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Abstract

In this thesis, we address some issues in the mathematical modeling of the term structure

of interest rates. In Chapter 1, we set the notation, recall some fundamental results and

analyze the problems which will be tackled in the thesis, in particular the distinction

between instantaneous and discrete rates and the so-called multiple curve framework. In

Chapter 2, we propose a multiple-curve model for the instantaneous spot rate and give a

fundamental condition to automatically calibrate it to the initial term structure, whereas

in Chapter 3 we put forward an HJM multiple-curve model for the instantaneous forward

rates and study its freedom from arbitrage opportunities. Finally, in Chapter 4, we

introduce the concept of an instantaneous swap rate and build arbitrage-free coterminal

and coinitial models around it.

Sunto

In questa tesi affrontiamo alcuni problemi relativi alla modellizzazione matematica della

struttura a termine dei tassi di interesse. Nel Capitolo 1, impostiamo la notazione, ri-

cordiamo alcuni risultati fondamentali e analizziamo i problemi che verranno affrontati

nella tesi, in particolare la distinzione tra tassi istantanei e tassi discreti e il cosiddetto

framework multicurva. Nel Capitolo 2, proponiamo un modello a multicurva per il tasso

spot istantaneo e diamo una condizione fondamentale affinchè esso sia automaticamente

calibrato alla struttura iniziale, mentre nel Capitolo 3 proponiamo un modello multicurva

per i tassi forward istantanei di tipo HJM e studiamo la relativa assenza di opportunità

di arbitraggio. Infine, nel Capitolo 4, introduciamo il concetto di tasso swap istantaneo e

vi costruiamo attorno dei modelli privi di arbitraggio di tipo coterminal e coinitial.
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Introduction

In this thesis, we address some recent topics about the modeling of the term structure of

interest rates. We focus on what has now become known as the multiple curve framework

and on the distinction between discrete and instantaneous tenors.

The term structure of interest rates certainly constitutes one of the most important and

well investigated subjects of mathematical finance. Inevitably, even the more theoretically

oriented analysis do consider the so called LIBOR rate or some idealizations of it. The

LIBOR (London Interbank Offered Rate) is an interbank rate at which prime banks lend

and borrow unsecured funds in the interbank market for a given currency and a given

maturity. Until a few years ago, it was common practice both in the theoretical and in

the applied literature, to model the LIBOR rate as a risk-free rate, i.e. a rate which is

not subject to the risk of default. As a consequence, it was common practice to deal

with a single curve of risk-free discount factors evolving randomly over time, although the

classical approaches took different routes with regard to the choice of modeling spot versus

forward rates and infinitesimal tenor versus finite (discrete) tenor rates. An instantaneous

interest rate is a rate with an infinitesimal tenor, i.e. a rate that applies for an infinitesimal

period of time. This is of course a mathematical idealization, but it proves of great utility

even in practical applications and it should be noted that the first seminal contributions to

the topic of interest rate modeling were indeed oriented towards instantaneous rates, see

e.g. Vasicek (1977) and Cox et al. (1985) for the spot instanteneous rate and the classical

Heath et al. (1992) on the instantaneous forward rates. Models for discrete tenor rates

were in fact formalized years later1 by Brace et al. (1997), Miltersen et al. (1997) and

Jamshidian (1997), who developed what is now referred to as the LIBOR market model.

The latter article, in particular, focused not only on (discrete) forward rates, but also on

(discrete) forward swap rates, which can be seen as some kind of average of (discrete)

forward rates. For a book length treatment of interest rates modeling, see e.g. Musiela

and Rutkowski (2005), Hunt and Kennedy (2004) or Brigo and Mercurio (2006).

Mathematical finance is without any doubt a rapidly evolving subject, in which re-

search topics often stem from real world events. For example, as it is well known, the 1987

stock market crash proved that the assumption, based on the classical Black and Scholes

1With no doubts, thanks to the develpment of the concept - now pervasive in mathematical finance -
of numeraire which was introduced in Geman et al. (1995).

vii
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(1973), of stock prices evolving according to a constant volatility geometric Brownian

motion was indeed flawed, as stock option prices started to exhibit what is now called the

smile or skew effect. The recent financial crisis of 2007, on the other hand, has proved

that the assumptions upon which the classical term structure models were build are not

sustainable anymore.

In Chapter 1, we attempt to give a detailed overview of why this is the case by first

describing the fundamental quantities in interest rate markets and then by giving a series

of model free results that should link them. The fact that these results have ceased to

hold true in practice is the main motivation for the next two chapters, in which we relax

the assumption that a crucial quantity such as the LIBOR rate is risk-free. Since, as it

will become clear from our descriptions in Chapter 1, the LIBOR cannot be associated

to a single counterparty, we cannot exploit the already known results about the classical

defaultable term structure models (see e.g. Bielecki and Rutkowski (2000)) but we will

take a more exogenous approach aimed at modeling rather directly the rates themselves,

while retaining a no-arbitrage framework.

In fact, the assumption of a risk-free LIBOR has been relaxed already in a discrete

(Libor Market Model) forward rate modeling framework by Mercurio (2010b) and by

Grbac et al. (2014), which we will review in Chapter 1.

In Chapter 2, we propose a generalization of the classical short rate models. The main

issue with such an approach in a classical single curve framework is that we end up with

an endogenous model, in which the initial term structure is an output rather than an

input of the model. This issue was circumvented in an ad hoc manner for a number of

specific models and finally in a comprehensive general manner for every Markovian model

by Brigo and Mercurio (2001). The main result of this chapter is to give a corresponding

way to achieve the same result in a suitably defined multiple curve framework.

In Chapter 3, we propose the closest possible relative of the celebrated HJM framework,

developed in Heath et al. (1992), in a the multiple curve world. The HJM approach

overcomes the endogeneity problem by modeling directly the whole forward curve and

we overcome the problem in the same way in our generalized approach. We do so by

considering some fictitious bond prices which are auxiliary in the definition of the forward

LIBOR process. In fact, this kind of bonds have been already considered in the literature

by, among others, Crépey et al. (2012). In this chapter we address the important points of

their existence, uniqueness and analytical properties, such as differentiability with respect

to the maturity. We then take care of the major concern of any HJM-style model, which

is the absence of arbitrage: Heath et al. (1992) resolved the issue by imposing a drift

condition on each instantaneous forward rate and we derive the analogue of this condition

in a multiple curve framework.

In Chapter 4, while retaining a classical single curve approach, we study for the first

time in the literature what happens when the tenor of a swap rate tends to zero and
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by doing so we fill a gap in the existing frameworks for modeling interest rates. This

was initially motivated by the desire to better understand the so called OIS’s (Overnight

Indexed Swaps), which will be described in detail in Chapter 1, in which a floating leg pays

(almost) continuously an (almost) infinitesimal tenor rate. The main contribution of this

chapter is to develop an infinitesimal version of the Swap Market Model of Jamshidian

(1997) by modeling our instantaneous coterminal swap rates. We resolve the problem

of absence of arbitrage by a change of numeraire technique, where the key point is to

being able to express bond prices in terms of instantaneous swap rates. In fact, we find

a drift condition on the swap rates which is the infinitesimal counterpart of Jamshidian

(1997). In other words we suitably define and analyze the infinitesimal counterparts of

the Swap Market Model and drift condition as the HJM model and drift condition are

the infinitesimal counterparts of the LMM. The latter fact is probably overlooked in the

literature, but was already known, see e.g. Hull and White (1999).
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Chapter 1

Fundamentals of
Term-Structure Modeling

1.1 Some Market Interest Rates and Payoffs

In this section we give a fairly detailed overview of some market interest rates and pay-

offs on them, a knowledge of which is much more important now than in the pre-crisis

framework. Since, especially in the interest rate market, contracts might differ by a myr-

iad of features, for each contract we try to describe the market standard (which usually

varies geographically). By market standard, we mean some contract specification uniform

enough to make it possible to find many transactions using the same specification and

thus having something eligible to be called a market price.

1.1.1 LIBOR and EURIBOR

The LIBOR (London Interbank Offered Rate) is an interbank rate at which prime banks

lend and borrow unsecured funds in the interbank market for a given currency and a

given maturity. As of today, the currencies at which LIBOR is available are Australian

dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF), Danish krone (DKK), Euro

(EUR), British pound sterling (GBP), Japanese yen (JPY), New Zealand dollar (NZD),

Swedish krona (SEK) and U.S. dollar (USD). The maturities are those of the so called

money market (i.e. less than 1 year), namely 1 day, 1 and 2 weeks and from 1 up to 12

months. The LIBOR is computed daily by the BBA (British Bankers association) and

it is published at 11:30 (GMT time). Specifically, a panel of banks is associated to each

currency and components of this panel answer the question: ”At what rate could you

borrow funds, were you to do so by asking for and then accepting inter-bank offers in a

reasonable market size just prior to 11 am?”. In the case of USD, the panel is composed

as of today of 18 banks, and the LIBOR is computed as the the trimmed average of the

submissions with the exclusion of the top and bottom quartile.

1



2 CHAPTER 1. FUNDAMENTALS OF TERM-STRUCTURE MODELING

Figure 1.1: EURIBOR 3m, 6m and 12m from January 1, 2004 to April 26, 2013

The EURIBOR is very close in spirit to the LIBOR. The former rate, though, is

computed by the EBF (European Banking Federation) and is available only for the Euro

with maturities 1, 2 and 3 weeks and from 1 up to 12 months. While the mechanism for

the daily creation of EURIBOR is again by submission and it refers to unsecured lending,

the panel is bigger (almost 40 institutions) and the wording is slightly different.

A common important point worth noticing is that neither the LIBOR nor the EURI-

BOR are trade rates: it is perfectly possible that, on a given day, no actual transactions

took place at the fixing value.

1.1.2 EONIA Rate and Effective Fed Funds Rate

The EONIA (Euro OverNight Index Average) rate is the effective overnight reference rate

for the Euro. It is computed as a transaction-weighted average of all overnight unsecured

lending transactions in the interbank market in the European Union. Note that, contrary

to the case for the LIBOR and EURIBOR, the computation of the EONIA rate hinges on

real market transactions. The analogous rate in the United States is the so-called Federal

Funds rate, i.e. the overnight interest rate at which depository institutions trade balances

held at the Federal Reserve. Again, this is an uncollateralized rate and its computation is

transaction weighted. Basically any currency has its own equivalent for the EONIA rate,

e.g. the SONIA for the GBP, the SARON for the CHF and the Mutan Rate for the JPY,

but we will not go into these details.
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1.1.3 Fixed-vs-floating Interest Rate Swaps

A fixed-vs-floating interest rate swap (IRS) is a contract in which two counterparties

exchange a flow of payments based on a predetermined couple of rates, of which one is

fixed and the other is floating. The contract must specify the following:

• a floating rate X,

• a fixed rate K,

• a tenor structure1 for the floating leg, T fl = {T fl0 , T fl1 , . . . , T fln },

• a tenor structure for the fixed leg, T fix = {T fix0 , T fix1 , . . . , T fixm },

• a daycount function2, τ .

We assume in the following that the rates are settled in advance and paid in arrears:

this convention implies that the payer of the fixed rate will receive at each time T fli

τ(T fli−1, T
fl
i )XT fli−1

and pay at each time T fixj

τ(T fixj−1, T
fix
j )K.

Note that we did in no way restrict our attention to the case where the first settlement

date coincides with the present date. If that is the case, the swap is called spot-starting,

otherwise it is called forward-starting. A very important special case of a swap occurs

when the two tenor structures are equal and have just two dates, say T0 and T1. Obviously

this configuration is non-trivial only in the forward starting case, in which case the swap

is referred to as a Forward Rate Agreement (FRA).

Even though every kind of swap could be traded by two hypothetical counterparties,

the marked standard is roughly the following. The floating rate in IRSs is normally some

LIBOR or EURIBOR rate, the most common case being the 3m USD LIBOR in the

USD market and the 6m EURIBOR in the EUR market. The frequency of payments for

the floating leg is usually the same as the associated tenor3, thus quarterly in the USD

market and semiannual in the EUR market. The frequency of payments for the fixed leg

is usually semiannual in the USD market and annual in the EUR market. Standard swaps

are generally spot starting and the most traded maturities are 1, 2, 3, 4, 5, 7, 10, 15, 20,

25 and 30 years. The standard for the FRA is to have them on the 3m reference rate

(EURIBOR for EUR and USD LIBOR for USD) with starting date in 1, 3, 6 or 9 months,

or on the 6m reference rate with starting date in 1, 2, 6 and 12 months.

1By tenor structure we mean an ordered set of increasing dates, not necessarily equally-spaced.
2Possibly a different daycount function for each leg.
3This has a precise financial motivation, as it will be shown later.
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Figure 1.2: EURIBOR-6m FRA 1x7, 3x6 and 6x12 from January 1, 2004 to April 26,
2013

Figure 1.3: EURIBOR-6m IRS 5y, 10y and 30y from January 1, 2004 to April 26, 2013
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1.1.4 Basis Swaps

A basis swap (BS) can be defined in different, not necessarily equivalent, ways.

The most natural definition probably consists of two tenor structures, two floating

rates and a fixed spread (positive or negative) to be added to the payments of one of the

legs. According to this first definition, a BS is basically a floating-vs-floating IRS where

one of the leg pays a fixed spread on top of the floating rate (of course, if the spread

happens to be negative, then it is actually received).

Alternatively, a BS could be defined as a pair of fixed-vs-floating IRSs with the same

tenor structure for the fixed rate but possibly different fixed rates. Manifestly, this spec-

ification of the swap does not depend on both fixed rates but only upon their difference:

we give it like this to stay closer to market practice, as explained in the sequel4.

Let us investigate if and under which conditions these two definitions might be recon-

ciled.

If we assume that, in a basis swap according to the first definition, the two tenor

structures for the floating legs, call them Ta and Tb, are such that Ta ⊂ Tb, then this swap

might be written as a BS according to the second definition. To this end, it is enough to

let the floating legs be Ta and Tb, the common fixed tenor structure the one to which the

spread is added and the difference between the fixed rates the spread paid by b. Note that

there is no freedom in specifying the tenor structure associated with the fixed payments

in the swap: this is forced to be the same as the structure in the leg to which the spread

is added. For example if the two legs are equally spaced every 3 and 6 months, there is

no way to represent this swap as a portfolio of two fixed-vs-floating IRSs having the fixed

tenor structure equally spaced every 12 months.

If we assume that, in a basis swap according to the second definition, the (common)

tenor structure for the fixed legs is equal to the tenor structure for one of the floating legs,

say Ta, then this swap might be written as a BS according to the first definition. To this

end, it is enough to let the floating legs be the same and the spread equal to the difference

of the two fixed rates and added to payments of a.

1.1.5 Overnight-Indexed Swaps

Overnight-indexed swaps (OIS) are fixed-vs-floating IRS with the floating rate replaced

by a geometric average of some (overnight) rate. The contract must specify the following:

• a floating (overnight) rate X,

• a fixed rate K,

• a tenor structure for the floating leg, T fl = {T fl0 , T fl1 , . . . , T fln }, together with a sub

tenor structure for each payment date T fli , T i = {ti0, ti1, . . . , tini},
4There are even more possible definitions, but we will not go into these details.
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• a tenor structure for the fixed leg, T fix = {T fix0 , T fix1 , . . . , T fixm },

• a daycount function, τ .

The payer of the fixed rate will receive at each time T fli

τ(T fli−1, T
fl
i )X̄T

i

(T fli−1, T
fl
i ),

where5

X̄T (T, S) =
1

τ(T, S)

[
n−1∏
k=0

(1 + (tk+1 − tk)Xtk)− 1

]

if T = {t0, t1, . . . , tn}. At each time T fixj , it will pay

τ(T fixj−1, T
fix
j )K.

As it is the case for fixed-vs-floating IRS, a very important special case occurs when

the two tenor structures are equal and have just two dates, say T0 and T1. This particular

case of OIS will be referred to as OI-FRA. Unlike for a fixed-vs-floating IRS, however,

this does make sense even for the spot starting case, since X̄(t, T ) is not known at time t.

With regard to OISs the market standard is basically as follows. The variable rate

is the Effective Fed Funds rate for the USD market and the EONIA rate for the EUR

market. Maturities are of 1, 2 and 3 weeks, from 1 to 12 months and 1, 2, 3, 4, 5, 7, 10, 15,

20, 25 and 30 years. The tenor structures on the two legs are generally the same. When

maturity is above 1 year, the frequency is semiannual in the USD market and annual in

the EUR market, whereas for maturities below 1 year there is only one payment date.

The sub-tenor structure in the floating leg is generally daily spaced, i.e. the tk’s are one

day apart one from the other, which is consistent with the fact that the floating rate is

an overnight rate.

1.2 Assumptions and Pricing

In this section we aim at pricing the payoffs introduced so far, possibly in a model-free

manner. Specifically, under a precise set of assumptions, we will derive model-free results

that impose different quantities to be actually equal. In later sections, we will take a close

look at market data. The fact that the theoretical results ceased to hold true in the recent

years will lead us to develop models in which we relax some of these assumptions. This

will be done in Chapters 2 and 3.

We take as given a filtered probability space (Ω,F ,F,P), supporting all the price

processes we are about to introduce and we stick to the assumption that all the markets

we consider are frictionless and free of arbitrage opportunities.

5This expression comes from a discretization of the exponential of an integral as it will become clear
in the subsection about the pricing of OI-FRAs and OISs.
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Figure 1.4: EONIA OIS 3m, 6m, 12m, 5y, 10y and 30y from January 1, 2004 to April 26,
2013

We assume the existence at any time t of a risk-free zero-coupon bond P (·, T ) for every

T ∈ [t, T ∗], where T ∗ is an arbitrary final date. On one hand, this last assumption about

the existence of a continuum of bonds is too strong in order to be able to price most of the

stylized contract we defined in the previous section, since it would often be enough to have

only two bonds. On the other hand, it will be needed in order to define the instantaneous

rates which will play a central role in the following, so that we stick to it unless otherwise

stated. We require that P (T, T ) = 1 ∀T ∈ [0, T ∗], P (t, T ) ≥ 0 ∀0 ≤ t ≤ T ≤ T ∗ and

that the mapping [T, T ∗] 3 T 7→ P (t, T ) is differentiable ∀t ∈ [0, T ∗].

First of all, at any time t the bond maturing at time t + ∆ can be used to define a

simply compounded spot interest rate as follows.

Definition 1.2.1 (Spot rate associated with P). The time-t∆-tenor (simply compounded)
spot rate associated with the curve P is defined as

R∆
t :=

1

∆

(
1

P (t, t+ ∆)
− 1

)
. (1.2.1)

In order not to burden notation, we do not explicitly indicate the dependence of R∆

on P . However this fact is the whole point of the story and should always be kept in

mind.

As we said, the positive quantity ∆ is called the tenor of the interest rate R∆. The

following definition ideally lets this tenor tend to zero.



8 CHAPTER 1. FUNDAMENTALS OF TERM-STRUCTURE MODELING

Definition 1.2.2 (Instantaneous spot rate associated with P). The time-t instantaneous
spot rate associated with the curve P is defined as

rt := lim
∆→0+

R∆
t = − ∂

∂T
lnP (t, T )|T=t. (1.2.2)

In some cases, it will be necessary to assume the possibility of trading in an additional

asset, let us call it B for “bank account”, whose price process is defined as

Bt := e
∫ t
0
rudu.

This price process might be thought of as a rolling position in the shortest maturing bond,

but to make this idea rigorous we should introduce measure-valued portfolios and we refer

to Björk et al. (1997) for further details. A discrete-time analogue of the bank-account

process was introduced in Jamshidian (1997).

Absence of arbitrage implies that for any numeraire6 N there exists a probability

measure QN equivalent to P under which the price process of every traded asset A follows

a (local) martingale when discounted by N , i.e.

At
Nt

= EQN
t

[
AT
NT

]
, ∀t ≤ T ≤ T ∗ .

When the numeraire in question is the T -bond P (·, T ) (respectively, the bank account B),

we denote the martingale measure QT (respectively, Q∗).
If we let T = {T0, T1, . . . , Tn}, the asset

∑n
i=i(Ti−Ti−1)P (·, Ti) can certainly be used as

a numeraire, since it is a (finite) linear combination of bonds with constant coefficients. We

denote the associated martingale measure by QT . Note that QT is indeed a generalization

of QT , in that we have Q{0,T} = QT .

Here and in the following, ET , E∗ and ET will always denote an expectation with

respect to QT , Q∗ and QT , respectively.

1.2.1 Pricing of FRAs

The general payoff of a FRA, let us call it H, can be written as

H = ∆(X∆
T −K),

paid at T + ∆, where XT is the time-T value of some interest rate X∆ of tenor ∆.

In some sense, it is ”natural” to postpone the payment of R∆ by ∆ units of time: if

the rate is set at time T , then it is ”natural” for it to be paid T + ∆. The reason for this

will be clear in a moment.

We are interested in both the time-t price of H, which we will denote by Πt(H), and

the strike K that makes the price equal to zero.

6A numeraire is a strictly positive price process.
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It is well-known by standard results on no-arbitrage, that Πt(H) can be written as

Πt(H) = P (t, S)∆ESt [XT −K] = P (t, S)∆(FX∆(t, T )−K).

In the equation above we already used the following

Definition 1.2.3 (FRA rate on X). The no-arbitrage time-t fair strike in a FRA on the
generic rate X∆ resetting at T and paying at T + ∆ is defined as

FX∆(t, T ) := ET+∆
t [X∆

T ]. (1.2.3)

Remark 1.2.4. In the following, it will sometimes be convenient to use the alternative and
more general notation with F depending on one more argument:

FX∆(t, T, S) := ESt [X∆
T ],

so that we have
FX∆(t, T ) = FX∆(t, T, T + ∆).

Note that the FRA rate FX∆ can be defined for any interest rate X∆ whatsoever.

If XT is QT+∆-integrable, then the process FX∆(·, T ) is a fortiori a martingale under

QT+∆ (by the tower property of conditional expectations) and we obviously have that

FX∆(t, t) = X∆
t for every t.

We will now show that, under a precise assumption (on the nature of X, and implic-

itly on the timing of the payment), FX∆(t, T ) and consequently the price Πt(H) can be

determined without any hypothesis on the evolution of the rate itself.

Assumption 1.2.5. We assume that X∆ = R∆ for some arbitrary ∆.

This assumption has to be made in order to have some consistence between the curve

we use to discount payoffs and the interest rate itself.

Before stating the fundamental proposition of this subsection, let us give a definition

which will be useful for the development to come.

Definition 1.2.6 (Forward rate associated to P ). The time-t ∆-tenor (simply com-
pounded) forward rate for time T associated to the curve P 7 is defined as

R∆(t, T ) :=
1

∆

P (t, T )− P (t, T + ∆)

P (t, T + ∆)
. (1.2.4)

Note that the process R∆(·, T ) must be a QT+∆-martingale by no arbitrage, being the

ratio of the price-processes of two traded assets.

We now state the promised representation of FR∆(·, T ) under our assumptions

Proposition 1.2.7. Under Assumption 1.2.5, the fair strike on a FRA on R∆ setting at
time T and paying at time T + ∆ is equal to the forward rate for time T associated with
the curve P , namely

FR∆(·, T ) = R∆(·, T ).

7Again, its dependence upon P is omitted in the notation but should be kept in mind.
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Furthermore, the time-t price Πt(H) is given by

Πt(H) = P (t, T )− P (t, T + ∆)− P (t, T + ∆)∆K.

Proof. The crucial point is to note that

R∆
T =

1

∆

P (T, T )− P (T, T + ∆)

P (T, T + ∆)

is the T -value of a ratio of traded assets which, by no arbitrage, has to be a martingale
under the measure QT+∆ associated to P (·, T + ∆) (the asset in the denominator of the
ratio). Therefore we have the following closed-form expression for the forward rate

FR∆(t, T ) = ET+∆
t [R∆

T ] =
1

∆

P (t, T )− P (t, T + ∆)

P (t, T + ∆)
,

which yields the first part. Now we can substitute this expression in the time-t price to
get

Πt(H) = P (t, T + ∆)∆(FR∆(t, T )−K)

= P (t, T + ∆)∆

(
1

∆

P (t, T )− P (t, T + ∆)

P (t, T + ∆)
−K

)
,

so that the second claim is also clear.

As we did for the spot rate R∆, we can now let the tenor tend to zero for the forward

rate R∆(·, T ), as we do in the following definition

Definition 1.2.8 (Instantaneous forward rate associated with P). The time-t instanta-
neous forward rate for the maturity T associated with the curve P is defined as

f(t, T ) := lim
∆→0+

R∆(t, T ) = − ∂

∂T
lnP (t, T ) (1.2.5)

Note that the instantaneous forward curve T 7→ f(t, T ) prevailing at time t is uniquely

determined by the zero coupon curve T 7→ P (t, T ) prevailing at the same time t and this

map is invertible. In fact, we have

P (t, T ) = e−
∫ T
t
f(t,u)du

and we can recover the zero coupon bond prices from the instantaneous forward rates.

This observation should be kept in mind, since it will be important in Chapter 4, where

we will propose another parametrization for the term structure.

The next example shows how the assumption of setting the rate in advance and paying

in arrears is pivotal in order to have the simple representation for FR∆(t, T ).

Example 1.2.9. We do not have a general model-free expression for ETt [R∆
T ] 6= ET+∆

t [R∆
T ] =

FR∆(t, T ). This is the fair strike K in a FRA that pays H = ∆(R∆
T −K) at time T and

not at time T + ∆. Note that this is equivalent to the payoff ∆(R∆
T − K)(1 + ∆R∆

T )
to be paid at time T + ∆. The price of the latter payoff cannot be pinned down in a
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model-free fashion due to the presence of the quadratic term in R∆
T . To determine its

price and fair strike, it is then necessary to specify (at least) the quadratic variation of
the QT+∆-martingale R∆(·, T ).

Going back to the case of an arbitrary reference rate, we now give an example of some

conditions that allow us to determine a no-arbitrage restriction.

Example 1.2.10. Specifically, let us say that the payoff to be priced is written on X∆

to be set at T and paid at T + ∆, where the rate X∆ is generated by some curve P f

different from P (otherwise we are back to the ”nice” case), i.e.

X∆
t =

1

∆

(
1

P f (t, t+ ∆)
− 1

)
.

Of course, the fair strike in a FRA on X∆ setting at T and paying at T + ∆ is FX∆(t, T ),
whose definition has in no way changed:

FX∆(t, T ) = ET+∆
t [X∆

T ].

Again, it seems impossible to give an explicit expression for FX∆(t, T ) unless we have
specified the QT+∆ law of the process X∆

· or at least of the variable X∆
T . And, again,

the problem is that we do not have, a priori, any guiding principle in specifying that law,
unless we assume that P f (·, T ) is a traded asset ∀T . However, a direct assumption of this
kind would be pointless because by the law of one price we would end up with P f (·, T ) =
P (·, T ) ∀T . The best we can assume, then, is that the P f (·, T )’s are denominated in a
different currency, call it f , which is itself a traded asset, i.e. it has a price process which
we naturally call its exchange rate (with the base currency). At this point, we do have a
no-arbitrage restriction on

X∆(·, T ) =
1

∆

P f (·, T )− P f (·, T + ∆)

P f (·, T + ∆)
,

namely that it has to be a martingale under QfT+∆, the forward measure associated to

P f (·, T ). In addition the density of the latter measure with respect to QT+∆ is given by8

dQfT+∆

dQT+∆
|Ft =

S(t, T + ∆)

S(0, T + ∆)
,

where S(·, T ) is the T -forward exchange rate (T -forward price of a unit of foreign currency,

namely S(t, T ) = S(t, t)P
f (t,T )
P (t,T ) ). Again, no-arbitrage implies that S(·, T + ∆) must be a

QT+∆-martingale.
An extremely simple specification for the processes X∆(·, T ) and S(·, T + ∆) would be

X∆(t, T ) = X∆(0, T )Et
[∫ ·

0

σX(u)dW f
u

]
,

8If Q and P are two probability measures on the same σ-algebra F with Q absolutely continuous with
respect to P and dQ

dP = Λ, then, letting G be a sub-σ-algebra of F , it is straightforward to check that

EP[Λ|G] =
dQ|G
dP|G

. We will denote any of the latter quantities by dQ
dP |G.
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where W f is a QfT+∆ Wiener process and that

S(t, T + ∆) = S(0, T + ∆)Et
[∫ ·

0

σS(u)dZu

]
where Z is a QT+∆ Wiener process such that [W f , Z]t = ρt. Here we have that

dQT+∆

dQfT+∆

|Ft = Et
[∫ ·

0

−σS(t)dZft

]
,

where Zf := Z −
∫ ·

0
σS(u)du is a QfT+∆-Wiener by Girsanov’s theorem, so that, by

Girsanov theorem again, W := W f +
∫ ·

0
ρσS(u)du is a Wiener under QT+∆ and X∆(·, T )

satisfies
dX∆(t, T )

X∆(t, T )
= σX(t)(dWt − ρσS(t)dt)

and we have

FX∆(t, T ) = ET+∆
t [X∆

T ] = ET+∆
t

[
X∆(T, T )

]
= X∆(t, T )e−

∫ T
t
ρσX(u)σS(u)du.

The exponential term in the last formula is often referred to as ”convexity adjustment”, or
”quanto adjustment” when it is related to some FX. See, e.g., Pelsser (2003) for a survey.

1.2.2 Pricing of IRSs

Consider a (possibly forward-starting) fixed-vs-floating IRS on some interest rate X, with

fixed rateK and tenor structures T fl = {T fl0 , T fl1 , . . . , T fln } and T fix = {T fix0 , T fix1 , . . . , T fixm }.
Again we are interested in its price and the fixed rate K which makes this price equal

to zero. As it was already stressed above, note that the following discussion is a simple

generalization of the preceding subsection.

If we make no assumptions on the underlying rate X, the price of the swap is

n∑
i=1

[
P (t, T fli )(T fli − T

fl
i−1)ET

fl
i
t [XT fli−1

]

]
−

m∑
j=1

P (t, T fixj )(T fixj − T fixj−1)K

and, recalling the definition FX(t, T fli−1, T
fl
i ) = E

T fli
t (XT fli−1

), this might be rewritten as

n∑
i=1

[
P (t, T fli )(T fli − T

fl
i−1)FX(t, T fli−1, T

fl
i )
]
−

m∑
j=1

P (t, T fixj )(T fixj − T fixj−1)K. (1.2.6)

From the expression above, which is completely model-free, we get the following

Definition 1.2.11 (Swap rate on X). The no-arbitrage time-t fair fixed rate in an IRS
on the generic rate X with floating tenor structure T fl and fixed tenor structure T fix is
defined as

SX(t, T fl, T fix) :=

∑n
i=1 P (t, T fli )(T fli − T

fl
i−1)FX(t, T fli−1, T

fl
i )∑m

j=1 P (t, T fixj )(T fixj − T fixj−1)
. (1.2.7)
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Note, again, that the swap rate rate SX can be defined for any interest rate X what-

soever. The quantity SX(t, T fl, T fix) plays a role that generalizes the role played by

FX(t, T, S) and in fact we have

FX(t, T, S) = SX(t, {T, S}, {T, S}).

We saw that the process FX(·, T, S) is necessarily a QS-martingale. We have an anal-

ogous result for the process SX(·, T fl, T fix). In fact, it is easy to see that the numerator

in the latter quantity is a linear combination of traded assets with constant coefficients,

so that SX(·, T fl, T fix) must be a QT fix martingale.

Now we show that the counterpart (i.e. generalization) of the hypotheses we made for

pricing FRAs will allow to obtain a model-free expression for SX(t, T fl, T fix).

The first assumption is simply the same:

Assumption 1.2.12. We assume that the reference floating rate is X = R∆.

The second assumption generalizes to the following:

Assumption 1.2.13. We assume that T fli = T fli−1 + ∆ ∀i = 1, 2, · · · , n. This means

that the rate R∆ set at time T fli−1 is paid with a delay of ∆ units of time, and this is true
for all i’s.

Before giving the proposition let us define

Definition 1.2.14 (Swap rate associated to P ). The time-t swap rate with floating-leg
tenor structure T fl and fixed-leg tenor structure T fix associated to the curve P is defined
as

R(t, T fl, T fix) :=
P (t, T fl0 )− P (t, T fln )∑m

j=1 P (t, T fixj )(T fixj − T fixj−1)
.

It is crucial to note that, with this notation, the swap rate R(t, T fl, T fix) depends on

T fl only through the first and last date. Furthermore, it is indeed a generalization of the

forward rate associated to P because

FR∆(t, T ) = R(t, {T, T + ∆}, {T, T + ∆}).

By no-arbitrage, R(·, T fl, T fix), which is a ratio of traded assets, must be a martingale

under the measure QT fix .

The main proposition on the model free representation of SX under our assumptions

now reads:

Proposition 1.2.15. Under Assumptions 1.2.12 and 1.2.13, the fair fixed rate on an IRS
on R∆ with floating leg tenor structure T fl = {T, T + ∆, . . . , S−∆, S} and fixed leg tenor
structure T fix is equal to the swap rate associated to P , namely

SR∆(·, {T, T + ∆, . . . , S −∆, S}, T fix) = R(·, {T, T + ∆, . . . , S −∆, S}, T fix).
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Furthermore, the time-t price of the swap is given by[
P (t, T fl0 )− P (t, T fln )

]
−

m∑
j=1

P (t, T fixj )(T fixj − T fixj−1)K.

Proof. Since we proved in Proposition 1.2.7 that

FR∆(t, T fli−1, T
fl
i−1 + ∆) =

1

∆

[
P (t, T fli−1)− P (t, T fli−1 + ∆)

P (t, T fli−1 + ∆)

]
,

we see that the sum appearing in the numerator of equation (1.2.7) is telescoping and
we immediately get to the result. This proves also the expression for the price of the
swap.

It is crucial for the following to note that SR∆(·, {T, T + ∆, . . . , S −∆, S}, T fix) does

not depend on ∆. In other words, a swap on the risk-free rate always yields the same

model-free present value as long as the length between the floating tenor structure dates

is constantly equal to the tenor of the rate.

1.2.3 Pricing of Basis Swaps

A basis swap was defined as a pair of fixed-vs-floating IRSs with (possibly) different

floating rates, floating tenor structures and fixed rates, but the same fixed tenor structure.

There is no new theory needed to price a BS: being able to price each IRS swap separately

is enough and we are led to the following

Definition 1.2.16 (Basis swap rate between X and Y). The no-arbitrage time-t basis

swap rate on X/T flX and Y/T flY with fixed tenor structure T fix is defined as

BSX/Y (t, T flX , T flY , T fix) := SX(t, T flX , T fix)− SY (t, T flY , T fix).

It is clear that we will have a model free expression for the BS price as soon as we have

model free expressions for the underlying IRSs prices. In particular the main proposition

about model-free pricing of IRSs states that SR∆(t, {T, T + ∆, . . . , S −∆, S}, T fix), the

fair strike on a swap on R∆ with points in the floating tenor structure equally spaced

by ∆, does not depend on ∆. Thus, for any two tenors ∆ and Λ, we have the following

important result:

BSR∆/RΛ(·, {T, T + ∆, . . . , S −∆, S}, {T, T + Λ, . . . , S − Λ, S}, T fix) = 0.

1.2.4 Pricing of OI-FRAs

In order to evaluate an OI-FRAs and OISs, we will make a simplifying assumption about

the quantity X̄T (T, S) associated to a generic (overnight) rate X. For ease of reading, we
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recall that its definition was given by

X̄T (T, S) =
1

S − T

[
n−1∏
k=0

(1 + (tk+1 − tk)Xtk)− 1

]

for T = {t0, t1, . . . , tn}. In all the sequel, we change the definition of X̄T (T, S) to read

X̄(T, S) =
1

S − T

[
e
∫ S
T
Xtdt − 1

]
, (1.2.8)

which does not depend on the tenor structure anymore9.

In this subsection we consider overnight-indexed FRAs, i.e. OISs with a single set date,

T , and a single payment date, S, written on the generic (overnight) rate X. Namely, the

time S payoff is

(S − T )
[
X̄(T, S)−K

]
= (S − T )

[
1

S − T

(
e
∫ S
T
Xtdt − 1

)
−K

]
.

As it was the case for a FRA on the generic rate X, also here there is no way to pin

down the price in a model-free manner, and we would be led to define the analog of

FX(·, T, S). However, let us limit ourselves to consider the simple case in which some

ad-hoc assumptions on the rate and on the timing allow for model-free expressions. The

“right” assumption on the rate X turns out to be X = r, where we recall the definition

of r

rt = − ∂

∂T
ln p(t, T )|T=t.

Note that we have rt = lim∆→0+ R∆
t , so that we call r the instantaneous rate associated

to the curve P . It also turns out that we do not need any assumption on the timing of

the payments, so we just assume S = T + ∆ for some ∆. Thus we are led to a payoff at

T + ∆ of10

∆ [r̄(T, T + ∆)−K] = ∆

[
1

∆

(
e
∫ T+∆
T

rtdt − 1
)
−K

]
.

In this case, it is convenient to use the bank account as a numeraire, to find the time-t

9Technically, this is the approximation of a product via a multiplicative integral (just as a sum might
be approximated by an integral), but there is limited benefit from pursuing this multiplicative calculus
analogy any further.

10The ·̄ notation here is of course the same as in equation (1.2.8)
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price as follows:

BtE∗t
[

1

BT+∆
∆(r̄(T, T + ∆)−K)

]
= BtE∗t

[
1

BT+∆
(
BT+∆

BT
− (1 + ∆K))

]
= BtE∗t

[
1

BT
− 1 + ∆K

BT+∆

]
= P (t, T )− P (t, T + ∆)− P (t, T + ∆)∆K).

We arrive at the following important result

Proposition 1.2.17. The time-t fair strike in an OI-FRA on r from T to T + ∆ is equal

to 1
∆
P (t,T )−P (t,T+∆)

P (t,T+∆) , i.e. equal to FR∆(t, T ).

Let us compare this result with what we obtained about FRAs on R∆: in that case,

the payoff (paid at T + ∆) was ∆(R∆
t −K), now the payoff is ∆(r̄(T, T + ∆)−K). We

just showed that the fair strike K at time t is the same in both cases and equal to the

forward FR∆(t, T ). It is convenient to keep in mind this fact and to think of FR∆(·, T ) in

both ways.

We already noted that, in a FRA on R∆, the case in which the reset date coincides

with the valuation date t is trivial and the fair strike is R∆
t . In an OI-FRA, on the other

hand, the situation is not trivial anymore: if the reset date is equal to t, the t+ ∆-payoff

is not known at time t. However, the results just derived show that its fair strike must be

nonetheless R∆
t . Again, it is convenient to keep in mind this fact and to think of R∆

t in

both ways: the time-t, ∆-tenor risk free rate as well as the fair strike on a OI-FRA from

t to t+ ∆.

1.2.5 Pricing of OIS

Let us consider the case of a proper OIS with two arbitrary tenor-structures, T fl and T fix.

In light of the considerations about OI-FRAs, it is clear that the assumption to be made

in order to get a model-free price and fair strike is simply that the floating rate is r (again

there are no restrictions on the floating-leg tenor structure). It is then straightforward to

see that the OIS price is[
P (t, T fl0 )− P (t, T fln )

]
−

m∑
j=1

P (t, T fixj )(T fixj − T fixj−1)K,

so that we can state the following

Proposition 1.2.18. The time-t fair fixed-rate in an OIS on r with floating leg tenor
structure T fl and fixed leg tenor structure T fix is equal to R(t, T fl, T fix)

Again, it is important to keep in mind that R(·, T fl, T fix) plays a dual role: the fair
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strike on a IRS on R∆ with floating-leg tenor points equally spaced by ∆ units of time

and the fair strike on a OIS on r.

1.2.6 Summary of Definitions

To recapitulate, let us fix a time t and let T 7→ P (t, T ) be a zero-coupon curve. We defined

the following quantities out of it:

• R∆
t := 1

∆

(
1

P (t,t+∆) − 1
)

the time-t, ∆-tenor (simply compounded) rate

• rt := lim∆→0+R
∆
t the time-t instantaneous spot rate (i.e. the spot rate of infinites-

imally small tenor)

• R∆(t, T ) := 1
∆

(
P (t,T )

P (t,T+∆) − 1
)

the time-t, ∆-tenor forward rate for time T on the

rate R∆. This rate has a dual interpretation. The first is the fair strike on a FRA

on R∆ setting at T and paying at T +∆. The second is the fair strike on an OI-FRA

on r from T to T + ∆, paying at T + ∆.

• f(t, T ) := lim∆→0+R
∆(t, T ) the instantaneous forward rate (i.e. the forward rate

of infinitesimally small tenor)

• R(t, T fl, T fix) :=
P (t,T fl0 )−P (t,T fln )∑m

j=1 P (t,T fixj )(T fixj −T fixj−1)
the time-t swap rate with floating-leg

tenor structure T fl and fixed-leg tenor structure T fix. This rate has a dual inter-

pretation. The first is the fair fixed rate in a IRS on R∆ with floating tenor structure

T fl0 , T fl0 +∆, . . . , T fln −∆, T fln and fixed tenor structure T fix. The second is the fair

strike in a OIS on r with arbitrary floating tenor structure and fixed tenor structure

T fix.

Note that the swap rates contain the forward rate and the spot rate as special cases, in

fact we have

R(t, {T, T + ∆}, {T, T + ∆}) = R∆(t, T ),

R(t, {t, t+ ∆}, {t, t+ ∆}) = R∆
t

and, of course,

R∆(t, t) = R∆
t .

Naturally the instantaneous spot rate is a special case of the instantaneous forward rate,

in that we have

f(t, t) = rt.

1.3 The LIBOR Rate

A spot interest rate of tenor ∆, L∆, which we will refer to as LIBOR rate. L∆ is allowed

to be different from R∆. If this is the case then, of course, L∆ cannot be risk-free.
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We assume that it is not possible to invest at the spot rate L∆
t from t to t+∆, not even

subject to some credit risk. On the other hand, we do assume that a family of forward

rate agreements (FRA) on L∆ for every maturity T ∈ [0, T ∗] is traded in the market. A

FRA with strike K on L∆ with maturity T and unit notional has the following payoff to

be paid at time T + ∆

∆(L∆
T −K).

The fair strike at time t of a FRA on L∆ setting at T and paying at T + ∆ is denoted by

L∆(t, T ) and we recall it is given by

FL∆(t, T ) := ET+∆
t [L∆

T ]

or, equivalently,

FL∆(t, T ) :=
E∗t [e−

∫ T+∆
t

ruduL∆
T ]

P (t, T + ∆)
.

For ease of notation, in the following we will also use the notation

L∆(t, T ) := FL∆(t, T ).

A crucial but simple observation is that (P (t, T + ∆)∆L∆(t, T ))t is the price process

of a traded asset. In fact, the latter quantity is exactly the time-t price of the floating leg

in a FRA on L∆ setting at T and paying at T + ∆. It is worth to keep this fact in mind,

since it will be used in Chapter 3.

Until a few years ago, it was common practice to assume that the spot LIBOR of

tenor ∆ could be modeled as a risk-free rate R∆ and such practice was in fact supported

by empirical evidence. Surprisingly enough, at the beginning of the subprime crisis in

summer 2007, the basic relations that must hold true if the LIBOR rate were equal to

the risk-free rate R∆, that we discussed at length in the previous section, suddenly ceased

to hold in practice. We will now provide some examples and for a more comprehensive

discussion we refer to, e.g., Mercurio (2010a) and Bianchetti (2009).

First, in Figure 1.5, we compare the EURIBOR 3x6 FRA rate versus the standard

spot replication with 3m and 6m EURIBOR. The minuscule replication error of a handful

of basis points that was present until summer 2007 has now turned into a huge basis of

the order of percentage points.

As another example, we show in Figure 1.6 the 3m×6m basis swap for the EURIBOR.

This is simply the difference between the fixed rate to be paid annually to get EURIBOR

6m every 6 months or EURIBOR 3m every 3 months. If EURIBOR were risk-free, this

difference should be null as it was indeed the case up to August 2007, but since the

explosion of the crisis this financial quantity is definitely an additional risk factor that

needs to be modeled for its own sake.

The fact that these two phenomena in Figures 1.5 and 1.6 are actually the two sides
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Figure 1.5: EURIBOR 3x6 FRA vs Standard Spot Replication from January 1, 2004 to
April 26, 2013.

Figure 1.6: EURIBOR 6m vs EURIBOR 3m BS 5y, 10y and 30y from January 1, 2004 to
April 26, 2013.
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of the same coin was first noted, to the best of our knowledge, by Morini (2009) and we

refer to this paper for an explanation.

In this thesis, we do not investigate the economic reasons of these “anomalies”, but

rather we take an agnostic approach and introduce the spot LIBOR process of some

arbitrary but fixed tenor ∆ and we refer to it as L∆. Needless to say, L∆ is allowed to be

different from R∆, but the possibility of having the two to coincide is of course a special

case. In other words, we aim at providing a framework where the forward rate implied

by two deposits, the corresponding Forward Rate Agreement (FRA) and the forward rate

implied by the corresponding OIS quotes should be modeled by a non-negligible spread.

Of course, this approach opens the door to a series of non trivial issues since even basic

concepts like the construction of zero-coupon curves cannot be longer based on traditional

bootstrapping procedures.

Of course the anomalies in the interest market we hinted at have been there for quite a

long time now, but very few models to take them into account have been so far published.

Since there are no survey papers on the subject available, we find it convenient and useful

for the reader to quickly review the existing attempts rather than merely mention them.

Before doing so, we review some classical attempts to model the term-structure in a

classical single curve framework.

1.4 Single-Curve Term-Structure Modeling

In this section, we present the main existing approaches to the modeling of discrete forward

risk-free rates. By discrete forward rate we mean a rate that applies to a strictly positive

accrual period, of which the theoretical forward rates R∆(·, T ) defined in the previous

sections are an example. This must be opposed to the (idealized) concept of instantaneous

forward rate, which is a forward rate that applies to an infinitesimal accrual period. In the

non-recent literature, discrete rates were referred to as LIBOR rates and the associated

models as LIBOR market models, but we will see that these terms are now inappropriate,

if not misleading, since LIBOR rates are to be considered risky. In order to be consistent

with the existing literature without being misleading, we will refer to them as ”LIBOR”

rates and ”LIBOR” market models.

In our notation, the rates which are subject to modeling are some R∆(·, T ) for some

∆’s and some T ’s. We saw that no-arbitrage in the market is equivalent to R∆(·, T )

being a martingale under the (T + ∆)-forward measure QT+∆. This appears as the only

unavoidable property that must be fulfilled by any stochastic model. In addition to it,

there seem to be two further properties which, though not essential, are of great value:

• the process R∆(·, T ) must be tractable under as many as possible forward measures

• the process R∆(·, T ) must be positive.
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The first condition is about tractability and is of course made for computational reasons:

in fact when evaluating expectations which involve, say, n forward rates (the typical

example is the pricing of swaptions), it is clear that one needs to know the law of an

n-dimensional process under a single measure: a model in which forward rates are not

all tractable under a single measure is therefore of little interest. The second condition

of positivity of rates has attracted different degrees of attention in the literature: some

researchers consider it crucial, while others do not even bother about it. These different

attitudes probably find their roots in the different environments that major economies

have experienced in the last decades, when high interest rate periods in the ’90s have left

room for record low interest rates in the last years.

The approaches proposed in the literature to model discrete forward rates differ in the

following two orthogonal aspects:

• The quantities which are direct object of modeling. Here there are two main alter-

natives, which are probably more different than it might seem at first glance. The

most natural one (and much more developed in the literature) is about modeling

directly the forward rates R∆(·, T ). The other possibility is to model the forward

prices P (·,T )
P (·,T+∆) (recall that P (·,T )

P (·,T+∆) = 1 + ∆R∆(·, T )). Broadly speaking, the first

approach is more intuitive and more likely to guarantee positivity of rates but also

more likely to destroy the analytical tractability of rates under a measure change.

The second approach is less intuitive and more likely to produce negative rates but

also more likely to preserve the analytical tractability under a measure change.

• The choice of the driving process. In the beginning, research focused on Wiener pro-

cesses and their (ordinary or stochastic) exponentials. Afterward, Wiener processes

left the way to the much more general Levy processes (possibly time-inhomogeneous)

and their (ordinary or stochastic) exponentials. Since the ”natural environment” for

Girsanov-type theorems for changes of measure is that of semimartingales (of which

Levy processes are an instance), some attempts have been made to use arbitrary

semimartingales as driving processes. This latter framework is, needless to say,

purely theoretical but, as we will expound later, in some sense it might even be con-

sidered the ”right” (i.e. elegant) one, since the class of semimartingales, unlike the

class of Levy processes, is closed under the measure changes we will perform: in other

words, it might happen that one starts with a process which is Levy under a measure

but that is only a semimartingale under a different measure. Another interesting

class of processes which has been considered is that of so-called (exponential of)

affine processes. Affine processes are, roughly speaking, Rd-valued time-homogenous

Markov processes whose semigroup satisfies
∫
Rd Pt(x, dy)e<u,y> = eφt(u)+<ψt(u),x>

for all suitable u’s.

In this chapter, we will go over the main approaches which have been proposed in the
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literature so far. We fix a finite set of dates T0, T1, T2, . . . , Tn, Tn+1 and, for the sake of

simplicity, we assume they are equally spaced of ∆ units of time. Recall once more the

definition of the ∆-tenor time-t (theoretical) forward rate for maturity T associated with

the curve P :

R∆(t, T ) :=
1

∆

(
P (t, T )

P (t, T + ∆)
− 1

)
.

We assume the existence of a finite family of risk-free bonds

P (·, T0), P (·, T1), . . . , P (·, Tn+1),

that define a family of forward rates

R∆(·, T0), R∆(·, T1), . . . , R∆(·, Tn).

Note that here we are using the fact that the dates are equally spaced, otherwise we should

write RT1−T0(·, T0), RT2−T1(·, T1), . . . , RTn+1−Tn(·, Tn).

For ease of notation, we will drop the tenor in the rate and write simply R(t, T ) for

R∆(t, T ).

We define

F (t, T, S) :=
P (t, T )

P (t, S)

and call it the forward price process. Note that it is defined for both T < S and T > S.

Recall that QT (the T -forward measure) is defined as the martingale measure asso-

ciated to the numeraire P (·, T ) and that dQT
QS |Ft = F (t,T,S)

F (0,T,S) . Note that this measure is

defined only on the σ-algebras Ft for t < T . The goal is to produce, under a single

measure (generally the ”terminal” measure QTn+1), an n-dimensional model for all the

forward rates such that R(·, Tk) is a martingale under QTk for all k = 0, 1, . . . , n. Note

that we emphasize that the model has to be given under a single measure, since it would

be trivial, but rather useless, to produce martingales under different measures.

1.4.1 Levy ”LIBOR” Models

Here we describe a general approach proposed in Eberlein and Raible (1999) (see also

the references therein). We assume we are given a collection of bounded deterministic

volatility functions σ(·, Tk) for k = 0, 1, . . . n. Let Wn+1 be a Wiener process on R under

the measure QTn+1
. Further let J be a Poisson random measure on [0,∞)×R with mean

measure

A 7→ νn+1(A) :=

∫
[0,∞)

∫
R
IA(t, x)λt(dx)dt

always under the measure QTn+1
. Here λt is a Levy measure for all t’s, with the property

that ∫
[0,Tn+1]

∫
R
(x2 ∧ 1)λt(dx)dt <∞
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Furthermore, we assume that the following integrability condition holds for all real u’s:∫
[0,Tn+1]

∫
|x|>1

euxλt(dx)dt <∞ (1.4.1)

Define Ln+1 as follows:

Ln+1
t =

∫ t

0

bn+1
s ds+

∫ t

0

c
1
2
s dW

n+1
s +

∫
[0,t]×R

x(J − νn+1)(ds, dx),

where bn+1 is a integrable (deterministic) drift to be specified later and c is a square inte-

grable (deterministic) function. The process L is manifestly a time-inhomogeneous Levy

process with triplet (b·, c·, λ·) with respect to the truncation function x 7→ |x|, which is

well defined thanks to our assumption (1.4.1), that guarantees integrability (and existence

of exponential moments). Note that we restrict ourselves to a one-dimensional driving

process only for simplicity, the multidimensional extension being quite straightforward.

We postulate that

R(t, Tn) = R(0, Tn)e
∫ t
0
σ(s,Tn)dLn+1

s .

The following proposition is exactly what we need in order to make R(·, Tn) a martingale.

Proposition 1.4.1. Let L be a time-inhomogeneous Levy process on R with finite ex-
ponential moments, so that there exists a function (the “cumulant generating function”)
φ : [0,∞)× R→ R such that

E(erLt) = e
∫ t
0
φs(r)ds ∀r ∈ R.

Then for any continuous bounded r : [0,∞)→ R, the process(
e
∫ t
0
r(s)dLs−

∫ t
0
φs(r(s))ds

)
t

is a martingale.

The idea of the proof is extremely simple: the result is true almost by definition for

constant r(·) and carries over easily to the case in which r(·) is a step function. The

technical difficulty is to show the L1-convergence of (the exponential of) the stochastic

integral of the step functions approximating r(·) to (the exponential of) the stochastic

integral of r(·). For details we refer to Eberlein and Raible (1999).

To ensure that R(·, Tn) is a martingale under QTn+1
, we impose the sufficient condition∫ t

0

σ(s, Tn)bn+1
s ds =− 1

2

∫ t

0

σ2(s, Tn)csds (1.4.2)

−
∫

[0,t]×R

(
eσ(s,Tn)x − 1− σ(s, Tn)x

)
νn+1(ds, dx). (1.4.3)

It is possible to write R(·, Tn) as a stochastic exponential, namely

R(t, Tn) = R(0, Tn)Et(H(·, Tn+1))
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or in other words R(·, Tn) satisfies

dR(t, Tn) = R(t, Tn)dH(t, Tn+1),

where

H(t, Tn+1) =

∫ t

0

σ(s, Tn)c
1
2
s dW

n+1
s +

∫
[0,t]×R

(eσ(s,Tn)x − 1)(J − νn+1)(ds, dx)

Let us point out that it would be indeed possible to postulate a model in the stochastic

exponential form. In this case, though, it is not automatic that the process stays positive.

A sufficient condition for strict positivity would be that the Levy measure charges only

the interval (−1,∞).

Since the class of Levy processes is rather large, we feel now compelled to give two

very simple special cases which are included in this model, the first one of which will serve

also to show that this is indeed a generalization of the classical ”LIBOR” Market models.

Example 1.4.2 (Pure Wiener process). Take the function σ(·, Tn) to be a constant, i.e.
σ(t, Tn) = σ ∀t. Then take c = 1 and λ = 0. This means Ln+1 is a Wiener process with
drift: in particular, the martingale condition on the drift (1.4.2) reads∫ t

0

σ(s, Tn)bn+1
s ds = −1

2
σ2t

so that we have
R(t, Tn) = R(0, Tn)eσWt− 1

2σ
2t

and
H(t, Tn+1) = σWt.

This is the classical constant volatility geometric Brownian motion example.

The second simple example is that of a Poisson process.

Example 1.4.3 (Pure Poisson process). Again, take σ(·, Tn) a constant, i.e. σ(t, Tn) =
σ ∀t. Then take c = 0 and λ = ρδ1, where δx is the Dirac measure sitting at x. This
means Ln+1 is a compensated Poisson process with intensity ρ and some drift. We define
Nt = J([0, t]×R), which is finite a.s. since the λ is a finite measure. Now, the martingale
condition on the drift (1.4.2) reads

σ

∫ t

0

bn+1
s ds = −ρ(eσ − 1− σ)t,

so that we have

R(t, Tn) = R(0, Tn)eσ(Nt−ρt)−ρ(eσ−1−σ)t = R(0, Tn)eσNt−ρ(e
σ−1)t

and
H(t, Tn+1) = (eσ − 1)(Nt − ρt).

In this case, the parameter σ is to be intended as the log-variation of the forward rates at
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jump times of N . Of course, this is an extremely simplified example, since all the jumps
of the driving process Ln+1 are of the same deterministic size.

It is clear that the likelihood ratio process, call it Λn+1, between the Tn-forward

measure and the Tn+1-forward measure is given by

Λn+1
t :=

dQTn
dQTn+1

|Ft = 1 + ∆R(t, Tn)

and, since we know the SDE satisfied by R(·, Tn) we can compute the stochastic differential

of Λn+1 as follows

dΛn+1
t = ∆dR(t, Tn) = Λn+1

t

∆R(t, Tn)

1 + ∆R(t, Tn)
dH(t, Tn+1),

i.e.

Λn+1 = E
(∫ ·

0

∆R(s, Tn)

1 + ∆R(s, Tn)
dH(s, Tn+1)

)
.

By a Girsanov-type theorem we know that

Wn := Wn+1 −
∫ ·

0

∆R(s, Tn)

1 + ∆R(s, Tn)
σ(s, Tn)c

1
2
s ds

is a QTn-Wiener process and that the QTn -compensator of J is

νn(dt, dx) :=

(
1 +

∆R(t, Tn)

1 + ∆R(t, Tn)
(eσ(t,Tn)x − 1)

)
νn+1(dt, dx).

Let us now investigate how this change of measure works in our two simplified examples.

Example 1.4.4 (Pure Wiener process). In the pure Wiener example we have that

dΛn+1
t = Λn+1

t

∆R(t, Tn)

1 + ∆R(t, Tn)
σdWn+1

t

so that

Wn = Wn+1 −
∫ ·

0

∆R(s, Tn)

1 + ∆R(s, Tn)
σds

is a Wiener under QTn . Note that, even though we took σ to be deterministic and constant,
the process Wn has a stochastic time-varying drift.

Example 1.4.5 (Pure Poisson process). In the pure Poisson example we have that

dΛn+1
t = Λn+1

t

∆R(t, Tn)

1 + ∆R(t, Tn)
(eσ − 1)d(Nt − ρt)

so that the compensator of N under QTn is∫ ·
0

(
1 +

∆R(s, Tn)

1 + ∆R(s, Tn)
(eσ − 1)

)
ρds.

Note that, even though we started from a simple Poisson process and took σ to be deter-
ministic and constant, under QTn the process N is of course still a counting process but
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has a stochastic compensator, i.e. cannot have independent increments.

Going back to the general case, we have now at our disposal a QTn -Wiener and the

QTn -compensator of J . We define the process Ln in the natural way, namely

Lnt =

∫ t

0

bns ds+

∫ t

0

c
1
2
s dW

n
s +

∫
[0,t]×R

x(J − νn)(ds, dx).

Note that this is not, in general, a Levy process under the measure QTn , even though it

is still a semimartingale. Now we postulate that

R(t, Tn−1) = R(0, Tn−1)e
∫ t
0
σ(s,Tn−1)dLns .

To ensure that R(·, Tn−1) is a martingale under QTn , we impose the sufficient condition∫ t

0

σ(s, Tn−1)bns ds =− 1

2

∫ t

0

σ2(s, Tn−1)c
1
2
s ds

−
∫

[0,t]×R

(
eσ(s,Tn−1)x − 1− σ(s, Tn−1)x

)
νn(ds, dx).

It is possible to write R(·, Tn−1) as a stochastic exponential, namely

R(t, Tn−1) = R(0, Tn−1)Et(H(·, Tn))

or in other words R(·, Tn−1) satisfies

dR(t, Tn−1) = R(t, Tn−1)dH(t, Tn),

where

H(t, Tn) =

∫ t

0

σ(s, Tn−1)c
1
2
s dW

n
s +

∫
[0,t]×R

(J − νn)(ds, dx)(eσ(s,Tn−1)x − 1).

We are now in position to derive the SDE satisfied by the likelihood ratio process Λn.

First recall that

Λnt :=
dQTn−1

QTn
|Ft = 1 + ∆R(t, Tn−1).

Now we have that

dΛnt = Λnt
∆R(t, Tn−1)

1 + ∆R(t, Tn−1)
dH(t, Tn).

By a Girsanov-type theorem we know that

Wn−1 := Wn −
∫ ·

0

∆R(s, Tn−1)

1 + ∆R(s, Tn−1)
σ(s, Tn−1)c

1
2
s ds

is a QTn−1
-Wiener process and that the QTn−1

-compensator of J is

νn−1(dt, dx) :=

(
1 +

∆R(t, Tn−1)

1 + ∆R(t, Tn−1)
(eσ(t,Tn−1)x − 1)

)
νn(dt, dx).
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It is now clear how this procedure can be iterated recursively. As soon as we have a

QTk -Wiener process and the QTk -compensator of J , we define the process Lk with a drift

bk to be specified. Then we postulate that R(·, Tk−1) is the exponential of (an integral

transform of) Lk where we pin down the drift in order to obtain a martingale. We find

the SDE satisfied by R(·, Tk−1), which amounts to going from an ordinary exponential to

a stochastic exponential, and then the SDE satisfied by Λk which is the QTk -martingale

that defines the measure QTk−1
. By exploiting a Girsanov-type theorem, we are able to

find a QTk−1
-Wiener and the QTk−1

-compensator of J and we can continue to the next

iteration.

Note that every forward rate R(·, Tk−1) is defined in terms of the process Lk, which

is in turn made up by the QTk -Wiener W k and the jump measure J compensated by its

QTk -compensator νk. It is straightforward but crucial to be able to derive an expression

for R(·, Tk−1) that involves only Wn and J : thus to simulate the law of R(·, Tk−1) under

the terminal measure one should simulate the terminal Wiener Wn plus a stochastic drift

and the random measure J (which is Poisson under the terminal measure) compensated

with a the stochastic compensator νk.

Let us now briefly investigate how this model behaves in terms of the two points we

made in the previous section, namely the preservation of tractability and the positivity of

rates.

With regard to the positivity of rates there is not much to say, in that every forward

rate is guaranteed to stay positive.

However, the tractability of forward rates under measures different from their natural

one (typically the terminal one) is very limited. First of all the processes Lk’s are not

even Levy processes under their ”own” measures. Second, and more importantly, they

are not Levy processes under the terminal measure. Otherwise stated, the tractability

we assumed for the R(·, Tn) under its natural measure does not carry over to other rates.

Forward price models analyzed in the next section were introduced in the literature with

the aim of overcoming this problem.

1.4.2 Levy Forward Price Models

In this subsection, we outline the findings of Eberlein and Özkan (2005) (see also the

references therein). Assume we are given the same process Ln+1 of the previous section

and some volatility functions σ(·, Tk) for k = 0, 1, . . . n. These volatility functions might

be (and typically are) different from those of the previous section, even though with a

slight abuse of notation we call them in the same way. In the Levy ”LIBOR” model, we

used the process Ln+1 to define the forward rate process R(·, Tn). In the Levy forward

price model, we use it to define the forward price process F (·, Tn, Tn+1) as follows

F (t, Tn, Tn+1) = F (0, Tn, Tn+1)e
∫ t
0
σ(s,Tn)dLn+1

s .
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Since F (·, Tn, Tn+1) is the ratio of two traded assets, it must be a martingale under QTn+1 ,

i.e. the martingale measure associated to the asset in the denominator of the ratio. To

ensure this property we make exactly the same assumption we made in the Levy ”LIBOR”

model, which we recall∫ t

0

σ(s, Tn)bn+1
s ds =− 1

2

∫ t

0

σ2(s, Tn)c
1
2
s ds

−
∫

[0,t]×R
νn+1(ds, dx)

(
eσ(s,Tn)x − 1− σ(s, Tn)x

)
.

As it was possible to express the forward rate as a stochastic exponential, it is now possible

to do the same for the forward price, namely

F (t, Tn, Tn+1) = F (0, Tn, Tn+1)Et(H(·, Tn+1)),

where

H(t, Tn+1) =

∫ t

0

σ(s, Tn)c
1
2
s dW

n+1
s +

∫
[0,t]×R

(eσ(s,Tn)x − 1)(J − νn+1)(ds, dx).

Up to now the two models are basically the same. At this point, in the forward

rate model, it was necessary to find the SDE satisfied by Λn+1 =
dQTn
QTn+1

|F· In this case,

however, we have that

Λn+1
t =

F (t, Tn, Tn+1)

F (0, Tn, Tn+1)
,

so that

Λn+1
t = Et(H(·, Tn+1)).

Therefore, in the forward price model, the likelihood ratio process between the last two

(actually by any two) forward measures is the stochastic exponential of H (which is a

time-inhomogeneous Levy process) and not, as it was the case in the forward rate model,

of some integral transform of H. This is manifestly the difference between the two models.

We can now use a Girsanov-type theorem to find out a QTn -Wiener process Wn defined

as

Wn := Wn+1 −
∫ ·

0

σ(s, Tn)c
1
2
s ds

and the QTn -compensator of J , νn, which is defined as

νn(dt, dx) := eσ(t,Tn)xνn+1(dt, dx).

Note that Wn+1−Wn is deterministic and that the νn is a deterministic measure. Neither

of these results were true in the forward rate model.

Always in strict analogy with the forward rate process, we now define the process Ln
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as

Lnt =

∫ t

0

bns ds+

∫ t

0

c
1
2
s dW

n
s +

∫
[0,t]×R

x(J − νn)(ds, dx).

This process is now a time-inhomogeneous Levy process, and this should be compared with

the previous section in which this was not the case. The most important point is that Ln

is time-inhomogeneous Levy under the terminal measure QTn as well: the tractability of

Ln+1 under the terminal measure is now shared by Ln and by all the Lk’s.

Now everything proceeds as in the previous section: we define the process F (·, Tn−1, Tn)

in the natural way, namely

F (t, Tn−1, Tn) = F (0, Tn−1, Tn)e
∫ t
0
σ(s,Tn−1)dLns

and all the steps can be carried out iteratively.

The main advantage of this approach with respect to that (more classical and more

in line with the previous literature) of the the previous section is now clear and concerns

the possibility of having all the forward prices (and thus forward rates) tractable under

any forward measure (and in particular under the terminal one).

Let us mention another strong point of this approach: it is not difficult to show that this

model can be embedded into a richer one, which we might call Levy HJM model, in which

the whole term-structure of bond prices is modeled. In other words, for any choice of

the volatility functions in the Levy forward price model, it is possible to find a volatility

structure in the Levy HJM model that produces the same (finite-dimensional) forward

price process. Since in the Levy HJM model several valuation formulas are available, they

simply carry over to the Levy forward rate model.

On the other hand, it is clear that there is no straightforward way to guarantee posi-

tivity of rates.

1.4.3 Affine Forward Price Models

In the affine forward price model, introduced by Keller-Ressel et al. (2013), the modeled

quantities are the forward prices as in the Levy forward price model that we described in

the last section. In particular we postulate the dynamics of the following forward prices

P (·, T0)

P (·, Tn+1)
,
P (·, T1)

P (·, Tn+1)
, . . . ,

P (·, Tn)

P (·, Tn+1)
.

Note that the forward prices subject to direct modeling are not the same as those in the

Levy forward rate model, in that the denominator in all the ratios is the bond with the

longest maturity.

We let (Xt)t∈[0,Tn+1] be a time-homogeneous affine process on Rd+ under the measure

QTn+1
. We define

It :=
{
u ∈ Rd : ETn+1(e<u,Xt>) <∞

}
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and assume the existence of a neighborhood of (0, . . . , 0) contained in ITn+1 . We recall

that an affine process is a stochastically-continuous Markov process that satisfies

E
(
e<u,XT>|Ft

)
= eφ(T−t,u)+<ψ(T−t,u),Xt>

for some φ : [0, Tn+1]× IT 7→ R and ψ : [0, Tn+1]× IT 7→ Rd for all (t, u, x) ∈ [0, Tn+1]×
IT ×Rd. The initial value of X does not matter for our purposes and we fix it arbitrarily

to (1, . . . , 1).

Let us recall the following

Proposition 1.4.6. The functions φ and ψ satisfy the following semi-flow property

φ(t+ s, u) = φ(t, u) + φ(s, ψ(t, u)),

ψ(t+ s, u) = ψ(s, ψ(t, u)).

Proof. Simply note that by the Markov property we have, for any u,

eφ(t+s,u)+<ψ(t+s,u),X0> = E
[
e<u,Xt+s>|X0

]
= E

[
E[e<u,Xt+s>|Xs]|X0

]
= E

[
eφ(t,u)+<ψ(t,u),Xs>|X0

]
= eφ(t,u)+φ(s,ψ(t,u))+<ψ(s,ψ(t,u)),X0>

We define Mu
t := ETn+1

(
e<u,XTn+1

>|Ft
)

for all u ∈ ITn+1 . The Mu’s are manifestly

martingales under QTn+1 and positivity of X implies that if u ∈ Rd+ ∩ITn+1 then Mu ≥ 1

a.s..

We postulate that
P (t, Tk)

P (t, Tn+1)
= Muk

t ∀k ∈ {0, 1, . . . , n}.

The uk’s are chosen in such a way that we have

Muk
0 =

P ∗(0, Tk)

P ∗(0, Tn+1)
∀k ∈ {0, 1, . . . , n}, (1.4.4)

where T 7→ P ∗(0, T ) is a given initial term structure. We now give a sufficient condition

for the existence of such a sequence (uk)k∈{0,1,...,n}

Proposition 1.4.7. If the initial forward rates are positive and the following condition
holds

∃u ∈ Rd+ ∩ ITn+1 : ETn+1(e<u,XT>) >
P ∗(0, T0)

P ∗(0, Tn+1)

then there exists a sequence (uk)k∈{0,1,...,n} such that (1.4.4) is satisfied.

Proof. Positivity of forward rates implies that

P ∗(0, T0)

P ∗(0, Tn+1)
≥ P ∗(0, T1)

P ∗(0, Tn+1)
≥ · · · ≥ P ∗(0, Tn)

P ∗(0, Tn+1)
.
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Now, the condition in the hypothesis implies that we can find some u∗ in ITn+1 such that

E
[
e<u

∗,XTn+1
>
]
>

P ∗(0, T0)

P ∗(0, Tn+1)
.

Now simply note that the map f defined by

[0, 1] 3 ξ 7→Mξu
0 ∈ R+

is increasing and continuous and satisfies f(0) = 1 and f(1) > P∗(0,T0)
P∗(0,Tn+1) and the result

follows.

The no-arbitrage condition that all the ratios must be martingales under the Tn+1-

forward measure is clearly satisfied by construction.

However, it is clear that the forward prices we are interested in are not those of the type
P (·,Tk)
P (·,Tn+1) = Muk , but rather those of the type P (·,Tk)

P (·,Tk+1) . It is however straightforward to

work out the expression of the latter forward price as follows

P (t, Tk)

P (t, Tk+1)
=

Muk
t

M
uk+1

t

= exp (φ(Tn+1 − t, uk)− φ(Tn+1 − t, uk+1)+ < ψ(Tn+1 − t, uk)− ψ(Tn+1 − t, uk+1), Xt >)

= exp
(
ATn+1−t(uk, uk+1)+ < BTn+1−t(uk, uk+1), Xt >

)
where we define

At(u, v) := φ(t, u)− φ(t, v)

Bt(u, v) := ψ(t, u)− ψ(t, v)

The last thing we need to check is that the forward rates R(·, Tk)’s are martingales

under their “own” measures, as we now do.

Proposition 1.4.8. For each k ∈ {0, 1, · · · , n}, the process P (·,Tk)
P (·,Tk+1) is a martingale

under QTk+1
. As a consequence R(·, Tk) is a martingale under the same measure.

Proof. First of all recall thatMuk is a QTn+1-martingale (if and) only if
(
Muk
t

(
dQTn+1

dQTk+1
|Ft
))

t

is a QTk+1
-martingale11. Since

dQTn+1

dQTk+1

|Ft =
M

uk+1

0

M
uk+1

t

,

we have that
(

M
uk
t

M
uk+1
t

)
t

is a martingale under QTk+1
. The first assertion now follows since,

as we already noted,
Muk
t

M
uk+1

t

=
P (t, Tk)

P (t, Tk+1)
.

The second assertion follows directly from the definition of the forward rate.

11This is a direct consequence of the so-called abstract Bayes rule.
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To conclude, the last proposition investigates the behavior of the process X under

measures different the terminal one.

Proposition 1.4.9. The process X is still a (in general, time-inhomogeneous) affine
process under any forward measure QTn+1

Proof. Let us arbitrarily fix t < T < Tn+1 and compute the Ft-conditional moment
generating function of XT under the generic measure QTk :

ETk(e<v,XT>|Ft)

=ETn+1

(
Muk
T

Muk
t

e<v,XT>|Ft
)

=
1

Muk
t

ETn+1(eφ(Tn+1−T,uk)+<ψ(Tn+1−T,uk)+v,XT>|Ft)

= exp {φ(Tn+1 − T, uk)− φ(Tn+1 − t, uk) + φ(T − t, ψ(Tn+1 − T, uk) + v)}
· exp {< ψ(T − t, ψ(Tn+1 − T, uk) + v)− ψ(Tn+1 − t, uk), Xt >}

= exp {φ(T − t, ψ(Tn+1 − T, uk) + v)− φ(T − t, ψ(Tn+1 − T, uk))}
· exp {< ψ(T − t, ψ(Tn+1 − T, uk) + v)− ψ(T − t, ψ(Tn+1 − T, uk)), Xt >} ,

where in the last equality we used the ”semiflow” property of φ and ψ (see proposition
1.4.6). This shows that the conditional moment generating function is the exponential of
an affine function of Xt (in general, depending separately on t and T and not only on
their difference) and the result follows.

This model appears to meet both the desirable properties we outlined in the introduc-

tion.

Positivity of the process X guarantees that all the Muk are greater than 1, which is

equivalent to the forward rates being positive. Note that if we drop the assumption that

X is positive, then the Levy forward price model of the previous section becomes almost

a special case of this model, since a Levy process is obviously affine. We say ”almost”,

because, as we already pointed out, in the present section the quantities which are modeled

directly are the forward prices with the longest-maturing bond as denominator, which was

not the case in the previous section.

With regard to the tractability of the model, we stress again that the dynamics of the

process X and consequently of all the forward prices and rates are initially given directly

under the terminal measure, so that tractability under this measure is obvious. On top

of that, we showed that the affine property of X is preserved under a change of measure

(losing only the time-homogeneity property), and this is of course extremely important in

all the cases in which the terminal measure is not the most natural one to use.

1.5 Multiple-Curve Term-Structure Modeling

In this section, we aim at giving an overview of how the classical approaches for term

structure modeling have been adapted so far to cope with the multiple curve framenwork.
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Chapters 2 and 3 of this thesis present a contribution to this stream of research.

The classical LIBOR market models (LMMs) (see, e.g., Brace et al. (1997), Jamshidian

(1997) and Rutkowski (1999)) have been generalized by Mercurio (2010a) and Mercurio

(2010b). In these papers, the approach is to model the riskless forward rates R(·, Tn)’s

and the forward LIBOR rates, both of discrete tenor. Specifically, having fixed a tenor

structure {T0, . . . , Tn}, the author postulates a diffusive dynamic for

R̄ := {FRT1−T0 (·, T0), . . . , FRTn−Tn−1 (·, Tn−1)}

and

L̄ := {FLT1−T0 (·, T0), . . . , FLTn−Tn−1 (·, Tn−1)},

or alternatively for R̄ and the spread S̄ = L̄ − R̄. The simple but crucial observa-

tion to restrict the possible dynamics of the processes is that both FRTi+1−Ti (·, Ti) and

FLTi+1−Ti (·, Ti) must be martingales under the forward measure QTi+1
. A backward in-

duction approach as in Rutkowski (1999) is then used in order to produce consistent

dynamics of R̄ and L̄ under a single forward measure.

The single-curve approach of Keller-Ressel et al. (2013) is very similar in spirit to

the classical LMMs of Brace et al. (1997), but it assigns an explicit dynamic to the

forward prices instead of the forward rates. Specifically, having fixed a tenor structure

{T0, . . . , Tn}, the authors assume that for i ∈ {1, 2, . . . , n− 1}

Mui
t =

P (t, Ti)

P (t, Tn)
= 1 + (Tn − Ti)FRTn−Ti (·, Ti)

is given by

Mui
t = ETnt [eui·XTn ],

where X is an Rd+-valued affine Markov process under the measure QTn and the ui are

fixed deterministic projection vectors. Then, it is straightforward to check that

1 + (Ti+1 − Ti)FRTi+1−Ti (·, Ti) =
Mui
t

M
ui+1

t

. (1.5.1)

The main advantage of this approach is that the dynamics of forward rates remain

tractable under every forward measure QT . Following the insight of Mercurio (2010b), this

framework has been generalized to the multiple-curve framework in Grbac et al. (2014).

Here, the authors model the risk-free forward rates as in (1.5.1) and the forward LIBOR

rates as

1 + (Ti+1 − Ti)FRTi+1−Ti (·, Ti) =
Mvi
t

M
ui+1

t

(1.5.2)

for some projection vectors v1, . . . , vn−1, a priori different from the ui. By doing so, the

tractability of the model under different forward measure is preserved and, by choosing

vi � ui it is possible to guarantee that FLTi+1−Ti (·, Ti) > FRTi+1−Ti (·, Ti).
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A relatively similar approach has been proposed by Cuchiero et al. (2014), the main

difference being that the discrete grid is replaced by a continuum of maturities T ∈ [0, T ∗].

Specifically, the authors model the continuum of bond prices (P (·, T ))T∈[0,T∗] as in a

classical HJM framework and, on top of that, the quantity

1 + ∆FL∆(·, T )

1 + ∆FR∆(·, T )
=
P (·, T + ∆)(1 + ∆FL∆(·, T ))

P (·, T )
.

These quantities, indexed by T , are first assumed to form a family of positive semimartin-

gales and then they are specified to be exponentials of affine processes. This approach is

referred to as an HJM approach in the title of Cuchiero et al. (2014), by following the

practice (see Carmona and Nadtochiy (2009)) of considering an HJM model any model

that evolves a continuum of financial quantities: however this contribution, while out-

standing and financially sound, is probably not the closest relative of the HJM approach

in the multiple-curve framework.

An approach closer to the original HJM’s one is investigated by Crépey et al. (2012),

where the authors model the risk-free term structure as in HJM and then introduce some

fictitious bonds (P̄ (·, T ))T∈[0,T∗] such that

FL∆(·, T ) =
1

∆

(
P̄ (·, T )

P̄ (·, T + ∆)
− 1

)
.

While being closer in spirit to the HJM approach, the essential question of uniqueness

of this family of fictitious bonds for a given initial forward LIBOR curve T 7→ FL∆(0, T )

is not discussed. Then, some HJM-style dynamics on the instantaneous forward rates

associated with P̄ are imposed and the authors first assume that the P̄ ’s are traded in the

market, thus getting the classical defaultable HJM drift condition (see, e.g., Bielecki and

Rutkowski (2000)). Then they correctly note that the P̄ ’s are not traded instruments, so

that the drift condition is relaxed into a more general one, which turns out to be vacous

(see equation (29) in the article). We will consider all these issues about non uniqueness

of the P̄ ’s and arbitrage-freedom in the HJM approach in Chapter 3.

The short rate approach in the multiple curve setting was first introduced by Kenyon

(2010)12, who models the risk-free discount factors P (·, T ) as in the classical short-rate

models, i.e.

P (t, T ) = Et
[
e−

∫ T
t
rudu

]
and the forward LIBORs as

FL∆(t, T ) :=
1

∆

(
P̄ (t, T )

P̄ (t, T + ∆)
− 1

)
,

12The model is inspired by the paper of Kijima et al. (2009), not yet written in a modern multiple curve
perspective.
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where the fictitious bonds P̄ are defined as

P̄ (t, T ) := Et
[
e−

∫ T
t

(ru+su)du
]
.

The dynamics of the processes r and r̄ = r + s (s stands for the spread process) are

postulated to be two correlated mean reverting Gaussian processes. While the approach

is original, it suffers from exactly the same drawback of Crépey et al. (2012) in that

the process FL∆(·, T ) is not necessarily a QT+∆-martingale, so that the model is not

arbitrage-free.

Morino and Runggaldier (2014) take a model similar to that of Kenyon (2010) and

Kijima et al. (2009), with one common Vasicek-like factor and 2 idiosyncratic CIR-like

processes, all independent. Their model is intrinsically arbitrage free since they use the

fictitious bonds to define the spot (and not forward) LIBOR as

L∆
t :=

1

∆

(
1

P̄ (t, T + ∆)
− 1

)
.

However, their model is intrinsically endogenous in that the initial term structures T 7→
P (0, T ) and T 7→ FL∆(0, T ) are outputs of the model, rather than inputs as they should

be. With regard to the first term structure (the riskless one) the problem could be solved

by a standard Brigo and Mercurio (2001) approach, while the LIBOR curve requires a non

trivial extension of that methodology, which constitutes the main contribution of Chapter

2 of this thesis.

All the contributions reviewed so far take an agnostic approach, in that they do not

attempt to explain why the old no-arbitrage relations are not satisfied anymore in reality.

Morini (2009) has been the first, and so far the only one, to investigate a “structural”

approach, based on credit risk, which we do not explain since it is far from what we will

develop in this thesis. However, while his results are preliminary and tentative, we deem

unfortunate the fact that this possible way-out has not been investigated any further.

Finally, Filipović and Trolle (2013) present an econometric analysis of the issue aimed

at assessing the importance of credit risk in it by using data in the CDS market. This

study is extremely interesting, though we will not describe it in detail since it is aimed,

as said, at giving an econometric explanation of the multiple curve phenomenon and not

at pricing interest rate derivatives.
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Chapter 2

A Multiple-Curve
Instantaneous Spot Rate Model

In this chapter1, the state variables to which we assign an explicit dynamics are the

instantaneous spot rate process (rt)t∈[0,T∗] and a spread (s∆
t )t∈[0,T∗]. The process r will

determine the bond price as in the classical theory of short rate modeling (whose most

celebrated examples include Vasicek (1977) and Cox et al. (1985)), whereas the process s∆

will be used to define the spot LIBOR process (L∆
t )t. The first issue we tackle is, as in any

model for the spot rate, to determine the forward rates. Since we are modeling the spot

LIBOR rate, freedom of arbitrage for the forward rates comes at no cost in this model by

the way forward rates are defined as expectation under a forward measure. However, the

framework as outlined so far would be an endogenous term structure model, in which the

initial term structure of bond prices P (0, ·) and of forward LIBORs FL∆(0, ·) is a model

output. We turn it into an exogenous model in which the initial term structure is an input

by extending to the multiple-curve framework a deterministic-shift technique proposed

(among others) by Dybvig (1997) and Brigo and Mercurio (2001). We then see how affine

Markov processes naturally lend themselves to tractable specification of the models and

give some concrete examples.

The approach of modeling multiple curves through a “short rate” model was proposed

by Morino and Runggaldier (2014). The approach of Kenyon (2010) is apparently similar

but is actually more closely related to the approach we develop in the next chapter.

2.1 The Model

Recall that we are holding fixed a filtered probability space (Ω,F ,F,P). In this chapter, we

take P = Q∗, so that we are modeling the market directly under the risk-neutral measure.

Let r = (rt)t∈[0,T∗] and s∆ = (s∆
t )t∈[0,T∗] be two stochastic processes defined on this space.

1This chapter is based on Grasselli and Miglietta (2014)

37
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Let us assume that e−
∫ t
0
rudu and e−

∫ t
0

(ru+s∆u )du are well-defined and Q∗-integrable for

every t ∈ [0, T ∗].

Since we assume that Q∗ is the martingale measure associated to the numeraire B,

the price of the generic T -bond is necessarily given by

P (t, T ) = BtE∗[
1

BT
|Ft] = E∗[e−

∫ T
t
rudu|Ft].

It is obvious that P (·,T )
B is a Q∗-martingale.

The dynamics of the processes L∆
· are postulated by means of the following artifact.

We define the fictitious bond price process as follows:

P∆(t, T ) := B∆
t E∗[

1

B∆
T

|Ft] = E∗[e−
∫ T
t

(ru+s∆u )du|Ft],

where we implicitly defined B∆
t := e

∫ t
0

(ru+s∆u )du. It follows trivially that P∆(·,T )
B∆ is a

Q∗-martingale, but we stress that neither B∆ nor P∆(·, T ) are traded in the market,

otherwise no-arbitrage would force s∆ to be constantly equal to zero.

Now we define the spot LIBOR as follows:

L∆
t :=

1

∆

(
1

P∆(t, t+ ∆)
− 1

)
=

1

∆

(
1

E∗[e−
∫ t+∆
t

(ru+s∆u )du|Ft]
− 1

)
.

It is clear that we define the spot LIBOR rate L∆ in this way in order to mimic the

definition of the risk-free rate 1.2.1. In the following proposition, we find an (implicit)

expression for the forward LIBOR FL∆(t, T ).

Proposition 2.1.1. Under the assumptions above, the forward LIBOR is given by

FL∆(t, T ) =
1

∆

(
C∆(t, T )

P (t, T + ∆)
− 1

)
,

where

C∆(t, T ) = E∗t
[
e−

∫ T
t
rudu

P (T, T + ∆)

P∆(T, T + ∆)

]
= E∗t

[
e−

∫ T+∆
t

rudu
1

P∆(T, T + ∆)

]
.

Proof. We have that

FL∆(t, T ) =
E∗t
[
e−

∫ T+∆
t

rudu 1
∆

(
1

P∆(T,T+∆) − 1
)]

P (t, T + ∆)

=

1
∆E∗t

[
e−

∫ T
t
ruduP (T, T + ∆)

(
1

P∆(T,T+∆) − 1
)]

P (t, T + ∆)

=

1
∆E∗t

[
e−

∫ T
t
rudu

(
P (T,T+∆)
P∆(T,T+∆) − P (T, T + ∆)

)]
P (t, T + ∆)



2.1. THE MODEL 39

which yields the result.

We chose to give the expression for C∆ in the last proposition under the measure Q∗
since it will be more adapt to our subsequent needs. However, the same quantity can also

be represented as an expectation under the (T + ∆)-forward measure, as we show in the

next proposition whose proof is straightforward.

Proposition 2.1.2. An equivalent representation of the factor C∆ is

C∆(t, T ) = P (t, T + ∆)ET+∆
t

[
1

P∆(T, T + ∆)

]
,

so that L∆ could be equivalently written as

FL∆(t, T ) =
1

∆

(
ET+∆
t

[
1

P∆(T, T + ∆)

]
− 1

)
.

2.1.1 A simple Representation for the forward LIBOR

It is clear that if the process s is identically equal to zero, then we have that the spot

LIBOR rate is equal to the spot risk-free rate, i.e. L∆ = Z∆ so that a fortiori we have

that

FL∆(t, T ) = FR∆(t, T ) =
1

∆

(
P (t, T )

P (t, T + ∆)
− 1

)
and we are back to the classical single-curve framework.

We now investigate when the simple representation of forward LIBOR

FL∆(t, T ) =
1

∆

(
P∆(t, T )

P∆(t, T + ∆)
− 1

)
. (2.1.1)

holds true.

First we show in the next lemma that (2.1.1) is equivalent to the martingality of a

specific process.

Lemma 2.1.3. The representation (2.1.1) is true if and only if the process P∆(·,T )
P∆(·,T+∆) is

a QT+∆-martingale.

Proof. Note that

FL∆(t, T ) =
1

∆

(
ET+∆
t

[
P∆(T, T )

P∆(T, T + ∆)

]
− 1

)
,

so that (2.1.1) is true if and only if

P∆(t, T )

P∆(t, T + ∆)
= ET+∆

t

[
P∆(T, T )

P∆(T, T + ∆)

]
,

which yields the result.
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Let us now study the case in which the process s is deterministic, which turns out to

be a sufficient condition for (2.1.1) as the next proposition shows.

Proposition 2.1.4. If the process s is deterministic, then the representation (2.1.1) holds
true

Proof. If s is deterministic, we have that

P∆(t, T ) = P (t, T )S(t, T ),

where the deterministic function S is defined as S(t, T ) := e−
∫ T
t
sudu and enjoys the

property
S(t, T ) = S(t, U)S(U, T ) ∀t ≤ U ≤ T.

This can be used to show that P∆(·,T )
P∆(·,T+∆) is a QT+∆-martingale. In fact

P∆(t, T )

P∆(t, T + ∆)
=

P (t, T )S(t, T )

P (t, T + ∆)S(t, T + ∆)
=

P (t, T )

P (t, T + ∆)

1

S(T, T + ∆)
,

which is the product of a QT+∆-martingale times a deterministic term which does not
depend on t. Now the result follows by exploiting the last lemma.

The previous Proposition tells that when the LIBOR rate can be obtained by the risk-

free curve through a deterministic shift, all no arbitrage relations valid for the risk-free

curve can be translated into the LIBOR curve with the same analogies.

Remark 2.1.5. The converse of Proposition 2.1.4 is indeed false. A counterexample is
given by the simple case in which s∆ = −r, with r non-deterministic.

2.2 Calibration in a Markovian Framework

It would be natural, in order to get some explicit formulas for P (t, T ) and FL∆(t, T ), to

postulate that (r, s) is a 2-dimensional process driven by some d-dimensional Markovian

process (Xt)t. In other words, it would be natural, or at least appealing, to take rt = γ ·Xt

and st = γ∆ ·Xt for some fixed d-dimensional vectors γ and γ∆. This approach, while a

priori feasible, would suffer from a tremendous drawback, in that the initial term structure

of risk-free bonds and forward LIBORs would be an output of the model rather than an

input, as it would be desirable if not mandatory (at least in applications of any use).

As a consequence, we circumvent this potential problem by adding a deterministic shift

to both r and s∆ in order to match any initial term-structure. By doing so, the model

automatically becomes an exogenous term-structure model, rather than an endogenous

one. In the single curve case, this path-breaking methodology has been first proposed

by Dybvig (1997), Scott (1995) Avellaneda and Newman (1998) and then formalized

and extended (among others) by Brigo and Mercurio (2001), so that our approach is an

extension of the latter papers in the multiple-curve setting.
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Even if one might potentially argue that the initial term structures might be matched

by using some parameters in the law of the driving process X, this will never produce a

perfect pointwise matching of the whole term structures unless one of the parameter is

infinite dimensional: but in such a case we would be back to the approach we are about

to describe, which is actually more general and systematic.

In short, the calibration problem of a multiple-curve instantaneous spot rate model is

based on the following two ingredients:

• a model consisting of a real time-homogeneous Markov process on Rd, two “projec-

tion vectors” and two deterministic shifts;

• a market consisting of an initial term structure of bond prices and forward LIBOR

rates.

We now describe the model in more detail.

Let us assume we are given a filtered probability space (Ω,F ,F,P) and that X =

(Xt)t∈[0,∞) is a Rd-valued stochastic processes defined on it enjoying the time-homogeneous

Markov property (with respect to F and P) admitting the transition semigroup (Pt)t∈[0,∞)

acting on B(Rd)b (the space of bounded Borel functions on Rd). This means that X is

F-adapted and for any f Borel bounded on Rd we have

E[f(Xt+h)|Ft] = Phf(Xt) ∀t, h ≥ 0.

There is no need to assume that F0 is P-trivial (which would imply that X0 is P-a.s. a

constant), even though this is often the case in practical applications.

We define the mapping Π : {(t, T ) : 0 ≤ t ≤ T ≤ T ∗} × Rd × Rd → R as follows2

Π(t, T, γ, x) := E[e−
∫ T
t
γ·Xudu|{Xt = x}].

Thanks to the time-homogeneity of X, it is clear that Π actually depends on its first

two “time-arguments” only through their difference. Intuitively, Π(t, T, γ, x) represents

the T -bond price at time t in a model where the instantaneous spot rate is given by γ ·X.

We define the auxiliary mapping

Γ∆ : {(t, T ) : 0 ≤ t ≤ T ≤ T ∗} × (Rd × Rd)× Rd → R

as follows:

Γ∆(t, T, γ, γ∆, x) := E
[
e−

∫ T
t
γ·Xudu Π(T, T + ∆, γ,XT )

Π(T, T + ∆, γ + γ∆, XT )
|{Xt = x}

]
.

Again time-homogeneity of X implies that Γ∆ depends on its first two “time-arguments”

only through their difference, but we keep our separate notation for sake of clarity. In-

2Here and in the following, · denotes the standard scalar product in Rd.
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tuitively, Γ∆(t, T, γ, γ∆, x) can be thought of as the time-t price in a model with instan-

taneous spot rate γ · X and instantaneous spread γ∆ · X of the following portfolio: a

(T + ∆)-bond and payment of the spot LIBOR L∆ setting at T and paying at T + ∆.

Finally, we define the mapping Λ∆ : {(t, T ) : 0 ≤ t ≤ T ≤ T ∗} × (Rd × Rd)× Rd → R
as follows:

Λ∆(t, T, γ, γ∆, x) :=
1

∆

(
Γ∆(t, T, γ, γ∆, x)

Π(t, T + ∆, γ, x)
− 1

)
.

Let us now define the model variables r and s∆ as follows

rt := θ(t) + γ ·Xt

and

s∆
t := θ∆(t) + γ∆ ·Xt,

where γ and γ∆ are two arbitrary constant projection vectors in Rd.

Note that the process (r, s) does not enjoy, in general, the Markov property and when

it does, it is a priori time-inhomogeneous.

Recall that P (t, T ), P∆(t, T ) and L∆
t were defined in terms of r and s∆ in the previous

section and, of course, the same definitions do carry over.

The market data is a term structure of risk-free zero coupon bonds T 7→ Pmkt(0, T )

and a term structure of forward LIBOR rates T 7→ L∆,mkt(0, T ).

The calibration problem can be now stated as follows: for a given Markov process X,

projection vectors γ and γ∆ as described above and for any given initial term structure

Pmkt and L∆,mkt, find two deterministic shift functions θ and θ∆ such that the equalities

P (0, T ) = Pmkt(0, T ) (2.2.1)

and

FL∆(0, T ) = L∆,mkt(0, T ) (2.2.2)

hold for every T ∈ [0, T ∗]. Incidentally, note that equality (2.2.2) on the forward LIBOR

when T = 0 actually concerns the spot LIBOR L∆
0 , so that there is no need to calibrate

the model separately to the current spot LIBOR.

The following simple lemma will be exploited to show that the calibration problem

has always a solution.

Lemma 2.2.1. The Ft-measurable random variables P (t, T ), P∆(t, T ) and C∆(t, T ) are
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given by the following expressions

P (t, T ) = e−
∫ T
t
θ(u)duΠ(t, T, γ,Xt); (2.2.3)

P∆(t, T ) = e−
∫ T
t

(θ(u)+θ∆(u))duΠ(t, T, γ + γ∆, Xt); (2.2.4)

C∆(t, T ) =
e−

∫ T
t
θ(u)du

e−
∫ T+∆
T

θ∆(u)du
Γ∆(t, T, γ, γ∆, Xt); (2.2.5)

1 + ∆FL∆(t, T ) = e
∫ T+∆
T

(θ(u)+θ∆(u))du(1 + ∆Λ∆(t, T, γ, γ∆, Xt)). (2.2.6)

Proof. With regard to P (t, T ) and P∆(t, T ) we have that

P (t, T ) = E[e−
∫ T
t
rudu|Ft] = e−

∫ T
t
θ(u)duE[e−

∫ T
t
γ·Xudu|Xt]

= e−
∫ T
t
θ(u)duΠ(t, T, γ,Xt)

and analogously for P∆(t, T )

P∆(t, T ) = E[e−
∫ T
t

(ru+su)du|Ft]

= e−
∫ T
t

(θ(u)+θ∆(u))duE[e−
∫ T
t

(γ+γ∆)·Xudu|Xt]

= e−
∫ T
t

(θ(u)+θ∆(u))duΠ(t, T, γ + γ∆, Xt).

On the other hand, C∆(t, T ) can now be treated as follows

C∆(t, T ) = E
[
e−

∫ T
t
rudu

P (T, T + ∆)

P∆(T, T + ∆)
|Ft
]

= e−
∫ T
t
θ(u)duE

[
e−

∫ T
t
γ·Xudu e−

∫ T+∆
T

θ(u)duΠ(T, T + ∆, γ,XT )

e−
∫ T+∆
T

(θ(u)+θ∆(u))duΠ∆(T, T + ∆, γ + γ∆, XT )
|Xt

]

=
e−

∫ T
t
θ(u)du

e−
∫ T+∆
T

θ∆(u)du
Γ∆(t, T, γ, γ∆, Xt).

Finally, with regard to FL∆(t, T ) we have that

1 + ∆FL∆(t, T ) =
C∆(t, T )

P (t, T + ∆)

=

e−
∫T
t θ(u)du

e−
∫T+∆
T

θ∆(u)du
Γ∆(t, T, γ, γ∆, Xt)

e−
∫ T+∆
t

θ(u)duΠ(t, T + ∆, γ,Xt)

= e
∫ T+∆
T

(θ(u)+θ∆(u))du(1 + ∆Λ∆(t, T, γ, γ∆, Xt)).

The following theorem gives sufficient conditions on θ and θ∆ to solve the calibration

problem.

Theorem 2.2.2. The calibration problem of a multiple-curve instantaneous spot rate
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model is solved by any two functions θ and θ∆ satisfying

exp

(
−
∫ T

0

θ(u)du

)
=

Pmkt(0, T )

Π(0, T, γ,X0)
∀T (2.2.7)

and

exp

(∫ T+∆

T

θ∆(u)du

)
= exp

(
−
∫ T+∆

T

θ(u)du

)
1 + ∆L∆,mkt(0, T )

1 + ∆Λ∆(0, T, γ, γ∆, x)
∀T. (2.2.8)

Proof. In light of the previous lemma, the first equality to be met, (2.2.1), can be rewritten
as

exp

(
−
∫ T

0

θ(u)du

)
Π(0, T, γ,X0) = Pmkt(0, T ),

from which the first condition follows trivially.

Now the second condition (2.2.2) follows easily from the equality

1 + ∆FL∆(0, T ) = 1 + ∆L∆,mkt(0, T )

by replacing the expression for FL∆(0, T ) obtained in the previous lemma

An important point to be noted is that the shift θ applied to the process r is uniquely

determined by the available data and is in fact the main result in Brigo and Mercurio

(2001), whereas the shift θ∆ applied to the spread is determined only up the first part on

[0,∆∗). Indeed, by taking logs and differentiating with respect to T condition (2.2.8) we

find an expression for θ∆(T +∆)−θ(T ) so that θ∆ is uniquely identified once it is defined

on [0,∆∗). We will find the same kind of indeterminacy in the next chapter, where we

will develop a different approach.

2.3 Affine Specification

In this section, we show that all the relevant functions (Π, Γ∆ etc.) can be explicitly

computed for an important family of stochastic processes, namely those whose semigroup

belongs to the affine class. Affine processes were first studied by Duffie and Kan (1996),

Dai and Singleton (2000), Duffie et al. (2000) and then classified by Duffie et al. (2003) in

the canonical state space domain E = Rm+ ×Rn, while they have been recently recovered

thanks to the interesting extention to the state space of positive semidefinite matrices (see

Bru (1991), Gourieroux and Sufana (2003), Gourieroux and Sufana (2005), Da Fonseca

et al. (2007), Da Fonseca et al. (2008), Grasselli and Tebaldi (2008) and Cuchiero et al.

(2011)).

We will follow the unified approach as presented in Keller-Ressel and Mayerhofer

(2012). Consider a time-homogeneous affine Markov process X taking values in a non-
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empty convex subset E of Rd (d ≥ 1), endowed with the inner product 〈·, ·〉. The

Markov process X is affine if it is stochastically continuous and its Laplace transform

has exponential-affine dependence on the initial state, that is there exist some determin-

istic functions φu : R+ → C and ψu : R+ → Cd such that the semigroup P acts as

follows: ∫
E

e〈u,w〉Pt(x, dw) = eφu(t)+〈ψu(t),x〉 (2.3.1)

for all t ≥ 0, x ∈ E and u ∈ iRd. It can be shown (see e.g. Cuchiero et al. (2011)) that

the process X is a semimartingale with characteristics

At =

∫ t

0

a(Xs−)ds,

Bt =

∫ t

0

b(Xs−)ds,

ν(ω, dt, dξ) = K(Xt−(ω), dξ)dt,

with a(x), b(x),K(x, dξ) affine functions:

a(x) = a+ x1α
1 + ...+ xdα

d,

b(x) = b+ x1β
1 + ...+ xdβ

d,

K(x, dξ) = m(dξ) + x1µ(dξ) + ...+ xdµ
d(dξ),

where a(x) (the diffusion coefficient) is a positive semidefinite d × d matrix, b(x) is the

Rd-vector of the drift, and K(x, dξ) is a Radon measure on Rd associated to the affine

jump part and it is such that ∫
Rd

(
‖ξ‖2 ∧ 1

)
K(x, dξ) <∞

and K(x, {0}) = 0.

The deterministic functions φu(t), ψu(t) solve the generalized Riccati equations

∂

∂t
φu(t) =

1

2
〈ψu(t), aψu(t)〉+ 〈b, ψu(t)〉+

∫
Rd\{0}

(
e−〈ξ,ψu(t)〉 − 1− 〈h(ξ), ψu(t)〉

)
m(dξ),

φu(0) = 0,

and for all i = 1, ..., d :

∂

∂t
ψiu(t) =

1

2
〈ψu(t), αiψu(t)〉+ 〈βi, ψu(t)〉+

∫
Rd\{0}

(
e−〈ξ,ψu(t)〉 − 1− 〈h(ξ), ψu(t)〉

)
µi(dξ),

ψu(0) = u,
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where h(ξ) = 1{‖ξ‖≤1}ξ is a truncation function.

In order to compute the functions Π and Γ∆, it is useful to consider the process

(X,Y γ) := (X,
∫ ·

0
〈γ,Xu〉du) which is an affine process with state space E × R starting

from (X0, 0).

Lemma 2.3.1. Let P̃ γ be the semigroup of the process (X,Y γ). Then we have for every
u ∈ iRd and v ∈ iR∫

E×R
e〈u,w〉+vzP̃ γt ((x, y), (dw, dz)) = eΦ(u,v)(t,γ)+〈Ψ(u,v)(t,γ),x〉+vy,

where the functions Φ(u,v)(·, γ) and Ψ(u,v)(·, γ) satisfy the following system of generalized
Riccati ODEs

∂

∂t
Φ(u,v)(t, γ) =

1

2
〈Ψ(u,v)(t, γ), aΨ(u,v)(t, γ)〉+ 〈b,Ψ(u,v)(t, γ)〉

+

∫
Rd\{0}

(
e−〈ξ,Ψ(u,v)(t,γ)〉 − 1− 〈h(ξ),Ψ(u,v)(t, γ)〉

)
m(dξ),

Φ(u,v)(0, γ) = 0,

and for i = 1, ..., d

∂

∂t
Ψi

(u,v)(t, γ) = vγi +
1

2
〈Ψ(u,v)(t, γ), αiΨ(u,v)(t, γ)〉+ 〈βi,Ψ(u,v)(t, γ)〉

+

∫
Rd\{0}

(
e−〈ξ,Ψ(u,v)(t,γ)〉 − 1− 〈h(ξ),Ψ(u,v)(t, γ)〉

)
µi(dξ),

Ψ(u,v)(0, γ) = u.

We are now ready to give an expression of the function Π.

Proposition 2.3.2. The function Π is given by

Π(t, T, γ, x) = exp (A(t, T, γ) + 〈B(t, T, γ), x〉)

where the functions A and B are defined as

A(t, T, γ) := Φ(0,−1)(T − t, γ),

B(t, T, γ) := Ψ(0,−1)(T − t, γ).

Proof. We have that

Π(t, T, γ, x) = E[e−
∫ T
t
〈γ,Xu〉du|{Xt = x}]

= E[e−
∫ (T−t)
0 〈γ,Xt+u〉du|{Xt = x}]

= E[e−
∫ (T−t)
0 〈γ,Xu〉du|{X0 = x}]

= exp
(
Φ(0,−1)(T − t, γ) + 〈Ψ(0,−1)(T − t, γ), x〉

)
where the third equality follows from the Markov property of X.
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By exploiting the exponential structure of Π, we are able to compute explicitly the

function Γ∆ as well.

Proposition 2.3.3. The function Γ∆ is given by

Γ∆(t, T, γ, γ∆, x) = exp
(
A∆(t, T, γ, γ∆) + 〈B∆(t, T, γ, γ∆), x〉

)
where the functions A and B are defined as

A∆(t, T, γ, γ∆) :=A(T, T + ∆, γ)−A(T, T + ∆, γ + γ∆)

+ Φ(B(T,T+∆,γ)−B(T,T+∆,γ+γ∆),−1)(T − t, γ),

B∆(t, T, γ, γ∆) :=Ψ(B(T,T+∆,γ)−B(T,T+∆,γ+γ∆),−1)(T − t, γ).

Proof.

Γ∆(t, T, γ, γ∆, x) =

= E
[
e−

∫ T
t
〈γ,Xu〉du Π(T, T + ∆, γ,XT )

Π(T, T + ∆, γ + γ∆, XT )
|{Xt = x}

]
= E

[
e−

∫ T−t
0
〈γ,Xt+u〉du Π(T, T + ∆, γ,Xt+T−t)

Π(T, T + ∆, γ + γ∆, Xt+T−t)
|{Xt = x}

]
= E

[
e−

∫ T−t
0
〈γ,Xu〉du Π(T, T + ∆, γ,XT−t)

Π(T, T + ∆, γ + γ∆, XT−t)
|{X0 = x}

]
= E

[
e−

∫ T−t
0
〈γ,Xu〉du eA(T,T+∆,γ)+〈B(T,T+∆,γ),XT−t〉

eA(T,T+∆,γ+γ∆)+〈B(T,T+∆,γ+γ∆),XT−t〉
|{X0 = x}

]
= exp

{
(A(T, T + ∆, γ)−A(T, T + ∆, γ + γ∆))

}
. exp

{
Φ(B(T,T+∆,γ)−B(T,T+∆,γ+γ∆),−1)(T − t, γ)

}
. exp

{
〈Ψ(B(T,T+∆,γ)−B(T,T+∆,γ+γ∆),−1)(T − t, γ), x〉

}
which gives the result.

2.3.1 Example 1: Ornstein-Uhlenbeck specification

We now explicitly compute the functions A, B, A∆ and B∆ for a simple specification of

the driving Markov process X that is typically used in the bank industry, namely a purely

diffusive Ornstein-Uhlenbeck process in the canonical state space domain E = R2.

Assume that X = (X1, X2) is the unique strong solution of the following SDEdX1
t = −λ1X

1
t dt+ σ1dW

1
t ,

dX2
t = −λ2X

2
t dt+ σ2dW

2
t ,

where W 1 and W 2 are two Wiener processes with d[W 1,W 2]t = ρdt, with ρ ∈ [−1, 1].

Here the mean reversion parameters λ1 and λ2 and the instantaneous volatilities σ1 and

σ2 are non-negative reals. We leave the initial condition of the SDE unspecified since we

are only interested in the semigroup of X. It is easy to see that we are indeed in the affine
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case, with the following parameters:

b =

[
0

0

]
, β1 =

[
−λ1

0

]
, β2 =

[
0

−λ2

]
,

and

a =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, α1 = α2 =

[
0 0

0 0

]
,

while there are no jumps, that is K(x, dξ) = 0. Consider the projection vectors given by

γ =

[
1

0

]
and γ∆ =

[
0

1

]
,

meaning that X1 is associated to the short rate and X2 describes the spread s∆.

Our goal is to compute the values ofA(t, T, γ), B(t, T, γ), A∆(t, T, γ, γ∆) andB∆(t, T, γ, γ∆)

for these values of the parameters.

We first compute Φ(u,−1)(t, γ) and Ψ(u,−1)(t, γ) for the generic u as we do in Lemma

2.3.4: this will give us the values ofA(t, T, γ) andB(t, T, γ). Then we compute Φ(0,−1)(t, γ+

γ∆) and Ψ(0,−1)(t, γ + γ∆) in Lemma 2.3.5: in this way we will have the values A(T, T +

∆, γ+ γ∆) and B(T, T + ∆, γ+ γ∆) which we need to compute the values A∆(t, T, γ, γ∆)

and B∆(t, T, γ, γ∆).

Lemma 2.3.4. The functions Ψ = (Ψ1,Ψ2)′ and Φ solutions of the Riccati ODEs in
Lemma 2.3.1 computed at v = −1 are given by

Ψ1
(u,−1)(t, γ) = u1e

−λ1t − 1

λ1
(1− e−λ1t),

Ψ2
(u,−1)(t, γ) = u2e

−λ2t

and

Φ(u,−1)(t, γ) =
1

2
σ2

1

[
u1λ1(t)− 1

λ1
(t− λ1(t))

]
+

1

2
σ2

2

[
u2λ2(t)

]
+ ρσ1σ2

[
u1u2λ1 + λ2(t)− u2

λ1
(λ2(t)− λ1 + λ2(t))

]
,

where λ(t) :=
∫ t

0
e−λsds.

Proof. With regard to the functions Ψ1,Ψ2, simply note that they satisfy{
d
dtΨ

1
(u,−1)(t, γ) = −1− λ1Ψ1

(u,−1)(t, γ)

Ψ1
(u,−1)(0, γ) = u1

and {
d
dtΨ

2
(u,−1)(t, γ) = −λ2Ψ2

(u,−1)(t, γ)

Ψ2
(u,−1)(0, γ) = u2
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respectively. On the other hand, for Φ we have

Φ(u,−1)(t, γ) =
1

2
σ2

1

∫ t

0

Ψ1
(u,−1)(s, γ)ds

+
1

2
σ2

2

∫ t

0

Ψ2
(u,−1)(s, γ)ds

+ ρσ1σ2

∫ t

0

Ψ1
(u,−1)(s, γ)Ψ2

(u,−1)(s, γ)ds,

which is easily integrated.

Lemma 2.3.5. We have that

Ψ1
(0,−1)(t, γ + γ∆) = − 1

λ1
(1− e−λ1t),

Ψ2
(0,−1)(t, γ + γ∆) = − 1

λ2
(1− e−λ2t)

and

Φ(0,−1)(t, γ + γ∆) =
1

2
σ2

1

[
− 1

λ1
(t− λ1(t))

]
+

1

2
σ2

2

[
− 1

λ2
(t− λ2(t))

]
+ ρσ1σ2

[
1

λ1λ2
(t− λ1(t)− λ2(t) + λ1 + λ2(t))

]
,

where, again, λ(t) :=
∫ t

0
e−λsds.

Proof. With regard to the functions Ψ1,Ψ2, note that they satisfy{
d
dtΨ

1
(0,−1)(t, γ + γ∆) = −1− λ1Ψ1

(0,−1)(t, γ + γ∆)

Ψ1
(0,−1)(0, γ + γ∆) = 0

and {
d
dtΨ

2
(0,−1)(t, γ + γ∆) = −1− λ2Ψ2

(0,−1)(t, γ + γ∆)

Ψ2
(0,−1)(0, γ + γ∆) = 0

respectively. The ODE for Φ has not changed and, again, can be easily integrated.

We are now in position to give the expressions we are seeking.

Proposition 2.3.6. The functions A(·, ·, γ) and B(·, ·, γ) in Proposition (2.3.2) are given
by

A(t, T, γ) = −1

2
σ2

1

[
1

λ1
((T − t)− λ1(T − t))

]
,

B1(t, T, γ) = − 1

λ1
(1− e−λ1(T−t)),

B2(t, T, γ) = 0.

Proof. This is straightforward upon using Lemma 2.3.4 with u = 0 and the definition
given in Proposition 2.3.2.
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Proposition 2.3.7. The functions A∆(·, ·, γ, γ∆) and B∆(·, ·, γ, γ∆) of Proposition (2.3.3)
are given by

A∆(t, T, γ, γ∆) =
1

2
σ2

2

[
1

λ2
(∆− λ2(∆))

]
− ρσ1σ2

[
1

λ1λ2
(∆− λ1(∆)− λ2(∆) + λ1 + λ2(∆))

]
+

1

2
σ2

1

[
− 1

λ1
((T − t)− λ1(T − t))

]
+

1

2
σ2

2

[
λ2(∆)λ2(T − t)

]
+ ρσ1σ2

[
−λ2(∆)

λ1
(λ2(T − t)− λ1 + λ2(T − t))

]
,

B∆,1(t, T, γ, γ∆) =− 1

λ1
(1− e−λ1(T−t)),

B∆,2(t, T, γ, γ∆) =
1

λ2
(1− e−λ2∆)e−λ2(T−t).

Proof. Since we have that

B(T, T + ∆, γ)−B(T, T + ∆, γ + γ∆) =

[
0

1
λ2

(1− e−λ2∆)

]
,

the claim on B∆ now follows from its definition which was given in Proposition 2.3.3.
With regard to A∆, we have that

A∆(T, T + ∆, γ)−A∆(T, T + ∆, γ + γ∆) =− 1

2
σ2

2

[
− 1

λ2
(∆− λ2(∆))

]
− ρσ1σ2

[
1

λ1λ2
(∆− λ1(∆)− λ2(∆) + λ1 + λ2(∆))

]
,

so that we can conclude from the definition of A∆ given in Proposition 2.3.3.

2.3.2 Example 2: the Wishart specification

Let us now consider a symmetric matrix valued state space domain, that is E = S+
d ,

the set of positive semidefinite symmetric matrices3 endowed with the scalar product

(x, y) → 〈x, y〉 = tr[xy], where tr denotes the trace operator. An important process

that is defined on this state space domain is the Wishart process, which has been first

introduced by Bru (1991), and then applied to finance by Gourieroux and Sufana (2003)

and Gourieroux and Sufana (2005).

The most important property of the Wishart process relies on its ability to describe

complex interdependencies among positive stochastic factors. In particular, it allows for

the possibility to deal with a stochastic correlation, which represents a crucial tool in

3Notice that here the dimension of the vector space E is
d(d+1)

2
, so that for example the diffusion matrix

a(x) should be represented as a symmetric
d(d+1)

2
× d(d+1)

2
matrix and b(x) is a vector in R

d(d+1)
2 .
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order to describe interesting financial phenomena.

In view of the applications, we consider the purely diffusive specification for the

Wishart infinitesimal generator, corresponding to the special case b(x) = xβ + β>x for

a constant matrix β ∈ M−d (the set of square matrices whose eigenvalues have negative

real part) and a diffusion matrix α = Q>Q with Q ∈ GLd (the set of invertible d × d
matrices), that is

Gf(x) = tr[(b+ xβ + β>x)Df(x) + 2xDQ>QDf(x)],

where the constant drift matrix b satisfies b− (d− 1)Q>Q ∈ S+
d (related to the so called

Gindikin set) and the differential operator D is defined as follows:

Dij =
∂

∂xij
, i, j = 1, .., d. (2.3.2)

The infinitesimal generator corresponds to the following matrix dynamics for the pro-

cess X:

dXt = (b+Xtβ + β>Xt)dt+
√
XtdWtQ+Q>dW>t

√
Xt, (2.3.3)

with X0 = x ∈ S+
d and where W is a matrix Brownian motion, that is a d× d matrix of

independent Brownian motions. Note that the dynamics of X generalizes the CIR process

and its stationarity is ensured by the condition on the mean reversion term β ∈M−d .

Remark 2.3.8. It is important to notice that the main advantage of the Wishart specifica-
tion with respect to the canonical state space domain consists in the possibility to allow
for a non trivial correlation among the positive factors: for example it is simply checked
that (take d = 2)

d〈X11, X22〉t = 4X12(Q11Q12 +Q21Q22)dt,

namely the off diagonal elements of X describe the covariation among the (positive) factors

along the diagonal.

The (matrix) Riccati ODE satisfied by the functions Ψu is the following:

∂

∂t
Ψu(t) = vγ + β>Ψu(t) + Ψu(t)β + 2Ψu(t)Q>QΨu(t),

Ψu(0) = u,

while as usual Φu is given by direct integration:

∂

∂t
Φu(t) = tr[bΨu(t)],

Φu(0) = 0.

Using the linearization technique as in Grasselli and Tebaldi (2008), it is possible to

express the solution to this Riccati system through an exponentiation that is easy to

implement. The procedure is now standard and we just state the result.
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Figure 2.1: EURIBOR 6m IRS vs EONIA OIS.

Proposition 2.3.9. The deterministic matrix valued functions Φu(t),Ψu(t) in Lemma
2.3.1 can be expressed as follows:

Φu(t) = (uA12(t) +A22(t))−1(uA11 +A21),

where (
A11 A12

A21 A22

)
= exp t

(
β −2Q>Q
vγ −β>

)
and

Ψu(t) = −1

2
tr[b(log(uA12(t) +A22(t)) + tβ>(Q>Q)−1)].

Note that following the procedure of the previous subsection, all the relevant functions

like Π,Γ∆ etc. can be efficiently computed thanks to the previous proposition.

2.4 Numerical illustration

In this section we give a numerical example of the functions θ and θ∆ calibrated to real

market data. We take Euro market data as of August, 31st, 2012. Specifically the input

data consist of OIS swaps and EURIBOR 6m swaps quotes of maturity up to 30 years.

We plot these quotes in figure 2.1.

We obtain the risk-free bond prices Pmkt from the OIS quotes on a discrete set of dates
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Figure 2.2: θ calibrated to market data 31/08/2012.

and then interpolate their logarithms by a piecewise cubic spline. On the other hand, we

use the EURIBOR swap quotes and the risk-free discount factors to compute the forward

LIBORs L∆,mkt.

In this example, we use the Ornstein-Uhlenbeck specification but, as we already noted,

numerical values for the functions θ and θ∆ can be computed as soon as a closed form

expression for Π and Γ∆ is available. We fix the parameters for the driving process X as

follows: λ1 = λ2 = 0.05, σ1 = 0.01 and σ2 = 0.0050. The initial value of X is fixed at

X0 =

[
0.0030

0.0010

]
.

The function θ is determined by λ1 and σ1 only and it is plotted in figure 2.2.

On the other hand, the function θ∆ is determined by the full set of parameters it is

plotted in figure 2.3 for ρ = −0.5, 0, 0.5.

From figure 2.3 it is also possible to appreciate how this function depends continuously

on the parameters.

Finally let us stress that, as it is always the case, the law of the driving process X

depends on some parameters (in this case λ1, λ2, σ1, σ2 and ρ) which have to be considered

fixed through this stage of the calibration and are free to be calibrated to other instruments

(generally caps and swaptions).
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Figure 2.3: θ∆ calibrated to market data 31/08/2012.



Chapter 3

A Multiple-curve Instantaneous
Forward Rate Model

The goal of this chapter is to extend the celebrated Heath-Jarrow-Morton model for the

dynamics of the term-structure (see Heath et al. (1992)) to a multiple-curve framework.

We start from a continuum of risk-free zero coupon bonds and a continuum of FRA’s

on a single LIBOR rate of tenor ∆. The fact that there is only one tenor ∆ for the

LIBOR rate leads to an indeterminacy of the generalization of the instantaneous forward

rate curve. This indeterminacy is reflected into an indeterminacy of the drift conditions.

In other words, we develop the closest relative of the HJM model in a two-curve framework

but show that it suffers from some drawbacks.

Recall from Chapter 1, that we use the notation L∆
t for the time-t spot LIBOR of

tenor ∆ and FL∆(t, T ) = L∆(t, T ) for the time-t forward LIBOR of tenor ∆ for maturity

T .

To begin with, let us state a fact that should already be clear from Chapter 1 and that

will be used in the following.

Proposition 3.0.1. In an arbitrage-free market, for any maturity T , the process(
P (t, T + ∆)∆FL∆(t, T )

Bt

)
t

must be a martingale under the risk-neutral measure Q∗.

Proof. The process (P (t, T+∆)∆FL∆(t, T ))t is the price process of a traded asset, namely
the time-t price of the floating leg in a FRA on L∆ setting at T and paying at T + ∆. As
a consequence it must be a martingale under Q∗ when divided by the numeraire B.

In the next section, we analyze the parametrization for the forward LIBOR curve that

will be the central theme of this chapter.

55
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3.1 The Fictitious Instantaneous Forward Rates

The following definition deals with forward LIBOR and tries to mimic the definition of

forward rates from the zero coupon curve.

Definition 3.1.1 (Fictitious ∆-tenor zero coupon curve). We say T 7→ P∆(·, T ) is a ficti-
tious ∆-tenor zero coupon curve consistent with the forward LIBOR curve T 7→ FL∆(·, T )
if we have

FL∆(·, T ) =
1

∆

(
P∆(·, T )

P∆(·, T + ∆)
− 1

)
.

This definition is in line with some of the existing literature, see e.g. Bianchetti (2009),

Pallavicini and Tarenghi (2010) and Crépey et al. (2012) (see the literature review given

in Section 1.5).

We now consider the existence and uniqueness issue arising with the last definition

which to the best of our knowledge was overlooked in the literature so far. In the following

proposition, since the present time t is held fixed, we temporarily suppress it from the

notation (e.g., we write FL∆(T ) instead of FL∆(t, T ))

Proposition 3.1.2. Let us fix an arbitrary forward LIBOR curve T 7→ FL∆(T ).
Then, to any A : [0,∆) → R we can associate a fictitious zero coupon bond curve

T 7→ P∆
A (T ) admitted by L∆ defined as1

P∆
A (T ) := A(ε̄(T ))

n̄(T )−1∏
k=0

1

1 + ∆FL∆(k∆ + ε̄(T ))
,

where n̄(T ) := sup{n ∈ N : n∆ ≤ T} and ε̄(T ) := T − n̄(T )∆.
Conversely, to any P∆ consistent with L∆ we can associate a function A such that the

above relation holds.
In other words, there is a bijection between fictitious zero coupon bond curves admitted

by L∆ and mappings A : [0,∆)→ R.

Proof. First of all note that ε̄ is periodic with period ∆, so that ε̄(T + ∆) = ε̄(T ) and that
n̄(T + ∆) = n̄(T ) + 1. Also, for all T ’s, we have that T = n̄(T )∆ + ε̄(T ). By the definition
of P∆

A and the above properties we have

P∆
A (T )

P∆
A (T + ∆)

=
A(ε̄(T ))

A(ε̄(T + ∆))

n̄(T )−1∏
k=0

1

1 + ∆FL∆(k∆ + ε̄(T ))

n̄(T+∆)−1∏
k=0

1 + ∆FL∆(k∆ + ε̄(T + ∆)) =

= 1 + ∆FL∆(n̄(T )∆ + ε̄(T ))

= 1 + ∆FL∆(T ),

thus proving the first assertion.
With regard to the second one, for a given P∆ consistent with L∆ it is sufficient to

define
A(t) := P∆(t) t ∈ [0,∆).

1here we use the convention that
∏−1

k=0 = 1.
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Then we have

A(ε̄(T ))

n̄(T )−1∏
k=0

1

1 + ∆FL∆(k∆ + ε̄(T ))

= P∆(ε̄(T ))

n̄(T )−1∏
k=0

1

1 + ∆FL∆(k∆ + ε̄(T ))

= P∆(ε̄(T ))

n̄(T )−1∏
k=0

P∆((k + 1)∆ + ε̄(T ))

P∆(k∆ + ε̄(T ))

= P∆(ε̄(T ))
P∆(n̄(T )∆ + ε̄(T ))

P∆(ε̄(T ))
= P∆(T ),

where the second equality follows from the fact that P∆ is admitted by L∆. This completes
the proof.

It is thus clear that for any forward LIBOR curve, an admitted fictitious curve will

always exist but it will be far from being unique. In fact it can be postulated arbitrarily

on the first interval [0,∆) and then it is fully pinned down by this choice. It also clear

that if a fictitious bond curve is given on some D ⊂ [0,∆) then it is fully pinned down

on the set {n∆ +D : n = 1, 2, 3, . . . }. For example, if we only postulate that P∆(0) = 1,

then we only have determined the curve on the lattice {n∆ : n = 1, 2, 3, . . . }.

This shortcoming will be removed in the sequel by assuming the existence of a contin-

uum of tenors.

For the following it will be important to understand if among all the possible choices

of fictitious curves consistent with a given L∆ there are some with given properties. Here

is a first result in this direction.

Proposition 3.1.3. For any given continuous forward LIBOR curve L∆, P∆
A is contin-

uous if the function A is continuous and satisfies

A(∆−) = A(0)
1

1 + ∆FL∆(0)
. (3.1.1)

Proof. It is clear that, n̄ and ε̄ being right-continuous on R+ and continuous on the
complement of {n∆ : n = 1, 2, 3, . . . }, we only need to check left continuity at the generic
point n∆ for n ∈ N, i.e. to show that

lim
ε→0+

P∆
A (n∆− ε) = P∆

A (n∆).

By the definition of P∆
A , the left limits of n̄ and ε̄ and our hypothesis, we get to the result
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by noting that

lim
ε→0+

P∆
A (n∆− ε)

= lim
ε→0+

A(ε̄(n∆− ε))
n̄(n∆−ε)−1∏

k=0

1

1 + ∆FL∆(k∆ + ε̄(n∆− ε))

= A(∆−)

(n−1)−1∏
k=0

1

1 + ∆FL∆(k∆ + ∆)

= A(0)
1

1 + ∆FL∆(0)

n−2∏
k=0

1

1 + ∆FL∆((k + 1)∆)

= A(0)

n−1∏
k=0

1

1 + ∆FL∆(k∆)

= A(0)

n−1∏
k=0

P∆
A ((k + 1)∆)

P∆
A (k∆)

= P∆
A (n∆).

Note that the second equality is justified since n̄(n∆ − ε) does not depend on ε for ε
sufficiently small.

In the following proposition, we give sufficient conditions on A in order for P∆
A to be

differentiable.

Proposition 3.1.4. For any given differentiable forward LIBOR curve L∆, the mapping
P∆
A is differentiable if the function A is differentiable, satisfies the requirement needed for

the continuity (3.1.1) and

A′(∆−) =
d

dε
A(ε)

1

1 + ∆FL∆(ε)

∣∣
ε=0

. (3.1.2)

Proof. Again, thanks to the differentiability of A and L∆, we only need to care about
points that are integer multiples of ∆. First, we exploit the properties of the functions n̄
and ε̄ used in the definition of P∆

A to find a more convenient expression for P∆
A (n∆ + ε),

P∆
A (n∆) and P∆

A (n∆− ε). These expressions will then be used to find the right and left
incremental limits.

To compute P∆
A (n∆ + ε) we proceed as follows

P∆
A (n∆ + ε) = A(ε̄(n∆ + ε))

n̄(n∆+ε)−1∏
k=0

1

1 + ∆FL∆(k∆ + ε̄(n∆ + ε))

= A(ε)

n−1∏
k=0

1

1 + ∆FL∆(k∆ + ε)

= A(ε)
1

1 + ∆FL∆(ε)

n−1∏
k=1

1

1 + ∆FL∆(k∆ + ε)
.
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With regard to P∆
A (n∆) we have

P∆
A (n∆) = A(0)

n−1∏
k=0

1

1 + ∆FL∆(k∆)

= A(0)
1

1 + ∆FL∆(0)

n−1∏
k=1

1

1 + ∆FL∆(k∆)

= A(∆−)

n−1∏
k=1

1

1 + ∆FL∆(k∆)
.

where we used (3.1.1) to get the last equality.
Finally P∆

A (n∆− ε) can be treated as follows

P∆
A (n∆− ε) = A(ε̄(n∆− ε))

n̄(n∆−ε)−1∏
k=0

1

1 + ∆FL∆(k∆ + ε̄(n∆− ε))

= A(∆− ε)
n−2∏
k=0

1

1 + ∆FL∆(k∆ + ∆− ε)

= A(∆− ε)
n−1∏
k=1

1

1 + ∆FL∆(k∆− ε)
.

Now the right-derivative of P∆
A at the generic n∆ can be computed as follows:

D+P∆
A (n∆) = lim

ε→0+

P∆
A (n∆ + ε)− P∆

A (n∆)

ε

= lim
ε→0+

A(ε) 1
1+∆FL∆ (ε)

∏n−1
k=1

1
1+∆FL∆ (k∆+ε) −A(0) 1

1+∆FL∆ (0)

∏n−1
k=1

1
1+∆FL∆ (k∆)

ε

=
d

dε
A(ε)

1

1 + ∆FL∆(ε)

∣∣
ε=0

f(0) +A(0)
1

1 + ∆FL∆(0)
f ′(0),

where we defined

f(ε) :=

n−1∏
k=1

1

1 + ∆FL∆(k∆ + ε)
.

On the other hand, the left-derivative of P∆
A at the generic n∆ can be computed as

follows:

D−P∆
A (n∆) = lim

ε→0+

P∆
A (n∆)− P∆

A (n∆− ε)
ε

= lim
ε→0+

A(∆−)
∏n−1
k=1

1
1+∆FL∆ (k∆) −A(∆− ε)

∏n−1
k=1

1
1+∆FL∆ (k∆−ε)

ε

= A′(∆−)f(0) +A(∆−)f ′(0)

and the proof is complete.

Once the notion of fictitious zero coupon curve associated to a forward LIBOR curve
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is defined, it is natural to define a fictitious instantaneous forward rate curve.

Definition 3.1.5 (Fictitious ∆-tenor instantaneous forward rate curve). We say T 7→
f∆(·, T ) is a fictitious ∆-tenor instantaneous forward rate curve consistent with the for-
ward LIBOR curve T 7→ FL∆(·, T ) if we have

f∆(t, T ) = − ∂

∂T
lnP∆(t, T )

for some fictitious ∆-tenor zero coupon curve consistent with the forward LIBOR curve
T 7→ FL∆(·, T )

We are naturally led to define the ∆-tenor fictitious short rate as r∆
t := f∆(t, t).

Finally we denote the ∆-tenor instantaneous T -forward spread s∆ with

s∆(·, T ) := f∆(·, T )− f(·, T ).

3.2 The Model

Let us assume we are given a probability space (Ω,F ,Q∗) and that W is a standard

1-dimensional Wiener process defined on it. We denote by F = (Ft)t the (standard Q∗-

augmentation of the) natural filtration of W , so that F satisfies the usual hypothesis in

being complete and right-continuous. We interpret Q∗ as the risk-neutral measure, i.e.

the measure associated to the instantaneous bank-account numeraire Bt = e
∫ t
0
rudu, that

was defined in Chapter 1.

In other words we are postulating that the market is free of arbitrage opportuni-

ties. Another possibility would be to start from an “objective measure”, say P, and then

characterize the absence of arbitrage by the existence of a solution to a market price

of risk equation, via a Girsanov transformation. In fact, by the martingale representa-

tion theorem for Wiener filtrations, any probability on Ft equivalent to P|Ft is given by

Et
(∫ ·

0
λudu

)
dP|Ft for some square integrable λ.

For the rest of this chapter, we will work under the following assumptions:

Assumption 3.2.1 (Instantaneous forward rate dynamics). For any T ∈ (0, T ∗], f(·, T )
follows an Ito process of the form

f(t, T ) = f0(T ) +

∫ t

0

α(u, T )du+

∫ t

0

σ(u, T )dWu, t ∈ [0, T ],

where:

• f0 : [0, T ∗] 7→ R is a fixed, nonrandom, Borel measurable initial forward rate curve

• the drifts α : {(t, s) : 0 < t < T < T ∗} × Ω → R are jointly measurable on
B({(t, s) : 0 < t < T < T ∗})×F such that α(·, T ) is F-adapted and Q∗-a.s.∫ T

0

|α(t, T )|dt <∞;
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• the volatilities σ : {(t, s) : 0 < t < T < T ∗} × Ω → R are jointly measurable on
B({(t, s) : 0 < t < T < T ∗})×F such that σ(·, T ) is F-adapted and Q∗-a.s.∫ T

0

|σ(t, T )|2dt <∞;

Assumption 3.2.2 (Instantaneous fictitious ∆-tenor forward rate dynamics). For any
T ∈ (0, T ∗], f∆(·, T ) follows an Ito process of the form

f∆(t, T ) = f∆
0 (T ) +

∫ t

0

α∆(u, T )du+

∫ t

0

σ∆(u, T )dWu, t ∈ [0, T ],

where we make the same assumptions on f∆
0 , α∆ and σ∆ that we made about f0, α and

σ.

For ease of notation, in the following we will use the shorthands

A(t, T ) :=

∫ T

t

α(t, u)du, Σ(t, T ) :=

∫ T

t

σ(t, u)du

and

A∆(t, T ) :=

∫ T

t

α∆(t, u)du, Σ∆(t, T ) :=

∫ T

t

σ∆(t, u)du.

3.3 Absence of Arbitrage

We recall the following proposition which is the backbone of the classical HJM drift

condition, see Heath et al. (1992). The proof, which is based on the deterministic and

stochastic Fubini theorems, is classical, so that we omit it.

Proposition 3.3.1. For every T ∈ (0, T ∗], let f(·, T ) be an Ito process of the form

df(t, T ) = α(t, T )dt+ σ(t, T )dWt

and define Y (t, T ) :=
∫ T
t
f(t, u)du and P (t, T ) := e−Y (t,T ). Then we have

dY (t, T ) = (−f(t, t) +A(t, T ))dt+ Σ(t, T )dWt

and
dP (t, T )

P (t, T )
= (f(t, t)−A(t, T ) +

1

2
Σ2(t, T ))dt− Σ(t, T )dWt.

The following theorem is the celebrated HJM drift condition, which characterizes ab-

sence of arbitrage in the risk-free bond market, see Heath et al. (1992) for details. Note

that, for the moment, we are disregarding the LIBOR forward market.

Theorem 3.3.2. Under assumption 3.2.1, the market consisting of all the zero coupon
bonds and the bank account is free of arbitrage opportunities if and only if

A(t, T ) =
1

2
Σ2(t, T ) (3.3.1)
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or, equivalently,
α(t, T ) = σ(t, T )Σ(t, T ).

Proof. It is well known that the absence of arbitrage opportunities within the market

in question is equivalent to the processes P (·,T )
B being martingales under Q∗ for all T ∈

(0, T ∗]. Let us denote, for the moment, R = p(·,T )
B . By the preceding proposition we have

dRt
Rt

= (−A(t, T ) +
1

2
Σ2(t, T ))dt− Σ(t, T )dWt,

so that R is a martingale if and only if (3.3.1) holds, as it was to be shown.

We now examine the absence of arbitrage of the whole market consisting of the zero

coupon bonds P (·, T )’s, the bank account B and the FRAs on the LIBOR rate L∆. The

following theorem is the analogue of the HJM drift condition recalled above.

Theorem 3.3.3. Under assumptions 3.2.1 and 3.2.2, the market consisting of all the zero
coupon bonds, the bank account and the FRAs on the LIBOR rate L∆ is free of arbitrage
opportunities if and only if the HJM drift condition (3.3.1) is satisfied and, in addition,

A∆(t, T + ∆)−A∆(t, T ) = (3.3.2)

− 1

2
(Σ∆(t, T + ∆)− Σ∆(t, T ))2 + Σ(t, T + ∆)(Σ∆(t, T + ∆)− Σ∆(t, T ))

i.e., ∫ T+∆

T

α∆(t, u)du =

− 1

2

(∫ T+∆

T

σ∆(t, u)du

)2

+ Σ(t, T + ∆)

(∫ T+∆

T

σ∆(t, u)du

)
.

Proof. The bond market is taken care of by the HJM drift condition (3.3.1), as it was
shown in the previous theorem. As it was already noted in Proposition 3.0.1, absence
of arbitrage opportunities within the FRA LIBOR market is equivalent to the processes
p(·,T+∆)∆FL∆ (·,T )

B being martingales under Q∗. Note that

P (t, T + ∆)∆FL∆(t, T )

Bt
=

1

Bt
P (t, T + ∆)

P∆(t, T )

P∆(t, T + ∆)
− 1

Bt
P (t, T + ∆).

The second term on the rhs of the last equation is a martingale by the HJM drift condition
(3.3.1), so that we need to concentrate only on the first additive term, which for the
moment we denote by R, namely

Rt :=
1

Bt
P (t, T + ∆)

P∆(t, T )

P∆(t, T + ∆)
.

By exploiting proposition 3.3.1 and Ito’s lemma, we get the following dynamics for the



3.4. ALTERNATIVE SPECIFICATION 63

process R

dRt
Rt

= [−A(t, T + ∆) +A∆(t, T + ∆)−A∆(t, T ) +
1

2
Σ2(t, T + ∆)

+
1

2
(Σ∆(t, T + ∆)− Σ∆(t, T ))2 − Σ(t, T + ∆)(Σ∆(t, T + ∆)− Σ∆(t, T ))]dt

+ [−Σ(t, T + ∆) + Σ∆(t, T + ∆)− Σ∆(t, T )] dWt.

Now the first and fourth terms on the right hand side of the last equation cancel out each
other by the HJM drift condition (3.3.1). As a consequence the process R is a martingale
if and only if (3.3.2) holds true.

It is very important to note that, contrary to what happens to the drift process α

of the risk-free forward rates, the drift α∆ is not uniquely specified by the condition

(3.3.2). In fact, by differentiating with respect to T this condition we get a constraint

on α∆(t, T + ∆) − α∆(t, T ). In exact analogy with the issue of defining a fictitious zero

coupon curve from a forward LIBOR curve, also in this case the drift is fully specified

only up to the first interval [0,∆).

3.4 Alternative Specification

An equivalent way of specifying the model is to postulate directly a stochastic process

for the spread s∆ instead of the fictitious forward rate f∆. In other words we replace

assumption 3.2.2, with the following

Assumption 3.4.1 (Instantaneous fictitious ∆-tenor forward spread dynamics). For any
T ∈ (0, T ∗], s∆(·, T ) follows an Ito process of the form

ds∆(t, T ) = αS(t, T )dt+ σS(t, T )dWt, t ∈ [0, T ],

where the (possibly stochastic) coefficients αS and σS are regular enough in order to have
s∆ well defined.

Again for ease of notation, in the following we will use the shorthands

AS(t, T ) :=

∫ T

t

αS(t, u)du, ΣS(t, T ) :=

∫ T

t

σS(t, u)du.

We now proceed to derive a no-arbitrage restriction on the drift of s(·, T ), which is

analogous to the drift condition we found in (3.3.2). In order to do so it will be useful to

write down the SDE satisfied by P∆(·, T ) in terms of the coefficients AS and ΣS , as we

do in the following proposition

Proposition 3.4.2. If the HJM drift condition (3.3.1) is satisfied, the fictitious bond
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prices P∆(·, T ) satisfy

dP∆(t, T )

P∆(t, T )
=

(
rt + s∆(t, t)−AS(t, T ) +

1

2
Σ2
S(t, T ) + Σ(t, T )ΣS(t, T )

)
dt

− (Σ(t, T ) + ΣS(t, T ))dWt.

Proof. First, let us note that P∆(t, T ) = P (t, T ) exp−
∫ T
t
s∆(t,u)du. The SDE for the first

term has already been derived and, if the HJM drift condition is satisfied, reads

dP (t, T )

P (t, T )
= rtdt− Σ(t, T )dWt.

The second term can be treated by using the methods of Proposition 3.3.1. The result
follows upon an application of Ito’s lemma.

We are now ready to present the main result of this section, i.e. the promised no-

arbitrage condition on the drift αS .

Theorem 3.4.3. Under assumptions 3.2.1 and 3.4.1, the market consisting of all the zero
coupon bonds, the bank account and the FRAs on the LIBOR rate L∆is free of arbitrage
opportunities if and only if the HJM drift condition (3.3.1) is satisfied and, in addition,

AS(t, T + ∆)−AS(t, T ) = (3.4.1)

− 1

2
(ΣS(t, T + ∆)− ΣS(t, T ))2 + Σ(t, T )(ΣS(t, T + ∆)− ΣS(t, T ))

i.e., ∫ T+∆

T

αS(t, u)du =

− 1

2

(∫ T+∆

T

σS(t, u)du

)2

+ Σ(t, T )

(∫ T+∆

T

σS(t, u)du

)
.

Proof. Again, the bond market is taken care of by the HJM drift condition (3.3.1). As
it was already noted above, absence of arbitrage opportunities within the FRA LIBOR

market is equivalent to the processes
p(·,T+∆)∆FL∆ (·,T )

B being martingales under Q∗. As in
the proof of theorem 3.3.3, we need only to concentrate on the process R that was defined
as

Rt :=
1

Bt
P (t, T + ∆)

P∆(t, T )

P∆(t, T + ∆)
.

By exploiting proposition 3.3.1 and an easy application of Ito’s lemma, we get the following
dynamics for the process R

dRt
Rt

= µ(t, T )dt− [Σ(t, T )− (ΣS(t, T + ∆)− ΣS(t, T ))] dWt
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where, assuming that the HJM drift condition (3.3.1) holds, we have

µ(t, T ) = −AS(t, T ) +
1

2
Σ2
S(t, T ) + Σ(t, T )ΣS(t, T )

+AS(t, T + ∆)− 1

2
Σ2
S(t, T + ∆)− Σ(t, T + ∆)ΣS(t, T + ∆)

+ ΣS(t, T + ∆) [−(Σ(t, T ) + ΣS(t, T )) + (Σ(t, T + ∆) + ΣS(t, T + ∆))] .

After some straightforward algebra, we get

µ(t, T ) = AS(t, T + ∆)−AS(t, T ) +
1

2
(ΣS(t, T + ∆)− ΣS(t, T ))2

− Σ(t, T )(ΣS(t, T + ∆)− ΣS(t, T )).

The process R is a martingale if and only if µ = 0, which is equivalent to (3.4.1), as it
was to be shown.

Remark 3.4.4. Note that the condition on the drift of the fictitious spread we just derived
has the same structure as the condition on the drift of the fictitious forward rate. The
only minor difference is that the function Σ in the second addend is evaluated in T in the
former case and in T + ∆ in the latter.

This alternative formulation of the model lends itself to the analysis of an important

special case, namely the case in which the spot LIBOR process L∆ coincides with the

risk-free spot rate Z∆, in which case we have that FL∆(·, T ) = FR∆(·, T ) ∀T and as a

consequence P∆(·, T ) = P (·, T ) ∀T is an admissible fictitious bond process and we have

s∆(0, T ) = 0 ∀T . Now if we assume that there is no volatility in the spread process, i.e.

σS(t, T ) = 0 we see that the drift

αS(t, T ) = 0 ∀t < T

is admitted by our no-arbitrage condition. In this case we have the process s∆(·, T )

indistinguishable from zero and we are back to the classical HJM framework. However,

there will be other non-zero drifts still compatible with no-arbitrage.

3.5 Further Developments

The above framework should and will be investigated further in the future.

To begin with, as stated in the text, we should understand if there is any room to

define the canonical fictitious zero coupon bond curve associated with a forward LIBOR

curve, by for example restricting the class of functions A. This would allow us to get rid

of the indeterminacy in the fictitious forward curve. Also, we should understand if we can

link the arbitrariness in defining P∆ to the one in the drift.

Another interesting point would be to assess under what conditions there is a finite

dimensional realization (most likely not including the short rate r∆), as this has been a

classical subject of research until a few years ago.
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Finally, we should attempt to develop a framework for all the FL∆(·, T )’s, i.e. for all

∆’s in some [0,∆∗], in which case we would be in infinite dimension in two directions: the

T ’s and the ∆’s.



Chapter 4

Instantaneous Swap Rates

In this chapter, while retaining a classical single curve approach, we explore what happens

when the tenor of a swap rate tends to zero. This was initially motivated by the desire to

better understand the OIS’s (Overnight Indexed Swaps), which were described in detail

in Chapter 1, in which a floating leg pays (almost) continuously a rate with an (almost)

infinitesimal tenor. Specifically, it is known, though overlooked in the literature, that

the HJM drift condition is the infinitesimal limit of the LMM drift condition. The main

result of this chapter is to develop an infinitesimal limit of the Swap Market Model drift

condition of Jamshidian (1997), again, in a suitably defined framework.

4.1 Bonds, Spot Rates and Forward Rates

We now briefly recall the assumptions and definitions we made in Chapter 1. In a classical

framework for the term-structure, we model a frictionless market in which trading takes

place continuously over the time interval [0, T ∗], where T ∗ is an arbitrary final date.

Furthermore, we assume that one risk-free zero-coupon bond P·(T ) is traded in this market

for every T ∈ [0, T ∗].

The market being arbitrage-free is equivalent to the existence, for any T ∈ [0, T ∗], of

a probability measure QT usually referred to as the T -forward measure, such that price

processes discounted by P·(T ) are QT -martingales. Expectations with respect to QT will

be written as ET .

As it is classical in term-structure modeling, for a fixed t ∈ [0, T ∗] we use the discount

curve1 T 7→ Pt(T ), which we assume to be smooth enough, to define spot rates of discrete

and infinitesimal tenor:

1In this chapter, in order not to burden the notation, we will always indicate the current time by a
subscript as in Pt(T )

67
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• R∆
t : the time-t (simply compounded) spot rate of tenor ∆

R∆
t :=

1

∆

(
1

P (t, t+ ∆)
− 1

)
. (4.1.1)

• rt: the time-t instantaneous spot rate

rt := lim
∆→0+

R∆
t . (4.1.2)

Note that in (4.1.1) we defined a rate with the simple compounding convention, but other

conventions might be used instead (e.g. annual or continuous). On the other hand, the

defining equation (4.1.2) for r would have in no way changed if we took the limit of a

spot rate with a different compounding rule. With the continuous compounding rule, for

example, we do have

rt = lim
∆→0

1

∆
ln

1

Pt(t+ ∆)
.

As it is also very classical, for a fixed t ∈ [0, T ∗] we use the discount curve Pt(·) to

define forward rates of discrete and infinitesimal tenor:

• F∆
t (T ): time-t (simply compounded) forward rate for time T of tenor ∆. This is

the fair strike on a FRA on R∆ setting at T and paying at T + ∆ and is given by

F∆
t (T ) := ET+∆

t [R∆
T ] =

1

∆

(
Pt(T )

Pt(T + ∆)
− 1

)
; (4.1.3)

• ft(T ): time-t instantaneous forward rate for time T

ft(T ) := lim
∆→0+

F∆
t (T ) =

 ETt [rT ]

−∂TPt(T )
Pt(T ) = −∂T lnPt(T ).

(4.1.4)

In equation (4.1.3), note that the first equality is really a definition, whereas the second

equality can be deducted from the definition of R∆. In equation (4.1.4) the first equality is

really a definition which can be manipulated in two ways depending on which expression

for the forward rate F∆
t (T ) in (4.1.3) one uses.

Here, the same remarks on compounding conventions we made about spot rates still

apply.

Thus, for both the spot and the forward cases we defined a rate of discrete (positive)

tenor and a rate of instantaneous (infinitesimal) tenor. Surprisingly enough, another fun-

damental rate in term-structure modeling, the swap rate, does not have an instantaneous

counterpart. We explain the issue and fill the gap in the next section.
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4.2 The Instantaneous Swap Rate and the Continuous
Annuity

We denote by S∆
t ({T,U}∆) the fair strike in a swap onR∆, with tenor structure {T,U}∆ =

(Ti)i=0,...,U−T∆
where Ti = T + i∆. Note that all the dates Ti are equally spaced. This is

the fixed rate K such that a swap for exchanging ∆K for ∆R∆
Ti−1

for all i = 1, 2, . . . , U−T∆

has a null price at time t. Classical no-arbitrage considerations force the swap rate to the

following

S∆
t ({T,U}∆) =

Pt(T )− Pt(U)∑n
i=1(Ti − Ti−1)Pt(Ti)

. (4.2.1)

Note that the price of the floating leg of the swap (the numerator in the expression above)

depends on the tenor structure {T,U}∆only through its first and last date, T and U . This

is due to the fact that the floating rate R∆ is risk-free and its tenor corresponds to the

spacing between payments.

Inspired by the definitions of the instantaneous rates we recalled above, we now intro-

duce the concept of instantaneous swap rate st(T,U) as follows

Definition 4.2.1 (Instantaneous Swap Rate). The time-t instantaneous swap rate for
the tenor structure [T,U ] is defined as

st(T,U) := lim
∆→0

S∆
t ({T,U}∆) =

Pt(T )− Pt(U)∫ U
T
duPt(u)

. (4.2.2)

This is the fair swap rate for a swap in which the fixed leg pays continuously whereas

the floating leg pays the tenor ∆ risk-free rate every ∆ units of time. This ∆ can be any

whatsoever, since in any case the price of the floating leg does not depend on it. It can

also be infinitesimal, meaning that the floating leg pays continuously the instantaneous

spot rate r. If this is the case the time-t price of the floating leg might be written as∫ U

T

duPt(u)Eut [ru] =

∫ U

T

duPt(u)ft(u)

=

∫ U

T

duPt(u)
−∂TPt(u)

Pt(u)

= Pt(T )− Pt(U).

which of course yields to the same price. The expression for the instantaneous swap rate

st(T,U) =

∫ U
T
duPt(u)ft(u)∫ U
T
duPt(u)

(4.2.3)

is particularly illuminating since it shows clearly that st(T,U) is the average of the function

ft(·) on [T,U ] under the positive measure A 7→
∫
A
duPt(u).

Also note that the floating leg could also be priced using the standard risk-neutral

measure Q, i.e. the measure associated to the “bank account” numeraire B = e
∫ ·
0
rsds,
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since we could write ∫ U

T

duPt(u)Eut [ru] =

∫ U

T

duEt[e−
∫ u
t
rsdsru]

=

∫ U

T

duEt[−∂ue−
∫ u
t
rsds]

= Et[−
∫ U

T

du
∂

∂u
e−

∫ u
t
rsds]

= Et[e−
∫ T
t
rsds − e−

∫ U
t
rsds]

= Pt(T )− Pt(U),

which yields once again the same price.

The fixed leg in a standard swap (the term in the denominator of (4.2.1)) is usually

referred to as the (discrete) annuity and denoted by A·({T,U}∆). In other words we have

At({T,U}∆) :=

n∑
i=1

(Ti − Ti−1)Pt(Ti). (4.2.4)

This quantity can be used as a numeraire, being a linear combination of bonds with

constant coefficients and we denote the associated martingale measure by Q{T,U}∆ . By

the expression (4.2.1) for the (discrete) swap rate, we readily see that S·({T,U}∆) must

necessarily be a martingale under Q{T,U}∆ .

Now we push the analogies we made so far a little further and define the continuous

analogue of the (discrete) annuity:

Definition 4.2.2 (Continuous annuity process). For fixed T < U , the continuous annuity
process a(T,U) is defined as

at(T,U) :=

∫ U

T

duPt(u), t < T. (4.2.5)

We assume that the process a·(T,U) can be used as a numeraire and we denote the as-

sociated martingale measure by Q[T,U ]. Note that this assumption is even more innocuous

than the assumption that the “bank account” process B is traded. In fact, the latter pro-

cess requires the possibility of investing with measure-valued portfolios which have to vary

stochastically over time, whereas the continuous annuity process only requires measure-

valued portfolios which are constant over time. Thus if one is to accept the assumption

that B is traded (which is the cornerstone of all classical short rate models), then he is

forced to accept the fact that the continuous annuity a(T,U) is traded. With regard to

this point, note that the continuous annuity a(T,U) is to the discrete annuity A({T,U}∆)

as the “bank account” process B is to the “spot LIBOR” process of Jamshidian (1997).
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Obviously, since the instantaneous swap rate can be written as

st(T,U) =
Pt(T )− Pt(U)

At(T,U)
,

no arbitrage forces it to be a Q[T,U ]-martingale.

Finally, in the next lemma, we now compute the likelihood ratio process of the latter

measure with respect to a generic S-forward measure. This will be useful is the sequel.

Lemma 4.2.3. The [T,U ]-annuity measure Q[T,U ] has the following likelihood ratio pro-
cess with respect to the S-forward measure QS

dQ[T,U ]

dQS

∣∣∣∣Ft ∝ ∫ U

T

du
Pt(u)

Pt(S)
.

Note that differentiation of a(·, ·) with respect to any of its arguments leads to a bond

price, i.e.

P (T ) = −∂Ta(T,U),

P (U) = ∂Ua(T,U).

4.3 Bond Prices from Instantaneous Swap Rates

In this subsection, we hold fixed the present time t. We will use the notation Tt =

{(T,U) ∈ [t, T ∗] : T < U}.
We noted already that the map defining the instantaneous forward curve P 7→ f(P ) :=

∂T lnPt(·) is a bijection from C1([t, T ∗];R+) into C([t, T ∗];R), with inverse P (t, T ) =

e−
∫ T
t
ft(·).

However, the map defining the instantaneous swap curve P 7→ s(P ) where s(P )(T,U) :=
Pt(T )−Pt(U)∫ U
T
duPt(u)

is not surjective from C1([t, T ∗];R+) into C(Tt;R). In fact the rates st(T,U)

with (T,U) ∈ Tt must satisfy the consistency condition

st(T,U) =

∫ V
T
duPt(u)∫ U

T
duPt(u)

st(T, V ) +

∫ U
V
duPt(u)∫ U

T
duPt(u)

st(V,U).

In the next proposition we show that, for fixed t < T , knowledge of the mapping

U 7→ st(T,U) in any right neighborhood of T implies knowledge of ft(T )

Proposition 4.3.1.
ft(T ) = lim

h↓0
st(T, T + h).

Proof. Simply note that

st(T, T + h) =
1
h (Pt(T )− Pt(T + h))

1
h

∫ T+h

T
duPt(u)

,
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so that

lim
h↓0

st(T, T + h) =
−∂TPt(T )

Pt(T )
.

Alternatively, we could have used the expression for st(T,U) given in (4.2.3).

Corollary 4.3.2.
rt = lim

h↓0
st(t, t+ h).

We indicate prices discounted by the generic Tγ-bond P·(Tγ) with a γ superscript, i.e.

P γ(T ) :=
P (T )

P (Tγ)
,

aγ(T,U) :=
a(T,U)

P (Tγ)
=

∫ U

T

duP γ(u).

Note that, in general, we have

P γ(T ) = −∂Taγ(T,U),

P γ(U) = ∂Ua
γ(T,U).

It is thus clear that the knowledge of the whole surface T 3 (T,U) 7→ s(T,U) is more

than enough to recover all the bond prices [0, T ∗] 3 T 7→ P (T ). In the next two propo-

sitions, we show that a much coarser knowledge is sufficient in order to recover relative

bond prices. In particular, in Proposition 4.3.3 we compute the full set of relative bond

prices from a set of coterminal swap rates with common maturity Tβ and in Proposition

4.3.4 we compute the full set of relative bond prices from a set of coinitial swap rates with

common forward start Tα.

Proposition 4.3.3. For any fixed maturity Tβ, given a set of coterminal instantaneous
swap rates {s(T, Tβ), T < Tβ}, the P (Tβ)-discounted bond prices and continuous annuities
are given by

P β(T ) = 1 + s(T, Tβ)

∫ Tβ

T

due
∫ u
T
s(·,Tβ), (4.3.1)

aβ(T, Tβ) =

∫ Tβ

T

due
∫ u
T
s(·,Tβ). (4.3.2)

Proof. Since the swap rate can be written as

s(T, Tβ) =
P β(T )− 1

aβ(T, Tβ)
,

it is clear that aβ(·, Tβ) satisfies the ODE{
∂Ta

β(T, Tβ) + s(T, Tβ)aβ(T, Tβ) = −1, T < Tβ ,

aβ(Tβ , Tβ) = 0,



4.4. INSTANTANEOUS COTERMINAL SWAP RATE MODEL 73

which has solution

aβ(T, Tβ) =

∫ Tβ

T

due
∫ u
T
s(·,Tβ),

The expression for P β(T ) can be found upon differentiating with respect to T the last
equation.

Proposition 4.3.4. For any fixed maturity Tβ, given a set of coinitial instantaneous swap
rates {s(Tα, T ), T > Tα}, the P (Tα)-discounted bond prices and continuous annuities are
given by

Pα(T ) = 1− s(Tα, T )

∫ T

Tα

due−
∫ T
u
s(Tα,·), (4.3.3)

aα(Tα, T ) =

∫ T

Tα

due−
∫ T
u
s(Tα,·). (4.3.4)

Proof. Since the swap rate can be written as

s(Tα, T ) =
1− Pα(T )

aα(Tα, T )
,

it is clear that aα(Tα, ·) satisfies the ODE{
∂Ta

α(Tα, T ) + s(Tα, T )aα(Tα, T ) = 1, T > Tα,

aα(Tα, Tα) = 0,

which has solution

aα(Tα, T ) =

∫ T

Tα

due−
∫ T
u
s(Tα,·).

The expression for Pα(T ) can be found upon differentiating with respect to T the last
equation.

4.4 Instantaneous Coterminal Swap Rate Model

In his seminal paper, Jamshidian (1997) proposed a model for the coterminal (obviously,

discrete) swap rates (S∆
· ({T + n∆, Tβ}∆))n under the measure QTβ .

Throughout this section, we hold fixed a final time Tβ , which will represent the final

expiry of all the swap rates which constitute the model. We postulate that, for every

T < Tβ , the forward swap rate process s·(T, Tβ) follows an Ito process of the form

dst(T, Tβ) = µt(T, Tβ)dt+ σt(T, Tβ) · dWTβ
t t ∈ [0, T ] (4.4.1)

for some Rd-valued QTβ -Wiener process WTβ . We assume that, for every T < Tβ , the in-

stantaneous drift (µt(T, Tβ))t∈[0,T ] and volatilities (σt(T, Tβ))t∈[0,T ] processes are adapted
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to F = (Ft)t∈[0,T ] and satisfy the integrability conditions

E
∫ T

0

dt|µt(T, Tβ)| <∞,

E
∫ T

0

dt|σt(T, Tβ)|2 <∞.

For ease of notation we define, for T < U < Tβ , the integrated drifts and volatilities

as follows

Mt(T,U, Tβ) :=

∫ U

T

µt(·, Tβ), (4.4.2)

Σt(T,U, Tβ) :=

∫ U

T

σt(·, Tβ). (4.4.3)

Note that, as said, the final expiry Tβ of all the swaps in the model is held fixed

through all this section, but we find it convenient not to suppress it from the notation.

The main concern with a model such as (4.4.1) is indeed to guarantee the absence

of arbitrage opportunities, which is equivalent to the fact that the discounted annuity

process aβ· (T, Tβ) is a martingale for every T , since we specified the model directly under

the measure QTβ .

In the following technical proposition, which is the key to the proof of the main theorem

of this section, we find the dynamics of aβ(T, Tβ) for an arbitrary but fixed T .

Proposition 4.4.1. For every T < Tβ, the dynamics of aβ(T, Tβ) are given by

daβt (T, Tβ) = Dt(T, Tβ)dt+ Vt(T, Tβ) · dWTβ
t , (4.4.4)

where

Dt(T, Tβ) :=

∫ Tβ

T

due
∫ u
T
st(·,Tβ)

[
Mt(T, u, Tβ) +

1

2
|Σt(T, u, Tβ)|2

]
, (4.4.5)

Vt(T, Tβ) :=

∫ Tβ

T

due
∫ u
T
st(·,Tβ)Σt(T, u, Tβ). (4.4.6)

Proof. Let us temporally define

Yt(u) := e
∫ u
T
st(·,Tβ)

and use proposition (4.3.2) to write aβt (T, Tβ) as

aβt (T, Tβ) =

∫ Tβ

T

duYt(u).

Now, the stochastic differential of the positive process Y can be computed as

dYt(u)

Yt(u)
=

[
Mt(T, u, Tβ) +

1

2
|Σt(T, u, Tβ)|2

]
dt+ Σt(T, u, Tβ) · dWTβ

t .
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Finally, to compute the instantaneous drift and volatility of aβ(T, Tβ) it is sufficient to
integrate those of Y·(u) with respect to u.

In light of Proposition 4.4.1 above, we are now in position to characterize the absence

of arbitrage in term of the drift processes µ(T, Tβ).

Theorem 4.4.2. The instantaneous coterminal swap rate model specified in (4.4.1) is
free of arbitrage if and only if for every T < Tβ the drift µ(T, Tβ) is given by

µt(T, Tβ) = − 1

aβt (T, Tβ)
σt(T, Tβ) · Vt(T, Tβ), (4.4.7)

which can be written also as

µt(T, Tβ) = − 1

aβt (T, Tβ)
σt(T, Tβ) ·

∫ Tβ

T

due
∫ u
T
st(·,Tβ)aβt (u, Tβ)σt(u, Tβ). (4.4.8)

Proof. It is clear that freedom of arbitrage in the whole model is equivalent to the process
aβ(T, Tβ) begin a martingale for every T . This in turn is equivalent to the fact that, for
every arbitrary but fixed t,

Dt(T, Tβ) = 0 ∀T ∈ [t, Tβ ].

Let us fix such a t. It can be checked that T 7→ Dt(T, Tβ) satisfies{
∂TDt(T, Tβ) =

∫ Tβ
T

due
∫ u
T
st(·,Tβ) [−µt(T, Tβ)− σt(T, Tβ) · Σt(T, u, Tβ)]− st(T, Tβ)Dt(T, Tβ),

Dt(, Tβ , Tβ) = 0,

so that T 7→ Dt(T, Tβ) is constantly equal to zero iff the first term on the right-hand-side
of the ODE above is zero, i.e. iff

µt(T, Tβ)aβt (T, Tβ) = −σt(T, Tβ) ·
∫ Tβ

T

due
∫ u
T
st(·,Tβ)Σt(T, u, Tβ),

which is readily seen to be equivalent to (4.4.7). In order to get (4.4.8) it is sufficient to
rewrite Vt(T, Tβ) as follows

Vt(T, Tβ) =

∫ Tβ

T

due
∫ u
T
st(·,Tβ)

∫ u

T

dvσt(v, Tβ)

=

∫ Tβ

T

dvσt(v, Tβ)

∫ Tβ

v

due
∫ u
T
st(·,Tβ)

=

∫ Tβ

T

dvσt(v, Tβ)e
∫ v
T
st(·,Tβ)

∫ Tβ

v

due
∫ u
v
st(·,Tβ)

where the interchange of order of integration is justified by our assumptions on σ.

The drift condition just found can be interpreted as the infinitesimal limit of the drift

condition in the coterminal Swap Market Model introduced in Jamshidian (1997).

Remark 4.4.3. Both the expressions for the no arbitrage drift process of s(T, Tβ) in the
previous theorem show that µ(T, Tβ) is the projection of the instantaneous volatility vector
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onto the average on [T, Tβ ] of some functional of the volatility process under the measure

A 7→
∫
A

due
∫ u
T
st(·,Tβ),

which has mass aβ(T, Tβ) on [T, Tβ ]. In the expression (4.4.7), this functional is

u 7→ Σt(T, u, Tβ),

which is expressed in terms of the integrated volatility whereas in the expression (4.4.8)
it is written directly on σ and reads

u 7→ aβt (u, Tβ)σt(u, Tβ).

The crucial point of this model for coterminal instantaneous swap rates is indeed that

everything is specified under the single measure QTβ , since a model in which every swap

rate if specified under a different measure would be of little use. The next proposition

shows that, as expected, every s(T, Tβ) is a Q[T,Tβ ]-martingale by finding a Q[T,Tβ ] Wiener

process.

Proposition 4.4.4. In the instantaneous coterminal swap rate model specified in (4.4.1),
if the no-arbitrage drift condition (4.4.7) is satisfied, then, for every T < Tβ, the process

W [T,Tβ ] := WTβ −
∫ ·

0

du
1

aβu(T, Tβ)
Vu(T, Tβ) (4.4.9)

is a Wiener under Q[T,Tβ ]. Furthermore s(T, Tβ) satisfies

dst(T, Tβ) = σt(T, Tβ) · dW [T,Tβ ]
t (4.4.10)

and is then a martingale under Q[T,Tβ ].

Proof. By Lemma 4.2.3, we have that

dQ[T,Tβ ]

dQTβ

∣∣∣∣Ft = aβt (T, Tβ),

so that it is sufficient to compute the stochastic differential of aβ(T, Tβ) given in Propo-
sition 4.4.1, where the drift vanishes thanks to the no-arbitrage drift condition, and to
apply the Girsanov theorem for Wiener processes.

As it is well known, in the LIBOR Market Model for discrete forward rates, a determin-

istic volatility function does not imply that the forward rate process is neither lognormal

nor normal2. The state of affairs for discrete swap rate is analogous to that of discrete

forward rates, since in the coterminal model of Jamshidian (1997) the swap rates are nei-

ther normal nor lognormal even for a deterministic volatility function. Since this problem

2In fact, a large body of literature aimed at finding good approximations to the law of the discrete
forward rates (see e.g. Kurbanmuradov et al. (2002), Hunter et al. (2001) and Daniluk and Gatarek
(2005)).
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does not appear in the context of the HJM model for instantaneous forward rates, where

a deterministic volatility process implies that every forward rate is a Gaussian process

under the terminal (or the spot) martingale measure, one might be led to conjecture that

in our instantaneous version of the swap market model, deterministic volatilities σ(T, Tβ)

would lead to deterministic drifts µ(T, Tβ) and thus to a family of Gaussian process. Un-

fortunately, Theorem 4.4.2 makes it clear that this is not the case: a deterministic (or

even constant, for that matter) volatility function would still imply a quite complicated

non-deterministic drift.

4.5 Instantaneous Coinitial Swap Rate Model

Throughout this section, we hold fixed an initial time Tα, which will represent the forward

start of all the swap rates which constitute the model. In other words, we are now con-

sidering a coinitial swap model, whose discrete counterpart was introduced by Galluccio

and Hunter (2004). The financial reason for introducing a coinitial swap model is that of

pricing european derivatives which depend on the realization of two or more swap rates at

time T . We now postulate that, for every T > Tα, the forward swap rate process s·(Tα, T )

follows an Ito process of the form

dst(Tα, T ) = µt(Tα, T )dt+ σt(Tα, T ) · dWTα
t t ∈ [0, Tα] (4.5.1)

for some Rd-valued QTα-Wiener process WTα . We assume that, for every T > Tα,

the instantaneous drift (µt(Tα, T ))t∈[0,Tα] and volatilities (σt(Tα, T ))t∈[0,Tα] processes are

adapted to F = (Ft)t∈[0,T ] and satisfy the integrability conditions

E
∫ Tα

0

dt|µt(Tα, T )| <∞,

E
∫ Tα

0

dt|σt(Tα, T )|2 <∞.

For ease of notation we define, analogously to the previous section, for Tα < U < T ,

the integrated drifts and volatilities as follows

Mt(Tα, U, T ) :=

∫ T

U

µt(Tα, ·), (4.5.2)

Σt(Tα, U, T ) :=

∫ T

U

σt(Tα, ·). (4.5.3)

It is clear that the absence of arbitrage opportunities is now equivalent to the fact that

the discounted annuity process aα· (Tα, T ) is a martingale for every T , since we specified

the model directly under the measure QTα .

The following technical proposition, in which we find the dynamics of aα(Tα, T ) for

an arbitrary but fixed T , is the counterpart of Proposition 4.4.1. The proof is similar and
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we omit it.

Proposition 4.5.1. For every T > Tα, the dynamics of aα(Tα, T ) are given by

daαt (Tα, T ) = Dt(Tα, T )dt− Vt(Tα, T )dWTα
t , (4.5.4)

where

Dt(Tα, T ) :=

∫ T

Tα

due−
∫ T
u
st(Tα,·)

[
−Mt(Tα, u, T ) +

1

2
|Σt(Tα, u, T )|2

]
, (4.5.5)

Vt(Tα, T ) :=

∫ T

Tα

due−
∫ T
u
st(Tα,·)Σt(Tα, u, T ). (4.5.6)

In light of the Proposition above, we are now in position to characterize the absence of

arbitrage in terms of the drift processes µ(Tα, T ). Again, the proof mimicks the analogue

proof for the coterminal model and we omit it.

Theorem 4.5.2. The instantaneous coinitial swap rate model specified in (4.5.1) is free
of arbitrage if and only if for every T > Tα the drift µ(Tα, T ) is given by

µt(Tα, T ) =
1

aαt (Tα, T )
σt(Tα, T ) · Vt(Tα, T ), (4.5.7)

which can be written also as

µt(Tα, T ) =
1

aαt (Tα, T )
σt(Tα, T ) ·

∫ T

Tα

due−
∫ T
u
st(Tα,·)aαt (Tα, u)σt(Tα, u). (4.5.8)

4.6 Conclusions

In this chapter, we filled an important gap in the interest rate literature by introducing the

concept of the instantaneous swap rate. We showed how it is possible to recover discounted

bond prices from a family of coinitial or coterminal swap rates and we proposed a diffusive

model to evolve a continuum of instantaneous swap rate, which can be taken coterminal

or coinitial. No arbitrage in this kind of models is guaranteed by a drift condition which

makes discounted continuous annuities martingales.
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