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Abstract: Over the last few years, several Convolutional Neural Networks for object detection
have been proposed, characterised by different accuracy and speed. In viticulture, yield estimation
and prediction is used for efficient crop management, taking advantage of precision viticulture
techniques. Convolutional Neural Networks for object detection represent an alternative methodology
for grape yield estimation, which usually relies on manual harvesting of sample plants. In this paper,
six versions of the You Only Look Once (YOLO) object detection algorithm (YOLOv3, YOLOv3-tiny,
YOLOv4, YOLOv4-tiny, YOLOv5x, and YOLOv5s) were evaluated for real-time bunch detection
and counting in grapes. White grape varieties were chosen for this study, as the identification of
white berries on a leaf background is trickier than red berries. YOLO models were trained using a
heterogeneous dataset populated by images retrieved from open datasets and acquired on the field in
several illumination conditions, background, and growth stages. Results have shown that YOLOv5x
and YOLOv4 achieved an F1-score of 0.76 and 0.77, respectively, with a detection speed of 31 and
32 FPS. Differently, YOLO5s and YOLOv4-tiny achieved an F1-score of 0.76 and 0.69, respectively,
with a detection speed of 61 and 196 FPS. The final YOLOv5x model for bunch number, obtained
considering bunch occlusion, was able to estimate the number of bunches per plant with an average
error of 13.3% per vine. The best combination of accuracy and speed was achieved by YOLOv4-tiny,
which should be considered for real-time grape yield estimation, while YOLOv3 was affected by a
False Positive–False Negative compensation, which decreased the RMSE.

Keywords: viticulture; early yield estimation; real-time detection; cluster detection; smart farming;
crop load mapping; yield estimation; precision viticulture; agricultural robot

1. Introduction

Over the last few years, the advent of Digital Agriculture (DA) exponentially increased
the amount of data per hectare produced by agricultural activities. In viticulture, the
implementation of site-specific management and precision viticulture technologies [1,2]
increased the amount of information available to winegrowers. On the one hand, farming
digitalisation footprint will affect the sustainability of farm-related activities [3,4]; on the
other hand, the demand for efficient, fast, and smart data processing is rising. Artificial
Intelligence (AI) makes it possible to collect and analyse a large amount of agricultural
data, which might help improve yield with a lower quantity of inputs. Several decision
support systems (DSSs) have been proposed over the last few years to help farmers and
winegrowers manage information based on data acquired in the field and processed by
specific algorithms through (AI). In machine learning (ML) techniques, which are a subset
of AI, algorithms are trained to infer specific patterns based on a set of data to determine
the actions needed to achieve a given goal. The ML approach can be unsupervised or
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supervised based on the necessity to be fed with already classified data or not. A super-
vised ML algorithm requires a large amount of data to set up the embedded statistical
models through progressive corrections to their parameters by comparing the obtained
results with the classified data in the input. In the last decade, the availability of new
sensors and technologies increased the potential application of ML in viticulture. Several
studies investigated the ML application in viticulture for yield estimation, assessment of
shoot characteristics, vineyard management, disease detection, and evaluation of bunch
compactness [5].

In ML data processing, the progressive correction of parameters aims to reduce the
value of a specific function, which estimates the error model (loss function). Several loss
functions can be used according to the final aim of the trained model. The most used
ML techniques in agriculture include decision trees (e.g., random forest), support vector
machine (SVM), and artificial neural networks (ANN) [6,7]. ANN are based on different
nodes interconnected and organised in a specific topology. The number of layers and type
of connection range from one, in the case of the perceptron, to multiple layers, in the case of
deep neural networks (DNN) [6]. DNN are commonly referred to as Deep Learning (DL).
DL comprises multilayer neural networks, which combine different algorithms to address
a complex problem.

One of the most important DL models used for computer vision and image under-
standing is Convolutional Neural Networks (CNN). CNN are based on three types of
neural layers: (i) convolutional layers, which convolve the whole image; (ii) pooling layers,
which reduce the spatial dimensions of the input data for the next convolutional layer;
and (iii) fully connected layers, which are the high-level reasoning layers of the neural
network [8]. CNN can be used to analyse, combine, and extract colour, geometric, and
texture features of images, allowing for the ability to address classification, localisation,
and object detection. Object Detection is a computer vision technique that combines image
classification and object localisation. The object detection models are mainly based on two
different frameworks: the first is based on region proposals and the classification of each
proposal into different object categories, and the second addresses object detection as a
regression or classification problem [9]. Bounding boxes over the image usually compose
object detection output, but some models give semantic segmentation as a final result.
Examples of region proposal object detection models are R-CNN, Faster R-CNN, and
Mask R-CNN, while examples of regression/classification-based models are You Only
Look Once (YOLO) [10] and Single Shot Detector (SSD). Region proposal models are usu-
ally more accurate than regression/classification but slower due to the region proposal
step. Regional-based Convolutional Neural Network (R-CNN) is based on three modules:
(i) region proposal uses a selective search to define a set of 2000 candidate detections avail-
able to the detector, (ii) a CNN extracts a fixed-length feature vector from each region, and
(iii) a set of class-specific linear support vector machines [11]. In Faster R-CNN, the region
proposal module was improved to be faster, sharing full-image convolutional features with
the detection layer and reducing the computational cost of region proposals [12]. Mask
R-CNN is an implemented version of Faster R-CNN that allows semantic segmentation of
objects with a small computational overhead [13].

On the other hand, SSD uses a single DNN to identify the output bounding boxes
into a set of default boxes. During class prediction, the network estimates the probability
that a class object is contained in a box [14]. SSD is composed of a series of convolution
and pooling layers to generate feature maps at a different scale, predicting bounding box
and object class at the same time and faster than R-CNN [15] with a competitive accuracy.
YOLO models are presented in the following paragraphs.

1.1. Yield Estimation and Yield Prediction in Viticulture

Monitoring crop development and accurately estimating yield is crucial for efficient
crop management [16]. The early estimation of the grapevine bunch load allows adjusting
the vine’s vigour, thus promoting ripening and grape quality. Besides, yield predictions
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represent useful information for winery management. Nevertheless, the grape yield is
influenced by several factors, such as growing area, weather and soil conditions, cultivar,
rootstock, and vine heterogeneity. Conventional grape yield estimation takes advantage
of climatic data and phenological information collected over the years, combined with
yield components (number of bunches, number of berries, and berry weight) collected
in defined sampling points. The final berry weight can be estimated by multiplying the
berry weight during the lag phase (before veraison) for a definite coefficient [17]. De La
Fuente [18] compared three grape yield prediction models. The first type was based on the
number of bunches and historical bunch weight, the second used berry weight at veraison
compared with historical berry weight at harvest, and the third based on the number of
bunches and the bunch weight during the lag phase. Indeed, during the lag phase, berry
weight is approximately 50% of its final weight [19]. The study of De La Fuente highlighted
that the grape prediction models based on the number of bunches are characterised by
an inherent error, although useful for yield early prediction. Yield monitor based on load
cells can be used for yield estimation during harvesting, but early yield estimation can be
performed only in the case of mechanical crops thinning in mid-season [20].

In the last decade, the introduction of precision viticulture has brought new opportu-
nities for yield monitoring [1] and prediction, taking advantage of several proximal and
remote sensors. Information about spatial variability derived from remotely sensed data
was used to explore the correlation between several vegetation indices and grape yield [21].
Remotely sensed vegetation indices may be used to identify specific features of terroir and
stress condition [22,23], especially considering their cost-effectiveness [24,25]. Proximal
sensors are widely used in precision viticulture, and several tools exist to monitor physio-
logical responses of vegetation [26] and yield [2]. Although optical spectral sensors may
be used to estimate grape yield and its composition [21,27], three-dimensional estimation
methods showed higher accuracy to estimate grape yield [28].

In the last few years, ML was applied to grape yield prediction. Several sensors
can take advantage of ML algorithms, such as spectral and thermal cameras [29]. ML
approaches combine colour, geometric, and texture features for better exploitation of
the images acquired. Different ML algorithms were proposed for bunch and berries
detection. Aquino et al. [30] used an ANN implemented on automatically acquired images
for early yield prediction in vineyards. ML was also used for the evaluation of grape bunch
compactness and quality, taking advantage of colour properties. Nuske et al. [31] proposed
an automated computer vision method based on the shape and visual texture to identify
and count green grape berries on a green leaf background. In this approach, an RGB
camera was mounted on a small vehicle driven along the rows to detect berry locations.
Their approach could predict yield to within 9.8% of the actual crop weight. A pixel
classification algorithm based on shape, colour, and texture allowed for the detection of
berries with a similar colour to the background [32]. This model for yield spatial variability
estimation captured up to 75% of yield spatial variance with an average error between
3% and 11% of the total yield. An unsupervised recognition algorithm was applied by Di
Gennaro et al. [33] to derive the number of bunches and their size on UAV-acquired images.
Similarly, an unsupervised classification was used by [34] for identification of vines in 3D
point-clouds. Santos et al. [35] used a Mask R-CNN [13] for grape detection, segmentation,
and tracking, achieving excellent results (0.91 F1-score). The latter studies combined object
detection with instance segmentation, thus obtaining high accuracy but low detection
speed. Despite promising results achieved on yield estimation, some drawbacks still need
to be addressed. Specifically, different clustering and variable lighting conditions of fruit on
plants represent the major challenges limiting fruit detection and localisation accuracy [29].
Several of the mentioned authors trained their algorithm on red grape varieties due to
greater ease in detection based on colour features.
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1.2. YOLO (You Only Look Once) and Frameworks

Differently from other object detection algorithms previously developed, YOLO [10]
addresses object detection as a single regression problem, avoiding the region proposal,
classification, and duplicating elimination pipeline. Although YOLO can be used in several
frameworks, Darknet represents the most used framework for YOLO below version 5 [36].
In YOLO algorithms, images are resized at a lower resolution; then, a single CNN runs on
the images, giving as an output the detection results according to the model’s confidence
threshold. The first version of YOLO was optimised to decrease the sum of square error
(loss function). This optimisation increases the detection speed but with lower accuracy
than state-of-the-art object detection models [10]. In YOLO, on-line data augmentation
is implemented, increasing the variability of the input images, to improve the model
robustness in object detection in different environments. YOLO models were applied in
numerous applications where fast detection was needed, such as pedestrian detection [37],
license plate recognition [38], and automatic detection of fabric defects [39]. In agriculture,
YOLO application ranges from fruit detection [40–42], crop disease identification [43,44],
and weed and pest identification [45,46]. The YOLO’s fruit detection application was
mainly based on apple orchards, and application in vine bunch detection is still missing.
Since 2016, several versions of YOLO have been released, showing a constant improvement
of the algorithm. Besides, each main version was released as a full model and in tiny
versions, characterised by a reduced number of layers and faster than the full version. In
this study, the last three versions of YOLO (YOLOv3, YOLOv4, and YOLOv5, full and tiny
versions) were compared for grapevine bunch detection.

1.3. YOLOv3

Version 3 of YOLO was released by Redmon and Farhadi [36]. YOLOv3 replaces
the mean squared error of the previous YOLO version with a cross-entropy loss function.
The cross-entropy function increases as the predicted probability calculated by the model
diverges from the actual class. YOLOv3 takes advantage of Darknet-53 network for feature
extraction, which relies on 53 convolutional layers. YOLOv3 predicts the object class for
each bounding box using logistic regression instead of a softmax classifier [47]. YOLOv3
can predict boxes at different scales (small, medium, and large size) using three different
YOLO classifier layers. For each of these three layers, three anchors are defined, proposing
to the model aspect ratio, position, and dimension of boxes. YOLOv3-tiny is based on
the Darknet-19 network, which relies on 19 convolutional neural networks. YOLOv3-tiny
can predict boxes at two different scales using two YOLO classifier layers. For each of
these layers, three anchors are defined. In YOLOv3 models, saturation, exposure, hue,
blur, cropping, and aspect ratio data augmentation methods are available. Several authors
modified the original models in terms of number and type of convolutional layers.

1.4. YOLOv4

YOLOv4 was released in April 2020 with several enhancements compared to YOLOv3.
YOLOv4 was based on CSP Darknet-53. Cross-stage partial connections (CSP) divide the
input features into two groups: one group is processed by the convolutional layer, while
the second sidesteps the convolutional layers and is included in the input for the following
layer [48]. Additional data augmentation methods are available in YOLOv4, such as mosaic
and cutmix [49]. In the mosaic, an augmented image is generated by combing four input
images in a specific ratio. In cutmix, a new image is created using parts of input images.
YOLOv4 has more layers compared to the previous versions. The loss function of YOLOv4
models is a Complete-IoU, which optimises the overlap area, central point distance, and
aspect ratio of predicted bounding boxes [50]. In YOLOv4-tiny, the number of layers is
compressed, and only two YOLO classifiers are used (both with three anchor boxes).
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1.5. YOLOv5

YOLOv5 was released in May 2020 by Jocher et al. [51] from Ultralytics LLC (Los An-
geles, CA – USA), a different developer from the previous YOLO versions. Although there
were some controversies related to the definition as a new YOLO version, YOLOv5 was
accepted by the deep learning community [52]. The main advantage of YOLOv5 relies
on the usage of the Python language instead of C. The native framework for YOLOv5 is
PyTorch, which allows for faster training [51]. In terms of performance metrics, YOLOv5
allows rapid detection with the same accuracy as YOLOv4 [53]. Similarly, from the previous
versions, YOLOv5 was released in different sizes (s, m, l, and x) with different accuracy
and speed of detection.

According to the presented features, YOLOv3, YOLOv4, and YOLOv5 models are
characterised by a different dimension (number of layers and complexity), average accuracy,
speed of detection, and training. Numerous applications of YOLO were proposed for fruit
detection [42–45], but a limited number of studies investigated on the YOLO application for
grapevine bunch detection [35]. In the current study, a comparison of YOLOv3, YOLOv4,
and YOLOv5 models for automatic bunch detection in white grapevine was carried out.
Indeed, white grape varieties are characterised by colour features similar to the surrounding
leaf background. In this environment, the grape bunch detection becomes much more
complex but potentially applicable in the early stages after blooming in any varieties (before
the berry veraison). For each version, the full model and its tiny version were evaluated.
In YOLOv5 the “x” and the “s” version were evaluated. The framework and the training
dataset were presented. A new open dataset for bunch image was then described. The
trained models were evaluated on an external dataset (validation) in terms of accuracy
and number of the object identified. Finally, the potential application of these models
was described.

2. Materials and Methods

Darknet framework was used for YOLOv3 and YOLOv4 training, while Pytorch was
used for YOLOv5. Data processing and analysis were performed in Google Colaboratory
(Colab). In this study, Colab Pro version was used due to the elevated computational
demand and the long virtual machine lifetime required for training a neural network.
Training and detection tasks were performed, taking advantage of a Tesla P100 GPU
(NVIDIA, Santa Clara, CA, USA) with CUDA parallel computing platform version 10.1 and
16 GB of dedicated random-access memory (RAM). The operating system of the virtual
machines used for the current study was Ubuntu version 18.04.5 LTS. All Colab analyses
were performed with the Python 3 programming language. The cuDNN 7.6.5 library [54]
was used to take advantage of GPU acceleration.

2.1. Data Collection and Labelling

Training and evaluating a neural network for object detection requires a large number
of labelled images. Several labelled-image datasets are available for benchmark, research,
and commercial use, such as PASCAL, COCO, or ImageNet. To the best of the authors’
knowledge, only a few open datasets contain labelled images of white grapes. Open Image
Dataset v6 (OIDv6) [55] is a dataset of labelled images for classification, segmentation,
localisation, and object detection. OIDv6 contains 16 million bounding boxes for 600 object
classes on 1.9 million images. White grape images, preferably acquired in the field condition,
were selected from this dataset. GrapeCS-ML [5] dataset archives images of 15 different
grape varieties at different phenological stages, together with chemical analysis for grape
quality and maturity. GrapeCS-ML consists of 2078 images, some of them including size
and Macbeth colour references. For the aim of this study, white grape variety images
were selected (Viognier, Riesling, Sultana, Sauvignon Blanc, and Chardonnay) from the
GrapeCS-ML dataset since all the white grape varieties were contained in this dataset.
The final dataset used in this study was composed of images collected from OIDv6 and
GrapeCS-ML, with the addition of field images acquired by the authors in six experimental
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vineyards located in different Italian regions (Lombardy, Veneto, and Marche) during the
2020 growing season. The dataset was mainly composed of images acquired on Chardonnay,
Glera, and Trebbiano varieties. A set of 61 images was acquired in a vineyard from the
University of Padova, characterised by several varieties, which were not identified.

The dataset used for the model training was composed of 2931 images, divided into
two sets of data: Train, and Test data, which represented 66.6% and 33.3%, respectively, of
the images used during the training process. Besides, 54 images with the actual number
of bunches recorded were selected as the external validation dataset, used to assess the
models’ performances. The external validation dataset was selected in order to reduce the
effect of overfitting on the test dataset during the validation. Table 1 summarises the final
dataset composition. The result of models validated using an external validation dataset
makes the validation more solid for the real application in the field, even if the validation
metrics are lower.

Table 1. Dataset composition for train, test, and validation.

Set Number of Images

Train 1954
Test 977

Validation 54
Total 2985

Data annotation (known as labelling) is a fundamental component of deep learning,
and it directly affects the learning capacity of the models [9]. The images collected from the
dataset mentioned above were manually labelled, drawing bounding boxes on each bunch
in the image using the Yolo_label V2 project [56]. Yolo_label allows for the creation of an
annotation (label) for the object detection algorithm using the Yolo label format, which
consists of five columns for each object (object-class, x, y, width, and height). As only one
class (bunches) was used to label the dataset of this study, all label text files started with 0,
which is the identification of the first index in Python.

2.2. Training, Test, and Validation

YOLO models (v3, v4, and v5) were trained singularly, using the described dataset.
The training processes were performed on the pre-trained weights provided by the YOLO
developers. YOLOv3 and YOLOv4 were trained for 6000 epochs, while YOLOv5 was
trained for 100 epochs since the different framework required fewer iterations. For each
model, a specific calibration of training hyperparameters was performed. YOLO config file
allows hyperparameter modification to achieve the best result during training. The first
section of the config file reports the number of images used during one epoch (batch size)
and the dimensions of the resampled images used during training (width and height). For
YOLOv3 and YOLOv4 training and detection, a batch size of 64 images with a pixel size
of 608 × 608 was used. In YOLOv5, a batch size of 16 images was used due to the higher
complexity of the model. Online data augmentation was activated for YOLOv3, YOLOv4
full models, and both YOLOv5 models. Data augmentation techniques introduced in the
training process unobserved data, obtained from combinations and modification of the
input dataset. In the current training, images were augmented in terms of saturation and
exposure using a coefficient of 1.5. Hue value was randomly augmented with a coefficient
of 0.05. Moreover, blur and mosaic were randomly applied to input images.

According to this training configuration, each model was characterised by a differ-
ent computational demand (expressed in billions of floating-point operations per sec-
ond, BFLOPS), which was 11.64, 139.50, 14.50, 127.23, 16.40, and 217.13 for YOLOv3-tiny,
YOLOv3, YOLOv4-tiny, YOLOv4, YOLOv5s, and YOLOv5x, respectively. Table 2 sum-
marises the training specification.
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Table 2. Training details and hyperparameters.

Models Epoch Framework
Augmentation

Billions of FLOPs
Sat. & Exp. Hue Blur Mosaic

V3-tiny

6000 Darknet
Online

null 11.6
V3 1.5 0.05 yes no 140

V4-tiny null 14.5
V4 1.5 0.05 yes yes 127
V5s

100 PyTorch 1.5 0.05 yes no 16.4
V5x 217

Several performance measures can be used to evaluate a confusion matrix obtained
from a classification model on test data. In this study, F-1 score, Precision, and Recall were
chosen, calculated according to Equation (1). The F-1 score represents the harmonic mean
of Precision and Recall, and it was proposed by Dice [57]. Besides, mean average precision
(mAP) was used as a performance metric. mAP summarises the average detection precision
and represents the area under the precision–recall curve at a defined value of IoU. mAP@50
represents the area under the precision–recall curve with a grade of overlapping bounding
boxes of 50%. Performance metric calculation was evaluated on the Test and the Validation
datasets. Confusion matrix and performance metrics were calculated using functions
implemented in Darknet and PyTorch. The comparison and graphs were carried out using
GraphPad Prism 8.0.2 (GraphPad Software, Inc., San Diego, CA, USA) and Microsoft Excel
(Microsoft Corporation, Redmond, WA, USA).

F1-score = 2× Precision×Recall
Precision+Recall

where

Precision = True Positive
True Positive+False Negative and Recall = True Positive

True Positive+False Positive

(1)

The Validation dataset was finally used to compare bunch detection. The real number
of bunches estimated was evaluated, taking advantage of the actual number of bunches
counted in the field in the Validation dataset.

3. Results

The training process was carried out on each YOLO model, taking advantage of the
presented configuration. During the training, the models’ performances were automatically
estimated on the test dataset. The mAP@50 were calculated at different epoch intervals
(100 in Darknet and 1 in PyTorch). Last mAP@50, best mAP@50 achieved during the
training, and other performance metrics (precision, recall, and F1) are reported in Table 3,
with the total time that training occurred. Both YOLOv3-tiny and YOLOv4-tiny required
about 3.5 h to train for 6000 epochs, while YOLOv3 and YOLOv4 full models required
about 15 and 16.5 h, respectively. The training time for YOLOv5-s was 4.66 h, while for
YOLOv5-x it was 7 h. The highest value of mAP@50 was reached by YOLOv5x, with 76.1%
of the best mAP@50. The tiny models’ best mAP value was achieved by YOLOv5s (73.1%).

During the training, loss and mAP graphs were produced (Figure 1). In YOLOv3-
tiny, YOLOv3, YOLOv4, and YOLOv4-tiny loss and mAP reached a stable value after
~1800 epochs (about 30% of the total training). Differently, PyTorch models (YOLOv5)
reached a stable value after ~10 epochs, approximately 10% of the total training epochs.
The use of a similar training time for all six models would have promoted overfitting of
the models.
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Table 3. Quantitative results of the training process.

Models Training Time (h) Last mAP@50 Best mAP@50 Precision Recall F1-Score

V3-tiny 3.48 53.7% 54.4% 0.71 0.45 0.55
V3 15.2 69.2% 69.9% 0.79 0.61 0.69

V4-tiny 3.66 62.9% 63.2% 0.75 0.53 0.63
V4 16.4 71.9% 73.2% 0.76 0.69 0.72
V5s 4.66 69.5% 73.1% 0.74 0.70 0.72
V5x 7.00 70.6% 76.1% 0.77 0.72 0.74
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3.1. Accuracy Assessment on the Validation Dataset

The validation dataset, which was composed of 54 images with the actual number of
bunches recorded, was classified using the best bunch detection models previously trained.
The comparison was performed in terms of F1 score and mAP@50. Besides, detection
speed was evaluated in terms of Frames Per Second (FPS) for each model to study the
opportunity to use previously trained models for real-time detection. Metrics calculated on
this validation dataset differed from the previously calculated since the validation images
were unknown to the trained models.

Figure 2 shows the results of the F-1 score and mAP@50 comparison for objects
(bunches) contained in the images dataset. YOLOv5x was characterised by the highest
value of mAP@50 and the second-highest value of F1-score. Conversely, YOLOv4 showed
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the highest value of F1-score and the second-highest value of mAP@50. YOLOv5s model
outperformed both the v3-tiny and the v4-tiny, showing metrics similar to full models.
Since metrics were extracted from the total number of objects (bunches) in the dataset, it
was not possible to perform variance analysis.
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Figure 2. Comparison of accuracy metrics (mAP@50 and F1-score) using the validation dataset.

The results of the detection time comparison are shown in Figure 3. Detection time
was assessed for each image using all the models. One-way ANOVA and Tukey’s multiple
comparison tests showed statically significant differences among the models. The average
detection speed was ~200, ~196, ~61, ~35, ~31, and ~32 FPS for the v3-tiny, v4-tiny, v5s, v3,
v4, and v5x model, respectively.

Agronomy 2022, 12, x FOR PEER REVIEW 9 of 18 
 

Agronomy 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/agronomy 
 

3.1. Accuracy Assessment on the Validation Dataset 
The validation dataset, which was composed of 54 images with the actual number of 

bunches recorded, was classified using the best bunch detection models previously 
trained. The comparison was performed in terms of F1 score and mAP@50. Besides, de-
tection speed was evaluated in terms of Frames Per Second (FPS) for each model to study 
the opportunity to use previously trained models for real-time detection. Metrics calcu-
lated on this validation dataset differed from the previously calculated since the valida-
tion images were unknown to the trained models. 

Figure 2 shows the results of the F-1 score and mAP@50 comparison for objects 
(bunches) contained in the images dataset. YOLOv5x was characterised by the highest 
value of mAP@50 and the second-highest value of F1-score. Conversely, YOLOv4 showed 
the highest value of F1-score and the second-highest value of mAP@50. YOLOv5s model 
outperformed both the v3-tiny and the v4-tiny, showing metrics similar to full models. 
Since metrics were extracted from the total number of objects (bunches) in the dataset, it 
was not possible to perform variance analysis. 

  
Figure 2. Comparison of accuracy metrics (mAP@50 and F1-score) using the validation dataset. 

The results of the detection time comparison are shown in Figure 3. Detection time 
was assessed for each image using all the models. One-way ANOVA and Tukey’s multi-
ple comparison tests showed statically significant differences among the models. The av-
erage detection speed was ~200, ~196, ~61, ~35, ~31, and ~32 FPS for the v3-tiny, v4-tiny, 
v5s, v3, v4, and v5x model, respectively. 

 

a a 

b

c c c 

Figure 3. Frames Per Second for each model. According to the ANOVA results three main group are
visible: (a) V3-tiny and V4-tiny; (b) V5s; (c) V3, V4, and V5x.

3.2. Precision–Recall Curves and Best Confident Threshold Definition

The confidence threshold in object detection represents the probability that an esti-
mated bounding box contains an object. In all the analyses performed up to this point,
a confidence threshold of 0.25 was used, as it represents the benchmark value for YOLO
models [10]. Figure 4A shows the precision–recall curves for each YOLO model. The area
under the curve was estimated with the mAP@50. In Figure 4B, confidence thresholds were
adjusted to achieve the best F-1 score value for each model. According to this optimisation,
the best confidence thresholds were 0.14, 0.12, 0.10, 0.11, 0.15, and 0.10 for the v3-tiny,
v4-tiny, v5s, v3, v4, and v5x model, respectively.



Agronomy 2022, 12, 319 10 of 17

Agronomy 2022, 12, x FOR PEER REVIEW 10 of 18 
 

Agronomy 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/agronomy 
 

Figure 3. Frames Per Second for each model. According to the ANOVA results three main group 
are visible: (a) V3-tiny and V4-tiny; (b) V5s; (c) V3, V4, and V5x. 

3.2. Precision–Recall Curves and Best Confident Threshold Definition 
The confidence threshold in object detection represents the probability that an esti-

mated bounding box contains an object. In all the analyses performed up to this point, a 
confidence threshold of 0.25 was used, as it represents the benchmark value for YOLO 
models [10]. Figure 4A shows the precision–recall curves for each YOLO model. The area 
under the curve was estimated with the mAP@50. In Figure 4B, confidence thresholds 
were adjusted to achieve the best F-1 score value for each model. According to this opti-
misation, the best confidence thresholds were 0.14, 0.12, 0.10, 0.11, 0.15, and 0.10 for the 
v3-tiny, v4-tiny, v5s, v3, v4, and v5x model, respectively. 

(A) (B) 

Figure 4. Confidence threshold optimisation (A) and precision–recall curves (B). 

3.3. Validation to Estimate Real Numbers of Bunches 
The models optimised for the confidence thresholds were finally used to detect the 

Real Number of Bunches (RNoB) in validation dataset images, with the actual number of 
bunches recorded. The bunch occlusion problem was partially overcome by applying a 
correction coefficient to estimate bunches covered by other vine structures. The estimated 
number of bunches was then calculated with the formula proposed by Bresilla et al. [40], 
which is presented in Equation (2). Such a formula allows for the limitation of occlusion 
and low average precision effects. The percentage of Visible Bunches not covered by other 
vine structures (%VNoB) was defined as the Visible Number of Bunches (VNoB) divided by 
the RNoB counted in the field. In the validation populated with images of vines spur cor-
don-trained, the %VNoB was 88%. 𝐸𝑠𝑖𝑚𝑎𝑡𝑒𝑑 = 𝐷 + 𝐷 ∗ 1 − 𝐹 + 1 − %𝑉 ∗ 𝐷 ∗ 1 − 𝐹  (2) 

In Equation (2), DNoB represents the number of bunches detected by the model, F1, the 
F-1 score of the model calculated only for the latter dataset (with counting), and %VNoB is 
the percentage of visible bunches on the real number. Table 4 summarises the results of 
validation on counted images. The mean percentage of TP bunches on RNoB indicates the 
number of bunches positively identified on the total, and it was used with the F-1 score to 
highlight the accuracy of the models to precisely identify bunches. The mean percentage 
of TP bunches on RNoB was higher in both v4 models (full and tiny) compared to v3. v4-
tiny, and v3 were characterised by the same F-1 score. Estimation errors were calculated 
in terms of root mean square error (RMSE) and mean absolute error (MAE). An overall 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F1
-s

co
re

Confidence threshold

v3-tiny

v3

v4-tiny

v4

v5s

v5x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

isi
on

Recall

v3-tiny

v3

v4-tiny

v4

v5s

v5x

Figure 4. Confidence threshold optimisation (A) and precision–recall curves (B).

3.3. Validation to Estimate Real Numbers of Bunches

The models optimised for the confidence thresholds were finally used to detect the
Real Number of Bunches (RNoB) in validation dataset images, with the actual number of
bunches recorded. The bunch occlusion problem was partially overcome by applying a
correction coefficient to estimate bunches covered by other vine structures. The estimated
number of bunches was then calculated with the formula proposed by Bresilla et al. [40],
which is presented in Equation (2). Such a formula allows for the limitation of occlusion
and low average precision effects. The percentage of Visible Bunches not covered by other
vine structures (%VNoB) was defined as the Visible Number of Bunches (VNoB) divided
by the RNoB counted in the field. In the validation populated with images of vines spur
cordon-trained, the %VNoB was 88%.

EsimatedNOB = DNOB + [DNOB ∗ (1− F1)] + {(1−%VNOB) ∗ [DNOB ∗ (1− F1)]} (2)

In Equation (2), DNoB represents the number of bunches detected by the model, F1, the
F-1 score of the model calculated only for the latter dataset (with counting), and %VNoB is
the percentage of visible bunches on the real number. Table 4 summarises the results of
validation on counted images. The mean percentage of TP bunches on RNoB indicates the
number of bunches positively identified on the total, and it was used with the F-1 score to
highlight the accuracy of the models to precisely identify bunches. The mean percentage of
TP bunches on RNoB was higher in both v4 models (full and tiny) compared to v3. v4-tiny,
and v3 were characterised by the same F-1 score. Estimation errors were calculated in terms
of root mean square error (RMSE) and mean absolute error (MAE). An overall higher value
of RMSE compared to MAE highlighted the variance of individual errors calculated on
every single image. An example of bunch detection and % of True Positive (TP) on RNoB is
shown in Figure 5 and in Appendix A.

Table 4. Average percentage of TP Bunches on RNoB, F1, RMSE, and MAE for each YOLO version.

v3-Tiny v4-Tiny v5s v3 v4 v5x

Mean percentage of TP bunches on RNoB 58.0% 70.2% 79.0% 65.3% 78.7% 82.6%
RMSE 3.589 3.236 2.955 2.631 2.931 2.804
MAE 2.739 2.600 1.944 1.919 2.254 2.059
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4. Discussion

Although the training time was much larger in YOLOv4 compared to other models,
YOLOv5x achieved the best values of mAP@50 and F-1 score. Training time was signifi-
cantly higher in full models (v5x, v4, and v3) rather than tiny models (v5s, v4-tiny, and
v3-tiny) due to the higher complexity of the models (expressed in billions of FLOPs in
Table 2). The comparison of version 5, 4, and 3 of YOLO within the full and tiny version
showed a higher average increment of F-1 in the tiny and “s” versions rather than the full
versions (+0.085 and +0.025 for the tiny and full version, respectively). This latter point
suggests an exponential increment of complexity in bunch identification. The analysis of
loss graphs indicates that training might be stopped before the 6000 and 100 epochs used
in this study. Indeed, models reached a stable loss value at ~1800 in the case of YOLOv3,
YOLOv3-tiny, YOLOv4-tiny, and YOLOv4. Similarly, YOLOv5 models reached a stable
value after ~10 epochs. A reduced training time needed allows optimised training even in
the case of a model trained with low-computational power (e.g., training on CPU instead
of GPU).

The performance results generated during the training were obtained on the test
dataset, which was a part of the same native dataset with the training dataset. To properly
validate trained models, the validation dataset (composed of external unknown images)
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was used. On this dataset, the F-1 score and mAP@50 were higher in v5x and v4 models.
The v4-tiny and the v3 full model achieved similar results in terms of F-1, while mAP@50
was higher in the v3 full model. YOLOv5s performed lower than YOLOv4 and YOLOv5x
both for mAP@50 and F1-score. F-1 score and mAP@50 were higher on the validation
dataset rather than the test dataset because the validation dataset was composed only of
field images representing the side of the vine canopy. In contrast, the test dataset was
composed even of images acquired out of the vineyard and representing only one bunch
at the forefront. In terms of detection time, each model showed that the detection speed
allowed the real-time bunch detection on the virtual machine, as it was higher than 30 FPS
for all models (Figure 6). YOLOv4-tiny and YOLOv3-tiny showed a detection speed of
~200 FPS, while YOLOv5s reached ~61 FPS and YOLOv3, YOLOv4, and YOLOv5x showed a
detection speed of~31 FPS. Such results may be found during an on-field application, taking
advantage of cloud computing. Therefore, in the case of portable processing systems with
lower computational power, the YOLOv4-tiny model should be preferred. The results of this
study confirmed an inverse relationship between detection time and metrics performance.
A comparison between YOLOv3, YOLOv4, and YOLOv5 models trained for a different
task [58] showed similar results (fastest detection in YOLOv4 and best mAP in YOLOv5);
however, a better robustness of YOLOv4 was highlighted. According to Yang et al. [53],
YOLOv5 may show the same accuracy as YOLOv4. The study of Lema et al. [59] found
the best results in terms of mAP@50 with YOLOv5, without using an unknown external
validation dataset.

Agronomy 2022, 12, x FOR PEER REVIEW 12 of 18 
 

Agronomy 2022, 12, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/agronomy 
 

v3-tiny) due to the higher complexity of the models (expressed in billions of FLOPs in 
Table 2). The comparison of version 5, 4, and 3 of YOLO within the full and tiny version 
showed a higher average increment of F-1 in the tiny and “s” versions rather than the full 
versions (+0.085 and +0.025 for the tiny and full version, respectively). This latter point 
suggests an exponential increment of complexity in bunch identification. The analysis of 
loss graphs indicates that training might be stopped before the 6000 and 100 epochs used 
in this study. Indeed, models reached a stable loss value at ~1800 in the case of YOLOv3, 
YOLOv3-tiny, YOLOv4-tiny, and YOLOv4. Similarly, YOLOv5 models reached a stable 
value after ~10 epochs. A reduced training time needed allows optimised training even in 
the case of a model trained with low-computational power (e.g., training on CPU instead 
of GPU). 

The performance results generated during the training were obtained on the test da-
taset, which was a part of the same native dataset with the training dataset. To properly 
validate trained models, the validation dataset (composed of external unknown images) 
was used. On this dataset, the F-1 score and mAP@50 were higher in v5x and v4 models. 
The v4-tiny and the v3 full model achieved similar results in terms of F-1, while mAP@50 
was higher in the v3 full model. YOLOv5s performed lower than YOLOv4 and YOLOv5x 
both for mAP@50 and F1-score. F-1 score and mAP@50 were higher on the validation da-
taset rather than the test dataset because the validation dataset was composed only of field 
images representing the side of the vine canopy. In contrast, the test dataset was com-
posed even of images acquired out of the vineyard and representing only one bunch at 
the forefront. In terms of detection time, each model showed that the detection speed al-
lowed the real-time bunch detection on the virtual machine, as it was higher than 30 FPS 
for all models (Figure 6). YOLOv4-tiny and YOLOv3-tiny showed a detection speed of 
~200 FPS, while YOLOv5s reached ~61 FPS and YOLOv3, YOLOv4, and YOLOv5x 
showed a detection speed of~31 FPS. Such results may be found during an on-field appli-
cation, taking advantage of cloud computing. Therefore, in the case of portable processing 
systems with lower computational power, the YOLOv4-tiny model should be preferred. 
The results of this study confirmed an inverse relationship between detection time and 
metrics performance. A comparison between YOLOv3, YOLOv4, and YOLOv5 models 
trained for a different task [58] showed similar results (fastest detection in YOLOv4 and 
best mAP in YOLOv5); however, a better robustness of YOLOv4 was highlighted. Accord-
ing to Yang et al. [53], YOLOv5 may show the same accuracy as YOLOv4. The study of 
Lema et al. [59] found the best results in terms of mAP@50 with YOLOv5, without using 
an unknown external validation dataset. 

 
Figure 6. Summary of results in terms of accuracy (mAP@50) and speed of detection (FPS). Figure 6. Summary of results in terms of accuracy (mAP@50) and speed of detection (FPS).

The optimisation of confidence thresholds on validation highlighted a peak of the F-1
score between 0.1 and 0.2 in all models. However, the v5x, v5s, and v4 model’s confidence
threshold curve showed a broader peak of the F-1 score, which was stable in the range
of 0.1–0.3 of confidence thresholds. The on-field validation performed comparing the
models’ detected number of bunches with the real number of bunches showed higher
RMSE and MAE in YOLOv3-tiny and YOLOv4-tiny. Considering the mean percentage
of True Positive bunches on the real number of bunches, YOLOv4 reconfirmed a higher
performance compared to the YOLOv3 models, while YOLOv5 outperformed other models
in all metrics. YOLOv3 showed the worst value of mean percentage of True Positive
bunches on the real number of bunches, while both RMSE and MAE were lower than all the
other models. This latter situation may be a consequence of the evaluation approach, based
only on the number of bunches. A lower accuracy in the YOLOv3 model during the bunch
identification caused a higher number of False Positives, which were counted in the total
amount of bunches (DNoB in Equation (2)), sometimes compensating the False Negative.
On the other hand, YOLOv5 and YOLOv4 models, which showed higher accuracy, were
less affected by this compensation, providing a higher RMSE and MAE even if a higher
number of True Positives were detected.
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The models developed in this study were trained on white grape varieties, where leaf
background and berries are characterised by a similar colour [60]. According to this, the
models proposed may be effective in the early stages of the growing season, even in red
grape varieties. Nevertheless, the best model developed in this study was YOLOv5x, which
was affected by an error of ~2.8 bunches per images, with two vines per image. Considering
the average real number of bunches on the validation dataset (10.5 bunches/vines) the
average percentage error was 13.3%. The study of Nuske et al. [32] found an average
percentage error between 3% and 11%; however, it was based on images acquired during
the night with artificial illumination in order to standardise the light conditions. The False
Positive–False Negative compensation in bunch counting represents a limitation of the
presented object detection models and should be better investigated as well as a correction
for occluded bunches [61,62].

Images acquired from a different position may be used in order to achieve better metric
performance by using a capture-recapture model [63]. Such models showed to be effective
in white grape bunch counting, highlighting a potential application in robotic platforms
used and under development for viticulture application. In this latter case, an automated
system can be used for yield assessment since the number of bunches showed to be strongly
correlated with the spatial variability of yield [62]. In addition, the number of bunches may
be converted in yield (fruit load, kg/vines) by using historical bunch weight data.

5. Conclusions

Object detection represents a promising application of deep learning in agriculture,
as it can be applied to several issues, such as plant phenotyping, disease identification,
and yield estimation. In viticulture, conventional yield estimation is usually based on
manual harvesting of sample plants, which is a time-consuming task. The implementation
of automatic bunch counting would decrease the time of grape yield estimation. In the
current study, four versions of You Only Look Once (YOLO) object detection models were
trained and evaluated for real-time bunch detection and counting in white grapes. YOLO
models were trained using a heterogeneous dataset populated by images retrieved from
open datasets an acquired by the authors. According to the validation results, YOLOv5
and YOLOv4 achieved a higher F-1 score and mAP@50 compared to YOLOv3 models.
The validation, based on the real number of bunches, showed that YOLO models were
able to detect (True Positive) between 58% and 83% of the real number of bunches of
vines. The final estimation, which included a correction for occluded bunches and F-1
score, was affected by a False Positive–False Negative compensation, which decreased the
error for YOLOv3 models. According to these considerations, YOLOv5x showed the best
performance in terms of correctly detected bunches, while YOLOv4 achieve good results
but with a lower detection speed. YOLOv5x was able to estimate the number of bunches
per plants with an average error of 13.3%. Although YOLOv5x showed a detection speed
that allowed real-time detection, a higher detection speed may be required for on-field
application. In this study, the best combination of accuracy and speed was achieved by
YOLOv4-tiny. The leaf occlusion and the False Positive–False Negative compensation
should be better investigated in order to make the object detection algorithm more effective
for viticulture.
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