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Abstract

In this thesis we discuss three problems concerning the Dirichlet polynomial Pg(s) of
a simple group of Lie type S.

The first problem is a conjecture of Kennet Brown: if GG is a finite group, then the
order complex of the coset poset of G is not contractible. We prove that the conjecture
holds for a large class € of classical groups and we show how to generalize this result
to the groups whose components are in the class €, under some assumptions.

The second problem is to determine whether the Dirichlet polynomial of a simple
group is reducible or not in the ring of Dirichlet polynomials. We give a complete
answer for the Dirichlet polynomials of the simple groups of Lie type. This allows us
to find the factorization into irreducible of the Dirichlet polynomial of a group whose
non-abelian chief factors are simple groups of Lie type, under some assumptions on
the rank of these last groups.

The third problem is a conjecture of Erika Damian and Andrea Lucchini: if S is a
simple group and G is a finite group such that Ps(s) = Pg(s), then G/Frat(G) = S.
We complete the proof of this conjecture. This conjecture was proved for S abelian,
alternating and sporadic. Moreover, it was proved that if G; and G5 are two non-
isomorphic groups of Lie type defined over fields with the same characteristic, then
Pg,(s) # Pg,(s). We show that it is possible to recognize the characteristic of a group
of Lie type form its Dirichlet polynomial. This is enough to complete the proof of the

conjecture.
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Sommario

In questa tesi discuteremo tre problemi riguardanti il polinomio di Dirichlet Pg(s) di
S, gruppo semplice di tipo Lie.

Il primo problema ¢ una congettura di Kennet Brown: se GG ¢ un gruppo finito,
allora il complesso simpliciale associato al coset poset di G non € contraibile. Di-
mostreremo che questa congettura vale per un’ampia classe € di gruppi classici e
mostreremo come generalizzare questo risultato a gruppi le cui componenti apparten-
gono alla classe €, sotto certe condizioni.

Il secondo problema consiste nel determinare quando il polinomio di Dirichlet di
un gruppo semplice ¢ riducibile nell’anello dei polinomi di Dirichlet. Daremo una
risposta completa al problema per i polinomi di Dirichlet di gruppi semplici di tipo
Lie. Questo ci permette di trovare la fattorizzazione in irriducibili del polinomio di
Dirichlet di un gruppo i cui fattori principali non abeliani sono gruppi semplici di
tipo Lie, con alcune ipotesi sul rango di questi ultimi gruppi.

Il terzo problema € una congettura di Erika Damian e Andrea Lucchini: se S & un
gruppo semplice e G ¢ un gruppo finito tale che Ps(s) = Pg(s), allora G/Frat(G) = S.
Completeremo la dimostrazione di questa congettura, che era stata gia dimostrata
per S gruppo abeliano, alterno e sporadico. Inoltre, era stato dimostrato che se G
e (G5 sono due gruppi di tipo Lie definiti su campi con la stessa caratteristica e non
isomorfi, allora Pg,(s) # Pg,(s). Per completare la dimostrazione della congettura,
mostreremo che ¢ possibile riconoscere la caratteristica di un gruppo di tipo Lie dal

suo polinomio di Dirichlet.
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Notation

0.1 General notation

Let a, k be two nonnegative integer number, let p be a prime number, let 7 be a set
of prime numbers, let Y be a set, let G be a finite group and N a normal subgroup

of G. Let K be a finite field.

List of symbols

16} empty set
ap(G)  k-th coefficient of the Dirichlet polynomial Pg(s) p.8
ap(f(s)) k-th coefficient of the Dirichlet polynomial f(s) p.8

ap(G,N) k-th coefficient of the Dirichlet polynomial Pg; y(s) p.8
Aut(G)  group of automorphisms of G
ag, largest Zsigmondy prime for (a, k) p.25
Alty, alternating group of degree k
B Borel subgroup of a simple group of Lie type p-35
Ce(H)  centralizer in G of a subgroup H
Cy cyclic group of order k
d(G)  minimal number of generators of G
f@™(s)  m-Dirichlet polynomial of f(s) p.9
F, field with ¢ elements
Frat(G) Frattini subgroup of G



G/

Mn,k(K)

derived subgroup of G

natural numbers

matrix n X k with coefficient in K
normalizer in G of a subgroup H
group of outer automorphisms of G

smallest normal subgroup of G whose quotient is an r-group

Dirichlet polynomial of G p-8
Dirichlet polynomial of G given G/N p-8
m-Dirichlet polynomial of G p-9
m-Dirichlet polynomial of G given G/N p.9
product of the Zsigmondy prime for (g, k) p.26
set of subsets of Y

ring of Dirichlet polynomials with integer coefficients p-8
subring of R p-8
subring of R p.23
subring of R’ p.23

real numbers

socle of GG, i.e. product of the minimal normal subgroups of G

stabilizer of Y under the action of G

symmetric group of degree k

the number R/|K] p.29, 36
p-adic valuation of % p.26
set of commuting indeterminates {z, : p € 7}

integer numbers

Moébius function of the subgroup lattice of G p.22
set of prime divisors of k

set of prime divisors of |G|

set of prime numbers p such that p € = p-8
symmetry of the Dynkin diagram p.33



P homomorphism of rings  p.9
v homomorphism of rings p.24

f(s)lp p-part of f(s) p.28
|k|,  p-part of k p.26

0.2 Notation for Classical groups

For a better explanation, see also Subsection 3.1.1. The group GL(V, F') is the group

of automorphisms of the vector space V' over .

List of symbols

AV, k), A p.32
Cy,...,Cq classes of geometric maximal subgroups p.43
f bilinear form p-31

K reduction modulo scalars (for K <T'(V,k)) p.31
I(V,k),I  subgroup of GL(V,TF) p.31
L,S,0,U types of Classical groups p.31
0°, 0%, 0~ types of Classical groups p.31
Q quadratic form p-31
S(V, k) subgroup of GL(V,F) p.32
S class of maximal subgroups p-43

V Vector space over F, p-31
I'(V,k),I'  k-semisimilarity p.31
K form defined on a vector space V' p-31

Q(V,k),Q2  subgroup of GL(V,F) p.32



0.3 Notation for root systems, Lie algebras, Dynkin

diagrams

See Subsection 3.1.2 for a better explanation. In the sequel, let J be a subset of I,

let v and w be two reflections.

List of symbols

(X, —(d—1)) p.66
Ky, Dynkin diagram p.33
D’ Dynkin diagram associated to W p.35

Dy, Dk p.35
Fo (1) p.36
1 set of p-orbits of II p.34

I, subset of p.64
I complementary subset of [, p.64
Loy, intersection of I,,, ..., I, p.64
J* union of the elements of J p.34

J set of Nx(B)-orbits of .J p.41
l(w) length of w p.34
X, p.66
£ simple Lie algebra p.33
o(J) size of .J p.41
Py parabolic subgroup over B, associated to the set of roots J p.36
PX(I) set of fixed point of P(I) under the action of Nx(B) p.41
Su(G) set of L < G such that L > H p.39
SX(9) fixed point of Sg(.S) under the action of Nx(B) p.39
Tow, (t) p-39

Cartan subalgebra of £ p.33



RUS

SsSZ =

W, Wy

I,y

7o (1)

Subspace of U spanned by K
Weyl group of &

Weyl group of &

subgroup of W

reflection, element of W
sets of fundamental roots

isometry associated to p

system of roots

set of positive roots of ¥ w.r.t. a fundamental system 3
set of negative roots of ¥ w.r.t. a fundamental system X
unique element of W; such that w;(®;") = ®;

Killing form on £

p.34
p.34
p.-34
p-35
p.35
p-35
p.34
p-33
p.34
p.69
p-33
p.34
p-35
p.34
p-34
p-59
p-33



0.4 Notation for Chapter 6

Let V' be a vector space endowed with a form x and let W be a subspace of V.

List of symbols

e, fi,x,y,z vectors of a basis of V p-81
How) p-98
W) the group I(W+/W, Kwi/w) p.93

L p.107
Ly(X) set of W <V such that Staby s> HNT p.83
L5(X) non-trivial totally singular elements of Ly (X) p.83

L (X) /v quotient set of £3(X) under the action of ) € A —T p.83
£ p.93
L(+) +-reducible elements of £ C Sub(V) p.85
L(N) N-reducible elements of £ C Sub(V) p.85
Mpy(X)  maximal subgroups of X supplementing S and containing H = p.83

P property of a subset of Sub(V') p.85
Sub(V)  set of all the vector subspaces of V' p.83

Uy, set of totally singular subspaces of dimension k p-84

w+t orthogonal of W with respect to f p.81
B(n) p.80
Bp(X) p.58
3,(X) p.79
homomorphism p-84

Kw restriction of kK to W p-81
Kw L jw form induced by x to W+ /W p.93
Oun p.82
»M) element induced by ¢ in 1MW) p-94
Uy map p-84

(v, w) f(v,w) p.8l



0.5 Notation for Chapter 9

List of symbols
g1 family of groups p-118
G family of groups p-118
01(X) number associated to the group X p.119
0>(X) number associated to the group X p.119

0.6 Notation for Part III

List of symbols
M(A, k) maximal subgroups which order is divisible by % in a group A p.141

0.7 Definitions

(the) characteristic of a group of Lie type p.137

classical projective group p-32

‘ ‘ P-element p.85
dominant prime p.137
redundant element p-85
Dirichlet polynomials p-8 )
o totally singular p.81
Dynkin diagrams p-33
Zsigmondy prime p-25
geometric maximal subgroup p-44 o )
o m-Dirichlet polynomials  p.9
monolithic primitive group p.11
m-number p-8
non-degenerate p-81
o ' w-factorization p.61
non-trivial graph automorphism p.41

non-trivial intersecting subgroup p-57



PG’N(S)

ai(G, N)

Pa(s)
ar(G)

a(f(s))

m-number
X
R

Introduction

Let G be a finite group and let N be a normal subgroup of G. The Dirichlet polynomial
of G given G/N is

N
Pon(s) =3 % where ay(G,N) = S pg(H).
k>1 H<G,|G: H| =k,
NH =G,

Here pug is the Mobius function of the subgroup lattice of G, which is defined induc-
tively by pg(G) = 1 and pg(H) = — > oy a(K) if H < G. Moreover, the Dirichlet
polynomial of G is given by Pg(s) = Pe.(s) and ax(G) = ax(G, G) .

The polynomials Pg(s) and Pg n(s) are elements of the ring of Dirichlet finite

series (also called Dirichlet polynomials) with integer coefficients ,

R:{Z%:ameZ,Hm:am;&O}\<oo}.

m>1
Let f(s) = > i1 7% be an element of R. We let ax(f(s)) = ax be the k-th
coefficient of f(s).
Let m be a set of prime numbers and let 7’ be the set of prime number that do
not lie in 7. We say that a positive number m is a m-number if each prime divisor of
m lies in m. Denote by X the set of commuting indeterminates {x, : r € 7}. Let R,

be the subring of R given by

{Za—mER:am%Oﬁmisaﬂ’—number}.
ms

m>1

8



Note that both R and R, are factorial domains (see [DLMO04|). In fact there exists
a ring isomorphism

: R, — Z[X]

defined by ®(r~°) = z, for each r € 7'.
Moreover, there is an interesting ring homomorphism between R and R, given
by F(s)
R — R
f8) =2 hen it — fM(s) = ke %

where

{ ap 1if k is a 7'-number
by, =

0 otherwise.

In particular, the polynomial Pgr])\,(s) is called the 7-Dirichlet polynomial of G given Pg’r])v(s)

N and the polynomial Pgr)(s) is called the mw-Dirichlet polynomial of G. P(W)(s)
As noted in [Gasbh9|, some values of the polynomials Pg(s) and Pg n(s) have a

probabilistic interpretation. In fact, for n > d(G/N), the number Py n(n) is the

conditional probability that n randomly chosen elements g, ..., g, of G generate G,

given that Ngy, ..., Ng, generate G/N. Also the polynomial Pg)(s) has a probabilistic

interpretation. In fact, if r is a prime number and P is a Sylow r-subgroup of G,

then for each positive integer n the number Pg)(s) is the conditional probability that

n randomly chosen elements of G' generate G together with the elements of P, given

that their product normalizes P (see [DLO7b, Proposition 1|).



Chapter 1
History and motivations

The Dirichlet polynomial of a group has been studied by many authors. In the 1996,
Mann introduced the Probabilistic Zeta function of a group, which is the counterpart
of the Dirichlet polynomial (see [Man96]). In his article, he pointed out the possibility
to define this object for a wide class of groups, namely the positively finitely generated
groups. However, the study of the finite case is very important. For instance, if G
is a profinite group and {N;};c; is a set of normal open subgroups of G such that
; Ni = 1, then Ps(s) = inf; Pg/n,(s).

In the same year, Boston proposed the study of this function and in particular
of its irreducible factors (which are called the generalized Euler factors), in order to
obtain a better understanding for a possible number theoretical interpretation (see

[Bos96]). In fact, it was already known to Gaschiitz (see [Gasb9]) that

Pa(s) = Payn(s)Pan(s),

where N is a normal subgroup of G. So, if 1 = Gy I G <...Gy, = G is a chief series

of G, then we have:
k—1

PG(S> = H PG/Gi,Gz‘H/Gi(S)’ (*>

i=0
The factorization (x) is well understood, thanks to the work of Gaschiitz (see

[Gash9| and [Gas62]), Detomi and Lucchini (see [DL03b|) on the crowns. We need

10



11

some definitions in order to explain this factorization. Let N be a minimal normal

subgroup of a group G, and let

B G/Ce(N)  if N is not abelian,
a { G/Cs(N) x N otherwise.
be the monolithic primitive group associated with N. Clearly N is (isomorphic to)
the socle of Ly. Moreover, if A = H/K is a chief factor of G, then A is a minimal
normal subgroup of G/K and Ly = Ly k. Define:

(1+qn + ... + 452
[N

Pryi(s) = Pryn(s), Pryi(s)=Ppyn(s)— N for i > 1,

where vy = [Cauwe(ny(Ln/N)| and gy = |Endy, (V)] if NV is abelian, gy = 1 otherwise.
In particular, note that if IV is abelian, then NV is a direct product of isomorphic cyclic
groups of prime order and
|Der(Ly /N, N)|
[N ’
where |Der(Ly /N, N)| is the number of complement of N in Ly.
Finally, let A; and Ay be two chief factors of G. We say that A; is G-equivalent

Pryn=1-

to Ay if A; and A, are G-isomorphic to the minimal normal subgroups of a primitive
epimorphic image of G (recall that this epimorphic image has one or two minimal
normal subgroups and in the latter case they are not G-isomorphic). For a non-
Frattini chief factor A of G, let dg(A) be the number of factors of G which are
G-equivalent to A (it is independent on the choice of the chief series). Now we can

state the main result of [DLO3b].

Theorem 1.1 (|[DL03b, Theorem 18]). Let G be a finite group. Then

Pa(s) = H H pLAJ(S) )

AEA \ 1<i<sc(A)
where A is the set of representatives of the quotient set given by the G-equivalence

relation on the set of chief factors of G, and L, is the monolithic primitive group

associated with A.
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Because of this theorem, we have that the factorization (%) is independent on the
choice of the series and it is well understood in terms of Dirichlet polynomials of
primitive monolithic groups. Since the knowledge of the primitive monolithic groups
with abelian socle is complete, the Dirichlet polynomial of a soluble group is well

known, as shown in the following result.

Theorem 1.2 (|[DL03a, Theorem 5|). Let G be a finite group. The following are

equivalent:

(1) G is soluble;

(2) the factors of Pg(s) are of the form (1 — qi) for some ¢ € N and q a prime

power,

(8) the sequence n v a,(G) is multiplicative, i.e. apm(G) = a,(G)an,(G) whenever

(m,n) = 1.

We can say some more words on the Dirichlet polynomial of a monolithic primitive
group L with non-abelian socle V. Assume that S is a simple component of L, define
X = Np(S)/CL(S) and n = |L : N.(S)|. Since S = soc(X), assume that S < X.
The following result shows a connection between the Dirichlet polynomials Py, y(s)

and PX75(S).
Theorem 1.3 (See [Ser08, Theorem 5|). Under the above conditions we have that
(r) _ p() _
Ppn(s) = Px g(ns —n+1)

for each prime divisor r of the order of S.

1.1 The coset poset and the Dirichlet polynomial of
a group

Let C(G) be the set of the proper cosets of G, i.e. C(G) ={Hg: H < G,g€ G}. It

is ordered by inclusion, so we refer to C(G) as the coset poset of G.
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A natural object of investigation is the order complex A(C(G)) of C(G) (which is

a simplicial complex). The elements of A(C(G)) are finite chains
Higy < Hagy < ... < Hyg

of elements of C(G) (for references, see [Mun84| and [Spa66]). In particular, we
can speak of the Euler characteristic x(C(G)) := x(A(C(G))) and the reduced Euler
characteristic X(C(G)) := x(C(G)) — 1. In [Bro00], Brown pointed out a connection
between the order complex A(C(G)) and the Dirichlet polynomial of G. In fact, it

turns out that
Pa(—1) = =x(C(G)).

Remind that if a complex is contractible, then the Euler characteristic equals one.
Noting that Ps(—1) # 0 if G is a soluble group, Brown conjectured that Pg(—1) # 0
for all finite groups G.

In the soluble case, Brown proved the following result.

Proposition 1.4 (|Bro00, Proposition 8|). Let G be a finite soluble group and let d be
the number of non-Frattini chief factor of G. Then A(C(G)) has the homotopy type
of a bouquet of (d — 1)-spheres and the number of spheres is |X(C(G))| = |Pa(—1)|.

No such result is known for non-soluble groups, apart from some cases (e.g.

A(C(Alts)) is homotopy equivalent to a bouquet of 2-spheres, see [Bro00]).

In our thesis (see also [Pat09b]) we prove that A(C(G)) is not contractible for a

wide class of classical groups. Our main result is the following.

Theorem 1.5. Let G be a classical group which does not contain non-trivial graph
automorphisms. Then Pg(—1) does not vanish, hence the order complex A(C(G)) is

not contractible.

The proof of this theorem requires a careful work on the structure of the parabolic
subgroups of G and their intersections (especially when the intersection of two max-

imal parabolic subgroups of GG is not a parabolic subgroup) and a good knowledge
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about the maximal subgroups of G (invoking also the classification of finite simple
groups).

Using Theorem 1.3, we extend this result to the groups whose composition factors
are classical simple groups (under certain technical conditions, see Theorem 7.1). Part

I of the present thesis is devoted to the proof of this result.

The connection between the coset poset of the group G and the Dirichlet poly-
nomial of G is strong. In fact, the coset poset of G completely determines Pg(s), as
shown in [Bro00, Section 9|. In particular, let £ be the coset lattice of GG, consisting
of all cosets of G and the empty set. A Mobius function g is defined on L, setting
(G) =1and Yy, g (H) = 0if K € L is properly contained in G. So we can
construct a Dirichlet polynomial

fi(K)
o= 2. TR
It turns out that
Fee (s +1) = Pa(s),

so the coset poset completely determines Pg(s). Moreover, note that

XAC@)) =a@) == Y WH)=—Pee(0) = —Pa(-1).

HelL , HD@
1.2 Irreducibility of the Dirichlet polynomial of a

group

As we have seen before, the ring of Dirichlet polynomials is a factorial domain. It is a
natural question to ask when a Dirichlet polynomial of a group G is irreducible. An

easy result is the following.

Lemma 1.6 (|[DLMO04, Corollary 7|). If Pg(s) is irreducible, then G/Frat(G) is a

simple group.

A more general result is the following.
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Proposition 1.7. Let G be a finite group such that Frat(G) = 1. If Pgsoc(c)(8) 45

wrreducible, then G is a primitive monolithic group.

Proof. Let N be a minimal normal subgroup of G. By definition, we have that
N <soc(G). It is straightforward to show that Pg soc(c)(5) = Pa,n(5)Pa/N soc(c)/n (5)-
Since Pg soc(c) () is irreducible we have that either Pg y(s) =1 or Pa/nsoc(c)/n(s) =
1.

Since Frat(G) = 1, by [Laf78, Lemma| we have that the chief factors below soc(G)
are non-Frattini. By [DLM04, Lemma 6], if K < G, then Pg (s) = 1 if and only
if K < Frat(G). Assume that Pg y(s) = 1. We get that N < Frat(G), against the
hypothesis. Thus we have Pg/nsoc(c)/n(s) = 1, so soc(G)/N < Frat(G/N). Since the
chief factors of G under soc(G) are non-Frattini we get N = soc(G).

Let M be a maximal subgroup of G which does not contain soc(G) (it exists since
Frat(G) = 1). Let

coreq(M) = ﬂ M?

geG
and note that coreg(M)<G. Clearly we have that coreq(M) = 1, otherwise soc(G) <

coreg (M) but soc(G) £ M. Hence G is a primitive group. This completes the proof.
[

As we have seen in the beginning of this chapter, the Dirichlet polynomial of a
group G factorizes in correspondence to the chief factors of G. In particular, given
a non-Frattini chief factor H/K of G we have that Pg/k /K (s) divides Pg(s). Un-
fortunately, the factor Pg/k m/ k(s) is not always irreducible in R. For instance, we

have:
PPSL2(7)(3) =(1-2/2%)(142/2°44/4° —14/7° — 28 /14° — 28 /28° + 21 /21° + 42/42°)

and
Py (s) = (1 —4/4%) = (1 —2/2°)(1 +2/2°),

where V' is the subgroup of order 4 in Alt,.

The results on the irreducibility of Pg(s) are collect in the following theorem.
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Theorem 1.8. The following hold:

o Ifpis a prime number such that p > 5, then Pay,(s) is irreducible ([DLM04,
Theorem 12]).

o Ifp is a prime number such that p > 5, then Ppgi,p)(s) is reducible if and only
if logo(p+ 1) =3 (mod 4) (/[DLMO04, Proposition 14 and 15])

e [f q is a power of a prime number and q is not a prime number, then Pg(s) is

irreducible for G = PSLy(q),%Bs(q) or 2G1(q) ([Pat09¢c, Proposition 15]).

In this thesis (see also [Pat09a]) we prove the following.

Theorem 1.9. Let G be a finite simple group of Lie type. The Dirichlet polynomial
Pg(s) is reducible if and only if G = PSLy(p) and logy(p 4+ 1) =3 (mod 4).

In order to obtain this result, we study the irreducibility of the Dirichlet polyno-
mial P((;p ) (s) (which is well understood) and we use some results on the irreducibility of
a multivariate polynomial with coefficient in Z to extend the result to the polynomial
Pg(s). Again we invoke the classification of finite simple groups.

Moreover, thanks to Theorem 1.3, we extend the result to some polynomials of
type Pg n(s), where G is a monolithic primitive group with socle N (see Theorem

8.1). Part II is dedicated to the proof of this result.

1.3 Recognition of properties of the group from its

Dirichlet polynomial

Let G and H be two finite groups and assume that Pg(s) = Py(s). Suppose that
we know the group GG. What can we say about H? It is easy to see that we can
not infer that H = G, since, for instance, Pg(s) = Po/mat(c)(s). Also H/Frat(H) =
G/Frat(G) is not true. For example, Pogwcy(5) = Psym,xcs(5) and Ppar,(9)(s) =
Prro(s) (use [GAP]). However, many properties of H can be recognized from the

Dirichlet polynomial H. We summarize them in the following theorem.
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Theorem 1.10. Let p be a prime number. Let G and H be two finite groups and
assume that Pg(s) = P (s).

o [fG is soluble, then H is soluble ([DL03c, Theorem 1], see also Theorem 1.2).
o If G is a p-group, then H is a p-group.

o [f G is p-soluble, then H is p-soluble. In particular, G is p-soluble if and only
if the sequence {a,(G)}nen is p-multiplicative ([DL07a, Theorem 1.2]).

o If G is perfect, then H is perfect ([DL03a, Proposition 7]). In particular, the
following are equivalent:
- OP(G) =G,
— p divides a,(G).

o [f G is simple, then H/Frat(H) is simple ([DLO7b, Theorem 7]). In particular,
assume that the following hold:

an(G)

(1) Pl(f)(s) has a simple zero in 1, i.e. Pl(f)(l) =0and[[, 9 n » #1L
(2) Let m = min{k : ax(H) # 0,k > 1}. If ap,(H) # 0, then k divides m!.

(8) If a,(H) # 0 and k is a power of a prime number, then k divides a(H)
and either k =m or (k,m) = (8,7).

Then H/Frat(H) is a non-abelian simple group ([DLO7b], [Mas07]).

We can say something more when G is a simple group. In fact, we have the

following.

Theorem 1.11. Let G be a finite simple group and let H be a finite group such that
Pa(s) = Py(s).

o [fG is abelian, then H/Frat(H) = G.

o [f G is alternating, then H/Frat(H) = G ([DL04]).
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o [fG is sporadic, then H/Frat(H) = G ([DL06, Theorem 11] ).

o If G and H are simple groups of Lie type defined over fields with the same
characteristic, then G = H ([DL06, Theorem 14]).

In Part III of this thesis, we complete the prove of the following.

Theorem 1.12. Let G be a finite simple group and let H be a finite group. If
Pa(s) = Py(s), then H/Frat(H) = G.

In particular, we show that it is possible to recognize the characteristic of a simple
group of Lie type from its Dirichlet polynomial (see Theorem 13.6 and Proposition
14.1). In most cases, it turns out that the characteristic of G is the “dominant prime”
of Pg(s) (i.e. a prime number p such that if r is a prime number and po(G) =
lem{n|a,(G) # 0}, then |po(G)|, > |po(G)|.). In order to obtain the result we
need to study some maximal subgroups of the groups of Lie type, so we invoke the

classification of finite simple groups, which is also required to complete the proof of

the main theorem.

In the past, some conjectures on Pg(s) were proposed. A way to recognize a simple
group is to know the order of the group. In fact, there are at most two non-isomorphic
simple groups with the same order. In order to recognize the order of a simple group G
from Pg(s), it is natural to compare the number po(G) = lem{n|a,(G) # 0} with |G].
It was conjectured that |G| = po(G) (see [DL03a, Conjecture 1], and [DLO06]). This
is false. In fact, if G = PSLy(p) with p a prime number such that p = 17 (mod 40)
(|Pat09c|), then po(G) = |G|/2. Moreover, po(PSU3(3)) = |[PSU;3(3)|/8 (use |[GAP]).

However, a weaker result was conjectured in [DL06| and proved in [DL07a].

Theorem 1.13 (|[DL07a, Theorem 1.3|). Let G be a finite group. Then w(|G /Frat(G)|)
T(po(G)).

This means that we can recover the prime divisors of |G/Frat(G)| from the

Dirichlet polynomial of G. Moreover, if G is a primitive monolithic group, then
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the prime divisors of the socle soc(G) are exactly the prime numbers r such that
PC(T'?:ioc(G)(S) 7# P soci) (5)-

Another interesting question is the following. Given a finite group G, is it possible
to recognize the non-Frattini chief factors of G from its Dirichlet polynomial? As we
have seen in Theorem 1.1, we can factorize the Dirichlet polynomial considering a
chief series of G. Now we say some words on the contribution of the abelian chief

factors of G. We define another Dirichlet polynomial:

Qe(s) = ] I Z2is)].
(A4)

Ae A \1<i<ég

where A" ={A € A: Ais abelian}. As we have seen before, we have that

e =TI T (1-952))

Ae A \1<i<ég(A)

where ¢(A, 1) is a positive integer. Now, a factorization of this type is unique, as the

following Lemma shows.

Lemma 1.14 (|[DL03a, Lemma 16] ). Suppose that

C; dj
1 <l_p’”5) = 1l (1_pmﬂ's>’
1<i<k; 1<5<ks

where ¢y, ..., Ck,,dy, ..., dg, are positive integers. Then ki = ko and there exists o €

Sym(k1) such that meq) = n; and dy) = ¢; for 1 < i < ky.

So, if we know the polynomial Qs(s), we know the non-Frattini abelian chief
factors of G. Of course, it is not immediate to recognize the polynomial Q¢(s) from
Pg(s): this requires a careful study of the contribution of the non-abelian chief factors
to Pa(s).

As well, in order to understand the non-abelian chief factors from the knowledge

of Ps(s) we wish to prove two facts:
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- the Dirichlet polynomial P gc(cy(s) is irreducible for G a monolithic primitive
group, with few exception. At the present date, the alternating case is open

and it seems to require a certain amount of number theoretical knowledge.

- if Pgy soc(@)(8) = Paysoc(cs)(s) for two monolithic primitive groups G and Gb,
then soc(G1) = soc(Gq). If Gy is abelian, the result is known. Assume that
(71 is not abelian. To prove the claim, it is useful to understand the number
n = |G : Ng(S)|, where S is a simple component of a monolithic primitive
group G (note soc(G) = S™). We believe that

n =max{m € N:Vk € Z if ax(G,soc(G)) # 0 and (k) # n(S), then k € Z™}.

In this way, we can reduce the problem to the almost simple case: in fact, by

Theorem 1.3, we have that

P o (8) = P g (nis —n; +1)

G;,80¢C

for each prime number r € 7(soc(Gy)) = {r: Pé:)’SOC(Gl)(s) # P soc(G1)(5) } (see
below Theorem 1.13), where S; is a simple component of G;, X; = Ng, (S;)/Ceq,(S;)
and n; is defined as n above. So the problem is reduced to the following: if X,

and Xy are almost simple groups such that

(r) _ plr)
Xl,soc(Xl)(S) - PXg,soc(Xg)(S)

for each prime number r € w(soc(X;)) = {r: Pgl)’soc(xl)(s) # Px, soc(x1)(5)} (see
below Theorem 1.13), then soc(X;) = soc(X3). This can be proved quite easily
when soc(X7) is an alternating or sporadic group (the proof should be similar
to the simple case). The situation for a groups of Lie type of characteristic
p is quite more complicated: as in the simple case, one can try to find the
Artin invariants (see the proof of [DL06, Theorem 14]). However, it seems to
be harder here since it is not always true that \P)(fl {SOC( x)(0)] = [soc(X1)],, and

this was a key fact in the proof of the claim in the simple case.

Nevertheless, we believe this two facts to hold true, so we conjecture the following.
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Conjecture 1.15. Let G and H be two finite groups. If Pg(s) = Py(s), then G and

H have the same non-Frattini chief factors.
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Chapter 2
Basic results

In this chapter we give some notation and some results on the objects of our study.

2.1 The Mobius function of the subgroup lattice and
the ring of Dirichlet polynomials

A very important object of our analysis is the Mobius function of the subgroup lattice
of a group. Let G be a finite group. The Mé&bius function of the subgroup lattice of

G is defined by :
1 if H=G
pe(H) = ‘
_ZH<K§G/~LG(K) it H<G.

This function has some nice properties that we collect in the following proposition.
Proposition 2.1. Let G be a finite group and H a subgroup of G.
(1) If uc(H) # 0, then H is intersection of maximal subgroups of G (See [Hal36]).

(2) The index |Ng(H) : H| divides pe(H)|G : HG'| ([HIz89, Theorem 4.5]).

Let N be a normal subgroup of G and let m be a positive integer. Recall that

am(G, N) = > pi(H).
H<G,|G:H|=m,
NH =@,

22
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Very often, in our proofs we have to show that a,,(G,N) # 0. By definition of
am (G, N) we have the following result.

Lemma 2.2. Let G be a finite group, let N be a normal subgroup of G and let m be

a positive integer.

(1) Assume that if H is a subgroup of G such that HN = G and |G : H| = m, then
H is mazimal. We have that a,,(G, N) # 0.

(2) Assume that if Hy and Hy are subgroups of G such that HHN = HiN = G and
|G : Hy| = |G : Hi| = m, then Hy and Hy are conjugated in G. We have that
a(G,N) # 0 if and only if pe(Hy) # 0.

The second result stated in Proposition 2.1, has an interesting consequence. In-
deed, if N < G, then Proposition 2.1 implies that |Ng(H) : H| divides pg(H) if
HN = G. Now, we have that

am(G, N) = Z |G No(H)|pa(H),

H € Cm (G, N),

where C,,,(G, N) is a set of representatives of the conjugacy classes of subgroups H of

G such that HN = G and |G : H| = m. Thus we obtain the following.

Lemma 2.3. Let G be group and let N be a normal subgroup of G such that N < G'.

Then m divides a,,(G, N) for each positive integer m.

Assume that N < G'. By the above lemma, we get that Pg y(s) is an element of R/

R/:{Z%:amem2,|{m:am7&0}|<oo},

m>1

which is a subring of R. Let 7 be a set of prime numbers. We have that Pgrj)\,(s) is

an element of RL

R;:{Za—mGR':am#Oﬁmisaw'number}.
ms

m>1
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We define the map

U: R — Z[X]
given by W(p'~*) = z, for each p € 7. Clearly, ¥ is a ring isomorphism. In particular,
since the groups we are studying satisfies the condition N < G’, we consider Pg n($)

as an element of R, for 7’ = 7(N).

EXAMPLE 1. Let G = Alts. By [GAP], we have
Ps(s)=1-5"°—6'""*—10"°+20""* +2-30""* — 60",

hence

2 2
U(Pg(s)) =1 — x5 — wowg — ToT5 + T5X5 + 2X9X3T5 — THT3Ts5.

When we study the irreducibility of a Dirichlet polynomial we heavily use this
correspondence between the ring of Dirichlet polynomials and the ring of polynomials
with integer coefficients. Usually, in order to prove that a certain Dirichlet polynomial
f(s) = D s o € R is irreducible in R, we show that W(f(s)) is irreducible in

Z[X ). This is enough under the assumption a;(f(s)) = 1, as shown in the below

lemma.

Lemma 2.4. Let 7 be a set of prime and let f(s) be an element of R', such that
a1(f(s)) = 1. Then f(s) is irreducible in R if and only if W(f(s)) is irreducible in
LI X ]

Proof. The map WV is an isomorphism of rings, hence f(s) is irreducible in R, if
and only if W(f(s)) is irreducible in Z[X,/]. Since a;(f(s)) = 1 we have that f(s) is
irreducible as an element of R’ if and only if f(s) is irreducible in R. Indeed, assume
that f(s) is irreducible in R’ and f(s) = g(s)h(s) in R. Thus there exists my, ms € Z
such that m;g(s) and mah(s) are in R'. So mymaf(s) = myg(s)mah(s), but f(s) is
prime in R, then f(s) divides myg(s) or myh(s). Without loss of generality, assume
that mf(s) = mah(s) for some m € Z. We get mimaf(s) = myg(s)mah(s) =
mig(s)mf(s), hence my = g(s)m, so g(s) is an integer. Since f(s) = g(s)h(s),
a1(f(s)) =1 and g(s) € Z, we have that |g(s)| = 1. Thus we get the claim. [J

Finally, Theorem 1.3 can be restated in the following way.



25

Theorem 2.5 (See [Ser08, Theorem 5|). Let L be a monolithic primitive group with
a simple component S. Let X = Np(5)/Cr(S) and let n = |L : NL(S)|. Let I :
L Xyl — Z[Xrsy] be the ring homomorphism defined by I'(x,) = x' for each
r € n(S). We have that

(P ety () = T(U(PY o) (5)))
for each m C mw(S).

EXAMPLE 2. Let L = M, x C,, and 7 = {2}. In this case soc(L) = M, and
X =soc(S) =5, so Pxs(s) = Ps(s), and we have (use [GAP]):

P(s) = P8 (s) =1 — 7777 — 23117% + 115517,

P

L,SOC(L)(S) = P)((?S'(ns —n 4+ 1) =1 — 77n(1_8) _ 231"(1—5) + 115571(1—5)’

and

U(PP(s)) = 1 — 2721y — 232721, + 32527211,

2 n n,.n._n.n 2
‘I’(PL(,S)OC(L)(S)) =1 — a7y, — wyzray, + vgaserey; = F(\I’(Pé )(3)))

2.2 The Zsigmondy primes

We state some useful results on the primitive prime divisors.

Lemma 2.6 (see |Zsi92]). Let a,k € N, a,k > 2. There exists a prime divisor r of
a* — 1 such that v does not divide a’® — 1 for all 0 < i < k, except in the following

cases:
o k=2 a=2°"—1 with s > 2.
o k=06,a=2.

When this prime divisor ezists, it is called a Zsigmondy prime for (a, k).

Let a and k be two positive integers greater than 1. If there exists a Zsigmondy

prime for (a,n) we let a; be the greatest Zsigmondy prime for (a, k).
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Lemma 2.7 (see [Fei88|). Let a,k € Nya,k > 2. Let r be a Zsigmondy prime for
(a, k). We have that:

e r=1 (modn), sor>k+1.

o If k > 3 and (a,k) & {(2,4),(2,6),(2,10),(2,12),(2,18),(3,4),(3,6), (5,6)},
and 1 is the largest Zsigmondy prime for (a, k), then |a* — 1|, > k+1 (i.e. r?
divides a®* — 1 orr > 2k + 1).

Lemma 2.8 ([LPS90, p.38|). Let k € N,k > 3 and let ¢ = p’ for some prime number
pand f > 1, (¢, k) # (2,6). Let g; denote the product of the Zsigmondy prime for
(q, k). We have that:

o Ifg;=k+1, then (¢, k) € {(2,4),(2,10),(2,12),(2,18),(3,4), (3,6),(5,6)}.

o IfGi=2k+1, then (¢, k) € {(2,3),(2,8),(2,20),(4,3),(4,6)}.

2.3 The r-part of ¢" =1

Let p be a prime number and let k£ be an integer. We denote by |k|, the p-part of
k, ie. |k|, = p* where p' divides k but p"™! does not divide k. We set |0], = 0.
The p-adic valuation of k is the number v, (k) which is the smallest integer such that
pr®) = |k|,. We set v,(0) = —oo.

Let r be another prime number and let ¢ be a power of p. Let t be the smallest

positive integer such that ¢ =1 (mod r). Moreover, let

o v(¢t—=1) ifr#2
max{hT, h~} ifr=2,
where h™ = vy(q — 1) and h™ = va(q + 1).
Lemma 2.9 ([HB82, Lemma 8.1]). Let ¢ > 3 be an odd natural number and let n be

a positive integer. We have that

1)y = max{|q — 1|o,|¢+ L]2}|n|2  if 4[(¢ — 1) or n is even,
1y =
2 if 4/(¢ + 1) and n is odd.
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n 2 if 4](q — 1)or n is even,
1q" + 1]y = _ '
lg+ 1|2 if 4|(¢+ 1)and n is odd.

Let v # 2 be a prime number, ¢ > 2 a natural number; then we have:

. 1 if t1n,
|q - 1|7’ = ' )
l¢" = 1| |n/t|. if t|n.

. 1 if t12n ort|n,
¢" + 1], = ' .
l¢" — 1]:12n/t|. if t|2n and t 1 n.

2.4 On the irreducibility of a polynomial

In the sequel, we give some results on the irreducibility of polynomials we shall use

in Part II.

Lemma 2.10. Let D be a commutative domain. Suppose that a € D and let f(x) =
1 —ax™ € Dix]. We have that f(x) is reducible in D[z] if and only if one of the
following holds:

e a € D" for some prime number u such that u divides m;
e —4a € D* and 4 divides m.

Proof. Left to the reader: just apply [Lan02, Chap. VI, Theorem 9.1|. [
Since we deal with polynomials with integer coefficients, we have that D is a

ring of polynomial with integer coefficients. Thus the above lemma has the following

immediate consequence.

Corollary 2.11. Let D = Z[xy, ..., xx]. Suppose that a € D and let f(z) =1—az™ €

Dlz]. If f(x) is reducible, then a*> € D* for some prime divisor u of m.

Another corollary of Lemma 2.10 is the following.
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Corollary 2.12. Let D be a factorial domain and suppose that f(x) € Dlx] is an
irreducible polynomial such that f(0) # 0. Let k > 1 and my,...,my € N — {0} such

that (mq, ...,my) = 1. The polynomial f(x]" - ... x,'*) is irreducible in D]z, ..., Ty].

Proof. Let F be the field of fraction of D and let F be the algebraic closure
of F. An irreducible factor of f(x) in F[z] is a polynomial g(x) = = — a for some
a € F—{0}, since f(0) # 0. By the previous Lemma, g(z{"-...-z}*) = 2" -...-2]* —a
is irreducible in Fzy, ..., z;]. So an irreducible factor of f(x}" -...-x™) in Flxzy, ..., 1]
is a polynomial g(z{" - ... - z"). This proves that if f(z7" -...- ;") is reducible in
Dixq,...,xp, ], then f(x) is reducible in D[z]. O

In order to state the next lemma, we need some definition. Let f(s) be a Dirichlet
polynomial in R. We denote by |f(s)|. the r-part of f(s), i.e. the least common
multiple of the numbers {|k|, : ax(f(s)) # 0}.

Lemma 2.13. Let h(s) = "7, % be a Dirichlet polynomial and let m be the least
common multiple of {k : ar, # 0}. Assume that the following hold:

o There exists a set of prime number my such that h(™)(s) is irreducible.
o There exists a set @ # 7 C w(m) such that |h™)(s)|, = |ml|, for all v € .
Then h(s) is irreducible in R if and only if (h(s), h\™(s)) = 1.

Proof. Note that h(™(s) # h(s), since |h(™)(s)|, = |m|, implies that there ex-
ists £ € N such that v divides k and a; # 0. Thus, if h(s) is irreducible, then
(h(s),h(™(s)) = 1.

Assume that (h(s),h(™(s)) = 1. Let f(s) and g(s) be two Dirichlet polynomials
such that f(s)g(s) = h(s). Since h(™)(s) is irreducible and f{™)(s)g(™)(s) = h{™)(s),
we may assume that f(™)(s) = h{™)(s) and g(™)(s) = 1. Let v € 7. Note that
[f(8)lo = [f™(s)]o = [R0)(s)]y = |ml,. Since [m], = [h(s)[s = |f(s)l|g(s)]s, we
have that |g(s)|, = 1, thus g (s) = g(s). It follows that ¢(™(s) = g(s). This implies
that g(s) divides h(™(s). Since g(s) divides also h(s), by (h(s), h™(s)) = 1 we have
that g(s) =1. O
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The simple groups of Lie type

3.1 Notation

A simple group of Lie type G is the subgroup X! of fixed point under a Frobenius
map F' of a connected reductive algebraic group X defined over an algebraically closed

field of characteristic p > 0.

The simple groups of Lie type can be classified in several ways. For instance, they
split into two classes: the Chevalley groups and the Twisted groups (see |Car72]).
These groups are completely determined by a simple Lie Algebra £ over C, a finite
field K and a symmetry of the Dynkin diagram of £.

In general, for the groups of Lie type, we use the notation of [Car72|. The group is
denoted by *L;(t*), where k € {1,2,3} (if k = 1, then k is omitted), L varies over the
letters A, ..., G, [ is the Lie rank of the Lie algebra and t* is a power of a prime number
p. In particular, the group ¥L;(¢*) is defined over a the field F, of characteristic p (so
we allow ¢ to be irrational). Finally, we set ¢ = t, with the exception given in Table

3.1. In Table 3.1 we record the various names we use for the groups of Lie type.

Another way to classify the groups of Lie type is to divide them into classical and

exceptional groups.

29
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Table 3.1: Simple groups of Lie type

Lie notation | Other notation Conditions
An(t) PSLn—i—l(Q) n =1, (nv t) 7"é ( )7 (17 3)
AL () PSU,11(q) n=2(nt)#(2,2)
Bn(t) PQQn+1(q> n Z B,t odd
2Bg(t2) q:tZ :22k+1,]{72 1
Calt) PSpy, () n>2,(n,t) #(2,2)
Da(1) POJ,(q) n >4
2D, (1?) PQ,,.(q) n >4
3D4(t3)
Eg(t)
2E6 (t2)
Ex(1)
Ex(t)
Fu(t) t>3
2F4(t2) q= 2 = 22k—i—17 E>1
Go(t) t>3
2G2(t2) q= 2 = 32k+1’ k > 1
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3.1.1 The classical groups

Let p be a prime number, let f be a positive integer and let ¢ be the number p/.
Moreover let n be an integer greater than or equal to 2. Denote by V' a vector space 1%
of dimension n over F = Fu where u € {1,2}. As in [KL90, §2.1], let £ be a form K
defined over the vector space V' over F,. and let f be the bilinear form associated to f
k. We consider four cases :

L,S,0,U
e Case L: k = f is identically 0.

e Case S: k =f is a non-degenerate symplectic form.

e Case O: k = (@ is a non-degenerate quadratic form; moreover f(v, w) = Q(v + Q

w) = Qv) — Qw).
e Case U: k = f is a non-degenerate unitary form.

The number u is defined as follows

{ 2 if case U holds,
u =

1 otherwise.
Moreover, when case O, we distinguish three cases (see [KL90, p.27-28]):
0°,07, 0~
e Case Q° if n is odd (in this case ¢ is odd);
e Case O7, if (V,Q) is of Witt defect 0;
e Case O, if (V, Q) is of Witt defect 1.

Denote by I'(V, k) the group of the k-semisimilarity . Moreover, let I'(V,k)
I(V,k) = {¢p € GL(V,F) : k(¢(v)) = K(v), for all v € V'},

where [ = 1 if k is quadratic, [ = 2 otherwise. With a little abuse of notation, we

denote by F* the group of scalar linear transformations. If K is a subgroup of T'(V, k),

denote by K the reduction modulo F* N K. For example, I'(V, k) is the factor group K
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I'(V, k) /F*. Let S(V,k) = I(V,k) NSL(V,F) and let Q(V, k) be the derived subgroup
of S(V, k). In particular, note that Q(V, k) = S(V, k) unless case O holds (see [KL90,
p.14]). It turns out that:

PSL,(q) if case L holds,
PSU,(q) if case U holds,
PSp,(¢) if case S holds,
PQ,(q) if case O° holds,
PQF(q) if case OF holds,
PQ.(q) if case O~ holds.

AV, k) Finally, define

I'(V,k)(t) in case L with n > 3,
(V) k) otherwise.

AV, k) = {

where ¢ is an inverse transpose automorphism (see [KL90, (2.2.4)]) of the group
S(V,k) = SL(V) when case L holds.
We recall the following.

Theorem 3.1 ([KL90, Theorem 2.1.4]). Assume that n > 2,3,4,7 in cases L, U, S
and O respectively. If Q(V, k) is non-abelian simple, then Aut(Q(V,k)) = T(V, k),
except when one of the following holds:

e Case L andn > 3. In this case Aut(Q(V, k) has a subgroup of index 2 isomor-
phic to T.

o Case OF and n = 8.

e Case S, n =14 and q even.
Following [KL90|, we say that a group X is a classical projective group if
Q(V,k) < X <AV, k)

for some V and & as above.

When V and « are clear from the contest, we omit them. For example, we shall
write T instead of T'(V, k).
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3.1.2 Lie algebras, system of roots and Dynkin diagrams

Let p be a prime number. Let K be a field of characteristic p. We denote by G a
group of Lie type over the field K. We have that G is either an untwisted or a twisted
group of Lie type. In both cases, a simple Lie algebra £ over the field K is associated
to G.

If G is an untwisted group of Lie type, then G is a Chevalley group £(K), which
is a certain group of automorphisms of £ over the field K (see [Car72, Proposition
4.4.3)).

If G is a twisted group of Lie type, then G is a subgroup of a Chevalley group

Now, let G be our group of Lie type. The following objects are associated to G.

A Killing form (—, —) on the simple Lie algebra £ over the field K.

A system of roots ® in a Cartan subalgebra U of £ and a system of fundamental

roots I in ®.

A Dynkin diagram ® | that is a graph with elements of II as vertices, such that
453’(8)2 (see [CarT2, §3.4]).

(r,r)(s,8)

r € Il and s € II are joined by a bond of strength

A symmetry p of the Dynkin diagram of £ (see [Car72, §13.1]). In particular
the order of p is 1, 2 or 3 (see [Car72, §13.4]).

In Figure 3.1, we report the Dynkin diagrams of a simple Lie algebra.

Figure 3.1: Dynkin diagrams

A, o—o o0—o0 1
o T ri-1 1
E

B, C; o—o0-s 0-2-0 Ty T3 T4 T5 T (r7)(rs)

F, o0—o0-2-0—0

-1 Ty Te T3 Ty

D, o—o- Gy
Ty T2 Ti—3Ti—2 e

o—3—0
1 )
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Now, we give some other definitions and remarks on the root systems.

e Given a system of roots ¥ and a fundamental system ¥ in W, let U+ U~ be the

sets of positive and negative roots with respect to the fundamental system 3.
We recall that a root in r € VU is a linear combination of roots of ¥ with integer
coefficients which are all non-negative if » € ¥* and all non-positive if r € U~

(see [Car72, §2.1]).

The vector space U is spanned by Il in £. Let r € *0; a linear map w, : U — U,

defined by
2(r, x)

(r,r)

is called a reflection. The Weyl group W of ® is the subgroup of transformations

wy(z) =

of U generated by the reflections {w, : r € ®}. Note that W is generated also
by the so-called fundamental reflections {w, : r € II} (see [Car72, Proposition
2.1.8]). Let [(w) be the length of w € W, defined as the minimal n such that
w = wy,..w,, forr; € i € {1,...,n}. Thus I(1) = 0. Moreover, [(w) =
& Nw™H(®7)| (see [Car72, Theorem 2.2.2]).

For a subset K of II, let Uk be the subspace of U spanned by K. Let &y =
® N Yy and let Wi be the subgroup of W generated by the reflections {w, :

r € P }. Note that Py is a system of roots in Uy, K is a fundamental system

and the Weyl group of ®x is Wy ([Car72, Proposition 2.5.1]).

An isometry 7 of U is associated to the symmetry p in such a way that 7(r) is
a positive multiple of p(r) for each r € II (see [Car72, §13.1]). The isometry 7
is uniquely determined by p. In particular, observe that for every w € W, the
element w™ = 77 'wr belongs to W. Finally, note that p and 7 are non-trivial

if and only if G is twisted.

Let k& be the number of the p-orbits of II. Let I = {0y, ..., O} denote the set
of p-orbits of II. For each J C I, let J* = Ui K.
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e Let W denote the subgroup of the Weyl group W consisting of the w € W such
that w™ = w (see [Car72, §13.1]). For a subset J of I, let W, = W, N W.
In particular, if J = {O;} for some ¢ € {1,...,k}, then let W; = W, = W, ,
W, =Wy =W, and ¢, = @5« = Op,.

e Let ©' be the Dynkin diagram of W, that is a graph induced by the Dynkin
diagram ®, identifying the nodes in the same p-orbit (see |[Car72, 13.3.8]). @’
is a graph with as nodes the elements of I, such that Ky € I and Ky € [ are

joined if there exists r; € Ky and ry € K, such that 1 and 75 are joined in ®.

e Let K be a subset of II. We define Dy to be the set of elements w of W such
that w(r) € ®* for each r € K. For a subset J of I, let D; = Dy NW .

e For JC I, let

Ty, (t) = Y .

weWs
3.2 The parabolic subgroups of a simple group of Lie

type

Let G be a simple group of Lie type defined over a field of characteristic p. Denote
by B a Borel subgroup of G. A parabolic subgroup of G is a subgroup of G containing
a Borel subgroup.

The parabolic subgroups are crucial in our study since they are the subgroups of

G that contain a Sylow p-subgroup and that are intersection of maximal subgroups.

Lemma 3.2 (|[DL06, Lemma 2|). Let G be a simple group of Lie type of characteristic
p. Let B be the Borel subgroup of G. We have that

PP = 3 |;;G§D]|Ds)—l‘

B<PLG

A large part of our study is focused on the analysis of the polynomial Pg )(s).

Indeed, we know a big amount of informations on it, as we will see below.

Dk

TWJ (t)



Fo(t)
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There is a deep connection between the system of roots and the parabolic sub-

groups, as shown in the following proposition.

Proposition 3.3 (|Car72, Theorem 8.3.4, Section 8.6, Section 14.1]). Let G be a
simple group of Lie type over K and let B be a Borel subgroup of G. Assume that [
is the set of p-orbits of Il. Let Sp(G) = {H < G : H > B}. There is a bijection

©: PI) — Sp(G)
J — PJ

such that:
(1) PyN Px = Pjng for J,K C I (so the map is a lattice isomorphism);

(2) Py =B and Py = G;

(3) % = Tw,(t), where t = R/|K].
Hence, combining Lemma 3.2 and Proposition 3.3, we have the following.
Proposition 3.4 (See [DL06, Theorem 3|). Let G be a simple group of Lie type of
characteristic p. We have that

PP (s) = (=) (=1)VIS : Byfts = (—)I Y (-1 (wa(t))l_s.

JCI JCI T, (1)

As we have seen in the previous subsection, the expression Ty, (t) depends on the
elements of J. However, there is another way to express Ty, (t), as we will see below.

Let t = "{V@ , where G is defined over the field K. Recall that ® is the Dynkin
diagram of the Lie algebra associated to G and ®’ the Dynkin diagram induced by
the action of p. Denote by Fg () the polynomial

ﬁ 1-— Eitmﬁ_l
1-— Eit ’

i=1
where m; and ¢; are given in Table 3.2 (see |[Car72, Proposition 10.2.5, Theorem
14.3.1]). By [Car72, Theorem 10.2.3, Theorem 14.2.1 |, we have that Ty, (t) = Fo (1)
if I is the set or p-orbits of II associated to G.



Table 3.2: m; and ;.

D my, ...,y D' €1,..., €

A 1.1 D 1.1
By, C 1,3,5,..,20— 1 24, | 1,-1,1, ..., (—1)H!
D, 1,3,5,..,20l—3,l—1 | 2B, 1,-1

Eq 1,4,5,7,8,11 2D, 1,1,...,1,—1
E; 1,5,6,9,11,13,17 3D, 1,1, w,w?

Es |1,7,11,13,17,19,23,29 || 2E¢ | 1,—-1,1,1,—1,1
F, 1,5,7,11 2F, 1,1,-1,—1
Go ;O 2Gy 1,—-1
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2mi
3

In Table 3.2, we set w = e . In particular, note that ® = @’ if and only if S is
untwisted. In this case, the ¢;’s are all 1.

Suppose that J C I. Denote by J* the set |, K. For K C II, let Dk be the
subdiagram of ® corresponding to the set of roots K. Let ®’; be the subdiagram of
D’ corresponding to the set of nodes J. Let D’ , ..., D, be the connected components
of ®';. Clearly we have that J = Ule J; and the union is disjoint. Since J* is a subset
of I, we have that ® ;- is a subdiagram of ©.

Suppose that @', is connected. Then just one of the following holds:

e © ;. is connected and ®’; is the Dynkin diagram ®” of a simple group of Lie
type which is untwisted if and only if ® ;- and ®’; are isomorphic graphs. In
this case define Fy (t) = For(t).

e © . is not connected, it has |p| components and each of its connected compo-
nents is isomorphic to the Dynkin diagram ®” of an untwisted group. In this

case define Fg (t) = For ().
We are ready to state the following.

Proposition 3.5 (See [Car72, Theorem 10.2.3, Theorem 14.2.1 |). Under the above



38

setting, for a subset J of I we have:

T, (t) = H Fo, (1),

EXAMPLE 1. Let G = 2A3(t?). The Dynkin diagram ® of G is Az and I =
{{r1,7r3},{r=}} (we refer to Figure 3.1).

e Since ®' = 243, we have
1—*1+t21—¢4
1—t 1+t 11t

Fo(t) = Fop,(t) = = (L+8)2(1 =t +t3)(1 +1%).

o Let Ji = {{ri,r3}}. Clearly, @) is connected and the diagram D’. has 2

connected components isomorphic to A;. So Fip, (t) = Fa, () =1+t

e Now, let Jo, = {{r}}. Clearly, Dy; is the Dynkin diagram A;. So Fpr, (t) =
Fyu (t) =1+t

By Proposition 3.4, we have:

PP (s) = 1=((1+ (1=t + ) "= (1 + A+ )1 =t + 1)) "+ + 021+ 2)(1 =t +12) .

3.2.1 The parabolic subgroups of an almost simple group of
Lie type

Now we consider a more general setting. Let X be an almost simple group with socle
S isomorphic to a simple group of Lie type.
Our aim is to give an explicit formula for P)(g 29(3) Note that we can generalize

Lemma 3.2 in the following way.

Lemma 3.6. Let r be a prime number, let G be a finite group and let N be a normal
subgroup of G. Let R be a Sylow r-subgroup of G. Suppose that if M 1is mazimal
subgroup of G such that MN = G and R < M, then M contains also Ng(R). We
have that
(") (o) _ pa(H)
PG,N(S) = Z W

R<H<G,
HN =G
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Proof. The proof is the same as in [DL06, Lemma 2|, considering just the sub-
groups H such that HN = G. [

Let P be a Sylow p-subgroup of X. Thus PN S is a Sylow p-subgroup of S and
B = Ng(P N YS) is a Borel subgroup in S. Given a subgroup K of X, denote by
Sk (X) the set of subgroups H of X such that H > K.

Lemma 3.7 (|Car72, Theorem 8.3.3]). Let H be a subgroup of S such that H > B.
Then Ng(H) = H.

Lemma 3.8. Let P and B as above. We have that:
(1) Nx(B) = Nx(PNS) and Nx(B)S = X;

(2) if M is a mazimal subgroup of X such that M > P and MS = X, then
M > Nx(B).

Proof. Well known, see [KL90|. O

The last lemma implies that Sy 5)(X) = {H < X : H > Nx(B),HS = X}.
We say that the elements of the set Sy, (p)(X) are the parabolic subgroup of X over
Nx(B). A parabolic subgroup of X is an element of Sy, (5)(X) for some Borel sub-
group B of S.

Since P N S < P, we have that Lemma 3.8(1) implies that Nx(P) < Nx(B).
Hence, by Lemma 3.8(2) and Lemma 3.6 we get that

H) pix (H)
p) _ fx ( _
X,S(S) Z X H|s 1 Z X H|1
P<HZX, HeSyy (5)(X)
HS =X

observing that if P < H < Nx(B), then H is not an intersection of maximal sub-
groups (by Lemma 3.8(2)), hence pux(H) = 0 by Proposition 2.1(1).

Now we want to give a better description of the elements of the set Sy, (z)(X).
Let Si (S) denote the subset of Sp(S) = {H < S : H > B} given by

{H € Sp(S) : Nx(H) > Nx(B)}.

We have the following.

Sk(X)

S35 (5)
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Proposition 3.9. The map n : Snyp)(X) — S5 (S) given by n(H) = HN S s
well-defined. Moreover n is an isomorphism of posets, in particular Nx(n(H)) = H
for each H € Sy, (5)(X).

Proof. 'We show that n is well defined. Let H € Sy, (p)(X). Clearly HNS >
Nx(B)NS = Ng(B) = B. Since HNS < H, we have that Nx(HNS) > H > Nx(B).
Hence HN S € S5 (9).

We claim that 7 is surjective. Let K € Sj (S). By definition Nx(K) > Nx(B),
so Nx(K) € Sy (X). Finally n(Nx(K)) = Nx(K)NS = Ng(K) = K by Lemma
3.7.

We claim that 7 is injective. It is enough to prove that Nx(n(H)) = H for each
H € Sny)(X). As above, we have that Nx(H N S) > H. Since HS = X, using

Lemma 3.7, we get
I X Nx(HNS)|=|S:Nx(HNS)NS|=|S:Ns(HNS)|=|S: HNS|=1|X: H|,

thus Nx(HNS)=H.
Clearly the map 7 is an isomorphism of posets. [

Recall from Proposition 3.3, that the map:

©: PI) — Sp(S9)
J — PJ

is an isomorphism of lattices. Since that Nx(B) acts by conjugation on Sg(5), in
view the isomorphism ©, the group Nx(B) acts on P(I). In particular, the action
is the following: if J C [ and g € Nx(B), then JY is the unique subset of I such
that Py = PY. Moreover, the group Nx(B) acts on I: if O € I is a p-orbit, then
{09} = {O}9. Note that if S is twisted, then the action of Nx(B) is trivial. Assume
that S is untwisted. The action of Nx(B) on I can be thought as an action of Ny (B)
on II. So, any element g of Nx(B) induces a symmetry 1), of the Dynkin diagram D
of S. Since X = SNx(B), if h € X, then h = sg for some s € S and g € Nx(B).

If 1, is not trivial, then we say that h is a non-trivial graph automorphism of order
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|1y| in X (the definition does not depend on the choice of g, since the action does not

depend on the choice of g).

Observe that S (.9) is the set of fixed points of Sp(S) under the action of Nx(B).
If X does not contain non-trivial graph automorphisms, then 1, is the trivial
symmetry for each g € Nx(B). In this case, we have Sx (S) = Sp(S).
If X contains a non-trivial graph automorphism, then S is untwisted and p is
trivial.
Let PX(I) be the subposet of P(I) consisting of the subsets of I which are union of ~ PX(I)
Nx(B)-orbits of elements of I. Clearly PX(I) is the set of fixed point of P(I) under
the action of Nx(B). The map © restricts to an isomorphism of posets between
PX(I) and S (S). Moreover, if J € PX(I), then let .J be the set of Ny (B)-orbits of J
J and denote by o(J) the size of .J. o(J)
Now we can prove the following generalization of Proposition 3.4 (see also [DLO06,

Theorem 3]).

Theorem 3.10. Let X and S be as above. Then

PE(s) = (-1 S (15 Pyt = (-0 S <—1>°<J>(TWI“>)1_S.

JePX(I) JEPX(I) TWJ (t)

In particular, if X does not contain non-trivial graph automorphisms, then P)((p?g(s) =

PP (s).

Proof. By the above consideration, we obtain an isomorphism of posets 7 :
PX(I) — Snym)(X), given by 7(J) = Nx(Py) for J € PX(I). In particular,
we get ppx(n(J) = px(Nx(Ps)). Note that upx(J) = (—1)°D=°U). Indeed
there is an isomorphism between the poset PX(I) and the poset P(I) of subsets
of I, given by J +— J. Thus ppxy(J) = up(f)(j), and by [Sta9d7, 3.8.3|, we get
() = (~1)0=)

Since Nx(P;) NS = Py, we have that |X : Nx(P,;)| = |5 : P;|. By Lemma 3.6



42

and Lemma 3.8, we obtain:

P)(gzq(8> _ Z IUX(H) _ Z |,UX(NX(PJ))

. s—1 . s—1 -
HESN (5)(X) X+ H] JEPX(I) X+ Nx(Fy)|
_ Z (_1)0(1)—0(J)|S : PJ|1—s _ (_1)0(1) Z (_1)0(J)|S : PJ|1_S.
JePX(I) JEPX(I)

Apply Proposition 3.3 and the proof is complete. [

Now, we give an example of explicit computation of P)(g 29(3) (when we speak about
Dynkin diagram, we refer to Figure 3.1).

EXAMPLE 2. Let X be an almost simple group with socle S = A3(t) and suppose
that X contains a non-trivial graph automorphism. Here, the Dynkin diagram ® = ®’

is As, hence I = {{ri},{r2},{rs}}. Since X contains a non-trivial automorphism,
the set of Nx(B)-orbits of I is I = {{{r}, {rs}}, {{r2}}}.

o We have Fg(t) = Fy,(t) = 2120120 — (1 4 )2(1 4 ¢ + £2)(1 + £2).

o Let Ji = {{r1},{rs}}. The diagram D ;- = Dy, ,,) has 2 connected components
isomorphic to A;. So Fo, (t) = Fa,(t)* = (1 +1)%.

e Now, let J; = {{r2}}. Clearly, ©; is the Dynkin diagram A;. So Fy, (t) =
Fyu (t) =1+t

By Theorem 3.10, we have:

p§<zj>s(8) 1=+ A+t+2) (1 + DA+ A+ £+ ) (A + )20+ )1+t +2)

3.3 Maximal subgroups of a simple group of Lie type

3.3.1 Classical groups

Let X be an almost simple group with socle G a classical simple group. We assume
that if G = PQg(q), then X does not contain graph automorphisms of order 3 and if
G = PSp,(q) is symplectic, then X does not contain graph automorphisms.
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In this section we deal with the maximal subgroups M of X such that MG = X
and M does not contain a Sylow p-subgroup of X. By [KL90|, the group M NG is a
member of one of the classes of geometric subgroups Cy, ...,Cs or of the class S (see
[KL90| for the notation). In [KL90|, Kleidman and Liebeck showed the structure of
the geometric maximal subgroup. We use the notation of [KL90]. In particular, we
use its description of the collections C; of the maximal subgroups of a classical group
G. So, when we say that a subgroup M has a certain type in a certain class, we are
referring to [KL90, Table 3.5.A-F|.

Now we state a crucial theorem, due to Aschbacher, on the maximal subgroups of

the classical groups.

Theorem 3.11 (see [Asc84|, [KL90]). Let G be a classical simple group. A mazimal
subgroups of G either lies in C; — Cg or in the class S. A subgroup H of G lies in S
if and only if the following hold.

a. The socle S of H is a non-abelian simple group.

b. If L is the full covering group of S, and if p: L — GL(V) is a representation
of L such that p(L) = S (where = denotes the reduction modulo scalars), then

p s absolutely irreducible.
c. p(L) cannot be realized over a proper subfield of F.

d. If p(L) fizes a non-degenerate quadratic form on'V, then G € {PQ,(q), PQt (q),
PQ, (q)}-

e. If p(L) fizes a mon-degenerate symplectic form on V', but no non-degenerate

quadratic form, then G = PSp,,(q).
I If p(L) fizes a non-degenerate unitary form on V', then G = PSU,(q).

g. If p(L) does not satisfy the conditions in (d), (e) of (f), then G = PSL,(q).
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We say that a maximal subgroups of a classical group G is a geometric maximal
subgroup if it lies in one of the class C; — Cs.

An interesting result on the elements of the class S is the following.

Theorem 3.12 (|[LPS90, p.32|). Let H be a member of S and let S be the socle of
H. Then one of the following holds:

o |H| < ¢** if G is not unitary, |H| < ¢**® if G is unitary;
o S=Alt. force{n+1,n+2}.

e S and G are in Table 5.3.

Table 3.3: Class S, some groups
S G

PSLd(q) PSL d(d—1) (q)
2

POy (q) PSLig(q)
Ee(q) PSLa7(q)
M24 PSL11(2)
E7(q) | PSpse(q),q odd
PQz(q) PQ{ (q)
PQo(q) PQ1s(q)
Er(q) | PQs(q),q even
001 PQ;4(2)

As reported in Table 3.4, for some groups of small Lie rank, the class S is com-
pletely determined or we can make a restriction on the possible members of this
class.

Moreover, by [KL82, Theorem 5.7|, we have that if H is a maximal subgroup in
the class S of PSUy(q), then soc(H) is Alty, PSLo(7), PSp,(3) or PSL3(4).

Recall the notation for ¢. and ¢’. Let d be the dimension of the vector space

associated to a classical group G (not unitary) defined over a field F, (for example,
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Table 3.4: Subgroups that (possibly) lie in the Class S for some groups of low Lie

rank
G H Conditions Reference
PSLsy(q) Alts if p= 41 (mod 5), then ¢ = p, [Hup67]
otherwise ¢ = p* & {4,25}
PSL;(q) PSLy(7) | p & {2,7}; if p® =1 (mod 7), then g = p, | [Mit11], [Har26]
otherwise g = p? > 25
Altg if p=1,4 (mod 15), then g = p,
otherwise g = p? # 9
Altg.2 q=25
Alt7 q = 25
PSL4(q), q even Alt; q=2 [MweT76]
PSL5(2) [CCNT85]
PSU3(q) PSLy(7) p>=—1 (mod 7) and g=p #5 [Mit11], [Har26]
Altg g=p=11,14 (mod 15)
Altg.2 q=>5
PSp,(q),q odd | PSLa(q) p>bandgqg>7 [Mit14]
Altg q=p==45 (mod 12),q #7
Altg.2 qg=p==41 (mod 12)
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if G = PSp,,(q), then d = 2n). Let e be as in Table 3.6-3.7. By [GPPS99, Example
2.6-2.9] we have that if H is a subgroup in the class S of G and (¢, |G : H|) = 1,
then S = soc(H) appears in the last column of the Table 3.6-3.7. For example, let
G = PQ;(3) and e = 4. In this case d = 7. The socle of a maximal subgroup H in
the class S of G, such that 35 = 5 does not divide |G : H|, is Altg, Alty or PSpg(2).

Now, let us consider the group G = PSU,,(¢), defined over the field F 2. Let d = n
and let e be as in Table 3.8. By [GPPS99, Example 2.6-2.9] we have that if H is a
subgroup in the class S of G and (¢, |G : H|) = 1, then S = soc(H) appears in the
last column of the Table 3.8.

In Table 3.9-3.14 we report the maximal geometric subgroups H of G such that
(GF,|G : H|) =1, using the notation of [KL90| for the type and the class.

Recall the definition of the class S. In particular, if M lies in S, then there exists

an absolutely irreducible representation p : L — GL(V') such that p(L) = S, where
L is the full covering of S.

As in [KL90, §5.3|, for a finite group S and a prime number r, let R,.(S) =
min{m : L has a nontrivial projective representation of degree m in characteristic
r}. Moreover, let Ry (S) = min{R,(S) : r is a prime number, r # p} and R(S) =
min{ R,.(S) : r is a prime number}. In particular, we are concerned with the simple
groups S such that R(S) < 12. We report these groups in Table 3.15, 3.16 and 3.17,
using [KL90, Proposition 5.3.7, Proposition 5.3.8, Theorem 5.3.9 and Proposition
5.4.13|.

Assume that S is a group of Lie type of characteristic p over F,. Let F, denote
the algebraic closure of IF,,. Since p is absolutely irreducible, we can think to V' as an
irreducible projective F,S-module. Moreover, by definition of the class S, we have
that V' cannot be realized over a proper subfield of F. Under these assumptions, by
[KL90, Proposition 5.4.6 and Remark 5.4.7|, there exist an integer k and an irreducible

projective F,S-module of dimension ¢ such that one of the following holds:
o r=¢" and dim(V) =n = t¥;

e Sis of type 2A;,2D,,%Eg, 7 = ¢"*/?, k is odd and n = t*;
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e Sis of type 3Dy, r = ¢**/3, 34k and n = t¥;
o S is of type 2By, %Gy, 2Fy, r = ¢** and n > t*.

In Table 3.18 we report the possibilities for S when ¢t < 12.

3.3.2 [Exceptional groups

Let X be an almost simple group with a socle S isomorphic to an exceptional group

of Lie type.

The maximal subgroups of X are not completely known. However, they are com-

pletely determined for some groups, as reported in Table 3.5.

Table 3.5: Reference for the maximal subgroups of some exceptional groups

‘ S ‘ Reference ‘
2By(t?) | [Suz62|, [Pat09c|
3D, (%) [K1e88b]
2Fy (%) [Malol]

Go(t) | [Kle88al, [Coo81]
2Gy(1?) [Kle88a|

For the other groups, namely Fj(t), E¢(t), E(t), Es(t) and 2Eg(t), the best result

is the following.

Theorem 3.13 (See |[ILS03, Theorem 9]). Let M be a maximal subgroup of a finite

exceptional group S over Fy, where t is a power of p. Let

[ 1210g,(1) if § = Ei(q),
Alog,(t)t™ if S = Eq(q),

1> if S = Eg(q),
5 if S = 2Eg(q),
Ot if S = Fy(q).

If |M| > k(S), then M is known.
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Table 3.6: Maximal subgroups H in the class S of a classical group (not unitary) of
dimension d over F, such that (¢}, |G : H|) =1, (e, q) # (6,2).

‘ e ‘ d ‘ q ‘ S = soc(H) ‘
d—4.d>9]10| 35 Altyy, Altyy
14 2 A1t15, Altl()
16 2 A1t17, Altlg
22 2 Altys, Altg
i—3.d>7] 7| 23 Alts, Alty
7 3 PSpq(2)
9 35 PSL,(3), Alty, Alty;
9 PSLs(¢°)
13 2 A1t14, A1t15
15 2 A1t16, A1t17
21 2 Altyy, Altys
i—2.d>5]6| 23 Alty, Alty, Alts, PSLo(11)
6 3 PSL(4), My
S| 3.5 | Alts, Alty, Altso, PSLy(7), P22 (2), Spg(2), PSLa(8)
g 5 Alt;, 2B, (8), PSL; (4)
8 PSL,(¢”), PSU;(q)
8 PQ7(q)(g odd), Spe(q)(p = 2)
2] 2 Altys, Altys, PSLo(11), PSL, (23)
14 2 G2(3), PSpg(3), PSLy(13),
PSLy(27), Altys, Altyg
20 2 Altgl, Altgg, Jl, PSL2(19)
i—1.d>4| 4] 2.4 Alt,, Altg, PSLy(7)
5 2 PSp,(3), PSLy(9)
51 2.3 Altg, Alty, PSLy(11)
) 3 My,
71 3.5 Alts, Alto, PSpg(2), PSLa(7), PSL(3)
7 13,4,5,17 PSL,(13)
7 5 PSU4(3)
T p=3 PSUs(q), *Ga(q)
7 | podd G(q)
9 2 PSL,(17)
11 2 Altlg,Ah}lg,MQg,M24,PSL2(23),PSL2(11)
13 2 A1t14, Alt15, PSL3(3), PSp4(5),
PSpg(3), PSLy(25), PSLy(27), PSLy(13)
19 2 Altgo, Altgl, PSL2(19)
9] 2.3 PSL,(37)

21 2 PSL,(41)
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Table 3.7: Maximal subgroups H in the class S of a classical group (not unitary) of
dimension d over F, such that (¢}, |G : H|) =1, (e, q) # (6,2).

‘ e ‘ d ‘ q ‘ S =soc(H) ‘
d,d>3]| 3 2,4 PSLy(7)
4 2 Alt7, Altg, PSLQ(g), PSp4(3)
4 232@)727 =2
1 2,3 Alts, Altg
6 3 PSL3(4)
6 |3,4,5,17 PSL,(13)
6 3,5 Alty, Altg, PSLy(7)
6 5 J2, PSU,(3)
6 Gz(Q)yp =2
8 2 PSLy(17)
10 2 Altll,Altlg,Mll,Mlg,MQQ,PSLQ(l]_)
12 2 Altlg, Alt14, PSL3(3), PSLQ(l?)), PSL2(25), PSp4(5)
18 2 Altyg, Altgg, PSLo(19)
18 2,3 PSL2(37)
20 2 PSLy(41)

Table 3.8: Subgroups H in the class & of PSUy(q) such that (¢!, |G : H|) = 1,
(e,q) # (6,2).

e ‘ d ‘ q ‘ S =soc(H) ‘

2d —8,d>9o0dd | 9 2 Altqy

2d — 6,d > 8 even

2d—4,d>50dd | 5 | 3,5 Alt,

2d —2,d>4even | 4 | 3,5 | Alty, PSLy(7)
4|1 3 PSL3(4)
6 2 | PSLy(11), Moo
10| 2 PSL,(19)

2d,d > 3 odd 3 13,5 PSLy(7)

3 5 Alt,
5 2 PSL,(11)
9 2 J3, PSLy(19)
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Table 3.9: Geometric maximal subgroups H of PSL,(¢q) such that (¢}, |G : H|) = 1.

‘ e ‘ H ‘ Conditions
n GL,/r(¢") in Cs r|n,r prime
(q,n) # (2,6), Sp,,(¢) in Cg n even
n>3 O, (q) in Cg n even, q odd
Un(¢?)in Cs | nodd, g = ¢?
Gn—1 Py in G
(g,n) # (2,7), | GL1(q) 1 S, in Cy gi_i=n
n>4 GL1 <qn> in C3 Cj;‘;_l =N
On(q) in Cg nq odd
Un(¢*?)in Cs | n even, ¢ = ¢2
Gn—2 P, Py in C
(g,n) #(2,8), | GLi(¢) 1S, inCy | Gr_s=n—1
n>>5 Sp,,(¢) in Cg n even
Ox(q) in Cg q odd, n even
Un(¢?)in Cs | nodd, g = ¢
Gn—3 Py, P, P3 in C;
(qv n) 7& 27 9)7 GLl(q) { Sn n C2 (j;kz—?» =n—2
n>7 On(q) in Cg gn odd

Un(ql/2) in Cg

n even, q = qa
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Table 3.10: Geometric maximal subgroups H of PSU,,(¢q) such that (¢f, |G : H|) = 1.

| ge | H | Conditions |
G2n GU,/(¢") in Cs rn,r > 3 prime
(¢;n) #(2,3)
n > 3,n odd
G2n—2 GUi(¢q) L GU,—1(q) in C;
(g,n) # (2,4),
n > 4,n even
qA2n—4 P1 in C1

(q,n) # (2, 5), GUl(q) 1 GUn_l(q) in C1
n>5mnodd | GUs(q) L GU,_2(q) in C;
Qon—6 P in G
n>8neven | GUi(q) L GU,_1(q) in C;
GUs(q) L GU,—»(q) in C;
GUg(q) 1 GUn_g(q) in C1
GUn/g(qg) in Cg 3‘71
Jon—8 Py, Py in G
n>9,nodd | GUi(q) L GU,_1(q) in C;
GUQ(C]) 1 GUn_g(q) in C1
(¢) L GUn3(q) in Gy
GUy(q) L GU,4(q) in

Table 3.11: Geometric maximal subgroups H of PSp,,(¢) such that (¢¥, |G : H|) = 1.

‘ Qe ‘ H ‘ Conditions
Gon GU,(q) in C3 nq odd
(g,n) # (2,3), SPan/r(¢") in Cs r|2n, r prime, 2n/r even
n>2 21440 (2) in Cs (q.n) = (3,2)
05, (q) in Cg q even
Gon—2 Pyin G
(g,n) # (2,4), | Sp2(q) L Spyy—s(q) in (32 =1
n>3 GU,(q) in Cs n even, q odd
03,(q) in Cg q even
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Table 3.12: Geometric maximal subgroups H of PQy,.1(q), ¢ odd, such that (¢, |G :
H|)=1.

‘ e ‘ H ‘ Conditions ‘
Gon O1(q) L Oy,(q) in G
n Z 3 Ol(q) ! 52n+1 in C2 Cj;n =2n + 1
Gon—2 Py in G

n>3| 0i(q) LO3,(q) inC
O3(Q) 1 Oz_n—2(Q) in C
O2n-1(q) L O5(q) in €y
O1(q) U San+1 in Cy Gopo =2n —1,q odd
Ozu11(q°) in Cy 312n + 1

Table 3.13: Geometric maximal subgroups H of P25, (¢q) such that (¢, |G : H|) = 1.

‘ Qe ‘ H ‘ Conditions
Gon GU,(q) in C3 n odd
n>4 O,,,,,(¢") in C3 2n/r > 4 even, r|2n,r prime
Qon—2 P in G
n >4 O1(q) L Oz,—1(q) in C q odd
(4,n) £ (2.4) | 05(q) L Oz _(q) in Gy 0>
SPan—2(q) In Cy q even
Ol(q) l Sgn in C2 qA;n—z =2n — 1, q odd
O,,(¢?) in Cs gn odd
qA2n—4 Pl, Pg n Cl
n>>5 O1(q) L Og,—1(q) in Cy g odd
(g,n) # (2,5) | O3(q) L O2,-3(q) in Cy q odd
O35 (q) L Oz 5(q) in Gy q=>4
05 (q) L 03,_5(q) in G
01 (q) L Oy _4(q) in G
SPan_s(q) in C g even
01(q) 1 Sop, in Cy G5n_y = 2n — 3,q odd
GU,(q) in C3 n odd
O (¢?) in Cs n even
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Table 3.14: Geometric maximal subgroups H of PQ3, (¢) such that (¢F, |G : H|) = 1.

‘ ge ‘ H ‘ Conditions
] O1(q) L Osy,—1(q) in Cy g odd
05 (q) L Oy,_5(q) in C;
SPa,—2(q) in Cy q even
O1(q) 1 S2y, in Co Gyn_o =2n—1,q odd
GUn(q) in Cs n even
On(q?) in Cs gn odd

2160F(2) in Cg

qe{3,5},n=4

Pl in Cl

1(q) L O2n1(q)
L O2n—3(Q)

in Cl
in C1
in Cl

SPa,_»(q) in Cy
01(q) 1.Sap, in Cy
O (¢?) in C3

q odd
q odd
q=>4

g even
qMan—4 =2n — 37 q odd
n even

Table 3.15: Alternating and Sporadic simple groups with R(S) < 12

LS (R[S [R(S)]
Alts 2 Altg 2
Alt, 3 Altg 4
Altg 7 Altqg 8
Altll 9 Altlg 10
Altlg 11 A1t14 12
My | 25 || Mip | 26
My | 26 || My | >11
My, | > 11 Ji >17

Jo >6 J3 >9
Suz | > 12
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Table 3.16: Simple groups of Lie type of characteristic r with R,.(S) < 12, such that

S does not appear in Table 3.15
[ 5 [R(®=] 5 (RO

PSLs(2) 2 PSL,(7) 3
PSLs(4) 4 PSU4(2) 4
PSp,(3) 4 PSL,(11) 5
PSL,(13) 6 PSUs(3) 6
PSU4(3) 6 PSLy(8) 7
PSp,(2) 7 PO (2) 8
2B,(8) 8 PSLy(17) 8
PSLs(3) 8 PSLs(19) 9
PSUs(2) 10 PSL,(23) | 11
PSL,(25) | 12 PSp,(5) 12
Go(4) 12

Table 3.17: Simple groups of Lie type of characteristic p with R,(S) < 12

| S | R(9) | conditions |

PSLa(q) 2
PSLi(q) | 1 3<1<12
PSUi(q) | ! 3<i<12
PSp,(q) 4
PSp;(q) [ [ €{6,8,10,12}
PQ(q) l qodd, l €{7,9,11}
PQi(q) | 8
PQ; (q) l I € {10,12}
PO (q) | I I € {8,10,12}

4

p=2,f>3,f odd
Gz(Q) 7—5p,2

(9) 7 p=3,f>3,fodd
*Dy(q) 8
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Table 3.18: Dimension ¢ of the irreducible projective F,S modules with ¢ < 12, S
group of Lie type of characteristic p

‘ S ‘ Values of ¢ ‘
PSLs(q) some t > 2
PSL3(q) 3 and some t > 6
PSL4(q) 4,6 and some ¢t > 10
PSLs(q) 5,10

PSL;(¢),6 < [ < 12 l
PSU;(q) 3 and some t > 6
PSU,4(q) 4,6 and some t > 10
PSU5(q) 5,10
PSU,(¢),6 < 1 < 12 l
PSp,(q) 4,5 — 0,2 and some ¢t > 9
PSpg(q) 6,8(q even)
PSp,(q),1 € {8,10,12} l
PQ?(Q) 77 8
PQu(q),l € {9,11} l
PQF(q),1 € {8,10,12} l
Gg(q) 7T — 5p72, 14 — 75p73
2G2(q) 7
3Dy(q) some ¢ > 8
2By (q) some t > 4




Part 1

On the non contractibility of the
order complex of the coset poset of a

classical group.
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Chapter 4

Introduction

In this part, our aim is to prove the following theorem.

Theorem 4.1. Let G be a finite group whose chief factors are either abelian or
classical projective groups. Then Pg sooc)(—1) # 0, hence the order complex of the

coset poset of G is not contractible.

This theorem is a corollary of the more general Theorem 7.1 which requires more
technical assumptions.

In the sequel we illustrate the strategy employed to prove the result. First, we
state a more precise version of Theorem 1.3. We say that a maximal subgroup M of
a monolithic group L is non-trivial intersecting if 1 < pr(M Nsoc(L)) < S, where

pr:soc(L) — S is the projection to a simple component S of soc(L).

Theorem 4.2 (|Ser08, Theorem 4 and 5|). Let G be a monolithic primitive group with
a non-abelian simple component S. Let d' = |G : Ng(S)| and let X = Ng(S)/Cq(S).
We have that:

am (G, soc(G y am (X, S
PG,soc(G)(S> — Z ( oy ( )) = PX,S(dS —d + 1) - Z md’(s—d’-i-_z‘

[S]|m |S||md’

Moreover, assuming that if M s a maximal subgroup of G, then M 1is non-trivial

intersecting, we have that

PG,SOC(G)(S) = PX7S(d/S —d + ].)
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Thus we get that
Pe socicy(—1) = Z am (G, soc(G))m — Z (X, S)ym* 1 4 Px s(1 — 2d').
|S[m |S||md’

By Lemma 2.3 we have that

D (G soc(G))m = Y an(X, S)m* | > S
[S]|m |S[|md’ »

In our analysis, we find some conditions which assure that |Px,s(1—2d')|, < |S]2.

Now, we concentrate on the study of |Px s(1 —2d')|,. Let d = 2d’. Note that

Pys(1—d)=PLs(1—d)+ > an(X,S)k*.

plk

By Lemma 2.3, we have

Z%(Xa S)kd—l > qdﬁp(X)’

k
| »

Bp(X)  where
) =min{|X : H|,: H< X,|X:H|,>1,HS =X, ux(H) # 0}.
So, in order to show that Pgsce)(—1) # 0, it is enough to prove that
|PY(1 = d), < min{g">™), |S]2}.

In Chapter 5, we study the value of |P)(§29(1 —d)|,. In Chapter 6, we give a lower
bound for 3,(X), computing the exact value for some groups. Finally, in Chapter 7,

we prove the main theorem.



Chapter 5

Evaluating ]P)(?)S(l —d)|p

5.1 Some results on root systems

Let S be a simple group of Lie type over the field K. We use the notation introduced
in Subsection 3.1.2. Moreover, we set k = |I| for this section.

We denote by ¢ the positive number "’\‘/@ . This definition is the most convenient,
although it allows ¢ to be irrational (see [Car72, §14.1|).

The following lemma is quite technical. We point out some important facts on

root systems.
Lemma 5.1. Using the notation introduced in Subsection 3.1.2, the followings hold.
(1) The set {w(®]):w e W,i€ {1,...,k}} is a partition of .

(2) There exists a unique element w € W such that w(®T) = ®~. This element is

an involution and l(w) = |®*|. In particular, w € W.

(3) Let K C1II and let w € Wy. The length l(w) is the same whether w is regarded
as an element of the Weyl group W or of the Weyl group Wi .

(4) Leti € {1,....k}. There exists a unique element w; € W; such that w;(®;) = ®; . w;
Moreover, w; generates W; in W and {w; :i € {1,...,k}} generates W in W.

59
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(5) Leti € {1,....k} and let w € W such that w(r) € &~ for somer € O;. We have
that l(ww;) = l(w) — l(w;).

(6) Let w € W and let r,s € O; for some i € {1,....k}. The roots w(r) and w(s)

have the same sign, i.e. either w(r),w(s) € ®* or w(r),w(s) € .

(7) Let w € W and let J be a subset of I. We have that w = djwy for uniquely
determined dy € ©; and wy € Wy. Moreover, l(w) = 1(dy) + l(wy).

(8) Leti,j€{1,...k}. Letw be an element of W such that w(O;) € ®;. We have

that w = www™! = w;.

Proof.
(1) See [Car72, Lemma 13.2.1].

(2) See [Car72, Proposition 2.2.6]. It remains to show that w € W. Since 7 preserves
the sign of each root, we have that Twr=}(®T) = ®~. Hence Twr™! = w, as

required.
(3) This is [Car72, Lemma 9.4.1].
(4) This is [Car72, Proposition 13.1.2].
(5) This is inside the proof of [Car72, Proposition 13.1.2].
(6) This is clear since 7 preserves the sign of each root.

(7) By [Car72, Theorem 2.5.8|, we know that w = dj~w + for uniquely determined
dj« € Dy« and wy« € Wy« and that I(w) = I(dy+) + I(wy+). So, it remains
to prove that w can be expressed in the form w = djyw; for d; € ®; and
wy € Wy. Suppose [(w) = 0, we have that w = 1 and w = 1.1 is the required
factorization. Now, assume [(w) > 0 and proceed by induction on [(w). If
w € ®j, then w = w.1 is the required factorization. If w & ®;, then there

exist ¢ € {1,...,k} and r € O; such that O; € J and w(r) € ®~. So, by part
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(5), l(ww;) = l(w) — l(w;) < l(w). Hence, by induction, ww; = d w’, for some

dy € ®;and w’; € Wy. Clearly w; = w)w; is in Wy, so w = djw; as required.

(8) Since W is generated by the fundamental reflections, we have w; = w,, ...w,, for

some r; € O;,1 € {1,...,n}. So, using the definition of reflection, we have

w o w w oo
W, = w ...w,,n = Wy(ry) - Wa(ry,)-

Since w(r) € ®; C ®; for I € {1,...,n}, we have that w}" is an element of
Wo,. But clearly w” € W, hence wi’ € W;. Now, since w(0O;) C @5, then also
w(®;") € ®;. By definition, we have w;(®}) = ®; so, by part (1) of the lemma,
we get w(®;) = 7. Thus w(P)) = www ™ (P)) = ww;(P;) = w(P;) = ¢

Since wi(®}) = @ and wi’ € W, part (4) yields wf’ = w;. O

We fix the notation w; for i € {1, ..., k}, as in the previous lemma.
Now, we give an useful definition. Let n € N and i; € {1,...,k} for j € {1,...,n}
and let w € W. An w-factorization of w is an expression of w of the form o

factorization

Wiy Wiy s
and the integer n is called the length of the w-factorization.
Lemma 5.2. We have the following.

(1) Let w € W. Letn € N, i; € {1,....k} for j € {1,...,n} and suppose that

W= wj,..w;, 15 an w-factorization of minimal length of w. We have that
_ _ +
(w) =Y lw;) =>_[®]].
j=1 j=1

(2) Leti € {1,....k} and let w € W such that w(r) € &~ for somer € O;. We have

that w; appears in each w-factorization of w of minimal length.

Proof.
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(1)

The argument is similar to the proof of [Car72, Theorem 2.2.2|. It is clear that
for any w,v € W, I(u) < l(vu) + {(u). Hence we have

Z(U)) S l(wwln)+l(wln) S l(wwinwin71)+l(win71)—l—l(win) S S ZZ(CUZ]) = L/. (T)

Thus [(w) < L. Now, by contradiction, assume that [(w) < L’. So, we have
that at least one of the inequalities in (t) is strict, i.e. there exists m € {1,...,n}

such that
Hwiy.owsy,) = lww;,...w;,, ) < lww;,..w;,, ) + Uwi,) = Hw;,..wi,, ) + Lwi,,).

This implies that w;,...w;,, (0;,,) € ®*. In fact, if w;,...w;,(r) € &~ for some
r € O, , then

l(wil...wim) = l(wil...wimfl) + l(wim),
by part (5) of the previous lemma.

Now, w;,,(0;,) € ¢ and w;,..w;, (0;,) € &t imply that there exists a
J € {1,...,m} such that w;;..w;, (0;,) € ®* and w;,,,..w;, (O;,,) € ¢~. How-
ever, w; change the sign of all roots in ®;, but of none in & — ®;. Hence
Wiy Wiy, (Oi,) € ®7. By part (8) of the previous lemma, we have that

Wi gy Wi, Wi Wiy, Wi, = Wy, Hence wyowi = wi,..wj,, O we get

w = wil...wij...wmfl...win = wil...wijflwijﬂ...wimwim...win

= Wi ..wijflwijﬂ .. .wi7n71wim+1 Wy

But this is an w-factorization of w of length n — 2, a contradiction.

Suppose that w; does not appear in an w-factorization of w of minimal length.
We claim that w(0;) € ®*. If [(w) = 0, then w = 1 and the result is clear.
Suppose that [(w) > 0 and prove the claim by induction on the length of an w-
factorization of w. If w = w; for some ¢ € {1, ..,k} with j # ¢ (by hypothesis),
then w;(0;) C @ by definition of w;. Now, suppose that w = w;,...w;, for
some n > 2, i; € {1,...,k} — {i} for all j € {1,...,n}. By induction, we have
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that w;,...w;, (0;) € ®*. In particular, w;,...w;, (®}) C ®T. By contradiction,
assume that w;,...w;, (9 )N®; # @. By part (1) of the previous lemma, we have
that wy,..w;, (®;) = @, hence w(P;) = ®;. So, by part (8) of the previous

lemma, we get w’ = w;,, therefore
Wi = Wy, ..-Wiq ...Wi,, -

This means that w; is in the group generated by w;, , ..., w;, , sow; € (VVOZ.1 s Wo, )
Wo, u.vo,, and w; € Wo, (see [Car72, Theorem 2.5.6]). But Wo, u..vo,, N
Wo, = Wy = 1, a contradiction. So we have wy,..w;, (®;) N @} = &, hence
w(®]) C ®T since w;, does not change the sign of the roots in ® — ®; . Hence

w(0;) C &, as we claimed. [
An useful lemma about trees.

Lemma 5.3. Let d > 2 be a natural number. Let T be a finite graph and assume
that T has | connected components which are trees. Let p(T) be the set of d-uples
(V4, ..., Vi) such that

o {Vi,...,Vy} is a partition of the set of vertices V' of T (i.e. Ule Vi =V and if
i # j, then V;N'V; = &; so some V; can be empty),

e ifa,b €V for somei € {1,...d}, then a and b are not joined in T.
The size of p(T) is d'(d — 1)IVI=L.

Proof. First assume that [ = 1. We prove the claim by induction on k& = |V/|. If
k = 1, then the result is clear. Suppose that £ > 1. Since T is a tree, there exists
a vertex v € V which has a unique vertex u of T joined to it. Consider the tree T”
obtained from T' deleting the vertex v. Since 7" has k — 1 vertices, by induction, we
have that |p(T")| = d(d — 1)*=2. Suppose that (V},...,V)) € d(T"). Without loss of
generality, we may assume that u € V. Clearly, the d-uples (V{ U {v}, V5, ..., V),
VI, Vo u{oh, V5, . V), oy (VL VE, oV U{v}, V) are d — 1 elements of p(T).
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Moreover, each element (V1, ..., V) of p(T') such that u € V, is obtained in this way.
Thus we conclude that p(T') = p(T")(d — 1) = d(d — 1)*1.

Now, let T, ...,7; be the connected components of T, and assume that Vi, ..., V]
are the corresponding set of vertices. It is clear that

l l

This completes the proof. [

5.2 On the value of P;gg(s) for s = —(d—1)

Let X be an almost simple group with socle S isomorphic to a simple group of Lie

type. In the sequel, we consider the value of P)(fzg(s) for s = —(d — 1), where d is a
positive integer greater than 1. Firstly, we obtain an easier expression for P)(g )S(s)

To do that, we introduce some more definitions. Let u be an element of WW. We

I, denote by I, the subset of I consisting of the orbits K € I such that u(K) C ®T.

By Lemma 5.1 (6), note that K € I, if and only if there exists » € K such that

I¢ u(r) € ®*. Moreover, let I¢ = I — I,,. Finally, if uy, ..., u; are elements of W, then let

l
[ul ----- w = m[uz
=1

Mimicking the proof of [Car72, Proposition 9.4.5], we obtain the following

Lemma 5.4. Under the above assuptions, we have that

(FPOPE(—(d 1) = > () (—PW(t))d: 2o e,

JEPX(I) Py, (1) wps g €W
o
where I} is the largest Nx(B)-invariant subset of Ly, . .,

Proof. Let J be a subset of I. By Lemma 5.1 (7), each element w of W has a

unique expression in the form w = djw;, where d; € ©; and w; € W;. Moreover,
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l(w) =1(dy) + l(wy). Tt follows that

Py(t) = Dt = 3" N gl = Z7 R gl

weW djeEDFwseEW, djeEDywseEWy
— E $(d) E pllwr) — E tl(d")PWJ (t)
djeDy wigeEWs djeED

Hence, we have

Z (—1)°¢) (%) _ Z(_l)ou) ( Z tl(d‘])> _

JEPX(I) JCI dyeD,
SRRV
JePX(I) UL,..., ug€ED s
— Z (_1)0(J) Z tZ?:ﬂ(uz‘) —
JEPX(I) U, ..., ug €W
ui (J*) C &t
= Y ERiw ST (),
ULy, UgEW JC Luy, g
J e PX(D)

.....
ot
AR Ugqg T T T T T AT T R T T ULy

) are isomorphic posets, an isomorphisms given

-----

by J + J, where J is the set of Nx(B)-orbits of J. Moreover, recall that o(J) = |J|.
Finally, it is clear that

Z (_1)0(J) _ Z (_1)|j| _ { 1 if Izﬁ ..... ug g,

JCTuy,ug JCLE gy
J e PXI)
. X . . e TX —
since I, =@ ifandonlyif I =@ O

By the previous lemma, we can write

(1) DPE(—(@—1)= Y Z=) =3 e (X, —(d - 1)),

Uy, ..., ug € W neN

uy if and only if uy (J*), ..., uqg(J*) C
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where

d

.....

i=1

REMARK. The elements of the set I of Nx(B)-orbits in I are of the form L =
{04y, ..., 05, } for some | € {1,2,3}. In particular, we have that |®p, | = |Po,
J1 J2
D5 | = |95 |and [®5 | =P, | for ji,j2 € {1,..,1}. Thus, we can define
i1 i2 i1 Yio

Y

li)/(\/ = Z |(I)8L|7

Lel

where Oy is an element of L, since the definition does not depend on the choice of

Or.
The following lemma shows that ¢, (X, —(d — 1)) = 0 for n < [55,.

Lemma 5.5. Let uy,...,ug € W. If I\, =&, then Zle l(w;) > B

----- u

-----

..... w, = @ and let L € I,ie. Lis a Nx(B)-orbit in I. Then there
exists i € {1,...,d} and Oy € L such that u;(Or) € ®~ and so u;(®f, ) € ®~. This
implies that

d
D105, Nu (@) 2 [®F, | (fo)
i=1

Moreover we have

1|
2" N (@) =) [0 Nu (@) (1)
j=1
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for each i € {1,...,d}. Hence we get:

d d
doluw) = Yo let (@) 2
i=1 z:dl .
> SN e A (@) =
i=1 j=1
11 ]d
= > D e nul(e) =
j=1 i=1
d
= > > D 15Ny (@) >
Le] O€el =1
> ) 195, =1y
Lel

This completes the proof. [

Proposition 5.6. Let a be a positive integer. If I\, > a, then ax (X, =(d = 1)) is
divisible by d for j € {1,...,a}.

.....

Let v be the permutation (1...d). Let (v) be the subgroup of Sym,; = Sym{1,..,d}
generated by v. Clearly (v) acts on U: if u = (uy, ..., uq) € U, then the action is given
by u” = (1), .-, Up(@)). Fix u € U. In order to prove the lemma, we claim that the
v-orbit [u] = {(u,r(1), .., Uyk(q) : K € N} has d elements. Let o be a permutation of
the set {1, ...,d} such that u; = u,(;) for each i € {1,...,d} and 0 € Cgyp,(v). Clearly
Stabyy (i) = 1, since if o(i) =4, then o = 1 because o € Cgym,(v). Hence the o-orbit
of i consists of |o| elements. Therefore, there exist d/|o| o-orbits, and without loss
of generality we may assume that the representatives of the orbits are 1, ..., d/|o|. So

we have that Lﬁ = Lﬁ , = . Hence, by definition of U and Lemma 5.5 we

7777 u

obtain
d/la] /o]

d
by +i=) Wu) = loli(w) = o] Y Uu) > [olly.
i=1 1=1 1=1

Since Iy, > a > j, we have that |o| = 1. This implies that the set [u] = {(u,r(1), .-, Upr(a)) :

k € N} consists of d elements and we get the claim. [J
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Proposition 5.7. We have that

o(I)

e (X, =(d = 1)) =Y 7y (D)d(d — 1)°D,

i=1

where 72(i) is defined in Step 3.

Proof. Let ui,...,ug € W such that >0 I(u;) = I3}, and IX
the beginning of Lemma 5.5, for each L € I let O, € L be such that there exists
i € {1,...,d} such that u;(®5 ) € ®~. Denote by I the set {Oy : L € I}. Note that
under our assumptions the last expression in the proof of the Lemma 5.5 holds with

= instead of >. This implies that the expressions f,, f; become

d .

_ _ ‘(I)+ ‘ if O= OL %

Yo eEnu (@) = o , (to)

i1 0 otherwise
for each L € I, and
k
[@F N (@) = Y197 N (@) (1)

j=1

for each i € {1,...,d}.

We divide the proof in some steps.

STEP 1. The set {15, ..., I } is a partition of [ ={O,:Lel}.

Let L € I. We have that there exists i € {1,...d} such that u;(O;) C . By
(1%) there exists at most one i € {1, ...,d} such that u;(O) C ®~. So for each L € I
there exists exactly one i € {1, ...,d} such that u;(Or) C ™.

Moreover, let O € L such that O # Op. By (f;) we have that u;(O) C &, hence
O € I, for each i € {1, ...,d}. Thus we have the claim.

STEP 2. Let u € {uy,...,uq}. Leti,j e {1,.. |I|},i#j. If O;,0; € IZ, then O; and
O; are not joined in the Dynkin diagram D' of W.
By (f7) we have that

ot nu (@) = U (@ nuTl (7).
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Assume that O;,0; € I;. By contradiction, suppose that O; and O; are joined in
®'. So, there exist » € O; and s € O; such that 4 (:S # 0. In particular, this
implies that 2= S)) = —n for some n € N — {0}, such that ST+ 8, ..,nr + s € D (see
[Car72, §3.3 and 3.4]). Now, by hypothesis, we have that u(r) € &~ and u(s) € ¢,
sou(r+s) € ®. Hence, r+s € & Nu~1(®7) = U (®F nu=1(®1)), thus r+s € f

for some [ € {1,...,|I|}, a contradiction with i # j.

We need some more definition. Let J be a subset of I. Denote by ®’; the subgraph
of ®’ obtained considering just the set of vertices J. Note that since @’ is a tree,
then the connected components of @', are trees. We say that a d-uples (Jy, ..., Jg) is

a good d-partition of J if the following hold:
e {Ji,...,Jq} is a partition of J,
o if K7 € J,, K, € J;, and there is an edge between K; and Ks, then i, = i5.

Let par(J) denote the set of good d-partitions of J. Finally, we say that J C I is well
intersected (briefly w.i.) if |J N L| =1 for each L € I
Note that by Step 1 and Step 2, we have that (I , ..., I ) is a good d-partition of
I. Moreover the set I is well intersected.
STEP 3. The set
Par*(I) = | J par(J)
J w.i.

has
o(I)

Z 7_@/ dz . )O(I

elements, where 73/(i) is the number of well intersected subset J of I such that D',
has i connected components.

By Lemma 5.3, we have that |par(J)| = p(®;) = d'(d — 1)IVI=%, where i is the
number of connected components of ;. If J is well intersected, then |.J| = |I| = o(1).

The result follows.
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STEP 4. Let u € {uy,...,uq}. Denote by Z, the set of i € {1,...,|I|} such that w;
appears in each w-factorization of u of minimal length. Let I, = {j € {1,...,|I|} :
O, € I¢}. We have that I, = I,,. Moreover, if i € L, then the factor w; appears with
multiplicity one in an w-factorization of u of minimal length.

Let j € Z,, so O; € I¢. By Lemma 5.2 (2), we have that w; appears in each w-
factorization of u of minimal length. So j € Z, and Z, C Z,,. Recall that u(O;) C &~
if and only if u(®;) C ®~. Hence, by (1}), we have

(u)=[2F nu (@) = ) |0f[ < ) |&]).

jeiu JE€T

Thus, to prove that Z, O Z, it is enough to show that

l(u) > ) |@7 ],
1€Ly
but this is clear by Lemma 5.2 (1). Moreover, we get I(u) = > .., |®;]. Hence, if
1 € Z,, then the factor w; appears exactly once in an w-factorization of u of minimal

length.

STEP 5. Let u € {uy,...,uq}. Leti,j € I,. We have that w; and w; commute.
Let » € O; and s € O,. By Step 2, since O;, O, € I, we have that O; and O, are
not joined. So, in particular, (r,s) = 0. Thus w, and w, commutes. Since w; € Wp,

and w; € Wo,, we have wiw; = wjw;, as claimed.

Now we finish the proof of the proposition. Let U be the set of (v, ...,v4) € W
by f(vi,...,;va) = (I5,,..., ;). By Step 3, in order to prove the proposition, it is
enough to show that f is a bijection.

We claim that f is surjective. Let J be a well intersected subset of I and let
(J1, ..., Ja) be a good d-partition of J. Since J C [ = {0y, ...,O}, where k = |I|, we
let i(J;) = {i € {1,...,k} : O; € J;} for | € {1,...,d}. Note that if ¢, 5 € i(.J;), then

w; and w; commute, since O; and O; are not joined, being in the same member of a
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good d-partition. So we let v; = Hiei(Jl)Wi and it is easy to see that f(vy,...,vq4) =
(Ji, ..., Ja), hence we have the claim.

Let us prove that f is injective. Let (ug,...uq), (v1,...,v4) € U and assume that
(Ie, . Ig) = (Ig,, ..., I5,). By Step 4, we have that Z,, = Z,, for i € {1,...d}. So
we have that an w-factorization of minimal length of u; has the same factors as an
w-factorization of minimal length of v;, and each factor has multiplicity one in both
the factorizations. By Step 5, these factors commutes, hence u; = v; for i € {1,...d}.

This ends the proof. [J

5.2.1 The value of 5}, and 73,(7) for an almost simple group X

In this section we calculate the explicit value of /), and 73 (i) for the almost simple
group X with socle S isomorphic to a simple group of Lie type. This values are given
in the Table 5.1 and 5.2. In these tables we use the convention that (Z) =0ifk <0
or k> n.

If S is an untwisted group, then p is trivial. Hence, the unique element of a p-orbit
is a fundamental root. Thus, for each i € {1,...,k}, we have that O; = {r;} where
IT={r,..,m}. So, & = &5 = {r}.

Assume that the action of Nx(B) on I is trivial (i.e. X does not contain non-
trivial graph automorphisms). We have that I is isomorphic to I as posets. Hence

we get:
]

by =Y 195,1 = 1&f|=|I| = ||,
1=1

Lel

Moreover, I is the unique well intersected subset of I, so we obtain

, 1 ifi=1,
7§<z>:{

0 otherwise,

since ®' = D’ is connected. Hence we get

ax (X, —(d = 1)) = d(d — 1),
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Suppose that the action of Nyx(B) on [ is not trivial (i.e. X does contains a
non-trivial graph automorphism). Since II is isomorphic to I as posets we have that
|5, | = 1, hence we get:

By =D 185, = 1| = o(1).
Lel

In order to compute 73 (i) we need some more attention. Note that D = D’.

For example, assume that ® = Ay for some [ > 1. In this case there exists a
graph automorphism of order 2. We have to count the number of well intersected
subsets J of I such that ©; has ¢ connected components. Note that each element
L € I is of the form L = {{r;}, {ra_j+1}} where j € {1, ...,1}. Moreover, the vertices

r; and r; are joined in ® if and only if |i — j| = 1. An easy combinatoric argument

shows that
[—1
X (i) =2
T (4) i—1

for 1 <1 < [. The same result holds if ® = Ay 1 for some [ > 1. Hence we get

l l
ax (X, —(d=1)) = ng(z‘)di(d —) =y 2(l a

71—
1=1

1 . .
1) d'(d— 1) =2d(2d — 1)

Now, suppose S is a twisted group of Lie type. In this case the action of Nx(B)

on [ is always trivial. Hence I and I are isomorphic as posets, so we obtain

, 1 ifi=1,
fgmz{

0 otherwise,

as above. Thus we get
iy (X, ~(d = 1) = d(d — 1)

To get the value of [}, note that I is isomorphic to I as posets. Hence we get:

]

by =Y 195,1=_|87].
1=1

Lel

We need the following result.
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Lemma 5.8 (See [Car72, §3.4 and 3.6]). Let r,s € Il be two fundamental roots. Let
n.ns. Suppose that n, < ng. Fxactly one of the

_ 2(r,s) _ 2(s1) —
N = 705 Ns = 105 and n, s =
following occurs.

n,s = 0. We have that n, = ny = 0 and @?T g = {r,s}. In this case the roots

are not joined in the Dynkin diagram ®.

n,s = 1. We have that n, =ns = —1 and @?T’s} ={r,s,r+ s}.
}:{r,s,r+s,2r+s}.

[ ]
o n,, = 2. We have that n, = —2,n, = —1 and (I)zrm
= —Byns = -1 and @:{";78} = {T,S,’r’ + 8’2/]” -+ 8,37’ +

nys = 3. We have that n,

s,3r + 2s}.

s and @?T} ={r}.
...,’l“l}.

Nprs = 4. We have that r =

We give some examples of the calculation of the value of 5, Let II = {ry,

In the sequel, when we say that two roots are joined, we refer to Figure 5.1-5.4.

Case 2A4,.
We divide this case into two subcases, [ odd and [ even.

Suppose that [ is odd. Thus the orbits are O; = {r;,rox_;} for i € {1,...,k}, so
that [ = 2k — 1. Now, if ¢ < k, then O; consists of two roots which are not joined in

D. So O; = & for i < k. Moreover, O, = {r;} = ®;. Hence, we have

k k
Ly =Y _|of|=> |0 =2k—-1=1
=1

i=1

Figure 5.1: Dynkin diagram of Ag,_4

T2k—1 T2k Tk4+1
O O
01 J 02 J Ok—l( Ok
O " T

\)
(A1 ) Tk—1
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Suppose that [ is even. Thus the orbits are O; = {r;, rop 41} for i € {1,...,k}, so
that | = 2k. As above, if i < k, then O; = ®;. Now, consider Oy = {rg,7x+1}. By
|Car72, §3.6], we have that n,,,,,, = 1. Hence, by Lemma 5.8, ®; = {ry, rp41, 7 +

Tre1}. Thus, we get

k k—1
Ly =Y 10| =Y |0 +|0f| =2(k—1)+3=1+1.
i=1 1=1

Figure 5.2: Dynkin diagram of Agy

ok T2k—1 Tk+2 Tk+1
O O Or—

Oy ) O, ) Ok—l( Oy, I
O O o—
8] T2 Tk—1 Tk

Case 3D,.
In this case k = 2 and Oy = {r}, Oy = {ry,r3,r4}. Clearly, ® = O;. Since
9,73, T4 are pairwise not joined in the Dynkin diagram ©, we have that ®] = O,.

Thus, I, = 4.

Figure 5.3: Dynkin diagram of D,

Case 2G,.
In this case & = 1 and Oy = {r,m3}. Moreover, by [Car72, §3.6], we have
Ny = 3. Thus, by Lemma 5.8, & = {ry,ro,r1 + ro,2ry + 19,311 + 72,312 + 212},

So, we get [, = 6.
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Figure 5.4: Dynkin diagram of G,

P B a
"nO——3—"=0"

O,

Table 5.1: Dynkin diagrams, fundamental roots and value of /55, when X does not
contain non-trivial graph automorphisms

Untwisted Twisted

S D=29"]|[ lff\, S D D’ |1 l,"fv
Ag(t) Ap k| k 2 Aor (%) Aoy By k 2k +1
By (t) By k| k| 2Ap_1(t?) | Ajp1 | Ch k 2k —1
Cr(t) Ch k| k 2By (t?) By Ay 1 4
Dy (t) Dy, k| k 2D (t?) D, | Bi_1 | k—1 k
Es(t) FEg 6 | 6 3D, (3) D, Go 2 4
EL(t) E; T T 2Es(t?) FEg Fy 4 6
Ex(t) Fg 8 | 8 2F,(1?) Fy 2 6
Fy(t) Ey 4 | 4 2Gy (1) Go Ay 1 6
Go(t) Go 2 1 2

Table 5.2: Dynkin diagrams, values of [, 75, and x (X, —(d—1)) when X contains
a non-trivial graph automorphism p.

S Pl | D=2"] Ly | m5() | ax(X,—(d—1)

Ag(t) | 2| A ko202 | 2d(2d—1)F?
A1 () | 2 | Agpr | k+ 1] 2052 2d(2d — 1)k

By(t) | 2| B 1] 2(,°%) 2d

Dy, 2| Dy |k—1]2(°) 2d(d — 1)F2
Dy(t) | 3| Dy 2 |3(,%) 3d(d — 1)
Es(t) | 2 Es 4 12(,1) | 2d(d—1)*(2d —1)
Eit) | 2] 2 | 2(.1) 2d(2d — 1)
Go(t) | 2| Go 1] 2(,°) 2d
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5.2.2 The main result

Now, we can prove the main theorem.

Theorem 5.9. Let X be an almost simple group with socle isomorphic to a simple

group of Lie type of characteristic p over K. We have that

where ¢, (X, —(d — 1)) = [{(ug, yug) € W IX =&, 5% l(uw) =n}|. In

particular,
(1) if n <, orn > d|®F|, then c,(X,—(d — 1)) =0,
(2) if X does not contain non-trivial graph automorphisms, then we have that
ax (X, —(d = 1)) = d(d — ).

If X contains a non-trivial graph automorphism, then ¢ix (X, —(d —1)) is as in

Table 5.2.
(3) cix 4 (X, —(d — 1)) is divisible by d for each positive integer j < Ij),.

Proof. The first assertion is Lemma 5.4.
Let (uy,...,uq) € W? such that I} = @. Note that, if w € W, then I(w) <
|27

u

.....

(1) By Lemma 5.5, if n < 53, then ¢, (X, —(d —1)) = 0. Furthermore, Z?:l l(u;) <
d|®*|. Hence if n > d|®*|, then ¢, (X, —(d — 1)) = 0.

(2) This is Proposition 5.7 combined with the result of Subsection 5.2.1.
(3) This is Proposition 5.6.

This ends the proof. [J
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Proposition 5.10. Let X be an almost simple group with socle S isomorphic to a
simple group of Lie type of characteristic p over K. If Ng(X) acts transitively on 1
(i.e. o(I) = 1), then |PLs(—(d — 1))(t)], = |dlp|plpt"™ , where p is a graph automor-
phism of largest order in X (see p.41 for the definition of graph automorphism,).

Proof. By Theorem 3.10 and Proposition 3.5, we have that
PYs(—(d = 1)(6) =1~ (1+ (1)

for some function f(t) such that |f(t)|, = |p|,t%. A direct computation shows that
if p =2, then |f(¢)]2 > 4. By Lemma 2.9, we have:

[PEL(=(d = 10))(0)], = [dl,| F @)y = ldlpllt™
for each prime p. [

Proposition 5.11. Let X be an almost simple group with socle S isomorphic to a
simple group of Lie type of characteristic p over K. Let d > 1 be a positive integer
and suppose that t|d, > |epx (X, —(d — 1)), and W1 > |d|,. We have that

[PEs(—(d = 1))l = %] (X, —(d = 1)),

Proof. 1f I35, > 1, then applying Theorem 5.9 we get:

d|®T|
PEs(=(@ =Dl = P ealX~(@= 1)) =| 3 eulX,—(d=1)t"| =
neN p n=l3y, P
2%, 1 d| e
=t o (X, —(d = 1)+ Y (X, —(d— 1)t + D (X, —(d — 1)t
n=1X,+1 n=213,

p

By Theorem 5.9 we have that d divides ¢, (X, —(d — 1)) if n < 2/}, — 1, hence
|en (X, —(d—1)t" 5|, > t]d], > e (X, =(d=1))], forn < 2035, —1 (by assumptions).
X

Moreover, if n > 2155, then |e, (X, —(d—1))t""bW |, > tbv > t|d], > e (X, =(d=1))],

(by assumptions). Thus we get the claim.
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Assume that [55, = 1. In this case we have that o(I) = 1, so we can apply

Proposition 5.10. U

The condition ¢[d[, > |cx (X, —(d — 1))|, in the previous proposition is suffi-
cient but not necessary. As we have seen in Proposition 5.10, we can drop the con-
dition when o(I) = 1. However, it is not always true that \P)(g)s(—(d - ), =
tli("|cli<v (X, —(d — 1)), For example take X = S = A,(4): we have that PS (—(d —
1)) =1-2-217+105% and ¢s (S, —(d;i — 1)) = d(d — 1).



Chapter 6

On some subgroups of X which do

not contain a Sylow p-subgroup

In this chapter, let X be a classical projective group, as defined at p.32. Let S be
the socle of X. Here we deal with the subgroups of X which do not contain a Sylow
p-subgroup and which are intersection of maximal subgroups.

Recall that
Bp(X) =log, min{|X : H|,: H < X,|X : H|, >1,HS = X, ux(H) # 0}.
We shall prove the following theorem.

Theorem 6.1. Let X be a classical projective group of characteristic p and let S be

its socle. Let Bp(X) be as in Table 6.1 with the following exceptions:
e for S = PSLy(q) we have B,(X) = log, p;
e for S =PSLs(q2) we have 3,(X) = 1.5;
e for S € {PSU,(q), PSLy(q)}, we have (3,(X) = 2.

We have that 3,(X) > 3,(X).

79
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Table 6.1: Values of B,(X), given the socle S of X
S Bp(X)
PSL,.(q) n—1
PSU,(q) n—1
PO, (q) e
PO () o

2

The proof of this theorem is given in Theorem 6.2 and Proposition 6.18.

We divide the chapter into two sections. In the first section, we consider the
subgroups which are intersection of maximal parabolic subgroups of X. In the second
section we consider the maximal subgroups of X which are supplemented by S and

which do not contain a Sylow p-subgroup of X.

6.1 On the intersection of maximal subgroups which

contain a Sylow p-subgroup of X

The aim of this section is to prove the following.

Theorem 6.2. Let X be a classical projective group with socle S and let H be a
subgroup of X such that:

e HS =X,

e if M is a maximal subgroup of X and M > H, then M contains a Sylow p-
subgroup of X.

e H does not contain a Sylow p-subgroup of X.

Then pux(H) =0 or |X : H|, > ¢°™, where
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n—1 if case L or U hold,
) 5 —log,[2], if case S holds,
Bln) = ”T_l if case O° holds,
\ n-2 if case O or O~ hold.

In order to prove the above theorem, we investigate the structure of maximal
subgroup in the class C;(X), as described in [KL90|. In particular, we are interested
to the maximal subgroups which contain a Sylow p-subgroup of X. In most cases,
these subgroups are stabilizers of totally singular subspaces of V.

We recall some definition about the geometry of classical groups (see [KL90, p.16]).
Let W be a subspace of V. We say that W is totally singular if the restriction xy of k
to W is equal to 0. We say that W is non-degenerate if ky, is non-degenerate. Writing
(v, w) instead of f(v,w), we denote by W+ the set of v € V such that (v,w) = 0 for
all we W.

We need some preliminary technical lemmas.

Lemma 6.3 (See [KL90, Proposition 2.3.2, Proposition 2.4.1 and Proposition 2.5.3|).
The space (V, k) has a basis :

o {e1,...ep} if n =m and case L holds,

o {e1,...Cm, f1,, fm} if n =2m and cases U, O or S hold,

o {e1,...m, fi, oo, fm,x} if n=2m + 1 and cases U or O° hold,
o {e1,...m, f1, s fisy, 2} if n =2m + 2 and case O~ holds.

In all these cases we have (e;,e;) = (fi, f;) = (e, x) = (fi,x) = (es,y) = (fi,y) =
(€i,2) = (fi, 2) = 0 and (e;, fj) = 6i; for all i, j. Moreover,

- if case O holds, then Q(e;) = Q(fi) =0,
- if case U holds, then (x,z) =1,

- if case O° holds, then x is non-singular,

Kw

eiafi7x7y7z
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- if case O~ holds, then Q(y) = 1,Q(z) = ¢ and (y, z) = 1, where the polynomial
X2+ X + ( is irreducible over F.

Lemma 6.4. Let m as in the above lemma. Let | and h be two distinct integer

bLn numbers such that 1 <[, h < m. There exists an element ¢, € S such that:

(1) each subspace of (e1,...,e;_1) is stabilized by ¢y p,

(2) each totally singular subspace of V' containing (ey) is stabilized by ¢; p,

(3) ¢ does not stabilize a subspace of V' containing (e;) and not containing (ey).
Proof. Define a linear map ¢ = ¢, : V — V as follows:
o o(e)) =¢ + e, and ¢(e;) = e; for i # 1,
o O(fn) = fu— fiand &(f;) = fi for i # h,
e ¢(x) ==x,¢(y) =y and ¢(z) = z (when they occur).

Note that det(¢) = 1 and k(¢(v)) = k(v) for v € V¢, where e = 1 if case O holds,
e = 2 otherwise. Thus (S(V,x) NF*)¢ is an element of S(V, k). Moreover, if case O
holds, then it is easy to see that (S(V, k) NF*)¢ is a commutator in S(V, x). Thus we
let ¢ = (S(V,k) NF*)¢p € S. Clearly (1) and (3) hold, so we prove only (2). Let U
be a totally singular subspace of V' such that e, € U. Let w be an element of U. Thus
w=Y " e+ Bifi + YT + Yy + 722, for some i, B, Ve, Yy, V2 € Fy. Since U
is totally singular, we have that (w,e,) = 0, thus 5, = 0. Hence ¢, ,(w) = oyep, + w,
so ¢y p(w) € U since e, € U. O

The following well-known facts about the spaces with forms will be use often

without mention.

Lemma 6.5. Let k be a non-degenerate form and let W and U be two subspaces of

V.

(1) W < U if and only if U+ < W,
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(2) (W+U)r=wtnut.
(3) If W is totally singular, then W < W+,
(4) If W is totally singular and U < W, then U + W is totally singular.

(5) W is non-degenerate if and only if W N W=+ = 0.

We introduce some definition and notation. Assume that H is as in Theorem 6.2.
Let Mpy(X) be the set of maximal subgroups M of X containing H and such that Mg (X)
MS = X. We denote by Ly (X) the set L(X)

{W <V :Staby (W) > HNT}

and we let £3;(X) ={W € Ly(X) : W is totally singular and W ¢ {0,V}} . It is L},(X)
clear that L3 (X) C L&5(S) and L7, (X NT) = L3;(X). Moreover, we have the
following.

Proposition 6.6 (See [KL90, §4.1] ). Suppose that case OF does not hold. Moreover,
if case L holds, then assume X <T. The map

Stabx : L3(X) — Mg (X)
gives a one-to-one correspondence between L5;(X) and Mpy(X).

We want to understand what happens in the case L and X f T. Let ¢ be an
element of A—T. We have that ¢ acts on the set Sub(V') of proper non-zero subspaces Sub(V)
of V in the following way. Let W € Sub(V), and note that Stabg(7W)? is a maximal
subgroup of S in the class C;(.S). Thus there exists a unique U € Sub(V') such that
Stabg(U) = Stabg(W)¥, so define W¥ = U.
Suppose that H is as in the Theorem 6.2. Note that H N (A —T) # @, since
otherwise X = HG < T. Thus, we may assume that 1» € H N (A —T). Note that if
W e L(X), then WY € L£3(X). Let £3(X)/9 be the set of equivalence classes of
L%(X) given the relation on L3 (X) such that W and U are equivalent if W% =U.  £%/(X)/¢

With the above notation, we obtain the following.
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Proposition 6.7 (See [KL90, Proposition 4.1.23]). Suppose that case L holds and

X £ T. There is a one to one correspondence
Vg : Ly(X)/Y — Mpu(X)

defined by Vg ([W]) = Nx(Staby (W) N Staby s5(W?)) where W] = {W,W¥} is
the equivalence class of W € L5;(X). Moreover

Uy ([W]) N X NT = Stab (W) N Stabyx(WY).

Now we turn to the case OT. As in [KL90, p.30], let Uy be the set of totally
singular subspace of V' of dimension k. Let ~ be the relation on U, defined by
W ~ U if m —dim(W NU) is even. This relation defines a partition {U} U>} of U,
and gives an homomorphism « : T — Sym{U},, U2} . In particular, U}, and U2 are
the two S-orbits on U,,.

We have the following.

Proposition 6.8 (See [KL90, Proposition 4.1.20 and Lemma 2.5.8]). Suppose that
case OF holds. Let k =m — 1 if X <ker(y), let k =m otherwise. The map

Staby : L3(X) — Uy — Mg (X)
is a one to one correspondence.

Now, we focus our attention to the set Lg(X). Observe that Ly (X) is a sublat-
tice of the lattice of subspaces of V. In fact if U and W are subspaces of V', then
Stab y~p(U) N Stab ym(W) < Stab (U + W) N Stab (U N W).

In general, the set £3,(X) is not a lattice. However, if Z;, Zy € L3;(X), then

o /1NZye L3(X) if and only if Z; N Zy > 0;

o 7, + Zy € L35(X) if and only if there exists a totally singular proper subspace
T of V such that Z1,Z, <T.

Let £ be a subset be of the set of vector subspaces of V.
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e We denote by £(+) the subset of £ consisting of the elements W such that there
exist 7y, Zy € L, with Z1 # W # Zy and W = Z; + Z,. Similarly, define £(N)
as the subset of £ consisting of the elements W such that there exist Z;, Z, € L,
with Z1 £ W # Zy and W = Z1 N Zs.

e An element W of L is said to be redundant in L if for any M C L such that
W e M and

ﬂ Stabyr(U) = ﬂ Staby~p(U)

UveM Uel

we have that

(| Staby(U) = ) Stabyn(U).

UeM—{W} vel

o We say that £ fulfills the property P if there exists W & L such that for each
Z € L we have W < Z or W > Z. In this case, W is said to be a P-element
of L.

We divide the rest of the section into two parts: L£3,(X) fulfills the property P

and L£3;(X) does not fulfill the property P.

6.1.1 L;,(X) fulfills the property P

We consider the case when £}, = L£3;(X) fulfills the property P. Our aim is to prove
the following.

Proposition 6.9. Let H be as in Theorem 6.2. Suppose that L3, fulfills the property
P. Then ux(H) =0.

The proof of this proposition requires some preliminary results.

Proposition 6.10. Let H be as in Theorem 6.2 and assume that H is an intersection
of maximal subgroups of X. Suppose that W is a P-element of L}, such that W €
L (+) UL (N). Then W is redundant in Ly;.

P-element
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Proof. Since L%, (X NT) = L3(X), without loss of generality, we may assume
that X <T.
Suppose that M is a subset of £} such that W € M and

() Stabx(U) = (] Stabx(U).

UeM UeLy

Note that

by Proposition 6.6, 6.7 and 6.8.

For a contradiction, assume that

K= () Stabx(U)>H.
UeM—{W}
Note that M C L}, C L} and W does not lie in L£j.. Moreover, W does not lie in
the lattice L.
We are going to consider two cases, namely W € L3,(+) and L};(+) does not
contain P-elements of L};.

Assume W € L3(+). Let T be the sum of the elements of L}, which are

T= > U

UeLy USW
(if for each U € L3 we have U > W, then let T = 0). Clearly T < W and since
W & L., then T' < W. Since W is a P-element, note that

contained in W, i.e.

if U €Ly, thenU <TorU>W. ()
We claim that there exists an element
Y in L3 — L}, such that Y < W and Y £ T. (%)

Since W € L3;(+), there exist Z1, Zy € L3, such that Z; £ W # Zy and Z1+Z, = W.
Since W & Ly, we have that Z, & L5, or Zy ¢ L. Suppose that 2y, Zy & L. We
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have that T # Z; or T # Z,, otherwise T > Zy + Zy = W. So, in the case that
Z1,Zy & Ly, let Y € {Zy, Z5} be such that Y £ T. Now, suppose that Z; € L.
Thus Zs_; & L3, and so T’ Z Zo_;, otherwise T'=T + Z; > Zy_; + Z; = W. Hence,
in the case that Z; € L}, set Y = Z5_;.

Since W is totally singular, by Witt’s Lemma ([KL90, Proposition 2.1.6]) we may
assume that there exists k > 2 such that W has a basis e, ..., e which is part of the
standard basis given in Lemma 6.3. Moreover, by (1?) and T < W, we may assume
that there exist 0 < h <[ < r < k such that TNY = (ey,...,en), T = (eq,...,€1),
Y=TnY & (e41,....,e,) and k —r 41— h > 1. Define an element ¢ € S as follows

(see Lemma 6.4):

o if [ >h (ie. TNY <T), then let ¢ = ¢r11;

eifl=h(ie. T<Y,s0Y =T+Y <W), then let ¢ = @111 ,41.
By Lemma 6.4, (') and (1*), we have that

¢p€ () Stabx(U) N Staby(W) = H
UeLs;

and ¢ ¢ Stabx(Y'). This is in contradiction with Y € L3,.

Assume that £};(+) does not contain P-elements of £};. This implies that
W e L3,(N). If case L holds, then the proof is just the dual of the above case. So we
assume that case L does not hold, so k is a non-degenerate form.

Since L£};(+) does not contain P-elements, we have that the elements of the set
N ={U <W:U € L3} form a chain of subspaces of V. In fact, for a contradiction
suppose that the set A is not a chain. Thus there exists two elements U, U, € N
such that U; € Uy and Uy £ Uy. Since Uy, Uy < W, we get that Uy + Us is totally
singular, hence U; + Us € N'. So N(+) # @. Let A be a maximal element in N (+).
It is straightforward to see that A is a P-element of N, hence it is a P-element of
L3, a contradiction. So, we have that N = {U < W : U € L3} forms a chain of

subspaces of V.
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Note that if the elements of £} form a chain of subspaces of V', then

(| Stabs(U)=HnNS
UeL; u{w}
contains a Sylow p-subgroup of S (see [KL90, Corollary 4.1.15]). Hence H contains a
Sylow p-subgroup of X, against the assumptions. We deduce that the set {U > W :

U € L3} is not empty and it is not a chain. Let T" be the intersection of the elements

T= () U

veLs, u>w
We have that " > W and since W ¢ L., then T" > W. Moreover, since W is a

of L} which contain W, i.e.

P-element,
itUeLj,thenU>TorU<W. (Tg)
Arguing as for (%), there exists an element
Y in L% — L, such that Y > W and Y £ T. (1"

We divide the rest of the proof in three cases, namely case Y N'T > W, case
YNT=Wand Y NT+ < T, case YNT =W and Y NT+ < T.

Suppose that YNT > W. As above, since T is totally singular, we may assume that
there exists k > 2 such that 7" has a basis ey, ..., e, which is part of the standard basis
given in Lemma 6.3. Moreover, by (1) we may assume that there exist 0 < h <[ < k
such that W = (eq,...,ep) and Y NT = (e, ..., e;). Let ¢ = ¢p11,41 as in the Lemma
6.4. By Lemma 6.4, (1*) and (*), we have that

¢ € [ Stabx(U) N Stabx (W) =H
vecs
and ¢ ¢ Stabx(Y). This is in contradiction with Y € L%;.
Suppose that Y N T =W and Y NT+ & T. Thus pick an element v in YynT+-T.
Clearly, we have that 7'+ (v) is a totally singular subspace of V. As above, we

may assume that there exists k£ > 2 such that T" has a basis ey, ...,e,_1 and v = ey.
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Moreover, by (1*) and 7' > W, we may assume that there exists 0 < [ < k — 1 such
that W = (eq,...,e;). Let ¢ = ¢ x—1 as in the Lemma 6.4. By Lemma 6.4, (T?’) and
(1), we have that

¢p€ () Stabx(U) N Staby(W) = H

vecs
and ¢ ¢ Stabx(Y). This is in contradiction with Y € L%;.

Finally, assume that Y N'T = W and Y N'T+ < T. Since in this case Y &« T+,
we have that T £ Y+, so TNY+ <T. Since TNY*+ € L}, — L, HTNY+ > W,
then we argue as in the case Y < T with Y = TN Y+, Thus we can assume that
TNY+ =W. Now, since s is non-degenerate, TN Y+ = W implies T+ +Y = W+,
Let M be a maximal totally singular subspace of V' containing 7. Since L}, is not a
chain, then M > T'. Since M is totally singular, we may assume that M has a basis
e1, ..., e, which is part of the standard basis given in Lemma 6.3. Moreover, we may
assume that there exists 0 < I < k < m such that W = (e, ..., ;) and T' = (eq, ..., €g).
Let ¢ = ¢ as in the Lemma 6.4. Clearly, by Lemma 6.4 and (1), we have that

¢ € (] Stabx(U) N Stabx (W)= H.
UeLs,
Since Y € L%, we have that ¢ stabilizes Y. Note that f, € Wt = T+ +Y and
(v,er) = 0 for each v € T+. Thus there exist v; € Y and v, € T such that
v+ v = fi, with vy = 30" aue; + >0 Bifi + 72 + Yy + 7.2 and B # 0. This
yields ¢(vy) — v1 = amer — Bpfm. Thus we have aep — Bifm € Y NTH < T, a
contradiction since fj # 0. Hence we obtain ¢ & Stabx(Y), a contradiction. [J

In the following lemma we show that if £* is not a chain and £* fulfills the property

P, then the assumptions of the previous proposition are satisfied.

Lemma 6.11. Assume that the elements of L* = L5;(X) do not form a chain of
subspaces of V. Suppose that L* fulfills the property P. Then there exists a redundant

element in L*.

Proof. Let T be a P-element in L*. Since L£* is not a chain, there exist Uy, U, € L*
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such that U; £ Uy and Uy # U,. Hence there are elements of £* which are not P-

elements.

Assume that U, is contained in 7. Let C' be the sum of the elements of £* which
are properly contained in 7" and which are not P-elements in £* (this set is not empty,
since it contains U). By definition we have that C' € £L*. We want to prove that C'
is a P-element in L*. Let Z € L*. Since T is a P-element, we have Z < T or Z > T.
If Z>T,then Z >T > C. Assume that Z < T. If Z is a P-element in £*, then
C< ZorC>/Z 1If Zisnot aP-element in L*, then C' > Z by definition of C.
Thus C is a P-element in £*. This implies also that C' € £*(+) (using the definition
of C'). So we apply Proposition 6.10 and we obtain the claim.

If Uy contains T, the proof is just the dual (take C' to be the intersection of the

elements of £* which properly contain 7" and which are not P-elements in £*). [J

Now we are ready to prove Proposition 6.9 in the case X <T.

Proof of Proposition 6.9 (Case X < T). If H is not an intersection of maximal
subgroups of X, then pux(H) = 0. So suppose H is an intersection of maximal
subgroups. The elements of £* do not form a chain of subspaces of V' (i.e., a flag)
since H does not contain a Sylow p-subgroup of X (see [KL90, Corollary 4.1.15(i)]).
So we may apply Lemma 6.11.

By Lemma 6.11, there exists an element 7" € L£* such that T is a redundant
element. Let M = {Stabx (W) : W € L*}. By Proposition 6.6 and 6.8, we have that
M D Mp(X). Define

Y={JCcM: (| M=H}

MelJ

By [Sta97, Corollary 3.9.4], we have that

ps(H) = Z(—l)m-

Key
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Y={KCL: () Stabs(W)=H},

WeK

Yr={KCL: () Stabs(W)=HT €K} and

WeK

Vp={K CL: () Stabs(W)=HT ¢ K}.

WeK

Since T is a redundant element we have V). = {K — {T'} : K € Yr}. Since the map

Stabyx : L — M

is a bijection, the map © : Y — Y defined by O(K) = {Stabx (W) : W € K} is a

bijection and | K| = |O(K)].

px (H)

So the proof is complete. [J

Thus, we obtain

PG PIEEE

Jey Ke)y

PNCE BECE I
KeYr KeYl

Z (—1)I5T 4 Z (—1)!KI=1 =
KeYr KeYr

ST )= 3 (=0,
Keyr KeYr

Now, we assume that X £ I'. So, we are in the case L. We need the following

lemma. Recall that the action of 1) on Sub(V) is defined before Proposition 6.7.

Lemma 6.12. Let W and Z be two elements of Sub(V) and let p € A—T. We have
that (ZNW)Y =ZY+ WY and (Z +W)¥ = Z¥v N WY.

Proof. The result is clear if ¢ is the inverse transpose map ¢ (as described, for
example, in [KL90, (2.2.4)] ). Since (2 =1 and (T',t) = A, ifp € A—T, then ¢ = gu
for some g € T'. Clearly g acts on Sub(V), and we have that (Z N W)J = Z9 N W9
and (Z + W)9 = Z9 + W¥9. This concludes the prove. [J
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Now we are ready to complete the proof of Proposition 6.9.

Proof of Proposition 6.9 (Case X % T'). Denote by L the set Ly(X), let £* =
Ly(X) and L*/1p = L3;(X) /1)

As in the previous proof, we may assume that H is an intersection of maximal
subgroups and the elements of £ do not form a chain. So we may apply Lemma 6.11.
In particular, there exists a P-element 7" in £* such that T € L£(+) U £(N). Using
Lemma 6.12, we have that 1) induces an isomorphism of lattices between (L*,+,N)
and (L£*,N, +). Thus we have that 7% is a P-element in £* and T% € L(+) U L(N).

Suppose that M C £*/+, [T] = {T,T%} € M and

N wa@)= () wu() =1

[UleMm UeLx/y

We claim that

ﬂ ‘I’H([U]) =H.

[U]eM—{[T]}

Clearly we have that

() Yu(U)NXNT = () Stabyp(U)NStaby (U¥) = HNT.
[UleM [UleM
Now, since by Proposition 6.10 we have that 7" and T% are redundant elements, we

obtain

(| Stabyp(U) NStaby w(U¥) = HNT,
UleM—{(T]}

i.e.

(| vw(U)NXnT=HNT. (1)
UleM—{[T]}

Let K = Niyenr—qrpy Ya([U]). Thus (T) means KNT =HNT. Clearly K > H, so
'K =X and thus |[K : KNXNT|=|K: HNT| = 2. Moreover, |H : HNT| = 2.
Hence we conclude that K = H and we have the claim.

Arguing as in the proof of Proposition 6.9 (case X £ T'), we obtain that pux(H) =
0. 0
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6.1.2 L3(X) does not fulfill the property P

Now, we consider the case when L3, = £3;(X) does not fulfill the property P. Thanks

to the following lemma, we can restrict our attention to L£j;~(S5).

Lemma 6.13. Suppose that L5 (X) is not empty and L3 (X) does not fulfill the
property P. Then also Li;-4(S) is not empty and L3;4(S) does not fulfill the property
P.

Remind that £3;(X) C L};4(5). For a contradiction, assume that there exists
a P-clement Z in L3+4(S). Since L£3;(X) does not fulfill the property P, there
exists 77 and Ty distinct maximal elements of £5;(X). If Z contains 77 and T5, then
Z > Ty + T3, a contradiction since Z is totally singular and T} + T & L3,(X). So
suppose that Z does not contain 7j. Since Z is a P-element in L};~4(S), we have

that Z < Tj. So the set consisting of the elements U of £},(X) such that U > Z is

B= (] U

el (X),U>Z
We claim that B is a P-element in £3,(X). Let W € £5,(X). f W < Z, then W < B
by definition of B. If W > Z, then W > B again by definition of B. Thus B is a

P-element in L},(X), a contradiction. [J

not empty. Thus define

Recall that I = I(V, k) = {¢ € GL(V) : k(¢(v)) = k(v) for all v € V!} where
I =1 if k is quadratic, [ = 2 otherwise. Clearly S is a section of I.

Suppose that W is a totally singular subspace of V. The form x induces a form
KL /w on W /W. Moreover, Ky . yw s a zero, unitary, symplectic or orthogonal
form according to whether k is zero, unitary, symplectic or orthogonal (see [KL90,
p.17-18]).

We introduce some useful definitions.
e Denote by I™W) the group I(W+/W, Kwiw) -

o If W € L£},(X) U {0}, then denote by ﬁgv) the set of element U € L},(X)

Ew L /w
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such that W < U < W+. Note that ﬁ(HO) = L3;. Moreover, if U € Egv), then
U/W is a totally singular subspace of W+ /W (with respect to the induced form

IﬁwL/W).

Let W € £3;(X). Suppose that ¢ is an element of Stab;(W). Thus ¢ induces an
element ") of I defined by ¢") (v + W) = ¢(v) + W for v € W+.

Now, assume that ¢ is an element of

(] Stab(U).

UeLls (X)

This yields ") is an element of

m Stab ;o) (U/W)

W)
veLly

Now we give a more concrete representation of ¢ using the matrices. The case L is
trivial, so we assume that case L does not hold. Since W is totally singular, by Witt’s
Lemma ([KL90, Proposition 2.1.6]) we may assume that there exists £ > 1 such that
W = (e, ..., ex) (see Lemma 6.3 for the notation). The matrix of a generic element of
I in the basis B obtained juxtaposing the bases By = (ey, ..., ex), Ba = (€ks1s -y €m),
Bs = (fex1, e, fm), Ba = (z,y,2) and By = (fi1, ..., fi) is

where M;; is a matrix with respect to the basis B; and B; with coefficient in F = [Fyu.

Consider an element ¢ € Stab;(W), and let M be its matrix. It is clear that My =
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Mz = My = Ms; = Msy = Msz = M5y = 0. Let

0 0 00 1
0 0 10 0
F= 0 (=1)* 0 0 0
0 0 0 DO
(=1)* 0 0 0 0

be the matrix of the form f associated to x, where D is a suitable matrix with
coefficients in F and a = 1 if case S holds, a = 0 otherwise. . Since ¢ € I, we
have that MFM® = F, where « is the automorphism of F,. defined by A* = \
(see [KL90, Lemma 2.1.8]). Moreover, if k = @ is quadratic, then we require that
Q(o(v)) = Q(v) for all v € V. This yields the following facts:

(1) The element ¢ of I™) has matrix

My Moz Moy

M = Msy Msz Mz,

Myy Myz My
with respect to the basis obtained juxtaposing the bases (exy1 + W, ...,em +
W), (fxsr + W,y frn + W) and (x + W,y + W,z + W). In particular, M’ is

invertible.
(2) M55 - Ml_lat.

(3)

Mo (=1)*May Mys Moy My
Mss | =— | (=1)*Msy Mz Msy M7y M.
Mys My Myz  Myy Dt Mpy

(4) Mys M + (—1)*Myy M = —Mys My — (—1)* Mo My — My D M.

(5) If case O or O~ hold, then by Q(o(f;)) = Q(f;) = 0 for i € {1,....k}, we

obtain

Mf5M55(7:, Z) - —(M55M35(i, Z) + M45(1, i)M45(2, Z) + M45(1, Z)2 + CM45(2, Z)z)
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We summarize the above discussion in the following lemma.

Lemma 6.14. Let B be the base of V and let M be the matriz defined above. An
element ¢ of Staby(W) is completely determined if we give:

o an element 1 of I'V), which has a matriz M' as above;

o the matrices My € GLg(Fgu), Mia € Mg pmp(Fgu), M1z € My p(Fpu) and
My, € Mk,n—2m(Fq“>;

o the elements B(i,j) € Fpu for 1 < i < j <k, which are components of the
matriz B = M;;' Mys. The element B(i,q) satisfies B(i,1)® 4+ (—1)*B(i,i) = b
for some b determined by My, Myo, My3, M1y for i € {1,....k}. Moreover, if
case OF or O~ hold, then B(i,1) is determined by M', My, My, M3, M1y for
ied{l, .., k}.

Proof. As we have seen in the above discussion, if we give M', My, My, M3, My

and M5, then ¢ is completely determined. By (4) above we get:

B+ (—1)“B°‘t = M1_11M15 + (—1)“M{?Mﬂ°‘t =
= —Ml_ll(Mqu‘gt + (_1)GM13M10[2t + M14DatMﬁ1t>Ml_1at‘

Note that B + (—1)*B*" is completely determined by My, Mis, My3, My4. So it is
enough to prove that if we give B + (—1)*B* and B(i,j) for 1 < i < j < k, then
B is completely determined. Assume that B + (—1)*B is given. Thus B(j,) +
(—1)*B(i,j)* = b;; for some b, ; fixed, with 1 < i < j < k. Clearly, we have that
B(j,i) = b;; — (—1)B(i, 5)* is determined.

Note that for i € {1,...,k} the element B(i,q) satisfies the equation B(i,i) +
(—1)*B(i,7)* = b;;. Assume that case O" or O~ hold. Therefore & = 1, so by (5)

above we have
B(i,i) = My' Mys(i,i) = ML Mys(i,4) = My Mss(i, ).

Thus B(i,4) is completely determined by the knowledge of M’ My, Mys, My3 and
My, O
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Proposition 6.15. Let W be an element of L3,(X). Suppose that ﬁgv) #+ & and
cg"’ does not fulfill the property P. Then one of the following holds:

(1) There exist U and T in L% such that U + T =W+ and UNT =W.
(2) There exists U € Ly — {W, W} such that U+ +U =W and Ut NU =W.

(3) There exist T € £§§V’ and U € Lg” such that UNT =W, Eg) # @ and Eg)
does not fulfill the property P.

Proof. Since cg"’ # & and cg"’ does not fulfill the property P, there exist M; and
M, distinct maximal elements in Egv). Note that 5%\/110]\/[2) is non empty. We claim
that ngmMﬂ does not fulfill P. By contradiction, if Z is a P-element in E(HMmM2),
since M; and M, are maximal, then Z < M; and Z < M,. So Z < M; N M, a
contradiction with Z € E(HMMMQ).

Assume M; N My > W. Consider the set

M={z2ecW 7 <M nM, L7 does not fulfill P}.

11M2) 5¢ non empty, also 59 is not

Let T be a minimal element in M. Since E(HM
empty. Since T" € [,gv) and ﬁgv) does not fulfill the property P, there exists U € 553”
such that UNT' < T'. For a contradiction, assume that UNT > W. Then UNT € £§§V’
and we have that Eg(mT)
we have that [,ng) fulfills P. Thus there exists a P-element Z in E%JHT). Since
£§? C Eng) and Eg) does not fulfill P, we have that Z < T. If Z < U, then
Z < UNT, a contradiction with Z € Eg[mT). If Z> U, then U <T, a contradiction.
So we obtain U NT = W and (3) holds.

Assume M; N My, = W. Suppose that M; + My = W+, Then (1) holds with
U= M, and T = M,. Now, suppose that U = M; + M, < W+. Clearly case
L does not hold. The subspace U N U~ is a totally singular element of Lz. We
claim that U N U+ = W. For a contradiction, suppose that U N U+ > W. Without

loss of generality, we may assume that M; ? UNU*+. Now, UNU*- < Mi, so

is not empty. Since U NT < T and T is minimal in M,
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M, + U NU" is an element of Egv). This contradicts the maximality of M;. Thus
we have U N U+ =W, so Ut + U = W+. Hence (2) holds. [J

Let W be an element of £} U {0}. Suppose that d = dim W+ /W. Recall that
IW) = I(WH/W, kw1 w). Let

Hyw) = ﬂ Stab ;) (U).
ey
We have the following.
Proposition 6.16. If 553"’ s not empty and 553"’ does not fulfill the property P,

then
‘](W) . H[(W)|p > qﬁ’(d)7

where (
d—1 if case L or U hold,
B(d) = 5 —log, [2, if case S holds,
5 if case O° holds,
12 +log, 2|, if case OF or O hold,

3

Proof. Without loss of generality, we assume that W = 0. Let I = I(® and
H; = H©). Recall that n is the dimension of V. Since £}, is not empty, then n > 2
and Proposition 6.15 applies. In Table 6.2 we report the p-part of the order of I (see
[KL90, p.19]).

Table 6.2: p-part of the order of I

Case log, |1], Conditions
L U TL(TL—l)
Y n%
S L n even
2
0° (1) gn odd
O* | "2 tlog 2|, | neven

In order to prove the proposition, we argue by induction on n.
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Case (1). Assume that there exist U and T in L3, such that U+T =V and UN
T = 0. If case L holds, then Stab;(7") NStab;(U) is isomorphic to GL,, (q) x GLy,(q),
where nq; = dim 7T and ny, = dim U, and so

n(n —1) ni(ny —1)  na(ng —1)
logq|I:H1\pZ 5 —( 5 + 5 >n—1.

If case L does not hold, then 7" and U are maximal totally singular subspaces of V', so
dim7T = dim U = n/2. In particular n is even. By Witt’s Lemma (|KL90, Proposition
2.1.6]) we may assume that 7" = (eq,...,e,,) and U = (fi, ..., f) (see Lemma 6.3
for the notation). By [KL90, Lemma 4.1.9], we have that Stab;(7") N Stab;(U) is
isomorphic to GL,/2(¢"). Thus we have that

u(n — 2)

n
logq |1 Hylp > logq 1], — 3 > ﬂ/(n>

for n > 2.

Case (2). Assume that there exists U € Ly —{0,V} such that Ut +U =V and
Ut NU = 0. Clearly, case L does not hold. So  is non-degenerate, and thus U is
non-degenerate. Let kK = dimU. By [KL90, §4.1], we obtain Table 6.3. Thus it is

easy to see that

log, |I : H|, > log, |I : Stab;(U)|, > 3'(n)

forn > 2 and n > k.

Table 6.3: p-part of the order M = Stab;(U), where U is a non-degenerate proper
subspace of V and dimU = k

Case Type of M log, | M|, Conditions

U | GUi(q) L GU,(q) M= R =i=t)

S Spi(q) L Sp,_1(q) %{W k even
0° | Of(q) L O;_(0) R k odd
O* | Of(q) LOF (¢ | M2 B0k 4 oe (2], |k even
0* | 09(g) L 0%, (a) (1P +(n=h-1)? k odd, ¢ odd
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Assume that Case (1) and Case (2) do not hold. By Proposition 6.15, there
exist ' € L3 and U € L} such that UNT = 0, Eg) # & and Eg) does not fulfill
the property P.

Assume case L holds. Let T' = (e, ..., ex) and U = (ejy1, ..., €4), for some k+ 1 <
h < m = n. In the basis ey, ..., e, the generic matrix of an element of H; is of the

form

GL(T) O M (n—h) (F,)
Hyer)

Thus we have that

o, 11l < 108, (1F00 Mo (F GL(T),) < log, [Hicn k() 420
This yields
log, |1+ Hyl, > log, |I : IV, +1log, I Hyeny|, — k(n — h) — @
Since dim V/T < n, by induction we have that
log, I : Hyr)|p > B (dmV/T) =B (n—k) =n—k—1,
so we obtain
log, |1 - Hyl, > ”("2_ D _ ("_k)(z_k_l) +n—k—1—k(n—h)—@
> n—14+k(h—k—-1)
> n—1.

The last inequality holds since £k > 1 and h > k + 1.

Assume case L does not hold. Assume that U N7+ > 0. Thus there exists
v € U such that v € T+. By Witt’s Lemma (|[KL90, Proposition 2.1.6]) we may
assume that T = (ey, ..., e) and v = ej41. Let ¢ be an element of H;. We have that
d(eps1) = ¢(v) € T since UNT = 0. Using the notation of Lemma 6.14, we have that
the first column of M5 consists of zeros. By Lemma 6.14, to completely determine ¢

it is enough to give:
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uk(k—1)

[T5,(¢" — 1) choices);

M, € GLk(qu) (q

My € My 1 (F4u) with the first column filled with zeros (q“*(™=%=1) choices);

Mz € Mg (Fgu) (¢**™=%) choices for M3);

My € My p_om(Fpu) (¢ =2 choices for M,);

uk(k—1

B(i,j) € Fpufor 1 <i<j <k (g > choices);

B(i,i) € F, for i € {1,...,k} and we have ¢** choices, where

)\_{ 1 if u =2 or case S holds,

0 otherwise;

an element ¢ of Hyr), (|H | choices).
So we get that
log, |Hylp < uk(n — 2 — k) + Ak + log, |Hyer) |,
This yields
log, |1+ Hyl, > log, |I: I, +log, |1 : Hym, — uk(n — 2 — k) — Mk (x)
Since dim 7" /T < n, by induction we have that
log, |17 Hynlp, > B/(dim(T/T)) = B'(n — 2k),
so it is easy to see that
log, |1+ Hyl, > log, |I : I, + 8'(n — 2k) — uk(n —2 — k) — Xk = 3'(n).

In the rest of the proof we show that we can always reduce to the case UNT+ > 0.
Assume that UNT+ = 0. Let R = (U+T)N(U+T)* = (U+T)NU+NT*+. We claim
that R € £3. By contradiction, suppose that R & £3. Since R = (U+T)N(U+T)*
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is totally singular and R ¢ Lj;, we must have that R = 0. But this is a contradiction

since Case (2) does not hold. So we have the claim. In particular, R > 0.

Assume that RNT > 0. Thus RNT € L}. Since Eg) - ngnT), the set
ESL?DT) is not empty. We claim that ESL?DT) does not fulfill the property P. For a
contradiction, assume that Z is a P-element in [,ng). If Z>T,then Z € Eg), but
Eg) does not contain P-elements. So Z < T. Since R < U+, then R+ U € ﬁsfﬁT).
Since R4+ U £ T and Z is a P-element such that Z < T, then Z < R+ U. So
Z<(R+U)NT <U*NT < RNT, a a contradiction. Since RNT € L%, U € L%,
U<(RNT):, UNR =0, ﬁgf) is not empty and ng) does not fulfill P, without loss

of generality we may assume that R NT = T and argue as in the case U NT+ > 0.
Assume that RNT = 0. Since R,T € L}, R< T+ RNT =0, Eg) is not empty
and Eg) does not fulfill P, without loss of generality we may assume that R = U

and argue as in the case U N T+ > 0.

The proof is finished. [J

Theorem 6.17. Let H be as in the Theorem 6.2. Suppose that L5;(X) is not empty
and L3(X) does not fulfill the property P. Thus |X : H|, > ¢°™.

Proof. Since HG = X, we have that | X : H|, =[S : HN S|,. By the previous
proposition, we know that |I : Hy|, > ¢* ¥ where I = I(V, k). Note that F* < Hy,
since a scalar matrix stabilizes each subspace. Let R = S(V, k). By |[KL90, Table
2.1.C|, we have that |I : S|, =1. Thus |R: H N R|, =|I : H;|,. Now, |F*|, =1, so

|[R:ROH| =|R:RNHlp

If case O does not hold, then S = R. Since in this case SN H = RN H;, we have
the claim. If case O holds, then |R : S| = 2, so we have that 2|S: HN S|, > |R :
RN Hl, > %™, Thus |S: HN S|, > ¢7 ™18 2l = ¢80
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6.2 Indexes of subgroups of X which are contained
in a maximal subgroup that does not contain a
Sylow p-subgroup of X

The main task of this section is to prove the following.

Proposition 6.18. Let X be a classical projective group. Let M be maximal subgroup
of X such that MS = X and M does not contain a Sylow p-subgroup of X. Then
log, | X : M|, > B,(X), where 3,(X) is as in Theorem 6.1.

Proof. 1f Case L,n = 2 holds, then the result follows by [Hup67, p. 213|.

Suppose that M is as in the statement. Suppose that M is a member of one
of the classes C;(X), ...,Cs(X). By |[KL90, Proposition 3.1.3|, the group M N S is a
member of the classes C;(S),...,Cs(S), or X £ T (so that case L holds) and one of
the following holds:

M NS is isomorphic to a subgroup of Cy x S,,, n is even and q = 2,

M N S is isomorphic to a subgroup of Alty and (n,q) = (5, 2),

M N S is isomorphic to a subgroup of 3%2.Qg and (n,q) = (3,4),

M N S is isomorphic to a subgroup of 23.54.55 and (n,q) = (4,3).

Using the results of [KL90] on the geometric subgroups a direct calculations show
that if M is a member of one of the classes C;(X),...,Cs(X), then the proposition
holds.

If M does not lie in one of the classes Cy(X), ...,Cs(X), then M is a member of the
class S(X) (by Theorem 3.11). Let R be the socle of M. Since M lies in S, the group
R is non-abelian simple. We claim that R < S. In fact, RN S is a normal subgroup
of R. Hence RNS =1or R < S. For a contradiction, suppose that RN S = 1. Thus

R is isomorphic to a subgroup of X/S, a contradiction, since X/S is soluble. So we
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obtain the claim. In particular, if M is a member of the class S(X), then M NS is a
member of the class S(5).

By Theorem 3.12, we get that either R is in Table 3.3 or |[M| < ¢“®"*%). Assume
that n is at least 8,13,12 and 13 in the cases L, U, S and O respectively. An easy
check shows that the proposition holds.

Assume that n = 3 and case L or U hold. By Table 3.4, it is straightforward to
see that the proposition holds.

Throughout the rest of the proof, assume that if case L or U hold, then n > 4.
Using [CCNT85], it is easy to see that the proposition holds in the following cases:

e Case L, (n,q) € {(4,2),(5,2)}.

Case U, (n,q) € {(4,2),(5,2)}.

Case S, (n,q) € {(4,3),(4,4),(6,2),(8,2)}.

Case O, (n,q) = (7,3).

Case OT, (n,q) = (8,2).

Case O7, (n,q) = (8,2).

Recall the definition of the class S (see Theorem 3.11). In particular, if M lies

in S, then there exists an absolutely irreducible representation p : L — GL(V') such

that p(L) = R, where L is the full covering of S.

Suppose that R is not a group of Lie type of characteristic p.

Using Tables 3.15 and 3.16, we find a lower bound of |X : M]|,, (the ratio
|G|,/|Aut(S)],). It turns out that this lower bound is smaller than ¢*X) in the

following cases:
e Case L, (n,q) € {(4,2),(5,2)}.
e Case U, (n,q) € {(4,2),(5,2)}.

e Case S, (n,q) € {(4,4),(6,2)}.
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e Case O*, (n,q) € {(8,2)}.

Note that the cases above have been already considered.

Assume that R is a group of Lie type of characteristic p over F,. Again, using Ta-
bles 3.17 and 3.18, we find that the lower bound of | X : M]|, (the ratio |G|,/|Aut(S)],)

is greater that or equal to qBP(X )

. In particular, when case O° holds for n = 7 we have
that there can be a maximal subgroup M in S with socle isomorphic to Gz(g), but
it turns out that M = Ga(q) (see [Kle87]), hence the result holds. Similarly, when
case OF holds for n = 8, we have that there can be a maximal subgroup M in S with
socle R isomorphic to PSpg(q) or PQ7(g), but it turns out that M = R (see [LPS90,

p. 32, Table G| and [Kle87]) hence the result holds. The proof is finished. [J



Chapter 7

Proof of the Main Theorem

This chapter is devoted to the proof of the main theorem of the present part. The
following statement is the most general result we were able to obtain, so in order to
state it we need a lot of assumptions. However, note that if G is a classical group
which does not contain non-trivial graph automorphisms, then the assumptions are

fulfilled.

Theorem 7.1. Let G be a finite group. Let A be the set of representatives of the G-
equivalence classes of chief factors of G. Let A € A and denote by L4 the monolithic
primitive group associated with A. Assume that for each A € A exactly one of the
following holds:

e A is abelian;

o X, =N, (A)/CL,(A) is a projective classical group over the field F, (for some
q prime power) and ¢*=* > |d|,, ¢ > |pl,Ind — 1|L,I‘_1 where d = 2|L : Np,(A)],
the number |p| is the mazimum order of a graph automorphism in X 4 (see p.41

for the definition) and

_J 2 iflpl =2 and soc(X4) is of type L,
1 otherwise.

Moreover, if there is a maximal subgroup of L4 which is not non-trivial inter-

secting, then assume that |p|,|d|,|nd — 11" < |S|2, where S = soc(X4);

106
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o soc(X4) = PSLy(49)and X4 > soc(Xa). If there is a mazimal subgroup of L

which is not non-trivial intersecting, then assume that |d|5 < 25;
o soc(X4) = PSLy(8). In this case assume that |d|; = 1;
o A =PSLy(9),PSL4(2), PSU4(2), PSpg(2), PSL2(49).
Then Pg(—1) # 0, hence the order complex of the coset poset of G is not contractible.

The proof of the above result is in the end of the present chapter.
In Table 7.1 we fix the values of the number L, we shall use during the proof of

the following results.

Table 7.1: Value of L for the classical simple groups

Case S L |1
L | PSL,(q) n—1 n—1
U | PSU.(q) | 2[27] +1| [3]
S | PSp,(q) 3 5
0° | P,(q) =y =
O* | PQ;(q) 3 5
O~ | PO, (q) 3 57— 1

7.1 General case

Proposition 7.2. Let X be a projective classical group with socle S of characteristic

p. Let d be an even positive number, such that
PR = d)l, = |d(d — 1) ",
where |I| is the number or p-orbits of S. Moreover assume that

e X does not contain a non-trivial graph automorphism;

e if case L holds, then n > 3 and (n,q) # (4,2);
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e if case U holds, then (n,q) # (4,2);
o if case S holds, then (n,q) # (6,2).
Then |Px s(1 — d)|, = |d(d — 1)117| ,¢*.
Proof. In order to prove the proposition, it is enough to show that
jd(d — 1) g < ¢,

as we have seen in Chapter 4. Recall that 3,(X) > 3,(X), which is given in Theorem

6.1. An easy computation shows that
12],¢" < P < 280 (%)
hence for d = 2 the result holds. By (%) we get:
[ 411 (4 = g™ < J4]03150" < (121,6")? < ¢,

hence for d = 4 we have the claim. Arguing in a similar way, we obtain the result for

d < 14. Let d = 2d’ and assume that d’ > 8. By (x) we get:
A(d — )11, " < [2lgHdlpl2d — 112 < O (20— 1)F <
< @A XL =D < (26X (2] g1t < P4
since for d’ > 8 we have that d'(2d' — 1) < 2¢'=1Thus the proof is complete. [J

Proposition 7.3. Let X be a projective classical group with socle S of characteristic

p. Assume that
e X contains a graph automorphism of order 2 (i.e. case L or case OF holds);

e if case L holds then (n,q) # (4,2); moreover we assume that |P)(£)S(1 —d)|, =
2d(2d — 1)E17 g7

e if case O" holds we assume that |P)(£)S(1 —d)|, = |2d(d —1)272|,¢> 1,
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Then |Px,s(1 — d)|, = |PYs(1 — d)],-
Proof. As in the previous proposition, it is enough to show that
P51 = d)l, < ¢,

as we have seen in Chapter 4. Assume that case L holds. As in the previous proof,

we have that
d(d — 1) g < g,

Hence we get:

44 — DB gl"F] < J4],g72 < 250,

thus we have the claim for d = 2. Similarly we get the result for d = 4. Assume that
d > 6. Since 2d(2d — 1)[%]_1 < d(d—1)""! for d > 6, we have that:

n—1
2

[2d(2d = 1) B ,ql"7 ] < Jd(d — 1) < g2,

hence we obtain the claim.
Assume that case O' holds. By the proof of the previous proposition, we have
that
jd(d = 1)F g3t < g,

Thus we get:
12d(d — 1)2 72,5 < |d(d — 1)57Y,q7 " < ¢,

This completes the proof. [

7.2 The projective linear groups PSLy(q)
For a prime number r we let

b(X) = min{|X : H|,,H < X,|X : H|, > 1,HS = X, ux(H) # 0}.
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For some almost simple groups X there exists a prime number r» > 2 such that
b,(X) and P)({’)S(l — d) are easy to compute (using [GAP|). In particular, for the
groups X in Table 7.2 (except for PSLy(8) and PI'Ly(8)), we have that P)(;,)S(l —d) =
1 — (a+ 1)% where |a|, = r, hence |P)({)S(1 —d)|, = r|d|, (see the proof of Proposition
5.10). If S = PSLy(8), then P)(;)S(l —d)=1-9%-36%+ 72 It is easy to see that if
|d|; =1, then |1 — 9% — 369 + 72%|; = 7.

Table 7.2: r for some PSLy(q) < X < PI'Ly(q), with ¢ < 11

X T X r
PSLy(4) = PSLa(5) | 5 Mo 5
PGLy(5) = PTI'Ly(4) | 5| PI'Ly(9) | 5
PSLy(7) 2 PSL3(2) | 7| PGL2(9) | 5
PGLy(7) 2 PT'L3(2) | 7 | PSLy(11) | 11

PSL,(8) 7| PGLy(11) | 11
PT'Ly(8) 7

Proposition 7.4. Assume n = 2 and case L holds. Assume that ¢ > 13. Let d be

an even positive integer. The following hold.
(1) If ¢ = p, then |PLs(1 = d)|, = pld|, and b,(X) = p.
(2) If g # p and q # 49, then |PYg(1 — )|, = |S:|d|; and b,(X) > |S],%.
(3) If g =49 and X > S, then |P{(1 — d)|, = 25|d|5 and bs(X) = 5.

Proof. Let 6 = (¢ — 1,2) and ¢ = p/.

We prove (1). In this case we have f = 1. Let P be a Sylow p-subgroup of X. Let
M be a maximal subgroup of X such that M contains P and M.S = X. By Lemma
3.8, we have Nx(P) < M, so we can apply Lemma 3.6. By [KL90, Proposition
4.1.16], we have that M = Nx(M NS) and M NS is a maximal subgroup of S. Since
M NS = Ng(PnNS) we have that Mpng(S) = {M N S} and so Mp(X) = {M}.
Applying Lemma 3.6, we deduce that

1 1
P(p) =1 =1 — P(p) .
5 () S M AP Xoarpr st
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Hence we get:
p+1

(p+1)
so we have |P)(£S( (d—1))|, = |d|pp (see Proposition 5.10), thus we obtain the claim.
Now, we prove (2). So assume f > 2 and ¢ # 49. As in [Pat09c|, case m = 1 of the

Py(s)=1—

proof of Proposition 16, let ¢ = pos be a Zsigmondy prime for (p,2f). In particular,
for f =2,

if 53 divides p? + 1, let t = 5;
otherwise, let t = p, be a Zsigmondy prime for (p,4) distinct from 5.

Let T be a Sylow t-subgroup of X. By [Pat09c|, case m = 1 of the proof of Proposition

16, we have:

ag(S)
(a) Po(s) =1— FZ 43, 48

(b) Let K be a maximal subgroup of S. We have that |S : K| is divisible by ¢ if and
only if K is not isomorphic to Dy(41y/5. In particular, if K is not isomorphic
to Do(g41)/5, we have vy(|S : K|) > v,(|S])/2, where v; : Q — Z U {00} is the

t-adic valuation map.

(c) Let K; and K, be two distinct maximal subgroups isomorphic to Dygy1)/5. We
have that v(|S : K1 N Ks|) > v(]S])/2.

(d) The group Ng(T'NS) is a maximal subgroup of S isomorphic to Dy(g11)/s
Moreover, by |[Giu07], we have that

if M is a maximal subgroup of X and M NS is a isomorphic to a subgroup

of Dy(g+1y/s, then M N S is isomorphic to Dagy1)/s. (*)

In particular, if M is in My (X), by (d) we have that M NS = Ng(T'NS) and
M = Nx(Ns(T' n'S)). So we obtain Nx(T'NS) < Nx(Ng(T'NS)) = M and since
Nx(T) < Nx(TNS), we get Nx(T)) < M. Moreover, by (b), (d) and M = Nx(MnNS),
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we have that Mprg(S) = {M N S} and so Mp(X) = {M}. Using (a) and applying

Lemma 3.6, we deduce that

1 1 1
PY(s) =1~ =1- i pW gy
S = g T s arnsp T X e s

Thus \P)(fs( d)|: = |S|¢|d|: (argue as in Proposition 5.10).

Now, let H be a subgroup of X such that HS = X and M does not contain a
Sylow t-subgroup of X. We have that |X : H| = |S : H N S|. Suppose that M is a
maximal subgroup of X containing H. By (x) we have that M NS is not isomorphic
to a subgroup of Dy(gy1y/s. Thus, by (b) and (c), we obtain v,(|X : H|) > v,(]S])/2.
So we get that by (X) > |S|1/%.

Finally, we prove (3). Assume that ¢ =49 and X > S. We show that r = 5 fulfills
the requirements of the proposition. Let M be a maximal subgroup of X such that
MS = X and |X : M|5 = 1. By [Giu07, Theorem 1.3, 1.4, 1.5 and 3.5], we have that
M is conjugated to Nx(Dsp). Let M; and Ms be two distinct maximal subgroups
of X such that M;S = MyS = X and | X : My|s = |X : My|s = 1. We claim that
|X : M; N Ms|s > 1. For a contradiction, suppose that M; N M, contains a Sylow
5-subgroup of X. Since M; and M, are conjugated to Nx(Ds), they contain a cyclic
normal subgroup C' of order 25. Thus C' < X, a contradiction. Hence we get

PP(s) =1 —1176',

SO |P)(<5)S(1 — d)|s = 25|d|5 (argue as in Proposition 5.10). Now, if M is a maximal
subgroup of X such that MS = X and |X : M|5 > 1, then we have that | X : M|5; = 5
(see |Giu07, Theorem 1.3, 1.4, 1.5 and 3.5]). So we obtain the claim. [

7.3 Proof of Theorem 7.1

Note that there are some groups missing: PSLy(9), PSLy(2), PSU4(2), PSpg(2) and
their automorphism groups. Using [GAP], one can see that Py g(—1) # 0. Also

Prpgr,a9)(—1) # 0.
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Now we can prove Theorem 7.1.

Proof. By Theorem 1.1, we have that:

Pos) =TI II Prast®].

AcA \1<i<ig(A)
where

pLAJ(S) = Pr, a(s), PLA,Z-(S) = Pr,a(s) — W fori>1,

for some c4; € N such that |A| divides c4; if A is not abelian. As it was pointed out
before Theorem 1.1, if A is abelian, then Pp, ;(—1) # 0 (indeed, this is a result of
[Bro00]).

Now, assume that X = N ,(A)/Cp,(A) is a classical projective group. As we

have see in Chapter 4, in order to show that P, ;(—1) # 0, it is enough to prove that
|PEL(1 — d)], < min{g™>, |7},

and if each maximal subgroup of L4 is non-trivial intersecting, then it is enough to
show that
[PEL(1 = d)l < g™,

In particular, note that ¢%) <|S|,, hence ¢%*»X) < |§ |d |APZ.

Since we assume that ¢“~' > |d|,, ¢ > |p|,Ind — 1|p ' by Proposition 5.10 and
5.11, we have that |P)(£)A(1 —d)|, = |plylnd — 1|1|DI|_1. From Proposition 7.2, 7.3 and
7.4 the result follows.

In a similar way, the result holds in the other cases. [



Part 11

On the irreducibility of the Dirichlet

polynomial of a simple group of Lie

type.
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Chapter 8
Introduction

The aim of this part is to prove the following theorem.

Theorem 8.1. Let G be a primitive monolithic group with a simple component S
isomorphic to a simple group of Lie type. Let X = Ng(S)/Cq(S). Let k be the

mazximum of the orders of the graph automorphisms in X < Aut(S). Assume that
e the Lie rank of S is greater than k;

e S is not isomorphic to one of the following groups: As(2), As(3), 2A3(3%),
2A4(2%), 2A5(22), Cy(p) for p a Mersenne prime.

The Dirichlet polynomial Pg soc(c) () 4 irreducible in the ring of finite Dirichlet series.

In particular, if G = S, then we obtain a complete answer to the irreducibility

problem.

Theorem 8.2. Let S be a simple group of Lie type. Then Ps(s) is reducible in the
ring of Dirichlet finite series if and only if S = Ai(p) for some Mersenne prime p
such that logy,(p +1) = 3 (mod 4).

In order to prove such theorems, we first show that the Dirichlet polynomial

ng iOC(G)(S) is irreducible in most of cases. Next, we apply Lemma 2.13 with h(s) =

115



116

Pt soc(c)(8), mo = {p} and a suitable set of prime numbers 7 (usually consisting of
some Zsigmondy primes).

With the same proof of Theorem 8.1, we obtain the following theorem, which gives
a bijective correspondence between the set of chief factors of a group H and the set

of irreducible factors of Py(s), under some assumptions.

Theorem 8.3. Let H be a finite group. Let 1 = Hy< H; J... < H, = H be a
chief series of H and assume that the chief factors of H are non-abelian. Let L,
be the monolithic primitive group associated with K; = H; 1/ H;, defined by Lk, =
H;/Cq,(K;). Suppose that L, satisfies the assumptions of Theorem 8.1 for each
i€{0,...k—1}. Then

k-1
Pr(s) =[] Pr.x.(5)
i=0
s a factorization into irreducible elements of R.

Moreover, in a slightly more general situation, we are able to determine the number
of non-Frattini chief factors of H. In fact, thanks to [DL03a, Lemma 16], as a corollary

of Theorem 8.3, we have the following.

Theorem 8.4. Let H be a finite group as above. Suppose that Lk, satisfies the
assumptions of Theorem 8.1 whenever K; is a non-abelian chief factor of H. Let

k‘l, k‘g € N such that

Put) = 1 (1) I17)

i=1

where a;,¢; € N — {0}, p; is a prime number for all i € {1,...,k1} and f;(s) is an

irreducible Dirichlet polynomial not equal to +(1 — -%) for any a,c € N— {0} and p

p(lS
prime, for each j € {1,....ko}. Then ky is the number of non-Frattini abelian chief

factors of H and ko is the number of non-abelian chief factors of H.



Chapter 9

The irreducibility of the Dirichlet

polynomial Pg lOC ) (s)

Let G be a primitive monolithic group with socle soc(G), the group S is a simple
component of G and X = Ng(S5)/Cq(S). Moreover, let S be a simple group of Lie
type of characteristic p and S = soc(X). The aim of the present section is to prove

that the Dirichlet polynomial pw

GSOC(G)(S) is irreducible when the Lie rank of S is

greater than the order of each graph automorphisms of X (see Proposition 9.3).

9.1 Some preliminary results

Lemma 9.1. Assume that S is a simple group of Lie type such that S is not isomor-
phic to one of the following groups: Ai(p) with p a Mersenne prime, 2A3(2%), A5(2),
C3(2), D4(2). Define the number ((S) as in Table 9.1.

Let r be the prime number fC(S) (i.e. the greatest Zsigmondy prime for (t,((5))).
If H is a proper parabolic subgroup of S, then |S : H|, = |5,

Proof. Let H be a proper parabolic subgroup of S. By the discussion after
Proposition 3.4, using the definition of Zsigmondy prime, if |S : H|, > 1, then
|S: H|. =S| O
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Table 9.1: ¢(S) for S a simple group of Lie type

¢(5)
Al(t) 2Al(t2), [ odd 2l

Bi(t),C 2A(t%),1 even | 21 + 2
D(t) 21
Es(t) 12
EL(t) 18
Ex(t) 4
Fy(t) 24
Go(t) 6

G1 We denote by G; the set of groups X such that X does not contain a non-trivial

graph automorphism and S is isomorphic to one of the following groups:

o Ai(t) for I > 2 and (I,t) & {(2,p) : p is a Mersenne prime} U {(5,2)};

o Bi(t) for I > 3;

o Ci(t) for [ > 2 and (I,t) € {(2,p) : p is a Mersenne prime} U {(3,2)};

e Di(t) for I >4 and (I,t) € {(4,2)};

o 2Dy(12), Ey(t), 2Es(t2).

Go We define G, to be the set consisting of the groups X such that the maximum

of the order of a graph automorphism in X is 2 and S is isomorphic to one of the

following groups:

o Ai(t) for I >3 and (I,t) € {(3,p) : p is a Mersenne prime} U {5, 2};

e Di(t) for I >4 and (I,t) & {(4,2)};

o Fi(t).

2A,(t%) for I > 3 and (I,t) € {(3,2)};
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61(X), THE NUMBERS 6;(X) AND 62(X). Let k € {1,2}. Let X be an element of Gy.
62(X)  The numbers 6, (X) for k € {1,2} are defined in the following way:

o if S = A4(2), then 6,(X) = 65(X) = 5;

o if S = A;(2), then 6,(X) =7 and 02(X) = 5;
o if S =24,(2?), then 6,(X) = 4;

o if S = (C4(2), then 0;(X) = 3;

o if S = Dx(2), then 0;(X) = 65(X) = 3;

o if S =2D5(2%), then 0,(X) = 3;

e otherwise let 6;(X) be as in Table 9.2.

Table 9.2: 6,(X) for X almost simple group of Lie type with socle S

g 01(X) [ 62(X) S 0,(X)
Ay(t) I I—1 || 2A3(t?),2A5(t?) 4
Bl(t), Cl(t) 20— 2 2Al(t2),l >b5odd |20 —14
Dy(t),l>5|20l—4 |20 —4| 2A(t*),l > 4 even | 2] — 2
Dy(t) 3 3 2Dy4(t?) 3
EG(t) 8 5) 2Dl(t2),l >4 20 — 4

Ex(t) 12 2Fg(t?) 10
Ex(t) 18

We have the following.

Proposition 9.2. Let k € {1,2}. Assume that X € Gy. Let v = tg,x). If H is
a proper parabolic subgroup of S such that |S : H|, > 1, then |S : H|, = |S|,. In
particular, for H = B, we have |S : H|, = |S : B|, = |S|,. Moreover, there exists
J € PX(I) such that |S : Ps|, = 1.
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Proof. Let H be a proper parabolic subgroup of S. By the discussion after
Proposition 3.4 and the definition of Zsigmondy prime, it is not difficult to see that
if |S: H|, > 1, then |S : H|, = |S],. It remains to prove there exists J € P~ (I) such
that |S : Py|, = 1.

Assume that & = 1. Using the labeling of Figure 3.1, define K C II as follows:

(

{ry, 73} if S22 2A5(?),
{ry,r4} if S =24,(2?),
K- {ro, ..,m_1} if S=2A,(t),1>4,(1,t) # (4,2),
{ry,m} if S =2D,(t?),
{r1, .., ri-1} if S = Ej(t)
L {re, o mi} otherwise.

Assume that & = 2. Using the labeling of Figure 3.1, define K C II as follows:

{7’2,...,7’1_1} lngAl(t)u
K= {7”2,...,7”[} lf S = Dl(t)a
{7’2,...,7’6} 1f5’§ EG(t)

In both cases, K is union of p-orbits. Let J be the set of these orbits. By
definition of K, it is clear that J € PX(I). Moreover, it is easy to see that J satisfies

the requirements. [

9.2 Proof of the irreducibility of P} (s)

G,soc

Now, we can prove the following result on the irreducibility of Pép 2OC(G)(S).

Proposition 9.3. Let G be a primitive monolithic group with non-abelian socle
soc(G) and let S be a simple component of G. Let X = Ng(S)/Cq(S) and let k
be the mazimum of the orders of the graph automorphisms of X. Further, assume
that S is a group of Lie type of Lie rank greater than k. The Dirichlet polynomial

P((;Ijioc((;)(s) is irreducible in the ring of finite Dirichlet series.
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Proof. By Theorem 1.3, we have that nggoc(G)(s) = P(%(n(s —1)+1).

A direct inspection shows that the proposition holds if S is isomorphic to one of the
following groups: As(2),2A3(2%), C5(2), D4(2). So, assume that S is not isomorphic
to one of the following groups: As(2),2A43(2%), C3(2), D4(2).

Let r = fc(S) and let * = x, be the indeterminate corresponding to r, i.e.
U(rd=9) = z. Let D = Z[Xn(s)-{r})-

Assume that k € {1,2} and X is in Gy. Let v = fgk(g). Let y = z, be the
indeterminate corresponding to v, i.e. U(v1=9)) = y. Let g(z,y) = \II(PC(;’?ZOC(G)(S)),
considered as a polynomial in E[z,y], where E = Z[X (s)—{r0}]. By Theorem 3.10,
Lemma 9.1 and Proposition 9.2, we have that g(x,y) = 1 — 2" (b + cy™?) for some
b,c € E — {0} and my,my € N;my,me > 1. Let f(x) be the polynomial g(z,y) in
Dlz]. For a contradiction, assume that f(x) is irreducible in D[z]. By Lemma 2.10,
we have that b+ cy™? or —(b+ cy™?) is a non-trivial power in D. However, it is clear
that b+ cy™ and —(b + cy™?) are not non-trivial power in D = Ely].

Assume that k € {1,2} and X ¢ Gi. In this case, by Lemma 9.1, we have that

f(@) = U(PY) () =1 — aa™

for some m € N and a € D. By Lemma 2.10, if f(z) is reducible, then a or —a is a

non-trivial power in D. A direct inspection shows that this does not happen.
Assume that k = 3, i.e. S is isomorphic to Dy(t) and that X contains a graph

automorphism of order 3. Let y = y;, = \I/(le,)_s) be the indeterminate corresponding

to £3. We have that f(y) = \II(P(p)

G7SOC(G)(S)) =1—ay™ for some m € Nand a € D. As

above, by Lemma 2.10, if f(z) is reducible, then a or —a is a non-trivial power in D.

A direct inspection shows that this does not happen. [J



Chapter 10
Proof of the main theorem.

In this section we prove Theorem 8.1. Recall that X is an almost simple group with
socle a simple group of Lie type S, and B is a Borel subgroup of S.

A key role in the proof of Theorem 8.1 is played by the following proposition,
which proves that, under some assumptions, P)((Q%(s) =1 for Q =n(S) — n(B).
Proposition 10.1. Let S be a simple group of Lie type of characteristic p and assume
that the Lie rank of S is at least 2. Moreover, assume that S & {As(2), A3(2), 2A3(3%),
2A4(2%), 2A5(2%) }U{Aa(p), Co(p)} for p a Mersenne prime. Let B be a Borel subgroup
of S and let Q@ = 7(S) — w(B). If H is a subgroup of S such that |S|, = |H|, for all
re), then H=2S5.

Proof. Let H and S be as in the statement. For a contradiction, assume that
H < §. Without loss of generality, we may assume that H is a maximal subgroup of

S. By hypothesis, we have that

_ __15:8] -
b(S) =[] ISl = IL,.15: Bl divides |H]|.

re)

Let m be a set of prime numbers. We denote by M, (S) the set of representatives
of the isomorphism classes of maximal subgroups M of S such that r does not divide

|S: M| for all r € 7.
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Table 10.1: |S : B|, when r divides |B.

S |IS:Bls | |S:B|3 | |S:Bl5 | |S:B|7||S:B|,r>11

Go(t) [t + 1|3 3 1 1 1

FE(t) 23|t + 13 31 5 1 1
2Ee(t?),r|t — 1| 2%t + 1|3 32 1 1 1
2Ee(t?),rlt+1 | 28|t + 103 | 3t + 1|5 | Bt + 15 | [t + 1]7 it + 1|}

Ex(t) 23|t + 1[5 34 5 7 1

Ex(t) 200t + 113 3 52 7 1

Fy(t) 230t + 1|3 32 1 1 1
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For the exceptional groups, we adopt the following strategy. We find a subset =
of  such that if H € M,(S), then |H| < b(S). This is enough to prove the claim.
In Table 10.1, we report the numbers |S : B|, with r € 7(B) and r # p for some
exceptional group S.

Case S = ?Dy(t*). By [Kle88b]|, we have that My, ; 1(S) = @.

Case S = G5(t). In this case we have t > 4 and the maximal subgroup of S are
known (see [Kle88a| and [Coo81]). If t = 4, then Mys5713y(S) = @. If t <7 and ¢ # 4,
then My, ;1(S) = @. Suppose that ¢ > 9. We have that Mg, ;,(S) C {A;(13)}, but
b(S) > |A1(13)].

Case S = 2Fy(t?).
of S are known (see [Mal91]). Note that ®5(¢?) = t® — ¢t* + 1 divides the order

In this case, t? = 2%**! and k£ > 1. The maximal subgroup
of S and a prime divisor of ®15(#?) is a prime divisor of b(S). Moreover, we have
that 8 —t* + 1 = (t* — V282 + 12 — V2t + 1)(t* + V262 + 2 + V2t + 1) and (t* —
V23412 — /2t + 1,11+ V213 + 12 + /2t +1) = 1. Thus let 7, be a prime divisor of
VU + 12+ V2t + 1 and r_ be a prime divisor of t* — V2B + 12 — /2t +1. We
have that My, . 4(5) = @.

Case S € {Fs(t),?Es(t?), E7(t), Fs(t)}. By [ILS03, Theorem 9|, the maximal
subgroups H of S such that |H| > ~(95) are known (the values of v(S) are given in
Table 10.2). By direct inspection, it is easy to see that if H € My, (s)(5) , then |H| <
7(S) (see Table 10.2 for the values of m1(S)). Moreover, we have that b(S) > v(S)
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except for ?Eg(t?) and t € {2,4,5}. Assume that S = 2Fg(¢?) and t € {2,4,5}. By
[ILS03, Theorem 8], a direct inspection shows that if H € M, (s)(S), then [H| < b(S).

Table 10.2: Values of () and m;(S) for some groups

S 7(S) m1(5)
"Eo(t*),k € {1,2} | 4log,(t)t*® | tia, tox
Er(t) 4 1ng(t)t30 £18> £14

Ex(t) 12 10gp(t)t56 f30> £24

Case S = Fy(t). By [ILS03, Theorem 8|, a direct inspection shows that if
H € My, 1,(S), then |H| < b(S).

Table 10.3: Classical groups, geometric case

S 76(9) %) S NORE
A | 57,31 (5,2) Ct) | 5,717 | (4,2)
31,127 (6,2) 57 1(3,2)

ty, t3 1=2 Dy(t) 57 |(4,2)

ti_,t, ti | (4,2),(10,2), (12, 2), 17,31 | (5,2)
(4,3),(6,3),(6,5) 7,11,17 | (6,2)

G | 7,11,13 (6,2) D | 7,17 (4,2

Case S a classical group. A maximal subgroup of S is either geometric or
a nearly simple group in the class S (see |[KL90| for a better explanation). The

geometric maximal subgroups of S are known (see [KL90]|). If S does not appear in



the Table 10.3, then let

mg(S)

\
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{10} if S = At),
{ta, i} if S =2A4(t),1 odd,
{topa, ta_o} if S =2A;(t),l even,
{to, 1;} if S = B(t),
{to, to_s, 1} it S = (1),
{to—2, to—a, 11} if S = Dy(t),
{to, tor_s} if S'=2D(t).

By Subsection 3.3.1 (also see [KL90]), if H € M, ), then H is not a geometric

maximal subgroup.
By [CCNT85|, we have that if S = A5(2) or 2A3(2?), then the class S is empty, so

we let m5(S5) = @.

Table 10.4: Classical groups, class &
S 775(5) (la t) S WS(S) (la t)
Al(t) tir1, 4 (2,4), (5,t), Cl(t) ty,to [ e {2,3},t > 2 even
(7,2),(17,3), (19, 2) D (3,2)
and (3,2%),k > 2 5,13 (3,3)
19,127 (8,2) 31 (3,5)
13 (3,3) 7,17 (4,2)
73 (97 2) EZI—Z (57 2)7 (97 2)
89 (11,2) 17 (6,2)
131071 (17,2) 19,41 (10,2)
2A,(t%) 7,13 (3,5) Dy(t) tor—4 (4,2),(4,5),(6,2),(10,2)
43 (8,2) 13,5 (4,3)
17 (9,2) 127 (7,2)
Bi(t) | tu,ta_s (9,3), te, s l=4,t¢1{2,3,5}
(3,t) with t >5 || 2Dy(t?) | to, tor_o (9,2),(9,3), (10,2)
ty,ts3 (3,3),(3,5) 17 (5,2),(6,2)
0,17 (4,2)
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If S is not in the Table 10.4, then let

({1} if S = A1),
{ty} if S =2A;(t?),1 odd, or S € {By(t), Ci(t),2Dy(t*)},
ms(S) = )
{toria} if S =2A,(t?),1 even,
L {1?21_2} lf S - Dl(t)

Using [CCN*85] for S € {C5(2), D4(2)} and Subsection 3.3.1 in the other cases, we
have that if H € M, ), then H is not a maximal subgroup in the class S of S.
SO, if W(S) = Wg(S) U 7T3(S), then Mw(s) =@. 0

10.1 The proof

We are ready to prove the main theorem.

Proof of Theorem 8.1. In order to prove the claim, we apply Lemma 2.13.

Assume that S = A3(2). Using |GAP], and applying Lemma 2.13 with 9 = {2}
and m = {5, 7}, we obtain the claim.

Assume that S = Ay(t) for somet =p =2"—1,u > 3. In this case X does not
contain a non-trivial graph automorphism. Let m; = n(t — 1) — {2}. Clearly, m is
not empty.

We claim that Pgslch( ) is irreducible. Note that we have P(mu{p })(s) = P)(g )S(s)
(see Section 3.2). Take h(s) = PGW;OC(G (s) and my = {p}. By Proposition 9.3 we
have that h(®)(s) = Pép 2OC(G)
|PY%(5)|s = |Slis, s0 using Theorem 1.3, we get [A®)(s)];, = [PL ()]s = [S]2.
Now, we have that |S|;, > 7. In fact, otherwise we get that t* + ¢ + 1 divides 21, a
contradiction. By [Mit11], we have that Py’ (mY7m2) () = 1, hence h(™)(s) = 1. Applying

(s) is irreducible. Let m = {#3}. It is easy to see that

Lemma 2.13, we obtain the claim.

Now, we claim that ‘PC(;Tsloc ()¢ = [S]7. In order to show this, it is enough to
prove that ai(X,S) # 0 where k = % Let H be a subgroup of X such that
HS = X, H is intersection of maximal subgroups of X and |X : H| = k. By [KL90]
and [Mit11], if M is a maximal subgroup of X such that MS = X and |X : M| is a
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71 number, then | X : M| =k or M NS is a parabolic subgroup of S. It is easy to see
that the index of the intersection of two distinct parabolic subgroups (not necessarily
containing the same Borel subgroup) of S can not be k. Thus H must be a maximal
subgroup of X, hence ax(X,S) # 0.

Finally, we claim that Pg scq)(s) is irreducible. Take h(s) = Pg soc()(s). As we
have seen above, h(™)(s) is irreducible. Let 7 = {p,t3}. As before, we have that
|R™)(s)|, = |S|* for each v € m. Moreover, by Section 3.2, we have that h(™(s) = 1.
Thus, applying Lemma 2.13, we obtain the claim.

Assume that S % A3(2) and S % As(p) for each p = 2" —1,u > 3. We verify that
the conditions of Lemma 2.13 are fulfilled. Take h(s) = Pgsoc(c)(s) and my = {p}.
By Proposition 9.3 we have that PG iOC(G)(S) is irreducible. As in Proposition 10.1,
let B be a Borel subgroup of S and let 7 = 7(S) — 7(B). By Proposition 3.10 and
Theorem 1.3, we get that |Pé,p soc() ()]0 = | ST} for each v € m. Moreover, by Theorem
1.3 and Proposition 10.1, we have that Pgs)oc(G)(s) = P)(:)S(n(s —1)+1) =1. So we
can apply Lemma 2.13. [

10.2 Proof in some other cases

Using a slightly different strategy, Theorem 8.1 can be proved also for some S of low

rank. For example, we have the following.

Proposition 10.2. Let G be a monolithic primitive group with a simple component
isomorphic to S = ?Ay(t?) and assume that there exists a prime divisor of t+1 greater

than 3. We have that Pg socc) () 1 irreducible.

We recall that |[S| = i 1)(5:;11) 3(;2_”1). Let p be the characteristic of S. Let

t = p/ for some f € N, f > 1. Let r be the greatest prime divisor of ¢ + 1 greater

than 3. Recall that S = PSU(V'), where V is a vector space of dimension 3 over Fy,
endowed with a unitary form. Suppose that M is a maximal subgroup of X such
that MS = X and |X : M|, = 1. By [Mitll] and [Har26|, we have that M N S is

isomorphic to one of the following groups:
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e Stabg(v), a stabilizer of a non-degenerate vector v € V. This group has order
tt+1)(t* —1)/0.

° C(t+1)2/5.53.
Let r; = t5. Note that:

(1) If M is a maximal subgroup of X such that MS = X and |X : M|, = 1, then
| X« My, =[S,

(2) If ax(X, S) # 0 and p divides k, then |k[, > t2.
(3) at2(t2_t+1)(X, S) 7'é 0.

(4) at3(t*1)g27t+1) (X,9) #0.

The first and the third statements are clear. We prove (2). Let K be a maximal
subgroup of X such that K.S = X. By [KL90|, [Mit11] and |[Har26|, if | X : K|, # 1,
then | X : K|, > t*. Moreover, if |X : K|, = 1, then K NS = B is a Borel subgroup
of S, i.e. the stabilizer of a totally singular vector of V. Assume that H is the
intersection of two distinct Borel subgroups, i.e. H = Stabg(v;) N Stabg(vy) for some
vi,v9 € V totally singular vectors. Note that (vy,vs) is non-degenerate, so H is
contained in Stabg({v1, v2)), a maximal subgroup of index *(t* — ¢t + 1). Thus (2) is
established.

In order to prove (4), we claim that if H € A ez i) (X, 5), then H is a
maximal subgroup of X isomorphic to C41y2/5.53. In fagt, let H NS be the inter-
section of two distinct maximal subgroups Stabg(v;) and Stabg(vs) for some v; and
ve non-degenerate vectors. If (vy,vy) is non-degenerate, then |H N S| = (H;)Q, hence
K & Asi a2 (X, 9) for each subgroup K of H. If (v, vs) is degenerate, then
there exists 067'é v € (v1,vy) such that v is totally singular. Thus HNS is contained in
the Borel subgroup Stabg(v), so ¢+1 divides | X : H|, hence H € A ;i 12141 (X, 5).

Now, let = ¥(ry), y = V(p) and D = Z[X(5)—{r, p}]- By the aboife considera-

tion, we have that:
\II(Pg,Zoc(G)(S)) =1- a(y)l,nm’
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where m € N — {0} and a(y) € D[y] is the following polynomial:

a(y) =b+ Zf iy
i=0

with b, ¢g, cny € D—{0} and ¢; € E fori € {2,...,nf —1}. We claim that PgiOC(G)(s)
is irreducible. For a contradiction, suppose that Pgioc(G)(s) is reducible. By Lemma
2.10, we have that a(y) or —a(y) is a non-trivial power in D|y|. Clearly this does not
happen since b, ¢y and ¢,y are not zero. Thus we have a contradiction and PC(;ioc(G) (s)
is irreducible.

Finally, we use Lemma 2.13. Let h(s) = Pgsoc()(5), o = {r} and 7 = {p,r}.

By Section 3.2, we have that h(™(s) = p

Gsoc(G)(S) = 1. Hence we are done. [



Chapter 11

On the irreducibility of the Dirichlet

polynomial of a simple group of Lie

type

In this section we deal with the case G = S a simple group of Lie type. Our aim is

to complete the proof of Theorem 8.2.

11.1 Preliminary results
We need some preliminary results.

Lemma 11.1. Let n,m be two positive integers and let p be a prime number. If
p" + 1 = mF for some integer k > 2, then n = 1 and p is a Mersenne prime or

(p’n7m7 k) = (2737372)

Proof. Assume that k > 1 and that (p,n,m, k) is a solution of p" + 1 = m*.

Suppose that n = 1. Thus p = m* — 1. Since m — 1 divides m* — 1, it must be
m = 2, so p is a Mersenne prime. Suppose that n > 1. Since p” = m* — 1, there is

no Zsigmondy prime for (m, k). By Lemma 2.6, we have two cases:
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e m = 2*—1 for some v and k = 2. In this case, we have that p" = 2vT1(2u=1 —1)

and this yields (p,n,m, k) = (2,3,3,2).
e m =2 and k = 6. In this case, 2¢ — 1 = 63 is not a power of a prime.
This concludes the proof. []

Lemma 11.2. Lett be a power of a prime number p. Assume that t+1 = |t + 1|o|t +

1l3. The number W is a non trivial power of an integer if and only if t = 17.

Proof. The result is clear for ¢ < 5. So we assume that ¢t > 5 and that w

is a non trivial power of an integer.

Suppose that |t + 1|3 = 1. Thus ¢ + 1 = 2* for some k > 3 and it turns out that
L;_l) must be a non-trivial power. Since 3 divides 2¥~' — 1 we have that k& — 1
is even. If % is odd, then 2°3" — 1 is a non-trivial power, otherwise 2% 4+ 1 is
a non-trivial power. Using Lemma 2.6, we get that k = 7, so t = 27T — 1 = 127.
However, for t = 127, the number W is not a non-trivial power.

Suppose that t + 1 = 3"2* for some h > 1,k > 1. First assume k = 1. We have

that ¢t +1 = 2-3". By Lemma 2.6, this yields t = p. So if w is a non-trivial
3h—1
‘3h—1|2

13" — 1], = 2! for some | € N. Since t > 5 then h > 2, hence 2!m? + 1 is divisible by 9.

power, it must be a cube. Hence we have that = m?3 for some m € N. Let
Now, the cubes modulo 9 are 0,1 and —1. Clearly m is not divisible by 3, so we have
2! = 41 (mod 9). This implies that 3 divides [, hence 3" — 1 is a cube. Using Lemma
2.6, we get that h = 2, so t = 17. Moreover, for t = 17, the number w is a
cube.

Second assume that k > 2. We get that 3"2¥~! — 1 is a non-trivial power. Using
Lemma 2.6, we get k = 1, against the assumptions.

Finally, suppose that k = 0. Thus ¢t = 3" — 1. Using Lemma 2.6, we get t = 8.

However, for ¢t = 8, the number W is not a non-trivial power. []

Proposition 11.3. Let S be a simple group of Lie type of characteristic p. The
Dirichlet polynomial Pép)(s) is reducible if and only if S = A1(p),p a Mersenne prime
or S = A(8).
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Proof. By Proposition 9.3, the result is true if the Lie rank of S is greater than
1. Assume that the Lie rank of S is 1, thus Ps(p)(s) = 1—a'"* for some a € N
(see Section 3.2). By [DL03a|, Theorem 3, we have that Pép)(O) = —|S|, = —p" for
some n € N — {0}. Thus p" + 1 = a. Suppose that Pép)(s) is reducible. By Lemma
2.10, the number p™ + 1 is a non-trivial power of an integer. By Lemma 11.1, we
have that either p is a Mersenne prime and n = 1, or (p,n) = (2,3). This implies
that S = A;(p) where p is a Mersenne prime, or S = A;(8). Clearly, we have that
Pfﬁ)(p)(s) = 1—2v0=9) for a Mersenne prime p = 2% —1 and Pfl)(g)(s) = 1—9'"% which
are reducible polynomials. []

11.2 Proof of Theorem 8.2

Now we can complete the proof of Theorem 8.2.

Proof of Theorem 8.2. Here we deal with the cases which were not considered in
Theorem 8.1 and Proposition 10.2. The result is already known for S = A;(t), 2By (#?)
and %Gy (t?) (see |Pat09c|). Moreover, using [GAP], we obtain the claim for S iso-
morphic to one of the following groups: Ay(3), 2A5(3) = Cy(3), 2A45(5), 2A3(2) and
2A4(2).

We want to apply Lemma 2.13, so we let h(s) = Ps(s). Let myp = {p}. By
Proposition 11.3, the polynomial h(™)(s) = Pép )(s) is irreducible. We want to find a
set of prime numbers 7 such that for each r € 7 we have |h(™)(s)|, = |S|,. Finally,
we prove that (h(s), h(™)(s)) = 1. The rest of the proof is divided in three cases.

Assume that S = 2A5(2). Remind that |S| =2'"-35.5.7-11. Let 7 = {5,7,11}.
We claim that

(P (s)) = 1 — 3aad.

Let M be a maximal subgroup of S. By [CCNT85|, if |S : M|, = 1 for each r € ,
then M is isomorphic to My and there are 3 conjugacy classes of such subgroups.
Moreover, if M; and M, are two distinct maximal subgroups of S isomorphic to Ms,,

then there exists a prime number r € 7 such that | : M; N M|, = r. In fact, there
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is no maximal subgroup H of Ms, such that | My, : H|,. = 1 for each r € m. Thus we
obtain the claim.

Clearly h(™(s) = Pgr)(s) is irreducible. In order to apply Lemma 2.13, it remains
to show that (h(s), h(™(s)) = 1. For a contradiction, assume that (h(s), h(™(s)) # 1.
Since h(™(s) is irreducible, we have that (h(s), h(™(s)) = (™ (s), so h(s) = L™ (s) f(s)
for some f(s) € R'. Now, hP)(s) = h{mPH(s) fP)(5) = fP)(s). We have that:

[A(s)]s = [ (5)]5] £ (5)]s = [A17 () ]3| P (5) 5 = 3° > [S]:.

This is a contradiction, so we get (h(s), h(™(s)) = 1.
Assume that S = 2A5(t?) with t € {3,5} and t + 1 = |t + ]3|t + 1|3. We recall

that | S| = tg(t_l)(g;ll);()tQ_tJrl), where t = p/ for some f € N— {0}. Let

W:{ {7} ift=17,

{ts} otherwise.
Clearly |PP(s)l;, = |S]z,- We claim that

PSG)(S):I— <t (t_li)))(t"i_l) ) - .

In fact, by Lemma 2.7 and the assumptions, we have that |S|; > 7. Thus, by [Mit11]
and [Har26], if M is a maximal subgroup of S such that [S : M|; = 1, then M
is isomorphic to C2_,,,.3 and there is a unique conjugacy class of these subgroups.

(t+1,3)
Furthermore, if M; and M, are two distinct maximal subgroups of S both isomorphic

to C2 4, .3, then tg divides |S : My N M,|. Indeed, for a contradiction, suppose that

t+1,3)

|S @ My N My, = 1. Then M; N My contains a cyclic subgroup C' of order t5. Clearly

C is normal in M7 and Ms, so C' is normal in S, a contradiction. Thus we obtain the
claim.
Now, we claim that Pgr)(s) is irreducible. First, assume that ¢ # 17. For a

contradiction, assume that Pgr)(s) is reducible. Thus \II(PS(tG)(S)) =1 — ax3/ for

e ((t— 1)(t + 1)2)

3
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(note that p # 3 by hypothesis). By Lemma 2.10 we have that a or —a is a non-

B3 (t—1)(t+1)% . .. .
% i1s a non-trivial power 1n

trivial power of exponent that divides 3f, hence
Z. Since t + 1 = |t + 1]o|t 4+ 1|3, using Lemma 11.2 we have that ¢t = 17, against the
assumptions. So hl)(s) = PS(tG)(s) is irreducible. Now, let ¢t = 17. By [Mit11], if M
is a maximal subgroups of S such that |S : M|; = 1, then M is isomorphic to Cy;.3

or to PSLy(7). Hence |S : M|y7 = |S|17. Thus, we obtain
TP (s)) =1 — ad;(a + bas)

for some a,b € Z[xs, x3] —{0}. Hence, by Lemma 2.10, PS(7)(S) is irreducible.

In order to apply Lemma 2.13, it remains to show that (h(s), h™(s)) = 1. For
a contradiction, assume that (h(s),h(™(s)) # 1. Since h™(s) is irreducible, we
have that (h(s),h™(s)) = k™ (s), so h(s) = h'™(s)f(s) for some f(s) € R’. Now,
hP)(s) = h4mPD(5) f®)(s) = f®)(s). Let r be a prime divisor of ¢ + 1. We have that:

t— 1|t + 12

[B(s)lr = R (5)|o f(5)]r = [h ()], [P ()], > | 3] 41, [t =t + 1], > |S],

since |t + 1|, > 1. This is a contradiction, so we get (h(s), h(™(s)) = 1.

Assume that S = Cy(p) with p > 3 a Mersenne prime. We recall that |S| =
P (p=1)2(p+1)*(p*+1)
- :

Let 7 be the set of odd prime divisors of p* + 1. Clearly |Pép)(s)|r = | S|, for each
r € . Note that p, € 7.
We claim that

P{(s) =1- <p. 2(1’22— 1)>H+a <p4(p24— 1)2>H+b <p4(p22— 1)2>1_s+c (> -1)2)"",

for some a,b,c € 7Z. In fact, by Lemma 2.7 and the assumptions, we have that
|S]p, > 5. Thus, by [Mit13], if M is a maximal subgroup of S such that [S: M|, =1
for each r € 7, then M is isomorphic to PSLy(p?).2 and there is a unique conjugacy
class of these subgroups. Now, let M be a maximal subgroup of S isomorphic to
PSLy(¢%).2, and let H be the intersection of some subgroups conjugated to M. Assume
that IV is the subgroup of M of index 2. If H > N, then H = N, so H is normal
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in two distinct maximal subgroups, a contradiction. So H Z N, hence HN N is a
proper subgroup of N. Since the maximal subgroups of N = PSLy(p?) are known
(see [Hup67, p. 213|) and [p* + 1|5, > 5, we have that if [N : N N H|, = 1 for each
r € m, then N N H is isomorphic to the dihedral group D,2,; or to the cyclic group
(2., . This proves the claim.

2Novv, we claim that if g(s) € R is an irreducible factor of Pgr)(s), then |g(s)|2 >
p+ 1 =27 Let y = ¥(2'°*), D = Z[y] and let ¥ = ¥ ((M)) Note that

@ is not a non-trivial power of an integer (use Lemma 2.6 and the fact that p is

a Mersenne prime greater than 3). We have that
FOV) = W(P{(5) = 1 — 2 + 23" (a + bwy + cad)Y?

is a polynomial in D[Y]. By Corollary 2.12, since Y is not a non-trivial power in D,
we have that each irreducible factor of f(Y) in Z[X(s)] is an element of D[Y]. If
a=>b=c=0, then \If(Pgr)(s)) is clearly irreducible. Now, suppose that a # 0 or
b#0orc#0. Thus f(Y) is a polynomial of degree 2 in Y. In this case, it is easy
to see that the degree of the indeterminate x5 in an irreducible factor of f(Y') is at
least m.

In order to apply Lemma 2.13, it remains to show that (h(s),h™(s)) = 1. For
a contradiction, assume that (h(s),h™(s)) # 1. Let g(s) = (h(s),h™(s)) and
h(s) = g(s)f(s) for some f(s) € R'. Now, hP)(s) = g (s)fP)(s) = fP)(s), since
h(™UiPH (5) = 1 and g(s) divides h(™(s). We have that:

[1(s)l> = [g(s)[ol f(5)l2 = [p + 1o AP () |2 = 2|p + Lfa[p + 15 > |S],

since |p + 1|, > 2. This is a contradiction, so we get (h(s), h(™(s)) =1. O



Part 111

Recognition of the characteristic of a
simple group of Lie type from its

Probabilistic Zeta function.
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Chapter 12
Introduction

Let G be a simple group of Lie type. Because of the isomorphisms PSLy(4) = PSLy(5),
PSL,(7) = PSL3(2), PSLy(8) = 2G5(3), PSU4(2) = PSp,(3) and PSU3(3) = G5(2)
some groups have more than one characteristic. Let mg be the set of these char-
acteristics. We say that the characteristic of G is the prime number p € 7g such
that |G|, > |G|, for all r € mg. So, for example, we have that the characteristic of
PSLy(7) = PSL3(2) is 2.

The aim of this part is to prove the following theorem.

Theorem 12.1. Let G be a simple group and let H be a finite group. If Pg(s) =
Py (s), then H/Frat(H) = G.

As we can see from Theorem 1.11, in order to prove Theorem 12.1, it suffices to
recognize the characteristic of a group of Lie type from its Dirichlet polynomial. As in
[KLST90, Definition 3.1], if & > 1, then we say that a prime p is the dominant prime
in k if |k|, > |k|, for all prime numbers r. In particular, we say that p is the dominant
prime of G if p is the dominant prime in |G|. Note that if p is the characteristic of a
group of Lie type G, then p is the dominant prime of G (with few exception). In fact

we have the following.

Theorem 12.2 (|[KLST90, Theorem 3.3|). Let G be a simple group of Lie type and
let p be the characteristic of G. Then p is the dominant prime in |G| except in the

137

characteristic

dominant

prime



138

following cases:

e G =PSLy(p) and p is a Mersenne prime, p > 7. Here 2 is the dominant prime
and p # 2.

o G =PSLy(r—1) andr is a Fermat prime, r > 5. Here r is the dominant prime

and p # r.

If f(s) is a Dirichlet polynomial and |f(s)| > 1, then we say that a prime p is the
dominant prime of f(s) if |f(s)|, > |f(s)|, for all prime numbers r.

In most of cases, the dominant prime of G is also the dominant prime of Pg(s).
However, this is not true in general: for instance, if G = PSU3(3) = G2(2)’, then
|G| =2°-3%- 7 and |Pg(s)| = 22+ 3% - 7 (use |GAP]). So, for some cases, we need an

alternative strategy. We have the following result.

Theorem 12.3 (|[DL06, Theorem 3|). Let G be a simple group of Lie type of charac-
teristic p. Then |P((;p)(0)| = |G|,.

It turns out that if the dominant prime r of G is not the characteristic of GG, then
|Pg) (0)| is not a power of r (with at most six exceptions). In particular, we obtain

the following.

Theorem 12.4. Let G be a simple group of Lie type. Suppose that G is not isomor-
phic to one of the following groups: PSU;3(3), PSUs(2), PSp,(8), PSp,(9), PSps(3)
and PQF (3). Let 7 be the set of prime numbers r such that Pg)(O) is a power of r.
The characteristic of G is the prime number p € w such that |Pg(s)|, > |Pa(s)|. for

all prime numbers r € 7.

In order to prove our claim, we consider a classical group G of characteristic p and
we prove that a,(G) # 0 for some k € N such that |k, is large enough, i.e. sufficient
to prove that, with some exceptions, p is the dominant prime of Pg(s). The same

strategy is applied to the exceptional groups.



Chapter 13

The analysis for the classical groups

13.1 Some preliminary result

Here prove two useful lemmas.

Lemma 13.1. Let K be a finite group, let N be a subnormal subgroup of K and let
H be a subgroup of K. We have that |H||N| divides |K||H N N|.

Proof. We claim that |N H| divides |K|. Arguing by induction on the subnormal
defect, it suffices to prove that if N <L and L < K, then |NH| divides |LH]|. Clearly,

LH = | | NkH
kER
for some R C L such that the union is disjoint. Since N < L, if £k € L, then
NkH = kNH, so |[NH| = |kNH| = |NkH| for all k € L. Hence |LH| = |R||NH|
and we have the claim.
Now, since |H||N| = |[NH||H N N| and |[NH| divides |K|, we have that |H||N|
divides |K||H N N|. O

Corollary 13.2. Let K be a finite group and let Hy, Hy and H be three subgroups of
K. Assume that Hy is normal in Hy and Hy is subnormal in K. If Hi(HNHy) < H,,

then L = %THQ) is a proper subgroup of Hs/H; such that % divides | K||L|.
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Proof. Just apply Lemma 13.1, observing that |H‘EH‘2| divides ‘Hl(‘gnf?)' = }gggﬂ
O
Table 13.1: h(n,q) for a classical simple group G
| Case | G | Conditions | h(n,q)
2¢%(¢"=1)(g+1)
L2 | PSL4(q) q>4 . 7%
L3 | PSL,(q) n>6 e IS - 1)
n(q"+1)
q>Tiftn=3,
qg>3ifn=>5
T2 3
U2 | PSU4(q) q>4 %
3q.5 q5+1 qb_l
U3 | PSUg(q) q>3 I gt
2 . .
U1 | PSU.(9) n>8 S it V 0L Ul GO0
n?/d n/d i
S | PSpylg) | n>2,(nq) #(3,2) s I (™ - 1)

‘ O ‘ Pan+1(q) ‘ n>3 ( 7Q) 7& (373) ‘ qn2_3n+3(q2 _ 1)(qn 1 + 1) HZ | (q2z _ 1)
071 | PQj (q) >4 20+g 0 (g + 1) (" + D [T, (6™ — 1)
072 ] POJ(¢g) [¢<3n>5(ng#(52) ] 2¢ "¢ — V("> + DI (¢ — 1)
071 | Py (q) q>4 20 g (g — D"+ DT (6™ — 1)

_ nZ—5n+8(,2_1\2(,n—2 n i
0_2 PQ n(q) q S 37 n Z 57 (’fl, Q) % (57 2) 2 ((;_1712)) ((1 +1) Hi:lg(qz - 1)

In Table 13.1, we have that

-1
0
1

a4 =

-1
0
1

o_ =

if ¢ is odd and n is even,
if gn is odd,

if ¢ is even.

if ¢ is odd and n=t is even,

2

if ¢ is odd and nqz;l is odd,

if ¢ is even.
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and d is the smallest prime divisor of n.

Theorem 13.3. Let G and h(n,q) be as in Table 13.1, under the Conditions given
in Table 13.1. FEach subgroup of G of order h(n,q) is a maximal subgroup, except if
case L3 holds. In general, we have that a|c|/nmn,q)(G) # 0.

Proof. In this proof, we use the results of Subsection 3.3.1. In the cases L1, L2,
Ul, U2 and U3, it is easy to see that if a subgroup of G has order h(n,q), then it is
a maximal subgroup.

We introduce a notation. Given a group A and a positive rational number £k,
let M(A, k) be the set of representatives of the conjugacy classes of the maximal
subgroups of A whose order is divisible by k, i.e.

M(A, k) = {M e M(A) : % € z}

where M(A) is the set of representatives of the conjugacy classes of the maximal
subgroups of A. When we describe the elements of this set we write the type and the
class of each maximal subgroup (using the notation of [KL90|, Table 2.5 A-F).

First, we consider the case L3.
CAse L3: G =PSL,(¢q), n > 6.

We have that the elements of M(G, h(n,q)) are:
Mli Pl in Cl-
Mgl P2 in Cl.

Let H be a subgroup of G of order h(n,q). We claim that ug(H) = 2.

Let V be a vector space of dimension n over F,. Assume that V' = (ey,...,e,). We
may identify G = PSL,(¢) with PSL(V). A maximal subgroup of type P; in PSL(V)
is the group Stabg(W;) or Stabg (W), where W; is a subspace of V' of dimension i

and W is a complement of W; in V. Moreover Stabg yields a 1-1 correspondence

M(A, k)
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between the set of proper non-zero subspace of V' and the set of maximal subgroups
of GG in the class C;.

As we have seen above, we have that if H < M for a maximal subgroup M of G,
then M is of type P, i € {1,2}. Let K; = Stabg({e;)) and K; = Stabg((e;)*) for
Jj € {1,2}, J = Stabg({e1,e2)) and J* = Stabg({e1)* N (e2)*). Clearly, a maximal
subgroup of type P; is conjugate in G to K; or K7, and a maximal subgroup of type
P, is conjugate in G to J or J*. Since |H| = h(n,q), without loss of generality, we
may assume that = K; N Ky, N K N K; N JNJ* In particular, we have that the
set of maximal subgroups of G which contain H is My = {K;, Ky, K{, K3, J, J*}.
Set Y ={Y C My :(\yey M = H}. By [Sta97, Corollary 3.9.4], we have that

pe(H) = Z(—l)m-

Yey

An easy computation shows that pug(H) = 2. This completes the proof of Case L3.

Now, we deal with the remaining cases. We want to show that if a H is a subgroup
of G and |H| = h(n,q), then H is a maximal subgroup. The structure of the proof
is almost the same in all the cases. We find the elements of M (G, h(n,q)) (using the
results of Subsection 3.3.1) and we denote them by My, ..., My, for some k& € N. The
first element (M;) is a maximal subgroup such that |My| = h(n, q). The order of the
other elements of M(G, h(n,q)) is different from h(n,q) (except in case S, n = 2).

Let M € M(G, h(n,q)) such that |M| # |My|. We claim that

(t) the group M does not properly contain H.

We argue by contradiction, so we assume that H < M.

There exists a simple group S = Hy/H; where H; and H, are two subgroups of
M such that H; < Hy and the group H, is subnormal in M. Here |S| does not divide
h(n,q), hence Hy(H N Hy) < Hy. We let W' (n,q) = %h(n, q), we find the elements
of M(S, 1 (n,q)) and we denote them by Ny, ..., N;.

We claim that M(S,h'(n,q)) # @. Since H < M and H,(H N Hy) < Hs, by

Corollary 13.2 with K = M, we have that there exists a (maximal) subgroup N of
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S such that |H||S| = |M|W/(n,q) divides |M||N], i.e. the ratio - is an integer

w7 (m,
number. So we have that M(S,h'(n,q)) # &, in particular N € /\(/l(q;, R(n,q)). As
before, there exists a simple group T' = H, / H, where H; and H, are two subgroups
of N such that H; < H, and the group H, is subnormal in N. Again, |T'| does not
divide h(n,q). We let h"(n,q) = %h’(n,q), we find the elements of M(T', h"(n,q))
and we denote them by Ly, ..., L,,.

Let H = %?Hz), which is a subgroup of S. By Corollary 13.2, the number h,'g]q)
is an integer, hence we may assume that H < N (clearly H # N since |T'| does not
divide h(n,q).) We claim that M(T, h"(n,q)) # @. Since H < N, by Corollary 13.2,
there exists a (maximal) subgroup L of T such that |H||T| divides |N||L| (note that
H,(H N Hy) < H, since |T| does not divide h(n,q)). Hence the ratio % is an
integer number. This contradicts M(T,h"(n,q)) = @ and we obtain the claim. So,
we have M(T,h"(n,q)) # &, in particular L € M(T,h"(n,q)). There exists a simple

group U = ffg/ﬁl where f[l and fIQ are two subgroups of L such that ffl < fIQ and

the group H, is subnormal in L. Moreover, |U| does not divide h(n,q). We define

W (n.q) = fh" (1, q).

Let H = %?HQ), which is a subgroup of 7. By Corollary 13.2, the number
% is an integer, hence we may assume that H < L (clearly H # L since |U]
does not divide h(n, q).) By Corollary 13.2, there exists a subgroup Y of U such that
|H||U| divides |L||Y| (note that Hy(H N H,) < Hy since |U] does not divide h(n, q)).
Hence the ratio % is an integer number, so M(U, h"(n,q)) # @.

However, in our analysis we prove that at least one of the sets M(S,h'(n,q)),
M(T, W' (n,q)) and M(U,h"(n,q)) is empty, hence we have a contradiction and ()
holds. We conclude that a subgroup of G of order h(n,q) is a maximal subgroup
isomorphic to Mj.

EXAMPLE. Let G = PQ{;(2). By [CCNT85|, the maximal subgroups of G are
known. We want to prove that if H is a subgroup of G and h = |H| = 3110400, then

H is a maximal subgroup. The elements of M(G, h) are:

My: O (2) x Og(2) in Cy. Here |My| = h.
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M;i: Spg(2) in Cy. We have that M; = PSpg(2) and we let S = PSpg(2), A’ = h. Note
that |S| does not divide h. By [CCN*85], the maximal subgroups of PSpg(2)

are known, so the unique element of M(S, 1) is:

Ni: Of (2) in Cg. We have that N} = PQg(2) : 2, we let T = PQZ(2) and
h" = h'/2. Note that |T'| does not divide h. By [CCN*85], the maximal
subgroups of Py (2) are known and we have that M(T,h") = @. By
Corollary 13.2, since M(T,h") = @, we have that M; = S does not

contain a subgroup of order h.

Msy: P;in C;. We have that My = 28 : PQJ (2) and we let S = PQyg (2), so b/ = h/28.
Note that |S| does not divide h. By [CCN*85|, the maximal subgroups of
PQF(2) are known and we have that M(S,h') = @. By Corollary 13.2, since
M(S, i) = &, we have that M, does not contain a subgroup of order h.

So the claim is proved.

Case U4: G =PSU,(q), n > 8.

The elements of M(G, h(n,q)) are:
M(]Z GUg((]) 1 GUn_g(Q) in Cl.

M;i: GUy(q) L GU,_1(q) in C;. Here S = PSU,,_1(q) and we have that the unique
element of M(S, k' (n,q)) is:

Ni: GUy(q) L GU,_5(q) in C;. Here T = PSU, _5(q) and we have that
M(T, 1" (n,q)) = 2.

Ms: GUsy(q) L GU,,—2(q) in C;. Here S = PSU,,_5(q) and we have that M(S, h/(n, q))
J.

Ms: Py in Cy. Here S = PSU,,_5(q) and we have that M(S, ' (n,q)) = @.
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CASE S: G = PSpy,(q), n > 2, (n,q) # (3,2).
The elements of M(G, h(n,q)) are:

M(]Z Sp2n/d(qd) in Cg.

M: Os,(q),q even in Cg. If n = 2, then M; = M. Assume that n > 3. In this case
S =PQ,, (¢) and we have that M(S,h'(n,q)) = &.

Msy: G5(q) in S, g even and n = 3. Here S = G5(¢) and we have that M(S, h/(n, q)) =
@ (see [Kle88al).

CASE O: G = PQyy,11(q), n >3, (n,q) # (3,3).

The elements of M(G, h(n,q)) are:
Mo: Os3(q) L Og,_5(q) in Cy.
M,: Py in Cy, n > 4. Here S = PQy,_1(q) and we have that M(S,h/(n,q)) = @.

My: Oy,_1(q) L O3 (q) inC;. Here S = PQy,_1(q) and we have that M(S, k'(n, q)) =
J.

Ms: O1(q) L OF,(q) in C;. Here S = PQF (¢) (note that if n = 3, then S = PSLy(q)

or PSU,4(q)) and the elements of M(S,h'(n,q)) are:

w

Ni: O1(q) L Og,-1(q) in C;. Here T = PQy,_1(q) (note that if n = 3, then
T = PSp,(q)) and we have that M(T,h"(n,q)) = @.

Ny: PQ;(q) in S, n = 4. Here S = PQ;(q) and we have that M(T, h"(n,q)) =
J.

Case OF1: G=PQJ (¢),n >4, ¢ > 4.

The elements of M(G, h(n,q)) are:
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My: O3 (q) L Oy, 5(q) in Cy.

M;i: O1(q) L Oz,-1(q), in C;, ¢ odd. Here S = Py, 1(¢) and we have that
M(S, b (n,q)) = @.

Ms: Spy,_5(q)in Cy, g even. Here S = PSp,,,_,(q) and we have that M(S,h/(n,q)) =
.

CASE 0°2, £ € {+,—}: G =P, (a), n =5, q <3, (n.0) # (5,2), .

The elements of M(G, h(n,q)) are:
Mo: O5"(q) L Oz,_4(q) in Cy.
M,: Py in Cy. Here S = P, _,(q) and the elements of M(S, k' (n,q)) are:
Ni: O1(3) L O9,-3(3) in C1, ¢ = 3. Here T' = Py, 3(3) and we have that
M(T,h'(n,3)) = 2.
Ny: Spy,_4(2)inCy, ¢ = 2. Here S = PSp,,,_,(2) and we have that M(T, h"(n,2)) =

<.

My: O1(3) L Os,-1(3), in C;, ¢ = 3. Here S = Py, 1(3) and the elements of
M(S,h'(n,q)) are:
Ni: Py in Cy. Here T = Py, _5(3) and that M(T,h"(n,3)) = @.

Ny: O01(3) L OF,_,(3) in C;. Here T = PQZ,_,(3) and we have that the unique
element of M(T,h"(n,q)) is:
Li: O1(3) L O9,-3(3) in C;. Here U = PQy,_3(3) and we have that
MU, " (n,3)) = 2.

N3: Og,_3(3) L OF(3) in C;. Here T' = Py, _3(3) and that M(T, h"(n,3)) =
.
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Ms: O3(3) L Og,-3(3), in C;, ¢ = 3. Here S = PQy, 3(3) and we have that
M(S, W (n,q) = 2.

My: Oy (q) L O 5(q),inCy. Here S = PQ,, ,(q) and the elements of M(S, 1/ (n, q))

are:

Ni: O1(3) L O9,-3(3) in C1, ¢ = 3. Here T' = Py, 3(3) and we have that
M(T,h"(n,3)) = 2.

Ny: Spy,_4(2)inCy, ¢ = 2. Here T' = PSp,,,_,(2) and we have that M(T, h"(n,2)) =

<.

Ms: Sps,,_5(2) in Cy, ¢ = 2. Here S = PSp,,,_5(2) and the elements of M (S, h'(n,q))
are:
Ni: Py in C;. Here T' = PSp,,,_4(2) and we have that M(T,h"(n,3)) = @.

Ns: Spy(2) L Spy,_4(2)inCy. Here S = PSp,,,_,(2) and we have that M (T, h"(n,2)) =
J.

Ns: Of ,(2) in C;. Here S = PQ3, ,(2). Assume that S = PQJ, ,(2). The
unique element of M(S,h/(n,q)) is:

Ly: Spy,_4(2) in Cy, ¢ = 2. Here U = PSp,,_4(2) and we have that
MU, h"(n,2)) = @.

Assume that S = PQj, ,(2). The unique element of M(S,h/(n,q)) is:

Ly: Spy,_4(2) in Cy, ¢ = 2. Here U = PSp,,_4(2) and we have that
MU, h"(n,2)) = @.
CaseE O71: G=PQ,,(¢),n >4, ¢>4.

The elements of M(G, h(n,q)) are:

My: O3 (q) L O3,_5(q) in Cy.
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Py in Cy. Here S = P, (q) and we have that M(S, ' (n,q)) = @.

0O1(q) L O9,1(q) in Cy, q odd. Here S = Py, 1(q) and we have that
M(S, W (n,q) = 2.

SPon_2(q) in C1, ¢ even. Here S = PSp,,,_5(¢) and we have that M(S,h'(n,q)) =
J.

PQ:(q) in S, n = 4. Here S = PQ;(q) and we have that M(S, ' (n,q)) = @.

: PSpg(q) in S, n = 4. Here S = PSpg(¢) and we have that M (S, h'(n,q)) = 2.

13.2 Recognition of the characteristic of a Classical

group

Recall the definition of the characteristic of G given in the introduction (p.137). In
particular note that the characteristic of PSLy(7) and PSU3(3) is 2, the characteristic
of PSLy(8) and PSU4(2) is 3 and the characteristic of PSLy(4) is 5.

Proposition 13.4. Let G be a classical simple group of characteristic p, let r be a

prime number different from p and assume that the following cases do not occur:

G = PSLy(q), ¢ > 7 Mersenne prime and r = 2;
G = PSLs(q), ¢ + 1 Fermat prime andr = q+ 1;
G = PSU,(q), (n,q,7) € {(3,3,3),(6,2,3)};

G = PSpg(3) and r = 2;

G = PSp4(q), q Fermat prime and r = 2;

G = PSp,(9) and r = 2;
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G =PSp,(q), g > 5, ¢ — 1 Mersenne prime and r = q — 1;

G = PSp,(q), g > 5, ¢ Mersenne prime and r = 2;

G =PSp,(q), ¢ > 5, ¢+ 1 Fermat prime and r = q+ 1;

G = PSp,(8) and r = 3;

G =PSp,(q), ¢ > 5, ¢> + 1 Fermat prime and r = ¢* + 1;

o G=PQI(?2) and r = 3.
Then |Pg(s)|, > |G|r > |Pa(s)]y-

Proof. Let G = PSLa(q). By [Pat09c, Section 7|, we have that |Ps(s)|, = ¢. Thus
the result holds.

Assume that G # PSLy(q). Using [GAP] we get Table 13.3. Moreover, Table 13.4
is obtained from Theorem 13.3 and Table 13.3. Using [CCN*85] and arguing as in
the proof of Theorem 13.3, we have that:

b a28431(PQ7(3)) # 0, so |PPQ7(3)|3 > 373

o an20(PQ(2)) # 0, 50 [Ppgr(z)l2 > 27

o a24195(PQ5 (2)) # 0, 50 [ Ppgz)l2 > 27;

o ags52816 (P (3)) # 0, 50 |Ppgt 5|5 = 3%

o asiso07(PQg (3)) # 0, 50 [Ppg- (5|5 = 37

o arsssor2(PQ(2)) # 0, 50 | Ppgt (9 (8)]2 > 21
o a101113(PQ1y(2)) # 0, 50 [Ppg ) (5)]2 = 2.

Comparing Table 13.3 and Table 13.4 with Table 13.2 we obtain the claim. Note that
Table 13.2 is obtained using Lemma 2.9. [J
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Table 13.2: r-part of the order of a classical simple group G, for a prime divisor r of
the order of G, r # p.

| G | | conditions | |G| |6(G)], |
PSL,(q) 2 t=1,|g =12 > |g+ 1|2 lq — 157 n!];
F=1lg—1] < lq+ 1] 2l g + 11kt
#2 t=1 g — 1| |nl],
o1 A
PQyi1(g) and | 2 t=1lg—1>|g+1|> 2"[q — 1[3|nl[2
42 t odd ¢t = 115 (20
t =2ty to > 1 |qt0—|—1|[to]|{ M
PQ5,(q) 2 t=1,l¢g— 1z > lg+ 1]z 2" g — 1[5 |nl];
t=1,|qg—1]2 <|g+ 1|2 2 g + 1)%|n!|2
#2 t odd gt — 1L [2]u,
t=2ty, to > 17t|n ‘qto + 1"”% ‘ [to] ‘
t =2y, to>1,t4n gt + 1\,[W]| ["t——ol 1|,
PSUMg) | 2 | t=Llg—1b>lg+1h | 2g— 18] [2]1
t=10g—1o<lg+1 | 20|+ 1Y 2],
# 2 t odd or t = 4t |qt—1|7[§]| (2],
t=2 g+ 17 nl],
t = 2ty, tp > 3 odd |qto+1|[5]| ﬂ |,
Py, (9) 2 t=11]¢g— 12> |g+1]s 2"q — 157 (n — 1),
t=1,]¢g— 1]z < |g+ 1|a, n even | 2"|q + 157 |(n — 2)!|
tzl, |q—1\2<\q+1\2,nodd 2"~ 1‘q+1‘ \(n—l)'b
# 2 t odd ¢t 1|[ ]|[ L1,
=tz il |l T 2],
t = 2to, tOzlatTn |qt0+1|7[$]| [%-‘wr




Table 13.3: Some values of |Pg(s)|,

| G [ [Pa(s)l | G | [Pe(s)], ]
PSL(3) 33 PSUs(5) 5
PSL3(4) 23 PSp,(3) = PSU4(2) 34
PSL4(2) 26 PSU4(3) 3¢
PSL4(3) 36 PSU5(2) 210
G2(2)/ = PSU3(3) 22 PSp6(2) 29
PSUs(4) 2° | PSpy(a).ge {345} ¢
Table 13.4: Lower bounds for | Ps(s)],
G | Conditions | lower bound for [Pg(s)], |
n(n—1)
PSL,(q) n € {3,5} o
n=4 “211
n Z 6 q2n—3
n(n—1)
PSU,(q) n € {3,5,7} Z \n§|p
_ q
n=4 2]
n=0,q#2 BB
n > 8 q3n—9
7L2(d71)
PSp,,,(q) d smallest prime g | d(lip
divisor of n
PQZn-l-l (q) (n7 q) 7& (37 3) q:jn_j
PQ5,(a), q>4 o
PO, (a) [4<3,n>5(g,n) #(2,5) T
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Proposition 13.5. Let G = PSp,(q) and assume that ¢ > 7. Moreover, let r # p be

a prime number.

_ (*-1)(¢*+2)

(1) Let q = p be a Mersenne prime or a Fermat prime. Then Pg)(O) = 5

or |Pg(s)|, > q*. In the latter case, |Pa(s)|, > |G,

(2) Let q+1 be a Fermat prime. Then Péqﬂ)(()) = —(¢*+q¢*>—1) or|Pg(s)|2 > ¢*/4.
In the latter case, |Pg(s)|2 > |G|,

(3) Let ¢* + 1 be a Fermat prime. Then Péq2+1)(()) =—(¢*—¢*—=1) or |Pg(s)]y >
q*/4. In the latter case, |Pa(s)|a > |G,

(4) Let ¢ — 1 be a Mersenne prime. Then Péq_l)(O) is even.
Proof. By [Mit14| and [KL82|, the maximal subgroups of G are known. Let
A.(G)={H<G:|G:H|, =1,uc(H) # 0}

and

M, (G)={H € A,(G) : H is maximal in G}.

(1) It M € M5(G), i.e. M is a maximal subgroup of G such that |G : M|y = 1,
then M is conjugated to a maximal subgroup of type SLy(q) .S in the class Cs,

We claim that if H € Ay(G) — Ms(G), then |G : H|, > ¢*. Assume that H €
As(G) — My(G). Then H is a proper subgroup of M such that [M : H|y = 1.
Let K = PSLy(q) x PSLy(q) < M, K = K; x Ky with K7 = K, = PSLy(q)
and Ky, Ky < K. Clearly, HN K is a proper subgroup of K. Without loss
of generality, we may assume that H N K; < Kj. Since |M : H|y, = 1, then
|Ky : HN K| =1, hence H N K, is a subgroup of odd index of PSLsy(q) (the
subgroups of PSLy(¢q) are well known, see [Hup67]). In particular, we have that
|K, : HN K|, > q, hence also |M : H|, > g, thus |G : H|, > ¢*.
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Assume that |Pg(s)|, < ¢*. Then also |Pé2)(s)|p < ¢*, hence if a;(G) # 0 and
k > 1is odd, then |k|, < ¢ and so k is the index of a maximal subgroup, as we
have seen above. So we have that

PP(s)=1— (M)l—s

and the proof is finished.

If M € My11(G), i.e. M is a maximal subgroup of G such that |G : M|,11 =1,
then M is conjugated to a maximal subgroup of type SLy(¢) .53 in the class Cy
or M is conjugated to a maximal subgroup of type O (¢) in the class Cg. In

both cases, M = PSLy(q) x PSLy(q).2.2.

We claim that if H € Ay1(G) — My11(G), then |G : H|y > ¢*/2. Let K, K,
and Ky be as in (1). Note that H N K < K. In fact, if H contains K, then H
is normal in M. Since pug(H) # 0, then H is intersection of maximal subgroups
isomorphic to M. Now, H is normal in each of these subgroups, a contradiction
(G is simple). So HN K < K. Without loss of generality, we may assume that
HNK, < K. Since |M : H|;41 =1, then |K; : HN K441 = 1. The subgroups
of PSLy(q) are well known, so we have that |K; : H N Ky|s > ¢/2, hence also
|M : H|y > q/2, thus |G : H|y > ¢3/4.

Assume that |Pg(s)|s < ¢3/4. Arguing as in (1), we have that
2052 4 1 1—s
Péq+1)(8):1—2<q (q2+ ))

and the proof is complete.

If M € Mpi1(G),ie. M is amaximal subgroup of G such that |G : M|z =1,
then M is conjugated to a maximal subgroup of type SLy(¢?) in the class Cs or

M is conjugated to a maximal subgroup of type Oy (¢) in the class Cg. In both
cases, M = PSLy(q?).2.

We claim that if H € Az, 1(G) — Mp241(G), then |G : H|, > ¢*/2. Assume
that H € Ap241(G) — M241(G). Then H is a proper subgroup of M such that
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|M : H|;241 = 1. Note that H N PSLy(q¢?) is a proper subgroup of PSLy(¢?). In
fact, if H contains PSLy(¢?), then H is normal in M. Since pug(H) # 0, then H
is intersection of maximal subgroups isomorphic to M. Now, H is normal in each
of these subgroups, a contradiction (G is simple). So H NPSLy(¢?) < PSLa(q?).
Since |M : H| 241 = 1, then |PSLy(¢?) : H N PSL2(¢?)|,241 = 1. The subgroups
of PSLy(q) are well known, so we have that |PSLy(¢?) : H N PSLa(¢%)]2 > ¢%/2,
hence also |M : H|y > ¢*/2, thus |G : H|, > ¢*/4.

Assume that |Pg(s)]2 < ¢*/4. Arguing as in (1), we have that

2 2_1 1-s
Péq2+1)(s>:1_2(q (C]2 ))

and we are done.

(4) By [DLO06], Theorem 3, we know that |Pé2)(0)| = |G|s. Moreover, if H €
As(G), then H contains the Borel subgroup of G (since H is an intersection of
parabolic maximal subgroups of GG). Now, the index of the Borel subgroup of
G is (¢*+1)(g+1)?, hence it is not divisible by ¢ — 1. Thus Ay(G) C A,_1(G),
hence

CRIORY IO S

keN,k even

By Lemma 2.3, we have that k divides ax(G), hence we conclude that P((;q_l)(())

is even. U

Theorem 13.6. Let G be a classical simple group and assume that G is not isomor-
phic to one of the following group: PSUs(3), PSUg(2), PSp,(8), PSp,(9), PSps(3)
and PQ (2). Let pr be the set of prime numbers v such that Pg)(()) is a power of r.
The characteristic of G is the prime p € 7 such that |Pg(s)|, > |Pa(s)|, for allr € m.

Proof. By Theorem 12.3, we have that p € 7. If G is not isomorphic to one of the
group listed in the statement of Proposition 13.4, the result is clear.

Assume that G = PSLy(q). By [Pat09¢, Proposition 8|, we have that if ¢ ¢
{4,5,7,8,9}, then Pg)(O) is a power of r if and only if r = p, hence 7 = {p}.
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Clearly, the claim of the present theorem holds also if ¢ € {4,5,7,9} (remind that
PSLy(4) = PSLy(5) and PSLo(7) = PSL3(2), so these groups have 2 characteristics).

Assume that G = PSp,(¢q). By Proposition 13.4 and Proposition 13.5, the result
holds if ¢ € {8,9}. O



Chapter 14

Recognition of the characteristic of

an Exceptional group

In Table 14.1, we report the r-part of the order of the classical simple groups, when
r is a prime divisor of |G| and r is not p. To obtain Table 14.1 we used Lemma 2.9

(see it for the notation).

Proposition 14.1. Let G be an exceptional group of Lie type of characteristic p.
Then |Pg(s)|, > |G|r > |Pa(s)|, for all prime number r # p.

Proof. Let G and M be as in Table 14.2, under the given conditions. By [Suz62]
(for G = 2By(q)), |Kle88a| (for G = 2Go(q)), |LS86, Table 1] (for G = 3Dy(q),
Es(q), 2Es(q), FE:(q), Es(q) or Fy(q)), [Mal9l] (for G = 2Fy(q)) and [CCNT85] (for
G = G3(3), 3D4(2) or 2F4(2)") we have that if a subgroup H of G is isomorphic to
M, then H is a maximal subgroup of G. Hence a¢.((G) # 0, and we obtain a lower
bound for |Pg(s)|,, as described in Table 14.2. A direct computation, using Table
14.1, proves the claim. [
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Table 14.1: Exceptional groups of Lie type

G r t v (GO(G))
Es(q) 2 1I,ht > h~ 4h +9
1L,ht <h™ 6h + 7
# 2 1 6h + 4v,(3) + v.(5)
2 4h + 2v,(3)
3 3h
4,6 2h
5,8,9,12 h
E-(q) 2 1 7h + 10
# 2 1,2 Th + 4v,(3) 4+ v, (5) + v,(7)
3,6 3h
4 2h
0,7,8,9,10,12,14,18 h
Es(q) 2 1 8h+ 14
# 2 1,2 8h + 5v,(3) + 2v,(5) + v,.(7)
3,4 4h 4 v,(5)
6 4h
5,8,10,12 2h
7,9,14,15, 20, 24, 30 h
Fi(q) 2 1 4h+7
# 2 1,2 4h + 2v,(3)
3,4,6 2h
8,12 h
G(q) 2 1 2h + 2
£ 2 1,2 2h + v,(3)
3,6 h
jgg(g 7é22 114 2hh 2
4(q +
3 1,2 2h +2
¢ {2,3} 1,2,3,6 2h
12 h
*Fe(q) 2 1,h= > h* 4h +9
1,h= < h* 6h +7
+ 2 1 4h + 2v,(3)
2 6h + 4v,(3) + v.(5)
3,4,6 2h
8,10,12,18 h
Fi(q) | #2 I oh
2 2h + v,.(3)
4,6,12 h
2G,(q) 2 1 h+1
£ 2 1,2,6 h
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Table 14.2:
| G | Conditions | M | Lower bound for [Pg(s)], |

232((1) Cq+\/ﬁ+1 x Cy q2/2
3D4(2) (07 X PSLQ(?))2 28
"Da(q) ¢=3 Ga(q) ¢
Eg(q) Fu(q) q"
*Es(q) (PQy,(q) q‘fllg )(q+1,4) q"
Ex(q) (CEs(q) o gig)-(a+1,3).2 ¢
Es(q) (SLa(g) © E?( )) (¢—1,2) g
Fi(q) AGE /18l
Fy(2) PSL3(3).2 26
“Fug) |g=2"" k> 1 Copvgy/mgraryzgrt 12 q”/4
G2(3) PSL,(13) 3°
Ga(q) ¢=4 SUs(q)-2 ¢*/12ly
*Ga(g) Corvazn @ Ci /3




Chapter 15
Proof of the main theorem

Theorem 15.1. Let G be a simple group of Lie type and let H be a finite group.
Assume that Py (s) = Pg(s). Then H/Frat(H) = G.

Proof. Without loss of generality, we assume that Frat(H) = 1.

First, we claim that H is a simple group. There are two ways to see that H is a
simple group. The first one is by [DL0O7b, Theorem 7|. The second one is the following:
we know that if G is a simple group of Lie type, then the Dirichlet polynomial Pg(s)
is reducible if and only if G = PSLy(p) with p = 2¢° — 1 and e = 3 (mod 4) (see
[Pat09al). Clearly, if Ps(s) irreducible, then G is simple (see, for example, [DLMO04,
Corollary 7]). Moreover, if G = PSLy(p) for some p = 2° — 1 and e = 3 (mod 4),
then H is simple by [DLMO04, Proposition 16|. Finally we have that H is not cyclic.
In fact, if H is cyclic, then Py (1) # 0 (since Py (1) is the probability that a randomly
chosen element of H generates H). But Ps(1) = 0, since G is non-abelian.

Second, we claim that H is a group of Lie type. By [DL04, Theorem 3|, if H is
an alternating group, then H = G. By |DL06, Theorem 11|, if H is a sporadic group,
then H = (G. By the classification of finite simple groups, we may assume that H is
a group of Lie type.

Now, we want to prove that if Ps(s) = Pg(s), then H and G have the same

characteristic. Let us consider some particular cases. For a group A let m(A) be the
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minimal index of a proper subgroup of A. Clearly a,(4)(A) # 0. Since Py (s) = Pa(s),
we have that m = m(G) = m(H). Assume that m = 28. By Table 15.1, we have that
{H,G} C {PSp4(2),PSU3(3),PSLy(27)} . Clearly H,G 2 Altog, since H and G are
groups of Lie type. Moreover, |PF(’2S)p6(2)(O)| = 2% (by Theorem 12.3), |P]E(’2S)U3(3)(0)| = 26
and |PI%)LQ(27)(0)‘ = 1288 (use [GAP]). Thus G = H. Assume that m is one of the
minimal indexes in Table 15.1 and m # 28. Since G and H are groups of Lie type,
we see that they have the same characteristic. Finally, assume that m is not one of
the values of Table 15.1. Let m be the set of prime numbers r such that Pg)(O) is a
power of r. By Theorem 12.3, if p is the characteristic of G, then p € 7. Moreover,
by Theorem 13.6 and Proposition 14.1, we have that the characteristic of G is the
prime p such that p € © and |Pg(s)|, > |Pa(s)|. for all r € 7. Thus we conclude that
H and G have the same characteristic.

In order to complete the proof, we apply Theorem 1.11: if G and H are simple
groups of Lie type defined over fields with the same characteristics and Pg(s) = Py(s),
then G = H. O

Table 15.1: Simple groups with a certain minimal index (obtained with [GAP| and
[DLO03a, Table 1])

Minimal index Groups
28 PSp6(2), PSU3(3), PSL2(27) and A1t28
120 PSpg(2), PQg (2), and Altyg
672 PSU6(2) and Alt672
585 PSp4(8), PSL4(8) and A1t585
820 PSP4(9), PSL4(9) and Altggo
3280 PSpS(B), PSLg(?)) and Altgggo
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