Introduzione

Nell’ambito del programma di dottorato dell’Universita di Padova, I’autore ha svilup-
pato il suo progetto di ricerca sotto la supervisione del Prof. Andrei Zelevinsky della
Northeastern University di Boston (MA). Andrei Zelevinsky, noto esperto di teoria
delle rappresentazioni, geometria algebrica, combinatoria algebrica e poliedrale, ha
negli ultimi anni incentrato la sua attivita scientifica nello sviluppo della teoria delle
algebre cluster, allo scopo di fornire una struttura algebrica all’interno della quale
studiare i concetti di positivita totale e di base canonica in gruppi algebrici semisem-
plici. La teoria delle algebre cluster si e sviluppata negli ultimi sette anni in diversi
campi della matematica: teoria di Lie, rappresentazioni di quiver, Grassmanniane di
quiver, geometria di Poisson e spazi di Teichmueller, sistemi dinamici discreti, ge-
ometria tropicale e altri ancora. Malgrado questi interessanti sviluppi, ancora manca
nell’ambito della teoria una definizione generale del concetto di base canonica, una
appunto tra le principali motivazioni per l'introduzione delle algebre cluster. Un
primo passo in questo senso ¢ stato fatto in [27] nel caso di algebre cluster di rango
due. Il passo successivo € naturalmente lo studio delle algebre cluster di rango tre.
Se ne richiama brevemente la definizione. Sia P un gruppo abeliano motiplicativo
senza torsione ed F il campo QP(xy, xo, x3) delle funzioni razionali in tre variabili
sul campo QP delle frazioni dell’anello gruppale ZP. Diciamo cluster ogni base di
trascendenza di F su QP, e variabile cluster ogni elemento di un cluster. Una algebra
cluster di rango tre ¢ una ZP-sottoalgebra di F generata dalle variabili cluster ap-
partenenti ai cluster ottenuti a partire da un cluster iniziale C = (s1, s9, $3) tramite
trasformazioni birazionali, dette mutazioni, governate da una matrice 3 x 3 antisim-
metrizzabile Be e da una terna di coefficienti (p$, p$,pS) appartenenti al gruppo P,
associati al cluster iniziale C. La terna {C, Be, (p$, 15,5} ¢ detta seme dell’algebra
cluster.

Questa classe di algebre e piuttosto vasta; se ne distinguono essenzialmente tre
tipi: tipo finito, tipo affine e tipo indefinito. Le algebre cluster di tipo affine sono
associate alle matrici di Cartan generalizzate di tipo affine di dimensione tre. Tali
matrici sono classificate mediante i seguenti diagrammi di Dynkin:
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Ad ognuno dei sei diagrammi corrisponde una classe di algebre cluster parametrizzata
dalla scelta del gruppo dei coefficienti P.

Nell’ambito di questa tesi si affronta lo studio delle algebre cluster di tipo A(zl)7
C’él) e Ggl), ovvero algebre cluster di rango tre di tipo affine non intrecciato ("un-
twisted” ). Per ognuna delle algebre cluster di queste classi si sono ottenuti i seguenti

risultati (alcuni dei quali ancora solo congetturati per i casi C’él) e Ggl)):
e descrizione dell’algebra per generatori e relazioni;

e descrizione del grafo di scambio che ha come vertici i clusters e come lati le
loro mutazioni;

e studio dell’insieme degli elementi "positivi”;
e l'esistenza e l'esplicita costruzione di una base canonica;
e determinazione di tutte le possibili basi canoniche;

e parametrizzazione degli elementi di ogni base canonica mediante gli elementi
del reticolo delle radici corrispondente alla matrice di Cartan associata all’algebra;

e si e introdotta una nuova descrizione delle basi canoniche come insiemi di gen-
eratori omogenei dell’algebra.

L’ autore ha potuto sviluppare la sua ricerca nell’ambito di un’ intensa attivita sem-
inariale all’Universita di Padova. In questo ambito ¢ cresciuto il suo interesse per
gli aspetti della teoria delle algebre cluster connesse alle rappresentazioni dei quiv-
ers e alla teoria dei moduli Tilting. Si e cosi interessato agli sviluppi della teoria
delle cosiddette categorie cluster e delle algebre cluster tilted. L’influenza di queste
teorie sulla tesi e per lo piu circoscritta al caso Agl). Si noti, infatti, che questo caso
e I'unico in cui, nel diagramma di Dynkin associato, non compaiono lati multipli,
ovvero 'unico in cui la matrice di Cartan associata ¢ simmetrica. Un orientamento
del diagramma di Dynkin di tipo Agl) fornisce cosi un quiver (negli altri cinque casi
si ottiene un quiver valutato). Nel caso di algebre cluster associate a quivers (pi-
uttosto che a quiver valutati), P. Caldero e F.Chapoton in [7] (nel caso A,), poi
P.Caldero e B.Keller in [8] e [9] (nel caso di quivers senza cicli orientati) e infine
Y.Palu in [26] (per quivers con cicli orientati), hanno dimostrato I’esistenza di una
mappa tra le rappresentazioni indecomponibili senza auto-estensioni del quiver e le
variabili cluster che generano 'algebra, nel caso in cui il gruppo dei coefficienti sia
il gruppo banale P = {1}. Ad ogni rappresentazione del quiver la mappa associa
una funzione razionale, i cui coefficienti sono caratteristiche di Eulero—Poincare di
varieta proiettive chiamate Grassmanniane di quiver, che, nel caso delle rappresen-
tazioni indecomponibili senza auto-estensioni, fornisce ’espansione di Laurent delle
variabili cluster che generano l’algebra in funzione delle variabili appartenenti al
cluster iniziale.

L’autore ha considerato il quiver () senza cicli orientati associato al diagramma
di Dynkin di tipo A(zl) ed ha ottenuto i seguenti risultati:
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studio delle Grassmanniane di quiver associate alle rappresentazioni indecom-
ponibili senza auto-estensioni di ) e calcolo della loro caratteristica di Eulero-
Poincare;

studio delle rappresentazioni regolari di ) in termini della loro Grassmanni-
ana di quiver; in particolare classificazione di tali rappresentazioni a meno di
equivalenze destre cosi come introdotto in [13];

descrizione dell’immagine della mappa di Caldero—Chapoton—Keller: tale im-
magine ¢ unione non disgiunta di due basi dell’algebra cluster diverse dalla
base canonica. Una di queste basi risulta essere una naturale generalizzazione
della base semi-canonica costruita in [11] per un’algebra cluster di rango due;

generalizzazione dei precedenti risultati ad ogni scelta del gruppo dei coeffici-
enti.



Introduction

The study of cluster algebras started in [16], [17], [27] and it has, by now, reached
a remarkable stage of development in several directions. The main motivation for
introducing this theory was to define an algebraic framework for understanding to-
tal positivity and canonical bases in semisimple algebraic groups (see [28] for details).

Here we study rank three cluster algebras of untwisted affine type with a partic-
ular attention to their canonical basis. Let us briefly recall their definition. Let P
be a semifield, i.e. an abelian multiplicative group endowed with a binary opera-
tion of (auziliary) addition, denoted by @, which is commutative, associative and
a(b®c) = ab®ac for every a,b, ¢ € P. An important example of semifield is the trop-
ical semifield: let J be a finite set of indices, the tropical semifield Trop(u; : j € J)
is an abelian multiplicative group freely generated by the elements u; (j € J). The
addition @ in Trop(u; : j € J) is defined by

[Tuy o [Juy = ]ui™ . (0.0.1)
J J J

It can be shown that P is torsion—free so that its group ring ZP is a domain. We con-
sider the ambient field F = QP(x1, z2, x3) of rational functions in three commuting
variables over the field of fractions of ZP. We call P the coefficient group. A seed in F
(see Definition 1.1.2) is a triple ¥ = (B;x, y) where B is a 3 x 3 skew—symmetrizable
matrix, x = (x1, 29, x3) is a free generating system of F, i.e. F ~ QP(x); y is a
triple of elements of the coefficient group P. The set x is called the cluster of the
seed X while its elements are called the cluster variables of 3. The elements of y are
called the coefficients of the seed .

For every k = 1,2, 3 and every seed 3, there exists a seed ¥;, in F obtained from
¥ by a mutation in direction k (see Definition 1.1.4). Seed mutations are involutive
and hence define an equivalence relation on the set of seeds in F: two seeds are
equivalent if one is obtained from the other by a finite sequence of mutations. We
denote by O(X) the equivalence class of a seed ¥. The cluster algebra A(X) with
initial seed X is the ZP-subalgebra of F generated by all the cluster variables of the
seeds in O(2).

The Cartan counterpart of a skew—symmetrizable matrix B is a 3 X 3 generalized
Cartan matrix (Definition 1.2.1) C(B) = (¢;;) such that ¢;; = —|b;| if ¢ # j. If
C(B) is a generalized Cartan matrix of type Agl), C’él) or Ggl), then A(X) is called

a cluster algebra of type A(21), C’él) or Ggl) respectively. These Cartan matrices are

4



called 3 x 3 generalized Cartan matrices of untwisted affine type, so that we use the
same terminology for the corresponding cluster algebras; their Dynkin diagrams are
shown below:

AW 1/7\3; cV: 1=2<3 G: 1—2=3.

Every cluster x of A is a free generating system of F and hence every element
of A is a rational function in the elements of x. A famous result of S. Fomin and
A. Zelevinsky found in [16] asserts that every element of a cluster algebra A inside
F is actually a Laurent polynomial in every cluster of A rather than a rational func-
tion. This result is even known as the Laurent phenomenon.

We say that an element of A is positive if its Laurent expansion in every cluster of
A has coefficients in Z>P. The set of positive elements is closed under addition and
multiplications, and hence form a semiring. The initial problem of this thesis was
to describe the semiring of positive elements in cluster algebras of type Agl) without
coefficients, i.e. when P = {1}. This problem has been solved in cluster algebras of
rank 2 in [27] (for every choice of the coefficient group) and this thesis is the natural
generalization of that work. A canonical basis B of A is a ZP-basis of A such that
the semiring of positive elements consists precisely of ZxP-linear combinations of
elements of B. The problem of describing the semiring of positive elements is hence
translated into the problem of proving the existence of a canonical basis. This prob-
lem is still open in general but there are some expectations about that: for example
it is expected that “cluster monomials”, i.e. monomials in cluster variables belonging
to the same cluster, belong to the canonical basis, when such a basis exists. We now
present the main results of the thesis.

Chapter 1: Background. The first chapter of this thesis is devoted to give a
recollection of some known results.

Definition of cluster algebras. In Section 1.1 we recall the definition and some general
properties about cluster algebras (the main reference for this section is [18]).

Root systems. In Section 1.2 we briefly recall the structure of rank three root systems
of affine (untwisted) type, i.e. root systems associated with the Dynkin diagrams of

type Agl), 02(1) and G’gl) shown before.

Bipartite cluster algebras. In Section 1.3 we collect some properties of rank three
cluster algebras of bipartite type, i.e. in which there exists an exchange matrix B
such that b;; = b;; = 0 for some 7 # j; or equivalently in which the Dynkin diagram
of the corresponding Cartan counterpart of B is bipartite. In [18] bipartite cluster
algebras of every rank (not necessarily 3) are studied in details. Note that the case

Agl) is the only case of rank three cluster algebras of affine type that is not bipartite.

5



Quiver representations and the Caldero—Chapoton—Keller map. In Section 1.4 we
recall some well-known facts about quiver representations and we introduce the
Caldero—Chapoton—Keller map. We briefly recall its definition here. It does not
cost too much to put ourselves in the general situation, even if we will use this
map only in the rank three case. Let () be an acyclic quiver with n vertices. With
() it remains naturally associated a skew-symmetric matrix By = (b;;) such that
bj; = card{j — i € Q1} — card{i — j € @1} where @, is the set of arrows of Q.
In particular with () it remains associated a (coefficient—free) cluster algebra A(Q)
inside the field Q(z4, - - - , x,) with initial seed {Bg,{z1, -+ ,z,}}. A famous result
of F.Chapoton and P.Caldero (if @ is of type A), of P.Caldero and B.Keller (if @
is acyclic) (there is also a similar result for quivers with cycles due to Y.Palu) asso-
ciates with a Q-representation M of dimension vector d = (dy,- - ,d,), a Laurent
polynomial X, given by

XM(xla T ,ZL’n) = l‘l_dl . -fL’;d" ZXe(M) H(x?j’ejxji)[bijh

ihj

where [b;;]; = max(b;;,0) denotes the maximum between b;; and zero. We call
the map M +— X, the Caldero—Chapoton—Keller map. In this formula xe(M) de-
notes the Euler—Poincaré characteristic of the algebraic variety Gre(M) of the sub—
representations of M of dimension vector e = (e1, -+ ,€e,). Gre(M) is a projective
variety called quiver Grassmannian (see [10] for more details about this variety).
A representation M of () is called rigid if it does not have self-extensions, i.e.
Exzt!(M,M) = 0. The result due to P.Caldero and B.Keller in [9] says that the
map M — X, is a bijection between indecomposable rigid ()—representations and
cluster variables of A(Q).

Definition of canonical basis and its properties. Section 1.5 is an heuristic treat-
ment of the problem of finding a canonical basis, i.e. given a subset B of a cluster
algebra A we supply a list of techniques that one can use in order to show that B
has properties of a canonical basis. For a cluster algebra A of geometric type, i.e.
when P is a tropical semifield, we get an useful result in Theorem 1.5.7: it gives suf-
ficient condition in order to show that a subset B of A (candidate to be a canonical
basis) is a linearly independent set (over ZP). These hypothesis imply at once the
g-vector parametrization of the elements of B, an interesting parametrization of B
by elements of Z", where n is the cardinality of every cluster of A. This property
was proved in [18] for cluster monomials.

Chapter 2: Cluster algebras of type Agl). The second chapter contains the
main original part of this thesis. In this chapter we solve the problem of finding a

canonical basis in every cluster algebra of type Aél) of geometric type.

Principal Coefficients. We consider the cluster algebra A with principal coefficients
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Figure 1: The exchange graph of A

at the seed

Y ={B= < Soed ),x = {1, 20,23}, y = {y1, 92, y3} }- (0.0.2)
By definition this just means that A = A(X) is the cluster algebra with initial seed
Y. contained in the field F = QP(x1, x2, x3) where P = Trop(yi, y2, y3) is the tropical
semifield generated by the coefficients of the seed ¥. The Cartan counterpart of B
is a Cartan matrix of type Agl) and hence A(Y) is a cluster algebra of type Agl).
We prove (see Proposition 2.1.1) that A is the ZP-subalgebra of F generated by
infinitely many rational functions {z,,| m € Z} recursively generated by a relation
of the form:

o +
TmTm+3 = pmmerlmerQ + pm

where p~ € P, together with the two more rational functions, that we call w and z,
defined by

. Yo + 3 L Y1Ys T1T2 + Y1 + T2x3

- )

) 13

The elements {z,,}, w and z are all the cluster variables of A while the sets of the
form {x,, Tpmi1, Tmao}, {Tomi1, W, Tomas}t and {xopy,, 2, Tomaa} are the clusters of A.
Figure 1 shows the exchange graph of A: by definition it has clusters as vertices
and an edge between two clusters if they share exactly two cluster variables. In
this figure cluster variables are associated with regions: there are infinitely many
bounded regions labeled by the x,,’s, and there are two unbounded regions labeled
respectively by w and z. The cluster corresponding to a vertex common to three
regions has the labeling cluster variables of these regions as elements. We refer to
the exchange graph of A as the brick wall. Such a graph appeared in [16] as the

exchange graph of a coefficient—free cluster algebra of type Aél) (see Section 2.3.11).

Canonical basis. We define elements {u,|n > 0} of A by the initial conditions:
up =1, uy=zw—yiys —Ya, Uz = ui — 2y112Ys
together with the recurrence relation for n > 2

n
Un+1 = U1Uyp — (yly2y3) Up—1-



Recall that a cluster monomial is a monomial in cluster variables belonging to the
same cluster, i.e. in the algebra A cluster monomials are the monomials z%, 2% 25, .,
or 24, w4, or x5, 2Pz, for every non—negative integers a, b, ¢ and for every
m € Z. The main result of the chapter is the following Theorem whose proof takes
up the almost whole part of it.

Theorem 0.0.1. The set B = {cluster monomials} U {u,w*, u,2*| n > 1, k > 0} is
a canonical basis of A. It is unique up to rescaling by elements of P.

g-vector parametrization of B. We prove (see Section 2.3.1) that every element
b of B has the form:
b= Fy(11x™, yox?, ysx ) x® (0.0.3)

where Fy, € Zyi,ya,ys] is a primitive, i.e. not divisible by any y;, polynomial in
three variables, g, € Z? is an integer vector, b; is the i-th column vector of the
exchange matrix B and we use the notation x(919293)" = 391392295 F} is called the
F—polynomial of b, while gy, is called the g—vector of b. Following [18], we choose the

principal Z3—grading of A given by for i = 1,2,3
deg(z;) = e;, deg(y;) = —b; (0.0.4)

(e; is the i—th basis vector of Z3). It follows that the entries of F}, in (0.0.3) have
degree zero; in other words the elements of B are homogeneous with degree g, with
respect to the principal Z3-grading of A.

Denominator vectors and roots. By the Laurent phenomenon every element b of
A is a Laurent polynomial in {x1, 29, z3} of the form

b— Nb(ﬂﬁl, $2,I3)
o phpdegds
1 Lo T3
for some primitive polynomial N, € ZP[z, x9, 3], and some non—negative integers
dy,ds,ds. We consider the root lattice () of type Agl). We fix the basis of simple
roots of @, and we identify Z* with Q. The map b — d(b) = (dy,ds, ds3) is hence
a map between A and Q; it is called the denominator vector map (in the cluster

{1, 29, 23}).

Theorem 0.0.2. The denominator vector map b — d(b) is a bijection between B and

Q. Under this bijection positive real roots of the root system of type AS) correspond
to the set of cluster variables together with {u,w, u,z| n > 1}.

g-vectors and denominator vectors. In Proposition 2.3.7 we found an interesting
description of the g—vectors of the elements of B in terms of their denominator
vectors. This can be seen as a generalization of a similar result for bipartite cluster
algebras (Theorem 1.3.8): let Qp, be the acyclic quiver

o 2\ (0.0.5)
Q[n = 1=—3



whose underlying graph is the Dynkin diagram of type Agl) (i.e. Bg,, = B). We
associate with the quiver ) = @y, its Euler matrix Eg (recall that (Eg); = 1
if ¢ = j, —1 if there is an arrow from i to j and 0 otherwise). We consider the
piecewise-linear deformation &g of —Ey, given by

-1 0 0
go=(1r %) (0.06)

HENEIN

Eo acts on the root lattice QQ = Z* by the (piecewise-linear) action  defined by

SQ*<G;):(:a;+[a1]+ )
as —a3 + [a1 ]y +[a2]4

where [a]; = max(a,0).

Proposition 0.0.3. Given b € B, its g—vector g, and its denominator vector d(b)
are related by

g, = &g xd(b) (0.0.7)
Since the map &g is bijective we get the following corollary of this result:

Corollary 0.0.4. The map b — g, which associate to an element b of B its g—vector
gy, 15 a bijection between B and 73.

Explicit formulas We find the Laurent expansion of every element of B in every
cluster of A (Theorem 2.1.9).

F—polynomials and quiver Grassmannians. In Section 2.5 we give an interpreta-
tion of the F—polynomials of the elements of B in terms of quiver representations.
Let M be a @, representation, we define the polynomial Fy; € Z[yi, yo, y3] given by

Fyu= > xe(M)yfysys.

e=(e1,e2,€3)

The map F' has the following multiplicative property: Fyen = Far - Fy. If M is a
rigid indecomposable Q)-representation of dimension d, by the result due to Caldero
and Keller, there exists a unique cluster variable X,; with denominator vector d.
We get the following result.

Theorem 0.0.5. If M 1is a rigid indecomposable )1, —representation, Fyy is the F—
polynomial of the cluster variable Xyy.

In order to get the previous result we study the quiver Grassmannian Gre(M)
associated with every indecomposable rigid representation M and we compute its
Euler-Poincaré characteristic (Proposition 2.5.2). We note that, since of the muplti-
pliative property of the map F', the previous Theorem gives also the F—polynomial
of every cluster monomial of A.

Semicanonical basis and non-rigid Qr,-representations. Once we have given an



interpretation of cluster monomials in terms of quiver representations, we investi-
gate an analogous interpretation for the other elements {u,w", u,2*} of B. In order
to do that we need to study non-rigid ();,—representations. The indecomposable
non-rigid ();,-representations lie in infinitely many connected components of the
Auslander—Reiten quiver of )7, called tubes. There is one tube of rank two, i.e.
the Auslander—Reiten translation 7 has period two in this component, and infinitely
many tubes of rank one parameterized by k = C. The regular homogeneous repre-
sentations are the indecomposable ();,—representations given by, for every n > 1:

g no M

Regh™ = k"<=—=—k";  Reg®" = k'=—=—ik"

= I

-
PN

Reg{g 1}()\) k" W k™.

where J,(A) is the n-Jordan block of eigenvalue A € k. The arrows labeled by “ =
are the identity map. The regular non—-homogeneous representations are, for n > 0:

t k’l’b-‘rl kn t
Zh/ ®1 iy \~\%
RNy = jr<——=—"k"; RN;= jril<————pt
where @1, 02 1< up, - Uy >=< UL Vg >, P1(ur) = v and @a(ug) = Vg

One can see that for n = 0, RN}’ (resp. RN{) has dimension vector (0, 1,0) (resp.
(1,0,1)) that is the denominator vector of w (resp. z) and hence this representation
is rigid. We then concentrate on non-rigid regular representations, i.e. for n > 1.
In section 2.6 we compute Euler-Poincaré characteristic of quiver Grassmannians
associated with such @)j,—representations (Proposition 2.6.1), so that we have an
explicit description of the image of F'. In order to study the image of F' it is natural to
study the representations of @y, up to right—equivalence (see Section 2.5.3). We show
that Fp e = Fp e (mdeed Reg,(\) and Reg,(0) are right—equivalent),
FRegiLQ’l} = FReg;{lB’Z}’ FRN}L“ = FReg;[lg 1}(0)F and FRN; = FReg}{ls’l}(O)FZ'

The natural question at this point is to see if this image is a set of “F—polynomials”.
In other words we ask if given such a module M there exists an element of A whose
corresponding F—polynomial is Fj;. The answer to this question is affirmative and
it is given by the next theorem.

Theorem 0.0.6. For every n > 0, the elements s,, and r, defined by

S = U+ Y U2+ Y U gt = Z ¥ ok,
k>0
Tn = Sn+ Y25n—1,
have the form (0.0.3) and F,, = FReg{s,l}(O) and F, = FReg{s,z}. In particular the
set S = {cluster monomials} U {s,w", 8,28 : n > 1,k > 0} and the set R =
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Figure 2: The shape of the tubes of the quiver ()7, and the image by the Caldero-
Chapoton map.

{cluster monomials} U{r,w®, r,2*: n>1, k > 0} are ZP-bases of A (that are not
canonical basis).

Figure 2 shows the image by the map F' of the tubes. We call § a “semicanoni-
cal” basis of A in analogy with semicanonical basis found in [11] for a coefficient—{ree
cluster algebra of type Agl). In [11] the semicanonical basis was parameterized by
Chebychev’s polynomials of the second kind, while the canonical basis by Chebychev’s
polynomials of the first kind. The same is true in A as it is shown in Corollary 2.6.7.

General coefficients In Section 2.4 we extend Theorem 0.0.1 to every choice of the
coefficient tropical semifield. We consider a tropical semifield P, the field F =
QP(z1, x2, x3) and the cluster algebra Ap inside F with initial seed given by (0.0.2).
For every element b of B we define the element B in analogy with (0.0.3) by

B = Fy( 7 >y2x1,y3$1lv2)xgb (0.0.8)

Tol3 X3

If b is a cluster variable we call B a principal cluster variable and if b is a cluster
monomial we call B a principal cluster monomial. We have the following result that
is the main result of the Section.

Theorem 0.0.7. The set Bp = {principal cluster monomials} U{U,W* UnZ* n >
1, k > 0} is a canonical basis for Ap. This basis is unique up to rescaling by elements
of P.

Chapter 3: Cluster algebras of type C’él) and Ggl). The third chapter is
devoted to the study of cluster algebras of type Cél) and Ggl) of geometric type. We
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Figure 3: Exchange graph of a cluster algebra of type 02(1) with principal coefficients
at the labeled seed.

Figure 4: Exchange graph of a cluster algebra of type Ggl) with principal coefficients
at the labeled seed.

define such algebras by generators and relations. Figures 3 and 4 show their exchange
graphs. We conjecture the existence of a canonical basis in every such algebras by
exhibit explicit elements. In type C’él) this conjecture is motivated by Section 3.2
where we study the coefficient—free cluster algebra of type Cél): we find the canonical
basis of such algebra; we prove this basis is parameterized by the root lattice of type
C’él); finally we also get the explicit Laurent expansion of every element of such basis.
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Chapter 1

Background

1.1 Background on cluster algebras

In this section we recollect some results about cluster algebras that we will need in
the next chapters. We are not going to give a self-contained treatment of the subject
and we refer to [18] for all the details.

1.1.1 Definition of a cluster algebra

Definition 1.1.1 (semifields). A semifield (P, -, ®) is an abelian multiplicative group
endowed with a binary operation of (auziliary) addition @ which is commutative,
associative and a(b @ ¢) = ab @ ac for every a,b,c € P.

An important example of a semifield is the tropical semifield: let J be a finite set
of indices, the tropical semifield Trop(u; : j € J) is an abelian multiplicative group
freely generated by the elements u; (j € J). The addition @& in Trop(u; : j € J) is

defined by
HU?;‘ ® H uz;‘ - H u;mn(aj,bj)'
J J J
Another example of semifield is the universal semifield Qgs(uy,-- - ,u,) introduced in
[18, Definition 2.1]: by definition it is the set of all rational functions in ¢ independent
variables uq, - - - , uy which can be written as a subtraction—free rational expressions in
3

uy, - ,up. For example u? —u+1= % € Qsr(u). Qgf(ug, -+ ,uy) is a semifield
with respect to the usual operations of multiplication and addition. This example is
universal: any subtraction-free identity that holds in Qs (us, - - - ,ue) remains valid
for any elements wuq,--- ,u, in an arbitrary semifield.

In [18, Section 5] it is shown that every semifield P is torsion-free as a multiplica-
tive group , hence its group ring ZP is a domain.

As an ambient field for a cluster algebra A we consider the field F isomorphic to
the field of rational functions in n independent variables with coefficients in QIP, the
field of fractions of ZP.
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Definition 1.1.2 (seeds). A seed in F is a triple ¥ = (B, x,y) where:

e B = (b;) is an n X n integer matrix which is skew-symmetrizable, i.e. d;b;; =
—d;b;; for some positive integers dy,--- ,d,. B is called the ezchange matriz

of .

o x = {z1, -+ ,x,} is an n-tuple of elements of F forming a trascendence basis
of F, that is F is isomorphic to QP(zy,--- ,z,). x is called the cluster of 3
and z1,---x, are called the cluster variables of X.

e y={y1, - ,yn} is an n-tuple of elements of P. yi,-- -y, are called the coeffi-
cients of 3.

Sometimes it is useful to identify two seeds (B, x,y) and (B’,x',y’) if there exists
a permutation o of the index set I = {1,--- ,n} such that =} = x,4), ¥; = Yo@;) and
bi; = bo(i),o(j), for i,j € I. The class of identified seeds is called an unlabeled seed,
and its elements are called labeled seeds (see [18, Definition 2.3,)).

0 1 1
Example 1.1.3. The seed (< -0 1 > Az, xo, 3}, {y1,v2,y3}) and the seed

0 -1 -1 . .
(( rooo1 > Axs, x1, 22}, {ys, y1,y2}) can be identified by o = (132).

1 -1

Definition 1.1.4 (Seed mutations). Let (B,x,y) be a seed in F and let k € I =
{1,---,n}. The seed mutation py. in direction k transforms (B,x,y) into the seed
pue(B,x,y) = (B',x,y’") defined as follows:

e The entries of B’ = (b};) are given by

;) _bij lf’L:]{?OI']:kJ
bij = { bij + sg(bir)[bikbrj]+ otherwise (L1.1)

where [z] = max(z,0) and sg(z) is the sign function (we put sg(0) = 0).

e The coefficient tuple y' = (y1, - ,v.,) is given by

-1 o
/ Yk ifj ==k
Y= . by e 1.1.2
’ {yjy;[f’“ M@ 1) i) £ k (1.1.2)

e The cluster x' = {1, 2} is given by 2, = x; for j # k, whereas z), € F is
determined by the exchange relation

L kazxz[bZk]+ +Hix£—bik]+
’ (ye ® 1)z

(1.1.3)

(The fact that ug(X) is again a seed follows immediately from the definition.)

0 1

. 1
Example 1.1.5. By using example 1.1.3, ,u1(< -0 > Az, o, 23}, {yr, y2,ys})

-1
. o 1t 2 2 (2 — TaT3tyn
is the (unlabeled) seed (( oo > Aw2, 25,20}, {y1 Y2 ', ys }) where zy = S22
2 2 2
= yiye/(n @ 1), 18 = iy /(1 © 1) and ¥ = 1/y1.
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Definition 1.1.6 (cluster pattern). Let T, be the n—regular tree whose edges are
labeled by the numbers 1,--- ,n so that the n edges emanating from each vertex

receive different labels. We write tit’ to indicate that vertices t,t’ € T, are
joined by an edge labeled by k.

A cluster pattern is an assignement of a labeled seed ¥; to every vertex t € T,, such
that the two seeds ¥, and ¥, are obtained from each other by a seed mutation in

direction k whenever ¢—" t.

It is easy to see that uy is involutive and hence mutations define an equivalence
relation in the class of seeds of F: given two seeds 3 and ¥’ we say that ¥ ~ ¥/ if
there exists a sequence {fu,, fg,, - , fk, } Of mutations such that ¥ = py, - - - g, 2.
We indicate by O(X) the equivalence class of ¥ and with =(X) the set of cluster
variables in O(X), that is the set of cluster variables of every seed in O(X).

The cluster algebra A = A(Y) is the ZP-subalgebra of F generated by cluster vari-
ables in O(X): A(X) = ZP[E(X)].

A(Y) is called the cluster algebra associated with ¥ or with initial seed . By using
this second name (with initial seed ) one wants to highlights that he is mainly
considering the elements of A(X) as rational functions in the cluster variables of
the cluster of ¥, more than rational functions in every other cluster (indeed clusters
are free generating system for F). On the other hand one should not forget that
A(X) = A(YY) for every X' € O(X).

1.1.2 Cluster algebras of geometric type

Let ¥ = (B,x,y) be a seed in F = QP(x). A cluster algebra A(X) is called of
geometric type if P is a tropical semifield. In this case mutations are encoded into
rectangular matrices ([18, Definition 2.12]) in the following way: let P = Trop(x,4; :
j €{1,---,r}) be a tropical semifield with generators x, 1, - ,z,, for some integer
m > n. In this case every coefficient y. of every seed ¥’ ~ ¥ is a (Laurent) monomial

in the ,,4;’s of the form:
v
/ n+j,i
Y = | | Lt j
J

for some integers b,,4;;, j = 1,--- , 7. Then we can extend the n X n exchange matrix
B’ of ¥/ to a rectangular m x n matrix:

~ B/
B/
{ {b/'j} ]—_ = ‘
? i=n+1,-,m; j=1,-,n

We call the matrices B’ rectangular exchange matrices. The advantage of working
with rectangular exchange matrices is that mutations of coeflicients (1.1.2) translate

15



into matrix mutation (1.1.1) and the exchange relations take the simpler form

[bir]+ [=bik]+
[[z" +]11=

/ =1 i=1
= . 1.14

Therefore in a cluster algebra of geometric type every seed X takes the form {E X},
since both the coefficients and the exchange matrix of 3 are encoded into the rect-
angular matrix B. The identification between such seeds is then naturally extended
to rectangular exchange matrices by fixing the row indices : =n +1,--- ,m and by
permuting the others.

A particularly important class of cluster algebras of geometric type are the alge-
bras where the tropical semifield P is generated by the coefficient tuple of ¥, i.e.
P = Trop(yi, -+ ,yn). In this case A(X) is called a cluster algebra with principal
coefficients at the seed ¥ ([18, Definition 3.1]). In this case the rectangular exchange
matrix of ¥ is a 2n x n matrix of the form

7=

where Id,, is the n x n identity matrix. Moreover, in this case, suppose ¥/, 3" € O(%)
and g (X') = X", then the exchange relation (1.1.3) becomes

ﬁ y[b/n+i,k]+ H (b7, + + H b i kl+ H x{[—bik]+

" =1 i=1 i=1
= . 1.1.5

1.1.3 Laurent phenomenon

Theorem 1.1.7. [16, Theorem 3.1] The cluster algebra A associated with a seed
(B,x ={x1, - ,xn},y ={v1, - ,Yn}) is contained in the Laurent polynomial ring
ZPlxft, - xtl], d.e. every element of A is a Laurent polynomial over ZIP in the

cluster variables x1,--- , x,, for every choice of the semifield PP.

More explicitly, for every cluster C = {sq, - ,s,} of A, an element z of A has

the form
_ NC<817 T 78n)
3f1~

..ogd
S

where Ne(sq,-+ ,8,) € ZP[sy,- -, Sp) is a polynomial in n variables with coefficient
in ZP. The map z — d(z) = dc(2) = (di,- - ,dy) is called denominator vector of z
in the cluster C.

In view of [17, Proposition 11.2], for a cluster algebra with principal coefficients,
Theorem 1.1.7 can be sharpened as follows.
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Proposition 1.1.8. Let A.(X) be a cluster algebra with principal coefficients at the
seed Y = (B,x,y). Then Ay(X) C ZlaF,--- ,xthyy, - yn]. That is every element
of A is a Laurent polynomial in x4, - - - ,x, whose coefficients are integer polynomials
in Yy, ,Yn. Thus we can associate to every cluster variable x of Ae(X) both its
expression in the seed X:

xr = X(xl)"' y Ly Y1y 00 7yn) € Z[‘ri‘:17 axil;yla”' 7yn] (]-]-6>
and the polynomial:

Fz‘z(ylg 7yn) :X(l’ 717y1’... 7yn) (= Z[yl’ ’yn] (117)

called the F'-polynomial associated with x in the seed Y. We sometimes write Fj
instead F> when the seed is clear.

In view of the exchange relations the rational functions X in (1.1.6) and thus the
F-polynomials are subtraction-free rational expressions. Then we can consider the
evaluation of every F-polynomial in n elements of an arbitrary semifield P, and we
indicate it by F|p. To illustrate, let F'(u1,us) = u? — ujus +u3 and P = Trop(yy, y2).

3 3
Then Flp(y1,12) = Zigzi =1

1.1.4 g—vectors and formulas for cluster variables

In a cluster algebra of rank n with principal coefficients, there exists a Z"—grading
called principal Z"-grading that we are going to recall in this section.

Proposition 1.1.9. [18, Proposition 6.1] Let A = A4(X) be a cluster algebra with
principal coefficients at the seed ¥ = (B,x,y). FEvery cluster variable of A can be
expressed as a Laurent polynomial X as in (1.1.6). The Laurent polynomial X is
homogeneous with respect to the Z"-grading of Z[zEt, -+, x ™ yy, -, ya] given by

deg(z;) = e; deg(y;) = —b; (1.1.8)

where e; is the i-th standard basis (column) vector in Z", and b; = > b;je; is the
j-th column of the matriz B.

Definition 1.1.10. Let s be a cluster variable of 44(X). We define the g-vector
gs(s) of s in the seed X, as the multi-degree of s with respect to (1.1.8), i.e.

gs(s) = deg(s) € Z" (1.1.9)
When the seed is clear we just write g(s) and we call it the g—vector of s.

For j =1, --- ,n we define
g; =y Iz (1.1.10)

We will see some interesting properties of these elements in section 1.1.6. For now
we want just to point out that in view of Proposition 1.1.9, they have degree zero,

deg(g;) =0
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for every j = 1,--- ,n. In what follow we use the notation a = (ay,--- ,a,), s* =
sit -+ st The promised explicit formula for cluster variables in terms of the F-
polynomials and g-vectors is given by the following

Theorem 1.1.11. [18, Corollary 6.3] Let A(X) be an arbitrary cluster algebra with
coefficients in some semifield P. Let s be a cluster variable of A(X). By definition s
15 obtained from a cluster variable xy, of the cluster of ¥ by a sequence pi;, o -+ - oy,
of mutations (1.1.3): s = p;, 0+ -0, (zx). We consider the cluster variable S of the
cluster algebra A4(X) with principal coefficients at 3 given by the same sequence of
mutations: S = p;, o+ 0w, (z). To S are associated its F—polynomial Fs ( given
by (1.1.7)) and its g—vector gs (given by (1.1.4)) (in the seed X).

Then the Laurent expansion of s in the initial seed ¥ = (B, x,y) of A(X) is given by

_ Fs ’.7-— (@\17"' agn)xgs
Fs|p (Y1, ,Yn)

where we used the notation (1.1.10).

(1.1.11)

1.1.5 Computing F-polynomials and g-vectors

Let A = A,(X) be a cluster algebra with principal coefficients at some seed X. Given
an integer k € {1,---,n}, let ¥' = {B"= (b};), {2}, - ,7,,}} be a seed of A, and
S = () = {B", {«,- - ,2"}} be the mutation in direction k of the seed ¥/, We
have

e giveni € {1,--- ,n}, the F-polynomials F and F" associated respectively with
the cluster variable z/ and x} are related to each other by the relations
F'" = F] forl #k; (1.1.12)
FF = Lo TLES 4 T o [T F . (11.13)
i=1 i=1 i=1 i=1

Moreover the F-polynomial F; associated with the initial cluster variable x; of
¥ is 1. (This result is given in [18, Section 5]).

e Given i € {1,--- ,n}, the g-vectors g and g/ associated respectively with the
cluster variable z} and z} are related to each other by the relation
g/ = g forl #k; (1.1.14)
g, = —g.+ Z[bgk]-&-g; - Z[b;ﬂ-i,k]-l—b;' (1.1.15)
i=1 i=1

where bl is the i—th column of B’. Moreover the g-vector g; associated with
the initial cluster variable x; of ¥ is the i—th standard basis vector e; in Z".
(This result is given in [18, Section 6]).

The previous formulas give a receipt for computing F—polynomials and g—vectors
of every cluster variable of A recursively.
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1.1.6 g-vector parametrization

This section is quite useful in our treatment of canonical basis as it will be explained
in Section 1.5. We follow [18, Section 7]. .

Let A be a cluster algebra of geometric type associated with the seed {BY x},
(see (1.1.1)) and let {z,41, - ,xm} be the generators of the tropical semifield. We
assume throughout this subsection that

BO has full rank n. (1.1.16)

In [4] it was shown that the same is true for every other matrix obtained from B°
by sequence of mutations. Note that every cluster algebra with principal coefficients
satisfy (1.1.16). For a seed X; = {x, B'} of A, we define the elements gj.; as follows:

~ - bt
Ore = e | [ 22 H:cjt = (1.1.17)
j=1

where we use the short-hand notation X¢ = {Z14, -+ , Tnt, Tt1, -, T} (L€ Tpain =
Tn4i) and bl is the j-th column of B!. Condition (1.1.16) implies that the elements
Uk are algebraically independent over Z. Note that if A had principal coefficients
at the seed ¥, (1.1.17) specializes to (1.1.10).

The assignment ¢ — ({§1.4, -+, Jn:}, BY) is a Y-pattern, i.e. the following Lemma
holds:

Lemma 1.1.12. [18, Proposition 3.7] Whenever t -~ then

i it ifs = k; (1.1.18)
Yit = gltglizzzh(ykt_'_l) ki otherwise. o

The meaning of the preceding Lemma is that the elements {g.;} satisfy the same
mutation rule (1.1.2) satisfied by the coefficients of the seeds of a cluster algebra.

Definition 1.1.13. Let M be the set of all the elements z of A of the form:

m

= R, Gnst) H:c (1.1.19)
where R is a rational function in n variables with coefficients in @ and the exponents
are the entries of a vector a = (ay,- -+, a,,) € Z™ with integer coefficients.

The following Lemma says that if an element z € M has the form (1.1.19) in a
seed of A then it has the same form in every other seed of A.

Lemma 1.1.14. Suppose t ——¢ . If = has the form (1.1.19) for the seed Xy in t',
then it has the same form for the seed Y, in t.
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Proof. The proof follows by direct check, using Lemma 1.1.12. Indeed
z = R, Yn) ﬁ xf;/
=1
= Rl g G+ 07 Gl G G (G + 1) Hm
= R, Unut) f[ﬁ;’

m bz i
[ B+ +Hz T k]+ )ak

— Rl(]ﬁ;ta"'vynt Hx

itk Tt
) ) (ot + 1) Ty 2l
= R(Gi  Unat) szt ( : )
itk Tt
= R'(Jue o) (Gt + D)o [t

i#k
In the fourth equality we used formula (1.1.4) for the mutation of cluster variables
in the geometric type and the definition of ;. n

In view of Theorem 1.1.11 cluster variables are elements of M. Indeed the de-
nominator of the formula (1.1.11) applied to a cluster variable of A (which is of
geometric type), is a monomial in {z,41, -+ ,x,}. Moreover M is clearly closed
under multiplication, so every monomial in cluster variables lies in M.

Definition 1.1.15. A rational function R € Q(uy,--- ,u,) is primitive if it is a
quotient of two polynomials not divisible by any wu;, i.e. it has the form
F(uh"' ,U,n)
R U E 7UTL — “ - 7
(w1 )=4q Glu, )

where F,G € Z[uy, - ,uy,], u; 1 F,G for every i = 1,--- 'n and ¢ € Q.

Lemma 1.1.16. Under the hypothesis (1.1.16), every element of M has a unique
presentation of the form (1.1.19) where R is a primitive rational function.

Proof. Once z has the form (1.1.19), in view of (1.1.17), z can be written in the
required form, i.e. with R primitive. So it remains to prove that such a presentation
is unique. Suppose it is not. Then there exist Fy, Fy, G1, G € Z[uy, - -+ , u,] primitive
and q1, g2 € Q such that

Fltns. - 0 K e U LI
, 1(?{1,t, 7ynt Hx yl it ,?{ ,t) mf’t
FQ(yl;t; e 7ynt i=1 (yl N2 7y1’L;t> i=1
Then it follows immediately ¢ = ¢o, F» = G5 and
Fl(?gl;ta Tt 7?971;15) = Gl(gl;ta Tt 7?971;15) szcjta (112())
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where ¢; = b; — a;. We want toshow ¢y =--- =¢, =0 and so F; = (G;. Let us Write
explicit formulas for F; and (7 using multi-indices: F1 U1ty s Unt) = D g VI?JI

with Ty = (d; -4 € I) and Gy (G, - -+ 5 Gnt) = Doy 049757 with Ay = (e; : j € J). So
that ¢ AF’ = xZier P and ﬁf" = x2jes by, By (1.1.20) there exist multi-indices I

and J such that
AFI - yJ Hm
Zdibi _ C+Ze]

that implies x; = . Since x4, -+, Ty are algebraically independent,

it must be:
Z dzbZ =cC+ Z €jbj

It follows that c lies in the Z-span of the columns of B?, and then [ i, is a Laurent
monomial in the ¢;;. Since F and G are primitive, their ratio can be a Laurent
monomial only if they are equal to each other. O

We can now recall the definition of the g—vector parametrization (of M).

Definition 1.1.17. [18, Definition 7.9] For any z € M and any ¢ € T,,, the g-vector
of z with respect to t is the vector g;(z) € Z" defined as follows: if z is expressed

(uniquely) in the form (1.1.19) with R primitive, then we set g;(z) = [ : ]

an

The following property of M follows immediately by the definition

Lemma 1.1.18. The set of elements of M having the same g—vector is closed under
addition.

Note that the previous definition is consistent with definition 1.1.9. Defini-
tion 1.1.17 implies at once that the g-vector has the following multiplicative property:

gi(2122) = gi(21) + 8i(22).

1.1.7 Coefficient—specialization

Definition 1.1.19. [18, Definition 12.1] Let A and A be two cluster algebras of rank
n over the coefficient semifields P and P, respectively, with the respective families
of cluster variables {z;;} and {Zi}, i = 1, ,n and t € T,. We say that A is
obtained from A by a coefficient specialization if

1. A and A have the same matrices B, = B; at every vertex t € T,;

2. there is a homomorphism of multiplicative group ¢ : P — P that extends to a
unique ring homomorphism ¢ : A — A such that ¢(z;;) = 7;; for all ¢ and ¢.
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1.2 Background on root systems

1.2.1 Symmetrizable Cartan matrices, roots and Dynkin di-
agrams

An n x n matrix C' = (¢;;) is called a generalized Caratan matriz if it satisfies the
following properties:

1. ¢g=2foreveryi=1,--- n;
2. ¢;; are non positive integers for i # 7;
3. ¢;j = 0 implies ¢;; = 0.
We recall the classification theorem of generalized Cartan matrix due to Vinberg:

Theorem 1.2.1. [24, Theorem 4.3] Let C' be a n x n generalized Cartan matriz, real
and indecomposable. Then one and only one of the following three possibilities holds
for both C' and its transpose C*:

(Fin) det(C) # 0; there exists u > 0 such that Cu > 0; Cv > 0 implies v > 0 or
v=0;

(Aff) corank(C)=1; there exists u > 0 such that Cu = 0; Cv > 0 implies Cv = 0;
(Ind) there exists u > 0 such that Cu < 0; Cv >0, v > 0 implies v = 0.

Cartan matrices satisfying (Fin) (resp. (Aff), (Ind)) are called of finite type
(resp. affine and indefinite type). We have the following Corollary

Corollary 1.2.2. Let C' be a generalized Cartan matriz, real and indecomposable.
Then C'is of finite type (resp. affine or indefinite) if and only if there exists a vector
u > 0 such that Au >0 (resp. =0 or <0).

Let C' = {c;;}7j=1 be a generalized Cartan matrix. Following [24] we associate
with C' a graph called the Dynkin diagram of C. If ¢;jc;; < 4 and |c;| > |cji|, the
vertices i and j are joined by |c¢;;| edges and these lines are equipped with an arrow
pointing toward i if |c;;| > 1. If ¢;5¢j; > 4, the vertices ¢ and j are joined by a
bold-faced line equipped with an ordered pair of integers (|c;;|, |cji)-

Figure 1.1 shows the Dynkin diagrams of the 3 x 3 Cartan matrices of affine
type. The coordinates of the integer vector § on the right of each such diagram
are coefficients of a linear dependence between the columns of the corresponding
generalized Cartan matrix.
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2
N
1—3

=111 AP 1+<=2<=3 [6=(2,21)];
V. 1=2<3 [0=(1,21)]; DY.1<=2=3 [0=(,11)]

GV:. 1—2=3 [(=(1,23)]; DP.1—2<=3 [0=(121)]

Figure 1.1: Affine Dynkin diagrams of rank three

1.2.2 Root system of type Agl)

We briefly recall the structure of a root system of type Agl) (see [24, Chapter 6]): let

2 -1 -1

C = ( ERE ) (1.2.1)

be the Generalized Cartan matrix of type A;l) (its Dynkin diagram is shown in
figure 1.1). C is a symmetric matrix of rank 2. The Kernel of C is generated by the
element § = (1,1,1). Let (h,II,I1V) be a realization of C i.e. b is a four dimensional
complex vector space, I = {ay,a9,a3} (resp. IIY = {a),ay,ay}) is a linearly
independent set in h* (resp. bh), aj(e)) = —1if ¢ # j and a;(y) = 2. The set
A= {1, *as, £(a; + a3)} is then a root system of type A, in h* (it is shown in
figure 1.2). Let @ = Zay + Zas + Zas be the root lattice and § = oy + s + ag € Q.
a3

A

—Q a1+ Qs

—(a1 + ag) Qg

4

Figure 1.2: Root system of type As.

The root system A of type Aél) is the subset of () given by the disjoint union
A = Af™m U AT where

A" = {+nd|n > 1} = {(n,n,n)|n € Z\ {0}},
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a3 oy + O3 20&1 + ag

—Q] = > (]

Y

—(201 +a3) —(n +a3)  —as

Figure 1.3: Root system of type Cj.

A" = {a+n5|o¢€&, neZ}={n+l,nn),(n,nntl),(ntl,nntl)|neclZ}

The elements of A™ are the imaginary roots of A while A™ are the real roots of
A. The positive roots are the roots with non-negative coordinates in the basis II.
Explicitly they are given by A, = Al™ U A”¢ where

A ={né|n > 1} = {(n,n,n)|n > 1},

A = {(n+1n,n),(n,nn+1),(n+1nn+1)|n>0}U
{(n,n+1,n+1),(n+1,n+1,n),(n,n+1,n)|n > 0}.

1.2.3 Root system of type C’él)

We briefly recall the structure of a root system of type C’él) (see [24, Chapter 6]): let
C = ( 702 2 ;2 ) (1.2.2)

be the Generalized Cartan matrix of type C’él) (its Dynkin diagram is shown in
figure 1.1). C'is a symmetrizable matrix of rank 2 (i.e. DC' is symmetric for some
diagonal matrix with positive entries, e.g. D = diag(2,1,2)). The Kernel of C is
generated by the element § = (1,2,1). Let (h,II,I1V) be a realization of C, i.e. bhis a
four dimensional complex vector space, IT = {ay, ag, a3} (resp. IIY = {ay, a3, oy })
is a linearly independent set in h* (resp. h), a;(e)) = ¢;; if @ # j and (o)) = 2.
The set A= {xa1, tas, £(a1 + a3), £(2a1 + a3)} is then a root system of type Csy
in h* (it is shown in figure 1.3). Let Q = Zay + Zag + Zas be the root lattice and
0 = ay + 20 + a3 € Q. The root system A of type 02(1) is the subset of () given by
the disjoint union A = A’™ U A" where

AI™ = {4ns|n > 1} = {(n,2n,n)|n € Z\ {0}},

A”e:{a—l—mﬂae&, n € 7Z}.
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30./1 + 20[3
as o1 + o3 20&1 + o3 3@1 + as

—Q a1

—(3061 + 063) —Q3
—(20&1 + 063) —(Oél + 043)

—(3041 + 2a3)

Figure 1.4: Root system of type Gs.

The elements of A™ are the imaginary roots of A while A™ are the real roots of
A. The positive roots are the roots with non-negative coordinates in the basis II.
Explicitly they are given by A, = AL™ U A" where

A" ={né|n > 1} = {(n,2n,n)|n > 1},
A = {(n+1,2n,n),(n+2,2n,n+1),(n+1,2n,n+1),(n,2n,n+1)|n >0} U
{(n—1,2n,n),(n—1,2n,n—1),(n,2n,n —1)|n > 1} U
{(n—2,2n,n—1)|n > 2}

1.2.4 Root system of type Gél)

We briefly recall the structure of a root system of type Ggl) (see [24, Chapter 6]): let
2 -1 0
C= ( R ) (1.2.3)

be the Generalized Cartan matrix of type Gél) (its Dynkin diagram is shown in
figure 1.1). C is a symmetrizable matrix of rank 2 (i.e. DC' is symmetric for some
diagonal matrix with positive integer entries, e.g. D = diag(3,3,1)). The Kernel of C
is generated by the element § = (1,2, 3). Let (h, I, IT1V) be a realization of C, i.e. h is
a four dimensional complex vector space, IT = {aq, g, ag} (resp. 11V = {a, o, oy })
is a linearly independent set in h* (resp. b), a;(ey’) = ¢;; if @ # j and (o)) = 2.
The set 2: {£aq, tasz, £(3a1 + a3), £(20q + a3), £(3a1 + 2a3), (v + a3) } is then
a root system of type Go in h* (it is shown in figure 1.4). Let Q = Zoy + Zas + Zas
be the root lattice and § = a3 4+ 25 + 3a3 € Q. The root system A of type Gél) is
the subset of Q given by the disjoint union A = A’™ U A" where

A™ = {+nd|n > 1} = {(n,2n,3n)|n € Z\ {0}},
A" = {a+nd|a E&, n € Z}.
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The elements of A’™ are the imaginary roots of A while A™ are the real roots of
A. The positive roots are the roots with non-negative coordinates in the basis II.
Explicitly they are given by A, = Al™ U A" where

A" = {né|n > 1} = {(n, 2n,3n)|n > 1},

A = {(n+1,2n,3n),(n+3,2n,3n+1),(n +2,2n,3n+ 1), (n + 3,2n,3n + 2),
(n+1,2n,3n+1),(n,2n,3n+1)|n >0} U
{(n—1,2n,3n),(n—1,2n,3n — 1)|n > 1} U
{(n—2,2n,3n—1)|n > 2}

U{(n —3,2n,3n — 1), (n — 3,2n,3n — 2)| n > 3}.

1.3 Rank three bipartite cluster algebras

In figure 1.1 are listed all the Dynkin diagram of 3 x 3 generalized Cartan matrices of
affine type. To every of them is associated a class of cluster algebras parameterized
by the choice of the coefficient group P. Since all of them are bipartite except one we
want to recall the definition and the main properties of the cluster algebras associated
with bipartite initial matrices discovered in [18, Sections 8,9,10]. We start with a
general definition.

1.3.1 Definition

Definition 1.3.1. [18, Definition 8.1] A n x n skew-symmetrizable matrix B = {b;; }
is bipartite if there exists a function ¢ : {1,--- ,n} — {1, —1} such that

by >0 = { eli) =1, | (1.3.1)

A seed (B,x,y) in F = QP(z4,--- ,x,) is bipartite if B is bipartite.

In the rest of the section we restrict ourselves in rank three case: we consider a
cluster algebra A = A(xq,yo, B?) associated with the bipartite seed:

Yo = {x0 = {10, 20, 30}, Yo = {¥1:0, Y20, Y30}, B = (bij)ij=1,23}- (1.3.2)

Without lost of generality we choose the function ¢ in definition 1.3.1 as

0 — 0
B'=| + 0 + (1.3.3)
0 0



Recall that with every symmetrizable Cartan matrix C' = (¢;j)i j=1,.. » 1S uniquely
associated a valued graph (its Dynkin diagram) (I',d) whose vertices are numbered
by 1,--- ,n, and two vertices i and j are joined by the valued edge (|c;;,|cj:|). Then
the choice of € correspond to the choice of the orientation of the graph associated
with the Cartan counterpart C(B°) = 2 -1d3 + {—|b;;|} = {cij} of B given by

(1.3.4)

(lerzls]e21l) (leasl,les2])

1.3.2 Bipartite belt

Let py be the seed mutation in direction k € {1,2,3}. Since by3 = b3; = 0 it follows
from Definition 1.1.4 that pu; and p3 commute. Then the following operators are

well-defined:
Ky = M2, H— = H1 O H3.
It follows that py(B) = —B. We have a bipartite belt consisting of the seeds

Y. ={x,y,(—1)"B} (reZ)

where x, = {x1., T, T3, } 18 the cluster, y, = {y1., Y2, Y3+ } are the coefficients of
Y., and Y, is defined by setting, for each r > 0:

Vo= g po i (Xo), (1.3.5)
—_——
r factors

Yoy o= pg e papopg (Bo). (1.3.6)
—_——

r factors

The diagram of mutations has the following shape:

H3

(1.3.7)
Here boxes highlight the seeds of the bipartite belt, while the seed 3%, is the mutation
in direction ¢ of the seed Y,,,, for i = 1,3. We drew an arrow labeled by pu; from a
seed X to a seed ¥’ whenever the mutation of ¥ in direction k is >'.

1.3.3 Exchange relations in the bipartite belt

We want to recall some properties of the seeds in the bipartite belt: it is evident
from the diagram that Xs,,_1 shares with X, the cluster variables x;.9,, and xs.0.,.
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Similarly the seed Xg,,1; shares with ¥y, the cluster variable x4.9,,,. The coefficients
mutations (1.1.2) take the form

Y12mY12m+1 = 1 (138)
Y2:2m+1 = y2;2m(y1;2m ¥ 1)_b12 (yg;zm D 1)_b32 (139)
Ys.omlYsom+1 = 1 (1310)
ba1

y1;2my2~2m
om—1 = T 1.3.11
Y1,2m—1 (Yozm @ 1)b1 ( )
Y2om—1Y22m = 1 (1.3.12)

bas

Y3;:2mYoiom
2 et 1.3.13
Y3;2 1 (yg;zm S 1)b23 ( )

The exchange relations are
ba;

YiomTorom + 1

Li;2mLi;2m+2 Yisam o1 ( )
for i = 1,3, and
—b12 —bs2
T19m42T3.2m42 T Y2;2m41

9mToromts = — i 1.3.15
2,2mL2;2m+2 Voo @ 1 ( )

We did not describe all the possible cluster variables and exchange relations of A.

1.3.4 Denominator vectors and roots

Let @ be the root lattice associated with the Cartan counterpart C'= C(B) = {¢;; }
of B. Let ay, as and as be the simple roots of ). We identify @) with Z3 and the
simple roots with the standard basis of Z3. Let W C GL(Q) be the corresponding
Weyl group; it is generated by the simple reflections s;, sy and s3 which act on the
simple roots by
Si(Odj) = Oéj — CijOéi.
It follows that s;(c;) = —a; and s? = 1. We define the elements ¢ € W by setting
ty =8y 1_ = 85183 = $351

Since ¢13 = ¢31 = 0, s; and s3 commute. In particular, t2 = 1. The action of t_ on
the simple roots is given by

t(a) = { - ifj=1,3

Qg —C1201 —C320¢3 lfj =2

Let (131;‘11 be the union of the set of real positive roots of () and the set of negative
simple roots. We recall the involutive permutations 7, and 7_ of <I>§e_1 are defined
by

7_(a) =

{a if o = —apy (1.3.16)

t_(«) otherwise
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e if o = —ajora=—as
mi(a) = { ti(a) = so(a) otherwise (1.3.17)

We can extend 74 to @) by:

3

T_(Z aiozi) = (—a1—012[a2]+)061 + (1510 %) + (—CL3—632 [CLQ]+)O[3 (1318)
i=1
3
7'+(Z a;oy) = a1aq + (—as—cor[ar]4 —coslas)y)ag + asas
=1

Definition 1.3.2. [18, Definition 10.2] We define the vectors d(i;m) € @, for i =
1,2,3 and all m > 0 by setting:

d(i;2m) = (7-7)" (—); (1.3.19)
d(i; —2m) = (14o7-)"(— ). (1.3.20)

Theorem 1.3.3. [18, Theorem 10.3] The denominator vector of a cluster variable
Tiom With respect to the initial cluster xq is equal to d(i;2m), for any i =1,2,3 and
m € Z.

Corollary 1.3.4. [18, Corollary 10.6] Each cluster variable x;m, can be written as

T o Pi;Zm(xl;(]? x2;07 x30)
§2m = d(i;2m)
X

where Pjop, 15 a polynomial with non-zero constant term.

Proposition 1.3.5. [18, Proposition 10.7] For all m € Z and j € {1,2,3} the
elements y;.om evaluated in the tropical semifield P = Trop(y1,0, Y20, Y3.0) are given

by

_ —d(j;2m) .
yj§2m‘TYOP(y1;07y2;0,y3;0) = Yo if j=1,3,

_ d(2;2m)
y2;2m|Tr0p(y1;o,y2;o7y3;o) - 0

In the cluster algebra A,(xq,yo, B) with principal coefficients at ¥, Proposi-
tion 1.3.5 allow us to write the exchange relations between cluster variables in the
bipartite belt in an easier way as shown by the following result.

Corollary 1.3.6. In A.(xg,y0, B) the exchange relations (1.3.14) take the form

y([)—d(j;Qm)]+ [d(5;2m)]+

_ —ca;
ZTjomTjomi2 = Toom TY

[d(2:2m)]+  —c12,.—c32 —d(2;2m
L2;:2mT22m+2 = Yo T1omT32m + y[ F2mls

Corollary 1.3.7. For every cluster variable x;2,, belonging to the bipartite belt, the
F-polynomial F?, = with respect to the seed Y-

;2m

e has constant term 1,

e has a a unique monomial, namely yl9@2™+ with coefficient 1 and divisible by
all of the other occurring monomials.
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1.3.5 g—vectors

The next and last recall from [18] is about the g—vectors of the cluster variables
belonging to the bipartite belt.

Let E be the linear automorphism of the root lattice @) given by F(aja; + asas +
azg) = a1 — Ay + azas.

Theorem 1.3.8. [18, Theorem 10.12] For every m € Z, the g—vector g;.om and the
denominator vector d(i;2m) of the cluster variable x;.9, with respect to the initial
seed Y are related by:

Siom = E71_(d(i;2m)).

Remark 1.3.9. For future purposes we want to give another interpretation of the
piecewise linear operator £'7_. We choose the orientation 1.3.4 of the valued quiver
Qp associated with the Cartan counterpart of B°. We associate to Qp the matrix
Ep defined by

1 if i = j,
(Ep)ij = § bi; if there exists an arrow from ¢ to j,
0 otherwise.

Note that since of (1.3.3) if there exists an arrow from ¢ to j, then b;; is non-positive.
We are interested in the opposite of Ep that in the basis of simple roots is given by
-1 —bia 0
“Ep=(y 555

We consider the piecewise-linear modification £ of —FEp given by

-1 —b1a[? 0
gB:<o 12_[1” O).

0 —bz2[?7]y -1

Ep acts on Q = Z3 by * in the following way:

Ep * (a1a1+a2a2—|—a3a3) =Ep * < o > = ( 7:1 }b?lzz[azh )
as —b32(a2|4+ — a3z
= (—al—blg[ag]+)a1— a2a2—|—(—b32[ag]+—a3)a3 (1321)
Finally we get
Er_ =E&g. (1.3.22)
This follows immediately from (1.3.18).

Corollary 1.3.10. For every cluster monomial of the form s{*s3s3®, its g—vector g

and its denominator vector d with respect to the initial seed Xy are related by:

g=FE7_(d).

g1

Proposition 1.3.11. For any m € Z let gjom = (.‘Zi > and g, = (2 )
be respectively the g-vectors of the cluster variable Tjom, 1 Yop—1 and in Yo, =
p2(Xam_1). Then they are related by the formula:

g = 9 + [=bio] 195 — big[—g3]+ 1fi=1,3
' — 0 otherwise
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1.4 Background on quiver representations

After the article [5] the interplay between cluster algebras and quiver representations
has been the subject of many other papers, e.g. [7], [8], [9] and [11]. Here we recall
one of the results on it. In order to fix notations we first recall some well-known
facts about quiver representations. For a detailed introduction see e.g [14], [3] or
[1]. A quiver @ is an ordered pair {Qo, @1} where Q) is the set of vertices and Q1
is the set of arrows, i.e. ordered pairs {i,j} of vertices. For an arrow a = {i,j}
we usually write a : i — j. i = s(a) is the starting point of o and j = t(«) is the
ending point or target of a. A path in () is either a concatenation «,, - - - a; of arrows
such that t(a;) = s(a;41) or the symbol e; for every i € @y called trivial path. Let k
be an algebraically closed field of characteristic zero. The k-vector space with basis
the paths of @) is called the path algebra kQ of Q). It is well-known that k(@ is a
k-algebra (see e.g. [2, III.1]). A representation V of a given quiver Q = {Qo, @1}
over a field & is a collection {{V; }icoys { faacq, } of finite dimensional k-vector spaces
Vi’s together with linear maps f, : Vi — V; whenever a : i — j. A morphism of
two representations of Q, V' = {{Vi},{fa}} and W = {{W;},{ga}}, is a collection
of linear maps {h; : V; — W, }icq, such that the diagram

fo
-—

V; Vi
hi | Lh
W, 9o W;

commutes, i.e. h; o fo, = go © h;, for every arrow o : ¢ — j. A morphism h =
{h;} is called a monomorphism (resp. epimorphism, isomorphism) if every h; is
injective (resp. surjective, bijective). A sub-representation W of a Q-representation
V is a Q-representation endowed of a monomorphism (inclusion) into V. We write
W <V to indicate that W is a sub-representation of V. The direct sum of two Q-
representations V' and W is the representation VW = {{V.eW,;}icoes { fa®gat} A
representation is called decomposable if it is sum of two sub-representations of itself.
Otherwise it is called indecomposable. The dimension vector of a (Q-representation
V = {Vi}ieq, is the ordered collection d = dim(V') = {d;} of the positive numbers
d; = dimg(V;). Tt is well-known that the category of @Q-representations and the
category of k@Q-modules of finite k-dimension are equivalent. A -representation V'
of dimension d is called rigid if a generic representation of dimension d is isomorphic
to V, or equivalently if it has no nontrivial self-extensions.

For a @-representation V' of dimension d and a dimension vector e € ZZ%, we
define the quiver-Grassmannian -

Gre(V) = {W < V|dim(W) = e}. (1.4.1)

Quiver Grassmannians appears in many papers (see e.g. [7], [8] or [10]). By the
definition, Gre(V') is a closed subvariety of the product of Grassmannians IT;Gr., (V).
We indicate by xe(V) the Euler-Poincaré characteristic of Gre(V) (see e.g. [22,
Section 4.5]). We associate to any representation M of dimension vector d the
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Laurent polynomial X/ (21, -+ ,x,) in n variables {zq,--- ,x,} given by
Xur(zy, -y a0) = 3;1—d1 .. .x;dn Z Yo M) H(a:?j_ejxji)[b”}*
e %,]
We call the map M +— X, the Caldero-Chapoton map. 1t has the following property:
Xugn = XuXy

We associate to a quiver () without loops, without oriented 2—cycles and with n
vertices, a skew-symmetric matrix By = {b;;} given by

b;j = card{a € Q1|s(a) = j,t(a) =i} — card{a € Q1|s(a) = j,t(a) =1}. (1.4.2)

Note that the matrix By defined here is the transpose of the matrix Bg defined in
[11]. Viceversa to every integer skew-symmetric n X n matrix B we associate a quiver
()p having n vertices and b;; arrows from j to ¢ whenever b;; > 0. We then associate
to @ a skew—symmetric cluster algebra without coefficients A(Q) with initial seed

{BQ7 {xh T 7$n}}'

Theorem 1.4.1. /9, Theorem 4] Let QQ be an acyclic quiver with n vertices and let
A(Q) be the coefficient—free cluster algebra with initial seed { Bg,{x1, - ,x,}}. The

correspondence M +— Xy(xy1,-+- ,x,) is a bijection between the set of isomorphism
classes of indecomposable rigid representations of the quiver ), and the set of all
cluster variables in A(Q) not belonging to the initial cluster {x1,--- ,z,}.

1.5 General techniques in finding canonical basis
of a cluster algebra

This section is an heuristic treatment of the problem of finding a basis of a cluster
algebra somehow related to the canonical basis of semisimple algebraic group ( see
[28] for more details). A general definition of such a basis does not exist. Here we
give a definition (Definition 1.5.1), that works for the class of cluster algebras treated
in this thesis together with the rank two cluster algebras of finite and affine type as
shown in [27]. We collect the techniques that one can use for finding such a basis.

In the whole section A will be a cluster algebra in the field F of rational functions
in n independent variables with coefficients in some semifield P. When necessary we
will restrict ourselves in a less generality. Recall that A is the ZP-subalgebra of F
generated by recursively defined rational functions called cluster variables. Usually
the set of cluster variables is denoted by Z, so that we can write A = ZP[=]. Cluster
variables are collected into clusters, that are maximal set of algebraically independent
cluster variables. Moreover every cluster C of A generates the whole field F, in other
words C has cardinality n. The Laurent phenomenon asserts that every element of
A is a Laurent polynomial with coefficients in ZP in every cluster of A.

Let’s start introducing the notion of positivity in A.
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1.5.1 Positivity and definition of canonical basis

An element z of A is called positive if the Laurent expansion of z in every cluster
of A has coeflicients in Z>oP. In other words z is positive if for every cluster C =
{z1,--- ,2,} of A, it has the form

_ Ne(wy, - @)
xfl co g

where Ng is a primitive, i.e. not divisible by any x;, polynomial with coefficients in
ZZO]P)‘

For the connection of cluster algebras with the problem of finding a Total positive
basis for the coordinate ring of algebraic groups (a good introduction about this
connection is given in [15]), it seems very interesting describe the set, actually the
semiring, of positive elements. A semiring is a subset of a ring closed under addition
and multiplication. We say that a positive element is positive indecomposable if it
cannot be written as a sum of two non-zero positive elements.

Definition 1.5.1. If the set of positive indecomposable elements form a ZP-basis,
then we call it a canonical basis of A. In other words a set B of elements of A is a
canonical basis of A if it satisfies the following properties:

CB1 B is a ZP-basis of A, i.e.

CBla B is a linearly independent set over ZIP;
CB1b B spans A over ZP.

CB2 B coincides with the set of positive indecomposable elements, in particular
they are positive.

Provided that CB1 holds, property CB2 is equivalent to the following
CB2’ The semiring of positive elements coincides with the Z>(P-span of B.

Provided that both CB1 and CB2 hold then clearly its Zx(P-linear combinations
are positive elements and viceversa every positive elements is a Z>oP-linear combi-
nation of positive indecomposable elements. Viceversa if both CB1 and CB2’ hold,
if p is a positive indecomposable element then it must lie in B and every element of
B is positive indecomposable.

We remark here that the fact that the set of positive indecomposable elements is
linearly independent is not expected for every cluster algebra.

The canonical basis, when exists, is uniquely determined up to rescaling by elements
of P: given a subset B of A satisfying properties CB1 and CB2, every set B’ whose
elements are scalar multiples of the elements of B clearly satisfies the same proper-
ties.
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Viceversa if two sets B and B’ satisfy the previous properties, then every element
of B’ is a combination b’ = Y p;b; of elements of B with coefficients in p; € ZP; since
b' is positive, p; € Z>(P; since b’ is positive indecomposable every p; = 0 except one
po, i.e. b = poby. Then the elements of B’ are scalar multiples of the elements of B.

There are some special cases in which the canonical basis is unique. For exam-
ple when P = {1}, i.e. in the so called coefficient-free case, if the canonical basis
exists it is unique.

There exists a natural coefficient specialization between a canonical basis of A
and the canonical basis of the corresponding coefficient-free cluster algebra, sending
P onto {1}. In some cases, somewhat surprisingly, the viceversa also holds: there
exists a map between a coefficient-free cluster algebra and a generic cluster algebra of
the same type mapping the canonical basis of the former into a particular canonical
basis of the latter one, that determines all the others. This is the case, for example, of
the rank two cluster algebras of finite and affine type, as it is shown in [27, Section 6].

In the next subsections we are going to collect the main techniques that one can
use to prove that a given subset B of A, candidate to be a canonical basis, satisfies
properties CB1 and CB2 (or CB2’).

1.5.2 Straightening relations

Let B be a subset of A candidate to be a canonical basis. We want to illustrate
how one can prove that B spans A over ZP and that its elements are positive. We
assume that B has the following property

Monomials in the elements of B span .4 (1.5.1)

Indeed it is expected that B contains all the cluster monomials, that are monomials
in cluster variables belonging to the same cluster. Let 9 = {M = b]*--- bl |b; €
B, a; € Z>¢} be the set of monomials in the elements of B. We assume the following
condition

M is a well-ordered set. (1.5.2)

The positivity will be given by induction on the order (1.5.2).

Once we have property (1.5.1), in order to prove the span property of B it is
sufficient to show that the generic monomial M € 91 is a linear combination of
elements of B over ZP. Let Bgy be the set of all the elements of B that are not
divisible by elements of B. We consider all the minimal forbidden monomial:

MF ={m ="0by---b,|b; € Boy, m/b; € B, i=1,--- ,n, m ¢ B}. (1.5.3)

The expansions of the elements of 9MF in B are called straightening relations. Then it
suffices to show that every monomial M € 91 which has at least one of the forbidden
monomial as a factor, can be written as a linear combination of monomials of smaller
degree. We will show that this can be done by replacing some forbidden factor of M
with its expression given by the appropriate straightening relation.
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1.5.3 Newton polytopes

The Laurent phenomenon asserts that every element of A is a Laurent polynomial

in every cluster of A. It means that for every cluster C = {xy,--- ,x,} of A, every
element z is a ZP-linear combination of Laurent monomials in {xy,- -, z,}:
z= Z Ao X" Ao € ZP, x = (z1,-++ ,Zp) (1.5.4)
aEZ™

the a,’s not all non-zero. The Newton polytope of z in the cluster C, denoted by
Newtc(z), is the convex hull in Z" of all the « in (1.5.4) such that a, is non-zero.
We say that a vertex v of Newtc(z) is monic if the corresponding Laurent monomial
appears in (1.5.4) with coefficient in P (instead of ZP). We also say that z is monic
in C if all the vertices of Newtc(z) are monic.

Newton polytopes are a powerful tool in the study of canonical basis. We remark
that the power of this tool offsets its intrinsic combinatorial nature that makes them
hard to control. On the other hand having a good control of them, can make the
life simpler: for example in the case of a cluster algebra of type Aél) (Chapter 2), we
recognize this algebra to be graded after we noticed that all the Newton polytopes
of the cluster variables were actually polygons (see Remark2.3.35).

The following is a Lemma that one can try to prove in order to have Theorem 1.5.3
below.

Lemma 1.5.2 (Key Lemma). For every element b of B there exists a cluster C = C
and a monic vertex 7y, of Newte(b) such that v, doesn’t lie in Newte(0') if b # b is
another element of B.

An immediate consequence of Lemma 1.5.2 is the following result.

Theorem 1.5.3. If a subset B of A satisfies Lemma 1.5.2, then B is a ZP-linearly
independent set. Moreover if also B spans A over ZIP and its elements are positive,
then they are positive indecomposable.

Proof. We want to prove that if B satisfies the Key Lemma then it is a linearly
independent set over ZP, i.e. it has property CBla of Definition 1.5.1. Consider an
expression 7 of zero as a ZP-linear combination of elements of B. Suppose that an
element b of B appears with coefficient a;, € ZP in m. We can expand 7 in the cluster
Co = {51, "+ ,sn} of Lemma 1.5.2 so that m becomes a sum of Laurent monomials
in {sy,---,s,}. Since of the Key Lemma, the Laurent monomial s appears with
coefficient apy,, where y, is the coefficient of 87 in the expansion of b in the cluster C,.
Then we have ay, = 0. Since 7, is monic, y, € P and we get a;, = 0. By repeating
this argument for all the elements of B in w, we get that all the coefficients must be
zero. Since 7 is an arbitrary expression, B is a linearly independent set over ZP.
Now suppose that B is a ZP-basis of A, its elements are positive and that B
satisfies the Key Lemma. We want to prove that every positive element p of A is
a ZsoP-linear combination of elements of B, i.e. property CB2’ of Definition 1.5.1.
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Since B spans A over ZP, we express p as a ZP-linear combination m of elements of
B with coefficients in ZP. Suppose that b € B appears in m with non—zero coefficient
a,. We expand p in the cluster C, = {s1, -+ ,s,} of the Key Lemma. Then the
Laurent monomial s” appears with coefficient a,y;,, where v, is the coefficient of s
in the expansion of b in the cluster C,. Since p is positive, apyy € Z>oPP; since 7 is
monic, y, € P; then a, € Z>¢P. By repeating the argument for all the elements of B
appearing in m we get that all the coefficients of 7 lie in Z>(P. m

Remark 1.5.4. We want to remark here that if an element p of A is positive, its
Newton polytope Newtc(p) in every cluster C of A, is invariant under coefficient
specializations (see Definition 1.1.19). In particular, one can study Newtc(p) in
the coefficient—free cluster algebra obtained from A by the coefficient specialization
P — {1} sending every element of the coefficient semifield P onto {1}.

1.5.4 g-vector parametrization of the canonical basis

Let us restrict ourselves to the hypothesis of section 1.1.6, i.e. let A = A(X°) be a
cluster algebra of geometric type of rank n associated with the seed

30 = {xo, B°}

with coefficients in the semifield P = Trop(2, 41, ,#m). Recall that B® = {b;} is
a m X n matrix, whose principal part BY = {b;;}; j=1... » is skew-symmetrizable (see
section 1.1.1) and x¢g = {%1,0, -+ , Tpno}. We assume that

B has full rank n. (1.5.5)

This condition is satisfied in a cluster algebra with principal coefficients. Let B be
a subset of A (candidate to be a canonical basis) having the following distinguished
properties:

[hom| Every element b € B has the form
b= Fy(J1:0," ", Unyo) H$ = Fy(f1,0, *+ » Y0 X5" (1.5.6)
i=1

where Fy, is a primitive polynomial (see definition 1.1.15) in n variables, Xy =
(II;O oy Tp0y Tntls 7Im) and

yko—kakao —ngo =

for k = 1,--- ,n (defined in (1.1.17)) and y, = [], a:n’f:z'“ The elements of
B are hence elements of the set M defined in section 1.1.6. We denote the
g-vector of b by g = (ay,--- ,a,)" in the seed X°. (By Lemma 1.1.14, every

element of B has the same expression (1.5.6) in every seed of A).
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[g] The map b — g? between B and @ = Z" which associates with an element b
of B its g—vector g in ¥ is injective.

[F] For every b € B, F}, has constant term 1.

[B°] The Zsq-span of the columns b?, --- b of the matrix B° does not contain
lines. In other words every expression of zero as a positive linear combination
of them has zero coefficients:

alb?+---+anb2:0, al,---,an6Z20:>a1:---:an20

The previous properties imply that an element b of B has the form

= X+ 3 ae x(EBTE P (1.5.7)

C:(Cl,"' ,C-,L)EZ’IZLO\{O}

where bY, - - b are the columns of B and the sum is over non-negative and non—
zero integer vectors ¢ = (c1,- -+ ,¢,) € Z%, \ {0}.

We introduce on Z™ the following binary relation:

n
a§30b<:>30é1,"' , Oy GZZOZa:b—FZO@b?
i=1
Since of property [B°], <po is a partial order in Z™. Tt induces a partial order on
the monomials X® in &1, , Ty, Tpy1, " , Ty given by

X <xXP <= a<pb. (1.5.8)
Moreover, since of (1.5.7), it induces a partial order on B given by:
b < b = gb <pgo gb’ (159)

In particular every finite subset of B has a minimal element. The following Lemma
is a refinement of the Key Lemma 1.5.2:

Lemma 1.5.5 (Key Lemma2). Suppose that a subset B of A satisfy properties
[hom], [g], [F] and [B°]. Then in every finite subset B' of B there ewists an element
b € B’ such that the Laurent monomial X§* is a summand of the Laurent expansion

of b/ € B’ in the cluster xq if and only if b/ =b.

Proof. We pick a minimal element b of B’ with respect to (1.5.9). Now if the Laurent
monomial X5 is a summand of the Laurent expansion of an element b’ of B’ in the
cluster xg, then gy < g,. For the minimality of b it must be gy = g;; then in
particular g, = gp. For the property [g] we get &' = b. O

Remark 1.5.6. The fact that 78 is not a summan of the Laurent expansion of
every other element of B’ doesn’t imply that pxz® for some p € P satisfies the same

property.
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Clearly if the Key lemma 1.5.5 holds, then also Key Lemma 1.5.2 holds. Key
Lemma2 is a refinement of Key Lemma 1.5.2 since here the cluster is fixed. The
following Theorem is the analogous of Theorem 1.5.3.

Theorem 1.5.7. Provided that the elements of a subset B of A satisfy properties
[hom], [g], [F] and [B°], then B is a ZP-linearly independent set. Moreover if B

spans A over ZP, its elements are positive, and the following condition holds:

[Ind ]| For every b € B, the (Laurent) monomial X§ in variables xy,--- ,x, is not a
summand of the Larent expansion of every other element b’ € B, b’ # b,

then they are positive indecomposable.

Proof. Let m = Y, ., ayb be a finite ZP-linear combination of elements of B. With-
out lost of generality we assume that a, € P for every b € B’. Suppose that = = 0.
We expand 7 in the cluster xo. We consider the set L = {a;Xo%} of leading terms of
7. We note that if two elements a,Xo% and abx})gé of this set are equal, then g, = g;
since of property [g], b = b and hence g, = g and finally a, = ay.

Since L is finite there exists a minimal element abo)iog”o (note that by is not nec-
essarily minimal in B’). In particular this element does not appear in the Laurent
expansion of every other element of B. We conclude a;, = 0. We now consider the
set B'\ {bp} and proceed by induction on its cardinality in order to get a, = 0 for
every b € B'.

Condition [Ind] is much stronger than the fact that X% is not a summand of every
other element of B (see Example). Now suppose that B spans A over ZP, its ele-
ments are positive and that B satisfies property [Ind]. We want to prove that every
positive element p of A is a Z>oP-linear combination of elements of B, i.e. property
CB2’ of Definition 1.5.1 holds. We consider the expansion 7 =}, _p, ab = p of p in
B, where B’ is the finite subset of B of the elements b such that a;, # 0. We expand
p in the cluster xy3. We pick a minimal element b of B’. Then the Laurent monomial
igb corresponding to this minimal element b, appears in 7 with coefficient a;. Since
p is positive, a, € Z>oP. We now consider the element 7’ = 7 — apb. Note that at
this point it is not clear that 7’ is positive. We pick a minimal element " of the new
set B” = B’ \ {b}. Then the Laurent monomial x5* corresponding to this minimal
element V', is not a summand of every other element of B”, hence, in particular, it
appears in 7' with coefficient ay. If ay is in Z>oP we continue with 7”7 = 7" — V', so
we can assume without lost of generality that a; is not in Z>P. Since 7 is positive,
the coefficient of the Laurent monomial X5 must be in Z>P and hence a,X5” must
be a summand of b. But this means that the Laurent monomial x§, is a summand
of b, against the hypothesis [ind]. Then ay € Z>(P. O
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Chapter 2

Cluster algebras of type Aél)

This chapter is devoted to the study of cluster algebras of type Aél). A coefficient-free
cluster algebra of this type first appeared in [16, Example 7.8]. It is the only class of
rank three cluster algebras of affine type that are not bipartite. In particular we do
not have the results of section 1.3 at our disposal but we still find similar statements,
e.g. we find an interesting connection (Proposition 2.3.7) between denominator vec-
tors and g—vectors that can be viewed as a generalization of Theorem 1.3.8. On the
other hand we are able to produce explicit Laurent expansions in all the clusters of
all the elements of the canonical basis using quiver representations (Section 2.5).

We will mainly concentrate ourselves in the principal coefficients setting. We find
canonical basis, its parametrization in term of the root lattice and explicit formulas
for its elements in this setting. In section 2.4 we then generalize all these results to
any tropical semi—field.

2.1 Algebraic structure of a cluster algebra of type
AgD with principal coefficients

Let P = Trop(y1, y2,y3) be the tropical semi-field (see section 1.1.1) with generators
{v1,y2,y3}. Let F = QP(x1,x2,x3) be the field of rational functions in 3 commuting
variables over QP, the field of fractions of ZP. We consider inside P the sequence
{y1.m : m € Z} defined by the initial data y1.1 = y1, y1,; = y;rlg for i =0,—1,—2 and
Y1.—3 = Y3, together with the recurrence relations

Yiom = Y2 Y1;sg(m)(im—1)  if m < —4,2 <m, meven (2.1.1)
" Y1Y3 Y1; sg(m)(jm|—1) 1L m < —=5,3 <m, modd e

Here sg(m) is the sign of m. The explicit solution of this recursion will be given in
(2.1.23).
Recursively define elements x,, € F, m € Z by

Lm41Tm4-2 + Yi:m _ Y3:m+1Tm4+1Tm+4-2 + 1 (2 1 2)
Y1:m D1 Y3;me1 D 1 o

xmxm+3 =
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T_4 T_9 Zo T Ty Tg xTs

z

Figure 2.1: The exchange graph of A

where yz.,11 = Y., (this choice makes the second equality obvious). In partic-
ular y31 = ys3 which explains the terminology. Note that, in view of (2.1.1), the
denominators in the middle term of (2.1.2) are all 1 except when m =0, —1, —2.

We also define

. +
w = 2T (2.1.3)
o)
o Y1Ys T1X2 + 41 + $21’3‘ (2.1.4)
13

Let A be the ZP-subalgebra of F generated by the elements {z,,, w,z : m € Z}. In
Proposition 2.1.1 below we will show that A is a cluster algebra of type Agl) with

principal coefficients at the initial seed

Ym={B= ( 5 _él i >7{$1,$2,$3}»{yhy2ay3}}~ (2.1.5)

—1

The generators of A are its cluster variables, while the clusters of A are the sets
{Tm, Tmi1, Tmaa}y {Tam—1, W, Tomy1} and {xom,_o, 2, Toy } for every m € Z. The
exchange graph of A is shown in figure 2.1: it has clusters as vertices and an edge
between two clusters C and C’ whenever |[CNC’| = 2. In this figure cluster variables are
associated with regions. The generic cluster {si, so, 53} corresponds to the (unique)
vertex common to the three regions labeled by sy, s and s;.

Using (2.1.1) and (2.1.2) we obtain more relations between cluster variables: for
every m € Z

(w)
Y2:2m—1T2m—1 + Tomt1  T2m—1 T Y2.2m—1T2m+1
WLy = = (2.1.6)

y2;2m71 s> 1 yéz,é)m—l &P 1

where
Yo it m>1,

Y2;2m—1 = 1/93 ifm= 07 (217)
s ifm < -1,

w)

and y£;2m—1 = yg;%m_l. Indeed for m = 1 (2.1.6) is nothing but the definition of w;
for m > 1 (resp. m < 1) one can proceed by induction on m expanding the element
WTomTomta (T€SP. WTomTam—2). Similarly: for every m € Z we have

(2)
YoomToam + Tomi2  Tam t Yo 2mTamt2

y2;2m @ 1 B yé,lZ)m @ ]_

2Tomi1 = (2.1.8)
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where
Yiys  itm>1,
Y22m = v itm=0, (2.1.9)
1)y, if m < —1.
and yézgm = Ypom- Moreover from (2.1.2), using (2.1.6) and (2.1.8), we obtain for

every m € Z:

Lom—2Lom+2 = P = > (2110)
yE;Q)m—Q D 1 yi(’);Q)m D 1
and
2 (w) (w) 2
. . Ty T Yiom W Y3omi 1Ty T W (2.1.11)
2m—142m+43 — w - w A
y£;2?m—1 ®1 yé;Q)m—&-l &1
where
Yo = Yim (Y2 D 1), (2.1.12)
yéf,)nﬁ = <y§03n>—1 and ¢ = w if m is odd and ¢ = z if m is even. Indeed one

can expand o, 2%om 1o (T€SP. Tom_1T2ma3) in the cluster {za,, 1, Tom, Tama1} (resp.
{Zom, Tam+1, Tams2}) using (2.1.2). Then using (2.1.1) and (2.1.8) (resp. (2.1.6)) one
get the result.

We refer to the relations (2.1.2), (2.1.6), (2.1.8), (2.1.10) and (2.1.11) as exzchange
relations of A.

Proposition 2.1.1. A is a cluster algebra of type AS) with principal coefficients at
the initial seed X1, defined in (2.1.5). The exchange graph of A is given by Figure 2.1.

Proof. The proof is based on the following Lemma:

Lemma 2.1.2. The (unlabeled) seeds of a cluster algebra of type Ag) with principal
coefficients at the initial seed ¥y, are

S = B ATm, Tms1, T2}, (2.1.13)
Yomo1 = {ngﬁia {@om—1, W, Tomy1}}, (2.1.14)
ng—l = {ngrflw7 {mea Z, x2m+2}} (2115)

for every m € Z. For every m, they are mutually related by the following diagram of
mutations:

212Um—1 = Zg)m—&—l
! !
Some1 = Yom = Somi1 = Domis (2.1.16)
) !
ng = ZjngrQ

where the right (resp. left) arrows — (resp. <) stand for mutations in direction 1
(resp. 3) and vertical arrows for mutations in direction 2. 3., is not equivalent to
Yo if m # n, in particular the exchange graph of A is given by figure 2.1.
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B,, and Bﬁ}jdic are 6 x 3 rectangular matrices of the form

B d B Dcyclic chclic

where Bevetic = ( y ?1) " ) The square matrices at the bottom are given by: for
everyn > 1

( n 1 —n
n 0 —-n+1 m:2n
n—1 1 —n+1
n 0 —n+1
n—1 1 —-n+1 m=2n —1
n—1 0 —_n 4+ 2
B, =
n—2 0 —n +1
n—1 -1 -—-n+1 m = —2n
n—1 0 —n
n 1 —1 —n +1
n—1 0 -n m:—2n—1
\ n -1 -n
B 0 1 0 B 0 0 1
= 0 0 1 = —1 0 0
0 10 o )21 0 -1 0
( n —1 —n+1
n 0 —n+1 m:2n

n 0 —n+1
n—1 -1 —-n+42 m=2n—1
n—1 0 —n + 2
cyclic __
B =
n—2 0 —n 4+ 1
n—2 1 -—n+1 m = —2n
n—1 0 —-n
n 2 1 —n +1
n—1 0 -n m:—2n—1
n—1 1 —n

; 0o -1 1 ; 0
chclzc _ 0 0 1 chclzc _ o
0 -1 0o o )7 -1 -1

=X
cor
N—

Proof of Lemma 2.1.2. We need to prove the diagram (2.1.16) for every m € Z. For
m = 1 ¥ is the initial seed ¥. For m > 1 (resp. m < 1) a direct check shows that
B (resp. By 1) is obtained from B,, by a matrix mutation in direction 1 (resp.
3) and by reordering the index set with the permutation (132) (resp. (123)). Then
it follows B, = ig(Bpm1) for m > 1 (vesp. Bpmi1 = p1(Bm) for m < 1). We define
Tmas (resp. x,,) to be the cluster variable obtained by the mutation of the cluster
variable x,, (resp. x,2) in the (unlabeled) seed ¥,,,. The central line of the diagram
is proved.

We define w (resp. z) to be the cluster variable obtained by mutation of the
cluster variable xy (resp. x3) in the (unlabeled) seed 3; (resp. X). Explicitly w
(resp. z) is defined by (2.1.3) (resp. (2.1.4)). Let {y1.m,Y2.m,Ys.m} the triple of
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coefficients of the seed X,,. Since A has principal coefficients, in particular it is of
geometric type, then, by definition,

7

5 b
_ %347
yi;m - | | yj

j=1

where B,,, = {07 }. Note that {y1,,} (resp. {yo.m}) satisfies the recurrence relation
(2.1.1) (resp. (2.1.7)-(2.1.9)). Moreover given ¢ = (1, 1,1), for every n > 1 we have

1

Dy e =y

Yion = Y™Us 5 Yron = Y™U3 Uz s Yo =Y
By induction on m one can prove the equality

_ Y2.:mIm + Lm+2
(Y2im © 1)y

(2.1.17)

where ¢ = w if m is odd and ¢ = z if m is even. By (2.1.17) we conclude that
w (resp. z) is the cluster variable obtained by the mutation of the cluster variable
Tom (resp. Tom,y1) in the seed o, 1 (resp. Xo,,) for every m € Z. Moreover it is
straightforward to check that the matrix B,ﬁ?{dic is obtained from B,, by a matrix
mutation in direction 2. Then the diagram (2.1.16) is proved. The fact that the
diagram is not finite, follows observing that the first column of B,, has at least one
positive coordinate while the third one at least one negative coordinate. Hence if
Y, 1s equivalent to X, then either yi.,, = Y1, OF Y14 = Yo2.n. Since of the previous
formulas this is the case only if m = n. This finishes the proof of Lemma 2.1.2 [

It remains to prove relations (2.1.2), (2.1.6), (2.1.8), (2.1.10) and (2.1.11) are
the exchange relations of a cluster algebra of type Agl). Let {Y1.m, Y2:m» Ys:m } (reESD.

{yﬁ)n, yéf,)n, yéczn}) the triple of coefficients of the seed ¥, (resp. ¢, for ¢ = w or 2).
Then using Lemma 2.1.2 and the definition 1.1.3 of exchange relations we get the
desired result. Moreover we also get formulas (2.1.1), (2.1.7), (2.1.12). O

2.1.1 Canonical basis

We construct the canonical basis of A.

Definition 2.1.3. Let us define
U= zZW — Y1Ys — Yo (2.1.18)

In view of (2.1.2) P is contained in A and then u € A. Let uy, usg, ... be the sequence
of polynomials defined by the initial condition

Ug = 1,
U = u,
Uy = u? — 2119213 (2.1.19)



together with the recurrence relation for n > 2
Upi1 = Uity — Y° Up_1. (2.1.20)
where § = (1,1, 1)".

By definition w,, is a polynomial in u and since u lies in A, u,, € A for n > 1. The
definition of the w,’s is a generalization of analogous definition in rank two cluster
algebras of affine type given in [27]. In loc.cit. the group of coefficients was just {1}
and the definition was given in terms of Chebychev’s polynomials of the first kind.
Here if P was {1}, i.e. A was a coefficient—free cluster algebra, then u, would be the
n—th Chebychev’s polynomials of the first kind 7, evaluated in wu.

Recall that a monomial in cluster variables belonging to the same cluster is called
a cluster monomial.

Theorem 2.1.4. The set B of cluster monomials and of the elements {u,w", u,z" :
n > 1,k >0} is a canonical basis of A (see definition 1.5.1).

The proof of the Theorem will be given in section 2.3. We point out here that,
as mentioned in the first chapter, all the canonical basis of A can be obtained from
B by scalar multiplication.

2.1.2 Parametrization of the canonical basis

Our next result provides a parametrization of B. Let ) = Z? be a lattice of rank 3
with a fixed basis {a, g, as}. We sometimes identify o = ajaq + asas + azas € Q
with its coordinate vector (aq, as, az) with respect to the chosen basis {aq, ag, as}.

Theorem 2.1.5. For every o = (ay,as,a3) € Q, there is a unique basis element
X[a] € B of the form

Na(SUh T2, 373)

Xa] = (2.1.21)

ai ,..a2 _.a3 ?
Ty Ty X3

where N, is a polynomial with coefficients in ZIP not divisible by any x;. The corre-

spondence o — X|a] is a bijection between QQ and B. In particular the denominator
vector map x — d(z) in the cluster {x1,x9, 23}, restricts to a bijection between B

and Q).

Following [16], we identify ¢ with the root lattice of the affine root system of
type Agl) (see section 1.2.2) so that aj, ay and ag become simple roots. In section

1.2.2 we recall the structure of a root system of type Agl). For the initial cluster
variables x1, xo and w3, the correspondence (2.1.21) takes the form

1 1
Ilzj:X[—OqL I‘QZTl:X[—OéQ], $3:—:X[—a3].
Ty Ly L3
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Figure 2.2: Denominator vectors and real roots in type Agl)

Proposition 2.1.6. The cluster variables x,, different from 1, ro and x3, and the
elements u,, have the form

.T_(Qn_H) = X[—OC1+(7I + 1)5], ZEQ(n+2)+1 = X[—Oé3+(n+1>5]
T_gy = X|ag+nd], Tom+2) = X [a1+nd]
w = X[—(aq + az)+4], u, = X[nd|, z= X[og+as]

(2.1.22)

forn > 0. In particular u,w = X|[—(ay+a3)+(n+1)0] and u,z = X|[(ag +asz)+nd].
The correspondence o — X [a] is hence a bijection between the positive real roots and
{Tm :m € Z\{1,2,3}} U {upz,upw : n > 0}. Moreover cluster variables are in
bijection with the set of positive real Schur roots. Figure 2.2 describes the situation.

Using Proposition 2.1.6 one can recognize that the element y4(®m+3) satisfies
(2.1.1) for every m € Z (here we use the standard notation s(1:92:3) = s{15525%3). In
particular we get

Yi;m = yd(zm+3) (2.1.23)

We conclude this section by pointing out an important property of denominator
vectors.

Definition 2.1.7. [18, Definition 6.12] A collection of vectors in Z" (or in R") are
sign—coherent (to each other) if, for any i € {1,--- ,n}, the ith coordinates of all of
these vectors are either all non—negative or all non—positive.

Corollary 2.1.8. Denominator vectors of cluster variables belonging to the same
cluster are sign—coherent.

Proof. 1t follows after a glance at figure 2.2 or figure 2.4. ]
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2.1.3 Explicit formulas for the elements of the canonical ba-
sis

Our next result provides explicit formulas for the elements of B in every cluster of
A. In view of the exchange relations, it is sufficient to consider only two clusters,
namely {z1, o, 23} and {z1, w, x3} and only cluster variables x,,, with m > 1. Indeed
the expansion of a cluster variable z,, 1, (resp. Zomy,) in the cluster {x,,, ¢, Tmi2},
where ¢ = w or ¢ = Xy,41, (resp. {Tom, 2, Tams2}) is obtained by the expansion of
T14n (T€SP. Tomyi14n) in the cluster {xy, ¢, x3} (resp. {Tami1, W, Tami3}) by replacing
ry with z,,, ¢ with zo when ¢ # w, x3 with z,,42 and y; with y;., (resp. Zomi1
With Za,, w With 2, Topis With Zomys and yien, with yio), i = 1,2,3, n,m € Z.
Moreover the expansion of x_,, is obtained from the expansion of x,, .o by replacing
r1 with x3, 3 with 1 and y; with y3', 3o with y, ' and y3 with y; '

Theorem 2.1.9. For every m > 1 the following formulas hold. In the cluster
{fﬂl, L2, 333}

Ze X2m+1(e)yex(62+€3,m71761+€3,2m7€276172) + l,gn—ll,gm—Q

Tl = 2.1.24
2m+1 lﬂlnflxgnflxgnfg ( )

where Xama(en, 2 e5) = (270) (171720 ().

ey (eat+ez,m—1—e1+e3,2m—3—e;—ea m—1_2m—3
Yo Xam(e)y°x! )+ 2y 'z}

v 2.1.25
2m .277171_151751_233?_2 ( )
“’he;“e x}jm<?, €2, e{s> = (ez;;) () o)+ (LD o).
n the cluster {xi,w, s
261783 (2:1:2) (elegl)yfl (y2y3)e3 x%33w€1*€3x§m—281—2 + x%m—2
Yami1 = o (2.1.26)
Ty T3

Yo Xam(@)ut (Y ys) Py T T P s TR 4 (o g )a3" O

Lom = m—1 m—2 (2127)
" wry

where X3, (e1, e2,e3) = (1) (0 77072) (4,)-

The Laurent expansion of u,, n > 1, in the cluster {1, xq,x3} is given by

no .21 .1 n ,.2n e (e2t+esz,n—eij+e3,2n—e;—e
_ yMay"ay + ahg + 3 Xu (€1, €2, €3)yex(catean—ertes 1-€2)

Un Lo (2.1.28)
i
where Y, (€1, €2, €3) = (2:22) [(2:2) (616;1)—1-(”;2:1) (2:})] In the cluster {x1,w, x3}
nd x2n+x2n + w e ,6 el es x263wel—e3x2n—2€1
0, = y I 3 Zel,eg Xun( 1 nsl?h (y2y3)® 21 3 (2.1.29)
T1T3

where XY (e1,e3) = (Z:Z?) (egl) + ("T_:“e:l) (z;j) In the cluster {x1,w,z3} the ex-
pansion of z is given by

L Y1 Y2 ys LT + Y1 Y3 21 T3 + Y1 W+ Yo T123 + 13 (2.1.30)

T1WI3
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2.2 F—polynomials and quiver Grassmannians

The main result of this section is a description of the F'—polynomial associated with
every element of the canonical basis B of A in terms of quiver—-Grassmannians defined
n (1.4.1). We associate with the initial exchange matrix B of the seed Xy, given in
(2.1.5), the quiver @y, having b;; arrows from j to ¢ if b;; > 0:

o 2 . (2.2.1)
Qm= 1=——3
In view of Theorem 1.4.1 the denominator vector of a cluster variable s is the di-
mension vector of a (unique) rigid indecomposable module M.

Theorem 2.2.1. The F-polynomial Fy associated with a cluster variable s in the
seed Yy, 1S given by

F, = Z Xe(M)ysy52ys® (2:2.2)

The proof of Theorem 2.2.1 will be given in section 2.5.

Once we have given a representation theoretic interpretation of cluster variables and
hence of cluster monomials, we investigate an analogous interpretation for the other
elements {u,w", u,2*} of B. In order to do that we need to study non-rigid Q,—
representations. The indecomposable non-rigid ();,—representations form infinitely
many connected components of the Auslander—Reiten quiver of @, called tubes.
There is one tube of rank two, i.e. the Auslander—Reiten translation 7 has period
two in this component, and infinitely many tubes of rank one parameterized by the
choice of elements of A € C = k. We define the regular homogeneous representations
to be

kn
X J"/ \

Reg{3 2F - | R P— L Reg{2 Ay - prtl <—— k7

= I

. ' / \
Regi™(N) = k"= k"
where J,,(\) is the n-Jordan block of eigenvalue A € k. The arrows labeled by = are
the identity map. We also define the regular non—-homogeneous to be

krt Jn (0) k"
/ NG N

RN;L” = ne — km ; RN; = pntl <———— pntl

Figure 2.3 shows the shape of such components.
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Figure 2.3: The shape of the tubes of the quiver ()7, and the image by the Caldero-
Chapoton map.

2.3 Proofs

We are going to show that the elements of B satisfy all the hypothesis of Theo-
rem 1.5.7. In this process we will need Theorem 2.1.5. Even if its proof is completely
independent, for the convenience of the reader and for a higher rigorousness we
include it in this section. Explicit formulas will yield positivity and straightening
relations the span property.

2.3.1 Homogeneity of the elements of B

Proposition 2.3.1. The elements of B belong to the set M defined in Section 1.1.6.
In other words the Laurent expansion of every element b of B in the initial seed (2.1.5)
has the form

b= Fy(y1, Y2, y3) x5 (2.3.1)

where Fy is a primitive polynomial in three variables, g, = (g1, 92, 93)" is an integer

vector and

V1= i 2= Uz = Ystady (2.3.2)

(see (1.1.17)). In particular property [hom] of Theorem 1.5.7 is satisfied by B.

Proof. By Proposition 1.1.9 cluster variables and hence cluster monomials belong
to M. By using Lemma 1.1.18 we are going to show that u, belongs to M as
well, for n > 1. By their definitions (2.1.3)-(2.1.4), it follows that the g-vector
i.e. the principal Z*-degree given by (1.1.8), of w and z is respectively (0,—1,1)
and (—1,1,0)". Then deg(zw) = deg(z) + deg(w) = (—1,0,1)". We note that
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deg(y1ys) = —b, — by = (—1,0,1)" = —b, = deg(y2). Moreover

A a3

Y1ys = (91?/3)_, yY2 = Ya—,

T 1
hence they belong to M and have the same g—vector as zw. By Lemma 1.1.18
we conclude that u = zw — y1y3 — yo belongs to M and its g—vector is given by
gu, = (—1,0,1)". Similarly deg(y1y2y3) = —by — by — by = (—2,0,2)" and y1y2y3 =
J1720377 222, hence uy (defined in (2.1.19)) belongs to M and its g-vector is 2g,,.
Proceeding by induction on n > 2 and using its definition (2.1.20), u,, belongs to M
and it is homogeneous of degree ng,, . O

Definition 2.3.2. For every b € B, we denote by g, and Fj, respectively the g—vector
and the F-polynomial of b in the initial seed (2.1.5). We denote by gy’ and by Fp”
respectively the g-vector and the F—polynomial of b in the cluster {z,w, z3}.

2.3.2 g—vectors
Proposition 2.3.3. With the notations of Definition 2.5.2, for every m > 0:

gom+1 = ( _n:?jl > gom+2 = < _5 ) (2.3.3)
g—-(2m+1) = ( :TEL > g-om = ( T;{nl > (2.3.4)

Moreover for everyn > 0

ng(—?1> gz=<_gl> gun=<_gn> (2.3.5)

Proof. In section 1.1.5 explicit formulas for the g-vectors are given in terms of the
rectangular matrices B,,: using Lemma 2.1.2, the g-vectors are uniquely determined
by the initial conditions

gi=e; (1=1,23)

where e; is the i-th standard basis vector of Z3, together with the recurrence relations

—2m + 1
gom+3 = —Lom T < L )
—2m +2
om+2 = —Zam—1 T < ol >
g om—2 = —8 omt1 T8 2m-1T82m
g om-1 = —Z_omi2t+ 8—om T B—am+1

for every m > 1, together with gg = —g3, g1 = —g2 and g_s = —g;. The claim
follows by checking that the given vectors satisfy these recurrence relations.

The g—vector of w and z can be obtained directly from the definition (2.1.3) and
(2.1.4) respectively. Then from (2.1.18) we get g,, = g + g. and from (2.1.19) and
(2.1.20) we get g, = n g,, and we are done. O
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2.3.3 F-—polynomials

We denote the F-polynomial in the initial seed ¥, associated with the cluster
variable z,, by F,,. The following Proposition provides explicit formulas for these

polynomials.

Proposition 2.3.4. For m >0

F2m+1 - Z X2m+1(617 €2, 63)yfly§2y§3 + 1

€1,€2,€3

- (e1—e3) (m—1—e3) (e1—1
where X2m+1(61’ €2, 63) - (62763) (mflfq) ( e3 )

Form>1
Fom = Y Xam(en, €2, 3)y5 55 + 1
€1,€2,€3
where Xam(er, €2, ¢3) = (" (570 (570 + (7050 Goma))-
Form >0

Flmin = Y X-@men(er, ez, ea)yiysys® + yiys st
€1,€2,€3

where X*(2m+1)<617 €2, 63) = (ele;r::B) (Tmn:z’) (egl);

€1,,e2, €3 m, m, m+1

Foom= Y X-am(er,es, )yt v5*ys* + vl vs'y3

€1,€2,€3

where X-am(e1, €2, ¢3) = (770 16°) (1) + (7)) ()

Forn >1
€1, €2 €3

Fu, = 155 + Y Xua(en, €2, )y y52y5 + 1

€1,€2,€3

where Xun<€1> es, 63) - (61—63){(71—63) (61—1) + (n—eg—l) (61—1)} and Fuo -1

ex—e3 n—ei e3 n—eiq e3—1

Proof. By (2.1.3) and (2.1.4), the F—polynomial of w and z is respectively

Fo(yi,92,93) = 92+ 1,
F2<y17y27y3) - y1y3+y1—|—1

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

(2.3.10)

(2.3.11)
(2.3.12)

Using Lemma 2.1.2, the recurrence relations given in section 1.1.5 between the F-

polynomials become the following: the initial conditions are

F1:F2:F3:1
Fo=ys+1
Fo=yfy+1
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and for m >1

F.Fomi1 = tysFom + Fomyo, (

FoForw = y2lom 1+ Fomya, (
F.F 5 1 = yoF op +F o o, (2.3.15

FoF om = 1yt omy + Fom 1. (

From its definition (2.1.18) the F—polynomial of u; is given by

Fu (Y1, 92, 93) = FoFu(yn,92,93) — 1ys — Y2 = yiyeys + yaye + 1 + 1. (2.3.17)
Moreover from (2.1.19) and (2.1.20) we have for n > 2

Fus(y1,92,93) = Fu,(y1,92,53)" — 2519003, (2.3.18)

Funi(1,92,y3) = Fu B, (Y1,92,Y3) — 192y b, (Y1,92,93).  (2.3.19)

The proof follows now by induction on m and n. ]

Corollary 2.3.5. B satisfies property [F] of Theorem 1.5.7, i.e. for every b € B the
corresponding F'—polynomial Fy, has constant term 1.

2.3.4 Proof of Theorem 2.1.9

Proposition 2.3.1 provides explicit formulas of the elements of B in terms of their
g-—vectors and F'—polynomials. Hence formulas (2.1.24), (2.1.25) and (2.1.28) follow
by the corresponding formulas (2.3.49), (2.3.5) for their g-vectors and from the
corresponding formulas (2.3.6), (2.3.7) and (2.3.10) for their F'-polynomials.

We have the following formulas

Yoy + T3
—

(2.3.20)

)

By applying formulas (2.3.20) to the formulas (2.1.24) , (2.1.25), (2.1.28) and (2.1.4)
one gets respectively formulas (2.1.26), (2.3.103), (2.1.29) and (2.1.30).

2.3.5 Proof of Theorem 2.1.5

Clearly every cluster monomial s¢s5s§ also has the form (2.1.21), i.e. can be written

as X[a] with a = ad(s;1) + bd(sz2) + cd(s3). We also note that
d(u) = d(w) +d(z) = § = ( )

Since of its definition (2.1.20), d(u,) = nd(u;). Moreover d(u,w*) = nd(u;)+kd(w)
and d(u,2*) = nd(u;) + kd(z). Hence the cone in @ defined by

CIm == Zzod(U)) + Zzod<2)
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»(0,1,0)

T_(2n41) 1 x1 T3 5 T2(n42)+1
(nn+ Ln+ 1) [(0,1,1)[(=1,0,0)] (0,0,—1)| (1,1,0)] " |(n+1,n+1,n)
T—2n o T2 T4 T2(n+2)
(n,n,n+1) "~ |(0,0,1)| (0,-1,0) | (1,0,0)| " | (n+1,n,n)

(1,0,1)

Figure 2.4: Denominator vectors of cluster variables in the cluster Cy,

is in bijection with the set {d(u,w"), d(u,w*)|n,k > 0}.
To complete the proof it’s enough to show the following:

For every cluster {si, o, s3}, the vectors d(s;), d(s2) and d(s3)  (2.3.21)
form a Z-basis of Q).

For every cluster {s, sq, s3}, the vectors d(sy), d(s2) and d(s3) (2.3.22)
are the only positive real roots contained in the additive
semigroup Cy, 5,55} = Z>od(51) + Z>od(s2) + Z>od(s3).

The union UC{SLSQ,%} is equal to @ — Cr. (2.3.23)

The exchange relation (2.1.2) implies at once the following relation between denom-
inator vectors of cluster variables

d(zm) + d(@mys) = [d(@m1) + d(Tmi2)]+ (2.3.24)

where the operation b — [b] is understood component—wise. By induction on m we
get formulas (2.1.22), i.e. for m >1

d(womsn) = (71 ) dl@ane) = (7
d(eamin) = ("7 ) d@an) = (
and also for n > 1
d(w) = ( ) d(z) = ( ) d(u,) = ( ; ) (2.3.27)
In particular (2.3.24) becomes

d(2) + d@nss) = [d@me)]s + [d(@nsa)]- (2.3.28)

1 ) (2.3.25)
“ ) (2.3.26)

We observe that
0 iftm=1,2,3,

T,)  otherwise .

Al ={ o

Clearly {d(z1),d(xs),d(z3)} is a Z-basis of Q = Z3. Then using (2.3.28) and
(2.3.29) we get by induction on m

|det(d(zm), d(@mi1), d(@my2))] = [det(d(@m1), A(Tmi2), d(@mys))] = 1

(2.3.29)
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Figure 2.5: Denominator vectors of the cluster variable having at least one coordinate
equal to zero. We wrote x,, for d(z,,). Note the clusters involving here form a fan
whose union is Q \ Q4

for every m € Z. Moreover it is straightforward to check directly that

|det(d(z2m-1), d(w), d(22m+1))| = 1

and

det(d(@am-2), d(2), d(2s))| = 1

for every m € Z and (2.3.21) is proved.

We consider the basis of simple roots aq, as, a3 of () and the corresponding co-
ordinate system (g1, g2, g3). By using (2.3.52) and (2.3.53), or figure 2.4, we observe
that there are four lines in the affine space containing the points corresponding to all
the z,,’s different from x5. They contain respectively the "negative odd”, "positive
odd”, the "negative even” and the ”positive even” cluster variables: they are

/- — g2 = g3 Lot — g1 = g2
odd Gl =gp—1 7 “odd g3 =gz — 1
- = g1 = g2 o+ g2 = g3

even ~ g3:g2+1a even g1=g2+1

We define the two-dimensional subspace of Qg containing respectively both ¢F,, and
Uoen and both £, and ¢, :

P = {91 = 92}; T:= {92 = 93}-
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PN - TN
Qv : Q:_

O O ©) o O O o o
O O O O ©} ([ O O O O O ©} ([ O
O O O ©) o O O O O O O'V [ ] O O
d([L‘ll) d([L‘lo)
O O ©} o O O O O O ©} o O O O
d(zy) d(zs)

we O .0 O O O wp O @€.0 O O O
- d(z7) -~ d(w)
o O O O O o o O O O
vy = d(x5) wy = d(xy)
Figure 2.6: PN Q. and T'N Q,: they intersect themselves into the dotted line of
equation g = g» = ¢s.

Formulas (2.3.52) and (2.3.53) have the following interesting and expected (see [18,
Conjecture 7.5]) property: given a cluster C = {s1, o, $3} the corresponding denom-
inator vectors {d(sy),d(s2),d(s3)} are sign—coherent, i.e. the ith coordinates of all
of them are either all non—negative or all non—positive. It means that if the initial
cluster variable x; lies in the cluster C then the ith coordinates of the other two
elements of C are 0. Figure 2.5 shows denominator vectors of the cluster variables
having at least one coordinate equal to zero. Let us analyze this figure: the cones
Cis1,50,55} involved here satisfies property 2.3.22, i.e. they do not overlap themselves.
Moreover their union is the entire lattice except the interior of the positive octant
Q+ = Zzod(l’4> + Zzod(w) + Z20d<l’0).

We now concentrate our attention on the other cones. Let Cp be the (open) cone
inside PN @ defined by Cp = {0 < g3 < g1} U{0,0,0}. By (2.3.52), d(z2,41) € Cp
for n > 2. The vectors v; = (1,1,0)" = d(z5) and v, = (0,0,1)" = d(z) form a
Z-basis of P such that Cp is given by Zsov; + Z>o(vy + v2). (This can be seen for
example observing that det(vy, va, (1,0,0)") = 1 and that v; and v, have at least
one coordinate equal to zero). d(za,11) = @n1v1 + anove where a,; = n — 1 and
an2 = n — 2. The sequence a,s/a,; is strictly increasing. It has limit

lim =2 =1

n—00 (1]
we conclude that the set of cones {{Z>od(22n+1) + Z>od(22,43)} : n > 2} is a fan in
P whose union is Cp. Hence we have

U C{$2n+1,w,x2n+3} - ZZOd(w) + CP

n>2

and these cones have no common interior points. Similarly let Cr be the (open)
cone inside T'U @4 defined by Cr = {0 < g < g1} U{0,0,0}. d(xs,) € Cr for
n > 2. w = (1,0,0)" = d(xy) and wy = (0,1,1)" form a Z-basis of T" such that
Cr = Z>ow1+Z>o(wy+ws). In this basis d(za,) = byywy +byows with b, = n—1 and
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(1,0.0) o 0L

Figure 2.7: 7cluster triangulation” of the intersection between @Qf and the plane
P ={g1+ g2+ g3 = 1}. With abuse of language we wrote z,, to denote Ra(x,,) NP.
The line between w and z is Cj,,, NP. The line between xy and x5 is PNP. The line
between x4 and x_; is T'NP.

bpo = n—2. Figure 2.6 shows the cones PNQ, and TN in the chosen basis {vy, v}
and {wy, ws} respectively. The strictly increasing sequence {b,2/b,1} has limit 1 for
n — 0o. We conclude that the set of cones {{Z>od(z2,) + Z>od(22n12)} : n > 2} is
a fan in T whose union is the closure of Cr. Hence we have

U C{$2n737$2n+2} = Zzod(z) +Cr.

n>2

It follows from the previous arguments that Cp+Cr = |,,54 Cam,oms1,0mi0} a0d that
the interior of two different cones Cyy,, zyi1.0msat A0A Cizp onir,0mi0) are disjoint.

Figure 2.7 shows the intersection of the plane P = {g; + g» + g3 = 1} with the
positive octant (). The marked points illustrate the mutual position of Rd(z,,)NP.
Dotted lines join two points corresponding to cluster variables belonging to the same
cluster. We have obtained all the points in the triangle between 2, w and x4. We
are going to obtain the others by reflecting through the line between z and w: we
consider the orthogonal reflection rp,, with respect to the imaginary cone Cp,,. It
acts on vectors by exchanging the first coordinate with the third one: 77, (a;0q +
ass + azag) = agaq + asan + ajaz. In particular it fixes Cy,,. It sends d(zx,,) to
d(z4_,) for m > 3.

We have just obtained Cj,, + Z>od(z4) as union of mutually disjoint cones of
the form Cyy, s, 6,3 With s; = 2, w or z with m > 4. By applying 77, we obtain
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Cim + Z>od(x0) as mutually disjoint union of cones of the form Cy, s, 5,3 With s; =
Ty, w or z with m < 0. Since Q1 = Cpyy, + Z>od(z4) + Z>od(x) we are done.

Corollary 2.3.6. For every m > 2, d(x4_,,) = (13)d(z,), where (13) is the auto-
morphism of Q) that exchanges the third entry with the first one in the basis of simple
T001S.

2.3.6 g—vector parametrization of B

We associate to the quiver @ = Qp, defined in (2.2.1) its Euler matrix Eg (recall
that (Eg);; = 1if i = j, —1 if there is an arrow from 7 to j and 0 otherwise). We
consider the piecewise-linear deformation &g of —Eq,, given by

—1 0 0
Eq = ( (7 10 ) (2.3.30)

ILo[71y -1

Since of Remark 1.3.9 the following result can be seen as a generalization of Theo-
rem 1.3.8 to the non—bipartite case.

Proposition 2.3.7. Given b € B, its g—vector g, and its denominator vector d(b)

are related by

where * is understood as in (1.3.21).

Proof. 1t follows from the explicit formulas for the g—vectors given in Proposi-
tion 2.3.3 and from the explicit formulas for the denominator vectors given in (2.3.52),
(2.3.53) and (3.2.17) that formula (2.3.31) holds for cluster variables and for the u,’s.
By Corollary 2.1.8 denominator vectors of cluster variables belonging to the same
cluster are sign—coherent. & is hence linear in every cone generated by such vectors.
Then the claim follows for cluster monomials. By (3.2.17) denominator vectors of
the u,’s, w and z lie in the positive octant ()1 in which &g is linear. The claim is
hence true for u,w* and u,2*, n,k > 0. O

Corollary 2.3.8. The map b — g, which associates to an element b € B its g—vector
i the initial cluster gy, is a bijection between B and Q).

Proof. &g is injective. Then the claim follows combining Theorem 2.1.5 with Propo-
sition 2.3.7. O

2.3.7 Linear independence of B

Proposition 2.3.9. B is a linearly independent set over ZP.

Proof. We verify that the set B satisfies hypothesis of Theorem 1.5.7. By Propo-

sition 2.3.1, every element of B is homogeneous and satisfies property [hom]|. The
0 1

columns of the matrix B = ( 1o i ) clearly satisfy hypothesis [BY], i.e. ab; +
bby 4+ cbz = 0, a,b,c > 0 implies a = b = ¢ = 0, where b; is the i—th column of B.
F-polynomials have constant term 1 by Corollary 2.3.5. The map b — g is injective

by Corollary 2.3.8. O
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2.3.8 F—polynomials, g—vectors and denominator vectors in
the cluster {z1,w,z3}

In this section we study another cluster algebra A“Y¢ of type Aél) closely related to
A. We need some results on A®Y in order to get the positivity of the elements of
the canonical basis B of A.

Let IP be the tropical semi—field (see Definition 1.1.1) Trop(y1, ys, y3) generated by
three elements yq,ys,ys and let F = QP(xq,w, x3) be the field of rational functions
in three commuting variables z;, w and x5 with coefficients in QP. We define A“¥“
to be the cluster algebra inside F with principal coefficients at the initial ”cyclic”
seed: v

Eggl/cl _ {chcliC - ( j2 E) —01 ) ’{mhw’ 1'3}, {Y1,Y2,Y3}}-
Here, as the same as in Lemma 2.1.2, the name ”cyclic” comes from the fact that
the quiver associated with B (see Section 2.2) has a cycle.

Bevelic is the principal part of one of the exchange matrices of the algebra A
shown in Lemma 2.1.2, so that A“Y is a cluster algebra of type Agl).

We denote the generators of A“Y“ inside F, i.e. its cluster variables, with the
same symbols as in \A. More precisely if a cluster variable s = u(x) in A is obtained
from a cluster variable x of the cluster of the initial seed ¥, by a sequence p of
mutations, we denote by the same letter s the cluster variable y o uy(x) of AV
obtained after the sequence 11 o iy of mutations from the initial cyclic seed 7%
(here o denotes mutation in direction two). This is consistent with the following
fact: the mutation in direction two of the seed ngd (see Definition 1.1.4) is the seed

. . 0 11
El = {B = < -1 31 (1) > 7{33175527333},{91;1,92;1>y3;1}}

-1

where the coefficients and the cluster variable x5 are given by

Y1 = Vive, Y1 = o, Ys1 = Vs, L2 = m%xg (2.3.32)

y2

Since of Lemma 2.1.2 all the cluster variables of A“¥“ are obtained in this way.
We now introduce the corresponding of the elements u, of A, in A®Y. In view
of Theorem 1.1.11 the Laurent expansion in the cluster {x1, zs, 3} of every cluster
variable s of A“Y? is given by:

_ Fs |.7-' @1;1, @\2;17 ?/J\S;l)xgs
Fy |p (Y115 Y211, Y3i1)

where y;.1, @ = 1,2, 3, is given by (2.3.2), i.e. in this case, using (2.3.32):

(2.3.33)

— Y1 yiye Y2;171 1

Y1 = oas oy YB1T T T Gonpo Y3l T Ysiidilz = Y3lilo.

The Laurent expansion of s in the initial cluster {z1,w, z3} is obtained from (2.3.33)
by mutating the cluster variable x5 as in (2.3.32):

yiyew “x1 yszi(z1ityazs)
o= Dol G a0 (vt e g

Fs |P <Y1Y27 yi27 Y3)

Having this in mind we give the following definition:
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Definition 2.3.10. For every n > 0 we define:

yiyaw 1 ysri(zy + Y2I3)> | T1 +yaTs3
(21 + yaz3)xs yaxs’ w b w 7

Uy = Fun |]: ( $3)gun (2335)

where F,, is the polynomial given by (2.3.10) and g, is the vector given in (2.3.5).

The following Proposition shows that the elements {u,} are elements of A“Y“
and satisfy relations similar to the relations satisfied by the corresponding elements

{un,} of A.

Proposition 2.3.11. For every n > 1 the rational function u, defined in (2.3.35)
satisfy the initial conditions:

u =1, w = y%zw — Y1V2ys — y%, Uy = ui — 2y1ys, (2.3.36)
together with the recurrence relations
Up+1 = ULUp — YV1Y3 Up—1- (2337)
In particular they are elements of A°Y<.

Proof. Recall from (2.3.17) that
Fuy (Y1592, 43) = y192y3 + y1y2 + y1 + 1.

and from (2.3.5), g,, = [ E)l } Then (2.3.35) becomes for n = 1:

_ ylygx% +yviw + x%
T1T3 '

Uy

(2.3.38)

Recall from (2.3.12) that
Fo(y1,y2,93) = yays + 1+ 1

and from (2.3.5) that g, = [ v ] . We then conclude from (2.3.33) that the expansion

0
of the cluster variable z in the initial cluster of A%Y< is

L= Y1Y§Y3371$3 + Y1Y2Y333'% + y1y2w + 2123 + Yﬂ'%
T1WI3

(2.3.39)

from which the second equality of (2.3.36) follows.
From (2.3.18) and (2.3.19) we know that

Foy(1,y2,93) = Fuy (Y1, y2,93)" — 2y1923,
Foi (1, y2,93) = Fu Fu, (1,92, y3) — Y1y2ysFu,_ (Y1, Y2, U3).

By applying this equalities to (2.3.35) and using the fact that g, = [ o ] we get
the desired relations. O
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Definition 2.3.12. Let B be the set of cluster monomials of A“Y“ together with
the set of elements {u,w*u,2*: n>1, k> 0}.

We denote the F-—polynomial, the g—vector and the denominator vector with
respect to the initial seed of A“Y? of an element b of B by respectively F{, g and
d“(b); we denote by Fy, g, and d(b) respectively the F—polynomial, the g—vector
and the denominator vector of the corresponding element b in the initial seed of A.
For the cluster variable z,,, m € Z, we abbreviate F, = F,, and g,,, = &n.

In order to get formulas for F—polynomials, g—vectors and denominator vectors
of the elements of B, it is sufficient to find them for the following subset of B:

B = {cluster variables} Ll {u, : n > 1}.

Proposition 2.3.13. For every m > 0:

m—1—es\ fei—1\ . .
F21Um+1(Y17y2ay3) = Z ( 3) ( 163 )Y11Y33 + 17 (2340)

m—1—e;
€1,€3

w e1—1\ /fm—1—e3+es 1N o o e
F2m+2(Y17y2ay3) = Z ( ! ) ( ) (62)}’11}’22}733 +YQ + 1, (2341)

. es m—1—ej+ey

w m—es\ fe1+1) . . -
F oy (y1,¥2,¥3) = Z (m—el) ( e, >y11y33 + y Pyt (2.3.42)

€1,€3

€3—E€9 m-—eq €9

w eg+1—e m—e 1Y\ o - m
F_2m(YI7y2ay3) - Z ( ! 2) ( 3) < )y +yl Y3 +1(y2 + ].) (2343)

e

FY = y1y3ys + y1yays + yiye + y2 + 1. (2.3.44)

For everyn > 1:

n—es\ (e —1 n—es—1\/e; —1
F?,U — n..n e1.,€e3 1
(Y1, ¥2,V3) y1y3+e§1 . [(n_el)( e )+( N )(63 3 1)} yi'ys'+
(2.3.45)

Proof. The Proof is based on the following Lemma.

Lemma 2.3.14. For every element b of B different from w in AV, the F -polynomials
Fy, and Fy’ are related by the following formula:

Fy(1322, 55 va(1+y2))
Fy lp (y1y2, =, ¥3)

y2’

(1 + yo)B2 (2.3.46)

FJU(Y1,Y27Y3) =

where go., denotes the second component of the vector g.
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Proof of Lemma 2.3.14. By equating in (2.3.34) 21 = w = x3 = 1 we get the desired
relation. ]

We can give a refinement of Lemma 2.3.14:

Lemma 2.3.15. For every element b of B different from w, (2.3.46) takes the form:

Fb(i/i_};zzu }%27}73(1 + Y2)) ’ (13,/_2};2) Zfb = T—(2m+1), M > 07
Fl?(Ylay%y:i) =
Fy(132%, 5 va(1+y2)) - (1 + ya)92 otherwise
(2.3.47)

Proof of Lemma 2.53.15. By direct check in formulas (2.3.40)-(2.3.44) one can easily
see that

1 L oifp= T_(2m+1) for some m > 0
F il -4 ¥y - 2.3.48
b \JP (Y1Y27 y2,Y3) { 1 otherwise ( )
Moreover by (2.3.50), g2,—(2m+1) = —1 for every m > 0. O

To conclude the proof of Proposition 2.3.13 we apply (2.3.46) using the explicit
formula for the F—polynomial F}, given in Proposition 2.3.4 and the explicit formula
for g given in Proposition 2.3.3. m

Corollary 2.3.16. For every element b of B, F}” has constant term 1.

Proof. For b in B, this follows directly by formulas (2.3.40)-(2.3.44). When b =
by ---b, is a product of elements of B, F,* = F;’----- F". Since every Fy, has
constant term 1, the same is true for Fy O

Proposition 2.3.17. The g—vectors of the elements of B are given by:
for every m > 0:

w —m+1 w —m+1
8om+1 = ( o ) 8omi2 = ( . ) (2.3.49)
8 m+1) = ( m_linl ) 8%m = < m_‘inl ) (2.3.50)

where g, = gy . Moreover for everyn > 1

0 0 —n
g%z(;) g’!z(;}) gffn=<2> (2.3.51)
Proof. The proof is based on the following Lemma.

S

Lemma 2.3.18. For every element b of B, the g—vectors g, = < o2 ) and g¥ =
93;b
< 5%; > are related to each other by the following formula:
93:b
gl;b + gQ;b - min(gaa O) ij = 17
Gy = —92p ifj =2,
g3 + min(ga.p, 0) if 1 = 3.
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Proof of Lemma 2.5.18. By Theorem 1.1.11, Corollary 2.3.16 and Definition 2.3.10,

the expansion of the element b of B in the initial cluster $7¥* of AC¥ is given by:

b= Fgu</}717/}72737\3) . (xl, w, .ﬂC’g)gg)
where, by Definition 1.1.10,

2
Y1 =Y132 Y2 = Y2, Y3 =Ysy,

On the other hand the same expansion is given by (2.3.34). By equating this two
expressions we get:

(z1+ )
Fy |7 <(x111y};2;§)$37 yf:tg’ — x; ) g pw Y1W Y2T3 NETaT g
1 X _Fb< 2 ) )'(x17w7x3)b
Fy lp (y1y2, 3,0 v3) T3 T1

By Lemma 2.3.14 and (2.3.48) we have

I3 . (ZEY2T3 g2 . (g g  ifp= >0

1, W, T3) if b =2_2ms1), m >0,
T1+Yal3 g ) M . B+
(xla ,1'3) - )

w (mzw:a )92 - (11, w, 23)8 otherwise.

from which the desired result follows by using the explicit description of g, given in
Proposition 2.3.3. This concludes the proof of Lemma 2.3.18. n

Using Proposition 2.3.3 we apply Lemma 2.3.18 to the explicit formulas given
there and we conclude the proof of Proposition 2.3.17. O

As a corollary of the previous results we get explicit formulas for the elements of
B in the initial cluster of ACY,

Proposition 2.3.19. For every m > 0:

m—1—e3) (e1—1\_e1_e3 . 2e3,  ej—e3, .2m—2e1—2 2m—2

_ Deres (o) (O, Dy Ty apw sy 3 T

Lam+1 = $m—1$m—2 )
1 3

e1—1\ (m—1—e3+e2\ (1) e, 2e3+l—ez,  ej—e3,.2m—1—2e1+e2 om 2m—1
Ze( e3 )(m—1—61+62) (62) Ty w T3 +y2$3 +.CL'1Z'3 )

Tom+42=
m m—1 ’
T WTy
m—e3) (e1+1\ . e1 e3 .2e3,  ej—e3+1,.2m—2e; m.,m+1,_.2m+2
. z:61,63 (m—el)( es )y1 NS T3 + Y1¥s ‘e .
T_(2m+1) = m.m+1 )

Ty

D (“eii;f 2) () (o) yeate T e e g R ey 2 (o g 4y
m+1 :

m
TPwxs

T_om=

For everyn > 1:

e D [0 () + () (I el

n—ej es3 n—ej

Un,
1Ty
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Corollary 2.3.20. Form > 1

A (2gms1) = ( "o ) A¥ (2o sa) = ( "y ) (2.3.52)

A° (2 _omys) = ( "o ) A (2 _gmia) = ( i ) (2.3.53)

4" (w) = ( 5 ) d(z) = ( | ) d* (u,) = ( ) (2.3.54)
together with A% (zy) = [ 2 ]

Remark 2.3.21. The F-polynomial F of the cluster variable z in A“Y¢ is given
in (2.3.44) while its denominator vector d*(z) is given in (3.2.17). In particular the
following equality holds:

1 1 1 1

FY | (o) = ‘
z |Trop(y1,y2,y3) yi'ye Vs V1Y3Ys

In [18, Conjecture 7.17] it was expected the right-hand side to be y~4“() = 1

y1y2ys '
This counterexample appears also in [6] and in [21].

2.3.9 Positivity of the elements of the canonical basis B

As a corollary of the previous results we get the positivity of the elements of the
canonical basis B as shown by the following proposition.

Proposition 2.3.22. The Laurent expansion of every element of the canonical basis
B in every cluster of A has coefficients in Z>P.

Proof. Given an element b of B = {cluster variables} U {u, : n > 1}, its Laurent
expansion in a cluster C = (s1, $9, s3) of A is given by:

b= Fbc(@\l;& @\2;0 @\3;6’) ) Sgg
FbC‘IP’(?Jl;c; Ya:.c, ?/3;c)

where F¢ and gf are respectively the F-polynomial and the g—vectors of b in the
cluster C, and {yi.c,¥a2.c,ysc} are the coefficients of the (unique) seed of A with
cluster C. By the symmetries of the exchange relations, it is sufficient to consider
only the two clusters {z1, 22, 23} and {z1,w, z3}. By Proposition 2.3.4 and Proposi-
tion 2.3.13 we know F'-polynomials in these two clusters have coefficients in Z>(P.
We conclude the elements of B are positive. The claim follows by the fact the all the
other elements of B are products of elements of B. n
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2.3.10 Straightening relations and span property

The main result of this section is the following:
Proposition 2.3.23. The set B of cluster monomials and of the elements {u,w", u, 2" :
n > 1,k > 0} defined in Theorem 2.1.4 spans A over ZP.

The strategy for proving Proposition 2.3.23 is described in Section 1.5.2. We
briefly remind here the arguments. Since B contains cluster variables, monomials in
its elements span A over ZP. It is then sufficient to express every such monomial
as a ZP-linear combination of elements of B. In order to do that we will need
"straightening relations”, i.e. explicit expressions for the expansion in B of the
"minimal” monomials that are not elements of B. These monomials are minimal
with respect to the following ordering: the generic monomial M has the form M =
uph - ulex o al w2 where 0<ng <---<ng, my <---<my and the exponents are
positive integers. We define the multi-degree u(M) = (1 (M), po(M), us(M)) € Z3,,
by setting -
m(M) = > a +Z§:1 bjt+c+d
pe(M) = my —my; (2.3.55)
[Lg(M) = bl + bt.

One can immediately see that the minimal monomials in the elements of B with

respect to the multi-degree (2.3.55) are the following:

unup; UnTm; TmTm42+n,

for every n,p > 1 and m € Z. Indeed p1(up2y) = p1(unty) = pi(Tm&mraton) = 2
and hence they are minimal (p (M) = 1 if and only if M is either a cluster variable or
un). Moreover they are the only monomials not belonging to B having this property.

Propositions 2.3.24 and 2.3.27 give the desired straightening relations. The proof
of Proposition 2.3.23 will be given at the end of the present section.

Proposition 2.3.24. For every n,p > 1

§
_ ) Ungp + YU m >
Up Uy = { g 4 2y n—p (2.3.56)

where 6 = (1,1,1)" is the denominator vector of uy in the initial cluster of A.

Proof. We use the definition of the w,’s given in Definition 2.1.3. We assume now
that uy = 2, so that the relation u u, = u,4+1 +y°u,_; holds for every n > 1 (instead
of holding only for n > 2 as in Definition 2.1.3). Moreover, with this convention, we
have to prove that for every p: 1 < p <n we have

Unty = Untp + Y Un_p (2.3.57)

If n =p =1 then (2.3.57) is the definition (2.1.19) of uy; we assume n > 2 and we
proceed by induction on p > 1: if p = 1, then (2.3.57) is just the definition (2.1.20)
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of u,41, we then assume 2 <p+1<n

UnUp1 = Un[ulup - yéup—l] =

= U1 [tnip + yp(sun—p] - yé[un—l—p—l + y(p_l)éun—p-i-l] =
= Upyi4p + y5Un+p71 +y” [Uns1-p + ygunfpfl] - yé[unerfl + y(pil)éunprrl] =
= Un4p+1 T y(p+1)5un—(p+1)-

]

In order to get the other straightening relations we will need the following nota-
tions.

Definition 2.3.25. We introduce the following deformation of the coefficients: for
every m € 7 we define

d@mis) — ¢ if m > 1
En = { Yo 8 = (2.3.58)

y = Y1;m-3 it m <0
and also
o ey ifm>1 1 if m>1
G (m) = { 1 iftm<0 G (m) = En @y ifm<0 (2.3.59)

where nd = (n,n,n)" is the denominator vector of w, in the initial cluster of A.
Moreover for every integer £ > 0 we define

N CNLNO) LN N L[ y5 if k is even,
’Yl(k)—yl Yo" Y3® ;3 ’72<k)—y1 Ya™ Y3~ 5 73(@—{ 0 if kis odd.

and we define for ¢ = 1,2, 3 the corresponding elements of A:

D) = S(Le) + 1) % (h) -

k>0

We also define for every m € Z and my > 0:

- _{{m@§m+m1 fm<0<m+m
m;my

1 otherwise
and
" B 1 Ifm<0<m+my
s ma = Em D Emim, Otherwise

Here we collect some properties of the elements introduced in Definition 2.3.25
that we will need later.
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Lemma 2.3.26. With notations of Definition 2.5.25 we have the following results:

1. For everym € Z and k > 0:

— gm ’Lf m>1,
Em D &mtn = { ik i m+Ek<O0; (2.3.60)
moreover
ey { y’  otherwise. (2.3.61)

Ifm >0 and n > 1 we get

Em if m<n-—1,
kS
B y if m=n—1=2k,
Eom D &n = Py if m=n—-1=2k+1, (2.3.62)

&n if m>n—1.

2. For every m € Z and n > 1 the following relation holds
(i (m) = (13)¢; (1 —=m); ¢ (m) = (13)¢ (1 —m) (2.3.63)
where (13) is the automorphism of P that exchanges y, with ys.

3. For everyn > 1 and i € {1,2,3} we have:

wli(n) =Ti(n+1) +y°Ti(n — 1) — yi(n + 1) (2.3.64)

Proof of Lemma 2.53.26. (2.3.60) and (2.3.61) follow directly by the definition of &,
and &,y by using figure 2.4: indeed one can see that d(z,,) < d(x,4x) (resp.
d(z,,) > d(zpmer)) if m > 1 (resp. m + k < 0). (Here < is understood term by
term).

We now want to compute &_,, ® &, = yd@-m) @ yd@n+3) - By Corollary 2.3.6,
d(z_,) = (13)d(zn14), where (13) is the linear operator on Z* that exchanges the
first entry with the third one. We now consider all the possible cases:

If m+4<n+3 thend(z,44) < d(z,43); since m+4 and n+3 are positive integers,
d(z,+4) and d(x_,,) have respectively the form (ds+1, d, d3) and (d5+1, dj, d)
for some dy, ds, d,,d5 > 0 ; in particular d(z_,,) = (ds,ds,ds + 1). Since by
hypothesis d3 < dj and dy < d, we conclude d(z_,,) < d(x,43) so that
yd(l"fm) D yd($n+3) — yd(m,m)‘

If m+4=n+3=2k+4 forsomek > 0, then by (2.3.52) (or figure 2.4), d(z,,44) =
(k+1,k, k) so that (13)d(z,,44) = (k, k, k+1)%; then yd@-m) gyd@nts) = ykd,

If m+4=n+3=2k+5 forsomek > 0, then by (2.3.52) (or figure 2.4), d(z,,44) =
(k+1,k+1, k) so that (13)d(zmy4) = (k, k+1, k+1)!; then yd@-m) gyd@n+s) =

ks

Y2y .
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If m+4>n+3 then d(z,,44) > d(x,43), then also (13)d(z,14) > d(zp13).

and (2.3.62) is proved.
Formula (2.3.64) follows by (2.3.56). We give the details here:

n

wr - Ta(m) = S UL+ 1300 (w0 ) =

2
k=0

[\

(L n—1

0

2

e
Il

HUG )+ D) + (L") + Dl = 1y’ +
oy (D DB+ (12 + Dt — 1)) =

—Ti(n+1) —%(n+1)+y" - Tin - 1)

]+ Dyilk)unk + ([—5—] + Dvi(n = 1) - ug +

The last equality follows from the fact that [%1] + 1 = |22 | and yi(n — 1)y° =

Yi(n +1).

[]

Proposition 2.3.27. With notations of Definition 2.3.25 the following ”straighten-

ing relations” hold.

(i) For everym € Z andn > 1:
UnTm = Gy (M) Tin—2n + G (M) Trmy2n

(ii) For every m € Z even and n > 0:

TmTm+2n+3 = N 2043 TmAn+1Tm4nt2 + 77:;2; onts L'1(n)
(iii) For every m € Z odd and n > 0:

TmTm+2n+3 = Nh: 2n+3 TmAn+1Tmin+2 + 77;2; onts L'2(n)
(iv) For every m € Z even and n > 2:

TmTmtan = Nps 2 Tmt2( 2 | Tmia[ 2] + T on L3(n—2)2
(v) For every m € Z odd and n > 2:

TmTmton = M, on Tm42| 2] Tm2[2] + 777—;; on L'3(n—2)w
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Proof. We prove part (i) by induction on n > 1. We prove it for n = 1. By using
exchange relations (2.1.6) and (2.1.8) it is easy to see that for every m € Z we have:

U T = (2W — Y1Y3 — Yo )Tm =
Y2:m—1 * Y2;m—2 1
: : + T +
Y2:m—1 % 1)(y2;m—2 5> 1)] Jr2[(y2;m—1 S 1>(y2;m—2 ) ]-)]
Y2;m—1 * Y2;m—2 Yo;m

(y2;m71 > 1)(y2;m72 S¥ 1) (yQ;mfl ¥ 1)(y2,m S¥ 1

where yo is defined in (2.1.7) for k£ odd and in (2.1.9) for k even. The following
Lemma, whose proof is by direct check, gives the desired result.

- xm72[<

+Tm|

) — Y1Ys — ?/2]

Lemma 2.3.28. For every m € Z the following relations hold:

Y2;m—1Y2;m—2 =
1. (yQ;m—l®1)(y2;m—2®l) o Cl <m>

1 —
2‘ (y2;m71®1)(y2;m72€91) - Cl <m>

Y2,m—1Y2;m—2 Y2;m _ _ —
3. (yQ;mfleBl)(y%mfZ@l) + (yQ;mfl@l)(y%m@l) y1y3 y2 0

We now proceed by induction on n > 1. We use the convention that ug = 2 so
that the relation:

1)
Up4+1 = WUy — Y Up—1

(given in Definition 2.1.3) holds for every n > 1. Moreover, with this convention,
since (5 (m) = 1, (2.3.65) still holds for n = 0. We have

1
Up+1Tm = NMURTm — Y Upn—1Tm =

= Up[C] (M) T—2 4+ (M) Tnga] +

_ya[Cn_—l(m)xm—2n+2 + C:—l(m)xm+2n—2] =

= ¢ (m)[¢, (M —2)Tpm 9 20 + er(m — 2)Tp2y2n) +
+¢(m)[¢ (M + 2)@mgo—on + G (M 4 2)Zpgar2a] +

—Y° 1 (M) Tmi22n — YOO (M) T2 12 =
= Tn—a—2n[C (M)C, (M = 2)] + Tn—agon[( (M) (M — 2) — y°CF (m)] +
Fmr2—20 |G ()G, (M A+ 2) — y° 01 (M)] 4 Tingar2n[ G (MG (m + 2)]

The claim follows by Lemma 2.3.29 below.

Lemma 2.3.29. For every m € Z and n > 1 we have
1. ¢ (m)¢, (m —2) = (4 (m);
2. ¢ (m)GFH(m —2) —y°(F(m) = 0;
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3. ¢F(m)¢, (m+2) —y°¢, 1 (m) =0;
4. GEm)GH(m +2) = ¢y (m)

The proof of Lemma 2.3.29 is by direct check.

We prove part (i) and (iii) together. It is convenient to prove that the follow-
ing relation holds for every m € Z, n > 0 and ¢ = 1 if m is even and 2 if m is
odd:

+ . —
77m;2n+3r’i (n> = TmTm42n+3 — nm;2n+3xm+n+1xm+n+2 (2370)

We proceed by induction on n > 0. We first prove (2.3.70) for n = 0. In this case
I'1(0) = T'5(0) = 1. By the exchange relation (2.1.2) we know that for every m € Z
the following relation holds:

_ Ym+3Tm+1Tm+2 + 1 if m= 0,—-1,-2
TmTm+3 = { Timt+1Tm+2 + Yim otherwise (2:3.71)

By part 1 of Lemma 2.3.26, it is immediate to verify that

[ s Em=0,-1,-2 . (1 ifm=0-1,-2
i3 = 1 otherwise L R NP otherwise

so that (2.3.70) specializes to (2.3.71) when n = 0, i.e. for every m € Z the following
relation holds

TmnTmt3 = MpisTm1Tmr2 + Thes- (2.3.72)

We now assume n > 1. In this case, using the inductive hypothesis we have:

Li(n+1) =wili(n) —y°Ti(n — 1) + 7i(n + 1) =

ul

+ : [xmxm+2n+3 - 77;1~2n+3xm+n+1xm+n+2] +
77771,;2n+3 )
&
y - —
ar [TmTmpont1 — nm;2n+1$m+nxm+n+1] +7(n+1) =
m;2n+1

= . [Cl_ (m +2n + 3>xm+2n+1 + <f_<m + 2n + 3)xm+2n+5] +

ES
T]m,2n+3

_Zmz—niz ) [Cl_ (m +n+ 2)£m+nxm+n+1 + Cf_ (m +n+ 2)xm—&-n—&-l"L’m—&-n—&-4] +

y§

nm;2n+1

) [$m$m+2n+1 - n;@;2n+1$m+nxm+n+1] + %(n + 1) =

[Cl_ (m+2”+3)77:;1;2n+1_y6”2;2n+3]

¢ (m+2n+3)
—— ]
nm;2n+1nm;2n+3

+
nm;2n+3

+

= TmTm+2n+1 + Imxm+2n+5[ +

80— + - — +
[y 77771;271,#»177771.;2714»3_177n;2n+3<1 (m+n+2)nm;2n+1]

+ +
nm;2n+1nm;2n+3

+$m+n$m+n+1

o Cfr (m+n+2)n;z;2n+3

+
nm;2n+3

Tt 1Tmanta +vi(n+1) =
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C (MA2n43)00 001 —Y Miongs ¢ (m+2n+3)
= TynTmt2n+1] = i 4 $m$m+2n+5[ﬁ] *
m;2n

+ +
nm;2n+1nm;2n+3

+

8, + - - +
[y nm;2n+177m;2n+3_77m;2n+3C1 (m+n+2)7]m;2n+1]

T ZmsnTmsnt1 T T
nm;2n+1nm;2n+3

G (mAn+2)n 057 — +
- T onis [77m+n+1;3l’m+n+237m+n+3 + nm+n+l;3] + i (n + 1)
m;2n

Lemma 2.3.30 below shows that this polynomial is equal to

1 _
T [TmTm+2n45 = Myont5Tm+nt2Tm+nt3]
77m;2n+5

and we are done.

We prove (iii) and (iv) together. In order to do that we introduce the variable
¢ depending on m € Z in the following way: ¢ is w if m is odd and c is z if m is even.
With this convention, both (2.3.68) and (2.3.69) are equivalent to the following:

1
cI'3(n—2) = o TnTmt2n = MmonTm+2| 2 | Tmi2[2] | - (2.3.73)
m;2n

In order to prove (2.3.73) we proceed by induction on n > 2. We verify directly the
formula for n = 2 and n = 3. We then assume n > 4. By using (2.3.64) and the
inductive hypothesis we get the following equality:

c's(n—2) =

C; (m +2n — 2)77:1, 2n—4 y(sn:)ru 2n—2

T Ty 2n4] ]+
e 77;;; 2n—27l;; 2n—4
F(m+2n —2
$m$m+2n[€1 ( ¥ )] +
77m; 2n—2
yén;’b; 2n—4777—7i_1; 2n—2 77;1, 2n—277:r_1; 2n—4C1_ (m +2 "nT—l'l)
Ty g 222 | Lo ns2y ]+

77;2; 2n727]:;; 2n—4
s G (m 4 2[252])

+
nm; 2n—2

Lo 2zl | L porn-ly + cy3(n —2)

Lemma 2.3.30 concludes the proof. O]

Lemma 2.3.30. For every n > 1, m; > 3 and m € 7Z the following equalities hold
mn ZP:

1¢r(mAmy + 2015 0 = Y i 40 =0
2. <1+ (m + ml) - n;vi_l;ml /nTJ)rl;mlJrQ

3. yén;l;ml : W;;mﬁz - 777:1;m1+277;r1;m1 C; (m + [mlT—’—Z]) =0
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4. ¢F(m+n+ 2) Nmont3Mmans1:3 = n:1;2n+377r71;2n+5/n:1;2n+5

5. Fori=1ifm is even and i = 2 if m is odd we have for every n > 1:
71(77‘ + 1) : njn;Qn—i-S - ClJr (m +n+ 2) ' 7772;2n+3 ’ 777J;L+n+1;3 =0

6 77';1; 2n—2C1+(m+2|—%.|)

+
nm,; 2n—2

The proof of Lemma (2.3.30) follows by direct check.

_ nm;2n
Tiyo| 2ot | Lyl — cy3(n—2) = 0, TmE2L g Tm2 3]

Proof of Proposition 2.3.23

In order to prove that B spans A, we need to show that every monomial M in
the variables u,, and in the cluster variables is a linear combination of elements of

B. The generic M has the form M = up}---uleall -2l wz? where 0 < ny <
- < ng, m < --- < my and the exponents are positive integers. We will use

the multi-degree defined in (2.3.55). Therefore, to complete the proof, we proceed
by induction on p(M). If pi(M) = 1 then M is a cluster variable or one of the
u,’s. Then it suffices to show that every monomial M which has at least one of
the “forbidden” products as a factor, can be written as a linear combination of
monomials of (lexicographically) smaller multi-degree. We will show that this can
be done by replacing some “forbidden” factor of M with its expression given by
the appropriate relation in Propositions 2.3.24 and 2.3.27. Indeed, if > 7 a; > 2
(resp. >, a; = 1) then one can apply (2.3.56) (resp. (2.3.65)), expressing M as
a linear combination of monomials with smaller value of p;. So we can assume
that M = a:f,lll . --xf}ltwczd. If both ¢ and d are positive, by using the fact that
2w = up + 2, one obtains again a sum of two monomials with smaller value of u;. So
we can assume that d = 0 (resp. ¢ = 0) and that we can apply the exchange relation
(2.1.6) (resp. (2.1.8)), i.e. some m; is odd (resp. even). We again obtain a sum of
two monomials having smaller value of ;1; than the initial one. So we can assume that
M has one of the following forms: M; = (Il,,, Oddxfgi)wc or My = (I, even:v%i)zd
or Mz = % ---al with my —my > 3. We apply either (2.3.72) or (2.3.68) or
(2.3.69) to the product x,,x,,,. By inspection, in the resulting expression for both
M; and Ms, all the monomials except at most one that has smaller value of p,
have the same value of p;. By further inspection, for every such monomial M’, if
min(by, b;) = 1 (resp. min(by, b;) > 2) then (M) < po(M) (resp. pe(M') = us(M)
and ps3(M') = pus(M) — 2) . Analogously in the resulting expression for Mj, there
is precisely one monomial M’ with uy(M') = py (M), while the rest of the terms
have smaller value of y1. Moreover if min(by,b;) = 1 (resp. min(by,b;) > 2) then

pa(M') < pa(M) (resp. pa(M') = pa(M) and pz(M') = psz(M) —2) .

2.3.11 Coefficient—free cluster algebra of type Agl)

Let F = Q(x1, x2, x3) be the field of rational functions in three (commuting) indepen-
dent variables xq, x5 and x3 with rational coefficients. Recursively define elements
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T, € F by the initial conditions T; = x; for i = 1,2, 3, together with the recurrence
relations for m € Z:
fmfm-i-?) - fm—l—lfm—i-Q + ]_ (2374)

Define also the elements w,z € F by

w=21T (2.3.75)
T2
T1Ty + ToTs + 1
p R By (2.3.76)

173
Let Aqiy be the Z-subalgebra of F generated by all the Z,,, W and Z. An easy
induction shows that the following relations hold for every m € Z

WLy = Tom—1 +Tgm+1, (2377)

ﬁQm—s—l — EQm +52m+2. (2378)

Moreover from (2.3.74), (2.3.75) and (2.3.76) we obtain

Tom—1Tom+s = Loyt + W, (2.3.79)

EQm_QEQm_i_Q - f%m—i—z (2380)

for all m € Z. We refer to the generators of Ay as cluster variables and to the
relations (2.3.74), (2.3.75), (2.3.76), (2.3.79) and (2.3.80) as exchange relations. The
sets of the form

{fma fm-i—la fm-i—?}a {EQm—‘rla E, f2m-‘,—3}a {f2m7 za f?m—}—Z}

for m € Z are the clusters of Agy. Note that clusters are algebraically independent
sets. In particular Agy C Q(C) for every cluster C. We set Cpy, = {1, 22, 23}

In [16, Example 7.8] it is shown that Ay is the coefficient-free cluster algebra
with initial seed

(B = ( 5o ),{xl,xQ,xg}}, (2.3.81)

—1

and that the previous terminology is consistent with the theory of cluster algebras.
Moreover the exchange graph of this cluster algebra is the two-layer brick wall shown
in figure 2.1.

We now describe the canonical basis B of Ay explicitly. For every cluster
C = {s1, $2, 53} an element of the form s{s3s} for some p, q,r € Zs is called a cluster
monomial (or more precisely a cluster monomial in C when we want to emphasize
the cluster C). We introduce an element w € A by setting

= zw— 2. (2.3.82)

Let T, 11, ... be the sequence of Chebyshev polynomials of the first kind given by
T ,=0Ty=1and T,,(t+t') = t"+t" for n > 0. We define a sequence Uy, Uy, . . .
of elements of A by setting u,, = T,,(), i.e.

=1, U =1, TUy=1u; —2 (2.3.83)
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together with the recurrence relation for n > 2
EnJrl - ﬂlﬂn - ﬂnfl. (2384)

It follows immediately from the definition that uwx,, = T,,_2 + Tynio: indeed we can
consider the automorphism ¢ of Ay that sends x,, — 2,12, so that u =t + t=1.
Then by definition we get: @, ZT,, = (t" + )T = Tm—2n + Tmion-

Lemma 2.3.31. The map ¢ : P — {1} which sends every element of P onto 1,
extends uniquely to a ring epimorphism ¢ : A — Ay that is a coefficient special-
ization (defined in Section (1.1.7)), i.e. @(s) =3 for every cluster variable s of A.
Moreover ¢ restrict to a bijection between B and B such that p(b) = b for every
be B.

Proof. The exchange relations (2.3.74) are obtained from the exchange relations
(2.1.2) by specializing every element of P to {1}. It implies that ¢(z,,) = Tp.
Moreover the elements w and z of A defined in (2.1.3) and (2.1.4) respectively are
mapped by ¢ onto the elements w and Z of Ay;.

The fact that ¢(u,) = u, follows by observing that the defining relations for the
elements {u,}, specialize to the defining relations for the elements {u,} when P is
mapped onto {1}. O

Proposition 2.3.32. The set B = {cluster monomials}U{u,w"*,w,z*|n > 1, k > 0}
s a Z—basis of A whose elements are positive.

Proof. Since B is the image by ¢ of the ZP-basis B of A, and ¢ is surjective, it follows
that B spans Ay over Z. Moreover since B satisfies hypotheses of Theorem 1.5.7,
the same is true for B and hence B is a linearly independent set. The elements of
B are positive since they are image by ¢ of positive elements. O]

Newton polygons in the cluster {x, s, 3}

In this section we study Newton polytopes in the initial cluster Cr,, = {1, 2, z3} of
the elements of the basis B of the coefficient—free cluster algebra Ay of type Agl)
introduced in Section 2.3.11. Recall that the Newton polytope Newt¢ () of a Laurent
polynomial = € Z[s7, s3, s3] with respect to the ordered set C = {s, 5o, 53} is the
convex hull in Qr = Ray @ Ras @ Rag of all lattice points g = (g1, g2, g3) such that
the monomial s9 := s{'s3*s3® appears with a non-zero coefficient in x. We say that
a vertex v of Newtc(x) is monic if the corresponding monomial s” has coefficient 1
in the expansion of x in C. With some abuse of language we say that an element x

of A is monic in the cluster C if all the vertices of Newtc(x) are monic.

Example 2.3.33. By the definitions 2.3.75 and 2.3.76
NeWt(z, o0 () = conv{( ) , ( 4 )} (2.3.85)
Newt sy vy 251 (Z) = Conv{< i ) : < :ﬁl ) ’ ( }1 )} (2.3.86)
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where Conv means convex hull in Qr = R?. In particular w and Z are monic in
the initial cluster {x, 25,3} and their Newton polytopes are polygons contained
respectively in the plane Py = {(g1,92,93) : 1 — 92+ 93 = 2} and P_s = {(g1, 92, 93) :
g1 — g2 + g3 = —2}.

By the symmetries in the exchange relations (2.3.74), the Laurent expansion
of the cluster variable x_,, is obtained from the Laurent expansion of the cluster
variable z,,.4 by exchanging the variable x; and the variable z3. In particular the
corresponding Newton polytopes are related to each other by:

Newt{thm}(f_m) = (13)N€Wt{a:17r27x3}(Em—i—él)- (2387)

where (13) is the automorphism of ) = Z? that exchanges the first coordinate with
the third one. Th efollowing Proposition gives the explicit description of Newton
polytopes in the initial cluster Cr, = {x1, z2, x5} of the elements of B.

Proposition 2.3.34. The elements {T, : m € Z} and {u, : n > 1} of Apy are
monic in the initial cluster {x1, x5, x3}. Moreover, form > 2 andn > 1, the following
explicit formulas hold:

NeWt(z, ap.za) (Fams1) = Conv{( " ) , ( i ) , ( o ) , ( = )} (2.3.88)

Newt (s, og.00) (Fam) = C’onv{( L ) , ( 2o ) , ( s ) , ( "o )} (2.3.89)
Newt (s, 20,25} (Un) = C’onv{( _:):L ) : ( :OZ ) : ( :OZ ) , ( _gn )} (2.3.90)

Proof. In Theorem 2.1.9, formula (2.1.24), we have found the Laurent expansion of
Toms1 in the cluster Cp, = {x1,x9,23}. By specializing all the coefficients to 1, we
get the following formula (written in the form predicted in Proposition 2.3.1):

1—m
f2m+1 = X< 7(7)1 ) [Z (61*63) (m,1,e3) (e171)x§2+e3x§3—e1zg62—61 + 1]
e

e2—e3/ \m—1—eq es3

We deduce that the Newton polytope Newtc, (Tom+1) of Zam,i1 in the cluster Cp,

is the convex hull of the set {( A )| (e1,e2,e3)" € E} where E = {e =

—eg —e] +m
(e1,€2,€3) ] 0 < e3 <eg—1; e3 < ey <ep; 1 <ep <m—1}}U{(0,0,0)"}. We
consider the affine map
FiAP A3 e»—>Be—|—<15m )
where B is the initial exchange matrix given in (2.3.81). The map f sends convex sets
in convex sets and Newte, (Tami1) = f(Conv(E)) where Conv(FE) is the smallest

convex set containing F. It is easy to see that the convex set Conv(E) is the convex
hull of the following points of the affine space:

Conv(E) ZCOHU{( § ), ( "Lg?l )> < 20:1 )’ ( ,%Ei >}
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We hence apply the map f to every generator of Conv(E) and we find (2.3.88). The
fact that Ty,,,1 is monic follows directly by (2.3.88) and by the explicit formula.

The proof of (2.3.89) is quite similar. In Theorem 2.1.9, formula (2.1.25), we have
found the Laurent expansion of Ty, in the cluster Cp, = {z1,22,23}. We then
specialize all the coefficients to 1 in that formula and we get:

1-m
1

Toym = X(m - 1>{Ze (61—1) [(61—63) (m—2—€3) + (81—63—1) m—2—€3)]xi2+63x§3*61x§62*61 4 1}

e3 eo—e3/ \m—2—e1 ex—e3 —1—eq

We deduce that the Newton polytope Newtc, (Tami2) of Tomyo in the cluster Cp, is

eg +ez3+1—m

the convex hull of the set {( el >| (e1,€2,e3)" € E} where E = E; U Ey U
(0,0,0)" where E1 = {e = (e1,€9,€3) | 0 <e3<e;—1; e3< ey <ey; 1 <eg <m—2}
and Fy = {e = (e1,69,e3) | 0<e3<e;—1; e3<ea<e;—1; 1 <ep <m—1}. We
consider the affine map

f:A®— A3 e|—>Be+(171m )

m — 1

where B is the initial exchange matrix. The map f sends convex sets in convex sets
and Newte, (Tomi1) = f(Conv(E)). If m =2, E ={(0,0,0)%,(1,0,0)'} and hence

Newte, (T4) = CO”U{< _11 )’( _81 >}

which is (2.3.89) for m = 2.
We hence assume m > 3. In this case it is easy to see that Conv(E) is the convex
hull of the following points of the affine space:

ety =cme(1).(71)-(522). (525 (). (34

We hence apply the map f and we get

Newte,, (Tom) = COTW{( ;Ej )7 ( ;:02 )= < 3312 >’ ( 3312 )’ ( :Ej >’ < :ij >}

In order to get (2.3.89) we need to show that the third and the last generator of
Newte, (Tam) are convex combinations of the others. This can be done by direct
check. The fact that To,, is monic follows directly by (2.3.89) and by the explicit
formula.

In Theorem 2.1.9, formula (2.1.28), we have found the Laurent expansion of the
element u,, n > 1, in the cluster C;,, = {x1,2z2,23}. We then specialize all the
coefficients to 1 and we get the following formula (written in the spirit of Proposi-
tion 2.3.1):

e1—e2 n—ex [}

=) ey, i) (o)

_|_(n;i9;:1) (z;:})]$§2+63x§3_61x582—61 + 1]
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We deduce that the Newton polytope Newte,, (u,) of u, in the cluster Cy, is the

ey +e3 —n

convex hull of the set {( eg — e1 >| (€1,€9,e3)" € E} where E = {(e1,ez,e3)" €

—eg —e1 +n
Z30<e3<e—1; 0< ey <ep; 1 <ep <n}puU{0,00)7}U{(n,n,n)} We
consider the affine map

fA®— A3 e»—>Be+<_0n).

n

where B is the initial exchange matrix. The map f sends convex sets in convex sets
and Newte, (xomi1) = f(Conv(E)). Conv(E) is the convex hull of the following

points of the affine space:

comer=com(£). (1) (- (112 )-()-()=
comt(£).(8)-(8)-(.20)- (i

We hence apply the map f to every generator of Conv(E) and we find:

Cono{ (5 ) () (5 ) () (8 )

Since ( = ) = l( S > + ”—_1< 0 ) we find the desired (2.3.90). The fact that

—n n —n n —n

333

U, is monic follows directly by (2.3.90) and by the explicit formula. O]

Remark 2.3.35. We note that Newton polytopes of the elements of cluster variables
are actually polygons. This is equivalent to the fact that the algebra A is graded.
Indeed if we choose the grade g(z1) = g(z3) = 1, g(y) = 0 for every y € P and
g(x2) = —1 from the exchange relations it follows that

g(w) =2; g(vami1) =1; g(un) =0; g(zam) = —1; g(2) = —2. (2.3.91)

In view of that Newton polygons are contained in affine planes: more explicitly
let P, = {(e1,e2,e3) € Q| e — ez + e3 = i}. Then for every m € Z, we have
Newte, (vams1) C Pi, Newte, (u,) C Py and Newtc, (rom) C P-;. Figure 2.8
represents the polygons I, and T, in the subspace Py such that Newtc,, (z,,) =
II,, + (4,0,0), where i = —1 if m is odd and ¢ = 1 if m is even, T, = Newtc, (uy).

The following result is a corollary of Proposition 2.3.34.

Proposition 2.3.36. ) Ifb is a cluster monomial containing at least one cluster
variable different from xq, x9 and x3, then there exists a non-zero linear form

on QR

©ou(91, 92, 93) = g1 + Bog2 + 93, ay, B, V6 > 0

such that Newtz, +,2.1(0) C {w» < 0}. In particular Newty,, 4, 2,1(b) has
empty intersection with the positive cone Q)4 = Z>oay + Z>oa + Z>oas. Ta-
ble 2.1 shows the linear form @y, for every choice of the cluster monomsial b.
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T, T, T

Figure 2.8: Polygons in the subspace Py = {e; —e—2+e3 = 0} corresponding to New-
ton polygons of the elements of B by, from above to below: Newt(, 4, 2,3 (T2m+41) =
(1,0,0)" + Topmi1, Newtiz, oo w5} (Tam) = (—1,0,0)" + Ilop, Newty, oy 203 (un) = Th.
The orthogonal vectors in each figure are the basis v; = (—1,0,1)%, vy = (1,2,1)* of
Po.
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b) Fork>0 andn >1

NeWt (4, 25,09} (") C {g1 + 292 + g3 < 0}

c) Fork>0andn >1

NeWt (s, .25} (Un2") C {201 + g2 + 295 < 0}

In particular the monomial x¢xbz§, for every non-negative integers a,b and c,
doesn’t appear in the Laurent expansion of any other element of B with respect to
the initial cluster {1, xo, x3}.

Proof. Since Newt(s}s3sh) = pNewt(s;) + gNewt(s2) + rNewt(ss), it is sufficient to
find a linear form assuming negative values on the vertices of Newt(s;), Newt(sz)
and Newt(s3). Using the previous formulas we are going to give an explicit solution
of the corresponding systems of linear inequalities. Let’s prove a). We'll distinguish
the different kinds of cluster monomials.

o b=uby xi oxh o We put aomi i= ap, Bami1 = B and Yamq1 = Y. For
m > 2, using (2.3.89) and (2.3.88), it is sufficient to solve the following system
of linear inequalities:

((a(l—m) + y(m) <0
a(l—-m) + pB(1—-m) + o <0
fl—=m) + y(2-m) <0

am—-2) + pB(=1) + v(2-m) <0
a(-m) +  B(1) + y(m) <0
a(-m) + Bl —m) <0
a(-1) + Bl—m) + A(1—m) <0
a(m—2) + y(1—-m) <0
a(—-m) + ym+1) <0
a(-m) + pB(-m) + v <0
B(—m) + ~y(1—-m) <0

am—1) + pB(-1) + y(1-m) <0
o >0

I} >0

L ol >0

m—1 m
(m—1)(a—7v) <p <m(a—7)
a>0
B>0
v >0



An explicit solution could be the following:

Aomt1 = m(m — 1), ﬁ2m+1 = m(m — 1), Yom4+1 = m2 —2m + 1/2
(2.3.92)
In the same way for m = 1 we obtain

_ _J 0 ifg#0 _
043_17 ﬁ?)_{l lfq:O ) ’73_0

Using the symmetries of A we have for m > 0

O (2m+1) = V2(m+1)+1, ﬁ—(2m+1) = 52(m+1)+1, Y—@2m+1) = Q2(m+1)+1-

(2.3.93)

b=ab, x5, 125 o We put agy, =, Bom = [ and von, == Y. If m > 4 the
corresponding system is equivalent to

{ (m—=2)(a—7v)<B<(m—1)(a—-17)
n2y <y < 2l

An esplicit solution could be

Qo = m(m — 1), Bop, = (m — 1/2)(m — 3/2),v9, = m? — 2m + 1/2.
(2.3.94)
In the other "positive” cases it is easy to verify that the following are solutions:

062:1, 62:07 "}/QIO
064:6, 64:3, 74:2.
ag=9, Bs=5, v =5

As before we have
Q_(2m) = V2(m+1)> B—@m) = Bom+1), V=@2m) = Q2(m+1)- (2.3.95)

2P q AT : w R w — w R
b = x5, wis,, . 5. In this case we put a3, | == ay, B85, = By and 73, =
vp. For m > 3 the corresponding system becomes

7 < T
B> (m—1)(a=")
0>«

A solution could be the following:
ag)m—&-l =m, 6;771-‘,-1 = 2m, ’YﬁUmH =m — 2. (2396)

In the same way we have

v =0, By =1, ¥ =0.
w_ 1 ifg=0 w w
063—{0 lfq7£07 63_17 73_0

ag =4, By =5, 7 =1
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Ifm>0

L 9t 1) = Vo (mt1)+10 BT(2m+1) = ﬂéu(erl)Jrl’ Y omt1) = X(ma1)+1-

(2.3.97)
o b=uah 2% . In this case we put o3, := ay, 33, == [ and 73, := 7. The

corresponding system for m > 4 is equivalent to

m—2
m <7<«
B<y
p<(m—1)(a—7)

A solution could be

g, =m(m—1), B3, ="F(m—1), 7, =m(m-3). (2.3.98)
For the other "positive” cases an easily to verify solution could be
. . . J O ifr#0
Qy = 1, 62_0 Y2 = 1 ifr:()a
af =4, pBi=1, Vi = 2.
af =3, Bi=1, 7 = 2.
For the other cases
Q_(2m) = V2(m+1), B—@2m) = Bom+1), V—(@2m) = Q2(m+1)- (2.3.99)

From (2.3.90), (2.3.85) and (2.3.86) and from the lemma 2.3.38 below, b) and c)
follow by direct check. Then the only monomial that could appear in the Laurent
expansion of u,w* or in u,2z* is 1. For k > 0 the conclusion in these two cases
follows observing that g(u,w") = 2k and g(u,2*) = —2k, so 1 cannot appear in their
Laurent expansion. For k = 0 we observe that by definition u,x3 = x3_2, + T312n.
So 1 appears in the Laurent expansion of u,, if and only if 3 appears in the Laurent
expansion of x3_s, and of zy,,3. By part a) this cannot be the case since their
Newton polygons do not intersect the positive octant ¢ (in particular they cannot
contain the point (0,0, 1)). O

Lemma 2.3.37.

Conv{p; :i=1,--- ,n}+ Conv{g; : j=1,--- ,m} = Conv{p;, +q; : 1,7}
Proof. Let x =) A\jp; and y = > pjq; with > A\, = > p; = 1 and A;, pr; > 0. Then

Tty = Z Aipi + Zﬂj% = Z(Z f5)Aipi + Z(Z A g = Zf“j)‘i(pi +45)
7 J J J ? [2¥)

%

and D, 5 pi A = A (D2 py)++ -+ A (D2 15) = 1. On the other hand let @ = 3~ Ai;(pi+
Qj) with Zi,j )\ij = 1, )\ij 2 0. Then

v =Y (Agpi + Nijgj) = Z(Z Aij)pi + Z(Z Aij)4;

1,J %
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b

|

§0b<glv 92, 93)

wgm+1$gm+2x§m+3 m(m — 1)91 + m<m — 1)92 + (m2 —2m + %)93 m > 2
xé’xg 41
TyTIT] g1+ 92 qg>0
TS 18y | (m =g + (m —3)(m = 3)ga+ (m* —2m + 3)gs | m >4
THT3T] g
TyTiT 691 + 392 + 293
TETTT 991 + 592 + 593
xgm+1wqx§m+3 mag + ngg + (m — 2)93 m Z 3
xﬁ’wqxg g2
ryT] 91 + g2
rywly g2 q>0
rywiay 4g1 + 592 + g3 q>0
Ty 2T 40 m(m —1)gi + F(m — 1)ga +m(m — %)95 m > 4
ry2T) g1 r >0
121 g1+ g3
w2y 491 + g1 + 293
rg2lw 391 + g1 + 293
upw" g1+ g2+ 93 1,k>0
U, 2" g1+ 92+ 93 >1, k>0

Table 2.1: Every Laurent monomial y appearing in the Laurent expansion of b in
the cluster Cr, must satisfy the equation ¢,(y) < 0. The linear form of the other
elements of B (involving cluster variables z_,,, m > 0) are obtained from these by
(2.3.93), (2.3.95), (2.3.97) and (2.3.99).
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Lemma 2.3.38. Let a and [ two non-zero positive scalars. Then
Conv{ap; :i=1,--- ;n}+Conv{fBp; :i=1,--- ,n} = Conv{(a+0B)p; :i=1,--- ,n}

In particular kConv{p; : i = 1,--+ ,n} = Conv{kp; : i = 1,--- ,n} for all positive
integer k.

Proof. Conv{ap;} + Conv{fp;} = Conv{ap; + Bp;} by Lemma 2.3.37. In particular
Conv{(a + B)p;} C Conv{ap;} + Conv{fp;}. On the other hand we first note that

«

m[(a + B)pil +

ap; + Ppj = [(a + B)p;] € Conv{(a + B)pi}.

B
a+f3
Then

D Alaws) + 3 i(ps) = Z Zug i(api +Z ZA 15(Bp;)

%

— Z )\i,uj ap; + fp;) € Conv{(a + B)p;}

i?j

since D _; ; Aip; = 1 and Ay > 0 O

Newton polygons in the cluster {z;,w,z3}

In this section we find explicit formulas for the Newton polytopes of the elements of
B in the cluster {z1,w, z3}. In order to simplify notations we put w = w.

Proposition 2.3.39. For m > 2 and n > 1 the following explicit formulas hold:

Newt (s, w.ma) (Tami1) = Conv{( o ) , ( I ) , ( o )} (2.3.100)

2—m —m

—1
2—m m

Newt () w,as) (Un) = CO”'U{( 0 ) ( ) < *">

Moreover u,, is monic in the cluster {x1,w,z3}.

Newt (2, w2} (Tom) = C’onv{( fn:_lnll > , ( 0 ) : ( o > : ( ini—g )} (2.3.101)
}

(2.3.102)

Proof. By Theorem2.1.9, formula 2.1.26, we have the explicit expression of xg,, 1 in
the cluster {z1,w,x3}. We then specialize all the coefficients to 1 and we get the
following formula (written in the spirit of Proposition 2.3.1)

1—-—m
0

Py = o)l ) [ S, () () et 41

m—1—eq es

We deduce that the Newton polytope Newt(y, wazs}(T2mt1) Of Zomir in the clus-

2e3+1—m

ter Coyelic is the convex hull of the set {< e1 - es >| (e1,69,e3)" € E} where F =

—2e1 +m

{(e1,0,e3)! € Z3| 0 <ez3<e; —1; 1 <e; <m—1}U{(0,0,0)'}. We consider the
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convex hull Conv(F) of E, i.e. the smallest convex set containing E. It is the convex
hull of the following points of the affine space:

Conv(E) :C’onv{< § ), < ™o ), ( mgl >}

m — 2

Let us consider the affine map

fIA3—>A3: e’_)BCyclice_f_ ( 1_0m > _ < 2:13_—;2 >+ < 1—0m >

m —2e1 + e2 m

0 -1

where Bevelic = ( o ;1 ) is the exchange matrix of the seed containing the clus-

ter {x1,w,z3}. The map f sends convex sets in convex sets and Newte, (Tomi1) =
f(Conv(E)). We hence apply the map f to every generator of Conv(E) and we
find (2.3.100). The fact that T, is monic follows directly by (2.3.100) and by the
explicit formula.

The proof of (2.3.101) follows the same strategy. By specilizing all the coefficients
to 1 in formula 2.3.103 we get:

2—m
-1

Ty = (l_l’ w, 1’3)(7”_1 ) |:Ze (m—2—e3+62) (61—1) ( 1) x%€3—62w61—63x§261+62 + i_? + 1]

m—2—ej+ea e3 €2

For m = 2 we get

1 x2 T
— 3 3
x4—_+_+_

T, wr w

and (2.3.101) holds in this case. We hence assume m > 3. We deduce that the
Newton polytope Newty, w.zs} (Tam) of Tom in the cluster Coyee is the convex hull of

2e3 —eg+2—m

the set {( er—eg -1 )| (e1,€2,e3)! € E} where E = {(e1,e3,e3)! € Z3| 0 < e3 <

—2e1 +ex+m—1
er—1;1<e;<m—2+ey, 0<e; <1}U{(0,1,0)"} U{(0,0,0)"}. We consider the
convex hull Conv(E) of E. It is the convex hull of the following points of the affine
space:

ety =con( (1) (2520, (1) (1) (200

Let us consider the affine map
fZA3—>A3Z eHchClice+ ( 2:71711 )

The map f sends convex sets in convex sets and Newte, (Tom) = f(Conv(E)). We
hence apply the map f to every generator of Conv(E) and we find

Newttn o () = Comn{ (51). (10,) (52)- () (52 ) (e

The second and the third vectors are convex combination of the others:

0 = -1 m — 2 0
3-m 2m —2\ m 2(m —1)(m—2)\ 2-m 2m — 4\ 2-m
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and

<2irg>_ 1 <21m)+2m_5<1 )+ 1 <m53)
s-m ) 2m—3\ m-1 2m — 3\ 2- 2m — 3\ 2-m )’

The fact that Ta,, 11 is monic follows directly by (2.3.101) and by the explicit formula.

33

We now prove (2.3.102). In formula 2.1.29 we put all the coefficients to 1 and
we get:

U= Xu ){x%”w;2"+2e G () + (o) (o) | afewe a1

where x,, = (71, w, z3).
We deduce that the Newton polytope Newty, w24} (Un) of U, in the cluster Coyeic

2e3 —n

is the convex hull of the set {( e1—es >| (e1,€9,6e3)" € E} where E = {(e1,0,e3)" €

—2e1 +n
Z31<e3<e—1; 1 <ep <npU{(e1,0,0) € Z% 1 <e; <n}U{(n,0,n)}U
{(0,0,0)"}. We consider the convex hull Conv(FE) of E. Tt is the convex hull of the
following points of the affine space:
')

Conv(E) = Com;{( § ), ( § ),(

Let us consider the affine map

o3

n

fiA3—>A32 er—>chC”ce—|—<70 )

The map f sends convex sets in convex sets and Newte, (u,) = f(Conv(E)). We
hence apply the map f to every generator of Conv(FE) and we find the desired
(2.3.102). The fact that @, is monic follows directly by (2.3.102) and by the explicit

formula. O

Corollary 2.3.40. Forn > 1 and k > 0

Newt 4, w s} (Un2") = C’onv{( :Ljfkk ) : ( wf: ) : ( :"nii )} (2.3.103)
Newt (4; w s} (Upw®) = Conv{( 7: ) : ( W ) : ( n}nk )} (2.3.104)

In particular Newt{xl,w,xs}(unzk) C {g1+292+93 = —2k} and Newt{m,w’xs}(unwk) C
{91+ 292+ g3 = 2k} N {g1 + g3 < 0}.

Proof. By definition, zo = 2% and zx3 = x9 + x4. From (2.3.101),

T w

Newt (o) wes} (T2 +24) = COHV{( _(1)1 ) ’ ( _(1)1 > ' (
() () = comt(2).(4).(0)r
)

Newt (s, w,as)(2) = Conv {( :1} > , ( }1 ) , ( :11
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By the lemma 2.3.38 and the formula (2.3.102), Newt{y, 1251 (un2*) = Conv{(n,0, —n)’,

(—n,0,n), (—n,n, —n)'} + Conv{(k, —k,—k)', (=k,0,—k)", (=k,—k,k)'} = {(n +
k,—k,—n—k)", (n—k,0,—n—k)", (n—k,—k,—n+k)", (—n+k,—k,n—Fk)" (—n —
k,0,n—k) (—n—k,—k,n+k)" (—n+kn—k,—n—k)' (-n—k,n,—n—k)", (—n—
k,n—k,—n+k)'}. So (2.3.103) and (2.3.104) follow by direct check. O

The next result is an analogous of the proposition 2.3.36 for the cluster {z1, w, x3}.

Proposition 2.3.41. Ifb is a cluster monomial containing at least one cluster vari-
able different from x1, w and x3, then there exists a non-zero linear form on Qg

ou(91, 92, 93) = g1 + Bog2 + V93, o, By, 7 > 0

such that Newtyy, w2, (0) C {@s < 0}. In particular Newt(y, ,2,1(b) has empty
intersection with the positive cone Q)4 = Z>ooq + L>oog + L>pas.

Moreover the monomial x$w’xS, for every non-negative integers a,b and c, does not
appear in the Laurent expansion of any other element of B with respect to the cluster

{1'1, w, .fl'g}-

Proof. We're going to follow the proof of the proposition 2.3.36.

o b =abh, x5, oxh, 5. We put oppr = @, Pamy1 = Bp and Yomi1 = n.
Using 2.3.101 and 2.3.100, it’s sufficient to solve the following system of linear
inequalities:

((a(l—m) + y(m) <0
a(m—3) + B + v(2-m) <0
a(l—m) + pfm—-1) + v2-m) <0
a(l—-m) + pB(-1) + ~(m) <0
a(m—2) + y(1—-m) <0

a(-m) + pB(-1) + y(m+1) <0
a(-m) + pm—-1) + v(1—-m) <0
a(-m) + ym+1) <0
alm—2) + 5] + v(1-m) <0
a(-m) + pm) + ~y1-m) <0

« >0

15} >0

L ¥ >0

For m > 2 this is equivalent to the following one

z—:?a<7<m7_1a
y<(m-1p-(m-2)«
a>0
6>0

v >0
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An explicit solution could be:

aomy1 = m(m — 1), Popi1 = }L(m —1), Yomy1 =m?—2m+1/2.
(2.3.106)
In the same way we obtain

a; =0 Br=1 71 =0

B ] 0 ifr#0 B

By using the symmetries of A and the definition of b, we have for m > 0

A @mt1) = V2(mi1)+15  O—@ma1) = Bo(mr1)+1, V—@mt1) = Qo(mt1)+1-
(2.3.107)

b=ab, x5, 105, 0. We put aon, =, Bam = [ and von, == Y. If m > 4 the
corresponding system is equivalent to

nto < < mlg
m—1)y—(m—-2)a<f<(m—2)y—(m—3)
An explicit solution could be
Qom =m(m —1), Loy =m—1, 7o, =m*—2m+1/2. (2.3.108)

In the other ”positive” cases it is easy to verify that the following are solutions:

a2:{1 itp=20 By =1, 7y =0.

0 ifp#0 "~
CY4:2, ﬁ4:1, ’}/4:1/2
a6:127 ﬁ6:37 76:7
As before we have
A_(2m) = V2(m+1); /6—(2m) = ﬁ2(m+1)7 Y—(@2m) = O2(m+1)- (2.3.109)

__ 2P q AT : w R w — w —
b = x4, wirs, 5. In this case we put a3, | == ay, B3, = By and 73, =
¥p. For m > 4 the corresponding system becomes

{ M20 <y < Bdq
8=0
For m > 3 a solution could be:
o =m(m—1), BY =0, . =m*>—2m+1/2. (2.3.110)
In the same way we have

¥ =1, fY =0, 4 =0,
av =4, B =0, 4@ =1

Ifm>0

L gt 1) = Va(mt1)+10 ﬁf(Qm—&—l) = ﬁéu(m+1)+17 Y€ omt1) = X(m1)4+1-
(2.3.111)
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b \ o(91, 92, 93) |

Tm1T9m42Tmas | MM — 1)g1 + %(m — 1)gs + (m* —2m + %)93 m > 2
Ty T 92
TG 91+ 9o
TETITY 9 r>0
xgmxgm+lxgm+2 m(m B 1)91 + (m _ 1)92 + (m2 —2m + %)93 m Z 4
THT3T 92
rhrdg 291 + g2 + %93
TETITY 1291 + 392 + 793
ah, o wixh, o m(m —1)g; + (m? — 2m + %)gg m > 3
rswiay 9
rhwlzl 4g; + g3
T2 40 91+ 292 + g3 m >4
unw"” gl—i—gg nZl,kZO
unzk g1+gg nZl,k:ZO

Table 2.2: Every Laurent monomial y appearing in the Laurent expansion of b in
the cluster Cr, must satisfy the equation ¢,(y) < 0. The linear form of the other
elements of B (involving cluster variables z_,,, m > 0) are obtained from these by

(2.3.93), (2.3.95), (2.3.97) and (2.3.99).

o b=uah 2%% .. In this case we observe that g(b) = —p — 2¢ — r. Then

NeWt{zlvwsz}(b) C prfgqfr = {91 +290+g3=—p—2q—1r< O}. (2.3.112)
It remains only to prove that the monomial x%w’z§ does not appear in the u,w"
and u,z"’s Laurent expansion in {z1,w,z3}. By corollary 2.3.40, u,w* could have
only w* with this property. But this happens if and only if 1 appears in the Laurent
expansion (in {z1,w, x3}) of u,,. We observe that by definition u,x3 = T3 9, + Z310,.
So 1 appears in the Laurent expansion of u, if and only if 3 appears in the Laurent
expansion of either x3 5, or zs,,3. This cannot be the case because their Newton
polygons do not intersect the positive octant @) (in particular they cannot contain
the point (0,0,1)"). Still by the corollary 2.3.40, for k& > 0, the Laurent expansion of
u,z"¥ cannot contain any such monomial, since its Newton polygon does not intersect
the positive octant. O

The following Lemma is the analogous of the Key Lemma 1.5.2.

Lemma 2.3.42. For every element b of B there exists a cluster C = C, and a monic

vertex vy, of Newtc(b) such that 5 does not lie in Newtc(b') if V' # b is another
element of B.

Proof. 1f b is a cluster monomial in the elements of a cluster C, by Propositions 2.3.36
and 2.3.41 we can choose C, = C. If b is an element of {u,w*,u,z*|n > 1, k > 0}
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we claim that the following couples have all the desired properties:

~—

if b =1, then C = {x1, 29,23} and v = (—n,0,n);
if b =u,w® then C={z;,w, 23} and v = (—n,k,n);

if b=u,z" then C = {1y, 2,24} and v = (—n,k,n).

~—

Indeed let us consider first the case b = u,,. By Proposition 2.3.34, ¢” occurs in the
Laurent expansion of u, with coefficient 1. We show that ¢” does not occur in ,
for p # n as well: by definition @, = T)(u;). By using the Taylor expansion of T, in
t + 1t~ we have

p
_ Z 1 _
k=0

Since the derivative of T}, is a positive linear combinations of T, with ¢ < p, the only
monomials z{xbz§ with a — ¢ = 0 are such that (a,b,¢) = (£p,0,Fp). Moreover
s7 does not occur in any cluster monomial of B since v does not satisfy the linear
inequalities () < 0 where ¢ is given by Table ??7. Finally s” cannot appear
in the Laurent expansion of w,w* and u,z* if k& > 0, because g(s?) = 0 whereas
g(w,w*) = 2k and g(u,2"*) = —2k. The other two cases follow by the same arguments

using Table 2.2 instead of table ?77. O

Theorem 2.3.43. The set B = {cluster monomials} U {w,w",w,z*|n > 1, k > 0}
is the canonical basis of Agy.

Proof. Since of Proposition 2.3.32 it remains to prove that the elements of B are
positive indecomposable. This is done as in the proof of Theorem 1.5.3. O

2.3.12 The elements of B are positive indecomposable

In Propositions 2.3.9 and 2.3.23 we have proved the set B = {cluster monomial} U

{u, W, u,2¥ : n > 1, k > 0} is a ZP-basis of the cluster algebra A with principal

coeflicients at the initial seed

ZITL = {B = ( ,Oi El i ),{I1,$2,5E3}»{91792793}}-

Moreover the elements of B are positive (Proposition 2.3.22).
Proposition 2.3.44. The elements of B in A are positive indecomposable.
Proof. 1t follows by Lemma 2.3.31 and Theorem 2.3.43. n

This conclude the proof of Theorem 2.1.4.
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2.4 General coefficients

In this section we allow P to be a generic tropical semifield (see Definition 1.1.1).

Let Ap be a cluster algebra (of type Agl)) inside the field QP (1, z2, x3) with initial
seed

Eln = {B - ( Bl §1 i ),{$1,l‘2,$3},{y1,y2,y3}}'

—1

By Theorem 1.1.11 we know that the cluster variables of Ap are {z,, }mez U {2, w}
and every cluster variable s has the form

5 — Fs ’.7-— (gla@\Q?@\n)Xg
F, |IP> (y1,?/2,y3)

S

where
Y1 __ Y23

:/y\l = Zoz3’ @\2 — T3 0 @\3 = Y3T122 (241)

z3

(defined in (2.3.2)), Fs and g are respectively the corresponding F—polynomial given

by Proposition 2.3.4 and the corresponding g-vector given by Proposition 2.3.3.
Recall from Section 1.5.1 that if a canonical basis of Ap exists, it is determined up

to rescaling by elements of P. Having this in mind we give the following definition.

Definition 2.4.1. For every cluster variable s of Ap we define

S = Filp(y1, y2,y3) - S (2.4.2)

We call these elements of Ap principal cluster variables. Similarly given a cluster
monomial b of Ap we call the element B = Fy|p(y1,¥2,y3) - b a principal cluster
monomial of Ap.

For every n > 0 we define

n

. PPN xXr
Un = Fun (yla y27?/3) : x_i (243)
1

Principal cluster monomials are elements of the universal semifield in six variables
Qs (Y1, Y2, Y3, T1, T2, x3) (see Definition 1.1.1) since they are rational functions with
positive coefficients in these six variables; moreover in this semifield a principal
cluster variable S of Ap coincide with the rational expression of the cluster variable
s of the cluster algebra A with principal coefficients at the initial cluster >;,,, which
explains the terminology.

Theorem 2.4.2. The set B = {principal cluster monomials} U{U,Z* U,W*: n >
1, k > 0} is a canonical basis of Ap (see Definition1.5.1), i.e. B is a ZP-basis of
Ap whose elements are positive indecomposable.

Proof. The elements of B are linearly independent over ZP since B satisfies hypoth-
esis of Theorem 1.5.7. The straightening relations given by Proposition 2.3.27 hold
in Qsr(v1,Y2, Y3, T1, T2, 23). So we can use the same argument as in the proof of
Proposition 2.3.23 in Section 2.3.10 in order to conclude that B spans Ap over ZP.

89



So B is a ZP-basis of Ap. We now prove that the elements of B are positive. The
expansion of an element B € B in the cluster {x,w,z3} is given by

Fl;w (gl;wa /y\2;w7 Z//\B;w)
FI}U|P(y1;wa Y2:w, yS;w)

B = Fylp(y1, 92, y3) (21, w, z3)8

where F;” is the F'-polynomial of b given by Proposition 2.3.13 and g’ is the g—
vector of b given by Proposition 2.3.17 and {¥1.w, Y2.w, Y30 } are the coefficients of the
(unique) seed of Ap with cluster {x;,w,x3}. Then the Laurent expansion of every
element of B in the two clusters {z, z9, 3} and {x1,w, x5} has coefficients in Zx(P.
By the symmetry of the exchange graph we conclude they are positive.

The fact that the elements of B are positive indecomposable follows by Lemma 2.3.31
and Theorem 2.3.43. O

2.5 [F-—polynomials and quiver Grassmannians

This section is somehow independent on the previous ones. We consider the acyclic
quiver Qp, of type Agl):
N
Qm= 1<—3,
and we study the map F' : Rep(Qr.) — Zly1,ys,y3] which associates with every
Q) n—representation M the polynomial Fiy/(y1,y2,ys) defined by:

Fru(yiyo,us) = Y xe(M)yf'ystys’ (2.5.1)

e=(e1,e2,e3)

where xe(M) denotes the Euler-Poincaré characteristic of the quiver Grassman-
nian Gre(M ), the projective variety of the sub-representations of M with dimension
vector € = (e, ez, e3). The map F is the natural generalization of the Caldero—
Chapoton—Keller map in the coefficients—setting.

The map F' has the following multiplicative property:

FyenWi, v2,y3) = Fa(ys y2, y3) - Fn (Y1, y2, 3)- (2.5.2)

The proof of this fact follows from [10, Proposition 1], where it is shown that ye(M @
N) = prgee Xe(M)xg(N).

Let us collect the main results of the present section that also justifies the interest
of the map F: Proposition 2.1.6 shows that the denominator vector in the initial
cluster {x,z9, x5} of the cluster algebra A restricts to a bijection between cluster
variables of A and a proper subset (the real Schur roots) of the real roots of the root
system of type Agl) (see section 1.2.2 for more informations about the structure of a
root system of type Agl)). By definition every Schur root d is the dimension vector
of a unique (up to isomorphisms) rigid module M, i.e. a module without nontrivial
self-extensions. This terminology comes from the well known results due to Kac
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[23]. Real Schur roots depends on the orientation of the quiver (see [12]) while real
roots do not. It is well-known (see [23, Theorem 3]) that every real root determines
a unique (up to isomorphisms) @;,—representation. Briefly we have the following
bijections:

cluster vabriables<ﬂ> Schur roots dim. Rigid @1, representations
vector vector
S d(S) Ms

One of the main results of the present section (Proposition 2.5.2) shows that for every
cluster variable s the polynomial Fy (yi,ye,ys) is the F—polynomial of s (see Sec-
tion 2.3.3). Moreover, it follows from (2.5.2) that for every rigid @ ,—representation
M = &M, (sum of indecomposable rigid representations M;), there exists a unique
cluster monomial s¢ss$ such that its F-polynomial is exactly Fis. In other words
the image of the rigid @)y, representations by F'is a set of “F—polynomials”.

In section 2.6 we will compute Euler—Poincaré characteristic of quiver Grassmannians
associated with non-rigid indecomposable @) ,~representations (Proposition 2.6.1),
so that we have an explicit description of the image of F'. The natural question at
this point is to see if this image is a set of “F—polynomials”. In other words we asked
if there exist elements of A whose corresponding F—polynomials are F; where M is
an indecomposable non-rigid Q) p,—representation (the image of the rigid representa-
tions has just been described). The answer to this question is affermative and the set
of such elements is divided into two families {s,, : n > 0} and {r,, : n > 0} (Defini-
tion 2.6.5). Moreover if we complete one of these families by the set of cluster mono-
mials we get the two sets S = {cluster monomials}U{s,w* s,2*: n > 1, k >0} and
R = {cluster monomials} U {r,w* r,z* : n > 1, k > 0}. Proposition 2.6.6 shows
that both § and R are two ZP-basis of A different from every canonical basis. We
call § a “semicanonical” basis of A in analogy with semicanonical basis found in
[11] for a coefficient—free cluster algebra of type Agl). In loc.cit. the semicanonical
basis was parameterized by Chebychev’s polynomials of the second kind, while the
canonical basis by Chebychev’s polynomials of the first kind. The same is true in A
as it is shown in Corollary 2.6.7.

We begin by recalling the well-known classification of the indecomposable rigid Q.-
representations. We assume that all the representations are over the field k = C of
complex numbers.

2.5.1 Indecomposable rigid ();,—representations

Here we recall the classification of the representations of the quiver )y, that are rigid,
i.e. without non—trivial self-extensions. The classification of the indecomposable
representations of ()7, will be completed in Section 2.6 where Proposition 2.6.1 will
show the indecomposable ();,—representations that are not rigid. The quiver @y, is
the acyclic quiver of type Agl) and its classification is well-known in literature (see
e.g. [14] or [23]). In this thesis Qp, is the quiver associated with the exchange matrix

of a cluster algebra of type Aél), and it was introduced in Section 2.2.
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Proposition 2.5.1. The indecomposable rigid Qr,-representations have dimension
vector the real (Schur) roots: (n+1,n+1,n), (n+1,n,n), (n,n+1,n+1), (n,n,n+1),
(0,1,0) and (1,0,1) for every n > 0.

We denote by Sy the simple representation of dimension (0, 1,0) and by Si3 the
representation of dimension (1,0,1). They correspond respectively to the cluster
variable w and z and they are sometimes called simple requlars. They are at the
bottom of the tube of rank two in the AR—quiver of Qp, (see figure 2.3).

For n > 0, let My(,19)11 and My, 19y be the Qr,-representations of dimension
vector respectively the real root (n+ 1,n+ 1,n) and (n 4 1,n,n). They correspond
respectively to the cluster variable o, 42)41 and T, 19 (see figure 2.4) which explains
the terminology. By using Kac’s Theorem ([23, Theorem 3]) we can assume there
exist basis {v1, -+, Ung1} of Mognyo)41;1 and Mo(q9)41,2 (resp. Mo, 49).1), and basis
{ul, st ,un} of Mg(n+2)+1;3 (resp. Mg(n_‘_g);g and Mg(n+2);3) such that

kn+1
/ \ i/ \
My(ny2)41 = kol ~ E™ 2(n+2) = gl ~ km

where ¢ (u) = v and o(ug) = vgy for k= 1,---  n and the maps labeled by

43 7

=" are the identity map. Indeed it is not hard to prove that their endomorphism
ring is a local ring and thus they are indecomposable.
The duality functor D sends the module M = (M, My, M3, fu, fs, fc) to the module
DM = (M3, My, M; fa, 15, ) where M is the dual vector space of M;, i =1,2,3.
We define M_(2,41) = DMo(ny2y41 and M_y, = DMy, 49) for every n > 0. It follows
that M_(2,41) (resp. M_5,) is the unique (up to isomorphisms) module of dimension
vector (n,n+1,n+1) (resp. (n,n,n+1)). Moreover given a Q)j,~representation M
of dimension (dy, ds, d3), the duality functor D induces a map N +— (M/N)* between
G7(e1,e9,e5) (M) and G7(ay—cy, dy—es, dy—er) (DM ) s0 that we have in particular

X(e1,e2,e3) (DM) = X(ds—e3,d2—ez,d1—e1) (M) (253)

We will use this fact later in the proofs.

2.5.2 F—polynomials of cluster variables

Here we compute Euler—Poincaré characteristic of quiver Grassmannians associated
with the indecomposable rigid ();,—representations.

Proposition 2.5.2. Using the previous terminology the following formulas hold:

eg—ez\[(n+1—e3)\ e —1
(M, _ 254
X(e1,e2, 3)( 2( +2)+1) (62 — 63) (n +1-— 61) ( €3 ) ( )

(with the convention that the right hand side is equal to 1 if e = e5 = e3 =0);

e1—1 e1—es3\ [n—es e1—e3—1 n—es
e M n = 2.5.5
Xe(Mare) ( es ) {(62—63) (“—61)+( e2—€3 )(”—eﬁlﬂ (2.5.5)
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(with the convention that the right hand side is equal to 1 if e = e5 = e3 = 0);

1 if e=0o0r e=(0,1,0
Xe(S2) = { 0 ! otherwz'se( ) (2.5.6)
1 if e=0o0r e=(1,0,0) or e=(1,0,1
Xe(S13) = { 0 ! ot(herwz's)e ( ) (2.5.7)

In particular for every rigid Qr,—representation M, Fy; is the F—polynomial of the
cluster variable with denominator vector (in the cluster {xi,xs,x3}) the dimension
vector of M.

The proof is based on a suitable fiber bundle between the quiver Grassmannians
associated with (), and quiver Grassmannians associated with the Kronecker quiver
IC. We hence recall some facts about K and its quiver Grassmannians. Before doing
that we recall the useful notion of “right equivalence”.

2.5.3 Right—equivalence

In this section we recall the concept of "right—equivalence” given in [13] specialized
to the case treated in this thesis. This is useful in order to compute Euler—Poincaré
characteristic of quiver Grassmannians.

Definition 2.5.3. Let Q = (Qo, Q1) be a finite quiver. Two finite dimensional kQ—
modules M = @;cq,M; and N = ©jcq,N; are called right-equivalent if there exists
an automorphism ¢ : kQ) — kQ of the path algebra and an isomorphism ¢ : M — N
of Qy—graded k—vector spaces such that

¢(a-m) =1p(a) o d(m) (2.5.8)

for every @ € kQ and m € M (here we have denoted by - and o respectively the
action of kQ on M and N).

The following Lemma justifies the introduction of the previous definition in this
section.

Lemma 2.5.4. Let Q) be a finite acyclic quiver and (M, -) and (N, o) two finite di-
menstonal kQ-modules. If M and N are right—equivalent, then, for every dimension
vector €, Gre(M) = Gre(N). In particular xe(M) = Xxe(IV).

Proof. By hypothesis there exists an isomorphism of k—vector spaces ¢ : M — N
and an automorphism ¢ of the path algebra k@ such that (2.5.8) holds for every
a € kQ and m € M. We introduce another structure x of kQ)—module on N by
a*n = P(a) on. Since ¢ is a kQ—automorphism, (N,*) is a kQ—-module. By
(2.5.8), (M, ) and (N, *) are isomorphic by ¢ as kQ—modules. In particular we have
Gre((M,-)) = Gre((IN,*)). Now it is easy to see that every submodule of (N, o) is a
submodule of (N, x) and viceversa since 1 is an automorphism of k£Q. We conclude
that Gre((IV,0)) = Gre((N,«)) and we are done. O
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2.5.4 Indecomposable representations of the Kronecker quiver

Here we recall the well-known classification of the indecomposable representations
of the Kronecker quiver

K: 1=—2
b
We assume that all the representations are over the field £ = C of complex numbers.

Proposition 2.5.5. 1. The indecomposable rigid KC-representations’ dimension
vector are the real roots (n,n+ 1) and (n+1,n), n > 0.

2. Forn > 0, let mpi3 = {(Manss), (0 bizi2 and moy, = {(m_py), (¢]) tiz12
be respectively the (up to isomorphisms) indecomposable representation of di-
mension vector (n + 1,n) and (n,n +1). We assume that m_, 1 = m;,, 3.,
and m_n,2 = My 3.1. Then there exists a basis {uy,...,u,} in Myy30 and a
basis {v1,..., g1} 0 Myiga such that pi(ug) = v and ps(ug) = vgy1 for
k € [1,n]. In these bases

t

$1 “1

m,s: prtl=—— k" ; m_, : fn =—— ntl
Y2 t
P2

where @ is the transpose of the matriz ¢;, i =1, 2.

3. The indecomposable reqular K-representations have dimension vector (n,n) for
every n > 1. For every \ € k, they are, up to isomorphisms, the following

= Jn(0)
mieI()\) e m?9(c0) : kh=— k"
Tn() -

where J,(\) is the n-Jordan block of eigenvalue X € k and the maps labeled by

« 2

=" are the identity map.
4. my, 3, m_, and mZ9 for n > 0 are the all indecomposable K—-representations.

This result is due to L. Kronecker [25]; for a modern treatment see [20, Section 5.4]
or [1].
Next result provides the Euler—Poincaré characteristic of the quiver Grassmannians
associated with the indecomposable -representations. Recall from section 2.2, that
given a K-representation m, x(e, ¢,)(m) denotes the Euler-Poincaré characteristic
of the variety of all sub-representations of m with dimension vector (ej,es). In
order to do that it is sufficient to consider only a small class of indecomposable
K-representations as it is shown by the following Lemma.

Lemma 2.5.6. With notations of Proposition 2.5.5, we have
e m?()\) and mI*®(c0) are right equivalent for every X\ € k. In particular

Xe(my79(X)) = Xe(my?(c0)).
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d X(e1,ez)(mfn> = X(n+1—e2,n—e1)(mn+3)

Proof. In Definition 2.5.3 we choose ¢ : mZ®(\) — m/*9(0) to be the identity map
and the automorphism ¢ defined on the generators of kXC by ¢ : a + b; b+— a+ b
and identity on the idempotents.

Second part follows from the fact that m_,, = Dm,,, 3 where D is the duality functor
that sends a module m = (my, ma, fa, fo) to the module Dm = (m3, m}, f, fF)
being m; the dual vector space of m;. D induces an isomorphism of algebraic variety
n — D(m/n) between Gr(e, ;) (m) and Gr(d,—ey.d,—e,)(Dm) where d; = dim(M;). O

Proposition 2.5.7. [11, Propositions 4.3 and 5.3] With notations of Proposition 2.5.5

n+1l—e e — 1
X(el,ez)(mn+3) = < 2) ( 1 ) + 631,0632,0 (259)

n+1—e; €9

where dqy s the Kronecker delta;

e n— € €1
X(er,e2) (M) = (n B 61) (62). (2.5.10)

2.5.5 Proof of Proposition 2.5.2

Let us recall some properties of the Euler-Poincaré characteristic. We follow the
treatment in [22, Section 4.5], where the Euler-Poincaré characteristic x(X) is de-
fined for any complex algebraic variety X (not necessarily smooth, projective or
irreducible). The following facts are shown in loc.cit.

If A is a finite dimensional affine space, then y(A) = 1. (2.5.11)
If a variety X is a disjoint union of finitely many (2.5.12)
locally closed subvarieties X;, then y(X) = Z X(X;).

If X — Z is a fiber bundle (locally trivial in the Zariski topology) (2.5.13)
with fiber Y, then y(X) = x(Y)x(2).

In our situation X = Gre(M) is a projective variety; in particular every Zariski-open
subset of X is a locally closed subvariety. As a consequence of (2.5.11) and (2.5.12),
the Schubert cell decomposition of the Grassmannian implies that

dim V'
X(Gr, (V) = ( o ) (2.5.14)
r
Let us prove (2.5.4). The surjective morphism of algebraic variety
kn+1
PAENG o
GT(e1,e2,05) (K™ P2 k") GT (1,05 (K" % k") (N1, Na, Ns) = (N1, Ns)

sending the tern (Ny, N2, N3) onto the pair (N, N3), is a (locally trivial) fiber bundle
with fiber Gr(c,—eq)(e1 —e3). From (2.5.12), using (2.5.9) and (2.5.14), (2.5.4) follows.
We now prove (2.5.5). We need the following Lemma.
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Lemma 2.5.8. Given a Qp,-representation of the form

M,
fa/ \fb
M =M, ~ M

where M; = K @ I for some i =1,2,3, then xXe(M) = Xe(Mk) + xe(M) where
My = {N = (N1, Ny, N3) € Gre(M)| N; 2 K}

and
Mp ={N = (N1, Ny, N3) € Gre(M)| N; C I}.

Proof. Clearly Gre(M) is the disjoint union of the closed subset My and its com-
plement (locally closed) Mg = {N|N; 2 K} in Gre(M). Then xo(M) = x(Mg) +
X(M5). The projection onto I in M; induces a surjective morphism of algebraic
variety 7 : My, — M with affine fiber. We then have x(Mjy,) = x(Mj). O

Let us prove (2.5.5). We consider the decomposition M; = Im(p1)@®Cuv,4q of the
vector space at the vertex 1 of the module My, 40y = (M7, My, M3). By Lemma 2.5.8
we have

T

X(el,eg,eg) (kn+1 T kn) = X(Gl) + X(GQ)

where G1 = {(N17 Ng,Ng) c GTe(Mg(n+2)>|N1 Q ]m(gpl)} and GQ = {(N17 NQ,N:),) c
Gre(Ma(t2))| N1 2 Cvpyr . We now compute these Euler-Poincaré characteristics.
Let us start with y(G1): it is easy to realize that

G1 2~ GT(ey e9,e5) (K" <—— k;"*l)

i.e. Gy is nothing but Gre(Ma(n41)41). By using (2.5.4) we get

- - —1
X(Gh) = (61 63) (" 63) <61 ) + ey 00ey.00es.0- (2.5.15)
€9 — €3 n—e; €3

Similarly one can easily realize that

where J,(0) is the n—th Jordan block with eigenvalue zero. In Proposition 2.6.1
below, we will see that the representation on the right-hand side is an indecompos-
able non-rigid Q,—representation denoted by Reg,. In (2.6.1) the Euler—Poincaré
characteristic of Gre(Reg,) is computed. We recall here the (easy) proof in order to
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make the treatment of the proof of Proposition 2.5.2 completely self-contained. The
surjective morphism of algebraic variety

GT(€1762763) (kn kn) Gr(61763) (kn ; kn) : (Nla Na, NB) = (va N3)

Jn(0) Jn(0)

sending the tern (N7, N2, N3) onto the pair (N7, N3), is a (locally trivial) fiber bundle
with fiber G7(c,—e,)(e1 — e3). By using (2.5.10) we get

X(G2) = X(e1-1,e,e5) (ReGn) = (el SeT 1) ( e ) (61 B 1). (2.5.16)

ey — €3 n—e; +1 €3

From (2.5.15) and (2.5.16) we get the desired (2.5.5).

2.6 Regular representations and semicanonical ba-
sis

In this section we study the Euler-Poincaré characteristic of the quiver Grassman-
nians associated with non-rigid indecomposable @)j,,—representations. We begin by
recalling the classification of such modules.

Proposition 2.6.1. 1. The non—rigid indecomposable Qr,-representations have
dimension vectors: (n,n,n), (n,n+1,n) and (n+ 1,n,n+ 1) for every n > 1.

2. The Qp,-representations of dimension the imaginary root nd = (n,n,n) for
every n > 1 are called regular homogeneous. They are, up to isomorphisms,
the following

k" k"
= Jn(0) Jn(0) =
Regi® = k'<=—=—Fk";  Reg® =  K'=———=—k"
2
Regf’l}()\) = k" k™.

In(N)

where J,(A\) is the n-Jordan block of eigenvalue A € k. The arrows labeled by

“="7 are the identity map.

3. The Q,-representations of dimension (n,n + 1,n) and (n + 1,n,n + 1) for
every n > 0 are called regular non-homogeneous (for n = 0 we recognize the
simple reqular rigid representations introduced in Section 2.5.1). For n > 1
they have non-trivial self-extensions but their dimension vector is a real root.
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By the Kac’s theorem [23, Theorem 3], they are uniquely, up to isomorphisms,
determined by their dimensions. We can hence assume they are the following

a3 R ©1 ¢1 k" a3
RN} = Et<——o—— k" RN} = il <——— pntt
where ©1, P2 U, Uy > Uyt y Un+1 >, Sal(uk‘) = Uk and SOZ(Uk‘) =

Ug+1 have been introduced in Section 2.5.1.

RN} (resp. RN[) is a regular non-homogeneous @) ,—representation that con-
tains (the module corresponding to) w (resp. z) as a submodule; which explains the
terminology. The notation also determined uniquely their position in the Auslander—
Reiten quiver (see figure 2.3). One can also prove part 3 by a case-by-case inspection
assuming Proposition 2.5.5 below. Indeed the representations defined there are in-
decomposable since their endomorphism ring is local (see [1, III.Example 1.8]).

Lemma 2.6.2. e [For every non—zero \ € k, Regi?”l}()\) and Reg;{z?”l}(O)) are
right—equivalent. In particular

Xe(Regf* M (N)) = Xe(Regl™!(0)).
e For every Qp,—representation M of dimension vector (dy,ds,ds) we have

X(e1,e2,e3) (DM) = X(d3s—es,d2—ez,d1—e1) (M)
where D is the duality functor defined in Section 2.5.1.

Proof. With notations of Definition 2.5.3, we choose ¢ : Reg}{;”l}()\) — Reg}{L?”l}(O)
to be the identity, and for the automorphism v of k() we choose the automorphism
c— Aab+c.

The duality functor D induces a map * : Gr(c, e5,e5) (M) = GT(dy—es,ds—en,ds—er) (D M)
which send N +— N+ = (M/N)* that is an isomorphism of algebraic varieties. [

We simply denote by Reg,, the representation Reg,gg’l}(O).

Proposition 2.6.3.

€1 — €3 n —es €1
e1,e2,e R n) = 2.6.1
Voo (Beg) = (7Y (M7 ) () (26,1
Yo(Regilhy — el er—es3) [(n—es n er —es3 n—1-—e (2.6.2)
es es —e3) \n—e eo—ep—1/\n—1—e3
Ye(Reg®?) = n—es aa—es\fa) [ a—e e3—1 (2.6.3)
n—ep e1 — ey ) \e3 es—ey—1/\e; —1
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n— e; e1 —e3 €1 Gi=es) (e
o (RNY) = 2.6.4
X(e1e2, 3)( n) (n _ 61) |:(€1 —e9+ 1) (63) * (61 - 62) (63):| ( )

n—es3+1 e1 — e3 e — 1
e1,e2,e RN;) =
X(172’3)( n) (n—€1+1)(61—€2—1)(63—1)+
n n — es e1—es—1\ /e —1 n n—es\ /e —e3\ el (2.6.5)
n—e +1/\e; —ey—1 es n—e; /) \eg—ey/) \es
Proof. Clearly RegT{L?”Q} = DRegf?’l} and hence (2.6.3) follows from (2.6.2) by using
(2.5.3).

Let us prove (2.6.1) (this proof already appeared in the proof of Proposition 2.5.2).
The surjective morphism of algebraic variety

GT(€1,62763) (kn kn) GT(€1,63) (kn ; kn) : (Nla N2> NB) = (Nh N3)

Jn(0) Jn(0)

sending the tern (N7, N, N3) onto the pair (N7, N3), is a (locally trivial) fiber bundle
with fiber G7(c,—¢,)(€1 — €3). By using (2.5.10) we get (2.6.1).

We prove both (2.6.2) and (2.6.4) together by induction on n. For n = 1 the surjective
morphism of algebraic varieties:

k
VRN _
Gr(ehez,es) (k = k) GT(el,es) (k<Tk) : (N17N27N3)'_>(N17N3)

is a fiber bundle with fiber G7(c,—c,)(k); then, by using (2.5.10), we get Xe(Regfz’l}) =
G:z?) (Z;) (62163) which coincides with (2.6.2) for n = 1. For n = 0, RN}’ = S, and

(2.6.4) holds. We now proceed by induction on n. The image of the Jordan block
J,(0) is the subspace of Reg;{fl’l} generated by {vy,---,v,_1}; by Lemma 2.5.8 we

get Xe(Re%{zQ’l}) = Xe(G1) + Xe(G2) where

G = {(N17N27N3) S GTe(R69{2’1})]N1 D) /{:vn},

n

Gy = {(Ny, Ny, Ns) € Gre(Reg>W)|Ny C Im(J,(0))}.
It is easy to see that

. kn
L~z IS ANG

G1 =~ Grey—1,e0-1,e5-1) (K" <———k"1)  and Gy~ Gre(k" ! <——Fk"1)

We hence have:

Xe(Reg®™) = xe 1(Reg® V) + xe(RNY ).
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Now (2.6.2) follows by the inductive hypothesis. In order to prove (2.6.4) we again
use Lemma 2.5.8. We consider the decomposition of RN,’, by the kernel and the
image of p5. We get xe(RNY) = Xe(H1) + Xe(H2) where

H1 = {(Nl, NQ,Ng) c GTQ(RN;JUMNQ 2 KeT(ng) = kUl},

H2 = {(Nl, NQ,Ng) € Gre(RN;f)]Nl g Im(gpg) = kn}

It is easy to see that

kn
= \\Jn(O) =

Hy = Grieyep-1,e5) (K" <—=—k") and Ha = GT(eyen,eq) (K" = k)

We hence get:

Xe(RN;zU) = X(e1,e2—1,e3) <R€g7{7,3,2}) + XG(M2(H+1)+1>7

from which (2.6.4) follows by using (2.6.3) and (2.5.4).
Let us prove (2.6.5). We use Lemma (2.5.8). The image of ¢; in RN} is generated
by {v1, -+ ,v,}. We have xe(RN;?) = xe(G1) + G1 where

Gi1 = {(N1, N, N3) € Gro(RN;;)|N1 2 kvpya},
Gy = {(Ny, Ny, N3) € Gre(Regi>™)|Ny C Im(y)}.

n

One can easily recognize that

= k" ) 2 k" =
AN AN
Gl ~ Gr(q_l’e%%) (]g” T k;”+1) ~ Gr(n+1—63,n—62,n—61+1) (k/’nJrl ~a kn)
and by (2.5.5) we have
Xe(Gl) - X(n+1—63,n—62,n—61+1) (M2(n+2))

= () L) )+ ) (2:6.6)

One can also recognize that

kn
<0
Gy = GT(ey, e, e5) (K" <—— k")
¥1
and from (2.6.3) we get
Xe(Go2) = Ye(Regt™)
n—e el—e [ ej1—e e1—1
= (n—ei’) |:(611—€23) (e:lg) + (61—16231) (631—1)] : (267)
By summing up (2.6.6) and (2.6.7) we get the desired (2.6.5). O
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The following result gives the relations between polynomials associated with reg-
ular ();,-representations.

Corollary 2.6.4.

FReg;?’l}(yl’ Yo, Y3) = FReg, (y1,y2,y3) + ygFRegn_l(yl, Yo, Y3) (2.6.8)
Fr et = Fo a2 (2.6.9)

FRN:{’ = FRegn ’ Fw = FRegnEBSQ- (2610)

FRNTZL = FRegn ’ FZ = FRegn@Slg,‘ (2611)

Proof. From (2.6.2) we note that

2,1
X{€17€2,€3}(Reg7{b271}) = X{es,enes}(£€Gn) + X{€17€2*1,€3}(Reg7{1—1})'
Then (2.6.8) follows from the definition.
Since Regi®® = DRegi®" (both of dimension vector nd), by (2.5.3) we have:

Xe(Reg;{zZl}) = Xna_e(Regq{f’l} ).

It follows by direct check by using the obvious equalities:

X(el,eg,eg,)(RN;U) = X(61,€271,63)(R€gn) + X(el,eg,eg)(Regn)

and

Xe(RNnZ) = X(6171,82,€371)<R€gn) + X(6171,€2,63)(R€gn) + X(el,eg,eg,)(Regn)-
]

Now everything is in place for the introduction of the semicanonical basis of A.
Recall that A is a subalgebra of F = QP(zy,x, x3) where P is the free abelian
(multiplicative) group generated by {y1, y2,ys}; in F we have already considered the
monomials (see (2.4.1))

— Lo— Y221 P—
Y1 = oas Y2 = T Y3 = Yslade

Definition 2.6.5. For every n > 1 we define

$n = FReg, (U1, U2, @3)3((7”’0’”)]5

We also define
e —n,0,n)t
Tn = FRegr{Lz’l} (yb Y2, y?))x( Om)

Note that (—n,0,n)" is the g-vector of u,. The following Proposition gives an-
other two ZP-basis of A.
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Proposition 2.6.6.

Sp = Up+ yéuan + y26un74 + = Z yk5unf2k7 (2612)
k>0

n = Sn+y23n—1- (2613)

In particular the set S = {cluster monomials} U {s,w", s,2* : n > 1, k > 0} and
R = {cluster monomials} U {r,w*, r,z% : n > 1, k > 0} are ZP-basis of A. We call
S a semicanonical basis of A.

Proof. Recall from (2.3.10) that the F—polynomial of w,, is given by

Fo,=ylsvs + D Xu.(eui'ysys + 1.
e=(e1,e2,e3)

where X, (€1, 2, €3) = (C-9)[("22) (U ) + (" 2 (97))] and F,, = 1. By using

ea—es n—ej es n—ej ez—1

the identity (¢-1) + (“,") = (§) — 6a,00,0, we have

Xe(Regn) = Xun (e) + Xe71<Regn72) + 561,0562,0563,0 + 6el,n562,n563,n

where 1 = (1,1,1) and § is the Kronecker delta. We then have:

Fu,(y1,92,Y3) = Freg, (Y1, Y2, Y3) — Y192Y3F Regn o (Y1, Y2, Y3) (2.6.14)

from which one can easily prove that Freg, = Fu, +y°Fu, , + y*Fu,_, +--- by
induction on n. Since y° =Then (2.6.12) follows from the definition.
The equation (2.6.13) follows from (2.6.8). O

Corollary 2.6.7. For every n > 2 we have

Uy = Sy — Y1Y2Y35n—2. (2.6.15)
Moreover uy = s; and uy = sop = 1.

Remark 2.6.8. When all the coeficients v, 2 and y3 equals 1, the relation (2.6.15)
becomes the well known relation between Chebychev’s polynomials of the first kind
and Chebychev’s polynomials of the second kind. Moreover in this setting the
straightening relation (2.1.20) becomes u, 1 = uju, — u,_1; we can hence see that
un, = T,,(uyp) is the n-th Chebychev’s polynomial 7},(u;) of the first kind computed
at u; = zw — 2 and s, = U,(u;) where U, is the n—th Chebychev’s polynomial of
the second kind.

Example 2.6.9. The family {s,} satisfies property [hom], [F], [g] and [B°] of The-
orem 1.5.7, and hence they are linearly independent over ZP. They do not satisfy
property [ind], since the Laurent monomial xg_2 /x7"% = x8n-2 appears with coeffi-
cient 1 in the Laurent expansion of s,,_s and with coefficient y;15y3 in the Laurent
expansion of s,, (as one can easily see from its definition 2.6.5).
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Chapter 3

Cluster algebras of type Cél) and
-
2

Let P = Trop(y1, y2,ys) be the tropical semifield generated by the elements y;, o
and y3. Let F = QP(z1, x5, x3) be the field of rational functions in three commuting
variables x1, o and x3 over the field of fractions of the group ring ZP. We study
two particular cluster algebras inside F of type C’él) and Gél).

3.1 Type 02(1)

Let C be the cluster algebra inside F with (principal coefficients at the) initial seed

0

2o = {B = B(to) = ( > o % >7 {371;07352;0,1’3;0}7 {ylay27y3}}'

0 -1

The Cartan counterpart of B is the matrix
C = ( A ) (3.1.1)

of type C’Q(l). Then C is a cluster algebra of type Cél) with principal coefficients at
the initial seed 3. C is a cluster algebra of bipartite type, hence we have all the
results of section 1.3 at our disposal. C is generated inside F by the distinct elements
{Tiom : 1=1,2,3; m € Z} defined by the exchange relations in the Corollary 1.3.6,
i.e. denoted by d(z;2,) the denominator vector of z;s,, in the initial cluster, we
have the initial conditions

T1,0T12 = ylasg;o +1 (3.1.2)
T2:0L2;,—2 = Y2X1,0T3;0 + 1 (313)
T3.0T32 = ygﬂlg;o +1 (314)
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w

L1;—4 T3;—2 1,0 L3;2 T1:4 T3;6 R
=6 >—<T2;—4 2,2 <C2;0 —— T2 X24

L3;—4 T1;,—2 T3:0 T1;2 T3;4 T1;6

z

Figure 3.1: Exchange Graph of the cluster algebra C

together with the recursive relations:

T1:2mT1,2m+2 = x%;?m + yd(zl;zm) (315)
L2:2mT22m+2 = yd(ngzm)xl;me?);Zm +1 (316)
T3:2mT3.2m+2 = xg;m + yd(“’?%) (3.1.7)

and by the elements

2
T1,073;0 + Y2YsTao + Y2

w o= 3.1.8
T2:073;0 ( )
21.0%3.0 + 2+
R 1,0T3;,0 T Y1Y225,9 T Y2 (3.1.9)
T1;072;0
(3.1.10)

The exchange graph of C is given in figure 3.1.

Proposition 3.1.1. For every m # 0 the denominator vector of Ti.om, Ta.2m and
T3.9m 10 the initial cluster {x1.0, 20,230} is given by: For every m > 1

m

( 2(m — 1) > =+ (m—1)0 if mis odd,

m — 1

( 2<Trnnn}11> > =as+(m—1)0 if m is even

d(waom) = (01 ) = —ax+ms (3.1.12)
( 2<Trnnn_b—11> ) =1+ (m—1)§ if m is even

d(l’g;gm) = (3113)

( 2(m — 1) > =a3+ (m—1)5 if mis odd
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( - )z—a3+m5 if m is odd,

d(l’l;_gm) = (3114)
( mzyill ) =—a1 +md if m is even

d(22om) = ( 20 41 ) = g+ (m—1)8 (3.1.15)
( m;{”l ) = —az+md if m is even

d(x3;72m> = (3116)

< Tom ) =—ay;+md if m is odd

m

where § = (1,2, 1) (cf. Section 1.2.3). For everyn > 1:

d(w) = ( ‘f ) d(z) = ( ) d(u,) = ( JL ) = né, (3.1.17)

n

Proof of Proposition 3.1.1. By the echange relations we have for every non-zero in-
teger m:

d(xi;2m> + d(Ii;Zm—i-Q) = 2d(x2;2m)

from which all the formulas (3.1.11)—(3.1.16) follow by induction on m by using the
obvious initial condition given by the exchange relations (3.1.2)—(3.1.4).

The denominator vector of w and z is recognized by their definition (3.1.8) and
(3.1.9). The denominator vector of u, is recognized directly by its definition (3.1.20)
since d(u;) = d(z) + d(w) = § and

d(upy1) = d(ug) + d(uy).
0

We want to find a canonical basis of C. In order to do that the following definition
is fundamental.

Definition 3.1.2. For every n > 2 we define the elements of F by

Uy = 2ZW— YUz — Y1l (3.1.18)
uy = ul—2y° (3.1.19)
Upi1 = Uity — Yotun_1 (3.1.20)

where § = (1,2, 1)".

Conjecture 3.1.3. The set B = {cluster monomials}U{u,w* u,2*: n>1, k >0}
1s a canonical basis of the cluster algebra C, i.e. B is a ZP—-basis of C and its elements
are positive indecomposable.

This conjecture is motivating by the results obtained in the coefficient—{ree setting
that we are going to give in the next section.
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Figure 3.2: Exchange Graph around the initial vertex ¢,

3.2 Coefficient—free cluster algebra of type 02(1)

In this section we study the coefficient—free cluster algebra of type 02(1). We find the
canonical basis for this algebra and we find explicit formulas for its elements. This
section is independent on the others and completely self-contained.

3.2.1 Algebraic structure of a (coefficient-free) cluster alge-
bra of type 02(1)

We study of the (coefficient-free) cluster algebra C with initial seed
{B = B(to) = ( g _01 g >, {Tl,Sl,Ul}}.
0 -1 0

We are changing notations with respect to the general case since it is convenient.
The corresponding Cartan matrix is

2 —1 0
A= ( EEE. ) (3.2.1)
of type 02(1). Let B(i) be the principal submatrix of B(C) obtained by removing the
i-th row and column. Since B(C) is of affine type, B(1), B(2) and B(3) are all of
finite type. More precisely B(1) is of type Cy, B(2) is of type A; x A; and B(3)
of type Bs. The corresponding Coxeter numbers are respectively h = 4, h = 2 and
h = 4. By the useful result [16, Theorem 7.7], we know the cluster variable r; appears
in exactly h + 2 = 6 different seeds, the variable s; in exactly h + 2 = 4 different
seeds and the variable v; in exactly h 4+ 2 = 6 different seeds. So in the exchange
graph they must appear in the way showed by the figure 3.2. In this figure vertices
correspond to seeds and a variable inside a region touching a vertex ¢, corresponds
to a cluster variable of the seed in ¢. For example t, is the initial vertex (i.e. the
vertex corresponding to the initial seed), ¢; corresponds to the seed obtained after a
mutation in direction 3 from the initial one and ¢, is obtained from ¢; by mutation
in direction 1. The matrices in t; and ty are respectively

B(tl):<§ o Bz>and3(t2):(fz : )

1 0 0 1 0
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z

Figure 3.3: The Exchange Graph of C.

We note that B is invariant under the permutation (13) of the index set. Clearly for
every permutation o of the index set and every index ¢ the following diagram

B X B
ol lo (3.2.2)
B M9 pie

commutes. In particular the mutation in direction 1 of B gives the matrix (13)B(¢;)
obtained from B(t;) after the permutation (13) of the index set. We’ve found all the
matrices in the square. The mutation of B(t;) in direction 2 gives the matrix
B = (4 4 )

By (3.2.2) the matrix on the opposite vertex to t3 with respect to sy is (13)B(t3).
Moreover we note that the mutation of B(t,) in direction 2 is nothing but B. Then we
have obtained both all the exchange matrices for the cluster algebra C and a surjective
map from the graph in the figure 3.3 and the exchange graph of C. Consequently
we’ve obtained all the exchange relations of C:

TraUma1 = 5o + 1 (3.2.3)
U Tma1 = s?n +1 (3.2.4)
WSy, = T + Tl (3.2.5)
Sm—18m = T'mUm + 1 (3.2.6)
ZS8m = Um + Um1 (3.2.7)
P 1Tmi1 = Ty + W (3.2.8)
Umn—1Uma1 = Ugl + 22 (3.2.9)

We note that w and 2z appear in infinitely many clusters otherwise r,, and v,, wouldn’t

appear in exactly 6 clusters. To see that the graph in the figure 3.3 is the exchange

graph of C we have only to prove that the cluster variables are all distinct (i.e. the

map above is also injective). In the initial cluster {7y, vy, s1} we have the denominator

map

Fy(rla S1, /01)
rfl sclbvfi‘

Clearly d(r1) = —ay, d(s1) = —a and d(v;) = —as.

d:C—Q=Za1+Zas+ Zas : y= — dyay + dyag + dzag (3.2.10)
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—(CYQ + C(g) + 1)

Figure 3.4: Denominator vectors in the initial cluster

Proposition 3.2.1. For everyn > 1:

A(rpy)) = ( 2o ) ) = a3+ (n—1)8 (3.2.11)
d(s,) = ( 21 ) = —as+ (n—1)d (3.2.12)
d(vns,) = ( 20" ) ) — a4+ (n—1)d (3.2.13)
For every n <0
Ad(rpy) = ( "’ ) = a1 +nd (3.2.14)
d(s,) = ( ) = ap +né (3.2.15)
d(vny) = ( s ) — —as+nd (3.2.16)

d(w) = ( ' ) d(z) = ( ; ) (3.2.17)
Proof. 1t follows from Proposition 3.1.1. O

We conclude that the cluster variables are all distinct. The figure 3.4 shows the
denominator vectors of the cluster variables. In this figure we put out the correspon-

dence with the real roots of type 02(1) once we choose [T= {ag, a3} (see Section 1.2.3).

By the exchange relations the following useful formulas hold
WUy = 2T = Sm—1 + Sm (3.2.18)
Indeed
WOmSm = (T + Tt )Vm = TinUm + 52 + 1 = 27080 = Sm_18m + 52,
We introduce an element u € A by setting

u=zw— 2. (3.2.19)
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Let Tj,T1, ... be the sequence of Chebyshev polynomials of the first kind given by
To=1,and T,,(t +t7') = t" + ¢t for n > 0. We define the sequence uy, us, ... of
elements of C by setting u,, = T,,(u). From (3.2.19) we obtain

d(u) =d(z) + d(w) = 9.

If we consider the automorphism ¢ of C which sends x,, to z,,49, for x = r, s or v,
we have by definition
UnTm = Tom—n + Tomtn- (3.2.20)

In particular by induction on n, it can be shown that:

d(uy,) = ( 212 ) — nd. (3.2.21)

n

3.2.2 Explicit Laurent expansions

In this section we give the explicit Laurent expansion of the elements of the set
B = {cluster monomials} U {u,w"* u,2*} in the initial cluster {r, so,v1} of C.

Theorem 3.2.2. o For every n > 2 the following formulas hold:

S04 a1, ) () st 0l

Ty = BRI (3.2.22)
B st Zq+r§2n—3 (2n7qgir) (Qn?iq) rist'vf 99
Sn = T{Lflsin%BU{Lfl (3 : 3)
_ 4 _3_
_ "0+ D qir<an—a (" q ") () st 994
Un = T{Lflsinf&U{LfQ (3 : )
o For every n > 0 the following formulas hold
- (rog)?" 2 + Zq+r§2n+1 (2%(12#) (2%:7(1)7’?5%%? (3.2.25)
-n rp sty L
L o) S () (s (3.2.26)
In+2—r) (2n+1—
. (rivn)? 2 + Zq+r§2n+1 ( n+q T)( ntl q)TgS%TU(II (3.2.27)
—n L2 2y L
e [For every n > 1 the following formula holds
(7“11)1>2" + 8‘1171 + Zq+r§2n—1 QnEZ—'r (2"*(11*7") (2”;1*‘1) T?S%T’Ug
Up = — (3.2.28)

risy vy
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Proof. By the symmetries in the exchange relations, the Laurent expansion of r_,
(n > 0)(resp. s_n(n > 1), v_,(n > 0)) in the cluster {r1, sp, v1} is obtained from the
Laurent expansion of 7,12 (resp. S,11, Unt2) in the cluster {ry, s1,v;1} by exchanging
s1 with sg. Then, applying the relation sgs; = rv; + 1, the formula (3.2.25) (resp.
(3.2.26), (3.2.27)) follows from (3.2.22) (resp. (3.2.23), (3.2.24)).

Moreover the Laurent expansion of v, in the cluster {ry, s;,v;} is obtained from
the Laurent expansion of r,, by interchanging the variables r; and v;. Then (3.2.24)
follows from (3.2.22).

It remains to prove both (3.2.22) and (3.2.23).

For n = 2, (3.2.22) is nothing but the exchange relation (3.2.3), while (3.2.23)
becomes

4 1-r\ (2—q\, .9 2r,
. ST e () COMIsTo] s 1o + 282 rpvn + 1
2 —_— pu— p—
151701 151 S1

that is (3.2.6). By induction on n a direct calculation shows that the right hand side
of (3.2.22) (resp. (3.2.23)) satisfies (3.2.5) (resp. (3.2.18)). O

3.2.3 Canonical basis

Theorem 3.2.3. The set B = {cluster monomials} U {u,w" u,z*|n > 1, k > 0} is
the canonical basis of C.

Proof. The proof is organized as follows: in Corollary 3.2.5 we prove that B is a
linearly independent set over Z; by Theorem 3.2.2 it follows that the elements of B
are positive; in Section 3.2.4 we prove the elements of B are positive indecomposable
and that B spans C over Z. O]

Our next result provides a parametrization of B. Let Q = Z? be the root lattice
of type C’él) . We fix the basis {a1, aq, a3} of simple roots. We will sometimes write
a point @ = a1y + asae + agzas € @ simply as a = (aq, as, az).

Theorem 3.2.4. In the situation of Theorem 3.2.3, for every a = (aq,a9,a3) € @,
there is a unique basis element b = bla] € B of the form

Ny (1, g, 73)

bla] = , (3.2.29)

s ag?
where Ny, is a polynomial with constant term 1. The correspondence o — bla] is a
bijection between () and B. Under this bijection the cluster variables different from
{r1,s1,v1} and the elements {u,w,u,z} correspond to all the positive real roots of

the Kac-Moody algebra of type C’él).

Proof. The second part follows by Proposition 3.2.1 using the results of Section 1.2.3.
We now prove the bijection with @. Since d(u,,) = nd(uy), d(u1) = d(z) + d(w)
and d(w) and d(z) lie in the positive octant, the image of {u,z, u,w : n > 0} is the
cone
C[m = Zzgd(2’> + Zzod(w) = Zzo(al + @2) + ZZO(OCQ + ag)
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Then it remains to show the following:

For every cluster {t1, s, 3}, the vectors d(t1), d(t2) and d(t3) (3.2.30)
form a Z-basis of Q.

For every cluster {t1,ts,t3}, the vectors d(t1), d(t2) and d(t3) (3.2.31)
are the only positive real roots contained in the additive
semigroup Cyy, 1,15} = Z>od(t1) + Zzod(t2) + Z>od(1s3).

The union UC{tl,t%tg} is equal to @ — Crp,. (3.2.32)

From Proposition 3.2.1 it follows by direct check that given a cluster {sq, s2, s3},
det(d(sy),d(s2),d(s3)) = £1 (3.2.33)

(here det is the determinant view as a multi-linear function on the column of matrices)
and (3.2.30) is proved.

In order to prove (3.2.31) we first observe that the clusters containing at least
one initial cluster variable 7, 51 or vy (showed in ﬁgure3 5) satisfy both (3.2.31) and

(3.2.32). Indeed their union equals @\ Q + Where Q + is the strictly positive octant
. 3
Q,={\=> kia; €Q:k; >0}
i=1

Moreover the rest of the denominator vectors {d(s) : s # r1, $1,v1 } are contained

in @\ Crm where Cpy, is the interior of Cy,,,. Then they satisfy (3.2.31). Now we can
consider the other clusters. We are going to show that whenever d(t) lies in Cy, 4, 4,}
for a cluster variable ¢, then t is either ¢; or t5 or t3. Let us consider the operator

oa(a) = —o if o =
2T 2004+ fa=ag, a8

defined on the generators and extended by linearity to Q). o9 fixes Cp,, pointwise,
then the subspace generated by Cy,, is the maximal subspace with this property. In
particular oy(c; + 0) = o9(a;) + 6 for ¢ = 1,2, 3. It follows o9 induces an involution
in the set of the clusters not containing r; or v; which sends s,, into s;_,,. Then
it is sufficient to consider only the case in which all t, t1, t5 and t3 are r,,, Sm, Um
with m > 2, s1, 2 or w. By Proposition3.2.1, the corresponding denominator vectors
are all contained in the cone D in @) spanned by —as and Cy,,. Now we can reduce
further our case by case proof by considering the involution of ) defined on the
generators by
(13) : a1 — ag and ag — ao.

It induces an automorphism of the exchange graph sending r; into v;. It sends
clusters in clusters. The maximal subspace fixed by (13) contains as and oy + as.
It cuts D into two cones. Now we only have to treat the corresponding two cases.
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Pl 4 gl _________

Figure 3.5: Denominator vectors having at least a zero coordinate

First of all let us assume s = {7, w, i1} and ¢ € {ryini1, W, "minie} for some
n > 0. d(rmint+1) and d(rm,4n42) lie on the opposite side of the plane through d(w)
and d(r,,41) with respect to d(r,,) (indeed d(7pins1) = d(rme1) + (n 4+ 1)6 and
d(ry,) = d(rme1) — 0). It follows they can’t be in C(s). Moreover the other cluster
variables lie on the (closed) half-space of ) not containing w. So let us consider the
second case. Let us first assume

s = {Tma Sm, Tm+1}m22

We have
d(rm-i-n—f—l) - d(rm-&-l) + 77,(5
dvmin) = dms)+n—=1)0 =—=d(rme)+2d(sm) + nd
d(smin) = d(s,,) + nd

then they are contained in the half-space of Q opposite to d(r,,) with respect to the
plane through d(s,,) and d(r,,.1) for every n > 1. Moreover

d(v,) =2d(s) —d(r,) — ¢

so d(vy,) is opposite to d(ry4+1) = d(ry,) + ¢ with respect to the 2-dimensional
subspace through d(s,,) and d(r,,). We conclude that d(r), d(sg), d(vg) are not

contained in C (s) for k > m. Analogously when
§ = {Tmu Smis Um}
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we have

d(rmin) = d(rm) +n6 = —d(vm) + 2d(spm) + (n — 1)
d(spmin) = d(sp)+nd

for n > 1 they are opposite to d(r,,) with respect to the plane through d(s,,) and
d(vy,). Moreover

d(Vpmin) = d(vy) +nd = 2d(s,,) — d(ry) + (n — 1)

for n > 1 are opposite to d(v,,) with respect to the plane through d(r,,) and d(s,,).
Finally when

§ = {Tm—l-la Sms Um—l-l}

we have
d(sm) = 3d(rmr) + 5d(0ng) — 30
d(smin) = 2d(rpsr) + 3d(Umer) + (5 +n)d
d(rms14n) = d(rm+1) + no
d(Vms14n) = d(Vmi1) +nd

so they are opposite to d(s,,) with respect to the plane through d(r,,11) and d(v,,41).

This shows (3.2.31).
In order to show (3.2.32) it is sufficient to show

ZZOOQ =+ Zzoozg + Zzo(s = LJm22 C(T’m, Sms Um)U
(3.2.34)
U Ung C(Tma Smis Terl) U Ung C<Tm7 Sm—1, Um) U Ung C(/Umv Sm vm+1)'

together with

Zzo(ag + 043) + Zzoag + Zzo(s = U C(Tm, w, T’m_H) (3235)

m>2

Indeed applying the linear operators s, and (13) we cover the entire (), which we
think as the following union

QL=< ar,a3,0 > U< as,as +az,0 > U < ag + az, 2a + a3, 6 > U

U<2a2+a3,2a2+a1,5>U<2a2+a1,a1—l—a2,5>U<a1+a2,a1,5>

where < «a, 3,7 > is the additive semigroup generated in () by «, 3 and v. We
observe that for every linearly independent vectors o and (3 we have

Lo + Lo = U [Z>o(a +np) + Zso(a + (n+1)B)].

n>0
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Indeed for every v = aa + bf3 there exists a unique n such that <3< % Then

(3.2.35) follows. Moreover

T

Zzoay + Zzoaz + Z00 = U, [Zz0(as + nd) + Zxo(az + (n + 1)0)]

+ Unso [Z20(c1 +n6) + Zso(an + (n +1)0)] =

Unso [Zz0(as +nd) + Zzo(on +nd) + Zzo(as + (n+1)6) + Zxo(ar + (n + 1)0)]
Now for every n > 0 we have

Z>o(ag +nd) + Zso(aqg +nd) + Zso(asz + (n+ 1)0) + Zso(ar + (n + 1)0) =
= [Z>o(az +nd) +
[Z>0(az + nd) +

[Z>0(c + no) +
[Zso(as + (n+1)5) +

)

olar +az +az+nd) + Z>o(ay +nd)|+

0(041 —+ [6) + (0% + n5) + ZEO(O-/?) + (n + 1)5)]

olar + e +az+nd) + Zso(ag+ (n+1)0)]+
olar + e +az+nd) +  Zso(as + (n+1)d)]

2
Z
Z
Zi>g

- C(rn+2> Sn+2, Un—l—?) U C(Tn—f—Qa Sn+2, Tn+3)U

UC(”nHa Sn42; Ungs) U C<7"n+3’ Sn+42, Un+3)
O

Corollary 3.2.5. B is a linearly independent set and its elements are positive inde-

composable.
Proof. For v = giag + gaca + g3z € @, we abbreviate t7 = r{'s*v{®. We will use

the product partial order on Q = Z3:
M=V & Y1— ) € Q+ = ZZQOQ —+ ZZQOQ -+ Zzoag. (3236)

By Theorem 3.2.4, B can be parameterized by ) so that the element b[a] corre-
sponding to a € @ has the form

al =t > et (3.2.37)
v>—«

Now suppose that a (finite) integer linear combination of elements bla] € B is equal
to 0. Let S C @ be the set of all a such that b[a] occurs with a non-zero coefficient
in this linear combination. If S is non-empty, pick a maximal element o € S; in view
of (3.2.37), the (Laurent) monomial t~ does not occur in any b[3] for 5 € S — {a},
which gives a desired contradiction. O]

3.2.4 The set B spans C and its elements are positive inde-
composable

We use straightening relations (see Sectionl.5.2).
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Proposition 3.2.6. e The following relation holds for allp >n > 1:

_ Up—n + Up+n Zf p>n;
Uplly, = { Yty if  pen. (3.2.38)

e ForallmeZ and n > 1, we have

TmTman = Tm'H_%J Tm-i-f%} + (Z kun_gk)w2. (3239)
k>0

e ForallmeZ andn > 1

UmUmtn = Ut |2 | Um+[2] + (Z k‘un_gk)zQ. (3240)
k>0

e ForallmeZ andn > 1

2n—1
SmSmi2an = sfmn + Z (k + Dugp_1-¢- (3.2.41)
k=0
o forallmeZ andn >1
2n
SmSma2ni1l = TminUmin + Z(k + Dugy—g- (3.2.42)
k=0
e ForallmeZ andn > 1
2n
TmVUm+2n = UmTm+2n = Tm+nUm+n T Z kg, . (3243)
k=1
o forallmeZ andn >1
"k
"'mSm4n = SmTm+n+1 = Tm—i—]—%] Sm-l—l_%j + (Z [g—lun—k)w (3244)
k=1
e ForallmeZ andn > 1
2n+1
TmUm+2n+1 = UmTm42n+1 — Sgn_,'_n —+ Z kU2n+1_k. (3245)
k=1

Proof. (3.2.38) follows immediately by the definition of the Chebyshev’s polynomials.
It is convenient to prove the following reformulation of (3.2.39):

St B gy = 6 68 g (3.2.46)
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t_L%JTerL%JtL%J Tm4[2] = Tmt [ 2] Tm+[2] + (Z kun_gk)wQ (3247)
k>0

Since [ 5] + [5] = n they are equivalent to (3.2.39).

For n even (3.2.46) is obvious. If n is odd [§] = | 5] + 1 and it follows by direct
check.

To prove (3.2.47) we proceed by induction on n. If n =0 or 1 it is obvious. For
n = 2 it is nothing else than the exchange relation (3.2.8). let us assume (3.2.47)
true for n and n — 1 and let us prove it for n + 1.

_|ntl ntl _|n n
g U I g = T i 88 g

=t g gy — 7 g U

= ult*L%er+LthL%er+(%] — tf(nTilwrm+[anl]thil]7“m+LanlJ

= Ut [P 2T 12 + (g Ftin—or)w?]+
—[rmHnT—lerH"T—l] + (X k>0 Kty —1 - )w?]

= T | 2]+ m4 2] + T 2] —1Tm+[2] + (Zk>0 kulun,gk)wQ—l—
_[rmﬂ"T‘lJTmH”T—W + (Zk>0 kun,l,%)uﬂ].

Now we must distinguish the case even from the case odd.
If n is even

n
= T (2] T 2] T+ [ Z 1 k(Un—1-2k + Upt1—2x)|w* + §u1w2
0<k< 5=

—(D a0 Ktn—1-2p)w?

n
= TWH”THJTWH"TH1 + ( Z k’unﬂ,%)uﬂ + §U1w2

—1
O<k<™5=

= T 2L T rntd] + (> ks0 Ftini1-ar)w?
If n is odd

= 7172n+|-%'| + rfﬂ"’t%J + w2 + (Zk>0 kU]_Un_Qk-)wZ“_

—TannT—lJ — (X ks Ftn—1 o) w?

—1 1
& (U2+2>w2_n2 w’

= rff”’[%““ + w2 + ( Z k:un+1_2]€)w2 +
0<k<nrt

= Ty 250 P 2] (oo Fbnt1-2)w?
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The proof of (3.2.40) is completely equivalent using (3.2.9) instead of (3.2.8).
(3.2.41)-(3.2.45) follow after a similar calculation. The first equalities of (3.2.44)-
(3.2.45) can be shown using for example the following argument: for n = 1 we have

Umt2Tm = Um+1Tm+1 + U1 + 2 = Ui Tm-
let us proceed by induction on n:
Umrm+27’m = vam+2n—2rm+2n = vam+2nrm+2n—2
and similarly for the others. O]

Proposition 3.2.7. The set B = {cluster monomials} U {u,z*, u,w*n > 1, k > 0}
spans the cluster algebra C over Z and its elements are positive indecomposable.

Proof. We define the multi-degree

s t
NI(M):ZCLZ_’_ b]—I—C—I—d
i=1 j=1
(M) = my —my;

/,Lg(M) = bl -+ bt.

defined on a generic monomial M = ug} -+ -uleall .- xb wez? where z is either r,

s or v. We proceed by induction on p(M). If py(M) = 1 then M is a cluster
variable or one of the u,’s. Then it suffices to show that every monomial M which
has at least one of the “forbidden” products as a factor, can be written as a linear
combination of monomials of (lexicographically) smaller multi-degree. We will show
that this can be done by replacing some “forbidden” factor of M with its expres-
sion given by the appropriate relation in Proposition 3.2.6. Indeed, if >°7  a; > 2
(resp. >_;_; a; = 1) then one can apply (3.2.38) (resp. (3.2.20)), expressing M as a
linear combination of monomials with smaller value of p;. So we can assume that
M = :vlr’,lu e x%twczd. If both ¢ and d are positive, using (3.2.19) one obtains again a
sum of two monomials with smaller value of p;. So we can assume that ¢ = 0 (resp.
d = 0) and that we can apply (3.2.7) (resp. (3.2.5)) or (3.2.18). We again obtain
a sum of two monomials having smaller value of ;; than the initial one. So we can
assume that M has one of the following forms: M; = (IL;r% Yw® or M, = (IL;v% )2?
or My = (stf;ll) with my; —my > 3. We apply the appropriate formula in the Propo-
sition 3.2.6 to the product z,,,z,,,. By inspection, in the resulting expression for
both M; and M, all the monomials except at most one that has smaller value of
(1 have the same value of 1;. By further inspection, for every such monomial M’, if
min(by, b;) = 1 (resp. min(by, b;) > 2) then (M) < po(M) (resp. pe(M') = us(M)
and pg(M’) = pus(M) — 2) . Analogously in the resulting expression for Ms, there
is precisely one monomial M’ with uy(M') = py (M), while the rest of the terms
have smaller value of y1. Moreover if min(by,b;) = 1 (resp. min(by,b;) > 2) then

pa(M') < po(M) (resp. pa(M') = pa(M) and ps(M') = pz(M) — 2).
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Once we have that the elements of B are positive and they span C over Z we can prove
they are positive indecomposable by using the same argument as in Corollary 3.2.5:
we prove that the expansion of a positive element of C in the Z—basis B has positive
coefficients. Suppose that a (finite) integer linear combination of elements bja] € B
is equal to p. Let S C @ be the set of all « such that bla] occurs with a non-zero
coefficient in this linear combination. If S is non-empty, pick a maximal element
a € S with respect to (3.2.36); in view of (3.2.37), the (Laurent) monomial ¢~* does
not occur in any b[J] for § € S—{a}, we hence conclude that the coefficient of t~* in
this linear combination is positive. Since b[a] is positive, its coefficient in this linear
combination is positive. By repeating the same argument for every element of S we
get the claim. O]

3.3 Type Ggl)

Let G be the cluster algebra inside F with initial seed

0O -1 0
1

Yo = {B = B(t0> = ( (1) 0 ! >, {$1;0,$2;0,$3;0}7 {?/1,y2ay3}}'

-3

The Cartan counterpart of B is the matrix

of type Ggl). Then G is a cluster algebra of type Ggl) with principal coefficients
at the initial seed 3. G is a cluster algebra of bipartite type, hence we have all
the results of section 1.3 at our disposal. G is generated inside F by the elements
{Tiom 11 =1,2,3, m € Z} defined by the exchange relations in the Corollary 1.3.6
and by the elements:

T1.0T5 0 + To.0 + 1)2
w o= 50730 yz(yj’ 20 +1) (3.3.1)
L2;02350
Y2 (Y1720 + 1) (Y320 + 1) + 21,073,

Z1;022;073;0

(3.3.2)

The exchange graph of G is given by Figure 3.6
The following definition is fundamental in order to get a canonical basis of G.

Definition 3.3.1.

up = 2W-— y2y§ — Y1Y2Ys3 (3.3.3)
uy = ul—2y° (3.3.4)
Uns1 = Uiy — Y Up_1 (3.3.5)

where 0 = (1,2, 3)".
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Figure 3.6: Exchange graph of the cluster algebra G

We want to note here the analogy between Definition 3.1.2, Definition 3.3.1 and
Definition 2.1.3: in all these cases

and the u,, is a modification of the Cebychev’s polynomial T}, (u;) of the first kind
evaluated in ;.

Conjecture 3.3.2. The set B = {cluster monomials} U{u,w* u,2*: n > 1, k >0}
s a canonical basis of the cluster algebra G, i.e. B is a ZIP—-basis of G and its elements
are positive indecomposable.
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