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ABSTRACT

In this thesis, we study three kinds of modules: cyclically presented modules in relation to factor-
ization of elements in a noncommutative integral domain, automorphism-invariant modules and
poor modules. First, we investigate projective covers of cyclically presented modules, character-
izing the rings over which every cyclically presented module has a projective cover. Such rings
R are Von Neumann regular modulo their Jacobson radical J(R) and their idempotents can be
lifted modulo J(R). Then we study the modules MR whose endomorphism ring E := End(MR)
is Von Neumann regular modulo J(E) and their idempotents lift modulo J(E). Next, the en-
domorphism rings of automorphism-invariant modules and their injective envelopes are investi-
gated. We consider some cases where automorphism-invariant modules are quasi-injective and a
connection between automorphism-invariant modules and boolean rings. Finally, we give some
necessary conditions for rings over which every non-zero cyclic module is poor.
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SOMMARIO

In questa tesi studiamo tre tipi di moduli: i moduli ciclicamente presentati in relazione alla fat-
torizzazione degli elementi di un dominio di integrità non commutativo, i moduli automorphism-
invariant e i moduli poveri. Innanzitutto studiamo i ricoprimenti proiettivi dei moduli ciclica-
mente presentati, caratterizzando gli anelli sui quali ogni modulo ciclicamente presentato ha un
ricoprimento proiettivo. Tali anelli R sono regolari alla Von Neumann modulo il loro radicale
di Jacobson J(R) e i loro idempotenti si sollevano modulo J(R). Poi studiamo i moduli MR

il cui anello degli endomorfismi E := End(MR) è regolare alla Von Neumann modulo J(R)
e i loro idempotenti si sollevano modulo J(R). Studiamo quindi gli anelli degli endomorfismi
dei moduli automorphism-invariant e i loro inviluppi iniettivi, consideriamo alcuni casi in cui i
moduli automorphism-invariant sono quasi-iniettivi ed una relazione tra i moduli automorphism-
invariant e gli anelli booleani. Infine diamo alcune condizioni necessarie per gli anelli sui quali
ogni modulo ciclico è povero.
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INTRODUCTION

In recent years, some new powerful techniques have been introduced in Module Theory which
can be conveniently subdivided as follows:

• the study of modules over arbitrary rings,

• the study of modules over special rings,

• the study of rings R by way of the category Mod-R, or subcategories of it.

The aim of this thesis is to study three kinds of modules: cyclically presented modules, automorphism-
invariant modules and poor modules. The organization of the thesis is given as follows.

In the first chapter of the thesis we review the background knowledge needed for studying
our targets that would appear in the rest three chapters.

In the first section of chapter two, we recall some properties of cyclically presented modules
over a local ring R. The material for this section is from the paper [AAF08]. The rest of this
chapter contains the material from my joint paper with Alberto Facchini and Daniel Smertnig
[FDT14]. We study some natural connections between cyclically presented R-modules, their
submodules, their projective covers and factorizations of elements in the ring R. That is, we
find some results on projective covers of cyclically presented modules and apply them to the
study of factorizations of elements in a ring. In this way, we are naturally led to the class of
2-firs. Recall that a ring R is a 2-fir if every right ideal of R generated by at most 2 elements
is free of unique rank. This condition is right/left symmetric, and a ring R is a 2-fir if and only
if it is a domain and the sum of any two principal right ideals with non-zero intersection is
again a principal right ideal [Coh85, Theorem 1.5.1]. P. M. Cohn investigated factorization of
elements in 2-firs, applying the Artin-Schreier Theorem and the Jordan-Hölder-Theorem to the
corresponding cyclically presented modules [Coh85]. One of the main ideas developed in this
chapter is to characterize the submodules of a cyclically presented module MR that, under a
suitable cyclic presentation πM : RR →MR, lift to principal right ideals of R that are generated
by a left cancellative element (Lemmas 2.2.2, 2.3.1 and 2.4.3). The key role is played by a class
of cyclically presented submodules of a cyclically presented module MR, which we call πM -exact
submodules of MR. We show (Theorem 2.3.8) that, for every cyclically presented right R-module
MR and every cyclic presentation πM : RR → MR with non-zero kernel, the set of all cyclically
presented πM -exact submodules is closed under finite sums if and only if R is a 2-fir. As we have
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said above, when sums and intersections of exact submodules are again exact submodules, we
can use the Artin-Schreier and the Jordan-Hölder Theorems to study factorizations of elements.
We also study the rings over which every cyclically presented module has a projective cover. We
characterize these rings as the rings R that are Von Neumann regular modulo their Jacobson
radical J(R) and in which idempotents can be lifted modulo J(R) (Theorem 2.4.1). Finally, in
the last Section, we consider the modules MR whose endomorphism rings E are Von Neumann
regular modulo the Jacobson radical J(E) and in which idempotents can be lifted modulo J(E).
In particular, this applies to the case in which the module MR in question is quasi-projective
(Lemma 2.5.3 and Proposition 2.5.5).

The third chapter is devoted to automorphism-invariant modules. We review some basic facts
of automorphism-invariant modules in section 3.1. The main result of section 3.2 is that every
automorphism-invariant module is the direct sum of a quasi-injective module and a square-
free module [ESS13, Theorem 3]. In section 3.3, automorphism-invariant modules are proved
to satisfy Condition (C2) and (C3) as well as satisfy Condition (C1) if and only if they are
quasi-injective. In the next section, we will see that automorphism-invariant modules have the
exchange property [AS13], so that indecomposable automorphism-invariant modules have a lo-
cal endomorphism ring. Moreover, idempotents can be lifted modulo every right ideal both in
End(M) and in End(E(M)) [Nic77]. The main theorem of section 3.2 leads us to study, for an
automorphism-invariant square-free module M , the relation between M being quasi-injective
and the existence of factors isomorphic to F2 in End(M) and in End(E(M)) in section 3.5.
Notice that if M is an automorphism-invariant right R-module and End(M) has no factor iso-
morphic to F2, then M is quasi-injective [AS14, Theorem 3]. In the last section, we study the
connection between automorphism-invariant modules and boolean rings. The existence of such
a connection was suggested to us by the results in Section 5 of [Vam05], where Vámos consid-
ers modules whose endomorphism ring (or endomorphism ring modulo the Jacobson radical)
is a boolean ring. He studies modules in which the identity endomorphism is the sum of two
automorphisms. This condition is related to the existence of factors of the endomorphism ring
isomorphic to the field F2 with two elements [KS07]. The part of results in this chapter is taken
from my joint paper with Adel Alahmadi and Alberto Facchini [AFT15]

Chapter four is about poor modules introduced for the first time by Alahmadi, Alkan and
López Permouth in the paper [AAL10]. In the first section of chapter 4, we mention some basic
properties of poor modules and investigate rings having projective semisimple poor modules. In
Section 4.2, we characterize rings having semisimple poor modules and give some examples for
such rings. In section 4.3, we consider rings whose modules are either injective or poor and give
necessary conditions for such rings. Moreover, we give some sufficient conditions for those rings,
too. The material for the first three sections is all taken from the paper [AAL10] and the paper
[ELS11]. The last section is devoted to characterizing rings over which every non-zero cyclic
module is poor. The results in this section are based on the unpublished paper [ELT], which is
presently being prepared for submission.
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Chapter 1

Preliminaries

1.1 Basic concepts

All rings we consider are associative rings R with 1R 6= 0R and modules are unital right R-
modules unless we state differently.

Proposition 1.1.1. The following conditions are equivalent for a ring R:

1. For every element x ∈ R, there is an element y ∈ R such that xyx = x.

2. Every principal right ideal is generated by an idempotent of R.

3. Every finitely generated right ideal is generated by an idempotent of R.

”Right” can be replaced by ”left” everywhere in the conditions of this proposition because
of the left-right symetric condition (1). A ring R satisfying one of these equivalent is said to be
Von Neumann regular .

Definition 1.1.2. A ring R is abelian if all its idempotents are central.

Definition 1.1.3. An element e ∈ R is an idempotent if e2 = e. Moreover, if ex = xe for every
x ∈ R, then e is called a central idempotent of R.

Superfluous submodules

Definition 1.1.4. Let MR be a right R-module. A submodule NR of MR is superfluous in MR

if, for every submodule LR of MR, N + L = M implies that L = M. To denote that NR is
superfluous in MR, we will write N << M.

Example 1.1.5. Let I be a non-zero submodule of ZZ and n be a non-zero element in I. Let p
be a prime that does not divide n. Then I+pZ = Z and pZ is proper. Hence I is not superfluous
in Z, so that the only superfluous submodule of ZZ is 0.
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Definition 1.1.6. Let MR, NR be two right R-module. An epimorphism f : MR → NR is said
to be superfluous if Ker f is superfluous in MR.

Proposition 1.1.7. A surjective morphism g : M → N is superfluous if and only if for every
morphism h such that gh is epic, then h is surjective.

Proof. Assume that g is superfluous and h is a morphism such that gh is surjective. Then
g(Imh) = N = g(M), so that Imh + ker g = M . Hence Imh = M because ker g is superfluous
in M .

Conversely, let K be a submodule of M such that K+ker g = M . Hence g(K) = g(M) = N .
Now let h : K →M be the canonical injection. Then Imgh = g(Imh) = g(K) = N , that is, gh
is surjective. It follows that h is surjective, that is, K = M.

Local rings and the exchange property

Definition 1.1.8. A ring R is local if it has a unique maximal right ideal. Equivalently, if
R/J(R) is a division ring.

Definition 1.1.9. Given a cardinal λ, an R module M is said to have the λ-exchange property
if for any R-module G and any two direct sum decompositions

G = M ′ ⊕N = ⊕i∈IAi,

where M ′ ∼= M and |I| ≤ λ, there are submodule Bi of Ai, i ∈ I such that G = M ′ ⊕ (⊕i∈IBi).
A module has the exchange property if it has the λ-exchange property for every cardinal λ.

A module has the finite exchange property in case it has the exchange property for every finite
cardinal λ. A ring R is an exchange ring if RR has the exchange property.

Lemma 1.1.10. Let λ be a cardinal and M = M1 ⊕M2. Then M has the λ-exchange property
if and only if M1 and M2 have the λ-exchange property.

Proof. Assume that M has the λ-exchange property. Let G,M ′1, N and Ai(i ∈ I) be
modules such that G = M ′1⊕N = ⊕i∈IAi where M ′1

∼= M1 and |I| ≤ λ. Set G′ = G⊕M2. Then
G′ = M ′ ⊕N = M2 ⊕ (⊕i∈IAi) where M ′ = M ′1 ⊕M2

∼= M1 ⊕M2 = M . Fix an element k ∈ I
and set I ′ = I\k. Then G′ = M ′ ⊕N = (M2 ⊕Ak)⊕ (⊕i∈I′Ai). Because M has the λ-exchange
property, there exist a submodule B of M2 ⊕ Ak and submodules Bi of Ai for all i ∈ I ′. such
that G′ = M ′ ⊕B ⊕ (⊕i∈IBi). As M2 ≤M2 ⊕B ≤M2 ⊕Ak, we have that M2 ⊕B = M2 ⊕Bk
where Bk = (M2 ⊕ B) ∩ Ak. It follows that M ′ ⊕ B = (M ′1 ⊕M2)⊕ B = M ′1 ⊕M2 ⊕ Bk. Thus
G′ = M ′1 ⊕M2 ⊕ Bk ⊕ (⊕i∈I′Bi) = M ′1 ⊕M2 ⊕ (⊕i∈IBi). Since M ′1 ⊕ (⊕i∈IBi) ≤ G, we obtain
that G ∩ (M2 + (M ′1 ⊕ (⊕i∈IBi))) = G ∩M2 + (M ′1 ⊕ (⊕i∈IBi)) = M ′1 ⊕ (⊕i∈IBi), and hence
G = M ′1 ⊕ (⊕i∈IBi).

Conversely, assume that M1 and M2 have the λ-exchange property. Let G,M ′, N and Ai(i ∈
I) be modules such that G = M ′ ⊕ N = ⊕i∈IAi where M ′ ∼= M and |I| ≤ λ. Hence there are
two submodules M ′1,M

′
2 of M ′ such that M ′j

∼= Mj(j = 1, 2) and M ′ = M ′1 ⊕M ′2. We have
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that G = M ′1 ⊕M ′2 ⊕N = ⊕i∈IAi. As M1 has the λ-exchange property, there exist submodules
A′i ≤ Ai(i ∈ I) such that M ′1 ⊕M ′2 ⊕N = G = M ′1 ⊕ (⊕i∈IA′i). Hence

G/M ′1 = [(M ′2 ⊕M1)/M ′1]⊕ [(N ⊕M ′1)/M ′1] = ⊕i∈I(A′i ⊕M ′1)/M ′1.

Because M2 has the λ-exchange property, there are submodules Bi of A′i(i ∈ I) such that
G/M ′1 = [M ′2 ⊕M ′1/M ′1]⊕ [⊕i∈I(Bi ⊕M ′1)/M ′1]. This implies that G = M ′2 +M ′1 + (⊕i∈IBi). In
order to prove that this sum is direct it suffices to show that if m′2 +m′1 +

∑
i∈I bi = 0 for some

m′2 ∈M ′2,m′1 ∈M1 and bi ∈ Bi almost all zero. We have that (m′2 +M ′1) + (
∑

i∈I(bi +M ′1)) = 0
in G/M ′1, so that m′2 ∈ M ′1 and bi ∈ M ′1 for every i ∈ I. Hence m′2 ∈ M ′1 ∩ M ′2 = 0 and
bi ∈ Bi ∩M ′1 ⊆ Ai ∩M ′1 = 0, and therefore m′1 = 0. So G = M ′1 ⊕M ′2 ⊕ (⊕i∈IBi).

Recall that a module M is called an indecomposable module if 0 and M are its only direct
summands.

Lemma 1.1.11. Let M be a module with the 2-exchange property. Then M has the finite
exchange property.

Theorem 1.1.12. The following conditions are equivalent for an indecomposable module MR.

1. The endomorphism ring of MR is local.

2. MR has the finite exchange property.

3. MR has the exchange property.

Let M be a module. Suppose that {Mi|i ∈ I} and {Nj |j ∈ J} are two families of submodules
of M such that M = ⊕i∈IMi = ⊕j∈JNj . These two decompositions are said to be isomorphic if
there is a bijection φ : I → J such that Mi

∼= Nφ(i) for every i ∈ I, and the second decomposition
is a refinement of the first if there is a surjective map ϕ : J → I such that Nj ⊆Mϕ(j) for every
j ∈ J.

Proposition 1.1.13. Let λ be a cardinal and M be a module with the λ-exchange property. If
M = ⊕i∈IMi = ⊕j∈JNj are two direct sum decompositions of M with I finite and |J | ≤ λ, then
these two direct sum decompositions of M have isomorphic refinements.

Lemma 1.1.14. Let M be a direct sum of modules with local endomorphism ring. Then every
indecomposable direct summand of M has local endomorphism ring.

Proof. Assume that M = A⊕B = ⊕i∈IMi, where A is indecomposable and all the modules
Mi have local endomorphism rings. Let F be a finite subset of I such that A∩⊕i ∈ FMi 6= 0 and
set C = ⊕i∈FMi. Because C has the exchang property, there exist direct sum decompositions
A = A′⊕A′′ and B = B′⊕B′′ such that M = C⊕A′⊕B′. Since A∩C 6= 0 and A′∩C = 0, A′ is
a proper submodule of A. As A is indecomposable, A′ = 0. Hence M = C⊕B′ and C ∼= A⊕B′′.
Therefore A is isomorphic to a direct summand of C. This gives that A has the exchange property
by 1.1.10. Hence A has local endomorphism ring by 1.1.12

5



Theorem 1.1.15 (Krull-Schmidt-Azumaya). Let M be a direct sum of modules with local en-
domorphism rings. Then any two direct-sum decompositions of M into indecomposable direct
summand are isomorphic.

Proof. Assume that M = ⊕i∈IMi = ⊕j∈JNj , where Mi and Nj are indecomposable. By
1.1.14 all the modules Mi and Nj have local endomorphism rings. For I ′ ⊆ I and J ′ ⊆ J , set
M(I ′) = ⊕i∈I′Mi and N(J ′) = ⊕j∈J ′Nj . Then M(I ′) and N(J ′) have the exchange property
whenever I ′ and J ′ are finite. Since Nj is indecomposable for every j ∈ J , for every finite subset
I ′ ⊆ I there is a subset J ′ ⊆ J such that M = M(I ′) ⊕ N(J\J ′) and hence M(I ′) ∼= N(J ′).
By 1.1.13, the two decompositions M(I ′) = ⊕iinI′Mi and N(J ′) = ⊕j∈J ′Nj have isomorphic
refinements. Because of the indecomposability of the Mi and Nj , we obtain that there is a
bijection ϕ : I ′ → J ′ such that Mi

∼= Nϕ(i) for every i ∈ I ′. For every module A set

I(A) = {i ∈ I|Mi
∼= A} and J(A) = {j ∈ J |Nj

∼= A} .

It follows that I(A) finite implies that |I(A)| ≤ |J(A)| and if I(A) 6= ∅, then J(A) 6= ∅. In order
to prove the theorem it is sufficient to show that |I(A)| = |J(A)| for every module A.

Assume first that I(A) is finite. In this case we argue by induction on |I(A). If |I(A)| = 0,
then |J(A)| = 0. If |I(A)| ≥ 1, fix an index i0 ∈ I(A). Then there is an index j0 ∈ J such that
M = M({i0})⊕N(J\ {j0}). Hence N(J\ {j0}) ∼= M(I\ {i0}).

By the inductive hypothesis we get that |I(A)\ {i0} | = |J(A)\ {j0} | and hence |I(A)| =
|J(A)|. By symmetry, we can conclude that J(A) finite implies that |I(A)| = |J(A)|.

Thus we may assume that both I(A) and J(A) are infinite sets. By symmetry, it suffices to
show that |J(A)| ≤ |I(A)| for an arbitrary module A.

For each i ∈ I(A), set Ji = {j ∈ J |M = Mi ⊕N(J\ {j})} . Then Ji ⊆ J(A). If x is a non-zero
element of Mi, then there is a finite subset J ′′ of J such that x ∈ N(J ′′). ThereforeMi∩N(K) 6= 0
for every K ⊆ J that contains J ′′. Thus Ji ⊆ J ′′, so that Ji is finite.

We claim that
⋃
i∈I(A) Ji = J(A). In order to prove the claim, fix j ∈ J(A). Then there is a

finite subset I ′ of I such that Nj ∩M(I ′) 6= 0. Thus there exists a finite subset J ′ of J such that
M = M(I ′)⊕N(J\J ′). Since j ∈ J ′ and N(J ′\ {j}) has the exchange property, we obtain that
for every i ∈ I ′ there is a direct summand M ′i of Mi such that M = N(J ′\ {j}) ⊕ (⊕i∈I′M ′i) ⊕
N(J\J ′). Then Nj

∼= ⊕i∈I′M ′i , so that there is an index k ∈ I ′ with M ′k = Mk and M ′i = 0 for
every i ∈ I ′, i 6= k. Note that Mk

∼= Nj
∼= A, so that k ∈ I(A). Thus

M = N(J\ {j})⊕Mk ⊕N(J\J ′) = Mk ⊕N(J\ {j}),

that is, j ∈ Jk. Hence j ∈
⋃
i∈I(A) Ji. This proves the claim.

It follows that

|J(A)| = |
⋃

i∈I(A)

Ji| ≤ |I(A)|.
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Projective modules Let MR be a right R-module, X a subset of MR, and F the
family of all the submodules of MR that contain X. The family F is always non-empty be-
cause it contains MR. The intersection of all the submodules in F is the smallest submod-
ule of MR that contains X. It is called the submodule of MR generated by X and is de-
noted by XR. If X is empty, then XR is the zero submodule of MR. Otherwise, XR =
{x1r1 + · · ·+ xnrn|n ≥ 1, xi ∈ X, ri ∈ R for i = 1, . . . , n} .

We say that a subset X of a right R-module is a set of generators of MR if XR = MR.

Definition 1.1.16. Let X be a set of generators of a right R-module MR. The set X is called
a free set of generators if, for every n ≥ 1, x1, . . . , xn distinct elements of X and r1, . . . , rn in R,
one has that x1r1 + · · ·+ xnrn = 0 implies that r1 = · · · = rn = 0.

Definition 1.1.17. A right R-module MR is free if it has a free set of generators.

Proposition 1.1.18 (Universal Property of free modules). Let MR be a free right R-module,
X a free set of generators for MR and ε : X → MR the embedding of X into MR. Then for
every right R-module M ′R and every mapping f : X → M ′R, there is a unique right R-module
morphism f : MR →M ′R such that f = f ◦ ε.

Definition 1.1.19. Let PR,MR be two right R-module. We say that PR is projective relative
to MR (or PR is M -projective) if, for each epimorphism f : MR → KR and each morphism
g : PR → KR, there exists a morphism h : PR →MR with f ◦ h = g.

Proposition 1.1.20. Let MR be a right R-module and (Mα)α∈A be a family of right R module.
Then ⊕α∈AMα is M -projective if and only if Mα is M -projective.

Proposition 1.1.21. Let UR be a right R-module.

1. Assume that 0 → M ′ → M → M ′′ → 0 is a short exact sequence and U is M -projective.
Then U is projective relative to both M ′ and M ′′.

2. If U is projective relative to M1, . . . ,Mn, then U is projective relative to ⊕ni=1Mi

Definition 1.1.22. A right R-module PR is projective if it is projective relative to every right
R-module, that is, for every epimorphism f : MR → KR and every morphism g : PR → KR,
there exists a morphism h : PR →MR with f ◦ h = g.

Lemma 1.1.23. 1. Every free module is projective.

2. Every direct summand of a projective module is projective.

3. Every direct sum of projective modules is projective.

Proof. (1) Let FR be a free module. Then FR has a free set of generators X. Let f : MR →
NR be an epimorphism. For every x ∈ X, let mx be an element of MR such that f(mx) = g(x).
Let h : X → MR, x 7→ mx. By the universal property of free R-modules, there exists a unique
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morphism h : FR →MR that extends h. Because, for every x ∈ X, f(h(x)) = fh(x) = f(mx) =
g(x), we have f ◦ h = g. This proves that FR is projective.

(2) Let PR be a projective module and assume P = A ⊕ B. We claim that A is projective.
Let f : MR → NR be an epimorphism and g : AR → NR be a morphism. Let ε : A→ P and π :
P → A be the embedding and the canonical projection, so that π ◦ε = 1A. Since P is projective,
there exists h : P →M such that f ◦ h = g ◦ π. It follows that f ◦ h ◦ ε = g ◦ π ◦ ε = g ◦ 1A = g.
Hence A is projective.

(3) It follows from the fact that Hom(⊕i∈IMi, N) ∼= ⊕i∈IHom(Mi, N).

Lemma 1.1.24. Let f : M → N and g : N → M be morphisms such that gf = 1M . Then
N = f(M)⊕Ker g.

Proposition 1.1.25. The following conditions are equivalent for a right R-module PR :

1. PR is projective.

2. Every short exact sequence 0→MR → NR → PR → 0 splits.

3. PR is isomorphic to a direct summand of a free module.

Proof. (1)⇒ (2) : Let PR be a projective module and

0 −−−−→ MR −−−−→ NR
g−−−−→ PR −−−−→ 0

be a short exact sequence. Since g is surjective and PR is projective, there exists a morphism
h : PR → NR such that gh = 1P . This means that g is right invertible, which implies that the
short exact sequence above splits.

(2)⇒ (3) : Assume that (1) holds. Since every R-module is a homomorphic image of a free
module, there exist a free R-module FR and an epimorphism g : FR → PR. Now consider the
following short exact sequence:

0 −−−−→ Ker(g) −−−−→ FR
g−−−−→ PR −−−−→ 0

This exact sequence splits by (2), and hence FR ∼= PR ⊕Ker g.
(3) ⇒ (1) : It follows from the fact that every free module is projective, and every direct

summand of a projective module is projective.

Proposition 1.1.26. If P is a projective R-module, then Rad(P ) = J(R)P.

Proof. By 1.1.25, one may assume that P is a direct summand of a free module R(A) =
P ⊕ P ′. Then Rad(P ) ⊕ Rad(P ′) = Rad(R(A)) = (Rad(RR))(A) = (J(R))(A) = R(A)J(R) =
(P ⊕P ′)J(R) = PJ(R)⊕P ′J(R). So, since PJ(R) ≤ Rad(P ), we must have Rad(P ) = PJ(R).

Proposition 1.1.27. Let P be a projective R-module with endomorphism ring S = End(P )
and a ∈ S. Then a ∈ J(S) if and only if Im(a) << P.
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Proof. Let a ∈ J(S) and assume that K ≤ P with Im(a) + K = P . Then we readily see
that if ηK : P → P/K is the natural epimorphism, aηK : P → P/K is epic. So, there is an
element s ∈ S such that aηKs = ηK . Hence (1 − sa)ηK = 0. But, since a ∈ J(S), 1 − sa is
invertible. Therefore ηK = 0, that is, K = P.

Conversely, assume that Im(a) << P . Then it suffices to show that aS << SS . Let I ≤ SS
such that aS + I = S. Hence 1P = sa + b for some s ∈ S and b ∈ I. Then P = P1P ≤
Psa+ Pb ≤ Im(a) + Pb, so that Pb = P. But then b is an epimorphism b : P → P . Thus, since
P is projective, this epimorphism splits and there is some c ∈ S with 1P = cb ∈ I. Therefore
I = S and Sa << S.

Proposition 1.1.28. If P is a non-zero projective R-module, then Rad(P ) is a proper submodule
of P .

Proof. By 1.1.25, we may assume that there is a free R-module F with F = P ⊕ P ′. If
Rad(P ) = P , then P has no maximal submodule. By 1.1.26 we have P = J(R)P ⊆ J(R)F. Let
x ∈ P and e be an idempotent endomorphism of F such that Fe = P . Let (xα)α∈A be a free
basis for F. Then, for some finite subset H ⊆ A, and some rα ∈ R (α ∈ R),

x =
∑
α∈H

rαxα.

Also, for each α ∈ H, there are finite sets Hα ⊆ A and aαβ ∈ J (β ∈ Hα) such that xαe =∑
β∈Hα aαβxβ. Now, inserting 0′s where necessary, we may assume that all of these sums are

taken over a common finite subset K ⊆ A to get

0 = = x− xe = (
∑
α∈K

rαxα)− (
∑
α∈K

rαxαe)

= (
∑
α∈K

rα(
∑
β∈K

δαβxβ))− (
∑
α∈K

rα(
∑
β∈K

aαβxβ))

=
∑
β∈K

(
∑
α∈K

rα(δαβ − aαβ))xβ.

Since the xβ are independent this equation yields the matrix equation

(rα)(In − (aαβ)) = (0) ∈M1×n(R)

where n = card(K) and In is the identity matrix in Mn(R). But (aαβ) ∈ J(Mn(R)) and hence
In − (aαβ) is invertible. Thus (rα) = (0) ∈M1×n(R), so that x =

∑
α∈K rαxα = 0.

Definition 1.1.29. A projective cover of a right R-module MR is a pair (PR, f) where PR is a
projective right R-module and f : P →M is a superfluous epimorphism.

Lemma 1.1.30. Assume M has a projective cover p : P →M. If Q is projective and q : Q→M
is an epimorphism, then Q has a decomposition Q = P ′ ⊕ P ′′ such that
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1. P ′ ∼= P ;

2. P ′′ ≤ Kerq;

3. (q|′P ) : P ′ →M is a projective cover for M.

Moreover, if f : M1 → M2 is an isomorphism and if p1 : P1 → M1 and p2 : P2 → M2 are
projective covers, then there is an isomorphism f̄ : P1 → P2 such that p2f̄ = fp1.

Proposition 1.1.31. The following conditions are equivalent for two idempotents e, f of R:

1. eR ∼= fR.

2. eR/eJ(R) ∼= fR/fJ(R).

Proposition 1.1.32. Let P be a projective R-module. Then the following conditions are equiv-
alent:

1. P is the projective cover of a simple R-module.

2. PJ(R) is a superfluous maximal submodule of P .

3. End(P ) is a local ring.

Moreover, if these condition hold, then P ∼= Re for some idempotent e ∈ R.

Proof. (1) ⇒ (2). Clearly P is the projective cover of a simple module if and only if P
contain a superfluous maximal submodule. But PJ is contained in every maximal submodule of
P ; and PJ contains every superfluous submodule of P by 1.1.26.

(2)⇒ (3). Assume that End(P ) is local. Then P 6= 0. By 1.1.28 there is a maximal submodule
K < P . We claim that the natural epimorphism P → P/K → 0 is a projective cover, that is,
K << P . Suppose that K + L = P for some L ≤ P . Then P/K ∼= (L + K)/K ∼= L/(L ∩K).
So there is a nonzero morphism f : P → L/(L ∩ K). Thus, since P is projective there is an
endomorphism s : P → L ≤ P such that f = πs where π : L → L/(L ∩ K) is a canonical
projection. Since 0 6= f = sπ, Ims is not contained K; from which it follows that Ims is not
superfluous in P. Therefore s /∈ J(End(P )) by 1.1.27, s is an invertible endomorphism of P ,
L = P ; and we have shown that K << P.

Moreover, every simple module is a factor of R, so by 1.1.30, a projective cover P of a simple
module must be isomorphic to a direct summand of RR, that is, P ∼= eR for some idempotent
e of R.

Corollary 1.1.33. Let e be an idempotent of R. Set J = J(R). Then the following conditions
are equivalent:

1. eR/Je is simple.

2. eJ is the unique maximal submodule of eR.
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3. eRe is a local ring.

Semisimple rings and modules

Definition 1.1.34. A right R-module MR is simple if it is non-zero and has exactly two sub-
modules MR and 0.

Definition 1.1.35. A right R-module MR is said to be semisimple if every submodule of MR

is a direct summand.

Note that the zero right module is semisimple but not simple. Moreover, every simple right
module is semisimple.

Lemma 1.1.36. Every submodule and every quotient module of a semisimple right module is
semisimple.

Proof. Let MR be a semisimple right module and NR be a submodule of MR. If N ′ is a
submodule of N, then we have M = N ′ ⊕N ′′ for some N ′′ ≤M. Thus

N = N ∩M = N ∩ (N ′ ⊕N ′′) = N ′ ⊕ (N ∩N ′′).

Lemma 1.1.37. Let MR be a right semisimple right R-module. Then MR contains a simple
module.

Proof. Since M is non-zero, then there exists a non-zero element m of M. By our previous
Lemma, it suffices to prove the statement for the case M = mR. There exists a maximal
submodule K of M. Now we have M = K ⊕ K ′ for some submodule K ′ of M because M is
semisimple. Since K ′ ∼= M/K and K is a maximal submodule of M, it follows that K ′ is a
simple submodule of M.

Proposition 1.1.38. Let MR be a right R-module. Then the following conditions are equivalent:

1. M is semisimple;

2. M is the sum of a family of simple submodules;

3. M is a direct sum of a family of simple submodules.

Definition 1.1.39. A ring R is called semisimple (or semisimple artinian) if RR is a right
semisimple module.

Theorem 1.1.40. Let R be a ring. The following conditions are equivalent:

1. The ring R is semisimple artinian.

2. Every right R-module is semisimple.
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3. The ring R is right artinian and J(R) = 0.

4. There exists a finite number of division rings D1, . . . , Dt an positive integers n1, . . . , nt
such that R ∼=

∏t
i=1Mni(Di).

Since condition (4) is left-right symmetric, it follows that ”right” can be replaced by ”left”
everywhere in the conditions of Theorem 1.1.40.

Semiperfect rings
Let R be a ring and I be an ideal of R. Let g + I be an idempotent of R/I. We say

that idempotents can be lifted modulo I if, for every idempotent g + I of R/I, there exists an
idempotent e ∈ R such that g + I = e+ I.

Definition 1.1.41. A ring R is said to be semiperfect if R/J(R) is semisimple and idempotents
can be lifted modulo J(R).

Lemma 1.1.42. Let MR = M1 ⊕ · · · ⊕Mn where Mi has a projective cover. Then p : P → M
is a projective cover if and only if P has a decomposition P = P1 ⊕ · · · ⊕ Pn such that for each
i = 1, . . . , n

(p|Pi) : Pi →Mi

is a projective cover.

Lemma 1.1.43. A cyclic module M has a projective cover if and only if M ∼= Re/Ie for some
idempotent e ∈ R and some right ideal I ⊆ J(R). For e and I satisfying this condition the
natural map Re→ Re/Ie→ 0 is a projective cover.

Proof. The natural map Re→ Re/Ie has kernel Ie. So if I ⊆ J(R), then Ie ⊂ J(R)e <<
Re. Conversely, suppose M has a projective cover p : P → M. If M is cyclic, then there is an
epimorphism f : R→M. So by 1.1.30, we may assume that R = P ⊕ P ′ with p = (f |P ). Thus
for some idempotent e ∈ R,P = Re and Ie = Kerp << Re. Whence Ie ⊆ J(R)e ⊆ J(R) and
M ∼= Re/Ie.

Proposition 1.1.44. Let R be a ring and let I be an ideal of R with I ⊆ J(R). Then the
following are equivalent:

1. Idempotents can be lifted modulo I.

2. Every direct summand of the R-module R/I has a projective cover.

3. Every (complete) finite orthogonal set of idempotents in R/I can be lifted to a (complete)
orthogonal set of idempotents in R.

Proof. (1) ⇒ (2). A direct summand of R/IR is also one of R/IR/I and so is generated by
an idempotent of R/I. Assuming (a), we can lift any such idempotent, so it suffices to prove
that if e ∈ R is idempotent, then (Re + I)/I has a projective cover in MR. But (Re + I)/I ∼=
Re/(I ∩Re) = Re/Ie and so 1.1.43 applies.
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(2) ⇒ (3). Let g1, ..., gn be a complete orthogonal set of idempotents module I. ( This will
suffice since any finite orthogonal set can be expanded to a complete orthogonal set.) Since
I ≤ J(R) << R, the natural map ηI : R → R/I is a projective cover. By hypothesis each
term in R/I = R/I(g1 + I) ⊕ ... ⊕ (R/I)(gn + I) has a projective cover, so by 1.1.42 there is
a complete orthogonal set of idempotents e1, ..., en ∈ R such that (R/I)(ei + I) = ηI(Rei) =
(R/I)(gi + I) (i = 1, ...n). But then we have ei + I = gi + I (i = 1, ...n).

(3)⇒ (1): This is clear.

Lemma 1.1.45. Let f : M → N be a superfluous epimorphism and p : P →M be a morphism.
Then p : P →M is a projective cover if and only if fp : P → N is a projective cover.

Theorem 1.1.46. The following conditions are equivalent for a ring R:

1. R is semiperfect.

2. R has a complete set e1, . . . , en of orthogonal idempotents such that each eiRei is a local
ring.

3. Every simple right R-module has a projective cover.

4. Every finitely generated right R-module has a projective cover.

Proof. Set J = J(R).
(1)⇒ (2). If R is semiperfect, then we can, by 1.1.44, lift the idempotents for a semisimple

decomposition of R/J to obtain a complete orthogonal set e1, ..., en of idempotents in R with
each Rei/Jei ∼= (R/J)(ei + J) simple. Then by 1.1.33 each eiRei is local.

(2)⇒ (3). Given (2), each Rei/Jei is simple by 1.1.33, and has a projective cover by 1.1.43.
But each simple R-module is isomorphic to a factor of R/J ∼= Re1/Je1 ⊕ ...⊕ Ren/Jen and so
is isomorphic to one of the Rei/Jei. (See 1.1.36).

(3)⇒ (4). Assume (3) and let P be a complete set of projective covers of simple R-modules.
Then P generates every R-module. Let M be finitely generated. Then there is a sequence P1, ...Pn
in P and an epimorphism

P = P1 ⊕ ...⊕ Pn →f M → 0

Since f(JP ) = JM , we infer that there is an epimorphism

P1/JP1 ⊕ ...⊕ Pn/JPn ∼= P/JP →f M/JM → 0.

But each Pi/JPi is simple by 1.1.32, so M/JM is a finite direct sum of simple modules 1.1.36.
Therefore, by 1.1.42, M/JM has a projective cover. But JM << M by Nakayama’s Lemma, so
M →M/JM is a superfluous epimorphism. Now apply 1.1.45.

(4)⇒ (1). Assume (4). Since this implies in particular that every direct summand of R/J has
a projective cover, idempotents can be lifted modulo J by 1.1.44. To see that R/J is semisimple,
let J ≤ K ≤ RR. Then, since the cyclic R-module R/K has a projective cover, we have by
1.1.43 R/K ∼= Re/Ie for some left ideal le ⊆ Je. But then J.Re/Ie ∼= JR/K = 0 so that

13



Je = JRe ⊆ Ie. Thus Ie = Je and R/K ∼= Re/Je ∼= (R/J)(e + J) is projective over R/J .
Hence K/J is a direct summand of R/J. Thus R/J is semisimple.

Essential submodules

Definition 1.1.47. Let MR be a right R-module. A submodule NR of MR is essential in MR

if, for every submodule LR of MR, L ∩N = 0 implies that L = 0.

Proposition 1.1.48. Let M be a module with submodules K,N,H such that K ≤ N ≤M and
H ≤M . Then

(a) If N ≤e M , then H ∩N ≤e H.

(b) K ≤e N and N ≤e M if and only if K ≤e M .

(c) H ≤e M and K ≤e M if and only if H ∩K ≤e M .

(d) If f : M →M ′ and N ′ ≤e M ′, then f−1(N ′) ≤e M .

Lemma 1.1.49. Let K ≤ M . Then K is essential in M if and only if for every 0 6= x ∈ M
there exists an element r ∈ R such that 0 6= xr ∈ K.

Proof. If K ≤e M and 0 6= x ∈ M , then xR is a non-zero submodule of M , and hence
K ∩ xR 6= 0.

Conversely, let L be a non-zero submodule of M . Then there exists 0 6= x ∈ L, and hence
there is an element r ∈ R such that 0 6= xr ∈ K. It follows that 0 6= xr ∈ K ∩ L, that is,
K ∩ L 6= 0.

Definition 1.1.50. A monomorphism f : K →M is called essential monomorphism if Imf ≤e
M.

Proposition 1.1.51. Let f : L→M be an injective morphism. Then f is essential if and only
if, for every morphism h such that hf is injective, then h is injective.

Proof. Assume that f is essential and h is a morphism such that hf is injective. Then
f−1(kerh) = ker fh = 0, so that kerh ∩ Imf = 0. Hence kerh = 0, that is, h is injective.

Conversely, let K ≤ M such that K ∩ Imf = 0 and h : M → M/K be the canonical
projection. Then hf is injective since kerhf = f−1(kerh) = f−1(K) = 0. Hence h is injective,
that is, K = kerh = 0.

Proposition 1.1.52. Let M = M1⊕M2, K1 ≤M1 ≤M and K2 ≤M2 ≤M . Then K1⊕K2 ≤e
M1 ⊕M2 if and only if K1 ≤e M1 and K2 ≤e M2.

Proposition 1.1.53. Let (Lα)α∈A be a set of independent submodules of M and (Mα)α∈A be a
set of submodules of M such that Lα ≤e Mα for every α ∈ A. Then (Mα)α∈A is independent,
and ⊕α∈ALα ≤e Mα.
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Proof. We claim that the proposition holds for every finite subset F of A. By induction,
it suffices to prove the claim in the case that F has two elements. Assume that L1 and L2 are
independent submodules of M with L1 ≤e M1 and L2 ≤e M2. Then (L1∩M2)∩L2 = L1∩L2 = 0
implies that L1 ∩M2 = 0 because L2 ≤e M2. Moreover, we have (M1 ∩M2)∩L1 ≤ L1 ∩M2 = 0,
so that M1 ∩M2 = 0 since L1 ≤e M1. Therefore (M1,M2) is an independent set of submodules
of M and L1 ⊕ L2 ≤e M1 ⊕M2 by 1.1.52. Now we will show that (Mα)α∈A is independent and
⊕α∈ALα ≤e Mα. Let α ∈ A and x ∈ Mα ∩

∑
β 6=αMβ. Then there exists a finite subset F of

A\ {α} such that x ∈ Mα ∩
∑

β∈F Mβ = 0. Hence Mα ∩
∑

β 6=αMβ = 0. Let 0 6= y ∈ ⊕α∈AMα.
Then there exists a finite subset G of A such that 0 6= y ∈ ⊕α∈GMα, so that there is an element
r ∈ R such that 0 6= yr ∈ ⊕α∈FLα ≤ ⊕α∈ALα. It follows from 1.1.49 that ⊕α∈ALα ≤e ⊕α∈AMα.

Injective modules

Definition 1.1.54. Let ER,MR be two right R-module. We say that ER is injective relative
to MR (or ER is M -injective) if, for each monomorphism f : KR → MR and each morphism
g : KR → ER, there exists a morphism h : MR → ER with h ◦ f = g.

Definition 1.1.55. Let M be a right R-module. The injectivity domain of M is the class
In−1(M) = {N ∈ Mod-R| M is N -injective} .

Proposition 1.1.56. Let ER be a right R-module. Then

1. Assume that 0 → M ′ → M → M ′′ → 0 is a short exact sequence and E is M -injective.
Then E is injective relative to both M ′ and M ′′.

2. If E is injective relative to each of the R-modules Mα (α ∈ A), then E is
⊕

AMα-injective.

Proposition 1.1.57. A module E is M -injective if and only if E is aR-injective for every
a ∈M.

Proof. If E is M -injective, then, by 1.1.56, E is aR-injective for every a ∈M.
Conversely, if E is aR-injective for every a ∈M, then E is ⊕a∈MaR-injective by 1.1.56. Since

there is an epimorphism f : ⊕a∈MaR→M, E is M -injective (see 1.1.56).

Definition 1.1.58. A right R-module E is injective if E is injective relative to every right
R-module, that is, for every monomorphism f : K →M and every morphism g : K → E, there
exists a morphism h : M → E such that g = h ◦ f.

Proposition 1.1.59. The following conditions are equivalent for a right R-module ER :

1. For every exact sequence 0→M ′R →M ′′R → 0 of right R-modules, the sequence of abelian
groups 0→ Hom(M ′′R, ER)→ Hom(MR, ER)→ Hom(M ′R, ER)→ 0 is exact.

2. For every monomorphism M ′R →MR of right R-modules,

Hom(MR, ER)→ Hom(M ′R, ER)

is an epimorphism of abelian groups.
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3. For every submodule M ′R of a right R-module MR, every morphism M ′R → ER extends to
a morphism MR → ER.

4. For every monomorphism f : M ′R → MR and every morphism g : M ′R → ER, there exists
a morphism h : MR → ER such that h ◦ f = g.

Proof. It follows immediately from the definition of injective modules.

In the next Proposition, we give a further criterion to determine injective modules, that is,
a further characterization of injective modules.

Proposition 1.1.60 (Baer’s criterion). The following about a right R-module E are equivalent:

1. E is injective.

2. E is injective relative to R.

3. For every right ideal I ≤ RR and every morphism h : I → E there exists an x ∈ E such
that h(a) = xa (a ∈ I).

Proof. (1)⇔ (2) : It follows from 1.1.56.
(2) ⇒ (3) : If E is injective and I ≤ RR with h : I → E, then there exists an h : R → E

such that h|I = h. Let x = h(1). Then h(a) = h(a) = h(1)a = xa for all a ∈ I.
(3) ⇒ (2) : Let I ≤ RR and h : I → E. Then there exists an element x ∈ E such that

h(a) = xa for all a ∈ I, then left multiplication by x extends h. Hence E is injective.

Definition 1.1.61. An abelian group G is divisible if nG = G for every non zero integer n.
Hence G is divisible if and only if, for every g ∈ G and every n > 0, there exists h ∈ G such that
g = nh. A Z-module G is injective if and only if it is a divisible abelian group.

Definition 1.1.62. An injective envelope of a right R-module MR is a pair (ER, i) where ER
is an injective right R-module and i : MR → ER is an essential monomorphism.

Lemma 1.1.63. Let MR be a right R-module and assume that i : M → E is an injective envelope
of MR. If QR is injective and q : M → Q is a monomorphism, then Q has a decomposition
Q = E′ ⊕ E′′ such that

1. E′ ∼= E;

2. Imq ≤ E′;

3. q : M → E′ is an injective envelope of MR.

Furthermore, if f : M1 → M2 is an isomorphism and i1 : M1 → E1 and i2 : M2 → E2 are
injective envelopes, then there exists an isomorphism f : E1 → E2 such that fi1 = i2f.

Theorem 1.1.64. Every right R-module has a unique injective envelope up to isomorphism.
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Proposition 1.1.65. Let E be an injective module with endomorphism ring S = End(E) and
a ∈ S. Then the Jacobson radical of S is the set of all endomorphisms whose kernels are essential
in E.

Let N be a submodule of M . We say that L is a complement of N in M if L ≤M is maximal
with respect to the property that N ∩ L = 0.

Proposition 1.1.66. Let M be a module. Then every submodule N of M has a complement L
and N ⊕ L ≤e M. Furthermore, (N ⊕ L)/L ≤e M/L.

Proof. Set F = {K ≤M |N ∩ L = 0} . Then 0 ∈ F , that is, F is non-empty. By Zorn
Lemma, there is a maximal element L of F and L is a complement of N in M. Let K ≤M such
that (N ⊕ L) ∩K = 0. Hence N ∩ (L⊕K) = 0, so that L⊕K = L because of the maximality
of L. It follows that K = 0. This proves that N ⊕ L ≤e M.

Assume that K/L∩(N⊕L)/L = 0. Then K∩(N+L) = L, which implies that K∩N+L = L.
Hence K ∩N ⊆ L, so that K ∩N ⊆ L ∩N = 0. By the maximality of L, we get that K = L,
that is, K/L = 0.

Definition 1.1.67. Let MR be a right R-module. A submodule NR of MR is said to be closed
in MR if NR has no proper essential extension within MR.

Proposition 1.1.68. Let C ≤M . Then the following conditions are equivalent:

1. C is closed in M ;

2. C is a complement of a module D in M ;

3. C = X ∩M for some direct summand X of an injective envelope E(M) of M .

Proof. (1)⇒ (2): Let D be a complement of C in M. Then, by 1.1.66, C ⊕D ≤e M . Let
C ′ ≥ C be a complement of D in M. Then C ⊕D ≤e C ′⊕D ≤e M, which implies that C ≤e C ′
(see 1.1.52). But C is closed in M. Therefore, C = C ′ is a complement of D in M.

(2) ⇒ (3): Assume that C is a complement of D in M . Hence C ⊕ D ≤e M by 1.1.66
and E(M) = E(C) ⊕ E(D) where E(M), E(C), E(D) denote injective envelopes of M,C,D
respectively. Because E(C)∩E(D) = 0, we get that (E(C)∩M)∩D = 0. Moreover, C ≤ E(C)∩M
and C is a complement of D in M . Therefore C = E(C) ∩M.

(3) ⇒ (1): Assume that C = X ∩M where X is a direct summand of an injective envelope
of M. Hence X is injective and C ≤e X, that is, X is an injective envelope of C. Let C ′

be an essential extension of C ′ in M. Then X is also an injective envelope of C ′, so that
C ′ ≤ X ∩M = C. This proves that C is closed in M.

Proposition 1.1.69. Let E be an injective module. Then End(E(M))/J(End(E(M)) is a von
Neumann regular ring and idempotents can be lifted module J(End(E(M)).

Proof. This follows trivially from 1.4.10
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1.2 Quasi-injective modules

Definition 1.2.1. A right R-module MR is called quasi-injective if M is M -injective.

Definition 1.2.2. A module M satisfies Condition (C1) if every submodule of M is essential
in a direct summand of M .

A module M satisfies Condition (C2) if every submodule of M isomorphic to a direct sum-
mand of M is also a direct summand of M.

A module M satisfies Condition (C3) if, for any two direct summands N1, N2 of M with
N1 ∩N2 = 0, the direct sum N1 ⊕N2 is a direct summand of M.

Lemma 1.2.3. Let M = K ⊕K ′ and L be a submodule of M . Let πK : M → K be a canonical
projection. Then M = L ⊕ K ′ if and only if (πK |L) : L → K is an isomorphism. If these
equivalent conditions hold, the canonical projection πL : M → L with respect to the decompostion
M = L⊕K ′ is (πK |L)−1 ◦ πK .

Proof. The morphism πK |L is injective if and only if K ′ ∩ L = 0, and is surjective if and
only if for every k ∈ K, there exists l ∈ L such that l = k + k′ for some k′ ∈ K if and only if
K ⊆ L+K ′ if and only if K + L = K ′ + L. This proves the first part of this proposition.

For the second part, let m ∈ M . We have that m = k′ + πL(m) for some k′ ∈ K ′, so that
πK(m) = πK(k′) + πK |L(πL(m)) = πK |L(πL(m)). It follows that πK = (πK |L)πL, and hence
(πK |L)−1πK = πL.

Proposition 1.2.4. Let MR be a right R-module. If MR has Condition (C2), then it satisfies
Condition (C3).

Proof. Let M1,M2 be direct summands of M such that M1∩M2 = 0. Write M = M1⊕M ′1
and let π : M1⊕M ′1 →M ′1 be the canonical projection. By 1.2.3, we have M1⊕M2 = M1⊕π(M2).
Since π|M2 is a monomorphism, π(M2) is a direct summand of M by Condition (C2). Because
π(M2) ≤ M ′1, there exists K ≤ M1 ≤ M such that pi(M2)⊕K = M ′1. Hence M = M1 ⊕M ′1 =
M1⊕π(M2)⊕K = M1⊕M2⊕K, so that M1⊕M2 is a direct summand of M. This proves that
M satisfies Condition (C3).

Theorem 1.2.5. Let M be a module. Then M is quasi-injective if and only if it is invariant
under every endomorphism of E(M).

Proof. Assume M is quasi-injective and let f be an element of End(E(M)). Then L =
{m ∈M |f(m) ∈M} is a submodule of M. Since f ∈ Hom(L,M), there exists g ∈ End(M)
such that f |L = g|L. Since g extend to an element of End(E(M)), without loss of generality
we may assume that g ∈ End(E(M)). Suppose that (g − f)M 6= 0. Then M ∩ (g − f)M 6= 0,
so that (g − f)m = m′ 6= 0 for some m,m′ ∈ M. Now f(m) = g(m) − m′ ∈ M implies that
m ∈ M, and f |L = g|L leads to m′ = 0, a contradiction. Thus we have (g − f)(M) = 0, and
hence f(M) = g(M) ⊆M.
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Conversely, let L ≤M and f ∈ Hom(L,M). Then f extend to an endomorphism g of E(M)
since E(M) is injective. Hence g(M) ⊆ M, so that g|M ∈ End(M) extends f. This show that
M is quasi-injective.

Proposition 1.2.6. Let M be a quasi-injective module. Assume that E(M) = ⊕i∈IXi is a direct
sum decomposition of E(M). Then M = ⊕i∈I(M ∩Xi).

Proof. It suffices to show that M ⊆ ⊕i∈I(M ∩Xi). Let m ∈ M and πi be the canonical
projection from E(M) to Xi. Then m = xi1 + · · · + xin where xij ∈ Mij . Hence by 1.2.5,
xij ∈ πij (m) ∈M ∩Xij , so that m ∈ ⊕i∈I(M ∩Xi. This completes the proof.

Corollary 1.2.7. Let M be a quasi-injective module. Then M satisfies Condition (C1).

Proof. Let N be a submodule of M and T be a complement of N in M. Then N⊕T ≤e M
by 1.1.66, so that E(M) = E(N)⊕E(T ). By 1.2.6, we get that M = (M ∩E(N))⊕ (M ∩E(T )).
Since N ≤e E(N), we obtain that N ≤e M ∩E(N) by 1.1.48. This proves that N is essential in
a direct summand of M, that is, M satisfies Condition (C1).

Proposition 1.2.8. Every quasi-injective module satisfies Condition (C2) and (C3).

Proof. Let M be a quasi-injective module. By 1.2.4, it suffices to show that M satisfies
Condition (C2). Let M1 be a direct summand of M and M2 be a submodule of M isomorphic to
M1. We have M1 is M -injective, so that M2 is also M -injective. Hence M2 is a direct summand
of M. This proves that M satisfies Condition (C2).

Theorem 1.2.9. Every quasi-injective has the exchange property.

Proof. Let A = M ⊕N = ⊕i∈IAi. Set Xi = Ai ∩N and X = ⊕i∈IXi. By Zorn’s Lemma,
we can find B ≤ A maximal with respect to the following properties:

1. B = ⊕i∈IBi with Xi ≤ Bi ≤ Ai,

2. M ∩B = 0.

Now we claim that A = M ⊕ B. For every submodule Y of A, we denote Y the image of Y
under the natural morphism A → A/B. In order to prove the claim, it suffices to show that
M ≤e A and M is a direct summand of A. Let D be an arbitrary submodule of Aj such that
Bj is a proper submodule of D. Then B is a proper submodule of D + B = D ⊕ (⊕j 6=iBi). By
maximality of B, we deduce that M ∩ (D + B) 6= 0. Since M ∩ B = 0, M ∩ (D + B) is not a
submodule of B. Hence (M ∩Ai)∩D = M ∩D 6= 0. Thus M ∩Aj ≤e Aj for all j ∈ I. Therefore
⊕j∈I(M ∩ Aj) ≤e ⊕j∈JAj = A, which implies that M ≤e A. Let π be the canonical projection
from M ⊕N to M. The restriction of π to Ai has kernel Xi, and therefore Ai/Xi is isomorphic
to a submodule of M. Since M is quasi-injective, M is Ai/Xi-injective (see 1.1.56). Because
A/X ∼= ⊕i∈IAi/Xi, we get that M is A/X-injective, hence M is A/B injective by 1.1.56. As
M = (M +B)/B ∼= M, M is A-injective, so that M is a direct summand of A.

19



1.3 Quasi-continuous modules

Definition 1.3.1. A right R-module MR is said to be quasi-continuous if it satisfies Condition
(C1) and Condition (C3).

Theorem 1.3.2. The following conditions are equivalent for a module M :

1. M is quasi-continuous.

2. M = X ⊕ Y where X and Y are two submodules of M which are complements of each
other.

3. M is invariant under every idempotent of End(E(M)).

4. If E(M) =
⊕

i∈I Ei, then M =
⊕

i∈IM ∩ Ei.

Proof. (1) ⇒ (2) : Since X and Y are complements of each other, X and Y are closed.
Hence X and Y are direct summands of M because M satisfies Condition (C1). Note that X⊕Y
is a direct summand of M thanks to the fact that M satisfies Conditon (C3). Furthermore,
X ⊕ Y ≤e M. Therefore M = X ⊕ Y.

(2)⇒ (3) : Set A1 = M ∩ f(E(M)) and A2 = M ∩ (1− f)(E(M)). Let B1 be a complement
of A2 that contains A1 and B2 be a complement of B1 that contains A2. Hence M = B1 ⊕ B2.
Let π : B1 ⊕B2 → B1 be the canonical projection. We will show that M ∩ (f − π)(M) = 0. Let
x, y ∈ M be such that (f − π)(x) = y. Then f(x) = y + π(x) ∈ M, and therefore f(x) ∈ A1.
Hence (1 − f)(x) ∈ M, and hence (1 − f)(x) ∈ A2. Thus π(x) = f(x), so that y = 0. It
follows that M ∩ (f − π)(M) = 0. Since M ≤e E(M), (f − π)(M) = 0, which implies that
f(M) = π(M) ≤M.

(3) ⇒ (4) : It suffices to show that M ≤ ⊕i∈IM ∩ Ei. Let m be an arbitrary elment of M.
Then m ∈ ⊕i∈FEi for a finite subset F ⊆ I. Write E(M) = (⊕i∈FEi)⊕E′ where E′ = ⊕i∈I\FEi.
Then there exists orthogonal idempotents fi ∈ End(E(M))(i ∈ F ) such that Ei = fi(E(M)).
Since fi(M) ≤M by assumption, we get that

m = (
∑
i∈F

fi)(m) =
∑
i∈F

fi(m) ∈ ⊕i∈FM ∩ Ei.

Hence M ≤ ⊕i∈IM ∩ Ei.
(4) ⇒ (1) : Let A ≤ M. Write E(M) = E(A) ⊕ E′. Then M = (M ∩ E(A)) ⊕M ∩ E′ with

A ≤e M ∩E(A). Hence M satisfies Condition (C1). Let M1,M2 be direct summands of M. with
M1∩M2 = 0. Write E(M) = E(M1)⊕E(M2)⊕E′′. Then M = (M ∩E1)⊕(M ∩E2)⊕(M ∩E′′).
Since Mi(i = 1, 2) are direct summands of M and Mi ≤e M ∩ E(Mi), Mi = M ∩ Ei (i = 1, 2).
Hence M satisfies Condition (C3).

Proposition 1.3.3. An indecomposable module M satisfies Condition (C1) if and only if M is
uniform. Any uniform module is quasi-continous.
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Proof. If M is indecomposable and satisfies Condition (C1), then every submodule of M
is essential in a direct summand of M and every direct summand of M is either 0 or M. This
gives every non-zero submodule of M is essential in M, that is, M is uniform.

Conversely, if M is uniform, then every non-zero submodule of M is essential in M. Hence
M satisfies Condition (C1). Assume that M is not indecomposable, that is, there is two non-zero
submodules N and K such that M = N ⊕ K. But N ≤e M. This leads to N = M, so that
K = 0, a contradiction. Therefore M is indecomposable.

The last statement is obvious.

1.4 Continuous modules

Throughout this section, denote ∆ the set of all endomorphisms with essential kernels.

Definition 1.4.1. A right R-module MR is called continuous if it satisfies Conditions (C1) and
(C2).

Proposition 1.4.2. Let M be a module. Then the following conditions are equivalent:

1. M has the exchange property.

2. If M ⊕ N = ⊕i∈IAi with Ai ∼= M for all i ∈ I, then there are submodules Ci ≤ Ai such
that M ⊕N = M ⊕ (⊕i∈ICi).

3. For every summable family (fi)i∈I in S with
∑
fi = 1, there are orthogonal idempotents

ei ∈ Sfi such that
∑
ei = 1.

Proof. (1)⇒ (2) follows from the definition of the exchange property.

(2) ⇒ (3) : Let (fi)i∈I be a summable faimly of elements of S such that
∑
fi = 1. Set

A = ⊕i∈IAi with Ai = M for all i ∈ I. Define f : M → A via f(m) = (fi(m))i∈I and
g : A → M via g((mi)i∈I =

∑
i∈I mi. Then gf = 1M , and hence A = f(M) ⊕ Ker g. By

hypothesis, Ai = Bi ⊕ Ci such that A = fM ⊕ (⊕i∈ICi).
Let p : A → ⊕i∈IBi be the canonical projection with respect to the decomposition A =

(⊕i∈IBi) ⊕ (⊕i∈ICi). Then the restriction of p to f(M) is an isomorphism and pfgp−1 is the
identity on ⊕i∈IBi. Let πj : ⊕i∈IBi → Bj be the canonical projection and set ei = gp−1πipf.
Then eiej = gp−1πipfgp

−1πjpf = gp−1πiπjpf. Hence eiej = 0 for j 6= i and e2
i = ei.

Let pi be the canonical projection from Bi ⊕ Ci → Bi. For any m ∈M,

πipf(m) = πip(fj(m))j∈I = πi(pjfj(m))j∈J = pifi(m).

Thus πipf = pifi, and therefore ei = gp−1pifi ∈ Sfi. In particular, the family (ei)i∈I is
summable. By construction, we have

∑
ei = 1.

(3) ⇒ (1) : Let X = M ⊕ Y = ⊕i∈IXi. Let µj : ⊕i∈I → Xj and q : M ⊕ Y → M be
the canonical projections, and set hi = qµj |M . Then hi ∈ S = End(M), the family (hi)i∈I is
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summable, and
∑
hi = 1. By hypothesis, we can find orthogonal idempotents γi = sihi ∈ Shi

with
∑
γi = 1. Define ϕi : X →M by ϕi = γisiqµi. We claim that X = M⊕(⊕i∈I(Xi∩Kerϕi)).

Once this is established, (1) follows.
Note that (ϕi)i∈I is summable. Let ϕ =

∑
ϕi. Then ϕi|M = γi; indeed ϕi(m) = γisiqµi(m) =

γisihi(m) = γiγi(m) = γi(m) for every m ∈M. Hence ϕ|M = (
∑
ϕi)|M =

∑
γi = 1M . Therefore

X = M ⊕Kerϕ. Now we have ϕiϕj = ϕi(γjsjqµj) = γiγjsjqµj = 0.
Using this, one can check that Kerϕ = ⊕i∈IXi ∩Kerϕi.

We say that two R-modules are orthogonal if they have no non-zero isomophic submodules.

Lemma 1.4.3. Let N and ⊕i∈IXi be submodules of a module M. If N ∩ (⊕i∈IXi) 6= 0, then
there exists j ∈ I such that Xj and N are not orthogonal.

Proof. Since N ∩ (⊕i∈IXi) 6= 0, we get that N ∩ (⊕i∈FXi) 6= 0 for a finite subset F ⊆ I.
Let K be a maximal subset of F such that N ∩ (⊕i∈KXi) = 0. Fix j ∈ F\K and let π be
the canonical projection from Xj ⊕ (⊕i∈K) to Xj . Hence N ′ = N ∩ (Xj ⊕ (⊕i∈KXi)) 6= 0 and
N ≥ N ′ ∼= π(N ′) ≤ Xj . This proves that Xj and N are not orthogonal.

For any class A of modules, A⊥ denotes the class of modules orthogonal to all members of
A. A pair of classes A and B is said to be orthogonal if A⊥ = B and B⊥ = A.

Lemma 1.4.4. Let A and B be an orthogonal pair classes of modules. Let M be a module. If
M satisfies Condition (C1), then M = A⊕B with A ∈ A and B ∈ B.

Proof. By Zorn’s Lemma, M has a submodule A maximal with the property A ∈ A.
Since A is closed under essential extensions, A is closed submodule of M. Hence A is a direct
summand of M because M satisfies Condition (C1). Applying the same argument to B, we get
that B = C ⊕ D where C is maximal with the property C ∈ B. Assume that D 6= 0. Since
D /∈ B, D contains a non-zero submodule Z ∈ A, a contradiction to the maximality of A.
Therefore D = 0, and hence M = A⊕B with A ∈ A and B ∈ B.

Definition 1.4.5. Let M be an R-module. Then M is said to be square-free if it does not
contain a direct sum of two non-zero isomorphic submodules. The module M is called a square-
full module if every non-zero submodule N o M contains a non-zero submodule K such that
K2 embeds in N.

Theorem 1.4.6. A quasi-continuous module M decomposes as a direct sum M = M1 ⊕M2

where M1 is square-free, M2 is square-full and M1 is orthogonal to M2. Moreover, M2 is quasi-
injective.

Lemma 1.4.7. If M is a quasi-continous, then idempotents modulo ∆ can be lifted.

Proof. Let a+∆ be an idempotent of End(M)/∆. Then a2−a ∈ ∆. Set K = Ker(a2−a).
Since aK ∩ (1− a)K = 0 and M is quasi-continuous, then there exist two submodules M1,M2

of M such that M = M1⊕M2, aK ≤M1 and (1−a)K ≤M2. Let e be the canonical projection
from M1⊕M2 to M1. Then (e−a)K ≤ (e−a)aK+(e−a)(1−a)K = 0. Furthermore, K ≤e M.
Hence e− a ∈ ∆, which completes the proof.
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Corollary 1.4.8. Let M be a quasi-continuous module. Then any family of orthogonal idempo-
tents of S = End(M)/∆ can be lifted to a family of orthogonal idempotents of S = End(M).

Lemma 1.4.9. 1. If (gj)j∈J and (fi)i∈I are both summable, then so is (gjfi)J×I .

2. If (gi)i∈I is summable, and (fi)i∈I is finitely valued, that is, {fi(m)|i ∈ I} is finite for each
m ∈M, then (gifi)i∈I is summable.

3. If (gi)i∈I and (fi)i∈I are both summable and gi ≡ fi (modulo ∆) for all i ∈ I, then∑
gi ≡

∑
fi.

Proof. For m ∈M, set F (m) = {i|fi(m) 6= 0} and G(m) = {j|gj(m) 6= 0} .
(1) If gjfi(m) 6= 0, then fi(m) 6= 0, and therefore i ∈ F (m), as well as j ∈ G(fi(m)). Since

g(fi(m)) ⊆ ∪k∈F (m)G(fk(m)), which is finite. Hence gjfi is summable.
(2) Let {fi(m)|i ∈ I} = {u1, . . . , ut} , ui ∈ M. If gifi(m) 6= 0, then i ∈ G(fi(m)) ⊆⋃t

k=1G(uk), which is finite. Hence gjfi is summable.
(3) Without loss of generality, we may assume that gi = 0, that is, fi ∈ ∆. Let 0 6= m ∈M.

Then ∩i∈F (m) Ker fi ≤e M, and hence the intersection contains 0 6= mr for some r ∈ R. Since
fi(m) = 0 for all i /∈ F (m), we get that mr ∈ ∩i∈I Ker fi. This gives that ∩i∈I Ker fi ≤e M.
Because

∑
fi(∩i∈I Ker fi) = 0, it follows that

∑
fi ∈ ∆.

Proposition 1.4.10. If M is continuous, then S/∆ is a Von Neumann regular ring and ∆
equals the Jacobson radical J of S.

Proof. Let α ∈ S and let L be a complement of K = Kerα. By Condition (C1), L ≤⊕ M .
Since α|L is a monomorphism, αL ≤⊕ M by Condition (C2). Hence there exists β ∈ S such that
βα = 1L. Then (α − αβα)(K ⊕ L) = (α − αβα)L = 0, and so K ⊕ L ≤ Ker(α − αβα). Since
K ⊕ L ≤e M , α − αβα ∈ ∆. Therefore S/∆ is a Von Neumann regular ring. This also proves
that J ≤ ∆.

Let a ∈ ∆. Since ker a∩ker(1−a) = 0 and ker a ≤e M , ker(1−a) = 0. Hence (1−a)M ≤⊕ M
by Condition (C2). However (1− a)M ≤e M since ker a ≤ (1− a)M Thus (1− a)M = M , and
therefore 1− a is a unit in S. It then follows that a ∈ J , and hence ∆ ≤ J. A ring R is said

to be reduced if R has no non-zero nilpotent elements.

Lemma 1.4.11. Let M be a square free module. Then End(M)/∆ is reduced. In particular, all
idempotents of End(M)/∆ are central.

Proof. It suffices to show that if α ∈ S such that α2 ∈ ∆, then α ∈ ∆. Let L be
a complement of kerα in M . Then kerα ⊕ L ≤e M . Since kerα ∩ L = 0, we obtain that
kerα2 ∩ L ∼= α(kerα2 ∩ L) ≤ Kerα. Because M is square free, kerα2 ∩ L = 0, and hence L = 0
because kerα2 ≤e M. Thus kerα ≤e M , that is, α ∈ ∆.

Let e be an idempotent of End(M) and a ∈ End(M). We have (ea(1−e))2 = ea(1−e)ea(1−
e) = 0 because e2 = e. Since End(M) is reduced, we get that ea(1 − e) = 0, that is, ea = eae.
By a similar argument, we also deduce that ae = eae. It follows that ea = ae, and hence e is
central. This completes the proof.
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Theorem 1.4.12. Every continuous module has the exchange property.

Proof. By 1.4.6, 1.1.10 and 1.2.9, it suffices to prove the exchange property for a square-
free continuous module M. By 1.4.11, all idempotents of S = S/∆ are central. Furthermore,
J(R) = ∆ and S is von Neumann regular by 1.4.10.

We establish the result by verifying (3) of 1.4.2. Let I be a set of ordinals, and fi ∈ S (i ∈ I)
be a summable family with

∑
fi = 1. Since S is von Neumann regular, there exists αi ∈ S such

that fi ≡ fiαifi (modulo ∆). Let hi = αifi. Then (hi)i ∈ I is a summable family and the hi are
central idempotents in S.

We define inductively γk = (1 −
∑

i<k γi)hk ∈ Sfk. By induction, we see that the γk are
well defined, summable, and are orthogonal idempotents modulo ∆. By 1.4.8, the γk lift to
orthogonal idempotents γk ∈ S. Now

hk = γk + (
∑
i<k

γi)hk ≡ γk + hk
∑
i<k

γi.

By 1.4.9, we have

1 =
∑
k

fk ≡
∑
k

fkhk

≡
∑
k

(γk + hk
∑
i<k

γi)

≡
∑
k

(fkγk + fk
∑
i<k

γi)

=
∑
k

∑
i≤k

fkγi

=
∑
i

∑
k≥i

fkγi.

Let ϕi =
∑

k≥i fk. Then 1 ≡
∑

i ϕiγi ≡
∑

i giϕiγi. Thus
∑
giϕiγi = 1 + x for some x ∈ ∆, so

that
∑

i(1 + x)−1giϕiγi = 1 =
∑

i giϕiγi(1 + x)−1. Hence M = ⊕igiM, and M = (1 + x)−1M =
⊕i(1 + x)−1giM.

Let (ei)i∈I be the canonical projections of M with respect to the decomposition M = ⊕(1 +
x)−1giM. Since

∑
i(1 + x)−1giϕiγi = 1, we get that ei = (1 + x)−1giϕiγi ∈ Sfi for all i ∈ I. By

(3) of 1.4.2, M has the exchange property.

1.5 Morita equivalent rings

Definition 1.5.1. A category C consists of:

1. A class object Ob(C), whose elements will be called the objects of C;
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2. For each pair (A,B) of objects of C, a set Hom(A,B), whose elements will be called
morphisms of A to B;

3. For each triple (A,B,C) of objects of C, a mapping

◦ : HomC(B,C)×HomC(A,B)→ HomC(A,C),

called composition .

Definition 1.5.2. Let C,D be categories. A functor F : C → D assigns to every object C ∈
Ob(C) an object F (C) ∈ Ob(D), and to every morphism f : C → C ′ in C a morphism F (f) :
F (C)→ F (C ′) in D, and the following axioms are satisfied:

1. If f : C1 → C2 and g : C2 → C3 are morphisms in C, then

F (g ◦ f) = F (g) ◦ F (f);

2. F (1C) = 1F (C) for every C ∈ Ob(C).

Definition 1.5.3. Let C and D be arbitrary categories. Then a functor F : C → D is a category
equivalence if there is a functor G : D → C and natural isomorphisms GF ∼= 1C and FG ∼= 1D.

We say that two categories are equivalent if there exists a category equivalence from one to
the other. We write C ≈ D in case C and D is equivalent.

Definition 1.5.4. Let R and S be two rings. We say that R is Morita equivalent to S if
Mod-R ≈ Mod-S.

Proposition 1.5.5. Let R,S be two rings and F : Mod-R→ Mod-S be a category equivalence.
Then a sequence

0 −−−−→ M1
f−−−−→ M2

g−−−−→ M3 −−−−→ 0

is (split) exact in Mod-R if and only if the following sequence

0 −−−−→ F (M1)
F (f)−−−−→ F (M2)

F (g)−−−−→ F (M3) −−−−→ 0

is (split) exact in Mod-S.

Proposition 1.5.6. Let R,S be two rings and F : Mod-R→ Mod-S be a category equivalence.
Then

1. A pair (M, (πα)α∈A) is a direct product of (Mα)α∈A if and only if (F (M), (F (πα))α∈A) is
a direct product of (F (Mα))α∈A.

2.

3. A pair (M, (jα)α∈A) is a direct sum of (Mα)α∈A if and only if (F (M), (F (jα))α∈A) is a
direct sum of (F (Mα))α∈A.
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4. An R-module M is N -projective (N -injective) if and only if F (M) is F (N)-projective
(F (N)-injective).

5. An R-module M is projective (injective) if and only if F (M) is projective (injective).

6. A monomorphism (epimorphism) f : M → M ′ is essential (superfluous) if and only if
F (f) : F (M)→ F (M ′) is essential (superfluous).

7. f : M →M ′ is a projective cover (injective envelope) if and only if F (f) : F (M)→ F (M ′)
is a projective cover (injective envelope).

8. An R-module M is simple (semisimple, finitely generated, artinian, noetherian, indecom-
posable) if and only if F (M) is simple (semisimple, finitely generated, artinian, noetherian,
indecomposable).

9. Two modules M and F (M) have the same composition length.

1.6 Singular modules and right SI-rings

Definition 1.6.1. Let M be a right R-module. An element m ∈ M is said to be a singular
element of M if the right annihilator ann(m) is essential in RR. Denote the set of all singular
element of M by Z(M).

Proposition 1.6.2. Let M be a right R-module. Then

1. Z(M) is a submodule, called the singular submodule of M.

2. Z(M).soc(RR) = 0, where soc(RR) is the socle of RR.

3. If f ∈ HomR(M,N), then f(Z(M)) ≤ Z(N).

4. If M ≤ N, then Z(M) = Z(N) ∩M.

Definition 1.6.3. 1. A module M is singular if Z(M) = M.

2. A module M is nonsingular if Z(M) = 0.

3. A ring R is right nonsingular if Z(RR) = 0.

4. A ring R is right SI if every singular right R-module is injective.

Proposition 1.6.4. [Goo72, Proposition 3.3] If R is a right SI ring, then:

1. Rad(RR) ≤ Soc(RR).

2. Rad(RR)2 = 0.

3. I2 = I for all essential right ideals of R.
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4. R is right hereditary.

Theorem 1.6.5. [Goo72, Theorem 3.6] Let R be a right SI ring. Then R
Soc(RR) is a right

noetherian ring

Theorem 1.6.6. [Goo72, Theorem 3.11] Let R be a ring. Then R is right SI if and only if R
is isomorphic to K ×R1× · · · ×Rn such that K/soc(KK) is semisimple artinian and each Ri is
Morita equivalent to a right SI-domain.

1.7 Semiartinian modules and right semiartinian rings

Let M be a right R-module. The Loewy series (or socle series) of M is the ascending chain of
submodules

0 = S0(M) ⊆ S1(M) ⊆ S2(M) ⊆ · · · ⊆ Sα(M) ⊆ . . .

where, for each ordinal α ≥ 0, Sα+1(M)/Sα(M) = soc(M/Sα(M)), and, if α is a limit ordinal,
then Sα(M) = ∪0≤β<αSβ(M). Note that the Loewy series is always stationary, that is, for every
module M there exists an ordinal α such that Sα(M) = Sβ(M) for every β ≥ α ( for instance,
let α be any ordinal whose cardinality is greater than the cardinality of M).

Definition 1.7.1. A module M is semiartinian if every factor of M has essential socle.

Theorem 1.7.2. Let M be a right R-module. The following conditions are equivalent:

1. M is semiartinian.

2. Every factor of M has non-zero socle.

3. Sλ(M) = M for some ordinal λ ≥ 0.

Proposition 1.7.3. Let M be a noetherian right R-module. If M is semiartinian, then M is
artinian.

Definition 1.7.4. A ring R is said to be right semiartinian if RR is semiartinian.

Theorem 1.7.5. A ring R is right semiartinian if and only if every right R-module is semiar-
tinian.

Proof. (⇐) : Obvious.
(⇒) : By [DHSW94, 3.12]
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Chapter 2

Cyclically presented modules,
projective covers and factorizations

2.1 Preliminaries

Definition 2.1.1. An R-module MR is said to be cyclically presented if MR
∼= R/aR for some

a ∈ R.

For the rest of this section, we will review some results in [AAF08]

Remark 2.1.2. The endomorphism ring of a non-zero cyclically presented module R/aR is canon-
ically isomorphic to E/aR where E = {r ∈ R|ra ∈ aR} is the idealizer of aR and the right ideal
aR turns out to be an ideal in the subring E of R.

Theorem 2.1.3. Let a be a non-zero non-invertible element of a local ring R and E be the
idealizer of aR. Let I = {r ∈ R|ra ∈ aJ(R)} and K = J(R) ∩ E. Then I and K are completely
prime ideals of E containing aR, the union (I/aR) ∪ (K/aR) is the set of all non-invertible
elements of the endomorphism ring E/aR of R/aR, and every proper right ideal of E/aR and
every proper left ideal of E/aR is contained either in I/aR or in K/aR. Moreover, exactly one
of the following two conditions hold:

1. Either the ideals I and K are comparable, so that E/aR is a local ring with maximal ideal
(I/aR) ∪ (K/aR), or

2. I and K are not comparable, J(E/aR) = (I ∩K)/aR, and (E/aR)
J(E/aR) is canonically isomor-

phic to the direct product of the two division rings E/I and E/K.

Proof. Set K = J(R) ∩ E. Then K is an ideal of E because K is the intersection of the
maximal ideal J(R) of R with the subring E of R. We conclude that K is a proper, completely
prime ideal of E containing aR thanks to the fact that E/K is a subring of the division ring
R/J(R).
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Consider the morphism ϕ : E → End(aR/aJ(R)) that sends an element r ∈ E to the
endomorphism ϕ(r) of the right R-module aR/aJ(R) defined by ϕ(r)(x+ aJ(R)) = rx+ aJ(R)
for every x ∈ aR. Set I = Kerϕ. Then E/I is isomorphic to a subring of the division ring
End(aR/aJ(R)), so that I is a proper, completely prime ideal of E containing aR. Hence I/aR
and K/aR are proper ideals of E/aR. In particular, all the elements of (I/aR) ∪ (K/aR) are
non-invertible elements of E/aR. Conversely, let r /∈ I ∪K be an element of E, so tha there is
a commutative diagram

0 −−−−→ aR −−−−→ R −−−−→ R/aR −−−−→ 0y y y
0 −−−−→ aR −−−−→ R −−−−→ R/aR −−−−→ 0

in which the vertical arrows are the morphisms induced by left multiplication by r.

Since r /∈ K = J(R)∩E and r ∈ E, it follows that r /∈ J(R), so that r is invertible in R. This
gives that the vertical arrow in the middle is an isomorphism, and hence the vertical arrow on
the right is an epimorphism. As r /∈ I, the vertical arrow on the left is an epimorphism. By the
Snake Lemma, the vertical arrow on the right is injective, and hence it is an automorphism of
R/aR. It follows that r + aR is invertible in the endomorphism ring E/aR of R/aR. Therefore
(I/aR) ∪ (K/aR) is exactly the set of all non-invertible elements of E/aR.

Thus every proper right or left ideal L/aR of E/aR is contained in (I/aR)∪(K/aR). If there
exist x ∈ L\I and y ∈ L\K, then x+ y ∈ L, x ∈ K and y ∈ I. Thus x+ y /∈ I and x+ y /∈ K, so
that x+ y /∈ I ∪K, which contradicts the fact that x+ y ∈ L. Therefore L is contained either in
I or in K. In particular, the unique maximal right ideals of E/aR are at most I/aR and K/aR.
Similarly, the unique maximal left ideals of E/aR are at most I/aR and K/aR.

If I and K are comparable, then (I/aR) ∪ (K/aR) is the unique maximal right (and left)
ideal of E/aR. If I and K are not comparable, then E/aR has exactly two maximal right ideals
I/aR and K/aR, so that J(E/aR) = (I ∩K)/aR, and there is a canonical injective morphism
π : (E/aR)/J((E/aR)) → E/I × E/K. Since I and K are incomparable maximal ideal of E,
we get that I +K = E, and hence π is surjective thanks to the Chinese Remainder Theorem.

Lemma 2.1.4. Let R be a local ring and r, s be two elements of R. Then R/rR ∼= R/sR if and
only if there are invertible elements u, v of R such that urv = s.

Proof. Assume that there are invertible elements u, v ∈ R such that urv = s. Define a
morphism f : R → R/urR via f(x) = ux + urR. It is clear that f is onto and Ker f = rR.
Hence R/rR ∼= R/urR. Moreover, urR = sv−1R = sR. Therefore R/rR ∼= R/sR.

Conversely, let f : R/rR→ R/sR be an isomorphism. Then there is an element u ∈ R such
that left multiplication by u is a morphism RR → RR that induces the isomorphism f. Since
f is onto, we have R = uR + sR. If s is invertible, so is r. Set u = r−1, v = s. Then u, v are
invertible and urv = s. If s is not invertible, then u is invertible. Thus we have a commutative
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diagram with exact rows

0 −−−−→ rR −−−−→ R −−−−→ R/rR −−−−→ 0

u|rR
y u

y f

y
0 −−−−→ sR −−−−→ R −−−−→ R/sR −−−−→ 0

Applying the Snake Lemma, we have an exact sequence

Ker f −−−−→ Coker(u|rR) −−−−→ Cokeru.

Because f is an isomorphism and u is invertible, Ker f = Cokeru = 0, so that Coker(u|rR) = 0.
Hence urR = sR. By [Kap49, Lemma 2.1], there is an invertible element v ∈ R with urv = s.

The following corollary is immediate.

Corollary 2.1.5. Let R be a local ring and r, s be two elements of R. Then R/rR ∼= R/sR if
and only if R/Rr ∼= R/Rs.

Definition 2.1.6. Two m×n matrices A and B over a ring R are said to be equivalent if there
exist an m×m invertible matrix P and an n× n invertible matrix Q such that A = PBQ.

Definition 2.1.7. 1. Let A,B be two modules. We say that A and B have the same epigeny
class and write [A]e = [B]e if there are an epimorphism from A to B and an epimorphism
from B to A.

2. Let R be a local ring. Two cyclically presented modules R/aR and R/bR have the same
lower part and write [R/aR]l = [R/bR]l if there are r, s ∈ R such that raR = bR and
sbR = aR.

3. For cyclically presented left modules over a local ring, we say that R/Ra and R/Rb have
the same lower part, and write [R/Ra]l = [R/Rb]l if there are r, s ∈ R such that Rar = Rb
and Rbs = Ra.

Remark 2.1.8. The unique cyclically presented module, up to isomorphism, with the same
epigeny class as 0 is 0, and RR is the unique cyclically presented module, up to isomorphism,
with the same epigeny class as RR. Similarly for the lower part. Note that, if a, b are elements
of a local ring R, then [R/aR]e = [R/bR]e if and only if there are u, v ∈ U(R) with ua ∈ bR and
vb ∈ aR, if and only if there are u, v ∈ U(R) and r, s ∈ R with ua = br and vb = as. Moreover,
for a, b ∈ R, [R/aR]l = [R/bR]l if and only if there are u, v ∈ U(R) and r, s ∈ R with au = rb
and bv = sa.

Lemma 2.1.9. Let a, b be elements of a local ring R. Then R/aR ∼= R/bR if and only if
[R/aR]l = [R/bR]l and [R/aR]e = [R/bR]e.
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Proof. Assume that [R/aR]l = [R/bR]l and [R/aR]e = [R/bR]e. Then there exist two
invertible elements u, v ∈ R and two elements r, s ∈ R with ua = br, sa = bv. If either r or
s is invertible, then R/aR ∼= R/bR by 2.1.4. Hence we may suppose that both r and s are in
J(R), in which case u+ s and r + u are invertible. Because (u+ s)a = b(r + v), we obtain that
R/aR ∼= R/bR by 2.1.4.

The converse follows from 2.1.4.

Corollary 2.1.10. Let a, b be elements of a local ring R. Then:

1. [R/aR]l = [R/bR]l if and only if [R/Ra]e = [R/Rb]e.

2. [R/aR]e = [R/bR]e if and only if [R/Ra]l = [R/Rb]l.

Proof. (1) [R/aR]l = [R/bR]l if and only if there are r, s ∈ R and u, v ∈ U(R) such that
ra = bu and sb = av. if and only [R/Ra]e = [R/Rb]e.

(2) is exactly (1) applied to the opposite ring Rop of R.

Proposition 2.1.11. Let R be a local ring. If R is either a commutative ring, or a chain ring,
or it it has the acc on principal right ideals, or it has the dcc on principal right ideals, or J(R)
is nil, then [R/aR]e = [R/bR]e implies that R/aR ∼= R/bR for every a, b ∈ R.

Proof. Case 1 : R is a chain ring. The proof is given in the proof of [Fac10, Theorem 9.19].
Case 2 : R is a commutative ring. Since [R/aR]e = [R/bR]e, it follows that R/aR and R/bR

have the same annihilator, so that aR = bR.
Case 3 : R has the acc on principal right ideals or it has the dcc on principal right ideals

or its Jacobson radical J(R) is nil. Let a, b ∈ R be two elements such that [R/aR]e = [R/bR]e.
Assume that R/aR � R/bR. By 2.1.8, both a and b are non-zero and in J(R).

[R/aR]e = [R/bR]e and R/aR � R/bR imply that R/aR has an endomorphism which is epi
but not mono. Hence there is an element u ∈ U(R) with uaR ⊆ aR and aR ⊂ u−1aR, so that
uaR ⊂ aR. Multiplying by the unit un for some arbitrary integer n, we obtain that un+1aR ⊂
unaR. Thus {unaR|n = 1, 2, . . . } is a strictly descending chain and {unaR|n = −1,−2, . . . } is
a strictly ascending chain. It follows that R does not have the dcc and the acc on principal
right ideals, which implies that J(R) is nil. Now uaR ⊂ aR implies that ua = ar for some
r ∈ J(R). Hence una = arn for every positive integer n. Since una 6= 0, we get that rn 6= 0,
which contradicts the fact that J(R) is nil. This proves that R/aR ∼= R/bR.

From 2.1.10, we immediately obtain the following result:

Corollary 2.1.12. Let R be a local ring. If R is either a commutative ring, or a chain ring, or
it it has the acc on principal right ideals, or it has the dcc on principal right ideals, or J(R) is
nil, then [R/aR]l = [R/bR]l implies that R/aR ∼= R/bR for every a, b ∈ R.

Proposition 2.1.13. Let a, c1, . . . , cn (n ≥ 2) be non-invertible elements of a local ring R. If
R/aR is a direct summand of R/c1R⊕· · ·⊕R/cnR and R/aR � R/ciR for every i = 1, 2, . . . , n,
then there are two distinct indices i, j = 1, . . . , n such that [R/aR]l = [R/ciR]l and [R/aR]e =
[R/cjR]e.
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Proof. Since R/aR is a direct summand of R/c1R⊕ · · · ⊕R/cnR and R/aR � R/ciR for
every i = 1, 2, . . . , n, it follows that the endomorphism ring of R/aR is not local. Let ε : R/aR→
R/c1R ⊕ · · · ⊕ R/cnR and π : R/c1 ⊕ · · · ⊕ R/cnR → R/aR be morphisms with the composite
mapping πε = 1R/aR. Then there are elements r1, . . . , rn, s1, . . . , sn ∈ R with ria ∈ ciR and
sici ∈ aR whose residue classes are the entries of the matrices representing ε and π, that is, such
that

(s1 . . . sn)

 r1
...
rn

− 1 ∈ aR

Note that siria ∈ siciR ⊆ aR, so that siri ∈ E, the idealizer of aR. Hence
∑n

i=1 siri − 1 ∈
aR ⊆ I, so that

∑n
i=1 siri /∈ I, and therefore there exists an index i with siri /∈ I. Similarly,∑n

i=1 siri − 1 ∈ K, so that there is an index j with sjrj /∈ K. Assume that i = j. Then
siri /∈ I ∪ K, so that siri represents an invertible element of the endomorphism ring E/aR
of R/aR. Thus there are morphisms R/aR → R/ciR and R/ciR → R/aR whose composition
is an automorphism of R/aR. It follows that R/aR is isomorphic to a direct summand of
⊕ni=1R/ciR. Because both R/aR and R/ciR have dual Goldie dimension one, R/aR and R/ciR
are isomorphic, a contradiction. This proves that i 6= j.

Since siri ∈ E\I, siria ∈ aR\aJ(R), so that siriaR = aR. Furthermore, riaR ⊆ ciR.
Assume that riaR ⊂ ciR. Then riaR ⊆ ciJ(R). Hence aR = siriaR ⊆ siciJ(R) ⊆ aJ(R), a
contradiction. Therefore riaR = ciR. Similarly, siciR = aR. This gives [R/aR]l = [R/ciR]l.

Similarly, sjrj ∈ E\K implies that sjrj /∈ J(R), so that sj , rj /∈ J(R). Hence [R/aR]e =
[R/cjR]e.

We say that a ring R is semilocal if R/J(R) is semisimple.

Lemma 2.1.14. Let R be a local ring and a, b, c be non-invertible elements of R. Assume that
[R/aR]l = [R/bR]l and [R/aR]e = [R/cR]e. Then:

1. There exists a module D such that R/aR⊕D ∼= R/bR⊕R/cR.

2. The module D in (1) is unique up to isomorphism and is cyclically presented.

3. [D]l = [R/cR]l and [D]e = [R/bR]e.

Proof. Since [R/aR]l = [R/bR]l, there exists r, s ∈ R such that raR = bR and sbR = aR.
Because [R/aR]e = [R/cR]e, there are r′, s′ ∈ U(R) with r′a ∈ cR and s′c ∈ aR. If one of the
elements a, b, c is zero, then so are the others. Hence the statement is trivial. So we may suppose
that a, b, c are all non-zero.

(1) If r is invertible, then raR = bR implies that ra = bv for some invertible element v by
[Kap49, Lemma 2.1]. Hence R/aR ∼= R/bR by 2.1.4. It suffices to take D = R/cR in this case.
Now we may suppose r ∈ J(R), and so both rs and sr are in J(R). Then sr belongs to the ideal
K of the idealizer E of aR, but not to the ideal I.

If r′aR = cR, then there exists a unit u ∈ R with r′au = c, so that R/aR ∼= R/cR by 2.1.4.
It is sufficient to take D = R/bR in this case. Thus we may suppose r′aR ⊆ cJ(R). Therefore
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s′r′aR ⊆ aJ(R). It follows that s′r′ belongs to the ideal I of the idealizer E of aR, but not to
the ideal K.

Now matrix muliplication

R

 r
r′


−−−−−→ R⊕R

(
s s′

)
−−−−−−−→ R

induces morphisms
R/aR −−−−→ R/bR⊕R/cR −−−−→ R/aR,

whose composite mapping is the endomorphism ofR/aR given by left multiplication by sr+s′r′ /∈
I ∪K. Hence this composite mapping is an automorphism of R/aR, so that R/aR is isomorphic
to a direct summand of R/bR⊕R/cR.

(2) If R/aR⊕D ∼= R/bR⊕RcR and R/aR⊕D′ ∼= R/bR⊕R/cR, then R/aR⊕D ∼= R/aR⊕D′.
Hence D ∼= D′ because the endomorphism ring of R/aR is semilocal, and therefore R/aR cancels
from direct sums [Fac10, Corollary 4.6]. This proves that D is unique up to isomorphism.

AssumeR/aR⊕D ∼= R/bR⊕R/cR. ThenD is finitely generated. Moreover,R/aR,R/bR,R/cR
are right vector spaces of dimension one over the division ring R/J(R). Hence D/DJ(R) is also a
one dimensional right vector space over R/J(R). By Nakayama’s Lemma, D is cyclic. Therefore
D ∼= R/T. Now there are exact sequences

0 −−−−→ bR⊕ cR −−−−→ R⊕R −−−−→ R/bR⊕R/cR −−−−→ 0

0 −−−−→ aR⊕ T −−−−→ R⊕R −−−−→ R/aR⊕D −−−−→ 0

Since R/aR⊕D ∼= R/bR⊕R/cR, Schanuel’s Lemma implies that bR⊕ cR ∼= aR⊕ T. It follows
that T is finitely generated. Moreover, aR, bR and cR are one-dimiensional over R/J(R), so
that T/TJ(R) also is one-dimensional. By Nakayama’s Lemma, T is cyclic. This proves that
D ∼= R/T is cyclically presented.

(3) If D ∼= R/cR, then R/aR ∼= R/bR and hence [D]e = [R/cR]e = [R/aR]e = [R/bR]e and
[D]l = [R/cR]l. Similarly, the statement holds in the case D ∼= R/bR. Therefore we may assume
that D is not isomorphic to R/bR and R/cR.

By 2.1.13, [R/bR]e = [R/aR]e or [R/bR]e = [D]e. If [R/bR]e = [R/aR]e, then R/aR ∼= R/bR,
so that R/cR ∼= D, a contradiction. Hence [R/bR]e = [D]e. Similarly, [R/cR]l = [D]l.

Theorem 2.1.15. Let a1, . . . , an, b1, . . . , bt be non-invertible elements of a local ring R. Then
R/a1R⊕· · ·⊕R/anR ∼= R/b1R⊕· · ·⊕R/btR if and only if n = t and there are two permutations
σ, τ of {1, 2, . . . , n} such that [R/aiR]l = [R/bσ(i)R]l and [R/aiR]e = [R/bτ(i)R]e for every
i = 1, 2, . . . , n.

Proof. (⇒) : If a is not invertible, R/aR is couniform, that is, has dual Goldie dimension
one. If R/a1R⊕ · · · ⊕R/anR ∼= R/b1R⊕ · · · ⊕R/btR, then n = t.

For the existence of the permutation σ and τ, we argue by induction on n. The case n = 1 is
trivial. Assume that R/aiR is isomorphic to one of the R/bjR’s. We can cancel the isomorphic
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modules R/aiR and R/bjR because they have semilocal endomorphism rings. Now we can clearly
proceed by induction. Hence we can assume that for every i, j = 1, 2, . . . , n, R/aiR is not
isomorphic to R/bjR. In particular, the endomorphism rings of R/aiR and R/biR are not local.

Since R/a1R is isomorphic to a direct summand of R/b1R⊕· · ·⊕R/bnR, by 2.1.13,there exist
two distinct indeces i, j = 1, 2, . . . , n such that [R/a1R]l = [R/biR]l and [R/a1R]e = [R/bjR]e.
Applying 2.1.14 to the three cyclically presented modules R/a1R,R/biR,R/bjR, we can find
a cyclically presented module R/dR, unique up to isomorphism, such that R/a1R ⊕ R/dR ∼=
R/biR ⊕ R/bjR, [R/dR]l = [R/bjR]l and [R/dR]e = [R/biR]e. Hence R/a1R ⊕ · · · ⊕ R/anR ∼=
R/b1R⊕ · · ·⊕R/bnR ∼= R/a1R⊕R/dR⊕ (⊕k∈{1,2,...,n}\{i,j}R/bkR). It follows that R/a2⊕ · · ·⊕
R/anR ∼= R/dR ⊕ (⊕k∈{1,2,...,n}\{i,j}R/bkR). Now we deal with direct sums of n − 1 cyclically
presented modules, and again we can conclude by induction.

(⇐) : We argue by induction on n = t. The case n = t = 1 is obvious. Assume that
a1, . . . , an, b1, . . . , bn are non-invertible elements of R and there are two permutations σ, τ of
{1, 2, . . . , n} with [R/aiR]l = [R/bσ(i)R]l and [R/aiR]e = [R/bτ(i)R]e for every i. If σ(1) =
τ(1), then R/a1R ∼= R/bσ(1)R. Thus σ and τ, induce two bijections from {2, 3, . . . , n} to
{1, 2, . . . , n} \ {σ(1)} , with the same properties as σ and τ. Now, by induction, R/a2R ⊕ · · · ⊕
R/anR ∼= ⊕j∈{1,2,...,n}\{σ(1)}R/bjR.

Hence we can suppose σ(1) 6= tau(1). Applying 2.1.14, we obtain that there exists a cyclically
presented module R/a0R, unique up to isomorphism, such that R/a1R⊕R/a0R ∼= R/bσ(1)R⊕
R/bτ(1)R, [R/a0R]l = [R/bτ(1)R]l and [R/a0R]e = [R/bσ(1)R]e. That is, the modules R/a1R,
R/a0R and the modules R/bσ(1), R/bτ(1)R have the same lower parts and the same epigeny
classes, counting multiplicities. The modulesR/a0R,R/a1R, . . . , R/anR and the modulesR/a0R,
R/b1R, . . . , R/bnR have the same lower parts and the same epigeny classes as well, so that the

modulesR/a2R,R/a3R, . . . , R/anR and the modulesR/a0R,R/b1R, . . . , ̂R/bσ(1)R, . . . , ̂R/bτ(1)R,
. . . , R/bnR have the same lower parts and the same epigeny classes. By the inductive hy-
pothesis, R/a2R ⊕ R/a3R ⊕ · · · ⊕ R/anR ∼= R/a0R ⊕ (⊕j∈{1,2,...,n}\{σ(1),τ(1)}R/bjR). Thus
R/a0R⊕R/b1R⊕· · ·⊕R/bnR ∼= R/a2R⊕R/a3R⊕· · ·⊕R/bσ(1)R⊕R/bτ(1)R ∼= R/a0R⊕R/a1R⊕
R/a2R⊕ · · · ⊕R/anR. It follows that R/b1R⊕ · · · ⊕R/bnR ∼= R/a1R⊕R/a2R⊕ · · · ⊕R/anR.

Proposition 2.1.16. Let R be a local ring and a1, . . . , an, b1, . . . , bt be non-zero non-inertible
elements of R. Then [R/a1R⊕ · · · ⊕R/anR]l = [R/b1R⊕ · · · ⊕R/btR]l if and only if n = t and
there is a permutation σ of {1, 2, . . . , n} such that [R/aiR]l = [R/bσ(i)R]l for every i = 1, 2, . . . , n.

Proposition 2.1.17. Let R be a local ring and MR, NR be finite direct sums of cyclically pre-
sented R-modules. Then MR

∼= NR if and only if [MR]l = [NR]l and [MR]e = [NR]e.

Proof. Assume that [MR]l = [NR]l and [MR]e = [NR]e. By hypothesis, we can write MR =
R/a1R ⊕ · · · ⊕ R/amR and NR = R/b1R ⊕ · · · ⊕ R/bnR with a1, . . . , ap, b1, . . . , bt ∈ J(R)\{0}
and ap+1 = · · · = am = bt+1 = · · · = bn = 0.

Applying [DF02, Theorem 2] to MR and NR, we find that the epigeny classes [R/aiR]e, i =
1, . . . ,m coincide with the epigeny classes [R/bjR]e, j = 1, . . . , n, counting mulitiplicity. Note
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that [R/aR]e 6= [RR]e for any a ∈ J(R)\{0}. Thus p = t,m = n and there exists a permutation
τ of {1, . . . , p} such that [R/aiR]e = [R/bτ(i)R]e for every i ∈ {1, . . . , p} .

Now we have [R/a1R⊕ · · · ⊕R/apR]l = [MR]l = [NR]l = [R/b1R⊕ · · · ⊕R/btR]l. Applying
2.1.16 to R/a1R⊕· · ·⊕R/apR and R/b1R⊕· · ·⊕R/btR, we obtain that there is a permutation
σ of {1, . . . , p} such that [R/aiR]l = [R/bσ(i)R]l for every i ∈ {1, . . . , p} . Hence, by 2.1.15, we
have R/a1R⊕ · · · ⊕R/apR ∼= R/b1R⊕ · · · ⊕R/btR. It follows that MR

∼= NR.

The material for the rest of this chapter is based on my joint paper with Alberto Facchini
and Daniel Smertnig [FDT14].

2.2 Factorization of elements

Let R be a ring. An element a ∈ R is left cancellative if, for all b, c ∈ R, ab = ac implies
b = c. Equivalently, a ∈ R is left cancellative if it is non-zero and is not a left zero-divisor. A
(non-necessarily commutative) ring R is a domain if every non-zero element is left cancellative
(equivalently, if every non-zero element is right cancellative). If a ∈ R, the right R-module
homomorphism λa : RR → aR, x 7→ ax, is an isomorphism if and only if a is left cancellative.
More precisely, aR ∼= RR if and only if there exists a left cancellative element a′ ∈ R with
a′R = aR. If a, a′ ∈ R are two left cancellative elements, then aR = a′R if and only if a = a′ε
for some ε ∈ U(R).

Let a, x1, . . . , xn ∈ R\U(R) be n+1 left cancellative elements and assume that a = x1 ·. . .·xn.
If ε1, . . . , εn−1 ∈ U(R), then obviously also a = (x1ε1) · (ε−1

1 x2ε2) · . . . · (ε−1
n−1xn). This gives an

equivalence relation on finite ordered sequences of left cancellative elements whose product is
a. More precisely, if Fa := { (x1, . . . , xn) | n ≥ 1, xi ∈ R \ U(R) is left cancellative for every
i = 1, 2, . . . , n and a = x1 · . . . · xn }, then the equivalence relation ∼ on Fa is defined by
(x1, . . . , xn) ∼ (x′1, . . . , x

′
m) if n = m and there exist ε1, . . . , εn−1 ∈ U(R) such that x′1 = x1ε1,

x′i = ε−1
i−1xiεi for all i = 2, . . . , n−1 and x′n = ε−1

n−1xn. We call an equivalence class of Fa modulo
∼ a factorization of a up to insertion of units. Notice that the factors need not be irreducible.
When this causes no confusion, we will simply call a representative of such an equivalence class
a factorization.

A factorization a = x1 · . . . · xn gives rise to an ascending chain of principal right ideals,
generated by left cancellative elements and containing aR:

aR ( x1 · . . . · xn−1R ( . . . ( x1R ( R,

hence to an ascending chain of cyclically presented submodules

0 = aR/aR ( x1 · . . . · xn−1R/aR ( . . . ( x1R/aR ( R/aR

of the cyclically presented R-module R/aR. Notice that x1 · . . . · xi−1R/aR ∼= R/xi · . . . · xnR is
cyclically presented because the elements xi are left cancellative.

The next lemma shows that, conversely, every chain of principal right ideals generated by left
cancellative elements in aR ⊂ R, determines a factorization of a into left cancellative elements,
which is unique up to insertion of units.
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Lemma 2.2.1. Let a ∈ R be a left cancellative element, aR = ynR ( yn−1R ( . . . ( y1R (
y0R = R be an ascending chain of principal right ideals of R, where y1, . . . , yn−1 ∈ R are left
cancellative elements, y0 = 1 and yn = a. For every i = 1, . . . , n, let xi ∈ R be such that
yi−1xi = yi. Then x1, . . . , xn are left cancellative elements and a = x1 · . . . · xn.

Moreover, if y′1, . . . , y
′
n−1 ∈ R are also left cancellative elements with y′iR = yiR, y′0 = 1

and y′n = a, and we similarly define x′i by y′i−1x
′
i = y′i for every i = 1, 2, . . . , n, then there exist

ε1, . . . , εn−1 ∈ U(R) such that x′1 = x1ε1, x′i = ε−1
i−1xiεi for all i = 2, . . . , n−1 and x′n = ε−1

n−1xn.

Proof. Assume that xi is not left cancellative for some i = 1, 2, . . . , n. Then there exists b 6= 0
such that xib = 0. Therefore yib = yi−1xib = 0. This is a contradiction because yi is left
cancellative. Notice that a = yn−1xn = yn−2xn−1xn = . . . = y0x1 . . . xn = x1 . . . xn.

Now if y′iR = yiR for every i = 1, . . . , n − 1, then there exists ε1, . . . , εn−1 ∈ U(R) such
that y′i = yiεi. Therefore y′i−1x

′
i = yi−1xiεi = y′i−1ε

−1
i−1xiεi. But y′i−1 is left cancellative, so that

x′i = ε−1
i−1xiεi for every i = 2, . . . , n− 1.

Moreover, y1 = y0x1 = x1 and, similarly, y′1 = x′1, so that y′1 = y1ε1 implies x′1 = x1ε1.
Finally, yn−1xn = yn = a = y′n = y′n−1x

′
n = yn−1εn−1x

′
n. Thus xn = εn−1x

′
n and x′n = ε−1

n−1xn.

We will characterize, in Lemmas 2.3.1 and 2.4.3, the submodules of cyclically presented mod-
ules MR that, under a suitable cyclic presentation π : RR →MR, that is, a suitable epimorphism
π : RR → MR, lift to principal right ideals of R generated by a left cancellative element. The
following lemma will prove to be helpful to this end.

Lemma 2.2.2. Let AR, BR,MR, NR be modules over a ring R, πM : AR →MR and πN : BR →
NR be epimorphisms, λ : BR → AR be a homomorphism and ε : NR →MR be a monomorphism
such that πMλ = επN , so that there is a commutative diagram

BR
λ−→ AR

πN ↓ ↓ πM
NR

ε
↪→ MR.

Then the following three conditions are equivalent:

(a) π−1
M (ε(NR)) = λ(BR).

(b) λ(ker(πN )) = ker(πM ).

(c) πM induces an isomorphism coker(λ)→ coker(ε).

If, moreover, A′R, B
′
R are right R-modules such that there exist isomorphisms ϕA : A′R → AR

and ϕB : B′R → BR, and one defines π′N := πNϕB, π′M := πMϕA and λ′ := ϕ−1
A λϕB, then the

three conditions (a), (b) and (c) are equivalent also to the the three conditions

(d) (π′M )−1(ε(NR)) = λ′(B′R).
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(e) λ′(ker(π′N )) = ker(π′M ).

(f) π′M induces an isomorphism coker(λ′)→ coker(ε).

Proof. (a) ⇔ (b): We have πMλ(BR) = επN (BR) = ε(NR). It follows that π−1
M (ε(NR)) =

λ(BR)+kerπM . Thus (a) is equivalent to kerπM ⊆ λ(BR). The inclusion λ(ker(πN )) ⊆ ker(πM )
always holds by the commmutativity of the diagram, so that b is equivalent to ker(πM ) ⊆
λ(ker(πN )). Thus (b) ⇒ (a) is trivial. Conversely, if (a) holds, and a ∈ ker(πM ), then a = λ(b)
for some b ∈ BR, so that 0 = πM (a) = πMλ(b) = επN (b). But ε is mono, so πN (b) = 0, and
a = λ(b) ∈ λ(ker(πN )).

(b)⇔ (c) Apply the Snake Lemma to the diagram

0 // ker(πN ) //

��
λ|ker
��

BR

λ
��

πN // NR

ε

��

// 0

0 // ker(πM ) // AR πM
//MR

// 0,

obtaining a short exact sequence

0 = ker(ε) // coker(λ|ker) // coker(λ) // coker(ε) // 0.

Therefore λ(ker(πN )) = ker(πM ) if and only if λ|ker is surjective, if and only if coker(λ|ker) = 0, if
and only if the epimorphism coker(λ)→ coker(ε) is injective, if and only if it is an isomorphism.

Now assume that there exist isomorphisms ϕA : A′R → AR and ϕB : B′R → BR and set
π′N := πNϕB, π′M := πMϕA and λ′ := ϕ−1

A λϕB. To conclude the proof, it suffices to show that
λ(ker(πN )) = ker(πM ) if and only if λ′(ker(π′N )) = ker(π′M ). This is true, since ker(π′M ) =
ϕ−1
A (ker(πM )) and

λ′(ker(π′N )) = λ′(ϕ−1
B (ker(πN ))) = ϕ−1

A λϕB(ϕ−1
B (ker(πN ))) = ϕ−1

A (λ(ker(πN ))).

2.3 π-exactness

Let MR be a cyclically presented right R-module and πM : RR →MR a cyclic presentation. We
introduce the notion of πM -exactness to characterize those submodules of MR that lift, via πM ,
to principal right ideals of R, generated by a left cancellative element of R. We give sufficient
conditions on R for this notion to be independent from the chosen presentation πM .
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Definition and Lemma 2.3.1 (π-exactness). Let NR ≤MR be cyclic right R-modules. Let FR ∼=
RR, fix an epimorphism πM : FR → MR and let ε : NR ↪→ MR denote the embedding. The
following conditions are equivalent:

(a) π−1
M (NR) ∼= RR.

(b) There exists a monomorphism λ : RR → FR and an epimorphism πN : RR → NR such that
λ(ker(πN )) = ker(πM ) and the following diagram commutes:

RR
λ //

πN
��

FR

πM
��

NR ε
//MR.

(2.1)

(c) There exists a monomorphism λ : RR → FR and an epimorphism πN : RR → NR such that
diagram (2.1) commutes and induces an isomorphism coker(λ)→ coker(ε).

If these equivalent conditions are satisfied, we call NR a textitπM -exact!submodules of MR.

Proof. (a) ⇒ (b). By (a), there exists an isomorphism λ0 : RR → π−1
M (NR). Let λ be the

composite mapping RR
λ0−→ π−1

M (NR) ↪→ FR and ε−1 : ε(NR) → NR be the inverse of the
corestriction of ε to ε(NR). Noticing that πMλ(RR) = ε(NR), one gets an onto mapping
πN := ε−1πMλ : RR → NR. Then diagram (2.1) clearly commutes and λ(RR) = π−1

M (NR).
The statement now follows from Lemma 2.2.2.

(b)⇔ (c) and (b)⇒ (a). By Lemma 2.2.2.

Corollary 2.3.2. Let FR ∼= RR and let πM : FR → MR be an epimorphism. If ϕ : F ′R → FR is
an isomorphism and NR ≤ MR, then NR is a πM -exact submodule of MR if and only if it is a
πMϕ-exact submodule of MR.

Proof. Let NR be a πM -exact submodule of MR and let λ : RR → FR be a monomorphism
satisfying condition (b) of Definition and Lemma 2.3.1. Apply Lemma 2.2.2 to BR = B′R = RR,
AR = FR, A′R = F ′R, ϕB = 1R and ϕA = ϕ. Setting λ′ := ϕ−1λ, it follows that λ′(ker(πN )) =
ker(πMϕ) and hence NR is a πMϕ-exact submodule of MR. The converse follows applying what
we have just shown to ϕ−1.

Corollary 2.3.3. Let NR ≤ MR be cyclic R-modules, πM : RR → MR be an epimorphism and
NR ≤ MR be a πM -exact submodule. Then MR/NR is cyclically presented with presentation
induced by πM .

Proof. Let λ : RR → RR be as in condition (c) of Definition and Lemma 2.3.1. Then MR/NR
∼=

RR/λ(RR), from which the conclusion follows immediately.
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Corollary 2.3.4. Let NR ≤ MR ≤ PR be cyclic R-modules and let πP : FR → PR be an
epimorphism, where FR ∼= RR. If MR ≤ PR is πP -exact and NR ≤ MR is πP |π−1

P (MR)-exact,

then NR ≤ PR is πP -exact.

Proof. Set F ′R := π−1
P (MR). By condition (a) of Definition and Lemma 2.3.1, F ′R

∼= RR. Therefore
the notion of πP |F ′R-exactness of NR in MR is indeed defined. Since π−1

P (NR) = (πP |F ′R)−1(NR) ∼=
RR, the claim follows.

Let c ∈ R be left cancellative and denote by L(cR,R) the set of all right ideals aR with a ∈ R
left cancellative and cR ⊂ aR ⊂ R. It is partially ordered by set inclusion. Let π : R → R/cR
be an epimorphism. Denote by Lπ(R/cR) the set of all π-exact submodules of R/cR. This set is
also partially ordered by set inclusion.

Lemma 2.3.5. Let c ∈ R be left cancellative and let π : RR → R/cR be the canonical epimor-
phism. Then π induces an isomorphism of partially ordered sets L(cR,R) ∼= Lπ(R/cR).

Proof. It suffices to show that NR ⊂ R/cR is π-exact if and only if there exists a left cancellative
a ∈ R with π−1(NR) = aR. But this is equivalent to π−1(NR) ∼= RR. The statement now follows
from condition Definition and Lemma (a) of 2.3.1.

The following example shows that, in general, the condition of π-exactness indeed depends
on the particular choice of the epimorphism π : RR →MR. We refer the reader to any of [MR03],
[Rei75] or [Vig80] for the necessary background on quaternion algebras.

Example 2.3.6. Let A be a quaternion algebra over Q and R be a maximal Z-order in A such
that there exists an unramified prime ideal P ⊂ R and maximal right ideals I, J of R with I, J ⊃
P, I principal and J non-principal. Then p = P∩Z is principal, say p = pZ with p ∈ P, P = pR,

R/P ∼= M2(Fp) and P = Ann(R/P). (E.g., take A =
(
−1,−11
Q

)
, R = Z〈1, i, 1

2(i + j), 1
2(1 + k)〉,

p = 3, I = Z〈12(1 + 5k), 1
2(i+ 5j), 3j, 3k〉 and J = Z〈12(1 + 2j + 3k), 1

2(i+ 3j + 4k), 3j, 3k〉).
The module R/P has a composition series (as an R/P- and hence as an R-module)

0 ( I/P ( R/P,

and there exists an isomorphism R/P → R/P mapping J/P to I/P, as is easily seen from
R/P ∼= M2(Fp). Therefore there exist epimorphisms πM : R → R/P and π′M : R → R/P with
π−1
M (I/P) = I and π′−1

M (I/P) = J . This implies that I/P is a πM -exact submodule of R/P that
is not π′M -exact.

However, under an additional assumption on RR, which holds, for instance, whenever R is a
semilocal ring, the notion is independent of the choice of π.

Lemma 2.3.7. Suppose that RR ⊕KR
∼= RR ⊕RR implies KR

∼= RR for all right ideals KR

of R.

1. If MR
∼= R/aR with a ∈ R left cancellative and πM : RR → MR is an epimorphism, then

there exists a left cancellative a′ ∈ R such that ker(πM ) = a′R.
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2. If MR is a cyclic R-module, πM : RR → MR and π′M : RR → MR are epimorphisms and
NR ≤ MR, then NR is a πM -exact submodule of MR if and only if it is a π′M -exact
submodule of MR.

Proof. (1) Let πaR : RR → R/aR, 1 7→ 1 + aR be the canonical epimorphism. Since a is left
cancellative, aR ∼= RR. Consider the exact sequences

0→ aR ↪→ RR
πaR−−→ R/aR→ 0

and
0→ ker(πM ) ↪→ RR

πM−−→ R/aR→ 0.

By Schanuel’s Lemma, RR ⊕ aR ∼= RR ⊕ ker(πM ), and hence by assumption aR ∼= ker(πM ).
Thus there exists a left cancellative a′ ∈ R with ker(πM ) = a′R.

(2) Let πM/N : MR → MR/NR be the canonical quotient module epimorphism. There are
exact sequences

0→ π−1
M (NR)→ RR

πM/NπM−−−−−−→MR/NR → 0

and

0→ π′−1
M (NR)→ RR

πM/Nπ
′
M−−−−−−→MR/NR → 0,

and by Schanuel’s Lemma therefore RR ⊕ π−1
M (NR) ∼= RR ⊕ π′−1

M (NR). If NR is a πM -exact
submodule of MR, then π−1

M (NR) ∼= RR and hence π′−1
M (NR) ∼= RR by our assumption on R,

showing that NR is a π′M -exact submodule. The converse follows by symmetry.

Suppose that R has invariant basis number (for all m,n ∈ N0, RmR
∼= RnR implies m = n).

Then the condition of the previous lemma is satisfied if every stably free R-module of rank 1 is
free [MR01, §11.1.1]. This is true if R is commutative [MR01, §11.1.16]. The condition is also
true if R is semilocal [Fac10, Corollary 4.6] or R is a 2-fir (by [Coh85, Theorem 1.1(e)]).

Let MR be a right R-module with an epimorphism πM : RR →MR with ker(πM ) = aR and
a ∈ R left cancellative. We say that a finite series

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn = MR

of submodules is πM -exact , if every Mi is an πM |π−1
M (Mi+1)-exact submodule of Mi+1. By Lemma

2.3.5 the πM -exact series of submodules of R are in bijection with series of principal right ideals
in L(aR,R). By Lemma 2.2.1 they are therefore in bijection with factorizations of a into left
cancellative elements, up to insertion of units.

Recall that a ring R is a 2-fir if and only if it is a domain and the sum of any two principal
right ideals with non-zero intersection is again a principal right ideal [Coh85, Theorem 1.5.1].
In the next theorem, we will consider, for a cyclically presented right R-module MR and a
cyclic presentation πM : RR → MR with non-zero kernel, the set of all submodules of cyclically
presented πM -exact submodules. We say it is closed under finite sums if for every two cyclically
presented πM -exact submodules M1 and M2 of MR, the sum M1 +M2 also is cyclically presented
and a πM -exact submodule of MR.
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Theorem 2.3.8. Let R be a domain. The following conditions are equivalent.

1. For every cyclically presented right R-module MR and every cyclic presentation πM : RR →
MR with non-zero kernel, the set of all cyclically presented πM -exact submodules is closed
under finite sums.

2. R is a 2-fir.

Proof. (1) ⇒ (2): Let a, b, c ∈ R \ {0} be such that cR ⊂ aR ∩ bR. We have to show that
aR + bR is right principal. Let MR = R/cR, πM : RR → R/cR be the canonical epimorphism,
M1 = aR/cR and M2 = bR/cR. By Lemma 2.3.5, M1 = πM (aR) and M2 = πM (bR) are πM -
exact submodules of MR. By assumption M1 + M2 is a πM -exact submodule of MR. Again by
Lemma 2.3.5, aR + bR = π−1

M (M1 + M2) is a principal right ideal of R, generated by a left
cancellative element.

(2)⇒ (1): We may assume M1,M2 6= 0, as the statement is trivial otherwise. Let πM : RR →
MR be an epimorphism with non-zero kernel. Since M1 and M2 are πM -exact submodules
of MR, there exist a, b ∈ R \ {0} such that π−1(M1) = aR and π−1(M2) = bR. Because
ker(π) 6= 0, we have aR ∩ bR 6= 0. Since R is a 2-fir, there exists c ∈ R \ {0} such that
aR + bR = π−1

M (M1 + M2) = cR. Therefore M1 + M2 is cyclically presented and a πM -exact
submodule of MR.

Notice that if we assume that sums and intersections of exact submodules are again exact
submodules, one may use the Artin-Schreier and Jordan-Hölder-Theorems to study factorizations
of elements. As we have just seen, such an assumption leads to the 2-firs investigated by Cohn
in [Coh85].

2.4 Projective covers of cyclically presented modules

Let R be a ring and R/xR a cyclically presented right R-module, x ∈ R. The module R/xR does
not have a projective cover in general, but if it has one, it has one of the form π|eR : eR→ R/xR,
where e ∈ R is an idempotent that depends on x and π|eR is the restriction to eR of the canonical
projection π : RR → R/xR (see 1.1.30). More precisely, given any projective cover p : PR →
R/xR, there is an isomorphism f : eR → PR such that pf = π|eR. The kernel of the projective
cover π|eR : eR → R/xR is eR ∩ xR and is contained in eJ(R) because the kernel of π|eR is a
superfluous submodule of eR and eJ(R) is the largest superfluous submodule of eR. Considering
the exact sequences 0 → xR → RR → R/xR → 0 and 0 → eR ∩ xR → eR → R/xR → 0, one
sees that RR ⊕ (eR ∩ xR) ∼= eR ⊕ xR (Schanuel’s Lemma), so that eR ∩ xR can be generated
with at most two elements.

Recall that every right R-module has a projective cover if and only if the ring R is perfect,
and that every finitely generated right R-module has a projective cover if and only every simple
right R-module has a projective cover, if and only if the ring R is semiperfect. Denoting by J(R)
the Jacobson radical of R, R is semiperfect if and only if R/J(R) is semisimple and idempotents
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can be lifted modulo J(R) (see 1.1.46). The next result gives a similar characterization for the
rings R over which every cyclically presented right module has a projective cover.

Theorem 2.4.1. The following conditions are equivalent for a ring R with Jacobson radical
J(R):

(1) Every cyclically presented right R-module has a projective cover.
(2) The ring R/J(R) is Von Neumann regular and idempotents can be lifted modulo J(R).

Proof. Set J := J(R).
(1) ⇒ (2) Assume that every cyclically presented right R-module has a projective cover.

In order to show that R/J is Von Neumann regular, it suffices to prove that every principal
right ideal of R/J is a direct summand of the right R/J-module R/J by ?? and ??. Let x
be an element of R. We will show that (xR + J)/J is a direct summand of R/J as a right
R/J-module. By (1), the cyclically presented right R-module R/xR has a projective cover. By
1.1.43, the projective cover is of the form π|eR : eR→ R/xR for some idempotent e of R, where
π : RR → R/xR is the canonical projection.

Applying the right exact functor −⊗RR/J to the short exact sequence 0→ eR∩xR→ eR→
R/xR→ 0, we get an exact sequence (eR ∩ xR)⊗R R/J → eR⊗R R/J → R/xR⊗R R/J → 0,
which can be rewritten as (eR ∩ xR)/(eR ∩ xR)J → eR/eJ → R/(xR+ J)→ 0. It follows that
there is a short exact sequence 0→ ((eR∩xR)+eJ)/eJ → eR/eJ → R/(xR+J)→ 0. Now the
kernel eR∩xR of the projective cover π|eR is superfluous in eR and eJ is the largest superfluous
submodule of eR, hence ((eR ∩ xR) + eJ)/eJ = 0 and eR/eJ ∼= R/(xR+ J).

Now (e+J)(R/J) = (eR+J)/J ∼= eR/(eR∩J) = eR/eJ , so that eR/eJ ∼= R/(xR+J) is a
projective right R/J-module. Thus the short exact sequence 0→ (x+J)(R/J) = (xR+J)/J →
R/J → R/(xR + J) → 0 splits, and the principal right ideal of R/J generated by x + J is a
direct summand of the right R/J-module R/J .

We must now prove that idempotents of R/J lift modulo J . By 1.1.44, this is equivalent
to showing that every direct summand of the R-module R/J has a projective cover. Let MR

be a direct summand of (R/J)R. Then it is also a direct summand of (R/J)R/J and hence
is generated by an idempotent of R/J . Let g ∈ R be such that g + J ∈ R/J is idempotent
and MR/J = (g + J)(R/J). Then R/J = (g + J)(R/J) ⊕ (1 − g + J)(R/J) as R/J-modules,
and hence also as R-modules. The canonical projection πg : R/J → MR has kernel ker(πg) =
(1 − g + J)(R/J). Let π : RR → R/J, r 7→ r + J be the canonical epimorphism. Set f := πgπ.
Then ker(f) = (1 − g)R + J and so f factors through an epimorphism f : R/(1 − g)R → MR

with ker(f) = (J + (1 − g)R)/(1 − g)R. In particular, ker(f) is the image of the superfluous
submodule J of RR via the canonical projection RR → R/(1 − g)R. It follows that ker(f) is
superfluous in R/(1− g)R, i.e., f is a superfluous epimorphism.

By hypothesis, there is a projective cover p : PR → R/(1−g)R. Since the composite mapping
of two superfluous epimorphisms is a superfluous epimorphism (this follows easily from 1.1.7),
fp : PR →MR is a superfluous epimorphism and hence a projective cover of M .

(2)⇒ (1) Assume that (2) holds. Let R/xR be a cyclically presented right R-module, where
x ∈ R. The principal right ideal (x+J)(R/J) of the Von Neumann regular ring R/J is generated
by an idempotent and idempotents can be lifted modulo J . Hence there exists an idempotent
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element e ∈ R such that (x+J)(R/J) = (e+J)(R/J). Let π|(1−e)R be the restriction to (1−e)R
of the canonical epimorphism π : RR → R/xR. We claim that π|(1−e)R : (1 − e)R → R/xR is
onto. To prove the claim, notice that xR+ J = eR+ J , so that (1− e)R+ xR+ J = R. As J is
superfluous in RR, it follows that (1−e)R+xR = R and so π|(1−e)R is onto. This proves our claim.
Finally, ker(π|(1−e)R) = (1−e)R∩xR ⊆ ((1−e)R+J)∩(xR+J) = ((1−e)R+J)∩(eR+J) ⊆ J ,
so that ker(π|(1−e)R) ⊆ J ∩ (1− e)R = (1− e)J is superfluous in (1− e)R. Thus π|(1−e)R is the
required projective cover of the cyclically presented R-module R/xR.

Corollary 2.4.2. If R is a domain and every cyclically presented right R-module has a projective
cover, then R is local.

Proof. By the previous Theorem, R/J(R) is Von Neumann regular. Since idempotents
can be lifted modulo J(R), and R has only two idempotents 0, 1 thanks to the fact that R is
a domain, the only idempotents of R/J(R) are 0 + J(R) and 1 + J(R). Let 0 6= x ∈ R/J(R).
Because R/J(R) is von Neumann and R/J(R) has only two idempotents 0 +J(R), 1 +J(R), we
deduce that xR/J(R) = R/J(R), which implies that x is right invertible. Hence every nonzero
element of R/J(R) is right invertible. Let 0 6= y ∈ R/J(R). Then there is an element z ∈ R/J(R)
such that yz = 1 + J(R). As z 6= 0, there is an element t ∈ R/J(R) such that zt = 1 + J(R).
Now we have that y = y(zt) = (yz)t = t, and hence zy = zt = 1 + J(R). Thus y is invertible.
Therefore R/J(R) is a division ring and so R is local.

Notice that, conversely, if R is a local ring and MR is any non-zero cyclic module, then every
epimorphism π : RR →MR is a projective cover.

Lemma 2.4.3. Let R be an arbitrary ring, let NR ≤ MR be cyclic right R-modules with a
projective cover and let ε : NR → MR be the embedding. Then the following two conditions are
equivalent:

1. There exist a projective cover πN : PR → NR of NR, a projective cover πM : QR →MR of
MR and a commutative diagram of right R-module morphisms

PR
λ //

πN
��

QR

πM
��

NR ε
//MR,

(2.2)

such that the following equivalent conditions hold:

(a) λ(PR) = π−1
M (ε(NR));

(b) λ(ker(πN )) = ker(πM );

(c) πM induces an isomorphism coker(λ)→ coker(ε).

2. For every pair of projective covers πN : PR → NR of NR and πM : QR → MR of MR and
every commutative diagram (2.2) of right R-module morphisms, the following equivalent
conditions hold:
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(a’) λ(PR) = π−1
M (ε(NR));

(b’) λ(ker(πN )) = ker(πM );

(c’) πM induces an isomorphism coker(λ)→ coker(ε).

Proof. The equivalences (a) ⇔ (b) ⇔ (c) and (a’) ⇔ (b’) ⇔ (c’) have been proved in Lemma
2.2.2.

(b)⇒ (b’): Assume that πN : PR → NR, πM : QR →MR and λ : PR → QR satisfy condition
(b), that is, make diagram (2.2) commute and λ(ker(πN )) = ker(πM ). Let π′N : P ′R → NR and
π′M : Q′R → MR be projective covers and λ′ : P ′R → Q′R be a morphism that make the diagram
corresponding to diagram (2.2) commute, that is, such that π′Mλ

′ = επ′N . Projective covers are
unique up to isomorphism and, by Lemma 2.2.2, we may therefore assume P ′R = PR, Q′R = QR
and π′M = πM , π′N = πN .

Then πM (λ − λ′) = πMλ − επN = επN − επN = 0, so that (λ − λ′)(PR) ⊆ kerπM . Let
ι : kerπM → QR denote the inclusion. Then there exists a morphism ψ : PR → kerπM such that
λ − λ′ = ιψ. As images via module morphisms of superfluous submodules are superfluous sub-
modules and kerπN is a superfluous submodule of PR, it follows that ψ(kerπN ) is a superfluous
submodule of kerπM . Now kerπM = λ(kerπN ) = (λ′+ ιψ)(kerπN ) ⊆ λ′(kerπN ) + ιψ(kerπN ) =
λ′(kerπN ) + ψ(kerπN ) ⊆ kerπM . Thus kerπM = λ′(kerπN ) + ψ(kerπN ). But ψ(kerπN ) is
superfluous in kerπM , hence kerπM = λ′(kerπN ), which proves (b’).

(b’)⇒ (b): Let πN : PR → NR and πM : QR → MR be projective covers of NR, respectively
MR. Since PR is projective and πM : QR → M is an epimorphism, there exists a λ : PR → QR
such that πMλ = επN . By (b’), then λ(ker(πN )) = ker(πM ).

Definition 2.4.4. If NR ≤ MR are cyclic right R-modules and the equivalent conditions of
Theorem 2.4.3 are satisfied, we say that NR is an exact submodule of MR.

Corollary 2.4.5. If LR ≤MR ≤ NR are cyclic right R-modules, MR is exact in NR and LR is
exact in MR, then LR is exact in NR.

Proof. Since LR is exact in MR and MR is exact in NR, there exist projective covers
πL : PR → LR, πM : QR → MR, π′M : Q′R → MR and πN : UR → NR and homomorphisms
λ : PR → QR and µ : Q′R → UR such that πMλ = πL, πNµ = π′M , λ(ker(πL)) = ker(πM ) and
µ(ker(π′M )) = ker(πN ).

Since the projective cover of MR is unique up to isomorphism, we may assume by Lemma
2.2.2 that QR = Q′R and π′M = πM (replacing λ accordingly). Then πNµλ = πMλ = πL and
ker(πN ) = µ(ker(πM )) = µ(λ(ker(πL)) = (µλ)(ker(πL)). Therefore NR is an exact submodule of
MR.

Corollary 2.4.6. If a cyclic module NR is an exact submodule of a cyclic module MR and MR

has a projective cover isomorphic to RR, then MR/NR is cyclically presented.

45



Proof. Since NR is an exact submodule of MR, there exists a commutative diagram

PR
λ //

πN
��

QR

πM
��

NR ε
//MR

where πN : PR → NR and πM : QR → MR are projective covers of NR and MR and coker(λ) ∼=
coker(ε). By assumption, there exists an idempotent e ∈ R such that PR ∼= eR and QR ∼= RR.
By Lemma 2.2.2, we may therefore assume PR = eR and QR = RR (replacing πM , πN and λ
accordingly). Therefore MR/NR = coker(ε) ∼= coker(λ) = R/eR. Hence MR/NR is cyclically
presented.

The following example shows that if R is not a domain, then even if a non-unit x ∈ R is not
a zero-divisor, the projective cover of R/xR need not be isomorphic to RR.

Example 2.4.7. Let D be a discrete valuation ring and π ∈ D a prime element. The unique

maximal ideal of D is πD. Let R = M2(D), x =

[
1 0
0 π

]
and e =

[
0 0
0 1

]
.

We have

xR =

[
D D
πD πD

]
and eR =

[
0 0
D D

]
.

Let p : RR → R/xR be the canonical projection. We will show that p|eR : eR → R/xR is a

projective cover of R/xR. We have ker p|eR = xR∩eR =

[
0 0
πD πD

]
. Since J(R) = M2(J(D)) =[

πD πD
πD πD

]
, it follows that ker p|eR = eJ(R). Since e is an idempotent of R, eR is projective and

eJ(R) = J(eR). In particular, ker p|eR is superfluous in eR. Therefore eR is a projective cover
of R/xR.

We now show that eR 6∼= R. Assume eR is isomorphic to R. Then there exists an isomorphism

f : RR → eR. Hence f(1) =

[
0 0
c d

]
6= 0.

Let b =

[
−d 0
c 0

]
. Then b 6= 0, because f(1) 6= 0. But f(1)b =

[
0 0
c d

] [
−d 0
c 0

]
=

[
0 0
0 0

]
implies f(b) = 0. It follows that b = 0, which contradicts b 6= 0. Thus eR is not isomorphic to R.

The next example shows that the condition for the projective cover of MR to be isomorphic
to RR is necessary in Corollary 2.4.6.

Example 2.4.8. Let R = T2(Z/2Z) be the ring of all upper triangular 2 × 2 matrices with
coefficients in Z/2Z. Since J(R) consists of all strictly upper triangular matrices, R/J(R) ∼=
(Z/2Z)2 is semisimple and obviously idempotents lift modulo J(R). Therefore every finitely
generated R-module has a projective cover. Set

MR :=

[
1 0
0 0

]
R =

{[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
1 0
0 0

]
,

[
1 1
0 0

]}
,
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NR :=

[
0 1
0 0

]
R =

{[
0 0
0 0

]
,

[
0 1
0 0

]}
,

MR/NR =

{[
0 0
0 0

]
+NR,

[
1 0
0 0

]
+NR

}
.

Consider

φ : NR −→
[
0 0
0 1

]
R[

0 c
0 0

]
7−→

[
0 0
0 c

]

It is obvious that φ is an isomorphism. Since

[
0 0
0 1

]
is an idempotent of R,

[
0 0
0 1

]
R is a projec-

tive R-module. Hence NR is a projective R-module. On the other hand, MR is also a projective

R-module, because

[
1 0
0 0

]
is an idempotent of R. Hence 1N : NR → NR and 1M : MR → MR

are projective covers. This implies that the diagram

NR
ε //

1N
��

MR

1M
��

NR ε
//MR,

where ε(ker 1N ) = ker 1M , commutes. Therefore NR is an exact submodule of MR.
Assume MR/NR is a cyclically presented module. Then MR/NR is isomorphic to R/xR,

where x ∈ R. Since |MR/NR| = 2, |xR| = 4. We have[
0 0
0 0

]
R =

{[
0 0
0 0

]}
,[

0 1
0 0

]
R =

{[
0 1
0 0

] [
a b
0 c

]
=

[
0 c
0 0

]}
= NR,[

1 0
0 0

]
R = MR,[

1 1
0 0

]
R =

{[
1 1
0 0

] [
a b
0 c

]
=

[
a b+ c
0 0

]}
= MR,[

0 0
0 1

]
R =

{[
0 0
0 1

] [
a b
0 c

]
=

[
0 0
0 c

]}
,[

0 1
0 1

]
R =

{[
0 1
0 1

] [
a b
0 c

]
=

[
0 c
0 c

]}
,
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[
1 0
0 1

]
R = RR,[

1 1
0 1

]
R = RR.

Thus xR = MR. Hence

R/xR = R/MR =

{[
0 0
0 0

]
+MR,

[
1 0
0 1

]
+MR

}
,

ann(MR/NR) =

{[
a b
0 c

]
∈ R

∣∣∣∣∣
[
1 0
0 0

] [
a b
0 c

]
∈ NR

}

=

{[
a b
0 c

]
∈ R

∣∣∣∣∣
[
a b
0 0

]
∈ NR

}

=

{[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]
,

[
0 1
0 1

]}
,

ann(R/xR) =

{[
a b
0 c

]
∈ R

∣∣∣∣∣
[
1 0
0 1

] [
a b
0 c

]
∈ xR = MR

}
= MR.

Hence ann(MR/NR) 6= ann(R/xR). On the other hand, we have ann(MR/NR) = ann(R/xR)
sinceMR/NR is isomorphic toR/xR. This is a contradiction. ThereforeMR/NR is not a cyclically
presented module.

Proposition 2.4.9. Let R be a local domain. Let NR,MR 6= 0 be cyclically presented right
R-modules and let πM : RR →MR be an epimorphism. Then NR ⊂MR is exact if and only if it
is πM -exact in the sense of Definition and Lemma 2.3.1.

Proof. Suppose first NR ⊂ MR exact. Let πN : RR → NR be any epimorphism. Then πM
and πN are necessarily projective covers, because ker(πM ) and ker(πN ) are superfluous. Let
ε : NR →MR denote the inclusion. By projectivity of RR, there exists a λ : RR → RR such that
πMλ = επN . By condition (a) in Lemma 2.4.3, λ(RR) = π−1

M (NR). Since π−1
M (NR) 6= 0, it follows

that π−1
M (NR) ∼= RR and hence condition (a) in Definition and Lemma 2.3.1 is satisfied.

Suppose now that NR ⊂ MR is πM -exact. Let πN : RR → NR be an epimorphism and
λ : RR → RR a monomorphism satisfying condition (b) of Definition and Lemma 2.3.1. Then
πN is a projective cover of NR, and condition (b) of Lemma 2.4.3 is satisfied, implying that
NR ⊂MR is exact.

The previous proposition, together with the results from the previous section, shows that in
the special case of R a local domain and x ∈ R a non-unit, series of exact submodules of R/xR
may be used to study factorizations of x ∈ R up to insertion of units.
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2.5 Cokernels of endomorphisms

Let MR be a right module over a ring R and let E := End(MR) be its endomorphism ring. Let
s be a fixed element of E. In this section, we investigate the relation between projective covers
eE → E/sE for an idempotent e, induced by the canonical epimorphism EE → E/sE, and
properties of the module e(MR). This is of particular interest if we assume that E/J(E) is Von
Neumann regular and idempotents can be lifted modulo J(E), as in this case for every non-zero
s ∈ E the module E/sE has a projective cover. For instance, every continuous module MR has
this property (see 1.4.10 and 1.4.8), in particular every quasi-injective module has this property,
and every module of Goldie dimension one and dual Goldie dimension one has this property (see
1.3.3).

Let s : MR → MR be an endomorphism of MR. We can consider the direct summands M1

of MR such that there exists a direct sum decomposition MR = M1 ⊕ M2 of MR for some
complement M2 of M1 with the property that π2s : MR → M2 is a split epimorphism. Here
π2 : MR → M2 is the canonical projection with kernel M1. Let F be the set of all such direct
summands, that is,

F := {M1 |M1 ≤MR, there exists M2 ≤MR such that MR = M1 ⊕M2

and π2s : MR →M2 a split epimorphism }.

The set F can be partially ordered by set inclusion.

It is well known that there is a one-to-one correspondence between the set of all pairs
(M1,M2) of R-submodules of MR such that MR = M1⊕M2 and the set of all idempotents e ∈ E.
If e ∈ E is an idempotent, the corresponding pair is the pair (M1 := e(MR),M2 := (1−e)(MR)).
If s ∈ End(MR), we always denote by ϕ : EE → E/sE the canonical epimorphism ϕ(f) = f+sE.

Lemma 2.5.1. Let MR = M1⊕M2, let π2 : MR →M2 be the projection with kernel M1, and let
e ∈ End(MR) be the endomorphism corresponding to the pair (M1,M2). If s : MR → MR is an
endomorphism, then π2s is a split epimorphism if and only if ϕ|eE : eE → E/sE is surjective.

Proof. We have to show that π2s : MR →M2 is a split epimorphism if and only if eE+ sE = E.
In order to prove the claim, assume that π2s : MR →M2 is a split epimorphism, so that there is
an R-module morphism f : M2 → MR with π2sf = 1M2 . Let ε2 : M2 → MR be the embedding.
Then the right ideal eE + sE of E contains the endomorphism

e(1M − sfπ2) + s(fπ2) = e+ (1M − e)sfπ2 = e+ ε2π2sfπ2

= e+ ε21M2π2 = e+ (1M − e) = 1M ,

so that eE + sE = E. Conversely, let e ∈ E be an idempotent with eE + sE = E, so that there
exist g, h ∈ E with 1 = eg + sh. Then (1 − e) = (1 − e)sh, so that (1 − e) = (1 − e)sh(1 − e),
that is, ε2π2 = ε2π2shε2π2. Since ε2 is injective and π2 is surjective, they can be canceled, so
that 1M2 = π2shε2. Hence π2s is a split epimorphism, which proves our claim.
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Proposition 2.5.2. Let MR be a right module, and let E := End(MR) be its endomorphism
ring. Let s ∈ E and suppose that E/sE has a projective cover. Then

F := {M1 |M1 ≤MR, there exists M2 ≤MR such that MR = M1 ⊕M2

and π2s : MR →M2 a split epimorphism }

has minimal elements, and all minimal elements of F are isomorphic R-submodules of MR.

Proof. From the previous lemma, it follows that there is a one-to-one correspondence between the
set F ′ of all pairs (M1,M2) ofR-submodules ofMR such thatMR = M1⊕M2 and π2s : MR →M2

is a split epimorphism and the set of all idempotents e ∈ E for which the canonical mapping
eE → EE/sE, x ∈ eE 7→ x+ sE, is surjective. In order to prove that F has minimal elements,
it suffices to show that if the canonical mapping eE → EE/sE is a projective cover, then e(MR)
is a minimal element of F . Let e ∈ E be such that eE → EE/sE is a projective cover, and let
M ′1 ∈ F be such that M ′1 ⊆ e(MR). Let e′ ∈ E be an idempotent such that M ′1 = e′(MR) and
π′2s : MR → (1− e′)(MR) is a split epimorphism. Then M ′1 = e′(MR) ⊆ e(MR), so that ee′ = e′.
Thus e′E = ee′E ⊆ eE. If ϕ|eE : eE → E/sE is the projective cover, ϕ|e′E : e′E → E/sE denot!
es the canonical epimorphism and ε : e′E → eE is the embedding, it follows that ϕ|eEε = ϕ|e′E .
Now ϕ|eE is a superfluous epimorphism and ϕ|eEε = ϕ|e′E is onto, so that ε is onto, that is,
e′E = eE. Thus e = e′f for some f ∈ E, so that e(MR) ⊆ e′(MR) = M ′1 and M ′1 = e(MR). It
follows that e(MR) is a minimal element of F .

Now let M ′′1 be any other minimal element of F , and let e′′ be an idempotent element of E
with π′′2s : MR → (1−e′′)(MR) a split epimorphism. Then the canonical projection e′′E → E/sE
is an epimorphism. As the canonical projection ϕ|eE : eE → E/sE is the projective cover, there
is a direct sum decomposition e′′E = P ′E ⊕ P ′′E with the canonical projection P ′E → E/sE a
projective cover. Thus P ′E = p′E for some idempotent p′ of E with p′E + sE = E, so that
p′(MR) ∈ F . Now e′′E ⊇ P ′E = p′E implies that p′ = e′′g for some g ∈ E, so that p′(MR) ⊆
e′′(MR) = M ′′1 . By the minimality of M ′′1 in F , it follows that p′(MR) = e′′(MR), so that
M ′′1 = e′′(MR) = p′(MR) ∼= p′E ⊗E MR = P ′ ⊗E MR

∼= eE ⊗E MR
∼= e(MR). Thus every

minimal element of F is isomorphic to e(MR).

Let MR be quasi-projective, E := EndR(MR) and suppose s ∈ E. In the following, we relate
projective covers of the R-module MR/s(MR) and the cyclically presented E-module E/sE.

Lemma 2.5.3. Let MR be a quasi-projective right R-module, E the endomorphism ring of MR

and let s ∈ E. Let π be the canonical epimorphism of MR onto MR/s(MR) and ϕ the canonical
epimorphism of EE onto E/sE.

1. For every g ∈ E, π|g(MR) is surjective if and only if ϕ|gE is surjective.

2. For every g ∈ E, gE is a direct summand of EE if and only if g(MR) is a direct summand
of MR.

3. Let e, e′ be idempotents in E. Then e(MR) ∼= e′(MR) if and only if eE ∼= e′E.
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4. Let e ∈ E be idempotent. Then ker(π|e(MR)) is superfluous if and only if ker(ϕ|eE) is
superfluous.

Proof. (1) (⇐ ) Since ϕ|gE is surjective, there exists h in E such that gh+sE = 1M +sE. Hence
there exists h′ in E such that gh = 1M + sh′. For all m ∈ MR we have π(m) = π(1M (m)) =
π(g(h(m)), whence π|g(MR) is surjective.

( ⇒ ) Since MR is quasi-projective and πg : MR → MR is an epimorphism, there exists
h : MR →MR such that πgh = π. Therefore (gh−1M )(MR) ⊂ s(MR). Since s : MR → s(MR) is
an epimorphism, quasi-projectivity of MR implies that there exists h′ ∈ E such that gh− 1M =
sh′. This implies that ϕ(gh) = 1M + sE. Therefore ϕ|gE is surjective.

(2) ( ⇒ ) If gE is a direct summand of E, there exists an idempotent e in E such that
gE = eE. Hence there exist h, h′ in E such that g = eh and e = gh′. This implies that
g(MR) = e(MR). On the other hand, e(MR) is a direct summand of MR since e is an idempotent
of E. Therefore g(MR) is a direct summand of MR.

( ⇐ ) If g(MR) is a direct summand of E, there exists an idempotent e in E such that
g(MR) = e(MR). Hence eg = g. Therefore gE ⊂ eE. Since g : MR → e(MR) is an epimorphism
and MR is quasi-projective, there exists h : MR → MR such that e = gh. This implies that
eE ⊂ gE. Hence eE = gE.

(3) ( ⇐ ) Since eE ∼= e′E, there exists an isomorphism Γ: eE → e′E. Consider the two
following homomorphisms f : e(MR) → e′(MR) defined via f(m) = e′x(m) where e′x = Γ(e)
and g : e′(MR)→ e(MR) defined via g(m) = ey(m) where ey = Γ−1(e′). It suffices to show that
fg = 1e′(MR) and gf = 1e(MR). For m ∈ e′(MR), fg(m) = f(ey(m)) = e′xey(m) = e′xy(m) =
Γ(e)y(m) = Γ(ey)(m) = Γ(Γ−1(e′))(m) = e′(m) = m, it follows that fg = 1e′(MR). By an
argument analogous to the previous one, we get gf = 1e(MR).

( ⇒ ) Since e(MR) ∼= e′(MR), there exists an isomorphism h : e(MR) → e′(MR). Consider
the two following homomorphisms θ : eE → e′E defined via θ(ex) = e′hex, and θ′ : e′E → eE
defined via θ′(e′x) = eh−1e′x. It suffices to show that θθ′ = 1e′E and θ′θ = 1eE . Since
θθ′(e′x)(m) = θ(eh−1e′x)(m) = e′heh−1e′x(m) = e′he(h−1(e′x(m))) = e′h(h−1(e′x(m))) =
e′e′(x(m)) = e′(x(m)), it follows that θθ′(e′x) = e′x. Hence θθ′ = 1e′E . By an argument analo-
gous to the previous one, we get θ′θ = 1eE .

(4) ( ⇒ ) Let KE be a submodule of eE such that KE + ker(ϕ|eE) = eE. It suffices to
show that KE = eE. There exists h ∈ ker(ϕ|eE) = eE ∩ sE and k ∈ KE such that e = k + h.
Hence e(MR) = k(MR) + h(MR). This implies that e(MR) = k(MR) +

(
e(MR) ∩ s(MR)

)
. Since

e(MR) ∩ s(MR) is superfluous in e(MR), then e(MR) = k(MR). Since k : MR → e(MR) is an
epimorphism and MR is quasi-projective, there exists h′ in E such that e = kh′. This implies
that e ∈ KE . Therefore KE = eE.

( ⇐ ) Let NR be a submodule of MR such that NR + ker(π|e(MR)) = MR. Hence π|NR
is surjective. It suffices to show that NR = MR. Since MR is quasi-projective and NR is a
submodule of MR, it follows that MR is also NR-projective. Therefore the induced homomor-
phism (π|NR)∗ : Hom(MR, NR) → Hom(MR,MR/s(MR)) is surjective and hence there exists
g : MR → NR such that πg = πe. Again by quasi-projectivity of MR, there exists h : MR →MR

such that g − e = sh. Since g(MR) ⊂ NR ⊂ e(MR), for every x ∈MR there exists y ∈MR such
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that g(x) = e(y). We have eg(x) = e(e(y)) = e(y) = g(x). Thus eg = g. Since g−e = eg−e = sh,
eg − e ∈ eE and sh ∈ sE, it follows that g − e ∈ eE ∩ sE. From e = g − (g − e), we have
eE = gE + (g − e)E. Hence eE = gE + (eE ∩ sE). Since eE ∩ sE = kerϕ|eE is superfluous,
eE = gE. Therefore e(MR) = g(MR) ⊂ NR. Thus NR = e(MR).

Corollary 2.5.4. Let MR be a projective right R-module and E the endomorphism ring of MR.
Let s ∈ E, let π be the canonical epimorphism from MR to MR/s(MR) and ϕ the canonical
epimorphism from E to E/sE. Then π|e(MR) is a projective cover of MR/s(MR) if and only if
ϕ|eE is a projective cover of E/sE.

Proof. Since MR is projective, so is e(MR). Hence π|e(MR) is a projective cover if and only if
ker(π|e(MR)) is superfluous. Therefore the corollary follows from the previous lemma.

Proposition 2.5.5. Let MR be a quasi-projective right R-module, let s ∈ E = End(MR) and let
π : MR →MR/s(MR) be the canonical epimorphism. Suppose that E/sE has a projective cover.

Consider E := {NR ≤ MR | π|NR is surjective } and E⊕ := {NR ∈ E | NR is a direct
summand of MR}, both partially ordered by set inclusion. Then E⊕ has minimal elements, any
two minimal elements of E⊕ are isomorphic as right R-modules and any minimal element of E⊕
is minimal in E.

Proof. Let NR ≤ MR be a direct summand of MR, let e ∈ E be an idempotent with e(MR) =
NR and let π2 : MR → ker(e) be the canonical projection corresponding to the direct sum
decomposition MR = NR ⊕ ker(e). Lemma 2.5.3(1) implies that π|NR : NR → MR/s(MR) is
surjective if and only if ϕ|eE : eE → E/sE is surjective. By Lemma 2.5.1 this is the case if and
only if π2s is a split epimorphism. This shows that E⊕ = F , where the latter is defined as in
Proposition 2.5.2. The claims about E⊕ therefore follow from the proposition.

It remains to show that the minimal elements of E⊕ are minimal in E . Let NR ∈ E⊕ be
minimal, and let e : MR → NR be an idempotent with e(MR) = NR. From the proof of
Proposition 2.5.2, we see that eE → E/sE is a projective cover. Therefore Lemma 2.5.3(4)
implies that ker(π|NR) is superfluous. Therefore, if LR ≤ NR and π|LR is surjective, we have
LR + ker(π|NR) = NR and hence LR = NR, showing that NR is minimal in E .

52



Chapter 3

Automorphism invariant modules

3.1 Basic properties

Definition 3.1.1. A module M is called automorphism-invariant if it is invariant under auto-
morphisms of its injective envelope, that is, if ϕ(M) ⊆M for every ϕ ∈ Aut(E(M)) (equivalently,
if ϕ(M) = M for every ϕ ∈ Aut(E(M))).

Quasi-injective modules are clearly automorphism-invariant. The following example show
that there exists an automorphism-invariant module MR that it is not quasi-injective.

Example 3.1.2. Let R = {(xn)n∈N ∈
∏
n∈N Z2 : all except finitely many xn are equal to some

a ∈ Z2}. Then R is a ring, and E(RR) =
∏
n∈N Z2. Because End(E(RR)) has only one automor-

phism, namely the identity, R is automorphism-invariant but it is not quasi-injective.

Theorem 3.1.3. [LZ13, Theorem 2] Let M be an R-module. Then the following conditions are
equivalent:

1. M is an automorphism-invariant module.

2. Every isomorphism between two essential submodules of M extends to an endomorphism
of M .

3. Every isomorphism between two essential submodules of M extends to an automorphism
of M .

Proof. (1) ⇒ (3): Let X,Y be essential submodules of M and α : X → Y be an iso-
morphism. Then there is an endomorphism β of E(M) such that β|X = α. Because E(X) =
E(Y ) = E(M) and β|X is an isomorphism, β must be an automorphism of E(M). Since M is
automorphism invariant, β(M) ⊆M and β−1(M) ⊆M, so β|M is an automorphism of M which
extends α.

(3)⇒ (2) : It is clear.
(2) ⇒ (1) : Let σ be an automorphism of E(M). Set Y = σ(M) ∩M,X = σ−1(Y ) and

α = σ|X . Then α is an isomorphism between X and Y . Moreover, by 1.1.48, we deduce that
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X and Y are essential submodules of M . By (2), α extends to an endomorphism β of M .
Let y ∈ Y ∩ (σ − β)(M) and write y = (σ − β)(x) with x ∈ M . Then σ(x) = y + β(x) ∈ Y
implies that x ∈ X, and hence y = (σ − β)(x) = σ(x) − β(x) = α(x) − β(x) = 0. It follows
that Y ∩ (σ − β)(M) = 0. Since Y is essential in E(M), we get that (σ − β)(M) = 0. Therefore
σ(M) = β(M) ⊆M.

Proposition 3.1.4. [LZ13, Lemma 4] Let M be an automorphism invariant module. Then every
direct summand of M is automorphism invariant.

Proof. LetN be a direct summand ofM . Then there is a submoduleN ′ ofM such thatM =
N ⊕N ′. Hence E(M) = E(N)⊕E(N ′) where E(M), E(N) and E(N ′) are injective envelopes of
M,N and N ′ respectively. Let f be an automorphism of E(N). Then f⊕1E(N ′) : E(M)→ E(M)
is an isomorphism of E(M). Since M is automorphism invariant, (f⊕1E(N ′))(N⊕N ′) ⊆ N⊕N ′.
It implies that f(N) ⊆ N . Hence N is an automorphism invariant module.

Theorem 3.1.5. [LZ13, Theorem 5] If the direct sum M = M1⊕M2 is automorphism-invariant,
then M1 and M2 are relatively injective.

Proof. Let A ≤ M2 and f : A → M1. We wish to show that f extends to a morphism
f : M2 → M1. Let B be a complement of A in M2. Then A ⊕ B ≤e M2 by 1.1.66, and
f extends to a morphism g : A ⊕ B → M1 where g(B) = 0. Set C = A ⊕ B and define
α : M1⊕C →M1⊕M2 by α(x, c) = (x+g(c), c) for x ∈M1 and c ∈ C . Then kerα = 0, that is,
α is injective. Furthermore, α(M1 ⊕C) = M1 ⊕C is essential in M1 ⊕M2 (see 1.1.52). Hence α
is an automorphism of M1⊕C ≤e M1⊕M2. As M1⊕M2 is automorphism-invariant, α extends
to an endomorphism β of M1 ⊕M2 by 3.1.3. Set f = πβi : M2 →M1 where i : M2 →M1 ⊕M2

is the canonical injection and π : M1⊕M2 →M1 is the canonical projection. Thus f extends f ,
so that M1 is M2-injective. By a similar argument, we also obtain that M2 is M1-injective. This
complete the proof.

Corollary 3.1.6. [LZ13, Corollary 6] Let M be a module. Then M is quasi-injective if and only
if M ⊕M is automorphism-invariant.

Let E(M) be the injective envelope of a module M . It is easily seen that∑
ϕ∈Aut(E(M))

ϕ(M)

is the smallest automorphism-invariant submodule of E(M) containingM . We call it the automorphism-
invariant envelope of M , and denote it by AI(M). Clearly, a module is automorphism-invariant
if and only if M = AI(M).

Lemma 3.1.7. [AFT15, Lemma 2.9] Let M,N be arbitrary R-modules. Then every monomor-
phism M → N extends to a monomorphism AI(M)→ AI(N).
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Proof. A monomorphism ϕ : M → N extends to a monomorphism ϕ′ : E(M) → E(N),
which is necessarily a split monomorphism. Thus there is a direct-sum decomposition E(N) =
ϕ′(E(M))⊕C and, with respect to this direct-sum decomposition, ϕ′ : E(M)→ ϕ′(E(M))⊕C
can be written in matrix form as ϕ′ =

(
α
0

)
, where α : E(M)→ ϕ′(E(M)) is an isomorphism. It

suffices to show that ϕ′(AI(M)) ⊆ AI(N). Let f be an automorphism of E(M). Then
(αfα−1 0

0 1

)
is an automorphism of ϕ′(E(M))⊕ C = E(N). Thus ϕ′(f(M)) = αf(M) = (αfα−1)(α(M)) ⊆(αfα−1 0

0 1

)
(α(M)) ⊆

(αfα−1 0
0 1

)
(N) ⊆ AI(N). Therefore ϕ′(AI(M)) ⊆ AI(N).

3.2 Decomposition of automorphism-invariant modules

Lemma 3.2.1. [SS14, Lemma 7] Let M be an automorphism-invariant module and E(M) its
injective envelope. Assume that E(M) decomposes as a direct sum E(M) = E1⊕E2⊕E3 where
E1 ∼= E2. Then M = (M ∩ E1))⊕ (M ∩ E2)⊕ (M ∩ E3).

Proof. Let σ : E1 → E2 be an isomorphism and let π1 : E(M) → E1, π2 : E(M) → E2,
and π3 : E(M) → E3 be the canonical projections. Then M ∩ E1 ⊆ π1(M),M ∩ E2 ⊆ π2(M)
and M ∩ E3 ⊆ π3(M).

Let η = σ−1. Consider the map λ1 : E(M) → E(M) given by λ1(x1, x2, x3) = (x1, σ(x1) +
x2, x3). Then λ1 is an automorphism of E(M). SinceM is automorphism invariant,M is invariant
under λ1 and 1E(M). Hence M is invariant under λ1 − 1E(M), that is, (λ1 − 1E(M))(M) ⊆ M .
Consider the map λ2 : E(M) → E(M) given by λ2(x1, x2, x3) = (x1 + (x2), x2, x3). Then λ2

is also an automorphism of E(M). Therefore, as explained above, M is also invariant under
λ2 − 1E(M), that is, (λ2 − 1E(M))(M) ⊆M .

Let x = (x1, x2, x3) ∈ M . Then (λ1 − 1E(M))(x) = (0, σ(x1), 0) ∈ M . Also we have (λ2 −
1E(M))(x) = (η(x2), 0, 0) ∈ M . This implies that (λ1 − 1E(M))(η(x2), 0, 0) = (0, ση(x2), 0) =
(0, x2, 0) ∈M . Hence π2(M) ⊆M . By a similar argument we get that (λ2−1E(M))(0, σ(x1), 0) =
(ησ(x1), 0, 0) = (x1, 0, 0) ∈ M . Therefore π1(M) ⊆ M , so that (0, 0, x3) ∈ M , that is, π3(M) ⊆
M . It follows that π1(M) ⊕ π2(M) ⊕ π3(M) ⊆ M and hence, M = π1(M) ⊕ π2(M) ⊕ π3(M).
Thus M = (M ∩ E1)⊕ (M ∩ E2)⊕ (M ∩ E3).

Recall that a module is square-free if it does not contain a direct sum of two non-zero
isomorphic submodules.

Theorem 3.2.2. [ESS13, Theorem 3] Every automorphism-invariant module M decomposes as
a direct sum M = X ⊕ Y , where X is quasi-injective, Y is a square-free module orthogonal to
X, and X and Y are relatively injective modules.

Proof. Let Γ = {(A,B, f) : A,B ≤M,A ∩B = 0, and f : A→ B is an isomorphism} .
Define a partial order on as follows: (A,B, f) ≤ (A′, B′, f ′) if A ⊆ A′, B ⊆ B′, and f ′ extends f .
By Zorn Lemma, Γ has a maximal element, say (A,B, f). Let C ′ be a complement of A⊕B in
M . Then A⊕B⊕C ′ ≤e M and C ′ is closed in M by 1.1.68. Hence E(M) = E(A)⊕E(B)⊕E(C ′)
where E(M), E(A), E(B) and E(C ′) are injective envelopes of M,A,B and C ′ respectively. Since
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C ′ ≤e E(C ′) ∩M ≤ M and C ′ is closed in M , we get that C ′ = E(C ′) ∩M . Now we claim
that C ′ is square-free. Assume the contrary. Then there is nonzero submodules X and Y of C ′

with X ∩ Y = 0, and an isomorphism: ϕ : X → Y . Hence (A ⊕X,B ⊕ Y, f ⊕ ϕ) is a maximal
element of Γ, which contradicts the maximality of (A,B, f). This proves the claim. Consider
g : A⊕B⊕C ′ → A⊕B⊕C ′ as follows: For each a ∈ A, b ∈ B, c ∈ C, g(a+b+c) = f−1(b)+f(a)+c.
Since A ⊕ B ⊕ C ′ ≤e M and M is automorphism invariant, g extends to an automorphism g′

of M (see 3.1.3). Let A′ be a closed submodule of M essentially containing A. If A were prop-
erly contained in A′, g′|A′ would contradict the maximality mentioned above. Thus, A must
be a closed submodule of M , so that B is closed in M too. Since A ≤e E(A) ∩M ≤ M and
B ≤e E(B) ∩M ≤ M , we obtain that A = E(A) ∩ A and B = E(B) ∩ B. Hence by 3.2.1,
M = (E(A) ∩ M) ⊕ (E(B) ∩ M) ⊕ (E(C ′) ∩ M) = A ⊕ B ⊕ C ′. It follows that A ⊕ B is
automorphism-invariant by 3.1.4. Therefore A and B are relatively injective (see 3.1.5). Since
A ∼= B, A⊕B is then quasi-injective, and hence B is quasi-injective (see 1.1.56). Furthermore,
A ⊕ B and C ′ are relatively injective modules by 3.1.5. Hence C ′ is B-injective. Next, in a
similar way to the above argument, we can find a maximal monomorphism t : B′ → B from a
submodule B′ ⊆ C ′ into B. Since B is C ′-injective, t can be monomorphically extended to every
submodule of C ′ essentially containing B′ (see 1.1.56 and 1.1.51). Because of the maximality
of t, we deduce that B′ is closed in C ′. Now we claim that t(B′) is a direct summand of B.
Because of the fact that B is quasi-injective and 1.2.7, in order to prove the claim it suffices to
show that t(B′) is closed in B. Let D ≤ B such that t(B′) ≤e D. Since C ′ is B-injective, the
monomorphism t−1 : t(B′)→ C ′ extends monomorphically to t−1 : D → C ′ by 1.1.56 and 1.1.51.
Note that B′ = t−1(t(B′)) ≤e t−1(D) ≤ C ′ because t(B′) ≤e D and t−1 is injective. It follows
that B′ = t−1(D), and therefore t(B′) = D. This proves that t(B′) is closed in B. Since B is
C ′-injective and t(B′) is a direct sumand of B, t(B′) is C ′-injective, so that B′ is a C ′-injective
submodule of C ′. Hence C ′ = B′ ⊕ C for some C. Now, we will show that C and B are orthog-
onal. Assume that C and B have nonzero isomorphic submodules C1 and B1. Then C1 and B′

are orthogonal thanks to square-freeness of C ′,and hence so are B1 and t(B′). It follows that
B1 ∩ t(B′) = 0. This contradicts the maximality of the monomorphism t because we can define
a monomorphism α⊕ t : C1 ⊕ B′ → B where α is an isomorphism from C1 to B1. Therefore C
and B are orthogonal. Now we claim that C and A⊕B⊕B′ are orthogonal. Assume that there
are two submodules X,Y such that X ≤ A ⊕ B ⊕ B′, Y ≤ C and X ∼= Y by an isomorphism
γ : X → Y . If X ∩ B = 0, we could define an isomorphism f ⊕ γ−1 : A ⊕ Y → B ⊕X, which
contradict the maximality of (A,B, f). Therefore X ∩B 6= 0. But then X ∩B, γ(X ∩B) are two
isomorphic submodules of B,C respectively, which contradict the fact that B and C are orthog-
onal. This proves the claim. Now we will show that A ⊕ B ⊕ B′ is quasi-injective. On the one
hand, because A⊕B is quasi-injective and A⊕B is C ′ = B′⊕C-injective, A⊕B is A⊕B⊕B′-
injective. On the other hand, B′ is A ⊕ B ⊕ B′-injective since B′ is C ′ = B′ ⊕ C-injective and
C ′ is A⊕B-injective. Therefore, A⊕B⊕B′ is quasi-injective. The proof is completed by taking
X = A⊕B ⊕B′ and Y = C.
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3.3 Conditions (Ci) (i = 1, 2, 3)

Definition 3.3.1. A module M is called pseudo-injective if, for any submodule A of M, every
monomorphism f : A→M can be extended to an element of End(M).

Lemma 3.3.2. [Nic77, Lemma 14] Let M be a module such that M = M1 ⊕M2. Then M1 is
M2-injective if and only if for any submodule N of M with N ∩M1 = 0, there is some submodule
M ′ of M such that N ≤M ′ and M = M1 ⊕M ′

Proof. Assume thatM1 isM2-injective. Let πi : M →Mi (i = 1, 2) be canonical projections
and N be a submodule of M with N ∩M1 = 0. Because π2|N is injective and M1 is M2-injective,
there is a morphism f : M2 → M1 such that π1|N = π2|N ◦ f . Set M ′ = {f(m) +m|m ∈M2}.

Then N ⊆ M ′ and M ′ = eM where e =

(
0 f
0 1M2

)
∈ End(M). Since e2 = e and M1 =

(1 − e)M , we get that M = M1 ⊕M ′. Conversely, let L ≤ M2 and g : L → M1. Now we will
show that g extend to a morphism g : M2 → M1. Set N = {−g(x) + x|x ∈ L} . Then N ≤ M
and N ∩M1 = 0. Now by hypothesis, there is a submodule M ′ of M such that N ≤ M ′ and
M = M1⊕M ′. Set g = π : M →M2 where π is the canonical projection with kernel M ′. Hence
g extend g. This completes the proof.

Theorem 3.3.3. [ESS13, Theorem 16] Let M be a module. Then M is automorphism-invariant
if and only if it is pseudo-injective.

Proof. The fact that every pseudo-injective is automorphism-invariant follows from 3.1.3.
Conversely, assume that M is automorphism-invariant. Then by 3.2.2, M decomposes as a direct
sum M = A⊕B where A is quasi-injective and B is square-free. Hence E(M) = E(A)⊕ E(B)
where E(M), E(A) and E(B) are injective envelopes of M,A and B respectively. Let C be a
submodule of M and f : C →M be a monomorphism. Set D = f(C ∩B) ∩ (C ∩B). We claim
that D ≤e f(C ∩B) and D ≤e C ∩B. Assume that there is a nonzero submodule X ≤ f(C ∩B)
such that X ∩ (C ∩ B) = 0. If X ∩ B = 0, then the restriction of the canonical projection
π : A ⊕ B → A to X would be injective. Furthermore, X is isomorphic to a submodule of
C ∩B by a monomorphism f−1|X : X → C ∩B. Because A and B are orthogonal, we get that
X = 0, a contradiction. Therefore X ∩ B is a nonzero submodule of B. Now we can embed
(X ∩ B) ⊕ (X ∩ B) into (X ∩ B) ⊕ (C ∩ B) ≤ B, which contradicts the square-freeness of B.
This proves that D ≤e f(C ∩B). Similarly, we also show that D ≤e C ∩B.

Let K be a complement of D in B. Then by 1.1.66, K ⊕ D ≤e B, so that K ⊕ D ⊕ A ≤e
B ⊕A = M . Since K ⊕D ≤e K ⊕ f(C ∩B) by 1.1.53 and (K ⊕D)∩A ⊆ B ∩A = 0, we obtain
that (K ⊕ f(C ∩B)) ∩A = 0. By 1.1.52, we get that (K ⊕ f(C ∩B))⊕A ≤e M.

By 3.1.5, A is B-injective. Now by 3.3.2, there is a submodule B′ of M such that f(C ∩B)⊕
K ⊆ B′ and M = A ⊕ B′. Hence E(M) = E(A) ⊕ E(B′) where E(B′) is an injective envelope
of B′ and B′ is closed in M . Since (K ⊕ f(C ∩ B)) ⊕ A ≤e M = A ⊕ B′, K ⊕ f(C ∩ B) ≤e B′
(see 1.1.52). The isomorphism f |C∩B ⊕ 1K : (C ∩ B) ⊕ K → f(C ∩ B) ⊕ K extends to an
isomorphism f : E(B)→ E(B′), so that 1E(A)⊕f : E(M)→ E(M) is an isomorphism. Since M
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is automorphism invariant, (1E(A) ⊕ f)(M) ⊆M . It follows that f(B) ⊆M ∩E(B′). Moreover,

M∩E(B′) = B′ because B′ ≤e M∩E(B′) ≤M and B′ is closed in M . Therefore, f(B) ⊆ B′. As
1E(A) ⊕ f is an isomorphism from E(B) to E(B′) and B is closed in M , f(B) = (1E(A) ⊕ f)(B)

is essential in E(B′) and closed in M . Hence f(B) ≤e B′, which implies that f(B) = B′. Set
f ′ = f |B. Then f ′ is an isomorphism from B to B′ and extends f.

From f ′|C∩B = f |C∩B = f |C∩B, we can define a morphism g : C + B → f(C) + B′ as
follows: For c ∈ C, b ∈ B, g(c + b) = f(c) + f ′(b). Then g extends f . Let π : A ⊕ B → A
be the canonical projection. Hence B + C = B ⊕ π(C) and π(C) = (B + C) ∩ A. Because
A is quasi-injective and B is A-injective by 3.1.5, we obtain that M is A-injective (see ??).
Thus g|π(C) : π(C) → M extends to some g′ : A → M. Consider the morphism f : M → M

defined by f(a+ x) = g′(a) + g(x) for a ∈ A, x ∈ B +C. This morphism is well-defined because
g′|π(C) = g′|(B+C)∩A = g|π(C) = g|(B+C)∩A. Moreover, f extends f . This completes the proof.

Theorem 3.3.4. [Din05, Theorem 2.6] Every Pseudo-injective module satisfies Condition (C2).

Proof. Let M be a Pseduo-injective module and A be a direct summands of M . Let B ≤M
with B ∼= A. Since A is a direct summand of M , M decomposes as a direct sum M = A ⊕ A′.
Denote an isomorphism from B to A by f. Define α : M → B as follows: For a ∈ A, a′ ∈ A′,
α(a + a′) = f−1(a). In order to prove that B is a direct summand of M it suffices to show
that the canonical injection i : B → M is split. As M is Pseudo-injective, there is a morphism
g : M →M such that f = g ◦ i. Hence α ◦ g ◦ i = α ◦ f = 1B, that is, i is split.

Theorem 3.3.5. Every automorphism invariant satisfies Condition (C2).

Proof. It follows from 3.3.4 and 3.3.3.

Theorem 3.3.6. [LZ13, Theorem 12] If M is an automorphism invariant module, then it sat-
isfies Condition (C3).

Proof. Assume that A and B are two direct summands of M such that A∩B = 0. We wish
to show that A⊕B is a direct summand of M . Write M = A⊕ A′, and let π : M → A′ be the
canonical projection. Let C be a complement of A⊕B in M . Then by 1.1.66, A⊕B⊕C ≤e M .
Set D = B ⊕ C. Note that π|D : D → πD is an isomorphism. By 1.2.3, A⊕D = A⊕ πD. Thus
1A ⊕ π|D : A ⊕ D → A ⊕ πD is an isomorphism. Because M is automorphism invariant and
A⊕D is essential in M , 1A⊕π|D extends to an automorphism σ of M by Theorem 3.1.3. Since
B is a direct summand of M and σ is an automorphism, σB is a direct summand of M , so that
πB = σB is a direct summand of A′. Therefore A⊕B = A⊕ πB is a direct summand of M .

Corollary 3.3.7. [LZ13, Corollary 13] An automorphism-invariant module M is quasi-injective
if and only if it is automorphism invariant and satifies Condition (C1).

Proof. If M is quasi-injective, it is automorphism invariant and satisfies Condition (C1)
by 1.2.5 and 1.2.7.
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Conversely, if M is automorphism invariant and satifies Condition (C1), then M is quasi-
continuous by Theorem 3.3.6. Hence M is invariant under idempotent endomorphisms of E(M)
by 1.3.2. Because M is already invariant under automorphisms of E(M), M is invariant under
all endomorphisms of E(M) by [3, Theorem 3.9]. Therefore M is quasi-injective.

3.4 The exchange property and the endomorphism ring

From now, let ∆(M,M) denote the set of all module morphisms f : M → M whose kernel
Ker(f) is an essential submodule of M

Proposition 3.4.1. [War72, Theorem 2] Let M be a module. Then M has the finite exchange
property if and only if End(M) is an exchange ring.

Theorem 3.4.2. [Nie10, Theorem 9] Let M be a square-free module with the finite exchange
property. Then M has the exchange property.

Proposition 3.4.3. [AS13, Proposition 1] Let M be an automorphism-invariant module. Then
the Jacobson radical of End(M) is ∆(M,M), End(M)/J(End(M)) is a von Neumann regular
ring and idempotents can be lifted modulo J(End(M)).

Proof. Let r ∈ End(M). Then there is a morphism s ∈ End(E(M)) such that s|M = r.
Set K = Ker(r) and let L be a complement of K in M . Then by 1.1.66,K ⊕ L ⊆e M , so that
E(M) = E(K) ⊕ E(L). Let g ∈ End(E(M)) defined by g|E(K) = 0 and g|E(L) = s|E(L). Then
(g−s)|K⊕E(L) = 0 and hence, g−s ∈ J(S) by 1.1.65. Therefore 1−(g−s) is an automorphism of
E. Because M is automorphism-invariant, (1−(g−s))(M) ⊆M . It follows that (g−s)(M) ⊆M .
Now since s is an extension of r ∈ R, we get that s(M) ⊆M , so that g(M) ⊆M .

As L ∩ Ker(g) = 0, g|E(L) is a monomorphism. Let E′ = Im(g) = Im(g|E(L)). Then
E′ ∼= E(L) is injective. Moreover, as g|E(L) : E(L) → E′ is an isomorphism, there is a
morphism h : E′ → E(L) such that h ◦ g ◦ u = u ◦ 1E(L) and hence, u ◦ h ◦ g = u ◦ π,
where u : E(L) → E(M) and π : E(M) → E(L) are the inclusion and projection associ-
ated to the decomposition E(M) = E(K) ⊕ E(L). Since L is essential in E(L), g(L) is es-
sential in E′ and hence, N = M ∩ g(L) is also essential in E′, thanks to the fact that M
is essential in E(M). It follows that the monomorphism h|N : N → L ⊆ M extends to an
endomorphism t : E(M) → E(M). Because M is automorphism-invariant, t(M) ⊆ M . Set
t′ = t|M ∈ End(M). Since N is essential in E = Im(g), g−1(N) is essential in E(M) and
hence, N ′ = (K ⊕ L) ∩ g−1(N) is also essential in E(M) (see 1.1.48). Consider the morphism
ϕ : End(M) → End(E(M))/J(End(E(M))) is defined as follows. If f ∈ End(M), let f̃ be an
endomorphism of E(M) that extends f . Then ϕ(f) = f̃+J(End(E(M))) [FH06, §4, p. 412]. It is
easily seen that ϕ is a well-defined ring morphism. Since J(End(E(M)) consists of all endomor-
phisms having essential kernels, we get that kerϕ = ∆(M,M), and hence ϕ factors through an
injective morphism ψ : End(M)/∆(M,M) → End(E(M))/J(End(E(M)). Let x ∈ N ′. Then
g(x) ∈ N and x = k+ l where k ∈ K and l ∈ L. Thus g(l) = g(k)+g(l) = g(x) ∈ N ⊆M . There-
fore t′ ◦g(x) = t◦g(l) = t′ ◦g(l) = h◦g(l) = l. As t◦g|N ′ = u◦π|N ′ and N ′ is essential in E(M),
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it follows that t ◦ g + J(End(E(M)) = u ◦ π + J(End(E(M)). Thus s ◦ t ◦ s+ J(End(E(M)) =
g◦t◦g+J(End(E(M)) = g◦u◦π+J(End(E(M)) = g+J(End(E(M)) = s+J(End(E(M)), so
that ψ((r◦t′◦r)+∆(M,M)) = (s◦t◦s)+J(End(E(M)) = s+J(End(E(M)) = ψ(r+∆(M,M)).
Since ψ is injective, we get that (r ◦ t′ ◦ r) + ∆(M,M) = r + ∆(M,M). This proves that
End(M)/∆(M,M) is von Neumann regular.

Since End(M)/∆(M,M) is von Neumann regular, J(End(M)/∆(M,M)) = 0, so that
J(End(M)) ⊆ ∆(M,M). Let a ∈ ∆(M,M). Because Ker(a) ∩Ker(1− a) = 0 and Ker(a) ⊆e
M,Ker(1−a) = 0. Thus (1−a) is an isomorphism from M to (1−a)(M). As M is automorphism-
invariant, M satisfies Condition (C2) (see 3.3.5), that is, submodules isomorphic to a direct
summand of M are direct summands. Hence (1 − a)(M) is a direct summand of M . But
(1 − a)(M) ⊆e M because Ker(a) ⊆ (1 − a)(M). Thus (1 − a)(M) = M and hence, 1 − a
is a unit in End(M). It follows that a ∈ J(End(M)) and hence, ∆(M,M) ⊆ J(End(E(M)).
This gives J(End(M)) = ∆(M,M), so that End(M)/J(End(M)) is a von Neumann regular
ring.

Now, we will show that idempotents can be lifted modulo J(End(M)). Let e′+ J(End(M))
be an idempotent in End(M)/J(End(M) and f ′+ J(End(E(M)) = ψ(e′+ J(End(M))). Then
f ′ + J(End(E(M)) is an idempotent in End(E(M))/J(End(E(M)). Because idempotents can
be lifted modulo J(End(E(M)), there is an idempotent f in End(E(M)) such that f ′ = f + j
with j ∈ J(End(E(M)). Now, 1 − j is a unit in End(E(M), and hence M is invariant under
1 − j. Therefore j(M) ⊆ M , so that f(M) ⊆ f ′(M) + j(M) ⊆ M . It follows that e = f |M
belongs to End(M) and it is an idempotent since so is f . By construction, ψ(e+J(End(M))) =
f + J(End(E(M))) = f ′ + J(End(E(M))) = ψ(e′ + J(End(E(M)))). And, as ψ is an injective
morphism, we obtain that e+ J(End(M)) = e′ + J(End(M)). This complete the proof.

Theorem 3.4.4. [AS13, Theorem 3] Every automorphism-invariant module satifies the ex-
change property.

Proof. Let M be an automorphism-invariant module. Set R = End(M). By 3.4.3, R/J(R)
is a von Neumann regular ring and idempotents can be liftted modulo J(R). By [Nic77, Propo-
sition 1.6], R is an exchange ring. Hence M has the finite exchange property by 3.4.1. Now M
decomposes as a direct sum M = P ⊕ Q where Q is quasi-injective and P is square-free (see
3.2.2). Applying 1.1.10, we dedude that P has the finite exchange property, so that P has the
exchange property thanks to 3.4.2 and the fact that P is square-free. Applying 1.2.9 to Q, we
get that Q has the full exchange property. Now by 1.1.10, M has the exchange property.

Theorem 3.4.5. [AFT15, Theorem 2.1] Let M be an automorphism-invariant module and
E(M) be its injective envelope. Then

(a) There is a canonical local morphism

ϕ : End(M)→ End(E(M))/J(End(E(M)))

with kernel J(End(M)), so that ϕ induces an embedding ϕ, as a rationally closed subring,
of the von Neumann regular ring End(M)/J(End(M)) into the von Neumann regular right
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self-injective ring
End(E(M))/J(End(E(M))).

(b) For every invertible element v of the ring End(E(M))/J(End(E(M))), there exists an
invertible element u of End(M)/J(End(M)) such that ϕ(u) = v.

(c) For every idempotent element f of the ring End(E(M))/J(End(E(M))) there exists an
idempotent element e of End(M)/J(End(M)) such that ϕ(e) = f if and only if the module
M is quasi-injective.

(d) If M is quasi-injective, then ϕ is an isomorphism.

Proof. (a) For any module M , the morphism

ϕ : End(M)→ End(E(M))/J(End(E(M)))

is defined as follows. If f ∈ End(M), let f̃ be an endomorphism of E(M) that extends f . Then
ϕ(f) = f̃ +J(End(E(M))) [FH06, §4, p. 412]. It is easily seen that ϕ is a well-defined ring mor-
phism. Moreover, ϕ is a local morphism, because if f ∈ End(M) and ϕ(f) is invertible in the ring
End(E(M))/J(End(E(M))), then f̃ is an automorphism of E(M). Since M is automorphism-
invariant, it follows that f̃(M) = M ; that is, f(M) = M . This proves that f is onto. Moreover,
f̃ is an automorphism of E(M) implies that its restriction f is an injective endomorphism of M .
Thus f is an automorphism, and the ring morphism ϕ is a local morphism. It follows that the
injective morphism ϕ : End(M)/ ker(ϕ)→ End(E(M))/J(End(E(M))) induced by ϕ is a local
morphism as well. Moreover, ker(ϕ) = ∆(M,M) = J(End(M)) by 3.4.3.

(b) If v is an invertible element of End(E(M))/J(End(E(M))), then v = v′+J(End(E(M)))
for some element v′ ∈ End(E(M)), necessarily invertible. Therefore v′ is an automorphism of
E(M). Since M is automorphism-invariant, the restriction u′ of v′ to M is an automorphism of
M . Thus u := u′ + J(End(M)) is an invertible element of End(M)/J(End(M)) and ϕ(u) = v.

(d) If M is quasi-injective, for every f ∈ End(E(M)), the restriction f ′ of f to M is an
endomorphism of M . Thus ϕ(f ′ + J(End(M))) = f + J(End(E(M))). Hence ϕ is onto, and (a)
allows us the conclusion.

(c) Assume that for every idempotent element f ∈ End(E(M))/J(End(E(M))) there exists
an idempotent element e of End(M)/J(End(M)) with ϕ(e) = f . In order to show that M is
quasi-injective, we will prove that it satisfies Condition (C1). Let N be a submodule of M . We
must show that N is essential in a direct summand of M . Now E(M) has a direct-sum decom-
position E(M) = E(N)⊕E. Thus there is an idempotent ε ∈ End(E(M)) with E(N) = εE(M)
and E = (1 − ε)E(M). By hypothesis, there exists an idempotent e ∈ End(M)/J(End(M))
with ϕ(e) = ε + J(End(E(M))). As idempotents lift modulo J(End(M)), there is an idempo-
tent ε′ ∈ End(M) such that e = ε′ + J(End(M)). The idempotent ε′ ∈ End(M) corresponds
to a direct-sum decomposition M = ε′M ⊕ (1 − ε′)M . This direct-sum decomposition of M
induces a direct-sum decomposition E(M) = E(ε′M) ⊕ E((1 − ε′)M). Thus there is an idem-
potent ε′′ ∈ End(E(M)) with E(ε′M) = ε′′E(M) and E((1− ε′)M) = (1− ε′′)E(M). We claim
that endomorphism ε′′ of E(M) extends the endomorphism ε′ of M . To prove this claim, it
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suffices to show that ε′′(x) = x for every x ∈ ε′M and ε′′(y) = 0 for every y ∈ (1 − ε′)M . Now
ε′M ⊆ E(ε′M) = ε′′E(M), so that ε′′(x) = x for every x ∈ ε′M . Similarly (1− ε′)M ⊆ E((1−
ε′)M) = (1− ε′′)E(M), so that for every y ∈ (1− ε′)M one has that y ∈ (1− ε′′)E(M). Hence
ε′′(y) = 0. This proves the claim. Thus ϕ(ε′ + J(End(M)) = ε′′ + J(End(E(MR))). But ϕ(e) =
ε+ J(End(E(M))) and e = ε′ + J(End(M)), so that ϕ(ε′ + J(End(M))) = ε+ J(End(E(M))).
It follows that ε′′ + J(End(E(M))) = ε + J(End(E(M))); that is, ε′′ − ε ∈ J(End(E(M))),
so 1 − ε′′ + ε is an automorphism of E(M). As M is automorphism-invariant, we have that
(1− ε′′ + ε)(M) = M . Thus ε(M) ⊆ (1− ε′′ + ε)(M) + 1(M) + ε′′(M) = M +M + ε′(M) = M .
It follows that ε restricts to an idempotent endomorphism of M . In particular, ε(M) is a direct
summand of M . Moreover, N ⊆ E(N) ∩M = εE(M) ∩M = ε(M), so that N is a submodule
of ε(M). It remains to show that N is essential in ε(M). This follows immediately from the
fact that ε(M) ⊆ εE(M) = E(N) and N is essential in E(N). This proves that M satisfies
Condition (C1), and hence is quasi-injective by 3.3.7.

The converse follows immediately from (d), noting that the inverse image of an idempotent
via an injective morphism is necessarily idempotent.

Proposition 3.4.6. [AFT15, Proposition 2.2]Let M be an automorphism-invariant module.
Then

(a) If M is indecomposable, then End(M) is a local ring.
(b) If M has finite Goldie dimension, then every injective endomorphism of M is an auto-

morphism of M and the endomorphism ring End(M) is a semiperfect ring.

Proof. (a) Automorphism-invariant modules have the exchange property by 3.4.4, and
indecomposable modules with the exchange property have a local endomorphism ring by 1.1.12.

(b) Let M be an automorphism-invariant module of finite Goldie dimension and let ϕ : M →
M be an injective endomorphism of M . Then ϕ extends to an endomorphism ϕ0 : E(M) →
E(M), which is necessarily injective. As M has finite Goldie dimension, ϕ0 is an automorphism
of E(M). But M is automorphism-invariant, so ϕ0(M) = M . Thus ϕ(M) = M , that is, the
endomorphism ϕ is also surjective.

Finally, every module of finite Goldie dimension is a direct sum of indecomposable modules.
Thus if M = M1 ⊕ · · · ⊕Mn is automorphism-invariant and the Mi are indecomposable, then
the modules Mi are automorphism-invariant. Hence they have a local endomorphism ring by
(a). Since M = M1 ⊕ · · · ⊕Mn, there is a complete set e1, ...en of orthogonal idempotents in
End(M) such that Mi = Mei. Moreover, eiEnd(M)ei ∼= End(Mei) = End(Mi) is local for
every i = 1, ..., n. This proves that End(M) is semiperfect (see 1.1.46).

Corollary 3.4.7. [AFT15, Corollary 2.3] If M,N are two automorphism-invariant R-modules
of finite Goldie dimensions isomorphic to submodules of each other, then M is isomorphic to
N .

Proof. By the hypothesis, there exists two monomorphisms f : M → N and g : N → M .
So fg ∈ End(N) and fg is injective. Hence fg is an automorphism by Proposition 3.4.6(b).
Thus f is onto. Since f is a monomorphism, f is an isomorphism.

62



3.5 A connection with quasi-injective modules

Lemma 3.5.1. [AFT15, Lemma 2.6] Let M be an automorphism-invariant module. If M =
M1 ⊕M2 ⊕ · · · ⊕Mn, where each Mi is a quasi-injective module, then M is quasi-injective.

Proof. It clearly suffices to prove the case n = 2. Assume that M = M1 ⊕ M2 is
automorphism-invariant, where M1 and M2 are quasi-injective. By 3.1.5, M1 is M2-injective
and M2 is M1-injective. Since M1 and M2 are quasi-injective, M is quasi-injective (see 1.1.56).

Proposition 3.5.2. [AFT15, Proposition 2.7] Let M1,M2, . . . ,Mn be uniform modules. If M :=
M1 ⊕M2 ⊕ · · · ⊕Mn is automorphism-invariant, then M is quasi-injective.

Proof. By the previous lemma, it suffices to show that each Mi is quasi-injective. On the
one hand, each Mi is uniform, and each Mi satisfies (C1). On the other hand, by 3.1.4, each Mi

is automorphism-invariant. By 3.3.7, every Mi is quasi-injective. Now apply Lemma 3.5.1.

Proposition 3.5.3. [AFT15, Proposition 2.8] The following conditions are equivalent for a ring
R.

1. Every automorphism-invariant R-module of finite Goldie dimension is quasi-injective.

2. Every automorphism-invariant indecomposable R-module of finite Goldie dimension is uni-
form.

3. Every automorphism-invariant indecomposable R-module of finite Goldie dimension is
quasi-injective.

Proof. (1) ⇒ (2) An automorphism-invariant indecomposable module M of finite Goldie
dimension is quasi-injective by (1). Hence it satisfies Condition (C1) (see 1.2.7). Therefore M is
uniform.

(2) ⇒ (3) Let M be an automorphism-invariant indecomposable module of finite Goldie
dimension. Then M is uniform by (2), and hence it satisfies Condition (C1). By 3.3.7, M is
quasi-injective.

(3) ⇒ (1) Let M be an automorphism-invariant module of finite Goldie dimension. So M =
M1 ⊕M2 ⊕ · · · ⊕Mn, where each Mi is an automorphism-invariant indecomposable module of
finite Goldie dimension. By (3), every Mi is quasi-injective. From Lemma 3.5.1, it follows that
M is quasi-injective.

Proposition 3.5.4. [AFT15, Proposition 2.5] If R is a ring of odd characteristic, then every
automorphism-invariant R-module is quasi-injective.

Proof. Suppose thatR is a ring of odd characteristic n with a moduleM that is automorphism-
invariant but not quasi-injective. By Theorem 3.5.8, the endomorphism ring End(M) has a factor
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End(M)/M isomorphic to F2. Then nR = 0, so that nM = 0. Hence nEnd(M) = 0, so that
n(End(M)/M) = 0. Thus nF2 = 0, which is a contradiction because n is odd.

By Proposition 3.5.4, every ring R of odd characteristic satisfies the equivalent conditions of
Proposition 3.5.3.

Lemma 3.5.5. [MM90, Lemma 3.3] Let M be a module. Assume that M decomposes as a
direct sum M = M1 ⊕ M2 where M1 and M2 are orthogonal. Then End(M)/∆(M,M) ∼=
End(M1)/∆(M1,M1) × End(M2)/∆(M2,M2). The converse holds if M1 and M2 are relatively
injective.

Proof. Let s ∈ S = End(M). We can write s =

(
s1 ψ
ϕ s2

)
where s1 ∈ End(M1), s2 ∈

End(M2), ϕ ∈ Hom(M1,M2) and ψ ∈ Hom(M2,M1). Furthermore, we can consider s1, s2, ϕ and
ψ as elements of S by defining them to be zero on the other summand. Then ϕ,ψ ∈ ∆(M,M)
because M1 and M2 are orthogonal. We have ker s ∩ M1 = ker s1 ∩ kerϕ and ker s ∩ M2 =
ker s2 ∩ kerψ.

Now we will show that s ∈ ∆(M,M) if and only if s1 ∈ ∆(M1,M1) and s2 ∈ ∆(M2,M2).
Assume that s ∈ ∆(M,M). Then ker s ≤e M , so that ker s1 ∩ kerϕ = ker s ∩ M1 ≤e M1

by 1.1.48. It follows that ker s1 ≤e M1, that is, s1 ∈ ∆(M1,M1). By a similar argument, we
also have s2 ∈ ∆(M2,M2). Conversely, assume that s1 ∈ ∆(M1,M1) and s2 ∈ ∆(M2,M2).
Since kerϕ ≤e M1, kerϕ ∩ ker s1 ≤e M1 by 1.1.48, and therefore ker s ∩M1 ≤e M1.Similarly
Ker s∩M2 ≤e M2. Thus ker s ≤e M , that is, s ∈ ∆(M,M). It follows that End(M)/∆(M,M) ∼=(
End(M1)/∆(M1,M1) 0

0 End(M2)/∆(M2,M2)

)
Lemma 3.5.6. [AS13, Lemma 1] Let M be an R-module such that End(M) has no factor
isomorphic to F2. Then End(E(M)) has no factor isomorphic to F2.

Proof. Let M be any R-module such that End(M) has no factor isomorphic to F2 and
set S = End(E(M)). Assume that End(E(M)) has a factor isomorphic to F2, that is, there is
a ring morphism ψ : S → F2. It follows that there is a ring morphism ψ′ : S/J(S) → F2. Set
f = ψ′ϕ where ϕ : End(M)→ S/J(S) as in 3.4.5 (a). Then f is a ring morphism from End(M)
to F2, a contradiction.

Lemma 3.5.7. [AS14, Lemma 2] Let M be a continuous module over any ring S. Then each
element of the endomorphism R = End(MS) is the sum of two units if and only if R has no
factor isomorphic to F2.

Proof. Assume that R has no factor isomorphic to F2. Set ∆ = ∆(M,M). By 3.5.5,
R/∆ ∼= R1 ⊕ R2 where R1 is von Neumann regular, right self-injective, and R2 is an exchange
ring with no non-zero nilpotent element.

Theorem 3.5.8. [AS14, Theorem 3] Let M be a right module such that End(M) has no factor
isomorphic to F2. Then M is quasi-injective if and only if M is automorphism-invariant.
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Proof. Let M be an automorphism invariant module such that End(M) has no factor
isomorphic to F2. Then by Lemma 3.5.6, End(E(M)) has no factor isomorphic to F2. Moreoer,
by Lemma 3.5.7, each element of End(E(M)) is a sum of two units. This means that for every
endomorphism λ ∈ End(E(M)), we have λ = u1 + u2 where u1, u2 are automorphisms in
End(E(M)). Since M is automorphism-invariant, it is invariant under both u1 and u2, and we
obtain that M is invariant under λ. This shows that M is quasi-injective by 1.2.5. The converse
follows from 1.2.5.

3.6 Boolean rings

Lemma 3.6.1. [AFT15, Lemma 3.1]Let T be a ring and I the two-sided ideal of T generated
by the subset { t− t2 | t ∈ T } of T . Then

(a) The ideal I is the smallest ideal of T with T/I a boolean ring or the zero ring.

(b) The ideal I is the intersection of all maximal two-sided ideals M of T with T/M∼= F2.

(c) The ideal I contains the Jacobson radical J(T ) of T .

(d) The kernel of every ring morphism T → F2 contains I.

(e) I is a proper ideal of T if and only if there exists a ring morphism T → F2, if and only if
T has a maximal two-sided ideal M with T/M∼= F2.

Proof. (a) is trivial.
(b) Let us check that

I =
⋂

T/M∼=F2

M.

(⊆) Since I is generated by the elements t− t2, it suffices to show that t− t2 ∈M for every
t ∈ T and every maximal two-sided idealM with T/M∼= F2. Now F2 is boolean, so that T/M
is boolean, hence t+M = t2 +M. It follows that t− t2 ∈M.

(⊇) By (a), the ring T/I is boolean. Boolean rings are isomorphic to subrings of FX2 for
some set X. Let ε : T/I → FX2 be an embedding and πx : FX2 → F2 (x ∈ X), p : T → T/I be
the canonical projections. Then the morphisms ϕx := πxεp : T → F2 have kernels kerϕx, which
are maximal two-sided ideals of T , T/ kerϕx ∼= F2 and

⋂
x∈X kerϕx =

⋂
x∈X(εp)−1(kerπx) =

(εp)−1(
⋂
x∈X kerϕx) = p−1(ker ε) = ker p = I. Thus

⋂
T/M∼=F2M⊆

⋂
x∈X kerϕx = I.

(c) By (b), I is the intersection of all maximal two-sided ideals M of T with T/M ∼= F2,
and all maximal two-sided idealsM of T with T/M∼= F2 are maximal right ideals of T . Hence
I is an intersection of maximal right ideals of T , so that I ⊇ J(T ).

(d) The kernel of every ring morphism T → F2 is a maximal two-sided ideal of T with
T/M∼= F2. Thus (d) follows from (b).

(e) is now trivial.
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Lemma 3.6.2. [AFT15, Corollary 3.3] Let M = M1 ⊕M2 be an automorphism-invariant R-
module where M1 and M2 are orthogonal. Then End(M) has no factor isomorphic to F2 if and
only if each End(Mi) (i = 1, 2) has no factor isormophic to F2.

Proof. Let I be the two-sided ideal of End(M) generated by the set {x−x2 | x ∈ End(M) }.
By Lemma 3.5.5, End(M)/∆(M,M) ∼= End(M1)/∆(M1,M1)×End(M2)/∆(M2,M2). As ∆(M,M) =
J(End(M)) for any automorphism-invariantR-moduleM (see 3.4.3), it follows that End(M)/J(End(M)) ∼=
End(M1)/J(End(M1)) × End(M2)/J(End(M2)) in a canonical way. Thus there is a homomor-
phism End(M) → F2 if and only if there is a homomorphism End(M)/J(End(M)) → F2, if
and only if there is a homomorphism End(Mi)/J(End(Mi))→ F2 for an i equal to 1 or 2. The
conclusion follows immediately.

Lemma 3.6.3. [AFT15, Lemma 3.5] If M1,M2 are two right modules over a ring R and M1,M2

have isomorphic injective envelopes, which are non-zero modules, then M1 and M2 have non-zero
isomorphic submodules.

Proof. Let f : E(M1) → E(M2) be an isomorphism. Then M1 and f−1(M2) are essential
submodules of E(M1). Hence M1 ∩ f−1(M2) is an essential submodule of E(M1) by 1.1.48. It
follows that M1 ∩ f−1(M2) is a non-zero submodule of M1. Via the isomorphism f , we find
that f(M1 ∩ f−1(M2)) is an essential submodule of E(M2) isomorphic to M1 ∩ f−1(M2). But
f(M1 ∩ f−1(M2)) = f(M1) ∩M2 is a submodule of M2.

Corollary 3.6.4. [AFT15, Corollary 3.6] A module M is square-free if and only if its injective
envelope E(M) is square-free.

Proof. If M is not square-free, then it contains a submodule isomorphic to N⊕N for some
non-zero module N . Hence the same holds for E(M), that is, E(M) is not square-free.

Conversely, assume that E(M) is not square-free. Then E(M) contains a submodule iso-
morphic to N ⊕ N for some non-zero module N . It follows that E(M) = E1 ⊕ E2 ⊕ E3 with
E1
∼= E2 6= 0. Then by 1.1.48, M ∩ Ei is a non-zero essential submodule of Ei for i = 1, 2. In

particular, M ∩E1 and M ∩E2 have isomorphic injective envelopes, which are non-zero modules.
By Lemma 3.6.3, M ∩ E1 and M ∩ E2 have non-zero isomorphic submodules. Thus M is not
square-free.

Corollary 3.6.5. [AFT15, Corollary 3.7]If M is an automorphism-invariant square-free mod-
ule, then every injective endomorphism of M is an automorphism of M .

Proof. Let M be an automorphism-invariant square-free module and let ϕ : M → M be
an injective endomorphism of M . Then ϕ extends to an endomorphism ϕ0 : E(M) → E(M),
which is necessarily injective (see 1.1.51). Then E(M) = ϕ0(E(M)) ⊕ C, so that E(M) =
ϕ2

0(E(M))⊕ϕ0(C)⊕C with ϕ0(C) ∼= C. By Corollary 3.6.4, E(M) is square-free, so C = 0. This
proves that ϕ0 is an automorphism of E(M). But M is automorphism-invariant, so ϕ0(M) = M .
Thus ϕ(M) = M , that is, the endomorphism ϕ of M is also surjective.

Arguing as in Corollary 3.4.7, we find that:
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Corollary 3.6.6. [AFT15, Corollary 3.8] If M,N are two automorphism-invariant square-free
R-modules isomorphic to submodules of each other, then M is isomorphic to N .

Corollary 3.6.7. [AFT15, Corollary 3.9] Let M be an automorphism-invariant R-module. As-
sume that M = M1 ⊕M2, where M1 and M2 are orthogonal. Let Ei be an injective envelope of
Mi. Then E1 is orthogonal to E2.

Proof. Assume that there exists 0 6= N1 ≤ E1 and 0 6= N2 ≤ E2 such that N1
∼= N2. Let

E′i be an injective envelope of Ni. Then E1 = E′1 ⊕ E′′1 and E2 = E′2 ⊕ E′′2 where E′1
∼= E′2.

Set E := E1 ⊕ E2 = E′1 ⊕ E′2 ⊕ (E′′1 ⊕ E′′2 ). Then E is an injective envelope of M . Since M is
automorphism-invariant and E′1

∼= E′2, we get that M = (M ∩E′1)⊕ (M ∩E′2)⊕ (M ∩ (E′′1 ⊕E′′2 ))
from 3.2.1. We will show that M ∩ E′1 ≤M1. Let x ∈M ∩ E′1, then x = x1 + x2 where xi ∈Mi

and x ∈ E′1 ⊆ E1. Hence x2 = x− x1 ∈ M2 ∩ E1 ⊆ E2 ∩ E1 = 0. Therefore x = x1 ∈ M1. By a
similar argument, we get that M ∩ E′2 ≤ M2. As M ∩ E′i is essential in E′i and E′i is injective,
E′i is an injective envelope of M ∩ E′i. Moreover, E′1

∼= E′2. Hence, by Lemma 3.6.3, there exist
non-zero submodules P1 ≤M ∩E′1 ≤M1 and P2 ≤M ∩E′2 ≤M2 such that P1

∼= P2. Therefore
M1 is not orthogonal to M2. This is a contradiction.

Lemma 3.6.8. Let e, f be two idempotents of R. Then

1. If e, f are central idempotents of R, then eR ∼= fR if and only if e = f.

2. eR ∼= fR and (1−e)R ∼= (1−f)R if and only if there is a unit u ∈ R such that e = u−1fu.

Proof. (1) It suffices to show that if eR ∼= fR, then e = f. There exists an isomorphism
ϕ : eR → fR. Set a = ϕ(e) and b = varphi−1(f). Then ab = ϕ(e)varphi−1(f) = ϕ(eϕ−1(f)) =
ϕ(ϕ−1(f)) = f and ba = ϕ−1(f)ϕ(e) = ϕ−1(fϕ(e)) = ϕ−1(ϕ(e)) = e. Now we have e = e2 =
baba = bfa = fba = abba = abe = aeb = abab = f2 = f.

(2) If eR ∼= fR and (1 − e)R ∼= (1 − f)R, then there are two isomorphism h1 : fR → eR,
h2 : (1−f)R→ (1−e)R. Note that eR⊕(1−e)R = fR⊕(1−f)R = R. Then h1⊕h2 : R→ R is an
isomorphism given by left multiplication by some unit u ∈ R. From uf ∈ eR and u(1−f) ∈ (1−
e)R, we get that ufu−1 ∈ eRu−1 = eR and u(1−f)u−1 ∈ (1−e)Ru−1 = (1−e)R, which implies
that ufu−1R ≤ fR and u(1−f)u−1 ≤ (1−f)R. Since ufu−1, u(1−f)u−1 are two idempotents
of R, and ufu−1 +u(1−f)u−1 = 1, we obtain that ufu−1R⊕u(1−f)u−1R = R = eR⊕(1−e)R.
It follows that ufu−1R = eR and u(1− f)u−1R = (1− e)R. Hence (ufu−1)e = e = e2, so that
(ufu−1 − e)e = 0. Moreover, (ufu−1 − e)(1 − e) = 0. It follows that ufu−1 − e = 0, that is,
f = u−1eu.

Conversely, if f = u−1eu for some unit u ∈ R, then ufR = euR = eR. Hence left multiplica-
tion by u defines an isomorphism from fR to eR. Similarly, we also have 1− f = u−1(1− f)u,
which implies that (1− f)R ∼= (1− e)R.

Proposition 3.6.9. [AFT15, Proposition 3.10] Let M be an automorphism-invariant module
and E(M) be its injective envelope. The following conditions are equivalent:

67



(a) M is square-free.

(b) E(M) is square-free.

(c) The von Neumann regular ring End(M)/J(End(M)) is abelian.

(d) The von Neumann regular right self-injective ring End(E(M))/J(End(E(M))) is abelian.

Proof. (a)⇔ (b) has been proved in Corollary 3.6.4.
(b)⇒ (d) follows from the fact that ∆(E,E) = J(End(E)) for any injective module E and

1.4.11.
(d) ⇒ (c) follows from the fact that every subring of an abelian ring is an abelian ring and

Theorem 3.4.5.
(c)⇒ (a) Assume that (c) holds. Set S := End(M). Suppose that M contains a direct sum

X ⊕ Y of two isomorphic submodules. Taking the injective envelopes in E(M), one finds that
E(M) = E(X) ⊕ E(Y ) ⊕ C. If ϕ : X → Y is an isomorphism, ϕ extends to an isomorphism
ψ : E(X)→ E(Y ) by 1.1.63. Thus there is an isomorphism

ω :=

 0 ψ−1 0
ψ 0 0
0 0 1C

 : E(M) = E(X)⊕ E(Y )⊕ C → E(M) = E(X)⊕ E(Y )⊕ C.

The automorphism ω of E(M) restricts to an automorphism ω′ ofM becauseM is automorphism-
invariant. From 3.2.1, we know that M = (M ∩ E(X)) ⊕ (M ∩ E(Y )) ⊕ (M ∩ C). Thus
M = e1M ⊕ e2M ⊕ e3M for orthogonal idempotents ei ∈ S, where e1M = M ∩ E(X) and
e2M = M ∩E(Y ). Now ω′(M ∩E(X)) = ω(M ∩E(X)) = ω(M)∩ω(E(X)) = M ∩E(Y ). Thus
M ∩ E(X)) ∼= M ∩ E(Y ), that is, e1M ∼= e2M . Applying the functor Hom(M,−) : Mod-R →
Mod-S, one finds that SS = e1S⊕e2S⊕e3S and e1SS ∼= e2SS [Fac10, Theorem 4.7]. If ei is the im-
age of ei in S/J(S), then S/J(S) = e1S/J(S)⊕e2S/J(S)⊕e3S/J(S) and e1S/J(S) ∼= e2S/J(S)
(see 1.1.31). But S/J(S) is abelian, so that e1S/J(S) ∼= e2S/J(S) implies e1 = e2 by 3.6.8. Thus
e1 − e2 is an idempotent in J(S), from which e1 = e2. Thus M ∩ E(X) = M ∩ E(Y ), and
X = Y = 0.

The next Corollary generalizes [Bie14]. Recall that a ring is duo if all its right ideals and all
its left ideals are two-sided ideals. A ring is quasi-duo if all its maximal right ideals and all its
maximal left ideals are two-sided ideals.

Corollary 3.6.10. [AFT15, Corollary 3.11] The endomorphism ring of an automorphism-
invariant square-free module is quasi-duo.

Proof. Let M be an automorphism-invariant square-free module. By Proposition 3.6.9,
End(M)/J(End(M)) is an abelian von Neumann regular ring. Because every one-sided principal
ideal of abelian von Neumann regular ring is generated by a central idempotent, all of one-
sided ideal of End(M)/J(End(M)) are two-sided. Thus End(M)/J(End(M)) is a duo ring. The
conclusion now follows from the fact that a ring S is quasi-duo if and only if S/J(S) is quasi-duo.
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Theorem 3.6.11. [AFT15, Theorem 3.12] Let M be an automorphism-invariant module and
let E(M) be its injective envelope.

(a) If M is quasi-injective and End(M) has a factor isomorphic to F2, then End(E(M)) has
a factor isomorphic to F2.

(b) If M has finite Goldie dimension and End(M) has a factor isomorphic to F2, then the
following conditions hold.

(i) End(E(M)) has a factor isomorphic to F2.

(ii) E(M) has a direct-sum decomposition E(M) = E ⊕C with E orthogonal to C, E an
indecomposable R-module and End(E)/J(End(E)) ∼= F2.

(iii) Aut(E) = 1 + J(End(E)), so that every automorphism of the R-module E is the
identity on an essential R-submodule of E.

(iv) E is the injective envelope of its non-zero R-submodule annE(2).

Proof. (a) If M is quasi-injective, the mapping

ϕ : End(M)/J(End(M))→ End(E(M))/J(End(E(M)))

is an isomorphism by Theorem 3.4.5(d). Thus End(E(M)) has a factor isomorphic to F2.
(i) We first consider the case of M indecomposable. If M is automorphism-invariant inde-

composable, then End(M) is local by Proposition 3.4.6. If End(M) also has a factor isomorphic
to F2, then

End(M)/J(End(M)) ∼= F2.

Since M is automorphism-invariant, we get that M = N ⊕ P , where N is quasi-injective
and P is square-free (Theorem 3.2.2). But M is indecomposable, so that either M = N or
M = P . If M = N is quasi-injective, End(E(M)) has a factor isomorphic to F2 by (a). In
the other case, M = P is square-free, so that End(E(M))/J(End(E(M)) is abelian. As M
has finite Goldie dimension, E(M) has finite Goldie dimension. Hence End(E(M)) is semilo-
cal. Therefore End(E(M))/J(End(E(M)) ∼= D1 × D2 × · · · × Dn, where each Di is a division
ring. Consider the mapping ϕ : End(M)→ End(E(M))/J(End(E(M)) of Theorem 3.4.5. From
kerϕ = J(End(M)), it follows that imϕ ∼= End(M)/J(End(M)) ∼= F2. Moreover, the group of
units of End(E(M))/J(End(E(M)) is contained in im(ϕ), because M is automorphism-invariant
(see 3.4.5(b)). Hence the group of units of

End(E(M)/J(End(E(M))

has one element. Since it is isomorphic to D1 \ {0} × · · · ×Dn \ {0}, it follows that Di
∼= F2 for

every i = 1, . . . , n. So End(E(M)) has a factor isomorphic to F2. This concludes the proof of (i)
for M indecomposable.

Now let M be an arbitrary automorphism-invariant module of finite Goldie dimension and
assume that End(M) has a factor isomorphic to F2. The proof will be by induction on the
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Goldie dimension n of M . If n = 1, then M is indecomposable, and we are done. Suppose n > 1.
Since M is automorphism-invariant, we have that M = N ⊕ P , where N is quasi-injective, P
is square-free and N,P are orthogonal. If P = 0, then M is quasi-injective, and we conclude by
(a). If N = 0, then M is square-free. If M is indecomposable, we are done, as we have seen in the
previous paragraph. Otherwise M = M1 ⊕M2 for suitable non-zero submodules M1,M2. The
modules M1,M2 are orthogonal because M is square-free. By Corollary 3.6.2, either End(M1) or
End(M2) has a factor isomorphic to F2. Without loss of generality, we can assume that End(M1)
has a factor isomorphic to F2. Let Ei be an injective envelope of Mi, so that E(M) = E1⊕E2. By
the inductive hypothesis, we get that End(E1) has a factor isomorphic to F2. Moreover, E1, E2

are orthogonal by Corollary 3.6.7. Thus End(E) has a factor isomorphic to F2 by Corollary 3.6.2,
and we are done.

It remains to consider the case M = N ⊕ P with both N and P non-zero. Then E(M) =
E(N) ⊕ E(P ). Then E(N) and E(P ) are orthogonal (Corollary 3.6.7), and either End(N) or
End(P ) has a factor isomorphic to F2 (Corollary 3.6.2). By the inductive hypothesis, End(E(N))
or End(E(P )) has a factor isomorphic to F2. The conclusion follows by Corollary 3.6.2.

(ii) Since M is of finite Goldie dimension, E(M) decomposes as E(M) = E1 ⊕ ... ⊕ En,
where the Ei are indecomposable injective R-modules. Now End(M) is semiperfect (Proposi-
tion 3.4.6(b)), hence semilocal. By the hypothesis, there exists a ring morphism End(M)→ F2,
so that there exists a ring morphism End(M)/J(End(M)) → F2. The semisimple artinian ring
End(M)/J(End(M)) is a finite direct product of rings of matrices Mnj (Dj) over division rings
Dj . The kernel of the ring morphism End(M)/J(End(M))→ F2 is a maximal ideal of this finite
direct product of rings of matrices Mnj (Dj). It follows that there exists an index j with nj = 1
and Dj

∼= F2. Thus, in the direct-sum decomposition E(M) = E1 ⊕ ... ⊕ En, there exists an
index i with Ei 6∼= Ek for every k = 1, . . . n different from i and End(Ei)/J(End(Ei)) ∼= F2. Set
E := Ei and C := E1 ⊕ · · · ⊕ Ei−1 ⊕ Ei+1 ⊕ · · · ⊕ En. In order to conclude the proof of (ii), it
suffices to show that E is orthogonal to C. Assume the contrary. Then there exist isomorphic
non-zero submodules A of E and B of C. Thus E(B) is an indecomposable direct summand of
C isomorphic to E(A) ∼= E. By the Krull-Schmidt-Azumaya Theorem, the module E(B) must
be isomorphic to one of the modules E1, . . . , Ei−1, Ei+1, . . . , En. This is a contradiction.

(iii) If ϕ ∈ Aut(E), we have that ϕ + J(End(E)) is an invertible element in the ring
End(E)/J(End(E)). But End(E)/J(End(E)) ∼= F2, so that ϕ + J(End(E)) = 1 + J(End(E)).
Thus ϕ ∈ 1 + J(End(E)). This proves that Aut(E) = 1 + J(End(E)). In particular, every
automorphism of the R-module E is the identity on an essential R-submodule of E.

(iv) From End(E)/J(End(E)) ∼= F2, it follows that 1E+1E ∈ J(End(E)); that is 2 annihilates
an essential submodule of E. Therefore annE(2) is a non-zero R-submodule of E. But E is
uniform.

Theorem 3.6.11(b) does not hold when M is not automorphism-invariant. To see this, take
R = Z and M = ZZ. Then QZ is an injective envelope of ZZ. The endomorphism ring of ZZ is
isomorphic to Z. So it has a factor isomorphic to F2. But the endomorphism ring of QZ has no
factor isomorphic to F2.

Remark 3.6.12. Let M be any right R-module, let E(M) be its injective envelope and S :=

70



End(E(M)) be the endomorphism ring of E(M), so that E(M) turns out to be a S-R-bimodule.
Let I be the two-sided ideal of S generated by the set { s − s2 | s ∈ S }. Then the annihilator
annE(M) I := { e ∈ E(M) | Ie = 0 } is an S-R-subbimodule of SE(M)R, as is easily seen. Thus
there is an R-module direct-sum decomposition E(M)R = E1 ⊕ E2, where E1 is an injective
envelope E(annE(M) I) of annE(M) I in E(M)R and E2 is a complement of E1 in E(M)R, so
that no non-zero element of E2 is annihilated by I, i.e., e2 ∈ E2 and Ie2 = 0 imply e2 = 0.
Assume there are two non-zero R-submodules A1, A2 such that A1 ≤ E1, A2 ≤ E2 and A1

∼=
A2. Then their injective envelopes E(A1), E(A2) are isomorphic and each E(Ai) is a direct
summand of Ei. So E(M) decomposes as a direct sum E(M) = e1E(M) ⊕ e2E(M) ⊕ e3E(M)
for orthogonal idempotents ei ∈ End(E(M)) where eiE(M) = E(Ai)(i = 1, 2). Since E(A1) ∼=
E(A2), e1E(M) ∼= e2E(M). Applying the functor Hom(E(M),−) : Mod-R→ Mod-S, one finds
that SS = e1S ⊕ e2S ⊕ e3S and e1SS ∼= e2SS [Fac10, Theorem 4.7], where S = End(E(M)). So
there exists a unit element u ∈ S such that e1 = u−1e2u (see 3.6.8). As e2 annE(M) I = 0 and
e1 = u−1e2u, it follows that e1 annE(M) I = 0. But this contradicts e1 annE(M) I 6= 0, because
e1 annE(M) I = E(A1) ∩ annE(M) I 6= 0. Therefore two R-modules E1 and E2 are orthogonal.
By Lemma 3.5.5, S/∆(E(M), E(M)) ∼= S1/∆(E1, E1) × S2/∆(E2, E2), where Si denotes the
endomorphism ring of the R-module Ei. As ∆(E,E) = J(End(E)) for any injective R-module
E by 1.1.65, it follows that S/J(S) ∼= S1/J(S1)×S2/J(S2) in a canonical way. If Ii denotes the
two-sided ideal of Si generated by all x− x2 with x ∈ Si, then I/J(S) ∼= I1/J(S1)× I2/J(S2).

Now consider the ring morphism ρ : S → End(annE(M) I) that associates to any f ∈ S its
restriction f |annE(M) I to annE(M) I. The ring morphism ρ is well defined because annE(M) I is
a left S-submodule of E(M). The morphism ρ is clearly an onto mapping, and its kernel is
ker ρ := { f ∈ S | f(annE(M) I) = 0 }. In particular I ⊆ ker ρ. Since S/I is a boolean ring,
the ring End(annE(M) I) is also boolean. Moreover, J(S) ⊆ I ⊆ ker ρ, so that ρ induces a ring
morphism ρ : S/J(S) → End(annE(M) I). As S/J(S) ∼= S1/J(S1) × S2/J(S2) and the elements
of S2/J(S2) are clearly mapped to 0 by ρ, we get that 0 × S2/J(S2) ⊆ ker(ρ). Thus there is a
surjective ring morphism S1/I1 → End(annE(M) I).

From Remark 3.6.12, we get in particular that:

Proposition 3.6.13. [AFT15, Proposition 3.14]Let M be an R-module, S := End(E(M)) be
the endomorphism ring of E(M) and I be the two-sided ideal of S generated by the set { s− s2 |
s ∈ S }.

(a) If annE(M) I 6= 0, then End(M) has a factor isomorphic to F2.

(b) If M is automorphism-invariant and annE(M) I is an essential submodule of the R-module
E(M), then the ring End(M)/J(End(M)) is a boolean ring.

Proof. Compose the ring morphism ϕ : End(M)→ S/J(S) of Theorem 3.4.5 with the mor-
phism ρ : S/J(S) → End(annE(M) I) in Remark 3.6.12, obtaining a morphism ρϕ : End(M) →
End(annE(M) I), where End(annE(M) I) is a boolean ring. If annE(M) I 6= 0, then End(annE(M) I)
is a non-zero boolean ring, so that there is a morphism End(annE(M) I) → F2. Thus there is a
morphism End(M) → F2, necessarily surjective. Hence End(M) has a factor isomorphic to F2.
This concludes the proof of (a).
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If M is automorphism-invariant and annE(M) I is essential in E(M), then in Remark 3.6.12
we have that E(M) = E1, E2 = 0 and ker ρ ⊆ ∆(E(M), E(M)) = J(S). As I ⊆ ker ρ and
J(S) ⊆ I, it follows that I = ker ρ = J(S). Thus S/J(S) ∼= End(annE(M) I) is a boolean
ring. By Theorem(a) 3.4.5, the ring End(M)/J(End(M)) is isomorphic to a subring of the ring
End(E(M))/J(End(E(M))) = S/J(S). Thus End(M)/J(End(M)) is boolean.

Proposition 3.6.14. [AFT15, Proposition 3.15] Let M be an automorphism-invariant square-
free module of finite Goldie dimension. Then M decomposes as a direct sum M = N ⊕P , where
N is a module orthogonal to P , End(N) has no factor isomorphic to F2, and End(P )/J(End(P ))
is isomorphic to a boolean ring Fn2 for some n.

Proof. The automorphism-invariant module M of finite Goldie dimension, decomposes as a
direct sum M = M1⊕· · ·⊕Mt of indecomposable modules, necessarily automorphism-invariants
by 3.1.4. Let e1, . . . , et ∈ End(M) be the orthogonal idempotents corresponding to this direct-
sum decomposition of M . Then e1, . . . , et ∈ End(M)/∆(M,M) are orthogonal idempotents
of End(M)/∆(M,M), which is an abelian ring by Proposition 3.6.9. Thus the idempotents
e1, . . . , et of End(M)/∆(M,M) = End(M)/J(End(M)) are central, so that

End(M)/J(End(M)) ∼=
∼= e1 End(M)/J(End(M))e1 × · · · × et End(M)/J(End(M))et ∼=
∼= End(M1)/J(End(M1))× · · · × End(Mt)/J(End(Mt)),

is isomorphic to the direct product of the residue division rings End(Mi)/J(End(Mi)). Let N be
the direct sum of the Mi with the residue division rings End(Mi)/J(End(Mi)) not isomorphic
to F2 and P be the direct sum of the Mi with the residue division rings End(Mi)/J(End(Mi)) iso-
morphic to F2. ThenM = N⊕P , End(N) has no factor isomorphic to F2, because End(N)/J(End(N))
is a direct product of finitely many division rings not isomorphic to F2, and End(P )/J(End(P ))
isomorphic to a direct product of finitely many copies of F2.

Finally, N and P are relatively injective by 3.1.5. As

End(M)/∆(M,M) ∼= End(N)/∆(N,N)× End(P )/∆(P, P ),

we conclude that N and P are orthogonal (see 3.5.5).
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Chapter 4

Poor modules

4.1 Basic properties

Definition 4.1.1. A module M is poor in case, for every module N , if M is N -injective, then
N is semisimple. Equivalently a module M is poor if for every non-semisimple module N there
exists a submodule N ′ of N and a morphism f : N ′ →M can not be extended to N.

Proposition 4.1.2. [AAL10, Remark 2.3] The following conditions are equivalent for any ring
R :

1. R is semisimple artinian.

2. Every module is poor.

3. There exists an injective poor module E.

Proof. (1)⇒ (2) : It follows from the fact that every right R-module is semisimple.
(2)⇒ (3) : Obvious.
(3)⇒ (1) : Assume that E is an injective poor module. Then E is RR-injective, so that RR

is semisimple. This proves that R is semisimple artinian.

Proposition 4.1.3. [AAL10, Proposition 3.1] The intersection of all injectivity domains⋂
M∈Mod-R

In−1(M)

is the class of all semisimple modules.

Proof. Let N be an element of
⋂
M∈Mod-R In

−1(M) and K be an arbitrary submodule of
N. Then N ∈ In−1(K), so that the embedding map from K → N has a left inverse. Hence K
is a direct summand of N, which implies that N is semisimple.

Conversely, let N be a semisimple module and K be an arbitrary submodule of N. Then
N = K⊕K ′ for some K ′ ≤ N. Let M be an arbitrary module. Then, for every f ∈ Hom(K,M),
the morphism f ⊕ 0 : N →M extends f. Therefore, N ∈ In−1(M) for every module M.
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Proposition 4.1.4. [AAL10, Remark 2.4] Let M be a poor module. Then M ⊕ N is poor for
every module N.

Proof. Assume that M⊕N is K-injective. Then M is K-injective, so that K is semisimple.
This proves M ⊕N is poor.

Proposition 4.1.5. [ELS11, Proposition 1] Every ring has a poor module.

Proof. Let {Aα|α ∈ I} be a complete of representatives of isomorphism classes of non-
semisimple cyclic R-modules. Since Aα is non-semisimple for each α ∈ I, there exists a proper
essential submodule Kα of Aα. Now set T = ⊕α∈IKα. Now we claim that T is poor. Assume
the contrary. Then there exists a non-semisimple cyclic module B such that T is B-injective.
Hence B ∼= Aα for some α ∈ I, so that B has a proper essential submodule, say N , isomorphic
to Kα. Because T is B-injective, so is N. This implies that N is a direct summand of B, which
contradicts the fact that N is a proper essential submodule of B.

Corollary 4.1.6. [ELS11, Corollary 1] Let R be a ring. Then the following conditions are
equivalent.

1. R is semisimple artinian.

2. All poor right R-modules are semisimple.

3. Non-zero direct summands of poor right R-modules are poor.

4. Non-zero factors of poor right R-modules are poor.

Proof. (1)⇒ (2), (1)⇒ (3) and (1)⇒ (4) : follow from 4.1.2.
(2)⇒ (1), (3)⇒ (1) and (4)⇒ (1) : follow from 4.1.4.

Theorem 4.1.7. [AAL10, Theorem 4.3] Let M be a projective semisimple poor module. Then
any semisimple module B orthogonal to M is injective.

Proof. In order to prove this theorem, it suffices to show that M is E(B)-injective. We
claim, for every X ≤ E(B), that Hom(X,M) = 0. Let X be a submodule of E(B) and f be
a morphism from X to M. Since X is projective, we have X = Y ⊕ Ker f where Y ∼= f(X).
Assume that f(X ∩ B) 6= 0. Then f(X ∩ B) is a projective submodule of M. Hence X ∩ B ∼=
f(X ∩ B) ⊕ Ker f ∩ (X ∩ B)), which contradicts the hypothesis that B is orthogonal to M.
Therefore f(X ∩B) = 0, so that X ∩B ≤ Ker f. Since X ∩B ≤e X, f(X) = 0. This gives that
M is E(B)-injective.

Corollary 4.1.8. [AAL10, Corollary 4.5] Let R be a ring which is not semisimple artinian. If
there is a simple projective poor module M, then

1. Every direct sum of simple injective modules is injective.
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2. Every simple module is either injective or poor.

Proof. Let V be a simple projective poor module and (Vi) (i ∈ I) be a family of simple
injective modules. If Vi ∼= V for some i ∈ I, then V would be an injective poor module, which
would implies that R is a semisimple artinian ring, a contradiction. Therefore, for each i ∈ I, Vi
is not isomorphic to V, so that ⊕i∈IVi is orthogonal to V. Applying 4.1.7, we get that ⊕i∈IVi is
injective. This proves (1).

For (2), let U be an arbitrary simple module. Then U is either isomorphic to V or orthogonal
to V. For the former case, we deduce that U is poor. For the latter case, we conclude that U is
injectve by 4.1.7

Corollary 4.1.9. [AAL10, Corollary 4.8] If there is a projective semisimple poor module M,
then

1. Soc(RR) is projective.

2. The socle of any projective R-module is projective.

Proof. (1) It suffices to prove the corollary in the case that R is not semisimple artinian.
If Soc(RR) = 0, we are done. Otherwise, let S be a minimal right ideal of R. By 4.1.8,S is
either projective or injective. If S is injective, then S is a direct summand of RR, which implies
that S is projective. Therefore, all minimal right ideals of R are projective, so that Soc(RR) is
projective.

(2) follows from the first one and the fact that every projective module is a direct summand
of some free module.

4.2 Existence of semisimple poor modules

Definition 4.2.1. Let M be a module. If socles split in all factors of M, we will say that M
crumbles .

Lemma 4.2.2. [ELS11, Remark 1] Let B be a cyclic module that crumbles. Then every factor
of B has finite Golide dimension.

Proof. Let N be a factor of B. Assume that N has infinite Goldie dimension. Then N
contain an infinite direct sum ⊕i∈IAi of non-zero cyclic submodules Ai. For each i ∈ I, there
exists a maximal submodule Ti of Ai. Set T = ⊕i∈ITi. Because ⊕i∈IAi⊕i∈ITi

∼= ⊕i∈I(AiTi ), the factor N
T

has an infinite socle, which is not a direct summand of N
T , a contradiction. This completes the

proof.

Theorem 4.2.3. [ELS11, Theorem 1] Let R be any ring. The following conditions are equivalent:

1. R has a semisimple poor module.
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2. Every cyclic right R-module that crumbles is semisimple.

3. Every right R-module that crumbles is semisimple.

4. Every noetherian but not artinian cyclic right R-module has a factor whose radical has
non-zero socle.

5. Every noetherian but not artinian cyclic right R-module has a factor with non-zero radical.

Proof. (1) ⇒ (2) : Let S be a semisimple poor module. Assume (2) does not hold. Then
there exists a non-semisimple cyclic module B that crumbles. Since S is poor, S is not B-
injective. Hence there is a morphism f : B → E(S) such that f(B) is not contained in S, which
implies that f(B) is non-semisimple. Because Soc(E(S)) = S ≤e E(S), f(B) has essential socle.
Thus f(B) = Soc(f(B)) thanks to the fact that B crumbles, a contradiction.

(2)⇒ (3) and (4)⇒ (5) : Obvious.

(3) ⇒ (2) : follows from the fact that cyclic submodules of crumbling modules are also
crumbling.

(2)⇒ (4) : Let N be a noetherian but not artinian cyclic module. Then N is non-semisimple,
so that N has a factor B whose socle does not split by assumption. We claim that B contains
a simple submodule V which is not a direct summand of B. Assume the contrary. Then every
simple submodule of B is a direct summand of B. Hence Soc(B) is a direct summand of B
because Soc(B) is finitely generated. This is a contradiction. Now since V is not a direct sum-
mand of B, every maximal submodule of B contains B. It follows that V ⊆ Rad(B), and hence
Soc(Rad(B)) 6= 0.

(5) ⇒ (2) : Assume that B is non-semisimple cyclic module that crumbles. By 4.2.2 and
[Er09, Proposition 1], B is noetherian. Since B is non-semisimple, B is not artinian. Now suppose
there is a factor C of B has non-zero radical. Then Rad(C) contains a non-zero cyclic D and
a maximal submodule E of D. Since C is cyclic, Rad(C) is superfluous in C, so that D is
superfluous in C. Hence D

E is superfluous in C
E . Since B crumbles, D

E is a direct summand of C
E ,

which contradicts the fact that D
E is superfluous in C

E .

(2) ⇒ (1) : Let Γ be a complete set of representatives of isomorphism classes of simple
modules. Set S = ⊕B∈ΓB

(R). In order prove (1) it suffices to show that S is poor. Assume that
S is not poor. Then there exists a non-semisimple cyclic module A such that S is A-injective. By
assumption, there is a semisimple subfactor of A, say L

C , which does not split in A
C . Let K

C be a

complement of L
C in A

C . Then
L
C
⊕K
C

K
C

is a proper essential submodule of
A
C
K
C

. Then A
K has a proper

essential socle isomorphic to L
C . Since S is A-injective, it is A

K -injective. Note that Soc(AK ) can
be embedded in S because of the choice of Γ and S. Therefore the embedding Soc(AK ) → S
extends to some monomorphism f : A

K → S, so that A
K is semisimple, a contradiction.

We say that a module M is said to be locally noetherian if every finitely generated submodule
of M is noetherian. A module N is a V -module if every simple module is N -injective.

Corollary 4.2.4. [ELS11, Corollary 2] Let R be a ring. The following conditions are equivalent:
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1. R has a semisimple poor module.

2. Every locally noetherian V -module is semisimple.

Proof. (1)⇒ (2) : Let M be a locally noetherian V -module and N be an arbitrary factor
of M. Then Soc(N) is M -injective by [DHSW94, 2.5], so that Soc(N) is N -injective, and slits
in N. Hence M crumbles. By 4.2.3, M is semisimple.

(2)⇒ (1) : Let M be a cyclic module that crumbles. Then M is noetherian by the proof of
(5) ⇒ (4) in 4.2.3. In order to prove (1), it is enough to show that M is semsimple thanks to
4.2.3. Let S be an arbitrary simple module. Let A be a submodule of M, and f : A → S be
any non-zero morphism. Since M crumbles, we have M

Ker f = A
Ker f ⊕ B for some submodule B

of M
Ker f . Hence the composition of the natural maps M → M

Ker f ,
M

Ker f →
A

Ker f , and A
Ker f → S

extends f. This means that S is M -injective, so that M is V -module. By (2), we have that M
is semisimple.

Corollary 4.2.5. [ELS11, Corollary 3] Let R be a ring such that every noetherian right module
is artinian ( in particular a right semiartinian ring), then R has a semisimple poor module.

Proof. It follows immediately from 4.2.3.

4.3 Rings whose modules are either injective or poor.

Definition 4.3.1. A ring R is said to have no middle class if every right R-module is either
injective or poor.

Lemma 4.3.2. [ELS11, Lemma 1] Let R be a ring. If R has no middle class, so is every factor
ring of R.

Proof. Let I be an ideal of R and MR/I be a non-poor R/I-module. Then there is a non-
semisimple R/I-module NR/I such that MR/I is NR/I -module, so that MR is NR-injective and
NR is non-semisimple R-module. Since R has no middle class, MR is injective as an R-module,
which implies that MR/I is injective as a R/I module.

The second singular submodule of a module M is defined to be the singular submodule
Z(M/Z(M)) of M/Z(M). Denote it by Z2(M).

Lemma 4.3.3. [ELS11, Lemma 2] Let R be a non-right SI ring with no middle class. Then:

1. Every nonsingular module is injective (hence semisimple).

2. The second singular submodule splits in any module.

3. There is a ring direct sum R = S ⊕ T such that S is semisimple artinian ring and TT has
essential socle with Z(TT ) = Soc(TT ).
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4. R has essential socle.

Proof. (1) Since R is not a right SI ring, there is a non-injective singular module M.
Assume that E(M) is semisimple. Then M = E(M) is injective, a contradiction. Hence E(M)
is not semisimple. Because R has no middle class, in order to prove that every nonsingular module
is injective it suffices to show that every nonsingular module is E(M)-injective. Let A be an
arbitrary nonsingular module and B be any submodule of E(M). Assume that there is a non-zero
morphism f : B → A. Since A is nonsingular and M is singular, f(B ∩M) ≤ Z(A) = 0, so that
B∩M ≤ Ker f. It follows that Ker f ≤e B. Hence B/Ker f is singular. But B/Ker f ∼= Imf ≤ A
implies that B/Ker f is nonsingular. Therefore B/Ker f = 0, so that Ker f = B, that is,
f = 0, a contradiction. So, Hom(B,A) = 0, which implies that A is E(M)-injective. Note that
every submodule of any nonsingular module is also nonsingular and hence injective. Thus every
submodule of any nonsingular module is a direct summand, so that all nonsingular module are
semisimples.

(2) Let N be an arbitrary module. Then Z(N) ≤e Z2(N) and Z2(N) is closed in N. Hence

Z2(N) is a complement of some submodule C ofN, so that C⊕Z2(N)
Z2(N) ≤e

N
Z2(N) . Since C⊕Z2(N)

Z2(N)
∼= C

and C is nonsingular, C⊕Z2(N)
Z2(N) is injective. It follows that C⊕Z2(N)

Z2(N) = N
Z2(N) , so that C⊕Z2(N) =

N.

(3) Applying (2) to RR, we get that R = A⊕Z2(RR) for some semisimple right ideal A. Now
we claim that A is an ideal. Let r be an arbitrary element of Z2(R). On the one hand, rA is
isomorphic to a factor of A, which implies that rA is isomorphic to a direct summand of A, and
hence rA is nonsingular. On the other hand, since Z2(R) is an ideal of R, rA ⊆ Z2(R). Therefore
Z(rA) = rA∩Z(R) = 0 implies that rA = 0. It follows that Z2(R)A = 0, and hence A is an ideal
of RR. This proves the claim. Set S = A and T = Z2(R). Then we have a ring decomposition
R = S⊕T where S is a semisimple artinian ring. Now we have Z(RR) = Z(SR)⊕Z(TR) = Z(TT ),
so Z(TT ) ≤e TT . It remains to show that Soc(TT ) = Z(TT ). Note that Soc(TT ) ≤ Z(TT ) because
Z(TT ) ≤e TT . Now assume that Z(TT ) is not semisimple. Then Z(TT ) 6= 0. Since Z(E(TT )) is a
fully invariant submodule of Z(E(TT )), it is quasi-injective, so that Z(E(TT )) is Z(TT )-injective
as an T -module. It follows that Z(TT ) is not a poor T -module. Because R has no middle class,
so does T by 4.3.2. Hence Z(TT ) is injective, so that Z(TT ) = T, a contradiction. Therefore
Z(TT ) is semisimple, that is, Z(TT ) ≤ Soc(TT ). It follows that Z(TT ) = Soc(TT ).

(4) Soc(RR) = Soc(SR)⊕Soc(TR) = S⊕Soc(TT ) ≤e S⊕T = RR because Soc(TT ) ≤e T by
(3).

Recall that a ring R is said to be indecomposable if R has no ring decompositions with more
than one term.

Lemma 4.3.4. [ELS11, Lemma 3] Let R be a ring with essential singular socle. If R has no
middle class, then R is an indecomposable ring.

Proof. Assume that R = R1 ⊕R2 with two non-zero ideals R1, R2. Then every right ideal
I ≤ R2 is R1-injective because Hom(X, I) = 0 for every X ≤ R1. In particular, Soc(R2) is
R1-injective. Since R has no middle class, either Soc(R2) is injective or R1 is semisimple. It
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follows that R always has a simple direct summand V, which contradict the hypothesis that
Soc(RR) is singular. This proves that R is an indecomposable ring.

Lemma 4.3.5. [ELS11, Lemma 6] Let R be a ring with singular right socle. If R has no middle
class, then R is right noetherian.

Proof. Case 1 : R is right semiartinian. Then Soc(RR) is non-zero, so that there is a
simple right ideal S of R. Since R has singular right socle, S is singular, which implies that S
can not be a direct summand of R. It follows that S is not injective, that is, S 6= E(S). As R is

right semiartinian, Soc(E(S)
S 6= 0, and hence we can find a submodule S′ of E(S) such that S′

S
is simple. It is clear that S′ is a module of length 2, so that S′ is a non-semisimple noetherian
module. Let {Ei|i ∈ I} be any family of injective modules. Because S′ is noetherian, then ⊕i∈IEi
is S′-injective. Since R has no middle class and S′ is non-semisimple, we obtain that ⊕i∈IEI is
injective. This proves that R is a right noetherian ring.

Case 2 : R is not right semiartian. Let I be the union of the right socle series of R. Then
R
I is a non-zero ring with zero right socle. By 4.3.2, R

I has no middle class. Applying 4.3.3(3),
we obtain that R

I is a right SI-ring. Then, by 1.6.5, R
I is a right noetherian ring. Now R has

a non-semisimple noetherian module R
I . By an argument similar to the argument in case 1, we

conclude that R is a right noetherian ring

Lemma 4.3.6. [ELS11, Lemma 7] Let R be a ring with non-zero singular socle. If R has no
middle class, then R is right artinian.

Proof. By 4.3.5, in order to prove that R is right artinian it is enough to show that R is
right semiartinian. Assume that R is not right semiartnian. Let I be the union of the right socle
series of R and set R = R

I . Then Soc(R) = 0 and R 6= 0. Assume that RR is injective. Then R is
a QF -ring because R is right noetherian, so that R is right artnian. It follows that Soc(R) 6= 0,
a contradiction. Therefore RR is poor.

Let Z be an arbitrary non-semiartinian cyclic R-module and D be the union of the socle
series of Z. Set Z = Z

D . Then Soc(Z) = 0 and Z 6= 0. Now we claim that Z has a non-zero

submodule W = W
D such that Z

W
∼= Z

W . Assume the contrary. Then every factor Z
X with respect

to a non-zero submodule X ≤ Z is semiartinian. Note that Soc(E(R)∩R = Soc(R) = 0 implies

that Soc(E(R) = 0. Combining this with assumption that Z
X is semiartinian, we obtain that

Hom( ZX , E(R)) = 0. Hence R is Z
X , so that Z

X is semisimple because R is poor. Since R has
non-zero singular right socle, there is a simple singular right ideal V of R, so that V can not be
a direct summand of R. It follows that V is not injective, and hence V is poor because R has
no middle class. Let G be an arbitrary submodule of Z and f be a non-zero morphism from G

to V. Since Soc(G) ≤ Soc(Z) = 0, Ker f 6= 0, so that Z
Ker f is semisimple. Now we can write

Z
Ker f = G

Ker f ⊕
U

Ker f , for some submodule U of Z. Let g1 : Z → Z
Ker f , g2 : G

Ker f ⊕
U

Ker f →
G

Ker f

be the canonical projections and f : G
Ker f → V be an isomorphism induced by f. Then fg2g1 :

Z → V extends f. Thus V is Z-injective, so that Z is semisimple, a contradiction. This proves
the claim.
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Taking Z = R, we obtain a non-zero right ideal A0 of R with R
A1

is non-semiartinian.

Repeating this argument with Z = R
A0

and so on, we have a strictly ascending chain {Ai|i ∈ N} .
This contradicts the fact that R is a right noetherian ring. Therefore R is right semiartinian.
This completes the proof.

Definition 4.3.7. 1. A ring R is a QF -ring if R is right artinian and right self-injective.

2. A ring R is a right PCI ring if each proper cyclic right R-module is injective.

Proposition 4.3.8. [ELS11, Proposition 3] Let R be a ring with no middle class. If R is not a
right SI-ring, then R is the ring direct sum of a semisimple artinian ring S and a ring T is an
indecomposable right artinian ring satisfying the following conditions:

(a) soc(TT ) = Z(TT ) = J(T ),

(b) T has homogeneous right socle, and

(c) there is a unique non-injective simple right T -module up to isomorphism.

Moreover, T is either a QF -ring with J(T )2 = 0, or TT is poor.

Proof. By 4.3.3(3), we have a ring decomposition R = S ⊕ T, where S is a semisimple
artinian ring and T has essential socle with Z(TT ) = Soc(TT ). Without loss of generality, we
may assume that T 6= 0. By 4.3.2, T has no middle class, and it is an indecomposable ring by
4.3.4. Moreover R is a right artinian ring by 4.3.6.

Let E be an injective T -module. Because f(Rad(E)) ≤ Rad(E) for every f ∈ End(E), Rad(E)
is a fully invariant submodule of its injective envelope, so that Rad(E) is quasi-injective. Since R
is right artinian, Rad(E) is superfluous in E. Hence Rad(E) is semisimple because R has no mid-
dle class. In particular, Rad(E(T )) is semisimple, so that J(T ) ≤ Rad(E(T )) is semisimple, that
is, J(T ) ≤ Soc(TT ). As Z(TT ) = Soc(TT ), every simple right ideal is singular, and belongs to all
maximal right ideals of R. This means Soc(TT ) ≤ J(T ). Therefore Z(TT ) = Soc(TT ) = J(T ).

Now let S1 be a simple right ideal of T. Since S1 is singular, it is not a direct summand of TT ,
and hence it can not be injective. Let S2 be any non-injective simple T -module. Since T is right
artinian, Soc(E(S2)

S2
) 6= 0, so that we can find a submodule S′2 of E(S2) such that S2 is maximal in

S′2. Since S1 is non-injective and T has no middle class, S1 is poor. Hence S1 is not S′2-injective,
which implies that there exists a morphism f : S′2 → E(S1) such that f(S′2) is not contained in
S1. It follows that S1 is properly contained in f(S′2). Thus, the length of f(S′2) is greater than
1. Moreover, S′2 has length 2. Hence f(S′2) has length 2, so that f is a monomorphism. This
gives that S′2

∼= f(S′2), so that S2 = Soc(S′2) ∼= Soc(f(S′2)) = S1. Therefore T has a unique
non-injective simple module up to isomorphism. In particular, Soc(TT ) is homogeneous. The
last statement is now clear.

Lemma 4.3.9. [ELS11, Lemma 8] Let R be a right nonsingular with no middle class. Then
there is a ring direct sum R = S ⊕ T where S is a semisimple artinian and T is a ring with
homogeneous (possibly zero) socle.
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Proof. Assume that Soc(RR) = A ⊕ B where A,B are infinitely generated orthogonal
submodules. Then A and B are non-injective. Otherwise, either A or B is injective, so that one
of them is a direct summand of R. This contradicts assumption that A and B are infinitely
generated. Let f be a morphism from E(A) → E(B). Since A is orthogonal to B, B must be
contained in Ker f , so that Imf is singular. Since A is nonsingular, E(A) is nonsingular, and
hence Imf is nonsingular. Thus Imf = 0, that is, f = 0. Therefore A is E(B)-injective. Because
R has no middle class and E(B) is non-semisimple, A is injective, a contradiction. Similarly, we
also obtain the two following facts: First, for any two non-isomorphic simple right ideals S1 and
S2, at least one of them must be injective, because, by the same argument as above, each Si
is E(Sj) for i 6= j and i, j ∈ {1, 2} if both of them are non-injective. And next, a simple right
ideal S which is orthogonal to an infinitely generated semisimple right ideal I is injective, since
S is E(I)-injective and E(I) is not semisimple. Therefore Soc(RR) can only have finitely many
homogeneous components, at most one of which may possibly be infinitely generated, in which
case the rest of the homogeneous components will be injective. Now we have a ring decomposition
R = S ⊕ T where S is a semisimple artinian ring and T is a ring with homogeneous (possibly
zero) right socle.

Lemma 4.3.10. [ELS11, Lemma 9] Let R be a right semiartinian. If R has no middle class,
then R is either a right V -ring or a right artinian ring.

Proof. Assume R is not a right V -ring. We wish to prove that R is right artinan ring.
In order to do this it is sufficient to show that R is right noetherian. Since R is not a right
V -ring, then there is a non-injective simple module. Note that Soc(E(S)

S ) 6= 0 because R is right

semiartinian. Hence we can find a submodule S′ of E(S) such that S′

S is simple. It is clear that
S′ is a module of length 2, so that S′ is a non-semisimple noetherian module. Let {Ei|i ∈ I} be
any family of injective modules. Because S′ is noetherian, then ⊕i∈IEi is S′-injective. Since R
has no middle class and S′ is non-semisimple, we obtain that ⊕i∈IEI is injective. This proves
that R is right noetherian.

Lemma 4.3.11. [ELS11, Lemma 10] Let R be a (non-semisimple) right SI-ring with R
Soc(RR)

semisimple. If R has no middle class, then R has a unique simple singular R-module.

Proof. Since R
Soc(RR) is semisimple, Soc2(RR) = Soc(RR), so that R is right semiartinian.

Hence Soc(RR) is essential in RR. Now we can write R
Soc(RR) = ⊕ni=1

Bi
Soc(RR) for some right

ideals Bi of R such that each Bi
Soc(RR) is simple. As R is not semisimple, then there exists a

non-projective simple module V. It is clear that V is singular. Fix a non-zero element of V.
Then V = vR and ann(v) contains Soc(RR) because it is essential in RR. Thus V = vR =∑n

i=1 vBi implies that V = vBi for some i ∈ {1, . . . , n} . It follows that V ∼= Bi
Soc(RR) . Similarly,

we can prove that every simple singular module is isomorphic to some Bi
Soc(RR) . Let i 6= j.

Then Bj = aR + Soc(RR) for some a ∈ Bj . Note that for all k, E(RR) = E(Bk) because
Bk contains essential right socle of RR. Since TrE(Bi)(Bi) is quasi-injective, it is Bi-injective.
Hence TrE(Bi)(Bi) is not poor because Bi is not semisimple. This gives that TrE(Bi)(Bi) =
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E(Bi) = E(RR). Thus there is an epimorphism f : BΓ
i → E(RR) for some index set Γ, so

that there exists an element x ∈ BΓ
i such that f(x) = a. Therefore there exists a positive

integer t and a morphism φ : Bt
i → E(RR) such that aR ⊆ Im(φ). Set C = φ−1(aR). Since

R is right SI, it is right hereditary by 1.6.4, so that aR is projective. It follows that aR is a
direct summand of C, and hence aR can be embedded in C, whence in Bt

i as well. Without
loss of generality, we may assume that a = (b1, . . . , bt), with bk ∈ Bk (k = 1, . . . , t). Since aR
is non semisimple, there exists some u ∈ {1, . . . , t} with bu not contained in Soc(RR). Hence
buR+Soc(RR) = Bi. Since ann(a) ⊂ ann(bu), we can defined an epimorphism π : aR→ buR via
π(ax) = bux. Because buR is projective, then we have aR = Kerπ ⊕ L for some L ≤ aR. Note

that Kerπ
Soc(Kerπ)⊕

L
Soc(L)

∼= Kerπ⊕L
Soc(Kerπ)⊕Soc(L) = aR

Soc(aR)
∼= aR+Soc(RR)

Soc(RR) =
Bj

Soc(RR) , and L ∼= buR is not

semisimple. As
Bj

Soc(RR) is simple, Kerπ
Soc(Kerπ) = 0, that is, Kerπ is semisimple. Since L * Soc(RR),

we have L + Soc(RR) = Bj . Hence
Bj

Soc(RR)
∼= L

Soc(L)
∼= buR

Soc(buR)
∼= Bi

Soc(RR) . This completes the
proof.

Proposition 4.3.12. [ELS11, Proposition 4] Let R be a right SI-ring with no middle class.
Then R = S ⊕ T where S is semisimple artinian and either T is Morita equivalent to a right
PCI-domain or T is an indecomposable right SI-ring satisfying the following conditions:

(a) T is either a right artinian or a right V -ring,

(b) T has a homogeneous essential right socle, and

(c) there is a unique simple singular right T -module up to isomorphism, or

Proof. By 4.3.9, we get that R = S ⊕ T where S is a semisimple artinian ring and T is
a ring with homogeneous socle which may be zero. By 4.3.2, T has no middle class. We claim
that T can not decompose into two non-semisimple artinian rings. If T = T1 ⊕ T2 where Ti are
ideals of T, and one of Ti is non-semisimple, say T1, then every right ideal of T2 is T1-injective
as a T -module. It follows that every right ideal of T2 is injective, which splits in T2. Hence T2 is
a semisimple artinian ring. This proves the claim.

Since R is right SI, so is T. Then, by 1.6.6 and since T can not decompose into two non-
semisimple artinian rings, without loss of generality, we may assume that T is either Morita
equivalent to a right PCI-domain, or T

Soc(TT ) is a semisimple artinian ring with Soc(TT ) essential

in TT . Now it remains to show that if T
Soc(TT ) is a semisimple artinian ring with Soc(TT ) essential

in TT , then T satisfies as in 4.3.13 (2). Now assume that T
Soc(TT ) is a semisimple artinian ring

with Soc(TT ) essential in TT . Then T is right semiartinian. Note that T is an indecomposable
ring: Assume that T = T1 ⊕ T2 where Ti are non-zero ideals of T. Since Soc(TT ) is essential in
TT , Soc(Ti) are essential in Ti. Hence, for each i = 1, 2, there is a simple right ideal Vi of T in
Ti. But then V1T2 = 0 and V2T2 = V2, which contradicts the fact that Soc(TT ) is homogeneous.
Moreover, by 4.3.10, T is either a right V -ring or a right artinian ring. To avoid triviality we
may assume that T is non-semisimple artinian. Then, by 4.3.11, T has a unique simple singular
module.
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Theorem 4.3.13. [ELS11, Theorem 2] Let R be a ring with no middle class. Then R ∼= S × T,
where S is a semisimple artinian ring and T is zero or it belongs to one of the three following
classes:

1. T is Morita equivalent to a right PCI-domain, or

2. T is an indecomposable right SI-ring satisfying the following conditions:

(a) T is either a right artinian or a right V -ring,

(b) T has a homogeneous essential right socle, and

(c) there is a unique simple singular right T -module up to isomorphism, or

3. T is an indecomposable right artinian ring satisfying the following conditions:

(a) soc(TT ) = Z(TT ) = J(T ),

(b) T has homogeneous right socle, and

(c) there is a unique non-injective simple right T -module up to isomorphism.

In the third case, T is either a QF -ring with J(T )2 = 0, or TT is poor.

Proof. It follows from 4.3.8 and 4.3.12.

Proposition 4.3.14. [ELS11, Proposition 5] Let R be a ring which is Morita equivalent to a
right PCI-domain T , then R has no middle class.

Proof. We claim that T has no middle class. Let A be an arbitrary T -module. Assume
that A is non-injective and A is B-injective where B is cyclic. Because A is non-injective, every
submodule of B is not isomorphic to RR. Hence every submodule of B is injective, which splits
in B. This gives that B is semisimple. Therefore A is poor. This proves the claim.

Since R is Morita equivalent to T, there is a category equivalence F : Mod-R→ Mod-T. Let
M be an arbitrary R-module. Assume that M is not poor. Then there exists a non-semisimple
N such that M is N -injective. Hence F (M) is F (N)-injective as a T -module and F (N) is
non-semisimple. Because T has no middle class, F (M) is injective, so that M is injective.

Proposition 4.3.15. [ELS11, Proposition 6] Let R be a right artinian right SI-ring with ho-
mogeneous right socle and a unique local module of length 2 up to isomorphism. Then R has no
middle class.

Proof. Since R is right artinian, we have a decomposition RR = e1R⊕· · ·⊕ekR⊕f1R · · ·⊕
fnR where eiR are isomorphic simple right ideals by the hypothesis that R has homogeneous
socle, and fjR are local modules of length ≥ 2. Because R is right artinian right SI, for each

t ∈ {1, . . . , n} , Soc(ftR) is essential in ftR and is contained in Rad(ftR) = ftJ(R). Thus ftJ(R)
Soc(ftR)

is singular, so that it is injective and splits in ftR
Soc(ftR) . This gives that Soc(ftR) = ftJ(R). Now,
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for any t, t′ ∈ {1, . . . , n}, we can find two right ideals At ≤ ftR and At′ ≤ ft′R such that ftR
At

and fracft′RAt′ are modules of length 2. Then, by assumption, ftR
At
∼= ft′R

At′
, which implies that

ftR
ftJ(R)

∼= ft′R
ft′J(R) . This means that ftR ∼= ft′R.

Now let M be an arbitrary module. Assume that M is not poor. Then M is A-injective
for some non-semisimple cyclic module A. We will show that M is injective. Since A is cyclic,
then there is a epimorphism ϕ from R to A. Then there is an index i ∈ {1, . . . , n} such that
A′ = ϕ(fiR) 6= 0. It is clear that A′ is local. Now, as in the preceding paragraph, we can find a
factor B of A′ such that B has length 2. Assume that Soc(f1R) = S1⊕ · · · ⊕ Sl for some simple
right ideals Si. For each i, set Vi = ⊕t∈{1,...,l}\{i}St ( if l = 1, set V1 = 0). Then ∩li=1Vi = 0

and f1R
Vi

has length 2 for every i ∈ {1, . . . , l} because Soc(f1R) = f1J(R) and f1R is local. By

assumption, we have f1R
Vi
∼= B for every i = 1, . . . , l. Note that M is B-injective thanks to the fact

that M is A-injective. It follows that M is ⊕li=1
f1R
Vi

because ⊕li=1
f1R
Vi
∼= Bl. Moreover, f1R can

be embedded into ⊕li=1
f1R
Vi
. Hence M is f1R-injective. Since f1R ∼= ftR for every t ∈ {1, . . . , n}

and eiR (i = 1, . . . , k) are simple, M is R-injective, that is, M is injective. This completes the
proof.

Proposition 4.3.16. [ELS11, Proposition 7] Let R be a right artinian ring with unique (up
to isomorphism) local module of length 2, and homogeneous Soc(RR) = J(R). Then R has no
middle class. In particular, R is a ring of 4.3.13 (3).

Proof. By the same way as in the proof of the previous one, we also conclude that R has
no middle class. It remains to show that the last statement. By 4.3.13, there is a ring direct
sum R = S ⊕ T where S and T are as described in 4.3.13. Assume that R and T are non-zero.
Then R has two simple right ideals (one in S and one in T ) with distinct annihilators, which
contradicts the homogeneous socle assumption. Moreover, R is not semisimple artinian because
there exists a local module of length 2. Hence R = T, and T is not semisimple artinian, so that
T can not be Morita equivalent to a domain since T is right artinian but not semisimple. Since
R is right artinian and Soc(RR) = J(R), every right maximal ideal of R is essential in RR. It
follows that every simple module is singular, and hence Z(RR) 6= 0. This means that R is not
right SI-ring. Therefore R must be as in 4.3.13 (3).

Proposition 4.3.17. [ELS11, Proposition 9] If R is a non-semisimple QF -ring with homoge-
neous right socle and J(R)2 = 0, then R has no right middle class.

Proof. Since R is a QF ring and J2(R) = 0, R is right artinian and J(R) is semisimple.
Now we have R = ⊕ni=1eiR with eiR local for every i = 1, . . . , n. Because R is right self injective,
eiR is injective, so that eiR is uniform for every i = 1, . . . , n. Hence, for each i ∈ {1, . . . , n} ,
the socle of eiR is an essential simple submodule of eiR. Since R has homogeneous right socle,
Soc(eiR) ∼= Soc(ejR) for every i, j ∈ {1, . . . , n} , so that eiR (i = 1, . . . , n) are isomorphic
modules. If Rad(eiR) = eiJ(R) = 0 for some i ∈ {1, . . . , n} , then eiR is simple, which implies
that R is semisimple artinian, a contradiction. Therefore Rad(eiR) 6= 0 for every i ∈ {1, . . . , n} .
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As J(R) = ⊕ni=1Rad(eiR) is semismiple, 0 6= Rad(eiR) ≤ Soc(eiR) for every i = 1, . . . , n.
Hence Rad(eiR) = Soc(eiR) thanks to the fact that Soc(eiR) is simple. It follows that eiR is
an uniserial of length 2 for every i = 1, . . . , n. This gives that R is an artinan serial ring.

Let M be an arbitrary module. Then M = ⊕i∈IMi where Mi are cyclic uniserial. Each Mi

is isomorphic to either etR or Soc(etR) for some t = 1, . . . , n. Assume that M is not injective.
Then Mi is non-injective for some i ∈ I. We wish to show that M is poor. In order to prove
that M is poor it suffices to show that Mi is poor. Suppose that M is not poor. Then there
is a non-semisimple cyclic module N such that Mi is N -injective. We can write N = ⊕mk=1Nk,
where Nk are uniserial modules, each isomorphic to etR or Soc(etR). If Nk

∼= etR, then Mi is
etR-injective, which implies that Mi is injective, a contradiction. Therefore M is poor.

4.4 Rings over which every non-zero cyclic module is poor.

The results in this section are from the unpublished paper [ELT], which is presently being
prepared for submission.

Lemma 4.4.1. Let N be an essential submodule of a poor module M . Then N is poor.

Proof. Since N is essential in M , E(N) is also an injective envelope of M , we may assume
that E is an injective envelope of M and N . Let xR be a cyclic module in the injectivity domain
of N . Hence ϕ(xR) ⊆ N for every ϕ ∈ Hom(xR,E(N)). Therefore, ϕ(xR) ⊆ N ⊆ M for every
ϕ ∈ Hom(xR,E) . It follows that xR belongs to the injectivity domain of M and thus xR is
semisimple.

(P ) stands for the property that every non-zero cyclic module is poor.

Proposition 4.4.2. Let R be a ring with (P ) and M be a cyclic R-module. Then every nonzero
submodule of M is poor.

Proof. Let K be a submodule of M . Then there is an R-module N such that K⊕N
N is

essential in M
N . Since M is cyclic, so is M

N . By 4.4.1, we obtain that K is poor.

Lemma 4.4.3. Let R be a ring. The following conditions are equivalent

1. There exists a nonzero nonsingular module.

2. Z(R) is not essential in R.

3. There exists a nonzero module M such that Z(M) is not essential in M .

Proof. (1) ⇒ (2): Assume M is a nonzero nonsingular module. Let x 6= 0 and x ∈ M .
Thus, Ann(x) is not essential in R. Therefore, there exists a nonzero right ideal U of R such that

Ann(x) ∩ U = 0. Since U ∼= U⊕Ann(x)

Ann(x)
and xR ∼= R

Ann(x)
, U is nonzero nonsingular. It follows

that Z(R) ∩ U = Z(U) = 0 and hence, Z(R) is not essential in R.

85



(2)⇒ (3): It is trivial.

(3) ⇒ (1): Let M be as given in the Proposition. Since Z(M) is not essential in M , there
exists a nonzero submodule U such that Z(M)∩U = 0. Hence U is non zero nonsingular because
Z(U) = Z(M) ∩ U = 0.

Lemma 4.4.4. If R is a right SI-ring satisfying (P ), then R is semisimple artinian.

Proof. Assume that R is not semisimple artinian. Then there is a proper essential right
ideal I of RR. Hence, R

I is a nonzero singular cyclic module. Therefore, it is an injective poor
module so that R is semisimple artinian, a contradiction.

Theorem 4.4.5. Let R be a ring with (P ).Then either

1. R is semisimple artinian, or

2. R satisfies the following conditions:

a) Z(RR) is essential in R.

b) Every noetherian right module is artinian.

Proof. Case 1 : Z(RR) is not essential in RR. Assume that R is not semisimple artinian.
Then R is not right SI-ring, so that there is a singular noninjective module S. By hypothesis,
there exists a nonzero right ideal I such that I ∩ Z(RR) = 0, that is, I is nonsingular. Let
0 6= x ∈ I. Then xR ≤ I is a nonsingular poor module. Since S is singular and xR is nonsingular,
xR is E(S)-injective, from which it follows that E(S) is semisiple. Hence, S = E(S), that is, S
is injective, a contradiction. This proves that R is semisimple artinian.

Case 2 : Z(RR) is essential in RR. Let M be a noetherian right module. In order to prove that
M is artinian it suffices to show that M is semiartinian. We claim that every cyclic submodule
of M is semiartinian. Let N be a cyclic submodule of M. Then N is noetherian. Assume that N
is a non-semiartinian and I be the union of the socle series of N . Set N̄ = N

I . Then N̄ 6= 0 and
soc(N̄) = 0. We will show that there is a non-zero proper non-semiartinian factor K of N̄ . Note
that K is isomorphic to a factor of N . Assume the contrary. Then every non-zero proper factor of
N̄ is semiartinian. Let f ∈ Hom(K,E(N̄)) where K is a proper factor of N̄ . Hence Imf ∼= K

Ker f .

Since 0 = soc(N̄) = soc(E(N̄))∩ N̄ , we infer that soc(E(N̄)) = 0. It follows that soc(Imf) = 0.
Thus soc( K

Ker f ) = 0. Because K
Ker f is a factor of N̄ , we get that K

Ker f = 0 so that f = 0. Therefore

N̄ is K-injective, which implies that K is semisimple. Let V be a simple module. Then V is
poor. Let N ′ be a submodule of N̄ and f : N ′ → V be a non-zero morphism. Since soc(N ′) = 0,

Ker f 6= 0. As N̄
Ker f is semisimple by the above argument, N̄

Ker f = N ′

Ker f⊕
U

Ker f for some submodule

U of N̄ . Now let g1 : N̄ → N̄
Ker f , g2 : N ′

Ker f ⊕
U

Ker f →
N ′

Ker f be the canonical projections. Moreover,

f induces an isomorphism f̄ : N ′

Ker f → V . Then the morphism f̄g2g1 : N̄ → V extends f. Hence

V is N̄ -injective so that N̄ is non-zero semisimple, which contradicts the fact that soc(N̄) = 0.
This proves that there is a non-zero proper non-semiartinian factor K of N̄ . Note that K is
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isomorphic to N
K1

where K1 is a non-zero proper submodule of N . Repeating this argument

with N
K1

and so on, we have a strictly ascending chain {Ki/i ∈ N} of submodules of N , which
contradicts the fact that N is noetherian. This proves the claim. Now it remains to show that M
is semiartinian. Let M

M

′
be a non-zero factor of M and x+M ′ be a non-zero element of M/M ′.

Since xR+M ′

M ′
∼= xR

M ′∩xR and xR is semiartinian, we get that soc(xR+M ′

M ′ ) 6= 0. Hence soc( MM ′ ) 6= 0.
It follows that M is semiartinian. This completes the proof.

Corollary 4.4.6. If R is a simple ring with (P), then R is right artinian.

Corollary 4.4.7. A right noetherian ring R with (P ) is right artinian.

Proposition 4.4.8. Let R be a ring with property (P). Then, either

(i) R is right semiartinian, or

(ii) The only semiartinian (right) modules are the semisimple ones. In this case, soc( M
soc(M)) =

0 for any (right) module M , and the ring R
soc(RR) contains its right singular ideal essentially.

Proof. If R is not right semiartinian then there is a nonzero cyclic module A with
soc(A) = 0. Then soc(E(A)) = soc(A) = 0. Let B be an arbitrary semiartinian module and
f ∈ Hom(B,E(A)). Assume f 6= 0. Then B

Ker f
∼= Imf. Hence soc(Imf) 6= 0 because B is

semiartinian. But this contradicts the fact that soc(Imf) = soc(E(A)) ∩ Imf = 0. This gives
Hom(B,E(A)) = 0. Therefore A is B-injective, so that B is semisimple artinian. It follows that
every semiartinian module is semisimple. In this situation, since the second socle of any module
M is semiartinian, we get soc( M

soc(M)) = 0, as desired. Taking M = R in the preceding argument,

we get that R
soc(RR) is not right semiartinian; 4.4.5 then yields the last part of (ii).

Proposition 4.4.9. If R is a right semiartinian but nonsemisimple ring that satisfies (P), then
R has a unique simple right R-module.

Proof. Assume that A and B are nonisomorphic simple modules. If B were injective, it
would be poor injective. Hence R would be semisimple artinian, a contradiction. Therefore B
is not injective. By the semiartinianness assumption, there exists some K ⊆ E(B) such that
B is maximal in K. A is clearly K-injective because Hom(B,A) = 0 and K has only three
submodules 0, B and K. Then K is semisimple, but then B = K since B ≤e K ≤e E(B). This
contradicts the fact that B is maximal in K. This concludes the proof.

Proposition 4.4.10. Let R be a ring satisfying (P) that is not right semiartinian. If M is a
nonsemisimple module, then for any simple module S, there exists a sequence

T1 ( B1 ( T2 ( B2 ( ... (M

such that, for each k ∈ N, Bk
Tk
∼= S.
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Proof. Let M be as in the statement of the proposition. By Proposition 4.4.8, semiartinian
right modules are semisimple and, in particular, soc( M

soc(M)) = 0. So, without loss of generality,

we may assume that soc(M) = 0. Since S is poor, we can not have Hom(D,S) = 0 for all
D ⊆ M . Thus, there exist modules T1 ⊆ B1 and a nonzero homomorphism f : B1 → S such
that Ker(f) = T1, B1 ⊆ M and f can not be extended to any element of Hom(M,S). This
implies that the simple module B1

T1
is not a direct summand of M

T1
. Thus, B1

T1
is a superfluous

submodule of M
T1

and the latter is not a semisimple module. Moreover, soc(
M
T1

soc(M
T1

)
) = 0, whereas

the module in the numerator is itself nonzero. Note that B1
T1
⊆ soc(MT1 ). So, we iterate the same

argument as above for
M
T1

soc(M
T1

)
and obtain some T2 and B2 such that B1 ( T2 ( B2 ( M and

B2
T2
∼= S. Continuing in this manner we build the sequence in the statement of this proposition.

4.4.8 and 4.4.10 show that a non-semiartinian ring with (P) is as far away from being semi-
artinian and Noetherian as possible.

Corollary 4.4.11. If R is a non-right-semiartinian ring satisfying (P), then for any module M
the following are equivalent:

(i) M is noetherian,

(ii) M is finitely generated semiartinian (or artinian),

(iii) M is finitely generated semisimple.

The following simple lemma has some interesting consequences:

Lemma 4.4.12. Let R be a ring satisfying (P). Then, for any ideal I of R such that R
I is not

semisimple Artinian and any nonzero right module B, there exists some 0 6= C ⊆ B annihilated
by I (i.e. CI = 0).

Proof. Since B is non-zero, there exists a non-zero cyclic submodule D of B. Then D
is poor, so that D is not R

I -injective. Hence there exists an R-submodule X
I ⊆

R
I and an R-

homomorphism f : XI → B that cannot be extended to any map R
I → B. Then C = f(XI ) is the

desired submodule of B.

Let R be a ring. A proper ideal I of R is called prime if for each a, b ∈ R, aRb ⊆ I implies
that a ∈ I or b ∈ I, if and only if AB * I whenever A and B are ideals of R not contained in
I. The prime radical of R is the intersection of all prime ideals of R. In what follows, J and N
will denote the Jacobson radical and the prime radical, respectively.

Proposition 4.4.13. Let R be a ring satisfying (P). Then the following hold:

(i) If I1, I2, ..., In are ideals of R with R
Ik

nonsemisimple for each k ∈ {1, 2, ..., n}, then any
nonzero module B has a nonzero submodule C such that C(I1 + I2 + ...+ In) = 0.
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(ii) If I1, I2, ..., In are ideals of R with I1 + I2 + ...+ In = R, then R
Ik

is semisimple Artinian
for some k ∈ {1, 2, ..., n}.

(iii) For any proper right ideal A and any (two-sided) ideal T of R with R
T nonsemisimple, there

is a right ideal B properly containing A such that BT ⊆ A.

(iv) Every ideal T for which R
T is not semisimple Artinian is contained in the prime radical N

of R.

(v) J = N or R is semilocal. In particular, if R is semiprime, then either J = 0 or R is
semilocal with J = Jn for all n ∈ N.

(vi) If R is not right semiartinian and T is the union of the socle series of RR, then soc(RR) =
T ⊆ N .

(vii) If A and B are proper ideals with A+B = R, then J ⊆ A,B.

(viii) Every ideal of R is either below N or above J .

Proof. (i) By repeated application of Lemma 4.4.12, we can find a finite sequence 0 6=
Cn ⊆ Cn−1 ⊆ ... ⊆ C1 ⊆ B such that CkIk = 0 for each k ∈ {1, ..., n}. Then, CnIk = 0 for all
k ∈ {1, ..., n}, implying that Cn(I1 + ...+ Ik) = CnR = 0, a contradiction.

(ii) Assume the contrary. Then, by (i), there exists a nonzero C such that C(I1+· · ·+In) = 0.
Hence C = CR = C(I1 + · · ·+ In) = 0, a contradiction.

(iii) Applying Lemma 4.4.12 to R
A , we get that there exists a right ideal B of R such that

0 6= B
A and (BA )T = 0. It follows that B contains properly A and BT ⊆ A.

(iv) Let A be an arbitray prime ideal of R. Applying (iii) to A, we get that there exists a
right ideal B containing properly A such that BT ⊆ A. This gives T ⊆ A because A is prime
and B contains properly A. Hence T is contained in the prime radical N of R.

(v) If R is not a semilocal ring, then J ⊆ N by (iv). Hence J = N. In particular, if R is
semiprime, then N = 0. Therefore either J = 0 or R is semilocal with J 6= 0. In the latter case,
because R is semiprime and J 6= 0, we get that Jn 6= 0 for every n ∈ N, so that Jn * N. By
(iv), R/Jn must be semisimple artinian, which implies that J ⊆ Jn. It follows that J = Jn for
every n ∈ N.

(vi) It follows from 4.4.8 and (iv).

(vii) Assume that R
A is not semisimple artinian. Then, by (iv), the proper ideal A is contained

in N ⊆ J, so that A is superfluous in R. Hence A+B = R implies that B = R, a contradiction.
This proves that R

A is semisimple artinian. Therefore J ⊆ A. Similarly, J ⊆ B.
(viii) Let A be an arbitrary ideal of R. If R

A is not semisimple, then A is below N by (iv).
Otherwise, R

A is semisimple artinian, which implies that A is above J.

Lemma 4.4.14. The property (P) is inherited by factor rings.
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Proof. Let M be a nonzero cyclic R/I-module. Then there is a right ideal K of R containing
I such that M is isomorphic to R/K as R/I-module. We have that R/K is a poor module as
R-module so that it is also a poor module as R/I-module. This completes the proof.

Recall that an R-module M is said to be uniserial if for any submodules A and B of M we
have A ⊆ B or B ⊆ A. A ring R is a right chain in case RR is uniserial. A left chain ring is
defined similarly. A ring R is said to be a chain ring if it is both a right and a left chain ring.

Proposition 4.4.15. If R is right noetherian with (P ), then R is right artinian. Moreover, R is
either semisimple artinian or isomorphic to a matrix ring over a local right artinian ring which
is not a chain ring.

Proof. By 4.4.11, R is right artinian. Hence RR = ⊕ni=1eiR with ei(i = 1...n) local
idempotents. Assume that R is not semisimple Artinian. Then, by 4.4.9, ejR ∼= eiR. Hence
R ∼= End(RR) ∼= End((eiR)n) ∼= Mn(End(eiR)). Set S = End(eiR). S is a local right artinian
ring because ei is a local idempotent and R is right Artinian which is Morita equivalent to S. If
S is a chain ring, then S is a QF -ring, which implies that R = Mn(S) is a QF -ring. Therefore
R is semisimple Artinian because R has a poor injective module, namely R, a contradiction.

Theorem 4.4.16. Let R be a nonsemisimple ring satisfying the property (P). Then, R is an
indecomposable ring such that

(i) Z(RR) is essential in RR, every Noetherian right R-module is Artinian, and

(ii) (a) R
J is a simple Artinian ring and

(a1) R is a right semiartinian but not Artinian ring, or

(a2) R ∼= Mn(S), where S is a (nonuniserial) local right Artinian ring,

or

(b) R is not right semiartinian and the following conditions are equivalent for a right
R-module M

(b1) M is Noetherian,

(b2) M is finitely generated semiartinian,

(b3) M is Artinian,

(b4) M is finitely generated semisimple,

and

(iii) Every ideal of R is either below the prime radical N or above the Jacobson radical J .

Proof. If R = A⊕B, where A and B are non-zero ideals, then A and B are relatively injec-
tive cyclic R-modules, which by assumption of the condition (P ), implies that R is semisimple
artinian, a contradiction. Therefore, R must be indecomposable as a ring.

(i) follows from Theorem 4.4.5. Now assume R is right semiartinian. Then there is a unique
simple R-module by Proposition 4.4.9. Hence there is a unique right primitive ideal, thus a
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unique maximal ideal, an dthey all coincide with J(R). Therefore, R/J(R) is a simple ring with
the condition (P ) by Lemma 4.4.14. It follows that R/J(R) is a simple artinian by Corollary
4.4.6.

Now, if R is not right artinian, this yields part (a1). Else, if it is right artinian, by uniqueness
of the simple R-module, R ∼= (eR)n for some primitive idempotent e and some n ∈ N. This
immediately yields that R is isomorphic to a matrix ring over a local right artinian ring, namely
Mn(eRe), yielding (a2). With this, we have established (ii)(a).

Part (ii)(b) follows from Corollary 4.4.11, and part (iii) from Lemma 4.4.13. The proof of
the theorem is now complete.

Proposition 4.4.17. If R is a commutative Noetherian ring satisfying (P ), then R is isomorphic
to a finite direct product of fields.

Proof. To prove this proposition it is sufficient to show that R is semisimple Artinian.
Assume that R is not semisimple Artinian. Then R is a commutative local Artinian ring thanks
to the last proposition and the commutivity of R. Hence there is a right ideal A of R such that
R/A is a local module of composition length 2. Note that soc(R/A) is the only nonzero proper
submodule of R/A. Let f : soc(R/A) → R/A be a nonzero morphism and 0 6= x ∈ soc(R/A).
Then f(soc(R/A)) = soc(R/A) and there is an element r ∈ R such that f(x) = xr. Since R is
commutative, f extends to a morphism f̄ : R/A → R/A defined by f̄(y) = ry = yr. Therefore
R/A is quasi-injective, so that R/A is semisimple, a contradiction.
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