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ABSTRACT

In the last years, the telecommunications industry has seen an increasing interest in
the development of advanced solutions that enable communicating nodes to exchange
large amounts of data. Indeed, well-known applications such as VoIP, audio stream-
ing, video on demand, real-time surveillance systems, safety vehicular requirements,
and remote computing have increased the demand for the efficient generation, uti-
lization, management and communication of larger and larger data quantities. New
transmission technologies have been developed to permit more efficient and faster
data exchanges, including multiple input multiple output architectures or software
defined networking: as an example, the next generation of mobile communication,
known as 5G, is expected to provide data rates of tens of megabits per second for
tens of thousands of users and only 1 ms latency. In order to achieve such demand-
ing performance, these systems need to effectively model the considerable level of
uncertainty related to fading transmission channels, interference, or the presence of
noise in the data.

In this thesis, we will present how different approaches can be adopted to model
these kinds of scenarios, focusing on wireless networking applications. In particu-
lar, the first part of this work will show how stochastic optimization models can be
exploited to design energy management policies for wireless sensor networks. Tra-
ditionally, transmission policies are designed to reduce the total amount of energy
drawn from the batteries of the devices; here, we consider energy harvesting wireless
sensor networks, in which each device is able to scavenge energy from the environ-
ment and charge its battery with it. In this case, the goal of the optimal transmission
policies is to efficiently manage the energy harvested from the environment, avoiding
both energy outage (i.e., no residual energy in a battery) and energy overflow (i.e.,
the impossibility to store scavenged energy when the battery is already full).

In the second part of this work, we will explore the adoption of machine learning
techniques to tackle a number of common wireless networking problems. These al-
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gorithms are able to learn from and make predictions on data, avoiding the need to
follow limited static program instructions: models are built from sample inputs, thus
allowing for data-driven predictions and decisions. In particular, we will first design
an on-the-fly prediction algorithm for the expected time of arrival related to WiFi
transmissions. This predictor only exploits those network parameters available at
each receiving node and does not require additional knowledge from the transmitter,
hence it can be deployed without modifying existing standard transmission proto-
cols. Secondly, we will investigate the usage of particular neural network instances
known as autoencoders for the compression of biosignals, such as electrocardiog-
raphy and photo plethysmographic sequences. A lightweight lossy compressor will
be designed, able to be deployed in wearable battery-equipped devices with limited
computational power. Thirdly, we will propose a predictor for the long-term chan-
nel gain in a wireless network. Differently from other works in the literature, such
predictor will only exploit past channel samples, without resorting to additional in-
formation such as GPS data. An accurate estimation of this gain would enable to,
e.g., efficiently allocate resources and foretell future handover procedures. Finally,
although not strictly related to wireless networking scenarios, we will show how deep
learning techniques can be applied to the field of autonomous driving. This final
section will deal with state-of-the-art machine learning solutions, proving how these
techniques are able to considerably overcome the performance given by traditional
approaches.
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CHAPTER 1

INTRODUCTION

Recent advancements in telecommunication physical and MAC/DLL layers have
made it possible to approach Shannon’s channel capacity bound. As shown in Fig-
ure 1.1, the performance of technologies such as HSDPA or IEEE 802.16 (WiMax)
are close to their theoretical limits, and, regarding the link layer, much research has
already been conducted.

However, in these years, technological progresses have stimulated new research ef-
forts focused on the network layer: examples include management of different trans-
mitting units for massive Multiple Input Multiple Output (MIMO) architectures [1],
collaboration among transmitting nodes belonging to the same network to prevent
losses due to mutual interference [2,3], clustering techniques for Machine-to-Machine
(M2M) communication [4], Software Defined Networking (SDN) technologies applied
to reduce communication latency for the paradigm of Tactile Networking [5], efficient
Quality of Service (QoS) driven management of mobile devices connected to a group
of Base Stations (BSs) [6–8], as required by recent wireless communication proto-
cols such as LTE. All the aforementioned scenarios require the ability to properly
model the considerable level of uncertainty inherent in many telecommunications
problems, e.g., interference among devices, noisy communication channels, random
data generation and dynamic cellular environments.

A traditional approach adopted to study this kind of scenarios is based on
stochastic optimization, which allows a rigorous characterization of the mathemat-
ical details needed to take uncertainty into account. In recent years, stochastic
optimization has been the methodology of choice for optimal decision support un-
der uncertainty: the authors in [9] divide telecommunications problems into three
classes, namely technological, network and enterprise, based on the scale of the deci-
sions relative to the whole telecommunication environment. Indeed, different types
of uncertainty come into play at different levels. Traditionally, in performance anal-
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2 1. Introduction

Figure 1.1: Performance relative to theoretical limits.

ysis two complementary approaches were developed to model randomness, namely
analytical characterization and simulation. The former approach generally relies on
Markov chains, i.e., stochastic processes in which future and past states of the con-
sidered system are independent given the present state (Markov memoryless prop-
erty). This approach allows for a mathematical characterization of the considered
environment, but usually does not scale well when dealing with complex scenarios.
In this case, a proper analysis of the environment requires a Markov chain with a
huge amount of states, whose stationary distribution computation can be, for in-
stance, too time consuming or computationally intensive. A further possibility is to
complement the analytic approach by simulation techniques. These consist of direct
simulations of the interaction between the considered variables, allowing a realistic
representation of the whole system. However, the simulation times necessary to
obtain reliable estimates of the stationary performance can be prohibitively long as
well. This is especially true, for instance, when design requirements are expressed
in terms of low probability of packet loss, which is a popular performance measure
for modern data networks.

Machine learning techniques are now facing increasing popularity, being able to
build models from input examples in order to make data-driven predictions, with-
out the need of pre-programmed and rule-based sets of precise instructions. As
such, compared to stochastic models, they are able to manage big amounts of data
more easily, by learning to perceive and comprehend the significance of the data
with which they are trained. Differently from rule-based techniques (e.g., stochas-
tic models), where it is usually possible to both gain an understanding and check
how a system achieves its solution (thus verifying that this system will operate
within certain reference parameters), it is typically hard to extract meaning from
the variables of machine learning algorithms, e.g., the weights of an Artificial Neural
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Network (ANN), also because, during training, such systems can even give highly
different outputs in consecutive iterations of the learning process. Nevertheless, ma-
chine learning methods have already been applied to many wireless communication
fields, including Wireless Sensor Networks (WSNs): routing [10, 11], data aggrega-
tion [12, 13], event detection [14, 15] and medium access control [16, 17] are, among
others, a few applications where learning algorithms have proved to be competitive
with traditional approaches.

This thesis deals with the optimization of wireless networking protocols by means
of both the aforementioned approaches. In particular, the first part describes
stochastic models, based on Markov decision processes, able to compute efficient
transmission policies for a particular category of wireless sensor networks. After
that, the second part of this work applies machine learning techniques to a number
of networking problems, namely network parameters estimation, radio channel gain
prediction and signal compression, showing how such methods provide interesting
performance improvements with respect to traditional approaches.

In detail, this work is subdivided into two parts. In the first part we use stochastic
models to design energy management polices for wireless sensor networks equipped
with energy harvesting devices. In particular, in Chapter 2, we focus on networks
composed of two receivers and a central controller, computing optimal transmission
policies dealing with finite battery capacities, correlations in the harvesting pro-
cesses, and non-deterministic packet arrivals at the receivers. In addition, we take
into account non-idealities, such as imperfect knowledge of the states of charge of
the devices, or secondary costs. This work has been reported in the journal paper
[J1] and in the conference paper [C2]. Although related to these research topics,
conference papers [C1] and [C3] have not been included in this thesis, as they in-
volve a slightly different mathematical model with respect to the one presented in
[J1, C2], while studying a very similar problem.

In the second part, we address a number of typical wireless networking research
topics by means of machine learning techniques. Specifically, this part is subdi-
vided into four chapters, each addressing a specific topic and the corresponding
results: each chapter can thus be read separately. Chapter 3, based on journal
paper [J4] and conference papers [C4, C5], shows how receiving nodes in a WiFi
network can perform on-the-fly prediction of an important quality of service mea-
sure, namely the estimated time of arrival, only based on a subset of networking
parameters (transmission power, distance, ..) available at each node without mod-
ifying standard transmission protocols. Chapter 4 presents a particular ML-based
compression algorithm for quasi-periodic biosignals such as ECG, plethysmographic
and respiratory. The proposed technique is compared to traditional compression
approaches, showing a thorough performance comparison in terms of reconstruction
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error, compression efficiency and energy consumption for both coding and decoding.
This work is based on journal papers [J2, J3]. In Chapter 5, we investigate how to
predict the long-term channel gain of a radio link in an urban scenario, simulating
both a pedestrian and a vehicular environment, only exploiting a limited amount of
information and with no geographic knowledge about the user. This work is based
on the conference paper [C6]. Finally, Chapter 6 presents how advanced machine
learning algorithms are being applied to the field of autonomous driving. The ma-
terial presented in this chapter comes from the conference paper [C7] and describes
the research I took part in during my internship with the autonomous driving team
at Nvidia in Holmdel, NJ, USA. Due to a non disclosure agreement, this chapter
will intentionally give only a general overview of the project.



Part I

Stochastic Models for Energy
Harvesting Sensor Networks
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CHAPTER 2

TRANSMISSION POLICIES FOR TWO-USER ENERGY
HARVESTING WIRELESS NETWORKS

This chapter considers a wireless network composed by a pair of sensors powered
by Energy Harvesting Devices (EHDs), which transmit data to a receiver over a
shared wireless channel. At any given time, based on the energy levels of the two
rechargeable batteries of the sensors, a central controller (CC) decides on the amount
of energy to be drawn from the two batteries and used for transmission. The problem
considered is the maximization of the long-term average reward associated with data
transmission, by optimizing the transmission strategy of the two nodes, in the case of
a collision channel model and both i.i.d. and correlated energy arrivals. In addition,
contrary to the traditional assumption that the amount of energy available to the
sensors can be easily estimated, we derive the optimal policy in the cases where
the State Of Charge (SOC) may not be perfectly known by the central controller,
analyzing the performance degradation caused by this imperfect knowledge of the
SOC. For this second scenario, supposing that the CC is only aware that each SOC
is “LOW” or “HIGH,” we show that the impact of imperfect knowledge decreases
with the two battery capacities and is negligible in most cases of practical interest.

2.1 Introduction to the chapter

Recent advancements in the areas of micro-electro-mechanical systems technology,
digital electronics and wireless communications have made it possible to develop
multifunctional sensor nodes, capable of communicating over short distances. The
possibility of producing such sensors in a low-power, low-cost and small-size way,
leverages the idea of sensor networks based on collaborative efforts of a large number
of nodes. These small devices, also named motes, are able to sense physical quantities

7



8 2. Transmission policies for two-user Energy Harvesting wireless networks

Figure 2.1: A practical sensor node

(position, temperature, humidity, etc), to process data and to communicate to each
other (see Figure 2.1). The sensor nodes constituting a network can be deployed
very close to the phenomenon and their position does not need to be predetermined,
thus allowing random deployment in inaccessible or disaster areas [18].

The communication is usually performed in an asymmetric way: nodes send the
data to one or more special nodes, called sink (or base station), whose aim is to
collect data. The base station is a component of the WSN with much more com-
putational power, memory, energy and communication resources, which acts as a
gateway between sensor nodes and the end user, typically forwarding data from the
WSN on to a server. A transmission can be initialized autonomously by the sensor (if
a certain event occurs) or by the sink (by sending a query towards a specified node).
On the other hand, it is possible to exploit the great density of nodes performing
multihop communication, which is able to consume less power than the traditional
single hop strategy. In addition, this technique can lower the transmission power
levels (highly desirable in most scenarios) and overcome some of the signal prop-
agation effects experienced in long-distance wireless communications. One of the
most important constraints on sensor nodes is the low-energy consumption require-
ment: a node generally carries a limited and irreplaceable power source. As a result,
while traditional wired networks aim to meet high quality of service constraints, sen-
sor network protocols have to focus primarily on power conservation: a permanent
trade-off between network lifetime and transmission throughput has to be taken into
account.

2.1.1 Applications

A sensor network can be seen as a set of different types of sensors able to sense a wide
variety of ambient conditions like pressure, humidity, temperature, lighting, noise
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but also vehicular movement, soil makeup, mechanical stress on attached objects
and also the presence or absence of certain kinds of objects [19]. Moreover, nodes
can be used for event detection, continuous sensing or local control of actuators
useful in many application areas.

1. Environmental
The term environmental sensor network has evolved to cover many applications
of WSNs to earth science research [20]. Some of the major fields are listed
below.

• Air quality monitoring: in urban areas the degree of pollution of the air
needs to be frequently measured in order to protect people from any kind
of damage due to air pollution.

• Natural disaster prevention: wireless sensor networks can prevent the
consequences of natural disasters like earthquakes or floods. For instance,
wireless nodes have successfully been installed in rivers to monitor the
water levels in real time.

• Forest fire detection: a network of sensor nodes can be deployed in a forest
to detect when a fire has started. Nodes can be capable of measuring
temperature, gases and humidity produced by fires among the vegetation.
Thanks to WSNs, fire fighters would be able to early detect a fire and
track its spreading.

• Water quality monitoring: water properties in rivers, lakes, dams and
oceans, as well as underground reserves [21], can be monitored avoiding
manual data retrieval in difficult-access locations.

2. Military
The possibility to easily and rapidly spreading as well as self-organization and
tolerance to damages make a sensor network a promising technique towards
military application. Since sensor networks are based on dense deployment of
low cost and disposable nodes, destruction of some nodes by enemy actions
does not damage military operations as much as the destruction of a traditional
sensor. A possible application is the monitoring of friendly forces, equipment
and ammunition: every troop, vehicle and critical device could be attached
with a small sensor to report its status. These reports could be gathered in
sink nodes and sent to the troop leader or directly forwarded to the upper
level of the hierarchy together with the data from the other units. Different
applications are battlefield surveillance, battle damage assessment as well as
nuclear, biological and chemical attack detection.
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3. Health
Some applications in this field are addressed to provide an interface for disabled
people, to monitor human physiological data, to administer drugs in hospitals
(avoiding the chance to prescribe the wrong medications to patients) and also
to track doctors and patients inside hospitals [18,22].

4. Home
Sensor nodes inside the domestic appliances can interact with each other and
with the external network by an Internet point. This could allow users to
easily manage home appliances locally or remotely.

5. Others
Some other commercial applications are virtual keyboards, interactive toys and
museums, factory process control and automation, robot control and guidance
in automatic manufacturing environments. Finally, also local control of actu-
ators and vehicle tracking and detection are today available.

2.1.2 Harvesting capabilities

Energy management is one of the main issues in WSN because it critically threats
their sustainability. Since the nodes may be distributed in extensively wide and com-
plex environments, it becomes very difficult to replace the battery: various studies
have been performed to increase the lifetime of the battery of a node by choosing
the best modulation strategy [23], by exploiting power saving modes (sleep/listen)
periodically [24], by reducing the number of bits to transmit [25,26], by using energy
efficient routing [27,28] and MAC [29] and by using efficient transmission scheduling
to take advantage of charge recovery phenomenon [30].

In addition to these, another very interesting strategy is that of exploiting Energy
Harvesting techniques [31], by which ambient energy is captured and, if necessary,
stored to provide electricity for small autonomous devices, such as satellites, mobile
phones or nodes in sensor networks. EH is used for many reasons, from providing
long life and no maintenance to saving costs. A list of some scavenging sources is
presented below.

Types of scavenging

There are many free energy sources in nature [32,33]: how to harvest and store this
energy efficiently in small devices is still an open topic for research.

• Solar The basic principle of optical collection is to absorb a large number
of photons by the use of photovoltaic materials. The main disadvantage of
this energy source is the great dependence on time and on solar environment
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exposure. Indeed during night and cloudy days sufficient incoming energy
cannot be guaranteed.

• Thermal Thermoelectric scavenging exploiting the differences of temperature
is nowadays a very well known technology. Devices of this type can be small,
light and are able to work in harsh environments.

• Motion If nodes are subject to movements, oscillations and vibrations, energy
could be scavenged according to Faraday’s law of electromagnetic induction.
The main advantage of this source is that, in some particular scenarios, it
could provide constant energy.

• Electromagnetic When a node is exposed to an electromagnetic field, energy
can be drawn with the use of an inductor. Manos Tentzeris, a professor in
the Georgia Tech School of Electrical and Computer Engineering, and his
team state: “There is a large amount of electromagnetic energy all around
us, but nobody has been able to tap into it. We are using an ultra-wideband
antenna that lets us exploit a variety of signals in different frequency ranges,
giving us greatly increased power-gathering capability” [34]. It is believed that
the technique could provide a promising new way to power wireless sensors
networks.

Thanks to EH, energy conservation does not need to be the most important
concern any more, and energy efficient policies and harvesting techniques can be
jointly developed. However, some issues related to scavenging are still present:
harvested energy could not always be available (for example with solar cells), despite
sensor nodes’ constant needs, or energy generation rates could be limited and hence
the energy generation profile of the harvesting source should be matched with the
energy consumption profile of the sensor node, in a way avoiding energy starvation
from being the main reason for the node to die (energy neutral operation [31]).
Furthermore, it must be noted that, treating energy arrivals as a random process,
the way in which harvesting occurs is random and barely predictable.

Paradigms for energy efficient operations

In conclusion, differently from traditional sensors, where the objective is to minimize
energy consumption under a performance constraint (for example the delay [35]),
with Energy Harvesting Devices, which are utilized in this thesis, the objective is the
“management” of the harvested energy. Intuitively, when a finite battery is available,
an EHD should judiciously perform its assigned task based on its available energy,
becoming more “conservative” as its energy supply runs low to ensure uninterrupted
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operation, and more “aggressive” when energy is abundant, to avoid that harvested
energy is wasted due to lack of storage space.

2.1.3 Node architecture

The overall architecture of a sensor node consists in five basic components as shown
in Figure 2.2:

MEMORY

MICRO-CONTROLLER

SENSORS

ENERGY
HARVESTING

Figure 2.2: Architecture of a wireless sensor node

• The power supply unit of the sensor node provides power to all its compo-
nents. In the majority of cases it consists of a rechargeable DC battery and
can be supported by a power scavenging unit such as solar cells.

• Micro controller is responsible for all processing and decision making.

• Sensing units monitor the surrounding environment and inform the controller
about what is being observed. For example, they can sense light, temperature,
humidity, pressure. Sensing units are usually composed by two subunits: a
sensor and an analog to digital converter (ADC). The analog signal produced
by the sensor is converted to digital by the ADC, and then passed to the
processing unit.

• The Transceiver deals with transmission and reception of the data to and
from the base station. Usually RF based communication is preferred, as In-
frared or Laser technologies need a direct propagation path for a correct com-
munication.

• Sensor nodes are equipped with a programmable Flash memory. Usually
storage capacity is limited, so the protocols that are designed for sensor net-
works should be simple enough to be loaded into the small available memory.

• There can also be some applications-dependent additional components, such
as a location finding system (GPS).
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2.1.4 Contributions and related work

Recent work related to harvesting capabilities includes [36], which analyzes the
packet dropping and packet transmission probabilities for a single node powered
by solar cells, and [37], which focuses on the problem of cross-layer resource al-
location for wireless networks operating with rechargeable batteries under general
arrivals, proposing a policy that achieves asymptotically optimal transmission rate
for sufficiently large battery capacity. [31] derived energy management policies that
are either throughput optimal, i.e., policies for which the data queue of packets
to be transmitted remains stable for the largest possible data rate, or delay mini-
mizing, also identifying a greedy policy able to satisfy both throughput and delay
constraints.

An EHD is typically modeled as an energy buffer, which is supplied by an energy
arrival process with some statistical distribution. Here, we consider a WSN com-
posed by two EHDs, which report incoming data to a Receiver (RX), also acting
as a Central Controller (CC). This case can be described with a relatively simple
notation, and at the same time captures all conceptual difficulties of a multi-user
system, introducing a number of new observations with respect to a single-user sce-
nario. These include coordination between users, collision avoidance, issues related
to symmetry/asymmetry, and scenarios characterized by unbalanced EHD equip-
ments, e.g., different battery sizes, harvesting rates or transmission channel condi-
tions. Also, it shows that even in the simplest multi-user network, the increased
dimensionality does not allow to derive analytical results similar to the ones obtain-
able in the single-user scenario, unless trivial cases are considered. Furthermore, it
is worth noting that the extension from a single-user network to the two-user case
involves significant conceptual difficulties (e.g., multidimensional model, different
policy structure) as well as some completely new issues that do not arise in the
single-user case (e.g., need to manage the collisions, effect of asymmetric assump-
tions). On the other hand, further extension from a two-user network to a bigger
multi-user system is conceptually similar, and its difficulty lies primarily in a more
involved notation and a higher complexity due to the exponential scaling of the state
space. For this reason, and for ease of presentation, we will develop our analysis and
results for the two-user case, highlighting its similarities and differences with respect
to the single-user case, and then discuss how the framework can be extended to the
general multi-user case.

The transmissions of the two devices are managed based on the energy level
of the two batteries and the mean energy harvesting rate. Intuitively, an EHD
should be more “conservative” when the energy supply is low, and more “aggressive”
if energy is abundant. As a consequence, the State-of-Charge (SOC) of a device
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is an important piece of information, and is generally assumed to be known in
most of the literature. However, as practical EHDs store energy in electrochemical
batteries and/or super-capacitors, it is not realistic to assume that the SOC can be
characterized with infinite precision and immediate availability at any time. In [38],
it is shown that the value of a super-capacitor capacitance can fluctuate up to
30% with respect to the data-sheet value, due to temperature variations or age: an
online estimation algorithm, based on controller discharge, was proposed, but was
shown to have a significant additional energy cost. [39,40] propose other estimation
algorithms for the open circuit voltage of an electro-chemical battery, which is closely
related to the SOC, but only by means of a non-negligible complexity, which may be
unsustainable for computationally-limited devices. Hence, the estimation of the SOC
related to sensor batteries is complex and highly prone to errors, so that a precise
knowledge of this value cannot be easily acquired in general. Moreover, another
possible cause of imperfect knowledge of the SOC by the CC is that, in limited
energy systems, the information related to the SOC may not be transmitted in real
time, but only when substantial variations occur, so as to reduce the transmission
overhead of the overall system. Consequently, we also study the case of a scenario
in which the energy levels of the two EHDs are not precisely known by the CC,
which can only distinguish a region the SOC belongs to at any given time. In this
way, it will be possible to compare the performance achieved under perfect and
imperfect SOC knowledge, thus quantifying the degradation caused by the latter
(more realistic) scenario with respect to the former.

The objective of our study is to determine the optimal amount of energy to be
drawn from the batteries, so as to maximize a long-term expected reward, e.g., the
throughput of the system. In the special case of a logarithmic reward function,
and a CC only knowing if the SOC of each device is LOW or HIGH, it is shown
that the performance penalty due to imperfect SOC knowledge strongly decreases
with the capacity of the two batteries, and is typically less than 5%. This can be
explained by noting that the optimal policy must avoid energy outage (i.e., depleting
the batteries) when the SOC is LOW, and must be aggressive to prevent energy
overflow (i.e., wasting harvested energy due to the limited battery capacities) if the
SOC is HIGH [41]. With these expedients in place, the exact SOC knowledge may
not be as important, at least for batteries of sufficient size.

The analysis of battery imperfections for a single EHD has been carried out
in [42, 43], which present optimal transmission policies accounting for battery leak-
age, and [44] which evaluates the impact on the performance of battery degradation
over time, depending on partial discharge depths. Moreover, for a WSN with just
a single EHD, [45] derives transmission policies that are independent of the SOC,
showing that at most 3% performance degradation with respect to the optimum
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is achieved, [46] considers imperfections of the energy buffer and of the EH circuit
power consumption, for a framework with wireless power transfer harvesting capabil-
ities, and [41] investigates optimal policies for a scenario similar to the one presented
in this work, namely the analysis of optimal policies under imperfect knowledge of
the SOC. As to multi-user WSNs equipped with EHDs, [47] investigates the pos-
sibility of energy sharing among the nodes: it is proved that jointly managing the
energy queues of the sensors provides an increasing overall system throughput. [48]
considers a two-user multiple access channel, where each transmitter node has both
a data and an energy queue, with the objective of adaptively changing the transmis-
sion power. However, [48] derives an off-line transmission policy by assuming that
the data packets and energy arrive in a deterministic fashion. Finally, [49] takes
into account a WSN of U EHDs where each sensor node, depending only on its own
energy level and on an importance value associated to its own data packet, decides
whether to transmit the packet or remain idle. Differently from the model used
here, [49] designs a distributed transmission scheme, rather than a centralized one.

Finally, we investigate the impact of correlation in the energy arrival mecha-
nism of the two devices. Modeling this phenomenon as a hidden Markov chain,
we distinguish a set of possible energy arrival scenarios, characterized by different
energy harvesting properties. We thus provide both temporal (between subsequent
time instants) and spatial (between the two sensors) correlation, and show how per-
formance varies accordingly. In this work, we investigate the cases of both i.i.d.
and correlated EH arrival processes, as the former is suitable for modeling, e.g.,
radio-frequency/piezo-electric scavenging, whereas the latter can be adopted for so-
lar harvesting.

The remainder of this chapter is organized as follows. Section 2.2 presents the
system model and the main assumptions. The optimization problem, for both the
perfect and the imperfect knowledge scenario, as well as the formal policy definitions
are described in Section 2.3. Section 2.4 contains the numerical results, obtained
when the SOC of the two EHDs is known by the CC perfectly or only approximately.
Finally, Section 2.5 presents some possible extensions, whereas Section 2.6 draws the
conclusions.

2.2 System model

In this section, we discuss the system model as well as the assumptions made to
mathematically represent its parameters. Specifically, the following subsections
present the framework with respect to battery dynamics, scenario process, packet
arrival probability and imperfect SOC knowledge, respectively.
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2.2.1 Battery dynamics

We consider a WSN consisting of two EHDs, able to collect energy from the envi-
ronment (i.e., solar, aeolian, heat). Time is slotted, and slot k ∈ N0 corresponds to
the time interval [k, k + 1). The energy scavenged from the environment is stored
in a rechargeable battery, modeled as a buffer with capacity emax,i, where i = 1, 2
denotes the EHD index. For simplicity, as in previous work [50, 51], each posi-
tion in the buffer is assumed to hold one energy quantum, whose absolute value
depends on the application-specific scenario. The amount of energy quanta avail-
able at time k at EHD i, i.e., the SOC, denoted as Ei,k, takes values in the set
Ei = {0, 1, . . . , emax,i} and, assuming that secondary costs like processing/sensing
are negligible, is governed by the following equation

Ei,k+1 = min{[Ei,k − Qi,k]+ + Bi,k, emax,i}, (2.1)

where [·]+ � max{·, 0}. In (2.1), Qi,k represents the number of energy quanta to
be drawn from i’s buffer and devoted to transmission, and is chosen from the ac-
tion space Qi = {0} ∪ {qmin,i, qmin,i + 1, . . . , qmax,i} related to EHD i, for some
0 < qmin,i ≤ qmax,i ≤ emax,i, so that Qi,k ∈ Qi, ∀k. qmin,i represents the minimum
load requirement, which can involve fixed energy costs or power needed to perform
data acquisition and transmission [52,53]. At the beginning of the k-th time slot, the
CC requests Q1,k and Q2,k quanta for data transmission from EHD 1 and 2, respec-
tively, where Q1,k and Q2,k cannot be simultaneously positive since the centralized
controller always avoids collisions. Therefore, the joint energy requested from the
CC to the couple (EHD1, EHD2) at time k is Qk = (Q1,k, Q2,k), with Qk ∈ Q and:

Q = ({0} × Q2) ∪ (Q1 × {0})
= {(0, 0), (0, qmin,2), . . . , (0, qmax,2), (qmin,1, 0), . . . , (qmax,1, 0)}.

When Qk = (0, 0), both EHDs remain idle in slot k, due to the lack of available
energy or a decision by the CC; also, the parameter qmax,i reflects a physical con-
straint on the maximum amount of energy that can be drawn from the battery at
any given time. Finally, Bi,k models the amount of energy harvested from the en-
vironment by EHD i in time slot k (a more detailed description can be found in
the next subsection). Note that the discrete variables Ei,k, Qi,k, Bi,k and emax,i are
expressed as multiples of the energy quantum Δc, such that, e.g., emax,i = Cmax,i

Δc
, for

a given value Cmax,i of the physical nominal capacity (expressed in Joule) of EHD i’s
battery. Although these variables are actually continuous (they represent physical
energy quantities), this is not a limiting assumption since it is always possible to
achieve a more accurate representation by reducing the value of the energy quantum
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and, consequently, that of the quantization error, though at the price of a bigger
state space and increased complexity.

2.2.2 Scenario process

Bi,k represents the energy arrival process, which, as already explained, models the
energy quanta scavenged from the environment during time slot k. We assume an
underlying scenario process Sk, taking values in the finite set S, governed by a sta-
tionary irreducible Markov chain with transition probability pS(sk+1|sk) � P(Sk+1 =
sk+1|Sk = sk). Given the scenario Sk = s, each element of the pair of energy harvests
(B1,k, B2,k) is drawn with probability mass function pBi

(b|s) � P(Bi,k = b|Sk = s),
for all b ∈ Bi = {0, 1, . . . , bmax,i}, s ∈ S, modeling the randomness in the en-
ergy harvesting mechanism, e.g., due to an erratic energy supply. Note that,
thanks to the common scenario process Sk, the energy arrival processes B1,k and
B2,k of the two devices have both a temporal (between subsequent time slots)
and a spatial (one sensor with the other) correlation. The i.i.d. scenario, where
pBi

(b|s) = pBi
(b) = P(Bi,k = b), and Bi,k takes values in Bi, is a particular case

of this generalized framework. We define the average EH rate for sensor i as
b̄i = E[Bi,k] = ∑

s∈S πS(s)∑b∈Bi
bpBi

(b|s) (with πS(s) being the steady-state prob-
abilities of the scenario states), and assume that a new energy quantum harvested
in slot k can only be used at a later time instant > k. The practicality of this
model was studied more generally for the single user case in [54], where the scenario
process is described as a first-order Markov chain, and Bk depends on both Sk and
Bk−1

k−L = (Bk−L, Bk−L+1, . . . , Bk−2, Bk−1), for some order L ≥ 0. Assuming a quanti-
zation of Bk with 20 states, [54] shows that L = 0 models well a piezo-electric energy
source, whereas a solar energy source is better modeled with L = 1. In this work
we assume L = 0 to reduce the complexity, and leave the case L = 1 as a future
research effort.

The joint mechanism of energy harvesting and consumption described in (2.1)
entails the following two important phenomena: energy outage and energy overflow.

Definition 1. Energy outage occurs, for EHD i, when Qi,k > Ei,k, since the node
runs out of energy before the completion of the task being executed.

Definition 2. Energy overflow occurs if Bi,k > emax,i − [Ei,k −Qi,k]+, i.e., the energy
buffer is unable to store all of the harvested energy Bi,k, and the part exceeding the
battery capacity is lost.

When the former occurs, the requested task fails and the energy available in the
battery is depleted, whereas the latter prevents part of the incoming energy form
being successfully stored in the battery, due to its finite storage capacity, resulting
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in a loss of Bi,k − emax,i + [Ei,k − Qi,k]+ quanta. As a result, since energy is lost,
energy overflow potentially represents a lost transmission opportunity in the future.

2.2.3 Packet arrival probability

We assume that packet arrivals are i.i.d. in time and between sensors: this could
be the case for EHDs sensing a pair of distinct physical quantities, whose values
are either higher or lower than a given respective threshold. To take into account
the randomness of arrivals, a packet arrives in each slot at node i with probability
ppck,i, i = 1, 2. As a result, if at time slot k no packet arrives at both sensors
with probability (1 − ppck,1)(1 − ppck,2), the only possible action is Qk = (0, 0),
whereas if a packet arrives at node 1 or 2 only, with probability ppck,1(1 − ppck,2) and
(1−ppck,1)ppck,2, respectively, the optimal action will belong to the set (Q1 × {0}) or
({0} × Q2). Clearly, in the case of a pair of packets arriving to the two devices, with
probability ppck,1ppck,2, the action space will be Q. Note that this extension of the
case ppck,1 = ppck,2 = 1, allows to model a scenario in which the EHDs sense data at
different rates, depending on the pair of sources, i.e., simultaneously acquiring data
from fast-varying and slow-varying entities. We assume that the CC knows whether
a node has a packet to send, and decides the transmitting node accordingly. In
addition, considering a delay-sensitive WSN with stringent delay requirements, we
assume that no buffering of packets is available, thus packets are either immediately
sent or discarded.

2.2.4 Imperfect SOC knowledge

When only partial knowledge of the SOC Ei,k is available at the controller, e.g.,
due to inaccuracy in its estimation, we model this uncertainty by partitioning the
state space Ei in {Ii(ni), ni = 0, . . . , ñi − 1}, with Ii(ni) = {ẽni

, . . . , ẽni+1 − 1} , ni ∈
{0, . . . , ñi − 1}, 0 = ẽ0 < ẽ1 < · · · < ẽñi

= emax,i + 1. At each time slot k, we have
that Ei,k ∈ Ii(Ni,k), for some Ni,k ∈ {0, . . . , ñi − 1}, i.e., the controller knows only
the interval index Ni,k rather than the exact SOC Ei,k. Consequently, {Ni,k, k ≥ 0}
is defined as the interval index process for EHD i, taking values in {0, . . . , ñi − 1}.
In particular, the case with perfect SOC knowledge is obtained when ñi = emax,i +1,
for which Ei,k = Ni,k.
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2.3 Optimization problem

2.3.1 Policy definition and general optimization problem

Generally, a controller policy μ is a function deciding, at every time slot k, on
the amount of energy quanta Qi,k to be drawn from the batteries of the EHDs
and used for transmission. This decision is made according to Sk−1 and either to
the exact value of Ei,k or to the interval index Ni,k and the past history Hi,k =
{Ni,0, . . . , Ni,k−1, Qi,0, . . . , Qi,k−1, S−1, . . . , Sk−2 , past outage events}, for i = 1, 2, in
the cases of perfect and imperfect SOC knowledge, respectively. In particular, μ

is a probability measure on the action space Q, parameterized by the state Wk =
(Sk−1, E1,k, E2,k) or Wk = (Sk−1, N1,k, N2,k, H1,k, H2,k): given Wk, μ (q; Wk) is the
conditional probability of choosing action Qk = q = (q1, q2) ∈ Q in slot k.

We define the reward function g : Q × E1 × E2 �→ R
+ as

g(Qk, Ek) =

⎧⎪⎨⎪⎩
0 Q1,k > E1,k or Q2,k > E2,k

g̃(Qk) Q1,k ≤ E1,k and Q2,k ≤ E2,k

(2.2)

where g̃ : Q �→ R
+ is a concave increasing function of Q1,k and Q2,k, with g̃ (0, 0) = 0.

g(Qk, Ek) is the reward accrued in slot k when the SOC level is (E1,k, E2,k) ∈ E1×E2,
and the action Qk is chosen. It can be seen that g(Qk, Ek) = 0 when Qi,k > Ei,k,
i.e., when energy outage occurs, modeling the inability of the sensor to complete
its assigned task. For example, assuming the reward function as the transmission
rate, then Shannon’s formula gives g̃(Q1,k, Q2,k) ∝ ln(1 + α1Q1,k) + ln(1 + α2Q2,k),
where αi > 0 is an SNR scaling factor. The controller spreads the energy over the
entire codeword and, if the nonzero action is greater than the corresponding value
of Ek, that EHD runs out of energy when only a fraction of the codeword has been
transmitted, hence the codeword is discarded and no reward is accrued.

The long-term average reward per time slot, given the initial state (S−1, E0 =
(E1,0, E2,0)) and under policy μ, is defined as

G(μ, S−1, E0) = lim
K→∞

inf 1
K

E

[
K−1∑
k=0

g(Qk, Ek)
∣∣∣∣∣S−1, E0

]
(2.3)

where the expectation is computed over the random variables {Bk, Sk, Qk}, for
k = 0, . . . , K − 1. Hence, the problem considered in this work is that of obtaining a
policy μ∗ maximizing (2.3), i.e.,

μ∗ = arg max
μ

G(μ, S−1, E0). (2.4)
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2.3.2 Optimization under perfect SOC knowledge

If the state of charge of the two EHDs is perfectly known, the controller will select
action Qk = q when the SOC is (E1,k, E2,k) and the energy arrival state of the
previous time slot is Sk−1, with probability μ(q; Sk−1, Ek). In this case, the sequence
{(Sk−1, Ek, Qk), k ≥ 0} can be modeled as a Markov Decision Process, hence (2.4)
can be solved using standard stochastic optimization techniques, such as the Policy
Iteration Algorithm (PIA) [55]. From [56], the optimal policy in the perfect SOC case
is deterministic: consequently, assuming that (Sk−1, q(Ek)) induces an irreducible
Markov chain1, the long-term reward does not depend on the initial state (S−1, E0),
and the average reward becomes

G(μ) =
emax,1∑
e1=0

emax,2∑
e2=0

∑
s∈S

πμ(s, e1, e2)g((q1, q2), (e1, e2)), (2.5)

where πμ(s, e1, e2) is the steady state distribution of the pair (Sk−1, Ek) induced by
policy μ, calculated solving the system of equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
e∈E1×E2

∑
s∈S

πμ(s, e) = 1 (normalization)

πμ(s, e) ≥ 0, ∀s ∈ S, ∀e ∈ E1 × E2, (non-negativity)∑
u∈E1×E2

∑
s∈S

πμ(s, u) × Pμ(S0 = s, E1=e|S−1 = s−1, E0=u)=πμ(s, e),

∀s ∈ S, ∀e ∈ E1 × E2, (steady-state equations)
(2.6)

where Pμ denotes the probability of visiting state (S0 = s, E1 = e) coming from
state (S−1 = s−1, E0 = u).

The optimization problem in (2.4) can thus be restated, for the case with perfect
SOC knowledge, as

μ∗ = arg max
q1,q2

G(μ), (2.7)

and has been computed using the PIA [55].

2.3.3 Optimization under imperfect SOC knowledge

When the SOC Ei,k of the two sensors is only partially known by the CC, to reduce
the computational complexity, we exploit sub-optimal policies that only rely on
Sk−1 and the current interval indices N1,k and N2,k, without taking into account the

1Please note that this is not a limiting assumption, as the underlying Markov chain will be
irreducible (or at least unichain) in most cases of practical interest (e.g., Bernoulli or truncated
geometric energy arrivals).
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past history Hi,k. As a result, when E1,k ∈ I1(N1,k) and E2,k ∈ I2(N2,k), the CC
decides on action Qk = q with probability μ(q, Sk−1, Nk), where Nk = (N1,k, N2,k).
Due to the imperfect SOC knowledge, policy μ imposes that the action Qk be the
same for all the energy levels (E1,k, E2,k) ∈ I1(N1,k) × I2(N2,k), for a fixed value of
Sk−1. Differently from the perfect SOC knowledge case, this constraint is not linear
with respect to the joint steady-state distribution of the scenario/SOC/action vector
(s, e, q), hence the optimal policy μ∗ cannot be found via the PIA. In the following,
we analyze policies that to every state (s, n = (n1, n2)) associate only a subset
ρ(s, n) ⊆ Q of all possible actions. In particular, ρ(s, n) can be of unit size (in
which case the policy is deterministic for that state) or contain a number of equally
likely actions (e.g., in the case of states in which there exist multiple equivalent
options).

Therefore, function ρ takes as input the vector (s, n1, n2) ∈ S ×{0, . . . , ñ1 −1}×
{0, . . . , ñ2 − 1} and provides the action set ρ(s, n) ⊆ Q: consequently, (2.3) can be
reformulated as

G(ρ, s−1, e0) =
ñ1−1∑
n1=0

ñ2−1∑
n2=0

∑
e1∈I1(n1)
e2∈I2(n2)

∑
s∈S

∑
q∈ρ(s,n)

πρ(s, e; s−1, e0)
g(q, e)
|ρ(s, n)| , (2.8)

where |ρ(s, n)| is the number of available actions associated with state (s, n).

In (2.8), πρ(s, e; s−1, e0) is the steady-state distribution of the state pair (s, e) ∈
S × E1 × E2 induced by policy μ, if the initial state is (s−1, e0). Thus, denoting the
k-step transition probability of the Markov chain modeling ρ as Pρ(Sk−1 = s, Ek =
e|S−1 = s−1, E0 = e0), we have

πρ(s, e; s−1, e0) = lim
K→∞

1
K

K−1∑
k=0

Pρ(Sk−1 = s, Ek = e|S−1 = s−1, E0 = e0). (2.9)

Note that, in most practical cases, a policy μ induces an irreducible Markov
chain, and the values of (2.9) can be calculated as the unique solution of the system
of steady-state equations
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ñ1−1∑
n1=0

∑
e1∈I1(n1)

ñ2−1∑
n2=0

∑
e2∈I2(n2)

∑
s∈S

πρ(s, e) = 1, (normalization)

πρ(s, e) ≥ 0, ∀s ∈ S, ∀e ∈ E1 × E2, (non-negativity)
ñ1−1∑
n1=0

∑
u1∈I1(n1)

ñ2−1∑
n2=0

∑
u2∈I2(n2)

∑
s∈S

πρ(s, u) ×

× Pρ(S0 = s, E1=e|S−1 = s−1, E0=u)=πρ(s, e),
∀s ∈ S, ∀e ∈ E1 × E2, (steady-state equations)

(2.10)
and so πρ and G are independent of the initial state (s−1, e0).

Finally, with the aforementioned notation, in the case of imperfect SOC knowl-
edge, (2.4) becomes

ρ∗ = arg max
ρ

G(ρ). (2.11)

Note that the long-term reward under imperfect SOC knowledge is upper bounded
by the analogous reward computed for the scenario in which the SOC is perfectly
known.

2.4 Numerical results

2.4.1 Summary of the results

In this section, we discuss the performance of the system, characterizing the through-
put as a function of the battery capacities, the energy harvesting rates and the SNR
coefficients at the two EHDs. The function g̃ in (2.2) is the total normalized capacity,
calculated as

g̃(q1, q2) = ln(1 + α1q1) + ln(1 + α2q2), (2.12)

which represents the achievable transmission rate under Gaussian signaling over an
AWGN channel with gains α1 and α2 [57], so that α1q1 and α2q2 represent the
signal-to-noise ratios (SNRs) related to EHD 1 and 2, respectively.

In Section 2.4.2, we first consider the case of perfect SOC knowledge and i.i.d.
energy arrivals, which also provides an upper bound for the performance of the case
with imperfect knowledge of the SOC. The main results of this subsection consist
of a characterization of the energy capacities providing the best performance as a
function of the pair of harvesting rates. In a symmetric setting (same values of
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b̄i and αi, i = 1, 2) the EHDs are interchangeable for a given maximum capacity,
whereas, if the values of emax,i are different, it is sufficient that only one EHD has
high capacity to obtain good performance.

Section 2.4.3 presents a performance comparison between the transmission poli-
cies with perfect and partial knowledge of the SOC, under a number of different
environmental conditions. In particular, it shows that, for sufficiently high battery
capacities, the two policies give comparable results. Similarly to the perfect SOC
knowledge case, the pair of EHDs is symmetric for an equal parameter configuration,
whereas, if the channel conditions are unbalanced, the performance degradation can
be mitigated by providing higher battery capacities. Lastly, this subsection estab-
lishes a comparison between the two-user system and an equivalent single-user one,
showing that, for high battery capacities, these behave similarly, hence the simpler
system can be used as a good approximation for the other.

Finally, Section 2.4.4 deals with the scenario with correlated energy arrivals,
which may be a more appropriate model for some harvesting phenomena (e.g., solar).
The scavenging mechanism is modeled through a scenario process Sk with three
hidden states, representing a “Random,” “Good” and “Bad” state of the arrival
process, respectively. Assuming that, in every time slot k, the value of Sk−1 is
known, the performance of the system is analyzed as a function of the state transition
probabilities. In particular, it is shown that the convergence rate grows as the
harvesting rate diminishes and that the reward achieved considering an equiprobable
alternation between the three scenario states is higher than the mean of the rewards
obtained when the “Good” or “Bad” states prevail.

In the following, we present extensive results to support the general conclusions
outlined in this subsection.

2.4.2 Perfect SOC knowledge and i.i.d. energy arrivals

In this section we consider the computation of (2.7), for qmin,i = 1, ppck,1 = ppck,2 = 1,
qmax,i = emax,i and geometric energy arrival distributions, i.i.d. among the EHDs,
with mean b̄i, truncated at bmax,i = 4b̄i, i = 1, 2, for a symmetric setting in which
α1 = α2 = α. The aim is to compute the optimal policy, employing the PIA. A
performance upper bound g̃ub for the scenario considered in this subsection can be
found in (2.15) in the Appendix: note that, in general, (2.15) is an upper bound
to the original maximization problem. However, as shown by the numerical results,
this bound is asymptotically achieved and is tight for sufficiently high values of
the capacities of the two batteries. Furthermore, it is worth noting that (2.15)
represents an upper bound also for the imperfect SOC knowledge scenario, which
will be discussed in Section 2.4.3. As a result, the analysis of the performance
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Figure 2.3: Long-term reward versus battery capacity emax,1 = emax,2 = emax, for
different values of the mean energy harvesting rate b̄1 = b̄1 = b̄ and α = 0.1.

achieved in the perfect case can give a useful insight into the maximum achievements
obtainable when the information about the SOC is not completely available.

In Figure 2.3, we plot the long-term reward (i.e., the throughput), for different
values of b̄1 = b̄2 = b̄, both non-normalized and normalized using the upper bound
(2.15) computed in Appendix. We notice that the throughput keeps increasing in the
capacity of the two batteries, until emax,1 = emax,2 � 50, after which the performance
saturates at a constant value. This is because, the larger the battery, the smaller
the impact of energy outage and overflow, hence the better the performance. When
the battery capacity becomes larger than 50, the improvement due to decreased
overflow and outage events becomes negligible, and the performance is very close to
the upper bound. An important implication of this result is that EHDs do not need
to be equipped with very large energy buffers to achieve maximum performance.
Moreover, as expected, the reward increases with the harvesting rate of the EHDs:
however, due to the fact that the practical values of b̄i are not very large, the reward
cannot grow too much. Finally, from the normalized curves, it can be seen that,
as b̄ grows, throughput saturation occurs more slowly. This can be explained by
considering that when emax < b̄, the number of energy quanta that can be used for
transmission will be at most emax, hence much energy will be wasted.

Figure 2.4 shows a three-dimensional plot representing the normalized long-term
reward as a function of emax,1 and emax,2, when b̄1 = b̄2 = 10. The normalization
is done with respect to the upper bound g̃ub, given in (2.15). The reward increases
with the capacity of the two batteries in a “symmetric” way, in the sense that the
two EHDs are interchangeable: the result achieved when emax,1 = e1 and emax,2 = e2

is the same that can be obtained when emax,1 = e2 and emax,2 = e1. This is due to the
symmetry of the system, since b̄1 = b̄2 and α1 = α2. Furthermore, as in Figure 2.3, it
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Figure 2.4: Normalized long-term re-
ward versus battery capacities, b1 =
b2 = 10, α = 0.1.
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Figure 2.5: Contour plot of Figure 2.4.

can be seen that saturation occurs at emax,1 = emax,2 � 50, where the upper bound
(2.15) is closely approached. From Figure 2.4 we can derive the combinations of
battery sizes that guarantee a given level of performance (this is easier to read from
a contour plot obtained from the intersection of Figure 2.4 with horizontal planes,
see 2.5). For example, 75% of the maximum performance is achieved even when the
EHDs have relatively small capacities (emax,1 = emax,2 = 15), whereas 90% can be
attained only with larger batteries (in particular, in this case emax,1 = emax,2 = 26).
In addition, saturation (> 95%) starts when emax,1 and emax,2 are > 36.

A deeper analysis of the long-term reward as a function of emax,1 and emax,2 in
the non-symmetric case (obtained by intersecting Figure 2.4 with vertical planes)
is shown in Figure 2.6. Good performance is achieved when at least one EHD
can afford high energy capacity: the situation where emax,2 = 40 and emax,1 is just
a fourth of emax,2 provides a throughput that is 81% of that obtained when both
sensors have capacity emax,1 = emax,2 = 40. While the results for the single-user
case could give a valuable insight into the behavior of the two-user system when
the batteries of the EHDs are both small or large, predicting the performance of
the general unbalanced case based purely on intuitive reasoning is more difficult.
However, our two-user analysis suggests that, for instance, a good implementation
strategy may be to couple two devices whose battery capacities are such that one
is half of the other. The reward achieved when emax,2 = 40 and emax,1 = 20 is
94% of that obtained when both emax,i = 40, and is 90% of the maximum feasible
performance given by (2.15). Consequently, if one of the two devices has a relatively
large battery, the requirement on the battery of the other device becomes much
looser.

Although it is not very visible from Figure 2.4 and Figure 2.6, a closer examina-
tion reveals that there are points at which the slope of the normalized performance



26 2. Transmission policies for two-user Energy Harvesting wireless networks

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

e
max,2

N
or

m
al

iz
ed

 lo
ng

−
te

rm
 r

ew
ar

d

 

 

e
max,1

=1

e
max,1

=2

e
max,1

=3

e
max,1

=5

e
max,1

=10

e
max,1

=12

0 10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

e
max,2

N
or

m
al

iz
ed

 lo
ng

−
te

rm
 r

ew
ar

d

 

 

e
max,1

=(1/2)e
max,2

e
max,1

=(1/5)e
max,2

e
max,1

=(1/10)e
max,2

Figure 2.6: Normalized long-term reward versus battery capacity of EHD 2, for different
values of emax,1 and energy harvesting rate b̄ = 10.
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Figure 2.7: Long-term average sum of quanta used for transmission by sensor 1 (q1)
and sensor 2 (q2), as a function of emax,2 and for emax,1 = 4, related to the framework of
Figure 2.4.

changes. For instance, fixing the value of emax,1, we have that, as emax,2 grows, the re-
ward function is initially convex, but eventually becomes concave for larger values of
the capacity, with the inflection point reached for emax,1 = emax,2. This phenomenon
produces an initial lower slope followed by an increased one, until saturation finally
occurs. This particular behavior can be explained with the help of Figure 2.7, where
we plot, as an example, the long-term average sum of quanta used for transmission
by each sensor, as a function of emax,2 and for a fixed value of emax,1 = 4. When
emax,1 > emax,2, the first device employs more energy for transmission than the other
device, as qmax,i = emax,i for both the EHDs, but the two roles switch when emax,1

becomes lower than emax,2. In this second region, where the growth of the slope as-
sociated to the reward occurs, the amount of energy devoted to transmission by the
second user (green line) is greater than the corresponding quantity in the previous
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Figure 2.8: Long-term reward versus
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Figure 2.9: Long-term reward as a
function of emax, for different values of
ppck,2 and ppck,1 = 0.5 (α = 0.1, b̄ = 10).

region (blue line), resulting in the flex given for emax,1 = emax,2.
In Figure 2.8, to study the impact of the harvesting rate, we plot the long-term

reward versus b̄2, for different values of b̄1/b̄2 and for emax,1 = emax,2 = 45. It can be
seen that, for lower values of the mean energy harvesting rates b̄1 and b̄2, the system
performance nearly approaches the maximum achievable reward (2.15). This is due
to the value of the battery capacities: as the upper bound (2.15) only depends on the
mean harvesting rates b̄i, higher performance is achieved, for given values of b̄1 and
b̄2, when energy overflows are reduced. Hence, if the capacity of the batteries is larger
than the average amount of energy scavenged in a time slot, overflow events become
infrequent and the normalized long-term reward is close to 1. On the other hand,
when the total amount of harvested energy grows, the two batteries fail to store all
the energy coming from the environment, which is sometimes wasted, resulting in
the occurrence of overflow. As a result, the normalized reward decreases, as in this
case greater battery capacities would be needed to properly exploit all the available
energy.

In Figure 2.9, to study the effect of the data packet arrival rate, we plot the
long-term reward as a function of emax, for different values of ppck,2 and a fixed value
of ppck,1. This framework with different packet arrival probabilities could model the
case of the two devices simultaneously sensing different kinds of physical quantities.
For instance, assuming sensors deployed in an urban scenario, the first device could
control ambient temperature, while the second could monitor air pollution. The first
may be sampled less frequently with respect to the second, as temperature varies
more slowly than pollution levels, hence the different values of ppck,1 and ppck,2.
In this case, the long-term reward increases with the battery capacity of the two
devices, but the gap between consecutive increasing values of ppck,2 diminishes as
ppck,2 → 1.
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2.4.3 Imperfect SOC knowledge and i.i.d. energy arrivals

In this subsection, we study how a partial knowledge of the battery state of charge
affects the performance. Towards this goal, we determine the optimal policy ρ∗

for the case in which the energy state space of every EHD is partitioned into the
same number of regions, i.e., ñ1 = ñ2 = ñ. In this particular scenario, the two-
dimensional state space E1 × E2, inclusive of both the EHDs, can be divided into
ñ′ two-dimensional partitions I ′(n), n ∈ {0, . . . , ñ′ − 1}. Specifically, we consider
a scenario with two equal-interval uncertainty sets for every EHD, i.e., ñ = 2 and
ñ′ = 4, resulting in the following four partitions:

• I ′(0) = {(e1, e2), 0 ≤ e1 ≤ ẽ1 − 1, 0 ≤ e2 ≤ ẽ2 − 1} (“LL”)

• I ′(1) = {(e1, e2), 0 ≤ e1 ≤ ẽ1 − 1, ẽ2 ≤ e2 ≤ emax,2} (“LH”)

• I ′(2) = {(e1, e2), ẽ1 ≤ e1 ≤ emax,1, 0 ≤ e2 ≤ ẽ2 − 1} (“HL”)

• I ′(3) = {(e1, e2), ẽ1 ≤ e1 ≤ emax,1, ẽ2 ≤ e2 ≤ emax,2 (“HH”)

with ẽi = � emax,i

2 .
The assumption is that, at time k, (E1,k, E2,k) ∈ I ′(Nk), with Nk ∈ {0, 1, 2, 3},

and the central controller knows only that Ek = (E1,k, E2,k) ∈ I ′(Nk), i.e., Nk rather
than the exact SOC Ek. In addition, we employ a ρ function such that:

• if emax,1 �= emax,2, ρ(n) is a singleton:
⎧⎨⎩μρ(q; n) = 1 q = ρ(n)

μρ(q; n) = 0 q ∈ Q \ {ρ(n)}

• if emax,1 = emax,2, ρ(n) is a singleton if n = 1 or n = 2 (i.e., when the current
energy partition is “LH” or “HL”), or contains two symmetric and equiprobable
actions, namely (0, q) and (q, 0) (with q ≥ 0 a deterministic function of n) when
n = 0 or n = 3 (the two energy levels belong to the same partition “LL” or
“HH”), so as to prevent the system from getting unbalanced and to maintain
the overall symmetry between the two devices.

We now consider the computation of (2.11), for qmax,i = emax,i, α1 = α2 = α

and, unless otherwise stated, the same geometric energy arrival distributions as in
the perfect SOC case (i.i.d. among the EHDs, with mean b̄i, truncated at bmax,i =
4b̄i, i = 1, 2). Also, the same throughput function g̃ as in (2.12) will be employed.

Figure 2.10 shows G(μ) as a function of emax, for the following two policies: policy
with perfect SOC knowledge as in Subsection 2.4.2 (PP-2) and policy with imperfect
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Figure 2.10: Throughput as a function of emax, for different values of α and b̄ = 10.

SOC knowledge and two-equal-interval uncertainty per EHD (P4), both for b̄ = 10
and for different values of α. As expected, for a fixed value of α, P4 is inferior
with respect to PP-2, but the two policies become comparable at a buffer capacity
emax � 30, where the reward degradation of P4 with respect to PP-2 is less than
10%. As emax increases, the degradation of P4 decreases further, as the impact of
overflow and outage (which occur when the SOC gets close to 0 or emax) diminishes.
In fact, for sufficiently high battery capacities (emax = 40), PP-2 outperforms P4 by
just 5%. A comparison between Figure 2.10 and the analogous results related to the
single-user case [41] indicates that a system with two EHDs has lower performance
for low battery capacities but, after an initial slow increase, grows more rapidly and
saturates earlier. Hence, if both batteries are low, a two-user system performs worse
than a single-user one but, for bigger batteries, it is able to achieve higher rewards,
exploiting the diversity arising from the availability of a pair of EHDs.

In Figure 2.11 we plot the throughput of the system, both non-normalized and
normalized using the upper bound in (2.15), for different values of b̄ and α = 0.1.
As expected, the reward increases with the value of the mean energy harvesting
rate b̄. In addition, as was the case in Figure 2.3, throughput saturation occurs
more slowly as b̄ grows, due to the limited maximum amount of energy available
for transmission. It can be seen that the upper bound (2.15) is still achievable but,
compared to Figure 2.3, this occurs for higher values of the battery capacities due
to the imperfect SOC knowledge.

The analysis of the amounts of energy drawn by P4, for given values of α and
b̄ (see Figure 2.12), shows that the optimal actions for states “LH” and “HL” are
the same, i.e., the system is symmetric, as expected. In addition, when at least
one of the two devices is in state “H,” the amount of energy used for transmission
is emax, until emax ≈ b̄, thus exploiting the abundance of energy harvested from
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Figure 2.11: Throughput as a function
of emax, for different values of b̄ and α =
0.1.
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Figure 2.12: Actions ρ(0) (LL), ρ(1)
(LH), ρ(2) (HL) and ρ(3) (HH) of P4
corresponding to Figure 2.11, for b̄ =
5, 10, 20. The optimal actions for LH
and HL are identical, i.e., the system is
symmetric.

the environment. Then it becomes ≈ emax/2, so as to exploit all the energy surely
present in the EHD (this value corresponds to ẽ = �emax/2) and finally, when
emax ≈ 4b̄, the actions for “HL” and “HH” saturate to a constant value, showing
that, when emax is sufficiently high, it is more advantageous to devote a smaller
amount of energy to transmission (obtaining a lower reward) and remain in state
“H,” rather than transmitting a higher amount of energy, increasing the reward
but also making it more likely to downgrade to state “L,” with a negative impact
on future performance. Finally, when emax is high, the optimal policy uses more
energy for transmission in state “HH” than in “HL/LH.” This can be explained by
observing that when the system is in state “HL/LH,” it is possible that using too
much energy will lead both devices to be in a low energy state in the next slot,
whereas this situation never occurs if the system is in state “HH,” since only one
device can transmit at any time.

Figure 2.13 shows the normalized long-term reward, for different values of emax,1

and emax,2, with b̄1 = b̄2 = 10 and α = 0.1 (this is the imperfect-SOC counterpart of
Figure 2.4). It can be seen that the performance increases with the battery capacities
of the two devices and, as expected, this occurs in a symmetric way, similarly to
the perfect SOC knowledge scenario. In particular, we have that the reward has
a piecewise linear behavior, that is due to the truncation in the computation of
ẽi = � emax,i

2 . As stated for the case with perfect knowledge of the SOC, a good
implementation strategy could be that of pairing two devices for which the battery
capacity of the first is half of that of the second: for instance, when emax,1 = 20 and
emax,2 = 10 the achieved reward is 85% of that obtained when both the two devices
have a large battery (emax,1 = emax,2 = 23).



2.4. Numerical results 31

0
5

10
15

20
25

0
5

10
15

20
25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

e
max,1

e
max,2

 

N
or

m
al

iz
ed

 lo
ng

−
te

rm
 r

ew
ar

d

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2.13: Normalized long-term reward as a function of emax,1 and emax,2, with
imperfect SOC knowledge (b̄ = 1, α = 0.1).
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Figure 2.14: Throughput as a function of emax,1 = emax,2 = emax, for different energy
arrival statistics (α = 0.1).

Figure 2.14 shows the dependence between the long-term reward G and the
energy arrival statistics, under imperfect knowledge of the SOC. The higher the
second order moment (or, equivalently, the variance, as the value of the mean b̄

is fixed), the larger the performance degradation, for both perfect and imperfect
SOC knowledge. Here, the distribution marked as “triangular” refers to a particular
distribution of the energy arrivals in which a nonzero probability is associated with
the event that to no energy is harvested, whereas the probability of harvesting a
positive number of quanta follows a triangular distribution [58]. The results show
that the three distributions, all with mean b̄ = 10 and statistical power E[B2

k] = 137,
practically achieve the same performance, whereas the performance changes if a
different value of the variance is selected. This indicates that the overall reward
mostly depends on the second order statistics of the arrival process. Finally, when
the battery capacity of the two EHDs is sufficiently large, the impact of energy
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Figure 2.15: Long-term reward as a function of α1 = α2, for emax,1 = emax,2 = 20 and
b̄1 = b̄2 = 20.
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Figure 2.16: Long-term reward as a function of emax,1 = emax,2 = emax, for a fixed value
of α1 = 0.1 and different values of α2 (b̄1 = b̄2 = 10).

outage and overflow, which are related to the erratic energy source, diminishes and
the performance is mainly affected by the energy harvesting rate b̄. Due to this
phenomenon, all the curves asymptotically reach the same normalized value.

Figure 2.15 shows the behavior of the throughput for a fixed value of the battery
capacities emax,1 = emax,2 = 20 and of the mean harvesting rates b̄1 = b̄2 = 20,
as a function of the SNR factors α1 = α2. Both the perfect and imperfect SOC
knowledge policies increase with α, until saturation occurs. However, differently
from Figure 2.3 or Figure 2.10, where saturation takes place in conjunction with the
maximum achievable rate (i.e., the normalized reward is one), here, even for very
high values of α, the performance may be sub-optimal. This is due to the limited
amount of energy that can be stored in the batteries of both the EHDs: a higher
value of emax is needed to properly exploit the favorable conditions of the shared
wireless channel. Hence, Figure 2.15 proves that the bottleneck of the system with
respect to the long-term reward is given by the battery capacities emax,i, rather than
by the channel gains.

Figure 2.16 shows the long-term reward as a function of emax,1 = emax,2 = emax,
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Figure 2.17: Long-term reward as a function of emax,1 = emax,2 = emax, for different
values of b̄1 = b̄2 = b̄ and different packet arrival probabilities (α = 0.1).

with b̄1 = b̄2 = b̄ = 10 and α1 = 0.1, for varying values of α2. This framework
represents a possible scenario in which the two devices suffer from different channel
capacities, for instance due to an obstacle placed between the RX and one of the two
devices. The reward accrued when emax = 10 passing from 2α1 to 5α1 is 35% higher
than that obtained for the same upgrade when emax = 50. Actually, the advantage
taken from higher values of α2 decreases with increasing battery capacities of the
two devices, therefore it is important to have a favorable wireless channel when
the system is not provided with large batteries. In addition, it can be seen that
throughputs achieved when α2 = 5α1 for emax = 5 and when α2 = α1 for emax = 40
are the same, showing that nodes equipped with larger batteries are able to overcome
worse channel conditions.

Figure 2.17 shows policies PP-2 and P4 for two different values of the mean
energy harvesting rate b̄1 = b̄2 = b̄, and two possible values of the packet arrival
probability ppck,1 = ppck,2 = ppck. Policies obtained when ppck = 0.7 converge more
slowly than those with ppck = 1. Moreover, when b̄ = 18, the gap between PP-2 (P4)
for ppck = 1 and PP-2 (P4) for ppck = 0.7 is increased with respect to that incurred
for the corresponding policies when b̄ = 2. This is because the lower the probability
of packet arrivals, the higher the probability of no packet transmission, and thus the
lower the performance when more energy arrives

(
b̄ = 18

)
and is wasted. Finally, it

can be noted that the smaller packet arrival probability mainly affects the policies
with imperfect knowledge of the SOC: this is clearer for b̄ = 18, where, for emax = 40,
P4 with ppck = 0.7 is only 70% of that with ppck = 1, whereas PP-2 with ppck = 0.7
is 87% of that with ppck = 1.

Finally, we investigated the possibility of approximating the performance of a
two-EHD system with that of an equivalent single-user system. Figure 2.18 shows
the throughput as a function of the battery capacity of the entire system, for the
perfect and imperfect policies PP-2 and P4, and for b̄ = 5, α = 0.1. The performance
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Figure 2.18: Throughput for P4, P2, PP-2 and PP-1 as a function of the total battery
capacity of the system and different values of b̄.

achieved by the analogous single-user scenario, studied in [41] and added here for
comparison, consists of a similar framework, with either perfect (PP-1) or imperfect
SOC knowledge (P2, i.e., I(0) = {0, . . . , ẽ1 − 1} and I(1) = {ẽ1, . . . , emax}, with
ẽ1 = � emax

2 ). Clearly, if in the two-user framework the maximum battery capacity of
each EHD is emax, the capacity of the comparable single-user system must be 2emax,
and similarly for the harvesting rate. It can be seen that the performance for the
single-user case with imperfect SOC (P2) is better than that for the corresponding
two-user case (P4) up to emax ≈ 50 ÷ 60, whereas the two cases have essentially
the same performance for higher values of emax. A similar comparison holds for
the perfect SOC case (PP-1 and PP-2), although the performance gap is much
smaller and very similar throughput values are obtained already for emax ≈ 20 ÷ 25.
These results suggest that, for sufficiently large values of the total battery capacity,
the results for the two-user scenario (which would require heavy computations)
can be approximated by using those for the single-user case instead. Therefore,
the optimization for the two-user case needs to be explicitly carried out only for
relatively small values of emax, where the computation is not too demanding.

2.4.4 Correlated energy arrivals

The i.i.d. energy arrival model considered so far, while being representative of some
relevant physical phenomena (e.g., vibration), may not capture the behavior of other
important harvesting sources (e.g., solar). For this reason, in this subsection we
present numerical results for the case of correlated energy arrivals at the two sensors.
We assume a pair of energy arrival processes (B1,k, B2,k), both with mean b̄ = 10,
and a scenario process Sk with three hidden states (S = {R, G, B}), representing
a “Random,” “Good” and “Bad” state of the arrival process, respectively. The
transmission probabilities between the energy arrival states are defined by the |S| ×
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|S| transition matrix PS , with entries [PS ]s0,s1
= P(Sk = s1|Sk−1 = s0) � pS(s1|s0),

given by

PS =

⎡⎢⎢⎢⎣
pS(R|R) 1−pS(R|R)

2
1−pS(R|R)

2
1 − pS(G|G) pS(G|G) 0
1 − pS(B|B) 0 pS(B|B)

⎤⎥⎥⎥⎦ . (2.13)

In all states “R,” “G” and “B,” both arrival processes follow a geometric distribution,
with mean b̄, truncated at bmax = 4b̄. For solar energy harvesting, the “G” state
corresponds to optimal sun exposure with b̄ = 18, whereas the “B” state corresponds
to almost complete darkness, in which b̄ = 2. Finally, state “R” models a transient
situation between the other two states, where the arrival processes exhibit a random
behavior, thus in this situation b̄ = 10. The steady-state distribution of the scenario
states is:

πS(G) = 1 − pS(R|R)
2(1 − pS(G|G))πS(R)

πS(B) = 1 − pS(R|R)
2(1 − pS(B|B))πS(R)

πS(R) =
(

1 + 1 − pS(R|R)
2(1 − pS(B|B)) + 1 − pS(R|R)

2(1 − pS(G|G))

)−1

Note that the i.i.d. energy arrival scenario, discussed in the previous sections, is
obtained if pS(R|R) = 1, ∀pS(G|G), pS(B|B) ∈ [0, 1). In this case, the random
state “R” absorbs the Markov chain modeling the scenario process Sk, and the
energy arrival processes B1,k and B2,k become i.i.d. with probability mass function
pBi

(b), with b ∈ Bi. In the following, we assume that, in every time slot k, the CC
knows the exact value of the scenario process in slot k − 1, Sk−1. Moreover, we
employ the same reward function defined in (2.12). Due to the large dimensionality
of the state space, the algorithms needed to compute the optimal policies have
high complexity. As a consequence, we reduce this optimization complexity by
decoupling the different time scales relevant to the dynamics of the system: the
short-term average performance is first optimized with respect to the realization of
each scenario state variables, varying over short time scales, by imposing only a
mean energy consumption constraint. Secondly, the optimization involves policies
establishing the average energy consumption as a function of the state variables
evolving over longer time scales, i.e., the complete scenario process. As an example
of the results obtained in this case, Figure 2.19 shows the long-term reward as a
function of emax,1 = emax,2 = emax, for different realizations of the scenario process
Sk, under perfect (PP-2) and imperfect (P4) knowledge of the SOC. In particular,
we analyze three different instances:
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Figure 2.19: Long-term reward, as a function of emax, for different instances of the
scenario process Sk (α = 0.1).

• the “Equi” curves, in which pS(R|R) = pS(G|G) = pS(B|B) = 0.5, repre-
senting an equiprobable alternation between all the states “R,” “G” and “B”
of the scenario, resulting in the following steady-state distribution: πS(R) =
0.5, πS(G) = πS(B) = 0.25.

• the “Good” curves, for which pS(R|R) = 0.5, pS(G|G) = 0.95 and pS(B|B) =
0.05, modeling the case of the sensors being persistently exposed to direct
sunlight: πS(R) � 0.16, πS(G) � 0.8, πS(B) � 0.04.

• the “Bad” curves, defined similarly to the previous case, but with state “B”
prevailing; pS(R|R) = 0.5, pS(G|G) = 0.05 and pS(B|B) = 0.95 (πS(R) �
0.16, πS(G) � 0.04, πS(B) � 0.8).

It can be seen that the bad scenario presents faster convergence, and, in general,
the more favorable the harvesting rate, the slower the convergence rate, as already
noted in Figure 2.11. Secondly, the reward achieved in the equiprobable case is
higher than the mean of the reward for the good and bad curves. Note that, if
pS(R|R) = 1 and pS(G|G), pS(B|B) ∈ [0, 1), we would find the i.i.d scenario for the
energy arrivals, whose rewards are depicted in Figure 2.10 (case α = 0.1).

2.5 Extensions

In this section, we discuss some possible extensions to the model adopted so far,
where some assumptions are relaxed.

2.5.1 Secondary costs and non-idealities

We now present how model (2.1) could be extended to take into account other
secondary costs like processing, sensing and activation or non-idealities, such as
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battery degradation. The temporal evolution of the energy stored in battery i

becomes

Ei,k+1 = min{[Ei,k − Qi,k − Li,k]+ + Bi,k, emax,i},

with Li,k representing the overall energy cost in slot k (neglecting the cost for ac-
tion Qi,k), accounting for battery leakage, processing, sensing and activation of the
circuitry after the node switches off (if Qi,k−1 = 0). We define the activity state
Ai,k = χ(Qi,k−1 > 0), tracking the activity of sensor node i, which is 0 if the
node was idle in the previous time slot k − 1 (Qi,k−1 = 0) or 1 if the node was active
(Qi,k−1 > 0). Li,k can be modeled as a random variable with probability distribution
pLi

(Li,k|Qi,k, Ai,k), taking values in the set Li = {0, 1, . . . , Lmax,i}. The dependence
of pLi

on Qi,k could model different energy costs related to different actions, i.e.,
higher battery leakages when the node transmits at full power: P(Li,k ≥ l|Qi,k �
qmax,i, Ai,k = ai,k) ≥ P(Li,k ≥ l|Qi,k � 0, Ai,k = ai,k), ∀l and a fixed value of ai,k. In-
stead, the dependence on Ai,k may be exploited to model activation costs of the sen-
sor circuitry, such as the case of a higher energy cost incurred switching from idle to
active mode (Ai,k = 0, Qi,k > 0) with respect to staying active (Ai,k = 1, Qi,k > 0),
i.e., P(Li,k ≥ l|Qi,k, Ai,k = 0) ≥ P(Li,k ≥ l|Qi,k, Ai,k = 1), ∀l, ∀Qi,k > 0.

With this extended model, policy μ discussed in Section 2.3 must take Ai,k ∈
{0, 1} into account, and the reward function g (Qk, Ek, Lk) will be zero if Qi,k >

[Ei,k − Li,k]+ for i = 1 or i = 2.

2.5.2 Memory effects in the transmission channels

Memory effects of the communication channels, e.g., time correlation in the channel
gains, can be considered by assuming a Markov behavior. This modeling choice
could be treated similarly to the scenario process Sk described in Section 2.2.2, i.e.,
using an underlying process Zk, with values in Z, governed by an irreducible Markov
chain with transition probability pZ(zk+1|zk). Thus, for a given realization of this
process Zk = z, each channel state variable Ci,k in the pair (C1,k, C2,k) is drawn
with probability mass function pCi

(c|z) = P(Ci,k = c|Zk = z), ∀c > 0, z ∈ Z. The
reward function becomes g̃ = ln(1 + c1q1) + ln(1 + c2q2), where ciqi represents now
the SNR at node i. Finally, also the expressions of the long-term average reward
G(μ, S−1, Z0, E0) and of the optimal policy μ∗ = arg max

μ
G (μ, S−1, Z0, E0) can be

updated accordingly.
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2.5.3 General number U of EHDs

Assuming the centralized system model presented beforehand, the extension from
the two-user case to the general multi-user scenario is conceptually straightforward,
although the notation becomes more involved and the complexity grows exponen-
tially with U (the cardinality of the state space can be calculated as ∏U

i=1(emax,i +1)
and, for the case in which the battery of each EHD has capacity emax, it becomes
(emax + 1)U). The number of energy quanta to be drawn from node i’s buffer
and devoted to transmission Qi,k is now valid for i = 1, . . . , U , and is still cho-
sen from the action space Qi = {0} ∪ {qmin,i, qmin,i + 1, . . . qmax,i}, ∀ EHD i (as
before, Q1,k, . . . , QU,k cannot be simultaneously positive). All the other variables
and equations in Section 2.2 can be updated according to the generic number U

of users. The optimization problem involves a reward function that is nonzero if
Qi,k ≤ Ei,k ∀i = 1, . . . , U and, as in the case U = 2, can be separately discussed
for the case of either perfect or imperfect SOC knowledge, updating (2.5), (2.7) or
(2.8), respectively. Finally, for the particular choice of the reward function (2.12)
discussed in Section 2.4.2, we have

g̃ (q) =
U∑

i=1
ln(1 + αiqi). (2.14)

2.6 Chapter conclusions

In this chapter, we considered a wireless sensor network composed by two Energy
Harvesting Devices and a central controller. We investigated optimal transmission
policies using as the performance metric the average long-term throughput of the
system, and performing an optimization which took into account the maximum
capacity of the two batteries, the mean energy harvesting rates and the SNR factors
related to the transmission channels. When studying an asymmetric scenario, we
showed that a good implementation strategy is to couple two devices whose battery
capacities are such that one is half of the other: in this case the degradation incurred
with respect to a scenario with both large battery capacities is smaller than 10%. In
addition, motivated by the characteristics of practical implementations, we analyzed
optimal policies for the case in which the State-of-Charge of the sensors cannot be
perfectly known. The performance results for this case were fully analyzed, discussed
and compared against the perfect SOC knowledge case, for a large variety of system
parameters. We showed that the degradation of the performance caused by this
phenomenon is mitigated when the capacity of the devices is large, as in this case the
negative effects of energy outage and overflow are diminished: for sufficiently high
battery capacities of the two EHDs, the performance degradation with respect to
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the scenario with perfect SOC knowledge is smaller than 5%. Several extensions can
be taken into account to generalize the adopted model. For instance, an important
practical issue related to batteries is the degradation produced by frequent or strong
discharges over time, which can gradually reduce the maximum storage capacities.
Secondly, it would be possible to design a policy considering the history of both
the harvesting and the transmission processes, which would allow a better battery
control in the long run. Finally, an important extension could be the analysis of
asymmetric decentralized access schemes for multi-user wireless sensor networks, in
which each EHD benefiting from a particular energy arrival distribution is able to
adapt its transmission policy accordingly.

Appendix to Chapter 2

For the reward function (2.12), an upper bound to the performance achieved when
the SOC is perfectly known can be calculated solving the optimization problem

max
q1,q2

E [ln(1 + α1q1) + ln(1 + α2q2)]

subject to E[q1] ≤ b̄1, E[q2] ≤ b̄2, q1q2 = 0

as (2.1) imposes the constraints

lim
K→+∞

sup 1
K

E

[
K−1∑
k=0

Qi,k

]
≤ b̄i, i = 1, 2

i.e., the mean steady-state energy used for transmission cannot exceed the mean en-
ergy harvesting rate, and q1 and q2 cannot be simultaneously positive. Consequently,
we have that, for our particular scenario,

ln(1 + α1q1) + ln(1 + α2q2) = ln(1 + α1q1 + α2q2)

and exploiting the concavity of this function,

E [ln(1 + α1q1)+ln(1 + α2q2)] ≤ ln(1 + α1E[q1]+α2E[q2])

which is upper-bounded by

g̃ub = ln
(

1 +
2∑

i=1
αib̄i

)
. (2.15)
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CHAPTER 3

A MACHINE LEARNING BASED ETA ESTIMATOR
FOR WIFI TRANSMISSIONS

Recent advancements related to Device to Device (D2D) communication make it
possible for a transmitting node to dynamically select the interface to be used for
data transfers locally, without traversing any network infrastructure. In this sce-
nario, a controller has to be identified, whose goal is to manage the D2D connection
after its establishment. The paradigm of Software Defined Networking (SDN) makes
it possible to select this controller node via software: a device becomes the master
node of a WiFi-Direct network, whereas the remaining units, i.e., the clients, have
the possibility to exchange data with other devices through the master. This chap-
ter develops a machine learning based prediction algorithm for the aforementioned
scenario, in which multiple elements, while receiving data from the controller, re-
quire an accurate on-the-fly estimation of the remaining transmission time, i.e., the
Expected Time of Arrival (ETA). Different machine learning approaches are consid-
ered for this task, with the goal of exploiting only the information available at each
client, without modifying any standard communication protocol. This information is
critical when, for instance, a mobile user needs to decide whether or not to delay a
data transfer, based on the load of the network and on the residual time under radio
coverage from an access point.

3.1 Introduction to the chapter

Nowadays, more than two billions of smartphones are active in the global market
[59]. One of the most important features of a smartphone is to provide an Internet
connection, giving each user the ability to access/share their data, e.g., e-mails,
photos, videos, etc.

43
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Two main factors usually affect a smartphone’s ability to stay connected and ex-
change data: the battery life and the amount of data provided by the cellular carrier
subscription. These can be addressed by exploiting heterogeneous wireless interface
cards (WNICs) such as WiFi and Bluetooth, in order to simultaneously minimize
the battery consumption and reduce the amount of data transferred through the
cellular network [60]. However, this ability to automatically exploit heterogeneous
WNICs is not yet supported by any smartphone service; indeed, if a user wants
to connect her/his device to a WiFi connection, she/he has to manually set it up,
provided that she/he either knows the SSID and the WiFi encryption parameters,
or decides that an open WiFi connection is worth trusting.

In the last few years, researchers in the Software Defined Networking (SDN) area
have been focusing on creating a software protocol suite that does not need to be
linked with the underlying hardware. This entails the possibility to, e.g., prototype
new protocols [61] and create network virtualization and traffic isolation (the reader
can find a complete overview in [62]). The SDN paradigm goes in this direction
by decoupling the network traffic into two planes: the control plane and the data
plane. The control plane aims at monitoring routers, switches and Access Points
(APs) to handle the network behavior and report any kind of useful information to
a centralized unit, called controller. The controller can establish one or more data
traffic flows among the network hosts by using the information gathered from the
network status. These can be configured through some predefined Quality of Service
network policies, such as offloading, number of hops between two users or energy
consumption for the User Equipment (UE). Therefore, a controller can exchange
information and manipulate the switch/router behavior by employing an ad hoc
protocol like OpenSwitch [63]. On the other hand, the data plane handles all the
data traffic generated by the host, which is completely separated from the control
plane.

A further possibility is to integrate the device to device (D2D) communica-
tion into the SDN concept. D2D communication arises when two mobile nodes
are able to communicate directly without traversing any infrastructure, i.e., a base
station (more details regarding the D2D concept can be found in [64]). D2D can
generally exploit cellular spectrum (i.e., inband) or unlicensed spectrum (i.e., out-
band). In a D2D architecture the device network interfaces are expected to be
overseen/controlled by a central entity e.g., the SDN controller. Outband allows
to eliminate the interference issues between D2D and cellular links, at the cost of
an extra interface, as it usually adopts other wireless technologies, such as WiFi,
Bluetooth or IEEE 802.15.4. Therefore, the SDN paradigm applied to D2D makes
it possible to dynamically switch between different interfaces during transmission,
based on predefined policies, e.g., data offloading, traffic balance and battery energy
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consumption. Hence, it is possible to design and implement a heterogeneous net-
work environment where the device can exploit both network interfaces through the
D2D concept in an unlicensed band. The idea to couple SDN and D2D has already
been studied in [65–67], as well as the exploitation of the WiFi-Direct paradigm to
set up a D2D network [68,69] with several devices.

A natural way to apply the SDN concept is to exploit the Cognitive Networking
(CN) [70–72] paradigm. CN deals with how wireless systems learn the relationships
between the network status and behavior on one side, and its performance on the
other, and plan and make decisions to achieve local, end-to-end, and network-wide
goals. Differently from cognitive radio (CR) networking, CN tries to jointly opti-
mize the different layers of the protocol stack. Novel MAC, routing, transport and
application layer techniques for wireless networks have been proposed and analyzed
by the networking community before, and can be adopted in a cognitive network.
Mainly, the CN paradigm consists of two elements: the former is the ability to re-
trieve the network parameters from all layers of the protocol stack (sense phase),
the latter is to exploit the knowledge retrieved from the sense phase to achieve two
major goals, i.e., increasing the network performance and predicting some network
status (Cognitive Engine (CE)).

Finally, exploiting CN, it is possible to infer new network-related data by means
of Machine Learning (ML) techniques. In [73], the authors survey a number of
learning strategies able to classify IP packets and identify the applications that
generate network traffic. A generic architectural model is formalized in [74], which
focuses on the learning engine of CNs and adopts this model to describe two common
problems in cognitive radio, namely capacity maximization and dynamic spectrum
access. [75] presents an overview of potential ML implementation approaches, both
related to learning and managing knowledge in CR applications. For instance, [75]
suggests the usage of Bayesian techniques in order to dynamically retrieve user
preferences regarding the perceived QoS level of an application, and estimate the
future network behavior in terms of QoS capabilities.

In this work, we exploit CARMEN [76] to generate an SDN scenario, where a
D2D network is configured with WiFi Direct. The SDN controller, installed into
the centralized radio access network (C-RAN), exploits an LTE connection firstly to
create a D2D network and secondly to select its master node. The aim is to predict
client-side information related to the nodes generating data traffic in the same D2D
network. This procedure should: i) not interact with any SDN controller; ii) be
completely transparent for the user; and iii) avoid to alter any network or SDN
protocol (e.g., OpenSwitch/OpenFlow). This architecture could describe a scenario
in which a large number of users is connected to an AP. Each of them is assumed
to have high mobility, a short period of time available for data download, and a
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transmission size greater than 50 MB. The data size could be realistically represented
either by the usual average amount of data downloaded from an app running on a
smartphone, or by the transfer of a digital map used in an offline navigation system,
or even by a music video to be watched/listened to during commute. In any case,
the user needs to know with high precision the correct amount of time required
to perform the download; otherwise, he/she will not be able to take advantage
of the services provided by the apps. In order to do that, all user nodes collect
several network parameters in order to accurately predict the Estimated Time of
Arrivals (ETAs) related to multiple transmissions from the AP to the clients. In
this chapter, we will first show that using the number of simultaneously receiving
nodes as an input datum, i.e., assuming that this information is available at each
device, and other network parameters already at the client side, a machine learning
based algorithm is able to predict the total ETA with low error. However, this
assumption is unrealistic in practice, as the number of receiving nodes is only known
to the transmitter (the AP) which, in general, does not share this value unless a
modification of the transmission protocol is introduced. Therefore, in the second
part of this chapter, we will show how the number of active UEs can be accurately
estimated by the receiving nodes via additional ML techniques, by taking as input
only those network parameters available at the client side, in order to respect the
requirement of not modifying any protocol. Finally, we will show how to combine
the previous results to design an on-the-fly ETA prediction algorithm, which is able
to accurately predict the ETA during the transmission. This algorithm will only
exploit those network parameters available at each user’s side, and its performance
will be compared with the ETA predictions given by the unix program scp.

The rest of this chapter is organized as follows. In Section 3.2 we describe the
testbed and the dataset employed in our experiments. In Section 3.3 and Section 3.4
we offer an overview regarding the ML techniques considered to predict the ETA and
estimate the number of active nodes. Section 3.5 describes how those techniques can
be combined in order to obtain an on-the-fly estimate of the ETA while transmissions
take place. Finally, Section 3.6 validates our work, showing the prediction results
and comparing them to the performance achieved by an analogous tool, commonly
available in Unix-based operating systems. Section 3.7 concludes the chapter and
proposes some future work.

3.2 Testbed overview

We conducted a thorough experimental data gathering to measure different network
realizations and their related outputs. The data was collected using CARMEN [76],
in a deployment composed of 50 Alix miniPCs model 3d2 with WiFi driver ath9k
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and five Nexus 7 devices with WiFi driver ath9k_htc. In order to minimize the
setup time of a specific WiFi network and quickly collect its performance, this
testbed was associated with a software able to automatically gather and change
the network configurations. This software can collect almost all TCP/IP stack
parameters, starting from the MAC sublayer up to the Application layer, and to
remotely set the WiFi transmission channel and power, as well as the distance among
the Alix nodes and the transmitter (more details can be found in [76]). In addition,
we exploited the GNU program cron to schedule all experiments at different parts
of the day (PoD), in order to automate the entire data collection phase. Being the
data transmissions dependent on the channel status, several WiFi network setups
were considered, by changing all possible parameters in order to modify the scenario
and consequently the ETA measurements. Since the testbed is located inside our
department, other WiFi nodes can transmit data in the same WiFi transmission
channel, generating interference during the experiments. Our idea to mitigate this
issue was to measure transmission data multiple times over different WiFi frequencies
(channels) and parts of the day (i.e., morning, afternoon and night). For each
time, we create a dataset varying the following network and topology parameters:
transmit power {0 dB, 5 dB, 10 dB, 20 dB}, WiFi transmission channel {1, 6,
11}, number of nodes simultaneously receiving data from the transmitter (from 1
to 4) and distance between the transmitter and the receivers {1 m, 5 m, 10 m}.
Finally, for each configuration, we measure the transmission duration of a 100 MB
file1. The experimental campaign lasted more than 45 days, for a total of 540
different configurations: each of them has been tested 10 times, collecting 5400 sets
of measurements in total. The network is deployed as a star single-hop topology,
with a transmitting central node, called Access Point (AP), and one or more nodes
waiting for data reception.

3.2.1 Dataset features

The features describing each example experiment have been expressed differently,
depending on the type of information carried. WiFi channel and daytime are cat-
egorical data: the values taken by these variables belong to a number of classes,
whose ordering is not relevant for our purposes. Therefore, we represent both these
elements using binary vectors (1-of-m encoding) e.g., morning is mapped as (1, 0, 0),
afternoon is (0, 1, 0) and night is (0, 0, 1) (the same coding holds for the transmission
channel). The number of nodes simultaneously receiving data from the AP has also
been expressed with binary vectors. However, to preserve dimensionality relations
between the values taken by this variable, we have encoded it as a 4-dimensional

1The average size of a music video in full HD (1080p) resolution.



48 3. A Machine Learning based ETA estimator for WiFi transmissions

binary vector with as many 1s as the number of receiving nodes. In particular, one
node is represented as (1, 0, 0, 0), two nodes correspond to (1, 1, 0, 0), etc. Finally,
the transmission power and the distance from the AP to the receivers have been
encoded as numerical variables. Consequently, each example in our input matrix X
is expressed as a 12-dimensional vector, i.e., the number of features is n = 12. Note
that this particular data representation scheme, though clearly suboptimal from a
compression point of view, has been designed in order to achieve better learning
performance. Some ML techniques, including SVR/SVC machines and RBMs, have
been observed to benefit from a pre-standardization of the input data provided to
the learning algorithms. This is because, if the feature scales were highly differ-
ent, those features with higher magnitude could overwhelm the others, leading to a
weight adaptation sensitive only to a limited subset of features.

3.2.2 General data structure

ML algorithms are able to describe structural patterns in data by building math-
ematical models starting from a provided dataset. In this work, we will make use
of supervised learning techniques, in which the dataset consists of a data matrix of
inputs X ∈ R

M×n and a data matrix of outputs Y ∈ R
M×l. The i-th rows of X

and Y define a pair (x(i), y(i)), for i = 1, . . . , M , where x(i) ∈ R
n and y(i) ∈ R

l are
the input feature vector (characterized by n features assuming different values) and
the output label vector associated to it, respectively. Supervised learning consists
in identifying the model which best predicts the target values corresponding to a
given subset of the examples in X. ML algorithms commonly divide the dataset
into two separate sets, namely a training set

(
Xtr ∈ R

m×n, Ytr ∈ R
m×l
)

and a test
set

(
Xtest ∈ R

(M−m)×n, Ytest ∈ R
(M−m)×l

)
: the examples belonging to the former

are exploited to train the learning algorithm, whereas the latter ones are used to
evaluate its performance. This strategy has the goal of preventing overfitting, which
occurs when the model starts to “memorize” training data rather than “learning”
to generalize from trends. In this work, 80% of the data was assigned to the former,
leaving the remaining 20% for performance testing.

The next two sections describe the ML techniques that were considered toward
the full on-the-fly ETA prediction. In Section 3.3, we first show regression tech-
niques, able to predict only a continuous initial ETA estimate for a transmission,
assuming full knowledge about a given set of network parameters. Later, in Sec-
tion 3.4, we present how one of these parameters (practically not available at the
receiving nodes) can be detected from the others via suitable classification algo-
rithms. Finally, Section 3.5 will explain how to combine the previous techniques in
order to predict the ETA values during a transmission, exploiting only those network
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parameters available at the receiving nodes.

3.3 Predicting the total ETA

In the first part of this work, we exploit all the n = 12 above-mentioned dataset
features to predict the initial ETA of a number of wireless transmissions. To reduce
the variability effects of the transmission channels, we computed the median over all
the 10 experiments for each configuration, and use the resulting M = 540 examples
as dataset. Hence, since here l = 1 (we only predict the initial ETA for the entire
transmission), Xtr ∈ R

432×12, Ytr = ytr ∈ R
432, Xtest ∈ R

108×12, Ytest = ytest ∈ R
108.

In the following, we describe the ML techniques that have been used to predict the
initial ETA values. Their performance comparison can be found in Section 3.6.1.

3.3.1 Multivariable linear regression

Linear regression is a technique that tries to model the data using linear predictor
functions of the form

hw(x(i)) = w0 + w1x
(i)
1 + · · · + wnx(i)

n , (3.1)

with i = 1, . . . , m being the examples in the training set Xtr. Here, the j-th feature
of the i-th input example is denoted as x

(i)
j , for j = 1, . . . , n. To simplify the

notation, (3.1) can be rewritten including the bias term w0 by letting x
(i)
0 = 1 ∀i

(this is the intercept term):

hw(x(i)) =
n∑

j=0
wjx

(i)
j = wT x(i), (3.2)

from which it is clear that the predicted values are linear functions of the weight
parameters w. The objective is to minimize the cost function

J(w) = 1
2m

[
m∑

i=1

(
hw(x(i)) − y(i)

)2
+ λ||w||2

]
(3.3)

with respect to the weight vector w. Note that (3.3) consists of two terms, the first
accounting for the prediction error and the latter taking into account overfitting (λ
is the regularization parameter). This optimization problem can be solved using the
common technique of normal equations [77]: defining X to be the m × n matrix
(m × (n + 1) including the intercept term) containing in its rows all the training
examples, and y the m × 1 vector consisting of the target values from the training
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set, it can be shown that the optimal weight vector is:

w =
⎛⎝XT X + λ

⎡⎣0 0
0 In

⎤⎦⎞⎠−1

XT y, (3.4)

where In is the n × n identity matrix.
Despite the advantage of solving the optimization problem with the closed-form

expression (3.4), the previous technique can suffer from limitations in the gener-
alization of the model, due to its linearity in the input variables x

(i)
1 , . . . , x(i)

n . A
possible extension is to “expand” the n-dimensional input features’ space into an
l-dimensional space with l > n, in order to take into account possible non-linear
dependencies between output and input variables. Thus, we build a new input data
matrix X′ ∈ R

M×l in which the first n columns are the same as in the original input
matrix X, whereas the other l − n columns contain polynomial combinations of the
original n input variables, up to a given maximum degree d. The fundamental idea
behind this approach is that the expanded input matrix X′ can be used with the
aforementioned regression technique described earlier in this section. Therefore, it
would be possible to perform a multivariable regression which is polynomial in the
input variables and, as before, linear in the weights, so that (3.4) can still be used by
substituting X′ for X. In the rest of the chapter, this extension of Linear regression
will be denoted as “Extended Linear regression”.

3.3.2 Support Vector Regression

In Support Vector Regression (SVR) machines [78, 79], the objective is to find a
function fw that has maximum absolute prediction error lower than a given constant
ε for all the training data. This can be accomplished by defining the ε-insensitive
error function

Eε(z) =

⎧⎪⎨⎪⎩
|z| − ε if |z| > ε

0 otherwise
(3.5)

and minimizing the cost function given by

C
m∑

i=1
Eε(fw(x(i)) − y(i)) + 1

2 ||w||2, (3.6)

where the second term, as in (3.3), accounts for regularization (by convention, differ-
ently from (3.3), the regularization parameter C is inverted and appears in front of
the error function). The optimization problem in (3.6) assumes that all the training
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Figure 3.1: Graphical representation of an ε-tube with slack variables.

examples can be contained in an “ε-tube” (see Figure 3.1). However, this is not
verified in general, and (3.6) can be modified so as to allow for some tolerance in
the prediction errors. Therefore, for each training example x(i), it is possible to in-
troduce non-negative slack variables ξi and ξ∗

i , i = 1, . . . , m, where ξi > 0 is related
to a point for which (y(i) − fw(x(i))) > ε, and ξ∗

i > 0 is related to a point for which
(fw(x(i)) − y(i)) < −ε.

Training examples are thus allowed to lie outside the ε-tube, as in Figure 3.1,
provided that the corresponding slack variables are positive: this conditions can be
formulated as

y(i) − fw(x(i)) ≤ +ε + ξi (3.7)
y(i) − fw(x(i)) ≥ −ε − ξ∗

i . (3.8)

The optimization problem becomes

min C
m∑

i=1
(ξi + ξ∗

i ) + 1
2 ||w||2, (3.9)

subject to the constraints ξi, ξ∗
i ≥ 0, (3.7) and (3.8). It turns out that only the

examples outside the ε-tube contribute to the cost, with deviations being linearly
penalized. If, for the moment, we consider the case of fw(x(i)) =< w, x(i) > +b

(where < ·, · > denotes the inner product), i.e., fw is simply a linear function of
the inputs (b is a bias parameter), passing to its dual formulation and exploiting
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Karush-Kuhn-Tucker conditions [80], (3.9) can be formulated as

max
αi,α∗

i

− 1
2

m∑
i,j=1

(αi − α∗
i )(αj − α∗

j ) < x(i), x(j) >

− ε
m∑

i=1
(αi + α∗

i ) +
m∑

i=1
y(i)(αi − α∗

i )

s. t.
m∑

i=1
(αi + α∗

i ) = 0 and αi, α∗
i ∈ [0, C]

(3.10)

In (3.10), we maximize over αi and α∗
i , which are the Lagrangian multipliers: it can

be shown that

w =
m∑

i=1
(αi − α∗

i )x(i), (3.11)

and the prediction function becomes

fw(x) =
m∑

i=1
(αi − α∗

i ) < x(i), x > +b. (3.12)

Note that, in (3.11), the weight vector w is a function of only the training examples
x(i). Therefore, the complexity of the prediction function, differently from the meth-
ods described in Section 3.3.1, depends on the number of training examples m, and
is independent of the number of input features n. Actually, it turns out that not all
the m training vectors need to be considered in (3.11) and (3.12), as αi −α∗

i �= 0 only
for a subset of elements, whose predicted values lie on or outside the ε-tube. As a
result, the actual complexity of the predictive process is a function of the cardinality
of this subset, whose elements are called Support Vectors (SVs). The formulation
of (3.12) in terms of the SVs is known as the sparse support vector expansion. The
reader could refer to [81, 82] for more details about learning in SVR machines and
for the derivation of important additional parameters of the algorithm, such as the
bias parameter b.

In (3.10), we assumed that the prediction function fw was linear in each training
example x(i). Actually, this constraint can be relaxed so as to allow better general-
ization over non linear target functions. This can be done by noting that in (3.12)
SVs only appear inside scalar products [83], and w need not be calculated explicitly.
Therefore, it can be proved that < x(i), x > in (3.12) can be replaced by particular
non linear functions k(x(i), x), known as kernels, which correspond to scalar prod-
ucts between non linear transformations of their inputs. Substituting k(x(i), x(j)) in
(3.10) and k(x(i), x) in (3.12), we thus obtain the optimal prediction function in a
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Figure 3.2: Graphical representation of an RBM.

non-linear feature space, rather than in input space:

fw(x) =
m∑

i=1
(αi − α∗

i )k(x(i), x) + b. (3.13)

3.3.3 Restricted Boltzmann Machines

Restricted Boltzmann Machines (RBMs) [84] belong to the family of generative
models known as Boltzmann machines, that are probabilistic graphical models in
which a number of visible and hidden units are connected by means of symmetric
weights (i.e., weights are equal in both directions). Input data are given to the
network through a layer of visible units, which are connected to another layer of
so-called hidden units, whose task is to model the latent features inside the data,
see Figure 3.2. In RBMs each configuration of the variables of interest is associated
to an energy function E, and the goal of the learning algorithm is to shape this
function according to a specific objective. Probabilistic models define a probability
distribution through the energy function

p(v, h) = e−E(v,h)

Z
, (3.14)

where v and h are the column vectors containing the values of the visible and hidden
units, respectively, and Z, called partition function, is a normalizing factor2. The
common choice is that desirable configurations of v and h correspond to high values
of p(v, h), and therefore must have low energy. Differently from standard Boltzmann

2In the previous ML algorithms we denoted inputs as x: RBM inputs are instead labeled as v
for historical reasons.
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Machines, in which both visible and hidden nodes are fully connected, RBMs are
assumed to have no connections between nodes belonging to the same layer. Thus,
the hidden (visible) variables are independent given the state of the visible (hidden)
variables and the energy function can be formulated as

E(v, h) = −bT v − cT h − hT Wv. (3.15)

In (3.15), b and c, called unit biases, are parameter vectors associated to visible and
hidden units, respectively, whereas W is the weight matrix modeling connections
between nodes belonging to different layers.

As the input data provided to the learning algorithm consists of the set of train-
ing examples, the goal of the learning process is to maximize the probability of these
examples p(v) with respect to the weights and biases in (3.15). This can be accom-
plished by performing gradient descent over the likelihood function of the training
data, whose derivative with respect to each weight can be calculated as [84]:

∂ log p(v)
∂wij

= −∑
h

p(h|v)∂E(v, h)
∂wij

+
∑
v,h

p(v, h)∂E(v, h)
∂wij

. (3.16)

Note that the first term in (3.16) represents the empirical expectation over the train-
ing set, while the second term is the expectation under the actual model distribution.
Finally, once (3.16) is evaluated, each weight is updated, at each step of the learning
process, using gradient descent methods. For the second element in (3.16), it can
be shown that

∑
v,h

p(v, h)∂E(v, h)
∂wij

= −∑
v

p(v)
∑

h
p(h|v)hivj (3.17)

exploiting the fact that ∂E(v,h)
∂wij

= −hivj. This leads to the final expression for (3.16):

∂ log p(v)
∂wij

= p(hi = 1|v)vj −∑
v

p(v)p(hi = 1|v)vj, (3.18)

where, exploiting the linear relation between variables and weights in (3.15),

p(hi = 1|v) = σ

⎛⎝ci +
∑

j

wijvj

⎞⎠ (3.19)

and σ is the sigmoid logistic function: σ(z) = (1 + exp(−z))−1.
As summing over all values of the visible variables in (3.18) would have exponen-

tial complexity, a common approach is to approximate the expectation by samples
from the model distribution using Gibbs sampling. This technique requires running
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a Markov chain until it converges to stationarity, but still has large computational
costs due to the large number of sampling steps needed. As a result, the network
has been trained using the constrastive divergence algorithm [85], which is now the
standard way to train RBMs, consisting in the alteration of a positive and a neg-
ative phase. Initially, after visible units are clamped to the values of the training
data, nodes’ activations are propagated to hidden units, according to the weights
of the connections, using (3.19). The vector of hidden unit activations constitutes
an internal representation of the pattern observed in the visible units. In the sec-
ond phase, the activations are propagated backwards to the visible units with an
equation similar to (3.19), fixing the hidden units, with the goal of reconstructing
the original input vector as accurately as possible. The reader could refer to [86,87]
for more details about learning in RBMs and for the explanation of important addi-
tional parameters of the algorithm. At the end of this unsupervised learning phase,
the values taken by the units in the hidden layer provide an alternative and more
expressive representation of the input vector: the idea behind this approach is that
of learning a generative model (the RBM) able to capture an abstract representa-
tion of the input data and to better describe non linearities between raw input and
output variables. Finally, these representations are treated as inputs for a subse-
quent supervised learning algorithm such as the linear regression method analyzed
in Section 3.3.1. In other words, the hidden units of a properly trained RBM are
expected to learn more descriptive internal representations of the input data, which
should be more easily separable by a linear regression method. Therefore, although
the RBM alone is an unsupervised learning algorithm, the pair composed of RBM
and linear regressor practically defines a supervised learning technique.

3.4 Estimating the number of receiving nodes

In Section 3.3, we used the number of active nodes N as an input feature to predict
the ETA. However, this information is usually available at the transmitting device
only, which, in general, does not share this value unless a modification of the trans-
mitter protocol is introduced. Therefore, in this section, we investigate how to derive
the correct value of N at the receiving nodes, only exploiting those features actually
available at the receivers’ side: we use different subsets of the network parameters
as input features, with the goal of understanding how the knowledge of an addi-
tional feature affects the final classification performance. We tested four parameters
subsets: the first subset contains only the total ETA (n = 1), i.e., the total transmis-
sion duration, whereas the others include either the total ETA and the transmission
power (ETA, PT x) or the total ETA and the distance (ETA, d) (n = 2), or all
three features (ETA, PT x, d) combined (n = 3). Other parameter selections were
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also tested, including adding the information about the PoD and the transmission
channel, but the improvement over the results showed here was found to be negli-
gible. For this task, we exploit all the 5400 experiments collected from our testbed,
as described in Section 3.2, equally distributed among the 4 classes (N = 1, N = 2,
N = 3, N = 4). Since the goal is to correctly identify the value of N , here l = 1,
hence Xtr ∈ R

4320×n, Ytr = ytr ∈ R
4320 and Xtest ∈ R

1080×n, Ytest = ytest ∈ R
1080.

Analogously to Section 3.3, a comparison of the results derived from the different
techniques will be shown in Section 3.6.2.

3.4.1 Naive Bayes classifier

The Bayesian classifier is a probability model that computes the posterior probability
p(yk|x) of a class given an input example x, for each of the k possible classes. Using
Bayes’ rule, this probability is computed as

p(yk|x) ∝ p(x|yk)p(yk) , (3.20)

where the posterior probability is proportional to the likelihood p(x|yk) and the
prior p(yk). The object x is classified under the class that holds the highest posterior
probability:

y∗
MAP = arg max

k
p(x|yk)p(yk), (3.21)

known as Maximum A Posteriori (MAP) formulation. The likelihood expresses how
probable the input data x is for a given class yk, whereas the prior captures the
assumptions about the class, before observing the data, in the form of a probability
distribution p(yk). If no prior knowledge about the class distribution is available, a
uniform prior p(yk) = c is assumed and (3.21) turns into the Maximum Likelihood
(ML) solution y∗

ML = arg max
k

p(x|yk). The likelihood function can be modeled
using different probability distributions: in this work we used both a Gaussian and
a Poisson pdf, setting their parameters (mean and variance for the former, mean
for the latter) according to the examples in the training set. In particular, we ran
the classification algorithm with input examples x of different dimensions, based on
the number of features n involved: the idea behind this approach is to analyze how
additional knowledge on an experiment impacts the performance of the classifier.
Therefore, the input vector contains either the ETA alone, or the pair (ETA, PT x) or
(ETA, distance), or the triple (ETA, PT x, distance), and different pdf s are generated
accordingly. For instance, for the second case (n = 2) with ETA and distance (d)
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as input features, (3.21) is reformulated as

y∗
MAP = arg max

k
p(ETA|yk, d)p(d)p(yk), (3.22)

where p(d|yk) = p(d) for a homogeneous dataset.

3.4.2 Support Vector Classification

Support Vector Classification (SVC) machines [82] identify the optimal hyperplane
maximizing the margin which separates different classes in a multi-dimensional fea-
ture space. A generic hyperplane can be written as the set of points x satisfying
wT x − b = 0, where w is the normal vector to the hyperplane and b represents the
offset from the origin along w. When the data points are linearly separable, it is
possible to identify a pair of hyperplanes able to perfectly separate all the objects.
By defining these hyperplanes as wT x − b = ±1, the margin, i.e., the region in-
between, has length 2

||w|| , and the objective is to maximize 1
||w|| . If we consider a

binary classification problem, y(i) ∈ {−1, 1}, the maximization of 1
||w|| is equivalent

to the minimization of 1
2 ||w||2; therefore the problem can be formulated as:

min
w,b

1
2 ||w||2

s.t. y(i)(wT x(i) + b) ≥ 1, i = 1, . . . , m, (3.23)

where the constraint y(i)(wT x(i) + b) ≥ 1 has been added to guarantee that all
x(i)s lie outside the margin. In (3.23), we assumed that all training examples can
be separated, which is not verified in general. As a result, (3.23) can be modified
to allow for some tolerance in the classification error. Therefore, for each training
example x(i), there is an associated non-negative slack-variable ξi ≥ 0, i = 1, . . . , m,
allowing each example to lie on the other side of the hyperplane separating its class.
The optimization problem then becomes:

min
w,b

1
2 ||w||2 + C

m∑
i=1

ξi

s.t. y(i)(wT x(i) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , m, (3.24)

where the parameter C balances the trade-off between having a large margin and
ensuring that most examples lie in the region associated to their class. The “dual”
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formulation of Eq. (3.24) is

max
ααα

m∑
i=1

αi − 1
2

m∑
i,j=1

y(i)y(j)αiαj(x(i))T x(j)

s.t. 0 ≤ αi ≤ C, i = 1, . . . , m,
m∑

i=1
αiy

(i) = 0, (3.25)

where ααα = (α1, . . . , αm) is the vector of Lagrange multipliers. It can be shown that

w =
m∑

i=1
αiy

(i)x(i), (3.26)

by which it is possible to calculate the optimal weights in terms of the optimal values
of ααα. Now, a prediction for a new example input x can be performed calculating
wT x + b, and predicting y = 1 (or y = −1) if this quantity is bigger (or smaller)
than zero. Hence, the prediction function can be written as

fw(x) = sgn

(
m∑

i=1
αiy

(i)(x(i))T x + b

)
, (3.27)

which only depends on the inner product between the input vector x and the subset
of training vectors x(i) for which αi �= 0. Moreover, from (3.25) it turns out that this
subset only contains those training examples, known as Support Vectors (SVs), lying
within the margin or in the region of the hyperspace belonging to the other class: as
a consequence, the actual complexity of the prediction process only depends on the
number of support vectors. The inner product (x(i))T x + b in (3.27) can be replaced
by particular non linear functions k(x(i), x), known as kernels, which correspond to
scalar products between either linear or non linear transformations of their inputs.
Substituting k(x(i), x) in (3.27), we thus obtain the optimal prediction function in
a non-linear feature space, rather than in input space:

fw(x) = sgn

(
m∑

i=1
αiy

(i)k(x(i), x)
)

. (3.28)

Finally, as the classification problem studied here involves |C| = 4 classes,
we adopted a generalization of the standard SVM known as multiclass SVM [77],
which works by reducing the multiclass problem into a number of binary problems.
This generalization, known as one-vs-one classification, works by building a set of
|C|(|C| − 1)/2 binary classifiers, and then selecting the class that is assigned by the
majority of the classifiers.
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3.4.3 k-Nearest Neighbor

In k-Nearest Neighbor (k-NN), an example x is classified under the most common
class among its k nearest neighbors: k-NN is a type of lazy learning, since a learning
phase is not needed at all. The neighbors are taken from a set of examples for which
the class is known: this set can be thought of as the training set for the algorithm.
In other words, the training phase of the algorithm simply consists in storing the
training examples: once a test example is provided, the algorithm classifies it by
assigning the most frequent class among its k nearest training examples. The pa-
rameter k is chosen so as to balance the trade-off between reducing the effect of noise
(large k) and avoiding the creation of indistinct boundaries between the classes (low
k).

3.5 On-the-fly ETA prediction

In this section, we show how to join the network parameters available at each re-
ceiving node, i.e., WiFi channel, PoD, transmit power and distance between the
transmitter and the receiver, together with the number of receiving nodes N de-
tected using the ML techniques in Section 3.4. The goal is to provide an on-the-fly
prediction of the ETA signal during the transmission.

For this final task, we use our complete dataset of M = 5400 examples. Since
each experiment consists in the transmission of a 100 MB file, after an experiment
has been launched, we use the time needed for the transmission of the first 5 MB (5%
of the total size) to detect the value of N , following the techniques in Section 3.4.
Then, we dynamically predict the remaining ETA values, using all the network
parameters and the size of the fraction of the file not yet transmitted (decreasing
over time). ETA estimates are computed every time a MB has been successfully
transmitted, for a total of 95 ETA predictions i.e., from 95 MB to 1 MB.

We chose to detect the value of N after 5 MB in order to properly take into
account the trade off between the accuracy in the estimation, the variability in the
transmission channel, and the time the user has to wait before receiving the first
ETA prediction.

3.6 Results

In this section, we first describe our intermediate results, i.e., predicting the initial
ETA (Section 3.6.1) and detecting the number of active receivers N in the network
after a transmission has been completed (Section 3.6.2). Finally, in Section 3.6.3, we
show how we predict the ETA on-the-fly during the entire transmission, comparing
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our results with scp. scp is a means of securely transferring computer files between a
local host and a remote host or between two remote hosts, and is based on the secure
shell (SSH) protocol. The source code is fully available online: we partially modified
it to easily gather the ETA predictions as well as the actual time to transmit a file.

The hyperparameters of each ML mathematical model (which include the values
assigned to λ in (3.3), C and ε in (3.6), the kernel function for the SVR/SVC, the
number of the nearest neighbors k, etc) have been optimized using a k-fold Cross
Validation (CV) technique [88] with k = 15, according to which the training set is
split in k subsets and k − 1 of these are used to train, leaving the k-th for testing.
This procedure is iterated k times, so that, at the end, each subset has been used
to assess the goodness of the model. The performance measure resulting from k-
fold CV is then the average of the error values computed in the k loops, and the
hyperparameters obtaining the lowest prediction errors are then chosen to train the
final model.

3.6.1 Initial ETA prediction

In order to evaluate the performance of our regression algorithms, we computed, for
each model, the root mean square error (RMSE) between the predicted value θ̂ of
the ETA and the measured one θ from the test set. The RMSE is given by:

RMSE =

√√√√∑M−m
i=1

(
θ̂(i) − θ(i)

)2

M − m
, (3.29)

where M − m is the size of the test set. We adopted this metric because it allows
to aggregate the magnitudes of the prediction errors, obtained for various examples,
into a single measure of predictive power.

In order to obtain a performance measure as accurate as possible, each technique
was trained and tested on 10 different pairs

(
(X(i)

tr , y(i)
tr ), (X(i)

test, y(i)
test)
)
, i = 1, . . . , 10.

Each pair was randomly defined using different seed values. The total number of
considered mathematical models was 332850. In Table 3.1, we report the normalized
RMSE performance values obtained by each technique as a function of the seed
values. In particular, the normalization was performed by dividing the RMSE values
by the actual measured total ETA. Finally, the last two rows report the average and
the standard deviation of the values, in order to favor a direct comparison among
the algorithms.

It can be noticed that both Extended Linear Regression and SVR methods per-
form well and achieve an average normalized RMSE less than 9%. In addition, for
each ML method, we computed the standard error (SE) of the mean equal to σ/

√
n,

where n = 10 is the number of seeds. The upper and lower 95% confidence limits,



3.6. Results 61

Table 3.1: Normalized RMSE predicted values using the considered ML algorithms.

Seed Linear Regression Ext. Linear Regression SVR RBM
1 0.1107 0.0867 0.0841 0.1122
2 0.1229 0.0981 0.0944 0.1236
3 0.1006 0.0805 0.0815 0.1038
4 0.1189 0.0820 0.0773 0.1215
5 0.1408 0.1039 0.0985 0.1454
6 0.1072 0.0817 0.0872 0.1122
7 0.1161 0.0967 0.0969 0.1140
8 0.1058 0.0731 0.0763 0.0995
9 0.1003 0.0902 0.0850 0.1038
10 0.1462 0.0992 0.0952 0.1431
μ 0.1170 0.0892 0.0876 0.1179
σ 0.0159 0.0100 0.0082 0.0158
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Figure 3.3: Confidence intervals for the considered ML methods.

depicted in Figure 3.3, allow to state that SVR and Ext. Linear Regression achieve
better accuracy among the considered techniques and, in particular, SVR seems to
perform best.

We compared the results obtained against the predicted ETAs using the scp
program. As already discussed, scp does not take into account any information
about the network to compute the ETA prediction, because it only considers the
first transferred file chunk to compute the ETA predictions. Figure 3.4 reports a
typical ETA prediction trend produced by scp, for an example of the dataset. It can
be seen that the initial scp prediction (circle marker) is far from the actual measured
transmission time (cross marker), resulting in a prediction error of 76.3%. Instead, it
is possible to see that all the ML techniques achieve better results, giving an average
prediction error of 13.7%. In addition, Figure 3.4 shows the lines corresponding to
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Figure 3.5: Comparison of the performance gain of the considered ML algorithms, in
terms of reduction of the prediction RMSE with respect of the scp baseline.

scp ETA trend and total predicted time. The former represents the residual ETA
estimate while the transmission occurs, whereas the latter reports the prediction of
the total transmission time. For example, at t = 100 s, the solid line predicts t = 117
s to complete the transmission, and the dotted one correspondingly reports a total
transmission time of t = 217 s. It can be seen (solid line) that the ETA estimate
at t = 1 s is far from the measured time necessary to complete the data transfer:
actually, an accurate estimate of the effective total transmission time occurs around
t = 100 s (dotted line).

In Figure 3.5 we show the performance gain between the two approaches, com-
puted as (RMSEscp − RMSEML)/RMSEscp, experienced by choosing the ML tech-
niques rather than the scp ETA predictions. The scp prediction errors were com-
puted over the same test sets created to compare the ML algorithms in Table 3.1.
Note that all the scp data transfers belonging to the same network configuration
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Table 3.2: Percentage ETA prediction errors (mean ± standard deviation).

Npred = 1 Npred = 2 Npred = 3 Npred = 4
Nreal = 1 9.57 ± 4.68 89.90 ± 16.55 179.19 ± 26.68 282.57 ± 42.20
Nreal = 2 46.76 ± 5.79 6.38 ± 5.26 47.90 ± 16.19 103.92 ± 29.58
Nreal = 3 63.96 ± 4.63 32.63 ± 7.86 6.22 ± 4.42 38.23 ± 12.83
Nreal = 4 73.42 ± 2.56 50.54 ± 5.09 26.55 ± 7.27 3.85 ± 2.82

were forced to start at the same time instant. The reason was to avoid that, in
network configurations with multiple receivers, the first prediction benefited from
temporary advantageous conditions where both the transmitter node and the WiFi
channel were unloaded. The average normalized RMSE for scp ETA prediction was
0.4053: as the corresponding result for the SVR method was 0.0876, the maximum
percentage gain of the ML techniques over scp is 78.39%.

3.6.2 Number of nodes detection

In the previous section, we showed how an accurate initial estimate of the ETA for a
wireless transmission can be computed exploiting a number of network parameters.
However, as already noted, not all of these parameters are available at each network
receiving node, if current standard transmission protocols are used. In this section,
we show the performance results related to the detection of the number of nodes
N simultaneously receiving data from the AP. We claim that the exact number of
users in the network is an important piece of information, as the predicted ETA
is highly dependent on the value of N . To prove this, in Table 3.2 we show the
percentage mean prediction errors on the ETA, as a function of the number of users
given as input, computed using the best-performing ML technique in Section 3.6.1.
In the table, we indicate with Nreal the actual number of active nodes during a given
experiment, and with Npred the value of N given as input to the ETA predicted by
the algorithm. The goal is to compare the ETA prediction errors when an erroneous
number of nodes is used instead of the right one. For each experiment in the test
set, the ETA has been predicted with a given value of Npred, and a percentage error
has been computed with respect to the measured ETA value. The average of all
these errors, together with their standard deviation, is reported in Table 3.2 for each
(Nreal, Npred) pair. Note that the errors on the diagonal are related to the predictions
performed using the “right” value of N (Npred = Nreal); as expected, these values
are the lowest for each class of experiments. The worst case is when the algorithm
predicts a number of nodes greater than 1, Npred > 1, when Nreal = 1. In addition,
when Nreal = 2 (or Nreal = 3), using the nearest value of N for the prediction,
i.e., either Npred = 1 or Npred = 3 (or Npred = 2 or Npred = 4, respectively), gives
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Figure 3.6: Classification performance with n = 3 (ETA, PT x, d).

approximately symmetric mean percentage errors.
These results show how the value of N used as feature in the previous techniques

has a fundamental role in the accuracy of the ETA prediction. Therefore, we now
present the results related to classification algorithms presented in Section 3.4, i.e.,
Naive Bayes (NB), Support Vector Classification with linear (SVC-L) and radial
(SVC-R) kernels, and k-Nearest Neighbor (kNN), with the goal of identifying the
techniques able to detect the value of N as accurately as possible.

Since we deal with a multi-class classification problem, we adopt the F1 score as
a measure of performance for each class [89]:

F1 = 2 · P · R

P + R
(3.30)

where P is the precision, i.e., the class agreement of the data labels with the positive
labels given by the classifier, and R is the recall, that is the effectiveness of a classifier
in identifying positive labels [90]. In addition, we analyze the performance in terms
of Receiver Operating Characteristic (ROC) curve which shows the fraction of true
positive decisions of a classifier for a given rate of false positive decisions [91].

The classification performance is shown in Figure 3.6. For each class (number of
nodes N ∈ {1, . . . , 4}), we plot the F1 score of each classifier when all the features
are used (ETA, PT x, and distance). In general, the performance is very high (F1

score above 0.85) and it is possible to identify a common trend for all the classifiers:
the 3-node class is harder to classify, mainly because the “tails” of this class overlap
with the 2-node and 4-node classes. Table 3.3 summarizes the performance for each
class and the total F1 score given a particular set of features. Increasing the number
of exploited features generally gives better performance for each classifier.

In Figure 3.7, we show the analysis of the classification performance in terms of
the ROC curve. This curve can be used to select the suitable operating point of the
classifier; in particular, we see that at 20% rate of false positives, all the classifiers
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Table 3.3: F1 score performance comparison among the classification techniques.

Features Classifier N = 1 N = 2 N = 3 N = 4 Average

ETA

NB 0.986 0.929 0.818 0.863 0.899
SVC-L 0.996 0.952 0.845 0.884 0.919
SVC-R 0.997 0.950 0.841 0.888 0.919
kNN 0.997 0.948 0.825 0.875 0.911

ETA, d

NB 0.990 0.917 0.813 0.877 0.899
SVC-L 0.997 0.953 0.840 0.877 0.917
SVC-R 0.996 0.960 0.861 0.899 0.929
kNN 0.997 0.960 0.854 0.892 0.926

ETA, PT x

NB 0.989 0.939 0.84 0.879 0.912
SVC-L 0.997 0.958 0.851 0.887 0.923
SVC-R 0.992 0.957 0.842 0.876 0.916
kNN 0.996 0.958 0.842 0.879 0.919

ETA, PT x, d

NB 0.993 0.944 0.851 0.892 0.920
SVC-L 0.998 0.959 0.861 0.896 0.928
SVC-R 0.991 0.958 0.871 0.904 0.931
kNN 0.996 0.958 0.872 0.910 0.934
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Figure 3.7: ROC curves for the considered classification techniques.

achieve an almost perfect performance. It is also worth noting that between 3% and
6% of false positive rate all the classifiers achieve the 95% true positive rate (dotted
line). Table 3.4 shows the cutoff points for the false positive rate that is required
to achieve at least 95% of true positive rate. Figure 3.7 and Table 3.4 confirm that
the NB approach is the slowest to reach the best performance.

3.6.3 On-the-fly ETA prediction

We finally present the results related to the on-the-fly ETA prediction. As already
mentioned in Section 3.5, we exploited all the 5400 experiments collected with our
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Table 3.4: False positive rate @ true positive rate = 0.95.

Classifier ETA, PT x, d
NB (prior) 0.060
SVC-L (no weight) 0.046
SVC-R (no weight) 0.035
kNN 0.030

Table 3.5: F1 scores after 5 MB.

Features N = 1 N = 2 N = 3 N = 4 Average
ETA 1.0000 0.9615 0.8519 0.8571 0.9176
ETA, d 1.0000 0.9615 0.9091 0.9091 0.9449
ETA, PT x 1.0000 0.9615 0.8889 0.8929 0.9358
ETA, PT x, d 1.0000 0.9615 0.9091 0.9091 0.9449

testbed: since these correspond to 540 different network configurations, we used
4320 experiments for training (maintaining each of the 10 different realizations per
experiment), and 108 for performance testing (as the considered ML algorithms have
deterministic outputs, we randomly selected a single realization per testing config-
uration). In the following, we decided to use the best-performing ML techniques
from Section 3.3 and Section 3.4, leaving a full comparison among all the previously
considered techniques as a future research effort. Nevertheless, the hyperparameters
of the selected algorithms were still optimized through k-fold cross validation.

We first trained an SVC with the aforementioned training set, with the goal to
identify the best classification model able to detect the number of active users N

given the amount of time needed to transmit the first 5 MB of a 100 MB file, the
transmission power PT x and the distance d. For the sake of clarity, we highlight that,
differently from the dataset described in Section 3.4, here we use the transmission
time for the first 5% of the total file size, whereas, in Section 3.4, we waited until
the transmission was completed (100%).

Table 3.5 shows the classification accuracy as a function of the features exploited
to detect the number of active users N after the first 5 MB have been successfully
transmitted. As expected, increasing the number of features gives better results:
using the ETA, the transmission power PT x and the distance d together, the clas-
sification model has an F1 score of 0.9449 (averaged over all the classes), and 101
out of the 108 experiments in the testing set are correctly classified. Interestingly,
adding extra features to the dataset only improves the classification performance of
the higher classes (N ≥ 3), and, for this specific task, knowing the distance d from
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Figure 3.8: Histogram of time needed to transmit the first 5 MB.

the AP to the receivers turns out to be more beneficial than the knowledge about the
WiFi transmission power PT x. This can be explained noting that, when distances
are not substantial, even low values of PT x are able to achieve high bitrates, hence
the information about the exact value of the transmission power is not as beneficial
as the knowledge of the distance from the AP to the receiving node.

Figure 3.8 presents a histogram of the amounts of time needed for the trans-
mission of the first 5 MB, as a function of the number of active users N receiving
data in the network (the figure is related to the entire dataset). Median values for
each value of N have been overlapped as vertical lines. It is worth noting that,
although the relation among the median values seems to be linear (e.g., the median
values for N = 2 and N = 4 are, respectively, almost two and four times the median
value for N = 1), and classes N = 1 and N = 2 are mostly separable, both the
presence of a non-negligible number of outliers (not shown in the Figure for the sake
of readability), and the considerable overlapping between classes N = 4 and N = 3,
suggest that a linear separator (i.e., a linear kernel) would not be powerful enough
to distinguish among the examples belonging to each class. Indeed, we found the
non-linear RBF kernel to work best for this dataset.

Secondly, after the actual value of N has been detected, we use an SVR to predict
the remaining ETA during the transmission of the last 95 MB: to do this, we added
a feature to the X matrix first described in Section 3.2.1, consisting of the residual
amount of data to be transmitted.

Table 3.6 shows the normalized RMSE values for the on-the-fly ETA predictions.
The first row is related to the case described above, where we first detect the number
N of active users using the SVC (N = Npred), and then we predict the ETA values
on-the-fly during the transmission. In the second row, as a comparison, we add
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Table 3.6: Normalized RMSE for the on-the-fly ETA predictions.

N = 1 N = 2 N = 3 N = 4 Average
N = Npred 0.0160 0.0215 0.0400 0.1171 0.0486
N = Nreal 0.0160 0.0268 0.0439 0.0855 0.0430

scp 0.0293 0.0366 0.0950 0.1636 0.0811

the normalized RMSE values related to the case in which we always use the correct
value of N (N = Nreal), practically bypassing the initial classification task. In
the first case, we found that the average normalized error is 0.0486 and the RMSE
is increasing in the value of N . This can be explained by noting that examples
belonging to class N = 1 have a lower variability than the ones from class N = 4
(see Figure 3.8). This is due to the randomness of the backoff algorithm implemented
in the WiFi transmission protocol: a more populated scenario (N = 4) will present
a more disturbed transmission channel with respect to a situation in which only
one device (N = 1) is receiving data and is less prone to interference. As expected,
we found that the overall RMSE is lower in the second case (N = Nreal), since no
additional errors originated by the SVC are introduced. Due to the incremental
overlapping of the curves in Figure 3.8, it can be noted that the RMSE is similar
among the two cases for N = 1 and N = 2, whereas worse performance arises for
N ≥ 3, due to mutual misclassifications among these two classes (a non negligible
number of N = 3 examples is wrongly associated with class N = 4, which hence
presents a higher error). Note that these RMSE values are lower than those obtained
in Table 3.1: this is because the former (the initial ETA estimates) are prone to
higher estimation errors, whereas the latter are averaged over a prediction error
signal which is decreasing as long as the residual ETA gets lower. Comparing these
results with those obtained by scp (third row of Table 3.6), it can be seen that the
error associated with the latter is higher for every value of N : the RMSE associated
with our proposed ML-based technique is, on average, 40% lower.

Figure 3.9 shows a comparison between the ETA predictions obtained from scp
and from the ML-based technique, analogously to Figure 3.4 in Section 3.6.1. It
can be seen that scp tends to give mostly inaccurate predictions during the first
part of the transmission, and finally corrects its trend only in the second half of
the file transfer. On the other hand, the ML-based technique gives a fairly accurate
estimate of the time needed to complete the file transfer right after the beginning
of the transmission, following the correct trend already after a few seconds. For
this particular 4-node configuration, the normalized RMSE given by scp was 0.1693,
whereas the corresponding value from the on-the-fly algorithm was 0.1125, yielding
a relative gain of ∼ 34%. Note that, in Figure 3.9, the curves describing both the
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Figure 3.9: Comparison of the ETA estimations given by scp and the on-the-fly ML-
based technique.

Table 3.7: Normalized RMSE for the ETA estimates at 10% of the transmissions.

N = 1 N = 2 N = 3 N = 4 Average
ML 0.0196 0.0331 0.0577 0.1762 0.0717
scp 0.0861 0.1074 0.3146 0.5170 0.2562

ML and the scp trends should be compared to the line connecting the total measured
time on the upper-left part of the figure (represented by a black cross on the vertical
axis) to the point corresponding to the same amount of time on the horizontal axis.
From the figure, it can be seen that the difference between this “real trend” line
and the scp trend curve, especially in the first part of the transmission (first 50 s),
would be higher (scp gives a first ETA prediction of ∼ 105 s) than what obtained
comparing the “real trend” line to the ML-based trend curve.

A further comparison between the ML-based and the scp ETA estimators is
related to the accuracy of the ETA estimation in the initial part of the transmission,
when only the first fraction of a file has been successfully received. Table 3.7 presents
the normalized RMSE values related to the ETA estimates when only 10% of each
transmission has been completed. In other words, for each transmission, we wait
for the reception of the first 10% of the total file size, and then compute the error
between the actual time needed to complete the transmission and the corresponding
ETA estimate given by the ML-based technique and scp. It can be seen that the
ETA estimate from scp is considerably higher (roughly 72% worse than the ML
estimate on average): this is especially important as, usually, a user should be able
to decide whether to interrupt or maintain a transmission based on an early ETA
estimate, without waiting for it to stabilize.
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3.7 Chapter conclusions

In this chapter, we proposed an on-the-fly machine learning-based approach for the
prediction of the Estimated Time of Arrival in wireless transmissions. This tech-
nique was designed with the constraint of exploiting only the amount of information
available at each receiving device, without modifying any standard communication
protocol. In order to do that, the algorithm works by first detecting the number of
users simultaneously receiving data from the same access point, and then exploiting
this knowledge to perform a prediction of the ETA during the transmission. As a
correct detection of the number of users proved to have a high impact on the final
ETA prediction performance, a further step, starting from this work, could be to
periodically perform this detection during the file transfers, in order to either correct
a wrong estimate, or to dynamically update this parameter if initial conditions have
changed.



CHAPTER 4

LIGHTWEIGHT LOSSY COMPRESSION OF
BIOSIGNALS VIA DENOISING AUTOENCODERS

Modern wearable IoT devices enable the monitoring of vital parameters such as
heart or respiratory rates (RESP), electrocardiography (ECG), photo plethysmo-
graphic (PPG) signals within e-health applications. However, a common issue of
wearable technology is that signal transmission is power-demanding and, as such,
devices require frequent battery charges and this poses serious limitations to the con-
tinuous monitoring of vitals. To ameliorate this, this chapter advocates the use
of lossy signal compression as a means to decrease the data size of the gathered
biosignals and, in turn, boost the battery life of wearables and allow for fine-grained
and long-term monitoring. Considering one dimensional biosignals such as ECG,
RESP and PPG, which are often available from commercial wearable IoT devices,
this chapter provides a thorough review of existing algorithms and introduces a novel
approach based on autoencoders, elucidating their operating principles and providing
a quantitative assessment of their compression, reconstruction and energy consump-
tion performance. As we quantify, the most efficient schemes allow reductions in
the signal size of up to 100 times, which entail similar reductions in the energy de-
mand, by still keeping the reconstruction error within 4% of the peak-to-peak signal
amplitude. Avenues for future research are finally discussed.

4.1 Introduction to the chapter

Internet of Things (IoT) technology enables objects to sense the physical environ-
ment and to seamlessly integrate the gathered data into sophisticated Internet ap-
plications that allow for substantial improvements of human activities at large. The
focus of this work is on human sensing [92] through wearable IoT devices, such as
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smart watches, chest straps or wristbands, which permit the collection of biosignals
such as heart-rate, oxygen level, respiration and blood pressure and can be used to
help address the individual health and fitness needs of the users [93].

For instance, wearables can be utilized to gather and share information about
the status of outpatients, making it possible to collect, record and analyze new data
streams faster and more accurately. This allows for an improved access to health-
care, an increase of its quality and ultimately, a reduction in its cost. Tele-health
systems could deliver care to people in remote locations and provide streams of ac-
curate data for making better care decisions (e.g., in terms of therapy adjustments
or prompt interventions). In addition, these systems are expected to have a big
impact on the field of rehabilitation where, for example, users may wear e-textile
systems for remote, continuous monitoring of physiological and movement data [94].
Through IoT technology, a large number of physiological signals can be monitored
including oxygen saturation, blood pressure, heart rate, respiration rate, glucose
level [93, 95] and user activities such as walking, standing, sleeping, etc., can be
inferred [96]. A recent survey of wearable devices and their use is offered in [93],
whereas rehabilitation systems are discussed in [94].

We look at an IoT scenario for e-health, where wearables are utilized to collect
physiological signals, preprocess and transmit them over their wireless interface for
their final storage and manipulation via backend server infrastructures. Within this
context, we are concerned with the design of online signal processing algorithms, so
that the gathered signals can be effectively stored in the limited memory space of
wearables and conveniently transmitted over their radio interface. Ideally, we would
like this software to adapt to the signals being sampled, by being prompt when
required by the application and gently go into some power saving mode when the
signals exhibit regular patterns. This means that high resolution should be provided
when the user wants to track some dynamic activity or when a critical behavior is
detected. Toward this end, we advocate the use of lossy compression as a means to
reduce the space taken by the collected biosignals and, at the same time, to save
battery power through a reduced transmission time. This amounts to compressing
the physiological data directly at its source.

As for the physiological signals of interest, we consider one dimensional and quasi-
periodic biomedical signals as those provided by typical sensors in chest straps or
wristbands, i.e., electrocardiography (ECG), photo-plethysmographic (PPG) and
respiratory (RESP) signals. ECG is probably the most important among them for
the diagnosis of heart malfunctions and IoT technologies are expected to be very
useful to assess cardiac conditions within patient-monitoring applications. Com-
mercial devices such as the Bioharness 3 from Zephyr Technology Corporation [97]
can be utilized to measure this type of signal. RESP signals are also very relevant
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and can be obtained from chest straps [98] or rubber straps [99] placed around the
abdomen to, e.g., assess the status of outpatients affected by chronic respiratory
failure and allow monitoring them from home. PPG is often available in low-cost
IoT devices for the consumer market (such as smart watches or wristbands designed
for fitness applications), see the Angel sensor wristband [100]. PPG can be used to
estimate heart-rate [101] and recent studies indicate that blood pressure can also be
inferred [102].

We believe that, despite the focus and hype on wearable technology, research on
data processing algorithms for wearable IoT devices is still in its infancy and most
still has to be done to take full advantage of this portable technology, especially
in the medical field. In past research, a large number of compression algorithms
were proposed for ECG, but signal compression has never been applied to RESP
or PPG. Moreover, performance assessments were only carried out for quality of
compression and reconstruction, whereas the energy consumption aspect has often
been neglected. Instead, we stress that energy should be sparingly used by the
software running on wearables, as these devices are often battery operated and, in
turn, their energy consumption is a key consideration. Also, to the best of the
authors’ knowledge, no quantitative comparison among existing solutions can be
found in the literature and, due to this, it is unclear which algorithms are best
suited for use in wearable devices.

The aim of this chapter is to fill these gaps. First, in Section 4.2 we present
a taxonomy of popular signal compression schemes from the literature, touching
upon linear approximations [103, 104], Fourier [105], Wavelet [106] transforms and
novel compression techniques based on compressive sensing [107, 108] and vector
quantization and pattern recognition [109].

In Section 4.3.1 we take a novel approach based on autoencoders, as these are
known for their ability to capture the essential relationships in the input data and
compactly represent them through non-linear maps. After a learning phase, which is
is executed offline, the proposed compression architecture employs a matrix multipli-
cation which can be conveniently implemented in constrained hardware. Hence, our
present work extends that in the related literature as our compressor is extremely
cheap but at the same time very efficient in terms of compression ratios and accurate
in the signal reconstruction. Last but not least, the compression methodology that
we propose here can be applied to any quasi-periodic biomedical signal: ECG, PPG
and RESP traces being some relevant examples.

The other selected algorithms from the literature are detailed in Section 4.3 and
a comparative performance evaluation of all the considered compression approaches
is carried out in Section 4.4, where we quantify their compression efficiency, sig-
nal reconstruction fidelity and, most importantly, their energy consumption. Also,
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we estimate the battery time improvement due to the adoption of the discussed
compression technology for continuous monitoring applications.

Finally, our conclusions are presented in Section 4.5, along with a discussion of
open research issues.

To summarize, the main contributions of this chapter are:

• A taxonomy of existing signal compression schemes that are amenable to im-
plementation in wireless wearable IoT devices.

• An autoencoder-based original lossy compression architecture for the biosig-
nals acquired by constrained devices, along with its validation.

• A detailed performance evaluation of the considered compression schemes in
terms of reconstruction error, energy consumption (isolating the energy re-
quired for compression and transmission) and compression efficiency when
applied to ECG, RESP and PPG signals.

• A discussion of open areas for improvement and new research avenues.

4.2 Taxonomy of Lossy Compression Schemes

In the last few years, a great deal of work has been carried out on tools for the
efficient ECG signal analysis, facial image recognition or the identification of fin-
gerprints acquired by a cell phone, see [110]. PPG is being intensively investigated
for the estimation of the heart rate [101] and motion data is being used for activity
detection [111]. Nevertheless, apart from ECG, little has been done regarding the
compression of other signals, such as PPG, RESP, etc. In this taxonomy, we first
focus on ECG and then elaborate on the use of compression for other signal types.

The two most important tasks to be accomplished in the ECG domain are 1)
QRS1 complex detection and 2) signal compression. As per QRS detection, it is
crucial to split the ECG time series into heart beat segments (one segment per
beat) as this allows the fine-grained assessment of inter-beat signal features, which
are useful to detect certain pathologies. Note that ECG can be efficiently split into
beat segments as it is a quasi-periodic time series exhibiting recurrent patterns. As
to signal compression, we emphasize that wearable devices are energy and memory
constrained and, as such, minimizing the amount of data to store and send is an
important consideration. As an example, a typical sampling rate of 250 samples per
second with 12 bits per sample (e.g., from a Zephyr’s Bioharness device) leads to
32.4 Mbytes of data for a full day. As we will see below, compression algorithms can

1The QRS complex is a name for the combination of three of the graphical deflections seen on
a typical electrocardiogram.
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easily reduce this number by 70 times to about 463 kbytes, leading to much higher
efficiencies in terms of memory and transmission.

1) QRS complex detection has been extensively studied in the literature. Several
methods were proposed to detect QRS complexes and to enhance their features. The
importance of QRS enhancement has been demonstrated to detect the QRS com-
plex [112]. In particular, amplitude thresholding [113], first and second derivative
methods [114], mathematical morphology [115, 116], filter banks [117], and wavelet
transform techniques [118] are among the methods used for the enhancement of the
QRS complex. The QRS detection is instead usually performed with a combination
of techniques such as thresholding [113, 115], neural networks [119], wavelet trans-
form [120], matched filters [121]. These techniques are of foremost importance as
they split the ECG time series into segments (i.e., the data points between sub-
sequent heartbeats), which are then utilized for the subsequent estimation of the
pulse, and for the compression of the ECG trace.

2) Signal compression. Quite a few lossy and lossless compression algorithms for
ECG signals have been proposed in the literature in the last decades. Typically,
they can be classified into three main categories:

• Time domain processing: within this class we have AZTEC [122], CORTES
[123] and Lightweight Temporal Compression (LTC) [103]. Both AZTEC and
CORTES achieve compression by discarding some of the signal samples and
applying a linear approximation, whereas LTC approximates the original time
series through piecewise linear segments, where the two end points of a segment
are sent in place of the points in between. As we show in Section 4.4, in spite
of its simplicity, LTC closely matches the performance of Principal Component
Analysis (PCA) [104,124].

• Transform based coding: these exploit transformations such as Fast Fourier
Transform (FFT) [105], Discrete Cosine Transform (DCT) [125] and Discrete
Wavelet Transform (DWT) [106]. The rationale behind them is to represent
the signal in a suitable transform domain and select a number of transform
coefficients to be sent in place of the original samples. The amount of com-
pression depends on the number of coefficients that are selected, the represen-
tation accuracy depends on how many and which coefficients are retained. Al-
though the schemes belonging to this class have good compression capabilities,
their computational complexity is often too high for wearable devices [126].
Lightweight implementations are possible and are considered in the present
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work.

• Parametric techniques: these schemes use neural networks [127], vector
quantization [128], Compressed Sensing (CS) [107] and pattern matching [129].
Their rationale is to process the temporal series to obtain some kind of knowl-
edge and use it to predict the signal behavior.

Despite these developments, we recall that no systematic comparison was car-
ried out in the existing literature and, moreover, the proposed algorithms were not
evaluated in terms of their energy expenditure. This is of course very important for
wearables, which are battery operated and thus call for algorithms that are at the
same time extremely effective and computationally cheap.

In addition, besides ECG, recent advances in technology for wearable devices
have made it possible to efficiently collect and analyze other signals such as PPG,
motion and respiration through body worn sensor technologies [130]. The PPG
signal can be a powerful diagnostic tool due to simple, portable, and low-cost tech-
nology available for its fast, easy, and reliable acquisition and can be non-intrusively
measured using wristbands or smart-watches. An increasing number of works in
the literature deal with the extraction of physiological parameters from the PPG
signal such as heart rate, blood pressure, blood oxigen saturation, and respira-
tion [102, 131, 132]. Nevertheless, to the best of our knowledge, no algorithms have
been proposed so far for the compression of these signals. Note that with future
application developments, besides the calculation of selected features or health in-
dicators right on the mobile devices, users or doctors may want to fully monitor the
vitals, which could be sent to smartphones or control centers for further processing
so as to provide a fine-grained assessment of the patient’s condition, e.g., to assess
the evolution or occurrence of a certain pathology. In this case, compressed but
accurate representations of vital signals from heterogeneous sensor technology are
expected to be very useful.

4.3 Signal Compression Algorithms

Next, we detail the selected signal compression algorithms for quasi-periodic biosig-
nals, by initially presenting a novel technique based on autoencoders, first introduc-
ing the concept of neural networks, and then detailing their use within the proposed
lossy compression architecture. The compression methods that we describe below are
based on differing paradigms. In fact, some use the degree of similarity (correlation)
across subsequent patterns (or segments), whereas others consider the correlation
within the same segment. We refer to the former approach as “inter-segment cor-
relation” based compression, whereas for the latter we use the term “intra-segment
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correlation”. The algorithms belonging to the inter-segment class are vector quanti-
zation and autoencoders, whereas algorithms based on principal component analysis,
LTC, discrete cosine and wavelet transforms exploit intra-segment correlation prop-
erties. The implementation of compressive sensing that is considered here belongs
to both classes.

4.3.1 Autoencoders (AE)

There is a number of reasons to consider Neural Networks (NNs) as a means to
compress biometric signals. First, it has been proved that they can effectively
approximate any function with arbitrary accuracy, acting as universal approxi-
mators [133–135]. This is because they exploit self-adaptive methods to map the
complex relationships that underpin real world data, without assuming any prior
knowledge about their underlying statistical model. Also, NNs rely on non-linear
functions, and this makes them more appealing than traditional linear dimension-
ality reduction techniques such as PCA [124]. An additional limitation of PCA is
that, differently from NNs, it ignores correlation properties between the provided
input and the target output. In fact, [136, 137] showed that NNs perform a sort of
non-linear PCA.

NNs are composed of a number of connected neurons. Each neuron takes a
vector xxx of k + 1 input variables xxx = (x0, . . . , xk)T (among which x0 = 1 is an
intercept term) and uses a vector of weights www = (w0, w1, . . . , wk)T to output hwww(xxx) =
f(wwwTxxx) = f(∑k

j=0 wjxj), where f : R → R is an activation function, often assumed
to be the logistic sigmoid function f(z) = (1 + exp(−z))−1. A neural network is
organized into k� layers of neurons, so that the output of a neuron is input into
the following ones: since no loops are present in the connectivity graph, this type
of network is known as feed-forward NN. The first and last layers are called input
and output layers, respectively, whereas the layers in between are called hidden.
Network parameters are contained in the weight matrices WWW (1), . . . ,WWW (k�−1) (whose
size depends on the specific number of input and output neurons in each layer).
In the following, with W we denote the set W = {WWW (1), . . . ,WWW (k�−1)}, whereas
w

(�)
ij ∈ WWW (�) is the weight associated with the connection between neuron j in layer �

and neuron i in layer �+1. The outputs of layer �, called activations, are stored into
the vector aaa(�) = (a(�)

1 , . . . , a(�)
s�

)T , where s� is the number of nodes (not including the
bias unit) in layer �. If we let a

(1)
i = xi denote the i-th input, the activations for a

generic layer � are obtained as

a
(�)
i = f(w(�−1)

i0 a
(�−1)
0 + · · · + w

(�−1)
is�−1 a(�−1)

s�−1
) , (4.1)

with � = 2, ..., k�. If we denote z
(�)
i the total weighted sum of inputs to unit i in layer
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Figure 4.1: Graphical representation of an autoencoder: input and output layers have
the same dimension W , whereas the compression layer has h = 2 neurons. g(·) : R → R is
assumed to be the sigmoid activation function g(z) = (1 + exp(−z))−1.

�, i.e., z
(�)
i = ∑s�−1

j=0 w
(�−1)
ij a

(�−1)
j , the activations of layer � can be computed, given

aaa(�−1), as:

aaa(�) = f(zzz(�)) = f
(
WWW (�−1)aaa(�−1)

)
. (4.2)

From now on, we denote the network output by hW(xxx), which is calculated sequen-
tially using (4.2) from the second (� = 2) to the output layer (� = k�): this procedure
represents a forward propagation of information through the network.

An autoencoder [84] is a particular neural network instance where input and
output layers have the same dimension W , whereas the deepest hidden layer has a
smaller dimension c, with c < W , see Figure 4.1. Autoencoders are trained using
an unsupervised learning algorithm acting on the input data xxx(1), . . . ,xxx(m), with
xxx(i) ∈ R

W , referred to as training examples. The target output values hW(xxx) are
set equal to the input, so that the AE’s output matches as much as possible the
provided input sequence i.e., hW(xxx(i)) � xxx(i), ∀ i, according to a selected distance
metric, and the objective is to learn the identity function hW(xxx(i)) = xxx(i). For a
single example xxx, as the distance metric we use the squared-error cost function EW :

EW(xxx) = 1
2 ||hW(xxx) − xxx||2 , (4.3)

whereas the overall cost function JW is used to quantify the distance for the m
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training examples

JW = 1
m

m∑
i=1

EW(xxx(i)) + λ

2

kl−1∑
l=1

s�∑
j=1

s�+1∑
i=1

(
w

(�)
ij

)2
. (4.4)

The first term of (4.4) represents the mean squared error estimate, whereas the
second term accounts for regularization, whose aim is to prevent overfitting [77]. The
trade-off between the optimization of these two terms is governed by the parameter
λ, the weight-decay parameter.

NM-based AEs are usually trained using gradient descent methods [138], which
update the weights in the direction of the negative gradient of JW , i.e.,

w
(�)
ij (t + 1) = w

(�)
ij (t) − α

∂JW(t)
∂w

(�)
ij (t)

, (4.5)

where t represent the iteration number, α > 0 is the learning rate and the partial
derivative of JW is computed via error backpropagation [139]. The resulting process
can be divided into two phases: 1) first, input xxx(i) ∈ R

n is mapped into a hidden rep-
resentation x′x′x′(i) ∈ R

W via an encoder, obtaining a representation of the input with
a reduced dimensionality and 2) this representation is mapped back, via a decoder,
into a reconstruction hW(xxx) = x̂̂x̂x, see Figure 4.1. Previous work has shown that if
the activation function f(·) is linear, the autoencoder has the same performance of
PCA [140] (so the c hidden units effectively project the W -dimensional input space
into a c-dimensional one). Instead, if f(·) is non-linear, the autoencoder has the
ability to capture multi-modal aspects of the input signal [141]. Once the network
is trained, a compressed (and lossy) version of the input signal xxx ∈ R

W can be com-
puted by providing xxx to the encoding part of the autoencoder (termed “Encoder”
in Figure 4.1) and obtaining, as a result, the reduced-dimensionality vector xxx′ ∈ R

c

(i.e., the values assumed by the c neurons in the hidden layer of Figure 4.1). The
decoding process will reconstruct xxx starting from xxx′, iteratively using (4.2) for each
decoding layer, provided that the weight set W is fully specified. To that end, the
decoding part is utilized (termed “Decoder” in Figure 4.1).

In the present work, we use a stochastic variation of traditional autoencoders
known as denoising autoencoders (DAs) [142,143]. With this approach, the autoen-
coder tries to learn more robust features from the data, and this is achieved through
the reconstruction of corrupted versions of the input examples. The rationale is
that good representations should capture intrinsic regularities and correlations in
the input data and these should be as well recovered from partial or corrupted ob-
servations. As DAs simultaneously encode the input data and compensate for a
stochastic corruption applied to it, they generalize better to previously unseen in-
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Figure 4.2: High level diagram of the preprocessing phase for the autoencoder-based
compression algorithm.

put. Stochastic corruption is performed by randomly zero-masking elements of the
input xxx, according to a parameter ν that specifies the “destruction” proportion. As
a result, in the matrix XXXtr ∈ R

m×W denoting the training examples, a fixed number
νmW of components are chosen at random, and their value is forced to zero, while
the others are left untouched. This modified matrix is fed to the training algorithm.
Once the autoencoder is trained to represent the input data, weights w

(1)
ij fully spec-

ify the compressor (encoder), whereas w
(2)
ij specify the decompressor (decoder), see

Figure 4.1.
Signal compression is achieved by applying the preprocessing chain of Figure 4.2,

i.e., filtering, peak detection and segment extraction.

1) Passband filtering: as a first step, we use a passband filter to remove artifacts
such as high frequency noise and the DC component. For ECG, this filter operates
in the band [8, 20] Hz, although these can be changed to best suit other signal types.
Here, we implemented the third-order Butterworth filter of [144].

2) Peak detection: with this algorithm we detect the position of the main peaks
in the time series. For ECG, these correspond to the heart beats. To this end,
we have adopted the technique of [145], which has been conceived for ECG signals
but can be easily modified to effectively work with PPG or respiratory traces. This
technique is self-tuning and optimizes itself based on the input data sampling rate.
We considered this scheme as it is fast and lightweight and thus suitable for use in
wearable and energy constrained devices.

3) Segment extractor: once the peaks are detected, we consider the data samples
between subsequent peaks. These constitute the input segments for our compressor
algorithm. Note that, unlike the common practice of positioning the segments so
that the peaks (heart beats) are in their center, we define a segment as the data
points between subsequent peaks. Hence, all segments are normalized according to
a predefined length of W samples, which is the same size of the first layer of the
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autoencoder. This is accomplished by re-stretching the segment length to W sam-
ples through interpolation. While in principle any interpolation technique can be
used, such as quadratic or spline based, in our implementation we utilized a simple
linear technique as we found it sufficiently accurate while also being computationally
inexpensive.

Each segment is inputted to the encoder section of the autoencoder, which re-
turns the c values associated with the neurons in the compression layer. These
c values correspond to the compressed representation of the current segment and
are sent to the decompressor along with the original segment length. Finally, the
decompressor at the receiver uses the values of these c inner neurons, along with
weights w

(2)
ij , to obtain the reconstructed W -sample vector yyy through the decoder of

Figure 4.1. yyy is finally resized to the original segment length.
We remark that all the parameters needed to configure the AE, including λ in

(4.4), the learning rate α, the denoising parameter ν and other network specific
values have been selected by means of a k-fold cross validation technique, already
described earlier in the thesis. Finally, the AE belongs to the inter-segment correla-
tion class of algorithms as it exploits the fact that patterns across different segments
have a quasi-periodic behavior.

4.3.2 Gain-Shape Vector Quantization (GSVQ)

In this section we review the Gain-Shape Vector Quantization (GSVQ) method
of [128]. The rationale behind this algorithm is to exploit the information redun-
dancy among adjacent heartbeats by segmenting the ECG signal into segments and
normalizing the period to a fixed length and amplitude. The normalized heart-
beats are then used to build a dictionary having a fixed number of codewords K,
through the Linde-Buzo-Gray algorithm [146]. Note that, as our AE-based com-
pressor, GSVQ requires an offline training phase.

Once the dictionary is obtained, the method associates each normalized heart-
beat with the closest codeword, and sends the codeword index in place of the original
time series. The algorithm also encodes the offset, the gain, and the length of the
original segment, see Figure 4.3.

As a last step, the encoder calculates the residual, i.e., the difference between
the current heartbeat (i.e., ECG segment) and the selected codeword, and uses the
AREA algorithm [147], an adaptive sampling scheme for one dimensional signals,
which obtains additional information to increase the quality of reconstruction. The
principle behind the residual encoding phase is to encode and send a small number
of significant points so as to bound the reconstruction error.

The decoder, upon receiving an encoded packet, retrieves the corresponding code-
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Figure 4.3: Diagram of the GSVQ compression technique.

word from its local copy of the dictionary, performs a denormalization using the gain,
the offset, and the length, and adds the residual stream to the reconstructed signal.
As we shall see below, GSVQ performance predominantly depends on its residual
encoding phase. The threshold used for residual encoding is in fact the main respon-
sible for the amount of data to be transmitted, affecting the performance in terms
of compression, reconstruction error, and energy efficiency.

4.3.3 Principal Component Analysis (PCA)

The goal of Principal Component Analysis (PCA) [104] is to shrink the information
provided by a large set of correlated variables into a set of principal components
with lower dimensionality. Each principal component is computed as a linear com-
bination (linear transform) of the original variables, and the combination weights
are chosen so that the components are mutually uncorrelated. This technique has
been successfully selected in a multitude of applications, including ECG signal com-
pression [124].

Before applying PCA, the biomedical signal goes through the preprocessing chain
of Figure 4.2, i.e., filtering, peak detection and segment extraction, where at time
t = 0, 1, 2, . . . the last block normalizes each input segment zzzt to a common length
of W samples. The new segment is then stored into a vector xxxt ∈ R

W and is fed
to the PCA encoder. Specifically, let μμμxxx = E[xxxt] and RRRxxx = E[x̃xxtx̃xx

T
t ] respectively

be the mean of xxxt and its covariance matrix, with x̃xxt = xxxt − μμμxxx. PCA amounts to
applying an orthonormal linear transformation ΨΨΨ = [ψψψ1, . . . ,ψψψW ] to x̃xxt, so that the
elements w1, . . . , wW of the principal component vector www = ΨΨΨT x̃xxt = ΨΨΨT (xxxt − μμμxxx)
are mutually uncorrelated. It can be shown that the i-th principal component is
obtained as wi = ψψψix̃xxt, where ψψψi is the eigenvector corresponding to the i-th largest
eigenvalue of RRRxxx, for i = 1, . . . , W . The set of eigenvectors corresponding to the W
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principal components is obtained solving RRRxxxΨΨΨ = ΨλΨλΨλ for ΨΨΨ, where λλλ is a diagonal
matrix containing the eigenvalues λ1, . . . , λW , placed in decreasing order. As the
theoretical covariance matrix RRRxxx is difficult to compute, a matrix XXX ∈ R

W ×m is
built by stacking m successive ECG segments: their sample mean μ̂μμxxx and their
sample covariance matrix R̂RRxxx = (XXXXXXT )/m ∈ R

W ×W respectively replace μμμxxx and RRRxxx

for the calculation of the eigenvectors.
According to the above discussion, we can write xxxt = μμμxxx + ΨΨΨwww and, if the signal

is sufficiently correlated, only a fraction of the weights in www suffices to accurately
describe the input vector xxxt. Compression is thus achieved by applying the PCA
transform and sending the desired number c of principal components, i.e., the first
c weights in www, with c ≤ W . This rationale is similar to the autoencoder approach,
described in Section 4.3.1: indeed, [136] proved that autoencoders practically act as
a non-linear PCA.

4.3.4 Compressive Sensing (CS)

Compressive sensing (CS) is a recently proposed theory [148] [149] to efficiently
acquire and reconstruct a signal, by solving ill-posed linear systems of equations.
This technique is based upon the premise that the signal of interest is sparse in
some transform domain. This means that the original signal can be represented in a
domain where only a few transform coefficients are required for its full description.
To be more specific, let xxx ∈ R

W be an W -sized vector and assume that this vector
can be represented in a K-sparse domain through the sparse vector sss, where only
K � W elements of sss are non-zero, i.e., vector sss is K-sparse in this domain. If
we refer to the sparsification basis as ΨΨΨ ∈ R

W ×W , we have that xxx = ΨΨΨsss. Now, let
ΦΦΦ ∈ R

m×W be a sampling matrix. Note that, using this matrix to sense the full
signal xxx, we have yyy = ΦΦΦxxx, with yyy ∈ R

m and m < W , which means that xxx is being
subsampled.

CS tools allow the recovery of xxx from its subsampled version yyy, where: yyy = ΦΦΦxxx =
ΦΦΦΨΨΨsss. This is achieved solving for sss the following equation:

min ‖sss‖1 s.t. ‖yyy − ΦΦΦΨΨΨsss‖2 ≤ ε , (4.6)

where ε represents a bound on the measurement noise. Numerically, a high number
of techniques are available to solve (4.6); among them we cite �1-magic [150] subspace
pursuit [151] and NESTA [152].

In this work, we consider two recent ECG compression algorithms from [107]
and [153], which are based on CS. At the encoder, they exploit a standard CS
matrix multiplication (sampling and sparsification), whereas at the decompressor
the former exploits a technique called Simultaneous Orthogonal Matching Pursuit
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(SOMP) [107], whereas the latter uses Block Sparse Bayesian Learning (BSBL) [154].
The algorithms are discussed next.

Simultaneous Orthogonal Matching Pursuit (SOMP-CS)

This technique first splits the ECG signal into a number of segments and then ap-
plies standard CS-sampling to R consecutive segments at a time. Recovery is based
on Orthogonal Matching Pursuit.

SOMP-CS encoder:

• Peak detection: similarly to autoencoder-based schemes, a peak detection
method is applied to the input signal to decompose it into segments xxxt, t =
0, 1, 2, . . . .

• Period normalization: each segment xxxt is normalized to a common length
(W samples) using cubic-spline interpolation.

• Sampling and quantization: each R consecutive ECG segments are stored
into a W ×R matrix XXX. A CS sampled matrix YYY is then obtained as YYY = ΦΦΦXXX,
where ΦΦΦ ∈ R

m×W is a suitable sampling matrix, with m � W . As assumed
in [107], for matrix ΦΦΦ we use a dense Gaussian matrix (each element is inde-
pendently sampled from a Gaussian pdf with zero mean and variance 1/m,
i.e., N (0, 1/m)). YYY and the corresponding original lengths are quantized and
sent to the decoder. Note that this implementation of CS belongs to both the
inter- and the intra-segment class as matrix YYY spans across different adjoining
segments.

Note that the CS encoder is extremely lightweight as it just implies the multipli-
cation of the input time series by the sampling matrix ΦΦΦ. The most computationally
intensive tasks are period normalization and peak detection, which are needed in
all segment-based approaches. Under the assumption that the source data XXX can
be rewritten as: XXX = ΨΨΨSSS, where the matrix SSS ∈ R

W ×R is sparse and the sparsifi-
cation transform ΨΨΨ is the Daubechies wavelet db4 [155], the original data XXX can be
retrieved solving problem (4.6) using Simultaneous Orthogonal Matching Pursuit.
In our implementation, we have exploited the method in [156] and the Matlab Uvi
Wave tool [157] to represent the wavelet transform into an equivalent matrix form.

SOMP-CS decoder:

• Simultaneous Orthogonal matching Pursuit: each segment is recovered
from YYY using the modified Simultaneous Orthogonal Matching Pursuit (with
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partially known support) of [158], which exploits the structure of the wavelet
coefficients (through the knowledge of the support). This method solves for SSS

the ill-posed system YYY = ΦΦΦΨΨΨSSS, through (4.6). Upon recovering SSS, the original
data is approximated through X̂XX = ΨΨΨSSS.

• Period Recovery: the reconstructed segments are re-interpolated according
to their original lengths.

Note that SOMP-CS considers a number R of subsequent segments (R = 6 in
our implementation) and, in turn, also accounts for the “inter-segment” correlation
structure of the ECG signal.

Block Sparse Bayesian Learning (BSBL)

BSBL exploits the fact that the ECG signal xxx is already sparse in the temporal
domain, being composed of peaks spaced apart by an almost-flat signal. Hence, the
input ECG signal is written as yyy = ΦΦΦxxx +nnn, where yyy ∈ R

m is the compressed vector,
ΦΦΦ ∈ R

m×W is a suitable sampling matrix (m � W ), xxx ∈ R
W is a sparse vector

and nnn ∈ R
m is the noise vector. Generally, vector xxx has additional structure and

can be further represented as a concatenation of a certain number g of blocks xi,
possibly having different length di so that xxx = (xxx1,xxx2, . . . ,xxxg)T . Each block xxxi ∈ R

di ,
i = 1, . . . , g, is assumed to satisfy a parameterized multivariate Gaussian distribution
p(xxxi, γi,BBBi) ∼ N (0, γiBBBi) with unknown parameters γi and BBBi. γi ≥ 0 controls the
block-sparsity of xxxi and when γi = 0 the i-th block becomes the all zero vector.
Matrix BBBi ∈ R

di×di is a positive definite matrix which captures the correlation
structure within the i-th block. Assuming that the sub-blocks xxxi are uncorrelated
the prior of xxx is p(xxx, {γi,BBBi}) ∼ N (0,ΣΣΣ0), where ΣΣΣ0 = diag{γ1BBB1, . . . , γgBBBg}. For
the noise, it is assumed that p(nnn, λ) ∼ N (0, λIII), where λ ∈ R

+ and III ∈ R
m×m is the

identity matrix. The posterior of xxx (given the measured vector yyy) is thus obtained
as

p(xxx|yyy; {γi,BBBi}g
i=1) ∼ N (μμμxxx,ΣΣΣxxx) (4.7)

where μμμxxx and ΣΣΣxxx can be readily derived from λ, ΣΣΣ0 and ΦΦΦ. Finally, the Maximum-
A-Posteriori (MAP) estimate of xxx, denoted by x̂xx, is given by [154]:

x̂xx = ΣΣΣ0(ΦΦΦ)T
[
λIII + ΦΦΦΣΣΣ0(ΦΦΦ)T

]−1
. (4.8)

Thus, the problem boils down to the estimation of the parameters λ and {γi,BBBi}g
i=1.

This is achieved using a Type II maximum likelihood procedure. Moreover, different
techniques have been developed according to whether the block partition is known
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or not [154].

BSBL encoder: the ECG signal is split into a number of segments xxx, each
of which consists of W samples, where W is a tunable parameter not necessarily
representing the number of samples in a segment. What the encoder does is to
compute yyy = ΦΦΦxxx, which only entails a matrix multiplication. In our results, ΦΦΦ is the
0/1 matrix that was used in [153,159].

We remark that the encoder is extremely lightweight as it does not have to split
the ECG trace into segments, so peak detection and period normalization are not
executed.

BSBL decoder: the decoder operates according to the above Bayesian estima-
tion / maximum likelihood approach, see (4.8). Typical values for m and W are
m = 256 and W = 512 [153] and, in turn, the maximum compression efficiency is
given by W/m = 2 (in Section 4.4, we experiment with different (m, W ) pairs).

We observe that BSBL accounts for the intra-block correlation without consid-
ering the correlation structure among subsequent ECG segments. We thus classify
BSBL as an “intra-segment” compression scheme. For SOMP-CS, we have written
our own encoder/decoder pair, whereas for BSBL-CS we used the code provided by
the authors of [153]. The numerical results are discussed in Section 4.4.

4.3.5 Discrete Cosine Transform (DCT)

In the signal compression field, Discrete Cosine Transform (DCT) is often preferred
to the Fourier Transform due to its superior energy compaction capabilities and the
fact that it entails the use of real coefficients. Several ECG compression methods
exploiting DCT have been proposed in the literature [160–165]. Basically, in all
of the proposed algorithms DCT is used to reduce the amount of data to be sent
through the transmission of a subset of transform coefficients, i.e., those which carry
more information. Some solutions employ advanced techniques for the pre/post
processing of the DCT coefficients that, however, for wearable devices are expected
to be energetically prohibitive.

Hence, we consider two DCT based compression methods that differ in the
adopted coefficient selection approach:

• DCT-Cardinality Thresholding: with this selection method the number
of coefficients to be retained is given as input, and the coefficients are added
starting from the lowest frequencies, i.e., the leftmost coefficient. Through this
strategy the compression ratio can be finely tuned, but there are no guarantees



4.3. Signal Compression Algorithms 87

on the reconstruction error at the decompressor.

• DCT-Energy Thresholding: with this method the coefficients are selected
so as to meet an energy threshold constraint. The total energy of the DCT
spectrum, E, is calculated and the coefficients that contain a predetermined
fraction Eth of this energy are kept. The coefficients are selected again from the
lowest to the highest frequencies, exploiting the energy compaction property
of the DCT, so that their frequency position does not have to be encoded.

4.3.6 Discrete Wavelet Transform (DWT)

Wavelet compression schemes are based upon the transmission of a subset of the
transform coefficients. In fact, in the Wavelet domain most of the signal information
is often concentrated in just a few of them. Letting z[n] be the discrete input
temporal signal, defined for n = 0, 1, . . . , M −1, in this work we consider the Discrete
Wavelet Transform (DWT) [155], which is defined through the following equations

γ[j, k] = 1√
M

Ê
∑

n

z[n]ϕj,k[n] ,

where ϕj,k[n] = 1√
sj

0

ϕ

[
n − kτ0sj

0

sj
0

]
, j, k ∈ N .

(4.9)

γ[j, k] is the DWT coefficient matrix and z[n] can be expressed as

z[n] = (1/
√

M)
∑
j,k

γ[j, k]ϕj,k[n]. (4.10)

The parameter s0, called scale step, has a fixed value (greater than 1), and τ0 is
the translation step. Dyadic sample is commonly used, which amounts to setting
s0 = 2 and τ0 = 1. ϕ(·) is a function, referred to as mother wavelet, that is
translated and scaled to represent the original signal z[n]. An efficient and widely
adopted implementation of DWT, for both decomposition and reconstruction, uses
Quadrature Mirror Filters (QMF). As shown in (4.9), z[n] can be decomposed into
an infinite number of wavelets, but in practice a few levels of decomposition (i.e., a
finite number of Wavelet coefficients) already account for most of the signal energy.
In the case of dyadic sampling, at each decomposition step the frequency band of
the output signal is halved – this allows downsampling the output of each processing
step by a factor of 2, without any loss of information.

Wavelet based compression uses the most significant coefficients for reconstruc-
tion and the coefficient selection strategy is the main discriminating factor among
the existing algorithms. The most widely adopted selection strategies are:
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• DWT-Level Thresholding: all the coefficients falling below a certain thresh-
old are discarded. Usually, each level of decomposition has a different thresh-
old. This method is commonly used for denoising.

• DWT-Cardinality Thresholding: this is the counterpart of “DCT - Cardi-
nality Thresholding”. Here, a fixed number of coefficients is retained, discard-
ing those with the lowest absolute values. As for DCT, this selection strategy
allows fine tuning the compression ratio, which directly depends on the number
of coefficients retained. With this approach, it is however difficult to precisely
control the resulting reconstruction quality [166].

• DWT-Energy Thresholding: this is the counterpart of “DCT - Energy
Thresholding”. An energy threshold Eth < 1 is set. At each step of the Wavelet
transform, the coefficient with the highest value is retained (i.e., it is included
in the compressed vector yyy). The energy of the selected coefficients is defined
as E = yyyTyyy. This operation is repeated until E/E0 > Eth, where E0 is the
energy of the input signal z[n].

In this work, we implemented the algorithm of [106], which is based on energy
thresholding. There, in addition to the vector containing the retained coefficients,
a coefficient map is also sent so as to track their position within the considered
transform levels. The compression ratio is then tuned via Eth. Five levels of dyadic
decomposition were considered, and bi-orthogonal was used as the mother wavelet,
as it provided the best results among other choices.

4.3.7 Lightweight Temporal Compression (LTC)

LTC [103] is a fast linear approximation technique working as follows. Let z[n],
n = 0, 1, 2, . . . be the input time series. The algorithm starts selecting z[0] as the
left endpoint of the current approximating segment. The following points z[n] with
n > 0 are transformed into vertical intervals [z[n]−ε, z[n]+ε] where ε > 0 is an error
tolerance on the reconstructed signal. When point n > 1 is considered, LTC eval-
uates the segment with extremes (z[0], z[n]) and checks whether this segments falls
within each of the previously obtained vertical intervals around z[1], z[2], . . . , z[n−1].
If this is the case, the algorithm obtains the vertical interval for the current point
n and performs the check for the next point n + 1. Otherwise, the algorithm stops,
taking z[n − 1] as the right endpoint of the current segment. Thus, 1) z[0] and
z[n−1] are sent as the left and right endpoints of the current segment as an approx-
imation to values {z[0], z[1], . . . , z[n − 2], z[n − 1]} and 2) the algorithm reiterates
with a new approximating segment, taking z[n − 1] as its left endpoint.
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4.4 Numerical Results

In this section, we show quantitative results for the considered signal compression
algorithms, detailing their energy consumption, compression efficiency and recon-
struction fidelity. For the energy consumption, following the approach of [167,168]
we compute three metrics: 1) the energy consumption for the execution of the com-
pression algorithms in the node (termed compression energy), 2) the energy drained
by the transmission of the (either compressed or original) signal over a wireless
channel (transmission energy) and 3) the total energy, which is given by the sum
of the previous two metrics. The compression energy has been evaluated by tak-
ing into account the number of operations performed by the Micro-Controller Unit
(MCU), i.e., the number of additions, multiplications, divisions and comparisons.
These were then translated into the corresponding number of MCU cycles and, in
turn, into the energy consumption in Joule per bit considering a Cortex M4 [169]
processor, see also [167]. For the transmission energy, we took a Texas Instruments
CC2541 low-energy Bluetooth system-on-chip [170], which is widely adopted for IoT
devices. The Compression Efficiency (CE) has been computed as the ratio be-
tween the total number of bits that would be required to transmit the full signal
divided by those required for the transmission of the compressed bitstream. For the
reconstruction fidelity, we computed the Root Mean Square Error (RMSE) between
the original and the compressed signals, normalizing it with respect to the signal’s
peak-to-peak amplitude, that is:

RMSE = 100
p2p

√∑L
i=1(xi − x̂i)2

L
, (4.11)

where L corresponds to the total number of samples in the trace, xi and x̂i are
the original sample and the one reconstructed after the decompressor in position
i, respectively. p2p is the average peak-to-peak signal’s amplitude. We observe
that other metrics such as the Percentage Root mean square Difference (PRD) are
also possible. As pointed out in [171], PRD can mask the real performance of
compression algorithms since it depends on the mean value of the original signal,
whilst our RMSE metric allows to immediately gauge the error against the signal’s
range. For this reason, we use (4.11) as our preferred metric throughout the chapter.

In Section 4.4.1 we first assess the performance of the considered compression
algorithms for the standard test ECG traces from the PhysioNet MIT-BIH arrhyth-
mia database [172]. In Section 4.4.2, we extend our analysis to ECG traces that we
collected from a Zephyr BioHarness 3 wearable chest strap. Finally, in Section 4.4.3,
we consider PPG and RESP signals.
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Figure 4.4: RMSE vs compression efficiency for ECG signals.

4.4.1 PhysioNet ECG traces

In the first set of graphs, we show results for ECG signals. To this end, we considered
the following traces from the MIT-BIH arrhythmia database [172]: 101, 112, 115,
117, 118, 201, 209, 212, 213, 219, 228, 231 and 232, which were sampled at a
rate of 360 samples/s with 11−bit resolution. Note that not all the traces of the
database are usable (some are very noisy due to heavy artifacts probably due to the
disconnection of the sensing devices) and an educated selection has to be carried
out for a meaningful performance analysis, as done in previous work [172,173]. The
above performance metrics were obtained for these traces and their average values
are shown in the following plots.

In Figure 4.4 we show the RMSE vs CE performance for all compression algo-
rithms. Here, we consider the energy thresholding version of DCT (DCT-ET): we
also experimented with its cardinality thresholding (CT) variant and we found its
performance to be very similar to that of DCT-ET in every respect (RMSE, com-
pression efficiency and energy). Thus, in the following, implementation convenience
will dictate which of the two variants is to be preferred. From the figure, we can
see that LTC outperforms DCT-ET in terms of RMSE and CE up to high compres-
sion efficiencies (CE < 57), and is definitely better than DWT, which does a much
better job than DCT in terms of RMSE, especially at relatively small compression
efficiencies (CE < 30), but is unable to reach higher compression values. As regards
GSVQ, we move along the RMSE vs CE curves by changing the threshold that
governs the number of bits that are encoded into the residual stream. As discussed
in Section 4.3.2, residual encoding is the operation that affects the most the per-
formance of GSVQ. Clearly, the dictionary size K affects the maximum achievable



4.4. Numerical Results 91

compression: although not shown in the plot, we tested different values of K, and
found K = 4 to be a good trade-off between reconstruction error and compression ef-
ficiency. However, GSVQ happens to score worse than nearly all the aforementioned
approaches: it could be possible to avoid sending the residual encoding stream, so
as to reach higher compression efficiencies, but due to the use of a precomputed and
fixed dictionary, this would lead to a very high RMSE and is not recommended.
Interestingly, the performance of PCA closely matches that of LTC: although both
algorithms rely on linear approximations, PCA is rather involved, whereas LTC has
a much lighter computational cost, as we show shortly. Also, the trade-off curve
for PCA is obtained by varying the number of principal components h from 100
(leftmost point in the figure) down to 5 (rightmost point) in steps of 5, whereas
the performance of LTC is plotted varying ε within a continuous interval. Overall,
LTC permits a fine-grained control of the RMSE vs compression trade-off, whereas
this is not possible with PCA, especially at high compression efficiencies (small h).
Finally, LTC provides a means to precisely control the maximum reconstruction
error, through the parameter ε, whereas the number of retained principal compo-
nents h does not provide any guarantee in terms of reconstruction accuracy2. As
for the CS-based algorithms, neither SOMP-CS nor BSBL-CS provides satisfactory
performance. The compression efficiency of SOMP-CS is rather small and the cor-
responding RMSE tends to diverge for, e.g., CE larger than 5. As we shall see
shortly below, the overall energy performance of SOMP-CS is unsatisfactory when
compared to that of other algorithms and the compression strategy of BSBL-CS
has the lowest energy consumption, but its intra-segment approach is less effective
in terms of CE than that of other inter-segment schemes such as GSVQ and AE.
Although the results that we show here for SOMP-CS and BSBL-CS were respec-
tively obtained using the theory from [107] and [153], we found similar CE figures
in other papers [108]. In these studies, the compression efficiency is defined as
CE′ = ((W − m)/W ) × 100, with W being the number of original samples and m

the number of compressed samples that are transmitted to the receiver. With this
definition, CS schemes achieve maximum efficiencies of 80-90%. We observe that
these figures correspond to a CE ranging from 5 to 10 according to the definition
that we use in the present work, i.e., CE = W/m. Finally, for the AE, the number
of inner neurons h is varied as a free parameter in {100, 50, 25, 10, 5, 2}: h = 100 is
represented by the leftmost point in the graph, whereas the rightmost corresponds to
h = 2. AE obtains the best performance in terms of both RMSE and CE, surpassing
all the other schemes and providing relative errors of about 3%. The compression
achieved through AE can be higher than 100 when h = 2, still maintaining a low

2With PCA, an inverse transform at the compressor is required to assess the reconstruction
error provided by a certain value of h.
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Figure 4.5: RMSE as a function of the energy consumption associated with the com-
pression of ECG signals.

RMSE with respect to the other compression techniques. Also, going from h = 2
to h = 5 provides only a small benefit in terms of RMSE, while entailing a big leap
in compression efficiency. Increasing h beyond 10 does not provide any considerable
advantage in terms of representation accuracy, and has a negative impact on the
compression performance. At small compression efficiencies, adaptive algorithms
may be a valuable option: for instance, one may switch between LTC and AE as
a function of the required compression level. At the highest values of CE, the gain
of AE against LTC and DCT-ET (the second best algorithms) is 67% as regards
compression efficiency, still achieving an RMSE almost 80% lower. The maximum
RMSE is kept smaller than 4% in all cases.

In Figure 4.5, we show the RMSE and the energy drained for compression at
the transmitter, expressed in Joule per bit of the original ECG sequence. These
trade-off curves are obtained by varying the compression efficiency of each algorithm
from 1 to the maximum achievable, which is scheme-specific. The RMSE increases
with an increasing compression efficiency, whereas the compression energy depends
weakly on CE. As expected, BSBL-CS has the smallest energy consumption. LTC
is the second best, whereas SOMP-CS, GSVQ, PCA and AE perform very close to
one another and have the worst energy consumption for compression. The good
performance of BSBL-CS is due to its lightweight compression algorithm, which
just multiplies the input signal by sparse binary matrices, with entries in {0, 1}. We
underline that the energy consumption of the techniques on the right-hand side of
the figure, including AE, is dominated by the preprocessing chain of Figure 4.2. In
this plot, we also show the performance of AE by removing the contribution of the
pre-processing blocks: the corresponding curves are referred to in the plot as “AE
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Figure 4.6: RMSE as a function of the total energy consumption (compression plus
transmission) of ECG signals.

NoPre”. Note that filtering is always performed to remove measurement artifacts and
peak detection is also very often utilized to extract relevant signal features. Given
this, the energy consumption associated with the required pre-processing functions
may not be a problem, especially if these functions are to be executed anyway.

In Figure 4.6, we show the RMSE as a function of the total energy consumption,
which is obtained summing the energy required for compression to that for the
subsequent transmission of the compressed bitstream over a CC2541 Bluetooth low-
energy wireless interface. This total energy is then normalized with respect to the
number of bits in the original ECG signal. From this plot, we see that the total
energy consumption is dominated by the transmission energy, which depends on
the compression efficiency. In this respect, the best algorithms are LTC and AE,
and the algorithm of choice depends on the target RMSE that, in turn, directly
descends from the selected CE. As discussed above, an adaptive algorithm may be
a good option, where for each value of CE the scheme providing the smallest RMSE
is used. In Figure 4.6, the energy consumption when no compression is applied is
also shown for comparison. We see that signal compression, and the subsequent
reduction in size of the data to be transmitted, allows a considerable decrease in the
total energy consumption. Specifically, LTC and AE enable energy savings of about
one order of magnitude while providing RMSEs smaller than approximately 2%.
The performance of AE is particularly striking as it allows saving up to two orders
of magnitude in terms of energy consumption, by still keeping the RMSE around 4%.
This motivates the use of signal compression techniques for continuous monitoring
applications for IoT devices. Although not shown for the sake of readability of the
plot, PCA nearly achieves the same performance of GSVQ, in the region of practical
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Table 4.1: Average complexity [no. operations] and energy consumption [μJ] per ECG
segment. RMSE is 7.5% for all algorithms except AE for which the average RMSE is
3.75% (the highest with AE, obtained with h = 2 neurons in the inner compression layer).

DCT-ET DWT-ET GSVQ BSBL-CS SOMP-CS LTC AE

Additions 13463 7809.9 98114 3747 97302 1258.8 82439
Multiplications 9089.8 6883.5 82788 0 95805 0 81535.7
Divisions 0 323.2 1137.2 0 1045 634.1 938.6
Comparisons 30.4 7723.1 475.6 0 522 1231.1 462.7
Compression energy 0.74 0.88 6.47 0.12 6.84 0.37 5.83
TX energy 124.22 45.85 35.82 639.03 272.36 37.90 13.45
Total energy 124.96 46.73 42.29 639.15 279.20 38.27 19.28

interest. Note that the actual RMSE can be dynamically tuned at runtime, by
allowing slightly less accurate representations (and thus much higher compressions)
when no critical patterns are detected. Also, for AE, a visual inspection reveals that
a RMSE smaller than 4% entails excellent approximations of the original biosignals,
and that the error is mainly due to smoothing out spurious oscillations that are
introduced and that are not filtered by the preprocessing chain of Figure 4.2. A
breakdown of the complexity and energy consumption figures for the considered
algorithms is provided in Table 4.1, for the same RMSE of 7.5%). These metrics
were obtained for the PhysioNet ECG signals and represent the average complexity
(expressed in terms of number of operations) and energy consumption (Joules) for
the compression and transmission of a single ECG segment of data. From Table 4.1,
we see that BSBL-CS is the most energy efficient in terms of compression, LTC
is the second best, whereas SOMP-CS utilizes more energy as the ECG signal has
to be segmented prior to performing the CS sampling, see Section 4.3.4. AE is
more computationally demanding, but its maximum compression efficiency is much
higher. Since the transmission energy dominates that needed for data processing,
AE represents the best alternatives when all the sources of energy consumptions are
added up.

4.4.2 Wearable ECG Signals

We now present some results for ECG signals that we acquired from a Zephyr
BioHarness 3 wearable device [97]. To this end, we collected ECG traces from
eleven healthy individuals, which were continuously recorded during working hours,
i.e., from 8 a.m. to 6 p.m.. These were sampled at a rate of 250 samples/s with
each sample taking 12 bits.

The RMSE vs CE trade-off for these signals is shown in Figure 4.7 for the best
performing compression algorithms. The results are similar to those of Figure 4.4,
with the main difference that in this case the ECG signals have more artifacts and
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Figure 4.7: RMSE vs compression efficiency for ECG signals.

a higher variability. As such, the resulting RMSE is also higher for all schemes and
the compression performance is degraded. The general trends and recommendations
remain unchanged, i.e., SOMP-CS and LTC are good choices at low up to interme-
diate compression efficiencies, whereas AE performs better at higher CEs. For this
figure, BSBL-CS achieved high RMSE values maintaining low CEs, thus performing
worse than its SOMP counterpart, and has thus been omitted. Similarly, GSVQ
performed similar to AE in terms of RMSE, but only when CE ≤ 5.

The energy consumption figures of all schemes, although slightly rescaled, have
a totally similar behavior as those obtained with the PhysioNet MIT-BIH traces
(see Figure 4.5 and Figure 4.6) and are thus not shown in the interest of space. In
fact, the energy consumption is marginally affected by the non-steady behavior of
wearable signals, which impacts more on the RMSE and compression performance.

As an illustrative example, in Figure 4.8 and Figure 4.9 we respectively look
at the per segment RMSE and CE performance of LTC and AE. In Figure 4.8 we
fix the compression efficiency to CE = 28 for all schemes and we show the RMSE
for each segment considering 12 minutes of ECG readings from one of the subjects.
Overall, LTC settles around an RMSE of 11% and AE achieves the best accuracy,
i.e., RMSE = 2.6%. Figure 4.9 shows the per segment compression efficiency for
the same ECG trace by operating LTC and AE, so that their average RMSE is 3%.
From this plot, we see that AE reaches much higher CEs, delivering strikingly good
performance.
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4.4.3 PPG and RESP Signals

As a final result, in Figure 4.10 and 4.11 we respectively show the RMSE vs CE
performance for PPG and respiratory (RESP) signals from the PhysioNet MIMIC-II
waveform database [172]. In these graphs, we only show the performance of the
two best algorithms, namely, LTC and AE. AE is plotted considering the number
of inner neurons h ∈ {100, 50, 25, 10, 5, 2}, where h = 100 is represented by the
leftmost point, whereas h = 2 by the rightmost, and outperforms all the remaining
schemes for h ≤ 5. Clearly, this technique is still effective for these signal types.
For respiratory signals, LTC performs best for compression efficiencies up to 40; the
compression efficiency obtained for PPG signals is smaller than that achieved for
ECG and RESP, but this is due to the lower sampling rate in the PPG traces. For
all signals, the RMSE of AE never exceeds 4%, while its CE respectively reaches
56 and 156 for PPG ad RESP when just two inner neurons (h = 2) are utilized.
These results are impressive and motivate further research, especially to make the
AE learning phase online and subject-adaptive.

4.5 Chapter conclusions

In this chapter, we advocated the use of lossy compression as a means to boost
energy efficiency in wearable wireless devices. As a first contribution, we presented
an original autoencoder based technique as an efficient and lightweight lossy com-
pressor for biosignals. These neural network architectures are found to be extremely
effective, leading to the highest compression efficiencies at a reasonable computa-
tional cost. Their performance is striking especially at very high compression rates,
where just two inner neurons are utilized to represent input patterns comprising
several hundreds of points, still providing very small approximation errors (usually
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Figure 4.11: RMSE vs compression ef-
ficiency for respiratory signals.

the RMSE remains bounded within 4%). We then considered compression algo-
rithms based on linear approximations. Despite their inherent simplicity, we found
them to be quite effective and, when the required compression efficiency is not too
high, they represent a good option among competing solutions. We also found
that a recent scheme belonging to this class, called lightweight temporal compres-
sion, very closely matches the performance of principal component analysis, at a
much smaller computational cost and additionally providing inbuilt guarantees on
the maximum approximation error at the decompressor. The performance of these
algorithms was numerically evaluated against that of the most prominent schemes
from the literature, i.e., Fourier and Wavelet transforms, compressive sensing and
vector quantization techniques.

From the numerical analysis that we have carried out in this work, we have
identified several avenues for future research. We have seen that the most promising
means to reach high compression efficiencies is to exploit inter-segment correlation.
Autoencoder-based algorithms belong to this category and do a very good job in all
respects. Nevertheless, they suffer from a main drawback: these networks need to
go through an offline training phase, during which their weights are shaped utilizing
a representative dataset. Although they have excellent generalization capabilities,
they will perform worse in representing input patterns that sharply differ from those
in the dataset used for training. Hence, a desirable contribution would be to concoct
a new neural network based algorithm which, after an initial offline training phase,
would be able to adapt its weights to new input patterns in an online fashion, so
as to properly react to changing input conditions. Another interesting subject for
future investigations is the joint compression of multiple vitals, including respiratory
rate, electrocardiogram, plethysmograph, and data from motion sensors.
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CHAPTER 5

LEARNING METHODS FOR LONG-TERM CHANNEL
GAIN PREDICTION IN WIRELESS NETWORKS

Efficiently allocating resources and predicting cell handovers is essential in modern
wireless systems, but is only possible by means of an efficient way to estimate the
future state of the network. In order to accomplish this, this chapter investigates
two learning techniques to predict the long-term channel gains in a wireless network.
Previous works in the literature found efficient methods to perform this prediction
with the aid of a GPS signal: here, we predict the future channel gains using only
past channel samples, without any additional geographical information.

5.1 Introduction to the chapter

Global mobile data traffic has grown 4,000-fold over the past 10 years [174], and its
growth is expected to continue, fueled by the high bandwidth demands of multimedia
applications (video alone already accounted for a majority of the total mobile data
traffic in 2015). As mobile multimedia applications have strict Quality of Service
(QoS) requirements, the development of optimal resource allocation techniques is
a priority for both industry and academia. Applications such as video streaming
would greatly benefit from an accurate channel prediction, and prediction-based
adaptive streaming systems have already been proposed [175]. Most of the efforts
in channel prediction have focused on Multiple Input Multiple Output (MIMO)
techniques on short time horizons, but several works [176] [177] have expressed the
need for long-term accurate channel gain predictions.

In this chapter, we investigate learning methods to predict the wireless channel
gain on a long-term scale, without any inputs other than the time-averaged Received
Signal Strength Indicator (RSSI). This prediction is performed by the Base Station
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(BS), which is the only fixed element in the network: the BS can indirectly learn
the mobility patterns of the mobile users and the fading characteristics of the chan-
nel by observing patterns in their RSSI. The two machine learning techniques we
use are Graphical Bayesian (GB) models and Support Vector Regression machines
(SVRs). The GB model can be used as a baseline, as it does not try to generalize
its experience, but simply considers each class as a separate classification problem.
SVRs are instead able to find and generalize patterns in the data, making better
predictions with fewer data.

In the following, Section 5.2 presents the state of the art in channel prediction,
and Section 5.3 illustrates the learning techniques we used. Section 5.4 presents the
model we used to generate the data and the simulation results we obtained, and
Section 5.5 concludes the paper.

5.2 State of the art

Wireless links are often modeled as Rayleigh fading channels. Most model-based
prediction systems concentrate on short-term predictions of the fading envelope for
wideband channels [178], and cannot be directly used for optimization at the higher
layers. As mobility was not a central issue, the relatively predictable nature of path
loss made long-range channel prediction an easy problem.

In [179], the authors predict future channel quality from receiver-side Channel
State Information (CSI), but the Autoregressive (AR) filters they use are only ac-
curate on a timescale of a few milliseconds. The work in [180] proposes an OFDM-
specific prediction method based on time-domain statistics with a slightly longer
range, but the timescales for accurate predictions are still far below 100 ms. Another
AR model is proposed in [181], but its predictions are extremely short-range and
how to choose the order of the filter is an issue. Several works in the literature have
attempted to solve the long-term channel prediction problem with machine learning
techniques. A typical example can be found in [182], where a distributed chan-
nel prediction algorithm for sensor networks is proposed, based on message passing
techniques to minimize the Kullback-Leibler divergence between the expected prior
distribution and the actual posterior. The problem of channel prediction is central
in Cognitive Radio (CR) systems, and the authors in [183] introduce a Bayesian
Network (BN) to solve this issue. Their BN predicts the future capacity for each
possible CR configuration, and adapts to channel conditions online, but it is meant
for Modulation and Coding System (MCS) selection rather than for optimization
at higher layers. An empirical approach is followed in [184], combining a probing
mechanism with Support Vector Regression (SVR) to predict link quality in dense
wireless networks. Thanks to mobility, the probing system can learn about several
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different topologies and extend this knowledge to larger, denser networks. Finally,
the authors in [177] perform long-term channel predictions using both spatial and
temporal information. A Gaussian Process (GP) regression technique is proposed,
training the system through a series of routes on a city map. Their prediction
method is robust against spatial errors, with better performance than both Sup-
port Vector Machines (SVMs) and AR filters. Although their method is sound for
large-scale scenarios, it does not deal with smaller cells and needs Global Positioning
System (GPS) information from clients, which might not be available.

5.3 Learning techniques

The two learning techniques we use are extremely versatile: they do not assume a
specific channel model, so they can be trained and deployed on any wireless channel
with only minor adjustments. In order to make the necessary data easy to obtain
in a practical scenario, we decided to use the Received Signal Strength Indicator
(RSSI) [185] as training data, averaging the data over a long enough window to
reduce measurement errors and avoid sampling holes even in a congested network.

5.3.1 Graphical Bayesian Model

The GB model can be represented by the graph shown in Figure 5.1. As the Bayesian
model only works for discrete attributes, the dynamic interval of the channel gain
needs to be discretized into M classes. The memory-n Bayesian model uses the
past n samples as features, resulting in Mn possible combinations. The predictor is
essentially a classifier, in which the future channel sample is the correct class.

The multimodal classifier is implemented by a Dirichlet distribution [186] over
the M -dimensional simplex, which is parameterized by a real non-negative vector
α:

p(X = (x1, . . . , xM)|α) = 1
B(α)

M∏
i=1

xαi−1
i , (5.1)

where the normalizing constant B(α) is the multivariate Beta function [187]. The
random vector X = (X1, . . . , XM) is a probability distribution over the M classes,
representing the probability that the given sample is in each class (i.e., the proba-
bility distribution of the next channel sample). The expected value of X is given
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xt−2 xt−1 xt xt+1

Figure 5.1: Representation of the graphical Bayesian model with 3-state memory

by:

E[Xi] = αi∑M
j=1 αj

(5.2)

Var[Xi] =
αi
∑

j �=i αj

(∑M
j=1 αj)2(∑M

j=1 αj + 1)
(5.3)

Intuitively, the value of αi relative to the sum of the α vector is a measure of how
probable a class is, and the value of the sum measures the uncertainty on that prob-
ability. As the conjugate distribution of the Dirichlet distribution is the Dirichlet-
multinomial distribution, Bayesian inference can be performed by generating a new
parameter vector α′, defined as

α′
i = αi + ni, (5.4)

where ni is the number of observed transitions to class i. Then, the expected prob-
ability distribution of the next sample is given by

p(i) = α′
i∑M

j=1 α′
j

, (5.5)

and the predicted class then corresponds to the maximum probability value.

5.3.2 Support Vector Regression Machine

Support Vector Regression (SVR) machines [78, 79], minimize the following cost
function:

C
∑

i

Eε(fw(x(i)) − x
(i)
t+1) + 1

2 ||w||2. (5.6)

In equation (5.6), fw is a function taking as input a memory-n feature vector x(i) =
(xt−n+1, . . . , xt) and predicting a future sample x̂t+1, for a given training example i.
The error between this predicted sample and the actual sample at time t + 1, xt+1,
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is then fed to an ε-insensitive error function

Eε(z) =

⎧⎪⎨⎪⎩
|z| − ε if |z| > ε

0 otherwise
(5.7)

so that fw is constrained to have maximum absolute prediction error lower than a
given constant ε for all the training data. The second term in (5.6) accounts for
regularization: the trade-off between the minimization of the two terms is governed
by the constant C (the reader can refer to [81, 82] for more details). In (5.6), all

Figure 5.2: Graphical representation of an ε-tube with slack variables.

the training examples are assumed to lie in an “ε-tube” (see Figure 5.2). However,
this is not verified in general, and (5.6) can be modified so as to allow for some
tolerance in the prediction errors. Therefore, for each training example x(i), it
is possible to introduce slack variables ξi and ξ∗

i , where ξi > 0 is related to a
point for which (x(i)

t+1 − fw(x(i))) > ε, and ξ∗
i > 0 is related to a point for which

(fw(x(i))−x
(i)
t+1) < −ε. Training examples are thus allowed to lie outside the ε-tube,

as in Figure 5.2, provided that the corresponding slack variables are positive: this
condition can be formulated as

−ε − ξ∗
i ≤ x

(i)
t+1 − fw(x(i)) ≤ +ε + ξi (5.8)

The optimization problem becomes

min C
∑

i

(ξi + ξ∗
i ) + 1

2 ||w||2, (5.9)

subject to the constraints ξi, ξ∗
i ≥ 0, and (5.8). It can be seen that only the examples

outside the ε-tube contribute to the cost, with deviations being linearly penalized.
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Computing the dual formulation of (5.9), exploiting the Karush-Kuhn-Tucker con-
ditions [80,188], and assuming that fw is simply a linear function of the inputs, i.e.,
fw(x(i)) =< w, x(i) > +b, it can be found that

w =
∑

i

(λi − λ∗
i )x(i), (5.10)

were λi and λ∗
i are the Lagrange multipliers. The prediction function becomes

fw(x) =
∑

i

(λi − λ∗
i ) < x(i), x > +b. (5.11)

In (5.10), the weight vector w is a function of the training examples x(i); however,
only those examples such that λi − λ∗

i �= 0, called Support Vectors (SVs), have to be
evaluated in (5.10) and (5.11). Finally, it is possible to allow the prediction function
fw to be non linear in each training example x(i), so as to allow better generalization
over non linear target functions. In fact, in (5.11), the SVs only appear inside scalar
products, and (5.10) does not need to be calculated explicitly. Therefore, it can be
proved that < x(i), x > in (5.11) can be replaced by particular non linear functions
k(x(i), x), known as kernels, which correspond to scalar products between non linear
transformations of x(i) and x. Substituting k(x(i), x) in (5.11), we thus obtain the
optimal prediction function in a non-linear feature space, rather than in input space:

fw(x) =
m∑

i=1
(λi − λ∗

i )k(x(i), x) + b. (5.12)

5.4 Simulation settings and results

The two learning methods were trained on the same RSSI data, generated by sim-
ulating a realistic urban scenario. The wireless channel we considered used a 945
MHz downlink carrier frequency (one of the commercial bands used in LTE), and
the users moved in a Manhattan grid of 100 buildings. The grid we used is composed
of 20 m wide square buildings, with 10 m wide one-way streets at each corner. The
BS is placed at coordinates (140, 140), on top of a building close to the center of the
simulation area.

5.4.1 Propagation loss and fading

The propagation loss was computed with the open-source system-level network sim-
ulator NS–3 [189]. In particular, we used the LTE module [190] and a radio prop-
agation model called Hybrid Buildings Propagation Loss Model, which chooses the
correct propagation model based on the reciprocal position of transmitter and re-
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ceiver (both outdoors, both indoors, only one indoors). This model also takes into
account the external wall penetration loss (for different types of buildings, i.e., con-
crete with windows, concrete without windows, stone blocks, wood), and the internal
wall penetration loss.

We used the NS–3 simulation to create a square grid of path loss measures in
our urban scenario, with a sampling distance of 33 cm. The path loss was then
approximated as a linear combination of the 4 closest points in the grid, weighted
by the relative distance. The main parameters of the ns–3 simulation are listed in
Table 5.1.
The fading and shadowing processes were both generated using MATLAB, imple-
menting well-known models. We used the log-normal model for shadowing, with a
standard deviation of 4 dB and a correlation distance of 8 m. Finally, Doppler fad-
ing was modeled with a Rayleigh distribution, using the parameters listed in Annex
B.2 of [191] and the MATLAB Welch periodogram method. In the fading calcu-
lation, the node speed was assumed to be constant, simplifying the computation
significantly with negligible error.

5.4.2 Mobility model

We used two mobility models: pedestrian and vehicular. In both models, the user
goes from point A to point B by choosing the direction that takes him/her closer to
point B at each intersection.

In the pedestrian model, a person walks at a constant speed of 1.5 m/s along
the side of the nearest building at a distance of 0.5 m. Road crossings are placed
at each intersection, and the pedestrian waits for a random time between 0 and 5
seconds before crossing to wait for cars.

Table 5.1: Path loss computation parameters

Parameter Value
Downlink carrier frequency 945 MHz

Uplink carrier frequency 900 MHz
RB bandwidth 180 kHz

Available bandwidth 25 RB
Number of eNBs 1
eNBs beamwidth 360◦ (isotropic)

TX power used by eNBs 43 dBm
eNB noise figure 3 dB

Number of buildings 100
Floors for each building 5

Radio Environment Map resolution 9 samples/m2
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Figure 5.3: Examples of trajectories for the two mobility models.

In the vehicular model, the driver keeps a constant speed of 15 m/s while driving
straight, switching between the 3 lanes by moving at a 45 degree angle. Before a
turn, the driver switches to the correct lane (e.g., switching to the right lane before
turning right), then slows down to 5 m/s with a constant deceleration in the 5 meters
before the curve and finally makes a circular turn. After reaching the destination, the
driver stops and reverses to slowly park on the curb, with a semi-circular trajectory.

The channel data was generated by running the urban scenario 5000 times for
the pedestrian model and 10000 for the vehicular model, obtaining 3-4 days of data
for the vehicular model and 20 hours for the pedestrian model (the car reaches its
destination faster, so the traces are shorter). Two example trajectories for both
models are shown in Figure 5.3.

5.4.3 Learning parameters and results

Both prediction methods were trained on the full dataset, with two different sam-
pling rates: the channel was averaged over a window of 1 s and 0.5 s. The Bayesian
model used a Gaussian prior, centered on the last known channel sample; the prob-
ability vector for all classes was multiplied by a factor k to obtain the Dirichlet pa-
rameter vector α. Both the prior weight factor k and the variance σ of the Gaussian
distribution were optimized as hyperparameters by cross-validation. As regards the
SVR learning algorithm, we found the Radial Basis Function (RBF) kernel: k(zi, zj)
= e−γ||zi−zj ||2 to perform best with respect to other possible kernel choices. In this
case, the hyperparameters of the model are γ and C in (5.9): a grid search on (γ, C)
pairs was thus performed, and the one with the best cross-validation RMSE was
selected. After cross-validation, the performance of both prediction methods was
measured on a previously unknown test set.

Figure 5.4 shows the prediction RMSE for the pedestrian mobility model: the
quality of the prediction is very good even with the simpler model, as pedestrians



5.4. Simulation settings and results 107

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

R
M

S
E

 (
dB

)

Distance (s)

Pedestrian (1 s step)

Bayesian (memory: 1)
Bayesian (memory: 2)

SVR (memory: 1)
SVR (memory: 3)
SVR (memory: 5)

Figure 5.4: Prediction error for the pedestrian scenario (1 s window)
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Figure 5.5: Prediction error for the vehicular scenario (1 s window)

are slow and generally highly predictable. As expected, SVR clearly outperforms the
naive Bayesian model, exploiting its generalization capabilities and to better capture
the features of the model. The gain of the longer memory is less pronounced for
the Bayesian model, as it is overshadowed by the small size of the dataset (a longer
memory means that a bigger dataset is necessary, and the memory-3 Bayesian model
is not plotted, as its performance is not better than that with memory 2).

In the vehicular scenario, the RMSE is higher and the performance gap between
the two methods is smaller (see Figure 5.5). The Bayesian model even outperforms
the SVR if the prediction is more than 3 seconds ahead, but a prediction error of
more than 7 dB is only slightly better than no prediction at all (the prediction
RMSE when using a memoryless channel model is about 8 dB). This may be due
to the high speed of the vehicles (∼ 10 times the speed of the pedestrians), which
makes accurate generalizations about the evolution of the channel hard.

Figure 5.6 and Figure 5.7 show the performance of the Bayesian method with
a channel sampling window of 0.5 s; due to the computational cost of the SVR
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Figure 5.6: Prediction error for the pedestrian scenario (0.5 s window)
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Figure 5.7: Prediction error for the vehicular scenario (0.5 s window)

training, its performance in this case has not been evaluated. The figures show
that the trend in the performance of the Bayesian method is essentially the same,
although the error is higher; the performance of the memory-3 Bayesian model hints
that a longer memory is beneficial for the pedestrian model, but it loses most of its
benefits in the more chaotic vehicular scenario unless a bigger dataset is used.

Finally, Figure 5.8 shows the performance of the two predictors when they are
trained with a reduced dataset: the two predictors were trained on 20% of the
available data in the vehicular scenario with a 1 second step. The plot shows how the
performance of the SVR degrades far less than that with the Bayesian model, thanks
to its better ability to generalize from experience. Indeed, the reduced-dataset SVR
performs better than the full-dataset Bayesian model when the prediction distance
is less than 5 seconds.
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Figure 5.8: Prediction error for the vehicular scenario (1 s window) including results
from a partial training set

5.5 Chapter conclusions

In this chapter, we described and tested two learning-based methods to use past
wireless channel information to predict the future channel gain. We compared the
performance of the two methods over a synthetically generated dataset with random
mobility for both pedestrian and vehicular scenarios.

The training process was performed with just a few hours of RSSI data, so a
BS with multiple connected users might be able to quickly gather the necessary
training data and achieve a high-quality prediction in a very short time. However,
the computational cost of the training itself is not negligible; while SVRs show a
clear performance gain in both scenarios, the Bayesian model might be enough for
applications that need a lower precision. It is worth noting that the SVR can have
a satisfactory performance even when trained using a reduced dataset: this makes
it ideal if the limiting factor is not the computational capability, but the size of
the available dataset (e.g., in adaptive systems that are trained online to follow a
time-varying scenario). The quality of the predictions is generally high, and the
RMSE is almost as low as the results shown in [177], but without the use of GPS
data, which greatly impacts battery lifetime.

Future work may include a refinement of the prediction methods and the training
of the predictors on data from real cellular systems. Finally, a promising develop-
ment might include the creation of a prediction-based resource optimization system
like the one presented in [175].
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CHAPTER 6

END TO END LEARNING FOR SELF-DRIVING CARS

From January, 2016 to July, 2016 I was on a leave at the autonomous driving team
of Nvidia in Holmdel, NJ, USA, as a deep learning research intern. There, I partic-
ipated in the effort of developing Nvidia’s first self-driving car, known as “BB8”, by
applying state-of-the-art deep learning techniques to teach a car how to drive, only
exploiting road images from a front-facing camera. Due to a non disclosure agree-
ment signed with the company, the aforementioned results can not be described in
detail. Hence, this chapter gives a general overview of the results obtained by the
entire research group, during the period I spent as an intern.

We trained a convolutional neural network (CNN) to map raw pixels from a
single front-facing camera directly to steering commands. This end-to-end approach
proved surprisingly powerful. With minimum training data from humans the system
learns to drive in traffic on local roads with or without lane markings and on high-
ways. It also operates in areas with unclear visual guidance such as in parking lots
and on unpaved roads. The system automatically learns internal representations of
the necessary processing steps such as detecting useful road features with only the
human steering angle as the training signal. We never explicitly trained it to de-
tect, for example, the outline of roads. Compared to explicit decomposition of the
problem, such as lane marking detection, path planning, and control, our end-to-
end system optimizes all processing steps simultaneously. We argue that this will
eventually lead to better performance and smaller systems. Better performance will
result because the internal components self-optimize to maximize the overall system
performance, instead of optimizing human-selected intermediate criteria, e.g., lane
detection. Such criteria understandably are selected for ease of human interpretation
which doesn’t automatically guarantee maximum system performance. Smaller net-
works are possible because the system learns to solve the problem with the minimal
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number of processing steps. We used an NVIDIA DevBox and Torch 7 for train-
ing and an NVIDIA DRIVE PX self-driving car computer also running Torch 7 for
determining where to drive. The system operates at 30 frames per second (FPS).

6.1 Introduction to the chapter

CNNs [192] have revolutionized pattern recognition [193]. Prior to the widespread
adoption of CNNs, most pattern recognition tasks were performed using an initial
stage of hand-crafted feature extraction followed by a classifier. The breakthrough of
CNNs is that features are learned automatically from training examples. The CNN
approach is especially powerful in image recognition tasks because the convolution
operation captures the 2D nature of images. Also, by using the convolution kernels
to scan an entire image, relatively few parameters need to be learned compared to
the total number of operations. While CNNs with learned features have been in
commercial use for over twenty years [194], their adoption has exploded in the last
few years because of two recent developments. First, large, labeled data sets such
as the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [195] have
become available for training and validation. Second, CNN learning algorithms
have been implemented on the massively parallel graphics processing units (GPUs)
which tremendously accelerate learning and inference. In this paper, we describe a
CNN that goes beyond pattern recognition. It learns the entire processing pipeline
needed to steer an automobile. The groundwork for this project was done over
10 years ago in a Defense Advanced Research Projects Agency (DARPA) seedling
project known as DARPA Autonomous Vehicle (DAVE) [196] in which a sub-scale
radio control (RC) car drove through a junk-filled alley way. DAVE was trained
on hours of human driving in similar, but not identical environments. The training
data included video from two cameras coupled with left and right steering commands
from a human operator. In many ways, DAVE-2 was inspired by the pioneering work
of Pomerleau [197] who in 1989 built the Autonomous Land Vehicle in a Neural
Network (ALVINN) system. It demonstrated that an end-to-end trained neural
network can indeed steer a car on public roads. Our work differs in that 25 years
of advances let us apply far more data and computational power to the task. In
addition, our experience with CNNs lets us make use of this powerful technology.
(ALVINN used a fully-connected network which is tiny by today’s standard.) While
DAVE demonstrated the potential of end-to-end learning, and indeed was used to
justify starting the DARPA Learning Applied to Ground Robots (LAGR) program
[198], DAVE’s performance was not sufficiently reliable to provide a full alternative
to more modular approaches to off-road driving. DAVE’s mean distance between
crashes was about 20 meters in complex environments. Nine months ago, a new effort
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Figure 6.1: High-level view of the data collection system.

was started at NVIDIA that sought to build on DAVE and create a robust system
for driving on public roads. The primary motivation for this work is to avoid the
need to recognize specific human-designated features, such as lane markings, guard
rails, or other cars, and to avoid having to create a collection of “if, then, else” rules,
based on observation of these features. This section describes preliminary results of
this new effort.

6.2 Overview of the DAVE-2 System

Figure 6.1 shows a simplified block diagram of the collection system for training
data for DAVE-2. Three cameras are mounted behind the windshield of the data-
acquisition car. Time-stamped video from the cameras is captured simultaneously
with the steering angle applied by the human driver. This steering command is
obtained by tapping into the vehicle’s Controller Area Network (CAN) bus. In
order to make our system independent of the car geometry, we represent the steering
command as 1/r where r is the turning radius in meters. We use 1/r instead of r to
prevent a singularity when driving straight (the turning radius for driving straight
is infinity). 1/r smoothly transitions through zero from left turns (negative values)
to right turns (positive values).

Training data contains single images sampled from the video, paired with the
corresponding steering command (1/r). Training with data from only the human
driver is not sufficient. The network must learn how to recover from mistakes.
Otherwise the car will slowly drift off the road. The training data is therefore
augmented with additional images that show the car in different shifts from the
center of the lane and rotations from the direction of the road.
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Figure 6.2: Training the neural network.

Figure 6.3: The trained network is used to generate steering commands from a single
front-facing center camera.

Images for two specific off-center shifts can be obtained from the left and the right
camera. Additional shifts between the cameras and all rotations are simulated by
viewpoint transformation of the image from the nearest camera. Precise viewpoint
transformation requires 3D scene knowledge which we don’t have. We therefore
approximate the transformation by assuming all points below the horizon are on
flat ground and all points above the horizon are infinitely far away. This works
fine for flat terrain but it introduces distortions for objects that stick above the
ground, such as cars, poles, trees, and buildings. Fortunately these distortions don’t
pose a big problem for network training. The steering label for transformed images
is adjusted to one that would steer the vehicle back to the desired location and
orientation in two seconds. A block diagram of our training system is shown in
Figure 6.2. Images are fed into a CNN which then computes a proposed steering
command. The proposed command is compared to the desired command for that
image and the weights of the CNN are adjusted to bring the CNN output closer to
the desired output. The weight adjustment is accomplished using back propagation
as implemented in the Torch 7 machine learning package.

Once trained, the network can generate steering from the video images of a single
center camera. This configuration is shown in Figure 6.3.
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6.3 Data collection

Training data was collected by driving on a wide variety of roads and in a diverse
set of lighting and weather conditions. Most road data was collected in central New
Jersey, although highway data was also collected from Illinois, Michigan, Pennsylva-
nia, and New York. Other road types include two-lane roads (with and without lane
markings), residential roads with parked cars, tunnels, and unpaved roads. Data
was collected in clear, cloudy, foggy, snowy, and rainy weather, both day and night.
In some instances, the sun was low in the sky, resulting in glare reflecting from the
road surface and scattering from the windshield.

Data was acquired using either our drive-by-wire test vehicle, which is a 2016
Lincoln MKZ, or using a 2013 Ford Focus with cameras placed in similar positions to
those in the Lincoln. The system has no dependencies on any particular vehicle make
or model. Drivers were encouraged to maintain full attentiveness, but otherwise
drive as they usually do. As of March 28, 2016, about 72 hours of driving data was
collected.

6.4 Network architecture

We train the weights of our network to minimize the mean squared error between
the steering command output by the network and the command of either the hu-
man driver, or the adjusted steering command for off-center and rotated images (see
Section 6.5.2). Our network architecture is shown in Figure 6.4. The network con-
sists of 9 layers, including a normalization layer, 5 convolutional layers and 3 fully
connected layers. The input image is split into YUV planes and passed to the net-
work. The first layer of the network performs image normalization. The normalizer
is hard-coded and is not adjusted in the learning process. Performing normalization
in the network allows the normalization scheme to be altered with the network ar-
chitecture and to be accelerated via GPU processing. The convolutional layers were
designed to perform feature extraction and were chosen empirically through a series
of experiments that varied layer configurations. We use strided convolutions in the
first three convolutional layers with a 2×2 stride and a 5×5 kernel and a non-strided
convolution with a 3 × 3 kernel size in the last two convolutional layers. We follow
the five convolutional layers with three fully connected layers leading to an output
control value which is the inverse turning radius. The fully connected layers are
designed to function as a controller for steering, but we note that by training the
system end-to-end, it is not possible to make a clean break between which parts of
the network function primarily as feature extractor and which serve as controller.
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Figure 6.4: CNN architecture. The network has about 27 million connections and 250
thousand parameters.

6.5 Training details

6.5.1 Data selection

The first step to training a neural network is selecting the frames to use. Our
collected data is labeled with road type, weather condition, and the driver’s activity
(staying in a lane, switching lanes, turning, and so forth). To train a CNN to do
lane following we only select data where the driver was staying in a lane and discard
the rest. We then sample that video at 10 FPS. A higher sampling rate would
result in including images that are highly similar and thus not provide much useful
information. To remove a bias towards driving straight the training data includes a
higher proportion of frames that represent road curves.
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6.5.2 Augmentation

After selecting the final set of frames we augment the data by adding artificial
shifts and rotations to teach the network how to recover from a poor position or
orientation. The magnitude of these perturbations is chosen randomly from a normal
distribution. The distribution has zero mean, and the standard deviation is twice the
standard deviation that we measured with human drivers. Artificially augmenting
the data does add undesirable artifacts as the magnitude increases (see Section 6.2).

6.6 Simulation

Before road-testing a trained CNN, we first evaluate the network performance in
simulation. A simplified block diagram of the simulation system is shown in Fig-
ure 6.5. The simulator takes pre-recorded videos from a forward-facing on-board
camera on a human-driven data-collection vehicle and generates images that ap-
proximate what would appear if the CNN were, instead, steering the vehicle. These
test videos are time-synchronized with recorded steering commands generated by
the human driver. Since human drivers might not be driving in the center of the
lane all the time, we manually calibrate the lane center associated with each frame
in the video used by the simulator. We call this position the “ground truth”. The
simulator transforms the original images to account for departures from the ground
truth. Note that this transformation also includes any discrepancy between the hu-
man driven path and the ground truth. The transformation is accomplished by the
same methods described in Section 6.2. The simulator accesses the recorded test
video along with the synchronized steering commands that occurred when the video
was captured. The simulator sends the first frame of the chosen test video, adjusted
for any departures from the ground truth, to the input of the trained CNN. The CNN
then returns a steering command for that frame. The CNN steering commands as
well as the recorded human-driver commands are fed into the dynamic model [199]
of the vehicle to update the position and orientation of the simulated vehicle. The
simulator then modifies the next frame in the test video so that the image appears
as if the vehicle were at the position that resulted by following steering commands
from the CNN. This new image is then fed to the CNN and the process repeats. The
simulator records the off-center distance (distance from the car to the lane center),
the yaw, and the distance traveled by the virtual car. When the off-center distance
exceeds one meter, a virtual human intervention is triggered, and the virtual vehicle
position and orientation is reset to match the ground truth of the corresponding
frame of the original test video.
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Figure 6.5: Block-diagram of the drive simulator.

Figure 6.6: Screen shot of the simulator in interactive mode. See Section 6.7.1 for
explanation of the performance metrics. The green area on the left is unknown because
of the viewpoint transformation. The highlighted wide rectangle below the horizon is the
area which is sent to the CNN.

6.7 Evaluation

Evaluating our networks is done in two steps, first in simulation (see Figure 6.6), and
then in on-road tests. In simulation we have the networks provide steering commands
in our simulator to an ensemble of prerecorded test routes that correspond to about
a total of three hours and 100 miles of driving in Monmouth County, NJ. The test
data was taken in diverse lighting and weather conditions and includes highways,
local roads, and residential streets.
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6.7.1 Simulation tests

We estimate what percentage of the time the network could drive the car (auton-
omy). The metric is determined by counting simulated “human interventions” (see
Section 6.6). These interventions occur when the simulated vehicle departs from the
center line by more than one meter. We assume that in real life an actual interven-
tion would require a total of six seconds: this is the time required for a human to
retake control of the vehicle, re-center it, and then restart the self-steering mode.
We calculate the percentage autonomy by counting the number of interventions,
multiplying by 6 seconds, dividing by the elapsed time of the simulated test, and
then subtracting the result from 1:

autonomy =
(

1 − #interventions × 6 [seconds]
elapsed time [seconds]

)
× 100 (6.1)

Thus, if we had 10 interventions in 600 seconds, we would have an autonomy
value of (

1 − 10 × 6
600

)
× 100 = 90% (6.2)

6.7.2 On-road tests

After a trained network has demonstrated good performance in the simulator, the
network is loaded on the DRIVETM PX in our test car and taken out for a road
test. For these tests we measure performance as the fraction of time during which
the car performs autonomous steering. This time excludes lane changes and turns
from one road to another. For a typical drive in Monmouth County NJ from our
office in Holmdel to Atlantic Highlands, we are autonomous approximately 98% of
the time. We also drove 10 miles on the Garden State Parkway (a multi-lane divided
highway with on and off ramps) with zero intercepts. A video of our test car driving
in diverse conditions can be seen in [200].

6.7.3 Visualization of internal CNN state

Figure 6.7 and Figure 6.8 show the activations of the first two feature map layers for
two different example inputs, an unpaved road and a forest. In case of the unpaved
road, the feature map activations clearly show the outline of the road while in case
of the forest the feature maps contain mostly noise, i.e., the CNN finds no useful
information in this image. This demonstrates that the CNN learned to detect useful
road features on its own, i.e., with only the human steering angle as training signal.
We never explicitly trained it to detect the outlines of roads, for example.
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Figure 6.7: How the CNN “sees” an unpaved road. Top: subset of the camera image
sent to the CNN. Bottom left: Activation of the first layer feature maps. Bottom right:
Activation of the second layer feature maps. This demonstrates that the CNN learned to
detect useful road features on its own, i.e., with only the human steering angle as training
signal. We never explicitly trained it to detect the outlines of roads.

Figure 6.8: Example image with no road. The activations of the first two feature maps
appear to contain mostly noise, i.e., the CNN does not recognize any useful features in
this image.
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6.8 Chapter conclusions

We have empirically demonstrated that CNNs are able to learn the entire task of
lane and road following without manual decomposition into road or lane marking
detection, semantic abstraction, path planning, and control. A small amount of
training data from less than a hundred hours of driving was sufficient to train the
car to operate in diverse conditions, on highways, local and residential roads in sunny,
cloudy, and rainy conditions. The CNN is able to learn meaningful road features
from a very sparse training signal (steering alone). The system learns for example
to detect the outline of a road without the need of explicit labels during training.
More work is needed to improve the robustness of the network, to find methods to
verify the robustness, and to improve visualization of the network-internal processing
steps.
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CHAPTER 7

CONCLUSIONS

In this thesis, we analyzed how recent advancements in Stochastic Optimization and
Machine Learning techniques have made it possible to effectively address common
wireless networking problems. In particular:

Chapter 2 dealt with a scenario in which a pair of battery-equipped sensors
has to report to a Central Controller (CC). Differently from typical wireless net-
works, in which the goal of the transmission policy is to reduce the average amount
of energy utilization, so as to preserve battery charges, here we considered sensors
with Energy Harvesting capabilities. As a result, the optimal policy is related to an
efficient management of the energy scavenged from the environment, trying to avoid
both energy outage (i.e., no energy available at the device) and energy overflow (i.e.,
harvested energy is “wasted” due to an already full battery). To prevent mutual
interference between the devices, a centralized transmission policy was designed, in
which the CC allows, at any time, the transmission of only one device, based on
the residual energy available at its battery. Modeling the randomness in the energy
arrivals as a Markov Decision Process, we first computed the performance of an
optimal policy, i.e., a policy with perfect knowledge of the State-of-Charge (SOC)
of both devices. Later, we analyzed the impact of a partial knowledge of the SOC at
the CC, showing that almost optimal performance can be achieved using sufficiently
large batteries, even though the CC knows if, at any given time instant, the level
of a device battery is either “LOW” or “ HIGH”. Different configurations of the
system have been considered, paving the way for the analysis of larger multi-device
environments.

Chapter 3 presented an original estimator for the Expected Time of Arrival
(ETA) related to file transmissions over a WiFi network consisting of a common

123
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transmitter and a number of receivers. Varying multiple networking parameters
e.g., distance between the transmitter and the receivers, number of nodes simulta-
neously receiving data, transmission power, WiFi transmission channel and part of
the day in which the transmission occurred, we collected a large dataset specifying,
for each configuration and at each time instant, the amount of time needed to com-
plete the transmission, i.e., the ETA. Then, a prediction algorithm for the ETA was
designed, comparing multiple machine learning techniques and finally selecting the
best performing one. The goal was to design an algorithm ready to be implemented
in each receiver, without the need to modify any transmission protocol already ex-
isting. In order to do this, the prediction algorithm was split into two parts: the
former exploits the knowledge of all the aforementioned parameters except for the
number of simultaneous receivers, which is the only parameter not natively avail-
able at each receiver itself. Hence, we designed a machine-learning algorithm able to
detect the number of simultaneous receivers only based on the available parameters
and the time needed to transmit only the first fraction of the total file. Exploiting
also this piece of information, the second part of the predictor is able to output an
on-the-fly prediction of the ETA for the remaining portion of the file, while transmis-
sion occurs. The prediction performance of the proposed algorithm was compared
to the ETA estimates given by scp, i.e., the software tool available in common
Unix systems, showing considerable reductions of the prediction error, especially
in the first part of each transmission, when a user has to decide whether to wait
for the completion of the transmission or to delay it to some other time in the future.

Chapter 4 dealt with the design of a compression algorithm for biosignals such
as heart or respiratory rates (RESP), electrocardiography (ECG) and photo plethys-
mographic (PPG) signals, within e-health applications. The goal was to realize a
lightweight compressor, able to be deployed into wearable battery-equipped devices
with limited computational power. Before entering the compression stage, each
signal is pre-processed in order to remove noise, detect quasi-periodic peaks, and
extract peak-to-peak segments. Then, each segment is windowed in order to contain
a fixed number of samples, and input to a particular machine learning architecture
called autoencoder. This technique basically maps a segment to the values asso-
ciated to a number of neurons belonging to a so-called “hidden” layer, exploiting
non-linear transfer functions. If this number is lower than the original segment size,
then this mapping practically works as a lossy encoder, provided that the network is
trained to reconstruct the segment at the receiver with a low error. As a result, the
training phase consists of optimizing both the encoding and the decoding part of
the autoencoder, with the constraint of reducing the amount of information used to
represent each segment during the encoding process. The proposed technique was



125

compared with recent compression techniques from the literature, including Gain-
Shape Vector Quantization (GSVQ), Compressive Sensing (CS), Discrete Cosine
Transform (DCT) and Lightweight Temporal Compression (LTC), showing consid-
erable performance gains in terms of compression efficiency, reconstruction fidelity
and energy expenditure. For instance, at the highest compression level, the gain
of the proposed technique against the second-best algorithm was 67% in terms of
compression efficiency, while achieving a reconstruction error almost 80% lower.

Chapter 5 investigated the utilization of machine learning techniques able to
predict the long-term channel gains in a wireless network. An accurate estimation
of these metrics would enable both to efficiently allocate resources and to predict
cell handovers, hence achieving, for instance, higher Quality of Service (QoS) lev-
els for the end users. Differently from the literature, the proposed methods only
exploited the knowledge of past channel samples, without resorting to additional
information, such as geographical data coming from GPS signals. The predictions
are performed by the Base Station (BS), which is able to indirectly learn both the
channel fading characteristics and the user mobility pattern analyzing trends in the
time-averaged Received Signal Strength Indicator (RSSI). We generated a realistic
synthetic dataset for an urban scenario, in which a user exploiting an LTE connec-
tion moves in a Manhattan grid of 100 buildings following random mobility patterns
for both pedestrian and vehicular scenarios. Propagation loss, wall penetration loss,
fading and shadowing were taken into account for the computation of the RSSI val-
ues associated to the user. After a proper training phase of the considered machine
learning models, namely graphical Bayesian models and support vector regression
machines, the quality of the predictions was generally high, and comparable to the
results obtained by other works available in the literature, which however exploited
additional information such as GPS data, with negative impact on, e.g., user’s bat-
tery consumption.

Finally, Chapter 6 showed how recent improvements in advanced deep learning
techniques can be applied to the development of a self-driving car. Although this
area of research is not strictly related to the field of wireless networking, it deals with
modern machine learning based advancements and shows how such techniques are
able to achieve surprising performance when compared to traditional approaches.
Using a Convolutional Neural Network (CNN), raw pixels from a front-facing camera
were directly mapped to car steering commands. The idea was to design an end-
to-end approach which does not rely on the output of human-designed intermediate
tasks, e.g., lane marking detection or path planning, hence avoiding explicit decom-
positions of the problem, which are instead optimized simultaneously. Basically,
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such criteria are usually selected for ease of human interpretation, which however
does not guarantee optimal general performance. The system was successfully im-
plemented in a real car, which was able to drive with high autonomy in local roads
with and without lane markings, as well as in highways.
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