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How dare we speak of the laws of chance?
Is not chance the antithesis of all law?

— Joseph Bertrand



Abstract

Quantum mechanics has profoundly revolutionized the field of physics and our understand-
ing of nature. Many effects predicted by quantum mechanics and with no classical analog
such as wave-particle duality, the coherent superposition of quantum states, the uncertainty
principle, entanglement, and non-locality, are in deep contrast with our general common
sense and yet they survived to any experimental verification. Interestingly, when these pecu-
liar quantum effects are studied within the framework of Information Theory, they provide
advantages for tasks such as computation, communication, and cryptography.

This thesis work studies how quantum resources can be exploited to develop and imple-
ment practical protocols for secure communication and private randomness generation. In
particular, the work is focused on those protocols that offer an optimal compromise between
security and performances and that are realizable with the current technology.

The thesis is divided into three main sections: in the first introductory section, Chapter
1 describes some basic notions about quantum mechanics and quantum information theory.

The second section is entirely focused on the study of private and secure randomness
generation with quantum resources. In particular, Semi-Device-Independent protocols are
studied since they provide a high level of security without scarifying performances.

Chapter 2 describes the general framework of quantum random number generation
(QRNG), the different types of quantum random number generators, comparing their pro
and cons. Then it gives a brief introduction to the different entropy measures that will be
considered in the thesis. Finally, it describes the steps and procedures needed to analyze the
security of any quantum random number generation protocol.

Chapter 3 describes a new Source-Device-Independent (Source-DI) protocol for quantum
random number generation. The protocol exploits the quadratures of the electromagnetic
field and the structure of the POVM implemented by heterodyne detection to generate pri-
vate and secure random numbers. In the first section it is described the theoretical working
principle, and the security is proved against general attacks. Then the actual experimental



fiber implementation is described together with the post-processing procedure. In Section
3, the results are presented, showing that with this protocol it is possible to achieve secure
generation rates up to 17.4 Gbps, the current record for this type of generators. Finally, some
ongoing work related to the real-time operation and the miniaturization of the prototype
are discussed.

In this work I’ve contributed to the design of both the protocol and the experiment. I’ve
contributed to the experimental implementation, to the data analysis, to the security proof
and to the writing of the manuscript [1].

Chapter 4 describes a new numerical tool for the analysis of the security of both trusted
and Source-DI QRNG. The tool exploits a new formulation of the conditional quantum
min-entropy for systems with unknown states but trusted measurement. This new formu-
lation is expressed as a Semidefinite optimization problem, and both the primal and dual
forms are analytically derived. Finally the results of this new method are first compared to
scenarios where tight bound are known and then to scenarios where only suboptimal bound
are known. In the first case compatible results are obtained, while in the second case the
new method retrieves significantly higher rates.

In this work I’ve contributed to the development of the alternative SDP formulation for
the min-entropy. I’ve written the software that performs the optimization and I’ve performed
all the simulations. I’ve contributed to the writing of the manuscript, which will be be sent
soon to an e-print server.

Chapter 5 describes a new protocol to certify, in a Source-DI way, unbounded random-
ness from finite-dimensional quantum systems. In particular, the first section describes the
advantages offered by POVM respect to projective measurements for the certification of
randomness. Then the tool described in Chap 4 is employed to derive tight bounds on the
secure generation rates for POVM with different structures. Then, thanks to the numeri-
cal results, an analytic bound (that coincides with the numeric one) is derived for some
symmetric POVM. Finally, the last section describes the experimental implementation of
the protocol with an heralded single-photon source and symmetric POVM with 3,4 and 6
outcomes. In all the cases the results are compatible with the theory and show the exact
scaling as a function of the number of POVM elements, showing that in the limit of infinite
outcomes, unbounded randomness generation is possible

In this work I’ve contributed to the design of both the protocol and the experiment.
I’ve contributed to the security proof and to the numerical simulations. I’ve contributed
to the experimental realization of the setup, to the data analysis and to the writing of the
manuscript, which will be be sent soon to an e-print server.

Chapter 6 describes a new implementation for a Semi-DI QRNG protocol. The proto-
col does not make any assumption on the source or the measurement device but assumes
a lower-bound on the overlap between the emitted states. Here, the general protocol is
described, and a new implementation with heterodyne detection is discussed. The main



advantage of such implementation is that relaxes the requirement of an active phase sta-
bilization, which can be compensated in post-processing. The second section analyzes the
security and the expected rate for this configuration, while the next section describes the
experimental implementation with fiber optical components. In the last section, the results
are presented, showing that, despite a finite amount of noise and a non-perfect efficiency
of the detectors, randomness can be extracted and the results are compatible with a model
that takes into account the inefficiencies.

In this work I’ve contributed to the design of both the protocol and the experiment. I’ve
contributed to the numerical simulations of the Heterodyne SDI implementation. I’ve con-
tributed to the experimental realization of the setup, to the FPGA programming, to the data
analysis and to the writing of the manuscript, which will be be sent soon to an e-print server.

Then the third and last section is focused on the experimental implementation of quan-
tum communication protocols, in particular, Quantum Key Distribution.

Chapter 8 describes the design and experimental implementation of a complete pro-
totype for daylight free-space QKD at telecom wavelength. The prototype, developed in
collaboration with the Italian Space Agency (ASI), has been tested with two transmitters: a
fiber-based one, realized with only commercial components and a second one, developed
in collaboration with Scuola Sant’Anna di Pisa, that exploits the Silicon Photonics technol-
ogy. The prototype also features a single mode fiber injection system and superconducting
nanowire single-photon detectors. It has been tested in a 145m long free space link in the
urban area of Padova, demonstrating for both the sources, a successful daylight free-space
QKD run at telecom wavelength. This prototype is the first step towards the development of
a complete QKD system for satellite applications.

In this work I’ve contributed to the design of the whole experiment. I’ve contributed
to the building of the discrete QKD source and to the characterization of the integrated
source. I’ve contributed to the electronic front-end of both sources and to the experimental
implementation of the QKD analyzer. I’ve contributed to the software that controls the
state analyzer. I’ve participated to the field test and I’ve contributed to the writing of the
manuscript [2]

Chapter 9 describes a new fiber-based polarization encoder for QKD. The encoder is
characterized by a Sagnac geometry that greatly improves the stability of the modulator
and reduces the required driving power. The first section describes the working principle
of the encoder, and then the experimental implementation at 800nm is presented. The
experimental results indeed show high stability and a low intrinsic error.

In this work I’ve contributed to the design of the QKD transmitter and to the experimen-
tal realization. I’ve contributed to the data analysis and to the writing of the manuscript [3].

Chapter 10 describes a new synchronization method for QKD that does not require any
auxiliary time reference. The method works by sending a shared public qubit sequence at



pre-established times. Moreover, the public qubit sequence can also be used to compensate
fluctuations of the channel and align in real-time the polarization reference frames of the two
users. After describing the setup, based on the POGNAC transmitter, the self-synchronization
working principle is explained and its robustness to noise is discussed. Then, the last section
describes the experimental results, showing a record-low intrinsic QBER for the POGNAC
transmitter and an high robustness of the self-synchronization method with respect to losses.

In this work I’ve contributed to the design of the experiment and to the experimental
realization. I’ve contributed to the data analysis and to the writing of both manuscripts. [4,
5]

Finally, Chapter 11 describes the implementation of a Bell test based on time-bin en-
tanglement, which is not affected by the detection loophole. The first section describes a
theoretical analysis of time-bin entanglement schemes and their description with the lan-
guage of POVM operators. Then the experimental implementation, based on fast optical
switches controlled by a PID feedback loop is presented. Finally, the results show that the
presented method is able to obtain a Bell violation that is not affected by the post-selection
loophole.

In this work I’ve mainly contributed to the electronic fronted of the experiment and to
the realization of the PID controller. I’ve contributed to the writing of the manuscript [6].



Sommario

La meccanica quantistica ha profondamente rivoluzionato il campo della fisica e la nos-
tra comprensione della natura. Molti effetti previsti dalla meccanica quantistica e senza
analoghi classici, come la dualità onda-particella, la sovrapposizione coerente degli stati
quantistici, il principio di incertezza, l’entanglement e la non-località, sono in profondo
contrasto con il nostro senso comune ma tuttavia sono sopravvissuti a qualsiasi verifica sper-
imentale. È interessante notare che, quando questi effetti quantistici peculiari sono studiati
nel quadro della Teoria dell’Informazione, offrono vantaggi per compiti come il calcolo, la
comunicazione e la crittografia.

Questo lavoro di tesi studia come le risorse quantistiche possono essere sfruttate per
sviluppare e implementare protocolli pratici per la comunicazione sicura e la generazione
di numeri casuali privati. In particolare, il lavoro è focalizzato su protocolli che offrono un
compromesso ottimale tra sicurezza e prestazioni e che sono realizzabili con la tecnologia
attuale.

La tesi è divisa in tre sezioni principali: nella prima sezione introduttiva, il capitolo 1
descrive alcune nozioni di base sulla meccanica quantistica e sulla teoria dell’informazione
quantistica.

La seconda sezione è interamente focalizzata sullo studio della generazione di numeri
casuali privati e sicuri, sfruttando risorse quantistiche. In particolare, sono stati studiati i
protocolli Semi-Device-Independent, in quanto forniscono un alto livello di sicurezza senza
sacrificare le prestazioni.

Il capitolo 2 descrive il framework generale della generazione quantistica di numeri casu-
ali, i diversi tipi di generatori di numeri casuali quantistici, confrontando i loro pro e contro.
Poi vengono brevemente introdotti i diversi tipi di entropie che saranno considerate nella
tesi. Infine, viene descritta la procedura per analizzare la sicurezza di qualsiasi protocollo
quantistico di generazione di numeri casuali.



Il capitolo 3 descrive un nuovo protocollo Source-Device-Independent (Soruce-DI) per
la generazione quantistica di numeri casuali. Il protocollo sfrutta le quadrature del campo
elettromagnetico e la struttura del POVM implementato dalla misura eterodina per generare
numeri casuali privati e sicuri. Nella prima sezione è descritto il principio di funzionamento
teorico e la sicurezza è dimostrata contro gli attacchi generali. Quindi l’effettiva implemen-
tazione sperimentale della fibra viene descritta insieme alla procedura di post-elaborazione.
Nella sezione 3, i risultati sono presentati, dimostrando che con questo protocollo è possi-
bile raggiungere un rate di generazione sicura fino a 17,4 Gbps, il record per questo tipo di
generatori. Infine, vengono infine discussi alcuni lavori in corso relativi al funzionamento
in real-time e alla miniaturizzazione del prototipo.

In questo lavoro ho contribuito alla progettazione sia del protocollo che dell’esperimento.
Ho contribuito all’implementazione sperimentale, all’analisi dei dati, alla prova di sicurezza
e alla scrittura del manoscritto [1]

Il capitolo 4 descrive un nuovo strumento numerico per l’analisi della sicurezza dei
QRNG "trusted" e Source-DI. Lo strumento sfrutta una nuova formulazione della quantum
conditional min-entropy per sistemi con stati sconosciuti ma misure caratterizate. Questa
nuova formulazione è espressa come un problema di ottimizzazione semi-definita positiva e
sia la forma primaria che la duale sono derivate analiticamente. Infine, i risultati di questo
nuovo metodo vengono prima confrontati con gli scenari in cui è noto un limite "tight" e
quindi con gli scenari in cui sono noti solo limiti non ottimali. Nel primo caso si ottengono
risultati compatibili, mentre nel secondo caso il nuovo metodo è in grado di ottenere rate
significativamente più elevati.

In questo lavoro ho contribuito allo sviluppo della formulazione SDP alternativa per
la min-entropy. Ho scritto il software che esegue l’ottimizzazione e ho eseguito tutte le
simulazioni. Ho contribuito alla scrittura del manoscritto, che sarà inviato presto a un server
di e-print.

Il capitolo 5 descrive un nuovo protocollo per certificare, in modo Source-DI, una quan-
tità illimitata di casualità dai sistemi quantistici a dimensione finita. In particolare, la
prima sezione descrive i vantaggi offerti da POVM rispetto alle misurazioni proiettive per
la certificazione della casualità. Quindi viene impiegato lo strumento descritto in nel capi-
tolo 4 per ricavare limiti inferiori sul tasso di generazione sicura, per POVM con diverse
strutture. Quindi, grazie ai risultati numerici, viene derivato un limite analitico (che coin-
cide con quello numerico) per alcuni POVM simmetrici. Infine, l’ultima sezione, descrive
l’implementazione sperimentale del protocollo con una sorgente a singolo fotone "heralded"
e POVM simmetrici con 3,4 e 6 uscite. In tutti i casi i risultati sono compatibili con la teoria
e mostrano l’esatto trend in funzione del numero di elementi POVM, dimostrando che nel
limite di infiniti elementi, è possibile una generazione di casualità illimitata.

Il capitolo 6 descrive una nuova implementazione di un protocollo QRNG Semi-DI. Il
protocollo non fa alcuna assunzione sulla sorgente o sul dispositivo di misura, ma presup-
pone un limite inferiore sulla sovrapposizione tra gli stati emessi. Nella prima sezione viene



descritto il protocollo generale e viene discussa una nuova implementazione con misura
eterodina. Il vantaggio principale di tale implementazione è che rilassa il requisito di una
stabilizzazione di fase attiva, che può essere compensata nella fase di post-elaborazione. La
seconda sezione analizza la sicurezza e le prestazioni attese per questa configurazione, men-
tre la sezione successiva descrive l’implementazione sperimentale con componenti in fibra
ottica. Nell’ultima sezione vengono presentati i risultati, dimostrando che, nonostante vi sia
una quantità non nulla di rumore e un’efficienza non perfetta dei rivelatori, la casualità può
essere estratta e i risultati sono compatibili con un modello che tiene conto delle inefficienze.

Poi la terza e ultima sezione si concentra sull’implementazione sperimentale dei proto-
colli di comunicazione quantistica, in particolare la distribuzione delle chiavi quantistiche.

Il capitolo 8 descrive la progettazione e l’implementazione sperimentale di un prototipo
completo per la QKD in spazio libero che utilizza fotoni a 1550nm. Il prototipo, sviluppato
in collaborazione con l’Agenzia Spaziale Italiana (ASI), è stato testato con due trasmettitori:
uno basato su componenti in fibra e realizzato con solo componenti commerciali e un sec-
ondo, sviluppato in collaborazione con Scuola Sant’Anna di Pisa, che sfrutta la tecnologia
della fotonica integrata in silicio. Il prototipo dispone anche di un sistema di iniezione in
fibra a singolo modo e di rilevatori di singoli fotoni superconduttori. È stato testato in un
collegamento in spazio libero lungo 145 metri nell’area urbana di Padova, dimostrando
per entrambe le sorgenti, un risultato positivo. Questo prototipo è il primo passo verso lo
sviluppo di un sistema QKD completo per applicazioni satellitari.

Il Capitolo 9 descrive un nuovo trasmettitore per QKD capace di modulare la polariz-
zazione dei singoli fotoni. Il trasmettitore è caratterizzato da un interferometro di Sagnac
che migliora notevolmente la stabilità del modulatore e riduce la potenza richiesta per la
modulazione. La prima sezione descrive il principio di funzionamento del trasmettitore
e quindi viene presentata l’implementazione sperimentale con luce a 800nm. I risultati
sperimentali mostrano un’elevata stabilità e un basso errore intrinseco.

Il capitolo 10 descrive un nuovo metodo di sincronizzazione per QKD che non richiede
alcun riferimento temporale ausiliario. Il metodo funziona inviando una sequenza di qubit
pubblica e condivisa a tempi prestabiliti. Inoltre, la sequenza di qubit pubblici può es-
sere utilizzata anche per compensare le fluttuazioni del canale e allineare in tempo reale
i sistemi di riferimento della polarizzazione dei due utenti. Dopo aver descritto la config-
urazione, basata sul trasmettitore POGNAC, viene spiegato il principio di funzionamento
dell’autosincronizzazione e viene discussa la sua resilienza al rumore. Quindi, l’ultima
sezione descrive i risultati sperimentali, mostrando un QBER intrinseco da record per il
trasmettitore POGNAC e un’elevata robustezza del metodo di autosincronizzazione rispetto
alle perdite.

Infine, il capitolo 11 descrive l’implementazione di un test di Bell basato sull’entanglement
in time-bin, non influenzato dal post-selection loophole. La prima sezione descrive un’analisi
teorica degli schemi di entanglement time-bin e la loro descrizione con il linguaggio degli
operatori POVM. Quindi viene presentata l’implementazione sperimentale, basata su switch



ottici veloci controllati da un sistema di feedback PID. Infine, i risultati mostrano che il
metodo presentato è in grado di ottenere una violazione Bell che non è influenzato dal
post-selection loophole.
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CHAPTER 1

Introduction to Quantum Information

In this chapter we will present some introductory notions about Quantum Mechanics and
Quantum Information, that will be used in the thesis.

The content of the following chapter is based on standard textbooks covering Quantum
Mechanics, Quantum Information, Quantum Optics and Classical Information Theory [7–
13].

1.1 Postulates of Quantum Mechanics

Quantum Mechanics has proven to be an incredibly powerful theory for predicting the
behavior of particles in their microscopic world. Like any other physical theory, it provides a
mathematical framework to represent mathematically physical objects, the laws that these
objects obey, and a set of rule for computing the probabilities of certain events. The entire
framework is based upon some fundamental postulates, developed mostly by Dirac and
von Neumann, that provide a deep link between fundamental physical entities and their
mathematical formulation. Since they cannot be derived by other principles, these postulates
have been formulated from experimental observations.

The postulates of quantum mechanics can be expressed as:

1. States: The set of states of an isolated physical system is in one-to-one correspondence
to the projective space of a Hilbert H ' Cd space of dimension d. In particular, any
physical state can be represented by a normalized ray vector |ψ〉 ∈ H , using the Dirac
notation. Thus all the vectors eiφ |ψ〉 differing from |ψ〉 by a phase factor are mapped
to the same physical state. It’s worth noting that, being H a vector space, linear
combinations of vectors are also states, allowing the phenomenon of superposition.

2. Evolution: The evolution of an isolated physical system with state space H is de-
scribed by an unitary transformation Û . For any fixed time interval [t0, t1] there exists
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a unitary U(t0, t1), unique up to a phase factor, describing the mapping of states
|ψ(t0)〉 at time t0 to

|ψ(t1)〉= Û(t0, t1) |ψ(t0)〉 (1.1)

at time t1.

3. Observables:: Any physical property of a system that can be measured is an observable
and all observables are represented by self-adjoint linear operators acting on the state
spaceH . Each eigenvalue x of an observable Ô corresponds to a possible value of the
observable. Since Ô is self-adjoint, it takes the form

O =
∑

x

xΠ̂x (1.2)

where Πx is a projector operator (Π̂2
x = Π̂x) onto the subspace with eigenvalue x .

4. Measurements: The measurement of an observable Ô yields an eigenvalue x of its
spectrum. If the system is in state |ψ〉 just before the measurement, then the probability
of observing outcome x is given by the Born rule

PX (x) = Tr
�

Π̂x |ψ〉 〈ψ|
�

(1.3)

where 〈ψ| is the dual of |ψ〉. The state just after the measurement, conditioned on the
result x of the measurement is given by:

�

�

�ψ
′¶

=

√

√ 1
PX (x)

Π̂x |ψ〉 (1.4)

5. Composite systems: The composite state space H of n systems with state space Hi
is isomorphic to the tensor product

H =
n
⊗

i=1

Hi (1.5)

If the single systems are in a state |ψi〉 ∈ H〉 the joint state is:

|Ψ〉=
n
⊗

i=1

|ψi〉 ∈ H (1.6)

1.2 Quantum Information’s basic block: the Qubit

In information theory and in computer science the basic building block is the bit. This is a
mathematical construct, a Boolean variable, that can assume only one of two possible values
and can be implemented in any physical two-state system. For example, can be implemented
in the position of a mechanical or electronic switch, in two different voltage levels, in the
intensity, wavelength or polarization of light, two directions of magnetization of a ferromag-
netic material and a numerous of others incredible ways.
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All the modern world is based on the bit: electronic, computation, digital communication are
just an example of the applications that rely on the concept of bits. The main characteristic
of the bit is the mutual exclusivity of the values it can assume: in any moment the value of
the bit is either 1 or 0.
When one is dealing with quantum mechanical system, however, a way richer phenomenol-
ogy is possible.
In fact is possible to build the quantum version of bit, the qubit, using a two level quantum
mechanical system. Unlike the bit, quantum mechanics tell us is that the qubit can be in a
linear superposition of |0〉 and |1〉, the two possible outcomes of a measure. Thus the most
general state the system can assume can be written as:

|ψ〉= α |0〉+ β |1〉 (1.7)

The state of a qubit is a vector in a two-dimensional complex vector space. The special
states |0〉 and |1〉 are known as computational basis states and form an orthonormal basis
for this vector space. However, like the bit, the outcomes of a measurement performed on
the qubit can be only one of the two states of the computational basis and this, in the case of
a state in the form given by Eq 1.7, happens with probability α2 for |0〉 and β2 for |1〉. The
normalization condition for probabilities implies that |α|2 + |β |2 = 1, and so |ψ〉 is a vector
of unitary length. With the above condition, Equation 1.7 can be written as:

|ψ〉= eiη
�

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
�

(1.8)

θ ∈ [0,π] φ ∈ [0, 2π] (1.9)

where η is a global phase, carrying no information about the state, since physical states are
described by ray vectors on a Hilbert space. This reformulation is useful because permits to
express the state of a qubit in function of two angles, θ and φ representing a point on the
surface of a three dimensional sphere called the Bloch sphere. This graphical representation
is handy when one is working with qubit.

This representation is useful to catch a fundamental difference between the bit and
the qubit. While the bit can assume only two different and discrete values, the qubit can
represent an infinite continuous set of states, spanning all over the surface of the sphere:
this means that infinite information can be represented by the qubit. However, whenever we
try to access to the information, by measuring it, we change the state of the qubit, making
its state to collapse into one of the eigenstates. How can we use the qubit as a resource if
we destroy its fundamental property at the moment we are reading it?
The answer is that, even if we cannot access the qubit, we can perform unitary operations
on it preserving all the information it contains. This is the power of quantum computation.
Moreover, the qubit is a quantum mechanical system and must obey to the laws of quantum
mechanics that, as we are going to see, forbids or provides an advantage on some tasks
performed on the qubit, respect the classical predictions. But how we can realize a qubit in
practice?
As already said any quantum two level system could be used as a qubit: the states of an
electron in an atom, the nuclear spin in a uniform magnetic field, the polarization of a
photon are just few examples of the physical realizations of a qubit system. One of the most
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Figure 1.1: Representation of the Bloch sphere

widely used implementation is trough single photon’s polarization: here |0〉 and |1〉 can be
the horizontal and vertical polarization of the photon.

1.3 No-cloning theorem

Quantum mechanics, from the beginning, caused a sort of shock and surprise, mining the
fundamental conception of how nature was believed to work. Many predictions were in
contrast with the common sense, so used to the macroscopic world ruled by the laws of
classical physics. One of these strange effects predicted by quantum mechanics, that is of
absolute importance in quantum information theory and cryptography, is linked to the action
of copy. Copy of information is performed every day: fax, photocopiers, scanners but also
copies on CD, DVD or USB-keys. All of these actions are so normal in our classical world
that the hypothesis that copy is forbidden in the quantum world seems absurd. Quantum
mechanics, however, states that it is impossible to create a perfect quantum cloning machine
and the formalization of this idea is enclosed in the No-cloning theorem [14].
Suppose to have a quantum system A in a pure state |ψ〉A that belongs to a generic Hilbert
spaceH . Now if we want to copy that state, what we need is another system B described by
a pure state |e〉B that belongs to the same Hilbert spaceH . The initial state of this composite
system can be described by

|ψ〉A⊗ |e〉B (1.10)

The operation of copy can be represented by a unitary operator U such that:

U(|ψ〉A⊗ |e〉B) = |ψ〉A⊗ |ψ〉B ∀ψ (1.11)



18 Introduction to Quantum Information
Density matrix formalism 1.4

Since it must be valid for all ψ we can require that:

U(|ψ〉A⊗ |e〉B) = |ψ〉A⊗ |ψ〉B
U(|φ〉A⊗ |e〉B) = |φ〉A⊗ |φ〉B

(1.12)

Taking the inner product of the two equations and remembering that U must preserve the
inner product we have:

〈φ|ψ|φ|ψ〉= | 〈φ|ψ|φ|ψ〉 |2 (1.13)

which is satisfied only in the case |ψ〉= |φ〉 or for |ψ〉 orthogonal to |φ〉.
These few lines are describing a stunning and central feature of quantum systems: a quan-
tum cloning machine that can clone an unknown arbitrary quantum system can’t be built.
However if we relax the requests and we admit also imperfect copies, an universal quantum
machine is possible and can reach a fidelity F = 5/6 [15]. This is the key point that assures
security in many quantum cryptography protocols: if information is encoded in a single
quantum system, and this system is transmitted, this cannot be copied without introducing
errors, thus revealing the presence of a possible eavesdropper.

1.4 Density matrix formalism

The formalism introduced until now has only dealt with vectors in the state space H and
unitary evolution. These vectors, called pure states, represents a physical system whose
state is completely known. However, if the system under consideration is not isolated and
interacts with an unknown system, or, more generally, if the state is not perfectly known,
we deal with mixed states, that are a statistical mixture of pure states. More precisely, if the
state of the system under consideration can be in the state |ψi〉 with probability pi we can
describe it as:

ρ̂ =
∑

i

pi |ψi〉 〈ψi| (1.14)

where ρ̂ now is a linear operator, usually called density matrix. Any convex combination of
two density matrix ρ̂, σ̂, τ̂= (λρ̂ + (1−λσ̂)), with λ ∈ [0,1] is also a density matrix.

This formulation is equivalent to the state vector formulation but usually is handier when
dealing with mixed states. Moreover it also removes the asymmetry between states, that
were represented as vector, and operators that were represented as matrices. From another
perspective, a linear operator ρ̂ is a density matrix if it fulfills the following conditions

• Unit trace: Tr [ρ̂] = 1

• Semidefinite positive: Tr [ρ̂ |ψ〉 〈ψ|]≥ 0 ∀|ψ〉 ∈ H

Moreover, the associated state is pure if its rank is 1. Equivalently,

Tr
�

ρ̂2
�

= 1 (1.15)

The previously defined postulates of Quantum Mechanic can be also reformulated in the
density matrix formalism. In fact if the evolution of the state vector is defined by Eq. 1.1
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then:

ρ̂ (t1) =
∑

i

pi |ψi (t1)〉 〈ψi (t1)|=
∑

i

pi |ψi (t0)〉 Û (t0, t1) 〈ψi (t0)| Û† (t0, t1) (1.16)

= Û (t0, t1) ρ̂ (t0, t1) Û
† (t0, t1) (1.17)

Similarly, for measurements the Born rule 1.3 becomes:

PX (x) = Tr
�

Π̂x ρ̂
�

(1.18)

and the state after measuring with outcome x is given by:

ρ̂x =
Π̂x ρ̂Π̂x

PX (x)
(1.19)

This new formulation comes helpful to describe the state of the system after a measurement
if the outcome is unknown. In this case the system could be in any of the post-measurement
states ρ̂x with probability PX (x)

ρ̂PM =
∑

x

PX (x)ρ̂x = Π̂x ρ̂Π̂x (1.20)

Pure states, being an element of a vector spaceH , can be found in a coherent superposi-
tion, which is a purely quantum phenomenon. This peculiar property is often at the basis of
the advantage of many quantum protocols and algorithm respect their classical counterpart.
However, the formalism of QM should be able to describe also "classical" states. Consider a
classical random variable Z distributed according to PZ , this can be represented by the state:

ρ̂c =
∑

Z

PZ |z〉 〈z| (1.21)

with {|z〉} an orthonormal basis in HZ . Since all the |i〉 are orthogonal to each other, these
are the only states the system can be found in, and they behave like the usual classical states.

An hybrid class of states, which is extremely important for the analysis of the security of
Quantum Protocols is given by the Classical-Quantum states:

ρ̂Z E =
∑

z

PZ |z〉 〈z| ⊗ ρ̂E
z (1.22)

where {|z〉} an orthonormal basis in HZ and ρ̂E
z are density operator in HE . Usually, these

states arise when a joint state ρ̂AE ∈ HA⊗HE is locally measured in the system A, but the
outcome is unknown. In this case the reduced quantum state ρ̂E

z contains information about
the quantum correlation between the two systems A and E.

1.5 Local realism, Entanglement and Bell inequalities

In the previous sections, we saw how Quantum Mechanics describes effects that are in con-
trast with our common sense and our expectation. But quantum mechanics attacked even
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deeper aspects that were thought to belong to nature: reality and locality.
Reality states that the physical properties of objects exist in a defined state independently
on the observation. This is clearly true for classical physics, but it can’t be said for QM
since QM gives us the probability to measure a certain state and moreover predicts that
the value of two non-commuting operators cannot be simultaneously determined. Locality,
on the other end, states that two space-like separated events must be independent. Again
QM predicts that a system of entangled particles can share correlations that are non-local,
apparently violating the principle of locality. Historically these two principles were thought
so fundamental that was a common opinion believe that law of physics had to at both:
any complete physical theory must be consistent with local realism. For sure this was the
opinion of Einstein, Podolsky and Rosen which in 1935 published a ground-breaking article
[16], where they showed that, if both reality and locality principles are assumed, quantum
mechanics must be incomplete and that some "hidden variables" must be included in the
theory in order to make it complete.
But is this hidden-variable model just another reformulation of quantum mechanics or it
can be tested in some way? The answer to this question was given in 1964 by John Bell
in [17]. In his remarkable work, he showed that any local hidden variable theory has a
bound on the correlation experienced on space-like separated particles, and this bound can
be calculated and tested experimentally. This limitation can be express in the form of an
inequality: the expectation value of some observables of the two particles must be below a
certain threshold in the case of a local hidden variable theory. If experiments are performed,
and value higher of this bound are obtained, this means that nature cannot be described by
such set of theories.
After few years experiments started to tests Bell’s predictions, starting with the one by Freed-
man in 1972 [18], and then by Aspect in 1981,1982 [19] [20]. The reported results were
well beyond the bound predicted by local hidden variable theories and in good agreement
with the one predicted by quantum mechanics. The conclusion was that nature is not-local
or not-realistic, or both. Unfortunately, experiments performed suffered problems of experi-
mental design or set-up that affect the validity of the experimental finding. These problems
are often referred to as "loopholes".
Despite being an old problem, is really challenging to design and realize a loophole-free Bell
test and only in 2015 3 teams managed to perform such experiment [21–23] (plus one in
2016[24]) closing simultaneously many critical loopholes.

1.5.1 CHSH Inequality

The original inequality derived by Bell was hard to test experimentally since it required
perfect (anti)correlated particles. A generalization of that inequality was derived in 1974 by
Clauser, Horne, Shimony, and Holt [25] where the authors proposed the experiment needed
to test their inequality. Suppose to have two space-like separated parties Alice and Bob, each
of them receives a particle, and on this particle they can measure a property. The outcome
A(x), B(y) on Alice’s and Bob’s side respectively, depends on the settings they used and we
assume, without loss of generality, that the outcomes can only be ±1. One practical example
could be the polarization of photons; if Alice and Bob receive one photon each, they can
measure polarization of the photons and the setting, in this case, is the base they use to
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perform the measurement. Limiting to the case where only 2 settings are employed we have
x = {a, a′} and y = {b, b′}.
If we now assume that there is a local hidden variable λ that describes the system, then A
and B must be function of this hidden variable yielding A(x ,λ), B(y,λ). Finally, if the theory
is local, since Alice and Bob are space-like separated, A(x ,λ) must be independent from
B(y,λ). Thus we can write the correlations between the two measurements as:

CAB(x , y) =

∫

Λ

A(x ,λ)B(y,λ)ρ(λ)dλ (1.23)

where ρ(λ) is the probability density function associated to the hidden variable λ. Consid-
ering another setting for Bob and using the fact that the measures take only ±1 values:

�

�CAB(a, b)− CAB(a, b′)
�

�=

�

�

�

�

∫

Λ

�

A(a,λ)B(b,λ)− A(a,λ)B(b′,λ
�

ρ(λ)dλ

�

�

�

�

(1.24)

≤ 1−
∫

Λ

�

B(b′,λ)B(b,λ)
�

ρ(λ)dλ

We can choose now another setting a′ such that

CAB(a
′, b′) = 1−δ with 0≤ δ ≤ 1 (1.25)

This parameter is introduced to relax the condition of perfect correlation in the original
paper by Bell.
Now we can divide Λ into two regions

Λ± = {λ|A(a,λ) = ±B(b,λ)} (1.26)

Using 1.25 we can write:

∫

Λ

A(a′,λ)B(b,λ)ρ(λ)dλ=

∫

Λ+
A(a′,λ)B(b,λ)ρ(λ)dλ+

∫

Λ−
A(a′,λ)B(b,λ)ρ(λ)dλ (1.27)

= 1−δ (1.28)

then using 1.26
∫

Λ+
A(a′,λ)2ρ(λ)dλ−

∫

Λ−
A(a′,λ)2ρ(λ)dλ= 1−δ (1.29)

Using that A(x ,λ) = ±1 and the normalization on ρ(λ) we have:

1− 2

∫

Λ−
ρ(λ)dλ= 1−δ (1.30)

∫

Λ−
ρ(λ)dλ=

1
2
δ (1.31)
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We can now rearrange the second term in Eq 1.24:
∫

Λ

�

B(b′,λ)B(b,λ)
�

ρ(λ)dλ=

∫

Λ+
A(a′,λ)B(b,λ)ρ(λ)dλ−

∫

Λ−
A(a′,λ)B(b,λ)ρ(λ)dλ

(1.32)

≥
∫

Λ+
A(a′,λ)B(b,λ)ρ(λ)dλ− 2

∫

Λ−
|A(a′,λ)B(b,λ)|ρ(λ)dλ

(1.33)

= CAB(a
′, b)−δ (1.34)

Substituting into the original equation we have:
�

�CAB(a, b)− CAB(a, b′)
�

�= 1− CAB(a
′, b) +δ = 2− CAB(a

′, b)− (1−δ) (1.35)

= 2− CAB(a
′, b)− CAB(a

′, b′) (1.36)

and finally obtaining
�

�CAB(a, b) + CAB(a, b′) + CAB(a
′, b)− CAB(a

′, b′)
�

�≤ 2 (1.37)

which is the usual form for the CHSH inequality. We can see that for the CHSH inequality the
bound for LHV theories is 2: any measured value above 2 (compatible with errors) would
be a proof that the two particles testes are experiencing correlations not explainable by an
LHV theory, and so, in contrast with local realism.

1.5.2 Quantum mechanics predictions

In Eq 1.37 we saw that the bound in the CHSH inequality for local hidden variable the-
ories is 2, but what are the predictions of quantum mechanics? In the case of quantum
mechanics, we don’t assume to have hidden variables, so the correlations CAB(a, b) =
〈A(a)B(b)|A(a)B(b)〉 are given by the expectation values of the measure operators on the
wavefunction describing the two particles state. Thus we ca rewrite the CHSH inequality in
the form:

�

� 〈A(a)B(b)|A(a)B(b)〉+



A(a′)B(b)
�

�A(a′)B(b)
�

+



A(a)B(b′)
�

�A(a)B(b′)
�

(1.38)

−



A(a′)B(b′)
�

�A(a′)B(b′)
� �

�≤ BQM (1.39)

In the case Alice and Bob shares a maximally entangled state , for example |ψ〉= 1
2(|1〉 |−1〉−

|−1〉 |1〉), where |±1〉 are the eigenstates of σx , they can choose their settings such that

A(a) = σx ⊗ I (1.40)

A(a′) = σz ⊗ I

B(b) = I ⊗−
σx +σzp

2

B(b′) = I ⊗
σx −σzp

2
(1.41)
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For these value of the settings is follows that

CAB(ab) = CAB(a
′b) = CAB(ab′) = −CAB(a

′b′) = cos
�π

4

�

(1.42)

Leading to BQM = 2
p

2, which is the upper bound for the CHSH inequality for quantum
mechanics. The proof of this proposition is called Tsirelson’s bound [26]. This higher bound
means that quantum mechanics violates the CHSH bound for local hidden variable theory
and so is not compatible with the principle of local realism. For the sake of completeness is
notable that a general theory subject only to the no-signaling condition has an upper bound
of 4.

Anyway there is still a way to reconcile QM and LHV theories via the so-called superde-
terminism. Superdeteminism attacks directly one of the assumptions of Bell’s theorem: the
free will. Bell’s theorem assumes that the types of measurements performed at each detector
can be chosen independently of each other and of the hidden variable being measured. In
other words, is the experimenter "free will" that chooses the settings for each round of the
experiment. Superdeterminism instead states that there is no randomness in nature and
everything is just evolving in time, following the law of a deterministic physics. In this
sense also the choice of the settings of the experimenter are already determined before they
happen, in fact, there is not even a choice, the settings used are just the ones that had to
be used. Since the chosen measurements can be determined in advance, the results at one
detector can be affected by the type of measurement done at the other without any need for
information to travel faster than the speed of light.
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CHAPTER 2

Quantum Random Number Generators

In the following chapter, we will introduce the concept of a Quantum Random Number
Generator, the possible applications of such device, the different existing types and basic
notions needed for the analysis of its security. A more detailed discussion can be found in
[27, 28].

2.1 The need for true randomness.

Randomness is an invaluable resource for many different applications such as cryptography
[29], scientific simulations[30, 31], gambling and fundamental physics tests[21–23]. Espe-
cially in cryptography, random numbers are a basic building block for almost any protocol,
and if their privacy is compromised, the security of the entire protocol can be broken. For
this reason, Random Number Generators (RNG) have always been a target for attackers,
and in many occasions their successful exploit led to important security breaches[32, 33].
Additionally, in 2013 leaks of NSA classified documents revealed that the DUAL EC DBRG
random number generator, proposed as a NIST standard [34], contained a backdoor that
could give access to the whole random sequence. [34, 35]. This backdoor had been success-
fully exploited in at least one documented attack: the Juniper network attack (CVE7755).

But, backdoors can be a problem even for hardware devices. There have been demon-
strations of manufacturers or attackers that inserted malicious modifications at the hardware
level in real world RNGs, for example changing the dopants level in the circuit [36].

Today’s the most common type of RNG are Pseudo Random Number Generators (PRNG)
and are directly implemented in software or hardware. An algorithm starts with an initial
value, called seed, and generates a sequence of numbers whose statistics are close to a uni-
form distribution. The unpredictability of their outcomes relies on some assumptions on
the algorithm and the computational infeasibility of brute-forcing all the initial states. The
advantages of such type of generators are given by their cost, speed, and availability. How-
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ever, despite their common use, in this type of generators, there is no space for randomness.
Their working principle is entirely deterministic, and the randomness in the outcomes is
only apparent since it is only related to the observer’s ignorance about the internal state
of the algorithm. Due to their algorithmic nature, this type of generators will eventually
repeat their outcome after a period and they can also exhibit pattern in their output [37].
Randomness testing suite [38–40] were developed in order to test PRNG for biases, pattern,
and correlations in their output. Unfortunately, there is no way to test the quality of a
random number generator from a finite sampling of its output. To get an intuition on that,
consider a perfect random number generator that outputs a binary string of n random bits.
Since the samples come from a uniform distribution, the probability of getting a particular
string, included those with all 0 or all 1, is the same as every other combination. So, there
are no methods that a posteriori can certify the quality of RNG.

Since deterministic algorithms cannot provide a true source of randomness, people
started to look at classical physical processes as a tool to generate genuine randomness.
Some processes, such as the flip of a coin, the thermal noise on a resistance [41] or metasta-
bility of specially designed electronic circuits [42], are intrinsically hard to predict due to
their chaotic nature. These type of generators, usually called True RNG (TRNG), can indeed
solve some of the problems typical of PRNG since they don’t have a periodic output in their
outcomes and they are typically free of patterns (although they can still exhibit some type
of correlations). However, from a fundamental point of view, the search for genuine ran-
domness still comes to a dead end. Classical mechanics is a fully deterministic theory and,
given the initial conditions of the system, the laws of motion permit to predict with absolute
precision the state of the system at any instant in the future or in the past. In the Newtonian
perspective, the evolution of the entire Universe was already written since the beginning of
time. Again, the randomness in these processes is only apparent and is only related to the ig-
norance of the observer, who hasn’t access to all the initial conditions with enough precision.
From a more practical point of view, the lack of randomness in the classical process means
that is not possible to bound the entropy of the system a priori, and the quality of the TRNG
can only be evaluated using the statistical test suites. Moreover, TRNG are physical objects
build with real devices that are subject to unavoidable non-idealities that can compromise
the quality of the output. Clock, temperature and voltage drifts are just some examples of
practical issues that can bias the output of these generators. In order to solve the problem
unbiasing techniques are usually employed [43–46].

The impossibility of generating genuine randomness from both algorithm and classical
processes motivated the research and development of Quantum Random Number Generators
(QRNG). One of the peculiar features of Quantum Mechanics, in fact, is the probabilistic
nature of its laws. The outcome of some processes, such as the measure of the spin of a
particle in basis complementary to the prepared one, are inherently random. From both the
fundamental and practical point of view, this is a complete shift of paradigm. In contrast
to the previous cases, here the randomness is genuine and not apparent: even having
access to position and momentum of all the particles in the Universe, there is no way to
predict the outcome of such measurement. From a practical point of view, this fundamental
unpredictability is an assurance for privacy. If the random number cannot be predicted, it’s
impossible for an attacker to have access to them. Moreover, since the physical process itself
is not deterministic and has to obey to the laws of Quantum Mechanics, it is possible to lower-
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bound a priori the minimum amount of randomness ( or entropy ) that can be extracted.
This is a guarantee on the quality of the source that is not subject to the flaws of statistical
test suites. Unfortunately QRNG, similarly to TRNG, are built with real devices and are also
subject to imperfections and non-idealities. These imperfections, if not correctly taken into
account, can leak information to the outside and can be used to predict the numbers. Then
one has to be careful to analyze how these imperfections can affect the security of their
generator and the amount of trust that he is confident to make on his devices.

The level of trust, or equivalently the type of assumptions, that one has to put on a real
QRNG can be used to classify the QRNG in different categories.

2.2 Types of QRNG

The first Quantum Random Number Generators were built measuring the time difference be-
tween subsequent decay of a radioactive source a [47, 48]. In fact, while the decay rate of a
radioactive source can be precisely calculated, nothing can be said about when a specific nu-
cleus will decay. Since then, other processes have been employed in order to realize smaller,
more practical, and faster devices. In the last twenty years the development of QRNG has
focused mostly on optical implementations, thanks to the advances of quantum optics and
the commercial availability of many components, from the sources (Laser, LED, Quantum
Dots) to the detectors (Single Photon Detectors, Photodiodes, Balanced Detectors). In this
section, we will review some of the optical implementations, highlighting the differences
and the security level offered by each implementation.

Rather than classifying the QRNG respect their source or underlying measured process,
we will classify them respect the level of trust that is associated to their implementation.
How critical is my application? What is the performance that is required? Can I trust the
manufacturer? These are the typical questions that one has to answer when selects an RNG
for a particular application. As we will see the price to pay for an increased security level is
lower performances.

Quantum Random Number Generators can be divided in three main categories: Trusted,
Device-Independent (DI) and Semi-Device-Independent (Semi-DI). Figure 2.1 visually rep-
resents the tradeoff between security and performance among the different class of QRNG.

2.2.1 Trusted QRNG

Typically a QRNG is composed by a source that prepares a well defined quantum state and a
measurement station that measures the state. Trusted QRNG, as the name suggests, assume
a perfect characterization of all its internal components, meaning that at every round of the
protocol the state emitted by the source is assumed to be known and the measurement sta-
tion is assumed to behave as expected. Such strong assumptions on the devices are usually
not particularly suited in adversarial scenarios, where an attacker tries to force the QRNG;
however, they permit to develop simple protocols that can reach high generation speed. As
an example, in this category, we can find the first optical scheme based on a beamsplitter, a
weak coherent source, and two single photon detectors, proposed in 1994 by Rarity[49]. In
the proposal, a single photon is sent to a balanced beamsplitter, and single photon detectors
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Figure 2.1: The figure represent the tradeoff between security and performances offered by the
different categories of QRNG:

(SPD) are placed in the transmitted and reflected arms. Depending on which detector clicks
a 0 or 1 is generated, providing a simple but practical quantum random number generator.
After this, other types of trusted QRNG have been proposed that exploited a polarization
beam splitter and diagonally polarized photons, the time of arrival of photons on a single
photon detector [50–53], the spatial mode of single photons detected by SDP arrays[54, 55]
and photon number detection [54, 56–58]. Moreover, in[59] it was shown that also continu-
ous variable systems and standard photodiodes could be used to build a QRNG. In particular,
homodyne detection can be used to sample the random fluctuations of the vacuum of the
EM field or amplified spontaneous emission [60]. Additionally, also laser phase noise can be
used as a source, with a delayed self-heterodyning detection for both pulsed [61] and CW
sources[62]. Remarkably, these last types of generators can achieve the astonishing speed
of 68Gbps [62]. It’s also worth noting that all the commercial devices fall into this category
[63–66].

However, it is important to stress out that these type of QRNG are not particularly
suited for security applications. In all the cases the entropy is evaluated just looking at
the probability distribution of the classical outcomes, while biases due to imperfections are
removed using unbiasing techniques. This methodology is the same as the one used for
TRNG and carries the same drawbacks. If the assumptions on the trusted devices are not
fulfilled, because of non-idealities of the devices, drifts, malfunctions or attacks, then the
quantum "origin" of randomness can be lost, rising no alerts to the user, which would keep
using the device. In this case the randomness of the output would be again apparent and
insecure.

2.2.2 Device-Independent QRNG

On the opposite side of the chart, we have Device-Independent (DI) protocols, which offer
the highest level of security since they do not assume anything about the inner working of
their devices, which can be even fully controlled by the attacker. This implies that contrarily
to "trusted" QRNG, the privacy of the random number is calculated taking into account that
the adversary can also share quantum correlations with the devices.
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Introduced in[67], they exploit non-locality and the violation of a Bell Inequality to cer-
tify the randomness and the privacy of the generated numbers, only from the experimental
data. A loophole-free violation of a Bell inequality, in fact, certifies that the generated output
cannot be generated by a deterministic strategy, and hence are random.

The first protocols[68, 69] and realizations[70] were based on randomness expansion:
in this protocol a perfect source of randomness providing a seed of O (

p
n log n) bits is ex-

panded quadratically using the Bell test. Clearly, the requirement of perfect randomness is
a big limitation for this protocol. Luckily, a new protocol called randomness amplification
was proposed in [71] where partially random bits can be amplified in a DI way, in order to
obtain arbitrarily perfect random bits. Remarkably in [72], using the Entropy Accumulation
Theorem [73], the authors were able to show that DI randomness amplification can be
obtained with the current experimental technology.

Unfortunately, from the experimental point of view, the realization of a DI-QRNG is
extraordinarily complex and challenging. Recently, the experimental results presented in [74,
75], showed DI randomness expansion closing both the locality and the detection loophole.
Unfortunately, due to the small Bell violation, the maximal secure rate was 180bps, which is
far too slow for any practical application.

2.2.3 Semi-Device Independent QRNG

Recently, Semi-Device Independent (Semi-DI) QRNG protocols have been proposed, trying
to bridge the gap between "trusted" and DI QRNG. They work in the same adversarial sce-
nario as DI QRNG, but they make some assumption on the devices used. In particular, the
assumptions can be related to the dimension of the underlying Hilbert space [76, 77], the
measurement device [78–82] or the source [83], for example the mean photon number [84]
or the maximum energy of the emitted states [84–87]. However, even though some assump-
tions on the devices are made, the evaluation of the security is similar to the DI case, where
the adversary is assumed to share not only classical but also quantum correlations with
the devices. Hence, the achievable randomness must be minimized respect all the possible
attacker’s strategies compatible with the measured data. This security estimation offers a
guarantee on the quantum "origin" of the extracted randomness.

The advantage of working in the Semi-DI framework is that no entanglement is strictly
needed and the protocols can be implemented in a prepare&measure way. This greatly
simplifies the experimental implementation and permits to achieve higher generation rates,
if compared to DI QRNG. Still, due to the higher complexity, their generation rate cannot
compete with "trusted" QRNG and only recently a Semi-DI QRNG [79] could break the Gbps
barrier.

In this thesis, we will focus on this type of protocol since they provide a good trade-off
between security and performance, making them suitable for secure practical applications.



30 Quantum Random Number Generators
Entropies 2.3

2.3 Entropies

A fundamental quantity in the analysis of the security of QRNG as QKD is entropy. In this
section, we will introduce the notion of entropy in both Classical Information Theory and
Quantum Information Theory.

The starting point in the zoo of entropies (Figure 2.2 visually explains this concept) is
undoubtedly the Shannon Entropy. In its pioneering work of 1948 [88] Shannon considering
a random variable X distributed according to the probability distribution PX (x) defined the
quantity:

S(X ) =
∑

x

−Px(X ) log (PX (x)) (2.1)

as entropy. This quantity characterizes quantitatively the amount of our uncertainty respect
to the random variable X . The quantity − log (PX (x)), called surprisal characterizes the
information content of a particular event. Clearly, deterministic event shouldn’t carry any
information, since when they happen we don’t learn anything. On the other hand rare
events should be characterized by a high content of information.

In the asymptotic limit of many Independent Identically Distributed (IID) repetitions of
a protocol, the Shannon Entropy quantify the average amount of randomness that can be
extracted by the random variable X .

The quantum analogous of the Shannon Entropy is the Von Neumann Entropy of a
quantum state ρ:

H(ρ̂) = −Tr [ρ̂ log (ρ̂)] = −
∑

x

λx log (λX ) (2.2)

where λx are the eigenvalues of ρ̂.
Another useful quantity is the conditional entropy:

S(X |Z) = −
∑

x

PX |Z=z(x) log
�

PX |Z=z(x)
�

(2.3)

and its quantum version
H(ρ̂x |ρ̂z) = H(ρ̂xz)−H(ρ̂z) (2.4)

where ρ̂xz is a joint state in Hx ⊗Hz and ρz = TrX [ρ̂x ,z] The conditional entropy quantify
the average uncertainty, in the asymptotic IID limit of about the random variable X given
the information that Z = z for some other random variable Z .

The conditional entropy plays a central role in the evaluation of the security of both
QRNG and QKD since the legitimate user is interested to bound the private amount of
randomness generated given the information that a possible attacker could have gained
during the entire execution of the protocol.

Shannon and Von Neumann entropies can be seen as a particular realization of a broader
set of entropies called Rényi entropies of order α and defined as:

Hα(X ) =
1

1−α
log

�

∑

x

PX (x)
α

�

(2.5)

for α ∈ [0,∞], where the points 0, 1 and∞ are considered under the limit.
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The usual Shannon entropy is recovered in the limit α→ 1, while values of 0 ≤ α < 1
give more weight to events with higher probability and values of 1 ≥ α >∞ give more
weight to events with lower probability. Consequently, they are monotonically decreasing
respect to α. In a similar manner to what has been done before one can also define relative
Rényi entropies and their quantum version.

Among all the Rényi entropies, those associated with the values α =∞ play a unique
role, especially in the non-asymptotic regime. The S∞(X ) is also called min-entropy and is
linked to the probability of correctly guessing the value of X in a single-shot:

S∞(X ) = Smin(X ) = − log2(pguess(X )) (2.6)

pguess(X ) =max
x

PX (x) (2.7)

For an attacker interested in guessing the outcome of X in a single shot, the optimal strategy
is to bet on the most probable outcome of PX (x). Its conditional version is given by:

S∞(X |E) = Smin(X |E) = − log2(pguess(X |E)) (2.8)

pguess(X |E) =max
x

PX (x |E) (2.9)

We can also define its quantum conditional version [89, 90], already written in its
Semidefinite Positive (SDP) (see Section A for more details) optimization from. This is the
formulation that will be mainly used later on.

Hmin(X |Y ) = − log
�

min
σ̂Y

Tr[σY ]
�

(2.10)

s.t ρ̂X Y ≤ 1X ⊗σY (2.11)

σY ≥ 0 (2.12)

where ρ̂X Y is the joint state in HX ⊗HY .
The quantum conditional min-entropy is related by a duality relation to another quantity

called the max-entropy (which is the Rényi entropy of order 1
2)[89]. Consider ρX Y Z ∈

HX ⊗Hy ⊗HZ to be pure. Then:

Hmin(X |Y ) = −Hmax(X |Z) (2.13)

Like in the classical case, the quantum conditional min and max entropies are connected
to the guessing probability in the single-shot scenario, in case side-information is present. In
particular, these quantum versions are able to take into account the case where also quantum
side information is accessible to the adversary. Consider for example a classical-quantum
state, introduced in 1.22, in the form:

ρ̂X E =
∑

x

PX (x) |x〉 〈x | ⊗ ρ̂E
x (2.14)

This is the joint post measurement state when a generic state ρAE is measured in the subsys-
tem A, but the outcome of the measurements |z〉 are not known. In this case the quantum
conditional min-entropy simplifies in:

Hmin(X |E) = −min
Êx

log2

�

∑

x

PX (x)Tr
�

Êxρ
E
x

�

�

(2.15)
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with Êx some POVM acting on HE . In this case, Hmin(X |E) quantifies the amount of ran-
domness that is present in the outcome X given that an attacker could have access to the
quantum side information E. The optimal strategy for an attacker is to find a set of POVM
Êx that maximize the overlap with the conditional states ρE

x for each possible outcome x .
Then, if a particular Êx clicks, in that round, he can bet on x .

Unfortunately, the quantum conditional min and max entropies are very sensitive to
small changes in the probability distribution, and a slight modification of the system’s state
might have a tremendous impact on its entropy [91]. Moreover, while they quantify the
right amount of randomness in the single-shot regime, they don’t converge asymptotically
to the von Neumann entropy. In fact using their additivity [91]:

Hmin

�

ρAB ⊗ρA′B′ |σB ⊗σB′
�

= Hmin(ρAB|σB) +Hmin(ρA′B′ |σB′ ) (2.16)

one can see that in the IID limit:

lim
n→∞

1
n

�

Hmin(ρ
⊗n
AB |σ

⊗n
B )
�

= Hmin(ρAB|σB) (2.17)

which is 6= H(ρAB|σB) in general. Both problems can be solved using their smoothed versions:

Hεmin(ρAB|σB) = sup
ρ̃AB∈Bε(ρAB)

Hεmin(ρ̃AB|σB) (2.18)

where Bε(ρAB) is a ball centered in ρAB (using the Trace distance as a measure) with radius
ε, which is called the smoothing parameters. For this quantity the asymptotic limits are
correctly recovered:

lim
ε→0

lim
n→∞

Hεmin(ρ
⊗n
AB |σ

⊗n
B ) = H(ρAB|σB) (2.19)

2.4 The security analysis of a Semi-DI QRNG

In this section, we will briefly describe the main steps required for the analysis of the security
of a Semi-DI QRNG, following the framework presented in [93]. We will often compare it
to the case were trusted QRNG are considered, in order to highlight the differences.

2.4.1 True randomness

The analysis of the security of a QRNG aims to estimate the true amount of randomness in
the generator’s output that is private to the user, so that is unpredictable to anyone else.
The concept of true randomness can be formally defined if one assumes a causal space-time
structure. Then a random variable X is defined ε-truly random if its probability distribution
is ε-close (w.r.t the trace distance) to the uniform and if it is uncorrelated to any other
variables which are not in the future light-cone of X . If we define PX̄ (x) =

1
|X | the uniform

distribution, C the set of variables correlated with X but not in its future light cone (also
called Side-Information) and PXC the joint distribution of X and C , we can formally express
the previous sentence as

D(PXC , PX̄ × PC )≤ ε (2.20)
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Figure 2.2: A "non-exhaustive" graph of entropies and their relations. Taken from[92]

where D is the Trace distance between the the two probability distribution

D(PX ,QX ) =
1
2
||PX −QX ||1 =

1
2

∑

x

|PX (x)−QX (x)| (2.21)

So the distribution of PX conditioned on C should be almost indistinguishable (except for a
probability up to ε) to an uniform distribution. The case of perfect randomness is recovered
in the limit ε→ 0.

2.4.2 Randomness estimation

In general, a QRNG can be decomposed in a source, that prepares a fixed state and mea-
surement station that measures the incoming states and record the output. In the ideal case
where the state produces is always fixed and pure and the measurements are projective, the
output is truly random.

The typical example is a photon source that prepares a polarization qubit in the |+〉
state and measures it, my means of a Polarization Beam Splitter (PBS), in the |H〉 , |V 〉 basis
with the two projectors ΠH = |H〉 〈H| ,ΠV = |V 〉 〈V |. In this case the two outputs H, V are
uniformly distributed, and if the system is uncorrelated with any other objects, the output is
truly random.
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However, practical QRNG are subject to imperfections, non-idealities and deviations,
hence their outcomes are inevitably mixed with classical (and predictable) noise. We define
the output of this imperfect generator raw randomness. In the previous example, this could
happen if the source does not perfectly prepares a balanced superposition of |0〉 and |1〉 :
then in such case the output will be biased with PH 6= PV 6= 0.5. Other common imperfections
are related to the detection stage and include: the non-unity efficiency of detectors, dark
counts and afterpulsing.

In this case, if we trust that no Side-information is present, the content of true ran-
domness in the raw randomness generated is given by the classical min-entropy 2.6. If an
attacker has no information about the generator, except for its output statistics PH , PV , its
optimal strategy is to always bet on the most probable result and amount of extractable
randomness is

Hmin(X ) = − log2(max PX (x)) = − log2(max (p, 1− p)) (2.22)

which achieves its maximum in the ideal case p = 0.5.
However, we have made a strong assumption: we assumed that the attacker shares no

correlation with the QRNG. If Side-Information is present the quantity 2.6 doesn’t represents
anymore the amount of true randomness. Let’s supposes that the attacker knows the working
principle of the QRNG. If he is able to intercept the flying qubit before this reaches the PBS,
he can substitute it with one forged by himself. In this case, he can choose to send half
of the times the state |H〉 and half of the times the state |V 〉. To the measurement station,
the incoming state ρ̂ = 1

2 |H〉+
1
2 |V 〉 would reproduce the same statistics of |+〉. The true

randomness estimate given by Hmin(X ) would still be 1; however the attacker would know
the outcome with probability 1 each time.

If one wants to include the classical side information into account the right quantity is
given by the classical conditional min-entropy Hmin(X |C), presented in Eq. 2.8. In this case
P(H|H) = P(V |V ) = 1 and

Hmin(X |C) = − log2(1) = 0 (2.23)

The amount of true randomness in this case is correctly estimated.
However, the attacker can also share quantum correlation with the generator. This is

the most general type of Side-Information available to the attacker. In this case, also the
classical conditional min-entropy Hmin(X |C) fails to correctly estimate the true amount of
randomness. Going back to the previous example, if the attacker has access to the source,
he could prepare a pair of qubit in a maximally entangled state:

�

�Φ+
�

=
1
p

2
(|H〉A⊗ |H〉E + |V 〉A⊗ |V 〉E) (2.24)

and send one photon to the PBS while keeping the other one. In this case the state seen
by the PBS is still ρ̂ = 1

2 |H〉 〈H|+
1
2 |V 〉 〈V | and P(H) = P(V ) = 1. Unfortunately, after the

measurement, the joint state
�

�Φ+
�

gets projected to either ρHH = |H〉A ⊗ |H〉E or ρV V =
|V 〉A⊗ |V 〉E , and the attacker is able to predict the outcomes again with perfect precision.

Also, in this critical case the right amount of randomness can be estimated. The right
quantity is now the conditional quantum min-entropy Hmin(X |E) of Eq. 2.15. In this case
the conditional states ρE

x are ρE
H =

1
2 |H〉 〈H| ,ρ

E
V =

1
2 |V 〉 〈V |.
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The two POVM ÊH , ÊV that maximize the overlap with ρE
H ,ρE

V are then just the projectors
Π̂H , Π̂V .

Then Hmin(X |E) becomes:

Hmin(X |E) = − log2

�

Tr
�

Π̂Hρ
E
H

�

+ Tr
�

Π̂Vρ
E
V

��

= 0 (2.25)

From this analysis, we quickly understood that the presence of Side information can
completely undermine the privacy of the generated numbers, that would still seem random to
the user but would be completely predictable by an attacker. The most general quantity that
never underestimate the content of true randomness even in the presence of Side information
is given by the quantum conditional min-entropy Hmin(X |E). Unfortunately, this quantity is
the hardest to estimate or bound. In order to compute it one has to know the global joint
state ρAE and optimize over all the possible strategies of the attacker

�

Êx

	

. Moreover, most
of the QRNG protocols, like the one described above, would not be able to generate any
randomness in this scenario. This is the reason why Trusted QRNG need to trust the inner
working of their devices: by trusting them they can assume the state of the source or the
shape of their measurement, making de facto the side information trivial. Then they can
simply use the classical min-entropy Hmin(X ) (that is easy to compute since it depends only
on the output statistic PX (x)), to estimate the randomness. However, if the assumptions are
not respected their security can be compromised. On the other hand, DI QRNG, since they
don’t assume anything on their devices, need to bound Hmin(X |E). As we have seen they
exploit non-locality and the violation of a Bell inequality to do so, with all the complexity
that this requires.

Semi-DI QRNG, instead, try to combine the good points of both approaches. They work
in a paranoid scenario similar to the one of DI QRNG, and so they bound Hmin(X |E); however
they do make some assumption on some part of their devices. This is required in order to
avoid a test of non-locality. For example Source-DI protocols, assume trusted measurements
but do not trust the source. In this case they work with a Prepare’n’Measure implementation,
but in order to estimate Hmin(X |E) they consider the scenario where the attacker holds a
purification of the state they receive (which is the one that gives him the most information)
and then they optimize over all the possible strategies

�

Êx

	

x in order to pick the one giving
the most conservative estimate. More details about this procedure will be given in Chapter
4.

2.4.3 Randomness extraction

The next step in the analysis of the security of a QRNG is the randomness extraction. Given
a practical QRNG, its output will in general not be truly random. If we consider a string Z
of n bits of the outputs of the generator part of it will be known by an attacker with some
Quantum Side Information E and only Hmin(Z |E) bits of Z can be considered truly random.
Then, informally, a randomness extractor is a procedure that is able to generate a substring
Z̃ of ≈ Hmin(Z |E) bits from Z , of truly random numbers.

There are many different techniques for the randomness extraction, where only a few
works against quantum adversaries [94–96]. In this thesis, we will focus only on the method,
called Leftover hashing, presented in [96], since it can be implemented in a simple and
efficient way also for high generation rates.
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The technique exploits special hash functions, called two-universal hash function,[97]
defined as the family F of functions from an alphabet χ to {0, 1}l such that, if f (z) is chosen
uniformly in F :

Pr( f (x) = f (x
′
))≤

1
2l

(2.26)

for any x 6= x
′
∈ χ.

Then if ρZ E is a classical-quantum state andF is a family of two-universal family of hash
functions then:

1
2
||ρF(Z)EF − 1⊗ρEF ||1 ≤ εhash (2.27)

εhash = 2−
1
2 (Hmin(Z |E)−l) (2.28)

where || · ||1 is the Trace norm and

ρF(Z)EF =
∑

f ∈F

1
|F |
ρ f (Z)E ⊗ | f 〉 〈 f | (2.29)

So if f ∈ F is uniformly chosen such that the output length l is < Hmin(Z |E), the output
string f (Z) will be uniform and independent from E, except with probability εhash < 1.
This probability εhash decreases exponentially as a function of the difference between l and
Hmin(Z |E).

Then practically, given Hmin(Z |E) and chosen an appropriate εhash (commonly εhash ≤
10−10), one randomly selects a 2-universal hash function f ∈ F with output l such that:

l ≤ Hmin(Z |E) + 2 log2(εhash) (2.30)

A similar relation holds also for the smooth conditional quantum min-entropy defined
in Eq. 2.18 [96].

These 2-universal hash function can be efficiently constructed using Toeplitz matrices
that requires only n+ l − 1 coefficients instead of nl. The vector-matrix multiplication can
be efficiently computed using the Fast Fourier Transform with a O (n log(n)) complexity [98].
Finally they can also be implemented in hardware, for example on Field Programmable Gate
Array (FPGA), reaching speeds as high as 8 Gbps[99].

Summing up, uniformity is not the only important parameter for the evaluation of ran-
domness but correlations play a fundamental role. Side-Information, if not taken into
account correctly, can completely undermine the privacy of the generated numbers and
different entropies quantify the true content of randomness for different types of Side Infor-
mation. The correct estimation of the min-entropy, is fundamental in order to guarantee a
correct extraction of uniform and uncorrelated bits, using the Leftover Hashing Lemma and
2-universal hash functions.



CHAPTER 3

A Source-Device-Independent Ultrafast Heterodyne QRNG

Semi-device-independent (Semi-DI) QRNG [28], are a promising approach to enhance the
security with respect to a standard “fully trusted” QRNG, achieving fast generation rate, dra-
matically larger than DI-QRNG. These require some weaker assumptions to bound the side
information. Such assumptions can be related to the dimension of the underlying Hilbert
space [76, 77], the measurement device [78–82] or the source [83], for example the mean
photon number [84] or the maximum energy of the emitted states [84–87].However, due to
the weaker assumptions, their experimental implementation is usually more complex than
trusted QRNG and, in general, less practical. For example, their generation rate is usually
limited to tens of Mbps (except for [79]), and it requires an active switch of either the source
or the measurements.

In this chapter, we introduce a new QRNG belonging to the family of the Source-device
independent (Source-DI), by exploiting continuous variable (CV) observables of the elec-
tromagnetic (EM) field. In previously realized CV-QRNGs [59, 79],random numbers were
generated by using a homodyne detector that measures a quadrature of the EM field. We
propose and demonstrate a CV-QRNG based on heterodyne detection in the Source-DI
framework: we bound analytically the eavesdropper quantum side information (i.e., the
conditional min-entropy), and we achieve, to our knowledge, the fastest generation rate in
the Semi-DI framework.

The advantages of heterodyne measurement over homodyne are multiple: beside offer-
ing better tomography accuracy than homodyne [100, 101], heterodyne measurement offers
an increased generation rate since it allows a “simultaneous measurement” of both quadra-
tures. In addition, the experimental setup is simplified with respect to the protocol based
on homodyne introduced in [79], since there is no need for an active switch to measure the
two quadratures. Finally, it is possible to derive a constant lower bound on the conditional
quantum min-entropy that doesn’t change during the experiment.

Our Source-DI protocol assumes a trusted detector, but it does not make any assumption
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on the source: an eavesdropper may fully control it, manipulating it in order to maximize
her ability to predict the outcomes of the generator. Such approach is very effective in taking
into account any imperfect state preparation. Although these are the typical assumptions
that hold for QRNGs in the Semi-DI framework, this protocol features a critical difference.
Previous protocols counteract the eavesdropper via an active measurement strategy on the
state, which implies the need for additional randomness to certify the numbers. Instead
here the removal of the active basis switch has a profound impact on the type of protocol
implemented: in this scheme no initial external randomness is required, making it a random-
ness generation protocol and not a randomness expansion protocol, unlike previous Semi-DI
and DI realizations. Moreover, we realize a practical implementation of the protocol with a
compact fiber optical setup that employs only standard telecom components.

Some contents of this chapter are part of our work [1].

3.1 Theory

3.1.1 A heterodyne QRNG

CV-QRNGs are characterized by high generation rates due to the use of fast photodiodes
instead of (slow) single photon detectors: continuous spectrum of the observables typically
assures more than one bit of entropy per measurement, and the use of photodiodes with
high bandwidth allow to sample the quadratures at GSample/s.

In this QRNG, we implement a heterodyne detection scheme, presented in Fig 3.1, where
two “noisy quadrature observables” are measured simultaneously [102, 103].

BS

LO

Vacuum

BS

BS BS

Signal

Vacuum

Figure 3.1: Schematic representation of the optical Heterodyne (or Double Homodyne) measurement.
This image (and many others in the thesis) uses elements from the ComponentLibrary by Alexander
Franzen [104], licensed under CC BY-NC 3.0

As suggested by Arthurs and Kelly in 1965 [102], the two EM quadratures Q̂, P̂ can be
measured simultaneously even if the two operators do not commute [Q̂, P̂] 6= 0, paying the
price of an added noise in the measurement. In fact, what is measured are actually two
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operators q̂ and p̂
q̂ = Q̂+ Â p̂ = P̂ + B̂ (3.1)

where Â and B̂ describe the quantum noise necessary to have [q̂, p̂] = 0. This relation
on q̂, p̂ implies 〈[Â, B̂]2〉 ≤ −1 and eventually ∆q̂∆p̂ ≥ ħh. This means that when the two
quadratures are measured simultaneously, the minimum uncertainty on the measurement is
double respect the Heisenberg limit [13].

The heterodyne measurement can be also represented with the following Positive Oper-
ator Value Measurement (POVM)

�

Π̂α
	

α∈C where

Π̂α =
1
π
|α〉 〈α| , (3.2)

and |α〉 is the coherent state with complex amplitude α. If we define ρA the density matrix
of the EM field, the output of the heterodyne measurement is represented by the random
variable X

X = {q, p} , q = Re{e} (α) , p = Im{m} (α) , (3.3)

distributed according to the following probability density function known as Husimi func-
tion:

QρA
(α) = Tr

�

Π̂αρA

�

=
1
π
〈α|ρA |α〉 . (3.4)

In an ideal scenario where the QRNG user (Alice) can trust the source of random states,
such scheme has the immediate advantage of doubling the generation rate with respect
to an homodyne receiver. Since the “raw" random numbers X are typically not uniformly
distributed, it is essential to process them with a randomness extractor [105]. A randomness
extractor (for more details see Sec. 2.4.3) compresses the input string of raw numbers, such
that the shorter output string is composed by i.i.d. random bits.

However, the continuous POVM of Eq.3.3 can never be implemented in a real setup:
practically, any heterodyne measurement is discretized. This means that the possible out-
comes Xδ of the measure are discrete with a resolution given by δq and δp for the two
“quadratures”. The discretized version of the POVM element Π̂α is then given by

Π̂δm,n =

∫ (m+1)δq

mδq

dq

∫ (n+1)δp

nδp

dp Π̂q+ip (3.5)

and the possible outputs are distributed according to a discretized version of the Husimi
function:

QδρA
(m, n)=Tr

�

Π̂δm,nρA

�

=

∫ (m+1)δq

mδq

dq

∫ (n+1)δp

nδp

dpQρA
(q+ ip) . (3.6)

In a fully-trusted QRNG, when the source is trusted and the input state is pure (such as
for the vacuum) or the privacy of the generated numbers is not a concern, the number of
random bits that can be extracted per sample is given by the so-called classical min-entropy
of Xδ

Hmin(Xδ)=− log2[max
m,n

QδρA
(m, n)] . (3.7)
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However, ultrafast generation is worthless for cryptographic applications if the numbers
are not secure and private. As discussed in Sec. 2.4.2, if security is important, quantum
side information must be also taken into account and the conditional quantum min-entropy
Hmin(X |E ) [89, 91, 106, 107] must be evaluated. We recall that in the Source-DI frame-
work, an eavesdropper may have full control of the source and then may have some prior
information on the generated numbers. We will show that with a heterodyne scheme, it is
possible to generate unpredictable and secure numbers also when the source of quantum
states is controlled by the eavesdropper.

3.1.2 A Secure POVM-based QRNG

In the Source-DI framework, the legitimate user, Alice, does not make any assumption on
ρA, such as its dimension or purity: the source may be even controlled by a malicious QRNG
manufacturer, Eve. This framework is well suited to deal with imperfect sources of quantum
states [78]. On the contrary, Alice carefully characterizes her local measurement apparatus
and trusts it.

In this scenario, Eve is assumed to prepare the state ρA to be measured. In particular,
Eve will prepare ρA in order to maximize her guessing probability Pguess of the outcomes of
Alice heterodyne measurement. If the state ρA is not pure, it can be prepared by Eve as a
incoherent superposition of states τA

β
with probabilities p(β), such as

ρA=

∫

p(β)τA
βdβ (3.8)

As shown below, for quantum state ρA with positive Glauber-Sudarshan representation
[13], Eve optimizes her strategy by using τA

β
that are coherent states.

When Eve generates the state τA
β
, the best option for her is to bet on the heterodyne

outcome with higher probability, namely

max
m,n

Tr
�

Π̂δm,nτ
A
β

�

(3.9)

On average, Eve’s probability of guessing correctly the output of the heterodyne measure-
ment can be written as:

Pguess(Xδ|E )=
∫

p(β)max
m,n

Tr
�

Π̂δm,nτ
A
β

�

dβ . (3.10)

Having full control of the source, given the state ρA, Eve chooses the decomposition
{p(β),τA

β
} that maximizes Pguess. We note that the states τ̂k are, in general, not orthog-

onal. In such scenario, quantum correlations between Alice and Eve are modeled by a
shared pure bipartite state ρAE. The states τk are related to the optimal measurement that
Eve should perform on ρAE in order to maximize her guessing probability.

According to the Leftover Hash Lemma (LHL) [91, 96], the extractable randomness in
the presence of side information is quantified by the quantum conditional min-entropy

Hmin(Xδ|E )=− log2 Pguess(Xδ|E ) , (3.11)
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Figure 3.2: Structure of the Source-DI protocol. In the general Source-DI scenario, Eve prepares
the state ρA that she sends to Alice such that her purification gives her the maximal guessing proba-
bility on Alice’s outcome. The structure of the POVM chosen by Alice to measure ρA already impose
a lower bound on Hmin(X |E ), independently from the input state or the output of her measurement
(see Proposition 1). This bound is used to calibrate an extractor that returns, at each round of the
protocol, secure random bits when applied to Alice’s outcome.

where Pguess(Xδ|E ) is maximum probability of guessing Xδ conditioned on the quantum side
information E

Pguess(Xδ|E )= max
{p(β),τA

β
}

∫

p(β)max
m,n

Tr
�

Π̂δm,nτ
A
β

�

dβ . (3.12)

The maximization in (3.12) is performed over all possible decomposition {p(β),τA
β
} that

satisfy ρA=
∫

p(β)τA
β

dβ . The above considerations are valid not only for the heterodyne
measurement but are correct for any POVM measurement (also with Hilbert spaces of finite
dimensions).

Fig. 3.2 represents a general protocol within this framework.
In the case of infinite precision δp,δq→0 (i.e. the continuum limit) it is possible to

define the “differential quantum min-entropy”[107] as

hmin(X |E )= lim
δp ,δq→0

[Hmin(Xδ|E ) + log2δpδq] (3.13)

and a corresponding pguess(X |E )=2−hmin(X |E ).
In this case pguess is a probability density and not a proper probability such as Pguess.

By exploiting the properties of POVMs, we derive a lower bound on Hmin(Xδ|E ) (and thus
an upper bound on Pguess(Xδ|E )).

Proposition 1. For any POVM {Π̂x}x∈X the quantum conditional min-entropy Hmin(X |E ) is
lower-bounded by

Hlow=− max
{x∈X ,τA∈HA}

log2

�

Tr
�

Π̂xτA

��

. (3.14)

Proof. Given a set of POVM {Π̂x}, the maximum over x in (3.12) is bounded by maxx Tr
�

Π̂xτ
A
β

�

≤
maxx ,τA

Tr
�

Π̂xτA

�

. Then Eq. (3.12) is upper bounded by:

Pguess(X |E )min≤ max
{x ,τA}

Tr
�

Π̂xτA

�

max
{p(β),τB}

∫

p(β)dβ

= max
{x ,τA∈HA}

Tr
�

Π̂xτA

�

(3.15)
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from which the bound on the min-entropy follows by using (3.11).

If the POVM reduce to projective measurements, the above bound is trivial, since it
always possible to find a state τA such that Tr

�

Π̂xτA

�

=1: in this case,no randomness can be
extracted. However, for an overcomplete set of POVM we may have max{x ,τA} Tr

�

Π̂xτA

�

<1
and therefore randomness can always be extracted. We now exploit the above proposition
for the specific case of heterodyne measurement.

Corollary 1.1. For the heterodyne measurement the quantum conditional min-entropy is lower-
bounded by

Hmin(Xδ|E )≥−[ max
{m,n,τA}

log2(Tr
�

Π̂δm,nτA

�

)]= log2
π

δqδp
. (3.16)

Proof. It is well known that the Husimi function QρA
(q+ ip) is upper bounded by 1

π . Then,
∀τA, the following inequality holds:

Tr
�

Π̂δm,nτA

�

=

∫ (m+1)δq

mδq

dq

∫ (n+1)δp

nδp

dpQρA
(q+ ip) (3.17)

≤
∫ (m+1)δq

mδq

dq

∫ (n+1)δp

nδp

dp
1
π
≤
δqδp

π
(3.18)

By Proposition 1, it follows that Hmin(Xδ|E )≥ log2
π
δqδp

.

By the definition of differential quantum min-entropy it follows that hmin(X |E )≥ log2π.
The bounds are tight, i.e. hmin(X |E )= log2π and Hmin(Xδ|E )= log2

π
δqδp

+O(δ), for quantum
state with positive Glauber-Sudarshan P (α) representation.

To show the tightness, we note that any matrix ρA can be written as

ρA=

∫

P (α) |α〉 〈α| d2α (3.19)

where P (α) is the Glauber-Sudarshan P-function. If P (α) is positive it can be interpreted as
a probability density and the state ρA can be seen as an incoherent superposition of coherent
states.

For small δp,q the guessing probability of Eq. (3.12) becomes

Pguess(Xδ|E )=δqδp max
{p(β),τA

β
}

∫

p(β)max
α

QτA
β
(α) +O(δ3) . (3.20)

Since coherent states maximize the value of the Husimi function QτA
β
(α), then the opti-

mal decomposition in (3.20) is precisely {P (α), |α〉 〈α|} such that Pguess(Xδ|E )=
δqδp
π +O(δ3)

and Hmin(Xδ|E )= log2
π
δqδp

+O(δ).

By using a heterodyne measurement scheme, a quantum tomography of the input state is
also obtained [13]: while Alice generates the raw random numbers, she also reconstructs the
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state ρA. Then it is possible to evaluate numerically the quantum conditional min-entropy by
using (3.11) and (3.12). Although for a qubit system, this problem was elegantly addressed
by [108], it is not of easy solution in the CV case. On the other hand, Corollary 1 gives an
easy lower bound on Hmin(Xδ|E ). Alice knows that even if Eve forges a state with an optimal
E , such side information will not let Eve guess the heterodyne outcome with a probability
larger than

δqδp
π .

In the presence on an imperfect source of quantum states, this is the most conservative
strategy to adopt, but ensures the generation of completely secure random numbers while
avoiding a complex numerical maximization.

It is worth to note that the min-entropy of the random numbers is bounded by a function
that depends on the measurement resolution only. The measurement, in this scenario, is
under control of the user: Alice can readily obtain the min-entropy (3.16) by measuring δp
and δq of her well characterized apparatus. The min-entropy is constant, and Alice does
not need to worry updating its value, as long as she trusts the apparatus. In the case of
imperfect heterodyne measurement Proposition 1 can be still used: the characterization of
the measurement apparatus allows to define what are the actual POVM eΠδm,n corresponding
to such measurement. In eq. (3.16) the ideal POVM Π̂δm,n should replaced by the operators
eΠδm,n. The bound log2

π
δqδp

should be modified accordingly and its explicit value depends on

the actual form of the operators eΠδm,n.
Finally, we point out that in many cases such lower bound is (almost) tight: indeed,

coherent and thermal states have positive Glauber-Sudarshan P (α) function and for those
states the bound log2π on the differential min-entropy is tight (the bound of the min-entropy
is almost tight due to discretization). Moreover, in contrast to other Semi-DI QRNG where
the min-entropy needs to be estimated in real-time to provide security [76, 79, 85], in this
protocol it depends on the structure of the heterodyne POVM, and it is always constant.
Hence, Alice can apply on Xδ a randomness extractor calibrated on log2

π
δqδp

and erase any
guessing advantage of Eve.

3.1.3 Security against general attacks

Until now we estimated the quantum conditional min-entropy H(1)min(X |E ) for a single run of
the protocol. Usually, this corresponds to consider security against only individual attacks.
In this scenario, Eve is allowed to interact only with the ρ̂A that is exchanged during one
round of the protocol and, while she can store its ancilla in a quantum memory, she is
allowed to measure it independently respect the previous and future ancillas. The most
general scenario is given by coherent (or general) attacks, where Eve can interact with a
global interaction Ûc with all the n states ρ̂i

A exchanged during the protocol, and she can
also apply a global measurement Π̂n, to all her ancillas.
However, since we calculate the min-entropy on the worst state τ(1) that is allowed by
physics, this result holds also for coherent attacks.

In this section we will show it explicitly, by bounding the min-entropy for n runs of the
protocol H(n)min(X |E ) in terms of the min-entropy for a single run of the protocol H(1)min(X |E ).

When Eve performs a coherent attack, she can prepare a general n−partite state τ̂(n) to
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maximize her probability of guessing the n outcomes of Alice measurements, that can be
written as

Π̂x≡ Π̂x1
⊗ Π̂x2

⊗ · · · ⊗ Π̂xn
. (3.21)

The guessing probability of Eve for n runs of the protocol P(n)guess(X |E ) can be written as

P(n)guess(X |E )=max
{x i}

�

max
τ(n)

Tr
��

Π̂x1
⊗ · · · ⊗ Π̂xn

�

τ(n)
�

�

(3.22)

=max
{x i}

�

max
τ1

Tr
�
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=
�
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�n

(3.25)

where P(1)guess(X |E ) is the guessing probability for one run of the protocol. In the above equa-
tions the state τ(n) is a generic n-partite state, while τi are generic single-party states. The
crucial step is going from Eq. (3.22) to Eq. (3.23). The argument of the outer maximization
in Eq. (3.22) is given by maxτ(n) Tr[Π̂xτ

(n)] and corresponds to the maximum eigenvalue of
the operator Π̂x. Since Π̂x is the product of Hermitian operators with non-negative eigenval-
ues, its maximum eigenvalue is equal to the product of their maximum eigenvalues, namely
maxτ1

Tr
�

Π̂x1
τ̂1

�

· · ·maxτn
Tr
�

Π̂xn
τ̂n

�

. This means that Eve’s optimal strategy is to generate a
n-mode separable state τ(n)=τ1 ⊗τ2 ⊗ ...⊗τn.

Therefore, the min-entropy for n runs of the protocol H(n)min(X |E ) can be written as:

H(n)min(X |E )=− log2 P(n)guess(X |E ) (3.26)

=− log2[(P
(1)
guess(X |E ))

n]=nH(1)min(X |E ) .

Hence, the bound on the min-entropy is valid not only in the single-shot regime, but also
for n repetitions of the protocol and coherent attacks.

3.2 Experimental Implementation

3.2.1 Design

The proposed new protocol has been implemented with an all-fiber setup at telecom wave-
length with the scheme in Fig. 3.3; in this way is possible to exploit the availability of fast
off-the-shelf components for classical telecommunication while keeping the setup compact.

The heart of the experiment lies in the heterodyne detection of the vacuum state that
samples the Q function with the help of a coherent field |α〉 of a strong Local Oscillator (LO).
This has been experimentally implemented using a commercial 90◦ optical hybrid, commonly
used for coherent communications. The pairs of optical output then were recorded by a
couple of InGaS Balanced photoreceivers.

The signal port of the 90◦ optical hybrid was closed, so that no photon would enter from
there and the vacuum |0〉 was than measured. Since we work in the Source-DI scenario,
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Figure 3.3: Schematic representation of the experimental setup. The setup consists of a 1550nm
laser used as a LO, measured in real time. The heterodyne detection is performed by a 90◦ optical
hybrid and a pair of balanced InGaS detectors. The VOA is used during the calibration phase. Only
commercial off-the-shelf devices were used.

from the point of view of security, the quantum state measured can be anything, since is
considered to be fully controlled by Eve.

After the heterodyne detection, a 10-bit Oscilloscope has been used as analog-to-digital
converter (ADC) to digitize the two analog signals, each one proportional to one of the
quadrature (q, p).

These signals directly sample the Q-function in the phase space, as shown in Fig. 3.9.
However, from the oscilloscopes we record only voltages. In order to map them into

phase space (or shot-noise) units we need to calibrate the detectors and estimate the content
of electronic noise. This calibration is done sweeping the power of the LO by means of a
computer-controlled Variable Optical Attenuator (VOA). Then, the resolution of the ADC
can be directly converted to the equivalent resolution in the phase space, thanks to the
calibration function and a bound on the min entropy Hmin(X |E ) is computed.

The raw data are then digitally filtered, taking only a 1.25 GHz window in the central part
of the spectrum obtained by the detectors. In such a way the classical noise that is coupled
with the detector is filtered, increasing the Signal to Noise ratio (SNR). Then, the data are
downsampled at 1.25 GSample/s, matching the bandwidth of the signal and removing any
correlation introduced by the oversampling. Finally, a random Toeplitz matrix implementing
2-universal hash function calibrated on Hmin(X |E ) is constructed and used to extract the
secure numbers.

3.2.2 Components

The local oscillator’s laser

The laser employed for the strong Local Oscillator is a Thorlabs SFL1550P packed in a
Butterfly 14-pin Packaging. This is an External Cavity Laser (ECL) centered at 1550nm
featuring a narrow linewidth, typically smaller than 50kHz. The laser internally provides
an optical isolator to prevent damages in case of back reflections. In order to ensure a
stable power output and single mode operation, the laser is controlled both in current
and in temperature by a Thorlabs ITC4001 Benchtop Laser Diode/TEC Controller. In fact,
the SFL1550P is not unconditionally single-frequency for all the range of currents and
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temperatures, but a side mode suppression ratio (SMSR) ≥40dB is guaranteed only for
specific combinations, reported in the datasheet.

The laser was operated at a fixed current of 298 mA and the while the temperature was
kept fixed to 24◦ by a PID controller, integrated into the ITC4001’s TEC.

In this case, the parameters of the PID had a substantial impact on the SMSR and had to
be finely tuned every time the environmental conditions changed.

The motorized Variable Optical Attenuator

During the calibration procedure is necessary to perform a sweep of the LO power from
0 mW to its maximum power. Experimentally this has been done introducing a Variable
Optical Attenuator (VOA) just after the laser. An external attenuation is preferred respect to
sweeping the current applied to the laser diode since it doesn’t modify any optical property
of the laser beam, spectra and mode included.

The VOA employed is a dual band Thorlabs VOA50-APC, working in the windows around
1310 and 1550 nm, with an adjustable attenuation range between 1− 50dB. The attenuator
collimates the fiber guided beam through a tiltable window before coupling the beam back
in the fiber. The attenuation is adjusted with a mechanical screw that tilts a window, varying
the coupling efficiency.

After the attenuator, a 90:10 single mode optical coupler (Thorlabs TW1550R2A2) sends
10% of the optical power to an optical powermeter Thorlabs PMD100D, connected to the
computer via USB.

In order to fully automatize the QRNG acquisition, we modified the VOA such that it
was possible to control it with a computer. In particular, a stepper motor 28BYJ-48 was
mechanically connected to the adjustment screw. The stepper motor is controlled by a
control board based on the ULN2003A Darlington NPN array, driving it in a half-step mode
with 4076 steps per rotation. The control board is then connected to an Arduino Uno which
implements the serial communication with the computer and drives the ULN2003A through
the DIO pins.

Finally, a python software on the computer reads the current power of the power meter
and controls the stepper motor in order to reach the desired power. The size of the steps is
adaptive and is based on an experimentally fitted model for the attenuator.

The 90◦ Optical Hybrid

The single polarization 90◦ Optical Hybrid is a Kylia COH-24, typically used as for coherent
receivers in classical optical communications. The optical diagram is reported in Fig. 3.4

The hybrid is implemented using micro-optical components in order to ensure high
mechanical and temperature stability. The device features a low insertion loss ≤1.5dB in
addition to the theoretical 6dB.

The balanced detectors

The two pairs of optical signals coming from the 90◦ Optical Hybrid are revealed by a couple
of Thorlabs PDB480C-AC balanced detectors. These detectors are composed of two InGaS
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Figure 3.4: Optical diagram of the Kylia COH24. Adapted from the datasheet [109]

PIN photodiodes, reversely biased and connected in series as shown in Figure 3.5 With this
configuration is possible to access to the single detector photocurrent via the Monitor port
and to the differential signal via the Rf port.

Figure 3.5: Electrical schematics of the balanced detectors

The PIN detectors feature a Responsivity of≈0.95AW−1 at 1550 nm and a 3dB bandwidth
from 300kHz to 1.6GHz.

Due to the high gain and high speed of the transimpedance amplifier in the RF path, a
DC blocker is needed, and the RF signal is only AC-coupled.

The Common Mode Rejection Ratio (CMRR), which quantifies the ability of the detector
to suppress signal that appear simultaneously and in-phase on both inputs, is higher than
35dB for the entire frequency range. However, in order to obtain such high CMRR levels,
manual fine-tuning of the optical power reaching the detectors is fundamental. This was
done before each round of the protocol, using the Monitor ports as reference.

Finally, in order to improve the stability of the system over time, an external temperature
stabilization system has been realized in order to keep the temperature of the detector fixed.
A Peltier cell has been connected to the enclosure of the detector, together with two NTC
10kΩ thermistor. The seconds were directly connected to two ADC of an Arduino Uno, while
the Peltier was connected to an H-Bridge Arduino Shield (Infineon BTN8982TA) originally
intended as a motor control shield. Finally, a standalone PID controller was implemented on
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the Arduino to control the Peltier current based on the temperature read by the thermistors.
The typical stability of 0.1◦C was sufficient for our need.

The Oscilloscope

The Oscilloscope employed was a Lecroy HDO9004 featuring 10-bits of vertical resolution,
4 GHz of analog bandwidth and up to 40 GSps of sampling rate.

The oscilloscope was connected to the computer via Ethernet and controlled via a python
script using the VISA protocol. The raw data from the oscilloscope was streamed and stored
on the computer using a binary encoding to save bandwidth and reduce latency.

3.2.3 Detector’s calibration

In the SDI framework, we assume a trusted and characterized measurement device. In order
to enforce that, before every run of the experiment we perform a calibration of the detection
stage. This procedure is necessary for the evaluation of security, because it links the voltage
output of the detectors to the relative quantities in the phase space, enabling us to calculate
δq,δp.

Figure 3.6: The graph shows the linear dependence of the signal quadrature σ2
V as a function of the

LO power.

Theoretically, if no electronic noise is present in the system, the two quantities are related
by the relation:

σ2
q=

σ2
V

kPLO
(3.27)
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where k is a constant to be determined. In the above equation σ2
q is the variance in shot-noise

units, σ2
V is the variance in physical units and PLO the power of the local oscillator.

The constant k is related to the properties of the detectors and the noise of the electronic
system and can be expressed as:

k=R2G2Bhf (3.28)

where R is the responsivity of the detectors in AW−1, G is the gain of the transimpedance
amplifier in V A−1, B is the electronic bandwidth in Hz, h is the Plank constant and f the
optical frequency. However, instead of relying on a model, it is possible to measure directly k
through a calibration procedure: the vacuum is injected in the signal port of the Heterodyne
while the power of the LO, PLO, is raised from 0 mW to the working power. During this
process, we record the variance of the electronic signal for each quadrature σ2

Vq
and σ2

Vp
.

From a linear fit we have:
σ2

Vq,p
=mq,pPLO + cq,p (3.29)

In an ideal condition (no electronic noise) the constants cq,p should be 0, however in
any real experiment their value never vanish. In this convention, the theoretical quadrature
variances in shot-noise units for the vacuum are given σ2

q,p=
1
2 , the constant k is obtained as

kq,p=2mq,p

Since we are not including the cq,p in the conversion factor kq,p, we are considering the
most conservative scenario, in which all classical noise is not trusted.

Indeed, for a vacuum input state |0〉 and a given value of PLO, the measured variances in
shot-noise units are then given by

σ2
q,p=

σ2
V

kPLO
=

mq,pPLO + cq,p

2mq,pPLO
=

1
2
+

cq,p

2mq,pPLO
(3.30)

which are always larger than 1
2 for non-vanishing cq,p. In this way the electronic noise

(related to cq,p) is regarded as noise on the source: it leads to an increase of the variances
σq,p, thus lowering the min-entropy.

Figure 3.9 clearly shows this effect: the reconstructed Q function is larger than the one
expected for the vacuum because of this noise.

The calibration is performed automatically by the python software that controls the
QRNG: by varying the Variable Optical Attenuator (VOA), the power of the LO is changed
from 0.01mW to 4.05mW, when measured with the monitor photodiode. For each power,
the signal of the balanced detector is recorded, and the variance σ2

V is estimated. As we can
see in Figure 3.6 the relation is linear for all the tested powers (i.e. we never reached the
saturation of the detector’s amplifiers).

From the fit, m1=(2.783±0.005)·10−2V2/W and q1=(1.526±0.005)·10−5V2 for the slope
and intercept of the first detector and m2=(2.748±0.004)·10−2V2/W and q2=(1.419±0.004)·
10−5V2 for the second one. The errors are propagated in the estimation of the Hmin(X |E)
and the most conservative value in the 1 standard deviation confidence interval is used as
a lower bound. Using a more conservative 3 standard deviation confidence interval, the
bound on the min-entropy is reduced from 13.949 to 13.930 bits, for an equivalent secure
generation rate of 17.41 Gbps.
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In the experiment this calibration procedure is performed every time we adjust the
polarization controller in the LO path. The entire setup is placed in a thermally isolated
container in order to improve the stability of the system and the calibration procedure is
typically needed only once a day.

3.2.4 Noise Filtering and autocorrelation test

Figure 3.7: Spectrum obtained from the detectors with or without the LO active. In green is high-
lighted the portion kept after the digital filtering and used for the generation. The peaks present
after the 3dB point of the detectors are introduced by the oscilloscope at harmonics of the sampling
frequency and are not present if the spectrum is obtained with an analog spectrum analyzer (HP
8561B).

To further reduce the classical noise from the detectors (at the expense of a reduced
generation rate) we perform a filtering of the signal.

Figure 3.7 shows the power spectral density of the signal produced by the detectors when
the LO is turned on and when the LO is off. Although, the response seems uniform along the
entire bandwidth of the detectors (1.6GHz), the initial part of the spectrum (DC − 1MHz) is
affected by technical noise. In order to filter out this noise and enhance the signal-to-noise
ratio, we have considered for the random generation only a window large 1.25GHz centered
around 875MHz. With this selection, the gap is never lower than 9.6dB.

The filtering has been implemented digitally. First, the raw signal, oversampled at
10Gsps, is multiplied with a sinusoidal signal (the carrier) at 875MHz. Then the mixed
signal is Fourier Transformed using the FFT algorithm, implemented in the FFTW library.
After the mixing, the symmetric Fourier transform of the real signal is shifted by 875MHz
respect to the 0, making it not anymore symmetrical. Now we perform a low-pass filtering
with a 3-dB cutting off frequency of 625MHz. Different types of filters were employed
(Butterworth, Chebyshev Bessel); however we found out that a Brick-wall filter was giving
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Figure 3.8: Panel a) shows the autocorrelation measured for a sample of 5 · 107 raw numbers before
the extraction while panel b) shows the autocorrelation of the extracted numbers. The spikes present
in the first lags before the extraction are due to the noise introduced by the sampling equipment.
The extraction procedure completely removes the correlations and is clearly visible a flat response.

the best results. After the low pass filter, the output is inversely transformed using the
inverse FFT.

However, employing a Brick-wall filter in the frequency domain inevitably induces cor-
relation in the time-domain of the signal: indeed we observe a “sinc” dependence in the
autocorrelation, as expected from the Wiener-Khinchin[110, 111] theorem. The correlation
is removed by downsampling the signal in such a way to match the first zero of the auto-
correlation function. Figure 3.8 shows the residual autocorrelation after the downsampling,
before and after the randomness extraction for a run of 5 · 107 samples. The results, even
before the extraction, are good, with values always below 7.5 · 10−3 and typically below
1 · 10−4, except for the first lags. The value of the first lag is due to noise introduced by the
oscilloscope at harmonics of its sampling rate frequency.

In Figure 3.7, these distortions are clearly visible at high frequencies, where there is no
contribution from the signal. However, after the extractor, all the classical noise is eliminated
and the autocorrelation is completely flat, also for the initial lags.

3.2.5 Sampling and randomness extraction

The analog electric signals coming from the detector are digitized by the HDO9004 oscillo-
scope, in order to be further post-processed. The oscilloscope doesn’t work in real-time but
in burst mode, meaning that the signals are sampled at 10 GSps until the entire memory is
completely filled. Then, the data are streamed to the computer via an Ethernet connection.
Then, the filters discussed in Section 3.2.4 are applied off-line. Finally, always offline, the
randomness extraction is applied to the filtered data. We implemented the fast computable
two-universal hash function introduced in [93]; then we used it to extract the final numbers
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from the filtered samples. We calibrated the extractor with the value obtained bounding
Hmin(X |E ).

The secure parameter εhash was set to 10−12 for matrices of the size 4096× 2844. The
size of the matrix was optimized in order to get a fast extraction without filling the RAM of
the PC.

We extracted, using a PC, ≈5.18 · 1010 random numbers from an initial set of 7.5 · 1010

raw numbers.
In this protocol, the conditional quantum min-entropy Hmin(X |E ), which characterizes

the one-shot private randomness, is not estimated from a finite sample of data but is bounded
a priori using the information from the calibration and the POVM structure. For this reason,
the estimation is not affected by finite-size effects, which can have a big impact on real-time
applications.

3.3 Results

Here we present the results obtained with the setup and protocol described in the previous
sections.

Before the actual run of the QRNG, we perform the calibration procedure described in Sec
3.2.3. Thanks to the calibration function it was possible to obtain the following resolution
parameters in phase space units: σ2

q=0.55135±0.00001 and σ2
p=0.56732±0.00001. These

parameters represent the discretization of the POVM in the phase space induced by the
hardware, without taking into account the electronic noise.

Then, we acquired 6·1010 measurements of both the q and p quadrature, at an equivalent
sampling speed of 10 GSps.

After filtering and conversion in phase space units, it is possible to plot the distribution
of the data, that directly sample the Husimi Q-function. As can be seen from Fig. 3.9, the
measured Q-function is slightly larger than the one expected for a pure vacuum state, where
both variances are expected to be equal to 1/2.

The increase of the variances is due to classical noise of the detectors: in this approach,
such noise is regarded as a “spreading” of the Q-function. Then, the effect of the electronic
noise in reducing the generation rate is already included in the analysis for the quantum
min-entropy.

The classical min-entropy Hmin(Xδ) corresponds to the larger probability of output and
it is given by

Hmin(Xδ)=14.100 (3.31)

However, the quantum min-entropy can be lower bounded by Eq. (3.16). With the quadra-
ture resolutions used for the experiment, we obtain

Hmin(Xδ|E )≥− log2

�

π

σQσP

�

≥13.949 (3.32)

This minimal reduction of the generation rate, from 14.10 to 13.949 bits per sample,
drastically increases the security guaranteed by the entire protocol.
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Figure 3.9: Experimental state tomography. The plot shows the Husimi function for the vacuum
(meshed curve) and the measured state (colored histogram). The projections refer to the experimen-
tal data. The measured variance is slightly larger than the one expected for the vacuum due to the
electronic noise that widens the distribution.

Finally, since after the downsampling the effective sampling rate Sr of the system
is 1.25GSps, the final secure generation rate that can be obtained from this system is
Sr ·Hmin(Xδ|E )=17.42 Gbit/s.

The generation rate can be further improved using an ADC with a resolution larger than
10 bits. We have simulated the performance of our generator for different resolutions of
the ADC, and the results are presented in Fig. 3.10. The min-entropy scales linearly as a
function of the number of bits in the ADC and this could be an useful resource to further
increase the total generation rate.

It is important to stress that these rates are not calculated in the asymptotic regime, i.e.,
in the limit of infinite repetitions of the protocol, but are valid for single-shot measurements.
In fact, the conditional min-entropy Hmin(Xδ|E ) is not estimated from the data, but it’s
bounded considering the structure of the POVM and the optimal strategy for the attacker:
since no parameter estimations are involved (except the ones from the calibration), the rates
are not affected by finite-size statistics, unike all previous Semi-DI protocols.

Finally, in order to check for problems in the implementation, we performed some sta-
tistical test on the generated numbers. We tested them with the NIST [38] and “dieharder”
suite [39]: in both cases all the tests were passed, as we can see in Table B.1,B.2. Passing
these tests doesn’t certify the randomness, but only shows that some patterns are not present
in the analyzed data. However, since the QRNG is supposed to pass all of them, is a way to
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Figure 3.10: The generation rate per measurement scales linearly as a function of the number of bits
in the ADC’s resolution

double-check that the setup is working as expected.

3.4 Ongoing and future work

The proof of principle demonstration, described in the previous section, showed that high
rates and high standards of security can be obtained with this protocol. However, this
experiment aimed to show only the feasibility of the protocol, and some key steps are
needed for a practical implementation that is able to work in real scenarios.

3.4.1 Real-time operation

The first one is the need for dedicated sampling hardware. In this demonstration, the analog
RF signal coming from the balanced photodiodes is sampled by an oscilloscope with a high
sampling rate (10Gsps) but small buffer memory (128 Mpts). This implies that between
each acquisition of max 128 Mpts, we need to wait for the oscilloscope to write into the slow
disk memory before being ready to acquire again. Moreover, an oscilloscope is an expensive
and bulky instrument that adds complexity to the implementation. Hence, a dedicated ADC
capable of directly sampling the RF signal at high bandwidth (at least 1.25GHz) is needed,
with the capacity to stream the data to another processing device. This processing device
is related to the second problem: the randomness extraction. The raw data at the output
of the balanced photodiode is biased, since it is Gaussian distributed, and can, in theory,
be partially correlated with the attacker. Hence, the randomness extraction routine cannot
be avoided. In this demonstration, the randomness extraction was done via software on a
PC, after the acquisition. However, usually the random numbers are needed in real-time by
the application and this implementation is not suitable in this scenario. A device capable of
processing the raw data in real-time is needed, capable of supporting the high data rate.

Aware of these limitations, we are currently developing a solution based on a fast ADC



3.4
A Source-Device-Independent Ultrafast Heterodyne QRNG
Ongoing and future work 55

Figure 3.11: Photo of the actual setup. On the top left we can see the controller of the laser with the
laser source used for the LO. In the center is possible to see, starting from the bottom, the 90 degree
hybrid in its metallic enclosure, the variable optical attenuator, the polarization controller, the fiber
beamsplitter and the power meter used to monitor the power of the LO. Finally, on the top right are
visible the two balanced detectors.
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connected to an FPGA. In particular, a fast ADC (such as the AD9680 by Analog Devices)
is able to sample the signal up to 1250 MSps with 14-bits of resolution and transfer them
continuously to the FPGA via the JESD204B protocol. In this way, the bottleneck caused by
the memory is avoided. On the FPGA, the receiver data is rapidly parallelized and processed
in real-time in hardware, exploiting the huge bandwidth and processing power offered by
the FPGA. Finally the processed number can be streamed to the user’s interface using multi-
gigabit transceiver connected to the FPGA.

Similar solutions already showed the possibility to achieve up to 8 GBps of random
numbers extracted in real-time [99].

3.4.2 Photonic integrated QRNG

Another significant limitation is given by the size of the setup. This is an issue for satellite
applications, but it’s relevant also for practical applications, where RNG is usually required
to be portable. Moreover, in order to incentivize a wide adoption of such QRNG, the cost of
the setup should be lowered to the minimum possible.

A possible solution to these problems is given by Integrated Optics, which offers the
possibility to integrate many optical components in small-scale devices with costs that are
massively reduced in case of large batch productions. So, in collaboration with ASI and
Scuola Sant’Anna di Pisa, we have realized prototypes in Silicon Photonics of a complete
QRNG based on heterodyne detection. All the components, except for the laser, are inte-
grated in the chip an offer high bandwidth and stability in a centimeter-scale device.

At the time of writing the devices have been fabricated, and the first prototypes are being
characterized.

3.5 Conclusions

In this chapter, we have described a new secure and practical Source-DI QRNG based on
heterodyne detection. The newly developed protocol exploits the properties of the POVM
implemented by the heterodyne measurement in order to obtain a direct lower bound to
the conditional min-entropy, and hence on its security. This bound, also valid in the non-
asymptotic regime, enables the user to erase all the side information related to an imperfect
or malicious source of quantum states. Compared to previous Source-DI QRNGs [28, 78,
79] this security is obtained without affecting the generation rate: in the previous protocols,
part of the generated numbers were consumed to estimate and update the bound to the
conditional min-entropy. In the protocol introduced here, the bound is constant, since it
is determined by the resolution of the trusted measurement apparatus only. Hence, all
the secure numbers are available to the user. Such simplification has many advantages
for any practical implementation of the protocol. In particular, our protocol does not rely
on external randomness to work, making it a standalone random number generator, while
previous Semi-DI QRNG were based on randomness expansion protocols, that require either
an initial seed or an external source of randomness to work.
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Our approach allows us to merge the speed of heterodyne measurements and the security
of semi-device-independent protocols. Indeed, we realized the protocol with off-the-shelf
components achieving with an off-line post-processing, an equivalent rate of 17.42 Gbit/s.



CHAPTER 4

A numerical approach to unstructured QRNG

4.1 A Numerical Unstructured approach to entropy estimation

We have seen that the estimation of conditional quantum entropy, which is the critical
parameter in a QKD or QRNG security proof, is an hard problem.

Recently, Coles et al. [112] proposed a novel numerical tool for the calculation of the
secure rates of any QKD protocol. This is motivated by the fact that secure rates are known
only for a small class of QKD protocols: in general is very hard to provide (tight) rates
for protocols without symmetries or that take into account imperfections of the practical
implementation. Their approach instead, directly attacks the general entropic formulation
of the secret rate, performing a numerical optimization over all the adversary strategies
compatible with the data measured by Alice and Bob. Moreover, by exploiting the duality of
the convex formulation of the problem they can greatly reduce the computational cost of this
optimization. Finally, the dual problem involves a maximization instead of a minimization,
and so the output will be a lower bound instead of an upper bound, which is returned by
the primal. Therefore, if the solver doesn’t reach the global optimum it will underestimate
the rate, without threat to the security.

We sketch now the core idea of their approach, in order to provide a notation for the
discussion about the QRNG. Further details can be found in the original article.

The scenario considered is the usual entanglement-based QKD, with two users; however
the method is also valid for prepare and measure protocols, applying the source replacement
trick.
In the case of one-way direct reconciliation the secure rate is given by the Devetak–Winter
formula [113]:

Ksec=H(ZA|E)−H(ZA|ZB) (4.1)

where ZA,B are the POVM used by Alice and Bob for the generation of the key and H(X |Y ) :=
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H(ρX Y )−H(ρY ) is the conditional von Neumann entropy with

ρZAZB
=
∑

j,k

Tr
�

(Z j
A⊗ Zk

B)ρAB

�

| j〉〈 j| ⊗ |k〉〈k| , (4.2)

ρZAE=
∑

j

| j〉〈 j| ⊗ TrA[(Z
j
A⊗ 1)ρAE]. (4.3)

where the state ρAB shared by Alice and Bob is unknown and can, in general, be corre-
lated with the eavesdropper whose system E purifies ρAB. Since they don’t know ρAB and
how much side-information has been leaked to Eve, they perform a set of local measure-
ments {Γi} an they estimate the expectation values γi=Tr[ΓiρAB]. With these information
they can constrain the form of ρAB, which must be contained in the set

C ={ρAB |Tr[ΓiρAB]=γi} (4.4)

to reproduce the experimental observation. Since, in general, they don’t perform a full
quantum tomography the set C includes many density operators, and they pick the worst
case scenario, given by:

Ksec= min
ρAB∈C

(H(ZA|E))−H(ZA|ZB) (4.5)

where H(ZA|ZB) is pulled out from the optimization since it can be estimated from the
experimental data.
However this optimization, which they refer as the primal problem, can be computationally
very expensive, since the number of parameter grows as d2

Ad2
B, where di is the dimension of

the Hilbert space for the system i.
In contrast, the dual form of the problem needs to optimize over only dC parameters,

where dC is the number of experimental constraints γi. Strong duality assures that the opti-
mal objective is the same for both the primal and the dual.

In order to obtain the dual formulation we first consider the system E in Eq. 4.5 to be
be a purifying system of ρAB: in this case the state pure state ρABE is the one that maximizes
Eve’s information. Then, using the result for tripartite pure states that links the conditional
entropy to the relative entropy [114] we ca rewrite Eq. 4.5 as:

Ksec= min
ρAB∈C



D

 

ρAB











∑

j

Z j
AρAB Z j

A

!



−H(ZA|ZB) (4.6)

where D (x‖y)=Tr
�

x log2(x)
�

− Tr
�

x log2(y)
�

is the relative entropy.
Then is transformed to the dual:

Ksec=max
~λ

min
ρAB∈P



D

 

ρAB











∑

j

Z j
AρAB Z j

A

!

+
∑

i

λi(Tr[ρABΓi]− γi)



−H(ZA|ZB) (4.7)

where now the minimization is over all the semidefinite positive operators inHdAdb
, and the

maximization is unconstrained over the multipliers λi.
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This can be further simplified using the results of [115], where they solve analytically the
minimization problem leading to:

Ksec≥
θ

ln 2
−H(ZA|ZB) (4.8)

θ=max
~λ

 

−











∑

j

Z j
Ae(1−

~λ·~Γ )Z j
A











−~λ · ~γ

!

(4.9)

(4.10)

where ‖·‖ is the supremum norm.
Another advantage respect to the direct solution of the primal problem, is that the dual
solution always yields a lower bound instead of an upper bound. So, even if the solver
doesn’t find the global optimum the returned secure rate is physically possible, although not
optimal. For the primal instead, only the global minimum gives a physically realizable rate,
while in all the other cases it’s always overestimated. For the same reason, the dual is more
robust respect the finite-precision of the solvers that can be implemented in a PC.

However, this mathematical tool is helpful only if one is interested in the conditional von
Neumann entropy. In the QRNG setting instead one is interested in the quantum conditional
min-entropy, that characterizes the randomness in the single shot scenario. In the next
section a new tool for the estimation of this quantity in a numerical and unstructured way
will be presented.

4.2 An alternate formulation of min-entropy in the Source-DI

The usual setting considered in QKD and QRNG is the one in which the user (Alice) of the
protocol measures a quantum state and is interested to evaluate the entropy of the measured
( and so classical ) random variable given that it can be correlated with a quantum system,
that can be held by an adversary (Eve). In this scenario the state that we have to consider
for the calculation of the Hmin(ZA|E)is a classical-quantum state:

ρX E=
∑

x

px |x〉 ⊗ ρ̂E
x (4.11)

where |x〉 are the possible outcomes of Alice POVM Πx and px are the probabilities of
the measurements, while ρE

x are the projected states on the adversary system after Alice’s
measurement. In particular we can restrict to the case where the state shared by Alice and
Eve before Alice measurement is pure |ψAE〉, since this maximizes Eve’s side information. In
this context the classical-quantum state in Eq. 4.11, is just the post-measurement state:

ρX E=
∑

x

|x〉 〈x |A⊗ (Π̂x ⊗ 1̂E) |ψAE〉 〈ψAE | (Π̂x ⊗ 1̂E) (4.12)

Then in this case the Hmin(ZA|E)can be written in terms of the guessing probability
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pguess(X |E) [89] :
Hmin(X |E)=− log2(pguess(X |E))

pguess(X |E)=max
ÊE

x

d
∑

x

PX (x)Tr
�

ÊE
x ρ̂

E
x

� (4.13)

In this formulation the idea is that if an adversary has some side-information E encoded in
the quantum state ρ̂E

x for each x outcome of A, the maximum probability for him to guess x
is obtained by maximizing over all the possible measurements he can perform ÊE

x , weighted
by the probability of the x outcome on Alice’s side. This strategy will find a set of ÊE

x which
will be the optimal measurements for Eve.

The calculation of this quantity can be quite hard in practice, because the set of measure-
ments over which we have to optimize is infinite.

As seen in Section 2.3, if ρE
x is known there is an explicit SDP formulation for the problem

of Eq 4.13, which can be efficiently solved.
However, this is no longer an SDP if ρ̂E

x is unknown, since one would need to optimize
over both ρ̂E

x and ~EE
x .

Now we want to shot that the same optimization can be cast as an equivalent SDP even
if ρ̂E

x is unknown, of the form:

pguess(ZA|E)= max
{δx∈C̃ }

d
∑

x

TrAB

��

Π̂A
x ⊗ 1̂

B
�

δx

�

(4.14)

which can be written as:

maximize
δx

d
∑

x

TrAB

��

Π̂A
x ⊗ 1̂

B
�

δx

�

subject to δx≥0∀x ,

Tr

�

∑

x

δx

�

=1,

Tr

�

�

Γ A
i ⊗ Γ

B
j

�∑

x

δx

�

=γi j

(4.15)

where δx can be thought as the sub-normailzed states that Eve can send to Alice and Bob,
Π̂A

x are the POVM used by Alice to generate the key and Γ A
i , Γ B

j are POVM that Alice and Bob
use to check the incoming states while γi j are the experimental expectation values of those
measurements.

Before proving this equivalence let’s stop and gain a bit of intuition on why the problem
can be written as in Eq 4.14.

The intuition comes from the interpretation of the min-entropy in the source-device
independent scenario for QRNG presented in [1]. In that case the adversary Eve had full
knowledge of the quantum state in input and she could also choose which one to send to
Alice. Alice on her could measure using Π̂A

X giving x with probability PX (x), and we are
interested, again in Eve’s guessing probability. In this case is natural to define it as:

pguess= max
{δx∈C̃ }

d
∑

x

TrAB

��

Π̂A
x ⊗ 1̂

B
�

δx

�

(4.16)
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where τA
x are the states that Eve sends to Alice with probability px and Π̂A

x are the measure-
ment performed by Alice.

In this case is clear the physical meaning of this expression, since the best guessing prob-
ability for Eve is given by the state τA

x with the maximum overlap with Alice’s measurement
Π̂A

x , weighted by the occurrence of the result x .
Here we formally prove the equivalence for the two expressions 4.13 and 4.16.

Proposition 2. Expression 4.13 and 4.16 are equivalent

Proof. We start from the definition in 4.13

pguess= max
ρABE∈C

max
ÊE

x

d
∑

x

PX (x)Tr
�

ÊE
x ρ̂

E
x

�

(4.17)

where

ρX E=
∑

x

PX (x) |x〉 〈x |A⊗ρE
X (4.18)

ρE
X =

TrAB

�

(Π̂A
x ⊗ 1̂

B ⊗ 1̂E)ρABE

�

PX (x)
(4.19)

PX (x)=TrABE

�

(Π̂A
x ⊗ 1̂

B ⊗ 1̂E)ρABE

�

(4.20)

that can be rewritten as:

pguess= max
ρABE∈C

max
ÊE

x

d
∑

x

PX (x)TrBE

��

1̂B ⊗ ÊE
x

�

TrA

�

(Π̂A
x ⊗ 1̂

B ⊗ 1̂E)ρABE

�

PX (x)

�

(4.21)

pguess= max
ρABE∈C

max
ÊE

x

d
∑

x

TrABE

�

(Π̂A
x ⊗ 1̂

B ⊗ ÊE
x )ρABE

�

(4.22)

The idea is that for any POVM element of Alice, Eve should measure ρABE in such a way to
maximize her information gain. From the point of view of Alice, she will receive some states
τx from Eve. So

pguess= max
ρABE∈C

max
{ÊE

x }

d
∑

x

TrAB







�

Π̂A
x ⊗ 1̂

B
�

TrE

�

(1̂A⊗ 1̂B ⊗ ÊE
x )ρABE

�

︸ ︷︷ ︸

p̃xτx=δx






(4.23)

pguess= max
{δx∈C̃ }

d
∑

x

TrAB

��

Π̂A
x ⊗ 1̂

B
�

δx

�

(4.24)

(4.25)

where δx are sub-normalized states ad the optimization is constrained over the set C̃ that is
compatible with the experimental observations.
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This optimization is equivalent to the SDP in Eq. 4.15. In the QRNG scenario that
expression can be further simplified since Bob’s system HB is trivial:

maximize
δx

d
∑

x

TrA

�

Π̂A
xδx

�

subject to δx≥0∀x ,

Tr

�

∑

x

δx

�

=1,

Tr

�

Γ A
i

∑

x

δx

�

=γi

(4.26)

This SDP however doesn’t include finite size effects in the parameter estimation. In
fact here we assume to have an infinite statistic and to measure γi j with infinite precision.
Unfortunately this is never possible experimentally, since the acquisitions can only run for a
finite amount of time. In this case the experimental expectation values γi j will be inevitably
be affected by a statistical uncertainty and their estimate will be associated to a confidence
interval [γi j − ζ(n,ε),γi j + ζ(n,ε)] (we are assuming symmetric intervals but the works also
for asymmetric intervals.) Since we are worried about the security the optimization over
which the states ρABE are constrained needs to be performed for all the values in these
confidence intervals, picking the most conservative one.

Luckily the finite size corrections can be easily included in the optimization relaxing the
last constraint:

maximize
δx

d
∑

x

TrAB

��

Π̂A
x ⊗ 1̂

B
�

δx

�

subject to δx≥0∀x ,

Tr

�

∑

x

δx

�

=1,

|Tr

�

�

Γ A
i ⊗ Γ

B
j

�∑

x

δx

�

− γi j|≤ζ(n)

(4.27)

where ζ(n,ε) is usually given by a tail inequality such as the Chernoff-Hoeffding [116] or
the Azuma [117].

4.2.1 Duality

The SDP proposed can efficiently estimate the guessing probability from the data statistics
providing an optimal key rate. In this formulation it represents a maximization problem on
the guessing probability, that is a minimization on the min-entropy. We will call this problem
the primal problem. Similarly to the primal problem presented in Section 4.1, if the optimal
solution is not reached ( due to finite precision of the machine, or other problems) the
solution would underestimate the guessing probability and so, overestimate the secure rate.
This is clearly not acceptable for security applications. Moreover, every time new γi j are
calculated a new SDP has to be run, reducing the speed in a real-time operation. Luckily all
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these problems can be solved using the dual formulation of the SDP. This dual optimization
problem provides an upper bound on the solution of the primal. In this way the guessing
probability is never underestimated, giving always conservative bounds on key secret key
rate. Additionally, the dual objective function is a linear function of the γi j, making it
possible to compute a (sub-optimal) bound when new γi j are given, without having to re
run the SDP. We will now derive the dual formulation of the general form for the SDP given
by Eq 4.27, since the other special cases can be retrieved in the limits ζ→0.

Proposition 3. The dual SDP of 4.27 is given by

minimize
b, ci j , ei j , fi j

− b+
∑

i j

γi j

�

ei j − fi j

�

+ ζ(n)
�

ei j + fi j

�

subject to

 

�

Π̂A
x ⊗ 1

B
�

+ b1+
∑

i j

�

fi j − ei j

�

�

Γ̂ A
i ⊗ Γ̂

B
j

�

!

≤0∀x ,

ei j≥0∀i, j,

fi j≥0∀i, j

(4.28)

The objective function is indeed linear in the experimental data γi j

Proof. Our primal SDP is given by:

maximize
δx

d
∑

x

TrAB

��

Π̂A
x ⊗ 1̂

B
�

δx

�

subject to δx≥0∀x ,

Tr

�

∑

x

δx

�

=1,

|Tr

�

�

Γ A
i ⊗ Γ

B
j

�∑

x

δx

�

− γi j|≤ζ(n)

(4.29)

but we rewrite the last constraint using slack variable in order to have only equality con-
straint except for the positive semidefinite condition.

maximize
δx

d
∑

x

TrAB

��

Π̂A
x ⊗ 1̂

B
�

δx

�

subject to δx≥0∀x ,

Tr

�

∑

x

δx

�

=1,

Tr

�

�

Γ A
i ⊗ Γ

B
j

�∑

x

δx

�

− γi j + si j=ζ(n),

− Tr

�

�

Γ A
i ⊗ Γ

B
j

�∑

x

δx

�

+ γi j + t i j=ζ(n),

si j≥0,

t i j≥0

(4.30)
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We first write the associated Lagrangian:

L =Tr

�

∑

x

�

Π̂A
x ⊗ 1

B
�

δx

�

+
∑

x

Tr [GxδX ] + b
�

Tr
�∑

δx

�

− 1
�

+
∑

i j

ci j

�

Tr

�

�

Γ̂ A
i ⊗ Γ̂

B
j

�∑

x

δx

�

− γi j + si j − ζ(n)
�

+
∑

i j

di j

�

−Tr

�

�

Γ̂ A
i ⊗ Γ̂

B
j

�∑

x

δx

�

+ γi j + t i j − ζ(n)
�

+
∑

i j

ei jsi j +
∑

i j

fi j t i j

(4.31)

where Gx , b, ci j, di j, ei j and fi j are the Lagrange multipliers. Then we group all the operators
that multiply δx

L =
∑

x



Tr



δx
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Π̂A
x ⊗ 1

B
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B
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�

−
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B
j

�
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�

ci j

�

−γi j + si j − ζ(n)
�

+ di j

�

γi j + t i j − ζ(n)
�

+ si jei j + fi j t i j

�

(4.32)

L =
∑
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+ di j
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∆

(4.33)

L =
∑

x

Tr [δx Kx] +∆ (4.34)

Then we find the conditions for the optimum:

∂L
∂ δx

=0→Kx=0 (4.35)

∂L
∂ si j

=0→
�

ci j + ei j

�

=0 (4.36)

∂L
∂ t i j

=0→
�

di j + fi j

�

=0 (4.37)
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So at the optimal point the following conditions must be met:

ci j=−ei j (4.38)

di j=− fi j (4.39)

∆∗=−b+
∑

i j

γi j

�

ei j − fi j

�

+ ζ(n)
�

ei j + fi j

�

(4.40)

K∗x=

 

�

Π̂A
x ⊗ 1

B
�

+ b1+
∑

i j

�

fi j − ei j

�

�

Γ̂ A
i ⊗ Γ̂

B
j

�

!

≤0 (4.41)

In the constraint on Kx we dropped Gx since they always need to be semidefinite positive
and replaced the equality with the inequality.

Finally the problem can be written in its dual form:

minimize
b, ei j , fi j

∆∗

subject to K∗x≤0∀x ,

ei j≥0∀i, j,

fi j≥0∀i, j

(4.42)

or explicitly:

minimize
b, ei j , fi j

− b+
∑

i j

γi j

�

ei j − fi j

�

+ ζ(n)
�

ei j + fi j

�

subject to
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Π̂A
x ⊗ 1

B
�

+ b1+
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i j
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fi j − ei j

�

�

Γ̂ A
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B
j

�

!

≤0∀x ,

ei j≥0∀i, j,

fi j≥0∀i, j

(4.43)

The asymptotic dual form is recovered in the limit ζ(n)→0:

minimize
b, ci j

− b−
∑

i j

ci jγi j

subject to
�

Π̂A
x ⊗ 1

B
�

+ b1+
∑

i j

ci j

�

Γ̂ A
i ⊗ Γ̂

B
j

�

≤0∀x
(4.44)

As anticipated this dual formulation has several advantages. The fact that always returns
a lower-bound is fundamental for protocols that rely on security. For practical applications,
the linearity of the objective function is game-changer point. In practical protocols the min-
entropy has to be evaluated for every block of keys or random numbers. Although the SDP
can reach the global optimum efficiently on modern PC, that still requires second or even
minutes for large problems. Clearly this is not acceptable if a real-time operation is necessary.
Moreover, randomness extraction and privacy amplification are usually performed directly
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Figure 4.1: Linerization of a convex function in any point will provide a strictly lower bound of the
function.

in hardware (such FPGA), in order to speed up the processing and achieve high bandwidth.
For this platforms SDP solvers are still lacking. However, since the the dual formulation is
linear in the γi j, given a set of parameters b∗, e∗i j , f ∗i j that are optimal for certain values of γ̃i j,
if the function δ is then evaluated with the same parameters, but different γi j it will always
provide strictly lower bound. The situation is graphically explained in Figure 4.1 Then is
possible to compute in advance the full dual SDP for some parameters γi j and store it in a
Look Up Table on the FPGA. When the experiments will output a particular set og γi j the
FPGA will pick the closer parameters and only evaluate the linear function δ instead of the
full SDP. This will slightly reduce the number of bits in the outcome but can be implemented
at much higher speeds.

4.3 Comparison with the Entropic Uncertainty Principle and Quan-
tum State Tomography

Before applying this new method to scenarios where we don’t have optimal tool for the
evaluation of the min-entropy, we want to test it respect known solutions, in order to check
it’s consistency.

In the Source-DI QRNG scenario there are few way to obtain tight bounds for the
quantum-conditional min-entropy in specific scenarios.

The first one has been proposed by Fiorentino et al. in [108] but is only valid for qubits
and requires a set of tomographyically complete measurements.

Consider a unknown qubit state represented by the density matrix ρA. This can be
parameterized as a function of the Stokes parameters

ρA(S1, S2, S3)=

�

1+ S3 S1 − i · S2
S1 + i · S2 1− S3

�

(4.45)

If a set of tomographyically complete measurements, P̂±x , P̂±y , P̂±z is used, the parameters
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S1, S2, S3 can be retrieved from the measurements and ρA is fully reconstructed. In [108] the
authors prove that if the generation of random number is performed registering the outputs
measured in the Z basis |0〉 , |1〉 then:

Hmin(Z |E)≥− log2(
1+

p

1− |(S1 − i · S2)|2)
2

) (4.46)

The relation is in line with our intuition: the closer ρA is to a pure state and the further it is
from the Z projector, the higher is the min-entropy. Their solutions exploits the geometry of
the Bloch sphere and provides a tight bound.

In order to test the new SDP tool we considered the same scenario: we neglected the
finite size effect in the dual SDP and considered the QRNG scenario where Bob’s system is
trivial:

minimize
b, ci

− b−
∑

i

ciγi

subject to Π̂A
x + b1+

∑

i j

ci Γ̂
A
i ≤0∀x

(4.47)

where key generating POVM
Π̂A

x={|0〉 〈0| , |1〉 〈1| and the control POVM Γ A
i ={|0〉 〈0| , |1〉 〈1| , |+〉 〈+| , |−〉 〈−| , |L〉 〈L| , |R〉 〈R|}

Then we generated 10000 random matrices covering the entire Bloch sphere and we
evaluated the differences between the analytic value of Eq 4.46 and the SDP output. The
SDP has been implemented in Python 2.7 using the PICOS library [118] for the modeling of
the problem and the python interface to the MOSEK solver [119]. The software internally
uses functions from the QuTip module [120].

The results are presented in Fig. 4.2
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Figure 4.2: Comparison between the analytical results of [108] and the numerics from the SDP for
a qubit measured with a set of tomographically complete measurements. The tolerance of the solver
is 10−8.
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As we can see the results agree, up to a factor 10−10, smaller than the tolerance of the
solver 10−8 and, more importantly, they never overestimate the min-entropy.

Another method that is able to give tight bounds in some scenario, was first proposed by
Vallone et al. in [78] and relies on the Entropic Uncertainty Principle.

In this protocol (valid not only for qubits), the random state ρA is measured in two con-
jugate bases: MZ= |0〉 〈0| , |1〉 〈1| called the generation base and NX = |+〉 〈+| , |−〉 〈−| called
the check base.
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Figure 4.3: Comparison between the analytical results of [78] and the numerics from the SDP for a
qubit mesured with a set of conjugate measurements. The tolerance of the solver is 10−8.

Then for a generic tripartite state ρAEB that purifiesρA the EUP can be written as:

Hmin(Z |E)ρAEB
+Hmax(X |B)ρAEB

≥qMU (4.48)

qMU= log2(
1

cmax
) (4.49)

cmax=max
j,k
|



x j

�

�zk

�

|2 (4.50)

where qMU is the Maassen-Uffink compatibility factor. In the QRNG case the system B is
trivial and we have:

Hmin(Z |E)ρAE
≥qMU −Hmax(X ) (4.51)

If MZ and NX are measurements corresponding to Mutually Unbiased Basis in dimension
d, qMU= log2(d), and the EUP is tight.

Then we will have for qubits:

Hmin(Z |E)ρAE
≥ log2(2)−Hmax(X ) (4.52)

Since Hmax(X ) now is not conditioned on anything, it can be easily estimated from the
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data [78]:

Hmax(X )=2 log2(
d−1
∑

x=0

Px(x)) (4.53)

where Px(x) are the probabilities of the outcomes in the NX basis.
We employed the same approach as before in order to compare the two estimates, where

now the Π̂A
x={|0〉 〈0| , |1〉 〈1| and the control POVM Γ A

i ={|0〉 〈0| , |1〉 〈1| , |+〉 〈+| , |−〉 〈−|}
The results are presented in Fig 4.3 and as we can see we get the same results up to a

factor ≤10−10 which is smaller than the tolerance of the solver used.
The ultimate limit in the estimation is given by the number of bits employed for the

representation of float numbers on the PC and tolerance of the solver used. The problem can
be solved using arbitrary precision math libraries [121] and arbitrary precision SDP solvers
such as SDPA-GMP[122]. However, this is usually not required for our applications and we
will work with the tolerances presented above.

4.4 Tighter bound than the EUP

The EUP presented in Eq. 4.50 is known to be tight only for projective measurements that
represents MUB, and it can be quite loose for other projective measurements and POVM in
general.

In [123] the authors propose few bounds on the EUP that are tighter than the common
Maassen-Uffink state independent bound. The tightest presented can only be evaluated
numerically: we will call it EUPt i ght and can be computed as:

H(Z |E)min +H(X |B)max>q∗t (4.54)

q∗t = max
0≤p≤1

λmin[∆(p)] (4.55)

∆(p)= p∆X Z + (1− p)∆ZX (4.56)

δ(X , Z)=
∑

x

ax(X , Z) · X x (4.57)

ax(X , Z)=− log2(||
∑

z

ZzX x Zz||∞) (4.58)

(4.59)

where || · || is the sup norm.
Here we want to first reproduce the results of their paper and then compare it with our

SDP method in scenarios where the EUP is not tight to see if we can get tighter bounds.
In [123] the author consider the following situation: they fix the dimension of the Hilbert

space d=dim(HA)=3 and they introduce the following measurements Z={|0〉 , |1〉 , |2〉}
,X ={U |0〉 , U |1〉 , U |2〉} with

U=





1p
3

1p
3

1p
3

1p
2

0 1p
2

1p
6
− 2p

3
1p
6



 (4.60)

and they expect: qMU=0.58, qt=0.64 In this case we get: qt :0.64 and the right dependence
of qt(p) from the parameter p (see [123]).
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Figure 4.4: Dependence of the qt(p) factor from the parameter p

Then we consider a simple qubit scenario, similar to the one presented in [78], but
instead of having two MUB measurements, we consider what happen when the "check"
measurements Nx is rotated by an angle θ respect to the "generation" measurement Mz. If
we send a state ρA= |+〉 〈+| it should saturate the bound of log2(d)=1). In Figure 4.5 the
comparison between the tight EUP and the SDP are presented.
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Figure 4.5: Comparison between the estimation of Hmin(Z |E) for qubits when the check basis is
rotated by θ respect the generation basis. The left panel shows the estimation using the EU P while
the right panel shows the SDP results.

The difference between the two estimation is quite remarkable. As expected the EUP can
saturate the bound only for θ= π

2 , which is the case of MUB considered before. However
until θ≈65◦ no randomness can be certified. On the contrary, the SDP saturates the bound
log2(d) for any measurement NX which is rotated by ε (up to numeric precision) respect to
MZ . Intuitively this is the expected behavior: in the limit of infinite statistics the any rotated
basis with θ 6=0,π provides different expectation values between a pure state and a mixed
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state, and so is able to correctly bound the purity of the incoming state.

4.5 Analysis of the discrete POVM QRNG

Another interesting scenario to consider is the one where only one set of measurement is
used for both generation and estimation of the randomness.

We have seen that if projective measurements are used, it is not possible to bound the
purity of a state with only one set of measurements, but at least two are needed. However,
the situation changes if general POVM are used, as in the case of 3.1.2.

Can we get tight results with the Entropic uncertainty principle and what about the SDP?
We consider a qubit scenario where the generation is done with the following POVM:

Π̂1=
2
3
|1〉 〈1| =

2
3
|ψ1〉 〈ψ1| (4.61)

Π̂2=
2
3

�p
3

2
|0〉 −

1
2
|1〉
��p

3
2
〈0| −

1
2
〈1|
�

=
2
3
|ψ2〉 〈ψ2| (4.62)

Π̂3=
2
3

�p
3

2
|0〉 −

1
2
|1〉
��p

3
2
〈0| −

1
2
〈1|
�

=
2
3
|ψ3〉 〈ψ3| (4.63)

Instead of considering only this particular case, we analyze a more general scenario
where the generation is done with {Π̂1, Π̂2, Π̂3} and the check is done with the same POVM
rotated by θ . Given the shape of the POVM, we evaluate the min-entropy for the state
ρA= |0〉, which is supposed to saturate the bound. We compared two versions of the EUP,
the Maassen-Uffink and the tight one, against the SDP. The special case of generation and
check with a single set of measurements is retrieve for θ=0.

The results are presented in Fig 4.6
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Figure 4.6: Dependance of the qt(p) factor from the parameter p
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From the results we can see that the tight bound of the EUP always outperforms the
Maassen-Uffink and the maximum of Hmin(Z |E)≈0.585 is reached for θ=0, so in the one
POVM condition. The SDP instead is always able to certify 1 bit of entropy (which is the
maximum extractable in this case) for every value of θ , including when only one POVM is
used.

These numerical findings have motivated the development of a new Source-DI QRNG
protocol based on single POVM measurements, presented in Chap. 5. The numerical results
obtained from the SDP have been used at the beginning, to validate our intuition and then
helped in analyzing the attacker’s strategy for developing an analytic solution.

4.6 Conclusions

In this Chapter we have presented a new tool for the estimation of the quantum conditional
min-entropy Hmin(X |E) when the key generation measurements and the control check POVM
are known. The method can take into account finite-size effects and, more importantly, can
be expressed in terms of SDP that enable an efficient implementation on modern PC and are
assured to converge to the global optimum. Moreover, the linearity of the objective function
in the dual formulation makes it practical for applications where high-speed computation of
the Hmin(X |E) is required.

With this new tool we computed the expected Hmin(X |E) for the protocols described in
[108] and [78] where tight results were already known. In both cases the SDP was able to
reproduce the results up to a precision limited by the tolerance of the solver (10−8). Then
we compared the results of our method and the EUP is scenarios where the EUP is known
to provide non-tight results (ie. for non-MUB projective measurements and POVM). Our
method always outperformed the EUP in every scenario.

Finally, we have applied it for the estimation of randomness in a newly developed Source-
DI QRNG protocol presented in Chap 5.

The method showed a great flexibility and high performance, making it a new useful
tool for the evaluation of security of unstructured QRNG and QKD protocols.



CHAPTER 5

Unbounded Randomness in finite dimensions: A POVM approach

Almost all the DI and SDI protocol for QRNG employ projective measurements, thus limiting
the maximal certification to 1 bit per measurement for qubits. The possibility to increase
the generation rate using general measurement has been discussed for entangled system in
the device-independent scenario [82, 124, 125]. While projective measurements can only
certify up to one bit of randomness for every pair of entangled qubits, POVM can saturate
the optimal bound of 2 bit. Additionally, unbounded generation is possible if repeated non-
demolition measurements are performed on one of the qubits [126]. However, all these
scenarios require entanglement as a resource.

Here we try to address a different problem: is it possible to have an unbounded random-
ness generation from a qubit using am SDI prepare and measure scheme, where coherence
is the resource? The answer is yes. Using generalized POVM measurement, it is possible
to increase both the number of random bits that can be certified per measurement and the
security, in a Source-Device-Independent (Source-DI) way, since the certification is done
without any assumption on the source. The amount of randomness, for a fixed dimension of
the POVM, scales∝ log2(N) with N the number of POVM outcomes, so that an unbounded
amount of random bits can be certified for any dimension of the measured quantum system.
In order to validate these findings, an optical setup implementing a 3,4 and 6 outcomes
POVM has been realized, using heralded qubits from a Sagnac entangled source.

5.1 Theory

In the prepare and measure scenario a QRNG is composed of two systems: a source, that
emits a quantum state ρ̂A and a measurement station that performs a set of measurements
{M̂i} on the received state. At each round, the measurement device produces an outcome
X with some probability PX . In the trusted scenario both ρ̂A and M̂i are known and charac-
terized: in this case the number of random bit that can be extracted is given by the classical
min-entropy Hmin(X )=−maxX

�

log2 (PX )
�

. In the Source-DI scenario, no assumptions are
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made on the source and an attacker, Eve, could also share quantum correlation with the
unknown received ρ̂A state. In this case, the amount of private randomness that can be
extracted is correctly quantified by the quantum conditional min-entropy Hmin(X |E), where
Alice’s output is conditioned on Eve’s (quantum) side information E. Bounding Hmin(X |E) is
harder than Hmin(X ), since requires to optimize over all Eve’s strategies compatible with the
measured data.

As discussed in Section 3.1.2, if the received state ρ̂A is pure, Eve does not have access to
any quantum side information, since a joint Alice-Eve state must be separable ρ̂AE= ρ̂A⊗ ρ̂E .
On the contrary, if ρ̂A is mixed, there always exists a purification ρ̂AE of ρ̂A, such that the
systems A and E are correlated. Bounding the Hmin(X |E) is then profoundly linked with the
problem of bounding the purity of the unknown state ρ̂A.

For qubits, an analytic solution has been proposed in [108], where a set of tomographi-
cally complete measurements is used to reconstruct ρ̂A and hence bound the Hmin(X |E) as a
function of only the Stokes parameters:

f (ρ̂)=− log2

�

1+
p

1− |S1 − iS2|2

2

�

≥Hmin(ρ) (5.1)

Unfortunately, the method is only valid for qubits and requires the full tomography of the
incoming stated ρ̂A, which can be expensive to perform, especially for higher dimensional
states.

Another solution exploits the Entropic Uncertainty Principle, where measurements in
two conjugate bases MZ , NX allow to bound the quantum conditional min-entropy thanks to
the following relation:

Hmin(Z |E)ρAE
≥q−Hmax(X )=q− 2 log2

�d−1
∑

x=0

Px(x)

�

(5.2)

where q is the compatibility factor, already discussed in Chap 4. However, we have seen in
Sec 4.3 that the EUP is not tight when POVMs are used.

We are interested in deriving a tight bound for the Hmin(X |E) when a POVM is used in
a qubit protocol. In this case, Eve sends unknown qubit states ρ̂A and Alice uses a POVM
for both the generation and the check stage. At first sight, one could argue that the protocol
is not really Source-DI, since we are assuming that ρ̂A is a qubit. However, if the POVMs
used by Alice, are spanning only a two dimensional space (i.e., they measure along linear
combination of |0〉 and |1〉 ), Eve has no advantage to send a higher dimensional system and
we can consider, without loss of generality, the incoming ρ̂A as a qubit. This intuitive idea
can be formalized, introducing a squashing model for the measurement [80].

In this section, we will fist use the numerical tool described in Chapter 4 to get reliable
and tight bounds on the Hmin(X |E). Then we will use the information obtained from the
optimal points retrieved by the SDP to study and gain an intuition of the optimal strategy
for the attacker. Finally, taking into account this information, we will derive an analytical
bound (similar to 5.1) for some particular shapes of the POVM.
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Figure 5.1: The blue vectors represents the measurements of the POVM in the XZ plane of the Bloch
sphere. The red vectors represent a possible strategy for Eve.

5.1.1 The Three-State POVM: Numerical results

Let’s consider the simple case of a three equiangular POVM on the equator of the Bloch
sphere depicted in Fig 5.1

The POVM are:

Π̂1=
2
3
|1〉 〈1| =

2
3
|ψ1〉 〈ψ1| (5.3)

Π̂2=
2
3

�p
3

2
|0〉+

1
2
|1〉
��p

3
2
〈0|+

1
2
〈1|
�

=
2
3
|ψ2〉 〈ψ2| (5.4)

Π̂3=
2
3

�p
3

2
|0〉 −

1
2
|1〉
��p

3
2
〈0| −

1
2
〈1|
�

=
2
3
|ψ3〉 〈ψ3| (5.5)

but we can write them in a more compact form as:

Π̂x=
1
3
(1+ ~ax · ~σ) (5.6)

~a1=(0, 0,−1) ~a2=(
p

3
2

, 0,
1
2
) ~a3=(

p
3

2
, 0,

1
2
) (5.7)

where ~σ={σx ,σy ,σz} is the vector of the Pauli matrices.
To get reliable numerical lower-bounds on the achievable Hmin(X |E) we can use a sim-

plified version of the dual formulation of the SDP introduced in Eq. 4.47

minimize
b, ci

− b−
∑

i

ciγi

subject to Π̂A
x + b1+

∑

i j

ci Γ̂
A
i ≤0 ∀x

(5.8)
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where Bob’s system is considered trivial, and the rates are calculated in the asymptotic
regime n→∞.

In this specific case the POVM {Π̂1, Π̂2, Π̂3} is used both for the random number genera-
tion and for the check of the purity of ρ̂A. So in the above optimization, we will have:

Π̂A
i = Π̂i ∀i (5.9)

Γ̂ A
i = Π̂i ∀i (5.10)

Then, we need to provide the experimental expectation values γi. In order to do that,
ρ̂A are generated such that they sample all the Bloch sphere and then γi=Tr

�

ρ̂AΠ̂i

	

.
The results, for the X Z plane of the Bloch sphere, are presented in the contour plot in

Fig 5.2
It is possible to distinguish two different areas: the one inside the lines that connect the

three ~ai of the POVM, and the one outside. Inside this region, the Hmin(X |E) is minimal and
constant with Hmin(X |E)= log2 (3/2) . This result is interesting and in contrast with projective
measurements, where a single projective measurement is never able to achieve Hmin(X |E)>0.
In fact, it is always necessary to switch between two different projective measurements in
order to bound the min-entropy.Outside this region, the Hmin(X |E) monotonically increases
and reaches its maximum of Hmin(X |E)=1 for three pure states, that lie in between the ~ai.

The reason can be intuitively understood: consider the state orthogonal to Π̂1, if that
state is sent Π̂1 never clicks and this measurement alone certifies the purity of ρA. On the
other hand, the other two outcomes relative to Π̂2, Π̂3 happen with equal probability of 0.5.
So, in this case, it behaves like an unbiased coin, and the maximum achievable randomness
is 1 bit per measurement.

Additionally, this numerical tool can also be useful to get a more precise understanding
of Eve’s optimal strategy and the physics behind the attack. If we consider the primal
formulation of the SDP:

maximize
δx

d
∑

x

TrA

�

Π̂A
xδx

�

subject to δx≥0∀x ,

Tr

�

∑

x

δx

�

=1,

Tr

�

�

Γ A
i

�

∑

x

δx

�

=γi

(5.11)

after the optimization we obtain not only the maximum of the objective function p∗guess
but also the optimal states {δ∗x}x=1,2,3 that Eve has to send in order to maximize her pguess.
These states that are subnormalized and are already multiplied for the probability of being
sent, completely define Eve’s strategy. The evolution of these states as a function of ρ̂A can
be studied to reconstruct Eve’s strategy in different conditions.

Together with the software that performs the SDP optimization, an interactive visualiza-
tion tool has been developed, in order to easily visualize Eve’s strategy.

Figure 5.2 provides an example of such a tool for a section of the X Z plane. With the
two sliders on the top, the user can manipulate ρ̂A (that in this case is bounded to be in the
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Figure 5.2: Contour plot of the Hmin(X |E) calculated with the SDP for ρ̂A on the X Z plane of the
Bloch sphere. The angle 0 is aligned with the state |V 〉. Additionally, 4 marker are superimposed.
The red + represents a specific ρ̂A, selected with the interactive sliders. The other 3 crosses represent
the optimal δ∗x states relative to that ρ̂A. On the left we can see the strategy for a state that lies
inside the triangle connecting the POVM elements and on the right the strategy for a state outside
the region. They are associated to two different strategies.
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X Z plane ), which is then represented on the plot as with the red + symbol. The green, blue
and yellow crosses represent the three δ∗x

On the left side of the figure, it’s possible to see that when ρ̂A is inside the triangle, the
three δ∗x are all non-zero and aligned with ~ax . In this case, all the single outcomes can be
predicted with the maximal probability of 2/3. On the right, we can see that when ρ̂A lies
outside the triangle, Eve employs only two δ∗x , while the third one is never sent.

Moreover, from the contour plot, we can see that outside the triangular region, all the
points with the same distance from the boundary of the region ( i.e. from one of the three
red lines) lead to the same Hmin(X |E). This behavior could be explained if the two states
sent by Eve are fixed once the distance from the boundary is fixed and what changes is the
probability that one or the other state is sent.

5.1.2 The Three-State POVM: An analytic bound

Thanks to the numerics described in the previous section, we were able to get precious
insights into the physics behind the system we are considering. In this section, we will use
this information to develop an analytic bound on the Hmin(X |E), that always coincides with
our numerics.

As already said, the attacker in the Source-DI framework is allowed to send any state
ρ̂A; however, in this case, pure states always provide higher guessing probabilities. Consider
the qubit case with ρ̂M mixed and guessing probability Pm=maxx Tr

�

Π̂x ρ̂M

�

, then is always
possible to decompose ρ̂M with two pure states |ψ1〉 , |ψ2〉 such that ρ̂M =λ |ψ1〉〈ψ1|+ (1−
λ) |ψ2〉〈ψ2| but then:

Pm=max
x

�

Tr
�

Π̂x (λ |ψ1〉〈ψ1|+ (1−λ) |ψ1〉〈ψ1|))
��

(5.12)

≤λ
�

max
x

Tr
�

Π̂x |ψ1〉〈ψ1|
�

�

+ (1−λ)
�

max
x

Tr
�

Π̂x |ψ2〉〈ψ2|
�

�

(5.13)

Then, for the three outcome POVM Eve’s optimal strategy is to send instead of ρ̂A=
1
2 (1+ ~r · ~σ) three pure states τ̂k=

1
2

�

1+ ~tk · ~σ
�

such that:

p1~t1 + p2~t2 + p3~t3=~r (5.14)

In this way the guessing probability:

Pguess=max
~tk

∑

k

pk Tr
�

Π̂kτ̂k

�

(5.15)

=
1
3
+

1
3

∑

k

pk~tk · ~ak (5.16)

is maximized.
Now, if ~r projection in the plane of the POVM is inside the dashed triangle of Figure

5.1, delimited by the lines connecting the three ~ak, then the guessing probability is always
saturated for:

~tk= ~ak (5.17)
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Eve’s best strategy is to send three pure states exactly aligned with the POVM elements. In
this case

Pguess=
1
3
+

1
3

∑

k

pk=
2
3

(5.18)

However, if the projection of ~r lies outside the dashed triangle, this is no longer the
optimal strategy for Eve. In this case, we can parametrize ~r as :

~r=q~t1 + (1− q)
�

λ~t2 + (1−λ)~t3

�

(5.19)

=q~t1 + ~s(1− q) (5.20)

Pguess=
1
3
+

q
1
~t1 · ~a1 +

1− q
3

�

λ~t2 · ~a2 + (1−λ)~t3 · ~a3

�

(5.21)

=
1
3
+

q
3
~t1 · ~a1 +

1− q
3

�

~s · ~a3 +λ~t2 · (~a2 − ~a3)
�

(5.22)

(5.23)

with λ, q∈[0,1] and
~s=
�

λ~t2 + (1−λ)~t3

�

(5.24)

First of all we fix ~t1 (and thus q) and try to find the best choice for ~t2,~t3 and λ. We can
consider ~t2 as variable, while ~t3 and λ should be derived from Eq 5.24. Indeed, we can find
λ by squaring the relation (1−λ)~t3=~s−λ~t2 and by remembering that |~tk|=1. Then we get:

λ=
1− s2

2(1− ~s · ~t2)
(5.25)

Then since ~a2 − ~a3=
p

3 x̂ with x̂ versor of the x axis, Eve should maximize the last term
in the Pguess:

F=λ~t2 · (~a2 − ~a3)=λ~t2 ·
p

3 x̂ (5.26)

By substituting the expression 5.25 for λ we can rewrite:

F=
1− s2

2(1− ~s · ~t2)
~t2 · x̂ (5.27)

If we define: ~s= s(cos(θ ), sin(θ )),~t2=(cos(φ), sin(φ)) we get:

F=(1− s2)
cos(φ)

2(1− s cos(φ − θ ))
(5.28)

This expression is maximized for cos(φ)= s cosθ= sx .
Geometrically this implies that ~t2 and ~t3 have the same angle respect ~a2 and ~a3 as shown

in Figure 5.3:
In this case ~a2 · ~t2= ~a3 · ~t3 and the Pguess can be written as:

Pguess=
1
3
+

q
3
~t1 · ~a1 +

1− q
3
~t2 · ~a2 (5.29)

=
1
3
+

q
3
~t1 · ~a1 +

1− q
3

�

sx a2x +
q

1− s2
x a2z

�

(5.30)

=
1
3
+

q
3

t1z +
1− q

3

�

sza2z +
q

1− s2
z a2x

�

(5.31)



5.1
Unbounded Randomness in finite dimensions: A POVM approach
Theory 81

Figure 5.3: Eve’s optimal strategy

Now it is necessary to find the optimal state for ~t1 and we can parametrize q as:

q=
sz − rz

sz − t1z
(5.32)

so that the Pguess becomes a function of sz and t1z. The maximum is achieved for:

∂ Pguess

∂ sz
=
∂ Pguess

∂ t1z
=0 (5.33)

with the constraint t1z≤0 and sz≥ rz, as it can seen in the figure. In this case, the only
solution is obtained for

sz= rz→q=0 (5.34)

So for Eve is not beneficial to use a third state, but a statistical mixture of two pure states
always yields higher guessing probabilities.

Finally we write an analytical (tight) bound on the Pguess as a function of the estimated
sz:

Pguess=
1
3

�

1+ ~t2 · ~a2

�

=
1
3
(1+

sz

2
+

Æ

(1− s2
z )

2
) (5.35)

for sz≥
1
2 .

5.1.3 Extension to N equispaced POVM on the plane

The same argument can be extended for POVM with an arbitrary number N of elements,
equally spaced along a plane on the Bloch sphere.

Here only the analytic derivation will be discussed since the SDP extension is trivial.
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An equiangular POVM with N outcomes can be written as

Π̂k=
1
N
(1+ ~ak · ~σ) (5.36)

~ak=(cos 2kα, 0, sin 2kα) (5.37)

α=
π

N
(5.38)

The vectors orthogonal to the edge of the polytope are:

~wk=
~ak + ~ak+1

2
=cosαûk (5.39)

ûk=(cos (2k+ 1)α, 0, sin (2k+ 1)α) (5.40)

Suppose that the measurement outcomes are compatible with the state ρ= 1
2(1+ ~r · ~σ).

Again, Eve has two different strategies, depending if the state ~r is inside the polytope, which
happens if:

~r · ~uk≤cosα∀k (5.41)

so if the projection of ~r on uk is lower than |~wk|.
In this case Eve’s optimal strategy is to send N pure states ρ̂k with probability pk such

that:

~tk= ~ak (5.42)
∑

pkρ̂k= ρ̂ (5.43)

(5.44)

and the guessing probability:

Pguess=
1
N
+

1
N
~tk · ~ak=

2
N

(5.45)

In contrast, if the state ρ lies outside the polytope, there is one k=k∗ such that if
~r · ~u∗k≥cosα. Then Eve chooses only two pure states ~tk∗ ,~tk∗+1 in between ~ak∗ , ~ak∗+1, such that
~tk∗ · ~ak∗=~tk∗+1 · ~ak∗+1.

Since ~tk∗ · ~uk∗=~r · ~uk∗ we have

~tk∗ · ~ak∗=~r · ~uk∗ cosα+
q

1− (~r · ~uk∗)
2 sinα (5.46)

Then the Pguess can be written as:

Pguess=
1
N
+

1
N
~tk∗ · ~ak∗ (5.47)

=
1
N

�

1+ ~r · ~uk∗ cos
π

N
+
q

1− (~r · ~uk∗)
2 sin

π

N

�

(5.48)

Finally, we can obtain an analytic formula for the Pguess that takes into account both
strategies, introducing the Heavside function θ (x):

Pguess=
2
N
+

1
N

∑

k

�

~r · ~uk cos
π

N
+
q

1− (~r · ~uk)
2 sin

π

N
− 1

�

θ
�

~r · ~uk − cos
π

N

�

(5.49)
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5.1.4 Results

Both the SDP and the analytical method have been tested for N up to 100. The results were
calculated respect the statistics reproduced by ρ̂A sampled from the entire Bloch sphere. The
SDP and the analytical method always agreed, up to a factor smaller than the tolerance set
for the SDP optimizer.

In Figure 5.4, it is possible to see the contour plots for ρ̂A on the X Z plane of the Bloch
sphere and N=3, 4, 5, 6.
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Figure 5.4: Contour plot of Hmin(X |E) for ρ̂A in the X Z plane. The POVM considered have 3,4,5,6
equispaced elements in the same plane of ρ̂A

By increasing the number of outcomes both the lowest and the highest Hmin(X |E) in-
crease, in fact from the analytic formula we have:

max
~r
(Hmin(X |E))= log2 (N)− log2

�

1+ cos
π

N

�

(5.50)

min
~r
(Hmin(X |E))= log2 (N)− 1 (5.51)

This scaling as a function of N for a qubit system and equiangular POVM on a plane is
reported in Fig 5.5.

The difference between max~r (Hmin(X |E)) and min~r (Hmin(X |E)):

max
~r
(Hmin(X |E))−min

~r
(Hmin(X |E))=1− log2

�

1+ cos
π

N

�

≈
π2

2N2 ln 2
(5.52)
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Figure 5.5: Scaling of Hmin(X |E) as a function of N . Numerical and analytic results agree up to
tolerance of the SDP solver. In the Source-DI scenario, both the max and the min Hmin(X |E) for each
N are showed. A comparison with the trusted model is also reported.

on the other hand gets smaller, since the distance between the POVM’s elements also gets
smaller. Moreover, in Fig 5.5 we can see a comparison between the extractable randomness
in the trusted and in the Source-DI scenarios. The price to pay for the increased security of
the Source-DI estimation is constant for all N and is 1 bit per measurement.

Finally, the results show that in the limit N→∞ we would have Hmin(X |E)→∞, mean-
ing that unbounded randomness can be certified even from quantum systems with finite
dimension d, including qubits.

5.2 An experimental implementation using heralded single pho-
tons

In order to validate the theoretical predictions described in the previous paragraphs, we
realized a simple optical setup to perform a proof-of-principle demonstration with a heralded
single photon source. The preparation and measurement exploit the polarization degree of
freedom of single photons. A schematic representation of the setup is shown in Figure 5.6.

A brief description of the setup will now be given.

5.2.1 The heralded source

A continuous wave (CW) laser at 404.5nm (160MHz FWHM linewidth ) optically pumps
a 30mm long Periodically Poled Potassium Titanyl Phosphate (PPKTP) crystal placed in a
Sagnac interferometer. The polarization of the pump is adjusted with an HWP placed before
the PBS that starts the Sagnac loop. The two polarization components, travel clockwise and
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Figure 5.6: A Sagnac-type source generates correlated photon pairs at 809 nm. The signal photon is
detected by a SPAD and provides a time signal to gate the other detectors. The idler photon is first
prepared in the desired polarization state and then sent to the measurement station. Four different
POVM have been realized with 3,4 and 6 outcomes.

anti-clockwise in the loop and excite the PPKTP crystal placed in the middle. The crystal has
a poling period Λ=10µm and emits correlated photon pairs at 809nm, with 0.2nm FWHM,
generated through a quasi-phase-matched Spontaneous Parametric Downconversion (SDPC)
process. The SPDC is a collinear type-II, so the photon pairs are generated with orthogonal
polarization. At the exit of the Sagnac loop, the photons pass through the PBS that separates
the two photons into two different paths. Finally, the photons pass through a Long Pass
Filter (LPF) that blocks the pump and are then collected by single mode fibers.

When the pump light is diagonally polarized (and an HWP is placed after the reflection
path of the PBS) this type of source can be used to generate entangled photon pairs [127].

However, in this experiment, we don’t require entanglement but only heralded single
photons. The polarization of the pump is set to horizontal, so that the pump travels only
counter-clockwise in the Saganc and the downconverted photons form a fully separable
state |ψ〉= |H〉s ⊗ |V 〉i. These are then deterministically separated by the PBS and the |H〉s
is directly revealed by a Silicon Single Photon Avalanche Detector (SPAD) (Excelitas SPCM-
NIR), with ≈65% of quantum efficiency at 810nm, ≈800ps FWHM of temporal jitter and 21
ns of dead time. A click in this detector "certifies" the presence of the idler photon since the
downconverted photons are generated at the same time. This signal can be used as gate for
the detection of the idler photon, reducing the noise coming from the SPAD’s dark counts.

Finally, the idler photon |V 〉i is collected by a single mode fiber and sent to the prepa-
ration stage. Here a polarizer, an HWP, and a QWP are used to prepare the photon in any
required polarization. The photon then is sent to Alice’s measurement station.

Taking into account filtering and finite SPAD efficiency, we obtain a heralded photon
generation rate of ≈10kHz.

We stress again that we work in the Source-DI scenario, where the source is untrusted,
and no information about the preparation is used to estimate the private randomness that
can be extracted by Alice.
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5.2.2 The measurement setup

The POVM {Πi} used by Alice are N -output measurement in the two dimensional Hilbert
space of photon polarization. The implementation of such POVM can be done using interfer-
ometric setups (as in [128]); however they do not offer long term stability. For this reason,
we decided to follow the approach presented in [129], where only passive linear optical
components are used, and different outcomes are mapped into different optical paths.

Let’s first consider the 3 outcome equiangular POVM.
In this case, the photon first passes through a Partial Polarizing Beam Splitter that reflects

with probability 2/3 |V 〉, while fully transmits |H〉. Thus, detecting the reflected photons
directly implements the first POVM element Π̂1=

2
3 |V 〉 〈V |. On the other hand, if we write

parametrize the input state as |ψ〉=α |H〉+ β |V 〉 the state at the output of the transmitted
port can be written as: |ψ〉=α |H〉+ 1p

3
β |V 〉. After the PPBS the HWP at π8 rotates the state

to:
|ψ〉=α |−〉+

1
p

3
β |+〉=

1
p

2

�

α+
1
p

3
β

�

|H〉+
1
p

2

�

α−
1
p

3
β

�

|V 〉 (5.53)

Then, after the regular PBS the detectors in the transmitted and reflected port click with
probability 1

2 |α +
1p
3
β |2 and 1

2 |α −
1p
3
β |2 respectively, implementing the POVM elements

Π̂2, Π̂3.
A photo of the setup is presented in Fig 5.7

Figure 5.7: Photo of the actual implementation of the three-outcome POVM

The POVM with 4 and 6 outcomes can be implemented in a similar way, and they don’t
require any non-standard component such as the PPBS.

The 4 outcome POVM is realized in the following way: a 50:50 BS reflects and trans-
mits the photons with equal probability, then in the reflected path a PBS performs a
measurement in the Z basis, while in the transmitted path the HWP at π

8 followed by
the PBS, performs a measurement in the X basis. In this way, the four POVM elements
Π̂{1,2,3,4}={

1
4 |H〉 〈H| ,

1
4 |+〉 〈+| ,

1
4 |V 〉 〈V | ,

1
4 |−〉 〈−|} are realized. In a similar way, a BS with

transmissivity 1
3 followed by a BS with transmissivity 1

2 in the reflected path creates three
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different optical paths where the probability *o detect the photon is 1
3 . Then one path

is directly measured along the Z basis with a simple PBS, implementing the elements
Π̂1,4=

1
6 |H〉 〈H| ,

1
6 |V 〉 〈V |. In the second arm an HWP at π

12 before the PBS implements

the elements Π̂2,5=
1
6(
p

3
2 |H〉+

1
2 |V 〉)(

p
3

2 〈H|+
1
2 〈V |),

1
6(

1
2 |H〉 −

p
3

2 |V 〉)(
1
2 〈H| −

p
3

2 〈V |). Sim-
ilarly, in the third arm an HWP at π

6 before the PBS implements the elements: Π̂3,6=
1
6(

1
2 |H〉+

p
3

2 |V 〉)(
1
2 〈H|+

p
3

2 〈V |),
1
6(
p

3
2 |H〉 −

1
2 |V 〉)(

p
3

2 〈H| −
1
2 〈V |).

Finally, we also implemented an Informationally Complete POVM [130] with 6 outcomes.
The implementation is similar to the previous one with the change that an HWP is now
rotated at π

8 and the other HWP is substituted with a QWP at π
4 . In this way each arm

measures along one of the X,Y,Z bases, implementing the following POVM elements
Π̂{1,2,3,4,5,6}={

1
6 |H〉 〈H| ,

1
6 |+〉 〈+| ,

1
6 |L〉 〈L| ,

1
6 |V 〉 〈V | ,

1
6 |−〉 〈−| ,

1
6 |R〉 〈R|}.

After the polarization measurements, the photons are collected by multimode fibers and
revealed by Silicon SPAD, with performance similar to the one used for the heralding mea-
surement.

This implementation, however, suffers from a severe limitation: the number of optical
elements required to implement the POVM scales with the number N of outcomes. This
is also valid for the number of SPAD, which are complex and expensive instruments. An
alternative implementation, that requires an active modulation, has been introduced in
[131], where the polarization measurement is not mapped to a different path but to a
different time-slot. With this implementation, the number of optical elements and detector
is constant for every N ; however the price to pay is a reduced maximum repetition rate, due
to the temporal multiplexing.

5.2.3 Coincidence logic and software

The single photons are detected by commercial SPAD with ≈800ps of temporal jitter. The
TTL signal generated by the SPAD is then recorded by a QuTau Timetagger that digitizes the
time of arrival of the electrical pulse with a resolution of 81ps and streams it to a PC via the
USB2 interface. The advantage of working with a heralded source is the possibility to filter
out most of the noise coming from the SPAD by looking only at the coincidences between the
heralding detector (called D0) and the other detectors. In order to do so a python software
on the PC, retrieves the timetags and calculates in real-time the coincidences between D0
and any other detector, keeping the tag only if the delay between the two events is inside
the user defined coincidence window, set at 1ns in this experiment. The values are plotted
in real-time, greatly simplifying the alignment and preparation of the state.

5.2.4 Data analysis and results

As described in the previous section, we only keep the detection events that happen within
a coincidence window of 1ns respect the signal coming from D0. For each successful event,
we record the number of the detector that clicked. For a typical run of the experiment, we
acquire a total number of Ntot of 107 coincidence events.

Then we evaluate the Hmin(X |E) both in the asymptotic limit (Hmin(X |E)a) and taking
into account the finite-size contribution ( Hmin(X |E) f ). While the second estimation is the
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important one if the random numbers are used in a real implementation, the first estimate
can give valuable information about the non-idealities present in the experiment, such as
the effect of a non-perfect state preparation and noise contribution.

Let’s start with Hmin(X |E)a. In this case the total number of events per detector NΠi

is directly converted to a probability pΠi
=

NΠi
∑

i NΠi
of the occurrence of a particular POVM

element Π̂i. These pΠi
can be directly inserted in the SDP (they are exactly the γi since

Γ̂i= Π̂i) or in the estimation of ~r. However, since they are calculated from a finite sample
size and ρ̂A is usually pure (and hence at the boundary of the physically allowed region), they
can lead to non-physical states, similarly to what happens for Quantum State Tomography
algorithms that directly invert the measured data [132]. To solve the problem, we use
the constrained maximum-likelihood estimation technique presented in [133] to retrieve a
physical state ρ̃A compatible with the measured statistics pΠi

. The asymptotic min-entropy
Hmin(X |E)a is then calculated for the reconstructed state ρ̃A.

For what regards Hmin(X |E) f , this procedure has never been necessary in our case. When
finite-size effects are taken into account, the error on the estimation of the pΠi

is upper an
lower bounded with the Chernoff-Hoeffding inequality [116] and we associate to each pΠi

a confidence interval
[pΠi
− ζ(n,ε), pΠi

+ ζ(n,ε)] (5.54)

with

ζ(n,ε)=

√

√− log2 (ε)
2n

(5.55)

Then Hmin(X |E) f is calculated, minimizing Hmin(X |E) respect all the possible γi∈[pΠi
−

ζ(n,ε), pΠi
+ζ(n,ε)]. For the typical values of Ntot=107 and ε=10−10, we always got optimal

states in the physical allowed region.
Let’s discuss the results for the 3 outcome POVM, presented in Tab 5.1.

State Hmin(X |E) f Hmin(X |E)a Hmin(X |E)t MLE fitted ρ̃A

|H〉 0.933 0.969 1.000

�

9.996 · 10−1 −0.01
−0.01 4 · 10−3

�

|V 〉 0.585 0.585 0.585

�

0.005 −0.005
−0.005 0.995

�

|+〉 0.676 0.687 0.685

�

0.460 0.477
0.477 0.540

�

|L〉 0.585 0.585 0.585

�

0.483 −0.008
−0.008 0.517

�

Table 5.1: Results for the 3 outcome POVM. Hmin(X |E)t is the theoretical value expected for the
state, Hmin(X |E)a is the asymptotic value calculated on the reconstructed state ρ̃A, while Hmin(X |E) f
takes into account the finite-size effects.

In this case we repeated the experiment preparing four different states |H〉 , |V 〉 , |+〉 , |L〉.
The first state |H〉 is the one that permits to maximize Hmin(X |E) and is expected to reach
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a theoretical value Hmin(X |E)t=1. In practice, we can only obtain an asymptotic value of
Hmin(X |E)a=0.969 per measurement, due to the limited extinction ratio of the filtering PBS
in the preparation stage and unavoidable dark counts in Π̂1 due to accidentals. As expected
when finite-size effects are taken into account, the extractable entropy decreases, since the
optimization is performed over a larger set of states compatible with the measurements
. The state |V 〉 and |L〉, are able to reach the theoretical lower bound of ≈0.585 bits per
measurement even in the asymptotic regime. The reason, however, is different: |V 〉 is aligned
with one of the POVM elements Π̂1 and so maximizes the overlap Tr

�

Π̂1ρ̂A

	

, maximizing
Eve’s guessing probability. On the other hand, since the POVM measure only on the X Z plane,
the statistics generated by |L〉 is also reproduced by the maximally mixed state 1

212. This
state, however can always be decomposed as an incoherent superposition of the three states
aligned with the Π̂i, saturating the lower bound of the Hmin(X |E). Finally, the asymptotic
value for |+〉 is slightly higher than the expected because the prepared (and estimated) state
is not exactly |+〉 but slightly tilted. Similar considerations are valid for the 4 and 6 outcome
POVM aligned on the plane, whose results are presented in Tab 5.2 and 5.3. The results for
the informationally complete (IC) 6 outcomes POVM are presented in Tab 5.4 and require
some additional comments.

State Hmin(X |E) f Hmin(X |E)a Hmin(X |E)t MLE fitted ρ̂A

|H〉 1.000 1.000 1.000

�

0.998 0.001
0.001 0.002

�

|+〉 1.000 1.000 1.000

�

0.502 −0.499
−0.499 0.498

�

|L〉 1.000 1.000 1.000

�

0.499 −0.005
−0.005 0.501

�

�

�

π
8

�

1.158 1.178 1.228

�

0.852 −0.352
−0.352 0.148

�

Table 5.2: Results for the 4 outcome POVM. The state
�

�

π
8

�

is rotated by π
8 in the X Z plane respect

to |H〉. Hmin(X |E)t is the theoretical value expected for the state, Hmin(X |E)a is the asymptotic value
calculated on the reconstructed state ρ̃A, while Hmin(X |E) f takes into account the finite-size effects.

Since the POVM is topographically complete, all the reconstructed states are pure up to
experimental imperfections (purity is always ≥99%). The Hmin(X |E) for the optimal state
|int〉 is higher respect the 6 outcome POVM on the plane, since the distance between |int〉
and any of the Π̂i is higher than in the other case.

5.3 Conclusions

In this Chapter, we have described a new Source-DI protocol for secure QRNG, that can
achieve unbounded randomness generation from finite-dimensional quantum systems. The
protocol extends the concept introduced in [78] using non-projective measurement permit-
ting to avoid the active basis switching and at the same time increasing the generation rate
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State Hmin(X |E) f Hmin(X |E)a Hmin(X |E)t MLE fitted ρ̂A

|H〉 1.585 1.585 1.585

�

0.997 0
0 0.003

�

�

�

π
6

�

1.585 1.585 1.585

�

0.747 0.425
0.425 0.253

�

|L〉 1.585 1.585 1.585

�

0.505 −0.006
−0.006 0.495

�

�

�

π
12

�

1.620 1.644 1.685

�

0.928 0.251
0.251 0.072

�

Table 5.3: Results for the 6 outcome POVM on the plane. The states
�

�

π
6

�

,
�

�

π
12

�

are rotated by the
respective angles in the X Z plane respect to respect to |H〉.Hmin(X |E)t is the theoretical value expected
for the state, Hmin(X |E)a is the asymptotic value calculated on the reconstructed state ρ̃A, while
Hmin(X |E) f takes into account the finite-size effects.

State Hmin(X |E) f Hmin(X |E)a Hmin(X |E)t MLE fitted ρ̂A

|H〉 1.585 1.585 1.585

�

0.997 0.006− 0.005 j
0.006+ 0.005 j 0.003

�

|+〉 1.585 1.585 1.585

�

0.502 0.494+ 0.002 j
0.494− 0.002 j 0.498

�

|L〉 1.585 1.585 1.585

�

0.503+ 0. j 0.003+ 0.494 j
0.003− 0.494 j 0.497− 0. j

�

|int〉 1.874 1.923 1.924

�

0.788 −0.287− 0.291 j
−0.287+ 0.291 j 0.212

�

Table 5.4: Results for the IC 6 outcome POVM. The state |int〉 is in between the three states
|H〉 , |+〉 , |L〉. Hmin(X |E)t is the theoretical value expected for the state, Hmin(X |E)a is the asymptotic
value calculated on the reconstructed state ρ̃A, while Hmin(X |E) f takes into account the finite-size
effects.
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per measurement. The security analysis has been performed using the newly developed
numerical tool described in Sec. 4, taking into account finite-size effects. Additionally,
exploiting the numerical results, we were able to characterize the attacker’s strategy, and
we obtained analytical bound on the Hmin(X |E) for some symmetric configurations of the
POVM. Finally, we tested experimentally our theoretical predictions with a simple optical
setup implementing 3,4 and 6 outcomes-POVM that measured the polarisation degree of
freedom of single photons. For every run, the experimental results matched the theoretical
predictions and showed an advantage of POVM measurements over projective ones.

This new protocol features a reduced experimental complexity and increased perfor-
mances, if compared to other discrete-variable semi-DI QRNG, making it an interesting
resource for practical applications.



CHAPTER 6

A Semi-Device-Independent QRNG based on an overlap assumption
and heterodyne detection

In the previous chapters we mainly focused on Source-DI QRNG, however the zoology of
Semi-DI QRNG is far more rich. The trust (and the assumptions) can be moved from the
measurement to the source, hence realizing a Measurement-DI QRNG [83, 134, 135].

Alternatively, it’s possible to avoid trusting specifically the measurement or the source
device and an assumption is made on the channel capacity. [76, 84–87, 136]

These types of QRNG are usually called in the literature semi-self-testing or (with a slight
abuse of notation) Semi-DI.

In this chapter a new type of Semi-DI QRNG based on an energy bound and heterodyne
detection will be presented. The advantage over similar solutions that exploit discrete
variable or homodyne detection, is an increased speed an increased resilience respect phase
fluctuations. In particular the system does not require an active phase stabilization and the
phase tracking is done via software, greatly simplifying the experimental implementation.
Moreover, it can be easily scaled to more than two input and two outputs.

The results presented here, however, are only preliminary and a better security analysis
and an improved experimental setup are under test at the time of writing.

6.1 Semi-DI QRNG based on a bound on the channel capacity

In this section we will describe informally the typical working scenario of a Semi-DI QRNG
(for a formal and detailed discussion see [84, 87]). Then we will briefly discuss different
protocols (with different assumptions) and different experimental implementations.

In general, Semi-DI QRNG are formulated in the prepare and measure scenario described
in Fig 6.1, where both Alice and Bob’s devices are considered as black boxes.

Alice box can accept different inputs {x j} j=1,n that lead to the generation of different
quantum states ρx j

. Bob’s station also accepts different inputs {y j} j=1,m that can be used to
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Figure 6.1: General scenario for a Semi-DI QRNG

select an unknown measurement M̂y j
, that leads to an output bx ,y . If no further restrictions

are imposed in principle any conditional probability p(b|x y) can be observed. However
if the channel capacity is limited, for example with a bound on the max dimension of the
Hilbert space of ρx or a bound on the maximal energy that can be transmitted, the space of
possible probabilities p(b|x y) is restricted. In this case, there exist a set Q of probabilities
that can be achieved with quantum strategies but cannot be reproduced with only classical
resources. This quantum "advantage" can be used to certify if quantum resources were used
from the experimental data p(b|x y) only, similarly to what happens for nonlocality with a
Bell test [137]. Moreover, in analogy to what happens for DI QRNG [138], certain subset
of Q can certify genuine and private quantum randomness, meaning that output b of Bob’s
measurement cannot be perfectly predicted, whatever is the side-information E available to
an attacker.

In the experiment presented in this Chapter we will consider a prepare&measure scenario
where an upper bound is assumed on the overlap on the states ρ̂x . This protocol has been
proposed and experimentally realized in [85] using single photon detectors. Such bound
can be translated into a bound on the maximum energy between the states ρx , however
this link is never explicitly considered in [85]. Independently, in [84, 87] a more general
framework based on the energy bound has been developed. The protocol proposed in these
works have been experimentally realized in [86] with single photon detectors and in [139]
with homodyne detection.

We decided to implement the analysis in [85] because was similar to the SDP described
in Chap. 4 but we are currently working to implement also the analysis described in [87].

6.2 Semi-DI QRNG based on the overlap assumption

In the protocol described in [85] for the single time bin implementation, Alice’s box has
two inputs x={0,1} and can send two different and unknown quantum states |ψ0〉 , |ψ1〉.
Bob instead has a single measurement with 2 elements Π̂0, Π̂1 with two respective outcomes
b={0, 1}.

The main assumption of the protocol is that the overlap between the two states | 〈ψ0|ψ1〉 |
is lower bounded by some value δ:
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| 〈ψ0|ψ1〉 |≥δ (6.1)

If δ∈(0,1), the two states are not orthogonal and they cannot be deterministically distin-
guished. This also implies that there is no way for the Eavesdropper to perfectly predicts the
outcome of the measurement. In fact, even if Eve performs an optimal unambiguous state
discrimination (USD), some of the measurement will be inconclusive, leading to a non-null
randomness generation.

After some run of the protocol Alice and Bob can use the obtained data to calculate the
conditional probabilities p(b|x) that they will use to bound Eve’s side information E. In
fact, in order to get secure and private random numbers, they need to bound the quantum
conditional min-entropy Hmin(b|E) as a function of δ and their experimental data p(b|x)
only.

As usual we can write the guessing probability pguess(b|E) of guessing b given E as
in Renner’s formulation of Eq. 4.13. In this case we consider an attacker with complete
knowledge of the input states, the details of the measurement and the inner workings of
the devices, which can vary at each run. The measurement strategies are then labelled by λ.
Then the guessing probability,averaged over inputs and measurement strategies, occurring
with probabilities p(x) and p(λ), can be written as:

pguess(b|E)=max
qλ,Πλ1

∑

x

p(x)
∑

λ

qλmax{Tr
�

ρx Π̂
λ
0

�

, Tr
�

ρx Π̂
λ
1

�

}, (6.2)

where ρx= |ψx〉 〈ψx | and qλ= p(λ). The maximization is performed over all possible mea-
surement strategies which are consistent with the observed experimental data, ie. with the
constraint:

∑

λ

qλ Tr
�

ρx Π̂
λ
b

�

= p(b|x) (6.3)

As the authors in [85] point out, at first look it would seem that the pguess explicitly
depends on the states ρx . However, since there are only two states the problem can be
restricted to a 2-dimensional Hilbert space without loss of generality. Thus, the two state
can be written as |ψ0〉= |0〉 and |ψ1〉=δ |0〉+

p
1−δ |1〉 in some basis {|0〉 , |1〉}. With this

formulation the maximum depends only on δ and the observed data p(b|x).
Another problem for the optimization is that the number of measurement strategies

seems unbounded. Luckily the result in [140] shows that we can group together all strategies
for which the inner maximization occurs for the same term. Then four strategies are left,
depending if the max occurs in for the first or the second term for each x . These strategies
are labeled by (λ0,λ1) where λx determines which term is maximal for the input x . With
this formulation the inner maximization can also be removed.

Then the POVM cam be written as: Π̂λ0,λ1
b and the pguess can be written as:

pguess= max
qλ0,λ1

,Π
λ0,λ1
b

1
∑

x=0

p(x)
1
∑

λ0,λ1=0

qλ0,λ1
Tr
�

ρx Π̂
λ0,λ1
λx

�

. (6.4)

The weights qλ0,λ1
can be absorbed into the POVM elements that become

M̂λ0,λ1
b =qλ0,λ1

Π̂
λ0,λ1
b (6.5)
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In this form the pguess optimization can be rewritten as an SDP:

maximize
Mλ0,λ1

b
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1
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b

�
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(6.6)

where the constraints impose to the operators Mλ0,λ1
b to be Hermitian, positive semidefinite,

sum to the identity and that are compatible with the data p(b|x) measured experimentally.
With a procedure similar to the one outlined in Sec. 4.2.1, the primal SDP of Eq. 6.6 can

be written in its dual formulation which exhibits all the advantages discussed in Chap 4:

minimize
Hλ0,λ1 ,νbx

∑

bx

νx bp(b|x)
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(6.7)

where Hλ0,λ1 ,νbx are the Lagrangian multipliers.
Also in this case the dual SDP is linear in the experimental data p(b|x), meaning that

for a practical implementation a valid (but suboptimal) bound for pguess can be rapidly
obtained just by plugging new p(b|x) in the objective function for some already calculated
νx b. Moreover, also finite-size effects can be easily taken into account adding the finite size
correction directly in the objective function:

pguess=
∑

bx

νx bp(b|x) +
∑

bx

|νx b|t(nbx ,ε) (6.8)

where t(x) is a tail inequality such as the Chernoff-Hoeffding, nbx are the experimental
counts and ε is a security parameter.

In the next section we will see how this analysis is applied to our experimental imple-
mentation and what are the theoretical bounds we can expect on the Hmin(b|E).

6.2.1 Heterodyne detection

In our implementation of the protocol, Alice’s box can send two coherent states |ψ0〉=
|α〉 , |ψ1〉=−|α〉 and Bob can measure the states with the Heterodyne detection which effec-
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tively implements the POVM:

Π̂β=
1
π
|β〉 〈β | (6.9)

The POVM with a continuous set of elements Π̂β is then discretized grouping all the elements
with a positive real part Re(β)>0 into Π̂0 and the others intoˆ̂Π1. Formally:

Π̂0=

∫ +∞

−∞
dImβ

∫ ∞

0

dReβ
1
π
|β〉 〈β | (6.10)

Π̂1=

∫ +∞

−∞
dImβ

∫ 0

−∞
dReβ

1
π
|β〉 〈β | (6.11)

A phase space representation is shown in Figure 6.2 If we assume that the Heterodyne

Figure 6.2: Phase space representation of Alice’s states and Bob’s POVM

detection is always phase-aligned with the two states as in Figure 6.2 we can calculate the
expected δ and p(b|x) as function of α for an honest implementation:

δ= e−2|α|2 (6.12)

p(0|0)= p(1|1)=
1
2
(1+ er f (Re(α))) (6.13)

p(1|0)= p(0|1)=
1
2
(1− er f (Re(α))) (6.14)

Then we can plug these probabilities and δ in the SDP derived in Eq 6.7 in order to obtain
a bound on the maximal Hmin(b|E) that can be achieved by this setup in ideal conditions and
without actions by the Eavesdropper. The results are shown in Fig.6.3. As expected, when
α is 0, Alice is sending only one state, the vacuum |0〉, and no randomness can be certified
since no correlation is present between the input x and the output b. As soon as α is greater
than 0, randomness can be certified with a maximum of 0.23 bits per measurement for
Re(α)=0.27. At higher α the Hmin(b|E) decreases, since the two states can be distinguished
better and better.

It’s important to point out that these results are calculated for an ideal and honest
implementation of the scheme: if non-idealities are present or Eve performs an attack on
the device the outcome probabilities p(b|E) would be different and the respective Hmin(b|E)
lower.
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Figure 6.3: Extractable randomness from the discretized heterodyne measurement as a function of
α.

6.3 Experimental implementation

The idealized protocol described in the previous section has been experimentally imple-
mented with an all-fiber setup, shown in Fig. 6.4, which employs only COTS components.

Alice Bob

RF Amp Transceiver @1.25GHz

PRBS Sync

Oscilloscope

PC

PM

PM

Transceiver@1.25GHz

PRBS

Laser

OA

VOA

VOA
BS

99%

1%

90%

10%

10%

90%

Figure 6.4: Schematic representation of the experimental setup.

6.3.1 The optical setup

A bright laser with max optical power of 100mW emits in continuous mode at 1550nm. Then
light is splitted by a 99:1 fiber BS in two fibers. The one with 99% of the power is used
for the LO and is sent first to an automatic Variable Optical Attenuator (VOA) and then is
splitted again with a 90:10 BS: 10% of the power is sent to a powermeter (PM) for logging
purposed and 90% of the light is first sent to a fiber Polarization Controller (PC) and then
to the LO port of the 90◦ optical hybrid. The VOA plus PM is used to calibrate the detectors
in with the same procedure described in Chap. 3. However, since in this case we do not
trust our detectors, the calibration is not necessary and does not affect the security of the
protocol. The PC before the LO port is necessary in order to maximize the optical power
transferred to the 90◦ optical hybrid, since this element features a polarizer at it’s input.
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The arm with 1% of the laser light is used to prepare the states |ψi〉. The light is sent
first to a PC and then to fiber LiN bO3 phase modulator (MPZ-LN-20 by iXblue) with 20GHz
of bandwidth. The phase modulator is used to add a π phase shift to the light travelling in
it when an RF signal is received, thus preparing the −|α̃〉 state. The PC is used to align the
polarization of the incoming light to the extraordinary mode of the LiN bO3 crystal, in order
to maximize the modulation efficiency. The modulated light is then sent to a mechanical
VOA, used to change the magnitude of α before being splitted by a 90:10 BS. 90% of the
light is sent to a PM , while 10% is sent to a fixed optical attenuator. With this configuration,
after calibrating the attenuation introduced by the OA, we can have a one-to-one mapping
between the power read on the PM and the optical power in sent to Bob. Finally the light
after the OA is sent to a PC used to control the polarization before sending the light into the
signal port of the 90◦ optical hybrid. The two pairs of in-phase and out-phase optical signals
are sent to two InGaS Balanced Photoreceiver (PDB480C-AC) with 1.6GHz of bandwidth.

This setup can be further improved using all polarization maintaining fiber components,
removing the need of 3 polarization controller for polarization stabilization and greatly
enhancing the entire stability.

6.3.2 The electronic setup

The balanced photoreceivers in the receiver’s setup have a bandwidth of 1.6GHz (3db point).
In order to exploit all the bandwith for the protocol, a fast RF signal with a similar frequency
has to be sent to the phase modulator that switches between |α〉 and −|α〉.

In our lab the only instrument able to produce square pulses at similar speeds is an FPGA.
The specific FPGA used for this experiment is equipped with several SerDes (Serializer-
Deserializer) that drive high speed transceivers, able to operate up to 12.5GBps. We imple-
mented on the FPGA a pseudo random number generator (PRNG) based on linear feedback
shift registers characterized by the following polynomial:

x31 + x28 + 1 (6.15)

This PRNG is commonly called PRBS31 and is used in classical communication for Bit
Error Rate Tests (BERT). Sequences of 10bits generated by the PRNG are then sent to the
SerDes using the global clock at 125MHz. The SerDes takes the data from a 10 bit parallel
interface and sends the serialized data to an high speed transceiver. Here, using a dedicated
programmable clock at 625MHz, a random sequence at 1.25Gbps is obtained at the output
of the SMA connector relative the transceiver. A screenshot of the electrical signal is shown
in Fig 6.5

Unfortunately, the limited voltage swing of the signal and the limited current provided
by the FPGA, cannot directly drive the phase modulator. Then the signal is sent to a 20 GHz
RF amplifier by iXblue, before entering the phase modulator. The phase shift applied by the
phase modulator is then adjusted by adjusting the gain of the amplifier, which changes the
amplitude of the generated RF signal.

At the receiver side, the RF signal generated by the balanced phtotodetectors are sampled
and digitized by Tektronix DPO70004 Oscilloscope with 4GHz of analog bandwidth, 25GSps
per channel of sampling rate and 8 bit of vertical resolution. Since the Oscilloscope runs a
full version of Windows 10, the data are acquired in bursts in the memory of the oscilloscope
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Figure 6.5: Eye of the PRBS31 signal emitted from the FPGA

and directly processed on board via a python script. We also sample a copy of the RF signal
sent to the phase modulator for synchronization purposes.

6.3.3 Postprocessing software and analysis

Since the signal and LO travel in different fibers and no active phase stabilization is present,
the relative phase between the two pulses is subject to drifts over time. From the point of
view of the retrieved data, this means that the two gaussian distributions relative to |α〉 and
−||α〉〉 will start to rotate around the center of the phase space, keeping fixed their overlap
and their distance from the center. This effect is compensated by the analysis software that
performs a sort of phase tracking algorithm and adapts the discretization of the heterodyne
measurement (shown in Eq. 6.11) to the recovered relative phase.

The entire acquisition is divided in "chunks" of n samples, for each chunk we calculate
the centroid of each distribution. Then we calculate the line that connects the two centroid
and the line normal to this which passes through the middle point. These last two lines
are used as a new reference frame for Q and P respectively and the heterodyne POVM is
discretized respect this new reference frame. A picture of the recovered frame is shown in
Fig. 6.6

Then we calculate the number of events nx b for each of the p(b|x). After repeating the
procedure for all the "chunks" we sum all the nx b and calculate the p(b|x). We keep track of
the direction of the phase rotation in order to assign the events to the correct class.

6.4 Results

With the setup described in the previous sections we performed the experiment for different
values of µ= |α|2. The value of µ was estimated for each run using the conversion from
the measured optical power obtained by the calibrated PM in the signal arm. The µ was
adjusted using the VOA positioned before the BS and the PM.

With the value of µ we could estimate δ and insert it into the SDP. The p(b|x) were
calculated using the method described in Sec.6.3.3.
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Figure 6.6: Results obtained from the phase tracking software

The obtained results are shown in Figure 6.7
In the upper panel we show the theoretical and experimental value for p(0|0) as a

function of µ while in the lower panel we show the results of the SDP. In both cases the
experimental values are well below the ones predicted by theory. In particular the maximum
theoretical Hmin(X |E) is 0.23 bits per measurement, while experimentally we could only
reach 0.078 bits per measurement. However this is an expected result. The theoretical value
are calculated for an optimal receiver which is not affected by any loss, noise and whose
detectors are 100% efficient. In a real implementation unfortunately all these effects are
unavoidable and contribute to a worse discrimination of the incoming states. This reduces
the value of p(0|0), which in turn reduces the certifiable Hmin(b|E).

In order to understand what is the magnitude of these non-idealities we fitted the exper-
imental probabilities to a model where noiseless but inefficient detectors (with efficiency η)
are used for the heterodyne detection. The MLE fit returned a value of η=0.171± 0.002.
With this value inserted in our theoretical model we run again the SDP and we see that
experimental data and theoretical predictions perfectly agree.

6.5 Conclusions

In this chapter we have presented a new implementation of the Semi-DI QRNG protocol
based on the overlap assumption described in [85]. The novelty of this implementation is
the heterodyne detection, which offers some key advantages if compared to experiments
employing single photon detectors [85, 86] or homodyne detection[139]. When compared
to the first one it shows higher rate and lower cost, since commercial SPD are more expen-
sive than PIN photodetectors and cannot sustain detection rates over 10 MHz. Instead, fast
balanced detectors used for the heterodyne setup, are commonly used up to 100 GHz in
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Figure 6.7: Results obtained from the phase tracking software

classical communications [141]. If compared to homodyne detection, it solves a critical prob-
lem related to phase stabilization. Since homodyne can measure only one quadrature, it is
necessary to implement a fast and active phase stabilization system that constantly locks the
phase between the two states |α〉 ,−|α〉 and the strong LO. Otherwise, the distinguishability
of the projection of the two states on the quadrature sampled by the homodyne will decrease,
up to the limit case when they are 90◦ shifted, and the two projection completely overlap.
This problem is naturally avoided by the heterodyne, since the measurement directly sam-
ples both quadratures and the state’s discrimination can be done in post-processing using a
software-based phase tracking.

In order to show the practical advantages of heterodyne detection, we have implemented
experimentally tested the protocol with an all-fiber setup working at 1.25GHz of repetition
rate.

The results show that unavoidable losses and excess noise have an impact on the achiev-
able randomness certification, which is almost 3 times lower than what is expected from
theory. Still, the system is able to correctly work at high speed without the need of an active
phase stabilization, making it a practical solution for Semi-DI QRNG.
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CHAPTER 7

Introduction to Quantum Key Distribution

The capability of safely transmitting information over untrusted channels is of fundamental
importance for any security application. Nowadays, both symmetric and asymmetric encryp-
tion schemes are commonly used, but unfortunately they cannot guarantee an unconditional
security. Their security, in fact, is based on assumptions on the maximal computational
power that an attacker could have. However, new theoretical discoveries or new techno-
logical developments, could suddenly make this methods insecure. From this point of view,
a big threat for most of the classical cryptography is represented by quantum computers.
Many quantum algorithms, such as the prime factorization discovered by Shor [142], can
exponentially reduce the time needed to crack actual systems seriously threatening all the
security framework that is used daily in our society.

Quantum Key Distribution (QKD), together with one-time-pad, can provide a definitive
solution to this problem. In this case, the laws of quantum mechanics permit to bound the
information that a possible attacker has gained during the key transmission, certifying the
security of the distributed keys. In this case the security is unconditional and is not affected
by the attacker’s computational power, nor it will be in the future.

QKD, proposed by Bennet and Brassard in 1984 [143], is probably one of the first
application of quantum information theory and undoubtedly gave an impulse to the entire
field. Nowadays, it reached an high maturity and is commercial technology [144].

In this Chapter we will briefly introduce the basic concepts of QKD and describe the
BB84 protocol. A more detailed description can be found in the reviews [145–147]. For
what concerns the security analysis of QKD, a modern and comprehensive description can
be found in [91] for the asymptotic case while in [96] a discussion on finite-size effect can
be found.
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7.1 Unconditional security: The one time pad and the key ex-
change problem

While most of the cryptographic methods that are commonly used nowadays only provide
computational security, there is a classical (and old) encryption scheme that has proven to
be secure against any attacker. This is the Vernam cipher or one-time pad (OTP),invented
in 1882 by Frank Miller but patented in 1919 by Gilbert Vernam. In this cipher, the original
message is represented as binary string m. Then the ciphertext c is obtained by performing
a bitwise XOR operation between m and random key k with the same number of bits of the
original message:

c=m⊕ k (7.1)

where the ⊕ is the bitwise XOR operation. The decryption of the ciphertext is as simple as
the encryption: is necessary to XOR c again with the key k since:

c ⊕ k=m⊕ k⊕ k=m⊕ (k⊕ k)=m (7.2)

Despite its simplicity, the OTP was proven to be unconditionally secure by the father of
modern information theory, Claude Shannon in 1948 [148]. Intuitively, if an attacker tries
to bruteforce the ciphertext c, he will obtain as recovered message an possible bitstring with
the same length of c, an so we will not be able to discriminate the legitimate message m
from the other strings.

However it is mandatory for the security of the protocol that the key k is completely
random, never reused and kept secret, otherwise information about k is leaked and can be
used to decrypt the messages. Then keys as long as the message are required to be shared
between the users in advance, kept secret and destroyed as soon as their are not required
anymore.

Thus, while the OTP gives a perfect method to encrypt a message, it only shift the
problem to the key distribution, making it extremely unpractical.

7.2 A quantum solution to key distribution problem

Quantum Key Distribution exploits the peculiar laws of quantum mechanics to provide a
solution to the key distribution problem, allowing two parties, typically called Alice and Bob,
to share a random and secure string of bits through an insecure quantum channel and an
authenticated classical channel.

The first idea of Quantum Cryptography was proposed by Stephen Wiesner in 1970 and
then published in 1983 [149]. However, the first protocol for a secure quantum communica-
tion was proposed by Charles H. Bennett and Gilles Brassard in 1984 [150] and since then
is known as BB84. The BB84 exploits the exchange of single quantum particles between
Alice and Bob for the exchange of the secret key. The security in this case,is guaranteed by
the properties of quantum mechanics, and thus is conditioned only on fundamental laws of
physics on being correct. These types of protocols where Alice encodes the key in a quantum
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system and sends it to Bob are typically called prepare and measure. However, in 1991 A.
Ekert showed that also the entanglement between two particles could be used to share a
key[151]. In this case an entangled source is placed between Alice and Bob that receive
and measure one particle of the entangled pair each. For these types of protocols, called
entanglement-based, security is assured by the violation of a Bell inequality and can be
implemented in a Device-Independent way [152].

In the next section we will take the BB84 as an example to describe the various steps of
a typical prepare and measure QKD protocol

7.2.1 The BB84 protocol

The two users that want to share a secret key, Alice and Bob, need to have access to an
untrusted public quantum channel and an authenticated classic channel.

Figure 7.1: Graphical representation of the polarization implementation of the BB84 protocol.
Adapted from [153]

The first step is the quantum transmission. During this step Alice encodes a random
sequence of bits in a qubit, using randomly one of two mutually unbiased bases, Z and X.
In the original BB84 the encoding is done with equal probability, but this probability can be
biased [154] in order to increase the efficiency. The prepared qubits are sent to Bob via the
quantum channel and Bob randomly measures the qubits in Z or X (if he uses the efficient
BB84[154] also the measurement probability is biased).

Then they perform the sifting: Bob publicly announces the bases used for the measure-
ment and Alice will tell for which bits they used different bases and they have to discard.
They are left with the sifted bits.

After that they perform the parameter estimation: they publicly announce a subset
of the sifted bits and they calculate the Quantum Bit Error Rate (QBER), that is used to
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estimate the amount of information leaked to Eve during the quantum transmission phase.
If this quantity is above a threshold value, they cannot certify the security of the key and the
protocol is aborted. Otherwise, they proceed to the error correction.

During the error correction they interactively share a small portion of their strings in
order to correct any mismatch between the two strings. At the end of this procedure they
are left, except for a probability εc, with two identical strings.

Finally they perform privacy amplification. This procedure is equivalent to the random-
ness extraction discussed in Sec 2.4.3. By measuring the quantum states and sniffing the
communication during the previous steps, the attacker could have partial knowledge about
the key. Luckily this information can be bounded and erased using a strong randomness ex-
tractor. Then, after estimating the smooth min-entopy Hmin(X |E) of their string conditioned
on the attacker’s information, Alice and Bob apply the same a strong extractor to their string.
The resulting (shorter) strings are now, up to some security and correctness parameter εs,εc,
secure and identical.

7.3 Security

Informally, the security of the BB84 can be related to three facts:

• Alice sends a set of non-orthogonal states

• The no-cloning theorem

• Information gains implies perturbation in quantum mechanics

Intuitively, if Alice encodes the key in non-orthogonal states, for the no-cloning theorem,
Eve can’t perfectly copy the quantum state of the transmitted qubit and, if she tries to do it,
the state she obtains necessary contains errors. Instead, if she tries to measure the quantum
state, she needs to interact with it, introducing errors which can be revealed by Alice and
Bob.

This short discussion, however, is far from a formal and rigorous mathematical proof of
security.

The first security proof for the BB84 under arbitrary attacks was presented in [155] and
then refined by Shor and Preskill in [156] using the properties of CSS codes. Here the
authors show that the achievable secure key rate in the asymptotic limit can be expressed
as:

rsec=1− 2h(Q) (7.3)

where h(x) is the binary entropy and Q is the QBER. This means that the BB84 is robust and
can distill a secure key for QBER up to 11%.

Later, in 2005 Devetak and Winter derived a general asymptotic bound for protocols
with one-way direct reconciliation for the classical post-processing:

r=H(A|E)−H(A|B) (7.4)

where H(X |Y ) is the conditional von Neumann entropy. This formulation gives a profound
insight to the physics of the problem: the first term H(A|E) is the conditional entropy of
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Alice’s string conditioned on Eve’s side information E and represents the ignorance of Eve
about Alice string. The second term H(A|B) instead represents the ignorance of Bob about
Alice’s string. Then, the infinite key rate can be understood as the information that is left
after privacy amplification ( that depends on H(A|E) ) minus the information that we have
to disclose in order to correct the mismatch between Alice and Bob’s string ( that depends
on H(A|B)).

In the same period, Renner developed a complete security framework for QKD based on
the concept of composable security and derived for the first time a finite-key security proof
[91]. After that tighter bound in the finite regime were derived, which exploited the EUP
[157].

7.4 Assumptions and attacks

We have stressed that QKD is able to guarantee an unconditional security against any attacker
constrained by the laws of physics. However,unconditional security should not be confused
with absolute security, which can never be obtained [158].

The security of QKD holds under a set of assumptions[158]:

• Eve cannot intrude into Alice’s and Bob’s devices to access either the emerging key or
their choices of settings

• Alice and Bob must trust the random number generators that select the state to be sent
or the measurement to be performed.

• The classical channel is authenticated with unconditionally secure protocols, which
exist [97]

• Eve is limited by the laws of physics. In particular, has to obey the whole of quantum
physics

• The theoretical model and the experimental implementation of the devices has to
match. In a certain sense, this require to trust the devices used in the protocol (a
condition similar to the one discussed in Chap 2)

If one of these assumptions is not respected, the security of the entire protocol cannot be
guaranteed. This last assumption in particular is extremely hard to enforce in any practical
scenario, since any real device will inevitably slightly deviate from any theoretical model.

In the years, these imperfections have been successfully used to compromise real QKD
systems. These attacks usually exploit the imperfections of Alice preparation stage, or flaws
in of Bob’s detectors.
One of the common attacks is called Photon Number Splitting (PNS) . Despite the efforts
to develop on-demand true single photon sources, such sources are still not commercially
available and weak coherent pulses (WCP) from a laser source are typically used. Unfortu-
nately, their Poissonian statistics always yields a non-zero probability multi-photon emission.
These multi photon events can compromise the security since, Eve can simply block all the
single photon events, while in the other case she forwards one photon to Bob and she can
measures the others, without disturbing Bob’s system [159]. Luckily, new protocols based
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on the decoy technique, are not affected by this issue [154, 160]. Another common attack
is the Trojan horse attack. Here Eve sends bright pulses in the trasmitter or receiver setup
and, by looking at the reflections, she can learn the modulation they used and their settings
[161]. In this case the assumption of no information leakage from the lab is not respected.
Probably the most successful attack is the Detector’s blinding attack. This type of attack
has been used to break also also commercial QKD systems [162]. Here the attacker shines a
continuous bright laser in the SPAD modules at the receiver, bringing them from the Geiger
mode to the linear mode. In this regime, Bob’s detectors are not single photon detector
anymore: they click only if another bright pulse is shot at it, regardless of the quantum
properties of that pulse. In this way Eve has the full control of Bob’s detector and can make
it click when she wants, compromising the protocol. This attack can be mitigated, for exam-
ple, by randomly changing the efficiency of the detectors [163] or employing new protocols,
such as Measurement Device-Independent [164, 165], which are not affected by this issue.

Thus, also if QKD is unconditionally secure, the security of real implementations can be
severely compromised. In order to mitigate the problem few solutions can be developed.
First, is possible to improve security proofs in order to include imperfections of the devices
relaxing the assumptions. This path however, requires to consider all the imperfections, also
the ones still unknown, making it quite impractical. From a technological point of view, an
option could be to develop devices with smaller imperfections respect the ideal one.
Finally, a third solution is to push toward the theoretical and experimental development of
Device-Independent protocols, whose security does not relies on the devices used.



CHAPTER 8

QCosOne: A daylight free-space QKD prototype for future satellite
terminals

Space-based quantum key distribution would allow, in the near future, secure communica-
tions between parties over continental distances, complementing short-range fiber-based
quantum networks. A major challenge in the implementation of a global network is to
render space-to-ground quantum links compatible with such fiber-based networks, which
require, for example, effective daytime operation. Moving the operating wavelength of
space quantum communication to the telecom C band allows to fulfill these requirements,
but further demonstrations and systems are still necessary.

In this chapter I’ll describe the QCosOne project, realized in collaboration with the Italian
Space Agency (ASI) and Scuola Sant’Anna di Pisa, were we have developed a full prototype
for daylight quantum key distribution. The prototype, based on polarization encoding and
operating at the wavelength of 1550 nm, has been realized exploiting both fiber-based
modulator and integrated silicon photonics for the transmitter architecture.

The system has been tested over a 145m-long free-space channel in Padua, during
severals sunny days and the performance of both transmitters have been compared. In
particular, the integrated transmitter showed a lower intrinsic QBER and higher stability
making it possible to reach a secret key rate exceeding 30 kbps in daylight when taking into
account finite-size effect.

The clear superiority of integrated photonics versus the discrete-components counterpart,
opens the way for designing compact and efficient optical payloads for satellite QKD systems,
compatible with today’s telecom infrastructure.

Some contents of this chapter are part of our work [2].
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8.1 Towards daylight satellite QKD systems

QKD systems in the last few decades have rapidly moved from proof-of-principle demon-
strations to mature commercial products, capable of working without interruptions over
hundreds of kilometers. Recently, thanks to new technological developments, fiber-based
QKD has been demonstrated at distances of over 420km[166]. Moreover, new protocols such
as Twin-Field introduced in [167], have been showed to overcome the PLOB bound [168]
that limits the achievable rate of point-to-point quantum communications in absence of
quantum repeters. The first proof-of-principle implementations of such protocols[169–171]
showed that distances of more than 550km can be achieved with today’s technology.

The implementation of QKD over longer fiber distances, however, would necessarily
require quantum repeaters, whose experimental realization is still complex and challeng-
ing[172].

With today’s technology a more practical solution is represented by Satellite QKD. In
fact, in satellite-ground links the major effect on losses and turbulence is only caused by the
effective thickness of the atmosphere of about 10km, making it able to reach distances much
longer than what is possible with optical fiber.

Despite the recent demonstrations also realized in satellite-to-ground links [173–176],
free-space QKD-technology is currently limited and cannot compete with its fiber-based
counterpart [166, 177–179], both in terms of performance and reliability of the link. Hence,
in the vision of a continental-scale quantum network (or quantum internet) [180–183])
where both types of link are required to jointly operate, certain key requirements for free-
space QC can be formulated, as i) full-day functionality, ii) compatibility with standard
fiber-based technology at telecom wavelength, and iii) the achievement of stable coupling
of the free-space signal into a single-mode fiber (SMF).

Regarding i), the background noise due to sunlight poses a serious limitation on the
achievable performance of day-time free-space QC, limiting most of the demonstrations
obtained so far to night-time. For this reason, various studies have focused on the feasibility
of daylight QKD [184–189]. Most of them exploited light in the 700-900 nm band which
allows for for a good atmospheric transmission, and to exploit commercial low noise silicon-
based single-photon avalanche diodes (SPADs). To reduce the background noise due to Sun
and to maintain, at the same time, a good efficiency in the atmospheric transmission, the
choice to use light signals in the telecom C-band (around 1550 nm) has only very recently
started to be investigated [188, 189].

Moving the operating wavelength to the telecom band comes with (at least) two ad-
vantages. Firstly, it is the standard choice in fiber-based optical (classical and) QC, hence
fulfilling the requirement ii). Secondly, it is compatible with integrated photonics [3, 190–
192], which represents a promising choice for designing light, compact, scalable and low
power-consuming devices suitable for portable QKD transmitter and to design satellite opti-
cal payloads [193, 194].

Furthermore, to match the requirement iii) it is necessary to actively compensate for the
optical aberrations (at least the beam wander and angle-of-arrival fluctuation) introduced by
atmospheric turbulence, which is experimentally challenging. However, a stable coupling of
the light signal into a SMF has the advantage of allowing the use of commercially available
superconductive nanowire single-photon detectors (SNSPDs), which represents the standard
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for fiber-based state-of-the-art QKD demonstrations [166, 178, 195].
Taking into account the previous points, we can see the QCosOne project as a ground

demonstration aimed to evaluate problems and performances of future daylight satellite
links.

8.2 The big picture

The realization of a complete free-space QKD system, requires the development of many
different components that are interfaced to each other and need to work together during
the key exchange. In order to reduce the total complexity, we decided to take a modular
approach ad divide the prototype design in different logic units. Each unit is responsible
of a specific task and includes the interfaces necessary to correctly communicate with the
other units. This approach has two fundamental advantages: first, after the units and the
interfaces are defined, each unit can be developed in parallel. Secondly, if at any time one
of the units needs to be replaced or upgraded, there won’t be compatibility issues as long as
the interfaces are correctly implemented. In QCosOne we have 5 fundamental units that are
schematically represented in Fig 8.1: QKD source, QKD receiver, PAT (Pointing, Acquisition,
Tracking), Syncronization and Telecom (or classical channel)

Figure 8.1: Schematic representation of the different units in the QCosOne project

In the next sections each unit will be discussed in detail.

8.3 QKD source

8.3.1 Protocol and implementation

We chose to realize the 3-state 1-decoy version of the efficient BB84 protocol proposed by
Rusca et al. [196]. This protocol has been chosen mainly for two reasons: first, for the typical
parameters of our experiment, this protocol yields an higher Secret Key Rate (SKR) in finite-
size regime respect the 2 decoy analysis presented in [197]. Additionally, the generating
only two intensity levels and three polarization states drastically reduces the complexity of
the experimental implementation. In fact, both for the bulk and the integrated QKD source,
only a digital signal is required for the intensity and for the polarization modulation. The
generation of 2 decoy and 4 states of polarization would have required an high-speed DAC,
increasing the complexity of the electronic driving system.

The protocol works in the following way: Alice randomly encodes a weak coherent
pulse either in the Z={|0〉 , |1〉} basis, with probability pZA , or in the X={|+〉 , |−〉} basis,
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with probability pXA =1− pZA . The basis X is Mutually Unbiased with respect to Z, namely
| 〈0|±〉 |2= | 〈1|±〉 |2=1/2. In our implementation, we have chosen |0〉 := |L〉=(|H〉−i |V 〉)/

p
2,

|1〉 := |R〉=(|H〉 + i |V 〉)/
p

2 and |±〉 :=(|H〉 ± |V 〉)/
p

2. Alice needs to generate only three
polarization states, |0〉 and |1〉 with uniform probability for the Z basis, and |+〉 for the X

one. The intensity level of the pulse is randomly chosen between two values, µ1 and µ2, with
probabilities pµ1

and pµ2
=1− pµ1

, respectively. The two values can differ between pulses
prepared in X and Z (µX1 6=µ

Z
1 , µX2 6=µ

Z
2 ), because we carry out the yield analysis separately

in the two bases [198]. This procedure allows to detect a possible photon-number-splitting
attack [199].

Bob, at his site, measures the incoming photons in the two bases Z and X, with proba-
bility pZB and pXB =1− pZB , respectively. After the photons exchange, Alice and Bob announce,
for each detected event, their basis choices. Then, nZ raw sifted bits are obtained by com-
paring the detections in the Z basis, while the ones from the X basis are used to estimate
the information leakage toward a potential eavesdropper.

After generating a raw key, Alice and Bob proceed with the error correction (EC) and the
privacy amplification (PA) steps, ultimately obtaining, for each PA block, a secure secret key
of l bits, which is bounded by [196]:

l≤ sZ,0 + sZ,1(1− h(φZ))−λEC

− 6 log2(19/εsec)− log2(2/εcor) , (8.1)

where sZ,0 and sZ,1 are the lower bounds on the number of vacuum and single-photon
detections in the Z basis, φZ is the upper bound on the phase error rate corresponding
to single photon pulses, h(·) is the binary entropy, λEC= fECnZh(QZ) is the total number of
bits revealed during the EC step — which depends on the reconciliation efficiency of the
EC algorithm (Cascade, in our case fEC≈1.06), the number of raw key bits nZ, and on the
QBER QZ — and εsec=10−10, εcor=10−12 are the secrecy and the correctness parameters,
respectively [196].

The classical postprocessing, that includes the classical communication between Alice
and Bob, the error correction and the privacy amplification, is handheld by the telecom unit
and is performed by a software based on the AIT QKD R10 software suite by the Austrian
Institute of Technology (AIT)[200], .

8.3.2 Bulk source

The design goals of the QKD source were: portability and long-term stability. Since we were
planning to move the QKD transmitter outside the lab environment, we looked to transmitter
design that showed an high stability with respect to external perturbations. Moreover, the
ultimate goal was to develop a QKD transmitter for a future satellite payload, where space
and tuning are severely limited. The final design is presented in Fig 8.2.

The laser

The laser used for the experiment is a distributed feedback (DFB) laser module by Gooch&Housego,
with maximum optical power of 10mW, center wavelength of 1550nm and nominal FWHM
linewidth of 1MHz. The module integrates a TEC controller for temperature stabilization.
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Figure 8.2: Schematic representation of the working principle of the bulk QKD source

The module also integrates a bias-tee which can be used to directly modulate the laser
current via an RF signal. The maximum modulation bandwidth is 12GHz (3db point).

The laser is normally biased under threshold so that no stimulated emission occurs.
When an optical pulse is needed a short electrical pulse (≈350ps FWHM), generated by a
Xilinx X C7Z020 FPGA, and amplified by a wideband Monolithic InGaP HBT MMIC Amplifier
(6GHz BW) by Minicircuits, is sent to the RF port, directly modulating the current above
threshold. In this way the laser is gain-switched and short phase-randomized optical pulses
are obtained.

(a) (b)

Figure 8.3: a) RF pulse used for the direct modulation of the DFB laser, b) temporal histogram of
the produced optical pulses

The bias voltage, the temperature of the laser and the shape of the RF pulse affect the
dynamics of the laser changing the spectrum and the chirp of the emitted optical pulse. In
order to find the best parameters for the experiment, recorded the emitted spectrum with
an Optical Spectrum Analyzer while scanning the above mentioned parameters. In order
to reduce the spectral broadening and the chirp, before measuring the spectrum with the
OSA we filtered the light with a 100GHz commercial DWDM centered around channel 34
(1550.12nm). The results, showed in Fig.8.4 , are compatible with the description given in
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Figure 8.4: Spectrum of the filtered light as a function of the modulation parameters (the mismatch
of the wavelength respect the nominal channel of the WDM is due to a calibration offset of the OSA)

[201].
Finally, with the selected parameters we generate a stream of phase-randomized pulses

at 50MHz with ∼270 ps of FWHM.

Intensity modulator for decoy

The intensity modulation required for the decoy procedure is realized by a LN81S zero-chirp
intensity modulator (IM) by Thorlabs with an RF bandwidth of 10 GHz. The modulator is
made by an X-Cut Titanium Indiffused LiN bO3 crystal and integrates a polarizer, making it
able to support only the H polarization. The device features an RF port, a DC bias control
port and a monitor photodiode port. The RF port is used to modulate the light with time-
changing signals. The device has a typical Vπ at 1GHz is 5.6V for an input impedance of
Zi=50Ω. In order to be able to drive the modulator with signals coming from the FPGA, the
LV DS signals are amplified by a wideband InGaP amplifier by Mini-Circuits with a gain of
25dB and P1dB of 21dbm.

Unfortunately, LiN bO3 modulators are very sensitive to temperature, mechanical and
RF power drifts, which directly reflect in a unpredictable drift of the transmitted optical
power. While X-Cut crystals are far less sensitive than Z-Cut crystals, the effect is visible also
in our device. For this specific reason the device is equipped with an integrated monitor
photodiode, that measures part of the transmitted light and a DC bias port, which is able to
slowly change the relative phase, in order to compensate for the drifts in the output power.

In order to guarantee stability over time, we have developed a digital feedback loop based
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on a modified PID algoritm on a ESP32 micro-controller. The control system constantly read
the power of the monitor photoiode and control the DC bias voltage in order to compensate
any intensity drift.

The ESP32 microcrontroller, is mounted on a Adafruit HUZZAH32 board that features 18
12-bit Successive Approximation Register (SAR) ADC and 2 ∆−Σ 8-bit DAC. Unfortunately,
these analog interfaces cannot directly sample the monitor photodiode and drive the bias
port. The small photocurrent generated by the photodiode needs to be first amplified by a
transimpedance amplifier before being sampled by the ADC (which has a range of 0-1.1V).
The DAC on the other hand can only supply few mA and voltages from 0 to 3.3V, which are
not sufficient to drive the bias port (-8 to +8V). In order to provide the necessary analog
signals we have realized a transimpedance amplifier (TIA) and a differential amplifier (DA),
whose schematics are reported in Fig 8.5
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Figure 8.5: Circuit schematics of: a) the transimpendace amplifier used to amplify the photocurrent
of the monitor photodiode, b) the differential amplifier used to drive the bias port of the IM

The TIA employs an AD8512 precision and low noise op-amp, specifically designed for
photodiode receivers. Since we do not require high bandwidth, we don’t apply a reverse
bias to the photodiode, making it working in photovoltaic mode, reducing the photocurrent
noise. The feedback resistance is selected such that the output voltage matches the ADC
range. The feedback capacity of 22pF is necessary in order to avoid oscillations and ringing.
The DA employs an OPA552 high-voltage, high-current op amp for driving the bias port.
Since the OPA552 is stable only for gain ≥5 (which is higher than the required value of
±8V), the output is attenuated with a resistive voltage divider. Since we require a bipolar
output, but the ESP’s DAC can only provide unipolar output from 0 to 3.3V, we drive both
inputs of the DA with an independent DAC channel. When a positive output is required
the non-inverting input is driven and the inverting input is set to 0V, while when negative
outputs are required we do the opposite.

The PID algorithm is implemented directly in the ESP32, which is programmed with the
Arduino environment.

The results of the feedback control are presented in Fig 8.6
On the top panel we can see the typical time response of the PID, which is around 8s.

This value is limited by the chosen PID parameters and not by the electronics (which is able
to work up to hundreds of kHz). In the lower panel we can see the comparison between the
output power with and without the PID. When the PID is on, a constant optical power is
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Figure 8.6: In the top figure we can see time response of the PID to a setpoint change. In the lower
figure we can see the drift in output power of the IM with and without the PID.

maintained with fluctuations with 0.3%.

An alternative solution that is able to self-compensate the drifts thanks to its Saganc
configuration has been presented in [202]. Unfortunately, at the time, we were not aware
of this interesting and simple configuration.

In any case, after a proper mechanical and thermal insulation, we haven’t experienced
significant intensity drifts during the realization of the free-space QKD links and no active
feedback was necessary.

The polarization modulator

A common solution for the fast modulation of polarization in fiber is given the so called
"inline" phase-modulator configuration [203, 204].

In this configuration, diagonally polarized light is sent to a Z-Cut Titanium Diffused
LiN bO3 phase modulator. These phase modulators can support light travelling both in the
TE and TM mode of the waveguide, however the strength of the electro-optical effect is
different for the two modes (the effect in one axis is usually 3 time larger than the other).
So when an RF pulse (with voltage VRF ) is applied to the incoming state |ψ〉= 1p

2
(|H〉+ |V 〉)

the output state |ψ〉= eiφg (VRF )
p

2

�

|H〉+ eiφr (VRF ) |V 〉
�

acquires both a global phase eiφg (VRF ) and a

relative phase eiφr (VRF ) between the two polarization components. By properly tuning VRF all
the polarization states in the X Y plane of the Poincarè sphere can be generated. In particular
it is possible to generate |+〉 , |L〉 , |−〉 , |R〉 which are the states required for the BB84 protocol.

Unfortunately, Z-Cut LiN bO3 modulator are even more sensitive to thermal and me-
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chanical fluctuations than X-Cut modulators and an active stabilization (similar to the one
presented in the previous section) would have been necessary.

Instead, we decided to implement the double pass configuration with a Faraday mirror
(FM) described in [205] and schematically represented in Fig.8.2. In this configuration the
"inline" polarization modulator described previously is placed between the second port of a
circulator and a Faraday mirror. Since the FM "exchanges" |H〉 with |V 〉 any phase fluctuation
that occurs when the light travels from the circulator to the FM is exactly canceled out on
his way back from the FM to the circulator (for a formal discussion see [205]). Thanks to
this self-compensation, a long-term stability in the output polarization is ensured.

But this configuration provides another key advantage. The creation of three states of
polarization can be obtained by modulating only the optical pulse after this is reflected by
the FM by sending three different voltages V0,Vπ/2 and Vπ (or V−π/2 ) to the Phase Modulator.
This would require a fast DAC connected to the FPGA, increasing the cost and the complexity
of the electronic fronted. However, the same modulation can be obtained with a single digital
signal. If we modulate the pulse before it gets reflected by the FM the final state will acquire
a negative phase shiftφe, while if we modulate the state after the FM reflection it will acquire
a positive phase shift φl , and the final state will be |ψ〉= |H〉+ ei(φl−φe) |V 〉. The if we choose
VRF =Vπ/2, we obtain |L〉= |H〉 − i |V 〉 if the reflected pulse is modulated,|R〉= |H〉+ i |V 〉 if
the pulse before reflection is modulated, |D〉 if none of the pulses (or both) are modulated.

Clearly, this reduced complexity on the amplitude modulation of the electrical pulses
comes at the price of an higher accuracy required on the timing.

In our implementation we employed, a circulator followed by a Lithium Niobate phase-
modulator by iXblue Photonics, in which the input polarization-maintaining fiber is aligned
at 45◦ with respect to the fast-optical axis of the modulator followed by a Faraday mirror by
OzOptics. The RF pulses are generated by the FPGA and then are amplified by a wideband
InGaP amplifier by Mini-Circuits with a gain of 25dB and P1dB of 21dbm.

Each polarization state is characterized by an extinction ratio (ER) , that is the ratio
between optical power in two orthogonal polarization states, of at least 17 dB.

The limited ER (as discussed in [205]) is caused by the Polarization Mode Dispersion
induced by the crystal and the PM fiber of the Phase modulator connected to the circulator.

The stability of the polarization modulator has been tested and the results, presented
in Fig 8.7, show than an ER of up to 15db is maintained for ≈10min. The drift is mainly
caused by the fluctuation of the input polarization, caused by the temperature drift of the
circulator’s SM fiber. A circulator with PM fiber would solve the issue, at the expense of a
lower ER. A solution could be to connect the circulator’s PM fiber and the Phase modulator
PM fiber rotated by 90◦, so that part of the PMD is compensated.

Most of the drawbacks of this polarization modulator can be solved using the POGNAC,
described in Chapter 9. Unfortunately, at the time we did not came up with that idea yet.

The decoy estimation

The last section of the QKD transmitter is dedicated to the attenuation and check of the
mean photon number.

The optical pulses pass through a dense wavelength-division-multiplexer (dWDM) matched
with the one at the receiver for spectrally cleaning the signal wavelength. Then we have a
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Figure 8.7: Stability of the bulk polarization modulator.

variable optical attenuator (VOA), and a 99/1 fiber beam splitter (BS). The 1% output is
directed to an InGaAs/InP SPAD by Micro Photon Devices [206], while the 99% goes to the
transmitting telescope. The SPAD is gated with a 100 MHz clock generated by the FPGA
and synchronized with the 50MHz signal that drives the laser. The NIM signal generated by
the SPAD are converted with a NIM-TTL card and then recorded by a quTAU timetagger by
quTools. Since the quTAU cannot be clocked, we also acquire a decimated version of the
100MHz gating signal for synchronization.

Having calibrated the losses in the transmitter and in the transmitter telescope, the
timetags from the SPAD can be used to have a realtime estimation of the decoy levels µX,Z

1,2 .
This information is used both as as a check for the intensity drifts of the IM and for

setting the right parameters in the privacy amplification.
Finally, Fig 8.8 shows a photo of the portable QKD source during the first tests.

8.3.3 Silicon photonics quantum state encoder

Fiber modulators based on LiN bO3 crystals are an effective commercial resource for the
realization of a portable QKD transmitter. However, their price is rather expensive and in the
previous section we have seen that the performance they can offer, if not actively stabilized,
are rather limited for what regards both the stability and the extinction ratio. Moreover,
their spatial footprint cannot be further reduced without increasing the RF power required
to drive them.

All these points play an important role not only in satellite applications, where space,
power and tunability are limited, but also for a wider adoption of QKD that requires an
higher scalability and lower costs.

In the last few years, the huge development of Silicon Photonics[207, 208], mainly
driven by the datacenter industry, made it possible to realize stable, compact and low cost
photonic transceiver capable of working up to 30GHz, [209]. These capabilites, easily acces-
sible through MPW runs[210], motivated the development and demonstration of Photonic
Integrated Circuit (PIC) for quantum communications, both in discrete and continuous
variable [191, 192, 211].
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Figure 8.8: Photo of the bulk QKD transmitter

The long-term stability and possibility to shrink down the size of the QKD transmitter
down to such a small volume represented an attractive choice for designing portable trans-
mitters and payloads for satellite QC. Hence, we decided to develop, in collaboration with
ASI and Scuola Superiore Sant’Anna di Pisa, a compact Silicon PIC capable of performing
both the intensity and polarization modulation required for the implementation of the pro-
tocol described in Sec 8.3.1. The PIC was designed in-house and realized exploiting the
Europractice IC Service [210] offered by the IMEC foundry.

Now we will describe the design and working principle of the integrated QKD source,
presented in Fig. 8.9

Figure 8.9: Schematic representation of the integrated source with optical In/Out fiber connections
and required DC and RF signals. The components used are 2x2 MMI couplers (2x2C), Thermal Phase
Shifters (TPS), Fast carrier-depletion Phase Shifers (FPS), 2d-Grating Coupler (2DGC).
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PIC’s building blocks technology

The PIC comprises several interferometric structures exploiting standard building blocks
provided by the foundry, e.g. multi-mode interference (MMI) devices acting as 50/50 beam
splitters, slow thermo-optics modulators (TOMs, ∼kHz of bandwidth, DC modulation) and
fast carrier-depletion modulators (CDMs, ∼10 GHz of bandwidth, RF modulation).These two
types of phase modulators are the key elements that enable both polarization and intensity
modulation on the PIC. The TOM exploits the thermal dependence of the silicon’s refractive
index to change the phase of light travelling in the waveguide. In the PIC is realized by
depositing a metal close to the waveguide. The magnitude of the phase shift can be tuned
by changing the heat dissipated by the metal structure, which is controlled by an external
voltage source. Since the effect is driven by the thermal diffusion in the material, the 3db
bandwidth for the TOM is quite low, approx 10kHz. However, they show relatively low
Vπ=4V and they do not introduce modulation-dependent losses. The CDM instead exploits
a different physical mechanism to provide the phase-shift. The silicon waveguide is doped
with a P-type and N-type region,as shown in Fig 8.10: The doping creates a PN junction

Figure 8.10: Cross section of a doped carrier depletion modulator

across the waveguide, that behaves like a diode. When the junction is reverse biased, the
carrier concentration in the intrinsic region changes (gets depleted), changing the refractive
index of the waveguide. The maximum bandwidth achievable for this type of modulators,
mainly depends on the carrier mobility and can be higher than tens of GHz[212]. The Vπ
depends on the length of the modulators and is usually ≈14V mm−1. However, the change
of the carrier concentration in the waveguide changes also the absorption of the waveguide
and CDM exhibits modulation-dependent losses, which can be a problem in the realization
of a QKD source.

More details on the working principle of the components of the PIC and on the fabrication
process can be found in Refs. [191, 213, 214].

PIC design and working principle

Light is coupled from a standard SMF28e single mode fiber into the PIC via an 8-channel
SMF-array glued to the PIC’s grating couplers (GCs). Then an interferometric structure
realizes a Mach-Zehnder interferometer (MZI), and one of the output is sent to the next
structure on the PIC, while the second output is coupled out for monitoring purposes. In
this way we implement the amplitude modulation of the pulses, according to QKD protocol
(described in 8.3.1), which requires preparing pulses with two different intensities µ1 and
µ2, with µ1>µ2. Each arm of the MZI contains a slow TOM and a fast CDM for the phase
modulation. A DC-bias voltage is applied to to one of the TOM, fixing the working point of
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the MZI at the lowest intensity level µ2. When µ1 is required an RF signal is sent to one of
the CDM that rapidly changes the relative phase and the intensity at the output of the MZI.

Then the light is sent to a second structure that allows to realize the polarization modu-
lation. The structure has another MZI, similar to the one just described, then both out-
puts of the MZI are followed by a TOM and ad CDM each before being combined in
a 2-dimensional grating coupler (GC2d).The GC2d launches the light coming from the
two arms into orthogonal porlazation modes, thus converting the path-encoded informa-
tion used within the PIC into the polarization-encoded information at the output of the
GC2d. Referring to the Bloch sphere, the colatitude θ of the produced polarization state
|ψ〉=cos (θ/2) |H〉+ eiϕ sin (θ/2) |V 〉 is controlled by acting on the internal MZI, whereas the
longitude ϕ is set by acting on the external phase modulators. Therefore, by voltage biasing
the TOMs of the inner MZI the balanced superposition of horizontal and vertical polariza-
tion |+〉=(|H〉+ |V 〉)/

p
2 is created. If no RF signal is applied, the output state remains |+〉,

whereas, by applying an RF signal on the external CDMs, a π/2 phase shift can imposed
to either arm, respectively creating the states |L〉=(|H〉 − i |V 〉)/

p
2 or |R〉=(|H〉+ i |V 〉)/

p
2.

In this way, we obtained the three states required by the protocol for the key-generation
basis Z={|0〉 , |1〉}, where |0〉 := |L〉, |1〉 := |R〉, and the control basis X={|+〉 , |−〉}, with
|±〉 :=(|H〉 ± |V 〉)/

p
2. A graphical representation of the modulation scheme is presented in

Fig 8.11

CDM1CDM2

Figure 8.11: States generated by the PIC source. If no control signal is sent the pivotal |+〉 state is
generated. If the upper CDM is activated, a π/2 shift is applied to φ and |R〉 is generated. If the
lower CDM is activated a ′π/2 shift is applied and |L〉 is generated.

Another possible encoding would have required the use of only the internal MZI: if the
internal TOM are biased in a way to generate |+〉 without RF modulation, then by applying a
π/2 modulation to the internal CDMs one can generate |H〉 and |V 〉. Unfortunately, our PIC
were affected by a fabrication issue that limited the 2x2 MMI extinction ratio and prevented
us to use this encoding.

The light at the output of GC2d is coupled into one of the 8-channel of the SMF-array
and then sent over a standard SMF28 single mode fiber.
The size of the PIC is about 5 mm × 5 mm, while the complete package is compact within
a total volume of 1.2 cm × 1.5 cm × 1.2 cm. A picture of the packaged PIC soldered to
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Figure 8.12: Photo of the PIC assembled on the connectorized RF PBC.

a standard 7 cm × 8 cm control board is presented in Fig. 8.12. The package has been
designed, developed and assembled to the purpose in-house (featuring 20 DC and 6 RF
ports), so as to make it rugged, portable and easily usable in field experiments.

Characterization of the PIC

The intensity modulation capability of the PIC has been characterized sending bright laser
light into the chip and recording the intensity of the output light with a fast biased photo-
diode. The CDM in the first MZI were driven by a PRBS generator sending Non Return to
Zero (NRZ) modulation at 10 Gbit/s in push-pull mode (i.e. sending the signal in one arm
and the negated in the other). The signal of the photodiode has been then recorded by a
fast oscilloscope. The results, presented in Fig 8.13, showed an extinction ratio of 10dB at
10Gbps.

We also characterized the modulation at the typical frequencies used in the experiment.
The voltage used for the biasing of the TOM was 6.69V, while RF pulses at 100MHz with
2.53V of amplitude and 2ns of width were sent to the CDM. With this configuration we
obtain a ratio µ1/µ2=5.2 which is often the optimal one for the experimental parameters
of our channel.

As anticipated, our PIC were affected by a fabrication issue that limited the 2x2 MMI
extinction to 14.7dB. This issue has a big effect on the polarization modulation stage since
in this way not all the states on the Bloch sphere can be generated. By sweeping the voltage
of the internal and external TOM in the polarization modulation stage and analyzing the
output with a polarimeter, it’s possible to sample the states on the Bloch sphere. The results,
presented in Fig 8.14 clearly show two "holes" in the Bloch sphere

For this reason we were forced to employ the encoding where |+〉 , |L〉 and |R〉 are gener-
ated.



8.4
QCosOne: A daylight free-space QKD prototype for future satell ite terminals
Beacon and PAT 123

Figure 8.13: The eye diagram shows an ER of 10dB in the output’s optical intensity when the IM is
driven with 10Gbps signal

Finally, we connected the PIC with the laser source described in Sec 8.3.2 and the
quantum state analyzer (which measures the polarization of the generated states with a set
of SNSPD), in order to evaluate the stability and extinction ratio of the polarization state.
The internal TOM was driven with a DC voltage of 2.19V , while the external CDM were
driven with square pulses 5ns wide at 50MHz of repetition rate, with an amplitude of 10.64V
and 9.8V .

The results show an extinction ratio up to 25db (or a QBER below 0.3%) and long-term
stability of over an hour. The reported QBER is presented in Fig 8.15

8.4 Beacon and PAT

The Pointing, Acquisition and Tracking (PAT) unit consists of the transmitter and receiver
telescopes and their respective optical setups. The main goal of the PAT unit is to provide a
stable optical link over a turbulent free-space channel.

8.4.1 Optical setup

At the transmitter telescope (Alice), the quantum signal at 1550nm, a ‘power’ beacon at
1545nm and a ‘pointing’ beacon at 1064nm are coupled to a SMF28 single-mode optical fiber
via two wavelength-division-multiplexers (WDM). The three beams are collimated at the
output of the fiber and magnified to a beam diameter of 120mm via a F#=7.5 Galileian
telescope. A 635nm beacon is also coupled to the beam before magnification via a dichroic
mirror (DM), to serve as the coarse-alignment transmitter beacon.

The free-space link is realized over 145m in the urban area of the city of Padova in Italy,
at a height of about 10m above ground. We realized a continuous operation of the QKD
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Figure 8.14: The limited ER of the 2x2 MMI prevents the generation of states close to |H〉,|V 〉

system throughout the day (from 11am to 8pm) over several days in the month of April
2019. The coarse geometric alignment over the channel is maintained by a forward loop
with the 635nm transmitter beacon and receiver camera, and a backward loop with a 850nm
receiver beacon and transmitter camera. An automatic system corrects for low frequency
pointing drifts acting on the transmitter telescope mount.

The receiver (Bob), is a 315mm F#=15 Dall-Kirkham telescope. As the receiver is larger
than the incoming transmitter beam, the light is coupled off-axis to avoid losses due to the
central obstruction. The beam is collimated via an achromatic doublet lens fcol l=75mm. A
fast-steering mirror (FSM - Smaract STT25.4) is placed on the image plane of the entrance
pupil which is generated after the collimating lens at a distance approximately equal to fcol l .
A DM separates the ‘pointing’ beacon from the ‘power’ beacon and quantum signal. The
1064nm beam is focused by a fPSD=250mm plano-convex lens onto a silicon lateral-effect
position-sensitive detector (PSD - On-Trak Photonics 2L4SP) which has an active area of
4mm×4mm and a resolution of 61nm. The ‘power’ beacon and quantum signal pass through
a 12nm band-pass filter centered at 1550nm (50% transmission), are coupled to a SMF28
single mode optical fiber, and are eventually separated by a WDM. The quantum signal is
sent to the quantum state analyser stage, while the 1545nm beacon power is measured with
a photodiode to monitor the fiber-coupling efficiency.

An automatic system manages automatically the alignment and power optimization be-
tween the two telescopes. In particular, the software installed both at the receiver and
transmitter are able to communicate over Internet and the transmitter’s mount is automati-
cally moved with the objective to maximize the optical power received by Bob.

Figure 8.17 shows a photo of the setup during a preliminary field trial.
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Figure 8.15: Experimental QBER of the states produced by the PIC source at 50Mhz

Figure 8.16: Experimental setup of Alice and Bob terminals.

8.4.2 Angle-of-Arrival correction system.

The closed-loop Angle-of-Arrival (AoA) correction system is a two-dimensional proportional-
integral-derivative (PID) control based on sensing the tip and tilt fluctuations via the X and
Y displacement of the centroid of the ‘pointing’ beacon on the focal plane at the PSD, and
applying a correction with the two-axis FSM.
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Figure 8.17: On the left a photo of the transmitter telescope, on the right the optical setup of the
receiver telescope

The current output of the PSD is converted by a trans-impedance amplifier (On-Trak Pho-
tonics OT301) and fed to an auto-aligner module (Thorlabs KPA101) which performs a
digital PID control on the position error signal. The parameters of the PID were adjusted
via software to optimize the stability and minimize the residual error. The ±10V analog
output of the KPA101 is given to the FSM controller (Smaract AVC) which generates the
100V direction and speed driving signals for the piezo-electric actuators of the mirror.

8.4.3 Characterization of the free-space link

10 -1 10 0 10 1 10 2

Frequency [Hz]

-140

-120

-100

-80

PS
D

 [d
B/

H
z]

X axis

10 -1 10 0 10 1 10 2

Frequency [Hz]

-140

-120

-100

-80

PS
D

 [d
B/

H
z]

Y axis

Figure 8.18: Centroid fluctuation on the PSD (left) and its power spectral density (right). Red,
control ‘off ’. Blue, control ‘on’.

We realised an optical model of the receiver telescope in order to assess the performance
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of the feedback system. As shown in Fig.8.18 (left), the RMS of the centroid fluctuation
on the PSD without tip/tilt correction is RMSo f f =150µm , which corresponds to an aver-
age AoA fluctuation caused by turbulence of αo f f =10µrad. After activating the feedback,
the RMS of the centroid is reduced to RMSon<5µm, which translates into a residual AoA
fluctuation of αon<0.4µrad. The closed loop bandwidth of the feedback system, ∼25Hz, is
enough for compensating most of the spectrum of AoA fluctuations, as shown in Fig.8.18
(right).

In terms of SMF coupling efficiency, the maximum achievable efficiency for our system,
excluding turbulence effects, is ρ0=33.43%. From Fig.8.19, we can see that the SMF
coupling is robust to AoA fluctuations up to 1µrad. Specifically, we find that without control
the coupling efficiency drops to ρo f f =13.57%. While the expected efficiency with active
control is instead ρon=33.37%, proving the effectiveness of our tip/tilt correction system.
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Figure 8.19: SMF coupling efficiency as a function of the AoA.

This model only takes into account the effect of the first two orders of turbulence, namely
tip and tilt fluctuations. The coupling efficiency observed in the experiment can be fitted to
a more advanced model that takes into account the higher order contributions.
The effects of the active control on the coupling efficiency is evident when looking at the
coupling efficiency histograms of the ‘power’ beacon, as shown in Fig. 8.20, with the mean
coupling efficiency increasing from 2.9% with control ‘off ’ to 9.5% with control ‘on’.

We applied the statistical model described in [215] to analyse the effect of higher order
contributions on the coupling efficiency. In particular, we used the probability density
function (PDF) of the normalized coupling efficiency (equation (28) of [215]) to fit the
histogram of the data taken with the control ‘on’, assuming a Kolmogorov spectrum of the
turbulence [216] and setting to zero the statistical variances of Zernike modes associated
to tip/tilt fluctuations. We used as fit parameters the Fried coherence length r0 and the
instantaneous coupling efficiency in absence of turbulence ρ0, that takes into account the
static aberrations of the optical system. The choice of fitting the data with control ‘on’ is due
to the fact that the statistics of data with control ‘off ’ results from the combined effect of
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atmospheric turbulence and mechanical vibrations of the telescopes, which are not included
in the model.

ρ0

Figure 8.20: Coupling efficiency histogram with fitting distributions. Red, control ‘off ’. Blue, control
‘on’.

Fig. 8.20 shows, in blue, the fitting distribution of the data with control ‘on’, character-
ized by r0=8.9cm and ρ0=34.3%, and, in red, the normalized coupling efficiency without
removing tip/tilt fluctuations and using the same parameters r0 and ρ0. The value of the
parameter ρ0 is in line with the one calculated from the optical model of the telescope.

This model proved useful also for the characterization of the channel during the opera-
tion of the QKD system. However, since the filtering of the ‘power’ beacon was not sufficiently
strong, it had to be switched off during the key exchange phase to avoid injecting noise into
the QKD detection system. Therefore, we applied the model directly to the quantum signal.

We sliced the QKD acquisition into intervals of 1 minute, calculating the coupling effi-
ciency histogram for every interval and fitting it using the same method described above,
finding the results shown in Fig. 8.21.

The Fried coherence length r0 remains stable at about 10cm from 14:00 to 17:00, rising
to ∼30cm in the late afternoon, in line with what observed in similar link and climate
configurations [217]. The value of ρ0, on the other hand, is slightly lower than expected.
This is probably due to an underestimation of the fixed attenuation term of the quantum
channel, taken to be around 10dB. Further investigations of this aspect will allow a better
evaluation of the different losses of the system, proving useful for an overall evaluation of
its performance.
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Figure 8.21: Fitted value of the Fried coherence length r0 through a day of continuous QKD operation
(left) and histogram of the corresponding fitted ρ0 values (right). The mean value of ρ0 is 16.3%.

8.5 The state analyzer

The receiver telescope couples both the 1545nm bright beacon laser and the quantum signal
at 1550nm in the same SMF28 fiber. Hence, before measuring the quantum states we
need to separate the signal and compensate the unitary rotation of the polarization induced
by the single mode fibers, in order to align Alice and Bob polarization reference frames.
These tasks, together with the detection and timetagging, are accomplished by the state
analyzer, presented in Fig 8.22. The input fiber, carrying the 1545nm beacon (dWDM

Figure 8.22: Schematic representation of the passive state analyzer

channel 40) and the 1550nm quantum signal (dWDM channel 34) are sent to dWDM that
reflects input light in a 100GHz window centered around channel 34 in the CH34 port,
while transmitting the remaining portion of the spectrum in the EXT port. The dWDM has
an extinction ratio of over 100dB for signals that are more than 200GHz apart. The EXP
port, that contains the 1545nm beacon is connected to a power meter, in order to check
the coupling efficiency of the telescope, while the C34 port of the dWDM is connected to
the polarization analyzer. The latter comprises a 10/90 beam splitter (an almost optimal
value for the implementation of the efficient-BB84 of Sec. 8.3.1) from which two equal SM
fiber-path emerge. Each arm comprises a manual polarization controller (PC), an automatic
polarization controller (APC) by General Photonics, and a PBS to perform the projective
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polarization measurement. The PC and APC are used to align one arm in the Z basis and the
other in the X basis. At each output port of the two PBSs is connected a Superconducting
Nanowire Single Photon Detector (SNSPD). The SNSPD system is the ID281 made by
IdQuantique and is characterized by 4 MoSi SNSPD enclosed in a cryostat, working at 0.8K.
The SNSPDs have a free-running dark count rate of ≈100Hz, a temporal jitter of ≈33ps
and a nominal quantum efficiency of 91%,84%,83% and 35% for the four channels. Since
the quantum efficiency of the SNSPD is maximized for horizontal polarization, a manual
polarization controller is needed before each SNSPD. Each photodetection event recorded
by the SNSPDs produces a fast electric pulse of ≈−20mV of amplitude. This is amplified
to LVTTL levels by an wideband low-noise inverting RF amplifier and sent to a timetagger
(quTAU by quTOOLS) with 81ps of timing resolution. Since the quTAU’s clock cannot be
externally clocked and does not have a start signal, we tag the PPS signal and a decimated
copy of the 10MHz generated by Bob’s GPS-disciplined clock, for synchronization purpose.

Figure 8.23: Photo of the actual state analyzer and detector unit

8.5.1 Alignment software

In order to reduce the efforts needed to align Alice and Bob’s polarization reference frames,
we have developed a small Python utility to automatically perform the basis alignment. The
software’s GUI is showed in Fig 8.24

When the alignment procedure is started, the QKD transmitter sends the fixed sequence
of qubits |0〉 , |1〉 , |+〉 , |+〉. On the receiver the timetags from the detectors are acquired for a
fixed exposure time and the histograms of the four peaks are showed for each detector. The
software identifies the polarization state relative to each peak and calculates the relative
extinction ratio. Then the user can select to align the two pairs of detectors Det1,Det2 and
Det3,Det4 along the Z or X basis. In the case of the first one the software tries to maximize
the ER of the |0〉 , |1〉 states and balance the ER for the |+〉, while for X it does the opposite.

The alignment of the basis is physically done by the automatic polarization controller
(APC), located in each measurement arm. The APC features 4 piezoelectric actuators ro-
tated by 45◦to each other (see Fig 8.25), that can squeeze the fiber, inducing a localized
birefringence that acts as variable waveplate.
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Figure 8.24: GUI of the alignment software

Figure 8.25: Working principle of the APC [218].

The amount of squeezing, and so the polarization rotation, can be controlled by a parallel
digital interface. In our case, each APC is connected to an independent Arduino via the
parallel interface, while the Arduino is connected to the computer where the python program
runs via the USB interface.

Each time a new value for the ER is available, the python program sends the value to
the Arduino, together with the information regarding which basis should be aligned. The
algorithm in the Arduino performs in loop an Hill-Climbing optimization[219]. The APCs in
our setup have 4 different piezoelectric 1-D actuators that stress and strain the optical fiber,
changing the polarization of the light that traverses the fiber. Our optimization algorithm
cycles the 4 actuators sequentially. At each round, the position of an actuator is changed
with a step size proportional to the measured QBER. If such change caused a reduction in
the measured QBER, our algorithm keeps changing the position of the same actuator in the
same direction, always with a step size proportional to the measured QBER. Instead, if an
increased QBER is measured, then the algorithm reverses the direction of motion for the
actuator. Only one reversal is permitted per round, after which the next actuator is selected
and a new round begins.

for a single actuator, moving to the next actuator if no improvement is registered. The
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size of the steps for each iteration is adaptively selected, depending on the difference be-
tween the actual value and the target value for the objective function.

The loop is interrupted when a target ER (usually 25dB) is obtained.
The same principle can be used to actively align the reference frame while the QKD is

running, using the information gained from the parameter estimation and error correction
routines. Another option is to use a pre-shared and publicly disclosed string for the encond-
ing of the qubits, interleaved with the normal QKD run. This solution is described in Chap.
10

8.6 GPS Syncronization and FPGA control system

The QKD source and the QKD receiver need to be finely synchronized in order to be able
to correctly correlate the string encoded and sent by Alice with Bob’s measured data. In
our setup a rough synchronization is obtained using two Thunderbolt E-GPS Disciplined
Clock by Trimble, one at Alice’s side and one in Bob’s setup. This device contains an Oven-
Controlled Crystal Oscillator (OCXO) disciplined by a GPS in order compensate long term
drifts of the oscillator. The device outputs a 10 MHz clock and a Pulse Per Second (PPS)
signal. In our tests, the absolute difference between the receiver time and the UTC time
from the GPS always remained below 300 ns. The 10MHz signal in Alice’s setup is feeded
into the FPGA that controls the QKD source ( a Xilinx C7Z020FPG ) and is used to derive the
master clock. In this way any signal coming from the FPGA is synchronized with the GPS.
These signals are the laser trigger, the decoy RF modulation, the polarization RF modulation
and the gating signal for the MPD SPAD. Also the PPS is recorded by the FPGA and is used
as a "start" signal for the entire protocol.

On Bob’s side, since the quTAU used cannot be externally clocked and doesn’t feature
a start signal, we tag the PPS and a decimated copy of the 10MHz signal. This temporal
information is used to "re-align" the received tags in post-processing.

An finer synchronization is performed via software and is described in Sec 8.7.1

8.7 Postprocessing

For the real-time implementation of the QKD protocol a classical and authenticated chan-
nel between Alice and Bob is needed for the post-processing analysis. We have chosen to
develop a dedicated software for the authentication and all the post-processing steps that
employs the transmission-control-protocol (TCP) and the internet-protocol (IP) network
stack offered by the Linux operating system. In this way the application is agnostic over the
physical implementation, that can be a radio bridge, a dedicated optical link or simply a
connection to internet. In particular, the software manages the following steps of classical
post-processing: control of the sending of the key, reception of the optical signal, synchro-
nization between transmitted and received messages, basis reconciliation, error correction,
correction confirmation, parameter estimation and privacy amplification. The output of this
pipeline is a secure and identical key shared between the two parties.

Our software is developed from the open-source QKD project from AIT(see [200]), which
is released under the GPL and LGPL license. We have chosen to use this as a starting point
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because of few key factors:

• Open source

• The software has been already used in many field-tests

• It implements the entire network and interprocess stack

• The code is flexible and modular

The last point is fundamental, since it gives us the possibility to develop and modify only a
small portion of the code, the one that needs to be adapted to our protocol, while keeping
untouched the core, reducing the development time and the chances of bugs. A graphical
representation of the pipeline is showed in Fig. 8.26:

Figure 8.26: Pipeline of the postprocessing software

Two instances of this stack run simultaneously, one at the transmitter (Alice) and one
at the receiver (Bob), and perform classical communication via internet. The input is the
raw key, a binary encoding of the sent or received quantum states, the output is the secret
key, which is the same at both sides and completely unknown to eavesdroppers. Parameter
estimation is based on the protocol described in 8.3.1, while the error correction is performed
by the CASCADE module already present in the AIT libraries.

8.7.1 Fine software synchronization

As discussed in the previous sections, Alice and Bob’s terminal are synchronized using GPS-
disciplined OCXO. This method can guarantee a difference between the two clocks below
300ns. However, in the analysis of the tags realized by the software at Bob’s side, a finer
temporal alignment is performed.

The algorithm receives as input the times of all the detected photons and estimates the
frequency difference between Alice’ and Bob’s clocks. In particular, the variation in time of
the difference between the measured and expected time of arrival is related to the different
clock frequencies. Based on this, the expected times of arrival are recalculated simulating a
clock with the same frequency as the one of Alice. As a result, the selected events produce
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at Bob’ side a string that is correlated to the one of Alice. In order for Bob and Alice to
know which detection corresponds to the first photon sent by Alice a cross-correlation is
performed between parts of Alice and Bob’s strings. Specifically, Bob sends a part of its string
to Alice, which perform the cross-correlation. Since the absolute difference between Alice
and Bob’s clocks is below 300 ns, the mismatch between the two string is at most 30 bits
(with repetition rate of 100 MHz), making the cross-correlation not computationally hard.

In Chapter 10 an extended version of this method is described, which allows to "self-
synchronize" Alice and Bob without the need of a GPS signal.

8.8 Results of the field trial

Exploiting the setup described in the previous sections, we performed multiple QKD runs
during February and April 2019, on several days of clear sky condition. Both the bulk and
the integrated QKD source have been tested.

8.8.1 Setting up the experiment

The QKD source and detection units, at Alice’s and Bob’s side respectively, are linked by a
free-space channel established between the Department of Information Engineering (DEI)
and the LUXOR Laboratory (LUXOR) (see Fig 8.27). Alice’s transmitter telescope is placed
at DEI building while Bob’s receiving telescope was mounted on a fixed support located at
LUXOR.

Figure 8.27: Aerial view of the link

After aligning the two telescopes, and reaching a good SMF coupling efficiency, we
aligned the two measurement bases using the alignment procedure described in Sec 8.5.1.
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Then we adjusted the parameters on Alice’s FPGA in order to generate the polarization
pulses with basis-probability pZA =0.9 and pXA =0.1 and intensities µZ1 =0.56, µZ2 =0.27, µX1 =
0.69, and µX2 =0.33 at the aperture of the transmitting telescope, with decoy-probability
pµ1
=0.7 and pµ2

=0.3. At the receiver the basis detection ratio is determined by the splitting
ratio of the BS: we have pZB =0.9 and pXB =0.1. These working parameters are close to
optimal for a total attenuation ranging from 20 to 30 dB, a QBER of the order of 1%
and a number of sifted bits nZ¦108, as we expected in our experiment according to our
simulations and Ref. [196]. The random bits used for running the protocol are obtained from
the Source-Device-Independent QRNG based on the heterodyne measurement described in
Chap. 3.

It is worth noting that the possibility of using different intensity levels for the two
bases without losing security (as discussed in Ref. [198]) is particularly interesting for
the PIC source, since non ideal CDMs typically incur phase-dependent losses translating into
polarization-dependent amplitude levels of the QKD pulses.

8.8.2 Results for the bulk source

We performed various QKD in the first half of March 2019 and here we discuss the four QKD
runs performed on March 15th, 2019.

Figure 8.28: Secret key rates obtained in daylight.

The mean total detection rate (within a 1 ns detection window around the expected
arrival time of the pulses), when renormalized for taking into account the different quantum
efficiencies of the SNSPDs, is about 120 kHz. In daylight the background counts due to
environmental light vary, ranging from 30 and 230 Hz, and being about 150 Hz on average.
Hence, the SNR is about 800, while the total losses are about 22 dB (4 dB due to the free-
space channel, 13 dB due to the SMF coupling efficiency and 5 dB of fixed attenuation in
the state analyzer). The measured losses are compatible with the losses expected in such a
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link, ranging from 20 to 30 dB.
On average in the four QKD runs, each lasting for about 1 hour from 2:00 to 6:00

p.m., we obtained a quantum-bit-error-rate of about 2.2% and 0.8% in the Z and X basis,
respectively. By applying the finite-key analysis to raw-key bit blocks of mean size nEC

Z =108,
we finally obtained a mean secret generation rate of 33.8 kbps, with two runs exceeding
37 kbps. This mean value becomes 37.5 kbps if we neglect finite-key corrections. The final
results for the different QKD runs are presented in Fig. 8.28.

It is worth noticing that the presented results are the best we obtained in one afternoon
of data acquisition, where we optimized the losses in the state analyzer. However, we
managed to obtain a secret key rate of about 1 kbps also around noon and earlier in the
mornings of previous days, demonstrating that daylight QKD at 1550 nm is feasible with
our QCosone prototype. Unfortunately, data acquisition on 15th march failed from 10:00
a.m. to 1 p.m. due to a temporary overheating of the SNSPDS.

8.8.3 Results for the PIC source

On April 18th we managed to perform the QKD experiment continuously for eight hours of
daylight, as shown in Fig. 8.29.
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Figure 8.29: TDR, SNR and QBER obtained on April 18th, 2019.

The total detection rate (TDR, orange line) within a 1ns-wide detection window around
the expected arrival time of the pulses (when renormalized taking into account the different
quantum efficiencies of the SNSPDs) ranges from 60 to 130 kHz, being around 100 kHz
on average. As expected, in our experiment the SMF coupling efficiency and hence the
TDR increased approaching the late afternoon, thanks to the reduced turbulence due to the
weaker temperature gradient. In daylight, the background rate within the detection window
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Figure 8.30: Results obtained in daylight during three consecutive days of QKD runs. The maximum
Sun elevation was about 55◦ at 13:00; sunset was around 20:00.

due to environmental light varies, ranging from 200 to 400 Hz and being about 240 Hz on
average. Hence, the signal-to-noise ratio (SNR, blue line) is about 400, while the total losses
are around 24 dB on average (5 dB of fixed attenuation due to the optics of the receiver,
5 dB of fixed attenuation in the state analyzer and 14 dB due to the mean SMF coupling
efficiency). The drop of the SNR after 18:30 is due to the fact that the receiving telescope
was facing toward the sunset, hence increasing the background rate.

We notice that, by narrowing the detection window, the SNR increases (at the expense
of a lower sifted rate). In our case, by reducing the detection window to 500 ps, the
detection rate decreases by 25%, while the noise is reduced by 50%. For low SNR values,
the above strategy may result in a higher key rate [220]. With the reduced detection
window, the simulation of the post-processing procedure provides that our setup would be
able to produce a secret key even with 14 dB of additional losses (if only beam-diffraction is
considered such losses would correspond to a link distance of about 50 km).

The measured QBER is less than 0.75% for all of the eight hours without the use of any
active polarization stabilization system, reaching a value as low as QZ≈0.45% in the Z basis
and QX≈0.25% in the X basis.

In Fig. 8.30 we report the results of the different QKD runs performed over three con-
secutive days. The weather conditions were good on all of the three days, with a clear and
sunny sky. The Sun reached its maximum elevation (55◦) around 13:00 and the sunset was
around 20:00. Each QKD run lasted for the time needed to guarantee that the requirement
nZ¦108 was fulfilled. As we showed in Fig. 8.29, the TDR increased during the day, thus
making the effective duration of the QKD runs vary, typically from 15 to 55 minutes.

Each graph in Fig. 8.30 shows the rate of the sifted bits nZ (green dots), the asymptotic
(infinite-size) SKR (SKR∞, orange dots) and the finite-size SKR (SKRf , blue squares) as a
function of the hour of the day. Each dot is obtained by an average over four minutes of data
acquisition by merging all the runs, while each SKRf point is obtained with a single QKD
run. The obtained results are comparable over the three days. The sifted bit rate ranges
from 50 to 150 kbps, depending essentially on the TDR, hence showing an improvement
while approaching the late afternoon. The same trend characterizes also the SKR∞, which
ranges from 20 to 70 kbps. We manged to obtain a SKRf of several tens of kbps for all days,
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reaching a maximum of 65.8 kbps in the last acquisition of April 17th. Remarkably, each
QKD run performed on April 18th lasted for about 50 minutes, allowing to obtain a mean
SKRf about 33 kbps, hence outperforming the results obtained with comparable free-space
QKD system at 1550 nm by two orders of magnitude [188, 189].

It is worth noticing that a complete QKD experiment in free-space has never before been
performed with the Sun at its maximum elevation. Indeed, Gong et al. in [189] tried to
perform QKD for the whole daytime in a 8km-long link in Shanghai, but the impracticable
turbulence conditions and the sunlight background did not allow them to extract a key at
around noon. We demonstrated that performing daylight QKD in the middle of the day
(around 13:00 in our case) is possible, obtaining a SKR of tens of kbps even in such a
condition in two different days.

This is the best result to date for a free-space QKD system operating in daylight [184–
189], with performances comparable to fiber-based systems [177, 179]. This result demon-
strates that the developed chip encoder is characterized by an excellent polarization stabil-
ity over time. This feature makes silicon-photonics PICs very attractive in the context of
polarization-based satellite QC.

8.9 Conclusions

In this chapter we have presented a complete prototype for polarization-based daylight
free-space QKD at 1550nm. We have realized two different QKD transmitters based on
commercial fiber-optic components and integrated photonics in silicon. Then we have
developed a fast fiber injection system, capable of maintaining the coupling of the signal
from the receiver telescope to a single mode fiber, in turbulent conditions. Thanks to the
single mode coupling we could exploit efficient, fast and low-noise SNSPD for the detection
of the quantum signal.

We performed several QKD runs with both sources, obtaining an extremely low QBER
(∼0.5%) and a SKR of several tens of kbps, also with the Sun at its maximum elevation. We
overcame the strong background noise coming from the Sun light by exploiting temporal
(i.e., synchronization), spatial (i.e., single mode fibers) and wavelength (i.e, dense WDM)
filters. To our knowledge, this is the first time that intensity and polarization modulations
are realized in a single chip used as qubit encoder for decoy-state QKD, as well the first
time that such integrated technology is used in a real free-space QKD-trial in an urban area,
thanks to the dedicated packaging designed and realized to the purpose.

In particular, the PIC offered an higher stability and lower QBER if compared to the fiber
solution, making it very attractive for the design and development of optical payloads to be
placed in portable terminals or satellites dedicated to QC, given the low resources needed
in terms of power, weight and space.

Further improvements to our prototype can be achieved by increasing the system clock
rate, for example up to 1 GHz (as in Refs. [166, 179, 191, 192]), and exploiting adap-
tive optics to increase the SMF coupling efficiency [221] and thus the tolerable losses and
achievable link distance. However, the obtained results show that daylight QKD technol-
ogy is mature enough to foresee the real application of a global scale QC-network in the
next future [182, 183]. It will likely comprise free-space, satellite and fiber-based channels
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exploiting quantum technologies to accomplish tasks such as QKD, realizable also in the
device- or measurement-device independent framework [222, 223], entanglement distribu-
tion [224], quantum teleportation [225] and quantum time distribution [226], as envisaged
by the Italian Quantum Backbone [227], a fiber-based infrastructure connecting the National
Institute of Metrological Research in Turin with the ASI Space Center in Matera.



CHAPTER 9

POGNAC: A self-compensating polarization-based QKD transmitter

Widespread effort have been made to simplify the requirements of QKD systems and to
enhance the stability of the practical implementations. Recently, for example, a 3 state and
1 decoy state version of the BB84 protocol [150] has been proposed [204], and demon-
strated to be secure [228, 229], notably simplifying the requirements of the quantum state
encoder and increasing the performances in the finite-key regime. Likewise, a stable inten-
sity modulator for decoy-state preparation [202], as well as a stable phase modulator for
time-bin encoding [230] have been demonstrated at repetition rates above GHz, both based
on Sagnac interferometric configurations.

Despite polarization encoding being the predilected choice for free-space and satellite-
based QKD experiments, few steps have been made to develop a simple and stable polar-
ization state encoder. The use of inline Lithium Niobate (LiNbO3) modulators has been
an adopted solution [203, 204], where the birefringence of the crystal is controlled by an
external RF field. The applied voltage changes the index of refraction of both polarization
modes differently, introducing a relative phase between each polarization, thereby modu-
lating the polarization state. However, high eVπ voltage are needed to introduce a relative
π shift between orthogonal polarizations, usually a factor 1.5 higher when compared to Vπ
of standard phase modulators. Moreover, the stability of this inline configuration is critical,
as the temperature variations caused by the environment or by the heating due to the RF
internal power induce drift in the resulting polarization state.

To address this problem, a double-pass self-compensating configuration with a Faraday
Mirror has been proposed in [205], which significantly improved long term stability. How-
ever, this approach has important drawbacks such as the use of non standard products (the
polarization maintaining (PM) fiber has to be oriented at 45◦ with respect to the optical
axis of the LiNbO3 crystal), high eVπ voltages, the required use of high birefringence fibers
to compensate for polarization mode dispersion and the need of Titanium-Diffused LiNbO3
modulators able to guide two orthogonal polarizations that are hardly available at wave-
length outside the C band. Moreover, any misalignment of the PM fiber with respect to the
optical axis of the LiNbO3 crystal will impact the possibility to generate orthogonal states.
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Another approach is the use of four independent lasers which are then combined with
polarization beamsplitters (PBSs), polarization controllers (PCs) and a beamsplitter (BS)
[173, 188, 231, 232]. This approach, surely simplifies the electronic control of the QKD
transmitter, but is expensive and power inefficient since it requires four times as many lasers,
laser current drivers and temperature controllers. Furthermore, the use of independent
lasers could could open side-channels that undermine the security of the implementation in
the presence of an eavesdropper. In fact, differences in the temporal shapes and frequency
spectrum of the independent laser pulses could be exploited to infer the polarization state
without requiring a direct measurement [203].

In this chapter we describe the POGNAC, a polarization modulator based on a LiNbO3
phase modulator inside a Sagnac interferometer. We implement and test it by using stan-
dard off-the-shelf telecommunication components. Our polarization modulator exhibits high
degree of simplicity and stability, low intrinsic quantum bit error rate (QBER), and can be
implemented for operation on both the 800 nm band and the 1550 nm band, rendering it
compatible with free-space, optical fiber and satellite-based QKD.

Some contents of this chapter are part of our work [3].

9.1 Working principle

Laser

PBS
PCCIRC

modulator
RF

Early mod Late mod

RF

RF

1 2
3

Figure 9.1: Schematic representation of the working principle of the POGNAC. SM fibers are drawn
in yellow while PM fibers in blue.

Our proposed polarization modulator based on a Sagnac interferometer (POGNAC) can
be seen in Fig. 9.1. A linearly polarized laser pulse enters the optical circulator (CIRC) in
port 1 and exits in port 2. A PC is then encountered which transforms the polarization state
into |ψ〉= 1p

2
(|H〉+ eiϕ0 |V 〉), a balanced superposition of horizontal and vertical polarization

with arbitrary relative phase, i.e. any state on the equator of the Bloch sphere with |H〉 (|V 〉)
at the north (south) pole. The light is split into orthogonal linear polarizations by a fiber
PBS. It is important to note that each of the polarized beams exiting from the PBS is aligned
to the slow axis of a PM fiber. This effectively maps the polarization degree of freedom onto
the optical path of the photons, with the polarized light traveling only along the slow axis
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of the PM fibers of both PBS exit ports. This is the standard behavior of COTS fiber-based
PBSs.

This PBS marks the beginning of the Sagnac interferometer, fully implemented with PM
fibers. The vertically polarized component travels in the clockwise direction (CW) while
the horizontally polarized component travels in the counter-clockwise direction (CCW). In
the CW direction a LiNbO3 phase modulator is first encountered introducing a phase φe to
the light pulse. A PM fiber delay line is then encountered, after which the CW light pulse
impinges once again on the PBS. The CW propagating light exits the Sagnac interferometer
with horizontal polarization. In the reverse direction, the CCW first encounters the PM fiber
delay line. Then, the LiNbO3 phase modulator which introduces a phase φ` to the CCW
propagating light pulse. Lastly, the CCW light pulse impinges once again on the PBS, exiting
the Sagnac interferometer with vertical polarization.

Since inside the PM fiber Sagnac interferometer, both the CW and CCW travel along
the fast axis of the PM fiber, no polarization mode dispersion is observed and a single
polarization mode propagates in the phase modulator. This ensures that both CW and
CCW pulses exit the Sagnac interferometer at the same time, perfectly recombining the two
orthogonal polarization states after the PBS. The emerging polarization state is thus given
by

�

�

�ψ
φe ,φ`
out

¶

=
1
p

2

�

|H〉+ ei(φe−φ`−ϕ0) |V 〉
�

. (9.1)

Since the polarization state depends only on the phase difference φe −φ`, any phase drift
that introduces a common phase to both counter-propagating pulses is self-compensated,
making the design immune to thermal and bias drifts.

Considering that the CW pulse anticipates the arrival of the CCW pulse on the LiNbO3
crystal by a factor ∆L

n f c (where n f is the index of refraction of the PM fibre and c the velocity
of light), by carefully timing the applied voltage on the phase modulator, the polarization
state |ψout〉 can be modulated. For sake of simplicity, lets suppose that ϕ0=0. If no voltage
(or equal voltage) is applied to the CW and CCW pulses, the polarization state remains
unchanged, i.e.

�

�ψ
0,0
out

�

= |D〉=
1
p

2
(|H〉+ |V 〉) . (9.2)

Instead, if Vπ/2 voltage is applied to the CW pulse and no voltage is applied to the CCW
pulse, the output state becomes
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2
(|H〉+ i |V 〉) . (9.3)

Alternatively, if no voltage is applied to the CW pulse and Vπ/2 voltage is applied to the CCW
pulse
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�ψ
0,π2
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E

= |R〉=
1
p

2
(|H〉 − i |V 〉) . (9.4)

Finally, if Vπ is applied to the CW (or CCW pulse), and no voltage is applied to the other, the
output state becomes

�

�ψ
π,0
out
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= |A〉=
1
p

2
(|H〉 − |V 〉) . (9.5)
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The modulated light pulses then exit through port 3 of the CIRC.
By noting that {|D〉 , |A〉} and {|L〉 , |R〉} form two mutually unbiased basis (MUBs), we can

conclude that our proposed polarization modulator can generate the necessary polarization
states to perform the standard BB84 QKD protocol [150]. We note that when ϕ0 6=0 the
same scheme allows the generation of two MUBs lying on the equator of the Bloch sphere.
Furthermore, by choosing {|L〉 , |R〉} as the key generation states and |D〉 as the control state,
the simplified 3 polarization state version of BB84 [204] can be implemented requiring only
two voltage levels, i.e 0 and Vπ/2, and fine positioning of the RF electrical pulse which can be
done using digital outputs of a Field Programmable Gate Array (FPGA). It can be useful to
note that the four polarization states can also be generating by applying 4 different voltage
levels, i. e. zero, Vπ/2, Vπ and V3π/2, only to the CW or CCW pulse, always applying zero
voltage to the other.

9.2 Experimental implementations

We used a World Star Tech laser diode emitting light at 850 nm and an Hewlett-Packard
8013B pulse generator (PG) to generate laser pulses with 1.2ns FWHM duration and 100
kHz repetition rate due to laser source limitation. The light pulses first traversed a Glan-
Thompson Polarizer, and was then coupled into a single mode (SM) fiber. In our implementa-
tion, the CIRC was replaced with a 50:50 BS. This replacement introduced additional 6dB of
losses which did not represent a problem since the light pulses were attenuated to the single
photon level after the polarization modulator. A PC then transformed the polarization state
into |ψ〉= 1p

2
(|H〉+ eiϕ0 |V 〉). The light pulses then impinged a fiber based PBS. A ∆L=1m

PM fiber was used as the delay line inside the Sagnac interferometer. The RF signal used to
drive the LiNbO3 phase modulator were generated by an Avnet Zedboard FPGA board which
was triggered by the PG. The FPGA generated squared pulses with 3ns duration that could
be arbitrarily delayed with respect to the trigger pulses with approximately 100ps precision.
This allowed us to send an electrical pulse that modulated either the CW propagating or
the CCW propagating pulse, or not to send any electrical pulse according to a previously
established pseudorandom sequence. The electrical pulses were then amplified to Vπ/2 by
an RF amplifier and then sent to the phase modulator. In this manner we simulated the
polarization state transmission required by the simplified version of BB84 [204]. To test the
generation of the |A〉 state, we replaced the FPGA with the Agilent 33521A arbitrary function
generator that produced electrical pulses with 20ns duration, allowing us to generate a |D〉,
|A〉 sequence. This replacement was necessary to reach Vπ necessary to obtain the |A〉 state.

The light exited the polarization modulator through the 50:50 BS and then encountered
an Optical Attenuator (OA) that attenuated to the single photon level. Then, anoter PC (not
shown in Fig. 9.1) compensated the unitary transformation due to the SM fibers outside
the POGNAC and transformed the generated states into |H〉, |V 〉, |D〉 and |A〉. The light
pulses were then launched into free-space using a fiber collimator. A free-space polarization
analyzer was then used to evaluate the performances of the polarization modulator. The
analyzer was composed by a half-wave plate (HWP) and a PBS. This allowed us to measure
in the {|H〉 , |V 〉} or in the {|D〉 , |A〉} basis by simply rotating the HWP. The single photon
detection was performed using Excelitas SPCM-AQRH single-photon avalanche diode and
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the quTAU timetagger. A computer was then used to analyze the results.

9.3 Results

The pseudorandom {|H〉 , |V 〉 , |D〉} sequence was continuously sent by our polarization en-
coder and measured by the free-space polarization analyzer in the {|H〉 , |V 〉} basis. Every
three seconds, the QBER was calculated. The results can be seen in the left panel of Figure
9.2. An average QBER of 1.23 ± 0.07% was measured for |H〉 and 1.10 ± 0.07% for |V 〉.
Instead, for |D〉 a 49.6± 0.2% QBER was measured, as expected for a MUB state.

After approximately 30 minutes, the HWP of the free-space polarization analyzer was
rotated to measure in the {|D〉 , |A〉} basis, without modifying the polarization encoder. As
before, every three seconds, the QBER was calculated. The results can be seen in the right
panel of Figure 9.2. An average QBER of 1.12± 0.04% was measured for |D〉. Instead, for
|H〉 and |V 〉 a 49.4± 0.1% QBER was measured, as expected for MUB states.
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Figure 9.2: QBER as a function of time for the pseudorandom {|H〉 , |V 〉 , |D〉} sequence (Vπ/2 modu-
lation) measured in: a) the {|D〉 , |A〉} basis, b) the {|H〉 , |V 〉} basis

Similarly, to test the generation of the |A〉 state, a {|D〉 , |A〉} sequence was sent and
the HWP of the free-space polarization analyzer was rotated to measure in the {|D〉 , |A〉}
basis. As before, every three seconds, the QBER was calculated. The results can be seen
in figure 9.3. An average QBER of 0.20 ± 0.02% was measured for |A〉 and 0.13 ± 0.01%
for |D〉.The lower QBER in this configuration can be attributed to the cleaner electrical RF
pulses generated by the function generator respect to the ones generated by the FPGA.

Since no active polarization compensation was present in any case, the results shown in
Fig. 9.2 - 9.3 demonstrate the high stability of the POGNAC and the low intrinsic QBER.
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Figure 9.3: QBER as a function of time for the {|D〉 , |A〉} sequence (Vπ modulation) measured in the
{|D〉 , |A〉} basis.

9.4 Conclusion

In this Chapter we have proposed and experimentally tested the POGNAC, a novel polar-
ization encoder system for free-space, fiber and satellite QKD. Compared to the previously
proposed solutions our approach offers several key advantages. The self-compensating
Sagnac-loop design greatly improves long-term stability over inline implementations [203–
205], making it insensible to temperature fluctuations and DC drifts.

Compared to the previously proposed autocompensating solution in [205] the POGNAC
doesn’t need custom phase modulator. In fact in the Sagnac loop only one polarization is
guided and standard Proton-Exchange Phase Modulators (PE-PM) can be used. The Faraday
Mirror solution instead requires Titanium-diffused phase modulators (TD-PM) that are able
to support both polarizations. TD-PM are commercially available from few manufacturers,
while PE-PM are standard telecom devices available at different wavelength, included the
800 nm band, relevant for free space QKD.

Moreover, the modulation voltages required by our solution are considerably lower
than previous proposals. In the POGNAC the phase modulation is directly converted in
a polarization modulation. Instead in [203–205] the applied voltage changes the index
of refraction of both polarization modes differently, introducing a relative phase between
each polarization, thereby modulating the polarization state. Usually, these implementation
require a Vπ 1.5 times higher than our proposal.

Our experimental results show that low QBER can be obtained stably overtime without
the need of an additional feedback system, greatly simplifying the design of a polarization
QKD source. Such simplicity renders our source suitable for CubeSat missions, where a small
footprint and low energy consumption are of critical importance [233]. Furthermore, the
temporal stability of the source attests the compatibility with QKD links with satellites even
in Middle Earth Orbit [234], or part of a Global Navigation Satellite Systems [235], where
visibility times between the ground station and satellite can exceed the hour.

Lastly, the configuration based on a Sagnac interferometer could allow for high repetition
rates, up to few GHz, as recently demonstrated with an intensity modulator for decoy-state
preparation [202], as well as a stable phase modulator for time-bin encoding [230].



CHAPTER 10

Self-synchronized and self-compensated QKD with a POGNAC state
encoder

A critical aspect that needs to be taken into account in a QKD system is the distribution of a
temporal reference between the transmitter (Alice) and the receiver (Bob). This is crucial
for at least two reasons: first, it allows to discriminate between the quantum signal and
the noise introduced by either the quantum channel or detector defects. Secondly, it allows
to correlate the qubit sequence transmitted by Alice with the detection events recorded by
Bob. This correlation then enables the distillation of the quantum secure cryptographic
key. The transmission of the temporal reference is usually achieved by optically sending a
decimated version of Alice’s clock. This requires the use of a secondary fibre channel [236],
or complex time or wavelength multiplexing schemes to separate the quantum information
from the classical light pulses [173]. Also, as shown in Sec. 8.6, Global Navigation Satellite
Systems (GNSS) can be used to synchronize Alice and Bob since these systems can give
precise temporal references [2, 220]. All these approaches, however, add complexity to the
QKD implementations.

Another aspect to take into account when the polarization encoding is used in fiber
optical links is the natural birefringence of fiber, which causes the polarization state of trans-
mitted photons to change continuously and in an unpredictable fashion [237]. Several ap-
proaches have been conceived to counteract these random polarization drifts, most of them
requiring auxiliary laser pulses and complex time or wavelength multiplexing schemes [238],
which add unwanted complexity to the QKD setups. A different approach was introduced
by Ding et al. that used the reveled sifted key [239], produced during the error correction
and privacy amplification procedures, to detect and compensate the polarization drifts of
the fiber link.

In this chapter we describe a new method to perform temporal synchronization without
the need of auxiliary time reference, by sending a shared public qubit sequence at pre-
established times.The shared sequences are also exploited to monitor and compensate the
polarization drift introduced by the of optical fiber link, with an approach somewhat similar
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to the work of Ding et al. [239]
These methods have been tested using a simple setup that exploits polarization encod-

ing over a 26 km fiber-optical link, using the simplified three-state and 1-decoy protocol
described in Sec 8.3.1. The QKD source employs the POGNAC polarization modulator de-
scribed in Chap 9, which exhibits high stability and a low intrinsic Quantum Bit Error Rate
(QBER) [3]. The reduced complexity of both the transmitter and the receiver, as well as
the robustness and stability demonstrated by our implementation, represents and important
step towards technological mature and commercial-ready QKD systems.

Some contents of this chapter are part of our work [4, 5].

10.1 Setup

DFB 

Laser

PC

VOA

Gate

IM

SoC

PBS

CIRC

POGNAC

Figure 10.1: Experimental Setup. Single Mode fibers are indicated in yellow while Polarization
Maintaining fibers in blue.

A gain-switched distributed feedback (DFB) laser source outputs a 50 MHz stream of
phase-randomized pulses (with 270 of full-width-at-half-maximum, FWHM) at 1550nm
wavelength. The light pulses first pass through a Lithium Niobate intensity modulator (IM)
used to set the intensity levels required by the decoy-state method. The pulses then enter
the POGNAC polarization modulator (described in Chap. 9) realized using only standard
commercial off-the-shelf (COTS) fiber components.

The photons emerge from the POGNAC with a polarization state given by
�

�

�ψ
φe ,φ`
out

¶

=
1
p

2

�

|H〉+ ei(φe−φ`) |V 〉
�

, (10.1)

where the phases φe and φ` can be set by carefully timing the applied voltage on a Lithium
Niobate phase modulator (φ-Mod). This was achieved with the Zynq-7000 ARM/FPGA
System-on-a-Chip (SoC, manufactured by Xilinx), which in our implementation overlooks
the operation of the QKD source.

If no voltages are applied by the SoC, the polarization state remains unchanged, i.e.
�

�ψ
0,0
out

�

= |+〉= 1p
2
(|H〉+ |V 〉). Instead, if φe is set to π
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state becomes
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(|H〉+ i |V 〉). Alternatively, if φe remains zero while φ` is set

to π
2 , the output state becomes
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�ψ
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E

= |R〉= 1p
2
(|H〉 − i |V 〉). In this way we generate the

three states required by the simplified 3 polarization state version of BB84 [204], with the
key-generation basis Z={|0〉 , |1〉} where |0〉 := |L〉, |1〉 := |R〉, and the control state |+〉 of the
X={|+〉 , |−〉} basis.
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The optical pulses then encounter a variable optical attenuator (VOA) which weakens the
light to the single photon level. A 99:1 beam splitter (BS) is used to estimate the intensity
level of the pulses: the 1% output port is directed to a gated InGaAs/InP Single Photon
Avalanche Diode (SPAD, manufactured by Micro Photon Device Srl [206]), while the other
output port is directed to Quantum Channel (QC). In our implementation the QC is formed
by a 26 km spool of G.655 dispersion-shifted fiber with 0.35dB/km of loss followed by a
VOA. This VOA allows us to introduce further channel loss in order to test our system’s
resilience.

Alice sends key-generation states with probability pZA =0.9 (pXA =0.1), while the two
intensity levels are µ1≈0.80 and µ2≈0.28, which are sent with probabilities pµ1

=0.7 and
pµ2
=0.3. These parameters are close to optimal according to our simulations and Ref [196].

The random bits used to run the protocol are obtained from the Source-Device-Independent
quantum random generator based on optical heterodyne measurement described in Chap. 3

The fiber receiving setup consists of a 90:10 fiber BS setting the detection probabilities
of the two measurement bases to pZB =0.9 and pXB =0.1. Each output arm of the BS is
connected to an automatic polarization controller (APC) and a polarizing beam splitter
(PBS). The four outputs are sent to four superconductive nanowire single-photon detectors
(SNSPDs, manufactured by ID Quantique SA) cooled to 0.8 K. The detection efficiencies are
around 85% for the detectors in the Z basis, whereas it is 90% and 30% for the |+〉 and
|−〉 detectors, respectively. As discussed in [2, 240], some events are randomly discarded in
post-processing to balance the different efficiencies. All the detectors are affected by about
200 Hz of free-running intrinsic dark count rate. The SNSPD detections are recorded by
the quTAG time-to-digital converter (TDC, manufactured by qutools GmbH) with 1 ps of
temporal resolution and jitter of 10 ps.

10.2 Self-synchronization theory

In this section an informal description of the self-synchronization protocol will be given,
while a formal and detailed explanation can be found in [4].

In a typical QKD protocol, Alice transmits a qubit string (the raw key) encoded in the
state of a train of attenuated optical pulses. The time between two consecutive qubits, τA, is
set by Alice’s clock. On the other side, Bob receives only some of the qubits (due to losses),
analyzes their state and uses his clock to measure their time of arrival. We consider the case
in which Alice and Bob’s clocks may have a time bias as well as a relative drift in time of their
frequencies. This implies that Bob may measure a different time τB between subsequent
qubits.

The goal of Bob is to determine the position of the detected qubits in Alice’s raw key: this
operation is needed to correctly generate the sifted key, perform the parameter estimation
and the subsequent post-processing. The above problem can be reformulated as follows:
Bob needs to determine the expected time of arrival (measured by his clock) of the qubits
sent by Alice, namely he needs to solve two tasks:

i) Period recovery: to recover the period τB from the obtained detections.
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ii) Time-offset recovery: to determine the time delay tA
0 between the measured and sent

sequence.

Step i) is needed to correctly reconstruct the separations in the raw key between consecutive
detections. Step ii) is needed to associate each detection to the corresponding bits in Alice’s
raw string.

For the period recovery Bob takes the times tB
i returned by his clock when he registered a

click in the detector and performs an FFT. For computational efficiency this FFT is calculated
only on a subsample Ns of the total detection Nt acquired for a defined exposure time (usually
1s). The highest peak of FFT returns a first estimate τB

0 , i.e. Alice’s sending frequency
measured with Bob’s clock. Then, in order to refine the estimation of τB

0 at longer time
scales, Bob calculates mod τB

0
(t i) for the first Ns tB

i and fits the value with a linear model.

The returned slope is equal to
τ̃B−τB

0
τ̃B where τ̃B is the new improved estimate. This fitting

procedure is repeated iteratively, doubling each time the size of Ns until Ns=Nt . The last
estimate of τ̃B provides the optimal recovered period.

However, even if Bob can recover the right τB, with high probability he will not be able
to detect the first pulse, due to losses in the channel. Moreover, the presence of background
makes it not straightforward to distinguish the detection of Alice’s qubit from noise. To
precisely determine tA

0, our approach is to to calculate the correlation between the signal
received by Bob with a binary synchronization string sA that has length L. The string sA,
which is also known to Bob, is transmitted before the QKD signals and is encoded in the Z

basis. At the receiver Bob performs a cross-correlation between the string he recovers from
the tags in the Z basis and the pre-shared string sA. The lag at which the maximum of the
cross-correlation occurs is the best estimate of tA

0.

10.2.1 Robustness to noise

Before using the synchronization method described before in a real QKD run, we decided to
characterize its robustness against the noise that could arise in the channel.

For the test we used the same transmission and detection probabilities of the QKD. So,
since the synchronization string, sA, sent by Alice is entirely encoded in the Z basis, only
90% of it will be decoded in the right basis (sifted). For the purpose of the synchronization
algorithm, just the number of sifted bits at Bob side matters. Hence, we will talk about
overall transmittance η as the ratio between the number of sifted bits at Bob side and the
number of pulses sent by Alice.

The string sent by Alice is composed by a synchronization string, followed by random
bits obtained from the quantum random number generator. We choose a number of states
in the synchronization string sA of L=106. If η is the overall transmittance, the number of
synchronization states received by Bob is Lη. Therefore, assuming zero QBER and back-
ground noise, the maximum correlation value will be 'η, while the standard deviation of
the correlation for other lags will be '

p

η/L. The distinguishability, ∆, of the maximum
correlation peak among the others is given by the ratio of the former and the latter∆'

p

Lη.
We set a threshold on the distinguishability of ∆≥10, as successful detection of the maxi-
mum correlation. Hence, for our choice of L, the algorithm can cope with overall losses up
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to 40 dB. In practice, the presence of background and misalignment between the transmitter
and the receiver lowers the maximum losses that the algorithm can handle.

We tested the robustness of the offset analysis by tuning the QBER and the number of
bits of sB. We used strings generated from several QKD runs as well as simulations of the
experiment. In particular, the simulation takes into account the losses and misalignment of
the setup but not the presence of the background and dark counts. In Fig. 10.2, the result of
the simulation is highlighted by the blue region, corresponding to the values of QBER and
bits in sB in which the algorithm is expected to work. As regards the strings generated by
the QKD setup, the orange dots show when the analysis was successful.
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Figure 10.2: Successful synchronization for different values of QBER and detected bits. The blue
region shows where the synchronization have been established using simulated data. Orange dots
correspond to successful synchronization with data generated by our setup.

As expected, the simulation shows a good outcome of the analysis up to 10−4 sifted
synchronization bit fraction. This is no longer true for high value of the QBER. Over 30%
of QBER the algorithm needs more bits in sB to contrast the reduction of the maximum cor-
relation due to the bits flip. The background detection comes into play in the experimental
runs, reducing the amount of losses the algorithm can tolerate. In our case, the analysis fails
below a sifted synchronization bits ratio of 3 ·10−4, with 200 Hz of free-running background
detection rate. The robustness to the QBER is comparable to what obtained with the sim-
ulated strings. The comparison is limited to a ratio of about 3 · 10−2 due to the maximum
event rate our TDC can process. It is interesting to note the very high robustness to the
QBER, well above the threshold to establish a secure channel. In fact, a very rough alignment
between transmitter and receiver is sufficient for the synchronization to take place. This
implies that the precise alignment of the receiver and transmitter may be realized after the
synchronization phase, maybe using the same states sent by Alice and without the use of
external reference, requiring additional lasers and detectors.



10.3
Self-synchronized and self-compensated QKD with a POGNAC state encoder
Results 151

10.2.2 Polarization compensation scheme

The natural birefringence of fiber optics causes a transformation of the polarization state
of the photons that travel through the fiber. This transformation is troublesome for QKD
since it causes Alice and Bob to effectively have different polarization reference frames. As
a consequence of this mismatch QBER increases, lowering the Secret Key Rate (SKR) up to
the point where no quantum secure key can be established. To prevent this a polarization
compensation system must be utilized.

Here we propose a polarization compensation scheme that exploits a shared public sting,
which is not necessarily related to the synchronization string. Every second, the shared
string of 106 states is transmitted by Alice encoded using weak coherent pulses in the Z

basis and with µ1 intensity. Bob detects the sequence, and after performing the temporal
synchronization routine, he estimates the QBER of his recorded sequence. Bob still has to
estimate the QBER in the X basis. For this purpose, at the end of each interval Alice reveals
the basis used to encode the QKD qubits that follow the public string. This process is actually
the standard reconciliation procedure of QKD. Since in the protocol we implement only one
state is transmitted in the control X basis, Bob can immediately estimate the QBER.

The estimated QBER values are then fed into an optimization algorithm which controls
the APCs of Bob’s setup (described in Sec. 8.5.1).

Compared to the approach of Ding et al. [239], our approach has the advantage that only
the reconciliation step is required to obtain sufficient information to run the polarization
compensation algorithm. This allows for a greater tracking speed which is necessary to
stabilize links with polarization drift of few Hz bandwidth. Also, the length of the shared
string and its transmission frequency can be changed to best match the requirements of the
fiber optical link. Furthermore, the public string can be transmitted in an interleaved fashion
together with the QKD qubits at predetermined times.

10.3 Results

10.3.1 POGNAC intrinsic stability and low QBER

In Fig. 10.3, the intrinsic stability of our QKD polarization source is reported.
This measurement was performed by sending a pseudo-random qubit sequence of {|0〉 , |1〉 , |+〉}

states and measuring the QBER of the sifted string recovered by Bob. To remove all fluc-
tuations not attributable to the source, the fiber channel was bypassed. Furthermore, the
90:10 BS was replaced with a 50:50 BS in order to have comparable statistics for both
measurement bases. Every second the QBER was estimated for both the Z key-generation
basis and the X control basis. In 45 minutes an average QBER of QZ=0.07± 0.02% was
measured for the Z basis while the average QBER for the X was QX=0.02± 0.01%. These
measurements corroborate the results of Chap. 9 and demonstrate intrinsic stability of the
POGNAC polarization modulator. Furthermore, with over 30 dB of extinction ratio between
orthogonal states, the average QBER here reported is the lowest for any active QKD source
fully implemented using exclusively COTS components, to the best of our knowledge.
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Figure 10.3: Intrinsic Stability of the POGNAC source at 50 MHz repetition rate. The average QBER
measured for the key-generation basis was QZ=0.07± 0.02% (dashed orange line) while an average
QX=0.02± 0.01% (dashed blue line) was measured for the control basis.

10.3.2 Polarization drift compensation with 26 km of optical fiber

To test our polarization drift compensation algorithm we performed a 6 hour long run with
the QC including both a 26 km optical fiber spool and ≈10 dB of additional attenuation set
by the VOA.

On average, the detected bits of the shared polarization compensation string in the Z

basis were ≈8×103 while the sifted bits from the control basis were ≈3×103. This allowed
to correct the polarization drift with an average QBER measured for the key-generation basis
of QZ=0.3± 0.1% while an average QX=0.2± 0.1% for the control basis, for six hours of
continuous operation. The results are reported in Fig. 10.4. After the experimental run, we
noted a lower detection efficiency of 45% for the detectors of the Z basis. This was due
to a non-optimal polarization rotation of the photons entering the SNSPD detectors, which
are polarization sensitive. This reduced detection efficiency did not hamper the polarization
drift compensation algorithm demonstrating its robustness even in non-optimal conditions.

10.3.3 QKD secure key rate for different channel losses

To test the performances of our simple QKD system with self-synchronization and self-
compensating polarization encoder, as well as its resistance to channel losses, several runs
were executed each with increased losses. The losses were added increasing the attenua-
tion of the VOA after the 26 km of fiber. As before, a pseudo-random qubit sequence of
{|0〉 , |1〉 , |+〉} was transmitted at a repetition rate of 50 MHz, where the first L qubits of
the sequence formed the publicly known synchronization string. For each run the SKR was
calculated in the asymptotic limit: SKR∞= sZ,0/t + sZ,1(1 − h(QX))/t − f · h(QZ), where
t is the duration of each acquisition, h(·) is the binary entropy, f =1.06 is the Shannon
inefficiency of typical error correction algorithms, while sZ,0 and sZ,1 are the lower bounds
on the number of vacuum and single-photon detections in the Z basis, calculated as in [196]
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Figure 10.4: QBER Measurement for a 6 hour long acquisition along a 26 km optical fiber channel.
The average QBER measured for the key-generation basis was QZ=0.3± 0.1% (dashed yellow line)
while an average QX=0.2± 0.1% (dashed purple line) was measured for the control basis.

but without finite-key corrections. The results are presented in Fig. 10.5.
As shown in [4], if the background and dark counts are not considered, the synchroniza-

tion can be established up to 40 dB of total channel losses with L=106. A longer string,
with L=107, could be used to synchronize up to 50 dB of losses. In our experiment, the
presence of dark counts lowers the bounds by about 6 dB. Indeed, using a synchronization
string of length L=106, we performed several QKD runs with losses up to 34 dB. With
L=107, we successfully ran QKD protocols up to the channel loss at which the key rate
drops to zero. In the QKD run with highest losses, we achieved a secure key rate of 80 bits
per second at 43 dB total channel losses, corresponding to about 215 km of SMF28 fibre
(0.2 dB/km) or 253 km of ultralow-loss fiber (0.17 dB/km). It is important to note that our
QKD implementation withstands up to 44 dB of total channel loss, as reported in the SKR∞
simulation of Fig. 10.5. Our results prove that the self-synchronization method properly
works even at the highest losses tolerated by our QKD implementation.

10.4 Conclusions

In this chapter we have presented a simple polarization encoded QKD implementation with
self-synchronization and a self-compensating polarization modulator. Its simple design
reduces the complexity for both the QKD transmitter and receiver. In fact, the same optical
setup is used for three different tasks, i.e. synchronization, polarization compensation
and QKD, without requiring any changes of the working parameters of the setup or any
additional hardware. The QKD transmitter shows high intrinsic stability and the lowest
average QBER ever reported for an active polarization source developed using only COTS
components. The SKR in the asymptotic limit was assessed for a 26 km fiber channel with
additional channel losses resulting in 80 secure bits per second at 43 dB of total channel
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Figure 10.5: Sifted and secure key rate as a function of total channel losses. The crosses represent
the experimental runs performed with the self-synchronization method, while the lines show the
results of our simulation based on the physical parameters of our experiment. Error bars are standard
deviations, obtained by simulating 1000 repetitions of the experiment.

losses, demonstrating resilience to high channel losses for both our QKD implementation
and the self-synchronization algorithm. The simplicity of our QKD implementation renders
it compatible with many different scenarios, ranging from urban QKD fiber links [192] to
free-space satellite QKD links via CubeSats [233], where a small footprint and low energy
consumption are of critical importance. Our implementation is particularly promising for
free-space QKD [2, 173, 188] since polarization is not significantly affected by atmospheric
propagation [241].



CHAPTER 11

Post-selection loophole-free genuine time bin

In 1989 Franson conceived a simple interferometric setup to highlight the counter-intuitive
implications of quantum mechanics [242]. He proposed to send a pair of entangled pho-
tons to two equal measurement stations (Alice and Bob), each composed of an unbalanced
interferometer. By exploiting the quantum interference expected in the detection events
recorded at the output ports of the interferometers, it should be possible to rule out local
realistic models [17] by violating a Bell-CHSH inequality [243]. Franson’s idea was first im-
plemented by exploiting energy-time entanglement, which can be easily created by pumping
a non-linear crystal with a continuous-wave (CW) laser [244–246]. In fact, the two emitted
photons are generated at the same instant, but the emission time is uncertain within the
coherence time of the source, thus leading to indistinguishability in the alternative paths
the photons will take in the measurement stations. Extending Franson’s idea, time-bin (TB)
entanglement was introduced by Brendel et al. in 1999 [247]: the CW laser is replaced by a
pulsed laser which shines the non-linear crystal after passing through an unbalanced “pump”
interferometer. Now, the pair of photons can be emitted at two possible times, depending on
the path taken by the pump-pulse in the first interferometer (see Fig. 11.1a). Both energy-
time and time-bin entanglement have been widely used to distribute entanglement over long
distances [248–252], and to realize fiber-based cryptographic systems [145, 253], aiming
for device-independent security [159, 222, 254], which requires the loophole-free violation
of a Bell inequality, as reported in [21–24].

However, Aerts et al. noted that Franson’s Bell-test is intrinsically affected by the so-called
post-selection loophole (PSL) [255], which is present independently to the other common
loopholes (eg., locality and detection) that could affect local-realistic tests [256]. In fact, in
Franson’s configuration, Alice and Bob should post-select only the indistinguishable events
occurring within a coincidence window ∆τc, discarding those photons arriving at different
times. When performing such post-selection, there exists a local-hidden-variable (LHV)
model which reproduces the quantum predictions [255, 257]. The reason for this is that a
LHV model admits the local delays to depend on the local parameter (ϕA or ϕB), but Alice
and Bob need to compare these delays to perform the post-selection. Therefore, even though
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Figure 11.1: Time-bin schemes to realize a Bell-test à la Franson. a In the passive TB, by post-
selecting the events detected in coincidence only in the central time-slot, Alice and Bob can violate
the Bell’s inequality, but the scheme is affected by an intrinsic PSL. b In the active TB, the passive
beam splitter is replaced by a balanced MZI acting as an optical switch. By exploiting a fast phase
modulator ϕM in one arm of the balanced MZI, Alice and Bob can violate the Bell-CHSH inequality
without discarding any data, i.e. this scheme is free of the PSL.

the physical system is completely local, the measurement-process post-selection invalidates
the locality assumption required to derive the Bell’s inequality. The same loophole affects
the time-bin entanglement scheme shown in Fig. 11.1a, invalidating Bell’s inequality as test
of local realism and enabling the hacking of Franson’ scheme when used for cryptographic
purposes [258]. In this case, the Bell-test gives false evidence, since the apparent violation
would tell users the setup is device-independently secure, while it is in fact insecure because
of the PSL.

Many modifications to Franson’s original scheme have been proposed to address the
PSL, with both energy-time and time-bin entanglement. Regarding the former, a proposal
by Cabello et al. modified the geometry of the interferometers by interlocking them in a
hug configuration, and introduced a local post-selection, which does not require communi-
cation between Alice and Bob [259]. In this way, genuine energy-time entanglement can
be generated, i.e. not affected by the PSL. Soon after this proposal had been conceived,
table-top experiments were realized [260, 261] and a few years later the distribution of
genuine energy-time entanglement through 1 km of optical fibers [262] and its implemen-
tation in an optical fiber-network was reported [263]. However, the hug configuration
requires to stabilize two long interferometers whose extension is determined by the distance
between Alice and Bob: the larger the separation is, the more demanding the stabilization
becomes. In the case of time-bin entanglement, the original proposal mentioned the use
of active switches [247], such as movable mirrors synchronized with the source, instead of
passive beam splitters (Fig. 11.1a), to prevent discarding any data. This solution can also
be exploited to overcome the PSL [257], but no such scheme has been realized so far.

Here we propose and implement, for the first time, a genuine time-bin entanglement
scheme allowing the violation of a Bell’s inequality free of the PSL. In our scheme, the active
switches are realized by replacing the first beam splitter, in each unbalanced interferometer
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of the measurement stations, with another balanced interferometer with a fast phase-shifter
in one arm, as sketched in Fig. 11.1b. By actively synchronizing the phase-shifter with the
pump pulses, it is possible to use the full detection statistics, overcoming the PSL. The
independence between Alice’ and Bob’s terminals, the relaxed stabilization requirements, as
well as the compliance with off-the-shelves components open the possibility to exploit such
scheme over long distances, paving the way to a conclusive loophole-free Bell-test [21–24]
with time-bin entanglement.

In the following Chapter, we will analyze the passive and active time-bin schemes by
making use of the Positive Operator Valued Measure (POVM) formalism [45], after which we
will present the experiment and the obtained Bell-CHSH inequality violation attesting the
faithfulness of our scheme.

Some contents of this chapter are part of our work [6].

11.1 Conceptual analysis of time-bin entanglement schemes

In the passive time-bin scheme, a pump Mach-Zehnder interferometer (MZI) with a temporal
imbalance equal to ∆t is used to split a short light pulse into two, as sketched in Fig. 11.1a.
This light is focused into a non-linear crystal producing photon pairs via a spontaneous
parametric down conversion (SPDC) process. By optimizing the pump energy, the generation
of double photon-pairs is suppressed, and the Bell state

�

�Φ+
�

=(|S〉A |S〉B + |L〉A |L〉B)/
p

2 is
produced, where the indexes A and B represent the generated photons that are sent to
Alice’ and Bob’s measurement stations. Each of these is composed by an unbalanced MZI
that has the same imbalance ∆t of the pump-interferometer and can introduce a further
phase shift ϕA (ϕB). The output ports of each interferometer are followed by two single-
photon detectors, and the possible outcomes are labeled a=±1 and b=±1 for Alice and Bob
respectively, depending on which detector clicks.

In the passive TB scheme, each photon of the pair can be detected only at three possible
distinct times (t0 − ∆t, t0, t0 + ∆t), due to the pump- and measurement-MZIs. By post-
selecting the detection events that occur in the central time-slot only, Alice’s measurement
station realizes the projection {P̂a}a=±1 defined by P̂a= |ψa〉〈ψa| where

|ψa〉=
�

|S〉+ a eiϕA |L〉
�

/
p

2 (11.1)

and similar relations hold for Bob’s measurement station (with a replaced by b and A by
B). Since the delay is local, one could think that this should allow the violation of the Bell’s
inequality. There is simply no physical mechanism for the remote phase shift to influence the
local delay. However, for a coincidence to occur, Bob’s delay needs to coincide with Alice’s
one, and Bob’s delay is controlled by Bob’s phase shift, remotely from the point of view
of Alice. This constitutes a coincidence loophole for the Bell inequality [264], somewhat
similar to a detection loophole with 50% detection efficiency, but much worse since it is
present even when using loss-free equipment, therefore introducing an unavoidable intrinsic
loophole in the setup.

Quantum mechanics provides the probabilities Pa,b for photon detections that occur
within a coincidence window∆τc<∆t around the central time-slot for each pair of detectors
a, b. The probabilities Pa,b depend on the initial state

�

�Φ+
�

and on the local phase shifts ϕA,
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ϕB introduced by the measurement stations and are given by

Pa,b(ϕA,ϕB)=
1
4
[1+ abV cos(ϕA+ϕB)] (11.2)

where V is the visibility of two-photon interference.
Disregarding the PSL, the interference in the post-selected events will seem to violate the

Bell-CHSH inequality, which provides an upper limit for a combination of four correlation
functions E(ϕA,ϕB) with different phases ϕA,ϕB, when assuming the existence of a LHV
model [243]. The correlation function is given by

E(ϕA,ϕB)=
∑

a,b

abPa,b(ϕA,ϕB) (11.3)

and the Bell-CHSH inequality S≤2 is given in terms of the S-parameter

S≡ E(ϕA,ϕB) + E(ϕ′A,ϕB) + E(ϕA,ϕ′B)− E(ϕ′A,ϕ′B) (11.4)

where ϕA,ϕ′A and ϕB,ϕ′B denote the values of the phase-shifts introduced by Alice and Bob
respectively [243]. Quantum mechanics predicts the correlation function

EQM(ϕA,ϕB)=V cos(ϕA+ϕB) (11.5)

which leads to a maximum value for the S-parameter equal to Smax=2
p

2V for the settings
ϕA=−π/4, ϕ′A=π/4 and ϕB=0, ϕ′B=π/2. Hence, the Bell-CHSH inequality will seem to be
violated only if V >1/

p
2≈0.71.

It is worth noticing that if no post-selection is applied in the passive TB scheme, then
the Bell-CHSH inequality does hold, and could in principle be violated. However, in this
case Alice’s measurement station implements the POVM given by {Γ̂a}a=±1 with Γ̂a=(1/4)1+
(1/2)P̂a, where 1= |S〉〈S|+ |L〉〈L| (and similar relations hold for Bob). Thus, with no post-
selection, the quantum probabilities Pa,b for photon detections at the two stations lead to a
maximum value for the S-parameter that can be written as Smax=2

p
2V ′, with the overall

three-peak visibility V ′=V /4 and the Bell-CHSH inequality cannot be violated even with
perfect visibility V =1.

On the other hand, a proper violation can be achieved in the active TB scheme here
proposed (see Fig. 11.1b). We replace the passive beam-splitter with an additional balanced
MZI acting as a fast optical switch, which allows the measurement MZI to recombine the
|S〉 and |L〉 pulses, making them indistinguishable. In this way, contrary to the passive TB
scheme which recombines the two temporal modes in a probabilistic manner, our scheme
deterministically compensates for the delay ∆t and no detections are discarded. Indeed, by
imposing the phases ϕS and ϕL=ϕS −π on the |S〉 and |L〉 pulses respectively, the balanced
MZI determines the path they will take in the measurement MZI, as sketched in Fig. 11.2a.

At each detector, we expect a detection pattern that depends on the value of ϕS, as shown
in Fig. 11.2a. From a formal point of view, in our TB scheme Alice’s measurement station
implements the POVM {Π̂a}a=±1, where Π̂a=

1
2

�

cos2 ϕS
2 |S〉〈S|+ sin2 ϕL

2 |L〉〈L|
�

+ |χa〉〈χa| with

|χa〉=(ie−i
ϕS
2 sin ϕS

2 |S〉+aei(ϕA−
ϕL
2 ) cos ϕL

2 |L〉)/
p

2 (the phase difference between the transmit-
ted and reflected mode by a beam splitter is eiπ/2= i). If ϕL=ϕS − π, the POVM reduces
to

Π̂a=
1
2

cos2
�ϕS

2

�

1+ sin2
�ϕS

2

�

P̂a . (11.6)
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A B
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Figure 11.2: Functioning of the active TB scheme. a In a balanced MZI, the relative phase ϕM
sensed by a traveling pulse determines the output port it will exit at with probabilities cos2(ϕM/2)
and sin2(ϕM/2). By using a fast modulator, it is possible to impose the different phase-shifts ϕS and
ϕL to the the |S〉 and |L〉 photons while they are traveling along the balanced MZI. By fixing ϕS=π
and ϕL=0, it is possible to temporally recombine |S〉 and |L〉 pulses, making them indistinguishable.
b The detection pattern at the output ports depends on the values ϕS and ϕL=ϕS −π. If ϕS=π, all
detection events occur in the central time-slot, whereas if ϕS=0 they are present only in the lateral
time-slots. Any other detection histogram can be obtained with two different ϕS values, one with
ϕS<π (red dot) and the other with ϕS>π (blue dot). For example, ϕS=π/2 and ϕS=3π/2 have
the same click distribution.

If Alice sets the phase ϕS=π (and thus ϕL=0), Π̂a reduces to P̂a and her station actually
projects onto the state |ψa〉, with no post-selection procedure. Indeed, in the detection
pattern the lateral peaks “disappear”, as shown in Fig. 11.2b and it is not necessary to
discard any data. Hence, the violation of Bell-CHSH inequality expected from our scheme is
free of the PSL.

11.2 Description of the experiment

We implemented the active TB scheme proposed above by using the experimental setup
sketched in Fig. 11.3. A mode-locking laser produced a pulse train with wavelength centered
around 808 nm, 76 MHz of repetition rate and ∼150 fs of pulse duration. This beam is
used to pump a second-harmonic-generation (SHG) crystal which generates coherent pulses
of light up-converted to 404 nm. Each of the obtained pulse passes through a free-space
unbalanced Michelson interferometer (that is the pump-interferometer) which produces a
coherent state in two temporal modes. The imbalance ∆l= L − S between the two arms is
about 90 cm, corresponding to a temporal imbalance ∆t=∆l/c≈3 ns (with c the speed
of light in vacuum), much greater than the coherence time of the pulses. Then, the pulses
pump a 2-mm long Beta-Barium Borate (BBO) crystal to produce the entangled photon state
via type II SPDC [265] at 808 nm.

The two photons are sent to Alice’ and Bob’s terminals after being spectrally filtered (3
nm bandwidth) and collected by two single-mode optical fibers. Each station is composed
of two MZIs, a balanced one and an unbalanced one. The balanced MZI is composed by a
50:50 fiber coupler which defines the two arms of the interferometer. To guarantee the zero
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Figure 11.3: Experimental setup to implement the active TB scheme. Bob’s measurement station is
analogue to Alice’s one. APD: analog-photo-detector; DM: dichroic mirror.

imbalance of this MZI, a nanometric stage is placed in one of the two arms.
The balanced MZI works as a fast optical switch, since there is a fast (∼GHz bandwidth)

phase-modulator in one of its arms. The modulation voltage is set to Vπ such that ϕS−ϕL=π,
while the DC bias of the phase-modulator is driven by an external proportional-integral-
derivative (PID) controller, that is responsible of locking the phase ϕS to π. The complete
operating principle of the PID controller is detailed in the Methods.

The two arms of the balanced MZI are recombined at a 50:50 free-space beam splitter
(BS) after been optimized for polarization rotations. This BS begins the unbalanced MZI
whose imbalance is equal to that of the pump-interferometer (within the coherence time
∼200 µs of the photons). The two mirrors of the long arm of the unbalanced MZI are
placed on a nanometric piezoelectric stage to both guarantee the required imbalance ∆t
and introduce the local phase shift ϕA and ϕB to realize the Bell-test. At the two output
ports of the measurement stations we used two avalanche single photon detectors (SPADs,
∼50% detection efficiency), labeled as a=±1 and b=±1. The detection events are then
time-tagged by a time-to-digital converter (Time Tagger) with 81 ps resolution and the data
are stored in a PC.

11.2.1 Operating principle of the PID controller

In our experiment we drive the phase ϕM introduced by the phase-modulator (PM) in the
balanced MZI to make the photons take a precise path in the subsequent MZI. To realize
this, we implemented the PID controller that is sketched in Fig. 11.4.

First, we synchronize the phase transition with the pump-pulses that produce the photon
pair. This is performed by a fast analog-photo-diode (APD) that collects the 808 nm pulsed
beam (after being separated with a dichroic mirror (DM) from the 404 nm pulse train
produced by the SHG stage, see Fig. 11.3) and produces an electric signal synchronized with
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Figure 11.4: Detailed scheme of the PID controller.

the optical pulses. This signal is spit in two: one is then collected by the time-tagger for
timing purposes and the other one is sent to the PID controller.

The first stage of the PID controller is an amplifier (iXblue) which produces a square
wave with fixed amplitude centered around 0 V. The amplitude Vπ of this wave set the
strength ∆ϕ=ϕS −ϕL=π of the transition introduced by the phase-modulator. The raise
time of the square wave is less than 2.5 ns to guarantee that the π-transition occurs within
the short-long temporal separation ∆t.

The absolute value of the phase ϕS of the balanced MZI is perturbed by temperature
fluctuations and vibrations due to the environment. In order to correctly implement our
scheme, we have to compensate this phase fluctuation (which occurs in the order of tens of
seconds), by locking the value of ϕS to π.

To perform this locking, the second stage of the PID controller is given by a bias-tee
(MiniCircuits) which compensates the intrinsic phase shift of the balanced MZI by changing
the offset voltage Vbias of the square wave produced by the amplifier. This is obtained by
the combined action of an AVR micro-controller (Arduino) and a digital-to-analog converter
(DAC) by maximizing the extinction ratio R between the central and the lateral peaks R=
(Nc −Nl)/(Nc +Nl), where Nc are the counts associated to the central peak and Nl are all the
counts in the lateral ones recorded by one of the two detectors of the measurement station.
All the counts in each detector can be estimated in real-time by looking at the raw data
collected by the time-tagger (QuTools), and they produce the detection histogram sketched
in the inset of Fig. 11.4, which corresponds to the real detection histograms presented in
Fig. 11.5.

To successfully lock ϕS to π the PID controller has to first evaluate its real-time value by
observing the detection histogram and computing R. Unfortunately, there is no one-to-one
correspondence between the extinction ratio and the phase ϕS. Indeed, for each possible
value of R there exist two possible values for ϕS that reproduce the observed histograms
(with the exception of 0 and π), as shown in Fig. 11.2b. Therefore, we must include an
additional information that allows us to distinguish between the two possible phase values.
This information is given by the derivative of the extinction ratio. If an increase of the phase
value causes an increase of the ratio, we choose the phase 0<ϕS<π (requiring further
increase to reach π). Otherwise, we choose the phase π<ϕS<2π (requiring a decrease to
reach π). Since the PID requires an error function that is equal to zero when the objective is
reached, we choose the function EϕS

=sgn
�

dR
dϕS

�

Nl
Nc

, which guarantees that the PID’s objective
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is both to lock the value of ϕS to π and to identify correctly the value of the phase, since the
symmetry between the two possible phase values is broken by the sign of the derivative of
the extinction ratio.

11.3 Results of the Bell-test

With the setup shown in Fig. 11.3, we performed the time-bin Bell-test with three different
schemes: I) the passive TB with post-selection, II) the passive TB with no post-selection, III)
the active TB with no post-selection proposed above. To realize I), we bypassed the balanced
MZI in each of the measurement stations, hence obtaining the passive TB configuration
of Fig. 11.1a. By choosing a coincidence window ∆τc≈2.4 ns and by post-selecting the
coincident events that occurred only in the central time-slot, Alice (Bob) implemented the
projective measurement given by P̂a (P̂b) and the expected Bell-CHSH violation is affected
by the PSL. To realize II), we used the same configuration as in I), but we did not discard
any data by choosing a coincidence window ∆τc≈8.1 ns, which corresponds to the total
width of the three peak-profile in the detections (see Fig. 11.5). In this case, Alice (Bob)
implemented the POVM given by Γ̂a (Γ̂b) and no Bell-CHSH violation is expected.

To implement III), we exploited the balanced MZI in each station and we used the
PID controller to lock the phase ϕS and ϕL to π and 0 respectively, independently at each
terminal. We did not discard any data by choosing a large coincidence window as in II),
but, in this case, the Bell-CHSH inequality is directly applicable, since Alice (and Bob)
implemented the POVM given in Eq. (11.6) with ϕS=π. The expected Bell-CHSH violation
is free of the post-selection loophole and this represents the main result of our work.

We show in Fig. 11.5 a typical detection histogram obtained with one of the four detectors
during the data acquisition (the results are similar for all the detectors). In the case of TB
schemes I) and II), since the balanced MZI is bypassed, we obtained the expected three-
peak profile (blue histogram). On the other hand, in our active TB scheme III), the PID
controller makes the lateral peaks disappear, as shown by the orange detections histogram.
This guarantees the correct functioning of the PID controller, whose details are described
in the Methods. It is worth noticing that the whole three-peak profile is within the chosen
coincidence window ∆τc=8.1 ns, thus guaranteeing that no data is discarded.

To realize each of the Bell-tests described above, we first calibrated the shifts to be
introduced by the nanometric stages in Alice’ and Bob’s unbalanced MZIs. This is obtained
by scanning the coincidence rate for a pair of detector by moving Bob’ stage while Alice’s one
is fixed. From the sinusoidal pattern obtained in such a way, we estimated the experimental
visibility Vexp for each scheme. Then, we imposed the shifts (ϕA,ϕB) needed to obtain the
maximal violation of the Bell inequality (as described above) and acquired the data for
sufficient time to achieve significant statistics.

The results obtained for each of the three schemes described above are represented in
Table 11.1. As expected, violation of the Bell-CHSH inequality was obtained with the first
and the third scheme with clear statistical evidence, but only the third one is not affected
by the PSL. The minor violation obtained in III) is due to imperfection in the balanced
MZI alignment and in the locking procedure occurring during data acquisitions needed to
experimentally estimate the S-parameter Sexp. It is worth stressing that any imperfection in
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Figure 11.5: Typical detection histograms obtained during data acquisition. The two histograms
represent all the raw detections collected by one of the four detectors during the data acquisition.
The blue histogram shows a typical detection pattern obtained with the passive TB scheme, in which
the three-peak profile is observed. The orange histogram shows the detection pattern obtained with
the active TB scheme: the PID controller is able to lock ϕS to π and ϕL to 0, thus making the lateral
peak disappear, allowing us to realize a time-bin Bell-test free of the PSL. The counts are normalized
to fairly compare the two histograms.

the locking mechanism setting ϕS=π corresponds to an effective lower visibility, but it does
not introduce any loophole in the Bell inequality.

11.4 Conclusions and outlooks

Time-bin encoding [247] is a valid resource for both performing fundamental tests of quan-
tum mechanics [266–268] and distributing entanglement over long distances [252]. How-
ever, all the time-bin entanglement realizations performed so far were affected by the post-
selection loophole, which makes this technique unsuitable for quantum information proto-
cols. A possible way to overcome this problem requires to violate the so-called “chained”
Bell-inequalities [269], but the needed visibility (¦0.94 [258]) is considerably higher than
the one of the Bell-CHSH inequality (¦0.71). Even if such a high visibility is achievable

Scheme ∆τc PSL Vexp Sexp SD

I) passive TB 2.4 ns Yes 0.95± 0.05 2.58± 0.03 18.3
II) passive TB 8.1 ns No 0.23± 0.02 0.67± 0.02 —
III) active TB 8.1 ns No 0.89± 0.03 2.30± 0.03 9.3

Table 11.1: Main results. SD refers to Standard Deviation of the Bell-CHSH violation.
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with time-bin entanglement, as shown in [270], our scheme clearly relaxes this requirement,
since the Bell-CHSH inequality is directly applicable.

In this chapter we have presented the first implementation of genuine time-bin entan-
glement, which represents a crucial step towards its exploitation for fundamental tests of
physics and the realization of the quantum Internet [182]. In fact, our scheme can be real-
ized using only commercial off-the-shelves fiber components and, since its stability does not
depend on the distance between Alice and Bob, it is easier to be implemented with respect to
the hug configuration [259]. Furthermore, as long as both the π-phase transition imposed
by the modulator and the detectors jitter are shorter than the imbalance ∆t, it is possible to
shorten it, rendering it compatible with today’s photonic integrated technologies [191, 271].
Finally, our work makes time-bin entanglement a viable technique to obtain a loophole-free
Bell violation, that is the enabling ingredient of any device-independent protocol [159, 222,
254, 272].



CHAPTER 12

Conclusions

Quantum Random Number Generation and Quantum Key Distribution have made huge steps
forward in the last few decades and nowadays are mature and commercial technologies.

However, QRNG used in practical applications still require a high level of trust on the
internal devices and on the manufacturer. The main motivation for this is that more secure
alternatives, such as Semi-DI QRNG, cannot match the simplicity the cost and the perfor-
mances of "trusted" QRNG. In the first part of this thesis we have demonstrated that Semi-DI,
and in particular Source-DI, protocols can be implemented with simple optical setups and
are able to offer performances perfectly comparable with "trusted" QRNG, making them
a preferable solution, due to their increased security. In particular in Chapter 3 we have
presented a simple Source-DI protocol based on heterodyne detection that is able to gen-
erate more than 17 Gbps of secure and private random numbers, breaking the previous
record for this category of QRNG by more than an order of magnitude. Then, in Chapter
4 we have developed a new tool for the security analysis of "trusted" and Source-DI QRNG,
and in Chapter 5 we employed this new tool to demonstrate that unbounded randomness
generation, in a Source-DI scenario, is possible with finite-dimensional quantum systems.
Finally in Chapter 6, we proposed a new implementation for a continuous-variable Semi-DI
QRNG that doesn’t require active phase stabilization, greatly simplifying the experimental
realization.

In the second part of the thesis, we have focused on some critical problems of practical
QKD implementations. The first problem, analyzed in Chapter 8, was related to the feasibil-
ity of daylight QKD at telecom wavelength in satellite applications. For this reason, we have
developed, in collaboration with the Italian Space Agency (ASI), a complete e prototype for
daylight free-space QKD at 1550 nm. The prototype has been tested with two transmitters:
a fiber-based one, realized with only commercial components and a second one, developed
in collaboration with Scuola Sant’Anna di Pisa, exploiting the Silicon Photonics technology.
The prototype featured a single mode fiber injection system and superconducting nanowire



single photon detectors. We have tested it in a 145m long free space link in the urban area
of Padova, from morning till evening. In both cases we have been able to obtain a secret key
rate in the order of tens of kbps, showing that daylight QKD technology is mature enough
to foresee the real application in satellite quantum communications. In Chapter 9, we have
addressed the problem of stability in current transmitters for polarization encoded QKD.
To solve the problem we have proposed and realized a new transmitter, called POGNAC
and based on a Sagnac interferometer, that self-compensate external fluctuations and guar-
antees long-term stability and a low intrinsic error. Then in Chapter 10, we have studied
the problem of time synchronization without any auxiliary time reference. To solve the
problem we have developed a synchronization method that can be implemented directly in
the quantum channel with a particular encoding and publicly announcing the initial stream
of the qubits. We have implemented the protocol, employing the POGNAC, showing at
the same time a record-low intrinsic QBER and the high robustness of the synchronization
method with respect to losses. Finally, in Chapter 11 we have studied the problem of the
post-selection loophole in setups employing time-bin entanglement, which poses severe lim-
itations for the adoption of this scheme in DI-QKD. We have solved the problem developing
a fast-switching optical scheme and a phase-locking mechanism that allowed us to violate
the CHSH inequality without post-selection.
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APPENDIX A

SDP

This section on SDP is based on Watrous’s Lecture Notes [273]- and all proofs can be found
there.

A Semi-Definite Program] (SDP) is a triple {A, B,Ψ}, where A∈Herm(HA), B∈Herm(HB)
are Hermitian operators and Ψ is Hermiticy-preserving map from Herm(HA) to Herm(HB) .

Then is possible to associate to the SDP the following two optimization problems:

primal problem dual problem

minimize : Tr[AX ] maximize : Tr[BY ]
subject to : Ψ[X ]≥B subject to : Ψ†[Y ]≤A

X ≥0 Y ≥0

(A.1)

The primal problem is said to be feasible if exists a X >0 that satisfies the constraint
Ψ[X ]≥B. Similarly, the dual problem is feasible if exists a Y >0 such that Ψ†[Y ]≤A. In such
case the the optimal solution for the primal α and the dual β can be written as:

α= inf{〈A, X 〉stX ≥0, Ψ[X ]≥B} (A.2)

β=sup{〈B, Y 〉stY ≥0, Ψ†[Y ]≤A} (A.3)

with the convention that if the primal is infeasible α=−∞ while β=∞ if the dual is
infeasible.

Moreover, if Ψ[X ]−B≥0 or A−Ψ†[Y ]≥0, the respective formulation is said to be strictly
feasible.

The two formulations are related to each other by a duality relation. In general we only
have weak duality:

Theorem 1. For any SDP, we have α≥β



This implies that every dual problem provides a lower bound while the primal provides
an upper bound.

For many interesting problems, however, a stronger relation holds called strong duality

Theorem 2. If the primal and the dual are in the form of Eq A.3 and Slater’s conditions holds
then α=β

where the Slater’s conditions are

• if the primal problem is feasible and the dual is strictly feasible, then strong duality
holds and there exists a valid choice X for the primal problem with Tr[AX ]=α

• if the dual problem is feasible and the primal is strictly feasible, then strong duality
holds and there exists a valid choice Y for the dual problem with Tr[BY ]=β

• f both problems are strictly feasible, then strong duality holds and there exist valid
choices of X and Y with α=β=Tr[AX ]=Tr[BY ]

The advantage of SDP is that these optimization problems can be efficiently solved
numerically and are guararantee to converge to the global optimum.



APPENDIX B

Results of statistical tests

The following table present the results of the statistical test suite for the Soruce-DI hetero-
dyne QRNG presented in Chap 3

Test’s name P-value Result

diehard birthdays 0.398 PASSED
diehard operm5 0.391 PASSED
diehard rank 32x32 0.414 PASSED
diehard rank 6x8 0.767 PASSED
diehard bitstream 0.529 PASSED
diehard opso 0.655 PASSED
diehard oqso 0.758 PASSED
diehard dna 0.731 PASSED
diehard count 1s str 0.482 PASSED
diehard count 1s byt 0.361 PASSED
diehard parking lot 0.515 PASSED
diehard 2dsphere 0.484 PASSED
diehard 3dsphere 0.739 PASSED
diehard squeeze 0.580 PASSED
diehard sums 0.140 PASSED
diehard runs 0.478 PASSED
diehard runs 0.316 PASSED
diehard craps 0.348 PASSED
diehard craps 0.937 PASSED
marsaglia tsang gcd 0.504 PASSED
marsaglia tsang gcd 0.444 PASSED
sts monobit 0.204 PASSED
sts runs 0.716 PASSED
sts serial 0.151 PASSED
rgb bitdist 0.056 PASSED
rgb minimum distance 0.043 PASSED
rgb permutations 0.068 PASSED
rgb lagged sum 0.019 PASSED

Table B.1: Result of Dieharder test suite on the
extracted random numbers. In the case of mul-
tiple tests in a category, the smallest have been
reported.

Test’s name P-value Result

Frequency 0.980 PASSED
BlockFrequency 0.323 PASSED
CumulativeSums 0.819 PASSED
CumulativeSums 0.265 PASSED
Runs 0.187 PASSED
LongestRun 0.864 PASSED
Rank 0.372 PASSED
DFT 0.341 PASSED
NonOverlapping 0.016 PASSED
Overlapping 0.748 PASSED
Universal 0.381 PASSED
ApproximateEntropy 0.509 PASSED
RandomExcursions(RE) 0.315 PASSED
RE Variant 0.047 PASSED
Serial 0.318 PASSED
LinearComplexity 0.373 PASSED

Table B.2: Result of NIST test suite on the ex-
tracted random numbers. In the case of multi-
ple tests in a category, the smallest have been re-
ported.
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[50] M. Stipčević and B. M. Rogina, “Quantum random number generator based on
photonic emission in semiconductors”, Review of Scientific Instruments (2007) 10.
1063/1.2720728 (cit. on p. 28).

[51] J. F. Dynes et al., “A high speed, postprocessing free, quantum random number
generator”, Applied Physics Letters (2008) 10.1063/1.2961000 (cit. on p. 28).

[52] M. Fürst et al., “High speed optical quantum random number generation”, Optics
Express (2010) 10.1364/oe.18.013029 (cit. on p. 28).

[53] M. Wahl et al., “An ultrafast quantum random number generator with provably
bounded output bias based on photon arrival time measurements”, Applied Physics
Letters (2011) 10.1063/1.3578456 (cit. on p. 28).

[54] Q. Yan et al., “Multi-bit quantum random number generation by measuring positions
of arrival photons”, Review of Scientific Instruments (2014) 10.1063/1.4897485
(cit. on p. 28).

[55] D. G. Marangon et al., “Enhanced security for multi-detector quantum random num-
ber generators”, Quantum Science and Technology 1 (2016) 10.1088/2058-9565/
1/1/015005 (cit. on p. 28).

[56] M. Ren et al., “Quantum random-number generator based on a photon-number-
resolving detector”, Physical Review A - Atomic, Molecular, and Optical Physics
(2011) 10.1103/PhysRevA.83.023820 (cit. on p. 28).

[57] B. Sanguinetti et al., “Quantum random number generation on a mobile phone”,
Physical Review X (2014) 10.1103/PhysRevX.4.031056 (cit. on p. 28).

[58] M. J. Applegate et al., “Efficient and robust quantum random number generation
by photon number detection”, Applied Physics Letters (2015) 10.1063/1.4928732
(cit. on p. 28).

[59] C. Gabriel et al., “A generator for unique quantum random numbers based on vac-
uum states”, Nature Photonics 4, 711–715 (2010) (cit. on pp. 28, 37).

[60] B. Qi et al., “High-speed quantum random number generation by measuring phase
noise of a single-mode laser”, Optics Letters (2010) 10.1364/ol.35.000312 (cit.
on p. 28).

http://dx.doi.org/10.1214/aos/1176348543
http://dx.doi.org/10.1214/aos/1176348543
http://dx.doi.org/10.1214/aos/1176348543
http://dx.doi.org/10.1109/TIT.2011.2175698
http://dx.doi.org/10.1109/TIT.2011.2175698
http://dx.doi.org/10.1109/TIT.2011.2175698
http://dx.doi.org/10.1088/0022-3735/3/8/303
http://dx.doi.org/10.1088/0022-3735/3/8/303
http://dx.doi.org/10.1088/0022-3735/3/8/303
http://dx.doi.org/10.1080/09500349414552281
http://dx.doi.org/10.1063/1.2720728
http://dx.doi.org/10.1063/1.2720728
http://dx.doi.org/10.1063/1.2720728
http://dx.doi.org/10.1063/1.2961000
http://dx.doi.org/10.1063/1.2961000
http://dx.doi.org/10.1364/oe.18.013029
http://dx.doi.org/10.1364/oe.18.013029
http://dx.doi.org/10.1364/oe.18.013029
http://dx.doi.org/10.1063/1.3578456
http://dx.doi.org/10.1063/1.3578456
http://dx.doi.org/10.1063/1.3578456
http://dx.doi.org/10.1063/1.4897485
http://dx.doi.org/10.1063/1.4897485
http://dx.doi.org/10.1088/2058-9565/1/1/015005
http://dx.doi.org/10.1088/2058-9565/1/1/015005
http://dx.doi.org/10.1088/2058-9565/1/1/015005
http://dx.doi.org/10.1103/PhysRevA.83.023820
http://dx.doi.org/10.1103/PhysRevA.83.023820
http://dx.doi.org/10.1103/PhysRevA.83.023820
http://dx.doi.org/10.1103/PhysRevX.4.031056
http://dx.doi.org/10.1103/PhysRevX.4.031056
http://dx.doi.org/10.1063/1.4928732
http://dx.doi.org/10.1063/1.4928732
http://dx.doi.org/10.1038/nphoton.2010.197
http://dx.doi.org/10.1364/ol.35.000312
http://dx.doi.org/10.1364/ol.35.000312


[61] C. Abellán et al., “Ultra-fast quantum randomness generation by accelerated phase
diffusion in a pulsed laser diode”, Optics Express 22, 1645 (2014) (cit. on p. 28).

[62] Y. Q. Nie et al., “The generation of 68 Gbps quantum random number by measuring
laser phase fluctuations”, Review of Scientific Instruments 86, 063105 (2015) (cit.
on p. 28).

[63] ID Quantique, Random Number Generation using Quantum Physics, 2010 (cit. on
p. 28).

[64] Quantum Random Number, http://www.micro-photon-devices.com/Products/
Instrumentation/Quantum-Random-Number (cit. on p. 28).

[65] qStream Quantum Random Number Generator, https://www.quintessencelabs.
com/products/qstream-quantum-true-random-number-generator/ (cit. on
p. 28).

[66] PQRNG 150, https://www.picoquant.com/scientific/product-studies/
pqrng-150-product-study (cit. on p. 28).

[67] R. Colbeck, “Quantum And Relativistic Protocols For Secure Multi-Party Computa-
tion”, ArXiv e-prints 0911, 3814 (2009) (cit. on p. 29).

[68] R. Colbeck and A. Kent, “Private randomness expansion with untrusted devices”,
Journal of Physics A: Mathematical and Theoretical 44, 095305 (2011) (cit. on
p. 29).

[69] S. Pironio and S. Massar, “Security of practical private randomness generation”, Phys-
ical Review A - Atomic, Molecular, and Optical Physics (2013) 10.1103/PhysRevA.
87.012336 (cit. on p. 29).

[70] S. Pironio et al., “Random numbers certified by Bellĝs theorem”, Nature (2010)
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