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Abstract

Modelisation and prediction of environmental phenomena, which typically show dependence in

space and time, has been one of the most important challenges over the last years.

The classical steps of the spatial modeling approach can be resumed as follows: (1) a model-

oriented step, in which a random fields assumption is considered; (2) estimation of the objects defin-

ing homogeneity and variability of the random field (i.e the trend and the covariance structure);

(3) prediction, which is classically implemented through universal or ordinary kriging procedures.

This thesis focuses on the first and second steps. Specifically, it consists of three major parts.

First part consists in spatio-temporal covariance modeling. In the geostatistical approach spa-

tial and temporal structure are entangled in the covariance structures and it is not easy to model

these two parts simultaneously. The classical kriging predictor, depends crucially on the chosen

parametric covariance function. This fact motivates the request for more candidate models of co-

variance functions that can be used for space-time data. In particular, the wide variety of practical

situations that one may face in the space-time domain motivates the request for flexible models

of space-time covariance functions, in order to cover several settings such as non-separability or

asymmetry in time. We introduce a new class of stationary space-time covariance model which

allows for zonal spatial anisotropies.

Second part consists in space and space time covariance models estimation. Maximum likelihood

and related techniques are generally considered the best method for estimating the parameters

of space-time covariance models. For a spatial Gaussian random field with a given parametric

covariance function, exact computation of the likelihood requires calculation of the inverse and

determinant of the covariance matrix, and this evaluation is slow when the number of observations

is large. The problem increases dramatically in a space-time setting. This fact motivates the

search for approximations to the likelihood function that require smaller computational burden

and that perform better than classical least square estimation. We introduce a weighted composite

likelihood estimation (WCL) for space and space time covariance model estimation. The method

induces gains in statistical efficiency with respect to the least squares estimation and from the

computational point of view with respect to maximum likelihood estimation.



Third part consists in a set of application of WCL. Specifically we apply the method in the

estimation of particular spatial covariance functions which allow for negative values and in the esti-

mation of covariance function describing residuals dependence in dynamic life tables. A simulation

based test to verify separability of some parametric covariance models in a space time setting is

proposed.
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Abstract

La modellizzazione e la previsione di fenomeni ambientali che esibiscono dipendenza nello spazio

e nel tempo hanno rappresentano una sfida molto importante negli ultimi anni.

I passi della modellizzazione spazio temporale possono essere riassunti come segue: (1) un primo

passo in cui vengono fatte assunzioni sul campo aleatorio; (2) stima degli oggetti che definiscono

le caratteristiche principali del campo aleatorio (media e covarianza); (3) previsione che di solito

viene effettuata attraverso il kriging ordinario o universale.

Questa tesi si focalizza in particolare nel primo e nel secondo punto. In particolare è composta

da tre parti principali.

La prima parte consiste nella modellizzazione della covarianza spazio-temporale. Nell’approcio

geostatistico la dipendenza spaziale e temporale viene traferita nella struttura di covarianza che di

solito viene modellizzata attraverso modelli parametrici validi. Il kriging dipende crucialmente dal

modello di covarianza scelto e questo fatto motiva la necessità di modelli di covarianza sempre più

flessibili. In particolare nello spazio-tempo si richiedono modelli che possano descrivere situazioni

particolari tipiche del contesto spazio-temporale come la non separabilità o l’asimmetria nel tempo.

Qui presentiamo una nuova classe parametrica di covarianza spazio-temporale che permette di

modellare anisotropia nello spazio.

La seconda parte consiste nella stima della funzione di covarianza. La massima verosimiglianza

in generale è considerato il miglior metodo per stimare questo tipo di oggetto. Tuttavia il calcolo

della verosimiglianza richiede l’inversione e il calcolo del determimante della matrice di covar-

ianza. Per numerosità campionarie elevate questo diventa un problema da un punto di vista

computazionale e spesso si ripiega su stimatori meno efficienti come ad esempio quelli basati sui

minimi quadrati pesati. Qui presentiamo un nuovo metodo di stima basato sulla verosimiglianza

composita pesata (WCL), per la stima di funzioni di covarianza spaziale e spazio temporale che

induce vantaggi dal punto di vista dell’efficienza statistica (rispetto ai classici stimatori dei minimi

quadrati) e dal punto di vista del carico computazionale (rispetto alla massima verosimiglianza).

Il metodo di stima proposto viene poi applicato per la stima di particolari funzioni di covarianza

che ammettono valori negativi e per la stima di modelli di covarianza che descrivono i residui in

modelli dinamici tipo life tables. Infine un test basato sulla verosimiglianza composita pesata



viene proposto per verificare l’ipotesi di separabilità della funzione di covarianza in un contesto

parametrico.
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Chapter 1

Overview

Data in areas such as environmental health, ecology, epidemiology biology and geology, often have

a geographical and temporal label associated with them. Usually, data that are close together in

space (and time) are more alike than those that are far apart.

There are three types of spatial data: point-referenced data, areal data, and point-process

data. Point-referenced data are also known as geostatistical data where data are observed at a

set of locations in a set D in Rd and d is the number of dimensions. Typically, the locations are

represented in two or three spatial coordinates, e.g. longitude, latitude, and altitude.

Conceptually, observations can be taken at every location in D so we should consider uncount-

ably many data points. The observations are considered as a realization from a stochastic spatial

process. We denote this process by Z(s), where s ∈ D indexes location. Often, the goals are

to make statistical inference about Z(s) and predict the process at new locations based on the

available data through kriging techniques.

For areal data, the study region D is again a fixed subset in Rd, but now partitioned into a

finite number of areal units with well-defined boundaries. For example, in an environmental health

investigation, for purpose of confidentiality, counts of some adverse health outcome (e.g. lung

cancer) are aggregated by county in a particular state and environmental risk factors are supplied

for these areal units to explain the counts.

Point-process data describe the locations of some events of interests. Examples of this kind of

data include incidence of disease, sightings or births of a species, or the occurrences of fires, earth-

quakes, lightning strikes, tsunamis, or volcanic eruptions. A spatial point process is a collection
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of random points, where each point indicates the location of an event. A point process N(.) is

defined as a random measure on D ⊂ Rd, taking non-negative integer values. So N(A) means the

number of points falling in the set A ⊂ D.

In the last years the temporal component has been added in the analysis of these three kinds

of data. For point-referenced data the process is typically indexed by s and t where t ∈ T ⊂ R

represent the time domain.

The focus of this thesis is on spatial and spatio-temporal point-referenced data. In general, it

is very challenging to study dependent data in space and time in the geostatistical setting. One of

the problem in dealing with this kind of data is to model the covariance structure. Specially for

space-time data, there is a growing literature on covariance function models. The wide variety of

practical situations that one may face in the space-time domain motivates the request for flexible

models, in order to cover several settings, such as non-separability, asymmetry in time or anisotropy

in space. Thus, several nonseparable space-time covariance models have been proposed in the last

years.

Chapter two introduces the basic tools for spatial modeling, while chapter three describes

recent developments in space-time covariance models. A new class of stationary nonseparable

space-time covariance functions that can be used for both geometrically and zonally anisotropic

data, is introduced. In addition, we show some desirable mathematical features of this class.

Since kriging techniques depends crucially on covariance function, the estimation of this object

is one of the most important step in the geostatistical analysis.

Maximum likelihood and related techniques are generally considered the best method for esti-

mating the parameters of covariance models. However, for a Gaussian random field with a given

parametric covariance function, exact computation of the likelihood requires calculation of the

inverse and determinant of the covariance matrix, and this evaluation is slow when the number

of observations is large. Obviously for space time data the problem gets worse dramatically. The

Irish wind speed data-set (Haslett and Raftery, 1989) is an example. This data set consists of

time series of daily average wind speed at eleven synoptic meteorological stations in Ireland during

the period 1961-1978. In this case, we dispose of 11 × 365 × 18 = 72270 observations, thus ML

is infeasible. The classical remedy is to use less efficient but computationally feasible estimation

methods such as weighted least squares.

Chapter four reviews classical covariance function estimation methods and the new recent pro-

3



posal to solve the computational problem. A weighted composite likelihood approach estimation

in introduced. The goal of this estimation methods is basically one: to offer a ”good” quality

inference method for covariance parametric models when maximum likelihood for computational

reasons is infeasible. The method can be considered as a valid compromise between the computa-

tional burdens, induced by the use of a maximum likelihood approach, and the loss of efficiency

induced by using a classical weighted least squares procedure. The method introduces the concept

of ”optimal distance” which we have to identify before performing parameter estimation. It is

optimal because it allows to maximize the Godambe Information associate to weighted composite

likelihood function. It ensures to obtain estimates more efficient than classical methods such as

weighted least square and feasible for huge dataset.

Chapter 5 contains a set of applications of WCL to different contexts: the former consists of

estimation of particular spatial covariance functions which allow for negative values, the latter

consists of estimating covariance functions describing residuals dependence in dynamic life tables.

Finally, we propose a simulation based test to verify separability of some parametric covariance

models in a space time setting.
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Chapter 2

Spatial modelling

2.1. SPATIAL PROCESSES

We now review a few important basics of spatial processes. We denote as Z(s), where s indexes

location and s ∈ D ⊂ Rd, the quantity we are studying. For each s, Z(s) is a random variable.

The collection, Z(s), when s varies over all its possible values, is called a spatial process or random

field. In practice, Z(s) is a random function indexed by the symbol s which belongs to some index

set D. When d = 1 it is usually called random stochastic or random process, while when d ≥ 2 it

is defined as random field.

Z(s) is simply a random variable for each s and its properties (e.g. mean and variance) can

be described by its distribution function. More generally we are interested in studying the whole

collection of random variables {Z(s)} and its joint distribution function.

The Kolmogorov consistency theorem states that, under fairly general conditions, the probabil-

ity structure of Z(s) is fully specified if the joint distribution of {Z(s1), Z(s2), ..., Z(sn)}, i.e. the

finite-dimensional distribution, is given for arbitrary choice of n and s1, .., sn. Usually simplifying

assumptions are considered on the probability structure.

2.2. STATIONARITY

When making inference on the probability structure of the spatial process based on what we

observe (often just a single realization of the process) a simplifying assumption often made is the

stationarity assumption. Stationarity in simple terms means that the random field looks similar

in different parts of the domain. There are different kinds of stationarity. Now suppose D = Rd
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Definition 1. A process Z(s) is said strictly stationary if for all s1, ..., sn and any h ∈ Rd, the joint

distribution of Z(s1), ..., Z(sn) is identical with the joint distribution of Z(s1 + h), ..., Z(sn + h),

i.e.,

Pr(Z(s1) ≤ z1, ..., Z(sn) ≤ zn) = Pr(Z(s1 + h) ≤ z1, ..., Z(sn + h) ≤ zn), (2.1)

where z1, ..., zn ∈ R.

That is the probability law of a strictly stationary process is invariant under a shift in space.

A lighter type of stationarity is the weak stationarity:

Definition 2. A process Z(s) is weakly stationary (WS) if:

E(Z(s)) = µ

and

Cov(Z(s1), Z(s2)) = C(s2 − s1) = C(h).

Thus a spatial process which mean does not depend on the spatial location and which covariance

is a function of the separation lag h, is a WS process. C(h) is called the covariance function of

Z(s).

For a WS process Z(s), the correlation between Z(s1) and Z(s2) is defined as:

Corr(Z(s1), Z(s2)) =
C(h)
C(0)

= ρ(h).

Strict stationarity (if exist moments of second order) implies WS while the reverse is not true.

A common hypothesis regarding the finite-dimensional distribution of the random fields Z(s),

is Gaussianity.

Definition 3. Z(s) is called Gaussian process if for all n and admissible s1, ..., sn, the joint

distribution of Z(s1), ..., Z(sn) is multivariate normal.

A multivariate normal distribution is characterized by its mean and covariance matrix, so the

first two moments of a Gaussian process completely specify its probability structure. Thus for

Gaussian processes, WS implies strict stationarity.

Last kind of stationarity regards the increments of the process.

Definition 4. A process Z(s) is intrinsic stationary (IS) if:

E(Z(s)) = µ
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and

V ar(Z(s1)− Z(s2)) = 2γ(s2 − s1) = 2γ(h).

The function 2γ(h) is called variogram. IS is a weaker property than WS. If the process is WS,

it is easy to verify that:

V ar(Z(s1)− Z(s2)) = 2C(0)− 2C(h)

and so γ(h) = C(0) − C(h). Conversely, in general IS does not imply weak stationarity. For

instance if Z(s) is the standard Brownian motion in one dimension, the variogram function is

V ar(Z(s1) − Z(s2)) = |s1 − s2|. However, we can not recover the covariance function since the

variogram is unbounded for h tends to infinity.

Gaussian processes play a central role in modeling spatial data. The advantages of the Gaussian

process assumption are obvious: it allows convenient distribution theory (for instance, conditional

distributions are easily obtained from the joint distributions). Gaussian processes have a rich,

detailed and very well understood general theory. Furthermore, in most applications, we observe

a single realization of the process at a finite set of locations. It is not easy to criticize a Gaussian

assumption since we only have a sample size of one from a finite dimensional distribution. Never-

theless, there are situations in which it is more appropriate to use other processes to model spatial

data.

2.3. COVARIANCE FUNCTIONS AND VARIOGRAMS PROPERTIES

For a real-valued mapping C : Rd → R, necessary conditions for C to be a covariance function are:

(i) C(0) ≥ 0;

(ii) C(h) = C(−h), i.e., C is an even function;

(iii) C(0) ≥ |C(h)|;

(iv) If Cj(h) are valid covariance function j = 1 . . . k then
∑k

j=1 bjCj(h) is a valid covariance

function, if bj ≥ 0, ∀j;

(v) If Cj(h) are valid covariance function j = 1 . . . k then
∏k

j=1 Cj(h) is a valid covariance function;

(vi) If C(h) is a valid covariance function in Rd, then it is also a valid covariance function in Rp,

p ≤ d.
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Analogous properties of the variogram are:

(i) γ(0) = 0;

(ii) γ(h) = γ(−h), i.e., γ is an even function;

(iii) γ(h) ≥ 0;

(iv) If γj(h) are valid variograms j = 1 . . . k then
∑k

j=1 bjγj(h) is a valid variogram,, if bj ≥
0, ∀j;

Valid (or permissible) covariance function or variogram means that they must respect some

mathematical constraints.

Indeed, one cannot define a spatial covariance or variogram function in a totally arbitrary way.

The key property which has to satisfy is semi-positive definiteness. For a spatial process Z(s) with

covariance matrix C = {C(si, sj)}n
i,j , it means that:

n∑

i

n∑

j

aiajC(si, sj) ≥ 0 (2.2)

for any set of s1, ..., sn and all real a1, ..., an.

The positive semi-definite condition is necessary for the existence of a random field with finite

second moments. This condition guarantees that the variance of spatial predictions is non-negative.

This simply follows noting that (2.2) is V ar(
∑n

i aiZ(si)).

On the other hand, if C is positive semi-definite, there exists a Gaussian random field with

covariance matrix K and mean E(Z(s)) = m < ∞. Thus, positive definiteness is a necessary and

sufficient condition for a covariance function.

Bochner’s theorem (1933) provides necessary and sufficient conditions for a covariance function

C(h) of a WS process to be positive semi-definite.

Theorem 1. (Bochner’s Theorem). For a real-valued WS process on Rd, C(h) is positive semi-

definite if and only if it can be represented as:

C(h) =
∫

eiωT hdF (ω) (2.3)

where F is a positive, symmetric, and finite measure and is called the spectral measure of C(h). If

F is absolutely continuous with respect to Lebesgue measure, i.e., dF (ω) = f(ω)dω, f(ω) is called

the spectral density.
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Analogously to the covariance function, the variogram must respect some conditions to be

permissible. Specifically, for any set of s1, ..., sn and any set of real a1, ..., an such that
∑n

i ai = 0,

n∑

i

n∑

j

aiajγ(si − sj) ≤ 0. (2.4)

This follows by noting:

n∑

i

n∑

j

aiajγ(si − sj) = −E(
n∑

i

(aiZ(si))2).

The variogram and covariance functions are parameters of the spatial process and play a critical

role in the geostatistical method of spatial data analysis. Both are important ingredients of the

kriging methods for spatial prediction. Statisticians are more familiar with covariance functions,

while geostatisticians prefer the variogram. Under WS, use C(h) or γ(h) for statistical or prediction

purpose is equivalent. However γ(h) presents some advantages from estimation point of view (see

chapter 4).

Note that γ(h) only describes the first two moments (not the probability law) of the spatial

process so it is not possible to make likelihood-based inference on its basis. However, it can be

used for approximations of likelihood as in WCL proposed in Chapter 4.

2.4. ISOTROPY AND SOME PARAMETRIC MODELS

A WS random field is said isotropic if its covariance function C(h) only depends on ||h||, where

||.|| indicates the Euclidean distance. The class of all valid continuous covariance functions on Rd

can be characterized by the Fourier transforms of all finite positive measures on Rd (see Theorem

1). There is an analogous characterization for isotropic covariance functions (see Yaglom (1987),

Section 22). Specifically,

Theorem 1. . For d ≥ 2 a function C(h) is a continuous isotropic covariance function of a WS

random field on Rd if and only if it can be represented as:

C(h) = 2
d−2
2 Γ(

d

2
)
∫ ∞

0

(ω||h||)− d−2
2 J d−2

2
(ω||h||)dG(ω) (2.5)

Here Jk is the Bessel function of the first kind of order k (Abromowitz and Stegun, 1967) and

the measure G(.) is nondecreasing bounded in R+ and G(0) = 0.

A general form of an isotropic variogram function is:
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γ(h, θ) =





θ0 + σ2(1− ρ(||h||, θ)), ||h|| > 0

0, ||h|| = 0
(2.6)

where θ0 is the nugget parameter. This parameter describes the behavior of the variogram near

the origin. A phenomenon quite common in applications is that the variogram at the origin does

not attain the zero. This is due to microscale variability (variability of a spatial process operating

at lag distances shorter than the smallest lag observed in the data) or/and measurement error. In

geostatistical literature θ0 is the nugget, σ2 + θ0 is the sill and σ2 is the partial sill or variance.

In (2.6) ρ(||h||,θ) is a parametric correlation function which depends on θ ∈ Θ ⊂ Rp. Typically

parametric correlation models depend on few parameters . Following is a list of popular parametric

isotropic correlation functions:

1. Exponential covariance function:

ρ(||h||, θ) = e−θ||h||, θ > 0. (2.7)

Here θ is the decay parameter which tells us how quickly the correlation decays as the

distance ||h|| increases. The decay parameter is related with a notion of effective range

which is often used geostatistics. Effective range is the distance at which there is essentially

no lingering spatial correlation. In practice, it is commonly defined as the distance at which

the correlation drops to only 0.05. In the exponential correlation function case, the effective

range is attained approximatively at 3/θ.

2. Gaussian covariance function:

ρ(||h||, θ) = e−θ||h||2 , θ > 0. (2.8)

3. Powered exponential covariance function:

ρ(||h||, θ, α) = e−θ||h||α , θ > 0, 0 < α ≤ 2. (2.9)

4. Matérn covariance function:

ρ(||h||, θ, ν) =
1

2v−1Γ(ν)
(θ||h||)νκν(θ||h||), θ > 0, ν > 0, (2.10)
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where θ is the range parameter and ν is the smoothing parameter (the larger is ν the smoother

the corresponding process is). Different parametrization has been proposed for this model (see for

instance (Handcock and Wallis, 1994) . The parametrization in (2.10) has the advantage to not

depend on d. The flexibility in parameterizing the smoothness of the process by changing ν is the

main reason why this family has been advocated as a default covariance model for most spatial

applications (Stein (1999)).

Note that the exponential covariance function and the Gaussian covariance function are two

special cases of the Matern class with ν = 1/2 and ν = ∞, respectively.

If the covariance function of a WS stationary process is anisotropic, the spatial structure is

directional dependent. Anisotropy is generally difficult to deal with but there are special cases

that are tractable yet still interesting:

• Geometrical Anisotropy: variograms in two or more directions have different ranges, but the

same sill value. That is, the variability of an observation is the same, but they are correlated

over longer or shorter ranges, depending on the direction.

• Zonal Anisotropy: here the variogram has different sills and different ranges in two or more

directions.

To correct for geometric anisotropy, a linear transformation of the coordinates is performed in order

to reduce to an isotropic space. A linear transformation may correspond to rotation or stretching

of the coordinate axes. Thus, in general if ρ0(., θ) is an isotropic parametric covariance function,

then

ρ(h, θ) = ρ0(||Ah||, θ),

is a geometrically anisotropic covariance function. Here A is a d × d matrix describing the linear

transformation. There are different approach to face zonal anisotropy. Basically they are based

on weighted linear combination of valid variograms (Rouhani and Hall, 1989). A special kind of

anisotropy is attained considering variogram that are function of the sub-vectors h = (|h1|, |h2|),
that is considering isotropy in the two main directions (Shapiro and Botha, 1991). This kind of

anisotropy will be extended to space-time context in chapter 3.
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2.5. SPATIAL CONTINUITY AND DIFFERENTIABILITY

Continuity and differentiability of a random fields are important since they are informative about

the structure and the smoothness properties of the random field.

Assume the process have 0 mean and finite second-order moments.

Definition 5. A process Z(s) is L2 continuous at s0 if and only if lims−→s0 E[Z(s)−Z(s0)]2 = 0

Continuity in L2 sense is also referred to as mean square continuity and will be denoted by

Z(s) L2→ Z(s0)

Definition 6. A process Z(s) is almost surely continuous at s0 if Z(s) −→ Z(s0) a.s. as s −→ s0.

If the process is almost surely continuous for every s0 ∈ Rd then the process is said to have

continuous realizations.

In general, one form of continuity does not imply the other since one form of convergence

does not imply the other. However, if Z(s) is a bounded process then a.s. continuity implies L2

continuity. Of course, each implies Z(s) P→ Z(s0). It is easy to show that for a WS random field,

mean square continuity at s implies that:

lim
h−→0

E[Z(s)− Z(s + h)]2 = 0

Thus, it is easily shown that for a WS random field mean square continuity is equivalent to the

covariance function C(h) being continuous at 0. That is mean square continuity can be verified

through the behavior of the covariance function near 0. As explained in section 2.4 some process

appear to have a variogram for which γ(h) −→ c > 0 as h. −→ 0, i.e the nugget effect.

Means square continuity by itself does not convey much about the smoothness of the process

and how it is related to the covariance function. The smoothness concept is brought into fo-

cus by studying the partial derivatives of the random field and the introducing the mean square

differentiability.

In R1 we can define the process:

Zδ(t) =
Z(t + δ)− Z(t)

δ

with t, δ ∈ R1 and we say that the process Z(t) is mean square differentiable if the process Zδ(t)

converges in L2. More formally, we have the following definition.
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Definition 7. A process Z(t) on R1 is (mean square) differentiable if there exists a process Z ′(t)

such that the following holds: limh−→0 E[Zh(t)− Z ′(t)]2 = 0

It can be shown that the stationary process Zδ(h) has the covariance function Cδ(h) such that

limh−→0 Cδ(h) = −C ′′(h) provided C(h) is twice differentiable. This also shows that −C ′′(h)

is positive definite. Stein (1999) proves that Z(t) is m-times mean square differentiable if and

only if [d2mC(h)
dh2m ]0 exists and is finite. That is there is a strong relation between the mean square

differentiability of a process and the derivative of its covariance function.

From this point of view it can be possible to make the selection of a particular correlation

function based upon theoretical considerations. This possibility arises from the powerful fact

that the choice of correlation function determines the smoothness of realizations from the spatial

process. In this sense Stein (1999) recommends the Matèrn class as a general tool for building

spatial models since the parameter ν can control the degree of smoothness.

2.6. SPECTRAL AND CONVOLUTION REPRESENTATIONS

In this thesis we do not propose approaches based on spectral methods, however it is a powerful

tool for studying random processes. One explanation is through Bochner’s Theorem which builds

a correspondence between a covariance function and a spectral density. Some theory properties

of random fields are better studied using spectral analysis (Stein (1999)) and spectral measures.

Inference, even if with certain problems, is possible in the frequency domain. Moreover to every

WS process Z(s) there can be assigned a process Y (ω) with orthogonal increments, such that we

have for each fixed s the spectral representation:

Z(s) =
∫

Rd

eisT ωdY (ω) (2.11)

Y (ω) is called the random measure corresponding to Z(s). It has the following properties:

• E(Y (A)) = 0 for all measurable set A.

• E(Y (A, B̄)) = 0 for disjoint measurable sets A and B.

• Z(A ∪B) = Z(A) + Z(B) for disjoint measurable sets A and B.

If E(|Z(A)|2) = F (A) for some positive finite measure F , then the covariance function associ-

ated with Z(s) can be expressed as:

C(h) =
∫

eiωT hdF (ω) (2.12)
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The function F is called the spectral measure of Z. If F has a density with respect to Lebesgue

measure, this density is the spectral density, f = F ′, defined as the Fourier transform of the

autocovariance function:

f(ω) =
1

(2π)d

∫
eiωT hC(h)dh (2.13)

Inference on the frequency domain pass through estimation of the spectral density.

Another useful representation is the convolution representation. To generate or represent a WS

process {Z(s) : s ∈ D ⊂ Rd}, we can consider a white noise process ε(s) such that E(ε(s)) = µ,

V ar(ε(s)) = σ2 and Cov(ε(s), ε(s + h)) = 0. Then it is possible to describe a Gaussian stationary

process by convolving ε(s), with a square-integrable smoothing kernel function k(s).

Z(s) =
∫

Rd

k(u− s)ε(u)du

This representation is useful since the covariance associated depend only on the kernel. Higdon

(1998), Fuentes (2002) and Paciorek and Schervish (2006) start from this setting to build closed

form of stationary and non stationary covariance function.

2.7. MODELING SPATIAL DATA

A common spatial process model is constructed as follows

Y (si) = µ(si) + Z(si) + ε(si), (2.14)

where µ(si) is the mean of the response Y (si), typically of the form XT (si)β. X(si) is a p-

dimensional vector of explanatory variables at location si and β is a p-dimensional vector of

parameters. Z(s) is a zero mean spatial process (Z(s) is often assumed to be a WS Gaussian

process with a parametric covariance function. and ε(s) is a pure error process with mean 0 and

variance nugget). Thus, the spatial signal is decomposed into a determinist trend, the pure spatial

variability explained by the covariance function and a pure error process explained by the nugget.

The model (2.14) can be viewed as a hierarchical model with a conditionally independent first

stage given Z(s) and µ(s). In the second stage, usually we assume Z(s) to be a Gaussian random

field with mean zero and certain parametric covariance structure.

In some situations, the response variable Y (s) (even after transformation) is not appropriate to

be treated as a normal random variable. For instance, Y (s) might be a binary variable or a count
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variable. It is natural to consider an extension of the model (2.14) analogous to the generalized

linear model and considering at first stage the distribution of Y (si) conditionally β and W (si)

belonging to the exponential family and consider W (si) as a WS process at second stage (Diggle

et al., 1998).

2.8. KRIGING

The main goal in spatial statistics is often interpolation. There exists different kinds of interpolators

but kriging presents relevant advantages. For instance it provides some measure of the accuracy of

the prediction with respect to deterministic interpolator such as splines or inverse distance method.

Kriging is a geostatistical interpolation technique that considers both the distance and the

degree of variation between known data points when estimating values in unknown location points.

A kriged estimate is a weighted linear combination of the known sample values around the point

to be estimated. Applied properly, kriging allows the user to derive weights that result in optimal

and unbiased estimates. Let us consider a random field Z(s), s ∈ D ⊂ Rd and the linear model

Z(s) = µ(s) + ε(s) s ∈ D, (2.15)

where µ(s) is a deterministic function and ε(s) is a WS random process. We observe the process

at n different locations, Z= (Z(s1) . . . Z(sn)), and wish to predict the process Z at an unobserved

location s0. Let us denote with p(s0, Z) the kriging interpolator at s0. The main properties of this

object are:

• p(s0, Z) =
∑n

i λiZ(si).

• E(p(s0, Z)) = µ(s0).

• E((Z(s0)− p(s0, Z)2) is minimum.

That is, kriging interpolator is optimal in the class of linear interpolator, i.e it is unbiased and with

minimum variance error. Relaxing first condition, it is easy to show that the best interpolator is

the conditional expectation of Z(s0) given the observed data:

p(s0, Z) = E(Z(s0)|Z) (2.16)

However, in general p(s0, Z) is not a linear function of the data and establishing the statistical

properties of the best predictor under squared-error loss can be difficult. Fortunately, if the random
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field is Gaussian the best linear interpolator is also the best interpolator. Kriging appears in many

forms and flavors, distinguished by whether the mean is known or not, what the distribution of is,

whether predictions are made for points or areas and so forth. Here we describe classical ordinary

kriging.

Let be µ(s) = µ and ε(s) ∼ (0,C) in (2.15), where µ is a unknown constant and C is known.

We consider linear predictor of the form p(s0, Z) = λ0 + λT Z, where λ = (λ1 . . . λN ). Since we

are looking for unbiased interpolator it is easy to show that it is equivalent to set λ0 = 0 and
∑N

i λi = 1.

Thus the problem now is to choose the λ weights that minimize:

E((λT Z − Z(s0))2) subject to
N∑

i

λi = 1.

This can be accomplished as an unconstrained minimization problem introducing the Lagrange

multiplier m:

argmin
λ

E((λT Z − Z(s0))2)− 2m(
N∑

i

λi − 1). (2.17)

It can be shown that (Cressie, 1993) the solution to this problem is:

λT = c + 1(
1− 1T C−1c

1T C−11
)T C−1

m =
1− 1T C−1c

1T C−11
.

Thus the optimal linear predictor is,

p(s0, Z)OK = µ̂ + cT C−1(Z − 1µ),

and the minimized mean-square prediction error, i.e. the ordinary kriging variance is:

σ2(s0) = C(0)− cT C−1c +
1− 1T C−1c

1T C−11
.

When µ is known ordinary kriging is called simple kriging. Cressie (1993) discusses more com-

plicated versions, such as lognormal and trans-Gaussian kriging, and universal kriging, used in a

presence of non-stationary mean field model.
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Chapter 3

Space-time covariance models

3.1. INTRODUCTION

Spatiotemporal models arise whenever data are collected across time as well as space. Therefore

they have to be analyzed by considering both their spatial and temporal structures. Until recently,

there has not been a theory of spatial-temporal processes separated from the established theories

of spatial statistics and time series analysis. Unfortunately, statistical tools for the analysis of

spatio-temporal processes are not as fully developed as methods for time series or spatial data

alone. In Kyriakidis and Journel (1999) the geostatistical approach for space-time data is well

described. In particular, two conceptual viewpoints are identified:

• approaches involving vectors of space random functions or vectors of time series.

• approaches involving a single spatiotemporal random function model.

In the first approach space-time data are analyzed through models initially developed for spatial

(temporal) distributions and the joint space-time dependence is not fully modeled. It does not

include the temporal (spatial) dependence and prediction at unknown locations (unknown time

instants) is not possible. See for instance Rouhani and Wackernagel (1990) and Bogaert and

Christakos (1997).

The second approach allow to consider the interactions between the spatial and the temporal

components and thus interpolation of observations in a continuous space-time is possible. The

natural domain for a geostatistical space-time model is Rd × R, where Rd stands for space and R

for time. As outlined in Gneiting et al. (2007) physically, there is clear-cut separation between
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the spatial and the time dimensions, and a realistic statistical model will take account thereof.

This contrasts with a purely mathematical perspective in which Rd×R = Rd+1 with no differences

between the coordinates. The latter equality has important implications. In particular, all technical

results on spatial covariance functions or on least-square prediction, or kriging, in Euclidean spaces

apply directly to space-time problems, simply by separating a vector into its spatial and temporal

components.

While literature on covariance models in the spatial context is consolidated, in the last ten years

by starting from different settings and mathematical frameworks, several authors have produced

considerable efforts in order to build valid and flexible space-time covariance models. Among

many others, (Jones and Zhang (1997), Cressie and Huang (1999), Christakos (2000), De Cesare

et al. (2001a), Gneiting (2002) and Stein (2005a)). The temporal component adds complexity to

the covariance structure and new kinds of concepts have to be introduced such as separability or

asymmetry in time.

In this chapter we review the main features and some parametric covariance models. We then

introduce a new class of covariance function useful when dealing with anisotropy in space.

3.2. SPACE-TIME COVARIANCE FUNCTION FEATURES: STATIONARITY,

SEPARABILITY AND FULL SYMMETRY

Let Z(s, t), s ∈ Rd and t ∈ R, be a real-valued spatio-temporal RF with mean µ(s, t) and with

constant and finite variance. Then, the function (s1, s2, t1, t2) 7→ C(s1, s2, t1, t2) defined on the

product space Rd×Rd×R×R is called the spatio-temporal covariance function of the process and,

if no further assumptions are made, depends on the space-time coordinates (s1, s2, t1, t2). As well

known, a real valued function C defined on the product space Rd × Rd × R × R is the covariance

function associated to a spatio-temporal RF if and only if

n∑

i=1

n∑

j=1

aiajC(si, sj , ti, tj) ≥ 0,

for all finite sets of real coefficients ai and points (si, ti) ∈ Rd × R, i = 1, . . . , n. In practice,

however, estimation and modeling of covariance models call for simplifying assumptions. Un-

der the assumption of weak stationarity, we have that µ(s, t) = µ independently of the spatio-

temporal coordinates and that the covariance function cov(Z(si, ti), Z(sj , tj)) = C(h, u) is defined

for (h, u) = (si − sj , ti − tj) ∈ Rd × R, thus it exclusively depends on the spatial and temporal
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separation vectors, respectively h and u.

A stationary covariance function is called isotropic if it is rotation and translation-invariant,

i.e.

C(h, u) = C̃(‖h‖, |u|),

where with ‖.‖ we denote the usual Euclidean norm and C̃ is a positive definite function.

Other very popular assumptions are that of separability and full symmetry.

A space-time covariance function is called separable if we can factor (Mitchell et al., 2004)

C(h, u) =
C(h, 0)C(0, u)

C(0, 0)
(3.1)

In other words, separability means that the spatio-temporal covariance structure factors into a

purely spatial and a purely temporal component and thus it is very easy build these kind of

models. Consequently, separable covariance models have been used even in situations in which

they are not physically justifiable.

An interesting definition coined in Gneiting (2002) is that of full symmetry, which happens if

C(h, u) = C(−h, u) = C(h,−u) = C(−h,−u),

for every (h, u) ∈ Rd × R. Atmospheric, environmental and geophysical processes are often under

the influence of prevailing air or water flows, resulting in a lack of full symmetry. For instance

Gneiting (2002), Stein (2005a) and De Luna and Genton (2005), who considered the Irish wind

data of Haslett and Raftery (1989), described the lack of full symmetry for these kind of data.

3.3. SOME SPACE-TIME COVARIANCE MODELS

Since it is very easy build valid space-time covariance models using (3.1), the first models used

in the application were separable. Moreover they have computational gains since it can be shown

that the matrix associated to this kind of covariance can be factorizes in the Kronecker product of

the two matrix associated to the spatial and temporal covariances.

A simple example of separable model is the doubly exponential model, namely

C(h, u) = σ2 exp (−c‖h‖ − a|u|) , (3.2)

where c, a are positive scale parameters and σ2 turns out to be the variance of the RF. However

the separable models are very limited because they do not model space-time interaction.
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One of the first contributions to non-separable space-time covariance models is in Cressie and

Huang (1999). It is based on the following theorem:

Theorem 2. (Cressie and Huang) Let C a continuous, bounded, integrable and symmetric function

on Rd × R. Then C is a stationary covariance if and only if

ρ(ω, u) =
∫

exp(−ihT ω)C(h, u)dh u ∈ R (3.3)

is positive definite for almost all ω ∈ Rd.

Using this result they builded valid models through closed form Fourier inversion in Rd and

choosing a continuous positive definite function ρ(ω, u) with u ∈ R for all ω ∈ Rd. Gneiting (2002)

gave a criterion that is based on this construction but does not depend on closed form Fourier

inversion and does not require integrability. Specifically, using tools as completely monotonic

functions and Bernstein functions, he proposes the following class:

C(h, u) =
σ2

(ψ(|u|2))d/2
ϕ

( ‖h‖2
ψ(|u|2)

)
, (3.4)

where ϕ is completely monotonic function, ψ a Bernstein function and σ2 is the variance, while d

denotes the dimension of the spatial domain. This class is particularly important as constitutes

one of the main contributions for stationary nonseparable covariances for space-time data. Recall

that a function t 7→ ϕ(t), t > 0 is said to be completely monotonic if it is positive and

(−1)nϕn(t) ≥ 0

for all n, a natural number, while Bernstein functions are positive real functions defined on the

positive real line whose derivative is completely monotonic.

The specific choices ϕ(t) = σ2exp(−ctγ) and ψ(t) = (1 + atα)β yield the parametric family:

C(h, u) =
σ2

(a|u|2α + 1)βd/2
exp

(
− c‖h‖2γ

(a|u|2α + 1)βγ

)
, (3.5)

where a, c are positive scale parameters, α, γ ∈ [0, 1] are respectively temporal and spatial smooth-

ing parameters, β ∈ [0, 1] is a space-time interaction parameter, and σ2 is the variance of the

RF. The product with the purely temporal covariance (a|u|2α + 1)−1, fixing d = 2 and through a

convenient reparametrisation, gives an interesting variation of the previous model

C(h, u) =
σ2

(a|u|2α + 1)
exp

(
− c‖h‖2γ

(a|u|2α + 1)βγ

)
. (3.6)
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Note that if β = 0 we have a separable model.

Instead of integration in the frequency domain, nonseparable covariance function can be builded

by summation or integration in the spatiotemporal domain. Specifically we can obtain valid co-

variance functions by mixing spatial and temporal covariance function. For instance Ma (2002)

considers a probability mass function πij , with (i, j) ∈ Z+, of [U, V ] a bivariate discrete random

vector with support on the non-negative integers. Then starting from a purely spatial correlation

function Rs(h) and a purely time correlation function Rt(u) it can be shown that:

R(h, u) =
∞∑

i=0

∞∑

j=0

Ri
s(h)Rj

t (u)πij (3.7)

is a valid nonseparable correlation function. This is possible since if R(u) is a valid correlation in

Rd then R(u)i is also valid for every positive integer i.

A related approach consists in consider product of covariance function making the spatial

and temporal coordinates depend on one another. Let [U, V ] be a bivariate random vector with

distribution function F (u, v) (not necessarily discrete). If [U, V ] is independent of the spatial and

temporal processes Zs(s) and Zt(t) which are independent of each other, then the scale mixture

process Z(s, t) = Zs(sU)Zt(tV ) has covariance function:

C(h, u) =
∫

Cs(sv1)Ct(uv2)dF (v1, v2) (3.8)

and reducing to the univariate case we obtain:

C(h, u) =
∫

Cs(sv)Ct(uv)dF (v) (3.9)

Covariance models of this kind can be found in De Cesare et al. (2001b), Ma (2002) and

De Cesare et al. (2002), Porcu et al. (2005) for instance. We will follow this approach in section

3.4 in building covariance function that are anisotropic in space.

The models defined by equations (3.2-3.5) are fully symmetric, e.g. they are isotropic in the

spatial component and symmetric in the temporal one.

However this assumption is frequently violated, particularly when dealing with environmental

data-sets. A substantive improvement of the previous construction can be achieved by building

models that are asymmetric in time. In this direction, new covariance functions can be obtained

by working in the Lagrangian framework (Cox and Isham, 1988), where the covariance is obtained
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as the expected value of a stationary covariance function CS on Rd

C(h, u) = EV(CS(h−Vu)),

where the random vector V incorporates some physical knowledge through a probabilistic distribu-

tion, and the expectation is taken with respect to its distribution. For instance, V could represent

the velocity vector in R3 and could be uniformly distributed on the unit sphere.

A Lagrangian version (Stein, 2005a) of the model (3.6) is:

C(h, u) =
σ2

(a|u|2α + 1)
exp

(
−c‖h− εuv‖2γ)

(a|u|2α + 1)βγ

)
. (3.10)

Here ε ∈ R controls the degree of asymmetry and V is a degenerated distribution with mass on

v. If v is a vector of the canonical basis for Rd, the choice introduces an asymmetry only in one

direction.

3.4. SPACE TIME COVARIANCE MODELS ANISOTROPIC IN SPACE: THE

BERNSTEIN CLASS

Here we sketch our proposal, for which more details can be found in Porcu, Mateu and Bevilacqua

(2007).

Consider Zi(s), i = 1, . . . , (d + 1), s ∈ R and d ∈ Z+, univariate mutually independent contin-

uous weakly stationary Gaussian random processes defined on the real line. In particular, let the

process Zd+1 be continuously indexed by time. Consider also a (d + 1)-dimensional nonnegative

random vector W = (W1, . . . ,Wd+1)
′

with Wi independent of Zi. Let the univariate covariances

Csi and the temporal covariance Ct be respectively associated with Zi, i = 1, . . . , d and Zd+1.

In the following we shall impose these covariances to be stationary, symmetric, and of the type

Csi(hi) = exp(−ψi(|hi|)), i = 1, . . . , d, and Ct(u) = exp(−ψt(|u|)), with ψi, ψt Bernstein func-

tions. Positive definiteness of this construction is guaranteed by direct application of Schoenberg

(Schoenberg, 1938), Theorem 1.

Then, we are interested in inspecting the properties of the following stationary spatio-temporal

scale mixture-based random field, defined on Rd × R,

Z(s, t) = Zd+1(tWd+1)
d∏

i=1

Zi(siWi), (3.11)

with s = (s1, . . . , sd)
′ ∈ Rd and t ∈ R. It can be easily seen that the covariance structure associated
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to this random field is nonseparable, as

C(h, u) =
∫

Rd+1
+

exp

(
−

d∑

i=1

ψi(|hi|)wi − ψt(|u|)wd+1

)
dF (ω), (3.12)

with h = (h1, . . . , hd)
′ ∈ Rd, u ∈ R and ω = (w1, . . . , wd+1)

′ ∈ Rd+1, and where F is the (d + 1)-

variate distribution function associated to the random vector W . If F is absolutely continuous with

respect to the Lebesgue measure, then previous representation can be reformulated with respect

to the (d + 1)-variate density, say f , that is

C(h, u) =
∫

Rd+1
+

exp

(
−

d∑

i=1

ψi(|hi|)wi − ψt(|u|)wd+1

)
f(ω)dω.

Observe that this construction allows for the case of separability if and only if the integrating

(d+1)-dimensional measure F (or equivalently its associated density f) factorises into the product

of (d + 1) marginal ones, i.e. if the nonnegative random vector W has mutually independent

components. This representation seems to be general enough and justifies its treatment for the

construction of new space-time covariances.

We shall use this setting, or special cases of it, in order to build new classes of space-time

covariance functions satisfying some desirable requirements. In particular, it would be nice to find

criteria to obtain, through simple procedures, some closed forms that are analytically tractable and

physically interpretable. In the following we shall argue that the construction we propose allows

to introduce anisotropic components in the spatial lag vector. This aspect needs to be stressed

properly, as only few contributions in the recent literature are devoted to the analysis of spatial

anisotropy for nonseparable space-time covariance models.

The following result (Porcu, Mateu and Bevilacqua, 2007) gives a first insight in what we are

looking for.

Proposition 1. Let L be the Laplace transform of a nonnegative random vector (W1,W2). Let

ψi, i = 1, . . . , d and ψt be either positive Bernstein functions defined on the positive real line, or

continuous, increasing and concave functions on the positive real line. Then,

C(h, u) = L
(

d∑

i=1

ψi(|hi|), ψt(|u|)
)

(3.13)

is a stationary nonseparable spatio-temporal covariance function in Rd × R, for d any positive

natural number.
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The proof of Proposition 1 can be found in the Appendix.

It can be shown that (3.13) is a special case of a wider class of covariance functions introduced

by Ma (2005) Theorem 3. Let us call this subclass Bernstein class. In the following we shall justify

the reasons of a detailed analysis about this class, that possesses some features that need to be

stressed properly:

1 The construction in Proposition 1 represents a special case of the general representation in

equation (3.11). In particular, Proposition 1 shows the existence of a stationary random

field Z(s, t) = Zt(tW2)
∏

i Zi(siW1), with covariance function (3.13), and where F is the

distribution function associated to (W1,W2)′.

2 Bernstein class can be used for both geometrically and zonally anisotropic models. This

aspect has been somehow overcome by recent literature. Zonal anisotropy is traditionally

modelled through the sum model (Rouhani and Hall, 1989), which has a very simple and easy-

to-implement construction, but considers separately the dependence in different directions.

Besides, this construction is variogram-based and not covariance-based. Dimitrakopoulos and

Lou (1994) propose models for geometric anisotropy, and Fernández-Casal (2003) propose

anisotropic models that are not easily interpretable as they are not obtainable in closed form,

but can only be calculated numerically. Thus, Bernstein class can give some insights in this

direction. It will be shown in the sequel that very simple closed forms can be obtained with

straightforward procedures.

3 Covariance functions belonging to Bernstein class are not necessarily based on Lp metrics,

which are desirable because of their easier interpretability, availability in software packages

and well-established theoretical properties. At the same time, Euclidean distance is not

always the best solution and its impact upon the statistical estimation and prediction can be

significant, as emphasised by Banerjee (2003). Thus, Bernstein class can be of help even in

this direction.

4 Bernstein class can be easily extended to the case of temporally asymmetric covariance func-

tions, as their members admit an easy extension with respect to the Lagrangian frame-

work as in Cox and Isham (1988). Indeed, suppose that the integrating measure F of

the bivariate Laplace transform L is concentrated on the line w1 = w2 (thus L = ϕ,

where ϕ is a completely monotone function). Let the spatial covariance be of the form
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Cs(h1, . . . , hd) = ϕ (
∑

ψi(|hi|)). Now, by using the Lagrangian framework, i.e. by introduc-

ing a perturbation random variable V , that can be physically interpreted as a velocity scalar

indicator, one easily obtains that C(h1, . . . , hd, u) = EV Cs(|h1|, . . . , |hi − V u|, . . . , hd) =

EV ϕ(
∑

j 6=i ψj(|hj |)+ψi(|hi−V u|)) is a space-time covariance function, still belonging to the

Bernstein class, but with asymmetry in time.

5 The permissibility condition in Proposition 1 is much less restrictive than that proposed in

Theorem 3 of Ma (2005). It can be easily shown that it is much easier to check a function to be

continuous, increasing and concave on the positive real line, than to check conditional negative

definiteness in Rd. Thus, implementation of this class is much easier for the practitioner who

needs to implement new classes of anisotropic covariance functions.

6 Bernstein class has some mathematical properties that will be shown in the sequel, and that

are linked to the use of linear operators, such as partial derivatives.

Some interesting special cases of Bernstein class can be obtained by imposing the integrating

measure F of the bivariate Laplace transform L to be concentrated on the line w1 = w2. We

present them as corollaries.

Corollary 1. Let ϕ be a completely monotone function defined on the positive real line and such

that ϕ(0) = 1. Let ψ1, ψ2, ψ3 Bernstein functions, and γs and γt respectively, spatial and temporal

intrinsically stationary variograms. Then, the functions

(h, u) 7→ ϕ(ψ1(γs(h)) + ψ2(γt(u))) (3.14)

and

(h, u) 7→ ϕ (ψ3 (ψ1(γs(h)) + ψ2(γt(u)))) (3.15)

are stationary covariance functions on Rd × R.

Corollary 2. Let ϕ completely monotonic such that ϕ(0) = 1 and ϕ(2k)(0) exists and is finite for

some positive integer k. For γs, γt respectively merely spatial and temporal intrinsically stationary

variograms and ψ1, ψ2 Bernstein functions, the function

(h1,h2,h3, u) 7→ ϕ(2k)(γs(h1) + γt(u))ϕ(ψ1(‖h2‖2) + ψ2(‖h3‖2)) (3.16)

is a stationary covariance function on Rd × R, where (h1,h2,h3)
′ ∈ Rd.
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The importance of Corollary 1 and 2 is that they allow, through a simple univariate scale

mixture, for the construction of space-time covariances which are zonally anisotropic in the sense

of Shapiro and Botha (1991) , who find zonally anisotropic models through componentwise isotropy.

The advantage with respect to these authors approach is that, with our procedure, closed forms can

be easily obtained. For instance, Corollary 2 can be used by those interested in the construction

of anisotropic covariance models defined in R3 × R, as will be shown in the sequel.

Proceeding this way, various results can be obtained. For instance, an interesting property

is that if χ is a negative definite function, indeed a function which admits the Lévy-Khinchin

representation, and ψ a Bernstein function, then ψ ◦ χ is negative definite. This fact allows to

apply once again the above result (3.14), as for Schoenberg’s theorem, exp(−ψ ◦ χ) is positive

definite.

3.5. DIFFERENTIAL OPERATORS PRESERVING POSITIVE DEFINITENESS OF

BERNSTEIN CLASS

As previously said, some nice mathematical features of the proposed structure can be obtained

by using differential operators. This aspect is not new in the literature regarding permissible

covariance functions that are isotropic, and that represent the characteristic function of a spherical

symmetrically distributed random vector. Roughly speaking, the main problem was to find whether

it is possible to preserve positive definiteness, even if not necessarily in the same d-dimensional

Euclidean space, applying derivative or integral operators to positive definite radial functions with

support in Rd. For this reason Matheron (1965) coined the terms Descente and Montée to denote

respectively differentiation and integration of a positive definite radial function. This topic is also

important for the implications that these approaches have for the simulation of isotropic random

fields by using the turning bands method.

The use of linear operators for the spatially anisotropic and spatio-temporal domain has been

discussed in a recent paper by Porcu, Gregori and Mateu (2007). In this section, we shall show

that partial derivative operators, applied to bivariate Laplace transforms, and in particular to

the Bernstein class, induce new functions that preserve the permissibility in the spatio-temporal

domain. The result is desirable as it gives further flexibility to the proposed class.

In order to understand the results, we need to introduce some standard notation for derivative
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operators. Define

DkL(θ1, θ2) =
d2k

dθk
1dθk

2

L(θ1, θ2), (3.17)

for the mixed derivative of 2k-th order of the bivariate Laplace transform, with k a positive integer.

Also, recall that any bivariate Laplace transform admit an integral representation as specified in

formula (6.1) in the Appendix. We are then able to show the first result.

Proposition 2. Let γs, γt be respectively purely spatial and temporal intrinsically starionary var-

iograms. Also, let L as in (6.1) with F such that

∫ ∞

0

∫ ∞

0

wk
1wk

2dF (w1, w2) < ∞, (3.18)

for some positive integer k. Then,

ν(h, u) =
DkL(θ1, θ2)|(γs(h),γt(u))

DkL(θ1, θ2)|(0,0)
(3.19)

is a valid stationary nonseparable spatio-temporal covariance function on Rd × R.

Next result shows another property of the Bernstein class in equation (3.13). Define

L∗(ψ1(s1), . . . , ψd(sd), ψt(st)) = L
(

d∑

i=1

ψi(si), ψt(st)

)
,

and the operator Dd+1L∗ as follows

Dd+1L∗(s1, . . . , sd, st) =
d(d+1)

dx1 . . . dxddxt
L∗ (ψ1(s1), . . . , ψd(sd), ψt(st)) , (3.20)

where s1, . . . , sd, st are positive arguments and ψi, ψt Bernstein functions, i = 1, . . . , d.

Proposition 3. Let ψ1, . . . , ψd, ψt be Bernstein functions such that ψ′i(0), ψ′t(0) exist and are

finite, for i = 1, . . . , d. Let L as in (6.1) with F such that

∫ ∞

0

∫ ∞

0

wd
1w2dF (w1, w2) < ∞. (3.21)

Also, let γi, γt be univariate variograms defined on the real line, such that γi(0) = γt(0) = 0,

i = 1, . . . , d. Then

ν∗(h1, . . . , hd, u) =
DL∗(γ1(h1), . . . , γd(hd), γt(u))

DL∗(0, . . . , 0, 0)
(3.22)

is a stationary nonseparable spatio-temporal covariance function on Rd × R.

The proofs of both Propositions 2 and 3 can be found in the Appendix.
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3.6. EXAMPLES

The following analytic examples show particular features of these new results.

Example 1. In order to apply the result shown in equation (3.13), let us consider the follow-

ing example. Following Shapiro and Botha (1991) and the extension to the spatio-temporal case

(Fernández-Casal, 2003), a possible way to consider anisotropy is to split the lag vector h ∈ Rd,

into two sub-vectors, say h1, h2, having respectively dimension d1 and d2 = d−d1. With this setup

it is possible to obtain, applying result in equation (3.13), an anisotropic spatio-temporal covariance

function.

Let L(θ1, θ2) be the Laplace transform for the Frechet-Hoeffding lower bound of bivariate copulas,

whose expression is

L(θ1, θ2) =
exp(−θ1)− exp(−θ2)

θ2 − θ1
, (3.23)

with θ1 6= θ2 and L(θ, θ) = exp(−θ). Now, consider the following Bernstein functions

ψ1(t) = (a1t
α1 + 1)β

ψ2(t) =
(a2t

α2 + b)
b (a2tα2 + 1)

ψt(t) = tρ,

where a1, a2 are positive scale parameters, α1, α2 ∈ (0, 2], β ∈ [0, 1], b > 1 and ρ ∈ [0, 1). With the

proposed setup, and plugging the result from equation (3.13) into (3.23), we obtain that

C(h1,h2, u) = σ2k
exp

(
−(a1‖h1‖α1 + 1)β − a2‖h2‖α2+b

b(a2‖h2‖α2+1)

)
− exp(−|u|ρ)

|u|ρ − (a1‖h1‖α1 + 1)β − a2‖h2‖α2+b

b(a2‖h2‖α2+1)

(3.24)

is a permissible nonseparable space-time covariance which is spatially two-component anisotropic.

Observe that with σ2 we denote the variance of the S/TRF , whilst k = ( 1
2 (1 − exp(−2)))−1 is a

normalisation constant, so that if σ2 = 1, then C(0,0, 0) = 1 and thus (3.23) would be a space-

time correlation function. The properties of this covariance function in terms of smoothness can

be evaluated by looking at the margins C(h1,0, 0), C(0,h2, 0) and C(0,0, u). For instance, it is

easy to see that none of these margins is differentiable at the origin.

Example 2. Following Corollary 2, completely monotonic functions can be used in order to im-

plement easily a space-time dependence structure. For instance, the function t → exp(−t) is

completely monotonic, but its characteristics in terms of non differentiability away from the origin
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makes it not very appealing, for the reasons explained by Stein (1999). A candidate completely

monotone function having very nice mathematical features is the celebrated Cauchy class (Gneiting

and Schlather, 2004), given by

ϕ(t) = (1 + ctδ)−ν , (3.25)

with c > 0, δ ∈ (0, 2], and ν a strictly positive parameter. This class is particularly important as it

allows for decoupling the fractal dimension and the Hurst effect associated to the underlying RF.

Unfortunately, for this class the result in Corollary 2 cannot be applied, as it is easy to show that

the second derivative, which is still a completely monotone function, and of the form

νcδt−2{(1 + ctδ
)−ν−2

νc
(
t2

)δ
δ − (

1 + ctδ
)−ν−1

tδδ +
(
1 + ctδ

)−ν−1
tδ +

(
1 + ctδ

)−ν−2
c
(
t2

)δ
δ}, (3.26)

admits a finite limit at the origin only for some values of the parameters. By the way, one could

use this class to obtain a covariance function that is anisotropic in space and asymmetric in time.

For instance, a nice class of covariance models defined on R2 ×R can be obtained as follows: take

ψ1(t) = (a1t
α1 + 1)β for the lag component h1, and ψ3(t) = tρ for h2, where the parameter setting

is the same as in previous example. Thus, one easily gets that

C(h1, h2, u) = EV (1 + c((a1h
α1
1 + 1)β + |h2 − V u|ρ)δ)−ν

is a permissible class of covariance functions on R2×R, that are spatially anisotropic and temporally

asymmetric. The choice of the distribution function for the velocity variable V is crucial to obtain

a closed form for the expectation above. Numerical solutions can be easily obtained, for instance by

assuming that V is uniformly distributed on the unit interval. Finally, V could be fixed a priori,

on the base of, for instance, physical knowledge of the process.

Example 3. Consider the completely monotone function

ϕ(t) =
[
ect1/2

+ e−ct1/2
]−ν

, (3.27)

where c, ν are positive parameters and t > 0. Writing c = 1, without loss of generality, we obtain
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that the second derivative admits the expression

ϕ(2)(t) =

1
4ν

{
(ν + 1) 1

t

(
e2
√

t + e−2
√

t − 2
)

+ t−3/2
(
e2
√

t − e−2
√

t
)
− t−1/2

(
e
√

t + e−
√

t
)2

}

[(
e
√

t + e−
√

t
)]ν+2 ,

(3.28)

which also admits a finite limit at the origin, whatever be the value of ν. Thus, applying Corollary

2, we obtain that for any choice of intrinsically stationary variograms γs, γt and Bernstein functions

ψ1, ψ2,

C(h, u) =

1
4ν





(ν + 1) (γs(h1) + γt(u))−1
(
e2
√

γs(h1)+γt(u) + e−2
√

γs(h1)+γt(u) − 2
)

+

(γs(h1) + γt(u))−3/2
(
e2
√

γs(h1)+γt(u) − e−2
√

γs(h1)+γt(u)
)

− (γs(h1) + γt(u))−1/2
(
e
√

γs(h1)+γt(u) + e−
√

γs(h1)+γt(u)
)2





[(
e
√

γs(h1)2+γt(u) + e−
√

γs(h1)+γt(u)
)]ν+2 [

e(ψ1(h2))1/2 + e−(ψ2(h3))1/2
]ν

,

(3.29)

with h = (h1,h2,h3)
′ ∈ Rd, is a nonseparable space-time covariance function, which is spatially

three-component anisotropic.

Example 4. In this example we propose some new covariance functions obtained through the

following mixture

C(h, u) =
∫ 1

0

∫ 1

0

exp(−w1γs(h)− w2γt(u))dK(w1, w2), (3.30)

where K is a bivariate copula, i.e. a bivariate distribution function defined on the unit square,

with the peculiarity that its margins are uniform on the unit interval. As copulas are defined on a

compact support, integration in (3.30) can be easy, as shown in the following lines. Consider, for

instance, the following classes of copulas:

1. The product copula K(w1, w2) = w1w2.

2. The copula B11 in Joe (1997) p. 148

K(w1, w2) = δmin {w1, w2}+ (1− δ)w1w2, (3.31)
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where δ ∈ [0, 1], so that (3.31) can be seen as a convex sum of two elementary copulas.

Applying (3.30) to the families of copulas just mentioned, the resulting covariances are of the form:

1.

Cs,t(h, u) =





1 if h = 0; u = 0
(1−e−‖h‖

α
)(1−e−|u|

β
)

‖h‖α|u|β elsewhere,
(3.32)

which is a separable spatio-temporal covariance function in Rd×R, and where γs(h) = ‖h‖α

and γt(u) = |u|β, which are valid variograms for 0 ≤ α, β ≤ 2. This covariance function is

differentiable at the origin for α, β > 1 and it is integrable in Rd × R if and only if α > d

and β > 1, with d the dimension of the spatial domain.

2.

Cs,t(h, u) =





1 if h = 0; u = 0

δ
(1−e−γs(h)−γt(u))

γs(h)+γt(u) + (1− δ) (1−e−γs(h))(1−e−γt(u))
γs(h)γt(u) elsewhere

(3.33)

A similar structure for the covariance function can be obtained through the Kimeldorf and

Sampson family (Joe, 1997).

Other families of copulas admit a more complicated form, which can be integrated only through

computer intensive calculation. One such case is the Frank family (Genest, 1987; Joe, 1997).
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Chapter 4

Covariance function estimation

4.1. INTRODUCTION

In the geostatistical framework, the estimation of the covariance is an important problem for space

and space-time processes. For example, the best linear unbiased predictor (or, equivalently, the

kriging predictor) of the process at a space-time location depends on knowledge of the covariance

function of the process.

Since a covariance function must be conditionally positive definite, practical estimation gener-

ally requires the selection of some parametric class of covariance and the corresponding estimation

of these parameters. Parametric covariance functions has been reviewed in chapter 2 and 3 in the

space and space-time context.

Maximum likelihood (ML) and related techniques are generally considered the best method

for estimating the parameters of covariance models. However, for a Gaussian RF with a given

parametric covariance function, exact computation of the likelihood requires calculation of the

inverse and determinant of the covariance matrix, and this evaluation is slow when the number of

observations is large. This fact motivates the search for approximations to the likelihood function

that require smaller computational burdens.

When the computation of the likelihood is infeasible, the most used estimation method is

weighted least squares (WLS) (Cressie, 1985). This is often the case for space-time data (see, for

instance, Cressie and Huang (1999) and Gneiting et al. (2007)).

Section 2 reviews classical methods for covariance function estimation in spatial context, such

as maximum likelihood and least square estimation. For the sake of simplicity the methods are
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described in the spatial context. The extension to space-time context is straightforward. Section

3 reviews recent proposal for covariance function estimation.

Section 4 introduces weighted composite likelihood (WCL) method which is builded starting

from a proposed method by Curriero and Lele (1999). It is based on composite likelihood (Lindsay,

1988), i.e. a likelihood-based approximation indicating a general class of pseudo-likelihood based

on the likelihood of marginal or conditional events.

The method introduce the concept of ”optimal distance” to be consider before performing

estimation. This is attained by considering cut-off weights and then maximizing the Godambe

Information associated to WCL respect to these weights.

We argue WCL estimates are consistent and asymptotically Gaussian with asymptotic variance

equal to the inverse of Godambe Information, under increasing domain regularity assumptions.

Standard error estimation based on subsampling technique is suggested.

A model selection criteria based on WCL, exploiting recent results in Varin and Vidoni (2005),

in introduced.

We show, through examples and simulation experiments, that WCL method represents a satis-

factory approximation of ML and always induces gains in efficiency with respect to WLS method.

At the same time, WCL allows for benefits from the computational point of view with respect to

ML. The computational gains depend on the optimal distance.

A real data application on the Irish-wind speed dataset (Haslett and Raftery, 1989) is presented.

4.2. CLASSICAL ESTIMATION METHODS

4.2.1 Nonparametric estimation

Historically empirical estimation of the second order properties of a WS process has been performed

on the variogram rather than the covariance function. This for practical reasons: for instance the

empirical variogram does not require to estimate the mean and it is an unbiased estimator of the

variogram.

The variogram and/or covariance function of the spatial process plays a key role in the geostatis-

tical method. Non parametric technique as the empirical variogram estimator does not guarantee

conditional negative definiteness. Finding an empirical estimate of the semivariogram is a science

in itself, however. It is a basic tools in explorative data analysis in geostatistics. Among the non

parametric estimators the empirical variogram obtained through the method of moment (Math-
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eron, 1965), is the more famous. Moreover it is a necessary step in the least square estimation.

Assuming that points (Z(s1), . . . Z(sN )) are N observations from a WS stationary spatial RF

and that they are disposed on a regular lattice, the estimate is

γ̂(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

(Z(si)− Z(sj))2, (4.1)

where N(h) = {(i, j) : si−sj = h}. Whenever the data are not regularly spaced, a tolerance region

is needed in order to get reasonable estimates, otherwise the number of points lying on regular

separations would be too small. In this case an adapted version of N(h) could be N∆(h) = {(i, j) :

si − sj ∈ Tol(h∆)}, where Tol(h∆) is some specified tolerance region ∆ around h. Anyway, any

tolerance region introduces a subjective choice in the estimation. A practical rule sometimes met

in practice is to consider only half the maximum distance in the data and at least 30 points for lag

bins (Journel and Huijbregts, 1978).

As far as the statistical properties of the empirical variogram, we can note that it is unbiased

since

E( ˆγ(h)) =
1

2|N(h)|E(
∑

(i,j)∈N(h)

(Z(si)− Z(sj))2) = γ(h)

However, when data are irregularly disposed and tolerance regions are considered a nonnegligible

bias that strongly depends on the choice of the lag bins, is introduced.

It is difficult in general to determine distributional properties and moments of the variogram

without some assumptions. However, if Z(s) is a Gaussian random field, it can be shown (see for

instance Smith (2001) ) that:

Cov( ˆγ(h1), ˆγ(h2)) =
2

|N(h1)||N(h2)|
∑

(i,j)∈N(h1)

∑

(l,k)∈N(h2)

(γ(si−sl)−γ(sj−sl)+γ(sj−sk)−γ(si−sk))2

(4.2)

One objection to the classical empirical variogram is that, like many methods based on sample

averages, it is not robust against outlying values of Z. In this direction go some methods for robust

semivariogram estimation as for instance (Cressie and Hawkins, 1980).

4.2.2 Least square methods

The popularity of Least Squares methods (LS for short) is due to their ease of computation and

the fact that they are free of distributional assumptions.

LS method requires a preliminary step, e.g. obtaining a nonparametric estimate of the vari-

ogram.
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Then, the following generalised sum of squares is minimised

(γ̂(h, )− γ(h, ; θ))′R(h; θ)−1 (γ̂(h)− γ(h; θ)) ,

where γ̂(h) = (γ̂(h1), . . . , γ̂(hm))′, γ(h;θ) = (γ(h1; θ), . . . , γ(hm; θ))′ and R is a definite positive

matrix. Here R is Cov(γ̂(h)), obtained for instance through (4.2). Generalized least square (GLS)

estimation is performed, as outlined by Muller (1999), with an iterative re-weighting scheme which

requires the inversion of a K ×K matrix, where K is the number of lags, at each step.

Cressie (1985), for computational reasons, proposed to replace the matrix R by a diagonal

matrix where the diagonal entries are calculated as

var(γ̂(hk)) ≈ 2
γ(hk; θ)2

|N(h)| , k = 1, . . . , m.

Thus, instead of minimising the generalised sum of squares, minimise the weighted sum of squares

m∑

k=1

|N(hk)|
γ(hk;θ)2

(γ̂(hk)− γ(hk;θ))2 .

The WLS estimate has evident computational gains but it depends on the γ̂(hk), that are corre-

lated. Moreover it can be easily shown that the estimating function associated to WLS is biased.

When data are irregularly spaced, the nonnegligible bias deriving from using of subjective

tolerance regions impact the estimation of the covariance parameter. This drawback is even bigger

when we want to estimate anisotropic parametric models as in section 3.4. Moreover, in the case

of space-time covariance functions built throughout the Lagrangian framework (Stein, 2005a), it is

not clear how to proceed with WLS estimation. In this sense, when data are not regularly disposed,

a fitting procedure based on variogram cloud could be preferred.

4.2.3 Maximum likelihood

ML methods require the distribution of the underlying RF to be known and in literature it is only

developed the case of Gaussian RF (Mardia and Marshall (1984)). Let Z = (Z(s1), . . . Z(sN ))′ be

N observations from a zero-mean Gaussian RF. The log-likelihood function can be written as

l(θ) = − log |Σ(θ)| − Z ′Σ(θ)−1Z, (4.3)

where Σ(θ) = Var(Z) depends on θ ∈ Θ ⊆ Rp. The ML estimator in a spatial setting has desirable

asymptotic properties like consistency and asymptotic normality under increasing domain (Mardia

and Marshall (1984)). However applications of ML methods to spatial data have been criticised for
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computational reasons. Moreover, the most critical part in likelihood calculation is to evaluate the

determinant and inverse of Σ. This evaluation could be theoretically carried out in O(N2.81) steps

(Aho et al., 1974) but the most widely used algorithms such as Cholesky decomposition require

O(N3) steps. This can be prohibitive if N is large. ML estimation have appealing statistical

properties but in finite sample they are often biased. To correct for this drawback restricted

maximum likelihood (REML) has been proposed. The idea of REML estimation is to estimate

covariance parameters by maximising the likelihood of KZ where the matrix of contrasts K is

chosen so that E(KZ) = 0.

4.3. ASYMPTOTIC CONSIDERATIONS

There are two quite different asymptotic frameworks in spatial statistics to which one can ap-

peal: increasing domain asymptotics, in which the minimum distance between sampling points

is bounded away from zero and thus the spatial domain of observation is unbounded, and infill

asymptotics, in which observations are taken ever more densely in a fixed and bounded domain.

Asymptotic behavior of estimation methods of covariance function has been considered in both

the framework or in a mixture of them.

ML estimation in classical statistical theory is considered the best estimation essentially for

asymptotics reasons. In spatial settings classical asymptotics does not apply since the observations

are tipycally correlated. However results under increasing domain are similar to the classical

statistical theory framework.

Consider a spatial process Z(s) that is observed on a set of n points Dn , with D1 ⊂ D2 ⊂
. . . ⊂ Rd, and whose distribution depends on the parameter θ ∈ Rp, where p and d are fixed

positive integers. Let l(θ) be the likelihood function defined in (4.3) and let θ̂ML be the maximum

likelihood estimator. If Z(s) is a Gaussian random field, Mardia and Marshall (1984) showed that,

under an increasing domain asymptotic framework and subject to some regularity conditions, θ̂ML

is approximately normally distributed with mean θ and covariance the Fisher information matrix.

Cressie and Lahiri (1996) showed that this result holds for the REML estimator under certain

regularity conditions.

A similar general result do not exist on infill asymptotics. Consider a stationary, zero-mean,

Gaussian process observed in R with covariance function as in (2.6) with θ0 = 0 and ρ(h, θ) as

in (2.7), i.e. an exponential covariance model. When this process is observed in the unit interval,
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Ying (1993) showed that, as n −→∞,

√
n(σ̂2

MLθ̂ML − σ2θ) −→ N(0, 2(σ2θ)2) (4.4)

However, the individual parameters (range and variance) are not consistently estimable under

the infill asymptotic framework. Zhang (2004) generalized this result and showed that not all

parameters in a Matern covariance function are consistently estimable under infill asymptotics.

Cressie and Lahiri (2002) describes asymptotic results of least square estimators under increas-

ing domain and a mixed form of increasing and infill.

Typically in practice, spatial data are observed at a finite number of points with no intention

or possibility of taking more observations, and it is not clear which asymptotic framework to

appeal to. Stein (1999) argues that if interpolation of the spatial process is the ultimate goal,

infill asymptotics must be preferred. Zhang and Zimmerman (2005) compared the two asymptotic

frameworks and showed that for some parameters, the infill asymptotics seems preferable.

4.4. RECENT ESTIMATION METHODS

Gains in computation of (4.3) can be obtained exploiting the particular structure of the covariance

matrix, thus without resorting to approximations. Zimmerman (1989) outlines that under certain

sampling schemes it is possible to compute the likelihood more efficiently. For example, when the

sampling locations form a regular lattice of R rows and C columns, the covariance matrix is block

Toeplitz, and matrix inversion algorithms exist which reduce the required number of computations

to O(R2C3), from O(R3C3) for an arbitrary RC × RC matrix (Akaike, 2003). If the sampling

locations form a regular rectangular lattice and the covariance function is separable, then the

covariance matrix is a Kronecker product of two symmetric Toeplitz matrices, and the inverse can

be found using O(R2C2) computations.

Another way in which calculations for lattice data can be simplified is via the spectral represen-

tation (2.11) of the process Z. Whittle (1954) proposed an approximation of the likelihood based

on the frequency domain rather than the sampling domain.

Fuentes (2007) extended this idea to construct an approximation for irregularly space data,

dividing the spatial domain into a lattice of blocks, then working with the process obtained by

integrating Z over each of the blocks. However some concerns regarding the accuracy associated

with approximation in the spectral domain (e.g., the likelihood of Whittle (1954), and with the
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ad hoc creation of the periodogram (e.g., how many low frequencies are ignored) leads to a careful

use of these tools for inference.

Kaufmann et al. (2007) focus directly on the covariance matrix and propose to compute (4.3)

with a ”tapered” version of the covariance matrix instead of the original covariance. Tapering

is performed by multiplying (in the Schur sense) the covariance matrix by a particular compact

correlation matrix. The goal is to obtain matrix forms which can be manipulated using efficient

sparse matrix algorithms. Furrer et al. (2007) use this technique for data interpolation rather than

estimation.

The computational problem has been attacked with likelihood approximations such as com-

posite likelihood. Three kinds of composite likelihood have been proposed in the literature to

approximate the full likelihood for large spatial data sets. (Curriero and Lele (1999), Caragea and

Smith (2006), Vecchia (1988) and its modified version of Stein et al. (2004)).

Caragea and Smith (2006) propose to approximate the likelihood through three different meth-

ods called ”Big block”, ”Small Block” and ”Hybrid” methods. They consist in splitting the full

region in sub-regions and then consider 1) the likelihood for the means over each of the subregions,

2) the likelihood for the observations, assuming subregions are independent, or 3) the likelihood for

the observations, assuming they are conditionally independent given the means of the subregions.

Vecchia (1988) proposed to factor the full likelihood into a product of conditional densities and

then reduce the size of conditioning sets as an approximation. Stein et al. (2004) improved and

extended this idea to REML estimation and compared this kind of estimator with ML by using

the associated Godambe Information, since the derivative of the approximate log-likelihood forms

an unbiased estimating equation.

Curriero and Lele (1999) approach is the starting point for the WCL method and it is introduced

in the next section.

4.5. WEIGHTED COMPOSITE LIKELIHOOD METHOD

4.5.1 Our proposal

Estimation of the variogram historically has been made with the empirical variogram. As outlined

by Genton (1998) a practical rule sometimes met in practice is to consider only half the maximum

distance in the data and at least 30 points, when building the empirical variogram. This rule of

thumb seems to be based in tradition and it is at least questionable. However, it suggests that not
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considering large distances in the estimation could improve the ”quality” of the estimates.

Following this idea, it is of interest, for computational and efficiency reasons, looking for esti-

mators based on differences considering an optimal distance (in some sense) in the estimation. For

this purpose we need to define an objective criteria when looking for this optimal distance. It is

probably better building estimators based on variogram cloud since the empirical variogram is not

unbiased in general.

Curriero and Lele (1999) introduced a particular form of composite likelihood for covariance

estimation based on variogram cloud, and showed that this method shares some of the best prop-

erties of the WLS and ML methods. In particular, it does not depend on the choice of lag bins,

it is robust towards misspecification of the distribution and its order of computation lies between

the ML and WLS ones.

Let Z(s, t) be a weakly stationary RF with a parametric variogram function 2γ(h, u; θ) where

θ ∈ Θ ⊂ Rp is an unknown p−dimensional parameter vector. Following Curriero and Lele (1999),

we consider all possible differences Uij = Z(si) − Z(sj), i 6= j. We assume that the distribution

of these differences is Gaussian, Uij ∼ N (0, 2γij(θ)), where γij(θ) = γ(si − sj ; θ). The negative

log-likelihood of a difference is:

l(Uij ; θ) = log γij(θ) +
U2

ij

2γij(θ)
.

Summing up all the possible differences, we get the composite likelihood (CL for short) function

as proposed in Curriero and Lele (1999),

CL(θ) =
N∑

i=1

N∑

j>i

l(Uij ; θ). (4.5)

This method does not require any inversion matrix and the order of computations is O(N2). To

obtain estimates of θ we can maximise the function CL(θ) or equivalently solve the estimating

equation
N∑

i=1

N∑

j>i

∇l(Uij ; θ) =
N∑

i=1

N∑

j>i

∇γij(θ)
γij(θ)

(
1− U2

ij

2γij(θ)

)
= 0, (4.6)

where ∇γij(θ) = ∇γ(si − sj ; θ) is the vector of partial derivative with respect to the vector θ.

Note that this is an unbiased estimating equation, irrespectively of the distributional assumptions

imposed on Uij . If the fourth-order joint distributions of Uij is known, it would be possible to

come up with an optimal way of combining the individual score ∇l(Uij ;θ). One can stack all the
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individual score into a vector v(θ) and form the optimal estimating equation

(E∇v(θ)) T [Cov(v(θ))]−1v(θ) = 0.

However, the computation of the covariance matrix Cov(v(θ)) is of order O(N2)×O(N2), and its

inversion is computationally prohibitive for large N .

Now we look at a modification to the composite likelihood (4.5), which aims to improve the

efficiency of the estimates and reduce the computational burden. Instead of searching optimal

weights we consider a modified version of (4.5) namely

WCL(θ, ds) =
1

WN,ds

N∑

i

N∑

j>i

l(Uij ; θ)wij(ds), (4.7)

and its associated estimating equation

eWCL(θ, ds) =
1

WN,ds

N∑

i

N∑

j>i

∇l(Uij ; θ)wij(ds) = 0, (4.8)

where WN,ds =
∑N

i

∑N
j>i wij(ds) and wij(ds) = 1 if ‖si − sj‖ ≤ ds, , and 0 otherwise.

We define the Godambe information (Godambe, 1991) or sandwich information matrix of (4.8)

as

G(θ, d) = H(θ, ds)J(θ, ds)−1H(θ, ds)T ,

with H(θ, ds) = E[∇eWCL(θ, ds)], J(θ, ds) = E[eWCL(θ, ds)eWCL(θ, ds) T ] and

H(θ, ds) = E[∇eWCL(θ, ds)] =
1

WN,ds

N∑

i

N∑

j>i

∇γij(θ)∇γij(θ) T

γ2
ij(θ)

wij(ds), (4.9)

J(θ, ds) = E[eWCL(θ, ds)eWCL(θ, ds) T ]

=
1

W 2
N,ds

N∑

i

N∑

j>i

N∑

l

N∑

k>l

∇γij(θ)∇γlk(θ) T

4 γ2
ij(θ)γ2

lk(θ)
Cov(U2

ij , U
2
lk)wij(ds)wlk(ds). (4.10)

Note that if the RF is Gaussian, it turns out to be Cov(U2
ij , U

2
l,k) = 2(γil(θ) − γjl(θ) + γjk(θ) −

γik(θ))2 so we can evaluate readily expression (4.10).

In order to improve the efficiency we choose the ‘lag’ ds minimising the inverse of G(θ, ds) in

the partial order of nonnegative definite matrices. Using a scalar equivalence result (Heyde, 1997)

we seek the optimal d∗s such that

d∗s = argmin
ds∈D

tr(G−1(θ, ds)), (4.11)
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where D = {(ds) : mini 6=j ‖si − sj‖ ≤ ds ≤ maxi6=j ‖si − sj‖ } and tr(A) denotes the trace of the

matrix A. To save computation time, instead of computing the Godambe information for every

observed lag, we could restrict the search space and choose a fixed number of lags.

Then the WCL estimator is defined as θ̂d∗s = argmin
θ∈Θ

WCL(θ, d∗s)

Optimal cut-off weights allow us to establish an objective criteria on leading up the ”optimal

distance” mentioned before.

Note that we need to know θ to perform this task. In Section 4.5.3 we suggest a method to

solve this problem.

Asympotics results for the WCL can be derived following the same arguments as in Heagerty

and Lele (1998). In particular note that in their proof these authors have considered a weighted

version of the pairwise likelihood that is exactly our weighted scheme. Thus WCL estimator θ̂N,d∗s

turns out to be consistent and asymptotically normal under increasing domain asymptotics and

the conditions stated in Heagerty and Lele (1998), namely for N →∞

J(θ, d∗s)
−1/2H(θ, d∗s)

T (θ̂N,d∗s − θ) d→ N (0, Ip). (4.12)

4.5.2 The spatio-temporal case

A natural extension of the WCL method consists in considering all the spatio-temporal differences:

Uij = Z(si, ti)−Z(sj , tj), i 6= j. Then, assuming Gaussianity of the differences Uij ∼ N (0, 2γij(θ)),

where γij(θ) = γ(si − sj , ti − tj ; θ) is a valid space-time variogram model, we obtain the WCL for

space-time data:

WCL(θ, d) =
1

WN,d

N∑

i

N∑

j>i

l(Uij ;θ)wij(d), (4.13)

and its associated estimating equation

eWCL(θ, d) =
1

WN,d

N∑

i

N∑

j>i

∇l(Uij ;θ)wij(d) = 0, (4.14)

where WN,d =
∑N

i

∑N
j>i wij(d) and wij(d) = 1 if ‖si − sj‖ ≤ ds, |ti − tj | ≤ dt, and 0 otherwise,

d = (ds, dt)T .

Then, we propose to minimise WCL(θ, d∗) respect to θ, where

d∗ = argmin
d∈D

tr(G−1(θ,d)), (4.15)

whereD = {(ds, dt) : mini 6=j ‖si−sj‖ ≤ dsk ≤ maxi 6=j ‖si−sj‖, mini 6=j |ti−tj | ≤ dtk ≤ maxi6=j |ti−
tj |]} and where G(θ, d) is the Godambe Information associated to the weighted estimating function.
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4.5.3 On d identification, standard error estimation and information criteria based on WCL

Before performing optimisation of WCL(θ, d), we need to identify the optimal spatial lag d∗. In

our experience we have found useful choosing the WLS estimate θ̂ as a preliminary and consistent

estimate.

However the evaluations of the plug-in estimates Ĥ = H(θ̂,d) and Ĵ = J(θ̂, d) are of or-

der O(W 2
N, d ) and O(W 4

N, d ) respectively, and these become computationally infeasible for large

datasets.

In this case we can resort to subsampling techniques as in Heagerty and Lumley (2000). More

precisely, let D1, . . . , Dk be K overlapping subsets of D = {(s1, t1), . . . , (sN , tN )}. If we assume

that for N →∞,

WN, d J(θ,d) → J∞,

we can estimate J from an estimate of J∞, namely

Ĵ∞ =
1
K

K∑

k=1

1

W
(k)
N,d

∑

(i,j)∈Dk

∑

(i′,j′)∈Sk

∇l(Uij , θ̂)∇l(Ui′j′ , θ̂)T wij(d)wi′,j′(d) (4.16)

where W
(k)
N,d =

∑
(i,j)∈Sk

wij(d). To select an appropriate subset size in the spatial case, we refer

to Heagerty and Lumley (2000) and the references therein.

In the space-time context much research had addressed the choice of optimal space-time subset.

Since a typical situation in environmental studies is when we dispose of few spatial locations

observed in many temporal instants, considering temporal windows of fixed dimensions seems the

natural choice in this case. Li et al. (2007) extend Carlstein (1986) to determine the optimal length

when using overlapping temporal windows:

l(n) = (
2β

1− β2
)

2
3 (

3n

2
)

1
3

where we estimate β by β̂ = ˆC(0, 1)/ ˆC(0, 0)

This approach assumes that the statistic of interest is the simple mean and that the temporal

correlation follows an AR(1) with parameter β. This procedure often works well in practice.

Finally, the estimates of J and H allow us to propose a model selection criterion. An important

issue in the geostatistical approach is the selection of an appropriate covariance model, taking into

account the trade off between goodness-of-fit and model complexity. Model selection criteria as

AIC and BIC have been proposed in both spatial (Hoeting et al., 2006) and space-time (Huang

et al., 2007) settings. Nevertheless, they depend on the computation of the likelihood function. In

42



our framework we can follow Varin and Vidoni (2005) and we propose a model selection criterion

based on the weighted composite likelihood. The WCL information criterion selects the model

maximising

WCLIC(θ̂d∗ , d
∗) = WCL(θ̂d∗ , d

∗) + tr(ĴĤ−1). (4.17)

The effectiveness of this criterion will be illustrated in section 4.6.

4.5.4 Examples

Let us first consider an example for a process with a Cauchy variogram model of type :

γ(du; b) = 1− 1
1 + du/b

, b > 0, du ∈ R. (4.18)

where the parameter b controls the spatial range. Figure 4.1 shows G−1(b, du) as a function of

du for different values of b on a transect [0, 60] equally spaced by 0.5. We note that the best lag

is always the smallest (d∗u = 0.5) and that the gain of WCL versus CL is more evident when the

spatial dependence is stronger (b = 3).

To analyse the asymptotic distribution of b, we simulated 1000 spatial random fields with a

Cauchy model with b = 1 and then perform estimation with WCL(0.5) and CL. Figure 4.2 shows

the results by comparing the distribution of the estimates versus the theoretical ones.

Note that the estimated distribution of b under WCL(0.5) match the asymptotic approximation

(4.12).

Second, let us consider an exponential variogram with equation

γ(ds; θ) = 1− exp
(
−3

ds

θ

)
, θ > 0. (4.19)

In this case θ is a positive scalar representing the practical range of the spatial correlation, e.g.

the minimum lag at which the spatial correlation of the underlying RF is negligible.

Figure 4.3-a shows the inverse of the Godambe Information as a function of h for 49 location

points on a 7×7 regular grid in a square [1, 4]2 for different values of θ. We can see that the variance

increases with the spatial lag h, and that attains the minimum at the first lag available (d∗s = 0.5).

Note that the gain is more evident when θ increases. Figure 4.3-b considers the same setting but

under an irregular grid. Note that under this spatial scheme, it seems dangerous to take ds too

small, and that the optimal d∗s is proportional to the spatial dependence, as could be expected.

To check asymptotic results, we simulated 1000 spatial random fields, under the former regular
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Figure 4.1: Inverse of the Godambe Information matrix for a Cauchy model on a transect [0, 60]

with sampling points equally spaced by 0.5, with b = 1, 2, 3.

scheme, with an exponential covariance model with θ = 2 and then estimated with WCL(0.5) and

CL. Figure 4.4 describes the results of simulations by comparing the distribution of the estimates

versus the theoretical one. Again the estimated distribution match the asymptotic approximation.

The gain of WCL versus CL is evident in terms of variability.

Both examples shows a clear gain in efficiency when estimating with WCL and that asymptotic

result in 4.2 seems to be a reasonable approximation for the distribution of the parameters.

4.6. SIMULATED DATA

In this section we describe a simulation study with the aim of examining and comparing the

performances of CL, WLS and WCL with respect to ML ones.

The methods are compared in terms of mean squared errors (MSEs), calculated over 300

realisations of stationary Gaussian RF, {Z(s, t)}, with zero mean and unitary variance, where

s ∈ {1, 1.5, 2, . . . , n}2 with n = 3, 4, 5 (i.e. 25, 49 and 81 points observed on a regular grid equally

spaced), and t ∈ {1, . . . , T}, with T = 15, 30, 45. The number of the observations was chosen

in order to make rather simple evaluating the full likelihood. We have considered three different

models for the covariance:
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Figure 4.2: Distribution of 1000 WCL(0.5) estimates from the model model Cauchy with b =

1 (mean = 1.031, var = 0.0424) versus the theoretical distribution (mean=1 var=0.0439), and

distribution of 1000 CL estimates (mean = 1.215, var = 0.635) versus the theoretical distribution

(mean = 1, var = 0.491)
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Figure 4.3: Inverse of the Godambe Information matrix for an exponential variogram model. We

considered 49 spatial locations on [1, 4]2 and θ = 1, 2, 3 with sampling points: (a) a regular 7 × 7

grid, (b) 49 sites randomly located.
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(mean = 2, var = 1.60)
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1. a spatial model like (4.19) with θ = 1, 2, 3;

2. a space-time separable model like (3.2), with range parameters a = c = 2;

3. a nonseparable and fully symmetric space-time model like (3.6), with a = c = 2, smoothing

parameters α = γ = 0.5 and nonseparating parameter β = 0.5 .

WCL estimation is performed after the identification of d∗ using (4.11) and WLS estimates as

preliminary estimates

Table 4.1 shows the relative efficiency (i.e. the ration between the MSEs) of the WLS, CL,

and WCL estimates with respect to ML ones for the exponential model with different values of

parameters.

n = 25 n = 49 n = 81

WLS CL WCL WLS CL WCL WLS CL WCL

θ = 1 2.570 3.139 1.463 3.250 4.279 1.538 5.271 6.616 1.611

θ = 2 2.743 3.202 1.252 3.916 4.510 1.271 6.133 7.504 1.303

θ = 3 2.821 3.359 1.170 4.206 4.698 1.194 7.355 8.506 1.221

Table 4.1: Relative efficiency, based on MSE, for WLS, CL and WLC estimation methods with

respect to ML, when model (4.19) is used with θ = 1, 2, 3.

In this example we have plugged-in the WLS estimates into the Godambe information without

resorting to subsampling for estimating J . The identified distance d∗s always coincides with the

optimal true one which is equal to 0.5 for this spatial design.

The table suggests that the gain of WCL estimates respect to CL ones increases when the

spatial range is higher (θ = 3). Moreover we note that if the number of points increases the

relative efficiencies of CL and WLS estimates get worse while the WCL one is nearly constant.

Tables 4.2 and 4.3 show the relative efficiency of the WLS, CL and WCL estimates with respect

to ML estimate for the separable and non separable covariance modes, respectively. In this cases

identification of d∗ is performed using subsampling tecniques with temporal windows as explained

in section 4.5.3.. WCL∗ indicates the relative efficiency for the weighted likelihood when we choose

d assuming known the true value θ.

Again WCL estimates have the best performances and its relative efficiency does not get worse
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respect to ML increasing the observations in space and/or in time. Moreover the discrepancy

between WCL∗ and WCL increases for the Gneiting model (3.6) mirroring the incertitude of the

preliminary estimates.

In Table 4.4 (resp. 4.5) we give more details of the behaviour of the relative efficiency of WCL

estimates with respect to some combination of spatial and temporal lags for model (3.2) (resp.

model (3.6)) when n = 49 T = 30. The tables confirm that optimal space-time lag is d = (0.5, 1)T

and that when increasing the space-time lag relative efficiency get worse.

Finally, we show a small example of model identification using the weighted composite likelihood

information criterion defined in (4.17). We have considered 100 independent simulations from a

stationary Gaussian RF with zero mean, unitary variance and covariance model (3.10) with n = 16

points on a regular spaced grid S = {1, 2, 3, 4}2 and t = 1, . . . , 150. In our idea this choice (a small

number of locations and a relatively large number of measures in times) reflects a common setting

in environmental studies.

We set three different models. In (3.10) we fix:

Model A γ = 0.5, β = 0, ε = 0 fixed ; c = 1, a = 1, α = 0.5 to be estimated

Model B γ = 0.5, ε = 0 fixed ; c = 1, a = 1, α = 0.5, β = 0.7 to be estimated

Model C γ = 0.5 fixed; c = 1, a = 1, α = 0.5, β = 0.7, ε = −0.5 to be estimated

We estimate with WCL(1, 2). Note that these models are nested. The outcomes of these

simulations are summarised in Table 4.6 that reports the times that a particular model is identified

with respect to the model choosen for the simulations, i.e. the ’true’ model. These results point

out that the WCLIC seems a promising identification criterion because in this case at least 80%

of the models have been correctly identified.

4.7. A REAL DATA EXAMPLE

We have considered the daily wind speeds collected over 18 years (1961-1978) at 12 sites in Ireland

and originally analysed in Haslett and Raftery (1989). Due to his size and wholeness this dataset

has been examined by several authors, for instance Gneiting (2002); De Luna and Genton (2005);

Stein (2005a,b) and recently Gneiting et al. (2007) have found evidence that the data violate the

assumptions of full symmetry and separability.
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dt ≤ 1 dt ≤ 2 dt ≤ 3 dt ≤ 4

c 1.96 2.02 2.03 2.05

ds ≤ 0.5 a 11.93 13.59 14.93 15.56

c 2.88 3.05 3.09 3.11

ds ≤ 1 a 16.19 20.33 22.96 24.38

c 4.70 5.12 5.29 5.36

ds ≤ 1.5 a 20.08 25.95 30.20 32.95

c 6.20 6.91 7.23 7.49

ds ≤ 2 a 21.96 28.52 33.80 37.45

Table 4.4: Relative efficiency, based on MSE, for WCL estimates at different spatial and time lags

when model (3.2) is used (c = 2, a = 2, ans σ2 = 1), with n = 49 and T = 30.

dt ≤ 1 dt ≤ 2 dt ≤ 3 dt ≤ 4

c 2.73 3.16 3.44 3.66

ds ≤ 0.5 a 3.82 4.91 6.11 7.12

c 4.23 5.02 5.53 5.93

ds ≤ 1 a 5.39 7.24 9.19 10.89

c 7.00 8.53 9.53 10.31

ds ≤ 1.5 a 6.42 8.94 11.56 13.95

c 9.04 11.22 12.69 13.87

ds ≤ 2 a 6.70 9.49 12.40 15.11

Table 4.5: Relative efficiency, based on MSE, for WCL estimates at different spatial and time lags

when model (3.6) is used (c = 2, a = 2, and σ2 = 1) with n = 49 and T = 30.
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Identified

A B C

A 81 14 5

True B 6 80 14

C 3 11 86

Table 4.6: Times that a particular model is identified with respect to true model using the WCLIC.

Here we do not want propose a new analysis, but we would like illustrate the effectiveness of the

weighted likelihood approach. Following Haslett and Raftery (1989) we have omitted the Rosslane

station and as in Gneiting et al. (2007) we have considered only the first ten years of observations

as a training set and the next 8 years as a validation set. Then we have considered a square root

transformation of the data and removed a seasonal component. The seasonal component has been

estimated by calculating the average of the square roots of the daily means over all years and

stations for each day of the year, and regressing the result on a set of annual harmonics. After

these tranformations, Haslett and Raftery (1989) argue convincingly that a stationary model seems

sensible.

The inspection of the empirical marginal covariances suggests a spatial nugget effect, thus a

discontinuity in C(h, u) at h = 0, for all u due to measurement errors and/or small scale variability.

A simple way to model a spatial nugget effect is to write the covariance function in the following

form (Gneiting et al., 2007)

C̄(h, u) = σ2(1− ν)R(0, u)
(

R(h, u)
R(0, u)

+
ν

1− ν
δh=0

)
, (4.20)

where R(h, u) is a space-time correlation function, ν ∈ [0, 1] and σ2 > 0 is the variance or sill of

the model.

As outlined in Gneiting (2002), data showed asymmetry in time in the east-west direction.

Thus, using WCL, we estimated the spatio-temporal structure of the Irish wind speed data using

three covariance models for R(h, u):

(a) a separable structure, obtained by considering the model in equation (3.6) with β = 0 and

γ = 0.5;

(b) a nonseparable model, obtained by considering the same model in equation (3.6), with γ = 0.5
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Figure 4.5: Empirical and fitted marginal (spatial and time) covariance for model (a),(b),(c)

but with a non-vanishing β;

(c) a nonseparable, and not fully symmetric model as in equation (3.10) with γ = 0.5.

Because we have 40150 observations, ML estimate is infeasible and the aforemetioned authors

resort on WLS estimates bounding the numbers of lags. In this case computation of CL is very

slow. Using a preliminary WLS estimate we have identified d = (204, 15)T , where the spatial

distance is expressed in miles. In Figures 4.6(a)-(b) we illustrate the behaviour of the Godambe

information matrix for the nonseparable model with respect to the spatial distance h (at fixed time

lag u = 15) and with respect to the time lag u (at fixed patial distance h = 204).

We summarize the estimation results for model (a),(b),(c) in Table 4.7. Standard errors are

estimated using subsampling with a temporal window of 30 days. The fitted marginal covariances

show a good agreement with respect to the empirical ones (see Figure 4.5). Note that estimation

of spatial and time ranges, spatial nugget and variance are similar in the three models making

the fitted covariances virtually indistinguishable, but the results indicate that the fully simmetric

hypotesis (ε = 0) should be rejected.

These findings are confirmed considering the predictive performance of the three models. We
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Figure 4.6: Trace of the inverse of the Godambe information matrix for the nonseparable model:

(a) with respect to the spatial distance h (at fixed time lag u = 15); (b) with respect to the time

lag u (at fixed patial distance h = 204).
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(a) (b) (c)

a 0.8564 0.8912 0.7851

(5.00e− 02) (5.19e− 02) (2.56e− 02)

c 0.00106 0.00107 0.00108

(5.26e− 05) (5.35e− 05) (5.55e− 05)

α 0.81707 0.82666 0.79910

(8.71e− 02) (8.50e− 02) (4.57e− 02)

υ 0.0592 0.05805 0.0593

(6.15e− 03) (6.13e− 03) (1.30e− 03)

β - 0.6428 0.7933

(2.14e− 01) (2.43e− 01)

ε - - 142.2

(5.42e− 01)

σ2 0.3154 0.3155 0.3149

(7.08e− 03) (7.04e− 03) (5.67e− 03)

WCLIC 2656608 2656618 2656995

Table 4.7: WCL(204, 15) estimates and relative standard errors for the Irish wind speed data: (a)

separable model, (b) Gneiting nonseparable model and (c) nonseparable and not fully symmetric

model.

have considered as in (Gneiting et al., 2007) the velocity measures during the 8 years of the test

period (1971-1978) and we calculated for each station 365 × 8 = 2920 one day ahead predictions,

ẑ(s, t), using the simple kriging predictor, with the covariance function estimated with WCL(d̂)

in the training period. The predictor variables are the 33 velocity measures observed during the

past three days at the eleven stations.

To assess and rank the point forecasts, we have used the prediction mean square error (PME)

defined as PME(s) = (
∑6570

t=3651(z(s, t)− ẑ(s, t))2/2920)1/2.

Looking at the PME results in Table 4.8 the asymmetric in time model scores the best results.

Evidence in the rejection of the full symmetric hypothesis is given also by the WCLIC values
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Station (a) (b) (c)

Roche’s Point 0.483 0.479 0.465

Valentia 0.500 0.500 0.500

Kilkenny 0.435 0.431 0.417

Shannon 0.463 0.463 0.460

Birr 0.476 0.475 0.470

Dublin 0.447 0.443 0.441

Claremorris 0.490 0.491 0.490

Mullingar 0.427 0.425 0.417

Clones 0.483 0.480 0.470

Belmullet 0.494 0.494 0.494

Malin Head 0.495 0.491 0.486

Table 4.8: PMEs for the stations of the Irish wind speed data for WCL

for the three different models as we can see considering the last row in Table 4.7.

4.8. DISCUSSION

Following Varin and Vidoni (2005) taxonomy, there are two classes of composite likelihood. The

first one includes ”subsetting methods” and it is based on marginal or subset ”pieces” of full like-

lihood, while the second is based on ”omission methods”, since composite likelihood is obtained

by omitting components to the full likelihood. ”Omission methods” intuitively allow for com-

putational benefits since we do not consider pieces of likelihood when computing the composite

likelihood. Three kinds of composite likelihood have been proposed in the literature to approx-

imate the full likelihood for large spatial data sets. Curriero and Lele (1999) and Caragea and

Smith (2006) approaches belong to the class of subsetting methods, while the approximation of

Vecchia (1988) and its modified version of Stein et al. (2004) belong to the second class.

The order of computation of the three ”block” methods of Caragea and Smith (2006) is ap-

proximately O(N2), while the method proposed in Stein et al. (2004) can be made arbitrarily close

to O(N) depending on the size of the conditioning sets.

Both methods present some drawbacks: the method in Caragea and Smith (2006) can be infea-

sible for huge data sets, while in the method of Stein et al. (2004) there is a certain subjectiveness
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in choosing conditional and unconditional sets. Both present a general trade-off between statistical

efficiency and computational burdens.

WCL belongs to the class of ”omission methods”. Its statistical efficiency and computational

burden depends on the optimal spatial lag. The order of computation for WCL(θ, d∗) is O(W 2
N,d∗).

That is, the computational gain depends on the position of d∗ in the sort vector of empirical space-

time lags . If d∗ is the smallest lag, we have the best computational efficiency. If d∗ is the largest

empirical lags (maximum space-time distance), we have W 2
N,d∗ = N(N − 1)/2, that is the classical

CL.

For example, in the simulation study in Section 5 we consider 81 regularly spaced locations

points observed in 45 times. For this particular setting, the optimal space-time lag is d = (0.5, 1)T .

If k = 81× 45, ML requests in this case 1
3 (k)3 floating point operations while classical CL requests

k(k−1)
2 operations. WCL(0.5,1) involved 3645 operations. Thus WCL requires less than 3 × 10−7

of the floating point operations with respect to ML and 4 × 10−4 with respect to CL. Differently

from Caragea and Smith (2006) and Stein et al. (2004) approaches , WCL seems do not suffer from

the trade-off between computational burden and efficiency. For instance, in the examples 1 and 2

in Section 4.4, d∗ is the smallest. At this lag we have both the best statistical efficiency and the

best computational efficiency.

Moreover WCL does not suffer from any kind of subjectiveness in choosing ”pieces” of likeli-

hood. The price to pay is the estimation of optimal spatial lag before the estimation of covariance

parameter. It could be interesting to compare these different likelihood approximations.

An clear evidence of this method is that tanking into account all possible differences between

observed sites in the estimation of classical CL, does not necessarily increase the efficiency. These

findings suggest a way for improving the efficiency of other kinds of estimators based on differences

such as WLS. In this regard we could improve the results given by the usual practice (Journel and

Huijbregts, 1978) of using lags which are half the maximum distance and have a certain number

of points. This extension to WLS could be nontrivial, since the associated estimating function is

biased and the empirical variogram depends on the empirical choice of lag bins. Note that even in

the space-time context WLS has been implemented considering a fixed distance in space and time

without a clear justification (see, for instance, Gneiting et al. (2007)).

Finally we remark that practical rules for choosing optimal lag are needed dealing with huge

data-sets such as the case of space-time data and this will be a topic for future research.
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Chapter 5

WCL applications

5.1. INTRODUCTION

In this section we present three application of WCL method: the first one consists in estimation of

particular spatial covariance functions which allows for negative values, the second one consists in

estimation of covariance function describing residuals dependence in dynamic life tables, the third

one is a proposal for a simulation based test to verify separability of some parametric covariance

models in a space time setting. In the first two applications WCL is used without resorting to

optimal distance, that is we use the Curriero and Lele (1999) method. The test is based on WCL

as described in section 4.

5.2. MODELLING RESIDUALS DEPENDENCE IN DYNAMIC LIFE TABLES: A

GEOSTATISTICAL APPROACH

5.2.1 Introduction

In many countries all over the world, mortality forecasts are used to create and modify retirement

pension schemes, disability insurance systems and other social security programmes. During the

20th century huge increases in life expectancy have followed medical and scientific breakthroughs.

Forecasting mortality usually serves practical purposes because improvements therein could have

enormous social and financial implications.

The graduation of mortality data by means of parametric methodology has been widely ad-

dressed in papers such as Forfar et al. (2002), Renshaw (1991) and Debón et al. (2005) and by

means of non-parametric methodology in Gavin et al. (1993, 1994, 1995) and Debón, Montes and
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Puig (2006). All these papers deal with static graduation, that is to say the influence of age on data

graduation. However, mortality progresses over the years, but earlier methods do not take this

fact into account, as they were designed to analyse data corresponding to one year in particular

or, in the case of several years, they worked with aggregate figures. The concept of a dynamic

table seeks to solve this problem by jointly analysing mortality data corresponding to a series of

consecutive years. This approach allows the calendar effect’s influence on mortality to be studied.

A good sign that the representation of the evolution of mortality via dynamic models is an ex-

tremely important current issue, as much for actuaries as for statisticians and demographers, are

Benjamin and Pollard (1991), Tabeau (2001), Pitacco (2004), Wong-Fupuy and Haberman (2004),

Debón, Montes and Sala (2006a) and Booth (2006), where models that have arisen in the recent

years are described. Most of these methods adapt traditional laws to the new situation and none

of them take the dependence structure existing among the data into account, that some authors

consider must be modeled (Booth et al., 2002; Renshaw and Haberman, 2003b). One of the most

outstanding models, and also those more frequently used by actuaries, is the Lee-Carter model

(Lee and Carter, 1992).

In Booth (2006) the author reviews the development of new and sophisticated methods for mor-

tality forecasting. Debón et al. (2004) introduce, as an alternative to classical methods, methods of

adjustment and prediction based on geostatistical techniques which exploit the dependence struc-

ture existing among the residuals. In that paper, the dynamic life table is considered as a two-way

table on a grid equally spaced in either the vertical (age) or horizontal (year) direction, and the

data are decomposed into a deterministic large-scale variation (trend) plus stochastic small-scale

variation (error),

Z(s, t) = µ(s, t) + δ(s, t), (5.1)

where s ∈ R+ denotes the age and t is time expressed in years.

The novelties of our approach can be resumed as follows:

1. We consider a nonstationary random field of the type (5.1), where the nonstationary compo-

nent is exclusively explained by the trend, which is a function of the coordinates (s, t) ∈ R2.

The residuals are shown to be zero mean and weakly stationary.

2. We model the trend function, for both males and females, by using three different method-

ologies, that are well known under the names of Lee-Carter model (LC for short), extended
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Lee-Carter model(LC2) and median polish (MP ).

3. This allows to obtain six sets of residuals (as males and females are separated in order to

highlight differences between them), that are modelled by means of geostatistical techniques.

4. We argue that these residuals exhibit an anisotropic component and model it using anisotropic

models as described in chapter 3.

5. We forecast the mortality rates on a period for which we have no data.

To do this, we analyse Spain mortality data corresponding to the period 1980-2001. The first twenty

years, from 1980 to 1999, are used to fit the models and the last two, 2000-2001, as validation set

for measuring the accuracy of the prediction obtained with these models.

5.2.2 Models for trend estimation

The Lee-Carter Model, developed in (Lee and Carter, 1992), consists in adjusting the following

function to the central mortality rates,

mxt = exp(as + bskt + δ(s, t))

or, its equivalent

ln (mxt) = as + bskt + δ(s, t), (5.2)

and where the notation δ(s, t) is consistent with the treatment of the residuals by means of the

geostatistical approach as described in Section 5.2.3.

In the previous two expressions, the double subscript refers to the age, s, and to the year or

unit of time, t. as and bs are age-dependent parameters and kt is an specific mortality index for

each year or unit of time. The errors δ(s, t), with 0 mean and variance σ2
δ , reflect the historical

influences of each specific age that are not captured by the model.

We are going to apply the extended version of this model to logit death probability qxt as

Debón, Montes and Sala (2006b)

ln
(

qxt

1− qxt

)
= as +

r∑

i=1

bi
sk

i
t + δ(s, t). (5.3)

The reasons of this change are two-fold: the former is the remark in (Lee, 2000), where the author

points out that nothing ensures that the mxt estimations obtained from (5.2) will not exceded 1,

although this problem can be avoided by modelling the logit death rates. The latter is that Booth
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et al. (2002) and Renshaw and Haberman (2003c) indicate that the interaction between age and

time can be captured better by adding terms to (5.2).

Parameters need to be normalised in order to get a unique solution. Thus, one can show

that,
∑

s

bi
s = 1 and

∑
t

ki
t = 0. The structure is then invariant under either of the parameter

transformations, (as, bs/c, ckt) or (as + cbs, bs, kt − c), for any constant c. In our application

to the Spanish data of mortality we have used (5.3) with r = 1 and r = 2, consequently the

corresponding models will be named LC and LC2, respectively. The estimation of the parameters

in (5.3) is carried out by means of maximum likelihood methods (ML for short) as Brouhns and

Vermunt (2002) propose.

considered as a two-way table on a grid equally spaced in either the vertical (age) or horizontal

(year) direction. In this context, the deterministic trend of mortality rate can be decomposed as

the sum of three effects

qxt = µ + rs + ct, (5.4)

an overall effect, µ, a row effect due to age, rs, and a column effect, ct, due to year. A median-

polish algorithm (Cressie, 1993) is used to estimate the overall effect, µ̃, row effects, r̃s, and column

effects, c̃t. For theoretical properties of median polish, we refer the interested reader to (Cressie,

1993). Here, it is worth stressing that it is a nonparametric method and that it is, with respect

to other detrending methods, less sensitive to the presence of outliers and less biased than other

methods based on the use of mean operators.

5.2.3 Residual analysis: geostatistical approach

Throughout the paper we shall make reference to real-valued weakly stationary zero mean Gaussian

random fields {δ(x) : x ∈ D ⊆ R2}, where the coordinate x = (s, t)′, e.g. (age,time).

Specifically, we shall be dealing with spatial processes that may exhibit a zonal and/or geometric

anisotropic component. The approach we propose to face this situation follows that in chapter 3,

where anisotropy is attained through isotropy between components. Thus, the covariance function

C is said to be represented by a function C0 : R× R→ R such that

C(h) := C0(|h1|, |h2|),

for h ∈ R2.
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5.2.4 Trend estimation

The models described in Section 2 have been used to adjust mortality data from Spain correspond-

ing to the period 1980-1999, for a range of ages from 0 to 99. The adjustment has been performed

separately for men and women. The crude estimates of qxt have been obtained by means of

the procedure used by the Spanish National Institute of Statistics (INE, Instituto Nacional de

Estad́ıstica),

q̇xt =
1/2(dxt + ds(t+1))

Pxt + 1/2dxt
,

where dxt are the deaths in year t at age s, ds(t+1) are the deaths in year t + 1 at age s, and Pxt is

the population that on December 31st of year t was aged s. The formula can be applied to all ages,

except for age 0, due to the concentration of deaths in the first few months of life. The expression

used for age 0 is,

q̇0t =
0.85d0t + 0.15d0(t+1)

P0t + 0.85d0t
.

Trend estimation can be performed through the Lee-Carter models, LC and LC2, above de-

scribed. Owing to the very high number of estimated parameters, a graphical representation seems

to be more meaningful in order to represent the results in terms of estimates. These are resumed

in Figure 5.1 and 5.2. As a general comment, the comparison of parameter as for both sexes shows

that mortality for women is lower than for men. The hump in Figures 5.1(a) and 5.2(a) for men,

that some authors call “the accident hump”, reveals an increase of mortality in the range of ages

from 11 to 40.

The negative values of parameter bs and b1
s (Figures 5.1(b) and 5.2(b)) for intermediate ages

and for advanced ages indicate that mortality in these age groups does increase over time. The

second term, b2
s, in LC2 model (Figure 5.2(d)), shows larger values for intermediate ages for both

sexes, which implies that the effect of adding a second term acts more specifically on this age

group.

As far as the mortality index is concerned, kt (Figure 5.1(c)) and k2
t (Figure 5.2(e)) show a

clearly decreasing trend. With respect to k1
t (Figure 5.2(c)), it does not display any trend for

women, whereas for men it decreases until year 1995 and increases for the later years.

The high number of effects estimated with the median-polish algorithm, 121, is also too large

to be presented in a table. As in Lee-Carter, they are represented graphically in Figure 5.3. The
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Figure 5.1: Estimated values for LC model.
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Figure 5.2: Estimated values for LC2 model.
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Figure 5.3(a) reveals an increase of mortality for men in the group of intermediate age (accident

hump) but not for women, this is a similar behaviour of parameter as in Lee-Carter model. With

regards to the year effect, Figure 5.3(c)) shows a clearly decreasing trend for both sexes, with a

similar profile to that of mortality indexes kt and k2
t .
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Figure 5.3: Estimated effects for median-polish trend.

5.2.5 Goodness-of-fit for trend

To our knowledge, only Felipe et al. (2002) and Guillen and Vidiella (2005) have studied the

evolution of Spanish mortality with dynamic models. Felipe et al. (2002) use the Heligman-Pollards

laws to evaluate the way in which the calendar time (1975-1993) affects mortality patterns in the

Spanish population for a range of ages from 0 to 90. (Guillen and Vidiella, 2005) use a Poisson log-

bilinear version of the Lee-Carter model, proposed by Wilmoth (1993) and Brouhns and Vermunt

(2002), for Spanish mortality data during the 1975-1998 period and a range of ages from 0 to 105.

Our results about the evolution of mortality rates are similar to those obtained by these authors.

In order to compare the goodness-of-fit for all models along the years, we have obtained MAPE

and MSE. These values are shown in Tables 5.1 and 5.2 in the columns headed by trend.

MAPE(q̂xt) =

∑
s

|q̇xt − q̂xt|
q̇xt

n
, t = 1980, . . . , 1999

65



MSE(q̂xt) =

√∑
s

(q̇xt − q̂xt)2

n
, t = 1980, . . . , 1999

The values in the tables confirm the best behaviour of the LC2 model, the explanation of this

fact is that the introduction of the second term better adapts the model for the ages involved in the

accident hump. The MP model fits worse than the others. The adjustment for women is better

than for men in LC and LC2, but similar for both sexes in MP .

5.2.6 Modelling residuals

Once the trend have been adjusted, six sets of logit residuals, δ(s, t) = logit(q̇xt) − ̂logit(qxt), are

obtained that are plotted in Figure 5.4. This figure provide information about the goodness-of-

fit, similar to that obtained with Tables 5.1 and 5.2, but specially it confirms the existence of a

dependence structure among residuals. The diagonal pattern that plots show could be interpreted

as an effect cohort is present. In any case it is a proof of the anisotropy of the underlying random

field. Booth et al. (2002) found similar residuals pattern with Australian mortality data.

We need to modify notation by denoting the distinct residuals as δLCm(s, t), δLCw(s, t), δLC2m(s, t),

δLC2w(s, t), δMPm(s, t) and δMPw(s, t), where m and w at the end of every acronym stand for,

respectively, men and women.

The perspective we are treating the residuals represents the novelty of this paper, as we consider

them as realizations of a homogeneous and anisotropic Gaussian random field. There are several

advantages induced by considering this setting. First, we can consider the dependence between

the residuals as a function of the distance or separation between points in the considered domain

Age × Time ⊆ R2. This is achieved by estimating the covariance structure from the estimated

residuals. Then, the estimated covariance will be crucial for interpolation purpose, as we shall map

the whole domain by using simple kriging techniques. Finally, the procedure allows for inference

through cross-validation.

It is important to remark that the assumption of isotropy is somehow unrealistic for this kind

of phenomena. In fact, it can be easily seen in Figure 5.5 that low and high ages, evaluated with

respect to time, have a clear different behaviour respect the middle ones. Our explorative data

analysis highlights the presence of a strong anisotropic component which is both zonal and direc-

tional. Thus, we believe that a significative improvement in terms of estimation could be achieved

by considering a covariance function that allows for taking into account anisotropic components.
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Figure 5.4: Residuals for the three models
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Figure 5.5: Comparison of some of the empirical variograms calculated from the six set of residuals.

From up-left to down-right: LC2 for men, direction h1; LC2 for men, direction h2; LC2 for women,

direction h1; LC2 for women, direction h2; MP for men, direction h2; MP for women, direction h2
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a1 a2 α β σ2

δLCm 0.7792 0.5393 0.4608 1.2242 0.0110
δLCw 0.8130 1.0438 0.6223 1.7418 0.0076
δLC2m 1.7181 0.5862 0.6020 0.1450 0.0060
δLC2w 0.4272 0.3102 0.4131 0.7547 0.0055
δMPm 4.5892 6.0768 1.1289 1.9271 0.0255
δMPw 2.6139 5.3326 0.6536 1.3436 0.0219

Table 5.3: Estimates for the parameters of the covariance function in equation (5.5), for the six
residuals

Our proposal is to attain anisotropy through isotropy between components. In particular, in this

paper we shall focus on models as described in chapter 3. Specifically we use the model:

C(h1, h2) = kσ2


exp(−

(
1 + |h1|α

a1

)
−

(
1 + |h2|β

a2

)
)

−2− |h1|α
a1

− |h2|β
a2


 , (5.5)

where k is a normalization constant so that C(h1, h2) = σ2, which is the variance of the underlying

random field. The parameters ai, i = 1, 2 measure the scale over directions hi and 0 < α, β ≤ 1 are

smoothing parameters. This covariance function allows for geometric and zonal anisotropy and it

is easily interpretable as every parameter has a specific meaning in terms of range and smoothness.

Estimation of the five parameters characterizing dependence in (5.5) may be performed through

least squares as well as likelihood methods. In this work, estimation will be performed through

composite likelihood methods, Curriero and Lele (1999) as described in chapter 4. The so obtained

estimates are resumed in Table 5.3.

Once estimate are obtained, they can be used to implement the empirical covariance function,

that is crucial for prediction purposes. In particular, we assume the mean known, thus the best

linear unbiased predictor (BLUP for short) takes the name of simple kriging predictor in geostatis-

tics, even if in this case it is more appropriate to call it kriging of the residuals. For the remainder

of the paper, we shall use equivalently this nomenclature. Thus, for every age s fixed the simple

kriging predictor for time t, say µt, can be written as µtc
′
0C

−1δt, with C the var-cov matrix of

the predictor variables, c0 is the vector containing the covariance between the predictand and the

predictor, and δt is the vector of the observed residuals. For well known results, the associated

kriging variance is

σ2
t = σ2

t − c′0C
−1c0, (5.6)

with σ2
0 unconditional variance for the residual measure at the fixed age where we do prediction
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for time t.

Goodness-of-fit for trend + residuals In order to evaluate the goodness-of-fit of our models when

the residuals are modelled by choosing the anisotropic covariance function in equation (5.5), we

proceed by calculating MAPE and MSE. It must be point out that q̂xt is now the antilogit of

the sum of the estimated trend with the estimated residuals, taking into account the correction

suggested by (?) for avoiding bias when a transformation of original data is needed. Columns

headed by trend + residuals in Tables 5.1 and 5.2 show that modelling residuals has substantially

improved the adjustment for all models, specially for MP which has the worst behaviour when

only trend was used. It must be point out that all three models have, after modelling residuals,

a similar performance, summarized (mean and standard deviation for MAPE and MSE) in the

last two rows in both tables.

5.2.7 Prediction

The prediction of mortality rates with the Lee-Carter model needs preliminary operations on a

time series to mortality indexes, kt, which is carried out by means of the Box-Jenkins methodology

using an R code developed by Shumway and Stoffer (2006). The most appropriate model seems

to be an ARIMA model, as we consider reasonable the hypotheses of stationarity for the first

differences, for both sexes. The ARIMA fittings for each model are shown in Table 5.4. The time

series {k̂t}, {k̂1
t } and {k̂2

t }, t = 1980, . . . , 1999, are used to forecast kt, k
1
t and k2

t , respectively, for

t > 1999. The underlying assumption is that, for LC2 model, the two time series corresponding to

k1
t and k2

t are independent. This assumption, also made by Booth et al. (2002) and by Renshaw and

Haberman (2003c), represents a potencial drawback as Renshaw and Haberman (2003c) recognize.

An example of how the model can be expanded to include dependence and co-integration effects

is given in Renshaw and Haberman (2003a).

Men Women
LC kt − kt−1 = −0.7031 + εt kt − kt−1 = −1.4203 + εt

LC2 k1
t − k1

t−1 = −0.7844 + εt + εt−1 k1
t − k1

t−1 = εt

k2
t − k1

t−1 = −1.8584 + εt k2
t − k2

t−1 = −1.5065 + εt

Table 5.4: ARIMA models for mortality index.

When using a median polish algorithm for the adjusted trend, the associated predictor q̂xt of
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qxt admits analytic expression:

q̂xt = µ̃ + r̃s + c̃t1999 + (t− t1999)(c̃t1999 − c̃t1998), ∀s ∈ D, t > 1999. (5.7)

Analogously to that we have done in above Section, we obtain also now trend + residuals pre-

dictions. These predictions are obtained by considering the sum of the predicted trend with the

predicted residuals. This implies that the underlying process is nonstationary, as the predicted

trend is a function of the coordinates age and time, whilst the residuals are considered as homoge-

neous and modelled through geostatistical procedures. The adopted procedure is consistent with

Perrin and Senoussi (1999), who argue that nonstationarity can be specified with respect to the

trend function, the covariance function or both.

In order to assess the performance of the models in terms of prediction, we calculate the

predictions for every age s at years 2000 and 2001 and we compare them with the crude estimates

of qs,2000 and qs,2001. Table 5.5 shows the MAPE and MSE resulting of this comparison.

Men
MSE MAPE

trend trend + residuals trend trend + residuals

2000 LC 0.01154 0.00859 15.51 7.83
LC2 0.01212 0.01195 7.91 7.41
MP 0.00937 0.00471 10.07 5.23

2001 LC 0.01608 0.01388 18.21 12.22
LC2 0.01711 0.01696 9.06 8.79
MP 0.00545 0.00866 10.78 8.13

Women
MSE MAPE

trend trend + residuals trend trend + residuals

2000 LC 0.01465 0.00781 11.32 5.26
LC2 0.00847 0.00865 8.85 6.83
MP 0.00913 0.00448 10.12 4.95

2001 LC 0.01959 0.01481 13.08 8.88
LC2 0.01330 0.01342 10.09 8.84
MP 0.00766 0.00523 9.98 6.96

Table 5.5: MSE and MAPE of q̂s,2000 and q̂s,2001 for all models.

It should be stressed that Tables 5.1, 5.2 and 5.5 highlight a clear trade-off between goodness-of-

fit and accuracy of prediction, as the model that performs better in the former, are then the worst

in the latter. It seems that MP method is the one which performs better among the proposed

ones.
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Figure 5.6 shows the prediction of mortality ratios for years 2000 to 2010 obtained with the

different models. In order to facilitate the interpretation of these results we have represented the

ages from 10 to 50 years, for every 10 years. In Figure 5.6 it can be appreciated that, although LC

performs quite well in terms of fitting, it is quite poor in terms of prediction, particularly in the

age class 20-40 years. It seems in fact inconsistent to have higher mortality ratios for lower ages

respect to higher ones. On the other hand, predictions performed through MP are a clear instance

of trade-off between smoothness (plausibility of the projected predictions) and goodness-of-fit and

it avoid any crossover in the projected rates. Similar results and conclusions can be argued by

considering performance predictions on trend + residuals through the three methods.

Pedroza (2006) argue that measures of uncertainty of mortality forecasts are needed and points

out these must be carried out by means of confidence intervals expressing probabilistic uncertainty

of the point forecast. We have obtained confidence intervals for predicted death rates using boot-

strapping techniques for predictions made only with trend (Koissi et al., 2006) or using variance

expression (5.6) for predicted residuals in the case of predictions made with trend + residuals.

For obtaining bootstrap confidence intervals, N bootstrap samples, δ̂n(s, t), i = 1, . . . , N , are

simulated from the residuals obtained with the original data. Each sample furnishes an estimated

̂logit(qxt)
n

by means of

̂logit(qxt)
n

= logit(q̇xt)− δ̂n(s, t),

where logit(q̇xt) are computed from the original data. For each bootstrap sample a model is

adjusted, in our case the LC2 or the MP model, that provides predicted values for qxt. This

procedure yields N predictions of qxt. The confidence intervals are the percentile intervals, IC95 =

[p0.025, p0.975]. We did not attain confidence interval for LC estimation as previous results confirm

a better behavior of the LC2 model.

Figures 5.7 and 5.8 show the confidence interval for qxt, for the following ages that are considered

to be enough representative of the whole dataset: s = 10, 20, 30, 97, 98, 99. It is worth remarking

the major magnitude of the confidence intervals obtained through MP . As far as differences

between sexes, it can be appreciated that confidence intervals are narrower for women in all ages

when using MP . This is confirmed only for some ages when using LC2.

Is should be stressed that MP highlights a decreasing trend for all the ages, whilst LC2

emphasises exactly the opposite, above all for middle and old ages. The reason of this may be

found in the fact that predictions performed through MP are based on contiguous years, whilst
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Figure 5.6: Predicted rates versus year (1980-2010) for some ages.
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Figure 5.7: Bootstrap confidence intervals for death probabilities qxt for ages 10, 20, 30, 97, 98

and 99.
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Figure 5.8: Confidence intervals for death probabilities qxt for ages 10, 20, 30, 97, 98 and 99 for

models trend + residuals.
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LC2 considers all past observations. Similar conclusions can be drawn by considering trend +

residuals simultaneously.

5.2.8 Conclusions

We propose a new model for modelling and predict mortality rates. This model is based on a

median-polish algorithm, which is easily interpretable and allows for observing the evolution along

years and ages of the observed phenomenon, with a relatively low computational cost. Also, the

results in terms of prediction performance are very satisfactory.

The residuals have been modelled through a geostatistical approach, where the novelty is rep-

resented by the fact that we took into account an anisotropic component by considering compo-

nentwise isotropy. The results were considerably improved both in terms of fitting and prediction

performances, as confirmed by the diagnostics obtained through MAPE and MSE in Tables 5.1,

5.2 and 5.5. The fact that these measures are significantly lower clearly implies a better behaviour

for any considered ages. This result is particularly important if taking into account the intrinsic

problems associated to prediction over very old ages. As pointed out by Wong-Fupuy and Haber-

man (2004), Inaccuracies in recording ages in official statistics and high variability in the estimates

due to small exposures to risk are common problems when estimating mortality rates for the oldest

age groups.

Modelling the residuals allows us to interpolate and predict missing data through kriging. In

addition, as we know the exact expression for the variance of the prediction, the calculation of

the corresponding confidence intervals for future predictions is clearly simplified. The so obtained

confidence intervals are almost equivalent (in terms of widths) to those obtained through bootstrap

techniques, as highlighted in Figures 5.8 and 5.7, even though the bootstrap-based intervals take

into account any uncertainty inherent to prediction, as stated by Koissi et al. (2006).

We believe that our approach can be very useful for modelling mortality rates as it has been

shown to be very flexible, allowing to incorporate, through several approaches, a deterministic

component with covariates, and a stochastic one, exhibiting complex forms of interaction.
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5.3. FITTING NEGATIVE COVARIANCES TO GEOTHERMAL FIELD

TEMPERATURES IN NEA KESSANI (GREECE)

5.3.1 The geothermal field of Nea Kessani and statistical-modeling interest

The geothermal field of Nea Kessani (NE Thrace, Greece) is located within the Ksanthi-Komotini

basin, next to the Aegean Sea and Vistonis Lake, as shown in the geological map in Figure 5.9

(Papantonopoulos and Modis, 2005) . The geothermal area is located near the southwestern margin

of the Ksanthi-Komotini basin which is a post-orogenic Tertiary sedimentary basin, and covers an

area of about 1600 km2 between the Rhodope Mountains and the Aegean coast (Figure 5.10,

left). It is mainly constituted of clastic sediments, and reaches maximum depth at the foot of the

Rhodope chain, and minimum depth in the vicinity of the coast, where the Nea Kessani geothermal

field is located (Thanassoulas and Tsokas, 1990). During the Paleogene, predominantly molassic

sediments were deposited over the highly fractured substratum, which are represented by the

metamorphic Paleozoic basement, mainly outcrops in the Rhodope Mountains. Local outcroppings

of the basement, which is composed of gneiss, amphibolites with interbedded marbles, micaschists,

migmatites and intruded granites, are located to the southwest of the study area. The Eocene-

Oligocene sequence is mainly consisting of basal breccias and conglomerates, nummulitic limestones

and arkosic sandstones, which make way to flysch formations in the upper part of the sequence.

These formations are overlain by Pliocene lacustrine sediments, such as marls, clays and sands, as

well as alluvial Quaternary deposits. During the Tertiary, as a result of the sinkage of the African

plate below the European plate, an andesitic magmatism developed in the basin, with emplacement

of sub-volcanic rocks. Small intrusions of such rocks are inter-bedded with the clastic horizons in

the study area. Two major tensile fault systems, striking N 160
◦

and N 70
◦
, developed from the

Miocene on. The most active is the N 160
◦

system, which is probably related to the movements

of the North Anatolic Fault.

The geothermal field is created by distribution of heat in the geological formations of the

ground at some depth due to thermal fluid circulation. This causes an increase of the earth

natural geothermal gradient, which is 30
◦
C/km at average, by several degrees reaching 35

◦
C/km.

The hot reservoir created by the thermal fluids has an average temperature of 75−80
◦
C and covers

an area of 5 km2. The roof of the reservoir is found in a depth of 100 to 120 meters at its south

part near Aegean Sea, while its basement in this area is located at the depth of 450 meters. At the

north part of the reservoir its roof is located at the depth of 300 − 350 meters and its basement

79



Figure 5.9: Geological map of Nea Kessani geothermal area (rectangle) and vicinity

at greater depth than 1 km. A schematic representation of the reservoir and the thermal fluid

circulation can be seen in Figure 5.10 (right) where a N-S vertical section of the area is presented.

5.3.2 Drill-hole data

In order to explore and study the geothermal anomaly in the area, 25 exploratory boreholes up

to a depth of 500 meters were drilled during 1980-1991 by IGME (Institute of Geological and

Mineral Investigations, Athens, Greece). The first phase of the drilling campaign began in 1980

and produced 11 drill holes in depths varying from 65 to 475 meters. The second phase, which

started in 1990, produced 14 drill holes to depths varying from 200 to 500 meters. The drill-

hole data consist of temperature measurements taken in the drill wells by an electrical resistance

thermometer with ±0, 1
◦
C error. Thus, we have a three-dimensional data set formed by the

longitude and latitude (measured in meters) of the drill hole together with the depth at which the

temperature is measured. In Figure 5.11 the locations of the drill-hole collars are shown, along

with two vertical sections showing the temperature distribution in the area.

To resume, we dispose of 162 data distributed in 25 exploratory drills in this geothermal field

case and the domain of the study is 2250m× 2250m× 400m. This is shown in Figure 4.
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Figure 5.10: Left: Geological features of Ksanthi-Komotini basin and the geothermal area (rectangle)

along with a vertical section: (1) Quaternary and Tertiary formations; (2) Paleozoic basement; (3) Fault.

Right: A N-S section of the area, showing a thermal fluid circulation model and the morphology of the

thermal field: (1) Cover formations; (2) Arkosic reservoir with hydrogeological boundaries (shaded area);

(3) Basement; (4) Deep geothermal fluids; (5) Fluid circulation within the arkosic reservoir; (6) Thermal

springs
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Figure 5.11: Drill hole (G’s) locations and vertical cross-sections in area of interest (dashed parallelogram).

In sections AB and CD the temperature distribution derived from drill data is presented. (1) Drill collar,

(2) Thermal spring, (3) Roof formations, (4) Reservoir, (5) Isotherms in oC
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5.3.3 Scientific motivation

The scientific interest on the data lies upon answering the question why should a spatial model of

the geothermal field be created. The importance of geothermal energy as an energy source is easily

understandable, especially during the current trends of oil prices. In addition, geothermal energy

is a clean and environmental friendly form of energy. Thus it is of worth to explore deposits of

thermal energy, since it can be effectively used in many applications as heating and or cooling of

buildings, power generation etc. The parameter of interest in exploring a geothermal field is the

temperature and its distribution in the underground area, since the subsequent exploitation of the

deposit is tightly connected to it. For example, a power generator application can be implemented

only if the temperatures of the field exceed 100◦C, which can lead to the sufficient generation of

steam. In the Nea Kessani area the temperature is known in certain positions due to the drilling

campaign, so the aim of our work is to create a three-dimensional model of the geothermal field to

describe the temperature in a domain as large as possible. As in the case of a metal deposit where

the ore grade must be known almost everywhere in order to efficiently plan the exploitation, the

temperature distribution in a geothermal field must be also known in underground space, in order

to obtain a complete image of the phenomenon and identify the possible exploitation sites. In the

Nea Kessani case, the drilling campaign produced only a small number of data. These data are

insufficient to model the field using deterministic tools like inverse distance squares (IDS). Thus,

the application of more sophisticated methods, like Geostatistics, was clearly necessary.

5.3.4 Exploratory analysis

Stationarity-isotropy-ergodicity are most often modeling assumptions that are justified on the basis

of the outcome. On the basis of our study of the physical information underlying the data, we

found that they obey an isotropic heat transfer equation, i.e. a Laplace equation. In such an

equation the heat conductivity is isotropic and the transfer ability for the heat is also the same

at all directions. The assumption of a stationary and isotropic covariance is thus consistent with

this physical knowledge. As far as trend analysis is concerned, and before the calculation of the

covariance, a nonparametric meantrend was calculated and removed from the data. In particular,

we used a nonparametric moving average method similar to the moving window method that uses a

spatial moving window to obtain the spatial moving average based on the data within its specified

neighborhood. In this case, the spatial window was a square cubic with 100 meters long sides.
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Also, an exponential smoothing technique was applied to the calculated moving average to have a

smoother mean trend. The detendred data, or residuals, constituted the base data to be spatially

modeled. The empirical estimation of the spatial covariance of the residuals was based on a 200

meters lag, except for few very short lags at the origin. This resulted in a quite smooth empirical

covariance easy to be fitted by a theoretical model. Once the data was detrended, a QQ plot

highlighted a slight left tail, which did not prevent the residuals from being Gaussian distributed.

Indeed, we performed Kolmogorov-Smirnov and Shapiro-Wilks tests, and the results, in terms of

p-values, confirmed our initial mood, so that we could assume to work with residuals that were

stationary and approximately Gaussian.

Calculation of the residuals allowed us to obtain the empirical covariance, which highlighted the

presence of negative values. This could be a problem for fitting procedures, as the great majority of

celebrated models of covariance functions for spatial data only attain positive values. This strong

motivation prompted our research. We are looking for spatial covariance models satisfying two

main features:

1. They may be negative or oscillate between negative and positive values.

2. They would preferably allow for an easy interpretation.

We believe it is reasonable to select a class of models satisfying property 2, and then answer, if

possible, the natural question: can we obtain negative covariances starting from a class which is

easy-to-implement and interpretable? The answer is yes and a satisfactory solution for this data

set will here be exposed.

5.3.5 Fitting negative covariances: methodology

In a recent paper, Gregori et al. (2007) proposed a novel and very general approach to building

space-time covariance functions that attain negative values or oscillate between positive and nega-

tive ones. The approach, called Generalized Sum of the Products, is based on a linear combination

of pairwise products of continuous spatial and temporal covariance functions. Some permissibility

criteria are given to allow some of the weights in the linear combination to be negative. Here we

are only involved in spatial analysis, but the results contained therein can be very useful in order

to implement the following idea. Consider an arbitrary natural number n of continuous covari-

ances defined on Rd, and additionally integrable on their domain. Thus, we propose the following
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covariance function

C(h) =
n∑

i=1

kiCi(h), (h, u) ∈ Rd × R, (5.8)

whose permissibility is in principle guaranteed whenever the weights ki, i = 1, . . . , n are non-

negative. By using Proposition 1 in Gregori et al. (2007) one can show the result proposed subse-

quently, for which we restrict to the case n = 2. We skip the proof as it follows exactly the same

arguments of the previously cited authors.

Proposition 1. Let Ci be spatial continuous and integrable covariance models, i = 1, 2. For ϑ ∈ R,

let us define the function

C(h) = ϑC1(h) + (1− ϑ)C2(h), h ∈ Rd.

Let us denote by fi the Fourier transforms of covariances Ci, assume f2 does not vanish and write

m := inf
ω∈Rd

f1(ω)
f2(ω)

, M := sup
ω∈Rd

f1(ω)
f2(ω)

.

Then, C is a valid spatial covariance if and only if

[1−max(1,M)]−1 ≤ ϑ ≤ [1−min(1,m)]−1

(where 0−1 = −∞ and (−∞)−1 = 0 in the left hand side, and 0−1 = +∞ in the right hand side).

The advantage of the result above is that it allows for building covariance functions that, thanks

to the negative weights, attain negative values or may oscillate between positive and negative ones.

The procedure is very simple: one must chose two parametric covariance functions that admit,

possibly, an explicit closed form for the associated spectral density. Then, the range of ϑ can be

easily computed.

Here we shall be involved in linear combinations of Whittle-Matérn type covariance functions

(see Matérn, 1986), that is

C(h) = σ2{ϑCM(h; α1, ν1) + (1− ϑ)CM(h; α2, ν2)}, (5.9)

with h = ‖h‖, h ∈ Rd, and where we use the Whittle-Matérn correlation functions t 7→ CM(t; αi, νi) =

(αit)
νi Kνi(αit), i = 1, 2, with Kν the modified Bessel function of the second kind and order ν

(Abromowitz and Stegun, 1967). The nonnegative parameters αi represent the scale of the spatial

dependence, while νi > 0 governs the level of smoothness of the associated Gaussian random field.
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Table 5.6: Results of inf’s and sup’s needed in Proposition 1 for the particular case Matérn vs.

Matérn correlation functions, respectively, in terms of their parameters values. Here d denotes the

spatial dimension, and we assume σ2
1 = σ2

2 = σ2.

Matérn1/Matérn2

Parameters mM1,M2 MM1,M2

ν1 < ν2
Γ(ν1+

d
2 )

Γ(ν2+
d
2 )

2ν1−ν2

(
α2
α1

)d

+∞
α2

2
α2

1
≤ ν2+

d
2

ν1+
d
2

ν1 < ν2
Γ(ν1+

d
2 )

Γ(ν2+
d
2 )

(ν1+
d
2 )

ν2+ d
2

(ν2+
d
2 )

ν1+ d
2

+∞
α2

2
α2

1
>

ν2+
d
2

ν1+
d
2

×
(

α2
2−α2

1
2(ν2−ν1)

)ν2−ν1 α
2ν1
1

α
2ν2
2

ν1 = ν2 and α2 ≥ α1

(
α1
α2

)2ν1
(

α2
α1

)d

ν1 = ν2 and α2 < α1

(
α2
α1

)d (
α1
α2

)2ν1

ν1 > ν2 0
Γ(ν1+

d
2 )

Γ(ν2+
d
2 )

(ν1+
d
2 )

ν2+ d
2

(ν2+
d
2 )

ν1+ d
2

α2
2

α2
1

<
ν2+

d
2

ν1+
d
2

×
(

α2
2−α2

1
2(ν2−ν1)

)ν2−ν1 α
2ν1
1

α
2ν2
2

ν1 > ν2 0
Γ(ν1+

d
2 )

Γ(ν2+
d
2 )

2ν1−ν2

(
α2
α1

)d

α2
2

α2
1
≥ ν2+

d
2

ν1+
d
2

The parameter σ2 is the variance of the Gaussian random field represented by the function (5.9).

Thus, we are assuming that the random field under study is a linear combination of two random

fields with a Matérn-type correlation structure, and that additionally have the same variance.

Ergo, they can be distinguished only through the scale (αi) and smoothing (νi) parameters charac-

terizing their spatial dependence. This is also desirable by the fact that the range of permissibility

for ϑ negative is a function of these parameters. In particular, one can appreciate this fact in Table

1, where the permissibility conditions for model (5.9) are resumed. We shall denote the model in

equation (5.9) with the acronym GSM, by meaning Generalized Sum of Matérn models.

5.3.6 Fitting negative covariances to Nea Kessani data

In this section we illustrate the basic procedure for fitting negative covariances by using composite

likelihood method as described in chapter 4. The aim of this section is two-fold. On the one hand,
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we want to illustrate that the methodology we propose is useful for fitting data that exhibit negative

empirical covariances. On the other hand, we need to show that it is necessary, for this dataset,

to use this methodology. For the latter purpose, the modus operandi is necessarily comparative,

so that the reader must be convinced that a covariance model that attains negative values has,

for these data, a somehow better performance with respect to other (strictly positive) covariance

models that one can easily find in the classic literature. As for the comparative performance of

other covariance functions fitted to the same data, we shall evaluate some measures of error for

the associated best linear unbiased predictor (BLUP, for short). This will be explained in detail

subsequently.

As our procedure is necessarily comparative, we have selected two alternative models that attain

only positive values:

1. The Generalized Cauchy model (GC, for short) introduced by Gneiting and Schlather (2004),

who study its properties in terms of decoupling of the local and global behavior for the

associated Gaussian random field

C(h) = σ2 (1 + ahα)−β
, (5.10)

where a > 0 is the scaling parameter, h = ‖h‖ and h ∈ Rd. Necessary and sufficient

conditions for the permissibility of this model are α ∈ (0, 2] and β positive.

2. The Gaussian model (Gau, for short), with equation

C(h) = σ2e−ah2
, (5.11)

with positive scaling parameter a.

Our selection was oriented towards these models because of their wide use in the geostatis-

tical literature. In particular, a wide number of applications involving the use of Gaussian

models can be found in the literature. The Generalized Cauchy model allows for identify-

ing separately the Haussdorff dimension and the Hurst effect, which is desirable for those

interested in modeling physical and geological phenomena with a geostatistical approach.

As far as model (5.9) is concerned, we had a practical problem with the estimation of the

parameter ϑ. In particular, the problem was finding the bounds for this parameter in order

to preserve the permissibility of (5.9), as ϑ := ϑ(α1, α2, ν1, ν2). An empirical useful procedure

that can overcomes this problem is the following:
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Table 5.7: Summary of the estimates obtained by fitting the models GC, Gau and GSM.

Model Parameters

GC C(h) = 52.48
(
1 + 207079h1.54

)−337.2791

Gau C(h) = 52.40734e−3178h2

GSM C(h) = 50.67{2.22CM(h; 162, 1.12)− 1.22CM(h; 211.44, 1.12)}

(i) We fix, for computational convenience, ν1 = ν2 = ν. The number of parameters makes

computation difficult, above all because of the small number of available data. Thus,

we assume the same level of smoothness for the Matérn covariances in (5.9);

(ii) Estimate through CL the parameter vector Ψ := (α1, α2, ν, σ2)′ ∈ R4
+, i.e. find

Argmax
Ψ

CL1(Ψ; ϑ) := CL2(ϑ; Ψ̂);

(iii) Find the corresponding bounds for the possible estimate of ϑ by using equation (5.9)

and Table 1;

(iv) Maximize, with respect to ϑ, the function CL2(ϑ; Ψ̂).

This procedure is consistent to that of profile likelihood. Estimation results are reported in Table

2 together with those related to GC and Gau models, whilst Figure 5.12 illustrates the fittings for

the three proposed models.

One can notice that estimates for the variance are very similar for the three models, but very

different in terms of range. This is probably due to the fact that we assume the random field

to be obtained through a weighted sum of independent random fields with different ranges. This

procedure is sometimes used in order to model zonal anisotropy, but in this case we assume the

covariances in the linear combination in equation (5.9) to be functions of the same argument.

Subsequently we show that this procedure is useful, easy to implement and very effective in terms

of goodness of fit performance.

Figure 5.12 illustrates the empirical covariance together with the three fitted models. It can be

appreciated that there is substantially no graphical difference between Gau and GC models, as both

88



0 500 1000 1500 2000 2500

−
20

0
20

40

Euclidean distance

C
ov

ar
ia

nc
e

GC
GSM
Gau

Figure 5.12: Empirical and fitted spatial covariances, with continuous line for GSM, dashed for GC and

dotted for Gau

decay very fast to zero at low spatial lags. The GSM model attains negative values and then goes to

zero. Actually, it would have been desirable, for having better diagnostic results, to have a model

with lower negative values, but it was not possible, owing to the already mentioned constraints

on the bound. It is also worth remarking that implementation and estimation of GSM model are

very handy and that the model allows for an easy physical interpretation of the phenomena under

study.

5.3.7 Diagnostics

In order to compare the performances of the proposed models in terms of fitting, we followed the

classical cross-validation procedure. In particular, we use the cross-validation statistics CRV 1,

CRV 2 and CRV 3 proposed by Huang and Cressie (1996) and Carroll and Cressie (2002), whose

expressions can be found therein. Roughly speaking, to every of the n points and corresponding

realizations, we associate the simple kriging predictions (we assume the mean is known and con-

stant, as the data was detrended) obtained by using, for every point xi in the sampling design,

the remaining (n− 1) points. Then, for every point one can calculate the prediction error and the
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Table 5.8: Cross-validation results for the models GC, Gau and GSM

Model GC Gau GSM

CRV1 -0.02981434 -0.08080574 -0.06923005

CRV2 0.9030204 2.547413 1.23477

CRV3 4.005985 5.598049 3.525365
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Figure 5.13: Left: Kernel density estimate for original residuals (continuous line) and GSM (dotted).

Right: Observed versus predicted residuals, using GSM

quadratic prediction, that is, respectively, the difference and the squared difference between real-

ization and prediction. Thus, CRV 1 checks the relative unbiasedness of the prediction error and

should be close to zero, while CRV 2 checks the accuracy of standard deviation of the prediction

error and should be close to one. We particularly focus on CRV 3, as recommended by Huang and

Cressie (1996), as it is a measure of goodness of prediction.

Cross-validation results are reported in Table 3. It is quite evident that, for the index CRV 3,

which is the most important, GSM model outperforms GC and Gau, whilst the GC is slightly

better in CRV1, which measures the relative unbiasedness. In Figure 5.13 (right) we show the plot

of observed residuals versus predicted ones, obtained with the GSM model, as well as the plot of

the nonparametric kernel estimate of the density of the original residuals together with that of the

predicted residuals obtained using the GSM model (Figure 5.13, left).

We also mapped the kriging values at some fixed depth levels. In Figure 5.14 one can appreciate
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that there is a general trend resulting in lower temperatures when sampling at low depth. This is

consistent with the information we have concerning the temperature of the geothermal field.
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Figure 5.14: Simple Kriging predictions of Nea Kessani temperatures at different depths

5.3.8 Conclusions and discussion

We have shown a valid approach to fit negative empirical covariances to a gaussian random fields.

The proposed method is easy to implement and allows to check directly the permissibility conditions

in terms of bounds for the parameter ϑ that induces negative values on the corresponding covariance

model. We showed that, for the presented case study, the proposed model outperforms in terms of

goodness-of-fit other covariance models that are classically used in the geostatistical framework.

A future theme of research could be the following: find some permissibility criteria in order to
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ensure negative weights on a linear combination of covariance functions that are additionally com-

pactly supported. This is very challenging, as the arguments that can be used to show Proposition

1 in our approach are in general difficult to verify for compactly supported covariance functions, as

they rarely admit a closed form for the associated Fourier transform. Note the Fourier transform

associated to a covariance function with support on the unit ball of Rd is analytic and computation

of m and M as in Proposition 1 is often infeasible.

5.4. TESTING SEPARABILITY FOR SPACE-TIME COVARIANCE FUNCTION

In recent years, it has become more prevalent to study some phenomena (such as air quality and

climate change) across both space and time. Consequently, space-time data are being collected

in many studies in an increasing number of disciplines. Modeling the space-time correlation is

indispensable in the analysis of space-time data. A considerable number of space-time models

have been proposed by recent literature by several authors (Cressie and Huang (1999) and Gneiting

(2002) among others). However, the sample size of space-time data is usually quite large. Therefore

cumbersome operations on the large covariance matrix are inevitable if one has to employ the

likelihood-based inferences or Bayesian inferences. There is one case when the computation can

be reduced, this is when the space-time covariance function is separable. Therefore it is always of

interest to test the separability of space-time covariance function.

Let {Z(s, t), (s, t) ∈ D = S×T ⊆ Rd ×R} be a weakly stationary random field with stationary

covariance function C : D→ R that depends on the space-time lag (h, u) := (s1 − s2, t1 − t2) ∈ D.

Very popular simplifying assumptions are those of full symmetry and separability. The former

means that C(·, ·) is radially symmetric (or isotropic) in the spatial component and symmetric in

the temporal one. C(h, u) is separable if it can be represented as a product of a spatial covariance

function Cs(h) and a temporal covariance function Ct(u), i.e.,C(h, u) = Cs(h)Ct(u) for any h

and u. The separability of C(h, u) allows for ease of computation as the space-time covariance

matrix factorizes into the Kronecker product of merely spatial and temporal covariance matrices.

However, in most applications the lack of separability and full symmetry have been argued by

several authors (see, e.g., Gneiting et al. (2007) and a test of these assumptions is of great interest.

A number of tests for separability has been proposed recently. For instance Mitchell et al.

(2005) proposed a test based on likelihood in a context of multivariate repeated measures, while Li

et al. (2007) proposed a test based on asymptotic properties of empirical estimator of space-time
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covariance function. Other proposed tests based on spectral densities can be found in Fuentes

(2002), Fuentes (2005) and Scaccia and Martin (2005).

All of these tests are based on asymptotic results which are established under the assumption of

separability. Instead of relying on asymptotic results, we propose a computational approach to test

the separability, that is we approximate the distribution of the test statistic through simulations.

Our approach can be reviewed as a parametric montecarlo test, that is we work under parametric

assumptions, i.e. we suppose that the space-time dependence is described by a parametric family

of covariance functions. The choice of the simulation based approach comes out basically from two

reasons.

The former concerns the applicability of asymptotic to spatial or spatio-temporal data. There

are two quite different asymptotic frameworks to which one can appeal in the space: increasing

domain asymptotics, in which the minimum distance between sampling points is bounded away

from zero and thus the spatial domain of observation is unbounded, and infill asymptotics, in which

observations are taken ever more densely in a fixed and bounded domain.

The asymptotic results can be quite different under the two frameworks. For instance it is known

that in the pure spatial setting (i.e., no temporal sampling takes place), not all parameters in the

covariance functions are consistently estimable if the spatial domain is bounded (Zhang, 2004),

but all parameters are consistently estimable under the increasing domain asymptotic framework

(Mardia and Marshall, 1984). Zhang and Zimmerman (2005) compared the two asymptotic frame-

works and showed that for some parameters, the fixed-domain asymptotic framework is preferred.

In the space-time case, we expect all parameters are consistently estimable as long as the temporal

domain is increasing. However, different asymptotic distributions are expected depending whether

the spatial domain is bounded or increasing. A finite sample never tells us if the spatial domain is

increasing or bounded. We therefore face a possibility of applying different asymptotic frameworks

and hence different asymptotic results for the test. This results in different rejection regions for

the test and potential contradictory conclusions.

The latter lies in the fact that for some space-time models, the separability corresponds to

the parameter lying on the boundary of the parameter space (see for instance Cressie and Huang

(1999), Gneiting (2002) and Porcu, Mateu and Christakos (2007)). Even using the full likelihood

function, no simple solution to this inferential issue is available. For instance in the classical case,

the asymptotic distribution of standard tests is a mixture of chi-squared rather than the usual
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chi-squared distribution.

Clearly this is a problem for approximations of the likelihood as well such as WCL method.

Simulation approach can be useful in this case. For instance Bellio and Varin (2005) propose

a montecarlo test based on composite likelihood, to verify variance components of a generalized

linear models with crossed random effects when lying on the bound. We know that WCL estimation

method yields consistent and asymptotically gaussian estimates under increasing domain in space

and time but this result are builded under regular conditions included the true parameter must

lies on the interior of parameter space. Thus there are difficulties to establish the asymptotic

distribution of the test statistic.

Since the montecarlo test approach is hard from computational point of view, ML method is

ineffective. We use WCL as described in chapter 4.

5.4.1 Examples of space-time covariance functions

Here we consider some families of space-time covariance functions for which the separability cor-

responds to a parameter lying on the boundary of parameter space. Gneiting (2002) showed the

following model is a valid space-time covariance function

C(h, u) =
σ2

(a|u|2α + 1)
exp

(
− c‖h‖2γ

(a|u|2α + 1)βγ

)
, (5.12)

where σ2 is the variance, a > 0, α > 0, γ > 0 and β ∈ [0, 1]. It is obvious that the covariance

function is separable if and only if β = 0, which is on the boundary of the interval.

Another family of space-time covariance functions to be considered is new. We consider a class

of covariance functions that is obtained by composing two margins, that is, a merely spatial covari-

ance function CS(·; θS) and a temporal covariance function CT (·; θT ). The space-time covariance

function is of the form

C(h, u) 7→ ψδ (CS(h; θS),CT (u; θT )) , (h, u) ∈ D (5.13)

where

ψδ(v1, v2) :=

(
v−δ
1 + v−δ

2

2

)−1/δ

, v1, v2 > 0, δ > 0. (5.14)

We show in the Appendix that if both CS and CT are the generalized Cauchy, i.e.,

CS(h) = (1 + a1‖h‖γ1)2β1 , CT (h) = (1 + a2‖h‖γ2)2β2 (5.15)
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then

Cδ(h, u; θS , θT ) = σ2ψδ (CS(h; θS), CT (u; θT ))

= σ2
(
1/2 (1 + a1‖h‖γ1)−2β1δ + 1/2 (1 + a2|u|γ2)−2β2δ

)−1/δ

, (5.16)

is a valid space-time covariance function, where σ2 is the variance associated to a real-valued

Gaussian weakly stationary RF defined on some domain of Rd×R. The space-time parameter vector

is θ = (θS ; θT ; δ)′ = (a1, γ1, β1; a2, γ2, β2; δ), where the permissibility conditions are γi ∈]0, 2],

βi < 1/2δ and δ positive. Details for the proof of this permissibility conditions are contained in

the Appendix.

The space-time parameter δ governs the type of interaction between space and time. Also, it

can be readily verified that this class is increasing in δ.

Through a simple properties of the power means we obtain:

lim
δ→0+

Cδ(h, u) = CS(h)× CT (u), (5.17)

for CS and CT belonging to the class (5.15) , and where the equality is intended in the limit, for

δ → 0+. We will write C0(h, t) = limδ→0+ Cδ(h, u). Therefore, the separability of the space-time

covariance again corresponds to the parameter δ lying on the boundary of the interval (0,∞).

5.4.2 Tests for separability

We consider a family of space-time covariance functions C(h, u, θ), θ ∈ Θ which includes separable

covariance functions as special cases. We assume that separable covariance functions correspond

to θ ∈ Θ0 = {θ ∈ Θ, ν = 0}, where ν is an element of θ and describes the separability of the

covariance model, while non separability correspond to θ ∈ Θ1 = {θ ∈ Θ}. The hypothesis of

separability of C(h, u, θ) is therefore

H0 : ν = 0.

In model (5.16), Θ = {(a1, γ1, β1; a2, γ2, β2; δ), ai > 0, γi > 0, 0 < βi < 1/(2δ), i = 1, 2 and δ ≥
0} and Θ0 = {θ ∈ Θ, δ = 0}. The null hypothesis can therefore be written as H0 : δ ↓ 0. Similarly,

for model (5.12), the hypothesis of separability is H0 : β = 0. In both cases, the hypothesized

value is on the boundary of the parameter space.

Here we adopt a parametric montecarlo test approach to develop tests of separability. On the

base of the WCL estimation method proposed in chapter 4, two candidate tests can be easily built
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by assuming, without loss of generality, that the covariance associated to the underlying space-time

Gaussian RF belongs to the parametric family defined in equation (5.16) or in equation (5.12) for

instance.

Recall that basically WCL is a two step estimation. First we have to identify the optimal space-

time distance d∗, maximising the Godambe Information associated to WCL estimating equation

(it is usually done using a preliminaries WLS estimate see chapter 4). Then we maximize the

WCL(.,d∗) function using the distance identified at previous step.

Note that in general WCL(., d∗1) 6= WCL(.,d∗2) if d∗1 6= d∗2 that is if we want to build through

simulation the distribution of a statistics test based on WCL, we need to choose a fixed distance.

We propose to identify this fixed distance through simulation, that is we simulate under H0

and find the minimum of the inverse of Godambe Information respect to the space-time distance,

P times. Thus we consider the P identified space-time distances:

d∗k = argmin
dk∈D

tr(G−1(WLS θ̂k, dk)), k = 1 . . . P (5.18)

where D = {(ds, dt) : mini 6=j ‖si−sj‖ ≤ ds ≤ maxi 6=j ‖si−sj‖, mini 6=j |ti− tj | ≤ dt ≤ maxi 6=j |ti−
tj |]} and G(., .) is the Godambe Information associated to WCL as defined in chapter 4. Then

we consider the mode of the P space-time distances and we indicate it as Md∗. Optimal distance

allows for efficient estimation ad shown in chapter 4.

Then we simulate, R Gaussian random field with separable covariance function under the null

hypothesis and we consider the WCL estimates under H0 and H1:

r θ̂
WCL
H0

= arg max
θ∈Θ0

rWCL(θ;M d∗) r = 1 . . . R.

and

r θ̂
WCL
H1

= arg max
θ∈Θ1

rWCL(θ;M d∗) r = 1 . . . R.

Then we consider two tests. The former is based on the scalar rν̂
WCL
H1

an element of the vector

r θ̂
WCL
H1

. It is the parameter of separability such as the β parameter in (5.12) or the δ parameter

in (5.16). The latter is a likelihood ratio type but builded with the WCL function:

rRWCLWCL
H0H1

= 2(WCL(r θ̂
WCL
H0

;M d∗)−WCL(r θ̂
WCL
H1

;M d∗)). (5.19)

Let us indicate with RνWCL = (1ν̂WCL
H1

, . . . ,R ν̂WCL
H1

) and RRWCLWCL = (1RWCLWCL
H0H1

, . . . ,R RWCLWCL
H0H1

)

two vectors containing the R estimates of the two tests proposed.
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We approximate the quantiles of interest of the distribution of the two tests with the empirical

quantile q̂(Rν̂WCL)1−α and q̂(R
ˆRWCL

WCL
)1−α

As a general remark, we need some stability properties of the sample quantile defined above,

that is, for a sufficiently large number of observations, the tests are supposed to converge to a

random variable whose probability distribution is unknown in the analytic form.

If the parameter setting identifying the null hypothesis belonged to the interior of the parametric

space, then the distribution of the first test can be obtained by using asymptotic Gaussianity of

the WCL estimates, while Guyon (1995) describes asymptotic distribution regarding the second

test (a mixture of chi squares). Both asymptotic distribution works under increasing domain in

space and time.

5.4.3 Simulation study

The goals of this simulation study is to explore the properties of the test, that is evaluate the

probability of error of the first type α̂ with respect to the nominal value α fixed a priori, and

evaluate the power of the proposed tests.

We perform this simulation using the covariance model (5.16) and we adopt the following space-

time simulation setting: we consider a spatial network of 6×6 monitoring sites on the square [1, 6]2,

so that the horizontal and vertical separations of contiguous points are identically equal to one;

each spatial point is observed over respectively 40, 90, 100 and 110 temporal instants, which covers

small and large temporal scales.

For the sake of simplicity, the scale parameters and the variance (which are beyond the interest

of this study) are kept fixed and identically equal to one. As for the other parameters, we shall

proceed either by

a Fixing γi and estimating βi, or

b Fixing βi and estimating γi, i = 1, 2

This setting finds a physical interpretation in the fact that in the case (a) the fractal dimension

of the associated margins is kept fixed and the Hurst parameter is estimated, and viceversa for the

case b. Here it is worth noticing that throughout this simulation study we use, for computational

convenience, the Cauchy reparametrisation t 7→ C(t) = (1 + tγ)ξ, for ξ = −β/2γ, so that the equiv-

alent permissibility condition becomes βi < 2γi/δ, for i = 1, 2. This choice allows for more stable
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Table 5.9: For the class in equation (5.16), identification of the optimal space-time distance for P=100

simulated Gaussian Random Fields. The simulation parameter setting is the scenario (a).

ds|dt 1 2 3 4 5 6 > 6

1 50 23 4 4 1 3 1

1.41 6 3 0 0 0 0 0

2 0 0 1 0 0 0 0

2.23 2 0 0 0 0 0 0

> 2.23 2 0 0 0 0 0 0

Table 5.10: For the class in equation (5.16), identification of the optimal space-time distance for P=100

simulated Gaussian Random Fields. The simulation parameter setting is the scenario (b)

.

ds|dt 1 2 3 4 5 6 > 6

1 47 6 7 2 1 0 1

1.41 5 3 3 1 1 2 1

2 5 1 1 0 0 0 1

2.23 2 0 0 0 1 0 0

> 2.23 6 1 1 1 0 0 0

estimates and for a larger interval over which βi can be simulated. Using this reparametrisation

we set for the case (a) (γ1, γ2, β1, β2)=(0.5, 0.5, 1, 1) with βi fixed and γi to be estimated and for

the case (b) (γ1, γ2, β1, β2)=(1, 1, 0.5, 0.5) with γi fixed and βi estimated.

Before performing the test we need to identify the optimal space-time distance to use in the

WCL estimates. Thus we simulate P = 100 Gaussian Random Fields under separability and at

each step we minimize the Godambe Information respect to the space-time distance exploiting a

preliminaries WLS estimates. Recall that Godambe Information is computed using subsampling

technique with temporal windows as described in chapter 4. Table 5.9 and 5.10 reports the results

for the case (a) and the case (b). We can see that the identified space-time distance is Md∗ = (1, 1)T

for both cases. Throughout the simulation study we use this distance for the WCL estimation.

Then we compute via simulation the distribution of the tests under the null hypothesis. Thus

we simulate R=600 Gaussian Random Fields and at each step we compute the statistics r δ̂
WCL
H1

and rRWCLWCL
H0H1

, (r = 1 . . . 600) as defined in (5.19). Tables 5.11 and 5.12 resume the results and
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Table 5.11: For the class in equation (5.16), estimates of quantiles of interest for test 1 (based on δ̂WCL
H1 )

and test 2 (based on RWCLWCL
H0H1 ) for increasing domain in time scenario with R = 600. The simulation

parameter setting is the scenario (a).

T 1Mean 1q̂0.90 1q̂0.95 1q̂0.99 1V ar 2Mean 2q̂0.90 2q̂0.95 2q̂0.99

40 0.136 0.392 0.513 0.732 0.0365 2.734 8.423 13.499 23.223

90 0.091 0.287 0.354 0.483 0.0162 3.168 10.843 15.844 27.782

100 0.086 0.275 0.349 0.475 0.0146 3.173 10.573 16.363 29.674

110 0.083 0.271 0.342 0.454 0.0144 3.453 12.892 17.984 28.677

Table 5.12: For the class in equation (5.16), estimates of empirical quantiles of interest for test 1 (based

on δ̂WCL
H1 ) and test 2 (based on RWCLWCL

H0H1 ) for increasing domain in time scenario with R = 600. The

simulation parameter setting is the scenario (a).

T 1Mean 1q̂0.90 1q̂0.95 1q̂0.99 1V ar 2Mean 2q̂0.90 2q̂0.95 2q̂0.99

40 0.133 0.405 0.532 0.719 0.0375 1.27 4.118 6.672 10.442

90 0.085 0.264 0.336 0.505 0.0147 1.34 4.453 6.723 13.124

100 0.072 0.227 0.328 0.454 0.0116 1.16 3.463 6.925 12.354

110 0.067 0.224 0.327 0.443 0.0108 1.15 3.903 6.429 13.028

show the statistics of interests of the estimated distribution of the two test in a increasing time

setting. In both tables we can appreciate that increasing the time domain, mean and variability of

the separability parameter tend to decrease as we could expect. Quantiles of both tests are similar

among 90 100 and 110.

5.4.4 Evaluation of Type I error

To evaluate the first type error, we simulate, under H0, K = 300 weakly stationary zero-mean

Gaussian random fields with covariance function belonging to the class (5.16) for the scenario (a)

and scenario (b). To compute the empirical first type error we compare the quantile of α order

of the estimates and compare with the quantile computed in the previous section for both tests.

Tables 5.13 and 5.14 present the results. As it can be seen, the empirical probability of error of

the first type are concordant with the respective nominal value α when approaching to 90 times.

Moreover the estimates of first type error are very similar for the two tests.
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Table 5.13: For the class in equation (5.16), estimated empirical error of the type I (α̂), and nominal value

(α) for test 1 and test 2, under T = 40, 90, 100, 110. The simulation parameter setting is the scenario (a).

Test 1

T α̂ (α = 0.1) α̂ (α = 0.05) α̂ (α = 0.01)

40 0.132 0.072 0.019

90 0.105 0.053 0.015

100 0.106 0.053 0.013

110 0.093 0.048 0.012

Test 2

T α̂ (α = 0.1) α̂ (α = 0.05) α̂ (α = 0.01)

40 0.134 0.052 0.007

90 0.102 0.053 0.019

100 0.110 0.046 0.012

110 0.095 0.045 0.013
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Table 5.14: For the class in equation (5.16), estimated empirical error of the type I (α̂), and nominal

value (α) for both tests, under T = 40, 90, 100, 110. The simulation parameter setting is the scenario (b).

Test 1

T α̂ (α = 0.1) α̂ (α = 0.05) α̂ (α = 0.01)

40 0.067 0.026 0.005

90 0.075 0.053 0.010

100 0.095 0.039 0.007

110 0.103 0.045 0.008

Test 2

T α̂ (α = 0.1) α̂ (α = 0.05) α̂ (α = 0.01)

40 0.067 0.028 0.005

90 0.078 0.053 0.013

100 0.097 0.040 0.007

110 0.105 0.052 0.008
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Table 5.15: For the class in equation (5.16), empirical power of the tests π̂, under T = 40, 90, 100, 110.

The RF is simulated under H1 : δ = 0.3. The simulation parameter setting is the scenario (a).

Test 1 and δ = 0.3

T π̂ (α = 0.1) π̂ (α = 0.05) π̂ (α = 0.01)

40 0.457 0.312 0.118

90 0.523 0.365 0.189

100 0.579 0.447 0.208

110 0.632 0.491 0.283

Test 2 and δ = 0.3

T π̂ (α = 0.1) π̂ (α = 0.05) π̂ (α = 0.01)

40 0.475 0.322 0.136

90 0.546 0.407 0.207

100 0.604 0.472 0.227

110 0.652 0.531 0.291

5.4.5 Evaluation of the power of the test

To evaluate the power of the test, we simulate, under H1, K = 300 weakly stationary zero-mean

Gaussian random fields with covariance function belonging to the class (5.16) for the scenario (a)

and scenario (b). Specifically we simulate with δ = 0.3 and δ = 0.5. To compute the empirical

power we compare the quantile of α order of the estimates with the quantile computed in the

previous section for both tests. Tables 5.15, 5.16, 5.17, 5.18 present the results. As it can be

seen, the power increases with the time for both tests and tend to converge near 90 or 100 times.

Moreover, as we expect, the power increases when moving from δ = 0.3 to δ = 0.5. Note that the

second test always seems to perform slightly better.

5.4.6 Conclusion and discussion

It is of interest to test the separability of space-time covariance function. Here we work under

parametric assumption and we propose two parametric montecarlo tests to verify the separability

of a covariance model exploiting WCL estimation method. The choice of the computational ap-

proach comes out for two main reasons. First, the asymptotic distribution of the tests proposed in
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Table 5.16: For the class in equation (5.16), empirical power of the tests π̂, under T = 40, 90, 100, 110.

The RF is simulated under H1 : δ = 0.3. The simulation parameter setting is the scenario (b).

Test 1 and δ = 0.3

T π̂ (α = 0.1) π̂ (α = 0.05) π̂ (α = 0.01)

40 0.413 0.258 0.13

90 0.627 0.457 0.157

100 0.704 0.498 0.242

110 0.728 0.532 0.265

Test 2 and δ = 0.3

T π̂ (α = 0.1) π̂ (α = 0.05) π̂ (α = 0.01)

40 0.466 0.322 0.175

90 0.682 0.533 0.228

110 0.754 0.598 0.344

100 0.775 0.632 0.352
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Table 5.17: For the class in equation (5.16), empirical power of the tests π̂, under T = 40, 90, 100, 110.

The RF is simulated under H1 : δ = 0.5. The simulation parameter setting is the scenario (a).

Test 1 and δ = 0.5

T π̂ (α = 0.1) π̂ (α = 0.05) π̂ (α = 0.01)

40 0.616 0.485 0.230

90 0.856 0.785 0.580

100 0.896 0.818 0.620

110 0.912 0.886 0.643

Test 2 and δ = 0.5

T π̂ (α = 0.1) π̂ (α = 0.05) π̂ (α = 0.01)

40 0.646 0.495 0.260

90 0.860 0.801 0.616

100 0.910 0.833 0.650

110 0.920 0.904 0.680
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Table 5.18: For the class in equation (5.16), empirical power of the tests π̂, under T = 40, 90, 100, 110.

The RF is simulated under H1 : δ = 0.5. The simulation parameter setting is the scenario (b).

Test 1 and δ = 0.5

T π̂ (α = 0.1) π̂ (α = 0.05) π̂ (α = 0.01)

40 0.583 0.423 0.201

90 0.903 0.826 0.523

100 0.953 0.840 0.572

110 0.965 0.900 0.701

Test 2 and δ = 0.5

T π̂ (α = 0.1) π̂ (α = 0.05) π̂ (α = 0.01)

40 0.682 0.510 0.342

90 0.936 0.890 0.660

110 0.973 0.893 0.755

100 0.975 0.950 0.803

105



literature in the spatial and spatio-temporal case depends on which kind of asymptotics one con-

sider, second testing for separability of a space-time covariance model often means works on the

bound of the parameter space. This is a non standard problem for likelihood and approximations

of the likelihood.

We perform a simulation study on a particular class which presents this kind of problem.

Simulation results seems promising for both tests even if the test based on WCLRT seems to work

slightly better.
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Chapter 6

Appendix

6.1. PROOF OF PROPOSITION 1

Proof. Firstly, suppose that ψ is a Bernstein function. Any bivariate Laplace transform L yields

the integral representation

L(θ1, θ2) =
∫ ∞

0

∫ ∞

0

e−θ1w1−θ2w2dF (w1, w2), (6.1)

where F is some distribution function. Indeed, (3.13) can be written as

∫ ∞

0

∫ ∞

0

d∏

i=1

e−ψi(|hi|)w1e−ψt(|u|)w2dF (w1, w2). (6.2)

Now, observe that for Criterion 2 in (W. (1966) p. 494), if ψ is a Bernstein function and ϕ a

completely monotone function, then ϕ ◦ ψ is completely monotone, and for well known results,

any completely monotone function of the type ϕ(|t|) is positive definite. Finally, note that the

function exp(−|x|), x real, is completely monotone. Thus, e−ψi(|hi|)w1 is a covariance function

for any i = 1, . . . , d and w1 > 0. Also observe that the product of covariance functions is still

a covariance function. To end up, note that (6.2) is a positive mixture of covariance functions,

indeed a valid covariance function in Rd × R.

Secondly, if ψ is a continuous, increasing and concave function, then it is negative definite on

R, according to a Pólya type criterion (Berg and Forst (1975), Proposition 10.6). So is the sum of

continuous, increasing and concave functions. Thus, for the same arguments as before, the proof

is completed.
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6.2. PROOF OF PROPOSITION 2

Proof. Recall that L admits the integral representation in equation (6.1), and that for construction

F yields condition (3.18). Now, in order to apply the operator DkL, observe that the negative

exponential exp(−w1θ1 − w2θ2), which is the integrand in (6.1), has bounded derivatives, and

following condition (3.18) we can differentiate under the integral sign. Thus

DkL(θ1, θ2) =
∫ ∞

0

∫ ∞

0

wk
1wk

2 exp(−w1θ1 − w2θ2)dF (w1, w2). (6.3)

Now, for condition (3.18) it is possible to apply the dominated convergence theorem, so that we

can substitute in accordance to (3.19) under the integral sign and obtain that

ν(h, u) =

∫∞
0

∫∞
0

exp(−w1γs(h)− w2γt(u))wk
1wk

2dF (w1, w2)∫∞
0

∫∞
0

wk
1wk

2dF (w1, w2)
. (6.4)

Note that Schoenberg Theorem applies to exp(−γ) for every positive w1, w2, while the denominator

in (6.4) normalises the measure in the numerator, so that (6.4) is a positive mixture of space-time

covariance functions, indeed a covariance function. And this fact completes the proof.

6.3. PROOF OF PROPOSITION 3

Proof. For abuse of notation, the class L∗ admits the representation

L∗(x1, . . . , xd, xt) =
∫ ∞

0

∫ ∞

0

e−w1
∑d

i=1 ψi(xi)−w2ψt(xt)dF (w1, w2). (6.5)

Now, as the derivatives of the integrand are bounded, we can differentiate under the integral sign

in the representation above, so that

DL∗(x1, . . . , xd, xt) = (−1)d+1
d∏

i=1

ψ′i(xi)ψ′t(xt)

×
∫ ∞

0

∫ ∞

0

wd
1w2e

−w1
∑d

i=1 ψi(xi)−w2ψt(xt)dF (w1, w2).

(6.6)

In order to obtain the result, let us focus on the first factor, i.e.
∏d

i=1 ψ′i(xi)ψ′t(xt). Note that

the first derivative of a Bernstein function is a completely monotone function, and for similar

arguments to the previously shown results, we have that ψ′ ◦ γ, where γ is a variogram, is a

covariance function. As the tensorial product of covariances is still a covariance, we have that

ξ(h1, . . . , hd, u) =
d∏

i=1

ψ′i(γi(hi))ψ′t(γt(u))
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is a covariance function.

Let us now focus on the second factor. Applying formula (3.22) we get

ν∗(h1, . . . , hd, u) =

ξ(h1, . . . , hd, u)
∫∞
0

∫∞
0

wd
1w2e

−w1
∑d

i=1 ψi(γi(hi))−w2ψt(γt(u))dF (w1, w2)
kξ

∫∞
0

∫∞
0

wd
1vF (w1, w2)

,

(6.7)

where:

• kξ =
∏d

i=1 ψ′i(γi(0))ψ′d+1(γt(0)) is a finite positive constant (due to direct theorem’s con-

struction), as γi(0) = 0 and ψ′i(0), i = 1, . . . , d, t, exist and are finite;

• following the dominated convergence theorem, we can evaluate the integrand at 0 ∈ R2 and

obtain the above expression. As the denominator normalises the measure in the numerator,

the second factor results in a positive mixture of covariance functions, indeed a covariance

function.

These facts complete the proof.

6.4. TECHNICAL DETAILS FOR THE PERMISSIBILITY OF THE CLASS IN EQUATION

(5.16).

We recall that a function f :]0,∞[→ R is called completely monotonic, if it is C∞ and

(−1)nf (n)(x) ≥ 0 for x > 0, n = 0, 1, . . . . (6.8)

By the celebrated theorem of Bernstein the set C of completely monotonic functions coincides

with the set of Laplace transforms of positive measures µ on [0,∞[, cf. (Widder, 1949), i.e.

f(x) =
∫ ∞

0

e−xt dµ(t), (6.9)

where the only requirement on µ is that e−xt is µ-integrable for any x > 0. The set C is closed

under addition, multiplication and pointwise convergence.

A function f : ]0,∞[ → [0,∞[ is called a Bernstein function, if it is C∞ and f ′ ∈ C.
The set of Bernstein functions is denoted B and is a convex cone closed under pointwise con-

vergence.
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Since a Bernstein function is non-negative and increasing, it has a non-negative limit f(0+).

Integrating the Bernstein representation of the completely monotonic function f ′ gives the following

integral representation of f ∈ B

f(x) = αx + β +
∫ ∞

0

(1− e−xt) dν(t), (6.10)

where α, β ≥ 0 and ν, called the Lévy measure, is a positive measure on ]0,∞[ satisfying

∫ ∞

0

t

1 + t
dν(t) < ∞.

The following composition result is useful, see Berg (2007):

Let X be any of the sets B, C,L. Then

f ∈ X, g ∈ B ⇒ f ◦ g ∈ X.

We are now able to show the permissibility conditions for the class (5.16). Recall that, under

the constraint β < 1/2δ, the function t 7→ (1 + tγ)2βδ, for t positive argument and γ ∈ (0, 2], is a

Bernstein function, and thus is evaluation in either the arguments ‖x‖, x ∈ Rd, and |x|, x ∈ R, is

a Bernstein function and thus negative definite respectively on Rd and R. So is the sum that will

be negative definite on Rd×R. Finally, direct application of Schoenberg (1993) theorem completes

the proof.
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