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Abstract

In this thesis we discuss three problems concerning the Dirichlet polynomial PS(s) of

a simple group of Lie type S.

The first problem is a conjecture of Kennet Brown: if G is a finite group, then the

order complex of the coset poset of G is not contractible. We prove that the conjecture

holds for a large class C of classical groups and we show how to generalize this result

to the groups whose components are in the class C, under some assumptions.

The second problem is to determine whether the Dirichlet polynomial of a simple

group is reducible or not in the ring of Dirichlet polynomials. We give a complete

answer for the Dirichlet polynomials of the simple groups of Lie type. This allows us

to find the factorization into irreducible of the Dirichlet polynomial of a group whose

non-abelian chief factors are simple groups of Lie type, under some assumptions on

the rank of these last groups.

The third problem is a conjecture of Erika Damian and Andrea Lucchini: if S is a

simple group and G is a finite group such that PS(s) = PG(s), then G/Frat(G) ∼= S.

We complete the proof of this conjecture. This conjecture was proved for S abelian,

alternating and sporadic. Moreover, it was proved that if G1 and G2 are two non-

isomorphic groups of Lie type defined over fields with the same characteristic, then

PG1(s) 6= PG2(s). We show that it is possible to recognize the characteristic of a group

of Lie type form its Dirichlet polynomial. This is enough to complete the proof of the

conjecture.
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Sommario

In questa tesi discuteremo tre problemi riguardanti il polinomio di Dirichlet PS(s) di

S, gruppo semplice di tipo Lie.

Il primo problema è una congettura di Kennet Brown: se G è un gruppo finito,

allora il complesso simpliciale associato al coset poset di G non è contraibile. Di-

mostreremo che questa congettura vale per un’ampia classe C di gruppi classici e

mostreremo come generalizzare questo risultato a gruppi le cui componenti apparten-

gono alla classe C, sotto certe condizioni.

Il secondo problema consiste nel determinare quando il polinomio di Dirichlet di

un gruppo semplice è riducibile nell’anello dei polinomi di Dirichlet. Daremo una

risposta completa al problema per i polinomi di Dirichlet di gruppi semplici di tipo

Lie. Questo ci permette di trovare la fattorizzazione in irriducibili del polinomio di

Dirichlet di un gruppo i cui fattori principali non abeliani sono gruppi semplici di

tipo Lie, con alcune ipotesi sul rango di questi ultimi gruppi.

Il terzo problema è una congettura di Erika Damian e Andrea Lucchini: se S è un

gruppo semplice e G è un gruppo finito tale che PS(s) = PG(s), allora G/Frat(G) ∼= S.

Completeremo la dimostrazione di questa congettura, che era stata già dimostrata

per S gruppo abeliano, alterno e sporadico. Inoltre, era stato dimostrato che se G1

e G2 sono due gruppi di tipo Lie definiti su campi con la stessa caratteristica e non

isomorfi, allora PG1(s) 6= PG2(s). Per completare la dimostrazione della congettura,

mostreremo che è possibile riconoscere la caratteristica di un gruppo di tipo Lie dal

suo polinomio di Dirichlet.
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Notation

0.1 General notation

Let a, k be two nonnegative integer number, let p be a prime number, let π be a set

of prime numbers, let Y be a set, let G be a finite group and N a normal subgroup

of G. Let K be a finite field.

List of symbols

∅ empty set

ak(G) k-th coefficient of the Dirichlet polynomial PG(s) p.8

ak(f(s)) k-th coefficient of the Dirichlet polynomial f(s) p.8

ak(G,N) k-th coefficient of the Dirichlet polynomial PG,N(s) p.8

Aut(G) group of automorphisms of G

âk largest Zsigmondy prime for 〈a, k〉 p.25

Altk alternating group of degree k

B Borel subgroup of a simple group of Lie type p.35

CG(H) centralizer in G of a subgroup H

Ck cyclic group of order k

d(G) minimal number of generators of G

f (π)(s) π-Dirichlet polynomial of f(s) p.9

Fq field with q elements

Frat(G) Frattini subgroup of G

1



2

G′ derived subgroup of G

N natural numbers

Mn,k(K) matrix n× k with coefficient in K

NG(H) normalizer in G of a subgroup H

Out(G) group of outer automorphisms of G

Or(G) smallest normal subgroup of G whose quotient is an r-group

PG(s) Dirichlet polynomial of G p.8

PG,N(s) Dirichlet polynomial of G given G/N p.8

P
(π)
G (s) π-Dirichlet polynomial of G p.9

P
(π)
G,N(s) π-Dirichlet polynomial of G given G/N p.9

q̂∗k product of the Zsigmondy prime for 〈q, k〉 p.26

P(Y ) set of subsets of Y

R ring of Dirichlet polynomials with integer coefficients p.8

Rπ subring of R p.8

R′ subring of R p.23

R′
π subring of R′ p.23

R real numbers

soc(G) socle of G, i.e. product of the minimal normal subgroups of G

StabG(Y ) stabilizer of Y under the action of G

Symk symmetric group of degree k

t the number |ρ|
√

|K| p.29, 36

vp(k) p-adic valuation of k p.26

Xπ set of commuting indeterminates {xp : p ∈ π}
Z integer numbers

µG Möbius function of the subgroup lattice of G p.22

π(k) set of prime divisors of k

π(G) set of prime divisors of |G|
π′ set of prime numbers p such that p 6∈ π p.8

ρ symmetry of the Dynkin diagram p.33
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Φ homomorphism of rings p.9

Ψ homomorphism of rings p.24

|f(s)|p p-part of f(s) p.28

|k|p p-part of k p.26

0.2 Notation for Classical groups

For a better explanation, see also Subsection 3.1.1. The group GL(V, F ) is the group

of automorphisms of the vector space V over Fq.

List of symbols

A(V, κ), A p.32

C1, ..., C8 classes of geometric maximal subgroups p.43

f bilinear form p.31

K̄ reduction modulo scalars (for K ≤ Γ(V, κ)) p.31

I(V, κ), I subgroup of GL(V,F) p.31

L,S,O,U types of Classical groups p.31

O
o,O+,O− types of Classical groups p.31

Q quadratic form p.31

S(V, κ) subgroup of GL(V,F) p.32

S class of maximal subgroups p.43

V Vector space over Fq p.31

Γ(V, κ),Γ κ-semisimilarity p.31

κ form defined on a vector space V p.31

Ω(V, κ),Ω subgroup of GL(V,F) p.32
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0.3 Notation for root systems, Lie algebras, Dynkin

diagrams

See Subsection 3.1.2 for a better explanation. In the sequel, let J be a subset of I,

let u and w be two reflections.

List of symbols

cn(X,−(d− 1)) p.66

D Dynkin diagram p.33

D′ Dynkin diagram associated to W p.35

DJ , DK p.35

FD′(t) p.36

I set of ρ-orbits of Π p.34

Iu subset of I p.64

Icu complementary subset of Iu p.64

Iu1,...,ul
intersection of Iu1, ..., Iul

p.64

J∗ union of the elements of J p.34

J̃ set of NX(B)-orbits of J p.41

l(w) length of w p.34

lXW p.66

L simple Lie algebra p.33

o(J) size of J̃ p.41

PJ parabolic subgroup over B, associated to the set of roots J p.36

PX(I) set of fixed point of P(I) under the action of NX(B) p.41

SH(G) set of L ≤ G such that L ≥ H p.39

SXB (S) fixed point of SB(S) under the action of NX(B) p.39

TWJ
(t) p.35

V Cartan subalgebra of L p.33
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VK Subspace of V spanned by K p.34

W Weyl group of Φ p.34

WK Weyl group of ΦK p.34

W subgroup of W p.35

Wi p.35

WJ p.35

w,wr reflection, element of W p.34

Π,Σ sets of fundamental roots p.33

τ isometry associated to ρ p.34

τX
D′(i) p.69

Φ,Ψ system of roots p.33

ΦK p.34

Φi p.35

Ψ+ set of positive roots of Ψ w.r.t. a fundamental system Σ p.34

Ψ− set of negative roots of Ψ w.r.t. a fundamental system Σ p.34

ωi unique element of Wi such that ωi(Φ
+
i ) = Φ−

i p.59

(−,−) Killing form on L p.33
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0.4 Notation for Chapter 6

Let V be a vector space endowed with a form κ and let W be a subspace of V .

List of symbols

ei, fi, x, y, z vectors of a basis of V p.81

HI(W ) p.98

I(W ) the group I(W⊥/W, κW⊥/W ) p.93

L p.107

LH(X) set of W ≤ V such that StabX∩Γ ≥ H ∩ Γ p.83

L∗
H(X) non-trivial totally singular elements of LH(X) p.83

L∗
H(X)/ψ quotient set of L∗

H(X) under the action of ψ ∈ A− Γ p.83

L(W )
H p.93

L(+) +-reducible elements of L ⊆ Sub(V ) p.85

L(∩) ∩-reducible elements of L ⊆ Sub(V ) p.85

MH(X) maximal subgroups of X supplementing S and containing H p.83

P property of a subset of Sub(V ) p.85

Sub(V ) set of all the vector subspaces of V p.83

Uk set of totally singular subspaces of dimension k p.84

W⊥ orthogonal of W with respect to f p.81

β(n) p.80

βp(X) p.58

β̃p(X) p.79

γ homomorphism p.84

κW restriction of κ to W p.81

κW⊥/W form induced by κ to W⊥/W p.93

φl,h p.82

φ(W ) element induced by φ in I(W ) p.94

ΨH map p.84

(v, w) f(v, w) p.81
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0.5 Notation for Chapter 9

List of symbols

G1 family of groups p.118

G2 family of groups p.118

θ1(X) number associated to the group X p.119

θ2(X) number associated to the group X p.119

0.6 Notation for Part III

List of symbols

h(n, q) p.140

M(A, k) maximal subgroups which order is divisible by k in a group A p.141

0.7 Definitions

(the) characteristic of a group of Lie type p.137

classical projective group p.32

dominant prime p.137

Dirichlet polynomials p.8

Dynkin diagrams p.33

geometric maximal subgroup p.44

monolithic primitive group p.11

non-degenerate p.81

non-trivial graph automorphism p.41

non-trivial intersecting subgroup p.57

P-element p.85

redundant element p.85

totally singular p.81

Zsigmondy prime p.25

π-Dirichlet polynomials p.9

π-number p.8

ω-factorization p.61



Introduction

LetG be a finite group and letN be a normal subgroup ofG. The Dirichlet polynomial

of G given G/N isPG,N (s)

ak(G,N) PG,N(s) =
∑

k≥1

ak(G,N)

ks
, where ak(G,N) =

∑

H ≤ G, |G : H| = k,

NH = G,

µG(H).

Here µG is the Möbius function of the subgroup lattice of G, which is defined induc-

tively by µG(G) = 1 and µG(H) = −∑K>H µG(K) if H < G. Moreover, the Dirichlet

polynomial of G is given by PG(s) = PG,G(s) and ak(G) = ak(G,G) .PG(s)

ak(G) The polynomials PG(s) and PG,N(s) are elements of the ring of Dirichlet finite

series (also called Dirichlet polynomials) with integer coefficients ,R

R =

{

∑

m≥1

am
ms

: am ∈ Z, |{m : am 6= 0}| <∞
}

.

Let f(s) =
∑

k≥1
ak

ks be an element of R. We let ak(f(s)) = ak be the k-thak(f(s))

coefficient of f(s).

Let π be a set of prime numbers and let π′ be the set of prime number that doπ′

not lie in π. We say that a positive number m is a π-number if each prime divisor ofπ-number

m lies in π. Denote by Xπ the set of commuting indeterminates {xr : r ∈ π}. Let RπXπ

be the subring of R given byRπ

{

∑

m≥1

am
ms

∈ R : am 6= 0 ⇒ m is a π′-number

}

.

8
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Note that both R and Rπ are factorial domains (see [DLM04]). In fact there exists

a ring isomorphismΦ

Φ : Rπ → Z[Xπ′ ]

defined by Φ(r−s) = xr for each r ∈ π′.

Moreover, there is an interesting ring homomorphism between R and Rπ, given

by f (π)(s)

R → Rπ

f(s) =
∑

k∈N

ak

ks 7→ f (π)(s) =
∑

k∈N

bk
ks

where

bk =

{

ak if k is a π′-number

0 otherwise.

In particular, the polynomial P (π)
G,N(s) is called the π-Dirichlet polynomial of G given P

(π)
G,N (s)

N and the polynomial P (π)
G (s) is called the π-Dirichlet polynomial of G. P

(π)
G (s)

As noted in [Gas59], some values of the polynomials PG(s) and PG,N(s) have a

probabilistic interpretation. In fact, for n ≥ d(G/N), the number PG,N(n) is the

conditional probability that n randomly chosen elements g1, ..., gn of G generate G,

given that Ng1, ..., Ngn generate G/N . Also the polynomial P (r)
G (s) has a probabilistic

interpretation. In fact, if r is a prime number and P is a Sylow r-subgroup of G,

then for each positive integer n the number P (r)
G (s) is the conditional probability that

n randomly chosen elements of G generate G together with the elements of P , given

that their product normalizes P (see [DL07b, Proposition 1]).



Chapter 1

History and motivations

The Dirichlet polynomial of a group has been studied by many authors. In the 1996,

Mann introduced the Probabilistic Zeta function of a group, which is the counterpart

of the Dirichlet polynomial (see [Man96]). In his article, he pointed out the possibility

to define this object for a wide class of groups, namely the positively finitely generated

groups. However, the study of the finite case is very important. For instance, if G

is a profinite group and {Ni}i∈I is a set of normal open subgroups of G such that
⋂

iNi = 1, then PG(s) = infi PG/Ni
(s).

In the same year, Boston proposed the study of this function and in particular

of its irreducible factors (which are called the generalized Euler factors), in order to

obtain a better understanding for a possible number theoretical interpretation (see

[Bos96]). In fact, it was already known to Gaschütz (see [Gas59]) that

PG(s) = PG/N(s)PG,N(s),

where N is a normal subgroup of G. So, if 1 = G0 �G1 � ...Gk = G is a chief series

of G, then we have:

PG(s) =
k−1
∏

i=0

PG/Gi,Gi+1/Gi
(s). (∗)

The factorization (∗) is well understood, thanks to the work of Gaschütz (see

[Gas59] and [Gas62]), Detomi and Lucchini (see [DL03b]) on the crowns. We need

10



11

some definitions in order to explain this factorization. Let N be a minimal normal

subgroup of a group G, and let

LN =

{

G/CG(N) if N is not abelian,

G/CG(N) ⋉N otherwise.

be the monolithic primitive group associated with N . Clearly N is (isomorphic to)

the socle of LN . Moreover, if A = H/K is a chief factor of G, then A is a minimal

normal subgroup of G/K and LA = LH/K . Define:

P̃LN ,1(s) = PLN ,N(s), P̃LN ,i(s) = PLN ,N(s) − (1 + qN + ... + qi−2
N )γN

|N |s for i > 1,

where γN = |CAut(N)(LN/N)| and qN = |EndLN
(N)| if N is abelian, qN = 1 otherwise.

In particular, note that if N is abelian, then N is a direct product of isomorphic cyclic

groups of prime order and

PLN ,N = 1 − |Der(LN/N,N)|
|N |s ,

where |Der(LN/N,N)| is the number of complement of N in LN .

Finally, let A1 and A2 be two chief factors of G. We say that A1 is G-equivalent

to A2 if A1 and A2 are G-isomorphic to the minimal normal subgroups of a primitive

epimorphic image of G (recall that this epimorphic image has one or two minimal

normal subgroups and in the latter case they are not G-isomorphic). For a non-

Frattini chief factor A of G, let δG(A) be the number of factors of G which are

G-equivalent to A (it is independent on the choice of the chief series). Now we can

state the main result of [DL03b].

Theorem 1.1 ([DL03b, Theorem 18]). Let G be a finite group. Then

PG(s) =
∏

A∈A





∏

1≤i≤δG(A)

P̃LA,i(s)



 ,

where A is the set of representatives of the quotient set given by the G-equivalence

relation on the set of chief factors of G, and LA is the monolithic primitive group

associated with A.
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Because of this theorem, we have that the factorization (∗) is independent on the

choice of the series and it is well understood in terms of Dirichlet polynomials of

primitive monolithic groups. Since the knowledge of the primitive monolithic groups

with abelian socle is complete, the Dirichlet polynomial of a soluble group is well

known, as shown in the following result.

Theorem 1.2 ([DL03a, Theorem 5]). Let G be a finite group. The following are

equivalent:

(1) G is soluble;

(2) the factors of PG(s) are of the form
(

1 − c
qs

)

for some c ∈ N and q a prime

power,

(3) the sequence n 7→ an(G) is multiplicative, i.e. anm(G) = an(G)am(G) whenever

(m,n) = 1.

We can say some more words on the Dirichlet polynomial of a monolithic primitive

group L with non-abelian socle N . Assume that S is a simple component of L, define

X = NL(S)/CL(S) and n = |L : NL(S)|. Since S ∼= soc(X), assume that S ≤ X.

The following result shows a connection between the Dirichlet polynomials PL,N(s)

and PX,S(s).

Theorem 1.3 (See [Ser08, Theorem 5]). Under the above conditions we have that

P
(r)
L,N(s) = P

(r)
X,S(ns− n+ 1)

for each prime divisor r of the order of S.

1.1 The coset poset and the Dirichlet polynomial of

a group

Let C(G) be the set of the proper cosets of G, i.e. C(G) = {Hg : H < G, g ∈ G}. It

is ordered by inclusion, so we refer to C(G) as the coset poset of G.
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A natural object of investigation is the order complex ∆(C(G)) of C(G) (which is

a simplicial complex). The elements of ∆(C(G)) are finite chains

H1g1 < H2g2 < ... < Hkgk

of elements of C(G) (for references, see [Mun84] and [Spa66]). In particular, we

can speak of the Euler characteristic χ(C(G)) := χ(∆(C(G))) and the reduced Euler

characteristic χ̃(C(G)) := χ(C(G)) − 1. In [Bro00], Brown pointed out a connection

between the order complex ∆(C(G)) and the Dirichlet polynomial of G. In fact, it

turns out that

PG(−1) = −χ̃(C(G)).

Remind that if a complex is contractible, then the Euler characteristic equals one.

Noting that PG(−1) 6= 0 if G is a soluble group, Brown conjectured that PG(−1) 6= 0

for all finite groups G.

In the soluble case, Brown proved the following result.

Proposition 1.4 ([Bro00, Proposition 8]). Let G be a finite soluble group and let d be

the number of non-Frattini chief factor of G. Then ∆(C(G)) has the homotopy type

of a bouquet of (d− 1)-spheres and the number of spheres is |χ̃(C(G))| = |PG(−1)|.

No such result is known for non-soluble groups, apart from some cases (e.g.

∆(C(Alt5)) is homotopy equivalent to a bouquet of 2-spheres, see [Bro00]).

In our thesis (see also [Pat09b]) we prove that ∆(C(G)) is not contractible for a

wide class of classical groups. Our main result is the following.

Theorem 1.5. Let G be a classical group which does not contain non-trivial graph

automorphisms. Then PG(−1) does not vanish, hence the order complex ∆(C(G)) is

not contractible.

The proof of this theorem requires a careful work on the structure of the parabolic

subgroups of G and their intersections (especially when the intersection of two max-

imal parabolic subgroups of G is not a parabolic subgroup) and a good knowledge
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about the maximal subgroups of G (invoking also the classification of finite simple

groups).

Using Theorem 1.3, we extend this result to the groups whose composition factors

are classical simple groups (under certain technical conditions, see Theorem 7.1). Part

I of the present thesis is devoted to the proof of this result.

The connection between the coset poset of the group G and the Dirichlet poly-

nomial of G is strong. In fact, the coset poset of G completely determines PG(s), as

shown in [Bro00, Section 9]. In particular, let L be the coset lattice of G, consisting

of all cosets of G and the empty set. A Möbius function µ̃ is defined on L, setting

µ̃(G) = 1 and
∑

H∈L,H⊃K µ̃(H) = 0 if K ∈ L is properly contained in G. So we can

construct a Dirichlet polynomial

PC(G)(s) =
∑

K∈L−{∅}

µ̃(K)

(|G| : |K|)s .

It turns out that

PC(G)(s+ 1) = PG(s),

so the coset poset completely determines PG(s). Moreover, note that

χ̃(∆(C(G))) = µ̃(∅) = −
∑

H∈L,H⊃∅

µ̃(H) = −PC(G)(0) = −PG(−1).

1.2 Irreducibility of the Dirichlet polynomial of a

group

As we have seen before, the ring of Dirichlet polynomials is a factorial domain. It is a

natural question to ask when a Dirichlet polynomial of a group G is irreducible. An

easy result is the following.

Lemma 1.6 ([DLM04, Corollary 7]). If PG(s) is irreducible, then G/Frat(G) is a

simple group.

A more general result is the following.
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Proposition 1.7. Let G be a finite group such that Frat(G) = 1. If PG,soc(G)(s) is

irreducible, then G is a primitive monolithic group.

Proof. Let N be a minimal normal subgroup of G. By definition, we have that

N ≤ soc(G). It is straightforward to show that PG,soc(G)(s) = PG,N(s)PG/N,soc(G)/N (s).

Since PG,soc(G)(s) is irreducible we have that either PG,N(s) = 1 or PG/N,soc(G)/N (s) =

1.

Since Frat(G) = 1, by [Laf78, Lemma] we have that the chief factors below soc(G)

are non-Frattini. By [DLM04, Lemma 6], if K � G, then PG,K(s) = 1 if and only

if K ≤ Frat(G). Assume that PG,N(s) = 1. We get that N ≤ Frat(G), against the

hypothesis. Thus we have PG/N,soc(G)/N (s) = 1, so soc(G)/N ≤ Frat(G/N). Since the

chief factors of G under soc(G) are non-Frattini we get N = soc(G).

Let M be a maximal subgroup of G which does not contain soc(G) (it exists since

Frat(G) = 1). Let

coreG(M) =
⋂

g∈G
Mg

and note that coreG(M)�G. Clearly we have that coreG(M) = 1, otherwise soc(G) ≤
coreG(M) but soc(G) � M . Hence G is a primitive group. This completes the proof.

�

As we have seen in the beginning of this chapter, the Dirichlet polynomial of a

group G factorizes in correspondence to the chief factors of G. In particular, given

a non-Frattini chief factor H/K of G we have that PG/K,H/K(s) divides PG(s). Un-

fortunately, the factor PG/K,H/K(s) is not always irreducible in R. For instance, we

have:

PPSL2(7)(s) = (1− 2/2s)(1+2/2s+4/4s− 14/7s− 28/14s− 28/28s +21/21s+42/42s)

and

PAlt4,V (s) = (1 − 4/4s) = (1 − 2/2s)(1 + 2/2s),

where V is the subgroup of order 4 in Alt4.

The results on the irreducibility of PG(s) are collect in the following theorem.
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Theorem 1.8. The following hold:

• If p is a prime number such that p ≥ 5, then PAltp(s) is irreducible ([DLM04,

Theorem 12]).

• If p is a prime number such that p ≥ 5, then PPSL2(p)(s) is reducible if and only

if log2(p+ 1) ≡ 3 (mod 4) ([DLM04, Proposition 14 and 15])

• If q is a power of a prime number and q is not a prime number, then PG(s) is

irreducible for G = PSL2(q),
2B2(q) or 2G2(q) ([Pat09c, Proposition 15]).

In this thesis (see also [Pat09a]) we prove the following.

Theorem 1.9. Let G be a finite simple group of Lie type. The Dirichlet polynomial

PG(s) is reducible if and only if G ∼= PSL2(p) and log2(p+ 1) ≡ 3 (mod 4).

In order to obtain this result, we study the irreducibility of the Dirichlet polyno-

mial P (p)
G (s) (which is well understood) and we use some results on the irreducibility of

a multivariate polynomial with coefficient in Z to extend the result to the polynomial

PG(s). Again we invoke the classification of finite simple groups.

Moreover, thanks to Theorem 1.3, we extend the result to some polynomials of

type PG,N(s), where G is a monolithic primitive group with socle N (see Theorem

8.1). Part II is dedicated to the proof of this result.

1.3 Recognition of properties of the group from its

Dirichlet polynomial

Let G and H be two finite groups and assume that PG(s) = PH(s). Suppose that

we know the group G. What can we say about H? It is easy to see that we can

not infer that H ∼= G, since, for instance, PG(s) = PG/Frat(G)(s). Also H/Frat(H) ∼=
G/Frat(G) is not true. For example, PC6×C3(s) = PSym3×C3(s) and PPGL2(9)(s) =

PM10(s) (use [GAP]). However, many properties of H can be recognized from the

Dirichlet polynomial H . We summarize them in the following theorem.
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Theorem 1.10. Let p be a prime number. Let G and H be two finite groups and

assume that PG(s) = PH(s).

• If G is soluble, then H is soluble ([DL03c, Theorem 1], see also Theorem 1.2).

• If G is a p-group, then H is a p-group.

• If G is p-soluble, then H is p-soluble. In particular, G is p-soluble if and only

if the sequence {an(G)}n∈N is p-multiplicative ([DL07a, Theorem 1.2]).

• If G is perfect, then H is perfect ([DL03a, Proposition 7]). In particular, the

following are equivalent:

– Op(G) = G.

– p divides ap(G).

• If G is simple, then H/Frat(H) is simple ([DL07b, Theorem 7]). In particular,

assume that the following hold:

(1) P
(2)
H (s) has a simple zero in 1, i.e. P

(2)
H (1) = 0 and

∏

(n,2)=1 n
an(G)

n 6= 1.

(2) Let m = min{k : ak(H) 6= 0, k > 1}. If ak(H) 6= 0, then k divides m!.

(3) If ak(H) 6= 0 and k is a power of a prime number, then k divides ak(H)

and either k = m or (k,m) = (8, 7).

Then H/Frat(H) is a non-abelian simple group ([DL07b], [Mas07]).

We can say something more when G is a simple group. In fact, we have the

following.

Theorem 1.11. Let G be a finite simple group and let H be a finite group such that

PG(s) = PH(s).

• If G is abelian, then H/Frat(H) ∼= G.

• If G is alternating, then H/Frat(H) ∼= G ([DL04]).
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• If G is sporadic, then H/Frat(H) ∼= G ([DL06, Theorem 11] ).

• If G and H are simple groups of Lie type defined over fields with the same

characteristic, then G ∼= H ([DL06, Theorem 14]).

In Part III of this thesis, we complete the prove of the following.

Theorem 1.12. Let G be a finite simple group and let H be a finite group. If

PG(s) = PH(s), then H/Frat(H) ∼= G.

In particular, we show that it is possible to recognize the characteristic of a simple

group of Lie type from its Dirichlet polynomial (see Theorem 13.6 and Proposition

14.1). In most cases, it turns out that the characteristic of G is the “dominant prime”

of PG(s) (i.e. a prime number p such that if r is a prime number and po(G) =

lcm{n|an(G) 6= 0}, then |po(G)|p ≥ |po(G)|r). In order to obtain the result we

need to study some maximal subgroups of the groups of Lie type, so we invoke the

classification of finite simple groups, which is also required to complete the proof of

the main theorem.

In the past, some conjectures on PG(s) were proposed. A way to recognize a simple

group is to know the order of the group. In fact, there are at most two non-isomorphic

simple groups with the same order. In order to recognize the order of a simple groupG

from PG(s), it is natural to compare the number po(G) = lcm{n|an(G) 6= 0} with |G|.
It was conjectured that |G| = po(G) (see [DL03a, Conjecture 1], and [DL06]). This

is false. In fact, if G = PSL2(p) with p a prime number such that p ≡ 17 (mod 40)

([Pat09c]), then po(G) = |G|/2. Moreover, po(PSU3(3)) = |PSU3(3)|/8 (use [GAP]).

However, a weaker result was conjectured in [DL06] and proved in [DL07a].

Theorem 1.13 ([DL07a, Theorem 1.3]). Let G be a finite group. Then π(|G/Frat(G)|) =

π(po(G)).

This means that we can recover the prime divisors of |G/Frat(G)| from the

Dirichlet polynomial of G. Moreover, if G is a primitive monolithic group, then
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the prime divisors of the socle soc(G) are exactly the prime numbers r such that

P
(r)
G,soc(G)(s) 6= PG,soc(G)(s).

Another interesting question is the following. Given a finite group G, is it possible

to recognize the non-Frattini chief factors of G from its Dirichlet polynomial? As we

have seen in Theorem 1.1, we can factorize the Dirichlet polynomial considering a

chief series of G. Now we say some words on the contribution of the abelian chief

factors of G. We define another Dirichlet polynomial:

QG(s) =
∏

A∈A′





∏

1≤i≤δG(A)

P̃LA,i(s)



 ,

where A′ = {A ∈ A : A is abelian}. As we have seen before, we have that

QG(s) =
∏

A∈A′





∏

1≤i≤δG(A)

(

1 − c(A, i)

|A|s
)



 ,

where c(A, i) is a positive integer. Now, a factorization of this type is unique, as the

following Lemma shows.

Lemma 1.14 ([DL03a, Lemma 16] ). Suppose that

∏

1≤i≤k1

(

1 − ci
pnis

)

=
∏

1≤j≤k2

(

1 − dj
pmjs

)

,

where c1, ..., ck1, d1, ..., dk1 are positive integers. Then k1 = k2 and there exists σ ∈
Sym(k1) such that mσ(i) = ni and dσ(i) = ci for 1 ≤ i ≤ k1.

So, if we know the polynomial QG(s), we know the non-Frattini abelian chief

factors of G. Of course, it is not immediate to recognize the polynomial QG(s) from

PG(s): this requires a careful study of the contribution of the non-abelian chief factors

to PG(s).

As well, in order to understand the non-abelian chief factors from the knowledge

of PG(s) we wish to prove two facts:
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- the Dirichlet polynomial PG,soc(G)(s) is irreducible for G a monolithic primitive

group, with few exception. At the present date, the alternating case is open

and it seems to require a certain amount of number theoretical knowledge.

- if PG1,soc(G1)(s) = PG2,soc(G2)(s) for two monolithic primitive groups G1 and G2,

then soc(G1) ∼= soc(G2). If G1 is abelian, the result is known. Assume that

G1 is not abelian. To prove the claim, it is useful to understand the number

n = |G : NG(S)|, where S is a simple component of a monolithic primitive

group G (note soc(G) ∼= Sn). We believe that

n = max{m ∈ N : ∀k ∈ Z if ak(G, soc(G)) 6= 0 and π(k) 6= π(S), then k ∈ Zm}.

In this way, we can reduce the problem to the almost simple case: in fact, by

Theorem 1.3, we have that

P
(r)
Gi,soc(Gi)

(s) = P
(r)
Xi,Si

(nis− ni + 1)

for each prime number r ∈ π(soc(G1)) = {r : P
(r)
G1,soc(G1)(s) 6= PG1,soc(G1)(s)} (see

below Theorem 1.13), where Si is a simple component ofGi,Xi = NGi
(Si)/CGi

(Si)

and ni is defined as n above. So the problem is reduced to the following: if X1

and X2 are almost simple groups such that

P
(r)
X1,soc(X1)(s) = P

(r)
X2,soc(X2)(s)

for each prime number r ∈ π(soc(X1)) = {r : P
(r)
X1,soc(X1)(s) 6= PX1,soc(X1)(s)} (see

below Theorem 1.13), then soc(X1) ∼= soc(X2). This can be proved quite easily

when soc(X1) is an alternating or sporadic group (the proof should be similar

to the simple case). The situation for a groups of Lie type of characteristic

p is quite more complicated: as in the simple case, one can try to find the

Artin invariants (see the proof of [DL06, Theorem 14]). However, it seems to

be harder here since it is not always true that |P (p)
X1,soc(X1)(0)| = |soc(X1)|p, and

this was a key fact in the proof of the claim in the simple case.

Nevertheless, we believe this two facts to hold true, so we conjecture the following.
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Conjecture 1.15. Let G and H be two finite groups. If PG(s) = PH(s), then G and

H have the same non-Frattini chief factors.



Chapter 2

Basic results

In this chapter we give some notation and some results on the objects of our study.

2.1 The Möbius function of the subgroup lattice and

the ring of Dirichlet polynomials

A very important object of our analysis is the Möbius function of the subgroup lattice

of a group. Let G be a finite group. The Möbius function of the subgroup lattice of

G is defined by :µG

µG(H) =

{

1 if H = G

−∑H<K≤G µG(K) if H < G.

This function has some nice properties that we collect in the following proposition.

Proposition 2.1. Let G be a finite group and H a subgroup of G.

(1) If µG(H) 6= 0, then H is intersection of maximal subgroups of G (See [Hal36]).

(2) The index |NG(H) : H| divides µG(H)|G : HG′| ([HIz89, Theorem 4.5]).

Let N be a normal subgroup of G and let m be a positive integer. Recall that

am(G,N) =
∑

H ≤ G, |G : H| = m,

NH = G,

µG(H).

22
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Very often, in our proofs we have to show that am(G,N) 6= 0. By definition of

am(G,N) we have the following result.

Lemma 2.2. Let G be a finite group, let N be a normal subgroup of G and let m be

a positive integer.

(1) Assume that if H is a subgroup of G such that HN = G and |G : H| = m, then

H is maximal. We have that am(G,N) 6= 0.

(2) Assume that if H1 and H2 are subgroups of G such that H1N = H1N = G and

|G : H2| = |G : H1| = m, then H1 and H2 are conjugated in G. We have that

am(G,N) 6= 0 if and only if µG(H1) 6= 0.

The second result stated in Proposition 2.1, has an interesting consequence. In-

deed, if N ≤ G′, then Proposition 2.1 implies that |NG(H) : H| divides µG(H) if

HN = G. Now, we have that

am(G,N) =
∑

H ∈ Cm(G, N),

|G : NG(H)|µG(H),

where Cm(G,N) is a set of representatives of the conjugacy classes of subgroups H of

G such that HN = G and |G : H| = m. Thus we obtain the following.

Lemma 2.3. Let G be group and let N be a normal subgroup of G such that N ≤ G′.

Then m divides am(G,N) for each positive integer m.

Assume that N ≤ G′. By the above lemma, we get that PG,N(s) is an element of R′

R′ =

{

∑

m≥1

am
ms

: am ∈ mZ, |{m : am 6= 0}| <∞
}

,

which is a subring of R. Let π be a set of prime numbers. We have that P (π)
G,N(s) is

an element of R′
π

R′
π =

{

∑

m≥1

am
ms

∈ R′ : am 6= 0 ⇒ m is a π′ number

}

.
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We define the map Ψ

Ψ : R′
π → Z[Xπ′ ]

given by Ψ(p1−s) = xp for each p ∈ π. Clearly, Ψ is a ring isomorphism. In particular,

since the groups we are studying satisfies the condition N ≤ G′, we consider PG,N(s)

as an element of R′
π, for π′ = π(N).

Example 1. Let G = Alt5. By [GAP], we have

PG(s) = 1 − 51−s − 61−s − 101−s + 201−s + 2 · 301−s − 601−s,

hence

Ψ(PG(s)) = 1 − x5 − x2x3 − x2x5 + x2
2x5 + 2x2x3x5 − x2

2x3x5.

When we study the irreducibility of a Dirichlet polynomial we heavily use this

correspondence between the ring of Dirichlet polynomials and the ring of polynomials

with integer coefficients. Usually, in order to prove that a certain Dirichlet polynomial

f(s) =
∑

m≥1
am

ms ∈ R′
π is irreducible in R, we show that Ψ(f(s)) is irreducible in

Z[Xπ′ ]. This is enough under the assumption a1(f(s)) = 1, as shown in the below

lemma.

Lemma 2.4. Let π be a set of prime and let f(s) be an element of R′
π such that

a1(f(s)) = 1. Then f(s) is irreducible in R if and only if Ψ(f(s)) is irreducible in

Z[Xπ′ ].

Proof. The map Ψ is an isomorphism of rings, hence f(s) is irreducible in R′
π if

and only if Ψ(f(s)) is irreducible in Z[Xπ′ ]. Since a1(f(s)) = 1 we have that f(s) is

irreducible as an element of R′ if and only if f(s) is irreducible in R. Indeed, assume

that f(s) is irreducible in R′ and f(s) = g(s)h(s) in R. Thus there exists m1, m2 ∈ Z

such that m1g(s) and m2h(s) are in R′. So m1m2f(s) = m1g(s)m2h(s), but f(s) is

prime in R′, then f(s) divides m1g(s) or m2h(s). Without loss of generality, assume

that mf(s) = m2h(s) for some m ∈ Z. We get m1m2f(s) = m1g(s)m2h(s) =

m1g(s)mf(s), hence m2 = g(s)m, so g(s) is an integer. Since f(s) = g(s)h(s),

a1(f(s)) = 1 and g(s) ∈ Z, we have that |g(s)| = 1. Thus we get the claim. �

Finally, Theorem 1.3 can be restated in the following way.
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Theorem 2.5 (See [Ser08, Theorem 5]). Let L be a monolithic primitive group with

a simple component S. Let X = NL(S)/CL(S) and let n = |L : NL(S)|. Let Γ :

Z[Xπ(S)′ ] → Z[Xπ(S)′ ] be the ring homomorphism defined by Γ(xr) = xnr for each

r ∈ π(S)′. We have that

Ψ(P
(π)
L,soc(L)(s)) = Γ(Ψ(P

(π)
X,soc(S)(s)))

for each π ⊆ π(S).

Example 2. Let L = Mn
22 ⋊ Cn and π = {2}. In this case soc(L) ∼= Mn

22 and

X = soc(S) = S, so PX,S(s) = PS(s), and we have (use [GAP]):

P
(2)
X,S(s) = P

(2)
S (s) = 1 − 771−s − 2311−s + 11551−s,

P
(2)
L,soc(L)(s) = P

(2)
X,S(ns− n + 1) = 1 − 77n(1−s) − 231n(1−s) + 1155n(1−s),

and

Ψ(P
(2)
S (s)) = 1 − x7x11 − x3x7x11 + x3x5x7x11,

Ψ(P
(2)
L,soc(L)(s)) = 1 − xn7x

n
11 − xn3x

n
7x

n
11 + xn3x

n
5x

n
7x

n
11 = Γ(Ψ(P

(2)
S (s))).

2.2 The Zsigmondy primes

We state some useful results on the primitive prime divisors.

Lemma 2.6 (see [Zsi92]). Let a, k ∈ N, a, k ≥ 2. There exists a prime divisor r of

ak − 1 such that r does not divide ai − 1 for all 0 < i < k, except in the following

cases:

• k = 2, a = 2s − 1 with s ≥ 2.

• k = 6, a = 2.

When this prime divisor exists, it is called a Zsigmondy prime for 〈a, k〉.

Let a and k be two positive integers greater than 1. If there exists a Zsigmondy

prime for 〈a, n〉 we let âk be the greatest Zsigmondy prime for 〈a, k〉. âk
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Lemma 2.7 (see [Fei88]). Let a, k ∈ N, a, k ≥ 2. Let r be a Zsigmondy prime for

〈a, k〉. We have that:

• r ≡ 1 (mod n), so r ≥ k + 1.

• If k ≥ 3 and (a, k) 6∈ {(2, 4), (2, 6), (2, 10), (2, 12), (2, 18), (3, 4), (3, 6), (5, 6)},
and r is the largest Zsigmondy prime for 〈a, k〉, then |ak − 1|r > k + 1 (i.e. r2

divides ak − 1 or r ≥ 2k + 1).

Lemma 2.8 ([LPS90, p.38]). Let k ∈ N, k ≥ 3 and let q = pf for some prime number

p and f ≥ 1, (q, k) 6= (2, 6). Let q̂∗k denote the product of the Zsigmondy prime forq̂∗k

〈q, k〉. We have that:

• If q̂∗k = k + 1, then (q, k) ∈ {(2, 4), (2, 10), (2, 12), (2, 18), (3, 4), (3, 6), (5, 6)}.

• If q̂∗k = 2k + 1, then (q, k) ∈ {(2, 3), (2, 8), (2, 20), (4, 3), (4, 6)}.

2.3 The r-part of qn ± 1

Let p be a prime number and let k be an integer. We denote by |k|p the p-part of|k|p
k, i.e. |k|p = pi where pi divides k but pi+1 does not divide k. We set |0|p = 0.

The p-adic valuation of k is the number vp(k) which is the smallest integer such thatvp(k)

pvp(k) = |k|p. We set vp(0) = −∞.

Let r be another prime number and let q be a power of p. Let t be the smallest

positive integer such that qt ≡ 1 (mod r). Moreover, let

h =

{

vr(q
t − 1) if r 6= 2

max{h+, h−} if r = 2,

where h− = v2(q − 1) and h+ = v2(q + 1).

Lemma 2.9 ([HB82, Lemma 8.1]). Let q ≥ 3 be an odd natural number and let n be

a positive integer. We have that

|qn − 1|2 =

{

max{|q − 1|2, |q + 1|2}|n|2 if 4|(q − 1) or n is even,

2 if 4|(q + 1) and n is odd.
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|qn + 1|2 =

{

2 if 4|(q − 1)or n is even,

|q + 1|2 if 4|(q + 1)and n is odd.

Let r 6= 2 be a prime number, q ≥ 2 a natural number; then we have:

|qn − 1|r =

{

1 if t ∤ n,

|qt − 1|r|n/t|r if t|n.

|qn + 1|r =

{

1 if t ∤ 2n or t|n,
|qt − 1|r|2n/t|r if t|2n and t ∤ n.

2.4 On the irreducibility of a polynomial

In the sequel, we give some results on the irreducibility of polynomials we shall use

in Part II.

Lemma 2.10. Let D be a commutative domain. Suppose that a ∈ D and let f(x) =

1 − axm ∈ D[x]. We have that f(x) is reducible in D[x] if and only if one of the

following holds:

• a ∈ Du for some prime number u such that u divides m;

• −4a ∈ D4 and 4 divides m.

Proof. Left to the reader: just apply [Lan02, Chap. VI, Theorem 9.1]. �

Since we deal with polynomials with integer coefficients, we have that D is a

ring of polynomial with integer coefficients. Thus the above lemma has the following

immediate consequence.

Corollary 2.11. Let D = Z[x1, ..., xk]. Suppose that a ∈ D and let f(x) = 1−axm ∈
D[x]. If f(x) is reducible, then a2 ∈ D2u for some prime divisor u of m.

Another corollary of Lemma 2.10 is the following.
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Corollary 2.12. Let D be a factorial domain and suppose that f(x) ∈ D[x] is an

irreducible polynomial such that f(0) 6= 0. Let k ≥ 1 and m1, ..., mk ∈ N − {0} such

that (m1, ..., mk) = 1. The polynomial f(xm1
1 · ... · xmk

k ) is irreducible in D[x1, ..., xk].

Proof. Let F be the field of fraction of D and let F be the algebraic closure

of F . An irreducible factor of f(x) in F [x] is a polynomial g(x) = x − a for some

a ∈ F−{0}, since f(0) 6= 0. By the previous Lemma, g(xm1
1 ·...·xmk

k ) = xm1
1 ·...·xmk

k −a
is irreducible in F [x1, ..., xk]. So an irreducible factor of f(xm1

1 · ... ·xmk
k ) in F [x1, ..., xk]

is a polynomial g(xm1
1 · ... · xmk

k ). This proves that if f(xm1
1 · ... · xmk

k ) is reducible in

D[x1, ..., xmk
], then f(x) is reducible in D[x]. �

In order to state the next lemma, we need some definition. Let f(s) be a Dirichlet

polynomial in R. We denote by |f(s)|r the r-part of f(s), i.e. the least common|f(s)|r
multiple of the numbers {|k|r : ak(f(s)) 6= 0}.

Lemma 2.13. Let h(s) =
∑∞

k=1
ak

ks be a Dirichlet polynomial and let m be the least

common multiple of {k : ak 6= 0}. Assume that the following hold:

• There exists a set of prime number π0 such that h(π0)(s) is irreducible.

• There exists a set ∅ 6= π ⊆ π(m) such that |h(π0)(s)|v = |m|v for all v ∈ π.

Then h(s) is irreducible in R if and only if (h(s), h(π)(s)) = 1.

Proof. Note that h(π)(s) 6= h(s), since |h(π0)(s)|v = |m|v implies that there ex-

ists k ∈ N such that v divides k and ak 6= 0. Thus, if h(s) is irreducible, then

(h(s), h(π)(s)) = 1.

Assume that (h(s), h(π)(s)) = 1. Let f(s) and g(s) be two Dirichlet polynomials

such that f(s)g(s) = h(s). Since h(π0)(s) is irreducible and f (π0)(s)g(π0)(s) = h(π0)(s),

we may assume that f (π0)(s) = h(π0)(s) and g(π0)(s) = 1. Let v ∈ π. Note that

|f(s)|v ≥ |f (π0)(s)|v = |h(π0)(s)|v = |m|v. Since |m|v = |h(s)|v = |f(s)|v|g(s)|v, we

have that |g(s)|v = 1, thus g(v)(s) = g(s). It follows that g(π)(s) = g(s). This implies

that g(s) divides h(π)(s). Since g(s) divides also h(s), by (h(s), h(π)(s)) = 1 we have

that g(s) = 1. �



Chapter 3

The simple groups of Lie type

3.1 Notation

A simple group of Lie type G is the subgroup XF of fixed point under a Frobenius

map F of a connected reductive algebraic groupX defined over an algebraically closed

field of characteristic p > 0.

The simple groups of Lie type can be classified in several ways. For instance, they

split into two classes: the Chevalley groups and the Twisted groups (see [Car72]).

These groups are completely determined by a simple Lie Algebra L over C, a finite

field K and a symmetry of the Dynkin diagram of L.

In general, for the groups of Lie type, we use the notation of [Car72]. The group is

denoted by kLl(t
k), where k ∈ {1, 2, 3} (if k = 1, then k is omitted), L varies over the t

letters A, ..., G, l is the Lie rank of the Lie algebra and tk is a power of a prime number

p. In particular, the group kLl(t
k) is defined over a the field Ftk of characteristic p (so

we allow t to be irrational). Finally, we set q = t, with the exception given in Table

3.1. In Table 3.1 we record the various names we use for the groups of Lie type.

Another way to classify the groups of Lie type is to divide them into classical and

exceptional groups.

29
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Table 3.1: Simple groups of Lie type
Lie notation Other notation Conditions

An(t) PSLn+1(q) n ≥ 1, (n, t) 6= (1, 2), (1, 3)
2An(t

2) PSUn+1(q) n ≥ 2, (n, t) 6= (2, 2)
Bn(t) PΩ2n+1(q) n ≥ 3, t odd

2B2(t
2) q = t2 = 22k+1, k ≥ 1

Cn(t) PSp2n(q) n ≥ 2, (n, t) 6= (2, 2)
Dn(t) PΩ+

2n(q) n ≥ 4
2Dn(t

2) PΩ−
2n(q) n ≥ 4

3D4(t
3)

E6(t)
2E6(t

2)
E7(t)
E8(t)
F4(t) t ≥ 3

2F4(t
2) q = t2 = 22k+1, k ≥ 1

G2(t) t ≥ 3
2G2(t

2) q = t2 = 32k+1, k ≥ 1
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3.1.1 The classical groups

Let p be a prime number, let f be a positive integer and let q be the number pf .

Moreover let n be an integer greater than or equal to 2. Denote by V a vector space V

of dimension n over F = Fqu where u ∈ {1, 2}. As in [KL90, §2.1], let κ be a form κ

defined over the vector space V over Fqu and let f be the bilinear form associated to f

κ. We consider four cases :

L,S,O,U
• Case L: κ = f is identically 0.

• Case S: κ = f is a non-degenerate symplectic form.

• Case O: κ = Q is a non-degenerate quadratic form; moreover f(v, w) = Q(v + Q

w) −Q(v) −Q(w).

• Case U: κ = f is a non-degenerate unitary form.

The number u is defined as follows

u =

{

2 if case U holds,

1 otherwise.

Moreover, when case O, we distinguish three cases (see [KL90, p.27-28]):

O
o,O+,O−

• Case O
o, if n is odd (in this case q is odd);

• Case O
+, if (V,Q) is of Witt defect 0;

• Case O
−, if (V,Q) is of Witt defect 1.

Denote by Γ(V, κ) the group of the κ-semisimilarity . Moreover, let Γ(V, κ)

I(V, κ)

I(V, κ) = {φ ∈ GL(V,F) : κ(φ(v)) = κ(v), for all v ∈ V l},

where l = 1 if κ is quadratic, l = 2 otherwise. With a little abuse of notation, we

denote by F∗ the group of scalar linear transformations. If K is a subgroup of Γ(V, κ),

denote by K the reduction modulo F∗ ∩K. For example, Γ(V, κ) is the factor group K
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Γ(V, κ)/F∗. Let S(V, κ) = I(V, κ)∩ SL(V,F) and let Ω(V, κ) be the derived subgroup S(V, κ)

Ω(V, κ)of S(V, κ). In particular, note that Ω(V, κ) = S(V, κ) unless case O holds (see [KL90,

p.14]). It turns out that:

Ω(V, κ) ∼=















































PSLn(q) if case L holds,

PSUn(q) if case U holds,

PSpn(q) if case S holds,

PΩn(q) if case O
o holds,

PΩ+
n (q) if case O

+ holds,

PΩ−
n (q) if case O

− holds.

Finally, defineA(V, κ)

A(V, κ) =

{

Γ(V, κ)〈ι〉 in case L with n ≥ 3,

Γ(V, κ) otherwise.

where ι is an inverse transpose automorphism (see [KL90, (2.2.4)]) of the group

S(V, κ) ∼= SL(V ) when case L holds.

We recall the following.

Theorem 3.1 ([KL90, Theorem 2.1.4]). Assume that n ≥ 2, 3, 4, 7 in cases L,U,S

and O respectively. If Ω(V, κ) is non-abelian simple, then Aut(Ω(V, κ)) ∼= Γ(V, κ),

except when one of the following holds:

• Case L and n ≥ 3. In this case Aut(Ω(V, κ)) has a subgroup of index 2 isomor-

phic to Γ.

• Case O
+ and n = 8.

• Case S, n = 4 and q even.

Following [KL90], we say that a group X is a classical projective group if

Ω(V, κ) ≤ X ≤ A(V, κ)

for some V and κ as above.

When V and κ are clear from the contest, we omit them. For example, we shall

write Γ instead of Γ(V, κ).
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3.1.2 Lie algebras, system of roots and Dynkin diagrams

Let p be a prime number. Let K be a field of characteristic p. We denote by G a

group of Lie type over the field K. We have that G is either an untwisted or a twisted

group of Lie type. In both cases, a simple Lie algebra L over the field K is associated

to G.

If G is an untwisted group of Lie type, then G is a Chevalley group L(K), which

is a certain group of automorphisms of L over the field K (see [Car72, Proposition

4.4.3]).

If G is a twisted group of Lie type, then G is a subgroup of a Chevalley group

L(K).

Now, let G be our group of Lie type. The following objects are associated to G.

• A Killing form (−,−) on the simple Lie algebra L over the field K. (−,−)

L

• A system of roots Φ in a Cartan subalgebra V of L and a system of fundamental Φ

Vroots Π in Φ.
Π

• A Dynkin diagram D , that is a graph with elements of Π as vertices, such that D

r ∈ Π and s ∈ Π are joined by a bond of strength 4(r,s)2

(r,r)(s,s)
(see [Car72, §3.4]).

• A symmetry ρ of the Dynkin diagram of L (see [Car72, §13.1]). In particular ρ

the order of ρ is 1, 2 or 3 (see [Car72, §13.4]).

In Figure 3.1, we report the Dynkin diagrams of a simple Lie algebra.

Figure 3.1: Dynkin diagrams

Al
r1 r2 rl−1 rl

Bl, Cl
r1 r2 rl−1 rl

2

Dl
r1 r2 rl−3rl−2

rl−1

rl

El
r2 r3 r4 r5

r1

r6 (r7)(r8)

F4
r1 r2 r3 r4

2

G2
r1 r2

3
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Now, we give some other definitions and remarks on the root systems.

• Given a system of roots Ψ and a fundamental system Σ in Ψ, let Ψ+,Ψ− be theΨ+,Ψ−

sets of positive and negative roots with respect to the fundamental system Σ.

We recall that a root in r ∈ Ψ is a linear combination of roots of Σ with integer

coefficients which are all non-negative if r ∈ Ψ+ and all non-positive if r ∈ Ψ−

(see [Car72, §2.1]).

• The vector space V is spanned by Π in L. Let r ∈ V; a linear map wr : V → V,

defined bywr

wr(x) = x− 2(r, x)

(r, r)
r,

is called a reflection. The Weyl groupW of Φ is the subgroup of transformationsW

of V generated by the reflections {wr : r ∈ Φ}. Note that W is generated also

by the so-called fundamental reflections {wr : r ∈ Π} (see [Car72, Proposition

2.1.8]). Let l(w) be the length of w ∈ W , defined as the minimal n such thatl(w)

w = wr1 ...wrn for ri ∈ Π, i ∈ {1, ..., n}. Thus l(1) = 0. Moreover, l(w) =

|Φ+ ∩ w−1(Φ−)| (see [Car72, Theorem 2.2.2]).

• For a subset K of Π, let VK be the subspace of V spanned by K. Let ΦK =VK

Φ ∩ VK and let WK be the subgroup of W generated by the reflections {wr :ΦK

r ∈ ΦK}. Note that ΦK is a system of roots in VK , K is a fundamental system

and the Weyl group of ΦK is WK ([Car72, Proposition 2.5.1]).WK

• An isometry τ of V is associated to the symmetry ρ in such a way that τ(r) isτ

a positive multiple of ρ(r) for each r ∈ Π (see [Car72, §13.1]). The isometry τ

is uniquely determined by ρ. In particular, observe that for every w ∈ W , the

element wτ = τ−1wτ belongs to W . Finally, note that ρ and τ are non-trivial

if and only if G is twisted.

• Let k be the number of the ρ-orbits of Π. Let I = {O1, ..., Ok} denote the setI

of ρ-orbits of Π. For each J ⊆ I, let J∗ = ∪K∈JK.J∗
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• Let W denote the subgroup of the Weyl group W consisting of the w ∈W suchW
that wτ = w (see [Car72, §13.1]). For a subset J of I, let WJ = WJ∗ ∩ W. WJ

In particular, if J = {Oi} for some i ∈ {1, ..., k}, then let Wi = WJ∗ = WOi
, Wi

Wi = WJ∗ = WOi
and Φi = ΦJ∗ = ΦOi

. Wi

Φi

• Let D′ be the Dynkin diagram of W, that is a graph induced by the Dynkin D
′

diagram D, identifying the nodes in the same ρ-orbit (see [Car72, 13.3.8]). D′

is a graph with as nodes the elements of I, such that K1 ∈ I and K2 ∈ I are

joined if there exists r1 ∈ K1 and r2 ∈ K2 such that r1 and r2 are joined in D.

• Let K be a subset of Π. We define DK to be the set of elements w of W such DK

that w(r) ∈ Φ+ for each r ∈ K. For a subset J of I, let DJ = DJ∗ ∩W . DJ

• For J ⊆ I, let TWJ
(t)

TWJ
(t) =

∑

w∈WJ

tl(w).

3.2 The parabolic subgroups of a simple group of Lie

type

Let G be a simple group of Lie type defined over a field of characteristic p. Denote

by B a Borel subgroup of G. A parabolic subgroup of G is a subgroup of G containing B

a Borel subgroup.

The parabolic subgroups are crucial in our study since they are the subgroups of

G that contain a Sylow p-subgroup and that are intersection of maximal subgroups.

Lemma 3.2 ([DL06, Lemma 2]). Let G be a simple group of Lie type of characteristic

p. Let B be the Borel subgroup of G. We have that

P
(p)
G (s) =

∑

B≤P≤G

µG(P )

|G : P |s−1
.

A large part of our study is focused on the analysis of the polynomial P (p)
G (s).

Indeed, we know a big amount of informations on it, as we will see below.



36

There is a deep connection between the system of roots and the parabolic sub-

groups, as shown in the following proposition.

Proposition 3.3 ([Car72, Theorem 8.3.4, Section 8.6, Section 14.1]). Let G be a

simple group of Lie type over K and let B be a Borel subgroup of G. Assume that I

is the set of ρ-orbits of Π. Let SB(G) = {H ≤ G : H ≥ B}. There is a bijectionPJ

Θ : P(I) → SB(G)

J 7→ PJ

such that:

(1) PJ ∩ PK = PJ∩K for J,K ⊆ I (so the map is a lattice isomorphism);

(2) P∅ = B and PI = G;

(3) |PJ |
|PI | = TWJ

(t), where t = |ρ|
√

|K|.

Hence, combining Lemma 3.2 and Proposition 3.3, we have the following.

Proposition 3.4 (See [DL06, Theorem 3]). Let G be a simple group of Lie type of

characteristic p. We have that

P
(p)
G (s) = (−1)|I|

∑

J⊆I
(−1)|J ||S : PJ |1−s = (−1)|I|

∑

J⊆I
(−1)|J |

(

TWI
(t)

TWJ
(t)

)1−s
.

As we have seen in the previous subsection, the expression TWJ
(t) depends on the

elements of J . However, there is another way to express TWJ
(t), as we will see below.

Let t = |ρ|
√

|K|, where G is defined over the field K. Recall that D is the Dynkin

diagram of the Lie algebra associated to G and D′ the Dynkin diagram induced by

the action of ρ. Denote by FD′(t) the polynomialFD′(t)

l
∏

i=1

1 − ǫit
mi+1

1 − ǫit
,

where mi and ǫi are given in Table 3.2 (see [Car72, Proposition 10.2.5, Theorem

14.3.1]). By [Car72, Theorem 10.2.3, Theorem 14.2.1 ], we have that TWI
(t) = FD′(t)

if I is the set or ρ-orbits of Π associated to G.
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Table 3.2: mi and ǫi.
D m1, ..., ml D′ ǫ1, ..., ǫl
Al 1, ..., l D 1, ...., 1

Bl, Cl 1, 3, 5, ..., 2l− 1 2Al 1,−1, 1, ..., (−1)l+1

Dl 1, 3, 5, ..., 2l− 3, l− 1 2B2 1,−1
E6 1, 4, 5, 7, 8, 11 2Dl 1, 1, ..., 1,−1
E7 1, 5, 6, 9, 11, 13, 17 3D4 1, 1, ω, ω2

E8 1, 7, 11, 13, 17, 19, 23, 29 2E6 1,−1, 1, 1,−1, 1
F4 1, 5, 7, 11 2F4 1, 1,−1,−1
G2 1, 5 2G2 1,−1

In Table 3.2, we set ω = e
2πi
3 . In particular, note that D = D′ if and only if S is

untwisted. In this case, the ǫi’s are all 1.

Suppose that J ⊆ I. Denote by J∗ the set
⋃

K∈J K. For K ⊆ Π, let DK be the

subdiagram of D corresponding to the set of roots K. Let D′
J be the subdiagram of

D′ corresponding to the set of nodes J . Let D′
J1
, ...,D′

Jk
be the connected components

of D′
J . Clearly we have that J =

⋃k
i=1 Ji and the union is disjoint. Since J∗ is a subset

of Π, we have that DJ∗ is a subdiagram of D.

Suppose that D
′
J is connected. Then just one of the following holds:

• DJ∗ is connected and D′
J is the Dynkin diagram D′′ of a simple group of Lie

type which is untwisted if and only if DJ∗ and D′
J are isomorphic graphs. In

this case define FD′
J
(t) = FD′′(t).

• DJ∗ is not connected, it has |ρ| components and each of its connected compo-

nents is isomorphic to the Dynkin diagram D′′ of an untwisted group. In this

case define FD′
J
(t) = FD′′(t|ρ|).

We are ready to state the following.

Proposition 3.5 (See [Car72, Theorem 10.2.3, Theorem 14.2.1 ]). Under the above
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setting, for a subset J of I we have:

TWJ
(t) =

k
∏

i=1

FD′
Ji

(t).

Example 1. Let G = 2A3(t
2). The Dynkin diagram D of G is A3 and I =

{{r1, r3}, {r2}} (we refer to Figure 3.1).

• Since D′ = 2A3, we have

FD′(t) = F2A3
(t) =

1 − t2

1 − t

1 + t3

1 + t

1 − t4

1 − t
= (1 + t)2(1 − t+ t2)(1 + t2).

• Let J1 = {{r1, r3}}. Clearly, D′
J1

is connected and the diagram D′
J∗
1

has 2

connected components isomorphic to A1. So FD′
J1

(t) = FA1(t
2) = 1 + t2.

• Now, let J2 = {{r2}}. Clearly, DJ∗
2

is the Dynkin diagram A1. So FD′
J2

(t) =

FA1(t) = 1 + t.

By Proposition 3.4, we have:

P
(p)
G (s) = 1−

(

(1 + t)2(1 − t+ t2)
)1−s−

(

(1 + t)(1 + t2)(1 − t+ t2)
)1−s

+
(

(1 + t)2(1 + t2)(1 − t+ t2)
)1−s

.

3.2.1 The parabolic subgroups of an almost simple group of

Lie type

Now we consider a more general setting. Let X be an almost simple group with socle

S isomorphic to a simple group of Lie type.

Our aim is to give an explicit formula for P (p)
X,S(s). Note that we can generalize

Lemma 3.2 in the following way.

Lemma 3.6. Let r be a prime number, let G be a finite group and let N be a normal

subgroup of G. Let R be a Sylow r-subgroup of G. Suppose that if M is maximal

subgroup of G such that MN = G and R ≤ M , then M contains also NG(R). We

have that

P
(r)
G,N(s) =

∑

R ≤ H ≤ G,

HN = G

µG(H)

|G : H|s−1
.
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Proof. The proof is the same as in [DL06, Lemma 2], considering just the sub-

groups H such that HN = G. �

Let P be a Sylow p-subgroup of X. Thus P ∩ S is a Sylow p-subgroup of S and

B = NS(P ∩ S) is a Borel subgroup in S. Given a subgroup K of X, denote by

SK(X) the set of subgroups H of X such that H ≥ K. SK(X)

Lemma 3.7 ([Car72, Theorem 8.3.3]). Let H be a subgroup of S such that H ≥ B.

Then NS(H) = H.

Lemma 3.8. Let P and B as above. We have that:

(1) NX(B) = NX(P ∩ S) and NX(B)S = X;

(2) if M is a maximal subgroup of X such that M ≥ P and MS = X, then

M ≥ NX(B).

Proof. Well known, see [KL90]. �

The last lemma implies that SNX(B)(X) = {H ≤ X : H ≥ NX(B), HS = X}.
We say that the elements of the set SNX (B)(X) are the parabolic subgroup of X over

NX(B). A parabolic subgroup of X is an element of SNX (B)(X) for some Borel sub-

group B of S.

Since P ∩ S � P , we have that Lemma 3.8(1) implies that NX(P ) ≤ NX(B).

Hence, by Lemma 3.8(2) and Lemma 3.6 we get that

P
(p)
X,S(s) =

∑

P ≤ H ≤ X,

HS = X

µX(H)

|X : H|s−1
=

∑

H∈SNX (B)(X)

µX(H)

|X : H|s−1
,

observing that if P ≤ H < NX(B), then H is not an intersection of maximal sub-

groups (by Lemma 3.8(2)), hence µX(H) = 0 by Proposition 2.1(1).

Now we want to give a better description of the elements of the set SNX (B)(X).

Let SXB (S) denote the subset of SB(S) = {H ≤ S : H ≥ B} given by SXB (S)

{H ∈ SB(S) : NX(H) ≥ NX(B)}.

We have the following.
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Proposition 3.9. The map η : SNX(B)(X) → SXB (S) given by η(H) = H ∩ S is

well-defined. Moreover η is an isomorphism of posets, in particular NX(η(H)) = H

for each H ∈ SNX(B)(X).

Proof. We show that η is well defined. Let H ∈ SNX(B)(X). Clearly H ∩ S ≥
NX(B)∩S = NS(B) = B. Since H∩S�H , we have that NX(H∩S) ≥ H ≥ NX(B).

Hence H ∩ S ∈ SXB (S).

We claim that η is surjective. Let K ∈ SXB (S). By definition NX(K) ≥ NX(B),

so NX(K) ∈ SNX(B)(X). Finally η(NX(K)) = NX(K) ∩ S = NS(K) = K by Lemma

3.7.

We claim that η is injective. It is enough to prove that NX(η(H)) = H for each

H ∈ SNX (B)(X). As above, we have that NX(H ∩ S) ≥ H . Since HS = X, using

Lemma 3.7, we get

|X : NX(H ∩ S)| = |S : NX(H ∩ S) ∩ S| = |S : NS(H ∩ S)| = |S : H ∩ S| = |X : H|,

thus NX(H ∩ S) = H .

Clearly the map η is an isomorphism of posets. �

Recall from Proposition 3.3, that the map:

Θ : P(I) → SB(S)

J 7→ PJ

is an isomorphism of lattices. Since that NX(B) acts by conjugation on SB(S), in

view the isomorphism Θ, the group NX(B) acts on P(I). In particular, the action

is the following: if J ⊆ I and g ∈ NX(B), then Jg is the unique subset of I such

that PJg = P g
J . Moreover, the group NX(B) acts on I: if O ∈ I is a ρ-orbit, then

{Og} = {O}g. Note that if S is twisted, then the action of NX(B) is trivial. Assume

that S is untwisted. The action of NX(B) on I can be thought as an action of NX(B)

on Π. So, any element g of NX(B) induces a symmetry ψg of the Dynkin diagram D
of S. Since X = SNX(B), if h ∈ X, then h = sg for some s ∈ S and g ∈ NX(B).

If ψg is not trivial, then we say that h is a non-trivial graph automorphism of order
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|ψg| in X (the definition does not depend on the choice of g, since the action does not

depend on the choice of g).

Observe that SXB (S) is the set of fixed points of SB(S) under the action of NX(B).

If X does not contain non-trivial graph automorphisms, then ψg is the trivial

symmetry for each g ∈ NX(B). In this case, we have SXB (S) = SB(S).

If X contains a non-trivial graph automorphism, then S is untwisted and ρ is

trivial.

Let PX(I) be the subposet of P(I) consisting of the subsets of I which are union of PX(I)

NX(B)-orbits of elements of I. Clearly PX(I) is the set of fixed point of P(I) under

the action of NX(B). The map Θ restricts to an isomorphism of posets between

PX(I) and SXB (S). Moreover, if J ∈ PX(I), then let J̃ be the set of NX(B)-orbits of J̃

J and denote by o(J) the size of J̃ . o(J)

Now we can prove the following generalization of Proposition 3.4 (see also [DL06,

Theorem 3]).

Theorem 3.10. Let X and S be as above. Then

P
(p)
X,S(s) = (−1)o(I)

∑

J∈PX(I)

(−1)o(J)|S : PJ |1−s = (−1)o(I)
∑

J∈PX(I)

(−1)o(J)

(

TWI
(t)

TWJ
(t)

)1−s
.

In particular, if X does not contain non-trivial graph automorphisms, then P
(p)
X,S(s) =

P
(p)
S (s).

Proof. By the above consideration, we obtain an isomorphism of posets η̃ :

PX(I) → SNX(B)(X), given by η̃(J) = NX(PJ) for J ∈ PX(I). In particular,

we get µPX(I)(J) = µX(NX(PJ)). Note that µPX(I)(J) = (−1)o(I)−o(J). Indeed

there is an isomorphism between the poset PX(I) and the poset P(Ĩ) of subsets

of Ĩ, given by J 7→ J̃ . Thus µPX(I)(J) = µP(Ĩ)(J̃), and by [Sta97, 3.8.3], we get

µP(Ĩ)(J̃) = (−1)o(I)−o(J).

Since NX(PJ) ∩ S = PJ , we have that |X : NX(PJ)| = |S : PJ |. By Lemma 3.6
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and Lemma 3.8, we obtain:

P
(p)
X,S(s) =

∑

H∈SNX (B)(X)

µX(H)

|X : H|s−1
=

∑

J∈PX(I)

µX(NX(PJ))

|X : NX(PJ)|s−1
=

=
∑

J∈PX(I)

(−1)o(I)−o(J)|S : PJ |1−s = (−1)o(I)
∑

J∈PX(I)

(−1)o(J)|S : PJ |1−s.

Apply Proposition 3.3 and the proof is complete. �

Now, we give an example of explicit computation of P (p)
X,S(s) (when we speak about

Dynkin diagram, we refer to Figure 3.1).

Example 2. Let X be an almost simple group with socle S ∼= A3(t) and suppose

thatX contains a non-trivial graph automorphism. Here, the Dynkin diagram D = D′

is A3, hence I = {{r1}, {r2}, {r3}}. Since X contains a non-trivial automorphism,

the set of NX(B)-orbits of I is Ĩ = {{{r1}, {r3}}, {{r2}}}.

• We have FD′(t) = FA3(t) = 1−t2
1−t

1−t3
1−t

1−t4
1−t = (1 + t)2(1 + t+ t2)(1 + t2).

• Let J1 = {{r1}, {r3}}. The diagram DJ∗
1

= D{r1,r3} has 2 connected components

isomorphic to A1. So FDJ1
(t) = FA1(t)

2 = (1 + t)2.

• Now, let J2 = {{r2}}. Clearly, DJ∗
2

is the Dynkin diagram A1. So FDJ2
(t) =

FA1(t) = 1 + t.

By Theorem 3.10, we have:

P
(p)
X,S(s) = 1−

(

(1 + t2)(1 + t+ t2)
)1−s−

(

(1 + t)(1 + t2)(1 + t+ t2)
)1−s

+
(

(1 + t)2(1 + t2)(1 + t+ t2)
)1−s

.

3.3 Maximal subgroups of a simple group of Lie type

3.3.1 Classical groups

Let X be an almost simple group with socle G a classical simple group. We assume

that if G ∼= PΩ8(q), then X does not contain graph automorphisms of order 3 and if

G ∼= PSp4(q) is symplectic, then X does not contain graph automorphisms.
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In this section we deal with the maximal subgroups M of X such that MG = X

and M does not contain a Sylow p-subgroup of X. By [KL90], the group M ∩G is a

member of one of the classes of geometric subgroups C1, ..., C8 or of the class S (see C1, ..., C8

S[KL90] for the notation). In [KL90], Kleidman and Liebeck showed the structure of

the geometric maximal subgroup. We use the notation of [KL90]. In particular, we

use its description of the collections Ci of the maximal subgroups of a classical group

G. So, when we say that a subgroup M has a certain type in a certain class, we are

referring to [KL90, Table 3.5.A-F].

Now we state a crucial theorem, due to Aschbacher, on the maximal subgroups of

the classical groups.

Theorem 3.11 (see [Asc84], [KL90]). Let G be a classical simple group. A maximal

subgroups of G either lies in C1 − C8 or in the class S. A subgroup H of G lies in S
if and only if the following hold.

a. The socle S of H is a non-abelian simple group.

b. If L is the full covering group of S, and if ρ : L → GL(V ) is a representation

of L such that ρ(L) = S (where − denotes the reduction modulo scalars), then

ρ is absolutely irreducible.

c. ρ(L) cannot be realized over a proper subfield of F.

d. If ρ(L) fixes a non-degenerate quadratic form on V , then G ∈ {PΩn(q), PΩ+
n (q),

PΩ−
n (q)}.

e. If ρ(L) fixes a non-degenerate symplectic form on V , but no non-degenerate

quadratic form, then G = PSpn(q).

f. If ρ(L) fixes a non-degenerate unitary form on V , then G = PSUn(q).

g. If ρ(L) does not satisfy the conditions in (d), (e) of (f), then G = PSLn(q).
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We say that a maximal subgroups of a classical group G is a geometric maximal

subgroup if it lies in one of the class C1 − C8.

An interesting result on the elements of the class S is the following.

Theorem 3.12 ([LPS90, p.32]). Let H be a member of S and let S be the socle of

H. Then one of the following holds:

• |H| < q2n+4 if G is not unitary, |H| < q4n+8 if G is unitary;

• S ∼= Altc for c ∈ {n+ 1, n+ 2}.

• S and G are in Table 3.3.

Table 3.3: Class S, some groups
S G

PSLd(q) PSL d(d−1)
2

(q)

PΩ+
10(q) PSL16(q)

E6(q) PSL27(q)
M24 PSL11(2)
E7(q) PSp56(q), q odd

PΩ7(q) PΩ+
8 (q)

PΩ9(q) PΩ+
16(q)

E7(q) PΩ+
56(q), q even

Co1 PΩ+
24(2)

As reported in Table 3.4, for some groups of small Lie rank, the class S is com-

pletely determined or we can make a restriction on the possible members of this

class.

Moreover, by [KL82, Theorem 5.7], we have that if H is a maximal subgroup in

the class S of PSU4(q), then soc(H) is Alt7,PSL2(7),PSp4(3) or PSL3(4).

Recall the notation for q̂e and q̂∗e . Let d be the dimension of the vector space

associated to a classical group G (not unitary) defined over a field Fq (for example,
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Table 3.4: Subgroups that (possibly) lie in the Class S for some groups of low Lie
rank

G H Conditions Reference
PSL2(q) Alt5 if p ≡ ±1 (mod 5), then q = p, [Hup67]

otherwise q = p2 6∈ {4, 25}
PSL3(q) PSL2(7) p 6∈ {2, 7}; if p3 ≡ 1 (mod 7), then q = p, [Mit11], [Har26]

otherwise q = p2 ≥ 25
Alt6 if p ≡ 1, 4 (mod 15), then q = p,

otherwise q = p2 6= 9
Alt6.2 q = 25
Alt7 q = 25

PSL4(q), q even Alt7 q = 2 [Mwe76]
PSL5(2) [CCN+85]

PSU3(q) PSL2(7) p3 ≡ −1 (mod 7) and q = p 6= 5 [Mit11], [Har26]
Alt6 q = p ≡ 11, 14 (mod 15)

Alt6.2 q = 5
Alt7 q = 5

PSp4(q), q odd PSL2(q) p ≥ 5 and q ≥ 7 [Mit14]
Alt6 q = p ≡ ±5 (mod 12), q 6= 7

Alt6.2 q = p ≡ ±1 (mod 12)
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if G = PSp2n(q), then d = 2n). Let e be as in Table 3.6-3.7. By [GPPS99, Example

2.6-2.9] we have that if H is a subgroup in the class S of G and (q̂∗e , |G : H|) = 1,

then S = soc(H) appears in the last column of the Table 3.6-3.7. For example, let

G = PΩ7(3) and e = 4. In this case d = 7. The socle of a maximal subgroup H in

the class S of G, such that 3̂∗4 = 5 does not divide |G : H|, is Alt8,Alt9 or PSp6(2).

Now, let us consider the group G = PSUn(q), defined over the field Fq2. Let d = n

and let e be as in Table 3.8. By [GPPS99, Example 2.6-2.9] we have that if H is a

subgroup in the class S of G and (q̂∗e , |G : H|) = 1, then S = soc(H) appears in the

last column of the Table 3.8.

In Table 3.9-3.14 we report the maximal geometric subgroups H of G such that

(q̂∗e , |G : H|) = 1, using the notation of [KL90] for the type and the class.

Recall the definition of the class S. In particular, if M lies in S, then there exists

an absolutely irreducible representation ρ : L → GL(V ) such that ρ(L) = S, where

L is the full covering of S.

As in [KL90, §5.3], for a finite group S and a prime number r, let Rr(S) =

min{m : L has a nontrivial projective representation of degree m in characteristic

r}. Moreover, let Rp′(S) = min{Rr(S) : r is a prime number, r 6= p} and R(S) =

min{Rr(S) : r is a prime number}. In particular, we are concerned with the simple

groups S such that R(S) ≤ 12. We report these groups in Table 3.15, 3.16 and 3.17,

using [KL90, Proposition 5.3.7, Proposition 5.3.8, Theorem 5.3.9 and Proposition

5.4.13].

Assume that S is a group of Lie type of characteristic p over Fr. Let Fp denote

the algebraic closure of Fp. Since ρ is absolutely irreducible, we can think to V as an

irreducible projective FpS-module. Moreover, by definition of the class S, we have

that V cannot be realized over a proper subfield of F. Under these assumptions, by

[KL90, Proposition 5.4.6 and Remark 5.4.7], there exist an integer k and an irreducible

projective FpS-module of dimension t such that one of the following holds:

• r = quk and dim(V ) = n = tk;

• S is of type 2Al,
2D2,

2E6, r = quk/2, k is odd and n = tk;
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• S is of type 3D4, r = quk/3, 3 ∤ k and n = tk;

• S is of type 2B2,
2G2,

2F4, r = quk and n ≥ tk.

In Table 3.18 we report the possibilities for S when t ≤ 12.

3.3.2 Exceptional groups

Let X be an almost simple group with a socle S isomorphic to an exceptional group

of Lie type.

The maximal subgroups of X are not completely known. However, they are com-

pletely determined for some groups, as reported in Table 3.5.

Table 3.5: Reference for the maximal subgroups of some exceptional groups
S Reference

2B2(t
2) [Suz62], [Pat09c]

3D4(t
3) [Kle88b]

2F4(t
2) [Mal91]

G2(t) [Kle88a], [Coo81]
2G2(t

2) [Kle88a]

For the other groups, namely F4(t), E6(t), E7(t), E8(t) and 2E6(t), the best result

is the following.

Theorem 3.13 (See [ILS03, Theorem 9]). Let M be a maximal subgroup of a finite

exceptional group S over Ft, where t is a power of p. Let

k(S) =







































12 logp(t)t
56 if S ∼= E8(q),

4 logp(t)t
30 if S ∼= E7(q),

4 logp(t)t
28 if S ∼= E6(q),

4 logp(t)t
28 if S ∼= 2E6(q),

4 logp(t)t
20 if S ∼= F4(q).

If |M | ≥ k(S), then M is known.
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Table 3.6: Maximal subgroups H in the class S of a classical group (not unitary) of
dimension d over Fq such that (q̂∗e , |G : H|) = 1, (e, q) 6= (6, 2).

e d q S = soc(H)

d− 4, d ≥ 9 10 3,5 Alt11,Alt12

14 2 Alt15,Alt16

16 2 Alt17,Alt18

22 2 Alt23,Alt24

d− 3, d ≥ 7 7 2,3 Alt8,Alt9

7 3 PSp6(2)
9 3,5 PSL2(8),Alt10,Alt11

9 PSL3(q
2)

13 2 Alt14,Alt15

15 2 Alt16,Alt17

21 2 Alt22,Alt23

d− 2, d ≥ 5 6 2, 3 Alt5,Alt7,Alt8,PSL2(11)
6 3 PSL3(4),M12

8 3, 5 Alt8,Alt9,Alt10,PSL2(7),PΩ+
8 (2), Sp6(2),PSL2(8)

8 5 Alt7,
2B2(8),PSL3(4)

8 PSL2(q
3),PSU3(q)

8 PΩ7(q)(q odd), Sp6(q)(p = 2)
12 2 Alt13,Alt14,PSL2(11),PSL2(23)
14 2 G2(3),PSp6(3),PSL2(13),

PSL2(27),Alt15,Alt16

20 2 Alt21,Alt22, J1,PSL2(19)
d− 1, d ≥ 4 4 2, 4 Alt7,Alt8,PSL2(7)

5 2 PSp4(3),PSL2(9)
5 2, 3 Alt6,Alt7,PSL2(11)
5 3 M11

7 3, 5 Alt8,Alt9,PSp6(2),PSL2(7),PSL2(8)
7 3, 4, 5, 17 PSL2(13)
7 5 PSU3(3)
7 p = 3 PSU3(q),

2G2(q)
7 p odd G2(q)
9 2 PSL2(17)
11 2 Alt12,Alt13,M23,M24,PSL2(23),PSL2(11)
13 2 Alt14,Alt15,PSL3(3),PSp4(5),

PSp6(3),PSL2(25),PSL2(27),PSL2(13)
19 2 Alt20,Alt21,PSL2(19)
19 2, 3 PSL2(37)
21 2 PSL2(41)
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Table 3.7: Maximal subgroups H in the class S of a classical group (not unitary) of
dimension d over Fq such that (q̂∗e , |G : H|) = 1, (e, q) 6= (6, 2).

e d q S = soc(H)

d, d ≥ 3 3 2, 4 PSL2(7)
4 2 Alt7,Alt8,PSL2(9),PSp4(3)
4 2B2(q), p = 2
4 2, 3 Alt5,Alt6

6 3 PSL3(4)
6 3, 4, 5, 17 PSL2(13)
6 3, 5 Alt7,Alt8,PSL2(7)
6 5 J2,PSU3(3)
6 G2(q), p = 2
8 2 PSL2(17)
10 2 Alt11,Alt12,M11,M12,M22,PSL2(11)
12 2 Alt13,Alt14,PSL3(3),PSL2(13),PSL2(25),PSp4(5)
18 2 Alt19,Alt20,PSL2(19)
18 2, 3 PSL2(37)
20 2 PSL2(41)

Table 3.8: Subgroups H in the class S of PSUd(q) such that (q̂∗e , |G : H|) = 1,
(e, q) 6= (6, 2).

e d q S = soc(H)

2d− 8, d ≥ 9 odd 9 2 Alt11

2d− 6, d ≥ 8 even
2d− 4, d ≥ 5 odd 5 3,5 Alt7

2d− 2, d ≥ 4 even 4 3,5 Alt7,PSL2(7)
4 3 PSL3(4)
6 2 PSL2(11),M22

10 2 PSL2(19)
2d, d ≥ 3 odd 3 3, 5 PSL2(7)

3 5 Alt7

5 2 PSL2(11)
9 2 J3,PSL2(19)
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Table 3.9: Geometric maximal subgroups H of PSLn(q) such that (q̂∗e , |G : H|) = 1.
q̂e H Conditions

q̂n GLn/r(q
r) in C3 r|n, r prime

(q, n) 6= (2, 6), Spn(q) in C8 n even
n ≥ 3 O−

n (q) in C8 n even, q odd
Un(q

1/2) in C8 n odd, q = q2
0

q̂n−1 P1 in C1

(q, n) 6= (2, 7), GL1(q) ≀ Sn in C2 q̂∗n−1 = n
n ≥ 4 GL1(q

n) in C3 q̂∗n−1 = n
On(q) in C8 nq odd
Un(q

1/2) in C8 n even, q = q2
0

q̂n−2 P1, P2 in C1

(q, n) 6= (2, 8), GL1(q) ≀ Sn in C2 q̂∗n−2 = n− 1
n ≥ 5 Spn(q) in C8 n even

O±
n (q) in C8 q odd, n even

Un(q
1/2) in C8 n odd, q = q2

0

q̂n−3 P1, P2, P3 in C1

(q, n) 6= (2, 9), GL1(q) ≀ Sn in C2 q̂∗n−3 = n− 2
n ≥ 7 On(q) in C8 qn odd

Un(q
1/2) in C8 n even, q = q2

0
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Table 3.10: Geometric maximal subgroups H of PSUn(q) such that (q̂∗e , |G : H|) = 1.
q̂e H Conditions

q̂2n GUn/r(q
r) in C3 r|n, r ≥ 3 prime

(q, n) 6= (2, 3)
n ≥ 3, n odd

q̂2n−2 GU1(q) ⊥ GUn−1(q) in C1

(q, n) 6= (2, 4),
n ≥ 4, n even

q̂2n−4 P1 in C1

(q, n) 6= (2, 5), GU1(q) ⊥ GUn−1(q) in C1

n ≥ 5, n odd GU2(q) ⊥ GUn−2(q) in C1

q̂2n−6 P1 in C1

n ≥ 8, n even GU1(q) ⊥ GUn−1(q) in C1

GU2(q) ⊥ GUn−2(q) in C1

GU3(q) ⊥ GUn−3(q) in C1

GUn/3(q
3) in C3 3|n

q̂2n−8 P1, P2 in C1

n ≥ 9, n odd GU1(q) ⊥ GUn−1(q) in C1

GU2(q) ⊥ GUn−2(q) in C1

GU3(q) ⊥ GUn−3(q) in C1

GU4(q) ⊥ GUn−4(q) in C1

Table 3.11: Geometric maximal subgroups H of PSp2n(q) such that (q̂∗e , |G : H|) = 1.
q̂e H Conditions

q̂2n GUn(q) in C3 nq odd
(q, n) 6= (2, 3), Sp2n/r(q

r) in C3 r|2n, r prime, 2n/r even
n ≥ 2 21+4.O−

4 (2) in C6 (q, n) = (3, 2)
O−

2n(q) in C8 q even
q̂2n−2 P1 in C1

(q, n) 6= (2, 4), Sp2(q) ⊥ Sp2n−2(q) in C1 q̂∗2n−2 = n
n ≥ 3 GUn(q) in C3 n even, q odd

O±
2n(q) in C8 q even
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Table 3.12: Geometric maximal subgroups H of PΩ2n+1(q), q odd, such that (q̂∗e , |G :
H|) = 1.

q̂e H Conditions

q̂2n O1(q) ⊥ O−
2n(q) in C1

n ≥ 3 O1(q) ≀ S2n+1 in C2 q̂∗2n = 2n+ 1
q̂2n−2 P1 in C1

n ≥ 3 O1(q) ⊥ O±
2n(q) in C1

O3(q) ⊥ O−
2n−2(q) in C1

O2n−1(q) ⊥ O±
2 (q) in C1

O1(q) ≀ S2n+1 in C2 q̂∗2n−2 = 2n− 1, q odd
O 2n+1

3
(q3) in C3 3|2n+ 1

Table 3.13: Geometric maximal subgroups H of PΩ−
2n(q) such that (q̂∗e , |G : H|) = 1.

q̂e H Conditions

q̂2n GUn(q) in C3 n odd
n ≥ 4 O−

2n/r(q
r) in C3 2n/r ≥ 4 even, r|2n, r prime

q̂2n−2 P1 in C1

n ≥ 4 O1(q) ⊥ O2n−1(q) in C1 q odd
(q, n) 6= (2, 4) O+

2 (q) ⊥ O−
2n−2(q) in C1 q ≥ 4

Sp2n−2(q) in C1 q even
O1(q) ≀ S2n in C2 q̂∗2n−2 = 2n− 1, q odd
On(q

2) in C3 qn odd
q̂2n−4 P1, P2 in C1

n ≥ 5 O1(q) ⊥ O2n−1(q) in C1 q odd
(q, n) 6= (2, 5) O3(q) ⊥ O2n−3(q) in C1 q odd

O+
2 (q) ⊥ O−

2n−2(q) in C1 q ≥ 4
O−

2 (q) ⊥ O+
2n−2(q) in C1

O+
4 (q) ⊥ O−

2n−4(q) in C1

Sp2n−2(q) in C1 q even
O1(q) ≀ S2n in C2 q̂∗2n−4 = 2n− 3, q odd

GUn(q) in C3 n odd
O−
n (q2) in C3 n even
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Table 3.14: Geometric maximal subgroups H of PΩ+
2n(q) such that (q̂∗e , |G : H|) = 1.

q̂e H Conditions

q̂2n−2 O1(q) ⊥ O2n−1(q) in C1 q odd
n ≥ 4 O−

2 (q) ⊥ O−
2n−2(q) in C1

(q, n) 6= (2, 4) Sp2n−2(q) in C1 q even
O1(q) ≀ S2n in C2 q̂∗2n−2 = 2n− 1, q odd

GUn(q) in C3 n even
On(q

2) in C3 qn odd
21+6O+

6 (2) in C6 q ∈ {3, 5}, n = 4
q̂2n−4 P1 in C1

n ≥ 5 O1(q) ⊥ O2n−1(q) in C1 q odd
(q, n) 6= (2, 5) O3(q) ⊥ O2n−3(q) in C1 q odd

O+
2 (q) ⊥ O+

2n−2(q) in C1 q ≥ 4
O−

2 (q) ⊥ O−
2n−2(q) in C1

O−
4 (q) ⊥ O−

2n−4(q) in C1

Sp2n−2(q) in C1 q even
O1(q) ≀ S2n in C2 q̂∗2n−4 = 2n− 3, q odd
O+
n (q2) in C3 n even

Table 3.15: Alternating and Sporadic simple groups with R(S) ≤ 12
S R(S) S R(S)

Alt5 2 Alt6 2
Alt7 3 Alt8 4
Alt9 7 Alt10 8
Alt11 9 Alt12 10
Alt13 11 Alt14 12
M11 ≥ 5 M12 ≥ 6
M22 ≥ 6 M23 ≥ 11
M24 ≥ 11 J1 ≥ 7
J2 ≥ 6 J3 ≥ 9
Suz ≥ 12
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Table 3.16: Simple groups of Lie type of characteristic r with Rr′(S) ≤ 12, such that
S does not appear in Table 3.15

S Rr′(S) ≥ S Rr′(S) ≥
PSL3(2) 2 PSL2(7) 3
PSL3(4) 4 PSU4(2) 4
PSp4(3) 4 PSL2(11) 5
PSL2(13) 6 PSU3(3) 6
PSU4(3) 6 PSL2(8) 7
PSp6(2) 7 PΩ+

8 (2) 8
2B2(8) 8 PSL2(17) 8

PSL3(3) 8 PSL2(19) 9
PSU5(2) 10 PSL2(23) 11
PSL2(25) 12 PSp4(5) 12
G2(4) 12

Table 3.17: Simple groups of Lie type of characteristic p with Rp(S) ≤ 12
S Rp(S) conditions

PSL2(q) 2
PSLl(q) l 3 ≤ l ≤ 12
PSUl(q) l 3 ≤ l ≤ 12
PSp4(q) 4
PSpl(q) l l ∈ {6, 8, 10, 12}
PΩl(q) l q odd, l ∈ {7, 9, 11}
PΩ+

8 (q) 8
PΩ+

l (q) l l ∈ {10, 12}
PΩ−

l (q) l l ∈ {8, 10, 12}
2B2(q) 4 p = 2, f ≥ 3, f odd
G2(q) 7 − δp,2
2G2(q) 7 p = 3, f ≥ 3, f odd
3D4(q) 8
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Table 3.18: Dimension t of the irreducible projective FpS modules with t ≤ 12, S
group of Lie type of characteristic p

S Values of t

PSL2(q) some t ≥ 2
PSL3(q) 3 and some t ≥ 6
PSL4(q) 4, 6 and some t ≥ 10
PSL5(q) 5, 10

PSLl(q), 6 ≤ l ≤ 12 l
PSU3(q) 3 and some t ≥ 6
PSU4(q) 4, 6 and some t ≥ 10
PSU5(q) 5, 10

PSUl(q), 6 ≤ l ≤ 12 l
PSp4(q) 4, 5 − δp,2 and some t ≥ 9
PSp6(q) 6, 8(q even)

PSpl(q), l ∈ {8, 10, 12} l
PΩ7(q) 7, 8

PΩl(q), l ∈ {9, 11} l
PΩ±

l (q), l ∈ {8, 10, 12} l
G2(q) 7 − δp,2, 14 − 7δp,3
2G2(q) 7
3D4(q) some t ≥ 8
2B2(q) some t ≥ 4



Part I

On the non contractibility of the

order complex of the coset poset of a

classical group.

56



Chapter 4

Introduction

In this part, our aim is to prove the following theorem.

Theorem 4.1. Let G be a finite group whose chief factors are either abelian or

classical projective groups. Then PG,soc(G)(−1) 6= 0, hence the order complex of the

coset poset of G is not contractible.

This theorem is a corollary of the more general Theorem 7.1 which requires more

technical assumptions.

In the sequel we illustrate the strategy employed to prove the result. First, we

state a more precise version of Theorem 1.3. We say that a maximal subgroup M of

a monolithic group L is non-trivial intersecting if 1 < pr(M ∩ soc(L)) < S, where non-trivial

intersectingpr : soc(L) → S is the projection to a simple component S of soc(L).

Theorem 4.2 ([Ser08, Theorem 4 and 5]). Let G be a monolithic primitive group with

a non-abelian simple component S. Let d′ = |G : NG(S)| and let X = NG(S)/CG(S).

We have that:

PG,soc(G)(s) −
∑

|S||m

am(G, soc(G))

ms
= PX,S(d

′s− d′ + 1) −
∑

|S||md′

am(X,S)

md′s−d′+1
.

Moreover, assuming that if M is a maximal subgroup of G, then M is non-trivial

intersecting, we have that

PG,soc(G)(s) = PX,S(d
′s− d′ + 1).
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Thus we get that

PG,soc(G)(−1) =
∑

|S||m
am(G, soc(G))m−

∑

|S||md′

am(X,S)m2d′−1 + PX,S(1 − 2d′).

By Lemma 2.3 we have that
∣

∣

∣

∣

∣

∣

∑

|S||m
am(G, soc(G))m−

∑

|S||md′

am(X,S)m2d′−1

∣

∣

∣

∣

∣

∣

p

≥ |S|2p.

In our analysis, we find some conditions which assure that |PX,S(1− 2d′)|p < |S|2p.
Now, we concentrate on the study of |PX,S(1 − 2d′)|p. Let d = 2d′. Note that

PX,S(1 − d) = P
(p)
X,S(1 − d) +

∑

p|k
ak(X,S)kd−1.

By Lemma 2.3, we have
∣

∣

∣

∣

∣

∣

∑

p|k
ak(X,S)kd−1

∣

∣

∣

∣

∣

∣

p

≥ qdβp(X),

whereβp(X)

qβp(X) = min{|X : H|p : H < X, |X : H|p > 1, HS = X,µX(H) 6= 0}.

So, in order to show that PG,soc(G)(−1) 6= 0, it is enough to prove that

|P (p)
X,S(1 − d)|p < min{qdβp(X), |S|2p}.

In Chapter 5, we study the value of |P (p)
X,S(1− d)|p. In Chapter 6, we give a lower

bound for βp(X), computing the exact value for some groups. Finally, in Chapter 7,

we prove the main theorem.



Chapter 5

Evaluating |P (p)
X,S(1 − d)|p

5.1 Some results on root systems

Let S be a simple group of Lie type over the field K. We use the notation introduced

in Subsection 3.1.2. Moreover, we set k = |I| for this section.

We denote by t the positive number |ρ|
√

|K|. This definition is the most convenient,

although it allows t to be irrational (see [Car72, §14.1]).

The following lemma is quite technical. We point out some important facts on

root systems.

Lemma 5.1. Using the notation introduced in Subsection 3.1.2, the followings hold.

(1) The set {w(Φ+
i ) : w ∈ W, i ∈ {1, ..., k}} is a partition of Φ.

(2) There exists a unique element ω ∈ W such that ω(Φ+) = Φ−. This element is

an involution and l(ω) = |Φ+|. In particular, ω ∈ W.

(3) Let K ⊆ Π and let w ∈WK . The length l(w) is the same whether w is regarded

as an element of the Weyl group W or of the Weyl group WK.

(4) Let i ∈ {1, ..., k}. There exists a unique element ωi ∈Wi such that ωi(Φ
+
i ) = Φ−

i . ωi

Moreover, ωi generates Wi in W and {ωi : i ∈ {1, ..., k}} generates W in W .
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(5) Let i ∈ {1, ..., k} and let w ∈ W such that w(r) ∈ Φ− for some r ∈ Oi. We have

that l(wωi) = l(w) − l(ωi).

(6) Let w ∈ W and let r, s ∈ Oi for some i ∈ {1, ..., k}. The roots w(r) and w(s)

have the same sign, i.e. either w(r), w(s) ∈ Φ+ or w(r), w(s) ∈ Φ−.

(7) Let w ∈ W and let J be a subset of I. We have that w = dJwJ for uniquely

determined dJ ∈ DJ and wJ ∈ WJ . Moreover, l(w) = l(dJ) + l(wJ).

(8) Let i, j ∈ {1, ..., k}. Let w be an element of W such that w(Oi) ⊆ Φ−
j . We have

that ωwi = wωiw
−1 = ωj.

Proof.

(1) See [Car72, Lemma 13.2.1].

(2) See [Car72, Proposition 2.2.6]. It remains to show that ω ∈ W. Since τ preserves

the sign of each root, we have that τωτ−1(Φ+) = Φ−. Hence τωτ−1 = ω, as

required.

(3) This is [Car72, Lemma 9.4.1].

(4) This is [Car72, Proposition 13.1.2].

(5) This is inside the proof of [Car72, Proposition 13.1.2].

(6) This is clear since τ preserves the sign of each root.

(7) By [Car72, Theorem 2.5.8], we know that w = dJ∗wJ∗ for uniquely determined

dJ∗ ∈ DJ∗ and wJ∗ ∈ WJ∗ , and that l(w) = l(dJ∗) + l(wJ∗). So, it remains

to prove that w can be expressed in the form w = dJwJ for dJ ∈ DJ and

wJ ∈ WJ . Suppose l(w) = 0, we have that w = 1 and w = 1.1 is the required

factorization. Now, assume l(w) > 0 and proceed by induction on l(w). If

w ∈ DJ , then w = w.1 is the required factorization. If w 6∈ DJ , then there

exist i ∈ {1, ..., k} and r ∈ Oi such that Oi ∈ J and w(r) ∈ Φ−. So, by part



61

(5), l(wwi) = l(w) − l(wi) < l(w). Hence, by induction, wwi = dJw
′
J for some

dJ ∈ DJ and w′
J ∈ WJ . Clearly wJ = w′

Jwi is in WJ , so w = dJwJ as required.

(8) Since W is generated by the fundamental reflections, we have ωi = wr1...wrn for

some rl ∈ Oi, l ∈ {1, ..., n}. So, using the definition of reflection, we have

ωwi = wwr1...w
w
rn = ww(r1)...ww(rn).

Since w(rl) ∈ Φ−
j ⊂ Φj for l ∈ {1, ..., n}, we have that ωwi is an element of

WOj
. But clearly ωwi ∈ W, hence ωwi ∈ Wj . Now, since w(Oi) ⊆ Φ−

j , then also

w(Φ+
i ) ⊆ Φ−

j . By definition, we have ωj(Φ
+
j ) = Φ−

j so, by part (1) of the lemma,

we get w(Φ+
i ) = Φ−

j . Thus ωwi (Φ+
j ) = wωiw

−1(Φ+
j ) = wωi(Φ

−
i ) = w(Φ+

i ) = Φ−
j .

Since ωwi (Φ+
j ) = Φ−

j and ωwi ∈ Wj , part (4) yields ωwi = ωj. �

We fix the notation ωi for i ∈ {1, ..., k}, as in the previous lemma.

Now, we give an useful definition. Let n ∈ N and ij ∈ {1, ..., k} for j ∈ {1, ..., n}
and let w ∈ W. An ω-factorization of w is an expression of w of the form ω-

factorization

ωi1 ...ωin ,

and the integer n is called the length of the ω-factorization.

Lemma 5.2. We have the following.

(1) Let w ∈ W. Let n ∈ N, ij ∈ {1, ..., k} for j ∈ {1, ..., n} and suppose that

w = ωi1...ωin is an ω-factorization of minimal length of w. We have that

l(w) =
n
∑

j=1

l(ωij) =
n
∑

j=1

|Φ+
ij
|.

(2) Let i ∈ {1, ..., k} and let w ∈ W such that w(r) ∈ Φ− for some r ∈ Oi. We have

that ωi appears in each ω-factorization of w of minimal length.

Proof.
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(1) The argument is similar to the proof of [Car72, Theorem 2.2.2]. It is clear that

for any u, v ∈W , l(u) ≤ l(vu) + l(u). Hence we have

l(w) ≤ l(wωin)+l(ωin) ≤ l(wωinωin−1)+l(ωin−1)+l(ωin) ≤ ... ≤
n
∑

j=1

l(ωij ) = L′. (†)

Thus l(w) ≤ L′. Now, by contradiction, assume that l(w) < L′. So, we have

that at least one of the inequalities in (†) is strict, i.e. there exists m ∈ {1, ..., n}
such that

l(ωi1...ωim) = l(wωin...ωim+1) < l(wωin...ωim) + l(ωim) = l(ωi1 ...ωim−1) + l(ωim).

This implies that ωi1...ωim(Oim) ⊆ Φ+. In fact, if ωi1 ...ωim(r) ∈ Φ− for some

r ∈ Oim , then

l(ωi1...ωim) = l(ωi1 ...ωim−1) + l(ωim),

by part (5) of the previous lemma.

Now, ωim(Oim) ⊆ Φ− and ωi1 ...ωim(Oim) ⊆ Φ+ imply that there exists a

j ∈ {1, ..., m} such that ωij ...ωim(Oim) ⊆ Φ+ and ωij+1
...ωim(Oim) ⊆ Φ−. How-

ever, ωj change the sign of all roots in Φj , but of none in Φ − Φj . Hence

ωij+1
...ωim(Oim) ⊆ Φ−

j . By part (8) of the previous lemma, we have that

ωij+1
...ωimωimωim...ωij+1

= ωij . Hence ωij ...ωim−1 = ωij+1
...ωim , so we get

w = ωi1 ...ωij ...ωim−1 ...ωin = ωi1...ωij−1
ωij+1

...ωimωim...ωin

= ωi1 ...ωij−1
ωij+1

...ωim−1ωim+1...ωin .

But this is an ω-factorization of w of length n− 2, a contradiction.

(2) Suppose that ωi does not appear in an ω-factorization of w of minimal length.

We claim that w(Oi) ⊆ Φ+. If l(w) = 0, then w = 1 and the result is clear.

Suppose that l(w) > 0 and prove the claim by induction on the length of an ω-

factorization of w. If w = ωj for some i ∈ {1, .., k} with j 6= i (by hypothesis),

then ωj(Oi) ⊂ Φ+ by definition of ωj. Now, suppose that w = ωi1 ...ωin for

some n ≥ 2, ij ∈ {1, ..., k} − {i} for all j ∈ {1, ..., n}. By induction, we have
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that ωi2 ...ωin(Oi) ⊆ Φ+. In particular, ωi2...ωin(Φ+
i ) ⊆ Φ+. By contradiction,

assume that ωi2...ωin(Φ+
i )∩Φ+

i1
6= ∅. By part (1) of the previous lemma, we have

that ωi2 ...ωin(Φ+
i ) = Φ+

i1
, hence w(Φ+

i ) = Φ−
i1
. So, by part (8) of the previous

lemma, we get ωwi = ωi1 , therefore

ωi = ωin...ωi1 ...ωin .

This means that ωi is in the group generated by ωi1 , ..., ωin, so ωi ∈ 〈WOi1
, ...,WOin

〉 =

WOi1
∪...∪Oin

and ωi ∈ WOi
(see [Car72, Theorem 2.5.6]). But WOi1

∪...∪Oin
∩

WOi
= W∅ = 1, a contradiction. So we have ωi2...ωin(Φ+

i ) ∩ Φ+
i1

= ∅, hence

w(Φ+
i ) ⊆ Φ+ since ωi1 does not change the sign of the roots in Φ − Φi1 . Hence

w(Oi) ⊆ Φ+, as we claimed. �

An useful lemma about trees.

Lemma 5.3. Let d ≥ 2 be a natural number. Let T be a finite graph and assume

that T has l connected components which are trees. Let p(T ) be the set of d-uples

(V1, ..., Vd) such that

• {V1, ..., Vd} is a partition of the set of vertices V of T (i.e.
⋃d
i=1 Vi = V and if

i 6= j, then Vi ∩ Vj = ∅; so some Vi can be empty),

• if a, b ∈ Vi for some i ∈ {1, ...d}, then a and b are not joined in T .

The size of p(T ) is dl(d− 1)|V |−l.

Proof. First assume that l = 1. We prove the claim by induction on k = |V |. If

k = 1, then the result is clear. Suppose that k > 1. Since T is a tree, there exists

a vertex v ∈ V which has a unique vertex u of T joined to it. Consider the tree T ′

obtained from T deleting the vertex v. Since T ′ has k − 1 vertices, by induction, we

have that |p(T ′)| = d(d − 1)k−2. Suppose that (V ′
1 , ..., V

′
d) ∈ d(T ′). Without loss of

generality, we may assume that u ∈ V ′
d. Clearly, the d-uples (V ′

1 ∪ {v}, V ′
2, ..., V

′
d),

(V ′
1 , V

′
2 ∪ {v}, V ′

3, ..., V
′
d), ..., (V ′

1 , V
′
2 , ..., V

′
d−1 ∪ {v}, V ′

d) are d − 1 elements of p(T ).
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Moreover, each element (V1, ..., Vd) of p(T ) such that u ∈ Vd is obtained in this way.

Thus we conclude that p(T ) = p(T ′)(d− 1) = d(d− 1)k−1.

Now, let T1, ..., Tl be the connected components of T , and assume that V1, ..., Vl

are the corresponding set of vertices. It is clear that

p(T ) =

l
∏

i=1

p(Ti) =

l
∏

i=1

d(d− 1)|Vi|−1 = dl(d− 1)|V |−l.

This completes the proof. �

5.2 On the value of P (p)
X,S(s) for s = −(d− 1)

Let X be an almost simple group with socle S isomorphic to a simple group of Lie

type. In the sequel, we consider the value of P (p)
X,S(s) for s = −(d − 1), where d is a

positive integer greater than 1. Firstly, we obtain an easier expression for P (p)
X,S(s).

To do that, we introduce some more definitions. Let u be an element of W. We

denote by Iu the subset of I consisting of the orbits K ∈ I such that u(K) ⊆ Φ+.Iu

By Lemma 5.1 (6), note that K ∈ Iu if and only if there exists r ∈ K such that

u(r) ∈ Φ+. Moreover, let Icu = I − Iu. Finally, if u1, ..., ul are elements of W, then letIcu

Iu1,...,ul

Iu1,...,ul
=

l
⋂

i=1

Iui
.

Mimicking the proof of [Car72, Proposition 9.4.5], we obtain the following

Lemma 5.4. Under the above assuptions, we have that

(−1)o(I)P
(p)
X,S(−(d− 1)) =

∑

J∈PX(I)

(−1)o(J)

(

PW(t)

PWJ
(t)

)d

=
∑

u1, ..., ud ∈ W

IX
u1,...,ud

= ∅

t
Pd

i=1 l(ui).

where IXu1,...,ud
is the largest NX(B)-invariant subset of Iu1,...,ud

.

Proof. Let J be a subset of I. By Lemma 5.1 (7), each element w of W has a

unique expression in the form w = dJwJ , where dJ ∈ DJ and wJ ∈ WJ . Moreover,
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l(w) = l(dJ) + l(wJ). It follows that

PW(t) =
∑

w∈W
tl(w) =

∑

dJ∈DJ

∑

wJ∈WJ

tl(dJwJ) =
∑

dJ∈DJ

∑

wJ∈WJ

tl(dJ )+l(wJ )

=
∑

dJ∈DJ

tl(dJ )
∑

wJ∈WJ

tl(wJ ) =
∑

dJ∈DJ

tl(dJ )PWJ
(t).

Hence, we have

∑

J∈PX(I)

(−1)o(J)

(

PW(t)

PWJ
(t)

)d

=
∑

J⊆I
(−1)o(J)

(

∑

dJ∈DJ

tl(dJ )

)d

=

=
∑

J∈PX(I)

(−1)o(J)
∑

u1,...,ud∈DJ

t
Pd

i=1 l(ui) =

=
∑

J∈PX(I)

(−1)o(J)
∑

u1, ..., ud ∈ W

ui(J
∗) ⊆ Φ+

t
Pd

i=1 l(ui) =

=
∑

u1,...,ud∈W
t

Pd
i=1 l(ui)

∑

J ⊆ Iu1,...,ud
,

J ∈ PX (I)

(−1)o(J).

The last equality holds since we have that J ⊆ Iu1,...,ud
if and only if u1(J

∗), ..., ud(J∗) ⊆
Φ+.

Let ĨXu1,...,ud
be the set of NX(B)-orbits of IXu1,...,ud

. Note that the set {J ∈ PX(I) :

J ⊆ Iu1,...,ud
} and the set P(ĨXu1,...,ud

) are isomorphic posets, an isomorphisms given

by J 7→ J̃ , where J is the set of NX(B)-orbits of J . Moreover, recall that o(J) = |J̃ |.
Finally, it is clear that

∑

J ⊆ Iu1,...,ud
,

J ∈ PX (I)

(−1)o(J) =
∑

J̃⊆ĨX
u1,...,ud

(−1)|J̃| =

{

1 if IXu1,...,ud
= ∅,

0 otherwise.

since IXu1,...,ud
= ∅ if and only if ĨXu1,...,ud

= ∅. �

By the previous lemma, we can write

(−1)o(I)P
(p)
X,S(−(d− 1)) =

∑

u1, ..., ud ∈ W

IX
u1,...,ud

= ∅

t
Pd

i=1 l(ui) =
∑

n∈N

cn(X,−(d− 1)))tn,
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where

cn(X,−(d − 1)) = |{(u1, ..., ud) ∈ Wd : IXu1,...,ud
= ∅,

d
∑

i=1

l(ui) = n}|.

Remark. The elements of the set Ĩ of NX(B)-orbits in I are of the form L =

{Oi1, ..., Oil} for some l ∈ {1, 2, 3}. In particular, we have that |ΦOij1
| = |ΦOij2

|,
|Φ+

Oij1

| = |Φ+
Oij2

| and |Φ−
Oij1

| = |Φ−
Oij2

| for j1, j2 ∈ {1, .., l}. Thus, we can definelXW

lXW =
∑

L∈Ĩ

|Φ+
OL

|,

where OL is an element of L, since the definition does not depend on the choice of

OL.

The following lemma shows that cn(X,−(d− 1)) = 0 for n < lXW .

Lemma 5.5. Let u1, ..., ud ∈ W. If IXu1,...,ud
= ∅, then

∑d
i=1 l(ui) ≥ lXW .

Proof. Note that IXu1,...,ud
= {K ∈ I : ui(K

g) ⊆ Φ+∀i ∈ {1, ..., d}, ∀g ∈ NX(B)}.
Assume that IXu1,...,ud

= ∅ and let L ∈ Ĩ, i.e. L is a NX(B)-orbit in I. Then there

exists i ∈ {1, ..., d} and OL ∈ L such that ui(OL) ⊆ Φ− and so ui(Φ
+
OL

) ⊆ Φ−. This

implies that

d
∑

i=1

|Φ+
OL

∩ u−1
i (Φ−)| ≥ |Φ+

OL
|. (†0)

Moreover we have

|Φ+ ∩ u−1
i (Φ−)| ≥

|I|
∑

j=1

|Φ+
j ∩ u−1

i (Φ−)| (†1)
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for each i ∈ {1, ..., d}. Hence we get:

d
∑

i=1

l(ui) =
d
∑

i=1

|Φ+ ∩ u−1
i (Φ−)| ≥

≥
d
∑

i=1

|I|
∑

j=1

|Φ+
j ∩ u−1

i (Φ−)| =

=

|I|
∑

j=1

d
∑

i=1

|Φ+
j ∩ u−1

i (Φ−)| =

=
∑

L∈Ĩ

∑

O∈L

d
∑

i=1

|Φ+
O ∩ u−1

i (Φ−)| ≥

≥
∑

L∈Ĩ

|Φ+
OL

| = lXW .

This completes the proof. �

Proposition 5.6. Let a be a positive integer. If lXW > a, then clXW+j(X,−(d − 1)) is

divisible by d for j ∈ {1, ..., a}.

Proof. Let U = {(u1, ..., ud) ∈ Wd : IXu1,...,ud
= ∅ and

∑d
i=1 l(ui) = lXW + j}.

Let ν be the permutation (1...d). Let 〈ν〉 be the subgroup of Symd = Sym{1, .., d}
generated by ν. Clearly 〈ν〉 acts on U : if u = (u1, ..., ud) ∈ U , then the action is given

by uν = (uν(1), ..., uν(d)). Fix u ∈ U . In order to prove the lemma, we claim that the

ν-orbit [u] = {(uνk(1), ..., uνk(d)) : k ∈ N} has d elements. Let σ be a permutation of

the set {1, ..., d} such that ui = uσ(i) for each i ∈ {1, ..., d} and σ ∈ CSymd
(ν). Clearly

Stab〈σ〉(i) = 1, since if σ(i) = i, then σ = 1 because σ ∈ CSymd
(ν). Hence the σ-orbit

of i consists of |σ| elements. Therefore, there exist d/|σ| σ-orbits, and without loss

of generality we may assume that the representatives of the orbits are 1, ..., d/|σ|. So

we have that IXu1,...,ud/|σ|
= IXu1,...,ud

= ∅. Hence, by definition of U and Lemma 5.5 we

obtain

lXW + j =
d
∑

i=1

l(ui) =

d/|σ|
∑

i=1

|σ|l(ui) = |σ|
d/|σ|
∑

i=1

l(ui) ≥ |σ|lXW .

Since lXW > a ≥ j, we have that |σ| = 1. This implies that the set [u] = {(uνk(1), ..., uνk(d)) :

k ∈ N} consists of d elements and we get the claim. �
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Proposition 5.7. We have that

clXW (X,−(d − 1)) =

o(I)
∑

i=1

τX
D′(i)di(d− 1)o(I)−i,

where τX
D′(i) is defined in Step 3.

Proof. Let u1, ..., ud ∈ W such that
∑d

i=1 l(ui) = lXW and IXu1,...,ud
= ∅. As at

the beginning of Lemma 5.5, for each L ∈ Ĩ let OL ∈ L be such that there exists

i ∈ {1, ..., d} such that ui(Φ
+
OL

) ⊆ Φ−. Denote by Î the set {OL : L ∈ Ĩ}. Note that

under our assumptions the last expression in the proof of the Lemma 5.5 holds with

= instead of ≥. This implies that the expressions †0, †1 become

d
∑

i=1

|Φ+
O ∩ u−1

i (Φ−)| =

{

|Φ+
OL

| if O = OL

0 otherwise
(†∗0)

for each L ∈ Ĩ, and

|Φ+ ∩ u−1
i (Φ−)| =

k
∑

j=1

|Φ+
j ∩ u−1

i (Φ−)| (†∗1)

for each i ∈ {1, ..., d}.
We divide the proof in some steps.

Step 1. The set {Icu1
, ..., Icud

} is a partition of Î = {OL : L ∈ Ĩ}.
Let L ∈ Ĩ. We have that there exists i ∈ {1, ...d} such that ui(OL) ⊆ Φ−. By

(†∗0) there exists at most one i ∈ {1, ..., d} such that ui(OL) ⊆ Φ−. So for each L ∈ Ĩ

there exists exactly one i ∈ {1, ..., d} such that ui(OL) ⊆ Φ−.

Moreover, let O ∈ L such that O 6= OL. By (†∗0) we have that ui(O) ⊆ Φ+, hence

O ∈ Iui
for each i ∈ {1, ..., d}. Thus we have the claim.

Step 2. Let u ∈ {u1, ..., ud}. Let i, j ∈ {1, ..., |I|}, i 6= j. If Oi, Oj ∈ Icu, then Oi and

Oj are not joined in the Dynkin diagram D
′ of W.

By (†∗1) we have that

Φ+ ∩ u−1(Φ−) = ∪|I|
j=1(Φ

+
j ∩ u−1(Φ−)).
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Assume that Oi, Oj ∈ Icu. By contradiction, suppose that Oi and Oj are joined in

D′. So, there exist r ∈ Oi and s ∈ Oj such that 4 (r,s)2

(r,r)(s,s)
6= 0. In particular, this

implies that 2(r,s)
(r,r)

= −n for some n ∈ N − {0}, such that s, r + s, ..., nr + s ∈ Φ (see

[Car72, §3.3 and 3.4]). Now, by hypothesis, we have that u(r) ∈ Φ− and u(s) ∈ Φ−,

so u(r+s) ∈ Φ−. Hence, r+s ∈ Φ+∩u−1(Φ−) = ∪|I|
i=1(Φ

+
i ∩u−1(Φ+)), thus r+s ∈ Φ+

l

for some l ∈ {1, ..., |I|}, a contradiction with i 6= j.

We need some more definition. Let J be a subset of I. Denote by D′
J the subgraph

of D′ obtained considering just the set of vertices J . Note that since D′ is a tree,

then the connected components of D′
J are trees. We say that a d-uples (J1, ..., Jd) is

a good d-partition of J if the following hold:

• {J1, ..., Jd} is a partition of J ,

• if K1 ∈ Ji1 , K2 ∈ Ji2 and there is an edge between K1 and K2, then i1 = i2.

Let par(J) denote the set of good d-partitions of J . Finally, we say that J ⊆ I is well

intersected (briefly w.i.) if |J ∩ L| = 1 for each L ∈ Ĩ

Note that by Step 1 and Step 2, we have that (Icu1
, ..., Icud

) is a good d-partition of

Î. Moreover the set Î is well intersected.

Step 3. The set

ParX(I) =
⋃

J w.i.

par(J)

has
o(I)
∑

i=1

τX
D′(i)di(d− 1)o(I)−i

elements, where τX
D′(i) is the number of well intersected subset J of I such that D′

J τX
D′(i)

has i connected components.

By Lemma 5.3, we have that |par(J)| = p(D′
J) = di(d − 1)|J |−i, where i is the

number of connected components of D′
J . If J is well intersected, then |J | = |Ĩ| = o(I).

The result follows.
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Step 4. Let u ∈ {u1, ..., ud}. Denote by Iu the set of i ∈ {1, ..., |I|} such that ωi

appears in each ω-factorization of u of minimal length. Let Īu = {j ∈ {1, ..., |I|} :

Oj ∈ Icu}. We have that Iu = Īu. Moreover, if i ∈ Iu, then the factor wi appears with

multiplicity one in an ω-factorization of u of minimal length.

Let j ∈ Īu, so Oj ∈ Icu. By Lemma 5.2 (2), we have that ωj appears in each ω-

factorization of u of minimal length. So j ∈ Iu and Īu ⊆ Iu. Recall that u(Oj) ⊆ Φ−

if and only if u(Φ+
j ) ⊆ Φ−. Hence, by (†∗1), we have

l(u) = |Φ+ ∩ u−1(Φ−)| =
∑

j∈Īu

|Φ+
j | ≤

∑

j∈Iu

|Φ+
j |.

Thus, to prove that Īu ⊇ Iu it is enough to show that

l(u) ≥
∑

i∈Iu

|Φ+
i |,

but this is clear by Lemma 5.2 (1). Moreover, we get l(u) =
∑

i∈Iu
|Φ+

i |. Hence, if

i ∈ Iu, then the factor wi appears exactly once in an ω-factorization of u of minimal

length.

Step 5. Let u ∈ {u1, ..., ud}. Let i, j ∈ Iu. We have that ωi and ωj commute.

Let r ∈ Oi and s ∈ Oj. By Step 2, since Oi, Oj ∈ Icu, we have that Oi and Oj are

not joined. So, in particular, (r, s) = 0. Thus wr and ws commutes. Since ωi ∈ WOi

and ωj ∈WOj
, we have ωiωj = ωjωi, as claimed.

Now we finish the proof of the proposition. Let U be the set of (v1, ..., vd) ∈ Wd

such that IXv1,...,vd
= ∅ and

∑d
i=1 l(vi) = lXW . Let f : U → ParX(I) be the map defined

by f(v1, ..., vd) = (Icv1 , ..., I
c
vd

). By Step 3, in order to prove the proposition, it is

enough to show that f is a bijection.

We claim that f is surjective. Let J be a well intersected subset of I and let

(J1, ..., Jd) be a good d-partition of J . Since J ⊆ I = {O1, ..., Ok}, where k = |I|, we

let i(Jl) = {i ∈ {1, ..., k} : Oi ∈ Jl} for l ∈ {1, ..., d}. Note that if i, j ∈ i(Jl), then

ωi and ωj commute, since Oi and Oj are not joined, being in the same member of a
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good d-partition. So we let vl =
∏

i∈i(Jl)
ωi and it is easy to see that f(v1, ..., vd) =

(J1, ..., Jd), hence we have the claim.

Let us prove that f is injective. Let (u1, ...ud), (v1, ..., vd) ∈ U and assume that

(Icu1
, ..., Icud

) = (Icv1 , ..., I
c
vd

). By Step 4, we have that Iui
= Ivi

for i ∈ {1, ...d}. So

we have that an ω-factorization of minimal length of ui has the same factors as an

ω-factorization of minimal length of vi, and each factor has multiplicity one in both

the factorizations. By Step 5, these factors commutes, hence ui = vi for i ∈ {1, ...d}.
This ends the proof. �

5.2.1 The value of lXW and τX
D′(i) for an almost simple group X

In this section we calculate the explicit value of lXW and τX
D′(i) for the almost simple

group X with socle S isomorphic to a simple group of Lie type. This values are given

in the Table 5.1 and 5.2. In these tables we use the convention that
(

n
k

)

= 0 if k < 0

or k > n.

If S is an untwisted group, then ρ is trivial. Hence, the unique element of a ρ-orbit

is a fundamental root. Thus, for each i ∈ {1, ..., k}, we have that Oi = {ri} where

Π = {r1, ..., rk}. So, Φ+
i = Φ+

Oi
= {ri}.

Assume that the action of NX(B) on I is trivial (i.e. X does not contain non-

trivial graph automorphisms). We have that Ĩ is isomorphic to I as posets. Hence

we get:

lXW =
∑

L∈Ĩ

|Φ+
OL

| =

|I|
∑

i=1

|Φ+
i | = |I| = |Π|.

Moreover, I is the unique well intersected subset of Ĩ, so we obtain

τX
D′(i) =

{

1 if i = 1,

0 otherwise,

since D′ = D′
I is connected. Hence we get

clXW (X,−(d− 1)) = d(d− 1)|I|−1.
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Suppose that the action of NX(B) on I is not trivial (i.e. X does contains a

non-trivial graph automorphism). Since Π is isomorphic to I as posets we have that

|Φ+
OL

| = 1, hence we get:

lXW =
∑

L∈Ĩ

|Φ+
OL

| = |Ĩ| = o(I).

In order to compute τX
D′(i) we need some more attention. Note that D = D′.

For example, assume that D = A2l for some l ≥ 1. In this case there exists a

graph automorphism of order 2. We have to count the number of well intersected

subsets J of I such that DJ has i connected components. Note that each element

L ∈ Ĩ is of the form L = {{rj}, {r2l−j+1}} where j ∈ {1, ..., l}. Moreover, the vertices

ri and rj are joined in D if and only if |i − j| = 1. An easy combinatoric argument

shows that

τX
D′(i) = 2

(

l − 1

i− 1

)

for 1 ≤ i ≤ l. The same result holds if D = A2l+1 for some l ≥ 1. Hence we get

clXW (X,−(d− 1)) =

l
∑

i=1

τX
D′(i)di(d− 1)l−i =

l
∑

i=1

2

(

l − 1

i− 1

)

di(d− 1)l−i = 2d(2d− 1)l−1.

Now, suppose S is a twisted group of Lie type. In this case the action of NX(B)

on I is always trivial. Hence I and Ĩ are isomorphic as posets, so we obtain

τX
D′(i) =

{

1 if i = 1,

0 otherwise,

as above. Thus we get

clXW (X,−(d− 1)) = d(d− 1)|I|−1.

To get the value of lXW , note that Ĩ is isomorphic to I as posets. Hence we get:

lXW =
∑

L∈Ĩ

|Φ+
OL

| =

|I|
∑

i=1

|Φ+
i |.

We need the following result.
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Lemma 5.8 (See [Car72, §3.4 and 3.6]). Let r, s ∈ Π be two fundamental roots. Let

nr = 2(r,s)
(r,r)

, ns = 2(s,r)
(s,s)

and nr,s = nrns. Suppose that nr ≤ ns. Exactly one of the

following occurs.

• nr,s = 0. We have that nr = ns = 0 and Φ+
{r,s} = {r, s}. In this case the roots

are not joined in the Dynkin diagram D.

• nr,s = 1. We have that nr = ns = −1 and Φ+
{r,s} = {r, s, r + s}.

• nr,s = 2. We have that nr = −2, ns = −1 and Φ+
{r,s} = {r, s, r + s, 2r + s}.

• nr,s = 3. We have that nr = −3, ns = −1 and Φ+
{r,s} = {r, s, r + s, 2r + s, 3r +

s, 3r + 2s}.

• nr,s = 4. We have that r = s and Φ+
{r} = {r}.

We give some examples of the calculation of the value of lXW . Let Π = {r1, ..., rl}.
In the sequel, when we say that two roots are joined, we refer to Figure 5.1-5.4.

Case 2Al.

We divide this case into two subcases, l odd and l even.

Suppose that l is odd. Thus the orbits are Oi = {ri, r2k−i} for i ∈ {1, ..., k}, so

that l = 2k − 1. Now, if i < k, then Oi consists of two roots which are not joined in

D. So Oi = Φ+
i for i < k. Moreover, Ok = {rk} = Φ+

k . Hence, we have

lXW =

k
∑

i=1

|Φ+
i | =

k
∑

i=1

|Oi| = 2k − 1 = l.

Figure 5.1: Dynkin diagram of A2k−1

O1 O2 Ok−1 Ok

r1 r2 rk−1

rk

r2k−1 r2k rk+1
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Suppose that l is even. Thus the orbits are Oi = {ri, r2k+1−i} for i ∈ {1, ..., k}, so

that l = 2k. As above, if i < k, then Oi = Φi. Now, consider Ok = {rk, rk+1}. By

[Car72, §3.6], we have that nrk,rk+1
= 1. Hence, by Lemma 5.8, Φ+

k = {rk, rk+1, rk +

rk+1}. Thus, we get

lXW =
k
∑

i=1

|Φ+
i | =

k−1
∑

i=1

|Oi| + |Φ+
k | = 2(k − 1) + 3 = l + 1.

Figure 5.2: Dynkin diagram of A2k

O1 O2 Ok−1 Ok

r1 r2 rk−1 rk

rk+1r2k r2k−1 rk+2

Case 3D4.

In this case k = 2 and O1 = {r1}, O2 = {r2, r3, r4}. Clearly, Φ+
1 = O1. Since

r2, r3, r4 are pairwise not joined in the Dynkin diagram D, we have that Φ+
2 = O2.

Thus, lXW = 4.

Figure 5.3: Dynkin diagram of D4

O1

O2

r1

r2
r3
r4

Case 2G2.

In this case k = 1 and O1 = {r1, r2}. Moreover, by [Car72, §3.6], we have

nr1,r2 = 3. Thus, by Lemma 5.8, Φ+
k = {r1, r2, r1 + r2, 2r1 + r2, 3r1 + r2, 3r2 + 2r2}.

So, we get lXW = 6.
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Figure 5.4: Dynkin diagram of G2

O1

r1 r23

Table 5.1: Dynkin diagrams, fundamental roots and value of lXW when X does not
contain non-trivial graph automorphisms

Untwisted Twisted
S D = D

′ |I| lXW S D D
′ |I| lXW

Ak(t) Ak k k 2A2k(t
2) A2k Bk k 2k + 1

Bk(t) Bk k k 2A2k−1(t
2) A2k−1 Ck k 2k − 1

Ck(t) Ck k k 2B2(t
2) B2 A1 1 4

Dk(t) Dk k k 2Dk(t
2) Dk Bk−1 k − 1 k

E6(t) E6 6 6 3D4(t
3) D4 G2 2 4

E7(t) E7 7 7 2E6(t
2) E6 F4 4 6

E8(t) E8 8 8 2F4(t
2) F4 2 6

F4(t) F4 4 4 2G2(t
2) G2 A1 1 6

G2(t) G2 2 2

Table 5.2: Dynkin diagrams, values of lXW , τ
X
D′ and clXW (X,−(d− 1)) when X contains

a non-trivial graph automorphism ρ.
S |ρ| D = D′ lXW τX

D′(i) clXW (X,−(d − 1)

A2k(t) 2 A2k k 2
(

k−1
i−1

)

2d(2d− 1)k−1

A2k+1(t) 2 A2k+1 k + 1 2
(

k−1
i−1

)

2d(2d− 1)k−1

B2(t) 2 B2 1 2
(

0
i−1

)

2d

Dk 2 Dk k − 1 2
(

0
i−1

)

2d(d− 1)k−2

D4(t) 3 D4 2 3
(

0
i−1

)

3d(d− 1)

E6(t) 2 E6 4 2
(

1
i−1

)

2d(d− 1)2(2d− 1)

F4(t) 2 F4 2 2
(

1
i−1

)

2d(2d− 1)

G2(t) 2 G2 1 2
(

0
i−1

)

2d
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5.2.2 The main result

Now, we can prove the main theorem.

Theorem 5.9. Let X be an almost simple group with socle isomorphic to a simple

group of Lie type of characteristic p over K. We have that

P
(p)
X,S(−(d− 1)) = (−1)o(I)

∑

n∈N

cn(X,−(d− 1))tn

where cn(X,−(d − 1)) = |{(u1, ..., ud) ∈ Wd : IXu1,...,ud
= ∅,

∑d
i=1 l(ui) = n}|. In

particular,

(1) if n < lXW or n > d|Φ+|, then cn(X,−(d− 1)) = 0,

(2) if X does not contain non-trivial graph automorphisms, then we have that

clXW (X,−(d− 1)) = d(d− 1)|I|−1.

If X contains a non-trivial graph automorphism, then clXW (X,−(d− 1)) is as in

Table 5.2.

(3) clXW+j(X,−(d− 1)) is divisible by d for each positive integer j < lXW .

Proof. The first assertion is Lemma 5.4.

Let (u1, ..., ud) ∈ Wd such that IXu1,...,ud
= ∅. Note that, if w ∈ W, then l(w) ≤

|Φ+|.

(1) By Lemma 5.5, if n < lXW , then cn(X,−(d−1)) = 0. Furthermore,
∑d

i=1 l(ui) ≤
d|Φ+|. Hence if n > d|Φ+|, then cn(X,−(d− 1)) = 0.

(2) This is Proposition 5.7 combined with the result of Subsection 5.2.1.

(3) This is Proposition 5.6.

This ends the proof. �
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Proposition 5.10. Let X be an almost simple group with socle S isomorphic to a

simple group of Lie type of characteristic p over K. If NG(X) acts transitively on I

(i.e. o(I) = 1), then |P (p)
X,S(−(d − 1))(t)|p = |d|p|ρ|ptlXW , where ρ is a graph automor-

phism of largest order in X (see p.41 for the definition of graph automorphism).

Proof. By Theorem 3.10 and Proposition 3.5, we have that

P
(p)
X,S(−(d− 1))(t) = 1 − (1 + f(t))d

for some function f(t) such that |f(t)|p = |ρ|ptlXW . A direct computation shows that

if p = 2, then |f(t)|2 ≥ 4. By Lemma 2.9, we have:

|P (p)
X,S(−(d− 1))(t)|p = |d|p|f(t)|p = |d|p|ρ|ptl

X
W

for each prime p. �

Proposition 5.11. Let X be an almost simple group with socle S isomorphic to a

simple group of Lie type of characteristic p over K. Let d > 1 be a positive integer

and suppose that t|d|p > |clXW (X,−(d− 1))|p and tl
X
W−1 ≥ |d|p. We have that

|P (p)
X,S(−(d− 1))|p = tl

X
W |clXW (X,−(d− 1))|p.

Proof. If lXW > 1, then applying Theorem 5.9 we get:

|P (p)
X,S(−(d− 1))|p =

∣

∣

∣

∣

∣

∑

n∈N

cn(X,−(d− 1))tn

∣

∣

∣

∣

∣

p

=

∣

∣

∣

∣

∣

∣

d|Φ+|
∑

n=lXW

cn(X,−(d− 1))tn

∣

∣

∣

∣

∣

∣

p

=

= tl
X
W

∣

∣

∣

∣

∣

∣

clXW (X,−(d− 1)) +

2lXW−1
∑

n=lXW+1

cn(X,−(d− 1))tn−l
X
W +

d|Φ+|
∑

n=2lXW

cn(X,−(d− 1))tn−l
X
W

∣

∣

∣

∣

∣

∣

p

.

By Theorem 5.9 we have that d divides cn(X,−(d − 1)) if n ≤ 2lXW − 1, hence

|cn(X,−(d−1))tn−l
X
W |p ≥ t|d|p > |clXW (X,−(d−1))|p for n ≤ 2lXW−1 (by assumptions).

Moreover, if n ≥ 2lXW , then |cn(X,−(d−1))tn−l
X
W |p ≥ tl

X
W ≥ t|d|p > |clXW (X,−(d−1))|p

(by assumptions). Thus we get the claim.
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Assume that lXW = 1. In this case we have that o(I) = 1, so we can apply

Proposition 5.10. �

The condition t|d|p > |clXW (X,−(d − 1))|p in the previous proposition is suffi-

cient but not necessary. As we have seen in Proposition 5.10, we can drop the con-

dition when o(I) = 1. However, it is not always true that |P (p)
X,S(−(d − 1))|p =

tl
X
W |clXW (X,−(d − 1))|p. For example take X = S = A2(4): we have that P (2)

S (−(d −
1)) = 1 − 2 · 21d + 105d and clSW (S,−(di − 1)) = d(d− 1).



Chapter 6

On some subgroups of X which do

not contain a Sylow p-subgroup

In this chapter, let X be a classical projective group, as defined at p.32. Let S be

the socle of X. Here we deal with the subgroups of X which do not contain a Sylow

p-subgroup and which are intersection of maximal subgroups.

Recall that

βp(X) = logq min{|X : H|p : H < X, |X : H|p > 1, HS = X,µX(H) 6= 0}.

We shall prove the following theorem.

Theorem 6.1. Let X be a classical projective group of characteristic p and let S be

its socle. Let β̃p(X) be as in Table 6.1 with the following exceptions: β̃p(X)

• for S = PSL2(q) we have β̃p(X) = logq p;

• for S = PSL3(q
2
0) we have β̃p(X) = 1.5;

• for S ∈ {PSU4(q),PSL4(q)}, we have β̃p(X) = 2.

We have that βp(X) ≥ β̃p(X).

79
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Table 6.1: Values of β̃p(X), given the socle S of X

S β̃p(X)
PSLn(q) n− 1
PSUn(q) n− 1
PSpn(q)

n
2
− logq |2|p

PΩn(q)
n−1

2

PΩ±
n (q) n−2

2

The proof of this theorem is given in Theorem 6.2 and Proposition 6.18.

We divide the chapter into two sections. In the first section, we consider the

subgroups which are intersection of maximal parabolic subgroups of X. In the second

section we consider the maximal subgroups of X which are supplemented by S and

which do not contain a Sylow p-subgroup of X.

6.1 On the intersection of maximal subgroups which

contain a Sylow p-subgroup of X

The aim of this section is to prove the following.

Theorem 6.2. Let X be a classical projective group with socle S and let H be a

subgroup of X such that:

• HS = X,

• if M is a maximal subgroup of X and M ≥ H, then M contains a Sylow p-

subgroup of X.

• H does not contain a Sylow p-subgroup of X.

Then µX(H) = 0 or |X : H|p ≥ qβ(n), whereβ(n)
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β(n) =



























n− 1 if case L or U hold,

n
2
− logq |2|p if case S holds,

n−1
2

if case O
o holds,

n−2
2

if case O
+ or O

− hold.

In order to prove the above theorem, we investigate the structure of maximal

subgroup in the class C1(X), as described in [KL90]. In particular, we are interested

to the maximal subgroups which contain a Sylow p-subgroup of X. In most cases,

these subgroups are stabilizers of totally singular subspaces of V .

We recall some definition about the geometry of classical groups (see [KL90, p.16]).

Let W be a subspace of V . We say that W is totally singular if the restriction κW of κ κW

to W is equal to 0. We say that W is non-degenerate if κW is non-degenerate. Writing

(v, w) instead of f(v, w), we denote by W⊥ the set of v ∈ V such that (v, w) = 0 for (v,w)

W⊥all w ∈W .

We need some preliminary technical lemmas.

Lemma 6.3 (See [KL90, Proposition 2.3.2, Proposition 2.4.1 and Proposition 2.5.3]).

The space (V, κ) has a basis :

ei, fi, x, y, z• {e1, ...em} if n = m and case L holds,

• {e1, ...em, f1, ..., fm} if n = 2m and cases U,O+ or S hold,

• {e1, ...em, f1, ..., fm, x} if n = 2m+ 1 and cases U or O
o hold,

• {e1, ...em, f1, ..., fm, y, z} if n = 2m+ 2 and case O
− holds.

In all these cases we have (ei, ej) = (fi, fj) = (ei, x) = (fi, x) = (ei, y) = (fi, y) =

(ei, z) = (fi, z) = 0 and (ei, fj) = δij for all i, j. Moreover,

- if case O holds, then Q(ei) = Q(fi) = 0,

- if case U holds, then (x, x) = 1,

- if case O
o holds, then x is non-singular,
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- if case O
− holds, then Q(y) = 1, Q(z) = ζ and (y, z) = 1, where the polynomial

X2 +X + ζ is irreducible over F.

Lemma 6.4. Let m as in the above lemma. Let l and h be two distinct integer

numbers such that 1 ≤ l, h ≤ m. There exists an element φl,h ∈ S such that:φl,h

(1) each subspace of 〈e1, ..., el−1〉 is stabilized by φl,h,

(2) each totally singular subspace of V containing 〈eh〉 is stabilized by φl,h,

(3) φl,h does not stabilize a subspace of V containing 〈el〉 and not containing 〈eh〉.

Proof. Define a linear map φ = φl,h : V → V as follows:

• φ(el) = el + eh and φ(ei) = ei for i 6= l,

• φ(fh) = fh − fl and φ(fi) = fi for i 6= h,

• φ(x) = x, φ(y) = y and φ(z) = z (when they occur).

Note that det(φ) = 1 and κ(φ(v)) = κ(v) for v ∈ V e, where e = 1 if case O holds,

e = 2 otherwise. Thus (S(V, κ) ∩ F∗)φ is an element of S(V, κ). Moreover, if case O

holds, then it is easy to see that (S(V, κ)∩F∗)φ is a commutator in S(V, κ). Thus we

let φl,h = (S(V, κ) ∩ F∗)φ ∈ S. Clearly (1) and (3) hold, so we prove only (2). Let U

be a totally singular subspace of V such that eh ∈ U . Let w be an element of U . Thus

w =
∑m

i=1 αiei +
∑m

i=1 βifi + γxx+ γyy + γzz, for some αi, βi, γx, γy, γz ∈ Fq. Since U

is totally singular, we have that (w, eh) = 0, thus βh = 0. Hence φl,h(w) = αleh + w,

so φl,h(w) ∈ U since eh ∈ U . �

The following well-known facts about the spaces with forms will be use often

without mention.

Lemma 6.5. Let κ be a non-degenerate form and let W and U be two subspaces of

V .

(1) W ≤ U if and only if U⊥ ≤ W⊥.
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(2) (W + U)⊥ = W⊥ ∩ U⊥.

(3) If W is totally singular, then W ≤W⊥.

(4) If W is totally singular and U ≤ W⊥, then U +W is totally singular.

(5) W is non-degenerate if and only if W ∩W⊥ = 0.

We introduce some definition and notation. Assume that H is as in Theorem 6.2.

Let MH(X) be the set of maximal subgroups M of X containing H and such that MH(X)

MS = X. We denote by LH(X) the set LH(X)

{W ≤ V : StabX∩Γ(W ) ≥ H ∩ Γ}

and we let L∗
H(X) = {W ∈ LH(X) : W is totally singular and W 6∈ {0, V }} . It is L∗

H(X)

clear that L∗
H(X) ⊆ L∗

S∩H(S) and L∗
H∩Γ

(X ∩ Γ) = L∗
H(X). Moreover, we have the

following.

Proposition 6.6 (See [KL90, §4.1] ). Suppose that case O
+ does not hold. Moreover,

if case L holds, then assume X ≤ Γ. The map

StabX : L∗
H(X) → MH(X)

gives a one-to-one correspondence between L∗
H(X) and MH(X).

We want to understand what happens in the case L and X � Γ. Let ψ be an

element of A−Γ. We have that ψ acts on the set Sub(V ) of proper non-zero subspaces Sub(V )

of V in the following way. Let W ∈ Sub(V ), and note that StabS(W )ψ is a maximal

subgroup of S in the class C1(S). Thus there exists a unique U ∈ Sub(V ) such that

StabS(U) = StabS(W )ψ, so define W ψ = U .

Suppose that H is as in the Theorem 6.2. Note that H ∩ (A − Γ) 6= ∅, since

otherwise X = HG ≤ Γ. Thus, we may assume that ψ ∈ H ∩ (A − Γ). Note that if

W ∈ L∗
H(X), then W ψ ∈ L∗

H(X). Let L∗
H(X)/ψ be the set of equivalence classes of

L∗
H(X)/ψL∗

H(X) given the relation on L∗
H(X) such that W and U are equivalent if W ψ = U .

With the above notation, we obtain the following.
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Proposition 6.7 (See [KL90, Proposition 4.1.23]). Suppose that case L holds and

X � Γ. There is a one to one correspondenceΨH

ΨH : L∗
H(X)/ψ → MH(X)

defined by ΨH([W ]) = NX(StabX∩Γ(W ) ∩ StabX∩Γ(W ψ)) where [W ] = {W,W ψ} is

the equivalence class of W ∈ L∗
H(X). Moreover

ΨH([W ]) ∩X ∩ Γ = StabX∩Γ(W ) ∩ StabX∩Γ(W ψ).

Now we turn to the case O
+. As in [KL90, p.30], let Uk be the set of totallyUk

singular subspace of V of dimension k. Let ∼ be the relation on Um defined by

W ∼ U if m− dim(W ∩U) is even. This relation defines a partition {U1
m,U2

m} of Um
and gives an homomorphism γ : Γ → Sym{U1

m,U2
m} . In particular, U1

m and U2
m areγ

the two S-orbits on Um.

We have the following.

Proposition 6.8 (See [KL90, Proposition 4.1.20 and Lemma 2.5.8]). Suppose that

case O
+ holds. Let k = m− 1 if X ≤ ker(γ), let k = m otherwise. The map

StabX : L∗
H(X) − Uk → MH(X)

is a one to one correspondence.

Now, we focus our attention to the set LH(X). Observe that LH(X) is a sublat-

tice of the lattice of subspaces of V . In fact if U and W are subspaces of V , then

StabX∩Γ(U) ∩ StabX∩Γ(W ) ≤ StabX∩Γ(U +W ) ∩ StabX∩Γ(U ∩W ).

In general, the set L∗
H(X) is not a lattice. However, if Z1, Z2 ∈ L∗

H(X), then

• Z1 ∩ Z2 ∈ L∗
H(X) if and only if Z1 ∩ Z2 > 0;

• Z1 + Z2 ∈ L∗
H(X) if and only if there exists a totally singular proper subspace

T of V such that Z1, Z2 ≤ T .

Let L be a subset be of the set of vector subspaces of V .
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• We denote by L(+) the subset of L consisting of the elements W such that thereL(+)

exist Z1, Z2 ∈ L, with Z1 6= W 6= Z2 and W = Z1 + Z2. Similarly, define L(∩)

as the subset of L consisting of the elements W such that there exist Z1, Z2 ∈ L, L(∩)

with Z1 6= W 6= Z2 and W = Z1 ∩ Z2.

• An element W of L is said to be redundant in L if for any M ⊆ L such that

W ∈M and
⋂

U∈M
StabX∩Γ(U) =

⋂

U∈L
StabX∩Γ(U)

we have that
⋂

U∈M−{W}
StabX∩Γ(U) =

⋂

U∈L
StabX∩Γ(U).

• We say that L fulfills the property P if there exists W ∈ L such that for each P
Z ∈ L we have W ≤ Z or W ≥ Z. In this case, W is said to be a P-element

of L. P-element

We divide the rest of the section into two parts: L∗
H(X) fulfills the property P

and L∗
H(X) does not fulfill the property P.

6.1.1 L∗
H(X) fulfills the property P

We consider the case when L∗
H = L∗

H(X) fulfills the property P. Our aim is to prove

the following.

Proposition 6.9. Let H be as in Theorem 6.2. Suppose that L∗
H fulfills the property

P. Then µX(H) = 0.

The proof of this proposition requires some preliminary results.

Proposition 6.10. Let H be as in Theorem 6.2 and assume that H is an intersection

of maximal subgroups of X. Suppose that W is a P-element of L∗
H such that W ∈

L∗
H(+) ∪ L∗

H(∩). Then W is redundant in L∗
H .
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Proof. Since L∗
H∩Γ

(X ∩ Γ) = L∗
H(X), without loss of generality, we may assume

that X ≤ Γ.

Suppose that M is a subset of L∗
H such that W ∈M and

⋂

U∈M
StabX(U) =

⋂

U∈L∗
H

StabX(U).

Note that
⋂

U∈L∗
H

StabX(U) = H

by Proposition 6.6, 6.7 and 6.8.

For a contradiction, assume that

K =
⋂

U∈M−{W}
StabX(U) > H.

Note that M ⊆ L∗
K ⊂ L∗

H and W does not lie in L∗
K . Moreover, W does not lie in

the lattice LK .

We are going to consider two cases, namely W ∈ L∗
H(+) and L∗

H(+) does not

contain P-elements of L∗
H .

Assume W ∈ L∗
H(+). Let T be the sum of the elements of L∗

K which are

contained in W , i.e.

T =
∑

U∈L∗
K ,U≤W

U

(if for each U ∈ L∗
K we have U ≥ W , then let T = 0). Clearly T ≤ W and since

W 6∈ L∗
K , then T < W . Since W is a P-element, note that

if U ∈ L∗
K , then U ≤ T or U > W . (†1)

We claim that there exists an element

Y in L∗
H −L∗

K , such that Y < W and Y � T . (†2)

Since W ∈ L∗
H(+), there exist Z1, Z2 ∈ L∗

H such that Z1 6= W 6= Z2 and Z1+Z2 = W .

Since W 6∈ LK , we have that Z1 6∈ L∗
K or Z2 6∈ L∗

K . Suppose that Z1, Z2 6∈ L∗
K . We
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have that T � Z1 or T � Z2, otherwise T ≥ Z1 + Z2 = W . So, in the case that

Z1, Z2 6∈ L∗
K , let Y ∈ {Z1, Z2} be such that Y � T . Now, suppose that Zi ∈ L∗

K .

Thus Z2−i 6∈ L∗
K and so T � Z2−i, otherwise T = T + Zi ≥ Z2−i + Zi = W . Hence,

in the case that Zi ∈ L∗
K , set Y = Z2−i.

Since W is totally singular, by Witt’s Lemma ([KL90, Proposition 2.1.6]) we may

assume that there exists k ≥ 2 such that W has a basis e1, ..., ek which is part of the

standard basis given in Lemma 6.3. Moreover, by (†2) and T < W , we may assume

that there exist 0 ≤ h ≤ l < r ≤ k such that T ∩ Y = 〈e1, ..., eh〉, T = 〈e1, ..., el〉,
Y = T ∩ Y ⊕ 〈el+1, ..., er〉 and k − r + l − h ≥ 1. Define an element φ ∈ S as follows

(see Lemma 6.4):

• if l > h (i.e. T ∩ Y < T ), then let φ = φl+1,l;

• if l = h (i.e. T ≤ Y , so Y = T + Y < W ), then let φ = φl+1,r+1.

By Lemma 6.4, (†1) and (†2), we have that

φ ∈
⋂

U∈L∗
K

StabX(U) ∩ StabX(W ) = H

and φ 6∈ StabX(Y ). This is in contradiction with Y ∈ L∗
H .

Assume that L∗
H(+) does not contain P-elements of L∗

H. This implies that

W ∈ L∗
H(∩). If case L holds, then the proof is just the dual of the above case. So we

assume that case L does not hold, so κ is a non-degenerate form.

Since L∗
H(+) does not contain P-elements, we have that the elements of the set

N = {U ≤W : U ∈ L∗
H} form a chain of subspaces of V . In fact, for a contradiction

suppose that the set N is not a chain. Thus there exists two elements U1, U2 ∈ N
such that U1 � U2 and U2 � U1. Since U1, U2 ≤ W , we get that U1 + U2 is totally

singular, hence U1 + U2 ∈ N . So N (+) 6= ∅. Let A be a maximal element in N (+).

It is straightforward to see that A is a P-element of N , hence it is a P-element of

L∗
H , a contradiction. So, we have that N = {U ≤ W : U ∈ L∗

H} forms a chain of

subspaces of V .
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Note that if the elements of L∗
K form a chain of subspaces of V , then

⋂

U∈L∗
K∪{W}

StabS(U) = H ∩ S

contains a Sylow p-subgroup of S (see [KL90, Corollary 4.1.15]). Hence H contains a

Sylow p-subgroup of X, against the assumptions. We deduce that the set {U ≥ W :

U ∈ L∗
K} is not empty and it is not a chain. Let T be the intersection of the elements

of L∗
K which contain W , i.e.

T =
⋂

U∈L∗
K ,U≥W

U.

We have that T ≥ W and since W 6∈ L∗
K , then T > W . Moreover, since W is a

P-element,

if U ∈ L∗
K , then U ≥ T or U < W . (†3)

Arguing as for (†2), there exists an element

Y in L∗
H −L∗

K , such that Y > W and Y � T . (†4)

We divide the rest of the proof in three cases, namely case Y ∩ T > W , case

Y ∩ T = W and Y ∩ T⊥ � T , case Y ∩ T = W and Y ∩ T⊥ ≤ T .

Suppose that Y ∩T > W . As above, since T is totally singular, we may assume that

there exists k ≥ 2 such that T has a basis e1, ..., ek which is part of the standard basis

given in Lemma 6.3. Moreover, by (†4) we may assume that there exist 0 < h < l < k

such that W = 〈e1, ..., eh〉 and Y ∩ T = 〈e1, ..., el〉. Let φ = φh+1,l+1 as in the Lemma

6.4. By Lemma 6.4, (†3) and (†4), we have that

φ ∈
⋂

U∈L∗
K

StabX(U) ∩ StabX(W ) = H

and φ 6∈ StabX(Y ). This is in contradiction with Y ∈ L∗
H .

Suppose that Y ∩T = W and Y ∩T⊥ � T . Thus pick an element v in Y ∩T⊥−T .

Clearly, we have that T + 〈v〉 is a totally singular subspace of V . As above, we

may assume that there exists k ≥ 2 such that T has a basis e1, ..., ek−1 and v = ek.
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Moreover, by (†4) and T > W , we may assume that there exists 0 < l < k − 1 such

that W = 〈e1, ..., el〉. Let φ = φk,k−1 as in the Lemma 6.4. By Lemma 6.4, (†3) and

(†4), we have that

φ ∈
⋂

U∈L∗
K

StabX(U) ∩ StabX(W ) = H

and φ 6∈ StabX(Y ). This is in contradiction with Y ∈ L∗
H .

Finally, assume that Y ∩ T = W and Y ∩ T⊥ ≤ T . Since in this case Y � T⊥,

we have that T � Y ⊥, so T ∩ Y ⊥ < T . Since T ∩ Y ⊥ ∈ L∗
H − L∗

K , if T ∩ Y ⊥ > W ,

then we argue as in the case Y < T with Y = T ∩ Y ⊥. Thus we can assume that

T ∩ Y ⊥ = W . Now, since κ is non-degenerate, T ∩ Y ⊥ = W implies T⊥ + Y = W⊥.

Let M be a maximal totally singular subspace of V containing T . Since L∗
K is not a

chain, then M > T . Since M is totally singular, we may assume that M has a basis

e1, ..., em which is part of the standard basis given in Lemma 6.3. Moreover, we may

assume that there exists 0 < l < k < m such that W = 〈e1, ..., el〉 and T = 〈e1, ..., ek〉.
Let φ = φm,k as in the Lemma 6.4. Clearly, by Lemma 6.4 and (†3), we have that

φ ∈
⋂

U∈L∗
K

StabX(U) ∩ StabX(W ) = H.

Since Y ∈ L∗
H , we have that φ stabilizes Y . Note that fk ∈ W⊥ = T⊥ + Y and

(v, ek) = 0 for each v ∈ T⊥. Thus there exist v1 ∈ Y and v2 ∈ T⊥ such that

v1 + v2 = fk, with v1 =
∑m

i=1 αiei +
∑m

i=1 βifi + γxx + γyy + γzz and βk 6= 0. This

yields φ(v1) − v1 = αmek − βkfm. Thus we have αmek − βkfm ∈ Y ∩ T⊥ ≤ T , a

contradiction since βk 6= 0. Hence we obtain φ 6∈ StabX(Y ), a contradiction. �

In the following lemma we show that if L∗ is not a chain and L∗ fulfills the property

P, then the assumptions of the previous proposition are satisfied.

Lemma 6.11. Assume that the elements of L∗ = L∗
H(X) do not form a chain of

subspaces of V . Suppose that L∗ fulfills the property P. Then there exists a redundant

element in L∗.

Proof. Let T be a P-element in L∗. Since L∗ is not a chain, there exist U1, U2 ∈ L∗
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such that U1 � U2 and U1 � U2. Hence there are elements of L∗ which are not P-

elements.

Assume that U1 is contained in T . Let C be the sum of the elements of L∗ which

are properly contained in T and which are not P-elements in L∗ (this set is not empty,

since it contains U1). By definition we have that C ∈ L∗. We want to prove that C

is a P-element in L∗. Let Z ∈ L∗. Since T is a P-element, we have Z ≤ T or Z ≥ T .

If Z ≥ T , then Z ≥ T ≥ C. Assume that Z < T . If Z is a P-element in L∗, then

C ≤ Z or C ≥ Z. If Z is not a P-element in L∗, then C ≥ Z by definition of C.

Thus C is a P-element in L∗. This implies also that C ∈ L∗(+) (using the definition

of C). So we apply Proposition 6.10 and we obtain the claim.

If U1 contains T , the proof is just the dual (take C to be the intersection of the

elements of L∗ which properly contain T and which are not P-elements in L∗). �

Now we are ready to prove Proposition 6.9 in the case X ≤ Γ.

Proof of Proposition 6.9 (Case X ≤ Γ). If H is not an intersection of maximal

subgroups of X, then µX(H) = 0. So suppose H is an intersection of maximal

subgroups. The elements of L∗ do not form a chain of subspaces of V (i.e., a flag)

since H does not contain a Sylow p-subgroup of X (see [KL90, Corollary 4.1.15(i)]).

So we may apply Lemma 6.11.

By Lemma 6.11, there exists an element T ∈ L∗ such that T is a redundant

element. Let M = {StabX(W ) : W ∈ L∗}. By Proposition 6.6 and 6.8, we have that

M ⊇ MH(X). Define

Y = {J ⊆ M :
⋂

M∈J
M = H}.

By [Sta97, Corollary 3.9.4], we have that

µS(H) =
∑

K∈Y

(−1)|K|.
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Now, let

Y = {K ⊆ L∗ :
⋂

W∈K
StabS(W ) = H},

YT = {K ⊆ L∗ :
⋂

W∈K
StabS(W ) = H, T ∈ K} and

Y ′
T = {K ⊆ L∗ :

⋂

W∈K
StabS(W ) = H, T 6∈ K}.

Since T is a redundant element we have Y ′
T = {K − {T} : K ∈ YT}. Since the map

StabX : L∗ → M

is a bijection, the map Θ : Y → Y defined by Θ(K) = {StabX(W ) : W ∈ K} is a

bijection and |K| = |Θ(K)|. Thus, we obtain

µX(H) =
∑

J∈Y

(−1)|J | =
∑

K∈Y
(−1)|K| =

=
∑

K∈YT

(−1)|K| +
∑

K∈Y ′
T

(−1)|K| =

=
∑

K∈YT

(−1)|K| +
∑

K∈YT

(−1)|K|−1 =

=
∑

K∈YT

(−1)|K| −
∑

K∈YT

(−1)|K| = 0.

So the proof is complete. �

Now, we assume that X � Γ. So, we are in the case L. We need the following

lemma. Recall that the action of ψ on Sub(V ) is defined before Proposition 6.7.

Lemma 6.12. Let W and Z be two elements of Sub(V ) and let ψ ∈ A−Γ. We have

that (Z ∩W )ψ = Zψ +W ψ and (Z +W )ψ = Zψ ∩W ψ.

Proof. The result is clear if ψ is the inverse transpose map ι (as described, for

example, in [KL90, (2.2.4)] ). Since ι2 = 1 and 〈Γ, ι〉 = A, if ψ ∈ A− Γ, then ψ = gι

for some g ∈ Γ. Clearly g acts on Sub(V ), and we have that (Z ∩W )g = Zg ∩W g

and (Z +W )g = Zg +W g. This concludes the prove. �
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Now we are ready to complete the proof of Proposition 6.9.

Proof of Proposition 6.9 (Case X � Γ). Denote by L the set LH(X), let L∗ =

L∗
H(X) and L∗/ψ = L∗

H(X)/ψ.

As in the previous proof, we may assume that H is an intersection of maximal

subgroups and the elements of L do not form a chain. So we may apply Lemma 6.11.

In particular, there exists a P-element T in L∗ such that T ∈ L(+) ∪ L(∩). Using

Lemma 6.12, we have that ψ induces an isomorphism of lattices between (L∗,+,∩)

and (L∗,∩,+). Thus we have that Tψ is a P-element in L∗ and Tψ ∈ L(+) ∪ L(∩).

Suppose that M ⊆ L∗/ψ, [T ] = {T, Tψ} ∈M and

⋂

[U ]∈M
ΨH([U ]) =

⋂

U∈L∗/ψ

ΨH([U ]) = H.

We claim that
⋂

[U ]∈M−{[T ]}
ΨH([U ]) = H.

Clearly we have that

⋂

[U ]∈M
ΨH([U ]) ∩X ∩ Γ =

⋂

[U ]∈M
StabX∩Γ(U) ∩ StabX∩Γ(Uψ) = H ∩ Γ.

Now, since by Proposition 6.10 we have that T and Tψ are redundant elements, we

obtain
⋂

[U ]∈M−{[T ]}
StabX∩Γ(U) ∩ StabX∩Γ(Uψ) = H ∩ Γ,

i.e.
⋂

[U ]∈M−{[T ]}
ΨH([U ]) ∩X ∩ Γ = H ∩ Γ. (†)

Let K =
⋂

[U ]∈M−{[T ]} ΨH([U ]). Thus (†) means K ∩ Γ = H ∩ Γ. Clearly K ≥ H , so

ΓK = X and thus |K : K ∩X ∩ Γ| = |K : H ∩ Γ| = 2. Moreover, |H : H ∩ Γ| = 2.

Hence we conclude that K = H and we have the claim.

Arguing as in the proof of Proposition 6.9 (case X � Γ), we obtain that µX(H) =

0. �
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6.1.2 L∗
H(X) does not fulfill the property P

Now, we consider the case when L∗
H = L∗

H(X) does not fulfill the property P. Thanks

to the following lemma, we can restrict our attention to L∗
H∩S(S).

Lemma 6.13. Suppose that L∗
H(X) is not empty and L∗

H(X) does not fulfill the

property P. Then also L∗
H∩S(S) is not empty and L∗

H∩S(S) does not fulfill the property

P.

Remind that L∗
H(X) ⊆ L∗

H∩S(S). For a contradiction, assume that there exists

a P-element Z in L∗
H∩S(S). Since L∗

H(X) does not fulfill the property P, there

exists T1 and T2 distinct maximal elements of L∗
H(X). If Z contains T1 and T2, then

Z ≥ T1 + T2, a contradiction since Z is totally singular and T1 + T2 6∈ L∗
H(X). So

suppose that Z does not contain T1. Since Z is a P-element in L∗
H∩S(S), we have

that Z ≤ T1. So the set consisting of the elements U of L∗
H(X) such that U ≥ Z is

not empty. Thus define

B =
⋂

U∈L∗
H(X),U≥Z

U.

We claim that B is a P-element in L∗
H(X). Let W ∈ L∗

H(X). If W ≤ Z, then W ≤ B

by definition of B. If W ≥ Z, then W ≥ B again by definition of B. Thus B is a

P-element in L∗
H(X), a contradiction. �

Recall that I = I(V, κ) = {φ ∈ GL(V ) : κ(φ(v)) = κ(v) for all v ∈ V l} where

l = 1 if κ is quadratic, l = 2 otherwise. Clearly S is a section of I.

Suppose that W is a totally singular subspace of V . The form κ induces a form

κW⊥/W on W⊥/W . Moreover, κW⊥/W is a zero, unitary, symplectic or orthogonal κW⊥/W

form according to whether κ is zero, unitary, symplectic or orthogonal (see [KL90,

p.17-18]).

We introduce some useful definitions.

• Denote by I(W ) the group I(W⊥/W, κW⊥/W ) . I(W )

• If W ∈ L∗
H(X) ∪ {0}, then denote by L(W )

H the set of element U ∈ L∗
H(X) L(W )

H
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such that W < U < W⊥. Note that L(0)
H = L∗

H . Moreover, if U ∈ L(W )
H , then

U/W is a totally singular subspace of W⊥/W (with respect to the induced form

κW⊥/W ).

Let W ∈ L∗
H(X). Suppose that φ is an element of StabI(W ). Thus φ induces an

element φ(W ) of I(W ), defined by φ(W )(v +W ) = φ(v) +W for v ∈W⊥.φ(W )

Now, assume that φ is an element of

⋂

U∈L∗
H(X)

StabI(U).

This yields φ(W ) is an element of

⋂

U∈L(W )
H

StabI(W )(U/W ).

Now we give a more concrete representation of φ using the matrices. The case L is

trivial, so we assume that case L does not hold. Since W is totally singular, by Witt’s

Lemma ([KL90, Proposition 2.1.6]) we may assume that there exists k ≥ 1 such that

W = 〈e1, ..., ek〉 (see Lemma 6.3 for the notation). The matrix of a generic element of

I in the basis B obtained juxtaposing the bases B1 = (e1, ..., ek), B2 = (ek+1, ..., em),

B3 = (fk+1, ..., fm), B4 = (x, y, z) and B5 = (f1, ..., fk) is

M =





















M11 M12 M13 M14 M15

M21 M22 M23 M24 M25

M31 M32 M33 M34 M35

M41 M42 M43 M44 M45

M51 M52 M53 M54 M55





















where Mij is a matrix with respect to the basis Bi and Bj with coefficient in F = Fqu .

Consider an element φ ∈ StabI(W ), and let M be its matrix. It is clear that M21 =
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M31 = M41 = M51 = M52 = M53 = M54 = 0. Let

F =





















0 0 0 0 1

0 0 1 0 0

0 (−1)a 0 0 0

0 0 0 D 0

(−1)a 0 0 0 0





















be the matrix of the form f associated to κ, where D is a suitable matrix with

coefficients in F and a = 1 if case S holds, a = 0 otherwise. . Since φ ∈ I, we

have that MFMαt = F , where α is the automorphism of Fqu defined by λα = λq

(see [KL90, Lemma 2.1.8]). Moreover, if κ = Q is quadratic, then we require that

Q(φ(v)) = Q(v) for all v ∈ V . This yields the following facts:

(1) The element φ(W ) of I(W ) has matrix

M ′ =









M22 M23 M24

M32 M33 M34

M42 M43 M44









with respect to the basis obtained juxtaposing the bases (ek+1 + W, ..., em +

W ), (fk+1 + W, ..., fm + W ) and (x + W, y + W, z + W ). In particular, M ′ is

invertible.

(2) M55 = M−αt
11 .

(3)








M25

M35

M45









= −









(−1)aM22 M23 M24

(−1)aM32 M33 M34

M42 M43 M44

















Mαt
13

Mαt
12

DαtMαt
14









M−αt
11 .

(4) M15M
αt
11 + (−1)aM11M

αt
15 = −M13M

αt
12 − (−1)aM12M

αt
13 −M14DM

αt
14 .

(5) If case O
+ or O

− hold, then by Q(φ(fi)) = Q(fi) = 0 for i ∈ {1, ..., k}, we

obtain

M t
15M55(i, i) = −(M t

25M35(i, i) +M45(1, i)M45(2, i) +M45(1, i)
2 + ζM45(2, i)

2)



96

We summarize the above discussion in the following lemma.

Lemma 6.14. Let B be the base of V and let M be the matrix defined above. An

element φ of StabI(W ) is completely determined if we give:

• an element ψ of I(W ), which has a matrix M ′ as above;

• the matrices M11 ∈ GLk(Fqu),M12 ∈ Mk,m−k(Fqu),M13 ∈ Mk,m−k(Fqu) and

M14 ∈ Mk,n−2m(Fqu);

• the elements B(i, j) ∈ Fqu for 1 ≤ i ≤ j ≤ k, which are components of the

matrix B = M−1
11 M15. The element B(i, i) satisfies B(i, i)α + (−1)aB(i, i) = b

for some b determined by M11,M12,M13,M14 for i ∈ {1, ..., k}. Moreover, if

case O
+ or O

− hold, then B(i, i) is determined by M ′,M11,M12,M13,M14 for

i ∈ {1, ..., k}.

Proof. As we have seen in the above discussion, if we give M ′,M11,M12,M13,M14

and M15, then φ is completely determined. By (4) above we get:

B + (−1)aBαt = M−1
11 M15 + (−1)aMαt

15M
−αt
11 =

= −M−1
11 (M12M

αt
13 + (−1)aM13M

αt
12 +M14D

αtMαt
14 )M−αt

11 .

Note that B + (−1)aBαt is completely determined by M11,M12,M13,M14. So it is

enough to prove that if we give B + (−1)aBαt and B(i, j) for 1 ≤ i ≤ j ≤ k, then

B is completely determined. Assume that B + (−1)aBαt is given. Thus B(j, i) +

(−1)aB(i, j)α = bi,j for some bi,j fixed, with 1 ≤ i ≤ j ≤ k. Clearly, we have that

B(j, i) = bi,j − (−1)aB(i, j)α is determined.

Note that for i ∈ {1, ..., k} the element B(i, i) satisfies the equation B(i, i) +

(−1)aB(i, i)α = bi,i. Assume that case O
+ or O

− hold. Therefore α = 1, so by (5)

above we have

B(i, i) = M−1
11 M15(i, i) = M t

55M15(i, i) = M t
15M55(i, i).

Thus B(i, i) is completely determined by the knowledge of M ′,M11,M12,M13 and

M14. �
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Proposition 6.15. Let W be an element of L∗
H(X). Suppose that L(W )

H 6= ∅ and

L(W )
H does not fulfill the property P. Then one of the following holds:

(1) There exist U and T in L∗
H such that U + T = W⊥ and U ∩ T = W .

(2) There exists U ∈ LH − {W,W⊥} such that U⊥ + U = W⊥ and U⊥ ∩ U = W .

(3) There exist T ∈ L(W )
H and U ∈ L(W )

H such that U ∩ T = W , L(T )
H 6= ∅ and L(T )

H

does not fulfill the property P.

Proof. Since L(W )
H 6= ∅ and L(W )

H does not fulfill the property P, there existM1 and

M2 distinct maximal elements in L(W )
H . Note that L(M1∩M2)

H is non empty. We claim

that L(M1∩M2)
H does not fulfill P. By contradiction, if Z is a P-element in L(M1∩M2)

H ,

since M1 and M2 are maximal, then Z ≤ M1 and Z ≤ M2. So Z ≤ M1 ∩M2, a

contradiction with Z ∈ L(M1∩M2)
H .

Assume M1 ∩M2 > W . Consider the set

M = {Z ∈ L(W )
H : Z ≤ M1 ∩M2,L(Z)

H does not fulfill P}.

Let T be a minimal element in M. Since L(M1∩M2)
H is non empty, also L(T )

H is not

empty. Since T ∈ L(W )
H and L(W )

H does not fulfill the property P, there exists U ∈ L(W )
H

such that U∩T < T . For a contradiction, assume that U∩T > W . Then U∩T ∈ L(W )
H

and we have that L(U∩T )
H is not empty. Since U ∩ T < T and T is minimal in M,

we have that L(U∩T )
H fulfills P. Thus there exists a P-element Z in L(U∩T )

H . Since

L(T )
H ⊆ L(U∩T )

H and L(T )
H does not fulfill P, we have that Z ≤ T . If Z ≤ U , then

Z ≤ U ∩T , a contradiction with Z ∈ L(U∩T )
H . If Z ≥ U , then U ≤ T , a contradiction.

So we obtain U ∩ T = W and (3) holds.

Assume M1 ∩ M2 = W . Suppose that M1 + M2 = W⊥. Then (1) holds with

U = M1 and T = M2. Now, suppose that U = M1 + M2 < W⊥. Clearly case

L does not hold. The subspace U ∩ U⊥ is a totally singular element of LH . We

claim that U ∩ U⊥ = W . For a contradiction, suppose that U ∩ U⊥ > W . Without

loss of generality, we may assume that M1 � U ∩ U⊥. Now, U ∩ U⊥ ≤ M⊥
1 , so
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M1 + U ∩ U⊥ is an element of L(W )
H . This contradicts the maximality of M1. Thus

we have U ∩ U⊥ = W , so U⊥ + U = W⊥. Hence (2) holds. �

Let W be an element of L∗
H ∪ {0}. Suppose that d = dimW⊥/W . Recall that

I(W ) = I(W⊥/W, κW⊥/W ). LetHI(W )

HI(W ) =
⋂

U∈L(W )
H

StabI(W )(U).

We have the following.

Proposition 6.16. If L(W )
H is not empty and L(W )

H does not fulfill the property P,

then

|I(W ) : HI(W )|p ≥ qβ
′(d),

where

β ′(d) =



























d− 1 if case L or U hold,

d
2
− logq |2|p if case S holds,

d−1
2

if case O
o holds,

d−2
2

+ logq |2|p if case O
+ or O

− hold.

Proof. Without loss of generality, we assume that W = 0. Let I = I(0) and

HI = HI(0) . Recall that n is the dimension of V . Since L∗
H is not empty, then n ≥ 2

and Proposition 6.15 applies. In Table 6.2 we report the p-part of the order of I (see

[KL90, p.19]).

Table 6.2: p-part of the order of I
Case logq |I|p Conditions
L,U n(n−1)

2

S
n2

4
n even

O
o (n−1)2

4
qn odd

O
± n(n−2)

4
+ logq |2|p n even

In order to prove the proposition, we argue by induction on n.
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Case (1). Assume that there exist U and T in L∗
H such that U +T = V and U ∩

T = 0. If case L holds, then StabI(T )∩StabI(U) is isomorphic to GLn1(q)×GLn2(q),

where n1 = dimT and n2 = dimU , and so

logq |I : HI |p ≥
n(n− 1)

2
−
(

n1(n1 − 1)

2
+
n2(n2 − 1)

2

)

≥ n− 1.

If case L does not hold, then T and U are maximal totally singular subspaces of V , so

dimT = dimU = n/2. In particular n is even. By Witt’s Lemma ([KL90, Proposition

2.1.6]) we may assume that T = 〈e1, ..., em〉 and U = 〈f1, ..., fm〉 (see Lemma 6.3

for the notation). By [KL90, Lemma 4.1.9], we have that StabI(T ) ∩ StabI(U) is

isomorphic to GLn/2(q
u). Thus we have that

logq |I : HI |p ≥ logq |I|p −
nu(n− 2)

8
≥ β ′(n)

for n ≥ 2.

Case (2). Assume that there exists U ∈ LH − {0, V } such that U⊥ + U = V and

U⊥ ∩ U = 0. Clearly, case L does not hold. So κ is non-degenerate, and thus U is

non-degenerate. Let k = dimU . By [KL90, §4.1], we obtain Table 6.3. Thus it is

easy to see that

logq |I : HI |p ≥ logq |I : StabI(U)|p ≥ β ′(n)

for n ≥ 2 and n > k.

Table 6.3: p-part of the order M = StabI(U), where U is a non-degenerate proper
subspace of V and dimU = k

Case Type of M logq |M |p Conditions
U GUk(q) ⊥ GUn−k(q)

k(k−1)+(n−k)(n−k−1)
2

S Spk(q) ⊥ Spn−k(q)
k2+(n−k)2

4
k even

O
o Oo

k(q) ⊥ O±
n−k(q)

(k−1)2+(n−k)(n−k−2)
4

k odd
O

± O±
k (q) ⊥ O±

n−k(q)
k(k−2)+(n−k)(n−k−2)

4
+ logq |2|p k even

O
± Oo

k(q) ⊥ Oo
n−k(q)

(k−1)2+(n−k−1)2

4
k odd, q odd
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Assume that Case (1) and Case (2) do not hold. By Proposition 6.15, there

exist T ∈ L∗
H and U ∈ L∗

H such that U ∩ T = 0, L(T )
H 6= ∅ and L(T )

H does not fulfill

the property P.

Assume case L holds. Let T = 〈e1, ..., ek〉 and U = 〈ek+1, ..., eh〉, for some k+ 1 ≤
h ≤ m = n. In the basis e1, ..., en the generic matrix of an element of HI is of the

form








GL(T ) O Mk×(n−h)(Fq)

O
HI(T )

O









.

Thus we have that

logq |HI |p ≤ logq
(

|HI(T )|p|Mk×(n−h)(Fq)|p|GL(T )|p
)

≤ logq |HI(T )|p+k(n−h)+
k(k − 1)

2

This yields

logq |I : HI |p ≥ logq |I : I(T )|p + logq |I(T ) : HI(T )|p − k(n− h) − k(k − 1)

2
.

Since dimV/T < n, by induction we have that

logq |I(T ) : HI(T )|p ≥ β ′(dimV/T ) = β ′(n− k) = n− k − 1,

so we obtain

logq |I : HI |p ≥ n(n− 1)

2
− (n− k)(n− k − 1)

2
+ n− k − 1 − k(n− h) − k(k − 1)

2
≥ n− 1 + k(h− k − 1)

≥ n− 1.

The last inequality holds since k ≥ 1 and h ≥ k + 1.

Assume case L does not hold. Assume that U ∩ T⊥ > 0. Thus there exists

v ∈ U such that v ∈ T⊥. By Witt’s Lemma ([KL90, Proposition 2.1.6]) we may

assume that T = 〈e1, ..., ek〉 and v = ek+1. Let φ be an element of HI . We have that

φ(ek+1) = φ(v) 6∈ T since U ∩T = 0. Using the notation of Lemma 6.14, we have that

the first column of M12 consists of zeros. By Lemma 6.14, to completely determine φ

it is enough to give:
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• M11 ∈ GLk(q
u) (q

uk(k−1)
2

∏k
i=1(q

ui − 1) choices);

• M12 ∈ Mk,m−k(Fqu) with the first column filled with zeros (quk(m−k−1) choices);

• M13 ∈ Mk,m−k(Fqu) (quk(m−k) choices for M13);

• M14 ∈ Mk,n−2m(Fqu) (quk(n−2m) choices for M14);

• B(i, j) ∈ Fqu for 1 ≤ i < j ≤ k (q
uk(k−1)

2 choices);

• B(i, i) ∈ Fq for i ∈ {1, ..., k} and we have qλk choices, where

λ =

{

1 if u = 2 or case S holds,

0 otherwise;

• an element ψ of HI(T ) , (|HI(T )| choices).

So we get that

logq |HI |p ≤ uk(n− 2 − k) + λk + logq |HI(T )|p.

This yields

logq |I : HI |p ≥ logq |I : I(T )|p + logq |I(T ) : HI(T )|p − uk(n− 2 − k) − λk. (∗)

Since dimT⊥/T < n, by induction we have that

logq |I(T ) : HI(T )|p ≥ β ′(dim(T⊥/T )) = β ′(n− 2k),

so it is easy to see that

logq |I : HI |p ≥ logq |I : I(T )|p + β ′(n− 2k) − uk(n− 2 − k) − λk = β ′(n).

In the rest of the proof we show that we can always reduce to the case U ∩T⊥ > 0.

Assume that U∩T⊥ = 0. LetR = (U+T )∩(U+T )⊥ = (U+T )∩U⊥∩T⊥. We claim

that R ∈ L∗
H. By contradiction, suppose that R 6∈ L∗

H . Since R = (U +T )∩ (U+T )⊥
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is totally singular and R 6∈ L∗
H , we must have that R = 0. But this is a contradiction

since Case (2) does not hold. So we have the claim. In particular, R > 0.

Assume that R ∩ T > 0. Thus R ∩ T ∈ L∗
H . Since L(T )

H ⊆ L(R∩T )
H , the set

L(R∩T )
H is not empty. We claim that L(R∩T )

H does not fulfill the property P. For a

contradiction, assume that Z is a P-element in L(R∩T )
H . If Z ≥ T , then Z ∈ L(T )

H , but

L(T )
H does not contain P-elements. So Z < T . Since R ≤ U⊥, then R + U ∈ L(R∩T )

H .

Since R + U � T and Z is a P-element such that Z < T , then Z < R + U . So

Z ≤ (R+ U) ∩ T ≤ U⊥ ∩ T ≤ R ∩ T , a a contradiction. Since R ∩ T ∈ L∗
H , U ∈ L∗

H ,

U ≤ (R∩ T )⊥, U ∩R = 0, L(R)
H is not empty and L(R)

H does not fulfill P, without loss

of generality we may assume that R ∩ T = T and argue as in the case U ∩ T⊥ > 0.

Assume that R∩ T = 0. Since R, T ∈ L∗
H , R ≤ T⊥, R∩ T = 0, L(T )

H is not empty

and L(T )
H does not fulfill P, without loss of generality we may assume that R = U

and argue as in the case U ∩ T⊥ > 0.

The proof is finished. �

Theorem 6.17. Let H be as in the Theorem 6.2. Suppose that L∗
H(X) is not empty

and L∗
H(X) does not fulfill the property P. Thus |X : H|p ≥ qβ(n).

Proof. Since HG = X, we have that |X : H|p = |S : H ∩ S|p. By the previous

proposition, we know that |I : HI |p ≥ qβ
′(d), where I = I(V, κ). Note that F ∗ ≤ HI ,

since a scalar matrix stabilizes each subspace. Let R = S(V, κ). By [KL90, Table

2.1.C], we have that |I : S|p = 1. Thus |R : HI ∩ R|p = |I : HI |p. Now, |F∗|p = 1, so

∣

∣R : R ∩HI

∣

∣

p
= |R : R ∩HI |p.

If case O does not hold, then S = R. Since in this case S ∩ H = R ∩HI , we have

the claim. If case O holds, then |R : S| = 2, so we have that 2|S : H ∩ S|p ≥ |R :

R ∩HI |p ≥ qβ
′(n). Thus |S : H ∩ S|p ≥ qβ

′(n)−logq |2|p = qβ(n). �
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6.2 Indexes of subgroups of X which are contained

in a maximal subgroup that does not contain a

Sylow p-subgroup of X

The main task of this section is to prove the following.

Proposition 6.18. Let X be a classical projective group. Let M be maximal subgroup

of X such that MS = X and M does not contain a Sylow p-subgroup of X. Then

logq |X : M |p ≥ β̃p(X), where β̃p(X) is as in Theorem 6.1.

Proof. If Case L, n = 2 holds, then the result follows by [Hup67, p. 213].

Suppose that M is as in the statement. Suppose that M is a member of one

of the classes C1(X), ..., C8(X). By [KL90, Proposition 3.1.3], the group M ∩ S is a

member of the classes C1(S), ..., C8(S), or X � Γ (so that case L holds) and one of

the following holds:

• M ∩ S is isomorphic to a subgroup of C2 × Sn, n is even and q = 2,

• M ∩ S is isomorphic to a subgroup of Alt4 and (n, q) = (5, 2),

• M ∩ S is isomorphic to a subgroup of 32.Q8 and (n, q) = (3, 4),

• M ∩ S is isomorphic to a subgroup of 23.S4.S3 and (n, q) = (4, 3).

Using the results of [KL90] on the geometric subgroups a direct calculations show

that if M is a member of one of the classes C1(X), ..., C8(X), then the proposition

holds.

If M does not lie in one of the classes C1(X), ..., C8(X), then M is a member of the

class S(X) (by Theorem 3.11). Let R be the socle of M . Since M lies in S, the group

R is non-abelian simple. We claim that R ≤ S. In fact, R ∩ S is a normal subgroup

of R. Hence R∩S = 1 or R ≤ S. For a contradiction, suppose that R∩S = 1. Thus

R is isomorphic to a subgroup of X/S, a contradiction, since X/S is soluble. So we
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obtain the claim. In particular, if M is a member of the class S(X), then M ∩ S is a

member of the class S(S).

By Theorem 3.12, we get that either R is in Table 3.3 or |M | < qu(2n+4). Assume

that n is at least 8, 13, 12 and 13 in the cases L, U, S and O respectively. An easy

check shows that the proposition holds.

Assume that n = 3 and case L or U hold. By Table 3.4, it is straightforward to

see that the proposition holds.

Throughout the rest of the proof, assume that if case L or U hold, then n ≥ 4.

Using [CCN+85], it is easy to see that the proposition holds in the following cases:

• Case L, (n, q) ∈ {(4, 2), (5, 2)}.

• Case U, (n, q) ∈ {(4, 2), (5, 2)}.

• Case S, (n, q) ∈ {(4, 3), (4, 4), (6, 2), (8, 2)}.

• Case O, (n, q) = (7, 3).

• Case O
+, (n, q) = (8, 2).

• Case O
−, (n, q) = (8, 2).

Recall the definition of the class S (see Theorem 3.11). In particular, if M lies

in S, then there exists an absolutely irreducible representation ρ : L → GL(V ) such

that ρ(L) = R, where L is the full covering of S.

Suppose that R is not a group of Lie type of characteristic p.

Using Tables 3.15 and 3.16, we find a lower bound of |X : M |p, (the ratio

|G|p/|Aut(S)|p). It turns out that this lower bound is smaller than qβ̃p(X) in the

following cases:

• Case L, (n, q) ∈ {(4, 2), (5, 2)}.

• Case U, (n, q) ∈ {(4, 2), (5, 2)}.

• Case S, (n, q) ∈ {(4, 4), (6, 2)}.
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• Case O
±, (n, q) ∈ {(8, 2)}.

Note that the cases above have been already considered.

Assume that R is a group of Lie type of characteristic p over Fr. Again, using Ta-

bles 3.17 and 3.18, we find that the lower bound of |X : M |p (the ratio |G|p/|Aut(S)|p)
is greater that or equal to qβ̃p(X). In particular, when case O

o holds for n = 7 we have

that there can be a maximal subgroup M in S with socle isomorphic to G2(q), but

it turns out that M ∼= G2(q) (see [Kle87]), hence the result holds. Similarly, when

case O
± holds for n = 8, we have that there can be a maximal subgroup M in S with

socle R isomorphic to PSp6(q) or PΩ7(q), but it turns out that M = R (see [LPS90,

p. 32, Table G] and [Kle87]) hence the result holds. The proof is finished. �



Chapter 7

Proof of the Main Theorem

This chapter is devoted to the proof of the main theorem of the present part. The

following statement is the most general result we were able to obtain, so in order to

state it we need a lot of assumptions. However, note that if G is a classical group

which does not contain non-trivial graph automorphisms, then the assumptions are

fulfilled.

Theorem 7.1. Let G be a finite group. Let A be the set of representatives of the G-

equivalence classes of chief factors of G. Let A ∈ A and denote by LA the monolithic

primitive group associated with A. Assume that for each A ∈ A exactly one of the

following holds:

• A is abelian;

• XA = NLA
(A)/CLA

(A) is a projective classical group over the field Fq (for some

q prime power) and qL−1 > |d|p, q > |ρ|p|ηd− 1||I|−1
p where d = 2|LA : NLA

(A)|,
the number |ρ| is the maximum order of a graph automorphism in XA (see p.41

for the definition) and

η =

{

2 if |ρ| = 2 and soc(XA) is of type L,

1 otherwise.

Moreover, if there is a maximal subgroup of LA which is not non-trivial inter-

secting, then assume that |ρ|p|d|p|ηd− 1||I|−1
p < |S|2p, where S = soc(XA);
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• soc(XA) ∼= PSL2(49)and XA > soc(XA). If there is a maximal subgroup of LA

which is not non-trivial intersecting, then assume that |d|5 < 25;

• soc(XA) ∼= PSL2(8). In this case assume that |d|7 = 1;

• A ∼= PSL2(9),PSL4(2),PSU4(2),PSp6(2),PSL2(49).

Then PG(−1) 6= 0, hence the order complex of the coset poset of G is not contractible.

The proof of the above result is in the end of the present chapter.

In Table 7.1 we fix the values of the number L, we shall use during the proof of L

the following results.

Table 7.1: Value of L for the classical simple groups
Case S L |I|
L PSLn(q) n− 1 n− 1
U PSUn(q) 2

[

n−1
2

]

+ 1
[

n
2

]

S PSpn(q)
n
2

n
2

O
o PΩn(q)

n−1
2

n−1
2

O
+ PΩ+

n (q) n
2

n
2

O
− PΩ−

n (q) n
2

n
2
− 1

7.1 General case

Proposition 7.2. Let X be a projective classical group with socle S of characteristic

p. Let d be an even positive number, such that

|P (p)
X,S(1 − d)|p = |d(d− 1)|I|−1|pqL,

where |I| is the number or ρ-orbits of S. Moreover assume that

• X does not contain a non-trivial graph automorphism;

• if case L holds, then n ≥ 3 and (n, q) 6= (4, 2);
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• if case U holds, then (n, q) 6= (4, 2);

• if case S holds, then (n, q) 6= (6, 2).

Then |PX,S(1 − d)|p = |d(d− 1)|I|−1|pqL.

Proof. In order to prove the proposition, it is enough to show that

|d(d− 1)|I|−1|pqL < qdβp(X),

as we have seen in Chapter 4. Recall that βp(X) ≥ β̃p(X), which is given in Theorem

6.1. An easy computation shows that

|2|pqL < q2β̃p(X) ≤ q2βp(X), (∗)

hence for d = 2 the result holds. By (∗) we get:

|4|p|(4 − 1)|I|−1|pqL < |4|p|3|Lp qL ≤ (|2|pqL)2 < q4βp(X),

hence for d = 4 we have the claim. Arguing in a similar way, we obtain the result for

d ≤ 14. Let d = 2d′ and assume that d′ ≥ 8. By (∗) we get:

|d(d− 1)|I|−1|pqL ≤ |2|pqL|d′|p|2d′ − 1|Lp < q2βp(X)d′(2d′ − 1)L ≤

≤ q2βp(X)2L(d′−1) ≤ q2βp(X)(|2|pqL)d
′−1 < q2d′βp(X),

since for d′ ≥ 8 we have that d′(2d′ − 1) ≤ 2d
′−1. Thus the proof is complete. �

Proposition 7.3. Let X be a projective classical group with socle S of characteristic

p. Assume that

• X contains a graph automorphism of order 2 (i.e. case L or case O
+ holds);

• if case L holds then (n, q) 6= (4, 2); moreover we assume that |P (p)
X,S(1 − d)|p =

|2d(2d− 1)[
n
2 ]−1|pq[

n−1
2 ];

• if case O
+ holds we assume that |P (p)

X,S(1 − d)|p = |2d(d− 1)
n
2
−2|pq

n
2
−1.
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Then |PX,S(1 − d)|p = |P (p)
X,S(1 − d)|p.

Proof. As in the previous proposition, it is enough to show that

|P (p)
X,S(1 − d)|p < qdβp(X),

as we have seen in Chapter 4. Assume that case L holds. As in the previous proof,

we have that

|d(d− 1)n−1|pqn−1 < qdβp(X).

Hence we get:

|4(4 − 1)[
n
2 ]−1|pq[

n−1
2 ] ≤ |4|pqn−2 < q2βp(X),

thus we have the claim for d = 2. Similarly we get the result for d = 4. Assume that

d ≥ 6. Since 2d(2d− 1)[
n
2 ]−1 ≤ d(d− 1)n−1 for d ≥ 6, we have that:

|2d(2d− 1)[
n
2 ]−1|pq[

n−1
2 ] ≤ |d(d− 1)n−1|pqn−1 < qdβp(X),

hence we obtain the claim.

Assume that case O
+ holds. By the proof of the previous proposition, we have

that

|d(d− 1)
n
2
−1|pq

n
2
−1 < qdβp(X).

Thus we get:

|2d(d− 1)
n
2
−2|pq

n
2
−1 ≤ |d(d− 1)

n
2
−1|pq

n
2
−1 < qdβp(X).

This completes the proof. �

7.2 The projective linear groups PSL2(q)

For a prime number r we let

br(X) = min{|X : H|r, H < X, |X : H|r > 1, HS = X,µX(H) 6= 0}.
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For some almost simple groups X there exists a prime number r > 2 such that

br(X) and P
(r)
X,S(1 − d) are easy to compute (using [GAP]). In particular, for the

groups X in Table 7.2 (except for PSL2(8) and PΓL2(8)), we have that P (r)
X,S(1−d) =

1− (a+ 1)d where |a|r = r, hence |P (r)
X,S(1− d)|r = r|d|r (see the proof of Proposition

5.10). If S = PSL2(8), then P (7)
X,S(1− d) = 1− 9d − 36d + 72d. It is easy to see that if

|d|7 = 1, then |1 − 9d − 36d + 72d|7 = 7.

Table 7.2: r for some PSL2(q) ≤ X ≤ PΓL2(q), with q ≤ 11
X r X r

PSL2(4) ∼= PSL2(5) 5 M10 5
PGL2(5) ∼= PΓL2(4) 5 PΓL2(9) 5
PSL2(7) ∼= PSL3(2) 7 PGL2(9) 5
PGL2(7) ∼= PΓL3(2) 7 PSL2(11) 11

PSL2(8) 7 PGL2(11) 11
PΓL2(8) 7

Proposition 7.4. Assume n = 2 and case L holds. Assume that q ≥ 13. Let d be

an even positive integer. The following hold.

(1) If q = p, then |P (p)
X,S(1 − d)|p = p|d|p and bp(X) = p.

(2) If q 6= p and q 6= 49, then |P (t)
X,S(1 − d)|t = |S|t|d|t and bt(X) ≥ |S|1/2t .

(3) If q = 49 and X > S, then |P (5)
X,S(1 − d)|t = 25|d|5 and b5(X) = 52.

Proof. Let δ = (q − 1, 2) and q = pf .

We prove (1). In this case we have f = 1. Let P be a Sylow p-subgroup of X. Let

M be a maximal subgroup of X such that M contains P and MS = X. By Lemma

3.8, we have NX(P ) ≤ M , so we can apply Lemma 3.6. By [KL90, Proposition

4.1.16], we have that M = NX(M ∩S) and M ∩S is a maximal subgroup of S. Since

M ∩ S = NS(P ∩ S) we have that MP∩S(S) = {M ∩ S} and so MP (X) = {M}.
Applying Lemma 3.6, we deduce that

P
(p)
S (s) = 1 − 1

|S : M ∩ S|s−1
= 1 − 1

|X : M |s−1
= P

(p)
X,S(s).
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Hence we get:

P
(p)
X,S(s) = 1 − p+ 1

(p+ 1)s
,

so we have |P (p)
X,S(−(d−1))|p = |d|pp (see Proposition 5.10), thus we obtain the claim.

Now, we prove (2). So assume f ≥ 2 and q 6= 49. As in [Pat09c], case m = 1 of the

proof of Proposition 16, let t = p̂2f be a Zsigmondy prime for 〈p, 2f〉. In particular,

for f = 2,

if 53 divides p2 + 1, let t = 5;

otherwise, let t = p̂4 be a Zsigmondy prime for 〈p, 4〉 distinct from 5.

Let T be a Sylow t-subgroup of X. By [Pat09c], case m = 1 of the proof of Proposition

16, we have:

(a) PS(s) = 1 − q(q−1)/2
[q(q−1)/2]s

+
∑

t|k
ak(S)
ks .

(b) Let K be a maximal subgroup of S. We have that |S : K| is divisible by t if and

only if K is not isomorphic to D2(q+1)/δ. In particular, if K is not isomorphic

to D2(q+1)/δ, we have vt(|S : K|) > vt(|S|)/2, where vt : Q → Z ∪ {∞} is the

t-adic valuation map.

(c) Let K1 and K2 be two distinct maximal subgroups isomorphic to D2(q+1)/δ. We

have that vt(|S : K1 ∩K2|) > vt(|S|)/2.

(d) The group NS(T ∩ S) is a maximal subgroup of S isomorphic to D2(q+1)/δ.

Moreover, by [Giu07], we have that

if M is a maximal subgroup of X and M ∩S is a isomorphic to a subgroup

of D2(q+1)/δ, then M ∩ S is isomorphic to D2(q+1)/δ. (∗)

In particular, if M is in MT (X), by (d) we have that M ∩ S = NS(T ∩ S) and

M = NX(NS(T ∩ S)). So we obtain NX(T ∩ S) ≤ NX(NS(T ∩ S)) = M and since

NX(T ) ≤ NX(T∩S), we getNX(T ) ≤M . Moreover, by (b), (d) andM = NX(M∩S),
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we have that MT∩S(S) = {M ∩ S} and so MT (X) = {M}. Using (a) and applying

Lemma 3.6, we deduce that

P
(t)
S (s) = 1 − 1

[q(q − 1)/2]s−1
= 1 − 1

|S : M ∩ S|s−1
= 1 − 1

|X : M |s−1
= P

(t)
X,S(s).

Thus |P (t)
X,S(1 − d)|t = |S|t|d|t (argue as in Proposition 5.10).

Now, let H be a subgroup of X such that HS = X and M does not contain a

Sylow t-subgroup of X. We have that |X : H| = |S : H ∩ S|. Suppose that M is a

maximal subgroup of X containing H . By (∗) we have that M ∩ S is not isomorphic

to a subgroup of D2(q+1)/δ . Thus, by (b) and (c), we obtain vt(|X : H|) > vt(|S|)/2.

So we get that bt(X) ≥ |S|1/2t .

Finally, we prove (3). Assume that q = 49 and X > S. We show that r = 5 fulfills

the requirements of the proposition. Let M be a maximal subgroup of X such that

MS = X and |X : M |5 = 1. By [Giu07, Theorem 1.3, 1.4, 1.5 and 3.5], we have that

M is conjugated to NX(D50). Let M1 and M2 be two distinct maximal subgroups

of X such that M1S = M2S = X and |X : M1|5 = |X : M2|5 = 1. We claim that

|X : M1 ∩M2|5 > 1. For a contradiction, suppose that M1 ∩M2 contains a Sylow

5-subgroup of X. Since M1 and M2 are conjugated to NX(D50), they contain a cyclic

normal subgroup C of order 25. Thus C �X, a contradiction. Hence we get

P
(5)
X,S(s) = 1 − 11761−s,

so |P (5)
X,S(1 − d)|5 = 25|d|5 (argue as in Proposition 5.10). Now, if M is a maximal

subgroup ofX such that MS = X and |X : M |5 > 1, then we have that |X : M |5 = 52

(see [Giu07, Theorem 1.3, 1.4, 1.5 and 3.5]). So we obtain the claim. �

7.3 Proof of Theorem 7.1

Note that there are some groups missing: PSL2(9),PSL4(2),PSU4(2),PSp6(2) and

their automorphism groups. Using [GAP], one can see that PX,S(−1) 6= 0. Also

PPSL2(49)(−1) 6= 0.
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Now we can prove Theorem 7.1.

Proof. By Theorem 1.1, we have that:

PG(s) =
∏

A∈A





∏

1≤i≤δG(A)

P̃LA,i(s)



 ,

where

P̃LA,1(s) = PLA,A(s), P̃LA,i(s) = PLA,A(s) − cA,i
|A|s for i > 1,

for some cA,i ∈ N such that |A| divides cA,i if A is not abelian. As it was pointed out

before Theorem 1.1, if A is abelian, then P̃LA,i(−1) 6= 0 (indeed, this is a result of

[Bro00]).

Now, assume that X = NLA
(A)/CLA

(A) is a classical projective group. As we

have see in Chapter 4, in order to show that PLA,i(−1) 6= 0, it is enough to prove that

|P (p)
X,A(1 − d)|p < min{qdβp(X), |S|2p},

and if each maximal subgroup of LA is non-trivial intersecting, then it is enough to

show that

|P (p)
X,A(1 − d)|r < qdβp(X).

In particular, note that qβp(X) ≤ |S|p, hence qdβp(X) ≤ |S|dp = |A|2p.
Since we assume that qL−1 > |d|p, q > |ρ|p|ηd − 1||I|−1

p , by Proposition 5.10 and

5.11, we have that |P (r)
X,A(1 − d)|p = |ρ|p|ηd − 1||I|−1

p . From Proposition 7.2, 7.3 and

7.4 the result follows.

In a similar way, the result holds in the other cases. �



Part II

On the irreducibility of the Dirichlet

polynomial of a simple group of Lie

type.
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Chapter 8

Introduction

The aim of this part is to prove the following theorem.

Theorem 8.1. Let G be a primitive monolithic group with a simple component S

isomorphic to a simple group of Lie type. Let X = NG(S)/CG(S). Let k be the

maximum of the orders of the graph automorphisms in X . Aut(S). Assume that

• the Lie rank of S is greater than k;

• S is not isomorphic to one of the following groups: A2(2), A2(3), 2A3(3
2),

2A4(2
2), 2A5(2

2), C2(p) for p a Mersenne prime.

The Dirichlet polynomial PG,soc(G)(s) is irreducible in the ring of finite Dirichlet series.

In particular, if G = S, then we obtain a complete answer to the irreducibility

problem.

Theorem 8.2. Let S be a simple group of Lie type. Then PS(s) is reducible in the

ring of Dirichlet finite series if and only if S ∼= A1(p) for some Mersenne prime p

such that log2(p+ 1) ≡ 3 (mod 4).

In order to prove such theorems, we first show that the Dirichlet polynomial

P
(p)
G,soc(G)(s) is irreducible in most of cases. Next, we apply Lemma 2.13 with h(s) =
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PG,soc(G)(s), π0 = {p} and a suitable set of prime numbers π (usually consisting of

some Zsigmondy primes).

With the same proof of Theorem 8.1, we obtain the following theorem, which gives

a bijective correspondence between the set of chief factors of a group H and the set

of irreducible factors of PH(s), under some assumptions.

Theorem 8.3. Let H be a finite group. Let 1 = H0 � H1 � ... � Hk = H be a

chief series of H and assume that the chief factors of H are non-abelian. Let LKi

be the monolithic primitive group associated with Ki = Hi+1/Hi, defined by LKi
=

Hi/CHi
(Ki). Suppose that LKi

satisfies the assumptions of Theorem 8.1 for each

i ∈ {0, ..., k − 1}. Then

PH(s) =
k−1
∏

i=0

PHi,Ki
(s)

is a factorization into irreducible elements of R.

Moreover, in a slightly more general situation, we are able to determine the number

of non-Frattini chief factors ofH . In fact, thanks to [DL03a, Lemma 16], as a corollary

of Theorem 8.3, we have the following.

Theorem 8.4. Let H be a finite group as above. Suppose that LKi
satisfies the

assumptions of Theorem 8.1 whenever Ki is a non-abelian chief factor of H. Let

k1, k2 ∈ N such that

PH(s) =

k1
∏

i=1

(

1 − ci
pais
i

) k2
∏

j=1

fj(s)

where ai, ci ∈ N − {0}, pi is a prime number for all i ∈ {1, ..., k1} and fj(s) is an

irreducible Dirichlet polynomial not equal to ±(1 − c
pas ) for any a, c ∈ N − {0} and p

prime, for each j ∈ {1, ..., k2}. Then k1 is the number of non-Frattini abelian chief

factors of H and k2 is the number of non-abelian chief factors of H.



Chapter 9

The irreducibility of the Dirichlet

polynomial P
(p)
G,soc(G)

(s)

Let G be a primitive monolithic group with socle soc(G), the group S is a simple

component of G and X = NG(S)/CG(S). Moreover, let S be a simple group of Lie

type of characteristic p and S ∼= soc(X). The aim of the present section is to prove

that the Dirichlet polynomial P (p)
G,soc(G)(s) is irreducible when the Lie rank of S is

greater than the order of each graph automorphisms of X (see Proposition 9.3).

9.1 Some preliminary results

Lemma 9.1. Assume that S is a simple group of Lie type such that S is not isomor-

phic to one of the following groups: A1(p) with p a Mersenne prime, 2A3(2
2), A5(2),

C3(2), D4(2). Define the number ζ(S) as in Table 9.1.

Let r be the prime number t̂ζ(S) (i.e. the greatest Zsigmondy prime for 〈t, ζ(S)〉).
If H is a proper parabolic subgroup of S, then |S : H|r = |S|r.

Proof. Let H be a proper parabolic subgroup of S. By the discussion after

Proposition 3.4, using the definition of Zsigmondy prime, if |S : H|r > 1, then

|S : H|r = |S|r. �
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Table 9.1: ζ(S) for S a simple group of Lie type
S ζ(S) S ζ(S)

Al(t) l + 1 2Al(t
2), l odd 2l

Bl(t), Cl(t) 2l 2Al(t
2), l even 2l + 2

Dl(t) 2l − 2 2Dl(t
2) 2l

E6(t) 12 3D4(t
3) 12

E7(t) 18 2E6(t
2) 18

E8(t) 30 2B2(t
2) 4

F4(t) 12 2F4(t
2) 24

G2(t) 6 2G2(t
2) 6

We denote by G1 the set of groups X such that X does not contain a non-trivialG1

graph automorphism and S is isomorphic to one of the following groups:

• Al(t) for l ≥ 2 and (l, t) 6∈ {(2, p) : p is a Mersenne prime} ∪ {(5, 2)};

• 2Al(t
2) for l ≥ 3 and (l, t) 6∈ {(3, 2)};

• Bl(t) for l ≥ 3;

• Cl(t) for l ≥ 2 and (l, t) 6∈ {(2, p) : p is a Mersenne prime} ∪ {(3, 2)};

• Dl(t) for l ≥ 4 and (l, t) 6∈ {(4, 2)};

• 2Dl(t
2), El(t), 2E6(t

2).

We define G2 to be the set consisting of the groups X such that the maximumG2

of the order of a graph automorphism in X is 2 and S is isomorphic to one of the

following groups:

• Al(t) for l ≥ 3 and (l, t) 6∈ {(3, p) : p is a Mersenne prime} ∪ {5, 2};

• Dl(t) for l ≥ 4 and (l, t) 6∈ {(4, 2)};

• E6(t).
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The numbers θ1(X) and θ2(X). Let k ∈ {1, 2}. Let X be an element of Gk.θ1(X),

θ2(X) The numbers θk(X) for k ∈ {1, 2} are defined in the following way:

• if S ∼= A6(2), then θ1(X) = θ2(X) = 5;

• if S ∼= A7(2), then θ1(X) = 7 and θ2(X) = 5;

• if S ∼= 2A4(2
2), then θ1(X) = 4;

• if S ∼= C4(2), then θ1(X) = 3;

• if S ∼= D5(2), then θ1(X) = θ2(X) = 3;

• if S ∼= 2D5(2
2), then θ1(X) = 3;

• otherwise let θk(X) be as in Table 9.2.

Table 9.2: θk(X) for X almost simple group of Lie type with socle S
S θ1(X) θ2(X) S θ1(X)

Al(t) l l − 1 2A3(t
2), 2A5(t

2) 4
Bl(t), Cl(t) 2l − 2 2Al(t

2), l > 5 odd 2l − 4
Dl(t), l ≥ 5 2l − 4 2l − 4 2Al(t

2), l ≥ 4 even 2l − 2
D4(t) 3 3 2D4(t

2) 3
E6(t) 8 5 2Dl(t

2), l > 4 2l − 4
E7(t) 12 2E6(t

2) 10
E8(t) 18

We have the following.

Proposition 9.2. Let k ∈ {1, 2}. Assume that X ∈ Gk. Let v = t̂θk(X). If H is

a proper parabolic subgroup of S such that |S : H|v > 1, then |S : H|v = |S|v. In

particular, for H = B, we have |S : H|v = |S : B|v = |S|v. Moreover, there exists

J ∈ PX(I) such that |S : PJ |v = 1.
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Proof. Let H be a proper parabolic subgroup of S. By the discussion after

Proposition 3.4 and the definition of Zsigmondy prime, it is not difficult to see that

if |S : H|v > 1, then |S : H|v = |S|v. It remains to prove there exists J ∈ PX(I) such

that |S : PJ |v = 1.

Assume that k = 1. Using the labeling of Figure 3.1, define K ⊂ Π as follows:

K =















































{r1, r3} if S ∼= 2A3(t
2),

{r1, r4} if S ∼= 2A4(2
2),

{r2, ..., rl−1} if S ∼= 2Al(t
2), l ≥ 4, (l, t) 6= (4, 2),

{r1, r2} if S ∼= 2D4(t
2),

{r1, ..., rl−1} if S ∼= El(t)

{r2, ..., rl} otherwise.

Assume that k = 2. Using the labeling of Figure 3.1, define K ⊂ Π as follows:

K =















{r2, ..., rl−1} if S ∼= Al(t),

{r2, ..., rl} if S ∼= Dl(t),

{r2, ..., r6} if S ∼= E6(t).

In both cases, K is union of ρ-orbits. Let J be the set of these orbits. By

definition of K, it is clear that J ∈ PX(I). Moreover, it is easy to see that J satisfies

the requirements. �

9.2 Proof of the irreducibility of P (p)
G,soc(G)(s)

Now, we can prove the following result on the irreducibility of P (p)
G,soc(G)(s).

Proposition 9.3. Let G be a primitive monolithic group with non-abelian socle

soc(G) and let S be a simple component of G. Let X = NG(S)/CG(S) and let k

be the maximum of the orders of the graph automorphisms of X. Further, assume

that S is a group of Lie type of Lie rank greater than k. The Dirichlet polynomial

P
(p)
G,soc(G)(s) is irreducible in the ring of finite Dirichlet series.
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Proof. By Theorem 1.3, we have that P (p)
G,soc(G)(s) = P

(p)
X,S(n(s− 1) + 1).

A direct inspection shows that the proposition holds if S is isomorphic to one of the

following groups: A5(2), 2A3(2
2), C3(2), D4(2). So, assume that S is not isomorphic

to one of the following groups: A5(2), 2A3(2
2), C3(2), D4(2).

Let r = t̂ζ(S) and let x = xr be the indeterminate corresponding to r, i.e.

Ψ(r(1−s)) = x. Let D = Z[Xπ(S)−{r}].

Assume that k ∈ {1, 2} and X is in Gk. Let v = t̂θk(S). Let y = xv be the

indeterminate corresponding to v, i.e. Ψ(v(1−s)) = y. Let g(x, y) = Ψ(P
(p)
G,soc(G)(s)),

considered as a polynomial in E[x, y], where E = Z[Xπ(S)−{r,v}]. By Theorem 3.10,

Lemma 9.1 and Proposition 9.2, we have that g(x, y) = 1 − xm1(b + cym2) for some

b, c ∈ E − {0} and m1, m2 ∈ N, m1, m2 ≥ 1. Let f(x) be the polynomial g(x, y) in

D[x]. For a contradiction, assume that f(x) is irreducible in D[x]. By Lemma 2.10,

we have that b+ cym2 or −(b+ cym2) is a non-trivial power in D. However, it is clear

that b+ cym2 and −(b+ cym2) are not non-trivial power in D = E[y].

Assume that k ∈ {1, 2} and X 6∈ Gk. In this case, by Lemma 9.1, we have that

f(x) = Ψ(P
(p)
G,soc(G)(s)) = 1 − axm

for some m ∈ N and a ∈ D. By Lemma 2.10, if f(x) is reducible, then a or −a is a

non-trivial power in D. A direct inspection shows that this does not happen.

Assume that k = 3, i.e. S is isomorphic to D4(t) and that X contains a graph

automorphism of order 3. Let y = yt̂3 = Ψ(t̂1−s3 ) be the indeterminate corresponding

to t̂3. We have that f(y) = Ψ(P
(p)
G,soc(G)(s)) = 1− aym for some m ∈ N and a ∈ D. As

above, by Lemma 2.10, if f(x) is reducible, then a or −a is a non-trivial power in D.

A direct inspection shows that this does not happen. �



Chapter 10

Proof of the main theorem.

In this section we prove Theorem 8.1. Recall that X is an almost simple group with

socle a simple group of Lie type S, and B is a Borel subgroup of S.

A key role in the proof of Theorem 8.1 is played by the following proposition,

which proves that, under some assumptions, P (Ω)
X,S(s) = 1 for Ω = π(S) − π(B).

Proposition 10.1. Let S be a simple group of Lie type of characteristic p and assume

that the Lie rank of S is at least 2. Moreover, assume that S 6∈ {A2(2), A3(2), 2A3(3
2),

2A4(2
2), 2A5(2

2)}∪{A2(p), C2(p)} for p a Mersenne prime. Let B be a Borel subgroup

of S and let Ω = π(S) − π(B). If H is a subgroup of S such that |S|r = |H|r for all

r ∈ Ω, then H = S.

Proof. Let H and S be as in the statement. For a contradiction, assume that

H < S. Without loss of generality, we may assume that H is a maximal subgroup of

S. By hypothesis, we have that

b(S) =
∏

r∈Ω

|S|r =
|S : B|

∏

r||B| |S : B|r
divides |H|.

Let π be a set of prime numbers. We denote by Mπ(S) the set of representatives

of the isomorphism classes of maximal subgroups M of S such that r does not divide

|S : M | for all r ∈ π.
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Table 10.1: |S : B|r when r divides |B|.
S |S : B|2 |S : B|3 |S : B|5 |S : B|7 |S : B|r, r ≥ 11

G2(t) |t+ 1|22 3 1 1 1
E6(t) 23|t+ 1|42 34 5 1 1

2E6(t
2), r|t− 1 23|t+ 1|42 32 1 1 1

2E6(t
2), r|t+ 1 23|t+ 1|42 34|t+ 1|43 5|t+ 1|45 |t+ 1|47 |t+ 1|4r
E7(t) 23|t+ 1|72 34 5 7 1
E8(t) 26|t+ 1|82 35 52 7 1
F4(t) 23|t+ 1|42 32 1 1 1

For the exceptional groups, we adopt the following strategy. We find a subset π

of Ω such that if H ∈ Mπ(S), then |H| < b(S). This is enough to prove the claim.

In Table 10.1, we report the numbers |S : B|r with r ∈ π(B) and r 6= p for some

exceptional group S.

Case S = 3D4(t
3). By [Kle88b], we have that M{t̂3,t̂12}(S) = ∅.

Case S = G2(t). In this case we have t ≥ 4 and the maximal subgroup of S are

known (see [Kle88a] and [Coo81]). If t = 4, then M{5,7,13}(S) = ∅. If t ≤ 7 and t 6= 4,

then M{t̂3,t̂6}(S) = ∅. Suppose that t ≥ 9. We have that M{t̂3,t̂6}(S) ⊆ {A1(13)}, but

b(S) > |A1(13)|.
Case S = 2F4(t

2). In this case, t2 = 22k+1 and k ≥ 1. The maximal subgroup

of S are known (see [Mal91]). Note that Φ12(t
2) = t8 − t4 + 1 divides the order

of S and a prime divisor of Φ12(t
2) is a prime divisor of b(S). Moreover, we have

that t8 − t4 + 1 = (t4 −
√

2t3 + t2 −
√

2t + 1)(t4 +
√

2t3 + t2 +
√

2t + 1) and (t4 −
√

2t3 + t2 −
√

2t+ 1, t4 +
√

2t3 + t2 +
√

2t+ 1) = 1. Thus let r+ be a prime divisor of

t4 +
√

2t3 + t2 +
√

2t+ 1 and r− be a prime divisor of t4 −
√

2t3 + t2 −
√

2t+ 1. We

have that M{r+,r−}(S) = ∅.

Case S ∈ {E6(t),
2E6(t

2), E7(t), E8(t)}. By [ILS03, Theorem 9], the maximal

subgroups H of S such that |H| ≥ γ(S) are known (the values of γ(S) are given in

Table 10.2). By direct inspection, it is easy to see that if H ∈Mπ1(S)(S) , then |H| <
γ(S) (see Table 10.2 for the values of π1(S)). Moreover, we have that b(S) > γ(S)
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except for 2E6(t
2) and t ∈ {2, 4, 5}. Assume that S = 2E6(t

2) and t ∈ {2, 4, 5}. By

[ILS03, Theorem 8], a direct inspection shows that if H ∈Mπ1(S)(S), then |H| < b(S).

Table 10.2: Values of γ(S) and π1(S) for some groups
S γ(S) π1(S)

kE6(t
k), k ∈ {1, 2} 4 logp(t)t

28 t̂12, t̂9k
E7(t) 4 logp(t)t

30 t̂18, t̂14
E8(t) 12 logp(t)t

56 t̂30, t̂24

Case S = F4(t). By [ILS03, Theorem 8], a direct inspection shows that if

H ∈M{t̂12,t̂8}(S), then |H| < b(S).

Table 10.3: Classical groups, geometric case
S πG(S) (l, t) S π(S) (l, t)

Al(t) 5, 7, 31 (5, 2) Cl(t) 5, 7, 17 (4, 2)
31, 127 (6, 2) 5, 7 (3, 2)
t̂2, t̂3 l = 2 Dl(t) 5, 7 (4, 2)

t̂l−1, t̂l, t̂l+1 (4, 2), (10, 2), (12, 2), 17, 31 (5, 2)
(4, 3), (6, 3), (6, 5) 7, 11, 17 (6, 2)

Cl(t) 7, 11, 13 (6, 2) 2Dl(t
2) 7, 17 (4, 2)

Case S a classical group. A maximal subgroup of S is either geometric or

a nearly simple group in the class S (see [KL90] for a better explanation). The

geometric maximal subgroups of S are known (see [KL90]). If S does not appear in
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the Table 10.3, then let

πG(S) =



























































{t̂l+1, t̂l} if S = Al(t),

{t̂2l, t̂l+1} if S = 2Al(t), l odd,

{t̂2l+2, t̂2l−2} if S = 2Al(t), l even,

{t̂2l, t̂l} if S = Bl(t),

{t̂2l, t̂2l−2, t̂l} if S = Cl(t),

{t̂2l−2, t̂2l−4, t̂l} if S = Dl(t),

{t̂2l, t̂2l−2} if S = 2Dl(t).

By Subsection 3.3.1 (also see [KL90]), if H ∈ MπG(S), then H is not a geometric

maximal subgroup.

By [CCN+85], we have that if S ∼= A5(2) or 2A3(2
2), then the class S is empty, so

we let πS(S) = ∅.

Table 10.4: Classical groups, class S

S πS(S) (l, t) S πS(S) (l, t)

Al(t) t̂l+1, t̂l (2, 4), (5, t), Cl(t) t̂4, t̂2 l ∈ {2, 3}, t > 2 even
(7, 2), (17, 3), (19, 2) 5 (3, 2)
and (3, 2k), k ≥ 2 5, 13 (3, 3)

19, 127 (8, 2) 31 (3, 5)
13 (3, 3) 7, 17 (4, 2)
73 (9, 2) t̂2l−2 (5, 2), (9, 2)
89 (11, 2) 17 (6, 2)

131071 (17, 2) 19, 41 (10, 2)
2Al(t

2) 7, 13 (3, 5) Dl(t) t̂2l−4 (4, 2), (4, 5), (6, 2), (10, 2)
43 (8, 2) 13, 5 (4, 3)
17 (9, 2) 127 (7, 2)

Bl(t) t̂2l, t̂2l−2 (9, 3), t̂6, t̂4 l = 4, t 6∈ {2, 3, 5}
(3, t) with t > 5 2Dl(t

2) t̂2l, t̂2l−2 (9, 2), (9, 3), (10, 2)
t̂4, t̂3 (3, 3), (3, 5) 17 (5, 2), (6, 2)

5, 17 (4, 2)



126

If S is not in the Table 10.4, then let

πS(S) =



























{t̂l+1} if S = Al(t),

{t̂2l} if S = 2Al(t
2), l odd, or S ∈ {Bl(t), Cl(t),

2Dl(t
2)},

{t̂2l+2} if S = 2Al(t
2), l even,

{t̂2l−2} if S = Dl(t).

Using [CCN+85] for S ∈ {C3(2), D4(2)} and Subsection 3.3.1 in the other cases, we

have that if H ∈MπS(S), then H is not a maximal subgroup in the class S of S.

So, if π(S) = πG(S) ∪ πS(S), then Mπ(S) = ∅. �

10.1 The proof

We are ready to prove the main theorem.

Proof of Theorem 8.1. In order to prove the claim, we apply Lemma 2.13.

Assume that S ∼= A3(2). Using [GAP], and applying Lemma 2.13 with π0 = {2}
and π = {5, 7}, we obtain the claim.

Assume that S ∼= A2(t) for some t = p = 2u − 1, u ≥ 3. In this case X does not

contain a non-trivial graph automorphism. Let π1 = π(t − 1) − {2}. Clearly, π1 is

not empty.

We claim that P (π1)
G,socG(s) is irreducible. Note that we have P (π1∪{p})

X,S (s) = P
(p)
X,S(s)

(see Section 3.2). Take h(s) = P
(π1)
G,soc(G)(s) and π0 = {p}. By Proposition 9.3 we

have that h(p)(s) = P
(p)
G,soc(G)(s) is irreducible. Let π = {t3}. It is easy to see that

|P (p)
X,S(s)|t3 = |S|t3, so using Theorem 1.3, we get |h(p)(s)|t3 = |P (p)

G,socG(s)|t3 = |S|nt3.
Now, we have that |S|t3 > 7. In fact, otherwise we get that t2 + t + 1 divides 21, a

contradiction. By [Mit11], we have that P (π1∪π2)
X,S (s) = 1, hence h(π2)(s) = 1. Applying

Lemma 2.13, we obtain the claim.

Now, we claim that |P (π1)
G,soc(G)(s)|t = |S|nt . In order to show this, it is enough to

prove that ak(X,S) 6= 0 where k = t3(t+1)(t2+t+1)
3

. Let H be a subgroup of X such that

HS = X, H is intersection of maximal subgroups of X and |X : H| = k. By [KL90]

and [Mit11], if M is a maximal subgroup of X such that MS = X and |X : M | is a
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π′
1 number, then |X : M | = k or M ∩S is a parabolic subgroup of S. It is easy to see

that the index of the intersection of two distinct parabolic subgroups (not necessarily

containing the same Borel subgroup) of S can not be k. Thus H must be a maximal

subgroup of X, hence ak(X,S) 6= 0.

Finally, we claim that PG,soc(G)(s) is irreducible. Take h(s) = PG,soc(G)(s). As we

have seen above, h(π1)(s) is irreducible. Let π = {p, t3}. As before, we have that

|h(π1)(s)|v = |S|nv for each v ∈ π. Moreover, by Section 3.2, we have that h(π)(s) = 1.

Thus, applying Lemma 2.13, we obtain the claim.

Assume that S 6∼= A3(2) and S 6∼= A2(p) for each p = 2u− 1, u ≥ 3. We verify that

the conditions of Lemma 2.13 are fulfilled. Take h(s) = PG,soc(G)(s) and π0 = {p}.
By Proposition 9.3 we have that P (p)

G,soc(G)(s) is irreducible. As in Proposition 10.1,

let B be a Borel subgroup of S and let π = π(S) − π(B). By Proposition 3.10 and

Theorem 1.3, we get that |P (p)
G,soc(G)(s)|v = |S|nv for each v ∈ π. Moreover, by Theorem

1.3 and Proposition 10.1, we have that P (π)
G,soc(G)(s) = P

(π)
X,S(n(s− 1) + 1) = 1. So we

can apply Lemma 2.13. �

10.2 Proof in some other cases

Using a slightly different strategy, Theorem 8.1 can be proved also for some S of low

rank. For example, we have the following.

Proposition 10.2. Let G be a monolithic primitive group with a simple component

isomorphic to S = 2A2(t
2) and assume that there exists a prime divisor of t+1 greater

than 3. We have that PG,soc(G)(s) is irreducible.

We recall that |S| = t3(t−1)(t+1)2(t2−t+1)
(t+1,3)

. Let p be the characteristic of S. Let

t = pf for some f ∈ N, f ≥ 1. Let r be the greatest prime divisor of t + 1 greater

than 3. Recall that S ∼= PSU(V ), where V is a vector space of dimension 3 over Ft2 ,

endowed with a unitary form. Suppose that M is a maximal subgroup of X such

that MS = X and |X : M |r = 1. By [Mit11] and [Har26], we have that M ∩ S is

isomorphic to one of the following groups:
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• StabS(v), a stabilizer of a non-degenerate vector v ∈ V . This group has order

t(t+ 1)(t2 − 1)/δ.

• C(t+1)2/δ.S3.

Let r1 = t6. Note that:

(1) If M is a maximal subgroup of X such that MS = X and |X : M |r = 1, then

|X : M |r1 = |S|r1.

(2) If ak(X,S) 6= 0 and p divides k, then |k|p ≥ t2.

(3) at2(t2−t+1)(X,S) 6= 0.

(4) a t3(t−1)(t2−t+1)
6

(X,S) 6= 0.

The first and the third statements are clear. We prove (2). Let K be a maximal

subgroup of X such that KS = X. By [KL90], [Mit11] and [Har26], if |X : K|p 6= 1,

then |X : K|p ≥ t2. Moreover, if |X : K|p = 1, then K ∩ S = B is a Borel subgroup

of S, i.e. the stabilizer of a totally singular vector of V . Assume that H is the

intersection of two distinct Borel subgroups, i.e. H = StabS(v1)∩ StabS(v2) for some

v1, v2 ∈ V totally singular vectors. Note that 〈v1, v2〉 is non-degenerate, so H is

contained in StabS(〈v1, v2〉), a maximal subgroup of index t2(t2 − t+ 1). Thus (2) is

established.

In order to prove (4), we claim that if H ∈ A t3(t−1)(t2−t+1)
6

(X,S), then H is a

maximal subgroup of X isomorphic to C(t+1)2/δ.S3. In fact, let H ∩ S be the inter-

section of two distinct maximal subgroups StabS(v1) and StabS(v2) for some v1 and

v2 non-degenerate vectors. If 〈v1, v2〉 is non-degenerate, then |H ∩ S| = (t+1)2

δ
, hence

K 6∈ A t3(t−1)(t2−t+1)
6

(X,S) for each subgroup K of H . If 〈v1, v2〉 is degenerate, then

there exists 0 6= v ∈ 〈v1, v2〉 such that v is totally singular. Thus H∩S is contained in

the Borel subgroup StabS(v), so q+1 divides |X : H|, hence H 6∈ A t3(t−1)(t2−t+1)
6

(X,S).

Now, let x = Ψ(r1), y = Ψ(p) and D = Z[Xπ(S)−{r1,p}]. By the above considera-

tion, we have that:

Ψ(P
(r)
G,soc(G)(s)) = 1 − a(y)xnm,
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where m ∈ N − {0} and a(y) ∈ D[y] is the following polynomial:

a(y) = b+

nf
∑

i=0

ciy
2nf+i,

with b, c0, cnf ∈ D−{0} and ci ∈ E for i ∈ {2, ..., nf − 1}. We claim that P (r)
G,soc(G)(s)

is irreducible. For a contradiction, suppose that P (r)
G,soc(G)(s) is reducible. By Lemma

2.10, we have that a(y) or −a(y) is a non-trivial power in D[y]. Clearly this does not

happen since b, c0 and cnf are not zero. Thus we have a contradiction and P (r)
G,soc(G)(s)

is irreducible.

Finally, we use Lemma 2.13. Let h(s) = PG,soc(G)(s), π0 = {r} and π = {p, r1}.
By Section 3.2, we have that h(π)(s) = P

(π)
G,soc(G)(s) = 1. Hence we are done. �



Chapter 11

On the irreducibility of the Dirichlet

polynomial of a simple group of Lie

type

In this section we deal with the case G = S a simple group of Lie type. Our aim is

to complete the proof of Theorem 8.2.

11.1 Preliminary results

We need some preliminary results.

Lemma 11.1. Let n,m be two positive integers and let p be a prime number. If

pn + 1 = mk for some integer k ≥ 2, then n = 1 and p is a Mersenne prime or

(p, n,m, k) = (2, 3, 3, 2).

Proof. Assume that k > 1 and that (p, n,m, k) is a solution of pn + 1 = mk.

Suppose that n = 1. Thus p = mk − 1. Since m − 1 divides mk − 1, it must be

m = 2, so p is a Mersenne prime. Suppose that n > 1. Since pn = mk − 1, there is

no Zsigmondy prime for 〈m, k〉. By Lemma 2.6, we have two cases:

130
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• m = 2u−1 for some u and k = 2. In this case, we have that pn = 2u+1(2u−1−1)

and this yields (p, n,m, k) = (2, 3, 3, 2).

• m = 2 and k = 6. In this case, 26 − 1 = 63 is not a power of a prime.

This concludes the proof. �

Lemma 11.2. Let t be a power of a prime number p. Assume that t+1 = |t+1|2|t+
1|3. The number t3(t−1)(t+1)2

3
is a non trivial power of an integer if and only if t = 17.

Proof. The result is clear for t ≤ 5. So we assume that t > 5 and that t3(t−1)(t+1)2

3

is a non trivial power of an integer.

Suppose that |t+ 1|3 = 1. Thus t+ 1 = 2k for some k ≥ 3 and it turns out that
(2k−1−1)

3
must be a non-trivial power. Since 3 divides 2k−1 − 1 we have that k − 1

is even. If k−1
2

is odd, then 2
k−1
2 − 1 is a non-trivial power, otherwise 2

k−1
2 + 1 is

a non-trivial power. Using Lemma 2.6, we get that k = 7, so t = 27 − 1 = 127.

However, for t = 127, the number t3(t−1)(t+1)2

3
is not a non-trivial power.

Suppose that t + 1 = 3h2k for some h ≥ 1, k ≥ 1. First assume k = 1. We have

that t+ 1 = 2 · 3h. By Lemma 2.6, this yields t = p. So if t3(t−1)(t+1)2

3
is a non-trivial

power, it must be a cube. Hence we have that 3h−1
|3h−1|2 = m3 for some m ∈ N. Let

|3h−1|2 = 2l for some l ∈ N. Since t > 5 then h ≥ 2, hence 2lm3 +1 is divisible by 9.

Now, the cubes modulo 9 are 0, 1 and −1. Clearly m is not divisible by 3, so we have

2l ≡ ±1 (mod 9). This implies that 3 divides l, hence 3h−1 is a cube. Using Lemma

2.6, we get that h = 2, so t = 17. Moreover, for t = 17, the number t3(t−1)(t+1)2

3
is a

cube.

Second assume that k ≥ 2. We get that 3h2k−1 − 1 is a non-trivial power. Using

Lemma 2.6, we get k = 1, against the assumptions.

Finally, suppose that k = 0. Thus t = 3h − 1. Using Lemma 2.6, we get t = 8.

However, for t = 8, the number t3(t−1)(t+1)2

3
is not a non-trivial power. �

Proposition 11.3. Let S be a simple group of Lie type of characteristic p. The

Dirichlet polynomial P
(p)
S (s) is reducible if and only if S ∼= A1(p), p a Mersenne prime

or S ∼= A1(8).
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Proof. By Proposition 9.3, the result is true if the Lie rank of S is greater than

1. Assume that the Lie rank of S is 1, thus P (p)
S (s) = 1 − a1−s for some a ∈ N

(see Section 3.2). By [DL03a], Theorem 3, we have that P (p)
S (0) = −|S|p = −pn for

some n ∈ N − {0}. Thus pn + 1 = a. Suppose that P (p)
S (s) is reducible. By Lemma

2.10, the number pn + 1 is a non-trivial power of an integer. By Lemma 11.1, we

have that either p is a Mersenne prime and n = 1, or (p, n) = (2, 3). This implies

that S ∼= A1(p) where p is a Mersenne prime, or S ∼= A1(8). Clearly, we have that

P
(p)
A1(p)

(s) = 1−2u(1−s) for a Mersenne prime p = 2u−1 and P (2)
A1(8)(s) = 1−91−s which

are reducible polynomials. �

11.2 Proof of Theorem 8.2

Now we can complete the proof of Theorem 8.2.

Proof of Theorem 8.2. Here we deal with the cases which were not considered in

Theorem 8.1 and Proposition 10.2. The result is already known for S ∼= A1(t),
2B2(t

2)

and 2G2(t
2) (see [Pat09c]). Moreover, using [GAP], we obtain the claim for S iso-

morphic to one of the following groups: A2(3), 2A2(3) ∼= C2(3), 2A2(5), 2A3(2) and
2A4(2).

We want to apply Lemma 2.13, so we let h(s) = PS(s). Let π0 = {p}. By

Proposition 11.3, the polynomial h(π0)(s) = P
(p)
S (s) is irreducible. We want to find a

set of prime numbers π such that for each r ∈ π we have |h(π0)(s)|r = |S|r. Finally,

we prove that (h(s), h(π0)(s)) = 1. The rest of the proof is divided in three cases.

Assume that S ∼= 2A5(2). Remind that |S| = 215 · 36 · 5 · 7 · 11. Let π = {5, 7, 11}.
We claim that

Ψ(P
(π)
S (s)) = 1 − 3x8

2x
4
3.

Let M be a maximal subgroup of S. By [CCN+85], if |S : M |r = 1 for each r ∈ π,

then M is isomorphic to M22 and there are 3 conjugacy classes of such subgroups.

Moreover, if M1 and M2 are two distinct maximal subgroups of S isomorphic to M22,

then there exists a prime number r ∈ π such that |S : M1 ∩M2|r = r. In fact, there
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is no maximal subgroup H of M22 such that |M22 : H|r = 1 for each r ∈ π. Thus we

obtain the claim.

Clearly h(π)(s) = P
(π)
S (s) is irreducible. In order to apply Lemma 2.13, it remains

to show that (h(s), h(π)(s)) = 1. For a contradiction, assume that (h(s), h(π)(s)) 6= 1.

Since h(π)(s) is irreducible, we have that (h(s), h(π)(s)) = h(π)(s), so h(s) = h(π)(s)f(s)

for some f(s) ∈ R′. Now, h(p)(s) = h({π,p})(s)f (p)(s) = f (p)(s). We have that:

|h(s)|3 = |h(π)(s)|3|f(s)|3 ≥ |h(π)(s)|3|h(p)(s)|3 = 38 > |S|3.

This is a contradiction, so we get (h(s), h(π)(s)) = 1.

Assume that S ∼= 2A2(t
2) with t 6∈ {3, 5} and t + 1 = |t + 1|2|t + 1|3. We recall

that |S| = t3(t−1)(t+1)2(t2−t+1)
(t+1,3)

, where t = pf for some f ∈ N − {0}. Let

π =

{

{7} if t = 17,

{t̂6} otherwise.

Clearly |P (p)
S (s)|t6 = |S|t̂6 . We claim that

P
(t̂6)
S (s) = 1 −

(

t3(t− 1)(t+ 1)2

3

)1−s
.

In fact, by Lemma 2.7 and the assumptions, we have that |S|t̂6 > 7. Thus, by [Mit11]

and [Har26], if M is a maximal subgroup of S such that |S : M |t̂6 = 1, then M

is isomorphic to C t2−t+1
(t+1,3)

.3 and there is a unique conjugacy class of these subgroups.

Furthermore, if M1 and M2 are two distinct maximal subgroups of S both isomorphic

to C t2−t+1
(t+1,3)

.3, then t6 divides |S : M1 ∩M2|. Indeed, for a contradiction, suppose that

|S : M1 ∩M2|t6 = 1. Then M1 ∩M2 contains a cyclic subgroup C of order t6. Clearly

C is normal in M1 and M2, so C is normal in S, a contradiction. Thus we obtain the

claim.

Now, we claim that P (π)
S (s) is irreducible. First, assume that t 6= 17. For a

contradiction, assume that P (π)
S (s) is reducible. Thus Ψ(P

(t6)
S (s)) = 1 − ax3f

p for

a = Ψ

(

(t− 1)(t+ 1)2

3

)
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(note that p 6= 3 by hypothesis). By Lemma 2.10 we have that a or −a is a non-

trivial power of exponent that divides 3f , hence t3(t−1)(t+1)2

3
is a non-trivial power in

Z. Since t+ 1 = |t+ 1|2|t+ 1|3, using Lemma 11.2 we have that t = 17, against the

assumptions. So h(t6)(s) = P
(t6)
S (s) is irreducible. Now, let t = 17. By [Mit11], if M

is a maximal subgroups of S such that |S : M |7 = 1, then M is isomorphic to C91.3

or to PSL2(7). Hence |S : M |17 = |S|17. Thus, we obtain

Ψ(P
(7)
S (s)) = 1 − x3

17(a+ bx13)

for some a, b ∈ Z[x2, x3] − {0}. Hence, by Lemma 2.10, P (7)
S (s) is irreducible.

In order to apply Lemma 2.13, it remains to show that (h(s), h(π)(s)) = 1. For

a contradiction, assume that (h(s), h(π)(s)) 6= 1. Since h(π)(s) is irreducible, we

have that (h(s), h(π)(s)) = h(π)(s), so h(s) = h(π)(s)f(s) for some f(s) ∈ R′. Now,

h(p)(s) = h({π,p})(s)f (p)(s) = f (p)(s). Let r be a prime divisor of t+ 1. We have that:

|h(s)|r = |h(π)(s)|r|f(s)|r ≥ |h(π)(s)|r|h(p)(s)|r ≥
|t− 1|r|t+ 1|2r

|3|r
|t+1|r|t2−t+1|r > |S|r

since |t+ 1|r > 1. This is a contradiction, so we get (h(s), h(π)(s)) = 1.

Assume that S ∼= C2(p) with p > 3 a Mersenne prime. We recall that |S| =
p4(p−1)2(p+1)2(p2+1)

2
.

Let π be the set of odd prime divisors of p2 + 1. Clearly |P (p)
S (s)|r = |S|r for each

r ∈ π. Note that p4 ∈ π.

We claim that

P
(π)
S (s) = 1−

(

p2(p2 − 1)

2

)1−s
+a

(

p4(p2 − 1)2

4

)1−s
+b

(

p4(p2 − 1)2

2

)1−s
+c
(

p4(p2 − 1)2
)1−s

,

for some a, b, c ∈ Z. In fact, by Lemma 2.7 and the assumptions, we have that

|S|p4 > 5. Thus, by [Mit13], if M is a maximal subgroup of S such that |S : M |r = 1

for each r ∈ π, then M is isomorphic to PSL2(p
2).2 and there is a unique conjugacy

class of these subgroups. Now, let M be a maximal subgroup of S isomorphic to

PSL2(q
2).2, and letH be the intersection of some subgroups conjugated toM . Assume

that N is the subgroup of M of index 2. If H ≥ N , then H = N , so H is normal
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in two distinct maximal subgroups, a contradiction. So H � N , hence H ∩ N is a

proper subgroup of N . Since the maximal subgroups of N ∼= PSL2(p
2) are known

(see [Hup67, p. 213]) and |p2 + 1|p̂4 > 5, we have that if |N : N ∩ H|r = 1 for each

r ∈ π, then N ∩H is isomorphic to the dihedral group Dp2+1 or to the cyclic group

C p2+1
2

. This proves the claim.

Now, we claim that if g(s) ∈ R is an irreducible factor of P (π)
S (s), then |g(s)|2 ≥

|p + 1|2 = 2m. Let y = Ψ(21−s), D = Z[y] and let Y = Ψ

(

(

p2(p−1)
2

)1−s
)

. Note that

p2(p−1)
2

is not a non-trivial power of an integer (use Lemma 2.6 and the fact that p is

a Mersenne prime greater than 3). We have that

f(Y ) = Ψ(P
(π)
S (s)) = 1 − xm2 Y + x2m

2 (a+ bx2 + cx2
2)Y

2

is a polynomial in D[Y ]. By Corollary 2.12, since Y is not a non-trivial power in D,

we have that each irreducible factor of f(Y ) in Z[Xπ(S)] is an element of D[Y ]. If

a = b = c = 0, then Ψ(P
(π)
S (s)) is clearly irreducible. Now, suppose that a 6= 0 or

b 6= 0 or c 6= 0. Thus f(Y ) is a polynomial of degree 2 in Y . In this case, it is easy

to see that the degree of the indeterminate x2 in an irreducible factor of f(Y ) is at

least m.

In order to apply Lemma 2.13, it remains to show that (h(s), h(π)(s)) = 1. For

a contradiction, assume that (h(s), h(π)(s)) 6= 1. Let g(s) = (h(s), h(π)(s)) and

h(s) = g(s)f(s) for some f(s) ∈ R′. Now, h(p)(s) = g(p)(s)f (p)(s) = f (p)(s), since

h(π∪{p})(s) = 1 and g(s) divides h(π)(s). We have that:

|h(s)|2 = |g(s)|2|f(s)|2 ≥ |p+ 1|2|h(p)(s)|2 = 2|p+ 1|2|p+ 1|22 > |S|r

since |p+ 1|2 > 2. This is a contradiction, so we get (h(s), h(π)(s)) = 1. �



Part III

Recognition of the characteristic of a

simple group of Lie type from its

Probabilistic Zeta function.
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Chapter 12

Introduction

LetG be a simple group of Lie type. Because of the isomorphisms PSL2(4) ∼= PSL2(5),

PSL2(7) ∼= PSL3(2), PSL2(8) ∼= 2G2(3)′, PSU4(2) ∼= PSp4(3) and PSU3(3) ∼= G2(2)′

some groups have more than one characteristic. Let πG be the set of these char-

acteristics. We say that the characteristic of G is the prime number p ∈ πG such

characteristicthat |G|p ≥ |G|r for all r ∈ πG. So, for example, we have that the characteristic of

PSL2(7) ∼= PSL3(2) is 2.

The aim of this part is to prove the following theorem.

Theorem 12.1. Let G be a simple group and let H be a finite group. If PG(s) =

PH(s), then H/Frat(H) ∼= G.

As we can see from Theorem 1.11, in order to prove Theorem 12.1, it suffices to

recognize the characteristic of a group of Lie type from its Dirichlet polynomial. As in

[KLST90, Definition 3.1], if k > 1, then we say that a prime p is the dominant prime

in k if |k|p ≥ |k|r for all prime numbers r. In particular, we say that p is the dominant

prime of G if p is the dominant prime in |G|. Note that if p is the characteristic of a dominant

primegroup of Lie type G, then p is the dominant prime of G (with few exception). In fact

we have the following.

Theorem 12.2 ([KLST90, Theorem 3.3]). Let G be a simple group of Lie type and

let p be the characteristic of G. Then p is the dominant prime in |G| except in the
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following cases:

• G = PSL2(p) and p is a Mersenne prime, p > 7. Here 2 is the dominant prime

and p 6= 2.

• G = PSL2(r−1) and r is a Fermat prime, r > 5. Here r is the dominant prime

and p 6= r.

If f(s) is a Dirichlet polynomial and |f(s)| > 1, then we say that a prime p is the

dominant prime of f(s) if |f(s)|p ≥ |f(s)|r for all prime numbers r.

In most of cases, the dominant prime of G is also the dominant prime of PG(s).

However, this is not true in general: for instance, if G = PSU3(3) ∼= G2(2)′, then

|G| = 25 · 33 · 7 and |PG(s)| = 22 · 33 · 7 (use [GAP]). So, for some cases, we need an

alternative strategy. We have the following result.

Theorem 12.3 ([DL06, Theorem 3]). Let G be a simple group of Lie type of charac-

teristic p. Then |P (p)
G (0)| = |G|p.

It turns out that if the dominant prime r of G is not the characteristic of G, then

|P (r)
G (0)| is not a power of r (with at most six exceptions). In particular, we obtain

the following.

Theorem 12.4. Let G be a simple group of Lie type. Suppose that G is not isomor-

phic to one of the following groups: PSU3(3), PSU6(2), PSp4(8), PSp4(9), PSp8(3)

and PΩ+
8 (3). Let π be the set of prime numbers r such that P

(r)
G (0) is a power of r.

The characteristic of G is the prime number p ∈ π such that |PG(s)|p ≥ |PG(s)|r for

all prime numbers r ∈ π.

In order to prove our claim, we consider a classical group G of characteristic p and

we prove that ak(G) 6= 0 for some k ∈ N such that |k|p is large enough, i.e. sufficient

to prove that, with some exceptions, p is the dominant prime of PG(s). The same

strategy is applied to the exceptional groups.



Chapter 13

The analysis for the classical groups

13.1 Some preliminary result

Here prove two useful lemmas.

Lemma 13.1. Let K be a finite group, let N be a subnormal subgroup of K and let

H be a subgroup of K. We have that |H||N | divides |K||H ∩N |.

Proof. We claim that |NH| divides |K|. Arguing by induction on the subnormal

defect, it suffices to prove that if N�L and L ≤ K, then |NH| divides |LH|. Clearly,

LH =
⋃

k∈R
NkH

for some R ⊆ L such that the union is disjoint. Since N � L, if k ∈ L, then

NkH = kNH , so |NH| = |kNH| = |NkH| for all k ∈ L. Hence |LH| = |R||NH|
and we have the claim.

Now, since |H||N | = |NH||H ∩ N | and |NH| divides |K|, we have that |H||N |
divides |K||H ∩N |. �

Corollary 13.2. Let K be a finite group and let H1, H2 and H be three subgroups of

K. Assume that H1 is normal in H2 and H2 is subnormal in K. If H1(H∩H2) < H2,

then L = H1(H∩H2)
H1

is a proper subgroup of H2/H1 such that |H||H2|
|H1| divides |K||L|.
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Proof. Just apply Lemma 13.1, observing that |H∩H2|
|H1| divides |H1(H∩H2)|

|H1| = |H∩H2|
|H∩H1| .

�

Table 13.1: h(n, q) for a classical simple group G

Case G Conditions h(n, q)

L1 PSLn(q) n ∈ {3, 5}, (n, q) 6= (3, 4) n(qn−1)
(q−1,n)(q−1)

L2 PSL4(q) q ≥ 4 2q2(q4−1)(q+1)
(q−1,4)

L3 PSLn(q) n ≥ 6 q
(n−2)(n−3)

2 (q−1)
(q−1,n)

∏n−2
i=1 (qi − 1)

U1 PSUn(q) n ∈ {3, 5, 7}, n(qn+1)
(q+1,n)(q+1)

q ≥ 7 if n = 3,
q ≥ 3 if n = 5

U2 PSU4(q) q ≥ 4 2q2(q−1)2(q+1)3

(q+1,4)

U3 PSU6(q) q ≥ 3 3q3(q3+1)(q6−1)
(q+1,6)(q+1)

U4 PSUn(q) n ≥ 8 q
(n−3)(n−4)+6

2 (q+1)(q2−1)(q3+1)
(q+1,n)

∏n−3
i=2 (qi − (−1)i)

S PSp2n(q) n ≥ 2, (n, q) 6= (3, 2) dqn2/d

(q−1,2)

∏n/d
i=1(q

2id − 1)

O PΩ2n+1(q) n ≥ 3, (n, q) 6= (3, 3) qn
2−3n+3(q2 − 1)(qn−1 + 1)

∏n−2
i=1 (q2i − 1)

O+1 PΩ+
2n(q) q ≥ 4 2α+q(n−1)(n−2)(q + 1)(qn−1 + 1)

∏n−2
i=1 (q2i − 1)

O+2 PΩ+
2n(q) q ≤ 3, n ≥ 5, (n, q) 6= (5, 2) 2α+qn

2−5n+8(q4 − 1)(qn−2 + 1)
∏n−3

i=1 (q2i − 1)

O−1 PΩ−
2n(q) q ≥ 4 2α−q(n−1)(n−2)(q − 1)(qn−1 + 1)

∏n−2
i=1 (q2i − 1)

O−2 PΩ−
2n(q) q ≤ 3, n ≥ 5, (n, q) 6= (5, 2) 2qn2−5n+8(q2−1)2(qn−2+1)

(q−1,2)

∏n−3
i=1 (q2i − 1)

In Table 13.1, we have that

α+ =















−1 if q is odd and n is even,

0 if qn is odd,

1 if q is even.

α− =















−1 if q is odd and n q−1
2

is even,

0 if q is odd and n q−1
2

is odd,

1 if q is even.
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and d is the smallest prime divisor of n.

Theorem 13.3. Let G and h(n, q) be as in Table 13.1, under the Conditions given

in Table 13.1. Each subgroup of G of order h(n, q) is a maximal subgroup, except if

case L3 holds. In general, we have that a|G|/h(n,q)(G) 6= 0.

Proof. In this proof, we use the results of Subsection 3.3.1. In the cases L1, L2,

U1, U2 and U3, it is easy to see that if a subgroup of G has order h(n, q), then it is

a maximal subgroup.

We introduce a notation. Given a group A and a positive rational number k,

let M(A, k) be the set of representatives of the conjugacy classes of the maximal

M(A, k)subgroups of A whose order is divisible by k, i.e.

M(A, k) =

{

M ∈ M(A) :
|M |
k

∈ Z

}

where M(A) is the set of representatives of the conjugacy classes of the maximal

subgroups of A. When we describe the elements of this set we write the type and the

class of each maximal subgroup (using the notation of [KL90], Table 2.5 A-F).

First, we consider the case L3.

Case L3: G = PSLn(q), n ≥ 6.

We have that the elements of M(G, h(n, q)) are:

M1: P1 in C1.

M2: P2 in C1.

Let H be a subgroup of G of order h(n, q). We claim that µG(H) = 2.

Let V be a vector space of dimension n over Fq. Assume that V = 〈e1, ..., en〉. We

may identify G = PSLn(q) with PSL(V ). A maximal subgroup of type Pi in PSL(V )

is the group StabG(Wi) or StabG(W ∗
i ), where Wi is a subspace of V of dimension i

and W ∗
i is a complement of Wi in V . Moreover StabG yields a 1-1 correspondence
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between the set of proper non-zero subspace of V and the set of maximal subgroups

of G in the class C1.

As we have seen above, we have that if H ≤M for a maximal subgroup M of G,

then M is of type Pi, i ∈ {1, 2}. Let Kj = StabG(〈ej〉) and K∗
j = StabG(〈ej〉∗) for

j ∈ {1, 2}, J = StabG(〈e1, e2〉) and J∗ = StabG(〈e1〉∗ ∩ 〈e2〉∗). Clearly, a maximal

subgroup of type P1 is conjugate in G to K1 or K∗
1 , and a maximal subgroup of type

P2 is conjugate in G to J or J∗. Since |H| = h(n, q), without loss of generality, we

may assume that H = K1 ∩K2 ∩K∗
1 ∩K∗

2 ∩ J ∩ J∗. In particular, we have that the

set of maximal subgroups of G which contain H is MH = {K1, K2, K
∗
1 , K

∗
2 , J, J

∗}.
Set Y = {Y ⊆ MH :

⋂

M∈Y M = H}. By [Sta97, Corollary 3.9.4], we have that

µG(H) =
∑

Y ∈Y
(−1)|Y |.

An easy computation shows that µG(H) = 2. This completes the proof of Case L3.

Now, we deal with the remaining cases. We want to show that if a H is a subgroup

of G and |H| = h(n, q), then H is a maximal subgroup. The structure of the proof

is almost the same in all the cases. We find the elements of M(G, h(n, q)) (using the

results of Subsection 3.3.1) and we denote them by M0, ...,Mk, for some k ∈ N. The

first element (M0) is a maximal subgroup such that |M0| = h(n, q). The order of the

other elements of M(G, h(n, q)) is different from h(n, q) (except in case S, n = 2).

Let M ∈ M(G, h(n, q)) such that |M | 6= |M0|. We claim that

(†) the group M does not properly contain H .

We argue by contradiction, so we assume that H < M .

There exists a simple group S = H2/H1 where H1 and H2 are two subgroups of

M such that H1 �H2 and the group H2 is subnormal in M . Here |S| does not divide

h(n, q), hence H1(H ∩ H2) < H2. We let h′(n, q) = |S|
|M |h(n, q), we find the elements

of M(S, h′(n, q)) and we denote them by N1, ..., Nj.

We claim that M(S, h′(n, q)) 6= ∅. Since H < M and H1(H ∩ H2) < H2, by

Corollary 13.2 with K = M , we have that there exists a (maximal) subgroup N of



143

S such that |H||S| = |M |h′(n, q) divides |M ||N |, i.e. the ratio |N |
h′(n,q)

is an integer

number. So we have that M(S, h′(n, q)) 6= ∅, in particular N ∈ M(S, h′(n, q)). As

before, there exists a simple group T = H̃2/H̃1 where H̃1 and H̃2 are two subgroups

of N such that H̃1 � H̃2 and the group H̃2 is subnormal in N . Again, |T | does not

divide h(n, q). We let h′′(n, q) = |T |
|N |h

′(n, q), we find the elements of M(T, h′′(n, q))

and we denote them by L1, ..., Lm.

Let H̃ = H1(H∩H2)
H1

, which is a subgroup of S. By Corollary 13.2, the number |H̃|
h′(n,q)

is an integer, hence we may assume that H̃ < N (clearly H̃ 6= N since |T | does not

divide h(n, q).) We claim that M(T, h′′(n, q)) 6= ∅. Since H̃ < N , by Corollary 13.2,

there exists a (maximal) subgroup L of T such that |H̃||T | divides |N ||L| (note that

H̃1(H̃ ∩ H̃2) < H̃2 since |T | does not divide h(n, q)). Hence the ratio |L|
h′′(n,q)

is an

integer number. This contradicts M(T, h′′(n, q)) = ∅ and we obtain the claim. So,

we have M(T, h′′(n, q)) 6= ∅, in particular L ∈ M(T, h′′(n, q)). There exists a simple

group U = Ĥ2/Ĥ1 where Ĥ1 and Ĥ2 are two subgroups of L such that Ĥ1 � Ĥ2 and

the group Ĥ2 is subnormal in L. Moreover, |U | does not divide h(n, q). We define

h′′′(n, q) = |U |
|L|h

′′(n, q).

Let Ĥ = H̃1(H̃∩H̃2)

H̃1
, which is a subgroup of T . By Corollary 13.2, the number

|Ĥ|
h′′(n,q)

is an integer, hence we may assume that Ĥ < L (clearly Ĥ 6= L since |U |
does not divide h(n, q).) By Corollary 13.2, there exists a subgroup Y of U such that

|Ĥ||U | divides |L||Y | (note that Ĥ1(Ĥ ∩ Ĥ2) < Ĥ2 since |U | does not divide h(n, q)).

Hence the ratio |Y |
h′′′(n,q)

is an integer number, so M(U, h′′′(n, q)) 6= ∅.

However, in our analysis we prove that at least one of the sets M(S, h′(n, q)),

M(T, h′′(n, q)) and M(U, h′′′(n, q)) is empty, hence we have a contradiction and (†)
holds. We conclude that a subgroup of G of order h(n, q) is a maximal subgroup

isomorphic to M0.

Example. Let G = PΩ+
10(2). By [CCN+85], the maximal subgroups of G are

known. We want to prove that if H is a subgroup of G and h = |H| = 3110400, then

H is a maximal subgroup. The elements of M(G, h) are:

M0: O
−
4 (2) × O−

6 (2) in C1. Here |M0| = h.
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M1: Sp8(2) in C1. We have that M1
∼= PSp8(2) and we let S = PSp8(2), h′ = h. Note

that |S| does not divide h. By [CCN+85], the maximal subgroups of PSp8(2)

are known, so the unique element of M(S, h′) is:

N1: O
+
8 (2) in C8. We have that N1

∼= PΩ+
8 (2) : 2, we let T = PΩ+

8 (2) and

h′′ = h′/2. Note that |T | does not divide h. By [CCN+85], the maximal

subgroups of PΩ+
8 (2) are known and we have that M(T, h′′) = ∅. By

Corollary 13.2, since M(T, h′′) = ∅, we have that M1
∼= S does not

contain a subgroup of order h.

M2: P1 in C1. We have that M2
∼= 28 : PΩ+

8 (2) and we let S = PΩ+
8 (2), so h′ = h/28.

Note that |S| does not divide h. By [CCN+85], the maximal subgroups of

PΩ+
8 (2) are known and we have that M(S, h′) = ∅. By Corollary 13.2, since

M(S, h′) = ∅, we have that M2 does not contain a subgroup of order h.

So the claim is proved.

Case U4: G = PSUn(q), n ≥ 8.

The elements of M(G, h(n, q)) are:

M0: GU3(q) ⊥ GUn−3(q) in C1.

M1: GU1(q) ⊥ GUn−1(q) in C1. Here S = PSUn−1(q) and we have that the unique

element of M(S, h′(n, q)) is:

N1: GU1(q) ⊥ GUn−2(q) in C1. Here T = PSUn−2(q) and we have that

M(T, h′′(n, q)) = ∅.

M2: GU2(q) ⊥ GUn−2(q) in C1. Here S = PSUn−2(q) and we have that M(S, h′(n, q)) =

∅.

M3: P1 in C1. Here S = PSUn−2(q) and we have that M(S, h′(n, q)) = ∅.
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Case S: G = PSp2n(q), n ≥ 2, (n, q) 6= (3, 2).

The elements of M(G, h(n, q)) are:

M0: Sp2n/d(q
d) in C3.

M1: O
−
2n(q), q even in C8. If n = 2, then M1

∼= M0. Assume that n ≥ 3. In this case

S = PΩ−
2n(q) and we have that M(S, h′(n, q)) = ∅.

M2: G2(q) in S, q even and n = 3. Here S = G2(q) and we have that M(S, h′(n, q)) =

∅ (see [Kle88a]).

Case O: G = PΩ2n+1(q), n ≥ 3, (n, q) 6= (3, 3).

The elements of M(G, h(n, q)) are:

M0: O3(q) ⊥ O−
2n−2(q) in C1.

M1: P1 in C1, n ≥ 4. Here S = PΩ2n−1(q) and we have that M(S, h′(n, q)) = ∅.

M2: O2n−1(q) ⊥ O±
2 (q) in C1. Here S = PΩ2n−1(q) and we have that M(S, h′(n, q)) =

∅.

M3: O1(q) ⊥ O±
2n(q) in C1. Here S = PΩ±

2n(q) (note that if n = 3, then S = PSL4(q)

or PSU4(q)) and the elements of M(S, h′(n, q)) are:

N1: O1(q) ⊥ O2n−1(q) in C1. Here T = PΩ2n−1(q) (note that if n = 3, then

T = PSp4(q)) and we have that M(T, h′′(n, q)) = ∅.

N2: PΩ7(q) in S, n = 4. Here S = PΩ7(q) and we have that M(T, h′′(n, q)) =

∅.

Case O+1: G = PΩ+
2n(q), n ≥ 4, q ≥ 4.

The elements of M(G, h(n, q)) are:



146

M0: O
−
2 (q) ⊥ O−

2n−2(q) in C1.

M1: O1(q) ⊥ O2n−1(q), in C1, q odd. Here S = PΩ2n−1(q) and we have that

M(S, h′(n, q)) = ∅.

M2: Sp2n−2(q) in C1, q even. Here S = PSp2n−2(q) and we have that M(S, h′(n, q)) =

∅.

Case Oε2, ε ∈ {+,−}: G = PΩε
2n(q), n ≥ 5, q ≤ 3, (n, q) 6= (5, 2), .

The elements of M(G, h(n, q)) are:

M0: O
−ε
4 (q) ⊥ O−

2n−4(q) in C1.

M1: P1 in C1. Here S = PΩε
2n−2(q) and the elements of M(S, h′(n, q)) are:

N1: O1(3) ⊥ O2n−3(3) in C1, q = 3. Here T = PΩ2n−3(3) and we have that

M(T, h′′(n, 3)) = ∅.

N2: Sp2n−4(2) in C1, q = 2. Here S = PSp2n−4(2) and we have that M(T, h′′(n, 2)) =

∅.

M2: O1(3) ⊥ O2n−1(3), in C1, q = 3. Here S = PΩ2n−1(3) and the elements of

M(S, h′(n, q)) are:

N1: P1 in C1. Here T = PΩ2n−3(3) and that M(T, h′′(n, 3)) = ∅.

N2: O1(3) ⊥ O±
2n−2(3) in C1. Here T = PΩ±

2n−2(3) and we have that the unique

element of M(T, h′′(n, q)) is:

L1: O1(3) ⊥ O2n−3(3) in C1. Here U = PΩ2n−3(3) and we have that

M(U, h′′′(n, 3)) = ∅.

N3: O2n−3(3) ⊥ O±
2 (3) in C1. Here T = PΩ2n−3(3) and that M(T, h′′(n, 3)) =

∅.
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M3: O3(3) ⊥ O2n−3(3), in C1, q = 3. Here S = PΩ2n−3(3) and we have that

M(S, h′(n, q)) = ∅.

M4: O
−
2 (q) ⊥ O−ε

2n−2(q), in C1. Here S = PΩ−
2n−2(q) and the elements of M(S, h′(n, q))

are:

N1: O1(3) ⊥ O2n−3(3) in C1, q = 3. Here T = PΩ2n−3(3) and we have that

M(T, h′′(n, 3)) = ∅.

N2: Sp2n−4(2) in C1, q = 2. Here T = PSp2n−4(2) and we have that M(T, h′′(n, 2)) =

∅.

M5: Sp2n−2(2) in C1, q = 2. Here S = PSp2n−2(2) and the elements of M(S, h′(n, q))

are:

N1: P1 in C1. Here T = PSp2n−4(2) and we have that M(T, h′′(n, 3)) = ∅.

N2: Sp2(2) ⊥ Sp2n−4(2) in C1. Here S = PSp2n−4(2) and we have that M(T, h′′(n, 2)) =

∅.

N3: O
±
2n−2(2) in C1. Here S = PΩ±

2n−2(2). Assume that S = PΩ+
2n−2(2). The

unique element of M(S, h′(n, q)) is:

L1: Sp2n−4(2) in C1, q = 2. Here U = PSp2n−4(2) and we have that

M(U, h′′(n, 2)) = ∅.

Assume that S = PΩ−
2n−2(2). The unique element of M(S, h′(n, q)) is:

L1: Sp2n−4(2) in C1, q = 2. Here U = PSp2n−4(2) and we have that

M(U, h′′(n, 2)) = ∅.

Case O−1: G = PΩ−
2n(q), n ≥ 4, q ≥ 4.

The elements of M(G, h(n, q)) are:

M0: O
+
2 (q) ⊥ O−

2n−2(q) in C1.
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M1: P1 in C1. Here S = PΩ−
2n(q) and we have that M(S, h′(n, q)) = ∅.

M2: O1(q) ⊥ O2n−1(q) in C1, q odd. Here S = PΩ2n−1(q) and we have that

M(S, h′(n, q)) = ∅.

M3: Sp2n−2(q) in C1, q even. Here S = PSp2n−2(q) and we have that M(S, h′(n, q)) =

∅.

M4: PΩ7(q) in S, n = 4. Here S = PΩ7(q) and we have that M(S, h′(n, q)) = ∅.

M5: PSp6(q) in S, n = 4. Here S = PSp6(q) and we have that M(S, h′(n, q)) = ∅.

13.2 Recognition of the characteristic of a Classical

group

Recall the definition of the characteristic of G given in the introduction (p.137). In

particular note that the characteristic of PSL2(7) and PSU3(3) is 2, the characteristic

of PSL2(8) and PSU4(2) is 3 and the characteristic of PSL2(4) is 5.

Proposition 13.4. Let G be a classical simple group of characteristic p, let r be a

prime number different from p and assume that the following cases do not occur:

• G = PSL2(q), q > 7 Mersenne prime and r = 2;

• G = PSL2(q), q + 1 Fermat prime and r = q + 1;

• G = PSUn(q), (n, q, r) ∈ {(3, 3, 3), (6, 2, 3)};

• G = PSp8(3) and r = 2;

• G = PSp4(q), q Fermat prime and r = 2;

• G = PSp4(9) and r = 2;
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• G = PSp4(q), q > 5, q − 1 Mersenne prime and r = q − 1;

• G = PSp4(q), q > 5, q Mersenne prime and r = 2;

• G = PSp4(q), q > 5, q + 1 Fermat prime and r = q + 1;

• G = PSp4(8) and r = 3;

• G = PSp4(q), q > 5, q2 + 1 Fermat prime and r = q2 + 1;

• G = PΩ+
8 (2) and r = 3.

Then |PG(s)|p > |G|r ≥ |PG(s)|r.

Proof. Let G = PSL2(q). By [Pat09c, Section 7], we have that |PG(s)|p = q. Thus

the result holds.

Assume that G 6= PSL2(q). Using [GAP] we get Table 13.3. Moreover, Table 13.4

is obtained from Theorem 13.3 and Table 13.3. Using [CCN+85] and arguing as in

the proof of Theorem 13.3, we have that:

• a28431(PΩ7(3)) 6= 0, so |PPΩ7(3)|3 ≥ 37;

• a1120(PΩ+
8 (2)) 6= 0, so |PPΩ+

8 (2)|2 ≥ 25;

• a24192(PΩ−
8 (2)) 6= 0, so |PPΩ−

8 (2)|2 ≥ 27;

• a9552816(PΩ+
8 (3)) 6= 0, so |PPΩ+

8 (3)|3 ≥ 38;

• a8159697(PΩ−
8 (3)) 6= 0, so |PPΩ−

8 (3)|3 ≥ 37;

• a7555072(PΩ+
10(2)) 6= 0, so |PPΩ+

10(2)(s)|2 ≥ 211;

• a104448(PΩ−
10(2)) 6= 0, so |PPΩ−

10(2)(s)|2 ≥ 211.

Comparing Table 13.3 and Table 13.4 with Table 13.2 we obtain the claim. Note that

Table 13.2 is obtained using Lemma 2.9. �
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Table 13.2: r-part of the order of a classical simple group G, for a prime divisor r of
the order of G, r 6= p.

G r conditions |G|r|δ(G)|r
PSLn(q) 2 t = 1, |q − 1|2 > |q + 1|2 |q − 1|n−1

2 |n!|2
t = 1, |q − 1|2 < |q + 1|2 2[n−1

2 ]|q + 1|[
n
2 ]

2 |n!|2
6= 2 t = 1 |q − 1|n−1|n!|r

t > 1 |qt − 1|[
n
t ]
r |

[

n
t

]

!|r
PΩ2n+1(q) and 2 t = 1, |q − 1|2 > |q + 1|2 2n|q − 1|n2 |n!|2

PSp2n(q) t = 1, |q − 1|2 < |q + 1|2 2n|q + 1|n2 |n!|2
6= 2 t odd |qt − 1|[

n
t ]
r |

[

n
t

]

!|r
t = 2t0, t0 ≥ 1 |qt0 + 1|

h

n
t0

i

|
[

n
t0

]

!|r
PΩ+

2n(q) 2 t = 1, |q − 1|2 > |q + 1|2 2n−1|q − 1|n2 |n!|2
t = 1, |q − 1|2 < |q + 1|2 2n−1|q + 1|n2 |n!|2

6= 2 t odd |qt − 1|[n
t ]|
[

n
t

]

!|r
t = 2t0, t0 ≥ 1, t|n |qt0 + 1|

h

n
t0

i

r |
[

n
t0

]

!|r

t = 2t0, t0 ≥ 1, t ∤ n |qt0 + 1|
h

n−1
t0

i

r |
[

n−1
t0

]

!|r
PSUn(q) 2 t = 1, |q − 1|2 > |q + 1|2 2n−1|q − 1|[

n
2 ]

2 |
[

n
2

]

!|2
t = 1, |q − 1|2 < |q + 1|2 2[n

2 ]|q + 1|n−1
2 |

[

n
2

]

!|2
6= 2 t odd or t = 4t0 |qt − 1|[

n
2t ]
r |

[

n
2t

]

!|r
t = 2 |q + 1|n−1

r |n!|r
t = 2t0, t0 ≥ 3 odd |qt0 + 1|

h

n
t0

i

r |
[

n
t0

]

!|r
PΩ−

2n(q) 2 t = 1, |q − 1|2 > |q + 1|2 2n|q − 1|n−1
2 |(n− 1)!|2

t = 1, |q − 1|2 < |q + 1|2, n even 2n|q + 1|n−1
2 |(n− 2)!|2

t = 1, |q − 1|2 < |q + 1|2, n odd 2n−1|q + 1|n2 |(n− 1)!|2
6= 2 t odd |qt − 1|[

n−1
t ]

r |
[

n−1
t

]

!|r
t = 2t0, t0 ≥ 1, t|n |qt0 + 1|

h

n−1
t0

i

r |
[

n−1
t0

]

!|r

t = 2t0, t0 ≥ 1, t ∤ n |qt0 + 1|
h

n
t0

i

r |
[

n
t0

]

!|r
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Table 13.3: Some values of |PG(s)|p
G |PG(s)|p G |PG(s)|p

PSL3(3) 33 PSU3(5) 53

PSL3(4) 23 PSp4(3) ∼= PSU4(2) 34

PSL4(2) 26 PSU4(3) 36

PSL4(3) 36 PSU5(2) 210

G2(2)′ ∼= PSU3(3) 22 PSp6(2) 29

PSU3(4) 26 PSp4(q), q ∈ {3, 4, 5} q4

Table 13.4: Lower bounds for |PG(s)|p
G Conditions lower bound for |PG(s)|p

PSLn(q) n ∈ {3, 5} q
n(n−1)

2

|n|p
n = 4 q4

|2|p
n ≥ 6 q2n−3

PSUn(q) n ∈ {3, 5, 7} q
n(n−1)

2

|n|p
n = 4 q4

|2|p
n = 6, q 6= 2 q12

|3|p
n ≥ 8 q3n−9

PSp2n(q) d smallest prime q
n2(d−1)

d

|d|p
divisor of n

PΩ2n+1(q) (n, q) 6= (3, 3) q3n−3

PΩ+
2n(q), q ≥ 4 q2n−2

|2|p
PΩ−

2n(q) q ≤ 3, n ≥ 5, (q, n) 6= (2, 5) q4n−8

|2|p
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Proposition 13.5. Let G = PSp4(q) and assume that q ≥ 7. Moreover, let r 6= p be

a prime number.

(1) Let q = p be a Mersenne prime or a Fermat prime. Then P
(2)
G (0) = − (q2−1)(q2+2)

2

or |PG(s)|p ≥ q3. In the latter case, |PG(s)|p > |G|r.

(2) Let q+1 be a Fermat prime. Then P
(q+1)
G (0) = −(q4+q2−1) or |PG(s)|2 ≥ q3/4.

In the latter case, |PG(s)|2 > |G|r.

(3) Let q2 + 1 be a Fermat prime. Then P
(q2+1)
G (0) = −(q4 − q2 − 1) or |PG(s)|2 ≥

q4/4. In the latter case, |PG(s)|2 > |G|r.

(4) Let q − 1 be a Mersenne prime. Then P
(q−1)
G (0) is even.

Proof. By [Mit14] and [KL82], the maximal subgroups of G are known. Let

Ar(G) = {H ≤ G : |G : H|r = 1, µG(H) 6= 0}

and

Mr(G) = {H ∈ Ar(G) : H is maximal in G}.

(1) If M ∈ M2(G), i.e. M is a maximal subgroup of G such that |G : M |2 = 1,

then M is conjugated to a maximal subgroup of type SL2(q) ≀S2 in the class C2,

so M ∼= PSL2(q) × PSL2(q).2.2.

We claim that if H ∈ A2(G) −M2(G), then |G : H|p ≥ q3. Assume that H ∈
A2(G) −M2(G). Then H is a proper subgroup of M such that |M : H|2 = 1.

Let K = PSL2(q) × PSL2(q) ≤ M , K = K1 × K2 with K1
∼= K2

∼= PSL2(q)

and K1, K2 ≤ K. Clearly, H ∩ K is a proper subgroup of K. Without loss

of generality, we may assume that H ∩ K1 < K1. Since |M : H|2 = 1, then

|K1 : H ∩K1|2 = 1, hence H ∩K1 is a subgroup of odd index of PSL2(q) (the

subgroups of PSL2(q) are well known, see [Hup67]). In particular, we have that

|K1 : H ∩K1|p ≥ q, hence also |M : H|p ≥ q, thus |G : H|p ≥ q3.
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Assume that |PG(s)|p < q3. Then also |P (2)
G (s)|p < q3, hence if ak(G) 6= 0 and

k > 1 is odd, then |k|p < q3 and so k is the index of a maximal subgroup, as we

have seen above. So we have that

P
(2)
G (s) = 1 −

(

q2(q2 + 1)

2

)1−s

and the proof is finished.

(2) If M ∈ Mq+1(G), i.e. M is a maximal subgroup of G such that |G : M |q+1 = 1,

then M is conjugated to a maximal subgroup of type SL2(q) ≀ S2 in the class C2

or M is conjugated to a maximal subgroup of type O+
4 (q) in the class C8. In

both cases, M ∼= PSL2(q) × PSL2(q).2.2.

We claim that if H ∈ Aq+1(G) −Mq+1(G), then |G : H|2 ≥ q3/2. Let K,K1

and K2 be as in (1). Note that H ∩K < K. In fact, if H contains K, then H

is normal in M . Since µG(H) 6= 0, then H is intersection of maximal subgroups

isomorphic to M . Now, H is normal in each of these subgroups, a contradiction

(G is simple). So H ∩K < K. Without loss of generality, we may assume that

H ∩K1 < K1. Since |M : H|q+1 = 1, then |K1 : H ∩K1|q+1 = 1. The subgroups

of PSL2(q) are well known, so we have that |K1 : H ∩K1|2 ≥ q/2, hence also

|M : H|2 ≥ q/2, thus |G : H|2 ≥ q3/4.

Assume that |PG(s)|2 < q3/4. Arguing as in (1), we have that

P
(q+1)
G (s) = 1 − 2

(

q2(q2 + 1)

2

)1−s

and the proof is complete.

(3) IfM ∈ Mq2+1(G), i.e. M is a maximal subgroup ofG such that |G : M |q2+1 = 1,

then M is conjugated to a maximal subgroup of type SL2(q
2) in the class C3 or

M is conjugated to a maximal subgroup of type O−
4 (q) in the class C8. In both

cases, M ∼= PSL2(q
2).2.

We claim that if H ∈ Aq2+1(G) − Mq2+1(G), then |G : H|p ≥ q3/2. Assume

that H ∈ Aq2+1(G)−Mq2+1(G). Then H is a proper subgroup of M such that
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|M : H|q2+1 = 1. Note that H ∩PSL2(q
2) is a proper subgroup of PSL2(q

2). In

fact, if H contains PSL2(q
2), then H is normal in M . Since µG(H) 6= 0, then H

is intersection of maximal subgroups isomorphic toM . Now, H is normal in each

of these subgroups, a contradiction (G is simple). So H ∩PSL2(q
2) < PSL2(q

2).

Since |M : H|q2+1 = 1, then |PSL2(q
2) : H ∩ PSL2(q

2)|q2+1 = 1. The subgroups

of PSL2(q) are well known, so we have that |PSL2(q
2) : H ∩PSL2(q

2)|2 ≥ q2/2,

hence also |M : H|2 ≥ q2/2, thus |G : H|2 ≥ q4/4.

Assume that |PG(s)|2 < q4/4. Arguing as in (1), we have that

P
(q2+1)
G (s) = 1 − 2

(

q2(q2 − 1)

2

)1−s

and we are done.

(4) By [DL06], Theorem 3, we know that |P (2)
G (0)| = |G|2. Moreover, if H ∈

A2(G), then H contains the Borel subgroup of G (since H is an intersection of

parabolic maximal subgroups of G). Now, the index of the Borel subgroup of

G is (q2 + 1)(q+ 1)2, hence it is not divisible by q− 1. Thus A2(G) ⊆ Aq−1(G),

hence

P
(q−1)
G (s) = P

(2)
G (s) +

∑

k∈N,k even

ak(G)

ks
.

By Lemma 2.3, we have that k divides ak(G), hence we conclude that P (q−1)
G (0)

is even. �

Theorem 13.6. Let G be a classical simple group and assume that G is not isomor-

phic to one of the following group: PSU3(3), PSU6(2), PSp4(8), PSp4(9), PSp8(3)

and PΩ+
8 (2). Let pr be the set of prime numbers r such that P

(r)
G (0) is a power of r.

The characteristic of G is the prime p ∈ π such that |PG(s)|p ≥ |PG(s)|r for all r ∈ π.

Proof. By Theorem 12.3, we have that p ∈ π. If G is not isomorphic to one of the

group listed in the statement of Proposition 13.4, the result is clear.

Assume that G = PSL2(q). By [Pat09c, Proposition 8], we have that if q 6∈
{4, 5, 7, 8, 9}, then P

(r)
G (0) is a power of r if and only if r = p, hence π = {p}.



155

Clearly, the claim of the present theorem holds also if q ∈ {4, 5, 7, 9} (remind that

PSL2(4) ∼= PSL2(5) and PSL2(7) ∼= PSL3(2), so these groups have 2 characteristics).

Assume that G = PSp4(q). By Proposition 13.4 and Proposition 13.5, the result

holds if q 6∈ {8, 9}. �



Chapter 14

Recognition of the characteristic of

an Exceptional group

In Table 14.1, we report the r-part of the order of the classical simple groups, when

r is a prime divisor of |G| and r is not p. To obtain Table 14.1 we used Lemma 2.9

(see it for the notation).

Proposition 14.1. Let G be an exceptional group of Lie type of characteristic p.

Then |PG(s)|p > |G|r ≥ |PG(s)|r for all prime number r 6= p.

Proof. Let G and M be as in Table 14.2, under the given conditions. By [Suz62]

(for G = 2B2(q)), [Kle88a] (for G = 2G2(q)), [LS86, Table 1] (for G = 3D4(q),

E6(q), 2E6(q), E7(q), E8(q) or F4(q)), [Mal91] (for G = 2F4(q)) and [CCN+85] (for

G = G2(3), 3D4(2) or 2F4(2)′) we have that if a subgroup H of G is isomorphic to

M , then H is a maximal subgroup of G. Hence a|G:M |(G) 6= 0, and we obtain a lower

bound for |PG(s)|p, as described in Table 14.2. A direct computation, using Table

14.1, proves the claim. �

156
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Table 14.1: Exceptional groups of Lie type
G r t vr(Gδ(G))

E6(q) 2 1, h+ > h− 4h+ 9
1, h+ < h− 6h+ 7

6= 2 1 6h+ 4vr(3) + vr(5)
2 4h+ 2vr(3)
3 3h

4, 6 2h
5, 8, 9, 12 h

E7(q) 2 1 7h + 10
6= 2 1, 2 7h+ 4vr(3) + vr(5) + vr(7)

3, 6 3h
4 2h

5, 7, 8, 9, 10, 12, 14, 18 h
E8(q) 2 1 8h + 14

6= 2 1, 2 8h+ 5vr(3) + 2vr(5) + vr(7)
3, 4 4h+ vr(5)
6 4h

5, 8, 10, 12 2h
7, 9, 14, 15, 20, 24, 30 h

F4(q) 2 1 4h+ 7
6= 2 1, 2 4h+ 2vr(3)

3, 4, 6 2h
8, 12 h

G2(q) 2 1 2h+ 2
6= 2 1, 2 2h+ vr(3)

3, 6 h
2B2(q) 6= 2 1, 4 h
3D4(q) 2 1 2h+ 2

3 1, 2 2h+ 2
6∈ {2, 3} 1, 2, 3, 6 2h

12 h
2E6(q) 2 1, h− > h+ 4h+ 9

1, h− < h+ 6h+ 7
6= 2 1 4h+ 2vr(3)

2 6h+ 4vr(3) + vr(5)
3, 4, 6 2h

8, 10, 12, 18 h
2F4(q) 6= 2 1 2h

2 2h+ vr(3)
4, 6, 12 h

2G2(q) 2 1 h + 1
6= 2 1, 2, 6 h
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Table 14.2:

G Conditions M Lower bound for |PG(s)|p
2B2(q) Cq+√

2q+1 ⋊ C4 q2/2
3D4(2) (C7 × PSL2(7)).2 28

3D4(q) q ≥ 3 G2(q) q6

E6(q) F4(q) q12

2E6(q) (PΩ−
10(q) ◦ q+1

(q+1,3)
).(q + 1, 4) q16

E7(q) (2E6(q) ◦ q+1
(q−1,2)

).(q + 1, 3).2 q27

E8(q) (SL2(q) ◦ E7(q)).(q − 1, 2) q56

F4(q)
3D4(q).3 q12/|3|p

2F4(2)′ PSL3(3).2 26

2F4(q) q = 22k+1, k ≥ 1 Cq2+q√2q+q+
√

2q+1 : 12 q12/4
G2(3) PSL2(13) 35

G2(q) q ≥ 4 SU3(q).2 q3/|2|p
2G2(q) Cq+√

3q+1 ⋊ C4 q3/3



Chapter 15

Proof of the main theorem

Theorem 15.1. Let G be a simple group of Lie type and let H be a finite group.

Assume that PH(s) = PG(s). Then H/Frat(H) ∼= G.

Proof. Without loss of generality, we assume that Frat(H) = 1.

First, we claim that H is a simple group. There are two ways to see that H is a

simple group. The first one is by [DL07b, Theorem 7]. The second one is the following:

we know that if G is a simple group of Lie type, then the Dirichlet polynomial PG(s)

is reducible if and only if G ∼= PSL2(p) with p = 2e − 1 and e ≡ 3 (mod 4) (see

[Pat09a]). Clearly, if PG(s) irreducible, then G is simple (see, for example, [DLM04,

Corollary 7]). Moreover, if G ∼= PSL2(p) for some p = 2e − 1 and e ≡ 3 (mod 4),

then H is simple by [DLM04, Proposition 16]. Finally we have that H is not cyclic.

In fact, if H is cyclic, then PH(1) 6= 0 (since PH(1) is the probability that a randomly

chosen element of H generates H). But PG(1) = 0, since G is non-abelian.

Second, we claim that H is a group of Lie type. By [DL04, Theorem 3], if H is

an alternating group, then H ∼= G. By [DL06, Theorem 11], if H is a sporadic group,

then H ∼= G. By the classification of finite simple groups, we may assume that H is

a group of Lie type.

Now, we want to prove that if PG(s) = PH(s), then H and G have the same

characteristic. Let us consider some particular cases. For a group A let m(A) be the
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minimal index of a proper subgroup of A. Clearly am(A)(A) 6= 0. Since PH(s) = PG(s),

we have that m = m(G) = m(H). Assume that m = 28. By Table 15.1, we have that

{H,G} ⊆ {PSp6(2),PSU3(3),PSL2(27)} . Clearly H,G 6∼= Alt28, since H and G are

groups of Lie type. Moreover, |P (2)
PSp6(2)(0)| = 29 (by Theorem 12.3), |P (2)

PSU3(3)(0)| = 26

and |P (2)
PSL2(27)

(0)| = 1288 (use [GAP]). Thus G ∼= H . Assume that m is one of the

minimal indexes in Table 15.1 and m 6= 28. Since G and H are groups of Lie type,

we see that they have the same characteristic. Finally, assume that m is not one of

the values of Table 15.1. Let π be the set of prime numbers r such that P (r)
G (0) is a

power of r. By Theorem 12.3, if p is the characteristic of G, then p ∈ π. Moreover,

by Theorem 13.6 and Proposition 14.1, we have that the characteristic of G is the

prime p such that p ∈ π and |PG(s)|p ≥ |PG(s)|r for all r ∈ π. Thus we conclude that

H and G have the same characteristic.

In order to complete the proof, we apply Theorem 1.11: if G and H are simple

groups of Lie type defined over fields with the same characteristics and PG(s) = PH(s),

then G ∼= H . �

Table 15.1: Simple groups with a certain minimal index (obtained with [GAP] and
[DL03a, Table 1])

Minimal index Groups
28 PSp6(2), PSU3(3),PSL2(27) and Alt28

120 PSp8(2), PΩ+
8 (2), and Alt120

672 PSU6(2) and Alt672

585 PSp4(8),PSL4(8) and Alt585

820 PSp4(9),PSL4(9) and Alt820

3280 PSp8(3),PSL8(3) and Alt3280
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