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Abstract

Multiphase materials are of primary relevance in many disciplines in engineering and science.

They consist of a porous solid skeleton, whose pores are filled by one or more fluid phases, such as

water, air, gas, oil etc. The relevant number of applications involving multiphase material motivated

the development of several theoretical models and numerical procedures to describe the coupled

behavior between the different phases. Most of these models, based on the formulation of the balance

laws for the coexisting phases, rely upon the assumption of small strains, which is a simplifying but

restrictive hypothesis for several applications. The aim of this thesis is to investigate the theoretical

aspects and the numerical solutions of a multiphase material undergoing large elastoplastic strains,

taking into account the fully coupling between the solid and the fluid phases. The essential idea of

the model consists in imposing the balance laws for the two (or more) phases in the current deformed

configuration, and to solve it numerically with a finite element method. To deal with elastoplasticity

at finite strains, the formulation adopts the multiplicative decomposition of the deformation gradient.

The developed numerical model has been applied, in particular, to assess the stability of a horizontal

wellbore drilled through a high porous rock formation, quantifying the stress and strain distribution,

the evolution of the plastic deformations and the propagation of band of intense deformation. To

capture both the shear-enhanced compaction and the shear-induced dilation characteristic of porous

rock, an innovative elastoplastic constitutive model has been derived, endowed with a linear and

elliptical yield surface that intersect smoothly. The results of the simulations show the capability of

the finite deformations coupled approach to simulate the whole process.
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Sommario

I materiali multifase sono di primaria importanza in molte discipline dell’ingegneria e della

scienza. Essi sono costituiti da uno scheletro solido poroso, i cui pori sono riempiti da una o

più fluidi, ad esempio acqua, aria, gas, petrolio, etc. Il vasto campo di applicazione dei materiali

multifase ha motivato lo sviluppo di diversi modelli teorici e procedure numeriche per descrivere

il comportamento accoppiato fra le diverse fasi. La maggior parte di questi modelli, basati sulla

formulazione delle leggi di bilancio per le differenti fasi coesistenti, si basano sul presupposto di pic-

cole deformazioni, ipotesi che comporta una semplificazione dei modelli ma allo stesso tempo risulta

essere restrittiva per diverse applicazioni.

Lo scopo di questa tesi è indagare gli aspetti teorici e le soluzioni numeriche di un materiale multifase

che subisce grandi deformazioni elastoplasticche, tenendo conto del completo accoppiamento tra la

fase solida e la fase fluida. L’idea essenziale del modello consiste nell’imporre le leggi di bilancio

per le due (o più) fasi nella configurazione corrente deformata, e poi risolvere tali equazioni numeri-

camente con un metodo agli elementi finiti. Per quanto concerne l’elastoplasticità a deformazioni

finite, la formulazione adotta la decomposizione moltiplicativa del gradiente di deformazione. Il

modello numerico sviluppato è stato applicato, in particolare, per valutare la stabilità di un pozzo

perforato orizzontalmente attraverso una formazione rocciosa altamente porosa, per quantificare la

distribuzione delle tensioni e delle deformazioni, per descrivere l’evoluzione delle deformazioni plas-

tiche e la propagazione di bande di deformazione. Per cogliere tanto il fenomeno di compattazione

e di dilatazione plastica, caratteristico di rocce ad alta porosità, è stato sviluppato un innovativo

modello costitutivo elastoplastico, dotato di una superficie lineare e di una superficie ellittica che

si intersecano mantenendo la derivabilità in ogni punto. I risultati delle simulazioni mostrano la

capacità dell’approccio a grandi deformazioni per simulare l’intero processo accoppiato.
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Chapter 1

Introduction

1.1 Motivation and scope

Multiphase materials consist of a solid phase, usually referred to as matrix or skeleton, as well as

closed and open pores which are filled with fluid phases, as water, air, oil, gas, etc. Examples of

multiphase materials - also referred to as porous materials - are soils, rocks, biological tissues, human

bones and porous aluminum foam, to name a few. The mechanics of porous media is of utmost rele-

vance in many disciplines in engineering and science, such as geotechnical engineering, biomechanics,

physical chemistry, agricultural engineering and material science. The great importance of this type

of material and the broad field of applications motivated the development of various multiphase and

poromechanics models and numerical procedures to asses the mechanical behavior of this type of

material (5; 6; 7; 8; 9; 10; 11).

Capturing the fully coupled physical process involving the solid and the fluid phases is, nevertheless,

not a trivial task. Realistic physical simulations require either an iterative sequential scheme or a

monolithic scheme, to handle the multiple-field governing equations. The corner stone of the cou-

pled formulation is to write the linear momentum and mass balance equations in terms of the solid

displacement and fluid pore pressure, and then solve them simultaneously with a monolithic solver

via a two-field (or more) mixed formulation. This approach is fairly well developed and adequately

documented (12; 13; 10). Usually this formulation assumes infinitesimal strains, which simplifies

the linear momentum balance equation since the equilibrium is imposed in the initial undeformed

configuration which is considered coincident with the deformed one. Furthermore, the infinitesimal

strain assumption also simplifies the mass conservation equation since the volume change of the

mixture becomes a linear function of the nodal solid displacements.

Even though the small strain theory is suitable to describe the mechanical behavior of several appli-

cations, in some contexts it is fundamental to take into account the large deformations experienced

19



by the solid skeleton. There are many applications where the geometric non linear effects could

critically influence the outcome of a numerical analysis. As far as the geotechnical field, large defor-

mations and displacements are in general observed in every situation where the limit state condition

is reached. One example is the large movement of slopes, the consolidation over a significant load,

the tilting of a tower due to the 𝑃 −𝛿 effect, the stability of a tunnel or a borehole. In particular, the

impact of finite deformation is most evident in soft clays, loose sands and high porous rocks, where

movements develop with time due to so-called hydrodynamic lag, a phenomenon which involves

transient interaction between the solid and fluid phases. Furthermore, in certain circumstances in-

volving dynamic effects, finite strain assumption plays a major role in the prediction of the local

site response, where the buildup of fluid pressure induced for example by seismic shaking could lead

to a rapid loss of strength of the saturated soil deposit, a phenomenon commonly referred to in the

literature as liquefaction. As far as the biomechanical field, finite strain assumption is essential to

model hard and soft tissue growth and remodeling as cyclic stresses applied to the tissue solid/fluid

mixture generate solid deformation, resulting in fluid flow and mass transport through the tissue

solid matrix. Multiphase finite assumption also plays a significant role during head impacts as skull

and brain tissues contact and deform with concomitant fluid flow in and out the tissues. Although

deformation of bone is relatively small (0.4% strain), a geometrically nonlinear theory is needed in

order to account properly for large rotations and translations experienced during dynamic loading

such as head impact and knee bending. The finite deformation theory is also necessary for modeling

contact of hard tissue with soft tissue (e.g., skull with brain, bone with cartilage, etc.) and resulting

fluid flow. With regard to multiphase continuum formulations in biomechanics, two- and three-field

formulations (and more fields when chemical and electrical effects are included) have been used for

simulating deformation of soft, hydrated biological tissues, such as cartilage and heart muscle, for

small strains and finite strains (14; 15; 16).

The aim of this thesis it to investigate the theoretical aspects and the numerical solutions of a

multiphase material undergoing large elastoplastic strains, taking into account the coupling effects

between the solid and the fluid phases. This topic has been studied by several authors in the last

decades, but still remains of particular interest and critical for a lot of applications, especially in

the geotechnical field. This work is mainly based on the pioneer research done by Borja et al.

(17; 1; 18; 19; 20; 21; 22; 23) and by Armero et al. (24; 25; 26; 27) on the topic of finite strains fully

coupled formulation of porous media.

This thesis want to focus on three fundamental aspects, namely, theoretical formulation, numerical

implementation and real applications, considering these as three inseparable elements. As far as the

theoretical formulation, the essential idea is to write the balance laws for the two (or more) phases

in the current deformed configuration, and then combine the equations considering the material as

the overlap of different continua. Then, the idea is to pull back all the equations and solve it in

20



the initial configuration, since the initial undeformed domain is fixed throughout the entire solution

process. The developed model assumes that the porous material is fully saturated by a unique fluid,

hence only two phases are considered. However, the model can be extended to deal with more ma-

terial phases. An interesting point arises in the formulation of elastoplasticity at finite strain, since

the additive decomposition into the elastic and plastic part of the infinitesimal deformation tensor

looses of significance. The formulation adopted in this work is based on the multiplicative decom-

position of the deformation gradient (28; 29). This method completely circumvents the “rate issue”

in finite deformation analysis, and allows for the development of large elastic strains. In particular,

the fundamental work of Simo (30) indicates that the multiplicative decomposition technique can

be exploited to such an extent that the resulting algorithm may inherit all the features of the clas-

sical models of infinitesimal plasticity. The local multiplicative decomposition of the deformation

gradient provides a means for describing mathematically the relationships between the reference

configuration, the current configuration, and the unloaded, stress-free intermediate configuration of

a solid skeleton subjected to finite deformation in the macroscopic sense.

As far as the numerical implementation, this work presents the main feature of a new finite element

toolbox, especially coded to solve coupled elastoplastic problem undergoing finite strains, based on

the theoretical model derived in the thesis (www.geofem973.it). As far as the application part, par-

ticular interest is devoted to the analysis of plasticity and strain localization around a horizontal

wellbore, drilled through a porous rock formation. Predicting plastic deformation and localization

band is a challenging task that could have immense implications for the prediction of instability and

sand production. The developed numerical model can therefore accurately simulate the drilling pro-

cess, taking into account the interaction between the solid and the fluid phases and the elasto-plastic

finite deformations that can experience the porous rock surrounding the wellbore. A key aspect to

quantify the stress and strain field is the constitutive model used to describe the mechanical behavior

of the solid phase. Several experiments conducted on high porous rock in the last two decades show

that compaction failure can take place under certain stress conditions, in contrast with the more

common dilatant failure (31; 32; 33). Compactant failure typically occurs in porous rocks under

relatively high confining pressure, with a failure mode conventionally described as homogeneous

cataclastic flow. Since the compactant plastic mechanism can have an important role in the analysis

of wellbore, an appropriate constitutive elastoplastic model is necessary. This model must capture

both the dilatant and compactant behavior, and the transition between these two failure criteria (2).

This thesis presents a new constitutive model developed to capture shear-enhanced compaction and

shear-induced dilation, characterized by a linear yield surface for the dilatant side and an elliptical

yield surface for the compactant side. An innovative characteristic of this model is a simple but

efficient method to ensure the smooth continuity between the two plastic mechanisms, as regards

both the yield surface and the plastic flow rule. This new developed constitutive model has been
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implemented into the coupled multiplicative framework, in order to quantify the elastoplastic finite

strains around the wellbore.

Summing up, the innovative contributions of this research reside especially in the investigation of

finite strains coupled elastoplasticity and the subsequent numerical implementation of a new finite

element toolbox, the formulation of a new constitutive model for porous rock and the utilization of

the aforementioned model to asses the stability of a horizontal wellbore.

1.2 Outline of the thesis

The thesis is organized as follow. Chapter 2 deals with the theoretical formulation of porous media

at finite strains. The kinematics of multiphase continuum body is recalled, and the balance laws are

presented for the solid and fluid phases and for the multiphase body.

Chapter 3 deals with the constitutive laws for both the solid and the fluid phase. Particular interest

is devoted to the general formulation of elastoplasticity at finite strain, based on the multiplicative

decomposition of the deformation gradient. While for the fluid phase only the generalized Darcy’s

law is presented, three different models are discussed for the solid phase, namely, an hyperelastic

model, the Modified Cam Clay Model and the new developed Continuous Cap model for porous

rock.

Chapter 4 covers the numerical implementation of the model, presenting the main aspects of the

spatial and temporal discretization of the linearized equations, and introducing the main structure

of the new finite element toolbox called Geofem 973 (www.geofem973.it) developed by the author

to solve the boundary-value problems.

Chapter 5 discusses some numerical results obtained with the aforementioned model and code. Two

real situations are investigated: a consolidation process under a uniformed distributed load on soft

clays and a drilling process of a horizontal wellbore through a porous rock formation. The first

example was mainly carried on to asses the validity of the code, comparing the results with available

benchmarks. The second example aims to determine the stress and strain distributions around

a horizontal wellbore. The parameters of the innovative constitutive model were calibrated using

experimental data available from a deep water reservoir, located offshore Brazil (4). In the numerical

analysis, particular interest is devoted to predict the conditions for the formation of localized bands

of intense deformation, discussing the factors that either enhance or prevent these formations.

Chapter 6 draws the conclusions of the work and gives some hints for future developments in this

field.
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1.3 Notations and symbols

Notations and symbols used in this thesis are as follows: bold-face letters denote matrices and vec-

tors; the symbol ‘·’ denotes an inner product of two vectors (e.g. 𝑎 ·𝑏 = 𝑎𝑖𝑏𝑖), or a single contraction

of adjacent indices of two tensor (e.g. 𝑐 ·𝑑 = 𝑐𝑖𝑗𝑑𝑗𝑘); the symbol ‘:’ denotes an inner product of two

second-order tensor (e.g. 𝑐 : 𝑑 = 𝑐𝑖𝑗𝑑𝑖𝑗), or a double contraction of adjacent indices of tensor of rank

two and higher (e.g. 𝐶 : 𝜖𝑒 = 𝐶𝑖𝑗𝑘𝑙𝜖
𝑒
𝑘𝑙); the symbol ‘⊗’ denotes a juxtaposition, e.g. (𝑎⊗𝑏)𝑖𝑗 = 𝑎𝑖𝑏𝑗 .

For any symmetric second-order tensor 𝛼 and 𝛽 we have (𝛼⊗𝛽)𝑖𝑗𝑘𝑙 = 𝛼𝑖𝑗𝛽𝑘𝑙; (𝛼⊕𝛽)𝑖𝑗𝑘𝑙 = 𝛼𝑗𝑙𝛽𝑖𝑘;

and (𝛼⊖ 𝛽)𝑖𝑗𝑘𝑙 = 𝛼𝑖𝑙𝛽𝑗𝑘.
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Chapter 2

Theoretical formulation of porous

media at finite strains

2.1 Fundamentals of continuum mechanics

In the real world all physical objects are composed of molecules which are formed by atomic and

subatomic particles. Microscopic studies are effective at the atomic level and very important in the

exploration of a variety of physical phenomena. The atomistic point of view, however, is not a useful

and adequate approach for common engineering applications (34).

The fundamental approach used in this work, and corner stone of most of the engineering applica-

tions, is the method of continuum mechanics, to explain various physical phenomena successfully

without detailed knowledge of the complexity of their internal (micros)structures. For example, soil,

water, rock, oil are made of billions of molecules: a good approximation is to treat these materials as

a continuous medium characterized by certain field quantities which are associated with the internal

structure, such as density, velocity, temperature, etc. (35; 36; 37; 38).

From the physical point of view this is an approximation in which the very large numbers of particles

are replaced by few quantities, end only the macroscopic system is considered. Of course the predic-

tions based on macroscopic studies are not exact but good enough for the engineering design. The

study of continuum mechanics roughly comprises the following basic aspects: the study of motion

and deformation (kinematic), the study of stress and the mathematical description of the funda-

mental laws of physics governing the motion of a continuum (balance principles). In particular, the

classical balance principles, i.e. conservation of mass, the momentum balance principles and balance

of energy, are the fundamentals laws that govern the mechanic of the continuum body. They are

applicable to any particular material and they must be satisfied for all times.

The basic idea behind this chapter, essential to understand all the aspects of the research, is to
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consider the porous media as a mixture of two or more continuum bodies, overlapping and interact-

ing together. Therefore we will consider the kinematic and the balance laws separately for the two

phases, and then we will use the mixture theory to combine the field equations.

2.2 Kinematics of multiphase continuum

The starting point in the formulation of the multiphase continuum mechanic consists in defining

the kinematic of the body, introducing all the relevant quantities needed to describe the different

configurations of the body.

Consider a porous solid material point, whose initial position in the reference solid configuration B

is given by the position vector 𝑋𝑠. Since the special role played by the solid matrix in leading the

motion of the coupled body, we should drop the subscript “ s ” and take the notation 𝑋 ≡𝑋𝑠.

Let 𝜙 : B → 𝑅𝑛𝑠𝑑 (with 𝑛𝑠𝑑 = 2, 3 the number of dimension) be the motion, or set of configuration,

of a fluid-saturated simple body. The velocity of the material point 𝑋 is defined as

𝑉 (𝑋, 𝑡) = 𝜕𝜙(𝑋, 𝑡)
𝜕𝑡

, (2.1)

assuming that the map is a differentiable function. If 𝑉 is also differentiable, the acceleration of

the solid matrix is defined as

𝐴(𝑋, 𝑡) = 𝜕𝑉 (𝑋, 𝑡)
𝜕𝑡

= 𝜕2𝜙(𝑋, 𝑡)
𝜕𝑡2

. (2.2)

The two quantities above are obtained deriving with respect of time the material point in the

initial undeformed configuration, and are usually called Lagrangian or material description of the

motion.

Alternatively, let 𝑥 denote the current position of the solid point identified by 𝑋, defined as

𝑥 = 𝜙(𝑋, 𝑡), (2.3)

assuming that there is unique mapping between 𝑥 and 𝑋 such that 𝑋 = 𝜙−1(𝑥, 𝑡). Thus, the

velocity of the solid can be rewritten as

𝑉 (𝑋, 𝑡) = 𝜕𝜙(𝜙−1(𝑥, 𝑡), 𝑡)
𝜕𝑡

= 𝑣(𝑥, 𝑡), (2.4)

where 𝑣 is now called Eulerian or spatial description of the solid motion.

The corresponding solid acceleration can be obtained simply taking the total derivative of Eq. (2.4)

with respect of time
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𝑎(𝑥, 𝑡) = d𝑣(𝑥, 𝑡)
d𝑡 = 𝜕𝑣

𝜕𝑥

𝜕𝑥

𝜕𝑡
+ 𝜕𝑣

𝜕𝑡
= 𝑣 · grad(𝑣) + 𝜕𝑣

𝜕𝑡
, (2.5)

taking into account that the position of the spatial point 𝑥 varies with time.

In hypothesis of fully saturated medium, the voids are filled with fluid. Therefore the solid matrix

at point 𝑥 also contains a fluid element that is moving instantaneously with velocity 𝑣𝑓 . Hence,

let’s define 𝜙𝑓 : B𝑓 → 𝑅𝑛𝑠𝑑 the motion of the fluid, which could be distinct from 𝜙 if seepage takes

place in the saturated region B ⊂ B𝑓 .

Again, we can write the velocity of the fluid at point 𝑥 as

𝑉𝑓 (𝑋𝑓 , 𝑡) =
𝜕𝜙𝑓 (𝜙−1

𝑓 (𝑥, 𝑡), 𝑡)
𝜕𝑡

= 𝑣𝑓 (𝑥, 𝑡). (2.6)

The fluid acceleration at point 𝑥 then takes the form

𝑎𝑓 (𝑥, 𝑡) = 𝑣𝑓 · grad(𝑣𝑓 ) + 𝜕𝑣𝑓

𝜕𝑡
. (2.7)

Conceptually, the fluid point in the initial position 𝑋𝑓 belongs to the fluid domain B𝑓 in the

reference configuration, but in general it would be very difficult to reconstruct such initial configura-

tion for every fluid element in the pores of the solid matrix at point 𝑥. Therefore, only the Eulerian

description is used for the fluid phase motion.

Once the kinematic aspects of the multiphase continuum body has been defined, we can proceed

introducing the tensorial measures of finite deformation. These measures follow straightforward as

an extension of the classical measures used in one-phase continua, taking into account the fact that

now the body is the result of two overlapping phases.

The deformation gradients for the solid matrix and fluid are defined as

𝐹 = 𝜕𝜙

𝜕𝑋
= GRAD𝜙, 𝐹𝑓 = 𝜕𝜙𝑓

𝜕𝑋𝑓
= GRAD𝑓𝜙𝑓 . (2.8)

Hence, the right and left Cauchy-Green deformation tensors are for the solid phase

𝐶 = 𝐹 𝑇 · 𝐹 , 𝑏 = 𝐹 · 𝐹 𝑇 , (2.9)

and for the fluid phase

𝐶𝑓 = 𝐹 𝑇
𝑓 · 𝐹𝑓 , 𝑏𝑓 = 𝐹𝑓 · 𝐹 𝑇

𝑓 . (2.10)
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Therefore, let’s introduce the velocity gradients for the solid and fluid phase as

𝑙 = grad(𝑣), 𝑙𝑓 = grad(𝑣𝑓 ), (2.11)

and the relative deformation tensors

𝑑 = 1
2(𝑙+ 𝑙𝑇 ), 𝑑𝑓 = 1

2(𝑙𝑓 + 𝑙𝑇𝑓 ), (2.12)

defined as the symmetric parts of the corresponding velocity gradients. On the other hand, let

define the vorticity tensors as the skew-symmetric parts of the velocity gradients

𝜔 = 1
2(𝑙− 𝑙𝑇 ), 𝜔𝑓 = 1

2(𝑙𝑓 − 𝑙𝑇𝑓 ). (2.13)

Finally, the Jacobian of the solid and fluid motions are given as

𝐽 = det𝐹 , 𝐽𝑓 = det𝐹𝑓 . (2.14)

The Jacobian 𝐽 and 𝐽𝑓 play an important role, since they relate the current differential volume

d𝑉 to the corresponding reference differential volume d𝑉0 and d𝑉 𝑓
0 , through the expression

d𝑉 = 𝐽d𝑉0 = 𝐽𝑓 d𝑉 𝑓
0 . (2.15)

We conclude this section recalling the Piola transformation (36), which will be used in a subse-

quent part of the work. Let’s define 𝑦 a vector field on B. We define Piola transformation of the

vector 𝑦 the vector field

𝑌 = 𝐽𝐹−1𝑦(𝜙(𝑋)). (2.16)

In addition, we can proof that if 𝑌 is the Piola transformation of 𝑦, the following equation holds

∫︁
B

𝑌 d𝑉0 =
∫︁
𝜙(B)

div𝑦d𝑉 (2.17)

The demonstration follows from the divergence theorem and the theorem of surface integrals

transformation.
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2.3 Transport equations

In a two-phases material a general Eulerian transport variable 𝜓(𝑥, 𝑡) can move with either the solid

matrix or the fluid flow. The key concept of this section is to define the material time derivative

following one among the two phases and define the relation between the two different derivatives.

Examples of transport variable are the mass of the solid or the the concentration of a component of

the fluid flow.

The material time derivative following the solid phase (omitting the superscript “ s ”) is given by

d𝜓
d𝑡 = 𝜕𝜓

𝜕𝑡
+ grad𝜓 · 𝜕𝜙

𝑡
= 𝜕𝜓

𝜕𝑡
+ grad𝜓 · 𝑣, (2.18)

where 𝜕/𝜕𝑡 is the local rate of change of 𝜓, obtained holding 𝑥 fixed, and 𝑣 is the velocity of the

solid phase.

Analogously, the material time derivative of a fluid transport variable 𝜓(𝑥, 𝑡) following the trajectory

of the fluid is define as

d𝑓𝜓

d𝑡 = 𝜕𝜓

𝜕𝑡
+ grad𝜓 · 𝜕𝜙𝑓

𝑡
= 𝜕𝜓

𝜕𝑡
+ grad𝜓 · 𝑣𝑓 , (2.19)

since now the position of the spatial point 𝑥 is defined as 𝑥 = 𝜙𝑓 (𝑋𝑓 , 𝑡). Note that from the

Eulerian form of the above expression that is not necessary to identify the reference configuration

of the the point 𝑋𝑓 , but it is sufficient to know the current fluid velocity.

We want to define now a relation between the two material time derivatives introduced above.

Subtracting the two material time derivatives and rearranging the terms, we obtain an expression

of the material time derivative following the fluid motion with respect to the one following the solid

motion, i.e.

d𝑓𝜓

d𝑡 = d𝜓
d𝑡 + grad𝜓 · 𝑣, (2.20)

where 𝑣 = 𝑣𝑓 − 𝑣 is the relative velocity of the fluid with respect to the solid.

2.4 Multiphase continuum mechanics

2.4.1 Multiphase continuum body

Porous media consists of a solid phase, usually referred to as matrix or skeleton, with closed and open

pores. The multiphase nature of a macroelement requires an explicit consideration of the relative

movement of the constituent materials. Let us consider a macroelement, defined as a control volume

geometrically occupied by a solid matrix whose pores are statistically distributed, in order to allow
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Figure 2-1: Typical averaging volume 𝑑𝑉 of a porous medium consisting in two phases.

homogenization of the properties and responses. This macroelement is associated to a representative

elementary volume, or REV, as depicted in fig. 2-1 for a fully saturated mixture.

The center of this volume is denoted by the position vector 𝑥, a macroscale measure. Relative to

𝑥 the position vector of any point inside the control volume is denoted by 𝜉, a microscale measure.

Letting 𝑟 = 𝑥+ 𝜉, solid and fluid indicator functions (7) may be defined as

𝜒𝛼 =

⎧⎪⎨⎪⎩1 𝑟 ∈ 𝑑𝑉 𝛼

0 𝑟 /∈ 𝑑𝑉 𝛼

(2.21)

where 𝛼 = 𝑠, 𝑓 and d𝑉 𝛼 is the region in d𝑉 occupied by the phase 𝛼. Obviously, 𝜒𝑠 + 𝜒𝑓 = 1

and

d𝑉 𝑠 =
∫︁

d𝑉

𝜒𝑠d𝑣, d𝑉 𝑓 =
∫︁

d𝑉

𝜒𝑓 d𝑣. (2.22)

For a fully saturated mixture the volume fractions are defined as

𝜑𝑠 = d𝑉 𝑠

d𝑉 , 𝜑𝑓 = d𝑉 𝑓

d𝑉 , (2.23)

subjected again to the closure condition 𝜑𝑠 + 𝜑𝑓 = 1.
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The mass of each phase contained in the volume d𝑉 is

d𝑀𝛼 =
∫︁

d𝑉

𝜌𝛼𝜒
𝛼𝑑𝑣, 𝛼 = 𝑠, 𝑓, (2.24)

where 𝜌𝛼 is the intrinsic (true) mass density of the 𝛼 phase. The total mass for the two-phase

mixture is then

d𝑀 = d𝑀𝑠 + d𝑀𝑓 . (2.25)

Assuming that 𝜌𝑠 and 𝜌𝑓 are sufficiently uniform over the volume 𝑑𝑉 , the total mass density of

the mixture is then

𝜌 = d𝑀
d𝑉 = 𝜌𝑠𝜑

𝑠 + 𝜌𝑓𝜑
𝑓 = 𝜌𝑠 + 𝜌𝑓 . (2.26)

where 𝜌𝛼 = 𝜌𝛼𝜑
𝛼 is the partial mass density of the 𝛼 phase, defined as the mass of the 𝛼 phase

per unit total volume of the mixture. By smearing the total mass of each phase over the entire

volume d𝑉 , we can interpret this volume as being occupied simultaneously by all of the constituent

phases.

2.4.2 Balance laws

This section presents the balance principles that govern the interaction between the solid and the

fluid constituents of a two-phase saturated solid-fluid mixture. In the derivation of the balance laws

we will consider initially the motion of the solid and the fluid phase separately. Then, we will use

the mixture theory (39; 40; 6; 7) to combine the field equations. The intrinsic motion of the solid

phase will be the reference motion, to which the motion of the fluid phase is described.

Balance of mass

Let V denote any arbitrary volume in the current configuration. Let the total masses of the solid

and fluid be denoted by 𝑀𝑠 and 𝑀𝑓 , respectively. In terms of densities, these masses are given by

the volume integrals

𝑀𝑠 =
∫︁

𝑉

𝜌𝑠d𝑉, 𝑀𝑓 =
∫︁

𝑉

𝜌𝑓 d𝑉, (2.27)

where 𝜌𝑠 is the partial mass density of the solid phase, 𝜌𝑓 is the partial mass density of the fluid

phase. By the law of conservation of mass the total mass is constant throughout all the process,

therefore the material time derivatives of these masses vanish individually. 𝑀𝑠 is a solid transport
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variable and its material time derivative is given by

d𝑀𝑠

d𝑡 =
∫︁

𝑉

{︂
d𝜌𝑠

d𝑡 + 𝜌𝑠div(𝑣)
}︂
𝑑𝑉 = 0 (2.28)

where 𝑣 is the intrinsic velocity of the solid phase. We assumed that there is no mass production

within the mixture. Similarly, for the fluid phase, we have

d𝑓𝑀𝑓

d𝑡 =
∫︁

𝑉

{︂
d𝑓𝜌𝑓

d𝑡 + 𝜌𝑓 div (𝑣𝑓 )
}︂
𝑑𝑣 = 0. (2.29)

where 𝑣𝑓 is the velocity of the fluid phase.

The above equations hold for any arbitrary volume 𝑉 , so Eq. (2.28) and (2.29) can be localized

as follows

d𝜌𝑠

d𝑡 + 𝜌𝑠div(𝑣) = 0, d𝑓𝜌𝑓

d𝑡 + 𝜌𝑓 div(𝑣𝑓 ) = 0. (2.30)

We introduce now the hypothesis of barotropic flows for the solid and fluid phases, which state the

existence of a functional relation between the pressure and the density. The presence of a functional

relations allows to write the following equations between the intrinsic pressure and the density

d𝑝𝑠

d𝑡 = 𝐾𝑠

(︂
1
𝜌𝑠

d𝜌𝑠

d𝑡

)︂
,

df𝑝𝑓

d𝑡 = 𝐾𝑓

(︂
1
𝜌𝑓

df𝜌𝑓

d𝑡

)︂
, (2.31)

where 𝐾𝑠 and 𝐾𝑓 are the intrinsic bulk moduli of the solid and fluid constituents, respectively.

Again, ignoring any mass exchange between the solid and the fluid, balance of mass can be written

as

d𝜑𝑠

d𝑡 + 𝜑𝑠

𝐾𝑠

d𝑝𝑠

d𝑡 + 𝜑𝑠div(𝑣) = 0, df𝜑𝑓

d𝑡 + 𝜑𝑓

𝐾𝑓

df𝑝𝑓

d𝑡 + 𝜑𝑓 div(𝑣𝑓 ) = 0. (2.32)

In addition to the intrinsic constitutive properties of the solid and fluid, we also consider the

compressibility of the solid matrix. The compressibility of the solid matrix differs from that of the

solid in that the former reflects the effect of pore expansion/compaction through changes in the

volume fraction 𝜑𝑠, whereas the latter does not. Now, it is easy to verify that

1
𝜌𝑠

d𝜌𝑠

d𝑡 = d
d𝑡

[︂
ln
(︂
𝜌𝑠

𝜌𝑠
0

)︂]︂
= d

d𝑡
(︀
ln𝐽−1)︀ = −div𝑣, (2.33)

where 𝜌𝑠
0 = 𝐽𝜌𝑠 is the pull-back solid partial mass density.
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Therefore, assuming again the existence of a functional relation between 𝑝𝑠 and 𝜌𝑠 the following

equation, similar to eq. (2.31) holds

d𝑝𝑠

d𝑡 = �̄�

𝜑𝑠

(︂
1
𝜌𝑠

d𝜌𝑠

d𝑡

)︂
= − �̄�

𝜑𝑠
div𝑣, (2.34)

where �̄� is the bulk modulus of the solid matrix. The bulk modulus �̄� represents the volumetric

stiffness of the solid matrix and must not be confused with the bulk modulus 𝐾𝑠 representing the

volumetric stiffness of the solid itself.

Inserting Eq. (2.34) into Eq. (2.32) we obtain the two equation of the conservation of mass for

the solid and fluid phase, taking into account the compressibility of the the phases and of the solid

skeleton

d𝜑𝑠

d𝑡 −
�̄�

𝐾𝑠
div(𝑣) + 𝜑𝑠div(𝑣) = 0, df𝜑𝑓

d𝑡 + 𝜑𝑓

𝐾𝑓

df𝑝𝑓

d𝑡 + 𝜑𝑓 div(𝑣𝑓 ) = 0. (2.35)

In order to combine the two above equations, we need to write all material time derivatives with

respect to the motion of the solid matrix alone, which is assumed as the leading phase of the motion

of the mixture. Noting that

df𝜌f

dt = d𝜌f

dt + grad𝜌𝑓 · 𝑣 (2.36)

and 𝑣𝑓 = 𝑣 + 𝑣𝑓 , we get the complete balance of mass for a mixture of compressible solid-fluid

𝐵div(𝑣) + div(𝑣) + 𝜑𝑓

𝐾𝑓

d𝑝𝑓

d𝑡 + 𝑣

𝐾𝑓
· grad(𝑝𝑓 ) = 0, (2.37)

where

𝑣 = 𝜌𝑓𝑣 = 𝜌𝑓 (𝑣𝑓 − 𝑣), (2.38)

is the so called Darcy velocity and

𝐵 = 1− �̄�

𝐾𝑠
, (2.39)

is the so called Biot Coefficient. The parameter 𝐵 is very close to unity when the bulk modulus

of the solid matrix is much smaller than that of the solid constituent, which is true in granular soils.

However, in rocks, typical values of 𝐵 are on the order of 0.5 to 0.6, suggesting that �̄� and 𝐾𝑠 are

of comparable values.

Eq. (2.37) can be simplified under certain conditions of incompressible flow. If the solid is incom-

pressible, then 𝐾𝑠 →∞ and 𝐵 = 1, and the balance of mass for the mixture reduces to
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div(𝑣) + div(𝑣) + 𝜑𝑓

𝐾𝑓

d𝑝𝑓

d𝑡 + 𝑣

𝐾𝑓
· grad(𝑝𝑓 ) = 0. (2.40)

If the fluid is incompressible, then 𝐾𝑓 →∞ and the balance of mass for the mixture reduces to

𝐵div(𝑣) + div(𝑣) = 0. (2.41)

In the end, if both the solid and fluid are incompressible, we obtain

div(𝑣) + div(𝑣) = 0. (2.42)

Balance of linear and angular momentum

Consider a macroscopic area d𝐴 intersecting portions of the solid matrix and fluid in the void space.

Let 𝑡𝑠 and 𝑡𝑓 denote the intrinsic traction vectors, defined as the resultant forces acting on the solid

and fluid per unit area of the solid and fluid. On the area d𝐴 the total forces acting on the solid

and fluid are, respectively,

d𝑓𝑠 =
∫︁

d𝐴

𝑡𝑠𝜒
𝑠d𝑎 d𝑓𝑓 =

∫︁
d𝐴

𝑡𝑓𝜒
𝑓 d𝑎 (2.43)

where d𝑎 ≪ d𝐴 as before. If 𝑡𝑠 and 𝑡𝑓 are sufficiently uniform over d𝐴, then it is possible to

write

d𝑓𝑠 = 𝑡𝑠

∫︁
d𝐴

𝜒𝑠d𝑎 = 𝑡𝑠𝜑
𝑠d𝐴 = 𝑡𝑠d𝐴 d𝑓𝑓 = 𝑡𝑓

∫︁
d𝐴

𝜒𝑓 d𝑎 = 𝑡𝑓𝜑
𝑠d𝐴 = 𝑡𝑓 d𝐴 (2.44)

where 𝜑𝛼 is the volume fraction (assumed equal to the area fraction by virtue of the REV

assumption), and 𝑡𝛼 = 𝜑𝛼𝑡𝛼 is the partial traction vector, defined as the resultant force developed

in each phase per unit total area of mixture.

Let’s now introduce the Cauchy theorem to obtain the Cauchy stress tensor

𝑡𝑠 = 𝑛 · 𝜎𝑠 𝑡𝑓 = 𝑛 · 𝜎𝑓 (2.45)

where 𝑛 is the unit normal vector to d𝐴 and 𝜎𝛼 is the Cauchy partial stress tensor on the solid

and fluid phase. The total traction vector is given by summing up the the contributions of the two

phases
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𝑡 = 𝑡𝑠 + 𝑡𝑓 = 𝑛 · 𝜎, (2.46)

where

𝜎 = 𝜎𝑠 + 𝜎𝑓 (2.47)

is the total Cauchy stress tensor for the mixture.

Let’s consider now an arbitrary volume 𝑉 bounded by a surface 𝐴. The sum of forces acting on the

solid phase must be equal to the material time derivative of the linear momentum

∫︁
𝐴

𝑡𝑠d𝐴+
∫︁

𝑉

𝜌𝑠𝑔d𝑉 +
∫︁

𝑉

ℎ𝑠d𝑉 = d
d𝑡

∫︁
𝑉

𝜌𝑠𝑣d𝑉, (2.48)

where 𝑔 is the gravity acceleration vector, ℎ𝑠 is the force per unit total volume exerted by the

fluid on the solid matrix. The body force ℎ𝑠 can be interpreted as a frictional drag induced by

the fluid on the solid. Using the Cauchy theorem the first integral can be converted into a volume

integral, and Eq. (2.48) can be localized to get

div(𝜎𝑠) + 𝜌𝑠𝑔 + ℎ𝑠 = 𝜌𝑠𝑎, (2.49)

where 𝑎 = d𝑣/d𝑡 is the material acceleration of the solid. In Eq. (2.49) we assumed there is no

mass exchange between the two phases.

Analogously, for the fluid phase we can write

∫︁
𝐴

𝑡𝑓 d𝐴+
∫︁

𝑉

𝜌𝑓𝑔d𝑉 +
∫︁

𝑉

ℎ𝑓 d𝑉 = d𝑓

d𝑡

∫︁
𝑉

𝜌𝑓𝑣𝑓d𝑉, (2.50)

where now ℎ𝑓 is the force per unit total volume exerted by the solid on the fluid. Again, using

the Cauchy theorem the first integral can be converted into a volume integral, and Eq. (2.50) can

be localized to get

div(𝜎𝑓 ) + 𝜌𝑓𝑔 + ℎ𝑓 = 𝜌𝑓𝑎𝑓 , (2.51)

where 𝑎𝑓 = d𝑓𝑣𝑓/d𝑡 is the material acceleration of the fluid phase. Since ℎ𝑠 and ℎ𝑓 are internal

forces which naturally do not affect the mixture as a whole, their sum must be equal to zero

ℎ𝑠 + ℎ𝑓 = 0. (2.52)

Summing over the solid and fluid phases of the mixture gives the balance of linear momentum

for the entire mixture,
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div(𝜎) + 𝜌𝑔 = 𝜌𝑠𝑎+ 𝜌𝑓𝑎𝑓 . (2.53)

If there is no relative flow between the solid and the fluid phase, then 𝑎 ≡ 𝑎𝑓 and we recover

the classical form of linear momentum balance equation for a one-phase material. In this case, the

deformation in the mixture is said to be locally undrained.

The balance of angular momentum can be satisfied assuming the symmetry of both solid and fluid

Cauchy partial stress tensors in the absence of couple stresses. This follows from classical derivation

of the continuum mechanics, and proof is omitted for the sake of brevity.

The linear momentum balance equation can be written in the reference to the initial configuration,

thus assuming a fix integration domain.

Let’s initially define 𝑇 𝑠 and 𝑇 𝑓 the nominal solid and fluid partial traction vectors, as the forces

per unit area of the mixture in the reference configuration

d𝑓𝑠 = 𝑇 𝑠d𝐴0, d𝑓𝑓 = 𝑇 𝑓 d𝐴0, (2.54)

where d𝐴0 is the differential area of the mixture in the solid reference configuration. The relation

between d𝐴 and d𝐴0 is provided by Nanson’s formula, which reads

𝑛d𝐴 = 𝐽𝐹−𝑇 ·𝑁d𝐴0, (2.55)

where 𝑛 and 𝑁 are unit normal vectors to d𝐴 and d𝐴0, respectively. Expressed on terms of the

Cauchy partial stress tensor, we have for the solid and fluid phase

d𝑓𝑠 = 𝜎𝑠 · 𝑛d𝐴 = 𝐽𝜎𝑠 · 𝐹−𝑇 ·𝑁d𝐴0 = 𝑃 𝑠 ·𝑁d𝐴0, (2.56)

d𝑓𝑓 = 𝜎𝑓 · 𝑛d𝐴 = 𝐽𝜎𝑓 · 𝐹−𝑇 ·𝑁d𝐴0 = 𝑃 𝑓 ·𝑁d𝐴0. (2.57)

In the above equations we introduced the non-symmetric first Piola-Kirchhoff partial stress ten-

sors for the solid and fluid, respectively

𝑃 𝑠 = 𝐽𝜎𝑠 · 𝐹−𝑇 , 𝑃 𝑓 = 𝐽𝜎𝑓 · 𝐹−𝑇 , (2.58)

which allows a formal definition for the nominal traction vectors
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𝑇 𝑠 = 𝑃 𝑠 ·𝑁 , 𝑇 𝑓 = 𝑃 𝑓 ·𝑁 . (2.59)

It is important to note that both stress tensors 𝑃 𝑠 and 𝑃 𝑓 are defined in terms of the deformation

gradient 𝐹 since the motion is described in reference to the solid matrix.

The total nominal tractions and stresses are then obtained as

𝑇 = 𝑇 𝑠 + 𝑇 𝑓 = 𝑃 ·𝑁 , 𝑃 = 𝑃 𝑠 + 𝑃 𝑓 . (2.60)

The linear momentum balance equation in reference to the undeformed configuration for the

solid phase gives

∫︁
𝐴0

𝑇 𝑠d𝐴0 +
∫︁

𝑉0

𝜌𝑠𝑔d𝑉0 +
∫︁

𝑉0

𝐻𝑠d𝑉0 = d
d𝑡

∫︁
𝑉0

𝜌𝑠𝑣d𝑉0, (2.61)

where 𝐻𝑠 = 𝐽ℎ𝑠 is the nominal body force vector acting on the solid resulting from the frictional

drag induced by the fluid flow. Again, converting the first integral into a volume integral, we obtain

the localiz form of the linear momentum equation for the solid phase

DIV(𝑃 𝑠) + 𝜌𝑠
0𝑔 +𝐻𝑠 = 𝜌𝑠

0𝑎. (2.62)

Similarly, for the fluid phase we have

∫︁
𝐴0

𝑇 𝑓 d𝐴0 +
∫︁

𝑉0

𝜌𝑓𝑔d𝑉0 +
∫︁

𝑉0

𝐻𝑓 d𝑉0 = d
d𝑡

∫︁
𝑉0

𝜌𝑓𝑣d𝑉0, (2.63)

where 𝐻𝑓 = 𝐽ℎ𝑓 . Localizing we get

DIV(𝑃 𝑓 ) + 𝜌𝑓
0𝑔 +𝐻𝑓 = 𝜌𝑓

0𝑎𝑓 . (2.64)

Again, the body forces 𝐻 are internal to the mixture, anf hence, 𝐻𝑠 +𝐻𝑓 = 0. Summing the

momentum balance equation for the two phases we obtain the equilibrium equation for the mixture,

DIV(𝑃 ) + 𝜌0𝑔 = 𝜌𝑠
0𝑎+ 𝜌𝑓

0𝑎𝑓 . (2.65)

Note that the above equation could have been obtained from Eq. (2.53) by multiplying both

sides of the equation by the Jacobian 𝐽 and using the Piola identity.
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Balance of energy

The concept of solid (𝜎𝑠 or 𝑃 𝑠) and fluid (𝜎𝑓 or 𝑃 𝑓 ) partial stress tensors developed in the former

section is useful for addressing the multiphase nature of porous materials. However, the solid partial

stress tensor is not an appropriate measure of stress for constitutive modeling of the solid matrix.

To identify an appropriate constitutive stress tensor for the solid matrix, we utilize the balance of

energy, or first law of thermodynamics. The first law of thermodynamics identifies a stress measure

that is energy conjugate to the rate of deformation of the solid matrix. This stress measure is often

referred to as the effective stress.

The first law states that the rate of increase of the total energy (internal and kinetic) of any arbitrary

volume 𝑉 of the mixture is equal to the rate of work done on the mixture (from the body forces and

surface traction) plus the rate of increase of heat energy. If there are no mass exchanges between

the solid and the fluid, the rate of change of internal energy is

�̇� =
∫︁

𝑉

𝜌�̇�d𝑉 = d
d𝑡

∫︁
𝑉

𝜌𝑠𝑒𝑠d𝑉 + d𝑓

d𝑡

∫︁
𝑉

𝜌𝑓𝑒𝑓 d𝑉 =
∫︁

𝑣

(︂
𝜌𝑠 d𝑒𝑠

d𝑡 + 𝜌𝑓 d𝑓𝑒𝑓

d𝑡

)︂
d𝑉, (2.66)

where 𝑒𝑠 and 𝑒𝑓 are the internal energies per unit mass of solid and fluid, respectively, and �̇� is

the rate of increase in total internal energy per unit total mass of the mixture. The rate of change

of kinetic energy is

�̇� = d
d𝑡

∫︁
𝑉

𝜌𝑠

(︂
1
2𝑣 · 𝑣

)︂
d𝑉 + d𝑓

d𝑡

∫︁
𝑉

𝜌𝑓

(︂
1
2𝑣𝑓 · 𝑣𝑓

)︂
d𝑉 =

∫︁
𝑉

(︀
𝜌𝑠𝑎 · 𝑣 + 𝜌𝑓𝑎𝑓 · 𝑣𝑓

)︀
d𝑉. (2.67)

The total power is the sum of the mechanical power and the rate of increase of heat energy,

𝑃 = d
d𝑡

∫︁
𝑉

(︀
𝜌𝑠𝑔 · 𝑣 + 𝜌𝑓𝑔 · 𝑣𝑓 + ℎ𝑠 · 𝑣 + ℎ𝑓 · 𝑣𝑓

)︀
d𝑉 +

∫︁
𝐴

(︀
𝑡𝑠 · 𝑣 + 𝑡𝑓 · 𝑣𝑓

)︀
d𝐴, (2.68)

where we we assumed there is no heat source in the mixture and no heat fluxes. In other words

we assumed that the mixture is in isothermal equilibrium.

Since 𝑡𝑠 = 𝑛 · 𝜎𝑠 and 𝑡𝑓 = 𝑛 · 𝜎𝑓 by the Cauchy stress relations, it is possible to convert the area

integrals in Eq. (2.68) into volume integrals.

By the first law of thermodynamics

�̇� = 𝑃 − �̇�, (2.69)

noting that 𝑉 is arbitrary, and using the equilibrium equations (2.49) and (2.51), we obtain the

local form of balance of energy for a solid-fluid mixture avoiding thermal effects,
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𝜌�̇� = 𝜎𝑠 : 𝑑+ 𝜎𝑓 : 𝑑𝑓 , (2.70)

where 𝑑 = sym(𝑙) and 𝑑𝑓 = sym(𝑙𝑓 ) are the rate of deformation tensors corresponding to the

solid and the fluid motions. The mechanical component of the power density is seen as the sum of

the mechanical powers generated by the two partial stress tensors.

Let’s now consider a more specific isotropic form for the fluid partial stress tensor 𝜎𝑓 . The diagonal

components of this tensor are obtained from the intrinsic fluid pressure 𝑝𝑓 multiplied by the fluid

volume fraction 𝜑𝑓

𝜎𝑓 = −𝜑𝑓𝑝𝑓1, (2.71)

where 1 is the second-order identity tensor. Inserting the above relation into Eq. (2.70) and

recalling that 𝜎𝑠 = 𝜎 − 𝜎𝑓 we obtain

𝜌�̇� = 𝜎 : 𝑑− 𝜑𝑓 div(𝑣𝑓 )𝑝𝑓 . (2.72)

Therefore we observe that the mechanical power in a solid-fluid mixture is composed of two

terms: the first term is the mechanical power of the total stress tensor 𝜎 deforming the solid matrix

and the second term is the the mechanical power of the fluid pressure 𝑓 in injecting or extracting

fluid into or from the solid matrix. Hence the first law of thermodynamics suggests two conjugate

pairs

⟨𝜎,𝑑⟩ ,
⟨︀
𝑝𝑓 , 𝜑

𝑓 div(𝑣𝑓 )
⟩︀
. (2.73)

Let’s manipulate further the above equations to obtain the desired effective stress. Noting that

𝜑𝑓 div(𝑣𝑓 ) = div(𝑣)− 𝑣𝑓 · grad(𝜑𝑓 ) we obtain from Eq. (2.37)

𝜑𝑓 div(𝑣𝑓 ) = −𝐵div(𝑣)−𝐺 (2.74)

where G is the Gibb’s potential

𝐺 = 𝜑𝑓

𝐾𝑓

d𝑝𝑓

d𝑡 + 𝑣

𝐾𝑓
· grad(𝑝𝑓 ) + 𝑣

𝜑𝑓
· grad(𝜑𝑓 ). (2.75)

Inserting Eq. (2.74) into Eq. (2.72) we obtain

𝜌�̇� = �̄� : 𝑑+𝐺𝑝𝑓 , (2.76)
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where

�̄� = 𝜎 +𝐵𝑝𝑓1. (2.77)

Therefore, from the above equations we obtain two new conjugate pairs

⟨�̄�,𝑑⟩ , ⟨𝑝𝑓 , 𝐺⟩ . (2.78)

It’s important to note that, since there are no other gradients of solid velocity appearing in

the expression for Gibb’s potential, we conclude that �̄� is the complete constitutive stress tensor

conjugate to 𝑑.

As we did for the balance of linear momentum, we want now express the first law of thermodynamics

in reference to the undeformed configurations, and define therefore the conjugate quantity in the

initial configuration.

We start again from the rate of change of internal energy, which can be written as

𝐸 =
∫︁

𝑉

𝜌�̇�d𝑉 =
∫︁

𝑣0

𝐽𝜌�̇�d𝑉0 =
∫︁

𝑉0

𝜌0�̇�d𝑉0, (2.79)

where again 𝐽 = det(𝐹 ) is the Jacobian of thee solid motion and 𝜌0 = 𝐽𝜌 is the pull-back

total mass density in the solid reference configuration. The energy-rate density is now written with

respect to a unit reference volume and takes the form

𝜌0�̇� = 𝜏 : 𝑑+𝐺𝜃𝑓 , (2.80)

where

𝜏 = 𝐽�̄� = 𝜏 +𝐵𝜃𝑓1 (2.81)

is the symmetric Kirchhoff effective stress tensor, 𝜏 = 𝐽𝜎 is the Kirchhoff total stress tensor,

𝜃𝑓 = 𝐽𝑝𝑓 is the Kirchhoff pore water pressure. Therefore we conclude that the effective Kirchhoff

stress is work conjugate with the rate of deformation of the solid phase.

Alternatively, the mechanical power produced by the Kirchhoff effective stress tensor take the form

𝜏 : 𝑑 = 𝜏 : 𝑙 = 𝐽�̄� : (�̇� · 𝐹 −1) = (𝐽�̄� · 𝐹−𝑇 ) : �̇� = 𝑃 : �̇� , (2.82)

where 𝑃 = 𝐽�̄� · 𝐹−𝑇 is the non-symmetric first Piola-Kirchhoff constitutive stress tensor. This

produces the conjugate pair
⟨︀
𝑃 ,𝐹

⟩︀
. Alternatively, introducing the second Piola-Kirchhoff effective

stress tensor 𝑆 = 𝐹−1 · 𝜏 · 𝐹−𝑇 we obtain
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𝜏 : 𝑑 = 𝑃 : �̇� = (𝐹 · 𝑆) : �̇� = 1
2𝑆 : (�̇� 𝑇 · 𝐹 + 𝐹 𝑇 · �̇� ) = 1

2𝑆 : �̇�, (2.83)

where 𝐶 is the right Cauchy-Green deformation tensor, which is work conjugate with the tensor

𝑆.

The definition of this conjugate stress-stress strain measure will play a central role in formulating

the constitutive model, as expressed in the following part of the work.
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Chapter 3

Constitutive law for the solid and

fluid phases

3.1 Introduction

This chapter presents the constitutive law for both the solid and fluid phases, which are fundamental

to complete the formulation of the problem and close the set of balance equations presented in the

previous chapter. Obviously, the general framework presented so far is valid for a general porous

material, and it’s the adoption of the constitutive laws that characterizes the particular material.

As far as the solid phase, we investigated mainly three constitutive models at finite strains. These

models are mainly devoted to the numerical simulation of geomaterials, such as soil or rock. These

models are based on the concept of multiplicative decomposition of the deformation gradient, which

is summarized at the beginning of the chapter.

As far as the fluid phase, we assumed a generalized Darcy’s law, considering a laminar flow through

the porous of the solid skeleton.

The aim of this chapter is to combine theoretical aspects with implementation procedures. Therefore,

both the equations and the main coded functions will be presented together, to compare the two

aspects. All the coded functions refer to the 2D implementation, assuming plane strain condition.

Developing the 3D case is straightforward, and it follows as an extension of the presented functions.

3.2 Constitutive law for the solid phase

A major problem in applying finite element analysis, especially for geotechincal or reservoir engineer-

ing problems, is to provide a realistic representation of the constitutive law, i.e. of the stress-strain

characteristics for the porous skeleton, especially for those material subjected to large deformations.
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In fact, the choice of an appropriate constitutive relationship has an incredible influence on the

numerical results.

A lot of constitutive models abounds in literature, and a complete overview of all the possibilities is

behind the scope of this work. Constitutive models can vary from the simplest linear elastic law to

the more advanced laws, such as elastoplastic laws, which take into account the irreversible deforma-

tions of the solid matrix. The constitutive models can also depend on the temperature, the degree

of saturation, the presence of some chemical components, and so on. Furthermore, constitutive laws

may be time dependent, i.e. related with the evolution of some parameters with time, to take into

account for example the creep process. In this work we will focus on elastoplastic materials, without

any further extensions. In particular, attention is focused on materials which do not creep, and the

term time dependance relates purely to the consolidation process.

A crucial point in determining the choice of a suitable soil or rock constitutive model is the ease with

which values can be assigned to the constants defining it. It may be possible to reproduce measured

behavior accurately using a model defined by many constants. However, this is of little practical

use if the determination of these constants as in itself a research project. An important objective is

therefore to minimize the number of constants involved in the choice of a constitutive law.

In this chapter we will introduce three different constitutive model. The first model is an hypere-

lastic constitutive model, defined as Kirchhoff-De Saint Venant (41), which is an extension at finite

strain of the classical linear elastic model in the small strain regime. This model, although not

really useful for geotechnical applications, is important as starting point to develop more advanced

model. The second model is an extension of the Modified Cam-Clay model for finite strain analysis.

It was mainly developed by Borja and Tamagnini (42) and it is one of the most appropriate model

for clays. Finally, the third model is a continuous cap model, that is proposed by the author of this

thesis, with the mainly scope of simulate the constitutive behavior of porous rock. Both the two

elastoplastic models are based on the fundamental concept of multiplicative decomposition of the

deformation gradient, which will be recalled in the first part of this chapter.

Since the state of stress in soil and rock can be considered to consist of two components - deviatoric

and hydrostatic stress - it is more convenient to work in terms of stress invariants when dealing with

isotropic models, which will be introduced through the chapter.

It is fundamental to observe that the constitutive relation for the solid phase is between a strain

measure and an effective stress measure. Therefore, all the stress measures reported in this chapter

are intended to be effective measure of stress, and the bar (e.g. 𝜏 ) has been removed for the sake of

simplicity.
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3.2.1 General framework for elastoplasticity at finite strain

Introduction

This section of the work focuses on the theoretical formulation and algorithmic implementation of

a finite deformation theory of elastoplasticity (43). Whereas numerous finite deformation theories

abound in the literature, we shall focus mainly on a formulation based on a multiplicative decompo-

sition of the deformation gradient, which gives rise to so-called multiplicative plasticity theory. The

initial development of multiplicative plasticity theory is due to Lee (28). Since then, it has become a

standard platform of many computer codes for nonlinear analysis of boundary-value problems in the

finite deformation range. The theory is based on the notion of reference and current configurations,

as well as on the existence of an intermediate stress-free configuration to which a body will return

when it is unloaded. In this part of the thesis we will introduce the main aspects related to the mul-

tiplicative decomposition theory, with particular interest on the numerical procedures for solving an

elastoplastic boundary value problem. These procedures will then be implemented in the numerical

code to solve the elastoplastic behavior of the porous media at finite strain. Before discussing the

multiplicative plasticity theory, we will recall the fundamental concepts of frame indifference and

isotropy, two a priori assumptions for the development of the theory.

Frame indifference and isotropy

The concept of frame indifference (or frame invariance, or objectivity) in science means that quali-

tative and quantitative descriptions of physical phenomena remain unchanged when the phenomena

are observed under a variety of conditions (34). For example, physical processes (e.g. material prop-

erties) are invariant under changes of observers; that is, it is possible to reconcile observations of the

process into a single coherent description of it. Therefore, it’s fundamental that every constitutive

law satisfies the frame indifference criteria.

Let 𝑥 = 𝜙(𝑋, 𝑡) denote a mapping of material point 𝑋 from the reference position 𝑋 to a current

position 𝑥. A rigid body motion on the current configuration is defined by uniform translation 𝑐(𝑡)

and a rotation 𝑄(𝑡)

𝑥+ = 𝑐(𝑡) +𝑄(𝑡) · 𝑥. (3.1)

The corresponding deformation gradient of this motion is

𝐹+(𝑋, 𝑡) = 𝜕𝑥+

𝜕𝑋
= 𝑄(𝑡) · 𝐹 (𝑋, 𝑡) (3.2)

which implies that 𝐽+ = det𝐹+ = det𝐹 = 𝐽 . Also

45



𝐹+ = 𝑄𝐹 = 𝑄𝑅𝑈 = 𝑅+𝑈+ → 𝑅+ = 𝑄𝑅 and 𝑈+ = 𝑈 ; (3.3a)

𝐹+ = 𝑄𝐹 = 𝑄𝑣𝑅 = 𝑣+𝑅+ → 𝑣+ = 𝑄𝑣𝑄𝑡. (3.3b)

We conclude the following identities:

• a scalar field 𝐽 is called frame indifferent if 𝐽+ = 𝐽 ;

• a material tensor 𝑈 is called frame indifferent if 𝑈+ = 𝑈 ;

• a spatial tensor 𝑣 is called frame indifferent if 𝑣+ = 𝑄𝑣𝑄𝑡;

• a two-point tensor 𝐹 is called frame indifferent if 𝐹+ = 𝑄𝐹 .

After these statements, it is easy to demonstrate that as fa as the velocity gradients

𝑙+ = 𝑄𝑙𝑄𝑡 + �̇�𝑄𝑡 is not frame indifferent; (3.4a)

𝑑+ = symm(𝑙+) = 𝑄𝑑𝑄𝑡 is frame indifferent; (3.4b)

𝑤+ = skw(𝑙+) = 𝑄𝑤𝑄𝑡 + �̇�𝑄𝑡 is not frame indifferent, (3.4c)

and the Cauchy stress tensor

𝜎+ = 𝑄𝜎𝑄𝑡 is frame indifferent; (3.5a)

�̇�+ = 𝑄�̇�𝑄𝑡 + (�̇�𝑄)𝜎+ − 𝜎+(�̇�𝑄𝑡) is not frame indifferent. (3.5b)

The lack of objectivity of the rate tensor �̇� is a crucial point in developing a constitutive model

at finite strains, since we are forced to use a different material time derivative of the stress tensor to

ensure the objectivity of the rate-constitutive equations. To preserve objectivity of the stress rate,

we will use the Lie derivative of the Kirchhoff stress tensor, also known as the Truesdell stress rate,

which takes the form

L𝑣𝜏 = �̇� − 𝑙𝜏 − 𝜏 𝑙𝑡. (3.6)

As mentioned before, the notion of objectivity plays a central role in the formulation of the

constitutive equation, since the material response may not depend on the choice of reference frame.

A class of material response that automatically satisfies the requirement of objectivity is provided

by a hyperelastic material. In a hyperelastic material the stress is obtained from a stored energy
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function that depends on the local deformation. Now, consider a stored energy function of the form

Ψ𝑒(𝑋,𝐹 ), and write the first Piola-Kirchhoff stress tensor for any material point

𝑃 (𝑋, 𝑡) = 𝜕Ψ𝑒(𝑋,𝐹 )
𝜕𝐹

. (3.7)

It can be shown that the restriction of frame invariance of the stored energy function is satisfied

if it depends on the right Cauchy-Green deformation tensor, i.e.

Ψ𝑒(𝑋,𝐹 ) = Ψ̃𝑒(𝑋,𝐶). (3.8)

With frame invariance, the hyperelastic constitutive equations, using different stress tensors,

become

𝑃 = 𝜕Ψ̃𝑒

𝜕𝐶
· 𝜕𝐶
𝜕𝐹

= 2𝐹 · 𝜕Ψ̃𝑒

𝜕𝐶
; (3.9a)

𝑆 = 2𝜕Ψ̃𝑒

𝜕𝐶
; (3.9b)

𝜏 = 2𝐹 · 𝜕Ψ̃𝑒

𝜕𝐶
· 𝐹 𝑡. (3.9c)

Let’s introduce now a further assumption, namely the hypothesis of isotropy. By isotropy at a

point 𝑋, we mean that the material is insensitive to superposed rigid body motions on the reference

configuration. This assumption should not be confused with frame indifference: the former pertains

to some particular property of material response, whereas the latter is a fundamental principle of

mechanics that must hold for all the possible material, and therefore response functions (44).

Frame invariance along with isotropy allows the replacement

Ψ𝑒(𝑋,𝐹 ) = Ψ̃𝑒(𝑋,𝐶) = 𝜓𝑒(𝑋, 𝑏) = Ψ̂𝑒(𝑋, 𝜆2
1, 𝜆

2
2, 𝜆

2
3), (3.10)

where 𝜆2
𝐴 for 𝐴 = 1, 2, 3 are the eigenvalues of 𝐶 (or 𝑏), i.e. the stored energy functions depends

solely on the eigenvalues. In this case, the hyperelastic constitutive relations between stress and

strain simplifies further, and we get

𝑃 = 𝜕𝜓𝑒

𝜕𝑏
· 𝜕𝑏
𝜕𝐹

= 2𝜕𝜓
𝑒

𝜕𝑏
· 𝐹 ; (3.11a)

𝑆 = 2𝐹−1 · 𝜕𝜓
𝑒

𝜕𝑏
· 𝐹 ; (3.11b)

𝜏 = 2𝜕𝜓
𝑒

𝜕𝑏
· 𝑏 = 2𝑏 · 𝜕𝜓

𝑒

𝜕𝑏
. (3.11c)
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These relations will constitute the basis to develop the constitutive theories in the following

sections of the Chapter.

Multiplicative plasticity theory

Let’s consider again simple body B in the initial undeformed and stress-free configuration, with 𝑋

the coordinates of the material point. Let 𝜙(B) denote the final deformed configuration after follow-

ing some elastoplastic deformation, and assume a mapping 𝑥 = 𝜙(𝑋). We define the intermediate

configuration as one that results if each point in the body is unstressed.

Let 𝜒 denote the position vector of the point in the intermediate configuration, and consider the

sequential mapping

𝜒 = 𝜙𝑝(𝑋, 𝑡) 𝑥 = 𝜙𝑒(𝜒, 𝑡). (3.12)

Then, by the chain rule, we have

𝐹 (𝑋, 𝑡) = 𝜕𝜙𝑒

𝜕𝜒
· 𝜕𝜙

𝑝

𝜕𝑋
= 𝐹 𝑒 · 𝐹 𝑝. (3.13)

We define 𝐹 𝑒 and 𝐹 𝑝 as the elastic and plastic components of the deformation gradient, and Eq.

(3.13) the multiplicative decomposition of 𝐹 .

From a micromechanical standpoint, 𝐹 𝑝 is an internal variable related to the amount of slipping,

crushing, yielding, and (for plate-like particles) plastic bending of the granules comprising the soil

or rock assembly (45). The product decomposition then represents the overall kinematics of defor-

mation of the macroscopic material point 𝑋 and may be interpreted as the volume average of the

responses derived from the aforementioned micromechanical processes.

Along with the multiplicative decomposition (3.13) we define the elastic left Cauchy-Green defor-

mation tensor

𝑏𝑒 = 𝐹 𝑒 · 𝐹 𝑒𝑡 (3.14)

whereas 𝑏𝑒 is a contravariant tensor field defined with respect to the current configuration. The

time differentiation of 𝑏𝑒 yields the expression

�̇�𝑒 = 𝑙𝑏𝑒 + 𝑏𝑒𝑙𝑡 + L𝑣𝑏
𝑒 (3.15)

where L𝑣𝑏
𝑒 is the Lie derivative of 𝑏𝑒.

We restrict now the theory to isotropic stored energy function. As derived in Eq. (3.10), we write

the free energy function in the form
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𝜓 = 𝜓(𝑏𝑒, 𝜉), (3.16)

where 𝜉 is a vector of strain-like plastic internal variable. Further, we assume that 𝜓 can be

decomposed additively into an elastic stored energy function 𝜓𝑒(𝑏𝑒) and a part 𝜓𝑝(𝜉) that depends

solely on the plastic internal variable 𝜉. This results in complete uncoupling of the elastic and plastic

responses. Let D denote the local dissipation function per unit reference volume of the solid matrix

associated with the material point 𝑋 ∈ B. Ignoring non-mechanical power and kinetic energy

production, the second law states that

D = 𝜏 : 𝑑− d𝜓
d𝑡 = 1

2𝑆 : �̇� − d𝜓
d𝑡 ≥ 0, (3.17)

where

d𝜓
d𝑡 = 𝜕𝜓

𝜕𝑏𝑒
: �̇�𝑒 + 𝜕𝜓

𝜕𝜉
· 𝜉. (3.18)

Inserting the time derivative of 𝑏𝑒 derived in Eq. (3.15) yields

D =
(︂
𝜏 − 2 𝜕𝜓

𝜕𝑏𝑒
· 𝑏𝑒

)︂
: 𝑑+

(︂
2 𝜕𝜓
𝜕𝑏𝑒
· 𝑏𝑒

)︂
:
(︂
−1

2L𝑣𝑏
𝑒 · 𝑏𝑒−1

)︂
− 𝜕𝜓

𝜕𝜉
· 𝜉 ≥ 0, (3.19)

where the skew-symmetric term of 𝑙 drops out. Since Eq. (3.19) must hold for all admissible

processes, a standard argument leads to the following hyperelastic constitutive equation

𝜏 = 2 𝜕𝜓
𝜕𝑏𝑒
· 𝑏𝑒 (3.20)

and the following reduced dissipation inequality

D = 𝜏 :
(︂
−1

2L𝑣𝑏
𝑒 · 𝑏𝑒−1

)︂
+ 𝑘 · 𝜉 ≥ 0, (3.21)

where 𝑘 = −𝜕𝜓/𝜕𝜉 is a vector of stress-like plastic internal variables conjugate to 𝜉. From Eq.

(3.21) we identify the expression inside the parentheses as the plastic flow direction

−1
2L𝑣𝑏

𝑒 · 𝑏𝑒−1 = �̇�
𝜕G

𝜕𝜏
, (3.22)

where G is the plastic potential function and �̇� is a non-negative plastic multiplier. Maximum

plastic dissipation is ensured by assuming an associative flow rule, i.e. G ≡ F along with associative

hardening 𝜉 = �̇� 𝜕F
𝜕𝑘 . The yield function takes the form now

F (𝜏 ,𝑘) ≤ 0. (3.23)
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i.e. is a function of the Kirchhoff stress tensor. Similar to the infinitesimal formulation, maximum

plastic dissipation implies the convexity of the yield function, the associative flow rule and the respect

of the Kuhn-Tucker conditions

�̇� ≥ 0; F (𝜏 ,𝑘) ≤ 0 Ḟ (𝜏 ,𝑘) = 0. (3.24)

Stress-update algorithm and algorithmic tangent operator

In this section we will discuss how to solve numerically the equations developed so far for accounting

the plasticity at finite strains. The crucial point is integrate numerically the rate form of the consti-

tutive equation, in order to quantify the local stresses and deformations, to enforce the equilibrium

condition. The idea is to subdivide the dummy time interval into intervals, and impose the equilib-

rium conditions at every discrete time instant. Consider for example a time interval (𝑡𝑛, 𝑡𝑛+1) at let’s

look to a specific arbitrary point 𝑋 ∈ B. The task consists in computing, for a given displacement

increment, the elastic left Cauchy-Green tensor 𝑏𝑒
𝑛+1 and the Kirchhoff stress tensor 𝜏𝑛+1, starting

form the known solution at time step 𝑡𝑛

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐹𝑛

𝑏𝑒
𝑛 = 𝐹 𝑒

𝑛𝐹
𝑒
𝑛

𝑡 → 𝜏𝑛

𝜉𝑛

=⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐹𝑛+1

𝑏𝑒
𝑛+1 =?→ 𝜏𝑛+1 =?

𝜉𝑛+1 =?

(3.25)

Following the standard deformation-driven format, we then prescribe a local displacement field

𝑢𝑡 over the time interval in question. This is equivalent to prescribing the relative deformation

gradient over the same time interval (𝑡𝑛, 𝑡𝑛+1),

𝑓𝑡 = 𝐹𝑡 · 𝐹−1
𝑛 = 1− 𝜕𝑢𝑡

𝜕𝑥𝑛
. (3.26)

Note that the relative deformation gradient 𝑓 is the analog of the incremental strain tensor Δ𝜖

in the infinitesimal formulation. In the finite deformation range, we want to determine the statically

admissible values of 𝑏𝑒 and 𝜉 given the relative deformation gradient 𝑓 .

The essential rate equation that need to be integrated is Eq. (3.15). Note that the first two terms

correspond to the predictor value (what would arise if there was no plastic flow) and the last term

corresponds to the corrector value, in the presence of plastic flow. The incremental version of the

predictor-corrector algorithm in the finite deformation range now takes a multiplicative form (44).

The algorithm consists of two steps. First, the incremental counterpart of the predictor step is

computed, which is given by
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𝑏𝑒 𝑇 𝑟
𝑛+1 = 𝑓 · 𝑏𝑒

𝑛 · 𝑓 𝑡. (3.27)

If there is no plastic flow then 𝑏𝑒 = 𝑏𝑒 𝑇 𝑟. The second step is the incremental plastic corrector

in the presence of plastic flow, obtained by the integration of the Lie derivative. This can be done

in spectral form

L𝑣𝑏
𝑒 =

3∑︁
𝐴=1

L𝑣𝜆
𝑒
𝐴

2𝑚(𝐴) = −2�̇�
3∑︁

𝐴=1

𝜕G

𝜕𝜏𝐴
𝜆𝑒

𝐴
2𝑚(𝐴). (3.28)

This fundamental result is obtained taking into account the spectral decomposition of 𝑏𝑒 and 𝜏

𝑏𝑒 =
3∑︁

𝐴=1
(𝜆𝑒

𝐴)2𝑚(𝐴) 𝜏 =
3∑︁

𝐴=1
(𝛽𝐴)2𝑚(𝐴) (3.29)

From the coaxiality of the relevant tensors, the principal values of the left and right side of Eq.

(3.28) must be equal, and we can work therefore only with the scalar quantities. Integrating both

sides using a simple backward integration, and enforcing the limits, we get

log
(︃

𝜆𝑒
𝐴

2

𝜆𝑒 𝑇 𝑟
𝐴

2

)︃
= −2Δ𝛾 𝜕G

𝜕𝛽𝐴
. (3.30)

Expanding the left-hand side of the above equation and noting that log(𝜆𝑒
𝐴

2) = 2𝜖𝑒𝐴, we obtain

the desired incremental update equation in the space of principal elastic logarithmic stretches as

follows,

𝜖𝑒𝐴 = 𝜖𝑒 𝑇 𝑟
𝐴 −Δ𝛾 𝜕G

𝜕𝛽𝐴
. (3.31)

What it is really important to note, is that the above predictor-corrector equation, presented by

Simo (30), preserves the additive return-mapping format of the infinitesimal theory.

The plastic multiplier Δ𝛾 can be determined by imposing the discrete condition F (𝜏 , 𝜉) = 0.

Typically, this computation requires a local iteration due to the nonlinearity introduced by the flow

direction.

The plastic internal variable 𝜉 could also change with deformation, and needs to be updated along

the stress-update algorithm. In general the update equation for this variable depends on the specific

constitutive model used for the material.

The last aspect that needs to be investigated is the consistent elastoplastic tangent operator in the

finite deformation range. In doing so, we will invoke the property of isotropy so that we can use all

of the nice results developed so far. First, we derive the variation of the Kirchhoff stress tensor from

the spectral form as
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𝛿𝜏 =
3∑︁

𝐴=1
𝛿𝛽𝐴𝑛

(𝐴) ⊗ 𝑛(𝐴) +
3∑︁

𝐴=1

3∑︁
𝐵 ̸=𝐴

𝜔𝐴𝐵(𝛽𝐵 − 𝛽𝐴)𝑛(𝐴) ⊗ 𝑛(𝐵), (3.32)

where 𝜔𝐴𝐵 are the relevant spins. Similarly, taking advantage of the spectral form, the variation

of 𝑏𝑒 𝑇 𝑟 takes a similar form,

𝛿𝑏𝑒 𝑇 𝑟 =
3∑︁

𝐴=1
𝛿𝜆𝑒 𝑇 𝑟

𝐴

2
𝑛(𝐴) ⊗ 𝑛(𝐴) +

3∑︁
𝐴=1

3∑︁
𝐵 ̸=𝐴

𝜔𝐴𝐵(𝜆𝑒 𝑇 𝑟
𝐵

2 − 𝜆𝑒 𝑇 𝑟
𝐴

2)𝑛(𝐴) ⊗ 𝑛(𝐵), (3.33)

where again the spins of the two tensors are the same.

At the same time, deriving Eq. (3.27) we get

𝛿𝑏𝑒 𝑇 𝑟 = 𝛿𝑓 · 𝑏𝑒
𝑛 · 𝑓 𝑡 + 𝑓 · 𝑏𝑒

𝑛 · 𝛿𝑓 𝑡 = (Δ𝛿𝑢) · 𝑏𝑒 𝑇 𝑟 + 𝑏𝑒 𝑇 𝑟 · (Δ𝛿𝑢) (3.34)

The tangent constitutive relation arises from

𝛿𝜏 = Φ : 𝛿𝑏𝑒 𝑇 𝑟 = Φ : (Δ𝛿𝑢) · 𝑏𝑒 𝑇 𝑟 + 𝑏𝑒 𝑇 𝑟 · (Δ𝛿𝑢) = 𝛼 : Δ𝛿𝑢, (3.35)

where

𝛼 =
3∑︁

𝐴=1

3∑︁
𝐵=1

𝑎𝐴𝐵𝑚
(𝐴) ⊗𝑚(𝐵)+

3∑︁
𝐴=1

3∑︁
𝐵 ̸=𝐴

𝜔𝐴𝐵

(︃
(𝜏𝐵 − 𝜏𝐴)

(𝜆𝑒 𝑇 𝑟
𝐵

2 − 𝜆𝑒 𝑇 𝑟
𝐴

2)

)︃
(𝜆𝑒 𝑇 𝑟

𝐵

2
𝑚(𝐴𝐵) ⊗𝑚(𝐴𝐵) + 𝜆𝑒 𝑇 𝑟

𝐴

2
𝑚(𝐴𝐵) ⊗𝑚(𝐵𝐴)). (3.36)

The term 𝑎𝐴𝐵 = 𝜕𝜏𝐴/𝜕𝜆
𝑒 𝑇 𝑟
𝐴

2 is the algorithmic stress-strain matrix in principal axis. This

matrix depends on the specific constitutive elastoplastic law, i.e. the algorithm for detemining 𝜏𝐴,

rather the remaining framework it’s general and can be used for all kind of material. The following

Box summarizes the implementation of the general stress-update algorithm for elastoplasticity at

finite strains.
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1. Elastic deformation predictor: 𝑏𝑒 𝑇 𝑟 = 𝑓𝑛+1 · 𝑏𝑒
𝑛 · 𝑓 𝑡

𝑛+1.

2. Trial Kirchhoff stress tensor: 𝜏𝑇 𝑟 = 2𝑏𝑒 𝑇 𝑟 · 𝜕𝜓𝑒/𝜕𝑏𝑒 𝑇 𝑟

3. Check if yielding: F (𝜏𝑇 𝑟, 𝜉𝑛) ≥ 0?

No: elastic step. Then 𝑏𝑒 = 𝑏𝑒 𝑇 𝑟, 𝜏 = 𝜏𝑇 𝑟, 𝜉 = 𝜉𝑛 and exit. Yes: continue.

4. Spectrally decompose: 𝑏𝑒 𝑇 𝑟 =
∑︀3

𝐴=1 𝜆
𝑒 𝑇 𝑟
𝐴

2
𝑚(𝐴)

5. Compute Δ𝛾 such that:

⎧⎨⎩𝜖
𝑒
𝐴 = 𝜖𝑒 𝑇 𝑟

𝐴 −Δ𝛾𝜕G /𝜕𝛽𝐴 −→ 𝑏𝑒 −→ 𝜏

F (𝜏 , 𝜉) = 0
(3.37)

6. Exit with the corrected values of 𝑏𝑒, 𝜏 , 𝜉.

7. Algorithmic stress-strain matrix: 𝑎𝐴𝐵 = 𝜕𝛽𝐴/𝜕𝜆
𝑒 𝑇 𝑟
𝐴

2

8. Algorithmic tangent operator 𝛼 according to Eq. (3.36).

The box summarizes the stress-update procedure with the computation of the algorithmic tangent

operator, which ha been implemented in a finite element code, as described in the next section.

Numerical code

The stress-update procedure described so far is a fundamental part of the complete finite element

code to describe the mechanic of the porous media at finite strains. We will report in this section

the main function written to fulfill this task.

The full code is quote in the following Box, and represents the stress-update algorithm for every

gauss integration point. The code is written for a 2D plain strain/stress analysis.

The fundamental input data for thi subroutine are the set of material parametet Ge, the total dis-

placement ue, the incremental displacement due and the vector that contains the internal state

variables (namely, 𝑏𝑒
𝑛, 𝜉𝑛) PLne. Obviously, the set of parameter Ge depends on the specific consti-

tutive law.

1 % Loop over every Gauss po int ip = 1 : nip
2

3 % Total deformation g r a d i e n t
4 [ F , b ] = FbQuad(Xe , r ( i ) , r ( j ) , ue+due ) ;
5

6 % Incrementa l deformation g r a d i e n t
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7 Ue = reshape ( ue , s i z e (Xe , 2 ) , s i z e (Xe , 1 ) ) ' ;
8 X1e = (Xe + Ue ) ;
9

10 [ Fincr , b ] = FbQuad( X1e , r ( i ) , r ( j ) , due ) ;
11

12 % Control Jacobian
13 i f det (F)<0
14 warn=1; % Warning f o r n e g a t i v e determinant o f F
15 end
16

17 % R e c a l l v a r i a b l e s at time step n : b^e_n and xi_n
18

19 Be = [ PLne ( 1 , ip ) PLne ( 3 , ip ) 0
20 PLne ( 3 , ip ) PLne ( 2 , ip ) 0
21 0 0 PLne ( 4 , ip ) ] ;
22

23 xin = xine ( 5 , ip ) ;
24

25 % Compute T r i a l l e f t cauchy - Green
26 BeTr = Fincr ∗Be∗ Fincr ' ;
27

28 % Compute p r i n c i p a l deformation and d i r e c t i o n
29

30 [ e igve , e i g v a ] = e i g ( BeTr ) ;
31

32 epseTr = [ l o g ( s q r t ( e i g v a ( 1 , 1 ) ) )
33 l o g ( s q r t ( e i g v a ( 2 , 2 ) ) )
34 l o g ( s q r t ( e i g v a ( 3 , 3 ) ) ) ] ;
35

36 d i r p r = e i g v e ;
37

38 % Compute p r i n c i p a l K i r c h h o f f t e n s i o n and s t r e s s - s t r a i n matrix
39 [ tenspr , epse , xi , aep ,FLAGe( ip , 1 ) ] = tens (Ge , epseTr , xin ) ;
40

41 % Compute l e f t Cauchy Green t e n s o r at n+1
42

43 s t r e t p r ( : , 1 ) = exp ( epse ( : , 1 ) ) ;
44

45 Be = z e r o s ( 3 ) ;
46

47 f o r i i =1:3
48

49 Be ( 1 : 3 , 1 : 3 ) = Be ( 1 : 3 , 1 : 3 ) + ( s t r e t p r ( i i ) )^2∗ d i r p r ( : , i i )∗ d i r p r ( : , i i ) ' ;
50

51 end
52

53 % Compute K i r c h h o f f t e n s i o n t e n s o r
54

55 TTe = z e r o s ( 3 ) ;
56

57 f o r i i =1:3
58

59 TTe ( 1 : 3 , 1 : 3 ) = TTe( 1 : 3 , 1 : 3 ) + t e n sp r ( i i )∗ d i r p r ( : , i i )∗ d i r p r ( : , i i ) ' ;
60
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61 end
62

63 % A l l o c a t e K i r c h h o f f t e n s i o n t e n s o r
64

65 Te ( : , ip ) = [ TTe( 1 , 1 ) TTe( 2 , 2 ) TTe( 1 , 2 ) TTe( 3 , 3 ) ] ' ;
66

67 % Compute Cauchy t e n s i o n
68 Se ( : , ip ) = Te ( : , ip )/ det (F ) ;
69

70

71 % A l l o c a t e i n t e r n a l s t a t e v a r i a b l e s at time n+1 f o r next p l a s t i c a lgor i thm
72

73 PLe ( : , ip )= [ Be ( 1 , 1 ) ; Be ( 2 , 2 ) ; Be ( 1 , 2 ) ; Be ( 3 , 3 ) ; x i ] ;
74

75 % Compute tangent o p e r a t o r a l f a
76

77 s t r e t T r ( : , 1 ) = exp ( epseTr ( : , 1 ) ) ;
78 ALFAe ( : , ip ) = a l f a ( aep , tenspr , s t r e t T r . ^2 , d i r p r ) ;

The function alfa computes the algorithmic tangent tensor 𝛼 according to Eq. (3.36) as reported

in the following box.

1 f u n c t i o n a l f a v e t = a l f a ( aep , tenspr , lambar , a v e t t )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % Compute tangent o p e r a t o r and s t o r e in v e c t o r form.
4 %
5 % Date : 29/10/2013
6 % Vers ion 1 . 0
7 %
8 % Created by : Nicolo ' S p i e z i a
9 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10

11 t o l l = 10e - 6 ;
12 pe rt = 10e - 5 ;
13

14 % Compute the f i r s t term :
15

16 a l f a 1 = z e r o s ( 3 , 3 , 3 , 3 ) ;
17 a l f a 2 = z e r o s ( 3 , 3 , 3 , 3 ) ;
18

19 f o r A=1:3
20 f o r B=1:3
21

22 a l f a 1 = a l f a 1+aep (A,B)∗ dyadic ( a v e t t ( : ,A)∗ a v e t t ( : ,A) ' , a v e t t ( : ,B)∗ a v e t t ( : ,B ) ' ) ;
23

24 end
25 end
26

27 % Compute the second term :
28

29 % Check f o r s i n g u l a r i t y
30 i f abs ( lambar ( 1 ) - lambar ( 2 ) ) < t o l l
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31 lambar (2)= lambar (1)+ per t ; end
32 i f abs ( lambar ( 1 ) - lambar ( 3 ) ) < t o l l
33 lambar (3)= lambar ( 1 ) - pe r t ; end
34 i f abs ( lambar ( 2 ) - lambar ( 3 ) ) < t o l l
35 lambar (3)= lambar ( 3 ) - pe r t ; end
36

37 f o r A=1:3
38 f o r B=1:3
39

40 i f B ~= A
41 a l f a 2 = a l f a 2 +(( t en s pr (B) - t en s pr (A) ) / ( lambar (B) - lambar (A) ) ) ∗ . . .
42 ( lambar (B)∗ dyadic ( a v e t t ( : ,A)∗ a v e t t ( : ,B) ' , a v e t t ( : ,A)∗ a v e t t ( : ,B) ')+ . . .
43 lambar (A)∗ dyadic ( a v e t t ( : ,A)∗ a v e t t ( : ,B) ' , a v e t t ( : ,B)∗ a v e t t ( : ,A) ' ) ) ;
44 end
45

46 end
47 end
48

49

50 % Total a l f a t e n s o r
51 a l f a t e n s = a l f a 1+a l f a 2 ;
52

53 % A l l o c a t e a l f a as v e c t o r f o r 2D p l a i n s t r a i n ( non - symmetric )
54

55 al famat =[ a l f a t e n s ( 1 , 1 , 1 , 1 ) a l f a t e n s ( 1 , 1 , 2 , 1 ) a l f a t e n s ( 1 , 1 , 1 , 2 ) a l f a t e n s ( 1 , 1 , 2 , 2 )
56 a l f a t e n s ( 2 , 1 , 1 , 1 ) a l f a t e n s ( 2 , 1 , 2 , 1 ) a l f a t e n s ( 2 , 1 , 1 , 2 ) a l f a t e n s ( 2 , 1 , 2 , 2 )
57 a l f a t e n s ( 1 , 2 , 1 , 1 ) a l f a t e n s ( 1 , 2 , 2 , 1 ) a l f a t e n s ( 1 , 2 , 1 , 2 ) a l f a t e n s ( 1 , 2 , 2 , 2 )
58 a l f a t e n s ( 2 , 2 , 1 , 1 ) a l f a t e n s ( 2 , 2 , 2 , 1 ) a l f a t e n s ( 2 , 2 , 1 , 2 ) a l f a t e n s ( 2 , 2 , 2 , 2 ) ] ;
59

60 a l f a v e t = reshape ( alfamat , 1 6 , 1 ) ;
61

62 end

However, the corner stone of the stress-update procedure consists in the function to compute

the Kirchhoff stress tensor 𝜏 and the algorithmic stress-strain matrix in principal axes 𝑎𝐴𝐵 . This is

carried out by the function [tenspr,epse,xi,aep,FLAGe(ip,1)] = tens(Ge,epseTr,xin), which

depends on the specific constitutive law. In the next section some constitutive laws will be presented,

and therefore the function tens will be specified properly.

3.2.2 Hyperelastic law

Introduction

Before moving to more complex elastoplastic laws, let’s begin from a purely elastic constitutive law,

which is simply derived from a free energy function. Deriving an hyperelastic law is important,

not even to describe the behavior of elastic material, but also to account for the elastic domain of

elastoplastic material.

A material frequently encountered in the literature is defined by a hyperelastic potential in terms of
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the logarithmic stretches and two material parameters 𝜆 and 𝜇 as

Ψ̂ = 1
2𝜆[𝜖𝑒1 + 𝜖𝑒2 + 𝜖𝑒3]2 + 𝜇[(𝜖𝑒1)2 + (𝜖𝑒2)2 + (𝜖𝑒3)2], (3.38)

where 𝜖𝑒𝐴 = ln(𝜆𝑒
𝐴) are the elastic logarithmic principal stretches. The principal kirchhoff stresses

can be obtained deriving the elastic potential defined in Eq. (3.38), which reads

𝜏𝐴 = 2𝜇
𝐽
𝜖𝐴 + 𝜆

𝐽
ln𝐽 (3.39)

where ln𝐽 = 𝜖𝑒1 + 𝜖𝑒2 + 𝜖𝑒3. Furthermore, the coefficients of the elasticity tensor are

𝑎𝐴𝐵 = 𝜆+ 2𝜇𝛿𝐴𝐵 (3.40)

The similarities between these equations and linear elasticity can be established if we first recall

the standard small strain elastic equations as

𝜎𝐴 = 𝜆(𝜀1 + 𝜀2 + 𝜀3) + 2𝜇𝜀𝐴 (3.41)

Recalling that ln𝐽 = ln𝜆1 +ln𝜆2 +ln𝜆3, it transpires that Eq. (3.39) and Eq. (3.41) are identical

except for the small strains having been replaced by the logarithmic stretches and the Cauchy stress

𝜎 by the Kirchhoff stress 𝜏 .

The stress-update procedure is straightforward and doesn’t require particular algorithm, differently

from the elastoplastic models that will be implemented later on. The following box contains the

main function to compute the stress state.

1 f u n c t i o n [ tens ] = tensHY (Ge , F , b )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % F i l e : tensHY.m
4 % Compute the k i r c h h o f f t e n s o r o f t e n s i o n with h y p e r e l a s t i c
5 % Saint V e n a n t Kirchhoff m a t e r i a l .
6 %
7 % Input :
8 % F : Deformation g r a d i e n t .
9 % Ge : Element property v e c t o r .

10 % b : L e f t Cauchy - Green t e n s o r
11 %
12 % Output :
13 % tens : Tensor o f K i r c h h o f f t e n s i o n
14 %
15 % Reference :
16 % Bonet J. , Wood R.D. , Non l i n e a r continuum mechanics f o r f i n i t e element
17 % a n a l y s i s .
18 %
19 % Date :
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20 % Vers ion 1 . 0 24 . 0 3 . 1 4
21 %
22 % Created by : Nicolo ' S p i e z i a
23 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
24

25 % I n i t i a l i z e t e n s o r o f K i r c h h o f f t e n s i o n
26 tens = z e r o s ( 2 ) ;
27

28 % Set i s o t r o p i c e l a s t i c i t y parameter
29

30 E = Ge ( 2 ) ;
31 nu = Ge ( 3 ) ;
32

33 lam = (E∗nu )/((1+ nu )∗ (1 -2∗ nu ) ) ;
34 mu = E/(2∗(1+nu ) ) ;
35

36 %Compute e i g e n v a l u e s and e i g e n v e c t o r o f l e f t Cauchy - Green b
37

38 [ avett , ava l ] = e i g ( b ( 1 : 2 , 1 : 2 ) ) ;
39

40 % Compute p r i n c i p a l deformation and d i r e c t i o n
41

42 d e f p r = [ s q r t ( ava l ( 1 , 1 ) )
43 s q r t ( ava l ( 2 , 2 ) ) ] ;
44

45 d i r p r = [ a v e t t ( : , 1 ) a v e t t ( : , 2 ) ] ;
46

47 % Compute p r i n c i p a l t e n s i o n
48

49 t en s pr = lam∗ l o g ( det (F ) ) ∗ [ 1 1] '+2 . 0 ∗mu∗ l o g ( d e f p r ) ;
50

51 f o r i =1:2
52

53 tens = tens+t en s pr ( i )∗ d i r p r ( : , i )∗ d i r p r ( : , i ) ' ;
54

55 end
56

57 end

What it’s important to observe is that very small changes are needed to implement this model

with respect to the infinitesimal linear elastic model. Essentially, it’s just necessary to compute the

deformation gradient 𝐹 and the Jacobian 𝐽 = det𝐹 , and modify the equations with these values.

3.2.3 Modified Cam Clay

Introduction

Cam-Clay models of critical state mechanics are widely used in many geotechnical applications

involving numerical predictions of stability and deformation behavior of compressible soil materials

such as soft clays. The general features of these models include pressure sensitivity, hardening
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response with plastic volumetric compaction, softening response with plastic dilation, and coupled

volumetric and deviatoric plastic deformations, which are essential to model the prototype granular

material behavior realistically.

In this section we will present a Cam-Clay constitutive model, which will be implemented in the

coupled non linear finite element code. The classical constitutive model needs to be extended

appropriately to be inserted in a finite strains framework. The two main modifications are, first,

the introduction of a linear relationship between the logarithm of specific volume and the logarithm

of effective mean normal stress to describe the compressibility behavior of the soil in the effective

deformation regime. Second, the introduction of a class of two-invariant stored energy function,

that takes into account the pressure-dependency of both the bulk and shear moduli, along with the

conservation of the energy.

In the next section we will recall the main relation of the adopted constitutive law, while later on

we will address the numerical solution and the implementation of the code.

Constitutive relations

In this section we will recall the fundamental equations of the constitutive model. In general, the

aspects that need to be defined in an elastoplastic model are:

1. The free energy function: several elastic law have been proposed for geomaterials, to capture

the correct response given by experimental data (46; 47; 48).

For this model we employ a hyperelastic model with pressure-dependent bulk and shear moduli.

This model was originally proposed by Houlsby (49) and subsequently modified by Borja et al.

(42), Callari et al. (50) and Yamakawa et al. (51), to describe the elastic response of mainly

clay and sands. Consider the volumetric and deviatoric elastic invariants defined as

𝜖𝑒𝑣 = 𝜖𝑒 · 𝛿; 𝜖𝑒𝑠 =
√︂

2
3 ‖𝑒

𝑒‖ ; 𝑒𝑒 = 𝜖𝑒 − 1
3𝜖

𝑒
𝑣𝛿, (3.42)

where 𝜖𝑒 = (𝜖𝑒1, 𝜖𝑒2, 𝜖𝑒3) is the vector of the elastic logarithmic principal stretches defined as

𝜖𝑒𝐴 = ln(𝜆𝑒
𝐴), and 𝛿 = (1, 1, 1). Next, consider a class of two-invariant free energy functions of

the form

𝜓(𝜖𝑒𝑣, 𝜖𝑒𝑠) = 𝜓(𝜖𝑒𝑣) + 3
2𝜇

𝑒𝜖𝑒𝑠
2, (3.43)

where

𝜓(𝜖𝑒𝑣) = −𝑃0𝑘 exp(Ω); Ω = −(𝜖𝑒𝑣 − 𝜖𝑒𝑣0)/𝑘. (3.44)

The term 𝜓(𝜖𝑒𝑣) represents the stored energy function for isotropic loading. The parameters

involved are the elastic compressibility modulus 𝑘 and the elastic volumetric strain 𝜖𝑒𝑣0 at a
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mean normal effective stress of 𝑃0. The term

𝜇𝑒 = 𝜇0 + 𝛼

𝑘
𝜓 (3.45)

represents the elastic shear modulus. It is the sum of a constant term 𝜇0 and a variable term,

that depends on the elastic volumetric strain through the constant coefficient 𝛼. If 𝛼 = 0, then

the elasticity model is defined by a variable elastic bulk modulus and a constant elastic shear

modulus.

Consider now the vector of the principal Kirchhoff tension 𝛽 = (𝛽1, 𝛽2, 𝛽3) and define 𝑃 and

𝑄, respectively the mean normal and deviatoric Kirchhoff stress invariants, given by

𝑃 = 1
3𝛽 · 𝛿; 𝑄 =

√︂
3
2 ‖𝑠‖ ; 𝑠 = 𝛽 − 𝑃𝛿. (3.46)

The relation between stress and strain invariants derives directly from the derivation of the

stored energy function with respect of the deformation, and reads

𝑃 = 𝜕𝜓

𝜕𝜖𝑒𝑣
= 𝑃0 exp(Ω)

[︂
1 + 3𝛼

2𝑘 (𝜖𝑒𝑠)2
]︂

; (3.47a)

𝑄 = 𝜕𝜓

𝜕𝜖𝑒𝑠
= 3(𝜇0 − 𝛼𝑃0 exp Ω)𝜖𝑒𝑠. (3.47b)

2. The yield function: consider a two-invariant yield function of the form

F = F (𝑃,𝑄, 𝑃𝑐) = 𝑄2

𝑀2 + 𝑃 (𝑃 − 𝑃𝑐) = 0, (3.48)

where 𝑃 and 𝑄 are the mean normal and deviatoric Kirchhoff stress invariants as defined in

Eq. (3.46). Eq. (5.2) defines the ellipsoid of the modified Cam-Clay model whose size is

determined by the Kirchhoff preconsolidation pressure 𝑃𝑐.

3. The hardening law: the model assumes that the yield surface can expand and shrink according

to the accumulated plastic volumetric strains. In other worlds, the preconsolidation pressure

𝑃𝑐 changes according to the accumulated plastic volumetric strain 𝜖𝑝𝑣. The equation in rate

form reads

�̇�𝑐 = −𝑃𝑐Θ�̇�𝑝𝑣, (3.49)

where Θ = 1/(𝜆 − 𝑘). The hardening parameter 𝑃𝑐 can be expressed as a known function of

the plastic volumetric strain, since Eq. (3.49) can be integrated exactly.

4. The flow rule: consider an associative flow rule, which means that the plastic potential is
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equivalent to the yield surface. Therefore the model assumes that

F ≡ G . (3.50)

5. The K-K-T conditions: the model has to fulfill the classical Karush-Kuhn-Tucker conditions

as follows

𝛾 ≥ 0 F ≤ 0 𝛾F = 0. (3.51)

6. The consistency conditions: in case of plasticity, the following condition has to be satisfied

𝛾Ḟ = 0 if F = 0. (3.52)

The above realtions constitute the set of equations that need to be solved numerically, in order

to account for the elastoplsatic behavior of the solid skeleton.

Return Mapping algorithm and algorithmic tangent operator

The model permits a fully implicit numerical integration utilizing a classical return mapping scheme

performed in the strain invariant space (42), leading to a system of non linear equations with three

unknowns. As described in the previous section, it is assumed that the updated displacements are

given, which implies that the elastic trial strain 𝜖𝑒 𝑇 𝑟 and the solution at time step 𝑡𝑛 are known.

The task is to compute the updated stress state 𝛽 and the discrete plastic multiplier Δ𝛾 for a given

displacement increment. According to (42), consider the following local residual equations generated

by the applied strain increment Δ𝜖

𝑟 = 𝑟(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜖𝑒𝑣 − 𝜖𝑒 𝑇 𝑟

𝑣 + Δ𝛾𝜕𝑃 F

𝜖𝑒𝑠 − 𝜖𝑒 𝑇 𝑟
𝑠 + Δ𝛾𝜕𝑄F

F

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ; 𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜖𝑒𝑣

𝜖𝑒𝑠

Δ𝛾

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.53)

The aim is to dissipate the residual vector 𝑟 by finding the solution vector 𝑥* using a Newton’s

method

𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑥𝑘; −𝐴𝑘𝛿𝑥𝑘 = 𝑟𝑘; 𝐴𝑘 = 𝜕𝑟𝑘

𝜕𝑥𝑘
; 𝑘 ← 𝑘 + 1, (3.54)

where 𝑘 plays the role of an iteration counter. A closed form expression for the consistent tangent

operator 𝐴 can be derived following standard procedures.

At every iteration the value of 𝑃𝑐 needs to be updated, according to (3.49). The current value of
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the volumetric plastic strain 𝜖𝑒𝑣 can be easily computed assuming the additive decomposition of the

logarithmic strains

𝜖𝑣 = 𝜖𝑒𝑣 + 𝜖𝑝𝑣 = 𝜖𝑒 𝑇 𝑟
𝑣 + 𝜖𝑝𝑣,𝑛, (3.55)

where 𝜖𝑝𝑣,𝑛 is the plastic volumetric deformation at time step 𝑡𝑛.

Of great importance is to derive the tangential tensor, required in Eq. (??) which is defined in

principal direction as

𝑎𝑒 = 𝜕𝛽

𝜕𝜖𝑒
. (3.56)

Naturally, two distinct tangential tensor has to be computed, depending on the either elastic or

elastoplastic status of stress

The tangential elastic tensor 𝑎𝑒 can be computed taking advantage of the invariant decomposition.

The derivation of the stress invariants with respect of the strain invariants reads

𝜕𝑃

𝜕𝜖𝑒
= 𝐷𝑒

11𝛿 +
√︂

2
3𝐷

𝑒
12�̂�; (3.57a)

𝜕𝑄

𝜕𝜖𝑒
= 𝐷𝑒

21𝛿 +
√︂

2
3𝐷

𝑒
22�̂�, (3.57b)

where �̂� = 𝑒𝑒/ ‖𝑒𝑒‖ and 𝐷𝑒 is the symmetric Hessian matrix of 𝜓that can be found in Appendix A.

Therefore, the consistent tangent operator 𝑎𝑒 for the hyperelastic law is computed using Eq. (3.57)

and reads (52)

𝑎𝐴𝐵 =
(︂
𝐷𝑒

11 −
2𝑄
9𝜖𝑒𝑠

)︂
𝛿𝐴𝛿𝐵 +

√︂
2
3(𝐷𝑒

12𝛿𝐴�̂�𝐵 +𝐷𝑒
21�̂�𝐴𝛿𝐵)+

2𝑄
3𝜖𝑒𝑠

(𝛿𝐴𝐵 − �̂�𝐴�̂�𝐵) + 2
3𝐷

𝑒
22�̂�𝐴�̂�𝐵 . (3.58)

Note that, if 𝛼 = 0 the volumetric and deviatoric elastic responses uncouple and the consistent

tangent operator in Eq. (3.58) degenerates to the following expression for an isotropic elastic model

𝑎𝐴𝐵 = 𝐾𝑒𝛿𝐴𝛿𝐵 + 2𝜇𝑒

(︂
𝛿𝐴𝐵 −

1
3𝛿𝐴𝛿𝐵

)︂
. (3.59)

where 𝐾𝑒 = −𝑃/𝑘 is the pressure sensitive elastic bulk modulus. As done for the hyperelastic

constitutive law, it is necessary to derive the algorithmic tangent modulus of the model in the

principal space for the plastic constitutive law. The operator is obtained taking the derivative of

the principal Kirchhoff tension with respect to the trial logarithmic principal strain, which are used

to compute the update state of stress in the elastoplastic regime

𝑎𝑒𝑝 = 𝜕𝛽

𝜕𝜖𝑒𝑇 𝑟
. (3.60)
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Consider the following strain derivative

𝑎𝑒𝑝 := 𝜕𝛽

𝜖𝑒 𝑇 𝑟
= 𝛿 ⊗ 𝜕𝑃

𝜖𝑒 𝑇 𝑟
+
√︂

2
3 �̂�⊗

𝜕𝑄

𝜖𝑒 𝑇 𝑟
+
√︂

2
3𝑄⊗

𝜕�̂�

𝜖𝑒 𝑇 𝑟
, (3.61)

where

𝜕�̂�

𝜖𝑒 𝑇 𝑟
= 𝜕𝜕(𝑒𝑒/ ‖𝑒𝑒‖)

𝜖𝑒 𝑇 𝑟
=
𝜕𝜕(𝑒𝑒 𝑇 𝑟/

⃦⃦
𝑒𝑒 𝑇 𝑟

⃦⃦
)

𝜖𝑒 𝑇 𝑟
= 1
‖𝑒𝑒 𝑇 𝑟‖

(︂
𝐼 − 1

3𝛿 ⊗ 𝛿 − �̂�⊗ �̂�
)︂
. (3.62)

Substituting (3.62) in (3.61), and using the elements of the matrix 𝐷𝑒 to enforce the chain rule, we

have

𝑎𝑒𝑝 = 𝛿 ⊗
(︂
𝐷𝑒

11
𝜕𝜖𝑒𝑣
𝜕𝜖𝑒 𝑇 𝑟

+𝐷𝑒
12

𝜕𝜖𝑒𝑠
𝜕𝜖𝑒 𝑇 𝑟

)︂
+
√︂

2
3 �̂�⊗

(︂
𝐷𝑒

21
𝜕𝜖𝑒𝑣
𝜕𝜖𝑒 𝑇 𝑟

+𝐷𝑒
22

𝜕𝜖𝑒𝑠
𝜕𝜖𝑒 𝑇 𝑟

)︂
+

2𝑄
3𝜖𝑒 𝑇 𝑟

𝑠

(︂
𝐼 − 1

3𝛿 ⊗ 𝛿 − �̂�⊗ �̂�
)︂
. (3.63)

The task is then reduced to determine the strain derivatives of the invariants 𝜖𝑒𝑣 and 𝜖𝑒𝑠, which are

obtained from the discretized flow rule, expressed in term of invariants

𝜕𝜖𝑒𝑣
𝜕𝜖𝑒 𝑇 𝑟

= 𝜕

𝜕𝜖𝑒 𝑇 𝑟

(︂
𝜖𝑒 𝑇 𝑟

𝑣 −Δ𝛾 𝜕F

𝜕𝑃

)︂
; 𝜕𝜖𝑒𝑠

𝜕𝜖𝑒 𝑇 𝑟
= 𝜕

𝜕𝜖𝑒 𝑇 𝑟

(︂
𝜖𝑒 𝑇 𝑟

𝑠 −Δ𝛾 𝜕F

𝜕𝑄

)︂
. (3.64)

Eq. (3.64) can be written in a more efficient way introducing the 2×2 operator𝐷𝑝, with components

𝐷𝑝
𝑖𝑗 , which maps the basis vectors 𝛿 and

√︀
2/3�̂� onto the derivatives with respect to 𝜖𝑒 𝑇 𝑟 of the

elastic strain invariants 𝜖𝑒𝑣 and 𝜖𝑒𝑠

𝜕𝜖𝑒𝑣
𝜕𝜖𝑒 𝑇 𝑟

= 𝐷𝑝
11𝛿 +

√︂
2
3𝐷

𝑝
12�̂�; 𝜕𝜖𝑒𝑠

𝜕𝜖𝑒 𝑇 𝑟
= 𝐷𝑝

21𝛿 +
√︂

2
3𝐷

𝑝
22�̂�. (3.65)

Finally substituting (3.65) in (3.63) and defining

𝐷𝑒𝑝 = 𝐷𝑒𝐷𝑝, (3.66)

we obtain the desired consistent tangent operator

𝑎𝑒𝑝
𝐴𝐵 =

(︂
𝐷𝑒𝑝

11 −
2𝑄

9𝜖𝑒 𝑇 𝑟
𝑠

)︂
𝛿𝐴𝛿𝐵 +

√︂
2
3(𝐷𝑒𝑝

12𝛿𝐴�̂�𝐵 +𝐷𝑒𝑝
21�̂�𝐴𝛿𝐵)+

2𝑄
3𝜖𝑒 𝑇 𝑟

𝑠

(𝛿𝐴𝐵 − �̂�𝐴�̂�𝐵) + 2
3𝐷

𝑒𝑝
22�̂�𝐴�̂�𝐵 . (3.67)

The coefficients of the operator 𝑎𝑒𝑝 depend on the operator 𝐷𝑝. The reader should refer to (42) for

close formulation.

Note that Eq. (3.84) is valid both for elastic and elasto-plastic loading. In fact, for elastic loading
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𝐷𝑝 = 𝐼 and 𝐷𝑒𝑝 = 𝐷𝑒 and so Eq. (3.84) reduces to the tangential elasticity matrix (3.58). The

correct computation of the algorithmic tangent moduli is crucial to obtain convergent solution of

the large-scale non-linear analysis and to detect singularities in the domain.

The complete procedure to compute the update state of stress and the tangent operator is summa-

rized in the following box.

1. Elastic deformation predictor: 𝑏𝑒 𝑇 𝑟 = 𝑓𝑛+1 · 𝑏𝑒
𝑛 · 𝑓𝑇

𝑛+1.

2. Spectral decomposition: 𝑏𝑒 𝑇 𝑟 =
∑︀3

𝐴=1(𝜆𝑒 𝑇 𝑟
𝐴 )2𝑛𝑇 𝑟 (𝐴) ⊗ 𝑛𝑇 𝑟 (𝐴).

3. Principal elastic logarithmic strains: 𝜖𝑇 𝑟
𝐴 = ln(𝜆𝑒 𝑇 𝑟

𝐴 ).

4. Deformation invariants 𝜖𝑒 𝑇 𝑟
𝑣 and 𝜖𝑒 𝑇 𝑟

𝑠 according to Eq. (3.42).

5. Elastic stress predictor 𝑃𝑇 𝑟 and 𝑄𝑇 𝑟 according to Eq. (3.47).

6. Check if yielding: F (𝑃𝑇 𝑟, 𝑄𝑇 𝑟, 𝑃𝑐,𝑛) ≥ 0?

• No: elastic step. Set (𝜖𝑒𝑣, 𝜖𝑒𝑠) = (𝜖𝑒 𝑇 𝑟
𝑣 , 𝜖𝑒 𝑇 𝑟

𝑠 ), 𝑃𝑐 = 𝑃𝑐,𝑛 and (𝑃,𝑄) = (𝑃𝑇 𝑟, 𝑄𝑇 𝑟).

Compute elastic stress-strain matrix 𝑎𝑒

• Yes: plastic step. Solve Eq. (3.80), compute 𝜖𝑒𝑣, 𝜖
𝑒
𝑠,Δ𝛾 and update 𝑃𝑐. Compute

elastoplastic stress-strain matrix 𝑎𝑒𝑝

7. Principal elastic logarithmic strain 𝜖𝑒𝐴 and principal Kirchhoff tension 𝛽𝐴.

8. Updated left elastic Cauchy-Green tensor and Kirchhoff stress tensor:

𝑏𝑒 =
∑︀3

𝐴=1(exp(𝜖𝑒𝐴))2𝑛𝑇 𝑟 (𝐴) ⊗ 𝑛𝑇 𝑟 (𝐴) and 𝜏 =
∑︀3

𝐴=1 𝛽𝐴𝑛
𝑇 𝑟 (𝐴) ⊗ 𝑛𝑇 𝑟 (𝐴)

Numerical code

The crucial function that is responsible a) to compute the update state of stress and b) to compute

the stress-strain matrix, is the function tens, which depends on the specific implemented material.

In this section we present in detail the function tensCC, which implements the constitutive equations

of the Cam Clay model presented so far.

The main function is reported in the following box.

1 f u n c t i o n [ tenspr , epse , Pc , aep , f l a g ] = tensCC (Ge , defepr , Pcn )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % tensCC :
4 % Compute the K i r c h h o f f p r i n c i p a l t e n s i o n accord ing to CC y i e l d c r i t e r i o n .
5 %
6 % Syntax :
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7 % [ tenspr , epse , Pc , aep , f l a g ] = tensCC (Ge , defepr , Pcn )
8 %
9 % Input :

10 % Ge : Mater ia l p r o p e r t y .
11 % d e f e p r : E l a s t i c p r i n c i p a l d e f o r m a t i o n .
12 % Pcn : P r e c o n s o l i d a t i o n p r e s s u r e at s tep n.
13 %
14 % Output :
15 % t e n sp r : Vector o f K i r c h h o f f p r i n c i p a l t e n s i o n . [ beta ( 1 ) beta ( 2 ) beta ( 3 ) ] '
16 % epse : Vector o f e l a s t i c p r i n c i p a l s t r a i n . [ epse ( 1 ) epse ( 2 ) epse ( 3 ) ] '
17 % Pc : P r e c o n s o l i d a t i o n p r e s s u r e at s tep n+1 .
18 % aep : Algor i thmic s t r e s s - s t r a i n matrix in pr d i r e c t i o n (a_AB) .
19 % f l a g : Flag f o r p l a s t i c i t y .
20 %
21 % Reference :
22 % Borja R. I . , Tamagnini C. , Cam- Clay p l a s t i c i t y , part I I I : Estens ion o f the
23 % i n f i n i t e s i m a l model to i n c l u d e f i n i t e s t r a i n , CMAME 155 , ( 1 9 9 8 ) , 73 -95 .
24 %
25 % Date :
26 % Vers ion 1 . 0 25 . 1 0 . 1 3
27 %
28 % Created by : Nicolo ' S p i e z i a
29 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
30

31 % I n i t i a l i z e v e c t o r
32

33 t en s pr = z e r o s ( 3 , 1 ) ;
34 epse = z e r o s ( 3 , 1 ) ;
35

36 imax = 1 5 ;
37 t o l l = 10e - 6 ;
38

39 % Set i s o t r o p i c e l a s t o - p l a s t i c parameter
40 mu0 = Ge ( 2 ) ;
41 a l f a = Ge ( 3 ) ;
42 kappa = Ge ( 4 ) ;
43 lambda = Ge ( 5 ) ;
44 M = Ge ( 6 ) ;
45 P0 = Ge ( 7 ) ;
46 epsev0 = Ge ( 9 ) ;
47

48

49 % Compute vo lumetr i c t r i a l s t r a i n
50 epsevTR = d e f e p r (1 ,1)+ d e f e p r (2 ,1)+ d e f e p r ( 3 , 1 ) ;
51

52 % Compute d e v i a t o r i c t r i a l s t r a i n
53 epsedev ( : , 1 ) = d e f e p r ( : , 1 ) - epsevTR / 3 ;
54

55 epsesTR = s q r t (2/3)∗ norm ( epsedev ) ;
56

57 % Compute t r i a l s t r e s s i n v a r i a n t s
58 [ Ptr , Qtr ] = PQ( epsevTR , epsesTR , P0 , a l f a , kappa , epsev0 , mu0 ) ;
59

60 % Check f o r p l a s t i c i t y
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61 Ftr = ( Qtr/M)^2+ Ptr ∗( Ptr - Pcn ) ;
62

63 i f Ftr > t o l l % PLASTIC STEP
64 f l a g = 1 ;
65

66 % Solve NR system
67

68 % I n i z i a l i z e v a r i a b l e s
69 x = z e r o s ( 3 , 1 ) ;
70 x ( 1 , 1 ) = epsevTR ; % epsev
71 x ( 2 , 1 ) = epsesTR ; % e p s e s
72 x ( 3 , 1 ) = 0 ; % dgamma
73

74 Pc = Pcn ;
75 P = Ptr ;
76 Q = Qtr ;
77

78 f o r i t e r = 1 : imax
79

80 % e v a l u a t e r e s i d u a l
81 r = [ x ( 1 , 1 ) - epsevTR + x ( 3 , 1 ) ∗ ( 2 ∗P- Pc ) ;
82 x ( 2 , 1 ) - epsesTR + x ( 3 , 1 ) ∗ ( 2 ∗Q/M^ 2 ) ;
83 (Q/M)^2 + P∗(P- Pc ) ] ;
84

85

86 i f i t e r == 1
87 r0 = norm ( r ) ;
88 end
89

90 NORMErec( i t e r , 1 ) = norm ( r )/ norm ( r0 ) ;
91

92 % check f o r convergence
93 i f norm ( r ) < t o l l
94 break
95 e l s e
96

97 % e v a l u a t e tangent matrix f o r NR i t e r a t i o n
98 A = Atang ( x ( 1 , 1 ) , x ( 2 , 1 ) , x ( 3 , 1 ) , . . .
99 P,Q, Pc , lambda , kappa , mu0 , a l f a , P0 , epsev0 ,M) ;

100

101 % s o l v e f o r d isp lacement increment
102 dx = - (A\ r ) ;
103

104 x = x + dx ;
105

106 % update
107

108 [ P,Q]=PQ( x ( 1 , 1 ) , x ( 2 , 1 ) , P0 , a l f a , kappa , epsev0 , mu0 ) ;
109

110 OMEGA = 1/( lambda - kappa ) ;
111 Pc = Pcn∗exp ( -OMEGA∗( epsevTR - x ( 1 , 1 ) ) ) ;
112

113 i f i t e r == imax
114 f p r i n t f ( ' \n No convergence RM \n ' )
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115 break
116 end
117

118 end
119 end
120

121 %Update v a r i a b l e
122 epsev = x ( 1 , 1 ) ;
123 e p s e s = x ( 2 , 1 ) ;
124 dgamma = x ( 3 , 1 ) ;
125

126 % Compute matrix Dep
127

128 Dep = DEPtens ( epsev , epses , dgamma , P,Q, Pc , . . .
129 lambda , kappa , mu0 , a l f a , P0 , epsev0 ,M) ;
130

131

132 e l s e % ELASTIC STEP
133 f l a g = 0 ;
134

135 %Update v a r i a b l e
136 epsev = epsevTR ;
137 e p s e s = epsesTR ;
138

139 Pc = Pcn ;
140 P = Ptr ;
141 Q = Qtr ;
142

143 % Compute matrix De
144

145 De = DEtens ( epsev , epses , P, kappa , mu0 , a l f a , P0 , epsev0 ) ;
146

147 Dep = De ;
148

149 end
150

151 % Compute v e c t o r n
152

153 n ( : , 1 ) = epsedev ( : , 1 ) / norm ( epsedev ) ;
154

155 % Compute p r i n c i p a l K i r c h h o f f t e n s i o n
156

157 t en s pr ( : , 1 ) = P∗ ones (3 ,1)+ s q r t (2/3)∗Q∗n ( : , 1 ) ;
158

159 % Compute p r i n c i p a l e l a s t i c s t r a i n
160

161 epse ( : , 1 ) = (1/3)∗ epsev ∗ ones (3 ,1)+ s q r t (3/2)∗ e p s e s ∗n ( : , 1 ) ;
162

163 % Compute a l g o r i t h m i c s t r e s s - s t r a i n in p r i n c i p a l d i r e c t i o n
164

165 aep = (Dep ( 1 , 1 ) - 2 ∗Q/(9∗ epsesTR ) ) ∗ ones ( 3 , 1 ) ∗ ones (3 ,1) '+ . . .
166 s q r t (2/3)∗ Dep ( 1 , 2 ) ∗ ones ( 3 , 1 ) ∗ n ( : , 1 ) ' + . . .
167 s q r t (2/3)∗ Dep ( 2 , 1 ) ∗ n ( : , 1 ) ∗ ones (3 ,1) '+ . . .
168 ( ( 2 ∗Q)/(3∗ epsesTR ) ) ∗ ( eye ( 3 ) - n ( : , 1 ) ∗ n ( : , 1 ) ' ) + . . .

67



169 (2/3)∗ Dep ( 2 , 2 ) ∗ n ( : , 1 ) ∗ n ( : , 1 ) ' ;
170

171 end

The operator 𝐴, necessary to solve the non-linear set of equations of the Return Mapping algo-

rithm, is computed by the function Atang, which is reported in the following box.

1 f u n c t i o n [A] = Atang ( epsev , epses , dgamma , P,Q, Pc , lambda , kappa , mu0 , a l f a , P0 , epsev0 ,M )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % ATANG Compute tangent f o r NR i t e r a t i o n f o r Cam Clay Return Mapping
4 %
5 % Reference :
6 % Borja R. I . , Tamagnini C. , Cam- Clay p l a s t i c i t y , part I I I : Estens ion o f the
7 % i n f i n i t e s i m a l model to i n c l u d e f i n i t e s t r a i n , CMAME 155 , ( 1 9 9 8 ) , 73 -95 .
8 %
9 % Date : 25/10/2013

10 % Vers ion 1 . 0
11 %
12 % Created by : Nicolo ' S p i e z i a
13 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
14

15 % I n i z i a l i z e m a t r i c e s
16 A = z e r o s ( 3 ) ;
17 [ De , H, G] = de a l ( z e r o s ( 2 ) ) ;
18

19 % Compute parameter
20 OMEGA = -( epsev - epsev0 )/ kappa ;
21 mue = mu0+( a l f a /kappa ) ∗ ( - P0∗kappa∗exp (OMEGA) ) ;
22 THETA = 1/( lambda - kappa ) ;
23

24 % Compute matrix D
25

26 De ( 1 , 1 ) = -P/kappa ;
27 De ( 2 , 2 ) = 3∗mue ;
28 De ( 1 , 2 ) = (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
29 De ( 2 , 1 ) = (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
30

31 % Compute matrix H
32

33 H( 1 , 1 ) = 2 ;
34 H( 2 , 2 ) = 2/(M^ 2 ) ;
35 H( 1 , 2 ) = 0 ;
36 H( 2 , 1 ) = 0 ;
37

38 % Compute matrix G
39

40 G = H∗De ;
41

42 % Compute matrix A
43

44 A( 1 , 1 ) = 1+dgamma∗(G( 1 , 1 ) -THETA∗Pc ) ;
45 A( 1 , 2 ) = dgamma∗G( 1 , 2 ) ;
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46 A( 1 , 3 ) = 2∗P- Pc ;
47

48 A( 2 , 1 ) = dgamma∗G( 2 , 1 ) ;
49 A( 2 , 2 ) = 1+dgamma∗G( 2 , 2 ) ;
50 A( 2 , 3 ) = 2∗Q/(M^ 2 ) ;
51

52 A( 3 , 1 ) = De ( 1 , 1 ) ∗ ( 2 ∗P- Pc)+De ( 2 , 1 ) ∗ ( 2 ∗Q/(M^2))+THETA∗Pc ∗( -P ) ;
53 A( 3 , 2 ) = De ( 1 , 2 ) ∗ ( 2 ∗P- Pc)+De ( 2 , 2 ) ∗ ( 2 ∗Q/(M^ 2 ) ) ;
54 A( 3 , 3 ) = 0 ;
55

56 end

The stress-strain tensor 𝑎𝑒 or 𝑎𝑒𝑝 is computed by the fucntion tensCC via the operator 𝐷𝑒 and

𝐷𝑒𝑝, which are computed by the functions DEtens DEPtens, and are summarized in the following

two boxes.

1 f u n c t i o n DE = DEtens ( epsev , epses , P, kappa , mu0 , a l f a , P0 , epsev0 )
2 %DEtens Compute the e l a s t i c t e n s o r De
3

4 % I n i z i a l i z e m a t r i c e s
5 De = z e r o s ( 2 ) ;
6

7 % Compute parameter
8 OMEGA = -( epsev - epsev0 )/ kappa ;
9 mue = mu0+( a l f a /kappa ) ∗ ( - P0∗kappa∗exp (OMEGA) ) ;

10

11 % Compute e l a s t i c t e n s o r De (3 . 33 a Part I I I )
12 DE( 1 , 1 ) = -P/kappa ;
13 DE(2 ,2)= 3∗mue ;
14 DE(1 ,2)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
15 DE(2 ,1)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
16

17 end

1 f u n c t i o n Dep = DEPtens ( epsev , epses , dgamma , P,Q, Pc , lambda , kappa , mu0 , a l f a , P0 , epsev0 ,M )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % DEPtens : compute matrix Dep accord ing to equat ione 3 . 5 0
4 %
5 % Reference :
6 % Borja R. I . , Tamagnini C. , Cam- Clay p l a s t i c i t y , part I I I : Estens ion o f the
7 % i n f i n i t e s i m a l model to i n c l u d e f i n i t e s t r a i n , CMAME 155 , ( 1 9 9 8 ) , 73 -95 .
8 %
9 % Date : 25/10/2013

10 % Vers ion 1 . 0
11 %
12 % Created by : Nicolo ' S p i e z i a
13 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
14

15 % I n i z i a l i z e m a t r i c e s
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16 [ De ,H, b ,Dp] = dea l ( z e r o s ( 2 ) ) ;
17

18 % Compute parameter
19 OMEGA = -( epsev - epsev0 )/ kappa ;
20 mue = mu0+( a l f a /kappa ) ∗ ( - P0∗kappa∗exp (OMEGA) ) ;
21 THETA = 1/( lambda - kappa ) ;
22

23 % Compute matrix D
24

25 De ( 1 , 1 ) = -P/kappa ;
26 De(2 ,2)= 3∗mue ;
27 De(1 ,2)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
28 De(2 ,1)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
29

30 % Compute matrix H
31

32 H( 1 , 1 ) = 2 ;
33 H( 2 , 2 ) = 2/(M^ 2 ) ;
34 H( 1 , 2 ) = 0 ;
35 H( 2 , 1 ) = 0 ;
36

37 % Compute matrix G
38

39 G = H∗De ;
40

41 % Compute matrix b
42

43 b ( 1 , 1 ) = 1+dgamma∗(G( 1 , 1 ) -THETA∗Pc ) ;
44 b ( 1 , 2 ) = dgamma∗G( 1 , 2 ) ;
45 b ( 2 , 1 ) = dgamma∗G( 2 , 1 ) ;
46 b ( 2 , 2 ) = 1+dgamma∗G( 2 , 2 ) ;
47

48 % Compute parameters
49

50 c1 = 1 -dgamma∗( -THETA∗Pc ) ∗ ( - 1 ) ;
51 c2 = -dgamma∗( -THETA∗Pc ) ∗ 0 ;
52

53 d1 = De ( 1 , 1 ) ∗ ( 2 ∗P- Pc)+De ( 2 , 1 ) ∗ ( 2 ∗Q/(M^2))+THETA∗Pc ∗( -P ) ;
54 d2 = De ( 1 , 2 ) ∗ ( 2 ∗P- Pc)+De ( 2 , 2 ) ∗ ( 2 ∗Q/(M^ 2 ) ) ;
55

56 e = d1 ∗( b ( 2 , 2 ) ∗ ( 2 ∗P- Pc ) - b ( 1 , 2 ) ∗ ( 2 ∗Q/(M^2)))+ d2 ∗( b ( 1 , 1 ) ∗ ( 2 ∗Q/(M^ 2 ) ) - b ( 2 , 1 ) ∗ ( 2 ∗P- Pc ) ) ;
57

58 a1 = ( d1 ∗( b ( 2 , 2 ) ∗ c1 - b ( 1 , 2 ) ∗ c2)+d2 ∗( b ( 1 , 1 ) ∗ c2 - b ( 2 , 1 ) ∗ c1)+det ( b ) ∗ ( -THETA∗Pc ) ∗ ( -P) ) / e ;
59 a2 = s q r t ( 2 / 3 ) ∗ ( d2∗b ( 1 , 1 ) - d1∗b ( 1 , 2 ) ) / e ;
60

61 % Compute matrix Dp
62

63 Dp(1 ,1)= b ( 2 , 2 ) ∗ ( c1 - a1 ∗(2∗P- Pc ) ) - b ( 1 , 2 ) ∗ ( c2 - a1 ∗(2∗Q/(M^ 2 ) ) ) ;
64 Dp(1 ,2)= b (1 ,2)∗( -1+ s q r t (3/2)∗ a2 ∗(2∗Q/(M^ 2 ) ) ) - s q r t (3/2)∗ b ( 2 , 2 ) ∗ a2 ∗(2∗P- Pc ) ;
65 Dp(2 ,1)= b ( 1 , 1 ) ∗ ( c2 - a1 ∗(2∗Q/(M^ 2 ) ) ) - b ( 2 , 1 ) ∗ ( c1 - a1 ∗(2∗P- Pc ) ) ;
66 Dp(2 ,2)= b ( 1 , 1 ) ∗ ( 1 - s q r t (3/2)∗ a2 ∗(2∗Q/(M^2)))+ s q r t (3/2)∗ b ( 2 , 1 ) ∗ a2 ∗(2∗P- Pc ) ;
67

68 Dp = Dp/ det ( b ) ;
69
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70 % Compute matrix Dep
71

72 Dep = De∗Dp;
73

74 end

Numerical example

This section assesses the accuracy of the proposed integration algorithm. Since the finite deformation

algorithm uses the same classical return mapping calculations of the infinitesimal theory, the accuracy

analysis apply to both small and large strain formulations.

The values of material parameters used in the computation are the following: 𝜆 = 0.018, 𝜅 = 0.13,

𝑀 = 1.05, 𝜇0 = 0, 𝛼 = 120, 𝑃0 = −90𝐾𝑃𝑎 and 𝑃𝑐0 = −90𝐾𝑃𝑎. Hence, the initial condition

corresponds to a normally consolidated soil with a preconsolidation pressure of 𝑃0 = 𝑃𝑐0 = −90𝐾𝑃𝑎

on the isotropic axis.

Figg. 3-1 and 3-2 show the stress strain curves and stress path on the P-Q plane as functions of

number of imposed strain increments. In particular, Fig. 3-1 shows the soil being deformed to total

strains of 𝜖𝑣 = 0 and 𝜖𝑠 = 0.05 applied in proportional increment; Fig. 3-2 shows the soil being

deformed to total strains of 𝜖𝑣 = −0.05 and 𝜖𝑠 = 0.05.

Note that in both case the solution is convergent, in the sense that the responses converge toward

the solutions obtained using 100 steps.

This type of algorithm is exactly repeated at the Gauss point level, in order to solve classical

Boundary value problem, as will be done in the next chapters of the thesis.

3.2.4 Continuous Cap model

Introduction

In this section we present an innovative constitutive model, developed to described the constitutive

behavior of highly porous rock.

Before presenting in detail the formulation of the model, it is useful to briefly summarize the main

features of dilation and compaction failure revealed by experimental studies on porous rocks.

In order to develop and evaluate possible constitutive models for high porosity rock it’s necessary

to understand the complex macro/microscopic behavior under different loading condition. A de-

tailed discussion on the different failure mechanisms of porous rock is behind the scope of this work.

Nevertheless it is fundamental, in order to better understand the following part of the work, briefly

recall the main features of the mechanical response. In particular we consider two different loading

programs, namely hydrostatic compression (uniform confining pressure) and axisymmetric compres-

sion (radial confining pressure applied to cylindrical specimens with an additional compressive axial
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Figure 3-1: Convergence analysis with 10 increments (left) and 100 increments (right) imposing
𝜖𝑣 = 0 and 𝜖𝑠 = 0.05.
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Figure 3-2: Convergence analysis with 10 increments (left) and 100 increments (right) imposing
𝜖𝑣 = −0.05 and 𝜖𝑠 = 0.05.
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Figure 3-3: Hydrostatic pressure vs. volume strainvolume strain for high porosity rock.

load).

Under hydrostatic compression (53; 54; 55), the typical mechanical response for different sandstones

of varying porosities is shown in fig. 3-3. Typically, the mechanical response of a porous sandstone is

nonlinear, even in the elastic regime, specially for low pressure value. Initial compaction is associated

with rearrangement of cement and loosely bonded grains, then it is associated with grain crushing,

and the curve tends to be approximately linear. Note that, as the pore space is tightened by elastic

deformation, the sample becomes progressively stiffer, as manifested by a decrease in compressibility.

However, as the hydrostatic loading increases, the sample reaches a point where it suddenly becomes

more compliant, showing a dramatic increase in compaction. After this point, corresponding to the

grain crushing pressure, the rock experiences inelastic deformations, due to grain crashing and pore

collapse. Finally, after a considerable amount of porosity has been crushed out, the rock begins to

harden.

This inflection point occurs at a wide range of effective pressures, depending mainly on the porosity

and average grain size (53). If a sample is loaded beyond this inflection point and then unloaded,

the permanent compaction is significant, confirming the occurrence of inelastic deformation.

Under axisymmetric compression (56; 55) high porosity sandstones have two mainly different re-

sponses. When the confining pressure is relatively low, after volume compaction has been occurred,

shear induced dilation is observed, and the specimen ultimately fail via shear localization. This

behavior is common for most kind of geomaterials, and suggests the use of a shear yield surface, as

Mohr-Coulomb or Drucker-Prager yield surface, or the one proposed by Rudnicki Rise (57). How-

ever, when the confining pressure is relatively high, the response is similar to the hydrostatic loading
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Figure 3-4: Two-yield surface model for high porosity rock. Loading path A (low confining pressure)
intersects the shear yield surface, with negative slope. Loading path B (high confining pressure)
intersects the cap yield surface, with positive slope. 𝑃 : mean normal stress; 𝑄: norm of second
invariant of deviatoric stress.

previously described. The grain crushing begins at a lower mean stress, and a larger porosity reduc-

tion occurs for only a small increase in mean stress. This response is usually called shear enhanced

compaction (56), and report a larger reduction in grain crushing pressure for smaller confining pres-

sures. This behavior suggest the use of a cap yield surface, corresponding to compactive yield.

Further, the defined cap may expand with porosity reduction.

In conclusion, loading path beginning at lower confining pressure leads to the shear yield surface,

while loading path at higher confining pressure intersect the cap yield surface. These two different

situations are shown schematically in Fig. 3-4.

The distinction between high and low confining pressure is far from trivial (2). Under axisym-

metric compression at intermediate confining pressures, a transitional regime exist, where both yield

surface (and consequently both damage mechanism) are active. The failure modes consist of com-

paction bands and/or shear bands. In this situation, the loading path intersects the yield surface

in the vicinity of the region where the two yield surfaces would meet. Therefore it is proposed that

the occurrence of two active damage mechanism, for loading in transitional regime, corresponds to

activation of both the shear and cap surface.

Constitutive relations

As done for the Modified Cam-Clay model in the previous section, we describe the constitutive

relations to take into account the mechanical behavior described so far. Again, a general elasto-

plastic constitutive model is characterized bye the definition of the six following aspects.
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1. The free energy function: most of the model developed for rocks assume linear elastic consti-

tutive law, assuming bulk modulus and shear modulus constant.

Experimental evidence, as reported briefly in previous section (2), show us that for rocks, as

for most geomaterials, the response is non linear, even if elastic, especially for low level of the

mean normal stress. The sample becomes stiffer as far as the hydrostatic pressure increase,

suggesting a dependance of the bulk modulus from the applied pressure. The elastic shear

modulus can be determined directly from the elastic bulk modulus through the assumption of

a constant value of a Poisson’s ratio, according to usual assumptions for clay (58), but this

definition leads to a non-conservative nonlinear elasticity model in which energy may be ex-

tracted from unloading-reloading cycles (59). All these considerations suggest to use the same

energy function as introduced for the Modified Cam Clay model in the previous section. This

constitutive law well describes the elastic non linear behavior of rocks.

2. The yield function: as briefly summarized at the beginning of this section, depending on the

confining pressure the rocks show two different plastic responses, mainly characterized by shear

dilation or compaction. To describe this mechanical behavior two issues must be addressed:

the shape of the initial yield surface and its evolution while accumulating plastic deformation.

As far as the yield surface function(s), two possibilities are usually assumed (60): a single

smooth yield surface or a multisurface, where two functions intersect in a vertex.

As regard single surface model, they usually descend from the pioneering critical state model

proposed by Schoefield and Wroth (61) for clay , employing an elliptical yield surface. Carroll

(62) proposed a type of critical state plasticity model using a mobile parabolic yield surface.

Grueschow and Rudnicki (63) proposed to describe compaction with the use of an elliptical

yield surface, with varying axis. These models give good results as regard the compaction

side, but usually they are coarse in reference to the dilatant side, due to the symmetry of

the surface. Furthermore, non symmetric yield functions, as proposed for example for sand

by Jefferies (64), require a more complex formulation, involving larger number of parameters

arduous to be defined from laboratory test.

On the other hand, the plastic surface can be described using two independent continuously

differentiable yield functions, that intersects in a vertex. Usually these kind of models are

based on the combination of a Mohr-Coulomb or Drucker-Prager yield surface in the zone of

shear deformation and cap surfaces in the compaction zone. The most adopted was suggested

by DiMaggio and Sandler (65), using an elliptical cap that intersect the shear-failure surface

at the point of horizontal tangency to the ellipse. Since it’s not required that the two func-

tions intersect smoothly, the formulation is usually less complicated and fewer parameters are

necessary.

However, the weak point is now the lack of smooth transition between the two surfaces, and
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therefore between the two plastic mechanism (66). The requirement that the cap surface inter-

sect the shear surface at the point of horizontal tangency to the cap prevents pre-failure dilatant

deformation, contradicting experimental observations. Furthermore, there is an indeterminacy

of flow direction at the intersection point and the apex point produce an accumulation point

in the solution of the stress-update algorithm.

To circumvent the shortcomings of the model described so far, we propose a yield surface which

is characterized by two yield functions, but which intersect smoothly, resulting in a continuous

surface. In doing so, we use a combined model based on a linear and an elliptical yield surface.

The linear part of the yield surface F1 corresponds to shear failure zone and it is based on

a Drucker-Prager formulation, which is a well-known and recognized model to describe shear

deformation with dilatancy, supported by numerous experimental measurements for different

kind of rocks

F1(𝑃,𝑄) = 𝑄−𝑚𝑃 − 𝑐0 = 0 (3.68)

where 𝑚 is the slope of the linear yield surface and 𝑐0 is the intersection of the surface with

the vertical axis, in a (𝑃,𝑄) plot.

For the compaction failure zone, we suggest to use an elliptical yield surface F2, resembling

the DiMaggio-Sandler failure envelope (65):

F2(𝑃,𝑄, 𝑃𝑖) = 𝐵2(𝑃 − 𝑃𝑖)2 +𝐴2𝑄2 −𝐴2𝐵2 = 0 (3.69)

where 𝐴 and 𝐵 are respectively the minor and major semiaxis of the ellipse and 𝑃𝑖 is the

centroid. The intersection between the two surfaces is defined as the point in which F1 is

tangent to F2, ensuring the two surfaces produce a unique surface without any angular point.

The intersection point (𝑃 *, 𝑄*) can be easily evaluated solving the equation

𝑑𝑄(𝑃 *)
𝑑𝑃

= 𝑚 (3.70)

where

𝑄 =
√︂
𝐵2 − 𝐵2

𝐴2 (𝑃 − 𝑃𝑖)2. (3.71)

The result of this equation reads

𝑃 * = 𝑃𝑖 ±
𝑚𝐴√︀

𝐵2/𝐴2 +𝑚2
. (3.72)

The intersection point lies always in the right part of the ellipse, then 𝑃 * must be greater then

𝑃𝑖 and therefore only the solution with the sign “−” must be taken into account. Fig. 3-5

represents the two continuous yield surfaces, highlighting the principles parameters involved.
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Figure 3-5: The two yield surfaces model. The elliptical yield surface is tangent to the linear surface
in the point defined by (𝑃 *, 𝑄*).

To the authors’ knowledge, this formulation of the yield surface is new and improve the classical

plastic cap model, ensuring a smooth surface.

3. The hardening law: once the initial yield surface has been defined, a central question to be

answered is how the plastic surface evolve according to the accumulate plastic deformation.

Experimental evidence shows that, after a significant amount of porosity has been crushed, the

rock begins to harden. Once a considerable amount of porous has collapsed, the rock become

almost incompressible, and the stress-strain curve in fig. 3-3 tends to assume an asymptotic

vertical trend. Almost all the proposed model have two common features: (1) they assume the

plastic yield behavior of the compactant rock is isotropic and (2) the strain hardening behavior

is characterized by a yield function that depends solely on the plastic volumetric strain (3).

Since plastic deformation of the solid grains can be considered negligible, the plastic volumetric

strain can be assumed in first approximation as the plastic porosity change, and the expansion

of the cap surface can be inferred mapping out contours in the stress space corresponding to

specific value of porosity reduction.

In this work, we propose that the elliptical surface can contract and expand according to the

following criteria:

(a) The width of the ellipse remain constant, i.e. 𝐴 = 𝐴0 where 𝐴0 is the initial horizontal

semi-axis of the ellipse. This approach is similar to what proposed by Carroll (62).

(b) The elliptical surface can slide along the horizontal axis, remaining always tangent to the

linear surface. This condition guarantees that the yield surface is always continuous. To
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satisfy this condition, we impose that the vertical semi-axis varies according to

𝐵 =
√︁
𝑚2𝑃 2

𝑖 −𝐴2𝑚2 + 2𝑚𝑐0𝑃𝑖 + 𝑐2
0 (3.73)

(c) The variation of 𝑃𝑖, i.e. the centroid of the ellipse, depends on the accumulated plastic

volumetric strain according to

𝑃𝑖 = 𝑃𝑖0

(︂
𝜖*

𝜖* − 𝜖𝑝𝑣

)︂𝑟

(3.74)

where 𝑃𝑖0 is the initial value, 𝜖* is the volumetric deformation at ultimate compaction

and 𝑟 is the exponent that control the rate of volumetric hardening (67). This proposed

hardening law is suggested by experimental evidence: as soon as the plastic volumetric

deformation achieve a maximum value (corresponding to the collapse of the porous skele-

ton) the further plastic deformation can develop only in shear mode. This hyperbolic

function reflects the presence of vertical tangent to curve in fig. 3-3.

Since the main emphasis in this work is made on the inelastic behavior of porous rocks during

compaction, we assume that the linear surface remain fix throughout all the deformation

process (perfect plasticity).

4. The flow rule: finally, we need to define how plastic strains evolve after the rock has yielded, i.e.

define an appropriate plastic potential function. This issue is particular challenging to address,

and there isn’t a unique interpretation. The majority of authors assume the application of an

associated flow rule, i.e. the yield surface is used as a potential surface. This, however, reduces

the capabilities of the model, since the dilatancy coefficient is strictly related with the yield

surface, which results in disagreement with experimental data. On the other hand, the use of a

non associated flow rule gives more accurate description of the mechanism, but introduces new

additional parameter in the formulation, and consequently requires additional measurements.

In this work, we suggest to use for the linear side a potential function of the form

Ḡ = 𝑄− �̄�𝑃 − 𝑐 = 0. (3.75)

This non-associative law, assuming that �̄� < 𝑚, avoid the often excessive dilatancy predicted

by the associative rule. The non-associative law is essentially obtained by adopting, as the flow

potential, a Drucker–Prager yield function with the frictional angle replaced by a dilatancy

angle.

For the cap side of the plastic surface we assume two flow rules, depending on the stress status.

Let’s introduce the point (𝑃 , �̃�) in which the plastic potential Ḡ and the yield function F have
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the same normal:
𝑑𝑄(𝑃 )
𝑑𝑃

= �̄� (3.76)

where 𝑄 has has been defined in (3.71). The result of this equation reads

𝑃 = 𝑃𝑖 −
�̄�𝐴√︀

𝐵2/𝐴2 + �̄�2
. (3.77)

Therefore, if 𝑃 < 𝑃 we adopt an associative flow rule for the cap surface, otherwise, if 𝑃 > 𝑃

we assume a non associative flow rule defined by the same plastic potential Ḡ .

This formulation ensures that along the complete yield surface there are no discontinuities with

respect to flow vector, and therefore the transition from the dilatant to the compactive side is

smooth, even in reference of the flow rule. Hence, with respect to the flow rule, we define three

different regions of the plastic surface, depending on the yield function and the yield surface,

as reported in fig. 3-6. The subdivision of the yield surface in these three different parts will

be of central importance in the solution of the stress-update algorithm, as discussed in the

next section.

5. The K-K-T conditions: the model has to fulfill the classical Karush-Kuhn-Tucker conditions

as follows

𝛾 ≥ 0 F ≤ 0 𝛾F = 0. (3.78)
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Description Yield function Plastic potential Abbr.
F G

Non-associative linear surface F1 Ḡ Lin. NA

Non-associative elliptical surface F2 Ḡ Ell. NA

Associative elliptical surface F2 F2 Ell. A

Table 3.1: The three stress update algorithms

6. The consistency conditions: in case of plasticity, the following condition has to be satisfied

𝛾Ḟ = 0 if F = 0. (3.79)

Return Mapping algorithm and algorithmic tangent operator

Also for this set of equations it is possible to perform a fully implicit numerical integration, utilizing

the same scheme performed in the strain invariant space (42), as done for the previous model. Again,

it is assumed that the updated displacements are given, which implies that the elastic trial strain

𝜖𝑒 𝑇 𝑟 and the solution at time step 𝑡𝑛 are known. The task is to compute the updated stress state

𝛽 and the discrete plastic multiplier Δ𝛾 for a given displacement increment. Consider the following

local residual equations generated by the applied strain increment Δ𝜖

𝑟 = 𝑟(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜖𝑒𝑣 − 𝜖𝑒 𝑇 𝑟

𝑣 + Δ𝛾𝜕𝑃 G

𝜖𝑒𝑠 − 𝜖𝑒 𝑇 𝑟
𝑠 + Δ𝛾𝜕𝑄G

F

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ; 𝑥 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜖𝑒𝑣

𝜖𝑒𝑠

Δ𝛾

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.80)

Note that now the function G appears in the set of equations instead of the th function F . The

aim is to dissipate the residual vector 𝑟 by finding the solution vector 𝑥* using a Newton’s method,

exactly as done before

𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑥𝑘; −𝐴𝑘𝛿𝑥𝑘 = 𝑟𝑘; 𝐴𝑘 = 𝜕𝑟𝑘

𝜕𝑥𝑘
; 𝑘 ← 𝑘 + 1, (3.81)

where 𝑘 plays the role of an iteration counter.

Depending on the loading path, different yield functions and plastic potential will be activated, in

particular three different Return Mapping schemes need to be implemented, based on (3.80), and

are summarized in the table 3.1.

A closed form expression for the consistent tangent operator 𝐴 can be written for the three

different set of nonlinear equations. The details can be found in appendix A. The question that

need to be answered now is how to select the correct Return Mapping algorithm, above the three
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Figure 3-7: Algorithm for selection of the correct Return-Mapping algorithm.

presented, that fully satisfies the plastic consistency condition, for a given elastic trial state. In other

words, it’s necessary a procedure to identify which yield and potential functions are activated.

The summary of a possible selection algorithm is shown in the flowchart of fig. 3-7.

If the elliptical surface is activated, then at every iteration the value of 𝑃𝑖 need to be updated,

according to (3.74). The current value of the volumetric plastic strain 𝜖𝑒𝑣 can be easily computed

assuming the additive decomposition of the logarithmic strains

𝜖𝑣 = 𝜖𝑒𝑣 + 𝜖𝑝𝑣 = 𝜖𝑒 𝑇 𝑟
𝑣 + 𝜖𝑝𝑣,𝑛, (3.82)

where 𝜖𝑝𝑣,𝑛 is the plastic volumetric deformation at time step 𝑡𝑛.

As shown in fig. 3-6, the linear yield surface and the plastic potential functions create corners

on the dilatant side of the hydrostatic axis. In this case, i.e. when the return mapping on the linear

surface gives as result a negative value of 𝑄, a standard procedure for apex formulation need to be

implemented. The author can refer to (68) for further details.

Again, as done for the hyperelastic counterpart, we want to obtain the following 3 × 3 material

tangent stiffness matrix necessary in (3.36), according to the procedure developed so far, in order to

solve typical nonlinear boundary-value problems

𝑎 = 𝜕𝛽

𝜕𝜖𝑒 𝑇 𝑟
(3.83)
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.

Again, we can use the same structure derived for the Cam Caly model. Therefore, the task

consists simply in computing the following consistent tangent operator

𝑎𝑒𝑝 =
(︂
𝐷𝑒𝑝

11 −
2𝑄

9𝜖𝑒 𝑇 𝑟
𝑠

)︂
𝛿 ⊗ 𝛿 +

√︂
2
3𝐷

𝑒𝑝
12(𝛿 ⊗ �̂�) +

√︂
2
3𝐷

𝑒𝑝
21(�̂�⊗ 𝛿)+

2𝑄
3𝜖𝑒 𝑇 𝑟

𝑠

(𝐼 − �̂�⊗ �̂�) + 2
3𝐷

𝑒𝑝
22�̂�⊗ �̂�, (3.84)

where the coefficients of operator 𝑎𝑒𝑝 depends on the return mapping algorithm adopted, through

the operator 𝐷𝑝, i.e. on the form of the functions F and G . For detailed results, the reader should

refer to Appendix A for close formulation.

Note that eq. (3.84) is valid both for elastic and elasto-plastic loading. In fact, for elastic loading

𝐷𝑝 = 𝐼 and 𝐷𝑒𝑝 = 𝐷𝑒 and so (3.84) reduces to the tangential elasticity matrix.

The complete procedure to compute the update state of stress and the tangent operator is

summarized in the following box.
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1. Elastic deformation predictor: 𝑏𝑒 𝑇 𝑟 = 𝑓𝑛+1 · 𝑏𝑒
𝑛 · 𝑓 𝑡

𝑛+1.

2. Spectral decomposition: 𝑏𝑒 𝑇 𝑟 =
∑︀3

𝐴=1(𝜆𝑒 𝑇 𝑟
𝐴 )2𝑛𝑇 𝑟 (𝐴) ⊗ 𝑛𝑇 𝑟 (𝐴).

3. Principal elastic logarithmic strains: 𝜖𝑇 𝑟
𝐴 = ln(𝜆𝑒 𝑇 𝑟

𝐴 ).

4. Deformation invariants 𝜖𝑒 𝑇 𝑟
𝑣 and 𝜖𝑒 𝑇 𝑟

𝑠 according to eq. (3.42).

5. Elastic stress predictor 𝑃𝑇 𝑟 and 𝑄𝑇 𝑟 according to eq. (3.47).

6. Check if yielding: F2(𝑃𝑇 𝑟, 𝑄𝑇 𝑟, 𝑃𝑖,𝑛) ≥ 0?

No: elastic step, go to (9.). Yes: continue.

7. Check if yielding F1(𝑃𝑇 𝑟, 𝑄𝑇 𝑟) ≥ 0?

(a) Yes: Linear yield surface. Solve Lin. NA, compute 𝜖𝑒𝑣, 𝜖𝑒𝑠,Δ𝛾

and set 𝑃𝑖 = 𝑃𝑖,𝑛.

• Check correctness of algorithm: 𝑃 ≥ 𝑃 *?

No: elliptical yield surface, go to (8.). Yes: continue.

• Check cone apex: 𝑄 ≥ 0?

No: non valid algorithm, stop. Yes: correct, go to (10.).

(b) No: check plastic point: 𝑃𝑇 𝑟 ≤ 𝑃 *?

No: elastic step, go to (9.). Yes: continue.

8. Elliptical yield surface.

• For every iteration 𝑘 check: 𝑃 ≤ 𝑃?

No: Solve Ell. NA. Yes: Solve Ell. A.

• Update 𝑃𝑖 according to eq. (3.82) and eq. (3.74).

• Compute 𝜖𝑒𝑣, 𝜖𝑒𝑠, Δ𝛾

. Compute elastoplastic stress-strain matrix 𝑎𝑒𝑝. Go to (10.).

9. Elastic step. Set (𝜖𝑒𝑣, 𝜖𝑒𝑠) = (𝜖𝑒 𝑇 𝑟
𝑣 , 𝜖𝑒 𝑇 𝑟

𝑠 ), 𝑃𝑖 = 𝑃𝑖,𝑛 and (𝑃,𝑄) = (𝑃𝑇 𝑟, 𝑄𝑇 𝑟). Compute

elastic stress-strain matrix 𝑎𝑒

10. Principal elastic logarithmic strain (𝜖𝑒𝐴) and principal Kirchhoff tension 𝛽𝐴.

11. Updated left elastic Cauchy-Green tensor and Kirchhoff stress tensor:

𝑏𝑒 =
∑︀3

𝐴=1(exp(𝜖𝑒𝐴))2𝑛𝑇 𝑟 (𝐴) ⊗ 𝑛𝑇 𝑟 (𝐴) and 𝜏 =
∑︀3

𝐴=1 𝛽𝐴𝑛
𝑇 𝑟 (𝐴) ⊗ 𝑛𝑇 𝑟 (𝐴)
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Numerical code

In this section we present in detail the function tensCCDP, which implements the constitutive equa-

tions of the elastoplastic model presented so far.

The main function is reported in the following box.

1 f u n c t i o n [ tenspr , epse , epspv , aep , f l a g ] = tensCCDP(Ge , defepr , epspvn )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % tensCCDP :
4 % Compute the K i r c h h o f f p r i n c i p a l t e n s i o n accord ing to Cap Continuos y i e l d c r i t e r i o n .
5 %
6 % Syntax :
7 % f u n c t i o n [ tenspr , P,Q, epse , epspv , aep , f l a g ] = tensCCDP(Ge , defepr , epspvn , ip )
8 %
9 % Input :

10 % Ge : Mater ia l p r o p e r t y .
11 % d e f e p r : E l a s t i c p r i n c i p a l d e f o r m a t i o n .
12 % epspvn : P l a t i c vo lumetr i c s t r a i n at s tep n.
13 %
14 % Output :
15 % t e n sp r : Vector o f K i r c h h o f f p r i n c i p a l t e n s i o n . [ beta ( 1 ) beta ( 2 ) beta ( 3 ) ] '
16 % epse : Vector o f e l a s t i c p r i n c i p a l s t r a i n . [ epse ( 1 ) epse ( 2 ) epse ( 3 ) ] '
17 % epspv : P l a t i c vo lumetr i c s t r a i n at s tep n+1 .
18 % aep : Algor i thmic s t r e s s - s t r a i n matrix in pr d i r e c t i o n (a_AB) .
19 % f l a g : Flag f o r p l a s t i c i t y .
20 %
21 % Date :
22 % Vers ion 1 . 0 25 . 1 0 . 1 3
23 %
24 % Created by : Nicolo ' S p i e z i a
25 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
26

27 % I n i t i a l i z e v e c t o r
28 imax = 2 0 ;
29 t o l l = 10e - 6 ;
30

31 t en s pr = z e r o s ( 3 , 1 ) ;
32 epse = z e r o s ( 3 , 1 ) ;
33 NORMErec = z e r o s ( imax , 1 ) ;
34

35 % Set i s o t r o p i c e l a s t o - p l a s t i c parameter
36

37 mu0 = Ge ( 2 ) ;
38 a l f a = Ge ( 3 ) ;
39 kappa = Ge ( 4 ) ;
40 m = Ge ( 5 ) ;
41 P0 = Ge ( 6 ) ;
42 Pi0 = Ge ( 7 ) ;
43 epsev0 = Ge ( 8 ) ;
44 A = Ge ( 9 ) ;
45 c0 = Ge ( 1 0 ) ;
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46 pp = Ge ( 1 1 ) ;
47 e p s t a r = Ge ( 1 2 ) ;
48 mbar = Ge ( 1 3 ) ;
49

50

51 % Compute vo lumetr i c t r i a l s t r a i n
52 epsevTR = d e f e p r (1 ,1)+ d e f e p r (2 ,1)+ d e f e p r ( 3 , 1 ) ;
53

54 % Compute d e v i a t o r i c t r i a l s t r a i n
55

56 epsedev ( : , 1 ) = d e f e p r ( : , 1 ) - epsevTR / 3 ;
57 epsesTR = s q r t (2/3)∗ norm ( epsedev ) ;
58

59 % Compute TRial s t r e s s
60

61 i f epspvn <=0;
62 Pin = Pi0 ∗( e p s t a r /( epstar - epspvn ) ) ^ pp ;
63 e l s e
64 Pin = Pi0 ;
65 end
66

67 [ Ptr , Qtr ] = PQ( epsevTR , epsesTR , P0 , a l f a , kappa , epsev0 , mu0 ) ;
68

69 f l a g = 0 ;
70

71 % Compute t r i a l y i e l d s u r f a c e
72

73 % CC y i e l d s u r f a c e
74 B2 = m^2∗ Pin ^2 -m^2∗A^2+2∗m∗ c0 ∗Pin+c0 ^ 2 ;
75 F1tr = B2∗( Ptr - Pin )^2+(A^2)∗ ( Qtr ^ 2 ) - (A^2)∗B2 ;
76

77 % DP y i e l d s u r f a c e
78 F2tr = Qtr -m∗Ptr - c0 ;
79

80 % I n t e r s e c t i o n CC/DP
81 a = Ge ( 9 ) ;
82 b = s q r t (m^2∗ Pin ^2 -m^2∗A^2+2∗m∗ c0 ∗Pin+c0 ^ 2 ) ;
83 p s t a r = Pin - (m∗a∗b ) / ( s q r t ( ( b^4/ a^2)+m^2∗b ^ 2 ) ) ;
84

85 % Check f o r p l a s t i c i t y
86

87 i f F1tr > t o l l
88

89 i f F2tr > t o l l
90 f l a g = 1 ;
91 s u r f = 2 ;
92

93 Pi = Pin ;
94

95 % ! - - - - - - - - - - - - L inear RM - - - - - - - - - - - - - - !
96

97 % I n i z i a l i z e v a r i a b l e s
98 x = z e r o s ( 3 , 1 ) ;
99 x ( 1 , 1 ) = epsevTR ; % epsev
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100 x ( 2 , 1 ) = epsesTR ; % e p s e s
101 x ( 3 , 1 ) = 0 ; % dgamma
102

103

104 P = Ptr ;
105 Q = Qtr ;
106

107 f o r i t e r = 1 : imax
108

109 % e v a l u a t e r e s i d u a l
110

111 F = Q-m∗P- c0 ;
112

113 dPG = -mbar ;
114 dQG = 1 ;
115

116 r = [ x ( 1 ) - epsevTR+x ( 3) ∗dPG
117 x ( 2 ) - epsesTR+x (3 ) ∗dQG
118 F ] ;
119

120 i f i t e r == 1
121 r0 = norm ( r ) ;
122 end
123

124 NORMErec( i t e r ) = norm ( r )/ norm ( r0 ) ;
125

126 % check f o r convergence
127 i f norm ( r ) < t o l l ∗ r0
128

129 break
130 e l s e
131

132 % e v a l u a t e tangent matrix
133 Atang = AtangDP( x ( 1 , 1 ) , x ( 2 , 1 ) ,P, kappa , mu0 , a l f a , P0 , epsev0 ,m, mbar ) ;
134

135 % s o l v e f o r d isp lacement increment
136 dx = - ( Atang\ r ) ;
137

138 x = x + dx ;
139

140 % Update
141

142 [ P,Q]=PQ( x ( 1 , 1 ) , x ( 2 , 1 ) , P0 , a l f a , kappa , epsev0 , mu0 ) ;
143

144 epspv = epsevTR - x (1 ,1)+ epspvn ;
145

146

147

148 end
149 end
150

151 i f i t e r == imax
152 f p r i n t f ( 'No convergence o f RM' )
153 end
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154

155

156 %Update v a r i a b l e
157 epsev = x ( 1 , 1 ) ;
158 e p s e s = x ( 2 , 1 ) ;
159 dgamma = x ( 3 , 1 ) ;
160

161 % Compute matrix Dep f o r l i n e a r non - a s s o c i a t i v e
162

163 Dep = DEPtensDP( epsev , epses , P, kappa , mu0 , a l f a , P0 , epsev0 ,m, mbar ) ;
164 % ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - !
165

166 % Check f o r c o r r e c t s u r f a c e
167 B2 = m^2∗ Pin ^2 -m^2∗A^2+2∗m∗ c0 ∗Pin+c0 ^ 2 ;
168 F1 = B2∗(P- Pin )^2+(A^2)∗ (Q^ 2 ) - (A^2)∗B2 ;
169

170

171

172 i f F1 > t o l l && P < p s t a r
173 s u r f = 1 ; % Goto e l l i p t i c a l s u r f a c e
174 end
175

176 e l s e
177 i f Ptr<p s t a r
178 f l a g = 1 ;
179 s u r f = 1 ;
180 end
181

182 end
183

184 end
185

186

187 i f f l a g ==1 && s u r f == 1
188 % ! - - - - - - - - - - - - - - - - - - - - e l l i p t i c a l RM - - - - - - - - - - - - - - - - - - - - - - !
189 f l a g = 2 ;
190

191 % I n i z i a l i z e v a r i a b l e s
192 x = z e r o s ( 3 , 1 ) ;
193 x ( 1 , 1 ) = epsevTR ; % epsev
194 x ( 2 , 1 ) = epsesTR ; % e p s e s
195 x ( 3 , 1 ) = 0 ; % dgamma
196

197 Pi = Pin ;
198 P = Ptr ;
199 Q = Qtr ;
200

201 f o r i t e r = 1 : imax
202

203 b = s q r t (m^2∗ Pi ^2 -m^2∗A^2+2∗m∗ c0 ∗ Pi+c0 ^ 2 ) ;
204 p t i l d e = Pi - ( mbar∗A∗b ) / ( s q r t ( ( b^4/A^2)+mbar^2∗b ^ 2 ) ) ;
205

206 % e v a l u a t e r e s i d u a l
207 B2 = m^2∗ Pi ^2 -m^2∗A^2+2∗m∗ c0 ∗ Pi+c0 ^ 2 ;
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208

209 F = B2∗(P- Pi )^2+(A∗Q)^2 -B2∗A^ 2 ;
210

211 i f P < p t i l d e % A s s o c i a t i v e RM1
212 RM = 1 ;
213

214 dPF = 2∗B2∗(P- Pi ) ;
215 dQF = 2∗(A^2)∗Q;
216

217 r = [ x ( 1 ) - epsevTR+x ( 3) ∗dPF
218 x ( 2 ) - epsesTR+x (3 ) ∗dQF
219 F ] ;
220

221 i f i t e r == 1
222 r0 = norm ( r ) ;
223 end
224

225 NORMErec( i t e r ) = norm ( r )/ norm ( r0 ) ;
226

227 % check f o r convergence
228 i f norm ( r ) < t o l l ∗ r0
229

230 break
231 e l s e
232

233 % e v a l u a t e tangent matrix
234 Atang = AtangCC( x ( 1 , 1 ) , x ( 2 , 1 ) , x ( 3 , 1 ) ,P,Q, Pi , kappa , mu0 , . . .
235 a l f a , P0 , epsev0 , pp , Pi0 , epstar ,A, B2 ,m, c0 , epspvn , epsevTR ) ;
236

237 % s o l v e f o r d isp lacement increment
238 dx = - ( Atang\ r ) ;
239

240 x = x + dx ;
241 end
242

243

244 e l s e % Non A s s o c i a t i v e RM2
245 RM = 2 ;
246

247 dPG = -mbar ;
248 dQG = 1 ;
249

250 r = [ x ( 1 ) - epsevTR+x ( 3) ∗dPG
251 x ( 2 ) - epsesTR+x (3 ) ∗dQG
252 F ] ;
253

254 i f i t e r == 1
255 r0 = norm ( r ) ;
256 end
257

258 NORMErec( i t e r ) = norm ( r )/ norm ( r0 ) ;
259

260 % check f o r convergence
261 i f norm ( r ) < t o l l ∗ r0
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262

263 break
264 e l s e
265

266 % e v a l u a t e tangent matrix
267 Atang = AtangDPCC( x ( 1 , 1 ) , x ( 2 , 1 ) ,P,Q, Pi , kappa , mu0 , . . .
268 a l f a , P0 , epsev0 , pp , Pi0 , epstar ,A, B2 ,m, mbar , c0 , epspvn , epsevTR ) ;
269

270 % s o l v e f o r d isp lacement increment
271 dx = - ( Atang\ r ) ;
272

273 x = x + dx ;
274

275 end
276 end
277 % Update
278

279 [ P,Q]=PQ( x ( 1 , 1 ) , x ( 2 , 1 ) , P0 , a l f a , kappa , epsev0 , mu0 ) ;
280

281 epspv = epsevTR - x (1 ,1)+ epspvn ;
282

283

284 Pi = Pi0 ∗( e p s t a r /( epstar - epspv ) ) ^ pp ;
285

286 end
287

288 i f i t e r == imax
289 f p r i n t f ( 'No convergence o f RM' )
290 end
291

292

293 %Update v a r i a b l e
294 epsev = x ( 1 , 1 ) ;
295 e p s e s = x ( 2 , 1 ) ;
296 dgamma = x ( 3 , 1 ) ;
297

298 % Compute matrix Dep
299 i f RM == 1 ;
300 Dep = DEPtensCC( epsev , epses , dgamma , P,Q, Pi , kappa , mu0 , a l f a , . . .
301 P0 , epsev0 , pp , Pi0 , epstar ,A, B2 ,m, c0 , epspvn , epsevTR ) ;
302 f l a g = 2 2 ;
303 e l s e
304 Dep = DEPtensDPCC( epsev , epses , P,Q, Pi , kappa , mu0 , a l f a , . . .
305 P0 , epsev0 , pp , Pi0 , epstar ,A, B2 ,m, mbar , c0 , epspvn , epsevTR ) ;
306 f l a g = 2 1 ;
307 end
308 % ! - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - !
309

310 end
311

312 i f f l a g == 0 % ELASTIC STEP
313

314

315 %Update v a r i a b l e
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316 epsev = epsevTR ;
317 e p s e s = epsesTR ;
318

319 Pi= Pin ;
320 P = Ptr ;
321 Q = Qtr ;
322 epspv = epspvn ;
323

324 % Compute matrix De
325

326 De = DEtens ( epsev , epses , P, kappa , mu0 , a l f a , P0 , epsev0 ) ;
327

328 Dep = De ;
329

330 end
331

332 % Compute v e c t o r n
333

334 n ( : , 1 ) = epsedev ( : , 1 ) / norm ( epsedev ) ;
335

336 % Compute p r i n c i p a l K i r c h h o f f t e n s i o n
337

338 t en s pr ( : , 1 ) = P∗ ones (3 ,1)+ s q r t (2/3)∗Q∗n ( : , 1 ) ;
339

340 % Compute p r i n c i p a l e l a s t i c s t r a i n
341

342 epse ( : , 1 ) = (1/3)∗ epsev ∗ ones (3 ,1)+ s q r t (3/2)∗ e p s e s ∗n ( : , 1 ) ;
343

344 % Compute a l g o r i t h m i c s t r e s s - s t r a i n in p r i n c i p a l d i r e c t i o n
345

346

347 aep = (Dep ( 1 , 1 ) - 2 ∗Q/(9∗ epsesTR ) ) ∗ ones ( 3 , 1 ) ∗ ones (3 ,1) '+ . . .
348 s q r t (2/3)∗ Dep ( 1 , 2 ) ∗ ones ( 3 , 1 ) ∗ n ( : , 1 ) ' + . . .
349 s q r t (2/3)∗ Dep ( 2 , 1 ) ∗ n ( : , 1 ) ∗ ones (3 ,1) '+ . . .
350 ( ( 2 ∗Q)/(3∗ epsesTR ) ) ∗ ( eye ( 3 ) - n ( : , 1 ) ∗ n ( : , 1 ) ' ) + . . .
351 (2/3)∗ Dep ( 2 , 2 ) ∗ n ( : , 1 ) ∗ n ( : , 1 ) ' ;
352

353 end
354 end

Depending on the plastic mechanism, the operator 𝐴, necessary to solve the non-linear set of

equations of the Return Mapping algorithm, is computed by different functions Atang, which are

reported in the following three boxes.

1 f u n c t i o n Atang = AtangDP( epsev , epses , P, kappa , mu0 , a l f a , P0 , epsev0 ,m, mbar )
2

3 % AtangDP Compute tangent f o r NR i t e r a t i o n f o r
4 % l i n e a r non a s s o c i a t i v e Return Mapping
5

6 % I n i z i a l i z e m a t r i c e s
7 [ De ] = de a l ( z e r o s ( 2 ) ) ;
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8

9 % Compute parameter
10 OMEGA = -( epsev - epsev0 )/ kappa ;
11 mue = mu0+( a l f a /kappa ) ∗ ( - P0∗kappa∗exp (OMEGA) ) ;
12

13 Kp = 0 ;
14

15 % Compute d e r i v a t i v e o f Yie ld Function
16 dPF = -m;
17 dQF = 1 ;
18 dPiF = 0 ;
19

20 % Compute d e r i v a t i v e o f P l a s t i c p o t e n t i a l
21 dPG = -mbar ;
22 dQG = 1 ;
23

24 % Compute matrix D
25

26 De ( 1 , 1 ) = -P/kappa ;
27 De(2 ,2)= 3∗mue ;
28 De(1 ,2)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
29 De(2 ,1)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
30

31

32

33 % Compute matrix A
34

35 Atang = [ 1 0 dPG
36 0 1 dQG
37 De ( 1 , 1 ) ∗dPF+De ( 2 , 1 ) ∗dQF+Kp∗dPiF De ( 1 , 2 ) ∗dPF+De ( 2 , 2 ) ∗dQF 0 ] ;
38

39 end

1 f u n c t i o n Atang = AtangCC( epsev , epses , dgamma , P,Q, Pi , kappa , mu0 , . . .
2 a l f a , P0 , epsev0 , pp , Pi0 , epstar ,A, B2 ,m, c0 , epspvn , epsevTR )
3

4 % AtangCC Compute tangent f o r NR i t e r a t i o n f o r e l l i p t i c a l Return Mapping
5

6 % I n i z i a l i z e m a t r i c e s
7 [ De ] = de a l ( z e r o s ( 2 ) ) ;
8

9 % Compute parameter
10 OMEGA = -( epsev - epsev0 )/ kappa ;
11 mue = mu0+( a l f a /kappa ) ∗ ( - P0∗kappa∗exp (OMEGA) ) ;
12

13 Kp = pp∗ Pi0 ∗ ( ( e p s t a r /( epstar - epsevTR+epsev - epspvn ) ) ^ ( pp - 1 ) ) ∗ . . .
14 ( - e p s t a r /( epstar - epsevTR+epsev - epspvn ) ^ 2 ) ;
15

16 % Compute d e r i v a t i v e o f Yie ld Function
17 dPF = 2∗B2∗(P- Pi ) ;
18 dQF = 2∗(A^2)∗Q;
19 dPiF = (2∗ Pi ∗m^2+2∗m∗ c0 ) ∗ ( (P- Pi )^2 -A^2)+B2∗2∗(P- Pi ) ∗ ( - 1 ) ;
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20

21 dPPF = 2∗B2 ;
22 dQQF = 2∗(A^ 2 ) ;
23 dPQF = 0 ;
24

25 dPPiF = 2∗((2∗ Pi ∗m^2+2∗m∗ c0 ) ∗ (P- Pi ) -B2 ) ;
26 dQPiF = 0 ;
27

28 % Compute matrix D
29

30 De ( 1 , 1 ) = -P/kappa ;
31 De(2 ,2)= 3∗mue ;
32 De(1 ,2)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
33 De(2 ,1)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
34

35 % Compute matrix H
36

37 H = [ dPPF dPQF
38 dPQF dQQF ] ;
39

40 % Compute matrix G
41

42 G = H∗De ;
43

44 % Compute matrix A
45

46 Atang = [ 1+dgamma∗(G(1 ,1)+Kp∗dPPiF ) dgamma∗G( 1 , 2 ) dPF
47 dgamma∗(G(2 ,1)+Kp∗dQPiF) 1+dgamma∗G( 2 , 2 ) dQF
48 De ( 1 , 1 ) ∗dPF+De ( 2 , 1 ) ∗dQF+Kp∗dPiF De ( 1 , 2 ) ∗dPF+De ( 2 , 2 ) ∗dQF 0 ] ;
49

50 end

1 f u n c t i o n Atang = AtangDPCC( epsev , epses , P,Q, Pi , kappa , mu0 , a l f a , P0 , . . .
2 epsev0 , pp , Pi0 , epstar ,A, B2 ,m, mbar , c0 , epspvn , epsevTR )
3

4 % AtangDPCC Compute tangent f o r NR i t e r a t i o n
5 % f o r l i n e a r a s s o c i a t i v e Return Mapping
6

7 % I n i z i a l i z e m a t r i c e s
8 [ De ] = de a l ( z e r o s ( 2 ) ) ;
9

10 % Compute parameter
11 OMEGA = -( epsev - epsev0 )/ kappa ;
12 mue = mu0+( a l f a /kappa ) ∗ ( - P0∗kappa∗exp (OMEGA) ) ;
13

14 Kp = pp∗ Pi0 ∗ ( ( e p s t a r /( epstar - epsevTR+epsev - epspvn ) ) ^ ( pp - 1 ) ) ∗ . . .
15 ( - e p s t a r /( epstar - epsevTR+epsev - epspvn ) ^ 2 ) ;
16

17 % Compute d e r i v a t i v e o f Yie ld Function
18 dPF = 2∗B2∗(P- Pi ) ;
19 dQF = 2∗(A^2)∗Q;
20 dPiF = (2∗ Pi ∗m^2+2∗m∗ c0 ) ∗ ( (P- Pi )^2 -A^2)+B2∗2∗(P- Pi ) ∗ ( - 1 ) ;
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21

22

23 % Compute d e r i v a t i v e o f P l a s t i c p o t e n t i a l
24 dPG = -mbar ;
25 dQG = 1 ;
26

27 % Compute matrix D
28

29 De ( 1 , 1 ) = -P/kappa ;
30 De(2 ,2)= 3∗mue ;
31 De(1 ,2)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
32 De(2 ,1)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
33

34 % Compute matrix A
35

36 Atang = [ 1 0 dPG
37 0 1 dQG
38 De ( 1 , 1 ) ∗dPF+De ( 2 , 1 ) ∗dQF+Kp∗dPiF De ( 1 , 2 ) ∗dPF+De ( 2 , 2 ) ∗dQF 0 ] ;
39

40 end

The stress-strain tensor 𝑎𝑒 or 𝑎𝑒𝑝 is computed by the fucntion tensCCDP via the operator 𝐷𝑒

and 𝐷𝑒𝑝, which are computed by the functions DEtens and DEPtens. Depending on the plastic

mechanism, and therefore the Return Mapping scheme, three different operator 𝐷𝑒𝑝 are needed,

which are reported in the following three boxes

1 f u n c t i o n Dep = DEPtensCC( epsev , epses , dgamma , P,Q, Pi , kappa , mu0 , . . .
2 a l f a , P0 , epsev0 , pp , Pi0 , epstar ,A, B2 ,m, c0 , epspvn , epsevTR )
3 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 % DEPtens : compute matrix Dep f o r a s s o c i a t i v e e l l i p t i c a l s u r f a c e
5 %
6 % Date : 29/10/2013
7 % Vers ion 1 . 0
8 %
9 % Created by : Nicolo ' S p i e z i a

10 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
11 % I n i z i a l i z e m a t r i c e s
12 [ De , b ,Dp] = dea l ( z e r o s ( 2 ) ) ;
13

14 % Compute parameter
15 OMEGA = -( epsev - epsev0 )/ kappa ;
16 mue = mu0+( a l f a /kappa ) ∗ ( - P0∗kappa∗exp (OMEGA) ) ;
17

18 Kp = pp∗ Pi0 ∗ ( ( e p s t a r /( epstar - epsevTR+epsev - epspvn ) ) ^ ( pp - 1 ) ) ∗ . . .
19 ( - e p s t a r /( epstar - epsevTR+epsev - epspvn ) ^ 2 ) ;
20

21 KpTR = pp∗ Pi0 ∗ ( ( e p s t a r /( epstar - epsevTR+epsev - epspvn ) ) ^ ( pp - 1 ) ) ∗ . . .
22 ( e p s t a r /( epstar - epsevTR+epsev - epspvn ) ^ 2 ) ;
23

24 % Compute d e r i v a t i v e o f Yie ld Function
25 dPF = 2∗(B2 ) ∗ (P- Pi ) ;
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26 dQF = 2∗(A^2)∗Q;
27 dPiF = (2∗m^2∗ Pi+2∗m∗ c0 ) ∗ ( (P- Pi )^2 -A^2)+B2∗2∗(P- Pi ) ∗ ( - 1 ) ;
28

29 dPPF = 2∗B2 ;
30 dQQF = 2∗(A^ 2 ) ;
31 dPQF = 0 ;
32

33 dPPiF = 2∗((2∗m^2∗ Pi+2∗m∗ c0 ) ∗ (P- Pi ) -B2 ) ;
34 dQPiF = 0 ;
35

36 % Compute matrix D
37

38 De ( 1 , 1 ) = -P/kappa ;
39 De(2 ,2)= 3∗mue ;
40 De(1 ,2)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
41 De(2 ,1)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
42

43 % Compute matrix H
44

45 H = [ dPPF dPQF
46 dPQF dQQF ] ;
47

48 % Compute matrix G
49

50 G = H∗De ;
51

52 % Compute matrix b
53

54 b ( 1 , 1 ) = 1+dgamma∗(G(1 ,1)+Kp∗dPPiF ) ;
55 b ( 1 , 2 ) = dgamma∗G( 1 , 2 ) ;
56 b ( 2 , 1 ) = dgamma∗(G(2 ,1)+Kp∗dQPiF ) ;
57 b ( 2 , 2 ) = 1+dgamma∗G( 2 , 2 ) ;
58

59 % Compute parameters
60

61 c1 = 1 -dgamma∗KpTR∗dPPiF ;
62 c2 = -dgamma∗KpTR∗dQPiF ;
63

64 d1 = De ( 1 , 1 ) ∗dPF+De ( 2 , 1 ) ∗dQF+Kp∗dPiF ;
65 d2 = De ( 1 , 2 ) ∗dPF+De ( 2 , 2 ) ∗dQF;
66

67 e = d1 ∗( b ( 2 , 2 ) ∗dPF- b ( 1 , 2 ) ∗dQF)+d2 ∗( b ( 1 , 1 ) ∗dQF- b ( 2 , 1 ) ∗dPF ) ;
68

69 a1 = ( d1 ∗( b ( 2 , 2 ) ∗ c1 - b ( 1 , 2 ) ∗ c2)+d2 ∗( b ( 1 , 1 ) ∗ c2 - b ( 2 , 1 ) ∗ c1)+det ( b )∗KpTR∗dPiF )/ e ;
70 a2 = s q r t ( 2 / 3 ) ∗ ( d2∗b ( 1 , 1 ) - d1∗b ( 1 , 2 ) ) / e ;
71

72 % Compute matrix Dp
73

74 Dp(1 ,1)= b ( 2 , 2 ) ∗ ( c1 - a1∗dPF) - b ( 1 , 2 ) ∗ ( c2 - a1∗dQF ) ;
75 Dp(1 ,2)= b (1 ,2)∗( -1+ s q r t (3/2)∗ a2∗dQF) - s q r t (3/2)∗ b ( 2 , 2 ) ∗ a2∗dPF ;
76 Dp(2 ,1)= b ( 1 , 1 ) ∗ ( c2 - a1∗dQF) - b ( 2 , 1 ) ∗ ( c1 - a1∗dPF ) ;
77 Dp(2 ,2)= b ( 1 , 1 ) ∗ ( 1 - s q r t (3/2)∗ a2∗dQF)+ s q r t (3/2)∗ b ( 2 , 1 ) ∗ a2∗dPF ;
78

79 Dp = Dp/ det ( b ) ;
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80

81 % Compute matrix Dep
82

83 Dep = De∗Dp;
84

85 end

1 f u n c t i o n Dep = DEPtensDP( epsev , epses , P, kappa , mu0 , a l f a , P0 , epsev0 ,m, mbar )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % DEPtensDP : compute matrix Dep f o r l i n e a r non - a s s o c i a t i v e s u r f a c e
4 %
5 % Date : 14/01/2014
6 % Vers ion 1 . 0
7 %
8 % Created by : Nicolo ' S p i e z i a
9 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 % I n i z i a l i z e m a t r i c e s
11 [ De ,Dp] = d ea l ( z e r o s ( 2 ) ) ;
12

13 % Compute parameter
14 OMEGA = -( epsev - epsev0 )/ kappa ;
15 mue = mu0+( a l f a /kappa ) ∗ ( - P0∗kappa∗exp (OMEGA) ) ;
16

17 % Compute d e r i v a t i v e o f Yie ld Function
18 dPF = -m;
19 dQF = 1 ;
20

21 % Compute d e r i v a t i v e o f P l a s t i c p o t e n t i a l
22 dPG = -mbar ;
23 dQG = 1 ;
24

25 % Compute matrix D
26

27 De ( 1 , 1 ) = -P/kappa ;
28 De(2 ,2)= 3∗mue ;
29 De(1 ,2)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
30 De(2 ,1)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
31

32 % Compute parameters
33

34 d1 = De ( 1 , 1 ) ∗dPF+De ( 2 , 1 ) ∗dQF;
35 d2 = De ( 1 , 2 ) ∗dPF+De ( 2 , 2 ) ∗dQF;
36

37 e = d1∗dPG+d2∗dQG;
38

39 a1 = d1/ e ;
40 a2 = d2/ e ;
41

42 % Compute matrix Dp
43

44 Dp(1 ,1)= 1 - a1∗dPG;
45 Dp(1 ,2)= - a2∗dPG;
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46 Dp(2 ,1)= - a1∗dQG;
47 Dp(2 ,2)= 1 - a2∗dQG;
48

49 % Compute matrix Dep
50

51 Dep = De∗Dp;
52

53 end

1 f u n c t i o n Dep = DEPtensDPCC( epsev , epses , P,Q, Pi , kappa , mu0 , a l f a , . . .
2 P0 , epsev0 , pp , Pi0 , epstar ,A, B2 ,m, mbar , c0 , epspvn , epsevTR )
3 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
4 % DEPtensDPCC : compute matrix Dep f e o l i n e a r a s s o c i a t i v e s u r f a c e
5 %
6 % Date : 29/10/2013
7 % Vers ion 1 . 0
8 %
9 % Created by : Nicolo ' S p i e z i a

10 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
11 % I n i z i a l i z e m a t r i c e s
12 [ De ,Dp] = d ea l ( z e r o s ( 2 ) ) ;
13

14 % Compute parameter
15 OMEGA = -( epsev - epsev0 )/ kappa ;
16 mue = mu0+( a l f a /kappa ) ∗ ( - P0∗kappa∗exp (OMEGA) ) ;
17

18 Kp = pp∗ Pi0 ∗ ( ( e p s t a r /( epstar - epsevTR+epsev - epspvn ) ) ^ ( pp - 1 ) ) ∗ . . .
19 ( - e p s t a r /( epstar - epsevTR+epsev - epspvn ) ^ 2 ) ;
20

21 KpTR = pp∗ Pi0 ∗ ( ( e p s t a r /( epstar - epsevTR+epsev - epspvn ) ) ^ ( pp - 1 ) ) ∗ . . .
22 ( e p s t a r /( epstar - epsevTR+epsev - epspvn ) ^ 2 ) ;
23

24 % Compute d e r i v a t i v e o f Yie ld Function
25 dPF = 2∗(B2 ) ∗ (P- Pi ) ;
26 dQF = 2∗(A^2)∗Q;
27 dPiF = (2∗m^2∗ Pi+2∗m∗ c0 ) ∗ ( (P- Pi )^2 -A^2)+B2∗2∗(P- Pi ) ∗ ( - 1 ) ;
28

29 % Compute d e r i v a t i v e o f P l a s t i c p o t e n t i a l
30 dPG = -mbar ;
31 dQG = 1 ;
32

33 % Compute matrix D
34

35 De ( 1 , 1 ) = -P/kappa ;
36 De(2 ,2)= 3∗mue ;
37 De(1 ,2)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
38 De(2 ,1)= (3∗P0∗ a l f a ∗ e p s e s /kappa )∗ exp (OMEGA) ;
39

40 % Compute parameters
41

42 d1 = De ( 1 , 1 ) ∗dPF+De ( 2 , 1 ) ∗dQF+Kp∗dPiF ;
43 d2 = De ( 1 , 2 ) ∗dPF+De ( 2 , 2 ) ∗dQF;

97



44

45 e = d1∗dPG+d2∗dQG;
46

47 a1 = ( d1+KpTR∗dPiF )/ e ;
48 a2 = d2/ e ;
49

50 % Compute matrix Dp
51

52 Dp(1 ,1)= 1 - a1∗dPG;
53 Dp(1 ,2)= - a2∗dPG;
54 Dp(2 ,1)= - a1∗dQG;
55 Dp(2 ,2)= 1 - a2∗dQG;
56

57 % Compute matrix Dep
58

59 Dep = De∗Dp;
60

61 end

3.3 Constitutive law for the fluid phase

We now consider the fluid flow problem and discuss a constitutive law as we developed for the solid

phase. Assuming laminar flow, we can adopt the generalized Darcy’s law to obtain the following

linear constitutive equation

𝑣 = −𝑘 · grad(Π), (3.85)

where 𝑘 is the second-order permeability tensor and Π is the fluid potential. The negative sign in Eq.

(3.88) implies that the fluid always flows in the direction of decreasing potential. The permeability

tensor 𝑘 ma be assumed to be symmetric and positive-definite in the majority of cases.

For incompressible flow the potential Π may be decomposed into a pressure part Π𝑝 and an eleva-

tion part Π𝑒. Let the elevation part of the potential be measured in the direction of the gravity

acceleration vector 𝑔; then the decomposition of Π takes the form

Π = Π𝑝 + Π𝑒 = 𝑝

𝑔𝜌𝑓
+ Π𝑒, (3.86)

where 𝑔 is the gravity acceleration constant. Taking the spatial gradient of Eq. (3.86) we obtain

grad(Π) = grad(𝑝)
𝑔𝜌𝑓

+ 𝑔

𝑔
. (3.87)

Thus, substituting into Eq. (3.88) we obtain the constitutive relation for fluid flow

𝑣 = −𝑘 ·
(︂

grad(𝑝)
𝑔𝜌𝑓

+ 𝑔

𝑔

)︂
. (3.88)
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The equation above will be inserted in the mass balance equation, to take into account the fluid

diffusion process.

It is sometimes assumed that the permeability of the soil skeleton varies with the soil’s porosity, or,

equivalently, with the Jacobian 𝐽 , i.e. 𝑘 = 𝑘(𝐽). For example, it is possible to use the Kozeny-

Carman equation (6) to express the evolution of the saturated permeability with deformation

𝑘 = 𝑘(𝐽)1, (3.89)

where 1 is the second-order identity tensor and 𝑘(𝐽) is of the form

𝑘(𝐽) = 𝜌𝑓𝑔

𝜇

𝐷2

180
(𝐽 − 𝜑𝑠

0)3

𝐽(𝜑𝑠
0)2 , (3.90)

where 𝜇 is the dynamic viscosity of the fluid, 𝐷 is the effective diameter of the grains and 𝜑𝑠
0 is the

initial volume fraction of the solid.
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Chapter 4

Numerical implementation of the

model

4.1 Introduction

The aim of this section of the work is describing how the overall set of equations derived so far can

be solved with a numerical code in the framework of finite element model. Due to the assumption

of geometric and material non linearities, the numerical solution of the differential equations is a

challenging task, that requires complex procedures.

Before moving to the solution aspects, let us recall the equations derived so far for the solid-fluid

mixture, pointing out in particular the hypothesis that we considered in the development of the

model. The fundamental equations that need to be solved are the balance of mass and the balance

of linear momentum as derived from Chapter 2, which read

⎧⎪⎨⎪⎩
𝐵div(𝑣) + div

(︂
−𝑘 ·

(︂
grad(𝑝)
𝑔𝜌𝑓

+ 𝑔

𝑔

)︂)︂
= 0

DIV(𝑃 ) + 𝜌0𝐺 = 𝜌𝑠
0𝑎+ 𝜌𝑓

0𝑎𝑓

(4.1)

where the Darcy’s law has been inserted in the mass balance equation.

For the sake of completeness, let’s recall the main assumptions underlying the above equations:

• two phases fully saturated continuum body;

• no mass exchange between the two phases;

• isothermal continuum body;

• laminar flow of the fluid phase.
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The Eq. (4.1) can be further simplified under this additional assumptions

• incompressible solid and fluid phases, i.e. 𝐾𝑠,𝐾𝑓 −→∞;

• no inertial effects, i.e. 𝑎 = 𝑎𝑓 = 0.

Assuming the additional above assumptions, Eq. (4.1) simplifies as follow

⎧⎪⎨⎪⎩
div(𝑣) + div

(︂
−𝑘 · (grad(𝑝)

𝑔𝜌𝑓
+ 𝑔

𝑔
)
)︂

= 0

DIV(𝑃 ) + 𝜌0𝐺 = 0
(4.2)

which constitutes the fundamental system of equations of the mechanics for the fully saturated

porous media. Note that the first equation (balance of mass) is written in the deformed configuration,

while the second equation (balance of linear momentum) is written in the undeformed configuration.

The idea is to use the undeformed configuration whenever possible since the undeformed domain

is fixed throughout the entire solution process. Therefore we will manipulate the first equation to

obtain a more suitable form.

Then, we will derived the finite element form of the balance laws, in order to solve numerically the

set of equations. Finally we will present the overall structure of the code which has been developed

to solve the numerical model.

4.2 Variational equations and linearization

Following the standard procedures of variational principles, let’s define the space of potentials as

C𝜃 =
{︀

Π : 𝜙(B)→ 𝑅𝑛𝑠𝑑 |Π ∈ 𝐻1,Π = Π𝜃 on 𝜕𝜙𝜃
}︀

(4.3)

and the corresponding space of variations as

V𝜃 =
{︀
𝜓 : 𝜙(B)→ 𝑅𝑛𝑠𝑑 |𝜓 ∈ 𝐻1, 𝜓 = 0 on 𝜕𝜙𝜃

}︀
. (4.4)

Further, let 𝐻 : C𝜃 × V𝜃 −→ 𝑅 be given by

𝐻(𝜙,Π, 𝜓) =
∫︁

𝜙(B)

[︂
𝜓div(𝑣)− grad𝜓 ·

(︂
−𝑘 ·

(︂
grad(𝑝)
𝑔𝜌𝑓

+ 𝑔

𝑔

)︂)︂]︂
d𝑉 −

∫︁
𝜕𝜙(B)

𝜓𝑞 d𝐴. (4.5)

The balance of mass is given by the condition 𝐻(𝜙,Π, 𝜓) = 0 which is equivalent to the first of Eq.

(4.2).

Let’s define the space of configuration as

C𝜙 =
{︀
𝜙 : B → 𝑅𝑛𝑠𝑑 |𝜙𝑖 ∈ 𝐻1,𝜙 = 𝜙𝑑 on 𝜕B𝑑

}︀
(4.6)
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and the space of variations as

V𝜙 =
{︀
𝜂 : B → 𝑅𝑛𝑠𝑑 |𝜂𝑖 ∈ 𝐻1,𝜂 = 0 on 𝜕B𝑑

}︀
(4.7)

where 𝐻1 is the usual Sobolev space of functions of degree one. Further, let 𝐺 : C𝜙 × V𝜙 −→ 𝑅

be given by

𝐺(𝜙,Π,𝜂) =
∫︁

B

(GRAD𝜂 : 𝑃 − 𝜌0𝜂 ·𝐺) d𝑉0 −
∫︁

𝜕B𝑡

𝜂 · 𝑡 d𝐴0. (4.8)

The balance of linear momentum is given by the condition 𝐺(𝜙,Π,𝜂) = 0, which is equivalent

to the second of the Eq. (4.2) if 𝑃 and 𝜂 are assumed to be 𝐶1.

The weak form of the boundary-value problem is therefore as follows. Find 𝜙 ∈ C𝜙 and Π ∈ C𝜃

such that

𝐻(𝜙,Π, 𝜓) = 𝐺(𝜙,Π,𝜂) = 0 (4.9)

for all 𝜂 ∈ V𝜙 and 𝜓 ∈ V𝜃.

The above conditions emanates directly from the strong form of the boundary-value problem. How-

ever, the functions 𝐻 and 𝐺 posses an awkward structure that is not directly amenable to standard

matrix manipulations. The function 𝐺(𝜙,Π,𝜂) can be rewritten in the following form, invoking the

decomposition with the effective stress introduced in the Chapter 2

𝐺(𝜙,Π,𝜂) =
∫︁

B

(GRAD𝜂 : 𝜏 − 𝜃div 𝜂 − 𝜌0𝜂 ·𝐺) d𝑉0 −
∫︁

𝜕B𝑡

𝜂 · 𝑡 d𝐴0. (4.10)

The balance of mass equation is written with respect to the current configurations, and therefore

the integrals are computed in the current varying volume. Hereafter, the function 𝐻(𝜙,Π, 𝜓) needs

to be reformulated in such a way that the integration is done with respect to the common unde-

formed reference configuration B. The domain of integration can be reckoned quite easily from the

undeformed configuration by introducing the Jacobian 𝐽 . A standard result of continuum mechanic

states that the time derivative of the Jacobian is 𝐽 = 𝐽div(𝑣). In addition, let 𝑉 ·𝑁 = −𝑄 be the

prescribed volumetric rate of flow per unit undeformed area across the boundary 𝜕B. 𝑉 = 𝐽𝐹−1 ·𝑣

is the Piola trasform of the Darcy velocity 𝑣, and 𝑄 is positive when pointing inward relative to the

undeformed surface 𝜕B with outward unit normal 𝑁 . Substituting into Eq. (4.5) results in the vari-

ational equation for balance of volume, now reckoned with respect to the undeformed configuration

B

𝐻(𝜙,Π, 𝜓) =
∫︁

B

[︂
𝜓𝐽 − grad𝜓 · 𝐽

(︂
−𝑘 ·

(︂
grad(𝑝)
𝑔𝜌𝑓

+ 𝐺

𝑔

)︂)︂]︂
d𝑉0 −

∫︁
𝜕Bℎ

𝜓𝑄 d𝐴0. (4.11)
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Note that in the case of impermeable boundaries 𝑞 = 𝑄 = 0, i.e no fluid is supplied to the system.

To avoid possible source of confusion, we remind that 𝑔 ≡ 𝐺.

With the above operations, the two variational equations that need to be solved are

⎧⎪⎪⎨⎪⎪⎩
𝐻 =

∫︁
B

[︂
𝜓𝐽 − grad𝜓 ·

(︂
−𝑘 · (grad(𝜃)

𝑔𝜌𝑓
+ 𝐽

𝐺

𝑔
)
)︂]︂

d𝑉0 −
∫︁

𝜕Bℎ

𝜓𝑄 d𝐴0 = 0

𝐺 =
∫︁

B

(GRAD𝜂 : 𝜏 − 𝜃div 𝜂 − 𝜌0𝜂 ·𝐺) d𝑉0 −
∫︁

𝜕B𝑡

𝜂 · 𝑡 d𝐴0 = 0
(4.12)

Again, we point out that both the equations are written in the weak (integral) form and in

reference to the undeformed initial configuration. We observe now that the first of equation of

(4.12), namely the mass balance equation, contains a rate form, i.e. the variation in time of 𝐽 , and

therefore requires a temporal discretization. This can be done recovering the well-known backward

differentiation scheme. This typology of algorithms has the peculiarity to be unconditionally stable,

and therefore turns out to be the most appropriate procedure in this contest. The time discretization

of 𝐻 reads

𝐻Δ𝑡 =
∫︁

B

𝜓
𝐽𝑛+1 − 𝐽𝑛

Δ𝑡 d𝑉0−
∫︁

B

[︂
grad𝜓 ·

(︂
−𝑘 ·

(︂
grad(𝜃)
𝑔𝜌𝑓

+ 𝐽
𝐺

𝑔

)︂)︂]︂
𝑛+1

d𝑉0−
∫︁

𝜕Bℎ

𝜓𝑄𝑛+1d𝐴0 = 0.

(4.13)

The crucial point now for the solution of the numerical model is the linerization of Eq. (4.12).

In fact, it’s necessary to develop exact expressions for the first derivatives of the functions 𝐻 and

𝐺 to use in Newton-type iterations. More specifically, we want the linearization of the non-linear

two-field linear momentum and mass conservation equations at some configurations 𝜙0 and pressure

𝜃0, which corresponds to some infinitesimal variations 𝛿𝑢 and 𝛿𝜃.

The first variation of Eq. (4.12) can be obtained following standard procedures, and the complete

derivation will be omitted for the sake of brevity (17). The variation of 𝐻Δ𝑡, with Δ𝑡 fixed, gives

𝛿𝐻Δ𝑡 =
∫︁

B

𝜓

Δ𝑡𝐽div 𝛿𝑢d𝑉0 +
∫︁

B

grad𝜓 · 𝑘
𝜌𝑓𝑔
· grad 𝛿𝜃 d𝑉0

− 2
∫︁

B

grad 𝜓 · symm
(︂
𝑘

𝜌𝑓𝑔
· grad𝑡𝛿𝑢

)︂
· grad 𝜃 d𝑉0

−
∫︁

B

grad𝜓 · [grad𝛿𝑢− (div𝛿𝑢)1] · 𝑘 · 𝐺
𝑔
𝐽d𝑉0 −

∫︁
𝜕B

𝜓𝛿𝑄 d𝐴0, (4.14)

where 𝛿𝑄 is the variation of the fluid flux 𝑄, 𝑔 is the gravity acceleration constant and 𝐺 is the

vector of gravity accelerations. In this derivation it’s assumed that the spatial permeability tensor

𝑘 is constant during the deformation process.
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The variation of 𝐺 gives

𝛿𝐺 =
∫︁

B

grad 𝜂 : (𝑐+ 𝜏 ⊕ 1) : grad 𝛿𝑢 d𝑉0 −
∫︁

B

(𝛿𝜃div 𝜂 − 𝜃grad𝑡𝜂 : grad𝛿𝑢)d𝑉0

−
∫︁

B

𝜌𝑓𝐽div(𝛿𝑢)𝜂 ·𝐺d𝑉0 −
∫︁

𝜕B

𝜂 · 𝛿𝑡d𝐴0, (4.15)

where 𝛿𝑢, 𝛿𝜃 and 𝛿𝑡 are the respective variations of the displacement vector, Kirchhoff pore fluid

pressure and the traction vector. The first integral in Eq. (4.15) contains the initial stress term

(𝜏⊕1)𝑖𝑗𝑘𝑙 = 𝜏𝑗𝑙𝛿𝑖𝑘, with (1)𝑖𝑗 = 𝛿𝑖𝑗 being the Kronecker delta, as well as the spatial tangent stiffness

tensor 𝑐; the third integral represents the variation of the (non-constant) reference mass density 𝜌0

reflecting the amount of fluid with a constant mass density 𝜌𝑓 that enters into or escapes from the

soil matrix due to the variation of the Jacobian.

Since 𝐺 and 𝐻Δ𝑡 are both zero, their first variations 𝛿𝐺 and 𝛿𝐻Δ𝑡 also must vanish.

4.3 Finite element formulation

The aim of this section is to derive the spatial discretized equations starting from the differential

equations developed in the former section. In doing so, we will use the finite element method following

standard lines. The corner stone of the finite element method is to interpolate the displacement

function with a so called-shape function, and compute the displacements in a finite number of

points of the continuum body. In the framework of solid-fluid mixture, the idea is to introduce

two possibly distinct spatial interpolation function matrices 𝑁𝜙(𝑥) and 𝑁 𝜃(𝑥) for approximating

the solid phase motion 𝜙 ant the pore pressure field 𝜃. Therefore, the primary variables that are

computed on the nodes of the finite element mesh are the displacement of the solid skeleton and the

pressure of the fluid phase.

Let the solid phase motion 𝜙 be approximated by the spatial displacement field 𝑢ℎ(𝑥) ∈ 𝑅𝑛𝑠𝑑 . In

matrix form

𝑢ℎ(𝑥) = 𝑁𝜙(𝑥)𝑑+𝑁𝜙
𝑔 (𝑥)𝑑𝑔, (4.16)

where 𝑑 ∈ 𝑅𝑁𝑄 is the unknown nodal solid displacement vector and 𝑑𝑔 is the vector of prescribed

nodal solid displacement. In analogous way, let the spatial Kirchhoff pore pressure field 𝜃 be ap-

proximated by the function 𝜃ℎ(𝑥) ∈ 𝑅1. In matrix form we have

𝜃ℎ(𝑥) = 𝑁 𝜃(𝑥)𝜃 +𝑁 𝜃
𝑟 (𝑥)𝜃𝑟, (4.17)

where 𝜃 ∈ 𝑅𝑁𝑃 is the unknown nodal Kirchhoff pore pressure vector and 𝜃𝑟 is the vector of prescribed

nodal Kirchhoff pore pressure. The weighting functions 𝜂 and 𝜓 may be approximated in a similar
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fashion in terms of their nodal values 𝜂 and 𝜓 as follows

𝜂ℎ(𝑥) = 𝑁𝜙(𝑥)𝜂; 𝜓ℎ(𝑥) = 𝑁 𝜃(𝑥)𝜓 (4.18)

where 𝜂 ∈ 𝑅𝑁𝑄 and 𝜓 ∈ 𝑅𝑁𝑃 .

With these preliminaries, it is possible to discretize spatially the balance laws. The finite element

equation for the balance of mass is

𝐻ℎ
Δ𝑡 = −𝜓𝑡

[︂
𝐽(𝑑)
Δ𝑡 + Φ(𝜃) +𝐻𝐸𝑋𝑇

]︂
= 0, (4.19)

where

𝐽(𝑑) = −
∫︁

B

𝑁 𝜃𝑡(𝐽𝑛+1 − 𝐽𝑛)d𝑉0; (4.20a)

Φ(𝜃) =
∫︁

B

𝐸𝑡𝐽𝑛+1𝑣𝑛+1d𝑉0; (4.20b)

𝐻𝐸𝑋𝑇 =
∫︁

𝜕B

𝑁 𝜃𝑡𝑄𝑛+1d𝐴0. (4.20c)

The matrix 𝐸 is the gradient-pressure operator with the structure

𝐸 = [grad𝑁𝜃
1 , grad𝑁𝜃

2 , ..., grad𝑁𝜃
𝑁𝑃 ]. (4.21)

The finite element equation for the balance of linear momentum is

𝐺ℎ = 𝜂𝑡 [𝑁 𝑠(𝑑) +𝑁𝑤(𝜃)− 𝐹𝐸𝑋𝑇 ] = 0, (4.22)

where

𝑁 𝑠(𝑑) =
∫︁

B

𝐵𝑡 {𝜏}d𝑉0; (4.23a)

𝑁𝑤(𝜃) = −
∫︁

B

𝑏𝑡(𝑁 𝜃𝜃 +𝑁 𝜃
𝑟 𝜃𝑟)d𝑉0; (4.23b)

𝐹𝐸𝑋𝑇 =
∫︁

B

𝜌0𝑁
𝜙𝑡𝐺d𝑉0 +

∫︁
𝜕B

𝑁𝜙𝑡𝑡d𝐴0. (4.23c)

The term {𝜏} is a vector that contains the element of the effective stress tensor 𝜏 . For example,

if 𝑛𝑠𝑑 = 2, then {𝜏} = [𝜏11, 𝜏22, 𝜏12]𝑡. The matrix 𝐵 is the usual spatial strain-displacement

transformation matrix with structure

𝐵 = [𝐵1,𝐵2, ...,𝐵𝑁𝑄]. (4.24)

Finally, the matrix 𝑏 = {1}𝑡
𝐵, where for 𝑛𝑠𝑑 = 2, 𝑏 = [1, 1, 0]𝑡 and for 𝑛𝑠𝑑 = 3, 𝑏 = [1, 1, 1, 0, 0, 0]𝑡.
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Since 𝜓 and 𝜂 are both arbitrary, the conditions stated in Eqq. (4.19) and (4.22) can be satisfied

solving the following system of equations⎧⎪⎨⎪⎩
𝑟𝜙(𝑑,𝜃) = 𝑁 𝑠(𝑑) +𝑁𝑤(𝜃)− 𝐹𝐸𝑋𝑇 = 0

𝑟𝜃(𝑑,𝜃) = 𝐽(𝑑)
Δ𝑡 + Φ(𝜃) +𝐻𝐸𝑋𝑇 = 0

(4.25)

In conclusion, the essence of the problem consists in determining the configurations defined by

the nodal values 𝑑 and 𝜃 such that

𝑟(𝑑,𝜃) = 0, (4.26)

i.e. determining the solution of the non-linear system such that the balance of mass and linear

momentum equations are fulfilled.

The Eq. (4.26) is highly non linear, due to the assumption of large deformations and inelastic

material for the solid phase. The solution of the system can be obtained with a Newton-Raphson

scheme. If 𝑟(𝑑𝑘,𝜃𝑘) ̸= 0 for some trial configuration (𝑑𝑘,𝜃𝑘), the solution of the equation may be

obtained with iterations until the correct solution is found. The aim is to dissipate the vector 𝑟 by

finding the solution vector 𝑥* = {𝑑,𝜃}*𝑡

𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑥𝑘; −𝐾𝑘𝛿𝑥𝑘 = 𝑟𝑘; 𝐾𝑘 = 𝜕𝑟𝑘

𝜕𝑥𝑘
; 𝑘 ←− 𝑘 + 1 (4.27)

where 𝑘 plays the role of an iteration counter. The consistent tangent operator 𝐾, which plays a

crucial role to get quadratic convergence of the scheme, can simply be assembled from the linearized

equations, i.e. Eq. (4.14) and (4.15) written in matrix form.

Let’s consider first the linearization of the mass balance equation (4.14) and, introducing the shape

and weighting functions, we get

𝛿𝐻ℎ
Δ𝑡 = −𝜓

𝑡

Δ𝑡 [𝐾𝜃𝜙𝛿𝑑+𝐾𝜃𝜃𝛿𝜃] (4.28)

where

𝐾𝜃𝜙 = −
∫︁

B

𝐽𝑁 𝜃𝑡𝑏d𝑉0 + Δ𝑡
∫︁

B

(︂
1
𝑔𝜌𝑓

𝐸𝑡𝐴�̃� − 𝐽𝐸𝑡𝑊�̃�

)︂
d𝑉0; (4.29a)

𝐾𝜃𝜃 = − Δ𝑡
𝜌𝑓𝑔

∫︁
B

𝐸𝑡𝑘𝐸d𝑉0; (4.29b)

where 𝛿𝑑 and 𝛿𝜃 are the first variations of 𝑑 and 𝜃. The matrix �̃� = [𝐵 𝐵𝑠𝑘]𝑡, where 𝐵𝑠𝑘 is the

skew component of �̃� representing the rotational effect. The exact formulation of 𝐴 and 𝑊 can be
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found in (1). Note that the second term of 𝐾𝜃𝜙 is due to the assumption of finite strain, and this

term vanishes in case of small strain.

Let’s consider now the linearization of the linear momentum equation (4.15) and, introducing the

shape and weighting functions, we get

𝛿𝐺ℎ
Δ𝑡 = 𝜂𝑡[𝐾𝜙𝜙𝛿𝑑+𝐾𝜙𝜃𝛿𝜃] (4.30)

where

𝐾𝜙𝜙 =
∫︁

B

(𝐵𝑡𝐶𝐵 + �̃�𝑡𝑇�̃� + �̃�𝑡𝐼𝜃�̃� − 𝜌𝑓𝐽𝑁
𝜃𝑡𝐺𝑏)d𝑉0; (4.31a)

𝐾𝜙𝜃 = −
∫︁

B

𝑏𝑡𝑁 𝜃d𝑉0. (4.31b)

The first two terms of Eq. (4.31a) can be combined together, in order to obtain a single term.

In fact the equation can be manipulated as follow

∫︁
B

(𝐵𝑡𝐶𝐵 + �̃�𝑡𝑇�̃�)d𝑉0 =
∫︁

B

(𝐺𝑡𝑎𝐺)d𝑉0 (4.32)

where 𝑎 = 𝛼𝑖𝑗𝑘𝑙−𝜏𝑖𝑙1𝑗𝑘 and the operator 𝐺 is the full (non-symmetric) strain gradient operator,

which contains the derivatives of the shape functions. This last formulation has been adopted in the

implementation of the code.

The complete consistent tangent operator is given by

𝐾 =

⎡⎣ 𝐾𝜙𝜙 𝐾𝜙𝜃

𝐾𝜃𝜙 𝐾𝜃𝜃

⎤⎦

In general, the matrix 𝐾 is non-symmetric and indefinite. However, under certain circumstances

the matrix can be symmetric. This happens if 𝐾𝜃𝜃 = 𝐾𝜃𝜃
𝑡 which is true if and only if the perme-

ability tensor 𝑘 is symmetric. Furthermore, for small strain analysis the Jacobian 𝐽 is identically

equal to unity, while the second integral in Eq. (4.29a) vanishes identically since it originally arises

from geometric non-linearity. Thus, for this condition, 𝐾𝜃𝜙 = 𝐾𝜙𝜃
𝑡. Under the assumption of small

strains, the last term in the Eq. (4.31a) also vanishes, since this term is simply the linearization of

the constant Jacobian. Thus, under the assumption of small strains, 𝐾𝜙𝜙 = 𝐾𝜙𝜙
𝑡, provided that

𝐶 is symmetric.
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4.4 Comparison with the small strains formulation

In this section we want to point out the differences between the small strains formulation and the

finite strains formulation derived so far for the fully saturated porous media. Assuming small strains

theory, the equations-and therefore the numerical solution-simplifies significantly.

Under the simplified hypothesis of small strain, the velocity 𝑣 can be expressed in term of displace-

ment as 𝑣 = �̇� and the effective stress can be computed as �̄� = 𝜏 = 𝑐 : grad 𝑢, where 𝑢(𝑥, 𝑡) is a

vector field of infinitesimal solid displacements of B reckoned from a self-equilibrating condition of

geostatic stresses and 𝑐 = 𝑐(𝑥) is a given fourth-order, time-independent tensor field of elasticities,

defined in B, which possesses both the major and minor symmetries. Note that the term “grad 𝑢”

may be replaced with the infinitesimal strain tensor “𝜖”, where 𝜖 = symm(grad𝑢), due the minor

symmetry of 𝑐 with respect to its third and fourth indices. Hence, the strong form of the mass and

linear momentum balance equations can be simplified as

⎧⎪⎨⎪⎩
div(�̇�) + div

(︂
−𝑘 · grad(𝑝𝑒)

𝑔𝜌𝑓

)︂
= 0

div(𝑐 grad𝑢− 𝑝𝑒1) = 0

(4.34)

where 𝑝𝑒 = 𝜃𝑒 is the excess pore fluid pressure. Note that Eqq. (4.34) are identical to those

developed for the Biot consolidation theory (5; 69). Consequently, the variational form of the balance

of mass can be simplified as

𝐻 =
∫︁

B

(︂
𝜓div(�̇�) + grad𝜓 · 𝑘

𝑔𝜌𝑓
· grad𝑝𝑒

)︂
d𝑉0 −

∫︁
𝜕B𝑡

𝜓𝑞d𝐴0 (4.35)

ad the variational form of the linear momentum can be simplified as

𝐺 =
∫︁

B

(grad𝜂 : 𝑐 : grad𝑢− 𝑝𝑒div𝜂) d𝑉0 −
∫︁

𝜕B𝑡

𝜂 · 𝑡d𝐴0 (4.36)

Again, the aim of the problem consists now in finding the solution (𝑢,𝑝𝑒) for which 𝐻 = 𝐺 = 0.

The system of equation is now linear and no iteration are required for the numerical solution.

4.5 Overview of the numerical code

The set of equations derived in the previous section has been implemented in a new finite ele-

ment toolbox called Geofem 973 (www.geofem973.it), specifically developed to solve non linear

elastoplastic coupled problems. The code is written using MATLAB®language, which is particularly

tailored for vector and matrix calculations. Furthermore, this language permits to easily plot all the

computed results once the solution is computed. In this section we will briefly describe the main

feature of this code, assuming a 2D (plane strain) framework.
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Figure 4-1: Element type and intrinsic node order for quadrilateral elements.

The code adopts three type of quadrilateral elements, namely quad4-4, quad8-4, quad9-4, where

the first number indicates the nodes with associated displacements and the second number the node

with associated pressure. The three elements are represented in Fig. 4-1.

The typology of the finite element is extremely important for coupled problem, where the mixed

elements need to satisfy the LBB-condition for stability (70; 71; 72). It’s important to point out

that only the element quad9-4 satisfies the LBB-condition, and therefore guarantees the stability of

the solution. The other two elements don’t guarantee the stability of the solution of the boundary

value problem, as it will be demonstrated in the next section of the thesis.

The code reads the input data directly from the workspace of variables, which are usually created,

for advanced geometries, with a pre-processor. The variables of the input file are recalled as follow:

• Nodes coordinate matrix

X =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑥1 𝑦1

𝑥2 𝑦2

...
...

𝑥𝑛 𝑦𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
with 𝑛 total nodes.

• Topology matrix

T(𝑒, :) =
[︁
𝑛𝑜𝑑𝑒1 𝑛𝑜𝑑𝑒2 . . . 𝑛𝑜𝑑𝑒𝑛𝑒 𝑚𝑎𝑡𝑒

]︁
for every element 𝑒 with 𝑛𝑒 number of nodes and material property 𝑚𝑎𝑡𝑒. The order of the

nodes is as depicted in Fig. 4-1.
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• Constraints matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑛𝑜𝑑𝑒1 1/2/3 𝑐1

𝑖𝑚𝑝

𝑛𝑜𝑑𝑒2 1/2/3 𝑐2
𝑖𝑚𝑝

...
...

...

𝑛𝑜𝑑𝑒𝑛𝑐 1/2/3 𝑐𝑛𝑐
𝑖𝑚𝑝

⎤⎥⎥⎥⎥⎥⎥⎦
with 𝑛𝑐 total constrained nodes, 1 = 𝑢𝑥, 2 = 𝑢𝑦, 3 = 𝑝 and 𝑐𝑖𝑚𝑝 is the prescribed value.

• Prescribed nodal force/flux

P =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑛𝑜𝑑𝑒1 𝐹 1

1 𝐹 1
2 𝑄1

𝑛𝑜𝑑𝑒2 𝐹 2
1 𝐹 2

2 𝑄2

...
...

...

𝑛𝑜𝑑𝑒𝑛𝑝 𝐹𝑛𝑝
1 𝐹𝑛𝑝

2 𝑄𝑛𝑝

⎤⎥⎥⎥⎥⎥⎥⎦
with 𝑛𝑝 total nodal applied force/flux.

• Material parameters

G(𝑚𝑎𝑡𝑒, :) =
[︁
𝜌𝑒 𝑝𝑎𝑟𝑎𝑚1 . . . 𝑝𝑎𝑟𝑎𝑚𝑛

]︁

for every material type 𝑚𝑎𝑡𝑒 with density 𝜌𝑒 and 𝑛 parameters.

• Solver parameters

– epsr : tolerance for Newton Raphson iteration;

– imax : maximum number of Newton Raphson iteration;

– incr : coefficients for load increment;

– nip : number of Gauss integration points;

– step : step increments;

The main steps and expressions involved in the the driver of the program are shown in the

following box.
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DRIVER FILE FOR ELASTOPLASTIC COUPLED ANALYSIS AT FINITE STRAINS.

1. Define system parameters: 𝑑𝑜𝑓, 𝑑𝑜𝑝, 𝑛𝑑𝑜𝑓, 𝑛𝑑𝑜𝑝, 𝑛𝑒, 𝑛𝑒𝑙𝑒𝑚;

2. Vectors and matrices initialization: 𝑖𝑛𝑐,𝑓 , 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛,𝑅𝐸𝑆𝑟𝑒𝑐,𝑆𝑟𝑒𝑐,𝑃𝐿𝑟𝑒𝑐,𝐹𝐿𝐴𝐺𝑟𝑒𝑐;

3. Identify (un)constrained DOF: 𝑖𝑢, 𝑖𝑐 [DOFglobal, Const];

4. Set nodal external forces/fluxes: 𝑓 [SetLoad];

for t = 1:time

(a) Recall plastic variables at time step 𝑛: 𝑃𝐿𝑛;

for i = 1:imax

i. Compute internal forces/fluxes: 𝑔 = 𝑔(𝑖𝑛𝑐𝑜𝑙𝑑,𝐷𝑖𝑛𝑐) [geQuad];

ii. Compute residual: 𝑟 = 𝑔 − 𝑓 ;

iii. Check for convergence

If no convergence:

• Compute tangent stiffness: 𝐾𝐾 = 𝐾𝐾(𝑖𝑛𝑐𝑜𝑙𝑑,𝐷𝑖𝑛𝑐) [KKeQuad];

• Compute increment: 𝑑𝑖𝑛𝑐(𝑖𝑢) = 𝑖𝑛𝑣(𝐾𝐾(𝑖𝑢, 𝑖𝑢))(−𝑟(𝑖𝑢));

• Update solution: 𝐷𝑖𝑛𝑐 = 𝐷𝑖𝑛𝑐+ 𝑑𝑖𝑛𝑐;

end

(b) Update solution vector: 𝑖𝑛𝑐𝑛𝑒𝑤 = 𝑖𝑛𝑐𝑜𝑙𝑑 +𝐷𝑖𝑛𝑐;

(c) Update elasto-plastic variables

end

The code of the main processor is recalled in the following box.

1 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 % F i l e : NLinDrive.m
3 %
4 % Driver f o r non l i n e a r a n a l y s i s o f ( hyper - ) e l a s t o p l a s t i c
5 % u -P problem with Q8P4 e l e m e n t s .
6 %
7 % Input :
8 %
9 % X : Node c o o r d i n a t e a r r a y .

10 % T : Topology a r r a y .
11 % G : Mater ia l property a r r a y .
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12 % C : C o n s t r a i n t s .
13 % P : P r e s c r i b e d nodal l o a d s and f l o w s .
14 % step : Time increment s t e p .
15 % nip : Gauss po int i n t e g r a t i o n .
16 % imax : Maximum i t e r a t i o n number.
17 % epsr : T o l l e r a n c e .
18 %
19 % Output :
20 %
21 % s o l u t i o n : Nodal d isp lacement and p r e s s u r e a r r a y .
22 % f : Nodal f o r c e / f l u x e s a r r a y .
23 % g : I n t e r n a l f o r c e / f l u x e s v e c t o r .
24 % S : System s t r e s s a r r a y .
25 % PLrec : P l a s t i c v a r i a b l e s a r r a y .
26 %
27 % Note :
28 % 1) I n i t i a l time step must be chosen in accordance
29 % with the p e r m e a b i l i t y .
30 % 2) Backward d i f f e r e n t i a t i o n formula implemented.
31 %
32 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ∗
33 % COPYRIGHT STATEMENT ∗
34 % ∗
35 % Copyright (C) 2014 Nicolo ' S p i e z i a ∗
36 % ∗
37 % This program i s f r e e s o f t w a r e : you can r e d i s t r i b u t e i t and/ or modify ∗
38 % i t under the terms o f the GNU General Publ ic L i c e n s e as publ i shed by ∗
39 % the Free Software Foundation , e i t h e r v e r s i o n 3 o f the License , or ∗
40 % ( at your opt ion ) any l a t e r v e r s i o n . ∗
41 % ∗
42 % This program i s d i s t r i b u t e d in the hope that i t w i l l be u s e f u l , ∗
43 % but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f ∗
44 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ∗
45 % GNU General Publ ic L i c e n s e f o r more d e t a i l s . ∗
46 % ∗
47 % You should have r e c e i v e d a copy o f the GNU General Publ ic L i c e n s e ∗
48 % along with t h i s program. I f not , s e e <http : / / www.gnu.org/ l i c e n s e s /> . ∗
49 % ∗
50 % E- mail : n i c o l o s p i e z i a @ g m a i l . c o m ∗
51 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ∗
52 % Add f o l d e r to Matlab s ea r ch path
53 path ( path , ' . . \ FEMfiles ' ) ;
54

55 t s = l e n g t h ( s tep ) ;
56

57 % Def ine system parameters
58

59 dof = 2 ; % Degree o f freedom ( disp lacement )
60 dop = 1 ; % Degree o f freedom ( p r e s s u r e )
61 dofp = dof+dop ;
62

63 [DOF, nno , nnp ] = DOFglobal (T,X) ;
64

65 ndof = nno∗ dof ; % Number dof ( d i sp lacement )
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66 ndop = nnp∗dop ; % Number dop ( p r e s s u r e )
67 nd = ndof+ndop ; % Total number o f DOF
68 ne = s i z e (T, 2 ) - 1 ;
69 nelem = s i z e (T, 1 ) ;
70

71

72 % I n i t i a l i z a t i o n o f v e c t o r s and m a t r i c e s
73 [ inc_new , inc_old , f ] = de a l ( z e r o s ( nd , 1 ) ) ;
74 [ s o l u t i o n ] = d ea l ( z e r o s ( nd , t s ) ) ;
75 [ RESrec ] = z e r o s ( imax , t s ) ;
76 [ Srec ] = z e r o s ( 4 , nip ^ dof , nelem , t s ) ;
77 [ PLrec ] = z e r o s ( 8 , nip ^ dof , nelem , t s ) ;
78 [ FLAGrec ] = z e r o s ( nip ^ dof , nelem , t s ) ;
79

80 % I n i z i a l i z e PLrec
81 f o r i =1: s i z e (T, 1 ) ; % Over element
82 f o r j =1: nip ^ dof % Over GP
83 PLrec ( 1 : 4 , j , i , 1 ) = [ 1 .00000001 1 .00000002 0 1 .00000003 ] ' ;
84 PLrec ( 7 , j , i , 1 ) = G(T( i , ne +1) ,13) ; % A l l o c a t e Pc0
85 end
86 end
87

88 % I d e n t i f y unconstra ined / c o n s t r a i n e d d o f s
89 [ iu , i c ] = Const (C, dof , dop , nd ,DOF) ;
90

91 % Set nodal l o a d s
92 f = SetLoad ( f ,P ) ;
93

94

95 f o r t =1: t s
96

97 inc_old = s o l u t i o n ( : , t ) ;
98 Dinc = z e r o s ( nd , 1 ) ;
99

100 dt = step ( t ) ; % Time increment
101

102 time=t
103

104

105 f o r i t e r =1: imax
106

107 i t z = i t e r
108

109 % R e c a l l p l a s t i c v a r i a b l e
110 PLn = PLrec ( : , : , : , t ) ;
111 % Compute i n t e r n a l f o r c e s and f luws
112 [ g ] = de a l ( z e r o s ( nd , 1 ) ) ;
113 [ g , S , PL,FLAG,ALFA] = gQuad ( g ,T,X,G, inc_old , Dinc , nip , dt ,DOF, PLn ) ;
114

115 % r e s i d u a l
116 r = g - f ;
117

118 % check f o r convergence
119 RESrec ( i t e r , t ) = norm ( r ( iu , 1 ) ) / norm ( f ( iu , 1 ) ) ;

114



120

121 i f norm ( r ( iu , 1 ) ) < epsr ∗norm ( f ( iu , 1 ) )
122 break
123 e l s e
124

125 % Compute increment
126 dinc = z e r o s ( nd , 1 ) ;
127

128 KK = z e r o s ( nd , nd ) ;
129 KK = KKQuad(KK,T,X,G, nip , dt ,DOF, inc_old , Dinc , S ,ALFA) ;
130

131 dinc ( iu ) = KK( iu , iu ) \ ( - r ( iu ) ) ;
132

133 Dinc = Dinc + dinc ;
134

135 end
136 end
137

138 i f i t e r == imax
139 f p r i n t f ( ' \n No convergence in time step %d \n ' , t )
140 end
141

142 inc_new = inc_old+Dinc ;
143

144 s o l u t i o n ( : , t +1) = inc_new ;
145 Srec ( : , : , : , t +1) = S ;
146

147 % r e c o r d p l a s t i c v a r i a b l e s
148 PLrec ( : , : , : , t +1) = PL ;
149 FLAGrec ( : , : , t +1) = FLAG;
150

151 end

The functions DOFglobal, Const, SetLoad follow standard approach in in finite element analysis,

and are not reported in this thesis.

The most interesting functions are those responsible for the computation of the internal forces/fluxes

(GQuad) and for the tangential operator (KKQuad). This two functions compute the two quantities in

each element, and then they assemble the contribution for the whole set of elements. In the remaining

part of the section we will briefly describe these two functions, at the element level (marked by the

letter e).

The function (GeQuad) computes the internal forces/fluxes at the element level according to Eq.

(4.25), eliminating the external terms 𝐹 and 𝐻. The source code of these two functions is given

below.

1

2 % Number o f nodes per element and dof ' s per node
3 ne = s i z e (Xe , 1 ) ;
4 dof = 2 ;
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5

6 Xep = Xe ( 1 : 4 , 1 : 2 ) ;
7 nep = s i z e (Xep , 1 ) ;
8 dp = 1 ;
9

10 ue_new = ince_new ( 1 : ne∗ dof ) ;
11 ue_old = ince_old ( 1 : ne∗ dof ) ;
12 dinc = dince ( 1 : ne∗ dof ) ;
13

14 uep_old = ince_old ( 1 : nep∗ dof ) ;
15 uep_new = ince_new ( 1 : nep∗ dof ) ;
16 dincp = dince ( 1 : nep∗ dof ) ;
17

18 pe_old = ince_old ( ne∗ dof +1: ne∗ dof+nep∗dp ) ;
19 pe_new = ince_new ( ne∗ dof +1: ne∗ dof+nep∗dp ) ;
20

21 % Gauss p o i n t s and w e i g h t s .
22 [ r w] = Gauss ( nip ) ;
23

24 % I n i t i a l i z e v e c t o r s .
25 [ NSd NWt] = dea l ( z e r o s ( ne∗ dof , 1 ) ) ;
26 [ Jd PHIt ] = de a l ( z e r o s ( nep∗dp , 1 ) ) ;
27 [ Se , Te ] = dea l ( z e r o s ( 4 , nip ^ dof ) ) ;
28 PLe = z e r o s ( 8 , nip ^ dof ) ;
29 ALFAe = z e r o s (16 , nip ^ dof ) ;
30 FLAGe = z e r o s ( nip ^ dof , 1 ) ;
31 warn = 0 ;
32

33 % Permeabi l i ty v a l u e s
34 kx = Ge ( 7 ) ;
35 ky = Ge ( 8 ) ;
36

37 % Gauss i n t e g r a t i o n
38 ip = 0 ;
39 f o r i = 1 : nip
40 f o r j = 1 : nip
41 % Gauss po int number
42 ip = ip + 1 ;
43

44 % Get element shape f u n c t i o n s and Jacobian matrix
45 [ Jt , B, ~ , ~ , ~ ] = BQuad(Xe , r ( i ) , r ( j ) , ue_old+dinc ) ;
46 [ ~ , ~ , dNp , Np, ~ ] = BQuad(Xep , r ( i ) , r ( j ) , uep_old+dincp ) ;
47

48 % Get element deformation g r a d i e n t and L e f t Cauchy - Green t e n s o r
49 [ F_old , ~ ] = FbQuad(Xe , r ( i ) , r ( j ) , ue_old ) ;
50 [ F_new , b_new ] = FbQuad(Xe , r ( i ) , r ( j ) , ue_old+dinc ) ;
51

52 J_old = det ( F_old ) ;
53 J_new = det (F_new ) ;
54

55 % Incrementa l deformation g r a d i e n t
56 Ue_old = reshape ( ue_old , s i z e (Xe , 2 ) , s i z e (Xe , 1 ) ) ' ;
57 X1e = (Xe + Ue_old ) ;
58
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59 [ Fincr , ~ ] = FbQuad( X1e , r ( i ) , r ( j ) , d inc ) ;
60

61 % Check Jacobian
62 i f J_new<0
63 warn = 1 ; % Warning f o r n e g a t i v e determinant o f F
64 end
65

66 % 1 - Linear momentum equation -A
67

68 % R e c a l l v a r i a b l e s at time step n
69

70 Be = [ PLne ( 1 , ip ) PLne ( 3 , ip ) 0
71 PLne ( 3 , ip ) PLne ( 2 , ip ) 0
72 0 0 PLne ( 4 , ip ) ] ;
73

74 epspvn = PLne ( 5 , ip ) ;
75 epspsn = PLne ( 6 , ip ) ;
76 Pcn = PLne ( 7 , ip ) ;
77

78 % Compute T r i a l l e f t Cauchy - Green
79 BeTr = Fincr ∗Be∗ Fincr ' ;
80

81 % Compute p r i n c i p a l e l a s t i c deformation and d i r e c t i o n
82

83 [ avett , ava l ] = e i g ( BeTr ) ;
84

85 epseTr = [ l o g ( s q r t ( ava l ( 1 , 1 ) ) )
86 l o g ( s q r t ( ava l ( 2 , 2 ) ) )
87 l o g ( s q r t ( ava l ( 3 , 3 ) ) ) ] ;
88

89 d i r p r = a v e t t ;
90

91 % Compute p r i n c i p a l K i r c h h o f f t e n s i o n
92

93 [ tenspr , epse , Pc , aep , epspv , epsps ,FLAGe( ip , 1 ) ] = tensCC (Ge , epseTr , Pcn , epspvn , epspsn ) ;
94

95 % Compute l e f t Cauchy Green t e n s o r at n+1
96

97 s t r e t p r ( : , 1 ) = exp ( epse ( : , 1 ) ) ;
98

99 Be = z e r o s ( 3 ) ;
100

101 f o r i i =1:3
102

103 Be ( 1 : 3 , 1 : 3 ) = Be ( 1 : 3 , 1 : 3 ) + ( s t r e t p r ( i i ) )^2∗ d i r p r ( : , i i )∗ d i r p r ( : , i i ) ' ;
104

105 end
106

107 % Compute K i r c h h o f f t e n s i o n t e n s o r
108

109 TTe = z e r o s ( 3 ) ;
110

111 f o r i i =1:3
112
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113 TTe ( 1 : 3 , 1 : 3 ) = TTe( 1 : 3 , 1 : 3 ) + t e n sp r ( i i )∗ d i r p r ( : , i i )∗ d i r p r ( : , i i ) ' ;
114

115 end
116

117 Te ( : , ip ) = [ TTe( 1 , 1 ) TTe( 2 , 2 ) TTe( 1 , 2 ) TTe( 3 , 3 ) ] ' ;
118

119 % Compute Cauchy t e n s i o n
120 Se ( : , ip ) = Te ( : , ip )/ det (F_new ) ;
121

122 % Evaluate i n t e r n a l f o r c e
123

124 NSd = NSd + w( i )∗w( j )∗B' ∗ Se ( 1 : 3 , ip )∗ det ( Jt ) ;
125

126

127 % Compute a l f a t e n s o r
128

129 s t r e t T r ( : , 1 ) = exp ( epseTr ( : , 1 ) ) ;
130 [ ALFAe ( : , ip ) a l f a t e n s ] = a l f a ( aep , tenspr , s t r e t T r . ^2 , d i r p r ) ;
131

132

133 % Find minimum determinant o f E u le r i an a c u s t i c t e n s o r
134

135 theta = 0 : 1 : 1 8 0 ;
136 determ = z e r o s ( l e n g t h ( theta ) , 1 ) ;
137 f o r nn=1: l e n g t h ( theta )
138 nvet = [ cosd ( theta ( nn ) ) ; s ind ( theta ( nn ) ) ; 0 ] ;
139

140 ae = AEEu( a l f a t e n s , TTe , nvet ) ;
141

142 determ ( nn)= det ( ae ) ;
143 end
144

145 BIF = [ min ( determ ) ] ;
146

147 % A l l o c a t e v a r i a b l e s
148

149 PLe ( : , ip )= [ Be ( 1 , 1 ) ; Be ( 2 , 2 ) ; Be ( 1 , 2 ) ; Be ( 3 , 3 ) ; epspv ; epsps ; Pc ; BIF ] ;
150

151

152 % 1 - Linear momentum equation -B
153

154 m(1:3 ,1)= [ 1 , 1 , 0 ] ' ;
155

156 NWt = NWt + w( i )∗w( j ) ∗ (B ' ∗ (m∗Np∗pe_new ) ) ∗ det ( Jt ) ;
157

158 % 2 - Mass balance equation -A
159 Jd = Jd + w( i )∗w( j ) ∗ (Np ' ∗ ( J_new - J_old )/J_new)∗ det ( Jt ) ;
160

161 % 2 - Mass balance equation -B
162 perm = [ kx 0
163 0 ky ] ;
164

165 PHIt = PHIt + w( i )∗w( j ) ∗ (dNp ' ∗ ( perm∗dNp∗pe_new ) ) ∗ det ( Jt ) ;
166 end
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167 end
168

169

170 g e f = NSd-NWt;
171 gep = -Jd - dt ∗PHIt ;
172

173 ge= [ g e f
174 gep ] ;
175

176 end

The function (KKeQuad) computes the tangential operator at the element level according to Eq.

(4.33). The function is reported in the following box.

1 ne = s i z e (Xe , 1 ) ;
2 dof = 2 ;
3

4 Xep = Xe ( 1 : 4 , 1 : dof ) ;
5 nep = s i z e (Xep , 1 ) ;
6 dp = 1 ;
7

8 ue_old=ince_old ( 1 : ne∗ dof ) ;
9 ue_new=ince_new ( 1 : ne∗ dof ) ;

10 dinc = dince ( 1 : ne∗ dof ) ;
11

12 uep_new=ince_new ( 1 : nep∗ dof ) ;
13 pe_new=ince_new ( ne∗ dof +1: ne∗ dof+nep∗dp ) ;
14 dincp = dince ( 1 : nep∗ dof ) ;
15

16 % Mater ia l parameters
17

18 Ks = Ge ( 4 ) ;
19 n = Ge ( 5 ) ;
20 Kf = Ge ( 6 ) ;
21 kx = Ge ( 7 ) ;
22 ky = Ge ( 8 ) ;
23

24 KeFF = KeQuad(Xe , nip , ue_new , ue_old , uep_new , dinc , pe_new , Se , ALFAe ) ;
25 KeFT = LeQuad (Xe , Ge , nip , Ks , ue_new , uep_new ) ;
26 KeTF = LeTQuad(Xe , Ge , nip , Ks , ue_new , uep_new ) ;
27 KeFF = HeQuad(Xe , Ge , nip , kx , ky , uep_new ) ;
28

29 KKe=[ KeFF KeFT
30 KeTF dt ∗KeFF ] ;
31 end

The functions which compute the four contributions to the tangent matrix are reported in the

following boxes. Note that some terms, pertaining to some non linear contributions, haven’t been

implemented, in order to reduce the computational effort. In fact, these terms don’t have a significant

impact on the convergence of the Newton-Raphson scheme, and therefore they are not essential to
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find the correct solution of the problem.

The term 𝐾𝜙𝜙 is computed by the following function.

1 f u n c t i o n [ Ke ] = KeQuad(Xe , nip , ue_new , ue_old , uep , dinc , pe , Se , ALFAe)
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % KeQuad :
4 % Creates the element s t i f f n e s s matrix o f an hyper - e l a s t o p l a s t i c
5 % 4 - or 8 - node q u a d r i l a t e r a l element in plane s t r a i n .
6 %
7 % Syntax :
8 % [ Ke ] = KeQuad(Xe , nip , ue_new , ue_old , uep , dinc , pe , Se , ALFAe)
9 %

10 % Input :
11 % Xe : Element nodal c o o r d i n a t e a r r a y .
12 % nip : Number o f Gauss p o i n t s .
13 % ue : Element nodal d i s p l a c e m e n t s .
14 % Se : Element s t r e s s array at Gauss p o i n t s .
15 % ALFAe : C o n s t i t u t i v e t a n g e n t i a l o p e r a t o r .
16 %
17 % Output :
18 % Kec : Element s t i f f n e s s m a t r i x .
19 %
20 % Date :
21 % Vers ion 1 . 0 30 . 1 0 . 1 3
22 %
23 % Created by Nicolo ' S p i e z i a
24 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
25

26 % Number o f nodes per element and dof ' s per node
27 ne = s i z e (Xe , 1 ) ;
28 dof = s i z e (Xe , 2 ) ;
29

30 Xep = Xe ( 1 : 4 , 1 : 2 ) ;
31

32 % Gauss p o i n t s and w e i g h t s .
33 [ r w] = Gauss ( nip ) ;
34

35 % I n i t i a l i z e m a t r i c e s
36 [ Ke ] = de a l ( z e r o s ( ne∗ dof ) ) ;
37

38 % Gauss i n t e g r a t i o n o f s t i f f n e s s m a t r i x .
39 ip = 0 ;
40 f o r i = 1 : nip
41 f o r j = 1 : nip
42

43 ip = ip + 1 ;
44 % Get element Jacobian matrix and s t r a i n i n t e r p o l a t i o n matrix
45

46 [ Jt , ~ , ~ , ~ ,G] = BQuad(Xe , r ( i ) , r ( j ) , ue_old+dinc ) ;
47 %[ ~ , ~ , ~ ,Np, ~ ] = BQuad(Xep , r ( i ) , r ( j ) , uep ) ;
48 [ F , b ] = FbQuad(Xe , r ( i ) , r ( j ) , ue_old+dinc ) ;
49
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50 % R e c a l l t e n s o r sigma f o r 2D a n a l y s i s
51 [ taumI , ~ ]= prodton ( Se ( : , ip ) ) ;
52

53 % R e c a l l c o n s i s t e n t tangent a lgor i thm
54

55 a l f a = (1/ det (F) ) ∗ reshape (ALFAe ( : , ip ) , 4 , 4 ) ;
56

57 a = ( a l f a - taumI ) ;
58

59 Ke = Ke + w( i )∗w( j ) ∗ (G' ∗ a∗G)∗ det ( Jt ) ;
60

61 end
62 end
63

64 end

The term 𝐾𝜃𝜃 is computed by the following function.

1 f u n c t i o n [ He ] = HeQuad(Xe , nip , kx , ky , uep_new )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % HeQuad :
4 % Creates the element p e r m e a b i l i t y matrix o f
5 % 4 - or 8 - node q u a d r i l a t e r a l element in plane s t r a i n .
6 %
7 % Syntax :
8 % f u n c t i o n [ He ] = HeQuad(Xe , nip , kx , ky , uep_new )
9 %

10 % Input :
11 % Xe : Element nodal c o o r d i n a t e a r r a y .
12 % nip : Number o f Gauss p o i n t s .
13 % k : Permeabi l i ty m a t r i x .
14 % uep_new : Updated disp lacement on the p r s s u r e nodes
15 %
16 % Output :
17 % He : Element p e r m e a b i l i t y m a t r i x .
18 %
19 % Date :
20 % Vers ion 1 . 0 30 . 1 0 . 1 3
21 %
22 % Created by Nicolo ' S p i e z i a
23 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
24

25 % Extrapo late p r e s s u r e node only
26 Xep = Xe ( 1 : 4 , 1 : 2 ) ;
27

28 % Number o f nodes per element and dof ' s per node
29 ne = s i z e (Xep , 1 ) ;
30

31 % Gauss p o i n t s and w e i g h t s .
32 [ r w] = Gauss ( nip ) ;
33

34 perm=[kx 0
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35 0 ky ] ;
36

37 % I n i t i a l i z e m a t r i c e s
38 He=z e r o s ( ne , ne ) ;
39

40 % Gauss i n t e g r a t i o n o f s t i f f n e s s m a t r i x .
41

42 f o r i = 1 : nip
43 f o r j = 1 : nip
44

45 % Get element Jacobian matrix and s t r a i n i n t e r p o l a t i o n matrix
46 [ Jt , ~ ,dNp , ~ , ~ ] = BQuad(Xep , r ( i ) , r ( j ) , uep_new ) ;
47

48 % Coupling element matrix
49 He = He + w( i )∗w( j ) ∗ (dNp ' ∗ ( perm∗dNp) ) ∗ det ( Jt ) ;
50

51 end
52 end

The term 𝐾𝜙𝜃 is computed by the following function.

1 f u n c t i o n [ Le ] = LeQuad (Xe , Ge , nip , Ks , ue_new , uep_new )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % KeQuad :
4 % Creates the element c o u p l i n g matrix o f a
5 % 4 - or 8 - node q u a d r i l a t e r a l element in plane s t r a i n .
6 %
7 % Syntax :
8 % f u n c t i o n [ Le ] = LeQuad (Xe , Ge , nip , Ks , ue_new , uep_new ) )
9 %

10 % Input :
11 % Xe : Element nodal c o o r d i n a t e a r r a y .
12 % Ge : Element property v e c t o r .
13 % nip : Number o f Gauss p o i n t s .
14 % ue : Displacement v e c t o r .
15 %
16 % Output :
17 % Le : Element c o u p l i n g m a t r i x .
18 %
19 % Date :
20 % Vers ion 1 . 0 30 . 1 0 . 1 3
21 %
22 % Created by Nicolo ' S p i e z i a
23 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
24

25 % Extrapo late p r e s s u r e node only
26

27 Xep = Xe ( 1 : 4 , 1 : 2 ) ;
28 nep = s i z e (Xep , 1 ) ;
29

30 % Number o f nodes per element and dof ' s per node
31 ne = s i z e (Xe , 1 ) ;
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32 dof = s i z e (Xe , 2 ) ;
33

34 % Gauss p o i n t s and w e i g h t s .
35 [ r w] = Gauss ( nip ) ;
36

37 % Vector a l f a
38

39 a l f a (1 ,1)=1;
40 a l f a (2 ,1)=1;
41 a l f a (3 ,1)=0;
42

43

44 % I n i t i a l i z e m a t r i c e s
45 Le=z e r o s ( ne∗ dof , nep ) ;
46

47 % Gauss i n t e g r a t i o n o f s t i f f n e s s m a t r i x .
48

49 f o r i = 1 : nip
50 f o r j = 1 : nip
51

52 % Get element Jacobian matrix and s t r a i n i n t e r p o l a t i o n matrix
53 [ Jt , B, ~ , ~ , ~ ] = BQuad(Xe , r ( i ) , r ( j ) , ue_new ) ;
54 [ ~ , ~ , ~ ,Np, ~ ] = BQuad(Xep , r ( i ) , r ( j ) , uep_new ) ;
55 [ F , b ] = FbQuad(Xe , r ( i ) , r ( j ) , ue_new ) ;
56

57 J=det (F ) ;
58

59 % Coupling element matrix
60 Le = Le + w( i )∗w( j ) ∗ (B ' ∗ ( a l f a ∗Np ) ) ∗ det ( Jt ) ;
61

62 end
63 end

The term 𝐾𝜃𝜙 is computed by the following function.

1 f u n c t i o n [ LeT ] = LeTQuad(Xe , Ge , nip , Ks , ue_new , uep_new )
2 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3 % KeQuad :
4 % Creates the element c o u p l i n g matrix o f a
5 % 4 - or 8 - node q u a d r i l a t e r a l element in plane s t r a i n .
6 %
7 % Syntax :
8 % [ LeT ] = LeTQuad(Xe , Ge , nip , Ks , ue_new , uep_new )
9 %

10 % Input :
11 % Xe : Element nodal c o o r d i n a t e a r r a y .
12 % nip : Number o f Gauss p o i n t s .
13 % ue : Updated disp lacement v e c t o r .
14 %
15 % Output :
16 % Le : Element c o u p l i n g m a t r i x .
17 %
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18 % Date :
19 % Vers ion 1 . 0 30 . 1 0 . 1 3
20 %
21 % Created by Nicolo ' S p i e z i a
22 % - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
23

24 % Extrapo late p r e s s u r e node only
25

26 Xep = Xe ( 1 : 4 , 1 : 2 ) ;
27 nep = s i z e (Xep , 1 ) ;
28

29 % Number o f nodes per element and dof ' s per node
30 ne = s i z e (Xe , 1 ) ;
31 dof = s i z e (Xe , 2 ) ;
32

33 % Gauss p o i n t s and w e i g h t s .
34 [ r w] = Gauss ( nip ) ;
35

36 % Alfa v e c t o r
37

38 a l f a (1 ,1)=1;
39 a l f a (2 ,1)=1;
40 a l f a (3 ,1)=0;
41

42 % I n i t i a l i z e m a t r i c e s
43 LeT=z e r o s ( ne∗ dof , nep ) ;
44

45 % Gauss i n t e g r a t i o n o f s t i f f n e s s m a t r i x .
46

47 f o r i = 1 : nip
48 f o r j = 1 : nip
49

50 % Get element Jacobian matrix and s t r a i n i n t e r p o l a t i o n matrix
51 [ Jt , B, ~ , ~ , ~ ] = BQuad(Xe , r ( i ) , r ( j ) , ue_new ) ;
52 [ ~ , ~ , ~ ,Np, ~ ] = BQuad(Xep , r ( i ) , r ( j ) , uep_new ) ;
53 [ F , b ] = FbQuad(Xe , r ( i ) , r ( j ) , ue_new ) ;
54

55 J=det (F ) ;
56

57 % Coupling element matrix
58 LeT = LeT + w( i )∗w( j )∗ J ∗(B ' ∗ ( a l f a ∗Np) ) ∗ det ( Jt ) ;
59

60 end
61 end

The developed finite element code can be used to solve elastoplastic coupled model undergoing

large deformations in plane strain analysis. The code has been applied to two problems pertain-

ing geomechanical applications, namely consolidation processes under linear long foundation and

wellbore drilling. The results will be presented in the next chapter of this thesis.
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Chapter 5

Numerical analysis and results

5.1 Introduction

This chapter describes the results obtained from the numerical analysis performed with the finite

element code presented in the previous chapter. Two examples, taken from real applications in the

geomechanical field, have been investigated. The first example regards the consolidation process

due to the application of a load on a surface, simulating for example the construction of a long strip

foundation. Two situations are investigated, a one dimensional and a two dimensional plane strain

process. This example, typical in the geotechnical literature, has been solved in particular to test

the model and compare the results with other available cases.

The second example regards the drilling process of an horizontal wellbore in a porous rock forma-

tion. Predicting the evolution of displacements and pressure, the amount of accumulated plastic

deformations and the propagation of localization band around a wellbore is a challenging task, that

could have immense implication. In this chapter we show the results obtained from the coupled

elastoplastic analysis, in order to give insight into the evaluation of the stability of the wellbore.

Obviously, these are just two examples and the code can be used to solve every kind of elastoplastic

coupled problem undergoing large deformations.

5.2 Consolidation process under a uniformed distributed load

on soft clay

This section presents the numerical results of the consolidation process of an elastoplastic saturated

porous media, subjected to an applied load, in a one dimensional and two dimensional configuration.
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Figure 5-1: One dimensional consolidation: geometry and boundary conditions.

5.2.1 One dimensional consolidation

Description of the problem

The first example considers an initially stress-free hyperelastic porous skeleton subjected to a one

dimensional consolidation process. The geometry and the boundary conditions of the problem are

represented in Fig. 5-1.

The initial height of the column is 𝐻 = 5000𝑚𝑚, 𝐵 = 𝑏 = 1000𝑚𝑚 and it is compressed with a

vertical downward Cauchy load of 𝑞 = −90𝐾𝑃𝑎. The column assumes an impervious bottom base,

that is fixed with respect to displacements, zero horizontal displacements on the vertical sides, and

zero excess pore pressure on top.

The material is hyperelastic and it is described by the free energy function Ψ̂ introduced in the

Eq. (3.38) where 𝜖𝑒𝐴 = ln(𝜆𝑒
𝐴) are the elastic logarithmic principal stretches. The assumed values

of the material parameters are 𝜆 = 57.7𝐾𝑃𝑎 and 𝜇 = 38.5𝐾𝑃𝑎 (equivalent to Young’s modulus

of 𝐸 = 100𝐾𝑃𝑎 and Poisson’s ratio of 𝜈 = 0.3) (1). The vertical permeability is assumed to

have a value of 𝑘𝑥 = 𝑘𝑦 = 0.864𝑚𝑚/𝑑𝑎𝑦 and the column is fully saturated by water (unit weight

𝜌𝑓𝑔 = 10𝐾𝑁/𝑚3). Gravitational forces are not considered and the consolidation is assumed to be

only due to the applied load. The column is discretized with 10 quadrilateral Quad8-4 elements.
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Figure 5-2: One dimensional consolidation: evolution with time [𝑠] of the displacement [𝑚𝑚] of the
top node and the pore pressure [𝑀𝑃𝑎] of the bottom node.

Numerical results and considerations

The consolidation process is summarized in Fig. (5-2), which plots the evolution with time of

the displacement of the top node and the pressure of the bottom node. Only the overpressure is

considered in this analysis, i.e. the hydrostatic pressure due to the self weight of the water is not

taken into account.

The Figg. (5-3) and (5-4) plot the nodal Cauchy pore pressure and the vertical Cauchy effective

stress at different time steps.

At the beginning of the consolidation process, as showed by the numerical results, the pore

pressure counterbalances the applied external load. As far as the fluid permeates from the porous

matrix, the solid skeleton counterbalances the external force, and therefore we observe the increase

of the effective vertical stress. Since we assumed that the Biot coefficient 𝐵 = 1, the sum of the

pore pressure and the vertical effective stress must always be constant and equal to the applied

external load. Note that both the pressure and the stress measures are computed with respect

to the deformed configuration. It’s therefore clear from this simple example that the equilibrium

condition and the mass balance condition are imposed with respect of the updated configuration.

The Fig. (5-5) shows the isochrones at different time steps of the Cauchy pore pressure. The plot

shows the diffusion process of the fluid through the column, until the steady state condition is
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Figure 5-3: Nodal Cauchy pore pressure at different time steps.

128



Figure 5-4: Cauchy effective vertical stress at different time steps.

129



0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized Cauchy pore pressure

N
or

m
al

iz
ed

 h
ei

gh
t o

f t
he

 c
ol

um
n

 

 
2.2
11.7
69.9
214.2
438.7
3260.4

Figure 5-5: Isochrones of constant Cauchy pore pressure at different time [day].

reached with null overpressure in the column.

The Fig. (5-6) compares the results obtained by Borja et al. (1) for the same example, assum-

ing also the small strain formulation (Terzaghi analytical solution). As can be observed, there is

a significant difference between the two formulations. This is due to the fact that the considered

material is pretty soft, and allows for significant displacement. Therefore, the small strain theory

can’t capture the correct final displacements. Furthermore, taking into account the updated con-

figuration, the drainage length decreases as far as the consolidation proceeds, and hence the total

time of consolidation is lower in the finite strain regime. Finally, note that the computed solution

at finite strain is identical to the solution obtained by Borja et al., validating the implemented code.

Finally, Fig. (5-7) plots the convergence profile for different time step, showing the good perfor-

mance of the implemented Newton-Raphson scheme.

5.2.2 Two dimensional plane strain consolidation

Description of the problem

We consider the problem of a strip flexible footing resting on a soft compressible clay. The problem

is again solved using a two-dimensional domain, assuming plane strain analysis, and considering

only one half of the geometry, taking advantage of the symmetry of the configuration.

The geometry and the boundary conditions of the problem are represented in Fig. 5-8.

The initial dimensions of the geometry are 𝐵 = 20000𝑚𝑚 and 𝐻 = 5000𝑚𝑚. It is applied

instantly a strip load of intensity 𝑞 = −18𝐾𝑃𝑎 over a half-width of 𝑏 = 1000𝑚𝑚, and after it

is held constant. The domain assumes an impervious bottom base, that is fixed with respect to
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Figure 5-6: Comparison between the small strain and large strain formulation (1) for one dimensional
elastic consolidation.
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Figure 5-7: Normalized norm of force/fluxes residual vector versus iteration number.
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Figure 5-8: Two dimensional consolidation: geometry and boundary conditions.

displacements, zero horizontal displacements on the vertical sides, and zero excess pore pressure on

the surface.

The material is modeled with the modified Cam-Clay described in Sec. 3.2.3. The assumed values

of the material parameters are 𝜇0 = 200𝐾𝑃𝑎, 𝛼 = 0, 𝜅 = 0.05, 𝜆 = 0.2, = 1, 𝑃0 = −10𝐾𝑝𝑎,

𝑃𝑐0 = −10𝐾𝑃𝑎 and 𝜖𝑒𝑣0 = −0.05 (1). The density of the solid phase is 0.506𝑡𝑜𝑛/𝑚3. The vertical

permeability is assumed to have a value of 𝑘𝑥 = 𝑘𝑦 = 0.864𝑚𝑚/𝑑𝑎𝑦 and the domain is fully saturated

with water (unit weight 𝜌𝑓𝑔 = 10𝐾𝑁/𝑚3). The domain is discretized with quadrilateral Quad8-4

elements. The initialization procedure entails running a preliminary analysis to generate the initial

reference configuration produced by the gravity loads.

Numerical results and considerations

Fig. 5-9 plot the results of the initial configuration-when only the gravitational load is applied-in

terms of nodal overpressure, equivalent Von Mises stress and preconsolidation pressure 𝑃𝑐. As can

be observed, the fluid overpressure is uniformly equal to zero since the hydrostatic distribution is not

taken into account. The equivalent Von Mises stress increases with depth, since it is due to the self

weight of the solid skeleton. The preconsolidation pressure is equal to the initial value in top layers

of the domain, while it increases in the bottom layers, defining the overconsolidation ratio of the

domain. Therefore, the top layers are still in elastic regime and the bottom layers are in elastoplastic

regime, at the beginning of the analysis. The vertical displacement, due to the application of the

gravitational load of the top surface, is uniform and equal to 316.16𝑚𝑚.

Fig. 5-10 represents the evolution with time of the nodal overpressure during the consolidation

process. As can be observed, when the load is applied to the surface there is an immediate increase

of the pressure just under the application point of the load. Then the diffusion process begins,

dissipating the overpressure and reaching the final consolidated configuration. The displacement of

the solid matrix evolves as far as the fluid diffuses through the porous matrix. The final displacement
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Figure 5-9: Initial configuration in terms of nodal pressure (a), equivalent Von Mises stress (b) and
preconsolidation pressure (c)
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Figure 5-10: Nodal pore pressure distribution at different time steps.
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of the top central node, due to the application of the gravitational load and the distributed load, is

equal to 856.29𝑚𝑚. This displacement is obtained when the load factor of the load is equal to 0.65,

therefore the final displacement is computed for an applied load equal to 𝑞 = 0.65 · 18 = 11.7𝐾𝑃𝑎.

Behind this value the solution can’t be computed, since the failure condition of the soil is found and

the code can’t converge to a meaningful solution.

Fig. 5-11 describes the evolution of the equivalent Von Mises stress with time. Initially the load is

supported mainly by the ovepressure and later on, as far the diffusion process evolves, the load is

carried by the solid matrix, with a consequent increase in the value of the effective stress.

Fig. 5-12 describes the evolution of the deviatoric plastic strain with time, focusing in the zone

where the load is applied. At the beginning of the process the plastic deformations are relatively

small, and they increase significantly at the end of the consolidation process. It is possible to observe

the formation of a clear shear band, which constitutes the failure plane of the soil surface. In fact,

after this point, the code can’t find a stable solution of the problem, due to the loss of uniqueness.

5.3 Drilling process of an horizontal wellbore through a porous

rock formation

5.3.1 Introduction

The second application which is investigated concerns the horizontal perforation of a horizontal

wellbore in a porous fully saturated rock formation.

Wellbore instability in the oil and gas industry applications, in particular deep wellbore drilling,

continues to be one of the major problems faced by scientists and engineers in that industry. The

removal of the material, due to the drilling operation, alters strongly the in-situ stress concentration

in the formation surrounding the hole, and can lead to localized stress-induced breakouts. Excessive

breakouts can lead to problematic, and sometimes catastrophic, instabilities, resulting in well loss

(73).

The problem of wellbore stability has become even more important in the last decades, due to the

increasing number of horizontal and inclined wells, especially if the in-situ stress is significantly high.

Drilling horizontal wells through producing strata can greatly improve reservoir drainage and hy-

drocarbon recovery. Moreover, under environmental restrictions, such as offshore platforms, inclined

wells are drilled from a relatively small area towards all directions for a better exploitation. Drilling

inclined and horizontal wells, though, is more difficult and more expensive, due to the more likely

wellbore instabilities. To prevent instabilities during perforation, the wellbore is temporarily sup-

ported by the drilling mud pressure. If instability could occur, the value of the mud pressure need to

be sufficiently high to prevent compressional failure, but also lower than a critical value which would
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Figure 5-11: Equivalent Von Mises Cauchy stress distribution at different time steps.
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Figure 5-12: Deviatoric plastic deformation at different time steps.
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cause tensile failure, and eventually consequent unintentional hydraulic fracturing. Nevertheless,

even if the wellbore is sufficiently stable to avoid collapse, it’s important to prevent sand produc-

tion, since in horizontal well it may be more difficult to remove in horizontal well while drilling,

resulting in a slower rate of penetration.

Traditionally the stability of a well is determined using models based on linear elasticity, and failure

is assumed to occur when the stresses along the wall reach the failure or tensile strength of the

rock. More realistic evaluation of the stability is predicted by elastoplastic models, which present

the advantage of showing the extent of the damaged region, leading to a better indicator of instabil-

ity. Clearly, this depend on the capability of the constitutive model to capture the different failure

modes. Usually simple elastoplastic model such as Mohr-Coulomb or Drucker-Prager are used in

the analysis, due to the lack of data available for the calibration of more sophisticated constitutive

law. These models, characterized by a shear yield surface, can describe only the dilatant plastic

mechanism preceding the failure, but are not able to describe the compactant plastic mechanism.

In the last two decades several experiments have been conducted on high porosity sandstones, to

investigate in particular the compaction failure that can take place under certain stress conditions,

in contrast with the more common dilatant failure (31; 32; 33).

Compactant failure typically occurs in porous rocks under relatively high confinement, with a fail-

ure mode conventionally described as homogeneous cataclastic flow, but can lead also to thin planar

zones of pure compressional deformation, which are usually called ‘compaction bands’ (74; 75). Ex-

perimental studies on boreholes drilled in a cubical specimens of rock with different porosity, show

that, if the porosity is high (22-25%), the failure is associated with the compactant mechanism,

and in certain situation they developed a long and thin fracture, originated in the region of high-

est compressive stress concentrations (76; 77). These kind of mechanism failure, associated with a

significant reduced of porosity, have as consequence a relevant reduction on permeability, thus ad-

versely affecting the extraction or injection of fluids for energy production or storage. Additionally,

the denser band material may affect the mechanical strength of the rock formation, causing damage

of the wells, subsidence and trap sealing failure.

Since the compactant plastic mechanism can have an important role in the analysis of wellbore, an

adequate constitutive elastoplastic model is necessary able to capture both the dilatant and com-

pactant behavior, and the transition between this two failure criteria (2).

The simulations adopt the constitutive model developed in Sec. 3.2.4 for high porous rock. The

model is calibrate against experimental data, showing the capability to reproduce laboratory test. In

particular, the developed numerical model is applied to asses the stability of an horizontal wellbore,

using experimental data available from a deep water reservoir offshore Brazil (4).

These simulations investigate the quasi-static transient phenomenon associated with the perfora-

tion, until the steady state condition is reached. The model describes the evolution of the stress
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Description Parameters
Hyperelastic response 𝑘, 𝑃0, 𝜖𝑒𝑣0

, 𝜇0, 𝛼
Plastic response (compactive side) 𝑃𝑖0 , 𝐴, 𝜖*, 𝑟
Plastic response (dilatant side) 𝑚, 𝑐0, �̄�

Table 5.1: Parameters for the constitutive model

and pressure distribution, and moreover the propagation of the plastic zones around the borehole,

elucidating the factors that either prevent or enhance the failure of the hole and the band initiation.

The work demonstrates the capability of the finite deformations coupled approach to simulate the

whole process.

5.3.2 Calibration of the constitutive model

This section discusses how the model can be calibrated against experimental data and at the same

time shows the capability of the model to reproduce different laboratory test.

In the last two decades several experiments have been conducted on porous sandstones, with partic-

ular interest on the evaluation of the compaction mechanism and the transition from a dilatant to

a compactant behavior (usually called brittle-ductile transition) (3; 55; 78; 79). The standard test

consist on a triaxial experiment, in which the samples are ground to a cylindrical shape, jacketed

with tubing, saturated with distilled water and deformed under fully drained conditions at a fixed

pore pressure. In the various experiments, different axial and confining pressure are applied, moni-

toring the porosity change and the axial deformation.

In order to asses the capability and to calibrate the parameters of the presented constitutive model,

we compare the numerical results with experimental data available from triaxial laboratory tests,

conducted in different sandstones. Let us recall first the variables adopted, listed in table 5.1.

The parameters 𝑘, 𝑃0 and 𝜖𝑒𝑣0
determine the hydrostatic hyperelastic response, since they cor-

relate the volumetric deformation 𝜖𝑒𝑣 with the pressure applied to the specimen according to Eq.

(3.47)1, assuming that 𝜖𝑒𝑠 is null. Therefore, they can be assessed considering the elastic part of

the hydrostatic laboratory test on the rock. The reference pressure 𝑃0 and the reference volumetric

strain 𝜖𝑒𝑣0
simply establish the position of the hyperelastic curve, so the value of one parameter

depends on the value of the other. Note that, assuming 𝜖𝑒𝑣0
= 0, the initial bulk modulus is equal

to 𝑃0/𝑘, which corresponds to the tangent in 𝜖𝑒𝑣 = 0 of the hydrostatic curve in a (𝑃, 𝜖𝑒𝑣) diagram,

then allowing better calibration of the parameter.

The parameters 𝜇0 and 𝛼 control the deviatoric response, governing the deviatoric deformation with

respect to the applied stress. In particular, the parameter 𝛼 describes the pressure-dependence of

the elastic shear modulus 𝜇, but, since the effective mean normal stress did not vary significantly

during testing, we assume that it is negligible, and we take a constant shear modulus. Once the
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Figure 5-13: Evolution of the elliptical surface as function of the initial yield stress 𝐶* and the
plastic volumetric strain for (a) Bentheim, (b) Berea and (c) Adamswiller sandstones. Experimental
data are taken from (2).

bulk modulus is known, the shear modulus can be estimated, assuming a reasonable Poisson’s ratio.

As far as the compactive plastic response, 𝑃𝑖0 and 𝐴, which describe the initial size of the elliptical

yield surface, can be evaluated plotting the reduction of porosity after pore collapse starts for differ-

ent loading path. Fig ?? represents experimental data on the initial yield stress (corresponding to

pore collapse) and evolution of the yield stress as function of plastic volumetric strain for different

sandstones. The data are interpolated by different ellipsis, with constant minor semiaxis 𝐴 and

variable major semiaxis 𝐵, giving preliminary information as regard the position of the initial ellipse

and the linear yield function. Note that the pore collapse pressure, corresponding to the inflection

point in the hydrostatic curve, is nothing but the sum of 𝑃𝑖0 and 𝐴. The parameters 𝜖* and 𝑟

describe the hardening behavior of the compaction side, and the easiest way to calibrate is using the

plastic part of the curve in the hydrostatic test.

Finally, 𝑚 and 𝑐0 determine the plastic dilatant behavior. Again, they can be assessed interpolat-

ing the experimental data of dilatant plastic deformation on a (𝑝, 𝑞) diagram, for different loading

path. Alternatively, if the cohesion 𝑐 and the angle of internal friction 𝜑 are known, according to

the Mohr-Coulomb friction law, 𝑚 and 𝑐0 can be estimated imposing that the linear yield surface
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match the Mohr-Coulomb yield criterion. The parameter �̄� controls the non associative flow rule

for the dilatant side of the yield surface, and it is usually assumed to be lower than 𝑚, reflecting,

that according to the experimental evidence, the dilatancy angle is lower than the frictional angle.

The task is now to use the developed constitutive model to describe the hydrostatic compaction

behavior of different rocks, using the return mapping algorithm presented in the previous section.

The deformation process is governed by a scalar function 𝑐(𝑡) > 0, 𝑐(0) = 0 which maps the point

in the undeformed configuration 𝑋 in the current configuration 𝑥

𝑥𝐴 = (1− 𝑐(𝑡))𝑋𝐴 𝐴 = 1, 2, 3. (5.1)

The deformation gradient 𝐹 at time 𝑡𝑛 can be evaluated as

F𝑛 = 𝜕𝑥𝑛

𝜕𝑋
=

⎡⎢⎢⎢⎣
1− 𝑐𝑛 0 0

0 1− 𝑐𝑛 0

0 0 1− 𝑐𝑛

⎤⎥⎥⎥⎦ . (5.2)

Hence, the relative deformation gradient 𝑓 is

𝑓 = 𝜕𝑥𝑛+1
𝜕𝑥𝑛

= 𝐹𝑛+1𝐹
−1
𝑛 . (5.3)

We view 𝑐(𝑡) as being applied in increments of Δ𝑐. Then (5.2) and (5.3) take the form

𝐹𝑛+1 =

⎡⎢⎢⎢⎣
1− (𝑛+ 1)Δ𝑐 0 0

0 1− (𝑛+ 1)Δ𝑐 0

0 0 1− (𝑛+ 1)Δ𝑐

⎤⎥⎥⎥⎦ ; (5.4)

𝑓 =

⎡⎢⎢⎢⎣
1+(𝑛+1)Δ𝑐

1+𝑛Δ𝑐 0 0

0 1+(𝑛+1)Δ𝑐
1+𝑛Δ𝑐 0

0 0 1+(𝑛+1)Δ𝑐
1+𝑛Δ𝑐

⎤⎥⎥⎥⎦ . (5.5)

where 𝑛 indicates the number of the increment. The function 𝑐(𝑡) is increased, corresponding to

a compression in the three principal directions, until the maximum value in compression is achieved,

according to the experimental data. Then 𝑐(𝑡) decreases, and the complete loading and unloading

path can be simulated.

For each increment 𝑛 we define the deformation gradient 𝐹 and then we compute the Jacobian

𝐽 = det(𝐹 ). Since we defined 𝜖𝐴 = ln(𝜆𝐴) as the logarithmic principal stretch, we can write

𝜖𝑣 =
3∑︁

𝐴=1
𝜖𝐴 =

3∑︁
𝐴=1

ln(𝜆𝐴) = ln(𝜆1𝜆2𝜆3) = ln(𝐽), (5.6)
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Parameter Sandstone
Boise Berea Bentheim St. Peter Adamswiller

𝑘 (MPa) 0.015 0.015 0.010 0.030 0.015
𝑃0 (MPa) -10 -12 -15 -10 -10
𝜖𝑒𝑣0

0 0 0 0 0
𝜇0 (MPa) 500 500 500 500 500
𝛼 0 0 0 0 0
𝑃𝑖0 (MPa) -40 -190 -210 -200 -100
𝐴 (MPa) 30 180 200 120 100
𝜖* -0.22 -0.1 -0.12 -0.18 -0.15
𝑟 1.5 0.8 0.4 1.2 1.5
𝑚 -1.0 -0.6 -0.6 -1.0 -0.7
𝑐0 (MPa) 100 100 120 145 70
�̄� -0.7 -0.4 -0.4 -0.8 -0.6

Table 5.2: Parameters for the constitutive model

i.e. for every value of the the Jacobian we obtain the volumetric deformation. We define a procedure

to determine the porosity reduction Δ𝑛, since the experimental data are usually expressed using this

parameter. Assuming that 𝑉0 and 𝑛0 are respectively the initial volume and porosity (𝑉0 = 1 for

the sake of simplicity), the deformed volume in the current configuration is nothing but 𝑉 = 1−Δ𝑛.

Hence the the following relation holds

𝜖𝑣 = ln(𝐽) = ln(𝑉/𝑉0) = ln(1−Δ𝑛). (5.7)

The numerical procedure consists in imposing the deformation, increasing linearly the function 𝑐(𝑡)

with assigned increments, and compute the relative stress status, using as variables the principal

logarithmic strains and the principal Kirchhoff tension, as explained in the previous section. In order

to compare the results with experimental data is then necessary to convert the computed quantity

with laboratory variables, i.e. the Cauchy tension 𝑝 = 𝑃/𝐽 and the changing in porosity Δ𝑛.

Fig. 5-14 represents the results obtained from the model compared with the experimental data for

different hydrostatic compaction test of several sandstone. The value of the parameters adopted

for the different rocks are listed in Table 5.2. With an appropriate calibration, the numerical

results match really well the experimental data. In particular the model is efficient in capturing the

nonlinear response of the elastic phase, the hydrostatic yield pressure (identified by the knee in the

curve) and the hardening behavior during plastic compaction. Especially, this model turns to be

particular accurate for those rocks in which the elastic or plastic response is highly nonlinear, giving

better results than the traditional linear model. The constitutive model can describe efficiently also

the unloading deformation process, for which an appropriate nonlinear elastic model is even more

important to capture accurately the behavior. Further considerations can be done comparing the

values among the different rocks, that may be helpful if the experimental data are not available. The

parameters affected by the largest variation range are 𝑃𝑖0 and 𝐴, i.e. by the pore collapse pressure,
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Figure 5-14: Comparison between experimental data and model simulation of a hydrostatic test for
(a) Boise, (b) Berea, (c) Bentheim, (d) St. Peter and (e) Adamswiller sandstones. 𝑝 is the Cauchy
mean stress and Δ𝑛 is the porosity reduction. Experimental data are taken from (2).
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which vary significantly among the samples. Nevertheless, the value of the pore collapse pressure

can be identified easily from a simple hydrostatic test. Therefore, the model can be used even if few

laboratory data are available.

Let’s now consider a triaxial compression experiment, where the porosity reduction is measured in

function of the mean stress, for different values of confining pressure 𝑃𝑐. To reproduce numerically

this laboratory test, we established a procedure in which the process is now driven by the stress.

The value of 𝑃 and 𝑄 = 3(𝑃 − 𝑃𝑐) are increased by increment, with 𝑃 > 𝑃𝑐 and 𝑃𝑐 fixed, and for

each increment the total volumetric strain 𝜖𝑣 is computed. This computed value is then converted

in terms of porosity reduction, to make it comparable with common experimental data. For a

given value of (𝑃,𝑄), if the point that describes the stress status lies inside the elastic domain then

the actual value of 𝜖𝑒𝑣 is computed according to Eq. (3.47). Since the stress point belongs to the

elastic domain, 𝜖𝑒𝑣 corresponds to the total volumetric deformation 𝜖𝑣. If the loading path intersects

the yield surface in the linear side, then the surface cannot expand anymore and the limit load is

identified, which is associated with a shear failure. Otherwise, if the loading path intersects the

yield cap, the plastic surface expands, according to the hardening law. Thus for each load increment

we updated the elliptical plastic surface imposing that F2 = 0, i.e. we determined the value of 𝑃𝑖

such that the equation is fulfilled. Subsequently, we computed the volumetric plastic deformation

𝜖𝑝𝑣 relative to the stress status, which was summed to the elastic counterpart 𝜖𝑒𝑣 to obtain the total

volumetric deformation 𝜖𝑣. This procedure is summed up in the following box.

1. Initial stress state and hardening parameter: (𝑃𝑛+1, 𝑄𝑛+1) and 𝑃𝑛
𝑖 .

2. Check stress status: F1(𝑃𝑛+1, 𝑄𝑛+1) and F2(𝑃𝑛+1, 𝑄𝑛+1, 𝑃𝑛
𝑖 ) ≥ 0?

• If No: elastic status.

(a) Solve inversely (3.47) and compute 𝜖𝑒𝑣 and 𝜖𝑒𝑠.

(b) Update variables: 𝜖𝑣 = 𝜖𝑒𝑣 and 𝑃𝑛+1
𝑖 = 𝑃𝑛

𝑖 .

• If Yes: plastic status.

– Check loading path: 𝑃 ≥ 𝑃 *?

– If No: elliptical surface.

(a) Solve inversely F2(𝑃𝑛+1, 𝑄𝑛+1, 𝑃𝑛+1
𝑖 ) = 0 and compute 𝑃𝑛+1

𝑖 .

(b) Solve inversely Eq. (3.74) and compute 𝜖𝑝𝑣.

(c) Update variables: 𝜖𝑣 = 𝜖𝑒𝑣 + 𝜖𝑝𝑣.

– If Yes: linear surface. No expansion allowed.
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Figure 5-15: Expansion of the yield surface for different loading path, with confining pressure equal
to (a) -70 MPa and (b) -250 MPa.

Two examples of loading path, starting from a different confining pressure, are shown in Fig. 5-

15. For low value of confining pressure, the loading path intersects the dilatant yield surface, rather

for high value it intersects the cap surface, determining a progressive expansion according to the

hardening law for the compactant side. Note that for high confining pressure the plastic mechanism

is compactant as far as the loading path intersect the cap surface, and finally it turns to be dilatant,

according to the brittle-ductile transition theory.

In this case, we considered experimental results obtained from Berea, Bentheim and Darley Dale

sandstones. Fig. 5-16 shows the results obtained, comparing the experimental data and the predic-

tion obtained by the model. The model can capture well the plastic mechanisms, in particular with

respect to the value of the stress yielding and the hardening behavior of the rock. Among the three

porous rocks, the model fits better the experimental data for Berea and Bentheim. These two rocks

are characterized by a sharp transition between elastic and elastoplatic behavior, with a dramatic

decrease of porosity after the yielding pressure has been reached. The results are less accurate for

Darley Dale sandstone, for which the transition from the elastic to the plastic response is smoother.

Note that the hardening behavior becomes more nonlinear as far as the confining pressure increase,

approaching the solution for hydrostatic compaction, according to the experimental data.

This procedure for calibration of the constitutive model discussed in this section will be adopted

in the next part of the paper to evaluate the parameters for the rock formation where a horizontal

wellbore has been drilled.

5.3.3 Description of the problem

The simulations are performed on horizontal wellbore drilled in Campos Basin field (4), a reservoir

located 290 Km offshore Brazil cost. The water depth is about 1900-2400 m and the reservoir is

located 5000 m underground, below a salt layer that may reach 2000 m. The formation is charac-

terized by high porosity (20-30%) and low permeability (1-10 mD). An experimental investigation
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Figure 5-16: Mean stress versus volumetric strain for triaxial compression experiments on (a) Berea,
(b) Bentheim and (c) Darley Dale sandstones. The confining pressures are indicated by numbers (in
MPa) next to each curve. Experimental data are taken from (3).
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Young’s Modulus Poisson ratio Cohesion Friction angle
𝐸 (MPa) 𝜈 𝑐 (MPa) 𝜑 (°)

1200 0.15 8.5 42

Table 5.3: Available material parameters (4).
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Figure 5-17: Hydrostatic compression test on Campos Basin field

was conducted to define the mechanical properties of the rock formation, testing samples with clas-

sical laboratory experiments. The parameters emerging from the investigations are reported in

table 5.3. As discussed in the previous section, the availability of laboratory data permits a better

calibration of the model. Fig. 5-17 reproduces the hydrostatic compression test conducted on a

samples from the drilled rock formation. As done before, this experimental data has been used

to calibrate the proposed constitutive model, in particular assessing 𝑘, 𝑃0, 𝜖𝑒𝑣0
, 𝑃𝑖0 , 𝐴, 𝜖* and 𝑟.

We considered a constant shear modulus 𝜇0 and its value was estimated from the bulk modulus,

𝜇0 = 3(1 − 2𝜈)𝐾𝑒/2(1 + 𝜈), assuming 𝜈 = 0.15. We evaluated the parameters to define the linear

yield function, i.e. 𝑚 and 𝑐0, such that to approximate the Mohr-Coulomb yield surface. One of the

most common approximations used is obtained by forcing both criteria to predict identical collapse

loads under plane strain conditions. In this case (80) the constants 𝑚 and 𝑐0 read

𝑚 = −
√

3 3 tan𝜑√︀
9 + 12 tan2 𝜑

; 𝑐0 =
√

3 3√︀
9 + 12 tan2 𝜑

𝑐, (5.8)

where 𝑐 is the cohesion of the rock and 𝜑 is the angle of internal friction. Since rocks are usually

not particularly subjected to dilation, we assumed that the dilatancy angle is equal to 5∘, and we

extimated �̄� again using the first of Eq. (5.8) Table 5.4 summarizes the parameters utilized for the

constitutive model in the numerical simulations.

As far as the in-situ geostatic stresses in the reservoir production region, we assumed that the

effective principal horizonatal stresses were equal in both principal directions, and read 𝜎𝐻 = 𝜎ℎ =
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Parameter 𝑘 𝑃0 (MPa) 𝜖𝑒𝑣0
𝜇0 𝛼 𝑃𝑖0 (MPa)

Value 0,01 -5 -0,01 600 0 -35

Parameter 𝐴 (MPa) 𝜖* 𝑟 𝑚 𝑐0 (MPa) �̄�

Value 10 -0,1 1,5 -1,08 10 -0.15

Table 5.4: Parameters data for high porosity rock of Campos Basin field.
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Figure 5-18: Plane strain domain of a quarter of the borehole. (a) In-situ configuration: only far
field stress applied without the hole. (b) Drilling configuration: far field stress and mud pressure,
with the hole.

9.0 MPa. The effective vertical stress was assumed to be 𝜎𝑉 = 32.1 MPa. The open-hole wellbore

radius is 𝑅 = 4.25′′ = 107.95 mm. The wellbore axis is parallel to the direction of the principal

horizontal far-field stress 𝜎ℎ. Since the length of the well is much longer compared to the dimensions

in the other directions, it is a reasonable assumption that deformations are constrained in the plane

perpendicular to the axis. Hence, we assumed for this numerical analysis a plane strain condition.

Then the principal stress acting on the plane of the borehole section are the vertical and the horizontal

stress. The effects of the gravitational load are already accounted in the effective stress field, so the

density of the material is ignored.

The dimension of the complete domain considered for the numerical simulation is ten times the

radius of the bore. Since the problem is doubly symmetric, the discretized domain represents only

one quarter of the complete geometry. The finite element geometry, with the boundary conditions,

is represented in Fig. 5-18.

The analysis consists in two phases: first the vertical and horizontal stresses are applied to the

complete domain, i.e. as the rock formation is still intact, in order to simulate the in-situ stress

condition before the drilling process. Subsequently, the elements corresponding to the borehole are

removed from the domain (decreasing progressively the stiffness), to simulate the process of drilling,
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and the mud pressure is applied. Two type on analysis are performed: the first series of analysis

considers only the mechanical problem, without considering the coupling effect between the solid

and fluid phase. For this type of simulations the domain is discretized with standard quadrilateral

8-nodes element. The second series of analysis considers the coupled problem, taking into account

the solid displacement/fluid diffusion process around the hole. This type of simulations use mixed

quad8-4 elements.

5.3.4 Numerical results and considerations

Solid analysis

In this section the simulations consider only the solid mechanical problem, without taking into

account the coupled aspects between the solid and the fluid phases. Therefore all the measures of

tension should be considered as effective.

In the first series of analysis we considered different values of the pressure Δ𝑃 = 𝑃𝑚 − 𝑃𝑝 applied

on the internal wall of the cavity. 𝑃𝑚 is the pressure of the mud used to support the wellbore and

𝑃𝑝 is the pore pressure surrounding the hole. Except for special cases, the minimum mud pressure

corresponds to the pore pressure in the rock formation so that the well does not flow while drilling.

Hence, we assumed initially that Δ𝑃 = 0 and then, incrementing the mud pressure, Δ𝑃 = 4,

Δ𝑃 = 8, Δ𝑃 = 12, Δ𝑃 = 16 MPa. The aim of the analysis is to assess the stress configuration

around the bore, the deformations, the plastic mechanism and the eventual formation of localization

bands.

First of all, we computed the solution for Δ𝑃 = 0 MPa using two different mesh refinement, in order

to assess the optimal discretization of the domain and the eventual mesh sensitivity of the solution.

The domain was discretized first with 448 8-nodes quadrilateral elements (the elements in the hole

are not accounted), with 16 elements along the borehole. Then, the same domain was discretized

with 1024 8-nodes elements, with now 32 elements along the wall. Fig. 5-19 shows the results in

terms of plastic strain for the two refinements. As can be observed, the deformation around the

hole in the coarser mesh is more diffused and the solution less accurate. Comparing the value of

the plastic deformation at the Gauss Points of the first and last element along the wall, we observed

relative differences up to 25 %. Hence, we adopted for all the analysis the finer mesh, which gave

us better results in a still reasonable amount of computational time.

Fig. 5-20 represents the results obtained in terms of radial and circumferential stress and Fig. 5-21

in terms of volumetric and deviatoric plastic strain, for the different values of the mud pressure.

When the mud pressure is equal to the pore pressure surrounding the wellbore (a) Δ𝑃 = 0 MPa

we observe a wide plastic zone in correspondence of the area of maximum stress, i.e. along the
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(a)

(b)

Figure 5-19: Volumetric (left) and deviatoric (right) plastic strain for different mesh refinement: (a)
448 8-nodes quadrilateral element, (b) 1024 8-nodes quadrilateral elements (elements in the hole not
accounted).

bore wall in the direction of the minimum far field stress. In this area the plastic volumetric strain

is positive, therefore the stress is such that the plastic mechanism is dilatant. When the pressure

applied at the wall is increased, the maximum radial stress decreases, thanks to the contribution given

by the mud pressure, and the plastic zone is reduced. When the effective pressure applied to the wall

is Δ𝑃 = 4 MPa (case (b)), the results show a narrower area where the material reached the dilatant

plastic limit. For Δ𝑃 = 8 MPa (case (c)) the dilatant plastic area is further reduced, but we observe

that a new area characterized by negative plastic volumetric deformation begins. Hence, the stress

field along the direction of minimum in-situ stress is such that the plastic mechanism is compactant.

In addition, a new area of plastic deformation starts at the bore wall in the direction of the maximum

far field stress, characterized by a dilatant behavior. For Δ𝑃 = 12 MPa (case (d)) we observe two

clearly distinct plastic zone. Along the direction of the minimum far field stress the rock formation

reaches the compactant plastic limit. Along the direction of the maximum far field stress the dilatant
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(a)

(b)

(c)

(d)

(e)

Figure 5-20: Radial (left) and circumferential (right) effective stress (MPa) for different value of
pressure (a) Δ𝑃 = 0, (b) Δ𝑃 = 4, (c) Δ𝑃 = 8, (d) Δ𝑃 = 12 and (e) Δ𝑃 = 16 MPa.
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(a)

(b)

(c)

(d)

(e)

Figure 5-21: Volumetric (left) and deviatoric (right) plastic strain for different value of pressure (a)
Δ𝑃 = 0, (b) Δ𝑃 = 4, (c) Δ𝑃 = 8, (d) Δ𝑃 = 12 and (e) Δ𝑃 = 16 MPa.
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plastic area further increased. For Δ𝑃 = 16 MPa (case (e)) we observe a similar configuration, with

the two distinct plastic zones. The numerical results show that an appropriate constitutive model

is fundamental to capture correctly the elastoplastic status surrounding a horizontal well.

Note that the stress field around the hole is almost always negative, i.e. the rock formation is never

subjected to a significant tensile stress that may cause a tensile fracture.

For this first set of configuration, where a constant in-situ stress and a varying mud pressure defined

the stress status, we analyzed the localization function computed at every Gauss Point, to detect

the eventual initiation of a shear or compactant band. The localization function F is calculated

according to Eq. (??), computing the minimum value of the determinant of the Eulerian acoustic

tensor defined in Eq. (??). Since the plane of the shear band is well defined, the search for the

stationary point of F can be made by a sweep over half a unit circle. We defined localization when

one or more Gauss points have detected the first negative incursion of the localization function. In

this first series of analysis, the different stress configurations are not leading to any bifurcation point

and no deformation band are observed.

Subsequently, we investigated how the variation of the in situ stress configuration influences the

plasticity and the strain localization. Fig. 5-22 represents the most intriguing results in terms of

deviatoric plastic strain on the left and in terms of localization function on the right. In this set of

analysis we incremented the vertical in-situ stress and we maintained constant the horizontal stress

and the mud pressure.

When the in-situ vertical stress is increased to the value of 𝜎𝑉 = 39.0 MPa (case (b)), we observe

from the contour plot the initiation of a deformation band, arising from the bore wall. The band is

associated with high deviatoric plastic deformation, therefore the formation of this band is associated

with dilatant plastic mechanism. For an effective vertical stress equal to 𝜎𝑉 = 42.0 MPa (case (c))

the presence of the band is completely evident. Note that the simulations are valid only up to the

bifurcation point and slightly beyond it, otherwise will exhibit mesh sensitivity, and finite element

enhancement techniques are needed (81). We obtained similar results decreasing the value of the

horizontal in-situ stress, maintaining constant the effective vertical stress. The numerical simulations

suggest that, for the rock formation in analysis, a ratio between the vertical and horizontal stress of

4.3 is the threshold to develop strain localization.

In the first set of analysis we pointed out how the value of the mud pressure affects the plasticity

around the wellbore. Therefore, we investigated how a variation of the mud pressure influences the

band initiation. Fig. 5-23 shows the most relevant results obtained increasing the vertical effective

stress with a constant mud pressure Δ𝑃 = 4 MPa.

The initiation of the first localization band is detected when the vertical stress is increased to the

value of 𝜎𝑉 = 40.5 MPa. The contour of the plastic deformations determines that what observed

is a shear band. Comparing this result with the condition for band initiation when no overpressure
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(a)

(b)

(c)

Figure 5-22: Plastic deviatoric deformation (left) and localization function (right) for different value
of the vertical in-situ stress (a) 𝜎𝑉 = 32.1, (b) 𝜎𝑉 = 39.0, (c) 𝜎𝑉 = 42.0 MPa with balanced drilling
(Δ𝑃 = 0 MPa).
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Figure 5-23: Plastic deviatoric deformation (left) and localization function (right) corresponding to
the formation of band when 𝜎𝑉 = 40.5 with applied pressure Δ𝑃 = 4 MPa.

is applied at the wall, we conclude that increasing the mud pressure slightly prevents the formation

of band. However, it doesn’t affect the plastic mechanism involved and the same failure pattern is

observed.

So far we considered that the wellbore is perfectly circular, assuming a regular geometry in the

finite element analysis. It is very unlikely that a wellbore has a perfect circular shape, in particular

when drilled in a formation of high porosity rock. During drilling operations breakouts may occur,

usually along the direction of the minimum far field stress, but these breakouts are tolerated as long

as the stability of the well is not a concern. Then, we investigated how the presence of a breakout

in correspondence of the direction of minimum in-situ stress can influence the plasticity and the

formation of band around the hole. At this scope, we modified the discretized domain changing

the geometry of the hole to reproduce the imperfection. Therefore, we performed another set of

numerical simulations, to investigate the effect of an imperfection around the wall of the well. The

vertical in-situ stress was incremented progressively, while the horizontal in-situ stress and the mud

overpressure were maintained constant, respectively 𝜎ℎ = 9.0 MPa and Δ𝑃 = 0 MPa. The most

interesting results are again related to the initiation of band of large deformation. Fig. 5-24 shows

that, in the presence of an imperfection, the formation localizes at a significant lower value of the

effective vertical stress.

When 𝜎𝑉 = 22.5 MPa (case (a)) the first bifurcation points appear, leading to a shear band

of intense deformation. Increasing the vertical stress to the original value 𝜎𝑉 = 32.1 (case (b)) we

observe that the band propagated even further. When the vertical stress is equal 𝜎𝑉 = 39.2 (case

(c)) the band achieved a relevant extension and we interrupted the analysis. The band is associated

with large deviatoric plastic strain. The origin of the band is in correspondence of the imperfection

around the wall, and it propagates along the vertical direction. As demonstrated by the numerical
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(a)

(b)

(c)

Figure 5-24: Plastic deviatoric deformation (left) and localization function (right) for different value
of the vertical in-situ stress (a) 𝜎𝑉 = 22.5, (b) 𝜎𝑉 = 32.1, (c) 𝜎𝑉 = 39.2 (MPa) with balanced
drilling (Δ𝑃 = 0 MPa) assuming an imperfection around the wall.
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simulation, the presence of imperfections can play an important role in the analysis of the plasticity

and localization condition around a borehole, with relevant consequence in determining the stability

of the well. The question that we would address now is how the mud pressure influences the condition

for band localization, with an imperfection along the wall. Therefore, we applied a radial pressure

at the domain with the imperfection, used in the previous analysis, and we increased incrementally

the vertical effective stress. Fig. 5-25 shows the most relevant results for Δ𝑃 = 4 MPa and Δ𝑃 = 8

MPa applied to the borehole wall.

Comparing with the precedent result, we observe that the mud pressure influences significantly

the band initiation. In fact, the effective vertical stress associated with band initiation is 𝜎𝑉 = 29.6

MPa for Δ𝑃 = 4 MPa and 𝜎𝑉 = 40.8 MPa for Δ𝑃 = 8 MPa, i.e. increasing the mud pressure

helps in preventing band formation. Note that the shear band begins again in correspondence of the

imperfection, but the direction is now less vertical, due to the difference stress condition.

The diagram in Fig. 5-26 summarizes the results obtained as concern the band initiation for all

the simulations performed. The graph shows for every value of the mud pressure the corresponding

value of the vertical stress that leads to a band initiation. When the hole is perfectly circular,

increasing the mud pressure from the initial value Δ𝑃 = 0 MPa slightly prevents the formation of a

band. However, after the value has been increased up to Δ𝑃 = 4 MPa, the beneficial effects are not

observed anymore. When the hole is not perfectly circular, the mud pressure has a strong influence

in the initiation of the bands. The results show a proportional correlation between the value of the

pressure and the vertical stress necessary to initialize a deformation band.

Coupled analysis

The problem is now solved considering the coupling effects between the solid and the fluid phases,

using the same geometry of the previous set of analysis. The fundamental difference of this method

on analysis is that now the whole process can be simulated, taking into account not only the final

steady state condition, but also the evolution of the process with time. In fact, this is inherently

a process that evolves with time. Displacement boundary conditions are applied as in the previous

analysis. In order to simulate the drilling process, the analysis is carried out in two stages. In the

first stage, the full mesh is considered, the pressure is set equal to the pore fluid pressure of the

reservoir in all the boundaries of the two external faces and the external loads simulating the in-situ

stress are applied. In this fashion, the steady state condition of the intact reservoir is obtained,

where the in-situ stresses are in equilibrium with the reservoir pore pressure. In the second stage

the perforation of the wellbore is reproduced. The stiffness of the elements corresponding to the

hole is progressively decreased, and at the same time the permeability is set to a very high value.

At the same time, the value of the mud pressure is imposed to all the nodes along the wall. In this

fashion, the complete diffusion problem is captured, until the steady state condition is reached. As
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(a)

(b)

(c)

Figure 5-25: Plastic deviatoric deformation (left) and localization function (right) for different value
of the vertical in-situ stress (a) 𝜎𝑉 = 29.6 (band initiation) and (b) 𝜎𝑉 = 40.0 with applied pressure
Δ𝑃 = 4 MPa, (c) 𝜎𝑉 = 40.8 (band initiation) with applied pressure Δ𝑃 = 8 MPa assuming an
imperfection around the wall.

158



0 2 4 6 8 10 12
0

10

20

30

40

50

60

∆ P [MPa]

σ V
 [M

P
a]

 

 
Hole circular
Hole with imperfection

Figure 5-26: Vertical stress 𝜎𝑉 corresponding to band initiation for different value of the mud
pressure Δ𝑃 .

far as the conductivity properties of the porous rock, the permeability of the rock is assumed to be

𝐾 = 10𝑚𝐷 which corresponds to an approximate value of 𝑘
𝜇 = 1 𝑚𝑚4

𝑠2 . The initial porosity of the

rock is assumed to be 30%. It is important to point out that in this type of analysis the applied

external loads simulate the total in-situ stresses, while in the previous analysis the applied external

loads simulate the effective in-situ stresses. As far as the constitutive law, the simulations adopt the

same model as before, which is slightly simplified assuming a linear elastic law for the elastic regime.

Fig. 5-27 shows the initial steady state condition, when the reservoir is intact and the in situ stress

is in equilibrium with the pore fluid pressure, which is uniform and equal to 32𝑀𝑃𝑎. Note that,

as aspected, the horizontal and vertical stresses, as can be observed from the subfigures (c) and (d)

are equal to the effective stresses of the prevoius analysis. This first solution becomes the reference

configuration of next analysis.

The first simulation investigates the case with balance drilling, i.e. when the mud pressure is

equal to the fluid pore pressure. Fig. 5-28 shows the results in term of fluid pore pressure at different

time steps, after the drilling process.

As can be observed, at the begining of the perforation there is an dramatic increase of pore

preassure along the direction of minimum in situ stress, and a decrease of pressure along the direction

of maximum stress. Depending on the permeability of the rock, th fluid diffuses, until the steady

state condition is reached, which in this case consists again in a uniform distributed pressure of

32𝑀𝑃𝑎.

Fig. 5-29 shows the results in term of vertical displacements at different time steps, after the drilling

process.

As can be observed, at the beginning of the preforation there are no significant displacements, and
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(a) (b)

(c) (d)

Figure 5-27: Initial steady state condition in term of (a) pore pressure [MPa], (b) vertical displace-
ment [mm], (c) horizontal and (d) vertical stress [MPa].
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(a) (b)

(c) (d)

(e) (f)

Figure 5-28: Evolution of the nodal pore pressure [MPa] at different time steps.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-29: Evolution of the vertical displacements [mm] at different time steps.
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they increase until the steady condition is reached, due to the diffusion process. The phenomenon

can be considered as a consolidation process, where, instead of applying a load on the surface, it is

removed part of the material supporting the allready applied external load, and the domain has to

find a new equilibrated configuration.

Fig. 5-30 shows the results in term of deviatoric plastic strain at different time steps, after the

drilling process.

As can be observed, there is an increase of the plastic region, and therefore of the failure zone, as

far as the fluid diffuses around the wellbore. In fact, the extra total stress in the rock formation due

to the removal of the rock is initially supported by the increased fluid pressure surrounding the hole,

and subsequntly, by the rock, with behaves plasticcaly as far as the effective stress increase. After

a sufficient interval of time, the steady state condition is reached, and the plastic zone assumed a

fixed dimension.

As done before, the same simulation is done considering now an increased value of the mud pressure,

equal to Δ𝑃 = 4𝑀𝑃𝑎. This corresponds to apply to the nodes along the wall of the wellbore a fluid

pore pressure equal to 36𝑀𝑃𝑎. The initial reference condition for this simulation is the same as in

the previous one. Fig. 5-31 shows the results in term of fluid pore pressure at different time steps,

after the drilling process.

The evolution of the pore pressure is similar to the case when the the mud pressure is equal

to zero, and the same trend can be observed. The fundamental difference consists in the fact that

now, in the final steady state, the pore pressure in the reservoir is non longer uniform and equal

to 32𝑀𝑃𝑎, but there is a homogeneous decrease of pressure, from the value of 36𝑀𝑃𝑎 along the

wall of the wellbore to the value of 32𝑀𝑃𝑎 of the reservoir. Fig. 5-32 shows the results in term of

vertical displacements at different time steps, after the drilling process.

Comparing the results obtained from this simulation with the previous results, there are no

significant differences in term of vertical displacement when the mud pressure is increased of 4𝑀𝑃𝑎.

The same trend is observed in both the analysis. Fig. 5-33 shows the results in term of deviatoric

plastic strain at different time steps, after the drilling process.

As can be observed, increasing the mud pressure, as discussed also for the purely mechanical

analysis, reduces the effective stress around the wellbore and therefore the plastic deformation of

the rock. It is then possible quantify the contribution of the mud pressure in preventing the failure

of the wellbore, as discussed in the previous section.

Figg. 5-34, 5-35, 5-36 show again the results in term of fluid pore pressure, vertical displacement

and deviatoric plastic strain when the the value of the mud pressure arises to Δ𝑃 = 8𝑀𝑃𝑎. Same

consideration can be extended also at this configuration, observing the contribution of the mud

pressure in preventing the failure of the well.

ciao
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(a) (b)

(c) (d)

(e) (f)

Figure 5-30: Evolution of the deviatoric plastic strain at different time steps.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-31: Evolution of the nodal pore pressure [MPa] at different time steps with applied mud
pressure Δ𝑃 = 4𝑀𝑃𝑎.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-32: Evolution of the vertical displacements [mm] at different time steps with applied mud
pressure Δ𝑃 = 4𝑀𝑃𝑎.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-33: Evolution of the deviatoric plastic strain at different time steps with applied mud
pressure Δ𝑃 = 4𝑀𝑃𝑎.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-34: Evolution of the nodal pore pressure [MPa] at different time steps with applied mud
pressure Δ𝑃 = 8𝑀𝑃𝑎.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-35: Evolution of the vertical displacements [mm] at different time steps with applied mud
pressure Δ𝑃 = 8𝑀𝑃𝑎.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-36: Evolution of the deviatoric plastic strain at different time steps with applied mud
pressure Δ𝑃 = 8𝑀𝑃𝑎.
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Chapter 6

Conclusions and future

developments

The present work furnishes a framework to deal with a coupled model for a multiphase material un-

dergoing finite elastoplastic deformations. Three main aspects have been considered in this thesis:

the theoretical formulation, based on the balance laws for the multiphase continuum body along with

a thermodinamically consistent constitutive theory; the numerical solution, based on the implemen-

tation of the balance laws in a new finite element code, using mixed 𝑢− 𝑝 elements; the application

of the developed numerical code to evaluate, in particular, the elastoplastic deformations and band

localization on a strip foundation on clay and around a horizontal wellbore drilled through a porous

rock formation.

Numerical examples involving one-dimensional compression and two-dimensional plane strain load-

ing on compressible clays demonstrate the usefulness of the finite deformation model. Specifically, a

plane-strain example problem was run on clays to show that, unlike the commonly used hypoelastic-

based finite strain models which are restricted to small elastic strains, the new formulation can also

accommodate for the development of large elastic strains. In addition, the formulation used circum-

vents the rate issue in finite deformation analysis. A comparison of results of small strain and finite

deformation analysis show that large deformation effects can significantly influence the predicted de-

formation and pore pressure responses of the soil. The second example, namely the perforation of a

horizontal wellbore, demonstrated the capability of the coupled model to simulate the entire drilling

process. Furthermore, the model can asses the large elastoplastic deformations and the propagation

of the localization band along the hole. Finally, investigation of different configuration showed that

the mud pressure and the presence of imperfections along the wall play an important role in the

initiation of localized band, and therefore in the stability of the wellbore.

A lot of further future developments can be carried out starting from the work presented in this
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thesis. The introduction into the numerical model of more phases, such as air, oil, gas etc, taking

into account the unsaturated condition of the soil, or, more in general, of the porous material. The

investigation of the role of the temperature in the elastoplastic constitutive equations, especially for

high (e.g. geothermal energy) and low (e.g. frozen soil) temperature, or other state variables, such

as for example the chemical concentration of a certain substance. As far as the numerical aspects, it

may be of interest, and in certain circumstances necessary, explore stabilization techniques to handle

the large changes in the shape of the elements, that can lead to the singularity of the element. In

fact, it has been observed that the implemented numerical code fails to find a convergent solution

if the shape of the element is extremely distorted, such that the computed deformation gradient is

not positive anymore.

Finally, most of all the work can be expanded considering different applications-not only in the plane

strain conditions-and used to solve others coupled elastoplastic problems.
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Appendix A

Tangent operator for the

Continuos Cap model

A.1 Derivation of the Jacobian matrix 𝐴 in eq. (3.81)

The 3 × 3 Jacobian matrix 𝐴𝑘 in eq. (3.81) for return mapping iteration is obtained by differen-

tiating the component of 𝑟 with respect to the variables 𝑥 defined in eq. (3.80). For simplicity,

the superscript (𝑘) denoting the value at kth iteration is abbreviated in the following derivation.

Depending on the return mapping algorithm, we will compute three different matrix, i.e. 𝐴𝑁𝐴
𝐿𝑖𝑛,

𝐴𝑁𝐴
𝐸𝑙𝑙 , 𝐴𝐴

𝐸𝑙𝑙. Let us recall the Hessian matrix of 𝜓, 𝐷𝑒 = ∇∇𝜓 from eq. (3.57). For the linear

non-associative return mapping, the matrix 𝐴𝑁𝐴
𝐿𝑖𝑛 take the form

𝐴𝑁𝐴
𝐿𝑖𝑛 =

⎡⎢⎢⎢⎣
1 0 𝜕𝑃 Ḡ

0 0 𝜕𝑄Ḡ

𝐷𝑒
11𝜕𝑃 F1 +𝐷𝑒

21𝜕𝑄F1 𝐷𝑒
12𝜕𝑃 F1 +𝐷𝑒

22𝜕𝑄F1 0

⎤⎥⎥⎥⎦ , (A.1)

where 𝜕𝑃 Ḡ = −�̄�, 𝜕𝑄Ḡ = 1, 𝜕𝑃 F1 = −𝑚 and 𝜕𝑄F1 = 1. For the elliptical non-associative

return mapping, the matrix 𝐴𝑁𝐴
𝐸𝑙𝑙 take the form:

𝐴𝑁𝐴
𝐸𝑙𝑙 =

⎡⎢⎢⎢⎣
1 0 𝜕𝑃 Ḡ

0 0 𝜕𝑄Ḡ

𝐷𝑒
11𝜕𝑃 F2 +𝐷𝑒

21𝜕𝑄F2 +𝐾𝑝𝜕𝑃𝑖
F2 𝐷𝑒

12𝜕𝑃 F2 +𝐷𝑒
22𝜕𝑄F2 0

⎤⎥⎥⎥⎦ , (A.2)

where 𝜕𝑃 F2 = 2𝐵2(𝑃 − 𝑃𝑖), 𝜕𝑄F2 = 2𝐴2𝑄 and 𝜕𝑃𝑖
F2 = 𝜕𝐵2

𝜕𝑃𝑖
((𝑃 − 𝑃𝑖)2 −𝐴2)− 2𝑏2(𝑃 − 𝑃𝑖) with

𝜕𝐵2

𝜕𝑃𝑖
= 2𝑚(𝑚𝑃𝑖 + 𝑐0). 𝐾𝑝 is the plastic hardening modulus, and reads:
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𝐾𝑝 = 𝜕𝜖𝑒
𝑣
𝑃𝑖 = −𝑃𝑖0𝑟𝜖

*

𝜉2

(︂
𝜖*

𝜉

)︂𝑟−1
(A.3)

with 𝜉 = (𝜖* − 𝜖𝑒 𝑇 𝑟
𝑣 + 𝜖𝑒𝑣 − 𝜖𝑝𝑣,𝑛).

To compute the Jacobin matrix for the elliptical associative return mapping, let us introduce the

Hessian matrix of F2(𝑃,𝑄) with 𝑃𝑖 fixed:

𝐻 = ∇∇F2 =

⎡⎣𝐻11 𝐻12

𝐻21 𝐻22

⎤⎦ =

⎡⎣𝜕2
𝑃 𝑃 F2 𝜕2

𝑃 𝑄F2

𝜕2
𝑄𝑃 F2 𝜕2

𝑄𝑄F2

⎤⎦ = 2

⎡⎣𝐵2 0

0 𝐴2

⎤⎦ , (A.4)

and define the matrix 𝐺 = 𝐻𝐷𝑒. For the elliptical associative return mapping, the matrix 𝐴𝐴
𝐸𝑙𝑙

take the form:

𝐴𝐴
𝐸𝑙𝑙 =

⎡⎢⎢⎢⎣
1 + Δ𝛾(𝐺11 +𝐾𝑝𝜕

2
𝑃 𝑃𝑖

F2) Δ𝛾𝐺12 𝜕𝑃 F2

Δ𝛾(𝐺21 +𝐾𝑝𝜕
2
𝑄𝑃𝑖

F2) 1 + Δ𝐺22 𝜕𝑄F2

𝐷𝑒
11𝜕𝑃 F2 +𝐷𝑒

21𝜕𝑄F2 𝐷𝑒
12𝜕𝑃 F2 +𝐷𝑒

22𝜕𝑄F2 +𝐾𝑝𝜕𝑃𝑖
F2 0

⎤⎥⎥⎥⎦ , (A.5)

where 𝜕2
𝑃 𝑃𝑖

F2 = 2
(︁

𝜕𝐵2

𝜕𝑃𝑖
(𝑃 − 𝑃𝑖)−𝐵2

)︁
and 𝜕2

𝑄𝑃𝑖
F2 = 0.

A.2 Derivation of the consistent tangent operator 𝑎𝑒𝑝

In this section we derive the coefficients 𝑎𝑒𝑝
𝐴𝐵 for the consistent tangent operator for a return mapping

in principal axes, defined as

𝑎𝑒𝑝
𝐴𝐵 = 𝜕𝛽𝐴

𝜕𝜖𝑒 𝑇 𝑟
𝐵

, 𝐴,𝐵 = 1, 2, 3. (A.6)

Again, the close form of 𝑎 (where the superscript 𝑒𝑝 has been omitted for the sack of lightness)

depends on the specific return mapping algorithm, therefore three different operators need to be

derived. In order to reduce the derivatives to their lowest order, we expand (3.64). The expansion

of (3.64)1 reads:

𝑏11
𝜕𝜖𝑒𝑣
𝜕𝜖𝑒 𝑇 𝑟

+ 𝑏12
𝜕𝜖𝑒𝑠
𝜕𝜖𝑒 𝑇 𝑟

= 𝑐1𝛿 −
(︂
𝜕G

𝜕𝑃

)︂
𝜕Δ𝛾
𝜕𝜖𝑒 𝑇 𝑟

, (A.7)

while that for (3.64)2 takes the form

𝑏21
𝜕𝜖𝑒𝑣
𝜕𝜖𝑒 𝑇 𝑟

+ 𝑏22
𝜕𝜖𝑒𝑠
𝜕𝜖𝑒 𝑇 𝑟

= 𝑐2𝛿 +
√︂

2
3 �̂�−

(︂
𝜕G

𝜕𝑄

)︂
𝜕Δ𝛾
𝜕𝜖𝑒 𝑇 𝑟

. (A.8)

The coefficients 𝑏𝑖𝑗 and 𝑐𝑖 will be computed in the remaining part of the section, leading to a
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close form for the operator 𝐷𝑝. The strain-gradient of Δ𝛾 is obtained from the overall consistency

condition

𝜕F

𝜕𝜖𝑒 𝑇 𝑟
= 0. (A.9)

Let us start from the linear non associative return mapping algorithm. In this case we have:

𝑏11 = 𝜕𝜖𝑒
𝑣
𝑟1 = 1; 𝑏12 = 𝜕𝜖𝑒

𝑠
𝑟1 = 0; (A.10)

𝑏21 = 𝜕𝜖𝑒
𝑣
𝑟2 = 0; 𝑏22 = 𝜕𝜖𝑒

𝑠
𝑟2 = 1; (A.11)

𝑐1 = 1; 𝑐2 = 0; (A.12)

Substituting in (A.7,A.8) we obtain:

𝜕𝜖𝑒𝑣
𝜕𝜖𝑒 𝑇 𝑟

= 𝛿 − 𝜕Ḡ

𝜕𝑃

𝜕Δ𝛾
𝜕𝜖𝑒 𝑇 𝑟

𝜕𝜖𝑒𝑠
𝜕𝜖𝑒 𝑇 𝑟

=
√︂

2
3 �̂�−

𝜕Ḡ

𝜕𝑄

𝜕Δ𝛾
𝜕𝜖𝑒 𝑇 𝑟

. (A.13)

In this case, eq. (A.9) reads

𝜕F1(𝑃,𝑄)
𝜕𝜖𝑒 𝑇 𝑟

= 𝜕F1
𝜕𝑃

𝜕𝑃

𝜕𝜖𝑒 𝑇 𝑟
+ 𝜕F1

𝜕𝑄

𝜕𝑄

𝜕𝜖𝑒 𝑇 𝑟
= 0, (A.14)

which can be written as
𝜕F1
𝜕𝜖𝑒 𝑇 𝑟

= 𝑑1
𝜕𝜖𝑒𝑣
𝜕𝜖𝑒 𝑇 𝑟

+ 𝑑2
𝜕𝜖𝑒𝑠
𝜕𝜖𝑒 𝑇 𝑟

= 0, (A.15)

where

𝑑1 = 𝐷𝑒
11𝜕𝑃 F1 +𝐷𝑒

21𝜕𝑄F1; 𝑑2 = 𝐷𝑒
12𝜕𝑃 F1 +𝐷𝑒

22𝜕𝑄F1. (A.16)

Substituting (A.13) into (A.15) and solving for 𝜕Δ𝛾/𝜕𝜖𝑒 𝑇 𝑟 we obtain

𝜕Δ𝛾
𝜕𝜖𝑒 𝑇 𝑟

= 𝑎1𝛿 + 𝑎2

√︂
2
3 �̂�, (A.17)

where 𝑎1 = 𝑑1/𝑒, 𝑎2 = 𝑑2/𝑒 and 𝑒 = 𝑑1𝜕𝑃 Ḡ + 𝑑2𝜕𝑄Ḡ . Finally, the last step involves backsubsti-

tution. Inserting (A.17) into (A.13) and rearranging the terms we have:

𝐷𝑝
𝐿𝑖𝑛𝑁𝐴 =

⎡⎣1− 𝑎1𝜕𝑃 Ḡ −𝑎2𝜕𝑃 Ḡ

−𝑎1𝜕𝑄Ḡ 1− 𝑎2𝜕𝑄Ḡ

⎤⎦ . (A.18)

For elliptical yield surface with non-associative flow rule, the procedure to compute 𝐷𝑝
𝐸𝑙𝑙𝑁𝐴 is
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very similar to what derived so far. In this case the expression (A.13) remains unchanged, while

(A.9 reads

𝜕F2(𝑃,𝑄, 𝑃𝑖)
𝜕𝜖𝑒 𝑇 𝑟

= 𝜕F2
𝜕𝑃

𝜕𝑃

𝜕𝜖𝑒 𝑇 𝑟
+ 𝜕F2

𝜕𝑄

𝜕𝑄

𝜕𝜖𝑒 𝑇 𝑟
+ 𝜕F2

𝜕𝑃𝑖

𝜕𝑃𝑖

𝜕𝜖𝑒 𝑇 𝑟
= 0, (A.19)

which can be written as

𝜕F2
𝜕𝜖𝑒 𝑇 𝑟

= 𝑑1
𝜕𝜖𝑒𝑣
𝜕𝜖𝑒 𝑇 𝑟

+ 𝑑2
𝜕𝜖𝑒𝑠
𝜕𝜖𝑒 𝑇 𝑟

+𝐾(𝑇𝑟)𝑝
𝜕F2
𝜕𝑃𝑖

= 0, (A.20)

where

𝑑1 = 𝐷𝑒
11𝜕𝑃 F2 +𝐷𝑒

21𝜕𝑄F2 +𝐾𝑝𝜕𝑃 F2; 𝑑2 = 𝐷𝑒
12𝜕𝑃 F2 +𝐷𝑒

22𝜕𝑄F2. (A.21)

end 𝐾𝑇 𝑟𝑝 = 𝜕𝜖𝑒 𝑇 𝑟
𝑣

= −𝐾𝑝. Substituting (A.13) into (A.20) and solving for 𝜕Δ𝛾/𝜕𝜖𝑒 𝑇 𝑟 we

obtain the same expression in (A.17) where now 𝑎1 = (𝑑1 +𝐾𝑇 𝑟
𝑝 𝜕𝑃𝑖

F2)/𝑒, 𝑎2 = 𝑑2/𝑒 and 𝑒 as before

derived. Again, inserting (A.17) into (A.13) and rearranging the terms we have:

𝐷𝑝
𝐸𝑙𝑙𝑁𝐴 =

⎡⎣1− 𝑎1𝜕𝑃 Ḡ −𝑎2𝜕𝑃 Ḡ

−𝑎1𝜕𝑄Ḡ 1− 𝑎2𝜕𝑄Ḡ

⎤⎦ . (A.22)

Finally, let us compute the the opertator 𝐷𝑝
𝐸𝑙𝑙𝐴 for elliptical yield surface with associative flow

rule. Also in this case, the derivation follows the same steps as already done for the other algorithms.

In this case we have:

𝑏11 = 1 + Δ𝛾(𝐺11 +𝐾𝑝𝜕
2
𝑃 𝑃𝑖

F2); 𝑏12 = Δ𝛾𝐺12; (A.23)

𝑏21 = Δ𝛾(𝐺21 +𝐾𝑝𝜕
2
𝑄𝑃𝑖

F2); 𝑏22 = 1 + Δ𝛾𝐺22; (A.24)

𝑐1 = 1−Δ𝛾(𝐺11 +𝐾𝑇 𝑟
𝑝 𝜕2

𝑃 𝑃𝑖
F2); 𝑐2 = −Δ𝛾(𝐺11 +𝐾𝑇 𝑟

𝑝 𝜕2
𝑄𝑃𝑖

F2); (A.25)

The strain-gradient of Δ𝛾 is obtained from the overall consistency condition (A.20), which again

can be written as (A.20) with 𝑑1 and 𝑑2 as in (A.16). Solving (A.20) for Δ𝛾/𝜕𝜖𝑒 𝑇 𝑟 we obtain the

same expression as (A.17), where:

𝑎1 =
[︀
𝑑1(𝑏22𝑐1 − 𝑏12𝑐2) + 𝑑2(𝑏11𝑐2 − 𝑏21𝑐1) + �̃�𝐾𝑇 𝑟

𝑝 𝜕𝑃𝑖
F2
]︀
/𝑒; (A.26)

𝑎2 =
√︀

2/3(𝑑2𝑏11 − 𝑑1𝑏12)/𝑒; (A.27)
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𝑒 = 𝑑1(𝑏22𝜕𝑃 F2 − 𝑏12𝜕𝑄F2) + 𝑑2(𝑏11𝜕𝑄F2 − 𝑏21𝜕𝑃 F2); (A.28)

with �̃� = 𝑏11𝑏22 − 𝑏21𝑏12. Inserting (A.17) into (A.13) and rearranging the terms, we obtain

�̌�𝑝
11 = 𝑏22(𝑐1 − 𝑎1𝜕𝑃 F2)− 𝑏12(𝑐2 − 𝑎1𝜕𝑄F2); (A.29a)

�̌�𝑝
12 = 𝑏12(−1 +

√︀
3/2𝑎2𝜕𝑄F2)−

√︀
3/2𝑏22𝑎2𝜕𝑄F2; (A.29b)

�̌�𝑝
21 = 𝑏11(𝑐2 − 𝑎1𝜕𝑄F2)− 𝑏21(𝑐1 − 𝑎1𝜕𝑃 F2); (A.29c)

�̌�𝑝
22 = 𝑏11(1−

√︀
3/2𝑎2𝜕𝑄F2) +

√︀
3/2𝑏21𝑎2𝜕𝑃 F2. (A.29d)

In conclusion

𝐷𝑝
𝐸𝑙𝑙𝐴 = �̌�𝑝/�̃�. (A.30)
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