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Sommario

Da sempre lo Spazio è stato fonte di ispirazione per lo sviluppo del pensiero scien-

tifico, tecnologico, artistico, filosofico e religioso per tutta l’umanità. Le esplorazioni

spaziali hanno segnato la storia del XX secolo, portando un incredibile sviluppo tecno-

logico e permettendo di investigare i fenomeni naturali a scale e dettagli che semplicemente

non si possono ottenere restando sulla Terra. Oggi lo Spazio è il banco di prova di una

nuova rivoluzione quantistica, che annuncia di poter cambiare il modo in cui oggigiorno

comunichiamo, misuriamo e facciamo di conto, grazie all’utilizzo e al controllo di ciò che

avviene su scala microscopica. Infatti, la teoria quantistica, nata all’inizio del XX secolo

proprio per descrivere il comportamento delle particelle elementari costituenti la Natura,

ha raggiunto oggi un grado di affidabilità strabiliante. Come qualsiasi teoria scientifica in-

fatti, la Meccanica Quantistica è valida entro i confini in cui è stata verificata sperimental-

mente, e lo Spazio è il palcoscenico principale in cui poter validare le predizioni della teoria

quantistica a grandi scale, in un dominio completamente diverso da quello microscopico

entro cui è stata ideata. I progressi tecnologici nel campo della fotonica, che permette

la manipolazione e il controllo dei singoli quanti di luce, i fotoni, rendono oggi fattibili

test fondamentali di Meccanica Quantistica nello Spazio, esperimenti in cui indagare, per

esempio, se l’entanglement si mantiene anche a migliaia di chilometri o se il dualismo onda-

corpuscolo si manifesta anche dopo un viaggio spaziale. Inoltre, lo Spazio offre di per sé

accesso a regimi relativistici in cui le velocità e le distanze in gioco possono permettere di

indagare il puzzle irrisolto della fisica moderna, l’unione di Meccanica Quantistica e gra-

vitazione. Per queste ragioni, questa tesi è dedicata agli esperimenti di Ottica Quantistica

nello Spazio in cui sono stato coinvolto durante il mio dottorato.
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Abstract

Space has always been a primary source of inspiration for the development of the scien-

tific, technological, artistic, philosophical and religious thinking of the whole humankind.

Space explorations marked the history of the XX century, bringing an incredible techno-

logical advancement and allowing to investigate the natural phenomena over scales and

into details which are simply not available on Earth. Nowadays, the Space is the bench-

mark of the new quantum revolution, which promises to change the way we communicate,

measure and calculate, thank to the exploitation and the control of what happens at themi-

croscopic scale. Indeed, the quantum theory, born at the beginning of the XX century to

describe the behaviour of the elementary particles of Nature, has reached today an incred-

ible reliability. As any scientific theory, Quantum Mechanics is valid within the limits in

which it has been experimentally verified, and the Space is the main stage where to validate

quantum predictions at large scales, in a domain that is completely different with respect

to the microscopic one from which it moved. The technological advances in photonics,

which allows the manipulation and the control of the single quanta of light, the photons,

make today feasible fundamental tests of QuantumMechanics in Space, experiments to in-

vestigate, for example, if entanglement is preserved along thousands of kilometers or if the

wave-particle duality survives even after a Space trip. Furthermore, Space makes available

relativistic regimes, in which the velocities and the distances could allow to experimentally

investigate the unresolved puzzle of modern physics, that is, the interplay between Quan-

tumMechanics and gravitation. For these reasons, this thesis is dedicated to theQuantum

Optics experiment in Space I have been involved during my PhD.
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Introduction to Thesis Contents

This thesis work is dedicated to theQuantumOptics experiments I took part in during

my PhD activities at the Luxor Laboratories at the Institute of Photonics and Nanotechnology

(IFN) of the National Council Research (CNR) and at the Matera Laser Ranging Observa-

tory (MLRO) of the Italian Space Agency (ASI). My work was part of the activities in

experimental Quantum Optics conducted by the QuantumFuture group led by my super-

visor prof. Paolo Villoresi at the Department of Information Engineering of the University

of Padova. Part of my work was also supported by the project Moonlight-2 of the National

Institute for Nuclear Physics (INFN).

Thework presented here is well placedwithin the context of quantum communications,

a research field ranging from fundamental tests of physics, e.g. Quantum Mechanics, over

long distances, to the implementation of Quantum Information protocols in photonics

free-space and fiber-based systems. In particular, my works are related to Space quantum

communications, which could guarantee, in the next future, the security of the telecom-

munications at the global scale and also open new possibilities for testing the implications

and exploiting the applications of Quantum Mechanics around the planet and beyond.

Chapter 1 and 2 are two introductory chapters in which I will focus on the machinery

needed to understand the contents of this thesis work by selecting material from standard

textbooks on Quantum Mechanics and Quantum Optics. These chapters can be consid-

ered the minimum baggage of an experimenter working on photonic implementations

of Quantum Information protocols, collecting here some useful contents that are usually

spread over many different textbooks and papers.

In Chapter 3, I will present the realization of a time-bin entanglement source not af-

fected by the post-selection loophole, which was part of the activities performed at Luxor

Laboratories. I followed the whole development of the source, from the design of the op-

tical setup to the assembling, as well as the data acquisition and analysis. These activities

ended with the publication of the relative manuscript in Physical Review Letters [F. Ve-

dovato et al., Postselection-Loophole-Free Bell Violation with Genuine Time-Bin Entangle-

ment, Phys. Rev. Lett. 121, 190401 (2018)], of which I am the first author.

In Chapter 4, I will present the motivations and goals behind Space quantum com-

munication and then I will focus on the general idea of the two-way experiments I took

part in at MLRO. At the end of this chapter, I will focus on the last two experiments I was

7
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Introduction to Thesis Contents

involved in the last year of my PhD, namely the single photon exchange with a terminal of

the Russian GNSS constellation GLONASS [L. Calderaro et al., Towards Quantum Com-

munication fromGlobal Navigation Satellite System, Quantum Science and Technology (in

press); preprint available at arXiv:1804.05022 [quant-ph] (2018) and the preliminary test

performed for establishing a Quantum Key Distribution link with the Chinese quantum

satellite Micius.

In Chapter 5, I will present the first experiment I was involved in during my PhD, re-

garding the observation of single-photon interference exploiting time-bin encoding along

satellite-ground channels. I took part in the whole experiment, from the design of the

optical setup and the preliminary tests at Luxor Laboratories (in particular, I designed the

double 4 f system), to the assembling and data acquisition at MLRO. Then, I focused on

the data analysis finding a method to high-light the interference effect even in the presence

of low visibility by exploiting the satellite-induced modulation in the interference pattern.

I participated in writing the manuscript and in the peer-review process, which ended with

the publication in Physical Review Letters [G. Vallone et al., Interference at the Single Photon

Level Along Satellite-Ground Channels, Phys. Rev. Lett. 116, 253601 (2016)].

In Chapter 6, I will present the experiment which mostly kept me busy during my

PhD, that is, the first Space implementation of Wheeler’s delayed-choice experiment. I

was the person in charge of this experiment, and I took part in all the experimental

phases, from the design and the preliminary tests, to the data acquisition and analysis.

My colleague Dr. Costantino Agnesi and I mostly wrote the draft of the manuscript, and

we managed the peer-review process, which ended with the publication in Science Ad-

vances [F. Vedovato et al., Extending Wheeler’s delayed-choice experiment to space, Sci. Adv.

3, e1701180 (2017)], of which we are the first authors.
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Chapter 1

Elements of Quantum Mechanics

In this introductory chapter, we will present some basic elements of Quantum Me-

chanics which are needed to understand the contents of this thesis work. First, a brief

review of the mathematical formalism of quantum theory is presented, then two pecu-

liar traits of of Quantum Mechanics, entanglement and non-locality, are described in more

details.

The contents of this chapter are a selection of what can be found in standard textbooks

on Quantum Mechanics, as [1, 2, 3, 4, 5, 6].

Quantum properties of light can be exploited, for example, to generate random numbers.
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Chapter 1. Elements of Quantum Mechanics

1.1 The quantum mechanical formalism

In this section we will present the postulates of Quantum Mechanics and some basic

elements of Quantum Information theory. This section is inspired by the clear presenta-

tion given in [6].

1.1.1 Quantum states, evolution and measurements

The basic laws of Quantum Mechanics can be cast in four postulates, which describe

how to represent the state of a physical system, how such system evolves until it is “mea-

sured”, how to carry out measurements and how to describe a system which consists of

more subsystems. Since we will deal with Quantum Optics experiments in which the re-

levant degrees of freedom can take only a finite number of values, typically two, we will

describe only quantum systems of finite dimension. The postulates of Quantum Mechan-

ics can be written as:

1. States. Associated to any isolated physical system is a Hilbert space H ≃ Cd of di-

mension d . The physical state of the system is completely described by a unit vector

ψ in the Hilbert space. The state vector is represented by the symbol |ψ〉 ∈ H by

using the Dirac notation.

2. Evolution. The evolution of a closed quantum system is described by a unitary

transformation, i.e., an unitary operator acting on the Hilbert space H . The state

|ψ(t )〉 of the system at time t is related to the state |ψ(t ′)〉 of the system at time t ′

by a unitary operator Û (t , t ′) which depends only on the times t and t ′,
�

�ψ(t ′)
�

= Û (t , t ′) |ψ(t )〉 . (1.1)

3. Measurements. Quantummeasurements are described by a collection ofmeasurement

operators {M̂m} where m is a M -valued symbol, e.g. m = 1, . . . , M . These operators

act on the Hilbert space H and the index m labels the measurement outcomes that

may occur in the observations.

If |ψ〉 is the state of the system immediately before the measurement, then the prob-

ability that result m occurs is given by

p(m) = 〈ψ|M̂ †
mM̂m |ψ〉 , (1.2)

where 〈ψ| is the dual to |ψ〉 and M̂
†
m is the adjoint of operator M̂m. The state of the

system immediately after the measurement becomes
�

�ψ′
�

=
1

p

p(m)
M̂m |ψ〉 . (1.3)

10



1.1. The quantum mechanical formalism

The measurement operators must satisfy the completeness relation

∑

m

M̂
†
mM̂m = 1H

, (1.4)

where 1
H
is the identity operator.

4. Composite systems. The Hilbert space H of a composite physical system is the tensor

product of the Hilbert spaces H j of the different subsystems

H =
⊗

j

H j . (1.5)

If the subsystems are numbered 1 through N and the j -th system is prepared in the

state ψ j , then the joint state |Ψ〉 ∈H of the total system is

|Ψ〉= |ψ1〉⊗ |ψ2〉⊗ · · · ⊗ |ψN 〉 . (1.6)

A general collection of measurement operators acting on the composite Hilbert

space H is given by the tensor product of the measurement operators M̂m j
of the

j -th component

M̂m = M̂m1
⊗ M̂m2

⊗ · · · ⊗ M̂mN
, (1.7)

which is composed by M = M1M2 · · ·MN elements. Hence, the probability of ob-

taining the outcome m = (m1, m2, . . . , mN ) is

p(m1, m2, . . . , mN ) = 〈Ψ|M̂m1
⊗ M̂m2

⊗ · · · ⊗ M̂mN
|Ψ〉 . (1.8)

We presented the postulates of Quantum Mechanics using the language of pure states,

assuming that the state of the system is completely known. However, we can suppose

that the system is in one of a number of states |ψi〉 with probabilities pi respectively. The

ensemble {pi , |ψi〉} is an ensemble of pure states and the quantum state of the system in this

case is a mixed state defined by the density operator

ρ̂ :=
∑

i

pi |ψi〉〈ψi | (1.9)

acting on theHilbert space H of the system. It is easy to show that for the density operator

defined in (1.9) one has that its trace is 1, i.e. Tr [ρ̂] = 1, and ρ̂ is a positive operator, i.e.,

〈ϕ| ρ̂ |ϕ〉 ≥ 0 for any |ϕ〉 ∈ H , symbolically ρ̂≥ 0. It is worth noticing that, conversely, if

an operator ρ̂′ satisfies Tr [ρ̂′] = 1 and ρ̂′ ≥ 0, it represents the density operator for some

ensemble {pi , |ψi〉}. Moreover, two different ensembles of quantum states could give rise

to the same density matrix [6].

11



Chapter 1. Elements of Quantum Mechanics

Regarding the relation between pure and mixed staes, the density operator for a pure

state |ψ〉 has the form ρ̂ = |ψ〉〈ψ| and a density operator ρ̂ represents a pure state if and

only if Tr
�

ρ̂2
�

= 1.

The postulates presented above can be rewritten in the formalism of density opera-

tors [6]. Here we limit to observe that the unitary evolution from t to t ′ takes is given by

ρ̂t → ρ̂t ′ = Û (t , t ′)ρ̂t Û †(t , t ′) (1.10)

and that the probability to obtain the result m given the measurement operators {M̂m}
and the state ρ̂ is

p(m) =Tr
�

M̂
†
mM̂mρ̂

�

. (1.11)

1.1.2 Projective measurements and the POVM formalism

The third postulate about quantum measurement is often given in terms of projective

measurements, or von Neumann measurements, that are a special class of measurements. A

projective measurement is described by an observable, a Hermitian operator Ô = Ô † acting

on the Hilbert space. The observable, being Hermitian, has a spectral decomposition

(assuming no degeneracy in its eigenvalues),

Ô =
d
∑

m=1

mP̂m , (1.12)

where P̂m is the projector ( P̂m = P̂ †
m = P̂ 2

m ) onto the eigenspace of Ô with eigenvalue

m, which naturally labels the possible outcomes of a measurement of the observable Ô .
Hence, projective measurements are a special case of measurements operators: each P̂m is

a measurement operator in the collection {P̂m}. Hence, upon measuring the state |ψ〉, the
probability of getting the result m is given by, according to (1.2),

p(m) = 〈ψ| P̂m |ψ〉 (1.13)

and, given the outcome m occurred, the state after the measurement is

�

�ψ′
�

=
P̂m |ψ〉

q

〈ψ| P̂m |ψ〉
. (1.14)

The average value of the observable Ô if the system is described by the pure state |ψ〉
is given by

〈Ô 〉|ψ〉 =
∑

m

m p(m) =
∑

m

m 〈ψ| P̂m |ψ〉= 〈ψ| Ô |ψ〉 , (1.15)

12



1.1. The quantum mechanical formalism

while, if the system is in the mixed state (1.9), we have

〈Ô 〉ρ̂ =
∑

i

pi 〈ψi | Ô |ψi〉=Tr
�

ρ̂Ô
�

. (1.16)

It is worth noticing that, rather than giving the observable Ô , often a projective mea-

surement is provided by listing a complete set of d orthogonal projectors P̂m := |m〉〈m|
using the phrase “measuring in the basis {|m〉}”. Indeed, these projectors obey the com-

pleteness relation and P̂m P̂n = P̂mδmn where δmn is the Kronecker’ symbol: implicitly,

the corresponding observable is Ô :=
∑d

m=1 m |m〉〈m|.
However, in modern literature the most used measurements are not of the type of

von Neumann, which suppose that there exist physical quantities, the observables, that

can be measured by the exerimenters. Going beyond this idea, we could assume that the

experimenters only performmacroscopic operations, or tests, on quantum systems, which

have probabilistic outcomes. This approach is more general than the von Neumann’s one

and it constitutes the Positive Operator Valued Measure (POVM) formalism [4, 6].

Suppose to perform the measurements of the collection {M̂m} upon the state ρ̂ and

define the operators Π̂m := M̂
†
mM̂m. The properties the operators must obey and linear

algebra guarantee that:

Π̂m ≥ 0 , (1.17)
∑

m

Π̂m = 1H
, (1.18)

p(m) =Tr
�

Π̂mρ̂
�

. (1.19)

The set {Π̂m} is sufficient to determine the probabilities of the different measurement

outcomes m and it is known as a POVM. It is worth noticing that a set {P̂m} defining a

projective measurement is also a POVM through Π̂m := P̂ †
m P̂m = P̂m.

Suppose now to take an arbitrary set {Π̂a} of positive operators (and so self-adjoint

Π̂a = Π̂
†
a ) acting on H which sum up to the identity, i.e.,

∑

a Π̂a = 1H
, and in which the

label a, contrary to projective measurements, spans a range that could be also greater than

the dimension d of the Hilbert space. It is possible to show that such set defines a POVM

by requiring, in addition, that the probability of obtaining the results labelled a when the

system is in the state ρ̂ is p(a) =Tr
�

Π̂aρ̂
�

[6].

We will use the POVM formalism in analyzing our work on post-selection-free time-

bin entanglement in Chapter 3.
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Chapter 1. Elements of Quantum Mechanics

1.1.3 The qubit

The bit is the basic entity of classical information theory. A bit can take only two

values, 0 or 1, representing its state. Similarly, we can represent the quantum analogue to

classical bit by defining it as a object living in a 2-dimensional Hilbert space H1q ≃ C2. It

is usual to define the “computational basis” as {|0〉 , |1〉}, which, in matrix notation, can be

written as

|0〉 :=
 

1

0

!

, |1〉 :=
 

0

1

!

(1.20)

The great difference between bits and qubits is that a qubit can be in a state other than

|0〉 or |1〉. Indeed, any linear combination of these two states, called superposition,

|ψ〉= α |0〉+β |1〉 , (1.21)

where α,β ∈C, is also a possible quantum state, provided that

|α|2+ |β|2 = 1 . (1.22)

An useful representation for a generic qubit can be obtained rewriting (1.21) as

|ψ〉= cos
θ

2
|0〉+ e iϕ sin

θ

2
|1〉 (1.23)

using the normalization condition (1.22). The angles θ and ϕ define a point on the unit

three-dimensional sphere, called Bloch sphere, that is represented in Figure 1.1.

Figure 1.1: Bloch sphere representation of a qubit |ψ〉= cos θ2 |0〉+ e iϕ sin θ
2 |1〉. Picture taken from Wikipedia.
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1.1. The quantum mechanical formalism

In (1.21) the qubit is given by a pure state and it is represented by a point on the surface

of the Bloch sphere. On the contrary, an arbitrary density matrix for a mixed one-qubit

state may be written as

ρ̂=
1

2
(12+ r ·σ) , (1.24)

where 12 is the 2-dimensional identity matrix, r is a three-dimensional real vector called

Bloch vector such that ‖r‖ ≤ 1 and σ is the “vector” composed by the three Pauli matrices

σ̂1 = σ̂x :=

 

0 1

1 0

!

, σ̂2 = σ̂y :=

 

0 −i

i 0

!

, σ̂3 = σ̂z :=

 

1 0

0 −1

!

, (1.25)

as components. The Pauli matrices respect the commutation relations

[σ̂i , σ̂ j ] = 2iεi j k σ̂k , (1.26)

where εi j k is the Levi-Civita symbol. It can be shown that a pure state is characterized by

a unit vector r such that ‖r‖ = 1 that gives a point on the surface of the sphere, while a

true mixed state is represented by a point inside the sphere.

Stokes parameters.—It is worth noticing that density matrix of a one-qubit can be ex-

panded as

ρ̂=
1

2

3
∑

i=0

Si σ̂i (1.27)

where we defined the Stokes parameters

Si :=Tr [σ̂i ρ̂]≡ 〈σ̂i〉ρ (1.28)

with σ̂0 := 12. The Stokes parameters for i = 1,2,3 give the components of the Bloch

vector r, i.e., ri = Si . The degree of polarization (DOP) of the state ρ̂ is then defined as the

length of the Bloch vector r

DOP(ρ) := ‖r‖=
Æ

r 2
1 + r 2

2 + r 2
3 . (1.29)

Rotations on the Bloch sphere.—The Pauli matrices provide useful unitarymatrices when

exponentiated, which are called rotation operators about the x-, y- or, z-axis of the Bloch

sphere. They are defined by (in the convention of [6]):

R̂x(φ) := e−i
φ
2 σ̂x = cos

φ

2
12− i sin

φ

2
σ̂x =

 

cos φ
2
−i sin φ

2

−i sin φ
2

cos φ
2

!

(1.30)

R̂y(φ) := e−i
φ
2 σ̂y = cos

φ

2
12− i sin

φ

2
σ̂y =

 

cos φ
2
− sin φ

2

sin φ
2

cos φ
2

!

(1.31)

R̂z(φ) := e−i
φ
2 σ̂z = cos

φ

2
12− i sin

φ

2
σ̂z =

 

e−i
φ
2 0

0 e i
φ
2

!

(1.32)
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Chapter 1. Elements of Quantum Mechanics

The effect of a rotation R̂i (φ) on a qubit state as in (1.23) is to rotate it by an angle φ

around the axis specified by i = x, y, z of the Bloch sphere.

It is worth noticing that any unitary operation on a single qubit can be decomposed

into three rotations around two specific non-parallel axes. For QuantumOptics purposes,

as we will see in the following chapter, we will use the case of rotations around y- and x-

axes, i.e. any unitary operation Û on a single qubit can be decomposed as [6]

U = e iαR̂y(β)R̂x(γ )R̂y(δ) , (1.33)

choosing appropriate α,β,γ ,δ ∈R.

It is possible to use any two-level quantum system in order to create a physical qubit.

For example, the spin of an electron or two electronic levels of an atom can be considered

for qubit realization. For our purpose, the most important physical system to realize a

quantum bit is the photon, the light particle, as we will describe in Chapter 2.

1.2 Entanglement and Bell’s test

The outstanding beauty of Quantum Mechanics relies on its peculiar traits that rend

it astonishing far from common sense. Among the others, entanglement and the fact that

Quantum Mechanics predictions cannot be described by any local and realistic theory are

maybe the most disturbing.

1.2.1 Entanglement

Entanglement is a property of two (or more) quantum systems exhibiting correlations

that cannot be explained by classical physics. The capability of Quantum Mechanics to

show such strong correlations is related to the fourth postulate presented above, which

rules composite systems.

Suppose we have a quantum systemmade up of two subsystems A and B , usually called

Alice and Bob. The Hilbert space H of the system is given by

HAB =HA⊗HB (1.34)

where HA and HB are the Hilbert spaces for the quantum systems A and B respectively. A

pure state |ψ〉 ∈HAB is called separable if there exist two pure states |a〉A ∈HA and |b 〉B ∈HB

such that

|ψ〉= |a〉A⊗ |b 〉B ≡ |a〉A |b 〉B ≡ |aAbB〉 ≡ |ab 〉 , (1.35)
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1.2. Entanglement and Bell’s test

where in the last equalities we introduced a shorter notation for composite states. If the

pure state |ψ〉 is not separable, it is called entangled.

In the following we will consider systems made up of two qubits, whose Hilbert space

is

H2q =H1q ,A⊗H1q ,B ≃C2⊗C2 . (1.36)

The four states

|Φ±〉 := 1p
2
(|0〉A |0〉B ± |1〉A |1〉B) , (1.37)

|Ψ±〉 := 1p
2
(|0〉A |1〉B ± |1〉A |0〉B) (1.38)

are examples of entangled states because they cannot be expressed as a tensor product of

two qubit states. They are called Bell states and form an orthonormal basis for the Hilbert

space H2q of the two-qubit system.

However, we can be interested in described one of the subsystems, for example Alice,

regardless of Bob. Such description can be obtained by using the reduced density matrix.

Suppose the state of the composite system of Alice and Bob is given by the density matrix

ρ̂AB . The reduced density matrix for Alice is then defined by

ρ̂A=TrB [ρ̂AB] (1.39)

where the trace operation is now the partial trace over the subsystem B , defined as

TrB [|a1〉〈a2| ⊗ |b1〉〈b2|] := |a1〉〈a2|Tr [|b1〉〈b2|] = |a1〉〈a2| 〈b2|b1〉 (1.40)

and by requiring to be linear in its input [6].

It is worth noticing that the reduced density matrix of a pure state can be a mixed state.

Take for example the Bell state |Φ+〉, whose density matrix is

ρ̂|Φ+〉 := |Φ+〉〈Φ+|=
|00〉〈00|+ |11〉〈00|+ |00〉〈11|+ |11〉〈11|

2
. (1.41)

Tracing out Bob’s qubit, the reduced density matrix of Alice is

ρ̂A=TrB

�

ρ̂|Φ+〉
�

=
|0〉〈0|+ |1〉〈1|

2
=
12

2
. (1.42)

Hence, ρ̂A is not a pure state since Tr [ρ̂A] = 1/2 which is less than 1. Moreover, ρ̂A is a

maximally mixed state, i.e., it describes the mixture given by the two quantum states |0〉
and |1〉which are equally weighted with p = 1/d , with d = 2 the dimension of the Hilbert

space. When the reduced density matrix of an entangled state gives raise to a maximally

mixed state, the entangled state is called maximally entangled. All the four Bell states are

maximally entangled.
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Chapter 1. Elements of Quantum Mechanics

1.2.2 Bell’s test of local realistic theories

We will see now a counter-intuitive implication of quantum entanglement, which is

related to the investigation of quantum non-locality performed in the experiments called

“Bell tests”. In 1964, John Stewart Bell proved that the predictions of quantum theory

are not compatible with those of any realistic physical theory satisfying a natural notion

of locality [7], which, in relativistic terms, means that events in one region of space-time

should not influence events in spacelike separated regions [8].

Locality.—In a typical Bell test, two systems, which may have been generated by a

common source, are measured by two separated observers, traditionally called Alice and

Bob. They can choose to perform several measurements on their own system, and we

will denote with x and y the measurement they choose to perform respectively. After the

measurement, they yield the outcomes a and b . Alice and Bob repeat the experiment for

many runs. Even if they set the same measurement choices x and y, the outcomes a and b

may vary from run to run due to the probabilistic nature of the theory, hence their results

are governed by a conditional probability distribution p(a, b |x, y).

By repeating the experiment many times and collecting the observed data, Alice and

Bob can experimentally estimate such probabilities. In general, Alice and Bob will found

that

p(a, b |x, y) 6= p(a|x)p(b |y) , (1.43)

i.e., their outcomes are not statistically independent. This is not strange or unexpected,

since, as stressed before, the two systems may have interacted in the past.

The assumption of locality implies that they should be able to identify a set of factors,

described by some local hidden variables λ, having a joint causal influence on both the

outcomes, and which fully account for their interdependence. Hence, the probabilities

for a and b should factorize according to

p(a, b |x, y,λ) = p(a|x,λ)p(b |y,λ) , (1.44)

that is: the probability for a depends only on the past variables λ and on the local measure-

ment x, but it does not on the distant measurement y and outcome b (and analogously

for Bob). It is not necessary for λ to be constant for all runs of the experiment, e.g. λmay

involve physical quantities which are not fully controllable. Hence, λ should be charac-

terized by a probability distribution q(λ). Combined with (1.44), it is possible to write

p(a, b |x, y) =

∫

Λ

dλ q(λ)p(a|x,λ)p(b |y,λ) (1.45)
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1.2. Entanglement and Bell’s test

where we also implicitly assumed that the measurements x and y can be freely chosen in a

way that is independent of λ, i.e. q(λ|x, y) = q(λ). The decomposition in (1.45) represents

a precise condition of locality for the Bell tests.

The Bell-CHSH inequality.—We now specialize the description of the Bell test for the

case in which Alice and Bob can choose between two measurement choices only x, y ∈
{0,1}, and the outcomes a, b are dichotomous variables, i.e. a, b ∈ {−1,+1}. The expec-
tation value of the product ab , given the measurement choice (x, y), is

〈ax by〉 :=
∑

a,b

ab p(a, b |x, y) . (1.46)

Then, we can consider the linear combination of the probabilities p(a, b |x, y) defined by

the the S-parameter,

S := 〈a0b0〉+ 〈a0b1〉+ 〈a1b0〉− 〈a1b1〉 . (1.47)

If the locality constraint (1.45) holds, then the S-parameter cannot be greater than 2, i.e.

S ≤ 2 , (1.48)

which is known as the Clauser-Horne-Shimony-Holt (CHSH) Bell-inequality [9]. In fact,

by using (1.45) in the calculation of the S-parameter we have that

〈ax by〉=
∑

a,b

∫

Λ

dλ q(λ) a p(a|x,λ) b p(b |y,λ) =
∫

Λ

dλ q(λ) 〈ax〉λ〈by〉λ , (1.49)

where the expectation values of the local outcomes are 〈ax〉λ :=
∑

a a p(a|x,λ) and 〈by〉λ :=
∑

b b p(b |y,λ). Thus, inserting (1.49) into the definition (1.47), it is possible to write

S =

∫

Λ

dλ q(λ) Sλ (1.50)

with

Sλ = 〈a0〉λ (〈b0〉λ+ 〈b1〉λ)+ 〈a1〉λ (〈b0〉λ−〈b1〉λ) . (1.51)

Since the local expectations 〈ax〉λ and 〈by〉λ are in the range [−1,1] it follows that Sλ is

upper-bounded by 2 and thus (1.48) holds.

Let’s now see howQuantumMechanics allows to violate (1.48). Suppose the Bell state

|Φ+〉 is given to Alice and Bob, who choose to measure the local observables Ôa|x and Ôb |y
defined by

Ôa|0 := σ̂3 , Ôa|1 := σ̂1 , Ôb |0 :=
1p
2
(σ̂3+ σ̂1) , Ôb |1 :=

1p
2
(σ̂3− σ̂1) . (1.52)
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Chapter 1. Elements of Quantum Mechanics

According to the quantum mechanical rules presented above, the expectation values are

given by

〈ax by〉= 〈Φ+| Ôa|x ⊗ Ôb |y |Φ+〉 , (1.53)

that explicitly yield

〈a0b0〉= 〈a0b1〉= 〈a1b0〉=
1p
2

, 〈a1b1〉=−
1p
2

. (1.54)

Hence, the S-parameter, according to the rules of Quantum Mechanics, results equal to

2
p

2 ≈ 2.81, which is notably greater than 2, contrarily to equation (1.48). This fact

implies that Quantum Mechanics cannot be explained in terms of local realistic models

respecting (1.45), and Bell provided a tool, now experimentally accessible, to test this

counter-intuitive character of quantum theory.

We will present a Bell test exploiting time-bin entanglement in Chapter 3.
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Chapter 2

Elements of Quantum Optics

Quantum Optics describes the quantum behaviour of electromagnetic waves, i.e., the

application of the formalism of Chapter 1 to light and its elementary constituents, the

photons. Since photons are the best candidates for performing quantum experiments in

Space along great distances, we will dedicate this chapter to the machinery which allows

the description of what happens in a typical Quantum Optics experiment.

The contents of this chapter are a selection of what can be found in standard textbooks

onQuantumOptics, as [10, 11, 12, 13]. Reference [14] is a standard textbook on photonics

and laser theory.

The interferometric quantum optical setup used in Chapter 5 (photo by Paolo Villoresi).
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Chapter 2. Elements of Quantum Optics

2.1 Quantum description of light

In this section we will see how to apply the formalism of Quantum Mechanics to the

electromagnetic field via the quantization procedure. Then, we will focus on linear optical

devices, the ones typically used in the experiments, and on the mathematical description

of the photon’s wavepacket.

2.1.1 Quantization of the electromagnetic field

The quantum description of electromagnetic waves is usually presented by using the

technique called second quantization, through which, starting from the classical solution

to the free radiation, i.e. Maxwell’s equations with no charges and currents, it is possible

to obtain the full quantum description of electromagnetism.

The classical solution for the electric and magnetic fields can be written by expanding

the vector potential A(r, t ) as a superposition of planewaves in the form

A(r, t ) =
∑

k

∑

λ

e
k,λ

�

A
k,λ(t )e

ik·r+A∗
k,λ(t )e

−ik·r
�

(2.1)

where A
k,λ(t ) is the complex amplitude of the vector field, imagining that free space can

be modelled as a cubic cavity of side length L with perfectly reflecting walls, and where

e
k,λ with λ= 1,2 is a real polarization vector. The sum over

k=
2π

L
(mx , my , mz) (2.2)

with mi = 0,±1,±2, . . . simply means that the sum is over the set of integers (mx , my , mz)

specifying the 3-dimensional modes in the cavity and the sum over λ is the sum over the

two independent polarizations.

The electromagnetic field is quantized by promoting each possible radiation mode A
k,λ

(and its complex conjugate A∗
k,λ

) in the cavity to a quantum operator â
k,λ (and its adjoint

â†

k,λ
) and imposing the commutation relations

�

â
k,λ, â†

k′,λ′

�

= δ
k,k′δλ,λ′ ,

�

â
k,λ, â

k′,λ′
�

=
�

â†

k,λ
, â†

k′,λ′

�

= 0 . (2.3)

By doing this, the Hamiltonian of the system, that is the observable associated to the

energy and also the generator of the time evolution, can be written as

Ĥ =
∑

k

∑

λ

}hωk

�

â†

k,λ
â

k,λ+
1

2

�

=
∑

k

∑

λ

}hωk

�

n̂
k,λ+

1

2

�

(2.4)
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2.1. Quantum description of light

with ωk = |k|c where c is the speed of light in the vacuum, and where we defined the

number operator

n̂
k,λ := â†

k,λ
â

k,λ (2.5)

for the mode labelled by (k,λ).

Now, the physical interpretation of the operators introduced is straightforward, since

the Hamiltonian is an infinite sequence of harmonic oscillators: â†

k,λ
creates one light

quanta, the so-called photon, of energy }hωk in the mode labelled by (k,λ), while â
k,λ de-

stroys it. The number operator has eigenvalues n
k,λ = 0,1,2, . . . ,∞ and eigenstates

�

�

�nk,λ

�

and represents the number of photons in that mode.

Let’s group the mode labels (k,λ) := j to simplify the notation (we will use this sim-

plified notation also in the description of the linear optical devices in Section 2.1.2). The

operators introduced above act in the Fock space, i.e. the infinite dimensional Hilbert

space of “number representation” where a generic state with n j1
photons in the mode j1,

n j2
photons in the mode j2 and so on has the form

�

�

�n j1
n j2
· · ·
¶

≡
�

�

�n j1

¶

⊗
�

�

�n j2

¶

⊗ · · · . (2.6)

The action of the creation and annihilation operators is

â†
j

�

�

�· · ·n j · · ·
¶

=
Æ

n j + 1
�

�

�· · ·n j + 1 · · ·
¶

, (2.7)

â j

�

�

�· · ·n j · · ·
¶

=
p

n j

�

�

�· · ·n j − 1 · · ·
¶

. (2.8)

The ground state of the electromagnetic field is the vacuum state where there are no pho-

tons

|vac〉 :=
�

�

�{0 j }
¶

=
�

�

�0 j1

¶

⊗
�

�

�0 j2

¶

⊗ · · · . (2.9)

Applying each one of the annihilation operators to the vacuum state we obtain

â j |vac〉= 0 (2.10)

because there are no photons to destroy. We can also generate the quantum state
�

�

�{n j }
¶

that has n =
∑

j n j photons by applying the creation operators â†
j
to the vacuum state,

�

�

�{n j }
¶

=
∏

j

�

â†
j

�n j

Æ

n j !
|vac〉 . (2.11)

The state vectors
�

�

�{n j }
¶

for all values of the integers {n j } form a complete orthonormal

set spanning the whole Fock space.
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Coherent states.—Another important complete set is given by the coherent states, which

are the states satisfying

â |α〉= α |α〉 . (2.12)

with α ∈ C for each mode j . They are obtained by applying the displacement operator,

defined by

D̂(γ ) := eγ â†−γ ∗â , (2.13)

to the vacuum state for all the modes. An explicit formula for the coherent state is given

by

|α〉= D̂(α) |vac〉= e−
1
2 |α|2

∞
∑

n=0

αn

p
n!
|n〉 (2.14)

where we used the state with n photons in the selected mode

|n〉= (â
†)np
n!
|vac〉 . (2.15)

It is worth noticing that the quantum state of the light generated by a laser operating

well above its threshold is given, if a reference for the phase is available, by the coherent

state|α〉 ≡
�

�

�|α|e iθ
�

. In this case, the mean number of photons per mode µ is

µ := 〈n̂〉= 〈α| n̂ |α〉= |α|2 . (2.16)

If, on the other hand, the phase reference is not available, the emitted state is described by

the mixed state [15]

ρ̂=
∫ 2π

0

dθ

2π

�

�

�

p
µe iθ

�
p
µe iθ

�

�

�=
∞
∑

n=0

p(n|µ) |n〉〈n| (2.17)

where

p(n|µ) = e−µ
µn

n!
(2.18)

is a Poissonian distribution with mean value µ. Hence, with no reference for the phase,

the laser produces a Poissonian mixture of number states.

2.1.2 Quantum description of linear optical devices

In this section we present the description of linear optics, i.e. the optical components

largely used in quantum optics experiments, following the presentation given in [16].
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2.1. Quantum description of light

Anoptical component is linear if the output fields are linearly related to the input fields.

We consider the component like a multiport with N input fields and N output fields. In

the conventional treatment of linear optical networks the fields are usually assumed to be

monochromatic, but in all practical realizations the optical signals have finite duration so

a time-domain formulation is necessary and we will present it in the following.

We denote the complex classical fields in the input and output ports with their mode

coefficients ai and bi respectively ( i = 1, . . . ,N ). Input and output modes with the same

index may share the same physical port if they propagate in different directions, but they

also may share the same physical port if they are separated for example in frequency or

polarization. Input and output fields are related by the linear relation

bi =
N
∑

j=1

Si j a j (2.19)

where Si j are the element of a N x N unitary matrix S called scattering matrix.

The N input and N output monochromatic fields of the multiport are described quan-

tum mechanically replacing the ai and bi fields with the quantum annihilation operators

âi and b̂i respectively. Input operators respect the commutation relations
�

âi , â†
j

�

= δi j ,
�

âi , â j

�

= 0 , (2.20)

because modes with different index are independent. We have replaced the classical fields

with annihilation operators, but the relation between b̂i and âi still can be written us-

ing (2.19) as

b̂i =
N
∑

j=1

Si j â j . (2.21)

We have also to replace the complex conjugates field a∗i and b ∗i with creation operators â†
i

and b̂ †
i
respectively, and, by using the relation between input and output creation operators

b̂ †
i
=

N
∑

j=1

S∗i j â
†
j

, (2.22)

it is possible to demonstrate that output operators satisfy the usual commutation relations

h

b̂i , b̂ †
j

i

=

�

N
∑

k=1

Si k âk ,
N
∑

l=1

S∗j l â
†

l

�

=
N
∑

k ,l=1

Si k S∗j l

�

âk , â†

l

�

=
N
∑

k ,l=1

Si k S∗j lδk l = δi j (2.23)

where in the last passage we used also the fact that the scattering matrix is unitary.

The scattering matrix describes the evolution of the mode operators, hence we are

presenting the evolution of the system in the Heisenberg picture, where the vector states

remain constant and the operators evolve [2].
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To calculate the detection probabilities at the output port for the Quantum Optics

experiment we will present in the following, it is useful to express the constant state of

the system |Ψ〉 by using both the input operators or the output ones. We have, from

equation (2.22), that

â†
i
=

N
∑

j=1

b̂ †
j
S j i . (2.24)

Hence, the constant state |Ψ〉 of the systemwill be some functionF of the input operators,

but it can be written also as a functionF ′ of the output operators according to (2.24), that
is:

|Ψ〉=F ({â†
i
}) |vac〉=F

 (

N
∑

j=1

b̂ †
j
S j i

)!

|vac〉=F ′({b̂ †
i
}) |vac〉 , (2.25)

where |vac〉 is the vacuum state of the linear multiport.

Figure 2.1: Input-output modes representation of a beam splitter (BS).

The beam-splitter.—Let’s consider now an example: the 50:50 beam splitter (BS) of Fig-

ure 2.1. The beam splitter is a optical component that has two input ports and two output

ports so its scattering matrix is a 2 x 2 matrix. Physically, it is a semireflecting mirror with

equal transmission and reflection coefficients. The phase shift between the reflected and

transmitted fields depend on the construction of the beam splitter and if it is constructed

as a single dielectric layer, the reflected and transmitted beams will differ in phase by a

factor of e iπ/2 = i . Assuming that the reflected field suffers a π/2 phase shift, the input âi

and output b̂i modes are related according to the matrix

SBS =
1p
2

 

i 1

1 i

!

. (2.26)

26



2.1. Quantum description of light

We can think to a single-photon input state impinging at port a1 of the 50:50 beam

splitter of Figure 2.1. The state of the system is transformed according to

|1〉a1
|0〉a2

= â†
1 |vac〉

(2.25)−−→ 1p
2

�

i b̂ †
1 + b̂ †

2

�

|vac〉= 1p
2

�

i |1〉b1
|0〉b2

+ |0〉b1
|1〉b2

�

, (2.27)

which is notably entangled in the two output modes. Thus, we can detect the single input

photon in each of the two output ports b1 and b2 with equal probability 1/2.

The balanced Mach-Zehnder interferometer.—It is worth noticing that a cascade of M

multiports whose scattering matrix are S1, S2 . . . SM is equivalent to a single multiport of

scattering matrix S = SM · · · S2S1. This tool allows to treat, for example, the balanced Mach-

Zehnder interferometer of Figure 2.2. This interferometer is composed by two 50:50 beam

Figure 2.2: The balanced Mach-Zehnder interferometer.

splitters and a phase shift in one of the arms. The scattering matrix for this optical system

is given by

S = SBS

 

1 0

0 e iϕ

!

SBS =
1

2

 

e iϕ − 1 i (1+ e iϕ)

i (1+ e iϕ) 1− e iϕ

!

. (2.28)

Now, given the input state |Ψ〉= â†
1 |vac〉 as before, it becomes, in terms of the output

operator,

|Ψ〉=
�

e iϕ − 1

2
b̂ †

1 +
i (e iϕ + 1)

2
b̂ †

2

�

|vac〉

=
e iϕ − 1

2
|1〉b1
|0〉b2

+
i (e iϕ + 1)

2
|0〉b1
|1〉b2

. (2.29)
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In this case, the probability to get the photon at the output ports b1 and b2 are

p(b1) =

�

�

�

�

�

e iϕ − 1

2

�

�

�

�

�

2

= sin2 ϕ

2
, p(b2) =

�

�

�

�

�

i (e iϕ + 1)

2

�

�

�

�

�

2

= cos2 ϕ

2
. (2.30)

If the phase shift ϕ between the two arms of the interferometer is zero, the input photon

can be detected only at port b2. This is an quantum mechanical interference phenomena

realized with single photons. In fact, to arrive at one of the two detectors placed in b1

or b2 the photon can take one on the two paths given by each of the two arms of the

interferometer. We cannot say which of the possible paths the photon actually takes and

so the two quantum amplitude related to the two different path have a well-defined phase

relationship and interfere.

2.1.3 Quantum wavepacket for the photon

In Section 2.1.1 we described the quantization of electromagnetic field by modelling

the free space as a cavity. This led to the fact that the modes of the electromagnetic field

are described by a discrete wavevector k and the polarization. However, real experiments

use light beams travelling in straight lines from the source to the detectors in regions that

cannot be contained in a optical cavity. Hence, it is necessary, for some experiment as the

one on single-photon interference along space channels in Chapter 5 to describe moving

photons as localized pulse travelling along a straight line. We will follow the description

given in [10].

A pulse, such the one produced by a mode-locking laser [14], necessarily contains a

continuous band of frequency ω around a central frequency ω0, since it has a finite dura-

tion. We assume the pulse propagates along the direction given by the z-axis. We have to

take the limit of a L-long quantization-axis extending in parallel to the propagation axis,

whose one-dimensional mode spacing is

∆ω =
2πc

L
(2.31)

which tends to zero when L goes to infinity. Thus, the summation over the wavenumber

k =ωk/c are replaced by integral of the form

∑

k

→
∫

d k
L

2π
=

∫

dωk

L

2πc
=

1

∆ω

∫

dω, (2.32)

and the discrete and continuous delta functions are related by

δk ,k ′→∆ωδ(ω−ω0) . (2.33)
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Then, the discrete creation and annihilation operators â†

k
,âk are replaced by their continu-

ous-mode counterparts

âk→
p
∆ω â(ω), â†

k
→
p
∆ω â†(ω) (2.34)

in order to satisfy the commutation relation

�

â(ω), â†(ω′)
�

= δ(ω−ω′) . (2.35)

It is useful to define the Fourier transformed operators in the time domain according

to

â(t ) :=
1p
2π

∫

dω â(ω) e−iωt , (2.36)

that lead to the relation
�

â(t ), â†(t ′)
�

= δ(t − t ′) . (2.37)

The inverse Fourier transformation is

â(ω) :=
1p
2π

∫

d t â(t ) e+iωt (2.38)

while the analogue of the number operators is given by

n̂ :=

∫

dω â†(ω) â(ω)≡
∫

d t â†(t ) â(t ) (2.39)

As usual, the continuous-mode vacuum state satisfies

â(ω) = â(t ) |vac〉= 0 , (2.40)

while

|ω〉= â†(ω) |vac〉 , |t 〉= â†(t ) |vac〉 . (2.41)

However, these states are still not a realistic representation of the photon-number states

generated in the experiments. The latter are best described by wavepacket covering a con-

tinuous range of frequencies, as in the case of pulses.

We will describe Gaussian pulses, whose spectral amplitude is represented by the func-

tion

ξt0
(ω) :=

�

2π∆2
�1/4

e−i (ω0−ω)t0 e−
(ω0−ω)2

4∆2 , (2.42)

where ω0 is the central frequency of the pulse spectrum, t0 is the time at which the peak

of the pulse passes the coordinate origin z = 0, and ∆ is the bandwidth of the spectrum,

assumed to be ∆≪ω0. The relation between the bandwidth ∆ and the coherence time τc

of the pulse is

τc :=

p
π

∆
. (2.43)
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By using the same convention on the Fourier transformation of the continuous-mode filed

operators in (2.36) and (2.41) the wavepacket amplitude in the time domain can be written

as

ξt0
(t ) =

�

2∆2

π

�1/4

e−iω0 t e−∆
2(t−t0)

2

=

�

2

τ2
c

�1/4

e−iω0 t e
−π (t−t0)

2

τ2
c . (2.44)

It is worth noticing that the wavepacket is normalized
∫

dω|ξt0
(ω)|2 =

∫

d t |ξt0
(t )|2 = 1 . (2.45)

Hence, a photon described by the wavepacket (2.42) or, equivalently, by (2.44) is cre-

ated by the photon-wavepacket creation operator

â†

ξt0

:=

∫

dω ξt0
(ω) â†(ω) =

∫

d t ξt0
(t ) â†(t ) (2.46)

and it is represented by the state
�

�

�1ξt0

¶

:= â†

ξt0

|vac〉 . (2.47)

The probability of getting a photon in a time interval large 2∆w around t0, if the state

is
�

�

�1ξt0

¶

, is given by

p([t0−∆w, t0+∆w]) =
¬

1ξt0

�

�

�

�
∫ t0+∆w

t0−∆w

d t â†(t )â(t )

�

�

�

�1ξt0

¶

=

∫ t0+∆w

t0−∆w

d t |ξt0
(t )|2 , (2.48)

that is analogue to Born’s rule if we replace the wavefunction of a unidimensional quantum

particle in the x-representation ψ(x) = 〈x|ψ〉 with the photon wavepacket ξt0
(t ) [2].

It is worth noticing that two pulses separated by more than the coherence time τc

can be considered independent one from each other. More precisely, the commutation

relations for the operators in (2.46) are
h

âξt0
, â†

ξt0+∆t

i

= e−
1
2 (
∆t
τc
)

2

(2.49)

ans so, if ∆t ≫ τc , two Gaussian pulses in the same mode can be treated as orthogonal,
¬

1ξt0+∆t

�

�

�1ξt0

¶

= 〈vac| âξt0+∆t
â†

ξt0

|vac〉= 〈vac|
h

âξt0
, â†

ξt0+∆t

i

|vac〉= e−
1
2 (
∆t
τc
)

2 ∆t≫τc−−−→ 0 . (2.50)

Moreover, continuous-mode field operators can be used in the linear multiport of Sec-

tion 2.1.2 simply asking that two different inputs modes respect
�

âi (ω), â†
j
(ω′)

�

= δi jδ(ω−ω′) . (2.51)

Then, generalizing equation (2.24), we have

â†

i ,ξt0

=
N
∑

j=1

∫

dω ξt0
(ω)S j i (ω)b̂

†
j
(ω) , (2.52)

which will be used for the time-bin encoding in Section 2.2.3.
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2.2. Encoding quantum information into photons

2.2 Encoding quantum information into photons

In this section we will see why the laser is the master tool implemented in Quantum

Optics experiment. We will see when a weak-coherent laser is a good approximation of a

single photon source, and then we will investigate the two main encodings used in pho-

tonic implementations of Quantum Information, that are, polarization and time-bin. The

goal of this section is to render the connection between what happens in the lab and what

the abstract quantum theory predicts as close as possible.

2.2.1 Weak-coherent states for Quantum Optics experiments

We have seen in Section 2.1.1 that a laser operating well above its threshold outputs

the mixed state given by (2.17) and we saw that the probability of finding n photon in

a pulse or a time interval, given the mean number µ = |α|2, is described by the Poisso-

nian distribution in (2.18). In the following, we will deal with laser pulses in which the

probability of finding two photons in a pulse, or in a time interval, becomes negligible.

These attenuated laser pulses are called weak-coherent (WC). We will see now when it is

possible to use weak coherent light as an approximation for single-photon states, which

are experimentally much more difficult to generate. A good reference for this section is

the book in [13].

By assuming a small mean photon number µ ≪ 1, it is possible to expand the mix-

ture (2.17) as

ρ̂WC =
∞
∑

n=0

p(n|µ≪ 1) |n〉〈n|

≈
�

1−µ+ µ
2

2
+O (µ3)

��

|0〉〈0|+µ |1〉〈1|+ µ
2

2
+O (µ3)

�

≈
�

1−µ+ µ
2

2

�

|0〉〈0|+
�

µ−µ2
�

|1〉〈1|+ µ
2

2
|2〉〈2|+O (µ3) . (2.53)

Such expansion shows the probability of finding one photon in a pulse is of the order µ,

while the two-photon contribuiton appears with probability µ2/2.

When only one weak coherent beam is used, for example in a interferometry experi-

ment, the pulses containing one or more photons can trigger a detection. In this case, the

rate of one photon generation is small, proportional to µ, but the two-photon contribu-

tion is even smaller, going as µ2/2. Thus, the post-selection on the actual detections in this

case is a valid procedure, and visibilities arbitrarily close to one can be achieved.

On the other hand, such post-selection can fail when two or more weak coherent

sources are used in a interferometry experiment where two photons are typically detected
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in each run or within a fixed coincidence window. In this case, the two photons may have

come from the one-photon contribution in both the beams with probability µ2, which

is of the same order of magnitude of the probability µ2/2 that the two photons actually

came from only one of the two beams. When it is not possible to discriminate between

these two possibilities, the post-selection procedure is not valid and the single-photon ap-

proximation is not applicable.

In the following we will use weak coherent pulses imping onto linear optical devices.

To understand the evolution of the system is it useful to describe what happens to a co-

herent state |α〉 entering the port a1 of the beam splitter of Figure 2.1. It is worth noticing

that the displacement operator can be written as [12]

D̂a(γ ) = eγ â†−γ ∗â = e−|γ |
2/2eγ â†

e−γ
∗â (2.54)

and thus

|α〉a1
= e−|α|

2/2eαâ†
1 e−α

∗â1 |vac〉= e−|α|
2/2eαâ†

1 |vac〉 . (2.55)

By using the mode transformation of the beam splitter in (2.27)

â†
1→

1p
2

�

i b̂ †
1 + b̂ †

2

�

, (2.56)

the output state is

|α〉a1
→ e−|α|

2/2e
α 1p

2

�

i b̂ †
1+b̂ †

2

�

|vac〉

= e−|α|
2/2 e

αi b̂
†
1p
2
+
αb̂

†
2p
2 |vac〉

= e−|α|
2/2 e

αi b̂
†
1p
2 |0〉b1

⊗ e
αb̂

†
2p
2 |0〉b2

= e−|α|
2/4

+∞
∑

n=0

(iα/
p

2)np
n!
|n〉b1
⊗ e−|α|

2/4
+∞
∑

l=0

(α/
p

2)lp
l !
|l 〉b2

=

�

�

�

�

�

iαp
2

�

b1

⊗
�

�

�

�

�

αp
2

�

b2

(2.57)

where we noted that that for γ ∈C
�

�

�

�

�

γp
2

�

= e−|γ |
2/4
+∞
∑

n=0

(γ/
p

2)np
n!
|n〉 . (2.58)

This is the result expected for a classical light wave, since the impinging intensity is divided

between the two output beams, e.g. half the incident average photon number, |α|2/2,
emerges in each beam. The output state is separable in the two output modes, since it

is given by the tensor product of two coherent beams. There are no quantum optical
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linear operations that can transform a classical-like state as the product of two coherent

states in a non-classical state like the one in (2.27), which is entangled. Indeed, usually

optical non-linearities are used to achieve this goal, as in the SPDC process described in

Section 2.3.1.

However, to which extend the product of two weak-coherent beams in two different

modes can be a good approximation for a single photon in a superposition of two modes,

that is, a qubit? Let’s take the coherent state in two modes A and B given by

|Ψ〉= |α〉A |α〉B . (2.59)

By expanding |α〉 as

|α〉 ≈ e−
|α|2

2

�

|0〉+α |1〉+ α2

p
2
|2〉+O (α3)

�

, (2.60)

we obtain, up to O (α3), the expansion:

|Ψ〉 ≈
�

1− |α|2
�

|0〉A |0〉B
+α (|1〉A |0〉B + |0〉A |1〉B)

+α2 |1〉A |1〉B +
α2

p
2
(|2〉A |0〉B + |0〉A |2〉B) . (2.61)

As discussed before, the single-photon contribution may trigger a detection with prob-

ability µ = |α|2, while for the two-photon contribution the same probability is only of

the order ∼ µ2 = |α|4. Hence, a post-selected weak coherent state in two different modes

provides a good approximation for a single-photon in a two-mode qubit-superposition,

since the (renormalized) one-photon part of the state is dominant with respect to the

two-photon one. The renormalized 1-photon part of the state |Ψ〉 is given by

|Ψ1〉 ≈
1p
2
(|1〉A |0〉B + |0〉A |1〉B) . (2.62)

It is worth noticing that the above approximation is valid only if we are interested in

using post-selected weak-coherent state for experiments based on the first degree of coher-

ence [12], as the ones presented in the following.

2.2.2 Polarization encoding and Jones calculus

A natural degree of freedom to encoding quantum information into photons is given

by polarization. The electromagnetic field is specified by a polarization vector e
k,λ laying

in a plane orthogonal to the direction axis. We will assume that the X −Y axes of this
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plane are alignedwith the horizontal and vertical directions, respectively. Hence, a linearly

polarized single photon state in the horizontal or vertical directions will be indicated with

|H 〉 ≡
 

1

0

!

, |V 〉 ≡
 

0

1

!

, (2.63)

which correspond to the |0〉 and |1〉 states of the computational basis respectively. A gen-

eral polarization-based qubit in a pure state will be described by

|ψ〉= cos
�

θ

2

�

|H 〉+ e iϕ sin
�

θ

2

�

|V 〉 ≡
 

cos θ
2

e iϕ sin θ
2

!

, (2.64)

lying on the surface of the so-called Bloch, or Poincaré, sphere, as shown in Figure 2.3.

The commonly used states in quantum optics implementations of quantum information

protocols are defined by

|D〉 := 1p
2
(|H 〉+ |V 〉) (2.65)

|A〉 := 1p
2
(|H 〉− |V 〉) (2.66)

|R〉 := 1p
2
(|H 〉+ i |V 〉) (2.67)

|L〉 := 1p
2
(|H 〉− i |V 〉) (2.68)

where |D〉 ( |A〉) represents a photon linearly polarized at +45◦ (−45◦) with respect to the

horizontal direction, diagonally and anti-diagonally respectively, while |R〉 ( |L〉) represents
a right (left) circularly polarized photon.

It is useful to relate the component of the Bloch vector of a generic polarization-based

encoded qubit to projective measurements onto the states defined above. Indeed, by ob-

serving that the Pauli matrices can be re-written as

σ̂0 = 12 ≡ P̂|H 〉+ P̂|V 〉 = |H 〉〈H |+ |V 〉〈V | , (2.69)

σ̂1 ≡ P̂|D〉− P̂|A〉 = |D〉〈D | − |A〉〈A| , (2.70)

σ̂2 ≡ P̂|R〉− P̂|L〉 = |R〉〈R| − |L〉〈L| , (2.71)

σ̂3 ≡ P̂|H 〉− P̂|V 〉 = |H 〉〈H | − |V 〉〈V | , (2.72)

we have that the Stokes parameters for the general mixed state ρ̂ defined in (1.28) are given
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Figure 2.3: Bloch sphere representation of a polarization encoded qubit |ψ〉= cos(θ/2) |H 〉+ e iϕ sin(θ/2) |V 〉.

by the expectation values

S0 = 〈P̂|H 〉+ P̂|V 〉〉ρ , (2.73)

S1 ≡ r1 = 〈P̂|D〉− P̂|A〉〉ρ , (2.74)

S2 ≡ r2 = 〈P̂|R〉− P̂|L〉〉ρ , (2.75)

S3 ≡ r3 = 〈P̂|H 〉− P̂|V 〉〉ρ . (2.76)

To implement such projective measurements it is sufficient to use a quarter-waveplate fol-

lowed by a half-waveplate then followed by a polarizing beam splitter, as described in the

following.

Jones calculus.—In polarization-based quantum optics experiments linear optical de-

vices transforming polarization without (ideally) introducing losses are commonly used,

as polarizing beam splitter, half-wave and quarter-wave retarders, polarizers and so on.

Each of these devices can be described as a linear multiport, with the modes labelled by

the polarizations H and V . In this case, the scattering matrix or Jones matrix S J is a 2× 2

acting as
 

b̂H

b̂V

!

= S J

 

âH

âV

!

, (2.77)

and for the creation operators we have that â†
H |vac〉 ≡ b̂ †

H |vac〉 ≡ |H 〉 and â†
V |vac〉 ≡

b̂ †
V |vac〉 ≡ |V 〉. Hence, the mode transformation is given by

â†
H → S J

11 b̂ †
H + S J

21 b̂ †
V , â†

V → S J
12 b̂ †

H + S J
22 b̂ †

V , (2.78)
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according to (2.24). Actually, the description via the mode transformation in (2.78) is

equivalent to the Jones calculus [14]. Indeed, Jones calculus provides that the general po-

larized state in the vector representation

|ψ〉= α |H 〉+β |V 〉 ≡
 

α

β

!

, (2.79)

is transformed into the state |ψ′〉 according to
�

�ψ′
�

:= α′ |H 〉+β′ |V 〉 ≡
 

α′

β′

!

= S J |ψ〉= S J

 

α

β

!

. (2.80)

Hence, we have that

α′ = S J
11α+ S J

12β, β′ = S J
21α+ S J

22β , (2.81)

which is equivalent to the mode transformation given in (2.78). In the Jones representa-

tion, the scattering matrix S J is the unitary matrix giving the evolution of the quantum

state passing through the optical device described by S J . We now present some examples

of common optical devices used in the experiments explained in the following chapters.

Wave-retarders.—Wave-plates o wave-retarders are optical devices made of a birefrin-

gent material, characterized by a different refractive index for two orthogonal axes. The

material used in most wave-plates is quartz, which is a positive uniaxial crystal with

ne − no := δn > 0 [14]. The axis characterized by the lower refraction index is called

the fast optical axis while the other is called slow, since v = c/n is the propagation ve-

locity of light into the material. Hence, nfast = no and nslow = ne and δn = nslow − nfast,

assuming the fast optical axis aligned along the horizontal direction, a wave retarder can

be modelled by the Jones matrix

SΓ = e i 2π
λ d nfast

 

1 0

0 e i 2π
λ dδn

!

≡
 

1 0

0 e iΓ

!

. (2.82)

where λ is the wavelength of the photon, d is the thickness of the ratarder and Γ = 2π
λ dδn

is the retardance introduced by the waveplate. Two examples of wave retarders commonly

implemented in quantum optics experiments are the half-waveplate (HWP, or λ/2) with

dδn = λ/2 and so Γ = π and the quarter-waveplate (QWP, or λ/4) with dδn = λ/4 and

so Γ =π/2, characterized by

SHWP =

 

1 0

0 −1

!

≡ σ̂z ≡ e−i π2 σ̂z ≡ R̂z(π) , (2.83)

SQWP =

 

1 0

0 i

!

≡ e−i π4 σ̂z ≡ R̂z(π/2) . (2.84)
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However, typically these devices are placed with their fast optical axis making an angle

φ with the horizontal polarization, assumed to be aligned with the X -axis in the polariza-

tion plane. Hence, the new reference frame in the X −Y plane is rotated by the rotation

matrixR(φ)

R(φ) =
 

cosφ − sinφ

sinφ cosφ

!

≡ R̂y(2φ) , (2.85)

which has the same form of the exponentiation of a σ̂y matrix, and so the rotated version

of the Jones matrix S J is

S J

φ
:=R(φ)S JR(−φ)≡ R̂y(2φ)S

J R̂y(−2φ) . (2.86)

As an example, the wave retarders presented above, when rotated by an angle φ with

respect to the horizontal axes, are given by

SΓφ =

 

cos2φ+ sin2φe iΓ cosφ sinφ(1− e iΓ )

cosφ sinφ(1− e iΓ ) sin2φ+ cos2φe iΓ

!

, (2.87)

SHWP
φ =

�

R̂y(2φ)
�2
σ̂z ≡ R̂y(4φ)σ̂z =

 

cos2φ sin2φ

sin2φ −cos2φ

!

≡ R̂y(4φ)R̂z(π) , (2.88)

SQWP

φ
=

 

cos2φ+ i sin2φ cosφ sinφ(1− i )

cosφ sinφ(1− i ) sin2φ+ i cos2φ

!

≡ R̂z(π/2)R̂x(2φ)R̂y(−2φ) , (2.89)

where we used the general properties of the rotation operators

R̂y(φ)σ̂z = σ̂z R̂y(−φ) , (2.90)

R̂i (α+β) = R̂i (α)R̂i (β) , (2.91)

R̂z(−π/2)R̂y(α)R̂z(π/2) = R̂x(α) (2.92)

and the fact that the Jones matrices are equivalent (“≡”) up to a global phase factor. It is

easy to show that:

SHWP
φ+π/2 =

�

SHWP
φ

�†
= SHWP

φ , (2.93)

SQWP

φ+π/2
=
�

SQWP

φ

�†
. (2.94)

In particular, the inverse of a QWP rotated by φ is a QWP with orthogonal fast optical

axis.

The transformation written above are cast in a way which allows to relate the physical

transformation occurring when you physically rotate the waveplates on your optical table

and what occurs on the qubit state in the Bloch sphere. As a example, the action of the
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Figure 2.4: (left panel) Action of a HWP rotated by φ on the Bloch sphere. For example, when φ= 0 we have that |H 〉→ |H 〉 , |V 〉→
−|V 〉, and so |D〉 ↔ |A〉 and |R〉 ↔ |L〉. (right panel) With a QWP it is alway possible to turn a polarized qubit into a linearly

polarized one.

HWP is given first by a rotation by π around the z-axis followed by a rotation of angle

4φ around the y-axis of the Bloch sphere, as represented in the left panel of Figure 2.4.

Essentially, a HWP at φ performs the transformation |D〉 ↔ |A〉 and |R〉 ↔ |L〉 and
then rotates the equator of the linear polarizations {H , D ,V ,A} in the Bloch sphere by an

angle 4φ. Physically, the HWP at φ reflects a light linearly polarized along the direction

δ with respect the fast optical axis, causing a polarization rotation ending in the direction

δ ′ = 2φ−δ, e.g. a physical rotation of an angle 2φ for horizontal polarized light.

The action of a QWP on the Boch sphere is a rotation of an angle −2φ around the y-

axis, followed by a rotation of 2φ around the x-axis and then by a rotation of π/2 around

the z-axis. A singleQWP is sufficient to transform any polarized (pure) state into a linearly

polarized one, as shown in the right panel of Figure 2.4. Indeed, the rotation around the

y-axis can bring any pure state |ψ〉 into the equator {H , R,V , L} containing the circular

polarizations |R〉 and |L〉, then the rotation around the x-axis moves the state along such

equator and finally the rotation of π/2 around the z-axis brings the state to the equator

{H , D ,V ,A} of the linear polarizations.
Essentially, a QWP is used to transform circular polarized light into linearly polarized

light and viceversa. Typically in the lab the QWP is placed with the fast optical axis at 0◦

or 45◦, and it acts on the Bloch sphere as represented in Figure 2.5.

It is worth noticing that, by using a triplet “QHQ” made by a QWP rotated by an

angle α, a HWP rotated by β, and another QWP rotated by γ it is possible to implement

any unitary transformation. Indeed, the induced unitary transformation on a generic
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2.2. Encoding quantum information into photons

Figure 2.5: (left panel) Action of a QWP at φ = 0 on the Bloch sphere: |H 〉 → |H 〉, |V 〉 → i |V 〉, and so |D〉 → |R〉, |A〉 → |L〉,
|R〉 → |A〉, |L〉 → |D〉. (right panel) Action of a QWP at φ = π/4 = 45◦ on the Bloch sphere: |H 〉 → |L〉, |V 〉 → −i |R〉, and so

|D〉→−i |D〉, |A〉→ |A〉, |R〉→ |H 〉, |L〉→−i |V 〉.

polarization-bases qubit is (neglecting the global phase)

ÛQHQ(α,β,γ ) := SQWP
γ SHWP

β SQWP
α

= R̂z(π/2)R̂x(2γ )R̂y(−2γ ) R̂y(4β)R̂z(π) R̂z(π/2)R̂x(2α)R̂y(−2α)

= R̂z(π/2)R̂x(2γ )R̂z(π) R̂y(2γ − 4β)R̂z(π/2)R̂x(2α)R̂y(−2α)

= R̂y(2γ )R̂x(2γ − 4β+ 2α)R̂y(−2α) , (2.95)

Hence, ÛQHQ, being the composition of two rotations around the y-axis and one around

the x-axis, can implement any unitary transformation according to (1.33).

Finally, it is worth noticing that a generic wave retarder with Γ = 2π
λ dδn can imple-

ment a rotation around the z-axis of the Bloch sphere when tilted by an angle ε. Indeed, it

introduces a factor 1/cosε into the path length, since d = d ′ cosε, where d ′ is the actual

path inside the retarder. Hence, a tilted retarder (with horizontal fast axis, i.e. φ= 0) can

be written as

SΓφ=0,ε =

 

1 0

0 e i Γ

cosε

!

= e i Γ

2cosε

 

e−i Γ

2cosε 0

0 e i Γ

2cosε

!

≡ R̂z

�

Γ

cosε

�

, (2.96)

which implements, in general, a rotation around the z-axis on the Bloch sphere, allowing

for example the swapping |D〉 ↔ |A〉 and |R〉 ↔ |L〉. Also the triplet “QHR” made by

a QWP rotated by α, a HWP rotated by β and a retarder tilted by ε can implement any

unitary operation in the Bloch sphere, since

ÛQHR(α,β,ε) := R̂z

�

Γ

cosε

�

SHWP
β SQWP

α = R̂z

�

Γ

cosε
− π

2

�

R̂x(2α− 4β)R̂y(−2α) (2.97)
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is a composition of three rotations around three different axes of the Bloch sphere.

The polarizing beam-splitter.—Another commoly used polarization-based device is the

polarizing beam splitter (PBS), which transmits an horizontal polarized impinging photon

and reflects a vertical polarized one. Hence, a PBS allows to split horizontal and vertical

polarizations in two spatially separated modes, as represented in Figure 2.6 according to

the mode transformation

â†
1,H → b̂ †

1,H , (2.98)

â†
1,V → b̂ †

2,V , (2.99)

â†
2,H → b̂ †

2,H , (2.100)

â†
2,V → b̂ †

1,V . (2.101)

Figure 2.6: Input-Output modes for the PBS.

The PBS is used to implement projective measurements in a given polarization basis.

For example, by using a single input port (the one labelled 1 Figure 2.6 for example),

we have that the two spatially separated output modes are orthogonally polarized and in

each path can be implemented a mean photon number measurement, by placing a single

photon detector in the path. Indeed, the mode transformation is

â†
1,H → b̂ †

1,H , â†
1,V → b̂ †

2,V (2.102)

and the expectation values of the operators n̂bi
with spatial index i = 1,2, when the state

is |ψ〉= α |H 〉a1
+β |V 〉a1

→ α |H 〉b1
+β |V 〉b2

is

〈n̂b1
〉= |α|2 , 〈n̂b2

〉= |β|2 . (2.103)

For this reason, a PBS by itself performs a projective measurement in the {|H 〉 , |V 〉} basis.
However, by adding a QWP or a HWP (or both) in front of the PBS it is possible to
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2.2. Encoding quantum information into photons

implement a projective measurement in any basis. Let’s write the generic input state (in

the a1 mode) as

|ψ〉= α |H 〉+β |V 〉

=
1p
2
(α+β) |D〉+ 1p

2
(α−β) |A〉

=
1p
2
(α− iβ) |R〉+ 1p

2
(α+ iβ) |L〉 . (2.104)

For example, a HWP rotated by φ = 22.5 = π/8 in front of the PBS implements the

projective measurement onto the {|D〉 , |A〉} basis since the action of the HWP produces

|ψ〉= α |H 〉+β |V 〉
SHWP

22.5◦−−→
�

�ψ′
�

= α |D〉+β |A〉= 1p
2
(α+β) |H 〉+ 1p

2
(α−β) |V 〉

(2.105)

and we have after the PBS that

〈n̂b1
〉= 1

2
|α+β|2 , 〈n̂b2

〉= 1

2
|α−β|2 , (2.106)

as expected in a measurement of |ψ〉 in the {|D〉 , |A〉} basis.
On the other hand, a QWP rotated by φ= 45= π/4 in front of the PBS implements

the projective measurement onto the {|R〉 , |L〉} basis since the action of the QWP produces

|ψ〉= α |H 〉+β |V 〉
SQWP

45◦−−→
�

�ψ′
�

= α |L〉− iβ |R〉= 1p
2
(α− iβ) |H 〉− i

1p
2
(α+ iβ) |V 〉

(2.107)

and we have after the PBS that

〈n̂b1
〉= 1

2
|α− iβ|2 , 〈n̂b2

〉= 1

2
|α+ iβ|2 , (2.108)

as expected in a measurement of |ψ〉 in the {|R〉 , |L〉} basis.

2.2.3 Time-bin encoding

With the formalism introduced in Section 2.1.3 it is possible to describe the time-bin

encoding, that we will exploit in single-photon interferometry along Space channels in

Chapter 5.

Let’s suppose that a 1-photon pulse centered at t0 enters the unbalancedMach-Zehnder

interferometer of Figure 2.7 in the mode a1, that is,
�

�

�1a1,ξt0

¶

= â†

1,ξt0

|vac〉 . (2.109)

41



Chapter 2. Elements of Quantum Optics

Figure 2.7: Input-Output modes an unbalanced Mach-Zender interferometer with the additional phase-shift ϕ.

We can describe the interferometer as a linear filter consisting of a delay element and a

phase modulator of value ϕ sandwiched between two 50:50 beam splitters. The two arms

— short “S” and long “L” — are unbalanced, i.e. the path difference ∆l := c∆t = L− S is

not zero, and it is set to avoid single photon interference. This can be achieved taking the

temporal imbalance ∆t much greater than the coherence time of the pulse

∆t ≫ τc . (2.110)

The scattering matrix of the unbalanced interferometer can be written as a function

of the frequency ω given the imbalance ∆t , that is, the delay introduced by the long arm

relative to the short one, and the value of the possible additional phase shift ϕ

S(ω;∆t ,ϕ) :=
1

2

 

1− e i (ω−ω0)∆t e iϕ i (e i (ω−ω0)∆t e iϕ + 1)

i (e i (ω−ω0)∆t e iϕ + 1) e i (ω−ω0)∆t e iϕ − 1

!

. (2.111)

We can rewrite the input operators as a function of the output ones by using (2.52) to

42



2.2. Encoding quantum information into photons

obtain

â†

1,ξt0

=
2
∑

j=1

∫

dωξt0
(ω)S j 1(ω;∆t ,ϕ)b̂ †

j
(ω)

=

∫

dω ξt0
(ω)

1

2
(1− e i (ω−ω0)∆t e iϕ)b̂ †

1 (ω)+
∫

dω ξt0
(ω)

i

2
(e i (ω−ω0)∆t e iϕ + 1)b̂ †

2 (ω)

=

∫

dω

2

�

ξt0
(ω)− ξt0+∆t (ω)e

iϕ
�

b̂ †
1 (ω)+

∫

dω

2

�

iξt0+∆t (ω)e
iϕ + iξt0

(ω)
�

b̂ †
2 (ω)

=
1

2

�

b̂ †

1,ξt0

− e iϕ b̂ †

1,ξt0+∆t
+ i e iϕ b̂ †

2,ξt0+∆t
+ i b̂ †

2,ξt0

�

, (2.112)

where we observed that

ξt0
(ω)e i (ω−ω0)∆t ≡ ξt0+∆t (ω) (2.113)

by using (2.42).

If we focused only on the output port b1, the re-normalized state exiting the interfe-

rometer is

1p
2

�

b̂ †

1,ξt0

− e iϕ b̂ †

1,ξt0+∆t

�

|vac〉 ≡ 1p
2

��

�

�1b1,ξt0

¶

− e iϕ
�

�

�1b1,ξt0+∆t

¶�

. (2.114)

and the action of the interferometer in (2.114) can be re-written in terms of the wavepacket

amplitude in the time-domain as

ξt0
(t )→ 1p

2

�

ξt0
(t )− ξt0+∆t (t )

�

=
1p
2

�

ξt0
(t )− e i (ϕ−ω0∆t )ξt0

(t −∆t )
�

. (2.115)

The state in (2.114) is a superposition of two temporal time-bins, delayed by∆t one with

respect to the other. The two states are orthonormal and can be written as a basis for C2,

hence giving a qubit. The two basis states are usually rewritten as |S〉 :=
�

�

�1ξb1,t0

¶

and |L〉 :=
�

�

�1b1,ξt0+∆t

¶

referring to the path took in the interferometer, and the superposition (2.114)

|ψ〉TB =
1p
2

�

|S〉− e iϕ |L〉
�

(2.116)

is called time-bin (TB) qubit. It is worth noticing that, by properly choosing the additional

relative phase-shift ϕ between the two arms of the interferometer is it possible to obtain

any phase relation between the two basis states. We will often exploit time-bin encoding

and time-bin qubits in the following chapters.

We notice that, if the 1-photon pulse entering the interferometer is replaced by a

coherent-state pulse, the output state is a coherent-state pulse in two temporal modes de-

layed by∆t or, in other word, two coherent-state pulses delayed by∆t . Indeed, following
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the discussion of Section 2.2.1, using the displacement operator for the coherent-state pulse

in mode a1

D̂a1,ξt0
(α) = e−|α|

2/2e
αâ†

1,ξt0 e
−α∗â1,ξt0 , (2.117)

replacing (2.56) with

â†

1,ξt0

→ 1p
2

�

b̂ †

1,ξt0

− e iϕ b̂ †

1,ξt0+∆t

�

(2.118)

according to (2.114), we have that

|α〉a1,ξt0
:= D̂a1,ξt0

(α) |vac〉→
�

�

�

�

�

αp
2

�

b1,ξt0

�

�

�

�

�

e i (π+ϕ)αp
2

�

b1,ξt0+∆t

. (2.119)

In the following chapters we will usually indicate a 1-photon state and a coherent-state

pulse in a given spatial mode according to:

|1〉t0
≡
�

�

�1ξt0

¶

≡ |S〉 (2.120)

|1〉t0+∆t ≡
�

�

�1ξt0+∆t

¶

≡ |L〉 (2.121)

|α〉t0
≡ |α〉ξt0

(2.122)

|α〉t0+∆t ≡ |α〉ξt0+∆t
. (2.123)

In this way, the action of an unbalanced Mach-Zehnder interferometer (uMZI) on a 1-

photon pulse and on aweak-coherent-state pulse, according to the discussion in Section 2.2.1,

and equation (2.62) in particular, allows to obtain true time-bin qubits and its weak-

coherent approximation via:

|1〉t0

uMZI−−→ 1p
2

�

|1〉t0
− e iϕ |1〉t0+∆t

�

≡ |ψ〉TB , (2.124)

|α〉t0

uMZI−−→
�

�

�

�

�

αp
2

�

t0

�

�

�

�

�

e i (π+ϕ)αp
2

�

t0+∆t

|α|2≪1−−→ 1p
2

�

|1〉t0
− e iϕ |1〉t0+∆t

�

≡ |ψ〉TB . (2.125)

2.3 How to generate entangled photons

As discussed above, weak-coherent sources are not suitable to perform two-photon

experiments. Furthermore, true entanglement cannot be obtained by exploiting two in-

dependent weak coherent sources. Indeed, most of experiments exploiting entanglement

(e.g., polarization or energy-time entanglement) is based on a non-linear process called

Spontaneous Parametric Down Conversion. Let’s describe this effect and the typical se-

tups used in Quantum Optics experiments involving photon entanglement.
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2.3.1 Spontaneous Parametric Down Conversion

Entangled photons are commonly produces by exploiting Spontaneous Parametric

Down Conversion (SPDC) sources [12, 14, 17, 18]. SPDC is due to a non-linear effect

occurring in the interaction between a strong radiation, called pump, with a media in

which the induced polarization is strongly affected by the pump radiation itself beyond

the usual linear response. In this section, we will focus on non-linear media, i.e. crystals,

in which the polarization can be expanded in a power series of the applied pump field

P̂i = χ
(1)

i j
Ê j +χ

(2)

i j k
Ê j Êk +χ

(3)

i j k l
Ê j Êk Êl + · · · , (2.126)

where χ (m) is the m-th order electric susceptibility tensor and we adopted the Einstein’s

convention in which repeated indexes are added. In SPDC crystals, the key ingredient is

the 2-nd order electric susceptibility coefficient, which allow to write down the 2-nd order

contribution to the Hamiltonian of the system as

Ĥ (2) = ε0

∫

V

d 3
rχ (2)

i j k
Êi Ê j Êk , (2.127)

since the energy density is ε0Êi P̂i .

We will not discuss the details of the generation process, which can be found in many

references, as [18] and therein, and we will limit ourself to present the conceptual steps

allowing to describe the quantum state of the two entangled photons generated by SPDC.

By expanding the electrical fields Êi in Fourier components, as done in Section 2.1.1 for

the potential vector, it is possible to write the interactionHamiltonian ĤI(t ) for the system

ĤI(t ) = ε0

∫

V

d 3
r

∫

d 3
ksd

3
kiχ

(2)

i j k
Ê (−)

p,i
(kp)Ê

(+)

s, j
(ks)Ê

(+)

i,k
(ki)+H.c. , (2.128)

where the electrical field operators are labelled according to p= “pump”, s= “signal” and

i = “idler”, and they are proportional to the creation and annihilation operators for the

given mode specified by the wavevector k according to [12]:

Ê (−)(k) := i

√

√

√2π}hω(k)

V
â†(k,ω(k)) , Ê (+)(k) := i

√

√

√2π}hω(k)

V
â(k,ω(k)) . (2.129)

Signal and idler are the two labels given to the twin photons generated by the SPDC

process.

The conversion rates for the process depend on the 2-nd order susceptibilityχ (2), which

typically has extremely low efficiencies in the range 10−7 to 10−11. Hence, in order to

obtain significant output in the signal and idler beams it is necessary to pump the medium
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with a very strong coherent field which is modelled as a classical field obtained from a

strong laser.

The interaction Hamiltonian describes the fact that in the SDPC process a pump pho-

ton is destroyed by Ê (−)p (kp), while two twin photons, the signal and the idler, are generated

by Ê (+)s (ks) and Ê (+)
i
(ki). The interaction Hamiltonian allows to calculate the state of the

system via the time-dependend perturbation theory [3, 5]

|Ψ〉 := 1

i }h

∫

d t ĤI(t ) |vac〉 , (2.130)

which results proportional to [12]

|Ψ〉 ∝
∫

d 3
ksd

3
kiδ

�

ωp−ωs−ωi

�

δ
�

kp−ks−ki

�

Ap(kp,ωp) |ks,ωs〉s |ki,ωi〉i , (2.131)

where Ap(kp,ωp) is the pump profile in the momentum space and

|ks,ωs〉s := â†
s (ks,ωs) |0〉s (2.132)

|ki,ωi〉i := â†
i
(ki,ωi) |0〉i . (2.133)

The two delta functions in (2.131) provide the phase-matching conditions

ωp =ωs+ωi , (2.134)

kp = ks+ki , (2.135)

which express the conservation of energy and momentum. Actually, crystals are of finite

size, and the efficiency of pair production depends on the length L of the crystal along

the direction z of the pump propagation. More detailed calculations, as in [18], taking

into account the finite region V of integration in ĤI(t ), lead to quasi phase-matching

conditions, in which a tolerable mismatch ∆kz = kp,z − ki,z − ks,z 6= 0, and so ∆ω =

ωp−ωi−ωs 6= 0, is allowed. The phase-matching conditions can be achieved by using for

example the BBO crystal (β-BaB2O4), as in the experiment explained in Chapter 3.

2.3.2 Polarization entanglement

Actually, two kinds of phase-matching conditions are usually adopted, depending on

the extraordinary (e) or ordinary (o) polarization of the pump and of the SPDC photons

[12, 14, 17]:

Type-I: e→ o+ o , Type-II: e→ e+ o . (2.136)

Assuming that the two photons are degenerate, i.e., they are generatedwith the same energy

ωi =ωs =ωp/2, in Type-I SPDC the phase-matching conditions constrain the photons to
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Figure 2.8: (left panel) Type-I polarization entanglement source [19]. (right panel) Type-II polarization entanglement source [20].

Pictures taken from [17].

being emitted on the opposite directions on the surface of a o-polarized cone, as in the left

panel of Figure 2.8. On the other hand, with Type-II phase-matching, the two degenerate

photons are emitted over two different mutually crossing emission cones, as in the right

panel of Figure 2.8.

By exploiting the different phase-matching conditions, it is possible to obtained po-

larization entanglement. Let’s see for example the polarization entanglement source pro-

posed by Kwiat et al. [19], in which, by exploiting two paired Type-I crystals oriented

orthogonally one respect the other, and pumping the pair with a diagonally polarized

pump beam, it is possible to make the first crystal produce, let’s say, a pair of photons

|H 〉i |H 〉s, and thus the second will generate the pair |V 〉i |V 〉s. Since these two events are

coherent within the coherence time of the pump, the Bell states

|Φ±〉= 1p
2
(|H 〉s |H 〉i± |V 〉s |V 〉i) (2.137)

are easily generated.

On the other hand, Type-II SPDC is commonly adopted to generate the Bell states

|Ψ±〉= 1p
2
(|H 〉s |V 〉i± |V 〉s |H 〉i) , (2.138)

by taking the directions in which the two emitting cones intersect, as in [20].

During my PhD, my colleagues and I implemented both a continuous-wave (CW)

pumped Type-I SPDC source that was used for didactic purposes, and a pulsed Type-II

SPDC source, which was exploited in the time-bin experiment presented in Chapter 3. As

an example, in Figure 2.9 is presented a picture of our setup for generating polarization

entanglement via Type-II SPDC.

2.3.3 Energy-time entanglement

The two-photons generated via SPDC are not only entangled in polarization. Indeed,

another available degree of freedom is given by the conjugate variables energy and time.

47



Chapter 2. Elements of Quantum Optics

Figure 2.9: A picture of our pulsed Type-II polarization entanglement source.

Indeed, we can rewrite the SPDC state of equation (2.131) by selecting two directions ks,

ki and by using the fact that the frequency ω
k
as

|Ψ〉 ∝
∫

dωsdωiδ(ωp−ωi−ωs)Ap(ωp) |ωs〉s |ωi〉i , (2.139)

where Ap(ωp) is the pump profile (with coherence time τp) and |ω〉 := â†(ω) |vac〉 is
the continuous-mode creator operator for the frequency ω. In the degenerate case when

ωi =ωs the re-normalized state in (2.139) can be written as

|Ψ〉ET =

∫

dω |ω〉i |ω〉s , (2.140)

which is know as the energy-time entangled state. By Fourier transforming the continuous

mode operator â(ω) according to (2.36), the energy-time entangled state can be written as

|Ψ〉ET =

∫

d t |t 〉i |t 〉s . (2.141)

The SPDC twin photons are emitted at the same time and emission events which occur

within the coherence time τp of the pump are coherent. Energy-time entanglement is at

the basis of time-bin entanglement, where a pulsed laser replaces the CW one, as we will

see in Chapter 3.
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Chapter 3

Realization of a genuine time-bin entanglement

source

Twin entangled photons are an invaluable resource for fundamental tests of Quantum

Mechanics and the implementation of Quantum Information protocols. In particular,

time-bin entanglement is widely exploited to reach these purposes both via free-space or in

fiber-based systems, due to the robustness and simplicity of its implementation. However,

all time-bin entanglement implementations realized so far suffer from an intrinsic post-

selection loophole, which undermines their usefulness. In this chapter we present the real-

ization of a “genuine” time-bin entanglement source, which is free of such post-selection

loophole. Using this setup we obtained a violation of the Bell-CHSH inequality by more

than nine standard deviations. Some contents of this chapter are part of our work [21].

My friends and colleagues Marco Avesani, Costantino Agnesi and I during a summer school in Baiona (May 2018).
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3.1 Franson’s Bell test and the post-selection loophole

In 1989 Franson proposed an interferometric scheme to realize a Bell test via two-

photon interferometry [22]. In his idea, a pair of entangled photons is sent to two un-

balanced interferometers (as the one in Figure 2.7) acting as two measurement stations,

that are called Alice and Bob respectively. By exploiting the local phase-shifts (ϕA,ϕB)

introduced by the two interferometers as the two measurement choices (x, y) of a Bell test

like the one described in Section 1.2.2, and labelling the output ports of the two interfer-

ometers as two dichotomous variables a, b = ±1, it is possible to rule out local realistic

models by violating the CHSH inequality (1.48), as we will review in the following.

Franson’s idea was first implemented by exploiting the energy-time entanglement, whi-

ch can be easily created by pumping a non-linear crystal with a continuous-wave (CW)

laser, as described in Section 2.3.3 and realized for example in [23, 24, 25]. In fact, the

two emitted photons are generated at the same instant, but the emission time is uncertain

within the coherence time of the source, thus leading to indistinguishability in the alter-

native paths the photons will take in the measurement stations. Extending Franson’s idea,

time-bin entanglement was introduced by Brendel et al. in 1999 [26]: the CW laser is re-

placed by a pulsed laser shining the non-linear crystal after passing through an unbalanced

“pump” interferometer. Now, the pair of photons can be emitted at two possible times, de-

pending on the path taken by the pump-pulse in the first interferometer (see Figure 3.1a).

Both energy-time and time-bin entanglement have been widely used to distribute entan-

Figure 3.1: Time-bin schemes to realize a Bell-test à la Franson. (a) In the passive time-bin, by post-selecting the events detected in

coincidence only in the central time-slot, Alice and Bob can violate the Bell-CHSH inequality, but such scheme is affected by an intrinsic

PSL. (b) In the active time-bin, the passive beam splitter is replaced by a balanced MZI acting as an optical switch. By exploiting a

fast phase modulator ϕM in one arm of the balanced interferometer, Alice and Bob can violate the Bell-CHSH inequality without

discarding any data, i.e. this scheme is free of the post-selection loophole.
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glement over long distances [27, 28, 29, 30, 31], and to realize fiber-based cryptographic

systems [32, 33], due to the simplicity of their implementations.

However, Aerts et al. noted that Franson’s Bell-test is intrinsically affected by the so-

called post-selection loophole [38], which is present independently to the other common

loopholes (eg., locality and detection) that could affect local-realistic tests [39]. In fact,

in Franson’s configuration, Alice and Bob should post-select only the indistinguishable

events occurring within a coincidence window ∆w centered around a certain time t0,

discarding those photons arriving at t0 −∆t and t0 +∆t . When performing such post-

selection, there exists a local-hidden-variable (LHV) model reproducing the quantum pre-

dictions [38, 40]. The reason for this is that a LHV model admits the local delays to de-

pend on the local parameter (ϕA or ϕB ), but Alice and Bob need to compare these delays

to perform the post-selection. Therefore, even though the physical system is completely

local, the measurement-process post-selection invalidates the locality assumption required

to derive the Bell-CHSH inequality. The same loophole affects the passive time-bin entan-

glement scheme shown in Figure 3.1a, invalidating Bell’s inequality as test of local realism

and enabling the hacking of Franson’ schemewhen usedwith cryptographic purposes [41].

Indeed, the Bell-test gives false evidence, since the apparent violation would tell users the

setup is secure, while it is in fact insecure because of the post-selection loophole.

Many modifications to Franson’s original scheme have been proposed to address the

post-selection loophole. The first one is due to Strekalov et al. [42], and exploited hyper-

entanglement in polarization and energy-time to overcome the post-selection loophole by

replacing the beam splitters of Alice’s and Bob’s interferometers with polarizing ones.

This scheme was experimentally implemented [43] and recently realized in an intra-city

free-space link [44]. However, requiring entanglement in both energy-time and polariza-

tion, this solution increases the experimental complexity.

Afterwards, the proposal in [45] by Cabello et al. modified the geometry of the in-

terferometers by interlocking them in a hug configuration, and introduced a local post-

selection, which does not require communication between Alice and Bob. In this way,

genuine energy-time entanglement can be generated, i.e. a Bell’s test exploiting energy-time

entanglement which is not affected by the post-selection loophole. Soon after this proposal

had been conceived, table-top experiments were realized [46, 47] and a few years later the

distribution of genuine energy-time entanglement through 1 km of optical fibers [48] and

its implementation in an optical fiber-network was reported [49]. However, the hug con-

figuration requires to stabilize two long interferometers whose extension is determined

by the distance between Alice and Bob. Hence, the larger the separation is, the more

demanding the stabilization becomes.
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In the case of time-bin entanglement, the original proposal already mentioned the use

of active switches [26], such as movable mirrors synchronized with the source, instead of

passive beam splitters, to prevent discarding any data. This solution can also be exploited

to overcome the post-selection loophole, as discussed in details in [40], but no such scheme

has been realized so far.

We implemented, for the first time, a genuine time-bin entanglement scheme allowing

the violation of a Bell’s inequality free of the post-selection loophole. In our scheme,

the active switches are realized by replacing the first beam splitter, in each unbalanced

interferometer of the measurement stations, with another balanced interferometer with

a fast phase-shifter in one arm, as sketched in Figure 3.1b (active time-bin). By actively

synchronizing the phase-shifter with the pump pulses, it is possible to use the full detection

statistics, overcoming the post-selection-loophole. The independence between Alice’ and

Bob’s terminals, the relaxed stabilization requirements, as well as the compliance with off-

the-shelves components open the possibility to exploit such scheme over long distances,

paving the way to a conclusive loophole-free Bell-test, as the ones reported in [34, 35, 36,

37], based on time-bin entanglement.

3.2 POVM analysis of time-bin entanglement schemes

In the passive time-bin (TB) scheme, a pump Mach-Zehnder interferometer (MZI)

with a temporal imbalance equal to ∆t is used to split a short coherent light pulse into

two, as sketched in Figure 3.1a. This light is focused into a non-linear crystal producing

photon pairs via SPDC, as discussed in Section 2.3.1. Each photon of the pump pulse is

transformed according to the discussion in Section 2.2.3 by the pump interferometer into

the time-bin superposition

|γ 〉p =
1p
2

�

|S〉p − e iφp |L〉p
�

, (3.1)

where |S〉 and long |L〉 refer to the path the pump photon took in the pump interfer-

ometer, φp = 2π∆λ/λp with λp = 2πc/ωp is the wavelength of the pump and ∆λ =

mod(c∆t ,λp) measures how many λp are contained in the imbalance c∆t . The SPDC

process transforms, with a certain probability, |γ 〉p into the two-photon state

|2γ 〉= 1p
2

�

|S〉A |S〉B − e iφp |L〉A |L〉B
�

, (3.2)

where the indexes A and B represent the generated photons that are sent to Alice and Bob

measurement stations. Since the pump is a pulsed laser, it is not monochromatic and thus
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it has a finite coherent time τc and a spectral bandwidth ∆. Hence, contrary to energy-

time entanglement, the instant of creation is localized within the temporal duration (2δ )

of the pulse (centered around a certain t̃ )

∫

d t |t 〉A |t 〉B →
∫ t̃+δ

t̃−δ
d t |t 〉A |t 〉B ≡ | t̃ 〉A | t̃ 〉B . (3.3)

Since the pump photon is in a superposition of two possible times, also the photon pair

can be generated at two discrete emission times. Hence, by optimizing the pump energy

to suppress the generation of double photon-pairs and assuming φp = π, the entangled

Bell state

|Φ+〉= 1p
2
(|S〉A |S〉B + |L〉A |L〉B) (3.4)

is obtained. We assumed φp = π, a condition that is easily obtainable in the experiment,

to simplify the next calculations.

Each measurement-station is composed by an unbalanced MZI that has the same im-

balance ∆t of the pump-interferometer and can introduce a further phase shift (ϕA, ϕB ).

The output ports of each interferometer are followed by two single-photon detectors, and

the possible outcomes are labeled a = ±1 and b = ±1 for Alice and Bob respectively,

depending on which detector clicks.

In the passive TB scheme, each photon of the pair can be detected only at three possible

distinct times, indicated by (t0 −∆t , t0, t0 +∆t ), due to the pump- and measurement-

interferometers. By post-selecting the detection events that occur in the central time-slot

only, Alice’s measurement station realizes the projection {P̂a|ϕA
} defined by

P̂a|ϕA
= |ψϕA

a 〉〈ψϕA
a | (3.5)

where

|ψϕA
a 〉=

1p
2

�

|S〉+ a eiϕA |L〉
�

. (3.6)

In this way, for any (normalized) input state |φ〉= α |S〉+β |L〉, a click in the a-detector

given the delay ϕA follows the probability distribution p(a|ϕA) = 〈φ| P̂a|ϕA
|φ〉 = 1

2
|α +

ae−iϕAβ|2. Similar relations hold for Bob’s measurement station (with a replaced by b

and A by B ).

Since the delay is local, one could think that this should allow the violation of the

Bell’s inequality. There is simply no physical mechanism for the remote phase shift to

influence the local delay. However, for a coincidence to occur, Bob’s delay needs to coin-

cide with Alice’s one, and Bob’s delay is controlled by Bob’s phase shift, remotely from

the point of view of Alice. This constitutes a coincidence loophole for the Bell inequality
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[50], somewhat similar to a detection loophole with 50% detection efficiency, but much

worse since it is present even when using loss-free equipment, therefore introducing an

unavoidable intrinsic loophole in the setup.

Quantum Mechanics provides the probabilities p(a, b |ϕA,ϕB) for photon detections

that occur within a narrow coincidence window ∆w around the central time-slot t0 for

each pair of detectors a, b . The probabilities p(a, b |ϕA,ϕB) depend on the initial state |Φ+〉
and on the local phase shifts ϕA, ϕB introduced by the measurement stations and are given,

according to (1.8), by

p(a, b |ϕA,ϕB) = 〈Φ+| P̂a|ϕA
⊗ P̂b |ϕB

|Φ+〉= 1

4
[1+ ab V cos(ϕA+ϕB)] , (3.7)

where V is the visibility of the two-photon interference. Hence, in this case, themaximum

value of the S-parameter introduced in (1.47) is equal to

Smax = 2
p

2V (3.8)

if the local delays are ϕA ∈ {−π/4,π/4} and ϕB ∈ {0,π/2}. Thus, the CHSH Bell-

inequality seems to be violated if V > 1/
p

2 ≈ 0.71. Actually, the post-selection intro-

duces a serious loophole invalidating the expected violation of the Bell-CHSH inequality,

as discussed above.

It is worth noticing that if no post-selection is applied in the passive time-bin scheme,

for example by taking a wide coincidence window∆w comprising the three-peak profile,

then the CHSH inequality does hold, and could in principle be violated. However, in this

case Alice’s measurement station implements the POVM given by {Γ̂a|ϕA
} where

Γ̂a|ϕA
=

1

4
1+

1

2
P̂a|ϕA

(3.9)

with the identity 1 = |S〉〈S |+ |L〉〈L| (and similar relations hold for Bob). Thus, with

no post-selection, the quantum probabilities p(a, b |ϕA,ϕB) for photon detections at the

two stations lead to a maximum value for the S-parameter that can be written as Smax =

2
p

2V
′, with the overall three-peak visibility V

′ = V /4 and the CHSH inequality cannot

be violated even with perfect two-photon (post-selected) visibility V = 1.

On the other hand, a proper violation can be achieved with our source, that is an

active time-bin scheme (see Figure 3.1b). We replaced the first passive beam-splitter of the

measurement interferometer with an additional balanced interferometer, like the one in

Figure 2.2, acting as a fast optical switch, which allows the measurement interferometer

to recombine the |S〉 and |L〉 pulses, making them indistinguishable.

In this way, contrary to the passive time-bin scheme which recombines the two tempo-

ral modes in a probabilistic manner, our scheme deterministically compensates for the de-

lay∆t and no detections are discarded. Indeed, by imposing the phases ϕS and ϕL = ϕS−π
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on the |S〉 and |L〉 pulses respectively, the balanced interferometer determines the path they

will take in the measurement one, as sketched in Figure 3.2a.

Figure 3.2: Functioning of the active time-bin scheme. (a) In a balanced Mach-Zehnder interferometer, the relative phase ϕM sensed by

a travelling pulse determines the output port it will exit at with probabilities cos2(ϕM /2) and sin2(ϕM /2). By using a fast modulator,

it is possible to impose the different phase-shifts ϕS and ϕL to the the |S〉 and |L〉 photons while they are travelling along the balanced

MZI. By fixing ϕS = π and ϕL = 0, it is possible to temporally recombine |S〉 and |L〉 pulses, making them indistinguishable. (b) The

detection pattern at the output ports depends on the values ϕS and ϕL = ϕS −π. If ϕS = π, all detection events occur in the central

time-slot, whereas if ϕS = 0 they are present only in the lateral time-slots. Any other detection histogram can be obtained with two

different ϕS values, one with ϕS <π (red dot) and the other with ϕS >π (blue dot). For example, ϕS =π/2 and ϕS = 3π/2 have the

same click distribution.

At each detector, we expect a detection pattern that depends on the value of ϕS , as

shown in Figure 3.2a. From a formal point of view, in the active scheme Alice’s measure-

ment station implements the POVM {Π̂a|ϕA
}, where

Π̂a|ϕA
=

1

2

�

cos2 ϕS

2
|S〉〈S |+ sin2 ϕL

2
|L〉〈L|

�

+ |χ ϕA
a 〉〈χ ϕA

a | (3.10)

with

|χ ϕA
a 〉=

1p
2

�

ie−i
ϕS
2 sin

ϕS

2
|S〉+ aei (ϕA−

ϕL
2 ) cos

ϕL

2
|L〉
�

, (3.11)

assuming that the phase difference between the transmitted and reflected mode by a beam

splitter is e iπ/2 = i as usual. If ϕL = ϕS −π, the POVM in (3.10) reduces to

Π̂a|ϕA
=

1

2
cos2

�ϕS

2

�

1+ sin2
�ϕS

2

�

P̂a|ϕA
. (3.12)

Then, if Alice sets the phase ϕS = π (and thus ϕL = 0), Π̂a|ϕA
results formally equal to

P̂a|ϕA
, that is

Π̂a|ϕA

ϕS=π−−→ P̂a|ϕA
, (3.13)

and her station actually projects onto the state |ψϕA
a 〉, with no post-selection procedure.

Indeed, in the detection pattern the lateral peaks “disappear”, as shown in Figure 3.2b
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and it is not necessary to discard any data. Hence, the violation of Bell-CHSH inequality

expected from our scheme is free of the post-selection loophole.

3.3 Implementation of the source

3.3.1 The optical setup

We implemented our active time-bin scheme by using the experimental setup sketched

in Figure 3.3. A mode-locking laser (MIRA by Coherent) produced a pulse train with

wavelength centered around 808 nm, 76 MHz of repetition rate and ∼150 fs of pulse du-

ration. This beam is used to pump a second-harmonic-generation (SHG) [14] crystal

which generates coherent pulses of light up-converted to λp = 404 nm. Each of the ob-

tained pulses passes through a free-space unbalanced Michelson interferometer (that is the

pump-interferometer in the actual implementation) which produces a coherent state in

two temporal modes. The imbalance ∆l = L− S between the two arms is about 90 cm,

corresponding to a temporal imbalance ∆t = ∆l/c ≈ 3 ns (with c the speed of light in

vacuum), much greater than the coherence time of the pulses. Then, the pulses pump a

2-mm long BBO crystal to produce the (degenerate) entangled photon state via Type-II

SPDC at wavelength 2λp = 808 nm, as discussed in Section 2.3.1.

The two photons are sent to Alice’ and Bob’s terminals after being spectrally filtered (3

nm bandwidth) and collected by two single-mode optical fibers. Each station is composed

Figure 3.3: Experimental setup to implement the active time-bin source. Bob’s measurement station is analogue to Alice’s one. APD:

analog-photo-detector; DM: dichroic mirror.
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of two Mach-Zehnder interferometers (MZI), a balanced one and an unbalanced one. The

balanced MZI is composed by a 50:50 fiber coupler which defines the two arms of the

interferometer. To guarantee the zero imbalance of this MZI, a nanometric stage is placed

in one of the two arms.

The balanced MZI works as a fast optical switch, since there is a fast (∼GHz band-

width) phase-modulator in one of its arms. The modulation voltage is set to Vπ such

that ϕS − ϕL = π, while the DC bias of the phase-modulator is driven by an external

proportional-integral-derivative (PID) controller, that is responsible of locking the phase

ϕS to π. The complete operating principle of the PID controller is detailed in the follow-

ing.

The two arms of the balanced MZI are recombined at a 50:50 free-space beam splitter

(BS) after been optimized for polarization rotations. This BS begins the unbalanced MZI

whose imbalance is equal to that of the pump-interferometer (within the coherence time

∼200 µs of the photons). The two mirrors of the long arm of the unbalanced MZI are

placed on a nanometric piezoelectric stage to both guarantee the required imbalance ∆t

and introduce the local phase shift ϕA and ϕB to realize the Bell test. At the two output

ports of the measurement stations we used two avalanche single photon detectors (SPADs,

∼50% detection efficiency), labelled as a =±1 and b =±1. The detection events are then

time-tagged by a time-to-digital converter (quTau time tagger from quTools) with 81 ps

resolution and the data are stored in a computer.

3.3.2 Functioning of the PID controller

In our experiment we have to drive the phase ϕM introduced by the phase-modulator

(PM) in the balanced MZI to make the photons take a precise path in the subsequent MZI.

To realize this, we implemented the PID controller that is sketched in Figure 3.4.

Figure 3.4: Detailed scheme of the PID controller.

First, we synchronized the phase transition with the pump-pulses that produce the
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photon pair. This was performed by a fast analog-photo-diode (APD) that collected the

808 nm pulsed beam (after being separated with a dichroic mirror (DM) from the 404 nm

pulse train produced by the SHG stage, see Figure 3.3) and produced an electric signal

synchronized with the optical pulses. This signal was split in two: one was then collected

by the time-tagger for timing purposes and the other one was sent to the PID controller.

The first stage of the PID controller was an amplifier (iXblue) which produces a square

wave with fixed amplitude centered around 0 V. The amplitude Vπ of this wave set the

strength ∆ϕ = ϕS − ϕL = π of the transition introduced by the phase-modulator. The

raise time of the square wave was less than 2.5 ns to guarantee that theπ-transition occured

within the short-long temporal separation ∆t .

The absolute value of the phase ϕS of the balanced MZI was perturbed by temperature

fluctuations and vibrations due to the environment. In order to correctly implement our

scheme, we had to compensate this phase fluctuation (which occured in the order of tens

of seconds), by locking the value of ϕS to π.

To perform this locking, the second stage of the PID controller was given by a bias-

tee (MiniCircuits) which compensated the intrinsic phase shift of the balanced MZI by

changing the offset voltage Vbias of the square wave produced by the amplifier. This was

obtained by the combined action of an AVR micro-controller (Arduino) and a digital-to-

analog converter (DAC) by maximizing the extinction ratio R between the central and

the lateral peaks

R=
Nc −Nl

Nc +Nl

(3.14)

where Nc were the counts associated to the central peak and Nl were all the counts in

the lateral ones recorded by one of the two detectors of the measurement station. All the

counts in each detector were estimated in real-time by looking at the raw data collected

by the time-tagger, and they produced the detection histogram sketched in the inset of

Figure 3.4, which corresponds to the real detection histograms presented in Figure 3.6.

To successfully lock ϕS to π the PID controller had to first evaluate its real-time value

by observing the detection histogram and computing R. Unfortunately, there is no one-

to-one correspondence between the extinction ratio and the phase ϕS . Indeed, for each

possible value of R there exist two possible values for ϕS that reproduce the observed his-

tograms (with the exception of 0 and π), as shown in Figure 3.2b. Therefore, we included

an additional information that allowed us to distinguish between the two possible phase

values. This information was given by the derivative of the extinction ratio. If an increase

of the phase value caused an increase of the ratio, we chose the phase 0<ϕS <π (requiring

further increase to reach π). Otherwise, we chose the phase π < ϕS < 2π (requiring a
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decrease to reach π). Since the PID required an error function that is equal to zero when

the objective was reached, we chose the function

EϕS
= sgn

�

d R

dϕS

�

Nl

Nc

, (3.15)

which guaranteed that the PID’s objective is both to lock the value of ϕS to π and to

identify correctly the value of the phase, since the symmetry between the two possible

phase values was broken by the sign of the derivative of the extinction ratio.

We show in Figure 3.5 an example of the ratio R as a function of the acquisition time

during the Bell data acquisition (see the next section presenting the results of the Bell test).

Figure 3.5: Extinction ratio R as a function of the acquisition time during the Bell data acquisition. We plot the detector pair (a, b ) =

(+1,+1) for Alice and Bob.

3.4 Results of the Bell test

With the setup shown in Figure 3.3, we performed the time-bin Bell-test with three

different schemes:

i) the passive time-bin with post-selection;

ii) the passive time-bin with no post-selection;
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iii) the active time-bin with no post-selection.

To realize i), we bypassed the balancedMZI in each of the measurement stations, hence

obtaining the passive time-bin configuration of Figure 3.1a. By choosing a coincidence

window ∆w ≈ 2.4 ns and by post-selecting the coincident events that occurred only in

the central time-slot, Alice (Bob) implemented the projective measurement given by P̂a|ϕA

( P̂b |ϕB
) and the expected CHSH violation is affected by the post-selection loophole. To

realize ii), we used the same configuration as in i), but we did not discard any data by

choosing a coincidence window∆w ≈ 8.1 ns, which corresponds to the total width of the

three peak-profile in the detections (see Figure 3.6). In this case, Alice (Bob) implemented

the POVM given by Γ̂a|ϕA
( Γ̂b |ϕB

) and no Bell-CHSH violation is expected.

To implement iii), we exploited the balanced MZI in each station and we used the

PID controller to lock the phase ϕS and ϕL to π and 0 respectively, independently at each

terminal. We did not discard any data by choosing a large coincidence window as in ii),

but, in this case, the Bell-CHSH inequality is directly applicable, since Alice (and Bob)

implemented the POVM given in (3.12) with ϕS =π. The expected Bell-CHSH violation

is now free of the post-selection loophole.

We show in Figure 3.6 a typical detection histogram obtained with one of the four

detectors during the data acquisition (the results are similar for all the detectors). In the

case of TB schemes i) and ii), since the balancedMZI is bypassed, we obtained the expected

three-peak profile (blue histogram). On the other hand, in our active time-bin scheme iii),

the PID controller makes the lateral peaks disappear, as shown by the orange detections

histogram. This guarantees the correct functioning of the PID controller, whose details

were described above. It is worth noticing that the whole three-peak profile is within the

chosen coincidence window ∆w = 8.1 ns, thus guaranteeing that no data is discarded.

To realize each of the Bell-tests described above, we first calibrated the shifts to be in-

troduced by the nanometric stages in Alice’ and Bob’s unbalanced MZIs. This is obtained

by scanning the coincidence rate for a pair of detector by moving Bob’ stage while Al-

ice’s one is fixed. From the sinusoidal pattern obtained in such a way, we estimated the

experimental visibility Vexp for each scheme. As an example, we show in Figure 3.7 the

calibration fit obtained to realize the Bell test iii), which gives a visibility Vexp = 0.89±0.03.

Then, we imposed the shifts (ϕA,ϕB) needed to obtain the maximal violation of the Bell in-

equality (as described above) and acquired the data for sufficient time to achieve significant

statistics.

The results obtained for each of the three schemes described above are represented in

Table 3.1. As expected, violation of the Bell-CHSH inequality was obtained with the first

and the third scheme with clear statistical evidence, but only the third one is not affected
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Figure 3.6: Typical detection histograms obtained during data acquisition. The two histograms represent all the raw detections collected

by one of the four detectors during the data acquisition. The blue histogram shows a typical detection pattern obtained with the passive

time-bin scheme, in which the three-peak profile is observed. The orange histogram shows the detection pattern obtained with the

active time-bin scheme: the PID controller is able to lock ϕS to π and ϕL to 0, thus making the lateral peak disappear, allowing us to

realize a time-bin Bell-test free of the post-selection loophole. The counts are normalized to fairly compare the two histograms.

Figure 3.7: Calibration fit obtained to realize the Bell test iii). We plot the detector pair (a, b ) = (+1,+1).

by the post-selection loophole. The minor violation obtained in iii) is due to imperfec-

tion in the balanced MZI alignment and in the locking procedure occurring during data
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acquisitions needed to experimentally estimate the S-parameter Sexp. It is worth stressing

that any imperfection in the locking mechanism setting ϕS =π corresponds to an effective

lower visibility, but it does not introduce any loophole in the Bell inequality.

Time-bin scheme ∆w Post-Selection Loophole Vexp Sexp SD

i) passive 2.4 ns Yes 0.95± 0.05 2.58± 0.03 18.3

ii) passive 8.1 ns No 0.23± 0.02 0.67± 0.02 —

iii) active 8.1 ns No 0.89± 0.03 2.30± 0.03 9.3

Table 3.1: Main results. SD refers to Standard Deviation of the Bell-CHSH violation.

3.5 Discussion and future perspectives

Time-bin encoding is a valid resource for both performing fundamental tests of quan-

tum mechanics [51] and distributing entanglement over long distances [31]. However, all

the time-bin entanglement realizations performed so far were affected by the post-selection

loophole, which makes this technique unsuitable for quantum information protocols. A

possible way to overcome this problem requires to violate the so-called “chained” Bell-

inequalities [52], but the needed two-photon visibility is considerably higher (¦ 0.94

[41]) than the one of the Bell-CHSH inequality (¦ 0.71). Even if such a high visibil-

ity is achievable with time-bin entanglement, as shown in [53], our scheme clearly relaxes

this requirement, since the Bell-CHSH inequality is directly applicable.

Our work is the first implementation of a genuine time-bin entanglement source, and

represents a crucial step towards its exploitation for fundamental tests of physics and the

realization of the quantum internet [54]. In fact, our scheme can be realized using only

commercial off-the-shelf fiber components and, since its stability does not depend on the

distance between Alice and Bob, it is easier to be implemented with respect to the hug

configuration [45]. Furthermore, as long as both the π-phase transition imposed by the

modulator and the detectors jitter are shorter than the imbalance ∆t , it is possible to

shorten it, rendering it compatible with today’s photonic integrated technologies [55, 56].

Finally, our work makes time-bin entanglement a viable technique to obtain a loophole-

free Bell violation, that is the enabling ingredient of any device-independent protocol [57,

58, 59, 60].
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Chapter 4

Space Quantum Communications at MLRO

The recent development of quantum communications, which could guarantee uncon-

ditional security for communications at the global scale in the next future, has stimulated

a great progress in satellite quantum technologies. Nowadays, such technologies are ma-

ture enough to support the realization of experiments testing the foundations of quantum

theory at unprecedented scales and in the unexplored Space scenario. Space-based Quan-

tumOptics experiments could explore the boundaries and extend the validity limits of the

quantum theory, as well as provide new insights to investigate phenomena where gravity

affects quantum objects.

In this chapter wewill present themotivations behind Space quantum communications

and the state-of-the-art worldwide, then we will review our last experiments performed

in collaboration with the Matera Laser Ranging Observatory of the Italian Space Agency.

Some contents of this chapter are part of our works [61, 62, 63].

The MLRO telescope tracking SLR satellites (photo by Marco Tomasin).
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4.1 Introduction

4.1.1 Why Space Quantum Communications?

Quantum Mechanics, the physical theory that has revolutionized our understanding

of the universe since its conception in the early 20th century, is now fostering the deve-

lopment of new technologies that are inspired by and exploit its very own basic principles.

The development of such new technologies can foster the implementation of fundamental

tests of QuantumMechanics in radically new scenarios. Such tests could not only corrob-

orate the validity of quantum predictions at unprecedented scales, many of which are

simply inaccessible in the laboratories on ground, but, most importantly, could explore

the boundaries of the theory itself.

One of such scenarios is certainly given by Space. Driven by the increasing interest in

quantum communications [33], that are the transfer of quantum states from one location

to another distant one, the development of satellite quantum technologies could encourage

the realization of many experiments aimed at testing the foundations of the quantum

theory in the yet unexplored relativistic regimes, where gravitational effects might play a

role [64, 65].

The goal of quantum communications is to outperform its classical counterpart in a

number of communication primitives such as privacy, secrecy and authentication. Quan-

tumKeyDistribution (QKD) [33, 15], for example, allows two parties to distill a common

keywith provable unconditional security, a level of secrecy that is simply not achievable by

classical communication, which must accept computational hardness assumptions, many

of which might no longer be valid as quantum computers become more mature [66].

Furthermore, quantum communications are the backbone for quantum Internet [54], a

network of new devices that will revolutionize the way we communicate and perform

computational tasks.

Despite the many advances of fiber-based quantum communications, a real global-

scale quantum communications network cannot be deployed using only fiber-optics links.

In fact, the signal attenuation and the polarization-preservation issues render such links

quite problematic and limit their lengths to few hundreds of kilometers [67]. A possi-

ble workaround could be represented by quantum repeaters [68], but the most promis-

ing solution to this problem is the use of Space technologies to develop satellite quan-

tum links [69, 70]. Such channels could potentially lead to a global quantum commu-

nication network since they could connect any two points on Earth’s surface with re-

duced propagation losses if compared with terrestrial channels, even in the presence of
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noise [71]. The importance of such satellite quantum links is attested in several mission

proposals [72, 73, 74, 75].

Recently, several experimental efforts have been realized, demonstrating not only the

feasibility, but also the implementation of satellite-to-ground links for quantum commu-

nications. Among the others that will be reviewed in the following section, in August

2016 the Chinese Academy of Sciences launched Micius, a satellite dedicated to quantum

communications, with which the Chinese collaboration implemented fundamental tests

in space [76], quantum communication protocols [77], as well as demonstrations of secure

communications by means of QKD [78, 79]. The development of such satellite quantum

technologies fosters the implementation of fundamental-like tests in Space, as experimen-

tally shown in [76] and in [80], which will be presented in details in Chapter 6. These

tests can range from the verification of the validity of the postulates and predictions of

Quantum Mechanics in micro-gravity environments to experiments that might confirm

or give insights on the theories that could unify quantum theory with gravitation.

4.1.2 State-of-the-art

The interest in developing satellite quantum technologies is shared among several re-

search groups all around the globe. In recent years, several experimental efforts have been

made and important results have been obtained, highlighting the advantages and disadvan-

tages of the different available encodings, as collected in the reviews [81, 82, 62].

The polarization encoding presented in Section 2.2.2 is a suitable way for exchang-

ing quantum information through free-space, since the atmosphere does not significantly

affect the polarization state of light, nor does the Faraday effect [14] due to the Earth’s

magnetic field [83]. Furthermore, since polarization encoding is the simplest physical

implementation of the qubit, it is a natural candidate for satellite quantum communica-

tions over long distances. Working upon such bases, in 2015, our study by Vallone et al.

in [84] experimentally demonstrated the preservation of single photon polarization over

a satellite-to-ground channel exploiting the two-way scheme that we will present in the

next section.

Such a result proved that the faithful transmission of different polarization qubits can

be obtained in several conditions and satellite orbits. Furthermore, it demonstrated the

feasibility of QKD via the BB84 protocol [85] along a satellite-to-ground channel. These

results were then corroborated by the National Institute of Information and Commu-

nications Technology (NICT) in Japan, which launched a Low-Earth-Orbit satellite in

2014 carrying a lasercom terminal (SOTA), designed for in-orbit technological demonstra-
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tions [86]. In 2017 Takenaka et al., reported on a quantum-limited polarization encoded

communication between SOTA and a ground station [87].

In 2017, as reported by Liao et al. [78], the decoy-state QKD protocol [88] was suc-

cessfully implemented between the Micius satellite and a ground station in China with

a kHz key-rate exploiting polarization encoding. Furthermore, still in 2017, Ren et al.

reported on the successful implementation of a ground-to-satellite quantum teleportation

protocol [77]. A polarization-encoded photon was generated at the ground station to-

gether with a polarization entangled photon pair. The polarization-encoded photon and

one photon of the entangled pair were then projected into a Bell-state while the other

photon from the entangled pair was directed towards Micius, where it was detected with

a fidelity of 0.80, well above the classical limit of 2/3. Such experiments demonstrate

that the technological advances in Quantum Optics and satellite technologies are mature

enough for a global-scale quantum communication network that exploits the single pho-

ton polarization degree of freedom as encoding.

Furthermore, in September 2017 the Chinese group and the University of Vienna

realized the first intercontinental video-call encrypted via satellite QKD [79]. The Micius

satellite exchanged the cryptographic key with two ground stations, the first in Xinglong

(near Beijing, China) and the second one in Graz (near Vienna, Austria), allowing the

realization of such call at the intercontinental distance of 7 600 kilometers.

Then, Yin et al. reported on the long-distance distribution of entangled particles to two

distinct locations separated by 1 203 kilometers via two satellite-to-ground downlinks [76].

An unprecedented Bell test was performed on these particles obtaining a S-parameter of

2.37± 0.09, violating the local-hidden variable bound (1.48) under strict locality condi-

tions.

Another possible encoding for space quantum communications is given by the tem-

poral degree of freedom of photons, i.e. the time-bin encoding described in Section 2.2.3.

In 2016, we reported the observation of single-photon interference of photons that had

traveled a path length of up to 5 000 km [89]. This experiment is described in details in

Chapter 5. By combining polarization and time-bin we then implemented in 2017 a satel-

lite version of the famous Wheeler’s delayed-choice experiment [80], which is described in

details in Chapter 6.

Efforts to extend the range available for discrete-variable, i.e. polarization and time-

bin encoding, satellite quantum communications have also been made. Our group in

2016 reported in Dequal et al. [90] on the realization of a single-photon exchange from

a Medium Earth orbit (MEO) satellite at more than 7 000 km of slant distance to the

ground station. Then, in April 2018, the first experimental exchange of single photons
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from a Global Navigation Satellite System (GNSS) terminal at a slant distance of 20 000

kilometers was reported in our study by Calderaro et al. [63]. This latter experiment is

discussed in more details in Section 4.3.

Alternatives to the discrete-variables encodings are also under investigation. For exam-

ple, encoding information in the quadratures of quantum states of light, i.e. continuous

variables [12], can also be a possibility for satellite quantum communications. This type

of encoding is promising specially due to the high transmission rates it could achieve. In

2017, Günther et al. reported on the quantum-limited coherent measurement of opti-

cal signals sent by a geostationary satellite to a ground station [91]. These results show

that future technological developments could render homodyne-detection based quantum

communication protocols feasible also from Space.

4.2 Quantum Optics experiments at MLRO

4.2.1 Simulating a single photon source in orbit

Even if there was no active source dedicated to Space quantum communications on a

satellite until the launch of Micius satellite, the quantum transmission of single photons

from satellite to ground was already experimentally investigated by our group by exploit-

ing the two-way scheme sketched in Figure 4.1, that was originally proposed in [92] and

then improved in [84]. Our scheme takes advantages on Satellite Laser Ranging (SLR)

technique, which is typically used for geodynamical studies (crustal dynamics, polar mo-

tion, time-varying geopotential monitoring) [93] by means of a series of measurements of

the round trip time (rtt) of optical laser pulses that propagate from a station on the Earth,

are then retroreflected at the satellite and are finally detected at the ground station. From

the measure of the flying time rtt of the pulse it is possible to measure the distance of the

satellite with great resolution. Laser ranging activities are organized under the Interna-

tional Laser Ranging Service (ILRS) [94], which provides global satellite and lunar laser

ranging data and their derived products.

We developed a technique to mimic a qubit source in Space by exploiting the corner

cube retroreflectors (CCRs) mounted on the satellites exploited by ILRS. The common idea

of our experiments is to send a bright laser pulse towards a satellite which then reflects it

back to the ground station, when it is collected as a weak-coherent pulse. The ground

station used in our experiments is the Matera Laser Ranging Observatory (MLRO) of

the Italian Space Agency (ASI), which is a SLR station which can reach sub-millimeter

accuracy in the estimation of the satellite distance. The MLRO telescope automatically
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Figure 4.1: General scheme of quantum satellite communication experiments realized at MLRO.A 100-MHz train of qubit pulses is directed

towards a satellite equipped with corner-cube retroreflectors, which reflect the beam back to the ground station. Such a scheme has

allowed the study of polarization encoding [84] and time-bin encoding [89] for satellite quantum communications as well as the

realization of the satellite version of Wheeler’s delayed choice experiment [80] and the investigation of single-photon exchange with

terminals in different orbits [90, 63]. In the left inset a typical detection histogram is observed where the quantum signal is well distinct

from the background noise. In the right inset the timing and synchronization of the qubit train with respect to the the strong SLR

pulses is observed. SLR pulses are required to determine the expected time of arrival of the retroreflected qubit pulses as well as the

calculation of effects dependent on the satellite orbit.

track ILRS terminals, following a pre-set schedule, by using the predictions of the orbits

provided by ILRS. Real-time corrections to the pre-set trajectory are imposed manually

by the MLRO operators.

Due to the losses in the propagation, the intensity is reduced andwe set up the energy of

the upgoing pulse to have a mean photon number per pulse close to one when it is reflected

back at the satellite. In this way, we are are able to simulate a weak-coherent photon source

on the satellite. The retroreflected beam is finally collected at the MLRO ground station

by using single-photon detectors with a temporal accuracy below one nanosecond.

This technique requires a great synchronization between the SLR pulses and the qubit

ones, which have different repetition rate and energy. Our scheme allows to obtain the

histogram of the single photon detections as a function of the difference between the mea-

sured time of arrival of the photons tmeas and the expected one tref, as you can see in the left

inset of Figure 4.1. We applied this general idea to satellites in different orbits (LEO, Low

Earth Orbit [84, 89] and MEO, Medium Earth Orbit [90, 63]) and we exploited different

degrees of freedom for quantum information encoding, as polarization [84] and temporal

modes of single photons [89]. The passage time of the used satellites depend on the actual
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orbit they follow, ranging from fewminutes in the case of LEO terminals to quite an hour

in the case of MEO.

At the heart of our experiments there is the simulation of the photon qubit source

on the satellite. For this reason, we have to be sure about the mean photon number per

pulse reflected at the satellite. We use a model coming from geo-dynamics studies due to

Degnan [95], who addressed the uplink and downlink attenuations in terms of physical

parameters like the satellite distance, the atmospheric transmittivity, and other parameters

which depend on the specific satellite. By knowing the generation and detection photon

rate at the ground station, we can infer the mean photon number at the satellite and the

measured return frequencies agree very well with the frequencies predicted by the model

and so we can claim that we are mimicking a single photon source on the satellite.

4.2.2 Generation and detection of the SLR pulses

The experiments presented in this thesis were performed at MLRO observatory by

using the two optical tables sketched in Figure 4.2, the TX Table, and Figure 4.4, the RX

Table.

Figure 4.2: The TX Table at MLRO.

The TX Table is equipped with a mode-locking Nd:YVO4 master laser oscillator, op-

erating at 1064 nm with 100 MHz repetition rate and paced by an atomic clock. The SLR

pulses (wavelenght, 532 nm; energy, ∼100 mJ; repetition rate, 10 Hz) are obtained by

selecting one seed pulse every 107 with a pulse-picker, which is then amplified twice and

up-converted via a second-harmonic-generation (SHG) stage.

The SLR pulses are sent to the targeted satellites equipped with CCRs by using the

1.5-m diffraction-limited Cassegrain telescope of MLRO after having passed the RX Table
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and the Coudé path sketched in Figure 4.3.

Then, after the reflection by the orbiting terminals, the SLR pulses are collected by

the same telescope and injected into the RX Table, where they are detected by a fast ana-

log micro-channel plate detector (Hamamatsu R5916U-50). A dedicated time-tagger with

picosecond accuracy recorded the start and stop signals generated by the pulse picker and

the detector respectively. The single-shot measurement of the satellite distance is then es-

timated from the time-difference of these two signals, i.e. the round-trip-time rtt , with an

error below 20 ps.

M7

M6

M5

M4

M3

M2

M1

θaz

θel

Optical table

Figure 4.3: (left panel) The Coudé path of the MLRO telescope. (right panel) My colleague Luca Calderaro and I posing under the

MLRO telescope.

4.2.3 Generation and detection of the qubit pulses

The setup dedicated to the realization of the Quantum Optics experiments in Space is

implemented in parallel to the SLR system. The same laser oscillator is used to produce a

100-MHz pulse-train, the qubit pulses, with wavelength λ= 532 nm, ∼1 nJ of energy and

∼100 ps of pulse duration at full-width-half-maximum (FWHM), by exploiting a SHG

process in a 50 mm long periodically poled lithium niobate (PPLN) non linear crystal

from HC Photonics. The qubit pulses passes through a mechanical shutter, TX Shutter

in the figure, which is used for timing purposes.

The qubit pulses now go to the RX Table, where they pass through aQuantum Optics

setup, sketched by the gray box in Figure 4.4, which depends on the actual experiment to

perform.

Afther this “black box” the qubit pulses, synchronized with the SLR pulse-train, are
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combined with the outgoing SLR pulses by using a 50:50 beam splitter (BS) and the two

light beams are sent together to the targeted satellites.

After the satellite retroreflection, the qubit pulses pass again through the Quantum

Optics setup, from which they emerge to be detected. The receiving apparatus of the 100-

MHz beam is usually comprised of a beam splitter to separate the outgoing and ingoing

beam. The emerging beam, after passing the RX shutter, is directed to a free-space de-

tection system, which depends on the experiment and it is usually comprised of a 3-nm

FWHM spectral filter with transmission band centered at 532 nm, a focusing lens and one

(or more) single photon detector (DET). We used single-photon photomultiplier tubes

(PMT) with∼ 10% of detection efficiency, 22 mm of active diameter by Hamamatsu Pho-

tonics (model: H7360-02) in [84, 80] and single photon avalanche diode (SPAD) with

∼ 50% of detection efficiency, 200 micron of active diameter by Micro-Photon-Devices

(MPD) in [63].

The time-tag of arrival of the returning photons is recorded with ps resolution by a

time-to-digital converter (time-tagger) which provides tmeas. In [89, 80] we used the quTau

time-tagger, with 81 ps of resolution, and in [63] we used the quTag time-tagger, with 1 ps

of resolution, both from quTools.

4.2.4 Timing and synchronization

We implemented a two-phase communication protocol to separate the transmitting

and receiving phases by using two mechanical shutters, one on the TX Table and the other

on the RX Table. We separated each 100-ms cycle between two subsequent SLR pulses in

Figure 4.4: The RX Table at MLRO.

71



Chapter 4. Space Quantum Communications at MLRO

two periods by using such shutters, as sketched in Figure 4.5 In the first half of the 100-ms

period, only the transmitting shutter (TX shutter) is open, while the receiving one (RX

shutter) is closed. In the second half of the time slot, the TX shutter is closed while the

RX shutter is open and the detectors can receive the photons coming from the satellite.

Furthermore, since the shutters require a certain time to open and close completely, the

effective detection time period is limited by the shutters transition time ( ttrans ∼ 5 ms).

Hence, there exists a precise temporal window τ = rtt− ttrans where we expect to receive

photons from the satellite. The value of τ depends on the actual rtt which is continuously

changing along the satellite orbit.

Between two subsequent SLR pulses extracted by the pulse picker every∆T = 100 ms

there are 107 qubit pulses separated by 10 ns. Hence, by dividing the time interval interval

between two consecutive SLR pulses at the detection∆T ′ in 107 equidistant subintervals,

it is possible to estimate the expected arrival time of the qubit pulses tref, which has to be

compared with the measured one tmeas. This technique automatically compensates for the

variation of the round trip time duration due to the satellite motion (essentially Doppler

effect, as described in the following chapter) and air refraction. With this technique, it is

possible to obtain the histogram of the returns in the temporal window of 10 ns between

two consecutive qubit pulses as a function of the temporal difference∆= tmeas− tref, as in

the inset of Figure 4.1.

Figure 4.5: Two-phase communication protocol.

The first experiment in which the two-way scheme was exploited as described above

was the one by Vallone et al. [84], in which, by exploiting orbiting satellites equipped with

polarization-maintaining metallic CCRs, was possible to demonstrate that polarization

encoding is a good choice for satellite Quantum Communications. By taking data from

several satellites (namely Jason-2, Larets, Starlette, Stella), an average Quantum Bit Error

Rate (QBER) of 4.6± 0.8% was obtained, demonstrating the feasibility of satellite QKD

with polarization encoding.
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4.2.5 Estimating the mean photon number per pulse at the satellite

A crucial parameter to be estimated in our experiments emulating a single photon

source on a satellite is the mean photon number per pulse at the satellite reflection µsat,

that we want to be of the order of one. µsat is estimated by dividing the the average

number of photons per pulse detected at the receiver µrx, by the transmittivity of the

channel knowing the mean number of photons per pulse transmitted from the ground

µtx.

To predict the detected number of photons per pulse we use the Degnan link-budget

radar equation [95]

µrx =µtxηtxGtΣ

�

1

4πR2

�2

T 2
atmAtelηrxηdet , (4.1)

whereµtx is the source mean photon per pulse, ηtx is the optical transmission efficiency, Gt

is the transmission gain,Σ and R are the satellite cross-section and slant distance, Tatm is the

atmospheric transmittivity, Atel is the telescope area, ηrx is the optical receiving efficiency

and ηdet is the single photon detector efficiency. It is possible to factorize (4.1) into uplink

and downlink contributions as

uplink: µsat =µtxηtxGtρAeff
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Tatm , (4.2)

downlink: µrx =µsatGdown
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TatmAtelηrxηdet , (4.3)

where we split the satellite cross-section according to Σ = ρAeffGdown where ρ and Aeff

correspond to the CCR reflectivity and to the effective satellite retroreflective area and

they contribute to the uplink, while Gdown expresses the effective downlink gain and so

it contributes to the downlink term. Using these expressions it is possible to extrapolate

the transmitter gain Gt and use it to predict the number of received photons to compare

it with the measured one. Vallone el al. showed in [84] that the Degnan radar equation

and equations (4.2)-(4.3) provide a precise fit for the measured counts, giving an accurate

estimation for µsat.

4.3 Exchanging photons with GNSS satellites

In this section, we present the preliminary results of an experiment testing the feasi-

bility of quantum communications between a GNSS terminal and a ground station, over

a channel length of about 20 000 km by using current technology. We realized the first

exchange of few photons per pulse between a satellite of GLONASS constellation and
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MLRO, by exploiting two-way scheme presented above. This experiment extends the

limit of long-distance free-space single-photon exchange, which was demonstrated so far

with a channel length of about 7 000 km by exploiting the MEO satellite Lageos [90].

4.3.1 The goal of the experiment

Satellite-based technologies are the enabling tools for a wide range of civil, military

and scientific applications [96, 97, 98, 99], like communications, navigation and timing,

remote sensing, meteorology, reconnaissance, search and rescue, space exploration and

astronomy. In particular, Global Navigation Satellite Systems (GNSS) were developed

in the second half of XX century to provide autonomous geo-localization by exploiting a

network of satellite exchanging position- and time-information with different locations on

Earth [100]. The strategic importance of such infrastructure led different countries to de-

ploy their ownGNSS constellations, e.g. the American Global Positioning System (GPS),

the Russian GLONASS, the European Galileo, the Chinese BeiDou, the Japanese QZSS

and the Indian INRSS/NAVIC. The very core of these navigation systems is the capabil-

ity of safely transmitting information and data from orbiting satellites to several ground

stations on Earth by exploiting radio [97] or optical communications [101]. In fact, the

protection of such infrastructure from a malicious adversary is of crucial importance for

both civil and military operations, representing a critical issue that is continuously and

extensively under development.

At the same time, Space quantum communications represent a promising resource to

guarantee unconditional security for satellite-to-ground optical links, as discussed above,

and also for inter-satellite optical links [102, 103], by QKD. Due to optical losses, most

of the demonstrations of satellite quantum communications were limited, so far, to LEO

satellites. However, the high orbital velocity of LEO satellites limits their visibility peri-

ods from the ground station, and subsequently the time available for quantum communi-

cations to just few minutes per passage.

Conversely, the use of satellites at higher orbits can greatly extend the communication

time, reaching few hours in the case of GNSS. Furthermore, quantum communications

could offer interesting solutions for GNSS security for both satellite-to-ground and inter-

satellite links, which could provide novel and unconditionally secure protocols for the

authentication, integrity and confidentiality of exchanged signals. For example, a GNSS

inter-satellite network for QC has already been proposed to strengthen the security of

the Galileo architecture [104]. This would allow the generation of cryptographic keys

and the construction of a secure satellite QKD-network, thus preventing the catastrophic
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consequences of malicious hijacking of GNSS satellites.

4.3.2 Description of the experiment

The experimental setup.—The feasibility of quantum communications from GNSS or-

bits was experimentally investigated by exploiting Glonass-134 of the GLONASS constel-

lation, which is equipped with an array of CCRs. We used the two-way scheme presented

above and the experimental setup sketched in Figure 4.6.

Figure 4.6: Illustration (to scale) of the photon exchange between GLONASS and MLRO. GNSS satellites orbit around 20 000 km away

from Earth surface, well above the LEO satellites, whose maximum altitude is about 2 000 km. The right inset shows the optical

setup. The mode-locked laser (ML-laser) at 1064 nm produces the 100-MHz pulsed train and the 10-Hz SLR signal, which are then

up-converted at 532 nm (light green). The two beams are combined and sent to the satellite, where they are retro-reflected back to

MLRO telescope (dark green). The 100-MHz train is then collected by a single-photon avalanche detector (SPAD), while the SLR

pulses are received with an analog detector for synchronization purposes. Two mechanical shutters separate the transmission from the

reception of the 100-MHz beam. Image of Glonass satellite taken from Russian SpaceWeb. PP: pulse-picker, SHG: second harmonic

generation stage, BS: beam splitter, PBS: polarizing BS, F: spectral filter, L: focusing lens.

A setup dedicated to study the feasibility of quantum communications from GNSS

was implemented in parallel to the SLR system of MLRO. The same ML-laser is used to

produce the 100-MHz pulse-train and the SLR one, as described above. These two beams

are combined by using a 50:50 beam splitter (BS) and the two light beams are sent to the

targeted GNSS satellites.

The receiving apparatus of the 100-MHz beam is comprised of a 50:50 BS to separate

the outgoing and ingoing beam, a 3 nm FWHM spectral filter (F) with transmission band

centered at 532 nm, a focusing lens (L) and a silicon single photon avalanche detector

(SPAD) from MPD, with ≈50% quantum efficiency, ≈400 Hz dark count rate and 40 ps

of jitter. The time of arrival of the returning photons (tag) is recorded with 1 ps resolution

by the time-to-digital converter quTag.

We implemented a communication protocol to separate the transmitting and receiving

phases which is slightly different to the one described in Section 4.2.4. Since the round

trip time of photons reflected by GNSS satellites is around 130 ms, the total period of

the communication protocol is extended up to 200 ms. In the first half, the transmitting

(receiving) shutter is open (close) and the 100-MHz pulses are transmitted. Viceversa,
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in the second half the the receiving (transmitting) shutter is open (close) and the 100-

MHz pulses coming from the satellite can be detected. In particular, the communication

protocol starts with the SLR start signal at t = 0 ms. The 100-MHz pulses are sent to

the satellite from t = 0 ms to t = 100 ms, opening the shutter placed in the transmission

path. At t = 100 ms a second SLR pulse is sent to the satellite and after 5 ms the receiving

shutter opens the receiving path till t = 180 ms.

Modelling the channel losses.—Due to optical diffraction, atmospheric absorption, and

the finite sizes of the cross-section and active area of the CCR-array, the beam is attenuated

by several orders of magnitude after being retro-reflected. As a result, the reflected pulses

have a low mean number of photons µsat at the satellite, thus emulating a weak source

placed on a GNSS terminal orbiting 20 000 km away from MLRO. The mean photon

number per pulse µsat emitted by the simulated source is not known a priori , but it can

be estimated a posteriori as

µsat =
Rdet

νtxtdowntrx

, (4.4)

by experimentally evaluating the detection rate Rdet, the transmittance of the receiving

apparatus trx, the repetition rate νtx = 100 MHz of the source and by modeling the down-

link transmittance tdown. We will express the losses l in dB as l = −10 log10 t , where

t is the transmittance. The receiver losses are promptly estimated taking into account

the reflection and transmission losses through all the optical elements (8.8 dB) and the

quantum efficiency of the detector (3 dB).

The down-link channel losses can be evaluated as the product of the atmospheric trans-

mission ta and the geometrical transmission due to diffraction tdiff, that is tdown = tatdiff.

We follow two independent approaches for estimating the transmission due to diffraction

and compares the results for the validation of the model.

The targeted GNSS satellite is part of the generation GLONSS-K1, which is equipped

with a planar array of CCRs, with circular and rectangular shape respectively [105]. The

CCRs are characterized by the absence of coating on the reflecting faces, such that the

light is back reflected by total internal reflection (TIR). This implies a far field diffraction

pattern (FFDP) which is quite different from the simple Airy disk given by a circular

aperture [106]. The FFDP of a TIR corner cube has a central Airy-like disk, with 26.4%

reduced central intensity peak from the circular aperture with equivalent area, surrounded

by six lobes placed on the vertices of a hexagon. The lobes are displaced from the center

of the FFDP by θd ≈ 1.4λ/DCCR, with DCCR= 26 mm the CCR diameter (as described at

this link), corresponding to a displacement θd ≈ 29 µrad.

Since the velocity aberration of GNSS satellites is around 26 µrad [95], the MLRO
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telescope is receiving the lateral lobes of the FFDP. In particular, the lateral lobes have

an intensity which is ≈ 30% of the central peak. Since the central intensity peak I0 of a

circular aperture of area A depends on the power P0 incident on it via I0 = P0A/(λ2R2),

with R the distance from the aperture, the transmission due to diffraction can be evaluated

by

tdiff = 0.264 · 0.3
ACCRAtel

λ2R2
, (4.5)

where ACCR and Atel are the areas of the CCR and the ground telescope, respectively [106].

An alternative approach is given in [90] inwhich the FFDP is approximated as a top-hat

pattern with solid angle Ω, so that the diffraction transmittance is evaluated as Atel/(ΩR2).

Since the solid angle can be estimated by the array cross-section Σ [95, 107], we have that

tdiff =
Σ

4πρARRA

Atel

R2
, (4.6)

being ρ= 0.93 the reflectivity of the uncoated CCR and ARRA the array effective area.

In clear sky conditions, the losses due to atmospheric transmission for the used λ =

532 nm is la ≈ 0.4 dB [95] and considering a satellite slant distance R ≈ 20 000 km,

the predicted down-link channel losses are ldown ≈ 62 dB, from both models given by

equations (4.5) and (4.6) to estimate the diffraction losses. This assessment of the channel

losses allow us to experimentally estimateµsat bymeasuring the detection rate, as presented

in the following section.

4.3.3 Experimental results

Detecting single photons from Glonass.—We provide here a detailed analysis of the data

obtained from Glonass-134. In a single passage of Glonass-134, we had two distinct ac-

quisitions separated by almost one hour corresponding to the maximum and minimum

distance of the satellite fromMLRO. In particular, the first acquisition lasted about 2 min-

utes, with mean slant distance of about 20 200 km, whereas the second one lasted about 5

minutes, with mean slant distance of 19 500 km.

In Figure 4.7 we show the signal detection rate from Glonass-134 for the second acqui-

sition (the results for the first acquisition are analogue). The detection rate was estimated

in the following way. We divided the whole acquisition in time intervals Ik of duration

τ = 5 s. For each interval we made the histogram (see Figure 4.8) of the time difference be-

tween the tagged detection tmeas and the expected time of arrival of the photon tref, with the

technique presented above. Then, we chose a time window w = 400 ps centered around

tref, much larger than the detector jitter (≈ 40 ps) since the retroreflected pulses are tempo-

rally spread by the CCR array, and estimated the number of photon detections Ndet as the
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Figure 4.7: Detection rate from Glonass-134 at 19 500 km slant distance. Each point is calculated integrating over an acquisition time

window Ik of τ = 5 s.

difference of the total and background counts within the window. The background was

uniformly distributed within the 10 ns period between two sent pulses (see Figure 4.8),

therefore we estimated its rate counting the detections over a time windowwhich is at least

1 ns away from tref. Finally, the signal detection rate was obtained via Rdet = Ndet/(τδ)

where δ = 0.3 is the duty cycle of the communication protocol. Then, we discarded the

time windows Ik with Rdet < 30 Hz, to filter out acquisition with low signal-to-noise ratio

(SNR). Such selected time windows gave the integrated histogram shown in Figure 4.8.

Figure 4.8: Histogram of residuals between the measured and the expected time of arrival of the photons, from Glonass-134 at a slant

distance of 19 500 km. Here, we consider acquisition time windows Ik with detection rate Rdet > 30 Hz. Each bin is 100 ps wide.

Dashed lines show how the background is distributed among the field of view and satellite albedo (Nalb ), fluorescence (Nfluo ) and dark

count rate of the detector (Ndark ).

At the end of such analysis, we obtained a mean detection frequency Rdet ≈ 58 Hz,
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a SNR of 0.53 and mean number of photons at the satellite µsat ≈ 14.5 for the second

acquisition of Glonass-134. In the same way we analyzed the first acquisition of the same

passage, obtaining a mean detection frequency Rdet ≈ 59 Hz, a SNR of 0.41 and a mean

number of photons at the satellite µsat ≈ 16.1. In this case we used a signal time window

w of 600 ps due to the larger temporal spread.

A large part of the counts reported in Figure 4.8 is due to noise. The intrinsic dark

count rate of the detector amounts to Ndark ≈ 700 Hz. They are estimated in the first

100 ms of the period, when the receiving shutter is closed. Another source of noise is

the fluorescence that occurs when the upgoing SLR pulse passes through the optical ele-

ments in common with our optical path. The intensity of the fluorescence light reduces

exponentially in time with half-life that depends on the material. The remaining tail is

included in the counts and amounts to Nfluo ≈ 195 Hz. The remaining, and predominant,

detections are due to satellite albedo and background of the field of view. This noise is

uniformly distributed in time and amounts at Nalb ≈ 1.9 kHz.

Observing the “signature” of Glonass.—We were also able to resolve the temporal dis-

tribution of the returning pulse given by the particular design of the CCR array, hence

revealing the “signature” of Glonass-134 that is equipped with a holed circular CCR array,

sketched in the left panel of Figure 4.9. If the incident angle θi with respect to the normal

tothe array is not zero (see the right panel of Figure 4.9), the pulses reflected by the CCRs

closer to the ground station have a smaller round trip time with respect to the further

CCRs, resulting in a temporal spread with a characteristic “dip” of the pulse.

Figure 4.9: (left panel) Sketch of the holed circular CCR array of Glonass-134. (right panel) The incoming pulses impinge on the

CCR array with a non-zero angle θi with respect to the array normal. The central hole in the array causes a characteristic “dip” in the

temporal profile of the detected pulses.

We simulated the temporal shape of the pulse for incident angles 5 deg and 9 deg,

corresponding to the incident angles of the two acquisitions, and compare them with the

actual data in Figure 4.10. From the simulation, the corresponding temporal peak-to-peak

distance is 250 ps and 430 ps for the two acquisitions respectively, in agreement with the
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Figure 4.10: Histogram of residuals between measured and expected time of arrival of the photons for Glonass-134 at 20 200 km (top)

and 19 500 km (bottom).

experimental estimation. The simulation is performed supposing that the single CCR does

not change the temporal shape of the pulse, it but introduces a temporal offset depending

on its position in the array and on the incident angle of the beam. Using a pulse with 100 ps

of FWHM, as in the actual experiment, and summing up the contributions of all CCRs,

we obtained the shapes depicted in the figure. Note that the continuous lines shown in

Figure 4.10 are obtained by such a-priori model (adding the measured background) and

not by fitting the data.

As shown in the work byOtsubo et al. [108], GLONASS flat CCRs array exhibits par-

ticular temporal distribution determining higher error in the laser ranging measurement,

in which the mean number of photons at the receiver is usually much greater than one.

The authors of [108] observed the “signature” of the GLONASS satellites by integrating

one year of data acquisition. On the contrary, our result shows that using single photons

detectors and high repetition source the temporal distribution of the pulse can be mea-

sured, even with low mean number of photon at the satellite and short data integration

time. A more accurate measurement could be done using a mean number of photons of

about one at the receiver, however this is beyond the scope of our experiment. We note

that this measurement could even be used to determine the orientation of the array and

hence the attitude of the satellite, which is of critical importance for the processing of

GNSS data [94, 109, 110].
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4.4 Towards QKD between Micius and MLRO

4.4.1 Satellite-based Quantum Key Distribution

A typical free-space QKD system.—The most effective way to perform QKD via free-

space channels is by implementing the BB84 decoy-state protocol [111, 112], as demon-

strated in many experimental works [113, 114, 115, 116, 78, 79]. This protocol is an

improvement of the original BB84 protocol [118], which allows to use weak-coherent

pulses instead of true single photon states while remaining secure even against the photon-

number-splitting (PNS) attack.

Typical free-space systems used to implement the BB84 decoy-state share the logical

structure sketched in Figure 4.11. The key ingredients are the QKD source and the QKD

detection units, which are in charged, respectively, of preparing and measuring the states

exchanged in the protocol. Alice randomly prepares four different state in two mutually

unbiased bases, like the polarization states {|H 〉 , |V 〉} and {|D〉 , |A〉}, by setting three dif-

ferent intensities (or mean photon number per pulse), which are called vacuum µ0 = 0,

weak-decoy µd and signal µs . Bob, on the other side, measures the incoming pulses in the

H/V or D/Abasis with fixed probability (biased basis choice [117]). By associating the “0”

or “1” bit to each prepared and measured state and by comparing the two bit strings they

obtained after many runs of the protocol, Alice and Bob can finally share a random bit

key K which is unconditionally secure and that can be used with the one-time-pad (OTP)

for secure communication purposes [33, 15]. The security is guarantee by the laws of

QuantumMechanics: each attempt to get the key by intercepting or cloning the sent state

without disturbing the key generation process is actually forbidden by the Heisenberg’s

principle and the no-cloning theorem, which allow Alice and Bob to reveal such malicious

attempt and to abort the protocol.

The other logic units necessary to implement the BB84 decoy-state protocol in a free-

space channels are a Pointing, Acquisition and Tracking (PAT) system, a Synchronization

(Synchro) unit and a Telecom interface between Alice and Bob.

The PAT unit is in charge of allowing Alice and Bob to send and receive the quantum

signals over the free-space channel, and it is usually comprised of a transmitting and a

receiving telescope and a close-feedback coarse and fine pointing system to keep the two

telescope aligned one with respect to the other.

The Synchro unit is in charge of the real-time timing of the protocol, e.g., driving

the lasers and tagging the detections, and of the technique which allows Alice and Bob to

compare their raw bit strings a posteriori. In order to reach this purposes, a pulsed laser
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paced by a GPS clock is usually implemented. It is worth noticing that the pulsed laser

used for synchronization purposes can be used also as a beacon of the PAT system.

The Telecom unit is in charged of the (authenticated) classical communication between

the two terminals, which allows the correct implementation of the protocol, from the

raw-key exchange to the other post-processing phases, e.g. basis-reconciliation (or sifting),

error-correction and privacy-amplification [33, 15].

Figure 4.11: Logical structure of a typical free-space QKD system.

Satellite-relayed QKD at the global scale.— In satellite QKD, Alice is the orbiting satel-

lite. Exploiting the satellite as a relay can guarantee the security of communications all

over the world. Indeed, two distant ground stations A and B may share a secure key in the

following way. Suppose the satellite is orbiting over the ground station A, with which the

satellite implements a QKD protocol generating the secure key KA. Then, when the satel-

lite gets over the ground station B , it generates and shares another secure key KB . At this

point, the satellite has both keys KA and KB , and it calculates the key KAB by XORing KA

and KB , that is KAB =KA⊕KB , where⊕ is the binary XOR operation. Finally the satellite

sends KAB to ground station B using a classical public channel, so that ground station B

can reconstruct KA. The two ground stations now store the key KA to be used whenever

they have to share a secret message via OTP. The use of a satellite as a trusted node has

been demonstrated in [79] to secure an intercontinental video call between Austria and

China.

4.4.2 The preliminary test performed at MLRO

We performed in July 2018 a preliminary test to implement a QKD link between

Micius satellite and MLRO in Matera, which is the object of this section. Shangkai Liao

and Jigang Ren of the Chinese Academy of Sciences supervised the test al MLRO.

More details on Micius satellite.—One payload of Micius satellite is a space-qualified

QKD transmitter, whose details can be found in [78, 79]. Essentially, Micius has eight

tunable pulsed-lasers centered at 850 nm with a repetition rate of 100 MHz. These lasers
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are used to generate the states |H 〉 , |V 〉 , |D〉 , |A〉 needed to implement the BB84 decoy-state

protocol described above.

For PAT and synchronization purposes, Micius mounted a pulsed beacon laser at

532 nm, which is sent towards the receiving ground-station. To operate properly, a conti-

nuous-wave (CW) strong (3 W of mean power) red beacon at 671 nm must be sent to

the satellite from the ground. The 671 nm beacon laser is acquired by two cameras on

the satellite, to implement a close-feedback PAT loop based on movable mirrors. The red

beacon was installed on the MLRO telescope tube and aligned by using the SLR beam.

The receiving setup at MLRO.—For the preliminary test performed on 11th July 2018,

from 22:21 to 22:28 (UTC time), Micius sent down the green beacon and a horizontally

polarized CW laser at 850 nm, which is the signal beam of the test. The expected photon

flux for the signal at the primary mirror of MLRO was about 6.5 ·108 photons/m2/s with

Micius at 1 000 km of slant distance.

The receiving setup we implemented at MLRO has two roles. Firstly, it must realize

Bob’s part of the PAT system to acquire the green beacon at 532 nm for pointing and

synchronization purposes. Secondly, it has to implement the 850 nm BB84 polarization-

based detection unit.

The setup used was assembled at the RX Table of MLRO as sketched in Figure 4.12.

On the MLRO telescope tube it is installed a wide-angle-camera searching for the beacon

sent from Micius (coarse pointing).

Figure 4.12: Setup used for the preliminary test of QKD between Micius and MLRO.

The two beam reached the RX Table after have been collected by the MLRO 1.5 m

telescope and have passed the Coudé path. The first pair of lenses implemented a 5× beam

reducer to collimate the incoming beam from the telescope to a beam of about 1 cm of
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diameter. The two beams are then separated by a dichroic mirror (DM).

The green one passed through an unbalanced beam-splitter for being coupled to both

a SPAD detector for synchronization (after being tagged by the quTau time-tagger) and

to a CMOS camera, the output of which was used by the MLRO operator in real-time as

fine pointing.

The 850 nm signal beam was then corrected for the polarization rotation introduced

by the Coudé path. Indeed, the mirrors of the Coudé path, even if not introducing de-

polarization, induced a rotation of the polarization state sent by Micius, which depends

on the actual pointing of the MLRO telescope (azimuth and elevation angles) and has to

be corrected in real-time. To correct this polarization transformation, we implemented a

motorized triplet made by a QWP, a HWP and a liquid crystal retarded (LCR), which can

implement any unitary transformation (as described in Section 2.2.2). Indeed, the LCR

acts as a wave-retarder in which the retardance Γ depends on the applied voltage. Further-

more, the satellite motion introduced a polarization rotation in the sent horizontal po-

larized state. To correct this rotation we introduced an additional HWP, called reference-

frame-waveplate (RFW), in order to align the reference system of the satellite to the one

of the optical table.

The 850 nm signal beam then passed through the QKD detection unit, which was

made by a 50:50 beam-splitter (BS) and four polarizing beam-splitter (PBS) to perform the

measurement in the {|H 〉 , |V 〉} and {|D〉 , |A〉} bases. Experimentally, it is better to use an

additional PBS on the reflected output of the PBS to improve the polarization contrast.

In the D/A arm, a pair of waveplates was introduced to perform the measurement, as

described in Section 2.2.2.

At the output of the detection unit the beam was coupled to two different detection

systems, one for each measurement basis, to compare their performances and choose the

one to be implemented in the real QKD experiment. The H/V basis was measured by a

fiber-based SPADs (55% of detection efficienty) after being coupled to multi-mode (MM)

fibers with 200 µm of core and spectrally filtered (F, 20 nm band). The D/A basis was

measured by using two free-space SPADs with 10% of detection efficiency.

The four signals of the SPADs are then tagged by the time-tagger, which is also paced

by the clock signal of a GPS and by the atomic clock of MLRO (Maser).

Preliminary results.—The goals of this preliminary test were:

i) verify that the green beacon fromMicius is correctly detected for both pointing and

synchronization purposes;

ii) verify that the polarization compensation system implemented by us worked cor-

rectly.
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For what regards i), the MLRO telescope correctly tracked Micius using the 2D line

elements provided by the Chinese Academy of Sciences, which are essentially the predic-

tion of the satellite trajectory. Further corrections in real-time were made by hand by

the MLRO operator by looking firstly at the wide-angle-camera and than at the output of

the CMOS one which is more precise. The detectors had a field-of-view (FOV) of about

30 µrad, hence the operator had to keep the image of the beacon acquired by the CMOS

camera inside the red circle shown in Figure 4.13 during the Micius passage. Figure 4.13

shows the centroids of the spot recorded by the camera during the whole passage, show-

ing that the pointing was good enough to allow the test. Furthermore, the histogram of

the time difference between two consecutive tags of the synchronization SPAD show the

peaks every 91 µs, as expected from the fact that the beacon repetition rate was about

11 kHz.
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Figure 4.13: Centroids of the beacon acquired by the CMOS camera during the passage of Micius.

For what regards ii), we calibrated the Coudé compensation system by taking five

points along the predicted trajectory of Micius and using a CW laser at 850 nm mounted

in front of the primary mirror of MLRO. The measured contrast of such calibration was

about 200:1 (< 0.5%) for both bases, good enough to correctly discriminate between the

four polarization states generated by Micius. The actual angles of the motorized wave-

plates and the voltage to be applied to the LCR was obtained by fitting the values of the

calibration points. The triplet was set in real-time during the satellite passage, as well

as the rotation angle of the RFW. We measured the degree of polarization (DOP, see

Section1.1.3) of the signal beam once detected in our optical table by using r3 from the

detections in the H/V basis and r1 from the D/A one (see Section 2.2.2), which results
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Æ

r 2
1 + r 2

3 = 0.96± 0.04 (estimated over all the passage), attesting the linearity of the in-

coming polarization. It is worth noticing that we changed the offset of the RFW during

the passage three times, to project also onto the D/A basis.

Concluding, the preliminary results obtained in July 2018 made us confident to man-

age to implement an actual QKD link between Micius and MLRO, confirming the role

of MLRO as a state-of-the-art receiver for Space quantum communications. Two nice

pictures taken during the experimental campaign are in Figure 4.14.

Figure 4.14: (left panel) The red beacon laser mounted on the MLRO telescope. (right panel) Micius satellite during the passage.
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Chapter 5

Observing single-photon interference along sa-

tellite channels

Quantum interference arising from the superposition of states is a striking evidence of

the validity ofQuantumMechanics, whichwas confirmed inmany experiments and that is

also exploited in applications. However, Quantum Mechanics, as every scientific theory,

is valid within the limits in which it has been experimentally verified. With the spirit

of extending such limits, we experimentally demonstrated single-photon interference at a

ground station due to the coherent superposition of two photon time-bins reflected by a

rapidly moving satellite orbiting thousands of kilometers away.

This chapter is dedicated to this Quantum Optics experiment exploiting a Space inter-

ferometer, the first I was involved in during my master and PhD activities. Some contents

of this chapter are part of our work [89].

The interferometer used in the experiment.
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5.1 Introduction: quantum interference

Quantum interference has played a crucial role to highlight the essence of Quantum

Mechanics since the Einstein-Bohr dialogues at the end of the Twenties [119]. It originates

when alternative possibilities in a quantum process are indistinguishable, like in the case

of individual particles that may be simultaneously in more than one place as in the well-

known Young’s double-slit experiment [2, 11, 12].

Interference phenomena occur in Quantum Mechanics whenever the probability am-

plitudes for reaching a given final state for a system from a given initial state is the sum

of two or more partial amplitudes with well defined phase relations one with respect to

each other. Each partial amplitude represents an alternative way in which the system can

evolve from the initial state to the final one. For example, wemay consider a single-photon

state incident on the slits. The final state of the field will be the vacuum state |vac〉, where

the photon has been absorbed. The total amplitude for reaching this final state is the sum

of two amplitudes, each associated with the passage of the photon through one of the

two slits. The existence of the interference fringes is related to our inability to determine

which of the possible paths the photon actually takes: any attempt to define which of the

two paths the photon followed actually cancels the interference fringes, as imposed by the

Heisenberg principle [2]. Hence, the different amplitude related to the different paths by

which a system may evolve contribute to the total amplitude with a well-defined phase

relationship. Another example of quantum interference is the balanced Mach Zehnder

interferometer described in Section 2.1.2.

Quantum interference was already observed with photons [120, 121], electrons [122],

neutrons [123] and even with large molecules with masses exceeding 10 000 amu [124].

One of the main challenges in Quantum Physics is establishing if fundamental bounds to

interference exist: for instance, can quantum interference be measured by observers in rel-

ative motion and at arbitrary large distance one between the other? Our work presented in

this chapter moved from this question. We demonstrated interference at the single photon

level along satellite-ground channels by exploiting temporal modes of single photons, i.e.

the time-bin encoding of Section 2.2.3. We obtained a coherent superposition between

two single-photon wavepackets on ground and observed their interference after a Space

trip involving the reflection by a rapidly moving satellite at very large distance, with a

total path length up to 5 000 km. The varying relative velocity of the satellite with respect

to the ground station introduces a modulation in the interference pattern which can be

predicted by special relativistic calculations, as explained below.
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5.2 Description of the experiment

5.2.1 Time-bin encoding for Space interferometry

In this experiment the Quantum Optics setup of Figure 4.4 is comprised of an un-

balanced Mach-Zehnder interferometer (MZI), as sketched Figure 5.1. With such interfe-

rometer, for each qubit pulse, a coherent state |Ψout〉 in two temporal modes is generated

at MLRO. The temporal imbalance ∆t ≈ 3.4 ns between the two arms corresponds to a

length difference between the two arms of ∆t = c∆t ≈ 1 m, which is much longer than

the coherence time τc ≈ 80 ps of the qubits pulses.

Using the MLRO telescope, the state |Ψout〉 is directed to a retroreflector placed on a

satellite in orbit. The satellite retroreflectors redirect the beam back to the ground station,

where it is collected and injected into the sameMZI used in the uplink. After the reflection

by the satellite and the downlink attenuation, the state collected by the telescope can be

well approximated by

|Ψr 〉=
1p
2

�

|S〉− e iϕ(t ) |L〉
�

, (5.1)

that is a time-bin superposition of two single-photon wavepackets |S〉 and |L〉.
The relative phase ϕ(t ) is determined by the satellite instantaneous radial velocity with

respect to ground, vr (t ). Indeed, at a given instant t , the satellite motion determines a

shift δ r (t ) of the reflector radial position, during the separation ∆t between the two

wavepackets, as shown in Figure 5.2. This shift can be estimated at the first order as
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Figure 5.1: Scheme of the experiment. We show the unbalanced MZI with the two 4 f -systems used for the generation of the coherent

state in two temporal modes and the measurement of the interference. Light and dark green lines respectively represent the beams

outgoing to and ingoing from the telescope. In the inset, we show the expected detection pattern: the number of counts Nc in the

central peak varies according to the kinematic phase ϕ imposed by the satellite. Right photo shows MLROwith the laser ranging beam

and the Beacon-C satellite (not to scale). The phase ϕ(t ) depends on the satellite radial velocity as described in the text.
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Figure 5.2: Kinematic Phase Shift introduced by the satellite imotion. The relative phase ϕ(t ) is determined by the satellite instantaneous

radial velocity with respect to the ground, vr (t ). Intuitively, the satellite motion determine a shift δ r (t )≈ vr (t )∆t of the reflector’s

radial position during the separation ∆t between the two temporal modes of the wave packet.

δ r (t )≈ vr (t )∆t , and its value may reach a few tens of micrometers for the satellites here

used.

For instance, in Figure 5.3 we show the value of vr (t ), that ranges from -6 to 6 km/s for

the selected passage of the Beacon-C satellite. The shift in the radial position introduced an

optical path difference travelled by the two wavepacket which is equal to 2δ r (t ). There-

fore, the satellite motion imposes during reflection the additional kinematic phase

ϕ(t )≈ 2δ r (t )
2π

λ
≈ 4π

λ
vr (t )∆t (5.2)

between thewavepackets |L〉 and |S〉, where λ= 532 nm is the pulse wavelength in vacuum.

The typical values of the satellite-induced phase-shift for the Ajisai satellite during a passage

are in Figure 5.4.

A single MZI for state generation and detection intrinsically ensures the same unbal-

ance of the arms and avoids active stabilization, necessary otherwise with two independent

interferometers. As detailed below, two 4 f -systems realizing an optical relay equal to the

arm length difference were placed in the long arm of the MZI. The relay is required to

match the interfering beam wavefronts that are distorted by the passage through atmo-

spheric turbulence: otherwise, the latter may cause distinguishability between the two

paths, washing out the interference. The MZI at the receiver is able to reveal the inter-

ference between the two returning wavepackets. At the MZI outputs we expect detection
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Figure 5.3: Measured radial velocity of the Beacon-C satellite ranging from −6 km/s to +6 km/s as a function of time during a single

passage.
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Figure 5.4: Kinematic phase and interference pattern. (top panel) We show the measured satellite distance and the predicted kinematic

phase ϕ(t ) estimated by (5.5) as a function of time for a passage of the Ajisai satellite. Shaded area represents the temporal window of

data acquisition. (bottom panel) Kinematic phase ϕ(t ) and theoretical probability Pc (t ) in the shaded area. The interference pattern

is modulated according to the value of ϕ(t ) determined by the satellite velocity.

times that follow the well known three-peak profile (see Figure 5.1): the first peak repre-

sents the pulse |S〉 taking again the short arm, while the third represents the delayed pulse

|L〉 taking again the long arm. In the central peak we expect indistinguishability between

two alternative possibilities: the |S〉 pulse taking the long arm and the |L〉 pulse taking the
short arm in the path along the MZI toward the detector. The signature of interference at

the single photon level is then obtained when the counts in the central peak differ from

the sum of the counts registered in the lateral peaks.

To measure the interference we used a single photon detector (photomultiplier, PMT)

placed at the available port of theMZI, as shown in Figure 5.1. For amoving retroreflector,

as detailed below, special relativistic calculations show that the probability Pc of detecting
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Chapter 5. Observing single-photon interference along satellite channels

the photon in the central peak, as a function of the passage time, is given by

Pc (t ) =
1

2
[1−V (t )cosϕ(t )] , (5.3)

with

V (t ) = e
− λ

2ϕ2(t )

8πc2τ2
c ≈ 1 , (5.4)

and

ϕ(t ) =
2β(t )

1+β(t )

2πc

λ
∆t . (5.5)

We note that for a retroreflector at rest we expect Pc = 0. The parameterβ(t ) is defined

as

β(t ) :=
vr (t )

c
(5.6)

The above relation is obtained by time-of-flight calculations together with the Doppler

effect that changes the angular frequency of the reflected pulses from ω0 = (2πc)/λ to

ω′0 =
1−β
1+β

ω0 (5.7)

We note that the first order approximation of (5.5) gives the approximated phase phase

ϕ(t )≈ 4πvr (t )∆t/λ of (5.2). The theoretical visibility V (t ) is approximately 1 since the

β factor is upper bounded by 3 ·10−5 in all the experimental studied cases, while the ratio

∆t/τc is of the order of 102.

5.2.2 Further details of the interferometer

We give a detailed description of the unbalanced Mach-Zehnder interferometer (MZI)

used for the generation and measurement of the interference. The interferometer, realized

by two beam splitters (BSs), is schematically shown in Fig. 5.5A. The difference between

the short (S) and long (L) arm is approximately 1 m.

In order to observe interference it is necessary to perfectly match the wavefronts of the

wave packets traveling through the short or the long arm. This matching is particularly

necessary for the photon beams reflected by the satellite that are subjected to the atmo-

sphere distortion. To this purpose, we exploited two 4 f -systems that realize an optical

relay of length equal to the path difference between the long and short arm of the MZI.

Each 4 f -system is composed by two lenses with focal length f = 125 mm, as shown in

Figure 5.5A. It is worth noticing that the ABCDmatrix of a single 4 f -system is −12 [14]:

while realizing an optical relay of length 4 f = 500 mm, it realizes also a spatial inversion

on the wavefront which must be compensated by a second 4 f -system.
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5.2. Description of the experiment

In Figure 5.5B we show the performance of the two 4 f -systems. At the output of the

MZI we imaged the primary mirror while the telescope was pointing at a bright star. The

two images in Figure 5.5B are obtained by blocking the long and short arm respectively.

The two images are comparable, showing that the wavefronts traveling the short or long

arm are well matched at the output of the interferometer.

Figure 5.5: (A) Scheme of the unbalanced Mach-Zehnder interferometer used in the experiment. (B) Images of the primary mirror

with only the short or long arm opened. We exploited the secondary mirror spider and the condensation spots on the primary mirror

surface for checking the alignment of the interferometer.

5.2.3 Special relativistic calculations for the detection probability

In this section we will derive the effect of the reflection by a mirror moving at con-

stant velocity on the superposition between two photon temporal modes, which leads

to equations (5.3), (5.4) and (5.5). The most effective way to obtain such relations is to

use Einstein’ special relativity [125, 126] to correctly describe relations between objects

moving at constant velocity one respect the other.

Let’s consider a single photon wavepacket whose peak passes at r = 0 for t = 0. Its

wavepacket is given by

ψ0(τ−) =
4

√

√

√ 2

τ2
c

e
−π τ2

−
τ2

c e iω0τ− (5.8)

where we have defined the quantities

τ± :=
r

c
± t , (5.9)

ω0 is the central angular frequency and r is the direction of propagation.

After such the pulse passed the MZI, the output is given by

ψ1(τ−) =
1p
2
[ψ0(τ−)− e−iω0∆tψ0(τ−−∆t )] , (5.10)

where ∆t is the MZI imbalance.

93



Chapter 5. Observing single-photon interference along satellite channels

We now consider a mirror on a satellite moving at constant velocity with respect to

the interferometer that at time t = 0 is located at r = rsat. We may change reference

frame by setting the origin at the location of the satellite. The corresponding Lorentz

transformation [125] are given by






r ′ = γ (r − rsat−βc t )

t ′ = γ (t −β r − rsat

c
)







r = rsat+ γ (r
′+βc t ′)

t = γ (t ′+β
r ′

c
)

. (5.11)

The state in (5.10) is directed toward the mirror and the wave function in the mirror

reference frame can be derived by the transformations of the τ± parameters:

τ± = γ (1±β)τ′±+
rsat

c
=

√

√

√1±β
1∓βτ

′
±+

rsat

c
. (5.12)

In the mirror reference frame, the mirror reflection can be simply described by the trans-

formation τ′−→−τ′+. We now use (5.12), namely τ′+ =
1

γ (1+β) (τ+−
rsat

c
) to go back to the

interferometer reference frame. If we define trtt := 2

1−β
rsat

c
, the total transformation can be

summarized by

τ−
boost to mirror ref. frame−−−−−−−−−−−−−−−→ γ (1−β)τ′−+

rsat

c

reflection−−−−−−−→−γ (1−β)τ′++
rsat

c
boost back to ground ref. frame−−−−−−−−−−−−−−−−−−→− fβ(τ+− trtt) , (5.13)

where

fβ := γ 2(1−β(t ))2 = 1−β(t )
1+β(t )

. (5.14)

Note that fβ = fβ(t ) is actually a function of the passage time t , since it varies with the

motion of the satellite. It is worth noticing that also normalization should be changed in

order to preserve normalization of the wavepacket.

Hence, the beam coming back from the satellite is

ψ2(τ+) =
q

fβψ1(− fβ(τ+− trtt))

=
γ (1−β)p

2
[ψ0(− fβ(τ+− trtt))− e−iω0∆tψ0(− fβ(τ+− trtt)−∆t )] . (5.15)

We now comment the two contributions to the wavepacket. The first term is

ψ0(− fβ(τ+− trtt)) =
4

√

√

√ 2

τ2
c

e
−π

f 2
β
(τ+−trtt)

2

τ2
c e−i fβω0(τ+−trtt) , (5.16)

representing a pulse with a coherence time stretched (or compressed) by the doppler effect:

its coherence time is indeed

τ′c =
τc

fβ
=

1+β

1−βτc . (5.17)
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5.2. Description of the experiment

We also note that the parameter trtt represents the time that the pulse peak takes to come

back to the origin (namely the round trip time). The second term in (5.15) represents

the pulse of (5.16) delayed by ∆t ′ = ∆t
fβ
. The same relation applies also to the strong SLR

pulses at 10 Hz, that are separated in time by ∆T = 100 ms. As detailed in the following,

bymeasuring the temporal separation∆T ′ of the SLR pulses at the receiver, it is possible to

determine the satellite radial velocity. Spacetime diagrams for the pulses going upward to

and downward from the satellite are shown in Figure 5.6 for different parts of the satellite

orbit.

r

t

Δt

Δt'

trtt

Δt

Δt' 

Satellite

worldline

trtt

Figure 5.6: Spacetimes diagrams of light propagation. Short and Long arm pulses are represented by blue and red color respectively.

Dashed green line represents the satellite trajectory. As explained in the text, pulses separated on ground by a delay ∆t are received

with a delay∆t ′ =∆t/ fβ due to the motion of the satellite. The round trip time is trtt. Satellite distance r and time t are not to scale.

After passing again in the interferometer, we get at the available detection port of the

MZI (see Figure 5.1) the following state:

ψ3(τ++ trtt) =
ip
2

�

ψ2(τ++ trtt)+ e−iω0∆tψ2(τ++ trtt+∆t )
�

=
i
Æ

fβ

2

n
�

ψ0(− fβτ+)+ e−iω0∆tψ0(− fβ(τ++∆t ))
�

− e−iω0∆t
�

ψ0(− fβτ+−∆t )+ e−iω0∆tψ0(− fβ(τ++∆t )−∆t )
�
o

. (5.18)

We now have three pulses at the detector: the probability of getting the photon in the
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Chapter 5. Observing single-photon interference along satellite channels

central pulse at r = 0 is given by

Pc (t ) =
fβ

4

∫

dt ′|ψ0(− fβ(t
′+∆t ))−ψ0(− fβt ′−∆t )|2

=
1

2

¨

1−
√

√

√ 2

τ2
c

∫

dt ′Re

�

e
−π

(t ′+ fβ∆t )2

τ2
c e

−π (t ′+∆t )2

τ2
c e iω0(1− fβ)∆t

�«

=
1

2

¨

1−
�√

√

√ 2

τ2
c

∫

dt ′e
−π

(t ′+ fβ∆t )2

τ2
c e

−π (t ′+∆t )2

τ2
c

�

Re
�

e iω0(1− fβ)∆t
�

«

. (5.19)

We used the fact that, since the three Gaussian pulses are well-separatd by∆t , the temporal

integration to obtain the probability of detection in the central peak can be extended up

to the whole axis, by taking only the central wavepacket contribution.

By defining

V (t ) :=

√

√

√ 2

τ2
c

∫

dt ′ e
−π

(t ′+ fβ∆t ))2

τ2
c e

−π (t ′+∆t )2

τ2
c = e−2π

�

∆t
τc

β(t )
1+β(t )

�2

, (5.20)

and

ϕ(t ) :=ω0(1− fβ)∆t =
2β(t )

1+β(t )
ω0∆t , (5.21)

the probability Pc (t ) can be written as in (5.3), while (5.20) and (5.21) yield (5.4) and (5.5)

respectively.

5.3 Results

Estimating the kinematic phase.—The value ofϕ(t ) originating from the satellite motion

can be precisely predicted on the base of the sequence of measurements of the instanta-

neous distance of the satellite, or range r , which is realized in parallel via SLR, as described

in Section 4.2.4. The range is measured by the strong SLR pulses at 10 Hz. Thanks to the

atomic clock of MLRO, the SLR pulses are separated precisely by ∆T = 100 ms and syn-

chronized with the 100 MHz qubit pulses. By measuring the temporal separation ∆T ′ of

the SLR pulses at the receiver after the satellite retroreflection, it is possible to determine

the instantaneous satellite velocity relative to the ground station vr (t ). Indeed, since by

the Doppler effect we have that

∆T ′ =
∆T

fβ
, (5.22)

the velocity vr (t ) can be estimated as

vr (t ) = c
∆T ′−∆T

∆T ′+∆T
. (5.23)
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Figure 5.7: Constructive and destructive single-photon interference (Beacon-C satellite, 11.07.2015 h 1.33 CEST). (A) Histogram of

single photon detections as a function of time ∆ = tmeas − tref realized by selecting only the returns characterized by ϕ mod 2π ∈
[9π/10,11π/10] that lead to constructive interference. Solid line shows the tri-Gaussian fit. By evaluating the Gaussian integrals we

obtained the counts Nℓ = 112± 11 for the sum of lateral peaks and Nc = 196± 14 for the central one. (B) Histogram of single photon

detections realized by selecting only the returns characterized by ϕ mod 2π ∈ [−π/10,π/10]. Here Nℓ = 112± 11 and Nc = 46± 7.

(C)Histogram of single photon detections without any selection on the phase. As expected, interference is completed washed out and

we measured Nc = 1245±35 and Nℓ = 1306±36, fully compatible with Pc = 1/2. In all panels, dotted red lines represent the expected

counts in case of no interference.

The separation ∆T ′ is related to the range r by ∆T ′ = ∆T +∆r/c , where ∆r is the

variation of the satellite distance between two subsequent SLR pulses. Then, bymeasuring

the range every 100 ms, the instantaneous satellite velocity relative to the ground station

vr (t ) can be estimated, from which ϕ(t ) can be derived by (5.5). In the top panel of

Figure 5.4, for a given passage of the Ajisai satellite, we show themeasured satellite distance

and the estimated ϕ(t ) as a function of time from the beginning to the end of the satellite

tracking. Since vr (t ) is continuously changing along the orbit, the value of ϕ(t ) is varying

accordingly. In the bottom panel of Figure 5.4 we show the variation of the theoretical

output probability Pc (t ) along the Ajisai orbit as predicted by (5.3).

Highlighting the single-photon interference.— We selected three satellites in low-Earth-

orbit (LEO) – Beacon-C, Stella and Ajisai – which are equipped with efficient cube-corner

retroreflectors (CCRs). Thanks to the CCR properties, the state |Ψout〉 is automatically

redirected toward theMLROground station, where it is injected into the sameMZI used in

the uplink. By the synchronization technique described iin Section 4.2.4, we determined

of the expected ( tref) and the measured ( tmeas) instant of arrival of each photon. In this way,

the histogram of the detections in the temporal window of 10 ns between two consecutive

pulses as a function of the temporal difference∆= tmeas−tref can be obtained. In Figure 5.7
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we show such histograms corresponding to constructive and destructive interference in the

case of satellite Beacon-C.

In particular, for the constructive interference, Figure 5.7(A), we selected the detec-

tions corresponding to ϕ (mod 2π) ∈ [9π/10,11π/10]. For the destructive interference,

Figure 5.7(B), we selected a kinematic phase ϕ (mod 2π) ∈ [−π/10,π/10]. The detections

in the central peak are respectively higher or lower than the sum of the two lateral peaks

in the two cases. We note that the peak width is determined by the detector timing jitter

which has standard deviation σ = 0.5 ns. These two histograms clearly show the interfer-

ence effect in the central peak. On the contrary, Figure 5.7(C) is obtained by taking all the

data without any selection on ϕ. In this case, the interference is completely washed out.

These results show that, in order to prove the interference effect, it is crucial to correctly

predict the kinematic phase ϕ imposed by the satellite motion.

By using the data of Figure 5.7, we experimentally evaluate the probability P (exp)
c as the

ratio of the detections associated the central peak Nc to twice the sum Nℓ of the detections

associated to the side peaks, namely

P (exp)
c =

Nc

2Nℓ

. (5.24)

The values P (exp)
c = 0.87± 0.10 and P (exp)

c = 0.20± 0.03 are obtained for constructive and

destructive interference respectively. The values deviates with clear statistical evidence

from 0.5, which is the expected value in the case of no interference.

A more clear evidence of the role of ϕ(t ) can be demonstrated by evaluating the ex-

perimental probabilities P (exp)
c as a function of ϕ. Figure 5.8 shows P (exp)

c for ten different

values of the kinematic phase ϕ and for the three different satellites. By fitting the data by

P (exp)
c =

1

2
(1− Vexp cosϕ), we estimated the experimental visibilities Vexp = 67± 11% for

Beacon-C, Vexp = 53±13% for Stella and Vexp = 38±4% for Ajisai. The data were collected

at the following satellite distance ranges: from 1 600 to 2 500 km for Ajisai, from 1 100

to 1 500 km for Stella and from 1 200 to 1 500 km for Beacon-C, giving two-way channel

lengths ranging from 2 200 up to 5 000 km. The interference patterns in Figure 5.8 clearly

demonstrate that the coherence between the two temporal modes is preserved along these

thousand kilometer scale channels with rapidly moving retroreflectors.

We attribute the different visibilities to residual vibrations of the unbalanced MZI be-

tween the upgoing and downgoing pulses, since the intrinsic visibility of the interferom-

eter was measured to be above 95%. To improve the visibility it would be necessary to

redesign the full interferometric setup to further mitigate this effect. We note that, in the

double-pass configuration, the interferometer is sensitive to vibrations with frequencies
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higher than 1/rtt (rtt is the round trip time). Indeed, the lower visibility is obtained with

Ajisai, the satellite with larger distance from the ground (from 1 600 to 2 000 km), with

a rtt between 10.7 ms and 16.7 ms. For the other two satellites the rtt is typically lower

than 10 ms.

Probing the interference is at the single-photon level.—The mean number of photon µ in

the received pulses may be derived by measuring the detection rate and from the optical

losses η≈ 0.27 in the receiving setup, as described in Section 4.2.5. At the primary mirror

of the receiving telescope, the averageµ during the data acquisition are given byµ≈ 7·10−4

for Beacon-C, µ≈ 2 ·10−3 for Ajisai and µ≈ 9 ·10−4 for Stella. From these values we may

conclude that interference was probed at the single photon level. Indeed, the probability

of having more that one photon per pulse in the receiver MZI is ∼ ηµ2.

We estimated that that the mean number of photons µsat leaving from the satellites

are µ(Stella)
sat < 20 and µ(Ajisai)

sat < 60 (the instantaneous values fluctuate due to pointing error

and turbulence). The technique used for the estimation of the µsat is not applicable for

the Beacon-C satellite, due to the lack of data (it was launched on 1965). We note that its

distance to the ground is similar to the Stella satellite and a similar µsat could be expected.

Hence, the total downlink attenuation (including the detection setup losses) is between

60 dB and 70 dB.
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Figure 5.8: Measured interference pattern. Experimental probabilities P
(exp)
c as a function of the kinematic phase measured for three

different satellites. By fitting the data we estimate the visibilities Vexp = 67 ± 11% for Beacon-C, Vexp = 53 ± 13% for Stella and

Vexp = 38± 4% for Ajisai. Dashed lines correspond to the theoretical value of Pc predicted by eq. (5.3). The points are obtained by

considering ten intervals of the phase defined by I j ≡ [ 2 j−1
10 π,

2 j+1
10 π] ( j = 0, . . . , 9). For each interval we selected the data corresponding

to ϕ mod 2π ∈ I j : from such data we determined the experimental probability of detection in the central peak P
(exp)
c and we averaged

the corresponding phase ϕ. We note that at point ϕ = 0 and ϕ = 2π the same subset of data were selected.
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5.4 Future perspectives

In the work described in this chapter we observed interference at the single photon

level between two temporal modes by exploiting a Space interferometer extending for

thousands of kilometers. We demonstrated that the relative motion of the satellite with

respect to the ground induces a varying phase that modulates the interference pattern.

This varying phase is not present in the case of fixed terminals. The effect resulted from

the measured interference pattern during passages of three satellites, Beacon-C, Stella and

Ajisai, having different relative velocities and distances from the MLRO ground station.

Up to this work polarization encodingwas the one exploited in long distance free-space

quantum communications, time-bin encodingwas never implemented a long-distance free-

space channels, fearing that turbulence effects on the wavefront may spoil the interference.

However, we demonstrated that the atmospheric turbulence is not detrimental for time-

bin encoding in long distance free-space propagation if the two temporal modes are sepa-

rated by a few nanoseconds. Indeed, they are identically distorted by the propagation in

the turbulent air, whose dynamics is in the millisecond scale [127]: the key point is the

careful matching of the interfering wavefronts in the two arms, obtained by using a double

4 f optical system.

The interference patterns measured in the present experiment demonstrates that a co-

herent superposition between two temporal modes holds in the photon propagation and

its interference can be indeed observed over very long channels involving moving termi-

nals at fast relative velocity. The results here described attest the viability of the use of

time-bin encoding for fundamental tests of Quantum Optics to be performed in Space, as

we will present in the next chapter in our satellite realization of Wheeler’ delayed-choice

experiment [80].

Furthermore, the measurement of interference in Space is a milestone to investigate

one of the big unresolved puzzle in Physics, namely the interplay of Quantum Theory

with Gravitation. As recently proposed theoretically by M. Zych et al. [128, 64] (the op-

tical version of the original Colella-Overhauser-Werner (COW) experiment realized with

neutrons [129]), interference with single photons in Space is a witness of general relativis-

tic effects: gravitational phase shift between a superposition of two photon wavepackets

could be highlighted in the context of large distance Quantum Optics experiment. In

the case of our setup, the gravitational shift for the Ajisai satellite corresponds to about

2 mrad (see equation (23) of [64]). We point out that, unlike the case of effects mani-

fested by photon polarization rotation, such small gravitational effects may be enhanced

by increasing the temporal separation of the two interfering modes. To reveal the effect of
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gravity in QuantumOptics experiments several other proposals have been presented [64]:

these include the exchange of elementary particles from moving and accelerated reference

frames, which would allow to test Bell’s inequalities and wavefunction collapse and possi-

ble gravity-induced decoherence [130] in laser interferometry with a long baseline.

101





Chapter 6

Extending Wheeler’s delayed-choice experiment

to Space

Gedankenexperiments have consistently played a major role in the development of

quantum theory. A paradigmatic example is the Wheeler’s delayed-choice experiment, a

test of quantum wave-particle duality that cannot be fully understood using only classical

concepts, like the Young’s two-slit experiment. In this chapter we describe our imple-

mentation of Wheeler’s idea along a satellite-ground interferometer which extends for

thousands of kilometers in Space. We exploited both time-bin and polarization encodings

of photons reflected by a fast moving satellite equipped with retro-reflecting mirrors. We

observed the complementary wave-like or particle-like behaviours at the MLRO ground

station by choosing the measurement apparatus while the photons are still propagating

from the satellite to the ground. This experiment confirmed quantum mechanical pre-

dictions, demonstrating the need of the dual wave-particle interpretation, at this unprece-

dented scale. This work is the natural continuation of the works [84] and [89] described

in the previous chapters. Some contents of this chapter are part of our work [80].

Pictorial representation of Wheeler’s idea (by Elisabetta Vedovato).
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6.1 The idea of the experiment

As discussed above, the recent developments of quantum communications in Space

enable the investigation of the basic principles of Quantum Mechanics in a radically new

scenario. These developments foster the implementation in Space of fundamental tests of

Quantum Mechanics such as the gedankenexperiments which highlight the its counterin-

tuitive aspects.

These thought experiments played a primary role in the famous debate between Ein-

stein and Bohr [131], concerning the completeness of QuantumMechanics [132, 133] and

the concept of complementarity [134]. The most disturbing implication of complementar-

ity is the wave-particle duality of quantum matter, that is the impossibility of revealing at

the same time both the wave-like and particle-like properties of a quantum object. Bohr

pointed out that it is necessary to consider the whole apparatus in order to determine

which property is measured, stating that there is no difference “whether our plans of con-

structing or handling the instruments are fixed beforehand or whether we postpone the

completion of our planning until a later moment” [131].

John Wheeler pushed this observation to the extreme and conceived his delayed-choice

Gedankenexperiment [135, 136] to highlight the contradictory interpretation given by clas-

sical physics. In his idea, a photon emerging from the first beam-splitter (BS) of a Mach-

Zehnder interferometer (see Figure 6.1) may find two alternative configurations. Given

the presence or absence of a second BS at the output of the interferometer, the apparatus

measures the wave-like or particle-like character of the photon. Indeed, if the BS is absent

both detector can fire with 50% probability, reflecting the fact that the photon traveled

along only one arm of the interferometer and revealingwhich-path it took, as a classical par-

ticle would have done. If the BS is present, interference depending of the phase-difference

between the two arms can be observed, as explained in Section 2.1.2, reflecting the fact

that the photon travelled both routes, as a classical wave would have done.

A naive interpretation of such experiment in which the photon decides how to be-

have at the entrance in the interferometer is allowed by classical physics. However, if the

configuration is chosen after the entrance of the photon into the interferometer, a purely

classical interpretation of the process in which the photon decides its nature at the first

BS would imply a seeming violation of causality [126], since the photon may change its

behaviour while passing through the interferometer, while having already decided its na-

ture at the entrance. On the other hand, in the quantum mechanical interpretation of the

experiment, the photon maintains its dual wave-particle nature until the very end of the

experiment, when it is detected.
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6.2. Description of the experiment

Figure 6.1: (left panel) A photon wavepacket enters the first beam splitter of an interferometer which extends along thousands of

kilometers in Space. The interferometer can be randomly arranged according to two configurations that correspond to the presence

or absence of the second beam splitter (In/Out BS) located on Earth. Following Wheeler’s idea, the configuration choice is performed

when the photon has already entered the interferometer. (right panel) In our actual implementation, the interferometer begins and

terminates on the ground, extending up to the target satellite, and the measurement choice performed on ground is space-like separated

from the photon reflection by the satellite. In our experiment, the two paths of the interferometer are represented by two time-bins,

each with orthogonal polarization.

So far, several implementations of Wheeler’s experiment have been realized on the

ground (see the work by Jacques et al. [137] for the realization closest to the original idea

and the paper by Ma et al. [138] for a interesting review). An alternative way of interpret-

ing the delayed choice experiment is within the quantum-erasure framework [139, 140].

Furthermore, a quantum delayed choice version of the experiment, where a quantum an-

cilla controls the second BS, has been recently proposed [141] and realized [142, 143, 144].

Thanks to the availability of the Space interferometer described in the previous chapter,

we extended the delayed-choice paradigm to Space, as sketched in Figure 6.1, by combining

both time-bin and polarization encodings in our two-way scheme at MLRO1.

6.2 Description of the experiment

6.2.1 The optical setup

In this experiment the key ingredients of the QuantumOptics setup of Figure 4.4 are a

polarization-based unbalanced Mach-Zehnder interferometer (MZI) followed by a switch-

able half-waveplate (sHWP) set by a Quantum Random Number Generator (QRNG), as

sketched Figure 6.2. The combined action of the first polarizing beam splitter (MZI-PBS)

and of the unbalance of the MZI transforms each qubit pulse into a superposition of two

temporal and polarization modes. In fact, the long arm of the MZI is traveled by the

1A nice video explaining Wheeler’s experiment and our implementation is available (here) from the

Quantum Future website. Many thanks to my sister Elisabetta for the video-making.
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vertically polarized component of the beam while the horizontally polarized component

travels along the short arm.

Figure 6.2: Scheme of the experimental setup and detection histograms. A pulsed laser synchronized with the MLRO atomic clock exits

the MZI in two temporal and polarization modes. The sHWP leaves the pulses unperturbed and the telescope directs the beam to

a target satellite. After the reflection, the photons are collected at the ground by the same telescope and injected into the optical

table. The photons pass through the sHWP whose behavior is set according to the bit b extracted from an on-demand QRNG. The

QRNG is inquired twice in each 100-ms cycle of the experiment, as detailed in the text. In the inset, a 1-s sample of the extracted

bits is shown. At the MZI output, two waveplates, a PBS and two single photon detectors perform a polarization measurement in

the {|D〉 , |A〉} ≡ {|+〉 , |−〉} basis. According to the value b of the random bit, interference or which-path measurement is performed,

as shown by the detection histograms for a passage of the Starlette satellite. The counts in the central peak on the left histogram are

comparable to the sum of the counts associated to the lateral peaks on the right one, as expected.

The separation between the two temporal modes is about ∆t ≈ 3.5 ns. We precisely

measured∆t by sending the pulsed train through it and using the SPAD byMPD in one of

the beam-splitter output port. As expected, the detections appear at two different times in

twowell separated peaks. Each peak is characterized by a exponentially modified Gaussian

distribution whose standard deviation is of the order of 40 ps (due to the timing jitter of

the detector and the pulse duration). By fitting the distribution we estimate the unbalance

of the MZI as ∆t = 3.498± 0.002 ns.

The pulses then pass through two liquid crystal retarders (LCRs) whose combined

action is equivalent to a single switchable (on/off) half waveplate (sHWP) inclined at

45◦ with respect to the horizontal axes. The two LCRs are mounted with orthogonal
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6.2. Description of the experiment

axes. Each LCR introduces a phase retardance Γ between the two orthogonal polarization

modes of the impinging light, which is dependent on the applied voltage Va. We char-

acterized the two LCRs by measuring the birefringence introduced as a function of the

applied voltage Γ = Γ (Va), see Figure 6.3 and then designed the two sHWP to act as a

single fast switching HWP inclined at 45◦. With this configuration, we obtain a switching

time tsHWP ® 500 µs.

Figure 6.3: Retardance Γ as a function of the applied voltage Va for the two LCRs.

During the transmission period, the sHWP is always off, leaving the outgoing beam

unperturbed. The light is then directed to a target satellite equipped with polarization

maintaining corner-cube retroreflectors via the MLRO telescope. The corner cubes of

the target satellite redirect the beam back to the ground station. As in the interference

experiment of the previous chapter, the radial motion of the satellite introduces a kine-

matic phase shift ϕ(t ) between the two time-bins given by (5.5). The photons returning

from the satellite are collected by the same MLRO telescope and injected into the opti-

cal table where they re-encounter the same sHWP and the MZI. At an exit port of the

MZI-PBS, we perform a polarization measurement in the diagonal and anti-diagonal basis

{|D〉 , |A〉} ≡ {|+〉 , |−〉}, by using a QWP (to compensate for the additional phase-shift

introduced by the imperfect beam spliters) and a HWP, as described in Section 2.2.2.

While the photons are propagating back to MLRO, a QRNG extracts a random bit

b ∈ {0,1}with 50:50 probability. TheQRNG is based on differences of the times of arrival
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of single photons in attenuated light [145], and its relevant features will be detailed in the

following. The bit value sets the voltages Vb applied to the LCRs, determining the on

or off behavior of the sHWP. The latter determines whether we perform a measurement

that reveals the particle-like (sHWP on) or wave-like (sHWP off) behavior of the photons

returning from the satellite. Since the random bits are generated while the photons are

traveling from the satellite to the ground station, we ensure a space-like separation between

the measurement choice and the last interaction with the apparatus, i.e. the reflection by

the satellite, as detailed in the following.

Let us first suppose that the QRNG extracts a b = 0 bit causing the sHWP to remain

off, leaving the polarization of the photon unchanged as it re-enters the MZI. At the exit

port of the MZI-PBS towards the detectors in Figure 6.2, only the horizontally polarized

component that propagated through the long arm and the vertically polarized compo-

nent that traveled along the short arm can be detected. Since this is the reverse situation

compared to the outward passage through the MZI, the two polarization modes will re-

combine into a single temporal mode, loosing all which-path information and allowing us

to observe the ϕ-dependent interference due to satellite motion, which is the fingerprint

of the wave-like nature of the photon. Indeed, in this case the probabilities of a click in

the detectors labelled Det± are given by

P b=0
± (t ) =

1

2
[1±V (t )cosϕ(t )] (6.1)

where V (t ) ≈ 1 is the theoretical visibility as in (5.4) and ϕ(t ) is the kinematic phase

introduced at the satellite reflection as in (5.5).

Let us now suppose that the QRNG extracts a b = 1 bit, switching the sHWP on and

swapping the horizontal and vertical polarizations before the photon re-enters the MZI.

The polarization transformation causes each component of the state to re-travel along the

same arm compared to the outwards passage through the MZI. As a result, the photon can

be detected at two distinct times separated by 2∆t , with 50% probability for each detector

Det±, i.e.

P b=1
± (t ) =

1

2
, (6.2)

giving which-path information and evidencing the particle nature of the photon.

6.2.2 Implementation of the delayed-choice

Timing of the experiment.—A faithful realization of Wheeler’s experiment requires that

the entrance of the photon in the interferometer is not in the future light-cone of the
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6.2. Description of the experiment

measurement choice. Moreover, the latter must be realized in a random manner: this

prevents any causal influence of the measurement choice on the behavior of the photon.

Our implementation is performed over a Space channel with length of the order of

thousands of kilometers, corresponding to a round trip time (rtt) of the order of 10 ms.

We designed the experiment to guarantee that the choice of the measurement apparatus

is space-like separated from the reflection of the photon from the satellite, as shown in

the Minkowski diagram [125] of Figure 6.4. This guarantees that, in a purely classical

interpretation, a photon “should have decided its nature” at most at the reflection by the

satellite.

Figure 6.4: Minkowski diagram of the experiment. Along the temporal axis (not to scale) a 100 ms cycle between two SLR pulses

is represented. The x-axis represents the radial coordinate (not to scale) from the detectors, where x0 is the position of both the

switchable HWP and the QRNG. The dotted line is the satellite worldline. As detailed in the main text, we only considered the

detections in the temporal window τ. A fast FPGA controller synchronized in real time with the MLRO tracking system drives the

two shutters and the QRNG. For each cycle, we perform two independent measurements via the random bit extracted by the QRNG

at times tb1
and tb2

, causally disconnected from the photon reflection at the satellite. The cycle is repeated for each 100 MHz train

between two SLR pulses.

For each 100-ms cycle between two strong SLR pulses, we performed two indepen-

dent choices that will affect the detections in the acceptable temporal window τ (see Sec-

tion 4.2.4) by driving the QRNG with the same FPGA controller used for the shutters.

The sHWP behavior at the photon return is set according to the bits b1 and b2 extracted

by the QRNG. The first choice is performed at tb1
, corresponding to the middle of the

shutter transition phase.

The second choice is at tb2
, which occurs with a delay rtt/2 with respect to the first

choice. The detected photons are divided into two groups, each characterized by a value
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of the bit choice. In this way, all the photons of a given group were already reflected by

the satellite when the corresponding bit choice was performed.

Details of the QRNG.—The QRNG device generates random numbers on demand by

using a protocol based on the differences of the times of arrival of single photons in at-

tenuated light [145]. This protocol requires a light source (a light-emitting diode in our

case) attenuated to single-photon level and only one single photon detector (SPD). The

device was realized with the FPGA technology for a full control over the time evolution

of the generation process and for the integration with the data acquisition at MLRO. As

described in the main text, our implementation ofWheeler’s experiment requires two ran-

dom bits b1 and b2 at specific times tb1
and tb2

(separated by rtt/2) to set the sHWP in each

100-ms cycle. Because the QRNG has an average latency in the random bit generation of

about 20 ms and the sHWP requires ∼ 500 ms at most to change its state, the setup guar-

antees that the time from the inquiry of the QRNG to the generation of the random bit

and the subsequent setting of the sHWP is much shorter than rtt/2. In the experiment, we

used two identical QRNG setups (two light sources, two SPDs, and two FPGA architec-

tures) and combined the two outputs with an XOR operation to extend the total entropy

value and add robustness to the design. The QRNG final bit stream has a bias value (10−4

in a 100-megabit string) and correlation values of the first 100 lags between −2.5× 10−4

and 2.5×10−4. These values fulfil the statistical requirements for high-quality on-demand

QRNG, guaranteeing the randomness of the output bits. The timing of the experiment

ensures the required relativistic space-like separation between the bit extraction and the

photon reflection at the satellite, as described previously.

6.3 Results

We selected the passages of two low-Earth-orbit (LEO) satellites equipped with po-

larization maintaining corner-cube retroreflectors, namely Beacon-C (with slant distance

ranging from 1 264 to 1 376 km with respect to the MLRO Observatory) and Starlette

(with slant distance ranging from 1 454 to 1 771 km).

The synchronization between our signal and the bright laser ranging pulses allowed us

to predict the expected time of arrival tref of the photons, which is not periodic along the

orbit due to the satellite motion. The effective time of arrival tmeas was tagged by a time-

to-digital converter (time-tagger of Figure 6.2). Therefore, we may obtain a detection

histogram as a function of the time difference ∆ = tmeas − tref, as shown in the bottom

panel of Figure 6.2 for the data recorded in the Det− detector in the passage of the Starlette

satellite (results for the Det+ are analogous).
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6.3. Results

As previously described, we separated the detections in two groups according to the

setting of the sHWP. In Figure 6.2, on the left histogram, we gathered all the detections

characterized by the bit value b = 0 and we obtain a single central peak where which-path

information is erased and the interference effects should be observed. The peak width is

determined mostly by the timing jitter of the detector which is about 0.5 ns RMS. On the

right histogram, the extracted bit b was equal to 1, and we obtain a histogram with two

well separated lateral peaks, manifesting the expected particle-like behavior. An indication

of good assessment for the setup is given by the fact that the peak obtained when b = 0 is

comparable with the sum of the two lateral peaks obtained when b = 1, as the number of

“0” and “1” bits from the QRNG is balanced. We note that, even if interference is expected

in the b = 0 case, it is not apparent in Figure 6.2, since we are not taking into account the

phase shift ϕ(t ) introduced by the satellite, and thus the interference effect is completely

averaged over all the data.

To evaluate the role of the kinematic phase ϕ(t ), these two data sets were further

separated into ten phase intervals of length π/5 rads and defined by

I j ≡ [(2 j − 1)π/10, (2 j + 1)π/10] (6.3)

with j = 0, . . . , 9, as in the analysis of the work described in the previous chapter. For each

phase interval we selected the detection events characterized by ϕ (mod 2π) ∈ I j . Then,

for each selected data set we evaluated the detection histogram as a function of the time

difference ∆, as described above.

These histograms were used to determine the photon counts N± = N±(I j ) for each

phase interval I j by taking all the events recorded by Det± in a precise detection window

centered at the expected arrival time of the photon. The width of the detection window

(0.9 ns) was chosen to optimize the trade-off between signal-to-noise ratio and count rate.

From the counts, we calculated the relative detection frequency

f± =
η∓N±

η−N++ η+N−
, (6.4)

where η+ = 0.12 and η = 0.10 account for the different quantum efficiencies of the detec-

tors used. The resulting relative frequencies f± and their Poissonian errors are plotted in

Figure 6.5 for the two satellites.

For the “interference” subset of the data wemay observe the relative phase information

by erasing the photon’s “which-path” information. This is evident by the recovery of the

interference pattern shown in the left part of Figure 6.5. By fitting the data with P± =

(1±Vexp cosϕ)/2 given by (6.1), we obtained an experimental visibility value Vexp ≈ 40%
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Figure 6.5: Experimental results for the interference and which-path configurations. Relative frequencies f± of counts in the two detectors

Det± as a function of the kinematic phase ϕ introduced by the satellite for the passages of Beacon-C and Starlette satellites. The error

bars are estimated using the Poissonian error associated to counts. Below each plot we show the relative residuals as a function of ϕ.

We note that at the point ϕ ≈ 0 and ϕ ≈ 2π the same subset of data was selected. In the “interference” configuration, we estimated

from the fitted data a visibility V
B = 41± 4% for Beacon-C and V

S = 40± 4% for Starlette.

for both satellites and a clear phase dependent modulation in the two detector outcomes.

Furthermore, the visibility obtained during preliminary tests where the sHWP was fixed

in the off mode, is compatible with the results obtained while performing the delayed

choice, attesting that the latter had no influence in the observed interference pattern. The

value of the experimental visibility, lower than the theoretical value of 100%, is due to

experimental imperfections in the MZI and to residual birefringence caused by the Coudé

path of the telescope.

On the other hand, the “which-path” relative frequencies are constant (within statisti-

cal fluctuations) for all values of ϕ, as predicted by the theoretical model P± = 0.5. In this

case, the “which-path” measurement destroys any information about the relative phase of

the two time-bins.
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6.4. Discussion

When the photon’s particle-like nature is inquired, we obtain conclusive which-path

information with probability pwp = 88± 1% (86± 1%) for Beacon-C (Starlette). Such

values are obtained by the ratio between the counts in the lateral peaks and the total ones:

indeed, when the photon is detected in one of the two lateral peaks,which-path information

is recovered. Since classical particles should always give complete which-path information,

we could naively conclude that our photons behave as classical particles at least 86% of

the time. If such interpretation were correct then we would expect interference with at

most 14% visibility when the photon’s wave-like nature is inquired. This is in remarkable

contrast with the measured visibility, which is at least 5σ distant from that prediction,

allowing us to exclude any model where the photon behaves as a purely classical particle.

The agreement between the theoretical model and the obtained results can be assessed

by calculating the residuals between the fit and the experimental data. From Figure 6.5, we

can observe that these residuals are randomly distributed within the foreseeable Poissonian

fluctuations: indeed most points lay within ±1.5σ from the expected values, where σ is

the mean error. This can also be seen by calculating the root mean square of the residuals

σR ∼ 0.05 for both satellites, which is compatible with the expected statistical fluctuations.

Given the optical losses ηopt = 0.13 in the receiving setup and the detection efficiency

ηdet = 0.1, the mean number of photons µ in the received pulses can be derived by mea-

suring the detection rate. At the primary mirror we received µ≈ 2.2× 10−3 for Starlette

and µ≈ 1.9×10−3 for Beacon-C. From these values we can conclude that the particle and

wave-like properties are measured at the single photon level since the probability of having

more than one photon per pulse passing through the MZI on the way back is ∼ µ2, that

is at most of the order of 10−6.

6.4 Discussion

We realized Wheeler’s delayed-choice Gedankenexperiment along a Space channel in-

volving LEO satellites by combining two independent degrees of freedom of light. The

experimental arrangement that allows the measurement of the complementary wave or

particle behaviors of light quanta was randomly set according to two alternative config-

urations while the photons were already inside the apparatus, as required in the delayed-

choice paradigm. In order to measure interference with the first configuration, it is cru-

cial to take into account the kinematic phase-shift introduced by the satellite motion. By

observing single-photon interference after the propagation along a 3 500 km Space chan-

nel, we can confute with clear statistical evidence of 5σ the description of light quanta

as classical particles. In the alternative configuration of the detection scheme, the phase-
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dependent modulation in the received clicks disappears, and the which-path information

can be clearly reconstructed.

The high losses in the two-way propagation between the ground station and the satel-

lite hampers the realization of this implementation scheme for the delayed-choice experi-

ments using entangled particles, such as delayed-choice quantum erasure and entanglement

swapping [146]. These experiments, already demonstrated on ground [138, 144, 147], re-

quire an active source on a satellite for the implementation in the Space scenario.

Our results extend the validity of the quantum mechanical description of complemen-

tarity to the spatial scale of LEO orbits. Furthermore, they support the feasibility of

efficient encoding by exploiting both polarization and time-bin for high-dimensional free-

space quantum key distribution [148] over long distances. Finally, our work paves the way

for satellite implementation of other foundational-like tests and applications of quantum

mechanics involving hyperentangled states [149, 150, 151] around the planet and beyond2.

Two photos of the MLRO telescope tracking satellites (thanks to Daniele Dequal and Marco Tomasin).

2It is worth noticing that our three works [84, 89, 80] end with the same formula, to reinforce the

inspiration from which they moved: the incredible beauty of quantum theory, which plays for us the same

role the stars played for Dante [152].
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Conclusions

In this thesis, I presented the work performed during my PhD. I focused on the activi-

ties which ended up in a peer-reviewed publication, as [21, 62, 63, 80, 89], presenting them

in a coherentway. I had the possibility toworkwith state-of-the-art quantum technologies,

ranging from different sources of entangled photons and CW- or pulsed-lasers, to mod-

ern systems of photon detection and temporal tagging. I manipulated both polarization

and time-bin encodings, in experiments focused both on the technological advancement

of quantum technologies, as the possibility of QKD with GNSS terminals and quantum

satellites (Chapter 4), and on fundamental aspects of quantum theory, as the experimen-

tal realization of a Bell’s test of local-realistic theories (Chapter 3), single-photon Space

interferometry (Chapter 5) and the wave-particle duality though-experiment of Wheeler

(Chapter 6).

Here, I summarize the main results of this thesis. In Chapter 3, I reported on the

realization of a time-bin entanglement source which is free of the post-selection loophole.

Such issue undermined the previous implementations of time-bin entanglement, in parti-

cular from the point of view of cryptographic applications. We obtained a clear violation

of the Bell-CHSH inequality with our scheme, demonstrating its applicability. Further

developments coming from our workmay lead to the first loophole-free Bell’s test realized

with time-bin entanglement.

In Chapter 4, I focused on our last results obtained in the context of Space quantum

communications. I reported, in particular, on the photon exchange realized with a ter-

minal of the Russian GNSS constallation Glonass. This work demonstrates that Space

quantum communications with discrete encoding, like polarization, may be feasible even

at such distances, thus opening the possibility to exploit the long communication window

given by high-orbit satellites. Moreover, I reported on the preliminary results obtained

with a passage of the Chinese satellite Micius, which sent toward MLRO a strong pola-

rized signal. Such results make MLRO, with little improvements, a candidate receiver of

a world-wide network dedicated to quantum communications.

In Chapter 5, I reported on the first experiment exploiting time-bin encoding for satel-

lite quantum communications. We were able to measure interference at the single-photon

level (with 67% of visibility) after the two-way trip of a pulsed beam sent from the ground,

reflected by a moving satellite and finally collected at the ground. This intererometric
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technique may be exploited to overcome the first-order Doppler effect which makes the

optical version of the COW experiment [64] not feasible. We are currently working on a

proposal (see Ref. [153]) aimed at implementing a Doppler cancellationmechanismwhich

can highlight the weak gravitational contribution in long-distance interferometric exper-

iments. The goal of such proposal is to bound a possible violation of the Einstein Equiv-

alence Principle [126], which sets the connection between geometry and gravitation, in

the electromagnetic sector of the Standard Model.

In Chapter 6, I reported on the satellite realization of the Wheeler’s delayed-choice

experiment. We successfully adapted the interferometric scheme developed in Chapter 5

to implement Wheeler’s idea over the unprecedented distance of thousands of kilometers.

Such a work demonstrates that experiments testing the foundations of Quantum Mecha-

nics can be performed out of labs, in particular in Space, without the needing of dedicated

satellites in orbits.

The last three years were full of hard work, problems, but also of incredible satisfac-

tion, thank to the great team I had the possibility to work with. However, such a work

is not finished: many other ideas could be envisaged and fascinating experiments could be

realized in the next future, thanks to the great advancement of satellite quantum technolo-

gies, ranging from secure communications at the global scale to new experiments testing

gravitational effects on quantum particles over large distances. I am very proud to have

participated in these efforts, and I hope to take part in this great scientific challenge even

in the next future.

The QuantumFuture team at University of Padova (2018).
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