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Sommario Adattiamo la nozione di fibrati vettoriali formali con sezioni marcate su schemi mod-
ulari di Hilbert e li usiamo per costruire fasci modulari con una connessione meromorfa integrabile
che, in grado 0, interpola p-adicamente la filtrazione di Hodge usuale. Definiamo su tale fascio un
operatore U, e mostriamo il legame con il fascio delle forme modulari di Hilbert surconvergenti.

Abstract We define formal vector bundles with marked sections on Hilbert modular schemes and
we show how to use them to construct modular sheaves with an integrable meromorphic connection
and a filtration which, in degree 0, gives to us a p-adic interpolation of the usual Hodge filtration. We
define an Up-operator on this sheaf and relate it with the sheaf of overconvergent Hilbert modular
forms.






1 Introduction

A quick historical recap

The story of geometric modular forms started with the work of Katz in [ModIII], aimed principally
to create a unified geometric framework for various notions of modular forms (e.g. Serre’s and
overconvergent modular forms) of integral weight. The main idea was to construct compactifications
of suitable moduli spaces for elliptic curves and use forms on the universal object to define a sheaf
whose sections are indeed modular forms.

Coleman, in his paper [Col], addressed a conjecture of Gouvea predicting that everyoverconver-
gent modular form of integral weight and sufficently small slope is classical and the main tool in
his research was the introduction of the sheaves

MHi = Sym$ R'm. Q3 5 (C)

that is the degree k-th part of the symmetric algebra constructed on the first algebraic de Rham
cohomology sheaf with log poles at the fibers above the cusps, where 7 : F — X is the general-
ized universal elliptic curve, toghether with the natural filtration induced by the Hodge filtration.
Taking duals this definition is easily extended to all classical weights k& € Z thus providing a triple
(Hg, Vi, F*Hy) for each k € Z, where V, is the Gauss-Manin connection on Hy. He then accom-
plishes his task by means of a careful study of the cohomology of such triples.

In [AI] the authors generalized the construction of Coleman and defined p-adic families of de
Rham cohomology classes, having as a main motivation the extension of the construction of triple
product p-adic L-functions to the more general case of finite slope families of modular forms.
Roughly, the idea is to p-adically interpolate the sheaves Hj; where now k is a p-adic weight, that
is a continuous character of Z;'. More precisely they introduce special open subsets Wy of the adic
weight space and, using the theory of the canonical subgroup, define formal models X, ; of strict
open neighbourhoods &, ; of the ordinary locus in X@‘; x Wr and finite coverings 36, , ;1 — X, 1
over which the dual of the canonical subgroup of level n has a canonical generator. Using these data
they construct a subsheaf H# of Hl, (€/3&,, . ) and a marked section (in the sense of [AL Section
2]). The machinery of formal vector bundles with marked sections provides a sheaf W, in Banach
modules over X, j, together with a natural filtration F*W, in locally free coherent modules with
the property that, for k& € Z (which means k (x) = z¥) we have an equality on the rigid analytic
space

F ka = Hy
and an integrable connection V induced by the Gauss-Manin connection on Hjg. The interest
in this construction is that V can be p-adically interpolated: working with g-expansions, if s is a

continuous character of Z) over a complete Z,-algebra R, define d*: R 4]1”=° = R[[q)]V=° as

d’ Z anq” | = Z s(n)anqg”.
n>1 n>1
pin pin
Then, given another continuous character « of Z, under some mild assumptions on x and s, for
every w local section of W, they define

Vi (w) S W,ﬁ.gs



such that on g-expansions
Vi (w) (q) = d° (w(q))- (1.1)

This turns out to be the crucial point in the construction of the triple product p-adic L-functions
for forms of finite slope.

Hilbert modular forms

Hilbert modular forms can be seen as a higher dimensional generalisation of (elliptic) modular
forms, where the role of GLs (Q) is played by GLs (L) for a totally real number field L. From the
geometric point of view this means that we need to consider the so-called abelian varieties with real
multiplication by Of, instead of ellitic curves. In [TiXi| the authors extended the work of Coleman
in the case of Hilbert modular forms, again with a classicity result in mind, and the purpose of
this thesis is to build up the technical apparatus needed to extend the work of Andreatta-Iovita to
the case of Hilbert modular forms. More precisely fix a totally real number field L, say of degree
g over Q, and let N > 4 and p be two coprime natural numbers with p prime. Finally let X
be the (p-adic formal scheme associated with a) smooth toroidal compactification of the moduli
space of abelian schemes with real multiplication by O and up-level structure. The advantage
of working with toroidal compactifications lies in the fact that we have an universal semi-abelian
object m : A — X with an action of Oy. Weights, in this setting, are locally analytic characters of
the group (Z, ®z Or)” (we can actually consider all of them at once taking a universal character
K).

First we consider a slight variation of the construction of formal vector bundles with sections
given in [AI] to keep track of the action of Or: pick a Galois closure L9 of L and let dy, € Z be
the discriminant of L, the main idea in this construction is that, if R is an Opca [d}']-algebra,
then we have a ring isomorphism

0L @z R— [] Ro,
oc®

given by x ® 1 — (0 (x)),, where & is the set of embeddings L — L%! and R, = R. Therefore for
every O, ®z R-module M we have a canonical decomposition as R-modules

M= ][ M)

ce®

and we can construct formal vector bundles with Op-action by working for each o separatedly.
Using the theory of canonical subgroups developped in [AIP2] we define formal models X%, of
the overconvergent rigid analytic neighborhoods as open subsets of particular admissible blow-ups
of X and finite coverings J&,, ,; — X, parametrising bases of the dual of the n-th canonical
subgroup. Over these schemes we have locally free coherent Ojg,, ., ®z Or-modules Qs C H #
with a common marked section, that allow us, using the machinery explained above, to define
sheaves of Ox, ®z Op-modules W, and " such that (see Theorem 8.24 for a precise statement)

Theorem.

1. The sheaf W, comes with a natual increasing filtration F*W,; by locally free coherent Ox, ®z
Or-modules



2. W, is isomorphic to the completed limit @Fhwﬁ and the graded pieces are

h —2h
Gr"F*W, ~ 10" Q0. wa™"

where wp is pullback of the universal object A — X, along the zero section;

3. FOW, ~ w" and its sections over the rigid analytic fibre X, of X, are the overconvergent
Hilbert modular forms as in [TiXi].

Since the sheaf W, is constructed by means of the first de Rham cohomology of the morphism
m, the theory of formal vector bundles with marked sections provides an integrable connection V
over J&,, , 1, descending to a meromorphic integrable connection on X,. However, on the analytic
space X, we have (see Proposition 8.26 for a precise statement)

Theorem. On X, the induced map on graded pieces
Gr"F*V, : Gr"F*W, — G" ' F*W,.80, Q. ,

is well-defined and it is the composition of an isomorphism and the product by an explicit element
depending only on k and h.

The sheaves W, on X, come with a compact operator U, on H'(X,.,W,). Using finite slope
submodules taken with respect to U, it is possibile to relate the cohomology modules H® (X,., W,,)
to the simpler modules H* (X,., F"W,). More precisely (see Corollary 9.5)

Theorem 1.1. Let h € Qsq, then for m large enough we have
Hi (X1, F™W,0)™ = 1 (X, 1, W,,)®

for every i.

Future perspectives

As said above, the goal of this thesis is to provide the technical tools necessary to extend the work
of Andreatta-Iovita [AI] to the case of Hilbert modular forms, hence let me briefly explain two
important applications.

De Rham cohomology and cusp forms
Using the results in Section 8.4 it is possible to construct the de Rham complex
We:0— W, = WeRo,, Q. = -+ = WeBo0,, 2 — 0.

¢ In the elliptic case [AI, Corollary 3.35, pag. 42] it is shown, using sheaf cohomology arguments,
that over an open subset U of the weight space given by removing a finite number of classical
points there is an isomorphism

Hip (X, W)™ © 0 U) ~ H (2,0 " @ 0 @)

where U depends on h and the slope decomposition is taken with respect to the action of U,.



¢ In the Hilbert case, in [TiXi, Theorem 3.5, pag. 95]it shown that there is a sujective map

St — HY, (X, D, F)
whose kernel can be described by means of a certain differential operator ©, where k is a
cohomological classical multiweight, ST denotes the module of overconvergent cusp forms, D
is the boundary divisor for a fixed toroidal compactification and Fy is a sheaf similat to our
Wy.

These two results suggest that it will be possible to relate the de Rham cohomology HYy (X, Wy),
or some finite slope cusp submodule thereof, with the space of Hilbert cusp forms. The initial step
for this task will be, following [TiXi], the study of the dual BGG complex of W, in the spirit of
[TiXi, Section 2.15, pag. 90]. Theorem 1.1 will also be of great help in reducing the problem to the
study of the coherent locally free subcomplex

FnW; S0 — F"W, — Fn+1WK®OXTQ}YT I F”+9W5®OXTQ€YT —0

of We.

Iteration of the Gauss-Manin connection and construction of triple product p-adic
L-functions for finite slope Hilbert modular forms for unramified primes

The main result in [AI], as explained above, is the construction of triple product p-adic L-functions
in the more general case of finite slopes elliptic modular forms instead of ordinary ones, and the
extension of this result to the case of Hilbert modular forms is the natural application of the work
carried out in this thesis. The main technical obstacle is the construction of iterations of the Gauss-
Manin connection introduced in Section 8.4, that is of sections as in (1.1) under suitable conditions
on the weights s and k.

This work will require the definition and the study of the notion of nearly overconvergent Hilbert
modular forms rely either on computations using g-expansions ([AI]) or in terms of Serre-Tate
coordinates ([Fan] or a recent unpublished work of S. Molina).
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2 Hilbert modular schemes

Fix a totally real number field L with [L: Q] = g > 1, let Of, be its ring of integers, Dy, be its
different ideal, where
D' = {zeL | Tryqzy) € ZVyeOL},

and d, = Np|g (D) its discriminant. Denote
¥ = {embeddings o : L — R}
If S C L is any subset we denote
St={seS|o(s)>0VoeX,}
and C1(L)" as the group of fractional ideals of L modulo the relation
I~J ifandonlyif I=M\Jforsome\cLt.

We have an exact equence

X
RN Cl(L)" = CI(L) — 1.
OfL+
Definition 2.1. An oriented Op-module is an invertible Op-module M together with an orientation
of M ®, R for every o € ¥, (hence g choices), hence a choice of a “positive side”. When such a
notion is given, we denote with M+ C M the subset of totally positive elements. A morphism
¢: (M,M")— (N,N") of such objects is an Of-linear map ¢ : M — N with ¢ (M) C N*. Let
Posp, be the category just defined.

Example 2.2. The most immediate example is given by fractional ideals of L: if a is such an
ideal, it is a projective Or-module, necessarily of rank 1 and a™ is the actual set of totally positive
elements as defined above.

Lemma 2.3. The tensor product o, makes the skeleton category of Polp, into an abelian group,
still denoted Polp, . Moreover the usual isomorphism between the group of invertible Or-modules
and that of fractional ideal induces Polp, ~ C1(L)*.

Proof. See the argument sketched in [Gor, pag. 50] O

Example 2.4. This is the key example of an oriented Oy -module we’ll be dealing with. Let A — S
be an abelian scheme. Suppose we have an injective ring map

o] : Or, < Endg (A)

denoted r + [r]. Then we can see A as a functor from S-schemes to Or-modules. By duality! we
have an action
[o]" : O < Endg (AY)

I'The dual exists. Skim the section Digressive Discussion About Representability of the Picard Functor of an
Abelian Scheme A/S in [FaCh, Chapter 1, pag. 2|



where

[’ (€)= [r]" £

for every line bundle £ on A and r € Op. It follows that it makes sense to talk about Op-linear
maps A : A — A hence we can define

Ma={N:A— AY | \is symmetric and Op-linear} .

Of course, for an S-scheme T', polarisations A : A xg T — AV x g T provide elements of M4 (T'). It
can be shown (see [Rap, Proposition 1.10, pag. 6]) that as long as T is a the spectrum of a field, the
set M4 (T') always contains at least one polarisation. Even more, the functor M 4 is an étale sheaf
in Op-modules on S which is locally constant having as value an object of Posp, where the totally
positive elements M; are given by the polarisations. If moreover S is normal and connected, then
M 4 is actually constant. These are [Rap, Proposition 1.17, Variante 1.18]. Note also that we have
a natural map

A®p, Ma — AY (2.1)

given on points by £ @ A — A (z).

2.1 Abelian schemes with real multiplication

Definition 2.5. Let 7 : A — S be an abelian scheme of relative dimension g and fix a fractional
ideal ¢ of L

1. We say that 7 has real multiplication by Oy, (we’ll say that 7 is an RM, .abelian scheme for
short, or even an RM-scheme when Op, is clear from the context) if there exists an injective
ring homomorphism Op — Endg (A). For r € Op we’ll usually denote the corresponding
endomorphism with [r] .

2. If 7 is an RM-scheme, we say that it satisfies condition (R) if the conormal sheaf w 4,5, which
is a locally free Og-module of rank g, is locally free as on Of ®7 Og-module with rank 1.

3. If w is an RM-scheme, we say that it satisfies condition (DP) if the map (2.1) is an isomorphism.
It is natural to guess the relations between these notions.

Lemma 2.6. Let k be a field and let R = Op ®z k. Let M be an R-module and suppose that M
has dimension g as a k-vector space. Then M is a free R-module (necessarily of rank 1) if and only
if it is faithful. In particular M is a free R-module if and only if M ®y k is a free R ®j, k-module.

Proof. This is the content of the proof of [Rap, Proposition 1.4, pag. 5]. O
Proposition 2.7. An RM-scheme over a field of characteristic 0 always satisfies condition (R).

Proof. By Lemma 2.6 we can suppose the field is alebraically closed and by the Lefschetz principle
we can suppose it is the field of complex numbers, where the statement is [Gor, Corollary 2.6, pag.
53]. O

Theorem 2.8. Let m: A — S be an RM-scheme. If 7 satisfies condition (R), then it also satisfies
condition (DP).

10



Proof. This is the first part of [Gor, Lemma 5.5, pag. 99]. The trick here is to show that for every
prime ¢, 7 has an isogeny of degree prime to /. O

Theorem 2.9. Let w: A — S be an RM-scheme. If w satisfies condition (DP) and dy, is invertible
on S, then it also satisfies condition (R).

Proof. Suppose (DP) holds for 7. Since we know that w,,g is a locally free Og-module, we reduce
to the case when S = Spec (k) with k& a field. The case when k has characteristic 0 is trivial in
view of Lemma 2.7. Hence suppose k has characteristic p > 0. Since dj, is invertible on .S we have
that the ring k ®z Oy, is semi-simple and this implies the group Ky (k ®7z Or) is free generated by
the classes of simple modules (this is also called Devissage Theorem for Ky, see for example [Ros,
Theorem 3.1.8, pag. 117]), hence we just need to see that w,;, has the same class as k ®z O, in
Ky (k ®z Or). Looking at the proof of [DePa, Proposition 2.7, pag. 65], one sees that it works
verbatim with HJly instead of H{R, showing that

[HéR. (A/k)] =2 {HO (A,Q}L‘/k)}

and we conclude since, in view of [Rap, Lemme 1.3, pag. 4], the k ®7 Or-module H}, (A/k) is free
of rank 2 and the group Ky (k ®z Op) is free, hence it has no 2-torsion. O

An important fact is the following

Theorem 2.10. Let k be a field of characteristic p > 0 and let Ay, be an ordinary abelian variety
with faithful multiplication by Or. Then Ajy, satisfies (R).

Proof. In view of Lemma 2.6, we can suppose that k is algebraically closed. Let 2l ) be its
canonical lift: it inherits a faithful multiplication by Of, as well as its general fibre A = Ay (1) K,
so that we conclude in view of Lemma 2.7.

In order to deal with better moduli schemes we need to introduce some more constraints:

Definition 2.11. Let N be a positive integer, ¢ be a fractional ideal of L and let 7 : A — S be an
RM-scheme.

1. A c-polarisation on 7 is an isomorphism of étale sheaves in oriented Op-modules on S

)\ZC%MA.

2. A pn-level structure on 7 (also called a I'gg (IV)-level structure) is the datum of an Op-linear
embedding of S-group schemes
iZDIjl@Z,uNHA,

where
(D1 @z un) (T) = Dyt @z p (7).

Theorem 2.12. Let N > 4 be an integer and ¢ be a fractional ideal of L. Consider the functor
M (un, ¢) which to any scheme S associates the set of RM-schemes that satisfy condition (DP), with
c-polarisation and py -level structure, modulo isomorphism. Then M (uy,¢) is finely represented by
a scheme M (un,c) = My which is flat and relative complete intersection over Z and it is smooth
over Spec (Z [dzl]). Let Ay = A (un,c) — My be the universal object. If p|dr, then the singular
locus of M (un, ¢) @ F), has codimension 2, in particular My — Spec (Z) has normal fibres.

11



Proof. The existence of M (un,c) — Spec(Z) as an algebraic stack follows from Artin’s criterion
as in [Rap, Théoréme 1.20, pag. 11] (note that the level structure does not play any role there).
Oune sees that M (un,c) — Spec(Z) is an algebraic space since the presence of the level structure
rigidifies the moduli problem, see [Gor, Lemma 3.1, pag. 124], while the fact that it is a scheme
comes from geometric invariant theory. The remaining statements are [DePa, Théoréme 2.2, pag.
64] and [DePa, Corollaire 2.3, pag. 64]. O

Corollary 2.13. Let N > 4 and let k be a field of characteristic p > 0 with p|N. If
s : Spec (k) = M (un,¢)

is a k-rational point, then
Ay s — Spec (k)

s ordinary.
Proof. We have an isomorphism as group schemes
D' @pn =

and hence, when p| N, the group scheme p9 is a subgroup of Di! ® . The scheme Ay, — Spec (k)
is an RM-scheme, hence it has dimension g. Note that

Hom (pp, o) = Hom (up,@) =0

hence the abelian scheme Ay ; — Spec (k) is ordinary. O

Definition 2.14. Let ey : M (uy, c) = Ay be the unit section, define
w(pN,¢) =wy =w

*)1
ase QAN/M(MN7C)'

The sheaf wy is a locally free On, -module of rank g and the property of being locally free as
an Oz, ®z Op-module is open ([Rap, Remarque 1.2, ii, pag. 3]) hence the following definition
makes sense.

Definition 2.15. Let M C My be the open subscheme of points that correspond to RM-schemes
with condition (R). This is called the Rapoport locus.

Remark 2.16. In view of Theorem 2.9, for every scheme S — Spec (Z [d;l}), the map
Mﬁ X Spec(Z) S — My X Spec(Z) S

is an isomorphism, this holds in particular for S = Spec (Q). Moreover the morphism MY —
Spec (Z) is smooth.

12



2.2 Compactifications
2.2.1 Torus embeddings

Fix for this section a base scheme S. One can suppose S = Spec (Z), since this is the case in which
we’ll apply the construction.

Definition 2.17. Let G be a commutative S-group scheme. An action of G on an S-scheme T is

a morphism
p: GxsgT—T

that satisfies the usual conditions for a group action, once suitably expressed in terms of commut-
ative diagrams.

In particular the group multiplication G xg G — G gives an action of G on itself, called the
translation action.

Definition 2.18. A torus embedding over S is a T-equivariant open immersion 7' < Z over S,
where

e T is a split torus over S, i.e. isomorphic to G:;L‘ g for some n;
e 7 — S is a separated S-scheme with an action of T
subject to the following conditions:
1. the T-action on Z extends the translation action of T on itself via the open embedding above;
2. for every point s € S, the image of T in Z, is dense (and open).

We can define morphisms between torus embeddings over S in the obvious way and hence end up
with a category TE g.

Let M be an oriented Op-module: recall that it is a free abelian group of rank g and let M"Y
be the Z-linear dual Homy (M,Z). The orientation on M induces an orientation on MV given by
the orientation preserving R-linear maps Mg — R.

Definition 2.19. Let M be a free finitely generated abelian group. A rational polyhedral cone
(r.p.c.) in Mr = M ®z R is a subset of the form

c=Rsomi+---+Rsomy m; € M C M ®zR.

A face of o is a subset @ N H where H is an hyperplane in My which has empty intersection with
o. We say that o is smooth if such m;’s can be taken to be part of a Z-basis of M. We define the
dual cone as

oV ={feMg | f(m)>0Vmeo}.

An r.p.c. decomposition in Mg is a mutually disjoint collection C' = {0}, of r.p.c.’s in Mg such
that any face of o, is in C. The r.p.c. decomposition C'= {o,}, is said to be generated by o if it
is given by o and all its faces.

Lemma 2.20. Let M be an oriented Or-module, then there exists a smooth r.p.c. decomposition
C = {04}, of (MY)* U{0} such that

13



1. C is invariant under the action of U3, where

Uy =ker | OF — Or \"
N L NO,

and such action is free;
2. the set C/U%, is finite.
Proof. This is [Rap, Lemme 4.2, pag. 45]. O

Proposition 2.21. Let M be an oriented Or,-module and let C = {04}, be the r.p.c. decomposition
generated by cin M ®z R. Set

T = M" @z G5 = Specg (Os [MY])
Z, = Specg (Os[MY Na"]),
then
1. T is a g-dimensional split torus over S;
2. the map T — Z is a torus embedding, called the torus embeding associated with o.

Moreover, if T is a face of o, then Z, is naturally identified with an open subscheme of Z, and
hence, if D = {sg} is any r.p.c. decomposition in Mg, then we have a torus embedding T — Z (D)
where Z (D) is the S-scheme obtained by patching the Z., along the open subschemes corresponding
to the faces.

Proof. This is part of [FaCh, Theorem 2.5, pag.100]. O

2.2.2 Toroidal and minimal compactifications
Fix an oriented invertible Oy -module ¢, let ¢* denote the resulting totally positive elements.
Definition 2.22. A cusp C of My is the data of

1. a pair of invertible Op-modules (ac, beo);

2. an isomorphism S¢ : balac —

3. an exact sequence of O /N-modules

_1bc

C

o 0—=Dilag' ®@zun — Ho —
4. an injective Z-linear map
Yo : Dyt @z un — He.

Here pn = pn (C). There is an obvious notion of isomorphism between two such sets (isomorphisms
of ordered pairs respecting the additional data) and we identify two cusps which correspond under
isomorphism.

14



Lemma 2.23. Let M be an invertible O -module, then there is a natural isomorphism
Homy (M, Z) ~ Homo, (M,D;").
In particular, if C is a cusp as in Definition 2.22 and M = acbe, we have
MY :=Homgz (M,Z) ~ ca;*D; .
Fix now a cusp C and let M = acbg. Set

Z [(Xm)mEN*LJVI]
In-1.

Ry =Z[N"'-M]=
where In-1.) is the ideal generated by Xy — 1 and
{Xm X0 — Xppgn | myneN"' - M},

and S = Spec (RY%). This is the split Z-torus having N=' - M as group of characters. Fix now a
smooth r.p.c. decomposition o = {04}, of (My)* U{0} as in Lemma 2.20. In view of Proposition

2.21 we get a torus embedding S% < Sy (¢) corresponding to such decomposition. Let Sy (g) be
the completion of Sy (¢) along the (reduced) closed subscheme S = Sy (o) \S};. Denote with
S = Spf (R,,,) the induced formal affine covering and S, = Spec (R,,, ). The action of U}, on o

induces an action on .§]\V (). Since the action is free, the resulting map
Sy (a)

SN(Q)—> UJ%,

is formally étale and the finiteness of o/U?2 ensures that the support of Sy (¢) /UZ is of finite type
over Z [Rap, Lemme 4.5, pag. 47] and since ¢ is smooth one sees that R, is formally smooth over
Z [Rap, Corollaire 5.3, pag. 69].

We have a canonical way to construct a semi-abelian scheme over Spec (R, ) from these data:
we have a Z-linear map

M — R;a = Gy, (Spec (R,,,))
m— X,

which, in view of Lemma 2.23 gives an Op-linear map M — G,, ® Dgl and hence
o,  bo = G @ Dy tag!.

Note again that G,, ® Dzlaal is the split torus over Spec (R, ) having Dzlaal as group of char-

acters. In [Mum] the quotient semi-abelian scheme

Gm @ Dy tag!

Tategr = 4o, (b0)

is constructed. Note that it comes with a natural action of Or. One can show the following
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Proposition 2.24. Let Rga be the quotient of R, by its topologically nilpotent elements, then
Tatel® @g,. RS is an RM-scheme that satisfies condition (R) and that comes with a natural
c-polarisation. Moreover there is an exact sequence of finite flat group schemes over Spec (Rga)

N_lbc

0 — D;lag' @ un — Tatelr [N] — ;
C

In particular, through vc, every choice of an isomorphism Op/NQOyp, =~ N‘la(_jl/a(_j1 gives a |-
level structure on Tatel ®g, Ry .

Proof. This is [Rap, Section 4]. See also [Kat, Chapter 1]. O
As we did before, we set

Theorem 2.25. With notations as above, for every cusp C of My let c¢ = {ag}a be a smooth

r.p.c. decomposition of ((ctcbc)ﬁ)Jr U {0} as in Lemma 2.20 such that the assignment C +— o€ is
compatible with isomorphism of cusps, then

1. for every cusp C the above construction gives a morphism

Oc H (Spec (R,) ®zZ [gN’ ]H) — My ®z7Z [fN, ]H ;

[0}

2. there exists a proper and smooth scheme

M ((2©),,) — Spec (z HD
gotten by “attaching” the schemes Tatec to My ®yz Z [EN, %] via the maps 0,c and then
descending from Z[§n,1/N] to Z[1/N];
3. there exists an open immersion
J My @2 Z[1/N] = MY ((c°) )
and a semi-abelian scheme A" — MY* ((gc)c) with Op -action such that

(a) ?he boundary M'$" ((gc)c) \j (My ®z Z[1/N)) is a relative divisor with normal cross-
ings;

(b) the pullback of A" via j is the universal family Ay ®z Z[1/N] — My ®z Z[1/N];

(¢) there exists an isomorphism

p: I <§VU(SC) ®ZZ[1/N]> = M ((2)c)"

classes of cusps C' N

where M'Q* ((QC)C)A is the formal completion of My ®z Z [1/N] along its boundar and
@ is compatible with the 0,c ’s.

16



Proof. The first part is clear in view of Proposition 2.24 and the rest follows verbatim as in [Rap,
Théoréme 5.1, pag. 65], [Rap, Proposition 5.2, pag. 68] and [Rap, Corollaire 5.3, pag. 69] over
Z[{n,1/N]. The descent from Z [{n,1/N] to Z[1/N] is described in [KiFL, 1.6.6, pag. 742]. See
also the introduction of [DePa] and [KiFL, 1.7.1, pag. 743]. O

Definition 2.26. We call the morphism M{* — Spec (Z [1/N]), together with the universal semi-
abelian family A" — M'¢"a toroidal compactification of Ay — My (note that it does depend on
the choice of the family (QC) even if we do not make it appearent through the notations). If e'°*
is the unit section, we let

C?
* 01
Wmter = (e"") Qptor /nter
Remark 2.27. The sheaf Whtor is a locally free (’)Mtﬁr—module of rank g and we can recover the

Rapoport locus as the open subset over which it is an invertible O, ®7 OMggr—module.

Proposition 2.28. Let G — S be a semi-stable commutative group scheme which is abelian over
an open dense subset of S and with S normal, excellent and noetherian. Let e denote its unit section

and w = det (e*Qg/S), then there exists m such that w®™ is generated by global sections.

Proof. This is [MoBa, Theorem 2.1, pag. 208]. O

M
Proposition 2.29. Fiz a smooth toroidal compactification M'* of My, then det (gMﬁr) 18

generated by global sections for some m > 1.

Proof. The scheme MY" is proper over Spec (Z [1/N]), in particular it’s given by finitely generated
Z-algebras hence it is excellent and noetherian. It is normal since it is smooth over a regular scheme,
hence MY" itself is regular?. The rest is clear, since A" is abelian on My hence Proposition 2.28
applies. O
Note 2.30. In view of Proposition 2.29 we have a morphism ¢,,, : M%¢* — P" induced by det (ng)(@m
and Stein factorisation gives a commutative diagram

~ <

min
MYy

My" Z[1/N]

where 7T is proper with connected fibres, T Omter = OM}‘V’"‘ and v is finite. One can show that

there exists a very ample invertible sheaf L on M such that 7*L = det (ng)®km for some k,
in particular

. ®km
My" = Proj | DT <M3<V> det (gwr) )
k>0

can be shown to have the following properties

2This is contained in
Q.L1u, Algebraic geometry and arithmetic curves - Theorem 3.36, pag. 142
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1. it does not depend on the smooth toroidal compactification M’ used to construct it: more
precisely the restrictions

r (M?{?r,det (wMW)@t) —-T (MN, det (gMN)@)t)

are bijective (this is called Koecher principle, see [Rap, Proposition 4.9, pag. 49]). The proof
of the mere independence from the decomposition is a more or less formal consequence of the
properties of the toroidal compactification, see [FaCh, Remark 1.2 (b), pag. 137];

2. it is a projective normal scheme over Spec ([1/N]) and the map 7 is surjective: see [Cha, Main
Theorem (v), pag. 549];

3. there exists an open dense subscheme M™* C M%" such that

(a) the restriction 7y, factors through M%in’* (see [Cha, Main Theorem (vi), pag. 549]);

(b) the reduced structure on M™\M%™* is isomorphic to a disjoint union of copies of
Spec (Z [1/N]) naturaly in one-to-one correspondence with the cusps of My, in particular
it is finite étale over Spec (Z[1/N]) (see [Cha, Main Theorem (vi), pag. 549] and [Cha,
Main Theorem (vii), pag. 549].

Definition 2.31. For any toroidal compactification M'* of My, we cal the minimal (or Satake,
or Bailly-Borel-Satake) compactification of My the scheme M as in Note 2.30 together with the
canonical map 7 : MY* — M,

3 Gauss-Manin connection

3.1 Connections

Let X,5 be a scheme and F be an Ox-module. An integrable connection on F (relative to S) is a
map of abelian sheaves
V:F = FQoy Qﬁ(/s

such that

e satisfies Leibniz’ rule: that is for every open U C X we have

V(sf) =sV(f)+ [ ®oxw) ds
for s € Ox (U) and f € F (U). In particular V is Og-linear;
e integrability: define
VD F ®oy Qs = F Qox Qs
over an open U C X by the formula

VO (f @oxwyw) = (1) V() Aw + [ ®oxu) dw
where of course we denote with V (f) A w the image of V (f) ®o, () w via the exterior

product map F Qo Q}(/S R0y Q}/S — F ®ox Q;r/ls Then we say that V is integrable if

Vit o V) = 0 for every i. It is equivalent to the single condition V(?) o V = 0.

18



Note 3.1. Given a scheme S and Og-modules M, ..., M, with connections V; relative to some
fixed morphism S — T, define

n
Vi Rog - Vog Va :ZM1®OS ... RQog V¢®OS ... Rog M,,
i=1
and, with a slight abuse of notation, consider it as a map
M, Rog --- Qog M, — M, Rog - - Qog M, Rog Q}S’/T

Lemma 3.2. Let My, ..., M, be Og-modules with connections V1,...,,V, relative to T. If all the
Vi are integrable, then also Vi ® ... V,, is.

Proof. Tt suffices to see it for n = 2, so consider two Og-modules M, N with integrable connections
Vo, V. Write

Vi (m) = Zmi ® w;
V() =) ni®u,
where we note that we can take the same set of indices in both summations. Integrability reads
(Var - Var) (m) = [Var (mi) @ w; — m; @ du;] = 0
and the same for V. We compute

(VM ®VN) (Vi @Vy)](man)=(Vy®Vy) (Zmi®n®wi+m®ni®w)
:Z((VM@’VN)(W@”)@M—mi®n®dwi
+(Vu®VN)(men) @y, —m@n; ®dy;)
:Z(VM(mz‘)@)”@wi+mi®VN(”)®wi

—m; @n ®dw; +Var (m) @n; @v;
+m VN (n;) @ v; —m@n; ®dy;)

=" (mi © Vv () ® wi + Var (m) ©n; @ 1)
:Z(mi@ni®l/i/\wi+mi®ni®wi/\l/i)
=0.

3.2 Grothendieck on connections

Here we briefly review Grothendieck’s point of view about integrable connections. For more details
see [?, Section 2].
Let A= Ax/s be the Ox-algebra Ox @ Q%{/s where the product is (locally) given by

(s,w) - (t,7) = (st, sT + tw).
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Note that Qﬁ(/s C A is a square-zero ideal. We have two obvious ring maps ji,j2 : Ox — A given
by
Ji(s)=(s,0)  Jja(s)=(s,ds)

and the natural quotient A : A — Ox.

Theorem 3.3. Let F be an Ox-module, then the data of an integrable connection V on F (relative
to S) is equivalent to the data of an A-linear isomorphism

6:.7:®j2./4:>]:®j1./4

such that e ®a Ox = idx and that satisfies a suitable cocycle condition (corresponding to integra-
bility). The relation between these two notions is given by

V() =e(z®(1,0) —z®(1,0) € FRoy Vx/s; (3.1)

where we mean the image under the natural map F ®;, A = F Qo Qﬁ(/s.

3.3 The Gauss-Manin connection
We briefly recall how the Gauss-Manin connection is defined in a general setting, see [KaOd]. Let
xLyoss
be morphisms of schemes with f smooth, then we have an exact sequence
0— f*Q%,/S — Qﬁ(/s — Qﬁ(/y =0

giving a filtration to the deRham complex Q% /s
FPQ% /s =Im (f*QI;//s ®ox V% — QB(/S) :

Let Eg* = Eg* (Q}) be the associated spectral sequence.
1. Define the Kodaira-Spencer map as the connecting map
KSs: f.Q% /)y = R . f*Qy )5 = R' f.Ox ®ox Q-
2. Define the Gauss-Manin connection Vg as the boundary map
Ay B = R £.0% )y = Qys @RILQ% )y
We denote the hypercohomology
Hi (X/Y) = RULQ% )y
and call it the de Rham cohomology of the Y-scheme X.

Proposition 3.4. The connection Van s integrable.

Proof. See [KaOd]. O
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4 Hilbert modular forms of classical weight

This section is essentially taken from [Kat]. Let L be a totally real number field, say with [L : Q] =
g > 1 and let p be a prime which is unramified in L, with pOp = py ... p4.

Lemma 4.1. There exist finite extension Q, C F; fori=1,...,d and a natural ring homomorph-
sm
d
0L @22y = [[ OF.
i=1
Moreover the extensions Q, C F; are finite and unramified, hence Galois. Let K = F ... Fy denote
the compositum, then Q, C K is also finite and unramified, hence Galois.

Proof. The first statement is clear, where F; is the p;-adic completion of L. The fact that Q, C F;
are unramified follows from the chain of natural isomorphisms

OL®zZy _ OL®zZ
p-0L®ZZp_p1...pd®2Zp
0L ®@zZ,y
C [Ipi®z7Z,
H0L®ZZ

and the fact that Q, C K is unramified follows from [Neu, Proposition 7.2, pag. 153]. The next
well known Lemma shows that they’re also Galois. O

Lemma 4.2. Let Q, C K be a finite unramified extension, then it is Galois.

Proof. Pick a such that Ox = Z, [a] with irreducible polynomial f € Z, [X]. We have Frc = F, (@)
and this is Galois with [Fx : Fp] = [K : Q,], so that f splits completely in Fx and , by Hensel’s
Lemma, f splits completely in K. O

Let N > 4 be an integer not divisible by p and suppose that the fractional ideal ¢ is also coprime
with p, then the base change M = My X Spec (Ok) — Spec (Ok) is defined and

O ®2 Om = [ [ OF, @z, Om.
Over M we have an exact sequence
0= w— Hig »w’ =0

of locally free O ®7 On-modules, where w and w" are invertible in view of Theorem 2.9. Since the
sequence above is Of, ®z, Onm-linear, it splits as a product of sequences of OF, ®z, On-modules

1 v
0> w, = Hyg, > w; —0.

Fix one F; as above and let &; be its Galois group. It is cyclic of order dimg, F;.
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Lemma 4.3. Let R be an Ok -algebra and M be an O, ®z, -module, and see the elements o € &;
as maps Of, @z, R — R. Then

1. there is a canonical decomposition
M=) M (o)
cEB;

where
M(oc)={m e M | am =0 (a)m for every a € OF,}.

2. Suppose M is invertible, then the above decomposition induces

MOF — @ M (O’k)

ge®;

where the action of the multiplicative monoid OF, ®z, R is diagonal on M®* . Moreover

SympM = @ M (v
x>0
Ix| =k

where, for x = [[o* we define |x| = ks and x >0 if ky > 0 for every o.

Proof. This is [Kat, Lemma 2.0.8, pag. 227]. O

Let V : Hig = Hlg ®opn Qlle/R be the Gauss-Manin connection and D be a local section of
Ty r = Der (Om, Om), then taking the composite map

v
w — Hle %D Hle —>QV
defines the Kodaira-Spencer morphism
v 2
TM/R — HomOF,;®OM (Qvﬂ ) = HomOF‘i@)OM (g® 7OFi®OM)

which is an isomorphism, in other terms it defines an isomorphism of Ops-modules

1, @2
vp >

where w®? means tensor product as O, ® Op-modules.
Note 4.4. Let V : Hjp — Hip ®oy Qi be the Gauss-Manin connection, the On-module
Hlp @0y Qg /g has two structures of Op,-module: a left one coming from H, 1z and a right one

coming from Qy, /R induced by Kodaira-Spencer isomorphism above. We will consider the right

one. Then we see that
V (Hir,») € Hir ®0m /.o

therefore we can write V as a sum of O, ®z, Om-linear maps V = >V, where V, is the
composition

v
Higr — Hig Q0u Qll\/I/R — Hig ©0n Qll\/[/R.a'
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More generally, for k£ > 1 define D, as the composition
k v k k k
SymOMHéR — SymOMHéR®oMQIIVI/R o~ @ SymOMHéR®oMg (7’2) — SymOMHéR(@oMg (02) .
TEG;

In view of Lemma 4.3 we have an inclusion
2 2 1
w (0?) C Symp,, Hig.

Finally let

k k+2
D; : Symg,, Hig — Sym(;g/I Hiz

be the composition of D, with the product
k k
Syme,, Hir @0 SyméM Hig — SymO—It/[QHéR'
Lemma 4.5. The D,’s mutually commute.

Proof. This is [Kat, Lemma 2.1.14, pag. 229]. O

Classical weights Let T = Reso,. /z,Gm, namely the scheme representing the functor

R (Or, 92, B)"
for all Op,-algebras R. Then for every Op,-algebra R we have an isomorphism of R-algebras

Or,®z, R— [[ R (4.1)

cedB;
a®l— (o (a))aeesi

which induces a splitting To,, =~ [[,cs, Gm,0r,, in particular the character group X (T@Fi) is a
free abelian group with a basis given by the projections x, : Haeqs,- Gm,0r, = Gm,0p,. We will
identify X (TOFi) with Z% via

|—| XI;U = (kg)geﬁi
ge®;

and call its elements classical weights.

Modular forms of classical weights Let N > 4 be an integer, ¢ a fractional ideal of L, both
coprime with p and A® — M" a fixed toroidal compactification as in Definition 2.26. Note that
the Ozt ®z, OF,-module w is invertible. Let R be an Op,-algebra. For k = (kg)aeeﬁi we set

k
gk = ®0€®1g(0’) 7.

Definition 4.6. Let k € Z9 be a classical weight and R be an Op,-algebra, a Hilbert modular form
of weight k and level N over R (relative to the ideal ¢) is an element of

M (Rk, un) = H* (M' ® R, k) .
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De Rham cohomology Let D = M'\M be the boundary of the toroidal compactification, then
the Gauss-Manin connection V extends to an integrable connection with logarithmic poles

V: Hig = Hig ®0y, Qe (D)
For k € Z and &; we set

Wk =

g

Symb | Hip, k>0
Symo:  Haw', k<0

and

Wk = &) Wk
ge®B;

We end up with a de Rham complex
DR* (k) : 0= W= WX®o,, Qg (D) == W0, B g (D) — 0.
Note 4.7. Given a scheme X and an exact sequence of O x-modules
0—- M - M — My —0,
for every k > 0 we have an exact sequence
M ®ox Sym’é}lM — SymléXM — Symléng —0

that suggests the following non-negative filtration on Sym’éXM for0<n<k

I (D1, (M ©oy Sym/M) — Symb M) 0<n <k

F"Symk, M =
ox {0 n>k+1

In view of Note 4.7 we have a natural filtration on the W} ’s and hence, for n = (o) gew, € NO®i
and k = (ko) ,cq, € 2%
PPk = Q) Frew)e.

ced,;

5 Formal Op-module bundles with marked sections

In this section we let Q, C F' be a finite unramified and & be the set of embeddings o : F* — F.
Let p be the maximal ideal of Op. Let moreover X — S = Spf (Op) be an admissible scheme with
an invertible ideal of definition Z = aOx where a € p\ {0} C Op, say with aOp = p". We will
denote with X the reduction modulo Z.

5.1 Vector bundles with enhanced linearity

Lemma 5.1. Let £ be a coherent locally free Op ®z, Ox-module. There exists an admissible
morphism
m: Vo, () > X
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representing the functor in O ®z, Ox-modules
V(’Jp (5) : (t : QJ/}:) — HOIHO@ (t*g,O@) = Homox (5,1@02)),

For Spf (R) C X we have

7040, (¢) (5Pt (R)) = (RQSymp (Er ().

ce®

Moreover we have a commutative diagram

Vo, (&) ul X

~

X Xgpi(z,) Spf (OF)
Proof. Recall that the Op-linear structure on Home, (€,t,Oy) is defined as
(z-fHlle)=f((z®1)e) z€0p,ecé

Let Spf (R) C X be an open affine and suppose &|gp¢(r) corresponds to a finitely generated projective
Or ®z, R-module M. Then for every admissible R-algebra A

Homy (M @ A, A) = [ Homa (M (0) ®r A, A).
ced

The functor
Vo (M) : A Homy (M (0) @r A, A)

is represented by a formal scheme V,, (M) = Spf (SymR/(_M (U))) (see for example [AI, Section 2.1,
pag. 7]), therefore

Vo, (M) = Spf (@SymR (M <a>>) .

cES
Finally, for f = (f5), € Homy (M ®r A, A) and = € O we have
- f = (25" fa)g = (o (z) fU)g')

hence the Of ®z, R-algebra structure on ®06®SymR (M (o)) is given by
Or ®z, R — Q)Symp (M ()

ce®

z®1»—>®a(z)
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Note 5.2. Let £ be a coherent locally free O ®z, Ox-module and consider the formal scheme

7: Vo, () — X. For Spf (R) C X such that £ sp¢(r) is free, say with a basis {ei,a | ! :0176. 05 T }

we define®

F'1.0y, (&) (SPf(R) = Q) R[X1.0,- -, Xnoloy, -

ced®
We see that picking another basis of £ (o) doesn’t affect the R-module R [X1 ,,...,Xn 5], there-
fore the modules Fhﬂ'*OVOF(g) define an increasing filtration of W*OVOF(g), moreover we have

Oy, (6) = I F'm. Oy, ()
h

and
Gl"hF.ﬂ'*OVoF(g ®R Xl Nea R n,cr]

ce®

5.2 Marked sections

Definition 5.3. With setting and notation as above, an MSp,.-datum is a pair (£, s) with

1. £ alocally free coherent O ®z, Ox-module;

2. s€ H (X,€)\ {0} a section such that the map

s-Op Rz, Ox — F
is injective and locally split;

3. the O ®z, Ox-submoduleF C & generated by lifts of sis locally a direct summand.
A morphism f : (€,s) = (H,t) of MSp,.-data is an Op ®z, Ox-linear map f : & — H such that
f(s)=t.

To an MSp.-datum (€, s) we associate a sheaf on the category of admissible X-formal schemes
as

Vo (€,5): (¢:9/%) = { € Homo, (t€,0p) | (f mod £'T) (t's) € (Or/p™)* }
where (Op/p™)™ denotes the constant sheaf and with (f mod t*T) (t*s) € (Op/p™)™ we mean the
following: given
f=(fs), € Homo, (t'€,0y) = [ Homo,, (t'€ (0),Oy)
o
the condition on f is that
T, (" (s5)) € Im (a: (O /p™)* %@X).

3There many other possibilities leading to the same statements, for example if k = (ko), € N® set | k |= 3 k;,
then one could define

Fkﬂ'*OVoF(é') Spf(R) = & R[X1,0,.., Xnolay,
ogE®
|k |=h

However we picked the one indexed by a totally ordered set.
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Proposition 5.4. The functor Vo (€, s) is represented by an open subset of an admissible blow-up
of Vo, (€).

Proof. Let 0 € ® and let S C OF be a faithful set of lifts of the elements of (Op/p™)™ and fix
u € S. We have an epimorphism £ (o) — Q, where @, is a locally free sheaf given by modding out
by s,. Let

¢:Symo (£(0)) = Symo_ (Qo)

So > o (u)

and let ju,a = ker (¢) = (sg -0 (u)) Note that we have juﬁ = jv,o for u = v mod p™. Let

Juo € Oy, (g) be the inverse image of .J,, , and define Vi , (£, s) as the open subset of Bljm &)
over which J, , is generated by o and

VE(Es) =[] Vb, (E.9).
oed®
We claim that Vi (€, s) represents the functor on admissible X-formal schemes
(t:0/2) > [T {7 €V ©)(t:9/%) | Tiss) = (w) € O, "}
oced

for every o € &. If f € V, (£) (t:Q/X) with f(s,) = o (u) € (Op/p™)” then we have a commut-

ative diagram
Ay
v, (€)
t\\ /
X

and, if Spf (R) C X has & (U)\spf(R) free with basis {e1,4,...,€n,0} and &1, = s,, pick Spf (4) C 9
admissible over Spf (R). Then

)

AP R(X1g,... Xno) = A

with Ajf (X1,0) — 0 (u) € @A, therefore A}Ju,g is generated by «. On the other hand, if A}Ju,g is

generated by « then A}!7£ (X1,) — 0 (u) € aA hence f (s,) = o (u).
Let Spf (R) C X an open subset over which £ is free, say with basis {e10,... ,enyg}geﬁ where
€1, = S;. Then

oy R<X1,U,u7~-~7Xn,0',u7Zcr,u>
FOvy (e,s) (SPE (R)) = ®aeeﬁ (aZy — X156 +0(u))

=R{(Zow: Xoour- s Xnou |0 € S).

The formal scheme representing Vo (€, s) then is the disjoint union of the schemes Vi (£, s) index
by v € S, and hence

£ Ovo(e.s) (SPE (R) = [] R(Zow> X2+ Xnou | 0 € ®).
uesS
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Call f: Vo (€, s) = X the composition

Vo (£,5) = Vo, (£) = X,

then the map
e* T Ovo . (£) = F+Ovy(£,9)

locally looks like

R(X10, X2, s Xno|0 €)= [[ R (Zow Xoous s Xniou |0 € B)

ues
X, o (aZg,u+G(u))ueS z:: 1
' (Xi,o,u)ues ? 7é 1

5.3 Filtrations on the sheaf of functions

Let F C & be the invertible local direct summand of lifts of the marked section s € H° (i, E). Note
that (F,s) is also an MSp,-datum. With the basis we picked in the previous section, locally we
have

]:|Spf(R) = <617O' | OIS Q§> .

In this case we have a natural increasing filtration Filhf*OVO(&s) for A > 0 such that
L §.0vye.6) = liﬂhFhf*Ovo(s,s);
h 1e h e
2. Gr"F f*OVO(é‘,s) = f*OVU(}',s) ®o, Gr'"F W*OVOF(%)

where Gr" F*r, OVO (£) is defined as in Note 4.7. Indeed it follows from the functorial description
F

that
Vo (57 8) =Vo (]:7 S) XVOF(.F) VOF (‘9) s

then

fOvy(e,5) = f*OVO(}',s)@w*OVOFU:) ™ Ovo,. (&)

= 1.0u,7,9B0x ™0y, (5,

and we apply the construction in Note 4.7 to W*OVO (£) and get
F

F'.0y,(,5) = FOvo(F.5) @0 Fh?T*OVOF(

il
~—

Locally we have

Fil"f, Oy, e.s) (Spf (R)) = [[ R(Zow | 0 € ®) [Xw,u

ues
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5.4 Connections on the sheaf of functions

Let (£,5) be an MSp,-datum and V : £ — £&o, Q%E/S be an integrable connection. We say that
it is an MSp,-connection if

e it is compatible with the Op-structure, that is
V (£(0)) CE(0) B0 /s
In this case the restriction V, = V|¢(,) is again an integrable connection and
e s is horizontal for V, that is V (s) = 0.
In this case for every o we have an A-linear isomoprhism
€ E(0) R A= E(0) ®;, A

such that € (s, ® 1) = s, ® 1 and ¢, ®a Ox = idg(+) plus a cocycle condition translating integra-
bility. In particular €, is an isomorphism of MSp,-data over A and by functoriality we have an
isomorphism of Spf Ox (A)-formal schemes

Vo (€,9) X ja yox (A) = Vo (£,9) X1 on (A)

giving an isomorphism
€
f Ovo(e.5) @0 A = 1.0y, (£.5) R0y A
In view again of Grothendieck’s formalism we have a commutative diagram where the vertical
arrows are integrable connections

& T Ovo  (£) F+Ovy(e,s)

Vi o | |-

E®0x N g — MOy, (6)80: /s — T+ Ov,(£,5)00: U /5

This allows to give a local description of the connections. If Spf (R) C X is such that &gp¢(p) is
free with R-basis

{el,o" -5 €6no | (s 6} with €l,0 = So,
suppose
. . . . =1
V (ei g) = Z] 047"1)‘770—6]70- ® wl;]ﬂ' ? ,
Zj Tij,0€j0 @ Wijo otherwise.
then

> 0110 Xjo ®uwije =1
Zj TijoXjo @ Wijo otherwise.

V(DF (Xi,o) = {
We have V¢ (aZ,.,) = Vo, (X1,0) so that

Vo (Za,u) = Zrl’j’an’U’u Q w1,j,0 for every o € &.
J
Summing up we have, in view of the local descriptions and Leibniz’ rule
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Proposition 5.5. Let (€,s) be an MSo,.-datum over X and let V : & — ‘S@OxQ%e g be an in-
tegrable MSo . -connection. Then the connection Vo on §.Ov, ¢ ) is integrable, satisfies Griffith’s
transversality, that is

Vo (Fil'f. Ov,e.)) € Fil"™*'1.Ov, 6,00 B0: %k s
and the induced map

Gr" (Vo) : GI™ (1.Ovyy(e.9)) — G (5. Oy, (£.6)) Box U /s

is Ox-linear.

6 The weight space

This chapter is essentially borrowed from [AIP1, Section 2].

6.1 The Iwasawa algebra
Let T = Rese, 2Gm, that is T (R) = (R®z O)” for every commutative ring R.
Definition 6.1. Denote with A = Ay the completed group algebra
A =7y [[T (Zp)]]
and with k" : T (Z,) — A* the natural inclusion, which we will refer to as the universal character.
Remark 6.2. If TorsT (Z,) C T (Z,) denotes the torsion subgroup, we have a split exact sequence
0 — TorsT (Zy) — T (Zy) = T (Zy),; — 0

(here the subscript tf stands for torsion-free). We consider on Z, ®z Oy, is the product topology,
induced by one (hence every) Z,-module isomorphism with Z§. This makes Z;, ®z O, a compact
and separated Z,-algebra, from which T (Z,) acquires a structure of topological group, in particular
the finite group TorsT (Z,) is discrete. Moreover T (Z,),, is naturally a compact (hence complete
and separated) topological group. In particular the sequence is split in the category of topological
abelian groups.

Definition 6.3. Let A° =Z, [[T (Zp)tf]] be the completed group algebra over Z, corresponding
to the torsion-free quotient T (Z,),,-

Remark 6.4. We have an isomorphism
A ~ A° [TorsT (Z,)],
making A finite free over A and we can define the composition
KT (Zy) = A% — (M%)
where the last map is the projection induced by the above isomorphism.

Proposition 6.5. The ring A° is a regular local ring of Krull dimension g+ 1. Let v1,...,7, be
any topological basis of T (Zy),, and let m C A® be the ideal generated by p,y1 —1,...,7, — 1, then
m s the mazimal ideal of A° and A° is complete with respect to the m-adic topology.
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6.2 The adic weight space

Let 20 = Spf (A) and 20° = Spf (A®). We consider the admissible (formal) blow-up ¢ : Bln20 — 20
along the ideal m. In the same way we define t° : B1,20° — 20°. In view of Proposition B.7 we
have a finite locally free natural map Bl,20 — Bl,20°.

We will work with the adic spaces associated with such formal schemes.

Definition 6.6. Define W° = (Qﬁo)an and for every a € m let W0 = (Qﬁg)an.

Remark 6.7. Note that, as 20° is a formal scheme over Spf (Zyp), then WV is an analytic adic space
over Spa (Qy, Z,).

Proposition 6.8. The space W° is isomorphic to a finite disjoint union of open polydiscs of
dimension g, moreover, for every complete Huber pair (B, B") over (Q,,Z,), we have a natural
bijection
Homgya(g, ,z,) (Spa (B, BY) ,W°) — Hom§™" (T (Z,) , B) .
Proof. This is a restatement of the universal property of the Iwasawa algebra. O
Definition 6.9. Let © € Q- be a reduced fraction, define the following subsets of WO:
o Wl. = {zeW? | o], <[p°l, #0 Vaem}

o Wi ={z e W’ | 0# "], > |p*|, Vae€m}

Wgo = W%OO =W

for a,b € Q5o U{oo} and I = [a,b] set W) = W2, N WY,
o for « € m we let W9 ; = W) nWJ.

We introduce formal models for these spaces: fix an interval I = [a,b] C Qs U {oo}. For a € m
let WY, = Spf (Ba), set BY ;= H° (ngl (X ) and 209, | = Spf (BgJ). It is clear from Remark

TTWar @
C.5 that the analytic fibre of 207, ; is W ; and that they give an affine cover of a locally noetherian
formal scheme 209 whose analytic fibre is WY.

Lemma 6.10. Let I C Qs be a closed interval, then the m-adic topology and the p-adic topology
coincide on 209.

Proof. Suppose max I = r/s, we just need to check it on the various B? ;, but there the ideal m is

a,l’
generated by « and
T

a
aT:p—spseps-Bg’l.

Definition 6.11. For each closed interval I C [0, 00) we let
X
kr:T(Zy) — ((9%1)

be the natural map.
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6.3 The universal character

From now on we let ¢ =pif p > 2 and ¢ = 4 if p = 2. Set moreover H = TorsT (Z,). Note that,
for the moment, we do not need to impose any condition on the ramification of p.

Lemma 6.12. There exist Q, C K1,...,K; be extensions such that
OL®ZZp§OK1 x - x Ok,

and let p; C Ok, be the mazimal ideal. Then p1 X --- X py corresponds to t, - (O ®z Zy,), where t,
denotes the radical of pOyp, in Oy

Definition 6.13. Let m C A° be its maximal ideal. For n > 0 define

m n=20,1
my, = n— n—
n (xp 17pl'p 27“.7pn—1x | .’L'Em) n>1

Lemma 6.14. Let Q, C K be a finite extension and let n > 1 be an integer. Then
n—1
1+p"0k C (05)"

Proof. We’ll make use of the following version of Hensel’s Lemma

Theorem 6.15 (Hensel’s Lemma). Let K be a complete non-archimedean field, let Ok be its ring
of integers. Let f (X) € Ok [X] and suppose there exists ¢ € Ok with

[f (I <If ()] *.

Then there exists a unique o € Ok with f (o) =0 and |a —c| < |f' (¢)].

n

~' —1— p"a, note that
n—1 n—1
P n—1 p n—1
p ni i n b ni 1 n
E a'—1—ptal = E a"—p'a

i=0 im
(pn‘_l) P

i
pn—l ni

this computation shows that we can apply Hensel’s Lemma to f (X) above with ¢ =1+ p"a. O

Back to the proof, let a € Ok and set f(X) = X?

< max {|p"a| ,

|i:1,...,p"_1}

SmaX{lp”I, i=1,---,p"_1}§p|",

Lemma 6.16. Let n > 1, then k (T (Zp)ffnil) C 1+ m,, in particular

k(1+gp" " OL®zZ,) C1+m,

and k(T (Zp)) C 14+ my.
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Proof. First of all note that, being defined via the projection A — A°, the character & is trivial on
H and that, tautologically, x (T (Z,)) € 1 +mg. Let 71,...,7, be a topological basis of T (Z,),,,

we just need to see that x (75.7"71) —1 € m, for every i. Note that « (v;) € (A°) “has k(v;)—1€m
by definition, hence

n—1

K (757%1) —1=r(m)’ -1

(k5 (i) = 1)

-1

S0

s=1

DA

+
(£ (i) = 1)° € my,.

Since 14 gp™~!- O, ®z Z,, does not contain any torsion element of T (Z,), we just need to see that

n—1
1 + qpn_l N OL ®Z Zp g T (Zp)ff )
that is, every element in 1 + gp"~! - Of ®z Z, has a p"~!-th root. In view of Lemma 6.12 we

n—1
reduce to show that for K a finite extension of Q, we have 1+p" Ok C (le()p , which is Lemma
6.14. O

Proposition 6.17 (Analyticity of the universal character). Let n,m > 0 be integers and let I C
[0,p"] NQ be a closed interval. Set

6_{1 p#2

3 otherwise’
then k induces a pairing
kip 1 W) x T (Zy) - (1+p" - Reso, /7 (Ga)) = G,
on the category of p-adic formal schemes on 239 that restricts to
Kp © W9 x (1 + prtmte. Reso, /z (Ga)) = 14 gp"G,.
Proof. We prove it for p # 2, the case p = 2 being analogous. Let Spf (Bg,j) C 29, in view of
Lemma 6.16 it is clear that
K (T(Zy) (L+p™™ 0@z B2))) € (BS))”.

Let us note that, for every z € WY |, we have |a?" /p| <1 hence " /p € BY ;. It follows that for

n+m . . o .
every m > 0 we have o € p™ T BY | in particular my, 4,11 BY ; € p™ 1B . The Proposition

now follows since, again in view of Lemma 6.16
R(L4+p™ " Op @z Bl p) C 14+ Mpgmi1 Bop C14p" B .
O

Note 6.18. Note that, for a p-adically complete and separated ring A with ideal of definiton I, for
n large enough the exponential power series is convergent on I" (indeed one can take n such that
I™ C pA) , it follows that there exists an element u; € p*~™ such that k; (t) = exp (us - log (t)) for
tel+p"Or ®yz A.
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7 The Igusa tower

7.1 The Hasse invariant and the Hodge ideal

Let A be a p-adically complete and separated Z,-algebra and let S — Spec (A) be a scheme with
S locally given by p-adically complete rings. Let 7 : X — S be a semi-abelian scheme of relative
dimension ¢ with identity section e : S — X. Let S = Spec(R) be such that the R-module
wy/g =H° (S, e*Qk/S) is free of rank g. Let

Ver” : wg 5 — W /5
be the pullback along the Verschiebung on the reductions modulo p.

Definition 7.1. With setting and notations as above, the element

Ha (Y/g) := det (Ver™) € 2%

is called the Hasse invariant of X — Spec (R/p). Define Hdg (X,5) € R as the preimage of the
ideal Ha (Y/g) - R along the quotient R — R, this is called the Hodge ideal of X — Spec (R).

Lemma 7.2. The following hold
1. The tdeal Hdg (X/S) 18 Zariski-locally generated by two elements;
2. if p € Hdg (X/S)Q, then Hdg (X/S) is an invertible Og-module locally generated by any lift of

Proof. The first claim is obvious, for the second consider a local lift h of Ha (Y /E) on some small
open Spec (R) C X, then Hdg (X/S)
a,b € R with p = ah + bp? giving

Spec(R) = (p, h) and in view of our assumptions there exist

p(1—pb) =ah
and we conclude since 1 — pb is invertible. O

Proposition 7.3. Let k be an algebraically closed field of characteristic p > 0 and let Ay, be an
abelian variety. Then Ay, is ordinary if and only if Ha (A/k) e kx.

Proof. Tt follows from the definition that Ha (A /k) # 0 if and only if the Verschiebung induces
an isomorphism between the tangent spaces and this means that it is finite étale. In view of
the proof of [Sil, Theorem II1.6.2.(e), pag. 86], we see that #A[p] = deg,,, (Ver), in particular
#A[p] = deg (Ver) since Ver is étale (hence separable). We conclude since by duality

deg (Ver) = deg (Fr) = pdim4,

34



7.2 Canonical subgroups

Let N > 4 be an integer and fix an invertible ideal ¢ of L. Let A be an integral Z,-algebra,
a € A\ {0} be such that A is the a-adic completion of a Z,-algebra of finite type with p € aA.

Definition 7.4. Let 9" — Spf (A) be the a-adic formal scheme associated with M{* ®z A. For
r > 0 an integer, let Y be the functor associating to any a-adically complete A-algebra R with
no a-torsion the subset of

{(Fm) | £+ SpE(R) = 2%, € HO (Spf (R), f* det (w)** ) |

given by the pairs that satisfy
41

Ha? -n=a mod p? (7.1)

for any lift Ha of the Hasse invariant, modulo the relation
»?
(fin) ~(f,v) <= JuER, V77<1+au>'

Lemma 7.5. The functor 9°° in Definition 7.4 is well defined.

Proof. First of all let us work out the equivalence relation: the only thing that may not be appearent
is its reflexivity. Recall that R is suposed to have no a-torsion and that p € aR, from which o?
divides p? and the elements of the form 1 4+ up?a~"! lie in 1 + aR. They are therefore invertible
since @R is contained in the Jacobson radical of R. We're left with checking that equation (7.1) is
insensitive to the choice of the lift Ha. Any other choice would be of the form Ha + px for some
x € R and we conclude in view of next Lemma 7.6. O

Lemma 7.6. Let R be any commutative ring, and x,y € R. Then
(y +pz)’ —yP € p°R.
Proof. Explicitely
p—1 D
P_,p _ i p—i
(y+pz)’ —y ; (Z>y (p)
= < p )yplpx mod p?
p—1
= p2yp71x S pQR.
O
Proposition 7.7. The functor in Definition 7.4 is representable by an open subset D' of the
admissibile blow-up of Y** along the ideal (Hdgprﬂ,a).

Proof. Let m: 92, — 2" be the blow-up along the ideal (HdngJr1 , a). Note that such an ideal is

admissible in view of our assumptions on the ring A. Let R be an a-adically complete A-algebra
r+1 41

and (f,n) € V" (R). On R we have HaP? B -1 — a € p’R, whence o € Hdg” e Hdg?. In view
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of Lemma 7.2, taking an affine open of Spf (R) if needed, we see that f* (Hdgprﬂ,a) is principal
generated by any lift of Ha?' . This shows that we have a map f : Spf (R) — 9), making the
evident diagram commute. Note that, again by the universal property, f factors through the open
~ r4+1 r+1
subset Yt C 9),. over which the ideal (Hdgp i ,oz) is generated by elements of Hdg” i (because
this holds on R), but this means again that o € Hdg” o C Hdg? and hence 9" is the open subset
defined by the condition that (Hdgw+1 , a) is generated by one, and hence any in view of Lemma
7.6, lift of Ha. 0O

Corollary 7.8. The ideal Hdg is locally free on Y with o € Hdg.

Definition 7.9. With notations as above, we denote 9% C " the open subscheme defined by
condition (R).

We recall here the main result about the existence of the canonical subgroup in its full generality
(for the definition of the Hodge ideal within the framework of Barsotti-Tate groups see [AIP2,
Appendix A.1]). For this we need to recall

Proposition 7.10. Let R be an «-adically complete, separated A-algebra and with no a-torsion
and G be a Barsotti- Tate group over R with dimension d, height h and level 1. Then there exists a
canonical ideal § C R with é’é_l = Hdg (G).

Proof. This is [AIP2, Proposition A.3, pag. 43]. O

Theorem 7.11. Let R be an a-adically complete, separated A-algebra and with no a-torsion and
G be a Barsotti-Tate group over R with dimension d and height h. Let r > 0 be an integer with

p € Hdg (G)prﬂ, then
1. G has a canonical subgroup H,, of level n for everyn <r and H, C Hp41;
2. H, is locally free of rank p™® and we have
p

H, = ker (Ft") mod —————;
Hdg (G) #=*

3. We have

n

Hdg (5) = Hdg (G)”

n

and G/H,, has a canonical subgroup H|_, sitting in an exact sequence

n

0— H, — H,— H._, —0;

4. We have
)
Hdg (G) »™* - woppny/m, =0
and
det Wapn
o () = ).
H’Vl

 Hdg ()7
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5. We have Hdg (G) = Hdg (GD) and for every n < r the pairing
G o] % Gp"]° = fipn

induces an isomorphism H, (G) ~ H, (GD)L;

6. If o« € Hdg (G), then G [p"] /H,, is étale over Spec (R [a™']) and it is locally constant iso-
morphic to (Z/p")" ™.

Proof. This is [AIP2, Corollaire A.2, pag. 40]. O

Corollary 7.12 (JAIP1, Proposition 3.2, pag. 11]). Letp € a?" A. Then for every integer 1 <n <
p"—1

r +k one has a canonical sub-group scheme H, C Ay [p"] over D" and H, modulo pHdg™ »1
lifts the kernel of the n-th power of Frobenius. Moreover H,, is finite flat and locally of rank p™9, it
is stable under the action of Or, and the Cartier dual HP is étale locally over A [04_1] isomorphic
to O /p"™ as an Op-module.

Proof. Everything follows directly from Theorem 7.11 but the claims about the Op-structure. In
view of the explicit description of H,, given in [AIP2, Corollaire A.1, pag. 40], we only need to
check that, mod p, the kernel of the Frobenius is stable under Op. This is clear since, in terms of
the structure sheaf, Oy, acts by ring endomorphisms which therefore commute with raising to the
p-th power, that is, with the Frobenius. O

7.3 The partial Igusa tower

From now on we fix a totally real extension L/Q and a rational prime p which we suppose unramified
in L, say with

pOL =p1...p4
and let F; be the completion of L at p;. From Lemma 4.1 the extension F;/Q is Galois and its
Galois group is cyclic. We’ll denote with e; the corresponding idempotent in

d
0L ®@2Zy = [[ OF. (7.2)

i=1

Note 7.13. Let L% be a fixed Galois closure of L. Note that each extension F;/Q, is Galois and
the map O, — Op, is injective, so that L is naturally contained in each F;. Let L = Q («) and
let f (x) € Q[z] be its minimal polynomial, then the extension F;|LQ, = Q, («) is Galois hence F;
contains all the roots of f seen as a polynomial in Q, [z]. These roots generated the field LGalQp
therefore we have an embedding LGal C F,. Moreover we have a natual bijection

Gal (F;/Q,) — {0 € Homg (L, L") |0 (p;) = pi} =: &;
induced by the identification
Homg (L, L) = Gal (L9*/Q).

Hence we can see the Q,-embeddings o : I — F as a subset of the embeddings L — LG,
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Let S = Spa (A [a™!], AT), where AT C A [a™!] is the normalisation of A. Note that ()%")""
is given by (@ff)r)ad Xspa(4) S in view of Lemma C.15. Let p € o Aand1<n<r+ k, then it
follows from Corollary 7.12 that we have an O7-module object H,, with p"-torsion (%")*" which
admits therefore a decomposition

d d
H, ~ [ eH, =[] H
1=1 =1

in view of (7.2). In view of the same Corollary we have that H{"P s étale-locally isomorphic

to (Op,/pl). We can consider the (O, /p?)*-torsor Isom ((Opi/p?),Hf(f)’D) on (PLr)*™ which

is representable in view of [Mill, Theorem 4.3.(a), pag. 121]. Call A : G — (Ytor)™ the
resulting object.

Proposition 7.14. The morphism h()"™ is finite étale and Galois with group (O, /p?)™.

Proof. The only non-trivial thing to check is that h(Y-" is étale, but this is essentially a formal
consequence of the étalness of HY see for example Section 8.1.1, pag. 330 in

e H. HipA, p-adic automorphic forms on Shimura varieties, Springer Monographs in Mathem-
atics, (2004)

O
Now Theorem C.22 provides us with a finite morphism
b0 36, i
such that

1. since h()" is finite étale from Proposition 7.14, in view of Corollary C.23 we see that h()"
provides a formal model for A" i.e. (b(i)v“)an = p()n.

2. in view of Property 3. in Theorem C.22 the map ()" comes endowed with a natural action
of (Op,/p?)” compatible with the one on ()™,

3. the natural map of étale sheaves

tsom (O, /0", H{7) — som (O oy .7

n—1

induces a morphism ‘ ‘
p® = pr 360 g8

n—1,r

over 9T which is finite and invariant under the action of

X X
ker((ofi) — (€F1> )
i bi
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Lemma 7.15. We have

n—1

Hdg? Oj@(iil - Trh(i) (bf)ij)T) fort<n<r+k
TI‘h(z‘) (hgkl)oqu(;Z) = OQJtror.
Proof. First note that the map Trye) : hii)O:i@(i) — Ojytor is surjective having the map 3@5% — Ytor
1,7 T ’
degree # (OF, /p?*)” prime with p. Let ¢, : 305,(;)7“ — H,(LI)’D be the map induced by

Isom (OF H(w,D) gD

§—~¢(1),

then we have a cartesian diagram

jﬁg)r P HT(Lz‘),D

o

60, ——HP

Tl—l,f’ ‘brfl

using which we reduce to showing that

-1

Hdgp" OH(Q,ID - TI'q (q*(’)Hy),D> .

. L \D
Is Spf(R) C Pt is an open affine and Spf (B) C (H,(f)/HT(Ql) its inverse images with dif-
ferent ideals D (A4, /A,—1) and D (B/R). Note that ¢ is a principal homogeneous space under
, L\ D
(H,(i) /Hﬁfll) thus giving

n—1

as A, ®a,_, An = B®g Ap-modules, therefore D (B/R) = HdgpnilB and by faithfully flat descent

D(Ap/An_1) = Hdg”"  B,. (7.3)
We can suppose A, is free over A, _1, then the map
D(An/An_1)"" — Homa, _, (An, Ap_1)
z (y Tra,a,_, (2y))
is an isomorphism. The existence of an A,,_i-linear surjective map A,, — A, _1 gives that
Tra,/a, o D(An/An_1) " = Ay
and in view of (7.3) we see that

n—1
Tra,/a,_, (An) =Hdg” A, 1.
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p"—1

Remark 7.16. Let (3, denote the ideal p"Hdg™ »—T C O
Lemma 4.2, pag. 16].
Define

SNOY This makes sense in view of [AIP1,

Proposition 7.17. Let r > 2 be an integer and let n < (r — 1) + k where p € oz”kAo, then the
isogeny A — A/H, (A) induces a commutative diagram

qun,r i> j@n,r—l

L

Yy ——=Dr

r
where

1. ¢, is a finite morphism whose restriction ¢F to the Rapoport locus defines a finite flat mor-
phism 6F : DE — DE | of degree p?;

2. ®, is (O /p™)” -equivariant and restricts to morphisms

o380 — 380 .
Proof. These two statements are [AIP1, Proposition 3.3, pag. 11] and [AIP1, Proposition 3.6, pag.
13]. We only sketch the construction of ®,. Let O /p™ — HP be a local isomorphism on ), and
note that H/ = H,y1/H; is the level n canonical subgroup of A/H; (A) and multiplication by
p gives an isomorphism H,,1/H; — H,, whence O /p" (H;)D. In particular all the maps
involved are Op, ®z Z,-linear and hence respect the product with the idempotents e;. It follows

that the restrictions <I)$j) are well defined. O

Corollary 7.18. Let I' C I intervals, v > r and n’ > n integers that satisfy the conditions in
Proposition 7.17. The we have a commutative diagram

ol
jﬁn’,r/,l/ - jﬁn,r,]

L

@r’,l/ —_— > QJT,I

¢
and ® restricts to morphisms 4 .
.38, — 38"

n,r,I*

Remark 7.19. We can apply the same method to define IQ;@ ; — ZG,, ».1 as the space that classifies

isomorphisms ;AP [p"] ~ (Op, /p™)* which are compatible with aoP (A) ~ Op,/p?. The map
Igl(l) — A&, 1 is finite étale and Galois. We call 36;5’22’1 — 365;)“ its normalisation and J®&’

n,r,I n,r,]

[T, 987

n,r,I*
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7.4 A digression on polarisations

Here we follows [AnGol, Section 3]. Let A,g be an abelian scheme with real multiplication by O,
and assume that it satisfies condition (DP), that is, the natural map

qj)A:A@(gL MA—)AV
@ A= A(z)

is an isomorphism as étale sheaves over S. Let t € N be positive integer. Locally in the étale site
of S we have an Op-module isomorphism
O My

P
o, T iMa

and let A\ € M4 be any lift of 5 (1). Looking at the commutative diagram
Alt]

| |

A[t] ®oy % 4>A[ﬂ Qo ;j\\/l/lii

M
A®o, t./\/l},‘q

we conclude that the map

A[t]ﬁA@oL%

x»—>a:®/\7t

is an isomorphism. Define &; using the diagram of isomorphisms

A®o, H-<— (A®o, Ma)lt]
getting that
)\tlA[t] cA [t] ~ A\/ [t]

is an isomorphism. It follows from Sylow’s firts Theorem that ker (\;) has order coprime with ¢ and
hence we proved

Proposition 7.20. Let A;g be an abelian scheme with RM that satisfies condition (DP). Then for
every integer t=£0 it admits a polarisation of degree prime to t.

This fact is interesting because it allows to assume our p-divisible groups are principally po-
larised. Indeed let A — S = Spec (R) be a g-dimensional abelian scheme over a p-adically complete
ring R and let f : A — A" be an isogeny whose degree, say k, is prime to p with kernel K. Let
U — S be an fppf open over which the sequence

0= K(U)— AU) L% AV (@U) >0

41



is an exact sequence in abelian groups (or modules over a fixed commutative ring O). For every

integer n > 1 note that the p™-torsion functor (e) [p"] = Home ( <, @), then we have the associated
P

long exact sequence

05 KU "] = AW) "] 1% AY () "] - Exth, (fK <U>) ,

but
K ()] = Bxtdy (5 K (0)) =0

since p™ acts both as 0 and as an invertible element (being k prime to p). In conclusion
fp: A™] = AY [p™]

is an isomorphism if p-divisible O-modules.

Note 7.21. In our case this remark applies as follows: let A — S be an object parametrised by
M (1w, ¢), in particular ¢ ®z Z, has rank 1 as an O ®z Zp-module and every element = € ¢ such
that 2®z 1 is a generator gives rise to a polarisation A — AP whose degree is necessarily prime to p.
Suppose that A admits a canonical subgroup H,, = H, (A) of level n, then A/H,, (A) gives a point in
M (pn,p™c) (cfr. [?, pag. 88]) therefore we can induce a prime-to-p polarisation by considering the
element p"z. Hence we fix such an element = € ¢ once an for all. In view of the previous discussion
we conclude that all the p-divisible Op-modules ﬁ(m [p*°] come with compatible isomorphisms

(principal Op-polarisations)

A (HﬁA)) P

Note 7.22. Let G = A [p>] be the p-divisible group associated to the universal object A — I&,, ,.
and let A\ : G — G’ be the quotient by the canonical subgroup. Then Hdg (G’) = Hdg (G)” and in

particular 6%, = 55 C 4%. Note that A" is Verschiebung modulo pHdgg' hence by definition of
the Hasse invariant we have (A\V)" wg C Hdgswgr. On the other hand (A\Y)* is an Of-linear map,
being the O -structure on H; compatible with the one on G, therefore for every o € ¥, we have

HdgGwG’,Fr_la - ()‘\/)* WG,o

modulo pHdg(_;1 since these components are now invertible Ozg———modules and finally

—
()\\/)* wag = Hdgngl.
modulo pHdggl. Note that p € Hclg’g;+1 so that this means
(A\Y)" we + pHdgg'wer = Hdggwer,

in view of Nakayama’s Lemma we conclude that

(A)" wg = Hdggwar.
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Taking linear duals
(X)” (Fgwg) = pHdgg' S,
= pHdg 7% 7" - 6%, wi
= pHdg " - 68w
=7G (sg/Wél.

where we set 7¢ = pHdg.” ~1. Recall that
p e (a) C Hagh (7.4)

(as follows from the construction in Proposition 7.7), then the inclusion (7.4) entails

pm m

« «
T2 C . Ca™ ( ) C (a)™.
“ (Hdgfgj> Hdg"’ (@)

8 The sheaves for p unramified

Recall that we introduced the formal scheme Bl,20° — Spf (Z,) as a formal model for the adic
weight space in 6.2. For a € m\m?® and an interval I C Qxo, then the rings B ; satisfy the
conditions of 7.2, hence we end up with formal schemes

38 = X — Spf (BY).

Fix an integer » > 1, an interval I = [p’ﬂps} for two integers s > k > 0 and n < r + k. We let

X denote X, g, 3@55;') denote 3@55:)T ;etc... Welet A = A, ; be the universal semi-abelian scheme
over X and wa the corresponding sheaf of invariant differentials.

Remark 8.1. Under these assumptions the level-n canonical subgroup H,, C A [p"] is defined (The-
orem 7.11) and it comes with an Op-linear structure (Corollary 7.12) compatible with that of A.
Since H,, is p"-torsion, the map wa — wpy, factors through wa /p"wa and by 4. in Theorem 7.11

1
we see that the kernel of this last map is anihilated by Hdg g , in particular we have a sequence
of epimorphisms
WA

ﬂn@A

WA — WH, —

as fppf sheaves in Op, ®z Ox-modules over X.

Note 8.2. We quickly recall the constuction of the map dlog: given a finite flat commutative group
G — S, let f:U = Spec(R) — S be an fppf morphism. An R-point x € GP (R) is a morphism

T G/U — Gm/U

z* ar € ffw
T G /U

is defined, where dT'/T" denotes the invariant differential differential on G, ;. This rule defines a
morphism of fppf abelian sheaves

hence the section

dlogg : GP — we.
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Proposition 8.3. Consider the morphism
dlogy Hf? — WH,,
of abelian fppf sheaves on J3&, and let P, be the universal generator of HP. Denote Qa the
sub-Oze, @z Or-module of wa generated by the lifts of
WA
s=dlogy, (Pn) € ———— 5,
prHdg™ 7T wa
then Qa is a locally free Oz6, @z Or-module of rank 1 and the map dlogy induces an O3, @201 -
module isomorphism

@) Q
O ®z I8n ~ A
p"Hdg" 71 O0ze,  prHdg »71Qa
Proof. This is [AIP1, Proposition 4.1, pag. 15]. O

8.1 The Gauss-Manin connection

Note 8.4. Let X — SpecOpca [d}'] = Spec (A) be a scheme of finite type and let M be a coherent
locally free O x-module with a connection V: M — M ®o Q%(/A' Consider the base-change

Vo : M®zQ— (M®zQ) ®©g Uxy, e
where we used the fact that Q ®z Q = Q, and suppose that, for every v : L — L% we have
Vo (M ®2Q) (7)) € (M ®2Q) (7) ®ox, Vxyrem-

Note that, since localisation is an additive functor, we have (M ®z Q) (y) = M (v) ®z Q, hence*

(M @2,Q) (7) Box, Vxg/zom = (M (1) 2 Q) ®ox, (/4 ©2 Q)
= <M (7) ®ox Qﬁ(/A) ®z Q.
Therefore
V(M (1) € (M @0y a) N [(M (1) ®0x Q)4 ) @2Q] € M (7) @0y U/

Lemma 8.5. Let M = My — Spec (OLGal [dzl]) be the base change of the scheme defined in
Theorem 2.12 and let

V:Hig = Hig (A/M) - Hi @0y, Q}WOLGM [4;"]

be the Gauss-Manin connection. Then for every v : L — LS we have
1 1 1
v (HdR (7)) g HdR. (7) ®OM QM/OLGal [d£1].

4Recall that given two Q-vector spaces V, W we have

V @z W =V @qW.
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Proof. We follow [Kat, Lemma 2.1.14, pag 229]. Let ¥ = Homg (L, LGal). Embed L% C C and
consider the base change M¢ — Spec (C), whose associated analytic variety has uniformisation by
b (L) = b=, where b is the usual complex half plane ([Kat, Section 1.4, pag. 213]). Over h (L) we
have a horizontal isomorphism between Hjp and a constant sheaf

V ®&c Oh(L) ~ HéR

with the trivial connection idy ®c d. For every v € ¥ let {X,,Y,} be a basis of horizontal sections
of H}g (7). Then Kodaira-Spencer isomorphism reads

Uy = w =P (Xo —1Y5)" - Oy

o

2ridr, — (Xy — TUYU)Q

Let D, : Hiy — Hig ®w (02) as in Note 4.4, then

hence if € = fX, + gY, € H}g (7) we have

. 1 0 0
Dg<§>=2m( Ly, 00

. T o Yv) ®c (Xo —70Ys)" € Hig (1) ®w (%) -

Since have V = ZU B(, we conclude that the statements holds on My, and in view of Note 8.4 that
it holds over M. O

Back to our setting
Proposition 8.6. Let V: Hiy — Hlz®0, Q%e/s be the Gauss-Manin connection. Then
1. V restricts to an integrable connection
VO Hy) = Hig 8o, s
for every i;
2. the connection V") respects the respects the OF, -structure.

Proof. In view of Lemma 8.5 we know that for every ~ : L — L% we have

V (Hir (7)) € Hir (7) @0n Qll\/I/OLGal[d B

Zl
Note that, being H}z an O, ®z Ox-module we have
1,(
Hiy = @ Hir (0)
geB;

Consider the base change Mo, =M ®,, OF,, then

LGal [dzl}
V (Hir (7)) € Hir (7) ®omg . Qllv[opx /OF;

for every v € 8, since, in view of Remark 7.13 these automorphisms identify with a subset of the
embeddings L — L2 O
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8.2 Descending to 78,

Define the formal group T = 1+ 3, - Resp, /7 (G,), hence over 365? the universal character gives

a morphism x(9 : T =1 4 BnReso,. |z, (G,) = G for every i.

m|I6)

Proposition 8.7. Let (£, s) be an MSp,. -datum of rank m on 36 and denote with = : Vo (£,5) —
36;” the formal OF,-module bundle with marked sections associated to it, then

1. the map 7 has a natural action of TV;

2. let Spf (R) C SQSS) be an open subset over which £ and B, are free, then

7T*(Qvo,a(&s) [ ] = H R V2 e X TR Vm,o,u> . ’i(l) (‘7 (u) + /BnZa,u)

[Spf(R

where Vi, .o = (0 (u) + Banu)*l Xkou-
Proof.

1. The group <) acts naturally on & since it is an Op, ®z, 03@“) -module, moreover it is the
trivial group modulo 3, therefore it respects the marked section s and acts by automorphism
of MSp,. -datum on (€, s). The action on 7 is the one induced by functoriality.

2. The formal torus T acts on V (£) via Gy, hence for ¢ = (1 + B,7,), € TW (R) we have
t * Xk,a,u = th,U,u = (1 + Bnra) Xk,a,u
for every k, o, u. Requiring equivariance we get t,*(o (u) + BnZs) = (1 + Bury) (0 (w) + BrnZs)

hence
-1

Bn
In view of the local analitycity of , and hence of k¥, we have
tx kD (0 (u) + BnZow) = D (t* (0 (u) + BnZo))
=r® (t-(o(u)+ BnZow))-

and hence txx® (o (v) + BnZyu) = D () KD (0 (v) + BuZow), thatis KO (o (u) + BnZsu) €
R(Zou, Xo,0u - Xm,ow) [£P] and

to
tk Zyy =to * Loy =0 (u)

+toZou-

R <V27‘77"’ o Vm7f7,u> ' H(i) (J (u) + BnZa,u) g R <Zo,u; X2,cr,u s 7Xm,¢7,u> |:KJ(Z):| '
To conclude we just need to show that
(@
R <Zo,u7 XZ,(T,ua ce wxm,a,u>T B =R <V2,o,u7 ey Vm,a,u> .

Note that V; € B (Zo.u, Xo.gur- s Xm.ow) ™ ) for every i and R (Zo.u, Xa.oms - -+ s Xmowu) =
R <Za',u7 ‘/2,U,u7 R Vm,a’,u>‘ Let

f = Z Z’Yl V’Yz N VTZW& u € R <ZO',’LL3 X2,o'7u, e ,Xm’a.7u>$(i)(R) ,

2,0,u
[v|=0
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in view of the formulas above

te —1 I
f = Z Cy <O’ (u) T + toZa,u> VQ‘Tg,u cee VTZTTM
[v[=0 "

for every t = (1 + Bnry), € TW (R). We see it as an equality in R{(Zy.u) [Va,o,us - - - Vinsoul]

giving
t.—1 st
E RIS E Cy (a(u) UB +to-Z0'7u> .

[v[>0 [v[=0

Setting Z,, = 0 we see that, for every r € R the relation
Do =D e
lv1=0 lv|=0

and Weiertrass preparation says that ¢y = 0 for 71 # 0. Finally we conclude since for
fE€R(Zous Xo oy Xmou) [KV] we have

f (Zo',u7 X2,J,u e 7Xm,a,u)"‘$(i) (U (u) + ﬁnZO',u)il eR <Za,ua X2,a,u e 7Xm,o',u>3:(i)(R) =R <V2,a,u7 e

O

Note that, since Q4 is an invertible O, ®7 O3, -module, QX) is an invertible OF, @z, (93@(1-)—
module. '
oy @ @ ‘ (4) . _

Definition 8.8. Define " =/ = (W*OVO (QX)=S)> [{V], that is the subsheaf of 7,0, (0.5)

consisting of sections transforming according to the character () under the action of T(*).

Remark 8.9. Tt follows from Proposition 8.7 that =" is a locally free O -module of rank #.5.
What we did here for the character s holds verbatim when & is replaced by any locally analytic
character x : ¥ — G,,.

Corollary 8.10. With setting and notations as in Proposition 8.7 , let £ be an invertible O, ®z,
O, s -module. Then for every integer k we have

Oy, e K] ~ [ €5*.

u€S
Proof. By construction we have an embedding £ — Vo, (£) as the homogeneous component of
degree 1. Since £ is invertible, we have that £%F C W*OVOF (¢ is the submodule locally with basis
{ng}g therefore
E¥ =m0y, () K]
since T acts on Vo, (€) via Gy,. The map &, : W*Ovopi &) — mOvues) Is T()_equivariant
hence it gives
u W*OVOFi &) [k] - W*OVE;(S,S) [k] .

In view of Proposition 8.7 it is an isomorphism because locally gives

Eu: XE, 5 (0 () + BnZow)"
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Note 8.11. It is shown in [AIP2, Proposition A.3, pag. 43] that there exists an invertible ideal
d C O3¢, with the property that Pl = Hdg and § - wp = QAa.

Consider now the Hodge filtration on H}y (A/J®,), this is given by the exat sequence
HY = 0wy — Hig(A/I6,) = wip =0
and H (A/J38,,) comes with the Gauss-Manin connection.

Definition 8.12. We let Hﬁ be the pushout of the diagram

0wy —= 0" Hig (A/36,) (8.1)
| v
OIN >I—IjiE

Lemma 8.13. We have
0P - Hig (A/38,) N QA =6 - wp

as subsheaves of Hig (A/36,,), so in particular
HY = 6" Hig (A/36,) + Qa C Hig (A/36,,).
Proof. We have an injective map
8" wp — 8" Hag (A/36,) NQa = 8" - Hag (A/36,) N4 - wy,
whose surjectivity is checked locally. We have locally

6 Hig (A/36,) N QA = (8" wp B8 wan) N wy

:Qp-gAﬁ§~gA :ép'ﬂA
hence the map above is an isomorphism. This shows that to give a pair of morphisms
O - Hig (A/3B,) = F < Qa

that coincide on §” - w, is the same as a morphism 6” - Hip (A/J&,,) + Qa — F, but this is the
universal property of the pushout. O

Proposition 8.14 ([AI, Proposition 6.2, pag. 64]). The following hold:

1. We have an ezxact sequence of O ®z Oz, -modules
(Hﬁ) = 0= Qa— Hf =" -wio =0,
in particular Hﬁ is a locally free O1, ®7 O3, -module of rank 2.

L]
2. There exists a natural monomorphism j°® : (Hﬁ) — Ha-
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3. Let P, € H)P (JQi(’)) be an O, [p?- basis and let s; = dlog (P,,). Then the exact sequence
(’Hﬁ’(z)) realises (Qf}},si) as an MSo,, -subdatum of (Hﬁ’(i),si) with respect to the ideal

Brn. Moreover the Gauss-Manin connection V@ on HL, (A/IS, O induces a connection
dR

vEO 1O S 180 ()é(z .

Proof.

1. We use the description
HY =P Hig (A/36,) + Qa

of Lemma 8.13: clearly we have an injection Q5 — Hﬁ whose cokernel is

0" - Hip (A/38,) + Qa 8" - Hip (A/36,) 0" -Hgg (A/36,)

Qa 6P HIR (A/36,)NQA & wa

but in view of the Hodge filtration we conclude that

coker (QA — Hﬁ) =" wirp-

2. Take j° and 52 to be the natural incusions, then the claim follows in view of the commutative
diagram
8wy ————— 0" - Hag (A/T6,)

|

Qa wa Hip (A/76,)

and the definition of pushout.

3. The first statement is a direct consequence of the fact the sequence (Hﬁ) is locally split,

since 0” - wy p is locally free. The second statement follows from the proof of [AL, Proposition
6.3, pag. 64].

O
Definition 8.15. In view of Proposition 8.14 we can consider 7(") : V() .=V, (Hﬁ’(i), si) — 3@5?

. We define §*) to be the composition

F0 v 75 50 10 5

Remark 8.16. It follows from Proposition 8.7 that the qus( y-module WH( )y = 7r* (’)V( ) [n( )} has
locally the form

H(f)|Spf HR Uu : . ( (u)'i_ﬁnzo,u)

ues
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(see the Proposition for the notation). Moreover we can endow the O -module W, ¢, with a

. . . <CH
natural increasing filtration

F.Wﬁ(i) = W&i)F.OV(i) [Ii(i):|
induced by (QX), si) with the property that
G"F W0 =m0, oy [17] @ Gt Frrf0 o
T k(i) =T W(QQ’SI_) K &® Gr ™ Vor, ((QP'EXD)(»
Proposition 8.17. The following hold:

1. FhWKm is a locally free coherent O . y-module for every h > 0;

RICH
2. Wﬂm is 1somorphism to the completed limit @Fhwmu);

3. FOW ) ~ o and Gr"F*W ) ~ " s ()" (2" I particul
. k() =W an T k() T ®j®5;) Wp ®5®EP WaD . In particular,

we have locally

F"W, (Spf (R) == @n | €D (ﬂx))_lC Die (@X)D)_k
0<k<h

Proof. From the explicit description of the filtration we have locally on Spf (R) C 3(’5( 2
F"W ospery = | [ B Vol - 57 (0 (u) + BnZow)
uesS

from which points 1. and 2., while the first part of point 3. comes from Proposition 8.7. To
conclude, in view again of Proposition 8.7, we can write locally

Gr" W, (Spt (R)) = [[ @ R £ (0 (u) + BnZow) VL,
u€eS ced
=TI @ B X3, ur (0 (W) + BuZoa) (0 (w) + BuZo) "
ueS ce®
_HR'<H/€( +ﬁn au)) (H( ()Jrﬂn Uu ><HX2cru>
u€eS oceB cEB oed®

= (w“(i) Qg (QX))_}L By (le))_h> (Spf (R)) .

8.3 Descending to X
Define the formal group T** = T (Z,) - . Over X it decomposes as

H qext, (i) — H OX (]_ + BnReSOFi|Z,,Ga>
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The group T comes with a natural action on f(*) : V (QX), sl-) — X that we now describe. Let
u : S — X be a morphism of formal schemes, then a point of Vg (QX)7 sl) (u) is a pair (p(i), v) where
p@ S — 369 lifts w and v € V, (QX), si) (p”). In the same fashion a point of V (Hﬁ’(i), si) (u)
is a pair (p,w) where p® : S — 36 lifts u and w € V, (Hﬁ’(i), sz> (pV). Let X € (Op, /p1)™

be seen as an element of the Galois group of the adic generic fibre IQS) — X and, by functoriality,
as an X-automorphism of 6. Denote

Xl Lol gEO L gEo

the isomorphisms it induces, which are characterised mod 3, by A (si) = Xs;. For a point
(p@,v) € Vg (QX), 51) (u) we define

A (p(i),v) = (Xo p(i),)\_lv> (8.2)
and for a point (p(,w) € V, (Hﬁ’(i), sz-) (u) we define
A (p(i),w> = (Xo p(i),)\*lw> (8.3)

Lemma 8.18. Formula (8.2) defines an action of T (Z,) on ) : V, (QX),si) — X which is
compatible with that of T on (%), thus giving an action of T4 on §(),

Proof. The same proof of [ATP2, Lemme 5.1, pag. 21] works in this case. O

Definition 8.19. Let w*"’ = <f5<i)(’) (

; . @ .
e QX>7Si)) [£(] that is, w™" is the Ox-submodule of

Do \ given by sections that tranforms via £ under the action of T¢<t:().
Vo (QW)s:)
0 A 191

Note 8.20. In [AIP1, Section 4.1, pag. 15] the T-torsor f : §, — J&,, is considered, defined by
Fn(R)={wea(R)|w=s}.

Let Spf (R) C 36 be connected, then for every ws e &S},{, (R) we can consider the map QX) (o) —
R defined by f, (w[(,i)) = o (u). This gives a map

o, 5 = Vi, (O s:)

over 361 . On the other hand, given a section f, € VE & (QX), sl) (R) then o (u) fY € QX) (o) lifts
s (since f, (a (u) fTV) = f, (s)) and this gives a map

Vg,cr (Qx)v Sl) - gg,)a
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again over TJ@S ) and it is clear from the functorial description that this is indeed the inverse of
¢£f7)o. Ifhes® (R), then (;5537)0 (hw((f)) is defined by hw((,i) — o (u), hence we conclude that

o0, (1et?) = 105, (u59).
We proved that for every u € S there is a natural isomorphism
gbn (80 — Vg (QA7 S)

over J&,, that inverts the action of €. The importance of this isomorphism lies in the fact that
from [AIP1, Section 4.2, pag. 16] the sheaf of overconvergent forms is

Wi = (0" o f), Oz, [x7']

over X, ;. Hence we obtain that

K _ over
mn,r,[ - H mn,r,['
uesS

Lemma 8.21. The elements of (T (Zp)) — 1 C Ox are topologically nilpotent.

Proof. This is local on X, take Spf (R) C X, it maps to the open 20, of 929, defined by the element
a € m\m? hence x (T (Z,)) — 1 € aBY and we conclude since aHdg ™' is made of topologically
nilpotent elements of O in view of Proposition 7.7. O
Note 8.22. Let Spf (A) C X be an open affine over which Hdg is free, say generated by Ha, and
let Spf (Rﬁ?) C 3653) be its inverse image. In view of Lemma 7.15, for j = 0,...,n, there exist

elements c; € ﬁailRS) such that

= —(p"—p)/(p—1)

1. ¢; € Ha Rg);

2. Trg,/r,_, (¢j) = ¢j—1 (here we see R;_; as a subring of R;) and ¢o = 1.

Pick a generator £ (o (u) + 81 Zy4) of wgf;) over R (compare with Proposition 8.7) and a lift
¥ € Op, for every v € (O, /p™)™. Note that the element

b= D K@ o (O (0 W)+ BuZa) cn)

~e(Or, /p2)*

a priori lies in ﬁa_lRS) (Zou)- In view of Proposition 6.17 we can write KD (0 (u) + BnZow) =
£ (o (u)) + gh for some h € RS (Z,.,) hence
b=k (w) S KO@rrenta 3 s (E)yx (hen).
~e(Or, /p2)" vE(Or, /pn)"
(i) (7 . . = —(p"—=p)/(p—1)
The term qzye(oﬁ/pz)x kW (3) 7y * (hey) lives in gHa

implies that Pfa(pn P/ e-1)

Rg) (Zow), but n < r+k

~ pTJrk' Lk 0 _ortl (1) .
|Ha , but pa™?" € B, ; and aHdg™  C Ry’ and it follows that
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k1 .
(@)

Ha' |p. Therefore, denoting (Rﬁf )) the ideal of topologically nilpotent elements in R;’, we
have .
¢ > KO@ v (he) € (RY) RO (2).

~e(Or, /o))"

Consider now ZVE(OFV/M)X k) ()7 * ¢, first note that in view of the choice of the sequence c;

oo

and, since () () € 1 + (RS?) in view of Lemma 8.21, we have

Z KD () y % ¢ = Z ~v* ¢ mod (Rgf))

761""327101’1‘/'3501% W€1+p27101’i/p501’i

=Ct—1

therefore

00

> kD (F)vxe,=1 mod (Rg))
'YG(OFi/pZ)X

and b, ,, is a well-defined element of m’;f;) = fgf)(’)w (Q@) .
0 A O

) [£("] over Spf (A). From topological
’ ()

o,u

Nakayama’s Lemma [Mat2, Theorem 8.4, pag. 58] we conclude that mﬁ(i) =, b, is free over

A with basis @), bo.v-
Definition 8.23. Set W, ) = f,(ki)OV(i> [n(i)].

Theorem 8.24. With setting and notations as in Note 8.22, the action of T4 on fo)(’)W)
preserves the filtration F'fgf)(’)v(i) induced by the MSo,, -subdatum (QX), sl) of (Hff’(i), sz> Set
P = 100 [50)].

then
1. FhWHm is a locally free coherent Ox-module;
2. W) us isomorphic to the completed limit @Fhwn(i), in particular W, is a flat Ox-module;
3. FOW, ) ~ " and Gth’WK(i) ~ o R0y gxh R0 gx}}j. In particular, we have locally
F"W, (Spf (4)) ~ 0" @, Sym5" (wa' @4 wrb)-

Proof. Note that, in view of Proposition 8.17, points 1. and 2. follow from point 3. The isomorphism
FOW, ) ~ " comes from the very definition of the filtration

FOWW) = F%@Own [Ii(i)}

=10, a0 [+

(@)

=1
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Finally, in view of Proposition 8.17, since wp is defined on X, we see that

Vop, ( <§" wyp ) ('i)>

Gi"F*W . =100, (2.0) {n(i)} ®0, GI"F*O

@ _ _
=10" R0y Wa" B0x Wah-
O
8.4 The Gauss-Manin connection
Lemma 8.25. The Gauss-Manin connection Vaou @ Hig (A/X) = Hlig (A/X) ®0, Q;/BO in-
' a1

duces an integrable MSp,. -connection

G #,(i #,(i
v (@) cHY © Hy @ ®Oj®/(i) Q;@;f“/BO 0

Proof. In view of Proposition 8.6 we have
V (Hir (7)) € Hig (7) ®0x Q;/ngl
on X for every ~. It follows that
j 1,(4) 1,(1)
V(z) (HdR (0)) < HdR (U) ®Oje§’(i) Qflf@’m/Bg,I
for every o € &;. In view of [AI, Proposition 6.3, pag. 66] we see that the restriction vl(gﬁ'“) isa
well defined integrable connection with V() (s;) = 0 and we conclude since

Hﬁ’(i) (o) = Hﬁ’(i) N Héi,fi) (o) for every o € &;.

In view of Lemma 8.25 we have an integrable connection
vt@u : W*ngm (HZ D s0) - F*ngya (HZ D .s:) 59‘97@;1(7:) Qé@;(“/BS,{
We want to see how the connection fo)u descends to J@S). Recall that locally we have
HY =Qa +0PHlz (A/36,) C Hig (A/38,)
so0 let us check that
V (0" Hp (A/38,)) C 6" Hip (A/IG0) ©0,4, s, /50 ,-
For x € H}; (A/3&,,) we have

V (6Px) = 6PV (z) + pd?~tz @ df,
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but by its very construction we have p € (4), whence pé?~! C (§)’. A problem arises when we

take Qa into account: recall that 6 - w, = Qa. Let Spf(R) C J&,, be an open affine subset
with preimage Spf (R’) C J&!, and such that its image in X is contained in an open affine Spf (A)
over which the sequence H$ is split. Let w,n,d be bases of @AIRvﬂﬁR and 0 respectively, then

{w,n} is a basis for Hlx (A/38,) and {éw, 0Pn} is a basis for HﬁIR' We have a Kodaira-Spencer
isomorphism
KS: WA — ggl ®OI le/Bg,I

where we recall that the Op-structure is the one induced by this isomorphism, namely

1 @2
Qx/Bg,I =UYa

1,(4)

(4)
and a generator 65’ of Qae/Bg,,

(o) over A characterised by the property that

KS (i) = ) @ 6.

We have elements m((f), tg), s,(;i) € A such that

(i) wé—i) — mz(f)w,(f) ® 9,@ + ng) ® 9,@
VI @) L6 () o ), @) G) o (@)
No =l We ®90 + So ' No ®00
hence
V# (§0w0) = 6OVH () + ) @ s (8.4)
=m®§Du® @0 +§On0 @ o 4+ WE @ ds®
\P . N\ P . ) \p—1 .
v ((5@)) nﬁf)) — (5@)) v (ngp) D ep (5@)) ds®
=t (5(“)]) w® @ oW 4+ 50 <5<i>)p 7 @00 + (5(i))p 7% @ pdlogs™,

In view of the term dlogé” we conclude that the connection V#() descends to an integrable
MSo,, -connection

v Ht,(i) N Hﬁ’(i) ®Om§j> Hdg ™! ,9;653)/30 R (8.5)

Proposition 8.26. The integrable MSo,, -connection

(@) . () #,(7) -1 ol
vED Y (0) = HEY (o) D0, 0 Hdg™" - Qg o
induces integrable connections
~ = = -1
Vit Wy g0 = Wm“,a,u@@w(i) Hdg Qéqs;“/BO

and
1

~ - 1
Vi Wn(“,a,u - Wﬁ(i)ﬁ;u@Oi'Hdg ' Q:{/Bo 1
ay
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that respects Griffith transversality property for the filtration F*W, ¢, , .. Moreover the induced
map on graded pieces

GI"F*V, o 1 a 'GI"F*W, ) .,

—1 h+1 e N 1
-« "W G Q
G K )7a,u®(9x£,‘1 xL/(Bg’I(@OL)

is the composition of an isomorphism and the product by uy) —h (cfr. Note 6.18).

Proof. Note that the map J@Ef) — X is finite étale after inverting Hdg with Galois group
(OF, /pi")* (see Proposition 7.14), therefore faithfully flat descent applies to V) and we reduce to
the proof of the existence of the connection over 369. Let Spf (R) C 3@5%) be an open affine over
which Hf’(i) is free, say with basis £\ = §@w() ¥ = (6(i))p 2 and let Spt (R') C 36! () be
its inverse image. Using notations as in 3.2 we have an Ag//4-linear isomorphism

e HEW (0) 05, Apeya = HE'W (0) @5, Apja

which corresponds to a matrix

at(yi) b((yi)
cg) d((Ti) € Gl (AR,/A)

in terms of the basis we picked. The condition that e,(f ) A R = id translates into an

equality
<a<(7i) b((;)) B 1,wa£j) 0, wbgi)

Cfri) d((Ti) 0, w (@) 1, F0)

HE D (o)

On the one hand we can use formula 3.1 to compute
V# (fé”) = fgz) ® (O,UJa(i)) + egi) ® (0,0.)6(1‘)) 5
on the other hand we have formula 8.4 telling that
T# (f50) =m £ @ 60 + 50 @ 09 + wl) @ ds.
Since w'’and n((f ) are linearly independent we conclude that

. A\ P—1
9(01) = (5(1)) wc((;:)

. . . . AP—1 . . o
and note that this equality is over A (that is, over X) since (6(1))17 is in Hdg (it is a generator

indeed). This shows that (5("))])71 w (o is a local generator of Q; (o). Consider the local

/B0,
sections X1 5, X2, of Vo, (Hﬁ’(i) (U)) obtained from fé“ and e((f). The action of e((fi) on them is

given by
(i) X . CL((;)X + b((;)Y
V) T\ Px 1Py )
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then, setting V = X UXI + and keeping in mind that the ideal }
we compute

e (9 (X1,0) V) = 5O (0 (X10)) (Z‘Eii:iié;ﬁ:)h
= 5 (X1,0) 5 (a4 00V, ) () +a07,)" (a1 507,)
=5 (X1.0) exp (uflog (1,0) + (0,00 ) + (0,00, ) V2 ) ) )
() () ) () + 0 )
= 5 (X1.0) (1,0) +ur (00,00 ) + (0,000 ) Vo))
(1, hwa) VI + (0, hwe) V1) ((1, 0) — h ((0,%) + (O,wb<i)) V,,))
= kD (X1.,) (Vh + (o hwdm) vh (o hew m) VE (0, hw.) Vi
+(0, hwe) VI 4 (0, ua) V! 4 (0, ww) V)

x/BY, C A is a square-zero ideal,

hence

v* (“(i) (X1.0) Vah) =€ (“(i) (X1.0) Vah)_“(i) (X1,0) Vy' = (“(I) - h) Vot lew,m € Gr" T W0 4,80, Qi/Bg,I‘
(8.6)

The form w o() generates o ot , hence, after pulling back to Vg , (ij’(i), si> (corresponding

x/BY
to X1,6 = 0 () + BnZsy) We deduce that Gth°VH<i) gives an isomorphism

aflGthOWH(f,)’a’u ~ a7t (ugl) — h) GthrlF.Wm(i),o-’u@Ox Q%e/BglI.

9 Sheaf cohomology and the U,-operator

From now on, in order to have autoduality at our disposal (cfr. Note 7.21) we will work with
p-divisible Or-modules rather then Oy-module schemes. Let

O jﬁn,r—&-l,] — jan,r,]
be the map described in Proposition 7.17 and let
Upt1 P IGnq1,m41,10 — TOn rp11

be the forgetful map. Denote with ¢t; = ® o v,11. Let & = A [p™] be the universal p-divisible
Or-module over J&,, 11 41,7 and let &1 = ﬁ [p>°] with quotient isogeny f : & — &1, then

1. f lifts the Frobenius morphism, this means that f* : Qg, — Qg lifts multiplication by p
hence, being the €2’s invertible modules, it induces an isomorphism

[T Qe, = Pl
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in view of topological NAK [Mat2, Theorem 8.4, pag. 58|. In particular p~! f* gives a map
Vo (Q@, S) — VO (qul s S) = tTVO (Q@, S) ]

2. @ is the quotient by the canonical subgroup, hence 7.11 tells that ®* (Hdg) = Hdg?, so

_pntt _
t>1k (én) :andg p—1 =p lgn+1.

In particular we have a map

’U:;+1V0 (Q@, S) — VO (Q@” S) .
Composing the two morphisms described above we obtain a T®**-equivariant commutative diagram

U411 Vo (s, 5)

T

j®n+1,r+l,1 > errl,I

/

tTVO (967 S)

Moreover the dual isogeny f” can be seen as a morphism &; — & hence inducing T®**-equivariant
maps

tTVO (Hzﬁ, S) — Vo (H?:, S)
tYVQ (Q@, S) — Vo (ng, S)
and ¢ : X,41.1 — X, 1 (Proposition 7.17) gives Vy (Hf, s) — VY (Hgl,s), hence
O FOvyug.) 7 O, (g, )

that gives an isomorphism
oW, — f*OV(H:fl}s) [lﬁ] .

Composing with the map induced by ¢;Vy (HZ?, s) -V (Hﬁ7 s) we have
U Ve = 1.0y, (rg.0) []] = £:Oy () (6] = 6"V
1

which is compatible with the filtrations since all the maps involved are.

Definition 9.1. We define the uperator U, on H? (Xrt1,1, W) as the composition

. . =1y . .
H (X1, W) = H (X1, W) ' HY (X, W) — H (Xg1,1, W) .

58



As an immediate consequence of Note 7.22 is that

Proposition 9.2. The graded piece
Gr™U : Gt F*W,, — Gt ¢ F*W
has image contained in T Gr"" ¢* F*W,..
Corollary 9.3. Let h € Q~, then, for m large enough we have
Hi (X, mm72m)(h) —0
for every i, where the slopes are taken with respect to Up,.

Proof. This follows from Proposition 9.2 since no® = FOW, = Gr’F*W,..

Corollary 9.4. The induced morphism

has image contained in Tip* FYV@ .
K

Proof. For every i, consider the commutative diagram with exact rows

0 Fitly, Fit2w, Fit2w,
FTW,, FTW,, Firiw,,

« iy, * 2w, * FiP2w,

0 ¢ F'W,, ¢ FiW, ¢ FiFiw,,

In view of Proposition 9.2 the first and the last vertical morphisms are 0 modulo 7%, so does the
middle one. We conclude since in view of Theorem 8.24 the module WK/FiWH is the a-adic

completion of '
1. F2+nWK
= FW,
Corollary 9.5. Let h € Q~g, then for m large enough we have
H (X, F"W,)™ = 1 (X, ;, W,)®

for every i.
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A Abelian varieties

A.1 Dual abelian varieties and polarisations

We recollect here, mostly without proof, the basic facts about the dual of an abelian variety and

the notion of polarisation. For a more complete treatise see [Mil].
Fix a field k.

Proposition A.1. Let A, be an abelian variety and let L € Pic(A). Then the following are
equivalent:

1. L is translation invariant, that is for every a € A (E) we have tiL ~ L on A ®y, k;

2. m*L ~ p*L ® q¢*L where m : A x; A — A is the product and p,q : A X A — A are the
projections;

3. there ezist a connected k-variety T, two points to,t1 € T (k) and an invertible O ox, r-module
F such that

Flaxpttoy = Oax,{to}
]:|A><k{t1} ~ L
where in the last isomorphism we see L on A xj, {t1} via the obvious pullback.

Definition A.2. Define Pic’ (A) C Pic(A) as the subset of isomorphism classes of invertible
sheaves that satisfy the conditions of Proposition A.1.

One can check, using the Theorem of the square, that Pic is indeed a subgroup of Pic and,
using for example condition 2 in Proposition A.1, that this definition gives a subfunctor of Pic.

Definition A.3. Let A/, be an abelian variety. The dual abelian variety is a pair (AY,P) where
1. A\//k is an abelian variety and P € Pic (A x; AY);

2. Piioyx,av is trivial and Pjgx, 1o} € Pic’ (A,Q(a)) for every a € AV,

3. for every k-scheme T' and invertible sheaf L on A x; T with Loy, 7 trivial and Lz, 1) €
Pic? (Am(t)) for every t, there exists a unique morphism f: T — AV such that

(A Xk f)* P~L.
Remark A.4. It follows that a dual abelian variety, when it exists, is unique up to a unique iso-

morphism. Moreover, applying the universal property to 7' = Spec (K) for an extension k C K, we
see that there is a canonical isomorphism

AV (K) ~ Pic® (Ag) .

Theorem A.5. Let A, be an abelian variety, then the dual abelian variety exists.
Let now L be an invertible sheaf on an abelian variety Ay, then we have a group homomorphism

or : A(k) = Pic(A)
a—tiLe L™t

whose image can be shown to be contained in Pic® (A). If moreover L is ample and k is algebraically
closed, then Im (o) = Pic” (A).
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Definition A.6. A polarisation on an abelian variety A/, is an isogeny A : A — AY such that
Az = ¢ for some ample invertible sheaf L on A 7. The degree of a polarisation is its degree as an
isogeny. An abelian variety together with a polarisation is called a polarised abelian variety; there
is an obvious notion of a morphism of polarised abelian varieties. If A has degree 1, then it is said
to be a principal polarisation.

B Formal schemes

Here we quickly review the theory of formal schemes that we need and of coherent modules over
them. All rings are supposed to be noetherian (and commutative).

Definition B.1. Let A be a ring and let I C A be an ideal, the [-adic topology on A is the ring
topology having {I"}, - as a basis of open neighborhood of 0. If the natural map

A—>A::¥1Ln —

n

A
i

is injective, we say that A is I-adically separated (i.e. the topology is Hausdorff), we say that A is
I-adically complete if it is surjective. With an abuse of terminology, I-adically complete will always
mean [-adically complete and separated.

Given an [-adic ring A we define Spf (A) as the subspace of Spec (A) consisting of prime ideals
containing I (that is the open ones), together with the sheaf of topological rings

Ospe(a) : D (f) NSpf(A) = A(f71) = @1% (71

Such a ringed space will be referred to as an affine formal scheme. Note that, even if A is not
I-adically complete, the sheaf Ogp¢(a) is a sheaf if [-adically complete A-algebras.

Remark B.2. Most of the basic operations between schemes carry over to this setting:

e a morphism Spf (4) — Spf (R) of locally ringed spaces is the same as a continuous morphism
R — A;

e given to morphisms Spf (4) — Spf (R) < Spf (S), where the topologies are given by I C A
and J C S, then

~ ) A S
Spf (A) Xspi(r) SPf (S) = Spf (A®RS) = Spf (1{%1 <Ia ®r Jb>> ;
e given an [-adic ring A and an A-module M, we can define a sheaf of Og¢(4)-modules M as
. A
M : D (f)NSpf (A y_ Maa 2 [F71)

Note that, if M is finitely generated, then lim (M®a#[f7Y])=Moa A(f71). A sheaf

of Ogpa)-modules F is said to be coherent if it is of the form M for a finitely generated
module M.
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Definition B.3. A formal scheme is a locally topologically ringed space (X, Ox) which is locally
isomorphic to an affine formal scheme. A sheaf of topological Ox-modules F is said to be coherent
if there exists an affine open covering {;}, of X such that Fjg, is a coherent Oy -module in the
sense of Remark B.2.

Remark B.4. As for schemes, we can define the fibre product X xg 2 of a pair of morphisms
X — 6 < 9 by taking affine converings and gluing the affine fibres products as defined in Remark
B.2.

B.1 Admissible formal blow-ups

Definition B.5. Let A be an [-adically complete ring, we say that an A-module M does not have
I-torsion if
I"m =0 for some n = m = 0.

We say that an A-algebra R is admissible if it is isomorphic as a topological ring to a quotient of
A&, ..., &) for some n and it does not have I-torsion. A formal scheme X — Spf (A) is admissible
is X has an open covering of the form {Spf (R;)}, with R; admissible A-algebras.

Let now X — Spf (A) be an admissible formal scheme and J C Oy a coherent open ideal. We
want to define a formal scheme 7 : Bl7X — X over X such that

1. the map 7 is admissible;

2. for every morphism ¢ : 9 — X over Spf (A4) such that JOy is an invertible ideal, there exists
a unique morphism ¢ : Q) — BlsX over Spf (4) making the diagram

N A

Bl,X

comimutative.

We describe the construction, all the details can be found in [Bos, Section 8.2]. Set

jd
Injd

BlysX = hg Proj
n>0 d>0

together with its natural map to X.

Lemma B.6. Suppose X = Spf (R) is affine, then Bl;X is the I-adic completion of the scheme-
theoretic blow-up BlsSpec (R) along the ideal J C R.

Proof. This is [Bos, Proposition 8.2.6, pag. 186]. Note that this is true under our convention that
rings are noetherian. O

Proposition B.7. The morphism 7 : Bl; X — X satisfies the conditions above, moreover
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1. let Spf (R) C X be an open affine over which J is generated by (r1,...,7y), let
Ri:R<:ﬁ' |j7éi> and Ui:Spf<Ri>.
i

I — torsion
Then {U;}, is an open covering of Bl7Spf (R) ;
2. the open U; is characterised by the property that J is generated by r;.
Proof. This is [Bos, Proposition 8.2.9 pag. 188] and [Bos, Proposition 8.2.7 pag. 186]. O

C Adic spaces

C.1 Analytic points

The main reference here is [Hub].

Definition C.1. Let X = Spa (A, A™) be an affinoid adic space. A point z € X is called analytic
if Supp (x) € Spec (A) is not open. If X is not affine, then z € X is called analytic if there exists
an open neighborhood = € U such that Ox (U) contains a topologically nilpotent unit.

Remark C.2. Tt is obvious from the definition that the analytic points form an open subset.

Theorem C.3. Let X be a locally noetherian formal scheme, then there exists an adic space X9
and a morphism of locally topologically ringed spaces

™=y (xad,oggad) — (X, 0x)

with the following universal property: let f : (Y, (9?}) — (X, Ox) is a morphism of locally topogically
ringed spaces with Y an adic space, then f factors uniquely through 7 and the resulting map Y — %24
is a map of adic spaces. If X = Spf (A), then X* = Spa (A, A). Moreover, for a morphism
f: %X =9 of locally noetherian formal schemes, let f>1 be the map of adic spaces induced by the
universal property above: the resulting functor (O)ad from the category of locally noetherian formal
schemes to the category of adic spaces is fully faithful and f is adic if and only if, for every analytic
point x € X2 the point {24 (x) is analytic.

Proof. This is [Hub, Proposition 4.1, pag. 539] and [Hub, Proposition 4.2 (i), pag. 540]. O
Definition C.4. Let X be alocally noetherian formal scheme, we call the adic space X4 in Theorem

C.3 the adic space associated to X. The space of analytic points X** C X is called the analytic
(adic) space associated to X.

Remark C.5. Suppose A is a topological noetherian ring with an invertible ideal of definition o A.
Set X = Spf (A), then the analytic points of X4 are given by the adic space

xan — Spa (A |:1:| ’A+> ,
(6

where AT denotes the integral closure of A in A [ofl].

The next Lemma is not surprising if one thinks about adic spaces as an enhanced category of
rigid analytic spaces.

Proposition C.6. Let A be a normal’ noetherian ring and suppose it is complete with respect to

5That is, integrally closed in its total ring of fractions
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the topology induced by an invertible ideal a. Let X = Spf (A) and let t : Bl,X — X be the admissible
formal blow-up along a. Then t is an adic morphism and the corresponding map

" (BlgX)™ — x*°
on the analytic locus is an isomorphism.

Proof. For ¢ € a\a?, let X, = Spf (B.) be the open subset of Bl,X over which the ideal aOg)_x is
generated by c¢. Note that the topology on B, is then c-adic, moreover A being normal, we have
that B, is integrally closed in B, [c’l] hence

X2" = Spa (BC [c_l] ,BC)

in view of Remark C.5. We conclude since t*" is the restriction of the map on the general adic

spaces, whence
(X)) ={2zeX*™ | 0#|c|z > |a|x Ya € I}

and we conclude as these subsets cover X2d. O

C.2 Relative normalisation for formal schemes

We give here a slight generalisation of the construction of the normalisation of a formal scheme
along a finite extension of its rigid analytic fibre as performed in [FGL, Appendix A] to the case of
the analytic adic fibre. This allows more general bases.

Definition C.7. Fix a noetherian ring A which is complete for the I-adic topology, I C A being an
ideal. A topological A-algebra R is said to be topologically of finite type is there exists a continuous

surjective homomorphism
A{Xy,...,Xn) > R,

we say that it is admissible if, moreover, R does not have I-torsion, i.e. if
{re R | I"r =0 for some n}

is the zero ideal.
Remark C.8. Here’s a couple of algebraic remarks around this definition
1. Being A (X;,...,X,,) the I-adic completion of A[X;,...,X,], it is flat over A;

2. Every admissible A-algebra is automatically noetherian in view of [Bos, Remark 1, pag. 162]
and I-adically complete and separated;

3. Let R be a I-adically complete and separated A-algebra. For all n > 0, set A, = A/I"T!
then R is topologically of finite type over A if and only if R ® 4 A is of finite type over Ag
(see [Bos, Proposition 10, pag. 166]);

Definition C.9. Let X — Spf (A) be a formal scheme, we say that it is locally of topologically
finite type (resp. admissible) if it has an affine open cover with the corresponding property.
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Remark C.10. For a formal scheme over A locally of topologically finite type, quasi-separateness is
automatic since it is locally a noetherian topological space.

We recall two basic results about excellent complete rings
Theorem C.11. We have the following

1. Let (A, m) be a complete equicharacteristic local ring, then the ring A (X1, ..., X,) is excellent
for every n > 0;

2. Let C be an excellent ring of characteristic 0 and Krull dimension 1, then for every C-algebra
A of finite type and every ideal I C A, the I-adic completion A is excellent.

Proof. For the first part, see [Val], for the second see [Vall]. O

Notation C.12. From now we fix a ring Ay and suppose that it is topologically of finite type over
a complete DVR of mixed characteristic and we suppose that Ay is complete with respect to the
a-adic topology for o € Ag a regular element. Moreover denote A = Ao [L] and let AT C A

1
be the integral closure of Ag. This assumptions on Ay will have the effect thaat every Ag-algebra
topologically of finite type will be automatically excellent in view of Theorem C.11. Of course the

Theorem also allows rings of equal characteristic.

Definition C.13. Let X — Spf (Ag) be an admissible and reduced formal scheme. We say that it
is normal if, for every connected affine open U C X, the ring Ox (U) is integrally closed in its field
of fractions.

Remark C.14. For an admissible and reduced formal scheme X over Ag the following are equivalent:
1. X is normal,;

2. There exists an affine open covering {U;}, of X such that, for every i, the ring Ox (U;) is
normal;

3. For all x € X the ring Ox , is a domain which is integrally closed inside its field of fractions.

See [FGL, Fait A.2.1, pag. 51] for a sketch of the proof.
For a ring R we use the shorthand Spa (R) to denote Spa (R, R).

Lemma C.15. Let X — Spf (Ay) be a formal scheme and suppose it is locally of topologically finite
type. Then the fibre product ~
X = X Xgpa(a,) Spa (4, AT)

exists in the category of adic spaces. If Spf (R) C X is an open affine, then its preimage in X is

Spa (1] 2| 1+ =90 () Xspuca o0 (4,49,

where R™ is the integral closure of R in R [é] , in particular X is naturally identified with the space
X2 of analytic points of X9,
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Proof. Clearly the morphism Spa (A, AT) — Spa (4y) is adic and, in view of [Hub, Proposition 4.2,
pag. 540] we see that X3 — Spa (Ay) is locally of finite type. Moreover the ring A has a notherian
ring of definition, so that we can apply [Hub, Proposition 3.7, pag. 535] to deduce that the fibre
product X4 X Spa(Ay) Spa (4, AT) exists in the category of adic spaces. It follows from the very
construction of the functor ()@ that the inverse image of Spf (R) in X is Spa (R), hence we need
to show that

1
Spa (1| 2] 1) = S0 () xspuiag 800 (4.4

Let X be an adic space with a commutative diagram

X a Spa (A’ A+) ,
I
Spa (R) Spa (A4o)

this corresponds to morphisms
A (4,47) — (0x (X),0%
A+ (B R) = (Ox (X), 0% (X))

of Huber pairs. Setting )\ﬁ (ofl) = )\ﬁ (ofl), we have a unique extension
1
(7]2] .77) = (Ox (0,05 (x)

of A%, O

Lemma C.16. Let
A B

|

C——=B®yC

be a commutative diagram of commutative rings and suppose f is smooth. Let A C B be the integral
closure of A, then A, C C B®4 C is the integal closure of C.

Proof. This is [Stack project, Lemma 03GG] O

Lemma C.17. Let R be an admissible Ag-algebra and let ® : Spa (B, BY) — Spa (R [é] ,R“') be
a finite morphism, then BY [1] = B, in particular Spf (B*)™ = Spa (B, BT).

Proof. First let us see that BT [1] is integrally closed in B: this follows from Lemma C.16 applied
to the diagram

BtT—»B

|

Bt [{]—=B
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Moreover B is a finite R [f]—module hence in particular it is a finite B™ [f]—module from which we
conclude that B = BT [1]. The last statement follows (cfr. the computations in Lemma C.15). [

Proposition C.18. Let R be an excellent ring and let p € Spec (R). Then for every finite field

extension Frac (p> C L the integral closure of E in L is a finitely genemted -module.

Note C.19. Rings which satisfy the statements of Proposition C.18 are called Nagata rings. See
[Mat, Section 31] for generalities about Nagata rings and [Mat, Theorem 78, pag. 257] for a proof
of the fact that “quasi-excellent implies Nagata” (and hence of Proposition C.18).

Lemma C.20. Let R be an admissible Ag-algebra and let ® : Spa (B, B*) — Spa (R [i] ,R+) be
a finite morphism, then the reduced ring B;:d is fnitely generated as an R-module.

Proof. This is a general fact: let qq,...,q, be the minimal primes of Bi.q, then (Brcd)q X oee X

(Bred) a,, 18 product of fields and by noetherianity it suffices to prove that the integral closure of
R in each of them is finite. Let K = (Bred) a and let p C R be the kernel of R — K, then the

extension Frac ( » ) — K is finitely generated, from which we see that the algebraic closure

Frac (R> C Frac (R> CK
p p

is finite over Frac ( » ) In view of Proposition C.18 we see that the integral closure B = 2 _

NBﬁB+
of R in B,q is finitely generated as an R-module, where A'g C B denotes the nilradical. O

Lemma C.21. Let R be an admissible Ag-algebra and let ® : Spa (B, B") — Spa (R [1] , RT) be
a finite morphism. For f € R, the ring B;d <%> is the integral closure of R <%> in Bred <%>

Proof. In view of Lemma C.16 we see that BrC d { f] is integrally closed in Bi.eq [H In view of Lemma

C.20, the ring B, is finite as an R-module, moreover the completion morphism R [ﬂ — R <%>

is flat. It follows that ) )
peyen (1) o buwonn (1)
d YR f R f

is injective and, by finiteness, that BJFd ®R R< > o~ B;d <%> and Bieq ®Rr R<%> ~ Bred <%>
It follows that Bjcd <%> is finite over R<?> and, in view of Theorem C.11 both R<%> and
B, < 1> are excellent, therefore they have the same integral closure in Bieq <%> We conclude
since (Bred [ } BT, {1}) is naturally an affinoid ring and it follows that B <%> is integrally

closed in Bieq <?> O

Theorem C.22. Let X — Spf(Ag) be an admissible formal scheme and ® :'Y — X" a finite
morphism of adic spaces. Then there exists a finite morphism v : X — X such that

1. X is reduced,
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2. ® factors as
@/ ~ Van
Y — X — X7,

3. for every finite morphism f : 3 — X of formal schemes with 3 reduced and normal such that
there exists a commutative diagram of adic spaces

3an 9 Yy
%an

there exists a unique go : 3 — X making the diagram
R —
X

Proof. Let Spf (R) C X be an open affine, in view of Lemma C.15 the map @ is given, above Spf (R),
by a finite morphism ® : Spa (B, BY) — Spa (R [1],RT). Let moreover Spf (C) C f~! (Spf (R))
be an open affine which we can suppose to be connected. Then ¢ induces a morphism of affinoid
rings

commute.

o a2 - (c[2] )

The open subset of X over Spf (R) is defined as Spf (B:gd). It follows from Lemma C.20 that the
map Spf (B/,) — Spf (R) is finite, moreover Lemma C.21 tells that these affine pieces glue to a

morphism of formal schemes v : £ — X.To conclude we only need to see that g7, (B,) C C, but
C is normal by assumption, hence C+ = C.

Corollary C.23. With notations and setting as in Theorem C.22, suppose that Y is reduced (e.g.
when the map ® : Y — X?" is finite étale with X reduced). Then'Y = X?".

Proof. Just apply Lemma C.17. O

D Slope decompositions

In this section we briefly review the theory of slope decompositions as developped in [AsSt], following
[Han|. Let us fix a prime p and a complete, non-archimedean normed ring A. For a € A\ {0} we
set v (a) = —log, |al.

Definition D.1. Let f = agX%+---+a; X +ag € A[X], we say that f is multiplicative if aq € A

and we set )
*(X) = xdes(f) .
7 (x) /(%
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The Newton polygon N (f) of f is the convex hull of the set
{(n,v(an)) €R? | a, #0}.

For h > 0, we say that f has slope < h if every edge of N (f) has slope < h. Write A" [X] for the
set of such polynomials.

Example D.2. Suppose that A is noetherian domain and f is a monic polynomial with coefficients
in A, then there exists an integral etension A C A such that f splits in A. Let 1 < --- < p, be the
slopes of N (f), corresponding to the points (i1,v (a;,)), ..., (ir,v (a;.)). Then, if ig = 0, for every
j =1,...,r, the polynomial f over A has exactly i; — i;_; roots with multiplicity —pu;.

Definition D.3. Let M be an A[X]-module, and let A > 0. We say that an element m € M has
slope < h if there exists f € A [X] with f*(X)-m = 0. Call M the subset of M consisting of
the elements of slope < h.

Lemma D.4. M®" C M is an A-submodule.

Example D.5. Let V be a finite dimensional vector space over a complete non-archimedean field
K. Then an element v € V has slope K is there exists a non-zero matrix M whose minimal
polynomial over K has slope < h.

Definition D.6. We say that an A[X]-module M has a slope < h decomposition (or simply an
h-decomposition) if

1. M is a finitely generated A-module;

2. the exact sequence

0— MM — M — My, = 0

M
M
splits over A [X];
3. for every f € A" [X] the element f* (X) is invertible on M := 5
The two main results we need about slope decompositions in this setting are the following
Theorem D.7. The assignment
S Max) = Ma
M — MM

defines an exact additive functor with respect to restriction of morphisms. In particular

1. given a short exact sequence in M a(x), if two modules in the sequence have h-decomposition,
then so does the third;

2. Sp commutes with cohomology of complexes over M 4(x);

3. Given a first quadrant spectral sequence Eq° over M ax), if for some 1 all the modules in the
page E?* have h-decomposition, the so does its limit H®.
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Proof. The first item is a consequence of [AsSt], in particular [AsSt, Proposition 4.1.2, pag. 38].
The other two items follow. O

Theorem D.8. Let A be a reduced affinoid algebra over a non-archimedean field k and let C*® be
a bounded complex of orthonormalisable Banach A[X]-modules and suppose that the action of X
is compact on the total A-module ®C™. Let x € Spm (A) and h > 0, then there exists an affinoid
subdomain Spm (B) C Spm (A) such that with the property that

1. the complexr B®,C*® of B [X|-modules admits h-decomposition;

2. the modules (B@AC”)(h) are finitely generated and flat over B.

Proof. This is a restatement of [AsSt, Theorem 4.5.1, pag. 45], in view of Theorem D.7. O
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