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Summary

Remote sensing technology has long been suggestadiime and cost efficient method for
observing dryland ecosystem environments, monigoriand cover degradation and
characterizing the dynamism of sand dunes. The mgamnd value of remote sensing data
were enhanced through skilled interpretation, imjaoction with conventionally mapped
information and ground-collected data. Spectral titiex Analysis (SMA) has proved to be a
powerful technique to monitor land cover degradatin arid and semi-arid areas. Three
Landsat images, acquired in 1987, 1999 and 2008 waealyzed to evaluate desertification
processes in three different ecological zones idaSu(North Kordofan, River Nile and
Northern state). Spectral Mixture Analysis (SMA) svadopted using endmembers spectra
derived from the image. Multitemporal comparisorcht@ques (visual interpretation and
change vector analysis) were applied to estimadahg-term desertification/re-growing and

to emphasize land cover variation over time anspace.

Site-specific interactions between natural procgsséimate variation and human activity
played a pivotal role in desertification; howevkeit interaction was varied according to the
ecological zone. In North Kordofan (savannah), désmtion significantly prevailed over
vegetation re-growth, particularly in areas arownal villages over the last 21 years. Changes
in land use and mismanagement of natural resountas)y caused by deforestation to supply
wood for domestic use and overgrazing, were thenrdeving factors affecting degradation.
More than 120,000 kfnwere estimated as being subjected to a medium-thégertification
rate. Conversely, the reforestation measures, addpt the Sudanese Government in the last
decade and sustained by higher rainfall, resutddw-medium re-growth conditions over an
area of about 20,000 Km

In River Nile (valleys in semi-desert), extreme divion of desertification affected the valleys
in the site. Desertification affected an area af482 knf as extreme condition and re-growth
condition in low status was 1,193 kwhile most of persistence condition (71,298%kmvas
desert area. Drought and climate variation with dssistance of mismanagement of natural
resources were the factors caused desertificaimmever, human activities were played minor
role. In this site the soil is highly vulnerable wond and water erosion and it was highly
increased in 2008.



Irrigated agricultural projects were clearly recizgul in Northern State (Valley in desert), with
an areas of 28,761 Knn low condition. The area affected by deserttfima was 98,275 km

(7,962 knf high, 56,075 krhmedium and 34,239 Kntow) with 76.40% percentage of the total
area. The agricultural projects were at high risices they were surrounded by desertified

areas.

Site-specific strategies which take into accoust ititeractions of the driving factors at local
scale are thus necessary to combat desertificamding any implementation of untargeted
measures. In order to identify the soundest stiededigh-resolution tools must be applied. In
this study the application of SMA to Landsat dgppeared to be a consistent, accurate and
low-cost technique to obtain information on vegetatcover, soil surface type, and identify

risk areas.

10



Riassunto

La tecnologia diremote sensinge stata a lungo considerata un’efficace strumeyep
I'osservazione di ecosistemi aridi e semi-aridimonitoraggio di superfici vegetate degradate
e la caratterizzazione delle dinamiche di duneisakbl risultati ottenuti con remote sensing
sono stati validati grazie a interpretazioni puhfueongiuntamente a informazioni mappali
classiche e dati raccolti in campo. Si e provabojtie, che la tecnica denominata Spectral
Mixture Analysis (SMA) e un potente strumento pesnitorare la degradazione di coperture
vegetali in zone aride e semi-aride. In questoistgdno state analizzate tre immagini del
satellite Landsat, acquisite nel 1987, 1999 e 20418fine di valutare i processi di
desertificazione di tre differenti ecosistemi ind8o (Nord Kordofan, Fiume Nilo e Stato del
Nord). La Spectral Mixture Analysis (SMA) e statapiegata utilizzandendmembersttenuti
dallimmagine satellitare e definiti come i dive@mponenti di un territorio specifico. Sono
state applicate tecniche di comparazione multi taalp (interpretazione visiva dei
componenti delle immagini e change vector analypes) sottolineare la variazione della
copertura vegetale e per stimare l'effetto di d#smazione di lungo periodo (o crescita

vegetativa) nel tempo e nello spazio.

Le interazioni sito-specifiche tra processi natutalvariazione delle condizioni climatiche e le
attivita umane hanno giocato un ruolo centralepnetesso di desertificazione, sebbene le loro
interazioni siano diverse nei tre siti studiati.l Nrd Kordofan (zona di savana) il fenomeno
della desertificazione é prevalso in modo signifiasulla crescita vegetativa e in particolar
modo nelle aree attorno ai villaggi, nell’ultimontennio. Un utilizzo differente dei terreni,
cosi come la mancata gestione delle risorse natuca@usata principalmente dalla
deforestazione per la fornitura di legname per dmmestico e l'utilizzo eccessivo delle terre
destinate a pascolo, sono stati i principali fatre hanno determinato la degradazione
dellarea. Si & inoltre stimato che pit di 120,08M° sono soggetti a un tasso di
desertificazione medio - alto. Viceversa, le pohig di riforestazione adottate dal governo
sudanese nell'ultimo decennio hanno avuto un irpatedio - basso sul tasso di ricrescita

della vegetazione, e in un’area di circa 20,008.km

Nell'area nei pressi del fiume Nilo le vallate oggeadi studio, situate in zone semi-desertiche,
sono state estremamente colpite dalla desertiboaziun intenso fenomeno di desertificazione
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ha riguardato un’area di 24,482 &nal contrario le condizioni di crescita vegetativanno
interessato un’area 1,193 kmGran parte del territorio & comunque carattetizzda
condizioni desertiche stabili (71,298 ®mIn questo caso i cambiamenti climatici e la dort
siccita, assieme alla mal gestione delle risorseralh, hanno contribuito alla desertificazione,
sebbene I'attivita umana sembra aver giocato ulomnarginale nella degradazione dell’area.
In questo sito la degradazione del suolo, altamemnieerabile all’erosione del vento e

dell'acqua, e stata molto alta nell’lanno 2008.

Le aree agricole irrigate, invece, erano chiarameicbnoscibili nello Stato del Nord (vallata
presente in un sito desertico) e occupavano unerficip di 28,760 kr In questo caso I'area

& risultata in condizioni scadenti. Il territorimlpito da desertificazione era di 98,275%m
(7,962 knf tasso alto di desertificazione, 56,075%kaisso medio di desertificazione e 34,239
km? tasso basso di desertificazione), corrisponddrté.40% dell’area totale. Le aree agricole
si sono dimostrate ad alto rischio di desertifioagi dal momento che erano circondate da zone

desertiche.

Da questo quadro si evince che strategie sito-Bpleeisono necessarie per combattere la
desertificazione, evitando di attuare misure migliwe che non tengano conto degli obiettivi
specifici identificati per ogni singola area. Affimé vengano adottate le strategie adeguate e
auspicabile I'applicazione di strumenti ad altaligione. Dai risultati di questo studio sembra
che I'applicazione della SMA ai dati di Landsat s@erente, precisa ed economicamente
sostenibile al fine di ottenere informazioni uslilla copertura vegetale, sulle caratteristiche

del suolo e sull'identificazione delle aree ahisc
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PART ONE:
DESERTIFICATION PROCESSES IN ARID AND SEMI-ARID AREAS
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1.1 Definitions

Desertification is defined as land degradationrid,asemi-arid and dry sub-humid areas due to
climate variation and/or human activity (UNCCD, 299 The concept of desertification dates
back to colonial West Africa in the 1920s and 1920& was revived in the early 1970s in an
attempt to understand the effects of a long safieirought years that brought environmental
degradation, economic difficulty and hunger to thigican Sahel (Lonergan, 2005). The
concept and emphasis of desertification as a degragrocess requiring international
collaboration has changed over time. Initially tbeus was on desert margins (UNEP, 1986)
though there was clear recognition that land degjrad was a widespread problem. An
accepted definition of the time was that of Dreg(77): "Desertification is the
impoverishment of terrestrial ecosystems under ithpact of man. It is a process of
deterioration in these ecosystems that can be mexhdly reduced productivity of desirable
plants, undesirable alterations in the biomasstlaadiversity of the micro and macro flora and
fauna, accelerated soil deterioration, and incitaseards for human occupancy”. As national
and global databases improved, the anthropic retaime more evident and the accelerated

nature of the process resulted in the call for catnly actions.

Arid and semi-arid areas are characterized by ipattef variable annual rainfall. They include
the deserts and their semi-arid and sub-humid daggms and the subtropical Mediterranean
latitudes. Arid zones account for 40% of the Eartturface. Because of the vast area covered
these lands play a major role in energy balancehgdtblogic, carbon and nutrient cycles. The
dryland areas are characterized by irregularity slmattage of rainfall, prolonged dry seasons,
high temperature and high evaporation. Such vanat climatic factors makes drylands more

fragile and prone to land degradation and deseatibn (Ayoub. 1998).

Land degradation is one of the effects of mismamesge: of land and results frequently from a
mismatch between land quality and land use (Beineobtl., 1994). Land degradation is clearly
human induced due to the large area and numbezagd@ affected by it. The linkage between
land degradation and climate change is yet to bebkshed but there is increasing evidence
that land degradation is a driver of climate chafiech et al., 2001).

Mechanisms of desertification processes could lysipal, chemical, and biological processes
(Lal, 1994). These processes include water erogiong erosion and sedimentation, long-term
reduction in diversity of natural vegetation andrszation. Combined pressure from human

and climatic variations in arid and semi-arid aregsulted in high and serious desertification
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status and rate. Loss of vegetation cover seerbg t@lated to poor soils and aridity, which
prevail throughout short as well as long periodsdodught and thus permit very limited
recovery of natural vegetation. Wind and water ierosre the main two process accelerated in
the areas vulnerable to desertification processeld arid and semi arid regions. They are a
result of the interplay between environmental fexteuch as soil, topography, drainage,
rainfall, wind speed, and land use patterns. Maumses accelerate desertification processes are
drought, population pressure, failure to implemanypropriate technologies, poverty,
constraints imposed by recent international tragiggeements, and local agricultural and land

use policies (Virmani et al., 1994).

Desertification as an environmental degradationnpheenon converts land into desert-like
conditions unfit for man and animals. The assunmpttbat desert encroachment is a
manifestation of major geological climatically clgas is still subject to considerable scientific
debate. Most scientists seem to agree that wefitivtwation or cyclic drought of one or more
years and land misuses are the actual causesatitiestion particularly in arid regions such

as is the case in Sudan (Mustafa, 2007).

1.2 Desertification problem in Sudan:

Sudan is the largest country in Africa coveringaaga of over 2.5 million kfn Rainfall ranges
from nil in the North to 1500 mm™n the South. Harrison and Jackson (1958) clasktfie
vegetation of Sudan as ecological terms, accordoghe floristic composition of the
vegetation. However, the structural propertieshefegetation in Sudan are highly depend on
rainfall and soil types. Sudan has diverse ecoldgiegions, from the desert in the North to
high rainfall woodlands savannas in the South (Ay&004).

Vegetation in semi arid area in Sudan ranges fratremely scarce in the far north to short
grass and sparse thorn scrub to open grasslanus pdaminated by gum Arabic producing
acaciain the central part of the countfifhe more humid part of the country contains a warie
of vegetation types from savannah to broken woablkmd tropical forests. Woody biomass
comprised 71% of the energy supply in 1999 in théd® (Abdel Ati, 2002). This is equivalent
to about 400 millionAcaciatrees being uprooted annually. Rangelands in titkasnd semi-

arid zones carry over 70% of Sudan’s livestock.sTisi more than double their carrying

capacity (Ayoub. 1998). Range fires, mostly dekibely set by herders and honey collectors,

18



consumed annually about 35% of the natural rangdymtivity, estimated to be about 300
million tonnes (Atta El Moula, 1985). Livestock ime Sudan concentrates around water
sources during the dry periods leading to vegetatlenudation and soil pulverization by
tramping (de Jong-Boon, 1990).

Drylands cover approximately 60% of the country5(million knr), thus constituting the
largest area of drylands in Africa. Annual rainfallarid areas is less than 75 mm and the semi-
arid areas with annual rainfall from 75mm to 300nirhese areas faced with serious socio-
economic problems such as poverty, famine and tgrand environmental problems such
as drought, desertification (Khiry, 2007).

Continued drought and desertification are the rmopbrtant problems facing Sudan as well as
North Africa which result mainly from destructiom matural resources, agricultural lands and
in political and social disturbances (Mustafa, 206Budan’s soil conservation committee in
1994 concluded that soil degradation and desextifin is mainly attributed to general land
misuses rather than to major climatic changes. lnuactivities are the most destructive factors
in Sudan which are leading to natural resourcesadegion and causing desertification result
from droughts, coupled mainly with the extendednfed farming on marginal lands,
overgrazing, wood cutting, deforestation, uprootoigshrubs and burning of grasslands and
forest shrubs. DECARP, 1976 concluded that a coatioin of factors involving fragile
ecosystems developed under harsh climatic conddiloth human activities are the actual
causes of desertification in Sudan. Nowadays, tbblems of desertification and drought in
Sudan are a worldwide concern and specific attentias paid to discussing and combating
these impacts particularly in the central part bé tcountry which is severely hit by
desertification. Migration to urban areas, detetion of forest cover, reduction of agricultural
production, and famine are the socioeconomic probl face Sudan after severe drought
conditions of 1984 (Khiry, 2007).

1.3 Remote sensing and GIS for the monitoring and mapping
desertification in arid and semi-arid areas:

Many studies and assessments of dryland ecosysiaces the United Nations Conference on
Desertification (UNCOD) in 1977 have led to a vdliea new understanding of the

desertification issue. These studies pointed anifstant shortcomings in terms of data and
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methodologies. Moreover, they call for the improesn of science and technology for
environmental monitoring, assessment models, atcul@abases and integrated information
systems (Lonergan, 2005). In particular, they emjzeathe need to assess desertification
processes, since the knowledge on the currentsstditdesertification or the magnitude of the
potential hazard is incomplete and fragmented Hierrmost parts of the world. Monitoring of
the environment in these areas is considered asyaimportant task in the context of global

climatic change and worldwide desertification dyma{Lonergan, 2005).

Monitoring desertification is the key tool that cprovide timely and useful information for

decision makers on the risk of drought and enviremtal change. It could be easier by
determining appropriate indicators. Environmentaticators over large areas must be
measurable and suitable for regular updating. Fethe proposed indicators are specifically
for dryland degradation only, because it is diffico separate the effect of the climatic factors

from the human activities in such areas (Diouf badhbin, 2001).

One of the most important tools for monitoring dé&feation is remote sensing. Ideally,
remote sensing should play a major role in develpm global operational capability for
monitoring land degradation and desertificatiordmglands. It has long been suggested as a
time and cost efficient method for observing drdascosystem environments (Hassan and
Luscombe, 1990). Remote sensing is defined as rthef acience of obtaining information
about the object without being in direct physicahtact with the object. It is a technology that
can be used to measure and monitor important bsypdlyand biochemical characteristics of
objects, as well as human activities on the Ealdngen, 2005). Remote sensing imagery
should be regarded as data available to assigti@in@er in the assessment of natural resource
and natural hazard information throughout the dgwelent of a planning study. The meaning
and value of remote sensing data is enhanced thrskithed interpretation used in conjunction
with conventionally mapped information and groumdlected data (Jensen, 2005). In this
capacity it can serve both enhance monitoring effas well as to provide valuable

information on dryland degradation in specific area

In order to monitor, map and model desertificapoocesses, Geographical information system
GIS is needed. GIS is a computer-based systemafoture, storage, retrieval, analysis and
display of spatial (locationally defined) data (TNational Science Foundation). GIS id a

powerful system to apply the techniques for modglamnd cover pattern and erosion indices..
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1.4 Problem justification:

Earth observation data, particularly Landsat ThearMapper (TM) and Multispectral Scanner
(MSS) imagery, have been widely used in semiarddrenments to monitor the variations in
vegetation community characteristics as well asermthactors affecting desertification
processes. However, traditional methods to extragétation and soil information from remote
sensing data in semi-arid areas, such as clagsficeechniques and vegetation indices, were
found to be inaccurate due to the vegetation conimstructure and the heterogeneity of the
semi-arid environment. Spectral Mixture Analysid8/@® has been proposed as an appropriate
classification technique to be applied in drylamdag. SMA is sub-pixel classification which

based on and influenced by the spectral reflegiroperties of the land cover materials

The poorly developed communications infrastructiweéSudan pose great difficulty for the
collection of data for operational use by a grobaded method. Consequently, remote sensing
images interpretation and GIS become the feasilolis for timely action on the risk of drought

and environmental change.

1.5 Questions of the study?
» How can remote sensing and GIS help in monitoramyporal and spatial variations of

vegetation and soil in Sudan?

* Can a limited field data collection suffice to aately model the pattern of land cover

and desertification in Sudan?

* Can long-term and large-scale monitoring of landecand desertification be useful to

improve land management policies?

1.6 Objectives:
» To estimate the desertified lands in three diffemological zones in order determine

the status of desertification in Sudan.

* To detect and analyze the dynamics of change of lese/land cover in three different
ecological zones using Landsat images and SMA dieroto assess the desertification

process.
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PART TWO:
LIMITS AND POTENTIALITIES OF STUDYING DRYLAND
VEGETATION USING THE OPTICAL REMOTE SENSING

Dawelbait, M. and Morari, F., 2008. Limits and putalities of studying dryland vegetation
using the optical remote sensing. Italian Jourh&gronomy 3:97- 106.
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Abstract

In optical remote sensing studies, the reflectarfae vegetation canopy in arid and semiarid
areas is affected by the optical properties of\tbgetation elements, their arrangement in the
vegetation canopy and the optical properties of sherounding environment. The study of
vegetation and surrounding environment parameteesgnts significant peculiarities in arid
areas. Low vegetation cover leads to a small cbaotron of vegetation reflectance in the total
pixel reflectance relative to the other materialdost types of dry ecosystem shrubs do not
differ enough from one another to allow discernn@ntegetation type. Vegetation in arid and
semiarid areas adapts its structure and phenolagthé harsh environment, which affects the
overall brightness and temporal and spatial intersips spectral variability. Moreover, the
surrounding environment in dry ecosystem influenites reflectance of the vegetation by

multiple scattering and nonlinear mixing and vail@Bpectral composition of soil surface.

Many remote sensing techniques are insensitive@npmotosynthetic vegetation, which can be
a major component of total cover in dry ecosystegas Spectral mixture analysis (SMA)
appears to be the most promising technique to ohtalormation on vegetation cover, soil

surface type and vegetation canopy characterisfidge empirical signature libraries of the

world’s dominant vegetation types could be upgrafdedise with SMA.

Key words: desertification, remote sensing, vegetation,airgt| spectral mixture analysis
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2.1 Introduction

The concept of desertification dates back to callowest Africa in the 1920s and 1930s, and
was revived in the early 1970s in an attempt toewstdnd the effects of a long series of
drought years that brought environmental degradaggconomic difficulty and hunger to the
African Sahel (Lonergan, 2005). Many studies amskssments of dryland ecosystems since
the United Nations Conference on DesertificatioN@GOD) in 1977 have led to a valuable
new understanding of the desertification issue. s€hetudies pointed out significant
shortcomings in terms of data and methodologiesebher, they call for the improvement of
science and technology for environmental monitgremgessment models, accurate databases

and integrated information systems (Lonergan, 2005)

Remote sensing is a technology that can be useréasure and monitor important biophysical
and biochemical characteristics of objects, as awg&lhuman activities on the Earth (Jensen,
2005). The meaning and value of remote sensing datenhanced through skilled
interpretation used in conjunction with conventibhanapped information and ground-
collected data (Jensen, 2009Remote sensing has long been suggested as a tuoneoah
efficient method for observing dryland ecosystemiremments (Hassan and Luscombe, 1990

Optical remote sensing (0.3-1Bn), both spaceborne and airborne, provides valuabls for
evaluating areas subject to desertification. tiged in many applications such as: (1) mapping
and monitoring land use and land cover change agdadation, sand dunes, studying organic
carbon in the surface soil layer, deriving inforioatabout chemical components and mapping
areas affected by high salt concentration; (2)yshgldryland geomorphology; (3) evaluating
the vegetation conditions (e.g. vigour, photosytitheapacity or stress of vegetation canopy or
cluster); (4) studying the atmospheric conditiopgibtecting mineral aerosols -dust suspended
in the air- and water vapour in the atmosphere;d@gcting the extent of desert (Okin and
Robert, 2004).

Earth observation data, particularly Landsat Therdapper (TM) and Multispectral Scanner
(MSS) imagery, have been widely used in semiaridrenments to show up variations in
vegetation community characteristics from changetheir reflectance characteristics. Earth
observation data are also used to estimate vegetatbundance depending on simple
relationships between reduced reflectance andaserktotal plant cover or between a spectral
vegetation index and green vegetation cover (Pickig95). However, new problems are

arising from the changes in vegetation communityucstire observed in the desert
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environment, notably due to a gradual increaseushldominance and changes in the mix of

palatable and unpalatable grasses (Trodd and DoL@#8).

This article introduces the reader to the probleshsoptical remote sensing in studying
vegetation in dryland and focuses on: (1) studying reflectance of vegetation and the
surrounding environment in a dryland ecosystemd{@ussing the techniques used to monitor

and obtain information on the canopy in a drylacdsgstem.

2.2 Reflectance of vegetation and surrounding environment in a
dryland ecosystem

In the wavelength range between 400 and 2500 nentattiance reflected from a vegetation
canopy is influencethy three main factors related to the canopy: (&)dptical properties of
the vegetation elements, (2) the arrangement skteements in the vegetation canopy and (3)
the optical properties of the environment aroural danopy (soil and atmosphere) (Dorigo et
al., 2007).

The difficulties facing evaluation of vegetationings optical remote sensing in a dryland

ecosystem arise from different types of problems.

2.2.1 Anomalies in the optical properties of thgatation elements

Vegetation in a dryland ecosystem suffers from watarcity due to low precipitation and
high potential evapotranspiration, so vegetatiowecois low. This leads to the small
contribution of vegetation reflectance in the topakel reflectance relative to the other
materials in a dryland ecosystem. Therefore, treduation of vegetation in a dryland using

remote sensing is not completely accurate (Whitd.e2000).

The above-mentioned concept has the consequeratethéhspectral properties of vegetation
elements such as stems, leaves and fruits, canrisdered the major determinant of canopy
reflectance and influence the shape of the ovepattrum (Dorigo et al., 2007). Stems in the
dryland ecosystem vegetation, play a small but iogmt role in determining canopy
reflectance in woody plant canopies, especiallys¢havith leave area index (LAI) < 5.0.
However, this also depends on the location of waodyerial within the canopy (Asner, 1998).

Standing litter significantly affects the reflectan characteristics of grassland canopies.
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Furthermore, small increases in the percentageantlsg litter lead to unproportional changes
in canopy reflectance (Figure 2.1). Variation iteli optical properties plays a secondary role
to structural attributes (e.g., leaf and litter aanedex) in determining canopy reflectance
(Asner, 1998).

Regarding the leaves and their reflectance, wefindrthat they are spectrally dissimilar from
their humid counterparts. They have adapted themseto high temperature and high
evaporation losses by adapting their surface irers¢éwvays, such as: reducing leaf size,
avoiding leaves altogether and moving photosynshésithe stalks and stem, shading the
photosynthetic surface by a high density of reflecspines and leaf hairs or reducing losses
due to evapotranspiration by a more waxy leaf tiifEhleringer and Mooney, 1978). These
differences affect the overall brightness of drglaegetation (e.g. creosotd arrea tridentata
(DC.) Coville var.tridentatg, the ratio of green vegetation to nonphotosymthe¢getation
within the canopy and perturbation to the shapl@kpectrum at specific wavelengths (Figure
2.2).

Conditions are worsened by the fact that naturaihtgl in arid and semiarid areas coordinate
their phenological states with the availability safil moisture to be able to complete rapidly
their reproductive cycle. Persistent vegetation @ame out of dormancy when water becomes
available after the dry season or a period of dngugegin photosynthesis, and if time permits,
produce flowers and fruits. When water again besrsearce, vegetation will resume

dormancy and in an extended period of drought seegetation will shed their leaves. The

total cycle in dryland regions takes place duringlatively short growing season (two to three
months). Therefore, no single reflectance spectamrepresent the full spectral phenology of
dryland plants, and spectra representing diffeplieinological stages must be incorporated for
guantitative information about vegetation changédath space and time (Okin and Robert,
2004).
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Figure 2.1- A) Effect of increasing the fraction of litter ingrassland canopy from 0% to
100% in simulated canopy reflectance. B) Firstvdgive spectra coinciding with panel A
(from Asner, 1998).

The inability of the multispectral data to charaide the vegetation structure can be explained
by the limited dimensionality as follows. Sciendidtave known since 1960 that a direct

relationship exists between response in the ndared region and variation of vegetation

biomass. On the other side, there is a inverséiop&hip between the vegetation biomass and
visible region particularly the red region. To stulle structure of the vegetation surface, a plot
of near-infrared reflectance versus red reflectgspectral feature space diagram) was used.
At the end of the dry season, in semi-arid are@#detional reflectance values, which are the

values of a calibrated reflectance using the swadi@nce geometry function and sensor
viewing geometry function, occupy a condensed @pelin spectral space. The pure bush,
grass and soil samples lie along a brightness Whéch means the red reflectance is equal to
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the near-infrared reflectance for pure bush, gaasssoil samples (Figure 2.3). This shows the
inability of the multispectral data to characterilge vegetation structure. The limited
dimensionality means that differences in reflectéabetween surface component (i. e. grass,
bush and soil) are mainly restricted to changessarall brightness (Trodd and Dougill, 1998).

The disability to provide information on vegetatistmucture from images acquired during the
dry season has a number of important implicati@garding the role of satellite imagery in
increasing our understanding of vegetation changesmiarid areas. Particularly, it highlights
on the need for long-term ground-based monitoringhanges in vegetation characteristics and
data from new satellite sensors in order to helgeweloping different reflectance models and
images analysis for the vegetation community i @ semi-arid areas. (Ringrose et al.,
1989).

2.2.2 Anomalies in the arrangement of elementsnitie canopy

Most types of dryland vegetation do not differ eglodrom one another to allow discernment
of vegetation types by optical remote sensing (Qitial., 2001). The within-species variation
makes the problem worse as the spectral variahilithin a species can be greater than the
variability between species (Franklin et al., 1998)order to understand the above mentioned
concept, the complication of vegetation communityicture and inter-canopy shading are

discussed.

Trodd and Dougill (1998) stated that as variationthe relative proportions of bush and grass
cover in semiarid zones in Africa are likely to nga the composite reflectance, it is apparent
that the relationship between vegetation commustitycture and reflectance is ambiguous. In
dryland vegetation community the reduction in retece can be due to an increase in
vegetation cover and/or inter-canopy shading byhlmasopies. Unfortunately, the two effects

are not distinguishable and therefore, the relatgnbetween vegetation community structure
and reflectance cannot be inverted and used ton&sti variations in vegetation structure

(Trodd and Dougill, 1998).
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Figure 2.2 - Comparison of green vegetation (GV), nonphottsstic vegetation (NPV) and
creosote canopy spectra. The best fit line is fitecal linear least-squares mixture of GV and
NPV to match the creosote spectrum. The residutilisfmixture (residual=creosote canopy -
best fit) is given in the bottom panel (from OkimdaRobert, 2004).

Another important aspect in vegetation communitycttire in dryland is the possibility of the
estimation of the percentage of nonphotosynthetigetation (NPV) using remote sensing.
NPV whether in the form of dead shrubs or leafldssught-deciduous plants, plays an
important role in the environment of dryland regioAsner, 1998). It is useful in reducing
wind and water erosion by contributing to the dgnef physical obstacles and total surface
cover which protect the surface from erosion. Beiid and water erosion occur when surface
cover is below approximately 15% (Wiggs et al., 399The difficulty is to determine the
percentage of NPV and vegetation cover using remetsing. Many common methods of
estimating vegetation cover, such as vegetatioexesl, are insensitive to the presence of NPV.
They may not be useful to estimate the total conesituations where NPV is a significant

component of the surface cover (Asner, 2004).
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2.2.3 Optical interferences from the environmemiugnrd the canopy (atmosphere and soil)

The most important source of energy is the sunofethe sun’s energy reaches the Earth’s
surface, three fundamental interactions in the aphere are possible: absorption, transmission
or scattering. The most efficient absorbers ofrs@diation in the atmosphere are ozone, water
and carbon dioxide. Atmospheric scattering occunemwthe particles or gaseous molecules

present in the atmosphere cause the electromagmeties to be redirected from their original

path (Figure 2.4).

= Brightness line

Dry season end members :
O Bare soil
/\ Grass canopy
[0 Bush canopy

Envelope of reflectance values :
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L J——

NIR reflectance

Red reflectance

Figure 2.3 - Schematic representation of landscape comporianspectral feature space
showing the distribution of all pixels in a sceneréd and near-infrared multispectural space;
the white area envelopes reflectance values irsdagon and the white +gray area envelopes
reflectance values in the wet season (from Troddzwugill, 1998).
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Figure 2.4 Radiance paths from the sun to the sensors: siifil scattering and
multiscattering.

Simple single scattering is represented as theugtoaf the reflectance of an object times the
intensity of the incoming radiation and is calletear mixing. For a given wavelendth), we

have:

1, (4)=p(a)(2) 1]

wherel,(A) is the intensity of the reflected lighi{ 1) is the intensity of the incident light, and

p(A) is the reflectance spectrum of the object.

Multiple scattering or nonlinear mixing occurs whaimotons interact with more than one type
of object on the Earth before returning to the ser{g&sner, 2004) and can be defined as

follows:

1.(A) = p.(A)p, (A)1(4) 2]
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where pi(A) is the reflectance spectrum of the first objectl @, (A1) is the reflectance

spectrum of the second object.

In arid and semiarid areas where bright soils oftederlie vegetation with open canopies, the
reflected light is highly affected by this type miultiple scattering. Therefore, correlations of
reflected near-infrared radiation with LAl of operanopies of dryland shrubs are poor
(Hurcom and Harrison, 1998). Also, in the caseeaf+o-leaf scattering and by referring to the
definition of scattering (redirection of the refleance not reduction), vegetation spectrum in the
near-infrared is nonlinearly accentuated. In tlase; there is more energy in the near-infrared,
therefore, nonlinear mixing is likely to lead to everestimation of green vegetation cover and

an underestimation of shade (Roberts et al., 1993).

In soil, the spectral composition of reflected aditted energy primarily depends on the
biogeochemical (mineral and organic) constitueafgical geometric scattering (particle size,
aspect, roughness) and surface moisture (Huete})20@getation cover is well correlated
with the presence or absence of soil organic m&btaits in dryland ecosystem areas tend to be
bright and mineralogically heterogeneous becaudbesf low organic matter, which tends to

mask the spectral contribution of vegetation invigial pixels (Huete and Jackson, 1987).

2.3 Techniques used in optical remote sensing in dryland ecosystems:

Since the launch of the first Earth Resource TeldgyoSatellite (ERTS) on July 23, 1972, the
analysis of data has advanced from simple visuaémation to sophisticated interpretations
based on first principles of spectroscopy and edetagnetic radiation (Ustin et al., 2004).
Most remote sensing in arid regions has conceutrate optical remote sensing techniques
which use data from sensors that collect radiatiorthe reflected solar spectrum. Two

approaches are usually followed: a) calculatiomeafetation indices; b) image classification.

2.3.1 The calculation of vegetation indices

Vegetation indices, reviewed by Jackson et al. ).98ueller and Oleson (1989) and others,
are generally based on ratios of the radianceeanréd and infrared spectral bands, chosen to
maximize the reflectance contrasts between vegetand other materials. The Normalized

Difference Vegetation Index (NDVI) has been mosmownly used to map spatial and
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temporal variation in vegetation (Tucker, 1979)eT¥DVI is a normalized ratio of NIR and

red bands:

P —P
NIR red [3]

I:)NIR + Pred

NDVI =

wherePyr andP,q are the surface bidirectional reflectance factors.

NDVI is sensitive to pixel-level changes in greesmiand fraction of photosynthetically active
radiation absorbed, but it is not differentiallynsiéive to change in vegetation cover versus
vegetation condition (i.e. the vigour, photosynithebpacity or stress of vegetation canopy or
cluster). This means that when an NDVI change aciircannot be readily determined

whether or not it was caused by altered vegetatmrer or condition of cover. Moreover,

NDVI has only limited success in providing accuratgimates of shrubland cover in arid
regions and limited utility in the arid ecosystehmese facts are due to spectral variability of
background materials such as soil and surface latel the strength and variation of soil
spectral albedo (i.e. a pixel may contain reflecgaboth from vegetation and soil), which
causes nonlinearity in the relationship between INBNJ vegetation characteristics (Asner,
2004; Huete, 1988; Huete et al., 1992).

Huete (1988) and Huete et al. (1992) suggested®tileAdjusted Vegetation Index (SAVI).
They introduce a soil calibration factdr, to the NDVI:

SAV|= (1+ I—)(F)NIR ~ I:)red)
Pur t Fea TL

red

[4]

wherelL is a soil calibration factor (0-1). Compared to WDSAVI allows to minimize soil

background influences.

Regarding the relation between the vegetation ies@ad NPV, the role of NPV on NDVI and
SAVI was considered by Van Leeuwen and Huete (19B6¢ significant impact of NPV on

these vegetation indexes was demonstrated, basitse variable as to prevent the formulation
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of a single correction algorithm. Certainly, therighility of NDVI of the surface NPV is
enormous, and NPV rarely has NDVI values closeetm {Figure 2.5). Therefore, NDVI is
difficult to be corrected for instability and ubigpof NPV surface cover in dryland regions.
Due to all these limitations, at the moment, openal guidelines to choose suitable vegetation

indices are still lacking.

2.3.2 Image classification

Image classification usually relies on statisticaéthods including maximum-likelihood,
clustering and discrimination analysis (Haralicklau, 1983) and methods based on principal
components analysis (PCA) (Crist and Cicone, 19B4¢. aim of image classification is to link
image spectra to dominant components in the imagguced by the satellite (scene) or a
characteristic mixture of components. It is assumbdt spectrally similar data will
thematically describe similar elements within angcelt is also assumed that for each pixel
there is dominant scene component, or at leasiquerrand identifiable suite of components

that are present in distinctive proportions (Sneitlal., 1990a).

PCA is used to identify a change in heterogendity.have an accurate measurement, when
using this method, the pixel size must be smaliantthe scale of variability of at least one of

the principle landscape elements (grasslands abknds). If the pixel size is greater than the

scale of variability, the differences between larage elements will average out subpixels and
spatial information is lost. If it is significantlgmaller than the scale of heterogeneity, PCA can
be used to examine the distribution of vegetatiosail in a landscape (Phinn et al., 1996).

Spectral mixture analysiéSMA) is a widely used method to unmix the soil-plant a@an
measurements into the respective soil, vegetatmahNPV single contributions (Smith et al.,
1990a). The spectral response in remote sensing from op@opies is a function of the
number and type of reflecting components, theiicaptproperties and relative proportions
(Adams et al., 1995).
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Figure 2.5- Histogram of NDVI values for nonphotosynthetegetation (NPV) collected
across a broad range of arid and semiarid ecosggtem 972) (from Asner, 2004).

SMA generally involves three steps: 1. assessmewmtinoensionality or number of unique
reflecting materials in a landscape to get the mwnbers; 2. identification of the physical
nature of each of the landscape components or entiers within a pixel; 3. determination of

the amounts of each component in each pixel.

The basic SMA equation is:

R.(1)=2 fiR(4)+&(1) 5]

where RP(A) is the apparent surface reflectance of a pixelnnmagef; are the weighting

coefficients Q f. =1) interpreted as fractions of the pixel made upheféndmember i = 1,2
i=1

...n, R(A) are the reflectance spectra of spectral endmenibersn-endmember model and

£(A) is the difference between the actual and modeéiéidctance.

fi representshe best fit coefficient that minimizes RMS errtgast-squares estimation) given
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by the following equation:

05

i (gj )2
RMS= | 12 6]
m

whereg; is the error term for each of thespectral bands considered.

SMA transforms radiation data into fractions of ewfdominant endmembers spectra that
correspond to scene components. Fraction imagestrdke the mixing proportions of these
endmembers spectra and therefore, via calibratdreld data, the mixing proportions of the
scene components can be depicted (Adams et alg; 1®8ith et al., 1985). SMA differs
significantly from statistical classification innrumber of ways, most significantly in the small
number of endmembers compared to the potentiaifyelaumber of thematic classes required
to describe a scene with a statistical approadedd, SMA separates the spectral contribution
of these intrinsic scene components from shadow a@hér effects of illumination. This
approach is particularly useful for measuring vatieh cover, especially in dryland regions
where the proportions of vegetation and soil mayy \&gnificantly over a short distance
(Smith et al., 1990a). Spectral mixture modelsum&ful in a variety of applications, including
biogeochemical studies, leaf water content, largtatiation, land cover conversions, fuelwood

assessment and soil and vegetation mapping (H2@dd,).

Endmembers spectra can be measured in the labgratdhe field, or from the image itself.

Some SMA approaches use endmembers spectra déovedhe image (e.g. Wessman et al.,
1997; Elmore et al., 2000), whereas others emplbwgries of endmembers spectra, which are
the empirical signature libraries (e.g. Smith et #90a, b; Roberts et al., 1998). Although in
drylands it is exceedingly difficult to locate in&agixels containing 100% cover of each
appropriate endmember, Bateson and Curtiss (1986Bateson et al. (2000) generated SMA
model using PCA to explore image data in multipraehsions. The technique allows the user

to select endmember spectra based on inherentralpeatiability of the image data without
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requiring homogeneous pixels of each endmember.iftralpsignature libraries have been
used widely, despite the recognition that librar@sinot easily capture the full range of
endmember variability as found in nature (AsneQ4)0Indeed, it is unlikely and impractical
that the spectral signature of the world’s dominaggetation could be collected given the tens
of thousands of species that it would be necedsaigentify, and when the range of possible
phenological conditions is included, the methodobees impossible. However, the possibility
that species and/or communities could be identibgda limited suite of biochemical and
architectural characteristics permits new approsche characterization of land cover

properties (Ustin et al., 2004).

Another problem related to the application of SMAnbnlinear mixing, which can hinder the
SMA applications (Roberts et al., 1993; Ray and nislyyr 1996). However, the importance of
the effect is not widely recognised since othedistsi (Villeneuve et al., 1998; Qin and Gerstl,
2000) showed that nonlinear mixing is a secondasature. Moreover, Ustin et al., (1986)
stated that the role of nonlinear mixing in deterimg the spectral reflectance variation of an

ecosystem is wavelength dependent.

The performance of a spectral mixture model waspaoed against NDVI for mapping green
canopy cover in semi-arid environment using theenatapper (TM) data by Elmore et al.
(2000) (Figure 2.6). NDVI was loosely correlatedhwgreen cover but a marked increase in
performance was obtained when utilizing the fultgmtial of TM data via spectral mixture
analysis (Elmore et al., 2000). Results showed 8MA was able to determine the correct
sense of change in percentage live cover and gieeige estimates of the magnitude of that

change.
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Figure 2.6 - Comparison of subpixel green vegetation covengudandsat TM imagery
collected over a semiarid region: live cover meedun the field (x axis) plotted against (a)
SMA results and (b) NDVI (from Elmore et al., 2000)

2.4 Conclusion
Aerial and space remote sensing provide valualiés tfor desertification studies, although

they must be combined with ground-collected datanFthe above review, it is clear that the
spectral reflectance of vegetation in arid and sechiareas changes with the vegetation
structure and surrounding environment. To improue skills in the interpretation of optical
remote sensing data in dry ecosystem areas weimaease our understanding of components
of these areas (vegetation structure, soil and sivere) and develop the techniques of data
interpretation. Moreover, the empirical signatutedries should be developed according to
regions and environments. The combination of remsetesing and ground-collected data can

then provide the basis for the assessment of dfessron.
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PART THREE:
MONITORING DESERTIFICATION IN A SAVANNA REGION IN
SUDAN USING LANDSAT IMAGES AND SPECTRAL MIXTURE
ANALYSIS

Dawelbait, M., Morari, F., 2010. Monitoring desédation in a Savanna region in Sudan using
LANDSAT images and spectral mixture analysis. Jalraf Arid Environment (under

reviewing).
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Abstract

Two Landsat images, acquired in 1987 and 2008, veeayzed to evaluate desertification
processes in central North Kurdufan State (Sud&pectral Mixture Analysis (SMA) and
multitemporal comparison techniques (change veatmalysis) were applied to estimate the

long-term desertification/re-growing of vegetaticover over time and in space.

Site-specific interactions between natural process®al human activity played a pivotal role in
desertification. Over the last 21 years, deseditiien significantly prevailed over vegetation
re-growth, particularly in areas around rural viliges. Changes in land use and
mismanagement of natural resources were the maivindr factors affecting degradation.
More than 120,000 kinwere estimated as being subjected to a medium-thégpertification
rate. Conversely, the reforestation measures, agbply the Government in the last decade
and sustained by higher rainfall, resulted in lovedium re-growth conditions over an area of
about 20,000 kfn

Site-specific strategies which take into accouet ititeractions of the driving factors at local

scale are thus necessary to combat desertificadoniding any implementation of untargeted
measures. In order to identify the soundest stiatednigh-resolution tools must be applied. In
this study the application of spectral mixture a8 to Landsat data appeared to be a

consistent, accurate and low-cost technique totiflerisk areas.

Key words: remote sensingpectral mixture analysis; change vector analysiagsat;

desertification; savannah.
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3.1 Introduction

Desertification is defined as land degradationrid,asemi-arid and dry sub-humid areas due to
climate variation and/or human activity (UNCCD, 299 The three major land use systems
prone to desertification in arid and semi-arid areme rangeland, rain-fed croplands and
irrigated lands. Degradation of vegetation coverdwergrazing and the cutting of woody

plants for fuelwood, buildings, bush fencing andestpurposes are the common desertification
processes in rangeland (Mustafa 2007). On rainefeglands, wind and water erosion are
accelerated by cropland preparation, which involsesaoval of the native vegetation cover,

woodcutting or grass burning. High concentratiohsatts in the root zone associated with the
introduction of irrigation in dry areas (secondaalinization) have caused desertification due
to salts rising with the rise in ground water le(&ingh, 2009).

Four aspects must be evaluated in order to rehéeddsertification process measurable (FAO-
UNEP, 1984): status, which is defined as the state particular piece of land at a specific
time compared with its condition in the past; ratljch refers to the change in the condition
over time; inherent risk, which is a measure of thdnerability of landscape to a
desertification process; and hazard, which is terall rating considering the previous three
aspects. To make the assessment easier, severabrauhave attempted to determine
appropriate indicators. Environmental indicatorerolarge areas must be measurable and
suitable for regular updating. Few of the proposadicators are specifically for dryland
degradation alone, because it is difficult to safmthe effects of climatic factors from those of
human activities in such areas (Mabbutt, 1986; Runid Bochet, 1998; Diouf and Lambin,
2001).

Difficulties have also arisen because the integti@t of the UNCCD desertification definition
can differ greatly according to the choice of iradars. Soil erosion and sedimentation,
perennial plant cover and biomass have been usiedliaators of the desertification status (Le
Houerou, 2006). However a recent survey among @@rex has recognized the long-lasting
loss of vegetation cover and productivity over tiamel in space as the key indicator/variable of
desertification (Hellden, 2008).

One of the most effective tools for desertificatiassessment is remote sensing. It has long
been suggested as a time and cost efficient methodobserving dryland ecosystem
environments (Hassan and Luscombe, 198Mnitoring land cover degradation, as well as
characterizing the dynamism of sand dunes (Colé&dd., 2002).
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Most remote sensing in arid regions has conceutrate optical remote sensing techniques
which use data from sensors that collect radiaitothe reflected solar spectrum. Two main
approaches are usually followed (Smith et al., #99Dawelbait and Morari, 2008): a)

calculation of vegetation indices; b) image clasatfon.

A relationship between plant biomass and a staimtddsegetation index can be established
(Tucker, 1979). Vegetation indices, reviewed byk3an et al. (1983), Tueller and Oleson
(1989) and others, are generally based on ratidiseofadiance in the red and infrared spectral
bands, chosen to maximize the reflectance conttadtgseen vegetation and other materials.
The Normalized Difference Vegetation Index (NDVBshbeen most commonly used to map
spatial and temporal variation in vegetation (Tucké79). NDVI is sensitive to pixel-level
changes in greenness and fraction of photosyndilgtiactive radiation absorbed but is not
differentially sensitive to change in vegetationve&o versus vegetation condition (i.e. the
vigour, photosynthetic capacity or stress of vetmtacanopy or cluster). This means that
when an NDVI change occurs, it cannot be readitgreined whether or not it was caused by
altered vegetation cover or condition of cover (&sr2004). Moreover, NDVI has only limited
success in providing accurate estimates of shrditamer in arid areas and limited utility in an
arid ecosystem. This is due to spectral variabitybackground materials such as soil and
surface litter and the strength and variation df gmectral albedo, which causes nonlinearity in
the relationship between NDVI and vegetation charastics (Huete, 1988; Huete et al., 1992;
Asner, 2004).

Image classification usually relies on statisticakthods including maximum-likelihood,

clustering and discrimination analysis or methodsedda on principal components analysis
(PCA) (Smith et al., 1990a). PCA is used to idgnéifchange in heterogeneity. However, to
obtain an accurate measurement the pixel size lbeustaller than the scale of variability of at

least one of the principle landscape elements ¢geagslands).

Spectral mixture analysis (SMA) is a sub-pixel siisation technique which could be use to
unmix the soil-plant canopy measurements into th&pective soil, vegetation, and non-
photosynthetic vegetation (Smith et al., 1990a) ASdMpends on the spectral response of land
cover components. The spectral response in rerea@rg) from open canopies is a function of
the number and type of reflecting components, thpiical properties and relative proportions
(Adams et al., 1995). SMA appears to be the mdgliazit technique to obtain information on
vegetation cover, soil surface type and vegetatanopy characteristics in semiarid areas
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because the scale of variability of the princi@adscape elements in semiarid areas is larger
than the pixel size in most of the remote sensaigllite imageries (Adams et al., 1995; Okin
and Robert, 2004; Dawelbait and Morari, 2008).

Sudan is a developing country where desertificaonidespread. UNEP considers that three
compounding desertification processes are unde(WhNeP, 2007): climate-based conversion
of land types from semi-desert to desert, mainle da a reduction in annual rainfall;
degradation of existing desert environments, indgdvadis and oases, principally caused by
deforestation, overgrazing and erosion; conversidand types from semi-desert to desert by
human action (deforestation, overgrazing and cafitiv) even if rainfall may still be sufficient
to support semi-desert vegetation. These processegelatively difficult to distinguish,

separate and quantify on the ground (Diouf and Lan#901).

Specific studies are therefore necessary in omwlelefine the driving variables affecting the
processes and adopt efficient site-specific strasetp combat desertification. Since limited
funds are provided to Sudanese research instigjtimmote sensing can be a reliable tool to
study desertification without incurring high cogesg. Ali and Bayoumi, 2004; Dafalla and
Casplovics, 2005; Kheiry, 2007).

This paper aimed to a) test the application of SiMdA.andsat images as a tool to study the
desertification phenomenon and b) individuate andntjfy the driving variables influencing

land degradation in a savannah region in the dgpdraof Sudan.
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3.2 Material and methods
3.2.1 Study site

The study site is located in the north of Umrowab&lorth Kordodan State, central Sudan, in
the Sahelian eco-climatic zone (between latitudé5@35” and 13°39'N and longitude
31°051" and 31°5&1” E) (Figure 3.1). The climate is semi-arid with aahrainfall ranging
from 200 to 750 mm, concentrated during a few summenths (June to September), with a
peak in August. Mean annual temperature is abouitC2®ut the daytime temperature can rise
as high as 45 °C during summer.

The soil is a Cambric Arenosols (FAO-UNESCO, 19@ogrse sandy, of Aeolian origin with
high infiltration rates and inherent low fertilitysand sheets and sand dunes stabilized by
vegetation are the main natural formations. Natuegletation consists of tree&c@ciasspp.),
bushes and graséyistida pallida Steud. on crests of dundstagrostis termularnismert.in

the troughs an@enchrus biflorusRoxb, which grows after crop cultivation. Rangeland and
rain-fed croplands are the most important land sysems. The main crops are sorghum
(Sorghum vulgardPers.), millet Panicum miliaceuni.), sesame3esamum indicurh.) and
watermelon Citrullus lanatus(Thunb.) Matsum & Nakai). The rainy season usulgads to a

short growing period followed by a long dry seasoth a reduction in green vegetation.
3.2.2 Data acquisition and preprocessing

Landsat Thematic Mapper (TM5) and Landsat Enhandeeimatic Mapper plus (ETM+7)
scenes acquired on Septembéf 1987 (TM5 Sep 15) and October™18008 (ETM+7 Oct 18)
were analyzed. The dates coincided with the enthefrainy season when the vegetation
biomass was at its highest level. They were salefdie monitoring the potential long-term
processes of desertification, since both of themevaequired in periods of comparable rainfall
amount (4.6 mm in September 1987 and 8.4 mm in 2ct@008). Landsat images were
selected because they are free of charge, with tighitoring frequency and cover areas
appropriate for monitoring the environment in agi&rgeographic zone. Landsat TM5 and
ETM+7 have a temporal revisit time of 16 days andpatial resolution of 30 m with six
visible/near infrared bands and one thermal bartk daps in ETM+7 scan-line corrector
(SLC)—off were filled using the localized lineastogram mach (LLHM) method (Scaramuzza
et al., 2004). Landsat 7 ETM+ SLC - off, Novemb&r2D08 was used to fill the gaps since the

time lag between the two images was only 15 dagldfae gaps were not overlapping.
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Figure 3.1- Study site position and main landscape elements.

ETM+7 Oct 18 was co-registered to TM5 Sep 15 toewtatke comparative analysis. Images
were not referenced to a standard map base, sheceorily available map had a coarser
resolution (scale 1:250,000). They were geometyicaktified using 13 ground control points
to accurately mach them to ground reference date Mearest neighbour assignment
(Lillesand et al., 2004) was applied yielding atratean square (RMS) error of 0.34 pixels.
Subsets covering only the study area were them@aet from each image. To apply SMA the
digital number (DN) of the images bandl-5 and breed in 8 bits were converted to exo-
atmospheric reflectance units according to Marklasanth Barker, (1986). The conversion also
improved the image quality (De Asis and Omasa, RONo atmospheric correction
techniques, such as empirical line calibration (dfoet al., 2001) or dark object subtraction
(Chavez, 1988) were applied since they have noifgignt effect on the modelling (Wu,
2004).
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3.2.3 Spectral mixture analysis

In remote sensing images of arid and semi-aridrenments, the pixel contains mixed spectral
information due to the high variability in the dibution of land cover components. SMA is
based on the concept that the variance across em ggene is dominated by the relative
proportion of a few spectrally distinct componefEmore at al., 2000). SMA transforms
radiation or reflectance data into fractions of ewfdominant endmembers, which are
fundamental physical components of the scene ardthmEmselves a mixture of other
components (Elmore at al., 2000). Fraction imaggsesent the mixing proportions of these
endmember spectra (Smith et al., 1985; Adams et1886). SMA generally involves three
steps (Huete, 2004): a) assessment of dimensipmalhumber of unique reflecting materials
in a landscape to obtain the endmembers; b) idestidn of the physical nature of each

endmember within a pixel; ¢) determination of theoants of each endmember in each pixel.

The basic linear spectral mixture analysis (LSMA&tion is (Okin and Robert, 2004):

1]

Where R()) is the apparent surface reflectance of a pixehnnimagef; is the weighting

n
coefficient (3 f; =1) interpreted as fraction of the pixel made ugthef endmember= 1,2
i=1

..n, R (/l) is the reflectance spectrum of spectral endmembann-endmember model and

£()I) is the difference between the actual and moded#ectance.

fi represents the best fit coefficient that minimiR&4S error given by the following equation:

r -105

RMS = 2]

Whereé‘j is the error term for each of thespectral bands considered.

One problem related to the application of SMA islieear mixing, which can hinder the SMA
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applications (Roberts et al., 1993; Ray and MurE896). Nonlinear mixing occurs when
photons interact with more than one type of obgetthe earth before returning to the sensor
(Asner, 2004). However, the importance of the efiscnot widely recognised since other
studies (Villeneuve et al., 1998; Qin and Gers@iD@ showed that nonlinear mixing is a

secondary feature.

3.2.4 Endmembers

Some SMA approaches use endmember spectra dervedtifie image (image endmember)
(e.g. Wessman et al.,, 1997; Elmore et al., 200()ereas others employ libraries of
endmember spectra (library endmember), which avdymed from reflectance measurement in
a laboratory (e.g. Smith et al., 1990a). Tompkihsle (1997) pointed out that endmembers
selection is the most critical step in SMA to pd®/ia physically meaningful fraction. While
library endmembers would undoubtedly represent @erpendmember spectrum and would
possibly have given a more accurate absolute almgedanage endmembers simply produce a
different scaling and can thus be used for chamgection (EImore et al., 2000). Bateson and
Curtiss (1996) and Bateson et al. (2000) generadd models using PCA to explore image
data in multiple dimensions, although in drylantissiexceedingly difficult to locate image
pixels containing 100% cover of each appropriagnember. One advantage of this technique
is that the selection of the endmember spectrased on inherent spectral variability of the
image data without requiring homogeneous pixeleath endmember (Asner, 2004). The
approach of Johnson et al. (1985) and Smith €1885) was used to select the endmembers in
this paper. The method is based on PCA applicatadentify the individual endmembers of
multiple surface components. The authors obsetvatfor a mixture of three substances (e.g.
minerals) the scatter-plot of the first two prindeigomponents produced a triangle in which the
‘pure’ endmembers were located at the corners.r8estudies have adapted this technique by
analyzing different principal component pairs amdd managed to successfully obtain image
endmembers within different environments (Drake &ddite, 1991; Theseira et al., 2003;
Brandt and Townsend, 2006). In this study a PCA agdied to Landsat images using ENVI
to identify endmembers. The spectral mixing spacespresented as orthogonal scatterplots of
the first three PC bands were generated and thice®rof these plots were selected as
endmembers after visualization in the original ie@gEndmember spectra were applied to

SMA in order to produce the fraction images withasated the RMSE images.

53



3.2.5 Change detection

Long-term variation in land use and land cover I(0Y was obtained by calculating the
difference in fraction images applying map-algelarad Change Vector Analysis (CVA)
(Malila, 1980; Kuzera et al., 2005). CVA allows tlrection and magnitude of change
between two time periods to be evaluated. Vegetaind soil vulnerable to erosion fraction
images were used to monitor the vegetation re-grgwaind desertification between 1987 and
2008. Change direction was measured as the angliheofchange vector from a pixel
measurement in 1987 to the corresponding pixel0®82 Angles measured between 90° and
180° indicated an increase in sand and decreasegetation, and therefore an increase in
desertified area. On the contrary, angles measwgtteen 270° and 360° indicated a decrease
in sand and an increase in vegetation and therefmesented re-growth conditions. Angles
measured between 0°-90° and 180°-270° indicatekereiincrease or decrease in both
vegetation and sand, and consequently persistanite iconditions (Khiry, 2007). Change of
magnitude is measured as the Euclidean distantength of the change vector from a pixel
measurement in 1987 to the corresponding pixel(@82 Four classes of magnitude were

represented for either desertification or re-gragnaiccording to Kuzera et al. (2005).

3.2.6 Field survey

A 2-weeks field survey was conducted in October&i@0order to test the accuracy of SMA
using ground vegetation data as references. A ¢bthb6 mixed ground cover plots (size 60 x
60m for each plot) were selected. Vegetation wasposed of a mixture of acacia trees,
bushes, grass and shrubs. Trees and bushes wesdegenced with a GPS and the crown
diameters were measured and orthogonally projeidethe ground surface to estimate the
percentage cover. The percentage cover of grasshtaotls was estimated using the line point
intersect sampling method (Elmore at al., 2000)asteements of the grass and shrubs were
taken along 30 60-m long transects, oriented in dNk&ction, every 2 m. Measurement points
were selected at 60 cm intervals along the tran3éwt grass and shrubs under the trees and
bushes were ignored. The accuracy of SMA was estindy scatter plot correlation
comparing total percentage of live cover in eadt plith the live cover (vegetation) fraction

image.
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3.3 Results and discussion
3.3.1 Endmember spectra and SMA applications

The PC analysis of TM5 Sep 15 data found thatitsethree components explained over 99%
of the variance and that simulated data were meamacted and projected onto the space
determined by those components. In this PC-redspade five endmembers were manually
selected (Figure 3.2): bright vegetation (BV),kdeegetation (DV), bright soil (BS), dark sail
(DS) and non-photosynthetic material (NPM). BV detexl of all types of natural vegetation
(e.g. dense shrubs, grass) and cultivated crogs mgher leaf chlorophyll and water content.
DV consisted of natural vegetation with lower ledflorophyll/water content (senescing
vegetation). NPM identified villages (e.g. strawukes), dormant trees and senesced grass and
shrubs. BS and DS represented coarse sandy sall§irensandy soils with higher organic
matter in the top layer, respectively. A highel soganic matter content usually also implies a
higher soil water holding capacity and subsequdritifer water content. The effect of shadow
was ignored since it is reduced for the sparse miasdypical of many semiarid bush species
(Trodd and Dougill, 1998).

Not all image components can be effectively modelising simple endmember models
(Brandt and Townsend, 2006). The endmember set selected to maximize the model
performance for BV, and BS which is more vulnerailevind erosion than DS. To find the
best quality of fraction images, three combinatiohendmembers were tested (Lu and Weng,
2004). The combinations were: 1) all five endmermp@) four endmembers with BV, NPM,
BS and DS; 3) three endmembers with BV, NPM, and B@&ction images derived from
different combinations of endmembers were evaluatigll visual interpretation, error extent
and distribution in the error fraction image. Thambination with four endmembers (BV,
NPM, BS and DS) was chosen since it provided tis¢ distinction of LULC types and lowest

errors.
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Figure 3.2 - Scatter plot of the first three PCs and locaidrihe five endmembers (a,b,c);
endmember spectra (d).

This set of endmember spectra was therefore usedsathe two selected images. Using the
identical endmembers to analyze multitemporal isag#engthened the change analysis
(Elmore et al., 2000). Similar to using referencelraembers from a spectral library, using
identical image endmembers for different imagesvadl a direct comparison of resulting
endmember proportions (Brandt and Townsend, 20068 RMS error images for SMA
process ranged from 0% to 3% for TM5 Sep 15, f@%mto 2.9% for TM5 Oct 25 and from
0% to 2.8% for ETM+7 Oct 18.

Figure 3.3 shows the scatter plot correlation betwine percentage of vegetation determined
with SMA (ETM+7 Oct 18) and field data. In genertde correlation between them is good
with an R of 0.91 but with a slight overestimation, espdgiat lower SMA values. There are
three main sources of error that could have aftetite comparison. The first one can be due to
the misregistration of multidate scene and locatbrihe field sites. This is potentially the
largest source of error (EImore et al., 2000), eistlg in our case where the geometric

rectification was done with 13 ground control peifar all the scenes before subsetting of the
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study area. This was done because the study adeachfixed sharp points that could be used
as control points. Moreover, most of the sites wararacterized by a higher degree of scene
heterogeneity that could have increased the unogrta location (ElImore et al., 2000). Other
sources of error can be related to the applicdtldtM method error to fill the gaps in ETM+7
Oct 18 (Scaramuzza et al., 2004) and accuracyeofigfd survey, especially in the estimation
of grass and bushes. Considering the comparatiygoaph of the present work, the

overestimation errors were considered acceptal@eatate the LULC change.
3.3.2 Change detection

SMA was performed to determine the relative prapog of BV, BS, DS and NPV for each
satellite image (Figure 3.4). High abundance oheammdmember is indicated in the figures by

brighter pixels whereas low abundance is indicatedarker pixels.
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Figure 3.3- Scatter plot correlation between measured and @stAnated vegetation fraction
in 2008.
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Figure 3.4- BV, BS and NPM fraction images and change deiedt long-term monitoring:
(a) BV in 1987, (b) BV in 2008, (c) difference BV, d) BS in 1987, (e) BS in 2008 (f)
difference in BS, (g) NPM in 1987, (h) NPM in 2088d (i) difference in NPM. Circles in (a),
(b) and (c) indicate the three main areas affettediesertification; circles in (g), (h), (i)
indicate the rural villages and their expansionr@&zkyears.
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Images analysis clearly indicates the existenc@edérogeneous and contrasting conditions

within the study site. Relevant negative variationBV fraction (<-0.1) were observed mainly

in three large areas, located near rural villatrethe first two, one in the north and the other in

the south, the average change in BV was -0.1 aidd +@spectively. The eastern part spreads

over a larger surface area, with an average chiang¥ fraction of -0.2.

CVA was quantify desertification processes in degud severity in (Figure 3.5). The
difference in BS fraction for was provided in CVAuation for soil vulnerable to erosion
parameter while the difference in BV fraction wasb&tituted for vegetation fractions.
According to CVA (Figure 3.5), the magnitude ofddification ranges from low to extreme,

with a prevalence of severe degradation conditigmgh or extreme) in the eastern part.

Change detection analysis also shows the existeiozgrowth conditions, mostly spread in

the south-western part.
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Figure 3.5- Desertification and re-growth areas calculatgajplying change vector analysis.
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Overall, desertification prevailed over re-grow({Rjgure 3.6) affecting an area of 153,867
km?, with a prevalence of medium (70,944 %rand high (48,578 kf) classes of magnitude.
Re-growth was estimated on an area of 35,313 kmainly classified as medium (17,005 3m
and low (13,708 kA). However, average estimation is not sufficientpimvide a clear
representation of driving factors of change at $aagbe scale (Collado et al., 2002; Anyamba
and Tucker, 2005).

The degradation was driven by various factors, Wwiiperated with different intensity in the
areas. In the eastern part the expansion of edlamgiggered the change in land use and
mismanagement of the natural resource, mainly cabgedeforestation to supply wood for
domestic uses i.e. building, cooking, etc., andrgrazing (Sherbinin, 2002). More details of
the dynamism around villages are given in Figui® Bhe NPV fraction change image shows
two large patches of pixels with value 1 (new stremwses) due to the expansion of the village
over 21 years. In the same area the BV fractiomredses to O with a net change of -1,

indicating an over-exploitation of the natural viegen for domestic purposes.

0O Desertified areas
0O Regroning areas

Area (km2x1000
8 8 8 & 8

Extreme Hgh Medium Low
Status

Figure 3.6 - Classification of study site according to theseltification and re-growth
magnitude classes.
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Figure 3.7 - Detailed views of the degraded eastern parefsite: (a) BV in 1987, (b) BV in
2008, (c) difference in BV, (d) NPM in 1987, (e) MRn 2008 and (f) difference in NPM. The
expansion of the village is clearly shown by twagaclusters of pixels with value 1 in (f).

Two other processes affecting soil degradation wepegnized by SMA. The first one is
related to sand encroachment and dune migratioighwdre considered as one of the main
processes of land degradation in arid regions @dal®95). In the northern area a sand dune
(locally called Gouz) is visible in the BS fractiamage of 1987, along the SE borders of the
village of Tafantara (Figure 3.8). At that timegttlune was stabilized by natural vegetation but
deforestation for domestic purposes and overgrazauged the degradation of the site. The
change in BV fraction clearly demonstrates the ntade of the process (Figure 3.8). The
degradation led to the encroachment of the sané @duan E-SE-S direction according to the
prevailing wind direction in winter and early summgBigure 3.8) and consequently the sand

fraction in the SE increased in 2008.
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Figure 3.8- Detailed views of the degraded northern pathefsite: (a) BV in 1987, (b) BV in

2008, (c) difference in BV, (d) BS in 1987, (e) B52008 and (f) difference in BS. Figures
clearly illustrate the effect of sand movement aditg to the prevailing wind directions
(arrows).

The conversion of rangeland into cultivated crogkams the third phenomenon affecting the
desertification of the study site. In the southpant (Figure 3.9), the BV fraction in 1987, on
average 0.46, was represented mainly by rangekinithe same time the average BS fraction
was 0.1. The change in land use to cultivationtdéed decrease in BV, especially in the central
part and a contemporary massive increase in BSidracThe conversion of dry and fragile

rangelands into traditional and mechanized croplhad already been indicated by many
Authors as one of the main processes affectingrtiiésation in Sudan. Over-exploitation of

semi-desert environments through deforestationtgoaeing and cultivation results in habitat
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conversion to desert, even though rainfall mayl & sufficient to support semi-desert

vegetation (Nicholson, 2005).

Re-growth conditions observed in the SW part weegnty due to Government reforestation
projects in last decade and sustained by highefalain the last years in the study area. The
Rainfall Anomaly Index (RAI) (Tilahun, 2006) timeerses (Figure 2.10) confirmed the
existence of favourable conditions for vegetatioomgh from the 1990s to 2008, with higher

frequency of positive anomalies than in the 1975 E980s.

Figure 3.9- Detailed views of the degraded southern pathefsite: (a) BV in 1987, (b) BV in
2008, (c) difference in BV, (d) BS in 1987, (e) BS2008 and (f) difference in BS.
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Figure 3.10- Rainfall Anomaly Index (RAI) from 1973 to 2008.

This result is in accordance with the recent seeedind model based studies of the Sahel (e.g.
Eklundh and Olson, 2003; Anyamba and Tucker, 20@5jch demonstrated that vegetation
has recovered from the peak drought conditionsesedf in the region in the 1980s. For
example, Anyamba and Tucker (2005), monitoring $adelian vegetation dynamics using
NDVI in the period 1981-2003, observed the preve¢enf greener than normal conditions
from the 1990s to 2003. Indeed, NVDI time seridbowed a similar increase in rainfall over
the region during the last decade and indicatemdugl slow but persistent recovery from the
1980s.
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3.4 Conclusions

Site-specific interactions between natural processel human activity play a pivotal role on
desertification in North Kordodan State. Even iepbmena at large scale (e.g. positive rainfall
trend) in the last years have allowed a graduabvexy from the peak drought conditions
suffered in the Sahel during the 1980s, there @tdascing variables that act at local scale to
cause land degradation. One of the most importatofs affecting such degradation is human
activities, which exploit the natural resourcesdrey/ their ecological resilience threshold until
desertification is irreversible (Hellden, 2008).urtdjer and local energy needs seem to be the

driver of land use and management.

Site-specific strategies that take into accountititeractions of the driving factors at local
scale are thus necessary to combat desertificammiding the implementation of untargeted
measures. In order to identify the soundest gjiese high-resolution tools must be applied. In
this study, the application of spectral mixture lgsia to Landsat data appeared to be a
consistent, accurate and low-cost technique toirbtdormation on vegetation cover, soll

surface type, and identify risk areas.

65



66



PART FOUR:
SPATIAL-TEMPORAL ASSESSMENT OF DESERTIFICATION IN
THREE DIFFERENT ECOLOGICAL ZONES IN SUDAN 1987-2008
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Abstract

Variations in landscape patterns according to theolegical zones play a great role in
desertification processes. The amount of vegetatawer, types of dry ecosystem vegetation
and structure and phenology of vegetation regardmthe harsh environment differ from one

ecological zone to another.

Three Landsat images, acquired in 1987, 1999 an@820vere analyzed to evaluate
desertification processes in three different ecwlalgzones in Sudan (North Kordofan, River
Nile and Northern state). Spectral Mixture Analy68MA) was adopted using endmembers
spectra derived from the images. Multitemporal carngon techniques (visual interpretation
and change vector analysis) were applied to esentla¢ long-term desertification/re-growing
and to emphasize land cover variation over time amdspace. Site-specific interactions
between natural processes, climate variation andhdu activity played a pivotal role in

desertification, however their interaction variedcarding to the ecological zone.

Different factors drove the desertification in tieee areas. In sitel, human activities strongly
affected degradation phenomenon. The expansioillades triggered the change in land use
and mismanagement of the natural resource, maiabsed by deforestation to supply wood
for domestic uses. The degradation moreover prodnaand encroachment and dune
migration. In different way climatic constrainsose desertification in sites 2 and 3. Drought,
degradation and soil erosion were the causes afet®sf of desertification. In these sites re-
growth conditions were observed only where forestrggricultural projects were established.

Site-specific strategies which take into accoumet ititeractions of the driving factors at local

scale are thus necessary to combat desertificadgniding any implementation of untargeted

measures.
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4.1 Introduction

In the ecosystems prone to desertification, una@gural condition, vegetation cover varies
from sparse or non-existent in the deserts andzamneé to relatively dense in the wetter parts of
the semi-arid regions (Okin and Robert, 2004; Miasta007). Vegetation is more vulnerable

to degradation in drier part of arid region thae wetter part. Degradation of vegetation cover
exposes the surface of land and makes it vulnerabkoil erosion (Asner, 2004; Mustafa,

2007).

Arid and semi-arid regions include most of the wd@rishrub-land, grassland and savannas and
support a large fraction of the world’s food protioie, so there is high pressure on land

(Graetz, 1994; Asner, 2004). The population growthhis areas cause mismanagement in
such fragile area by overgrazing, cutting wooddomestic use and changing land use.

Soil erosion is the main process of desertificateord land degradation. Commonly, it is
grouped into three phase: (1) physical detachmesbib particles, (2) transportation of soil

material by wind and water, and (3) deposition @f material, including their accumulation

and sand dunes (Huete, 2004). Inherent erodibilfitghe soil, extent of protective ground

cover, topography, climate and landuse are fachffiecting erosion in arid and semi-arid.
Vegetation and soil movement could be processatesgertification as well as factors cause
erosion. On rain-fed croplands, wind and water ierosare accelerated by cropland
preparation, which involves removal of the nativegetation cover, woodcutting or grass
burning (Sherbinin, 2002; Mustafa, 2007).

Wind and water erosion is extensive in many paftédfdca. Excluding the current deserts,
which occupy about 46% of the land mass, about 86&e land is prone to water erosion and
about 22% to wind erosion (Reich et al., 2001).rHigtensities of these erosion forms occur
mainly in the semi-arid and sub-humid areas. Thiés So Central Africa are largely low
activity Oxisols and Ultisols and are less susd¢dgtio water erosion than wind erosion, unless

severely mismanaged (Oldeman et al., 1991).

Sudan is one of African countries facing desedtimn. The arid and semi-arid areas in Sudan
cover an area of 1.78 million Kmwhich represents about 72% of the total areh@fbuntry.
Three complex desertification processes are ongdiNEP, 2007): climate-based conversion
of land types from semi-desert to desert, mainle da a reduction in annual rainfall;

degradation of existing desert environments, indgdvadis and oases, principally caused by
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deforestation, overgrazing and erosion; conversidand types from semi-desert to desert by
human action (deforestation, overgrazing and cafitiv) even if rainfall may still be sufficient
to support semi-desert vegetation. These proceaseselatively difficult to distinguish,
separate and quantify on the ground (Diouf and Lian#9)01; UNEP, 2007).

Regional and national planning to combat desedtificmn can be performed more efficiently if
accurate spatial information on the risk of defiediion and its evolution in the time are
provided. Maps which show such information can bedpced through the use of satellite
images and digital data and field indicators (AyoR004). Rozanov (1990) have emphasized
the need for developing a system of desertificaggaluation by using indicators, such as
vegetation and soil change. Remote sensing of aggetcover and soil is thus critical for
regional scale monitoring. In order to use remeatesgg in mapping desertification processes
study of optical properties of the vegetation aoidledlements is needed.

Variations in landscape patterns according to tbelogical zones play a great role in
desertification processes. The amount of vegetatomer, types of dry ecosystem vegetation
and structure and phenology of vegetation regartbritpe harsh environment differ from one
ecological zone to another. These factors affecttntribution of vegetation reflectance in the
total pixel reflectance relative to the other mialer (Okin and Robert, 2004; Dawelbait and
Morari, 2008). Mineral and organic matter, soilusture and moisture content of the soil

surface are the main factors affecting the reflemteof soil in the optical remote sensing.

The meaning and value of remote sensing data dr@need through skilled interpretation, in
conjunction with conventionally mapped informati@md ground-collected data. Spectral
Mixture Analysis (SMA) has proved to be a powerfathnique to monitor land cover
degradation in arid and semi-arid areas. SMA isulaxel classification technique which
could be use to unmix the soil-plant canopy measargs into the respective soil, vegetation,

and non-photosynthetic vegetation (Smith et al90Eg.

Using SMA and LANDSAT images, this study aimed ndentify the main variables driving
degradation across three different ecological zoneSudan and evaluate the desertification

risk and its evolution in the time.
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4.2 Material and Methods
4.2.1 Study sites

The methods were implemented according to sequsteps and processes given in the flow
chart shown in Figure 4.1. Three sites were saleitteorder to compare processes driving
desertification in three different ecological zansavannah, semi-desert and desert (Figure
4.2).

Site 1 is a flat area located in north of UmmruabaNorth Kurdufan State (12°5%H'-
13°349'N and 31°(b1"-31°5851"E). Site 2 is located near Aldamer in River Nilat8t along
the west side of the river Nile (17°RP9"-17°35341"N and 33°47M03"-33°5348"E). The
landscape is characterized by small valleys cegbrin WE direction with seasonal streams.
Site 3 is located along the upstream of Waddi Alatlagn which runs from the east to the west
during the rainy season in Northern State (17°2918°0536"N and 31°2918"-31°3639"E)
(Figure 4.2).

Field Survey » Selection of sites

v

Selection of images

v

Filling gaps in ETM+7 off SLC images

v

Pre-processing

v

=$ Visualization |<=—P Extraction of endmembers spectra

Y v

Accuracy ¢ Deriving of fraction images

v

Change detection of LCLU

Figure 4.1- Flow chart of the methodology steps and processes
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The vegetation in the three sites is mainly comg@dse dominant trees, shrubs, grass and in
site 1 crops. Natural vegetation in site 1 considtérees Acaciasspp.), bushes and grass,
Aristida pallida Steud. on crests of dundsragrostis termulaTnismert.in the troughs and
Cenchrus bifloru®Roxb, which grows after crop cultivation. Rangeland aait+fed croplands
are the most important land use systems. The maps@re sorghun§prghum vulgaré®ers.),
millet (Panicum miliaceunL.), sesame Jesamum indicuni.) and watermelonitrullus
lanatus (Thunb.) Matsum & Nakai). Dominant and endogenaeed site 2 ar€apparis
decidusForsk. andAcacia ehrenbergianddayne., whileProsopischilensis(Molina) Stuntz.
and Prosopisjulifiora (Sw.) DC. are exotic and invasivAcacia seyalDel., Leptadenia
pyrotechnicaForssk., Faidherbia albida Del. andBalanites aegyptiacglL.) Del. are the
dominant trees and shrubs in site 3. More de#ditsut ecological zones, climate and soil of
the three sites are given in Table 4.1.

.":ll'-lrh' T i Pagse L e
i [ S —— e,

B dswra [ QUSSR e
[=Prr B e

- ——

Figure 4.2-Location and landscapes of the three study sjtegeal in savanna b) site 2 in
semi-desert region c) site 3 in desert region.
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Table 4.1-Climate and soils in the three study sites.

Ecological zone Annual Temperature Temperature Type of soil
(Harrison and Precipitation in winter °C in summer °C (FAO-UNESCO,
Jackson, 1958) 1997)
Mean 13 Mean 27 Cambric
Site 1 Savannah 200 to 750 mm Min. 10 Min. 20 Arenosols
Max. 25 Max. 45
Mean 18 Mean 34 Arenosols,
Site 2 Semi-desert 50 to 60 mm. Min. 8 Min. 22 Fluvisols and
Max. 31 Max. 48 Cambisols
Mean 13 Mean 36 Arenosols and
Site 3 Desert > 60 mm Min. 4 Min. 24 Fluvisols
Max. 26 Max. 49

4.2.2 Data acquisition and preprocessing

Three Landsat images were selected and analyzetldy the desertification processes in the
three study sites: One Landsat Thematic Mapper (Tht®ne in 1987 and two Landsat
Enhanced Thematic Mapper plus (ETM+7 SLC-on) sden&999 and (ETM+7 SLC-off)
scene in 2008. Times of acquisition of these imagesgiven in Table 4.2. The dates of the
images were coincided with the end of the rainysgeavhen the vegetation biomass was at its
highest level. While TM5 1987 and ETM+7 SLC-off 30@vere acquired in periods of
comparable rainfall amount, ETM+7 SLC-on 1999 insmgere selected to study the effect of
rain. Indeed the mean annual rainfall in 1999 wek m, 162 mm and 83 mm in site 1, 2 and
3 respectively, relativity higher than the meanwaimainfall (Table 4.1). Landsat images were
selected because they are free of charge, with highitoring frequency and cover areas
appropriate for monitoring the environment in agirgeographic zone. Landsat TM5 and
ETM+7 have a temporal revisit time of 16 days andpatial resolution of 30 m with six
visible/near infrared bands and one thermal barm daps in ETM+7 SLC-off were filled
using the localized linear histogram mach (LLHM)thwal (Scaramuzza et al., 2004). Landsat
ETM+7 SLC-off, November 8 2008, October 1 2008 and October"22008 were used to
fill the gaps in selected ETM+7 SLC-off 2008 imagesite 1, 2 and 3 respectively, since the
gaps were not overlapping and the time lag betweertwo images was only 15 days in site 1

and 2 and one month in site 3.
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Table 4.2-Acquisition dates of Landsat images.

1987 1999 2008

Sitel TM5 - Sep 15th  ETM+7 ON-SLC - Nov 11th ETM+7 OFFGLE Oct 18th

Site2 TM5 - Sep 24th ETM+7 ON-SLC - Oct 3rd ETM+7 OFF-SLGep 25th

Site3 TM5-0ct01st ETM+7 ON-SLC - Oct 26th ETM+7 OFFGE Aug 31st

For each site, the images were co-registered to IiMmdertake comparative analysis. Images
were not referenced to a standard map base, sieceorily available map had a coarser
resolution (scale 1:250,000). They were geometyiaalctified using 13, 16 and 14 ground

control points in site 1, 2 and 3respectivly towately mach them to ground reference data.
The nearest neighbour assignment (Lillesand e2@D4) was applied yielding a root mean

square (RMS) error of 0.34, 0.67 and 0.58 pixelshim 3 study sites with consequent order.
Subsets covering only the study area were theraeetl from each image for each site. To
apply SMA the digital number (DN) of the images t&b and 7 recorded in 8 bits were

converted to exo-atmospheric reflectance unitsraieg to Markham and Barker, (1986). The

conversion also improved the image quality (De Al Omasa, 2007). No atmospheric
correction techniques, such as empirical line catibn (Moran et al., 2001) or dark object

subtraction (Chavez, 1988) were applied since b@e no significant effect on the modelling

(Wu, 2004).

4.2.3 Mapping of land cover

SMA appears to be the most efficient techniquebtiio information on vegetation cover, soil
surface type and vegetation canopy characterigticemiarid areas. SMA was used in this
study to map the land cover. SMA transforms radmatr reflectance data into fractions of a
few dominant endmembers, which are fundamentaliphlysomponents of the scene and not
themselves a mixture of other components (Elmoral.at2000). The basic linear spectral
mixture analysis (LSMA) equation is (Okin and Rab2004):

(2]

Where R(}) is the apparent surface reflectance of a pixehnnimagef; is the weighting
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n
coefficient (3 f; =1) interpreted as fraction of the pixel made ugthef endmember= 1,2
i=1

..n, R (A) is the reflectance spectrum of spectral endmembann-endmember model and

5(/1) is the difference between the actual and moded#ectance.

fi represents the best fit coefficient that minimiR&4S error given by the following equation:

r -105

RMS = | [2]

Whereé‘j is the error term for each of thespectral bands considered.

The most critical step in SMA and production of ctrans image is the selection of
endmembers. The derivation of the endmembers speatid be either from the image (image
endmember) (e.g. Wessman et al., 1997; ElImore,e2@00) or measure in laboratory (library
endmember) (e.g. Smith et al., 1990a). In this \stwhdmembers were selected from the
images using the approach of Johnson et al. (1888)Smith et al. (1985). The method is
based on PCA application to identify the individuemhdmembers of multiple surface
components. PCA was applied to Landsat images U&W\gl to identify the endmembers for
each site individually. The spectral mixing spaseepresented as orthogonal scatter plots of
the first three PC bands were generated and thice®rof these plots were selected as
endmembers after visualization in the original ie@gEndmember spectra were applied to
SMA in order to produce the fraction images (propos of endmember spectra) with
associated the RMSE images (Smith et al., 1985n&sdat al., 1986).

The problem of nonlinear mixing, which can hindee tSMA applications (Roberts et al.,
1993; Ray and Murray, 1996), was ignored sinceroshedies (Villeneuve et al., 1998; Qin
and Gerstl, 2000) showed that nonlinear mixing seeondary feature. More details on SMA

application are given in Dawelbait and Morari (2D10
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4.2.4 Change detection

Change can be identified explicitly either as cleamy the number of endmembers or as a
change in endmember fractions (Adaetsal., 1995). In the study the change analysis was
estimated according to the second approach sinddemmical endmembers set was used to
derive fraction images (Elmore et al., 2000). Ehapproaches was conducted to evaluate the
variation in land use and land cover (LULC). Thstfitwo focused on visual interpretation of
the land cover elements in the different yearsdirett measument using map-algebra. Visual
interpretation for each endmember was performedigusi standard RGB composite by
displaying fractions images of the three years 198B9 and 2008 as blue green and red,
respectively. The third approach consisted in Chavigctor Analysis (CVA) (Malila, 1980).
CVA allows the direction and magnitude of changeMeen two time periods to be evaluated.
The vegetation and soil vulnerable to erosion foacimages were used to monitor the
vegetation re-growing and desertification betwe8&71land 2008 only since the two years has
a comparable amount of rain as main before. Chdirgetion was measured as the angle of
the change vector from a pixel measurement in 1@8%e corresponding pixel in 2008.
Angles measured between 90° and 180° indicatednarease in sand and decrease in
vegetation, and therefore an increase in deseltdiea. On the contrary, angles measured
between 270° and 360° indicated a decrease inaahdn increase in vegetation and therefore
represented re-growth conditions. Angles measuetdiden 0°-90° and 180°-270° indicated
either increase or decrease in both vegetationsand, and consequently persistence in the
conditions (Khiry, 2007). Change of magnitude isasweed as the Euclidean distance or length
of the change vector from a pixel measurement B71® the corresponding pixel in 2008.
Four classes of magnitude were represented foereitbsertification or re-grow according to
Kuzera et al. (2005).

4.2.5 Field survey

A field survey was conducted during six weeks i@ lsummer 2008 (September-October) in

order to test the accuracy of SMA using ground tegge data as references. In site 1 field

survey was conducted in an area located aroundupgf villages where the effects of human

activities in a savannah region could be testediskbm forest and a cropped area, where a
new agricultural projected is ongoing since 200&enselected in sites 2 and 3 respectively.
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A total of 16 mixed ground cover plots (size 600w6for each plot) were selected in each site.
Vegetation in the selected plots in all sites wamposed of a mixture of acacia trees and
bushes. Site 1 only had grass and shrubs in addifi@es and bushes were georeferenced with
a GPS and the crown diameters were measured ahdgortally projected to the ground
surface to estimate the percentage cover. The mage cover of grass and shrubs in site 1
was estimated using the line point intersect sargplmethod (Elmore at al., 2000).
Measurements of the grass and shrubs were takeg ab60-m long transects, oriented in N-
S direction, every 2 m. Measurement points wetlectsd at 60 cm intervals along the
transect. The grass and shrubs under the treesusmhegs were ignored. The accuracy of SMA
was estimated by scatter plot correlation compatangl percentage of live cover in each plot

with the live cover (vegetation) fraction image.

79



4.3 Results and discussion
4.3.1 Endmember spectra and SMA applications

The first three components of PC of TM5 data farhesite explained over 99% of the variance
and estimated data were mean-corrected and prdject® the space determined by those
components. From these PC scatter plots, five enthees were manually selected in site 1
while three endmembers were selected in site 23afktigure 4.3). Two type of vegetation in
site 1, bright vegetation (BV1) and dark vegeta{ibv1), and one type of vegetation in site 2
and 3 (V2 and V3) were selected. BV1 consistedlldfypes of natural vegetation (e.g. dense
shrubs, grass) and cultivated crops with highef t#dorophyll and water content. DV1
consisted of natural vegetation with lower leaf ocbphyll/water content (senescing
vegetation). V2 and V3 represented all types otinahtvegetation (e.g. dense shrubs, grass).
The reflectance of BV1 spectrum at 0.83 micromé@and 4) is higher than that in V2 and V3
spectra (Figure 4.4) which indicate higher leafootphyll and water content, while DV1
spectrum is similar to V2 spectrum. The reflectaot®3 spectrum at 0.66 micrometer (band
3) is higher than the reflectance at 0.56 microm@tand 2) which indicates very low leaf

chlorophyll/water content even during the rainyssea(Asner, 2004) (Figure 4.4).

Two types of soils were identified in each siteigBt soil (BS1) and dark soil (DS1) in site 1
represented coarse sandy soils and fine sandyweithishigher organic matter in the top layer,
respectively. Both BS1 and DS1 absorbed more enar@y215 micrometer (band 7) than at
1.65 micrometer (band 5) which indicates availapilbf moisture content (Jensen, 2005)
(Figure 4.4). A higher soil organic matter conteisually also implies a higher soil water
holding capacity and subsequently higher wateresgntn site 2 and 3 bright soil (BS2 and
BS3) represented Arenosols and Fluvisols soilsrésoaandy soils). Dark soil in site 2 (DS2)
represented Cambisols soils (very fine brown saitiples). Both BS2 and DS2 were in dry
condition since there was high reflectance in barfdensen, 2005). The reflectance in Band 5
and 7 of BS3 was the highest one across the tlite=e Bark soil in site 3 (DS3) represented

coarse and fine sandy soil with relatively high stoie content (Figure 4.4).

Non-photosynthetic material (NPM1) was identifieuyoin site 1. NPM1 represented villages

(e.g. straw houses), dormant trees and senescesd gna shrubs. The effect of shadow was
ignored since it is reduced for the sparse canotyieeal of many semiarid bush species

(Trodd and Dougill, 1998).
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Figure 4.3- Scatter plot of the three PCs, endmembers Iatébioeach site individually.

While BS1, BS2 and BS3 are vulnerable to erosioB8l@xnd DS3 are less vulnerable to
erosion since moisture content is a resistanceifdot soil erosion. On the contrary DS2 is

seriously vulnerable to wind erosion becausedtisr than the other two dark soils.
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Figure 4.4- Endmembers spectra for each site individually.

Endmemebers in the three sites were chosen notagolyrding to the observations in the field
survey, but also to maximize the model performaag to minimize RMS error (Table 4.3).
Accordingly, only four endmembers (BV1, BS1, DSH &PM1) from site 1 were selected for
applying the fraction images. Relatively high esravere observed in 2008 (Table 4.3) and
could be due to the correction of ETM+7 off SLC §&unuzza et al., 2004). Figure 4.5 shows
the scatter plot correlation between the vegetdtimction estimated with SMA (ETM+7 2008)
and measured in the field. In general, the coiimeldbetween them is good with afi & 0.75

but with a slight overestimation. Larger discrepasavere observed in site 2.

There are main sources of error that could hawectdtl the comparison. The first one can be
due to the misregistration of multidate scene aywhtion of the field sites (Elmore et al.,
2000). Other sources of error can be related tafpdication LLHM method error to fill the
gaps in ETM+7 Oct 18 (Scaramuzza et al., 2004) wpioduced high RMS errors in SMA,

especially for site 2, and accuracy of the fieldvey. Anyway, considering the comparative
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approach of the present work, the overestimatioor&mere considered acceptable to evaluate
the LULC change.

0.2 04 0.6 0.8 1
Held Data

Figure 4.5- Scatter plot correlation between measured and 8Mimated vegetation fraction

in 2008 for the three sites.

Table 4.3- RMS errors in the application of SMA.

TM5 - 1987 ETM+ 7 SLCon -1999 ETM+ 7 SLC off - 2008
site 1 0% to 3% 0% to1.5% 0% to 2.8%
site 2 0% to 1% 0% to 1.8% 0% to 4.6%
site 3 0% to 1% 0% to 1.6% 0% to 4.2%
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4.3.2 Change detection

Average estimation of endmember fractions for tied sites are given in Figure 4.6. The
effect of the rainfall was very clear for BV (silg, whose fraction increased of 16% from
1987 to 1999 (the rainiest year) and then decdeas008 to the initial level. The same
phenomenon was observed also for V2 but not for M& fraction of bright soil increased
over the 21 yrs in sites 1 (+14%) and 3 (+16%),levin site 2 decreased of 26%. At the same
time DS2 increased from 44% to 80%. However, ayerastimation is not sufficient to

provide a clear representation of driving factof<lvange at landscape scale (Collado et al.,
2002; Anyamba and Tucker, 2005).
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Figure 4.6- Average estimation of endmember fractions fahesite individually.

84



Tempo-spatial variations of the endmember fractiares visually interpreted by displaying

fractions for year 1987 in blue, year 1999 in graed year 2008 in red for each endmember
(Figure 4.7). The visual interpretation of colomguosite shows that the major changes have
the most saturated colors while the minor changes Hess saturated colors. White tones

indicate no temporal change and grey tones indicadeexistence for that endmember.

Site 1 Site 2 Site3

DS1 DSz DS¢&

Figure 4.7- Displaying endmember fractions images for eathisistander BGR composite as
year 1987 in blue, year1999 in green and year 200&d.
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Vegetation fraction in general was higher in 198@ 4999, mainly located around the villages
in site 1 and along the valleys in site 2 and 8jdating lost of vegetation in 2008. Figure 4.7
shows an increase in vegetation fraction due tchtgle rainfall in 1999 in the north-east part
of site 1 and along the valleys in site 2 (satutrageeen color). High saturated blue appeared
along the valley in site 3 indicating higher vegeia fraction in 1987. In 2008 vegetation
fraction increased in a small scattered areasténlsand in a large eastern part in site 3 (red

color), while stable condition were observed in detveam valley of site 2 (white color).

A drastic change of BS1 fraction can be observe®008 (Figure 4.7). It was spatially
distributed around the villages and across thefsita the northern to the eastern part. In site
2, DS2 fraction was high along the two main vall@ysl987 and 1999 (saturated blue and
green color) but in 2008 increased in areas witdrspvegetation, mostly in the southern part.
In the same part there were patches showing stabiditions (white color) for BS2. In site 3,
BS3 fraction was higher in 1987 in the north eastwnk of the valley (saturated blue color)
and in 2008 in the south western bank (red colehjle it was steady along the valley (white

color).

The fraction images of 1987 and 2008 were usedheénapplication of CVA to identify the
desertified and re-growth areas. BS1, BS2+DS2 &8l fiBactions were used in CVA equation
to consider soil vulnerable to erosion while BV12 \and V3 fractions were used for

vegetation.

According to CVA (Figures 4.8, 4.9 and 4.10), thagnitude of desertification in site 1 ranges
from low to extreme, with a prevalence of severgrdeation conditions (high or extreme) in
the eastern part. Extreme status of desertificatias observed in site 2 along the valleys and
high to low in site 3. The percentages of the ddémat areas are 48%, 25% and 76% out of the
total area of site 1, 2 and 3 respectively. Chatejection analysis shows the existence of low-
medium re-growth conditions in site 1 (Figure 4®pstly spread in the south-western part,
and in site 3 (Figure 4.10).
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Figure 4.8- Desertification and re-growth areas in site [tulated by applying change vector
analysis.

Desertification prevailed over re-growth in siteaffecting an area of 153,867 knwith a
prevalence of medium (70,944 Rmand high (48,578 kf) classes of magnitude. Re-growth
was estimated on an area of 35,313 kmainly classified as medium (17,005 ¥rand low
(13,708 k). In site 2 desertification was “extreme” overaea of 24,482 kfrwhile low re-
growth conditions characterized a restricted aréal,293 knf. The rest of the area,
corresponding to desert core , was classified asigpence condition (71,298 Kn(Figure
4.9). The highest percentage of desertified af@an(low to high) was estimated in site 3,
over an area of 98,275 Kroorresponding to the 76% of the total surface.
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Figure 4.9 Desertification and re-growth areas in site Zglated by applying change vector
analysis.

Different factors drove the desertification in theee areas. In sitel, human activities strongly
affected degradation phenomenon. First of all ttgaasion of villages triggered the change in
land use and mismanagement of the natural resomaialy caused by deforestation to supply
wood for domestic uses i.e. building, cooking, ,eémd overgrazing (Sherbinin, 2002). The
degradation moreover promoted sand encroachmerdwame migration, which are considered
as one of the main processes of land degradatiaridiregions (Balba, 1995). The conversion
of rangeland into -cultivated croplands is anothdrermmenon which affected the
desertification in the site 1, especially in theutbern part. The change in land use to
cultivation led to a decrease in BV, especiallyhe central part and a contemporary massive
increase in BS fraction. The conversion of dry dradjile rangelands into traditional and
mechanized cropland has already been indicateddmnymuthors (e.g. Herrmann et al., 2005;
Olsson et al., 2005) as one of the main procesesting desertification in Sudan. Over-
exploitation of semi-desert environments througfostation, overgrazing and cultivation
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results in habitat conversion to desert, even thaagnfall may still be sufficient to support
semi-desert vegetation (Nicholson, 2005). Desediiibn was partially compensated by the re-
growth conditions observed in the SW part, whichrevegnainly due to Government
reforestation projects in last decade and sustayetigher rainfall in the last years in the
study area. The Rainfall Anomaly Index (RAI) (Tilan, 2006) time series (Figure 4.11)
confirmed the existence of favourable conditions egetation growth from the 1990s to
2008, with higher frequency of positive anomalieart in the 1970s and 1980s. This result is
in accordance with the recent satellite and modsekt studies of the Sahel (e.g. Eklundh and
Olsson, 2003; Anyamba and Tucker, 2005), which destrated that vegetation has recovered
from the peak drought conditions suffered in ttggae in the 1980s.
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Figure 4.8- Desertification and re-growth areas in site Zualated by applying change vector
analysis.
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Figure 4.11-Rainfall Anomaly Index (RAI) from 1973 to 2008 feach site individually.

In different way climatic constrains drove des@étfion in sites 2 and 3. Drought, degradation
and soil erosion were the causes and effects ddriifgsation (Guoping et al., 2001). In
particular, extreme desertification was observed@lthe valley in site2, where the progressive
lost of vegetation could have enhanced soil dedgi@dan fact, vegetation along the valleys in
the desert areas plays a very important role inced water erosion during the rainy season
(Fenli et al., 2002) and wind erosion during thg sieason (Bach, 1998). RAI time series for
desert and semi-desert regions (Figure 4.11) cuefirthe existence of drought period during
the last 36 years. Indeed even if RAI in the lasi tecades registered higher anomalies than

1970s and 1980s, there was not a prevalence diy@anomalies such as those ones observed
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for site 1. This condition explained the existent¢he extreme condition of desertification in

site 2 and the large diffusion of desertified aresite 3.

Moreover, in these sites re-growth conditions waygserved only where forestry or agricultural
projects were established. For instance in sitev2as due to planting dProsopis chilensis
(Molina) Stuntz. andProsopis juliflora (Sw.)DC. which were exotic and invasive (Salih and
Mohamed, 2008). In site 3 the eastern re-growth acgresponded to few agricultural projects
established in 2007, but that are considered tartsistainable and at high risk (Okin and
Roberts, 2004) since they are surrounded by désedréirea.

4.4 Conclusions

A converging outlook about the causes and effedtsdrought, land degradation and

desertification is still lacking. As pointed out Wyerrmann et al. (2005) there are two
competing schools representing diametrically opggsesitions in this debate: one supports
the hypothesis that human activities are respomédrla irreversible desertification in Sahel by
“overuse of resources” and “human mismanagementj. (eMainguet, 1991), the other

interpreters the desertification as phenomenonredrivy drought, and hence temporary, with
humans playing a minor role (e.g. Olsson et alb520

According to the results of this study it is nospible to support one or the other school. This
study highlighted the complexity of desertificatiphenomenon: ecological zone patterns and
natural resources strongly interact with humanvédis in semi-arid areas. The pressure on
land, wherever wood and rainfall are availabledioergy and cultivation, was clearly observed
in the semi-arid area. Human activities and mismgament of the natural resource with

expansion of the villages in Savanna region higidgelerated desertification processes in
savanna site, but in semi-desert and desert siliesate constraints were the main cause of
degradation.

Site-specific strategies which take into accoust ititeractions of the driving factors at local
scale are thus necessary to combat desertificamriding any implementation of untargeted
measures. In particular, an attention is needednserve valleys ecosystem in semi-desert and
desert region in order to play its role in reducivigd and water erosion.
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PART FIVE:
CONCLUSIONS AND RECOMMENDATIONS
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5.1 Conclusions

Desertified area and desertification processesartiNKordofan, River Nile and Northern
states were detected and the factors affectingdegige was analysed using tempo-spatial
analysis of the remote sensing data. The threectsdlesites were characterized by
heterogeneous land use/land cover as in semi-ggabsalhe amount of vegetation cover, types
of dry ecosystem vegetation and structure and ghgnof vegetation regarding to the harsh
environment are found to be differ from one ecatagizone to another and affect the
contribution of vegetation reflectance in the topakel reflectance relative to the other
materials. Mineral and organic matter, soil streetand moisture content of the soil surface are

the main factors affecting the reflectance of sothe optical remote sensing.

The application of spectral mixture analysis (SM&).andsat data appeared to be a consistent,
accurate and low-cost technique to obtain inforomatin vegetation cover, soil surface type,
and identify risk areas. In this study, Landsat EIAMOFF-SLC images were used after
correction in SMA application and provided accefgalandcove/landuse (LCLU) fraction
images. SMA proved to be a powerful technique irarabterization and mapping of
desertification processes in the study sites byigmog direct measurements to different land
cover at subpixel level. Endmembers spectra weceessfully derived from Landsat images
using the principle component (PC) and the methoslqnl to be valuable. Although the results
shows an overestimation errors, they were acckptatevaluate the LULC change regarding
the comparative approach of the present study. yapplendmember fractions of 1987 and
2008 to change vector analysis (CVA) showed ddgation significantly prevailed over

vegetation re-growth in the three sites.

Site-specific interactions between natural procgssignate variation and human activity play
a pivotal role on desertification in the study sit&ven if phenomena at large scale (e.g.
positive rainfall trend) in savannah site in thst igears have allowed a gradual recovery from
the peak drought conditions suffered in the Sahgind the 1980s, there are still forcing
variables that act at local scale to cause landadieggon. Drought condition have accelerated
the desertification processes in semi-desert arsmrtesites since there was no positive
continuous signal of rainfall trend in these sdesing last 36 years. One of the most important
factors affecting such degradation were human itietsy which exploit the natural resources
beyond their ecological resilience threshold udgkertification is irreversible. Hunger and
local energy needs seem to be the driver of lardamsl management. Site-specific strategies
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that take into account the interactions of theidgvactors at local scale are thus necessary to

combat desertification, avoiding the implementatadnuntargeted measures. The following

conclusions could be addressed according to thiy:stu

The spectral reflectance of vegetation in arid aedhiarid areas changes with the

vegetation structure and surrounding environment.

Deriving Endmembers spectra from Landsat imagesguihe principle component

(PC), is successful and valuable method.

Applying Landsat ETM+7 OFF-SLC after correction SMA proved to be valuable

and accurate for monitoring desertification.

SMA is a powerful technique in characterization amepping of desertification
processes in the study areas by providing directsonrements to different land cover at
subpixel level.

SMA distinguishes the effect of climate variatiaveell as the role human activities in

accelerating desertification.

Visual interpretation using the color compositeSHIA fraction images is a practical
and simple way to explain the changes in vegetahsoil fractions.

CVA allows for further detection and quantifying desertification processes in a

degree of severity.

Desertification status is extreme to moderate wasaa site, extreme in semi-desert site

and high to low in the desert site.

Human activity and mismanagement of natural ressuere the main factors affecting

desertification in savanna region.

High increase of very fine soil in semi desert asgcause problem of dust storms in
the country.

The agricultural projects in desert region are imittulnerable area to desertification,

so, they are unsustainable.
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5.2 Limitations of the study
» Unavailability of spectrometer device for measurspmectral signature of land cover

materials in the fields.
» Limitation Landsat bands caused limitation of appyendmembers spectra.
» Limitation of the field survey plots caused limitat in the accuracy.
» Single station of the climatic data for each sé@ases lag of spatial climatic data.

* Unavailability of high resolution imagery imagesctlibrate the endmembers spectra.

5.3 Recommendations

Management of natural resources in fragile ecoryste the addressed study sites is highly
recommended in order to control the desertificapooblem and to combat it. Using remote
sensing for monitoring land degradation is the @y to establish combating projects. The

following recommendations are pointed out:

» Establishing remote sensing application units & #lcademic and research institutes
and in the governmental agencies which responsbléesertification problem in
Sudan to provide valuable information on land wasellcover of the regions subjected

to desertification for the planner and decision erak

* Since the desertification problem has complex factestablishing network between
different institutes care of these factors is sesip needed.

» Raising of building capacity of researchers in &pion of remote sensing

environment will improve the use of remote sensmtie governmental agencies.
» In order to identify the soundest strategies, higgnlution tools must be applied.

* Revising the land use policies and strategies dtleseents and sustainable

development.

» Atlocal scale, encouraging the national organimegialong with the local population to

work on re-planting the native species.

* Protecting the irrigated agricultural projects imsdrt areas by shelterbelts and

windbreaks is seriously needed to sustain thesatees.
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* Improving and managing the grazing activities wi#lp in avoiding reduction soil
productivity.

* Improving the metrological station in space anduaacy to provide the monitoring

system with the needed climatic data.

» Establishment an early warning systems is urgev@gded.

5.4 Further studies

More effort should be made to improve the classifan of vegetation type in order to
distinguish perennial from annual species and theible to monitor long-term vegetation
degradation. Hyperspectral imagery, spectrometdylang term field monitoring experiments

for land cover strongly support this context antt@ase the accuracy of monitoring drylands.
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