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Summary 
 

Remote sensing technology has long been suggested as a time and cost efficient method for 

observing dryland ecosystem environments, monitoring land cover degradation and 

characterizing the dynamism of sand dunes. The meaning and value of remote sensing data 

were enhanced through skilled interpretation, in conjunction with conventionally mapped 

information and ground-collected data. Spectral Mixture Analysis (SMA) has proved to be a 

powerful technique to monitor land cover degradation in arid and semi-arid areas. Three 

Landsat images, acquired in 1987, 1999 and 2008, were analyzed to evaluate desertification 

processes in three different ecological zones in Sudan (North Kordofan, River Nile and 

Northern state). Spectral Mixture Analysis (SMA) was adopted using endmembers spectra 

derived from the image. Multitemporal comparison techniques (visual interpretation and 

change vector analysis) were applied to estimate the long-term desertification/re-growing and 

to emphasize land cover variation over time and in space.  

Site-specific interactions between natural processes, climate variation and human activity 

played a pivotal role in desertification; however their interaction was varied according to the 

ecological zone. In North Kordofan (savannah), desertification significantly prevailed over 

vegetation re-growth, particularly in areas around rural villages over the last 21 years. Changes 

in land use and mismanagement of natural resources, mainly caused by deforestation to supply 

wood for domestic use and overgrazing, were the main driving factors affecting degradation. 

More than 120,000 km2 were estimated as being subjected to a medium-high desertification 

rate. Conversely, the reforestation measures, adopted by the Sudanese Government in the last 

decade and sustained by higher rainfall, resulted in low-medium re-growth conditions over an 

area of about 20,000 km2.  

In River Nile (valleys in semi-desert), extreme condition of desertification affected the valleys 

in the site. Desertification affected an area of 24,482 km2 as extreme condition and re-growth 

condition in low status was 1,193 km2 while most of persistence condition (71,298 km2) was 

desert area. Drought and climate variation with the assistance of mismanagement of natural 

resources were the factors caused desertification, however, human activities were played minor 

role. In this site the soil is highly vulnerable to wind and water erosion and it was highly 

increased in 2008. 
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Irrigated agricultural projects were clearly recognized in Northern State (Valley in desert), with 

an areas of 28,761 km2 in low condition. The area affected by desertification was 98,275 km2 

(7,962 km2 high, 56,075 km2 medium and 34,239 km2 low) with 76.40% percentage of the total 

area. The agricultural projects were at high risk since they were surrounded by desertified 

areas. 

Site-specific strategies which take into account the interactions of the driving factors at local 

scale are thus necessary to combat desertification, avoiding any implementation of untargeted 

measures. In order to identify the soundest strategies, high-resolution tools must be applied. In 

this study the application of SMA to Landsat data appeared to be a consistent, accurate and 

low-cost technique to obtain information on vegetation cover, soil surface type, and identify 

risk areas. 
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Riassunto 
 

La tecnologia di remote sensing è stata a lungo considerata un’efficace strumento per 

l’osservazione di ecosistemi  aridi e semi-aridi, il monitoraggio di superfici vegetate degradate 

e la caratterizzazione delle dinamiche di dune sabbiose. I risultati ottenuti con il remote sensing 

sono stati validati grazie a interpretazioni puntuali, congiuntamente a informazioni mappali 

classiche e dati raccolti in campo. Si è provato, inoltre, che la tecnica denominata Spectral 

Mixture Analysis (SMA) è un potente strumento per monitorare la degradazione di coperture 

vegetali in zone aride e semi-aride. In questo studio sono state analizzate tre immagini del 

satellite Landsat, acquisite nel 1987, 1999 e 2008, al fine di valutare i processi di 

desertificazione di tre differenti ecosistemi in Sudan (Nord Kordofan, Fiume Nilo e Stato del 

Nord). La Spectral Mixture Analysis (SMA) è stata impiegata utilizzando endmembers ottenuti 

dall’immagine satellitare e definiti come i diversi componenti di un territorio specifico. Sono 

state applicate tecniche di comparazione multi temporale (interpretazione visiva dei 

componenti delle immagini e change vector analysis) per sottolineare la variazione della 

copertura vegetale e per stimare l’effetto di desertificazione di lungo periodo (o crescita 

vegetativa) nel tempo e nello spazio.  

Le interazioni sito-specifiche tra processi naturali, la variazione delle condizioni climatiche e le 

attività umane hanno giocato un ruolo centrale nel processo di desertificazione, sebbene le loro 

interazioni siano diverse nei tre siti studiati. Nel Nord Kordofan (zona di savana) il fenomeno 

della desertificazione è prevalso in modo significativo sulla crescita vegetativa e in particolar 

modo nelle aree attorno ai villaggi, nell’ultimo ventennio. Un utilizzo differente dei terreni, 

così come la mancata gestione delle risorse naturali, causata principalmente dalla 

deforestazione per la fornitura di legname per uso domestico e l’utilizzo eccessivo delle terre 

destinate a pascolo, sono stati i principali fattori che hanno determinato la degradazione 

dell’area. Si è inoltre stimato che più di 120,000 km2 sono soggetti a un tasso di 

desertificazione medio - alto. Viceversa, le politiche di riforestazione adottate dal governo 

sudanese nell’ultimo decennio hanno avuto un impatto medio - basso sul tasso di ricrescita 

della vegetazione, e in un’area di circa 20,000 km2.  

Nell’area nei pressi del fiume Nilo le vallate oggetto di studio, situate in zone semi-desertiche, 

sono state estremamente colpite dalla desertificazione. Un intenso fenomeno di desertificazione 



 12

ha riguardato un’area di 24,482 km2, al contrario le condizioni di crescita vegetativa hanno 

interessato un’area 1,193 km2. Gran parte del territorio è comunque caratterizzato da 

condizioni desertiche stabili (71,298 km2). In questo caso i cambiamenti climatici e la forte 

siccità, assieme alla mal gestione delle risorse naturali, hanno contribuito alla desertificazione, 

sebbene l’attività umana sembra aver giocato un ruolo marginale nella degradazione dell’area. 

In questo sito la degradazione del suolo, altamente vulnerabile all’erosione del vento e 

dell’acqua, è stata molto alta nell’anno 2008.  

Le aree agricole irrigate, invece, erano chiaramente riconoscibili nello Stato del Nord (vallata 

presente in un sito desertico) e occupavano una superficie di 28,760 km2. In questo caso l’area 

è  risultata in condizioni scadenti. Il territorio colpito da desertificazione era di 98,275 km2 

(7,962 km2 tasso alto di desertificazione, 56,075 km2 tasso medio di desertificazione e 34,239 

km2 tasso basso di desertificazione), corrispondente al 76.40% dell’area totale. Le aree agricole 

si sono dimostrate ad alto rischio di desertificazione dal momento che erano circondate da zone 

desertiche. 

Da questo quadro si evince che strategie sito-specifiche sono necessarie per combattere la 

desertificazione, evitando di attuare misure migliorative che non tengano conto degli obiettivi 

specifici identificati per ogni singola area. Affinché vengano adottate le strategie adeguate è 

auspicabile l’applicazione di strumenti ad alta risoluzione. Dai risultati di questo studio sembra 

che l’applicazione della SMA ai dati di Landsat sia coerente, precisa ed economicamente 

sostenibile al fine di ottenere informazioni utili sulla copertura vegetale, sulle caratteristiche 

del  suolo e sull’identificazione delle aree a rischio.   
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1.1 Definitions 

Desertification is defined as land degradation in arid, semi-arid and dry sub-humid areas due to 

climate variation and/or human activity (UNCCD, 1994).  The concept of desertification dates 

back to colonial West Africa in the 1920s and 1930s, and was revived in the early 1970s in an 

attempt to understand the effects of a long series of drought years that brought environmental 

degradation, economic difficulty and hunger to the African Sahel (Lonergan, 2005). The 

concept and emphasis of desertification as a degrading process requiring international 

collaboration has changed over time. Initially the focus was on desert margins (UNEP, 1986) 

though there was clear recognition that land degradation was a widespread problem. An 

accepted definition of the time was that of Dregne (1977): "Desertification is the 

impoverishment of terrestrial ecosystems under the impact of man. It is a process of 

deterioration in these ecosystems that can be measured by reduced productivity of desirable 

plants, undesirable alterations in the biomass and the diversity of the micro and macro flora and 

fauna, accelerated soil deterioration, and increased hazards for human occupancy". As national 

and global databases improved, the anthropic role became more evident and the accelerated 

nature of the process resulted in the call for combating actions.  

Arid and semi-arid areas are characterized by patterns of variable annual rainfall. They include 

the deserts and their semi-arid and sub-humid dry margins and the subtropical Mediterranean 

latitudes. Arid zones account for 40% of the Earth’s surface. Because of the vast area covered 

these lands play a major role in energy balance and hydrologic, carbon and nutrient cycles. The 

dryland areas are characterized by irregularity and shortage of rainfall, prolonged dry seasons, 

high temperature and high evaporation. Such variation in climatic factors makes drylands more 

fragile and prone to land degradation and desertification (Ayoub. 1998). 

Land degradation is one of the effects of mismanagement of land and results frequently from a 

mismatch between land quality and land use (Beinroth et al., 1994). Land degradation is clearly 

human induced due to the large area and number of people affected by it. The linkage between 

land degradation and climate change is yet to be established but there is increasing evidence 

that land degradation is a driver of climate change (Reich et al., 2001).  

Mechanisms of desertification processes could be physical, chemical, and biological processes 

(Lal, 1994). These processes include water erosion, wind erosion and sedimentation, long-term 

reduction in diversity of natural vegetation and salinization. Combined pressure from human 

and climatic variations in arid and semi-arid areas resulted in high and serious desertification 
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status and rate. Loss of vegetation cover seems to be related to poor soils and aridity, which 

prevail throughout short as well as long periods of drought and thus permit very limited 

recovery of natural vegetation. Wind and water erosion are the main two process accelerated in 

the areas vulnerable to desertification processes in the arid and semi arid regions. They are a 

result of the interplay between environmental factors such as soil, topography, drainage, 

rainfall, wind speed, and land use patterns. Main causes accelerate desertification processes are 

drought, population pressure, failure to implement appropriate technologies, poverty, 

constraints imposed by recent international trading agreements, and local agricultural and land 

use policies (Virmani et al., 1994). 

Desertification as an environmental degradation phenomenon converts land into desert-like 

conditions unfit for man and animals. The assumption that desert encroachment is a 

manifestation of major geological climatically changes is still subject to considerable scientific 

debate. Most scientists seem to agree that weather fluctuation or cyclic drought of one or more 

years and land misuses are the actual causes of desertification particularly in arid regions such 

as is the case in Sudan (Mustafa, 2007). 

 

1.2 Desertification problem in Sudan: 

Sudan is the largest country in Africa covering an area of over 2.5 million km2. Rainfall ranges 

from nil in the North to 1500 mm y-1in the South. Harrison and Jackson (1958) classified the 

vegetation of Sudan as ecological terms, according to the floristic composition of the 

vegetation. However, the structural properties of the vegetation in Sudan are highly depend on 

rainfall and soil types. Sudan has diverse ecological regions, from the desert in the North to 

high rainfall woodlands savannas in the South (Ayoub, 2004). 

Vegetation in semi arid area in Sudan ranges from extremely scarce in the far north to short 

grass and sparse thorn scrub to open grassland plains dominated by gum Arabic producing 

acacia in the central part of the country. The more humid part of the country contains a variety 

of vegetation types from savannah to broken woodland and tropical forests. Woody biomass 

comprised 71% of the energy supply in 1999 in the Sudan (Abdel Ati, 2002). This is equivalent 

to about 400 million Acacia trees being uprooted annually. Rangelands in the arid and semi-

arid zones carry over 70% of Sudan’s livestock. This is more than double their carrying 

capacity (Ayoub. 1998). Range fires, mostly deliberately set by herders and honey collectors, 
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consumed annually about 35% of the natural range productivity, estimated to be about 300 

million tonnes (Atta El Moula, 1985). Livestock in the Sudan concentrates around water 

sources during the dry periods leading to vegetation denudation and soil pulverization by 

tramping (de Jong-Boon, 1990). 

Drylands cover approximately 60% of the country (1.5 million km2), thus constituting the 

largest area of drylands in Africa. Annual rainfall in arid areas is less than 75 mm and the semi-

arid areas with annual rainfall from 75mm to 300mm. These areas faced with serious socio-

economic problems such as poverty, famine and migration and environmental problems such 

as drought, desertification (Khiry, 2007). 

Continued drought and desertification are the most important problems facing Sudan as well as 

North Africa which result mainly from destruction of natural resources, agricultural lands and 

in political and social disturbances (Mustafa, 2007). Sudan’s soil conservation committee in 

1994 concluded that soil degradation and desertification is mainly attributed to general land 

misuses rather than to major climatic changes. human activities are the most destructive factors 

in Sudan which are leading to natural resources degradation and causing desertification result 

from droughts, coupled mainly with the extended rainfed farming on marginal lands, 

overgrazing, wood cutting, deforestation, uprooting of shrubs and burning of grasslands and 

forest shrubs. DECARP, 1976 concluded that a combination of factors involving fragile 

ecosystems developed under harsh climatic condition and human activities are the actual 

causes of desertification in Sudan. Nowadays, the problems of desertification and drought in 

Sudan are a worldwide concern and specific attention was paid to discussing and combating 

these impacts particularly in the central part of the country which is severely hit by 

desertification. Migration to urban areas, deterioration of forest cover, reduction of agricultural 

production, and famine are the  socioeconomic problems face Sudan after severe drought 

conditions of 1984 (Khiry, 2007). 

 

1.3 Remote sensing and GIS for the monitoring and mapping 

desertification in arid and semi-arid areas: 

Many studies and assessments of dryland ecosystems since the United Nations Conference on 

Desertification (UNCOD) in 1977 have led to a valuable new understanding of the 

desertification issue. These studies pointed out significant shortcomings in terms of data and 
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methodologies. Moreover, they call for the improvement of science and technology for 

environmental monitoring, assessment models, accurate databases and integrated information 

systems (Lonergan, 2005). In particular, they emphasize the need to assess desertification 

processes, since the knowledge on the current status of desertification or the magnitude of the 

potential hazard is incomplete and fragmented for the most parts of the world. Monitoring of 

the environment in these areas is considered as a very important task in the context of global 

climatic change and worldwide desertification dynamics (Lonergan, 2005).  

Monitoring desertification is the key tool that can provide timely and useful information for 

decision makers on the risk of drought and environmental change. It could be easier by 

determining appropriate indicators. Environmental indicators over large areas must be 

measurable and suitable for regular updating. Few of the proposed indicators are specifically 

for dryland degradation only, because it is difficult to separate the effect of the climatic factors 

from the human activities in such areas (Diouf and Lambin, 2001).  

One of the most important tools for monitoring desertification is remote sensing. Ideally, 

remote sensing should play a major role in developing a global operational capability for 

monitoring land degradation and desertification in drylands. It has long been suggested as a 

time and cost efficient method for observing dryland ecosystem environments (Hassan and 

Luscombe, 1990). Remote sensing is defined as the art of science of obtaining information 

about the object without being in direct physical contact with the object. It is a technology that 

can be used to measure and monitor important biophysical and biochemical characteristics of 

objects, as well as human activities on the Earth (Jensen, 2005). Remote sensing imagery 

should be regarded as data available to assist the planner in the assessment of natural resource 

and natural hazard information throughout the development of a planning study. The meaning 

and value of remote sensing data is enhanced through skilled interpretation used in conjunction 

with conventionally mapped information and ground-collected data (Jensen, 2005). In this 

capacity it can serve both enhance monitoring efforts as well as to provide valuable 

information on dryland degradation in specific area.  

In order to monitor, map and model desertification processes, Geographical information system 

GIS is needed. GIS  is a computer-based system for capture, storage, retrieval, analysis and 

display of spatial (locationally defined) data (The National Science Foundation). GIS id a 

powerful system to apply the techniques for modeling land cover pattern and erosion indices..  
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1.4 Problem justification: 

Earth observation data, particularly Landsat Thematic Mapper (TM) and Multispectral Scanner 

(MSS) imagery, have been widely used in semiarid environments to monitor the variations in 

vegetation community characteristics as well as other factors affecting desertification 

processes. However, traditional methods to extract vegetation and soil information from remote 

sensing data in semi-arid areas, such as classification techniques and vegetation indices, were 

found to be inaccurate due to the vegetation community structure and the heterogeneity of the 

semi-arid environment. Spectral Mixture Analysis (SMA) has been proposed as an appropriate 

classification technique to be applied in dryland areas. SMA is sub-pixel classification which 

based on and influenced by the spectral reflection properties of the land cover materials 

The poorly developed communications infrastructure in Sudan pose great difficulty for the 

collection of data for operational use by a ground based method. Consequently, remote sensing 

images interpretation and GIS become the feasible tools for timely action on the risk of drought 

and environmental change. 

 

1.5 Questions of the study? 

• How can remote sensing and GIS help in monitoring temporal and spatial variations of 

vegetation and soil in Sudan? 

• Can a limited field data collection suffice to accurately model the pattern of land cover 

and desertification in Sudan? 

• Can long-term and large-scale monitoring of land cover and desertification be useful to 

improve land management policies? 

 

1.6 Objectives: 

• To estimate the desertified lands in three different ecological zones in order determine 

the status of desertification in Sudan. 

• To detect and analyze the dynamics of change of land use/land cover in three different 

ecological zones using Landsat images and SMA in order to assess the desertification 

process.  
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PART TWO: 

LIMITS AND POTENTIALITIES OF STUDYING DRYLAND 

VEGETATION USING THE OPTICAL REMOTE SENSING 
 

Dawelbait, M. and Morari, F., 2008. Limits and potentialities of studying dryland vegetation 

using the optical remote sensing. Italian Journal of Agronomy  3:97- 106. 
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Abstract 

In optical remote sensing studies, the reflectance of the vegetation canopy in arid and semiarid 

areas is affected by the optical properties of the vegetation elements, their arrangement in the 

vegetation canopy and the optical properties of the surrounding environment. The study of 

vegetation and surrounding environment parameters presents significant peculiarities in arid 

areas. Low vegetation cover leads to a small contribution of vegetation reflectance in the total 

pixel reflectance relative to the other materials. Most types of dry ecosystem shrubs do not 

differ enough from one another to allow discernment of vegetation type. Vegetation in arid and 

semiarid areas adapts its structure and phenology to the harsh environment, which affects the 

overall brightness and temporal and spatial interspecies spectral variability. Moreover, the 

surrounding environment in dry ecosystem influences the reflectance of the vegetation by 

multiple scattering and nonlinear mixing and variable spectral composition of soil surface.  

Many remote sensing techniques are insensitive to nonphotosynthetic vegetation, which can be 

a major component of total cover in dry ecosystem areas. Spectral mixture analysis (SMA) 

appears to be the most promising technique to obtain information on vegetation cover, soil 

surface type and vegetation canopy characteristics. The empirical signature libraries of the 

world’s dominant vegetation types could be upgraded for use with SMA. 

 

Key words: desertification, remote sensing, vegetation, dryland, spectral mixture analysis 
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2.1 Introduction 

The concept of desertification dates back to colonial West Africa in the 1920s and 1930s, and 

was revived in the early 1970s in an attempt to understand the effects of a long series of 

drought years that brought environmental degradation, economic difficulty and hunger to the 

African Sahel (Lonergan, 2005). Many studies and assessments of dryland ecosystems since 

the United Nations Conference on Desertification (UNCOD) in 1977 have led to a valuable 

new understanding of the desertification issue. These studies pointed out significant 

shortcomings in terms of data and methodologies. Moreover, they call for the improvement of 

science and technology for environmental monitoring, assessment models, accurate databases 

and integrated information systems (Lonergan, 2005). 

Remote sensing is a technology that can be used to measure and monitor important biophysical 

and biochemical characteristics of objects, as well as human activities on the Earth (Jensen, 

2005). The meaning and value of remote sensing data is enhanced through skilled 

interpretation used in conjunction with conventionally mapped information and ground-

collected data (Jensen, 2005).  Remote sensing has long been suggested as a time and cost 

efficient method for observing dryland ecosystem environments (Hassan and Luscombe, 1990). 

Optical remote sensing (0.3-15 µm), both spaceborne and airborne, provides valuable tools for 

evaluating areas subject to desertification. It is used in many applications such as: (1) mapping 

and monitoring land use and land cover change and degradation, sand dunes, studying organic 

carbon in the surface soil layer, deriving information about chemical components and mapping 

areas affected by high salt concentration; (2) studying dryland geomorphology; (3) evaluating 

the vegetation conditions (e.g. vigour, photosynthetic capacity or stress of vegetation canopy or 

cluster); (4) studying the atmospheric conditions by detecting mineral aerosols -dust suspended 

in the air- and water vapour in the atmosphere; (5) detecting the extent of desert (Okin and 

Robert, 2004). 

Earth observation data, particularly Landsat Thematic Mapper (TM) and Multispectral Scanner 

(MSS) imagery, have been widely used in semiarid environments to show up variations in 

vegetation community characteristics from changes in their reflectance characteristics. Earth 

observation data are also used to estimate vegetation abundance depending on simple 

relationships between reduced reflectance and increased total plant cover or between a spectral 

vegetation index and green vegetation cover (Pickup, 1995). However, new problems are 

arising from the changes in vegetation community structure observed in the desert 
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environment, notably due to a gradual increase in bush dominance and changes in the mix of 

palatable and unpalatable grasses (Trodd and Dougill, 1998). 

This article introduces the reader to the problems of optical remote sensing in studying 

vegetation in dryland and focuses on: (1) studying the reflectance of vegetation and the 

surrounding environment in a dryland ecosystem; (2) discussing the techniques used to monitor 

and obtain information on the canopy in a dryland ecosystem.  

 

2.2 Reflectance of vegetation and surrounding environment in a 

dryland ecosystem  

In the wavelength range between 400 and 2500 nm, the radiance reflected from a vegetation 

canopy is influenced by three main factors related to the canopy: (1) the optical properties of 

the vegetation elements, (2) the arrangement of these elements in the vegetation canopy and (3) 

the optical properties of the environment around the canopy (soil and atmosphere) (Dorigo et 

al., 2007).  

The difficulties facing evaluation of vegetation using optical remote sensing in a dryland 

ecosystem arise from different types of problems.  

 

2.2.1 Anomalies in the optical properties of the vegetation elements  

Vegetation in a dryland ecosystem suffers from water scarcity due to low precipitation and 

high potential evapotranspiration, so vegetation cover is low. This leads to the small 

contribution of vegetation reflectance in the total pixel reflectance relative to the other 

materials in a dryland ecosystem. Therefore, the evaluation of vegetation in a dryland using 

remote sensing is not completely accurate (White et al., 2000).  

The above-mentioned concept has the consequences that the spectral properties of vegetation 

elements such as stems, leaves and fruits, can be considered the major determinant of canopy 

reflectance and influence the shape of the overall spectrum (Dorigo et al., 2007). Stems in the 

dryland ecosystem vegetation, play a small but significant role in determining canopy 

reflectance in woody plant canopies, especially those with leave area index (LAI) < 5.0. 

However, this also depends on the location of woody material within the canopy (Asner, 1998).  

Standing litter significantly affects the reflectance characteristics of grassland canopies. 
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Furthermore, small increases in the percentage of standing litter lead to unproportional changes 

in canopy reflectance (Figure 2.1). Variation in litter optical properties plays a secondary role 

to structural attributes (e.g., leaf and litter area index) in determining canopy reflectance 

(Asner, 1998).  

Regarding the leaves and their reflectance, we can find that they are spectrally dissimilar from 

their humid counterparts. They have adapted themselves to high temperature and high 

evaporation losses by adapting their surface in several ways, such as: reducing leaf size, 

avoiding leaves altogether and moving photosynthesis to the stalks and stem, shading the 

photosynthetic surface by a high density of reflective spines and leaf hairs or reducing losses 

due to evapotranspiration by a more waxy leaf cuticle (Ehleringer and Mooney, 1978). These 

differences affect the overall brightness of dryland vegetation (e.g. creosote – Larrea tridentata 

(DC.) Coville var. tridentata), the ratio of green vegetation to nonphotosynthetic vegetation 

within the canopy and perturbation to the shape of the spectrum at specific wavelengths (Figure 

2.2). 

Conditions are worsened by the fact that natural plants in arid and semiarid areas coordinate 

their phenological states with the availability of soil moisture to be able to complete rapidly 

their reproductive cycle. Persistent vegetation will come out of dormancy when water becomes 

available after the dry season or a period of drought, begin photosynthesis, and if time permits, 

produce flowers and fruits. When water again becomes scarce, vegetation will resume 

dormancy and in an extended period of drought some vegetation will shed their leaves. The 

total cycle in dryland regions takes place during a relatively short growing season (two to three 

months). Therefore, no single reflectance spectrum can represent the full spectral phenology of 

dryland plants, and spectra representing different phenological stages must be incorporated for 

quantitative information about vegetation change in both space and time (Okin and Robert, 

2004). 
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Figure 2.1- A) Effect of increasing the fraction of litter in a grassland canopy from 0%  to 
100%  in simulated canopy reflectance. B) First derivative spectra coinciding with panel A  
(from Asner, 1998). 

 

The inability of the multispectral data to characterize the vegetation structure can be explained 

by the limited dimensionality as follows. Scientists have known since 1960 that a direct 

relationship exists between response in the near-infrared region and variation of vegetation 

biomass. On the other side, there is a inverse relationship between the vegetation biomass and 

visible region particularly the red region. To study the structure of the vegetation surface, a plot 

of near-infrared reflectance versus red reflectance (spectral feature space diagram) was used. 

At the end of the dry season, in semi-arid areas, bidirectional reflectance values, which are the 

values of a calibrated reflectance using the sun irradiance geometry function and sensor 

viewing geometry function, occupy a condensed envelope in spectral space. The pure bush, 

grass and soil samples lie along a brightness line, which means the red reflectance is equal to 
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the near-infrared reflectance for pure bush, grass and soil samples (Figure 2.3). This shows the 

inability of the multispectral data to characterize the vegetation structure. The limited 

dimensionality means that differences in reflectance between surface component (i. e. grass, 

bush and soil) are mainly restricted to changes in overall brightness (Trodd and Dougill, 1998). 

The disability to provide information on vegetation structure from images acquired during the 

dry season has a number of important implications regarding the role of satellite imagery in 

increasing our understanding of vegetation changes in semiarid areas. Particularly, it highlights 

on the need for long-term ground-based monitoring of changes in vegetation characteristics and 

data from new satellite sensors in order to help in developing different reflectance models and 

images analysis for the vegetation community in arid an semi-arid areas. (Ringrose et al., 

1989).  

2.2.2 Anomalies in the arrangement of elements within the canopy  

Most types of dryland vegetation do not differ enough from one another to allow discernment 

of vegetation types by optical remote sensing (Okin et al., 2001). The within-species variation 

makes the problem worse as the spectral variability within a species can be greater than the 

variability between species (Franklin et al., 1993). In order to understand the above mentioned 

concept, the complication of vegetation community structure and inter-canopy shading are 

discussed.  

Trodd and Dougill (1998) stated that as variations in the relative proportions of bush and grass 

cover in semiarid zones in Africa are likely to change the composite reflectance, it is apparent 

that the relationship between vegetation community structure and reflectance is ambiguous.  In 

dryland vegetation community the reduction in reflectance can be due to an increase in 

vegetation cover and/or inter-canopy shading by bush canopies. Unfortunately, the two effects 

are not distinguishable and therefore, the relationship between vegetation community structure 

and reflectance cannot be inverted and used to estimate variations in vegetation structure 

(Trodd and Dougill, 1998). 
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Figure 2.2 - Comparison of green vegetation (GV), nonphotosynthetic vegetation (NPV) and 
creosote canopy spectra. The best fit line is the optical linear least-squares mixture of GV and 
NPV to match the creosote spectrum. The residual of this mixture (residual=creosote canopy - 
best fit) is given in the bottom panel (from Okin and Robert, 2004). 

 

Another important aspect in vegetation community structure in dryland is the possibility of the 

estimation of the percentage of nonphotosynthetic vegetation (NPV) using remote sensing. 

NPV whether in the form of dead shrubs or leafless drought-deciduous plants, plays an 

important role in the environment of dryland regions (Asner, 1998). It is useful in reducing 

wind and water erosion by contributing to the density of physical obstacles and total surface 

cover which protect the surface from erosion. Both wind and water erosion occur when surface 

cover is below approximately 15% (Wiggs et al., 1995). The difficulty is to determine the 

percentage of NPV and vegetation cover using remote sensing. Many common methods of 

estimating vegetation cover, such as vegetation indexes, are insensitive to the presence of NPV. 

They may not be useful to estimate the total cover in situations where NPV is a significant 

component of the surface cover (Asner, 2004). 
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2.2.3 Optical interferences from the environment around the canopy (atmosphere and soil) 

The most important source of energy is the sun. Before the sun’s energy reaches the Earth’s 

surface, three fundamental interactions in the atmosphere are possible: absorption, transmission 

or scattering. The most efficient absorbers of solar radiation in the atmosphere are ozone, water 

and carbon dioxide. Atmospheric scattering occurs when the particles or gaseous molecules 

present in the atmosphere cause the electromagnetic waves to be redirected from their original 

path (Figure 2.4).  

 

 

 

 

Figure 2.3 - Schematic representation of landscape components in spectral feature space 
showing the distribution of all pixels in a scene in red and near-infrared multispectural space; 
the white area envelopes reflectance values in dry season and the white +gray area envelopes 
reflectance values in the wet season (from Trodd and Dougill, 1998). 
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Figure 2.4- Radiance paths from the sun to the sensors: diffusion, scattering and 
multiscattering. 

 

Simple single scattering is represented as the product of the reflectance of an object times the 

intensity of the incoming radiation and is called linear mixing. For a given wavelength( )λ , we 

have: 

 

( ) ( ) ( )λλλ ir IpI =          [1] 

 

where Ir( λ ) is the intensity of the reflected light, I i( λ ) is the intensity of the incident light, and 

p( λ ) is the reflectance spectrum of the object.  

Multiple scattering or nonlinear mixing occurs when photons interact with more than one type 

of object on the Earth before returning to the sensor (Asner, 2004) and can be defined as 

follows: 

 

( ) ( ) ( ) ( )λλλλ ir IppI 21=         [2] 
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where p1( λ ) is the reflectance spectrum of the first object and p2 (λ ) is the reflectance 

spectrum of the second object.  

In arid and semiarid areas where bright soils often underlie vegetation with open canopies, the 

reflected light is highly affected by this type of multiple scattering. Therefore, correlations of 

reflected near-infrared radiation with LAI of open canopies of dryland shrubs are poor 

(Hurcom and Harrison, 1998). Also, in the case of leaf-to-leaf scattering and by referring to the 

definition of scattering (redirection of the reflectance not reduction), vegetation spectrum in the 

near-infrared is nonlinearly accentuated. In this case, there is more energy in the near-infrared, 

therefore, nonlinear mixing is likely to lead to an overestimation of green vegetation cover and 

an underestimation of shade (Roberts et al., 1993). 

In soil, the spectral composition of reflected and emitted energy primarily depends on the 

biogeochemical (mineral and organic) constituents, optical geometric scattering (particle size, 

aspect, roughness) and surface moisture (Huete, 2004). Vegetation cover is well correlated 

with the presence or absence of soil organic matter. Soils in dryland ecosystem areas tend to be 

bright and mineralogically heterogeneous because of their low organic matter, which tends to 

mask the spectral contribution of vegetation in individual pixels (Huete and Jackson, 1987).  

 

2.3 Techniques used in optical remote sensing in dryland ecosystems: 

Since the launch of the first Earth Resource Technology Satellite (ERTS) on July 23, 1972, the 

analysis of data has advanced from simple visual observation to sophisticated interpretations 

based on first principles of spectroscopy and electromagnetic radiation (Ustin et al., 2004). 

Most remote sensing in arid regions has concentrated on optical remote sensing techniques 

which use data from sensors that collect radiation in the reflected solar spectrum. Two 

approaches are usually followed: a) calculation of vegetation indices; b) image classification. 

 

2.3.1 The calculation of vegetation indices 

Vegetation indices, reviewed by Jackson et al. (1983), Tueller and Oleson (1989) and others, 

are generally based on ratios of the radiance in the red and infrared spectral bands, chosen to 

maximize the reflectance contrasts between vegetation and other materials. The Normalized 

Difference Vegetation Index (NDVI) has been most commonly used to map spatial and 
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temporal variation in vegetation (Tucker, 1979). The NDVI is a normalized ratio of NIR and 

red bands: 

 

redNIR

redNIR

PP

PP
NDVI

+
−

=          [3] 

 

where PNIR and Pred are the surface bidirectional reflectance factors. 

NDVI is sensitive to pixel-level changes in greenness and fraction of photosynthetically active 

radiation absorbed, but it is not differentially sensitive to change in vegetation cover versus 

vegetation condition (i.e. the vigour, photosynthetic capacity or stress of vegetation canopy or 

cluster). This means that when an NDVI change occurs, it cannot be readily determined 

whether or not it was caused by altered vegetation cover or condition of cover. Moreover, 

NDVI has only limited success in providing accurate estimates of shrubland cover in arid 

regions and limited utility in the arid ecosystem. These facts are due to spectral variability of 

background materials such as soil and surface litter and the strength and variation of soil 

spectral albedo (i.e. a pixel may contain reflectance both from vegetation and soil), which 

causes nonlinearity in the relationship between NDVI and vegetation characteristics (Asner, 

2004; Huete, 1988; Huete et al., 1992).  

Huete (1988) and Huete et al. (1992) suggested the Soil Adjusted Vegetation Index (SAVI). 

They introduce a soil calibration factor, L, to the NDVI: 

 

SAVI = 
( )( )

LPP

PPL

redNIR

redNIR

++
−+1

        [4] 

 

where L is a soil calibration factor (0-1). Compared to NDVI, SAVI allows to minimize soil 

background influences.  

Regarding the relation between the vegetation indexes and NPV, the role of NPV on NDVI and 

SAVI was considered by Van Leeuwen and Huete (1996). The significant impact of NPV on 

these vegetation indexes was demonstrated, but it was so variable as to prevent the formulation 
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of a single correction algorithm. Certainly, the variability of NDVI of the surface NPV is 

enormous, and NPV rarely has NDVI values close to zero (Figure 2.5). Therefore, NDVI is 

difficult to be corrected for instability and ubiquity of NPV surface cover in dryland regions. 

Due to all these limitations, at the moment, operational guidelines to choose suitable vegetation 

indices are still lacking.  

 

2.3.2 Image classification 

Image classification usually relies on statistical methods including maximum-likelihood, 

clustering and discrimination analysis (Haralick and Fu, 1983) and methods based on principal 

components analysis (PCA) (Crist and Cicone, 1984). The aim of image classification is to link 

image spectra to dominant components in the image captured by the satellite (scene) or a 

characteristic mixture of components. It is assumed that spectrally similar data will 

thematically describe similar elements within a scene. It is also assumed that for each pixel 

there is dominant scene component, or at least a unique and identifiable suite of components 

that are present in distinctive proportions (Smith et al., 1990a). 

PCA is used to identify a change in heterogeneity. To have an accurate measurement, when 

using this method, the pixel size must be smaller than the scale of variability of at least one of 

the principle landscape elements (grasslands or shrublands). If the pixel size is greater than the 

scale of variability, the differences between landscape elements will average out subpixels and 

spatial information is lost. If it is significantly smaller than the scale of heterogeneity, PCA can 

be used to examine the distribution of vegetation or soil in a landscape (Phinn et al., 1996). 

Spectral mixture analysis (SMA) is a widely used method to unmix the soil-plant canopy 

measurements into the respective soil, vegetation and NPV single contributions (Smith et al., 

1990a). The spectral response in remote sensing from open canopies is a function of the 

number and type of reflecting components, their optical properties and relative proportions 

(Adams et al., 1995).  
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Figure 2.5 - Histogram of NDVI values for nonphotosynthetic vegetation (NPV) collected 
across a broad range of arid and semiarid ecosystems (n = 972) (from Asner, 2004). 

 

SMA generally involves three steps: 1. assessment of dimensionality or number of unique 

reflecting materials in a landscape to get the end members; 2. identification of the physical 

nature of each of the landscape components or endmembers within a pixel; 3. determination of 

the amounts of each component in each pixel. 

The basic SMA equation is: 

 

( ) ( ) ( )∑
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where ( )λPR  is the apparent surface reflectance of a pixel in an image, fi are the weighting 

coefficients (∑
=

=
n

i
if

1

1) interpreted as fractions of the pixel made up of the endmember i = 1,2 

…n,  ( )λiR  are the reflectance spectra of spectral endmembers in an n-endmember model and 

( )λε  is the difference between the actual and modelled reflectance. 

fi represents the best fit coefficient that minimizes RMS error (least-squares estimation) given 
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by the following equation: 
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where jε  is the error term for each of the m spectral bands considered. 

 

SMA transforms radiation data into fractions of a few dominant endmembers spectra that 

correspond to scene components. Fraction images illustrate the mixing proportions of these 

endmembers spectra and therefore, via calibration to field data, the mixing proportions of the 

scene components can be depicted (Adams et al., 1986; Smith et al., 1985). SMA differs 

significantly from statistical classification in a number of ways, most significantly in the small 

number of endmembers compared to the potentially large number of thematic classes required 

to describe a scene with a statistical approach. Indeed, SMA separates the spectral contribution 

of these intrinsic scene components from shadow and other effects of illumination. This 

approach is particularly useful for measuring vegetation cover, especially in dryland regions 

where the proportions of vegetation and soil may vary significantly over a short distance 

(Smith et al., 1990a). Spectral mixture models are useful in a variety of applications, including 

biogeochemical studies, leaf water content, land degradation, land cover conversions, fuelwood 

assessment and soil and vegetation mapping (Huete, 2004).  

Endmembers spectra can be measured in the laboratory, in the field, or from the image itself. 

Some SMA approaches use endmembers spectra derived from the image (e.g. Wessman et al., 

1997; Elmore et al., 2000), whereas others employ libraries of endmembers spectra, which are 

the empirical signature libraries (e.g. Smith et al., 1990a, b; Roberts et al., 1998). Although in 

drylands it is exceedingly difficult to locate image pixels containing 100% cover of each 

appropriate endmember, Bateson and Curtiss (1996) and Bateson et al. (2000) generated SMA 

model using PCA to explore image data in multiple dimensions. The technique allows the user 

to select endmember spectra based on inherent spectral variability of the image data without 
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requiring homogeneous pixels of each endmember. Empirical signature libraries have been 

used widely, despite the recognition that libraries cannot easily capture the full range of 

endmember variability as found in nature (Asner, 2004). Indeed, it is unlikely and impractical 

that the spectral signature of the world’s dominant vegetation could be collected given the tens 

of thousands of species that it would be necessary to identify, and when the range of possible 

phenological conditions is included, the method becomes impossible. However, the possibility 

that species and/or communities could be identified by a limited suite of biochemical and 

architectural characteristics permits new approaches to characterization of land cover 

properties (Ustin et al., 2004). 

Another problem related to the application of SMA is nonlinear mixing, which can hinder the 

SMA applications (Roberts et al., 1993; Ray and Murray, 1996). However, the importance of 

the effect is not widely recognised since other studies (Villeneuve et al., 1998; Qin and Gerstl, 

2000) showed that nonlinear mixing is a secondary feature. Moreover, Ustin et al., (1986) 

stated that the role of nonlinear mixing in determining the spectral reflectance variation of an 

ecosystem is wavelength dependent. 

The performance of a spectral mixture model was compared against NDVI for mapping green 

canopy cover in semi-arid environment using thematic mapper (TM) data by Elmore et al. 

(2000) (Figure 2.6). NDVI was loosely correlated with green cover but a marked increase in 

performance was obtained when utilizing the full potential of TM data via spectral mixture 

analysis (Elmore et al., 2000). Results showed that SMA was able to determine the correct 

sense of change in percentage live cover and give precise estimates of the magnitude of that 

change.  
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Figure 2.6 - Comparison of subpixel green vegetation cover using Landsat TM imagery 
collected over a semiarid region: live cover measured in the field (x axis) plotted against (a) 
SMA results and (b) NDVI (from Elmore et al., 2000). 

 

2.4 Conclusion 

Aerial and space remote sensing provide valuable tools for desertification studies, although 

they must be combined with ground-collected data. From the above review, it is clear that the 

spectral reflectance of vegetation in arid and semiarid areas changes with the vegetation 

structure and surrounding environment. To improve our skills in the interpretation of optical 

remote sensing data in dry ecosystem areas we need increase our understanding of components 

of these areas (vegetation structure, soil and atmosphere) and develop the techniques of data 

interpretation. Moreover, the empirical signature libraries should be developed according to 

regions and environments. The combination of remote sensing and ground-collected data can 

then provide the basis for the assessment of desertification. 
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PART THREE:  

MONITORING DESERTIFICATION IN A SAVANNA REGION IN 

SUDAN USING LANDSAT IMAGES AND SPECTRAL MIXTURE 

ANALYSIS 

 
Dawelbait, M., Morari, F., 2010. Monitoring desertification in a Savanna region in Sudan using 

LANDSAT images and spectral mixture analysis. Journal of Arid Environment  (under 

reviewing). 
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Abstract 

Two Landsat images, acquired in 1987 and 2008, were analyzed to evaluate desertification 

processes in central North Kurdufan State (Sudan). Spectral Mixture Analysis (SMA) and 

multitemporal comparison techniques (change vector analysis) were applied to estimate the 

long-term desertification/re-growing of vegetation cover over time and in space.  

Site-specific interactions between natural processes and human activity played a pivotal role in 

desertification. Over the last 21 years, desertification significantly prevailed over vegetation 

re-growth, particularly in areas around rural villages. Changes in land use and 

mismanagement of natural resources were the main driving factors affecting degradation. 

More than 120,000 km2 were estimated as being subjected to a medium-high desertification 

rate. Conversely, the reforestation measures, adopted by the Government in the last decade 

and sustained by higher rainfall, resulted in low-medium re-growth conditions over an area of 

about 20,000 km2.  

Site-specific strategies which take into account the interactions of the driving factors at local 

scale are thus necessary to combat desertification, avoiding any implementation of untargeted 

measures. In order to identify the soundest strategies, high-resolution tools must be applied. In 

this study the application of spectral mixture analysis to Landsat data appeared to be a 

consistent, accurate and low-cost technique to identify risk areas. 

 

Key words: remote sensing; spectral mixture analysis; change vector analysis; Landsat; 

desertification; savannah. 
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3.1 Introduction 

Desertification is defined as land degradation in arid, semi-arid and dry sub-humid areas due to 

climate variation and/or human activity (UNCCD, 1994).  The three major land use systems 

prone to desertification in arid and semi-arid areas are rangeland, rain-fed croplands and 

irrigated lands. Degradation of vegetation cover by overgrazing and the cutting of woody 

plants for fuelwood, buildings, bush fencing and other purposes are the common desertification 

processes in rangeland (Mustafa 2007). On rain-fed croplands, wind and water erosion are 

accelerated by cropland preparation, which involves removal of the native vegetation cover, 

woodcutting or grass burning. High concentrations of salts in the root zone associated with the 

introduction of irrigation in dry areas (secondary salinization) have caused desertification due 

to salts rising with the rise in ground water level (Singh, 2009).  

Four aspects must be evaluated in order to render the desertification process measurable (FAO-

UNEP, 1984): status, which is defined as the state of a particular piece of land at a specific 

time compared with its condition in the past; rate, which refers to the change in the condition 

over time; inherent risk, which is a measure of the vulnerability of landscape to a 

desertification process; and hazard, which is the overall rating considering the previous three 

aspects. To make the assessment easier, several Authors have attempted to determine 

appropriate indicators. Environmental indicators over large areas must be measurable and 

suitable for regular updating. Few of the proposed indicators are specifically for dryland 

degradation alone, because it is difficult to separate the effects of climatic factors from those of 

human activities in such areas (Mabbutt, 1986; Rubio and Bochet, 1998; Diouf and Lambin, 

2001).  

Difficulties have also arisen because the interpretation of the UNCCD desertification definition 

can differ greatly according to the choice of indicators. Soil erosion and sedimentation, 

perennial plant cover and biomass have been used as indicators of the desertification status (Le 

Houerou, 2006). However a recent survey among 90 experts has recognized the long-lasting 

loss of vegetation cover and productivity over time and in space as the key indicator/variable of 

desertification (Hellden, 2008).   

One of the most effective tools for desertification assessment is remote sensing. It has long 

been suggested as a time and cost efficient method for observing dryland ecosystem 

environments (Hassan and Luscombe, 1990), monitoring land cover degradation, as well as 

characterizing the dynamism of sand dunes (Collado et al., 2002).  
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Most remote sensing in arid regions has concentrated on optical remote sensing techniques 

which use data from sensors that collect radiation in the reflected solar spectrum. Two main 

approaches are usually followed (Smith et al., 1990a; Dawelbait and Morari, 2008): a) 

calculation of vegetation indices; b) image classification. 

A relationship between plant biomass and a standardized vegetation index can be established 

(Tucker, 1979). Vegetation indices, reviewed by Jackson et al. (1983), Tueller and Oleson 

(1989) and others, are generally based on ratios of the radiance in the red and infrared spectral 

bands, chosen to maximize the reflectance contrasts between vegetation and other materials. 

The Normalized Difference Vegetation Index (NDVI) has been most commonly used to map 

spatial and temporal variation in vegetation (Tucker, 1979). NDVI is sensitive to pixel-level 

changes in greenness and fraction of photosynthetically active radiation absorbed but is not 

differentially sensitive to change in vegetation cover versus vegetation condition (i.e. the 

vigour, photosynthetic capacity or stress of vegetation canopy or cluster). This means that 

when an NDVI change occurs, it cannot be readily determined whether or not it was caused by 

altered vegetation cover or condition of cover (Asner, 2004). Moreover, NDVI has only limited 

success in providing accurate estimates of shrubland cover in arid areas and limited utility in an 

arid ecosystem. This is due to spectral variability of background materials such as soil and 

surface litter and the strength and variation of soil spectral albedo, which causes nonlinearity in 

the relationship between NDVI and vegetation characteristics (Huete, 1988; Huete et al., 1992; 

Asner, 2004).  

Image classification usually relies on statistical methods including maximum-likelihood, 

clustering and discrimination analysis or methods based on principal components analysis 

(PCA) (Smith et al., 1990a). PCA is used to identify a change in heterogeneity. However, to 

obtain an accurate measurement the pixel size must be smaller than the scale of variability of at 

least one of the principle landscape elements (e.g. grasslands).  

Spectral mixture analysis (SMA) is a sub-pixel classification technique which could be use to 

unmix the soil-plant canopy measurements into the respective soil, vegetation, and non-

photosynthetic vegetation (Smith et al., 1990a). SMA depends on the spectral response of land 

cover components. The spectral response in remote sensing from open canopies is a function of 

the number and type of reflecting components, their optical properties and relative proportions 

(Adams et al., 1995). SMA appears to be the most efficient technique to obtain information on 

vegetation cover, soil surface type and vegetation canopy characteristics in semiarid areas 
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because the scale of variability of the principle landscape elements in semiarid areas is larger 

than the pixel size in most of the remote sensing satellite imageries (Adams et al., 1995; Okin 

and Robert, 2004; Dawelbait and Morari, 2008).  

Sudan is a developing country where desertification is widespread. UNEP considers that three 

compounding desertification processes are underway (UNEP, 2007): climate-based conversion 

of land types from semi-desert to desert, mainly due to a reduction in annual rainfall; 

degradation of existing desert environments, including wadis and oases, principally caused by 

deforestation, overgrazing and erosion; conversion of land types from semi-desert to desert by 

human action (deforestation, overgrazing and cultivation) even if rainfall may still be sufficient 

to support semi-desert vegetation. These processes are relatively difficult to distinguish, 

separate and quantify on the ground (Diouf and Lambin, 2001).  

Specific studies are therefore necessary in order to define the driving variables affecting the 

processes and adopt efficient site-specific strategies to combat desertification. Since limited 

funds are provided to Sudanese research institutions, remote sensing can be a reliable tool to 

study desertification without incurring high costs (e.g. Ali and Bayoumi, 2004; Dafalla and 

Casplovics, 2005; Kheiry, 2007). 

This paper aimed to a) test the application of SMA to Landsat images as a tool to study the 

desertification phenomenon and b) individuate and quantify the driving variables influencing 

land degradation in a savannah region in the central part of Sudan. 
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3.2 Material and methods 

3.2.1 Study site 

The study site is located in the north of Umrowaba in North Kordodan State, central Sudan, in 

the Sahelian eco-climatic zone (between latitude 12°56′35″ and 13°3′49″N and longitude 

31°0′51″ and 31°58′51″ E) (Figure 3.1). The climate is semi-arid with annual rainfall ranging 

from 200 to 750 mm, concentrated during a few summer months (June to September), with a 

peak in August. Mean annual temperature is about 20 °C, but the daytime temperature can rise 

as high as 45 °C during summer.  

The soil is a Cambric Arenosols (FAO-UNESCO, 1997), coarse sandy, of Aeolian origin with 

high infiltration rates and inherent low fertility. Sand sheets and sand dunes stabilized by 

vegetation are the main natural formations. Natural vegetation consists of trees (Acacias spp.), 

bushes and grass, Aristida pallida Steud. on crests of dunes, Eragrostis termula Tnismert. in 

the troughs and Cenchrus biflorus Roxb., which grows after crop cultivation. Rangeland and 

rain-fed croplands are the most important land use systems. The main crops are sorghum 

(Sorghum vulgare Pers.), millet (Panicum miliaceum L.), sesame (Sesamum indicum L.) and 

watermelon (Citrullus lanatus (Thunb.) Matsum & Nakai). The rainy season usually leads to a 

short growing period followed by a long dry season with a reduction in green vegetation. 

3.2.2 Data acquisition and preprocessing 

Landsat Thematic Mapper (TM5) and Landsat Enhanced Thematic Mapper plus (ETM+7) 

scenes acquired on September 15th 1987 (TM5 Sep 15) and October 18th 2008 (ETM+7 Oct 18) 

were analyzed. The dates coincided with the end of the rainy season when the vegetation 

biomass was at its highest level. They were selected for monitoring the potential long-term 

processes of desertification, since both of them were acquired in periods of comparable rainfall 

amount (4.6 mm in September 1987 and 8.4 mm in October 2008). Landsat images were 

selected because they are free of charge, with high monitoring frequency and cover areas 

appropriate for monitoring the environment in a large geographic zone. Landsat TM5 and 

ETM+7 have a temporal revisit time of 16 days and a spatial resolution of 30 m with six 

visible/near infrared bands and one thermal band. The gaps in ETM+7 scan-line corrector 

(SLC)–off were filled using the localized linear histogram mach (LLHM) method (Scaramuzza 

et al., 2004). Landsat 7 ETM+ SLC - off, November 3rd 2008 was used to fill the gaps since the 

time lag between the two images was only 15 days and the gaps were not overlapping.  
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Figure 3.1- Study site position and main landscape elements. 

 

ETM+7 Oct 18 was co-registered to TM5 Sep 15 to undertake comparative analysis. Images 

were not referenced to a standard map base, since the only available map had a coarser 

resolution (scale 1:250,000). They were geometrically rectified using 13 ground control points 

to accurately mach them to ground reference data. The nearest neighbour assignment 

(Lillesand et al., 2004) was applied yielding a root mean square (RMS) error of 0.34 pixels.  

Subsets covering only the study area were then extracted from each image. To apply SMA the 

digital number (DN) of the images band1-5 and 7 recorded in 8 bits were converted to exo-

atmospheric reflectance units according to Markham and Barker, (1986). The conversion also 

improved the image quality (De Asis and Omasa, 2007). No atmospheric correction 

techniques, such as empirical line calibration (Moran et al., 2001) or dark object subtraction 

(Chavez, 1988) were applied since they have no significant effect on the modelling (Wu, 

2004). 
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3.2.3 Spectral mixture analysis  

In remote sensing images of arid and semi-arid environments, the pixel contains mixed spectral 

information due to the high variability in the distribution of land cover components. SMA is 

based on the concept that the variance across a given scene is dominated by the relative 

proportion of a few spectrally distinct components (Elmore at al., 2000). SMA transforms 

radiation or reflectance data into fractions of a few dominant endmembers, which are 

fundamental physical components of the scene and not themselves a mixture of other 

components (Elmore at al., 2000). Fraction images represent the mixing proportions of these 

endmember spectra (Smith et al., 1985; Adams et al., 1986). SMA generally involves three 

steps (Huete, 2004): a) assessment of dimensionality or number of unique reflecting materials 

in a landscape to obtain the endmembers; b) identification of the physical nature of each 

endmember within a pixel; c) determination of the amounts of each endmember in each pixel. 

The basic linear spectral mixture analysis (LSMA) equation is (Okin and Robert, 2004): 
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where jε  is the error term for each of the m spectral bands considered. 

One problem related to the application of SMA is nonlinear mixing, which can hinder the SMA 
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applications (Roberts et al., 1993; Ray and Murray, 1996). Nonlinear mixing occurs when 

photons interact with more than one type of object on the earth before returning to the sensor 

(Asner, 2004). However, the importance of the effect is not widely recognised since other 

studies (Villeneuve et al., 1998; Qin and Gerstl, 2000) showed that nonlinear mixing is a 

secondary feature.  

 

3.2.4 Endmembers 

Some SMA approaches use endmember spectra derived from the image (image endmember) 

(e.g. Wessman et al., 1997; Elmore et al., 2000), whereas others employ libraries of 

endmember spectra (library endmember), which are produced from reflectance measurement in 

a laboratory (e.g. Smith et al., 1990a). Tompkins et al. (1997) pointed out that endmembers 

selection is the most critical step in SMA to provide a physically meaningful fraction. While 

library endmembers would undoubtedly represent a purer endmember spectrum and would 

possibly have given a more accurate absolute abundance, image endmembers simply produce a 

different scaling and can thus be used for change detection (Elmore et al., 2000). Bateson and 

Curtiss (1996) and Bateson et al. (2000) generated SMA models using PCA to explore image 

data in multiple dimensions, although in drylands it is exceedingly difficult to locate image 

pixels containing 100% cover of each appropriate endmember. One advantage of this technique 

is that the selection of the endmember spectra is based on inherent spectral variability of the 

image data without requiring homogeneous pixels of each endmember (Asner, 2004). The 

approach of Johnson et al. (1985) and Smith et al. (1985) was used to select the endmembers in 

this paper. The method is based on PCA application to identify the individual endmembers of 

multiple surface components. The authors observed that for a mixture of three substances (e.g. 

minerals) the scatter-plot of the first two principle components produced a triangle in which the 

‘pure’ endmembers were located at the corners. Several studies have adapted this technique by 

analyzing different principal component pairs and have managed to successfully obtain image 

endmembers within different environments (Drake and White, 1991; Theseira et al., 2003; 

Brandt and Townsend, 2006). In this study a PCA was applied to Landsat images using ENVI 

to identify endmembers. The spectral mixing space as represented as orthogonal scatterplots of 

the first three PC bands were generated and the vertices of these plots were selected as 

endmembers after visualization in the original images. Endmember spectra were applied to 

SMA in order to produce the fraction images with associated the RMSE images. 
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3.2.5 Change detection  

 Long-term variation in land use and land cover (LULC) was obtained by calculating the 

difference in fraction images applying map-algebra and Change Vector Analysis (CVA) 

(Malila, 1980; Kuzera et al., 2005). CVA allows the direction and magnitude of change 

between two time periods to be evaluated. Vegetation and soil vulnerable to erosion fraction 

images were used to monitor the vegetation re-growing and desertification between 1987 and 

2008. Change direction was measured as the angle of the change vector from a pixel 

measurement in 1987 to the corresponding pixel in 2008. Angles measured between 90° and 

180° indicated an increase in sand and decrease in vegetation, and therefore an increase in 

desertified area. On the contrary, angles measured between 270° and 360° indicated a decrease 

in sand and an increase in vegetation and therefore represented re-growth conditions. Angles 

measured between 0°-90° and 180°-270° indicated either increase or decrease in both 

vegetation and sand, and consequently persistence in the conditions (Khiry, 2007). Change of 

magnitude is measured as the Euclidean distance or length of the change vector from a pixel 

measurement in 1987 to the corresponding pixel in 2008. Four classes of magnitude were 

represented for either desertification or re-growing according to Kuzera et al. (2005). 

 

3.2.6 Field survey 

A 2-weeks field survey was conducted in October 2008 in order to test the accuracy of SMA 

using ground vegetation data as references. A total of 16 mixed ground cover plots (size 60 x 

60m for each plot) were selected. Vegetation was composed of a mixture of acacia trees, 

bushes, grass and shrubs. Trees and bushes were georeferenced with a GPS and the crown 

diameters were measured and orthogonally projected to the ground surface to estimate the 

percentage cover. The percentage cover of grass and shrubs was estimated using the line point 

intersect sampling method (Elmore at al., 2000). Measurements of the grass and shrubs were 

taken along 30 60-m long transects, oriented in N-S direction, every 2 m.  Measurement points 

were selected at 60 cm intervals along the transect. The grass and shrubs under the trees and 

bushes were ignored. The accuracy of SMA was estimated by scatter plot correlation 

comparing total percentage of live cover in each plot with the live cover (vegetation) fraction 

image. 
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3.3 Results and discussion 

3.3.1 Endmember spectra and SMA applications 

The PC analysis of TM5 Sep 15 data found that the first three components explained over 99% 

of the variance and that simulated data were mean-corrected and projected onto the space 

determined by those components. In this PC-reduced space five endmembers were manually 

selected (Figure 3.2):  bright vegetation (BV), dark vegetation (DV), bright soil (BS), dark soil 

(DS) and non-photosynthetic material (NPM). BV consisted of all types of natural vegetation 

(e.g. dense shrubs, grass) and cultivated crops with higher leaf chlorophyll and water content.  

DV consisted of natural vegetation with lower leaf chlorophyll/water content (senescing 

vegetation). NPM identified villages (e.g. straw houses), dormant trees and senesced grass and 

shrubs. BS and DS represented coarse sandy soils and fine sandy soils with higher organic 

matter in the top layer, respectively. A higher soil organic matter content usually also implies a 

higher soil water holding capacity and subsequently higher water content. The effect of shadow 

was ignored since it is reduced for the sparse canopies typical of many semiarid bush species 

(Trodd and Dougill, 1998). 

Not all image components can be effectively modelled using simple endmember models 

(Brandt and Townsend, 2006). The endmember set was selected to maximize the model 

performance for BV, and BS which is more vulnerable to wind erosion than DS. To find the 

best quality of fraction images, three combinations of endmembers were tested (Lu and Weng, 

2004). The combinations were: 1) all five endmembers; 2) four endmembers with BV, NPM, 

BS and DS; 3) three endmembers with BV, NPM, and BS. Fraction images derived from 

different combinations of endmembers were evaluated with visual interpretation, error extent 

and distribution in the error fraction image. The combination with four endmembers (BV, 

NPM, BS and DS) was chosen since it provided the best distinction of LULC types and lowest 

errors.  
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Figure 3.2 - Scatter plot of the first three PCs and location of the five endmembers (a,b,c); 
endmember spectra (d). 

 

This set of endmember spectra was therefore used across the two selected images. Using the 

identical endmembers to analyze multitemporal images strengthened the change analysis 

(Elmore et al., 2000). Similar to using reference endmembers from a spectral library, using 

identical image endmembers for different images allows a direct comparison of resulting 

endmember proportions (Brandt and Townsend, 2006). The RMS error images for SMA 

process ranged  from 0% to 3% for TM5 Sep 15, from 0% to 2.9% for TM5 Oct 25 and from 

0% to 2.8% for ETM+7 Oct 18.  

Figure 3.3 shows the scatter plot correlation between the percentage of vegetation determined 

with SMA (ETM+7 Oct 18) and field data. In general, the correlation between them is good 

with an R2 of 0.91 but with a slight overestimation, especially at lower SMA values. There are 

three main sources of error that could have affected the comparison. The first one can be due to 

the misregistration of multidate scene and location of the field sites. This is potentially the 

largest source of error (Elmore et al., 2000), especially in our case where the geometric 

rectification was done with 13 ground control points for all the scenes before subsetting of the 
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study area. This was done because the study area had no fixed sharp points that could be used 

as control points. Moreover, most of the sites were characterized by a higher degree of scene 

heterogeneity that could have increased the uncertainty in location (Elmore et al., 2000). Other 

sources of error can be related to the application LLHM method error to fill the gaps in ETM+7 

Oct 18 (Scaramuzza et al., 2004) and accuracy of the field survey, especially in the estimation 

of grass and bushes. Considering the comparative approach of the present work, the 

overestimation errors were considered acceptable to evaluate the LULC change. 

3.3.2 Change detection 

SMA was performed to determine the relative proportions of BV, BS, DS and NPV for each 

satellite image (Figure 3.4). High abundance of each endmember is indicated in the figures by 

brighter pixels whereas low abundance is indicated by darker pixels.   
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Figure 3.3 - Scatter plot correlation between measured and SMA estimated vegetation fraction 
in 2008. 
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Figure 3.4 - BV, BS and NPM fraction images and change detection in long-term monitoring:   
(a) BV in 1987,  (b) BV in 2008, (c) difference in BV, d) BS in 1987, (e) BS in 2008 (f) 
difference in BS, (g) NPM in 1987, (h) NPM in 2008 and (i) difference in NPM. Circles in (a), 
(b) and (c) indicate the three main areas affected by desertification; circles in (g), (h), (i) 
indicate the rural villages and their expansion over 21 years. 
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Images analysis clearly indicates the existence of heterogeneous and contrasting conditions 

within the study site. Relevant negative variations in BV fraction (<-0.1) were observed mainly 

in three large areas, located near rural villages. In the first two, one in the north and the other in 

the south, the average change in BV was -0.1 and -0.16 respectively. The eastern part spreads 

over a larger surface area, with an average change in BV fraction of -0.2.  

CVA was quantify desertification processes in degree of severity in (Figure 3.5). The 

difference in BS fraction for was provided in CVA equation for soil vulnerable to erosion 

parameter while the difference in BV fraction was substituted for vegetation fractions. 

According to CVA (Figure 3.5),  the magnitude of desertification ranges from low to extreme, 

with a prevalence of severe degradation conditions (high or extreme) in the eastern part. 

Change detection analysis also shows the existence of re-growth conditions, mostly spread in 

the south-western part.  

 

 

 

Figure 3.5 - Desertification and re-growth areas calculated by applying change vector analysis. 
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Overall, desertification prevailed over re-growth, (Figure 3.6) affecting an area of 153,867 

km2, with a prevalence of medium (70,944 km2) and high (48,578 km2) classes of magnitude. 

Re-growth was estimated on an area of 35,313 km2, mainly classified as medium (17,005 km2) 

and low (13,708 km2). However, average estimation is not sufficient to provide a clear 

representation of driving factors of change at landscape scale (Collado et al., 2002; Anyamba 

and Tucker, 2005).  

The degradation was driven by various factors, which operated with different intensity in the 

areas.  In the eastern part the expansion of villages triggered the change in land use and 

mismanagement of the natural resource, mainly caused by deforestation to supply wood for 

domestic uses i.e. building, cooking, etc., and overgrazing (Sherbinin, 2002). More details of 

the dynamism around villages are given in Figure 3.7. The NPV fraction change image shows 

two large patches of pixels with value 1 (new straw houses) due to the expansion of the village 

over 21 years. In the same area the BV fraction decreases to 0 with a net change of -1, 

indicating an over-exploitation of the natural vegetation for domestic purposes.  

 

0

10

20

30

40

50

60

70

80

Extreme High Medium Low

Status

A
re

a 
(k

m
2x

10
00

).
..

Desertified areas

Regrowing areas

 

Figure 3.6 - Classification of study site according to the desertification and re-growth 
magnitude classes. 
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Figure 3.7 - Detailed views of the degraded eastern part of the site: (a) BV in 1987, (b) BV in 
2008, (c) difference in BV, (d) NPM in 1987, (e) NPM in 2008 and (f) difference in NPM. The 
expansion of the village is clearly shown by two large clusters of pixels with value 1 in (f). 

 

Two other processes affecting soil degradation were recognized by SMA. The first one is 

related to sand encroachment and dune migration, which are considered as one of the main 

processes of land degradation in arid regions (Balba, 1995). In the northern area a sand dune 

(locally called Gouz) is visible in the BS fraction image of 1987, along the SE borders of the 

village of Tafantara (Figure 3.8). At that time, the dune was stabilized by natural vegetation but 

deforestation for domestic purposes and overgrazing caused the degradation of the site. The 

change in BV fraction clearly demonstrates the magnitude of the process (Figure 3.8). The 

degradation led to the encroachment of the sand dune in an E-SE-S direction according to the 

prevailing wind direction in winter and early summer (Figure 3.8) and consequently the sand 

fraction in the SE increased in 2008.   
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Figure 3.8 - Detailed views of the degraded northern part of the site: (a) BV in 1987, (b) BV in 
2008, (c) difference in BV, (d) BS in 1987, (e) BS in 2008 and (f) difference in BS. Figures 
clearly illustrate the effect of sand movement according to the prevailing wind directions 
(arrows). 

 

The conversion of rangeland into cultivated croplands is the third phenomenon affecting the 

desertification of the study site. In the southern part (Figure 3.9), the BV fraction in 1987, on 

average 0.46, was represented mainly by rangeland. At the same time the average BS fraction 

was 0.1. The change in land use to cultivation led to a decrease in BV, especially in the central 

part and a contemporary massive increase in BS fraction. The conversion of dry and fragile 

rangelands into traditional and mechanized cropland has already been indicated by many 

Authors as one of the main processes affecting desertification in Sudan. Over-exploitation of 

semi-desert environments through deforestation, overgrazing and cultivation results in habitat 
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conversion to desert, even though rainfall may still be sufficient to support semi-desert 

vegetation (Nicholson, 2005).  

Re-growth conditions observed in the SW part were mainly due to Government reforestation 

projects in last decade and sustained by higher rainfall in the last years in the study area.  The 

Rainfall Anomaly Index (RAI) (Tilahun, 2006) time series (Figure 2.10) confirmed the 

existence of favourable conditions for vegetation growth from the 1990s to 2008, with higher 

frequency of positive anomalies than in the 1970s and 1980s.  

 

   

 

   

 

Figure 3.9 - Detailed views of the degraded southern part of the site: (a) BV in 1987, (b) BV in 
2008, (c) difference in BV, (d) BS in 1987, (e) BS in 2008 and (f) difference in BS. 
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Figure 3.10 - Rainfall Anomaly Index (RAI) from 1973 to 2008. 

 

 

This result is in accordance with the recent satellite and model based studies of the Sahel (e.g. 

Eklundh and Olson, 2003; Anyamba and Tucker, 2005), which demonstrated that vegetation 

has recovered from the peak drought conditions suffered in the region in the 1980s. For 

example, Anyamba and Tucker (2005), monitoring the Sahelian vegetation dynamics using 

NDVI in the period 1981-2003, observed the prevalence of greener than normal conditions 

from the 1990s to 2003. Indeed, NVDI time series followed a similar increase in rainfall over 

the region during the last decade and indicates a gradual slow but persistent recovery from the 

1980s. 

 

 

 



 65

3.4 Conclusions  

Site-specific interactions between natural processes and human activity play a pivotal role on 

desertification in North Kordodan State. Even if phenomena at large scale (e.g. positive rainfall 

trend) in the last years have allowed a gradual recovery from the peak drought conditions 

suffered in the Sahel during the 1980s, there are still forcing variables that act at local scale to 

cause land degradation. One of the most important factors affecting such degradation is human 

activities, which exploit the natural resources beyond their ecological resilience threshold until 

desertification is irreversible (Hellden, 2008).  Hunger and local energy needs seem to be the 

driver of land use and management.  

Site-specific strategies that take into account the interactions of the driving factors at local 

scale are thus necessary to combat desertification, avoiding the implementation of untargeted 

measures.  In order to identify the soundest strategies, high-resolution tools must be applied. In 

this study, the application of spectral mixture analysis to Landsat data appeared to be a 

consistent, accurate and low-cost technique to obtain information on vegetation cover, soil 

surface type, and identify risk areas. 
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PART FOUR:  

SPATIAL-TEMPORAL ASSESSMENT OF DESERTIFICATION IN 

THREE DIFFERENT ECOLOGICAL ZONES IN SUDAN 1987-2008 
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Abstract 

Variations in landscape patterns according to the ecological zones play a great role in 

desertification processes. The amount of vegetation cover, types of dry ecosystem vegetation 

and structure and phenology of vegetation regarding to the harsh environment differ from one 

ecological zone to another.  

Three Landsat images, acquired in 1987, 1999 and 2008, were analyzed to evaluate 

desertification processes in three different ecological zones in Sudan (North Kordofan, River 

Nile and Northern state). Spectral Mixture Analysis (SMA) was adopted using endmembers 

spectra derived from the images. Multitemporal comparison techniques (visual interpretation 

and change vector analysis) were applied to estimate the long-term desertification/re-growing 

and to emphasize land cover variation over time and in space. Site-specific interactions 

between natural processes, climate variation and human activity played a pivotal role in 

desertification, however their interaction varied according to the ecological zone.   

Different factors drove the desertification in the three areas. In site1, human activities strongly 

affected degradation phenomenon. The expansion of villages triggered the change in land use 

and mismanagement of the natural resource, mainly caused by deforestation to supply wood 

for domestic uses. The degradation moreover promoted sand encroachment and dune 

migration.  In different way climatic constrains drove desertification in sites 2 and 3. Drought, 

degradation and soil erosion were the causes and effects of desertification.  In these sites re-

growth conditions were observed only where forestry or agricultural projects were established. 

Site-specific strategies which take into account the interactions of the driving factors at local 

scale are thus necessary to combat desertification, avoiding any implementation of untargeted 

measures. 
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4.1 Introduction 

In the ecosystems prone to desertification, under natural condition, vegetation cover varies 

from sparse or non-existent in the deserts and arid zone to relatively dense in the wetter parts of 

the semi-arid regions (Okin and Robert, 2004; Mustafa, 2007). Vegetation is more vulnerable 

to degradation in drier part of arid region than the wetter part. Degradation of vegetation cover 

exposes the surface of land and makes it vulnerable to soil erosion (Asner, 2004; Mustafa, 

2007).  

Arid and semi-arid regions include most of the world’s shrub-land, grassland and savannas and 

support a large fraction of the world’s food production, so there is high pressure on land 

(Graetz, 1994; Asner, 2004). The population growth in this areas cause mismanagement in 

such fragile area by overgrazing, cutting wood for domestic use and changing land use.  

Soil erosion is the main process of desertification and land degradation. Commonly, it is 

grouped into three phase: (1) physical detachment of soil particles, (2) transportation of soil 

material by wind and water, and (3) deposition of soil material, including their accumulation 

and sand dunes (Huete, 2004). Inherent erodibility of the soil, extent of protective ground 

cover, topography, climate and landuse are factors affecting erosion in arid and semi-arid. 

Vegetation and soil movement could be processes in desertification as well as factors cause 

erosion. On rain-fed croplands, wind and water erosion are accelerated by cropland 

preparation, which involves removal of the native vegetation cover, woodcutting or grass 

burning (Sherbinin, 2002; Mustafa, 2007). 

Wind and water erosion is extensive in many parts of Africa. Excluding the current deserts, 

which occupy about 46% of the land mass, about 25% of the land is prone to water erosion and 

about 22% to wind erosion (Reich et al., 2001). High intensities of these erosion forms occur 

mainly in the semi-arid and sub-humid areas. The soils in Central Africa are largely low 

activity Oxisols and Ultisols and are less susceptible to water erosion than wind erosion, unless 

severely mismanaged (Oldeman et al., 1991).  

Sudan is one of African countries facing desertification. The arid and semi-arid areas in Sudan 

cover an area of 1.78 million km2, which represents about 72% of the total area of the country. 

Three complex desertification processes are ongoing (UNEP, 2007): climate-based conversion 

of land types from semi-desert to desert, mainly due to a reduction in annual rainfall; 

degradation of existing desert environments, including wadis and oases, principally caused by 
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deforestation, overgrazing and erosion; conversion of land types from semi-desert to desert by 

human action (deforestation, overgrazing and cultivation) even if rainfall may still be sufficient 

to support semi-desert vegetation. These processes are relatively difficult to distinguish, 

separate and quantify on the ground (Diouf and Lambin, 2001; UNEP, 2007). 

Regional and national planning to combat desertification can be performed more efficiently if 

accurate spatial information on the risk of desertification and its evolution in the time are 

provided. Maps which show such information can be produced through the use of satellite 

images and digital data and field indicators (Ayoub, 2004). Rozanov (1990) have emphasized 

the need for developing a system of desertification evaluation by using indicators, such as 

vegetation and soil change. Remote sensing of vegetation cover and soil is thus critical for 

regional scale monitoring. In order to use remote sensing in mapping desertification processes 

study of optical properties of the vegetation and soil elements is needed. 

Variations in landscape patterns according to the ecological zones play a great role in 

desertification processes. The amount of vegetation cover, types of dry ecosystem vegetation 

and structure and phenology of vegetation regarding to the harsh environment differ from one 

ecological zone to another. These factors affect the contribution of vegetation reflectance in the 

total pixel reflectance relative to the other materials (Okin and Robert, 2004; Dawelbait and 

Morari, 2008). Mineral and organic matter, soil structure and moisture content of the soil 

surface are the main factors affecting the reflectance of soil in the optical remote sensing. 

The meaning and value of remote sensing data are enhanced through skilled interpretation, in 

conjunction with conventionally mapped information and ground-collected data. Spectral 

Mixture Analysis (SMA) has proved to be a powerful technique to monitor land cover 

degradation in arid and semi-arid areas. SMA is a sub-pixel classification technique which 

could be use to unmix the soil-plant canopy measurements into the respective soil, vegetation, 

and non-photosynthetic vegetation (Smith et al., 1990a). 

Using SMA and LANDSAT images, this study aimed to indentify the main variables driving 

degradation across three different ecological zones in Sudan and evaluate the desertification 

risk and its evolution in the time. 
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4.2 Material and Methods 

4.2.1 Study sites 

The methods were implemented according to sequence steps and processes given in the flow 

chart shown in Figure 4.1. Three sites were selected in order to compare processes driving 

desertification in three different ecological zones: savannah, semi-desert and desert (Figure 

4.2). 

Site 1 is a flat area located in north of Ummruaba in North Kurdufan State (12°56′35″-

13°3′49″N and 31°0′51″-31°58′51″E). Site 2 is located near Aldamer in River Nile State, along 

the west side of the river Nile (17°29′09″-17°35′41″N and 33°47′03″-33°53′48″E). The 

landscape is characterized by  small valleys oriented in WE direction with seasonal streams. 

Site 3 is located along the upstream of Waddi Almugadam which runs from the east to the west 

during the rainy season in Northern State (17°29′10″-18°05′36″N and 31°29′48″-31°36′39″E) 

(Figure 4.2).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1- Flow chart of the methodology steps and processes.  

Selection of images 

Extraction of endmembers spectra 

Pre-processing 

Deriving of fraction images 

Filling gaps in ETM+7 off SLC images  

Selection of sites Field Survey 

Visualization 

Change detection of LCLU 

Accuracy 



 74

The vegetation in the three sites is mainly composed by dominant trees, shrubs, grass and in 

site 1 crops. Natural vegetation in site 1 consists of trees (Acacias spp.), bushes and grass, 

Aristida pallida Steud. on crests of dunes, Eragrostis termula Tnismert. in the troughs and 

Cenchrus biflorus Roxb., which grows after crop cultivation. Rangeland and rain-fed croplands 

are the most important land use systems. The main crops are sorghum (Sorghum vulgare Pers.), 

millet (Panicum miliaceum L.), sesame (Sesamum indicum L.) and watermelon (Citrullus 

lanatus (Thunb.) Matsum & Nakai). Dominant and endogenous trees site 2 are Capparis 

decidus Forsk. and Acacia ehrenbergiana Hayne., while Prosopis chilensis (Molina) Stuntz. 

and Prosopis juliflora (Sw.) DC. are exotic and invasive. Acacia seyal Del., Leptadenia 

pyrotechnica Forssk., Faidherbia albida Del. and Balanites aegyptiaca (L.) Del. are the 

dominant trees and shrubs in site 3.  More details about ecological zones, climate and soil of 

the three sites are given in Table 4.1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2- Location and landscapes of the three study sites a) site 1 in savanna b) site 2 in 
semi-desert region c) site 3 in desert region. 

(c) 

(b) 

(a) 
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Table 4.1- Climate and soils in the three study sites. 

 
Ecological zone 
(Harrison and 
Jackson, 1958) 

Annual 
Precipitation 

Temperature 
in winter °C 

Temperature 
in summer °C 

Type of soil 
(FAO-UNESCO, 
1997) 

Site 1 Savannah 200 to 750 mm 
Mean 13 
Min. 10 
Max. 25 

Mean 27 
Min. 20 
Max. 45 

Cambric 
Arenosols 

Site 2 Semi-desert 50 to 60 mm. 
Mean 18 
Min. 8 
Max. 31 

Mean 34 
Min. 22 
Max. 48 

Arenosols, 
Fluvisols and 
Cambisols  

Site 3 Desert > 60 mm 
Mean 13 
Min. 4 
Max. 26 

Mean 36 
Min. 24 
Max. 49 

Arenosols and 
Fluvisols 

 

4.2.2 Data acquisition and preprocessing 

Three Landsat images were selected and analyzed to study the desertification processes in the 

three study sites: One Landsat Thematic Mapper (TM5) scene in 1987 and two Landsat 

Enhanced Thematic Mapper plus (ETM+7 SLC-on) scene in 1999 and (ETM+7 SLC–off) 

scene in 2008. Times of acquisition of these images are given in Table 4.2. The dates of the 

images were coincided with the end of the rainy season when the vegetation biomass was at its 

highest level. While TM5 1987 and ETM+7 SLC-off 2008 were acquired in periods of 

comparable rainfall amount, ETM+7 SLC-on 1999 images were selected to study the effect of 

rain. Indeed the mean annual rainfall in 1999 was 581 mm, 162 mm and 83 mm in site 1, 2 and 

3 respectively, relativity higher than the mean annual rainfall (Table 4.1). Landsat images were 

selected because they are free of charge, with high monitoring frequency and cover areas 

appropriate for monitoring the environment in a large geographic zone. Landsat TM5 and 

ETM+7 have a temporal revisit time of 16 days and a spatial resolution of 30 m with six 

visible/near infrared bands and one thermal band. The gaps in ETM+7 SLC-off were filled 

using the localized linear histogram mach (LLHM) method (Scaramuzza et al., 2004). Landsat 

ETM+7 SLC-off, November 3rd 2008, October 11th 2008 and October 2nd 2008 were used to 

fill the gaps in selected ETM+7 SLC-off 2008 images in site 1, 2 and 3 respectively, since the 

gaps were not overlapping and the time lag between the two images was only 15 days in site 1 

and 2 and one month in site 3.  
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Table 4.2- Acquisition dates of Landsat images. 

 1987 1999 2008 
Site1 TM5 - Sep 15th ETM+7 ON-SLC - Nov 11th ETM+7 OFF-SLC - Oct 18th 
Site2 TM5 - Sep 24th ETM+7 ON-SLC - Oct 3rd ETM+7 OFF-SLC - Sep 25th 
Site3 TM5 - Oct 01st ETM+7 ON-SLC - Oct 26th ETM+7 OFF-SLC - Aug 31st 
 

For each site, the images were co-registered to TM5 to undertake comparative analysis. Images 

were not referenced to a standard map base, since the only available map had a coarser 

resolution (scale 1:250,000). They were geometrically rectified using 13, 16 and 14 ground 

control points in site 1, 2 and 3respectivly to accurately mach them to ground reference data. 

The nearest neighbour assignment (Lillesand et al., 2004) was applied yielding a root mean 

square (RMS) error of 0.34, 0.67 and 0.58 pixels in the 3 study sites with consequent order.  

Subsets covering only the study area were then extracted from each image for each site. To 

apply SMA the digital number (DN) of the images band1-5 and 7 recorded in 8 bits were 

converted to exo-atmospheric reflectance units according to Markham and Barker, (1986). The 

conversion also improved the image quality (De Asis and Omasa, 2007). No atmospheric 

correction techniques, such as empirical line calibration (Moran et al., 2001) or dark object 

subtraction (Chavez, 1988) were applied since they have no significant effect on the modelling 

(Wu, 2004). 

 

4.2.3 Mapping of land cover 

SMA appears to be the most efficient technique to obtain information on vegetation cover, soil 

surface type and vegetation canopy characteristics in semiarid areas. SMA was used in this 

study to map the land cover. SMA transforms radiation or reflectance data into fractions of a 

few dominant endmembers, which are fundamental physical components of the scene and not 

themselves a mixture of other components (Elmore at al., 2000). The basic linear spectral 

mixture analysis (LSMA) equation is (Okin and Robert, 2004): 

 

( ) ( ) ( )∑
=

+=
n

i
iiP RfR

1

λελλ
       [1] 

Where Rp(λ) is the apparent surface reflectance of a pixel in an image, fi is the weighting 
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coefficient (∑ =
=

n

i
if

1
1)  interpreted as fraction of the pixel made up of the endmember i = 1,2 

…n,  ( )λiR  is the reflectance spectrum of spectral endmember in an n-endmember model and 

( )λε  is the difference between the actual and modelled reflectance. 

fi represents the best fit coefficient that minimizes RMS error given by the following equation: 
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where jε  is the error term for each of the m spectral bands considered. 

The most critical step in SMA and production of fractions image is the selection of 

endmembers. The derivation of the endmembers spectra could be either from the image (image 

endmember) (e.g. Wessman et al., 1997; Elmore et al., 2000) or measure in laboratory (library 

endmember) (e.g. Smith et al., 1990a). In this study, endmembers were selected from the 

images using the approach of Johnson et al. (1985) and Smith et al. (1985). The method is 

based on PCA application to identify the individual endmembers of multiple surface 

components. PCA was applied to Landsat images using ENVI to identify the endmembers for 

each site individually. The spectral mixing space as represented as orthogonal scatter plots of 

the first three PC bands were generated and the vertices of these plots were selected as 

endmembers after visualization in the original images. Endmember spectra were applied to 

SMA in order to produce the fraction images (proportions of endmember spectra) with 

associated the RMSE images (Smith et al., 1985; Adams et al., 1986).  

The problem of nonlinear mixing, which can hinder the SMA applications (Roberts et al., 

1993; Ray and Murray, 1996), was ignored since other studies (Villeneuve et al., 1998; Qin 

and Gerstl, 2000) showed that nonlinear mixing is a secondary feature. More details on SMA 

application are given in Dawelbait and Morari (2010). 
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4.2.4 Change detection  

Change can be identified explicitly either as change in the number of endmembers or as a 

change in endmember fractions (Adams et al., 1995). In the study the change analysis was 

estimated according to the second approach since an identical endmembers set was used to 

derive fraction images (Elmore et al., 2000).  Three approaches was conducted to evaluate the 

variation in land use and land cover (LULC). The first two focused on visual interpretation of 

the land cover elements in the different years and direct measument using map-algebra. Visual 

interpretation for each endmember was performed using a standard RGB composite by 

displaying fractions images of the three years 1987, 1999 and 2008 as blue green and red, 

respectively. The third approach consisted in Change Vector Analysis (CVA) (Malila, 1980). 

CVA allows the direction and magnitude of change between two time periods to be evaluated. 

The vegetation and soil vulnerable to erosion fraction images were used to monitor the 

vegetation re-growing and desertification between 1987 and 2008 only since the two years has 

a comparable amount of rain as main before. Change direction was measured as the angle of 

the change vector from a pixel measurement in 1987 to the corresponding pixel in 2008. 

Angles measured between 90° and 180° indicated an increase in sand and decrease in 

vegetation, and therefore an increase in desertified area. On the contrary, angles measured 

between 270° and 360° indicated a decrease in sand and an increase in vegetation and therefore 

represented re-growth conditions. Angles measured between 0°-90° and 180°-270° indicated 

either increase or decrease in both vegetation and sand, and consequently persistence in the 

conditions (Khiry, 2007). Change of magnitude is measured as the Euclidean distance or length 

of the change vector from a pixel measurement in 1987 to the corresponding pixel in 2008. 

Four classes of magnitude were represented for either desertification or re-grow according to 

Kuzera et al. (2005). 

 

4.2.5 Field survey 

A field survey was conducted during six weeks in late summer 2008 (September-October) in 

order to test the accuracy of SMA using ground vegetation data as references. In site 1 field 

survey was conducted in an area located around a group of villages where the effects of human 

activities in a savannah region could be tested. Abuslaim forest and a cropped area, where a 

new agricultural projected is ongoing since 2007, were selected in sites 2 and 3 respectively.  
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A total of 16 mixed ground cover plots (size 60 x 60m for each plot) were selected in each site. 

Vegetation in the selected plots in all sites was composed of a mixture of acacia trees and 

bushes. Site 1 only had grass and shrubs in addition. Trees and bushes were georeferenced with 

a GPS and the crown diameters were measured and orthogonally projected to the ground 

surface to estimate the percentage cover. The percentage cover of grass and shrubs in site 1 

was estimated using the line point intersect sampling method (Elmore at al., 2000). 

Measurements of the grass and shrubs were taken along 30 60-m long transects, oriented in N-

S direction, every 2 m.  Measurement points were selected at 60 cm intervals along the 

transect. The grass and shrubs under the trees and bushes were ignored. The accuracy of SMA 

was estimated by scatter plot correlation comparing total percentage of live cover in each plot 

with the live cover (vegetation) fraction image. 
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4.3 Results and discussion 

4.3.1 Endmember spectra and SMA applications 

The first three components of PC of TM5 data for each site explained over 99% of the variance 

and estimated data were mean-corrected and projected onto the space determined by those 

components. From these PC scatter plots, five endmembers were manually selected in site 1 

while three endmembers were selected in site 2 and 3 (Figure 4.3). Two type of vegetation in 

site 1, bright vegetation (BV1) and dark vegetation (DV1), and one type of vegetation in site 2 

and 3 (V2 and V3)  were selected. BV1 consisted of all types of natural vegetation (e.g. dense 

shrubs, grass) and cultivated crops with higher leaf chlorophyll and water content. DV1 

consisted of natural vegetation with lower leaf chlorophyll/water content (senescing 

vegetation). V2 and V3 represented all types of natural vegetation (e.g. dense shrubs, grass). 

The reflectance of BV1 spectrum at 0.83 micrometer (Band 4) is higher than that in V2 and V3 

spectra (Figure 4.4) which indicate higher leaf chlorophyll and water content, while DV1 

spectrum is similar to V2 spectrum. The reflectance of V3 spectrum at 0.66 micrometer (band 

3) is higher than the reflectance at 0.56 micrometer (band 2) which indicates very low leaf 

chlorophyll/water content even during the rainy season (Asner, 2004) (Figure 4.4). 

Two types of soils were identified in each site. Bright soil (BS1) and dark soil (DS1) in site 1 

represented coarse sandy soils and fine sandy soils with higher organic matter in the top layer, 

respectively. Both BS1 and DS1 absorbed more energy at 2.215 micrometer (band 7) than at 

1.65 micrometer (band 5) which indicates availability of moisture content (Jensen, 2005) 

(Figure 4.4). A higher soil organic matter content usually also implies a higher soil water 

holding capacity and subsequently higher water content. In site 2 and 3 bright soil (BS2 and 

BS3) represented Arenosols and Fluvisols soils (coarse sandy soils). Dark soil in site 2 (DS2) 

represented Cambisols soils (very fine brown soil particles). Both BS2 and DS2 were in dry 

condition since there was high reflectance in band 7 (Jensen, 2005). The reflectance in Band 5 

and 7 of BS3 was the highest one across the three sites. Dark soil in site 3 (DS3) represented 

coarse and fine sandy soil with relatively high moisture content (Figure 4.4). 

Non-photosynthetic material (NPM1) was identified only in site 1. NPM1 represented villages 

(e.g. straw houses), dormant trees and senesced grass and shrubs. The effect of shadow was 

ignored since it is reduced for the sparse canopies typical of many semiarid bush species 

(Trodd and Dougill, 1998).  
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Figure 4.3 - Scatter plot of the three PCs, endmembers location for each site individually. 
 

 

While BS1, BS2 and BS3 are vulnerable to erosion, DS1 and DS3 are less vulnerable to 

erosion since moisture content is a resistance factor to soil erosion. On the contrary DS2 is 

seriously vulnerable to wind erosion because it is drier than the other two dark soils. 
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Figure 4.4 - Endmembers spectra for each site individually. 
 

Endmemebers in the three sites were chosen not only according to the observations in the field 

survey, but also to maximize the model performance and to minimize RMS error (Table 4.3). 

Accordingly, only four endmembers (BV1, BS1, DS1 and NPM1) from site 1 were selected for 

applying the fraction images. Relatively high errors were observed in 2008 (Table 4.3) and 

could be due to the correction of ETM+7 off SLC (Scaramuzza et al., 2004). Figure 4.5 shows 

the scatter plot correlation between the vegetation fraction estimated with SMA (ETM+7 2008) 

and measured in the field. In general, the correlation between them is good with an R2 of 0.75 

but with a slight overestimation. Larger discrepancies were observed in site 2. 

There are main sources of error that could have affected the comparison. The first one can be 

due to the misregistration of multidate scene and location of the field sites (Elmore et al., 

2000). Other sources of error can be related to the application LLHM method error to fill the 

gaps in ETM+7 Oct 18 (Scaramuzza et al., 2004) which produced high RMS errors in SMA, 

especially for site 2, and accuracy of the field survey. Anyway, considering the comparative 

Site 1 

Site2 Site 3 
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approach of the present work, the overestimation errors were considered acceptable to evaluate 

the LULC change.    
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Figure 4.5 - Scatter plot correlation between measured and SMA estimated vegetation fraction 

in 2008 for the three sites. 

 

 

Table 4.3 - RMS errors in the application of SMA. 

 TM5 - 1987  ETM+ 7 SLC on - 1999  ETM+ 7 SLC off - 2008  

site 1  0% to 3%  0 % to 1.5%  0% to 2.8%  

site 2  0% to 1%  0% to 1.8%  0% to 4.6%  

site 3  0% to 1%  0% to 1.6%  0% to 4.2%  
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4.3.2 Change detection 

Average estimation of endmember fractions for the three sites are given in Figure 4.6. The 

effect of the rainfall was very clear for  BV (site 1), whose fraction increased of 16% from 

1987 to 1999 (the rainiest year)  and then decreased in 2008 to the initial level. The same 

phenomenon was observed also for V2 but not for V3. The fraction of bright soil increased 

over the 21 yrs in sites 1 (+14%) and 3 (+16%),  while in site 2 decreased of 26%.  At the same 

time DS2 increased  from 44% to 80%. However, average estimation is not sufficient to 

provide a clear representation of driving factors of change at landscape scale (Collado et al., 

2002; Anyamba and Tucker, 2005). 

 

 

 
 
Figure 4.6 - Average estimation of endmember fractions for each site individually. 
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Tempo-spatial variations of the endmember fractions are visually interpreted by displaying 

fractions for year 1987 in blue, year 1999 in green and year 2008 in red for each endmember 

(Figure 4.7). The visual interpretation of color composite shows that the major changes have 

the most saturated colors while the minor changes have less saturated colors. White tones 

indicate no temporal change and grey tones indicated no existence for that endmember. 

 
 

    
 
 

    
 
 

    
 

 
Figure 4.7- Displaying endmember fractions images for each site in stander BGR composite as 
year 1987 in blue, year1999 in green and year 2008 in red.  
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Vegetation fraction in general was higher in 1987 and 1999, mainly located around the villages 

in site 1 and along the valleys in site 2 and 3, indicating lost of vegetation in 2008. Figure 4.7 

shows an increase in vegetation fraction due to the high rainfall in 1999 in the north-east part 

of site 1 and along the valleys in site 2 (saturated green color). High saturated blue appeared 

along the valley in site 3 indicating higher vegetation fraction in 1987. In 2008 vegetation 

fraction increased in a small scattered areas in site 1 and in a large eastern part in site 3 (red 

color), while stable condition were observed in downstream valley of site 2 (white color). 

A drastic change of BS1 fraction can be observed in 2008 (Figure 4.7). It was spatially 

distributed around the villages and across the site from the northern to the eastern part. In site 

2, DS2 fraction was high along the two main valleys in 1987 and 1999 (saturated blue and 

green color) but in 2008 increased in areas with sparse vegetation, mostly in the southern part. 

In the same part there were patches showing stable conditions (white color) for BS2.  In site 3, 

BS3 fraction was higher in 1987 in the north eastern bank of the valley (saturated blue color) 

and in 2008 in the south western bank (red color), while it was steady along the valley (white 

color).  

The fraction images of 1987 and 2008 were used in the application of CVA to identify the 

desertified and re-growth areas. BS1, BS2+DS2 and BS3 fractions were used in CVA equation 

to consider soil vulnerable to erosion while BV1, V2 and V3 fractions were used for 

vegetation.  

According to CVA (Figures 4.8, 4.9 and 4.10),  the magnitude of desertification in site 1 ranges 

from low to extreme, with a prevalence of severe degradation conditions (high or extreme) in 

the eastern part. Extreme status of desertification was observed in site 2 along the valleys and 

high to low in site 3. The percentages of the desertified areas are 48%, 25% and 76% out of the 

total area of site 1, 2 and 3 respectively. Change detection analysis shows the existence of low-

medium re-growth conditions in site 1 (Figure 4.8), mostly spread in the south-western part, 

and in site 3 (Figure 4.10).  
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Figure 4.8 - Desertification and re-growth areas in site 1 calculated by applying change vector 
analysis. 
 

 

Desertification prevailed over re-growth in site 1 affecting an area of 153,867 km2, with a 

prevalence of medium (70,944 km2) and high (48,578 km2) classes of magnitude. Re-growth 

was estimated on an area of 35,313 km2, mainly classified as medium (17,005 km2) and low 

(13,708 km2). In site 2 desertification was “extreme” over an area of 24,482 km2 while  low re-

growth conditions characterized a restricted area of 1,193 km2.  The rest of the area, 

corresponding to desert core , was classified as persistence condition (71,298 km2) (Figure 

4.9).  The highest percentage of desertified area (from low to high) was estimated in site 3, 

over an area of 98,275 km2 corresponding to the 76% of the total surface.  
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Figure 4.9- Desertification and re-growth areas in site 2 calculated by applying change vector 
analysis. 
 

 

Different factors drove the desertification in the three areas. In site1, human activities strongly 

affected degradation phenomenon. First of all the expansion of villages triggered the change in 

land use and mismanagement of the natural resource, mainly caused by deforestation to supply 

wood for domestic uses i.e. building, cooking, etc., and overgrazing (Sherbinin, 2002). The 

degradation moreover promoted sand encroachment and dune migration, which are considered 

as one of the main processes of land degradation in arid regions (Balba, 1995). The conversion 

of rangeland into cultivated croplands is another phenomenon which affected the 

desertification in the site 1, especially in the southern part. The change in land use to 

cultivation led to a decrease in BV, especially in the central part and a contemporary massive 

increase in BS fraction. The conversion of dry and fragile rangelands into traditional and 

mechanized cropland has already been indicated by many Authors (e.g. Herrmann et al., 2005; 

Olsson et al., 2005) as one of the main processes affecting desertification in Sudan. Over-

exploitation of semi-desert environments through deforestation, overgrazing and cultivation 

 

 
 

 

 

 



 89

results in habitat conversion to desert, even though rainfall may still be sufficient to support 

semi-desert vegetation (Nicholson, 2005). Desertification was partially compensated by the re-

growth conditions observed in the SW part, which were mainly due to Government 

reforestation projects in last decade and sustained by higher rainfall in the last years in the 

study area.  The Rainfall Anomaly Index (RAI) (Tilahun, 2006) time series (Figure 4.11) 

confirmed the existence of favourable conditions for vegetation growth from the 1990s to 

2008, with higher frequency of positive anomalies than in the 1970s and 1980s.  This result is 

in accordance with the recent satellite and model based studies of the Sahel (e.g. Eklundh and 

Olsson, 2003; Anyamba and Tucker, 2005), which demonstrated that vegetation has recovered 

from the peak drought conditions suffered in the region in the 1980s.  

 

 
 

Figure 4.8 - Desertification and re-growth areas in site 3 calculated by applying change vector 
analysis. 
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Figure 4.11- Rainfall Anomaly Index (RAI) from 1973 to 2008 for each site individually. 
 

In different way climatic constrains drove desertification in sites 2 and 3. Drought, degradation 

and soil erosion were the causes and effects of desertification (Guoping et al., 2001). In 

particular, extreme desertification was observed along the valley in site2, where the progressive 

lost of vegetation could have enhanced soil degradation. In fact, vegetation along the valleys in 

the desert areas plays a very important role in reducing water erosion during the rainy season 

(Fenli et al., 2002) and wind erosion during the dry season (Bach, 1998). RAI time series for 

desert and semi-desert regions (Figure 4.11) confirmed the existence of drought period during 

the last 36 years. Indeed even if RAI in the last two decades registered higher anomalies than 

1970s and 1980s, there was not a prevalence of positive anomalies such as those ones observed 

Site 1 

Site 2 Site3 
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for site 1. This condition explained the existence of the extreme condition of desertification in 

site 2 and the large diffusion of desertified area in site 3. 

Moreover, in these sites re-growth conditions were observed only where forestry or agricultural 

projects were established. For instance in site 2 it was due to planting of Prosopis chilensis 

(Molina) Stuntz. and Prosopis juliflora (Sw.)DC. which were exotic and invasive (Salih and 

Mohamed, 2008). In site 3 the eastern re-growth area corresponded to few agricultural projects 

established in 2007, but that are considered to be unsustainable and at high risk (Okin and 

Roberts, 2004) since they are surrounded by desertified area.  

4.4 Conclusions 

A converging outlook about the causes and effects of drought, land degradation and 

desertification is still lacking. As pointed out by Herrmann et al. (2005) there are two 

competing schools representing diametrically opposed positions in this debate: one supports 

the hypothesis that human activities are responsible for a irreversible desertification in Sahel by 

“overuse of resources” and “human mismanagement” (e.g.  Mainguet, 1991), the other 

interpreters the desertification as phenomenon driven by drought, and hence temporary, with 

humans playing a minor role (e.g. Olsson et al., 2005).  

According to the results of this study it is not possible to support one or the other school. This 

study highlighted the complexity of desertification phenomenon: ecological zone patterns and 

natural resources strongly interact with human activities in semi-arid areas. The pressure on 

land, wherever wood and rainfall are available for energy and cultivation, was clearly observed 

in the semi-arid area. Human activities and mismanagement of the natural resource with 

expansion of the villages in Savanna region highly accelerated desertification processes in 

savanna site, but in semi-desert and desert sites, climate constraints were the main cause of 

degradation.   

Site-specific strategies which take into account the interactions of the driving factors at local 

scale are thus necessary to combat desertification, avoiding any implementation of untargeted 

measures. In particular, an attention is needed to conserve valleys ecosystem in semi-desert and 

desert region in order to play its role in reducing wind and water erosion. 
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5.1 Conclusions 

Desertified area and desertification processes in North Kordofan, River Nile  and  Northern 

states were detected and the factors affecting this change was analysed using tempo-spatial 

analysis of the remote sensing data. The three selected sites were characterized by 

heterogeneous land use/land cover as in semi-arid areas. The amount of vegetation cover, types 

of dry ecosystem vegetation and structure and phenology of vegetation regarding to the harsh 

environment are found to be differ from one ecological zone to another and affect the 

contribution of vegetation reflectance in the total pixel reflectance relative to the other 

materials. Mineral and organic matter, soil structure and moisture content of the soil surface are 

the main factors affecting the reflectance of soil in the optical remote sensing. 

The application of spectral mixture analysis (SMA) to Landsat data appeared to be a consistent, 

accurate and low-cost technique to obtain information on vegetation cover, soil surface type, 

and identify risk areas. In this study, Landsat ETM+7 OFF-SLC images were used after 

correction in SMA application and provided acceptable landcove/landuse (LCLU) fraction 

images. SMA proved to be a powerful technique in characterization and mapping of 

desertification processes in the study sites by providing direct measurements to different land 

cover at subpixel level. Endmembers spectra were successfully derived from Landsat images 

using the principle component (PC) and the method proved to be valuable. Although the results 

shows an overestimation errors, they  were acceptable to evaluate the LULC change regarding 

the comparative approach of the present study. Applying endmember fractions of 1987 and 

2008 to change vector analysis (CVA) showed desertification significantly prevailed over 

vegetation re-growth in the three sites. 

Site-specific interactions between natural processes, climate variation and human activity play 

a pivotal role on desertification in the study sites. Even if phenomena at large scale (e.g. 

positive rainfall trend) in savannah site in the last years have allowed a gradual recovery from 

the peak drought conditions suffered in the Sahel during the 1980s, there are still forcing 

variables that act at local scale to cause land degradation. Drought condition have accelerated 

the desertification processes in semi-desert and desert sites since there was  no positive 

continuous signal of rainfall trend in these sites during last 36 years. One of the most important 

factors affecting such degradation were human activities, which exploit the natural resources 

beyond their ecological resilience threshold until desertification is irreversible.  Hunger and 

local energy needs seem to be the driver of land use and management. Site-specific strategies 
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that take into account the interactions of the driving factors at local scale are thus necessary to 

combat desertification, avoiding the implementation of untargeted measures. The following 

conclusions could be addressed according to the study: 

• The spectral reflectance of vegetation in arid and semiarid areas changes with the 

vegetation structure and surrounding environment. 

• Deriving Endmembers spectra from Landsat images, using the principle component 

(PC), is successful and valuable method. 

• Applying Landsat ETM+7 OFF-SLC after correction in SMA proved to be valuable 

and accurate for monitoring desertification. 

• SMA is a powerful technique in characterization and mapping of desertification 

processes in the study areas by providing direct measurements to different land cover at 

subpixel level. 

• SMA distinguishes the effect of climate variation as well as the role human activities in 

accelerating desertification. 

• Visual interpretation using the color composite of SMA fraction images is a practical 

and simple way to explain the changes in vegetation and soil fractions.  

• CVA allows for further detection and quantifying of desertification processes in a 

degree of severity. 

• Desertification status is extreme to moderate in savanna site, extreme in semi-desert site 

and high to low in the desert site. 

• Human activity and mismanagement of natural resources are the main factors affecting 

desertification in savanna region.  

• High increase of very fine soil in semi desert area will cause problem of dust storms in 

the country.  

• The agricultural projects in desert region are within vulnerable area to desertification, 

so, they are unsustainable. 
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5.2 Limitations of the study 

• Unavailability of spectrometer device for measuring spectral signature of land cover 

materials in the fields. 

• Limitation Landsat bands caused limitation of applying endmembers spectra. 

• Limitation of the field survey plots caused limitation in the accuracy. 

• Single station of the climatic data for each site causes lag of spatial climatic data. 

• Unavailability of high resolution imagery images to calibrate the endmembers spectra. 

 

5.3 Recommendations 

Management of natural resources in fragile ecosystems in the addressed study sites is highly 

recommended in order to control the desertification problem and to combat it. Using remote 

sensing for monitoring land degradation is the key tool to establish combating projects. The 

following recommendations are pointed out: 

• Establishing remote sensing application units in the academic and research institutes 

and in the governmental agencies which responsible of desertification problem in 

Sudan to provide valuable information on land use/land cover of the regions subjected 

to desertification for the planner and decision maker. 

• Since the desertification problem has complex factors, establishing network between 

different institutes care of these factors is seriously needed. 

• Raising of building capacity of researchers in application of remote sensing 

environment will improve the use of remote sensing in the governmental agencies. 

• In order to identify the soundest strategies, high-resolution tools must be applied. 

• Revising the land use policies and strategies of settlements and sustainable 

development.  

• At local scale, encouraging the national organizations along with the local population to 

work on re-planting the native species.  

• Protecting the irrigated agricultural projects in desert areas by shelterbelts and 

windbreaks is seriously needed to sustain these activities. 
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• Improving and managing the grazing activities will help in avoiding reduction soil 

productivity. 

• Improving the metrological station in space and accuracy to provide the monitoring 

system with the needed climatic data. 

• Establishment an early warning systems is urgently needed. 

 

5.4 Further studies 

More effort should be made to improve the classification of vegetation type in order to 

distinguish perennial from annual species and thus be able to monitor long-term vegetation 

degradation. Hyperspectral imagery, spectrometry and long term field monitoring experiments 

for land cover strongly support this context and increase the accuracy of monitoring drylands. 
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