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1.1 Man vs weed 

Multiple studies with the aim to objectively clarify “what makes a weed, a weed” (Sutherland, 

2004) have been published but the concept of weed remains mostly human centered and 

perceptive.  

The simplest definition is that a weed is “a plant growing in the wrong place at the wrong time” 

(Sattin et al., 1995). Ross & Lembi (2009) defined weeds as “plants that interfere with the growth 

of desirable plants and are unusually persistent. They damage cropping systems, natural systems 

and human activities and are such undesirable”. Weeds possess – by definition - specific biological 

characteristics, such as the ability to live in a variety of environments and produce an abundant 

quantity of seeds potentially affecting yield and quality of crops they infest (Baker, 1965; Holzner, 

1982). 

Humankind has struggled against the negative impact of weeds on crops since the dawning of 

agriculture (Hay, 1974): weeds economic impact on farm profitability is heavier than any other 

pest or disease causing both direct and indirect losses: e.g. yield reduction due to weeds 

competition with crops and the reduction of yield pricing or quality (Oerke, 1994, 2006). 

 

1.2 Herbicide brief history 

Weeds control technology has evolved during centuries, but the biggest step forward was done 

after the end of World War II with the development and introduction in the market of 2,4-D (2,4 

– dichlorophenoxyacetic acid) and MCPA [(4-chloro-2-methylphenoxy)acetic acid]. They were the 

first selective herbicides, initially developed for military purposes, which were made available to 

farmers.  

Chemical weed control has significant advantages in comparison with hand weeding and other 

mechanical techniques: it is in fact cheaper and more reliable and has led to a more abundant and 

constant food production worldwide (Oerke, 2006; Powles & Shaner, 2001).  

220 herbicides belonging to 60 chemical families assigned to 26 Sites of Action (SoA) were 

commercialized in the following years and are now included in the 10th edition of the Herbicide 

Handbook of Weed Science of America (Shaner, 2014). 
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Glyphosate was introduced in the ‘70s, bringing an outstanding control on both perennial 

grasses and broadleaved weeds. In the ‘80s two other classes of highly selective and very active 

herbicides were commercialized: the graminicides acetyl coenzyme A carboxylase (ACCase) 

inhibitors and the acetolactate synthase (ALS) inhibitors, which set a new standard with the 

commercialization of sulfonylureas and imidazolinones, due to the high efficacy at very low doses 

as well as to their good toxicological and environmental profiles.  

Since mid-1980’s, the discovery of herbicides with new SoA has drastically slowed down and 

none have been commercialized (Duke, 2012). This is the consequence of the very high costs of 

development for a single new molecule (Rüegg et al. 2007) and the introduction, in 1996, of 

genetically engineered crops. These crops, first created to tolerate glyphosate and then other 

active ingredients (synthetic auxines, 2,4-D and dicamba), guaranteed high profits to farmers, 

thanks mostly to their flexibility and ease of management.  

In the last decades there has been an ever increasing concern related to the use of herbicides, 

not only because of their impact on both the environment and human health, but also because 

the over-reliance on chemicals, coupled with the simplification of cropping systems, has led to the 

appearance of herbicide resistant (HR) weed populations.  

 

1.3 Herbicide Classification  

Several classification methods for herbicides exist, the most used of which is the one proposed 

by the Herbicide Resistance Action Committee (HRAC available at www.hracglobal.com), where 

herbicides are classified according to their Mode of Action (MoA). MoA is defined as the sequence 

of events between herbicide absorption and the final effect caused by the molecule. A total of 18 

MoA is included in the HRAC classification (Fig. 1). 

Some MoA are divided in sub-groups, dependently from the Site of Action (SoA) of the 

herbicide: e.g. in the photosynthesis inhibitors group C, there are three subgroups C1, C2 and C3 

indicating a different binding behavior with protein D1. SoA is the specific process that the 

herbicide disrupts, interfering with plant growth and development. Consequently herbicides are 

divided into 26 Sites of Action (www.weedscience.org; Heap, 2018). This classification method is 

http://www.weedscience.org/
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important at technical level for the prevention and management of resistance evolution, which 

includes, among other practices, the rotation of herbicides with different SoA.  

Until a few years ago it was more common to use Mode of Actions (MoA) to describe the 

different classes of herbicides instead of SoA while today it is considered more correct to use Site 

of Action relatively to resistance issues.  

 

 

Fig. 1: Herbicide Resistance Action Committee (HRAC) herbicide classification, displaying cellular targets of each 
MoA (Délye et al. , 2013) 

 

The most widely used herbicide SoA are group A acetyl coenzyme A caboxylase (ACCase) 

inhibitors, group B acetolactate synthase inhibitors (ALS) and group G 5-enolpyruvylshikimate-3-

phosphate (EPSP) synthase inhibitors. ACCase inhibitors include three chemical families: 

aryloxyphenoxypropionate (FOP), cyclohexanedione (DIM) and phenylpyrazoline (DEN). They 

inhibit the carboxyltransferase activity of the ACCase enzyme, which catalysis the first step in fatty 

acid biosynthesis eventually resulting in death of the plant (Burton et al., 1991). FOP and DIM bind 
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to the homomeric ACCase CT domain in competitive way causing changes in the structure (Zhang 

et al., 2004).  

ALS inhibitors are large spectrum herbicides, targeting both grasses and broadleaved weeds. 

Five families are included in this group: sulfonylureas (SU), imidazolinones (IMI), 

triazolopyrimidines (TP), pyrimidinyl(thio) benzoates (PTB) and sulfonylamino-carbonyl-

triazolinones (SCT). These herbicides targeting ALS (or AHAS) - an enzyme involved in the 

biosynthesis of branched aminoacids leucine, valine and isoleucine – bind in a channel that leads 

to the active site.  

Another important class of herbicides is the synthetic auxins (group O and P of the HRAC), which 

induce effects similar to those of indole-3-acetic acid, a natural plant hormone. Thanks to their 

higher stability in comparison to indole-3-acetic acid inside plants, symptoms induced by auxin 

herbicides, such as tissue swelling and root growth inhibition, are severe and can cause plant 

death. Herbicides in this group belong to multiple chemical classes such as phenoxycarboxylic 

acids, benzoic acids, pyridinecarboxylic acids, aromatic carboxymethyl derivatives and 

quinolinecarboxylic acids (Grossmann, 2010). 

 

1.4 Herbicide resistance 

1.4.1 Definitions of herbicide resistance 

Resistance is – literally – nature’s answer to human attempt of eradication of an organism. 

Affecting both agriculture and human health, it is now creating major concerns and threatening 

the sustainability of important cropping systems and – consequently - food production worldwide 

while increasing management costs. (Evans et al., 2015; Mortensen et al. 2012). 

Resistance is an evolutionary process, well synthetized by Caroline Ash (2018): “Whenever 

mutating or recombining organisms are faced with extirpation, those individuals with variations 

that avert death will survive and reproduce to take over the population. This can happen rapidly 

among organisms that reproduce fast and outpace our efforts to combat them.” 

The Herbicide Resistance Action Committee (HRAC) defines Herbicide Resistance as “the 

naturally occurring inheritable ability of some weed biotypes within a given weed population to 

survive an herbicide treatment that would, under normal use conditions, effectively control that 
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weed population”. The European and Mediterranean Plant Protection Organization (EPPO) 

describe it as “the naturally occurring, inheritable adjustment in the ability of individuals in a 

population to survive a plant protection product treatment that would normally give effective 

control” (“PP 1/213 (4) Resistance risk analysis,” 2015).  

In the “Resistance risk analysis” - EPPO guideline PP 1/213 (4) (2015) - is also introduced the 

concept of practical resistance, which discriminated between resistance observed on field and the 

one selected in laboratory: “Although resistance can often be demonstrated in the laboratory, this 

does not necessarily mean that pest control in the field is reduced, and this is particularly true with 

fungicides. Practical resistance is the term used for loss of field control due to a shift in 

susceptibility”. A weed population is considered affected by practical resistance when at least 20% 

of the plants, derived from seeds collected from plants that escaped a herbicide treatment in a 

field, are not controlled by a treatment done with the same herbicide at the recommended field 

dose (Panozzo et al., 2015b). 

Herbicide resistance is often confused with herbicide tolerance, defined by Holt & Lebaron, 

(1990) as “the normal variability of response to herbicides present among plant species, not 

involving selection of mutations that made the population tolerant”.  

 

1.4.2 Factors influencing resistance evolution 

How does herbicide resistance evolve? In a certain population there are already rare individuals 

that are naturally resistant to a specific active ingredient and survive to an herbicide dose that 

would normally control all other plants in that population: their frequency varies depending on 

the weed species, herbicide SoA and resistance mechanism involved. Repeated treatments with 

herbicides with the same Site of Action remove susceptible individuals, consequently leaving space 

to the resistant ones to reproduce and disperse, leading – often in a relatively short time – to the 

evolution of a resistant biotype (Fig. 2). 
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Fig. 2: herbicide resistance's evolution: in a certain mixed population there are already a few resistant  individuals 
(left); the repeated use of herbicides with few or also the same SoA select these plants, that are able to reproduce 
and disperse (centre) finally taking over the whole population (right)  

Resistance evolutionary process is influenced by many factors, the main are described by 

Onofri & Covarelli (2001):  

(1) Initial frequency of the resistant trait in an unselected population: genetic variation for 

resistance is required in a susceptible population for the selection of a resistant population 

and the most important source of this variation is likely to be a gene mutation that 

spontaneously occurs. The initial frequency of resistant plants roughly varies between 10-5 

and 10-6 (Diggle et al., 2003; Jasieniuk et al., 1996) depending on the target gene of the 

herbicide.  

(2) Resistance genetic bases: e.g. number of involved alleles 

(3) Selection pressure due to the repeated application of herbicides having the same SoA: this 

is considered the main factor influencing weed resistance evolution (Maxwell et al., 1990).  

(4) Relative fitness of resistant and susceptible genotypes: fitness is defined as the success in 

producing offspring contributing to the next generation by a particular genotype in 

comparison to another in a specific environment (Primack & Kang, 1989). If fitness of the 

resistant individuals is lower than fitness of the susceptible ones the population will evolve 

resistance slower than others, or not evolve it at all.  

(5) Soil seed bank: seed bank dynamics in soil play an important role in resistance evolution: 

the more concentrated are the emergence of seedlings, the less persistent is the soil seed 

bank and the faster will be herbicide resistance selection. In other terms, soil seed bank 

acts as a buffer. 

(6) Seed production of resistant weeds.  

(7) Residual activity of the herbicide. 
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1.4.3 Resistance Mechanisms 

Resistance mechanisms involve multiple plant biological metabolic pathways and they can be 

divided into two categories “Target Site” resistance (TSR) and “Non Target Site” resistance (NTSR). 

TSR is a well-known mechanism due to mutation(s) in the gene encoding the herbicide target 

protein causing structural changes at the herbicide binding site(s). NTRS includes all mechanisms 

that determine a reduction in the amount of herbicide reaching their target-site (Heap, 2014a), 

i.e. reduced herbicide uptake, decreased rates of herbicide translocation and increased 

detoxification or herbicide sequestration (Délye, 2013). 

Because of weed’s genomic plasticity there can be countless NTSR mechanisms. The most 

common and established involve an increased expression of cytochrome P450 monooxygenase, 

glycosyl transferase and glutathione-S-transferase that can metabolize herbicides (Yu & Powles, 

2014). These enzymes belong to major enzyme superfamilies and some of them are involved in 

the detoxification of xenobiotics. Another mechanism is called gene amplification and involves the 

over-expression of the enzyme target of the herbicide: as a consequence a higher dose of 

herbicide is needed to reach the target and site and inhibit the enzyme causing plant death (Gaines 

et al., 2010; Yuan et al. 2007). 

Other less common mechanisms are sequestration and reduced absorption/translocation. 

(Heap, 2014a). 

NTSR are mainly reported in grasses although their importance in broadleaves might be 

underestimated (Délye, 2013; Délye et al., 2011; Yuan et al., 2007). 

NTSR is more complex to demonstrate respect to TSR. However, the detection of NTSR is crucial 

to modulate agricultural practices because it can confer resistance to herbicides with different SoA 

leading to the appearance of unexpected multi-herbicide resistances (Preston, 2004; Yuan et al., 

2007).  

When a resistance mechanism confers resistance to different herbicides having the same SoA, 

the resistance is called “cross-resistance”. Instead, “multiple resistance” affects herbicides with 

different SoA and is due to multiple resistance mechanisms which coexist in the same plant. This 
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is the result of a either concurrent or sequential selection caused by more herbicides with different 

sites of action.  

Cross resistance can be both TS and NTS depending on species and SoA: e.g. cross resistance 

to bispyribac-sodium and bensulfuron-methyl, two ALS-inhibiting herbicides, is related to cyt P450 

monooxygenases in Echinochloa phyllopogon, while is target-site mediated in Cyperus difformis 

(Osuna et al., 2002).  

 

1.4.4. Herbicide resistance: current situation worldwide and in Italy 

The first herbicide resistant populations were collected in 1968: two populations of common 

groundsel (Senecio vulgaris L.) that had evolved resistance to the PSII inhibitors simazine and 

atrazine (Ryan, 1970). Since then, the number of reported cases has steadily increased, with about 

11 new cases confirmed every year. There are now 495 unique biotypes of herbicide resistant 

weeds globally. 

By 2018, 255 weed species (148 dicots and 107 monocots) have evolved resistance to 23 of the 

26 available SoA involving 163 herbicide molecules. (Heap, 2018). Resistance first heavily affected 

PSII inhibitors and then other to two SoA: i.e. ALS and ACCase inhibitors (Fig. 3). ALS inhibitors 

resistance is mostly due to a reduced susceptibility of the target ALS enzyme (Heap, 2014; Saari et 

al., 2018), a second mechanism involved is the enhanced metabolism resulting in the rapid 

detoxification of the herbicide (Yu et al., 2009). This class of herbicides is the most “prone” to 

select resistance, because of their high efficacy and very specific target site (Saari et al., 2018).  

For ACCase inhibitors the wide use of FOP and DIM has led to the evolution of resistant 

populations. To date, 57 weeds are involved (Heap, 2018), with both target site and non-target 

site resistance mechanisms.  

More recently, resistance to glyphosate (EPSPs inhibitor) has increased significantly, mainly due 

to the cultivation of glyphosate-tolerant crop variety in Americas and consequent widespread use 

of this SoA (Heap & Duke, 2018). In Europe glyphosate resistance is less diffused and mainly affects 

perennial crops (Collavo & Sattin, 2012), although a few resistant populations of Lolium spp. 

infesting arable crops have been reported (Collavo & Sattin, 2014).  
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Considering synthetic auxins, resistance to this SoA is not widespread and has little economic 

impact, as synthetic auxins remain one of the least prone herbicides to resistance’s selection. 

(Heap, 2013).  

Herbicide resistant weeds have been reported in 92 crops from 70 countries: the most affected 

countries are USA with 161 unique cases of resistance confirmed, followed by Australia (90), 

Canada (88), Brazil (48) and China (44) (Fig. 4).  

 

  

Fig. 3: Cumulated resistant species worldwide, sorted by herbicide SoA (Heap, 2018). 
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Fig. 4: Cumulated unique resistant cases sorted by country (Heap, 2018) 

 

In Italy, herbicide resistance was first reported in 1978 and remained marginal until early 90’s 

(Cantele et al., 1985; Porceddu et al., 1997). It involved only atrazine resistant populations of 

Solanum nigrum L., Amaranthus spp. and Chenopodium album L. found between 1978 and 1982 

in maize crops. The situation rapidly worsened in the mid ‘90s after the introduction of ALS and 

ACCase inhibitors. The first ALS resistant populations of Alisma plantago-aquatica L. and 

Schoenoplectus mucronatus L. Palla were found in rice in 1994 and 1995, while the first population 

of ALS-resistant Papaver rhoeas was found in 1998 in durum wheat in Puglia. ACCase inhibitors 

resistance first appeared in Poaceae: Avena sterilis L. in 1992, Lolium spp. in 1995 and Phalaris 

paradoxa L. in 1998. Only a few populations of Papaver rhoeas L. resistant to synthetic auxins have 

been reported in durum wheat fields. 
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By 2018, 19 weeds (9 dicots and 10 monocots) have evolved resistance to the most important 

herbicides SoA used in 16 out of 20 Italian regions.  

The Italian situation is constantly monitored by the Italian Herbicide Resistance working Group 

(Gruppo Italiano Resistenza Erbicidi, GIRE) since 1997. Basing its activity on farmers and farmers’ 

advisors complaints of poor herbicide efficacy, GIRE collects and tests putative herbicide resistant 

populations nationwide and publish results, including maps of diffusion as well as guidelines for 

resistance management for all resistant biotypes on its website (www.resistenzaerbicidi.it).  

 

1.4.5 Resistance Management  

Herbicide resistance management, which includes preventive and curative measures, should 

be based on Integrated weed management (IWM) (Barzman et al., 2015; Berti et al., 2001). IWM 

aims at increasing diversity in cropping systems by reducing the standardization of cropping 

practices. To do so it is necessary to integrate a range of weed control tools including chemical, 

physical and agronomic techniques in order to prevent/slow down the appearance of resistant 

populations, without excessive reliance on one method only (Powles & Matthews, 1992).  

The main tools are:  

(1). Crop rotation: it is the key tool for increasing diversity in the cropping system by 

diversifying the types of disturbance. 

(2). Other agonomic techniques: they reduce herbicide input and their selection pressure. 

Available options include the use of different types of tillage, cover crops, exploitation of 

allelopathy, hand weeding, mowing, stale seedbed and grazing.  

(3). Chemical control: rotating and mixing herbicides with different SoA, but active on the same 

target weed can delay resistance evolution. SoA rotation is complementary to crop 

rotation: the second is poorly effective without the first. HRAC herbicide classification is a 

handy tool allowing to choose and mix herbicides from different groups, with different 

SoA in order to minimize the selection of resistant biotypes. 

For the Italian situation, specific guidelines for resistance management are reported in the GIRE 

website.  
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The agronomic and economic impact of resistance and consequent losses for farmers have 

been widely described in many publications and many others describe how to prevent, slow down 

or manage it  (e.g.: Délye, 2013; Juraimi et al., 2013; Norsworthy et al., 2012; Orson, 1999) 

converging on a series of best management practices such as herbicide strategies diversification, 

monoculture reduction, promotion of the correct use of herbicides and deepening the knowledge 

of weed biology and other agronomic techniques (Beckie & Harker, 2017; Norsworthy et al., 2012; 

Evans et al., 2015) reaching a sustainable intensification of agriculture: i.e. where production, 

profitability and sustainability meet a possible compromise (Jordan & Davis, 2015).  

Although resistance is a well-known topic counting over 3000 publications since 1980, at field 

technical level resistance is very often treated as a temporary problem that will be solved with 

new SoA commercialization. Instead, resistance should be considered – at all levels – as a “wicked 

problem” (Gould et al., 2018), the result of multiple economic, social and biological variables 

interacting in complex and unexpected ways. 

 

1.4.6 Epidemiology in herbicide resistance studies  

Many publications describe the economic and agronomic impact of resistance and many others 

suggest ways to prevent, slow down or manage it (e.g. Norsworthy et al. 2012; Delyè et al. 2013; 

Juraimi et al. 2013; Orson 1999), but very few contribute to elucidating the impact of interactions 

between major agronomic and environmental factors on resistance epidemiology (Evans et al., 

2015). 

Epidemiology is a biomedic discipline concerned with distribution and determinants of 

evolution in defined populations. Although widely used in human health (Derks & Tomasi, 2015; 

Franklin & Lindberg, 2015) this approach is scarcely used in weed science and in particular in 

herbicide resistance studies, although it can provide relevant evidence-based information for 

preventing or reducing the spread of resistant populations by identifying the major risk factors. 

This lack of information was highlighted in several recent studies and many authors claim for 

large-scale studies on resistance evolutionary processes to properly understand what occurs on 

field (Evans et al., 2015; Gould et al., 2018; Editorial, 2018; Shaw et al., 2018). In 2015 Evans et al. 

published a study aimed to identify risk factors associated with resistance to glyphosate in 
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Amaranthus tuberculatus (Moq.) J.D. Sauer based on the field management data of a custom 

retailer spread on an area of about 800 km2, while in 2018 Hicks et al. produced a research on 

drivers for the evolution of herbicide resistance using data of Alopecurus myosuroides Huds. 

resistance assessed on 138 fields belonging to 71 farms in UK. 

Epidemiological studies at large scale were partially hindered by the paucity of field level data 

about field management, soil texture and structure, water management and other important 

factors that might affect herbicide resistance evolution in a certain field. This obstacle now is 

partially removed by the progressive publication “open-source” of these type of data and can be 

used in epidemiological studies at large scale also in weed science.  

Weed infestations and herbicide selection pressure in rice crops vary widely in relation to many 

agronomic and pedo-climatic conditions, so herbicide resistance evolves in a context of a series of 

interacting factors. However, detailed field-by-field data on these factors are rarely available at a 

large scale and therefore the identification of concise, yet informative, agronomic predictors of 

herbicide resistance distribution/diffusion would significantly facilitate effective management.  

The use of different statistical approaches, i.e. discriminant analysis, logistic regression and 

artificial neural network enables the quantification of the effect of pedo-climatic and management 

drivers on agro-ecological systems at large scale. For example, discriminant analysis was used to 

investigate the effect of rainfall-related variables on the occurrence of drought stress in maize 

(Zhang et al., 2013) and the effect of fertilizer regimes on the structure of the soil microbial 

community and its functions (Lazcano et al., 2013). It has also been recently used to calculate 

weed distribution in maize fields (Vidotto et al., 2016). Recently, a comparison of artificial neural 

networks and logistic regression was used to predict weed populations in chickpea and winter 

wheat (Mansourian et al., 2017) and to investigate the contribution of topographic and soil-related 

traits, as well as land use and maximum rainfall intensity as landslide drivers in landslide 

susceptibility mapping (Gong et al., 2018). The use of different approaches ensures a reliable 

depiction of the examined system as each approach relies on different assumptions and analytical 

solutions.    
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1.5 Rice, a key crop worldwide and in Italy 

One of the most affected crops by resistance is rice, a key sector of the Italian agriculture and 

general economy. 

Rice is a worldwide strategic crop: it is the second most cropped cereal and represents the 

staple food for more than half of the world population in Asia, Africa, Central and South America 

(Van Nguyen & Ferrero, 2006). 

Italy is the first European producer with about 240,000 hectares, 92% of which is concentrated 

in an area located between Piedmont and Lombardy, in the North-West of the Po Valley. However, 

other rice growing areas are present in Emilia-Romagna, Veneto, Sardinia, Tuscany and Calabria 

(Fig. 5). 

 

 

Fig. 5: distribution of rice in Italy (source: Ente Nazionale Risi) 

 

Cultivated in Italy since the Middle Ages (Ferrero & Vidotto, 2010; Ente Risi), rice cultivation has 

become a key sector for the Italian and European agriculture and economy, thanks to its high 

profitability and specialization; it is also an environmental and landscape richness, as rice fields 

create a unique environment in Europe with specific and diverse flora and fauna. 
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While the total rice area has been substantially stable in the last decade, the number of farms 

has decreased: from 6,367 of 1996 to 4,265 in 2016, while the average farm surface has increased 

from 37 to 55 ha.  

In 2016 about 234,000 ha of rice have been cropped to rice in Italy, nearly half of the surface 

was cropped to long A grain varieties.  

Rice varieties cropped in Italy are divided in four main groups (Fig. 6):  

 Round grain varieties: grain length is < 5.2 mm, length-width ratio of the grain is < 2, e.g. 

Sole, Selenio, Centauro 

 Medium grain varieties: grain length is > 5.2 mm but < 6.0 mm, length-width ratio of the 

grain is < 3: e.g. Venere, Vialone Nano 

 Long grain varieties: 

o Long A grain: : grain length is > 6.0 mm, length-width ratio of the grain is > 2, but 

< 3, e.g Luna CL, Dardo, Volano, Carnaroli 

o Long B grain: grain length is > 6.0 mm, length-width ratio of the grain is > 3: CL26, 

Gladio, Mare CL, Thaibonnet  

All data are available on the web page of Ente Nazionale Risi (www. enterisi.it).  

 

Fig. 6: Italian rice surface divided by market category: long A grain (120,056.7 ha, 51.3%), Medium grain varieties 
(9,727.5 ha, 4.2%), round grain (70,786.56 ha, 30.2%) and Long B grain (33,563.6 ha 14.3%). 
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In 2016 the most cultivated variety were Sole CL (26,000 ha), Volano (18,121 ha), Selenio 

(14,903 ha) and Centauro (14,807 ha).  

Variety’s choice is driven by multiple factors, such as price, market request and varietal 

productivity, but also by other farmer necessities like weed management.  

BASF Clearfield Technology®, with its imidazolinone-tolerant rice (IMI-rice), was 

commercialized in Italy in 2006 and has now reached 80000 ha, because it offers the possibility to 

control weedy rice – a key weed of this crop - with a limited effort and number of treatments.  

IMI rice varieties have been developed through natural selection or inducing mutations in the 

ALS gene (Sudianto et al., 2013) and in Italy, it is imazamox (Beyond®, BASF Milan, Italy) the 

herbicide (ALS inhibitor) registered for Clearfield varieties (Scarabel et al., 2012).  

This technology was launched with strict usage rules (e.g. no more than two consecutive years 

of Clearfield® Technology were allowed on the same field) to prevent the development of ALS 

inhibitors resistant populations of red rice. Anyway the first cases of ALS inhibitors resistant red 

rice were recorded in 2010, four years only after the launch of this technology.  

Resistance in this case can occur both through selection of already IMI-resistant mutants of 

red-rice or through gene-flow, i.e. cross-pollination, between IMI-rice and the wild type. (Gealy et 

al., 2003; Scarabel et al., 2012). 

 

1.5.5 Weed flora in rice fields 

Rice has evolved a specific weed infestation, which includes both aquatic and non-aquatic 

weeds. Major weed species can be ascribed to six groups as proposed by Ferrero & Vidotto, (2007):  

(1) Echinochloa spp., the species that is actually causing the biggest issues in rice fields 

in Italy 

(2) Heteranthera species, that were introduced in Italy in the 60’s from south America 

(Pirola, 1962) 

(3) Alisma species and cyperaceae weeds (sedges);  

(4) Oryza sativa f. spontanea L. or weedy rice, which has always been present, but started 

becoming an issue in the 90’s  
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(5) weeds typical of the dry seeded fields i.e. Panicum dicotomiflorum Michx, Digitaria 

sanguinalis (L.) Scop., Poligonum spp., Bolboschoenus maritimus L. Palla  

(6) minor and exotic weeds who do not pose major threads and do not need specific 

interventions. An example is Leptochloa fascicularis (L.) Nees. (very common and 

problematic in rice fields of Extremadura (Spain) (Osca, 2013), which is now expanding 

in the South-West of the province of Vercelli (Benvenuti, Dinelli, & Bonetti, 2004) or 

Eclipta prostrata, found in Sardinia rice fields about 20 years ago and in Lombardy in 

2000 (Viggiani & Tabacchi, 2017)  

Composition and evolution of rice flora is heavily influenced by crop management techniques: 

the shift from hand weeding to chemical weed control with selective herbicides (propanil in 1959), 

the introduction of direct seeding instead of rice transplant and the adoption of short statured 

rice varieties (Ferrero et al., 2008) has favored infestations of Echinochloa spp., Alisma spp., sedges 

and red rice.  

In rice fields, weeds can affect final rice production, with yield losses that can reach 80-90% 

(Oerke, 1994; R. J. Smith, 1988).  

 

1.5.6 Echinochloa spp., rice’s worst weed 

Weed species discrimination is an important aspect for their management, as species belonging 

to the same genus often respond differently to the same herbicide.  

Knowing weed species and their biology (Norsworthy et al. 2012), is an important point to 

address weed control on field and manage resistance issues; according to Holm (1977) the 

behavior of a species can be understood – also relatively to herbicides – only when its taxonomy 

is clear.  

The genus Echinochloa, class Monocotyledonous, family Poaceae, subfamily Panicoideae, tribe 

Panicoieae, is a widespread weed genus causing nuisance in many crops worldwide. It includes 

over 50 hydrophanous annual species (therophyte), whose discrimination is often difficult. It is 

highly competitive  with crops and shows broad ecological tolerance, great ability to mimic rice 

and is well adapted to both temperate and tropical regions (Benvenuti et al., 1997; Bouhache & 

Bayer, 1993; Clayton & Renvoize, 1986; Michael, 1983; Tabacchi, 2003).  
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Echinochloa species have a C4 photosynthetic cycle and are prevalently autogamous, although 

they show a certain degree of cross pollination (Maun & Barrett, 1986). Seed production is 

abundant and extended for a long period. In favorable conditions a single plant of Echinochloa 

crus-galli can produce up to 40,000 seeds with a germination rate of about 10-15%. Recently, it 

was highlighted that resistant populations of E. crus-galli have a lower germination capacity 

compared to the sensitive ones. (Serra et al., 2018) 

Seeds can live up to 10 years in the soil (Altop & Mennan, 2011; Barrett & Wilson, 1983; Norris, 

1996).  

 

1.5.6.1 Echinochloa spp. morphological classification 

The genus Echinochloa shows a high degree of morphological plasticity, depending both on 

specie and environmental conditions: e.g. it is known that characteristics like color or awns 

presence and length vary depending on plant stage and environmental conditions (Ruiz-Santaella 

et al., 2006) and it is common to find, on field, plants of Echinochloa that show intermediate 

phenotypic characteristics for which classification is impossible (Pirola, 1965).  

For this genus, many classification keys have been proposed in the last century (Micheal, 1983), 

but none of them have been able to fulfill the task: e.g. to Echinochloa crus-galli (L.) P. Beauv. have 

been attributed over 100 names and Echinochloa oryzicola (Vasinger) have also been named 

Echinochloa hispidula or E. crus-galli by different authors (Viggiani & Tabacchi, 2017).  

In Italy, and in general in the Mediterranean counties, the traditional dichotomous keys used 

for Echinochloa spp. classifications were Pignatti (1982) and Carretero (1981), which relied on 

different morphological markers: Pignatti used mostly to macroscopic traits such as hair presence 

and inflorescence bearing, Carretero used spikelet length as principal distinction trait.  

Pignatti distinguished among six species: Echinochloa phyllopogon (Stapf), in case of presence 

of hairs on both stem and leaf sheath, Echinochloa erecta Pollacci, which presents upright panicle 

and stem and is hairless, E. crus-galli, Echinochloa crus-pavonis (Kunth) Schult., Echinochloa hostii 

(Bieb.) Boros. and Echinochloa colonum L. (Fig 7).  
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Fig. 7: plants of Echinochloa spp. with hair (a) and hairless (b). The one on the left should be classified as E. phyllopogon 
on the base of Pignatti (1982) dichotomous key.  

 

Carretero distinguished among five species: E. colonum, Echinochloa oryzicola (Vasing), E. crus-

galli, Echinochloa oryzoides (Ard.) Fritsch and E. hispidula.  

Taking one step further Carretero, Costea & Tardif (2002) proposed in 2002 an additional 

classification based on spikelet and caryopses characteristics where the same five species were 

included (Fig. 8).  
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Fig. 8: Scheme of Costea&Tardif Echinochloa spp. classification (2002). 

 

This classification results more complicated to be used on field as it takes into account – for the 

distinction of the different species – small characteristics Echinochloa spp. seeds, such as the 

embryo-caryopses ratio, the number of veins on the lower glume and the length and width of the 

caryopses.  
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Fig. 9: spikelet and caryopses of E. crus-galli (top) and E. oryzicola (bottom), according to the classification of Costea-
Tardif (2002). It is visible the difference in dimension between the first and the second.  

 

Matching morphological markers with Amplified Fragment Length Polymorphism (AFLP) 

markers Tabacchi proposed, in 2006, a new classification and distinguished five species: E. colona, 

E. crus-galli, E. phyllopogon, E. oryzoides and E. oryzicola.  

The most recent classification was by Viggiani & Tabacchi, (2017) based on that of Costea & 

Tardif, (2002), also maintaining the names of the different species.  

 

1.5.6.2 Echinochloa spp. discrimination through molecular markers 

In the past classification relied on the observation of morphological characters, i.e. those used 

for the taxonomical approach. These markers are easy to spot (e.g. presence or absence of awns) 

in a certain species and less expensive in comparison with the material needed for genomic 
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studies, but as highlighted by Tabacchi (2003) and other authors, they also present limits that can 

affect their reliability for species identification (e.g. their variability in function of the plant 

development stage and environment influence). Also species discrimination using morphological 

markers requests a high number of samples and observations in order to take into account high 

morphological variability.  

With the advent of molecular biology new scenarios appeared for plant discrimination through 

molecular markers. For instance it was introduced the possibility to study the polymorphisms 

present in the DNA and use them as markers for plant species discrimination. Techniques like AFLP, 

Restriction Fragment Length Polymorphism (RFLP) and Random Amplified Polymorphic DNA 

(RAPD) have been used in several cases for this purpose (Moser & Lee, 1994; Nissen et al., 1995; 

Smith et al, 1990; Tatineni et al., 1996). 

Considering Echinochloa spp., RFLP - PCR, a technique that exploits PCR amplification and 

endonuclease enzymatic digestion was used for the distinction of E. crus-galli from E. oryzicola 

(Yasuda et al., 2002), while Amplified Fragment Length Polymorphism (AFLP) was performed to 

investigate the phylogenetic relationship of 80 Echinochloa spp. accessions from Italian rice fields 

(Ferrero & Vidotto, 2007; Tabacchi, 2003) and to discriminate between E. crus-galli and E. 

muricata in Belgium (Claerhout et al., 2016).  

Anyway classic taxonomy remains a fundamental approach to complement and sustain 

classification through DNA sequences. 

 

1.5.6.3 DNA barcoding: an innovative tool for weed species discrimination 

DNA barcoding involves the sequencing of standard short sequences of DNA – between 400 

and 800 base pairs (bp) - to characterize animal and plant species on the tree of life through the 

investigation of Single Nucleotide Polymorphism (SNP) in the DNA (CBOL Plant Working Group , 

2009). Potential applications of this technique span from the discovery of species to ecological 

forensics and floristic surveys (Coissac et al., 2016). DNA barcoding application is a two-step 

process: (A) the creation of a DNA barcode library of a known species followed by (B) the match 

of the DNA barcode sequence of an unknown sample against the DNA barcode library (Fig. 10) 

(Kress & Erickson, 2012). 
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Step (A) involves taxonomists selecting several individuals per species to build the initial library: 

sample sources can be both herbaria and living plants on the fields. Specimens used in this step 

must be appropriately labeled and vouchered, as vouchers will function as permanent records for 

the connection of the DNA barcode database to a certain species. After completion barcode library 

will be used for the comparison and identification of unknown individuals to be assigned to a 

certain species. To achieve a reliable comparison among plants, so using barcoding as a tool for 

species discrimination, suitable regions of DNA must be chosen, covering the criteria of 

universality, sequence quality and coverage as well as discrimination ability of the chosen 

sequence (CBOL working group, 2009). For animals the sequencing of standardized regions of 

mitochondrial gene CO1 has proved to be an efficient tool (Hebert et al., 2003), but as substitution 

rate of mitochondrial DNA in plants is low, alternative plastid regions have been identified to 

become the standard for DNA barcoding: plastid genes (in particular in the chloroplast (cp)-DNA) 

show in fact a highly conserved gene order, low levels of nucleotide substitution and absence of 

recombination (Huang et al., 2017). 

DNA regions that best fulfilled the criteria listed above, thus chosen as a standard for plant 

discrimination, are genes matK+rbcL with intron psbA-trnH supporting the previous two (CBOL, 

2009). In other studies discriminating power of non-coding regions trnT-L-F were investigated 

(Taberlet et al., 2006; Yamaguchi et al., 2005). 

Despite the potential multiple application fields of DNA barcoding it has been scarcely used in 

weed science, particularly for species discrimination: molecular markers for the discrimination of 

multiple accession of Echinochloa spp. have been built on non-coding regions of trnT-L-F allowing 

to discriminate E. crus-galli from E. oryzicola (Aoki & Yamaguchi, 2008; Yamaguchi et al., 2005). 

While other molecular markers to the discrimination of E. crus-galli var. crus-galli, from E. crus-

galli var. praticola and E. colona have been designed on genes psbA, psbM, psal and other 

intergenic regions obtaining only partial results (Zhang et al., 2017).  
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Fig. 10: steps involved Workflow in plant DNA barcoding (Kress & Erickson, 2012).  
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1.5.6.4 Echinochloa spp. and herbicide efficacy 

The high intra and interspecific morphologic variability inside this genus often baffles farmers 

and sometimes leads them to make wrong correlations between Echinochloa spp. morphology 

and herbicides poor control. In rice fields there are populations with intermediate characteristics 

between “red” and “white” Echinochloa species: farmers normally refer to them as “purple” or 

“hybrid” type of Echinochloa. Although very low, the rate of cross pollination is sufficient to ensure 

gene exchange in Echinochloa spp. populations (Maun & Barrett, 1986). Anyway the existence of 

wild fertile or sterile “hybrid” populations of Echinochloa spp. has not been demonstrated in 

Europe or elsewhere. Nevertheless hybrids have been produced in controlled conditions, mostly 

using cultivated varieties of Echinochloa spp. (Yabuno, 1983), and in most cases, sterile F1 were 

obtained (de Wet et al., 1983).  

The understanding of the response of the different Echinochloa species to herbicides having 

different SoA has multiple implications, such as the fact of becoming a tool for a correct weed 

management at field level and, whether verified, of becoming an additional trait for species 

discrimination. Also, discriminating different Echinochloa species on field knowing that they 

respond differently to the various herbicides could lead to a more precise weed management, 

ideally “ad hoc” for each field infestation. 

Few studies have been done to test differences in susceptibility to herbicides of the different 

Echinochloa species (Claerhout et al., 2016; Vidotto et al., 2007), and great variability in results 

have been found depending on the history of herbicide strategies of the Echinochloa spp. 

collection site, test location, experimental conditions etc. supporting the idea that environmental 

factors have an important role in plant phenology. 

Vidotto et al. (2007) investigated the response of 80 populations of E. crus-galli, E. erecta and 

E. phyllopogon to multiple herbicides in Italy demonstrating that, although all populations showed 

a large interspecific and intraspecific variability in herbicide susceptibility, E. crus-galli was 

generally less susceptible to quinclorac and more sensitive to azimsulfuron, cyhalfop-butyl, 

molinate and propanil. A difference in susceptibility was highlighted between E. phyllopogon and 

E. erecta as the first resulted more sensitive than the second to both molinate and quinclorac.  
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Studies conducted so far were performed at population level, i.e. collecting in a single field a 

mixed bulk of seeds, thus testing the different herbicides on a heterogeneous group of individuals 

sharing the same site of origin, but do not necessarily share a similar genetic background. To our 

knowledge only one study analysed the response of purified and classified Echinochloa accessions 

to different herbicides: Claerhout et al. (2016) showed that no differences in susceptibility to 

nicosulfuron, cycloxydim and topramezione were present between E. crus-galli and E. muricata 

collected from Belgian corn fields.  

 

1.5.7 Herbicide Resistance in rice in Italy 

Six weed species have evolved resistance to ALS inhibitors: Alisma plantago-aquatica, Cyperus 

difformis, Oryza sativa var. spontanea, Schoenoplectus mucronatus, Echinochloa spp. and recently 

Cyperus esculentus (GIRE 2018; Heap, 2018). Echinochloa spp. have also evolved multiple 

resistance to ALS and ACCase inhibitors. GIRE estimates that around 40% of the Italian rice area is 

involved in resistance issues. A total of 586 populations were tested with three herbicides and 427 

proved to be resistant to at least one, mostly ALS products (Tab. I). 

 

Weed Species Resistant Susceptible Total 

ALSPA 66 13 79 

CYPDI 29 32 61 

ECHSS 192 48 240 

ORYSA 57 46 103 

SCPMU 81 20 101 

CYPES 2 0 2 

Total 427 159 586 

Tab. I: Number of populations collected in rice crops in Italy and tested by GIRE. Populations were considered to be 
resistant if at least 20% of plants survived the field dose of at least one herbicide tested. ALSPA = Alisma plantago-
aquatica, CYPDI = Cyperus difformis, ECHSS = Echinochloa spp., ORYSA = Oryza sativa var. spontanea, SCPMU = 
Schoenoplectus mucrunatus, CYPES = Cyperus esculentus (Hess et al., 1997). 

 

The first ALS resistant populations of A. plantago-aquatica and S. mucronatus appeared in mid 

‘90s from plants that had not been controlled by bensulfuron, only 6 years after its introduction 

in Italy. ALS resistant C. difformis was first collected in 1999 (Sattin, 2005), the same year of 3 

propanil-resistant populations of E. crus-galli (Scarabel et al., 2002).  
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ALS resistant O. sativa var spontanea and C. esculentus ALS populations were then recorded in 

2012 and 2018 with populations resistant respectively to imazamox (Scarabel et al., 2012) and 

halosulfuron (Scarabel & Miniotti, 2018) and likely cross resistant to all other ALS inhibitors.  

The presence of widespread resistant populations belonging to all of the most important 

species of rice weeds is threatening the sustainability of rice cultivation in Italy because of the 

increase of weed management costs.  

The biggest threat to rice worldwide are E. crus-galli and E. colona, which are considered the 

most widespread species and are ranked respectively third and fourth among rice worst weeds by 

Holm et al. (1977).  

Resistance for this weed is spread worldwide, the first case was recorded for E. crus-galli in 

corn in the United States (1978) with populations resistant to Photosystem II inhibitors, while the 

first case on rice was recorded in 1986 in Greece with one E. crus-galli population resistant to 

propanil. It is now widespread in many countries and all of the principal SoAs are involved, with 

several cases of multiple resistant populations in Italy, USA and Brazil (Heap, 2018). 

In Italy, after the discovery of the propanil resistant populations in 2000 and one population of 

E. erecta resistant to both quinclorac and propanil in 2004, the communication and confirmation 

of new resistant cases for this weed quickly grew up, with the intensification of ALS- and ACCase-

inhibiting herbicides use in rice fields. By 2016, 10 populations have evolved resistance to ACCase 

inhibitors only, 105 to ALS inhibitors and 70 showed multiple resistance to ALS and ACCase 

inhibitors (source: GIRE). 

 

1.5.8 Weed management in rice fields 

Weed management plays a key role in rice cultivation as weed flora is often dominated by 

competitive and difficult-to-control species - red rice and Echinochloa spp. above all - and pedo-

climatic conditions are favorable to their proliferation and generation of a persistent seed bank. 

Herbicide use is intense, with an average treatment frequency index higher than 2.5 (Ferrero & 

Vidotto, 2010; Scarabel et al., 2013). 

In the last 15-20 years the number of available herbicide SoA has significantly decreased due 

to the strict EU legislation, which led to the withdrawal of several effective substances and the 
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heavy limitation of others: e.g propanil and quinclorac, that lost the authorization in 2009 and 

2013 respectively, did not receive emergency uses authorization in 2018. Oxadiazon, the only 

active ingredient in use for an efficacious control of Heterantera spp., was limited starting from 

2016. Therefore farmers are forced to apply complex strategies to obtain a sufficient weed control. 

The evolution of herbicide resistant populations and the loss of many previously available 

herbicides is making weed management more challenging as chemical control mainly relies on few 

SoA, mostly on ALS and ACCase: it is estimated that 95% of Italian rice paddies is treated with them 

every year (Sattin, personal communication).  

Since the introduction, in 2006, of penoxsulam and imazamox (used in Clearfield® Technology) 

herbicide strategies have become simplified in comparison with the past, as these two products 

were able, with two or one single application, to control all of the most important weeds of rice, 

alone or in complement with other few SoA: e.g. cyhalofop-butyl for the control of Panicum 

dichotomiflorum, Digitaria sanguinalis and other weeds typical of dry seeded rice. Since the 

appearance of resistant populations, herbicide strategies have become more complex: involving a 

pre-seeding or pre-emergence application, followed by two or even three post emergence 

applications, containing one ALS and one ACCase inhibitor and eventually one further application 

to control late-born Echinochloa spp. For example, in water seeded rice it is common to use the 

“false-seeding” technique for the control of red rice and other weeds: this technique involves the 

submersion of the paddy before rice seeding in order to favour the germination and growth of red 

rice and other weeds. Paddy is subsequently drained and weeds are treated with pre-seeding 

products such as glyphosate, cicloxidim and propaquizafop (each one alone or in combination 

depending on the field weed flora composition). In post-emergence of rice and weeds one of the 

most common strategies is to apply cyhalofop-butyl together with profoxydim (plus adjuvant), for 

the early control of Echinochloa spp. followed by penoxsulam alone or in mixture with an hormonic 

active ingredient for the simultaneous control of Echinochloa spp. and ALS resistant ciperaceaes. 

Sometimes an additional treatment with cyhalofop-butyl might be necessary for the control of 

late-born Echinochloa spp. All this shows that in difficult occurrences up to nine different products 

might be needed to control weeds in rice paddies when resistance is present, also relying on few 

SoA. Beyond “false seeding”, non-chemical control of weeds relies on competitive rice varieties 
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with certified seed, on the limitation of soil tillage, on dry seeding technique, which shifts 

Echinochloa spp. populations from the “white” species to E. crus-galli, generally slower in evolving 

resistant biotypes and other grasses, such as D. sanguinalis and P. dichotomiflorum, that did not 

evolve into resistant populations yet (Sparacino & Sgattoni, 1993; Tabacchi et al., 2006).  

 

1.5.8.1 New molecule for weed control in rice 

Florpyrauxifen-benzyl is a new pyridine-2-carboxylate (picolinate) herbicides. It is a synthetic 

auxin, HRAC group O (Fig. 11), developed for the control of grasses and broadleaf weeds of rice 

(Epp et al., 2016). The commercial name of the active ingredient is RinskorTM. Mimicking the 

action of natural auxins, florpyrauxifen-benzyl is absorbed predominantly by plant leaves, 

accumulated in the meristems where it bounds with specific auxin receptors: it shows a high 

affinity with AFB5 and a lower one with TIR1. Consequently proteins are degraded and plants die 

within two weeks from the application. Florpyrauxifen-benzyl has showed a positive 

environmental profile, since it rapidly degrades in the environment, in soil and in the plants. It is 

also used at low doses (30 g a.s./ha). Florpyrauxifen-benzyl showed a very good control on most 

of the rice weeds, like Alisma plantago aquatica, Cyperus difformis, Heterantera spp. and a good 

control on Echinochloa spp. It has also shown a high selectivity on most common varieties of rice.  

Its process of authorization is still ongoing in Europe.  

 

 

 Rinskor™ active 

Fig. 11: RinskorTM (florpyrauxifen–benzyl) classification according to HRAC. 
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1.6 AIMS of the RESEARCH 

This research is aimed to provide a better insight on the epidemiology of herbicide resistance 

into the major rice cropping areas in Italy. To our knowledge, this is the first study that determines 

the degree of association between herbicide resistance and a few important predictors at such a 

large scale. Secondly, we aimed to improve the reliability of Echinochloa spp. classification using 

innovative molecular approaches like DNA barcoding. Third we investigated on the response of 

different sensitive purified Echinochloa species to the most commonly used herbicides in rice. 

For the epidemiological research the specific objectives are:  

 To study the influence of agronomic and pedologic factors on the evolution of resistance 

through statistical analyses: i.e. discriminant analyses and logistic regression. It was 

decided to analyze the impact of two major agronomic techniques, rice seeding type 

(water- or dry-seeded) and crop rotation rate, as well as soil texture, on the diffusion of 

herbicide resistance on 232 municipalities, covering almost 200,000 ha;  

 to estimate resistance evolution risk in these municipalities through neural network 

approach and create resistance risk maps.  

 

For the Echinochloa spp. study the specific aims are:  

 To investigate the possible match of classic dichotomous keys with discrimination provided 

by molecular markers found through DNA barcoding approach;  

 to set up a protocol of species-specific (SS)-PCR to quickly analyze and discriminate a large 

number of Echinochloa spp. samples;  

 to understand whether the most used herbicides in the Italian rice fields have different 

efficacy on several sensitive, purified and classified Echinochloa spp. accessions.  
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2.1 Epidemiology of herbicide resistance in rice in Italy 

 

2.1.1. Definition of the area in the study 

The territory object of the study is the one where rice cultivation is deep rooted and traditional 

across two regions, Piedmont and Lombardy, and 6 provinces: Alessandria (AL), Biella (BL), Vercelli 

(VC) and Novara (NO) in Piedmont, Milan (MI) and Pavia (PV) in Lombardy. The study includes 

about 200,000 ha, i.e. about 92% of the total Italian rice growing area.  

In the analyses only municipalities with more than 10% of UAA (Utilized Agricultural Area) 

cropped to rice were included.  

The degree of association between resistance presence in a certain municipality and four 

important agronomic factors was analyzed using two different statistical tests, namely stepwise 

backward discriminant analyses and stepwise backward logistic regression.  

Predictors chosen for the analyses are: water seeding rate per municipality (WS), rotation rate 

per municipality (RR), percentage of clay (PC) and sand (PS) in soil per municipality. Subsequently, 

neural network analyses approach was also performed to understand the ability of the selected 

agronomic factors to predict resistance evolution in a certain municipality and to create stochastic 

maps of resistance evolution risk. 

This is the first study that determines the degree of association between herbicide resistance 

and a few important predictors at such a large scale. 

An Italian municipality is a territory with autonomous administration that generally ranges in 

size from 15 to 40 km2 and those included in the analyses are those where rice surface represented 

at least 10% of the total Utilized Agricultural Area (UAA): the municipality level was chosen 

because data about resistance – the benchmark of our analyses – were not available at greater 

detail. 

 

2.1.2. Database building 

For the statistical analyses a unique database was created, where to each municipality included 

in the study was assigned a single value of absence/presence of resistance  – independently from 
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specie or herbicide SoA – the percentage of rice cropping area under crop rotation (RR), the 

percentage of water-seeded (WS) area, the average percentage of sand (PS) and clay in soil (PC). 

These four predictors were chosen on the basis of their importance in the rice area, influence 

on the flora composition and data availability: e.g. herbicide strategy at municipality level was not 

considered among the predictors because data are scant, not homogeneous and generally too 

complex, although herbicide strategy is the first driver for the evolution of resistant population 

(Heap, 2014a; Norsworthy et al., 2012).  

Data on presence/absence of resistance in the rice area were extracted from the GIRE database 

and other resistance studies by the University of Turin, while data on RR and soil texture were 

obtained from Regions’ environmental agencies: Regional Agency of Services for Agriculture and 

Forestry (Ente Regionale per i Servizi all’Agricoltura e alle Foreste, ERSAF) for Lombardy and 

Agriculture Registry Office (Anagrafe Agricola del Piemonte) for Piedmont. Records on WS were 

supplied by the National Rice Agency (Ente Nazionale Risi, ENR).  

 

2.1.2.1 Resistance data  

Since 1997 the Italian Herbicide Resistance Working Group (GIRE, www.resistenzaerbicidi.it) 

has been monitoring, collecting and testing putative herbicide resistant populations nationwide, 

based on farmers and farmers’ advisors complaints of poor herbicide efficacy. All other available 

data on herbicide resistance in Italy was also collected and all populations that were confirmed 

resistant to at least one herbicide through a standardized testing procedure (Panozzo et al., 2015b) 

were included in a national herbicide resistance database. The part of the database relative to the 

populations collected in the main rice producing area in Italy (approximately 200,000 ha, i.e. about 

85% of the total rice growing area) was used as input to produce maps of herbicide resistance 

diffusion using iMAR application (Panozzo et al., 2015a; GIRE, 2018). Maps are obtained by 

changing the color of the territory of the municipalities where at least one confirmed resistant 

population had been recorded. Therefore, municipalities with different numbers of resistant 

populations appear with the same color (Panozzo et al., 2015b). This, together with the nature of 

the monitoring done by GIRE, which is based on (a) end users complaints about herbicide failure 

and (b) priority given to samples collected in municipalities where herbicide resistance had not 



Chapter II – Materials and methods 

41 

previously been reported, makes the output maps “qualitative” because they do not provide 

reliable information on the spread of resistance within each municipality. That is to say that they 

indicate the areas at higher risk of resistance evolution. 

GIRE national rice resistance database was integrated with data provided by the University of 

Turin, where resistance screenings were performed in on 88 Echinochloa spp. populations coming 

from 53 municipalities in the rice area. 

Six weed species have evolved resistance mainly to ALS and ACCase inhibitors: A. plantago-

aquatica (ALSPA), C. difformis (CYPDI), Echinochloa spp. (ECHSS), O. sativa var spontanea (ORYSA), 

S. mucronatus (SCPMU) and C. esculentus (CYPES). The latter was excluded from the analyses 

because only two ALS inhibitors resistant populations were found in 2017 after the conclusion of 

this analyses (Scarabel & Miniotti, 2018). 

A total of 584 populations were included in the initial database, 425 of which were resistant to 

at least one herbicide SoA (Tab. II). 

 

Weed 
Species 

Resistant Susceptib
le 

Total 

ALSPA 66 13 79 

CYPDI 29 32 61 

ECHSS 192 48 240 

ORYSA 57 46 103 

SCPMU 81 20 101 

Total 425 159 584 

Tab. II: Number of populations susceptible or resistant to at least one herbicide for all species involved, which were 
tested for resistance and included in the GIRE database.  

 

From the analyses were first excluded all the municipalities coming from outside the provinces 

of interest. Then data were grouped in order to have only one datum of resistance for each 

municipality independently from the species and SoA. Each municipality was assigned with a value 

of 1, when at least one case of resistance was confirmed independently from the species and the 

SoA and 0 when no case of resistance has ever been recorded: e.g. Bianzè municipality (VC 

province) counted 15 cases of confirmed resistance for Echinochloa spp. for multiple SoA, one for 

A. plantago-aquatica and three for C. difformis, so it was recorded in our database as “resistant 
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municipality” assigning it a value of 1. A second database was then built including only the cases 

of Echinochloa spp. resistance, being this the most important rice weed both in Italy and 

worldwide.  

 

2.1.2.2. Soil data  

It was decided to take into account soil texture in this study because it is a driver in the choice 

of seeding technique and tillage type, which are the main drivers for the composition of the weed 

flora in rice fields: i.e. dry seeded rice – which has a different weed flora from water seeded rice - 

is traditional in sandy soils, where water is not continually available.  

Data about percentage of sand (PS) and clay (PC) in soil were not directly available, but both 

Piedmont and Lombardy region have published open access data regarding soil texture, drainage, 

structure and other soil characteristics in general: data for Piedmont soil are available at 

http://www.regione.piemonte.it/agri/area_tecnico_scientifica/suoli/suoli1_50/carta_suoli.htm, 

while data for Lombardy are published at www.geoportale.regionelombardia.it.  

Data were downloaded as shapefiles: they were merged and transformed into easily workable 

Excel 2013 sheets using QGIS software version 2.14.9, to obtain a single soil database including 

both regions.  

Per each municipality included in the analyses it was reported the number of hectares occupies 

by each type of soil. On the base of this data a “prevalent soil texture” was calculated making a 

weighted average of the different types of soil present in certain municipality, then PC and PS were 

calculated on the prevalent soil texture with the help of a soil triangle available at 

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167 

Considering that the topsoil is the soil part interested by tillage and crop roots, only texture 

relative to this layer was taken into account for the analyses.  

Given the very high correlation between the percentage of sand and silt (r=-0.96), the latter 

was not considered in the analyses. 

  

http://www.regione.piemonte.it/agri/area_tecnico_scientifica/suoli/suoli1_50/carta_suoli.htm
http://www.geoportale.regionelombardia.it/
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167
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2.1.2.3. Water seeding data  

Water seeding data (WS) were provided by ENR already aggregated at municipality level for the 

three year period 2013-2015: they were expressed as hectares of water seeded and dry seeded 

area. An average per municipality on the three years was calculated and then expressed as 

percentage of the total rice area per municipality.  

 

2.1.2.4 Rotation Rate data  

Data on rotation rate (RR) was not directly available and was calculated from the “land use 

database” of the two regions. Data for Piedmont are available on line starting from 2013 on the 

site www.sistemapiemonte.it in the “Data Warehouse” page, while for Lombardy data were 

provided by ERSAF following an official request. Also in this case we had to focus on the three year 

period 2013-2015 since previous years were not available. 

Land use data are detailed at “cadastral plot level”: a cadastral plot is a physically continuous 

piece of territory – of variable dimension- located in a single municipality with a single owner, 

quality and culture class.  

For each municipality the use of each plot in 2013, 2014 and 2015 was compared: each plot 

was considered rotated when at least one out of three years wasn’t cropped to rice. Obviously 

plots never cropper to rice were totally excluded from the analyses. Hectares belonging to rotated 

plots were summed to obtain a single data of rotated area per municipality and transformed into 

percentage of the total UAA.  

All information about R, PS, PC, WS and RR were then put in the final database.  

 

2.1.3 Mapping  

Starting from the GIRE national database on herbicide resistance, descriptive maps were 

produced as graphical support for the statistical analyses. Resistance maps were generated with 

iMAR application (Panozzo et al., 2015a), one pooling all cases of resistance recorded from 1997 

to 2015 for the five rice weeds affected by herbicide resistance (A. plantago-aquatica, C. difformis, 

S. mucronatus, O. sativa f. spontanea and Echinochloa spp.) and another for Echinochloa spp. only. 
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In both maps two areas (S and L) where resistance presence had never been recorded in 20 years 

of GIRE activity were evident.  

Other descriptive maps were created for each of the predictors included in the study using QGIS 

2.14.9 software. Data about PC, WS, PS and RR are continuous and virtually included in a 0-100% 

interval. To create clearly readable maps, data were clustered in 5 classes. WS and RR classes were 

created on a 20% interval base: 0-20%, 20-40%, 40-60%, 60-80% and >80%. For soil, classes 

depended on the concentration of the single element in soil: e.g. clay content ranged from 6% to 

a maximum of 29% so 4 intervals were created: 6-11%, 12-16%, 17-21% and 21-28%.  

 

2.1.4 Statistical analyses 

The use of different statistical approaches, namely discriminant analysis, logistic regression and 

artificial neural network was chosen to improve the robustness of the study.  

Based on different assumptions and offering different solutions these three tests enable the 

quantification of the effect of pedo-climatic and management drivers on agro-ecological systems 

at large scale (Mascanzoni et al., 2018) 

Discriminant and logistic regression analyses were done in parallel. For both tests the stepwise 

backward selection approach of the predictors was adopted: stepwise approach is a method of 

selecting variables to include in the analyses by a series of F-tests. In backward stepwise selection, 

the analyses begins with all candidate factors and – following multiple steps - the variable whose 

loss implicates the least significant deterioration of the model fit is deleted at each step. This 

process is repeated until no further variables can be eliminated without compromising the model 

fit.  

Neural network analysis was done after the results of the first two tests were obtained in order 

to understand the predictive capacity of WS, PC, PS and RR for herbicide resistance evolution.  

All the three analyses were performed twice with IBM SPSS 24 software: first, resistant cases 

of all five weed resistant species pooled together where tested, next resistant cases of Echinochloa 

spp. only were considered. All statistical analyses were performed with the alpha set at 0.05.  
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2.1.4.1 Discriminant analyses 

The stepwise backward discriminant analysis separates objects or observations in classes, or 

allocates new observations in already defined ones. It was first developed by Fisher (1936) and 

was used in multiple fields to separate individuals in the groups they belong to.  

The aim of the analysis was to define the probability of correctly classifying a resistant (1) or 

non-resistant (0) municipality on the basis of WS, RR, PC and PS values.  

The risk prediction model based on discriminant analysis is a process involving two steps: in the 

first one a large database including several training samples is needed to understand the 

relationship between our dependent variable “resistance” (R) and the four defined independent 

variables RR, WS, PC and PS. The second step is the building of the discriminant function to show 

this relationship.  

The statistical function can be expressed as:  

 

𝑅 =  𝛽1(𝑋1) +  𝛽2(𝑋2) +  𝛽3(𝑋3) + 𝛽4(𝑋4) + ⋯ + 𝐶 

 

Where R is the discriminant function score, 𝛽 is the function coefficient, X is the value of the 

independent variable and C is the intercept. In our case, values of R can score only 0 in case of 

non-resistant municipality or 1 in case at least one case of resistance was found in that 

municipality.  

 

2.1.4.2 Logistic regression 

Logistic regression is a model that estimates the probability of a binary response on the basis 

of one or more independent variables: in other words it is used to define the relationship between 

a binary dependent variable and multiple independent variables (Lee, 2005).  

The general equation of logistic regression is:  

 

𝑅 =  𝐶0 + 𝐶1𝑋1 + 𝐶2𝑋2 + 𝐶3𝑋3 + ⋯ 𝐶𝑛𝑋𝑛 
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where x1, x2,…, xn are independent variables and c1, c2,…, cn are the regression coefficients 

estimated in the analyses. R is function of the independent variables: and can take value of 1 in 

case of resistance presence and 0 in case of resistance absence.  

 

2.1.4.3 Neural network approach 

Previously created maps were descriptive and gave important information, but limited to the 

known diffusion of resistance, WS, PC, PS and RR in the municipalities. The next step was to 

generate stochastic maps of herbicide Resistance Evolution Risk (RER) based on the results of 

artificial neural network analyses (NNA).  

To predict the evolution of resistance in a certain context through rigid deterministic models is 

rather difficult as it is an ill-defined and evolutionary phenomenon dependent on many factors. 

For this, an algorithm based model - such as NNA - is more suitable for this type of approach as it 

starts from precise information to tackle an uncertain and complex reality (Gonzalez‐Andujar et 

al., 2016) 

NNA is part of a group of statistical approaches named Soft Computing Techniques or 

Computational Intelligence, which tolerates a certain degree of uncertainty (Das et al., 2013). They 

are designed to mimic biological neural networks with the scope of “learning” how to perform 

different tasks by considering examples: e.g. they can learn to identify images of roses analyzing 

pictures labeled as “rose” and “no-rose”, using the result to identify roses in other images with 

any prior knowledge of them, but automatically generating characteristics from the material they 

process.  

The architecture of a NNA is based on a series of connected artificial neurons, which can receive 

a signal, process it and transmit then the signal to the other artificial neurons also called nodes. 

The connection is performed via coefficients or weights, being therefore numerical. For the 

processing of information, the processing artificial nodes have weighted inputs, transfer functions 

and outputs. NNA can be designed in different ways, but they all are described by the transfer 

function used among nodes, the training type or learning rule and by the connection formula.  

In brief, a NNA consists of a number of input variables and output variables and a certain 

numbers of hidden layers with n nodes (Fig. 12). 
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Fig. 12: Example of a simple neural network Analyses displaying the input data (1), the hidden layers were analyses id 
performed and the output level (0).  
 

For the evaluation of the ability of WS, RR, PS and PC to predict resistance evolution, a feed-

forward “Multi-Layer Perceptron” or MLP model was implemented in IBM SPSS 24 Software using 

as training method the Scaled Conjugate Gradient. MLP is suitable for complex problems as it adds 

more hidden layers, overcoming the drawback of the single layer perceptron. Conjugated gradient 

is suitable for networks with a large number of weights: i.e. big and complex databases where 

input data have big range of values. In particular Scaled Conjugated Gradient does not require line 

search at each iteration step like other conjugate training function, making this algorithm faster 

than others (Sharma & Venugopalan, 2014).  

Both for the analyses of the database of all weeds pooled together and that of Echinochloa spp. 

alone a partition of 7 training and 3 testing was chosen: i.e. 70% of the data were used for training 

step and 30% for testing step.  

As output two additional databases were obtained including a value of RER for each 

municipality. RER was expressed as a number between 0 and 1. It was then transformed into 

percentage: %RER were processed in QGIS software to generate the stochastic maps displaying 

where resistance was more likely to evolve.  

All three statistical tests were performed twice: for all weeds pooled together and for 

Echinochloa spp. alone. 
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2.1.5 Echinochloa spp. random survey 

To verify whether the lack of herbicide resistant weed populations observed in two areas S and 

L (Fig. 13) was an artifact due to the nature of resistance monitoring done by GIRE, a random 

sampling of 20 Echinochloa spp. populations was done in these areas in September 2016. 

A grid of 5x5 km2 was drawn on Echinochloa spp. resistance map and a seed population was 

collected in the rice field closest to each of the nodes of the grid where some Echinochloa spp. 

plants were present (Fig. 13). 

 

 
Fig. 13: map displaying the nodes of the grid for the random sampling in areas S and L. Each black dot represent a 
designed collection point. 

 

Each sample harvested included seeds from at least 5 plants and harvested paddies sized about 

2 ha. Samples from #300 to #310 were collected in area L while those from #311 to #319 came 

from area S. Sampling followed a density structured approach visually assessing the density of 

Echinochloa spp. in the field. Infestation density was divided into four categories: very low: <1 

plant x 500 m-2, low: about 1 plant x 100 m-2, medium: about 1 plant x 10 m-2, high: about or more 

than 1 plant x 1 m-2 (Tab III).  

S 

L 

N 
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All seed samples were then cleaned and dry stored at room temperature (18-20 °C).  

 

Region Area Municipality Pop code Latitude (N) Longitude (E) 

Lombardy L Cilavegna 300 45° 17' 49.00" 8° 45' 57.53"  

Lombardy L Vigevano 301 45° 17' 48.01" 8° 49' 54.23"  

Lombardy L Vigevano 302 45° 17' 46.66" 8° 54' 00.95"  

Lombardy L Mortara 303 45° 15' 12.80" 8° 45' 57.32" 

Lombardy L Gambolò 304 45° 15'11.47" 8° 49' 53.48" 

Lombardy L Borgo San Siro  305 45° 15' 09.25" 8° 49' 00.99" 

Lombardy L Borgo San Siro  306 45° 15' 07.29" 8° 57' 50.66" 

Lombardy L Tromello 307 45° 12' 20.18" 8° 49' 57.79" 

Lombardy L Garlasco  308 45° 12' 17.82" 8° 54' 01.04" 

Lombardy L Garlasco  309 45° 12' 15.55" 8° 57' 52.47" 

Lombardy L Alagna 310 45° 09' 35.65" 8° 53' 59.42" 

Piedmont S Villata 311 45° 23' 21.4" 8° 27' 01.26" 

Piedmont S Borgo Vercelli  312 45° 20' 37.36" 8° 30' 33.84" 

Lombardy S Palestro 313 45° 17' 51.58" 8° 30' 32.49" 

Lombardy S Rosasco  314 45° 17' 50.53" 8° 34' 10.17" 

Piedmont S Pezzana 315 45° 15' 18.22" 8° 30' 30.94" 

Piedmont S Caresana 316 45° 12' 30.32" 8° 30' 29.41" 

Lombardy S Candia Lomellina 317 45° 09' 47.51" 8° 34' 07.94" 

Piedmont S Ticineto 318 45° 07' 03.08" 8° 34' 07.12" 

Lombardy S Breme 319 45° 16' 55.19" 8° 38' 55.19" 
Tab. III: scheme of calculated latitude and longitude for the random sampling, for each population are reported region, 
sampling area (S for Sesia or L for Lomellina) and municipality of collection. 

Two whole-plant resistance screenings were then performed in greenhouse conditions: first in 

autumn 2016 (A) and repeated in spring 2017 (S). Seeds were chemically scarified for twenty 

minutes in sulfuric acid (96%) and then carefully rinsed with cold water. They were then placed in 

plastic boxes containing Pot Grown H peat (Klasmann Deilmann GmbH) and stored in a 

germination cabinet at 26/16 °C (day/night) under neon tubes providing a Photosynthetic Photon 

Flux Density (PFFD) of 15-30 µmol m-2 s-1 with a 12-hour photoperiod. 

At one leaf stage seedlings were transplanted into pots of 18 cm of diameter with standard 

potting mix (60% silty loam soil, 15% sand, 15% perlite, 10% peat) and placed in a greenhouse, 

with temperature ranging between 15-19 °C at night and 26-33 °C during the day. Light was 

supplemented using 400 W metal-halide lamps, which supplied about 450 µmol m-2 s-1 with a 16-

hour photoperiod. 
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All populations were tested for resistance to both ALS- and ACCase-inhibiting herbicides: 

penoxsulam (Viper®, Dow Agrosciences, Bologna, Italy), imazamox (Beyond®, BASF, Milano, Italia), 

cyhalofop-butyl (Clincher One®, Dow Agrosciences Bologna, Italy) and profoxydim (Aura®, BASF, 

Milano, Italia). Both imazamox and profoxydim were used along with the recommended surfactant 

Dash HC (methyl-palmitate and methyl-oleate, BASF, Milano Italia) at 0.5% concentration and 0.9 

L ha-1, respectively (Tab. IV). For both experiments the experimental design was a randomized 

complete block with three replicates, each replicate was represented by one single pot. Each pot 

counted 7 plants.  

 

Site of 
Action 

Commercial 
product 

Active Ingredient  
(g L-1) 

Surfactant  
(% or L ha-1) 

Field Dose (1x) Treatment 
timing 

Rates  

mL ha-1 A S 

ACCase 
inhibitors 

Aura 
profoxyidim Dash HC 

500 
2-3 leaves 

stage 
1x, 3x 1x 

200 0.9 

Clincher One 
cyhalofop-butyl 

 
1500 

2-3 leaves 
stage 

1x 1x 
200 

ALS 
inhibitors 

Beyond 
imazamox Dash HC 

900 
2-3 leaves 

stage 
1x, 3x 1x, 3x 

40 0,5% 

Viper 
penoxsulam  

  
2000 

2-3 leaves 
stage 

1x, 3x 1x, 3x 
40 

Tab. IV: Details of herbicides treatments used in autumn (A) and spring (S) experiment. For each treatment are 
displayed the timing of application and the rates used: 1x indicated the field dose, 3x indicates three times that. 

 

One known susceptible checks (07-16L) was included in the experiments. ALS-inhibiting 

herbicides were applied at two doses, the recommended field dose (1x) and three times that (3x). 

For ACCase-inhibiting herbicides it was decided to apply only the 1x recommended field dose for 

cyhalofop-butyl, while profoxydim was applied at 1x and 3x in the A experiment and 1x only in the 

S experiment. This decision was taken after the analyses of the results of the first test.  

Application was performed when plants had reached 2-3 leaf stage (BBCH 12-13, Hess et al., 

1997), using a precision bench sprayer delivering 300 L ha-1, at a pressure of 215 kPa and a speed 

of 0.75 m s-1, with a boom equipped with three flat-fan (extended range) hydraulic nozzles (TeeJet, 

11002). For each population one untreated check was included. Plant survival and shoot fresh 

weight were recorded 4 weeks after treatment (WAT) and expressed as percentage of the 
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untreated check (S). Plants were considered dead when they did not show any active growth, 

regardless of their color. Also completely dead plants were weighted and the real weight, even 

when negligible, was recorded. Standard error (SE) was calculated per each mean value.  

Populations were then divided into 4 categories: S when less than 5% of plants survived the 1x 

dose, SR when survival at 1x dose ranged between 5% and 20%, R when survival at 1x was >20% 

and RR when >10% of plants survived the 3x dose and >20% the recommended field dose (Panozzo 

et al., 2015b; Sattin, 2005). 

To test whether the two experiments could be pooled Levene’s test for variance homogeneity 

was performed.  

 

2.2 Echinochloa spp. case study  

 

2.2.1 Seed samples collection and morphological classification on original accessions.  

At the end of September 2015, at Echinochloa seeds maturity, but before the plants scatter on 

the ground, two Echinochloa spp. seed samplings were performed in six rice fields of the Vercelli 

province where penoxsulam is still effective in controlling this weed. Seeds were collected from 

single plants to make sure that each accession included only one species of Echinochloa. Forty 

plants were sampled and a first rough morphological classification on the base of Pignatti (1982) 

and Carretero (1981) classification keys was performed on field, on the base of the parameters 

listed in the two keys.  

Seeds collected from each plant were put in paper bags and coded with two ciphers: the first 

cipher indicating the field of origin, the second one was a progressive cipher indicating the order 

of the sampling: e.g. accession #34 mean field 3 plant 4.  

Seeds were transported to the greenhouse of the Institute of Agro-environmental and Forest 

Biology (IBAF) - CNR located into the “Azienda Agricola Sperimentale L. Toniolo” in Legnaro (PD), 

Italy (45° 21' N, 11° 58' E) where all the experiments were carried out, let dry at room temperature 

(18-20 °C), cleaned and stored in paper bags in a dark room at 4 °C.  

For each plant collected, five seeds were then classified according to Costea & Tardif (2002) 

dichotomous key. The following parameters were taken into consideration: spikelet shape, length 
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(SL) and width (SW), awn presence, lower glume length (GL), lower glume / spikelet length ratio 

(GL/SL), caryopsis shape, length (CL) and width (CW), embryo shape and stigmas presence. 

Analyses were carried out using a binocular microscope supporting a camera (Leica). Photos of 

whole seeds and caryopsis without the glumes were taken and the different parameters were 

measured on the pictures using the Leica Application Suite (LAS) Software Version 4.9.0. 

SL and SW were measured without considering the awn or the mucrone, which length was too 

variable to be considered and usually not indicative for species classification. Then awn presence 

and GL were recorded and GL/SL ratio was calculated.  

With the aid of a tweezers, seed glumes and lemmas were eliminated from each seed in order 

to measured CL and CW. Caryopsis shape and embryo and scutellar region shape were visually 

analyzed and classified.  

All measures taken were expressed in millimeters.  

 

2.2.2 Preliminary screening  

A preliminary screening on thirty seven single plants accessions collected in the fields was 

performed in November 2015 to test their susceptibility to penoxsulam, the main ALS inhibitor 

used in Italian rice fields. Three accessions were excluded as harvested seeds did not germinate or 

the quantity of mature seed provided by panicles was too small.  

Scarification was performed by soaking 0.5 g of seeds per accession in concentrated sulphuric 

acid (96%) for twenty min. Acid was then removed and seeds were thoroughly rinsed under 

running cold water to stop the reaction and eliminate any trace of acid, which permanence on 

seeds might foster the appearance of molds, thus inhibiting germination.  

Seeds were hence moved into plastic boxes containing Pot Grown H peat (Klasmann Deilmann 

GmbH) and stored in a germination cabinet at 26/16 °C (day/night) under neon tubes providing a 

Photosynthetic Photon Flux Density (PFFD) of 15-30 µmol m-2 s-1 with a 12-hour photoperiod.  

After one week, when seedlings have reached 1 leaf stage, they were transplanted into pots 

with standard potting mix (60% silty loam soil, 15% sand, 15% perlite, 10% peat) and placed in 

greenhouse, with temperature ranging between 15-19 °C at night and 26-33 °C during the day. 

Light was supplemented using 400 W metal-halide lamps, which supplied about 450 µmol m-2 s-1 
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with a 16-hour photoperiod. The experimental layout was a completely randomized block with 

four replicates of six plants each. 

When plants have reached 2-3 leaves stage (BBCH 12-13, Hess et al., 1997), they were sprayed 

with penoxsulam at the recommended field dose (1x) of 2 L ha-1 (Viper®, 20 g L-1, Dow 

Agrosciences, Bologna, Italy) using a precision bench sprayer delivering 300 L ha-1, at a pressure of 

215 kPa and a speed of 0.75 m s-1, with a boom equipped with three flat-fan (extended range) 

hydraulic nozzles (TeeJet, 11002). For each population, an untreated control was included.  

Plant survival and the Visual Estimation of the Biomass (VEB) were recorded four weeks after 

treatment (WAT). The efficacy of the treatment was evaluated using a susceptible check. Plants 

were considered dead when they showed no active growth independently from the color or size. 

Plant survival was calculated as percentage of the untreated control and VEB was determined 

assigning a score ranging from 0 to 10 to each replicate: 0 when all plants were dead, 10 when the 

plant growth was comparable to the untreated control.  

Accessions were then ascribed to three categories: susceptible (S) when less than 5% of plants 

survived the treatment, moderately resistant (SR) when 5% to 20% survived, resistant (R) when 

more than 20% of plants survived the treatment (Panozzo et al., 2015b).  

Penoxsulam screening was then repeated on these accessions in September 2016.  

 

2.2.3 Accessions reproduction  

On the base of the results of the preliminary screening and morphologic species classification 

(at whole plant and seed levels), in order to obtain a larger quantity of seeds for further 

experiments, ten accessions of Echinochloa spp. were chosen to be reproduced in semi-controlled 

conditions.  

As all accessions classified as E. crus-galli provided small quantity of seeds or had very poor 

germination rates none of them was reproduced.  

For each population 0.5 g of seeds were chemically scarified and put to germinate following 

the procedure described in section 2.2.2. When seedlings have reached one leaf stage they were 

transplanted into pots containing standard potting mix. For each accession 18 pots were 

considered, each pot containing 3-4 plants. They were placed in semi-controlled conditions in a 
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tunnel covered with a black thin net to provide protection against excessive solar radiation and 

other adverse meteorological events such as strong rain or hail, than might harm the regular plant 

growth during summer. An irrigation system maintained the water content of the soil substrate in 

optimal conditions. When plants reached tillering stage they were fertilized with ammonium 

nitrate (Yara, N 27.8%, nitrate 13.9%, ammonium 13.9%). Two plants per pot were eliminated five 

weeks after transplant. One week later, each population was covered with non-woven fabric to 

prevent cross-pollination, thus preserving genetic purity (Fig. 14).  

Mature seeds were collected in August and placed at room temperature for one week, then 

placed in paper bag in a dark room at 4 °C to ensure an optimal conservation.  

From one week after transplant until seed maturity regular visual assessment were performed 

each 10-14 days to record the morphological characteristic of each accession according to Pignatti 

(1981), Tabacchi et al. (2006) and Costea & Tardif (2002) classification keys and proceed with a 

more accurate morphologic classification than the first done at field level.  

To distinguish the original seed stocks from the reproduced ones, new codes were assigned to 

the accessions formed by the year of the reproduction (i.e. 16) and the code originally assigned to 

the accession: e.g. 16-41. 

 

Fig. 14: isolating cages used to prevent cross-pollination in reproduced accessions. In the back it is visible a detail of 
the black net used for protection of plants.   
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2.2.4 Collaboration with the Meise Botanic Garden (Belgium) 

Objective of this cooperation was to improve our skills in species discrimination with the 

support of Ivan Hoste and Philipp Verloove.  

For each reproduced accession 200 seeds were sent to the Meise Botanic Garden and 

reproduced in their greenhouse. Seeds were scarified according to the already described protocol, 

pre-germinated in a germination cabinet and four seedlings per accession were transplanted in 

pots and placed in the greenhouse in April 2018. During daytime, water was provided every two 

hours for 5-10 min. Temperature in greenhouse was not controlled, but in hotter days a black net 

was mounted over the greenhouse to provide protection against high temperatures and solar 

radiation.  

One single evaluation on plant phenotypic characteristics was performed in August 2018, when 

plants had reached maturity.  

 

2.2.4.1 Analyses of morphological data  

Characteristics of plants reproduced both in Belgium and in Italy were analyzed.  

It was not our intention to create a new classification key for Echinochloa spp., but to find a 

match between the morphological characterisation and molecular marker discrimination of our 

accessions. Qualitative parameters assessed on plants and relative scores assigned are 

summarized in Tab. V.  

 

Morphological traits 1 3 5 

Basal stem color Green Pink Red/purple 

Nodes color Green Pink Red/purple 

Panicle bearing Upright Bending Nodding 

Secondary Branching Yes  No 
Awns Numerous Occasional Abstent 

Max length of the awn (mm) 5 5-11 >11 

Leaf Sheath Hairy Yes Few No 

Collar zone hairy Yes Few No 

Blade Hairy Yes Few No 

Base of blade with hairs on the border Yes Few No 

Different color border and midrib Yes   No 
Tab. V: list of morphological traits analyzed in plants: for each category a score of 1, 3 or 5 was given to each 
parameter. 
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For color of the base of the stems and of nodes a scale from 1 to 5 has been used: a score of 1 

was given in case of green color and 5 in case of red/purple pigmentation. Panicle bearing, 

presence of awns and their maximum length were divided into three categories. For each 

characteristics recorded a score of 1, 3 or 5 was given as reported in the column headers of Tab. 

V. Scores of 2 or 4 were given in case of intermediate characteristics: e.g. an accession with a 

bending-nodding panicle bearing would receive a score equal to 4. Results were recorded in an 

Excel form (data not shown).  

Different parameters of spikelets and caryopsis were analyzed with a binocular and measures 

were taken both for populations grown in Belgium and in Italy. Measures were taken in mm. Five 

seeds per accession were analyzed and results were then mediated within each accession. 

Parameters took into account were (Fig. 15):   

 Upper glume length 

 Fertile lemma length 

 Sterile lemma length = spikelet length  

 Spikelet width 

 Lower Glume Length 

 Spikelet/Lower Glume Ratio 

 Caryiopsis length 

 Caryiopsis width 

 Embryo ratio considering scutellar zone 

 Embryo ratio not considering the scutellar zone 

 

In Costea & Tardif (2002) it was not described whether the embryo/caryopsis ratio was 

calculated considering the scutellar region or not, so this ratio was calculated twice: the first one 

considering the length of the embryo with the scutellar region, the second not taking it into 

account.  

Results of morphological analyses were then compared with Costea & Tardif (2002), Pignatti, 

(1982) and Tabacchi et al. (2006) dichotomous keys, in order to obtain a reliable classification of 

our accessions. 
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Fig. 15: Echinochloa spp. spikelet sections used in the morphological classification.  

 

2.2.5 DNA barcoding  

Based on the first morphological characterization (see section 3.2.1 for results) and the results 

of the preliminary screening, 17 susceptible accessions were chosen for the DNA barcoding.  

The youngest leaf tissue was collected from one or two plants of each accession: for the nine 

accessions for which the different classification keys used were consistent, two leaf samples 

(named “a” and “b”) were collected. For the remaining accessions the different classification keys 

gave conflicting indications, therefore only one leaf sample was collected in order to make a 

secondary classification based on the DNA barcoding.  

 

2.2.5.1 gDNA extraction  

Genomic DNA (gDNA) was extracted from plants of the untreated control used in the 

preliminary screening following the protocol developed by Doyle & Doyle (1987) with some 

modifications. One leaf tissue was grinded with liquid nitrogen using a mortar and a pestle, the 

grinded material was transferred into 1.5 mL collection tubes, before tissues thawed and 600 µL 
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of CTAB buffer [20 g citrimonium bromide (CTAB), 200 mL Tris-HCl 1M (pH 7.5) final concentration 

200 mM, 40 mL ethylenediaminetetraacetic acid (EDTA) pH 8 final concentration 20 mM, 81.8 g 

NaCl] pre-heated at 60 °C were added. Tubes were incubated for 30 min at 60 °C. 600 µL of 

chloroform-isoamyl alcohol (24:1 V/V) were added to the mixture, in order to separate the nucleic 

acids from the other tissue components, tubes were mixed by inversion and centrifuged at 10,000 

rpm for 15 min at room temperature (18-20 °C).  

Surfactant was collected and transferred in a new 1.5 mL tube, 1.2 µL of RNAase (A) were added 

and tubes were incubated at 37 °C for 30 min. DNA was then precipitated adding 400 µL of cold 

isopropanol and centrifuged at 10,000 rpm at 4 °C for 20 min. Surfactant was discarded and DNA 

pellet was washed with 200 µL of ethanol 70% and centrifuged at 10,000 rpm at 4 °C for 5 min. 

Surfactant was again discarded and pellet was dried at room temperature to eliminate any ethanol 

residue. DNA was then suspended in 30 µL of double distilled water (ddH2O).  

Concentration and quality of DNA was determined using Nano Drop spectrophotometry 

(Applied Biosystems) evaluating the absorbance at the wavelengths of 260 nm, 280 nm, 320nm 

and the different ratios. Each sample was diluted with ddH2O to reach the final concentration of 

100 ng µL-1 and then stored at -20 °C for following uses.  

 

2.2.5.2 cpDNA genes amplification and sequencing 

Genes used for DNA barcoding approach were chosen on the base of literature: matK, rbcL 

supported by the intron psbA – trnH are considered as the most reliable DNA regions for this 

approach (CBOL Plant Working Group, 2009; Chase et al., 2007; Hebert et al., 2003; Hilu & Liang, 

1997) in plant science. trnL was already used in Echinochloa spp. to discriminate among E. crus-

galli and E. oryzicola in Japan (Yamaguchi et al., 2005). ITS was chosen as “complementary” to the 

other genes (White et al. , 1990). 

Finally four genes (matK, rbcL, ITS and rbcL) and one introns (psbA-trnH) of the cpDNA were 

taken into account and analyzed on the plants of the nine accession for which the different 

classification keys used were consistent.  

The vouchered nucleotide sequences already available for any Echinochloa species in the main 

DNA sequences databases: i.e. GenBank nucleotide (www.ncbi.nlm.nih.gov) and Barcode of Life 
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Data Systems (Ratnasingham & Hebert, 2007; www.boldystem.org) were downloaded and aligned 

in order to design some primers for the amplification of the different DNA sequences. Many 

sequences were available for rbcL, matK and psbA-trnH and specific primers could be designed on 

conserved DNA regions. For ITS and trnL, some primers were already available in the literature: 

White et al. (1990) for ITS, Yamaguchi et al. (2005) and Drábková et al. (2006) for trnL (Tab. VI).  

Alignment and primer design was performed with MEGA 6 software. Primers were then 

analyzed for complementarity, presence of hairpin and self-dimerization using OligoAnalyzer 3.1 

(http://www.idtdna.com/calc/analyzer) and synthetized by Invitrogen.  

 

Primer name Primer sequence (5'-3') Amplicon size 
(bp) 

Ta 
(°C) 

te 
(s) 

Reference 

psbA-trnH_F GTA ATG CTC ACA ACT TCC CTC TA 

592 58 40 

HQ600068, 
FJ766205, 

KR048637 , 
KR048634 

psbA-trnH_R GCT GGA TAA GGG GCG GAT GTA 

matK_F1 AAT GGT GCC GAA CCT GTG GAA A 

1257 56 80 

KF010243, 
KF010243, 
KR058325, 
KC164269 

matK_R3 ATG CAA CGA TTA GGT TCC GTA 

rbcL_F1 GCA GCA TTC CGA GTA ACT CCT CA 

1093 60 80 

KF163507, 
KF163509, 
KT365290, 
KR058324 

rbcL_R2 TTG GTG GAG GAA CTT TAG GAC ATC 

ITS1 TCC GTA GGT GAA CCT GCG G 
800 56 60 

White et 
al., 1990 ITS2 GCT GCG TTC TTC ATC GAT GC 

trnC CGA AAT CGG TAG ACG CTA CG 
600 57 60 

Yamaguchi 
et al., 2005 trnD GGG GAT AGA GGG ACT TGA AC 

Tab. VI: list of primers used to amplify different DNA regions, their sequences, amplicon size produced, annealing 
temperature (Ta) and extension time (te) used in the PCR amplification process. In the last column the reference 
where the primers are present or some GenBank and BOLDsystem identification codes (vouchers) of sequences 
used for primers design were reported for example.  

 

PCR amplification was conducted using the GoTaq® G2 Hot Start Polymerase (Promega) in a 25 

µL final volume mixture including 5 µL 5x Go Colorless Taq Flexi Buffer, 2.5 µL MgCL2 25 mM, 0.5 

µL dNTPs mix 10 mM, 1 µL of forward (F) and reverse (R) primer, 0.2 µL GoTaq® G2 Hot Start 

Polymerase and 100 ng gDNA.  

http://www.idtdna.com/calc/analyzer
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PCR reaction was conducted in a T1 Thermocycler (Biometra) using the following program: DNA 

denaturation for 2 min at 95 °C, 35 cycles with 30 s at 95 °C, 30 s at the specific annealing 

temperature (Ta), and 72 °C for the specific extension time (te), a final extension step at 72 °C for 

5 min. PCR products were analyzed in 1% agarose gel.  

Amplicons obtained were purified using the NucleoSpin® Gel and PCR Clean-up kit (Macherey-

Nagel), quantified using the UVI-1D software (Uvitech, Cambridge) and sequenced using both F 

and R primers by BMR genomics (Padova, IT). Sequences were analyzed with Finch TV 1.4.0, 

consensus sequences were built using SeqMan software included in the package DNASTAR® and 

aligned to be compared with MEGA 6® Software. UPGMA dendrograms were built to clustering 

data.  

Following the cooperation with the Meise Botanic garden (Meise, Belgium), 14 accessions of E. 

crus-galli and E. muricata from Belgium maize fields were included in the study. Phenotypic 

classification (Tab. VII) of these accessions was performed by Ivan Hoste and Philipp Verloove 

according to I. Hoste dichotomous key (2004). gDNA was extracted from two plants for each 

accession, matK, rbcL and psbA-trnH were amplified as described above, sequenced and 

compared both with sequences downloaded from GenBank and Boldsystem and the Italian 

accessions ones. 
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Herbarium 
 I. Hoste Location Taxon Details 

17015 Bellem (Aalter) E. crus-galli Plant multistemmed, stems ascending 

17016 Zomergem E. muricata var. microstachya Plant multistemmed, stems straight 

17017 Zomergem, E. crus-galli Plant multistemmed, stems straight 

17018 
Merendree 

(Nevele) 
E. muricata var. wiegandii Plant multistemmed, stems straight 

17019 Ursel (Knesselare) E. muricata var. microstachya Plant multistemmed, stems straight 

17020 
Knesselare, 
Berglanden 

E. crus-galli 
Plant(s) high and multistemmed, stems straight 
and up to 190 cm, inflorescences upright, lower 
branches of the inflorescence in whorls 

17021 
Knesselare, 
Driepikkel 

E. muricata var. microstachya 
Inflorescences deep purple; plants usually not 
with multiple stems; stems straight 

17022 Aalter E. muricata var. wiegandii Plant multistemmed, stems straight 

17023 Aalter E. crus-galli (cf. var. praticola?) 
Plant multistemmed, stems straight; 
inflorescences upright and protruding well 
above the uppermost leaf 

17024 Aalter E. crus-galli 
Plant multistemmed, high (up to 200 cm), 
green, with no tinge of purple; stems straight; 
inflorescences strongly curbed 

17027 Nevele E. crus-galli 

Plant multistemmed, with straight stems and 
upright inflorescences; plant collected from the 
outer border of the maizefield; similar looking 
plants growing a little further away from the 
border of the field seem to differ only in being 
usually single-stemmed 

17028 Nevele E. crus-galli 
Rather small, multistemmed plant(s) with 
ascending stems, inflorescences very dark and 
somewhat curbed 

17029 Ursel (Knesselare) E. crus-galli 
Rather small, multistemmed plant, 
inflorescences rather upright 

17030 Aalter E. crus-galli 
Often small plant(s), [the collected specimen 
relatively large!], with dark and strongly curbed 
to drooping inflorescences 

Tab. VII: Morphological classification performed on the 14 accessions of E. crus-galli and E. muricata collected in 
Flanders (Belgium) corn fields.   
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2.2.6 Specie specific PCR 

Sequences obtained from matK analysis highlighted the presence of SNPs able to discriminate 

between different “white” Echinochloa species also providing the best match with phenotypic 

classification. Therefore, it was chosen for the set-up of a Specie-Specific (SS) – PCR protocol able 

to discriminate among three different Echinochloa species: E. oryzicola, E. phyllopogon and the 

“unclassified SE” Echinochloa.  

Specie-specific (SS) forward primers were designed to match the two SNPs found. Different 

mismatches were inserted at the 4th and 3rd position from the 3’-end to improve specificity (Taylor, 

1997; You et al., 2008). The reverse primer SS-R was designated to be universal for each 

Echinochloa species (Tab. VIII).  

 

Primer Nucleotide position Primer sequence (5'-3') 

F1_ERE 141 TAT CCA TTT AGA AAT CCT GAT T 

F3_ERE 141 TAT CCA TTT AGA AAT CCT TGTT 

F4_ERE 141 TAT CCA TTT AGA AAT CCT GTTT 

F1_SE 246 GTC TTA TTA CTT CAA TGA AAG CC 

F3_SE 246 GTC TTA TTA CTT CAA TGA ACT CC 

F4_SE 246 GTC TTA TTA CTT CAA TGA AAC CC 

SS_R 368 CTT CTT GCT TAC GAT TAA CAT C 
Tab. VIII:  SS-PCR primers sequences. In bold the mismatches inserted to improve the specificity. 

 

The SS specific F_ERE and F_SE forward primers have been used in combination in the same 

PCR reaction with the common reverse primer (SS-R) to obtain an amplicon of 248 bp for the 

samples attributable to E. oryzicola species, or an amplicon of 144 bp for the samples attributable 

to the “unclassified SE” Echinochloa or no amplicons for the samples attributable to E. phyllopogon 

(Fig. 16). 
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Fig. 16: Scheme of the SS-PCR showing position of the designed primer for species discrimination and the length of 
the amplicon expected. 

 

PCR amplification was conducted using the Go Taq® G2 Hot Start DNA Polymerase (Promega) 

in a final volume of 25 µL including  5 µL of 5X Colorless Go Taq® Flexi Buffer, 1.5 µL MgCL2 25 mM, 

0.5 µL of both forward primers, 1 µL of SS-R primer, 0.5 µL dNTPs 10 mM, 50 ng gDNA.  

PCR reaction was performed in the T1 Thermocycler (Biometra) following the program: 2 min 

at 95°C for DNA denaturation, 35 cycles with 30 s at 95 °C, 30 s at 52 °C and 30 s at 72 °C, and a 

final extension time of 5 min at 72 °C. PCR products were analyzed in 1% agarose gel. 

 

2.2.7 Herbicide efficacy on different Echinochloa species 

The last step of the analyses was to verify whether different Echinochloa species had a different 

response to the most used herbicides in Italian rice fields. For this reason two dose-response (DR) 

pot experiments, following a greenhouse probe, were carried out in 2017 and 2018. The first was 

done in summer 2017 in semi-controlled conditions (outodoor), the second was done in spring 

2018 in the IBAF-CNR greenhouse. The decision to perform two different studies at two different 

conditions, was driven by the necessity to understand the different behavior of Echinochloa spp. 

toward herbicides in different conditions.  

Three herbicides with different SoA were included in the experiment: penoxsulam, cyhalofop-

butyl (two of the most used herbicides in rice in Italy) and a new herbicide, with an alternative 

SoA, developed by Dow Agrosciencies: florpyrauxifen-benzyl (Rinskor® Active) (Tab. IX).  
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Commercial  
name 

Active ingredient Field dose (1x) 

Chemical family SoA 
HRAC 
group (g L-1) (mL ha-1) 

Viper®  
Penoxsulam 

2000 Triazolopirimidines 
ALS  

inhibitor 
B 

(20) 

Clincher One® 
cyhalofop-butyl 

1500 Arilossifenossipropionate 
ACCase  

inhibitor 
A 

(200) 

Rinskor® Active 
florpyrauxifen - benzyl 

1200 Arilpicolinates Synthetic  
Auxin 

O 
(25) 

Tab. IX: Details of herbicides used in preliminary screening and dose-response experiments. 

 

2.2.7.1 Greenhouse preliminary screening 

A preliminary screening was conducted in greenhouse conditions in spring 2017 to understand 

which populations had to be included in the DR experiments and choose the correct range of doses 

for the three herbicides. All the 10 reproduced accessions were included in the experiment, 

together with E. crus-galli 15-12 and 15-9.  

Seeds were scarified and germinated as described in section 2.2.2. Seedlings were transplanted 

in pots, each one containing six plants.  

The experimental design was a randomized complete block with three replicates, each replicate 

composed by a single pot. 

It was decided to try different doses for the three active ingredients to have a preliminary 

understand of each herbicide performance: both cyhalofop–butyl and florpyrauxifen–benzyl were 

used at 1/4x, 1/2x and 1x of the field dose. As penoxsulam have already been tested twice on 

these accessions, the performance of 1x dose (40 g a.s. ha-1) was already known. This dose was 

then excluded from the analyses to focus on the behavior of lower doses: i.e. 1/8x, 1/4x and 1/2x. 

Plants were sprayed when they have reached 2-3 leaves stage (BBCH 12-13, Hess et al., 1997). 

For each accession in the study an untreated control was included.  

Plant survival and fresh weight were recorded 4 WAT. Plants were recorded as dead when they 

show no active growth independently from size and color. Results of both survival and fresh weight 

were expressed as percentage in comparison with the untreated control.  
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2.2.7.2 DR experiments design 

On the base of the probe experiment and of both genetic and morphologic classification, nine 

Echinochloa spp. accessions were chosen for the two dose-response experiments. 

In both experiments the same herbicides were used: penoxsulam, cyhalofop-butyl and 

florpyrauxifen-benzyl. The experimental design was a randomized complete block with three 

replicates with six plants each.  

Scarification, germination and herbicide treatments were performed as explained in the section 

2.2.2. After germination, seedlings were placed outside in semi-controlled environment in 2017, 

while in greenhouse conditions in 2018 experiment. 24h before herbicide application, pots were 

irrigated to reach soil maximum capacity. Spraying was carried out when leaves were dry.  

Herbicides were applied at eight geometrically progressive doses: 2017 experiment doses were 

chosen on the base of probe screening results, while those for 2018 test were chosen on the base 

of 2017 results (Tab. X).  

 

Experiment herbicide 1/32x 1/16x 1/8x 1/6x 1/4x 1/2x 1x 2x 4x 

Outdoor 
2017 

penoxsulam X X X  X X X X X 

cyhalofop butyl  X X X X X X X X  

florpyrauxifen - 
benzyl 

X X X X X X X X  

Greenhouse 
2018 

penoxsulam X X X  X X X X X 

cyhalofop butyl  X X X  X X X X X 

florpyrauxifen – 
benzyl 

X X X  X X X X X 

Tab. X : range of doses of the herbicides used in the outdoor experiment in 2017 and greenhouse experiment in 2018.  

Plant survival and fresh weight were recorded 4 WAT for cyhalofop and penoxsulam and 5 WAT 

for florpyrauxifen-benzyl.  
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2.2.7.3 Statistical analyses 

Plant survival and fresh weight were calculated as percentage of the untreated control and SE 

were calculated as mean of the three replicate for each herbicide dose considered. It was 

performed a non-linear regression based on the log-logistic equation (Seefeldt et al., 1995) to fit 

the data:  

𝑌 = 𝐶 +
(𝐷 − 𝐶)

1 + (
𝑥

𝐸𝐷50
)𝑏

 

 

Where Y is the value of survival or fresh weight, C and D are respectively the lower and upper 

asymptote at the highest and lower dose, ED50 (or GR50) is the dose giving 50% of response, x is 

the herbicide dose and b is the slope of the curve.  

The higher asymptote of the regression curve was constrained to 100, 100% of plant survival 

and fresh weight is in fact the value corresponding to the untreated control. The lower asymptote 

was left not constrained, it was constrained to 0 only when it resulted negative.  

The data of both plant survival and fresh weight were first analyzed separately as single curve 

to estimate the parameters for each herbicide and accession. For the 2018 experiment, accession 

belonging the same species were regressed together first: the most complex model (i.e. the one 

with no common parameters) was compared with progressively simplified models that have 

common parameters among curves. The lack-of-fit F test was performed at each step, stopping 

when a significant lack of fit occurred (Onofri & Pannacci, 2011). This procedure is performed to 

understand whether different curves have equal ED50 (or GR50). In the latter case, only this 

parameter is used to explain the response of two or more accessions to a single herbicide. This 

type of analysis was not performed for summer 2017 trial, due to extreme variability of the results.  

All analyses were performed using the macro BIOASSAY® (Onofri, 2004) running in Windows 

Excel® environment.  
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3.1 Epidemiology of herbicide resistance in rice in Italy 

 

3.1.1 Database analyses  

The initial database includes 232 municipalities with an average area of 19 km2.  

Lombardy’s territory is more fragmented: i.e. it contains more municipalities with a smaller size 

compared to Piedmont (16 km2 vs 22 km2). 

The largest rice area is in Pavia province with about 80,000 ha cropped to rice (54% of the total 

UAA) and Vercelli with 67,000 ha (66% if the UAA) (Tab. XI).  

 

Province 
Municipalities  

(N) 
Area  
(km2) 

UAA  
(ha) 

Rice area  
(ha) 

Rice 
(% of UAA) 

MILANO 28 378 45,745 27,339 59.8 

PAVIA 102 1,707 148,348 80,517 54.3 

ALESSANDRIA 11 244 15,774 10,723 68.0 

BIELLA 9 157 22,438 13,860 61.8 

NOVARA 33 718 51,088 31,781 62.2 

VERCELLI 49 1,132 70,852 46,948 66.3 

Tab. XI: number of municipalities per province with the total area covered, the total UAA and the area cropped to rice 
expressed both in ha and as percentage of UAA. 

 

Of the 232 municipalities included in the dataset, in 115 (49.6%) of them at least one resistant 

population was found (GIRE, 2018). Considering only Echinochloa spp. there were 78 

municipalities (33.6%) where resistance had previously been confirmed. 

While over 60% of Piedmont municipalities has developed at least one resistant population, 

only 40% of the Lombardy municipalities did. Though widespread it appears that resistance is not 

evenly distributed in the study area.  

By using the dynamic mapping system available on the Italian Herbicide Resistance Working 

Group website (GIRE, 2018), it appeared that herbicide resistance in rice did not evolve evenly 

within the study area as it had not been reported in two relatively large pockets (Fig. 17, areas S 

and L) regardless of weed species or type of resistance. A non-homogeneous distribution of 

resistant populations was made clear both with all weeds (Fig. 17A) and with Echinochloa spp. only 

(Fig. 17B). 
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Fig. 17: Map of all resistant cases (A) and Echinochloa spp. only resistant cases (B) recorded in the rice area: two 

“resistance free” areas are evident: one (L) in Pavia province and a second (S) along the Sesia river. A municipality 

changes color when at least one population has been confirmed resistant in its territory. Different colors refer to 

resistance to herbicides with different site of action. Available online: www.resistenzaerbicidi.it (accessed on: 21st July 

2018). 

http://www.resistenzaerbicidi.it/
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Area S, covers approximately 330 km2 and is located in the North-West of the study area along 

the Sesia, a river Po tributary, which flows on the border between Piedmont and Lombardy. Area 

L is in Pavia province, specifically in the center of an area called Lomellina and covers about 420 

km2.  

 

3.1.2 Discriminant analysis and logistic regression 

Descriptive maps were produced with QGIS software, showing the distribution and frequency 

of percentage of clay (PC), percentage of rotation rate (RR) and percentage of water seeding (WS) 

in each municipality in the study, also providing graphic support to the two statistical tests – 

namely discriminant and logistic regression – used for the correlation analyses (Fig. 18 a, b and c). 

Stepwise discriminant analysis including all weeds eliminated PS at the third step of the analysis, 

while for Echinochloa spp. only WS was retained after the first step. Discriminant analysis was able 

to correctly group 65.2% of “resistant” municipalities and 70.9% of “non-resistant” ones for all 

weeds, 64.1% and 65.6% for Echinochloa spp., respectively. 

Stepwise backward logistic regression performed on all weeds pooled together showed that 

WS, RR and PC are highly correlated with resistance presence (p<0.001, p=0.003 and p=0.009, 

respectively), whereas the correlation with PS resulted as not significant. For Echinochloa spp. 

alone, only WS resulted as significant (p<0.001). RR and PC were negatively correlated with 

resistance while WS was positively correlated with it (see also Fig. 18 a, b and c).  

When all weeds were analyzed together RR and PC were also significant and this is likely a 

consequence of using a larger dataset. It is clear that the three predictors are somehow inter-

dependent, i.e. WS is less frequent in areas where PC is lower and RR is higher. The two virtually 

resistant-free areas, S and, especially, L (Fig. 17), display this pattern (Fig. 18a, b and c). Where WS 

is practiced, weed control strategies are generally based on fewer herbicide modes of action and 

rely more on ALS inhibitors (Ferrero et al., 2008), thus increasing the herbicide selection pressure. 
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Fig. 18: Diffusion of RR (a), PS (b) and WS (c) in the area of the study. Results are expressed as classes, representing 
the percentage of each factor in each municipality. 
 

  

a 

b 

c 
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Municipalities with resistant cases have a percentage of WS sensibly higher than the others 

(41.5% vs 29.4%) and lower rates of RR (44.3% of 64.1%) (Tab. XII). 

 

Resistance presence RR (%) WS (%) PC (%)  

0 41.5 44.3 13.2 

1 29.4 64.1 12.6 
Tab. XII: averages of water seeding (%WS), rotation rate (%RR) and percentage of clay (%PC) in municipalities with at 
least one case of resistance (1) vs no resistance cases (0).  

 

These data are also supported by the descriptive maps produced in QGIS (Fig. 18): WS and low 

RR are widespread in the North-West of the area where water is continuously available and 

rotation is difficult (Fig. 18a and 18c): e.g. in the Vercelli area soils are frequently waterlogged and 

the shift to other crops is almost impossible, farmers agree that they are “obliged to crop rice”. 

On the other hand in the South East area, i.e. in Milan and Pavia province, rotation is more 

common: here water is not continually supplied in most cases and farmers are obliged to rotate 

rice with corn or soybean to deal with the lack of water.  

PC map is not that informative (Fig. 18b): in the North-West are concentrated soils with higher 

quantity of clay, but most soils contain less than 16% of clay, so this difference can be considered 

negligible.  

Both statistical analyses highlighted the strict relation between the presence of resistance and 

the more traditional system of seeding rice in flooded paddies. This is reinforced by the 

observation that the five weed species that evolved herbicide resistant populations are well 

adapted to humid and flooded conditions (Osuna et al., 2002; Viggiani & Tabacchi, 2017).  

Where WS is common, weed control strategies are generally based on fewer herbicide modes 

of action and rely more on ALS inhibitors (Ferrero et al., 2008), thus increasing the herbicide 

selection pressure. 

WS resulted the only factors significantly correlated with Echinochloa spp. resistance evolution. 

This is probably due to the shift in Echinochloa spp. species when seeding technique changes from 

water seeding to dry seeding. Echinochloa spp. changes from the “white” types to Echinochloa 

crus-galli, which is easier to manage because it has a less extended germination and a slower 

resistance evolution when compared to the other “white” species such as E. oryzicola. 
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To our knowledge, this is the first study that determines the degree of correlation between 

herbicide resistance and a few important predictors at such a large scale (about 200,000 ha).  

 

3.1.3 Neural network analyses 

The maps generated by the GIRE website simply give a snapshot of diffusion of resistance based 

on complaint monitoring. Instead, we aimed to estimate the risk of resistance evolution in the 

various municipalities through an innovate approach such as neural network, and generate a 

resistance risk map (Fig. 19a and 19b). 

 

 

Fig. 19: RER (Resistance Evolution Risk) maps create on the results of the Neural Network Analyses for all weeds (a) 
and for Echinochloa spp. only (b). Results are expressed as % of RER split into classes. 

  

a 

b 
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Neural network analyses was performed twice, once for all weeds pooled together and then 

for Echinochloa spp. alone.  

The neural network analysis confirmed that WS, PC and RR are good predictors of resistance, 

with a normalized importance of 100%, 95% and 75%, respectively. When all “resistant” weeds 

were considered, the analysis correctly predicted 63.8% of “resistant” municipalities and 68.4% of 

“non-resistant” ones during the training step, while the testing step correctly predicted 86.5% and 

61.1%, respectively. 

Neural network analyses performed considering only the Echinochloa spp. resistance cases 

correctly predict only about 30% of resistant cases, specifically 32.2% in the training step and 

31.6% in the testing step. This suggests that when the number of resistant cases significantly 

decreases, this analyses loses part of its predictive ability.  

Weeds are not equally distributed in the rice area, so different variables acts differently and 

have different importance in different analyses.  

In 48% of municipalities the probability of resistance evolution is higher than 50%. Resistance 

risk is higher in the central-western part of the study area (Piedmont region, risk >60% in 64% of 

municipalities) than in the central-eastern area (Lombardy region, risk >60% in 21% of 

municipalities) (Tab. XIII). 

 

RER 
Municipalities  

(%) 
Piedmont  

(%) 
Lombardy  

(%) 

< 0.3 19 8 26 

0.3 - 0.39 26 17 32 

0.4 - 0.49 7 3 10 

0.5 - 0.59 9 7 11 

0.6 - 0.69 13 18 9 

> 0.7 26 46 12 

Total 100 100 100 
Tab. XIII: partition of municipalities respect to the resistance evolution risk obtained with neural network analyses, the 
first column displays results independently from the region, while the following two the results of municipalities split 
per region. 

 

It is worth mentioning that in the 60 municipalities where the risk is higher than 70%, the average 

WS and RR are about 88% and 16%, respectively (Tab XIV).   
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RER 
(%) 

Municipalities 
(%) 

PC 
(%) 

WS 
(%) 

RR 
(%) 

< 30 43 16.2 23.0 48.2 

30 - 40 60 12.3 35.6 45.1 

40 - 50 17 10.8 41.4 44.1 

50 - 60 22 11.7 62.2 40.9 

60 - 70 30 12.9 73.0 26.6 

> 70 60 12.1 87.8 16.0 
Tab. XIV: RER in comparison with the number of municipalities per interval and relative rates of PC, WS and RR.  

 
In general resistance evolution risk is lower when Echinochloa spp. alone is considered: it ranges 

from 9 to 60%, while in the previous analyses ranged from 20 to 80% (data not shown). 

Results of neural network analyses were analyzed for areas S and L in comparison with the data 

of Lombardy, Piedmont and the whole area in the study (Tab. XV).  

 

Areas 

RR WS PC RER 

 (%)  (%)  (%)  (%) 

Lomellina (L) 57.2 44.5 10.4 42.9 

Sesia (S)  38.1 66.9 13.5 52.2 

Piedmont 22.3 72.8 14.2 59.5 

Lombardy 45.8 39.4 11.9 42.9 

Whole study area 34.1 56.1 13.1 51.2 
Tab. XV: RER in comparison with the values of %RR, %WS and %PC in the different areas of the study: areas S and L, 
Piedmont, Lombardy and the whole area included in this research 

 

The two regions show very different values of water seeding and rotation rate. 

In area L rotation rate is higher than those of the two regions and equal to 52.2%. In area S this 

value is equal to 38.1%, higher than that of Piedmont, lower than that of Lombardy.  

Water seeding rate in area L is lower than the general average and rotation rate is higher. In 

area S rotation rate is higher than that of Piedmont, water seeding rate is higher than the average 

of the whole area in the study, but lower than Piedmont.  

Comparison between the maps of WS, RR and PC and the resistance evolution risk maps (Fig. 

19) highlights again that the traditional rice cropping systems based on water-seeding and lack of 

rotation (Ferrero et al., 2008) are at higher risk. Therefore, contrary to what was presented in a 

recent article on a different cropping system (Hicks et al., 2018), we demonstrate that in areas 
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where a combination of management strategies increasing system diversity are used, the 

evolution of resistance is slower. 

 

3.1.4 Echinochloa spp. resistance screening  

Levene’s test performed on A (autumn) and S (spring) tests confirmed homogeneity of the 

variances both for Fresh Weight (FW) and Survival (S) with p values equal to 0.22 and 0.74 

respectively. Data from the two experiments were therefore pooled and analyzed together.  

Data were not pooled for profoxydim dose 3x: this dose was in fact used only in experiment A 

and already at 1x provided complete control for all populations with a negligible final FW (data not 

shown). For this reason dose 3x was eliminated in the following experiment.  

The results of the screenings done on Echinochloa spp. populations sampled randomly in areas 

L and S (Fig. 20) disprove the initial hypothesis of lack of resistance in those areas. Only four 

accessions (300, 303, 307 and 310) resulted as still being susceptible to all four herbicides, all of 

them coming from area L.  

 

Fig. 20: map of screening results: 4 populations resulted sensitive to both ALS- and ACCase-inhibiting herbicides used 
in the analyses, 16 resulted resistant.  

 

In particular only #300 and #310 resulted S for all herbicides, while #303 and #307 showed a 

partial resistance to ALS inhibitors when applied at field dose (1x). Pop #303 showed a plant 
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survival equal to 19.4% and 16.7% for imazamox and penoxsulam respectively and pop #307 

showed 15.7% of plant survival to imazamox only. SE in all of the three cases were high in 

comparison with the result. On the other hand FW was very low, suggesting that although alive, 

these plants would not be competitive on fields. For this both populations #303 and #307 were 

considered S and not SR. 

Results of the screening are reported in Tab. XVI and XVII.  

 

Pop. 
code 

Infestation 
density 

cyhalofop-butyl profoxydim 

% plant survival % fresh weight 
(SE) 

% plant survival % fresh weight 

(SE) (SE) (SE) 

07-16L - 2.4 (2.38) 1.9 (0.74) 0 (0) 1.6 (0.6) 

300 Low 0 (0) 1.4 (0.64) 0 (0) 1.2 (0.5) 

301 Low 0 (0) 3.7 (18) 0 (0) 2.2 (0.3) 

302 Low 0 (0) 4 (0.94) 0 (0) 2.1 (0.4) 

303 High 7.9 (3.56) 8.9 (3.44) 0 (0) 0.9 (0.1) 

304 Medium 5.2 (3.27) 3.9 (2.11) 0 (0) 1 (0.2) 

305 High 2.8 (2.78) 6.1 (1.88) 0 (0) 2.4 (0.8) 

306 High 2.8 (2.78) 2.2 (0.83) 0 (0) 0.7 (0.1) 

307 Medium 12 (11.9) 5.2 (1.24) 0 (0) 1.2 (0.3) 

308 Medium 11 (5.3) 14 (3.1) 4.8 (4.8) 1.9 (0.3) 

309 Medium 0 (0) 1.4 (0.49) 0 (0) 0.4 (0.1) 

310 Low 5.6 (3.51) 3.4 (1.16) 0 (0) 2.1 (0.6) 

311 Low 9.4 (4.25) 2.8 (1.35) 0 (0) 0.5 (0.2) 

312 Low 3.3 (3.33) 3.6 (38) 0 (0) 0.5 (0.1) 

313 Low 35 (15.8) 34 (15.6) 0 (0) 1.9 (0.7) 

314 Medium 6.1 (3.89) 9.9 (1.69) 0 (0) 2.2 (0.7) 

315 Low 44 (9.5) 54 (14) 0 (0) 3.8 (0.7) 

316 Low 3.3 (3.33) 3.9 (3.21) 0 (0) 0.7 (0.2) 

317 Low 5.6 (5.56) 4.2 (3.67) 5.6 (5.6) 2.7 (2.1) 

318 Very Low 0 (0) 1.6 (0.32) 0 (0) 0.6 (0.2) 

319 Low 0 (0) 3.6 (0.78) 0 (0) 1.9 (0.2) 
 
Tab. XVI: Plant survival and fresh weight calculated as percentage of the untreated control for the recommended field 
dose (1x) of the most used ACCase inhibitors in rice cyhalofop-butyl and profoxydim. The data are means of autumn 
and spring experiments; standard error (SE) is given in brackets 
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Tab. XVII: Plant survival and fresh weight calculated as percentage of the untreated control for the recommended field dose (1x) and three times that (3x) of the 
most used ALS inhibitors in rice imazamox and penoxulam. The data are means of A and S experiments; standard error (SE) is given in brackets.  

Pop. 
Code 

 

Infestation 
density 

Imazamox penoxsulam 

1x dose 3x dose 1x dose 3x dose 

% plant  
survival  

(SE) 

% fresh 
 weight  

(SE) 

% plant 
survival  

(SE) 

% fresh  
weight  

(SE) 

% plant 
survival  

(SE) 

% fresh 
 weight  

(SE) 

% plant 
survival  

(SE) 

% fresh 
 weight  

(SE) 

07-16L - 0 (0) 2.2 (0.5) 0 (0) 2.2 (0.6) 0 (0) 2.6 (0.7) 0 (0) 2.4 (1.1) 

300 Low 9 (6.6) 4.9 (2) 0 (0) 1.7 (0.4) 0 (0) 2.7 (1) 0 (0) 2.1 (0.6) 

301 Low 100 (0) 94.7 (4.7) 100 (0) 90.9 (5.8) 100 (0) 91.3 (5.5) 97.1 (2.9) 76.8 (14.2) 

302 Low 97.6 (2.2) 88.2 (7.1) 97.2 (2.8) 82.5 (8.9) 94.8 (3.3) 67.5 (9.9) 76.7 (19.4) 44.8 (2.1) 

303 High 19.4 (10.10) 5.9 (3.2) 0 (0) 2.9 (1.5) 16.7 (13.6) 5.6 (1.4) 0 (0) 1.9 (0.3) 

304 Medium 97.2 (2.2) 100 (0) 100 (0) 100 (0) 100 (0) 98.4 (1.6) 100 (0) 98 (2) 

305 High 82.1 (9.9) 78.4 (7.3) 55.2 (10.5) 72.7 (12.8) 91 (4.1) 82.4 (6) 67.1 (7.7) 63.8 (11.6) 

306 High 100 (0) 94 (2.9) 88.7 (5.6) 90.5 (5.8) 97.6 (2.4) 96.7 (2.7) 84.8 (4.6) 83.6 (10.5) 

307 Medium 15.2 (6.6) 7.3 (1.3) 0 (0) 2.5 (0.7) 0 (0) 2.8 (0.6) 0 (0) 3.1 (0.8) 

308 Medium 32.5 (10.10) 11.5 (3.9) 0 (0) 2.3 (0.2) 76.8 (8.1) 60.3 (11.4) 55.2 (12.7) 20.8 (5.6) 

309 Medium 100 (0) 75.2 (12.7) 100 (0) 87.1 (10.4) 100 (0) 94.2 (5.8) 97.1 (2.9) 91 (9) 

310 Low 9.9 (7.7) 6.3 (1.5) 0 (0) 3.8 (0.8) 2.8 (2.8) 4.1 (1) 0 (0) 2.9 (0.7) 

311 Low 52.9 (2.2) 27.8 (5.8) 36.3 (4.5) 14 (4.4) 54.9 (3.6) 20.2 (2.3) 37.3 (8.9) 13.2 (4.6) 

312 Low 100 (0) 67.6 (13.1) 100 (0) 32.5 (2.6) 100 (0) 39 (5.1) 80 (20) 22 (6.3) 

313 Low 100 (0) 86.3 (10) 71.2 (6.5) 56.4 (5.4) 100 (0) 79.1 (8) 95 (5) 70.6 (9.4) 

314 Medium 100 (0) 100 (0) 100 (0) 95 (3.1) 100 (0) 97.1 (1.9) 96.7 (3.3) 87 (5.2) 

315 Low 74.8 (5.5) 81.9 (8.1) 59.2 (7.2) 65.5 (11.8) 71.1 (9.5) 61.4 (11.3) 73.3 (13.5) 80.9 (10.3) 

316 Low 71.1 (9.9) 72.1 (8.7) 66.7 (8.3) 43.7 (4.6) 68.4 (12.9) 37.5 (13.5) 66.5 (10.5) 24.9 (8.1) 

317 Low 36 (10.10) 27.5 (10.3) 26.9 (9.9) 42.8 (11.6) 38.3 (5.1) 50.2 (13.8) 35 (10.5) 40.9 (14.9) 

318 Very Low 100 (0) 81.3 (6.1) 100 (0) 45.3 (5.9) 100 (0) 75.2 (11) 75 (19.4) 25.9 (8.3) 

319 Low 96.7 (3.3) 71.5 (11.8) 83.3 (16.7) 74.1 (14.8) 94.4 (5.6) 91.2 (5.4) 96.7 (3.3) 74.2 (12.9) 
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Sixteen populations proved to be resistant to at least one herbicide. Two accessions (313 and 

315) were multiple resistant to both ALS and ACCase inhibitors: multiple resistance was first 

reported in Italy in 2012 and - although less common than ALS resistance only - its frequency has 

increased since then (source: GIRE). The efficacy of penoxsulam was similar to that recorded for 

imazamox, while the efficacy of profoxydim was higher than cyhalofop-butyl. ACCase inhibitors 

resistance was weaker than resistance to ALS inhibitors as only two populations were resistant to 

this SoA. The dose effect for ALS-inhibiting herbicides was low, indicating that a target-site related 

resistance mechanism may be involved (Powles & Yu, 2010). The results of the screening on 

randomly sampled populations proved that resistance is frequently present even in the two areas 

where it had not previously been recorded through complaint monitoring. 

While profoxydim controlled all populations already at 1x dose, two populations resulted R to 

cyhalofop-butyl at the recommended field dose: #313 and #315. This difference in ACCase 

inhibitors susceptibility suggests the presence of a target-site resistance mechanism against FOP 

and not DIM, which is also the normally predominant type of ACCase inhibitors resistance (Devine 

& Shukla, 2000). 

Analyzing the whole response of populations to cyhalofop-butyl, many populations showed S 

and FW values bigger than 5% with high standard errors, suggesting that there might be an initial 

herbicide resistance effect. For these accessions the variability is considered too high and the 

hypothesis of a partial herbicide resistance (SR) is refused: e.g. population #308 showed 11% of 

plant survival and 14% of biomass in comparison with the untreated check, but as SE for plant 

survival was 5.3 it was considered sensitive anyway (Fig. 21). 

Sixteen populations showed very high levels of ALS inhibitors cross-resistance (Fig. 22). This 

pattern was expected: penoxsulam and imazamox have been widely used in rice fields since their 

launch around 2005, so their selective pressure on weeds is very high and this type of cross-

resistance is common (Panozzo et al., 2012). 

The results of the screening disprove the initial hypothesis of lack of resistance in the S and L 

areas. Conversely, it is more frequent than what we initially thought. This results confirms those 

obtained by GIRE in the Italian rice fields, with ALS inhibitors resistance in Echinochloa spp. 

recording the biggest number of confirmed cases. 



Chapter III – Results and discussion 

80 

Fig. 21: results of screening test for ACCase inhibitors used in the experiment: cyhalofop-butyl (top) and profoxydim (bottom) at recommended field dose for 
susceptible check (07-16L) and randomly collected populations. Both plant survival and fresh weight are displayed. SE is expressed as vertical bars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0,0

20,0

40,0

60,0

80,0

100,0

POPULATION

% Survival

Fresh weight

0,0

20,0

40,0

60,0

80,0

100,0

POPULATION

% Survival

Fresh weight



Chapter III – Results and discussion 

81 

Fig. 22: results of screening test for ALS inhibitors used in the experiment: imazamox (top) and penoxsulam (bottom) at recommended field dose for susceptible 
check (07-16L) and randomly collected populations. Both plant survival and fresh weight are displayed. SE is expressed as vertical bars. 
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3.1.5 Association between resistance in collected populations and initial infestation density  

Most of the infestation densities recorded during sampling were medium to low (between 

about 1 plant x 10 m-2 and about 1 plant x 100 m-2), especially in area S. Only three infestation 

densities recorded during sampling are high (>1 plant x square meter) located in fields in the 

municipalities of Mortara (pop. #303) and Borgo San Siro (pop. #305 and #306) (area L). 16 

infestation densities were medium to low (between about 1 plant x 10 m-2 and about 1 plant x 100 

m-2) and located especially in area S. One case only of very low infestation was recorded in the 

municipality of Ticineto (pop. 318) (Tab. XVIII).  

 

Region Area Municipality 
Pop 

name 
Infestation 

density 
Resistance level 

ACCase ALS 

Lombardy L Cilavegna 300 Low S S 

Lombardy L Vigevano 301 Low S RR 

Lombardy L Vigevano 302 Low S RR 

Lombardy L Mortara 303 High S S 

Lombardy L Gambolò 304 Medium S RR 

Lombardy L Borgo San Siro  305 High S RR 

Lombardy L Borgo San Siro  306 High S RR 

Lombardy L Tromello 307 Medium S S 

Lombardy L Garlasco  308 Medium S RR 

Lombardy L Garlasco  309 Medium S RR 

Lombardy L Alagna 310 Low S S 

Piedmont S Villata 311 Low S RR 

Piedmont S Borgo Vercelli  312 Low S RR 

Lombardy S Palestro 313 Low R RR 

Lombardy S Rosasco  314 Medium S RR 

Piedmont S Pezzana 315 Low R RR 

Piedmont S Caresana 316 Low S RR 

Lombardy S Candia Lomellina 317 Low S RR 

Piedmont S Ticineto 318 Very Low S RR 

Lombardy S Breme 319 Low S RR 
Tab. XVIII: table showing, for each population sampled, infestation density visually assessed on field and resistance 
level assessed during screening. 
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The level of resistance recorded seems not to be connected with the initial infestation level. 

Most fields have low infestation level and very high levels of resistance. Two out of four sensitive 

populations, namely #303 and #307, come from fields which infestation was respectively “High” 

and “Medium” (Fig. 23).  

 

Fig. 23: results of screening test in comparison with the initial infestation recorded on field. Municipalities in light blue 
are those where GIRE has recorded at least one resistant case, those in grey have never registered a resistant case.  
 

This confutes the results obtained by Hicks et al. (2018), i.e. that there is a positive correlation 

between herbicide resistance and weed density. For Italy this might be not the case.  

This also suggests that the low level of infestation may not alarm farmers, so they do not 

complain about/report poor herbicide control. The low infestation density probably does not 

affect crop yield nor entails any economic loss. The generally low infestation levels are likely 

related to the higher level of diversity in the cropping systems (Norsworthy et al., 2012; Renton et 

al., 2014) practiced in these areas, especially in area L.; here in fact crop rotation and dry seeding 

are more frequent, mainly leading to the selection of different weed species (Juraimi et al., 2013). 
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3.1.6 Specific conclusions  

 

We present a large dataset that meets the need of both epidemiological studies at a large scale 

to better understand how resistance evolves and the definition of agronomic factors driving 

herbicide resistance evolution in the field. Although the impact of agronomic practices and 

environmental factors on resistance evolution is well known, this is the first time that these 

interactions are analyzed at such a large scale. 

By analyzing the evolution of herbicide resistance on 200,000 ha of Italian rice fields we have 

first of all described the variability and complexity of this phenomenon and how its evolution is 

driven by the interaction and combination of multiple factors.  

We demonstrate that herbicide resistance is strongly correlated with traditional management 

practices such as seeding type and crop rotation, as well as soil clay content. Dry seeding and crop 

rotation rate are negatively correlated with resistance presence. Soil texture has also an impact, 

even if at a lesser extent; its contribution is important anyway, because, until a few years ago, dry 

seeding was typical of sandy soils, but now it’s widely used for its technical advantages and as a 

resistance management tool.  

Through the integration of complaint monitoring, mapping and neural network analyses we 

prove that a high risk of resistance evolution is associated with traditional rice cropping systems 

where diversity in space and time is low, it’s so proved that the increase of diversity in the 

cultivation methods is an effective tool to slow down resistance evolution, over and above rotation 

and combination of herbicides with alternative SoA.  

Random sampling revealed that resistance is present even in the areas where previous 

monitoring based on farmers’ complaints had not confirmed any resistance case and that 

resistance is not correlated with weed density on field. The density of resistant populations is 

medium-low, likely does not alarm rice farmers as they can manage the problem with practices 

that keep resistance at an acceptable level, such as different seeding techniques and mostly crop 

rotation, proving that resistance is not only a technical problem but a perceptive one also.  

This situation is confirmed by the resistance risk map, which shows that some risk is present 

also in areas S and L, even if at a lesser extent in comparison with the surroundings. GIRE data are 
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based on complaint monitoring, this means that the cases reported on GIRE maps are those that 

farmers and stakeholders decides to communicate to the organization and that GIRE confirms by 

the greenhouse screening tests. It is patent that many cases are not reported: it therefore appears 

that, although very useful for stakeholders, GIRE maps underestimate resistance as proved by the 

random sampling. 

The identification of concise, yet informative, agronomic predictors of diffusion of herbicide 

resistance can significantly facilitate effective management and improve sustainability of an 

important sector as rice is for the Italian economy and agriculture. 
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3.2 Echinochlos spp. case study 

 

3.2.1 Discrimination of Italian accession performed in 2015 

In Tab. XIX are reported the results of classification performed during plant sampling in 

September 2015.  

Pop Municipality Pignatti Carretero 

15-1 

Costanzana 

white white 
15-2 white white 
15-4 white white 
15-6 E. oryzicola  E. oryzicola  
15-7 E. crus-galli E. crus-galli 

15-20 

Vercelli 

Unclassified SE Unclassified SE 
15-22 E. erecta E. erecta 
15-24 Unclassified SE Unclassified SE 
15-25 Unclassified SE Unclassified SE 
15-26 E. oryzicola  E. oryzicola  

15-30 
Villanova Monferrato 

E. erecta E. oryzicola  
15-31 E. erecta E. oryzicola  
15-34 E. crus-galli E. crus-galli 

15-41 

Trino 

E. phyllopogon E. oryzicola  
15-42 white E. oryzicola  
15-43 E. erecta E. hispidula 
15-44 E. crus-galli E. crus-galli 
15-45 E. phyllopogon E. hispidula 
15-46 E. phyllopogon E. hispidula 
15-47 E. crus-galli E. crus-galli 
15-48 E. crus-galli E. crus-galli 

15-51 

Trino 

Unclassified SE Unclassified SE 
15-52 E. phyllopogon E. oryzicola  
15-53 E. phyllopogon E. oryzicola  
15-54 E. phyllopogon E. hispidula 
15-55 E. erecta E. hispidula 
15-56 E. crus-galli E. crus-galli 
15-58 E. erecta E. oryzicola  
15-59 E. phyllopogon E. oryzicola  

15-62 

Ronsecco 

Unclassified SE Unclassified SE 
15-63 E. erecta E. hispidula 
15-64 E. crus-galli E. crus-galli 
15-65 E. phyllopogon E. oryzicola  
15-66 E. erecta E. oryzicola  
15-67 E. phyllopogon E. hispidula 
15-68 E. erecta E. oryzicola  
15-69 E. phyllopogon E. hispidula 

Tab. XIX: initial discrimination performed in 2015 during sampling, according to Pignatti and Carretero dichotomous 
keys. Plants with intermediate characteristics were classified as "White", plants named "Unclassified SE" are those 
with peculiar coloration. In table are not reported those accessions that provided a too small quantity of seeds or poor 
germination rate and were therefore excluded from every analyses.  
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As expected, only in case of E. crus-galli the two classifications matched.  

In some cases classification was not possible for the coexistence, in the same plant, of traits 

typical of different species: e.g. accessions 20, 24, 25, 51 and 62 showed peculiar morphological 

traits, like presence of thick hair tufts at leaf sheath, typical of E. phyllopgon together with a purple 

pigmentation at base and nodes, not assessed in any species before (Fig. 24).  

These plants were thus coded as “unclassified SE”, although Tabacchi & Viggiani (2017) consider 

it a “purple” variation of E. oryzicola.  

 

 

Fig. 24: accessions, 20, 24, 25, 51 and 62 of Echinochloa spp. showed unusual purple pigmentation at nodes (a, d), base (b) and 
leaves (c, d). 

 

Three accessions had a very poor germination or provided a very scarce quantity of mature 

seed, for this reason they were immediately excluded from all of the analyses. 

The thirty-seven accessions which provided a sufficient quantity of seed with good germination 

rate were then classified according to Costea & Tardif (2002): measures taken are reported in Tab. 

XX with standard errors in brackets.   
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CODE 

SL SW CL CW GL/SL 
ratio Awns  Costea-Tardif (2002)  (mm)  (mm) (mm) (mm) 

15-1 4.0  (0.1) 2.2  (0.1) 2.4  (0.0) 1.9  (0.0) 0.5 < 2 cm  E. oryzicola  

15-2 3.6  (0.1) 2.0  (0.1) 2.3  (0.0) 1.9  (0.0) 0.5 < 2 cm  E. oryzicola  

15-4 3.8  (0.1) 2.1  (0.1) 2.2  (0.0) 1.8  (0.0) 0.6 < 2 cm  E. oryzicola  

15-6 4.1  (0.0) 2.2  (0.1) 2.6  (0.0) 2.0  (0.0) 0.5 < 2 cm  E. oryzicola  

15-7 3.4  (0.1) 1.8  (0.0) 1.8  (0.0) 1.4  (0.0) 0.4 < 5 cm E. crus-galli 

15-20 3.9  (0.1) 2.0  (0.0) 2.2  (0.1) 1.6  (0.1) 0.5 < 2 cm  E. oryzicola  

15-22 3.9  (0.0) 2.1  (0.1) 2.4  (0.1) 1.7  (0.1) 0.6 < 2 cm  E. oryzicola  

15-24 3.9  (0.1) 2.1  (0.1) 2.2  (0.1) 1.6  (0.1) 0.5 < 2 cm  E. oryzicola  

15-25 4.2  (0.1) 2.0  (0.1) 2.4  (0.0) 1.8  (0.1) 0.6 < 2 cm  E. oryzicola 

15-26 4.4  (0.1) 2.3  (0.1) 2.7  (0.1) 1.9  (0.0) 0.6 < 2 cm  E. oryzicola  

15-30 4.0  (0.1) 2.4  (0.1) 2.5  (0.1) 2.3  (0.1) 0.5 < 2 cm  E. oryzicola - E. oryzoides 

15-31 4.0  (0.1) 2.4  (0.1) 2.6  (0.1) 2.4  (0.1) 0.5 < 2 cm  E. oryzicola - E. oryzoides 

15-34 3.0  (0.1) 1.6  (0.1) 1.6  (0.0) 1.2  (0.1) 0.4 Awnless E. crus-galli 

15-41 4.0  (0.1) 2.2  (0.1) 2.3  (0.0) 1.9  (0.1) 0.5 < 2 cm  E. oryzicola 

15-42 4.1  (0.0) 2.2  (0.0) 2.6  (0.0) 1.9  (0.0) 0.5 < 2 cm  E. oryzicola 

15-43 4.2  (0.1) 2.2  (0.0) 2.5  (0.1) 1.8  (0.1) 0.5 Awnless E. oryzicola 

15-44 3.2 (0.1) 1.6  (0.0) 1.7  (0.0) 1.3  (0.0) 0.4 Awnless E. crus-galli 

15-45 4.1  (0.0) 2.4  (0.1) 2.6  (0.1) 2.0  (0.1) 0.5 < 2 cm  E. oryzicola - E. oryzoides 

15-46 3.9  (0.1) 2.2  (0.0) 2.4  (0.1) 2.0  (0.0) 0.4 < 2 cm  E. oryzicola 

15-47 3.0  (0.1) 1.6  (0.1) 1.6  (0.0) 1.2  (0.1) 0.4 < 2 cm  E. crus-galli 

15-48 2.9 (0.1) 1.6  (0.1) 1.8  (0.0) 1.4  (0.0) 0.4 < 5 cm  E. crus-galli 

15-51 4.2  (0.1) 2.0  (0.0) 2.5  (0.0) 1.7  (0.0) 0.5 Awnless E. oryzicola 

15-52 4.4  (0.1) 2.0  (0.0) 2.3  (0.1) 1.7  (0.1) 0.6 < 2 cm  E. oryzicola 

15-53 4.3  (0.1) 2.1  (0.1) 2.5  (0.1) 1.9  (0.1) 0.5 Awnless E. oryzicola - E. oryzoides 

15-54 4.6  (0.2) 2.2  (0.1) 2.7  (0.1) 2.0  (0.1) 0.6 < 2 cm  E. oryzicola 

15-55 4.4  (0.2) 2.2  (0.1) 2.6  (0.1) 2.0  (0.0) 0.5 < 2 cm  E. oryzicola - E. oryzoides 

15-56 3.7  (0.3) 1.9  (0.1) 2.3  (0.1) 1.5  (0.1) 0.5 < 2 cm  E. hispidula 

15-58 4.7  (0.1) 2.2  (0.1) 2.7  (0.1) 1.9  (0.1) 0.6 Awnless E. oryzicola 

15-59 4.6  (0.1) 2.2  (0.1) 2.7  (0.0) 2.0  (0.1) 0.6 Awnless E. oryzicola 

15-62 4.2  (0.1) 2.0  (0.0) 2.5  (0.0) 1.7  (0.0) 0.4 Awnless E. oryzicola - E. oryzoides 

15-63 4.1  (0.1) 2.4  (0.1) 2.6  (0.1) 2.0  (0,1) 0.5 Awnless E. oryzicola - E. oryzoides 

15-64 2.9  (0.1) 1.5  (0.0) 1.8  (0.0) 1.3  (0.1) 0.4 Awnless E. crus-galli 

15-65 4.1  (0.2) 2.1  (0.1) 2.5  (0.0) 2.0  (0.0) 0.5 < 2 cm  E. oryzicola 

15-66 4.2  (0.2) 2.2  (0.1) 2.6  (0.0) 2.5  (0.1) 0.5 < 2 cm  E. oryzicola - E. oryzoides 

15-67 4.2  (0.1) 2.1  (0.1) 2.7  (0.1) 2.3  (0.1) 0.5 Awnless E. oryzicola - E. oryzoides 

15-68 4.3  (0.2) 2.0  (0.1) 2.8  (0.1) 2.1  (0.0) 0.5 < 2 cm  E. oryzicola - E. oryzoides 

15-69 4.5  (0.2) 2.0  (0.0) 2.7  (0.1) 2.1  (0.1) 0.6 Awnless E. oryzicola 
Tab. XX: Plants classification according to Costea-Tardif: spikelet length and width (SL, SW) caryopses length and width 
(CL, CW), awns presence and length, glume/spikelet length ratio (GL/SL ratio) were assessed.   
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Six accessions, 15-7, 15-34, 15-44, 15-47, 15-48 and 15-64, were classified as E. crus-galli 

species, matching previous field classification. According to Costea & Tardif (2002). They can easily 

distinguished from the other species due to their smaller dimensions of seeds.  

The distinction of E. oryzicola. E. oryzoides and E. hispidula was more challenging, as several 

spikelets and caryopses showed intermediate characteristics and measures: i.e. typical of more 

than one species.  

Finally, only one accession was ascribable to E. hispidula (15-56), eight accessions were instead 

provided with a double classification (15-30, 15-31, 15-45, 15-53, 15-55, 15-62, 15-63, 15-66, 15-

67, 15-68) as they showed intermediate characteristics between E. oryzicola and E. oryzoides, 

while the remaining accessions were classified as E. oryzicola (Tab. XX). No accessions of E. colona 

were present.  

The E/C ratio (embryo/caryopses ratio) resulted always equal or superior to 0.8, also in case of 

E. crus-galli, suggesting that our instruments are not precise enough to measure at this detail. For 

this reason, although calculated, this parameter was not used for species discrimination. This 

classification provided a good representation of the actual distribution of Echinochloa species in 

the Italian rice fields, where it is estimated that E. crus-galli and E. oryzicola are the most 

widespread, while E. oryzoides and E. hispidula are rather rare (Tabacchi, personal 

communication). 

 

3.2.2 Preliminary screening  

Results of the preliminary screening highlighted, in multiple accessions, medium-high rates of 

resistance to penoxsulam: one harvested in Costanzana (field 0, accession 7), one harvested in 

Trino (field 5, accession 53) and five collected in Ronsecco (field 6, accessions 62, 63, 67 and 69) 

(Fig. 25). 

Although only fields with a proved history of susceptibility to penoxsulam were sampled, for 

many accessions a few plants survived the field dose of the herbicide (15-1, 15-26, 15-30, 15-31, 

15-52, 15-54, 15-56, 15-66 and 15-68), suggesting that in these fields the continued use of 

penoxsulam is selecting a sort of ALS resistance and that the situation need to be monitored. 

Twenty-two accessions tested resulted to be completely controlled (Fig. 25).  
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Fig. 25: Results of the preliminary screening performed using penoxsulam. For each accession, mean plant survival (Surv) and visual estimation of the biomass 
(VEB) expressed as percentage of untreated control are reported. Bars represent standard errors. 
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Considering that when plant survival is included between 5 and 20% (i.e. plants treated with 

the recommended field dose of a herbicide) (Panozzo et al., 2015b), accession is still considered 

slightly resistant and that we would like to represent the higher Echinochloa species variability in 

Italian rice fields, both classification and results of the screening were considered when choosing 

accessions for molecular analyses.  

Penoxsulam screening was repeated in 2016 on reproduces accessions (section 3.2.3) giving 

results consistent with those of 2015 (data not shown). 

 

3.2.3 Morphologic classification of reproduced accessions 

Ten accessions were reproduced and morphologically classified using four dichotomous keys: 

Pignatti (1982), Tabacchi et al. (2006), Costea & Tardif (2002), Tabacchi & Viggiani (2017).  

Carretero was not used after field classification in 2015 as it was not possible to find any match 

between this dichotomous key and the molecular discrimination performed on both original and 

reproduced accessions.  

Plants were grown in external conditions in Italy and in greenhouse conditions at the Botanic 

Garden of Meise (Belgium) to verify potential influences of environmental conditions (such as 

lights and temperatures) on the development of plant morphological traits.  

A high degree of variability was assessed when the same plants were grown in Belgium 

compared to Italy: plants size, color, panicle bearing, awns presence and length were different, 

e.g. plants belonging to E. crus-galli species grew less in Belgian conditions (Fig. 26).  

Nevertheless, size of the plant, color, panicle bearing and awns are all morphological 

characteristics that are used in classic dichotomous keys, but it is known that they show a high 

degree of plasticity depending on environmental conditions (Ruiz-Santaella et al., 2006). For this 

reason these traits are used in combination with the other ones (e.g. spikelet and caryopses size) 

to correctly classify the species. None of the “white” accessions presented awns longer than 2 cm, 

suggesting that no E. oryzoides are included in our accessions (Costea & Tardif, 2002; Tabacchi et 

al., 2006; Viggiani & Tabacchi, 2017). 
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Fig. 26: differences in grow of two accessions of Echinochloa spp. in Belgium greenhouse conditions. E. crus-galli (15-
12, right) has grown smaller than E. phyllopogon (16-59, left), differently to what normally happen in Italian conditions. 

 

Hair presence at base and leaf sheath did not change in Belgium compared to Italy. It was 

observed in our accessions that hairs at the collar regions and leaf sheath can be present at initial 

development of plants, disappearing later on during growth, e.g. accession 16-45 (Fig. 27). This 

might mislead technicians and farmers during classification on field, when plants are classified at 

an early stage to plan the herbicide strategy.  

It is debated whether hair presence is or is not a discriminating trait for different Echinochloa 

species. Both Tabacchi et al. (2006) and Pignatti (1981) include it, while Carretero (1981) and 

Tabacchi & Viggiani (2017) do not. In our case hairs were present on leaves and at the collar region 

in accessions 16-41, 16-46, 16-59, 16-65, 16-24 and 16-25. This character was absent on 

accessions 16-42, 16-43 and 16-45. 
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Fig. 27: picture of accession 16-45 showing hairs at the leaf sheath at three leaves stage (left), this characteristic is 
lost when plant is at stem elongation stage (right). 

 

Results of caryopses and spikelet analyses, considered by Costea & Tardif (2002) and Tabacchi 

& Viggiani (2017) keys, confirmed the classification performed on 2015 accessions, both on plants 

grown in Italy and in Belgium: i.e. accessions 15-9 and 15-12 resulted E. crus-galli, all of the others 

resulted E. oryzicola.  

ANOVA test was performed using Statistica Software to compare the means of the different 

measures of spikelets and caryopses of all accessions and confirm results of visual analyses. Three 

types of measures - Upper Glume Length, Fertile Lemma Length and Embryo ratio without taking 

into account the scutellar region - were taken into account only in Belgium, for this reason a one-

way ANOVA was performed on them: results did not give any relevant information that might 

support any morphological classification and are therefore not discussed in this analyses. 

For the other parameters a factorial ANOVA was performed as both accession code and locality 

were inserted in the analyses as independent variables.  

Factorial ANOVA results showed that parameters assessed are different in the various 

accessions (p<0.0001), while the combination of accession x locality resulted not significant, 

meaning that accessions behaved the same way in Italy and in Belgium and that variability is not 

associated to growing conditions and can be considered a trait associated with the physiology and 

genetic of this genus (Tab. XXI).  

 



Chapter III – Results and discussion 

94 

  Spikelet 
Length 

Spikelet 
Width 

Inf. 
Glume 

Lemma-Inf. 
glume ratio 

Cariopses 
Length 

Cariopses 
Width 

Ratio 
embryo 

Loc 0.005 0.044 0.000 0.003 0.094 0.017 0.365 

Accession 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Loc x Acc 0.786 0.918 0.004 0.018 0.910 0.927 0.367 

Tab. XXI: p values obtained from factorial ANOVA for the spikelet and caryopses parameters measured.  

 

ANOVA analyses highlighted statistical differences among populations, but only E. crus-galli 

accessions showed parameters that were always statistically different from the others. Both 

spikelets and caryopses are always smaller than those of the other species (Costea & Tardif, 2002; 

Viggiani & Tabacchi, 2017).  

Data of morphological analyses, performed both on plants and spikelets did not provide a clear 

cut discrimination among species. Their use can lead to different results when different 

morphological keys are used and sometimes, to classify plants, some characters should not be 

taken into account: e.g. accessions 16-25 and 16-42 could be classified both as E. oryzicola and E. 

oryzoides on the base of measures of spikelet and caryopses. In these accession average GL/SL 

ratio is equal to 0.4. According to Costea & Tardif (2002) and Viggiani & Tabacchi (2017) they 

should be classified as E. oryzoides. Anyway they both showed very short awns and embryo almost 

as long as the whole caryopses. They were then classified as E. oryzicola (Fig. 28). 

A final morphologic classification of reproduced accessions was done (Tab. XXII).  

According to both Costea & Tardif (2002) and Tabacchi & Viggiani (2017) only two species are 

present in our bulk: E. oryzicola and E. crus-galli. According to Pignatti (1982) four species are 

present: E. crus-galli, E. erecta, E. phyllopogon and E. hostii. While according to Tabacchi et al. 

(2006): three species are present: E. crus-galli, E. oryzicola and E. phyllopogon. 

The classification that is more suitable to describe our accessions is that of Tabacchi et al. 

(2006): accessions 16-24 and 16-25 should be considered variations of E. phyllopogon, and the 

purple pigmentation that characterized them was proven to be only a transitory trait linked to 

environmental conditions. Accessions 15-9 and 15-12 are confirmed E. crus-galli. Accessions 16-

42, 16-43 and 16-45 are classified as E. oryzicola, while 16-41, 46-46, 26-54, 16-59 and 16-65 are 

E. phyllopogon. 
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Our intention was not to create a new classification key for Echinochloa spp., nor to verify the 

correctness of those already published, but to find the best match between morphological 

classification and molecular marker discrimination. 

Tabacchi et al. (2006) was chosen as classification of reference, when discussing molecular 

analyses and dose response results, because it best represented the diversity of morphological 

characteristics found in our accessions besides providing the most suitable match with the 

discrimination performed with matK molecular marker. 

 

 

Fig. 28: caryopsis (left) and spikelets (right)  of accession 16-25 (a and b) and 16-42 (c and d). Although their measures 
were coherent with E. oryzoides according to Costea and Tardif (2002), they were classified as E. oryzicola. 

 

a b 

c d 
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Tab. XXII: classification of the Italian accessions according to the four most used classification keys: Costea&Tardif (2002), Tabacchi&Viggiani (2017), Pignatti (1981) 
and Tabacchi et al. (2006). Scores given to plants morphological traits are described in section 2.2.4.1 of Materials and Methods. 

Loc Code

Base 

color

Nodes 

color

Panicle 

Bearing Awns

Awn 

Length

Leaf 

Sheath 

hairy

Base  

hairy SL SC

G/S 

Ratio CL CW

E/C 

ratio

Costea-

Tardif

Tabacchi-

Viggiani Pignatti Tabacchi

BE 15-9 1 1 4 3 3 5 5 3.6 1.5 0.4 1.6 1.3 0,8 E. crus-galli E. crus-galli E. crus-galli E. crus-galli

BE 15-12 1 1 3 1 5 5 5 3.2 1.6 0.4 1.6 1.3 0,8 E. crus-galli E. crus-galli E. crus-galli E. crus-galli

BE 16-24 5 5 1 1 5 1 1 4.2 1.9 0.6 2.1 1.6 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

BE 16-25 5 5 3 1 3 1 1 4.5 2.0 0.5 2.4 1.8 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

BE 16-41 1 1 3 3 5 1 1 4.2 2.1 0.5 2.5 1.9 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

BE 16-42 1 1 3 1 3 5 5 4.6 2.2 0.6 2.4 2.0 1,0 E. oryzicola E. oryzicola E.hostii E. oryzicola

BE 16-43 1 1 1 1 3 1 5 4.3 2.2 0.5 2.5 1.9 0,9 E. oryzicola E. oryzicola E.erecta E. oryzicola

BE 16-45 1 1 1 1 3 5 5 4.1 2.1 0.5 2.3 1.8 1,0 E. oryzicola E. oryzicola E.erecta E. oryzicola

BE 16-46 1 1 1 1 3 1 1 4.3 2.1 0.5 2.5 1.9 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

BE 16-54 1 1 1 1 3 1 1 4.6 2.2 0.6 2.5 1.9 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

BE 16-59 1 1 1 5 / 1 1 4.7 2.2 0.6 2.7 1.9 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

BE 16-65 1 1 3 3 3 1 1 4.7 2.2 0.6 2.5 2.1 1,0 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

IT 15-9 / / / / / / / 3.4 1.6 0.4 1.7 1.3 0,8 E. crus-galli E. crus-galli E. crus-galli E. crus-galli

IT 15-12 / / / / / / / 2.9 1.5 0.4 1.7 1.3 0,8 E. crus-galli E. crus-galli E. crus-galli E. crus-galli

IT 16-24 1 2 3 3 1 1 1 3.7 2.0 0.6 2.2 1.7 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

IT 16-25 1 5 1 3 1 1 1 4.2 2.1 0.4 2.5 1.8 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

IT 16-41 1 1 1 1 1 1 1 3.9 2.2 0.5 2.5 2.0 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

IT 16-42 1 1 1 1 1 5 5 4.3 2.3 0.4 2.5 2.0 1,0 E. oryzicola E. oryzicola E.erecta E. oryzicola

IT 16-43 1 1 1 1 1 5 5 4.2 2.2 0.5 2.4 2.0 0,9 E. oryzicola E. oryzicola E.erecta E. oryzicola

IT 16-45 1 1 1 3 1 5 5 3.9 2.1 0.5 2.3 1.9 1,0 E. oryzicola E. oryzicola E.erecta E. oryzicola

IT 16-46 1 1 2 3 3 1 1 4.3 2.3 0.5 2.5 1.9 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

IT 16-54 1 1 2 3 1 1 1 4.7 2.3 0.5 2.6 2.0 0,8 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

IT 16-59 1 1 1 3 1 1 1 4.7 2.4 0.6 2.6 2.0 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon

IT 16-65 1 1 3 1 3 1 1 4.8 2.3 0.6 2.6 2.1 0,9 E. oryzicola E. oryzicola E. phyllopogon E. phyllopogon
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3.2.4 DNA barcoding 

Seventeen of the original accessions collected in 2015 were included in the molecular analyses 

(Tab. XXIII). Accession 1 was added as unclassified “white” control. 

 

Accession 
Plant 

survival (%)  
(SE) 

Pignatti  
(1982) 

Tabacchi 
(2006)  

Costea-Tardif  
(2002) 

15-1 6.3  (6.3) Unclassified Unclassified Unclassified 

15-09 NA E. crus-galli E. crus-galli E. crus-galli 

15-12 NA E. crus-galli E. crus-galli E. crus-galli 

15-20 0.0  (0.0) SE SE SE 

15-24 0.0  (0.0) SE SE SE 

15-25 0.0  (0.0) SE SE SE 

15-34 0.0  (0.0) E. crus-galli E. crus-galli E. crus-galli 

15-41 0.0  (0.0) E. phyllopogon E. phyllopogon E. oryzicola 

15-42 0.0  (0.0) E. erecta E. oryzicola E. oryzicola 

15-43 0.0  (0.0) E. erecta E. oryzicola E. oryzicola 

15-45 0.0  (0.0) E. erecta E. oryzicola E. oryzicola-oryzoides 

15-46 0.0  (0.0) E. phyllopogon E. phyllopogon E. oryzicola 

15-47 0.0  (0.0) E. crus-galli E. crus-galli E. crus-galli 

15-51 0.0  (0.0) SE SE E. oryzicola 

15-54 5.0  (5.0) E. phyllopogon E. phyllopogon E. oryzicola 

15-59 0.0  (0.0) E. phyllopogon E. phyllopogon E. oryzicola 

15-65 0.0  (0.0) E. phyllopogon E. phyllopogon E. oryzicola 

Tab. XXIII: list of accessions chosen for the molecular analyses. It is reported the phenotypic classification according 
to Pignatti, Tabacchi and Costea-Tardif. Accession #1 was not classified as its phenotype was uncertain. Accessions 
classified as “SE” are those with intermediate characteristics between “white” and “red” types of Echinochloa spp. In 
the second column is reported the survival rate in penoxsulam screening. Standard error is reported in brackets.  

 

Four out of five DNA regions analyzed in this study were able to discriminate among the 

different accessions. The only one which gave no useful distinction was ITS, therefore it is not 

discussed in this section. 

Sequences of all genes analyzed were conserved and the BLAST analyses, which compares 

sequences obtained from our accessions with sequences present in the main online nucleotide 
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databases, gave over 99% of similarity. Also the alignments of the sequences produced for our 

accessions for the different genes highlighted a very few SNPs. 

The entire length of regions analyzed varied from 441 bp of trnL to 936 bp of rbcL. A total of 13 

single nucleotide polymorphism (SNP) was detected among all accessions: three SNP in trnL, one 

in rbcL, four in matK and five in the non-coding region psbA-trnH. No differences were highlighted 

in sequences from plants “a” and “b”, for this reason in this section results of whole accessions 

only will be discussed.  

All UPGMA dendrograms built using Mega 6 software are displayed in Fig. 29.  

For trnL gene the sequence obtained was of 441 bp with three SNPs that led to the creation of 

two clusters: one containing the accessions classified as E. crus-galli and one with the other 

accessions, classified as E. oryzicola according to Costea & Tardif (2002). No correspondence was 

seen with the other dichotomous keys (Fig. 29A). 

A similar result was achieved with analyses of rbcL gene (Fig. 29B). In this case a total of 936 bp 

was obtained highlighting only one SNP: also in this case the separation obtained was 

corresponding with classification of Costea & Tardif (2002). Analyses and comparison of these two 

dendrograms with vouchered sequences confirm the initial assumption that E. colona is absent. 

This species supposed to be rare in Italian rice fields (Pignatti, 1981): the only case was recorded 

in 2002, with one single population from the south-Milan area (Tabacchi et al., 2006). 

For matK a sequence of 917 bp with four SNPs was analyzed, leading to the creation of four 

clusters in this dendrograms reflecting the four SNP found (Fig. 29C). Discrimination with this 

molecular marker has a certain degree of correspondence with Pignatti (1981) and Tabacchi et al. 

(2006) discrimination, although there are some discrepancies. The first cluster includes the 

accessions classified as E. phyllopgon, 15-22, 15-41, 15-46, 15-54, 15-59 and 15-65, plus the 

unclassified white. The second includes those classified as E. erecta (Pignatti, 1982) or E. oryzicola 

(Tabacchi et al., 2006), 15-42 and 15-45.  
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Fig. 29: UPGMA dendrograms of the DNA regions analyzed:  trnL (A), rbcL (B), matK (C) and psbA-trnH (D) built on the alignment of sequences of the accessions. 
They are displayed in comparison with vouchered sequences of different classified accessions of Echinochloa exported from NCBI and Boldsystem.  
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The discrepancy is due by accessions 15-43 and 15-54. The first is morphologically similar to E. 

erecta-oryzicola (Pignatti, 1982; Tabacchi et al., 2006), but is included in the E. phyllopogon cluster. 

The second is morphologically similar to E. phyllopogon, but is included in the E. erecta-oryzicola 

cluster. The peculiarity of matK tree is that the “unclassified SE” accessions 15-24 and 15-25 form 

one single cluster: none of the vouchered sequences used in this study contained the same 

mutations, suggesting that these two accessions might belong to a different species of this genus. 

matK is one of the most used genes in plant systematic (Hilu & Liang, 1997) but this is one of the 

first times it is use for the discrimination among multiple Echinochloa species.  

PsbA-trnH provided a sequence of 493 bp with five SNPs. The cluster analyses partially matched 

with Pignatti (1982) and Tabacchi et al. (2006) classification (Fig. 29D), but it’s less clear than that 

of matK. Here five clusters are present: E. crus-galli accessions are divided into two clusters. One 

cluster includes the “Unclassified SE” accessions together with 15-1 and 15-46, the latter classified 

as E. phyllopogon. Another one includes 15-41, 15-59 and 15-65 - E. phyllopogon - closer to the 

cluster including 15-42, 15-43, 15-45 and 15-54 classified as both E. phyllopogon and E. erecta-

oryzicola (Pignatti, 1982; Tabacchi et al., 2006).  

For all genes accessions 15-9, 15-12, 15-34 and 15-47 groups separately from the other 

accessions and together with other vouchered sequences of E. crus-galli. This results confirms our 

initial classification for all dichotomous keys. Previous studies have demonstrated, through 

molecular and morphological tool, the clear separation of E. crus-galli from the other species of 

this genus (Yamaguchi et al.; 2005; Tabacchi et al., 2006; Claerhout et al., 2016). 

MatK and psbA-trnH were able to discriminate some clusters into the “white” accessions of 

Echinochloa spp., i.e. those classified as E. oryzicola, E. phyllopogon, E. erecta.  

In bibliography psbA-trnH is indicated as reliable for species discrimination, only when used as 

a support of matK and rbcL (CBOL Plant Working group, 2009), because it shows a high degree of 

variability both in length and presence of insertion-deletion, complicating sequence alignment 

(Chase et al., 2007). In our case vouchered psbA-trnH sequences of E. crus-galli FJ766206 and 

HQ600076 showed SNPs that did always not match with those of our sequences of barnyardgrass.  
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Comparison of our sequences with the vouchered ones confirm the absence of E. colona from 

our bulk. E. oryzoides might also be absent: in case of trnL and matK it clusterizes with E. crus-galli, 

while for rbcL it clusterizes with E. oryzicola.  

Comparison of our psbA-trnH sequences with those already published did not help the 

classification either. Most of the sequences for this intron downloaded from the NCBI website 

(https://www.ncbi.nlm.nih.gov) and BOLDsystem (http://www.boldsystems.org/) were not 

classified: i.e. they were named Echinochloa spp.  

No match was found between molecular discrimination and Carretero (1981) classification 

from the beginning of the experiments, therefore this classification was not used after the first 

sampling in 2015.  

In our accessions, plants classification according to Pignatti (1981) matched with the one of 

Tabacchi et al. (2006), both genetically and morphologically. The latter was chosen for the further 

part of the study as it’s more recent and was also created using molecular markers as benchmark. 

 

3.2.4.1 Molecular characterization of accessions from Belgium  

Phenotypic discrimination highlighted the presence of nine accessions of E. crus-galli, two 

accessions of E. muricata var. wiegandii and three of E. muricata var mycrostachia.(De Cauwer et 

al., 2012) 

In this case, rbcL provided the best discriminating ability, while no differences were present in 

matK and psbA-trnH sequences of the 14 accessions (data not shown).  

One single A/T substitution was found in position 421 from the 5’ end. This SNP was common 

to all of the three accessions of E. muricata var. microstachya, two out of three E. muricata var. 

wiegandii and in one accession of E. crus-galli.  

Comparison with published sequences of E. muricata was not possible, as published sequences 

of this species were too short to include this SNP. Therefore, rbcL sequences of accessions from 

Belgium were aligned with some rbcL sequences of Italian reproduced accessions and some rbcL 

vouchered sequences of other Echinochloa species. The resulted dendrogram (Fig. 30) showed 

that Italian sequences of E. phyllopogon (16-41), E. erecta (16-42) and “Unclassified SE” 

Echinochloa (16-25) clustered with Belgian E. crus-galli accessions as well as all other sequences 
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of “white” species included in the analyses, while all E. muricata varieties – but #24 – form a 

separate cluster (Fig. 30). 

Although incomplete this result confirms the previous taxonomic and molecular studies 

performed on these two species (Hoste, 2004; Claerhout et al., 2016). 

 

  

Fig. 30: UPGMA tree built on rbcL sequences of the Flanders accessions. These sequences are compared with 
vouchered ones belonging to other species and three Italian classified accessions: 16-25 (unclassifed Echinochloa), 
16-41 (E. phyllopogon) and 16-42 (E.oryzicola).  
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3.2.5 Matching phenotype classification with molecular markers discrimination 

Molecular discrimination was repeated on reproduced accessions and used as benchmark for 

match with the dichotomous keys. Results of molecular analyses are consistent with those made 

on original plants.  

The high quantity of seed and plants with intermediate traits (e.g. those with traits that could 

lead to multiple classifications) encountered during each morphological classification suggests 

that when trying to classify Echinochloa spp. a higher number of spikelets and plants must be 

analyzed.  

Also in this case rbcL was able to discriminate among two species: E. oryzicola and E. crus-galli 

matching Costea & Tardif (2002) and Tabacchi & Viggiani (2017) classification (Fig. 31).  

 

 

 

Fig. 31: UPGMA dendrogram of rbcL for reproduced accessions. Classification according to Costea&Tardif was added. 
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MatK discrimination reflects better than that of rbcL the complexity of morphological traits 

encountered among our Echinochloa spp. accessions. Using this molecular marker, it is possible to 

discriminate among three different species: E. crus-galli, E. phyllopogon and E. oryzicola (Tabacchi 

et al., 2006) as described in Fig. 32. 

 

 

Fig. 32: UPGMA dendrogram of matK for reproduced accessions. Classification according to Tabacchi et al. (2006) 
was added.  
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The same discrepancies highlighted in matK discrimination on original plants were found in 

reproduced accessions, as expected: 16-43 was classified as E. oryzicola, but genetically 

clusterizes, in matK dendrogram, with E. phyllopogon. The opposite situation happened for 

accession 16-54: classified as E. phyllopogon it clusterizes with E. oryzicola.  

A final sequence comparison was performed putting together sequences of matK, rbcL and 

psbA-trnH (CBOL Plant Working Group, 2009). The UPGMA tree built on reproduced accessions 

confirms the presence of multiple clusters: one containing the E. phyllopogon plus the accession 

16-43, one containing the two accessions of E. oryzicola plus accession 16-54, one with accessions 

16-24, 16-25 and 16-46 and one with E. crus-galli (Fig. 33). 

 

 

Fig. 33: UPGMA tree built on reproduced accessions for matK, rbcL and psbA-trnH together.  

 

It was confirmed that E. oryzoides and E. colona are absent in our bulk of accessions.  

Although more similar to E. oryzicola for many morphological traits such as the size of the 

spikelet and caryopsis (Costea & Tardif, 2002; Tabacchi & Viggiani, 2017), it is still debated whether 

E. oryzoides and E. crus-galli belong to the same species as multiple studies reached this conclusion 

using different molecular tools (Asíns et al., 1999; Tabacchi et al., 2006; Yamaguchi et al., 2005; Ye 

et al., 2014). MatK gene and trnL analyses performed confirmed this result. 
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Accession 16-24 and 16-25 should be confirmed as “purple variations” of E. phyllopogon 

(Pignatti, 1981; Tabacchi et al., 2006) or of E. oryzicola (Tabacchi & Viggiani, 2017; Costea & Tardif, 

2002) meaning that the SNP highlighted in matK sequences are not significant for species 

discrimination. Results of psbA-trnH analyses confirmed this hypothesis, in fact the SNP found in 

accessions 16-24 and 16-25 were common to other accessions of E. phyllopogon: i.e. 16-46.  

 

3.2.6  SS-PCR  

Results of Specie-Specific (SS) – PCR made possible to discriminate E. phyllopogon from E. 

oryzicola and the “unclassified SE” Echinochloa in one single reaction of PCR.  

Protocol was tuned on matK gene, using accessions 16-42 (E. oryzicola), 16-25 (Echinochloa SE), 

and 16-65 (E. phyllopogon).  

The best results were achieved using the combination of F3_ERE + F4_SE couple of forward 

primers.  

Results of the SS-PCR show 2 amplicons: one of 122 bp for Echinochloa SE and one of 248 bp 

for E. oryzicola. No amplicons were produced – as expected – for E. phyllopogon (Fig. 34). 

 

 

 

 

 

 

 

 

 

Fig. 34: results of SS-PCR. Different amplicons of different species are represented: 122 bp for E. oryzicola, 248 bp 
for Echinochloa SE and no amplicons for E. phyllopogon. 
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3.2.7 Dose-response experiments 

 

3.2.7.1 Preliminary screening results 

Graphics built on preliminary screening results are reported in Fig. 35 and 36.  

For cyhalofop-butyl all accessions showed a high degree of susceptibility with percentage of 

plant survival inferior to 20% already at 1/4x dose (75 g a.s. ha-1) of the recommended field dose 

and were completely controlled at 1x dose (300 g a.s. ha-1). The only exception was accession 16-

59 which showed 50% (±25.5%) of plant survival with 34.3% (±22.2%) of fresh weight at 1/4x dose, 

but it was completely controlled when the product was used at full dose.  

Also using florpyrauxifen-benzyl all accessions were completely controlled when the product 

was applied at 1x dose (30 g a.s. ha-1), with the exceptions of accessions 16-24, 16-54 and 15-65 

which had 5.6% (±5.6%), 8.3% (± 8.3%) and 5.6% (± 5.6%) of plant survival, respectively. 

Florpyrauxifen-benzyl showed fresh weight percentage superior to that of cyhalofop-butyl, but 

this can be due to the different effect of a hormonic herbicide compared to ALS and ACCase 

inhibitors.  

In case of penoxsulam, 15-9 and 15-12 were completely controlled with 10 g a.s. ha-1, while 

accession 16-65 showed 94.4% (±5.6%) of plant survival. All other accessions showed intermediate 

plant survival values ranging from 20% to 65.5% at 1/2x dose (Fig. 35). Note that in this probe 

experiment the 1x dose for penoxsulam was not included, because it has been used in the previous 

tests (see section 3.2.2), in which all accessions proved to be well controlled at that dose of 

penoxsulam. 
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Fig. 35: results of plant survival obtained in the screening performed with cyhalofop-butyl, penoxsulam and florpyrauxifen-benzyl 
on the 12 selected accessions of Echinochloa spp. Colors indicate the different classification in which these accessions were divided 
according to matK division: red for E. crus-galli, yellow for the E. phyllopogon, green for E. oryzicola, blue for the “unclassified SE” 
Echinochloa and black for those which phenotype does not match with the matK separation. 
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Fig. 36: results of fresh weightl obtained in the screening performed with cyhalofop-butyl, penoxsulam and florpyrauxifen-benzyl 
on the 12 selected accessions of Echinochloa spp. Colors indicate the different classification in which these accessions were divided 
according to matK division: red for E. crus-galli, yellow for the E. phyllopogon, green for E. oryzicola, blue for the “unclassified SE” 
Echinochloa and black for those which phenotype does not match with the matK separation.  
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3.2.7.2 Dose-Response pot experiments  

Based on the results of the probe screening, nine accessions were chosen for the dose-response 

experiments. The choice was driven by three factors:  

 response to herbicides in the screening: e.g. accession 16-65, which showed the 

highest rate of plant survival for penoxsulam, was excluded from the dose-response 

experiments 

 morphological and molecular classifications: it was decided to include in the dose-

response two populations for each species identified, therefore two accessions of E. 

phyllopogon were excluded  

 Field of origin of the accession  

Two accessions classified as E. phyllopogon (16-41 and 16-59), two classified as E.oryzicola (16-

42 and 16-45) and two with a “cross classification” (16-43 and 16-54), i.e. 16-43 showed the 

phenotype of E.oryzicola, but matK and psA-trnH clusterisation classified it as E. phyllopogon, the 

opposite happened for 16-54.  

Accession 16-25 was also included in the experiment on the base of molecular markers 

discrimination results and peculiar morphologic characteristics and treat it as a separate species 

even if it was demonstrated that it is not. Accessions 15-12 and 15-9 E. crus-galli were also chosen 

for the tests. 

The two experiments were performed in different environments, so results cannot be 

mediated.  

Results of 2017 experiment were very variable, for this reason only 2018 results will be 

discussed in details. Graphs of plant survival and fresh weight data of 2017 and 2018 dose-

response experiments are included in Appendix I.  

Standard errors of 2018 experiment, calculated with the non-linear logistic regression were 

<10% for all ED50, indicating that the log-logistic equation fitted the data without any data 

transformation (ʎ=1) and the herbicides dose range used in the test was appropriate (Tab. XXIV).  
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Tab. XXIV: results of 2018 dose-response analyses. ED50 (GR50) and slopes are displayed for % of plant survival and for 
% of fresh weight, respectively. Standard error (SE) is reported in brackets. For each accession is shown the species 
into which it was classified, the herbicides applied and the type of assessment - % survival or fresh weight – conducted. 
(*): for these accessions the phenotype and clusterization for matK and psbA-trnH did not match.  

 

  cyhalofop - butyl penoxsulam fluorpyrauxifen - benzyl 

Accession 
code 

 
ED50 

(g a.s. ha-1) Slope  
ED50 

(g a.s. ha-1) Slope  
ED50 

(g a.s. ha-1) Slope  Classification 

15-12 E. crus-galli 32.3  (2.7) 4.9  (2.0) 5.9  (0.4) 2.9  (0.4) 21.9  (1.1) 4.6  (0.6) 

15-9 E. crus-galli 51.9  (1.4) 6.2  (0.9) 6.0  (0.7) 2.0  (0.4) 18.3  (0.7) 4.6  (0.6) 

16-25 Echinochloa spp. 104.4  (4.5) 4.2  (0.5) 22.0  (0.8) 3.6  (0.5) 14.7  (0.6) 4.6  (1.3) 

16-41 E. phyllopgon 63.4  (2.4) 5.2  (0.9) 2.8  (0.4) 2.8  (0.4) 11.9  (1.2) 2.4  (0.5) 

16-59 E.phyllopogon 300.1  (11.3) 4.8  (1.8) 23.2  (3.1) 2.5  (0.3) 54.3  (6.5) 3.1  (0.7) 

16-42 E. oryzicola  43.4  (3.4) 2.4  (0.5) 7.4  (0.4) 2.7  (0.6) 13.3  (1.0) 2.3  (0.3) 

16-45 E. oryzicola 33.2  (2.0) 3.1  (0.6) 10.9  (0.8) 3.1  (0.7) 8.7  (1.4) 1.9  (0.5) 

16-43 E. oryzicola (*) 36.8  (3.9) 2.8  (0.6) 5.4  (0.5) 3.1  (0.5) 15.6  (0.9) 2.6  (0.4) 

16-54 E. phyllopgon (*) 108.5  (10.1) 4.5  (1.1) 19.1  (1.1) 1.9  (0.4) 24.4  (2.0) 2.8  (0.4) 

 

    cyhalofop - butyl  penoxsulam fluorpyrauxifen –  
benzyl 

Accession  
code 

  GR50             
(g a.s. ha-1) 

Slope  GR50             
(g a.s. ha-1) 

Slope  GR50             
(g a.s. ha-1) 

Slope  

Classification 

15-12 E. crus-galli 29.1  (3.8) 4.7  (1.1) 1.3  (0.2) 1.3  (0.2) 6.9  (0.3) 2.0  (0.1) 

15-9 E. crus-galli 40.9  (3.8) 7.5  (7.6) 2.4  (0.2) 1.4  (0.2) 7.5  (0.3) 3.0  (0.4) 

16-25 Echinochloa spp. 76.5 (3.5) 2.3  (0.2) 17.6  (1.3) 2.4  (0.4) 13.6 (0.7) 3.1  (0.5) 

16-41 E. phyllopgon 47.9  (2.7) 2.3  (0.3) 5.4  (0.3) 2.0  (0.2) 7.6  (0.6) 2.7  (0.5) 

16-59 E.phyllopogon 212.8  (9.8) 1.5  (0.2) 10.4 (1.5) 1.4  (0.2) 16.7 (1.4) 2.9  (0.4) 

16-42 E. oryzicola  20.4  (1.6) 1.6  (0.2) 1.7  (0.2) 1.5  (0.2) 8.5  (0.5) 2.2  (0.2) 

16-45 E. oryzicola 24.7  (0.7) 4.7  (0.4) 3.7  (0.4) 1.3  (0.2) 5.2  (0.3) 2.3  (0.3) 

16-43 E. oryzicola (*) 17.6  (1.3) 2.1  (0.4) 2.1  (0.2) 1.4  (0.2) 5.0  (0.3) 2.0  (0.3) 

16-54 E. phyllopgon (*) 88.0  (7.8) 2.5  (0.2) 4.8  (0.5) 1.5  (0.3) 8.0  (0.6) 1.5  (0.2) 

 

  



Chapter III – Results and discussion 

113 

For cyhalofop–butyl (Fig. 37), it was assessed the highest degree of variability in the response 

of the different species. No difference in susceptibility were assessed among species, contrary to 

previous publication (Vidotto et al., 2007) where accessions of E. crus-galli resulted significantly 

more sensitive to this herbicide when applied at field dose. The variability was similar in the two 

experiments. The two accessions of E. oryzicola, 16-42 and 16-45, showed susceptibility levels 

closer to that of E. crus-galli and both species are in the lowest part of the graphic, seemingly more 

sensitive than the other accessions. The highest variability was detected in E. phyllopogon (16-41 

and 16-59) accessions. Accession 16-59 showed ED50 and GR50, respectively, five times and four 

times higher than 16-41: the first had ED50 and GR50 equal to 300.1 (±11.3) and 212.8 (± 9.8) g a.s. 

ha-1, while these values in accession 16-41 were equal to 63.4 (±2.4) and 47.9 (±2.7) g a.s. ha-1. 

Similar differences were registered between the two “crossing” accessions, i.e. 16-43 and 16-54. 

In this case ED50 and GR50 of 16-54 were, respectively, three and five times higher than those of 

16-43.  

Florpyrauxifen–benzyl response was less differentiated among species (Fig. 38), only accession 

16-59 showed ED50 value of 54.3 (±4.5) sensibly superior to the others and 16-45 inferior to the 

others and equal to 8.7 (±1.4). Accessions 15-9 and 15-12 responded similarly to each other, but 

their susceptibility was not different from the “white” accessions.  

Dose response of accessions in 2018 experiment was less variable than in 2017: all accessions 

here, but 16-59, were controlled at 2x rate of this herbicide (60 g a.s. ha-1).  

The high variability assessed in 2017 experiment could be due to the high temperatures 

recorded during the course of the trial in June-July of 2017 (See Appendix II).  

For penoxsulam (Fig. 39), E. crus-galli seemed slightly more sensitive than the other species: 

i.e. accessions 15-9 and 15-12 had ED50 of 5.6 and 6.0 g a.s. ha-1, respectively. A similar response 

was given by accessions 16-41, 16-42 and 16-43, which ED50 was respectively of 2.8, 7.5 and 5.4 g 

a.s. ha-1, whereas the value of ED50  for other accessions was on average equal to 18.8 g a.s. ha-1. 

We cannot affirm that there is a specie-specific response of Echinochloa to penoxsulam. 

However, our results seem to reflect the penoxsulam herbicide strategy used in rice fields: 

treatment is anticipated at 2-3 leaves stage in case of mixed infestation of “white” and “red” 
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Echinochloa, while E. crus-galli alone is sensitive to this herbicides up to two tillers stage (i.e. E. 

crus-galli, in the field, is more sensitive to penoxulam than other species).  

In general we can say that, relatively to the performance of the different species, the two 

experiments provided similar results. In both cases, variability of response among species was high 

and it was not possible to find a common pattern for each combination species x herbicide.  

It is worth to highlight that in 2017 experiment, for all of the three herbicides, fresh weight of 

plants decreased more rapidly than in 2018 (See Appendix I).  

In general, accession 16-59 showed a higher ability in herbicides detoxification in comparison 

with the other accessions. As a trend, we can say that E. crus-galli and E. oryzicola seem more 

sensitive to the three herbicides tested, as proved by their, on average, lower values of ED50 and 

GR50.  

Results were confirmed by the lack-of-fit F test performed on both plant survival and fresh 

weight. For all of the three herbicides testes, in many cases it was possible to simplify the 

regression to a model with common slopes, but ED50 always resulted statistically different, except 

in the case of response to penoxsulam of E. crus-galli (15-9 and 15-12) accessions for both plant 

survival and fresh weight.  

This indicated that accessions belonging to the same species equally respond to the increment 

of the dose of herbicides, but the dose required to achieve the control of plants is different. 

Therefore, it was not possible to demonstrate that different species of Echinochloa have different 

response to herbicides, independently from the dichotomous key used for plant classification. If 

we use Costea & Tardif (2017) classification instead of Tabacchi et al. (2006), we can verify that all 

accession classified as E. oryzicola respond differently to the various three herbicides tested: i.e. 

ED50 and GR50 are always statistically different.  

This is the first case that this type of experiment was conducted on purified accessions of 

Echinochloa spp. previously tested for their susceptibility.   
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Fig. 37:  Dose response curves of cyhalofop–butyl in 2018 experiment using the log-logistic model. Both survival (Top) 
and Fresh Weight (Bottom) are displayed. Lines of different color represent the different species of Echinochloa: red 
for E. crus-galli, green for E. oryzicola, blue for the “unclassified SE”, yellow for E. phyllopogon, black for the two 
accession for which molecular marker discrimination did not match with the phenotypic classification.  
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Fig. 38: Dose response curve of penoxsulam in 2018 experiment using the log logistic model. Both survival (Top) and 
Fresh Weight (Bottom) are displayed. Lines of different color represent the different species of Echinochloa: red for 
E. crus-galli, green for E. oryzicola, blue for the “unclassified SE”, yellow for E. phyllopogon, black for the two accession 
for which molecular marker discrimination did not match with the phenotypic classification.  
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Fig. 39: Dose response curve of florpyrauxifen - benzyl in 2018 experiment using the log logistic model. Both survival 
(Top) and Fresh Weight (Bottom) are displayed. Lines of different color represent the different species of Echinochloa: 
red for E. crus-galli, green for E. oryzicola, blue for the “unclassified SE”, yellow for E. phyllopogon, black for the two 
accession for which molecular marker discrimination did not match with the phenotypic classification.  
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3.2.8  SPECIFIC CONCLUSIONS 

Results of the combination of classic taxonomic classification, molecular markers discrimination 

and dose-response experiments on multiple purified and sensitive Echinochloa spp. accessions led 

us to multiple conclusions.  

Molecular markers utilized in this study provided a good, but not complete discrimination 

among the different species of Echinochloa spp.: rbcL was the one that provided the best match 

with two of the classifications included in this study: i.e. Costea&Tardif (2002) and Tabacchi & 

Viggiani (2017) which only take into account very small traits of the plants, such as spikelets and 

caryopses, thus not always suitable for field classification.  

Discrimination provided by matK, is the one which betters describes the complexity of 

composition of Echinochloa spp. populations in Italian rice fields, although discrepancies are 

present. When approaching species discrimination a higher number of accessions must be 

considered in the study, especially when studying a genus like Echinochloa, which shows a high 

degree of plasticity in each morphological trait. DNA barcoding approach has proved to be a 

reliable tool for weed genome analyses and we wish that it will be implemented in the near future.  

Dose-response experiments results suggest that differences in the response to herbicides of 

the different Echinochloa species might be more related with tolerance/resistance issues or other 

phenotypical and physiological traits (e.g. germination delay), than to plant morphology (Vidotto 

et al., 2007). On the base of our results, planning a field herbicide strategy on the base of 

Echinochloa species composition might be misleading, both for technicians and farmers. 

Furthermore, herbicide susceptibility cannot be considered a discrimination trait for Echinochloa 

spp. with the herbicides now available.  
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4 RESEARCH CONCLUSIONS 

The research tackled two important aspects of herbicide resistance in Italian rice fields: 

epidemiology and classification of Echinochloa spp. as well as the interaction between Echinochloa 

species and the most commonly used herbicides.  

The epidemiological study, based on a large area of about 200,000 ha, revealed that the main 

predictors associated with the presence of herbicide resistance are water seeding and crop 

rotation and that soil texture has also an impact, even if to a lesser extent.  

Resistance is more frequent in areas were diversity in space and time is low and where 

traditional rice cropping system is more frequent, i.e. where water seeding and lack of crop 

rotation are common practices. Stochastic maps based on neural network analyses confirm that 

the risk of resistance evolution is higher in those areas and also exists, even if lower, in areas where 

resistance had never been recorded.  

Random sampling followed by resistance screening confirmed the outcome of the neural 

network analyses. Resistant Echinochloa are present in those areas where previous monitoring 

based on farmers’ complaints had not recorded any case. However, Echinochloa spp. density 

assessed on field was medium-low, likely not alarming farmers that can manage resistance with 

practices that keep it at an acceptable level: e.g. crop rotation.  

Echinochloa spp. study highlighted that it is not possible to find a univocal classification for this 

genus: published dichotomous keys consider different morphological traits, so the use of one or 

another leads to different conclusions. 

Barcoding proved to be a helpful tool for the discrimination of Echinochloa species, although 

further studies are needed. Molecular marker species discrimination based on different genes 

matched with different dichotomous keys. Given the complexity of the situation, where multiple 

Echinochloa species often coexist in the same field, the most suitable match between molecular 

and phenological classifications appeared to be matK gene and the classification proposed by 

Tabacchi et al. (2006) because it allowed to distinguish three species, E. crus-galli., E. phyllopogon 

and E. oryzicola. 

Dose-response studies on susceptible purified accessions highlighted that there is no clear 

interaction between herbicide efficacy and Echinochloa species. E. crus-galli, i.e. “red” 
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Echinochloa, seems to be slightly more susceptible than the “white” species. Nevertheless, 

variability is high and the average herbicide efficacy is similar among species. 

The results suggest that tuning herbicide strategies according to subtle morphological 

differences of Echinochloa species present in the field is wrong, especially in case of resistance 

management. 
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Fig.I: Data of plant survival assessment in 2017 Dose – Response experiment expressed as percentage (%) of the untreated check for cyhalofop butyl,penoxsulam and florpyrauxifen 
- benzyl. Vertical bars represent the standard errors. Different colors indicate the different species: red for E. crus. galli, green for E. oryzicola, blue for the “unclassified SE”, yellow 
for E. phyllopogon, black for those accesson for which morphological traits did not match with matK discrimination.  

cyhalofop – butyl  

 

g a.s. ha-1 

  

0

20

40

60

80

100

9,4 18,8 37,5 50 75 150 300 600

15-12

15-9

16-25

16-41

16-42

16-43

16-45

16-54

16-59



 

124 

 

 

 

 

g a.s. ha-1  

0

20

40

60

80

100

1,3 2,5 5 10 20 40 80 160

0

20

40

60

80

100

0,9 1,9 3,8 5 7,5 15 30 60

penoxsulam 

florpyrauxifen - benzyl 



 

125 

Fig.II: Data of fresh weight assessment in 2017 Dose – Response experiment expressed as percentage (%) of the untreated check for cyhalofop butyl, penoxsulam and 
florpyrauxifen - benzyl. Vertical bars represent the standard errors. Different colors indicate the different species: red for E. crus. galli, green for E. oryzicola, blue for the 
“unclassified SE”, yellow for E. phyllopogon, black for those accesson for which morphological traits did not match with matK discrimination. 
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Fig. III: Data of plant survival assessment in 2018 Dose – Response experiment expressed as percentage (%) of the untreated check for cyhalofop butyl, penoxsulam and 
florpyrauxifen - benzyl. Vertical bars represent the standard errors. Different colors indicate the different species: red for E. crus. galli, green for E. oryzicola, blue for the 
“unclassified SE”, yellow for E. phyllopogon, black for those accesson for which morphological traits did not match with matK discrimination. 
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Fig. IV: Data of fresh weight assessment in 2018 Dose – Response experiment expressed as percentage (%) of the untreated check for cyhalofop butyl, penoxsulam and 
florpyrauxifen - benzyl. Vertical bars represent the standard errors. Different colors indicate the different species: red for E. crus. galli, green for E. oryzicola, blue for the 
“unclassified SE”, yellow for E. phyllopogon, black for those accesson for which morphological traits did not match with matK discrimination. 
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Fig I: Values of maximum, minumim and average temperature (T) recorded during the course of the dose response trial in June and July 2017.. Plants were transplanted on 15th 
June 2017, treated on 22nd June 2017 and assessments were performed on 20th (cyhalofop – butyl and penoxsulam) and 26th (florpyrauxifen – benzyl) July 2017.  
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Fig II: Values average temperature (T) recorded in the greenhouse during the course of the dose response trial in April – May 2018. Plants were transplanted on 9th April 2018, 
treated on 20th April 2018 and assessments were performed on 16th (cyhalofop – butyl and penoxsulam) and 21st (florpyrauxifen – benzyl) May 2017.  
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