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Sunto

La tesi affronta lo studio dei modelli di Markov nascosti. Essi sono oggi

giorno molto popolari, in quanto presentano una struttura più versatile dei

processi indipendenti ed identicamente distribuiti o delle catene di Markov,

ma sono tuttavia trattabili. Risulta quindi interessante cercare proprietà dei

processi i.i.d. che restano valide per modelli di Markov nascosti, ed è questo

l’oggetto della tesi. Nella prima parte trattiamo un problema probabilis-

tico. In particolare ci concentriamo sui processi scambiabili e parzialmente

scambiabili, trovando delle condizioni che li rendono realizzabili come pro-

cessi di Markov nascosti. Per una classe particolare di processi scambiabili

binari troviamo anche un algoritmo di realizzazione. Nella seconda parte

affrontiamo il problema del rilevamento di un cambiamento nei parametri

caratterizzanti la dinamica di un modello di Markov nascosto. Adattiamo ai

modelli di Markov nascosti un algoritmo di tipo cumulative sum (CUSUM),

introdotto inizialmente per osservazioni i.i.d. Questo ci porta a studiare la

statistica CUSUM con processo di entrata L-mixing. Troviamo quindi una

proprietà di perdita di memoria della statistica CUSUM, quando non ci sono

cambiamenti nella triettoria, dapprima nel caso più elemenatare di processo

di entrata i.i.d. (con media negativa e momenti esponenziali di qualche or-

dine finiti), e poi per processo di entrata L-mixing e limitato, sotto opportune

ipotesi tecniche.

La rimanente parte di questo testo è redatta in lingua inglese per consen-

tirne la fruibilità ad un numero maggiore di lettori.





Abstract

The thesis focuses on Hidden Markov Models (HMMs).They are very popular

models, because they have a more versatile structure than independent iden-

tically distributed sequences or Markov chains, but they are still tractable.

It is thus of interest to look for properties of i.i.d. sequences that hold true

also for HHMs, and this is the object of the thesis. In the first part we con-

centrate on a probabilistic problem. In particular we focus on exchangeable

and partially exchangeable sequences, and we find conditions to realize them

as HHMs. For a special class of binary exchangeable sequences we also give a

realization algorithm. In the second part we consider the problem of detect-

ing changes in the statistical pattern of a hidden Markov process. Adapting

to HHMs the so-called cumulative sum (CUSUM) algorithm, first introduced

for independent observations, we are led to the study of the CUSUM statis-

tics with L-mixing input sequence. We establish a loss of memory property

of the CUSUM statistics when there is no change, first in the easier case of

a i.i.d. input sequence, (with negative expectation, and finite exponential

moments of some positive order), and then, under some technical conditions,

for bounded and L-mixing input sequence.





Introduction

A Hidden Markov Model (HMM) is a function of a homogeneous Markov

chain.

In general a HMM needs not be Markov and will exhibit long-range depen-

dencies of some kind. This theoretical inconvenience is actually a blessing

in disguise. The class of HMMs contains processes with complex dynami-

cal behaviors and yet it admits a simple parametric description, therefore

it comes as no surprise that it is extensively employed in many applications

to real data. HMMs appear in such diverse fields as engineering (to model

the output of stochastic automata, for automatic speech recognition and for

communication networks), genetics (sequence analysis), medicine (to study

neuro-transmission through ion-channels), mathematical finance (to model

rating transitions, or to solve asset allocation problem), and many others.

On the theoretical side the lack of the Markov property makes the class

of HMMs difficult to work with. Theoretical work on the specific class of

HMMs has proceeded along two main lines, probabilistic and statistical.

Probabilistic aspects. The early contributions, inspired by the seminal

papers of Blackwell and Koopmans [11], and of Gilbert [35], concentrated

on the probabilistic aspects. During the sixties many authors looked for

a characterization of HMMs. More specifically the problem analyzed was:

among all processes Yn characterize, in terms of their finite dimensional dis-

tributions, those that admit a HMM representation. This problem produced

a host of false starts and partial solutions until it was finally settled by

Heller [36]. To some extent Heller’s result is not quite satisfactory since his

methods are non-constructive. If (Yn) is a stochastic process which satisfies

the conditions to be represented as a HMM, no algorithm is proposed to

produce a Markov chain (Xn) and a function f such that Yn = f(Xn). That

explains why the effort to produce a constructive theory of HMMs has been

pursued even after the publication of Heller’s paper. In more recent years
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the problem has attracted the attention of workers in the area of Stochastic

Realization Theory ( see for example [2], [51]) but, while some of the issues

have been clarified, a constructive and effective algorithm valid for general

HMMs is still missing.

A niche of positive results was obtained restricting attention to special

subclasses of HMMs which exhibit a particularly simple, yet probabilistically

and statistically interesting structure.

Most notably, in 1964, Dharmadhikari [21] restricted his attention to the

class of exchangeable processes, posing and solving the problem of character-

izing the HMMs within that class. Part I of the thesis goes in this direction.

Exchangeable processes have been introduced by de Finetti. They are

characterized by having joint distributions invariant under permutations be-

tween the random variables in the sequence. The famous theorem by de

Finetti himself states that a sequence is exchangeable if and only if it is a

mixture of independent identically distributed (i.i.d.) sequences.

Mixtures of i.i.d. sequences are i.i.d. sequences with an unknown and

random distribution, for which we select a prior. The role played by mixture

models in Bayesian statistics is well known and sufficient in itself to justify

the large interest, both theoretical and practical, for the class of exchangeable

processes.

If the prior of the unknown distribution of the random variables of a

mixture of i.i.d. sequences is concentrated on a finite (resp. countable) set we

will call it a finite (resp. countable) mixture of i.i.d. sequences. The above

result by Dharmadhikari states that an exchangeable sequence of random

variables is a finite (resp. countable) mixture of i.i.d. sequences if and

only if it is a HHM with finite (resp. countable)-valued underlying Markov

chain. The class of exchangeable HMMs with finite underlying Markov chain

therefore coincides with that of finite mixtures of i.i.d. sequences. Although

these are very special exchangeable processes, they constitute an extremely

versatile class of models, usefully employed in many practical applications.

It is therefore not only of theoretical, but also of practical interest to

pose and solve the problem of the construction of exchangeable HMMs from

distributional data, which is the first contribution we give in Part I of the

thesis. In the first part of Chapter 2 we focus on {0, 1}-valued exchangeable

processes. We look for verifiable criteria to establish, from the knowledge

of some finite distributions of the process of interest, whether it is a finite

mixtures of i.i.d. sequences, i.e. if it is a HHM with finite parametrization.
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Moreover we can find the finite parametrization, when it does exist.

The problems mentioned above can be completely solved resorting to

known results on the classic moment problem on the unit interval. Both the

characterization of the existence and the construction of the realization can

be based on the analysis of a set of Hankel matrices which are defined solely

in terms of the given finite distributions.

The idea of exchangeability has ramified in many directions giving origin

to a number of closely related notions of partial exchangeability. Without

entering the intricate details which will be developed later, one can define

a partially exchangeable process as one whose distributions are invariant for

permutations that preserve the 1-step transition counts. de Finetti conjec-

tures that partially exchangeable sequences are mixtures of Markov chains,

i.e. Markov chains with an unknown and random distribution. His conjecture

was proved many years later, under some necessary regularity conditions, by

Diaconis and Freedman [22] in 1980, more than 20 years after de Finetti

conjectured the result. More refined versions of this result, settling issues re-

lated to the uniqueness of the representation, have been given only recently

by Fortini and al. [27].

The study of partially exchangeable processes leads us to the other two

main contributions of Part I of the thesis. On one hand we have generalized

the above mentioned Dharmadhikari theorem, proving that a recurrent par-

tially exchangeable process is a finite (resp. countable) mixture of Markov

chains if and only if it is a HHM with finite (resp. countable)-valued under-

lying Markov chain. This has been proved both in the framework of [22] and

of [27]. Moreover we give some advances in the realization problem for {0, 1}-
valued HMMs. We focus on partially exchangeable processes and we propose

a criterion to establish whether they can be realized as a finite mixture of

Markov chains, i.e. as a HMM with finite parametrization.

We now go back to the statistical aspects of HMMs.

Statistical aspects.

One of the first contributions in the statistical analysis of hidden Markov

processes is [8], in which the maximum-likelihood (ML) estimation of the pa-

rameters of a finite state space and finite read-out HMM is studied. Strong

consistency of the maximum-likelihood estimator for finite state space and

binary read-outs has been established in [3]. The extension of these results

to continuous read-outs requires new insights.
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The first step in proving consistency of the maximum-likelihood method

would be to show the validity of the strong law of large numbers for the log-

likelihood function. This can be achieved showing the validity of the strong

law of large numbers for a function of an extended Markov chain (Xn, Yn, pn),

where (Xn) is the Markov chain driving the HHM, (Yn) is the output and (pn)

is the predictive filter. This has been investigated in the literature basically

with three different methods: using the subadditive ergodic theorem in [40],

using geometric ergodicity arguments in [39], and using L-mixing processes

in [34], [33]. For more recent contributions see [14] and [24].

In Part II of the thesis we focus on the statistical problem of change

detection for HMM-s. Detection of changes in the statistical pattern of a

hidden Markov process is of interest in a number of applications. In the case

of speech processing we may wish to identify the moments of switching from

one speaker to another one. In the case of distributed, aggregated sensing

we may wish to identify the events of sensor failure.

The theory for the statistical analysis of HHMs developed by Gerencser

and coauthors allows the construction of a Hinkley-type (or CUSUM) change

detection algorithm for HHMs. The proposed change detection algorithm for

HHMs naturally leads to the study of the CUSUM statistics with L-mixing

input. We concentrate on the case when there are no changes at all. In

this case the CUSUM statistics can be represented as a non linear stochastic

system. For i.i.d. input, this system is a standard object in queuing theory

and many stability properties have been proved for the system, with negative

expectation input. In Part II of the thesis these results are extended in two

ways: first we show that for i.i.d. inputs with negative expectation, and finite

exponential moments of some positive order the output of this system is L-

mixing. Then, this result is generalized to L-mixing inputs, under further

technical conditions such as boundedness. The results give an upper bound

for the false alarm frequency.
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Input-output properties of the Hinkley detector

Introduction 65

4 Definitions and Preliminary Results 67

4.1 Change detection and the CUSUM algorithm . . . . . . . . . 67

4.1.1 Change detection for HHMs . . . . . . . . . . . . . . . 70

4.2 L-mixing processes . . . . . . . . . . . . . . . . . . . . . . . . 72

5 L-mixing prop. for the CUSUM stat. 77

5.1 Equivalent formulations for gn . . . . . . . . . . . . . . . . . . 77

5.2 The CUSUM with i.i.d. input . . . . . . . . . . . . . . . . . . 78

5.2.1 L-mixing property . . . . . . . . . . . . . . . . . . . . 79

5.3 The CUSUM with L-mixing input . . . . . . . . . . . . . . . . 83

5.3.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Estimation of False Alarm frequency . . . . . . . . . . . . . . 89

A Technical Lemmas 91

Bibliography 95



Countable and Finite Mixtures

of Markov Chains





Introduction

Exchangeable sequences, introduced by de Finetti, are characterized by hav-

ing joint distributions invariant under permutations between the random

variables in the sequence. Exchangeable sequences are identically distributed

random variables which are independent, up to know some common random

factor of the variables in the sequence, or, in an other way, they are in-

dependent identically distributed (i.i.d.) sequences with an unknown and

random distribution (mixture of i.i.d. sequences). de Finetti is the first who

characterizes exchangeable sequences in such a way, proving his well known

theorem.

de Finetti himself generalizes exchangeability to partial exchangeability.

Roughly speaking, a sequence is partially exchangeable if the joint distribu-

tions are invariant under permutations which keep fixed the 1-step transi-

tions. de Finetti conjectures that partially exchangeable sequences are mix-

tures of Markov chains, i.e. Markov chains with an unknown and random

distribution. His conjecture was proved many years later.

Dharmadhikari gives a characterization of exchangeable sequences that

are a countable mixture of i.i.d. sequences, linking exchangeable sequences

with HHMs. In the thesis we extend the result of Dharmadhikari, char-

acterizing partially exchangeable sequences which are countable mixture of

Markov chains, finding a connection with HHMs. The result easily implies

a characterization of finite mixtures of Markov chains, that is actually quite

difficult to check in practice.

Finite mixtures of Markov chains are an appropriate statistical model

when the population is naturally divided into clusters, and the time evolu-

tion of a sample is Markovian, but with distribution dependent on which

cluster the sample belongs to. These models have been applied in different

contexts. For example in [13] finite mixtures of Markov chains are used to

model navigation patterns on a web site, clustering together users with sim-



ilar behavior. In [28] bond ratings migration is modeled using a mixture of

Markov chains, where different Markov chains correspond to different health

states of the market.

In Chapter 1 we introduce the basic definitions and tools we will need in

the thesis.

In Chapter 2 we focus on binary, i.e. {0, 1}-valued, sequences. We provide

an original criterion to establish whether a mixture of i.i.d. sequences or

of Markov chains is a finite mixture. Differently from the Dharmadhikari

characterization, the criterion is easy to check. Moreover, for finite mixtures

of i.i.d. sequences it gives the exact number of the i.i.d. sequences involved,

while for finite mixtures of Markov chains it gives just a bound on the number

of components of the mixture. Furthermore we give an original algorithm to

compute exactly the mixing measure associated with a finite mixture of i.i.d.

sequences, and thus to completely identify the model. The developed theory

can be applied to solve the stochastic realization problem and the positive

realization of a linear system in some special cases.

In Chapter 3 we extend the Dharmadhikari theorem characterizing the

exchangeable sequences which are countable mixtures of i.i.d. sequences, to

Markov exchangeable sequences, to k-Markov exchangeable sequences and to

partially exchangeable sequences.



Chapter 1

Mathematical tools

In this chapter we recall some well known definitions and results. In Section

1.1 we introduce exchangeable and partially exchangeable sequences. In Sec-

tion 1.2 we give the definition of mixture of i.i.d. sequences and of Markov

chains (see Section 1.2.1), with special attention to finite and countable mix-

tures (see Section 1.2.2), and to binary mixtures (see Section 1.2.3), because

they will play a crucial role in Chapters 2 and 3. Moreover in Section 1.2.4 we

report de Finetti’s characterization theorem for exchangeable sequences and

its extension to partially exchangeable sequences by Diaconis and Freedman,

and by Fortini et al., providing also an easy original extension of the result

to k-Markov exchangeable sequences, that will be proved in Chapter 3. In

Section 1.3 we recall the definition of Hidden Markov Model.

1.1 Exchangeability and related notions

Let Z = (Z1, Z2, . . . ) be a sequence of random variables on a probability

space (Ω,F ,P) taking values in a measurable space (J,J ), with J countable.

The set J will be called alphabet and its elements symbols or letters. Finite

strings of letters will be denoted by σ = σn
1 = σ1σ2 . . . σn, where σi ∈ J for

i = 1, . . . n. J∗ will be the set of all finite strings of letters and we will write

{Zn
1 = σn

1 } to indicate the event {Z1 = σ1, Z2 = σ2, . . . , Zn = σn}.
Let S(n) be the group of permutations of {1, 2, . . . , n}. We say that

the string τ = τn
1 is a permutation of the string σ = σn

1 if there exists a

permutation π ∈ S(n) such that

τn
1 = τ1τ2 . . . τn = σπ(1)σπ(2) . . . σπ(n).
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Definition 1.1.1. The sequence Z = (Z1, Z2, . . . ) is exchangeable if for all

n, for all σ = σn
1 and all permutation τ = τn

1 of σ we have

P
{
Zn

1 = σn
1

}
= P

{
Zn

1 = τn
1

}
.

Example 1.1.1. Let δ = (δ1, δ2, . . . ) be a sequence of i.i.d. random variables

on a probability space (Ω,F ,P). Let Z̄ be a random variable on the same

probability space, not necessarily independent from δ. Define for any n ≥ 1

Zn := Z̄ + δn. (1.1)

The sequence Z = (Z1, Z2, . . . ) is exchangeable.

Note that a sequence of i.i.d random variables is exchangeable. Conversely

the random variables of an exchangeable sequence are identically distributed,

but not necessarily independent.

We introduce below the partially exchangeable sequences. The term par-

tial exchangeability could cause some misunderstanding, because it is used

by different authors to indicate slightly different classes of processes 1. The

first definition of partial exchangeability goes back to de Finetti in [19]. It is

reported in Definition 1.1.2 below. Other authors, among them Diaconis and

Freedman ([22]) and Quintana ([47]), use the term ”partial exchangeability”

for a different class of processes, that we will call ”Markov exchangeable” (

see Definition 1.1.4 below).

1For the sake of clarity we list below some terms commonly used in the literature, to
indicate notions connected with de Finetti’s partial exchangeability

• partial exchangeability :

– Diaconis and Freedman in [22], and Quintana in [47] use this term to indicate
processes satisfying Definition 1.1.4

– de Finetti in [19], Fortini et al. in [27] and this Thesis use this term to indicate
processes with successors matrix satisfying Definition 1.1.2

• Markov exchangeability

– Di Cecco in [20] and this Thesis use this term to indicate processes satisfying
Definition 1.1.4

• Freedman condition

– Fortini et al. in [27] use this term to indicate the condition required in Defi-
nition 1.1.4
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Let Z = (Z1, Z2, . . . ) be a sequence of random variables. To give Defini-

tion 1.1.2, we introduce the random matrix V = (Vi,n)i∈J,n≥1 of the successors

of Z: for any i ∈ J and n ≥ 1, Vi,n is the value that the sequence Z takes

immediately after the n-th visit to state i. To avoid rows of finite length for

V we introduce an additional state to J , call it δ /∈ J . If X visits the state i

only n times, put Vi,m = δ for m > n.

Definition 1.1.2. V is partially exchangeable if its distribution is invariant

under finite permutations possibly distinct within each of its rows.

Markov exchangeability is an extension of the notion of exchangeability,

given restricting the class of permitted permutations. More precisely

Definition 1.1.3. Let σ = σ1 σ2 . . . σn and τ = τ1 τ2 . . . τn be finite strings

from J . σ and τ are transition equivalent, write σ ∼ τ , if they start with the

same letter and exhibit the same number of transitions from letter i to letter

j, for every pair i, j ∈ J .

For example, in the binary case, J = {0, 1}, the strings σ = 1100101 and

τ = 1101001 are easily seen to be transition equivalent. Note that the string

ρ = 1110001 is a permutation of σ, but σ and ρ are not transition equivalent.

For a systematic way to generate, in the binary case, all the strings transition

equivalent to a given one see [47].

We recast below the Lemma (5) of [22]:

Lemma 1.1.1. Let σ ∼ τ . Then σ and τ have the same length and end with

the same letter. Furthermore, for any letter i, the sequences σ and τ contain

the letter i the same number of times.

We are now ready to give the definition of Markov exchangeable sequences:

Definition 1.1.4. The sequence Z = (Z1, Z2, . . . ) is Markov exchangeable

if for every pair of transition equivalent strings σ ∼ τ , it holds

P
{
Zn

1 = σn
1

}
= P

{
Zn

1 = τn
1

}
.

The sequence Z is Markov exchangeable if, for all n ∈ N, the joint distri-

bution of Z1, Z2, . . . , Zn is invariant under permutations that keep fixed the

transition counts and the initial state.
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Example 1.1.2. An exchangeable sequence is trivially Markov exchangeable

according to Definition 1.1.4, since the finite-dimensional joint distributions

of an exchangeable sequence must be invariant under a larger class of per-

mutations. By Lemma 1 part (b) in [27] an exchangeable sequence has also

a partially exchangeable matrix of the successors.

Example 1.1.3. An homogeneous Markov chain is partially exchangeable

and Markov exchangeable.

Remark 1.1.1. Note that exchangeable sequences are stationary, but Markov

exchangeable sequences are not always stationary. For example, a homoge-

neous Markov chain which does not start at the invariant distribution is

Markov exchangeable, but not stationary.

In [27] Section 2.2. Fortini et al. study the relationship between par-

tial exchangeability and Markov exchangeability, proving that the former is

generally stronger, but that the two are equivalent under a recurrence hy-

pothesis.

Markov exchangeability can be generalized to k-Markov exchangeability.

First of all, we restrict the notion of transition equivalent strings:

Definition 1.1.5. Let σ = σ1 σ2 . . . σn and τ = τ1 τ2 . . . τn be strings from

J . We say that σ and τ are transition equivalent of order k (shortly, k-

transition equivalent), and we write σ ∼k τ , if they start with the same

string of length k and exhibit the same number of transition counts of order

k.

The analogous of Lemma 1.1.1 holds, i.e.

Lemma 1.1.2. Let σ ∼k τ . Then σ and τ have the same length, and end

with the same string of length k. Furthermore σ and τ contain the k-length

strings i1i2 . . . ik, with i1, i2, . . . , ik varying in J , the same number of times.

We can give the definition of Markov exchangeable sequences of order k

in the obvious way:

Definition 1.1.6. The sequence Z is Markov exchangeable of order k (shortly,

k-Markov exchangeable), if for every pair of finite k-transition equivalent

strings σ ∼k τ , with σ = σn
1 and τ = τn

1 , it holds

P
{
Zn

1 = σn
1

}
= P

{
Zn

1 = τn
1

}
.
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Trivially a k-Markov exchangeable sequence is h-Markov exchangeable

for k ≤ h.

Recall the well-known definition

Definition 1.1.7. Z is a homogeneus Markov chain of order k if

P{Zn = zn|Z1, . . . , Zn−1} = P{Zn = zn|Zn−k, . . . , Zn−1} for each n ≥ k + 1.

An i.i.d. sequence is a Markov chain of order 0, a usual Markov chain is

a Markov chain of order 1.

Example 1.1.4. A homogeneous Markov chain of order k is a k-Markov

exchangeable sequence.

1.2 Mixtures and representation theorems

1.2.1 Mixtures of measures

In this section we give the definition of mixtures of i.i.d. sequences and of

mixtures of Markov chains.

Mixtures of i.i.d. sequences

To define mixtures of i.i.d. sequences we need the following

Definition 1.2.1. (see Chapter 7.2 in [15]) Let (Ω,F ,P) be a probability

space and let G ⊆ F be a sub σ-field of F . A regular conditional probability

on F given G is a function P : Ω×F −→ [0, 1] such that

• P (ω, ·) : F −→ [0, 1] is a probability measure on F for all ω ∈ Ω,

• P (·, A) is G-measurable for any A ∈ F and P (ω, A) = P{A | G}(ω)

a.s.

Notation: From now on, we write Pω(A) instead of P (ω, A).

We can give the following

Definition 1.2.2. Z is a mixture of i.i.d. sequences if there exists a σ-field

G ⊆ F and a regular conditional probability Pω(·) on F given G such that

Pω(Zn
1 = zn

1 ) =
n∏

t=1

Pω(Z1 = zt) P-a.s.

i.e. the Zi are i.i.d. relative to Pω(·) for P-almost all ω.
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Recalling the definition of regular conditional probability the last condi-

tion becomes

P
{
Zn

1 = zn
1 | G

}
=

n∏
t=1

P
{
Z1 = zt | G

}
P-a.s. (1.2)

i.e. the variables Zt are conditionally independent given G. Therefore for a

mixture of i.i.d. sequences Z, we can write

P
{
Zn

1 = zn
1 } =

∫
P
{
Zn

1 = zn
1 | G

}
(ω)P(dω)

=

∫ n∏
t=1

P
{
Z1 = zt | G

}
(ω)P(dω)

=

∫ n∏
t=1

Pω(Z1 = zt)P(dω).

(1.3)

Let Z take values into the measurable space (J,J ), and letMJ be the set

of all probability measures on (J,J ). (In the case of finite J = {1, 2, . . . , d}
the set MJ coincides with the face of the simplex in Rd i.e. the set of

probability vectors q = (q1, . . . qd) such that
∑d

h=1 qh = 1). Denote with m a

generic element in MJ . Equip MJ with the σ-field generated by the maps

m 7→ m(A), varying m ∈ MJ and A ∈ J . We report below an alternative

definition of mixture of i.i.d. sequences, widely used in the literature.

Definition 1.2.3. A sequence Z of random variables with values on (J,J )

is a mixture of i.i.d. sequences if there exists a measure µ in MJ such that

P
{
Zn

1 = zn
1 } =

∫

MJ

n∏
t=1

m(zt)µ(dm). (1.4)

Proposition 1.2.1. Let Z be a mixture of i.i.d. sequences according to Def-

inition 1.2.2. Then Z is a mixture of i.i.d. sequences according to Definition

1.2.3 as well.

Proof. Pω as in Definition 1.2.2 is a probability measure on (Ω,F) for any

fixed ω. Therefore the random variable Z1 : (Ω,F) −→ (J,J ) induces a

probability measure P̄ω on (J,J ) in the usual way, i.e. for any A ∈ J

P̄ω(A) := Pω(Z1 ∈ A).
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Here P̄ω(·) is a probability measure on (J,J ) for any fixed ω. Letting ω vary

on Ω, P̄(·) is a random variable on (Ω,F) with values in the set MJ . Let LP̄

be the law of P̄(·), thus LP̄ is a probability measure on MJ defined as

LP̄ (M) := P(P̄ω ∈ M) (1.5)

for any measurable M ⊆MJ .

By the previous observations, we can write equation (1.3) as

P
{
Zn

1 = zn
1 } =

∫ n∏
t=1

Pω(Z1 = zt)P(dω) =

∫ n∏
t=1

P̄ω(zt)P(dω)

=

∫

MJ

n∏
t=1

m(zt)LP̄ (dm).

The last expression is just equation (1.4) with µ = LP̄ .

Mixtures of Markov chains

We introduce below mixtures of Markov chains. Let Z be a sequence taking

values in the countable measurable space (J,J ), and let P be the set of

stochastic matrices on J × J with the topology of coordinate convergence.

We give the following

Definition 1.2.4. Z is a mixture of homogeneus Markov chains if for any

fixed initial state z1, there exists a random variable P̃ z1 on (Ω,F ,P) with

values in the set of stochastic matrices P such that

P{Zn
1 = zn

1 | P̃ z1} = P̃ z1
z1,z2

P̃ z1
z2,z3

P̃ z1
zn−1,zn

P-a.s. , (1.6)

where P̃ z1
i,j indicates the ij-entry of the matrix P̃ z1.

We will often omit to indicate the initial state z1, writing P̃ instead of

P̃ z1 . An alternative definition of mixture of Markov chains is the following

Definition 1.2.5. Z is a mixture of homogeneous Markov chains if there

exists a probability µ on J × P such that

P{Zn
1 = zn

1 } =

∫

P

n−1∏
t=1

Pzt,zt+1µ(z1, dP ). (1.7)
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According to the previous definition the initial distribution for Z is given

by

P{Z1 = z1} =

∫

P
µ(z1, dP ). (1.8)

Proposition 1.2.2. Let Z be a mixture of Markov chains according to Def-

inition 1.2.4. Then Z is a mixture of Markov chains according to Definition

1.2.5.

Proof. Let P̃ z1 be the random matrix satisfying Definition 1.2.4 for the initial

state z1 and let LP̃ z1 the law of P̃ z1 .

P{Zn
1 = zn

1 } =

∫

Ω

P{Zn
1 = zn

1 | P̃ z1}(ω)P(dω) =

∫

Ω

n−1∏
t=1

P̃ z1
zt,zt+1

P(dω) =

∫

P

n−1∏
t=1

P̃ z1
zt,zt+1

LP̃ z1 (dP̃ ).

Taking LP̃ z1 = µ(z1, ·) we get equation (1.7).

1.2.2 Finite and countable mixtures

In this work we deal with countable (finite) mixtures of i.i.d. sequences and

of Markov chains. We need the following definition

Definition 1.2.6. A regular conditional probability P is concentrated if there

are a countable (finite) set K of indices and measures p1, p2, . . . , pk, . . . on

(Ω,F), with k ∈ K, such that µk := P
(
Pω(·) = pk(·)

)
> 0 and

∑
k µk = 1.

Definition 1.2.7. A mixture of i.i.d. sequences according to Definition 1.2.2

is countable (finite) if the regular conditional probability P is concentrated,

with K countable (finite).

Definition 1.2.8. A mixture of i.i.d. sequences Z according to Definition

1.2.3 is countable (finite) if there are a countable (finite) set K of indices,

and measures p1, p2, . . . , pk, . . . in MJ , with k ∈ K, such that, letting µk :=

µ(mk), we have
∑

k µk = 1.

In this case equation (1.4) becomes

P
{
Zn

1 = zn
1 } =

∑

k∈K

µk

( n∏
t=1

pk(zt)
)
. (1.9)
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Definition 1.2.9. A mixture of Markov chains according to Definition 1.2.4

is countable (finite) if the random variable P̃ takes just a countable (finite)

number of values.

Definition 1.2.10. A mixture of Markov chains according to Definition 1.2.5

is countable (finite), if there exist a countable (finite) set of indices K and

matrices P 1, P 2, . . . , P k, . . . , with k ∈ K, such that for any k ∈ K we have

µ(z, P k) > 0 for at least one z ∈ J , and
∑

z∈J

∑
k∈K µ(z, P k) = 1.

For countable mixtures of Markov chains the integral in equation (1.7)

becomes a sum and we get

P{Zn
1 = zn

1 } =
∑

k∈K

µ(z1, P
k)

n−1∏
t=1

P k
zt,zt+1

. (1.10)

Applications of finite mixtures

Finite mixtures of Markov chains are a useful model in many different appli-

cations. They can model data sets coming from a heterogeneous population,

i.e. from a population that is naturally divided into a finite number of groups,

and such that, picking a sample from a group, this evolves with a Markovian

dynamic. For example Cadez et al. in [13] use a finite mixture of Markov

chains to analyze navigation patterns on a web site. Users are grouped into a

finite number of clusters, according to their navigation patterns through web

pages of different URL categories. To each cluster is associated a Markov

chain, describing the dynamics of the sequence of URL categories visited by

a user belonging to that cluster. Another example of a special kind of fi-

nite mixture of Markov chains, which is a generalization of the mover-stayer

model both in discrete and continuous time, can be found in [28]. Frydman

in [28] develops the EM algorithm for the maximum likelihood estimation

of the parameters of the mixture. As an example, the author applies the

estimation procedure to bond ratings migration, modeling the migration as

a mixture of two Markov chains, where each Markov chain corresponds to a

health state of the market.

1.2.3 Binary mixtures of i.i.d. and Markov sequences

In this section J := {0, 1}. Each measure m ∈ MJ is characterized by

a number p ∈ [0, 1], where p := m{1}, and for each number p ∈ [0, 1]
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there is a measure m in MJ such that m{1} = p, so there is a one-to-

one correspondence between MJ and the unitary interval I = [0, 1]: set

T : MJ −→ [0, 1] with T (m) = m(1), the function T is bijective.

Let Z be a sequence of binary i.i.d. random variables with respect to a

measure m ∈ MJ , let p := m(1). Define n1 =
∑n

t=1 zt the number of 1-s in

the finite string zn
1 ; for any zn

1 we have

m(zn
1 ) =

n∏
t=1

m(zt) = pn1 (1− p)n−n1 . (1.11)

Let now Z be a mixture of i.i.d. binary sequences. Combining equations

(1.4) and (1.11), we get

P{Zn
1 = zn

1 } =

∫ 1

0

pn1 (1− p)n−n1dν(p), (1.12)

where ν is a probability measure on the interval [0,1] such that ν(A) :=

µ(T−1(A)) for all A ⊂ B([0, 1]). With a small abuse of notations we will

often indicate with the same symbol measures ν on B([0, 1]) and measures µ

onMJ . We give below an example of a mixture of six i.i.d. binary sequences.

Example 1.2.1. Take six coins, numbered from 1 to 6, and a die with six

faces. Let the probability of Head for the k-th coin be pk and let the probability

of face k of the die be µk, we get
∑6

k=1 µk = 1. Throw the die once, then

toss n times the coin corresponding to the outcome of the die. Let IA be the

indicator function of the event A. Define

Zt := I{the t-th coin toss is Head}.

For any binary sequence zn
1 , we get

P{Zn
1 = zn

1 } =
6∑

k=1

µkp
n1
k (1− pk)

n−n1 . (1.13)

Z is a finite binary mixture of i.i.d. sequences. Given the outcome of the

die, Z is an i.i.d. coin tossing.

From this example it is apparent that to make inference about mixtures

models, repeated sequences of measurements are needed.
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Let us now consider binary Markov chains, i.e. Markov chains with values

in J := {0, 1}. Let P be the set of stochastic matrices P of dimension two.

They are of the form

P =

(
P00 1− P00

1− P11 P11

)
.

They are completely characterized by the two numbers P00, P11 ∈ [0, 1]. Thus

there is a one-to-one correspondence between P and the unit square U :=

[0, 1]× [0, 1]: set V : P −→ U defined as V (P ) := (P00, P11), the function V

is bijective.

Let zn
1 be a binary string and let nij be the number of transitions from state

i to state j in the string zn
1 , for i, j = 0, 1. Let Z be a binary mixture of

Markov chains, according to Definition 1.2.5. By the previous observations

we can write equation (1.7) as

P{Zn
1 = zn

1 } =

∫

U

P n00
00 (1− P00)

n01P n11
11 (1− P11)

n10ν(z1, d(P00, P11)),

where ν(z1, B) := µ(z1, V
−1(B)) for any B ∈ B(U) and for any fixed z1.

1.2.4 Representation theorems

Before reviewing some representation theorems for mixture models, we recall

two well known definitions. Let Z = (Z1, Z2, . . . ) be a sequence of random

variables with values in a countable measurable set (J,J ). We indicate with

Pz{·} the conditional probability P{· | Z1 = z}.
Definition 1.2.11. A sequence Z is recurrent if, for any initial state z ∈ J ,

Pz{Zn = z i.o.} = 1.

Definition 1.2.12. A sequence Z is strongly recurrent if

m⋂
t=1

{Zt = zt} =
m⋂

t=1

({Zt = zt} ∩ {Zn = zt i.o.}) P− a.s. (1.14)

for any m ∈ N and z1, . . . , zm ∈ J .

Thus a strongly recurrent sequence hits each state either never or in-

finitely many times. We recall now de Finetti’s representation theorem (for

the proof of the theorem and an extensive discussion of mixtures of i.i.d.

sequences see Aldous [1] and Chow and Teicher [15]).
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Theorem 1.2.1. (de Finetti) Let Z = (Z1, Z2, . . . ) be a sequence on (Ω,F ,P)

taking values in (J,J ). The sequence Z is exchangeable if and only if Z is a

mixture of i.i.d. sequences.

The σ-field G of Definition 1.2.2, can be the tail σ-field F (∞) of Z or

the σ-field of permutable events. It can be shown that the conditional mean

with respect to these two σ-fields is equal a.s. (for definitions and details see

Chapter 7.3 in [15]). By defining mixtures of i.i.d. sequences according to

Definition 1.2.3, the measure µ in equation (1.4) is uniquely determined by

P.

The de Finetti theorem for mixtures of i.i.d. sequences has been gener-

alized to mixtures of Markov chains. Diaconis and Freedman in [22] extend

de Finetti’s theorem connecting the class of Markov exchangeable sequences,

which Diaconis and Freedman call partially exchangeable sequences, with

mixtures of Markov chains. They proved the following

Theorem 1.2.2. (See Theorem (7) in [22]) Let Z = (Z1, Z2, . . . ) be a recur-

rent sequence on (Ω,F ,P) taking values in (J,J ). The sequence Z is Markov

exchangeable if and only if Z is a mixture of Markov chains according to Def-

inition 1.2.5.

Moreover in [22] page 127 it is proved that any stationary Markov ex-

changeable sequence is a mixture of stationary Markov chains, i.e. Markov

chains that start with their stationary distributions.

In [27] Fortini et al. connect the class of partially exchangeable sequences

with mixtures of Markov chains. We recast in the following Theorem 1.2.3

the precise result. In particular, in [27] Section 2.1 Fortini and coauthors

prove that the matrix V of successors of Z is partially exchangeable if and

only if Z is a mixture of Markov chains. They refer to Definition 1.2.4 of

mixture of Markov chains. With a clever restriction of the class of possible

mixing Markov chains they get the uniqueness of the mixing distribution.

More precisely let J∗ = J ∪ {δ}. Let P∗ be the set of transition matrices on

J∗ for which δ is an absorbing state, equipped with the σ-field of coordinate

convergence and let us indicate with Pi,j the i, j-entry of the matrix P ∈ P∗.
Assume that Z starts in a specific state z1.

Consider a measurable set K in P∗ such that for any P ∈ K there is a set

AP ⊂ J∗ satisfying

1. z1 ∈ AP , δ /∈ AP ;
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2. Pi,j = 0 if i ∈ AP and j /∈ AP ;

3. Pi,δ = 1 if i /∈ AP .

Theorem 1.2.3. (see Theorem 1 in [27]) The V matrix of Z is partially

exchangeable if and only if there exists a random element P̃ of P∗ such that

• P{Zn
1 = zn

1 | P̃} = P̃z1,z2P̃z2,z3 . . . P̃zn−1,zn a.s.-P;

• P{Zn = z1 i.o. n | P̃} = 1 a.s.-P;

• P{P̃ ∈ K} = 1 for a measurable set K satisfying conditions 1,2, and 3

above.

Moreover, P̃ is unique in distribution.

The mixing measure in Theorem 1.2.2 in general is not unique. The

uniqueness in distribution of P̃ in Theorem 1.2.3 is obtained requiring P{P̃ ∈
K} = 1. For any Markov chain with transition matrix in K, there is a set

AP of states hit by the chain. With the third condition satisfied by K, we

fix the behavior of the chain on the states that we never see for that chain,

getting uniqueness. For a detailed discussion see [27], in particular Example

2.

Both Diaconis and Freedman and Fortini et al give a characterization the-

orem for mixtures of Markov chains, but note that Diaconis and Freedman

refer to the Definition 1.2.5 of mixture of Markov chains and show a theorem

for Markov exchangeable sequences, while Fortini et al refer to Definition

1.2.4 and show a theorem for partially exchangeable sequences. Markov ex-

changeability is weaker than partial exchangeability in general, so Theorem

1.2.2 and Theorem 1.2.3 are not in contradiction thanks to Proposition 1.2.2.

In the following Theorem 1.2.4 we characterize k-Markov exchangeable

sequences, generalizing the result of Diaconis and Freedman ([22]) for Markov

exchangeable sequences. To state the theorem, we need the following recur-

rence condition

Condition 1.2.1. P{Y n+k−1
n = Y k

1 i.o. n } = 1.

The characterization theorem is the following
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Theorem 1.2.4. Let Z be a sequence satisfying the recurrence Condition

1.2.1. Z is k-Markov exchangeable if and only if it is a mixture of Markov

chains of order k.

We will prove the theorem in Section 3.3.1.

1.3 Hidden Markov Models

There are many equivalent definitions of Hidden Markov Model (HMM).

In the first part of the thesis we will refer to the oldest and probably most

intuitive one, but all the results could be recast using any of the alternative

equivalent definitions of HMM.

Definition 1.3.1. Y is a HMM if there exist a homogeneous Markov chain

X = (X1, X2, . . . ) taking values in a set χ and a ”many to one” deterministic

function f : χ −→ J such that Yn = f(Xn) for each n ∈ N.

Indicating with ]S the cardinality of a set S, we have ]χ ≥ ]J . X will be

called the ”underlying Markov chain” of the HMM.

Definition 1.3.2. Y is a countable HMM if J and χ in the previous defini-

tion are at most countable.

In the thesis we will often handle HMMs with a recurrent underlying

Markov chain. We will make use the acronyms RHMM to indicate this class

of HMMs.

Notice that in the literature ”recurrent Markov chain” often means a Markov

chain with just one recurrence class. But for us a recurrent Markov chain is

a Markov chain satisfying Definition 1.2.11. Trivially a Markov chain with

just one recurrence class is recurrent according to Definition 1.2.11.

A Hidden Markov Model can be equivalently defined as a probabilistic

function of a Markov chain as follows

Definition 1.3.3. The sequence (Yn) with values in J is a Hidden Markov

process if there exists a homogenous Markov chain (Xn) with state space χ

such that (Yn) is conditionally independent and identically distributed given

the σ-field generated by the process (Xn).
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The sets χ and J are called respectively the state space, and the observa-

tion or read-out space of the HHM. The previous definition can be extended

to general read-out space J .

According to Definition 1.3.3, for finite read-out space J , the HHM is com-

pletely characterize by the transition probability matrix Q of the unobserved

Markov chain (Xn)

Qij := P (Xn+1 = j | Xn = i),

and by the read-out probabilities bx(y)

bx(y) := P (Yn = y | Xn = x).

For continuous read-outs the read-out densities are defined as

P (Yn ∈ dy | Xn = x) = bx(y)λ(dy),

for a suitable non-negative σ-finite measure λ.





Chapter 2

Finite binary mixtures

In this chapter we restrict attention to {0, 1}-valued, i.e. binary, sequences.

In Section 2.1 we characterize the binary exchangeable sequences which are

finite mixtures of i.i.d. ones. For finite mixtures, we devise an original al-

gorithm to compute the associated de Finetti’s measure. We will make use

of a well known connection between the moments of the de Finetti measure

and the probabilities of strings of 1s.

In Section 2.2 we use the results of Section 2.1 to solve two classical engineer-

ing problems: the stochastic realization problem and the positive realization

of a linear system, in two special cases. We solve the stochastic realiza-

tion problem for binary sequences which are mixtures of N i.i.d. sequences,

i.e. we find a parametrization of the distribution function of the sequence

knowing some finite distributions of the sequence. In particular we just need

the probabilities P(1),P(12), . . . ,P(12N). This is not surprising, in fact for

binary exchangeable sequences the probability of any finite string is com-

putable from the probabilities of strings of 1-s, as recalled in the subsection

2.2.1. The results developed in Section 2.1 allow us also to find the positive

realization for linear systems with impulse responses in a special class and

associated Hankel matrix of finite rank.

In Section 2.3 we partially extend the results of Section 2.1 to Markov ex-

changeable sequences, characterizing those that are finite mixtures of Markov

chains.
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2.1 Mixing measure of i.i.d. mixtures

2.1.1 Cardinality of the mixing measure

In this section we characterize exchangeable binary sequences, whose de

Finetti’s mixing measure µ is concentrated on a finite set. The criterion will

be given in Theorem 2.1.1 below. We first recall some well known definitions

and facts.

Moments matrix and distribution function

Let µ be a probability measure on [0, 1]. The m-th moment αm of µ is defined

as

αm :=

∫ 1

0

xmµ(dx). (2.1)

Assume that the moments αm are all finite. Define

Mn :=




α0 α1 . . . αn

α1 α2 . . . αn+1

...
...

...
...

αn . . . . . . α2n


 and dn := det(Mn). (2.2)

Given a real valued function f , we say that x0 is a point of increase for

f if f(x0 + h) > f(x0 − h) for all h > 0.

Given a probability measure µ on [0, 1], the distribution function F µ of µ

is defined as

F µ(x) := µ([0, x]) for any x ∈ [0, 1]. (2.3)

Following Cramer [17], Chapter 12.6 it can be shown

Lemma 2.1.1. If F µ has N points of increase, then dn 6= 0 for n =

0, . . . , N − 1 and dn = 0 for n ≥ N .

If F µ has infinitely many points of increase, then dn 6= 0 for any n.

The previous lemma will play a central role in the future treatment, thus

we report the proof given by Cramer [17].

Proof. For any n ≥ 0, define the quadratic form Qn on Rn+1

Qn(u0, . . . , un) :=

∫ 1

0

(u0 + u1x + · · ·+ unx
n)2dF µ(x) =

n∑
i,j=0

αi+juiuj ≥ 0,

(2.4)
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with αm being the m-th moments of µ. The symmetric matrix associated

with the quadratic form Qn is the moments matrix Mn.

Let F µ have N points of increase. For n ≤ N − 1, for any (u0, u1, . . . , un)

there is at least one point of increase x of F µ, that is not a root of u0 +

u1x + · · · + unxn, so Q(u0, u1, . . . , un) > 0. Thus Qn is positive definite for

n ≤ N − 1, and dn = det(Mn) > 0 for all n ≤ N − 1. But Qn is semi-

definite positive for n ≥ N , in fact there exist (uo, u1, . . . , un), not identically

0, such that all the points of increase of F µ are roots of u0 +u1x+ · · ·+unxn.

Thus Q(u0, u1, . . . , un) = 0 for some (uo, u1, . . . , un), not identically 0, and

dn = det(Mn) = 0 for all n ≥ N . This concludes the proof of the first

statement of the lemma.

If F µ has an infinite number of points of increase, then for any n and for

any (u0, u1, . . . , un), there are points of increase x of F µ that are not roots of

u0 + u1x + · · ·+ unx
n. Thus the integral in equation (2.4) is strictly positive

as long as the ui are not all equal to zero. Thus the quadratic form Qn is

positive definite for all n, and dn = det(Mn) > 0 for all n.

Remark 2.1.1. F µ has exactly N points of increase if and only if F µ is

a step-function, i.e. there exist a partition of the interval [0, 1] of points

0 = p0 < p1 < · · · < pN+1 = 1 and numbers 0 = a1 < · · · < aN < aN+1 = 1

such that F µ(x) =
∑N+1

i=1 aiI[pi−1,pi[.

µ gives positive probability to the points of discontinuity of F µ. Moreover

Remark 2.1.2. F µ has exactly N points of increase p1, . . . , pN if and only

if µ is concentrated on p1, . . . , pN , i.e. µi := µ(pi) > 0 for i = 1, . . . , N and∑N
i=1 µi = 1. It holds that ai =

∑i−1
j=1 µ(pj).

Concentration points of a measure

For any measure m on a measurable space (E, E), define the set of concen-

tration points

Cm := {x ∈ E | m(x) > 0}. (2.5)

For absolutely continuous measures m on R, the set Cm is empty. For mea-

sures concentrated on a finite set, Cm coincides with the set of points of

increase of Fm, but it does not hold in general. For example consider the

probability measure on [0, 1]

m(·) :=
1

4
δ1/3(·) +

1

4
δ2/3(·) +

1

2
λ(·),
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where δc is the Dirac measure concentrated in c and λ is the Lebesgue measure

on [0, 1]. Cm = {1/3, 2/3}, but it does not coincide with the set of points of

increase of Fm, which is the open interval ]0, 1[.

Moments of the de Finetti measure

Let us consider a binary exchangeable sequence Y = (Y1, Y2; . . . ). By the de

Finetti theorem (see Theorem 1.2.1 in Chapter 1) for binary sequences, we

can write

P(1m0n) =

∫ 1

0

pm(1− p)ndµ(p), (2.6)

where µ is a probability measure on the interval [0, 1] uniquely determined

by P. Thus

Remark 2.1.3. The probability of a sequence of m 1s is the m-th moment

αm of the measure µ:

P(1m) =

∫ 1

0

pmdµ(p) = αm.

Hankel matrices

We need now introduce a class of Hankel matrices. Let us first fix some

notations. Let Y = (Y1, Y2, . . . ) be a binary sequence on a probability space

(Ω,F ,P). With 0k we indicate the string of k consecutive 1s, while {0k}
indicates the event {Y k

1 = 0k}. With ∅ we indicate the empty string, and the

event {∅} = {Y = ∅} corresponds to the whole space Ω, thus P({∅}) = 1.

For any n ∈ N, let Hn = (hij)0≤i,j≤n be the (n + 1)× (n + 1) Hankel matrix,

with entries hij := hi+j = P(1i1j) = P(1i+j):

Hn :=




P({∅}) P(1) P(11) . . . P(1n)

P(1) P(11) P(111) . . . P(1n+1)

P(11) P(111) P(1111) . . . P(1n+2)
...

...
...

...
...

P(1n) P(1n+1) P(1n+2) . . . P(12n)




. (2.7)

H∞ is defined in the obvious way .

The following example gives an alternative representation of the matrix

Hn for a sequence of i.i.d. random variables.
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Example 2.1.1. Let Y be a sequence of i.i.d. random variables taking values

on {0, 1} and let p = P{1}. Then

Hn =




1 p . . . pn

p p2 . . . pn+1

...
...

...
...

pn pn+1 . . . p2n


 =




1

p

p2

...

pn




(
1 p p2 . . . pn

)
.

In fact for an i.i.d. sequence

P{1k} = (P{1})k = pk.

Remark 2.1.3 in the previous subsection leads us to the following

Remark 2.1.4. Let Y be an exchangeable binary sequence and let µ be the

associated de Finetti measure. The matrix Hn defined in equation (2.7) is

the moments matrix Mn of the measure µ.

Cardinality of the mixing measure

We are ready to state the main result of this section

Theorem 2.1.1. Let Y be a binary exchangeable sequence and let (Hn) be

defined as in equation (2.7). Then

• Y is a mixture of N i.i.d. sequences if and only if

rank(Hn) =

{
n + 1 for n = 0, . . . , N − 1

N for n ≥ N
(2.8)

• Y is a mixture of an infinite number of i.i.d. sequences if and only if

rank(Hn) = n + 1 for any n. (2.9)

Corollary 2.1.1. The rank of the semi-infinite Hankel matrix H∞ associated

to a binary exchangeable sequence Y is finite and equal to N if and only Y

is a mixture of N i.i.d. sequences.

The proof of the corollary is trivial.
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Proof. of Theorem 2.1.1 Let rank(Hn) be as in equation (2.8). Hn is a

(n + 1)× (n + 1) matrix, thus

det(Hn)

{ 6= 0 for n = 0, . . . , N − 1

= 0 for n ≥ N.

Let µ be the mixing measure associated with the exchangeable sequence Y

and let F µ its distribution function. det(Hn) 6= 0 does not hold for any n,

thus by the second statement of Lemma 2.1.1 the distribution function F µ

has finitely many points of increase, and F µ has exactly N points of increase

by the first statement of Lemma 2.1.1. Thus by Remark 2.1.2 the measure µ

is concentrated on N points, and Y is a mixture of N i.i.d. sequences indeed.

Let Y be a mixture of N i.i.d. sequences. µ is concentrated on N points,

call them p1, p2, . . . , pN . By Remark 2.1.2 the function F µ has N points of

increase, thus by Lemma 2.1.1, we have det(Hn) 6= 0 for n = 0, . . . , N−1 and

det(Hn) = 0 for n ≥ N . Hence Hn has full rank for n = 0, . . . , N−1, but the

rank is not full anymore for n ≥ N . It remains to show that rank(Hn) = N

for n ≥ N . The measure µ is concentrated on N points so

P(1m) =

∫ 1

0

pmdµ(p) =
N∑

i=1

µip
m
i .

From the last equation we have

Hn =




∑N
i=1 µi

∑N
i=1 µipi . . .

∑N
i=1 µip

n
i∑N

i=1 µipi

∑N
i=1 µip

2
i . . .

∑N
i=1 µip

n+1
i

...
...

...
...∑N

i=1 µip
n
i

∑N
i=1 µip

n+1
i . . .

∑N
i=1 µip

2n
i




= µ1




1

p1

...

pn
1




(
1 p1 . . . pn

1

)
+ · · ·+ µN




1

pN

...

pn
N




(
1 pN . . . pn

N

)
.

pi 6= pj for i 6= j and so the vectors (1, pi, · · · , pn
i )′ are linearly independent

for n ≥ N − 1. For n ≥ N − 1 the matrix Hn is a linear combination of the

vector product of N linearly independent vectors, so by an easy argument of

linear algebra Hn has rank N .

The second statement of the theorem is just an easy consequence of Remark

2.1.2 and Lemma 2.1.1.
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Given H0, H1, H2, . . . , the previous theorem gives a criterion to establish

whether the measure µ associated with an exchangeable binary sequence is

concentrated on a finite set:

Criterion 1. µ is concentrated on N points if and only if there exists an

integer n such that det(Hn−1) 6= 0 and det(Hn) = 0, and in this case N = n.

Note that if det(Hn−1) 6= 0 and det(Hn) = 0 then by Theorem 2.1.1 we a

priori know that rank(Hn) = N for all n ≥ N .

2.1.2 Computation of the mixing measure

In this section we propose an original algorithm to compute the de Finetti

measure associated with a binary finite mixture of i.i.d. sequences. The

algorithm is a by-product of Theorem 2.1.3 below, which follows by the results

of the previous section and by a well known theorem on Hankel matrices

reported below (see [29])

Theorem 2.1.2. Let H∞ = (hi+j)i,j≥0 be a semi-infinite Hankel matrix of

rank N. Then the entries of H∞ satisfy an N-term recurrence equation of the

form:

hm = aN−1hm−1 + aN−2hm−2 + · · ·+ a0hm−N for all m ≥ N , (2.10)

for suitable (a0, a1, . . . , aN−1).

Given (a0, a1, . . . , aN−1), let p1, . . . , pl be the distinct roots of the polynomial

q(x) := xN − aN−1x
N−1 − aN−2x

N−2 − · · · − a0, (2.11)

and let mi be the multiplicity of the root pi, with 1 ≤ i ≤ l.

Then a N-dimensional base < v1, . . . , vN > of the space of the infinite vectors

[h0, h1, h2, . . . ] which are solutions of the equation (2.10), is given by

v1 :=
(
1 p1 p2

1 . . .
)
,

...

vm1 :=
1

(m1 − 1)!

dm1−1

dpm1−1
1

(
1 p1 p2

1 . . .
)

=
(
0 . . . 1

(
m1

1

)
p1 . . . .

)
,

vm1+1 :=
(
1 p2 p2

2 . . .
)

...

vN :=
1

(ml − 1)!

dml−1

dpml−1
i

(
1 pl p2

l . . .
)

=
(
0 . . . 1

(
ml

1

)
pl . . . .

)
,
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for i = 1, . . . , l and
∑l

i=1 mi = N .

Remark 2.1.5. If the roots of the polynomial q(x) defined in equation (2.11)

are all distinct, i.e. mi = 1 for all i = 1, . . . , l, then the base < v1, . . . , vN >

of the solutions of equation (2.10) is given by

v1 :=
(
1 p1 p2

1 p3
1 . . . . . .

)
,

v2 :=
(
1 p2 p2

2 p3
2 . . . . . .

)
,

...

vN :=
(
1 pN p2

N p3
N . . . . . .

)
.

Thus there exist linear combinators µ1, . . . , µN such that the entries hm of

the Hankel matrices (Hn) can be written as

hm =
N∑

i=1

µip
m
i . (2.12)

Note that this is a general result on Hankel matrices and that (2.12) needs

not be a convex combination. The following theorem adapts the result to

the Hankel matrix of a finite mixture of i.i.d. processes.

Theorem 2.1.3. Let Y be a binary mixture of N i.i.d. sequences, and let µ

be the associated de Finetti mixing measure. Then the matrix H∞ associated

with Y has rank N , the roots of the polynomial q(x) defined in equation (2.11)

are all distinct, the linear combinators µ1, . . . , µN in equation (2.12) are all

in ]0, 1[ and sum to 1. Moreover µ is concentrated on the roots p1, . . . , pN of

q(x) and µ(pi) = µi for i = 1, . . . , N , up to permutations of indices.

Proof. By Corollary 2.1.1, Y is a mixture of N i.i.d. sequences, thus µ

is concentrated on N points p1, . . . , pN , with weights µ(pi) = µi for i =

1, . . . , N . By de Finetti’s theorem for each m ∈ N we get

hm = P(1m) =

∫ 1

0

pmdµ(p) =
N∑
i

µip
m
i , (2.13)

and by the uniqueness of the de Finetti measure, up to permutations of the pi,

there is no other way to write hm as in equation (2.13) with weights µi ∈ ]0, 1[.

We have to show that p1, . . . , pN are the roots of q(x). By Theorem 2.1.2
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for each m ≥ N , the vector (hm, hm−1, . . . , hm−N) satisfies the recurrence

equation (2.10), thus we get

hm − aN−1hm−1 − aN−2hm−2 − · · · − a0hm−N = 0 for m ≥ N . (2.14)

Combining the last equation with (2.13), we get

0 = hm − aN−1hm−1 − aN−2hm−2 − · · · − a0hm−N

=
N∑
i

µip
m
i − aN−1

N∑
i

µip
m−1
i − aN−2

N∑
i

µip
m−2
i − · · · − a0

N∑
i

µip
m−N
i

=
N∑
i

µip
m−N
i

(
pN

i − aN−1p
N−1
i − aN−2p

N−2
i − · · · − a0

)
.

All the µi and all the pi are positive thus for each i = 1, . . . , N we get

pN
i − aN−1p

N−1
i − aN−2p

N−2
i − · · · − a0 = 0. (2.15)

Thus p1, . . . , pN are roots of q(x) and q(x) has degree N , so p1, . . . , pN are

the N distinct roots of q(x).

Theorems 2.1.1, 2.1.2 and 2.1.3 allow us to construct an algorithm to

identify the mixing measure µ associated to a mixture of N i.i.d. sequences,

from the knowledge of the Hankel matrix HN . The algorithm is presented in

the next section.

The algorithm

Let Y be a binary exchangeable sequence, which is a mixture of N i.i.d.

sequences. In this section we propose an algorithm to identify the de Finetti

mixing measure µ associated with Y , given P({∅}),P(1), . . . ,P(12N). µ is

concentrated on N points, call them p1, . . . , pN and let µi = µ(pi), for i =

1, . . . , N . Thus to characterize µ we must find (pi, µi)1≤i≤N .

Y is a mixture of N i.i.d. sequences, thus by Theorem 2.1.3, the measure

µ is concentrated on the N distinct roots of the polynomial q(x) defined

in equation (2.11). Thus to identify p1, . . . , pN , we need to determine the

polynomial q(x), i.e. find its coefficients (a0, . . . , aN), (note aN = 1). To

this end construct the matrix HN as defined in equation (2.7), note that
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P(1), . . . ,P(12N) are given. The matrix HN is a submatrix of H∞, thus its

entries satisfy the recurrence equation (2.10) in Theorem 2.1.2. This gives

hN = aN−1hN−1 + aN−2hN−2 + · · ·+ a0h0

hN+1 = aN−1hN + aN−2hN−1 + · · ·+ a0h1

. . . . . .

h2N−1 = aN−1h2N−2 + aN−2h2N−3 + · · ·+ a0hN−1

Denoting by h(N) := (hN , hN+1, . . . , h2N−1)
′ (the components of h(N) are the

first N elements of the (N + 1)-th column of the matrix HN) and by a :=

(a0, a1, . . . , aN−1)
′ the unknown coefficients of q(x), we can write the previous

set of equations in matrix form as follows

HN−1a = h(N). (2.16)

The coefficients (a0, a1, . . . , aN−1) of the polynomial q(x) are computed solv-

ing the linear system in equation (2.16) in the unknown a. Once a is de-

termined, find the roots of q(x), getting the points p1, . . . , pN where µ is

concentrated.

To completely know µ, we must find the weights µi. Recall that we have

hm = P(1m) =
N∑
i

µip
m
i . (2.17)

Define the matrices

V :=




1 p1 p2
1 . . . pN−1

1

1 p2 p2
2 . . . pN−1

2

. . . . . . . . . . . . . . .

1 pN p2
N . . . pN−1

N


 W :=




µ1 0 0 . . . 0

0 µ2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . µN


 ,

where V is by now known and, under the hypothesis, invertible. Equation

(2.17) implies

HN−1 = V ′WV. (2.18)

To find the matrix W , invert equation (2.18) to get

W = (V ′)−1HN−1V
−1. (2.19)

The weights µi are the diagonal elements of W . Thus we have completely

identify µ indeed.

We summarize the algorithm proposed above:
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• Find the coefficients a of q(x) solving the linear system

HN−1a = h(N)

• find (p1, p2, . . . , pN) determining the roots of the polynomial q(x).

• Find (µ1, . . . , µN) constructing the matrix V as in (2.1.2) and comput-

ing

W = (V −1)′HN−1V
−1.

2.2 Two applications

2.2.1 Some preliminary results

Probability of finite strings for a binary exchangeable sequence

The following proposition shows that for an exchangeable binary sequence the

knowledge of the measure of finite strings of 1s is sufficient for the knowledge

of the measure of all finite strings. The result is proved in an alternative way

in [26], vol.2, Chapter VII.4.

Proposition 2.2.1. Let Y be an exchangeable binary sequence. The measure

of the strings 1k for k = 0, 1, 2 . . . is sufficient to compute the measure of

any finite string. In particular

P(1m0n) =
n∑

k=0

(−1)k

(
n

k

)
P(1m+k). (2.20)

Remark 2.2.1. An exchangeable sequence gives the same probability to a

string and to any of its permutations. Thus the probability of a binary string

depends only on the number of 0s and 1s and not on the order of them. Thus

equation (2.20) gives the probability of any permutation of the string 1m0n.

We prove the formula in equation (2.20) by induction on (n,m), using

the well-founded induction 1.

1A note on well-founded induction
We can define a total order on N× N in the following way

(m,n) ≤ (m′, n′) if
{

n < n′ or
n = n′ and m ≤ m′.

(2.21)



30 Finite binary mixtures

Proof. By the total probabilities formula we have

P(1) = P(10) + P(11), (2.24)

and rearranging the terms

P(10) = P(1)− P(11). (2.25)

Thus equation (2.20) holds for (m, n) = (1, 1). Suppose that it holds for any

integer (m,n) < (m̄, n̄). In particular it holds for (m̄, n̄−1) and (m̄+1, n̄−1).

We write

(m,n) < (m′, n′) if
{

n < n′ or
n = n′ and m < m′.

(2.22)

Note that any non empty subset of N×N has a minimal element according to the order
defined in equation (2.21).
Let S(m,n) be a property defined for any (m, n) ∈ N×N. The following well known result
holds

Theorem 2.2.1. (well-founded induction) Assume that

i) S(1, 1) holds,

ii) if S(m,n) holds for all (m, n) < (m̄, n̄), then S(m̄, n̄) holds,

then S(m,n) holds for all (m,n) ∈ N× N.

Proof. We sketch the proof arguing by contradiction. Let

S := {(m,n) ∈ N× N such that S(m,n) holds.} (2.23)

S is non empty by the first hypothesis. Let T be the complementary set of S in N × N.
The set T has a minimum element, call it (m̂, n̂), and obviously (m̂, n̂) is not in S. We
have (m, n) ∈ S for all (m,n) < (m̂, n̂). Thus by the second hypothesis S(m̂, n̂) holds,
thus we find a contradiction.
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We have to show that it holds for (m̄, n̄). We have

P(1m̄0n̄) = P(1m̄0n̄−1)− P(1m̄+10n̄−1) = ( inductive hypothesis )

=
n̄−1∑

k=0

(−1)k

(
n̄− 1

k

)
P(1m̄+k)−

n̄−1∑

k=0

(−1)k

(
n̄− 1

k

)
P(1m̄+k+1)

= P(1m̄) +

{
n̄−2∑

k=0

[
(−1)k+1

(
n̄− 1

k + 1

)
− (−1)k

(
n̄− 1

k

)]
P(1m̄+k+1)

}

− (−1)n̄−1P(1m̄+n̄)

= P(1m̄) +

{
n̄−2∑

k=0

(−1)k+1

(
n̄

k + 1

)
P(1m̄+k+1)

}
+ (−1)n̄P(1m̄+n̄)

= P(1m̄) +

{
n̄−1∑

k=1

(−1)k

(
n̄

k

)
P(1m̄+k)

}
+ (−1)n̄P(1m̄+n̄)

=
n̄∑

k=0

(−1)k

(
n̄

k

)
P(1m̄+k),

where we have used in the fourth equality

(−1)k+1

(
n̄− 1

k + 1

)
− (−1)k

(
n̄− 1

k

)
= (−1)k+1

(
n̄− 1

k + 1

)
+ (−1)k+1

(
n̄− 1

k

)

= (−1)k+1

(
n̄

k + 1

)
.

The Hausdorff moments problem

We recall in the following Theorem 2.2.2 a classical result about the so called

Hausdorff moments problem. Let us first fix some notations. Given a se-

quence of numbers α0, α1, α2, . . . the differencing operator ∆ is defined by

∆αn := αn+1 − αn.

The higher differences ∆r are obtained recursively by the relation ∆r =

∆(∆r−1) where ∆1 = ∆, (see [26] Chapter VII.1 ).

We say that a sequence α0, α1, α2, . . . is completely monotone if for all r and

all k we have (−1)r∆rαk ≥ 0.
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Theorem 2.2.2. A sequence of numbers α0, α1, α2, . . . represents the mo-

ments sequence of some probability measure µ on [0, 1] if and only if

• α0 = 1

• the sequence α0, α1, α2, . . . is completely monotone.

For the proof of the theorem see [26], Chapter VII.3.

There is a nice relationship between completely monotone sequences and

exchangeable binary sequences. As mentioned in Section 2.1.1, for a binary

exchangeable sequence Y the probabilities P(1m), m = 1, 2, . . . , are the mo-

ments of the de Finetti measure µ associated with Y :

P(1m) =

∫ 1

0

pmdµ(p),

and thus the sequence
(
P(1m)

)
m≥0

is completely monotone.

Let us consider now a completely monotone sequence α = (αm)m≥0. By

Theorem 2.2.2 there exist a measure µ such that α is the sequence of the

moments of the measure µ. We can associate to α an exchangeable sequence

Y setting

P(1m) = αm =

∫ 1

0

pmµ(dp),

and then assigning the probability of any finite binary string as in the re-

lation (2.20). But the complete monotonicity of the sequence
(
P(1m)

)
m≥0

of the joint distributions of a sequence Y is not a sufficient condition for

the exchangeability of Y . The following example will clarify the previous

statement

Example 2.2.1. Let for some p ∈ [0, 1]

αm := pm for all m ≥ 0.

The sequence (αm) is clearly completely monotone. We can construct an i.i.d

sequence Y such that P(1m) = pm = αm, and thus P(σ) = pm(1 − p)n, for

any finite string σ with m 1s and n 0s. But we can also construct a sequence

Ỹ such that PỸ (1m) = pm = αm
2, but which is not an i.i.d. sequence. Take

for example, for all m ≥ 0

PỸ (1m) = pm ⇒ PỸ (1m0) = pm(1− p)

PỸ (1m0σ) = pm(1− p)/2l,

2We write PỸ (·) just to recall we are giving the joint distribution of the sequence Ỹ .
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where l ≥ 1 is the length of the binary finite string σ. Thus Ỹ is such

that PỸ (1m) = pm, but it is not an i.i.d. sequence. For example PỸ (01) =

(1− p)/2 6= p(1− p) = PỸ (10).

2.2.2 Stochastic realization

Let Y = (Y1, Y2, . . . ) be a binary exchangeable sequence. In this section

we solve the stochastic realization problem for Y , i.e. given the joint dis-

tributions of the random variables in the sequence, we look for parameters

θ = (θ1, . . . , θM), which completely describe the probabilistic behavior of Y ,

if they do exist. We will make use of the results on the de Finetti mixing

measure of a binary exchangeable sequence we have developed in the previous

section. In particular we pose and solve the following problem.

Problem. (Stochastic realization of binary exchangeable processes)

Given the joint distributions P(1),P(11), . . . ,P(1n), . . . of a binary exchange-

able sequence find, when it exists, a finite mixture of i.i.d. sequences, i.e. an

integer N (possibly the smallest one) and parameters

(p1, . . . , pN ; µ1, . . . , µN), with 0 ≤ p1, . . . , pN ≤ 1, 0 < µ1, . . . , µN < 1 and∑N
i=1 µi = 1 such that, for any binary string yn

1 ,

P(yn
1 ) =

N∑

k=1

µkp
n1
k (1− pk)

n−n1 , (2.26)

with n1 :=
∑n

t=1 yt.

Notice that we just require knowledge of P(1),P(11), . . . ,P(1n), . . . , and not

of all the joint distributions of Y , see Proposition 2.2.1.

Solution. To solve the problem, construct the matrices (Hn) defined in

equation (2.7). Check whether Y is a finite mixture of i.i.d. sequences, look-

ing at the rank of the matrices (Hn) (see Theorem 2.1.1). If Y is not a finite

mixture of i.i.d. sequences, by the uniqueness of the de Finetti measure, Y

can not be realized as in equation (2.26). If Y is a mixture of N i.i.d. se-

quences, compute the de Finetti mixing measure µ = (p1, . . . , pN ; µ1, . . . , µN)

associated to Y using the algorithm developed in Section 2.1.2.

We can completely solve the stochastic realization problem for finite mix-

tures of binary i.i.d. sequences. It could thus be of interest to find a good

approximation of a not finite mixture of i.i.d. sequences, i.e. of a general

exchangeable sequence, with a finite mixture of i.i.d. sequences. We leave

the problem for further investigations.
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2.2.3 Positive realization of linear systems

The results of Section 2.1 enable us to solve a classical problem in linear

systems theory in a special case. More precisely, in Theorem 2.2.3 we show

that for transfer functions in a special class the rank of the Hankel matrix

coincides with the order of positive realization. The theorem is proved con-

structively, exhibiting a positive realization.

Before stating the main theorem, we recall some definitions and some well

known results. Let
(
u(t)

)
t∈N be an i.i.d. sequence. Given the linear system

{
x(t + 1) = Ax(t) + bu(t)

y(t) = cT x(t),
(2.27)

the transfer function associated to the system is defined as

G(z) := cT (zI− A)−1b,

with I denoting the identity matrix.

The realization problem is the following: given a rational function G(z)

G(z) =
qn−1z

n−1 + · · ·+ q0

zn + pn−1zn−1 + · · ·+ p0

=
∑

k≥0

gkz
−(k+1), (2.28)

find the minimal N and a triple (A, b, c), where A ∈ RN×N and b, c ∈ RN

such that

G(z) = cT (zI− A)−1b. (2.29)

The minimal N is called the order of the realization. It is well known that

if the polynomials P (z) = zn + pn−1z
n−1 + · · · + p0 and Q(z) = qn−1z

n−1 +

· · ·+ q0 are coprime, then N = n. The function G(z) defined as in equation

(2.28) satisfies equation (2.29), if and only if for any k ≥ 0 we have

gk = cT Akb. (2.30)

Given a rational function G(z) as in equation (2.28), to solve the positive

realization problem means to find a triple (A, b, c) that satisfies equation

(2.29) with the additional constrain that (A, b, c) have nonnegative entries.

For a linear system with rational transfer function as in equation (2.28),

define the Hankel matrix

H∞ :=




g0 g1 g2 . . .

g1 g2 g3 . . .

g2 g3 . . . . . .
...

...
...

. . .


 . (2.31)
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If (A, b, c) is a triple which realizes the system, equation (2.30) holds. Thus

we have

H∞ : =




cT b cT Ab cT A2b . . .

cT Ab cT A2b cT A3b . . .

cT A2b cT A3b . . . . . .
...

...
...

. . .




=




cT

cT A

cT A2

...




(
b Ab A2b . . .

)
.

Definition 2.2.1. The impulse response (gk) is of the relaxation type if it is

a completely monotone sequence (see the definition below), with g1 = 1.

For the notion of linear systems of the relaxation type in continuous time

(without positivity constraints on the realization) the reader is referred to

e.g. [52]. We are not aware of previous work on discrete time positive systems

of the relaxation type.

We can state the following

Theorem 2.2.3. Let G(z) be a rational transfer function defined as in equa-

tion (2.28) of the relaxation type. Let H0, H1, . . . be the principal submatrices

of the Hankel matrix H∞ defined in equation (2.31). Let

rank(Hn) =

{
n + 1 for n = 0, . . . , N − 1

N for n ≥ N.

Then there exist 0 < p1 < . . . , < pN < 1 and 0 < µ1, . . . , µN < 1, with∑n
i=1 µi = 1, such that

gk =
N∑

i=1

µkp
k
i . (2.32)

Moreover

A :=




p1 0 . . . 0

0 p2 . . . 0
...

...
. . .

0 . . . . . . pN


 b =




1

1
...

1


 c =




µ1

µ2

...

µN


 .

is a positive realization for G(z).
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Proof. g0 = 1 and the sequence g0, g1, g2, . . . is completely monotone, thus by

Theorem 2.2.2, the sequence g0, g1, g2, . . . is the moments sequence of some

probability measure µ on [0, 1], i.e.

gk =

∫ 1

0

pkµ(dp),

for any k ≥ 0. Thus gk can be interpreted as the probability P(1k) of a

suitable exchangeable sequence Y , with de Finetti’s associated measure µ.

The matrices H0, H1, . . . satisfy the rank condition in equation (2.8), thus

by Theorem 2.1.1 the measure µ is concentrated on N points. Call them

p1, p2, . . . , pN and let µ1, µ2, . . . , µN be the corresponding weights, µi = µ(pi),

as computed in Section 2.1.2. We can write

gk =

∫ 1

0

pkµ(dp) =
N∑

i=1

µkp
k
i . (2.33)

Define

A :=




p1 0 . . . 0

0 p2 . . . 0
...

...
. . .

0 . . . . . . pN


 b =




1

1
...

1


 c =




µ1

µ2

...

µN


 .

(A, b, c) is a positive realization for G(z). In fact, for any k ≥ 0, we have

cT Akb =
N∑
i

µip
k
i = gk. (2.34)

A well known result in linear system theory states that the rank of the

Hankel matrix H∞ coincides with the order of a realization. This is not the

case for positive realization, where the rank of the Hankel matrix is only a

lower bound to the order of positive realization. Benvenuti and Farina in [9]

and [10] find sufficient conditions to achieve the lower bound.

Note that linear systems as in Theorem 2.2.3 have order of positive realization

coinciding with rank of the Hankel matrix H∞.
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2.3 Mixing measure of Markov mixtures

In this section we propose a criterion to check whether a binary mixture of

Markov chains is a finite mixture of Markov chains. To state the criterion,

we need some assumptions and some preliminary definitions.

Following Definition 1.2.5, for a binary mixture of Markov chains we can

write

P{Y n
1 = yn

1 } =

∫

P

n−1∏
t=1

Pyt,yt+1µ(y1, dP ), (2.35)

where P is the set of stochastic matrices of dimension 2 and µ is a probability

measure on {0, 1} × P . Assume that the random choice of the transition

matrices in the mixture is independent from the initial condition. More

precisely, assume

Condition 2.3.1. µ factorizes as

µ(y1, P ) = µ̃(y1)µ̄(P ),

where µ̃(·) is a measure on {0, 1} and µ̄(·) is a measure on P.

Recall that the stochastic matrices of dimension 2 are of the form

P =

(
P00 1− P00

1− P11 P11

)
,

thus the elements P ∈ P are completely characterized by the two numbers

(P00, P11) and there is a one-to-one correspondence between the set P and

the unit square [0, 1] × [0, 1] (see Section 1.2.3). Let us fix some notations.

For any element A ∈ B([0, 1]), define

S
(0)
A := {P ∈ P | P00 ∈ A}, and S

(1)
A := {P ∈ P | P11 ∈ A}.

We give the following

Definition 2.3.1. For i = 0, 1, let ν(i) be the function on [0, 1] defined as

ν(i)(A) := µ̄(S
(i)
A ). (2.36)

Lemma 2.3.1. For i = 0, 1, the function ν(i) is a probability measure.



38 Finite binary mixtures

Proof. We have to check that the null set has null measure:

ν(i)(∅) = µ̄(S
(i)
∅ ) = µ̄(∅) = 0.

Moreover let A1, A2, . . . be disjoint sets, we have to check that ν(i)(
⋃

k Ak) =∑
k ν(i)(Ak):

ν(i)
( ⋃

k

Ak

)
= µ̄(S

(i)⋃
k Ak

) = µ̄
( ⋃

k

S
(i)
Ak

)
=

∑

k

µ̄(S
(i)
Ak

) =
∑

k

ν(i)(Ak).

Let H
(0)
n = (h

(0)
ij )0≤i,j≤n be the (n+1)×(n+1) Hankel matrix with entries

h
(0)
ij := h

(0)
i+j = P(0i0j) = P(0i+j)

Hn
(0) :=




P(0) P(00) . . . P(0n+1)

P(00) P(000) . . . P(0n+2)

P(000) P(0000) . . . P(0n+3)
...

...
...

...

P(0n+1) P(0n+2) . . . P(02n+1)




, (2.37)

and let H
(1)
n = (h

(1)
ij )0≤i,j≤n = (h

(1)
i+j)0≤i,j≤n = P(1i+j)

Hn
(1) :=




P(1) P(11) . . . P(1n+1)

P(11) P(111) . . . P(1n+2)

P(111) P(1111) . . . P(1n+3)
...

...
...

...

P(1n+1) P(1n+2) . . . P(12n+1)




. (2.38)

The next lemma establishes a connection between the moments matrix

of ν(i) and the matrices H
(i)
n , for a mixture of Markov chains Y , for i = 0, 1.

Lemma 2.3.2. Let Y be a binary mixture of Markov chains and let the

associated mixing measure µ satisfy Condition 2.3.1. Up to a multiplying

constant, Hn
(i) is the moments matrix of the measure ν(i), for i = 0, 1.

Proof. We prove the statement for i = 1.

P(1m) =

∫

P
Pm−1

11 µ(1, dP ) =

∫

P
Pm−1

11 µ̃(1)µ̄(dP )

= µ̃(1)

∫

P
Pm−1

11 µ̄(dP ) = µ̃(1)

∫

[0,1]

qm−1ν(1)(dq),
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where we have put P11 = q. Thus

Hn
(1) = µ̃(1)




1
∫
[0,1]

qν(1)(dq) . . .
∫

[0,1]
qnν(1)(dq)∫

[0,1]
qν(1)(dq)

∫
[0,1]

q2ν(1)(dq) . . .
∫
[0,1]

qn+1ν(1)(dq)
...

...
...

...∫
[0,1]

qnν(1)(dq)
∫

[0,1]
qn+1ν(1)(dq) . . .

∫
[0,1]

q2nν(1)(dq)




.

We indicate with F (νi) the distribution function of ν(i), as in equation

(2.3).

Lemma 2.3.3. If F (νi) has N points of increase, then det(H
(i)
n ) 6= 0 for

n = 0, . . . , N − 1 and det(Hn
(i)) = 0 for n ≥ N .

If F (νi) has infinitely many points of increase, then det(Hn
(i)) 6= 0 for any n.

Proof. It is just an easy consequence of Lemma 2.3.2 and of Lemma 2.1.1.

Definition 2.3.2. For i = 0, 1, let ri be the first integer n such that det(Hn
(i)) =

0. If det(Hn
(i)) 6= 0 for any n, put ri = +∞.

Lemma 2.3.4. ri is the number of points of increase of F ν(i)
.

Proof. It follows trivially by Lemma 2.3.3 and by Definition 2.3.2.

In the following lemma we figure out the relationship between the concen-

tration point sets Cν(0) and Cν(1) , and Cµ. We will make use of Lemma 2.3.4

to prove the main theorem of this section, given as Theorem 2.3.1 below.

Let proj0 and proj1 denote the projection from R2 on the first and on the

second coordinate respectively. With a small abuse of notations, we will often

indicate with µ̄ the measure on [0, 1]× [0, 1] induced by the measure µ̄ on P .

Lemma 2.3.5. µ̄ is concentrated on a finite set if and only if ν(0) and ν(1)

are both concentrated on finite sets.

Proof. Let µ̄ be concentrated on the set of points (P k
00, P

k
11), k = 1, . . . , K. By

definition, ν(0)({P 1
00, . . . , P

K
00}) = µ̄(S{P 1

00,...,P K
00}) = 1 and ν(1)({P 1

11, . . . , P
K
11}) =

µ̄(S{P 1
11,...,P K

11}) = 1, thus ν(0) and ν(1) are concentrated.

Conversely let ν(0) and ν(1) be concentrated on {P 1
00, . . . , P

N0
00 } and {P 1

11, . . . , P
N1
11 }

respectively. By definition ν(0)({P 1
00, . . . , P

N0
00 }) = µ̄(S

(0)

{P 1
00,...,P

N0
00 }

) = 1 and

ν(1)({P 1
11, . . . , P

N1
11 }) = µ̄(S

(1)

{P 1
11,...,P

N1
11 }

) = 1.
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Thus µ̄
(
S

(0)

{P 1
00,...,P

N0
00 }

⋂
S

(1)

{P 1
11,...,P

N1
11 }

)
= 1. But S

(0)

{P 1
00,...,P

N0
00 }

⋂
S

(1)

{P 1
11,...,P

N1
11 }

is

constituted by a finite number of points, thus µ̄ is concentrated indeed.

Lemma 2.3.6. Let ν(0) and ν(1) be concentrated. Then the following relations

between Cν(0), Cν(1) and Cµ̄ hold

• Cν(0) = proj0(Cµ̄) and Cν(1) = proj1(Cµ̄),

• Cµ̄ ⊆ Cν(0) × Cν(1).

Proof. Let p ∈ Cν(0) . We have ν(0)(p) = µ̄(S
(0)
p ) > 0. Notice that by Lemma

2.3.5 the measure µ̄ is concentrated on a finite set, and µ̄(S
(0)
p ) > 0, thus there

are a finite number of points (p, P 1
11), . . . , (p, P

N1
11 ) such that µ̄(p, P i

11) > 0 for

i = 1, . . . , N1 and
∑N1

i=1 µ̄(p, P i
11) = µ̄(S

(0)
p ). Thus p ∈ proj0(Cµ̄), and we get

Cν(0) ⊆ proj0(Cµ̄).

µ̄ is concentrated on a finite set, thus Cµ̄ := {(P 1
00, P

1
11), . . . , (P

N
00 , P

N
11)},

with µ̄((P i
00, P

i
11)) > 0 for i = 1, . . . , N and

∑N
i=1 µ̄((P i

00, P
i
11)) = 1. Thus

proj0(Cµ̄) is a finite number of points, call them {P 1
00, . . . , P

N1
00 }, and for i =

1, . . . , N1 we have ν(0)(P i
00) = µ̄(S

(0)

P i
00

) = µ̄
(
(P j

00, P
j
11) ∈ Cµ̄ s.t. P j

00 = P i
00

)
.

Thus ν(0)(P i
00) > 0 and P i

00 ∈ Cν(0) , and we get proj0(Cµ̄) ⊆ Cν(0) . Arguing

in the same way for ν(1), the first statement of the lemma is proved indeed.

Let (P00, P11) ∈ Cµ̄. Thus ν(0)(P00) = µ̄(S
(0)
P00

) ≥ µ̄(P00, P11) > 0, and

ν(1)(P11) = µ̄(S
(1)
P1

) ≥ µ̄(P00, P11) > 0. Thus we get P00 ∈ Cν(0) and

P11 ∈ Cν(1) , i.e. (P00, P11) ∈ Cν(0) × Cν(1) . This concludes the proof of

the lemma.

Theorem 2.3.1. Y is a finite mixture of Markov chains if and only if

max{r0, r1} < +∞.

If Y is a mixture of N Markov chains, then

max{r0, r1} ≤ N ≤ r0 r1. (2.39)

Proof. We indicate with ] the cardinality of a set. Let Y be a mixture of N

Markov chains. Thus µ̄ is concentrated on N points, and by Lemma 2.3.5

the measure ν(0) and ν(1) are concentrated. The points of increase of F ν(i)

therefore coincide with Cν(i) and we get for i = 0, 1

ri = ]Cν(i) = ]proji(Cµ̄) ≤ ]Cµ̄ = N.
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Thus max{r0, r1} ≤ N < +∞.

Let max{r0, r1} < +∞. The functions F ν(0)
and F ν(1)

have a finite number

of points of increase, and thus by Remark 2.1.2 the measures ν(0) and ν(1)

are concentrated. By Lemma 2.3.5 the measure µ̄ is concentrated and Y is

a finite mixture of Markov chains.

Let Y be a mixture of N Markov chains. µ̄ is thus concentrated on N

points. We have just shown that max{r0, r1} ≤ N . To prove the second

inequality in equation (2.39), notice that by Lemma 2.3.5 the measures ν(0)

and ν(1) are concentrated, and thus r0 = ]Cν(0) and r1 = ]Cν(1) . By the

second statement of Lemma 2.3.6 it follows

N = ]Cµ̄ ≤ ]{Cν(0) × Cν(1)} = r0r1.

2.4 Future work

A natural extension of the results of Section 2.1 would be the generalization

to exchangeable sequences (Yn) with more general state spaces. Trying to go

from binary to finite state space, we encounter the same technical difficulties

we found in the extension from exchangeable to Markov exchangeable binary

sequences of the algorithm identifying the mixing measure µ. The one to one

correspondence between the moments matrices of the mixing measure and

the Hankel matrices (Hn) is lost. For exchangeable sequences with finite state

space and for Markov exchangeable sequences, the Hankel matrices (Hn) are,

up to a multiplicative constant, the moments matrices of a marginalization

of the mixing measure. The natural tool to attack both cases seems to be

the Hausdorff moment problem on the unit hypercube.





Chapter 3

Representations of countable

Markov mixtures

In Chapter 1 we have defined mixtures of Markov chains, and we have recalled

the de Finetti-type representation theorems for mixtures of Markov chains,

due to Diaconis and Freedman for Markov exchangeable sequences, and to

Fortini et al. for partially exchangeable sequences. In the present chapter we

look for a representation theorem for countable mixtures of Markov chains,

i.e. for mixtures with concentrated mixing measure. In [21] Dharmadhikari

solves the analogous problem for mixtures of i.i.d. sequences. More precisely,

he shows that an exchangeable sequence is a mixture of a countable number

of i.i.d. sequences if and only if it is an Hidden Markov Model. In this chap-

ter we extend Dharmadhikari’s result for exchangeable sequences to Markov

exchangeable, k-Markov exchangeable and partially exchangeable sequences.

To get information on the mixing measure of a mixture, looking at some

characteristic of the mixture itself is a challenging mathematical problem.

Moreover our result implies a characterization of finite mixtures of Markov

chains and, as we have seen in Section 1.2.2, these are useful models in many

different applications. The other side of our problem, that is to characterize

mixtures of i.i.d. sequences or of Markov chains with absolutely continuous

mixing measure, is still an open problem up to our knowledge.

In Section 3.3.1 we prove a slight extension of the Diaconis and Freedman re-

sult to k-Markov exchangeable sequences, stated in Section 1.2.4 as Theorem

1.2.4.
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3.1 A known result

Dharmadhikari characterizes the countable mixtures of i.i.d. sequences, link-

ing countable HHMs to the class of exchangeable sequences. More precisely

in [21] he proves the following

Theorem 3.1.1. Let Z = (Z1, Z2, . . . ) be an exchangeable sequence taking

values on a countable set. The sequence Z is a countable HMM with sta-

tionary underlying Markov chain if and only if Z is a countable mixture of

i.i.d. sequences.

The main results of Chapter 3 are the generalization of Dharmadhikari’s

result to Markov exchangeable sequences, to k-Markov exchangeable se-

quences and to partially exchangeable sequences (see Sections 3.2, 3.3 and

3.4 respectively).

3.2 Countable mixtures of Markov chains

3.2.1 1-blocks

We recall the definition of the 1-block sequence Z of a given sequence Y .

The introduction of the 1-block sequence, used first in [22], is a technical

trick that allows to reduce the study of Markov exchangeable sequences to

that of exchangeable sequences. Let J be a countable set, assume that J ⊆
{1, 2, 3, . . . }.

Definition 3.2.1. A 1-block is a string of letters from J which begins with

1 and contains no further 1’s.

Let Y = (Y1, Y2, . . . ) be a sequence of random variables on the probability

space (Ω,F ,P) taking values in J , and let Y be recurrent. From now on, in

this section, we suppose that the following condition is satisfied:

Condition 3.2.1. P{Y1 = 1} = 1.

Thus we could write P{· | Y1 = 1} instead of P{·}, since these probabilities

coincide under Condition 3.2.1.

The sequence Z = (Z1, Z2, . . . ) of the successive 1-blocks of Y is well

defined. In fact Y starts at 1 with probability 1 by Condition 3.2.1, moreover
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Y is recurrent, thus its successive 1-blocks are a.s. of finite length. Z is

a sequence of random variables on (Ω,F ,P) taking values on J∗, which is

countable.

Let zn
1 = z1 z2 . . . zn be a string of 1-blocks, zi ∈ J∗, say zi = 1y2iy3i . . . ylii,

where li is the length of zi and yji ∈ J . A 1-block zi is a string of letters

from J , thus a string zn
1 of 1-blocks is still a finite string of letters from J ,

i.e.

zn
1 = 1y21y31 . . . yl111y22y32 . . . yl22 . . . . . . ylnn =: ym

1 .

We indicate the same string with the two different notations zn
1 and ym

1 ,

where m =
∑n

i=1 li. The event {Zn
1 = zn

1 } is equivalent to the event {Y m
1 =

ym
1 ; Ym+1 = 1}.

To derive the law of Z, we introduce the sequence τ1, τ2, . . . of random

times defined recursively by

τ1 = 1, τn := inft{t > τn−1 | Yt = 1}. (3.1)

Y hits the letter 1 the n-th time at τn. Let Fm be the σ-field generated

by Y1, Y2, . . . , Ym. The event {τn = m} ∈ Fm for any n and m, therefore

τ1, τ2, . . . are stopping times w.r.t. the sequence Y .

The law of Z is easily given as a function of the law of Y : for any 1-block z

of length l

{Zm = z} = {Y τm+l−1
τm

= z; τm+1 = τm + l} = {Y τm+l−1
τm

= z; Yτm+l = 1},

and for any sequence of 1-blocks zn
1 of lengths l1, . . . , ln respectively, we have

{Zm+n−1
m = zn

1 } =

{Yτm = 1, . . . , Yτm+l1−1 = yl11, . . . Yτ(m+n−1)+ln−1 = ylnn;

τm+1 = τm + l1, . . . , τm+n = τ(m+n−1) + ln}.

For the purpose of proving the main Theorem 3.2.1 below we assume

without loss of generality that Y is the coordinate process, i.e. that Ω = J∞

and that Yn(ω) = ωn, with ω ∈ Ω. In this case, by definition, {Y n
1 = yn

1 } =

{yn
1 } and thus P{Y n

1 = yn
1 } = P{yn

1 }, and {Zn
1 = zn

1 } = {zn
1 } and thus

P{Zn
1 = zn

1 } = P{zn
1 }.

A simple, very useful, property of the 1-blocks of Markov exchangeable

sequences is recalled below (see [22]).
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Proposition 3.2.1. Let Y be a Markov exchangeable recurrent sequence sat-

isfying Condition 3.2.1. The sequence Z of the 1-blocks of Y is exchangeable.

Proof. Permutations of 1-blocks do not change transition counts nor the ini-

tial state, therefore they produce strings that are transition equivalent. If Y

is Markov exchangeable it gives the same measure to transition equivalent

strings. The exchangeability of Z follows immediately.

Remark 3.2.1. All the definitions of this section are given under Condition

3.2.1, but it is possible to fix the initial state of Y at any i ∈ J and use

the same arguments to introduce in the obvious way the i-blocks’s sequence.

Proposition 3.2.1 and the other observations are still valid for i-blocks.

Note that exchangeability of the 1-blocks is not a sufficient condition for

a sequence Y to be Markov exchangeable.

Counterexample 3.2.1. Let us consider the binary case, J = {0, 1}. If Y

is Markov exchangeable the sequence of 1-blocks, as well as the sequence of

0-blocks, are exchangeable. It is not true that if the 1-blocks alone or the

0-blocks alone are exchangeable then Y is Markov exchangeable. This is due

to the fact that there are strings which are transition equivalent but that

are not obtained permuting just 1-blocks or just 0-blocks. As an example

the strings 011010001011011110001000 and 010001110110000111010010 are

transition equivalent, but cannot be transformed one into the other just

permuting 0-blocks (for the connection between the equivalence relation ∼
and block-switch transformations see [22] page 124).

An example of binary sequence with exchangeable 1-blocks which is not

necessarily Markov exchangeable is the HHM constructed as follows. Let

X be a Markov chain with state space χ, and let Yn := f(Xn). Define the

deterministic function f to be f(x0) = 1 for some x0 ∈ χ and f(x) = 0 for

x 6= x0. In this case the HMM Y is a binary renewal process [38]. It is

easy to check that Y gives the same measure to strings obtained permuting

1-blocks, but Y is not necessarily Markov exchangeable.

3.2.2 The main result

We are now ready to state the main result of this section, extending Dhar-

madhikari theorem to Markov exchangeable sequences.
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Theorem 3.2.1. Let Y = (Y1, Y2, . . . ) be a Markov exchangeable recurrent

sequence taking values in a countable set. The sequence Y is a countable

RHMM if and only if Y is a countable mixture of recurrent Markov chains.

Remark 3.2.2. In [27] Fortini et al. prove that a recurrent Markov ex-

changeable sequence is strongly recurrent. So Y in Theorem 3.2.1 is actually

strongly recurrent.

Remark 3.2.3. If Y is a mixture of Markov chains, Y is recurrent if and only

if Y is a mixture of recurrent Markov chains. Moreover a countable HMM

Y with recurrent underlying Markov chain X is recurrent, so the hypothesis

of the recurrence of Y in Theorem 3.2.1 is actually redundant.

Proof of the necessity

We prove first the necessity part of Theorem 3.2.1, i.e. that if a Markov

exchangeable recurrent sequence Y is a countable RHMM, then Y is a count-

able mixture of Markov chains, assuming without loss of generality Condition

3.2.1 and that Y is the coordinate process.

In [22] Diaconis and Freedman prove that a Markov exchangeable recurrent

sequence Y is a general mixture of Markov chains. It is useful to recall the

skeleton of the proof in [22]. Let Z be the 1-blocks sequence of Y . The

sequence Z is exchangeable (see Proposition 3.2.1 above) so, by de Finetti’s

theorem (see Theorem 1.2.1), we can write

P
{
zn
1 } =

∫
Pω(zn

1 )P(dω), (3.2)

where Z is an i.i.d. sequence with respect to the regular conditional proba-

bility Pω for P-almost all ω. Then Diaconis and Freedman prove that, if the

sequence Z of the 1-blocks is itself i.i.d. with respect to some measure, then

the sequence Y is a Markov chain with respect to the same measure. The

precise proposition is as follows

Proposition 3.2.2. (see [22], Proposition (15)) Let Y be a Markov ex-

changeable recurrent sequence satisfying Condition 3.2.1. If the 1-blocks of

Y are i.i.d., then Y is an homogeneous Markov chain.

By definition of regular conditional probability we can write

P
{
ym

1 } =

∫
Pω(ym

1 )P(dω), (3.3)
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where Pω is the same regular conditional probability which appears in equa-

tion (3.2). Z is an i.i.d. sequence with respect to Pω for P-almost all ω,

thus by Proposition 3.2.2 the sequence Y is a Markov chain with respect

to Pω for P-almost all ω. Letting P̃ (ω) denote the corresponding transition

probabilities matrix, write

P{ym
1 } =

∫ m−1∏
t=1

P̃yt,yt+1(ω)P(dω), (3.4)

which is equation (1.7) when P{Y1 = 1} = 1. Thus Diaconis and Freedman

conclude that Y is a mixture of Markov chains.

For our purpose, let us suppose that Z is an exchangeable sequence that is a

countable mixture of i.i.d. sequences. Then we can write equation (3.2) with

a sum instead of the integral

P
{
zn
1

}
=

∑

k∈K

µkpk(z
n
1 ), (3.5)

where the sequence Z is i.i.d. with respect to each pk and K is a countable

set. Thus equation (3.3) becomes

P
{
ym

1

}
=

∑

k∈K

µkpk(y
m
1 ). (3.6)

By the previous arguments Y is a Markov chain with respect to pk for each

k. Letting P̃ k
i,j denote the corresponding transition probability, we get

P{ym
1 } =

∑

k∈K

µk

m−1∏
t=1

P̃ k
yt,yt+1

, (3.7)

which is equation (1.7) when P{Y1 = 1} = 1, with a countable sum replacing

the integral. Thus if Z is a countable mixture of i.i.d. sequences, Y is a

countable mixture of Markov chains.

Hence, to obtain the necessity part of Theorem 3.2.1, it remains to show that

if a Markov exchangeable recurrent sequence Y is a countable RHMM, then

the 1-blocks sequence Z of Y is a countable mixture of i.i.d. sequences. This

is achieved in Lemma 3.2.2 and Lemma 3.2.3 below. To prove Lemma 3.2.2

we need the following
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Lemma 3.2.1. Let (Xn)n≥1 be a Markov chain with state space χ. Let S ⊆ χ.

Define recursively the sequence of random times (τn)n∈N by

τ1 = 1, τn := inft{t > τn−1 | Xt ∈ S}.
Then

P{Xτn = x | Xτn−1Xτn−2 . . . Xτ1} = P{Xτn = x | Xτn−1}.
Proof. of Lemma 3.2.1 (τn)n∈N is a sequence of stopping times with respect

to the σ-field generated by X. Noting that, given Xτn−1 , τn depends only on

(Xτn−1+1, Xτn−1+2, . . . , Xτn−1) and recalling Theorem 1.24 in Chapter 5 of [16]

(i.e. the strong Markov property), we get

P{Xτn = x | Xτn−1Xτn−2 . . . Xτ1}

=
+∞∑
s=1

P{τn = τn−1 + s Xτn−1+s = x | Xτn−1Xτn−2 . . . Xτ1}

=
+∞∑
s=1

P{τn = τn−1 + s Xτn−1+s = x | Xτn−1} = P{Xτn = x | Xτn−1}.

Lemma 3.2.2. Assume that Y is recurrent and satisfies Condition 3.2.1. If

Y is a countable RHMM, then the 1-blocks sequence Z is a countable RHMM.

Proof. Let Yn = f(Xn), where X = (X1, X2, X3, . . . ) is a recurrent homoge-

neous Markov chain, with a countable state space χ, and f : χ −→ J is a

deterministic function. For all y ∈ J

Sy := f−1(y) = {x ∈ χ | f(x) = y}.
Clearly χ = ∪y∈JSy. Define χ̂ := χ \ S1 = ∪y∈J,y 6=1 Sy. We call χ̂∗ the set of

finite strings from χ̂, i.e. χ̂∗ is the set of finite strings of elements of χ that

do not contain elements of S1. Define

χ̄ :=
⋃

x∈S1

({x} × χ̂∗
)
.

χ̄ is the set of finite strings of elements of χ beginning with an element in S1

and that do not contain further elements of S1. The elements of χ̄ will be

called S1-blocks. Y satisfies Condition 3.2.1, thus

P{X1 ∈ S1} = 1. (3.8)
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By the recurrence hypothesis on X we get

P{Xn ∈ S1 for infinitely many n} = 1. (3.9)

Let W1,W2, . . . be the successive S1-blocks of X. The sequence W = (W1,W2, . . . )

is well defined by equations (3.8) and (3.9). Let Px1,x2 := P{Xt+1 = x2 | Xt =

x1}, x1, x2 ∈ χ. Up to events of probability zero, W takes values in the set

of finite strings wi ∈ χ̄, with wi = x1ix2i . . . xlii such that Pxti,xt+1i
> 0 for

t = 1, . . . , li − 1.

Define f̄ : χ̄ −→ J∗ as f̄(x1, x2, . . . , xn) := f(x1)f(x2) . . . f(xn) = 1f(x2) . . . f(xn),

where the last equality follows by the definition of χ̄. If Zi is the i-th 1-block

of Y , then Zi = f̄(Wi), where Wi is the i-th S1-block of X.

To derive the law of W , recall the definition of the stopping times τn in

equation (3.1)

τ1 = 1, τn := inft{t > τn−1 | Yt = 1}.
Note that

τn = inf
t
{t > τn−1 | Xt ∈ S1}.

Thus τ1, τ2, . . . are stopping times also with respect to the σ-field generated

by X.

Let wn
1 = w1, w2 . . . wn be a sequence of S1-blocks, say wi = x1ix2i . . . xlii,

i = 1, 2, . . . , n. Define

P{Wm = w1} := P{Xτm+l1−1
τm

= w1; τm+1 = τm+l1} = P{Xτm+l1−1
τm

= w1; Xτm+l1 ∈ S1},

P{Wm+n−1
m = wn

1} :=

P{Xτm+l1−1
τm

= w1, Xτm+1+l2−1
τm+1

= w2, . . . , X
τ(m+n−1)+ln−1
τ(m+n−1) = wn;

τm+1 = τm + l1, . . . , τm+n = τm+n−1 + ln}.
The Markovianity of W follows from that of X applying Lemma 3.2.1 and

noting that τn+1 is a function of (Xτn , Xτn+1, . . . ):

P
{
Wn = wn | W1 = w1,W2 = w2, . . . ,Wn−1 = wn−1

}
=

= P{Xτn+ln−1
τn

= wn; τn+1 = τn + ln |
X l1

1 = w1, . . . , X
τ(n−1)+l(n−1)
τ(n−1) = wn−1; τ2 = τ1 + l1, . . . , τn = τn−1 + ln−1}

= (Lemma 3.2.1)

= P{Xτn+ln−1
τn

= wn; τn+1 = τn + ln | Xτn−1+ln−1−1
τn−1

= wn−1; τn = τn−1 + ln−1}
= P{Wn = wn | Wn−1 = wn−1}.
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We have to show that W is recurrent, i.e. Pw{Wn = w i.o.} = 1 for any initial

state w = x1x2 . . . xl. It is clearly true if Px1x2...xl
{Xn+l−1

n = x1x2 . . . xl i.o.} =

1. X is recurrent, so Px1{Xn = x1 i.o.} = 1. Define recursively

τ̃1 := 1, τ̃n := inf{t > τ̃n−1 | Xt = x1}, (3.10)

where the inf of a empty set is equal to +∞. τ̃n is the n-th time that X hits

the state x1. By recurrence, X hits the state x1 infinitely many times, thus

the random times τ̃1, . . . , τ̃n, . . . are all finite a.s..

By the strong Markov property the events {X τ̃1+l−1
τ̃1

= w}, . . . , {X τ̃n+l−1
τ̃n

=

w}, . . . are independent. For any n,

Px1x2...xl
{X τ̃n+l−1

τ̃n
= w} = Px1,x2 . . . Pxl−1,xl

> 0.

Thus by the Borel-Cantelli Lemma,

Px1x2...xl
{Xn+l−1

n = x1x2 . . . xl i.o.} = Px1x2...xl

{
lim sup
n→+∞

{X τ̃n+l−1
τ̃n

= w}
}

= 1,

(3.11)

so W has the required recurrence property. W takes values in χ̄, that is

clearly countable. We have noted before that Zt = f̄(Wt), thus Z is a

countable HMM with recurrent underlying Markov chain.

Lemma 3.2.3. Let Y be Markov exchangeable, recurrent and satisfying Con-

dition 3.2.1. If Y is a countable RHMM, then Z is a countable mixture of

i.i.d. sequences.

Proof. Z is exchangeable by Proposition 3.2.1 and by the previous Lemma

also a countable RHMM. We want to apply Theorem 3.1.1 to Z. Notice

that the stationarity of the underlying Markov chain is in the hypothesis of

Theorem 3.1.1. But going back to the proof of Dharmadhikari (see [21]), it

appears that just the recurrence of the underlying Markov chain is necessary,

to ensure the convergence of the Cesaro limit of the transition matrix and

its powers. So we can apply Theorem 3.1.1 to Z and conclude that Z is a

countable mixture of i.i.d. sequences.

This concludes the proof of the necessity.

Remark 3.2.4. Note that all the results are still valid if the word countable

is consistently substituted with the word finite in all the hypotheses and

conclusions.
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Proof of the sufficiency

To conclude the proof of Theorem 3.2.1 we have to show

Proposition 3.2.3. Let Y be a countable mixture of recurrent Markov chains.

Then Y is a countable RHMM. Moreover if Y is also stationary, then Y is

a HMM with underlying Markov chain which starts at its stationary distri-

bution.

Proof. Y is a countable mixture of Markov chains so we can write

P{Y n
1 = yn

1 } =
∑

k∈K

µ(y1, Pk)
n−1∏
t=1

P k
yt,yt+1

, (3.12)

where K is a countable set. Let P be the direct sum of the matrices P k:

P :=




P 1 O O . . .

O P 2 O . . .

O O P 3 . . .
...

...
...

. . .


 ,

and let

π := (µ(1, P 1), µ(2, P 1), . . . , µ(1, P 2), µ(2, P 2), . . . , µ(1, P k), µ(2, P k) . . . . . . ),

with k varying in K. Let X = (X1, X2, . . . ) be the Markov chain on the

probability space (Ω,F ,P) with state-space J × K 1, transition matrix P

and initial distribution π, with π(y, k) = µ(y, P k). X is clearly recurrent.

Let f : J × K −→ J be the projection on the first component, i.e.

f(y, k) = y. We will show that Yn
d
= f(Xn), that is Y is a RHMM, showing

P
{
Y n

1 = yn
1

}
= P

{
f(X1) = y1, . . . , f(Xn) = yn

}
. (3.13)

We have

P
{
X1 = (y1, k1), X2 = (y2, k2), . . . , Xn = (yn, kn)

}
= µ(y1, k1)

n−1∏
t=1

P(yt,kt),(yt+1,kt+1).

Note that P(yt,kt),(yt+1,kt+1) = 0 if kt 6= kt+1, thus the product above is positive

just for k1 = · · · = kn. By the previous formula we have

1order the states in this way: (1, 1), (2, 1), . . . , (1, 2), (2, 2), . . . . . .
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P
{
f(X1) = y1, . . . , f(Xn) = yn

}
=

= P
{ ⋃

k∈K

X1 = (y1, k1),
⋃

k∈K

X2 = (y2, k2), . . . ,
⋃

k∈K

Xn = (yn, kn)
}

= P
{ ⋃

k∈K

(
X1 = (y1, k), X2 = (y2, k), . . . , Xn = (yn, k)

)}

=
∑

k∈K

P
{

X1 = (y1, k), X2 = (y2, k), . . . , Xn = (yn, k)
}

=
∑

k∈K

π(y1, k)
n−1∏
t=1

P(yt,k)(yt+1,k) =
∑

k∈K

µ(y1, k)
n−1∏
t=1

P k
(yt,k)(yt+1,k)

Comparing equation (3.12) with the last expression, equation (3.13) is proved.

3.3 Countable mixtures of k-Markov chains

The main result of this section is the generalization of Theorem 3.2.1 to

k-Markov exchangeable sequences:

Theorem 3.3.1. Let Y be a k-Markov exchangeable sequence satisfying Con-

dition 1.2.1. Y is a countable RHMM if and only if Y is a countable mixture

of recurrent Markov chains of order k.

To prove this result, we need the characterization Theorem 1.2.4 for k-

Markov exchangeable sequences, which we have stated in Section 1.2.4, and

that we report below

Theorem 3.3.2. Let Z be a sequence satisfying the recurrence Condition

1.2.1 in Chapter 1.2.4. Z is k-Markov exchangeable if and only if it is a

mixture of Markov chains of order k.

We provide a proof of this result in the next section.

3.3.1 de Finetti theorem for k-Markov exchangeable

sequences

The aim of this section is to prove Theorem 3.3.2. We first need to introduce

the 1-blocks of order k.
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1-blocks of order k

Definition 3.3.1. A 1-block of order k (or 1k-block) is a string of length

l ≥ k, whose initial substring is 11 . . . 1︸ ︷︷ ︸
k times

and which does not contain any

further occurrences of 11 . . . 1︸ ︷︷ ︸
k times

from position k + 1 on.

For example 11123114 is a 13-block, but 11123114 are two 12-blocks, 11123

and 114. The string 111123 are two 12-blocks, respectively 11 and 1123, but

it is also one 13-block, 111123.

In what follows we assume

Condition 3.3.1. P{Y k
1 = 1k} = 1.

Let Y be a k-Markov exchangeable sequence with values in J satisfying

Condition 1.2.1 in Section 1.2.4 and Condition 3.3.1. We can define the

sequence Z = (Z1, Z2, . . . . . . ) of the successive 1k-blocks of Y . The sequence

Y satisfies Condition 1.2.1 and Condition 3.3.1, thus its successive 1-blocks

are a.s. of finite length and the sequence Z = (Z1, Z2, . . . ) is well defined.

As for 1-blocks, there is a 1 − 1 correspondence between strings zn
1 of the

first n 1k-blocks and strings ym
1 of single letters from J . A 1k-block is a finite

string of letters from J , thus a finite string zn
1 of 1k-blocks is still a finite

string of letters from J , write

zn
1 = 11 . . . 1︸ ︷︷ ︸

k times

y(k+1)1y(k+2)1 . . . yl11 11 . . . 1︸ ︷︷ ︸
k times

y(k+1)2y(k+2)2 . . . yl22 . . . . . . ylnn = ym
1 .

The event {Zn
1 = zn

1 } corresponds to the event {Y m
1 = ym

1 , Y m+k
m+1 = 1k}, and

thus they have the same measure under all measures.

To give the whole law of Z, as we have done for 1-blocks, we define the

random times (τ̄n)n≥1:

τ̄1 := k τ̄n := inf
t
{t > τ̄n−1 + k − 1 | Yt−k+1 = Yt−k+2 = · · · = Yt = 1}.

(3.14)
τ̄n are stopping times with respect to the σ-field generated by Y 2. Let zn

1 =
z1 z2 . . . zn be a string of 1k-blocks, zi ∈ J∗, say zi = 11 . . . 1︸ ︷︷ ︸

k times

y(k+1)iy(k+2)i . . . ylii,

2It would be more natural to define

τ̄1 := 1 τ̄n := inf
t
{t > τ̄n−1 + k − 1 | Yt = Yt+1 = · · · = Yt+k−1 = 1},

but these are not stopping times with respect to the σ-field generated by Y .
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where yji ∈ J and li is the length of zi. Define

P{Zm+n−1
m = zn

1 } := P{Y τ̄m
τ̄m−k+1 = 1k, Yτ̄m+1 = y(k+1)1, . . . , Yτ̄m+l1−k = yl11, . . .

Yτ̄m+n−1−k+1 = 1, . . . , Yτ̄m+n−1+ln−k = ylnn; τ̄m+1 = τ̄m + l1, . . . τ̄m+n = τ̄m+n−1 + ln}.

It can be proved that

Proposition 3.3.1. The sequence Z of the 1k-blocks of Y is exchangeable.

Proof. The sequence Y is k-Markov exchangeable by assumption and permu-

tations of 1k-blocks do not change transition counts of order k nor the first

k letters. The exchangeability of Z follows immediately.

Remark 3.3.1. We have forced the first k states of Y to be 1 in Condition

3.3.1. But we could have forced them to be any string y1 . . . yk of letters from

J , defining then the y1 . . . yk-blocks and deriving the same results.

Proof of Theorem 1.2.4

We prove the necessity part of Theorem 1.2.4, since the sufficiency part is

trivial. We need to extend the Proposition (15) in [22]. In particular we

prove

Proposition 3.3.2. Let Y be a k-Markov exchangeable sequence, satisfying

Condition 1.2.1 and Condition 3.3.1. If the 1k-blocks of Y are independent

and identically distributed, then Y is an homogenous Markov chain of order

k.

Proof. Let Q be a probability measure on F , such that the sequence Z of

the 1k-blocks of Y are independent and identically distributed with respect

to Q.

Let σ and σ′ be finite strings of states which start with k 1-s and end with the

same string i1i2 . . . ik of length k, with i1, i2, . . . , ik ∈ J . We do not assume

that σ and σ′ are k-transition equivalent. Let lσ and lσ′ be the length of the

strings σ and σ′ respectively.

The Markov property, which must be proved is

Q
{

Ylσ+1 = j | Y lσ
1 = σ

}
= Q

{
Ylσ′+1 = j | Y lσ′

1 = σ′
}

. (3.15)
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In fact the last k elements of the strings σ and σ′ are the same, so, if equation

(3.15) holds, the probability that the sequence takes the value j depends only

on the previous k values.

To avoid division by 0 instead of (3.15) we prove

Q
{

Y
lσ′
1 = σ′, Ylσ′+1 = j

}
Q

{
Y lσ

1 = σ
}

= Q
{

Y lσ
1 = σ, Ylσ+1 = j

}
Q

{
Y

lσ′
1 = σ′

}
.(3.16)

For any strings of states α and β

Q
{

Y
lα+lβ+2k
1 = 11 . . . 1︸ ︷︷ ︸

k times

α 11 . . . 1︸ ︷︷ ︸
k times

β
}

= (3.17)

= Q
{

Y lα+2k
1 = 11 . . . 1︸ ︷︷ ︸

k times

α 11 . . . 1︸ ︷︷ ︸
k times

}
Q

{
Y

lβ+k
1 = 11 . . . 1︸ ︷︷ ︸

k times

β
}

because the 11 . . . 1︸ ︷︷ ︸
k times

-blocks are independent and identically distributed.

Let ψ run through all the finite strings of states which do not pass through

the string of k consecutive 1-s. Condition 1.2.1 implies

Q
{

Y lσ
1 = σ

}
=

∑

ψ

Q
{

Y
lσ+lψ+k
1 = σψ 11 . . . 1︸ ︷︷ ︸

k times

}
. (3.18)

The first and the last k states of σ and σ′ are the same, thus

σψσ′j ∼k σ′ψσj.

By the k-Markov exchangeability of Y

Q
{

Y
lσ+lψ+lσ′+1
1 = σψσ′j

}
= Q

{
Y

lσ′+lψ+lσ+1
1 = σ′ψσj

}
.

Recalling that σ and σ′ start with k 1-s, by (3.17)

Q
{

Y
lσ+lψ+k
1 = σψ 11 . . . 1︸ ︷︷ ︸

k times

}
Q

{
Y

lσ′
1 = σ′, Ylσ′+1 = j

}
= Q

{
Y

lσ+lψ+lσ′+1
1 = σψσ′j

}
=

Q
{

Y
lσ′+lψ+lσ+1
1 = σ′ψσj

}
= Q

{
Y

lσ′+lψ+k
1 = σ′ψ 11 . . . 1︸ ︷︷ ︸

k times

}
Q

{
Y lσ

1 = σ, Ylσ+1 = j
}

.

Sum out ψ and use (3.18) to get (3.16).
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Proof. of Theorem 1.2.4. To prove the necessity part of Theorem 1.2.4 we will

use the same line of thoughts of Diaconis and Freedman in [22]. Without loss

of generality let us consider Y as the coordinate sequence. By Proposition

3.3.1 the sequence Z of the 1k-blocks of Y is exchangeable. So we can apply

de Finetti’s theorem (see Theorem 1.2.1) to Z writing for all n and all zn
1 ∈ J∗

P{zn
1 } =

∫
Pω(zn

1 )dP(ω) (3.19)

for a suitable regular conditional probability P . Z is an i.i.d. sequence with

respect to Pω for P-all ω. By definition of regular conditional probability we

can write

P{ym
1 } =

∫
Pω(ym

1 )dP(ω), (3.20)

where P is the regular conditional probability which appears in equation

(3.19). Z is an i.i.d. sequence with respect to Pω for P-all ω, thus, by

Proposition 3.3.2, the sequence Y is a Markov chain of order k with respect

to Pω for P-all ω. So we have shown that a k-Markov exchangeable sequence

Y satisfying Condition 1.2.1 and Condition 3.3.1 is a mixture of Markov

chains of order k, thus the necessity part of Theorem 1.2.4 is proved.

3.3.2 The main result

Proof of the necessity

To prove the necessity part of the Theorem 3.3.1 we first generalize Lemma

3.2.2 to 1k-blocks:

Lemma 3.3.1. Let Y satisfy Condition 1.2.1 and Condition 3.3.1. If Y is a

countable HMM with recurrent underlying Markov chain, then the 1k-blocks

sequence Z is a countable HMM with recurrent underlying Markov chain.

Proof. Let X, χ, f and Sy be as in the proof of Lemma 3.2.2. Define

Sk
n := {Sy1 × Sy2 × · · · × Syn , for y1, y2, . . . yn ∈ J

and y1y2 . . . yn not containing 11 . . . 1︸ ︷︷ ︸
k times

as a substring }

Define

χ̂k := {x1x2 . . . xn ∈ Sk
n, for n ∈ N},
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χ̂k is the set of finite strings from χ that do not contain k or more successive

elements from S1. Define

χ̄ :=
⋃

x1,x2,...xk∈S1

({x1} × {x2} × . . . {xk} × χ̂k

)
.

This is the set of finite strings of elements of χ beginning with k elements in

S1 and that do not contain further strings of k or more elements of S1. The

elements of χ̄ will be called (S1)
k-blocks.

Y satisfies Condition 1.2.1 and Condition 3.3.1, thus we get

1 = P{Y n+k−1
n = 11 . . . 1︸ ︷︷ ︸

k times

for infinitely many n} =

P{Xn+k−1
n ∈ S1 × S1 × . . .S1︸ ︷︷ ︸

k times

for infinitely many n}. (3.21)

Let W1,W2, . . . be the successive (S1)
k-blocks of X. The sequence W =

(W1,W2, . . . ) is well defined by property (3.21).

Define f̄ : χ̄ −→ J∗ as

f̄(x1, x2, . . . , xn) := f(x1)f(x2) . . . f(xn) = 11 . . . 1︸ ︷︷ ︸
k times

f(xk+1) . . . f(xn),

where the last equality follows by the definition of W . If Zi is the i-th 1k-

block of Y , then Zi = f̄(Wi), where Wi is the i-th (S1)
k-block of X.

Let wn
1 = w1, w2 . . . wn be a sequence of elements in χ̄,

wi = x1ix2i . . . xkixk+1i . . . xlii

with x1i, x2i, . . . , xki ∈ S1 and xk+1i . . . xlii ∈ χ̂k. Recalling the definition of

(τ̄n)n in equation (3.14), we can define:

P{Wm = w1} := P{X τ̄m+l1−k
τ̄m−k+1 = w1; τ̄m+1 = τ̄m + l1} and

P{Wm+n−1
m = wn

1} := P{X τ̄m+l1−k
τ̄m−k+1 = w1, X

τ̄m+1+l2−k
τ̄m+1−k+1 = w2, . . . , X

τ̄m+n−1+ln−k
τ̄m+n−1−k+1 = wn;

τ̄m+1 = τ̄m + l1, . . . , τ̄m+n = τ̄m+n−1 + ln}.

The Markovianity of W follows from the strong Markov property for X and

Lemma 3.2.1:
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P
{
Wn = wn | W1 = w1,W2 = w2, . . . ,Wn−1 = wn−1

}
=

= P{X τ̄m+n−1+ln−k
τ̄m+n−1−k+1 = wn; τ̄m+n = τ̄m+n−1 + ln | X τ̄m+l1−k

τ̄m−k+1 = w1, . . . ,

X
τ̄m+n−2+ln−1−k
τ̄m+n−2−k+1 = wn−1; τ̄m+1 = τ̄m + l1, . . . , τ̄m+n−1 = τ̄m+n−2 + ln−1}

= (Lemma 3.2.1) = P{X τ̄m+n−1+ln−k
τ̄m+n−1−k+1 = wn; τ̄m+n = τ̄m+n−1 + ln |

X
τ̄m+n−2+ln−1−k
τ̄m+n−2−k+1 = wn−1; τ̄m+n−1 = τ̄m+n−2 + ln−1}

= P{Wn = wn | Wn−1 = wn−1}.
The recurrence of W follows by the recurrence of X, as in the proof of

Lemma 3.2.2. W takes values in χ̄, that is clearly countable. We have noted

before that Zt = f̄(Wt), so Z is a countable HMM with recurrent underlying

Markov chain W .

We can conclude the proof of the necessity part of Theorem 3.3.1 as in

Section 3.2, using Proposition 3.3.2 instead of Proposition 3.2.2.

Proof of the sufficiency

Enlarging the state space, it can be shown that a Markov chain of order k

is a Markov chain of order 1. So the sufficiency easily follows by the same

arguments of Proposition 3.2.3.

3.4 Countable mixtures of Markov chains à

la Fortini et al.

The aim of this Section is to prove the analog of Theorem 3.2.1 in the setting

of [27]. Recalling the notations of Theorem 1.2.3 we have the following:

Theorem 3.4.1. Let the matrix V of the successors of Y be partially ex-

changeable. Then Y is a countable HMM with underlying strongly recurrent

Markov chain if and only if the random element P̃ of P∗ takes just a count-

able number of values.

Proof of the necessity

To prove the necessity part of the theorem we need the following Lemma,

which is the analogous of Lemma 3.2.2 for the matrix of the successors.
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Lemma 3.4.1. Let V the matrix of the successor of Y and let Y be a count-

able HMM with underlying strongly recurrent Markov chain. Then for all

i ∈ I, the i-th row of V is a countable HHM with underlying recurrent Markov

chain..

Proof. of Lemma 3.4.1 Without loss of generality, let us fix i. Let X, χ, f

and Sy be as in the proof of Lemma 3.2.2. Define inductively

γi
1 := inf{t | Yt = i} = inf{t | Xt ∈ Si},

γi
n := inf{t > γi

n−1 | Yt = i} = inf{t > γi
n−1 | Xt ∈ Si}.

Y takes the value i for the n-th times at γi
n, or equivalently X enters in Si

the n-th times at γi
n.

Define the process (WSi,n)n≥1, WSi,n : Ω −→ χ, of the successors of Si:

WSi,n = x if Xγi
n+1 = x, x ∈ χ. We claim that (WSi,n)n≥1 is a Markov chain,

i.e.

P{WSi,n = x | WSi,n−1WSi,n−2 . . .WSi,1} = P{WSi,n = x | WSi,n−1}

for all n ≥ 1 and all x ∈ χ. In fact, using Lemma 3.2.1

P{WSi,n = x | WSi,n−1WSi,n−2 . . .WSi,1} = P{Xγi
n+1 = x | Xγi

n−1+1Xγi
n−2+1 . . . Xγi

1+1}
= P{Xγi

n+1 = x | Xγi
n−1+1} = P{WSi,n = x | WSi,n−1}.

To prove the recurrence of W , we have to show that for any fixed i

Px

{
WSi,n = x for infinitely many n

}
= Px

{
lim sup

n
{WSi,n = x}} = 1.

Let s be the first state in Si hit by X, i.e. Xγi
1

= s. By the strongly recurrence

of X,

P{Xn = s for infinitely many n} = 1.

Define

γs
1 = inf{t | Xt = s} = γi

1 and γs
n := inf{t > γs

n−1 | Xt = s}.

(γs
n)n is a subsequence of (γi

n)n and it is infinite by the strongly recurrence

of X. Let be ω ∈ {Xγs
n+1 = x}. Then there exists an m ≥ n such that

ω ∈ {Xγi
m+1 = x}, that is

{Xγs
n+1 = x} ⊆

⋃
m≥n

{Xγi
m+1 = x}. (3.22)
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Thus

lim sup
n

{Xγs
n+1 = x} ⊆ lim sup

n
{Xγi

n+1 = x} = lim sup
n

{WSi,n = x}. (3.23)

To get the recurrence of W , we have to show that Px

{
lim supn{WSi,n =

x}} = 1. By equation (3.23), it is sufficient to prove that Px

{
lim supn{Xγs

n+1 =

x}} = 1. The events {Xγs
1+1 = x}, {Xγs

2+1 = x}, . . . , {Xγs
n+1 = x}, . . . are

independent by the Markovianity of X and they have positive probability.

Thus by Borel-Cantelli Lemma we get

Px

{
lim sup

n
{Xγs

n+1 = x}} = 1. (3.24)

Combining equations (3.23) and (3.24) we get the recurrence of W .

Notice that Vi,n = f(Wi,n). (Vi,n)n≥1 is indeed a countable RHMM.

Proof. of Theorem 3.4.1 Let i be fixed. (Vi,n)n≥1 is an exchangeable sequence

and by Lemma 3.4.1 it is an HMM. So Theorem 3.1.1 applies to (Vi,n)n≥1,

showing that it is a countable mixture of i.i.d. sequences. For any fixed

i, let θi be the random measure defined in the proof of Theorem 1 in [27]

as limn→∞ 1
n

∑n
r=1 δVi,r

. (Vi,n)n≥1 is a countable mixture of i.i.d. sequences,

thus for any i, θi is a random measure that takes just a countable number of

values. In the proof of Theorem 1 in [27], θi is the i-th row of the random

matrix P̃ . Recalling that a countable union of countable sets is countable,

we get that the random matrix P̃ takes just a countable number of values.

This concludes the proof.

Proof of the sufficiency

Proof. Let P̃ take just a countable number of values, call them P̃ 1, P̃ 2, . . .

and let the initial condition of Y be fixed at y1. As in the proof of Proposition

1.2.2, we can write

P{Y n
1 = yn

1 } =

∫

P

n−1∏
t=1

P̃yt,yt+1LP̃ (dP̃ ).

P̃ take just a countable number of values, so the last equation becomes

P{Y n
1 = yn

1 } =
∑

k∈K

µk

( n−1∏
t=1

P̃ k
yt,yt+1

)
,
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where K is a countable set. By the last equation we get

P{Yn = yn} =
∑

k∈K

µk (̃P
k
y1,yn

)n−1.

Denote with Π the direct sum of matrices P̃ 1, P̃ 2, . . . . Consider the Markov

chain X with state space {(k, j), with k ∈ K and i ∈ J} and transition

matrix Π. Recalling that the initial condition of Y is fixed, conclude as in

the proof of Proposition 3.2.3.



Input-output properties of the

CUSUM statistics





Introduction

Detection of changes of statistical patterns is a fundamental problem in many

applications. A basic method for detecting temporal changes in an inde-

pendent sequence is the Cumulative Sum (CUSUM) algorithm or Hinkley-

detector, which will be presented in Section 4.1. It was first used for inde-

pendent observations, but its range of applicability can be extended. We

propose an adaptation of the CUSUM algorithm to HHMs. The key problem

here is to generate an appropriate residual process. We will see that the

proposed one, under some reasonable technical conditions, is L-mixing. (For

the definition of L-mixing see 4.2).

The CUSUM test is defined via a sequence of random variables (Xn),

often called residuals in the engineering literature, such as likelihood ratios,

such that

E(Xi) < 0 for i ≤ τ ∗ − 1, and E(Xi) > 0 for i ≥ τ ∗,

with τ ∗ denoting the change point.

Letting S0 := 0 and Sn :=
∑n

i=1 Xi, the CUSUM statistics or Hinkley

detector is defined for n ≥ 0 as

gn := Sn − min
0≤k≤n

Sk = max
0≤k≤n

(Sn − Sk). (3.25)

An alarm is given if gn exceeds a pre-fixed threshold δ > 0. The moment of

alarm is defined by

τ̂ = inf{n |Sn − min
0≤k≤n

Sk ≥ δ}. (3.26)

The CUSUM statistics (gn) can be equivalently defined via a non-linear

dynamical system as follows, with a+ = max{0, a}:

gn = (gn−1 + Xn)+ with g0 = 0. (3.27)



From a system-theoretic point of view this system is not stable in any sense.

E.g., for a constant, positive input (gn) becomes unbounded. On the other

hand, for an i.i.d. input sequence (Xn), with negative expectation some

stability of the output process (gn) can be expected. The resulting stochastic

system is a standard object in queuing theory. In this case the process (gn)

is clearly a homogenous Markov chain, also called a one-sided random walk.

A number of stability properties of (gn) have been established in [42] (see

Section 5.2).

The purpose of the thesis is to study some input-output properties of the

CUSUM statistics, extending the results for i.i.d. inputs mentioned above,

in two ways: first we show that for random i.i.d. inputs with negative ex-

pectation, and finite exponential moments of some positive order the output

(gn) of this system is L-mixing. Then, this result is extended, under further

technical conditions such as boundedness, to L-mixing inputs, which is the

case of interest for the CUSUM algorithm proposed for HHMs.

The assumption that (Xn) is an i.i.d. sequence reflects the tacit assump-

tion that actually there is no change at all, i.e. τ ∗ = +∞. The CUSUM

algorithm can still be used to monitor the process, and we may occasionally

get an alarm. The frequency of these false alarms is of great practical inter-

est. Our results can be applied to give an upper bound for the almost sure

false alarm frequency as a function of the threshold δ, defined as

lim sup
N−→+∞

1

N

N∑
n=1

I{gn≥δ} (3.28)

with the tacit assumption that τ ∗ = +∞. In fact the lim sup above is

tractable if we have a strong Law of Large Numbers (LLN) for I{gi≥δ} or

for f(gi), with f smooth and f(gi) ≥ I{gi≥δ}. This is ensured if (gn) is

L-mixing.



Chapter 4

Definitions and Preliminary

Results

4.1 Change detection and the CUSUM algo-

rithm

To state the change detection problem, let us consider a sequence of random

variables Y1, Y2, . . . YN such that Y1, Y2 . . . Yτ∗−1 are distributed according to

f0(·), and Yτ∗ , . . . , YN are distributed according to f1(·), for an unknown

1 ≤ τ ∗ ≤ N + 1. The change detection problem consists on finding the

change point τ ∗, observing Y1, Y2, . . . YN . (Set τ ∗ = 1 if all the random

variables are distributed according to f1(·), and τ ∗ = N +1 if all the random

variables are distributed according to f0(·). These are the no change cases.)

Change detection problems have been extensively studied for decades (for

a survey see [7] and [12]). There are two main different approaches to change

detection problems, the oldest one models the change point τ ∗ as a determin-

istic and unknown time point (see for example the works of Page, Hinkley

and Lorden cited below), but τ ∗ can be modeled also as a random variable

with known prior distribution (see the work of Sirjaev [49]).

One of the first and most used algorithm for change detection is the cumu-

lative sum (CUSUM) algorithm, that was introduced by Page ([43], [44] and

[45]) and analyzed later, among others, by Hinkley (see [37]) and Lorden (see

[41]). We describe now the CUSUM algorithm in the simplest case, for inde-

pendent observations and known f0(·) and f1(·), but it has been adapted to

more general frameworks, as we will see below. Let Y1, . . . YN be independent
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and let us suppose at first that all the observations y1, . . . yN are available

(so we are treating an off-line change detection problem). Let f0 and f1 be

known. We indicate with lτ (y
N
1 ) the likelihood of the observations y1, . . . , yN

under the hypothesis that the distribution changes at τ , 1 ≤ τ ≤ N +1. The

likelihood function is thus

lτ (Y
N
1 ) = − log f(Y1, Y2, . . . YN) = −

τ−1∑
i=1

log f0(Yi)−
N∑

i=τ

log f1(Yi). (4.1)

According to the Maximum Likelihood principle, a reasonable estimator τ̂

for τ ∗ can be defined as

τ̂(Y N
1 ) := arg min

1≤τ≤N+1
lτ (Y

N
1 ).

We say that a change in the distribution has occurred at n if τ̂ = n for some

1 ≤ n ≤ N + 1.

A more involved problem is the on-line change detection, where the observa-

tions y1, . . . , yN are received sequentially and the change is detected in real

time. We now present a trick that allows to go from off-line to on-line change

detection. By equation (4.1) we have

lτ (Y
N
1 )− lτ−1(Y

N
1 ) = − log f0(Yτ−1) + log f1(Yτ−1) = log

f1(Yτ−1)

f0(Yτ−1)
.

Taking a telescopic sum

lτ (Y
N
1 ) = l1(Y

N
1 ) +

τ∑
i=2

(
li(Y

N
1 )− li−1(Y

N
1 )

)
= l1(Y

N
1 ) +

τ−1∑
i=1

log
f1(Yi)

f0(Yi)
.

Define

Xi := log
f1(Yi)

f0(Yi)
and

Sτ (Y
N
1 ) :=

τ∑
i=1

Xi = lτ+1(Y
N
1 )− l1(Y

N
1 ). (4.2)

Thus we have

lτ (Y
N
1 ) = Sτ−1(Y

N
1 ) + l1(Y

N
1 ). (4.3)

Trivially

τ̂(Y N
1 ) := arg min

1≤τ≤N+1
lτ (Y

N
1 ) = arg min

1≤τ≤N+1

(
lτ (Y

N
1 )− l1(Y

N
1 )

)

= arg min
0≤τ≤N

Sτ .
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Notice that

{
Ef0(Xi) = −D(f0||f1) < 0 for i ≤ τ ∗ − 1

Ef1(Xi) = D(f1||f0) > 0 for i ≥ τ ∗
(4.4)

where Efi
denotes the expectation of random variables under the distribution

function fi(·) and D(p||q) denotes the Kullback-Leibler divergence between

p and q. By equation (4.4) the terms Xi of the sum in (4.2) have negative

expectation for i ≤ τ ∗ − 1 and positive expectation for i ≥ τ ∗. Thus if the

change occurs in τ ∗, Sn − min0≤k≤n Sk has zero expectation for i ≤ τ ∗ − 1

and positive expectation for i ≥ τ ∗. Taking into account random effects, use

the following algorithm to find τ̂

τ̂ = inf{n | (Sn − min
0≤k≤n

Sk) ≥ δ}.

for some δ > 0. Notice that (Sn−min0≤k≤n Sk) is a function of the observation

until time n, thus the algorithm works on-line.

We have presented the CUSUM algorithm in the simplest case, as it was

introduced at first, for independent observations and f0(·) and f1(·) known,

but the CUSUM algorithm can be used also in more general frameworks.

The key elements in a CUSUM algorithm are

• a sequence X1, . . . , XN function of the observations, the so-called resid-

ual process, such that

E(Xi) < 0 for i ≤ τ ∗ − 1 and E(Xi) > 0 for i ≥ τ ∗,

• the sequence S0, . . . , SN , with Sn :=
∑n

i=1 Xi and S0 := 0,

• the CUSUM statistics

gn := max
0≤k≤n

(Sn − Sk) = Sn − min
0≤k≤n

Sk for n ≥ 0,

• a stopping threshold δ > 0,

• a stopping rule

τ̂ = inf{n | (Sn − min
0≤k≤n

Sk) ≥ δ}.
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The choice of δ is tricky: for a small value the algorithm could be too sensitive

to random effects, but for a big value of δ the algorithm could not detect the

changes.

The CUSUM was introduced for independent observations, but its range

of applicability has been extended for dependent sequences, such as station-

ary ergodic processes in [6]. The applicability of the CUSUM algorithm

to ARMA systems, with unknown dynamics, has been demonstrated in [5].

Much later, it was adapted to Hidden Markov Models, with unknown dy-

namics, in [32].

In the no change case, there are two key quantities to measure the per-

formance of a change detection algorithm: the false alarm probability and

the false alarm frequency. The false alarm probability of a change detection

algorithm is the probability that the algorithm detects a change when this

change has not occurred, that is

Pf0{gn ≥ δ}.

It is close to the idea of first kind error of classical statistic. The almost sure

false alarm frequency is defined as

lim sup
N−→+∞

1

N

N∑
i=1

I{gi≥δ}, (4.5)

where IA denotes the characteristic function of the set A.

The lim sup above is tractable (as we will see in Section 5.4) if we have a

Law of Large Numbers (LLN) for I{gi≥δ} or for f(gi), with f smooth and

f(gi) ≥ I{gi≥δ}. This is ensured if (gn) is L-mixing. In the next chapter

we will show that this is indeed the case for i.i.d. input sequence and for

L-mixing input sequence, under suitable technical conditions.

4.1.1 Change detection for HHMs

Detection of changes in the statistical pattern of a hidden Markov process is

of interest in a number of applications. Change detection for HHMs is one

of the main motivation of the investigations in the next chapter. As we have

seen in the previous section, a basic method for detecting temporal changes

in an independent sequence is the Cumulative Sum (CUSUM) algorithm

or Hinkley-detector. The adaptation of the CUSUM algorithm to the case
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when the dynamics of the HMM before and after the change is unknown was

considered in [32], using a number of heuristic arguments. We consider the

mathematically cleaner case when the dynamics before and after the change

is known. More precisely let θ∗ be the true parameter driving the dynamics

of a HHM (χn, Yn) and let

θ∗ =

{
θ1 for n ≤ τ ∗ − 1

θ2 for n ≥ τ ∗,
(4.6)

for an unknown τ ∗, but for given θ1 6= θ2. Our goal is to estimate τ ∗. To

state our change-detection algorithm, first note that the negative of the log-

likelihood function can be interpreted as a code-length, modulo a constant.

Thus we first set for any feasible θ

Cn(Yn; θ) := − log p(Yn | Yn−1, . . . , Y0; θ), (4.7)

and then define the residual-process

Xn := Cn(Yn; θ1)− Cn(Yn; θ2). (4.8)

We certainly get, by the Kullback-Leibler inequality,

Eθ∗(Xn) < 0 for n ≤ τ ∗ − 1,

and also, in the case of τ ∗ = 0,

Eθ∗(Xn) > 0 for n ≥ τ ∗.

The CUSUM statistics defined in terms of this residual process (Xn) yields

the desired change detection algorithm.

To study the probabilistic properties of the resulting CUSUM statistics,

we first note, that under suitable conditions, the process Cn(Yn; θ) is L-

mixing. To state the precise result define

δ(y) =
max

x
bx(y)

min
x

bx(y)
.

We will indicate with Q∗ = Q(θ∗) the true transition matrix, and with Q =

Q(θ) the estimated one. We have the following
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Theorem 4.1.1 (see Theorem 5.2 in [34]). Consider a hidden Markov process

(χn, Yn). Assume that the transition probability matrices Q∗ and Q, corre-

sponding to θ∗ and θ, respectively, are primitive1, and that for all x ∈ X we

have bx(y) > 0 for λ almost all y ∈ Y. Furthermore assume that for all s ≥ 1

and for all i, j ∈ X
∫
| log bj(y)|s b∗i(y)λ(dy) < ∞, (4.9)

and also that for all s ≥ 1 and for all i ∈ X
∫
|δ(y)|sb∗i(y)λ(dy) < ∞. (4.10)

Then the process Cn(Yn; θ) is L-mixing.

We conclude that under the assumption of no change, i.e. τ ∗ = ∞, the

residual (Xn) defined in equation (4.8) is L-mixing. The conditions (4.9)

and (4.10) are certainly satisfied for a finite read-out space Y , assuming that

bx(y) > 0 for all x, y. If, in addition, Q∗ and Q are positive, then (Xn) is a

bounded sequence.

4.2 L-mixing processes

For the reader’s sake we summarize a few definitions given in ([30]). Let

(Ω,F ,P) be a probability space, and let (Xn) be a stochastic process on

(Ω,F ,P).

Definition 4.2.1. We say that (Xn) is M -bounded if for all 1 ≤ q < +∞

Mq(X) := sup
n≥0

‖ Xn ‖q< +∞. (4.11)

We can also define Mq(X) for q = +∞ as

M∞(X) := sup
n≥1

ess sup |Xn|.

Let (Fn)n≥1 be an increasing family of σ-fields and let (F+
n )n≥1 be a decreas-

ing family of σ-fields, Fn ⊆ F and F+
n ⊆ F for any n. Assume that Fn and

1i.e. there exist an integer r such that Qr has positive entries.
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F+
n are independent for any n. Let τ be a positive integer. Define for all

1 ≤ q < +∞

γq(τ, X) = γq(τ) := sup
n≥τ

‖ Xn − E(Xn|F+
n−τ ) ‖q, (4.12)

Γq(X) :=
+∞∑
τ=0

γq(τ, X). (4.13)

We can also define

γ∞(τ, X) := sup
n≥τ

ess sup |Xn − E(Xn|F+
n−τ )|,

and

Γ∞(X) :=
+∞∑
τ=0

γ∞(τ, X).

Definition 4.2.2. A process (Xn) is L-mixing with respect to (Fn,F+
n ) if

• Xn is Fn-measurable for all n ≥ 1,

• (Xn) is M-bounded,

• Γq(X) < +∞ for all 1 ≤ q < +∞.

The definition can be generalized for parameter dependent processes (see

[30]). We give some examples of L-mixing processes.

Example 4.2.1. Let (Xn) be an i.i.d. process. Define Fn := σ(Xi|i ≤ n)

and F+
n := σ(Xi|i ≥ n + 1). If the moments of (Xn) are all finite, then (Xn)

is L-mixing with respect to (Fn,F+
n ).

Example 4.2.2. Let (en)n≥1 be an M-bounded independent sequence, en ∈
Rk. Define the vector-valued process (yn)n≥1 by

xn+1 = Axn + Ben x1 = 0

yn = Cxn,

with A ∈ Rm×m stable, B ∈ Rm×k, and C ∈ Rp×m. Let Fn := σ(ei|i ≤ n− 1)

and F+
n := σ(ei|i ≥ n). Then (yn)n≥1 is an L-mixing process with respect to

(Fn,F+
n ).
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Proof. For any n, yn is Fn-adapted, because so it is xn. We have

xn =
n−1∑

k=1

An−1−k B ek

Thus

‖ yn ‖q≤‖ C ‖ ‖ B ‖
n−1∑

k=1

‖ A ‖n−1−k‖ ek ‖q

≤ Mq(e) ‖ C ‖ ‖ B ‖
n−1∑

k=1

‖ A ‖n−1−k < +∞.

Thus (yn)n≥1 is M -bounded. For any n ≤ τ we have

xn = Aτxn−τ +
τ−1∑

k=0

AkBen−k−1, and so

‖ xn − E{xn|F+
n−τ} ‖q =‖ Aτxn−τ − AτE{xn−τ} ‖q .

We get

‖ yn − E{yn|F+
n−τ} ‖q≤‖ C ‖‖ A ‖τ 2Mq(x).

Recalling the definitions in the equations (4.12) and (4.13)

γq(τ, y) = sup
n≥τ

‖ yn − E{yn|F+
n−τ} ‖q≤‖ C ‖‖ A ‖τ 2Mq(x),

Γq(τ, y) =
∑
τ≥0

γq(τ, y) ≤‖ C ‖ 2Mq(x)
∑
τ≥0

‖ A ‖τ< +∞.

Thus (yn)n≥1 is L-mixing indeed.

Counterexample 4.2.1. The exchangeable sequence proposed in Example

1.1.1 is clearly not L-mixing.

Observation 4.2.1. Let (Xn) be an L-mixing process with respect to (Fn,F+
n ).

Let f be a real Lipschitz-continuous bounded function. Then (f(Xn))n≥1 is

L-mixing with respect to (Fn,F+
n ).

To verify L-mixing property, γq(τ,X) has to be estimated. It is in general

difficult to give an explicit form of γq(τ, X). By the following Lemma 4.2.1,

to get an upper bound for γq(τ, X) it is sufficient to find, for any n, a F+
n−τ -

measurable random variable, that well approximates Xn.
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Lemma 4.2.1. Let F ′ ⊂ F be two σ-algebras. Let ξ be an M-bounded

F-measurable random variable. Then for any 1 ≤ q < +∞ and any F ′-
measurable random variable η we have

‖ ξ − E(ξ|F ′) ‖q≤ 2 ‖ ξ − η ‖q . (4.14)

Centered L-mixing processes satisfy the strong law of large numbers, see

Corollary 1.3 in [30]:

Theorem 4.2.1. Let (Xn) be a real valued L-mixing process such that E(Xn) =

0 for all n ≥ 0. Then

lim
N→+∞

1

N

N∑
i=1

Xi = 0 with probability 1. (4.15)





Chapter 5

L-mixing property for the

CUSUM statistics

5.1 Equivalent formulations for gn

In the following Propositions 5.1.1 and 5.1.2 we give two equivalent formula-

tions for the CUSUM statistics (gn), which will be useful in the forthcoming

computations.

Proposition 5.1.1. Let (Xn) be a stochastic process on a probability space

(Ω,F ,P) and let (gn) be the CUSUM statistics defined as in equation (3.25).

Then

gn = (gn−1 + Xn)+ with g0 = 0 (5.1)

where a+ = max{0, a} and n ≥ 1.

The previous proposition defines (gn) in a recursive form, so that gn is a

deterministic function of gn−1 and Xn. The following Proposition 5.1.2 gives

an alternative representation of gn that will be useful for further calculations.

It can be easily proved with induction arguments.

Proposition 5.1.2. Let (Xn) be a stochastic process on a probability space

(Ω,F ,P) and let (gn) be the CUSUM statistics defined as in equation (3.25).

Then for n ≥ 1

gn = max
1≤i≤n

(Xi + · · ·+ Xn)+. (5.2)
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5.2 The CUSUM with i.i.d. input

In this Section we analyze properties of the process (gn) defined by equation

(3.25), when (Xn) is a sequence of independent identically distributed random

variables. By Proposition 5.1.1, it is clear that (gn) is a homogeneous Markov

chain. This special case shows up in a variety of problems, like queuing theory

(see [50] Chapter 1 and [4] Chapters 1.5 and 3.6), and in the theory of risk

processes (see [46]).

Meyn and Tweedie (see [42]) call (gn) a random walk on the half line.

They prove stability properties for the Markov chain (gn), under the hy-

pothesis that E(X1) < 0. In particular they prove the existence of a unique

invariant measure, for (Xn) i.i.d. In fact in Proposition 8.5.1. they show

that (gn) is recurrent under the hypothesis E(X1) < 0, and thus by Theorem

10.0.1. in [42] the homogeneous Markov chain (gn) admits a unique invariant

measure.

Moreover in [42] the so-called geometric ergodicity of (gn) is established,

using a fairly complex machinery, under the additional technical assumption

that E(exp c′X1) < ∞ for some c′ > 0. More precisely in Section 16.1.3 in

[42] they verify a drift condition, with Lyapunov function V (x) = exp(cx),

under the condition E(exp c′X1) < ∞, with 0 < c ≤ c′.
The recurrence and the geometric ergodicity of (gn) are obtained also

in [4] Chapter 1.5 Example 5.7, but for (Xn) taking values on the natural

numbers.

According to Proposition 5.1.1, the sequence (gn) can be generated in

a convenient way by repeated applications of random functions. Letting

fX(g) := (g + X)+ we have

gn = fXnfXn−1fXn−2 . . . fX1(g0). (5.3)

A nice source on iterated random functions is Diaconis and Freedman [23].

Consider a set {fθ, θ ∈ Θ} of measurable functions of a metric space S into

itself. Fix a probability measure µ on Θ, and a starting point v0 in S, and

define inductively the process

Vn+1 = fθn+1(Vn) = fθn+1 . . . fθ2fθ1(v0), (5.4)

where θ1, θ2, . . . , θn are independent draws from µ. Relation (5.4) is called

the forward iteration. If v0 is independent from θ1, θ2, . . . , then the resulting

process (Vn)n≥0 is a Markov chain.
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Let the functions fθ be Lipschitz-continuous with Lipschitz constant Kθ.

It is proved in [23] that if
∫

log Kθ µ(dθ) < 0,

and some simple additional technical conditions hold, then (Vn)n≥1 has a

unique stationary distribution (see Theorem 1.1 in [23] ).

Unfortunately this result is not applicable to the analysis of (gn) defined

above by equation (5.3), although the functions fXi
in (5.3) are Lipschitz-

continuous, but with Lipschitz constants equal to 1. On the other hand, as

it is mentioned in Paragraph 4 in [23], if (Xn) is an i.i.d. sequence, and

E(X1) < 0, using a backward iteration it can be shown that (gn) has an

invariant measure.

5.2.1 L-mixing property

The purpose of this section is to provide a simple, but useful result com-

plementing the above results. For its formulation we need the following

notations:

Fn := σ(Xi | i ≤ n) and F+
n := σ(Xi | i ≥ n + 1).

Thus Fn is the past, and F+
n is the future of (Xn). Assume that

E(X1) < 0,

and, in addition, E(exp c”X1) < ∞ for some c” > 0. Then

µ := E(exp c′X1) < 1 for some c′ > 0. (5.5)

Theorem 5.2.1. Let (Xn) be a sequence of i.i.d. random variables such that

(5.5) holds. Then (gn), defined by equation (3.25), is L-mixing with respect

to (Fn,F+
n ).

Proof. of Theorem 5.2.1 For the proof we will use the equivalent formulation

for (gn) given in Proposition 5.1.2:

gn = max
1≤i≤n

(Xi + · · ·+ Xn)+. (5.6)

First note that for any n ∈ N, Fn and F+
n are independent, and (gn) is Fn-

adapted. Standard results of the theory of risk processes imply that for any
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c such that 0 < c < c′, we have E(exp cgn) < ∞, hence (gn) is M -bounded.

(This will also follow from the arguments below.)

To show that (gn) is L-mixing we have to show that for 1 ≤ q < +∞
γq(τ, g) := sup

n≥τ
‖ gn − E(gn|F+

n−τ ) ‖q

is summable. For this purpose we shall make use of Lemma 4.2.1 in 4.2,

implying that

‖ gn − E(gn|F+
n−τ ) ‖q≤ 2 ‖ gn − g++

n,n−τ ‖q, (5.7)

for any F+
n−τ -measurable random variable g++

n,n−τ . In particular, define

g++
n,n−τ := max

n−τ+1≤i≤n
(Xi + · · ·+ Xn)+. (5.8)

Note that g++
n,n−τ is F+

n−τ measurable, as required.

To estimate gn − g++
n,n−τ we use Lemma A.0.3 in the Appendix, setting

I1 = {n− τ + 1, . . . , n}, I2 = {1, . . . , n− τ}, Ai = (Xi + · · ·+ Xn)+ .

We get

gn − g++
n,n−τ = max

1≤i≤n
(Xi + · · ·+ Xn)+ − max

n−τ+1≤i≤n
(Xi + · · ·+ Xn)+

≤ max
1≤i≤n−τ

(Xi + · · ·+ Xn)+ =: gn,n−τ .
(5.9)

At this point we could continue as in the proof of Theorem 5.3.1 in the

next section, but for the sake of variation we follow a slightly different route.

But first we have to fix some notations. Given two random variables X and

Y , with distribution functions FX and FY , respectively, we write X
L
= Y to

indicate that FX(x) = FY (x) for all x, and we write X
L≤ Y to indicate that

FX(x) ≥ FY (x) for all x. In this case we say that X is stochastically smaller

than Y .

Now, exploiting the fact that (Xn) is i.i.d., (5.9) can be continued as

follows:

gn,n−τ
L
= max

τ+1≤j≤n
(X1 + · · ·+ Xj)+

L≤ max
j≥τ+1

(X1 + · · ·+ Xj)+ =: g∗τ+1. (5.10)

To complete the proof of Theorem 5.2.1, we need Lemmas 5.2.1 and 5.2.2

below, extending known result in risk theory to estimate the tail probability

of default (see [48] and [46]) using exponential moments.
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Lemma 5.2.1. Let (Xn) be as in Theorem 5.2.1, and let µ and c′ as in (5.5).

Define for some fixed integer τ > 0

g∗τ := sup
i≥τ

(
(X1 + · · ·+ Xτ ) + · · ·+ Xi

)
+
. (5.11)

Then for any c such that 0 < c < c′, we have

E
(
exp cg∗τ

) ≤ 1 +
( c

c′ − c

) µτ

1− µ
. (5.12)

Since µ < 1, the lemma states the exponential decay of E
(
exp cg∗τ

) − 1

with respect to τ . The lemma is a direct consequence of the following tail-

probability estimates:

Lemma 5.2.2. Let (Xn) be as in Theorem 5.2.1, and let µ and c′ as in (5.5).

Let g∗τ be as in Lemma 5.2.1. Then for each x ≥ 0 we have

P
(
g∗τ > x

) ≤ µτ

1− µ
exp(−c′x). (5.13)

Proof. of Lemma 5.2.2. We have

P(g∗τ > x) ≤
+∞∑
i≥τ

P((X1 + · · ·+ Xi) > x) (5.14)

≤
+∞∑
i≥τ

E
(
exp c′(X1 + · · ·+ Xi)

)
/ exp(c′x)

=
+∞∑
i≥τ

µi/ exp(c′x) =
µτ

1− µ
exp(−c′x).

Proof. of Lemma 5.2.1. We have

E
(
exp cg∗τ

)
=

∫ +∞

0

P(exp cg∗τ > x)dx. (5.15)

Now for x ≥ 1 we get by Lemma 5.2.2

P
(
exp cg∗τ > x

)
= P

(
g∗τ >

log x

c

)
≤ µτ

1− µ
exp

(
− c′ log x

c

)

≤ µτ

1− µ
x−c′/c.

(5.16)
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For x ≤ 1 we have P(exp cg∗τ > x) = 1. Combining (5.15) and (5.16) we get

E(exp cg∗τ ) = 1 +

∫ +∞

1

P(exp cg∗τ > x)dx

= 1 +
µτ

1− µ

∫ +∞

1

x−c′/cdx ≤ 1 +
( c

c′ − c

) µτ

1− µ
.

(5.17)

Corollary 5.2.1. Under the conditions of Lemma 5.2.2, for any integer

p ≥ 1

‖ g∗τ ‖p≤ Hpµ
τ/p, (5.18)

where

Hp :=
1

c

(
c

c′ − c

)1/p (
p!

1− µ

)1/p

.

Proof. Using a Taylor expansion for exp cg∗τ we get

exp cg∗τ ≥ 1 + (c)p (g∗τ )
p

p!
. (5.19)

Taking the expectation in the last equation, the claim follows directly from

Lemma 5.2.1.

We continue the proof of Theorem 5.2.1. To prove that (gn) is M -

bounded, we need an upper bound for the moments of (gn). We have

gn = max
1≤i≤n

(Xi + · · ·+ Xn)+
L
= max

1≤i≤n
(X1 + · · ·+ Xi)+

L≤ max
i≥1

(X1 + · · ·+ Xi)+ = g∗1.
(5.20)

In short we get

gn

L≤ g∗1. (5.21)

Fix q, 1 ≤ q < +∞ and let p := dqe be the first integer greater or equal to

q. Using Corollary 5.2.1 we get

‖ gn ‖q≤‖ gn ‖p≤‖ g∗1 ‖p≤ Hpµ
1/p. (5.22)

Thus we get that (gn) is M -bounded (see Definition 4.2.1 in 4.2).
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Recall equations (5.7), (5.9), and (5.10). To conclude the proof we need

an upper bound for ‖ g∗τ+1 ‖q. We get it using Corollary 5.2.1 with p := dqe:

‖ g∗τ+1 ‖q≤‖ g∗τ+1 ‖p≤ Hpµ
(τ+1)/p. (5.23)

Thus we get

‖ gn − E(gn|F+
n−τ ) ‖q≤ 2 ‖ g∗τ+1 ‖q≤ 2Hpµ

(τ+1)/p. (5.24)

The right hand side is obviously summable, hence (gn) is L-mixing indeed.

5.3 The CUSUM with L-mixing input

Consider now the case when the input (Xn) is L-mixing. This condition

is motivated by change detection problems for HHMs, as we have seen in

Section 4.1.1. We will show that (gn) is L-mixing for L-mixing input, under

two additional technical assumptions. The first one is fairly mild, requiring

that (Xn) is an L-mixing process with respect to (Fn,F+
n ) such that

+∞∑
τ=0

τγq(τ, X) < +∞ for all 1 ≤ q < +∞. (5.25)

The second assumption is much more restrictive, saying that

M∞(X) < +∞ and Γ∞(X) < +∞. (5.26)

This condition will be discussed in the remark following Lemma 5.3.2. We

define a critical exponent in terms of M∞(X) and Γ∞(X) as follows:

β∗ := ε/(4M∞(X)Γ∞(X)). (5.27)

Then, for any β′ ≤ β∗ define

λ = λ(β′) := exp
(
4M∞(X)Γ∞(X)(β′)2 − β′ε

)
. (5.28)

Note that for the critical value β∗ we have λ(β∗) = 1, and for β′ < β∗ we

have λ(β′) < 1. The main result of this section is then the following:
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Theorem 5.3.1. Let (Xn) be an L-mixing process w.r.t. (Fn,F+
n ) such that

(5.25) and (5.26) are satisfied, and

E(Xn) ≤ −ε < 0 for all n ≥ 0. (5.29)

Let (gn) be defined as in (3.25). Then (gn) is L-mixing w.r.t. (Fn,F+
n ). In

addition, for any β, β′ such that 0 < β < β′ < β∗, we have with λ = λ(β′)

E
(
exp β gn

) ≤ 1 +
( β

β′ − β

) λ

1− λ
. (5.30)

Proof. of Theorem 5.3.1. To prove the theorem, define for 0 ≤ τ ≤ n the

auxiliary process

gn,n−τ (X) := max
1≤i≤n−τ

(Xi + · · ·+ Xn)+ , (5.31)

The exponential moments of gn,n−τ (X) will be bounded as follows:

Lemma 5.3.1. Let (Xn) and β, β′ and λ be as in Theorem 5.3.1. Then

E
(
exp β gn,n−τ (X)

) ≤ 1 +
( β

β′ − β

) λτ+1

1− λ
. (5.32)

The result ensures an exponential decay of E
(
exp βgn,n−τ (X)

) − 1 in τ , a

property which will be used later.

Lemma 5.3.2. Let (Xn) and β′ and λ be as in Theorem 5.3.1. Then for

any x ≥ 0 we have

P
(
gn,n−τ (X) > x

) ≤ λτ+1

1− λ
exp(−β′x). (5.33)

For the proof of the lemma we need an exponential inequality for partial

sums of L-mixing processes. We do have such an inequality, see [31], for the

case M∞(X) < +∞ and Γ∞(X) < +∞. Unfortunately, it is not clear if

this inequality can be extended to unbounded processes. It seems that the

boundedness of (Xn) is a common assumption for exponential inequalities

for partial sums of mixing processes, see Section 1.4.2. in [25].

Proof. of Lemma 5.3.2. We follow the arguments of the proof of Theorem

3.1 in [31]. To estimate tail probabilities of partial sums a natural tool,
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developed in large deviation theory, is an appropriate exponential inequality.

First we estimate E
(
exp β′(Xi + · · ·+ Xn)

)
, 1 ≤ i ≤ n− τ . Define

Dj := Xj − E(Xj),

for all j ≥ 1. Obviously E(Dj) = 0 for all j, M∞(D) ≤ 2M∞(X), and

Γ∞(D) = Γ∞(X). By the exponential inequality, given as Theorem 5.1 in

[31], applied to the process (Dj)i≤j≤n with weights fj = β′ we obtain

E
(

exp
(
β′

n∑
j=i

Dj − 2M∞(D)Γ∞(D)β′2(n− i + 1)
)) ≤ 1.

After rearrangement and multiplication by exp β′
∑n

j=i E(Xj), we get

E
(

exp
(
β′

n∑
j=i

(
Dj + E(Xj)

)))
≤ exp

(
αβ′2(n− i + 1) + β′

n∑
j=i

E(Xj)
)
,

with α := 2M∞(D)Γ∞(D). Noting that Dj +E(Xj) = Xj, E(Xj) ≤ −ε, and

α ≤ 4M∞(X)Γ∞(X), we conclude that

E
(

exp β′
n∑

j=i

Xj

)
≤ exp

(
4M∞(X)Γ∞(X)β′2(n− i + 1)− β′ε(n− i + 1)

)
.

Take β′ < β∗. Recalling the definition of λ(β′) we get

E
(

exp β′
n∑

j=i

Xj

)
≤

(
exp

(
4M∞(X)Γ∞(X)β′2 − β′ε

))(n−i+1)

= λ(β′)n−i+1.

Now, for β′ < β∗, we have λ = λ(β′) < 1, and thus we obtain for x ≥ 0

P
(
hn,n−τ (X) > x

) ≤
n−τ∑
i=1

P
((

Xi + · · ·+ Xn

)
+

> x
)

≤
n−τ∑
i=1

E
(
exp β′(Xi + . . . Xn)

)
/ exp(β′x) ≤

n−τ∑
i=1

λn−i+1/ exp(β′x)

≤
n∑

l=τ+1

λl/ exp(β′x) ≤
+∞∑

l=τ+1

λl/ exp(β′x) =
λτ+1

1− λ
exp(−β′x).
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Proof. of Lemma 5.3.1 Using Lemma 5.3.2 the proof is carried out exactly

as the proof of Lemma 5.2.1.

Corollary 5.3.1. Under the conditions and notations of Theorem 5.3.1 we

have

‖ gn,n−τ (X) ‖p≤ Kpλ
(τ+1)/p (5.34)

for any integer p ≥ 1, where

Kp :=
1

β

(
β

β′ − β

)1/p (
p!

1− λ

)1/p

.

Proof. See the proof of Corollary 5.2.1.

(Xn) is L-mixing with respect to (Fn,F+
n ), thus Xn is Fn-adapted for

any n ∈ N. It follows that (gn) is Fn-adapted. First we show that (gn) is

M -bounded. By definition

gn = gn,n(X).

For any fixed q, let p := dqe. Then by Corollary 5.3.1, we have

‖ gn ‖q≤‖ gn ‖p≤ Kpλ
1/p. (5.35)

To show that Γq(g) is finite for any 1 ≤ q < +∞, we estimate γq(τ, g)

using Lemma 4.2.1 in 4.2. Let

X+
i,n−τ := E

(
Xi|F+

n−τ

)
.

Note that (Xn) is L-mixing, and thus for i ≥ n − d τ
2
e + 1, or i − (n − τ) ≥

τ − d τ
2
e+ 1, X+

i,n−τ is a good approximation of Xi. Approximate gn by

g++
n,n−τ := max

n−d τ
2
e+1≤i≤n

(X+
i,n−τ + · · ·+ X+

n,n−τ )+. (5.36)

Note that g++
n,n−τ is F+

n−τ measurable, as required. For each τ , define

γ++
q (τ) := sup

n≥τ
‖ gn − g++

n,n−τ ‖q and Γ++
q (g) :=

+∞∑
τ=0

γ++
q (τ). (5.37)

By Lemma 4.2.1 in Chapter 4.2 we have

Γq(g) ≤ 2Γ++
q (g). (5.38)

So to show that Γq(g) < +∞, it is thus enough to prove that Γ++
q (g) < +∞.
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To estimate the residual gn− g++
n,n−τ we shall use an intermediate approxima-

tion of gn, defined as

gn,n−τ := max
n−d τ

2
e+1≤i≤n

(Xi + · · ·+ Xn)+. (5.39)

gn,n−τ is similar to the approximation of gn we have used in the i.i.d. case,

but gn,n−τ is not F+
n−τ -measurable. By the triangular inequality we have

‖ gn − g++
n,n−τ ‖q≤‖ gn − gn,n−τ ‖q + ‖ gn,n−τ − g++

n,n−τ ‖q . (5.40)

Define

γq(τ) := sup
n≥τ

‖ gn − gn,n−τ ‖q and Γq(g) :=
+∞∑
τ=0

γq(τ),

γ++
q (τ) := sup

n≥τ
‖ gn,n−τ − g++

n,n−τ ‖q and Γ
++

q (g) :=
+∞∑
τ=0

γ++
q (τ).

Taking supn≥τ in equation (5.40) and summing over τ we get

Γ++
q (g) ≤ Γq(g) + Γ

++

q (g). (5.41)

So it is enough to show that Γq(g) < +∞ and Γ
++

q (g) < +∞.

First estimate ‖ gn − gn,n−τ ‖q. Taking

I = {1, . . . , n}, I1 = {1, . . . , n− dτ
2
e}, I2 = {n− dτ

2
e+ 1, . . . , n},

and Ai = (Xi + · · ·+ Xn)+ ,

and applying Lemma A.0.3 we get

gn − gn,n−τ ≤ max
1≤i≤n−d τ

2
e
(Xi + · · ·+ Xn)+ = gn,n−d τ

2
e(X).

Let p := dqe. Using Corollary 5.3.1, we have

‖ gn − gn,n−τ ‖q≤‖ gn − gn,n−τ ‖p≤‖ gn,n−d τ
2
e(X) ‖p≤ Kpλ

(d τ
2
e+1)/p.

Thus we get for the intermediate approximation error the inequalities

γq(τ) = sup
n≥τ

‖ gn − gn,n−τ ‖q≤ Kpλ
(d τ

2
e+1)/p, (5.42)

Γq(g) =
+∞∑
τ=0

γq(τ) ≤ Kp

+∞∑
τ=0

λ(d τ
2
e+1)/p < +∞. (5.43)
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Next we need to find an upper bound for ‖ gn,n−τ − g++
n,n−τ ‖q. We use

Lemma A.0.2 with â = gn,n−τ and b̂ = g++
n,n−τ . Thus we get

‖ gn,n−τ − g++
n,n−τ ‖q≤

n∑

i=n−d τ
2
e+1

‖ Xi −X+
i,n−τ ‖q

=
n∑

i=n−d τ
2
e+1

‖ Xi − E(Xi | F+
n−τ ) ‖q≤

τ∑

j=b τ
2
c+1

γq(j, X).

It follows that

Γ
++

q (g) =
+∞∑
τ=0

γ++
q (τ) ≤

+∞∑
τ=0

τ∑

j=b τ
2
c+1

γq(j,X) ≤
+∞∑
τ=0

τγq(τ, X) < +∞, (5.44)

where the last sum is finite by the condition stated in equation (5.25). Com-

bining equations (5.38), (5.41), (5.43) and (5.44) we conclude that Γq(g) <

+∞, as stated.

To conclude the proof, it remains to show that the exponential bound

given in equation (5.30) holds. But it easily follows by Lemma 5.3.1 recalling

that gn = gn,n.

5.3.1 Comments

In Section 4.1.1 we have presented a CUSUM algorithm for HHMs, with

known dynamics before and after the change. This has lead us to the study

of the CUSUM statistics with L-mixing input. We have shown in this section

that, under certain technical conditions, the output of the CUSUM statistics

is L-mixing.

It should be admitted though, that this result is not directly applicable

to the change detection of HMMs. Namely, the Hinkley-scores defined for

HMMs are typically not bounded. A notable exception is the case of finite

state and read-out space with all transition and read-out probabilities being

positive. But even in this case the condition Γ∞(X) < +∞ can not be guar-

anteed. The technical difficulty in extending this result is the apparent lack

of an appropriate exponential inequality for the partial sums of unbounded

L-mixing processes, given as Theorem 5.1 in [31], and used in the proof of

Lemma 5.3.2.
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5.4 Estimation of False Alarm frequency

As a corollary of Theorems 5.2.1 and 5.3.1 we get an upper bound for the

a.s. false alarm frequency defined as

lim sup
N−→+∞

1

N

N∑
n=1

I{gn>δ}, (5.45)

with the tacit assumption that τ ∗ = +∞. In fact the lim sup above is

tractable if we have a strong law of large numbers (LLN) for I{gi≥δ} or for

f(gi), with f smooth and f(gi) ≥ I{gi≥δ}. This is ensured if (gn) is L-mixing

(see Theorem 4.2.1).

Proposition 5.4.1. Let (gn) be as above, let the input sequence (Xn), c′,
and µ be as in Theorem 5.2.1. Then

lim sup
N−→+∞

1

N

N∑
n=1

I{gn≥δ} ≤ µ

1− µ
exp(−c′δ) for any δ > 0. (5.46)

Proof. Recalling equation (5.21) in the proof of Theorem 5.2.1, we have

gn

L≤ g∗1.

Thus by Lemma 5.2.2

P
(
gn ≥ x

) ≤ µ

1− µ
exp(−c′x) for any x ≥ 0 and any n ≥ 1. (5.47)

To give an estimation of the false alarm frequency we will use the strong law

of large numbers for L-mixing processes, but note that I{gi≥δ} itself is not

L-mixing, even if (gn) is L-mixing. We thus use an L-mixing approximation

from above of I{gi≥δ}. To be precise let δ′ < δ and let f be a smooth Lipschitz-

continuous function such that I{g≥δ} ≤ f(g) ≤ I{g≥δ′}. By Theorem 5.2.1

(gn)n≥0 is L-mixing, thus (f(gn))n≥0 is also L-mixing (see Observation 4.2.1

in Chapter 4.2). Using the strong law of large numbers for zero mean L-

mixing processes, we get, after centering,

lim sup
N−→+∞

1

N

N∑
i=1

I{gi≥δ} ≤ lim sup
N−→+∞

1

N

N∑
i=1

f(gi)

= lim sup
N−→+∞

1

N

N∑
i=1

E
(
f(gi)

) ≤ lim sup
N−→+∞

1

N

N∑
i=1

E
(
I{gi≥δ′}

)
(5.48)

Taking into account (5.47), and that δ′ is arbitrary, we get the claim.
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Proposition 5.4.2. Let (gn) be as above, let the input sequence (Xn) be as

in Theorem 5.3.1 and let β′, λ = λ(β′) be as in Lemma 5.3.1. Then

lim sup
N−→+∞

1

N

N∑
i=1

I{gi≥δ} ≤ λ

1− λ
exp(−β′δ) for any δ > 0. (5.49)

Proof. Note that gn = gn,n, thus by Lemma 5.3.2

P
(
gn ≥ x

) ≤ λ

1− λ
exp(−β′x) for any x ≥ 0 and any n ≥ 1. (5.50)

By Theorem 5.3.1 (gn) is L-mixing. Conclude as in the proof of Proposition

5.4.1.



Appendix A

Technical Lemmas

In this appendix we state three easy lemmas useful in the proof of Theorems

5.2.1 and 5.3.1 in the previous chapter.

Lemma A.0.1. Let (an)n≥1 and (bn)n≥1 be two sequences of numbers and

for given m,n, with 1 ≤ m ≤ n, let

â := max
m≤i≤n

(ai + · · ·+ an)+ and b̂ := max
m≤i≤n

(bi + · · ·+ bn)+. (A.1)

Then

â− b̂ ≤
n∑

i=m

(ai − bi)+. (A.2)

Proof. Let â = ar + · · ·+ an for some r, m ≤ r ≤ n and b̂ = bs + · · ·+ bn for

some s, m ≤ s ≤ n. Let s ≤ r, then

br · · ·+ bn ≤ bs + · · ·+ br + · · ·+ bn.

By the last inequalities
r−1∑
i=s

bi ≥ 0. (A.3)

We have

â− b̂ = ar + . . . an − bs − · · · − bn =
n∑

i=r

(ai − bi)−
r−1∑
i=s

bi

≤
n∑

i=r

(ai − bi) ≤
n∑

i=r

(ai − bi)+ ≤
n∑

i=m

(ai − bi)+ .
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If r ≤ s, then
∑s−1

r bi ≤ 0, and so

â− b̂ = ar + . . . an − bs − · · · − bn =
s−1∑
i=r

ai +
n∑

i=s

(ai − bi)

≤
s−1∑
i=r

ai −
s−1∑
i=r

bi +
n∑

i=s

(ai − bi) ≤
n∑

i=m

(ai − bi)+.

The lemma is thus proved.

Lemma A.0.2. Let (an)n≥1 and (bn)n≥1 be two stochastic processes on the

same probability space. Define â and b̂ as in equation (A.1). Then

‖ â− b̂ ‖q≤
n∑

i=m

‖ ai − bi ‖q . (A.4)

Proof. Equation (A.2) implies

â− b̂ ≤
n∑

i=m

|ai − bi|.

Interchanging the role of a and b we get

b̂− â ≤
n∑

i=m

|bi − ai|.

Thus

|â− b̂| ≤
n∑

i=m

|ai − bi|.

The result follows taking the Lq-norm and using the triangular inequality.

Lemma A.0.3. Let I be a finite set of the natural numbers, and let I = I1∪I2

with I1 ∩ I2 = ∅. Let (Ai)i∈I be a collection of non-negative real numbers.

Then

max
i∈I

Ai ≤ max
i∈I1

Ai + max
i∈I2

Ai (A.5)

Proof.

max
i∈I

Ai = max{max
i∈I1

Ai, max
i∈I2

Ai}.

The result follows by direct inspection.
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