data can be analyzed by the user during the quantification process. To 

validate MASPECTRAS quantification performance, the quantitative analysis was performed with 

MSQuant [81], PepQuan (Bioworks 3.2 – Thermo Electron), and ASAPRatio as implemented in 

MASPECTRAS. The system provides customizable data retrieval and visualization tools, as well as 

export to PRoteomics IDEntifications public repository (PRIDE). The integration of peptide 

validation, protein grouping and quantification algorithms in conjunction with visualization tools 

is important for the usability and acceptability of the system. Particularly the inclusion of a 

quantification algorithm in the pipeline is of interest since more and more quantitative studies 

are initiated. The results of MASPCTERAS validation experiment showed that the performance of 

ASAPRatio was superior to MSQuant and PepQuan. The MASPECTRAS platform offers 

researchers an environment for the rapid analysis of large-scale proteomics experiments. Due to 

its modular design it is flexible enough to easily accommodate future changes in proteomics data 

management.  

 

4.2.1.3 MSQUANT 

MSQuant [82] quantifies data generated from Applied Biosystems/MDS-Sciex, Thermo Fisher 

Scientific, Micromass/Waters and it is compliant to all labeling techniques and to label-free, too. 

MSQuant allows integration of data from advanced acquisition schemes and optimal use of the 

raw data resulting in very high quality identifications and quantitation. Its main modules can be 

seen in Figure 4-16 where the published flowchart is reported [82]. 

MSQuant quantifies stable isotopically labeled pairs or triplets on the basis of peptide 

identifications (rather than directly from the data) and requires at least one of the members of a 

SIL pair to be identified by MS/MS, which is then used to calculate the position for all other 
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partner peaks. MSQuant uses an algorithm that centers the quantitation on the actual peaks. 

This is important for Finnigan LTQ-FT data where the masses in some MS spectra are shifted due 

to space-charge effects. Thus it is not necessary to widen the quantitation mass window to 

account for this effect and which would introduce the risk of affecting the quantitation result 

with data from unrelated peaks. Users can click on the result for any MS scan and view the 

corresponding raw data. Often, single scans are unreliable due to interference from co-eluting 

peaks, for instance. These scans can be removed from consideration under user-control. No 

quantitation assessment was provided. 

 

 

FIGURE 4-16 MAIN APPLICATION WINDOWS OF MSQUANT. THE START SCREEN ASSOCIA TES MASCOT RESULT FILES 

WITH THE CORRESPONDING RAW DATA FILES AND SPECIFIES PARAMETERS AND FILTERS FOR PARSING THE MASCOT 

FILE INTO MSQUANT. THE RECALIBRATION WINDOW ALLOWS THE USER TO EVALUATE PEPTIDE MASS ACCURACY 

BEFORE AND AFTER RECALIBRATION. THE PROT EIN LIST WINDOW IS THE MAIN DOCUMENT WINDOW AND CONTAINS 

A LIST OF IDENTIFIED PROTEINS. THIS WINDOW INTERFACES WITH MO DULES FOR THE ANALYS IS OF SEQUENCE AND 

QUANTITATIVE INFORMATION EXTRACTED FROM THE PRECURSOR ION AND PRODUCT ION SPECTRA, RESPECTIVELY. 

MSQUANT STORES ALL DATA FOR AN EXPERIMENT IN A DOCUMENT FILE  AND EXPORT ANNOTATED SPECTRA AND 

DATA IN VARIOUS REPORT FORMATS.  
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MSQuant main characteristic is the iterative recalibration (see Figure 4-17, from [82]) which 

improves the mass accuracy of the instrument: the observed vs calculated masses of high 

scoring peptides are used as internal calibrants. Optimal instrument-dependent calibration 

constants are calculated from the observed versus calculated masses of these peptides and 

these are then applied to all measured masses. The overall improvement in average mass 

accuracy is visualized in a separate window with various display options that provide the user 

with an immediate evaluation of the data quality and, thus, instrument performance and 

optimal database search parameters. A script changes the precursor masses in the peak list file 

after which a second search can be performed using the improved mass tolerance. MSQuant 

developers claim that this simple algorithm improves the mass accuracy of the instrument 

several fold, leading to much more specific search results. 

 

FIGURE 4-17 SCREENSHOT OF THE RECALIBRATION WINDOW IN MSQUANT. THIS WINDOW VISUALIZES THE PEPTIDE 

MASS ERRORS OF A DATA SET BEFORE AND AFTER RECALIBRATION. THE TREND LINE FOR THE 8926 HIGH SCORING 

PEPTIDES INDICATES A  SMALL SYSTEMATIC CAL IBRATION ERROR.  
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In the MSQuant framework, they first applied a Post Translational Modification (PTM) 

probability score (PTM-score) for MS3 experiments based on assigning a probability that the 

observed fragments match the fragments calculated for a given sequence by chance and then 

further developed the algorithm for phosphorylation matching. It iterates through all the 

possible modification sites and generates a score based on the number of supporting fragment 

masses, including handling the placement of several phosphorylation sites in a sequence, each of 

which may have different probabilities. While it was developed for phosphorylation, the 

principles underlying the PTM-score are of a general nature and can be used for any 

modification. MSQuant also allows evaluation of the PTM score by displaying the calculated 

fragment ions for any combination of the possible site-specific modifications for the MS/MS 

experiment as proposed by the scoring algorithm. Toggling between these possibilities gives 

valuable information about how much better the top scoring site localization is as compared to 

other interpretations. 

 

4.2.1.4 MAXQUANT 

MaxQuant automatically identifies several hundred thousand peptides per SILAC-proteome 

experiment and allows statistically robust identification and quantification of more than 4,000 

proteins in mammalian cell lysates. It embodies a search engine (Andromeda), whose 

identification efficiency has never been assessed from developers, the same holds for the 

quantification method. It quantifies SILAC or label free data only from Thermo Fisher Scientific 

High Res FT-Data (Orbitrap data). Output results are statistically analyzed by the embedded 

module Perseus (workflow in Figure 4-18). 

The data analyzed in this thesis are low resolution data, therefore MaxQuant couldn’t be applied 

to our dataset. Since it is one of the most used quantitation software nowadays we briefly 

illustrate its algorithm focusing only on the quantitative part.  
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FIGURE 4-18 FLOWCHART ILLUSTRATING THE WORFLOW OF THE CURRENT MAXQUANT RELEASE.  

 

To detect heavy-light SILAC partners MaxQuant considers all possible pairs of isotope patterns. 

Potential SILAC pairs are first required to have sufficient intensity correlation over elution time 

(allowing for some retention-time shift due to isotope effects) and to have equal charges. By 

default MaxQuant assumes at most three labeled amino acids per peptide. In order to get 

quantitation, for all possible cases, MaxQuant convolutes the two measured isotope patterns 

with the theoretical isotope patterns of the difference atoms, that is, the atoms that have to be 

added so that both peptides would have the same atomic composition. If the mass differences 

are within a bootstrap error computed in a previous step and if there is sufficient intensity 

correlation of the two isotope patterns in m/z dimension, the peaks are associated as a SILAC 

pair. The resulting isotope patterns should only differ by a global factor which is the ratio 

between the heavy and light peptide. To determine this ratio all corresponding 2D centroid 

intensities are paired. To these intensity pairs a straight line through the origin is fitted, whose 

slope is the desired ratio. The linear fit is done in a robust way, taking the least squares solution 

as initial value and then solving the best median fit equation iteratively by bisection. 
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In each LC-MS run, MaxQuant normalizes peptide ratios so that the median of their logarithms is 

zero, which corrects for unequal protein loading, assuming that the majority of proteins show no 

differential regulation (see Figure 4-19). Protein ratios are calculated as the median of all SILAC 

peptide ratios, minimizing the effect of outliers. MaxQuant normalizes the protein ratios to 

correct for unequal protein amounts. 

MaxQuant finally calculates an outlier significance score for log protein ratios. As a P-value for 

detection of significant outlier ratios significance A is defined, which is the probability of 

obtaining a log-ratio of at least this magnitude under the null hypothesis that the distribution of 

log-ratios has normal upper and lower tails. For highly abundant proteins the statistical spread of 

unregulated proteins is much more focused than for low abundance ones. To capture this effect, 

another quantity, significance B is defined, which is calculated only on the protein subsets 

obtained by intensity binning. Bins of equal occupancy are defined. 

 

 

FIGURE 4-19 NORMALIZED PROTEIN RATIOS ARE PLOTTED AG AINST SUMMED PEPTIDE  INTENSITIES. THE DATA 

POINTS ARE COLORED BY THEIR SIGNIFICANCE, WITH BLUE CROSSES HAVING VALUES >0.05, RED SQUARES BETWEEN 

0.05 AND 0.01, YELLOW DIAMONDS BETWEEN 0.01 AND 0.001 AND GR EEN CIRCLES <0.001.  
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4.2.1.5 CENSUS 

Census [83] is able to quantify from either MS1 or MS/MS as well as to perform quantitative 

analyses based on both spectral counting and a LC-MS peak area approach using chromatogram 

alignment. It supports the following labeling strategies besides label free: 15N, SILAC, iTRAQ. It 

accepts these data formats: DTASelect, mzXML and pepXML.  

It can’t be applied to the data analyzed during this PhD thesis work since it doesn’t support ICPL 

labeled data, therefore we won’t go into any detail. In Figure 4-20 a schematics representing 

Census main steps on labeled and label free data (from [83]). 

 

 

FIGURE 4-20 SCHEMATIC DETAILING THE QUANTITATIVE ANALYSIS CAPABILITIES O F CENSUS. (A)  USE OF CENSUS 

WITH ISOTOPIC LABELING. (B) USE OF CENSUS WITH LABEL-FREE ANALYSIS. LC, LIQUID CHROMATOGRAPHY. 

For isotopically labeled analyses, Census calculates peptide ion intensity ratios for each peptide 

pair using a linear least squares correlation to calculate the ratio (i.e., slope of the line) and 

closeness of fit (i.e., correlation coefficient) between the data points of the unlabeled and 

labeled ion chromatograms. To determine protein ratios, weighted means of peptide ratios were 

calculated. 
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In contrast to the approach used for isotopic labeling experiments, Census compares peak areas 

for peptides evaluated in an isotope free analysis. After the alignment, of multiple data files, 

Census evaluates all identified peptides by first taking the union of the search results from each 

individual file. Therefore, a peptide only needs to be identified in one file to be evaluated with 

respect to the entire dataset. The average peak area and variance for each peptide is calculated 

from technical replicates. Protein abundances are evaluated after outliers are removed using the 

average of peptide measurements. 

They provided a quantification assessment comparing the expected and measured relative 

abundances of 4 technical replicates of a 10-protein mix dataset using Census. In Figure 4-21 

published results are reported [83]. 

 

FIGURE 4-21 EXPECTED AND MEASURE D RELATIVE ABUNDANCES OF TECHNICAL REPLICATES OF A 10-PROTEIN MIX 

DATASET USING CENSUS. (A) RATIO OF THE SIGNALS MEASURED FOR A MIXTURE OF  SAMPLE A OVER SAMPLE B. (B)  

RATIO OF THE SIGNALS  FOR A MIXTURE OF SAMPLE A OVER THAT OF SAMPLE C  USING DIFFERENT STRATEGIES 

INCLUDING LC-MS PEAK AREAS, SPECTRAL COUNTING WITHOUT NORMALIZATION AND SPECTRAL COUNTING WITH 

NORMALIZATION. A TOTAL OF FOUR REPLICATE  ANALYSES WERE PERFORMED FOR EACH MIXTURE  AND VARIANCE 

WAS DETERMINED AS THE STANDARD DEVIATION. 
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4.2.1.6 OPENMS 

OpenMS [84,85] is an open-source C++ library for LC/MS data management and analyses. It 

offers an infrastructure for the development of mass spectrometry related software. OpenMS is 

a free software available under the LGPL. OpenMS covers a wide range of functionalities needed 

to develop software for the analysis of high throughput protein separation and mass 

spectrometry related data: among others algorithms for signal processing, feature finding, 

visualization, map mapping and peptide identification (see Figure 4-22). OpenMS will be kept 

compatible with the upcoming Proteomics Standard Initiative (PSI) formats for MS data. 

OpenMS has been successfully used for the implementation of The OpenMS Proteomics Pipeline 

(TOPP) [85]. TOPP is a set of computational tools that can be chained together to tailor problem-

specific analysis pipelines for HPLC-MS data (see Figure 4-22). It transforms most of the OpenMS 

functionality into small command line tools that are the building blocks for more complex 

analysis pipelines. 

 

 

FIGURE 4-22 SOME OF THE MODULES IMPLEMENTED IN TOPP USING OPENMS. 

OpenMS contains several algorithms for peptide quantitation based on model fitting [86,87] . 

Using the data structures provided by OpenMS and these algorithms, users are enabled to 
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implement data analysis code for various complex quantitation tasks (labeled/unlabeled 

strategies, relative/ absolute quantitation). No quantitation assessment was provided, but the 

use of these algorithms improved quantitation accuracy in a complex absolute quantitation 

scenario (myoglobin in human blood plasma) while drastically reducing analysis times [88]. 

 

4.2.2 ANALYSIS ISSUES 

At the state of art, LC-MS data analysis algorithms, especially for low resolution data, work on 

chromatographic 2D data. The chromatogram associated to a certain peptide is often extracted 

by integration of intensities in a defined m/z range (see Figure 4-23). 

 

 

FIGURE 4-23 SCHEMATIC OVERVIEW O F THE RELATIVE QUANTIFICATION PROCESS. FOR THE CALCULATION O F A 

PEPTIDE ONLY THE MAS S FLOW OF THE PEPTIDE IS OF INTEREST. THEREFORE CONTRIBUTIONS OF THE MASSES OF 

THE PEPTIDE ARE TAKE N INTO ACCOUNT. THE RESULTING CHROMATOGRAM IS SMOOTHED AFTERWARDS. DUE T O 

THE FACT THAT THE PE PTIDE CAN OCCUR AT DIFFERENT CHARGE STATES SEVERAL CHROMATOGRAMS HAVE TO BE 

TAKEN INTO CONSIDERATION. THE AREA BELOW THE CHROMATOGRAM CAN BE CALCULATED AS AN INDICATOR FOR 

THE AMOUNT OF PEPTIDE WHICH ENTERED THE MASS SPECTROMETER.  

 

Such an approach, reducing a 3D signal to a 2D signal does not involve just a complexity 

reduction, but the loss of the LC-MS instrumentation resolving power. Thus, meaningful 

information is wasted, causing neighboring peaks to overlap along time dimension, resulting in 

unreliable quantifications (see Figure 4-24).  
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FIGURE 4-24 PEPTIDES OVERLAPPING ON THE RETENTION TIME DIMENSION (PANEL ABOVE, RED AND YELLOW) 

MERGED TOGETHER (PANEL BELOW, IN RED) AF TER THE INTEGRATION ALONG THE M/Z DIMENSION AND THE 

SMOOTHING OPERATED BY THE PROCESSING ALGORITHMS. 

 

For this reason a 3D approach reliably defining the borders of each peak is required. In fact, the 

2D-LC-MS technique effectively separates peptides in the m/z and time dimensions. As a result, 

raising resolving power, LC-MS minimizes the overlapping of signals associated to peptides 

having similar electrochemical properties. Moreover, the profile acquisition mode enhances 

signal information content. Therefore, in this PhD research project we tried to exploit both data 

features to improve the quantification. 
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5 DATASET 

In this chapter we describe the dataset used to evaluate performance of both the data handling 

solution and the quantification algorithm. 

It consists of a controlled mixture of ICPL-labeled proteins (bovine serum albumin (UniprotKB: 

P02769), human apotransferrin (UniprotKB: P02787) and rabbit phosphorylase b (UniprotKB: 

P00489)). They were mixed at seven different light to heavy ratios (1:1, 1:2, 1:5, 1:10, 2:1, 5:1, 

10:1) in triplicates.  

The great advantage of so structured datasets relies in the fact that they enable to perform a 

reliable performance assessment. Very few studies have been published so far regarding the 

validation of algorithms for quantitative MS-based proteomics.  Making use of these data we can 

test and compare several quantification algorithms. 

Data were produced by the staff of the protein chemistry facility at the Research Institute of 

Molecular Pathology, Vienna. We were provided with these data by the Institute for Genomics 

and Bioinformatics and Christian-Doppler Laboratory for Genomics and Bioinformatics, Graz 

University of Technology, Graz, Austria. Data are publicly available from MASPECTRAS[66] web 

site following the directions given in: 

https://maspectras.genome.tugraz.at/maspectras/FileProvider?type=publicDownload&fileName

=MASPECTRASPublishedDataHelp.pdf. 

5.1 MATERIALS 

Proteins were purchased from Sigma as lyophylized, dry powder. Solvents (HPLC grade) and 

chemicals (highest available grade) were purchased from Sigma, TFA (trifluoroacetic acid) was 

from Pierce. The ICPL (isotope coded protein label) chemicals kit was from Serva Electrophoresis 

and this kit contained reduction solution with TCEP (Tris (2-carboxy-ethyl) phosphine 

hydrochloride), cysteine blocking solution with IAA (Iodoacetamide), stop solutions I and II and 

the labeling reagent nicotinic acid N-hydroxysuccinimide ester as light (6 12C in the nicotinic 

acid) and heavy (6 13 C) form as solutions. Trypsin was purchased from Sigma at proteomics 

grade. 
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5.2 ICPL LABELING OF PROTEINS  

Proteins were dissolved with TEAB (Tetraammonium bicarbonate) buffer (125 mM, pH 7.8) in 

three vials to a final concentration of 5 mg/ml each. A 40 μl aliquot was used for reduction of 

disulfide bonds between cysteine side-chains and blocking of free cysteines. For reduction of 

disulfide bonds 4 μl of reduction solution were added to the aliquot and the reaction was carried 

out for 35 min at 60°C. After cooling samples to room temperature, 4 μl of cysteine blocking 

solution were added and the samples were sat in a dark cupboard for 35 min. To remove excess 

of blocking reagent 4 μl of stop solution I were added and samples were put on a shaker for 20 

minutes. Protein aliquots were split to two samples which contained 20 μl each. First row of 

samples was labeled with the 12C isotope by adding 3 μl of the nicotinic acid solution which 

contained the light reagent. Second row was labeled with the heavy reagent and labeling 

reaction was carried out for 2 h and 30 min while shaking at room temperature. 

 

5.3 PROTEOLYTIC DIGESTION OF PROTEINS 

Protein solutions were diluted using 50 mM NH4HCO3 solution to a final volume of 90 μl. 10 μl 

of a fresh prepared trypsin solution (2.5 μg/μl) were added and the proteolysis was carried out 

at 37°C over night in an incubator. The reaction was stopped by adding 10μl of 10% TFA. The 

peptide solutions were diluted with 0.1 % TFA to give 1 nM final concentration. From these stock 

solutions samples for MS/MS analysis which contained defined ratios of heavy and light were 

made up by mixing the solutions of light and heavy labeled peptides. 

 

5.4 HPLC AND MASS SPECTROMETRY 

To separate peptide mixtures prior to MS analysis, nano reverse phase high-performance liquid 

chromatography (nanoRP-HPLC) was applied on the Ultimate 2 Dual Gradient HPLC system 

(Dionex, buffer A: 5% acetonitrile (ACN), 0.1% TFA, buffer B: 80% ACN, 0.1% TFA) on a PepMap 

separation column (Dionex, C18, 150 mm × 75 μm × 3 μm, 300 A). 500 fM of each mixture was 

separated three times using the same trapping and separation column to reduce the 

quantification error which comes from HPLC and mass spectrometry. A gradient from 0% B to 

50% B in 48 min was applied for the separation; peptides were detected at 214 and 280 nm in 
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the UV detector. The exit of the HPLC was online coupled to the electrospray source of the LTQ 

mass spectrometer (Thermo Electron). Samples were analyzed in centroid mode first to test 

digest and labeling quality. For the quantitative analysis the LTQ was operated in enhanced 

profile mode for survey scans to gain higher mass accuracy. Samples were mass 

spectrometrically analyzed using a top one method, in which the most abundant signal of the 

MS survey scan was fragmented in the subsequent MS/MS event in the ion trap. Although with 

this method a lower number of MS/MS spectra were acquired, the increased number of MS 

scans leads to a better determination of the eluting peaks and therefore provides improved 

quantification of peptides. 

Data analysis was done with the Mascot Daemon (Matrix Science), BioWorks 3.2 (Thermo 

Electron) software packages using an in house database. To demonstrate the merging of results 

from search engines the ICPL labeled probes at a ratio of 1:1 were searched with Spectrum Mill 

A.03.02 (Agilent Technologies), X! Tandem (The Global Proteome Machine Organization) version 

2006.04.01, and OMSSA 1.1.0 (NCBI).  
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6 DATA HANDLING :  THE MZRTREE DATA STRUCTURE   

In this chapter we present a novel data structure, called mzRTree, for the efficient handling of 

high-throughput LC-MS profile datasets. It combines a hybrid sparse/dense matrix 

representation of the data and a scalable index based on the R-tree [89] (see Figure 6-1). We 

show experimentally that mzRTree supports efficiently both 1D and 2D data accesses. In 

particular, mzRTree significantly outperforms other known structures used for LC-MS data on 

small and large peptide range queries, yielding in some cases orders of magnitude 

improvements. Furthermore, it still ensures best performance on the accesses for which the 

other data structures are optimized. The experiments also provide evidence that mzRTree is 

more space efficient, and exhibits good scalability on increasing dataset densities. In the 

following of this chapter the theoretical approach, its actual implementation and the 

performance validation will be comprehensively illustrated and finally discussed. 

 

 

FIGURE 6-1 LC-MS DATA DIVIDED IN NESTED RECTANGLES AND INDEXED BY THE R -TREE. INDEXED RECTANGLES CAN 

BE EFFICIENTLY ACCES SED MAKING USE OF THE R-TREE.  
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6.1 THE THEORY BEHIND 

Let us conceptually view an LC-MS dataset D as a matrix, where the rows are indexed by 

retention times, the columns by m/z values, and the entries are intensity values. A generic entry 

is denoted as (rt, mz; I), where rt and mz are the row and column indices, and I is the intensity 

value.  

We store D using a hybrid sparse/dense matrix representation, as follows. First, we evenly 

subdivide the matrix into K strips of consecutive rows, where K is a user defined parameter. 

Then, each strip is in turn partitioned into a number of bounding boxes (BBs), each 

corresponding to a distinct range of m/z values. In our implementation, each BB corresponds to 

approximately 5 Da, and K is set in such a way to ensure that each strip fits in the main memory 

(RAM). A BB is characterized by four coordinates, namely: top-rt (resp., bottom-rt), which is the 

smallest (resp., largest) retention time of the BB’s nonzero intensity entries; and left-mz (resp., 

right-mz), which is the smallest (resp., largest) m/z value of the BB’s nonzero intensity entries. 

The BBs of a strip are stored consecutively in a file, and each strip is saved in a distinct file so 

that it can be efficiently loaded in the main memory during a range query. If half or more of the 

entries in a BB have nonzero intensity, then the BB is stored in the file using a dense matrix 

representation. Otherwise, a sparse representation is used storing the nonzero intensity entries 

in row-major order, indicating for each such entry the column (m/z value) and the intensity, and 

separating successive rows through special characters. In this fashion, each BB occupies a space 

proportional to the number of nonzero intensity entries it contains.  

A range query operation on D takes as input two retention times rt1, rt2, and two m/z values, 

mz1, mz2, and returns all entries (rt, mz; I) in D such that rt1 < rt ≤ rt2 and mz1 < mz ≤ mz2. 

Accesses to chromatograms, spectra or peptide data can be easily expressed through range 

queries. In order to support efficient range query operations, we use an index implemented 

through a tree structure based on the R-tree [89], which is a well-known spatial data structure 

for managing geometric data. 

Let d and f be two integer parameters, and let G be the set of nonempty BBs (i.e., BBs which 

contain at least one nonzero-intensity entry). Denote by W the cardinality of G. Our index 

consists of a balanced search tree whose leaves are associated with disjoint subsets of G forming 

a partition of G. The number of children of each internal node is proportional to d (the root, if 

internal, may have a smaller number of children) and each leaf is associated with a subset of size 
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proportional to f of BBs in G (the root, if a leaf, may have less than f BBs). Each internal node of 

the tree is associated to the smallest submatrix of D which contains all BBs associated with its 

descendant leaves. 

The execution of a range query requires to traverse all root-leaf paths ending in leaves 

associated with BBs that intersect the rectangle defined by the query, and to return all entries of 

interest. The complexity of a range query depends on the height of the tree, hence on the 

parameters d and f, and on the mapping of the BBs to the leaves. As for the choice of the 

partition parameters d and f, when dealing with massive datasets, which must be kept in 

secondary memory, it is convenient to impose that each node of the tree (except, possibly, the 

root) occupies a constant fraction of the minimal unit that can be transferred between the 

secondary memory and the RAM. Instead, for what concerns the mapping of the BBs to the 

leaves, several heuristics have been proposed in the literature (see [90] for relevant references).  
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6.2 IMPLEMENTATION 

In our implementation, we set d=6 and f=200, and the actual structure of the tree is recursively 

defined as follows, based on ideas in [89]. If W≤f, the tree consists of a single leaf associated 

with the set G; otherwise, G is partitioned into six groups, Gi, for 1 ≤ i ≤ 6, as follows. G1 contains 

the W/6 BBs with smallest top-rt; G2 contains the W/6 BBs in G- G1 with smallest left-mz; G3 

contains the W/6 BBs in G- G1- G2 with largest bottom-rt; G4 contains the W/6 BBs in G- G1- 

G2- G3 with largest right-mz; G5 contains the W/6 BBs in G- G1- G2- G3- G4 with smallest left-mz; 

and G6 contains the remaining BBs. The six groups are associated with the subtrees rooted at the 

children of the root, which are recursively organized in a similar fashion. Each leaf is thus 

associated with up to f=200 BBs, and it stores, for each of its BBs, the four coordinates (top-rt, 

bottom-rt, left-mz, right-mz) and a pointer to the file where the BB is stored together with the 

relative offset within the file. It can be easily shown that the height of the tree is proportional to 

log6 (W/200). 

 We call mzRTree the whole data structure, which includes the actual data (i.e., the bounding 

boxes) stored in the files, and the tree index described above. We developed a Java 

implementation of mzRTree, which includes a method to build an mzRTree starting from an 

input dataset provided in mzXML/mzML format [59,61], and a method to perform a generic 

range query1. 

 

  

                                                        
 

1 The Java code implementing mzRTree is available for download at http://www.dei.unipd.it/mzrtree.  
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6.3 PERFORMANCE ASSESSMENT  

In this section, we describe how we evaluated mzRTree performance compared to Chrom and 

OpenRaw, which are two existing data structures used by Maspectras and MapQuant software 

packages and optimized for chromatograms and spectra based accesses, respectively (see Table 

6-1). Specifically, we focused our analysis on the time required for a range query, the time 

required for building up the data structure, and the required hard disk space. Furthermore, we 

verified mzRTree scalability for what concerns range query times using datasets of increasing 

density, where the density of a dataset is defined as the ratio of the number of retention time 

and m/z value pairs associated with nonzero intensities to the overall number of retention time 

and m/z value pairs.  

 

 

TABLE 6-1 IT SUMMARIZES THE MAIN FEATURES OF THE DATA STRUCTURES USED IN THIS COMPARISON.  

 

We compared mzRTree, Chrom and OpenRaw on seven LC-MS datasets, named EXP1, EXP2, 

ART1, ART2, ART3, ART4 and ART5, which are described below. The EXP1 dataset consists of real 

profile data from a controlled mixture of ICPL-labeled proteins acquired in enhanced profile 

mode for survey scans to gain higher mass accuracy using a Finnigan LTQ linear ITMS (Thermo 

Electron) equipped with HPLC-NSI source. The EXP2 is a real profile dataset acquired with a 

Waters ESI TOF Microchannel plate LCT Premier available on the PeptideAtlas public database. 

The ART1, ART2 and ART3 datasets have been generated by the LC-MS simulator LC-MSsim [91] 

using as input some peptide sequences from bovine serum albumin (UniprotKB: P02769), human 

apotransferrin (UniprotKB: P02787) and rabbit phosphorylase b (UniprotKB: P00489). Finally, the 

ART4 and ART5 datasets have been generated artificially by the following procedure: for each 

dataset, the user specifies some input parameters, namely, the number of spectra (i.e., the total 

number of retention times), the m/z range and resolution, and the density d; then, each 
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spectrum is populated by assigning nonzero intensity values to positions corresponding to m/z 

values drawn from a uniform distribution until the density of the spectrum is d; clearly, if each 

spectrum has density d, then the final dataset will have density d. ART4 and ART5 are useful to 

evaluate the scalability of our data structure although they are not meaningful from a biological 

standpoint.  

The characteristics of the aforementioned datasets are summarized in Table 6-2. Notice that the 

resolution shown in Table 6-2 is not the original data resolution (i.e., the instrumental 

resolution) but it is a suitable resolution, not smaller than the original one, which has been 

adopted in our data representation for uniformity with the other data representations used for 

comparison in the experiments. In particular, the Chrom files we used, adopted a 0.001 Da 

resolution: this resolution is higher than the maximum resolution achievable by the instruments 

used to acquire the experimental data. Therefore, our choice is conservative in the sense that it 

does not require any binning and, consequently, does not cause any loss of information. 

 

 

TABLE 6-2 DATASETS' FEATURES. NOTICE THAT THE SPEC TRA NUMBER IS REFERRED TO THE TOTAL NUMB ER OF MS
1
 

SPECTRA AND RESOLUTION IS NOT THE INSTRUMENT RESOLUTION, AS EXPLAINED IN THE TEXT. RED CIRCLES ARE 

CLUSTERING SIMILAR DATASETS.  

 

We compared mzRTree, Chrom and OpenRaw on four kinds of range queries: a rectangle 

covering all the retention times and a 5 Da range in the m/z dimension (chromatograms); a 

rectangle covering the entire m/z dimension and 20 retention times (spectra); a rectangle of 5 

Da and 60 retention times (small peptide); a rectangle of 5 Da and 200 retention times (large 

peptide).  
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FIGURE 6-2 THE FIGURE VISUALLY ILLUSTRATES THE 3 MAIN KINDS OF DATA ACCESSES WE TESTED MZRTREE FOR. 

 

We estimated the performance for each kind of range query summing the access times required 

to perform ten range queries spanning the whole dataset in order to avoid any local advantage. 

More precisely, we evaluated separately the time required for loading the internal variables 

used by each data structure every time it is invoked (load time) and the time actually needed to 

perform only the range query (access time). To reduce random variability, we computed both 

access and load times averaging over ten experimental repetitions. It is worth to notice that a 

spectra range query is more time consuming than a chromatograms range query, since the 

number of distinct m/z values is typically much bigger than the number of retention times.  
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6.4 RESULTS 

Results on access times for the EXP1 and EXP2 datasets are shown in Figure 6-3 and Figure 6-4, 

respectively: mzRTree achieves the best performance on all kinds of range queries for both the 

smaller size and density dataset EXP1 and the larger size and density dataset EXP2.  

 

FIGURE 6-3 COMPARISON ON EXP1 DATASET AMONG MZRTREE, OPENRAW AND CHROM ON RANDOM 

CHROMATOGRAMS, SPECTRA AND SMALL/LARGE PEPTIDE RANGE QUERIES SPANNING THE WHOLE DATASET AS 

REGARDS ACCESS TIMES. EVERY COLORED BAR REFERS TO A DIFFERENT KIND OF RANGE QUERY. MZRTREE REACHES 

BEST PERFORMANCE ON ALL KIND OF RANGE QUERIES, OUTPERFORMING  CHROM AND OPENRAW.  

 

FIGURE 6-4 COMPARISON ON EXP2 DATASET AMONG MZRTREE, OPENRAW AND CHROM ON RANDOM 

CHROMATOGRAMS, SPECT RA AND SMALL/LARGE P EPTIDE RANGE QUERIES SPANNING THE WHOLE DATASET AS 

REGARDS ACCESS TIMES. EVERY COLORED BAR REFERS TO A DIFFERENT KIND OF RANGE QUERY. NOTICE HOW 

MZRTREE STILL REACHES BEST PERFORMANCE, OUTPERFORMING CHROM AND OPENRAW, ALSO ON THIS HIGHER 

DENSITY AND SIZE DATASET. 
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Furthermore, Figure 6-5 illustrates the access times for ten peptides in EXP1 using small and 

large peptide range queries, whose bounds refer to peptides actually identified by the Mascot 

search engine. mzRTree significantly outperforms Chrom and OpenRaw on small and large 

peptide range queries, and still ensures best performance on the accesses for which the other 

data structures are optimized, i.e., chromatograms for Chrom and spectra for OpenRaw. 

 

FIGURE 6-5 COMPARISON ON EXP1 DATASET AMONG MZRTREE, OPENRAW AND CHROM ON SMALL/LARGE PEPTIDE 

RANGE QUERIES RELATE D TO MASCOT IDENTIFIED PEPTIDES AS REGAR DS ACCESS TIMES: MZR TREE IS ONE ORDER OF  

MAGNITUDE FASTER THAN CHROM AND TWO ORDERS OF MAGNITUDE FASTER THAN OPENRAW. 

 

The load time required by the three data structures is shown in Figure 6-6 for EXP1 and EXP2 

datasets: we note that the load time is mainly independent of dataset features, and mzRTree 

still achieves the best performance. Since loading is required every time the data structures are 

invoked, it is convenient to perform many consecutive range queries in order to amortize its 

cost: the higher the load time, the more the range queries needed to amortize it. 
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FIGURE 6-6 COMPARISON ON EXP1 AND EXP2 DATASETS AMONG MZRTREE, OPENRAW AND CHROM ON LOAD TIMES:  

MZRTREE IS ONE ORDER  OF MAGNITUDE FASTER THAN CHROM AND OPENR AW. MZRTREE IS ONE ORDER OF 

MAGNITUDE FASTER THAN CHROM AND OPENRAW. 

Even if the data structure creation takes place just once, we also estimated the creation time for 

mzRTree, Chrom and OpenRaw on EXP1. Notice that while mzRTree and Chrom creation starts 

from the mzXML file, the OpenRaw creation starts from the .RAW file, requiring the instrument 

vendor’s software to be licensed and installed on the computer. We chose EXP1 because its size 

is small enough to fit in RAM, thus all three data structures evenly work at their best condition. 

As shown in Figure 6-7, mzRTree features an efficient creation time, even if OpenRaw reaches 

the best performance. However, notice that OpenRaw is advantaged since it starts from binary 

data instead of Base64 encoded data. 

 

FIGURE 6-7 COMPARISON OF MZRTREE, CHROM AND OPENRAW AS REGARDS DATA STRUCTURES’ CREATION TIME 

FOR EXP1 DATASET. WHILE MZRTREE AND CHROM CREATION STARTS FROM THE MZXML FILE,  OPENRAW CREATION 

STARTS FROM THE .RAW FILE, REQUIRING THE INSTRUMENT VENDOR’S SOFTWARE TO BE LICENSED AND INSTALLED, 

HENCE IT STARTS FROM BINARY DATA INSTEAD OF BASE64 ENCODED DATA. 
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In Table 6-3 we provide the comparison of the space reduction using mzRTree, Chrom and 

OpenRaw compared to the mzXML hard disk space, which we chose as reference. mzRTree 

requires the smallest amount of space, hence it allows for cheaper storage and easier sharing of 

proteomics datasets. Besides, mzRTree storage requires at least 30% less hard disk space than 

XML based data formats, since mzRTree stores binary data instead of Base64 encoded data: it is 

a considerable amount of space saved, when taking into account RAID systems and backup 

systems. Observe that, since, for the sake of simplicity, we are ignoring MS level-two spectra, the 

space savings for the first two datasets are notably larger than 30%; however, this is not the case 

of the third dataset, which consists only of level-one spectra. 

mzXML EXP1 EXP2 ART4 

mzRTree 53.71% 46.00% 25.00% 

Chrom 37.84% 28.00% - 

OpenRaw 27.31% 18.00% -10.42% 
 

TABLE 6-3 SPACE REDUCTION REFERRED TO THE ORIGINAL MZXML FILE SIZE, CHO SEN AS REFERENCE. MZRTREE 

ALLOWS FOR A MORE EFFICIENT HARD DISK SPACE-SAVING STORAGE.  

mzRTree can efficiently handle also tandem data; the user only needs to create the data 

structure for every MS/MS level of interest. Figure 6-8 shows that mzRTree provides efficient 

access times on tandem MS data for all kind of range queries, attaining for MS level 2 data the 

same performance as for MS level 1 data. 

 

FIGURE 6-8 COMPARISON OF MZRTREE ACCESS TIMES ON MS
1
 AND MS

2
 LEVELS FOR EXP1 DATA SET. THE 

PERFORMANCE OF  MZRT REE IS INDEPENDENT O F THE MS LEVEL.  



158 
 
 

To test mzRTree scalability on increasing dataset densities and sizes we performed different 

range queries on the artificial datasets ART1, ART2, ART3, ART4 and ART5. Results are illustrated 

in Figure 6-9, which shows that mzRTree is fairly scalable as regards access and load time: as 

data density increases by a factor 10, the access time increases only by a factor 3 in the worst 

case, while the load time is almost constant. 

 

 

FIGURE 6-9 EVALUATION OF MZRTREE SCALABILITY ON INCREASING DATASET DENSITIES AS REGARDS THE  LOAD 

TIME AND ACCESS TIME S ON DIFFERENT KIND OF RANGE QUERIES.AS CAN BE SEEN FROM THE ZOOMED IMAGE 

MZRTREE IS FAIRLY SCALABLE AS REGARDS ACCESS AND LOAD TIME:  AS DATA DENSITY INCREASES BY A FACTOR OF  

10, THE ACCESS TIME INCREASES ONLY BY A FACTOR OF 4 IN THE WORST CASE, WHILE THE LOAD TIME IS ALMOST 

CONSTANT.  
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6.5 DISCUSSION 

In this chapter we described mzRTree, a scalable and memory efficient spatial structure for 

storing and accessing LC-MS data, which features efficient construction time and faster range 

query performance, compared to other known and widely used data structures.  

Experimental results and the inherent scalability of the underlying R-tree structure suggest that 

mzRTree is suitable for high density/large size proteomics data, such as profile data, considered 

as the most informative and hence the most suitable to tackle quantification aims [23]. At 

present, profile data size reaches some GBs, but it is expected to further increase, as far as 

instrument accuracy and resolution increase: even a narrow range of m/z values can be 

challenging to manage when analyzing these data. Thus, the adoption of mzRTree for data 

storage could make profile data accessible for analysis purposes: it prevents out-of-memory 

errors, often occurring with huge profile proteomics datasets, and reduces the need for (and the 

costs of) extraordinary computational infrastructures and their management. Actually, profile 

data are often the only data source rich enough to perform a meaningful analysis, e.g., in 

quantitative proteomics based on stable isotope labeling . However, costs involved with profile 

data handling often outweigh their benefits. mzRTree could revert this relationship. 

Several research questions remain open. The efficiency of mzRTree depends on several design 

choices, including the degree of the internal nodes and the way the bounding boxes are mapped 

to the leaves of the tree. The design space for mzRTree should be fully explored in order to 

identify the best choices. Moreover, when dealing with huge raw datasets mzRTree may not fit 

in RAM. In that case, the tree must reside on hard disk and the size of the internal nodes should 

be adapted to match the minimum block size used in disk-RAM data movements. Other 

solutions based on indexing structures alternative to the R-tree employed by mzRTree (e.g., 

those surveyed in [90], including the kd-tree used in [68]) should be considered and compared to 

mzRTree. Finally, it is interesting and potentially useful to investigate effective ways to further 

integrate all additional information needed for regulatory submission into mzRTree. 

Recently, mzRTree was proposed to the PSI community as a valuable computational support to 

existing standards. At the moment a project is under development regarding the possibility of 

making use of mzRTree to realize a new open data format for efficient data handling in 

collaboration with foreign researchers involved in the development of PSI data formats and 

ontologies. 
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7 QUANTIFICATION: THE 3DSpectra  SOFTWARE 

In this chapter it will be presented 3DSpectra, an innovative quantification software for LC-MS 

labeled profile data developed under MATLAB (2008a, The MathWorks) environment. In order 

to achieve reliable peptide quantifications, the algorithm developed during this PhD research 

project exploits both the 3D LC-MS data resolving power and the informative content carried by 

profile data. In addition, it keeps down computational costs both for data handling and 

quantification. Indeed, in contrast to other available tools, 3DSpectra features optimized data 

handling by means of mzRTree [92], and a hybrid 2D and 3D data analysis approach. The 2D 

signal processing on chromatograms and spectrograms is coupled to a 3D peaks’ borders 

recognition method. In this last step, 3DSpectra, by means of the Expectation-Maximization (EM) 

approach, fits the isotopic distribution shaped by a bivariate Gaussian Mixture Model (GMM) 

including a noise component on 3D peptide data. The estimated GMM is used to statistically 

define the boundaries of the peptide isotopic distribution. 3DSpectra substantially improves 

quantification efficiency compared to the state of the art software, and features the same good 

quantification accuracy and reliability. Furthermore, 3DSpectra achieves a significantly higher 

reproducibility of its peptide quantifications across experimental replicates. In addition, it 

showed high linearity and reliability. Here, we present 3DSpectra, a reliable and accurate 

quantification strategy, which provides significantly wide and reproducible proteome coverage.  
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7.1 ALGORITHM  

Mass spectrometers can generate tremendous amounts of data, whereas accurate and reliable 

quantification is a rather computational intensive task. Thus, the analysis of the whole data 

would be a waste of computational resources. Consequently, 3DSpectra performs a local 

analysis focused on identified peptides where each peptide is analyzed separately by the 

software. In order to accomplish such a local analysis 3DSpectra creates, as a preliminary step, a 

metadata structured collection, called peptide library, containing information about the 

identified peptides (Figure 7-1). LC-MS data have first to be searched using the search engine of 

choice (e.g., Mascot, Sequest, X!Tandem [93], etc). Then, the a priori information has to be 

stored in a metadata file following a strictly defined schema, which will be provided to the user. 

This file is given as input to 3DSpectra. Afterwards, a peptide library, is automatically generated 

by 3DSpectra starting from the metadata file. It will be used during elaboration to retrieve 

peptide metadata, while the data are stored using mzRTree (see Chapter 6) to allow for an 

efficient data access during data analysis. 

 

 

FIGURE 7-1 THE FIGURE ILLUSTRATES THE PEPTIDE LIBRARY. LC-MS DATA ARE SEARCHED BY THE PREFERRED SEARCH 

ENGINE. ITS RESULTS NEED TO BE STORED IN  A FILE FOLLOWING A C ERTAIN SCHEMA. STARTING FROM THIS FILE THE 

PEPTIDE LIBRARY IS B UILT UP. IT WILL BE USED DURING ANALYSIS TO RETRIEVE DATA.  

 

Therefore, 3DSpectra exploits “a priori” information provided by search engines to analyze only 

areas of interest (i.e., data sub-matrices related to identified peptides), which are efficiently 
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accessed using mzRTree. This is done iteratively by the algorithm, analyzing one identified 

peptide per iteration.  

At every iteration of the algorithm the following steps take place, respectively: 

1. Metadata retrieval for local peptide analysis. The peptide library is used to retrieve the 

metadata necessary for the subsequent analysis. 

2. Optimized data access via mzRTree. The required data are loaded in memory using 

mzRTree. 

3. Main isotopic peak detection. The algorithm detects the main isotopic peak of the 

peptide distribution. 

4. 3D isotopic distribution model. The theoretical isotopic distribution of the main peaks is 

modeled in the three dimensional space by a Gaussian Mixture Model (GMM) and fitted 

on data by the Expectation Maximization (EM) algorithm. 

5. Recognition of the isotopic distribution borders. Peak borders are defined making use 

of the GMM. 

6.  Processing and ratio computation. Quantitative values for the peptides are calculated 

and the ratios of the differentially labeled peptides are computed. 

In the following, 3DSpectra main steps will be exhaustively described, while a schematic 

representation is depicted by the flowchart in Figure 7-2. 
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FIGURE 7-2 THE ABOVE FIGURE ILLUSTRATES 3DSPECTRA WORKFLOW VISUALIZING THE MAIN STEPS OF 3DSPECTRA’S 

ALGORITHM AS REPORTE D IN THE MAIN TEXT.  
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7.1.1 METADATA RETRIEVAL FOR LOCAL PEPTIDE ANALYSIS 

The peptide library is used to retrieve peptide metadata and compute all information necessary 

to retrieve the data associated to the peptide under analysis and its isotopic partner.  

In particular, the information about the theoretical distribution and peptide charge status is 

used to compute the m/z range for the sub-matrix of interest, coupled to the information on the 

identified elution time.  

Then, in order to recognize the data sub-matrix associated to the isotopic partner of the peptide 

under analysis, the information regarding labeling is used to compute the position of the isotopic 

partner along the m/z dimension, which is shifted because of the label, whereas co-elution is 

hypothesized along the chromatographic dimension.  

Figure 7-3 shows the data associated to two peptide sub-matrices, relative to an isotopic pair. 

Co-elution can be noticed, as well as the m/z shift due to the labeling. 

 

 

FIGURE 7-3 THE FIGURE VISUALIZES AN ISOTOPICALLY LABEL ED PAIR (PEPTIDE, PARTNER).  GREEN DOTS ARE 

SHOWING WHERE 3DSPECTRA PREDICT THE ISOTOPIC PEAKS BELONGING TO THE DISTRIBUTION, BASED ON THE 

METADATA GATHERED FROM THE PEPTIDE LIBRARY. 
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7.1.2 OPTIMIZED DATA ACCESS VIA MZRTREE 

The peptide library allows 3DSpectra to perform a local peptide analysis. However, repeated 

data accesses are computationally demanding since standard data formats, like mzXml/mzMl 

(18, 19) (see Standard data formats), have been developed for data exchange, not for 

computation [63]. Thus, the required data associated to the peptide under analysis and its 

isotopic partner are accessed by means of mzRTree, which allows efficient data access even on 

huge data files. For more details see DATA HANDLING: THE MZRTREE DATA STRUCTURE.  

This approach, embedded in 3DSpectra, ensures efficiency on data accesses for chromatograms, 

spectra and peptides; scalability to data density and size; hard disk space efficiency.  

 

7.1.3 MAIN ISOTOPIC PEAK DETECTION 

Once the peptide sub-matrix has been loaded, 3DSpectra combines a 2D and a 3D approach to 

process the retrieved data: a 2D signal processing on both chromatograms and spectrograms is 

coupled to a 3D peaks borders recognition method, based on a statistical model of the peptide 

isotopic distribution. 

As a first step, a sum of Gaussians model is fitted to each chromatogram belonging to the sub-

matrix of interest by Non Linear Least Squares (NLLS) (see Figure 7-4). The model used for fitting 

chromatographic peaks is: 

  ∑   
[ (

    
  

)
 
]

 

   

 

  

  7-1   

where    is the amplitude,     is the kth peak centroid and    is the peak width of the kth 

Gaussian component. The maximum number of Gaussians N is 4 (for more details, see 

Implementation). Then, for each chromatogram, we select the Gaussian centroid associated to 

the maximum amplitude among the 4 Gaussians. The mode and the median of these centroid 

values extracted from all chromatograms belonging to the range of interest are computed. The 

new estimate is deemed to be reliable if the mode is within a 0.5 fold change from the median 

and it differs less than a user-definable threshold, defining a range of interest, compared to the 
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elution time value retrieved from the peptide library. In that case, it substitutes the value 

provided by metadata as the true elution time. 

Then, 3DSpectra recognizes the peptide distribution maximum peak looking for it on a 2D 

window defined by a narrow range along retention times centered on the newly estimated 

elution time and a m/z range equal to the peptide distribution width along the m/z dimension. 

The indexes (m/z*, t*) relative to this maximum are then used as a starting point for the fit of 

the 3D peptide distribution model used to define peptide peak borders in next step.  

  

 

FIGURE 7-4 IN ORDER TO DETECT THE MAIN PEAK OF THE ISOTOPIC DISTRIBUTION 3DSPECTRA FITS A GAUSSIAN 

MODEL ALONG THE CHROMATOGRAPHIC DIMENSIO N. EACH CHROMATOGRAM IS FITTED BY ONE OR FOUR 

GAUSSIANS (PINK ARRO WS) AND ITS MAXIMUM PEAK IS RECOGNIZED AS THE TALLEST ONE. THEIR MODES  WILL BE 

USED TO EVALUATE THE  ELUTION TIME.  

 

7.1.4 3D ISOTOPIC DISTRIBUTION MODEL 

In this step, a 3D isotopic distribution model is created by using a Finite Mixture Modeling 

(FMM) approach [94]. In fact, we fit a bivariate Gaussian Mixture Model (GMM) in (m/z –

retention time) plane to the peptide isotopic distribution detected in the previous step. Initial 

parameters for the GMM are derived from the m/z and elution time computed in the main 

isotopic peak detection step (m/z*, t*) combined to “a priori” information on the theoretical 

isotopic distribution of the peptide under analysis. In order to exploit the “a posteriori” 

information carried by the data, a maximum likelihood (ML) estimation of the model parameters 
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is performed by means of the expectation maximization (EM) algorithm. In the following we 

briefly show the main sub-steps involved in the ML estimation, and its solution via EM. 

 

THE GAUSSIAN MIXTURE MODEL 

The physical phenomenon generating LC-MS data is stochastic. Usually, LC-MS are referred to as 

signal intensities, but they actually are ion counts. In other words, LC-MS data correspond to the 

histogram of the real observations, i.e., the ions detected by the MS detector. Therefore, the 

entity ion could be seen as a random vector    (
 

  
    )         .  

Thus, its probability density function (PDF) can be estimated from the LC-MS signal. Biochemistry 

teaches that such a distribution should follow some theoretically known shape factors (“a priori” 

knowledge), MS data gives additional information (“a posteriori” knowledge). Consequently, the 

PDF can be modeled on data using the FMM approach, where a maximum likelihood (ML) 

estimation of the PDF parameters of a GMM is performed by means of the EM algorithm (see 

Figure 7-5). 

 

 

FIGURE 7-5 THE FIGURE SHOWS THE PDF ASSOCIATED TO A GMM THAT SHAPES THE ISOTOPIC DISTRIBUTION OF A 

PEPTIDE. THE GMM PDF  CAN BE SEEN AS THE NORMALIZATION OF THE LC-MS SIGNAL, WHICH IS ITS HISTOGRAM. 

 

We assume that data vectors   {                (
 

  
    )           } are independent 

and identically distributed with distribution  , whose parameters are represented by  . Thus, 

recalling the maximum likelihood estimation principle: 
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 (   )   (             )   ∏ (    )   (   )

 

   

 7-2 

where  (   ) is equal to the likelihood function  (   ) of the parameters   given the data  . 

 (   ) is a function of the parameters   where the data   are fixed. The ML parameters 

estimate  ̂ is given by the maximization of the likelihood function  (   ): 

 ̂        
 

  (   ) 7-3 

Or, equivalently, by minimizing the     ( (   )), which is analytically and numerically more 

convenient: 

 ̂        
 

    ( (   )) 7-4 

Depending on the form of  (   ) the parameters estimation could be from easy to analytically 

intractable. Data on m/z dimension can be described by a sum of Gaussians distribution whose 

shape factors are defined by the theoretical isotopic distribution of the peptide [95]. Therefore 

the peptide distribution can be modeled as a probabilistic bivariate Gaussian Mixture Model: 

  (   )   ∑     (    )

 

   

 7-5 

where the parameters are   (     )        . Mixing proportions    are such that 

∑   
 
     . Each    is a bivariate Gaussian PDF parameterized by    (     )        , 

where    is the mean vector and    is the covariance matrix of the  th Gaussian component. The 

GMM consists of as many Gaussian density components as is the number N of peaks considered 

for the theoretical isotopic distribution of the peptide. The    ( (   )) to be maximized to 

estimate   is: 

   ( (   ))     ∏ (    )  ∑    (∑     (     )

 

   

) 

 

   

 

   

 7-6 

 

 

EXPECTATION MAXIMIZATION FOR THE GMM 

The    ( (   )) for the GMM is difficult to optimize because it contains the log of the sum. 

Here, the EM algorithm [96] was used, which is one of the most widely used in the 

computational pattern recognition community.  
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The hypothesis is that the observed data X is an incomplete set of data drawn from the 

distribution of which we want to estimate the parameters. The EM defines a complete dataset 

  (   )  where   {     *     +       (
 

  
    )                      }  is 

unknown and    is the  th Gaussian component of the GMM. The PDF, which substitutes 

 (   ), is then: 

 (   )   (     )   (     ) (   )   7-7   

Therefore the log-likelihood function     ( (   )) is substituted with: 

   ( (   ))     ( (     ))     ( (     )) 

  

  7-8   

The first step of EM algorithm, called Expectation step (E-step), estimates the expected value of 

the    ( (   )) with respect to the observed data  , the unknown data   and the current 

parameter estimates  ̂   (   ) . At the beginning, parameter estimates  ̂     can be 

extracted from some “a priori” information or simply random. The formulation for the 

expectation  (   (   )) is: 

 (   (   ))   [   ( (   ))]   [    ( (     )    (   )]

 ∑    ( (     )) ( |   (   ))

   

 ∑∑   

 

   

(      (      ))

   

∏ (       
(   ))
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where   is a normal variable we are adjusting,   and  (   ) are known,   is a random variable 

related to the unobserved data and its distribution is: 

 ( |   (   )) 
 

7-10   

which is the posterior probability of each GMM component with respect to each observation 

(i.e., ion). Notice that  (   ) are the parameters used to evaluate the expectation, whereas   

are the parameters we are going to optimize in order to maximize the likelihood  (   ). 

Indeed, the EM algorithm in a second step, called Maximization step (M-step), maximizes the 

expectation computed in the former step: 
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  (   (   )) 7-11   

The E-step and M-step are iteratively repeated until a local maximum of the likelihood function 

is reached. For a GMM, the new estimates   ̂ of the parameters based on the old estimates are 

as follows: 

 ̂  
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where   =1,…,N indicates the  th Gaussian component and  (      ) is the posterior probability 

of the  th Gaussian component with respect to each ion. These update equations perform both 

E-step and M-step.  

Since the local optimum of the likelihood function is strongly dependent on starting values, it is 

quite important to supply suitable EM starting parameters, which are Gaussians’ centers 

(i.e.,  ̂ ) and shapes (i.e.,  ̂  and  ̂ ). These values are extracted by the metadata stored in the 

peptide library, the theoretical isotopic distribution associated to the peptide under analysis and 

the main isotopic peak position estimated in the main isotopic peak detection step (see 

paragraph 7.1.3).  

 

NUMBER OF COMPONENTS/ISOTOPES FOR THE GMM 

One of the most important step for creating a good data model, both for clustering and GMM’s 

parameters estimation, is to choose a suitable number of components: too few components fail 

to model the data accurately; too many components lead to an over-fit model with singular 

covariance matrices. If the number N of components of the GMM is unspecified, 3DSpectra 

determines an appropriate number of components, ranging from 2 to 5 Gaussians. This is 

achieved minimizing the Akaike information term (i.e., negative log-likelihood for the data with a 
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penalty term for the number of estimated parameters). The Akaike Information Criterion (AIC) 

formulation is: 

                7-15   

where m is the number of estimated parameters and       is the optimum negative log-

likelihood for the estimated parameters.  

 

7.1.5 RECOGNITION OF THE ISOTOPIC DISTRIBUTION BORDERS 

Once the GMM’s parameters have been estimated, the isotopic distribution borders can be 

defined in a statistical way in order to remove spurious ions. This borders recognition allows to 

determine which ions belong to the isotopic peptide distribution, hence should be quantified, 

and which do not. It consists of 2 sub-steps, which yield two different conditions to be both 

verified for the creation of a signal mask finally applied to the data matrix. These sub-steps are 

named: 

1. 3D borders recognition 

2. Noisy component identification 

 

 

FIGURE 7-6 THE FIGURE SHOWS THE  PDF ISO-DENSITY CURVES DEFINING THE BORDERS OF THE ISOTOPIC 

DISTRIBUTION. OUTLYING DATA ARE DISCARDED FROM SUBSE QUENT ANALYSIS. SYMBOL I REPRESENTS THE PDF 

VALUE, WHILE SYMBOL T REPRESENTS THE RETENTION TIME VALUE.  
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3D BORDERS RECOGNITION 

In a first step, the borders of the isotopic distribution are identified by the GMM PDF iso-density 

curves (see Figure 7-6). The density value was empirically chosen (here, it is set to 0.0001) and 

ensures a conservative approach, that is to say keeping as many ions as possible. Then the first 

condition is that only data inlying the borders will be kept after filtering by signal mask. 

 

 

NOISY COMPONENT IDENTIFICATION 

In order to remove the noise from the ion counts, the GMM is used to recognize spurious ion 

counts deemed to be noise. 

To accomplish this task data the GMM is used for clustering data. Indeed, in the literature, 

GMMs are often used for data clustering [97,98]: each Gaussian component of the fitted model 

corresponds to one cluster. Every observation (i.e., ion) in data is assigned to a cluster by 

choosing the component of the GMM with the largest posterior probability (see paragraph 3D 

isotopic distribution model, equation 7-10). 

Then, 3DSpectra identifies a cluster (i.e., one of the Gaussian components) of spurious data or 

noise among all clusters associated to the GMM. The main features of the noise component are: 

1. to cluster many ions,  

2. to have few counts per ion,  

3. to feature a big variance, 

4. to be unaligned along the chromatographic dimension to the other Gaussians belonging to 

the GMM, in contrast to the other co-eluting components, which are clustering the peptide 

ion counts. 

3DSpectra identifies the Gaussian component that satisfies the greatest number of these 

properties and recognizes it as the spurious one. The posterior probability of belonging to such a 

cluster is used to discard from any subsequent analysis noisy counts, that is to say ion counts 

having a posterior probability of belonging to the noisy Gaussian component higher than 0.9 

(see Figure 7-7 panel (f)). This is the second condition for the signal mask. 
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Finally, the Boolean signal mask is defined merging the two above conditions and it is applied to 

the data matrix prior to further analysis (see Figure 7-7 panel (e)). Outlying data or data 

belonging to the noise component are discarded from subsequent analysis.  

 

 

FIGURE 7-7 THE FIGURE ILLUSTRATES THE PEAK’S BORDER S RECOGNITION STEP EMBEDDING THE REMOVAL OF THE 

DATA BELONGING TO TH E GMM COMPONENT ASSOCIATED TO THE NOISE (HERE, THE 5
TH

).  IN PANEL (A) THE 

ORIGINAL SIGNAL IS REPRESENTED. IN PANEL (B)  THE MASK HAS BEEN APPLIED. THE GMM PDF  IS PLOTTED IN PANEL 

(C) AND IT CAN BE NOTICED THAT THE GMM CAN FOLLOW THE ELUTION PROFILE TO A GREAT  EXTENT. IT IS CLEAR 

ALSO IN PANEL (D),  WHERE THE PDF ISO-CURVES ARE PLOTTED.  IN PANEL (E) THE SIG NAL MASK IS SHO WN, WHILE 

PANEL (F) ILLUSTRATES THE PROBABILITY OF  NOT BELONGING TO THE NOISY COMPONENT (THE DARK RED SIGNAL IS 

DUE TO NO DATA).  

 

7.1.6 PROCESSING AND RATIO COMPUTATION 

After the 3D peaks’ borders recognition step has been accomplished and the mask defining 

peaks’ borders has been applied, only the data belonging to the peptide isotopic distribution are 

left. Spectra are smoothed using the Savitzky and Golay least-squares digital polynomial filter 

[38] along the m/z dimension. Then, on every spectrum, after grouping together the distribution 

peaks and summing the intensities belonging to each isotopic peak, a 2D peptide isotopic 

distribution model is fitted via Weighted Linear Least Squares (WLLS). The information gathered 

(f) 

(e) 

(d) 

(c) (a) 

(b) 
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from metadata is used to weight each isotopic peak contribution to the abundance estimate. 

The weights are given by the probability of every isotopic peak in the theoretical model.  Further 

on, for the sake of simplicity, the abundance estimate will be referred to as the volume under 

the curve (VUC) of the peptide distribution. From the WLLS fit we obtain a matrix, made of a 

number of chromatograms N, which is equal to the number of isotopic peaks considered for the 

distribution model. After that, N total ion currents values are extracted summing all intensities 

under the N chromatograms separately. In such a way, a spectrum made up of N values is 

achieved. On this final spectrum the 2D theoretical distribution is fitted once more via WLLS. The 

weights are given by the probability of every isotopic peak in the theoretical model. Then, the 

same weights are used for the quantification of VUC as weighted sum of the isotopic peaks 

contributions. The relative quantification is computed as the ratio of the peptide’s VUC to its 

isotopic partner’s one. An empirical reliability score, or weight, associated to each ratio is 

provided by the correlation between the data of the peptide and those of its labeled partner. 

Finally, to obtain results and statistics on the computed ratios, outlier removal can be performed 

by either Grubbs test or a MASPECTRAS built-in method.  
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7.2 IMPLEMENTATION 

3DSpectra’s algorithm is implemented in MATLAB and it is available upon request 

(3DSpectra@dei.unipd.it). In this paragraph, some details about its implementation are given.  

 

7.2.1 METADATA RETRIEVAL FOR LOCAL PEPTIDE ANALYSIS 

The peptide library is automatically generated by 3DSpectra starting from the metadata file path 

by means of the library(filePath) function. It works properly only if the metadata file follows a 

strictly defined schema, which is provided with the software itself. The peptide library variable is 

saved in a .mat file, which is loaded at the beginning of 3DSpectra execution. 

 

7.2.2 OPTIMIZED DATA ACCESS VIA MZRTREE 

In order to allow efficient and flexible data accesses, 3DSpectra is provided together with a data 

access toolbox enabling to retrieve data by range queries.  

By default, data access is performed by the mzRTree default range query method. mzRTree can 

be automatically created by the 3DSpectra built-in function mzRTreeCreation(file_mzXML, 

file_mzRTree), starting from the mzML (or, mzXML) file path. The mzRTree data structure is then 

stored in the file_mzRTree path. 

Alternatively, the user can choose to use the mzML/mzXML standard format, accessing it by 

means of the Java Random Access Library (JRAP) [99].  

 

7.2.3 MAIN ISOTOPIC PEAK DETECTION 

The fit of the sum of Gaussians model on every elution profile along the temporal dimension is 

implemented by means of the fit(retTimes,ionCounts,libname) function from the Curve Fitting 

Toolbox. It fits the data in the column vectors retTimes and ionCounts using the library model 

specified by libname, which is set to gauss4 (i.e., sum of 4 Gaussians model). Default settings are 

used.  



177 
 
 

7.2.4 3D ISOTOPIC DISTRIBUTION MODEL 

The isotopic distribution shaped by the GMM is fitted to peptide data using the 

gmdistribution.fit(X,k)  function from the Statistics Toolbox, which implements the Expectation 

Maximization (EM) algorithm. It outputs an object of the gmdistribution class containing 

maximum likelihood estimates of the parameters of the Gaussian mixture model with k 

components for data in the n-by-d matrix X, where n is the number of observations and d is the 

dimension of the data.  

In particular, the gmdistribution.fit method assumes a collection of samples from the mixture 

are observed rather than an aggregate representation of the samples, such as the histogram. 

Since the observed mixture is the LC-MS signal, it gives an aggregate representation of samples. 

Thus, we need to compute the collection of samples that generated it. Such operation is 

computationally very demanding under MATLAB and in order to optimize it, a C++ source file has 

been compiled and linked into a shared library called a binary MATLAB Executable (MEX) file.  

The theoretical isotopic distribution parameters are computed making use of some 

MASPECTRAS built-in methods which have been embedded in the implementation in a Java 

executable library. 

 

7.2.5 RECOGNITION OF THE ISOTOPIC DISTRIBUTION BORDERS 

To recognize the GMM PDF iso-density curves we used the pdf(gmm,X) function of the 

gmdistribution class. It returns a vector y of length n containing the values of the PDF for the 

gmdistribution object gmm, evaluated at the n-by-d data matrix X, where n is the number of 

observations and d is the dimension of the data. 

Data clustering was implemented by the cluster(gmm, X) function from the gmdistribution class: 

the method assigns a cluster to each observation in the n-by-d data matrix X, where n is the 

number of observations and d is the dimension of the data, into k clusters determined by the k 

components of the Gaussian mixture distribution defined by gmm. It returns a n-by-1 vector of 

indexes, idx, where idx(I) is the cluster index of observation I referring to the component of the 

GMM with the largest posterior probability, weighted by the component probability.  
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The probability of each ion count of belonging to the noise component is estimated employing 

the posterior(gmm,X) function from the gmdistribution. It returns P, the posterior probabilities 

of each of the k components in the Gaussian mixture distribution defined by gmm for each 

observation in the data matrix X. P is a n-by-k matrix, with P(I,J) the probability of component J 

given observation I. X has n-by-d size, where n is the number of observations and d is the 

dimension of the data.  

 

7.2.6 PROCESSING AND RATIO COMPUTATION 

To implement the smoothing of spectra and chromatograms using the Savitzky and Golay 

method, we used the mssgolay(x, ionCounts)  MATLAB function from the Bioinformatics 

Toolbox. It smoothes raw noisy signal data featuring peaks using least-squares polynomial. The x 

vector consists of separation-unit values. The ionCounts parameter is a vector of intensity 

values.  

The theoretical isotopic distribution model is fitted on data by means of Weighted Linear Least 

Squares (WLLS), implemented in the lscov(A,b,w) MATLAB function. It computes a weighted 

least-squares (WLS) fit when provided with a vector of relative observation weights, w. It returns 

x, the weighted least squares solution to the linear system A*x = b, that is, x minimizes (b - 

A*x)'*diag(w)*(b - A*x) and here is a scalar. Matrix A is a vector made of the theoretical relative 

intensities in the isotopic distribution. The weights w are the probabilities of each isotopic peak. 

The correlation reliability score, or weight, associated to each ratio is computed by the corr2(A, 

B). It computes the 2-D correlation coefficient between A and B, where A and B are the data 

matrices of the same size associated  respectively to the peptide and its labeled partner. 

Outlier removal is performed by either Grubbs test or a MASPECTRAS built-in method which 

have been embedded in the proposed implementation. The MASPECTRAS method was linked 

into a Java library. 

In order to allow visual inspection a function for the automatic visualization of every pair 

(peptide, partner) has also been implemented. 

Results are stored both in a MATLAB workspace variable and in an Excel file; regression lines of 

light to heavy volumes are printed to a postscript file.  
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3DSpectra can be compared to any other software, whose results are stored in an Excel file 

compliant to a well-defined schema; the compared regression lines will also be printed to a 

postscript file automatically.  

Moreover MATLAB allows to browse the results variable through its visual editor, where it is 

possible to see how the variable is structured and which are the stored values. The variable has a 

field for every relevant information related to the analyzed peptide: the peptide sequence, its 

charge, its index to retrieve additional metadata from the peptide library (e.g., its labeling status, 

elution time, etc), the estimated quantification ratio, the VUC of both the peptide and its 

partner, the experimental replicate where the peptide has been found, the correlation value 

cited above. If the quantification ratio has been computed starting from multiple peptide 

occurrences with different charges, all of them are reported in the charge field, and the 

corresponding library indexes appear in the index field. 
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7.3 PERFORMANCE ASSESSMENT 

In this section it is described how 3DSpectra performance were evaluated using a controlled 

dataset from a preceding study [100]. As previously described (see Chapter 5), it consists of real 

profile data from a controlled mixture of ICPL-labeled proteins (bovine serum albumin 

(UniprotKB: P02769), human apotransferrin (UniprotKB: P02787) and rabbit phosphorylase b 

(UniprotKB: P00489)). They were mixed at seven different light to heavy ratios (1:1, 1:2, 1:5, 

1:10, 2:1, 5:1, 10:1) in triplicates. Acquisition was run in enhanced profile mode for survey scans 

to gain higher mass accuracy using a Finnigan LTQ linear ITMS (Thermo Electron) equipped with 

HPLC-NSI source. Published quantification results show that ASAPRatio (MASPECTRAS 

implementation) reaches the best performance compared to MSQuant  and PepQuan (Bioworks 

3.2, Thermo Electron). Therefore, we compared 3DSpectra to ASAPRatio only. In order to obtain 

comparable quality parameters, both methods used the same set of peptide identifications as 

starting point.  

The quality parameters, which have been chosen for assessing quantification performance, are: 

1. Accuracy, i.e., the ability to quantify peptide ratios with an accurate estimate. 

2. Precision, i.e., the ability to quantify peptide ratios with both a small standard deviation 

and a small coefficient of variation. 

3. Efficiency , i.e., the number of quantified peptides. 

4. Reproducibility, i.e., the ability to quantify the same peptide across experimental 

replicates. 

5. Reliability, i.e., the ability to reliably quantify peptide ratios featuring linearity across the 

dynamic range2. 

 

 

                                                        
 

2
 i.e., the range of variation of the light and heavy VUC quantities used for the computation of the ratios 

themselves. 
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Quality parameters were evaluated as follows: 

1. For assessing quantification accuracy, we estimated the mean of all quantification ratios for 

each dataset. 

2. To evaluate quantification precision, we computed the standard deviation and coefficient of 

variation (i.e., the percentage ratio of the standard deviation to the mean) of all 

quantification ratios for each dataset. 

3. To validate quantification efficiency, we compared the total number of peptide ratios 

provided by both methods after outlier removal. 

4. For assessing quantification reproducibility, we analyzed quantification ratios provided by 

both methods across the three experimental replicates on a set of commonly quantified 

peptide sequences. This set is given by the intersection of all peptide sequences quantified 

by the two methods. Every peptide sequence could be associated to at most three 

quantification ratios, each associated to one peptide occurrence per replicate. The ideally 

reproducible algorithm would quantify every peptide sequence three times: one per 

replicate. 

5. To validate the quantification reliability we performed the analysis of Deming regression 

lines [101-103] between light and heavy abundances. Deming regression was chosen since it 

accounts for errors both on x and y observations. In order to make them comparable, the 

regression lines were evaluated: 

5.1. only on the common peptides quantified  on the same replicate by both methods,  

5.2. and all peptide abundances were normalized to the maximum value for each 

algorithm. 
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7.4 RESULTS 

Results for the above mentioned quality parameters evaluated on three different subsets of 

quantified peptides considered during this comparative analysis are reported in Table 7-1, Table 

7-3, and Table 7-4. The last three rows of each table regards quantification accuracy and 

precision: mean, standard deviation (SD) and coefficient of variation (CV) of the ratios computed 

by both methods across all datasets are shown. All tables clearly demonstrate that 3DSpectra 

and ASAPRatio reach the same quantification accuracy and precision over all datasets and on all 

subsets of quantified peptides considered during this comparative analysis. 

Results regarding quantification efficiency are reported in Table 7-1. It report the number of all 

quantified peptide occurrences across all experimental replicates (Quantified peptides) and the 

corresponding unique peptide sequences (Unique pep seqs) in the first and second row, 

respectively. Third row is the percentage of ASAPRatio to 3DSpectra Unique pep seqs values (2D 

Coverage). The first row of Table 7-1 demonstrates that 3DSpectra can quantify 2 to 4 times 

more differentially expressed peptide ratios, which are of key interest from a biological point of 

view, e.g., in biomarkers discovery. Moreover, compared to ASAPRatio, all quantification ratios 

by 3DSpectra yield to a much higher number of quantified unique peptide sequences (see Table 

7-1, second and third rows). ASAPRatio can quantify indeed only around 22% to 48% of 

3DSpectra unique peptide sequences quantifications for differentially expressed ratios, as 

reported by the third row of Table 7-1. 

Efficiency  
1l:2h 2l:1h 1l:5h 5l:1h 1l:10h 10l:1h 1l:1h 

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 

Quantified peptides 98 39 118 38 99 38 108 34 122 23 116 23 111 85 

Unique pep seqs 52 25 63 25 52 24 53 18 61 17 58 13 61 37 

2D Coverage 48% 40% 46% 34% 28% 22% 61% 

Mean ratio 0.53 0.54 1.95 1.99 0.26 0.27 4.94 4.23 0.16 0.13 8.55 9.08 1.14 1.06 

SD 0.16 0.14 0.56 0.66 0.08 0.09 1.44 1.18 0.06 0.05 2.90 3.37 0.26 0.27 

CV  29% 26% 29% 33% 29% 34% 29% 28% 42% 37% 34% 37% 23% 26% 

TABLE 7-1 3DSPECTRA AND ASAPRATIO COLUMNS ARE RESPECTIVELY 3 D AND 2D LABELED. “QUANTIFIED PEPTIDES” 

IS THE NUMBER OF ALL QUANTIFIED PEPTIDE OCCURRENCES ACROSS ALL EXPERIMENTAL REPLICATES. “UNIQUE PEP 

SEQS” IS THE NUMBER OF THE CORRESPONDING UNIQUE PEPTIDE SEQUENCES. “2D COVERAGE” IS THE  PERCENTAGE 

OF ASAPRATIO TO 3DSPECTRA “UNIQUE PEP SEQS” VALUES. IT ALSO REPORTS MEAN, STANDARD DEVIATION (SD) 

AND COEFFICIENT OF VARIATION (CV) OF THE RATIOS COMP UTED BY BOTH METHODS ACROSS ALL DATASETS.   
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In particular, the new algorithm is advantageous for differentially expressed ratios, which are the 

most difficult to quantify, as far as the differential expression increases. In fact, ASAPRatio 

efficiency worsens at highly differentially expressed ratios, whereas 3DSpectra feature the same 

efficiency across all ratios. In conclusion, 3DSpectra achieves a significantly higher proteome 

coverage at the level of peptide quantification compared to ASAPRatio, especially for 

differentially expressed ratios. 

To understand if the quantifications provided by 3DSpectra include those provided by 

ASAPRatio, we evaluated the overlap between the unique peptide sequences quantified by both 

methods (see Table 7-2). For differentially expressed ratios, 3DSpectra quantified on average 

94% of all unique peptide sequences quantified by ASAPRatio, whereas ASAPRatio just 34% of 

those reported by 3DSpectra. 3DSpectra can quantify almost all unique peptide sequences 

quantified by ASAPRatio while ASAPRatio is able to quantify only one third of 3DSpectra’s. Thus, 

3DSpectra attains a much higher sequence coverage, which could be crucial for biomarkers 

discovery studies, as well as reproducibility. 

 

Overlap 
1l:2h 2l:1h 1l:5h 5l:1h 1l:10h 10l:1h 1l:1h 

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 

Common pep seqs 24 21 22 17 17 13 31 

Unique pep seqs 52 25 63 25 52 24 53 18 61 17 58 13 61 37 

Overlap 96% 46% 84% 33% 92% 42% 94% 32% 100% 28% 100% 22% 84% 51% 

TABLE 7-2 3DSPECTRA AND ASAPRATIO COLUMNS ARE RESPECTIVELY 3D AND 2D LABELED. IT REPORTS THE NUMBER 

OF COMMONLY QUANTIFIED PEPTIDE SEQUENCES  (COMMON PEP SEQS), THE TOTAL NUMBER OF UNIQUE PEPTIDE 

SEQUENCES QUANTIFIED BY EACH ALGORITHM (UNIQUE PEP SEQS) AND THEIR PERCENTAGE OVERLAP WITH THE 

NUMBER OF COMMONLY QUANTIFIED PEPTIDE SEQUENCES (OVERLAP).  

 

Table 7-3 reports statistics related to the assessment of quantification reproducibility. The table 

shows the number of commonly quantified peptide sequences (Common pep seqs) as in the first 

row of Table 6-1 and the corresponding maximum number of peptide occurrences that can be 

found across the three experimental replicates (Max # occurrences = 3 x Common pep seqs) in 

the first and second row, respectively. Third row reports the actual number of quantified 

peptide occurrences among all possible occurrences across the three replicates (Quantified 

peptides). The fourth row shows the percentage coverage across the three replicates given by 
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the ratio of Quantified peptides to Max # occurrences (Replicate Coverage). The Replicate 

Coverage parameter summarizes the information about the coverage offered by the two 

methods and sheds light on the much higher coverage of 3DSpectra across the replicates. We 

found out that 3DSpectra can quantify on average 84% of all possible peptide occurrences for 

differentially expressed ratios, whereas ASAPRatio only 54%. Thus, 3DSpectra achieves a 

significantly higher reproducibility of its peptide quantifications across experimental replicates, 

quantifying 30% more peptide occurrences than ASAPRatio.  

 

Reproducibility  
1l:2h 2l:1h 1l:5h 5l:1h 1l:10h 10l:1h 1l:1h 

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 

Common pep seqs 24 21 22 17 17 13 31 

Max # occurrences 72 63 66 51 51 39 93 

Quantified peptides 58 38 47 31 48 36 49 32 43 23 33 23 73 69 

Replicate Coverage 81% 53% 75% 49% 73% 55% 96% 63% 84% 45% 85% 59% 78% 74% 

Mean ratio 0.55 0.54 2.08 2.06 0.27 0.27 4.56 4.34 0.15 0.13 9.49 9.08 1.11 1.11 

SD 0.15 0.14 0.56 0.62 0.07 0.09 1.42 1.13 0.05 0.05 2.78 3.37 0.25 0.26 

CV  28% 26% 27% 30% 27% 33% 31% 26% 36% 37% 29% 37% 23% 23% 

TABLE 7-3 3DSPECTRA AND ASAPRATIO COLUMNS ARE RESPECTIVELY 3D AND 2D LABELED. THE TABLE ILLUSTRATES 

THE NUMBER OF COMMONLY QUANTIFIED PEPTIDE SEQUENCES (COMMON PEP SEQS), THE MAXIMUM NUMBER OF 

PEPTIDE OCCURRENCES ASSOCIATED TO COMMON PEP SEQS THAT CAN BE  FOUND ACROSS THE THREE 

EXPERIMENTAL REPLICATES (MAX # OCCURRENC ES = 3  X COMMON PEP SEQS), THE ACTUAL NUMBER OF QUANTIFIED 

PEPTIDES  (QUANTIFIED PEPTIDES) AND THE COVERAGE GIV EN BY THE PERCENTAGE RATIO OF QUANTIFIED PEPTIDES 

TO MAX # OCCURRENCES (REPLICATE COVERAGE).  

 

Results regarding the assessment of reliability by means of regression analysis are shown in 

Table 7-4. It reports the main parameters related to the linear model describing the light to 

heavy estimates relationship: the squared Pearson’s correlation coefficients (R2), the Root Mean 

Squared Error (RMSE). In order to make them comparable, the regression lines have been 

evaluated only on common peptides quantified  on the same replicate by both methods 

(Common peptides, first row), which are associated to the reported number of uniquely 

commonly quantified peptide sequences (Common pep seqs, second row).  

As a preliminary step to regression analysis we needed to verify linearity between light and 

heavy abundances for all datasets. Thus, we computed Pearson’s correlation coefficients, which 

resulted to be 1% statistically significant. Both methods feature a strong linear relationship 

between light and heavy abundances (see Table 7-4, third row). There is no statistically 
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significant difference among the methods, except that for the 10:1 ratio, where 3DSpectra 

shows a 5% significantly higher Pearson correlation coefficient. After that, we performed 

Deming regression and computed the RMSE to evaluate the quantification reliability (see Table 

7-4, fourth row). The RMSE associated to 3DSpectra is on average smaller than the RMSE related 

to ASAPRatio, but overall they can be considered comparable.  

 

Reliability 
1l:2h 2l:1h 1l:5h 5l:1h 1l:10h 10l:1h 1l:1h 

3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 3D 2D 

Common peptides 36 26 31 31 21 20 59 

Common pep seqs 24 19 20 17 17 12 29 

R2 0.96 0.91 0.87 0.91 0.94 0.86 0.96 0.91 0.77 0.89 0.98 0.88 0.95 0.92 

RMSE 0.06 0.09 0.09 0.08 0.07 0.11 0.05 0.06 0.08 0.08 0.04 0.06 0.07 0.08 

Mean ratio 0.56 0.55 2.06 2.15 0.27 0.28 4.70 4.38 0.14 0.14 9.66 9.51 1.11 1.11 

SD 0.15 0.14 0.62 0.57 0.08 0.09 1.45 1.13 0.06 0.05 2.69 3.35 0.26 0.26 

CV  27% 26% 30% 27% 28% 31% 31% 26% 41% 36% 28% 35% 23% 23% 

TABLE 7-4 3DSPECTRA AND ASAPRATIO COLUMNS ARE RESPECTIVELY 3D AND 2D LABELED. PARAMETERS ARE 

REPORTED RELATED TO THE LINEAR MODEL DESCRIBING THE LIGHT TO HEAVY ESTIMATES RELATIONSHIP:  THE 

SQUARED PEARSON’S CORRELATION COEFFICIENTS (R
2
),  THE ROOT MEAN SQUARED ERROR (RMSE). IN ADDITION, 

ALL STATISTICS ARE SHOWN, SUCH AS MEAN, SD AND CV.  

 

Then, we assessed the correctness of the linear model by the Fisher-Snedecor (F)-statistic. The 

results were zero for both methods across all datasets, thus the linear model is an adequate 

solution to describe the relationship between light and heavy abundances, as previously 

predicted by the Pearson’s correlation coefficients. In conclusion, the two methods feature the 

same quantification reliability.  

The experimental results clearly demonstrated that 3DSpectra achieves significantly higher 

protein sequence coverage and reproducibility than ASAPRatio, and features the same 

quantification accuracy, precision and reliability.  
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7.5 DISCUSSION 

3DSpectra is an innovative analysis algorithm for the quantification of LC-MS labeled data. It 

features an optimized data handling and an innovative peaks’ borders recognition method, 

leading to outstanding results in terms of quantification efficiency and reproducibility, providing 

the same accuracy and reliability as the well-known ASAPRatio algorithm.  

Quantification efficiency is critical for proteomics research since it plays a crucial role in 

biomarkers discovery studies: the wider the proteome coverage at the level of peptide/protein 

quantification, the higher the probability of discovering differentially expressed 

peptides/proteins among different biological conditions. In biomarkers discovery studies, 

quantification efficiency is as important as quantification accuracy. Indeed, differential 

expression to the reference sample is often considered meaningful if it is at least doubled. 

Furthermore, the more peptides related to a certain protein are quantified, the more reliable is 

the protein quantification. 

Likewise, the quantification reproducibility could be pivotal as well. For instance, it could help 

classification algorithms in distinguishing differentially expressed peptides between control 

versus unhealthy samples, especially when several samples are available per every class.  

The goal should be to increase the amount of reliably and reproducibly quantified peptides to 

raise the quality level of expression studies, and accordingly the confidence in correlated 

biological findings. Therefore, quantitative proteomics must focus on quantification efficiency, 

still ensuring a good accuracy and reliability, and as far as possible reproducibility. 

Here, we evaluated 3DSpectra performance employing real profile data from a controlled 

mixture of Isotope Coded Protein Labels (ICPL)-labeled proteins mixed at different ratios in 

triplicates and acquired in enhanced profile mode. We showed that 3DSpectra quantifies, on 

differentially expressed ratios, 2 to 4 times more peptide ratios than ASAPRatio, resulting in a 

substantial improvement (100% to 300%) in quantification efficiency. Furthermore, the wider 

proteome coverage here comes with no tradeoff: 3DSpectra reached the same performance as 

ASAPRatio regarding quantification accuracy, precision and reliability, indeed. Moreover, 

3DSpectra achieves a 30% higher reproducibility of its peptide quantifications across 

experimental replicates. 
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The obtained excellent results are deemed to be the effect of 2 main causes: 1) a 3D approach 

that minimizes the peptides overlapping; 2) a peak border recognition method that recognizes 

all ion counts belonging to the peptide isotopic distribution and estimates their probability of 

being noise. 3DSpectra is therefore able to reduce the number of misquantified peptides. In fact, 

3DSpectra could quantify peptide hits, which would be eliminated in the outlier removal step of 

ASAPRatio as implemented in MASPECTRAS. Consequently, the amount of peptide ratios is 

substantially increased.  

Here, 3DSpectra’s quantification performance has been evaluated on low resolution data, where 

a major degree of uncertainty is associated to identification results because of the low mass 

accuracy. Therefore, the reported results can be considered as a worst case evaluation of the 

3DSpectra algorithm. 3DSpectra’s performance is expected to be enhanced by high mass 

accuracy datasets, and will be demonstrated in future work. Nonetheless, this dataset 

highlighted 3DSpectra’s ability to efficiently and reproducibly quantify even low resolution data.  

A common problem in the analysis of MS-based proteomics data is that only the more abundant 

peptides are usually covered by identification and, hence, quantification. Data related to the less 

abundant peptides are unlikely to be analyzed, eventually wasting their biological meaning. 

Thus, also the estimation of the quantification efficiency could be biased from the higher 

abundant proteins in the sample. This sample, being a simple controlled mixture of proteins, 

ensured that also less abundant peptide hits could be identified and thus quantified.  

It would be interesting to evaluate the quantification efficiency making use of Selected Reaction 

Monitoring (SRM) data, where the experimental design is such that the acquired sample 

proteome is already known. Therefore, both the less abundant peptides and/or the peptides 

missed by search engines and those actually present in the sample but identified with a low 

confidence will be analyzed by the quantification software, since the identifications are “a priori” 

known. To our knowledge, an SRM dataset suitable for the assessment of quantification 

performance is still not available to the community in public repositories. 

Future developments will focus on checking the conformity of the model to a broader range of 

proteomics MS-based data (e.g., SRM data), considering also possible suitable modifications to 

the model itself. Besides, the GMM approach would allow the association of a statistical 

reliability score or weight to each ratio based on the error estimates or confidence intervals on 

the parameters of the GMM. This step is extremely computationally demanding since the 



188 
 
 

bootstrap approach is needed to estimate the standard error (error estimates for the GMM). 

That makes error estimates unfeasible at the moment. The optimization of this step and the 

whole 3DSpectra software could be an interesting additional improvement.  

Further work is then needed to facilitate the import of identification results and the export of 

quantification results, adding support for the Proteomics Standards Initiative exchange data 

formats, i.e., mzIdentML [104] and, as soon as its final documentation will be released, 

mzQuantML [105].  
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CONCLUSIONS 

In this thesis were described the state of art, the design and development of methods for the 

analysis of Quantitative Mass Spectrometry-based Proteomics data, especially for Liquid 

Chromatography-Mass Spectrometry (LC-MS) data. Indeed, the Ph.D. research project focused 

on understanding and overcoming the main problems related to bioinformatics for Quantitative 

Mass Spectrometry-based Proteomics and project suited software solutions to overcome them. 

In particular, efficient solutions to both data handling and quantification of profile LC-MS data 

were designed, implemented and validated. 

This project focused on LC-MS data, which are deemed to be the only data source rich enough to 

carry out a meaningful Quantitative Mass Spectrometry-based Proteomics analysis. Data 

features pivotal for the design of the proposed solutions essentially are the 3D structure of LC-

MS data and the high quality profile acquisition mode. In fact, LC-MS separates peptides in two 

dimensions (t, m/z) minimizing their overlap, and the profile acquisition mode enhances signal 

quantification. 

In order to properly validate the developed algorithms, an appropriate dataset was used. It 

consists of LC-MS data from a controlled mixture of ICPL-labeled proteins with known ratios and 

triplicates. They were acquired in enhanced profile mode for survey scans to gain higher mass 

accuracy. Thus the quantitative informative content for this dataset is very high.  

The proposed methods, assessed on this high quality dataset, demonstrated to outperform 

some well-known software solutions commonly used. 

 

DATA HANDLING 

Regarding the data handling issue a scalable 2D indexing approach was proposed. It is 

implemented through an R-tree-based data structure, called mzRTree, that relies on a sparse 

matrix representation of the dataset, which is appropriate for MS-based proteomics data. 

mzRTree is described in Chapter 6. mzRTree can be efficiently built and stored and ensures 

efficient 1D and 2D data access. Further results show that mzRTree requires the smallest hard 

disk space, data structure loading time and features an efficient creation time. Moreover, 
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mzRTree is fairly scalable as regards access and data structure load time: as data density 

increases by a factor 10, the access time increases by a factor less than 3, while the load time is 

approximately constant. Experimental results and the R-tree structure scalability suggest that 

mzRTree is suitable for high density/large size proteomics data, such as 3D profile LC-MS data. 

Actually, these data are the only data source rich enough to perform a meaningful quantitative 

analysis. However, costs involved with profile data handling often outweigh their benefits. 

mzRTree could revert this relationship. 

 

QUANTIFICATION 

Quantification is one of the most important open issues in mass spectrometry-based 

proteomics. During this Ph.D. research, 3DSpectra, an innovative quantification algorithm for LC-

MS labeled profile data was developed. It is described in Chapter 7. 3DSpectra accesses data 

using mzRTree and makes use of a priori information, provided by search engines, to quantify 

identified peptides, whose metadata are stored in a structured collection, the peptide library. 

3DSpectra fits on peptide data the 3D isotopic distribution model shaped by a Gaussian Mixture 

Model (GMM) including a noise component, using the Expectation-Maximization (EM) approach. 

The EM starting parameters, i.e., Gaussians’ centers and shapes, are retrieved by the metadata. 

Peaks' borders are recognized from the GMM iso-density curves and outlying data or data 

belonging to the noise component are discarded from analysis. 3DSpectra substantially improves 

quantification efficiency compared to ASAPRatio (MASPECTRAS implementation), and features 

the same good quantification accuracy, precision and reliability. Moreover, 3DSpectra achieves a 

significantly higher reproducibility of its peptide quantifications across experimental replicates.  

 

FINAL REMARKS AND FUTURE WORK 

In conclusion, during this PhD project 2 software solutions have been proposed to address the 

handling and quantification of Mass Spectrometry-based Quantitative Proteomics data: mzRTree 

and 3DSpectra, respectively. mzRTree allows efficient data access, storage and enables a 

computationally sustainable analysis of profile MS data. Regarding the quantification issue, 
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3DSpectra is a reliable and accurate quantification strategy for labeled LC-MS data, providing 

significantly wide and reproducible proteome coverage.  

Future and ongoing research work is focused on further development of both the mzRTree data 

structure and 3DSpectra quantification software.  

mzRTree capabilities will be exploited in order to help the community for storing and accessing 

MS data. Recently, mzRTree was proposed to the Proteomics Standards Initiative (PSI) 

community as a valuable computational support to existing standards. At the moment a project 

is under development regarding the possibility of making use of mzRTree to realize a new open 

data format compliant to computational requirements from data analysis. This research activity 

is carried on in collaboration with foreign researchers involved in the development of PSI data 

formats and ontologies. 

3DSpectra will be applied to a broader range of proteomics MS-based data (e.g., Selected 

Reaction Monitoring data), considering also possible suitable modifications to the 3D model of 

the peptide distribution. Further work is then needed to facilitate the import of identification 

results and the export of quantification results, adding support for the PSI exchange data 

formats, i.e., mzIdentML  and mzQuantML.  
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APPENDIX A 

Regarding the PSI data formats, here below their copyright notice is reported. 

 

“Intellectual Property Statement 

 

The PSI takes no position regarding the validity or scope of any intellectual property or other rights that 
might be claimed to pertain to the implementation or use of the technology described in this document or 
the extent to which any license under such rights might or might not be available; neither does it 
represent that it has made any effort to identify any such rights.  Copies of claims of rights made available 
for publication and any assurances of licenses to be made available, or the result of an attempt made to 
obtain a general license or permission for the use of such proprietary rights by implementers or users of 
this specification can be obtained from the PSI Secretariat. 

 

The PSI invites any interested party to bring to its attention any copyrights, patents or patent applications, 
or other proprietary rights which may cover technology that may be required to practice this 
recommendation.  Please address the information to the PSI Executive Director (see contacts information 
at PSI website). 

 

Full Copyright Notice 

 

Copyright (C) Proteomics Standards Initiative (2006). All Rights Reserved. 

 

This document and translations of it may be copied and furnished to others, and derivative works that 
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published 
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright 
notice and this paragraph are included on all such copies and derivative works. However, this document 
itself may not be modified in any way, such as by removing the copyright notice or references to the PSI or 
other organizations, except as needed for the purpose of developing Proteomics Recommendations in 
which case the procedures for copyrights defined in the PSI Document process must be followed, or as 
required to translate it into languages other than English. 

 

The limited permissions granted above are perpetual and will not be revoked by the PSI or its successors 
or assigns. 

 

This document and the information contained herein is provided on an "AS IS" basis and THE PROTEOMICS 
STANDARDS INITIATIVE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED 
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR 
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.” 
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