
Università degli Studi di Padova
centro interdipartimentale “Centro Ricerche Fusione”

Universidade de Lisboa
Instituto Superior Técnico (IST)

Università degli Studi di Napoli Federico II

JOINT RESEARCH DOCTORATE
“Fusion Science and Engineering”

ERASMUS MUNDUS INTERNATIONAL DOCTORAL COLLEGE CYCLE XXIX
“Fusion Science and Engineering”

GPGPU application in fusion science

Coordinator Paolo Bettini
Supervisors Gabriele Manduchi

Bernardo Carvalho
Co-Promoter Horácio Fernandes
PhD student Tautvydas Jeronimas Maceina

Padova, January 2017

JOINT Doctorate and NETWORK in Fusion Science and Engineering

Network Partners:

1. Instituto Superior Técnico (IST) Lisboa, Portugal;

2. Università degli studi di Padova, Italy;

3. Ludwig Maximilians University Munich, Germany.

In collaboration with:

1. Consorzio RFX, Italy;

2. IPP Garching, Germany.

Contents

I Introduction 9

1 General overview on fusion science 9

2 Plasma heating 10

3 Neutral beam injection systems 11
3.1 Negative ion production . 12
3.2 Beam formation . 13

4 Motivation of this thesis 13

II General Purpose GPU 15

5 History of computing 15
5.0.1 Moore’s law . 15
5.0.2 Outlook of modern CPU . 15
5.0.3 Evolution of programming model . 16

5.1 Emerging parallel computing technologies of today . 17
5.1.1 GPGPU . 17
5.1.2 Intel Xeon Phi . 18
5.1.3 ARM processors . 18

6 GPGPU 18
6.1 Birth of GPGPU . 18
6.2 GPU architecture . 19
6.3 GPU vs CPU . 20

6.3.1 Task parallelism . 20
6.3.2 Data parallelism . 20

7 Programming GPUs 22
7.1 CUDA . 22

7.1.1 Thread hierarcy and barrier synchronization . 22
7.1.2 Memory hierarcy . 23
7.1.3 Global memory operation modes . 24

8 Other GPU programming models 25
8.1 OpenCL . 25

8.1.1 Platform layer . 25
8.1.2 Execution layer . 26
8.1.3 Memory layer . 28

8.2 OpenMP . 29
8.2.1 Execution model . 29
8.2.2 Memory model . 30

9 Assessment of General Purpose GPU systems in real-time control 30
9.1 Introduction . 30
9.2 Practical consideration of using GPUs in real-time applications 31
9.3 An example of Real-Time GPU application . 31
9.4 Performance analysis and comparison . 34

9.4.1 Matrix-Vector multiplication . 34
9.4.2 Comparison with CPU architectures . 35
9.4.3 Sobel image filtering . 35

3

9.5 Conclusions . 37

10 Summary 37

III Plasma simulations using PIC method 39

11 Plasma basics 39
11.1 Poisson equation . 39
11.2 Plasma frequency . 40
11.3 Debye length . 40
11.4 CFL condition . 41
11.5 Collisionless sheath . 41
11.6 Plasma potential . 42
11.7 Thermostat theory . 43

12 Plasma simulation 44

13 PIC method 44
13.1 Charge projection . 45
13.2 Poisson equation . 46

13.2.1 Conjugate Gradient method . 47
13.2.2 Generalized Minimum Residual method . 48
13.2.3 Preconditioning . 48
13.2.4 Boundary conditions . 48
13.2.5 Initial conditions . 50

13.3 Electric field computation . 50
13.4 Particle motion . 51

13.4.1 Forward-difference motion integration . 51
13.4.2 Leapfrog method . 51
13.4.3 Boris algorithm . 52

13.5 Collisions . 53
13.5.1 Monte Carlo collisions (MCC) . 53
13.5.2 Null Collision method . 54

14 Results 54
14.1 Solver evaluation . 54

14.1.1 Comsol vs Cusp . 56
14.1.2 5pt stencil vs 9pt stencil . 57
14.1.3 Tolerance study . 58

14.2 Transient state simulation . 59
14.2.1 Tolerance study . 60
14.2.2 Time step ∆t study . 60
14.2.3 Cell size ∆x study . 61
14.2.4 Number of particles per cell study . 61
14.2.5 Discussion . 62

14.3 Steady state simulation . 62
14.3.1 Plasma potential . 63
14.3.2 Sheath depth . 64
14.3.3 Discussion . 65

14.4 Negative ion beam extraction . 66
14.4.1 Model description . 66
14.4.2 Plasma parameters . 67
14.4.3 Double sheath . 68
14.4.4 Meniscus formation and negative beam extraction 69
14.4.5 Beam shape and extraction voltage scaling . 69
14.4.6 Discussion . 72

4

14.5 Simulation of Space Charge Compensation . 72
14.5.1 Model description . 72
14.5.2 Implementation of collisions . 73
14.5.3 Simulation results and discussion . 74

15 Conclusions 76

IV Tomography 77

16 Tomographic problem 77
16.1 Radon transform . 77
16.2 Rotation theorem . 77
16.3 Projection definition . 77
16.4 Projection-slice theorem . 78

17 Cormack solution 79

18 Fourier-Bessel expansion 82

19 Solution and reconstruction 85
19.1 Singular Value Decomposition . 86
19.2 Reconstruction . 86

20 Calculation of Contribution matrix 86
20.1 How does projection matrix P look like? . 87
20.2 How does basis matrix B look like? . 87

21 Algorithm testing and optimization 88
21.1 Error optimization . 88
21.2 Error maps . 89
21.3 Error correction grid (selective reconstruction) . 90

22 Results 92
22.1 Single source study . 92

22.1.1 Phantoms . 92
22.1.2 Reconstructions . 93
22.1.3 Error maps uncorrected . 95
22.1.4 Error maps corrected . 97
22.1.5 Discussion . 98

22.2 Double source study . 99
22.2.1 Phantoms . 99
22.2.2 Reconstructions . 99
22.2.3 Error maps uncorrected . 100
22.2.4 Error maps corrected . 102
22.2.5 Discussion . 103

22.3 Ring source study . 104
22.3.1 Phantoms . 104
22.3.2 Reconstructions . 105
22.3.3 Error maps uncorrected . 107
22.3.4 Error maps corrected . 109
22.3.5 Discussion . 110

22.4 Noise sensitivity . 111
22.4.1 Without error correction . 111
22.4.2 With error correction . 112
22.4.3 Discussion . 113

22.5 Performance study . 113

5

23 Conclusions 116

Appendices 117

A Appendix 117

B Appendix 119

C Appendix 120

D Appendix 129

E Appendix 130
E.0.1 Householder reduction to bidiagonal form . 130
E.0.2 Golub-Reinsch SVD . 130
E.0.3 Golub-Kahan SVD . 131

6

Abstract

GPGPUs have firmly earned their reputation in HPC (High Performance Computing) as hardware for
massively parallel computation. However their application in fusion science is quite marginal and not
considered a mainstream approach to numerical problems. Computation advances have increased im-
mensely over the last decade and continue to accelerate. GPGPU boards were always an alternative
and exotic approach to problem solving and scientific programming, which was cultivated only by en-
thusiasts and specialized programmers. Today it is about 10 years, since the first fully programmable
GPUs appeared on the market. And due to exponential growth in processing power over the years
GPGPUs are not the alternative choice any more, but they became the main choice for big problem
solving. Originally developed for and dominating in fields such as image and media processing, image
rendering, video encoding/decoding, image scaling, stereo vision and pattern recognition GPGPUs are
also becoming mainstream computation platforms in scientific fields such as signal processing, physics,
finance and biology.
This PhD contains solutions and approaches to two relevant problems for fusion and plasma science
using GPGPU processing. First problem belongs to the realms of plasma and accelerator physics. I will
present number of plasma simulations built on a PIC (Particle In Cell) method such as plasma sheath
simulation, electron beam simulation, negative ion beam simulation and space charge compensation
simulation. Second problem belongs to the realms of tomography and real-time control. I will present
number of simulated tomographic plasma reconstructions of Fourier-Bessel type and their analysis all in
real-time oriented approach, i.e. GPGPU based implementations are integrated into MARTe environ-
ment. MARTe is a framework for real-time application developed at JET (Joint European Torus) and
used in several european fusion labs.
These two sets of problems represent a complete spectrum of GPGPU operation capabilities. PIC based
problems are large complex simulations operated as batch processes, which do not have a time constraint
and operate on huge amounts of memory. While tomographic plasma reconstructions are online (real-
time) processes, which have a strict latency/time constraints suggested by the time scales of real-time
control and operate on relatively small amounts of memory. Such a variety of problems covers a very
broad range of disciplines and fields of science: such as plasma physics, NBI (Neutral Beam Injector)
physics, tokamak physics, parallel computing, iterative/direct matrix solvers, PIC method, tomography
and so on. PhD thesis also includes an extended performance analysis of Nvidia GPU cards considering
the applicability to the real-time control and real-time performance.
In order to approach the aforementioned problems I as a PhD candidate had to gain knowledge in
those relevant fields and build a vast range of practical skills such as: parallel/sequential CPU program-
ming, GPU programming, MARTe programming, MatLab programming, IDL programming and Python
programming.

7

Sommario

Le GPGPU sono ormai affermate come hardware per il calcolo parallelo nel mondo HPC (High Performance
Computing). Le applicazioni nel campo della scienza fusionistica sono tuttavia piuttosto marginali e non
rappresentano il principale approccio alla soluzione di problemi numerici. I progressi nell’ambito com-
putazionale sono stati enormi nell’ultimo decennio e continuano tutt’ora: le schede grafiche sono da sem-
pre state una strada esotica per la soluzione di problemi di calcolo scientifico, prevalentemente percorsa
da programmatori specializzati. A dieci anni di distanza dalla comparsa sul mercato della prima GPU
completamente programmabile, grazie ad una crescita esponenziale della potenza di calcolo, queste schede
rappresentano la principale alternativa per la soluzione di problemi computazionali importanti. Svilup-
pate in origine per l’utilizzo in campi quali il processamento di immagini, rendering, codifica/decodifica
video, riconoscimento di pattern, le GPGPU stanno diventando le principali piattaforme di calcolo in
ambiti scientifici quali fisica, finanza e biologia.
Questa tesi di dottorato affronta, utilizzando il calcolo su GPGPU, due importanti questioni legate
alla scienza della fusione e del plasma. Il primo problema riguarda l’ambito della fisica del plasma e
degli acceleratori. Presento un modello PIC (Particle In Cell) per simulare plasmi non magnetizzati,
dimostrando la sua validità rispetto alla formazione dello strato di Debye, e la sua applicazione alla
formazione di un fascio di ioni negativi e alla compensazione di carica spaziale. Il secondo problema è
nell’ambito della tomografia e del controllo real-time. Presento diversi casi di ricostruzione tomografica
simulata di tipo Fourier-Bessel, e la loro analisi con approccio real-time, con implementazione GPGPU
integrata in ambiente MARTe, un framework siluppato a JET (Joint European Torus) e usato in diversi
laboratori europei.
Questi due problemi offrono un panorama completo delle capacità delle GPGPU. I codici PIC permettono
simulazioni vaste, che durano molti giorni, ed impiegano enorme quantità di memoria. Le ricostruzioni
tomogratiche sono operazioni da risolvere in tempo reale, usano poca memoria, con limiti sulla latenza
dell’implementazione. I problemi studiati coprono diverse discipline e campi della scienza: fisica del
plasma, fisica degli NBI (Neutral Beam Injector), fisica dei tokamak, parallel computing, solutori diretti
ed iterativi, metodo PIC, tomografia e cos̀ı via. La tesi include una analisi estesa delle performance delle
schede Nvidia GPU, considerando l’applicabilità al controllo real-time.
Come candidato, per affrontare i problemi presentati ho acquisito competenze in questi ambiti, e rag-
giunto buona abilità nella programamzione seriale e parallela, applicata anche a GPGPU, e abilità
specifiche legate ai framework MARTe, MatLab, IDL e Python.

8

Part I

Introduction

1 General overview on fusion science

The global energy demand is growing rapidly due to increasing world population and rising energy
consumption per capita. The present global energy system relies heavily on fossil fuels, which supply
almost 80% of the world’s energy demand [1]. Current situation cannot last forever due to a simple
fact, that natural recourses are finite. Another big reason is environmental issue. Fossil fuels and their
products are driving Earth’s ecological system to a disaster. It is expected, that soon more and more
governmental restriction will be empowered upon fossil related industries. The current use of fossil fuels
is facing many challenges and will be forced to reduce due to concerns about atmospheric pollution and
resource depletion [2]. Renewable energy sources such as solar and wind power exist. Though at the
moment they are not considered to be a real solution for super-high energy demands of modern industries.
Price for renewable energy sources are too high and yield of energy production is low. Nuclear fission has
played so far a very important role in the world’s energy supply. However fission energy production has
been compromised with horrific accidents such as Chernobyl (26 April 1986) and Fukushima (11 March
2011) and general public became very concerned about safety of nuclear fission plants. Historically the
single biggest problem for fission was the disposal of radioactive waste, however distrust and lack of public
endorsement became the other big issue for fission to successfully continue after Fukushima disaster.
Nuclear fusion is considered to be a sound alternative source of energy because of several advantages,
such as virtually limitless fuel supply, absence of greenhouse emission, suitability for large-scale electricity
production and low levels of radioactive waste [3]. It seems, that fusion remains the only reasonable option
for world’s nearest development step. It is the only technological solution to yield huge amounts of energy
with minute environmental pollution and with inherent safety against massive disasters. However fusion
field comprises of many technological problems to be solved. It is in the state of though and complicated
development process. That’s why world still has to wait for a few decades for its commercial application.
The main goal of fusion is to harvest the energy, which is produced in the nuclear reaction of light nuclei
fusing into one heavier nucleus. Fusion reactions, which would yield positive energy outcome, are only
possible with lighter nuclei than Fe, because Fe has the greatest binding energy per nucleon among all
elements. Heavier than Fe elements can only be in concern for fission reactions. The energy yielded in
fusion reaction is contained in the mass difference between reactants and products of a fusion reaction,
which is equivalent to energy emitted according to Einstein’s relation ∆E = ∆mc2. For light nuclei such
as hydrogen isotopes energy per nucleon is very high. From all known reactions the most feasible one
is the fusion of deuterium and tritium, which has the largest cross-section, i. e. highest probability to
interact in collision:

2
1D +3

1 T −→4
2 He (3.54 MeV) +1

0 n (14.05 MeV).

Deuterium is naturally abundant element due to fact, that the water of earth contains almost all of the
earth hydrogen resources and 0.015% of it is deuterium isotope. However, tritium is not found naturally
in Earth, thus it has to be transmuted from lithium (Li) and lithium is quite short in supply comparing
to deuterium [4]. Disadvantages such as tritium handling and 80% energy conversion to neutrons are
inherent properties of fusion technology. It is known to exist the fusion of two deuterium nuclei. In
fact this reaction would be way more convenient than D-T reaction, because no tritium breeding and
much less tritium handling would be necessary. However, this D-D reaction requires 30 times better
plasma confinement. The two hydrogen isotopes fuse only when the kinetic collision energy is enough to
overcome the Coulomb potential between the particles. This corresponds to temperatures of 100 million
of Kelvins. It is clear, that none of known materials is able to sustain such a hot plasma, thus the plasma
must be confined in other ways. The most advanced confinement concept known so far is called a toka-
mak. Tokamak is a torus shaped vessel, with a plasma confined inside by superposition of toroidal and
poloidal magnetic field lines. These superposition lines follow the toroidal direction and simultaneously
twist in the poloidal surface. Charged particles of plasma are gyrating around this superposition field
line due to Lorentz force and thus are “contained” in the arbitrary volume determined by the radius
of gyration. Nevertheless a part of confined plasma particles escapes the magnetic confinement and
immediately collides with the wall, where it erodes/interacts the with armor materials such as tungsten,

9

beryllium or carbon.
So far fusion energy has been produced successfully in JET (Joint European Torus) with 16.1 MW peak
power output at efficiency value of 0.64 (produced power/input power) [5] and in TFTR (Tokamak
Fusion Test Reactor) with 11 MW peak power output at efficiency value of 0.27 [6]. These exper-
iments show the feasibility and potential of fusion, but any commercial realization is still far away.
Next step in fusion development is ITER (International Thermonuclear Experimental Reactor) [7]
(Fig. 1). ITER will have to demonstrate an inductive operation mode with efficiency value ≥10
and to sustain operation for 300—500 s. It will be working as a testing ground for plasma fac-
ing materials later to be used in DEMO (a DEMOnstration power plant). ITER is meant to be
the last final step before building DEMO, which will be the first fusion power plant in operation.

Parameter Value

Produced fusion power 500 MW
fusion power/heating power Q 10
Plasma inductive burn time 400 s
Plasma major radius R 6.2 m
Plasma minor radius r 2.0 m
Plasma current Ip 15 MA
Safety factor q 3
Toroidal magnetic field B 5.3 T
Electron density ne 1020 m3

Temperature T 20 keV
Energy confinement τE 3.7 s
Neutral Beam Injector 33 MW
Electron cyclotron antenna 20 MW (170 GHz)
Ion cyclotron antenna 20 MW (50 MHz)
Plasma type deuterium-tritium
Plasma volume 837 m3

Figure 1: ITER

2 Plasma heating

In order to start a fusion reaction the plasma must reach temperatures higher than 10 keV. Up to date
there exist 3 types of plasma heating.

Ohmic heating The “transformer principle”. In a toroidal experiment the plasma current is driven
by induced voltage of transformer action, the plasma being the secondary loop. If the plasma
current is not varying with time, then the resistance of the plasma is

Vφ
Iφ

, where Vφ and Iφ are the

toroidal loop voltage and plasma current respectively. The plasma resistivity is important, because
it determines the ohmic heating input to the plasma. For a fully ionized plasma the resistivity is
called Spitzer resistivity (Eq. 1) [8]:

η ≈
πZe2√me

(4πε0)2(kBTe)
3
2

ln Λ (1)

where Te is the electron temperature, me is the electron mass, ln Λ is so-called Coulomb logarithm,
Z is ionization level. The resistivity decreases as Te is rising, which makes ohmic heating inefficient
and fail, when plasma electrons reach high temperatures. Ohmic heating usually exist in the early
ramp-up phase during tokamak discharge, it raises the toroidal current Iφ and kick-starts the
tokamak operation. It is the oldest plasma heating method.

RF heating The “microwave principle”. The energy is transfered to the tokamak by powerful antennas
using electromagnetic waves with frequencies corresponding to the resonant frequencies in the
magnetized plasma. ECRH (Electron Cyclotron Resonance Heating) and ICRH (Ion Cyclotron
Resonance Heating) are methods to exploit gyration resonances in electrons and ions respectivelly.

10

By targeting those frequencies and their harmonics the energy transfer is achieved:

ωce =
eB

me
ωci =

ZeB

mi
, (2)

where B is magnetic field strength, Z is ionization level, me, mi are electron and ion mases respec-
tively. There exists another heating mehod called LHRH (Lower Hybrid Resonance Heating). It

is targeting the oscillation of ~E × ~B drift waves and is called “hybrid”, because its expression is
derived from two cyclotron frequencies ωce and ωci:

ωLH =
1

1
ω2

pi+ω
2
ci

+ 1
ωceωci

, (3)

where ωpi =
√

niZ2n2
i

miε0
is ion plasma frequency. All the resonance frequencies are solutions of a

dispersion relation for a cold magnetized plasma approximation and satisfy inequality:

ωci � ωLH � ωce ≈ ωpe, (4)

where ωpe =
√

nen2
e

meε0
is electron plasma frequency.

NBI heating The “particle accelerator principle”. NBI (Neutral Beam Injector) is a linear particle
accelerator with an additional section of neutralization. Neutralization is necessary to achieve
injection of energetic particles into plasma volume, since otherwise charged particle beams would
be scattered and deviated by the strong magnetic fields at the plasma edge. By penetrating plasma
the neutral beam is gradually ionized via collisions following one of the reactions [9] (Eq. 5, Fig. 2)
and then thermalized with the background plasma. In this way energy and momentum is transfered
from the beam to the plasma.

Charge exchange D + D+ −→ D+ + D
Ionization by ions D + D+ −→ D+ + D+ + e
Ionization by impurities D + Z −→ D+ + Z + e
Impurity charge exchange D + Z+ −→ D+ + Z
Ionization by electrons D + e −→ D+ + 2e

(5)

Figure 2: Beam energy dependence of charge exchange, ion,
impurity and electron ionization cross-sections

Charge exchange is the dominant process in the low energy regime (<45 keV) and ionization by deuteruim
ions is dominant in the high energy regime (>45 keV). NBI is also known to faciliate L–H transition in
tokamaks.

3 Neutral beam injection systems

In order to produce a deuterium and tritium reaction (D+T→4He+n) one has to raise plasma tempera-
ture to the range of 10–30 keV. However to achieve effective heating the NBI beam must be much more

11

energetic than that, typically in the range of 500 keV – 1 MeV. In analogy to NBI this corresponds to
warming up cold water by pouring in hot water. There are two versions of NBIs: p-NBI and n-NBI.
p-NBI uses positively charged particles and n-NBI uses negatively charged particles for acceleration and
neutralization. First NBIs were p-NBIs constructed for ORMAK (Oak Ridge Tokamak) [10] and ATC
(Adiabatic Toroidal Compressor) [11] in 1974. First n-NBI was constructed for JT-60U in 1996 [12].
Improving accelerator technology allowed to increase beam energy, however it was discovered that pos-
itive ions loose neutralization efficiency at higher energies (Fig. 3) [13]. Therefore n-NBI concept was
more useful than p-NBI and therefore chosen for ITER.

Figure 3: Neutralization efficiency of the ions

ITER NBI has to produce a beam of negatively ionized deuterium D− at 1 MeV producing 40 A current
of 200 A/m2 density and sustain it for 1000 s. The apparatus is constructed of beam formation sec-
tions such as ion source, accelerator, neutralizer, RID (Residual Ion Dump, calorimeter and peripheral
modules such as cryo-pumps, vessels, fast shutter, duct, magnetic shielding, and residual magnetic field
compensating coils (Fig. 4).

Figure 4: ITER NBI
MAMuG (Multi-Aperture Multi-Grid) is the five-stage electrostatic accelerator section, which was
designed and tested at MTF (MeV Test Facility) in Japan [14]. Voltage holding capability and beam
optics of the negative ion beam were studied and tested to achieve the stable acceleration of negative ion
beam up to 1 MeV. Relatively recently MITICA (Megavolt ITER Injector Concept Advancement) was
proposed as the upgrade for ITER NBI system, which has to produce a 55 A beam of D− and sustain it
for 3600 s. Currently MITICA is under construction in Padova (Italy) at PRIMA (Padua Research on
ITER Megavolt Accelerator) facility under supervision of Consorzio RFX. As part of the PRIMA project
another ITER-related experiment is being built simultaneously: SPIDER (Source for the Production of
Ions of Deuterium Extracted from an RF plasma). SPIDER is an ITER-scale radio-frequency negative
ion source capable to produce plasma discharges of H− or D− at 15–30 eV. Together MITICA and
SPIDER complete the experimental base for the design of final ITER HNB (Heating Neutral Beam)
system.

3.1 Negative ion production

n-NBIs operation heavility depends on production of negative ions in the plasma. Production of negative
ions are achieved in several ways:

Volume production Volume production occurs in a two step process. First a high-energy electron
(≈10 eV) vibrationally excites the hydrogen molecule:

H2 + efast → H∗2 + eslow (6)

12

Later low-energy electron (≈2 eV) dissaciotively attaches itself to the vibrationally excited hydrogen
molecule:

H∗2 + eslow → H− + H (7)

Negative ions easily are destroyed by collisions with electrons with energies greater than 2 eV.
Therefore ion source is divided into two regions: driver and extractor. In the driver the main plasma
heating occurs (Eq. 6) and in the extractor the colder plasma produces negative ions (Eq. 7), which
are then extracted for a beam formation. The plasma cooling can be obtained both by expansion of
the source volume in the extraction region and by a transverse magnetic filter field, which reflects
back the high energy electrons [15].

Surface production Surface production of negative ions is realized on the electrodes and structures
that are in contact with the plasma. The energetic H and H+ ions are converted into H− ions by
surface interaction. For that reason materials with low work function are used to enhance produc-
tion of negative ions. Cesium (Cs) is a metal with low work function φ < 2 eV, therefore interaction
of energy above 2 eV generates a negative ion. Research on negative ion surface production was
started by Dudinikov [16] in 1973.

3.2 Beam formation

Negative ion beams are realized by three electrostatic grids: PG (Production Grid), EG (Extraction
Grid) and AG (Acceleration Grid) (Fig. 74). Negative ions are produced in volume and by PG surface.
Then they are extracted by EG. By having constant magnetic field B present in the EG section co-
extracted electrons are filtered from the beam. Magnetic field has also effect on electrostatic lensing and
can cause divergence of negative ion beam. However some H− ions has much higher divergence than
average and form a halo beam ring around the main beam. The geometry of the PG (a circular hole
in the plane) causes plasma to form a meniscus. Meniscus is a self-organized equipotential surface in
3D corresponding to the zero electric field. It is plasmas natural response to compensate the imbalance
in electric field imposed by PG. Approaching meniscus from plasma bulk there is a pre-sheath region
of plasma, which then becomes the sheath and finally meniscus itself. Produced by PG, extracted and
formed by EG the beam goes to the acceleration phase in AG.

Figure 5: Schematics of extraction grids in an NBI
accelerator section

4 Motivation of this thesis

Over the last 50 years fusion has seen some sustained yet gradual progress. Even though commercial
fusion is several decades away, there are promising developments regarding the triple product. Triple
product is the multiplication of three most fundamental tokamak plasma parameters: plasma density n,
plasma temperature T and confinement time τE . Triple product determines how close to ignition plasma
is:

nTτE > 5 · 1021

[
keVṡ

m3

]
(8)

Satisfying the Eq. 8 puts fusion plasma into ignition state, i. e. plasma, which is energetically self-
sustainable. There will be no need of additional external heating, because the energy produced in
the thermo-nuclear reactions will be equal or more than the energy needed to start the reaction.
ITER is expected to ignite plasma. Since the 1960s, the fusion triple product has almost doubled

13

every two years, a rate of increase comparable with the well-known progress in computer technol-
ogy known as Moore’s Law (Fig. 6). ITER is expected to upscale the triple product into ignition.

Figure 6: Triple product vs Moore’s law
The fact, that fusion techonology is evolving exponentially, predicts great breakthroughs and makes
it the technology of the future. The same can be said about computer technology, which has already
demonstrated its capabilities of transforming the world. The motivation of the thesis is to present
innovative solutions to the problems, which are one way or another linked to the progress of fusion
technology, using GPGPU hardware. GPGPU technology is the latest manifestation of Moore’s law
in computer technology. By using cutting-edge GPGPU technology one strives to move closer to the
next breakthrough in fusion evolution. This thesis will demonstrate, how solutions to relevant fusion
topics, such as NBI physics and plasma tomography, can reach new quality with the help of GPGPU
processing. For example NBI-related simulations are all performed in 3D, meanwhile in contrast the
most of the current NBI-physics simulations in the scientific community are only in 2D. This already
allows to avoid error-prone interpretations of 3D plasma physics based only on 2D simulation results.
Another example is the real-time plasma tomography, where image resolution was always severely limited
by real-time processing capabilities and absence of parallelism. GPGPU processing significantly pushes
these limitations. Both of the aforementioned examples indicate, that GPGPU processing has plenty to
offer to the fusion science, which brings a lot of optimism and motivation for this thesis.

14

Part II

General Purpose GPU

5 History of computing

5.0.1 Moore’s law

For the last half-century, computers have been doubling in performance and capacity every couple of
years. This remarkable, continuous, exponential growth in computing performance has resulted in an
increase by a factor of over 100 per decade and more than a million in the last 40 years. For example,
the raw performance of a 1970’s supercomputer is now available in a typical modern cell phone. This
uninterrupted exponential growth is nowadays called Moore’s law and was named after Gordon Moore
(Intel co-founder), who in 1965 predicted that the number of transistors in integrated circuits would
double every 18 months (Fig. 7). Due to incredible veracity of the prediction throughtout the years
Moore’s law became a societal expecation for increased technology performance and a drive for industries
to sustain the exponential growth. Even though Moore’s law was expected to fail many times in history,
industries found new ways to sustain it and the trend still is present in 2016.

Figure 7: Number of transistors per CPU increasing at a geometric progression with
time

5.0.2 Outlook of modern CPU

CPU (Central Processing Unit) is the central electronic circuitry within a computer that carries out the
instructions of a computer program by performing the basic arithmetic, logical, control and input/output
operations specified by the instructions. For the most part of 90’s and 00’s systems based on a single CPU,
e.g. such as Intel Pentium, Intel Xeon, AMD Opteron and AMD Athlon, were dominating consumer
markets and drove rapid performance increases and cost reductions in computer applications. These
processors enabled desktop systems to perform at range of several GFLOPS (Giga FLOating-Point
operations per Second) and cluster servers at hundreds of GFLOPS. Supported by Moore’s law the
relentless drive for performance improvement encouraged the software to evolve and sophisticate rapidly,
which in turn demanded even more CPU performace creating a positive feedback for the computer
industry. During the drive, most software developers have relied on the advances in hardware to increase
the speed of their applications, i.e. the same software simply runs faster as each new generation of
processors is introduced. However such a drive could not continue forever and reached its natural ceiling
around 2003. The improvements to solely increase number of instructions per second in single-processor
slowed down. Due to fundamental limits of power efficiency the integrated circuits built on CMOS
(Complementary Metal Oxide Semiconductor) technology are no longer able to support increasing

15

energy consumption and to manage heat dissipation. Since CMOS technology is virtually omnipresent
in all computer components (microprocessors, microcontrollers, RAM, data converters, data transceivers
and digital logic circuits), it became an obstacle to increase performance of components by increasing
the clock frequency of the circuits. A CMOS transistor is a field-effect transistor, having a metal gate
electrode placed on top of an oxide insulate, which is in turn is on top of a semiconductor material.
Power density of CMOS circuit is given by:

P = NCV 2f (9)

where N – number of CMOS gates per unit area, C – capacitive load per CMOS gate, V – supply voltage,
f – clock frequency. Miniaturization of circuits naturally means higher N and higher C, therefore V
and f must be compromised in order to keep power density P under a certain threshold value, where
air cooling is still effective. In practice 130 W is considered a borderline for modern CPU to be cooled
with air and approaching 130 W requires massive heat sinks and local fans. In reality reductions in

Figure 8: Number of transistors, frequency, power, performance and number of cores over the years [17]

transistor size still continue apace and much more transistors are being packed onto chips, which means
that Moore’s law will be supported in the near future. However a significant shift happened in design
architecture of processors. In 2001 first dual-core processor (POWER4) was released by IBM. In May
2005 Intel and AMD released their first dual-core processors. Since then processors started acquiring
more cores and today up to 24 physical cores can be present in a processor (Inter Xeon E7-8890 v4).
Yet high number of cores does not univocally mean scaled performance, but it does play significant role
in achieving optimal performance for the particular purpose of a processor. Fig. 8 clearly indicates the
shift in processor industry, that is seen as a plateau in clock frequency and power consumption and a
decreased slope in relative performance, while Moore’s law still holding strong.

5.0.3 Evolution of programming model

The change from single-core to multicore processors required a concomitant change in the software
programming model. In order to use multicore processors efficiently, applications must be built using
a parallel programming model, which divides a program into parts that are then executed in parallel.
However in 00’s much software today was written according to a sequential programming model, and
applications written this way cannot easily be sped up by using multicore processors. The applications
software that will continue to enjoy performance improvement with each new generation of microproces-
sors are the parallel programs, in which multiple threads of execution cooperate to complete the work
faster. The incentive to switch from sequential to parallel program development is sometimes reffered
as the concurrency revolution. Anyhow the practice of parallel programming is by no means new. The
HPC (High Performance Computing) community has been developing parallel programs for decades.
These programs run on large-scale computers and expensive clusters. Yet only a small fraction of public
could practice parallel programming due to limited access to such systems. Now that all new proces-
sors are multicore systems, the number of applications that must be developed as parallel programs has
increased dramatically. However there is fundamental limitation for code speedup, when upgrading se-
quential codes to parallel. Any parallel processing system has a theoretical limitation on speedup called

16

Amdahl’s law (Fig. 9) [18], which cannot be surpassed by any means.

S(p, n) =
1

(1− p) + p
n

, (10)

where S(p, n) is the speedup measure, p is the portion of parallelizable code, n is the number of processing
units (cores, threads). The larger the parallelizable code portion p is, the higher the theoretical speedup
is S. If the the application has little of parallelizable code p, even high number n of processing units will
not benefit the speedup. Amdahl’s law suggests, that different problems have different levels of possible
speedup and in order to benefit from parallelization some problems has (if possible) to be represented
and “recast” in a more parallelizable formulations.

Figure 9: Amdahl’s law

5.1 Emerging parallel computing technologies of today

5.1.1 GPGPU

GPGPU (General Purpose Graphics Processing Unit) is relatively new device, which evolved from
powerful GPU gaming cards in 2006. It is a device based on GPU architecture, but it is used for general
computing instead of graphics (a dedicated GPGPU does not have a monitor port). Provided rapid
evolution GPGPUs have firmly entered supercomputing domain. There are now a couple leading GPU
supercomputers: Titan (USA, 3rd in TOP500), Piz Daint (Switzerland, 8th in TOP500)[19]. Usually
GPGPUs are equiped with a bit slower clock speed than gaming GPUs, but instead they tend to have
more processing cores and bigger (several tens of GB) RAM memory. GPGPUs are not stand-alone
systems. They work in coordination with board CPU, which has to copy data and offload operations to
GPGPU. Therefore GPGPU is considered an accelerator device (Fig. 10, 11).

Figure 10: Nvidia Tesla K40
Figure 11: FirePro S9300x2

17

5.1.2 Intel Xeon Phi

Intel Xeon Phi is new kind of device in computing community since 2012. It is a PCIe (Peripheral
Component Interconnect Express) board, which consists of up to 72 Intel cores connected in a MIC
(Many Integrated Cores) architecture. It can be operated in two modes: native and offload. Native
mode runs as independent a mult-core processor, i.e. coprocessor mode. Offload mode runs as dependent
device, which can receive offloaded operations and data and execute them separately from motherboard
CPU, i.e. accelerator mode. This device is thought to be the primary competitor for GPGPUs in HPC
domain.

Figure 12: Intel Xeon Phi

5.1.3 ARM processors

ARM processor (Fig. 5.1.3) is a processor of RISC (Reduced Incstruction Set Computing) architecture.
A RISC-based design means processors require fewer transistors than typical CISC (Complex Instruction
Set Computing) processors (Intel, AMD). The architecture provides low cost, low heat and low power
consumption, which is particularly suitable for use in portable devices, such as laptops, tablets, notepad
computers and other embedded systems. This makes them the most widely used 32-bit microprocessor
family in the world (Fig. 14). Evolution of ARM processors brings more and more computation power
to the portable devices inluding a parallel computation. The new 64-bit ARM processors are expected
to compete heavily with Intel and AMD in portable device market.

Figure 13: ARM processor

Figure 14: PC and Smarphone sales per year [20]

6 GPGPU

6.1 Birth of GPGPU

Not long after first multicore processor was released by IBM (Tab. 15) the race for performace and
throughput was taken over by programable GPUs from Nvidia and ATI. Programable GPUs evolved
from 3D graphic cards, which were being mainly designed and developed for gaming industry. They were
programable with OpenGL and DirectX, but didn’t have a dedicated API (Application Programming
Interface) for general purpose computing. First GPGPUs appeared in 2006 with the releases of Nvidia
GeForce 8800 series and ATI Radeon X1900XTX series. Main purpose of these cards was gaming,
nonetheless they had first dedicated APIs for general purpose computing: CUDA (Compute Unified
Device Architecture) and FireStream respectively. Table 15 gives perspective of a timeline of events in
computing industry, which preceded the first GPGPU release.

18

Year Month Company Model Comment

1999 August Nvidia GeForce 256 first GPU from Nvidia
2001 October IBM Power4 first ever dual-core CPU
2002 August ATI Radeon 9000 first GPU from ATI
2005 April AMD Athlon 64 X2 first dual-core CPU from AMD
2005 May Intel Pentium D first dual-core CPU from Intel
2006 January ATI Radeon X1900 first FireStream version released
2006 November Nvidia GeForce 8800 first CUDA version released
2007 May Nvidia Tesla C870 first dedicated GPGPU

Figure 15: The timeline of significant hardware releases marking evolution towards first GPGPU

This era of fierce competition between rival companies (Intel vs AMD in CPU industry and Nvidia vs
ATI in GPU industry) ignited a very rapid development of domestic computer capabilities and it is
clearly marked with concurrent hardware and software releases by rival companies. Driven by the same
insatiable relentless market demand for performance (that drove CPU industry too) the programmable
GPUs throughout years has evolved into a highly parallel, multithreaded, multicore monster processors
with tremendous computational horsepower and very high memory bandwidth (Fig. 17).

6.2 GPU architecture

A modern GPU architechture is built around an array of SMs (Streaming Multiprocessors) (Fig. 16).
Each SM consists of an array of SPs (Streaming Processors), that share control logic and instruction
cache among themselves. SMs are organized into sub-arrays, where the number of SMs in a sub-array
can vary from one generation of GPUs to another generation. Concept of Streaming Multiprocessor can
be broken down to its parent concepts of stream processing and multiprocessing. Stream processing is
a computational concept, where computation takes place automatically based on data flows and prop-
agation of change. Multiprocessing is the use of two or more processing units within a single computer
system. In general stream processing and multiprocessing refer to SIMD (Single Instruction Multiple
Data) and MIMD (Multiple Instruction Multiple Data) processing paradigms respectively. Therefore
architecture of a GPU is a cross-design of architectures of both SIMD and MIMD origins.
SIMD model was first introduced by Cray machines[21], which were first supercomputers ever and they
were equiped with VPUs (Vector Processing Units) [22]. Nowaways Cray computers acquired the name
of vector machines and SIMD is used to describe streaming architectures, where not one but several op-
erations can be applied to the data vector. Modern GPU achitecture has close relation with both vector
processors (Cray architecture) and stream processors (von Neumann architecture). Yet the true ances-
tors of GPUs are 3D graphics cards, which evolved from geometry and rasterization engines of the Silicon
Graphics (SGI) workstations of the 1990s [23]. SGI workstations featured four heavily pipelined geometry
and raster engines in order to perform massive amount of identical operations that exist within graphics
applications, consisting of vertex transformations and shading, followed by scan-conversion with texture
mapping interpolation. Both Cray computers and SGI machines employed the SIMD model, which is
very close to what GPUs use today [24]. However a feature, that was completely lacking in these early
SGI platforms, was the ability to freely program SIMD processors. All one could do was only set the
parameters used in the graphics processing operations, such as lighting model, depth-buffer mode and
so on. To enable this programmability, SGI founded the OpenGL graphics language which is still in use
today, now accompanied by its rival DirectX from Microsoft.
The fact that GPU contains not one but an array of SMs makes it also a MIMD system. During op-
eration SMs are heavily threaded as a MIMD system and each SM performs its part of workload as a
SIMD-like system. It is not exactly a SIMD process, because data is NOT organized into registers of
SSE (Streaming SIMD Extentions) vectors (as in vectorizable CPUs). Instead execution and branching
behaviour is specified by SIMT (Single Instruction Multiple Thread) model [25]. In SIMT all threads
process data in their own registers. There is much less burden on the programmers in terms of data
collection and data packing. In contrast with SIMD vector operations, SIMT enables programmers to

19

write thread-level parallel code for independent, scalar threads, as well as data-parallel code for coor-
dinated threads. In SIMT threads are launched in groups of 32 called warps. Substantial performance
improvements can be achieved by taking care that calculation does not follow different execution paths
(i.e. there is no thread divergence) within a warp. Otherwise threads in a warp are serialized and per-
formance is severely degraded.
Nowadays GPUs come with several gigabytes of GDDR (Graphics Double Data Rate) DRAM (Dynamic
Random Access Memory). These GDDR DRAMs differ from the system DRAMs on the CPU moth-
erboard in that they are essentially the frame buffer memory that is used for graphics. For graphics
applications, they hold video images and texture information for 3D rendering, but for computing they
function as very-high-bandwidth, off-chip memory, though with somewhat more latency than typical
system memory. For massively parallel applications the higher bandwidth makes up for the longer
latency.

Figure 16: Architecture of a GPU: 16 SMs × 8 SPs (SMs are organized in groups
of 2, that share cache memory)

6.3 GPU vs CPU

GPUs lead CPUs by a lot in terms of FLOPS (FLOating-Point Operations per Second) and MB
(Memory Bandwidth)(Fig. 17). One might ask why there is such a large performance gap between
GPUs and multicore CPUs. The answer lies in the differences in the fundamental design philosophies
between the two types of processors.

6.3.1 Task parallelism

The design of a CPU is optimized for sequential code performance. It makes use of sophisticated control
logic to allow instructions from a single thread of execution to execute in parallel or even out of their
sequential order while maintaining the appearance of sequential execution. More importantly, large cache
memories are provided to reduce the instruction and data access latencies of large complex applications.
Neither control logic nor cache memories contribute to the peak calculation speed [26]. Multicore CPUs
are perfect to implement codes, which employ task parallelism.

6.3.2 Data parallelism

GPU is specialized for compute-intensive, highly parallel computation and therefore designed such that
more transistors are devoted to data processing rather than data caching and flow control. The design
philosophy of the GPUs was shaped by the fast growing video game industry, which exerted tremendous

20

(a) FLOating-Point Operations per Second
(FLOPS)

(b) Memory Bandwidth (MB)

Figure 17: The performance comparison between modern GPU and CPU [25]

economic pressure for the ability to perform a massive number of floating-point calculations per video
frame in advanced games. This demand motivated the GPU designers to look for ways to maximize
the chip area and power dedicated to floating-point calculations. The curent solution is to optimize
the execution throughput by having massive numbers of threads. While executing a large number of
inependent threads, the hardware tries to hide long-latency memory accesses by grouping them, therefore
reducing the control logic required for each execution thread. Small cache memories are provided to help
control the bandwidth requirements, so that multiple threads that access the same memory data do
not need to all go to the DRAM. As a result, much more chip area is dedicated to the floating-point
calculations. The architecture of GPU is suitable for solving problems with built-in data parallelism. In
Fig. 18 the dedicated chip area is depicted in relative manner, which indicates the main architectural
difference between CPU and GPU.

Figure 18: The GPU devotes more transistors to ALU (Arithmetic Logic Unit) [25] compared to Control
and Cache units

It

should be clear now that GPUs are designed as numeric computing engines, and they will not perform
well on some tasks on which CPUs are designed to perform well. Therefore one should expect that
most effcient approach is to use both CPUs and GPUs, executing the sequential parts on the CPU and
numerically intensive parts on the GPUs. This is why programming models such as CUDA, OpenCL
and and general heterogeneous programming are aiming to support joint CPU/GPU execution of an
application.

21

7 Programming GPUs

7.1 CUDA

CUDA (Compute Unified Device Architecture) is a programming framework developed by NVIDIA
which allows programmers to easily use Nvidia GPUs for general purpose computation [27]. The
CUDA programming language is an extension to the well-known C language suit. As a programming
language it introduced an abstraction layer in order to hide the hardware layer. This layer of abstraction
simplifies the code development for programmers and makes the code portable with respect to different
GPUs. CUDA abstraction consists of three key elements: thread hierarchy, memory hierarchy and
barrier synchronization, which are introduced as a minimal set of language extensions in order to
maintain low learning curve for programmers familiar with standard C programming. CUDA allows
applications to easily scale their parallelism to the full occupancy of SMs throughtout all variety of
Nvidia hardware: GeForce, Quadro and Tesla board families (Fig. 19).

Figure 19: Executable code is scheduled accross SMs
in blocks, which run independently. Therefore a
GPU with more multiprocessors will automatically
execute faster than a GPU with fewer SMs

7.1.1 Thread hierarcy and barrier synchronization

CUDA application is an extented C/C++ application, which consists of a sequential CPU code (host
code) and parallel GPU code (device code). CPU (host) takes control of execution flow and initiates
parallel execution on the GPU side (device). The GPU code is organized into kernels. A kernel is a
SPDM (Single Program Multiple Data) computation executed by a large number of threads running in
parallel. To efficiently manage large thread population, the SM employs a SIMT model, which executes
threads in groups of 32 called warps [28]. Programatically threads are organized into blocks and blocks
are organized into a grid (Fig. 20). Thread, block and grid are the abstractions of CUDA model, which
can be thought of as virtualized scalar processor, virtualized multiprocessor and virutalized array of
multiprocessors respectively. Threads can be indexed with 1D, 2D or 3D identifiers within a single
block and blocks can be indexed with 1D or 2D identifiers within a grid. Therefore any thread can be
unquivocally indentified by its thread ID and its block ID. Each block in a grid has same number of
threads and same organization of threads. Synchronization of threads is feasible only within a single
block (but NOT among several blocks) by barrier operation syncthreads() and global synchronization
among all blocks is reached only with kernel completion. Maximum number of threads in a block is 1024
(recent boards) and maximum number of blocks is virtually infinite, because blocks are indepedendently
scheduled on SMs until execution request is completed.

22

Figure 20: Grid of thread blocks [25]

7.1.2 Memory hierarcy

Under CUDA programming model the GPU has 4 types of memory: register memory, shared memory,
global memory and constant memory (Tab 1, Fig. 21). Both register memory and shared memory reside
on chip, thus are the fastest in access. Global memory is the bank usually of several gigabytes, which
resides off chip and is the slowest in access. Each of them has a special purpose in the GPU. Register
memory (also called private or local) is the memory available to each thread and cannot be accessed by
any other thread. It stores variables, which are specific to that thread, such as thread ID, block ID and
any other private variables significant for the thread. Shared memory is designed to store data that can
be shared among threads belonging to the same block. It enables thread communication and is extremely
useful in calculations based on mathematical reduction, such as matrix operations. Global memory is
accessible by all threads and host. It is used to copy data from/to host and usually stores the user data
of input and output of the application. Since global and shared memories have difference in speed of
access by an order of magnitude or more, many levels of optimization can be achieved by careful tuning of
parameters such as amount of shared memory, number of threads per block and number of streams. For
example maximizing accesses of shared memory over the global memory leads to significant performance
gains. Specific in its use constant memory is designed to store texture data for graphics rendering, where
one must assure complete accesibility for all threads in all grids and still maintain low access latency.
Usually variables in constant memory are meant to last the whole application execution and are read-only.
Physically it is a combination of an off-chip global memory, which is frequently cashed for effcient access.

23

Memory type Location Size Accesibility Comment

Register on-chip 16kB thread
stores tread ID, block ID and user-
defined private variables, very fast, L1
cache

Shared on-chip 48kB block
enables data sharing and communication
between threads within a thread block,
very fast, L2 cache

Global off-chip several gigabytes grid, host main memory bank, slow, GPU RAM

Constant on/off-chip 64kB all grids
optimized for texture storage for graph-
ics rendering, read-only

Table 1: GPU memory types of CUDA programming model

Figure 21: GPU memory hierarchy under CUDA programming model

7.1.3 Global memory operation modes

Global memory (GPU RAM) can be operated in several different ways. The mode of operation is
determined by the type of allocation: pageable, page-locked, write-combined and directy-mapped
(Tab. 2). Pageable allocation is the default type of allocation and the most commonly used. It is the
type of allocation that is freely managed by the system, i.e. it can be moved and reallocated by internal
system processes, which are transparent to the user. Page-locked allocation does not allow the system
to page the memory, also called “pinned” allocation, i.e. it is fixed to a physical memory address that
does not change. In most systems page-locked allocation results in speed up of applications, since
system does not perform paging on that memory and data can copied faster via DMA (Direct Memory
Access) circuit without involvement of CPU. Write-combined allocation is special type of allocation,
which is a good option for one-way transfer from CPU to GPU. Directly mapped allocation is a type
of allocation that allows tying CPU RAM and GPU RAM directly. In this way the programmer does
not have to manually code the memory transfer from host to GPU anymore. System will manage
copying automatically, i.e. whatever gets written in CPU RAM will automatically appear on GPU RAM.

24

Operation mode Comment

Pageable Default type of allocation, freely moved and paged by internal system processes

Page-locked “pinned”, expected to be faster than pageable mode, accessible via DMA

Write-combined Special type, good for one-way transfer from CPU to GPU

Directly-mapped
Mirrors CPU RAM to GPU RAM, system manages copying automatically, keen to
build up the latency due to multiple calls of copy operations of small size instead of
one big transfer

Table 2: GPU global memory operation modes

8 Other GPU programming models

8.1 OpenCL

OpenCL (Open Computing Language) is an open programming framework developed by Khronos
Group [29], whose main goal is to provide unified programming platform across all modern computing
devices: CPUs, GPUs and DSPs. OpenCL is aiming to establish itself as standart programming
model for heterogeneous parallel processing systems. because todays’s computers often include highly
multicore CPUs, GPUs and other types of processor in one system. Even homogenous parallel processing
systems are often underexploited due to intricate specificity related to the hardware, platform and
vendor. OpenCL is trying to provide an solution to that and moreover offer an uniform approach to the
heterogeneous parallel processing. The challenge of having uniform heterogeneous programming model
accross all the hardware is immense, primarily because traditional programming approaches of each
hardware are very different among themselves, independently evolved and proven by time. CPU-based
parallel programming models typically assume a shared memory space and do not encompass vectorized
processing. GPGPU-based progamming models are built around complex memory hierarchies and
vectorization and are very platform-, vendor- and hardware-specific. All these non-uniformities build
limitations for a developer to access full computational potential of heterogeneous systems. Nowadays
heterogenous systems are omnipresent in all classes of devices: handheld, portable devices (phones,
tablets, laptops), desktop computers and HPC computers. OpenCL abstraction consists of layers:
platform layer, execution layer, memory layer.

8.1.1 Platform layer

Platform layer defines a host and compute device, which consists of compute units, which consists of
processing elements (Fig. 22). An OpenCL application is implemented as both host code and device
kernel code. The host code portion of an OpenCL runs according to the models native to the host
platform. The host code invokes the kernel code execution to OpenCL devices. OpenCL devices can
be systems of completely different origin and architectures, however the same kernel code has to run
on all those systems, which means kernel code has to have a separate binary representations for each
system, which means kernel code has to be compiled separately for each system. To adress this is-
sue a developer can exploit a distinguised feature of OpenCL: online compilation. Device code can be
compiled during run-time of host program and launched for each device as different binaries. This is
option is the default one, requires minimum effort of the developer and guaranties maximum portabil-
ity of the source code. However developer can choose offline compilation for the device code, which
requires to have executables (binaries) already compiled into object files before application launch.
It can be useful when the programmer is sure that standard OpenCL online compilation is underex-
ploiting the hardware and it can be fully exloited by obtaining binaries from hardware-targeted ex-
ternal compilation. Offline compilation also tends to run faster, thus it is more suitable for real-time
processing. However if the application is intended to be used on various platforms (various compute
devices), multiple kernel binaries must be included, thus increasing the size of the executable file.

25

Figure 22: Platform model: hierarchy and organization of OpenCL hardware

8.1.2 Execution layer

Execution layer is defined in terms of two distinct units of execution: kernels and a host program.
Functions from the OpenCL API enable the host to interact with a device through a command-queue.
In addition to commands submitted from the host command-queue, a kernel running on a device can
enqueue commands to a device-side command queue. This results in child kernels enqueued by a kernel
executing on a device (parent kernel). Each command-queue is associated with a single device. Regardless
of whether the command-queue resides on the host or a device, each command passes through six states
(Tab. 3, Fig. 23).

State Description

Queued
The command is enqueued to a command-queue. A command may reside in the queue until
it is flushed either explicitly or implicitly by some other command

Submitted
The command is flushed from the command-queue and submitted for execution on the device.
Once flushed from the command-queue, a command will execute after any prerequisites for
execution are met

Ready
All prerequisites constraining execution of a command have been met. The command is placed
in a device work-pool from which it is scheduled for execution

Running
Execution of the command starts. One or more work-groups associated with the command
start to execute

Ended

Execution of a command ends. All of the work-groups associated with that command have
finished their execution. Work-groups associated with the parent kernel are visible to other
units of execution, but not the work-groups associated with the child kernels. Writing data to
global memory happens

Complete The command and also its child commands have finished execution

Table 3: GPU global memory operation modes

26

Figure 23: Execution model: states and transitions between states

A submitted kernel defines an index space and then executes for each index from the work-pool. Each
of these executions is called a work-item. Work-items are grouped into work-groups. Work-groups are
identified by their work-group ID are can be divided into sub-groups, which provide an additional level
of control over execution. Work-items are identified by their global ID and local ID. Global ID is a 1D,
2D or 3D identifier, which points to an index coordinate in theindex space and local ID is a 1D, 2D or
3D identifier, which points to an index coordinate within work-group (Fig. 24). There is a clear analogy
between OpenCL execution model and CUDA thread hierarcy, where work-item, work-group, work-pool
correspond to thread, block, grid respectively. Nevertheless there is a slight difference in managing index
space between OpenCL and CUDA. In OpenCL programmer specifies only the size of the index space
and OpenCL manages automatically the size of the work-group and allows work-groups to be of different
size, while in CUDA a programmer decides the size of the block and the number of threads within the
block. Size of the block remains fixed throughout kernel execution. In this sense CUDA is more robust
and OpenCL is more programming-friendly. OpenCL reduces the programming burden by managing
size of the work-group automatically, however finding the right size of the CUDA block can be a matter
of fine-tuning and improved algorithm mapping to the hardware.
Synchronization in OpenCL is quite equivalent to synchronization in CUDA. Synchronization in
OpenCL is provided by barrier operations, which may only synchronize work-items in the same work-
group. There is no way to synchronize among different work-groups of a kernel instance. Synchro-
nization within a work-group is obtained by barrier operations barrier(CLK LOCAL MEM FENCE) or
barrier(CLK GLOBAL MEM FENCE), which force to flush the data stored in variables to local or global mem-
ory respectively. Global synchronization among all work-groups is reached only by a kernel completion.

27

Figure 24: An example of an 2D index space partitioning to work-groups and work-
items, where (gx, gy) is the global ID, (sx, sy) is the local ID, (wx, wy) is the work-
group ID, (Gx, Gy) is the size of the index space, (Sx, Sy) is the size of work-group
and (Fx, Fy) is global ID offset assuming the case of work-groups having the same
size Sx × Sy and offset (Fx, Fy) is equal to zero (0, 0)

8.1.3 Memory layer

Under OpenCL programming model the abstract device has 4 types of memory: private memory,
local memory, constant memory and global memory (Tab. 4, Fig. 25). Memory organization and hi-
erarcy of OpenCL resembles a lot the CUDA memory model. However memory types in OpenCL are
defined less as a hardware memory (like in CUDA), but more of a logical structure, due to the fact that
OpenCL memory layer has to be applicable to a wide variety of devices, not only GPUs. The four named
address spaces available to a device are logically disjoint meaning they do not overlap, however certain
implementations may choose to let these disjoint named address spaces share physical memory. Another
eminent feature of OpenCL is SVM (Shared Virtual Memory). SVM makes memory addresses to be
meaningful among the host and all of the devices within a context. It logically extends a portion of the
global memory into the host address space giving work-items access to the host address space. SVM
must be supported by hardware of the OpenCL device. It enables efficient data sharing among OpenCL
devices and host.

Memory type Accesibility Comment

Private work-item, single device
stores work-item ID, work-group ID and user-defined private
variables

Local work-group,single device
enables data sharing and communication between work-
items within a work-group

Constant work-pool, all devices

a region of global memory that remains constant during
the execution of a kernel-instance, host allocates and initial-
izes memory objects placed into constant memory, read-only
from the kernel side

Global work-pool, host, all devices
main memory storage, all-round read/write access accesi-
bility, may be cached depending on the capabilities of the
device

Table 4: Device memory types of OpenCL programming model

28

Figure 25: Memory layer under OpenCL programming model

8.2 OpenMP

OpenMP (Open Multi-Processing) is an API that supports multiplatform shared memory multiprocess-
ing programming in C, C++, and Fortran for on most platforms, processor architectures and operating
systems. It consists of a set of compiler directives, library routines and environment variables that
influence run-time behavior. OpenMP is managed by the nonprofit technology consortium OpenMP
Architecture Review Board (OpenMP ARB), jointly defined by a group of major computer hardware
and software vendors such as: AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC, Red Hat, Texas In-
struments, Oracle Corporation and more. The goal of OpenMP is to provide a portable, scalable model
that gives programmers a simple and flexible interface for developing parallel applications for platforms
ranging from the standard desktop computer to the supercomputer. OpenMP was first released in 1997
and is well-known to easily upgrade existing sequential codes and allowing incremental parallelisation.
The latest upgrade OpenMP 4.0 in July 2013 introduced support for accelerator devices including GPUs.

8.2.1 Execution model

OpenMP manages threading based on a Fork and Join model (Fig. 26) [30]. All OpenMP programs
begin as a single process called master thread. The master thread executes sequentially until a par-
allel region is encountered. At this point the master thread “forks” into a number of parallel worker
threads. The instructions in the parallel region are then executed by the team of worker threads. At the
end of the parallel region, the threads synchronise and join to become the single master thread again.

29

Figure 26: The Fork and Join Model

8.2.2 Memory model

The OpenMP API is based on shared memory model. All OpenMP threads have access to memory to
store and retrieve variables. Each thread is allowed to have its own temporary view of the memory. The
temporary view of memory represents any kind of intervening storage, such as machine registers, cache,
other local storage, between the thread and the memory. The temporary view of memory allows the
thread to cache variables and thereby to avoid going to memory for every reference to a variable. Beside
memory and temporary view each thread also has access to its threadprivate memory, which cannot be
shared or accessed by other threads.

9 Assessment of General Purpose GPU systems in real-time
control

The recent advance of GPU technology is offering great prospects in computation. However, the pene-
tration of the GPU technology in real-time control has been somewhat limited due to two main reasons:

1. Control algorithms for real-time applications involving highly parallel computation are not very
common in practical applications

2. The excellent performance in computation of GPUs is paid for a penalty in memory transfer. As
a consequence, GPU applications for real-time controls suffer from an often unacceptable latency

The code was designed to test latency and jitter in dense matrix-vector multiplications and memory
transfer in order to mimic a large state-space based control algorithm. Result were analyzed to see
where GPU computation excels and where it falls behind in order to give useful hints to designers facing
the option of using either a multi-threaded, multicore CPU application or a GPU.

9.1 Introduction

General Purpose GPUs have firmly earned their reputation in High Performing Computation as hardware
for massively parallel computation. Yet GPU application in Real-Time problem solving is just starting to
develop. GPUs are currently widely used in modelling and simulation and recently are gaining attention
for real-time applications. The control of complex phenomena driving the behavior of the plasma during
a discharge may require sophisticated algorithm with high requirements in computation and therefore
not feasible in practice until few years ago. GPUs in real-time application are being considered, but

30

often the performance gain in computation is paid for the overhead in data transfer. At any cycle, in
fact, the control system must acquire data from sensor and send the results of the control computation to
actuators. For this reason, determining whether there could be a gain using GPUs in real-time application
is not straightforward, even if the implemented algorithm can be parallelized. The aim of this work is
to highlight the potentials and limits of the usage of GPUs in real-time applications. In particular, it
will be shown that a common use case in realtime control can be considered the “border line” between
classes of applications where the use of GPUs improves performances and those where other approaches,
such as multicore CPUs yield better results.

9.2 Practical consideration of using GPUs in real-time applications

GPU accelerators work in conjunction with a CPU and therefore execution of the GPU kernels must
be supervised by a program in the real-time application. Since the supervising program is running
within a real-time context, it has to adhere to the common rules for real-time programming. Using a
realtime framework represents a preferable solution over coding from scratch every application. In our
applications, MARTe (Multithreaded Application Real-Time executor) has been used [31]. MARTe
is a C++ framework that provides a development environment for the design and deployment of real-
time applications. The kernel of MARTe comprises a set of data-driven independent blocks, connected
via a shared bus. A MARTe application is designed by configuring and connecting a series of blocks
named GAMs (Generic Application Module). Using MARTe, the developer can concentrate only on the
computation involved in the real-time application, i.e. develop or reuse application-specific GAMs, being
all the required data plumbing carried out by the framework in a very efficient way. GPU computation
will therefore be included in the operation carried out by one or more GAMs used in the application.
The integration is however not straightforward. Firstly MARTe does not yet provide an interface to
access GPU resources and secondly CUDA code can only be compiled with a proprietary compiler nvcc
from Nvidia. However these issues can be overcome by external compilation. CUDA commands have
been wrapped into C++ functions and compiled externally with nvcc to an object file. Then the object
is linked to a MARTe GAM during compilation of the GAM. In such a way GAM is able to call wrapper
functions, which contain CUDA code that was compiled externally by nvcc. GAM instances carrying out
GPU functionality are then connected within MARTe to form the required data-logical network carrying
out the real-time application.

9.3 An example of Real-Time GPU application

There are a number of real-time domains where GPUs may be applied. GPU can efficiently carry out
digital signal processing operations and matrix operations of large size. These operations, coupled with
other GPU-efficient algorithms, can be used in medical imaging, video processing and data processing.
As member of fusion community hereby one presents a real-time application developed for plasma
control purposes on the basis of GPU computation. The application runs an algorithm of plasma
tomography on ISTTOK tokamak [32] (Fig. 27). Signals are produced by 3 detectors with linear arrays
of 16 sensors each sensitive to the intensity of plasma emission. Each cycle a signal of 48 channels (3x16)
arrives to the data acquisition system.
DAR (Data Acquisition and Reconstruction) real-time system is based on ATCA
(Advanced Telecommunications Computing Architecture) technology. DAR at IST-
TOK uses two ATCA modules, one is the acquisition board and the other is an in-
terface from a standard PC motherboard to the ATCA bus via the PCI-Express
port. The GPU is installed on the PC motherboard in an adjacent PCI-Express port.

31

Figure 27: Tomography data acquisition ATCA system installed in ISTTOK

The signal ~f is received by the MARTe framework and immediately copied to the GPU, where it is
multiplied with so-called pseudo-inverse contribution matrix C+ yielding tomographic coefficient vector
~a:

~a[6] = C+
[6,48] · ~f[48] (11)

Then the so-called synthetic signals are calculated by the original un-inversed contribution matrix C:

~̃f[48] = C[48,6] · ~a[6] (12)

The goal is to choose the best-fitting subset of coefficient vector ~a. Selection is performed by calculating
statistical parameter χ2 and then finding the minimum of χ2:

χ2 =

S∑
i

(
fi − f̃i
σ

)2

(13)

where S is the number of sensors in the system and σ is the standart deviation of the signal, which
relates to noise level in the system. According to minimum of χ2 a corresponding subset of ~a is selected
for the reconstruction. The selected subset ~a∗ of ~a is then multiplied with so-called basis matrix B ,
which results in a reconstruction image ~g. Image ~g then is copied back to the host.

~g[100,100] = B[100,100,6] · ~a∗[6] (14)

Contribution matrix C, its pseudo-inverse C+ and basis matrix B are pre-loaded to GPU before the
real-time phase and do not need updating during execution of the algorithm. Indexed squared brackets
indicate the sizes and dimensionality of matrices and vectors. Considering execution time of the whole
cycle, i.e. input data transfer to GPU memory, computation and transfer of the result from the GPU
memory, the main bottleneck is represented by memory transfer. This fact is evident in Fig. 28, where the
computation and memory transfer times are shown at different sizes of the output reconstruction image ~g.

Figure 28: Demonstration of inherent bottleneck in real-time
reconstruction algorithm, where overall computation performs
faster than 2 memory transfers (host→GPU, GPU→host)

32

This application is an example of a common use case in real-time control. Input data is collected and
transferred to GPU memory, where some kind of parallel algorithm is executed and finally result data
copied back from GPU memory to CPU memory to be sent. Data transfer must be performed in both
directions at every control cycle, thus affecting system performance. Intuitively, applications involving
more complex computation, efficiently carried out by the GPU provided the algorithm can be effectively
parallelized, are more likely to perform better than in CPU systems. However defining classes of com-
putation where GPU solutions perform better than CPU ones is not straightforward. For this purpose,
a particular computation, that is, matrix-vector multiplication has been considered and its performance
compared with single and multithreaded CPU solutions. It turns out that for this kind of computa-
tion and for very large matrix and vector dimensions, GPU performance is comparable to multicore
and multithreaded CPU performance. This fact provides a rule of thumb in the evaluation of the most
appropriate architectural choice in real-time applications, i.e. application involving more complex com-
putation can be considered possible candidates for GPU implementation, provided the amount of data
exchanges to/from the GPU memory is not increased. Moreover, matrix-vector multiplication occurs
very often in MIMO (Multiple Inputs Multiple Outputs) controls, e.g. in state-space based control and
therefore represents a good example for performance analysis.
Basically GPGPGU is a fit computational platform for following requirements/options:

• Control period ranging from 1 to 100 ms

• Input and output vectors of small size, i.e. up to few thousands of input samples. The input
signals are typically read from physical sensors whose number typically range from some tens (e.g.
the electromagnetic probes in a fusion device) to some thousands (e.g. thermocouples in a large
experimental device). Output signals are sent to actuators and are likely to be in a smaller number
than the input sensors

• A possibly large set of read-only parameters that are transferred once in GPU memory (e.g. ma-
trices used in the computation of the state space)

• A set of data maintained in the GPU memory from cycle to cycle, computed at cycle N and used
at cycle N + 1

Another class of real-time applications is the elaboration of image frames acquired by camera devices.
Image based diagnostics are becoming more and more common in many fusion experiments, where they
are used to complement the physical parameters derived from other diagnostics. The use case can be
described as follows:

• Frame acquisition rate ranging from 5 Hz to 50 Hz

• Data input size ranging from 0.5 to 10 MB, depending on camera resolution and pixel depth. Larger
input sizes occur in case GPU computation involves frames from more than one camera

• A set of read-only parameters that are transferred once in GPU memory and that are used for
online analysis. The dimension of this set may be very large (e.g. neural network parameters used
in feature detection)

• Depending on the application, a possibly large set of data computed at cycle N and used at cycle
N+1 (in case image elaboration relies also on the past history)

• Wide range in the data output size depending on the nature of the computation (feature extraction
or image elaboration)

In the following, two sample applications mimicking the above use cases are presented, i.e. 1)
dense matrix-vector multiplication and 2) Sobel image filtering. Rather than in absolute performance
numbers, that heavily depend on the memory access patterns specific to the given computation, we are
interested in the evaluation of the jitter in overall computation time using different strategies for data
transfer to and from GPU memory.

33

9.4 Performance analysis and comparison

9.4.1 Matrix-Vector multiplication

Matrix-vector multiplication in the following form:A1,1 · · · A1,n

...
. . .

...
Am,1 · · · Am,n


x1

...
xn

 =

b1...
bn

 (15)

can be easily parallelized by considering that every row-column multiplication, involving n2 sums
and multiplications can be performed in parallel for every element of the output vector. Fig. 29a
shows the distribution of the execution time assuming an input and output vector of 104 float com-
ponents and without considering any optimization in memory usage, i.e. letting all data reside in
Global memory. CUDA events have been used to register the execution duration. The first op-
timization using Texture memory to keep the values of matrix A leads to a dramatic reduction in
overall time and, more importantly, of its jitter that is smaller than 50 [µs] (Fig. 29b). A fur-
ther, slight, improvement (but not in jitter) is achieved by pre-loading the input vector x from
Global memory into Shared memory as it is accessed multiple times during row-column multiplica-
tion. Therefore the appropriate transfer method represents an important factor in overall perfor-
mance. The other graphs in Fig. 29 refer to different configurations for memory buffer allocation.

Figure 29: Matrix-vector multiplication latency including memory transfer:
(a) näıve implementation using Global memory
(b) same implementation, but using Texture memory for matrix A
(c) using Texture memory for matrix A and Shared memory for input vector
(d) same as (c), but using non-pageable memory buffer
(e) same as (d) but using write combined memory for input buffer
(f) same algorithm as (c) but using directly mapped memory buffers

Fig. 29c refers to the default usage of pageable allocation for memory transfer to/from the GPU. From
Fig. 29cde it can be seen that no evident improvement in using page-locked and write-combined, probably
due to the small amount of transferred data. Conversely, direct mapping shown in Fig. 29f performs the
worst both in average time and jitter and thus should not be used for real-time applications. No difference

34

in performance has been observed using multiple streamed memory transfers for input and outputs in
the same control cycle. In general it is impossible to stream computation for a given control cycle, so
that it overlaps with input data transfer for the same cycle (for example in this application the whole
input vector must be in GPU memory before computation). However if it was possible to allow a latency
larger that the system period, then one could overlap computation for cycle N with data readout for cycle
N + 1 in a pipeline organization, making a more efficient usage of memory and computation resources.
Depending on the nature of the computation it may be possible to stream output memory transfer so
that it can be performed in parallel with GPU computation.

9.4.2 Comparison with CPU architectures

As already discussed, GPU-based real-time applications usually have an inherent memory bottleneck.
Anyway GPU kernels alone offer great processing speeds because of their massively parallel nature.
Memory bottlenecks must also be considered in CPUs (and sometimes they really limit the comput-
ing power of the processor), but their negative effects, often limited by the system caches, are in
general less dramatic than in GPUs. The performance of the same matrix-vector multiplication us-
ing single-threaded and multiple-threaded (using 6 cores) computation is reported in Fig. 30a and b
respectively. For the considered vector size, the GPU performance outperforms the multi-threaded
CPU both in average time and jitter. The performance turns out to be comparable in average time
and jitter for an input vector of around 400 components, thus providing a rule of thumb indica-
tion on the applicability of GPU solutions depending on the vector size for this class of applications.

Figure 30: Matrix-vector multiplication duration on CPU:
(a) single-threaded
(b) multi-threaded

A server with Intel Xeon E5-2637 v2 was used to perform CPU tests. It is a processor with 8 physical
cores and 5 Mb L2 cache running at base frequency of 3 GHz.

9.4.3 Sobel image filtering

The second application performs Sobel filtering for the computation of X and Y gradients in edge
detection algorithms. The performance measures refer to a 1000 × 1000 image with a pixel depth
of 16 bits and are shown in Fig. 31. Unlike the previous application, involving a much smaller data
exchange, the advantages in using non-pageable memory buffer is evident (Fig. 31a vs Fig. 31bc).
Also in this application, direct mapping performs much worse both in average time and jitter.

35

Figure 31: Sobel filtering latency including memory transfer:
(a) pageable buffers
(b) non-pageable buffers
(c) non-pageable, write-combined buffers
(d) direct memory mapping

Sobel filtering carries out a localized access pattern, because, for every pixel, only the neigh-
bor pixels are considered in gradient computation. It is a well-known fact that GPU perfor-
mance can dramatically change for different memory access patterns. Fig. 32 shows the mea-
sured performance, when Sobel filtering is replaced by an algorithm spanning the correspond-
ing image column for every pixel. Unsurprisingly, the average computation and transfer time
is much larger, but, interestingly, the jitter has not changed. The measured jitter is much
less than 1 ms, therefore making GPUs a very promising candidate for camera-based diagnostics.

Figure 32: Same parameters of Fig. 31 using an algorithm, that
spans the corresponding image column for every pixel

It is worth noting that GPU performance in real-time applications can be definitely improved by trans-
ferring data directly from input devices into CPU memory without involving CPU memory. For example,
in NVIDIA devices, GPU Direct RDMA has been introduced since Kepler class GPUs and CUDA 5.0.
Using standard features of PCI Express and under some configuration limitations, it is possible to develop
kernel modules that perform direct transfer from device to GPU memory. For example, GPU Direct
RDMA [33] has been used in [34] to acquire camera image into GPU memory for fast image processing.

36

9.5 Conclusions

This study has presented some insights and discussions regarding nature of CPU and GPU applications
in real-time. The results can be summarized as follows:

• Memory transfer between CPU and GPU memory represents the main bottleneck in real-time
applications.

• The width/height of a tomographic image was used as a parameter to describe latencies of GPU
processing and memory transfers. Approximately constant latencies were observed across the range
of different sizes of images even though the amount of data (float) grows quadratically. An image
of size 1024x1024 of float data is 4 MB. This suggests that DMA overhead dominates at operating
transfers of couple MB in size and smaller. This complies with the theoretical bandwidth of 288
GB/s of K40. There was no practical reason to process bigger images, because higher resolution
does not contribute to the quality of tomographic features.

• As a rule of thumb, single-threaded applications should never be developed, but instead the focus
must always be on multi-threaded implementations.

• As a rule of thumb, given the time restriction of 100 µs (the common time scale of real-time control
in fusion), it is recommended to use multi-threaed CPUs for input vectors up to size of 400 floats in
case of matrix-vector multiplication algorithm. For bigger input vectors GPU is a preferred choice.

• Latency caused by kernel scheduling does not depend on the kernel code itself, only on number of
GPU threads/blocks required. Therefore launching the same kernel multiple times or launching
different kernels with the same number of threads/blocks makes no difference in latency (at least
the scheduling latency). The same is valid for GPU kernels in MARTe context (GAM).

• Due to the fact that real-time CPU applications are oftenly run by specially designated and config-
ured RTTs (Real Time Thread) certainly CPU applications experience less jitter, while GPUs are
peripheral devices, which are subject to system management processes such as kernel scheduling,
instruction/data transfers, memory caching, which cause device behaviour and hardware responses
to be less deterministic (more jitter). GPU jitter is inherent and under normal system configuration
it is always present and it is always higher than CPU-thread jitter. Therefore it is recommended
to use GPU when expected jitter is much lower than expected processing latency.

• Expected lattency and jitter in real-time GPU applications can be definitely improved by using
RDMA technology.

• In cases of complex algorithms with many functional parts a mix of CPU and GPU processing
can be the best approach. Multicore CPU processing is however limited within MARTe context,
because each CPU RTT thread operates another instance of a GAM. Multicore CPU processing
within a single GAM is not an option (to my experience), which makes GPU as a viable option for
parallel processing in GAMs.

10 Summary

Computation advances of the last half-century have depended critically on the rapid growth of single-
processor performance at ever-decreasing cost and with manageable increases in power consumption.
That growth stemmed from increasing the number and speed of transistors on a processor chip by
reducing their size and (with improvements in memory, storage, and networking capacities) resulted in
ever more capable computer systems. It was important to support Moore’s law with new hardware to
maintain the sequential stored-program model that was developed for computers in the 1940s. Once
power efficiency became a real problem for the hardware the first multicore processors started appearing
in 00’s. Yet sequential programming model is still dominating over parallel programming model in general
public and major part of scientific community. It seems that the hardware changed faster than the habits
of consumers and programmers. Anyway the end of dramatic exponential growth in single-processor
performance marks the end of its dominance in computing world. The era of sequential computing

37

is giving way to a new era of parallel computing, where parallelism is at its core. Multicore CPUs
are the natural succession for the need of general parallel computing and GPGPUs for data-parallel
computing. GPGPUs are particularly well-suited to address problems that can be expressed as data-
parallel computations with high arithmetic intensity (high ratio of arithmetic operations to memory
operations), i.e. where SIMD computation model can be exploited. Since the same instruction is executed
for all data elements, there is a lower requirement for sophisticated flow control (unlike CPUs). And
since it is executed on many data elements and has high arithmetic intensity, the memory access latency
can be hidden with calculations instead of big data caches. Equiped with powerful modern APIs (CUDA,
OpenCL, OpenMP) GPGPUs became invaluable tools in every aspect of computer aided progress. Many
applications that process large data sets can use a data-parallel programming model to speed up the
computations. In 3D rendering large sets of pixels and vertices are mapped to parallel threads. Similarly,
image and media processing applications, such as post-processing of rendered images, video encoding
and decoding, image scaling, stereo vision and pattern recognition can map image blocks and pixels
to parallel processing threads. But most important that now parallel processing is paving its way to
variety of sciences, such as general signal processing, physics simulations, computational finance and
computational biology. Recent technology predictions speculate, that in order to completely satisfy
data-parallel and task-parallel capability demand on hardware a new cross-breed architecture between
GPUs and CPUs should emerge.

38

Part III

Plasma simulations using PIC method

11 Plasma basics

All baryonic (ordinary) matter in the universe can be found in one of 4 aggregate states: solid, liquid, gas
and plasma. All states are defined by the level of bonding that exists in the substance. In solids particles
are closely packed and form strong bonds, that manifest in a rigid/crystaline substance of fixed volume
and shape. In liquids particles are less densely packed and form weaker bonds, that allow substance to
flow, be mobile and “shapeless” by conserving volume. In gases particles form virtually no bonds, they
experience Brownian walk and do not conserve volume. In plasma bonds within individual atoms are
broken, i.e. nuclei and electrons are disassociated and free to move independently. Due to that plasmas
are electrically conductive, respond strongly to electromagnetic fields and can produce magnetic fields
and electric currents. Yet charge quasi-neutrality condition must hold and it is a defining feature of
plasma state, otherwise it is classified as ionized gas instead. Plasma is called the 4th state of matter
and comprises about 99.999% of all matter in the observable universe (excluding dark matter) according
to current scientific consensus.
The plasma modelling is complicated due to fact that the charged particles both produce and are subject
to electromagnetic fields at the same time. Interparticle collisions must also be taken into account,
which introduces another level of complexity. The inelastic collisions are generation and loss of particles,
which allow species to exchange energy, and can be interpreted as an average friction force between
different particle species. The overall system is difficult to analyze and posses nonlinear nature. To
make progress with such a complicated system, various simplifying approximations are needed. The
interparticle collisions are considered independently, since they occur on space and time scales that
are usually much shorter than those of the effective fields. Collisions contribute to the equilibrium
velocity distribution of the species. The velocity distribution is averaged over velocities to obtain the
macroscopic motion. The overall macroscopic motion is a compound effect of internal and external
fields acting on plasma. Self-generated internal fields are usually nonlinear and may be linearized only
in particular phenomena, such as waves in plasmas. In order to model plasmas in fuller and more
complete manner simulations of various kinds are designed. Two main groups of simulations exist:
kinetic and fluid, which respectively stand as Lagrangian and Eulerian approaches to solving Boltzmann
equation. Kinetic simulations deal with plasma as collection of particles and employ techniques, such
as gyrokinetic theory, Fokker-Planck theory and PIC method. Fluid simulatations deal with plasma as
a fluid and employ techniques, such as fluid dynamics, MHD (Magnetohydrodynamics) and gyrofluid
theory. The choice of the “right” simulation highly depends on physics and phenomena of interest. In
order to simulate plasmas in highly complex experiments such as tokamaks, integrated modelling is the
way. There can be many different simulations involved to model plasma in various tokamak regions (core,
edge, SOL (Scrape-Off Layer) and divertor) and during various phases of tokamak discharge (start-up,
sustainment, unexpected disturbance, shut down). Indeed any simulation must represent reality and “be
physical” as much as possible in order to be scientifically useful and valuable. Basic plasma description
provides plasma parameters, which are universal and unequivocal across theories and methods and are
first-hand “reality/physics check” references.

11.1 Poisson equation

Plasma is a fluid/collection of charged particles fulfilling a quasi-neutrality condition and displaying
collective behaviour. Plasma’s electromagnetic nature is governed by Maxwell’s equations (Eq. 16):

ε0∇· E(r, t) = ρ(r, t) Gauss’ law
µ0∇· H(r, t) = 0 Gauss’ law for magnetism

∇× E(r, t) = −µ0
∂H(r,t)
∂t Faraday’s law

∇× H(r, t) = ε0
∂E(r,t)
∂t + J Ampere’s law

(16)

where E(r, t) and H(r, t) are the electric and magnetic field vectors, ε0 ≈ 8.854 × 10−12 [F/m] is the
vacuum permittivity and µ0 = 4π × 10−7 [H/m] is the vacuum permeability. Maxwell set of equations

39

can be reduced to a electrostatic approximation by making ∇×E = 0 (Faraday’s law). The electrostatic
approximation does not take into account magnetic field evolution. Often this is enough to describe most
of the plasmas, except where magnetic fields are strong and with a non-negligible time variation, e.g.
tokamak plasmas. Since the curl of a gradient is zero, this implies that the electric field can be derived
from the gradient of a scalar potential:

E(r, t) = −∇φ(r, t) (17)

Combined with Gauss’ law (Eq. 16) one obtains Poisson’s equation:

∇2φ(r, t) = −ρ(r, t)

ε0
(18)

Poisson’s equation constitutes the fundamental basis for the further developments and simulations of
this thesis.

11.2 Plasma frequency

Plasma is able to oscillate at certain frequency called plasma frequency. Plasma frequency is a character-
istic parameter of plasma and can be easily derived. Consider 1D plasma slab, where one of the charged
species is displaced from its quasi-neutral position by an infinitesimal distance. The charge density
develops on the leading face of the slab, which in turn generates the electric field in the x direction:

E =
σ

ε0
=
enex

ε0
, (19)

where ne is electron density, x is charge displacement and e ≈ 1.60217662× 10−19 [C] is the elementary
charge. The force acting on electrons is Fe = −eE. Using Newton’s second law one gets:

me
∂2x

∂t2
= −e

2nex

ε0
−→ ∂2x

∂t2
+
e2ne

meε0
x = 0, (20)

where me ≈ 9.10938356 × 10−31 [kg] is electron mass, ω2
e ≡ e2ne

meε0
is called plasma frequency. Plasma

frequency gives a clear indication for simulation integration time ∆t, which has to be smaller than ω−1
e .

Otherwise there is no consistent interplay of particles and electric fields and simulation does not produce
plasma behaviour. In such case particles usually exit the system before completing one plasma oscillation.

11.3 Debye length

Debye length (named after the dutch-american physical chemist Peter Debye (1884 – 1966)) is a charac-
teristic parameter of plasma and is used to understand the spatial scale of validity for quasi-neutrality
condition. Analogically to plasma frequency, which defines chearacteristic temporal scale, Debye length
defines characteristic spatial scale of plasma. Derrivation starts with a Poisson’ equation for a negative
point charge in 1D:

∂2φ(x)

∂x2
= −e(ni(x)− ne(x))

ε0
(21)

The plasma is quasi-neutral at infinity ni = ne = n∞ and it is in thermal equilibrium, i.e. electron

density follows a Maxwell-Boltzmann law ne(x) = n∞e
eφ(x)
kBTe . Then Poisson’s equation (Eq. 21) becomes:

∂2φ(x)

∂x2
=
en∞

(
e
eφ(x)
kBTe − 1

)
ε0

(22)

Using Taylor expansion [ex = 1 + x2 + 1
2x

2 + . . .] around φ(x) = 0:

∂2φ(x)

∂x2
=

en∞

(
1 + eφ(x)

kBTe
+ 1

2

(
eφ(x)
kBTe

)2

+ . . .− 1

)
ε0

(23)

40

One assumes a “warm” plasma, where the particle energy of thermal movement is much higher than the

energy of electrostatic evolution, i.e. eφ(x)
kBTe

� 1. Then Eq. 23 is approximated:

∂2φ(x)

∂x2
≈ n∞e

2

ε0kBTe
φ(x) =

φ(x)

λ2
D

(24)

φ(x) = φ0e
− |x|λD (25)

where λD ≡
√

ε0kBTe

n∞e2
is called Debye length. Debye length is the scale, over which electrons screen out

electric fields in plasmas, i.e. Debye shielding. In other words, the Debye length is the distance, within
which quasi-neutrality is broken down. A Debye sphere is a volume, whose radius is the Debye length.
Debye shielding is a purely electrostatic effect, because it does not depend on species mass, but only
temperature and density. In order to properly simulate plasma, spatial resolution must respect Debye
length, so that ∆x < λD.

11.4 CFL condition

Plasma parameters such as Debye length λD and plasma frequency ωp basically determine what kind of
plasma one is simulating and what ∆x and ∆t has to be chosen as simulation parameters in order to
obtain physical results. These two parameters alone determine, whether simulation is going to produce
physical behaviour or not. However another validity condition exists that relates ∆x and ∆t in single
statement. The relation between ∆t and ∆x is stated as CFL (Courant-Friedrichs-Lewy) condition [35]:

∆t

n∑
i=1

vi
∆xi

[n=3]
=

3∆tv

∆x
< 1, (26)

where n is the dimensionality of the problem, v is the particle velocity against which CFL is computed
(usually set to value of thermal velocity vth). CFL condition comes as a general stability requirement
for finite-difference numerical solutions of partial differential equations. In the simulations of this thesis
one does NOT strictly follow CFL condition, but rather explore independent parameter configurations
for ∆t and ∆x together with other paramters such as solver tolerance and number of particles per cell.
In simple language CFL does not allow particles to move across more than one cell per time step.

11.5 Collisionless sheath

At the edge of a bounded plasma experiments demonstrate a layer of violated quasi-neutrality, where
ions density exceeds electron density. This layer is called sheath. The cause of sheath formation lies
in the fact, that ions and electrons have very different mobilities, which are direct effect of the mass
difference between ions and electrons. Due to the density difference, there is a build up of positive charge
density, which results in generation of electric fields next to the surface and domain boundaries (Fig. 33).
Those developed fields balance the fluxes of electrons and ions reaching the wall, i.e. decelerates electrons
and accelerates ions until equilibrium is reached. In such a way the bulk plasma is shielding itself from
edge plasma by building up plasma potential φp (Fig. 35). In fact the sheath is a natural response of
plasma due to surfaces and domain boundaries. The thickness of such a layer is several Debye lengths λD

thick, which depends on plasma characteristics such as temperature and density. One assumes electrons
and ions of bulk densities ne and ni and temperatures Te and Ti respectively. The coordinate origin is
set at the plasma-sheath interface point (interface between quasi-neutrality and non-neutrality regions)
(Fig. 33). At the coordinate orgin ne(x)|x=0 = ni(x)|x=0 = ns, φ(x)|x=0 = 0 and ions have speed
u(x)|x=0 = us. Ion energy conservation is given by:

1

2
miu

2(x) =
1

2
miu

2
s − eφ(x), (27)

where mi is ion mass. Ion momentum conservation is given by:

ni(x)u(x) = nsus (28)

41

By combining Eq. 27 and Eq. 28 one expresses ni(x):

ni(x) =
nsus

u(x)
=

nsus√
u2

s −
2eφ(x)
mi

=
ns√

1− 2eφ(x)
miu2

s

(29)

One can construct the RHS of Poisson equation (Eq. 21) by having ion density ni(x) (Eq. 29) and Maxwell-

Boltzmann electron density ne(x) = nse
eφ(x)
kBTe :

∂2φ(x)

∂x2
=
ens

ε0

e eφ(x)
kBTe − 1√

1− 2eφ(x)
miuss

 (30)

Unlike equation 25 the equation 30 is nonlinear, it is not truncated at higher orders. In fact Eq. 30 allows
to predict presheath. Presheath is a region of concerved quasi-neutrality but smaller density than bulk
plasma (Fig. 33). Presheath is the region, where ion-acoustic instabilities develop.

Figure 33: Density (top) and potential (bottom) profiles in case
of sheath formation

According to [36] the Debye sheath depth is an approximation:

d = 1.018λD

(
φp

Te

) 3
4

(31)

11.6 Plasma potential

Plasma potential φp is primary effect of sheaths in plasma and one of the main characteristics of equili-
brated plasmas. In a collisionless sheath description (Fig. 30) the φp is a combined effect of sheath and
presheath presence, therefore one can write:

φp = φpresheath + φsheath (32)

According to [36] potential drop in the presheath:

φpresheath =
Te[eV]

2
(33)

According to [36] potential drop in the sheath:

φsheath =
Te[eV]

2
ln

mi

2πme
(34)

Eq. 32 becomes:

φp =
Te[eV]

2

(
1 + ln

mi

2πme

)
(35)

42

11.7 Thermostat theory

Collisionless PIC codes are known to produce good results during transient state of plasma, i.e. it
procudes correct φp for a unequilibrated plasmas for very short time scales. However in order to obtain
complete sheath and presheath formation and obtain correct φp one has to simulate much longer time
evolutions, i.e. steady state is required. However simply extending transient state simulation for longer
duration leads to incorrect results. The fact that that ions and electrons have such different mobilities
makes electron escape domain much faster than ions, which drops the electron temperature Te and
drains the energy from the system. This effect is called electron cooling and in a long run severely alters
simulation output. In fact electron cooling is an artificial effect of the simulation, which occurs due to
the fact that simulation has NO collisions. In order to compensate for electron cooling one has to inject
energy into the system. Numerically it is performed by regenerating lost electrons and rescaling the
velocities to maintain required temperature in the system. According to kinetic theory the statistical
distribution of a velocity vector ~v:

f(~v) = f(vx, vy, vz) = f(vx)f(vy)f(vz), (36)

where each of the directional components follow Gaussian distributions:

f(vx,y,z) =

√
m

2πkBTe
e
−
mev

2
x,y,z

2kBTe , (37)

which makes Eq. 36 into:

f(~v) =

√(
m

2πkBTe

)3

e
−
me(v2

x+v2
y+v2

z)
2kBTe =

√(
m

2πkBTe

)3

e
− me~v

2

2kBTe (38)

The modulus of the velocity vector |~v| follows Maxwell-Boltzmann distribution:

f(|~v|) =

√(
me

2πkBTe

)3

4π|~v|2e−
me|~v|2
2kBTe (39)

Electron regeneration follows distributions Eq. 38 and Eq. 39 (which carry the same meaning, just are
different representations of velocity space). In a long run only slow (less energetic) electrons remain in
the system, because fast (more energetic) electrons manage to escape the domain, which leads to electron
cooling. The temperature in the system is calculated as:

T =
Tx + Ty + Tz

3
, where Tx,y,z =

me

kB

(〈
v2
x,y,z

〉
− 〈vx,y,z〉2

)
, (40)

where
〈
v2
x,y,z

〉
=

v2
x,y,z

N and 〈vx,y,z〉2 =
v2
x,y,z

N2 , where N is number of paticles in the scope. Eq. 40 becomes:

T =
me

3kB

(〈
v2
x

〉
− 〈vx〉2 +

〈
v2
y

〉
− 〈vy〉2 +

〈
v2
z

〉
− 〈vz〉2

)
=

me

3kB

(〈
~v2
〉
− 〈~v〉2

)
=

2Ek

3kB
(41)

In order to compensate for the lost energy, a virtual thermostat has to be introduced into system. A
thermostat is a process/algorithm, which rescales velocities for a fraction of particles, i.e. particles
are compensated for the lost velocities (energy). The simplest form of a thermostat is a Berendsen
thermostat. The Berendsen thermostat [37] is an algorithm to rescale the velocities of particles in
simulations to control the simulation temperature. It is defined as a first-order differential equation:

dT

dt
=
T0 − T
τ

(42)

Solution:
T (t) = T0e

− t
τ , (43)

where t is time, T is temperature, T0 is initial system temperature, τ is the time constant of the
thermostat. Floating plasma potential φp is proportional to temperature of the system φp(t) ∼ T (t).

43

Ratio t
τ is proportional to the portion of particles N∆t

Ntotal
, whose velocities are rescaled each time step ∆t.

By rescaling velocities for a portion of particles one can simulate thermostat process (heat bath with a
constant temperature coupled to the plasma):

φp ∼ φp0e
− N∆t
Ntotal , (44)

where N∆t

Ntotal
is thermostat efficiency.

12 Plasma simulation

In 1872 Ludwig Boltzmann devised a fundamental description for evolving thermodynamic systems,
which up-to-date stands as a cornerstone in statistical physics. It describes transport of heat, momentum
and mass, allows to derive fluid equations, magnetohydrodynamic equations, plasma and fluid properties
such as viscosity, thermal conductivity and electrical conductivity. Boltzmann equation (Eq. 45) is solved
for the particle distribution function f , which holds the statistical properties of the system.(

∂f

∂t

)
Coll︸ ︷︷ ︸

collisional term

=
∂f

∂t
+ v · ∂f

∂x︸ ︷︷ ︸
diffusion term

+
F

m
· ∂f
∂v︸ ︷︷ ︸

force term

, (45)

where f(x,v, t) is a multidimentional particle distribution function over phase space, F is the force
field that fluid particles are subjected to, v is the velocity field that fluid particles are participating in,
m is the mass of a fluid particle. The equation is composed of three components of different nature:
collisional term, diffusion term and force term. Any imbalance in these three terms results in evolution
of distribution function f . In 1938 Anatoly Vlasov [38] modified Boltzmann equation by removing
the collisional term due to the difficulties of describing plasmas with long-range Coulomb interactions.
The modified version of Boltzmann equation is reffered as “collisionless Boltzmann equation” or Vlasov
equation (Eq. 46).

df

dt
=
∂f

∂t
+ v · ∂f

∂x
+

F

m
· ∂f
∂v

= 0, (46)

Vlasov equation is a nonlinear integro-differential equation, which can be solved analytically only for
simplified problems, but for realistic problems only numerical solutions are possible. Numerical schemes
to solve Vlasov equation can be grouped into three groups: Eulerian, Lagrangian and semi-Lagrangian.
The main difference of these schemes lie in the treatment of the distribution function f . Eulerian schemes
follow the change of the distribution function f at a specific point in phase space, Lagrangian schemes
see the distribution function f as a collection of discrete bits (particles), which are followed individually
along their trajectories in the phase space. The mesh is deforming with the fluid evolution in Eulerian
schemes and the mesh is rigid in Lagrangian schemes. Semi-Lagrangian scheme obtain features from
both Eulerian and Lagrangian schemes by using a deforming mesh from Eulerian scheme and having
discrete equations from the Lagrangian scheme.

13 PIC method

PIC (Particle-In-Cell) method is a Lagrangian scheme proposed by R. W. Hockney in 1988 [39] and C.
K. Birdsall in 1991 [40, 41]. Throughout years PIC method became very popular in simulating plasmas
due to its straightforward and universal implementation and ability to simulate plasma behaviour on
microscopic scales. In PIC the plasma is described as a collection of charged particles, which are moved
by self-generated and boundary-induced electric fields. In this thesis PIC will be used only to simulate
electrostatic behaviour. Electrodynamic effects (Ampere’s law, Faraday’s law) are not taken into account.
Maxwell’s equations are reduced to a single Poisson equation. It is a substantial simplification of physics
only valid under assumptions that electromagnetic effects are negligible and plasma density is low. PIC
method is comprised of 5 steps:

1. The charge of particles is projected onto the mesh

2. Electrostatic potential field is computed by solving Poisson equation

44

3. Electrostatic electric field is computed from electrostatic potential field, which is used to interpolate
Lorentz force for each particle

4. Moving particles to new locations according to interpolated Lorentz force

5. Processing particle collisions (optional)

13.1 Charge projection

Charge density carried by plasma particles has to be distributed to mesh points. There are three schemes
to do it: NGP (Nearest Grid Point), CIC (Cloud In Cell), TSC (Triangular Shaped Cloud). NGP
assigns particle charge to the nearest mesh point, CIC linearly interpolates particle position in the mesh
cell and distributes charge according to the distance to the nearest mesh points, TSC uses nonlinear
interpolation to distribute charge among nearest mesh points. CIC and TSC exist in higher order
representation by including additional layers of vicinity mesh points. First order CIC (Eq. 47) is the
most usable scheme, because its implementation is simple, accurate and computationaly efficient. CIC
inspired the name of PIC method. Therefore it is used for simulation results of this thesis. First order
CIC distributes the charge among nearest mesh points according to the relative size of volume segments
that particle coordinates divide the cell to (Fig. 34).

ρi,j,k = q · ntop north east = q · Vtop north east

Vcell
= q · (xi+1−x)(yj+1−y)(zk+1−z)

∆x∆y∆z

ρi+1,j,k = q · ntop north west = q · Vtop north west

Vcell
= q · (x−xi)(yj+1−y)(zk+1−z)

∆x∆y∆z

ρi,j+1,k = q · ntop south east = q · Vtop south east

Vcell
= q · (xi+1−x)(y−yj)(zk+1−z)

∆x∆y∆z

ρi+1,j+1,k = q · ntop south west = q · Vtop south west

Vcell
= q · (x−xi)(y−yj)(zk+1−z)

∆x∆y∆z

ρi,j,k+1 = q · nbottom north east = q · Vbottom north east

Vcell
= q · (xi+1−x)(yj+1−y)(z−zk)

∆x∆y∆z

ρi+1,j,k+1 = q · nbottom north west = q · Vbottom north west

Vcell
= q · (x−xi)(yj+1−y)(z−zk)

∆x∆y∆z

ρi,j+1,k+1 = q · nbottom south east = q · Vbottom south east

Vcell
= q · (xi+1−x)(y−yj)(z−zk)

∆x∆y∆z

ρi+1,j+1,k+1 = q · nbottom south west = q · Vbottom south west

Vcell
= q · (x−xi)(y−yj)(z−zk)

∆x∆y∆z

(47)

where {ρi,j,k, ρi+1,j,k, ρi,j+1,k, ρi+1,j+1,k, ρi,j,k+1, ρi+1,j,k+1, ρi,j+1,k+1, ρi+1,j+1,k+1} are the charge
density values calculated onto the mesh; {ntop north east, ntop north west, ntop south east, ntop south west,
nbottom north east, nbottom north west, nbottom south east, nbottom south west} are the particle density val-
ues; {Vtop north east, Vtop north west, Vtop south east, Vtop south west, Vbottom north east, Vbottom north west,
Vbottom south east, Vbottom south west} are the cell volume segments that particle coordinates divide the
cell to; Vcell is the cell volume; {xi, xi+1, yj , yj+1, zk, zk+1} are the cell node coordinates; {x, y, z}
are the particle coordinates; {∆x,∆y,∆z} are the cell dimensions; q is the weighted charge of particle
(charge of macro-particle).

Figure 34: Particle in a cell at position (x0, y0, z0)

45

13.2 Poisson equation

Once charge density is distributed over the grid, next step is to solve Poisson equation (Eq. 48) and find
the configuration of electrostatic potential field φ.

∇2φ = − ρ

ε0
, (48)

where φ is the electrostatic potential field, ρ is the charge density, ε0 = 8.854187 · 10−12 [F/m] is the
vacuum permittivity. Poisson equation is a partial differential equation, which aquires 3D form (Eq. 49):

∂2φ(x, y, z)

∂x2
+
∂2φ(x, y, z)

∂y2
+
∂2φ(x, y, z)

∂z2
= −ρ(x, y, z)

ε0
(49)

Discretized Poisson equation:

∆2φi,j,k
∆x2

+
∆2φi,j,k

∆y2
+

∆2φi,j,k
∆z2

= −ρi,j,k
ε0

(50)

Applying FDM (Finite Difference Method):



∆2φi,j,k
∆x2 =

∆

(
φ
i+ 1

2
,j,k
−φ

i− 1
2
,j,k

)
∆x2 =

φi+1,j,k−2φi,j,k+φi−1,j,k

∆x2

∆2φi,j,k
∆y2 =

∆

(
φ
i,j+ 1

2
,k
−φ

i,j− 1
2
,k

)
∆y2 =

φi,j+1,k−2φi,j,k+φi,j−1,k

∆y2

∆2φi,j,k
∆z2 =

∆

(
φ
i,j,k+ 1

2
−φ

i,j,k− 1
2

)
∆z2 =

φi,j,k+1−2φi,j,k+φi,j,k−1

∆z2

(51)

Discretized Poisson equation (Eq. 50) becomes:

φi+1,j,k − 2φi,j,k + φi−1,j,k

∆x2
+
φi,j+1,k − 2φi,j,k + φi,j−1,k

∆y2
+
φi,j,k+1 − 2φi,j,k + φi,j,k−1

∆z2
= −ρi,j,k

ε0
(52)

Assuming uniform spatial discretization ∆x = ∆y = ∆z Eq. 52 becomes:

φi+1,j,k + φi−1,j,k + φi,j+1,k + φi,j−1,k + φi,j,k+1 + φi,j,k−1 − 6φi,j,k
∆x2

= −ρi,j,k
ε0

(53)

Rearranging:

6φi,j,k − φi+1,j,k − φi−1,j,k − φi,j+1,k − φi,j−1,k − φi,j,k+1 − φi,j,k−1 =
ρi,j,k ·∆x2

ε0
:= bi,j,k (54)

46

By having index ranges


1 ≤ i ≤ m
1 ≤ j ≤ n
1 ≤ k ≤ l

equation Eq. 54 is expressed as a linear system of size mnl:

Amnl×mnl · φmnl = bmnl, (55)

where Amnl×mnl =


Bnl×nl −Inl×nl

. . . 0

−Inl×nl Bnl×nl
. . . 0

. . .
. . .

. . . −Inl×nl
0 0 −Inl×nl Bnl×nl

 , (56)

where Bnl×nl =


Cl×l −Il×l

. . . 0

−Il×l Cl×l
. . . 0

. . .
. . .

. . . −Il×l
0 0 −Il×l Cl×l

 ,

where Cl×l =


6 −1

. . . 0

−1 6
. . . 0

. . .
. . .

. . . −1
0 0 −1 6



and φmnl =



φ1,1,1

...
φ1,1,l

...
φ1,n,l

...
φm,n,l


, bmnl = ∆x2

ε0



ρ1,1,1

...
ρ1,1,l

...
ρ1,n,l

...
ρm,n,l


(57)

and Inl×nl, Il×l are identity matrices.

13.2.1 Conjugate Gradient method

In previous section Poisson equation (Eq. 48) was reduced to a linear system of size mnl:

Ax = b (58)

Matrix A in Eq. 58 is huge and sparse. The best methods to solve sparse linear systems are iterative
methods, because unlike the direct methods (SV, LU and QR decompositions) iterative methods allow
to save memory and computation time. The CG (Conjugate Gradient) is the most popular iterative
method that provides high accuracy within acceptable duration. In order to solve Eq. 55 matrix A must
be symmetric and positive-definite:{

AT = A — symmetric

xTAx > 0 — positive-definite
(59)

If Eq. 59 satisfies the conditions, then CG is based on the idea of minimizing the function (Eq. 60):

f(x) =
1

2
xTAx− xTb (60)

Function (Eq. 60) is minimized, when its gradient is zero:

∇f(x) = Ax− b = 0 (61)

47

which is equivalent to Eq. 58. The iteration starts with an arbitrary guess for x = x0, which evaluates
the gradient ∇f(x) at a certain value. The residual gradient value after k iterations is expressed as:

rk = b−Axk, (62)

where xk is the solution after k iterations. Up to this point CG follows identically GD (Gradient Descent)
method. The difference between CG and GD lies in how the minimization (solution) direction is deter-
mined. GD performs function minimization by following its steepest direction. GD convergence is known
to be inefficient and to have oscillating trajectory, because steepest descent constantly “overshoots” the
best path to minimum. GD also fails, when search direction is orthogonal to the gradient. Convergence
speed heavily depends on the inititial guess. Therefore CG unlike GD insists the search direction not to
be residual rk, but instead a conjugate direction pk:

pk = rk −
∑
i<k

pT
i Ark

pT
i Api

pi, (63)

where i stands for iterations previous to k. The next iteration towards solution is given by:

xk+1 = xk + αkpk, where αk =
rT
k rk

pT
kApk

(64)

The algorithm has to store search direction and residue vectors and to perform many matrix-vector
multiplications. By reusing variables and storages the algorithm can made less computationally expensive
with additional variable β.

13.2.2 Generalized Minimum Residual method

In realistic problems the matrix A is not symmetric and/or non-positive-definite due the boundary
conditions imposed to the problem. In such a case the ordinary Conjugate Gradient algorithm fails
to converge. CG is the special case of the more general GMRES (Generalized Minimum RESidual)
method [42]. GMRES minimizes the function:

f(x) =
1

2
|Ax− b|2 =

1

2
rTr (65)

GMRES is a more universal iterative algorithm for solving sparse linear systems than CG.

13.2.3 Preconditioning

CG convergence and efficiency can be even more improved by using preconditioning [43, 44]. The
convergence rate of CG is determined by the spectrum of eigenvalues of the matrix A [45]. Convergence
rate can be accelerated by replacing the system (Eq. 58) with a preconditioned system (Eq. 66):

M−1Ax = M−1b (66)

Preconditioned systems are useful only if Mz = r can be solved with less computational work than
the original system (Eq. 58) and matrix M must be symmetric and positive-definite too. Numerical
experiments indicate that often preconditioning matrix M can be an incomplete Cholesky decomposition
of A [46, 47]. Pseudocode of unconditioned CG and precondtitioned CG are here in {Appendix D}
(Alg. 1, 2) respectively.

13.2.4 Boundary conditions

In linear algebraic systems the matrix contain all the information about the system. If the matrix is
square, each matrix row can be represented as a node in a grid. The numeric entries in each matrix
row represent arithmetic relation of that node to all other nodes in the grid. Poisson matrix (Eq. 56) is
a square matrix with 1st order FDM (Finite Difference Method) encoded for solving Poisson equation
(2nd order non-homogeneous partial differential equation) in 3D domain (Fig. 35). However boundary
conditions are excluded up to this point and are not represented in the Poisson matrix (Eq. 56). In order

48

to impose bounary condition one has to modify Poisson matrix (Eq. 56). Since each row represents a
particular node AND its relations to ALL other nodes, by changing numerical entries in that particular
row one can modify the “purpose” of the node in the grid. The node’s “purpose” can be changed
from “solvable node” (regular FDM) to an “imposed node” (Neumann condition) or “imposed difference
node” (Dirichlet condition). “Imposed nodes” and “imposed difference nodes” do not participate in the
CG (Conjugate Gradient) convergence. This is my personal jargon to describe Neumann and Dirichlet
conditions. In this way each node can be “assigned” to an be an ordinary, Neumann or Dirichlet node.
In this way a problem designer can form and build structures in the domain by “assigning” chunks and
formations of multiple nodes to “serve” a particular purpose, i.e. defining constant electric potential and
constant electric field structures (electric insulator and conductor) in the domain. Nodes as the rows of
Poisson matrix (Eq. 56) are distinguised by particular numerical pattern (1st order FDM) and has to be
handled accurately when modifying them, because there are 27 types of them, which can be organized in 4
major groups: volume nodes, wall nodes, edge nodes and corner nodes. Each of the groups has a slightly
different FDM pattern, that has to be taken into account for modifying. Below (Fig. 13.2.4) there is an
attempt to describe modification of Poisson matrix (Eq. 56) presented in a most understandable fasion.

Figure 35: 3D domain

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . −1
. . . −1

. . . −1 6 −1
. . . −1

. . . −1
. . .

. . . −1
. . . −1

. . .
. . . 6 −1

. . . −1
. . . −1

. . .

. . . −1
. . . −1

. . . −1 6
. . .

. . . −1
. . . −1

. . .

. . . −1
. . .

. . .
. . . −1 6 −1

. . . −1
. . . −1

. . .

. . . −1
. . . −1

. . . −1 6 −1
. . .

. . .
. . . −1

. . .

. . .
. . .

. . . −1
. . . −1 6 −1

. . . −1
. . . −1

. . .

. . . −1
. . . −1

. . . −1 6 −1
. . . −1

. . .
. . .

. . .

. . . −1
. . .

. . .
. . .

. . . 6 −1
. . . −1

. . . −1
. . .

. . . −1
. . .

. . .
. . . −1 6

. . .
. . . −1

. . . −1
. . .

. . . −1
. . . −1

. . .
. . . 6 −1

. . .
. . .

. . . −1
. . .

. . . −1
. . . −1

. . . −1 6
. . .

. . .
. . .

. . . −1
. . .

. . .
. . .

. . .
. . .

. . . −1 6 −1
. . . −1

. . . −1
. . .

. . .
. . .

. . . −1
. . . −1 6 −1

. . .
. . .

. . . −1
. . .

. . .
. . .

. . . −1
. . .

. . . 6 −1
. . . −1

. . . −1
. . .

. . .
. . .

. . . −1
. . . −1 6

. . .
. . . −1

. . . −1
. . .

. . . −1
. . .

. . .
. . . −1 6 −1

. . . −1
. . .

. . .
. . .

. . . −1
. . . −1

. . . −1 6 −1
. . .

. . .
. . .

. . .
. . .

. . . −1
. . . −1

. . .
. . . 6 −1

. . . −1
. . .

. . .
. . .

. . . −1
. . . −1

. . . −1 6
. . .

. . . −1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 6 −1

. . . −1
. . . −1

. . .

. . .
. . .

. . .
. . .

. . . −1 6
. . .

. . . −1
. . . −1

. . .

. . .
. . .

. . . −1
. . .

. . . 6 −1
. . .

. . .
. . . −1

. . .

. . .
. . .

. . . −1
. . . −1 6

. . .
. . .

. . .
. . . −1

. . .

. . . −1
. . .

. . .
. . .

. . . 6 −1
. . . −1

. . .
. . .

. . .

. . . −1
. . .

. . .
. . . −1 6

. . .
. . . −1

. . .
. . .

. . .

. . . −1
. . . −1

. . .
. . . 6 −1

. . .
. . .

. . .
. . .

. . .

. . . −1
. . . −1

. . . −1 6
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



−→



. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . 0
. . . 0

. . . 0 1 0
. . . 0

. . . 0
. . .

. . . 0
. . . 0

. . .
. . . 1 0

. . . 0
. . . 0

. . .

. . . 0
. . . 0

. . . 0 1
. . .

. . . 0
. . . 0

. . .

. . . 0
. . .

. . .
. . . 0 1 0

. . . 0
. . . 0

. . .

. . . 0
. . . 0

. . . 0 1 0
. . .

. . .
. . . 0

. . .

. . .
. . .

. . . 0
. . . 0 1 0

. . . 0
. . . 0

. . .

. . . 0
. . . 0

. . . 0 1 0
. . . 0

. . .
. . .

. . .

. . . 0
. . .

. . .
. . .

. . . 1 0
. . . 0

. . . 0
. . .

. . . 0
. . .

. . .
. . . 0 1

. . .
. . . 0

. . . 0
. . .

. . . 0
. . . 0

. . .
. . . 1 0

. . .
. . .

. . . 0
. . .

. . . 0
. . . 0

. . . 0 1
. . .

. . .
. . .

. . . 0
. . .

. . .
. . .

. . .
. . .

. . . 0 1 0
. . . 0

. . . 0
. . .

. . .
. . .

. . . 0
. . . 0 1 0

. . .
. . .

. . . 0
. . .

. . .
. . .

. . . 0
. . .

. . . 1 0
. . . 0

. . . 0
. . .

. . .
. . .

. . . 0
. . . 0 1

. . .
. . . 0

. . . 0
. . .

. . . 0
. . .

. . .
. . . 0 1 0

. . . 0
. . .

. . .
. . .

. . . 0
. . . 0

. . . 0 1 0
. . .

. . .
. . .

. . .
. . .

. . . 0
. . . 0

. . .
. . . 1 0

. . . 0
. . .

. . .
. . .

. . . 0
. . . 0

. . . 0 1
. . .

. . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . 1 0

. . . 0
. . . 0

. . .

. . .
. . .

. . .
. . .

. . . 0 1
. . .

. . . 0
. . . 0

. . .

. . .
. . .

. . . 0
. . .

. . . 1 0
. . .

. . .
. . . 0

. . .

. . .
. . .

. . . 0
. . . 0 1

. . .
. . .

. . .
. . . 0

. . .

. . . 0
. . .

. . .
. . .

. . . 1 0
. . . 0

. . .
. . .

. . .

. . . 0
. . .

. . .
. . . 0 1

. . .
. . . 0

. . .
. . .

. . .

. . . 0
. . . 0

. . .
. . . 1 0

. . .
. . .

. . .
. . .

. . .

. . . 0
. . . 0

. . . 0 1
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



volume

west wall

east wall

south wall

north wall

bottom wall

top wall

south west edge

south east edge

north west edge

north east edge

bottom south edge

bottom north edge

bottom west edge

bottom east edge

top south edge

top north edge

top west edge

top east edge

bottom south west corner

bottom south east corner

bottom north west corner

bottom north east corner

top south west corner

top south east corner

top north west corner

top north east corner

49

Figure 36: Modification of Poisson matrix rows for Neumann boundary conditions for each group of
nodes

Matrix modification for Dirichlet conditions is described only for wall nodes. Dirichlet conditions only
make sence describing domains with “open walls”, where they imply electric field continuation and
periodicity of the domain in the direction of the “open wall”. Dirichlet conditions in the volume nodes
would mean a source of constant electric field, which is a nonphysical case at least in NBI physics.



. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . −1
. . . −1

. . .
. . . 6 −1

. . . −1
. . . −1

. . .

. . . −1
. . . −1

. . . −1 6
. . .

. . . −1
. . . −1

. . .

. . . −1
. . .

. . .
. . . −1 6 −1

. . . −1
. . . −1

. . .

. . . −1
. . . −1

. . . −1 6 −1
. . .

. . .
. . . −1

. . .

. . .
. . .

. . . −1
. . . −1 6 −1

. . . −1
. . . −1

. . .

. . . −1
. . . −1

. . . −1 6 −1
. . . −1

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



−→



. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . . 0
. . . 0

. . .
. . . 1 −1

. . . 0
. . . 0

. . .

. . . 0
. . . 0

. . . −1 1
. . .

. . . 0
. . . 0

. . .

. . . 0
. . .

. . .
. . . 0 1 0

. . . −1
. . . 0

. . .

. . . 0
. . . −1

. . . 0 1 0
. . .

. . .
. . . 0

. . .

. . .
. . .

. . . 0
. . . 0 1 0

. . . 0
. . . −1

. . .

. . . −1
. . . 0

. . . 0 1 0
. . . 0

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .



west wall

east wall

south wall

north wall

bottom wall

top wall

Figure 37: Modification of Poisson matrix rows for Dirichlet boundary conditions for wall nodes

Once Neumann and Dirichlet conditions are encoded into Poisson matrix, the system can be solved
only using GMRES (13.2.2). Modified matrix is no longer symmetric, therefore CG (13.2.1) is no more
applicable, because by design CG converges only for symmetric matrices.

13.2.5 Initial conditions

Whereas Poisson matrix A (Eq. 56) describes the system completely including boundary conditions, the
vector b (Eq. 57) sets the initial conditions of the system. An initial value of the electric potential is
assigned to each node in the domain, before solver iteration starts. Initial values are as well assigned
to the Neumann/Dirichlet nodes. Neumann/Dirichlet nodes acquire a numeric value, which will be
kept at constant or at constant difference throughtout solver iteration due to aforediscussed (13.2.4)
modifications in the Poisson matrix.

13.3 Electric field computation

Once Poisson equation is solved (Eq. 48 by iterative means and scalar potential field φ is known, the
electric field computation on grid nodes is straightforward. The electric field vector is defined as the
negative gradient of the potential:

E = −∇φ (67)

Ex(x, y, z)x̂ + Ey(x, y, z)ŷ + Ez(x, y, z)ẑ = −∂φ(x, y, z)

∂x
x̂− ∂φ(x, y, z)

∂y
ŷ − ∂φ(x, y, z)

∂z
ẑ (68)

Discretized using central difference scheme:


Ex i,j,k =

φi+1,j,k−φi−1,j,k

2∆x

Ey i,j,k =
φi,j+1,k−φi,j−1,k

2∆y

Ez i,j,k =
φi,j,k+1−φi,j,k+1

2∆z

(69)

Particles that are present in the domain feel the electric field of the grid nodes. The effective field value
at the exact position of the particle has to be determined from the electric field values of the nearest

50

nodes (cell nodes) by first-order trilinear (3D) interpolation (Eq. 70):

Ex = Ex i,j,k
(xi+1−x)(yj+1−y)(zk+1−z)

∆x∆y∆z + Ex i+1,j,k
(x−xi)(yj+1−y)(zk+1−z)

∆x∆y∆z +

+ Ex i,j+1,k
(xi+1−x)(y−yj)(zk+1−z)

∆x∆y∆z + Ex i+1,j+1,k
(x−xi)(y−yj)(zk+1−z)

∆x∆y∆z +

+ Ex i,j,k+1
(xi+1−x)(yj+1−y)(z−zk)

∆x∆y∆z + Ex i+1,j,k+1
(x−xi)(yj+1−y)(z−zk)

∆x∆y∆z +

+ Ex i,j+1,k+1
(xi+1−x)(y−yj)(z−zk)

∆x∆y∆z + Ex i+1,j+1,k+1
(x−xi)(y−yj)(z−zk)

∆x∆y∆z

Ey = Ey i,j,k
(xi+1−x)(yj+1−y)(zk+1−z)

∆x∆y∆z + Ey i+1,j,k
(x−xi)(yj+1−y)(zk+1−z)

∆x∆y∆z +

+ Ey i,j+1,k
(xi+1−x)(y−yj)(zk+1−z)

∆x∆y∆z + Ey i+1,j+1,k
(x−xi)(y−yj)(zk+1−z)

∆x∆y∆z +

+ Ey i,j,k+1
(xi+1−x)(yj+1−y)(z−zk)

∆x∆y∆z + Ey i+1,j,k+1
(x−xi)(yj+1−y)(z−zk)

∆x∆y∆z +

+ Ey i,j+1,k+1
(xi+1−x)(y−yj)(z−zk)

∆x∆y∆z + Ey i+1,j+1,k+1
(x−xi)(y−yj)(z−zk)

∆x∆y∆z

Ez = Ez i,j,k
(xi+1−x)(yj+1−y)(zk+1−z)

∆x∆y∆z + Ez i+1,j,k
(x−xi)(yj+1−y)(zk+1−z)

∆x∆y∆z +

+ Ez i,j+1,k
(xi+1−x)(y−yj)(zk+1−z)

∆x∆y∆z + Ez i+1,j+1,k
(x−xi)(y−yj)(zk+1−z)

∆x∆y∆z +

+ Ez i,j,k+1
(xi+1−x)(yj+1−y)(z−zk)

∆x∆y∆z + Ez i+1,j,k+1
(x−xi)(yj+1−y)(z−zk)

∆x∆y∆z +

+ Ez i,j+1,k+1
(xi+1−x)(y−yj)(z−zk)

∆x∆y∆z + Ez i+1,j+1,k+1
(x−xi)(y−yj)(z−zk)

∆x∆y∆z

(70)

Electric field at the particle position (x, y, z) is equal ~E = (Ex, Ey, Ez). The same calculation has to be
repeated for all the particles present in the simulation.

13.4 Particle motion

Once electric field is known at the particle position, Newtons’s laws can be applied to move the particle.
Particle dynamics is expressed in the 2nd law of Newton, i.e. acceleration (change of velocity) is propor-
tionate to the acting force. In this this case the acting force is Lorentz force. Lorentz force is the force
that acts upon a charged particle in the presence of electromagnetic fields.

d~v

dt
=

~F

m
=

q

m
(~E + ~v × ~B), (71)

where ~E is the electric field vector at the particle position, ~B is the magnetic field vector at the particle
position, ~v is the particle velocity and q is the charge of the particle. The particle position follows simple
kinetic relation (definition of velocity).

d~x

dt
= ~v (72)

13.4.1 Forward-difference motion integration

It may seem that integration of motion equations (Eq. 71, 72)) is trivial. One could use forward-difference

discrete integration scheme to obtain recurrent form (in the case of ~B = 0):{
~vn+1 = ~vn + q

m
~E∆t

~xn+1 = ~xn + ~vn∆t
(73)

However this scheme produces incorrect results. Practice proved that systems described with this
scheme are unstable and do not conserve energy regardless of the size of time step ∆t.

13.4.2 Leapfrog method

Leapfrog method is a viable attempt to have a stable integration scheme. In forward-difference scheme
using velocity ~vn to produce the velocity ~vn+1 accumulates the discretization error and drives the system
unstable. Therefore using an average velocity between steps could compensate the error. Averaging of
velocity is obtained by displacing velocity integration by half a time step ∆t

2 . That inspired the name of
the method, because integration of velocity and position schematically remind of two frogs leaping over

51

each other every half a time step (Fig. 38).
~v0 ←− ~v0 − q

m
~E∆t

2

~vn+1 = ~vn + q
m
~E∆t

~xn+1 = ~xn + ~vn∆t

(74)

Figure 38: Leapfrog method: particle position is evaluated at
integral time steps, velocity is evaluated at half in between
steps

Leapfrog method works ok for the case ~B = 0. However if magnetic field ~B contribution is taken into
account, integration starts experiencing instability by violating energy conservation in the same fashion
as forward-difference scheme does.

13.4.3 Boris algorithm

In 1971 J. P. Boris proposed an integration scheme [48], which was so accurate and resilient to error ac-
cumuluation, that up-to-date it remains the main algorithm for particle advancement in electromagnetic
simulations. It is capable to track the particle for an arbitrarily large number of time steps even with
accuracy than fourth-order Runge-Kutta scheme [49, 50]. By discretizing equation Eq. 72 one obtains:

~vn+1 − ~vn
∆t

=
q

m

(
~E +

~vn+1 + ~vn
2

× ~B

)
(75)

By using substitutions

[
~vn = ~v− − q ~E

m
∆t
2

~vn+1 = ~v+ + q ~E
m

∆t
2

]
Eq. 75 becomes:

~v+ − ~v−

∆t
=

q

m

(
~v+ + ~v−

2
× ~B

)
(76)

Vectors ~v+ and ~v− have the same magnitude but different directions (Fig. 39). Therefore Eq. 76 represents
a rotation from ~v− and ~v+ (it can be proved by multiplying Eq. 76 with (~v+ + ~v−)) [40]. The solution is
contructed in such a way:

~v+ = ~v− +
(
~v− + ~v− × ~t

)
× ~s, where

{
~s = 2~t

1+~t2

~t = q ~B
m

∆t
2

(77)

Figure 39: Geometry of ~v+, ~v−, ~t and ~s
Boris algorithm has an amazing feature to conserves energy exactly, even when there is no electric field.
And its relativistic implementation is straightforward.

52

13.5 Collisions

Modelling collisions is complicated and expensive in computational resources. Therefore if the problem
does not require collisions, researchers try to avoid including collisional processes into simulations. There
are two approaches to model collisions in plasma: binary collisions [51] and MCC (Monte Carlo collisions)
[41, 52, 53]. However binary collisions are computationaly expensive and in some sense remind the case of
N-body problem. MCC is more computationally friendly, because at its core it has a Monte Carlo based
computation. In general Monte Carlo method is useful for solving/modelling problems, which have many
degrees of freedom, nonlinear nature, many variables and/or uncertainty in inputs. Monte Carlo gives its
evaluations in probabilistic sense. By repeated random sampling over parameter/variable space Monte
Carlo gathers the output values into a histogram. If the ergodic theorem holds true for the system/process,
the empirical measures (histogram) must approach the stationary probability distribution, which is
then intepreted as the ultimate probabilistic description of the system/process. In other words Monte
Carlo takes uniform random distribution and uses it as an input, the problem/system itself works as a
filter/“sieve” to shape the original random distribution into a output distribution. Monte Carlo mehod
was invented in the late 1940s by Stanislaw Ulam, while he was working on nuclear weapons projects at
the Los Alamos National Laboratory.

13.5.1 Monte Carlo collisions (MCC)

In weakly ionized plasmas the most dominant collisional process is the interaction between charged and
neutral particles. Computationally the two groups of particles are called the background species (H2)
and particle species. Background species density is described as a smooth function of time and space
(it can be and most often is uniform and constant in time). Background species do not participate in
the PIC process as particles, they are just assumed in the background with a certain defined density.
Particle species participate in the PIC process, move in response to the local electric field and therefore
their distribution evolve temporally and spatially. Let one assume particle species s (incident species)
have N possible types of collisions with another particle species (target species). The kinetic energy of
the ith particle of the incident species s is:

Ei =
1

2
ms~v

2
i =

1

2
ms

(
v2
x i + v2

y i + v2
z i

)
(78)

This energy is needed in calculating the collision cross sections. The total collision cross section σTotal(Ei)
is the sum:

σTotal(Ei) = σ1(Ei) + · · ·+ σN (Ei) =

N∑
j

σj(Ei), (79)

where σj(Ei) is the cross section of the jth type of collision between the incident species s and target
species. The collision probability for the ith particle is calculated based on the distance ∆si = vi∆t
travelled in each time step ∆t:

Pi = 1− e−∆sσTotal(Ei)ntarget(~xi) = 1− e−vi∆tσTotal(Ei)ntarget(~xi), (80)

where ntarget(~xi) is the local density of the target species at the position of the ith particle. In order
to intiate a collision a random number is chosen from interval [0, 1]. If the random number is less than
Pi, then collision is counted as happened and another random number is drawn to determine the type
of collision. The energy and scattering angle of collision products are determined based on the model
in power for that type of collision. A collision is assumed to take place in the time interval [t, t + ∆t]
at the current position ~xi(t) of the ith particle, therefore time step ∆t determines the accuracy of the
collisional model. The accuracy is challenged, if many collisions take place during ∆t. The probability
for N collisions to take place during ∆t is equal PNi . However MCC allows only one collision per particle
per ∆t, therefore each iteration generates an error r.

r ≈
∞∑
k=2

P ki =
P 2
i

1− Pi
(81)

Error r has to be managed in order not to exceed reasonable limits. An error limit of 0.01 requires
Pi < 0.95, i.e. time step ∆t must set so that ∆siσTotal(Ei)ntarget(~x) ≤ 0.1 [52].

53

13.5.2 Null Collision method

Calculating Pi requires looking up the particle’s kinetic energy. Doing that for all particles each time step
makes the task very computationally expensive. The look-up can be reduced by introducing a virtual
constant collision frequency ν′ such that

ν′ = max
~x,E

(ntargetσTotalv) = max
~x

(ntarget) max
E

(σTotalv) (82)

This virtual collision frequency flattens the total collision frequency ntarget(~x)σTotal(E)v by adding miss-
ing part and thus giving constant value over ~x and E (Fig. 40). The added part is called null collision
process, since it does not represent any real physical interaction. However it helps to reduce the compu-
tational effort. Probability of a null collision is given by:

Pnull = 1− e−ν
′∆t (83)

Colliding particles are chosen randomly without duplicating and the each particle checked for the type
of the collision using:

R ≤ ν1(Ei)
ν′ collision type 1

ν1(Ei)
ν′ < R ≤ ν1(Ei)+ν2(Ei)

ν′ collision type 2
...

N∑
j

νj(Ei)
ν′ < R null collision

(84)

where R is the a random number R ∈ [0, 1]. For a simulation with Ns particles, the standard MCC
method requires Ns evaluations of Pi, whereas Null Collision method requires only NsPnull evaluations
of Pi.

Figure 40: Null Collision frequency sets
the upper limit for the look-up

14 Results

14.1 Solver evaluation

The main and the crucial part of PIC codes performance and validity is the domain solutions for φ.
This part of the code determines completely the quality of the PIC simulation. Therefore one desires to
have the best and most reliable numericals solvers in order to produce the best and the most accurate
domain solution for φ. The computational plaform that the PIC code will be based on is GPGPU
platform. Therefore one has to develop the code for GPGPU and use numerical tools and libraries built
for GPGPU. In case of domain solvers the CG (13.2.1) and GMRES13.2.2 based solutions are realised by
a Cusp library [54], which is a library for sparse linear algebra and graph computations based on Thrust

library, which is built on CUDA. Cusp provides a flexible, high-level interface for manipulating sparse
matrices and solving sparse linear systems on Nvidia GPU architecture.
One would like to assure that solver is giving reasonable output and test the quality of the solution. Three
tests are carried to evaluate the solutions for a test model of 2D rectangular domain of size 800 × 200
with a left wall set to 1000 [V] as a Dirichlet boundary condition (Fig. 41):

1. Solver comparison. Cusp solver output is compared to an output of a well-known Comsol soft-
ware suite used in engineering. Figures 43 and 44 present the results for potential and electric field

54

calculations respectively. It is evident that solutions given by two solvers are identical for Fig. 43
and Fig. 44abd, except Fig. 44c. Fig. 44c profile contains numeric noise caused by discrete differen-
tiation performed on a non-rectangular grid used in Comsol. Numerical noise was unintentionally
exposed here, because the expected solution must be a zero profile. Nevertheless this validates
and legitimates Cusp solver as a trustful tool for further studies, even as a better solver in case of
Fig. 44c.

2. Stencil study. Cusp solver is able to provide solution using different orders of the solution. Size
of the stencil determines the order of the solution. Stencil is defined as a total number of nodes
participating in a solution of a particular node. It is common, that stencils of higher orders provide
more accurate solution in expense of higher computational cost. However if the higher orders do
not influence the outcome significantly, it is better to use lower order stencils in order to save
computational resources and time. Figures 45 and 46 show no significant advantages of using 9pt

stencil. Therefore 5pt stencil is used for further developments.

3. Tolerance study. Cusp solver has a flexible error tolerance as an input parameter. Solution
quality as well as computational expenditures heavily depends on the set tolerance. Therefore one
is interested in an optimal tolerance value, which is enough to provide a good quality solution for a
reasonable computational cost. Figures 47 and 48 demonstrate that Cusp solver fails completely to
provide the solution at tolerance 10−4. At tolerance 10−5 the solver is giving a reasonable solution,
however tolerance 10−6 provides visible improvement. Therefore tolerance 10−6 is used for further
studies and tolerance 10−7 is discarded as unnecessary.

(a) Cusp solver (b) Comsol solver

Figure 41: Potential φ map with a left wall set at 1000 [V] (Dirichlet boundary condition) solved by
different solvers

(a) Longitudinal electric field Ex (b) Transverse electric field Ey

Figure 42: Electric field E maps: (a) longitudinal (b) transverse

55

14.1.1 Comsol vs Cusp

(a) φ along x at y = 0.01 [m] (b) phi along y at x = 0.04 [m]

Figure 43: Potential φ profiles solved by different solvers: (a) longitudinal (b) transverse

(a) Ex along x at y = 0.01 [m] (b) Ex along y at x = 0.04 [m]

(c) Ey along x at y = 0.01 [m] (d) Ey along y at x = 0.04 [m]

Figure 44: Electric φ profiles solved by different solvers: (a) longitudinal along x (b) longitudinal along
y (c) transverse along x (d) transverse along y

56

14.1.2 5pt stencil vs 9pt stencil

(a) along x at y = 0.01 [m] (b) along y at x = 0.04 [m]

Figure 45: Potential φ profiles solved with different stencils: (a) longitudinal (b) transverse

(a) Ex along x at y = 0.01 [m]
(b) Ex along y at x = 0.04 [m]

(c) Ey along x at y = 0.01 [m] (d) Ey along y at x = 0.04 [m]

Figure 46: Electric φ profiles solved with different stencils: (a) longitudinal along x (b) longitudinal
along y (c) transverse along x (d) transverse along y

57

14.1.3 Tolerance study

(a) along x at y = 0.01 [m] (b) along y at x = 0.04 [m]

Figure 47: Potential φ profiles solved with different tolerances: (a) longitudinal (b) transverse

(a) Ex along x at y = 0.01 [m] (b) Ex along y at x = 0.04 [m]

(c) Ey along x at y = 0.01 [m] (d) Ey along y at x = 0.04 [m]

Figure 48: Electric φ profiles solved with different tolerances: (a) longitudinal along x (b) longitudinal
along y (c) transverse along x (d) transverse along y

58

14.2 Transient state simulation

In the previous section solver validity was tested against various options. Solver proved to produce
valid solutions. Domain solution for φ is the main part for PIC simulation. Once assured that this
step works well, one can built a primitive PIC simulation. The simplest setup one can come up with
is a box with arbitrary choice for boundary conditions. The choice of ours is a box with two opposite
walls grounded to 0 volts (Fig. 49). Programmatically each grounded wall is realised by a combined set
of wall nodes, surrounding edge nodes and surrounding corner nodes, which follows Dirichlet condition
(Poisson matrix modified accordingly 13.2.4). Each “open” wall is (south,north,bottom and top) realised
by Neumann condition (Poisson matrix modified accordingly 13.2.4). Particle movement with regard
to “open” walls is set to follow periodic condition, e.g. particles crossing the south “open” wall are
instantly “teleported” to the opposite side of the domain (next to the north “open” wall) and vice
versa. Periodic conditions are implemented as south⇔north transition and bottom⇔north transition,
i.e. coordinates of each particle follows conditions (x, y, z)i = (x, y mod Y, z mod Z)i, where Y=0.1 cm
and Z=1 cm are domain dimensions. Particle movement with regard to grounded walls (west and east)
is restricted to loss condition. Once particle crosses west or east wall, it is excluded from simulation
and do not participate in the dynamics anymore, i.e. if xi < 0 cm or 1 cm < x, particlei −→ disabled.

Figure 49: Domain characteristics for transient plasma state
simulations with west- and east- wall potentials grounded
φwest = φeast = 0 [V] and south-, north-, bottom-, top- walls
are set as “open”

In fact the whole simulation setup is chosen to mimic a 1D case of PIC, where two grounded
walls are infinite and particles are treated as charged infinite sheets. Given that periodic condtions
work well and bounary conditions is implemented correctly , then one can save computational re-
sources and use Z-direction-reduced domain instead of a “fat” 3D cubicle. It may seem, that it
is an excessive effort to build 3D code for 1D simulation, but the motivation lies in the fact that
physics should not change between 3D and 1D simulations. In fact this particular setup serves as a thor-
ough benchmark for the 3D code. If the 3D code is able to mimic a trusted 1D simulation and reproduce
its results, one can infer that the 3D code is producing valid physics. One of the trusted 1D simulations
are found in [36]. It is a 1D PIC simulation for a fully ionized collisionless electron-H+ion plasma of den-
sity 1014 [m−1] between two grounded parallel plates with electron and ion temperature Te = Ti = 1 [eV].
The focus of the simulation is the temporal evolution of midpoint potential value φmid (Fig. 50).

Figure 50: Reference simulation: midpoint potential
φmid evolution over transient plasma state in [36]

Quality of PIC simulations and produced physical behaviour heavily depends on chosen parameters.
There are 4 parameters that fully and completely determine the simulation quality: solver tolerance,

59

integration time step ∆t, cell size ∆x and number of particles per cell. Solver tolerance and number
of particles per cell are parameters, which has solely numerical origin. They are not related to any
physical magnitude. Meanwhile ∆t and ∆x are simulation parameters, which are of physical origin. In
particularly ∆t is closely related to the inverse of plasma frequency ωpe (Eq. 85) and ∆x is closely related
to the Debye length λD (Eq. 86).

∆t < ω−1
pe =

1√
nee2

meε0

=
1√

1014·(1.602×10−19)2

9.109×10−31·8.854×10−12

= 1.77273× 10−9

[
rad

s

]
, (85)

∆x < λD =

√
ε0kBTe[K]

nee2
=

√
ε0Te[eV]

nee
=

√
8.854× 10−12 · 1

1014 · 1.602× 10−19
= 0.000743427 [m] (86)

where ne is the electron density, e is the electron charge, me is the electron mass, ε0 is the vacuum
permittivity.

14.2.1 Tolerance study

Parameter Value

∆t 4× 10−10 [s]
∆x 0.0001 [m]

N per cell 100
tolerance variable

Table 5: Simulation parameters

Figure 51: Midpoint potential φmid evolution
over transient plasma state with various solver
tolerances

Figure 52: Code execution duration using var-
ious solver tolerances

14.2.2 Time step ∆t study

Parameter Value

∆t variable
∆x 0.0001 [m]

N per cell 100
tolerance 10−6

Table 6: Simulation parameters

60

Figure 53: Midpoint potential φmid evolution
over transient plasma state with various inte-
gration step sizes ∆t

Figure 54: Code execution duration using var-
ious integration step sizes ∆t

14.2.3 Cell size ∆x study

Parameter Value

∆t 5× 10−10 [s]
∆x variable

N per cell 100
tolerance 10−6

Table 7: Simulation parameters

Figure 55: Midpoint potential φmid evolution
over transient plasma state with various do-
main cell sizes ∆x

Figure 56: Code execution duration using var-
ious domain cell sizes ∆x

14.2.4 Number of particles per cell study

Parameter Value

∆t 5× 10−10 [s]
∆x 0.001 [m]

N per cell variable
tolerance 10−6

61

Table 8: Simulation parameters

Figure 57: Midpoint potential φmid evolution
over transient plasma state with various num-
bers of particles per cell

Figure 58: Code execution duration using var-
ious with various numbers of particles per cell

14.2.5 Discussion

In general code output is very close to the reference simulation in (Fig. 50) [36].

• Tolerance study (Fig. 51) suggests that 10−4 and smaller is a good choice for tolerance parameter.
Solver duration and total duration follows the same nonlinear scaling towards smaller tolerance
values (Fig. 52). This is due to the fact, that solver time constitutes the major part of the total
code duration.

• Time step study (Fig. 53) suggests that ∆t = 10−9 [s] and below is valid, because time step
condition set by Eq. 85 is respected. Solver duration (Fig. 54) constitutes the constant and major
part of the total code duration throughout the range of ∆t, because ∆t has no influence on that.

• Cell size study (Fig. 55) is valid for all tested ∆x values (Fig. 55), because cell size condition set
by Eq. 86 is respected. Bigger ∆x were impossible to test and see the degenerated output, because
code was crashing due to unknown error caused by too big ∆x. Solver duration (Fig. 56) is bigger
with smaller ∆x due to the fact, that grid increases in size (but not physical domain), i.e. in
order to conserve the same physical box more nodes had to be present in the grid, therefore more
computation for solver.

• Number of particles per cell study (Fig. 57) suggests that the number of 100 and above is a valid
choice, which is supported by [55]. Solver duration (Fig. 58) saturates with respect to bigger
numbers of particles per cell, because grid configuration stays constant and requires the same
computational effort. Meanwhile total duration is growing, because the total number of particles
is increasing, therefore there is more processing required for particle dynamics (but not for grid
processing).

In principle code is producing predictable output, when input parameters are correct. This conclusion
allows to develop simulations with higher complexity, because proper parameters can be chosen by
respecting the Eq. 85, Eq. 86 and Eq. 26 conditions.

14.3 Steady state simulation

A logical and consistent step in development of PIC plasma simulations is simulating sheath and its
formation. In order to obtain proper sheath formation one has to run simulation until steady state is
achieved. However it is not enough just to extend the simulation duration. This straightforward approach
to obtain steady state suffers from a phenomenon called electron cooling, where electron temperature Te

drops quickly. Electron cooling is an artificial effect of the simulation, which occurs due to the fact that

62

simulation has NO collisions. In order to compensate for electron cooling one has to introduce thermostat
process in the system. For a steady state simulation one will choose a cubic box of dimensions 4×4×4 [cm]
(80 × 80 × 80 nodes) with all the walls, edges and corners grounded to 0 V (Fig. 59) (applied Dirichlet
conditions with respective Poisson matrix modification (13.2.4)). Inside the box there will be a fully
ionized collisionless electron-H+ ion plasma of density 1015 [m−3] with electron and ion temperatures
Te = 1 [eV] and Ti = 1 [eV]. Particle movement with regard to grounded walls (all walls) is restricted
to loss condition. Once particle crosses any wall, it is excluded from simulation and do not participate
in the dynamics anymore, i.e. if xi < 0 or 4 < xi or yi < 0 or 4 < yi or zi < 0 or 4 < zi [cm],
particlei −→ disabled. Simulations were run to simulate a fixed amount of time of 2 [µs] with time step
∆t = 0.5 [ns] < 1

ωpe
≈ 0.56 [ns] (4000 steps) and cell size ∆x = 0.5 [mm] < λD ≈ 0.743 [mm]. The goals

of the simulation:

1. to observe electron cooling and apply thermostat process to influence the temperature of the system

2. to obtain plasma potential φp and sheath depth d at the steady state

Figure 59: Domain characteristics for steady plasma state sim-
ulations with west-, east- , south-, north-, bottom- and top-
wall potentials grounded φwest = φeast = φsouth = φnorth =
φbottom = φtop = 0 [V]

14.3.1 Plasma potential

The interest is to compare the observed plasma potential φp (Fig. 61) to the theoretical value. The ob-
served electron temperature Te (Fig. 63) is used to calculate the theoretical plasma potential φp (Eq. 35).
The whole study lets to inspect the quality and validity of the steady state simulation. The results are
summarised in the Table 9.

Thermostat parameter Effective value Observed Te [eV] Observed φp [V] Theoretical φp [V]

0.0000 0.0000 2.32567 6.1101 7.76489
0.0001 0.00190138 2.63306 7.06627 8.7912
0.0005 0.00771014 3.59907 10.5001 12.0165
0.0010 0.0134763 4.93395 13.4884 16.4734
0.0050 0.0494515 7.34738 22.5942 24.5313
0.0100 0.0880169 8.37488 26.8717 27.9618

Table 9: Comparison of observed φp with theoretical φp (Eq. 35)

63

Figure 60: Electric potential φ profile along X
direction at the time t = 2 [µs]

Figure 61: Electric potential φ evolution at the
midpoint of the domain

Figure 62: Electron temperature Te profile
along X direction at the time t = 2 [µs]

Figure 63: Electron temperature Te evolution
at the midpoint of the domain

14.3.2 Sheath depth

The interest is to compare the observed sheath depths (Fig. 64) to the theoretical values. The observed
electron temperature Te (Fig. 63) and plasma potential φp (Fig. 61) are used to calculate the theoretical
sheath depths d (Eq. 31). The whole study lets to inspect the quality and validity of the steady state
simulation. The results are summarised in the Table 10.

Thermostat parameter Observed Te [eV] Observed φp [V] Observed d [m] Theoretical d [m]

0.0000 2.32567 6.1101 0.0030 0.000753123
0.0001 2.63306 7.06627 0.00275 0.00083989
0.0005 3.59907 10.5001 0.0035 0.00113038
0.0010 4.93395 13.4884 0.00375 0.00136396
0.0050 7.34738 22.5942 0.00575 0.0020083
0.0100 8.37488 26.8717 0.0080 0.00228718

Table 10: Comparison of observed sheath depth d with Eq. 31

64

(a) termostat efficiency = 0.0000 (b) termostat efficiency = 0.0001 (c) termostat efficiency = 0.0005

(d) termostat efficiency = 0.0010 (e) termostat efficiency = 0.0050 (f) termostat efficiency = 0.0100

Figure 64: Electron and ion density profiles at steady state under various thermostat conditions with
black lines indicating the observed bulk-sheath interface, where quasi-neutrality is broken

14.3.3 Discussion

• Electron cooling was observed in Fig. 63 (red curve). Thermostat effect is evident by stabilized
electron temperature Te at certain values, which go in correspondence to steady state plasma
potential φp (Fig. 61). Thermostat effect is entirely governed by thermostat efficiency (Eq. 44).

• Simulated plasma potential φp and electron temperature Te relation was tested
against theoretical prediction Eq. 35 (Tab. 9) and is in acceptable agreement (Fig. 65).

Figure 65: Comparison of theoretical and observed
plasma potential φp values using Table 9

• Sheath formation was observed and its depth was approximatelly defined from (Fig. 64) by taking
average depth of left and right sheaths. This value was compared to theoretical prediction Eq. 31
(Tab. 10) and is NOT in a good agreement (Fig. 66). This may be caused by the fact, that bulk-
sheath interface is not clearly manifested in the data and its determination is partially subjective,
hence error-prone.

65

Figure 66: Comparison of theoretical and observed
sheath depth d values using Table 10

14.4 Negative ion beam extraction

In the previous section the GPU code has proved itself to actually produce reasonable and realistic
physics. Yet the simulations did not have much of a practical use. In this section the PIC engine is
exploited to simulate the extaction region of an NBI system. Negative ion beams are extremely important
in fusion physics, since they will be providing significant part of heating power in fusion reactor (up to
50% in ITER)(Tab. 1) [56] and major part of DEMO heating and current drive [57]. Negative ion beams
are subject to beam losses such as aberrations and beam divergence, which are caused by a non-optimal
geometry and voltage configuration of plasma grid. Simulations take up a big part in the studies of NBI
systems. 3D NBI simulations are extermely computationaly costly due to 3D domains and 3D particle
data, which inflate memory and processing requirements by an order at least. Therefore scientists have
no choice but to rely on 2D simulations and work on parameter scaling in order to make reasonable
parameter extrapolations for 3D NBI geometry. In this thesis a full 3D simulation of NBI extraction grid
is presented. The general interest of the simulation is to observe H− beam extraction and the special
interest is to observe distinct properties of the beam between H− ions of different origin: volume-produced
H− an surface-produced H−.

14.4.1 Model description

Simulation domain contains an circular apperture (Fig. 67). Simulation domain models the plasma grid
of MAMuG (Multi-Aperture Multi-Grid) design. Domain is a 3D box of dimensions 17× 19× 19 [mm]
(137× 153× 153 nodes) with a circular hole of radius 7 mm (56 nodes) and thickness 2 mm (16 modes)
spanning from 9 to 11 mm with respect to the west wall. The west and east walls and the apperture
comply with Dirichlet conditions. The west wall and apperture are grounded φ = 0 [V] structures,
while φ at east wall is set according to an acceleration voltage, which will take a parameter role in
the simulations. The south, north, bottom and top walls comply with Neumann conditions in order to
simulate plasma continuity in Y and Z directions. Particle loss and generation conditions are governed
by a set of rules. Each set of rules varies depending on the species involved. Overall each species is
programmed in order to mimick the real situation in beam extraction chamber. The behaviour can be
summarized as:

1. There 3 species involved in the simulation: electrons e−, positive ions H+ and negative ions H−.
Negative ions H− are subdivided into two groups. One group is (re)generated in the volume and
the other is (re)generated in at the surface.

2. Electrons e−, positive ions H+ and negative ions H− (volume) are (re)generated in a narrow region
of 2 mm (16 nodes) width spanning from 2 to 4 mm with respect to the west wall (the red region
in Fig. 68).

66

3. Negative ions H− (surface) are (re)generated in very narow region of 0.125 mm (1 node) next to
the west side of the apperture in order to simulate surface emission. Surface emission is simulated
by a half-Gaussian in the X coordinate:

f(vx) =


√

m
2πkBTe

e
− mev

2
x

2kBTe if vx < 0

0 if 0 ≤ vx
(87)

4. All species follow periodic boundary conditions such as south⇔north transition and bottom⇔north
transition, i.e. coordinates of each particle follows conditions (x, y, z)i = (x, y mod Y, z mod Z)i,
where Y=19 mm and Z=19 mm are domain dimensions.

Figure 67: 3D model of an extraction ap-
perture with a circular hole

Figure 68: 2D projection of an extraction apperture
with a circular hole and visualized particle management
rules/conditions (Tab. 11)

Species
Loss conditions (Re)generation conditions

West wall East wall Apperture Number of particles Location

Electrons e− Send to buffer Immediate regeneration Send to buffer Pairwise with H+ Slab
Positive ions H+ Send to buffer Immediate regeneration Send to buffer Pairwise with e− Slab

Negative ions (volume) H− Send to buffer Send to buffer Send to buffer 412 macro-particles/∆t Slab
Negative ions (surface) H− Send to buffer Send to buffer Send to buffer Full buffer Apperture surface

Table 11: Particle management rules/conditions

14.4.2 Plasma parameters

As already mentioned simulation contains 4 species. Electrons e−, positive ions H+ and
negative ions H− (volume) have reference density values, which are present at the start
of simulation. Density of H− (volume) starts with 0 and is constantly generated at
200 A/m2 and later evolves to a certain steady value, when losses equilibrates the gen-
eration. Densities, temperature and the other plasma parameters are given in Tab. 12.

Parameter Value

ne 10−17 [m−3]
nH+ 10−17 [m−3]

nH−volume 5× 10−15 [m−3]
nH−surface variant during simulation

Te 3 [eV]
TH+ 1 [eV]

TH−volume 1 [eV]
TH−surface 1 [eV]

∆t 5× 10−12 [s]
∆x 0.000125 [m]

λDebye ≈ 40.7× 10−6 [m]

67

Table 12: Simulation parameters
Surface emission is assumed at j =200 A/m2 according to [58]. The emission area is calculated from
the model’s geometry (Fig. 68) as A = (1522 − 562π) ·∆x2 = (1522 − 562π) · 0.0001252 ≈ 0.000207 [m2].
Therefore number of injected macro-particles per time step ∆t is derived as:

j =
J

A
=
MNq

A∆t
−→ N =

jA∆t

Mq
=

200 · 0.000207 · 5× 10−12

3139.13 · 1.602× 10−19
≈ 412, (88)

where M = 3139.13 is the macro-particle factor, N is the number of macro-particles entering domain
per ∆t, ∆t = 5× 10−12 [s] and q is the elementary charge.

14.4.3 Double sheath

One of the goals in NBI extraction simulations is to observe so-called double sheath. The
simulation is able to produce double sheath as a result of H− surface generation (Fig. 69).

Figure 69: Observation of double sheath near
the plasma grid (profile obtained at the corner
of domain along X axis)

Figure 70: Density profiles of species (ob-
tained at the corner of domain along X axis)

Figure 71: Schematic double sheath profile

Double sheath acquires its name from the fact that
the potential profile obtains 0 [V] value twice.
Plasma potential falls from a positive bulk value
to zero (same as ordinary “single” sheath), but
then crosses to the negative values and becomes
0 [V] again, when approaching grounded structure
(metal). The negative part of potential profile is
caused by high concentration of H− near the surface
(Fig. 70). Double sheath has ambivalent effect on the
surface-emitted H− ions. The accumulation of H−

ions builds up a negative space charge, which gets
resolved into φdouble sheath (Fig. 71). This potential
pushes the newly emitted H− ions back to the wall
and only those H− ions with sufficient energy escape
the trap. Once escaped they are violently acceler-
ated by the φplasma − φdouble sheath towards the west
wall of the simulation domain. These escaped H−

ions are visible in Fig. 72d, 73d as constant density
flux moving from the apperture to the west. This
means, that fewer H− ions end up in the extracted
beam, which is counter-productive. Advanced NBI
studies have demonstrated, that a triangle-shaped
profile of an apperture hole weakens the effect of the
double sheath around hole edges and increased H−

extraction.

68

14.4.4 Meniscus formation and negative beam extraction

Under presense of extraction voltage plasma tries to screen itself, which leads to meniscus formation.
Meniscus is the boundary, where the quasi-neutrality is broken in case of extraction voltage presense.
Observation of meniscus formation is a key indication of the realistic simulation. Meniscus formation is
associated with H+ ions (Fig. 72a), while the electron beam is a concomitant effect on electron species
(Fig. 72b). Meniscus shape determines the beam (electrons, H−) characteristics as beam particles start
accelerating at meniscus boundary. Particular interest is devoted to H− beam, which is decomposed
into two components in this simulation: volume-produced H− beam (Fig. 72c) and surface-produced H−

beam (Fig. 72d). Meniscus shape and beam characteristics are direct consequences of extraction voltage.
Fig. 72 and Fig. 73 demonstrate two simulations, which differ only by extraction voltage: 5000 [V] and
7000 [V] respectively.

(a) H+ ions (b) electrons (c) H− ions (volume) (d) H− ions (surface)

Figure 72: Density distribution at XY mid-plane at the end of NBI simulation (1 µs) under 5000 V of
extraction voltage

(a) H+ ions (b) electrons (c) H− ions (volume) (d) H− ions (surface)

Figure 73: Density distributions at XY mid-plane at the end of NBI simulation (1 µs) under 7000 V of
extraction voltage

The temporal evolution of extracted particles are presented in Fig. 74. The number of extracted electrons
correspond to 724.432 [A/m2] and 947.335 [A/m2] (Fig. 74a), volume H− ions to 0.836 [A/m2] and 1.115
[A/m2] (Fig. 74b), surface H− ions to 7.523 [A/m2] and 10.588 [A/m2] (Fig. 74c) of extracted current
density at steady state respectively for 5000 [V] and 7000 [V] extraction voltage.
Important conclusions can be drawn by comparing the extracted current with back-scattered currents
(Fig. 75). The number of extracted electrons correspond to 61.298 [A/m2] and 55.726 [A/m2] (Fig. 75a),
volume H− ions to 0.0027 [A/m2] and 0 [A/m2] (Fig. 75b), surface H− ions to 15.325 [A/m2] and 16.718
[A/m2] (Fig. 75c) of back-scattered current density at steady state respectively for 5000 [V] and 7000 [V]
extraction voltage.

14.4.5 Beam shape and extraction voltage scaling

Beam characteristics such beam width and shape are determined by the apperture shape and extraction
voltage. In theory extraction voltage Vext is derived from Child-Langmuir law and in this case is defined
as:

Vext = α ·
(
Ie−

Pe−
+
IH−volume

PH−volume

+
IH−surface

PH−surface

) 2
3

, (89)

69

(a) electrons (b) H− ions (volume) (c) H− ions (surface)

Figure 74: Particles counts at the east wall (extracted particles)

(a) electrons (b) H− ions (volume) (c) H− ions (surface)

Figure 75: Particles counts at the west wall (back-scattered particles)

where Ie− and IH− are beam currents, Pe− and PH− are beam perveances of electrons and H− ions
respectively, α is a scaling factor used to scale the experimental results to the theoretical limit. The
value of perveance indicates, how significant the space charge effect is on the beam’s motion and is defined
as:

P = k
A

d2
, (90)

where k is perveance constant, A is apperture hole area and d is averaged beam trajectory length.
Apperture hole area A can be obtained from Fig. 68, d is obtained from Fig. 72 and Fig. 73, k is 2.33395
µperv and 0.0544(5) µperv are perveances for for electrons and H± ions respectively [59]. Therefore
Eq. 90 for 5000 [V] becomes:

Pe− = 2.33395× 10−6 · π·(56∆x)2

(75∆x)2 ≈ 4.1× 10−6 [perv] (91)

PH−volume
= PH−surface

= 54.45× 10−9 · π·(56∆x)2

(75∆x)2 ≈ 9.5× 10−8 [perv] (92)

For 7000 [V] Eq. 90 becomes:

Pe− = 2.33395× 10−6 · π·(56∆x)2

(80∆x)2 ≈ 3.6× 10−6 [perv] (93)

PH−volume
= PH−surface

= 54.45× 10−9 · π·(56∆x)2

(80∆x)2 ≈ 8.4× 10−8 [perv] (94)

(95)

Ie− , IH−volume and IH−surface are calculated by I = MNq
∆t , where M = 3139.13 is the macro-particle

factor, q is the elementary charge, ∆t = 5 × 10−12 [s] and the number N of macro-particles exiting the

70

domain per ∆t is found from Fig. 74. For the case of 5000 V:

Ie− =
2200 · 3139.13 · 1.602× 10−19

5× 10−12
≈ 0.22 [A] (96)

IH−volume
=

3 · 3139.13 · 1.602× 10−19

5× 10−12
≈ 0.0003 [A] (97)

IH−surface
=

27 · 3139.13 · 1.602× 10−19

5× 10−12
≈ 0.0027 [A] (98)

For the case of 7000 V:

Ie− =
3400 · 3139.13 · 1.602× 10−19

5× 10−12
≈ 0.34 [A] (99)

IH−volume
=

4 · 3139.13 · 1.602× 10−19

5× 10−12
≈ 0.0004 [A] (100)

IH−surface
=

38 · 3139.13 · 1.602× 10−19

5× 10−12
≈ 0.0038 [A] (101)

Now one calculates Eq. 89 from the given perveances and currents in cases of 5000 [V] and 7000 [V]:

Vext ≈ α · 1945 [V]; Vext ≈ α · 2767 [V] (102)

Now one determines the scaling factors α by comparing Eq. 102 to the 5000 [V] and 7000 [V]:

α =
5000

1945
≈ 2.57; α =

7000

2767
≈ 2.53 (103)

The scaling factor α obtains a similar values in both cases of Vext.

(a) electrons (b) H− ions (volume) (c) H− ions (surface)

Figure 76: Density distributions at YZ wall-plane (beam cross-section) under 5000 V of extraction voltage

(a) electrons (b) H− ions (volume) (c) H− ions (surface)

Figure 77: Density distributions at YZ wall-plane (beam cross-section) under 7000 V of extraction voltage

71

14.4.6 Discussion

• Two negative ion beam extraction simulations were produced of 5000 [V] and 7000 [V] extraction
voltage respectively (Fig. 72,73) and evolved up to a steady state (Fig. 74, 75).

• Double sheath was produced by the simulation. Two potential profiles do not follow same shape in
the bulk plasma (Fig. 69), because the plasma potential is oscillating, nevertheless plasma potential
is fixed and stern in the double sheath region.

• The effect of higher extraction voltage is seen as a bigger depth of the meniscus (Fig. 72a, 73a).

• The effect of higher extraction voltage is visible as a higher H− beam convergence (Fig. 76c, 77c).

• The extracted currents of H− (7.523 [A/m2] @ 5000 [V]), 10.588 [A/m2] @ 7000 [V] Fig. 74c) are
significantly lower than the H− surface production of 200 [A/m2].

• The extracted currents of H− (7.523 [A/m2] @ 5000 [V]), 10.588 [A/m2] @ 7000 [V] Fig. 74c) are
even lower than the H− back-scattered currents (15.325 [A/m2] @ 5000 [V], 16.718 [A/m2] @ 7000
[V]).

• Simulations follow a scaling law of extraction voltage, which is contained in the coefficient α ≈ 2.5
(Eq. 89, 103). It indicates that the simulations produce consistant results, which follow scaling laws.
It is an important validation of the quality of NBI simulations produced by my code.

14.5 Simulation of Space Charge Compensation

High-energy (MeV) hydrogen neutral beams for fusion are produced by neutralizing a negative ion beam
(Fig. 5). Negative ions are generated in a plasma sources, extracted and accelerated by a MAMuG
(Multi-Aperture Multi-Grid) section (Fig. 78). Then the beam exits MAMuG section and enters the
so-called drift region, where it meets the ambient H2 gas. In this region the negative ions experience
collisions with ambient gas H2 and thus produces positive ions H+. The total charge density of the
drift region from being negative (due to presence H−) starts to continuously approach zero (effect of
collisions between H− and H2 neutrals). This process is called SCC (Space Charge Compensation). Due
to significant change in charge density during transient phase the beam optics is heavily influenced, e. i.
the diverging stream of negative ions H− focuses itself reaching divergence ≈ 0 at the steady state.

14.5.1 Model description

The geometry of a drift stage is approximated to a 2D domain with a particular setup of Dirichlet
and Neumann conditions represeting functional parts of the system. There are 3 functional parts of
the domain: domain boundary, aperture, slits and reppelers (Fig. 79). Domain boundary represents the
walls of the vacuum vessel that drift region is located in and it is grounded to φ = 0 [V] (except slits).
In 3D the aperture is a planar piece with circular holes. In a projected 2D cross-cut the aperture and
holes are collection of material chunks and vacant slits, where aperture is grounded to φ = 0 [V] and slits
satisfy Neumann condition at the domain boundary (E⊥ = 0 [V/m]). According to NIO1 (Negative Ion
Optimization 1) design there are 3 slits (3×3 holes) (Fig. 78). Repellers are another structure following
slit (hole) geometry. They have purpose to reppel unwanted positive ions (product of collissions H− and
neutrals H2) not to travel back to the slits and can be set to arbitrary φ = φR value. The simulated drift
region takes up an area of size 440 × 52.8 [mm2]. The H− beamlets enter through the slits on the west
boundary having energy of 60 keV obtained at acceleration stage. During the drift H− beamlets interact
with H2 neutrals via Null Collision method (13.5.2), which gradually lead to SCC and self-focusing.
Parameters of the simulation were chosen according to a plasma of density ne = 1015 [m−3] at 10 [eV],
i.e. time step ∆t = 0.2 [ps] < ω−1

pe ≈ 0.56 [ns] and cell size ∆x = 0.4 [mm] < λD ≈ 0.743 [mm].

72

Figure 78: NIO1 drift stage
Figure 79: Simulation domain (domain boundary, aper-
ture, slits and reppelers) and its corresponding Dirich-
let/Neumann conditions

14.5.2 Implementation of collisions

Initially simuation contains only background H2 neutrals and beam ions H−. Gradualy collision processes
(Fig. 80) built up e, H−, H+ and H+

2 , which move in a bath of H2 of uniform density n = 1.16×1019 [m−3].
There are 2 families of collisions implemented: elastic and inelastic. Elastic collisions include processes
such as:

• Electrons elastically collide with H2, where velocity distribution is modelled according to [52].

Inelasic collisions include processes such as:

• A fast projectile (H−1, H0, H+1) causes H2 ionization, where trajectory of generated free electron
is determined by differential cross section σ(W) [60] and scattering angles χ(W) [61].

• A fast projectile (H−1, H0, H+1) undergoes electron detachment (single, double (stripping)), where-
after trajectories of projectile and stripped electron are kept undisturbed, but charge of the pro-
jectile is changed.

• A fast electron causes H2 ionization, trajectories of generated electrons is determined by differential
cross sections σ(W) [62] and scattering angles χ(W)

• A fast projectile (H0, H+1) causes charge exchange with H2, where H+
2 is generated with an isotropic

initial velocity corresponding to a temperature of 0.03 eV.

Energy and angle distributions are sampled in the forms respectively:

W (E,R) =
a0(E)

a1(E)−R
+ a2(E) (104)

χ(E,R) =
b0(E)

b1 − (b1R)b2
+ b3 (105)

where R is a random number in the interval [0, 1] and E is the energy of the H projectile, W (E,R)
is sampled-fitted energy, a0, a1, a2, b0, b1, b2 are fitting parameters. In order to sample any secondary
electron, ones uses a 2D inverse cumulative distribution W (E,R) of energies.

W (R,E) =
10

2∑
i=0

a1i(log10E)i

10

2∑
i=0

a2i(log10E)i

−R · 10

6∑
i=0

ci(log10 E)i
−

2∑
i=0

a1i(log10E)i (106)

The angular distribution χ(W) of inelastically scattered electrons follows Eq. 105.

73

H2 + e −→ H2 + e elastic scattering
H2 + e −→ H+

2 + e + e ionization
H2 + H −→ H+

2 + H− charge exchange
H2 + H −→ H2 + H+ + e electron detachment
H2 + H −→ H+

2 + H + e ionization
H2 + H− −→ H2 + H+2e double electron detachment
H2 + H− −→ H2 + H + e electron detachment
H2 + H− −→ H2

2 + H− + e ionization
H2 + H+ −→ H+

2 + H charge exchange
H2 + H+ −→ H+

2 + H+ + e ionization

Figure 80: Collisional processes included in the model [63]

14.5.3 Simulation results and discussion

SCC simulation was run for two cases of repeller voltages φR = 0 [V] and φR = 100 [V].
The total simulated time comprised 15 µs, where plasma formation and evolution was ob-
served. Fig. 81 shows the H− density map at four time instances for the case φR = 0 [V].

Figure 81: H density map at different different time instances
(left) and emittance plot at 410 mm from the repeller (right)

It is possible to see that compensation of the central beamlet occurs earlier with respect to the
peripheral beamlets. All beamlets reach a steady compensation at t ≈ 3 [µs]. This number
is in a good agreement with the theoretical expectations for the SCC time τ = 1

nσionizvbeam
≈

2.5 [µs], where σioniz is ionization cross-section. Density profiles for the five species (H−,
H0, H+, H+

2 , e), taken along y at a distance of about 1.7 cm from the repeller (Fig. 82).

74

Figure 82: Vertical profile of particle densities at x = 200 mm. Beam ions, molecular
ions and electrons are indicated in the last frame

Two phases are recognizable. The first phase (< 2 µs) is controlled by the beam space charge

and consists of H+
2 accumulating in the potential wells of the beamlets until space charge over-

compensation is reached. In a second phase electrons start to accumulate as well to compen-
sate the presence of slow molecular ions, hence Maxwellian plasma is building up in the back-
ground of the beams (Fig. 82). At equilibrium the H+

2 density balances the sum of the im-
posed H− density (primary species) and the electron density (secondary species), which by diffu-
sion fills also the space between beamlets. The velocity distribution of intra-beamlet and inter-
beamlet plasma particles in respective regions Ain and Aout (Fig. 79) are exposed in Fig. 83.

Figure 83: Normalized energy distribution (a) and angular distribution (b) for ions
(solid) and electrons (dashed) acquired within the beamlet (thin) and in-between
beamlets (thick)

Ion and electron energy distribution are very similar in the two regions (Fig. 83a). The average ion
energies are Ei,in = 1.3 eV and Ei,out = 2.2 eV, while average electron energies are Ee,in = 9 eV and
Ee,out = 8 eV. Electrons have more-or-less the same angular distribution in two regions. Ions have
different angular distributions in two regions (Fig. 83b), which means they were transversally expelled
from the beamlet region.
A self-potential-compensation parametrization of the beam ψ can be defined from the potential U at a
given time and the initial potential U0 generated by the beam charges at very beginning of the simulation
(t = 0.14 µs):

φ(s) = 1− U(s)

U0(s)
, (107)

where s is a path along the domain. ψ is very useful to compare the extend of self-compension in the
beams of the two cases of interest. ψ(y) reaches 1.08 and 1.02 for two cases φR = 100 [V] and φR = 0 [V]
respectively (Fig. 84). A similar result is demonstrated by ψ(x) for the case φR = 0 [V] at the four time
instances (Fig. 85).

75

Figure 84: Temporal evolution of
compensation parameter ψ(y) at x =
8 mm.

Figure 85: Compensation parameter ψ(x) along the cen-
tral (dashed) and lateral beamlets (solid) at different
time instances (case φR = 0 [V])

15 Conclusions

PIC method provides a lot of opportunity and flexibility for plasma simulations in both collisionless
and collisional approaches. PIC algorithm posses a straight-forward and robust nature towards the
simulation, which allows codes to be built from scratch independently (as it was done for this thesis)
and custom-optimize for a particular computational load. However GPU-based implementation of PIC
introduces a higher level of complexity into the coding and optimization. At the same time GPGPU
platform provides additional opportunities for the high-end codes. Since GPGPUs are designed and
oriented to massive parallel computation with extremely high throughputs, PIC method can reach unseen
levels of quality. The code is able to fully and completely exploit GPGPU power, it was tested and works
well in a wide range of parametric space. Performance-wise there are two parametrical constituents of
the PIC code setup: the domain size and number of particles. These two code parts map well onto two
functional parts of GPU harware: GPU RAM and GPU multiprocessor. Nvidia Tesla K40 was used for
running PIC code. Tesla K40 is one of the latest Nvidia products for HPC built on Kepler architecture
and released in 2014. It runs on 745 MHz clock with 12 GB of RAM and 48 kB of shared memory. The
code was able to operate in 3D domains of size up to 137×153×153 nodes and evolve up to 108 particles
within reasonable duration (it depends on the length of simulated time). In fact the code by design
can operate on even bigger setups, but in this case it was limited by 12 GB of RAM of Nvidia Tesla
K40. In a sense GPU-based implementation is essential for high-end PIC codes, because any CPU-based
implementation would suffer from lack of available parallelization and too high computational loads.
And above all the code seems to procude valid physical results according to current knowledge of plasma
physics.

76

Part IV

Tomography
The word tomography is derived from ancient greek words τομὸς (tomos - slice, section) and γρὰφω
(graphō - to write). Tomography refers to imaging by sections or sectioning, through the use of any
kind of penetrating rays. The method exists in radiology, archaeology, biology, atmospheric science,
geophysics, oceanography, plasma physics, materials science, astrophysics, quantum information, and
other sciences. Mainly it is based on the mathematical procedure called tomographic reconstruction.

16 Tomographic problem

16.1 Radon transform

In 1917 Austrian mathematician Johann Radon (1887-1956) introduced an integral 2D function transform
(presently known as Radon transform)[64]. The transform is constructed by relating a 2D function g(x, y)
to its line integrals (projections). Radon transform takes multiple 1D projections and assembles them
into a representation called sinogram. Using operator R Radon tranform can be expressed as:

Rg(x, y) =

∞∫
−∞

∞∫
−∞

g(x, y)δ(r − x cos θ − y sin θ) dx dy (108)

With the help of vector notation one can extend definition to a multidimensional case:

Rg(x) =

∫
g(x)δ(r − x · t) dx, (109)

where t is a unit vector in the scanning direction θ and L(r, θ) is the integration line lying at a distance
r from the origin (Fig. 86). In fact word ”sinogram” derives from ”sine”, because projections tend to
draw sinusoids in the sinogram (Fig. 87b, 87d).

16.2 Rotation theorem

Rotation theorem needs to be stated before one moves further. This theorem is necessary to prove
Projection-slice theorem (16.4). Rotation theorem deals with the question, whether an image g(x, y) and
its Fourier tranform G(u, v) follow an arbitrary rotation accordingly.

Rotation theorem.
If g(x, y)2 ⊃ G(u, v), then

g(x cos θ − y sin θ, x cos θ + y sin θ)2 ⊃ G(u cos θ − v sin θ, u sin θ + v sin θ) (110)

Translated to human language, the theorem says that if one rotates an image g(x, y) by an angle θ, its
Fourier representation G(u, v) will rotate by the same angle θ. Even though it may seem to be obvious,
but one has to ensure that a clock-wise rotation of g(x, y) does not result in a counter-clockwise rotation
of G(u, v) and vice versa. In order not to dwell too much on mathematical formalities, we are going to
skip the proof this theorem.

16.3 Projection definition

Projection operation Pθ of a 2D function g(x, y) is defined as its line integral. There exist infinitely many
of such line integrals each representing a particular direction θ. Thus one can define a zero-angle and
arbitary angle projections P0 and Pθ respectively:

P0(x) = P0g(x, y) =

∞∫
−∞

g(x, y) dy (111)

77

Pθ(r) = Pθg(x, y) =

∫
L(r,θ)

g(x, y) dL, (112)

where L(r, θ) is the path (a line) of a line integral (Fig. 86). A set or a collection of these projections
{Pθi . . . Pθn} is called a scan or sinogram in tomography, where Pθi ’s are acquired by a function of time
or/and by an array of cameras.

Figure 86: Geometry of Radon tranform

16.4 Projection-slice theorem

Fourier transform of a projection of an image g(x, y) taken at an angle θ gives a slice of the 2D Fourier
transform G(u, v), subtending an angle θ with the u-axis.

Proof.
One starts with the 2D Fourier transform relation:

G(u, v) =

∞∫
−∞

∞∫
−∞

g(x, y)e−i2π[ux+vy] dx dy (113)

One sets v = 0, because it is the slice along v = 0 that it is desired to be obtained:

∞∫
−∞

 ∞∫
−∞

g(x, y) dy

 e−i2π ux dx = G(u, 0) (114)

One sees that the integral in brackets is exactly P0(x) = P0g(x, y) (Eq. 111). In terms of the projection
operator P0 and Fourier operator F the previous equation (Eq. 114) can be written as:

1F{P0g(x, y)} = [2Fg(x, y)]θ=0 (115)

The left side is a 1D Fourier transform of the projection at angle θ = 0. The right side is the slice of 2D
Fourier transform subtending angle θ = 0 with the u-axis. And they are equivalent. This completes a
partial proof for the special case θ = 0. 4
Knowing that Rotation theorem (16.2) holds true one can extend Eq. 115 to a general case for any angle
θ:

1F{Pθg(x, y)} = [2Fg(x, y)]θ (116)

1FPθ(x) = [G(u, v)]θ (117)

This completes the proof for any angle θ.

78

(a) Input phantom

(b) Sinogram of 18 samples (c) reconstruction of 18 samples

(d) Sinogram of 180 samples
(e) reconstruction of 180 samples

Figure 87: Radon transform and its inverse (reconstruction)

Projection-slice theorem tells that Radon transformation is uniquely reversible given an infinite number of
projections, i.e. inverse Radon transform exists. In practice one never has infinite number of projections,
thus reconstruction is never perfect. And inverse Radon transform proves to be extremely sensitive to
noise. In Fig. 87c one can clearly see projection artefacts, which are caused by low samping (low number
of projections). In Fig. 87e high density of projection artefacts (high sampling) results into a halo effect
and overall whitening of the image.

17 Cormack solution

A cross-section of a physical object, that is undergoing tomographic inspection, is characterized by a
linear absorption (attenuation) coefficient g represented in 2D domain. It is assumed that attenuation
occurs exponentially in the object and along the inspection line L. The relation of an input intensity I0
and output intensity I of beam passing through media can be expressed as:

I = I0 exp

−∫
L

g(x, y) dL

 , (118)

where g(x, y) is the map of attenuation values and L is the path (assumed line) that the beam took.
The integral inside the exponent is a projection of g(x, y) along L (Fig. 88). One defines this projection
value as:

fL =

∫
L

g(x, y) dL = ln
I0
I

(119)

79

One can extend this relation into a function of variables (p, φ):

f(p, φ) =

∫
L(p,φ)

g(x, y) dL (120)

And by changing from Cartesian to polar coordinates, one gets:

f(p, φ) =

∫
L(p,φ)

g(r, θ) dL (121)

In fact f(p, φ) is the Radon transform of g(r, θ), i.e. f(p, φ) = Rg(r, θ). If one could obtain g(r, θ) =
R−1f(p, φ) easily, the ”Quest of Tomography” would be finished. However only approximate solutions
exist. The papers [65, 66] on mathematical treatment of inverse Radon transform earned Nobel Prize
to Allan McLeod Cormack in 1979. He shares the prize in the category of ”Physiology or Medicine”
with Godfrey Hounsfield, who has built the first Computerized Tomography scanner using Cormack’s
calculations.

Derivation
Hereafter the mathematical passage will be described, how Cormack reached his solution. In order to
tackle the aforementioned problem, first one has to convert f(p, φ) into a set of integrals fn(p, φ). One
supposes that g(r, θ) is finite, single-valued and continuous (well-behaved) in r direction, but not in θ.
It is also contained in a unitary circle, because one can always normalize by r. Then expansion of g(r, θ)
into harmonic series (Fourier series) with respect to variable θ is:

g(r, θ) =

+∞∑
n=−∞

gn(r)einθ, where gn(r) =
1

2π

2π∫
0

g(r, θ)e−inθ dθ (122)

The arc created by L(p, φ) and circle of radius r can always be divided into to two equal arcs by a

Figure 88: Geometry of Cormack’s solution

normal from L(p, φ) to the origin O (Fig. 88). Pairs of symetric points ((r, θ) and (r, 2φ− θ)) have same
contributions to f , then df can be written as:

df =

+∞∑
n=−∞

gn(r)[einθ + ein[2φ−θ]] dL (123)

80

Simplyfied:

df = 2

+∞∑
n=−∞

gn(r)einφ cos(n[θ − φ]) dL (124)

Combining Eq. 121 and Eq. 124 one gets:

f(p, φ) = 2

∫
L(p,φ)

+∞∑
n=−∞

gn(r)einφ cos(n[θ − φ]) dL (125)

Knowing that L =
√
r2 − p2 −→ dL = r dr√

r2−p2
and θ − φ = arccos(pr), Eq. 125 becomes:

f(p, φ) = 2

+∞∑
n=−∞

einφ
1∫
p

gn(r) cos(n arccos pr)√
r2 − p2

rdr (126)

By looking accurately, one can notice that Eq. 126 became a sum of integrals (what was desired). Indeed
when one applies Fourier expansion for f(p, φ) (the same as it was done for g(r, θ) (Eq. 122)), the integral
in the sum (Eq. 126) are the Fourier coeficients fn (Eq. 127):

f(p, φ) =

+∞∑
n=−∞

fn(p)einφ, where fn(p) =
1

2π

2π∫
0

f(p, φ)e−inφ dφ (127)

becomes

f(p, φ) =

+∞∑
n=−∞

fn(p)einφ, where fn(p) = 2

1∫
p

gn(r) cos(n arccos pr)√
r2 − p2

rdr (128)

The construct ”cos(n arccos(x))” (Eq. 128) is a polynomial of degree n known as Tschebycheff polynomial
of the first kind. It is denoted by Tn(x), and Eq. 128 can be written as:

fn(p) = 2

1∫
p

gn(r)Tn(pr)√
r2 − p2

rdr (129)

This completes the derivation. 4

Solution

To solve the set of equations (Eq. 129), multiply both sides by
z
pTn(pz)√
p2−z2

, integrate
1∫
z

. . . dp and change the

order of integrals on the right hand side:

1∫
z

z
pTn(pz)fn(p)√

p2 − z2
dp = 2

1∫
z

gn(r) dr

r∫
z

rzTn(pz)Tn(pr)

p
√
r2 − p2

√
r2 − z2

dp (130)

Let one denote the right hand integral of dp by In(r, z):

In(r, z) = rz

r∫
z

Tn(pz)Tn(pr)

p
√
r2 − p2

√
r2 − z2

dp (131)

It can be shown that In+1 = In−1 and I0 = I1 = π
2 , so

In(r, z) =
π

2
(132)

81

Hence Eq. 130 becomes

1∫
z

z
pTn(pz)fn(p)√

p2 − z2
dp = 2In(r, z)

1∫
z

gn(r) dr = π

1∫
z

gn(r) dr (133)

By differentiating with respect to z one gets:

gn(r) = − 1

π

d

dz

1∫
z

zTn(pz)fn(p)

p
√
p2 − z2

dp (134)

Changing notation z → r:

gn(r) = − 1

π

d

dr

1∫
r

rTn(pr)fn(p)

p
√
p2 − r2

dp (135)

This completes the solution of Eq. 129. 4

Finally mutually defined correspondence between fn(p) and gn(r) (Eq. 129 and Eq. 135) is obtained, i.e.
fn(p) and gn(r) are unique solutions of each other.

18 Fourier-Bessel expansion

At this point reconstruction can be already obtained by calculcating directly gn(r) (Eq. 135), where val-
ues of fn(p) are experimentally obtained from the detector array. However with regard to computational
efficiency an integration is a lengthy and expensive mathematical procedure, which means it is completely
unsuitable for real-time applications. Thus one need to simplify the integration to something more prim-
itive. One can assume fn(p) to be composite of a some set of orthogonal functions, i.e. basis functions.
In the original paper [66] Cormack proposed to assign fn(p) with Zernicke polynomials Rmn , because they
lead to particularly simple expansions for the fn. Cormack was not particularly concerned about plasma
tomography, therefore Zernicke polynomials worked well for him. Indeed Zernicke polynomials proved
to be not useful in plasma tomography [67], because they tend to generate spike artifacts on the edge of
g(r, θ), which arise from the fact that Rmn (1) = 1. From basic plasma physics it is known, that plasma
density approaches 0 at normalized minor radius r = 1. Fortunately there exists another complete set
of orthogonal functions - Bessel functions of the first kind Jn. They have the desired behaviour when
approaching plasma edge, i.e. Jn(xnl) = 0. This expansion was first proposed by Ling Wang and Robert
S. Granetz in [68, 69]. In Eq. 129 one has to replace gn(r) with a Bessel function:

fn(p) = 2

1∫
p

gn(r)Tn(pr)√
r2 − p2

rdr −→ 2

1∫
p

Jn(xnlr)Tn(pr)√
r2 − p2

rdr, (136)

where xnl is the (l + 1)’th root of Bessel function Jn of order n, i.e. xnl is defined as Jn(xnl) = 0. In
order to simplify Eq. 136 one has to reduce the integral term and overcome the singularity at r = p.

Derivation
Fourier expansions of g(r, θ) and f(p, φ):

g(r, θ) =

+∞∑
n=−∞

gn(r)einθ =

∞∑
n=0

gc
n(r) cos(nθ) + gs

n(r) sin(nθ), where gc,s
n (r) =

∞∑
l=0

ac,s
nl gnl(r) (137)

f(p, φ) =

+∞∑
n=−∞

fn(p)einφ =

∞∑
n=0

f c
n(p) cos(nφ) + f s

n(p) sin(nφ), where f c,s
n (p) =

∞∑
l=0

ac,s
nl fnl(p) (138)

2D Fourier transform of g(x, y):

g(k) =

∫ ∫
g(x, y)eik·r dx dy (139)

82

Rotating the coordinate axis so that p ‖ k, Eq. 139 becomes:

g(k) =

∫ ∫
g(x, y)eikr cos(φ−θ) dxdy =

2π∫
0

dθ

∞∫
0

g(r, θ)eikr cos(φ−θ)r dr (140)

By inserting Eq. 137 into Eq. 140 and carrying out the integration over θ {Appendix A}:

g(k) =

∞∑
n=0

∞∫
0

[gc
n(r) cos(nθ) + gs

n(r) sin(nθ)]in2πJn(kr)r dr (141)

The inverse Fourier transform of Eq. 141 then gives:

f(p, φ) =
1

2π

∞∫
−∞

g(k)e−ikp dk =

=

∞∑
n=0

in

cos(nφ)

∞∫
0

gc
n(r)r dr

∞∫
−∞

Jn(kr)e−ikp dk + sin(nφ)

∞∫
0

gs
n(r)r dr

∞∫
−∞

Jn(kr)e−ikp dk

 =

=

∞∑
n=0

f c
n(p) cos(nφ) + f s

n(p) sin(nφ), where f c,s
n (p) = in

∞∫
0

gc,s
n (r)r dr

∞∫
−∞

Jn(kr)e−ikp dk

(142)

Now one assigns gnl(r) =

{
Jn(xnlr) , r ≤ 1

0 , r > 1
in Eq. 137 and Eq. 142:

g(r, θ) =

∞∑
n=0

gc
n(r) cos(nθ) + gs

n(r) sin(nθ), where gc,s
n (r) =

∞∑
l=0

ac,s
nl Jn(xnlr) (143)

f(p, φ) =

∞∑
n=0

f c
n(p) cos(nφ) + f s

n(p) sin(nφ), where

f c,s
n (p) = in

1∫
0

[∞∑
l=0

ac,s
nl Jn(xnlr)

]
r dr

∞∫
−∞

Jn(kr)e−ikp dk =

∞∑
l=0

inac,s
nl

∞∫
−∞

e−ikp dk

1∫
0

Jn(xnlr)Jn(kr)r dr

(144)

The integral
1∫
0

Jn(xnlr)Jn(kr)r dr in Eq. 144 can be solved using equation 8 in chapter 5.11 of [70]. A

cylinder function Cµ and its conjugate C̄µ of order µ satisfy:

z∫
zCµ(kz)C̄µ(lz) dz =

z[lCµ(kz)C̄µ+1(lz)− kCµ+1(kz)C̄µ(lz)]

k2 − l2
(145)

Bessel functions are cylindrical fuctions, so Eq. 145 can be expressed as:

r∫
rJn(kr)Jn(xnlr) dr =

r[xnlJn(kr)J ′n(xnlr)− kJ ′n(kr)Jn(xnlr)]

k2 − x2
nl

(146)

Integrating Eq. 146 from 0 to 1 one gets:

1∫
0

rJn(kr)Jn(xnlr) dr =
r[xnlJn(kr)J ′n(xnlr)− kJ ′n(kr)Jn(xnlr)]

k2 − x2
nl

∣∣∣∣1
0

=
xnlJn(k)J ′n(xnl)

k2 − x2
nl

(147)

83

Using Eq. 147, Eq. 144 becomes:

f(p, φ) =

∞∑
n=0

f c
n(p) cos(nφ) + f s

n(p) sin(nφ) , where

f c,s
n (p) =

∞∑
l=0

ac,s
nl fnl(p) , where

fnl(p) = inxnlJ
′
n(xnl)

∞∫
−∞

Jn(k)e−ikp

k2 − x2
nl

dk (148)

Using the integral representation of Bessel function Jn(k) = 1
πin

π∫
0

eik cos θ cos(nθ) dθ Eq. 148 becomes:

fnl(p) = inxnlJ
′
n(xnl)

∞∫
−∞

e−ikp

k2 − x2
nl

 1

πin

π∫
0

eik cos θ cos(nθ) dθ

 dk =

=
xnlJ

′
n(xnl)

π

π∫
0

cos(nθ) dθ

∞∫
−∞

eik[cos θ−p]

k2 − x2
nl

dk (149)

Using the identity
∞∫
−∞

eik[cos θ−p]

k2−x2
nl

dk = − 2π
xnl

sin(xnl| cos θ − p|) {Appendix B}, Eq. 149 becomes:

fnl(p) =
xnlJ

′
n(xnl)

π

π∫
0

cos(nθ) dθ

[
− 2π

xnl
sin(xnl| cos θ − p|)

]
=

= −2J ′n(xnl)

π∫
0

cos(nθ) sin(xnl| cos θ − p|) dθ (150)

After some algebra Eq. 150 becomes {Appendix C}:

fnl(p) = −2J ′n(xnl)

∞∑
m=0

2Jm(xnl) sin
(
m
π

2
− xnlp

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
(151)

This completes the derivation. 4

The final complete description of f(p, φ) with Bessel functions as the basis:

f(p, φ) =

∞∑
n=0

[
cos(nφ)

∞∑
l=0

ac
nlfnl(p) + sin(nφ)

∞∑
l=0

as
nlfnl(p)

]
, where (152)

fnl(p) = −2J ′n(xnl)

∞∑
m=0

2Jm(xnl) sin
(
m
π

2
− xnlp

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
(153)

Having started with general Radon transform, then implemented Cormack theory and developed through
Fourier-Bessel expansion eventually one reached a final form of f(p, φ). It needed explicit mathematical
treatment in order to get rid of of integrals and singularities to be enough ”computationally friendly” to
be implemented as a numerical algorithm. As well one already has obtained reconstruction expression
at Eq. 143, which can be reformulated to:

g(r, θ) =

∞∑
n=0

[
cos(nθ)

∞∑
l=0

ac
nlJn(xnlr) + sin(nθ)

∞∑
l=0

as
nlJn(xnlr)

]
(154)

84

Index n represents the angular component of the expansion. Index l represents the radial component
of the expansion. In practice indices n and l do not tend to infinity, but have limits N and L, which
are defined by the physical design of the experiment. N and L are the parameters of reconstruction
algorithm and are defined by the system configuration. N is defined from the number of sensor arrays.
L is defined from the number of sensors in a sensor array. According to Nyquist criterion resolution of
a system is limited to roughly half number of its sensors. The tomography system has dimensionality
of 2D. The size of the first dimension is limited by N = number of sensor arrays

2 , the size of the second

dimension is limited by L = number of sensors in a sensor array
2 . With the indexing starting at 0, n can obtain

values up to N − 1 and l can obtain values up to L− 1:{
n ∈ {0, 1, · · · , N − 1}
l ∈ {0, 1, · · · , L− 1}

The system installed at ISTTOK has 3 sensor arrays with 16 sensors each, therefore N = 3/2 ≈ 2 and
L = 16/2 = 8: {

n ∈ {0, 1}
l ∈ {0, 1, 2, 3, 4, 5, 6, 7}

19 Solution and reconstruction

In a real system Eq. 152 obtains discrete form, i.e. continuous function f(p, φ) becomes a set of discrete
values fi = f(pi, φi). In fact fi is the measured intensity of a sensor i, which is located at point
(pi, φi). The set of points (pi, φi) describes the overall positioning and geometry of sensor arrays in
the tokamak. The set of points (pi, φi) is defined by a physical system design. By defining elements
Cc
i,nl = fnl(pi) cos(nφi) and Cs

i,nl = fnl(pi) sin(nφi) Eq. 152 can be expressed as a linear system:

fi =

N−1∑
n=0

L−1∑
l=0

[
Cc
i,nla

c
nl + Cs

i,nla
s
nl

]
=

N−1∑
n=0

L−1∑
l=0

Cc,s
i,nla

c,s
nl (155)

In matrix form:
f = C · a (156)

C is called a contribution matrix, because it describes how much each basis function contributes to a
signal in each detector, f is a back-calculated signal data and a is a to-be-solved coeficient vector. More
explicitly:


f1

f2

...
fS

 =


Cc

1, 00 · · · Cc
1, N−1L−1 Cs

1, 00 · · · Cs
1, N−1L−1

Cc
2, 00 · · · Cc

2, N−1L−1 Cs
2, 00 · · · Cs

2, N−1L−1
...

. . .
...

...
. . .

...
Cc
S, 00 · · · Cc

S, N−1L−1 Cs
S, 00 · · · Cs

S, N−1L−1

 ·


ac
00
...

ac
N−1L−1

as
00
...

as
N−1L−1


(157)

where S is total number of sensors in the system, i.e. S = # of arrays × # of sensors per array = 3×16

in ISTTOK. Due to the fact that Cs
i,nl

∣∣∣
n=0

= Cs
i,0l = fnl(pi) sin(0 · φi) = 0 system (Eq. 157) can be

reduced to:


f1

f2

...
fS

 =


Cc

1, 00 · · · Cc
1, N−1L−1 Cs

1, 10 · · · Cs
1, N−1L−1

Cc
2, 00 · · · Cc

2, N−1L−1 Cs
2, 10 · · · Cs

2, N−1L−1
...

. . .
...

...
. . .

...
Cc
S, 00 · · · Cc

S, N−1L−1 Cs
S, 10 · · · Cs

S, N−1L−1

 ·


ac
00
...

ac
N−1L−1

as
10
...

as
N−1L−1


(158)

85

Note that in general contribution matrix C is not a square matrix. It has number S of rows and number
2NL− L = (2N − 1)L of columns. Basic theory of linear equation systems tells that, when a matrix is
not square, the system does not have uniquely defined solution. When matrix has more columns than
rows, the system is underdetermined (it has more variables than equations). When matrix has more
rows than columns, the system is overdetermined (it has more equations than variables). In this case
the system has S = 48 equations of (2N − 1)L = (2 · 2− 1) · 8 = 24 variables. Bare in mind that N and
L are only limiting parameters, one has freedom to have less variables in the system. In fact the choice
of best N and L is a delicate issue, which will be discussed later. As mentioned before overdetermined
systems do not have a unique solution, however one can always have an approximate “best fit” solution.

19.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is a matrix factorization, which enables to solve overdetermined
linear systems. Solution is obtained as a minimization of summed squared error of the system, i.e.
solution is a fit by least squares. Using SVD one can decompose contribution matrix C to its factors:

C = U ·W ·VT (159)

where U is an orthogonal matrix, W is a diagonal matrix with singular values on its diagonal and VT

is a transpose of an orthogonal matrix V. In order to solve equation systems one needs to invert C into
C−1:

C−1 =
[
U ·W ·VT

]−1
= U−1 ·W−1 ·

[
VT
]−1

=
UT ·V

W
(160)

Last transition was possible due to the property of orthogonal matrices: U−1 = UT; V−1 = VT. 1
W is

diagonal matrix with reciprocal singular values on its diagonal. Strickly speaking C−1 is an incorrect
mathematical notation here due to the fact that C is not a square matrix. In fact notation of Moore-
Penrose pseudoinverse [71] C+ should be used instead. However for the purpose of readability and
derivation one used C−1. The C code of SVD [72] is built on algorithm called Householder reduction
{Appendix E}.

19.2 Reconstruction

Once pseudo-inverse contribution matrix C+ is acquired with SVD, coeficient vector a is obtained by:

a = C+ · f (161)

Now it is straightforward to obtain the actual reconstruction image. By defining basis functions
Bc
nl(r, θ) = Jnl(xnlr) cos(nθ) and Bs

nl(r, θ) = Jnl(xnlr) sin(nθ) Eq. 154 can be expressed as:

g(r, θ) =

N−1∑
n=0

L−1∑
l=0

[ac
nlB

c
nl(r, θ) + as

nlB
s
nl(r, θ)] =

N−1∑
n=0

L−1∑
l=0

ac,s
nlB

c,s
nl (r, θ) =

(2N−1)L−1∑
i=0

aiBi(r, θ) (162)

In vector form:

g =

(2N−1)L−1∑
i=0

aiBi (163)

where ai are elements of coeficient vector a and Bi are elements (bases) of basis matrix B. To put in
words, reconstructed image is a weighted sum of basis functions Bi weighted by coeficients ai, which is
obtained by applying pseudo-inverse contribution matrix C+ to sensor data f .

20 Calculation of Contribution matrix

In section 19 it was demonstrated how to construct a linear set of equations and obtain its approximate
solution. However obtaining contribution matrix C itself still remains a problem. Calculation of C
requires calculation of Eq. 153, which is an analytic-like expression and contains infinite sum. Fortunately

86

there is a way to overcome this problem by exploiting so-called Fourier-Generic method introduced by
Pedro Carvalho in [73]:

g(r, θ) =

N−1∑
n=0

[
cos(nθ)

L−1∑
l=0

ac
nlgnl(r) + sin(nθ)

L−1∑
l=0

as
nlgnl(r)

]
(164)

where gnl(r) can be any function, which presents some level of radial localization along l. This method
allows to simplify calculation of fi to a vector dot product:

fi = pi · g (165)

where fi is a datum of sensor i, pi is a projection vector of sensor i and g is the emmissivity distribution
expressed as a vector. This description can be extended to matrix-vector product:

f = P · g (166)

where P is a projection matrix. Eq. 166 represents the synthetic diagnostic of a system. In fact any
emmissivity distribution (image) can be fed as g to obtain virtual values on sensors, i.f. signal f is back-
calculated. If instead of image g an image of basis bi is fed in, one obtains a virtual signal f generated
by that basis. In this way a matrix can be constructed containing virtual signals generated by all bases
B, which exactly what contribution matrix C is:

C = P ·B (167)

20.1 How does projection matrix P look like?

Projection matrix P is comprised of projection vectors pi. Projection vector pi is obtained from the
percentage of intersection each pixel with each pair of viewlines (Fig. 89). Each pi visualized as a 2D
picture demonstrates viewing areas of each sensor sensor i (Fig. 90). Since each pi depends on imposed
geometry and positioning of sensors, so does projection matrix P. It is also obvious that viewing angles no
longer represent 1D line integrals, but instead integrals over speficic area imposed by the viewing angle.
Due to this fact an assumption present in orginal Fourier-Bessel derivation, that sensors are point-line
and have no width, is no longer valid. Fourier-Generic method allows to dispose of this unnecessary
assumption and give a more straighforward and intuitive approach.

Figure 89: Viewing lines of the equatorial detector

@
@@de
se

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

top

eq

bot

Figure 90: Sensors and their viewing angles arranged according to their positions in detectors

87

20.2 How does basis matrix B look like?

Basis matrix B is comprised of basis vectors bj . In fact bj visualized as a 2D picture demonstrates a
basis function Bj(r, θ). At most one can have L(2N − 1) = 8(2 · 2 − 1) = 24 bases in case of ISTTOK
setup (Fig. 91, 92). Bessel-sine bases of order n = 0 are not depiceted, because they yield 0.

@
@@n
l

0 1 2 3 4 5 6 7

0

1

Figure 91: Basis functions Bc
nl(r, θ) = Jnl(xnlr) cos(nθ)

@
@@n
l

0 1 2 3 4 5 6 7

1

Figure 92: Basis functions Bs
nl(r, θ) = Jnl(xnlr) sin(nθ

21 Algorithm testing and optimization

21.1 Error optimization

Algorithm testing and optimization is a big part of the development of tomography algorithms. Proper
selection of limiting N and L is a crucial decision, which defines the quality/defectiveness of reconstruc-
tion. N and L set the limit angular and radial resolution. N deals with the ”angular order” of the
expected image, i.e. how much angular dependence will be contained in the image. L deals with ”radial
order” of the expected image, i.e. how much radial dependence will be contained in the image. It is
a bit controversial that one has to choose the property of the reconstruction image apriori, because in
ideal case it is the reconstruction, which has to indicate and demonstrate the properties of the emission
distribution. In order to arrive to a smart guess of what N and L are, a study on phantoms and their re-
constructions was conducted. A master student César Alves designed a Python code TOT (Tomography
Optimization Tool) for studying phantoms and their reconstructions, which is presented in his Master
thesis [74]. He carried a study to obtain the best geometry setup and the best pair of {N,L}. This study
was conducted as an optimization process based on errors ε and χ2 as minimization criteria. Error ε is
defined as an average absolute difference between reconstruction image pixel and phantom image pixel.

ε =
1

K

K∑
i

|gi − g̃i| (168)

where g is the phantom image, g̃ is the acquired reconstruction image and K is the number of pixels.
Error ε is very useful to describe reconstruction quality. ε = 0 would indicate a perfect reconstruction,
anyway ε < 0.1 is considered a valid reconstruction. χ2 is another type of statistical error, which describes
the “goodness of fit”. It is called Pearson’s test and it typically summarizes the discrepancy between
observed values and the values expected under the model in question.

χ2 =
1

ν

S∑
i

(
fi − f̃i

)2

fi
=

1

S − L(2N − 1)

S∑
i

(
fi − f̃i

)2

fi
(169)

88

where fi is phantom-generated theoretical signal value at sensor i, f̃i is a obtained signal value at sensor
i, ν is the number of degrees of freedom of the system, where S is the number of observed quantities
(number of sensors = 48) and L(2N − 1) is the number of fitted paramaters (number of basis functions).

Noise level w is present in the system and is contained within f̃ . Varying the geometry of the detector
setup and looking at different pairs of limiting {N,L} allowed César Alves to select the best geometry
configuration and the best {N,L} (Fig. 93, 94, 95).

Figure 93: {N,L} sets that result in ≤ 48 basis functions (blue) and those which satisfy Nyquist criterion
(inside red rectangular) [74]

Figure 94: Error ε with minimum at {N,L} =
{2, 2} [74]

Figure 95: Error χ2 with minimum at {N,L} =
{3, 5} [74]

According to César Alves the optimal {N,L} that produces least ε and χ2 and fits into Nyquist criterion
happens to be {2, 2}, which results in 6 basis functions (4 of Bessel-cosine origin and 2 of Bessel-sine
origin). Geometry of detector positioning was also optimized and optimal detector coordinates were
obtained [74], which are encoded into Projection matrix P (Fig. 90). All these conditions serves as
starting point for numerical processing and will be unquestionable within the scope of this thesis.

21.2 Error maps

As mentioned in previous paragraph, the quality of a single reconstruction can be described with
two errors ε and χ2. However one is interested and concerned how reconstructions would per-
form in general case under various conditions and various positioning of sources (phantoms). In
order to obtain this information, one can construct an error map. Error map is a 2D represe-
nation of tokamak cross-section, where each points indicates a likely estimate of a reconstruction

89

error (Fig. 96). Since two numbers ε and χ2 describe a single reconstruction, therefore two er-
ror maps can be built by placing (scanning) the phantom across reconstruction domain and cal-
culating the corresponding error value at that point. This technique enables to explore the prop-
erties of particular phantom and observe areas where reconstuction is most effective in the toka-
mak cross-section. Error maps are presented in the section 22. (Fig. 101, 102, 108, 109, 115, 116).

Figure 96: Error maps are 2D domains (scalar fields) of error values, where χ2 and ε are obtained by
reconstructions of a particular phantom for each point of the map

21.3 Error correction grid (selective reconstruction)

So far one explored the possibilities of reconstruction model binded to particular contribution matrix C,
which was built using projection matrix P and basis matrix B. However there is intrinsic assumption,
that has to be mentioned. So far it was assumed, that reconstruction happens at the center of tokamak
cross-section, i.e. all basis functions were centered. In a more realistic scenario plasma can be expe-
riencing Shafranov shift, i.e. off-centered. Therefore a reconstruction model based on a centered basis
functions would perform poorly. If only one could know the offset of the plasma center and perform the
reconstruction accordingly, the quality of the reconstruction would be improved significantly. With the
following development one will try to approach the complication of reconstructions for offset plasmas,
even in the case when the offset is unknown. Instead of having only one single reconstruction model,
one can define multiple contribution matrices {C1,C2, . . . }, their pseudo-inverses {C+

1 ,C
+
2 , . . . }, basis

matrices {B1,B2, . . . } and coeficient vectors {a1,a2, . . . }, where each pair of {Bi,ai} considers a recon-
struction model for a particular offset from the tokamak axis. One can organize these multiple models in
a pseudo-matrix relationship, which represent a set of multiple recontructions {g1,g2, . . . }, which cover
a certain area of tokamak cross-section (Fig. 97).

B1,1 · · · B1,J

...
. . .

...
BI,1 · · · BI,J

 ◦


a1,1 · · · a1,J

...
. . .

...
aI,1 · · · aI,J

 =


g1,1 · · · g1,J

...
. . .

...
gI,1 · · · gI,J

 (170)

Figure 97: Error correction domain depicted in the red square
In theory one could perform all the reconstructions defined in a grid and select the most suitable one by
comparing them to the original phantom, i.e. selecting reconstruction with best visual correspondence

90

and the least ε (Eq. 168). However it is computationally unpractical and even impossible in a real-time
scenario. In real-time scenario one has a chance to perform only a single reconstruction at a time and
there is no phantom to compare to. Therefore one has to choose only one reconstruction from the grid
and perform it. The criterion for the selection is the best fit of back-projected signal f to the arriving
signal f̃ , i.e. selecting the minimum value of χ2 (Eq. 171) among all possible reconstructions.

χ2
min = min{χ2

1, χ
2
2, . . . } (171)

The index of χ2
min indicates (Eq. 172), which reconstruction has to be selected for processing.

argχ2
min = arg min{χ2

1, χ
2
2, . . . } (172)

The obtained index is pointing to a particular Bi and corresponding ai, which are used to reconstruct the
image (Eq. 163). Correction grid is defined during offline state of real-time application. Sets {Bi}, {Ci}
and {C+

i } are calculated for each point of correction grid accordingly during offline state. During online
state {ai} are calculated by Eq. 161, {fi} is calculated by Eq. 156, selection is performed with Eq. 172 and
reconstruction is processed by Eq. 163. In the section 22 one can clearly see improved quality between
center-based reconstructions and error-corrected reconstructions for single-source phantoms (Fig. 99,100).
However error correction grid does not dramatically improve double-source (Fig. 106,107) and ring-source
reconstructions Fig. 113,114). The effect of error correction grid is also very evident in error maps for
single-source reconstructions (Fig. 103,104) and ring-source reconstructions (Fig. 117,118). In general
error-correction grid cannot guarantee always a good quality reconstruction, even if χ2 and ε values
indicate good reconstruction, but surely does increase chances to have an improved reconstruction.

91

22 Results

22.1 Single source study

22.1.1 Phantoms

Single
source

Left Middle Right

Top

Middle

Bottom

Figure 98: Single source: phantoms of Gaussian width σ = 0.3 and off-center displacement ∆r = 0.5

92

22.1.2 Reconstructions

Single
source

Left Middle Right

Top

Middle

Bottom

Figure 99: Single source: reconstructions of Fig. 98

Single source Left Middle Right

Top 331.680 903.209 1865.886
Middle 1401.224 2.513 42.837
Bottom 263.089 976.746 2034.286

Table 13: Single source: χ2 error

Single source Left Middle Right

Top 0.086040 0.087075 0.084600
Middle 0.086579 0.014968 0.081817
Bottom 0.085229 0.088241 0.083980

Table 14: Single source: ε error

93

Single
source

Left Middle Right

Top

Middle

Bottom

Figure 100: Single source: error-corrected reconstructions of Fig. 98

Single source Left Middle Right

Top 0.588 0.599 0.454
Middle 0.581 1.254 0.266
Bottom 0.485 0.615 0.524

Table 15: Single source: χ2 error after mini-
mization

Single source Left Middle Right

Top 0.014183 0.015633 0.012596
Middle 0.010698 0.015532 0.010965
Bottom 0.014122 0.015545 0.012538

Table 16: Single source: ε error after minimiza-
tion

94

22.1.3 Error maps uncorrected

H
HHHHw(%)

σ
0.3 0.4 0.5

0

4

8

Figure 101: Single source: error χ2 maps

95

HH
HHHw(%)
σ

0.3 0.4 0.5

0

4

8

Figure 102: Single source: error ε maps

96

22.1.4 Error maps corrected

H
HHHHw(%)

σ
0.3 0.4 0.5

0

4

8

Figure 103: Single source: error-corrected χ2 maps

97

HH
HHHw(%)
σ

0.3 0.4 0.5

0

4

8

Figure 104: Single source: error-corrected ε maps

22.1.5 Discussion

Given phantoms (Fig. 98) represent a plasma situation in tokamak. They are called single source phan-
toms, due to the fact that they only a have single maximum intensity value. Phantoms are built as
normalized 2D Gaussian functions (Gaussian blobs):

g(x, y) = e−
(x−xc)2+(y−yc)2

2σ2 , (173)

where xc, yc are the center coordinates of the Gaussian blob, σ = 0.3 is the relative width of the
Gaussian blob with respect to the minor radius r of the tokamak. By varying xc and yc by a shift value
∆r = 0.5 there are 9 phantoms generated: 1 central and 8 off-central, all organized in a table (Fig. 98).
The goal is to reconstruct the given phantoms by using Fourier-Bessel reconstruction algorithm. There
are two versions of the available algorithm: the “centered” and the “selective”. Both versions are applied
to the given phantoms and results are collected in tables, where each entry is associated with particular
phantom. “Centered” reconstructions are collected in Fig. 99 and “selective” reconstructions in Fig. 100.
One can see that “selective” algorithm outperforms the “centered” algorithm by producing more
accurate reconstructions of the input phantoms. Difference is visible by eye and it is confirmed by error
assessments (χ2,ε). Tables 13 and 14 entries have much higher values for “centered” reconstructions
than respective tables 15 and 16, which proves the “selective” reconstrucion to be a more accurate and
useful algorithm.

The next step is to build “centered” reconstructions for every possible center coordinates −1 <
{∆xc,∆yc} < 1 and collect errors (χ2, ε) into corresponding matrices (Fig. 101, Fig. 102). Matrices

98

are constructed for 3 sizes of a phantom (σ = {0.3, 0.4, 0.5}) permutated with 3 levels of signal noise
(ω = {0 %, 4 %, 8 %}). These maps demonstrate that the least-error reconstructions are concentrated
around the center, which is a consequence of two factors:

• “centered” algorithm uses basis functions, which are centered

• phantom is partially lost next to the edge of the unit circle (domain edge), therefore the recontruc-
tion is inaccurate and generating a big error near the edge

The same approach is applied to the “selective” algorithm. The domain is scanned by a phantom and
errors are collected into matrices (Fig. 103, Fig. 104). One observes a huge reduction of error values (χ2,
ε) compared to Fig. 101 and Fig. 102. This is even a stronger proof that “selective” algorithm is more
accurate and useful. Nevertheless the center of the domain still remains pronounced as the region of
lesser error and edges as the higher error. The edge influence is as important as in the “centered” version,
but the fact, that the variety of basis functions is bounded to a rectangular region (Fig. 97), becomes
important. In general the noise level ω and phantom size σ do not play major role in the topology for
any of the error maps, but they do influence the size of the lesser/higher error regions and smoothness
respectively.

22.2 Double source study

22.2.1 Phantoms

vertical diagonal horizontal antidiagonal

Figure 105: Double source: phantoms of Gaussian width σ = 0.3 and separation d = 1

22.2.2 Reconstructions

vertical diagonal horizontal antidiagonal

Figure 106: Double source: reconstructions of Fig. 105

vertical diagonal horizontal antidiagonal
ε 0.162869 0.160606 0.163373 0.156664
χ2 63.341 73.683 57.800 70.501

Table 17: Double source: errors χ2 and ε

99

vertical diagonal horizontal antidiagonal

Figure 107: Double source error-corrected reconstructions of Fig. 105

vertical diagonal horizontal antidiagonal
ε 0.134854 0.170407 0.146829 0.154345
χ2 31.665 25.690 34.299 28.723

Table 18: Double source: errors χ2 and ε after minimization

22.2.3 Error maps uncorrected

HHHHHw(%)
σ

0.3 0.4 0.5

0

4

8

Figure 108: Double source: error χ2 maps

100

HH
HHHw(%)
σ

0.3 0.4 0.5

0

4

8

Figure 109: Double source: error ε maps

101

22.2.4 Error maps corrected

H
HHHHw(%)

σ
0.3 0.4 0.5

0

4

8

Figure 110: Double source: error-corrected χ2 maps

102

HH
HHHw(%)
σ

0.3 0.4 0.5

0

4

8

Figure 111: Double source: error-corrected ε maps

22.2.5 Discussion

Given phantoms (Fig. 105) represent a plasma situation in tokamak. They are called double source
phantoms, due to the fact that they have 2 maximum intensity values. Phantoms are built as two
normalized 2D Gaussian functions (two Gaussian blobs):

g(x, y) = e−
(x−xc)2+(y−yc)2

2σ2 + e−
(x+xc)2+(y+yc)2

2σ2 , (174)

where xc, yc are the center coordinates of one of the Gaussian blobs, σ = 0.3 is the relative width of
the Gaussian blob with respect to the minor radius r of the tokamak. By varying xc and yc by a shift
value ∆r = 0.5 there are 4 phantoms generated: vertical, diagonal, horizontal and antidiagonal, all
organized in a table (Fig. 105). The goal is to reconstruct the given phantoms by using Fourier-Bessel
reconstruction algorithm. There are two versions of the available algorithm: the “centered” and
the “selective”. Both versions are applied to the given phantoms and results are collected in tables,
where each entry is associated with particular phantom. “Centered” reconstructions are collected in
Fig. 106 and “selective” reconstructions in Fig. 107. One can see that neither “centered” nor “selective”
algorithm produces a viable reconstruction. Error tables (Tab. 17, Tab. 107) signify a slight improve-
ment in reconstruction quality from “centered” to “elective” algorithm. And maybe by looking very
attentively one could at least identify the correct allignment in the case of “selective” algorithm (Fig. 107).

The next step is to build “centered” reconstructions for every possible center coordinates −1 <
{∆xc,∆yc} < 1 and collect errors (χ2, ε) into matrices (Fig. 108, Fig. 109). Matrices are constructed for
3 sizes of a phantom (σ = {0.3, 0.4, 0.5}) permutated with 3 levels of signal noise (ω = {0 %, 4 %, 8 %}).

103

These maps demonstrate that the least-error reconstructions are concentrated around the center, which
is a consequence of two factors:

• approaching center two Gaussian blobs merge into a single blob, where “centered” algorithm uses
basis functions, which are centered

• phantom is partially lost next to the edge of the unit circle (domain edge), therefore the recontruc-
tion is inaccurate and generating a big error near the edge

The same approach is applied to the “selective” algorithm. The domain is scanned by a phantom and
errors are collected into corresponding matrices (Fig. 110, Fig. 111). As single source error maps, the
double source error maps have regions of lesser errors that are located around the center. Maps have
additional property, i.e. they are symmetrical with respect to the horizon, because by scanning phantoms
one obtains duplicates across the horizontal line. However unlike for single source error maps the double
source error maps DO NOT demonstrate any significant improvement between “centered” and “selective”
algorithms. In fact ε map even becomes worse for “selective” reconstructions (Fig. 111). This all has to
do with the fundamental reconstruction parameters {N,L} = {2, 2}, which represent the angular and
radial orders of the basis functions. Apparently the set {2, 2} does not work well for reconstructions of
double source neither for “centered” nor for “selective” algorithms. As in single source error maps, the
noise level ω and phantom size σ do not play major role in the topology for any of the error maps, but
they do influence the size of the lesser/higher error regions and smoothness respectively.

22.3 Ring source study

22.3.1 Phantoms

@
@@ρ
σ

0.3 0.4 0.5

0.3

0.4

0.5

Figure 112: Ring source: phantoms of Gaussian width σ and radius ρ

104

22.3.2 Reconstructions

@
@@ρ
σ

0.3 0.4 0.5

0.3

0.4

0.5

Figure 113: Ring source: reconstructions of Fig. 112

@
@@ρ
σ

0.3 0.4 0.5

0.3 0.900 0.591 1.611
0.4 2.298 4.569 8.416
0.5 7.183 10.320 14.243

Table 19: Ring source: χ2 error

@
@@ρ
σ

0.3 0.4 0.5

0.3 0.037745 0.043049 0.049432
0.4 0.048506 0.076824 0.117782
0.5 0.097914 0.130164 0.166185

Table 20: Ring source: ε error

105

@
@@ρ
σ

0.3 0.4 0.5

0.3

0.4

0.5

Figure 114: Ring source: error-corrected reconstructions of Fig. 112

@
@@ρ
σ

0.3 0.4 0.5

0.3 0.856 0.695 1.897
0.4 2.469 4.775 8.609
0.5 7.304 10.420 14.290

Table 21: Ring source: χ2 error after
minization

@
@@ρ
σ

0.3 0.4 0.5

0.3 0.037954 0.044242 0.052961
0.4 0.051085 0.080433 0.122115
0.5 0.101213 0.133964 0.170331

Table 22: Ring source: ε error after mini-
mization

106

22.3.3 Error maps uncorrected

H
HHHHw(%)

σ
0.3 0.4 0.5

0

4

8

Figure 115: Ring source: error χ2 maps for ring radius ρ = 0.3

107

HH
HHHw(%)
σ

0.3 0.4 0.5

0

4

8

Figure 116: Ring source: error ε maps for ring radius ρ = 0.3

108

22.3.4 Error maps corrected

H
HHHHw(%)

σ
0.3 0.4 0.5

0

4

8

Figure 117: Ring source: error-corrected χ2 maps for ring radius ρ = 0.3

109

HH
HHHw(%)
σ

0.3 0.4 0.5

0

4

8

Figure 118: Ring source: error-corrected ε maps for ring radius ρ = 0.3

22.3.5 Discussion

Given phantoms (Fig. 112) represent a plasma situation in tokamak. They are called ring source phan-
toms, due to the fact that the maximum intensity value follow a ring. Phantoms are built as a normalized
2D Gaussian function stretched along a ring of particular radius ρ:

g(x, y) = e−
(
√

(x−xc)2+(y−yc)2−ρ)
2

2σ2 , (175)

where xc, yc are the center coordinates of one of the Gaussian ring, σ is the relative width of the
Gaussian ring with respect to the minor radius r of the tokamak, and ρ is the radius of the Gausian ring.
By varying σ = {0.3, 0.4, 0.5} and ρ = {0.3, 0.4, 0.5} there are 9 phantoms generated all organized in a
table (Fig. 112. The goal is to reconstruct the given phantoms by using Fourier-Bessel reconstruction
algorithm. There are two versions of the available algorithm: the “centered” and the “selective”. Both
versions are applied to the given phantoms and results are collected in tables, where each entry is
associated with particular phantom. “Centered” reconstructions are collected in Fig. 113 and “selective”
reconstructions in Fig. 114. One can see that both “centered” and “selective” algorthm produces a viable
reconstructions. Error tables (Tab. 19, Tab. 20, Tab. 21, Tab. 22) signify an equivalent reconstruction
quality for both “centered” and “selective” algorithms. There is no improvement, because “centered”
algorithm already is producing a decent result due to the fact that for ring sources only centered
phantoms were considered (Fig. 112).

The next step is to build “centered” reconstructions for every possible center coordinates −1 <
{∆xc,∆yc} < 1 and collect errors (χ2, ε) into matrices (Fig. 115, Fig. 116). Matrices are con-
structed for 3 sizes of a phantom width (σ = {0.3, 0.4, 0.5}) permutated with 3 levels of signal noise

110

(ω = {0 %, 4 %, 8 %}). These maps demonstrate that the least-error reconstructions are concentrated
around the center, which is a consequence of two factors:

• approaching center the Gaussian ring morphs into single Gaussian blob, where “centered” algorithm
uses basis functions, which are centered

• phantom is partially lost next to the edge of the unit circle (domain edge), therefore the recontruc-
tion is inaccurate and generating a big error near the edge

The same approach is applied to the “selective” algorithm. The domain is scanned by a phantom and
errors are collected into corresponding matrices (Fig. 117, Fig. 118). As single and double source errors
maps, the ring source error maps have regions of lesser errors that are located around the center. Like the
single source error maps the ring source error maps DO demonstrate significant improvement between
“centered” and “selective” algorithms. However the concern is, whether the improvement over error
maps does actually mean improved reconstruction. The fact is that some reconstructions may produce
low error values, but fail to represent the actual ring phantom. As in single and double source error
maps, the noise level ω and phantom size σ do not play major role in the topology for any of the error
maps, but they do influence the size of the lesser/higher error regions and smoothness respectively.

22.4 Noise sensitivity

22.4.1 Without error correction

w (%)
Single source Double source

Ring source
top middle top right middle right bottom right bottom middle bottom left middle left top left center vertical diagonal horizontal antidiagonal

0 903.209 1865.89 42.8373 2034.29 976.746 263.089 1401.22 331.68 2.51326 63.3406 73.6831 57.7997 70.5012 1.61055
1 898.736 1871.45 43.2707 2051.47 984.277 269.015 1398.41 332.733 2.4829 63.6852 73.1803 57.5735 70.4036 1.67432
2 906.645 1865.99 43.5477 2001.75 983.488 266.031 1430.44 318.221 2.57138 64.2091 73.91 57.9987 70.596 1.89271
3 896.911 1843.06 43.3517 1973.96 984.195 272.669 1397.71 323.31 2.65253 64.2082 74.2433 58.052 71.3223 2.19073
4 947.604 1834.94 46.3861 2083.87 922.002 267.561 1419.65 331.088 2.98643 64.3232 75.0489 58.6638 71.0321 2.71898
5 863.573 1960.49 47.1348 1961.4 992.276 292.641 1379.52 368.819 2.92732 63.0335 75.0619 60.4794 71.151 2.92719
6 886.013 1854.28 50.567 2096.38 1069.27 252.134 1345.2 408.786 2.99375 64.6077 74.4574 60.2615 69.9106 4.10938
7 1113.98 1899.85 50.4423 2099.12 946.298 321.581 1435.42 388.669 3.26266 68.0997 78.2137 60.7069 73.2834 4.64509
8 895.114 2068.98 51.4977 1980.16 961.964 340.87 1485.69 499.901 4.14575 67.4697 77.6172 59.1681 71.6084 6.3925
9 964.509 1795.72 55.9847 2090.54 1047.64 337.203 1484.96 300.76 5.27496 63.6181 76.828 60.8666 75.7226 7.70442
10 1113 1922.08 55.4709 2118.93 1007.36 324.3 1411.69 388.131 5.78133 70.4919 82.7168 63.5018 71.5802 8.37355

Table 23: Absolute error χ2 dependence on noise level w

Figure 119: Relative error χ2
r dependence on noise level w

w (%)
Single source Double source

Ring source
top middle top right middle right bottom right bottom middle bottom left middle left top left center vertical diagonal horizontal antidiagonal

0 0.0870748 0.0845998 0.0818168 0.0839798 0.0882414 0.0852287 0.0865794 0.0860397 0.0149677 0.162869 0.160606 0.163373 0.156664 0.0494323
1 0.0870605 0.0846385 0.0818861 0.083997 0.0883451 0.0852587 0.0866041 0.0858613 0.0148629 0.162868 0.160746 0.163355 0.156637 0.0493715
2 0.086944 0.0847182 0.0817859 0.0841048 0.0885031 0.0852415 0.0865842 0.086163 0.0149738 0.16335 0.160632 0.163377 0.156594 0.0499277
3 0.0870342 0.0845806 0.0820201 0.0838602 0.0883774 0.0850903 0.086035 0.085884 0.0150982 0.163133 0.160915 0.163471 0.157094 0.0529427
4 0.087208 0.0850366 0.0815077 0.0839234 0.0884423 0.0849498 0.0862629 0.0861821 0.0155293 0.162505 0.159783 0.164484 0.157168 0.0521546
5 0.0868571 0.0847666 0.0818985 0.0840486 0.08792 0.0849377 0.0864034 0.0852 0.0154093 0.162859 0.160813 0.163552 0.157015 0.0550622
6 0.0873694 0.0840539 0.0820121 0.0841398 0.0890027 0.0863647 0.0868311 0.0854237 0.0156539 0.162522 0.158938 0.161973 0.157259 0.0576544
7 0.0889668 0.0850709 0.0821172 0.0841222 0.0879352 0.0858781 0.0875371 0.08608 0.0159416 0.163119 0.162335 0.164361 0.156206 0.0592532
8 0.0873463 0.0861951 0.0831798 0.0833738 0.0884308 0.0858105 0.0869494 0.0851426 0.0168713 0.164214 0.160976 0.1643 0.157328 0.059386
9 0.0879164 0.0844488 0.0820899 0.0837114 0.0894671 0.0861666 0.0882865 0.0878058 0.019114 0.161938 0.16234 0.164179 0.157117 0.0624621
10 0.0881358 0.0856238 0.0819846 0.0841646 0.0881514 0.0852327 0.0868231 0.0881076 0.0182347 0.165289 0.161292 0.162888 0.157285 0.0658472

Table 24: Absolute error ε dependence on noise level w

111

Figure 120: Relative error εr dependence on noise level w

22.4.2 With error correction

w (%)
Single source Double source

Ring source
top middle top right middle right bottom right bottom middle bottom left middle left top left center vertical diagonal horizontal antidiagonal

0 0.598505 0.454287 0.266373 0.524408 0.61529 0.484698 0.581441 0.588493 1.25376 31.6647 25.69 34.299 28.7232 1.89749
1 0.610067 0.436997 0.284828 0.564275 0.652617 0.502415 0.584499 0.615128 1.27504 31.6932 25.792 34.2811 28.8461 1.96569
2 0.640947 0.502753 0.386084 0.620323 0.653271 0.616744 0.583968 0.737993 1.26118 31.7318 25.8021 34.3993 28.8383 2.11004
3 0.716593 0.638615 0.394535 0.695201 0.759283 0.769987 0.655835 0.851201 1.34748 32.0206 25.7488 34.2018 29.0502 2.29641
4 0.732812 0.730698 0.4679 0.873744 0.820756 0.872399 0.798548 0.917729 1.66754 31.5991 26.379 34.1857 28.87 3.01145
5 0.877213 1.01231 0.732183 1.07574 1.02544 1.25163 1.04212 1.14717 1.81051 32.1431 26.4057 34.7973 29.4932 3.36194
6 1.31444 1.16289 0.975425 1.27298 1.42215 1.41729 1.10475 1.42848 1.72226 32.9652 27.638 34.2765 29.2313 4.20985
7 1.29313 1.3242 1.25947 1.43485 1.16343 1.63118 1.43771 1.62636 2.24393 32.8365 27.1661 35.1759 30.1982 5.11257
8 1.50085 1.65003 1.59793 1.88699 1.73704 1.6927 2.00267 1.7007 2.45486 33.7243 27.9819 33.9518 30.4807 5.81717
9 1.78654 1.75505 1.77452 2.16928 2.37497 2.27552 2.07153 2.26433 3.06666 32.9963 29.4434 35.26 30.4972 7.31008
10 2.50587 2.23758 1.91485 2.51461 2.98595 2.62515 2.97408 2.39233 3.82539 33.4925 28.4903 34.6899 32.0825 8.2366

Table 25: Absolute error χ2 dependence (after minimization) on noise level w

Figure 121: Relative error χ2
r (after minimization) dependence on noise level w

w (%)
Single source Double source

Ring source
top middle top right middle right bottom right bottom middle bottom left middle left top left center vertical diagonal horizontal antidiagonal

0 0.0156332 0.0125957 0.0109654 0.0125375 0.0155448 0.014122 0.0106981 0.0141828 0.0155316 0.134854 0.170407 0.146829 0.154345 0.0529608
1 0.0141772 0.0132074 0.0109248 0.0125412 0.0144898 0.0142052 0.0107239 0.0142442 0.0155572 0.134984 0.170614 0.150411 0.154163 0.053505
2 0.0139132 0.0137825 0.0112767 0.0145222 0.0118319 0.014348 0.0114324 0.0145418 0.0156582 0.135028 0.170019 0.152794 0.154895 0.054102
3 0.0139072 0.0149738 0.0109781 0.0145152 0.0138791 0.0145259 0.0116896 0.0152333 0.015511 0.134833 0.171275 0.150485 0.156035 0.0562214
4 0.0134111 0.0158239 0.0118789 0.0168488 0.0144625 0.0151553 0.0129227 0.0148635 0.0161533 0.135391 0.169153 0.15169 0.157741 0.0577382
5 0.0153736 0.018807 0.0118747 0.0166448 0.0166218 0.0158035 0.0128408 0.0154526 0.0151601 0.135307 0.168986 0.15382 0.153913 0.0574798
6 0.0156658 0.0173288 0.0133416 0.0187206 0.016303 0.0176111 0.0145436 0.0177127 0.0160856 0.137405 0.165635 0.147826 0.155316 0.0562758
7 0.0154989 0.0164929 0.0129823 0.0196783 0.0150366 0.0194726 0.0140592 0.0195469 0.0166343 0.137663 0.165414 0.154099 0.150807 0.0640096
8 0.0163878 0.0169108 0.0142564 0.0295495 0.0164983 0.0196152 0.0167254 0.0185986 0.0187141 0.137506 0.162607 0.149405 0.151122 0.065363
9 0.0165464 0.0209551 0.0163559 0.0227132 0.0189166 0.0219725 0.0164735 0.0216768 0.0200337 0.135549 0.162698 0.150537 0.150382 0.0710918
10 0.0181486 0.0225853 0.015303 0.0308818 0.0202477 0.0220178 0.0204765 0.023726 0.0193953 0.138851 0.15647 0.154997 0.145732 0.0690138

Table 26: Absolute error ε (after minimization) dependence on noise level w

112

Figure 122: Relative error εr (after minimization) dependence on noise level w

22.4.3 Discussion

Noise sensitivity is a study to observe, how reconstruction-generated error reacts to various noise levels
in signal. Single, double and ring sources were gathered into unified studies to observe error dependence
for “centered” algorithm (Tab. 23, Tab. 24) and “selective” algorithm (Tab. 25, Tab. 26) respectively. The
obtained data was normalized to the data of zero noise level ω = 0 % and plotted in Fig. 119 and Fig. 120
for “centered” algorithm and Fig. 121 and Fig. 122 for “selective” algorithm. In the case of “centered”
reconstructions, the highest sensitivity is pronounced by a single source central and ring phantoms for
both χ2 and ε. This can be explained, that both of those phantoms are located in the center of domain,
where the “centered” algorithm works the best. Therefore the noise presense in the signal actually
affects the reconstruction quality. Meanwhile all other phantoms are not affected much by increasing
noise levels, because those reconstructions are already bad in the first place, due to “central” algorithm
not being able to process well the off-centered and double source phantoms. In the case of “selective”
reconstructions, all the phantoms demonstate increased sensitivity towards higher noise levels. This
means, that “selective” algorithm improves reconstructions up to the point, where noise becomes leading
factor in error generation and not the off-centricity of the phantom.

22.5 Performance study

The complete computational pipeline of “selective” reconstrucion algorithm is comprised of 6 steps, and
they are integrated into MARTe framework [31]. One is interested in the performance (duration) of each
step and the complete time. The performance is measured with respect to two parameters: the size of
reconstruction map and the size of the reconstruction grid:

1. Copying the signal data f̃ from CPU RAM to GPU RAM. The duration does not depend neither
on map size nor grid size, because arriving signal f̃ is always the same size, therefor copy time does
not change (Fig. 123).

2. Calculating tomographic coeficient vector a (Eq. 161). The duration does not depend on map size,
but exponentially depends on grid size (Fig. 124), because the set of pseudo-inverse contribution
matrices {C+} grows quadratically with grid size and needs more processing. It grows, until reaches
flat ceiling. One suspects that at the flat region GPU card engages more than one streaming
processor, therefore the maximum timing is the duration of the busiest processor.

3. Calculating back-projected signals f (Eq. 156). The duration exponentially depends on the grid
size (Fig. 125), because the set of pseudo-inverse contribution matrices {C+} grows quadratically
with grid size and needs more processing. It is the heaviest part of the algorithm.

4. Calculating χ2
min (Eq. 171) and argχ2

min (Eq. 172). The duration exponentially depends on the grid
size (Fig 126), because the set of pseudo-inverse contribution matrices {C+} grows quadratically
with grid size and needs more processing.

113

5. Performing reconstruction g (Eq. 163). The timing depends on the map size (Fig. 127), because
the map size is the size of reconstructed picture.

6. Copying the image data g from GPU RAM to CPU RAM. The duration depends on the map size,
because it defines the amount of data to be copied (Fig. 128).

Complete duration is plotted in (Fig. 129). It depends both on map size and grid size, but grid size is
a stronger parameter. In order to stay within the duration of 100µs (typical time for active tokamak
control in real-time) the algorithm has to process small size reconstrucions on a error-correction grid of
a small size. A good choicee would be not to go above map size = 100 and grid size = 3.

Figure 123: Step 1. f̃ : CPU RAM → GPU
RAM Figure 124: Step 2. Calculation of a

Figure 125: Step 3. Calculation of f
Figure 126: Step 4. Calculation of χ2

min and
argχ2

min

Figure 127: Step 5. Performing reconstruction
g

Figure 128: Step 6. g: GPU RAM → CPU
RAM

114

Figure 129: Total time of all the algorithm steps

115

23 Conclusions

• Selective reconstruction proves to be effective for single source and ring source phantoms.

• Both centered and selective reconstructions are ineffective for the double source phantoms, because
the chosen angular and radial orders {N,L} = {2, 2} are not suitable for double source phantoms.

• By using “centered” algorithm the sensitivity to noise is only relevant to centered phantoms such
as centered single source and ring source phantoms.

• By using “selective” algorithm the sensitivity to noise increases for all phantoms, which is signature
of improved reconstructions, because only good reconstruction are sensitive to noise.

• Code performance heavily depends on the size of the error correction grid and weakly depends on
the size of the reconstruction image.

• In order to fit under 100µs (characteristic time scale in real-time control for ISTTOK) one can use
maximum size of 3 × 3 error correction grid and up to size 150 × 150 reconstruction image. One
meets the universal omnipresent principle of quality versus quantity. If one wants a high quality
reconstruction (selection grid size is big) with properly selected basis functions, one has to pay
penalty for performance.

• this GPU-based algorithm is a substantial improvement with respect to the former tomography
algorithm at ISTTOK developed by [67] in terms of image resolution and reconstruction speed.
It was only able to produce images of 15 × 15 images and “selective” reconstruction was not an
option.

• this GPU-based algorithm is the first real-time GPU code integrated in the MARTe framework.

Nvidia GeForce GTX 480 was used for real-time tomography codes. GeForce GTX 480 is a graphics
card originally designed for gaming purposes built on Fermi architecture and released in 2010. It runs
700 MHz clock with 1.5 GB of RAM and 48 kB of shared memory.

116

Appendices

A Appendix

Fourier-Bessels Integration of g(k) over θ

By inserting Eq. 137 into Eq. 140 one gets:

g(k) =

2π∫
0

dθ

∞∫
0

∞∑
n=0

[gc
n(r) cos(nθ) + gs

n(r) sin(nθ)]eikr cos(φ−θ)r dr (A.1)

By defining β = φ− θ −→ dβ = −dθ Eq. A.1 becomes:

g(k) =

∞∑
n=0

∞∫
0

r dr

φ∫
φ−2π

[gc
n(r) cos(n[φ− θ]) + gs

n(r) sin(n[φ− θ])]eikr cos β dβ (A.2)

Using trigonometric identities

cos(n[φ− β]) = cos(nφ) cos(nβ) + sin(nφ) sin(nβ)

sin(n[φ− β]) = sin(nφ) cos(nβ)− sin(nβ) cos(nφ)

Eq. A.2 becomes

g(k) =

∞∑
n=0

∞∫
0

r dr

φ∫
φ−2π

[gc
n(r)[cos(nφ) cos(nβ) + sin(nφ) sin(nβ)]+

+gs
n(r)[sin(nφ) cos(nβ)− sin(nβ) cos(nφ)]]eikr cos β dβ =

=

∞∑
n=0

∞∫
0

r dr

φ∫
φ−2π

[gc
n(r) cos(nφ) + gs

n sin(nφ)] cos(nβ)eikr cos β+

+[gc
n(r) sin(nφ)− gs

n cos(nφ)] sin(nβ)eikr cos β dβ

(A.3)

cos(nβ) and sin(nβ) are 2π periodical, therefore it is true:

φ∫
φ−2π

cos(nβ)eikr cos β dβ =

2π∫
0

cos(nβ)eikr cos β dβ (A.4)

φ∫
φ−2π

sin(nβ)eikr cos β dβ =

2π∫
0

sin(nβ)eikr cos β dβ (A.5)

Integral representation of Bessel function (Eq. 9.1.21 in [75]):

Jn(z) =
i−n

2π

2π∫
0

eiz cos β cos(nβ) dβ (A.6)

Inserting Eq. A.4 and A.5 and into Eq. A.3 and using the represention A.6 one gets:

g(k) =

∞∑
n=0

∞∫
0

[gc
n(r) cos(nφ) + gs

n sin(nφ)]in2πJn(kr)r dr+

+

2π∫
0

[gc
n(r) sin(nφ)− gs

n cos(nφ)] sin(nβ)eikr cos β dβ

(A.7)

117

Noting that sin(nβ) is odd around β = π, the second term of Eq. A.7 is zero:

g(k) =

∞∑
n=0

∞∫
0

[gc
n(r) cos(nθ) + gs

n(r) sin(nθ)]in2πJn(kr)r dr (A.8)

118

B Appendix

Integration of
∞∫
−∞

eitx

x2−a2 dx

This integral resists conventional integration techniques of elementary calculus, but is possible to solve
it by extending it to complex plane and calculating countour integrals.

∞∫
−∞

eitx

x2 − a2
dx

x→z−−−→
∮
C

f(z) dz =

∮
C

eitz

z2 − a2
dz =

∫
arc

eitz

z2 − a2
dz +

b∫
−b

eitz

z2 − a2
dz (B.1)

Cauchy’s Residue Theorem will be used in order to calculate this integral with two poles at z = ±a

Figure 130: Top semi-circle C represents case t > 0 (counts counter-clockwise), bottom semi-circle C ′

represents case t < 0 (counts clockwise).

(Fig. 130): ∮
C

f(z) dz = 2πi
∑
k

Res(f(z), zk) (B.2)

Applying Residue Theorem for t > 0:∫
C

eitz

z2 − a2
dz = 2πi

[
Res

(
eitz

z2 − a2
, a

)
+ Res

(
eitz

z2 − a2
,−a

)]
= 2πi

[
eita

2a
− e−ita

2a

]
=

=
2π

a

eita − e−ita

−2i
= −2π

a
sin(ta) (B.3)

Applying Residue Theorem for t < 0:∫
C′

eitz

z2 − a2
dz = −2πi

[
Res

(
eitz

z2 − a2
, a

)
+ Res

(
eitz

z2 − a2
,−a

)]
= −2πi

[
eita

2a
− e−ita

2a

]
=

= −2π

a

eita − e−ita

−2i
=

2π

a
sin(ta)

t<0
=

2π

a
sin(−|t|a) = −2π

a
sin(|t|a) (B.4)

Now one can come back to real-argumented integral:

∞∫
−∞

eitx

x2 − a2
dx =

{
− 2π

a sin(ta) , t > 0

− 2π
a sin(|t|a) , t < 0

symmetry
= −2π

a
sin(|t|a) (B.5)

With the variables of one’s concern {x, t, a} −→ {k, cos θ − p, xnl} one gets:

∞∫
−∞

eik[cos θ−p]

k2 − x2
nl

dk = − 2π

xnl
sin(xnl| cos θ − p|) (B.6)

119

C Appendix

Integration of
π∫
0

cos(nθ) sin(xnl| cos θ − p|) dθ

One needs to simplify Eq. 150:

fnl(p) = −2J ′n(xnl)

π∫
0

cos(nθ) sin(xnl| cos θ − p|) dθ (C.1)

One removes absolute symbol by:

fnl(p) = −2J ′n(xnl)

[arccos p∫
0

cos(nθ) sin(xnl[cos θ − p]) dθ −
π∫

arccos p

cos(nθ) sin(xnl[cos θ − p]) dθ

]
=

= −2J ′n(xnl)

[arccos p∫
0

cos(nθ) sin(xnl cos θ) cos(xnlp) dθ −
arccos p∫

0

cos(nθ) cos(xnl cos θ) sin(xnlp) dθ+

−
π∫

arccos p

cos(nθ) sin(xnl cos θ) cos(xnlp) dθ +

π∫
arccos p

cos(nθ) cos(xnl cos θ) sin(xnlp) dθ

]

= −2J ′n(xnl)

[
cos(xnlp)

arccos p∫
0

cos(nθ) sin(xnl cos θ) dθ − sin(xnlp)

arccos p∫
0

cos(nθ) cos(xnl cos θ) dθ+

− cos(xnlp)

π∫
arccos p

cos(nθ) sin(xnl cos θ) dθ + sin(xnlp)

π∫
arccos p

cos(nθ) cos(xnl cos θ) dθ

]
(C.2)

To solve these integrals it is necessary to know how to calculate sin(xnl cos θ) and cos(xnl cos θ). Equation
1 in chapter 2.1 of [70] will help:

e
1
2 z[t−

1
t] =

∞∑
n=−∞

tnJn(z) (C.3)

Making the substitution t −→ ei[
π
2−η]:

l.h.s: e

1
2 z

[
e
i[π2 −η]− 1

e
i[π2 −η]

]
= e

1
2 z

[
e
i[π2 −η]−e−i[

π
2
−η]
]

= eiz sin(π2−η) = eiz cos η = cos(z cos η) + i sin(z cos η)

(C.4)

r.h.s:

∞∑
n=−∞

ein[π2−η]Jn(z) =

∞∑
n=−∞

cos
(
n
[π

2
− η
])
Jn(z) + i

∞∑
n=−∞

sin
(
n
[π

2
− η
])
Jn(z) (C.5)

From Eq. C.4 and C.5 one can deduce:

cos(z cos η) =

∞∑
n=−∞

cos
(
n
[π

2
− η
])
Jn(z) (C.6)

sin(z cos η) =

∞∑
n=−∞

sin
(
n
[π

2
− η
])
Jn(z) (C.7)

120

With the variables of one’s concern {η, z, n} −→ {θ, xnl,m}:

cos(xnl cos θ) =

∞∑
m=−∞

cos
(
m
[π

2
− θ
])
Jm(xnl) (C.8)

sin(xnl cos θ) =

∞∑
m=−∞

sin
(
m
[π

2
− θ
])
Jm(xnl) (C.9)

Using Eq. C.8 and Eq. C.9, the 1st integral of Eq. C.2:

arccos p∫
0

cos(nθ) sin(xnl cos θ) dθ =

=

arccos p∫
0

cos(nθ)

[∞∑
m=−∞

sin
(
m
[π

2
− θ
])
Jm(xnl)

]
dθ =

=

∞∑
m=−∞

Jm(xnl)

arccos p∫
0

cos(nθ) sin
(
m
[π

2
− θ
])

dθ =

=

∞∑
m=−∞

Jm(xnl)

arccos p∫
0

cos(nθ)
[
sin
(
m
π

2

)
cos(mθ)− cos

(
m
π

2

)
sin(mθ)

]
dθ

=

∞∑
m=−∞

Jm(xnl)

sin
(
m
π

2

) arccos p∫
0

cos(mθ) cos(nθ) dθ − cos
(
m
π

2

) arccos p∫
0

sin(mθ) cos(nθ) dθ

 =

=

∞∑
m=−∞

Jm(xnl)

sin
(
m
π

2

) arccos p∫
0

1

2
[cos([m+ n]θ) + cos([m− n]θ)] dθ−

− cos
(
m
π

2

) arccos p∫
0

1

2
[sin([m+ n]θ) + sin([m− n]θ)] dθ

 =

=

∞∑
m=−∞

Jm(xnl)

[
1

2
sin
(
m
π

2

)[sin([m+ n]θ)

m+ n

∣∣∣∣arccos p

0

+
sin([m− n]θ)

m− n

∣∣∣∣arccos p

0

]
−

−1

2
cos
(
m
π

2

)[− cos([m+ n]θ)

m+ n

∣∣∣∣arccos p

0

+
− cos([m− n]θ)

m− n

∣∣∣∣arccos p

0

]]
=

=

∞∑
m=−∞

Jm(xnl)

[
1

2
sin
(
m
π

2

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
−

−1

2
cos
(
m
π

2

)[− cos([m+ n] arccos p) + 1

m+ n
+
− cos([m− n] arccos p) + 1

m− n

]]
(C.10)

121

Using Eq. C.8 and Eq. C.9, the 2nd integral of Eq. C.2:

arccos p∫
0

cos(nθ) cos(xnl cos θ) dθ =

=

arccos p∫
0

cos(nθ)

[∞∑
m=−∞

cos
(
m
[π

2
− θ
])
Jm(xnl)

]
dθ =

=

∞∑
m=−∞

Jm(xnl)

arccos p∫
0

cos(nθ) cos
(
m
[π

2
− θ
])

dθ =

=

∞∑
m=−∞

Jm(xnl)

arccos p∫
0

cos(nθ)
[
cos
(
m
π

2

)
cos(mθ) + sin

(
m
π

2

)
sin(mθ)

]
dθ

=

∞∑
m=−∞

Jm(xnl)

cos
(
m
π

2

) arccos p∫
0

cos(mθ) cos(nθ) dθ + sin
(
m
π

2

) arccos p∫
0

sin(mθ) cos(nθ) dθ

 =

=

∞∑
m=−∞

Jm(xnl)

cos
(
m
π

2

) arccos p∫
0

1

2
[cos([m+ n]θ) + cos([m− n]θ)] dθ+

+ sin
(
m
π

2

) arccos p∫
0

1

2
[sin([m+ n]θ) + sin([m− n]θ)] dθ

 =

=

∞∑
m=−∞

Jm(xnl)

[
1

2
cos
(
m
π

2

)[sin([m+ n]θ)

m+ n

∣∣∣∣arccos p

0

+
sin([m− n]θ)

m− n

∣∣∣∣arccos p

0

]
+

+
1

2
sin
(
m
π

2

)[− cos([m+ n]θ)

m+ n

∣∣∣∣arccos p

0

+
− cos([m− n]θ)

m− n

∣∣∣∣arccos p

0

]]
=

=

∞∑
m=−∞

Jm(xnl)

[
1

2
cos
(
m
π

2

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
+

+
1

2
sin
(
m
π

2

)[− cos([m+ n] arccos p) + 1

m+ n
+
− cos([m− n] arccos p) + 1

m− n

]]
(C.11)

122

Using Eq. C.8 and Eq. C.9, the 3rd integral of Eq. C.2:

π∫
arccos p

cos(nθ) sin(xnl cos θ) dθ =

=

π∫
arccos p

cos(nθ)

[∞∑
m=−∞

sin
(
m
[π

2
− θ
])
Jm(xnl)

]
dθ =

=

∞∑
m=−∞

Jm(xnl)

π∫
arccos p

cos(nθ) sin
(
m
[π

2
− θ
])

dθ =

=

∞∑
m=−∞

Jm(xnl)

π∫
arccos p

cos(nθ)
[
sin
(
m
π

2

)
cos(mθ)− cos

(
m
π

2

)
sin(mθ)

]
dθ

=

∞∑
m=−∞

Jm(xnl)

sin
(
m
π

2

) π∫
arccos p

cos(mθ) cos(nθ) dθ − cos
(
m
π

2

) π∫
arccos p

sin(mθ) cos(nθ) dθ

 =

=

∞∑
m=−∞

Jm(xnl)

sin
(
m
π

2

) π∫
arccos p

1

2
[cos([m+ n]θ) + cos([m− n]θ)] dθ−

− cos
(
m
π

2

) π∫
arccos p

1

2
[sin([m+ n]θ) + sin([m− n]θ)] dθ

 =

=

∞∑
m=−∞

Jm(xnl)

[
1

2
sin
(
m
π

2

)[sin([m+ n]θ)

m+ n

∣∣∣∣π
arccos p

+
sin([m− n]θ)

m− n

∣∣∣∣π
arccos p

]
−

−1

2
cos
(
m
π

2

)[− cos([m+ n]θ)

m+ n

∣∣∣∣π
arccos p

+
− cos([m− n]θ)

m− n

∣∣∣∣π
arccos p

]]
=

=

∞∑
m=−∞

Jm(xnl)

[
1

2
sin
(
m
π

2

)[− sin([m+ n] arccos p)

m+ n
+
− sin([m− n] arccos p)

m− n

]
−

−1

2
cos
(
m
π

2

)[−(−1)m+n + cos([m+ n] arccos p)

m+ n
+
−(−1)m−n + cos([m− n] arccos p)

m− n

]]
(C.12)

123

Using Eq. C.8 and Eq. C.9, the 4th integral of Eq. C.2:

π∫
arccos p

cos(nθ) cos(xnl cos θ) dθ =

=

π∫
arccos p

cos(nθ)

[∞∑
m=−∞

cos
(
m
[π

2
− θ
])
Jm(xnl)

]
dθ =

=

∞∑
m=−∞

Jm(xnl)

π∫
arccos p

cos(nθ) cos
(
m
[π

2
− θ
])

dθ =

=

∞∑
m=−∞

Jm(xnl)

π∫
arccos p

cos(nθ)
[
cos
(
m
π

2

)
cos(mθ) + sin

(
m
π

2

)
sin(mθ)

]
dθ

=

∞∑
m=−∞

Jm(xnl)

cos
(
m
π

2

) π∫
arccos p

cos(mθ) cos(nθ) dθ + sin
(
m
π

2

) π∫
arccos p

sin(mθ) cos(nθ) dθ

 =

=

∞∑
m=−∞

Jm(xnl)

cos
(
m
π

2

) π∫
arccos p

1

2
[cos([m+ n]θ) + cos([m− n]θ)] dθ+

+ sin
(
m
π

2

) π∫
arccos p

1

2
[sin([m+ n]θ) + sin([m− n]θ)] dθ

 =

=

∞∑
m=−∞

Jm(xnl)

[
1

2
cos
(
m
π

2

)[sin([m+ n]θ)

m+ n

∣∣∣∣π
arccos p

+
sin([m− n]θ)

m− n

∣∣∣∣π
arccos p

]
+

+
1

2
sin
(
m
π

2

)[− cos([m+ n]θ)

m+ n

∣∣∣∣π
arccos p

+
− cos([m− n]θ)

m− n

∣∣∣∣π
arccos p

]]
=

=

∞∑
m=−∞

Jm(xnl)

[
1

2
cos
(
m
π

2

)[− sin([m+ n] arccos p)

m+ n
+
− sin([m− n] arccos p)

m− n

]
+

+
1

2
sin
(
m
π

2

)[−(−1)m+n + cos([m+ n] arccos p)

m+ n
+
−(−1)m−n + cos([m− n] arccos p)

m− n

]]
(C.13)

124

By combining Eq. {C.10,C.11,C.12,C.13} into Eq. C.2:

fnl(p) = −2J ′n(xnl)

∞∑
m=−∞

Jm(xnl)·

·

[
cos(xnlp)

[
sin
(
mπ

2

)
2

[
sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
−

−
cos
(
mπ

2

)
2

[
− cos([m+ n] arccos p) + 1

m+ n
+
− cos([m− n] arccos p) + 1

m− n

]]
−

− sin(xnlp)

[
cos
(
mπ

2

)
2

[
sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
+

+
sin
(
mπ

2

)
2

[
− cos([m+ n] arccos p) + 1

m+ n
+
− cos([m− n] arccos p) + 1

m− n

]]
−

− cos(xnlp)

[
sin
(
mπ

2

)
2

[
− sin([m+ n] arccos p)

m+ n
+
− sin([m− n] arccos p)

m− n

]
−

−
cos
(
mπ

2

)
2

[
cos([m+ n] arccos p)− (−1)m+n

m+ n
+

cos([m− n] arccos p)− (−1)m−n

m− n

]]
+

+ sin(xnlp)

[
cos
(
mπ

2

)
2

[
− sin([m+ n] arccos p)

m+ n
+
− sin([m− n] arccos p)

m− n

]
+

+
sin
(
mπ

2

)
2

[
cos([m+ n] arccos p)− (−1)m+n

m+ n
+

cos([m− n] arccos p)− (−1)m−n

m− n

]]]

fnl(p) = −2J ′n(xnl)

∞∑
m=−∞

Jm(xnl)·

·

[[
cos(xnlp)

sin
(
mπ

2

)
2

− sin(xnlp)
cos
(
mπ

2

)
2

] [
sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
−

−

[
cos(xnlp)

cos
(
mπ

2

)
2

+ sin(xnlp)
sin
(
mπ

2

)
2

] [
1− cos([m+ n] arccos p)

m+ n
+

1− cos([m− n] arccos p)

m− n

]
−

−

[
cos(xnlp)

sin
(
mπ

2

)
2

− sin(xnlp)
cos
(
mπ

2

)
2

] [
− sin([m+ n] arccos p)

m+ n
+
− sin([m− n] arccos p)

m− n

]
+

+

[
cos(xnlp)

cos
(
mπ

2

)
2

+ sin(xnlp)
sin
(
mπ

2

)
2

] [
cos([m+ n] arccos p)− (−1)m+n

m+ n
+

cos([m− n] arccos p)− (−1)m−n

m− n

]]
=

fnl(p) = −2J ′n(xnl)

∞∑
m=−∞

Jm(xnl)·

·

[[
cos(xnlp) sin

(
m
π

2

)
− sin(xnlp) cos

(
m
π

2

)] [sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
−

−

[
cos(xnlp)

cos
(
mπ

2

)
2

+ sin(xnlp)
sin
(
mπ

2

)
2

] [
1− cos([m+ n] arccos p)

m+ n
+

1− cos([m− n] arccos p)

m− n

]
+

+

[
cos(xnlp)

cos
(
mπ

2

)
2

+ sin(xnlp)
sin
(
mπ

2

)
2

] [
cos([m+ n] arccos p)− (−1)m+n

m+ n
+

cos([m− n] arccos p)− (−1)m−n

m− n

]]
(C.14)

125

Now one will decompose the summation in Eq. C.14 into three parts {m = 0, m < 0, m > 0}:

fnl(p) = −2J ′n(xnl)

[
J0(xnl) · . . . +

−1∑
m=−∞

Jm(xnl) · . . . +

∞∑
m=1

Jm(xnl) · . . .

]
=

= −2J ′n(xnl)

[
J0(xnl) · . . . +

∞∑
m=1

J−m(xnl) · . . . |−m +

∞∑
m=1

Jm(xnl) · . . .

]
(C.15)

With the property of Bessel functions J−m(x) = (−1)mJm(x) from equation 9.1.5 in [75] one rewrites
Eq. C.15:

fnl(p) = −2J ′n(xnl)

[
J0(xnl) · . . . +

∞∑
m=1

(−1)mJm(xnl) · . . . |−m +

∞∑
m=1

Jm(xnl) · . . .

]
(C.16)

Now one needs to find member
∞∑
m=1

(−1)mJm(xnl) · . . . |−m:

∞∑
m=1

(−1)mJm(xnl) · . . . |−m =

∞∑
m=1

(−1)mJm(xnl)·

·

[[
cos(xnlp) sin

(
−mπ

2

)
− sin(xnlp) cos

(
−mπ

2

)] [sin([−m+ n] arccos p)

−m+ n
+

sin([−m− n] arccos p)

−m− n

]
−

−

[
cos(xnlp)

cos
(
−mπ

2

)
2

+ sin(xnlp)
sin
(
−mπ

2

)
2

] [
1− cos([−m+ n] arccos p)

−m+ n
+

1− cos([−m− n] arccos p)

−m− n

]
+

+

[
cos(xnlp)

cos
(
−mπ

2

)
2

+ sin(xnlp)
sin
(
−mπ

2

)
2

] [
cos([−m+ n] arccos p)− (−1)−m+n

−m+ n
+

cos([−m− n] arccos p)− (−1)−m−n

−m− n

]]

=

∞∑
m=1

(−1)mJm(xnl)·

·

[[
− cos(xnlp) sin

(
m
π

2

)
− sin(xnlp) cos

(
m
π

2

)] [sin([m− n] arccos p)

m− n
+

sin([m+ n] arccos p)

m+ n

]
−

+

[
cos(xnlp)

cos
(
mπ

2

)
2

− sin(xnlp)
sin
(
mπ

2

)
2

] [
1− cos([m− n] arccos p)

m− n
+

1− cos([m+ n] arccos p)

m+ n

]
+

−

[
cos(xnlp)

cos
(
mπ

2

)
2

− sin(xnlp)
sin
(
mπ

2

)
2

] [
cos([m− n] arccos p)− (−1)m−n

m− n
+

cos([m+ n] arccos p)− (−1)m+n

m+ n

]]
(C.17)

One needs to sum Eq. C.14 and Eq. C.17, but if done directly it is not possible to obtain any simplification,
because of (−1)m in Eq. C.17. In order to get rid of (−1)m one needs to sum even m and odd m

126

contributions separately. Even m:

fnl(p) = −2J ′n(xnl)

∞∑
m mod 2=0

Jm(xnl)·

·

[[
− sin(xnlp) cos

(
m
π

2

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
−

− cos(xnlp)
cos
(
mπ

2

)
2

[
1− cos([m+ n] arccos p)

m+ n
+

1− cos([m− n] arccos p)

m− n

]
+

+ cos(xnlp)
cos
(
mπ

2

)
2

[
cos([m+ n] arccos p)− (−1)m+n

m+ n
+

cos([m− n] arccos p)− (−1)m−n

m− n

]]
+

+

[
− sin(xnlp) cos

(
m
π

2

)[sin([m− n] arccos p)

m− n
+

sin([m+ n] arccos p)

m+ n

]
−

+ cos(xnlp)
cos
(
mπ

2

)
2

[
1− cos([m− n] arccos p)

m− n
+

1− cos([m+ n] arccos p)

m+ n

]
+

− cos(xnlp)
cos
(
mπ

2

)
2

[
cos([m− n] arccos p)− (−1)m−n

m− n
+

cos([m+ n] arccos p)− (−1)m+n

m+ n

]]]
=

= 4J ′n(xnl)

∞∑
m mod 2=0

Jm(xnl) sin(xnlp) cos
(
m
π

2

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
(C.18)

Odd m:

fnl(p) = −2J ′n(xnl)

∞∑
m mod 2=1

Jm(xnl)·

·

[[
cos(xnlp) sin

(
m
π

2

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
−

− sin(xnlp)
sin
(
mπ

2

)
2

[
1− cos([m+ n] arccos p)

m+ n
+

1− cos([m− n] arccos p)

m− n

]
+

+ sin(xnlp)
sin
(
mπ

2

)
2

[
cos([m+ n] arccos p)− (−1)m+n

m+ n
+

cos([m− n] arccos p)− (−1)m−n

m− n

]]

+(−1)

[
− cos(xnlp) sin

(
m
π

2

)[sin([m− n] arccos p)

m− n
+

sin([m+ n] arccos p)

m+ n

]
−

− sin(xnlp)
sin
(
mπ

2

)
2

[
1− cos([m− n] arccos p)

m− n
+

1− cos([m+ n] arccos p)

m+ n

]
+

+ sin(xnlp)
sin
(
mπ

2

)
2

[
cos([m− n] arccos p)− (−1)m−n

m− n
+

cos([m+ n] arccos p)− (−1)m+n

m+ n

]]]
=

= −4J ′n(xnl)

∞∑
m mod 2=1

Jm(xnl) cos(xnlp) sin
(
m
π

2

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
(C.19)

127

And there is one special case, when m = 0 in Eq. C.14 and Eq. C.17:

fnl(p) = −2J ′n(xnl)J0(xnl)

[
− sin(xnlp)

[
sin(n arccos p)

n
+

sin(−n arccos p)

−n

]
−

−cos(xnlp)

2

[
1− cos(n arccos p)

n
+

1− cos(−n arccos p)

−n

]
+

+
cos(xnlp)

2

[
cos(n arccos p)− (−1)n

n
+

cos(−n arccos p)− (−1)−n

−n

]]
=

= 4J ′n(xnl)J0(xnl) sin(xnlp)
sin(n arccos p)

n
(C.20)

Putting together all the cases {m mod 2 = 0, m mod 2 = 1, m = 0} from Eq. {C.18,C.19,C.20} one
assembles the final outcome:

fnl(p) =4J ′n(xnl)J0(xnl) sin(xnlp)
sin(n arccos p)

n
+

+4J ′n(xnl)

∞∑
m mod 2=0

Jm(xnl) sin(xnlp) cos
(
m
π

2

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
−

−4J ′n(xnl)

∞∑
m mod 2=1

Jm(xnl) cos(xnlp) sin
(
m
π

2

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
=

= −2J ′n(xnl)

∞∑
m=0

2Jm(xnl) sin
(
m
π

2
− xnlp

)[sin([m+ n] arccos p)

m+ n
+

sin([m− n] arccos p)

m− n

]
(C.21)

128

D Appendix

Pseudocode of Conjugate Gradient

Algorithm 1 Conjugate Gradient (unconditioned)

1: r0 := b−Ax0

2: p0 := r0

3: k := 0
4: loop

5: αk :=
rT
k rk

pT
kApk

6: xk+1 := xk + αkpk
7: rk+1 := rk − αkApk

8: if
√

rT
k rk < ε then return xk+1

9: end if

10: βk :=
rT
k+1rk+1

rT
k rk

11: pk+1 := rk+1 + βkpk
12: k := k + 1
13: end loop

Algorithm 2 Conjugate Gradient (preconditioned)

1: r0 := b−Ax0

2: z0 := M−1r0

3: p0 := z0

4: k := 0
5: loop

6: αk :=
rT
k rk

pT
kApk

7: xk+1 := xk + αkpk
8: rk+1 := rk − αkApk

9: if
√

rT
k rk < ε then return xk+1

10: end if
11: zk := M−1rk+1

12: βk :=
zT
k+1rk+1

zT
k rk

13: pk+1 := zk+1 + βkpk
14: k := k + 1
15: end loop

129

E Appendix

Algorithm of SVD

Generally algorithms for computing singular values are analogs of algorithms for computing eigenvalues
of symmetric matrices. The idea is always to find square roots of eigenvalues of AT without actually
computing AT · A. Matrix A has a dimension of m × n. Algorithm assumes m ≥ n; if m < n, then
the algorithm may be applied to AT. The algorithm is presented as if the matrix is real. Nevertheless,
it can be applied for complex matrices too. Algorithm is constructed by 3 parts: Householder reduc-
tion (E.0.1), Golub-Reinch SVD (E.0.2) and Golub-Kahan SVD (E.0.3) (it is used iteratively in E.0.2).
The developments of this algorithm can be found in [76][77][78][79].

E.0.1 Householder reduction to bidiagonal form

Input: Am×n
Ouput: Bn×n, Um×n, Vn×n, so that B is upper bidiagonal, U and V are products of Householders
matrices and A = U ·B ·VT

1. B← A (This can be omitted if A is to be overwritten with with B)

2. U = Im×n

3. V = In×n

4. For k = {1, . . . , n}

(a) Determine Householder matrix Qk with the property that left multiplication by Qk leaves
components {1, . . . , k − 1} unaltered such that:

Qk ·



0
...
0

Bk−1,k

Bk,k
Bk+1,k

...
Bm,n


=



0
...
0

Bk−1,k

s
0
...
0


, where s = ±

√√√√ m∑
i=k

B2
i,k

(b) B← Qk ·B
(c) U← U ·Qk

(d) If k ≤ n−2, determine Householder matrix Pk+1 leaves components {1, . . . , k} unaltered such
that:[
0 · · · 0 Bk,k Bk,k+1 Bk,k+2 · · · Bk,n

]
·Pk+1 =

[
0 · · · 0 Bk,k s 0 · · · 0

]
,

where s = ±
√

n∑
j=k+1

B2
k,j

(e) B← B ·Pk+1

(f) V← Pk+1V

E.0.2 Golub-Reinsch SVD

Input: Am×n
Ouput: Σn×n, Um×n, Vn×n, so that Σ is diagonal, U and V have orthogonal columns and
A = U ·Σ ·VT

1. Apply algorithm (E.0.1)

130

2. Repeat:

(a) Set Bi,i+1 = 0, for all i = {1, . . . , n− 1}, which satisfy |Bi,i+1| ≤ ε(|Bi,i|+ |Bi+1,i+1|).
(b) Determine the smallest p and the largest q so that B can be blocked as

B =

B1,1 0 0
0 B2,2 0
0 0 B3,3

 p
n − p − q

q

where B3,3 is diagonal and B2,2 has non-zero superdiagonal entry.

(c) If q = n, set Σ = the diagonal portion of of B. STOP

(d) If Bi,i = 0,then for i = {p + 1, . . . , n − q − 1} apply Givens rotations so that Bi,i+1 = 0 and
B2,2 is still upper bidiagonal,
else apply algorithm E.0.3 to B, U, V

E.0.3 Golub-Kahan SVD

Input: Bn×n, Qm×n, Pn×n, where B is upper bidiagonal, Q and P have orthogonal columns and
A = Q ·B ·PT

Ouput: Bn×n, Qm×n, Pn×n, the output of B has smaller off-diagonal elements than the input B

1. Let B2,2 be the diagonal block of B with row and column indices {p+ 1, . . . n− q}

2. Set C = lower right 2× 2 submatrix of BT
2,2

3. Obtain eigenvalues λ1, λ2 of C. Set µ = whichever of λ1, λ2 that is closer to C2,2

4. Set k = p+ 1, α = B2
k,k − µ, β = Bk,kBk,k+1

5. For k = p+ 1, . . . , n− q − 1

(a) Determine c = cos θ and s = sin θ with the property that:

[
α β

]
·
[
c s
−s c

]
=
[√

α2 + β2 0
]

(b) B← B ·Rk,k+1(c, s), where Rk,k+1(c, s) is Givens rotation matrix that acts on a columns k
and k + 1 during right multiplication

(c) P← P ·Rk,k+1(c, s)

(d) α = Bk,k, β = Bk,k+1

(e) Determine c = cos θ and s = sin θ with the property that:[
c −s
s c

]
·
[
α
β

]
=

[√
α2 + β2

0

]
(f) B ← Rk,k+1(c,−s) · B, where Rk,k+1(c,−s) is Givens rotation matrix that acts on rows k

and k + 1 during left multiplication

(g) Q← Q ·Rk,k+1(c, s)

(h) If k ≤ n− q − 1, then α = Bk,k+1 and β = Bk,k+2

131

Acknowledgements

This PhD was a great life adventure. I learnt a lot in terms of coding, physics and human relations. It
will be extremely useful in the upcoming endevours of my life. Please find below a table of people I want
to thank (Tab. 27):

Person(s) Institution Level of
greatfulness

Cause/Reason

Fusion-DC board Ghent
University

Very
greatful

for giving me this opportunity to be a Fusion-DC
student and seek a PhD title in fusion science

Paolo Bettini Padova
University,
RFX

Very
greatful

for his hard work as an administrator and coordi-
nator of Fusion-DC section in Padova and fruitful
collaboration with me on scientific endeavours

Gabriele Manduchi RFX Very
greatful

for being a great supervisor and helping me with the
scientific endeavours

Horácio Fernandes
Bernardo Carvalho

IST,
IPFN

Very
greatful

for a warm welcome to IST and their concern of my
well-being during the mobility

Pedro Carvalho IST,
IPFN

Very
greatful

for being the ISTTOK tomography pioneer and tire-
less helper with tomography stuff

César Alves IST,
IPFN

Very
greatful

for a great collaboration on tomographic algorithms
and coding stuff

Emanuele Sartori
Pierluigi Veltri

RFX Extremely
greatful

for long-lasting collaboration on NBI simulations and
effective motivations on life stuff

Leonardo Pigatto
Carlo Baltador
Yangyang Zhang
Marco Gottardo
Daniele Aprile
Matteo Zaupa
Ondřey Kudláček
Pietro Vicenzi
Vadim Yanovskiy
Oisin McCormack
Matteo Vallar
Mattia Dan
Ferdinando Gasparini

RFX Extremely
greatful

1) for being wonderful trustworthy friends and col-
leagues
2) for making a graceful mess in the office, which
is a phenomenon of self-inducing chaos in a form of
human behaviour balancing between madness and
idiocy :)

Table 27: Table of my greatfulness to the people, what have been part of my PhD experience

132

References

[1] U. E. I. Administration, Annual Energy Outlook 2016 With Projections to 2040. Washington, DC
20585, U.S.A: U.S. Department of Energy, August 2016.

[2] R. M. Dell and D. A. J. Rand, Clean energy. Royal Society of Chemistry, October 2004.

[3] R. G. Watts, Innovative Energy Strategies for CO2 stabilization. Cambridge University Press, 2002.

[4] R. A. Dunlap, An introduction to the Physics of Nuclei and Particles. California: Thomson
Brooks/Cole, 2004.

[5] M. K. et al, “High fusion performance from deuterium-tritium plasmas in jet,” Nuclear Fusion,
vol. 39, no. 2, p. 209, 1999.

[6] R. J. H. et al, “Results from d—t experiments on tftr and implications for achieving an ignited
plasma,” Nuclear Fusion, vol. 357, no. 1752, pp. 443–469, 1999.

[7] R. Aymar, “The iter reduced cost design,” Fusion Engineering and Design, vol. 50, pp. 13–25, 2000.

[8] I. H. Hutchinson, Principes of Plasma Diagnostics: Second Edition. Cambridge, Massachusetts:
Cambridge University Press, 2001.

[9] M. Kikuchi, K. Lackner, and M. Q. Tran, Fusion Physics. Vienna, Austria: IAEA, 2012.

[10] L. A. B. et al, “Neutral beam injection experiments in ormak,” Plasma Physics and Controlled
Nuclear Fusion Research: Fifth Conference Proceedings, vol. 1, pp. 113–125, 11–15 Tokyo 1974.

[11] K. B. et al, “Neutral-beam heating in the adiabatic toroidal compressor,” Plasma Physics and
Controlled Nuclear Fusion Research: Fifth Conference Proceedings, vol. 1, pp. 77–82, 11–15 Tokyo
1974.

[12] K. Ushigusa and J.-. team, “Steady state operation research in jt-60u,” Fusion Energy, vol. 1,
pp. 37–55, 7–11 Montreal 1996.

[13] R. S. Hemsworth and T. Inoue, “Positive and negative ion sources for magnetic fusion,” Fusion
Energy, vol. 33, no. 6, pp. 1799–1813, December 2005.

[14] M. Hanada, N. Akino, and N. Ebisawa, “Development of multi-megawatt negative ion sources and
accelerators for neutral beam injectors,” Fusion energy, vol. 33, no. 29, p. 1, 2000.

[15] I. G. Brown, The Physics and Technology of Ion Sources: 2nd, Revised and Extended Edition.
Vienna, Austria: WileyVCH Verlag GmbH & Co, September 2004.

[16] Y. Belchenko, G. Dimov, and V. Dudnikov, “A powerful injector of neutrals with a surface-plasma
source of negative ions,” Fusion Energy, vol. 14, no. 1, pp. 113–114, 1974.

[17] S. H. Fuller and L. I. Millett, The Future of Computing Performance: Game Over or Next Level?
Washington, D.C.: The National Academies Press, 2011.

[18] D. P. Rodgers, “Improvements in multiprocessor system design,” ISCA ’85 Proceedings of the 12th
annual international symposium on Computer architecture, pp. 225–231, 1985.

[19] www.top500.org, “June 2016,” TOP500, p. 1, 2016.

[20] V. Hindriksen, The history of the PC from 2000 – 2012. www.streamcomputing.eu/blog/2011-05-
06/the-history-of-the-pc-from-2000-2012: Stream Computing: Performance Engineers, 2011.

[21] www.wikipedia.com, “Cray,” Wikipedia, p. 1, 2016.

[22] www.wikipedia.com, “Vector processor,” Wikipedia, p. 1, 2016.

[23] www.wikipedia.com, “Silicon graphics,” Wikipedia, p. 1, 2016.

133

[24] K. M. et al, “Why do commodity graphics hardware boards (gpus) work so well for acceleration of
computed tomography?,” Computational Imaging V, p. 194, 2007.

[25] NVIDIA, Cuda C Programming Guide. www.nvidia.com: Morgan Kaufmann, 2015.

[26] D. B. Kirk and W. mei W. Hwu, Pogramming Massively Parallel Processors: A Hands-on Appoach.
Burlington: Morgan Kaufmann, 2010.

[27] NVIDIA, What is CUDA? www.nvidia.com: NVIDIA, 2016.

[28] N. S. et al, “Designing efficient sorting algorithms for manycore gpus,” Parallel & Distributed Pro-
cessing, pp. 1–10, 2009.

[29] K. O. W. Group, The OpenCL Specification. www.khronos.org: Khronos Group, 2016.

[30] O. A. R. Board, OpenMP Application Program Interface. www.openmp.org: OpenMP Architecture
Review Board, 2013.

[31] A. C. N. et al, “Marte: A multiplatform real-time framework,” IEEE Transactions on Nuclear
Science, vol. 57, no. 6, pp. 225–231, April 2010.

[32] P. J. de Paula Carvalho et al, “Tomographic visualization for plasma position control in isttok,”
IEEE Transactions on Nuclear Science, vol. 36, no. 4, pp. 1102–1103, August 2008.

[33] NVIDIA, What is CUDA? Developing a Linux Kernel Module using GPUDirect RDMA.
http://docs.nvidia.com/cuda/gpudirect-rdma/#abstract: NVIDIA, 2016.

[34] J. N. et al, “Image acquisition and gpu processing application using irio technology and flexrio
devices,” Real Time Conference (RT), 2016 IEEE-NPSS, June 2016.

[35] R. Courant, K. Friedrichs, and H. Levy, “Über die partiellen differenzengleichungen der mathema-
tischen physik,” Mathematische Annalen, vol. 100, pp. 32–74, 1928.

[36] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing:
Second edition. Hoboken, New Jersey: John Wiley & Sons, Inc., 2005.

[37] H. J. B. et al, “Molecular dynamics with coupling to an external bath,” The Journal of chemical
physics, vol. 81, no. 8, pp. 3684–3690, 1984.

[38] A. A. Vlasov, “The vibrational properties of an electron gas,” Soviet Physics Uspekhi, vol. 10, no. 6,
p. 721, 1968.

[39] R. W. Hockney and J. Eastwood, Computer Simulation Using Particles. New York, London: Taylor
& Francis, 1988.

[40] C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation. Bristol, Philadelphia
and New York: Adam Hilger, 1991.

[41] C. K. Birdsall, “Particle-in-cell charged-particle simulations plus monte carlo collisions with netural
atoms, pic-mcc,” Transactions on Plasma Science, vol. 19, no. 2, pp. 65–85, 1991.

[42] Y. Saad and M. H. Schultz, “Gmres: a generalized minimal residual algorithm for solving nonsym-
metric linear systems,” Society for Industrial and Applied Mathematics, vol. 7, no. 3, pp. 856–869,
1986.

[43] A. van der Sluis and H. A. van der Vorst, “The rate of convergence of conjugate gradients,” Nu-
merische Matematik, vol. 48, pp. 543–560, 1986.

[44] E. F. Kaasschieter, “Preconditioned conjugate gradients for solving singular systems,” Journal of
Computational and Applied Mathematics, vol. 24, pp. 265–275, 1988.

[45] R. S. Varga, Matrix Iterative Analysis. New Jersey: Prentice-Hall, 1962.

134

[46] J. A. Meijerink and H. A. van der Vorst, “An iterative solution method for linear systems of which
the coefficient matrix is a symmetric m-matrix,” Mathematics of Computation, vol. 31, no. 137,
pp. 148–162, 1977.

[47] J. A. Meijerink and H. A. van der Vorst, “Guidelines for the usage of incomplete decompositions
in solving sets of linear equations as they occur in practical problems,” Journal of Computational
Physics, vol. 44, pp. 134–155, 1981.

[48] J. P. Boris, “Relativistic plasma simulation-optimization of a hybrid code,” Proceedings of the Fourth
Conference on Numerical Simulation of Plasmas, vol. 2, no. 3, pp. 3–67, 1970.

[49] P. H. S. et al, “Efficiency of a boris-like integration scheme with spatial stepping,” Physical Review
Special Topics-Accelerators and Beams, vol. 5, no. 9, p. 094001, 2002.

[50] G. P. et al, “Boris push with spatial stepping,” Journal of Physics G: Nuclear and Particle Physics,
vol. 29, no. 8, pp. 1719–1722, 2003.

[51] T. Takizuka and H. Abe, “A binary collision model for plasma simulation with a particle code,”
Journal of Computational Physics, vol. 25, no. 3, pp. 205–219, 1977.

[52] V. Vahedi and M. Surendra, “A monte carlo collision model for the particle-in-cell method: ap-
plications to argon and oxygen discharges,” Computer Physics Communications, vol. 87, no. 1–2,
pp. 179–198, 1995.

[53] K. Nanbu, “Probability theory of electron-molecule, ion-molecule, moleculemolecule, and coulomb
collisions for particle modeling of materials processing plasmas and cases,” IEEE Transactions on
Plasma Science, vol. 28, no. 3, pp. 971–990, 2000.

[54] N. Bell and M. Garland, Cusp: Generic parallel algorithms for sparse matrix and graph computa-
tions. www.cusplibrary.github.io: Version 0.5.1, 2012.

[55] S. Mochalskyy, Modeling of the negative ion extraction from a hydrogen plasma source. Application
to ITER Neutral Beam Injector. Paris, France: University Paris-Sud, December 2011.

[56] V. A. et al, “Physics design of the injector source for iter neutral beam injector,” Review of Scientific
Instruments, vol. 85, p. 5, 2014.

[57] A. S. et al, “R&d around a photoneutralizer-based nbi system (siphore) in view of a demo tokamak
steady state fusion reactor,” Nuclear Fusion, vol. 55, p. 19pp, 2015.

[58] J. P. Boeuf, G. Fubiani, and L. Garrigues, “Issues in the understanding of negative ion extraction
for fusion,” Plasma Sources Science and Technology, vol. 25, no. 4, pp. 1–12, 2016.

[59] M. Cavenago, “Moderately converging ion and electron flows in two-dimensional diodes,” Review of
Scientific Instruments, vol. 83, p. 14, 2012.

[60] M. Rudd, Y. Kim, D. Madison, and T. J. Gay, “Electron production in proton collisions with atoms
and molecules: energy distributions,” Reviews of Modern Physics, vol. 64, no. 2, pp. 441–490, 1992.

[61] M. Gealy, G. Kerby, Y. Hsu, and M. Rudd, “Energy and angular distributions of electrons from
ion impact on atomic and molecular hydrogen. ii. 20–114-kev h++h2,” Physical Review A, vol. 51,
no. 3, pp. 2256–2264, 1995.

[62] Y. K. K. et al, Electron-impact cross sections for ionization and excitation.
www.nist.gov/pml/data/ionization/index.cfm: National Institute of Standarts Technology,
2015.

[63] C. F. B. et al, Atomic Data for Fusion. www-cfadc.phy.ornl.gov/redbooks/one/1.html: The ORNL
Redbooks, June 2015.

[64] J. Radon, “Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannig-
faltigkeiten,” Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu
Leipzig, vol. 69, pp. 262–277, 1917.

135

[65] A. M. Cormack, “Representation of a function by its line integrals, with some radiological applica-
tions,” Journal of Applied Physics, vol. 34, no. 9, pp. 2722–2727, 1963.

[66] A. M. Cormack, “Representation of a function by its line integrals, with some radiological applica-
tions ii,” Journal of Applied Physics, vol. 35, no. 10, pp. 2908–2913, 1964.

[67] P. J. de Paula Carvalho, Tomography Algorithms for Real-Time Control in ISTTOK. Lisbon, Por-
tugal: Instituto Superior Téchnico, April 2010.

[68] L. Wang and R. S. Granetz, “A simplified expression for the radon transform of bessel basis functions
in tomography,” Review of Scientific Instruments, vol. 62, no. 10, pp. 842–843, 1991.

[69] L. Wang and R. S. Granetz, “An analytical expression for the radon transform of bessel basis
function in tomography,” Review of Scientific Instruments, vol. 62, no. 10, pp. 1115–1116, 1991.

[70] G. N. Watson, A Treatise on the Theory of Bessel Functions. Cambridge, England: Cambridge
University Press, 1958.

[71] A. Dresden, “The fourteenth western meeting of the american mathematical society,” Bulletin of
the American Mathematical Society, vol. 26, pp. 385–396, 06 1920.

[72] W. H. P. et al, Numerical Recipes in C, The Art of Scientific Computing, Third Edition. Cambridge,
New York, Port Chester, Melbourne, Sydney: Cambridge University Press, 2007.

[73] P. J. de Paula Carvalho et al, “Isttok plasma control with the tomography diagnostic,” Fusion
Engineering and Design, vol. 85, pp. 266–271, 2010.

[74] C. A. S. Alves, Tomographic Determination of Emissivity Profiles in the ISTTOK Tokamak. Lisbon,
Portugal: Instituto Superior Téchnico, June 2016.

[75] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. Washington D.C., USA: National Bureau of Standarts, 1972.

[76] G. H. Golub and W. Kahan, “Calculating the singular values and pseudo-inverse of a matrix,”
Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis, vol. 2,
no. 2, pp. 205–224, 1965.

[77] G. H. Golub, “Least squares, singular values, and matrix approximations,” Aplikace Matematiky,
vol. 13, no. 1, pp. 44–51, 1968.

[78] G. H. Golub and C. Reinsch, “Singular value decomposition and least squares solutions,” Journal
of Numerical Mathematics, vol. 14, pp. 403–420, 1970.

[79] G. H. Golub and C. F. V. Loan, Matrix Computations. 3rd edition. Baltimore and London: The
Johns Hopkins University Press, 1996.

136

	I Introduction
	General overview on fusion science
	Plasma heating
	Neutral beam injection systems
	Negative ion production
	Beam formation

	Motivation of this thesis

	II General Purpose GPU
	History of computing
	Moore's law
	Outlook of modern CPU
	Evolution of programming model

	Emerging parallel computing technologies of today
	GPGPU
	Intel Xeon Phi
	ARM processors

	GPGPU
	Birth of GPGPU
	GPU architecture
	GPU vs CPU
	Task parallelism
	Data parallelism

	Programming GPUs
	CUDA
	Thread hierarcy and barrier synchronization
	Memory hierarcy
	Global memory operation modes

	Other GPU programming models
	OpenCL
	Platform layer
	Execution layer
	Memory layer

	OpenMP
	Execution model
	Memory model

	Assessment of General Purpose GPU systems in real-time control
	Introduction
	Practical consideration of using GPUs in real-time applications
	An example of Real-Time GPU application
	Performance analysis and comparison
	Matrix-Vector multiplication
	Comparison with CPU architectures
	Sobel image filtering

	Conclusions

	Summary

	III Plasma simulations using PIC method
	Plasma basics
	Poisson equation
	Plasma frequency
	Debye length
	CFL condition
	Collisionless sheath
	Plasma potential
	Thermostat theory

	Plasma simulation
	PIC method
	Charge projection
	Poisson equation
	Conjugate Gradient method
	Generalized Minimum Residual method
	Preconditioning
	Boundary conditions
	Initial conditions

	Electric field computation
	Particle motion
	Forward-difference motion integration
	Leapfrog method
	Boris algorithm

	Collisions
	Monte Carlo collisions (MCC)
	Null Collision method

	Results
	Solver evaluation
	Comsol vs Cusp
	5pt stencil vs 9pt stencil
	Tolerance study

	Transient state simulation
	Tolerance study
	Time step t study
	Cell size x study
	Number of particles per cell study
	Discussion

	Steady state simulation
	Plasma potential
	Sheath depth
	Discussion

	Negative ion beam extraction
	Model description
	Plasma parameters
	Double sheath
	Meniscus formation and negative beam extraction
	Beam shape and extraction voltage scaling
	Discussion

	Simulation of Space Charge Compensation
	Model description
	Implementation of collisions
	Simulation results and discussion

	Conclusions

	IV Tomography
	Tomographic problem
	Radon transform
	Rotation theorem
	Projection definition
	Projection-slice theorem

	Cormack solution
	Fourier-Bessel expansion
	Solution and reconstruction
	Singular Value Decomposition
	Reconstruction

	Calculation of Contribution matrix
	How does projection matrix P look like?
	How does basis matrix B look like?

	Algorithm testing and optimization
	Error optimization
	Error maps
	Error correction grid (selective reconstruction)

	Results
	Single source study
	Phantoms
	Reconstructions
	Error maps uncorrected
	Error maps corrected
	Discussion

	Double source study
	Phantoms
	Reconstructions
	Error maps uncorrected
	Error maps corrected
	Discussion

	Ring source study
	Phantoms
	Reconstructions
	Error maps uncorrected
	Error maps corrected
	Discussion

	Noise sensitivity
	Without error correction
	With error correction
	Discussion

	Performance study

	Conclusions
	Appendices
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Householder reduction to bidiagonal form
	Golubâ•ﬁ-Reinsch SVD
	Golubâ•ﬁ-Kahan SVD

