
Sede Amministrativa: Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

SCUOLA DI DOTTORATO DI RICERCA IN: Ingegneria dell’Informazione

INDIRIZZO: Scienza e Tecnologia dell’Informazione

CICLO: XXXII

3D FEATURE REPRESENTATIONS FOR VISUAL PERCEPTION AND
GEOMETRIC SHAPE UNDERSTANDING

Direttore della Scuola: Ch.mo Prof. Andrea Neviani
Supervisore: Ch.mo Prof. Emanuele Menegatti

Dottorando:
Yongheng Zhao

"Look inside yourself, you are more than what you have become."
~Mufasa’s ghost (The Lion King)

Acknowledgments

The majority of the work in this thesis is done between two beautiful cities: Padova and
Munich. With many long late nights and missing vacations, I have gain both knowledge
and joy. I feel fortunate to experience this research journey and there are many people
and institutions I would like to thank for helping me go through this journey.

First, I would like to thank the China Scholarship Council (CSC) for the financial
support of my Ph.D. period. I always feel proud of having such a powerful country
behind. Then I would like to thank my supervisor Prof. Emanuele Menegatti, my mentors
Dr. Federico Tombari and Dr. Tolga Birdal for their continuous support. They have
always granted me the freedom to pursue my own ideas, but also provided valuable
guidance and new impulses when needed. Furthermore, I would like to thank Prof.
Enrico Pagello and Prof. Nassir Navab for their effort in founding such good research
facilities.

A particular thank you goes to my exceptional colleagues at Computer Vision Team at
the CAMP (Computer Aided Medical Procedures & Augmented Reality), TUM, who
make the group the stimulating and very enjoyable working environment it is. Thanks to
all of you for the many inspiring discussions.

I would like to thank a number of colleagues who I was fortunate to learn from or/and
collaborate with to produce the research in this thesis. In alphabetical order: David
Joseph Tan, Haowen Deng, Jan Eric Lenssen, Marco Carraro, Matteo Munaro, Morris
Antonello, Shun-Cheng Wu, Yida Wang.

Finally, I would like to thank my girlfriend Yanfang Zhang for the support of the
whole Ph.D. period. I could not make it without you.

Abstract

In this thesis, we first present a unified look to several well known 3D feature repre-
sentations, ranging from hand-crafted design to learning based ones. Then, we propose
three kinds of feature representations from both RGB-D data and point cloud, addressing
different problems and aiming for different functionality.

With RGB-D data, we address the existing problems of 2D feature representation
in visual perception by integrating with the 3D information. We propose an RGB-D
data based feature representation which fuses object’s statistical color model and depth
information in a probabilistic manner. The depth information is able to not only enhance
the discriminative power of the model toward clutters with a different range but also
can be used as a constraint to properly update the model and reduce model drifting.
The proposed representation is then evaluated in our proposed object tracking algorithm
(named MS3D) on a public RGB-D object tracking dataset. It runs in real-time and
produces the best results compared against the other state-of-the-art RGB-D trackers.
Furthermore, we integrate MS3D tracker in an RGB-D camera network in order to handle
long-term and full occlusion. The accuracy and robustness of our algorithm are evaluated
in our presented dataset and the results suggest our algorithm is able to track multiple
objects accurately and continuously in the long term.

For 3D point cloud, the current deep learning based feature representations often
discard spatial arrangements in data, hence falling short of respecting the parts-to-
whole relationship, which is critical to explain and describe 3D shapes. Addressing
this problem, we propose 3D point-capsule networks, an autoencoder designed for
unsupervised learning of feature representations from sparse 3D point clouds while
preserving spatial arrangements of the input data into different feature attentions. 3D
capsule networks arise as a direct consequence of our unified formulation of the common
3D autoencoders. The dynamic routing scheme [1] and the peculiar 2D latent feature
representation deployed by our capsule networks bring in improvements for several
common point cloud-related tasks, such as object classification, object reconstruction
and part segmentation as substantiated by our extensive evaluations. Moreover, it enables
new applications such as part interpolation and replacement.

vii

Abstract

Finally, towards rotation equivariance of the 3D feature representation, we present a
3D capsule architecture for processing of point clouds that is equivariant with respect
to the SO(3) rotation group, translation, and permutation of the unordered input sets.
The network operates on a sparse set of local reference frames, computed from an input
point cloud and establishes end-to-end equivariance through a novel 3D quaternion
group capsule layer, including an equivariant dynamic routing procedure. The capsule
layer enables us to disentangle geometry from the pose, paving the way for more
informative descriptions and structured latent space. In the process, we theoretically
connect the process of dynamic routing between capsules to the well-known Weiszfeld
algorithm, a scheme for solving iterative re-weighted least squares (IRLS) problems with
provable convergence properties, enabling robust pose estimation between capsule layers.
Due to the sparse equivariant quaternion capsules, our architecture allows joint object
classification and orientation estimation, which we validate empirically on common
benchmark datasets.

viii

Contents

Acknowledgments v

Abstract vii

1. Introduction 1
1.1. Motivation . 1
1.2. Contributions . 3
1.3. Related Work . 4

1.3.1. RGB-D data based representations for object perception 4
1.3.2. Learning representation from point cloud 5
1.3.3. Equivariance in neural networks 6
1.3.4. Capsule networks . 7

1.4. List of Publications . 8
1.5. Outline . 8

2. RGB-D Statistical Representation with Distance Discrimination 11
2.1. Introduction . 11
2.2. Joint RGB and Depth statistical representation 12

2.2.1. Discriminative object color representation 12
2.2.2. Object depth statistical representation 15
2.2.3. Model fusion . 17

2.3. Object tracking with proposed representation 18
2.3.1. Mean-shift based object localization 18
2.3.2. Occlusion handling and scale estimation 20

2.4. Evaluation . 22
2.4.1. Short-term tracking evaluation 22
2.4.2. Long-term tracking evaluation 24

2.5. Conclusion . 35

ix

Contents

3. Unsupervised Learning of Representation with Spatial Attention 37
3.1. Introduction . 37
3.2. Encode 3D shapes with spatial attention 39

3.2.1. Formulation . 39
3.2.2. 3D-PointCapsNet Architecture 42

3.3. Evaluation . 44
3.3.1. Quantitative Evaluations . 45
3.3.2. Qualitative Results . 47

3.4. Conclusion . 50

4. Learning Features with SO(3) Rotation Invariance and Equivariance 53
4.1. Introduction . 53
4.2. Preliminaries and Technical Background 54

4.2.1. Equivariance . 54
4.2.2. The Quaternion Group H1 . 54
4.2.3. 3D Point Clouds . 55

4.3. SO(3)-Equivariant 3D Capsule Networks 56
4.3.1. Quaternion Equivariant Capsule Layers 56
4.3.2. Equivariant 3D Point Capsule Network Architecture 59

4.4. Conclusion and Discussion . 64

5. Conclusions 67

Appendices 71

A. Appendix for Chapter 3 71
A.1. Semi-supervised Classification . 71
A.2. Part Segmentation . 71
A.3. Part Interpolation . 71
A.4. Part Replacement . 73
A.5. Ablation Study . 73
A.6. A Discussion on the Local Spatial Attention 74

B. Appendix for Chapter 4 79
B.1. Proof of Proposition 1 . 79
B.2. Proof of Lemma 1 . 80
B.3. Proof of Theorem 1 . 83

x

Contents

B.4. Our Siamese Architecture and The Algorithm 84
B.5. Additional Details on Evaluations . 85

List of Figures 89

List of Tables 95

Bibliography 97

xi

1. Introduction

1.1. Motivation

Fueled by recent developments in 3d sensing, robotics, autonomous driving and augment-
ed/mixed reality, 3D visual perception and geometric shape processing & understanding
have become major research trends in computer vision. Differently from RGB cameras,
the sensors used for 3D capture provide rich geometric structure, rather than high-fidelity
appearance information. This is proved advantageous for those applications where color
and texture are insufficient to accomplish the given tasks, such as reconstruction/detection
of texture-less objects. Moreover, 3D data has the born nature to handle the illumination
and scale variation properly.

Unlike the RGB camera case, 3D data is represented in a variety of forms: range
maps, fused RGB-D images, volumetric data, meshes, and point clouds. Each data
representation has its characteristics and application scenario. Thanks to their capability
of representing a sparse 3D structure accurately while being acquired directly with the
ubiquitous sensors, RGB-D images, and point clouds have been widespread chosen for
3D processing. This thesis will focus on discussing the feature representations based on
these two forms of 3D data.

RGB-D feature representations As a lightweight 3D data representation, RGB-D
images have a high potential in real-time applications, e.g., object tracking, object
detection. The depth range maps of RGB-D images have well-organized data structure
and there are plenty of studies of well-investigated RGB features can be transferred to
depth range maps, e.g., Histogram of Oriented Depths (HOD) feature [2] transferred
from Histogram of Oriented Gradients (HOG) of RGB images. Although the depth
range map only covers 2.5D views, it has been demonstrated that RGB features can be
enhanced by approaches that fuse color and depth [3, 4]. Inspired by this, we proposed
a 3D feature representation that fuses RGB and depth information in a probabilistic
manner and evaluated its performance both in accuracy and efficiency.

1

1. Introduction

Learned representations based on point cloud With the highly prosper of the deep
learning technology, the 3D feature representations based point clouds have been shifted
from hand-craft based to learning based and recent years have seen great progress
regarding this field. Deep learning architectures for consuming 3D points have been
proposed for sparse 3D representations [5, 6]. These architectures overcame many
challenges brought in by 3D data, such as permutation invariance, complexity due to the
added data dimension and local density variations.

Representations with spatial attention Unfortunately, the existed 3D deep learning
architectures often discard spatial arrangements in data, hence falling short of respecting
the parts-to-whole relationship, which is critical to explain and describe 3D shapes;
maybe even more severe than in the 2D domain due to the increased dimensionality.
Therefore, we propose 3D-PointCapsNet to learn feature representations from sparse 3D
point cloud while preserving spatial arrangements of the input data into different feature
attentions. The proposed feature representations improve numerous 3D tasks while
enabling interesting applications such as latent space part interpolation or complete part
modification, an application where simple cut-and-paste results in inconsistent outputs.

Representations with SO(3) equivariance Although the current learned feature rep-
resentations from 3D point clouds have achieved equivariance to permutations and
translations, they are still limited in other groups (e.g., SO(3),SE(3)) which are also
practically important. There are related works that augment either the input data or the
feature kernels in order to obtain features with rotation invariance. But those features
can be considered as extra embedding for equivariant ones in the lower level and they
are limited to specific tasks, e.g., shape classification. Besides, the strict/truly equivari-
ance will not maintain in such embedding which makes the feature representation less
compact, generative and fail to other tasks like pose estimation. Therefore, we propose
a quaternion equivariant point capsule network that is suited to process point clouds
and learn feature representation which is equivariant to SO(3) rotations, in addition
to preserved translation and permutation equivariance. There are no data or kernels
augmentations during the whole training process. The network architecture maintains
truly equivariance that results in explicit pose parameterizations as well as invariant
latent bottleneck features. Such properties allow us to perform orientation estimation
jointly with object classification for the shapes in arbitrary rotations.

2

1.2. Contributions

1.2. Contributions

The contribution of this thesis is three-fold.

RGB-D statistical feature representations

1. We first propose the object representation by fusing color and depth information in
a statistical manner and apply it in mean-shift tracking algorithm. The proposed
tracker runs in real-time and achieves the best results compared against the other
state-of-the-art RGB-D trackers in a public dataset.

2. We build an RGB-D camera network and manage to integrate the proposed tracker
in order to deal with serious occlusion problem and perform accurate tracking
performance in the long term.

3. We present a method to obtain object tracking ground truth (3D position) automat-
ically with a robot manipulator.

4. We first create a multiple object tracking dataset in an RGB-D camera network.

3D Point Capsule Networks

1. Motivated by a unified perspective of the common point cloud autoencoders(AE),
we propose capsule networks for the realm of 3D data processing as a powerful
and effective tool.

2. Our proposed point-capsule AE respects the geometric relationships between the
parts and learns the representation with spatial attention which enables shape
disentanglement and generation in latent space. This property also enables training
part-segmentation with very limited annotated data.

3. We show that our point-capsule AE can surpass the current art in reconstruction
quality, local 3D feature extraction and transfer learning for 3D object recognition.

Quaternion Equivariant Capsule Networks

1. We propose a novel, fully SO(3)-equivariant capsule architecture that is tailored for
simultaneous classification and pose estimation of 3D point clouds. This network
produces invariant latent representations while explicitly decoupling the orientation

3

1. Introduction

into capsules, thus attaining equivariance. Note that equivariance results have not
been previously achieved regarding the quaternion parameterization of the 3D
special orthogonal group.

2. By utilizing LRFs on points, we reduce the space of orientations that we consider
and hence can work sparsely on a subset of the group elements.

3. We theoretically prove the equivariance properties of our 3D network regarding
the quaternion group. Moreover, to the best of our knowledge, for the first time
we establish a connection between the dynamic routing of [1] and Generalized
Weiszfeld iterations [7]. By that, we theoretically argue for the convergence of the
employed dynamic routing.

4. We experimentally demonstrate the capabilities of our network on classification
and orientation estimation of 3D shapes.

1.3. Related Work

1.3.1. RGB-D data based representations for object perception

It has been demonstrated that RGB-D data fusion based features can enhance the perfor-
mance in object perception tasks, e.g., object tracking [8, 3, 9, 10, 11, 12, 4]. The feature
representations of RGB-D data usually is based on and improved upon the 2D features.
In general, there are two kinds of 2D features: template-based and color statistics-based.
The template-based ones have achieved excellent performance with both high processing
speed and robustness to challenging situations, such as fast motion and illumination
variation. Therefore, many state-of-the-art RGB-D representations are template-based
features [10, 11, 3]. However, the template-based features are sensitive to shape de-
formation because the models (like HOG) depend on the spatial configuration which
can change rapidly during fast shape variation. On the contrary, color statistics-based
features are more robust to shape variation while they are insufficiently discriminative
and tend to drift towards nearby regions with similar appearance [13]. Compared with
exploiting depth information to deal with shape deformation in template-based features,
it is more desirable to apply depth to enhance the discriminative capability towards
background clutter in color statistics-based representations. Moreover, although the
object representations have shifted from color statistics to complex features based tem-
plates [14, 15], color statistics-based ones are still able to achieve the sate-of-the-art

4

1.3. Related Work

performance [16, 17, 18]. Therefore, with the strong potential of depth information on
discriminating the object from the background, we apply the fusion of color and depth as
target representation which has the capability on dealing with both shape deformation
and background clutter issues.

1.3.2. Learning representation from point cloud

End-to-end supervised learning

Thanks to their generic capability of efficiently explaining 3D data without making
assumptions on the modality, point clouds are the preferred containers for many 3D
applications [19, 20]. Due to this widespread use, recent works such as PointNet [5],
spherical convolutions [21] and Monte Carlo convolutions [22] have all devised point
cloud-specific architectures that exploited the sparsity and permutation-invariant proper-
ties of 3D point sets. Thanks to the point-wise convolutions and the permutation invariant
pooling functions of PointNet, many works have extended it primarily to increase the
local receptive field size [6, 23, 24, 25, 26]. Point-clouds are generally thought of assets.
This makes any permutation-invariant network that can operate on sets an amenable
choice for processing points [27, 28]. Unfortunately, common neural network operators
in this category are solely equivariant to permutations and translations but to no other
groups, e.g., SO(3),SE(3).

Unsupervised learning with 3D autoencoder

Recently, unsupervised architectures followed up on their supervised counterparts. PU-
Net [29] proposed better upsampling schemes to be used in decoding. FoldingNet [30]
introduced the idea of deforming a 2D grid to decode a 3D surface as a point set. PPF-
FoldNet [31] improved upon the supervised PPFNet [32] in local feature extraction by
benefiting from FoldingNet’s decoder [30]. AtlasNet [33] can be seen as an extension
of FoldingNet to multiple grid patches and provided extended capabilities in data rep-
resentation. PointGrow [34] devised an auto-regressive model for both unconditional
and conditional point cloud generation leading to effective unsupervised feature learning.
Achlioptas et al. [35] adapted GANs to 3D point sets, paving the way to enhanced
generative learning. All those 3D autoencoders are embedding the shape into latent
features representd by a single vector which is hard for disentanglement. We propose a
CapsuleNet based approach to enable feature control as well as shape parsing.

5

1. Introduction

1.3.3. Equivariance in neural networks

The early attempts to achieve invariant feature representations usually involved data
augmentation techniques to accomplish tolerance to input transformations [36, 37, 5].
Motivated by the difficulty associated with augmentation efforts and acknowledging the
importance of theoretically equivariant or invariant representations, the recent years have
witnessed a leap in theory and practice of equivariant neural networks [38, 39].

While laying out the fundamentals of the group convolution, G-CNNs [40] guaranteed
equivariance with respect to finite symmetry groups. Similarly, Steerable CNNs [41]
and its extension to 3D voxels [42] considered discrete symmetries only. Other works
opted for designing filters as a linear combination of harmonic basis functions, leading to
frequency domain filters [43, 44]. Apart from suffering from the dense coverage of the
group using group convolution, filters living in the frequency space are less interpretable
and less expressive than their spatial counterparts, as the basis does not span the full
space of spatial filters.

Achieving equivariance in 3D is possible by simply generalizing the ideas of the 2D
domain to 3D by voxelized 3D data. However, methods using dense grids [45, 41] suffer
from increased storage costs, eventually rendering the implementations infeasible. An
extensive line of work generalizes the harmonic basis filters to SO(3) by using e.g.,
a spherical harmonic basis instead of circular harmonics [46, 47, 48]. In addition to
the same downsides as their 2D, these approaches have in common that they require
their input to be projected to the unit sphere [49], which poses additional problems for
unstructured point clouds. A related line of research are methods which define a regular
structure on the sphere to propose equivariant convolution operators [50, 51].

To learn a rotation equivariant representation of a 3D shape, one can either act on the
input data or on the network. In the former case, one either presents augmented data
to the network [5, 36] or ensures rotation-invariance in the input [52, 32, 53]. In the
latter case, one can enforce equivariance in the bottleneck so as to achieve an invariant
latent representation of the input [54, 55, 56]. Further, equivariant networks for discrete
sets of views [57] and cross-domain views [58] have been proposed. Here, we aim
for a different way of embedding equivariance in the network by means of an explicit
latent rotation parametrization in addition to the invariant feature. [59] developed Vector
Field Networks, which was followed by the 3D Tensor Field Networks (TFN) [55] that
are closest to our work. Based upon a geometric algebra framework, the authors did
achieve localized filters that are equivariant to rotations, translations, and permutations.
Moreover, they are able to cover the continuous groups. However, TFN is designed for

6

1.3. Related Work

physics applications, is memory consuming and a typical implementation is neither likely
to handle the datasets we consider nor can provide orientations in an explicit manner.

1.3.4. Capsule networks

2D Capsule Networks

The idea of capsule networks (CNs) was first mentioned by [60], before [1] proposed
the dynamic routing by agreement, which started the recent line of work investigating
the topic. Thanks to their general applicability, CNs have found tremendous use in 2D
deep learning. LaLonde and Bagci [61] developed a deconvolutional capsule network,
called SegCaps, tackling object segmentation. Durate et al. [62] extended CNs to action
segmentation and classification by introducing capsule-pooling. Jaiswal et al. [63,
64], Saqur et al. [65] and Upadhyay et al. [66] proposed Capsule-GANs, i.e.capsule
network variants of the standard generative adversarial networks (GAN) [67]. These
have shown better 2D image generation performance. Lin et al. [68] showed that capsule
representations learn more meaningful 2D manifold embeddings than neurons in a
standard CNN do. Further, capsule networks have been applied for specific kinds of
input data, e.g.graphs [69], or medical images [70].

There have also been significant improvements upon the initial CN proposal. Hinton et
al.improved the routing by EM algorithm [71]. Wang and Liu saw the routing as an
optimization minimizing a combination of clustering-like loss and a KL regularization
term [72]. Chen and Crandall [73] suggested trainable routing for better clustering of
capsules. Zhang et al. [74] unified the existing routing methods under one umbrella and
proposed weighted kernel density estimation based routing methods. Zhang et al. [75]
chose to use the norm to explain the existence of an entity and proposed to learn a group
of capsule subspaces onto which an input feature vector is projected. Lenssen et al. [76]
introduced guaranteed equivariance and invariance properties to capsule networks by the
use of group convolutions.

3D Capsule Networks

Up until now, the use of the capsule idea in the 3D domain has been a rather uncharted
territory. Weiler et al. [77] rigorously formalized the convolutional capsules and presented
a convolutional neural network (CNN) equivariant to rigid motions. Jimenez et al. [78]
as well as Mobniy and Nguyen [79] extended capsules to deal with volumetric medical
data. VideoCapsuleNet [62] also used a volumetric representation to handle temporal

7

1. Introduction

frames of the video. Yet, to the best of our knowledge, we are the first to devise a capsule
network specifically for 3D point clouds, exploiting their sparse and unstructured nature
for representing 3D surfaces. Our work connects to this line of work by extending the
concept to 3D point cloud, include 3D auto encoder [80] and 3D rotation group SO(3)
equivariance.

1.4. List of Publications

The works we will describe in this thesis have been presented in the following publica-
tions:

• Y. Zhao, M. Carraro, M. Munaro and E. Menegatti, Robust Multiple Object
Tracking in RGB-D Camera Networks, in Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on, IEEE, 2017. [8]

• Y. Zhao, and E. Menegatti, MS3D: mean-shift object tracking boosted by joint
back projection of color and depth, in The 15th International Conference on
Intelligent Autonomous Systems (IAS-15), 2018. [81]

• Y. Zhao, T. Birdal, H. Deng. and F. Tombari, 3D Point Capsule Networks, in In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. [80]

1.5. Outline

The remainder of this thesis is organized as follows:
We present three kinds of 3D feature representations in parallel, aiming various of

feature properties with both hand-crafted design and deep neural networks. More specific
background and the evaluations are also introduced respectively in each chapter.

In Chapter 2, we propose an RGB-D feature representation based on color and depth
statistical model fusion. We also present an object tracking algorithm based on the
proposed representation in order to evaluate its performance.

In Chapter 3 and Chapter 4, two kinds of 3D deep learning architectures are pre-
sented to learn feature representations from 3D point cloud. In Chapter 3, we propose
the unsupervised 3D point-capsule networks, an autoencoder that respects the geometric
relationships between the parts and learns the representation with spatial attention. In

8

1.5. Outline

Chapter 4, we propose the quaternion equivariant point capsule network or QE-Network
that learns feature representation which is equivariant to SO(3) rotations compactly
parameterized by quaternions, in addition to preserved translation and permutation
equivariance.

Finally, we present the conclusions achieved in this thesis and provide both limitations
and possible directions for further developments in this field in Chapter 5. More
experiment details, results and proofs are presented in Appendix A and Appendix B.

9

2. RGB-D Statistical Representation
with Distance Discrimination

2.1. Introduction

Recently, with the disruptive advent of consumer RGB-D cameras which facilitate the
real-time acquisition of aligned color and depth information at no extra computational
cost, studying object representations based on RGB-D data are becoming popular. As
a light-weighted 3D representation, its real-time capability makes it be widely used in
object perception tasks, e.g.object detection, tracking and pose estimation

Most of the RGB-D data based object representation is based on and improved upon
the well-investigated 2D representation with the depth information. The 2D features
based on object color statistics are generative and robust to appearance or shape changing.
But they are insufficient to discriminate the target from the background or the foreground
occlusion in challenging and cluttered situations.

Therefore, there are related works that try to improve their discriminant power by
utilizing surrounding color distribution to weigh the original color model of the target[16,
17]. Since the appearance of the target and its surrounding background can vary signifi-
cantly during a sequence, this kind of algorithm requires continuous and precise model
updating. However, there are potentially model drift problems caused by tracking error
accumulation, especially when there is occlusion or fast shape changes.

In order to address those issues, we propose our object representation which combines
the depth information with the color statistics model to improve its discriminant power.
With the distance discrimination power from the depth information, the model is sufficient
to discriminate the target from the background and foreground occlusions. Besides,
the depth information can stabilize the model updating even when the object changes
appearance rapidly.

In order to evaluate the proposed RGB-D statistical representation, we proposed a
short-term object tracker, namely MS3D which exploit the proposed representation in
the mean-shift object tracking algorithm. Mean-shift provides an accurate localization

11

2. RGB-D Statistical Representation with Distance Discrimination

without an exhaustive search by maximizing the Bhattacharyya coefficient between the
object and the candidates distributions[82]. Additionally, we propose a Bhattacharyya
coefficient based occlusion handling mechanism which actively detects occlusion and
re-localizes the object after short-term occlusion.

We have evaluated MS3D tracker on an RGB-D object tracking dataset created by
Xiao et al. [3]. The results shows that our proposed tracker outperforms the base-line
tracker of the dataset[3], the other state-of-the-art RGB-D trackers[10, 11, 9] and another
mean-shift based RGB tracker[17].

Additionally, we built an RGB-D camera network and integrate with the MS3D tracker
in order to evaluate the proposed representation in long-term object tracking which is
required in real applications. We created a dataset of multiple objects in multiple RGB-D
cameras in the evaluation. The quantitative evaluation result suggests that our algorithm
is able to track multiple objects precisely and continuously in many challenge situations,
e.g., heavy occlusion, fast motion and illuminate variation.

2.2. Joint RGB and Depth statistical representation

2.2.1. Discriminative object color representation

Foreground extraction

Most perception algorithms build object models from an ROI (region of interest) contain-
ing the object to be tracked, see Fig. 2.1(a). This ROI commonly is a rectangle consisting
of both the target pixels and a small number of background pixels, see Fig. 2.1(b). In
order to obtain an object representation which is able to discriminate the target object
from the background, the combination of mean-shift segmentation and region growing
was proposed in [83]. Instead, we use the depth distribution analysis to extract the pixels
in the ROI belonging to the target. The depth distribution of the ROI in Fig. 2.1(b) is
displayed as a histogram in Fig. 2.1(c). We exploit a peak searching method to find the
peaks of depth histogram. Here, we make an assumption that the target object is not
occluded in the initial frame of the sequence. This makes the pixels belonging to the
target object closer to the camera than other pixels in the ROI. With this assumption, the
depth histogram can be divided into two parts: foreground peak with the minimum depth
and background peaks with higher values of depth. Then we estimate the target depth
interval around the foreground peak. This depth interval can be used to create a mask on
the ROI to filter out the ROI pixels belonging to the background. As shown in Fig. 2.1(c),

12

2.2. Joint RGB and Depth statistical representation

0

50

100

150

200

250

0 50 100 150 200 250
0

500

1000

1500

2000

2500

3000

(d) Color image(a) Depth image

(b) Depth histogram of ROI (e) Extracted foreground region

(c) ROI mask

Figure 2.1.: Target Region Extraction. The depth distribution of the ROI in (a) is displayed as
histogram in (b). The ROI mask in (c) is generated by the estimated foreground depth interval.
The extracted target region is shown in (e) with background masked in black.

the pixels in the ROI belonging to the background have been masked in black.
This target extraction method performs well when the object and background are

distant (in depth), but can perform poorly when the object is close to (or even touching)
the background, as shown in Fig. 2.2 where the athlete stands on the floor. In this case,
the calculated foreground can easily include pixels of the background, failing to mask
them out. To prevent this, we apply the so-called surrounding background weighting to
filter out pixels erroneously assigned to the foreground.

Background weighting

If the pixels of the background cannot be masked out using the depth information,
like in Fig. 2.2(d). We propose to use the probabilistic description of the color of the
background to filter them out. The intuition is to use the color histogram of a larger ROI
surrounding the target ROI, and thus likely comprising a large portion of the background,
to weight the color histogram of the ROI. The higher is the frequency (amount of pixels)
of one color that is present in the surrounding ROI, the lower weight will be used to weigh
the frequency of this color in the ROI. After this weighting, we can obtain a discriminative

13

2. RGB-D Statistical Representation with Distance Discrimination

0

50

100

150

200

250

0 50 100 150 200 250
0

500

1000

1500

2000

(a) Depth image (b) Color image

(c) Depth histogram of ROI (d) Extracted foreground region

Figure 2.2.: Inaccurate Target Region Extraction. The depth histogram showed in (c) represent
the depth distribution of athlete and floor. The depth distribution is insufficient to filter all the
background (d).

color model to represent the target object with a foreground color likelihood. An example
of the surrounding region is shown in Fig. 2.3(a) with a larger rectangle around the ROI.

Denoting q̂F ,q̂S as the normalized color histogram calculated over region F and S
where F is the extracted foreground region mentioned in Section 2.2.1 while S is its
surroundings. The surrounding weighted color histogram qrgb with m1−bin is calculated
as:

qrgb(u1)=

{
q̂F (u1) ·

min(q̂S)

q̂S (u1)
if q̂S(u1)>0

q̂F (u1) if q̂S(u1)=0
(2.1)

where u1 is the index of bins in histogram and u1 = 1...m1. min(q̂S) is the lowest
frequency in the surrounding histogram and it is used to normalize the weight.

The weighted color histogram is then normalized into 2.2

q̂rgb =
{

q̂rgb(u1)
}

u1=1...m1

m1

∑
u1=1

q̂rgb(u1) = 1 (2.2)

14

2.2. Joint RGB and Depth statistical representation

(a) Color image (b) Probability distribution image
back-projected by

original color histogram

(c) Probability distribution image
back-projected by

our proposed color model

Figure 2.3.: Probability distribution images back-projected by different color model. The object
color model (histogram) obtained from color image can be back-projected to image in order to
obtain probability distribution images which represents the object model likelihood in pixels.

The object color histogram obtained from the color image can be back-projected to the
image in order to obtain the probability distribution images which represents the object
model likelihood in pixels. See for example in Fig. 2.3(a) the original color image with
the bounding boxes of the target and surrounding region. The discriminative capability
of color model is clearly shown by the probability distribution images. The probability
distribution image obtained with the original color histogram is reported in Fig. 2.3(b)
and the one obtained with our proposed weighted histogram is shown in Fig. 2.3(c).
With our proposed color model, the probability of background pixels to be included in
the foreground is effectively decreased which makes the color model more robust to
background interference.

2.2.2. Object depth statistical representation

The proposed discriminative color model has enhanced the capability of basic color
statistics on dealing with background clutter. However, the surrounding background can
vary significantly during a sequence while the proposed discriminative model is efficient
solely if the background is similar to the one shown in the initial frame. Therefore,
we fused this color statistics model with another depth model in order to deal with the
interference caused by continuously changing the background and other objects with a
similar appearance.

Usually, to filter the background and the occluding objects in the search window, the
depth interval constraint is widely used in RGB-D perception algorithm. In this work,
we propose a two-joint terms likelihood based contextual peaks matching algorithm to

15

2. RGB-D Statistical Representation with Distance Discrimination

predict the interval in a non-parametric way. If the target object is not fully occluded, the
depth distribution of the search window can be ideally considered into three components:
target, background, and occluder[4]. Each component may have a relevant peak on
the depth histogram. We try to match the target peak in contextual depth histogram in
order to obtain the center of the current depth constraint interval. The "range-invariant"
model[3] is applied to represent the depth interval since the depth range of the target in
adjacent frames can be considered as invariant. In summary, the center and range of the
depth interval can be obtained by the matched target peak and target depth range in the
previous frames.

The likelihood of two-joint terms, depth index and its frequency (amount of pixels)
of the peaks in contextual depth histogram are applied in matching. The Standardized
Euclidean Distance is used to measure the likelihood of the peaks which are extracted
after morphological pre-processing. The depth histogram of the current search window
with m2−bin can be represented with:

q̂d = {q̂d(u2)}u2=1...m2

m2

∑
u2=1

q̂d(u2) = 1 (2.3)

where q̂d(u2) denotes the frequency of depth index u2. Let PT
k−1 : (dT

k−1, f T
k−1) denote the

peak that represents the target in depth histogram of frame k−1 and let PC
k,i : (dC

k,i, f C
k,i), i∈

[1,n] be the n candidate peaks in frame k. (d, f) represents the depth index of the peak and
its frequency in histogram respectively. The Standardized Euclidean Distance between
two peaks is calculated with

D(PC
k,i,P

T
k−1) =

√√√√(dC
k,i−dT

k−1

σd

)2

+

(
f C
k,i− f T

k−1

σ f

)2

(2.4)

where (σd,σ f) denotes the depth index and frequency variance of the peak set composed
of the target and all candidate peaks. Then, the center of the depth constraint interval
is the depth index of the matched peak PT

k : (dT
k , f T

k) with the minimized distance. The
range of interval is equal to the target depth range [dT

k−1− rl,k−1,dT
k−1 + rr,k−1] in frame

k−1. [rl,k−1,rr,k−1] is the range between the center of depth interval and its left/right
edges in frame k−1.

However, the depth interval prediction is sensitive even to a very little amount of
outliers caused by the shape and pose deformation, leading to a wider depth interval
than the real target depth range. Therefore, we back-project the predicted interval on
the current depth histogram of the search window in order to obtain a constrained depth

16

2.2. Joint RGB and Depth statistical representation

histogram as the final depth model that is more robust to outliers. The constrained depth
histogram q̂′d can be calculated with 2.5.

q̂′d =
{

q̂′d(u2)
}

u2=1...m2

m2

∑
u2=1

q̂′d(u2) = 1 (2.5)

and
q̂′d(u2) =C ·H[(rl,k−1−dT

k +u2)(rr,k−1 +dT
k −u2)] · q̂d(u2) (2.6)

where H is the Heaviside step function and C is the normalization constant which is

derived by imposing the condition
m2
∑

u2=1
q̂′d(u2) = 1.

2.2.3. Model fusion

The object is finally represented by the joint color and depth pdf which denotes the joint
probability of both object color and depth. Since the color and depth are independent,
the joint PDF is the product of the marginals

P(rgb,d) = P(rgb)P(d) (2.7)

The marginals which are color PDF and depth PDF estimated separately by discriminative
color histogram q̂rgb and constraint depth histogram q̂d. The target is modeled as an
(m1 ·m2)-bin kernel-estimated histogram in a feature space located at the origin in

q̂rgb,d = q̂rgbq̂′d = {q̂rgb,d(u)}u=1..m1·m2

m1·m2

∑
u=1

q̂rgb,d(u) = 1 (2.8)

where
q̂rgb,d(u |u1,u2) =C′ · q̂rgb(u1)q̂′d(u2) (2.9)

and C′ is the normalization constant.
Similar to Fig. 2.3, we back-project the joint PDF to current color and depth image

in order to get the probability distribution image which represents the object model
likelihood in pixels. Fig. 2.4 shows an example of the discriminative power of the joint
PDF. In Fig. 2.4(a), one can notice that there is a colored object in the background with the
similar appearance as the target object, which could easily cause model drift if only the
color information is considered (see the Probability distribution image projected by color
model only in Fig. 2.4(b)). At the same time, the depth between the target and the person
is similar which will also lead to model drift if only exploiting depth distribution (see

17

2. RGB-D Statistical Representation with Distance Discrimination

(a) Color image (b) Probability distribution image
with color back-projection

(c) Probability distribution image
with depth back-projection

(d) Probability distribution image
with joint back-projection

Figure 2.4.: Probability distribution image by different back-projection. In (d), the proposed
joint back-projection shows the discriminative power against both objects with similar color and
objects with similar depth.

the probability distribution image projected by depth PDF only in Fig. 2.4.c). However,
the object model is more discriminative when the proposed joint color and depth PDF is
applied, see Fig. 2.4(d).

2.3. Object tracking with proposed representation

2.3.1. Mean-shift based object localization

The robust model of the object to be tracked we created with the color and depth joint
PDF is exploited in a mean-shift tracking framework to discriminate the object to be
tracked from similar objects. A target candidate which has the same size of the last
tracked target is located at y in the current search window and described by its histogram.

18

2.3. Object tracking with proposed representation

prgb,d(y) = {p̂rgb,d(u,y)}u=1...m1·m2

m1·m2

∑
u=1

p̂rgb,d(u) = 1 (2.10)

The candidate joint PDF is also the product of the original color PDF and the depth PDF.
While the depth PDF is estimated from the depth histogram of the subregion located at y.

Similar to [14], the distance between two probability distributions can be measured by

d(y) =
√

1−ρ[p̂rgb,d(y), q̂rgb,d] (2.11)

where the Bhattacharyya coefficient between p and q are

ρ̂(y) = ρ[q̂rgb,d(y), q̂rgb,d] =
m1·m2

∑
u=1

√
p̂rgb,d(u,y)q̂rgb,d(u) (2.12)

By maximizing the Bhattacharyya coefficient, we can localize the target from all the
candidates. In this work, we use the same localization method as [14]. The localizer
starts from the center of last tracked target y0 and moves to a new location step by step by
utilizing gradient optimization with the mean-shift algorithm. Let {xi}i=1...nh

denote the
pixel locations of target candidate in location y0 of current frame and h the bandwidth,
then the new location y1 is

y1 =

nh
∑

i=1
xiwig(

∥∥y0−xi
h

∥∥2
)

nh
∑

i=1
wig(

∥∥y0−xi
h

∥∥2
)

(2.13)

where

wi =
m1m2

∑
u=1

√
q̂rgb,d(u)

p̂rgb,d(u,y0)
δ [b(xi)−u] (2.14)

and g(x) =−k′(x). Here, the function k(x) is a convex and monotonic decreasing kernel
profile. Function b: 2R2 → 1...m1 ·m2 associates to the pixel at location xi of both
color and depth image to index b(xi) of its bin in the quantized feature space. σ is the
Kronecker delta. Searching will finally converge to a new location by considering the
length of step and the iteration times.

19

2. RGB-D Statistical Representation with Distance Discrimination

2.3.2. Occlusion handling and scale estimation

Occlusion handling

Being able to detect occlusions is of great importance to enhance the overall tracking
quality. With mean-shift localizer mentioned in Sec.2.3.1, we can get the optimized
location by maximizing the Bhattacharyya coefficient. However, the Bhattacharyya
coefficient could decrease significantly during occlusion so it can be utilized to detect oc-
clusion. We apply a threshold on the ratio of current and initial maximized Bhattacharyya
coefficient to detect its great variation in order to recognize occlusion. We assign ym as
the optimized location in the current frame. The ratio can be calculated as

r = ρ̂
i/

ρ̂
c(ym) (2.15)

where ρ̂ i is the sum of frequency in the initial joint PDF. It can be considered as the
initial maximized Bhattacharyya coefficient.

ρ̂
i =

m1·m2

∑
u=1

q̂i
rgb,d(u) = 1 (2.16)

and

ρ̂
c(ym) =

m1·m2

∑
u=1

√
p̂c

rgb,d(u,ym)q̂c
rgb,d(u) (2.17)

represents the current maximized Bhattacharyya coefficient at location ym.
When the occlusion is detected, the global target re-localization procedure will gen-

erate an expanding search window centered in the last tracked window to re-localize
the target object. The depth PDF will stop updating during occlusion since the changed
depth data of the object can not be fetched. By maximizing color PDF based Bhat-
tacharyya coefficient with mean-shift searching, a strict restriction will be conducted on
the optimized location in order to ensure an accurate re-localization. This restriction is
composed of two joint terms: the ratio of the initial and the current maximized color
Bhattacharyya coefficient and its density over the converged search window. Let ρ̂rgb

denotes the maximized color Bhattacharyya coefficient, r1,r2 represent the two joint
terms: r1 = ρ̂

i
rgb

/
ρ̂

c
rgb(ym)

r2 = ncρ̂
i
rgb

/
niρ̂

c
rgb(ym)

(2.18)

where ni is the number of pixels in the initial ROI while nc is the size of the expanded
search window at the optimized location ym. ρ̂ i

rgb = 1 can be considered as initial
maximized color Bhattacharyya coefficient.

20

2.3. Object tracking with proposed representation

Figure 2.5.: Tracking without occlusion handling (top) and with occlusion handling (bottom).

The tracking result with and without handling occlusion during occlusion is shown
in Fig. 2.5. The target is occluded from the third image. In the top row, without occlusion
handling, the tracker drifts to the background where there is a self-similar colored object.
However, in the bottom row, the occlusion is well-detected and the global re-localizer
start to expand the search window in the third frame. When the object is partially
recovered from full occlusion in the fifth frame, the re-localizer start to rescale the search
window until the object is fully recovered in the previous frame.

Scale estimation

In order to deal with the scale variation problem, we apply the scale estimation mech-
anism in Cam-shift[84] to adjust the size of the converged search window. By back-
projecting joint PDF on color and depth image, we can get the joint probability distribu-
tion image. After obtaining the optimized location by mean-shift searching algorithm,
we can re-scale the search window by invariant moments. Letting (xc,yc) to denote the
optimized location, then the estimated size for re-scaling (l,w) is calculated as 2.19:

l =

√√√√(a+ c)+
√

b2 +(a− c)2

2

w =

√√√√(a+ c)−
√

b2 +(a− c)2

2

,

a =
M20

M00
− x2

c

b = 2× (
M11

M00
− xc× yc)

c =
M02

M00
− y2

c

(2.19)

where Mpq is the max(p,q) order moment which is given as

Mpq = ∑
x

∑
y

xpyqI(x,y) (2.20)

21

2. RGB-D Statistical Representation with Distance Discrimination

and
I(x,y) = q̂rgb,d(b(x,y)) (2.21)

denotes the the joint probability distribution image. Here, b is the same index function
mentioned in 2.14. The tracking result is the re-sized converged search window which
will be expanded as the ROI of the subsequent frame.

2.4. Evaluation

2.4.1. Short-term tracking evaluation

As mentioned above, we evaluated the proposed single object tracker on the new public
RGB-D object tracking dataset built by Xiao et al. [3]. We preferred this new dataset
to the more famous PTB benchmark[4] because the latter is affected by some issues.
Notably, the authors of [3] outlined 4 problems of PTB: (i) it contains some sequences
where the RGB and depth images pairs are not synchronous; (ii) over half of the PTB
image sequences are devoted to people tracking which introduce a bias in the results
of evaluating tracking of generic targets; (iii) the majority of the benchmark videos are
captured by a stationary camera; (iv) many videos in PTB are imaging the same scene,
thus there is not enough variability in the background.

We tested our tracker on this new dataset with the evaluation methodology from OTB
[85]. This methodology does not allow re-initialization. If the tracker loses the object
during the sequence, no information on the ground-truth is provided to the tracker to
locate again the object.

We compared our tracker proposed in this work with:

• the RGB-D trackers which have best performances in PTB benchmark: PT[4],
DS-KCF1[11], DS-KCF2[10], OAPF[9]

• the base-line tracker of the new dataset (STC [3])

• a mean-shift based tracker (ASMS [17]) which achieved state-of-the-art perfor-
mance.

The tracking result of DSKCF, OAPF, STC are taken by what is reported in [3] (see
[3] for a detailed description of the labels).

We exploit the AUC (area-under-the-curve) of region overlap ratio to evaluate some
state-of-the-art RGB-D trackers. The trade-off curves of all sequences are shown
in Fig. 2.6.

22

2.4. Evaluation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
overlap threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
su

cc
es

s
ra

tio
Trade-off curves of all sequences

MS3D(ours) - 8.9
STC - 8.36
DSKCF2 - 8.21
ASMS - 7.86
PT - 7.44
DSKCF1 - 7.23
OAPF - 5.24

Figure 2.6.: Trade-off curves of all sequences

It is clear to see from the Fig. 2.6 that our algorithm outperforms others. The overall
performance has been improved by 0.44 by comparing MS3D with STC which is the
baseline algorithm of the new dataset.

Tab. 2.1 shows the AUC performance of trackers in different attributes. Our tracker
outperforms the others in both stationary, moving cameras as well as most of the chal-
lenging situations. The improvement in DV (Depth variation), DDV (Depth distribution
variation) of our tracker successfully proved the functionality of the proposed depth
model. However, it does not perform well in IV (Illumination variation), CDV (Color dis-
tribution variation), SCC (Surrounding color clutter) since the color varies significantly
between the initial frame and the rest in these sequences (e.g., turn off lights, change
clothes) and MS3D doesn’t exploit color model update strategy in order to avoid model
drift problem. However, in our opinion, the great change of appearance should belong to
the detection problem rather than tracking.

The running performance of MS3D is tested on a desktop computer (Intel Core i7-3820
@3.60GHz) with the image resolution of 640×480. Since the proposed tracker depends

23

2. RGB-D Statistical Representation with Distance Discrimination

on mean-shift localizer rather than sliding window, it has a high frame rate of over 100
FPS when there is no occlusion. During full occlusion, the frame rate will decrease to
30-50 FPS because of the global searching of the re-localizer.

Qualitative evaluation

As shown in Fig. 2.7, the proposed tracker (MS3D) outperforms the other trackers in
various situations. From top to bottom, the challenge factors are scale variation and
outdoor, fast motion, shape deformation, self-similar colored objects interference and
outdoor in dark, shape deformation with the self-similar background. In several of these
challenging scenes, the objects are held by persons which can lead to serious background
clutters in depth image. However, MS3D survived in all of them because of its capability
to discriminate both color and depth difference.

2.4.2. Long-term tracking evaluation

Long-term object tracking

The long-term object tracking algorithm is required in practical scenarios. The main
difference between the long-term and short-term tracking algorithm is that the former
has the capability of dealing with the object disappearance for a long period of full
occlusion. This capability demands an efficient object re-detection or re-localization
mechanism[86].

The occlusion handling mechanism proposed in short-term MS3D tracker is able to
re-localize the object after partial occlusion and after a short-term heavy occlusion, but
it can not handle long-term full occlusion. Therefore, the MS3D tracker belongs to the
short-term trackers and it needs an efficient re-detection algorithm when applied to the
real application which requires long-term tracking.

During long-term full occlusion, the appearance and shape of the objects could vary
significantly and the detection model might not be able to be correctly updated. Moreover,
the motion of the object is also hard to predict during this period which might lead to
fragmentary tracks. Furthermore, full occlusion could lead to serious ID switch problems
in the context of multiple object tracking.

Object tracking in RGB-D camera network

In order to deal with long-term occlusion, ID switch problem and obtain a continuous,
large-scale tracking, we apply the proposed MS3D tracker in RGB-D camera network

24

2.4. Evaluation

Ta
bl

e
2.

1.
:A

U
C

of
bo

un
di

ng
bo

x
ov

er
la

p,
R

E
D

de
m

ot
es

be
st

pe
rf

or
m

in
g

tr
ac

ke
r.

O
ve

ra
ll

St
at

io
na

ry
M

ov
in

g
IV

D
V

SV
C

D
V

D
D

V
SD

C
SC

C
B

C
C

B
SC

PO

M
S3

D
(o

ur
s)

8.
9

9.
89

7.
98

5.
88

7.
86

5.
98

3.
03

8.
57

8.
67

9.
28

7.
95

7.
9

8.
26

ST
C

8.
36

9.
57

7.
18

5.
78

7.
56

5.
07

5.
12

7.
66

8.
01

9.
53

6.
67

7.
17

7.
73

D
SK

C
F2

8.
21

9.
36

7.
13

6.
10

7.
88

4.
39

0.
94

5.
26

7.
93

9.
81

5.
66

6.
50

7.
76

A
SM

S
7.

86
8.

48
7.

28
6.

99
7.

48
5.

66
6.

58
6.

96
7.

37
7.

41
6.

67
7.

28
7.

75
PT

7.
44

8.
54

6.
43

4.
15

6.
65

2.
81

0.
43

3.
49

6.
80

8.
23

5.
73

5.
76

6.
20

D
SK

C
F1

7.
23

7.
52

6.
85

5.
50

7.
06

3.
36

1.
43

4.
16

7.
90

8.
25

4.
82

5.
16

6.
02

O
A

PF
5.

24
6.

0
4.

54
3.

18
4.

45
3.

07
3.

22
3.

71
5.

00
6.

13
3.

79
4.

82
5.

82

25

2. RGB-D Statistical Representation with Distance Discrimination

Figure 2.7.: A visual review of the trackers’ performance in sequences with various of challenges.
The tracking results are shown in different colored bounding box with a demonstration legend on
the top-right corner. The overlap ratio between MS3D tracking result and ground truth is shown
at the top-left corner.

26

2.4. Evaluation

Figure 2.8.: Images captured from multiple view points of the RGB-D camera network.

which is first introduced in OpenPTrack[87, 88] for people tracking. In the camera
network, there are multiple RGB-D cameras which are calibrated and set up in proper
positions in order to obtain multiple viewpoints. In Fig. 2.8, there are four cameras with
an overlapped field of view. The objects may occlude each other in one of the camera
views, but they can be well detected in another.

In each node of the camera network, an MS3D tracker is generated for each object
to be tracked. So, each RGB-D camera is running multiple instances of the MS3D
algorithm. We design a trackers fusion algorithm to handle these distributed trackers
from all the nodes. The schematic diagram and procedure is shown in Fig. 2.9 and Alg. 1.
Firstly, the fusion algorithm initializes a Kalman filter for each object with its identity and
the initial tracking results. Then it associates coming tracking results(a set of 3D centers
from one camera) to the Kalman filters by considering the likelihood between the 3D
center and the state estimation of Kalman filter. The Kalman filters will be appropriately
updated after association. In the meantime, the trackers fusion algorithm back-projects
the current state estimation to the specific tracker in order to re-localize the target once
the occlusion in this tracker is detected.

Distributed trackers association The tracking results from the MS3D tracking al-
gorithm is a 2D bounding box. By projecting the center points of the 2D box to the
world coordinate, we can get the targets’ predicted 3D centers. Then, the trackers fusion
algorithm associates each center to one of the Kalman filters by motion likelihood every
time a new set of centers arrives. The Mahalanobis distance between the 3D center and
estimated motion distribution of the Kalman filter is exploited to measure the motion
likelihood.

We compute the Mahalanobis distance between the estimated motion distribution of
i-th Kalman filter and j-th predicted 3D center as:

DM(Ii, t j) = (t j−µIi) ·ΣIi · (t j−µIi)
T (2.22)

where the measured motion vector:

t j = [x j,y j,z j,vx j,vy j,vz j]

27

2. RGB-D Statistical Representation with Distance Discrimination

Node_1

Trackers Fusion

Kalman filter 1

Tracker association

Tracker re-localization

3D centers

Kalman filter 2
Kalman filter 3

Tracker difted

Node_2

3D centers

Node_3

3D centers

Figure 2.9.: Distributed Trackers Fusion. The 3D centers exported by the trackers are associated
to the Kalman filters one node by one node. The drifted tracker is detected when it fails the
association (line with blue color). Then the current state estimation of the recent associated
Kalman filter will be used to back-project to this drifted tracker in order to optimize the re-
localization.

28

2.4. Evaluation

Algorithm 1: Distributed Trackers Fusion

1 Input: Predicted 3D centers of trackers in camera reference of all the objects in all
the camreas.

2 Output: Current state estimation of Kalman filters: 3D centers of all the objects in
3D world reference.

3 if Callback with a set of predicted 3D centers: t then
/* n postions from camera k */

4 if Kalman filters are not initialized then
5 Initialze the motion distribution of Kalman filter K with t;
6 else
7 for i = 0 to n do
8 Find the i-th Kalman filter’s nearest predicted 3D center t j in t;

/* j ∈ {1,2...n}, measurment in mahalanobis distance */
9 if DM(Ii, t j)< Θ then

/* Association success */
10 Update i-th Kalman filter;
11 else

/* Association failed */
12 Tracker j in camera k drifted;
13 Project 3D center of Kalman filter x which is recentlly associated to

tracker j, to camera k in order to re-localize the drifted tracker.

is composed of the j-th predicted 3D center position and the velocity that i-th instance
would have if j-th predicted 3D center was associated to it. Ii ∼ (µIi,ΣIi) is the estimated
motion distribution of i-th Kalman Filter. As for the motion model, we chose a constant
velocity model because it is good at managing full occlusions, as described in [89].
Given that the Mahalanobis distance for multi-normal distributions is distributed as a chi-
square, we use this distribution for defining a gating function for updating the instance
motion with possible associations and filtering the fault predictions. With continuous
and frequent instance motion updating by the distributed trackers all over the camera
network, the object can be tracked most of the time, even in presence of long-term and
heavy occlusion in some of the cameras.

29

2. RGB-D Statistical Representation with Distance Discrimination

Distributed trackers re-localization with camera network feedback. In the last
section, the fault prediction of drifted trackers can be filtered in the camera network
association. However, these trackers will no longer be able to contribute to the fusion
algorithm without an appropriate object re-localization. Although the proposed occlu-
sion handling mechanism mentioned in Sec.2.3.2 can re-localize the target by color
distribution likelihood, it has inferior performance when there are heavy occlusion and
self-similar object interference at the same time.

Therefore, the trackers fusion algorithm is also designed to back-project the current
state estimation (3D location of the object in the world reference) of Kalman filter to
specific cameras in which there are drifted trackers. The identity of the Kalman filter
is well-affiliated with the identity of the object in drifted tracker by considering the
contextual association. After this back-projection, the drifted tracker will receive an
updated 2D center of the target object which will be used to supervise the re-localization
in occlusion handling. The object will be only be considered as successfully re-localized
when the current 3D prediction is capable of associating the affiliated Kalman filter. This
camera network based feedback mechanism can appropriately supervise and optimize
tracking re-localization in harsh situations.

Dataset

In this thesis, we create a novel dataset to evaluate the performance of our multiple object
tracking algorithm in an RGB-D camera network. In order to automatically register
the ground truth (objects’ 3D center positions in world reference), we exploited a robot
manipulator to move the objects and we calculated their ground-truth positions from the
recorded robot kinematics.

Camera network configuration The camera network consists of 4 Microsoft Kinect
V2 sensors. The extrinsic parameters of the sensors are calculated with the routine
described in [88] to achieve a precise calibration. The RGB and depth images captured
from these sensors are well aligned due to accurate intrinsic calibration exploiting the
routines described in [90, 91]. Each RGB-D camera (i.e. MS Kinect) is connected to a
single computer and all computers are precisely time-synchronized by NTP (Network
Time Protocol). The whole experiment is conducted on the Robot Operating System
(ROS1) middleware and the images are acquired with an open-source library named IAI
Kinect2 [92].

1http://www.ros.org/

30

http://www.ros.org/

2.4. Evaluation

base_link

world

kinect 03

kinect 02
kinect 01

kinect 04 obj_1 obj_2
ee_link

Figure 2.10.: Robot TF based ground truth annotation. There are two objects (ob j_1,ob j_2)
mounted on the end effector ee_link. The 4 kinects and robot (base_link) are calibrated to the
same world coordinate. The 3D ground-truth positions of each object with respect to the world
reference can be calculated from the transform: world→ base_link→ ee_link→ ob j_1,ob j_2.

Robot TF based ground truth annotation. In this experiment, we mount the objects
on an unbendable stick which is fixed to the end effector of the robot named UR 10.
Firstly, we calibrated the robot with respect to the camera network with an automatic
hand-eye calibration algorithms [93], in order to obtain the transform (TF) from world
reference to the robot end-effector. Then, the distance from every object to the robot
end-effector is measured to obtain the TF from the object to the robot end effector.
During the experiment, we only need to record the motion of end effector with respect to
the robot base reference and all the objects’ motion can be easily calculated. Let TX−Y

and T̂X−Y denote the dynamic and static transform from X to Y reference. The dynamic
transform from world to object reference is calculated as

TW−O = T̂W−B ·TB−E · T̂E−O (2.23)

where W,O,B,E represent world, ob ject, robot_base and robot_end_e f f ector refer-
ence. T̂W−B is obtained from "robot-camera network" calibration while T̂E−O is mea-
sured manually. TB−E is recorded during the whole sequence by subscribing to the
robot state. The configuration of the cameras and of the UR10 robot used in the exper-
iments is depicted in Fig. 2.10. The base_link represents the origin of the robot-base
frame of reference, while the ee_link denotes the frame of reference of the end effector.
There are two objects (ob j_1,ob j_2) mounted on the end effector. Both the cameras
(kinect_01,02,03,04) and the robot (base_link) are calibrated to the world coordinate.

31

2. RGB-D Statistical Representation with Distance Discrimination

Figure 2.11.: This figure depicts three frames of a sequence with very different illumination,
namely: natural light only, all lamps ON + natural light, half lamps ON + natural light. One
can see strong shadows on the left image, strong highlights in the middle image, and uniform
illumination on the right image.

Dataset organization The dataset is recorded into Rosbags consisting of color images,
depth images, camera calibrations, and objects’ 3D ground truth. All Rosbags have
the frame rate of 30 FPS and each frame has a specific timestamp. There are 25
sequences (with more than 7.000 frames for each camera) with multiple objects moving
in challenging paths.

Challenging factors in dataset The robot moved the objects on complex paths (one of
them is shown in Fig. 2.12). A first complexity arises from the fact that due to perspective
the objects could appear in the images as overlapping or even fully occluded by the
others. A second complexity is due to the high speed of the motion of the objects (up to
2m/s). A third one is that in some sequences we used two indistinguishable objects.

Moreover, the dataset is recorded both during daytime with sunshine and in the evening
with lighting from fluorescent lamps. As an additional complexity, in some sequences,
the lamps were switched on and off one by one in order to generate abrupt and strong
illumination variation.

Tracking evaluation

We evaluate our algorithm on 25 challenging sequences recorded in the daytime with
sunlight, during the night with artificial illumination, and in the daytime with sunlight and
artificial illumination. The lamps are turned on and off during the image acquisition in
order to create abrupt illumination changes. Fig 2.11 depicts three frames of a sequence
with very different illumination, namely: natural light only, all lamps ON + natural light,
half lamps ON + natural light. One can see strong shadows on the left image, strong
highlights in the middle image, and uniform illumination on the right image.

An example of a qualitative evaluation of the performance of our tracking algorithm

32

2.4. Evaluation

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2

0

1.510.50-0.5-1-1.5-2-2

Ground Truth

Tracks

Initial Position

Direction

X (m)

Y (m)

Z (m)

Figure 2.12.: Objects 3D center trajectories of proposed tracking algorithm and ground truth.
Different colored trajectories represent 5 object tracks. In this sequence, the objects are moving
under a fast and strong illumination variation. Some examples of frames are shown in Fig. 2.11
(Best viewed in color).

in one sequence with strong illumination variation is shown in Fig. 2.12. Fig. 2.12 the
ground truth 3D trajectories of Center of mass (COM) of the five objects with a solid
line. The 3D trajectories of the COMs estimated by our multi-camera tracking algorithm
are depicted for every object in a different color. One can see, from Fig. 2.12, that the
3D estimated path and the ground truth are aligned well most of the time even when the
objects are moving on a path with sudden changes of directions and that also during full
occlusion even by objects with very similar appearance there are no ID switches. The
3D estimated path for each object shows a zig-zag pattern especially if the size of the
object is large. This is because each camera doesn’t know the 3D shape of the object
it is tracking, thus it can estimate only the 3D position of the surface of the object that
it can see. This surface has an unknown offset with respect to the COM of the object.
Thus, to calculate the COM of the object, we calculate the COM of the 3D detection of
the surfaces of the same object by the different cameras.

33

2. RGB-D Statistical Representation with Distance Discrimination

We also performs quantitative evaluation of the tracking accuracy and robustness on
our proposed dataset. The Accuracy is represented by the successful ratio which denotes
the percentage of frames in which the objects are successfully tracked. This is done by
evaluating the center error which is the distance between the target’s predicted center
from the tracker and ground truth, following the definitions in [94, 95]. It is worth to
mention that the accuracy evaluation is only applied before all the trackers are drifted.
This is because the center error could be very massively increased by a few drifted frames
which will cause inaccurate evaluation.

Moreover, we apply a Robustness evaluation which measures the length of the period
before the tracking drift. This measurement calculates the percentage of this period over
the whole sequence in the timeline.

Ltrack =
I

∑
i=1

Ni

∑
n=1

l̂(i,n)

/
I

∑
i=1

Ni

∑
n=1

l(i) (2.24)

where l̂(i,n) denotes the length of sequence i before all the distributed trackers of object
n drifted. l(i) represents the length of the whole sequence i. In sequence i, there are Ni

objects to be tracked.
The tracking results of the proposed algorithm is not uniformly distributed in the

timeline. If fr denotes the frame rate (fps) while nc the number of cameras, theoretically,
there should be (fr×nc) tracking results per second for each object by associating all the
target predicted centers from all the cameras. However, the distributed trackers may drift
sometimes which can lower the number of tracking results. Therefore, we average center
error of every constant time interval (1/ fr) second to make the tracking results uniform
distributed in the timeline. With the proposed process, there will be always constant
numbers of tracking results in each second. This uniform process makes the successful
ratio based accuracy evaluation more impartial and convincing.

The quantitative evaluation results are reported in Table 2.2. The accuracy is calculated
under the threshold of 0.1m. A / R represents the result of Accuracy / Robustness (%/%).
Our overall performance on the robustness is 92.89% that indicates we are able to keep
tracking the object for such a long period and tracking drift seldom happens during
the whole sequence. Among those 92.89% of the sequences, the tracking accuracy is
87.22%. This denotes that the 87.22% of those frames has the center error less than 0.1m.
We separate the sequences into two parts by considering the illumination variations.
The sequences which have heavy illumination variations is easier to have tracker failed
problem and less accurate. In order to show the long-term tracking performance of our
proposed algorithm: Cam-Net (AS + RE), we also include the tracking results of single

34

2.5. Conclusion

Table 2.2.: Quantitative Evaluation of Tracking performance. A / R represents the result of
Accuracy / Robustness (%/%). (IV: Illumination Variation, AS: Trackers Association, RE:
Tracers Re-localization).

Sequence. overall with IV without IV

Single Camera 65.41 / 61.95 64.54 / 57.85 63.93 / 69.57
Cam-Net (AS)[8] 80.25 / 84.16 79.70 / 80.79 81.20 / 90.16
Cam-Net (AS + RE) 87.22 / 92.89 83.98 / 86.27 88.33 / 95.23

camera based tracker: Single-Camera and camera network based tracking algorithm
with solely trackers association: Cam-Net (AS) [8]. Note that in all those long-term
tracking algorithms, we use the same base tracker (MS3D) proposed in this thesis. It is
obvious to see that the tracking performance is gradually increased from up to bottom.
Our proposed trackers fusion algorithm outperforms other baseline both in accuracy
and robustness. With multiple camera from different view points, distributed trackers
association and trackers re-localization, the object can be well tracked in a long term.

The proposed algorithm is tested on 4 desktop computers (Intel Core i7-7700 @3.60-
GHz) based network with 4 kinect V2 which have the image resolution of 960×540.
During the sequences without occlusion, our algorithm conducts computing on the
search window rather than the whole image. Therefore, the time cost of the main tracking
procedure is 1-2ms for single object tracking while it takes 7-8ms for tracking 5 objects.
During occlusion, the algorithm runs slower in order to re-localize the target in an
enlarged search window.

2.5. Conclusion

In this chapter, we presented an RGB-D object representation based on the fusion of the
color and depth information in a probabilistic manner. With the color information, we
proposed a discriminative color model based on foreground extraction and background
weighting to enhance the discriminative capability of the object representation against
background clutter.

With the depth information, we proposed a depth statistic model which is updated
with predicted depth constraint interval and it works robustly with respect to fast depth
variation. Then we applied the proposed representation in mean-shift object tracking
algorithm to evaluate its performance. Moreover, an occlusion handling mechanism

35

2. RGB-D Statistical Representation with Distance Discrimination

based on the Bhattacharyya coefficient is designed to actively detect occlusion and to
re-localize the object after short-term occlusion.

The evaluation result of the RGB-D tracker on the public dataset suggests that it
out-performs other state-of-the-art RGB-D trackers in both efficiency and robustness.
It is able to handle background clutter, shape deformation and partial occlusion in
such challenging situations. The tracker can work efficiently both in static and moving
cameras.

Moreover, we integrate the proposed tracker to an RGB-D camera network to evaluate
its performance in long-term tracking. The proposed distributed trackers management
with the functionalities of tracking association and feedback in RGB-D camera network
can handle long-term and full occlusions. The distributed trackers association is able to
continuously track the objects even if they are fully occluded in some of the cameras.
The fault tracking results can be filtered in the camera network due to the Unscented
Kalman Filter. The camera network feedback makes the drifted trackers be able to
re-localize effectively and maintain their functionality. It is worth to mention that the
proposed RGB-D camera network based tracker requires both accurate intrinsic and
extrinsic camera calibrations. The evaluation results suggest the high potential of our
proposed algorithm in real applications, e.g., sports analysis, human-robot interaction.
The dataset has been made public on the website.

36

3. Unsupervised Learning of
Representation with Spatial
Attention

Although the RGB-D data can offer both rich high-fidelity appearance information
and geometric structure, there are still problems that are hard to address in some tasks.
For instance, the illumination variation problem in object tracking, the ambiguity of
the appearance in symmetric object 6D pose estimation and the inaccurate RGB and
Depth registration, etc. Thus, there is a lot of research which applies solely geometric
structure information to obtain the 3D object representation. Other than the depth
image which can be used to represent the geometric structure, there are also meshes and
point clouds, volumetric data. Thanks to their capability of representing a sparse 3D
structure accurately while being agnostic to the sensing modality, point clouds have been
a widespread choice for 3D processing.

3.1. Introduction

The proliferation of deep learning has recently leaped into the 3D domain and architec-
tures for consuming 3D points have been proposed either for volumetric [96] or sparse [5]
3D representations. These architectures overcame many challenges brought in by 3D
data, such as order-invariance, complexity due to the added data dimension and local
density variations. Unfortunately, they often discard spatial arrangements in data, hence
falling short of respecting the parts-to-whole relationship, which is critical to explain and
describe 3D shapes; maybe even more severe than in the 2D domain due to the increased
dimensionality [97].

In this chapter, we first present a unified look to some well-known 3D point decoders.
Within this view, and based on the renowned 2D capsule networks (CN) [1], we pro-
pose the unsupervised 3D point-capsule networks (3D-PointCapsNet), an autoencoder

37

3. Unsupervised Learning of Representation with Spatial Attention

Input Shapes

C
u

t-
an

d
-P

as
te

Our
Replacement(a) Part Interpolation

(b) Part Replacement

(c) Part Segmentation with 1% of Training Data

G
ro

u
n

d
 T

ru
th

O
u

r
R

es
u

lt

Source Shape Target Shape

O
u

r
R

ep
la

ce
m

en
t

In
p

u
t

S
h

ap
e

w
it

h
 D

es
ir

ed
 P

ar
t

S
h

ap
e

to
 M

o
d

if
y

Figure 3.1.: Our 3D-PointCapsNet improves numerous 3D tasks while enabling interesting
applications such as latent space part interpolation or complete part modification, an application
where a simple cut-and-paste results in inconsistent outputs.

for generic representation learning in unstructured 3D data. Powered by the built-in
routing-by-agreement algorithm [1], our network respects the geometric relationships
between the parts and learns the representation with spatial attention. We design our
3D-PointCapsNet architecture to take into account the sparsity of point clouds by em-
ploying PointNet-like input layers [5]. Through an unsupervised dynamic routing, we
organize the outcome of multiple max-pooled feature maps into a powerful latent repre-
sentation. This intermediary latent space is parameterized by latent capsules - stacked
latent activation vectors specifying the features of the shapes and their likelihood.

Latent capsules obtained from point clouds alleviate the restriction of parameterizing
the latent space by a single, low dimensional vector; instead, they give explicit control
on the basis functions that get composed into 3D shapes. We further propose a novel
3D point-set decoder operating on these capsules, leading to better reconstructions
with increased operational capabilities as shown in Fig. 3.1. These new abilities stem
from the latent capsules instantiating as various shape parameters and concentrating not
spatially but semantically across the shape under consideration, even when trained in

38

3.2. Encode 3D shapes with spatial attention

an unsupervised fashion. We also propose to supply a limited amount of task-specific
supervision such that the individual capsules can excel at solving individual sub-problems,
e.g., if the task is part-based segmentation, they specialize in different meaningful parts
of each shape.

Our extensive quantitative and qualitative evaluation demonstrates the superiority of
our architecture. First, we advance the state of the art by a significant margin on multiple
frontiers such as 3D local feature extraction, point cloud reconstruction, and transfer
learning. Next, we show that the distinct attention mechanism of the capsules, driven by
dynamic routing, allows a wider range of 3D applications compared to the state of the
art autoencoders: a) part replacement, b) part-by-part animation via interpolation. Note
that both of these tasks are non-trivial for standard architectures that rely on 1D latent
vectors. Finally, we present improved generalization to unseen data, reaching accuracy
levels up to 85% even when using 1% of training data.

Our source code is publicly available under: https://tinyurl.com/yxq2tmv3.

3.2. Encode 3D shapes with spatial attention

3.2.1. Formulation

We first follow the AtlasNet convention [33] and present a unified view of some of the
common 3D autoencoders. Then, we explain our 3D-PointCapsNet within this geometric
perspective and justify its superiority compared to its ancestors. We will start by recalling
the basic concepts:

Definition 1 (Surface and Point Cloud)
A 3D surface (shape) is a differentiable 2-manifold embedded in the ambient 3D Eu-
clidean space:M2 ∈ R3. We approximate a point cloud as a sampled discrete subset of
the surface X = {xi ∈M2∩R3}.

Definition 2 (Diffeomorphism)
A diffeomorphism is a continuous, invertible, structure-preserving map between two
differentiable surfaces.

Definition 3 (Chart and Parametrization)
We admit an open set U ∈R2 and a diffeomorphism C :M2 7→U ∈R2 mapping an open
neighborhood in 3D to its 2D embedding. C is called a chart. Its inverse, Ψ ≡C−1 :
R2 7→M2 is called a parameterization.

39

https://tinyurl.com/yxq2tmv3

3. Unsupervised Learning of Representation with Spatial Attention

Definition 4 (Atlas)
A set of charts with images covering the 2-manifold is called an atlas: A= ∪iCi(xi).

A 3D autoencoder learns to generate a 3D surface X ∈M2∩RN×3. By virtue of Dfn. 3
Ψ deforms a 2D point set to a surface. The goal of the generative models that are of
interest here is to learn Ψ to best reconstruct X̂≈ X:

Definition 5 (Problem)
Learning to generate the 2-manifolds is defined as finding function(s) Ψ(U |θθθ) : Ψ(U |θθθ)≈
X [33]. θθθ is a lower dimensional parameterization of these functions: |θθθ |< |X|.

Theorem 1
Given that C−1 exists, Ψ, chosen to be a 3-layer MLP, can reconstruct arbitrary 3D
surfaces.

Proof. The proof is given in [30] and follows from the universal approximation theorem
(UAT).

Theorem 2
There exists an integer K s.t. an MLP with K hidden units universally reconstruct X up
to a precision ε .

Proof. The proof follows trivially from Thm. 1 and UAT [33].

Given these definitions, some of the typical 3D point decoders differentiate by making
four choices [5, 33, 30]:

1. An open set U or discrete grid U≡ P = {pi ∈ R2}.
2. Distance function d(X, X̂) between the reconstruction X̂ and the input shape X.
3. Parameterization function(s) Ψ.
4. Parameters (θθθ) of Ψ: Ψ(U |θθθ).

One of the first works in this field, PointNet [5] is extended naturally to an AE by [35]
making arguably the simplest choice. We will refer to this variant as PointNet. It lacks
the grid structure U = /0 and functions Ψ only depend upon a single latent feature:
Ψ(U |θθθ) = Ψ(θθθ) = MLP(· | f ∈ Rk). FoldingNet uses a two-stage MLP as Ψ to warp a
fixed grid P onto X. A transition from FoldingNet to AtlasNet requires having multiple
MLP networks operating on multiple 2D sets {Pi} constructed randomly on the domain
]0,1[2: U(0,1). These explain the better learning capacity of AtlasNet: different MLPs
learn to reconstruct distinct local surface patches by learning different charts.

40

3.2. Encode 3D shapes with spatial attention

Unfortunately, while numerous charts can be defined in the case of AtlasNet, all of the
methods above still rely on a single latent feature vector, replicated and concatenated
with U to create the input to the decoders. However, point clouds are found to consist of
multiple basis functions [98] and having a single representation governing them all is not
optimal. We opt to go beyond this restriction and choose to have a set of latent features
{fi} to capture different, meaningful basis functions.

With the aforementioned observations we can now re-write the well known 3D autoen-
coders and introduce a new decoder formulation:

PointNet [5]

U = P = /0

Ψ(θθθ) := MLP(·)
θθθ := f

d(X, X̂) := dEMD(X, X̂)

AtlasNet [33]

U = {Pi} : Pi ∈ U(0,1) (3.1)

Ψ(θθθ) := {MLPi(·)} (3.2)

θθθ := {f,{Pi}} (3.3)

d(X, X̂) := dCH(X, X̂) (3.4)

FoldingNet [30]

U = P = GM×M

Ψ(θθθ) :=MLP(MLP(·))
θθθ := {f,P}

d(X, X̂) := dCH(X, X̂)

Ours

U = {Pi} : Pi ∈ U(0,1) (3.5)

Ψ(θθθ) := {MLPi(·)} (3.6)

θθθ := {F , {fi},{Pi}} (3.7)

d(X, X̂) := dCH(X, X̂) (3.8)

where dEMD is the Earth Mover [99] and dCH is the Chamfer distance. GM×M = {(i⊗ j) :
∀i, j ∈ [0, . . . , M−1

M]} is a 2D uniform grid. f ∈ Rk represents a k-dimensional latent
vector. U(a,b) depicts an open set defined by a uniform random distribution in the
interval]a,b[2.

Note that it is possible to easily mix these choices to create variations4. Though,
many interesting architectures only optimize for a single latent feature f. To the best of
our knowledge, one promising direction is taken by the capsule networks [60], where
multitudes of convolutional filters enable the learning of a collection of capsules {fi}
thanks to the dynamic routing [1]. Hence, we learn our parameters {θθθ i} by devising
a new point cloud capsule decoder that we coin 3D-PointCapsNet. We illustrate the
choices made by four AEs under this unifying umbrella in Fig. 3.2.

4FoldingNet presents evaluations with random grids in their appendix.

41

3. Unsupervised Learning of Representation with Spatial Attention

(a) PointNet

MLP (x2)

� �

(b) FoldingNet

M
L

P
s

� � �

� � �

MLPs

(c) AtlasNet

Latent
capsules

M
L
P

s

Latent vector

��

…

��

��

…

��

� �

Latent vectorLatent vector

(c) Our 3D-PointCapsNet

Figure 3.2.: Comparison of four different state-of-the-art 3D point decoders. PointNet uses
a single latent vector, and no surface assumption. Thus, θθθ pointnet = f. FoldingNet [30] learns
a 1D latent vector along with a fixed 2D grid θθθ folding = {f, P}. The advanced AtlasNet [33]
learns to deform multiple 2D configurations onto local 2-manifolds: θθθ atlas = {f, {Pi}}. Our
point-capsule-network is capable of learning multiple latent representations each of which can
fold a distinct 2D grid onto a specific local patch, θθθ ours = {{fi}, {Pi}}

3.2.2. 3D-PointCapsNet Architecture

We now describe the architecture of the proposed 3D-PointCapsNet as a deep 3D point
cloud autoencoder, whose structure is depicted in Fig. 3.3.

Encoder The Input to our network is an N×d point cloud, where we fix N = 2048 and
for typical point sets d = 3. Similarly to PointNet [5], we use a point-wise Multi-Layer
Perceptron (MLP) (3− 64− 128− 1024) to extract individual local feature maps. In
order to diversify the learning as suggested by capsule networks, we feed these feature
maps into multiple independent convolutional layers with different weights, each with a
distinct summary of the input shape with diversified attention. We then max-pool their
responses to obtain a global latent representation. These descriptors are then concatenated
into a set of vectors named primary point capsules, F. Size of F depends upon the size
Sc := 1024 and the number K := 16 of independent kernels at the last layer of MLP. We
then use the dynamic routing [1] to embed the primary point capsules into higher-level
latent capsules. Each capsule is independent and can be considered as a cluster centroid
(codeword) of the primary point capsules. The total size of the latent capsules is fixed to
64×64 (i.e., 64 vectors each sized 64).

Decoder Our decoder treats the latent capsules as a feature map and uses MLP(64−
64− 32− 16− 3) to reconstruct a patch of points X̂i, where |X̂i| = 64. At this point,
instead of replicating a single vector as done in [30, 33], we replicate the entire capsule m
times and to each replica, we append a unique randomly synthesized grid Pi specializing
it to a local area. This further stimulates diversity. We arrive at the final shape X̂i by

42

3.2. Encode 3D shapes with spatial attention

N x 128

M
a

x
P

o
o
l

M
a

x
P

o
o
l

D
y
n

a
m

ic

R
o

u
ti

n
g

(D
R

)

Mx2 Random Grid

U
n
s
u

p
e

rv
is

e
d

R
e
c
o

n
s
tr

u
c
ti
o

n

C
h
a

m
fe

r
L

o
s
s

In
p

u
t

P
o

in
t

C
lo

u
d

3
D

 C
a

p
s
u

le
-E

n
c

o
d

e
r

3
D

 C
a

p
s
u

le
-D

e
c

o
d

e
r

L
a
te

n
t

C
a
p

su
le

s

1
0

2
4

 x
 1

6

N x 3

P
ri
m

a
ry

P
o

in
t

C
a
p

su
le

s

6
4

 x
 6

4

U
n
s
u

p
e

rv
is

e
d

R
e
c
o

n
s
tr

u
c
ti
o

n

L
o
ca

l
P

a
tc

h
e
s

M
L

P

A
n

 M
L

P
p

e
r

R
e

p
lic

a

Fi
gu

re
3.

3.
:3

D
Po

in
tC

ap
su

le
N

et
w

or
ks

.
O

ur
ca

ps
ul

e-
en

co
de

r
ac

ce
pt

s
a

N
×

3
po

in
tc

lo
ud

as
in

pu
ta

nd
us

es
an

M
L

P
to

ex
tr

ac
t

N
×

12
8

fe
at

ur
es

fr
om

it.
T

he
se

fe
at

ur
es

ar
e

th
en

se
nt

in
to

m
ul

tip
le

in
de

pe
nd

en
tc

on
vo

lu
tio

na
l-

la
ye

rs
w

ith
di

ff
er

en
tw

ei
gh

ts
,e

ac
h

of
w

hi
ch

is
m

ax
-p

oo
le

d
to

a
si

ze
of

10
24

.
T

he
po

ol
ed

fe
at

ur
es

ar
e

th
en

co
nc

at
en

at
ed

to
fo

rm
th

e
pr

im
ar

y
po

in
tc

ap
su

le
s

(P
PC

)
(1

02
4
×

16
).

A
su

bs
eq

ue
nt

dy
na

m
ic

ro
ut

in
g

cl
us

te
rs

th
e

PP
C

in
to

th
e

fin
al

la
te

nt
ca

ps
ul

es
.O

ur
de

co
de

r,
re

sp
on

si
bl

e
fo

rr
ec

on
st

ru
ct

in
g

po
in

ts
et

s
gi

ve
n

th
e

la
te

nt
fe

at
ur

es
,e

nd
ow

s
th

e
la

te
nt

ca
ps

ul
es

w
ith

ra
nd

om
2D

gr
id

s
an

d
ap

pl
ie

s
M

L
Ps

(6
4
−

64
−

32
−

16
−

3)
to

ge
ne

ra
te

m
ul

tip
le

po
in

tp
at

ch
es

.T
he

se
po

in
tp

at
ch

es
ta

rg
et

di
ff

er
en

tr
eg

io
ns

of
th

e
sh

ap
e

th
an

ks
to

th
e

D
R

[1
].

Fi
na

lly
,w

e
co

lle
ct

al
l

th
e

pa
tc

he
s

in
to

a
fin

al
po

in
t

cl
ou

d
an

d
m

ea
su

re
th

e
C

ha
m

fe
r

di
st

an
ce

to
th

e
in

pu
t

to
gu

id
e

th
e

ne
tw

or
k

to
fin

d
th

e
op

tim
al

re
co

ns
tr

uc
tio

n.
In

fig
ur

e,
pa

rt
-c

ol
or

s
en

co
de

ca
ps

ul
es

.

43

3. Unsupervised Learning of Representation with Spatial Attention

propagating the replicas through a final MLP for each patch and gluing the output patches
together. We choose m= 32 to reconstruct |X̂|= 32×64= 2048 points, the same amount
as the input. Similar to other AEs, we approximate the loss over 2-manifolds by the
discrete Chamfer metric:

dCH(X, X̂) = (3.9)
1
|X| ∑x∈X

min
x̂∈X̂
‖x− x̂‖2 +

1
|X̂| ∑x̂∈X̂

min
x∈X
‖x− x̂‖2

However, this time X̂ follows from the capsules: X̂ = ∪iΨi(Pi|{fi}).

Incorporating Optional Supervision Motivated by the regularity of capsule distribu-
tion over the 2-manifold, we created a capsule-part network that spatially segments the
object by associating capsules to parts. The goal here is to assign each capsule to a single
part of the object. Hence, we treat this part-segmentation task as a per-capsule classifi-
cation problem, rather than a per-point one as done in various preceding algorithms [5,
100]. This is only possible due to the spatial attention of the capsule networks.

The input of capsule-part network is the latent-capsules obtained from the pre-trained
encoder. The output is the part label for each capsule. The ground truth (GT) capsule
labeling is obtained from the ShapeNet-Part dataset [101] in three steps: 1) reconstructing
the local part given the capsule and a pre-trained decoder, 2) retrieving the label of the
nearest neighbor (NN) GT point for each reconstructed point, 3) computing the most
frequent one (mode) among the retrieved labels.

To associate a part to a capsule, we use a shared MLP with a cross-entropy loss to
classify the latent capsules into parts. This network is trained independently from the
3D-PointCapsNet AE for part supervision. We provide additional architectural details in
(Appendix A).

3.3. Evaluation

We evaluate our method first quantitatively and then qualitatively on numerous challeng-
ing 3D tasks such as local feature extraction, point cloud classification, reconstruction,
part segmentation, and shape interpolation. We also include a more specific application
of latent space part-interpolation that is made possible by the use of capsules. For evalu-
ation regarding these tasks, we use multiple benchmark datasets: ShapeNet-Core [102],
Shapenet-Part [101], ModelNet40 [103] and 3DMatch benchmark [104].

44

3.3. Evaluation

Table 3.1.: Descriptor matching results (recall) on the standard 3DMatch benchmark [104, 31].

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

3DMatch [104] 0.5751 0.7372 0.7067 0.5708 0.4423 0.6296 0.5616 0.5455 0.5961
CGF [105] 0.4605 0.6154 0.5625 0.4469 0.3846 0.5926 0.4075 0.3506 0.4776
PPFNet [32] 0.8972 0.5577 0.5913 0.5796 0.5769 0.6111 0.5342 0.6364 0.6231
FoldNet [30] 0.5949 0.7179 0.6058 0.6549 0.4231 0.6111 0.7123 0.5844 0.6130
PPF-FoldNet-2K [31] 0.7352 0.7564 0.625 0.6593 0.6058 0.8889 0.5753 0.5974 0.6804
PPF-FoldNet-5K [31] 0.7866 0.7628 0.6154 0.6814 0.7115 0.9444 0.6199 0.6234 0.7182

Ours-2K 0.8518 0.8333 0.7740 0.7699 0.7308 0.9444 0.7397 0.6494 0.7867

Implementation Details Prior to training, the input point clouds are aligned to a
common reference frame and size normalized. To train our network we use an ADAM
optimizer with an initial learning rate of 0.0001 and a batch size of 8. We also employ
batch normalization (BN) and RELU activation units at the point of feature extraction to
generate primary capsules. Similarly, the multi-stage MLP of the decoder also uses a BN
and RELU units except for the last layer, where the activations are scaled by a tanh(·).
During dynamic routing operation, we use the squash activation function mentioned in
[1, 60].

3.3.1. Quantitative Evaluations

3D Local Feature Extraction We first evaluate 3D Point-Capsule Networks on the
challenging task of local feature extraction from point cloud data. In this domain, learning
methods have already outperformed their handcrafted counterparts by a large margin and
hence, we compare only against those, namely 3DMatch [104], PPFNet [32], CGF [105]
and PPF-FoldNet [31]. PPF-FoldNet is completely unsupervised and yet is still the top
performer, thanks to the FoldingNet [30] encoder-decoder. It is thus intriguing to see how
its performance is affected if one simply replaces its FoldingNet autoencoder with 3D-
PointCapsNet. In an identical setting as [31], we learn to reconstruct the 4-dimensional
point pair features [106, 107] of a local patch, instead of the 3D space of points, and
use the latent capsule (codeword) as a 3D descriptor. To restrict the feature vector to
a reasonable size of 512, we limit ourselves only to 16×32 capsules. We then run the
matching evaluation on the 3DMatch Benchmark dataset [104] as detailed in [31], and
report the recall of correctly founded matches after 21 epochs in Tab. 3.1.

We note that our point-capsule networks exhibit an advanced capacity for learning
local features, surpassing the state of the art by 10% on the average, even when using
2K points unlike the 5K of PPF-FoldNet. It is also noteworthy that, except for the

45

3. Unsupervised Learning of Representation with Spatial Attention

Table 3.2.: Descriptor matching results (recall) on the rotated 3DMatch benchmark [104, 31].

Kitchen Home 1 Home 2 Hotel 1 Hotel 2 Hotel 3 Study MIT Lab Average

3DMatch [104] 0.0040 0.0128 0.0337 0.0044 0.0000 0.0096 0.0000 0.0260 0.0113
CGF [105] 0.4466 0.6667 0.5288 0.4425 0.4423 0.6296 0.4178 0.4156 0.4987
PPFNet [32] 0.0020 0.0000 0.0144 0.0044 0.0000 0.0000 0.0000 0.0000 0.0026
FoldNet [30] 0.0178 0.0321 0.0337 0.0133 0.0096 0.0370 0.0171 0.0260 0.0233
PPF-FoldNet-2K [31] 0.7352 0.7692 0.6202 0.6637 0.6058 0.9259 0.5616 0.6104 0.6865
PPF-FoldNet-5K [31] 0.7885 0.7821 0.6442 0.6770 0.6923 0.9630 0.6267 0.6753 0.7311

Ours-2K 0.8498 0.8525 0.7692 0.8141 0.7596 0.9259 0.7602 0.7272 0.8074

Kitchen sequence where PPFNet shows remarkable performance, the recall attained
by our network consistently remains above all others. We believe that such dramatic
improvement is related to the robustness of capsules towards slight deformations in the
input data, as well as to our effective decoder.

Do Our Features Also Perform Well Under Rotation? PPF local encoding of PPF-
FoldNet is rotation-invariant. Being based on the same representation, our local feature
network should enjoy similar properties. It is of interest to see whether the good
performance attained on the standard 3DMatch benchmark transfers to more challenging
scenes demanding rotation invariance. To this aim, we repeat the previous assessment
on the Rotated-3DMatch benchmark [31], a dataset that introduces arbitrary rotations
to the scenes of [104]. Since this dataset contains 6DoF scene transformations, many
methods that lack theoretical invariance, e.g., 3DMatch, PPFNet, and FoldingNet simply
fail. Our unsupervised capsule AE, however, is once again the top performer, surpassing
the state of the art by ∼ 12% on 2K-point case as shown in Tab. 3.2. This significant
gain justifies that our encoder manages to operate also on the space of 4D PPFs, holding
on the theoretical invariances.

3D Reconstruction In a further experiment, we evaluate the quality of our architecture
in point generation. We assess the reconstruction performance by the standard Chamfer
metric and base our comparisons on the state of the art autoencoder AtlasNet and its
baselines (point-MLP) [33]. We rely on the ShapeNet Core v2 dataset [102], using
the same training and test splits as well as the same evaluation metric as those in
AtlasNet’s [33]. We show in Tab. 3.3 the Chamfer distances averaged overall categories
and for N > 2K points. It is observed that our capsule AE results in lower reconstruction
error even when a large number of patches (125) is used in favor of AtlasNet. This

46

3.3. Evaluation

Table 3.3.: Evaluating reconstruction quality. Oracle refers to a random sampling of the input 3D
shape and constitutes an lower bound on what is achievable. The Chamfer Distance is multiplied
by 103 for better viewing. CD denotes Chamfer distance and PB refers to Point Baseline.

Oracle PB AtlasNet-25 AtlasNet-125 Ours

CD 0.85 1.91 1.56 1.51 1.46

justifies that the proposed network has a better summarization capability and can result
in higher fidelity reconstructions.

Transfer Learning for 3D Object Classification In this section, we demonstrate the
efficiency of learned representation by evaluating the classification accuracy obtained by
performing transfer learning. Identical to [108, 35, 30], we train a linear SVM classifier
so as to regress the shape class given the latent features. To do that, we reshape our latent
capsules into a one-dimensional feature and train the classifier on Modelnet40 [103].
We use the same train/test split sets as [30] and obtain the latent capsules by training
3D-PointCapsNet on a different dataset, the ShapeNet-Parts [101]. The training data has
14,000 models subdivided into 16 classes. The evaluation result is shown in Tab. 3.4,
where our AE, trained on a smaller dataset compared to the ShapeNet55 of [35, 30] is
capable of performing at least on par or better. This shows that learned latent capsules
can handle smaller datasets and generalize better to new tasks. We also evaluated our
classification performance when the training data is scarce and obtained the similar result
as the FoldingNet, ∼ 85% on ∼ 20% of training data.

Table 3.4.: Accuracy of classification by transfer learning on the ModelNet40 dataset. Networks
are trained out ShapeNet55, except Ours-Parts that is trained on smaller ShapeNet-Parts dataset.

Latent-GAN[35] FoldingNet[30] Ours-Parts Ours

Acc. 85.7 88.4 88.9 89.3

3.3.2. Qualitative Results

3D Object Part Segmentation with Limited Data We now demonstrate the regional
attention of our latent capsule and their capacity to learn with limited data. To this end,
we trained 3D-PointCapsNet on the ShapeNet-Part dataset [102] for part segmentation as
explained in Sec. 3.2, with the supervision of only 1−5% part labeled training data. We

47

3. Unsupervised Learning of Representation with Spatial Attention

Conv-Layer Dynamic-Routing Conv-Layer Dynamic-Routing

Figure 3.4.: Distribution of 10 randomly selected capsules on the reconstructed shape after
unsupervised autoencoder training a) with dynamic routing, b) with a simple convolutional layer.

tested our network on all of the available test data. To specialize the capsules to distinct
parts, we select as many capsules as the part labels and let the per-capsule classification
coincide to part predictions. Predicted capsule labels are propagated to the related points.
For the sake of space, we compared our results only with the state of the art on this
dataset, the SO-Net [68]. We use identical evaluation metrics as SO-Net [68]: Accuracy
and IoU (Intersection over Union), and report our findings in Tab. 3.5. Note that, when
trained on 1% of input data, we perform 7% better than SO-Net. When the amount of
training data is increased to 5%, the gap closes but we still surpass SO-Net by 2%, albeit
training a smaller network to classify latent-capsules rather than 3D points.

Table 3.5.: Part segmentation on ShapeNet-Part by learning only on the x% of the training data.

Metric SONet-1% Ours-1% SONet-5% Ours-5%

Accuracy 0.78 0.85 0.84 0.86
IoU 0.64 0.67 0.69 0.70

Does unsupervised training lead to specialized capsules? It is of interest to see
whether the original argument of the capsule networks [1, 60] claiming to better capture
the intrinsic geometric properties of the object still holds in the case of our unsupervised
3D-AE. To this aim, we first show in Fig. 3.4 that even with lack of supervision the
capsules specialize in local parts of the model. While these parts may sometimes not
correspond to the human-annotated part segmentation of the model, we still expect them
to concentrate on semantically similar regions of the 2-manifold. Fig. 3.4 visualizes the
distribution of 10 capsules by coloring them individually and validates our argument.

To validate our second hypothesis, stating that such clustering arises thanks to the

48

3.3. Evaluation

(a) Unprocessed part segmentation on same class (b) Part segmentation of multiple objects of different class

Figure 3.5.: Part segmentation by capsule association. Having pre-trained the autoencoder, we
append a final part-supervision layer and use a limited amount of data to specialize the capsules
on object parts. (a) across the shapes of the same class capsules capture semantic regions. (b)
inter-class part segmentation. Colors indicate different capsule groups and (b) uses only a simple
median filter to smooth the results.

dynamic routing, we replace the DR part of the AE with standard PointNet-like layers
projecting the 1024×64 PPC to 642 capsules and repeat the experiment. Fig. 3.4 depicts
the spread of the latent vectors over the point set when such layer is employed as opposed
to DR. Note that using this simple layer instead of DR both harms the reconstruction
quality and yields an undesired spread of the capsules across the shape. We leave it
as future work to study the DR energy theoretically and provide more details on this
experiment in Appendix A.

Semi-supervision guides the capsules to meaningful parts. We now consider the
effect of training in steering the capsules towards the optimal solution in the task of
supervised part segmentation. First, we show in Fig. 3.5 the results obtained by the
proposed part segmentation: (a) shows part segmentation across multiple shapes of
the same class. These results are also unfiltered and the raw outcome of our network.
(b) depicts part segmentation across a set of object classes from Shapenet-Part. It also
shows that some minor confusions present in (a) can be corrected with a simple median
filter. This is contrary and computationally preferable to costly CRFs smoothing the
results [109].

Next, we observe that, as training iterations progress, the randomly initialized capsules
specialize to parts, achieving a good part segmentation at the point of convergence. We
visualize this phenomenon in Fig. 3.6, where the capsules that have captured the wings
of the airplane are monitored throughout the optimization procedure. Even though the
initial random distribution is spatially spread out, the resulting configuration is still part
specific. This is a natural consequence of our capsule-wise part semi-supervision.

49

3. Unsupervised Learning of Representation with Spatial Attention

Figure 3.6.: Visualizing the iterations of unsupervised AE training on the airplane object. For
clear visualization, we fetch the colors belonging to the ∼20 capsules of the wing-part from our
part predictions trained with part supervision.

Part Interpolation / Replacement Finally, we explore the rather uncommon but par-
ticularly interesting application of interpolating, exchanging or switching object parts
via latent-space manipulation. Thanks to the fact that 3D-PointCapsNet discovers mul-
tiple latent vectors specific to object attributes/shape parts, our network is capable of
performing per-part processing in the latent space. To do that, we first spot a set of latent
capsule pairs belonging to the same parts of two 3D point shapes and intersect them.
Because these capsules explain the same part in multiple shapes, we assume that they are
specific to the part under consideration and nothing else. We then interpolate linearly in
the latent space between the selected capsules. As shown in Fig. 3.7 the reconstruction
of intermediate shapes vary only at a single part, the one being interpolated. When
the interpolator reaches the target shape it replaces the source part with the target one,
enabling part-replacement. Fig. 3.8 further shows this in action. Given two shapes and
latent capsules of the related parts, we perform a part exchange by simply switching
some of the latent capsules and reconstructing. Conducting a part exchange directly on
the input space by a cut-and-place would yield inconsistent shapes as the replaced parts
would have no global coherence.

3.4. Conclusion

We have presented 3D Point-Capsule Network, a flexible and effective tool for unsu-
pervised learning representations with spatial attention for 3D shape processing and
understanding.

We first presented a broad look to the common point cloud autoencoders. With the

50

3.4. Conclusion

observation that a one-dimensional latent embedding, the choice of the most preceding
autoencoders, is potentially sub-optimal, we opted to summarize the point clouds as
a union of disjoint latent basis functions. We have shown that such a choice can be
implemented by learning the embedded latent capsules via dynamic routing. Our
algorithm proved successful on an extensive evaluation on many 3D shape processing
tasks such as 3D reconstruction, local feature extraction, and part segmentation. Having
a latent capsule set rather than a single vector also enabled us to address new applications
such as part interpolation and replacement. In the future, we plan to deploy our network
for pose estimation and object detection from 3D data, currently two of the key challenges
in 3D computer vision.

Source Shapes Latent Interpolation of a Single Part Target Shapes

Figure 3.7.: Part interpolation on the Shapenet-Part [101] dataset. (left) The source point cloud.
(right) Target shape. (middle) Part interpolation. Fixed part is marked in light blue and the
interpolated part is highlighted. Capsules are capable of performing part interpolation purely via
latent space arithmetic.

Input Shapes Cut-Paste Our Replacement Input Shapes Cut-Paste Our Rep.

Figure 3.8.: Part replacement. Performing replacement in the latent space rather than Euclidean
space of 3D points yields geometrically consistent outcome.

51

4. Learning Features with SO(3)
Rotation Invariance and
Equivariance

4.1. Introduction

It is now well understood that in order to learn a compact representation of the input
data, one needs to respect the symmetries in the problem domain [110, 77]. Arguably,
one of the primary reasons of the success of 2D convolutional neural networks (CNN)
is the translation-invariance of the 2D convolution acting on the image grid [111, 112].
Recent trends aim to transfer this success into the 3D domain in order to support many
applications such as shape retrieval, shape manipulation, pose estimation, 3D object
modeling and detection. There, the data is naturally represented as sets of 3D points
or a point cloud [5, 6]. Unfortunately, extension of CNN architectures to 3D point
clouds is non-trivial due to two reasons: 1) point clouds are irregular and unstructured,
2) the group of transformations that we are interested in is more complex as 3D data is
often observed under arbitrary non-commutative SO(3) rotations. As a result, achieving
appropriate embeddings requires 3D networks that work on points to be equivariant to
these transformations, while also being invariant to the permutations of the point set.

In order to fill this important gap, we propose the quaternion equivariant point capsule
network or QE-Network that is suited to process point clouds and is equivariant to SO(3)
rotations compactly parameterized by quaternions, in addition to preserved translation
and permutation equivariance. Inspired by the local group equivariance [76, 110], we
efficiently cover SO(3) by restricting ourselves to the sparse set of local reference
frames (LRF) that collectively characterize the object orientation. The proposed capsule
layers [60] deduces equivariant latent representations by robustly combining those
local LRFs using the proposed Weiszfeld dynamic routing. Hence, our latent features
specify to local orientations disentangling the pose from object existence. Such explicit
storage is unique to our work and allows us to perform rotation estimation jointly with

53

4. Learning Features with SO(3) Rotation Invariance and Equivariance

object classification. Our final architecture is a hierarchy of QE-networks, where we
use classification error as the only training cue and adapt a Siamese version when the
relative rotation is to be regressed. We neither explicitly supervise the network with pose
annotations nor train by augmenting rotations.

4.2. Preliminaries and Technical Background

4.2.1. Equivariance

Definition 6 (Equivariant Map)
For a G-space acting on X , the map Φ : G ×X 7→ X is said to be equivariant if its
domain and co-domain are acted on by the same symmetry group [40, 113]:

Φ(g1 ◦x) = g2 ◦Φ(x) (4.1)

where g1 ∈ G and g2 ∈ G. Equivalently Φ(T (g1)x) = T (g2)Φ(x), where T (·) is a linear
representation of the group G. Note that T (·) does not have to commute. It suffices for
T (·) to be a homomorphism: T (g1 ◦g2) = T (g1)◦T (g2). In this work we use a stricter
form of equivariance and consider g2 = g1.

Definition 7 (Equivariant Network)
An architecture or network is said to be equivariant if all of its layers are equivariant
maps. Due to the transitivity of the equivariance, stacking up equivariant layers will
result in globally equivariant networks e.g., rotating the input will produce output vectors
which are transformed by the same rotation [76, 39].

4.2.2. The Quaternion Group H1

Definition 8 (Quaternion)
A quaternion q is an element of Hamilton algebra H1, extending the complex numbers
with three imaginary units i, j, k in the form:

q = q11+q2i+q3j+q4k = (q1,q2,q3,q4)
T , (4.2)

with (q1,q2,q3,q4)
T ∈ R4 and i2 = j2 = k2 = ijk =−1. q1 ∈ R denotes the scalar part

and v = (q2,q3,q4)
T ∈ R3, the vector part. The conjugate q̄ of the quaternion q is

given by q̄ := q1− q2i− q3j− q4k. A unit quaternion q ∈ H1 with 1 !
= ‖q‖ := q · q̄

and q−1 = q̄, gives a compact and numerically stable parametrization to represent

54

4.2. Preliminaries and Technical Background

orientation of objects on the unit sphere S3, avoiding gimbal lock and singularities [114].
Identifying antipodal points q and−q with the same element, the unit quaternions form a
double covering group of SO(3). H1 is closed under the non-commutative multiplication
or the Hamilton product:

(p ∈H1)◦ (r ∈H1) = [p1r1−vp ·vr ; p1vr + r1vp +vp×vr]. (4.3)

Definition 9 (Linear Representation of H1)
We follow [115] and use the parallelizable (d = 1,2,4 or 8) nature of unit quaternions
to define T : H1 7→ R4×4 as:

T(q),

q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1

.
To be concise we will use capital letters to refer to the matrix representation of quater-
nions e.g.Q≡ T (q), G≡ T (g). Note that T (·), the injective homomorphism to the or-
thonormal matrix ring, by construction satisfies the condition in Dfn. 6 [116]: det(Q) =

1,Q>=Q−1,‖Q‖= ‖Qi,:‖= ‖Q:,i‖= 1 and Q−q1I is skew symmetric: Q+Q>= 2q1I.
It is easy to verify these properties. T linearizes the Hamilton product or the group
composition: g◦q , T (g)q , Gq.

4.2.3. 3D Point Clouds

Definition 10 (Point Cloud)
We define a 3D surface to be a differentiable 2-manifold embedded in the ambient 3D
Euclidean space:M2 ∈ R3 and a point cloud to be a discrete subset sampled onM2:
X ∈ {xi ∈M2∩R3}.

Definition 11 (Local Geometry)
For a smooth point cloud {xi} ∈M2 ⊂ RN×3, a local reference frame (LRF) is defined
as an ordered basis of the tangent space at x, TxM, consisting of orthonormal vectors:

L(x) = [∂∂∂ 1,∂∂∂ 2,∂∂∂ 3 ≡ ∂∂∂ 1×∂∂∂ 2]. (4.4)

Usually the first component is defined to be the surface normal ∂∂∂ 1 , n ∈ S2 : ‖n‖= 1
and the second one is picked according to a modality dependent heuristic.

55

4. Learning Features with SO(3) Rotation Invariance and Equivariance

(a) Input Point Cloud (b) Initial LRFs (c) LRFs After First Pooling (d) Multi-channel LRFs Prior to QE-Network-2

(b) Initial LRFs (c) LRFs Prior to QE-Network-1(a) Input Point Cloud (d) Multi-channel LRFs Prior to QE-Network-2

Figure 4.1.: Our network operates by processing local reference frames (LRF) on the object.
Initial LRFs (b) are obtained by computing normal & tangent vectors on the point set in (a). (c)
shows the LRFs randomly sampled from (a) and these are inputs to the first layer of our network.
Subsequently, we obtain a multi-channel LRF that is a set of reference frames per pooling center
(d). Holistically, our network aggregates the LRFs to arrive at rotation equivariant capsules.

Note that recent trends such as [110] acknowledge the ambiguity and either employ
a gauge (tangent frame) equivariant design or propagate the determination of a certain
direction until the last layer [117]. Here, we will assume that ∂∂∂ 2 can be uniquely and
repeatably computed, a reasonable assumption for the point sets we consider [118]. For
the cases where this does not hold, we will rely on the network’s robustness. We will
explain our method of choice in Sec. 4.3.2 and visualize LRFs of an airplane object
in Fig. 4.1.

4.3. SO(3)-Equivariant 3D Capsule Networks

Disentangling orientation from representations requires guaranteed equivariances and
invariances. Yet, the original capsule networks of [1] cannot achieve equivariance to
general groups. To this end, [76] proposed to use a manifold-mean and a special aggre-
gation that makes sure that the trainable transformations get pose-aligned points as input.
We will extend this idea to the non-abelian SO(3) and design capsule networks sparsely
operating on a set of LRFs computed on local neighborhoods of points, parameterized
by quaternions. In the following, we first explain our novel capsule layers, the main
building block of our architecture. We then show how to stack those layers via a simple
aggregation resulting in an SO(3)-equivariant 3D capsule network that yields invariant
representations (or activations) as well as equivariant rotations (latent capsules).

4.3.1. Quaternion Equivariant Capsule Layers

To construct equivariant layers on the group of rotations, we are required to define a
left-equivariant averaging operator A that is invariant under permutations of the group

56

4.3. SO(3)-Equivariant 3D Capsule Networks

elements, as well as a distance metric δ that remains unchanged under the action of the
group. For these, we make the following choices:

Definition 12 (Geodesic Distance)
The Riemannian distance in the manifold of rotations lead to the following geodesic
distance δ (·)≡ dquat(·):

dRiemann(R1 ∈ SO(3),R2 ∈ SO(3)) = ‖ log(R1R>2)‖
dquat(q1,q2) = 2cos−1(|〈q1,q2〉|) (4.5)

Definition 13 (Quaternion Mean)
For a set of Q rotations S = {qi} and associated weights w = {wi}, the weighted mean
operator A(S,w) : H1

n×Rn 7→ H1
n is defined through the following maximization

procedure [119]:

q̄ = argmax
q∈S3

q>Mq (4.6)

where M ∈R4×4 is defined as: M ,
Q
∑

i=1
wiqiq>i . The average quaternion is the eigenvec-

tor of M corresponding to the maximum eigenvalue. This operation lends itself to both
analytic [120] and automatic differentiation [121].

Theorem 3
Quaternions, the employed meanA(S,w) and geodesic distance δ (·) enjoy the following
properties:

1. A(g◦S,w) is left-equivariant: A(g◦S,w) = g◦A(S,w).

2. Operator A is invariant under permutations:
A({qσ(1), . . . ,qσ(Q)},wσ) =A({q1, . . . ,qQ},w).

3. The transformations g ∈H1 preserve the geodesic distance δ (·) given in Dfn. 12.

Proof. The proofs are given in (Appendix B).

We also note that the above mean is closed form, differentiable and can be implemented
batchwise. We are now ready to construct the group dynamic routing (DR) by agreement
that is equivariant thanks to Thm. 3. The core idea is to route from or assign the primary
capsules that constitute the input LRF set, to the latent capsules by an iterative clustering
which respects the group structure. At each step, we assign the weighted group mean to

57

4. Learning Features with SO(3) Rotation Invariance and Equivariance

Algorithm 2: Quaternion Equivariant Dynamic Routing

1 input :Input points {x1, ...,xK} ∈ RK×3, input capsules (LRFs)
Q= {q1, . . . ,qL} ∈H1

L, with L = Nc ·K, Nc is the number of capsules per
point, activations ααα = (α1, . . . ,αL)

T , trainable transformations
T = {ti, j}i, j ∈H1

L×M

2 output :Updated frames Q̂= {q̂1, . . . , q̂M} ∈H1
M, updated activations

α̂αα = (α̂1, . . . , α̂M)T

3 for All primary (input) capsules i do
4 for All latent (output) capsules j do
5 vi, j← qi ◦ ti, j // compute votes

6 for All latent (output) capsules j do
7 q̂ j←A

(
{v1, j . . .vK, j},ααα

)
// initialize output capsules

8 for k iterations do
9 for All primary (input) capsules i do

10 wi, j← αi · sigmoid
(
−δ (q̂ j,vi, j)

)
// compute the current weight

11 q̂ j←A
(
{v1, j . . .vL, j},w:, j

)
// see Eq (4.6)

12 α̂ j← sigmoid
(
− 1

K

L
∑
1

δ (q̂ j,vi, j)
)
// recompute activations

each output capsule. The weights w← σ(x,y) are inversely proportional to the distance
between the vote quaternion and the new quaternion (cluster center). See Alg. 2 for
details. In the following, we analyze our variant of routing as an interesting case of the
affine, Riemannian Weiszfeld algorithm [7, 122].

Lemma 1
For σ(x,y) = δ (x,y)q−2 the equivariant routing procedure given in Alg. 2 is a variant of
the affine subspace Wieszfeld algorithm [7, 122] that is a robust algorithm for computing
the Lq geometric median.

Proof Sketch. The proof follows from the definition of Weiszfeld iteration [122] and the
mean and distance operators defined in Sec. 4.3.1. We first show that computing the
weighted mean is equivalent to solving the normal equations in the iteratively reweighted
least squares (IRLS) scheme [123]. Then, the inner-most loop correspond to the IRLS or
Weiszfeld iterations. We provide the detailed proof in Appendix B.

Note that, in practice one is quite free to choose the weighting function σ(·) as long

58

4.3. SO(3)-Equivariant 3D Capsule Networks

as it is inversely proportional to the geodesic distance and concave [124]. We leave the
analyses of the variants of these algorithms as future work. The original dynamic routing
can also be formulated as a clustering procedure with a KL divergence regularization.
This holistic view paves the way to better routing algorithms [125]. Our perspective is
akin yet more geometric due to the group structure of the parameter space. Thanks to the
connection to the Weiszfeld algorithm, the convergence behavior of our dynamic routing
can be directly analyzed within the theoretical framework presented by [122, 7].

Theorem 4
Under mild assumptions provided in Appendix B, the sequence of the DR-iterates gener-
ated by the inner-most loop almost surely converges to a critical point.

Proof Sketch. Proof, given in the appendix, is a direct consequence of Lemma 1 and
directly exploits the connection to the Weiszfeld algorithm.

4.3.2. Equivariant 3D Point Capsule Network Architecture

The essential ingredient of our architecture, QE-Network, is shown in Fig. 4.2. We also
provide a corresponding pseudocode in Alg. 4 of (Appendix B). The input of the QE-
Network are a local patch of points with coordinates xi⊂RK×3, rotations parametrized as
quaternions qi ⊂H1

K×Nc
and activations ααα i ⊂ RK×Nc

. qi also represents input primary
capsules and local reference frames. Nc is the number of input capsule channels per
point and it is equal to the number of output capsules (M) from the last layer. In the
initial layer, qi represents the pre-computed LRFs and Nc is equal to 1. Given points
xi and rotations qi, we compute the quaternion average µi in channel-wise as the initial
pose candidates: µi ⊂ H1

Nc
. These candidates are used to bring the receptive field

in multiple canonical orientations by rotating the points: x′i = (µi
−1 ◦ xi) ⊂ RK×Nc×3.

Since the points in the local receptive field lie in continuous R3, training a discrete
set of pose transformations ti, j based on local coordinates is not possible. Instead, we
employ a point-to-transform network t(·) : RNc×3→ RM×Nc×4 that maps the point in
multiple canonical orientations to transformations. The network is shared over all points
to compute the transformations ti, j = (t(x′1), ..., t(x

′
K))i, j ⊂ RK×M×Nc×4, which are used

to calculate the votes for dynamic routing as vi, j = qi ◦ ti, j. The network t(·) consists of
fully-connected layers that regresses the transformations, similar to common operators
for continuous convolutions [126, 127, 128]. It is the continuous alternative to directly
optimizing transformations lying in a grid kernel, as it is done in the original dynamic
routing by [1]. Note that t(·) predicts quaternions by unit-normalizing the regressed

59

4. Learning Features with SO(3) Rotation Invariance and Equivariance

ϵ − ball

𝐱𝑖

𝐧𝑖

𝐗 ⊂ ℳ

𝐗𝒊 ⊂ ℝKx3

𝐐𝒊 ⊂ ℝKxNl
Cx4

𝐦𝐞𝐚𝐧(⋅)

{𝛍𝒊}

{𝛍𝒊
−𝟏}ο 𝐗𝒊

point-to-transform map

Dynamic Routing

𝐓𝒊 ⊂ ℝKxNl
CxMlx4 𝑸𝒊 ⊂ ℝMlx4 𝛂𝒊 ⊂ ℝMl

Figure 4.2.: Our quaternion equivariant (QE) network for processing local patches: Our input
is a 3D point set X on which we query local neighborhoods {xi} with precomputed LRFs {qi}.
Essentially, we learn the parameters of a fully connected network that continuously maps the
canonicalized local point set to transformations ti, which are used to compute hypotheses (votes)
from input poses. By a special dynamic routing procedure that uses the activations determined in
a previous layer, we arrive at latent capsules that are composed of a set of orientations q̂i and new
activations α̂αα i. Thanks to the decoupling of local reference frames, α̂αα i is invariant and orientations
q̂i are equivariant to input rotations. All the operations and hence the entire QE-network are
equivariant achieving a guaranteed disentanglement of the rotation parameters. Hat symbol (q̂)
refers to ’estimated’.

output: ti, j ⊂H1
K×M×Nc

. Although Riemannian layers of [129] or spherical predictions
of [130] can improve the performance, the simple strategy works reasonably for our
case. After computing the votes, we utilize the input activation ααα i to iteratively refine
the output capsules (weighted average of votes) q̂i and activations α̂αα i by routing by
agreement as shown in Alg. 2.

In order to gradually increase the receptive field, we stack QE-networks creating a
deep hierarchy, pooling the points and the LRFs before each layer. Note that we are
allowed to do so thanks to the properties of equivariance. In particular, we input N = 64
patches to our architecture that is composed of two QE-networks. We call the centers of
these patches pooling centers. In the first layer, each of those centers is linked to their
immediate vicinity leading to K = 9-star local connectivity from which we compute
the 64× 64× 4 intermediary capsules. The input LRFs of the first layer are sampled
from pre-calculated LRF-set and the input activation is set to 1. The LRFs in the second
layer l = 2 are the output capsules of the first layer, l = 1 and are routed to the output
capsules that are as many as the number of classes C, M2 = C. The activation of the
second layer is updated by the output of the first layer as well. This construction is
shown in Fig. 4.3. Specifically, for l = 1, we use K = 9,Nl

c = 1,Ml = 64 and for l = 2,
K = 64,Nl

c = 64,Ml =C = 40. This way, in this last layer all the pooling centers act as
a single patch (K = 64). A single QE-network acts on this patch to create the final C×4

60

4.3. SO(3)-Equivariant 3D Capsule Networks

QE - Network

𝐗 ⊂ ℳ𝟏

QE - Network

QE - Network

QE - Network

QE - Network

QE - Network

Downsample Downsample

Intermediate Capsules Rotation
Estimation

Classification

𝐂𝐗
𝛂𝐗

Figure 4.3.: Our entire capsule architecture. We hierarchically send all the local patches to our
Q-network as shown in Fig. 4.2. At each level the points are pooled in order to increase the
receptive field, gradually reducing the LRFs into a single capsule per class. We use classification
and pose estimation (in the siamese case) as supervision cues to train the point-to-transform
maps.

capsules and C activations. More details are reported in Alg. 4 of Appendix B.

Implementation Details We implement our network in PyTorch and use the ADAM
optimizer [131] with a learning rate of 0.001. The point-transformation mapping network
is implemented by two FC-layers composed of 64 hidden units. We set the initial
activation of the input LRF to 1.0. In each layer, we use 3 iterations of DR. For
classification we use the spread loss [132] and the rotation loss is identical to δ (·).

Surface normals are computed by local plane fits [133]. We compute the second
axis of the LRF, ∂∂∂ 2, by FLARE [134], that uses the normalized projection of the point
within the periphery of the support showing the largest distance, onto the tangent plane
of the center: ∂∂∂ 2 =

pmax−p
‖pmax−p‖ . Note that using other LRFs such as SHOT [135] or the

more modern GFrames of [136] is possible. We found FLARE to be sufficient for our
experiments. Prior to all operations, we flip all the LRF quaternions such that they lie on
the northern hemisphere: {qi ∈ S3 : qw

i > 0}.

3D Shape Classification. We use ModelNet40 dataset of [103, 6] to assess our classi-
fication performance. Each shape is composed by 10K points. We assign the LRFs to a
subset of the uniformly sampled points, N = 512 [107]. We train the networks without
any rotation augmentation (NR) and put them to test under arbitrary SO(3) rotations
(AR). Our results are shown in Tab. 4.1 along with that of PointNet (PN) [5], PointNet++
(PN++) [5], KD-treeNet [26], Point2Seq [137], Spherical CNNs [47], PRIN [138] and
PPF-FoldNet (PPF) [52]. We also present a version of our algorithm (Var) that avoids
the canonicalization within the QE-network. This is a non-equivariant network that we
still train without data augmentation. While this version gets comparable results to the
state of the art for the NR/NR case, it cannot handle random SO(3) variations (AR).
Note that PPF uses the point-pair-feature [106] encoding and hence creates invariant

61

4. Learning Features with SO(3) Rotation Invariance and Equivariance

Table 4.1.: Classification accuracy on ModelNet40 dataset [103] for different methods as well as
ours. We also report the number of parameters optimized for each method. Right hand side of the
table denotes the symmetric objects, which we include for completeness. X/Y means that we
train with X and test with Y.

PN PN++ KD-treeNet Point2Seq Sph.CNNs PRIN PPF Ours (Var.) Ours

NR/NR 88.45 89.82 86.20 92.60 - 80.13 70.16 85.27 74.43
NR/AR 12.47 21.35 8.49 10.53 43.92 68.85 70.16 11.75 74.07

Params 3.5M 1.5M 3.6M 1.8M 0.5M 1.5M 3.5M 0.4M 0.4M

input representations. For the scenario of NR/AR, our equivariant version outperforms
all the other methods, including equivariant spherical CNNs [47] by a significant gap
of at least 5% even when [47] uses the mesh. The object symmetries in this dataset are
responsible for a significant portion of the errors we make. It is worth mentioning that
we also trained TFNs [55] for that task, but their memory demand made it infeasible to
scale to this application.

Number of Parameters. Use of LRFs helps us to restrict the rotation group to certain
elements and thus we can use networks with significantly fewer parameters (as low as
0.44M) compared to others as shown in Tab. 4.1. The number of parameters in our
network depends upon the number of classes, e.g.for ModelNet10 we have 0.047M
parameters.

Rotation estimation in 3D point clouds. Our network can estimate both the canon-
ical and relative object rotations without pose-supervision. To evaluate this desired
property, we used the well-classified shapes on ModelNet10 dataset, a sub-dataset of
Modelnet40 [103]. We generate multiple instances per shape by transforming the in-
stance with five arbitrary SO(3) rotations. As we are also affected by the sampling of
the point cloud, we resample the mesh five times and generate different pooling graphs
across all the instances of the same shape. Our QE-architecture can estimate the pose
in two ways: 1) by directly using the output capsule with the highest activation, 2)
by a siamese architecture that computes the relative quaternion between the capsules
that are maximally activated as shown in Fig. 4.4. Both modes of operation are free of
the data augmentation. Our results against the baselines including a naive averaging
of the LRFs (Mean LRF) and principal axis alignment (PCA) are reported in Tab. 4.2

62

4.3. SO(3)-Equivariant 3D Capsule Networks

𝑸 ⊂ ℝ𝐶x4

{𝐐𝒊}

𝛂 ⊂ ℝ𝐶

Shape
Alignment

Figure 4.4.: Shape alignment on the monitor (left) and toilet (right) objects via our siamese
equivariant capsule architecture. The shapes are assigned to the the maximally activated class.
The corresponding pose capsule provides the rotation estimate.

as the relative angular error (RAE). We further include results of PointNetLK [139]
and IT-Net [140], two state of the art 3D networks that iteratively aligns two point sets.
These methods are in nature similar to iterative closest point (ICP) algorithm [141] but 1)
do not require an initialization (first iteration estimates the pose), 2) learn data driven
updates. Methods that use mesh inputs such as Spherical CNNs [47] cannot be included
here as the random sampling of the same surface would not affect those. We also avoid
methods that are just invariant to rotations (and hence cannot estimate the pose) such as
Tensorfield Networks [55]. Finally, note that , IT-net [140] and PointLK need to train a
lot of epoches (e.g. 500) with random SO(3) rotation augmentation in order to get the
models that cover the full SO(3), whereas we train only for ∼ 100 epochs. We include
more details about the baselines in Appendix B under Fig. B.4. RAE between the ground
truth and the prediction is computed as the relative angle in degrees: d(q1,q2)/π .

Note that resampling and random rotations render the job of all methods difficult.
However, both our version that tries to find a canonical alignment and the siamese
variant which seeks a relative rotation is better than the baselines. As unsupervised
pose estimation of symmetric objects is a challenging task we also report results on the
non-symmetric subset (No_Sym).

Robustness against point resampling. Density changes in the local neighborhoods
of the shape are an important cause of error for our network. Hence, we ablate by
applying random resamplings (patch-wise dropout) to the objects in ModelNet10 dataset
and repeating the pose estimation and classification as described above. The first part
(LRF-10K) of Tab. 4.3 shows our findings against gradual increases of the number of

63

4. Learning Features with SO(3) Rotation Invariance and Equivariance

Table 4.2.: Error of rotation estimation in different categories of ModelNet10. Right side of the
table denotes the objects with rotational symmetry, which we include for completeness. PCA-S
refers to running PCA only on a resampled instance, while PCA-SR applies both rotations and
resampling.

Method Avg. No_Sym Chair Bed Sofa Toilet Monitor Table Desk Dresser NS Bathtub

Mean LRF 0.41 0.35 0.32 0.36 0.34 0.41 0.34 0.45 0.60 0.50 0.46 0.32
PCA-S 0.40 0.42 0.60 0.53 0.46 0.32 0.12 0.47 0.23 0.33 0.43 0.55
PCA-SR 0.67 0.67 0.69 0.70 0.67 0.68 0.61 0.67 0.67 0.67 0.66 0.70
PointNetLK 0.37 0.38 0.43 0.31 0.40 0.40 0.31 0.40 0.33 0.39 0.38 0.34
IT-net 0.27 0.19 0.10 0.22 0.17 0.20 0.28 0.31 0.41 0.44 0.40 0.39

Ours 0.27 0.17 0.11 0.20 0.16 0.18 0.19 0.43 0.40 0.48 0.33 0.31
Ours (siamese) 0.20 0.09 0.08 0.10 0.08 0.11 0.08 0.40 0.35 0.34 0.32 0.30

patches. Here, we sample 2K LRFs from the 10K LRFs computed on an input point 10K.
100% dropout corresponds to 2K points in all columns. On second ablation, we reduce
the amount of points on which we compute the LRFs, to 2K and 1K respectively. As we
can see from the table, our network is robust towards the changes in the LRFs as well as
the density of the points.

Table 4.3.: Ablation study on point density.
LRF Input LRF-10K LRF-2K LRF-1K

Dropout 50% 66% 75% 100% 100% 100%

Class. Err 77.8 83.3 83.4 87.8 85.46 79.74
Angle. Err 0.34 0.27 0.25 0.09 0.10 0.12

4.4. Conclusion and Discussion

In this chapter, we have presented a new framework for achieving permutation invariant
and SO(3) equivariant representations on 3D point clouds. Proposing a variant of
the capsule networks, we operate on a sparse set of rotations specified by the input
LRFs thereby circumventing the effort to cover the entire SO(3). Our network natively
consumes a compact representation of the group of 3D rotations - quaternions, and we
have theoretically shown its equivariance. We have also established convergence results
for our Weiszfeld dynamic routing by making connections to the literature of robust

64

4.4. Conclusion and Discussion

optimization. Our network is among the few for having an explicit group-valued latent
space and thus naturally estimates the orientation of the input shape, even without a
supervision signal.

Limitations. In the current form our performance is severely affected by the shape
symmetries. The length of the activation vector depends on the number of classes and
for achieving sufficiently descriptive latent vectors we need to have a significant number
of classes. On the other side, this allows us to perform with merit on problems where
the number of classes is large. Although we have reported robustness to those, the
computation of LRFs is still sensitive to the point density changes and resampling. LRFs
themselves are also ambiguous and sometimes non-unique.

Future work. Inspired by [110] and [117] our feature work will involve establishing
invariance to the direction in the tangent plane. We also plan to apply our network
in the broader context of 3D object detection under arbitrary rotations and look for
equivariances among point resampling.

65

5. Conclusions

Conclusions In this thesis, three kinds of 3D features representations are developed
towards different properties e.g., discrimination, spatial attention, rotation invariance or
equivariance. Thanks to the capability of representing a sparse 3D structure accurately
while being acquired directly with the ubiquitous sensors, RGB-D images, and point
clouds are the main 3D data formats used in this thesis.

Based on RGB-D images, we proposed a feature representation by fusing the color
and depth model in a probabilistic manner. Thanks to the range information from the
depth image, the feature shows strong discrimination power towards background clutters
and foreground occlusions which are the main drawbacks of the previous color statistical
models of the object. We also present an object tracking algorithm based on the proposed
representation to evaluate its performance. The evaluation result on a public RGB-
D object tracking dataset suggests that our tracker out-performs other state-of-the-art
trackers in both efficiency and robustness. Moreover, we integrate the proposed tracker to
an RGB-D camera network to evaluate its performance in long-term tracking. We also are
the first to present a multiple object tracking dataset with RGB-D sequences from well-
calibrated RGB-D cameras in different viewpoints. It is worth to mention that the ground
truth is automatically obtained from the movements of a calibrated robot. The evaluation
results suggest the high potential of our proposed algorithm in real applications that
require long-term tracking, e.g., sports analysis, human-robot interaction. The dataset
has been made public on the website.

The other two kinds of feature representations are based on 3D point cloud and learned
with 3D deep neural networks.

One of them, namely 3D-PointCapsNet is a flexible and effective tool for unsupervised
learning representations with spatial attention for 3D shape processing and understanding.
With the proposed network architecture, we can encode 3D shapes into multiple vectors
(capsules) and each capsule is embedded with the information of one part of the shape
with specific spatial attention. With this property, we manage to specify different parts of
the shape in latent feature space which offers us the possibility for parsing/disentangling
the shape to achieve better understanding and shape generation. This property also

67

5. Conclusions

enables training part-segmentation with very limited annotated data. Moreover, our
proposed representation can surpass the current art in reconstruction quality, local 3D
feature extraction and transfer learning for 3D object recognition.

The other feature representation is designed towards the rotation invariance/equivari-
ance property. We operate on a sparse set of rotations specified by the input LRFs thereby
circumventing the effort to cover the entire SO(3). The network natively consumes a
compact representation of the group of 3D rotations - quaternions, and we have theo-
retically shown its equivariance. We have also established convergence results for our
Weiszfeld dynamic routing by making connections to the literature of robust optimization.
The proposed network is among the few for having an explicit group-valued latent space
and thus naturally estimates the orientation of the input shape, even without a supervision
signal.

Future Work Inspired by [110] and [117] our feature work will involve establishing
invariance to the direction in the tangent plane. We also plan to apply our network
in the broader context of 3D object detection under arbitrary rotations and look for
equivariances among point resampling.

68

Appendices

69

A. Appendix for Chapter 3

A.1. Semi-supervised Classification

We begin by showing semi-supervised classification results in Tab. A.1. Note that our
network can generate predictions that are on par with or better than FoldingNet [30].

Table A.1.: Part segmentation on ShapeNet-Part by learning on limited training data. The table
shows the accuracies obtained by FoldingNet [30] and our approach for different amount of
training data.

1% 2% 5% 20% 100%

FoldingNet 56.15 67.05 75.97 84.06 88.41
Ours 59.24 67.67 76.49 84.48 88.91

A.2. Part Segmentation

We first give a small summary of the part association network for optional supervision.
The input to this one-layer architecture is the latent capsules combined with one-hot
vector of the object category. The output is the part prediction of each capsule. We use
the cross entropy loss as our loss function and Adam as the optimizer with the learning
rate of 0.01. The network structure is shown in Fig. A.1.

Then we utilize the pre-trained decoder to reconstruct the object with the labeled
capsules. Fig. A.3 depicts further visualizations for different objects from the ShapeNet-
Part dataset [101]. Our results are also qualitatively comparable to ground truth.

A.3. Part Interpolation

We first show an overview of how we perform part interpolation. While this part has
been thoroughly explained in Sec. 3.3, we have omitted this architecture illustration due

71

A. Appendix for Chapter 3

Input point cloud with part label

Latent Capsules Reconstruction

Part label for the capsule

Part ground truth for capsules

Shared MLP

Cross Entropy Loss

Latent Capsules Part prediction

Part prediction per capsule

Figure A.1.: Supervising the 3d point capsule networks for part prediction. Instead of performing
a point-wise part labeling, we use a capsule-wise association requiring less data annotation efforts.

72

A.4. Part Replacement

to space considerations. We now provide this in Fig. A.4.
Next we show, the part interpolation results on different objects. In this qualitative

evaluation, we are given two shapes and the goal is to interpolate the source part towards
the target. To do that we find the matching capsules that represent the part of interest
in both shapes. We then linearly interpolate from the capsule(s) of the source to the
one(s) of the target. This generates visually pleasing intermediate shapes, which our
network has never seen before. Here we see that the learned embedding resemble a
Euclidean space where linear latent space arithmetic is possible. It is also visible that
such interpolation scheme can handle topological changes such as merging or branching
legs. In the end of interpolation a new shape is generated in which the part is replaced
completely with the target’s. That brings us to our second and interesting application,
part replacement.

A.4. Part Replacement

We now supplement our thesis by presenting additional qualitative results on the task
of part replacement. Fig. A.6 shows numerous object pairs where a part-of-interest is
selected in both and exchanged by the help of latent space capsule arithmetic. Analogous
to the ones in Sec. 3.3 we also show a cut-and-paste operation that is a mere exchange
of the parts in 3D space, obviously resulting in undesired disconnected shapes. Thanks
to our decoder’s capability in generating high fidelity shapes, our capsule-replacement
respects the overall coherence of the resulting point cloud.

A.5. Ablation Study

In order to show the prosperity of the dynamic routing, we compare the reconstruction
result by replacing the DR with PointNet-like set of convolutional layers. In this ablation
study, the primary point capsules (1024×16) are considered as 1024 point-features and
each point has the feature dimension of 16. We utilize a shared MLP to increase the
feature dimension from 16 to 64. After conducting max pooling, we can obtain a vector
of length 64. With multiple MLPs and max-pooling, we are able to generate 64 vectors
which have the same dimensions as the latent capsules produced by dynamic routing.
The structure of this comparison module is shown in Fig. A.2. To carry out our fair
evaluation, we re-train the whole AE with this module. The result of the reconstruction
is shown in Fig. 3.4 of Sec. 3.3.

73

A. Appendix for Chapter 3

16
16

16

Shared

10
24

*6
4

MLP(16-64)

MaxP 64

PointNet-like layer

PointNet-like layers

16

64

641024

PointNet-like layer

Set of vectors

Primary point capsules

Figure A.2.: The structure of the comparison module that operates on the primary point capsules
and generates a set of vectors having the same dimensionality as the latent capsule output of DR.

A.6. A Discussion on the Local Spatial Attention

Our network consists of multiple MLPs acting on a single capsule. It encodes the part
information inside that capsule rather than the MLPs themselves. For that reason, the
local attention stems from both the organization of primary point capsules (in our case
obtained by dynamic routing) and potentially the decoder (see Fig. 3.4). Thus, we
are able to control and represent the shape instantiation in the latent space as shown in
part interpolation/replacement evaluations. Contrarily, AtlasNet reconstructs different
local patches with different MLPs from the same latent vector. This embeds the part
knowledge into the MLPs, making it challenging to control the shape properties.

74

A.6. A Discussion on the Local Spatial Attention
G

ro
u

n
d

 T
ru

th
O

u
r

R
e

s
u

lt
s

Figure A.3.: Part segmentation on limited amount of training data.

Source shape

Part Interpolation/Replacement

Latent Capsules

E

Target shape

Latent Capsules

E

Segmentation

D

Segmentation

D

Part replacement

Part interpolation

Tail

Wing

Body

A

Tail

Wing

Body

A

A Capsule-Part Association

Figure A.4.: Our interpolation / replacement pipeline.

75

A. Appendix for Chapter 3

Source Capsule Interpolation of a Single Part on the Source Shape Target

Figure A.5.: Visualization of part interpolation from source shape part to target. By simple linear
interpolation on the correspondent capsule(s), smooth intermediate topologies could be generated.

76

A.6. A Discussion on the Local Spatial Attention

Input Shapes Cut & Paste
Latent Space

Part Exchange
Input Shapes Cut & Paste

Latent Space

Part Exchange

Figure A.6.: Part replacement visualization and comparison. By operating in the latent space,
more natural replacement results could be obtained, without suffering from the detachment
problems as with simple Cut & Paste method.

77

B. Appendix for Chapter 4

B.1. Proof of Proposition 1

Before presenting the proof we recall the three individual statements contained in Prop.
1:

1. A(g◦S,w) is left-equivariant: A(g◦S,w) = g◦A(S,w).

2. OperatorA is invariant under permutations: A({qσ(1), . . . ,qσ(Q)},wσ)=A({q1, . . . ,qQ},w).

3. The transformations g ∈H1 preserve the geodesic distance δ (·).

Proof. We will prove the propositions in order.

1. We start by transforming each element and replace qi by (g ◦ qi) of the cost
in Eq (4.6):

q>Mq = q>
(Q

∑
i=1

wiqiq>i
)

q (B.1)

= q>
(Q

∑
i=1

wi(g◦qi)(g◦qi)
>
)

q (B.2)

= q>
(Q

∑
i=1

wiGqiq>i G>
)

q (B.3)

= q>
(

GM1G>+ · · ·+GMQG>
)

q

= q>G
(

M1G>+ · · ·+MQG>
)

q (B.4)

= q>G
(

M1 + · · ·+MQ

)
G>q (B.5)

= q>GMG>q (B.6)

= p>Mp, (B.7)

79

B. Appendix for Chapter 4

where Mi = wiqiq>i and p = G>q. From orthogonallity of G it follows p =

G−1q =⇒ g◦p = q and hence g◦A(S,w) =A(g◦S,w).

2. The proof follows trivially from the permutation invariance of the symmetric
summation operator over the outer products in Eq (B.4).

3. It is sufficient to show that |q>1 q2|= |(g◦q1)
>(g◦q2)| for any g ∈H1:

|(g◦q1)
>(g◦q2)|= |q>1 G>Gq2| (B.8)

= |q>1 Iq2| (B.9)

= |q>1 q2|, (B.10)

where g◦q≡Gq. The result is a direct consequence of the orthonormality of G.

B.2. Proof of Lemma 1

We will begin by recalling some preliminary definitions and results that aid us to construct
the connection between the dynamic routing and the Weiszfeld algorithm.

Definition 14 (Affine Subspace)
A d-dimensional affine subspace of RN is obtained by a translation of a d-dimensional
linear subspace V ⊂ RN such that the origin is included in S:

S =
{d+1

∑
i=1

αixi |
d+1

∑
i=1

αi = 1
}
. (B.11)

Simplest choices for S involve points, lines and planes of the Euclidean space.

Definition 15 (Orthogonal Projection onto an Affine Subspace)
An orthogonal projection of a point x ∈RN onto an affine subspace explained by the pair
(A,c) is defined as:

Πi(x), projS(x) = c+A(x− c). (B.12)

c denotes the translation to make origin inclusive and A is a projection matrix typically
defined via the orthonormal bases of the subspace.

80

B.2. Proof of Lemma 1

Definition 16 (Distance to Affine Subspaces)
Distance from a given point x to a set of affine subspaces {S1,S2 . . .Sk} can be written
as [7]:

C(x) =
k

∑
i=1

d(x,Si) =
k

∑
i=1
‖x−projSi

(x)‖2. (B.13)

Lemma 2
Given that all the antipodal counterparts are mapped to the northern hemisphere, we
will now think of the unit quaternion or versor as the unit normal of a four dimensional
hyperplane h, passing through the origin:

hi(x) = q>i x+qd := 0. (B.14)

qd is an added term to compensate for the shift. When qd = 0 the origin is incident to
the hyperplane. With this perspective, quaternion qi forms an affine subspace with d = 4,
for which the projection operator takes the form:

projSi
(p) = (I−qiq>i)p (B.15)

Proof. We consider Eq (B.15) for the case where c = 0 and A = (I−qq>). The former
follows from the fact that our subspaces by construction pass through the origin. Thus,
we only need to show that the matrix A = I−qq> is an orthogonal projection matrix
onto the affine subspace spanned by q. To this end, it is sufficient to validate that A
is symmetric and idempotent: A>A = AA = A2 = A. Note that by construction q>q
is a symmetric matrix and hence A itself. Using this property and the unit-ness of the
quaternion, we arrive at the proof:

A>A = (I−qq>)>(I−qq>) (B.16)

= (I−qq>)(I−qq>) (B.17)

= I−2qq>+qq>qq> (B.18)

= I−2qq>+qq> (B.19)

= I−qq> , A (B.20)

It is easy to verify that the projections are orthogonal to the quaternion that defines the
subspace by showing projS(q)>q = 0:

q>projS(q) = q>Aq = q>(I−qq>)q = q>(q−qq>q) = q>(q−q) = 0. (B.21)

(B.22)

Also note that this choice corresponds to tr(qq>) = ∑
d+1
i=1 αi = 1.

81

B. Appendix for Chapter 4

Lemma 3
The quaternion mean we suggest to use [119] is equivalent to the Euclidean Weiszfeld
mean on the affine quaternion sub-spaces.

Proof. We now recall and summarize the Lq-Weiszfeld Algorithm on affine subspaces [7],
which minimizes a q-norm variant of the cost defined in Eq (B.13):

Cq(x) =
k

∑
i=1

d(x,Si) =
k

∑
i=1
‖x−projSi

(x)‖q. (B.23)

Defining Mi = I−Ai, Alg. 3 summarizes the iterative procedure.

Algorithm 3: Lq Weiszfeld Algorithm on Affine Subspaces [7].

1 input :An initial guess x0 that does not lie any of the subspaces {Si}, Projection
operators Πi, the norm parameter q

2 xt ← x0

3 while not converged do
4 Compute the weights wt = {wt

i}:

wt
i = ‖Mi(xt− ci)‖q−2 ∀i = 1 . . .k (B.24)

5 Solve:

xt+1 = argmin
x∈RN

k

∑
i=1

wt
i‖Mi(x− ci)‖2 (B.25)

Note that when q = 2, the algorithm reduces to the computation of a non-weighted
mean (wi = 1∀i), and a closed form solution exists for Eq (B.25) and is given by the
normal equations:

x =
(k

∑
i=1

wiMi

)−1(k

∑
i=1

wiMici

)
(B.26)

For the case of our quaternionic subspaces c = 0 and we seek the solution that satisfies:(k

∑
i=1

Mi

)
x =

(1
k

k

∑
i=1

Mi

)
x = 0. (B.27)

82

B.3. Proof of Theorem 1

It is well known that the solution to this equation under the constraint ‖x‖ = 1 lies in

nullspace of M = 1
k

k
∑

i=1
Mi and can be obtained by taking the singular vector of M that

corresponds to the largest singular value. Since Mi is idempotent, the same result can
also be obtained through the eigendecomposition:

q? = argmax
q∈S3

qMq (B.28)

which gives us the unweighted Quaternion mean [119].

B.3. Proof of Theorem 1

Once the Lemma 1 is proven, we only need to apply the direct convergence results from
the literature. Consider a set of points Y = {y1 . . .yK} where K > 2 and yi ∈H1. Due to
the compactness, we can speak of a ball B(o,ρ) encapsulating all yi. We also define the
D = {x ∈H1 |Cq(x)<Cq(o)}, the region where the loss decreases.

We first state the assumptions that permit our theoretical result. These assumptions are
required by the works that establish the convergence of such Weiszfeld algorithms [142,
124, 122] :

H1. y1 . . .yK should not lie on a single geodesic of the quaternion manifold.
H2. D is bounded and compact. The topological structure of SO(3) imposes a bounded
convexity radius of ρ < π/2.
H3. The minimizer in Eq (B.25) is continuous.
H4. The weighting function σ(·) is concave and differentiable.
H5. Initial quaternion (in our network chosen randomly) does not belong to any of the
subspaces.

Note that H5 is not a strict requirement as there are multiple ways to circumvent
(simplest being a re-initialization). Under these assumptions, the sequence produced
by Eq (B.25) will converge to a critical point unless xt = yi for any t and i [122]. For
q = 1, this critical point is on one of the subspaces specified in Eq (B.14) and thus is a
geometric median.

Note that due to the assumption H2, we cannot converge from any given point.
For randomly initialized networks this is indeed a problem and does not guarantee
practical convergence. Yet, in our experiments we have not observed any issue with the
convergence of our dynamic routing. As our result is one of the few ones related to the
analysis of DR, we still find this to be an important first step.

83

B. Appendix for Chapter 4

For different choices of q : 1≤ q≤ 2, the weights take different forms. In fact, this
IRLS type of algorithm is shown to converge for a larger class of weighting choices as
long as the aforementioned conditions are met. That is why in practice we use a simple
sigmoid function.

B.4. Our Siamese Architecture and The Algorithm

For estimation of the relative pose with supervision, we benefit from a Siamese variation
of our network. In this case, latent capsule representations of two point sets X and Y
jointly contribute to the pose regression as shown in Fig. B.1.

QE - Network

𝐗 ⊂ ℳ𝟏

QE - Network

QE - Network

QE - Network

QE - Network

QE - Network

Downsample Downsample

Intermediate Capsules Pose
Estimation

Classification

𝐂𝐗

𝐘 ⊂ ℳ𝟐

𝛂𝐗

𝐂𝐘

𝛂𝐘

Classification

Quaternion Equivariant Capsule Architecture

Figure B.1.: Our siamese architecture used in the estimation of relative poses. We use a shared
network to process two distinct point clouds (X,Y) to arrive at the latent representations (CX ,αααX)

and (CY ,αααY) respectively. We then look for the highest activated capsules in both point sets and
compute the rotation from the corresponding capsules. Thanks to the rotations disentangled into
capsules, this final step simplifies to a relative quaternion calculation.

We show additional results from the computation of local reference frames and the
multi-channel capsules deduced from our network in Fig. B.2.

Finally, the overall algorithm of our network is summarized under Alg. 4.

Alg. 4 summarizes the overall pipeline of our QE-net depicted in Fig. 4.3. We use
multiple layers in a hierarchical architecture. In the first layer, the input primary capsules
are represented by LRFs computed with FLARE algorithm [134]. Therefore, the number
of input capsule channels Nc in the first layer is equal to 1. Its activation is also defaulted
to 1. The output of a former layer is propagated to the input of the latter, creating the
hierarchy.

84

B.5. Additional Details on Evaluations

Algorithm 4: Quaternion Equivariant Network

1 input :Input points of one patch {x1, ...,xK} ∈ RK×3, input capsules (LRFs)
Q= {q1, . . . ,qL} ∈H1

L, with L = Nc ·K, Nc is the number of capsules per
point, activations ααα = (α1, . . . ,αL)

T

2 output :Updated frames Q̂= {q̂1, . . . , q̂M} ∈H1
M, updated activations

α̂αα = (α̂1, . . . , α̂M)T

3 for Each input channel nc of all the primary capsules channels Nc do
4 µ(nc)←A(Q(nc)) // Input quaternion average, see Eq (4.6)
5 for Each point xi of this patch do
6 x′i← µ(nc)−1 ◦xi // rotate point in a canonical orientation

7 {x′i} ∈ RK×Nc×3// Points in multiple(Nc) canonical frames
8 for Each point x′i of this patch do
9 t← t(x′i) // Point to Transform, t(·) : RNc×3→ RNc×M×4

10 T≡ {ti} ∈H1
K×Nc

i ×M←{t} ∈H1
L×M

11 (Q̂, α̂αα)← DynamicRouting(X ,Q,ααα,T) // see Alg. 2

B.5. Additional Details on Evaluations

Details on the evaluation protocol. For Modelnet40 dataset used in Tab. 4.1, we used
the official split with 9,843 shapes for training and 2,468 different shapes for testing.
For rotation estimation in Tab. 4.2, we used the official Modelenet10 dataset split with
3991 for training and 908 shapes for testing. 3D point clouds (10K points) are randomly
sampled from the mesh surfaces of each shape [5, 6]. The objects in training and testing
dataset are different, but they are from the same categories so that they can be oriented
meaningfully. During training, we did not augment the dataset with random rotations.
All the shapes are trained with single orientation (well-aligned). We call this trained with
NR. During testing, we randomly generate multiple arbitrary SO(3) rotations for each
shape and evaluate the average performance for all the rotations. This is called test with
AR. This protocol is used in both our algorithms and the baselines.

Confusion of classification in ModelNet. We now report the confusion matrix in the
task of classification on the all the objects of ModelNet10. The classification and rotation
estimation affects one another. As we can see from Fig. B.3, the first five categories
that exhibit less rotational symmetry has the higher classification accuracy than their

85

B. Appendix for Chapter 4

(a) Input Point Cloud (b) Initial LRFs (c) LRFs Prior to QE-Network-1 (d) Multi-channel LRFs Prior to QE-Network-2

Figure B.2.: Additional intermediate results on car (first row) and chair (second row) objects.
This figure supplements Fig. 4.1.

rotationally symmetric counterparts.

Distribution of errors reported in Tab. 4.2. We now provide more details on the
errors attained by our algorithm as well as the state of the art. To this end, we report,
in Fig. B.4 the histogram of errors that fall within quantized ranges of orientation errors.
It is noticeable that our Siamese architecture behaves best in terms of estimating the
objects rotation. For completeness, we also included the results of the variants presented
in our ablation studies: Ours-2kLRF, Ours-1kLRF. They evaluate the model on the
re-calculated LRFs in order to show the robustness towards to various point densities. We
have also modified IT-Net and PointNetLK only to predict rotation because the original
works predict both rotations and translations. Finally, note here that we do not use data
augmentation for training our networks (see AR), while both for PointNetLK and for
IT-Net we do use augmentation.

86

B.5. Additional Details on Evaluations

chair sofa
toilet bed

monitor
table

night_stand
bathtub

dresser
desk

chair

sofa

toilet

bed

monitor

table

night_stand

bathtub

dresser

desk
0

20

40

60

80 Classification Accuracy (%
)

Figure B.3.: Confusion matrix on ModelNet10 for classification.

Ours Ours-sia Ours-2kLRF Ours-1kLRF IT-net PointNetLK Mean-LRF PCA
< 15° 23.18% 58.16% 53.64% 41.36% 49.68% 45.40% 16.24% 29.80%
< 30° 49.53% 79.12% 76.88% 66.40% 68.40% 49.28% 33.84% 32.00%
< 60° 69.87% 87.48% 86.68% 78.76% 79.48% 55.84% 57.64% 33.80%

0
10
20
30
40
50
60
70
80
90

100

Pe
rc

en
ta

ge
 (%

)

Figure B.4.: Cumulative error histograms of rotation estimation on ModelNet10. Each row
(< θ ◦) of this extended table shows the percentage of shapes that have rotation error less than θ .
The colors of the bars correspond to the rows they reside in. The higher the errors are contained
in the first bins (light blue) the better. Vice versa, the more the errors are clustered toward the 60◦

the worse the performance of the method.

87

List of Figures

2.1. Target Region Extraction. The depth distribution of the ROI in (a) is
displayed as histogram in (b). The ROI mask in (c) is generated by the
estimated foreground depth interval. The extracted target region is shown
in (e) with background masked in black. 13

2.2. Inaccurate Target Region Extraction. The depth histogram showed in (c)
represent the depth distribution of athlete and floor. The depth distribu-
tion is insufficient to filter all the background (d). 14

2.3. Probability distribution images back-projected by different color model.
The object color model (histogram) obtained from color image can be
back-projected to image in order to obtain probability distribution images
which represents the object model likelihood in pixels. 15

2.4. Probability distribution image by different back-projection. In (d), the
proposed joint back-projection shows the discriminative power against
both objects with similar color and objects with similar depth. 18

2.5. Tracking without occlusion handling (top) and with occlusion handling
(bottom). 21

2.6. Trade-off curves of all sequences . 23
2.7. A visual review of the trackers’ performance in sequences with various of

challenges. The tracking results are shown in different colored bounding
box with a demonstration legend on the top-right corner. The overlap
ratio between MS3D tracking result and ground truth is shown at the
top-left corner. 26

2.8. Images captured from multiple view points of the RGB-D camera network. 27
2.9. Distributed Trackers Fusion. The 3D centers exported by the trackers

are associated to the Kalman filters one node by one node. The drifted
tracker is detected when it fails the association (line with blue color).
Then the current state estimation of the recent associated Kalman filter
will be used to back-project to this drifted tracker in order to optimize
the re-localization. 28

89

List of Figures

2.10. Robot TF based ground truth annotation. There are two objects (ob j_1,ob j_2)
mounted on the end effector ee_link. The 4 kinects and robot (base_link)
are calibrated to the same world coordinate. The 3D ground-truth posi-
tions of each object with respect to the world reference can be calculated
from the transform: world→ base_link→ ee_link→ ob j_1,ob j_2. . . 31

2.11. This figure depicts three frames of a sequence with very different illu-
mination, namely: natural light only, all lamps ON + natural light, half
lamps ON + natural light. One can see strong shadows on the left image,
strong highlights in the middle image, and uniform illumination on the
right image. 32

2.12. Objects 3D center trajectories of proposed tracking algorithm and ground
truth. Different colored trajectories represent 5 object tracks. In this
sequence, the objects are moving under a fast and strong illumination
variation. Some examples of frames are shown in Fig. 2.11 (Best viewed
in color). 33

3.1. Our 3D-PointCapsNet improves numerous 3D tasks while enabling in-
teresting applications such as latent space part interpolation or complete
part modification, an application where a simple cut-and-paste results in
inconsistent outputs. 38

3.2. Comparison of four different state-of-the-art 3D point decoders. PointNet
uses a single latent vector, and no surface assumption. Thus, θθθ pointnet = f.
FoldingNet [30] learns a 1D latent vector along with a fixed 2D grid
θθθ folding = {f, P}. The advanced AtlasNet [33] learns to deform multiple
2D configurations onto local 2-manifolds: θθθ atlas = {f, {Pi}}. Our point-
capsule-network is capable of learning multiple latent representations
each of which can fold a distinct 2D grid onto a specific local patch,
θθθ ours = {{fi}, {Pi}} . 42

90

List of Figures

3.3. 3D Point Capsule Networks. Our capsule-encoder accepts a N×3 point
cloud as input and uses an MLP to extract N×128 features from it. These
features are then sent into multiple independent convolutional-layers with
different weights, each of which is max-pooled to a size of 1024. The
pooled features are then concatenated to form the primary point capsules
(PPC) (1024×16). A subsequent dynamic routing clusters the PPC into
the final latent capsules. Our decoder, responsible for reconstructing
point sets given the latent features, endows the latent capsules with
random 2D grids and applies MLPs (64−64−32−16−3) to generate
multiple point patches. These point patches target different regions of the
shape thanks to the DR [1]. Finally, we collect all the patches into a final
point cloud and measure the Chamfer distance to the input to guide the
network to find the optimal reconstruction. In figure, part-colors encode
capsules. 43

3.4. Distribution of 10 randomly selected capsules on the reconstructed shape
after unsupervised autoencoder training a) with dynamic routing, b) with
a simple convolutional layer. 48

3.5. Part segmentation by capsule association. Having pre-trained the autoen-
coder, we append a final part-supervision layer and use a limited amount
of data to specialize the capsules on object parts. (a) across the shapes
of the same class capsules capture semantic regions. (b) inter-class part
segmentation. Colors indicate different capsule groups and (b) uses only
a simple median filter to smooth the results. 49

3.6. Visualizing the iterations of unsupervised AE training on the airplane
object. For clear visualization, we fetch the colors belonging to the ∼20
capsules of the wing-part from our part predictions trained with part
supervision. 50

3.7. Part interpolation on the Shapenet-Part [101] dataset. (left) The source
point cloud. (right) Target shape. (middle) Part interpolation. Fixed
part is marked in light blue and the interpolated part is highlighted.
Capsules are capable of performing part interpolation purely via latent
space arithmetic. 51

3.8. Part replacement. Performing replacement in the latent space rather than
Euclidean space of 3D points yields geometrically consistent outcome. . 51

91

List of Figures

4.1. Our network operates by processing local reference frames (LRF) on the
object. Initial LRFs (b) are obtained by computing normal & tangent
vectors on the point set in (a). (c) shows the LRFs randomly sampled
from (a) and these are inputs to the first layer of our network. Subse-
quently, we obtain a multi-channel LRF that is a set of reference frames
per pooling center (d). Holistically, our network aggregates the LRFs to
arrive at rotation equivariant capsules. 56

4.2. Our quaternion equivariant (QE) network for processing local patches:
Our input is a 3D point set X on which we query local neighborhoods
{xi} with precomputed LRFs {qi}. Essentially, we learn the parameters
of a fully connected network that continuously maps the canonicalized
local point set to transformations ti, which are used to compute hypothe-
ses (votes) from input poses. By a special dynamic routing procedure
that uses the activations determined in a previous layer, we arrive at
latent capsules that are composed of a set of orientations q̂i and new
activations α̂αα i. Thanks to the decoupling of local reference frames, α̂αα i is
invariant and orientations q̂i are equivariant to input rotations. All the
operations and hence the entire QE-network are equivariant achieving a
guaranteed disentanglement of the rotation parameters. Hat symbol (q̂)
refers to ’estimated’. 60

4.3. Our entire capsule architecture. We hierarchically send all the local
patches to our Q-network as shown in Fig. 4.2. At each level the points
are pooled in order to increase the receptive field, gradually reducing
the LRFs into a single capsule per class. We use classification and
pose estimation (in the siamese case) as supervision cues to train the
point-to-transform maps. 61

4.4. Shape alignment on the monitor (left) and toilet (right) objects via our
siamese equivariant capsule architecture. The shapes are assigned to the
the maximally activated class. The corresponding pose capsule provides
the rotation estimate. 63

A.1. Supervising the 3d point capsule networks for part prediction. Instead of
performing a point-wise part labeling, we use a capsule-wise association
requiring less data annotation efforts. 72

92

List of Figures

A.2. The structure of the comparison module that operates on the primary
point capsules and generates a set of vectors having the same dimension-
ality as the latent capsule output of DR. 74

A.3. Part segmentation on limited amount of training data. 75
A.4. Our interpolation / replacement pipeline. 75
A.5. Visualization of part interpolation from source shape part to target. By

simple linear interpolation on the correspondent capsule(s), smooth
intermediate topologies could be generated. 76

A.6. Part replacement visualization and comparison. By operating in the
latent space, more natural replacement results could be obtained, without
suffering from the detachment problems as with simple Cut & Paste
method. 77

B.1. Our siamese architecture used in the estimation of relative poses. We
use a shared network to process two distinct point clouds (X,Y) to
arrive at the latent representations (CX ,αααX) and (CY ,αααY) respectively.
We then look for the highest activated capsules in both point sets and
compute the rotation from the corresponding capsules. Thanks to the
rotations disentangled into capsules, this final step simplifies to a relative
quaternion calculation. 84

B.2. Additional intermediate results on car (first row) and chair (second row)
objects. This figure supplements Fig. 4.1. 86

B.3. Confusion matrix on ModelNet10 for classification. 87
B.4. Cumulative error histograms of rotation estimation on ModelNet10.

Each row (< θ ◦) of this extended table shows the percentage of shapes
that have rotation error less than θ . The colors of the bars correspond to
the rows they reside in. The higher the errors are contained in the first
bins (light blue) the better. Vice versa, the more the errors are clustered
toward the 60◦ the worse the performance of the method. 87

93

List of Tables

2.1. AUC of bounding box overlap, RED demotes best performing tracker. . 25
2.2. Quantitative Evaluation of Tracking performance. A / R represents the

result of Accuracy / Robustness (%/%). (IV: Illumination Variation,
AS: Trackers Association, RE: Tracers Re-localization). 35

3.1. Descriptor matching results (recall) on the standard 3DMatch bench-
mark [104, 31]. 45

3.2. Descriptor matching results (recall) on the rotated 3DMatch bench-
mark [104, 31]. 46

3.3. Evaluating reconstruction quality. Oracle refers to a random sampling of
the input 3D shape and constitutes an lower bound on what is achievable.
The Chamfer Distance is multiplied by 103 for better viewing. CD
denotes Chamfer distance and PB refers to Point Baseline. 47

3.4. Accuracy of classification by transfer learning on the ModelNet40
dataset. Networks are trained out ShapeNet55, except Ours-Parts that is
trained on smaller ShapeNet-Parts dataset. 47

3.5. Part segmentation on ShapeNet-Part by learning only on the x% of the
training data. 48

4.1. Classification accuracy on ModelNet40 dataset [103] for different meth-
ods as well as ours. We also report the number of parameters optimized
for each method. Right hand side of the table denotes the symmetric
objects, which we include for completeness. X/Y means that we train
with X and test with Y. 62

4.2. Error of rotation estimation in different categories of ModelNet10. Right
side of the table denotes the objects with rotational symmetry, which
we include for completeness. PCA-S refers to running PCA only on a
resampled instance, while PCA-SR applies both rotations and resampling. 64

4.3. Ablation study on point density. 64

95

List of Tables

A.1. Part segmentation on ShapeNet-Part by learning on limited training data.
The table shows the accuracies obtained by FoldingNet [30] and our
approach for different amount of training data. 71

96

Bibliography

[1] S. Sabour, N. Frosst, and G. E. Hinton. “Dynamic routing between capsules”. In:
Advances in Neural Information Processing Systems. 2017, pp. 3856–3866.

[2] L. Spinello and K. O. Arras. “People detection in RGB-D data”. In: 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.
2011, pp. 3838–3843.

[3] J. Xiao, R. Stolkin, Y. Gao, and A. Leonardis. “Robust Fusion of Color and
Depth Data for RGB-D Target Tracking Using Adaptive Range-Invariant Depth
Models and Spatio-Temporal Consistency Constraints”. In: IEEE transactions
on cybernetics (2017).

[4] S. Song and J. Xiao. “Tracking revisited using RGBD camera: Unified bench-
mark and baselines”. In: Computer Vision (ICCV), 2013 IEEE International
Conference on. IEEE. 2013, pp. 233–240.

[5] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. “PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2017, pp. 652–660.

[6] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space”. In: Advances in neural information
processing systems. 2017, pp. 5099–5108.

[7] K. Aftab, R. Hartley, and J. Trumpf. “Lq Closest-Point to Affine Subspaces Using
the Generalized Weiszfeld Algorithm”. In: International Journal of Computer
Vision 114.1 (2015), pp. 1–15.

[8] Y. Zhao, M. Carraro, M. Munaro, and E. Menegatti. “Robust multiple object
tracking in RGB-D camera networks”. In: 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS). IEEE. 2017, pp. 6625–6632.

[9] K. Meshgi, S.-i. Maeda, S. Oba, H. Skibbe, Y.-z. Li, and S. Ishii. “An occlusion-
aware particle filter tracker to handle complex and persistent occlusions”. In:
Computer Vision and Image Understanding 150 (2016), pp. 81–94.

97

Bibliography

[10] S. Hannuna, M. Camplani, J. Hall, M. Mirmehdi, D. Damen, T. Burghardt,
A. Paiement, and L. Tao. “DS-KCF: a real-time tracker for RGB-D data”. In:
Journal of Real-Time Image Processing (2016), pp. 1–20.

[11] M. Camplani, S. L. Hannuna, M. Mirmehdi, D. Damen, A. Paiement, L. Tao,
and T. Burghardt. “Real-time RGB-D Tracking with Depth Scaling Kernelised
Correlation Filters and Occlusion Handling.” In: BMVC. 2015, pp. 145–1.

[12] Q. Wang, J. Fang, and Y. Yuan. “Multi-cue based tracking”. In: Neurocomputing
131 (2014), pp. 227–236.

[13] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. Torr. “Staple:
Complementary learners for real-time tracking”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016, pp. 1401–1409.

[14] D. Comaniciu, V. Ramesh, and P. Meer. “Kernel-based object tracking”. In:
IEEE Transactions on pattern analysis and machine intelligence 25.5 (2003),
pp. 564–577.

[15] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, S. L. Hicks, and P. H.
Torr. “Struck: Structured output tracking with kernels”. In: IEEE transactions on
pattern analysis and machine intelligence 38.10 (2016), pp. 2096–2109.

[16] H. Possegger, T. Mauthner, and H. Bischof. “In defense of color-based model-
free tracking”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015, pp. 2113–2120.

[17] T. Vojir, J. Noskova, and J. Matas. “Robust scale-adaptive mean-shift for track-
ing”. In: Pattern Recognition Letters 49 (2014), pp. 250–258.

[18] F. LIRIS. “The Visual Object Tracking VOT2014 challenge results”. In: ().

[19] Y. Zhou and O. Tuzel. “VoxelNet: End-to-End Learning for Point Cloud Based
3D Object Detection”. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). June 2018.

[20] M. Naseer, S. Khan, and F. Porikli. “Indoor Scene Understanding in 2.5/3D for
Autonomous Agents: A Survey”. In: IEEE Access 7 (2019), pp. 1859–1887.

[21] H. Lei, N. Akhtar, and A. Mian. “Spherical Convolutional Neural Network for
3D Point Clouds”. In: arXiv preprint arXiv:1805.07872 (2018).

[22] P. Hermosilla, T. Ritschel, P.-P. Vázquez, À. Vinacua, and T. Ropinski. “Monte
Carlo convolution for learning on non-uniformly sampled point clouds”. In:
SIGGRAPH Asia 2018 Technical Papers. ACM. 2018, p. 235.

98

Bibliography

[23] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. “Pointcnn: Convolution on
x-transformed points”. In: Advances in Neural Information Processing Systems.
2018.

[24] Y. Shen, C. Feng, Y. Yang, and D. Tian. “Mining point cloud local structures by
kernel correlation and graph pooling”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 4548–4557.

[25] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. “Dy-
namic graph cnn for learning on point clouds”. In: arXiv preprint arXiv:1801.07829
(2018).

[26] J. Li, B. M. Chen, and G. H. Lee. “SO-Net: Self-Organizing Network for Point
Cloud Analysis”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2018, pp. 9397–9406.

[27] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J.
Smola. “Deep Sets”. In: Advances in Neural Information Processing Systems. Ed.
by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. 2017.

[28] S. H. Rezatofighi, A. Milan, E. Abbasnejad, A. Dick, I. Reid, et al. “DeepSet-
Net: Predicting sets with deep neural networks”. In: 2017 IEEE International
Conference on Computer Vision (ICCV). IEEE. 2017, pp. 5257–5266.

[29] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng. “Pu-net: Point cloud
upsampling network”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 2790–2799.

[30] Y. Yang, C. Feng, Y. Shen, and D. Tian. “FoldingNet: Point Cloud Auto-Encoder
via Deep Grid Deformation”. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2018.

[31] H. Deng, T. Birdal, and S. Ilic. “PPF-FoldNet: Unsupervised Learning of Rotation
Invariant 3D Local Descriptors”. In: The European Conference on Computer
Vision (ECCV). Sept. 2018.

[32] H. Deng, T. Birdal, and S. Ilic. “Ppfnet: Global context aware local features
for robust 3d point matching”. In: Conference on Computer Vision and Pattern
Recognition. 2018.

99

Bibliography

[33] T. Groueix, M. Fisher, V. G. Kim, B. Russell, and M. Aubry. “AtlasNet: A
Papier-Mâché Approach to Learning 3D Surface Generation”. In: Proceedings
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2018.

[34] Y. Sun, Y. Wang, Z. Liu, J. E. Siegel, and S. E. Sarma. “PointGrow: Autoregres-
sively Learned Point Cloud Generation with Self-Attention”. In: arXiv preprint
arXiv:1810.05591 (2018).

[35] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. “Learning Represen-
tations and Generative Models for 3D Point Clouds”. In: Proceedings of the
35th International Conference on Machine Learning. Vol. 80. Proceedings of
Machine Learning Research. PMLR, Oct. 2018, pp. 40–49.

[36] D. Maturana and S. Scherer. “Voxnet: A 3d convolutional neural network for
real-time object recognition”. In: Intelligent Robots and Systems (IROS). IEEE.
2015.

[37] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas. “Volumetric and
multi-view cnns for object classification on 3d data”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 5648–5656.

[38] E. Bao and L. Song. “Equivariant neural networks and equivarification”. In:
arXiv preprint arXiv:1906.07172 (2019).

[39] R. Kondor and S. Trivedi. “On the generalization of equivariance and convo-
lution in neural networks to the action of compact groups”. In: arXiv preprint
arXiv:1802.03690 (2018).

[40] T. Cohen and M. Welling. “Group equivariant convolutional networks”. In:
International conference on machine learning. 2016, pp. 2990–2999.

[41] T. S. Cohen and M. Welling. “Steerable cnns”. In: International Conference on
Learning Representations (ICLR) (2017).

[42] D. Worrall and G. Brostow. “CubeNet: Equivariance to 3D Rotation and Transla-
tion”. In: The European Conference on Computer Vision (ECCV). Sept. 2018.

[43] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J. Brostow. “Harmonic
Networks: Deep Translation and Rotation Equivariance”. In: The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). July 2017.

[44] M. Weiler, F. A. Hamprecht, and M. Storath. “Learning Steerable Filters for
Rotation Equivariant CNNs”. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). June 2018.

100

Bibliography

[45] R. Chakraborty, M. Banerjee, and B. C. Vemuri. “H-CNNs: Convolutional neural
networks for riemannian homogeneous spaces”. In: arXiv preprint arXiv:1805.05487
(2018).

[46] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling. “Spherical CNNs”. In: (2018).

[47] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis. “Learning so (3)
equivariant representations with spherical cnns”. In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 52–68.

[48] J. Cruz-Mota, I. Bogdanova, B. Paquier, M. Bierlaire, and J.-P. Thiran. “Scale
Invariant Feature Transform on the Sphere: Theory and Applications”. In: Inter-
national Journal of Computer Vision 98.2 (June 2012), pp. 217–241.

[49] C. M. Jiang, J. Huang, K. Kashinath, Prabhat, P. Marcus, and M. Niessner. “Spher-
ical CNNs on Unstructured Grids”. In: International Conference on Learning
Representations. 2019.

[50] M. Liu, F. Yao, C. Choi, S. Ayan, and K. Ramani. “Deep Learning 3D Shapes
Using Alt-az Anisotropic 2-Sphere Convolution”. In: International Conference
on Learning Representations (ICLR). 2019.

[51] W. Boomsma and J. Frellsen. “Spherical convolutions and their application in
molecular modelling”. In: Advances in Neural Information Processing Systems
30. 2017, pp. 3433–3443.

[52] H. Deng, T. Birdal, and S. Ilic. “Ppf-foldnet: Unsupervised learning of rotation
invariant 3d local descriptors”. In: Proceedings of the European Conference on
Computer Vision (ECCV). 2018, pp. 602–618.

[53] M. Khoury, Q.-Y. Zhou, and V. Koltun. “Learning compact geometric features”.
In: Proceedings of the IEEE International Conference on Computer Vision. 2017,
pp. 153–161.

[54] E. Mehr, A. Lieutier, F. Sanchez Bermudez, V. Guitteny, N. Thome, and M. Cord.
“Manifold learning in quotient spaces”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 9165–9174.

[55] N. Thomas, T. Smidt, S. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley.
“Tensor field networks: Rotation-and translation-equivariant neural networks for
3D point clouds”. In: arXiv preprint arXiv:1802.08219 (2018).

[56] R. Spezialetti, S. Salti, and L. Di Stefano. “Learning an Effective Equivariant 3D
Descriptor Without Supervision”. In: arXiv preprint arXiv:1909.06887 (2019).

101

Bibliography

[57] C. Esteves, Y. Xu, C. Allen-Blanchette, and K. Daniilidis. “Equivariant Multi-
View Networks”. In: arXiv preprint arXiv:1904.00993 (2019).

[58] C. Esteves, A. Sud, Z. Luo, K. Daniilidis, and A. Makadia. “Cross-Domain
3D Equivariant Image Embeddings”. In: International Conference on Machine
Learning (ICML). 2019.

[59] D. Marcos, M. Volpi, N. Komodakis, and D. Tuia. “Rotation Equivariant Vector
Field Networks”. In: The IEEE International Conference on Computer Vision
(ICCV). Oct. 2017.

[60] G. E. Hinton, A. Krizhevsky, and S. D. Wang. “Transforming auto-encoders”. In:
International Conference on Artificial Neural Networks. Springer. 2011, pp. 44–
51.

[61] R. LaLonde and U. Bagci. “Capsules for Object Segmentation”. In: arXiv preprint
arXiv:1804.04241 (2018).

[62] K. Duarte, Y. Rawat, and M. Shah. “Videocapsulenet: A simplified network for
action detection”. In: Advances in Neural Information Processing Systems. 2018,
pp. 7621–7630.

[63] A. Jaiswal, W. AbdAlmageed, Y. Wu, and P. Natarajan. “Capsulegan: Generative
adversarial capsule network”. In: European Conference on Computer Vision.
Springer. 2018, pp. 526–535.

[64] A. Jaiswal, W. AbdAlmageed, Y. Wu, and P. Natarajan. “CapsuleGAN: Genera-
tive Adversarial Capsule Network”. In: Computer Vision – ECCV 2018 Work-
shops. Springer International Publishing, 2019, pp. 526–535.

[65] R. Saqur and S. Vivona. “CapsGAN: Using Dynamic Routing for Generative
Adversarial Networks”. In: arXiv preprint arXiv:1806.03968 (2018).

[66] Y. Upadhyay and P. Schrater. “Generative Adversarial Network Architectures For
Image Synthesis Using Capsule Networks”. In: arXiv preprint arXiv:1806.03796
(2018).

[67] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014, pp. 2672–2680.

[68] A. Lin, J. Li, and Z. Ma. “On Learning and Learned Representation with Dynamic
Routing in Capsule Networks”. In: arXiv preprint arXiv:1810.04041 (2018).

102

Bibliography

[69] Z. Xinyi and L. Chen. “Capsule Graph Neural Network”. In: International Con-
ference on Learning Representations (ICLR). 2019. URL: https://openreview.
net/forum?id=Byl8BnRcYm.

[70] P. Afshar, A. Mohammadi, and K. N. Plataniotis. “Brain Tumor Type Classifica-
tion via Capsule Networks”. In: 2018 25th IEEE International Conference on
Image Processing (ICIP). 2018.

[71] G. Hinton, S. Sabour, and N. Frosst. “Matrix capsules with EM routing”. In:
ICLR 2018 Conference Blind Submission. 2018. URL: https://openreview.
net/pdf?id=HJWLfGWRb.

[72] D. Wang and Q. Liu. “An optimization view on dynamic routing between cap-
sules”. In: ICLR Workshop Submission (2018).

[73] Z. Chen and D. Crandall. “Generalized Capsule Networks with Trainable Routing
Procedure”. In: arXiv preprint arXiv:1808.08692 (2018).

[74] S. Zhang, Q. Zhou, and X. Wu. “Fast Dynamic Routing Based on Weighted
Kernel Density Estimation”. In: Cognitive Internet of Things: Frameworks, Tools
and Applications. Springer International Publishing, 2020.

[75] L. Zhang, M. Edraki, and G.-J. Qi. “CapProNet: Deep feature learning via orthog-
onal projections onto capsule subspaces”. In: Advances in Neural Information
Processing Systems. 2018, pp. 5819–5828.

[76] J. E. Lenssen, M. Fey, and P. Libuschewski. “Group equivariant capsule net-
works”. In: Advances in Neural Information Processing Systems. 2018, pp. 8858–
8867.

[77] M. Weiler, M. Geiger, M. Welling, W. Boomsma, and T. Cohen. “3d steerable
cnns: Learning rotationally equivariant features in volumetric data”. In: Advances
in Neural Information Processing Systems. 2018, pp. 10402–10413.

[78] A. Jiménez-Sánchez, S. Albarqouni, and D. Mateus. “Capsule networks against
medical imaging data challenges”. In: Intravascular Imaging and Computer
Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert
Label Synthesis. Springer, 2018, pp. 150–160.

[79] A. Mobiny and H. Van Nguyen. “Fast capsNet for lung cancer screening”. In:
International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer. 2018, pp. 741–749.

103

https://openreview.net/forum?id=Byl8BnRcYm
https://openreview.net/forum?id=Byl8BnRcYm
https://openreview.net/pdf?id=HJWLfGWRb
https://openreview.net/pdf?id=HJWLfGWRb

Bibliography

[80] Y. Zhao, T. Birdal, H. Deng, and F. Tombari. “3D Point Capsule Networks”. In:
Conference on Computer Vision and Pattern Recognition (CVPR). 2019.

[81] Y. Zhao and E. Menegatti. “MS3D: Mean-Shift Object Tracking Boosted by Joint
Back Projection of Color and Depth”. In: International Conference on Intelligent
Autonomous Systems. Springer. 2018, pp. 222–236.

[82] D. Comaniciu, V. Ramesh, and P. Meer. “Real-time tracking of non-rigid ob-
jects using mean shift”. In: Computer Vision and Pattern Recognition, 2000.
Proceedings. IEEE Conference on. Vol. 2. IEEE. 2000, pp. 142–149.

[83] P. Hidayatullah and H. Konik. “CAMSHIFT improvement on multi-hue object
and multi-object tracking”. In: Visual Information Processing (EUVIP), 2011
3rd European Workshop on. IEEE. 2011, pp. 143–148.

[84] G. R. Bradski. “Real time face and object tracking as a component of a per-
ceptual user interface”. In: Applications of Computer Vision, 1998. WACV’98.
Proceedings., Fourth IEEE Workshop on. IEEE. 1998, pp. 214–219.

[85] Y. Wu, J. Lim, and M.-H. Yang. “Object tracking benchmark”. In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 37.9 (2015), pp. 1834–
1848.

[86] A. Lukežič, L. Č. Zajc, T. Vojíř, J. Matas, and M. Kristan. “Now you see
me: evaluating performance in long-term visual tracking”. In: arXiv preprint
arXiv:1804.07056 (2018).

[87] M. Munaro, A. Horn, R. Illum, J. Burke, and R. B. Rusu. “OpenPTrack: People
tracking for heterogeneous networks of color-depth cameras”. In: IAS-13 Work-
shop Proceedings: 1st Intl. Workshop on 3D Robot Perception with Point Cloud
Library. 2014, pp. 235–247.

[88] M. Munaro, F. Basso, and E. Menegatti. “OpenPTrack: Open source multi-camera
calibration and people tracking for RGB-D camera networks”. In: Robotics and
Autonomous Systems 75 (2016), pp. 525–538.

[89] N. Bellotto and H. Hu. “Computationally efficient solutions for tracking peo-
ple with a mobile robot: an experimental evaluation of bayesian filters”. In:
Autonomous Robots 28.4 (2010), pp. 425–438.

[90] F. Basso, A. Pretto, and E. Menegatti. “Unsupervised intrinsic and extrinsic
calibration of a camera-depth sensor couple”. In: Robotics and Automation
(ICRA), 2014 IEEE International Conference on. IEEE. 2014, pp. 6244–6249.

104

Bibliography

[91] F. Basso, E. Menegatti, and A. Pretto. “Robust intrinsic and extrinsic calibration
of rgb-d cameras”. In: IEEE Transactions on Robotics 99 (2018), pp. 01–18.

[92] T. Wiedemeyer. IAI Kinect2. https://github.com/code-iai/iai_kinect2.
Accessed June 12, 2015. University Bremen: Institute for Artificial Intelligence,
2014 – 2015.

[93] M. Antonello, A. Gobbi, S. Michieletto, S. Ghidoni, and E. Menegatti. “A
fully automatic hand-eye calibration system”. In: 2017 European Conference on
Mobile Robots (ECMR). IEEE. 2017, pp. 1–6.

[94] B. Babenko, M.-H. Yang, and S. Belongie. “Robust object tracking with on-
line multiple instance learning”. In: IEEE transactions on pattern analysis and
machine intelligence 33.8 (2011), pp. 1619–1632.

[95] Y. Wu, J. Lim, and M.-H. Yang. “Online object tracking: A benchmark”. In:
Computer vision and pattern recognition (CVPR), 2013 IEEE Conference on.
Ieee. 2013, pp. 2411–2418.

[96] G. Riegler, O. Ulusoy, and A. Geiger. “OctNet: Learning Deep 3D Represen-
tations at High Resolutions”. In: IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). July 2017.

[97] R. Bellman. Dynamic programming. Courier Corporation, 2013.

[98] M. Sung, H. Su, R. Yu, and L. Guibas. “Deep Functional Dictionaries: Learning
Consistent Semantic Structures on 3D Models from Functions”. In: NIPS. 2018.

[99] Y. Rubner, C. Tomasi, and L. J. Guibas. “The earth mover’s distance as a metric
for image retrieval”. In: International journal of computer vision 40.2 (2000),
pp. 99–121.

[100] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. “PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space”. In: NIPS. 2017.

[101] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, C. Lu, Q. Huang, A. Sheffer,
L. Guibas, et al. “A scalable active framework for region annotation in 3d shape
collections”. In: ACM Transactions on Graphics (TOG) (2016).

[102] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S.
Savarese, M. Savva, S. Song, H. Su, et al. “Shapenet: An information-rich
3d model repository”. In: arXiv preprint arXiv:1512.03012 (2015).

105

https://github.com/code-iai/iai_kinect2

Bibliography

[103] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. “3d shapenets:
A deep representation for volumetric shapes”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 1912–1920.

[104] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and T. Funkhouser. “3DMatch:
Learning Local Geometric Descriptors from RGB-D Reconstructions”. In: CVPR.
2017.

[105] M. Khoury, Q.-Y. Zhou, and V. Koltun. “Learning Compact Geometric Features”.
In: The IEEE International Conference on Computer Vision (ICCV). Oct. 2017.

[106] T. Birdal and S. Ilic. “Point pair features based object detection and pose esti-
mation revisited”. In: 2015 International Conference on 3D Vision. IEEE. 2015,
pp. 527–535.

[107] T. Birdal and S. Ilic. “A point sampling algorithm for 3d matching of irregular
geometries”. In: 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE. 2017, pp. 6871–6878.

[108] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum. “Learning a proba-
bilistic latent space of object shapes via 3d generative-adversarial modeling”. In:
Advances in Neural Information Processing Systems. 2016, pp. 82–90.

[109] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. “O-cnn: Octree-based
convolutional neural networks for 3d shape analysis”. In: ACM Transactions on
Graphics (TOG) 36.4 (2017), p. 72.

[110] T. S. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling. “Gauge equivariant con-
volutional networks and the icosahedral cnn”. In: arXiv preprint arXiv:1902.04615
(2019).

[111] C. L. Giles and T. Maxwell. “Learning, invariance, and generalization in high-
order neural networks”. In: Applied optics 26.23 (1987), pp. 4972–4978.

[112] R. Kondor, Z. Lin, and S. Trivedi. “Clebsch–gordan nets: a fully fourier space
spherical convolutional neural network”. In: Advances in Neural Information
Processing Systems. 2018.

[113] T. Cohen, M. Geiger, and M. Weiler. “A General Theory of Equivariant CNNs
on Homogeneous Spaces”. In: arXiv preprint arXiv:1811.02017 (2018).

[114] B. Busam, T. Birdal, and N. Navab. “Camera Pose Filtering with Local Regres-
sion Geodesics on the Riemannian Manifold of Dual Quaternions”. In: IEEE
International Conference on Computer Vision Workshop (ICCVW). Oct. 2017.

106

Bibliography

[115] T. Birdal, U. Simsekli, M. O. Eken, and S. Ilic. “Bayesian Pose Graph Optimiza-
tion via Bingham Distributions and Tempered Geodesic MCMC”. In: Advances
in Neural Information Processing Systems. 2018, pp. 308–319.

[116] N. E. Steenrod. The topology of fibre bundles. Vol. 14. Princeton University Press,
1951.

[117] A. Poulenard and M. Ovsjanikov. “Multi-directional geodesic neural networks
via equivariant convolution”. In: SIGGRAPH Asia 2018 Technical Papers. ACM.
2018, p. 236.

[118] A. Petrelli and L. Di Stefano. “On the repeatability of the local reference frame
for partial shape matching”. In: 2011 International Conference on Computer
Vision. IEEE. 2011.

[119] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman. “Averaging quaternions”.
In: Journal of Guidance, Control, and Dynamics 30.4 (2007), pp. 1193–1197.

[120] J. R. Magnus. “On differentiating eigenvalues and eigenvectors”. In: Econometric
Theory 1.2 (1985).

[121] S. Laue, M. Mitterreiter, and J. Giesen. “Computing Higher Order Derivatives of
Matrix and Tensor Expressions”. In: Advances in Neural Information Processing
Systems. 2018.

[122] K. Aftab, R. Hartley, and J. Trumpf. “Generalized weiszfeld algorithms for lq op-
timization”. In: IEEE transactions on pattern analysis and machine intelligence
37.4 (2014).

[123] C. S. Burrus. “Iterative reweighted least squares”. In: OpenStax CNX. Available
online: http://cnx. org/contents/92b90377-2b34-49e4-b26f-7fe572db78a1 12
(2012).

[124] K. Aftab and R. Hartley. “Convergence of iteratively re-weighted least squares
to robust M-estimators”. In: 2015 IEEE Winter Conference on Applications of
Computer Vision. IEEE. 2015.

[125] D. Wang and Q. Liu. An Optimization View on Dynamic Routing Between Cap-
sules. 2018. URL: https://openreview.net/forum?id=HJjtFYJDf.

[126] K. Schütt, P.-J. Kindermans, H. E. Sauceda Felix, S. Chmiela, A. Tkatchenko,
and K.-R. Müller. “SchNet: A continuous-filter convolutional neural network for
modeling quantum interactions”. In: Advances in Neural Information Processing
Systems. 2017.

107

https://openreview.net/forum?id=HJjtFYJDf

Bibliography

[127] S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun. “Deep Paramet-
ric Continuous Convolutional Neural Networks”. In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2018.

[128] M. Fey, J. Eric Lenssen, F. Weichert, and H. Müller. “SplineCNN: Fast Geometric
Deep Learning With Continuous B-Spline Kernels”. In: The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). June 2018.

[129] G. Bécigneul and O.-E. Ganea. “Riemannian adaptive optimization methods”.
In: arXiv preprint arXiv:1810.00760 (2018).

[130] S. Liao, E. Gavves, and C. G. Snoek. “Spherical Regression: Learning View-
points, Surface Normals and 3D Rotations on n-Spheres”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 9759–
9767.

[131] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[132] S. Sabour, N. Frosst, and G. Hinton. “Matrix capsules with EM routing”. In: 6th
International Conference on Learning Representations, ICLR. 2018.

[133] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface
reconstruction from unorganized points. Vol. 26.2. ACM, 1992.

[134] A. Petrelli and L. Di Stefano. “A repeatable and efficient canonical reference for
surface matching”. In: 2012 Second International Conference on 3D Imaging,
Modeling, Processing, Visualization & Transmission. IEEE. 2012, pp. 403–410.

[135] F. Tombari, S. Salti, and L. Di Stefano. “Unique signatures of histograms for
local surface description”. In: European conference on computer vision. Springer.
2010, pp. 356–369.

[136] S. Melzi, R. Spezialetti, F. Tombari, M. M. Bronstein, L. D. Stefano, and E.
Rodola. “GFrames: Gradient-Based Local Reference Frame for 3D Shape Match-
ing”. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2019.

[137] X. Liu, Z. Han, Y.-S. Liu, and M. Zwicker. “Point2Sequence: Learning the shape
representation of 3D point clouds with an attention-based sequence to sequence
network”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 33. 2019, pp. 8778–8785.

108

Bibliography

[138] Y. You, Y. Lou, Q. Liu, Y.-W. Tai, W. Wang, L. Ma, and C. Lu. “PRIN: Pointwise
Rotation-Invariant Network”. In: arXiv preprint arXiv:1811.09361 (2018).

[139] Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey. “PointNetLK: Robust &
Efficient Point Cloud Registration using PointNet”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2019, pp. 7163–7172.

[140] W. Yuan, D. Held, C. Mertz, and M. Hebert. “Iterative Transformer Network for
3D Point Cloud”. In: arXiv preprint arXiv:1811.11209 (2018).

[141] P. J. Besl and N. D. McKay. “Method for registration of 3-D shapes”. In: Sensor
fusion IV: control paradigms and data structures. Vol. 1611. International Society
for Optics and Photonics. 1992, pp. 586–606.

[142] D. G. Luenberger, Y. Ye, et al. Linear and nonlinear programming. Springer,
1984.

109

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Contributions
	Related Work
	RGB-D data based representations for object perception
	Learning representation from point cloud
	Equivariance in neural networks
	Capsule networks

	List of Publications
	Outline

	RGB-D Statistical Representation with Distance Discrimination
	Introduction
	Joint RGB and Depth statistical representation
	Discriminative object color representation
	Object depth statistical representation
	Model fusion

	Object tracking with proposed representation
	Mean-shift based object localization
	Occlusion handling and scale estimation

	Evaluation
	Short-term tracking evaluation
	Long-term tracking evaluation

	Conclusion

	Unsupervised Learning of Representation with Spatial Attention
	Introduction
	Encode 3D shapes with spatial attention
	Formulation
	3D-PointCapsNet Architecture

	Evaluation
	Quantitative Evaluations
	Qualitative Results

	Conclusion

	Learning Features with SO(3) Rotation Invariance and Equivariance
	Introduction
	Preliminaries and Technical Background
	Equivariance
	The Quaternion Group H1
	3D Point Clouds

	SO(3)-Equivariant 3D Capsule Networks
	Quaternion Equivariant Capsule Layers
	Equivariant 3D Point Capsule Network Architecture

	Conclusion and Discussion

	Conclusions
	Appendices
	Appendix for Chapter 3
	Semi-supervised Classification
	Part Segmentation
	Part Interpolation
	Part Replacement
	Ablation Study
	A Discussion on the Local Spatial Attention

	Appendix for Chapter 4
	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Theorem 1
	Our Siamese Architecture and The Algorithm
	Additional Details on Evaluations

	List of Figures
	List of Tables
	Bibliography

