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Abstract

Passive 3D reconstruction of dynamic scenes from multiple video sequences is a

challenging problem in computer vision. The aim is to recover a mathematical

time-varying description of the whole 3D scene using only videos recorded by

some cameras.

In this thesis, we present a system for recovering the shape, the appearance

and the motion of a scene where multiple people and objects interact with each

other, using only passive and non-invasive techniques. The system, then, gives

a user the possibility to navigate inside such a representation and to replay the

action from any point of view. Moreover, the output can be easily used to animate

virtual characters using any commercial animating software.

The acquisition takes place in two separate steps: the former consists in the

acquisition of the shape and the appearance of each actor using a homemade

passive body scanner, while, the latter captures their motions and the motions

of all the objects they interact with, using a marker-less motion capture system.

We propose a new optimization framework for the pose estimation problem

capable of handling, simultaneously and in a unified way, multiple entities in the

same scene. This framework takes into account the non-rigid deformations of

the actors’ skin allowing an accurate pose estimation of also the small and high

flexible parts of the body, like the spine and the clavicles. Moreover, multiple

occlusions and possible lacks of information are avoided by the synergical use of

two distinct type of motion cues, namely optical flow and silhouette information.

We also avoid any kind of time consuming 3D reconstruction task during the

estimation.

The validation of the entire system is made testing several sequences recorded

by four synchronized video cameras and representing many different types of

motions starting from the single person ones to the multiple people and multiple

objects interactions sequences. The experiments show the validity of our approach

and of our choices through both qualitative and quantitative measurements, even

on sequences with more than 80 degrees of freedom. In particular, the average

shape reconstruction error achieved was below 0.42mm and the average pose

estimation error was below 2.5cm.





Sommario

La ricostruzione passiva di scene dinamiche da più sequenze video è un proble-

ma fortemente discusso all’interno della comunità di computer vision. Lo scopo è

quello di creare una descrizione matematica spaziale e temporale dell’intera scena

utilizzando solamente video registrati da alcune telecamere.

In questa tesi, presenteremo un sistema per acquisire la forma, l’apparenza

e il moto presenti all’interno di una scena nella quale più persone ed oggetti

interagiscono tra loro, utilizzando solamente tecniche passive e non invasive. Il

sistema, dunque, fornisce all’utente la possibilità di navigare in questo tipo di

rappresentazione e di riprodurre l’azione da un qualsiasi punto di vista. Inoltre,

il risultato può essere facilmente utilizzato per animare personaggi virtuali tramite

un qualsiasi software di animazione.

L’acquisizione avviene in due fasi distinte: la prima consiste nell’acquisizione

della forma e dell’apparenza di ciascun attore attraverso un body scanner passivo

da noi realizzato, mentre, la seconda cattura i loro movimenti ed i movimenti di

tutti gli oggetti con i quali interagiscono, per mezzo di un sistema marker-less di

cattura del moto.

In questa tesi proporremo un nuovo modello di ottimizzazione per il problema

della stima della posa capace di maneggiare, simultaneamente e allo stesso modo,

molteplici entità nella medesima scena. Questo modello prende in considerazione

le deformazioni non rigide delle superfici dei soggetti, permettendo anche una

stima accurata della posa di parti del corpo piccole e flessibili, come la spina

dorsale e le clavicole. Inoltre, occlusioni multiple e possibili carenze informative

vengono evitate attraverso l’uso congiunto di due tipi distinti di indicatori di

movimento, rispettivamente optical flow e le silouhettes. Viene inoltre evitato,

durante la stima, una qualsiasi ricostruzione 3D della scena che richiederebbe

molto tempo.

La convalida dell’intero sistema è ottenuta valutando il comportamento dell’al-

goritmo in diverse sequenze riprese da quattro videocamere sincronizzate tra loro

e rappresentanti vari tipi di movimento da quelli che riguardanti singoli soggetti,

fino a quelli concernenti sequenze di interazione tra più soggetti ed oggetti. Gli

esperimenti dimostrano la validità del nostro approccio e delle scelte effettuate,

attraverso misurazioni qualitative e quantitative, persino in sequenze riscontranti

un numero di gradi di libertà superiore ad 80. Nello specifico, l’errore medio di

ricostruzione ottenuto è risultato inferiore a 4.2mm e l’errore medio di stima della

posizione inferiore a 2.5cm.
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Chapter 1

Introduction and Motivations

Passive 3D reconstruction of dynamic scenes from multiple video sequences is a

challenging problem in computer vision that has attracted the interest of many

researchers during the last decade and moreover, in the recent years, also the

interest of the computer graphics community. The aim is to recover a mathemat-

ical time-varying description of the whole 3D scene using only the information

extracted from video sequences recorded by some cameras arranged inside the

environment.

The typical application of this data is the generation of 3D-video or free

viewpoint video contents to be used as final result or as intermediate informa-

tion for further analysis, like, for instance, an high level comprehension of the

whole scene. Fields interested in these technologies are entertainment (movies

and videogames), medicine, surveillance, ergonomics and biomechanics, just to

name a few.

Three-dimensional video (3D-video) and free viewpoint video (FVV) are new

types of media that expand the user experience beyond what is offered by tra-

ditional media. 3D-Video offers a 3D depth impression of the observed scene

(the so called stereo parallax), while FVV allows for an interactive selection of

viewpoint and direction within a certain operating range (movement parallax).

Both are not mutually exclusive, on the contrary, they can be combined within

a single system, since they are both based on a suitable 3D scene representation

format.

FVV media is used in the so called virtualized reality consisting in an im-

mersive experience of a real event where each spectator can dynamically change

his point of view during the showing. In case of realtime events, this experi-
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ence is also known as tele-immersion experience and easily find application in

surveillance and in medicine.

3D-video and FVV media contents are instead well desired by the broadcast-

ing and advertising companies which see in these technologies the future of the

classical television, moving from the 2D image concept to the 3D interactive one,

i.e., the so called 3DTV.

Indeed, the capability of choosing different point of view to watch sport events

like soccer matches or car races, as well as the possibility to access instantaneously

to the statistics or other data related to the event capture the attention and the

wallets of a lot of consumers. Companies like LiberoVision1 and 3DEverywhere2

have currently developed two software to generate these kind of services.

In the videogames community, the next step is to give the possibility to per-

sonalize the main character of a story according to some real characteristics of

the player and link the character movements directly to the player’s one. The

Nintendo Wii3 system is a typical example of this trend.

Clearly, in order to generate these kind of information a partial or a complete

model of the whole event has to be acquired and in this case, passive 3D recon-

struction techniques play a crucial role. This justifies the constant interest of the

computer vision community on this topic and the publication of more than 350

works, in this area, between 2000 and 2006.

Literature proposes various solutions classifiable basing on their final repre-

sentation of the scene. In fact, the acquired scene can be either described by

voxels or by time-varying and coherent surface/volume representation, i.e., the

so called deformable models. In particular, in this last case, acquired scene data

can be compressed and acquired information distinguished in shape, appearance

and motion. Shape information describe the geometries of the objects inside the

scene, appearance their reflectance proprieties, and finally motion information

describe their dynamics.

1http://www.liberovision.com/
2http://www.3deverywhere.com/
3http://www.nintendo.com/
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1.1. AIM AND CONTRIBUTIONS

Figure 1.1: Representation of the scene. In row major order: images of the scene

captured by some cameras, mesh representation of the scene, skeletal structures of

the articulated entities present in the scene, complete representation of the scene.

1.1 Aim and contributions

In this thesis we present a system for capturing shape, appearance and motion

of interacting people and objects using only passive and non-invasive techniques.

Given a scene, where multiple people are interacting with each other and with

some other objects, our system is able to provide a time-varying description

of the whole 3D sequence considering both its geometry and its appearance.

A user is therefore able to navigate inside this representation and look at the

action from any point of view. In particular, the scene geometry is modeled by

time consistent meshes and some skeletal structures connected to the articulated

entities of the scene. Its appearance, instead, is modeled with simple Lambertian

color information (see Fig. 1.1).

The acquisition is performed in two separate steps. First the shape and the

appearance of each actor is acquired using a passive body scanner. Subsequently,

the actors are invited inside a second location where the actual action will take

place. A marker-less motion capture system is used to simultaneously capture

3
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their motions and the motion of all the objects which they interact with. More

precisely, this last system estimates the pose assumed by each actor and each

object in all the frames of the recorded action.

Three are the main contributions of this thesis. The first is the definition of

an optimization framework for the pose estimation capable of handling, simulta-

neously and in a unified way, multiple entities interacting in the same scene. This

framework also take into account the non-rigid deformations of the actors’ skin

allowing an accurate pose estimation of also the small and high flexible parts

of the body, like the spine and the clavicles, which are often neglected by the

classical approaches.

The second main contribution is due to the synergic use of two distinct sources

of information extracted from the videos to overcome possible lacks of data given

by the use of a few number of cameras recording the scene and the high number

of degrees of freedom to estimate. Moreover, our formulation also avoids time

consuming tasks like full 3D reconstructions and it is designed to be parallelized.

The last contribution consists in the designing and the making of an inexpen-

sive passive body scanner capable to acquire both shape and appearance infor-

mation of a human with an average accuracy of 0.42cm.

A minor contribution is given by the introduction of a unified concept of

deformable model which opens new prospective for future extension of this work.

To conclude, the system proposed by this thesis is able to recover scenes with

more than 80 degrees of freedom using only four cameras recording the action.

Parts of this dissertation have been published in conference papers. The main

algorithm for the pose estimation was proposed in [8]. [10] covers parts of passive

modeling pipeline used inside the body scanner, while the texture reconstruction

part was proposed in [21].

1.2 Outline of the thesis

Chapter 2 makes an overview of the most important approaches on this area clas-

sifying both the body shape acquisition systems and the motion capture systems.

Our solution is then proposed in Sec. 2.2. The motivations of our choices are also

described in this section.

Chapter 3 introduces our body scanning system and the subsequent Chapter 4

explains the theory behind the proposed motion capture system underlining its

4
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advantages and drawbacks with respect to the older approaches. In this chapter,

it is also present a useful formalism to treat with articulated deformable models.

Chapter 5 explains all the problematics concerning the making of a multi-

camera recording room for motion capture purposes. The adopted solution is

described in details.

Chapter 6 describes the tests performed on our system and shows the obtained

results. Finally, Chapter 7 draws the conclusions.

This thesis proposes also two appendix chapters describing respectively the

state of the art of passive 3D reconstruction (Appendix A) and the state of the

art of the digital keying techniques (Appendix B). In particular, Appendix A is

a chapter extracted from the book “3D ONLINE MULTIMEDIA AND GAMES:

Processing, Visualization and Transmission” [11].

5





Chapter 2

Related Works and Our Approach

2.1 Related works

This section describes and tries to classify the most important commercial and

non-commercial solutions to the shape, appearance and motion acquisition prob-

lem. Shape and appearance capturing approaches are first described and, subse-

quently, a deep review on the existing motion capture systems is made.

2.1.1 Shape and appearance capturing systems

Shape and appearance capturing systems aim to mathematically model the shape

and the reflectance proprieties of an existing object. In case of systems designed

specifically to capture humans, the term body scanner is preferred.

Humans are particular examples of deformable models, i.e., objects having

more than one single shape and more than one single appearance. These charac-

teristics, in fact, depend on the poses they are assuming. A body scanner aims to

acquire one specific shape and one specific appearance at a time, more precisely,

those related to the pose assumed during the acquisition.

In general, a shape and appearance capturing system can be either with con-

tact or contactless, reflective or transmissive, optical or non-optical, passive or

active. A complete taxonomy of these systems can be found in the introductive

chapter of [7].

Body scanners are typically active optical capturing systems based on laser

or structured light. They usually acquire only the shape of the human without
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considering his appearance. This is partially due to the fact that, their optimal

working conditions are not optimal for the acquisition of the human’s appearance.

Commercial body scanner are proposed by several companies like Vitronic1,

Cyberware2, Unique Patterns3, Shape Analysis4, Hometrica Consulting5, RSI6,

3D Metrology Solutions7 and L38. All their solutions consist in active systems.

Passive body scanners, instead, are not yet commercialized since their accu-

racy is usually lower than their active counterpart. However, they offer some

advantages. First, they do not require any interaction with the object to acquire,

neither by irradiation. This, for instance, allows the human, to be acquired, to

keep his eyes open during the acquisition, action absolutely forbidden in all the

laser based systems because the retina can be damaged by the beam.

Moreover, in passive systems, the acquisition consists in taking some pictures

all around the whole object, which is usually faster than in other type of systems.

This, unfortunately, leads to the drawback of a more complex data processing step

aimed to infer the actual 3D shape from the acquired images. For a review on the

most important passive optical techniques the reader should refer to Appendix A.

Concerning the body scanners, the cost of a passive one is relatively con-

tained with respect to an active one. The commercial active products, previously

mentioned, have a cost of about hundreds of thousands euros while we will demon-

strate, in this thesis, that it is possible to build a passive system with less than

two thousand euros.

Some important work concerning the design of a passive body scanner are

made in [139], [126] and in [80].

2.1.2 Motion capture systems: an overview

Motion capture (mocap) refers to the process of estimating the movements of an

actor and translating them onto a digital model. It usually aims to capture the

movements of the skeletal structure but it can also be applied for acquiring skin

deformations and facial expressions.

1http://www.vitronic.de/
2http://www.cyberware.com/
3http://www.uniquepatterns.com/
4http://www.shapeanalysis.com/
5http://www.hometrica.ch
6http://www.rsi.gmbh.de/
7http://3dmetrologysolutions.com/
8http://www.dsxray.com/
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MoCap Systems

Non-Optical Optical

Marker-based Markerless

Inertial

Mechanical

Magnetic

Ultrasonic

Hybrid

Active

Passive

Figure 2.1: Motion capture systems taxonomy.

Mocap systems find application in a variety of fields like entertainment, sports,

medical applications, ergonomics, bio-mechanical analysis, military and surveil-

lance. In film-making they are used for recording the performance of human

actors so that, the acquired motion can be used to animate digital characters.

Commercial mocap solutions are currently developed by several companies like

Animazoo9, Measurand10, Organic Motion11, BioVision12, META Motion13 and

Vicon14.

The different motion capture systems can be classified according to the scheme

depicted in Figure 2.1. A mocap system can be either optical or non-optical. The

former infers the subject’s pose using only the videos recorded by some cameras,

while, the latter, uses complex devices, worn by the actor, capable to reveal their

positions inside the capture environment. In both cases, the acquired data is

processed by a central unit which actually estimates the motion.

Non-optical mocap systems are further classified according to the type of

the used capture devices namely, inertial, mechanical, magnetic or ultrasonic.

The most popular and cost-efficient devices are the inertial ones which consist

in small systems capable to measure their instantaneous motion direction and

9http://www.animazoo.com/
10http://www.motion-capture-system.com/
11http://www.organicmotion.com/
12http://www.biovision.com/
13http://www.metamotion.com/
14http://www.vicon.com/
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velocity. This data is then processed by the central unit which, using the past

measurements, retrieves the current devices locations. The most popular com-

mercial mocap system based on inertial devices is the Nintendo Wii15 console.

Mechanical mocap systems instead, make the use an exoskeleton to directly mea-

sure the angles of each body joint. These systems are real-time, free-of-occlusion

and relatively low-cost but their rigid structures limit the actor movements and

make them very uncomfortable. On the contrary, magnetic and ultrasonic hy-

brid mocap systems use small wireless devices capable to compute their relative

position and orientation by measuring respectively the magnetic flux or the ul-

trasound intensities. The central unit then, retrieve the absolute position of each

device.

Optical mocap systems can be subdivided in two main classes namely, the

marker-based and the markerless one. In the former case, the actor is forced to

wear special markers in specific location of his body. These markers are revealed

by the image sensors and their positions triangulated to recover the actual pose of

the actor. Markers ca be either active or passive typically made by respectively

LEDs or reflective materials. Marker-based systems are less invasive than the

non-optical ones but they still require to be used in very controlled environments.

The best non-invasive solution comes from the markerless motion capture sys-

tems (MMC) which tracking technologies are purely based on the videos recorded

by some cameras without requiring any restrictions on the actor and sometimes

neither on the capture environment. An exhaustive analysis of these last tech-

nologies is made in the following section.

2.1.3 Markerless motion capture systems

MMC systems offer a very attractive and non-invasive solution for motion cap-

turing since they are not restricted to the motion information associated with the

markers and relieve users from the inconvenience of wearing special garments or

devices. Moreover, ideally, they can be applied in any type of environment, from

the simple closed room to the more crowded urban area. These characteristics

pave the way to new applications in fields like surveillance and medical analy-

sis where the controlled subjects and the patients should be unaware of being

observed.

Even if some commercial MMC solutions exist, these technologies are still at

the research level as proved by the enormous number of publications in this area

15http://www.nintendo.com/
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during the last decade. Two famous surveys, namely [105] and [104], list over

350 published works on this topic from 2000 to 2006 and about 130 from 1980 to

2000.

According to [105], MMC is related to four distinct problems which can be

considered as the four separate steps involved in a MMC recording session namely,

the initialization, the tracking, the pose estimation and, if needed, the recognition

step, respectively defined as follows:

• The initialization consists in the definition of the humanoid model of

the subject to be tracked, namely its shape, its kinematic structure, its

appearance and its initial pose. This is the first step of a recording session

and it is often performed semiautomatically. However, not all the MMC

systems need to compute these information during the initialization step.

• The tracking consists in the detection and in the pursuit of the humans

acting inside the scene. Currently, literature counts more than 2000 algo-

rithms aiming to people tracking, nevertheless, this remains an open prob-

lem for the vision community, especially when the tracking is applied to

crowded and uncontrolled urban areas.

• The pose estimation is the core of any MMC system and consists in the

estimate of the configuration of the underlying kinematic at each frame of

the recorded sequence.

• The recognition is an optional step which aims to give an interpretation

of the recorded scene. Actions and activities are recognized and classified

according to some hierarchies transforming the scene into a sentence of a

language of actions. From an application point of view, these results could

be useful for surveillance, medical studies, robotics, video indexing and HCI.

In particular, in surveillance, the fact that each action can be classified as

regular or not can be used to recognize potentially dangerous situations.

Notable pioneering works in this area were developed by Nagel [107] in

1988 and by Neumann [109] in 1989.

The next section focuses on the pose estimation problem describing and trying

to classify the most important approaches, present in literature, aimed to solve

this problem.

11
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Pose Estimation

Model-free Indirect model use Direct model use

Assemblies of parts

Example based

Figure 2.2: Pose estimation algorithms taxonomy.

2.1.4 Pose estimation

Several characteristics can be used to classify a pose estimation algorithm. These

algorithms indeed, can be design specifically for capturing one single person at a

time or for capturing multiple people simultaneously. Algorithms which require

only one camera to perform the estimate are called monoscopic algorithms while

all the others are called multiview algorithms. 2D pose estimation algorithms

estimate only the 2D pose of the human in the image space without giving any

information about its depth. On the contrary, 3D pose estimation algorithms

estimate the full 3D pose. Pose estimation can be performed on each singu-

lar frame separatively without using any information about the previous or the

subsequent frames. Algorithms adopting this strategy are called pose detection

algorithms. On the contrary, algorithms using the information about the previ-

ous frames are called pose tracking algorithms. Obviously the pose at the first

frame of a sequence, i.e., the initial one, cannot be estimate using a pose tracking

algorithm. This pose is usually defined manually or by an eristic approach during

the initialization step but it can be computed using a pose detection algorithm.

However, the most significant characteristic separating all these algorithms is

the required a-priori information about the subjects to be captured. According to

this, pose estimation algorithms can be classified in three main classes namely, the

Model-free algorithms, the algorithms with direct model use and the algorithms

with indirect model use (see Fig. 2.2).

Model-free algorithms do not use any explicit a-priori information about the

actor. Their task is performed using one of following strategies: probabilistic

assemblies of parts or example-based approach. In the first case, each body part is

located inside the image and then the entire body structure is assembled to obtain

12
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the configuration which best matches the observations. The result is usually a

2D pose in the image space16. On the other side, example-based approaches use

learning techniques to compute the map from the images depicting a human in a

specific pose to the 3D pose itself. The training set is usually build by rendering a

virtual model in several different poses. Hidden Markov models are then used to

represent the temporal constraints. Model-free algorithms can be either tracking

or detection algorithms and they are usually adopted for multiple people pose

estimations. However, their accuracy is lower than the one achieved by the direct

model use algorithms.

Recent works in this category aiming the capture the pose of multiple people

are [2], [79], [125], [170] and [57]. In particular, the latter one uses two cameras

to track and capture the motion of the people in the center of Zurich basing on

an example-based approach. In [2] instead, the assemblies of parts strategy is

used to detect and track humans in crowded scenes without focusing on the pose

estimation problem. [79] uses the same strategy computing also the humans’

pose for indoor video sequences with multiple occluding people. [125] attempts

to track humans in very long sequences assuming that people tend to take on

certain canonical poses, even when performing unusual activities. Like most of

the works in this category, also these works do not focus on the accuracy of the

pose estimate but on the accuracy of the tracking algorithm.

Direct model use algorithms make the use of an explicit model of the person

kinematics, shape and appearance. According to [105], this is the class of ap-

proaches which received most attention in the literature since they are able to

achieve accuracies comparable with both the marker-based and the non-optical

mocap systems. The main drawback of these approaches is the loss of adapt-

ability since the use of an explicit model adds an extra step during the initial-

ization, where this information needs to be acquired. Whereas this might not

be a limitation in some applications like, for instance, character animation and

virtual reality, it would create some inconveniences in some other applications

like surveillance and medicine.

It is worth to mention the two first pioneering works in this area namely,

O’Rourke and Badler [112] in 1980 and Hogg [62] in 1983. In these two works

and in most of the subsequent ones, the analysis-by-synthesis approach is adopted

by optimizing a functional representing the similarity between observed and es-

timated data. This optimization is, in general, performed by gradient descent

techniques. Direct model use algorithms usually perform the motion capture on

16The reader should refer to [124], [166], [123], [64] and [128] for an overview on this strategy.
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a single person at a time, while only few of them, like [103], try to simultaneously

estimate the pose of multiple people. They usually consist in tracking approaches

and therefore they are sensible to abrupt pose changes. In fact, the failure proba-

bility of a tracking algorithm strongly depends on the estimate accuracy achieved

in the previous frames and on the difference between current and the previous

frame pose.

To overcome to this lack, some approaches adopt stochastic techniques, like

particle filtering [89] which, however, has the drawback of a considerable increase

of the computational complexity. In fact, particle filtering suffer of dimension-

ality problems which can be reduced only by resorting to some expedients like

annealed particle filter [40] or hierarchal stochastic sampling schemes [103]. In

[72], a stochastic search methods was proposed to avoid the local minima that

may arise after an abrupt pose change with the added benefit of a considerable

computational performance improvement. Other solutions come from approaches

like [56] which propose a complex parallel system adopting both a direct model

use tracking algorithm and a model-free detection algorithm. The former is used

to achieve good estimate accuracies, while the latter controls the error drift and

avoids loss of tracks.

Differently from the direct model use approaches, the indirect model use ones

propose to recover the necessary a-priori information about the actor’s body

model during the motion capture session together with the motion estimation.

Belonging to this class, works like Mikic et al. [102] present integrated systems

for recovering both the human body model, in this case, represented by a set of

cylinders, and its motion. Model acquisition is usually based on a hierarchical

rule-based labeling of the voxels of the reconstructed visual-hull. An extended

Kalman filter is used to recover the human motion between frames. On the other

hand, Cheung et al. [28] first reconstructs a model of the kinematic structure,

shape, and appearance of a person and then use this information to estimate its

motion. [147] instead, uses an alternative approach based on full 3D-to-3D non-

rigid surface matching by the use of spherical mapping. The recent work Balan

et al. [6] uses a database of shapes to generate the model which best fits the

subject to analyze and subsequently the tracking is performed using silhouette

fitting.

The next section describes the details regarding both the direct model use

approaches and the indirect ones.
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Figure 2.3: Analysis-by-synthesis approach applied to the pose estimation prob-

lem.

2.1.5 Direct/Indirect model use

As we mentioned before, most of the direct and the indirect model use algorithms

adopt the analysis-by-synthesis approach. Figure 2.3 shows schematically this

type of approach applied to the pose estimation problem. Given some parameters

defining a human pose, an internal representation of the human body assuming

that specific pose is generated and compared with the input data using an error

functional. Clearly, the pose which minimizes this error is defined to be the best

solution for the pose estimation problem.

The scheme in Fig. 2.3 suggests also a way to classify the algorithms using a

direct or an indirect model, namely according to the used error function and the

used internal body representation.

Concerning this latter one, the algorithms described in literature represent

the human body either as shape primitives like sticks, cylinders or ellipsoids, or

as complex 3D models. Figure 2.4 classifies graphically some of these represen-

tations. It is important to underline the fact that with the term internal body

representation we refer to the one used during the estimation process and not the

one produced by the algorithm as output. There exist, in fact, techniques using

simple primitives as internal models with, instead, an output consisting in com-

plex 3D meshes. Clearly, the more accurate is the internal body representation,

the better tracking results are obtained.

A lot of works have been developed for each of the representations depicted

in Fig. 2.4. Sticks, cylinders and 2D primitives were the first to be used and,

nowadays, are the must suitable for monoscopic and real-time pose estimation.

On the other hand, complex 3D models are computationally expensive both

to handle and to recover, but they allow to achieve better pose estimation ac-
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Figure 2.4: Different internal body representations.

curacies. In order to recover these models, two main approaches were typically

used namely, the synthesis and the direct acquisition one. In the latter case, the

model is acquired by a body scanner or a similar device. These hardware are

rather expensive but they can achieve accuracies of the order of one millimeter.

On the contrary, the synthesis approach recovers the model by adapting a generic

human template to the actor characteristics, like the sizes and the lengths of each

limb, or by interpolating some shapes retrieved from a database. For instance,

Carranza et al. [22] adapts a generic human template during the estimation of the

first frame of a recorded sequence. A database approach, instead, was success-

fully exploited by [6] using the so called SCAPE database [4]. The idea was to

interpolate both the shape and the deformation contained in this database to gen-

erate a human, considered as a deformable model, which best match the actual

actor characteristics. Unfortunately, these approaches are limited to represent

only humans belonging to the space of shapes that they can span.

The most important peculiarity, characterizing each method using complex

3D models as internal representation, is how they deal with the skin deforma-

tions. Most of the works, like for instance [152] and [106], approximate these

deformations splitting the human surface in small pieces, each rigidly attached to
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Figure 2.5: Analysis-by-synthesis approach: (Top) 3D error functional scheme,

(Bottom) 2D error functional scheme.

only one bone of the skeleton. This solution, however, does not take into account

what happen in between the junctions and it is absolutely not suitable for the

motion estimating of small and high flexible parts of the body, like the spine and

the clavicles. Indeed, the region of the actor’s skin behaving rigidly with these

bones is too small to be tracked.

Some recent works consider these deformations, but only in a subsequent step,

after the pose estimation, with the only purpose of improving the output quality.

For instance, [41] performs the pose estimation assuming rigid deformations but,

in a further step, it uses the differential coordinates to animate a very accurate

model of the actor captured using a laser scanner. [156] estimates the motion

using a simple stick model, then, it captures a shape of the actor for each frame

of the sequence.
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Figure 2.6: Visual hull of the human reconstructed by four cameras: it presents

a lot of ghost boundaries.

All these approaches take into account the non-rigid deformations of the skin

but in non of them, this information is used to increase the accuracy of the pose

estimation process. Notable exceptions are [42], [5], [73] and [111]. [42] uses

a variant of the Laplacian shape editing approach to model the deformation of

both a volumetric and a mesh representation of the actor. The low frequency

surface details are represented by the volumetric layer while the high frequency

by the mesh layer. These latter are captured in a second refinement step using

silhouettes and multi-view stereo. [5] uses the SCAPE deformation model which

is in practice based on interpolation. [73] and [111] propose to use the linear

blend skinning (LBS) for the deformations using however, 3D error functionals.

The error function can be classified according to the type and the domain

of the features used to evaluate it. Features can be either in the 3D or in the

2D domain. Depending on the chosen features domain, the analysis-by-synthesis

scheme assumes different forms depicted respectively in Figure 2.5 top and bot-

tom. In the former case, the input images are first used to get a course 3D

reconstruction of the scene and then, the human body model is fitted inside such

a reconstruction minimizing a 3D matching error. In the 2D case, no explicit 3D

reconstruction is generated, instead, the images of the internal body representa-

tion are synthesized during a rendering step and compared with the original ones.

The error evaluation is therefore performed on the image domain.
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Figure 2.7: Some of the past works organized according to their internal body

representation (x-axis) and the used features type (y-axis). Red, green, yellow

bullets indicate the use of respectively a 3D error function, a 2D error function

and a mixed one.

Differently from the 2D approach, the 3D one has two main drawbacks. First

it needs an additional reconstruction step which is very time consuming with

respect to the simply scene rendering. However, the situation in which a 3D

approach clearly fails happens when silhouette information and a small number

of cameras are used. In fact, since the visual hull represents only an upper-

estimate of the real surface, it contains a lot of ghost boundaries which do not

exists in the real actor model. Figure 2.6 shows the visual hull of a human

obtained by only four cameras, the ghost boundaries are clearly visible on his

back and on his chest. Clearly, if the algorithm tries to fit its own model inside

such a reconstruction using a 3D matching error, it would also try to approximate

all these ghost boundaries, resulting in a wrong estimation. This is cause by the

fact that, in this case, the 3D matching error does not approximate the true pose

estimation error.

The used feature types are typically silhouettes, textures, shadows or optical

flow. Figure 2.7 and Figure 2.8 organize graphically some of the past works

according to the used internal body representation, the used deformation model,

the used feature types and their domains. The works visualized in these two

graphs are either model-free approaches or direct/indirect model use approaches.

As the reader can see from Fig. 2.7, most of the works focus on shape primitives

and adaptable meshes since body scanner data is a very expensive technology.
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Figure 2.8: Past works, shown in Fig. 2.7, reorganized according to how they

deal with deformations (x-axis) and the used features type (y-axis).

On the other hand, from Fig. 2.8, we can observe that most of the works assume

only rigid deformations of the skin, while, only five of them, including ours, take

into account the non-rigid deformations.

Concerning the number of used cameras, most of the works, performing an

accurate full body pose estimation, use more than 8 cameras. Some works limit

their scope to only upper body or to only approximate pose estimations. No-

table works are [73] and [6], where only, respectively, 5 and 4 cameras are used.

Concerning the number of degrees of freedom instead, most of the works keep it

below 24, while, some works can handle also 37 DOF model.

2.2 Our approach

Our approach consists in a system able to capture shape, appearance and motion

of interacting people and objects. Shape and the appearance is acquired by a

passive and inexpensive body scanner in an off-line step. The motion instead, is

recovered by a marker-less motion capture system. The whole scene is modeled

by articulated deformable models so that the result of the entire process can be

used in any commercial animating software.

According to the classification above, our mocap system belongs to the class

of the Multiple views 3D Pose estimation with Direct Model Use. Figure 2.7 and
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Figure 2.8 show the position of our approach with respect to the past works.

Given the considerations made in the previous section, our system is designed

to try to incorporate all the good things of the previous works and to avoid the

previously mentioned problems. In particular, a 2D error functional is used to

avoid time-consuming 3D reconstruction tasks and the above mentioned problems

about the visual hull (see Fig. 2.6). Both optical flow and silhouette information

are exploited from the videos to overcome possible lacks of data given by the few

number of cameras recording the scene (in our case, four) and the high number

of degrees of freedom to estimate (in our case, more than 80). The internal body

representation is a complex 3D mesh model which initial shape is acquired by the

body scanner and which deformations are modeled using linear blend skinning.

As result, our formulation considers in a unified way both the two kinds of

information and accounts for the non-rigid deformations of the actors’ skin. In

particular, non-rigid deformations are used during the pose estimation to improve

its accuracy especially for the small and high flexible parts of the body. The

overall accuracy of the system, instead, is maintained high by the choice of using

of a complex and accurate internal body representation.

Multiple people and objects interactions are handled by our formulation in

an elegant way, considering the occlusions that may arise between the characters.

Differently from the previous approaches for the tracking of multiple people, our

system is able to achieve accuracies comparable to the algorithms designed for a

single people tracking.

The next chapter describes in details the realized body scanner while Chap-

ter 4 deals with the pose estimation problem. In particular, Section 4.4.3 gives

a more detailed comparison between our pose estimation approach and the past

works.
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Chapter 3

The Body Scanner

This chapter describes the body scanner developed to recover the shape and the

appearance of the actors. Differently from most of the other body scanners,

described either in literature or commercialized, our purpose was to design a

system with a low cost and capable to capture also subjects’ color.

Commercial body scanner are indeed based on active sensors which are very

expensive and limit the acquisition to the only shape without considering its

appearance. In their complex, these system cost hundreds of thousands of euros.

On the contrary, body scanner based, on passive sensors, are not commer-

cialized yet but described only in literature. However, their accuracy is still not

comparable with their active counterparts.

Here, we describe a passive body scanner which cost is less than two thousand

euros. We start describing some of the problematics encountered during the

design of this hardware and then, it is described in details. From Section 3.3

on, we describe each phase of the shape and appearance reconstruction pipeline,

namely, the preprocessing, the shape reconstruction, the skeleton estimation and

the appearance (texture) reconstruction. At the end, Figure 3.17 shows a results

obtained with the developed body scanner.

3.1 Design of the hardware

The hardware of our body scanner consists of a mechanical system capable of

taking several pictures of the actor, whose shape and appearance have to be
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Figure 3.1: Gantt chart describing the realization phases of our body scanner.

acquired, in such a way that, the following requirements are satisfied:

1. The pose of the actor is always the same in all the acquired pictures : as pre-

viously said, a person cannot be modeled using a single geometry because his

shape is not unique and depend on the pose he is assuming. The purpose of

a body scanner is to recover the shape of the actor in the specific pose he

had assumed during the acquisition. In our solution, the actor is forced to

assume a pose similar to the Vitruvian man’s one. This choice is justified by

the fact that this particular pose reduces considerably the number of surface

occlusions, allowing an accurate reconstruction of both shape and appearance

with the few images.

2. The silhouettes of the actor can be accurately extracted from the images : This,

in our solution, is accomplished by ensuring that a solid blue background,

namely a blue screen, is present in every image and that the actor is not

wearing blue clothes so that, a clear distinction between the foreground object

and the background ones always exists.

3. Each point on the surface of the actor’s body is well illuminated and its color

is consistent in each acquired picture: this condition is essential to obtain

reliable dense stereo results and moreover, to ensure that the recovered texture

is free from illumination artifacts like low saturation regions and over or under

exposure issues.

4. The camera can be repositioned in the same place where each picture was taken:

this ensure that the system have be calibrated only once, just before the first

acquisition, speeding up considerably the entire process.

The Gantt chart describing the realization phases of our body scanner is

depicted in Figure 3.1. During its design, the hardest requirement to guarantee

was the first one, because a common person is not able to stay still in the same
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pose for more than ten or twenty seconds. After this time small movements, due

to external forces, attention distractions and losses of orientation, accumulate

over time changing the original pose into a completely different one. In order to

reduce these movements, the number of interactions between the system and the

actor has to be reduced to the minimum.

In one of my first work namely [21], we used an hardware capable to acquire

several pictures of small objects with the purpose of reconstructing their shapes.

That system, as many other 3D modeling hardware developed by different re-

search groups all over the world, consists of a fixed camera and a turntable. The

object to acquire is placed on the turntable and while it rotates in front of the

camera, some photos are taken.

Clearly, this approach is no longer suitable for our current purpose because

an eventual forced rotation of the actor around his axis would involve such a

big interaction which would lead to the impossibility for the actor to maintain

the original pose. In fact, every person is subjected, in addition to his physical

inertia, to a psychological inertia. More precisely, if a person is forced to rotate

around an axis, he reacts subconsciously contrasting the rotation using, as motion

information, both the visual and the equilibrium cues.

To overcome, at least partially, to the psychological inertia, a solution is to

focalize the subject’s attention on a object rotating according to him. However,

the equilibrium cues inform his brain on what is really going on and therefore,

some small corrections of the pose are still undertaken.

The best solution to overcome both the psychological and the physical inertia

is to do not move the actor at all and, instead, to rotate the camera all around

his body. In this way, no physical interaction is made on the subject during the

acquisition process.

Unfortunately, this approach leads to a more complex solution to guarantee

the second requirement, i.e., the one concerning the segmentation. Indeed, it is

not trivial to ensure a solid blue background behind the actor in every image.

Two solutions for this problem were considered. The former consists in taking

the pictures inside a completely blue room while the latter consists in rotating

an entire blue screen according to the camera rotation in such a way that the

blue screen always appears behind the actor from the camera point of view.

Dimensionality problematics and budget limitations led us to choose the latter

solution since, at that time, no other room was available for our experiments and

the one we had for building the system described in Chapter 5 was too small.

Therefore, we designed our system with the intention to make it compact and
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~60px

Figure 3.2: (Left) Vitruvian man’s pose, me in one of the first tests for evaluating

the movements of the arms. (Right) Visual estimate of the lowering of the actor’s

arms after 20 second, the image of the arm in the original position is superimposed

with the image of the same arm after 20 seconds.

portable so that it could be mounted in any room inside our department booked

for few days. The second solution was clearly the best one.

However, there still is an open issue to cover. Experiments, indeed, showed

that the attention of the actor was continuously distracted by the movement

of the system generating a visual feedback which his brain interpreted as a self

rotation in a direction opposite to the system one. As before, this sensation,

which felt like a loss of orientation, led to an automatism which corrected the

actor’s pose to compensate for the perceived rotation.

In order to mitigate the influence of these visual feedbacks, the adopted solu-

tion was to force the subject to focalize his attention on a reference object placed

statically in front of him. The visual feedbacks generated by the reference object

contrast the rotational ones generated by the system, leading to a reduction of

the perceived sense of rotation.

To guarantee this last statement, the reference object has to be always visible

from the actor point of view even when the blue screen is in front of him. This

means that the reference object has to be placed between the subject and the

blue screen and, in order to guarantee the requirement two, it has to be invisible

from the camera point of view. The solution we adopted was to use a blue

colored reference object attached to the ceiling by a transparent nylon thread

and placed in such a way that it never crosses the visual rays starting from the

camera center and ending to a point on the actor’s body surface. Therefore,

this object is always detected as background in every image and since it always

26



3.1. DESIGN OF THE HARDWARE

~30px

<5px

~5px

Figure 3.3: Comparison between the two tested approaches to support the arms

during the acquisition namely, the nylon threads approach (left) and the plexiglas

plates approach (right). Each picture is obtained superimposing the image of

an actor’s arm in the original position with the image of the same arm after 5

minutes.

lies on background visual rays, it does not compromise the silhouette extraction

accuracy.

In spite of all these precautions, the Vitruvian man’s pose is not easy to main-

tain precisely for a long time, especially the position of the arms. In fact, the

Vitruvian man’s pose requires straight arms out of the man’s frontal silhouette

and perpendicular to his main axis. This position is very tiring to maintain be-

cause all the arm muscles have to be kept tense. Experiments showed that within

20 seconds a normal person assuming this pose lower his arms of about 15cm

without realizing it (see Figure 3.2). Clearly, such a big movement invalidates

any possible approximation of the stationariness of the actor’s pose.

To overcome this problem, we used two plexiglas plates to support the weight

of the arms during the acquisition. The thickness of these supports (about 5mm)

is chosen both to guarantee a sufficient transparency in all the directions and to

guarantee a rigidity sufficient to balance the weight of the arms. The residual

deformation, instead, has to make these supports adaptable to the specific actor

characteristics, assuming the most comfortable curvature.

Experiments showed that this solution considerably reduces the movement of

the arms during the acquisition. More precisely, in all the three tested cases,

the movement measured after 5 minutes was less than one centimeter. We made

another experiment using some nylon threads in place of the plexiglas plates

to support the arms. Figure 3.3 shows the comparison between these two ap-

proaches superimposing the image of an actor’s arm in the original position with

the image of the same arm after 5 minutes. Using the threads, the measured
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Figure 3.4: Specular reflections generated by the plexiglas plates and their influ-

ence on the colors and the segmentation results.

visual movement was about 30 pixels, on the contrary, using the plexiglas plates,

this movement was reduced to less than 5 pixels. This last value can be easily

neglected considering that the used image resolution is 6.1 MPixels.

Unfortunately, the use of the plexiglas undermines the requirements number

two and three. In fact, the plexiglas plates are not, in general, fully transparent

especially along their borders and, moreover, they present strong specular reflec-

tions. Therefore they can alter the colors of the actor body and also compromise

the accuracy of the silhouette extraction procedure.

Even if the opacity of the borders can be neglected, since their thickness

is very small, the specular reflections remain a problem. In order to reduce

these artifacts, the lighting system can be adjusted in such a way that, no direct

reflectional paths exist between the camera and the light sources. Instead, the

indirect illumination of the supports can be reduced by blocking the light rays

coming everything that is not a light source. An alternative solution to both

these kind of illumination issues is the use of a polarized lens to filter the light

reflected by the plexiglas plates.

Some experiments were made to evaluate these two approaches. Figure 3.4

shows the specular reflections generated by the plexiglas plates and their influence
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on the colors and the segmentation results. The first and the third columns show

these artifacts while the second and the forth ones show the results obtained using

respectively the polarized filter and the light path blocking approach. As can be

seen from the figure, the specular reflections increase the brightness of the images

and often lead to an increase of the ambiguities in the segmentation results. The

polarized filter reduces these ambiguities but it less efficient than the light path

blocking approach. In this last case, indeed, the obtained images are very close

to the original ones and their segmentation is almost perfect.

3.2 The hardware

The bearing structure of our body scanner is depicted on the left of Figure 3.5. It

is composed of two parts namely, a central part and a moving part. The former,

located at the center of the system, is static while, the latter, composed mainly of

aluminium profiles, can rotate around the former. The central part comprises the

platform, where the subject to acquire has to be positioned, and the mechanism

allowing the rotation of the latter part.

The platform is rectangular and made of wood. It is supported by a central

hollow pin made of steel welded on a rectangular plate which, in its turn, is fixed

with some screws on a cross-shaped structure made of aluminium profiles. This

last structure lays directly on the floor and it is designed big enough to guarantee

the stability of the entire system when the actor gets onto the platform.

The moving part includes both the structure supporting the camera and the

Figure 3.5: (Left) Bearing structure of our body scanner. (Right) Particular of

the rotational mechanism.
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structure supporting the blue screen. Both these structures are connected each

other by four arms made of aluminium. These arms are connected, in their turn,

with the central part by the rotational mechanism which allows the moving part to

rotate around the central pin supporting the platform. The rotational mechanism

consists in a hollow cylinder, coaxial with the central pin and connected to it by

two angular ball bearings arranged in a circle (see Fig. 3.5(Right)). In order to

reduce possible plays, the two bearings are fixed and slightly preloaded by a ring

nut screwed on the central pin. Moreover, four housings are welded on the side

of the hollow cylinder to lodge the arms of the moving part.

The camera and the blue screen are supported by the longest two arms of

the moving part. Since that, the considerable mass of the blue screen and the

significant length of these two arms undermine their rigidity, it is necessary to

support them with some small wheels, fixed at their extremities.

In order to ensure the requirement number four, i.e., the one concerning the

repeatability of the camera positioning, the rotational mechanism is designed

in such a way that it can stop only in some specific angular positions. More

precisely, a ring-shaped plate coaxial with the central pin is fixed on the top of

the cross-shaped structure. 60 bolts are screwed near its external circumference

spaced one to another by an angular step of 6 degrees (see Fig. 3.5(Right)). A

blocking mechanism is fixed on one of the housings for the arms of the moving

part. It is equipped with a V-shaped groove designed to slot exactly the head of

one of the bolts. A lever controls the blocking mechanism. The activation of this

lever opens the lock allowing the system to rotate. A release, instead, centers the

lock in the nearest bolt.

The two profiles, placed perpendicularly and obliquely to the structure sup-

porting the camera, have the only purpose to make this last structure more rigid

so that, the plays of the camera, due mainly to bends and twists of the arms of

the moving part, are reduced to the minimum.

Some experiments were made to evaluate the error on the repositioning of the

camera. More precisely, each of the sixty allowed positions of the system was

calibrated five times using a checkerboard and the calibration results compared.

The measured average error was smaller than 0.071◦.

On top of its bearing structure, the system is equipped with some wood made

sticks forming the infrastructure for the fabric covering the entire system (see

Fig. 3.6 and Fig. 3.7). Part of this fabric forms the blue screen while the other

namely, the darker one, is used to block the light rays generating the unwanted

illumination on the subject and on the plexiglas plates.
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Figure 3.6: Bearing structure completed with the infrastructure supporting the

fabric. (Left) Perspective view. (Right) Top view.

The size of the system, more specifically, the distance between the camera

and the rotation axis and the one between the blue screen and the rotation axis,

have to be decided considering the requirement number two. Since the system is

rotating around the actor, this last one can be approximated using the sphere that

circumscribes it. To ensure a solid blue background in all the acquired images,

all the rays starting from the camera center and passing through this sphere

have to intersect the blue screen. Clearly, the farther the screen is from the

rotation axis the bigger it has to be to satisfy this last requirement. This would

lead to the decision to place the blue screen as close as possible to the rotation

axis. Unfortunately, the distance between the sphere and the blue screen has

to be sufficiently big to avoid that the actor’s hands generate shadows on the

blue screen, decreasing the accuracy of the background subtraction procedure.

Moreover, the camera have to be placed far enough from rotation axis to ensure

that its field of view contains entirely the sphere.

Our body scanner mount a Nikon D70s1 camera equipped with a 18mm lens.

The image resolution is 6.1 MPixels and the CCD size are 23.7mm by 15.6mm.

The camera is placed 2.3 meters away from the rotation axis at an height of 1.4

meters with respect to the platform. The blue screen is, instead, placed at 1.5

1http://www.nikon.com/
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Figure 3.7: The complete body scanner during an acquisition.

meters away from the rotation axis and its size is 3 by 2.5 meters.

Concerning the lighting system, it consists in a set of neon lights static with

respect to the floor and thus the actor. In this way each point of the actor’s body

is illuminated from the same direction in every picture and therefore, neglecting

the non-Lambertian reflections, each point appears with a consistent color in

every image. The non-Lambertian reflections are reduced displacing the lights in

such a way to create a diffuse illumination. This moreover, reduces the shadows

that could be generated by the actor onto the blue screen, increasing the accuracy

of the background subtraction procedure. As for the plexiglas plates, the indirect

illumination is blocked by the dark fabric surrounding the system.

Figure 3.7 shows two images of the final body scanner during an acquisition.

3.3 Acquisition and pre-processing

During an acquisition session, sixty photos of the actor are taken in each of the

allowed configurations of our body scanner. An operator controls both the lever

of the blocking mechanism and the shooting button of the camera. Once a photo

is taken in one configuration, the system is rotated until the next configuration is

reached. This procedure is repeated sixty times. Figure 3.8 shows some typical

images acquired during an acquisition session.

The images are then processed to recover the silhouettes and the color infor-
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3.3. ACQUISITION AND PRE-PROCESSING

Figure 3.8: Some typical images acquired during an acquisition session of our

body scanner.

mation. Since a blue screen is adopted, an HLS keyer is chosen to perform this

critical task.

More precisely, the complete pipeline is shown in Fig. 3.9. Each input image

is connected to a specific mask defining which pixels can be considered during

the background subtraction procedure, i.e., the ones representing either a point

on the blue screen or a point on the actor’s body. All the other pixels represent

points outside our system and therefore, are not considered.

In order to recover this mask for every input image, an off-line acquisition with

no subject is performed and the HLS keyer is used to detect all the blue pixels in

the images in the more conservative way as possible, i.e., a point is detected as

blue only if it surely belongs to the blue screen. In particular, a green pattern was

also used to cover the platform and the HLS keyer tuned to detect also the green

pixels because, in this way, the detection of the point on the platform increases
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Figure 3.9: Pre-processing pipeline aimed to recover the actor silhouettes and the

color information.

Figure 3.10: Example result of the color suppression operator used to reduce

the blue halos artifacts occurring near the silhouette border of an actor’s image.

(Left) Original image. (Right) Processed image.
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its accuracy.

Each input image is then multiplied by its related mask and the result pro-

cessed by the keyer. Some morphological operators are then applied to improve

the detection accuracy.

The HLS keyer was chosen because it works pretty well with this type of

images and it is easy to tune. However other keying techniques can be used as

well. The reader should refer to Appendix B for a review.

Once a silhouette is detected, it is multiplied by the original image to obtain

the color information. A color suppression operator is then used to remove the

blue halos typical of the use of a blue screen. These artifacts occur near the

silhouette border where the screen color can spread inside the actor’s image. As

shown in Figure 3.10, the color suppression operator removes all the blue and

violet shades generated by the blue screen.

3.4 Shape reconstruction

The shape reconstruction phase aims to recover, from the input images, a tri-

angular mesh representing the actor’s external surface. An overview about the

state of the art of all the main techniques aimed to accomplish this task is made

in Appendix A.

Here, instead, we briefly describe the solution adopted for our specific type of

data. The reader should refer to the previously mentioned appendix for a deeper

analysis or for an alternative solution.

Dense stereo information is first extracted from each pair of consecutive im-

ages and subsequently used together with the silhouettes, extracted during the

previous phase, in order to recover the geometry of the actor.

More precisely, a first coarse estimation of this surface is obtained using the

only silhouette information. This is accomplished by a volume based shape from

silhouette algorithm. Afterwards, parametric deformable models are used to fuse

together all these information as we did in our past work [10], which is a variant

of [46]. Their deformations are iterated until a functional, considering all these of

information and the smoothness of the entire surface, reaches its minimum. More

details are provided in the last section of Appendix A regarding the multimodal

methods, or in our paper [10].

The main difficulties during this task are due to the particular shapes we are
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Figure 3.11: A typical wireframe model reconstructed by our body scanner.

reconstructing. The external surface of the human body presents, in fact, a lot

of small high detailed regions separated by big and almost uniform ones. This

leads to a concept of smoothness relative to each specific region of these kind of

surfaces. The stereo algorithm has to be designed to take into account for this

type of smoothness and to estimate depth maps which discontinuities occurs only

along the border of the actor’s silhouettes.

The accuracy of our approach decreases considerably in body parts like the

face and the hands. These parts are too small with respect to the entire body and

moreover, they present strongly non-Lambertian reflections. For these reasons

they have to be reconstructed using a specific technique different from the one

used for the rest of the body.

The obtained models count more than 500 thousands faces but we downsample

them, in an non-uniform way, obtaining models with 13 thousand faces. This

downsampling is necessary to limit the used computer resources maintaining a

perfect description of the actor for our purposes. Figure 3.11 shows a typical

wireframe, i.e., a triangular mesh, obtained at the end of this phase.

3.5 Skeleton estimation

This phase aims to recover the skeletal structure underlying the acquired actor.
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Figure 3.12: Bones arrangement in the used skeletal structure with their related

degrees of freedom.

X-Axis Y-Axis Z-Axis
min max min max min max

Pelvis -180 180 -180 180 -180 180
Spine lv. 0 -15 15 -10 10 -10 60
Spine lv. 1 -20 20 -18 18 -10 60
Spine lv. 2 -180 180 -180 180 -180 180
Neck -180 180 -180 180 -180 180
Head -70 70 -50 50 -60 30
Clavicles -30 30 -10 10 0 0
L Upper arm -90 40 -40 85 -90 30
R Upper arm -40 90 -85 40 -90 30
Forearms 0 0 0 0 -140 0
L Hand -90 30 -80 80 0 0
R Hand -30 90 -80 80 0 0
L Thigh -90 90 -40 90 -160 90
R Thigh -90 90 -90 40 -160 90
Lower legs 0 0 0 0 -140 0
Feet -90 90 0 0 -90 50
Toes 0 0 0 0 -30 30

Table 3.1: Constraints of the skeleton.
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Our system models the human’s skeleton using 22 bones arranged as depicted

in Figure 3.12. The pose of this skeleton counts 46 degrees of freedom arranged

as follows: head (3), neck (0), clavicles (2+2), upper arms (3+3), forearms (1+1),

hands (2+2), spinal bones (3+3+1), pelvis (6), thighs (3+3), lower legs (1+1),

foots (2+2) and toes (1+1). Not all the possible configurations of these degrees

of freedom are plausible poses for the human. Table 3.1 reports the constraints

used by our system, to determine the the allowed configurations of the skeleton.

The purpose of this phase is to estimate the length and the pose of each of

these bones from the previously reconstructed triangular mesh. In our realization,

this task is accomplished manually. However, a fully automatic procedure can be

found in Baran and Popovic [12].

3.6 Texture reconstruction

Texture mapping is a method for adding detail, surface texture or color to a 3D

model. Its application to the computer graphics was pioneered by Catmull2 in

his Ph.D. thesis of 1974 [25].

Ideally, given a 2-manifold Φ, the aim of the texture mapping is to assign to

each point of Φ, a particular reflectance property. Formally, this assignment is

a map between Φ and the space of the reflectance properties. Let’s denote this

latter space with the symbol Υ and denote this map with ξ. ξ : Φ→ Υ is called

texture map.

Commonly, instead of directly defining ξ, two intermediate functions are de-

fined in the following way,

Φ Υ

[0, 1]2

ξ

M T (3.1)

where T : [0, 1]2 → Υ is a generic image with codomain Υ and M : Φ → [0, 1]2

is a injective and piecewise homeomorphic function. T is called texture and M is

called uv-map3. Since M represents a map from a 3D manifold to a 2D plane, it

2Catmull is currently the president of the Walt Disney Animation Studios and the Pixar
Animation Studios.

3The term uv-map comes from the fact that the coordinates in the texture domain are
usually expressed with the symbols u and v.
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is often called unwrap map.

The function M locally, is a chart of Φ and so its local inverse is a local

parameterization of Φ. This means that Φ can be partitioned, neglecting some

points, into open subsets {φi}i such that, for each φi, the function M|φi is a global

chart of φi.

Given a manifold Φ and a set of images representing Φ, the texture recon-

struction task consists in finding a texture map ξ of Φ such that the resultant

model is photo-consistent with the given images. If an uv-map M of Φ can be

recovered, the problem is reduced to the only synthesis of the texture T . We first

address the problem of recovering an uv-map M of Φ and then we address the

problem of synthesizing T .

In spite of the clear fact that, a lot of uv-maps can be defined for each single

manifold, the problem of defining one is computationally hard. Common ap-

proaches cut the surface into pieces and then unfold each piece respecting both

the continuity and the injectivity constraints. This unfolding procedure is usually

performed by the so called pelt map approach, consisting in the stretching of the

surface inside the 2D domain until all the overlapping regions disappear. Other

obsolete techniques are the spherical mapping, the cylindrical mapping, the box

mapping and the plane mapping.

All these techniques do not, in general, satisfy a very desirable property of the

uv-maps, namely the isometric one. Maps satisfying this property preserve both

angles and distances and thus, also areas. Regular sampling grids with uniform

spacing in the parameter domain are undistorted by these maps onto the surface.

Moreover, proportions are preserved, i.e., big regions of the manifold map into

big regions of the texture, and viceversa. However, sometimes some of these

regions are more important than others even if they are smaller. For instance,

the face of a human is more important than his pants even if it is smaller. In these

cases, it is preferred to weight the isometric property to correctly match these

characteristics. The resultant maps are no longer isometries, but only conformal

maps, i.e., maps preserving angles but not distances.

In all the other cases, isometries are preferred to conformal maps. Unfor-

tunately, with the exception of the developable surfaces, such as the cylinders,

general manifolds cannot be flattened by isometries, neither by a piecewise isome-

tries. Therefore, a minimum distortion criteria, considering the distance between

a generic map and the nearest isometry or conformal map, must be used to flatten

general manifolds.

We started implementing the approach suggested in [146]. This method, first
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Figure 3.13: Codomain of an uv-map generated by our system.

defines a distortion metric penalizing maps not satisfying the isometric condition,

then it produces an uv-map which distortion is below a certain threshold. The

algorithm incrementally flatten the mesh surface by growing patches, maintaining

the distortion metric below the preselected threshold. When this is no longer

possible, it stops the flattening procedure and starts a new patch.

Unfortunately, the number of generated patches is inversely proportional to

the preselected distortion threshold. As we will see next in this section, this

becomes a very serious problem during the texture synthesization because it

undermines the assumption that the effective texture domain, i.e., the uv-map

codomain, could be considered similar to R2. This last property is absolutely

necessary for treating the texture as a bidimensional signal.

In order to satisfy this property, our system adopts a strategy designed specif-

ically for the type of objects to acquire, i.e., for humans. Given the 3D model of

an actor, our system first defines specific cuts along the mesh surface, in such a

way that it results subdivided in five main pieces namely, the head, the left arm,

the right arm, the trunk and the legs. Then a pelt mapping algorithm is applied

to stretch each patch in order to remove the overlapping regions.

A result can be seen in Figure 3.13.

Concerning the texture synthesization task, our system adopts the same blend-

ing approach we had proposed in [21]. The space Υ is restricted to the RGB color

space so that, the resultant texture T is a common RGB image. Let’s denote

with Ii a generic input image and with Πi its related projection map. Since the
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manifold Φ is known, Πi can be inverted in a specific region R of its codomain,

more precisely in R = Πi (Φ). The combination of this latter function with M re-

sults in a map from R, subset of the domain of the input image Ii, to the domain

of the texture image. Let’s call this latter function, πi. Summarizing,

[0, 1]2 RGB

Φ [0, 1]2

Ii

Πi

M

T (3.2)

πi :
(
R ⊆ [0, 1]2

)
→ [0, 1]2 (3.3)

In general, each image Ii gives only a partial reconstruction of the actual

texture T . Let’s denote with Ti the partial reconstruction obtained using only

the image Ii. In order to recover T , one has to fuse together all the obtained Ti.

Let’s note that the quality and the quantity of “useful information” about T

are not, in general, uniformly distributed over all the partial reconstruction Ti.

In fact, some of them describe well specific regions of T neglecting the others,

and viceversa.

Therefore, it is obvious that, the synthesization task has to take into account

of the information distribution over all these partial reconstructions of T . More

precisely, it has to weight more data coming from a Ti with higher quality and

quantity of information than the others.

In order to formalize the previous statements, we introduce the concept of

quantity of information stored in a specific region of a Ti and the concept of

distortion that this information is subjected in that specific region, that is, the

quality of this information.

The distortion of a function, a signal or an image, is a very generic concept

describing how much the original function/signal/image is being altered by some

external factors. In fact, the distortion measures the similarity between the orig-

inal signal and the distorted one.

In our case, the distortion of a source channel, i.e., a Ti, is mainly due to

the distortion of the map πi and to the distortion of the image Ii. In its turn,

the distortions of πi is due to calibration errors and to surface reconstruction

errors. Instead, the distortion of Ii is due to all the possible distortions that may

arise during the image formation process, such as, for instance, shading, shadows

and highlights generated by non-Lambertian surfaces or illumination changes,

or different image white balance settings, overexposure, vignetting and so on.
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Finally, once the distortion of both Ii and πi is known, the distortion of each

pixel of Ti can be computed multiplying together the previous ones.

Concerning the quantity of information stored in a specific region ζ of a partial

reconstruction Ti, it can be seen, intuitively, as the area of the region of the

original image Ii representing ζ. This means that, the bigger this area is, the

more information about ζ is provided by Ti. The previous definition make sense

only considering both Ii and Ti as discrete domain images, i.e., made by pixels.

In this case, indeed, the finite sampling of the image causes a loss of information

during a shrink of the region. This does not happen in the continuous case except

when this region collapse into a single point or a line.

In order to mathematically describe the previous concept, we define, where

it is possible, the function gi (p) as the absolute value of the determinant of the

jacobian of an inverse of πi, i.e.,

gi (p) =
∣∣det

(
J
(
π−1
i

)
(p)
)∣∣ (3.4)

gi (p) represents the transformation ratio between the area of the infinitesimal

texture region around p and the area of the corresponding region in Ii with respect

to the map πi. Clearly, for a given point p of the texture, the fact that gi (p) is

less than 1 means that the image Ii doesn’t have enough texture information

concerning p. Viceversa, gi (p) greater than 1 means that the texture cannot

store all the details offered by the input image Ii, since they all collapse inside

a same pixel. Therefore, for each point p, information coming from the partial

reconstruction having the highest value of gi (p) is preferred, since this source

gives more information about p than others.

At this point, it is important to define another useful map which characteris-

tics are similar to ones of gi (p). Given a point p of a partial reconstruction Ti,

the surface normal at the 3D point M−1 (p) can be determined. Let’s call it n (p)

and call ñi the normal of the image plane of Ii. The function

hi (p) = −n (p) · ñi (3.5)

describes the level of parallelism between the local surface and the image plane

of Ii. Low values of hi (p) means that p is not well represented in Ii since its

surrounding area is too small and it could suffer of shading effects. This means

that the quantity of information is also low while the distortion could be high.

Therefore, information coming from the partial reconstruction having the highest

value of hi (p), is preferred.

The quantities gi (p) and hi (p) are, in general, strongly correlated, and while

gi (p) is related to only the quantity of information coming from a specific point
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WTA

Average Pyramidal

Original

Figure 3.14: Textures reconstructed using three different fusion techniques

namely, WTA, average blending and pyramidal blending based on wavelet [21].

of a Ti, hi (p) is related also to its distortion. However, differently from gi (p),

hi (p) does not consider scaling. More precisely, if p is seen by two images, one a

little bit far away from the model than the other, the value of hi (p) is the same in

both images, while the value of gi (p) decreases in the second image because the

area of the surround region around p is smaller than in the first image. Moreover,

let’s note that, hi (p) does not consider any other distortions other than shading.

Even so, the combination of hi (p) and gi (p) forms a meaningful functional

considering both the quantity and the quality of incoming information from a

given source. Therefore, it should be used as weight function during the process

that fuses together all the Ti to recover the texture T .

Traditional fusion approaches are the Winner Take All (WTA) approach and

the Average blending approach. For each point of T , the former selects informa-

tion coming from the best source while the latter makes a weighted average over

all the sources of information.

Unfortunately, none of these two approaches is artefact free. WTA generates

non-continuous textures like the one on the left of Figure 3.14. The discontinuities
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Figure 3.15: One dimensional representation of blur and ghosting artefact gen-

erated by averaging two signals s1 (t) and s2 (t) in their common region.

are located along the lines where the preferred source of information changes and

they become visible for high distorted sources of information.

On the other hand, average blending generates blur and ghosting artifacts (see

Fig. 3.14) when the input signals are respectively correlated and uncorrelated.

A graphical explanation for the generation of these two artifacts is given by

Figure 3.15. In the first case, on the left, s1 (t) and s2 (t) are correlated, more

precisely, s2 (t) is a shifted version of s1 (t). The average of these two signals in

their common region is equivalent to a spatial low pass filter which, in practice,

causes the blur. In the second case, instead, the two signals are completely

uncorrelated. The average is a signal having, in the common region, the ghost of

s2 (t).

A way to avoid the above described artifacts is to use a multi-resolution fusion

approach. This type of technique, also known as pyramidal blending approach,

is often described in the literature to fuse multiple images and it is usually based

on Laplacian kernels. However, pyramidal blending had not been applied to the

texture reconstruction problem before our work in 2005. In this work, all the

sources of information are evaluated at each resolution and the multi-resolution

analysis is performed using the discrete wavelet decomposition (DWT) [91].

It is worth to recall in what consists the wavelet decomposition of a bidimen-

sional signal, i.e., an image. This decomposition splits the original image into a

set of bidimensional signals organized in a tree structure. Each node of this tree

has four children representing respectively the low band (LL), the high vertical

band (LH), the high horizontal band (HL) and the high corners band (HH)
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of the signal represented by the parent node. Figure 3.16 depicts the DWT de-

composition of a bidimensional signal, showing on the left, its frequency domain

representation and, on the right, its tree structure.
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Figure 3.16: Discrete wavelet decomposition of a bidimensional signal: (Left)

frequency domain representation, (Right) tree structure of the decomposed bands.

The basic idea behind our approach is to evaluate the quality and the quan-

tity of information at each node of the wavelet tree and then fuse each node

separatively using the WTA approach.

What can be easily observed is that the quality of information (i.e., its dis-

tortion) remains unchanged in every node of the tree, while, its quantity varies

depending on both the type and the level of the node.

Let’s denote with the symbol ilx the quantity of information stored in the

unique node of type x ∈ {LL,LH,HL,HH} presents at level l of the wavelet

tree, and denote with il the quantity of information stored inside the entire level l.

A plausible assumption is that the information is preserved inside the pyramidal

structure. Therefore, the following statement holds

il = ilLL + ilLH + ilHL + ilHH (3.6)

i.e., the quantity of information of an entire level is equal to the sum of all the

quantities of information stored in each singular node belonging to that level.

Moreover, the quantity of information of a level is equal to the one stored in its

parent node, i.e.,

il−1
LL = il (3.7)
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For each point p of the texture T , let’s define, the quantity of information

at level 0 to be equal to the absolute value of the determinant of the jacobian

J
(
π−1
i

)
evaluated in p, i.e.,

i0 = i0LL =
∣∣det

(
J
(
π−1
i

)
(p)
)∣∣ (3.8)

Inside each level l, the information il is distributed in all its nodes according

to J
(
π−1
i

)
(p). In particular, if

∣∣det
(
J
(
π−1
i

)
(p)
)∣∣ is less or equal than (1/4)l, all

the information is stored in the LL node.

On the contrary, if
∣∣det

(
J
(
π−1
i

)
(p)
)∣∣ is greater than (1/4)l, the norm of the

two column vectors of J li (p) and their dot product tell how the information is

partitioned respectively in the high horizontal band, the high vertical band and

the high corners band. The remain information,

il −
(
ilLH + ilHL + ilHH

)
(3.9)

is stored in the LL node.

From the above considerations, one can easily estimate the quantity of infor-

mation stored in each node of the tree for any given point p. Then, an indicative

value about the quality and the quantity of information stored in a node at point

p can be retrieved multiplying the previous value with the distortion coefficient.

Our pyramidal blending approach blends separatively each node using the

WTA approach based on the above computed indicative values.

The resultant reconstruction is free from artifacts like ghostings, blurs and

texture discontinuities as the reader can see from Fig. 3.14. More precisely, blurs

are avoided since no average is applied at all. Texture discontinuities and ghost-

ings, instead, are avoided by the proprieties of the inverse wavelet transform.

These can be explained observing that the low frequency components have a

support bigger than the high frequency ones, i.e., a variation of a low frequency

influences a bigger region of the final image. Therefore, a smoothed transition

between distorted information is automatically generated.

Figure 3.17 shows a human model which texture was reconstructed using our

pyramidal blending approach.
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Figure 3.17: Textured model recovered using the described body scanner.
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Chapter 4

Motion Acquisition

This chapter describes in detail our approach to the pose estimation problem.

The first three sections define the notation and the concepts used in this chapter.

In particular, Section 4.3 attempts to provide a formal definition of deformable

model concept, in such a way that, the reader has a clear viewpoint on the main

object the be estimated. Section 4.3.3 recalls some computer graphics concepts

used in a standard animation production pipeline underlining the critical role

of the deformable models. In the end, Section 4.4 describes our algorithm and

makes theoretical comparisons with the current state of the art.

4.1 Notations and formalism

Given a field k, the general linear group of order n, is defined to be the group of

all the invertible matrices of knxn with the inherited matrix multiplication × as

internal operation

GL (n,k) = ({A ∈ knxn | A invertible} ,×) (4.1)

Given the topology T inherited from knxn, (GL (n,k) , T ) is also a topological

space and thus a topological group. According to the topology T , GL (n,k) is an

open subset of knxn, and, with the appropriate atlas, it is also a manifold in knxn

of type C∞, i.e., a smooth manifold. Let’s, for simplicity, denote this manifold,

again GL (n,k), with an abuse of notation. From the above considerations and

since both the operations × and −1 in GL (n,k) are smooth, GL (n,k) is also a
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Lie group.

The tangent space at the identity TIGL (n,k) and the operation [A,B] =

AB − BA form a Lie algebra denoted as gl (n,k), where the operation [·, ·] rep-

resents the related Lie bracket. From the manifold theory, both the exponential

map and the derivation concepts are inherited to both GL (n,k) and gl (n,k).

For the specific real case k = R, gl (n,R) contains all the n-by-n real matrices

and the exponential map is defined as

exp : gl (n,R) −→ GL (n,R)

A −→
∑
k>0

1
k!
Ak (4.2)

or, in its extensive form

exp (A) = I + A+
1

2
A2 +

1

6
A3 + . . . (4.3)

It is worth noting that this series is not always convergent thus, for some matrices

the function exp is not defined.

Same considerations can be made for some particular subgroups of GL (n,R)

namely, the special linear group of order n in R denoted as SL (n,R), the orthog-

onal group O (n,R) and the special orthogonal group SO (n,R) also known as the

group of rotations in Rn. They are respectively defined as

SL (n,R) = ({A ∈ GL (n,R) | det (A) = +1} ,×) (4.4)

O (n,R) =
({
A ∈ GL (n,R) | A−1 = AT

}
,×
)

(4.5)

SO (n,R) = ({A ∈ SL (n,R) ∩O (n,R)} ,×) (4.6)

where A−1 = AT is known as the orthogonality property (equivalent to ATA =

AAT = I).

Let’s, for simplicity, denote the previously defined group omitting the symbol

R, i.e., as GL (n), SL (n), O (n) and SO (n). All of them are topological groups,

smooth manifolds and Lie groups, and their related Lie algebras are respectively

denoted as gl (n), sl (n), o (n) and so (n).

In particular, sl (n) is the space of all the n-by-n real matrices with null trace

while both o (n) and so (n) refer to the space of all the n-by-n skew symmetric

real matrices, i.e., the real matrices satisfying the property AT = −A.

The exponential maps related to GL (n), SL (n) and O (n), namely

exp : gl (n) −→ GL (n) (4.7)

exp : sl (n) −→ SL (n) (4.8)

exp : o (n) −→ O (n) , (4.9)
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are not surjective. The only one surjective exponential map is the one associated

to SO (n), i.e.,

exp : so (n) −→ SO (n) (4.10)

for which, there exists at least one inverse called

log : SO (n) −→ so (n) (4.11)

which, however, is not unique since exp is not injective.

The vector space so (n) is isomorphic (with respect to +, ·e) to the vector space

Rn(n−1)/2 but no simple considerations can be made for the manifold SO (n).

However, restricting to the R3 case, SO (3) is known to be diffeomorphic to

the projective space RP3, i.e., the Lie group of all lines in R4 passing through

the origin. RP3, in its turn, is diffeomorphic to the quotient of the unit sphere

by identification of the antipodal points, S3/{I,−I}. This connection between

rotations in R3 and points on a hyper-sphere in R4 gives us the possibility to

define a metric in SO (3) based on the geodesic of S3. This metric is often

used for interpolation purposes between two or more rotations since it offers a

constant speed motion along a unit circle. This interpolation technique is known

as spherical linear interpolation (SLERP) and it is usually performed inside the

space of the unit quaternions H which is isomorphic to S3 (see [37] for details).

Here, we define the diffeomorphism êxp between RP3 and SO (3) that it is

going to be used later in this chapter. Let ·̂ be the operator

·̂ : RP3 −→ so (3)

x −→

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (4.12)

êxp is defined as

êxp = exp ◦ ·̂ : RP3 � SO (3) (4.13)

êxp covers injectively the entire manifold SO (3) but it is not a local chart of

SO (3), indeed it doesn’t refer to any real space of type Rm, but only to RP3.

Important local charts of SO (3) are the Euler angles, the Tait-Bryan angles,

the angle-axis pairs, the unit quaternions, the Cayley rational parameters and

also the exponential map. Each of these charts offers a compact version of SO (3)

but, they are not suitable for many applications involving rotations in R3. For

this reason, it is often preferred to use êxp as internal representation of SO (3)

and leave the previous local charts for visualization purposes.
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The exponential map related to SO (3) can be written in a closed and invert-

ible form called the Rodrigues’ formula:

exp (A) = I +
sin (θ)

θ
A+

(1− cos (θ))

θ2 A2 (4.14)

where θ = ‖x‖2 when A = x̂. Its inverse is defined as

log (A) =
θ

sin (θ)

(
A− AT

)
(4.15)

where θ is a real value satisfying both Tr (A) = 1− cos (θ) and |θ| < π.

The special Euclidean group, i.e., the group of the rigid motions, denoted as

SE (n), is defined to be the group of all the affine maps of Rn under the operation

of composition. In other words, it contains all the maps ρ : Rn → Rn such that

ρ (x) = Rx+ U (4.16)

where R ∈ SO (n) and U ∈ Rn. As before SE (n) is a topological group, a

smooth manifold and a Lie group and its related Lie algebra se (n) is defined to

be the set of all the (n+ 1)-by-(n+ 1) matrices of the form

A =

(
Ω U

0 0

)
(4.17)

where Ω ∈ SO (n) and U ∈ Rn.

As for SO (n), the exponential map of SE (n),

exp : se (n) −→ SE (n) (4.18)

can be expressed like in Eq. (4.2) and it is surjective but not injective. One of its

inverse is denoted as log : SE (n)→ se (n).

Restricting to the R3 case, it can be proven that the manifold SE (3) is diffeo-

morphic to SO (3)×R3 which, in its turn, is diffeomorphic to RP3×R3. Since RP3

has the shape of an hyper-sphere in R4, RP3×R3 is shaped like an hyper-cylinder

of dimension 6 immersed in R7.

As for the SO (3) case, we define a diffeomorphism êxp between RP3×R3 and

SE (3). Let ·̂ be the operator

·̂ : RP3 × R3 −→ se (3)

(r|u) −→

(
r̂ FuT

0 0

)
(4.19)
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where

F = I − 1

2
r̂ +

2 sin ‖r‖ − ‖r‖ (1 + cos ‖r‖)
2 ‖r‖2 sin ‖r‖

r̂2 (4.20)

êxp : RP3 ×R3 � SE (3) is defined as the composition between exp and ·̂. It

can be proved that êxp is a diffeomorphism and that the following holds

êxp (r|u) = exp
(
r̂|u
)

=

(
exp (r̂) uT

0 1

)
(4.21)

4.2 Kinematic tree

Informally speaking, a kinematic tree is a set of hierarchically organized objects,

called bones, which can move and rotate in a 3D space under certain constraints.

More formally, a kinematic tree K of order m is defined as a 4-tuple K =

(G, T, ρ,Θ, ζ) where G = ([1,m] , E) is a tree, T and ρ are particular diffeomor-

phism of type
(
RP3 × R3

)m
� SE (3)m which are described later, Θ is a subset

of
(
RP3 × R3

)m
and ζ is an element of Θ.

Each element i belonging to [1,m] represents a bone of the kinematic tree.

From the graph theory, (i, j) ∈ E means that j is the parent of i. Since G is a

tree, there exists only one element, called root, which has no parent.

The manifold CK =
(
RP3 × R3

)m
is called configuration space of the kine-

matic tree K. Each element θ in CK is called configuration, and it is defined to

be valid if it belongs to Θ ⊆ CK , invalid otherwise. As a consequence, the set Θ

is called the space of the allowed configurations. In particular, θi ∈ RP3 × R3 is

called configuration of the bone i related to the configuration θ. Moreover, ζ ∈ Θ

is called initial configuration of K.

Let’s note that CK is shaped like the cartesian product of m hyper-cylinder of

dimension 6 in R7, resulting in a manifold of dimension 6n immersed in R7n. The

space of the allowed configurations Θ is a subset of this very particular manifold.

For a given configuration θ ∈ CK , T (θ) ∈ SE (3)m is called pose of the

kinematic tree K at configuration θ. For each bone i, Ti (θ) ∈ SE (3) is called

absolute pose of the bone i at configuration θ and it represents the position and

the orientation of the bone i at that configuration. T (ζ), i.e., the pose at the

initial configuration, is called initial pose of the kinematic tree K.

T (Θ) ⊆ SE (3)m is called pose space and represents the set of all the possible

pose that the kinematic tree K can assume.
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For a given configuration θ, ρi (θ) ∈ SE (3) is called relative pose of the bone

i at configuration θ and, as we will see later, it represents the relative position

and orientation of the bone i at configuration θ with respect to its parent bone.

In a kinematic tree T and ρ have to respect the following conditions. For each

bone i and configuration θ,{
Ti (θ) = ρi (θ)

Ti (θ) = Tj (θ)× ρi (θ)
i is the root

(i, j) ∈ E
(4.22)

i.e., the absolute pose Ti (θ) of each bone is defined to be equal to the relative one

if the bone is the root, otherwise, it is defined to be equal to the absolute pose

of its parent rotated by the its relative pose. By construction Ti (θ) is uniquely

defined given all the relative poses ρi (θ), and moreover, each relative pose ρi (θ)

is uniquely defined given Ti (θ) and Tj (θ).

The map ρ instead, is defined as

ρi :
(
RP3 × R3

)m −→ SE (3)

θ −→ êxp (θi)
(4.23)

for every bone i.

From the above consideration, we can observe that the maps T and ρ are

uniquely defined by the tree G. Therefore, a kinematic tree can be uniquely

identified by its own hierarchical organization, its constraints and its initial con-

figuration.

Let’s note that, the configuration 0 is pretty useless in practical situations

since it represents a pose where all the bones are placed at the origin aligned to

the canonical reference system. For this reason, in place of configuration 0, the

initial configuration ζ is used.

Typically, it is preferred to express a skeleton configuration with respect to

the initial configuration ζ using, in place of T (·), the map T (· − ζ). For instance,

the constraints defining the set Θ are usually declared with respect to ζ.

4.3 Deformable models

Define a set Γ containing only ordered pairs of type γ = (Φ,Ψ) where Φ is a k-

manifold in Rn and Ψ is a diffeomorphism. Call each element of this set, shape of Γ

and assume that there exists one and only one singular element γ0 = (Φ0,Ψ0) ∈ Γ,
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called reference shape, such as for every other shapes (Φ,Ψ) of Γ, the related

diffeomorphism Ψ has the form

Ψ : Φ −→ Φ0 (4.24)

and Ψ0 : Φ0 → Φ0 is equal to the identity map 1. In addition, call reference

shape, any shape of type (Φ,1) and say that a shape γ1 = (Φ,Ψ) is referred by

γ0 if and only if γ0 is a reference shape (Φ0,1) and Ψ : Φ→ Φ0.

By the previous assumptions, for each pair of shapes (Φ1,Ψ1), (Φ2,Ψ2) there

exists a diffeomorphism Ψ12 : Φ1 → Φ2 defined as Ψ12 = Ψ−1
2 ◦ Ψ1 which maps

points of Φ1 into points of Φ2.

Φ0 Φ2
Ψ2oo

Φ1

Ψ1

OO

Ψ12

>>}}}}}}}}

(4.25)

Let’s define the metric d as

d ((Φ1,Ψ1) , (Φ2,Ψ2)) =

∫
Φ1

‖p−Ψ12 (p)‖2 ds+

∫
Φ2

‖q −Ψ21 (q)‖2 ds (4.26)

where ‖·‖2 is the 2-norm of Rn. It can be proven that d is a metric for Γ since

it is non-negative, symmetric and the property d (γ1, γ2) = 0⇔ γ1 = γ2 and the

triangle inequality hold.

If Γ is dense and connected with respect to the topology induced by the metric

d and it admits an atlas such as Γ is a differential manifold of dimension k, then

Γ is called referenced deformable model of dimension k in Rn.

Informally speaking, Γ represents the set of all the shapes that the deformable

model can assume. A smooth curve in Γ between two shapes γ1 and γ2 represents

a smooth deformation of the model from the former shape to the latter one. This

can also be seen as a natural time deformation of the model. The deformation

smoothness is described by the metric d. Since Γ is dense and connected, given

two shapes γ1 and γ2, there must exists at least one curve in Γ connecting γ1 and

γ2. This means that the model must be able to assume all the shapes contained

in at least one smooth deformation from γ1 to γ2.

Each allowed shape γ is connected by a diffeomorphism to a reference shape

γ0, thus, each point of γ0 corresponds to one single point on γ, and viceversa.

This allows us to extend the concept of simple manifold to the more natural one

of deformable object. Let’s, for instance, imagine a sphere that rotates around

its own center. The sphere is always represented by the same identical manifold
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but, using the deformable model concept, the map Ψ is always different and thus

the shape is too. Therefore, differently from the manifold concept, the concept

of deformable model can represent a rotating sphere.

For practical reasons, in future, we will say that a point p ∈ Rn belongs to

γ = (Φ,Ψ) and we write p ∈ γ, if it belongs to Φ. Moreover, we call Ψ (p) ∈ Φ0

the point on the reference shape associated to p and, viceversa, we call p the

coordinates of the point Ψ (p) ∈ Φ0 on the shape γ.

Given a curve γ (t) in Γ starting from γ0, one can observe the trajectories of

each point p of the reference shape γ0, as the function

c (p) (t) = Ψ−1
γ(t) (p) (4.27)

where Ψγ(t) is the diffeomorphism associated to the shape γ (t). It can be proven

that c (p) is a smooth curve in Rn. Note that c (p) is a trajectory while, as defined

above, c (p) (t) are the coordinates of the point p on the shape γ (t).

Let’s note that, all the shapes that a deformable model can assume are con-

strained to have all the same genus because they must be always connected by a

diffeomorphism of type (4.25).

Given a reference shape γ0 = (Φ0,1), the referenced deformable model having

γ0 as reference shape and containing all the possible shapes referred by γ0, is

called the space of the deformations of γ0 and denoted with the symbol Γ∗γ0
.

Let’s now define the equivalence relation ∼ between referenced deformable

models. Γ1, Γ2 are said equivalent if and only if they are equal to each other

up to the choice of the reference shape. More formally, let γ1
0 = (Φ1

0,1) and

γ2
0 = (Φ2

0,1) be respectively the reference shapes of Γ1 and Γ2. There must exists

in Γ2 a shape γ2 having as manifold Φ1
0. The related diffeomorphism, call it Ψ2,

has the form Φ1
0 → Φ2

0. Now, for each element (Φ1,Ψ1) in Γ1, there must exists

an element (Φ2,Ψ2) in Γ2 such that Φ1 = Φ2 and Ψ2 = Ψ2 ◦Ψ1, i.e.,

Φ1

Ψ2=Ψ2◦Ψ1

99
Ψ1

// Φ1
0

Ψ2 // Φ2
0 (4.28)

An (unreferenced) deformable model of dimension k in Rn is a class of equiv-

alence of the relation ∼. We will identify a generic deformable model with the

symbol Γ, the same one used for a generic referenced deformable model. In the

future we will consider Γ either as a deformable model or as one of its referenced

deformable model depending on case by case. So, we will use the term reference

shape, the symbol γ0 and its proprieties also for the unreferenced deformable
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models referring, in this case, to the specific referenced deformable model based

on γ0.

A deformable model inherits all the properties of the referenced one, moreover,

it is not constrained to have a fixed reference shape since it contains all the

possible referenced versions. Each pair of shapes that the model can assume is

still connected by a diffeomorphism of type (4.25) and the curves in Γ can still

be analyzed by looking at the trajectories of each point belonging to a chosen

reference shape. Moreover, with this definition, the equality relation between two

deformable model (inherited by the set theory) is equivalent to assert that one

object is able to assume all the shapes of the other and viceversa.

Since each referenced deformable model is a differential manifold, the related

deformable model is too and moreover, the metric d is still a metric for it. Local

charts on Γ as well as diffeomorphism to other more simple manifolds can be

built. In particular, in this latter case, the metric d can be pulled-back to the

new manifold.

The concept of space of deformation Γ∗γ0
can be extended also to the unref-

erenced deformable models. We use the same symbol Γ∗γ0
to identify the class of

equivalence containing the referenced deformable model Γ∗γ0
. It is important to

note that, in this case, given two different reference shapes γ1, γ2, their relative

space of deformation Γ∗γ1
, Γ∗γ2

can refer to the same space.

Γ∗γ0
is a deformable model and any connected submanifold of Γ∗γ0

is a de-

formable model.

A discrete deformable model is a deformable model which shapes are all geo-

metric representations of meshes and the functions Ψ map consistently vertices

into vertices, edges into edges, triangles into triangles and so on.

A parameterization of a deformable model Γ is a diffeomorphism Ξ : Θ → Γ,

where Θ is a Lie group. Each element of θ ∈ Θ is called configuration. Typically

there exists a particular configuration ζ ∈ Θ which is called initial configuration

which refers to a particular shape Ξ (ζ) = γ0 called initial shape. The charac-

teristics of this configuration depends on case to case. Let’s note that using the

pullback metric on Θ we can control smoothly the shape of the model. Moreover,

with respect to Ξ and to a chosen configuration θ0, the coordinates of each point

p on the shape Ξ (θ0) can be analyzed by the function

cΞ (p) (θ, θ0) = Ψ−1
Ξ(θ)Ξ(θ0) (p) (4.29)

Keep in mind that the first parameter of cΞ, in this case p, must belong to the

shape identified by the third parameter, in this case Ξ (θ0), and the resultant

point belongs to the shape identified by the second parameter, in this case Ξ (θ).
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Each deformable model has a lot of parameterization. We can classify them

into families and characterize a deformable model observing if it admits or not a

certain type of parameterization. This will be the topic of the next subsection.

Let’s observe that given a class of parameterization X and a reference shape

γ0, the space of all the shapes assumed by at least one deformable model which

admits a parameterization of class X and γ0 as initial shape, is a subset of Γ∗γ0
,

called X-set of deformations obtained from γ0 and denoted as Γ∗γ0,X
. Since it is

an infinite union of dense and connected subsets sharing γ0, i.e., of deformable

models, it is probably a submanifold of Γ∗γ0
and so a deformable model.

4.3.1 Families of deformable models

This subsection defines some of the most important parameterizations families

for a generic deformable model. It is common to say that a deformable model is

of type X if it admits a parameterization of class X.

If a deformable model admits a parameterization related to a kinematic tree

then, the model is called articulated deformable model. In this case, if the model

in Rn has dimension n − 1, this specific parameterization is called skinning and

it defines how the hyper-surface, the skin, is altered by the underlying skeleton

represented by the kinematic tree. In general, a skinning Ξ : Θ→ Γ has the form

Θ
Ξ //

T
##H

H
H

H
H Γ

SE (3)m
skin

;;v
v

v
v

v

(4.30)

where Θ is equal to
(
RP3 × R3

)m
, T :

(
RP3 × R3

)m → SE (3)m is the kinematic

tree map and skin : SE (3)m → Γ is a function controlling the skeleton influ-

ence on the skin. The initial configuration ζ for this type of parameterization is

assumed equal to the initial configuration of the kinematic tree.

Linearly skinned deformable model

The most famous parameterization related to a kinematic tree is the Linear Blend

Skinning (LBS or simply Linear Skinning).

A linearly skinned deformable model Γ based on the kinematic tree K =

(G, T, ρ,Θ, ζ) rigged at the initial shape γ0 ∈ Γ with skin map α : [1,m]×γ0 → R,

is a deformable model admitting a parameterization Ξ : Θ → Γ where, for each

p ∈ γ0 and each θ ∈ Θ, the coordinates of p at configuration θ can be expressed
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as follows

cΞ (p) (θ, ζ) =
m∑
i=1

α (i, p)Ti (θ)× T−1
i (ζ) p (4.31)

and, the skin map α satisfies the convex hull propriety, that is,

m∑
i=1

α (i, p) = 1 ∀p ∈ γ0 (4.32)

Note that, the coordinates of p at configuration ζ, i.e., at the initial configu-

ration, are

cΞ (p) (ζ, ζ) = p (4.33)

and thus, the initial shape is

Ξ (ζ) = γ0 (4.34)

The idea behind Equation (4.31) is that the motion of each point is equal to

the weighted sum of all the motions that the point would undergo if considered

as rigidly attached to every bones, one at a time.

Given an initial shape γ0 and a kinematic tree K, the LBS-set of deformations

obtained from γ0 restricted to the use of K is called skeletal subspace deformation

(SSD) and denoted as Γ∗γ0,LBS(K).

A particular type of linearly skinned deformable model is the rigid-body model.

In this case the skin map α has codomain {0, 1}. Therefore each point of the

model is attached to one and only one bone of the kinematic tree generating a

rigid deformation of the entire skin.

A skeleton representation of the kinematic tree T is rigid-body model based

on K. This definition gives the possibility to represent a kinematic tree with a

physical object in Rn, i.e., the skeleton. Obviously these representations are not

unique.

Another type of parameterization similar to LBS is the so called non-linear

blend skinning (NLBS). It expresses the coordinates of each point p ∈ γ0 as

follows

cΞ (p) (θ, ζ) =
m∑
i=1

(
α (i, p) + β

(
i, p, log

(
Ti (θ)× T−1

i (ζ)
)))

Ti (θ)× T−1
i (ζ) p

(4.35)

where log
(
Ti (θ)× T−1

i (ζ)
)

represents the angles related to the rigid rotation

performed by the bone i at configuration θ with respect to the initial configuration

ζ. β : [1,m]× γ0 × se (3)→ R are non-linear weights which, differently to α, are

dependent to the rotation angles. The obtained deformation is so composed by

a linear blend part controlled by α, and a non-linear one controlled by β.

59



CHAPTER 4. MOTION ACQUISITION

FFD deformable model

Any articulated deformable model can be seen as a manifold deforming itself

according to the deformations of a simpler deformable model, i.e., the skeleton.

It is easy to imagine that this idea can be extended to deformable models different

from a simple skeleton. This is the concept behind the Free Form Deformation

(FFD) parameterizations that we are going to describe.

Given a deformable model ∆ parameterized by Π : Θ → ∆ with initial con-

figuration ζ and initial shape δ0 = Π (ζ), let Γ be another deformable model

and γ0 one of its shape, we say that Γ is an FFD deformable model based on

(∆,Π, ζ, δ0, γ0) and weight map α : δ0 × γ0 → R if and only if it admits a

parameterization Ξ : Θ→ Γ defined as

Ξ : Θ
Π // ∆

FFD // Γ (4.36)

where FFD : ∆→ Γ has to satisfy the following statement: for each p ∈ γ0 and

each θ ∈ Θ the coordinates of p at configuration θ are

cΞ (p) (θ, ζ) =

∫
δ0

α (q, p) RΠ(θ)

(
cΠ (q) (θ, ζ)

)
×R−1

δ0
(q) p dq (4.37)

where Rδ0 (q) is the local coordinate system1 of the manifold δ0 at the point q.

RΠ(θ)

(
cΠ (q) (θ, ζ)

)
is the local coordinate system for the manifold Π (θ) at the

point cΠ (q) (θ, ζ), i.e., the point associated to q at configuration θ. α has to

satisfy the convex hull propriety which, in this case, is∫
δ0

α (q, p) = 1 ∀p ∈ γ0 (4.38)

Normally α is defined to be a function decreasing with the square of the

distance between p and q. For instance, it could be defined as a gaussian centered

in q having some free parameters that allow a slope control.

As one can note, Equation (4.37) is the continuous version of Eq. (4.31). ∆

is called driver model or control model and, in practical situation, is a discrete

deformable model. In this case, every vertex of the mesh is called control point.

Note that the mesh inherits the concept of local coordinate system even if it is a

discrete surface, in fact, these systems are defined in a piecewise continuous way.

1The local coordinates system for a given point on a manifold is a typical property of the
manifolds in Rn. It can be obtained starting from a basis of the tangent space and extending
it to the entire space in such a way that the resultant reference system is continuous all along
the manifold.
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Shape interpolation deformable models

Another class of deformable models is the simple morphing deformable models.

Each element of this family can be uniquely identified by a finite number of

shapes. In fact, a deformable model of this type is an affine space of deformation

Γ∗γ0
defined by a basis of shapes and by a translation shape γ0.

Formally, a simple morphing deformable model Γ, based on m shapes γ0, γ1,

. . ., γm−1 where each γi is a shape referred by γ0 and γ0 is a reference shape, is

a deformable model admitting a parameterization Ξ : Rm → Γ where, for each

p ∈ γ0 and each θ ∈ Θ = Rm, the coordinates of p at configuration θ are described

by following equation

cΞ (p) (θ, 0) = p+
m−1∑
i=1

θi
(
Ψ−1
i (p)− p

)
(4.39)

θ represents the local coordinates of the shape Ξ (θ) inside the particular

affine space of deformation Ξ (Θ) identified by the basis
(
γ1, . . . , γm−1

)
and the

origin γ0. Considering both Rm and Γ as vector spaces, it results that the map

Ξ : Rm → Γ is an affine map.

However, a deformable model of this type presents natural deformations only

near one of the basis shapes γ0, γ1, . . ., γm−1.

The above concept can be extended defining Ξ as a generic function between

Rm and a set Γ which, in this case, is no longer, in general, an affine space of

deformations but only a simple subset. The idea is to define a class of deformable

models which can be used to represent natural objects avoiding the drawbacks of

the simple morphing deformable models.

A shape interpolation deformable model Γ based on m configurations θ0, θ1,

. . ., θm−1 and m shapes γ0, γ1, . . ., γm−1 where each γi is a shape referred by γ0

and γ0 is a reference shape, is a deformable model admitting a parameterization

Ξ : Rm → Γ such that

Ξ (θi) ≈ γi ∀i = 1, . . . ,m (4.40)

i.e., such that Ξ approximates each shape γi at the respectively configuration

θi. The concept of approximation depend upon the chosen interpolation method.

The most used one is the radial basis function interpolation which defines the

class of deformable models called RBF shape interpolation deformable models.

More formally, the coordinates of each point p ∈ γ0 at the configuration θ ∈ Rm

are

cΞ (p) (θ, θ0) = p+
m−1∑
i=1

ψ (‖θ − θi‖) wi (4.41)
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where ψ : R → R is the chosen radial basis function, which in most of the cases

could be a multiquadric, a polyharmonic spline, a thin plate spline or a simple

gaussian like the following

ψ (x) = e−
x2

2σ2 (4.42)

where σ is fixed a priori. Weights wi ∈ Rn are vectors chosen in order to satisfy

the condition of Eq. (4.40). The optimum choice for these weights is the one

which minimizes the following functional

m−1∑
i=0

d (Ξ (θi) , γi) (4.43)

In case of discrete deformable models, the optimal choice can be computed

using standard matrix methods like the pseudoinverse.

The introduced parameterization is significant only inside the convex hull of

the configurations θ0, θ1, . . ., θm−1. Outside this set, all the shapes look like the

initial one γ0 since all the basis functions tend to zero.

Let’s note that, a shape interpolation deformable model can be uniquely iden-

tified by its basis shapes γ0, γ1, . . ., γm−1 and by its interpolation method. Indeed,

except for some singular cases, whatever the m-tupla of configurations (θ0, θ1, . . .

. . . , θm−1) is chosen, Ξ (Rm) identifies always the same deformable model.

Therefore, given a set of shapes γ0, γ1, . . ., γm−1 and an interpolation method

ψ, the unique shape interpolation deformable model with these characteristics is

obviously a subset of Γ∗γ0
but as we state before it is not in general neither an

affine space nor a subspace. In spite of this, this set is often called pose space

deformation obtained by γ0, γ1, . . ., γm−1 and ψ.

Other families of deformable models

In literature, there exist several other classes of deformable models and related

parameterizations. Each one try to describes deformable models which can be

used to represent physical objects. Some of them are based on anatomical models

virtually located between the skeleton and the skin. Other classes, like the surface

oriented FFD deformable model, are strongly based on the skin final appearance.

An important family of deformable models is the class of the as rigid as

possible deformable models. These models allow a parameterization based only

on few points belonging to their initial shape. More formally, an as rigid as

possible deformable model Γ, based on m points (p1, . . . , pm) and on the initial

shape γ0, is a deformable model admitting a parameterization Ξ : (Rn)m → Γ
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with initial configuration ζ = (p1, . . . , pm) where, for each θ ∈ Θ = (Rn)m, the

following statement holds

cΞ (pi) (θ, ζ) = θi ∀i = 1, . . . ,m (4.44)

and all the other points belonging to γ0 deform minimizing the shell energy

between γ0 and Ξ (θ).

The idea is to move the model along the geodesics introduced by the shell

energy which imposes a smooth and locally rigid deformation, i.e., preserving the

local shape. Since the shell energy is invariant to rigid rotations and translations,

at least n points are needed to have a unique solution. The first point indeed

fixes the translation, the second point fixes a rotation axis and defines a stretch

along this axis, and so on. After n points, the rigid motion is fixed and all the

further points define a unique solution.

4.3.2 The analysis of a deformable model

Given a physical deformable model Γ, the analysis of Γ aims to determine the

class of the model and to propose a parameterization of it.

The deformations present on a real object are much more complex than the

ones propose in the previous subsection. For instance, the presence of cloths or

fur, as well as internal or external interactions, deform the shape of an object in

a very complex way which is hard to describe by a mathematical model.

Good approximations can be obtained by sampling the real object Γ and using

interpolation to recover all the remaining shapes. The resultant model is a shape

interpolation deformable model that approximates the real one. The more shapes

of the real model are acquired the more accurate is the approximation. Clearly,

to achieve a good results, a lot of effort is needed either in terms of computational

time, storage size and human resource.

Observing a real object, we can note that its deformations can be subdivided

into big deformations and small deformations. A formal way to say this recalls

the concept of multi-band analysis of a manifold. The idea is that, basing on

a priori defined surface kernel, two operators in the space of the manifolds can

be built, namely an analysis operator A : M → M b and a synthesis operator

S : M b → M . The aim is to represent each manifold using b different bands.

This concept can be extended to the space of the deformable models leading to
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an analysis and synthesis scheme of this type:

� SA
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�b

�
�
�

�
�
�

�
�
� �

(4.45)

where Γ is a generic deformable model and Γ1, Γ2, ..., Γb are the deformable

models in which it is decomposed by A. Each Γi is called the i-th band of Γ. The

operator S recovers the original deformable model from its bands.

The concept of band is related only to the spatial characteristics of the man-

ifold related to each shape without taking into account about any deformation.

Bands are usually related to the maximum curvature of the surface, therefore,

low bands represent the coarse shape of the object while high bands represent

the details of the surface.

These two operators offer a layered approach to the analysis of a deformable

models. These layers, in a real objects, behaves almost independently to each

other and, typically, high band layers have a very low impact onto the final

manifold. Therefore, a real object can be decomposed into layers which can be

modeled independently by different type of deformable models. For instance low

layers can be modeled by a linearly skinned deformable model, middle layers using

an FFD deformable model and finally high layers using a shape interpolation

deformable models acquired by a 3D scanner.

Let’s note that now, it is clear how to formally represent a linearly skinned

deformable model as a combination of a skeleton and an FFD model, respectively

in the low layer and in the high layer. In this case, the FFD model generates the

non-rigid deformations introduced by the LBS.

Similar considerations can be made for the parameterization of a deformable

model, i.e., also the parameterizations can be analyzed in a layered approach.

Formally, given a deformable model Γ and its decomposition (Γ1, . . . ,Γb) accord-

ing to a specific scheme, given a set of parameterization (Ξ1, . . . ,Ξb) where each

Ξi : Θi → Γi is a valid parameterization for Γi, the compound parameterization

is defined as

Ξ : Θ1 × . . .×Θb −→ Γ

(θ1, . . . , θb) −→ S (Ξ1 (θ1) , . . . ,Ξb (θb))
(4.46)

and it is a valid parameterization for Γ.
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4.3.3 The synthesis of a deformable model

Contrary to the analysis, the synthesis aims to define a new deformable model

basing on the tools offered by the analysis, namely, the parameterization and the

multi-band analysis.

Computer graphics world is the biggest demander for synthesis tools of de-

formable models since they are largely used in the making of both 2D and 3D CGI

footage2 and of real-time animations. Both photorealistic and non-photorealistic

CGI movies as well as video games require tons of computer animated characters

to represent imaginary actors or to be used as temporary or permanent replace-

ments for the real ones. Therefore, the efficiency of these tools inside a character

production pipeline is the most important requirement that they have to satisfy.

More specifically, they must be easy and intuitive to use and do exactly what the

animator wants in as few steps as possible.

A standard character production pipeline consists in two main phases namely,

a modeling phase and an animation phase. In former one, the shape of the actor

fixed in a static pose is created. Then, during the animation phase, some ani-

mation controllers are assigned to this shape, i.e., the previous defined synthesis

tools. At the end, the animation, considered as a time-sequence of shapes, is

finally generated. The idea is to transform a static object into a deformable one

parameterized in such a way that it is easy for an operator to control its anima-

tion. The animation itself will result as a curve inside this deformable model.

With the previous defined formalism, the production pipeline can be viewed

in this way: during the first step, a shape γ0 is defined, then, in the second

one, the animator looks inside the space of deformation Γ∗γ0
related to γ0 for a

specific deformable model Γ, i.e., a particular subset, which satisfies the given

requirements and, in the end, a parametric curve inside Γ is traced representing

the final animation. Complex production pipelines involve the definition of mul-

tiple shapes during the first stage. In this case, the search inside Γ∗γ0
has to be

restricted to the only subsets containing all these shapes.

The modeling phase is usually made by hands or by scanning real objects like

humans, animals or hand-made sculpture made for instance, of clay or plaster.

The animation phase instead, is the direct evolution of the stop-motion tech-

niques largely used in the past movie production pipelines. The animation con-

trollers can be viewed as the replacement for the old armatures inserted inside the

clay models. In place of shooting one frame at a time, CGI technology offers three

2CGI means Computer-Generated Imagery or Imaging.
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new types of solution namely the key-frame animation, the physical simulation

and the motion capture.

All of them aim to generate a time-sequence of shapes, i.e., the animation.

Key-frame animation defines the shapes3 that the model has to assume at some

given times, these are called the key-frames. The computer then, interpolates

the missing frames. Formally, each key-frame represents a point in the manifold

Γ and, since the presence of an animation controller, it represents also a point

in the configuration space of the controller. The curve is interpolated in the

configuration space and then transposed in the Γ domain.

On the contrary, physical simulation needs only to know the initial state of

the model. The curve is then traced as a unique solution of a PDE equation

describing the physical interactions between the object and the scene.

Motion capture techniques instead, make the use of a real actor to animate a

virtual one. In some cases, the virtual actor is just the model of the real one but

in some others, it’s not. In these latter cases, a further step, known as motion re-

targeting step, is required to transfer the motion between the two models. In both

cases, both the real and the virtual actors are considered as deformable models

parameterized with the same controller and the result of the motion acquisition

process is always a curve in the configuration space.

For human like models, or in general for articulated deformable models, the

controller assignment phase is further divided in two stage namely the rigging

stage and the skinning stage. The former aims to place a skeleton structure inside

the so called rest shape of the model, i.e., to find the so called rest configuration of

the skeleton. The rest shape of an articulated deformable model is the one created

by the modeling phase. The rest configuration and the rest pose are respectively

the configuration and the pose of the skeleton related to the rest shape of the

model. The skinning stage instead, defines the skinning parameters, i.e., the

parameters which define how the skin is deformed according to the underlying

skeleton. Moreover, this phase usually involves the definition of further controllers

for modeling muscles, tendons, facial expressions and, in general, all the internal

organs. The model is so represented in a multi-layer structure.

Historically, the first animation controller was described in the Parke’s work on

the facial animations [115]. Before 1974, every key-frames were explicitly defined

by hand inside the deformation space and the missing frames recovered using an

3Note that we consider that an object is assuming different shapes also if it is only rotated
and/or translated in the space. Moreover, the entire scene can be considered as a big deformable
object.
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Figure 4.1: Feedback scheme for the synthesis of facial expressions [115].

early shape interpolation technique based on vertex coordinates interpolation in

the 3D space. In his work, Parke described both the concept of parameterization

and of animation controller suggesting an interesting feedback scheme for the

synthesis of the facial expressions. We repropose that scheme in Figure 4.1 since

it still represents the work of an animator.

Free-form deformations were introduced by Sederberg and Parry [136] in 1986

as a technique where the objects were deformed by warping a parallelepiped of

control points. The definition we had proposed in the previous section is an

extension of the work made by the Alias/Wavefront team in 2000 [142].

Articulated deformable models were first described in 1988 by [75] and [90] for

modeling respectively an arm and a hand. Both methods adopted the skinning

scheme described in Eq. (4.30), where each vertex is mapped to the bones and

a function of the joint angles is used to deform the vertices. LBS comes out as

a generalization of these two approaches even if, its exact definition have never

been published.

Chadwick, Haumann, and Parent [26] introduced the first multi-layered and

physically inspired approach to skin deformation in 1989. In their model an FFD

volume abstractly represents the underlying body tissues such as the muscles and

the fatty layer. The skin deformations, due to the skeleton movements, are medi-

ated by the FFD interlayer. After this first work, other more complex approaches

as well as new methodologies for defining and controlling these structures were

developed.

Even if simple morphing is at the base of the early key-frame interpolation,

it is not exactly clear when it started to be used as a controller. However, it is

known for sure that it was largely used in the short “Tony de Peltrie” [15] in
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Figure 4.2: LBS typical defects: joint collapsing artifacts (left) and candy-

wrapping artifacts (right). Image taken from [66].

1985. Later, several complex shape interpolation were introduced, in particular,

in 2000, [84] defined the pose deformation space by treating the deformations as a

RBF interpolation between key-shapes, exactly as we had defined in the previous

section.

Despite of all these complex techniques, for years, LBS was considered the

standard controller for animation. It was one of firsts to be implemented in

commercial animating software and, for sure, the most used one. Now it is still the

most adopted for real-time animations. LBS’s fame is due to the fact that it is a

very simple and versatile technique having a low computational cost. However, it

has a lot of limitations, most of them due to the fact that its space of deformations

do not include a lot of the natural deformations that occur in a real human.

As a result, the model can only approximates, by projecting on its space, the

natural deformations and, no amount of adjusting the α parameters will produce

better results. These shortcomings are mostly visible near the shoulders and hips,

which, in fact, are the most difficult parts to skin with LBS. The typical defects

of LBS are the so called joint-collapsing and candy-wrapping artifacts showed in

Figure 4.2.

In order to overcome these limitations, several authors propose LBS definitions

which extend the space of deformation maintaining the linearity of the skinning

operator. The main drawback is an increase of the number of the α parameters

that has to be adjusted. The most important techniques, adopting this strategy,

are the Animation Space [101] and the Multi-Weight Enveloping [160]. Other

authors propose to replace matrix computation by more sophisticated tools to

blend weights, such as log-matrices [36] or dual quaternions [71].

Assigning the weights α is a semi-automatic process that requires huge amount
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of human intervention. The basic technique is to use the Euclidean distance be-

tween each point and the closest bones which however, lead to a non-realistic

deformation since the anatomy of the character is not taken into account. More

complex solutions have been developed such, for instance, the heat equilibrium

approach of [12] and the Kinodynamic skinning approach of [3]. In particular, in

this last one, the weights are time-dependent and they are automatically com-

puted using a physical model.

Nowadays, ordinary animating software implement the skinning using LBS as

a base layer and some FFD layers to model specifically hips, shoulders, muscles,

tendons and facial expressions. In particular, the FFD layers are usually con-

trolled by the angles of a specific joint, i.e., their configuration space is mapped

into se (3). The resultant deformable model looks similar to an NLBS one but it

is simpler to control and to define. Shape interpolation techniques are also imple-

mented but, due to the enormous amount of needed data, they are rarely used.

However, these last techniques can achieved more accurate and realistic deforma-

tions and recently a commercial database of humans has been built to perform

shape interpolation. This database, called SCAPE [4], contains several models

acquired in different poses that can be interpolated, including their deformations,

to fit almost any human in almost any pose.

4.4 Pose estimation: our approach

In this work, we consider each trackable element of the real scene as a deformable

model parameterized with an LBS controller. The rest shape, the skeleton and

the rest configuration of each element of the scene are acquired using the system

described in Chapter 3.

Skin parameters α are estimated using a normalized non-linear distance func-

tion between each the vertex of the mesh and each bone of the skeleton, i.e.,

αi,k = e−
d(i,k)2

2σ2 (4.47)

where d (i, k) is the distance between the vertex k and the segment representing

the bone i, and σ is a real value proportional to the bone length. Each αi,k is

then normalized to satisfy the convex property.

However, this type of estimation is not very accurate and needs some manual

adjustments. A fully automatic estimation of both skeleton initial pose and skin
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parameters can be obtained using the method proposed by Baran and Popovic

[12]. Instead of using a non-linear distance function, Baran and Popovic com-

pute the weights α by solving an heat equilibrium equation. Source code and

documentation is also provided in their web site.

The output of the pose estimation algorithm is a curve θ (t) in the configura-

tion space of the LBS controller. Assuming a skeleton made of m bones and a

surface mesh made of n vertices, the output curve is formally defined as

θ : R→
(
RP3 × R3

)m
(4.48)

In computational terms, this curve is represented by a finite list of elements

of type
(
RP3 × R3

)m
, each represented by 6 real numbers. Therefore, the space

of the allowed configurations Θ ⊆
(
RP3 × R3

)m
is numerically represented by a

subset of R6m. With this notation, the configuration of the bone i related to the

configuration θ ∈ Θ becomes

(θ6i+1, θ6i+2, θ6i+3, θ6i+4, θ6i+5, θ6i+6) (4.49)

where the first part (θ6i+1, θ6i+2, θ6i+3) represents the bone rotation and the second

one, (θ6i+4, θ6i+5, θ6i+6), its translation.

The deformable model is obviously discrete and we denote with vk (θ) the

homogeneous coordinates of the k-th vertex of model at the configuration θ, i.e.,

vk (θ) = cΞ (vk (θ0)) (θ, θ0) (4.50)

where θ0 is the rest configuration of the skeleton and each vk (θ0) is a vertex of

the rest shape.

We define the space of the allowed configurations Θ as a (6m)-dimensional

box aligned with the canonical basis. A particular element of this box is defined

to be ζ, the initial configuration of the deformable model. This configuration is

common to every model of the scene.

The choice of defining such a configuration is due to the necessity to be in-

dependent from the rest configuration θ0, i.e., the configuration assumed by the

actor during the shape acquisition, which is different from model to model. In

this way, the constraints defining Θ can be declared only once and they can be

applied for every model with similar skeletal structure. In particular, for human

models, we chose to use a Da Vinci’s Vitruvian man’s configuration as ζ.

Therefore, each constraint defining Θ has this form

{θj,min 6 θj 6 θj,max} j = 1, 2, . . . , (6m) (4.51)

70



4.4. POSE ESTIMATION: OUR APPROACH

Mesh

Camera at timec t

kv
p

Figure 4.3: Few vertex to image point correspondences extracted at time t for the

camera c.

where θ1,min, . . . , θ6m,min and θ1,max, . . . , θ6m,max are the same for every human

model.

Equation (4.31) becomes

vk (θ) = LBSk (θ) vk (θ0) (4.52)

where we denote with LBSk (θ), the linear blend skinning operator for the vertex

k, defined as follows,

LBSk (θ) =
m∑
i=1

αi,kTi (θ)× (Ti (θ0))−1 (4.53)

The proposed motion tracking algorithm addresses the estimate of θ (t), given

the previous estimate θ (t− 1) and the set of the images taken at time t and at

time t− 1 from a set of q cameras {V1, . . . , Vq}.
These images are first preprocessed to get the motion cues, i.e., silhouette

and optical flow. Then, from each channel of information a set of vertex to

image point correspondences is extracted, each represented by a quadruple of

type (w, k, p, c) where w is a real value weighting the correspondence, k is an

index representing the 3D mesh vertex vk, c is a camera view index and p ∈ R2

is the actual projection of vk on the view Vc.
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The meaning of such a correspondence is that, for a correct pose estimation,

the vertex of index k has to be seen from camera c in the image point p. The

weight w quantifies the importance of this statement (see Fig. 4.3). This formu-

lation allows us to treat both type information in a similar way.

Given these correspondences, the algorithm defines an objective function g (θ)

having a global minimum in the current configuration θ (t). Then, g (θ) is opti-

mized using θ (t− 1) as starting point in the minimization.

Objective function g (θ) is first examined and next the algorithm is described.

4.4.1 The objective function

Given a set of z correspondences of type (ws, ks, ps, cs) where s ∈ {1, . . . , z},
k ∈ {1, . . . , n} and c ∈ {1, . . . , q}. Denote with ΠV (·) the projection of a point

in the 3D space to a 2D point in the image space of view V , i.e.,

ΠV (·) =
1

ηzV (·)

[
ηxV (·)
ηyV (·)

]
(4.54)

where ηV (·) = (ηxV (·) , ηyV (·) , ηzV (·)) is the affine map transforming the world

space coordinates to the camera space coordinates of the view V , defined as

ηV (x) = RV x+ TV (4.55)

where
[
RV TV

]
= KVEV and KV , EV are respectively the intrinsic and the

extrinsic matrices of the view V . Therefore,

ηxV (x) = R1
V x+ T 1

V

ηyV (x) = R2
V x+ T 2

V

ηzV (x) = R3
V x+ T 3

V (4.56)

where

RV =

 · · ·R1
V · · ·

· · ·R2
V · · ·

· · ·R3
V · · ·

 , TV =

 T 1
V

T 2
V

T 3
V

 (4.57)

We say that the actual model configuration θ is the one which minimizes the

following functional

g (θ) =
z∑
s=1

βksws
∥∥ΠVcs (vks (θ))− ps

∥∥2
(4.58)
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and belongs to the space of the allowed configurations Θ.

Note that, vks (θ) is the same function defined above in Eq. (4.52). βks instead,

is a real number inversely proportional to the sampling rate of the surface near

the vertex vks . We assume this value constant for every pose that the deformable

model can assume and we initialize it as the area of all the faces incident on

vertex vks .

This term is very useful since it weights more vertices attached to larger pieces

of surface and viceversa, giving the possibility of estimating the pose of also non

uniformly sampled meshes.

Constrained optimization of functional (4.58) can be performed by classical

gradient descent approaches with hard constraints since the gradient of g (θ) can

be easily derived in closed form. Indeed for each j,

∂g (θ)

∂θj
= 2

z∑
s=1

βksws
(
ΠVcs (vks (θ))− ps

) ∂ (ΠVcs ◦ vks
)

∂θj
(θ) (4.59)

where

∂
(
ΠVcs ◦ vks

)
∂θj

(θ) =
1

ηzVcs (vks (θ))2

 ηzVcs (vks (θ))
∂ηxVcs

◦vks
∂θj

(θ)−

ηzVcs (vks (θ))
∂ηyVcs

◦vks
∂θj

(θ)−

−ηxVcs (vks (θ))
∂ηzVcs

◦vks
∂θj

(θ)

−ηyVcs (vks (θ))
∂ηzVcs

◦vks
∂θj

(θ)

 (4.60)

and

∂ηxVcs ◦ vks
∂θj

(θ) = R1
Vcs

∂vks
∂θj

(θ)

∂ηyVcs ◦ vks
∂θj

(θ) = R2
Vcs

∂vks
∂θj

(θ)

∂ηzVcs ◦ vks
∂θj

(θ) = R3
Vcs

∂vks
∂θj

(θ) (4.61)

From Eq. (4.52), the partial derivatives of vks (θ) are

∂vks
∂θj

(θ) =
m∑
i=1

αi,ks
∂Ti
∂θj

(θ)× (Ti (θ0))−1 vks (θ0) (4.62)

where ∂Ti/∂θj can be computed exploring the kinematic chain associated to the

bone i, i.e., its root path. More precisely, let this chain be Λ = (h1, . . . , hl), where

each hb is a bone index, h1 is the index of the root and hl is the equal to i. By
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the definition of kinematic chain, the following equation holds

Ti (θ) =
l∏

b=1

ρhb (θ) (4.63)

Let o be the index of the bone associated to the degree of freedom θj, i.e.,

b(j − 1) /6c = o. If o belongs to the chain Λ at index d, or in other words,

if there exists a d such that o = hd, then

∂Ti
∂θj

(θ) = ρh1
× . . .× ρhd−1

× ∂ρo
∂θj

(θ)× ρhd+1
× . . .× ρhl (4.64)

otherwise,
∂Ti
∂θj

(θ) = 0 (4.65)

By the definition (4.23), the partial derivatives of ρo (θ) coincide with the partial

derivatives of the map êxp (θ6o+1, . . . , θ6o+6) which are straightforward.

The Levenberg-Marquardt method [82], [92] was found rather stable and re-

liable with respect to other methods especially when the configuration θ ap-

proaches the optimal solution. In this case, only the closed form of the jacobian

∂
(
ΠVcs ◦ vks

)
/∂θj is needed.

However, for all these algorithms, a normalization of the configuration space is

needed to account for the different valid intervals sizes of each degree of freedom.

A two levels pyramidal approach was also attempted. During the first level,

a solution for the pose estimation problem is found keeping foots, forearms and

head blocked to the previous frame configuration. During the second level, this

solution is refined freeing all these bones. This procedure was found to be more

robust to local minima.

4.4.2 Correspondences extraction

The use of the objective functional described in Eq. (4.58) requires to extract

a set of valid correspondences from the given images. To this aim we used two

types of motion cues namely, optical flow and silhouette information.

Since a blue screen is adopted, silhouettes can be extracted using a standard

HLS keyer [164]. A KLT operator [87] is instead independently applied to each

video stream to get the optical flow.

The result of this latter process is a large set of 2D correspondences on con-

secutive frames. Let’s call (yt−1, yt) ∈ (R2 × R2) one of such correspondences

viewed by the camera c. Since θ (t− 1) is known, we can easily find which vertex
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HLS Keyer

KLT Tracker

Silhouette information

Cam 2

Optical flow information

Cam 2

…

…

…

Cam 2

Cam 4

Cam 3

Cam 1

…

…

…

…

…

…

…

…

Figure 4.4: Preprocessing Pipeline. Each video stream is treated separatively

generating two information channels for stream. The correspondences extraction

is performed separatively for each of these channels.

of the deformable model is projected onto image point yt−1. This can be achieved

by computing the z-buffer and finding the visible mesh vertex with the nearest

projection to yt−1. If such a vertex has index k, then a valid correspondence for

our algorithm is (w, k, y, c). The weight w is defined to be proportional to the

confidence obtained in the related 2D correspondence.

On the other hand, silhouette information is used similarly to the ICP ap-

proach [16] with the difference that our method does not operate in the 3D space

but in the image space. A shape matching metric is adopted to quantify the

accuracy of each 2D silhouette correspondence. In particular, we measure the

gradient similarity on the segmented images, i.e., we privilege edges with similar

orientation.

Differently than optical flow, silhouette information is updated also during

the optimization phase by the following method: assuming that we are in the

process of estimating θ (t) with our tracking algorithm, call θ̃ the estimate of

configuration θ (t) at the current algorithm iteration and call Ic (t) the segmented
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image recorded by camera c at time t,

for each camera c do

Find all the vertices vk of the deformable model with configuration θ̃

which belongs to the silhouette viewed from c;

Project such vertices on view c;

for each projected vertex q do
Find the point of Ic (t) which is closest to q and maximizes the

gradient similarity metric with q;

Call y such a point;

Call w the obtained gradient similarity;

Define (w, k, y, c) to be a valid correspondence;

end

end

The search for the closest and similar point y in the image Ic (t) is restricted

to the line passing through q and parallel to the 2D normal of the current surface

estimate computed at point q. This restriction considerably reduces the amount

of computational time needed for the correspondences extraction step, maintain-

ing the convergence proprieties of the algorithm. Indeed, each 2D normal of the

current surface estimate related to a point q represents the direction of the in-

finitesimal displacement of q obtained by an infinitesimal variation of the current

pose θ̃. Finite variations are instead considered by updating the silhouette corre-

spondences during the optimization phase, in our case, every 20 gradient descent

iterations.

Outliers are detected by looking inside the set of founded correspondences for

the ones which cannot be modeled with a 2D gaussian error model. More precisely,

for each bone i and each camera c, the mean and the standard deviation of both

the 2D rotation axis and the 2D translation vector of the bone i on camera c are

first computed basing on the founded correspondences. Each correspondence on

the same camera c which generates a 2D rotation or a 2D translation far away

from the estimated mean is labeled as outlier and deleted.

Moreover, when θ̃ approaches to the optimal solution, a further outlier detec-

tion step is performed deleting all the correspondences that are too much far away

from the current pose. In this way, the gaussian error model for the functional

(4.58) can be assumed valid and thus, further algorithm iterations generate more

accurate results.

At each frame the average number of optical flow correspondences is far less

than the number of silhouette ones. Typically there are about one hundred of the
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Figure 4.5: Correspondences detected by our algorithm during the estimate of

the pose assumed by the actor in a frame of a tested sequence The silhouettes of

current pose estimate (green) are superimposed on the ones extracted from the

video streams (white).

Figure 4.6: Evolution of the pose estimate during the optimization phase of our

algorithm.
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former versus one thousand of the latter. Therefore, in order to account for such

proportions, the algorithm weights by a factor of 10 the contribution of optical

flow versus that of silhouettes.

The entire correspondence extraction procedure is performed separatively on

each video stream paving the way to a parallel version of the algorithm.

Figure 4.5 shows an example of correspondences detected by our algorithm

during the estimate of the pose assumed by the actor in a frame of a tested

sequence. Figure 4.6, instead, shows the evolution of the pose estimate during

the optimization phase. In both cases, the silhouettes of the current pose estimate

are superimposed, using a XNOR operator, on the actual silhouettes extracted

from the video streams.

4.4.3 Comparisons

Differently from other approaches using distance maps to account for the silhou-

ette information, like, for instance [6], the “ICP + Shape matching” approach

generates less local minima inside the functional g (θ). Distance maps express

only local information without giving the possibility to transmit an edge infor-

mation over another edge and without giving any sort of edge similarity.

As an example, let’s assume the situation depicted in Fig. 4.7. There is a ball

and a leg, the red shape represents the leg silhouette at the current algorithm

iteration, while the white one represents the actual silhouette. Using distance

maps, Fig. 4.7(left), the generated force field pushes the foot inside the ball caus-

ing a local minima. Instead ICP, Fig. 4.7(right), can solve the situation looking

backward and forward for the most similar edge avoiding the local minima.

Differently from [111], [73] we do not use any 3D error function avoiding time

consuming tasks like visual hull reconstruction or multi view stereo.

Differently from [152], we treat optical flow information as it is without in-

ferring the actual 3D motion flow of the scene. [152], in fact, assumes that

inter-cameras correspondences can be established and the optical flow triangu-

lated obtaining an estimate of the actual 3D motion flow. However, finding

these type of correspondences is not an easy task, indeed, it needs the use of

complex and time consuming descriptors and it introduces further triangulation

and correspondence error which is not negligible. Moreover, a lot of optical flow

correspondences are discharged because only the ones forming a 3D motion cor-

respondence are considered valid. On the contrary, in our approach, all the 2D

correspondences are kept valid and no matching or triangulation tasks are needed.
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Distance Maps ICP + Shape Matching

Figure 4.7: Example situation: comparison of methods dealing with 2D silhouette

information.

The approach proposed by de Aguiar et al. [42], instead, uses a completely

different deformation model. This model is complex and computational expensive

but it allows to capture movement details all over the surface, also on skirts, pants

ant t-shirts. However, the output of this procedure is not a motion capture data

since no skeleton is used. The output is a only a time-varying mesh similar to

the one captured by a dynamic 3D scanner.

4.4.4 Handling multiple people and objects

Using a property of the LBS controller, multiple deformable objects can be

tracked assuming all parts of the same deformable object having as kinematic

tree the union of all the kinematic trees related to the original objects.

More formally, given two deformable model with respectively initial shapes γ1

and γ2, kinematic trees K1 and K2, and skinning matrices α1 and α2, a deformable

model considering both these two objects can be defined having initial shape γ,

kinematic tree K and skinning matrix α defined as follows. γ is obtained by the

union of γ1 and γ2 in such a way that the first n1 vertices belong to γ1 and the

subsequent n2 vertices belong to γ2. The kinematic tree K is made by the two

subtrees K1 and K2 both children of the root bone of K as:

root

K1 K2 (4.66)
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Bones are enumerated starting from the root bone followed by the m1 bones of

K1 and then by the m2 bones of K2. Finally, the skinning matrix α has the form

α =

 0, . . . , 0

α1 0

0 α2

 (4.67)

where the first row, i.e., the one representing the weights related to the root bone,

is all zero.

This procedure can be iteratively extended to more than two deformable ob-

jects and therefore, the above described algorithm can be used to handle simulta-

neously multiple deformable objects. Rigid objects instead, like balls and sticks,

can be considered as a articulated deformable models with only one bone and

alpha matrix equals to an 1-by-n matrix of ones.

Occlusions between objects are automatically handled since they appear, to

the algorithm, as self occlusions, i.e., the same object occludes itself. In these

cases, the shape matching and outlier detector become essential since silhouettes

belonging to different objects have to be distinguished.
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Chapter 5

The Making of the Blue-Room

5.1 Introduction

The planning phase for the construction of the acquisition room started on the

3rd September 2007, as stated in the Gantt chart depicted in Figure 5.1. The

only one room available for my experiments was located inside an old and small

building, called “Casetta del custode” or simply “Casetta”, detached from other

buildings of the Department of Information Engineering.

The moment I applied for the use of that room, almost the entire building was

used as a store for obsolete hardware like computers, monitor and other broken

stuff. At the top of the stairs, on the second floor, was located a small antecham-

ber of about 8 square meters serving as a entryway for an unused bathroom and

for a big 24 square meters room that soon would have become the setting for the

Blue-Room (Fig. 5.2).

The electrical infrastructure was still working but neither the heating system

nor the water one were active. The winter was coming and the prospect to do

my experiments in a humid and cold environment didn’t make me so happy but

it was the only chance I had. The people who have last worked there, about two

years before, have moved in such a hurry that they left a lot of their stuff inside,

so a first cleanup was needed before planning the work.

At that time, the Department had clear plans for the future of the entire building:

the idea was to completely renovate it and create new offices. Fortunately, the

lack of fund and bureaucratic delays had shifted all this plans years after years,

leaving the entire building unchanged, as it had been before. However, at that

time, nobody had a clear idea about the time when the renovation works would
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Figure 5.1: The Gantt chart for the Blue-Room project.

have started and so the main risk for my plans was that I would have had to

leave the room before I could effectively use it. In the end, the renovation works

officially started on the first of March 2008, just fifteen days after I finished to

record all the possible footage that, in that moment, I could imagine; about 120

video streams.

During the planning stage of this project, all the working steps were analyzed

and simulated on a computer using a ray tracing software in order to decide which

were the best and inexpensive solutions for achieving my purposes. The size of

the blue screen, the resolution of the cameras, their optics and their positions

and lastly the lighting system were decided during this first stage. Since time

was a critical variable in the project, the order for all this materials had to be

placed quickly taking into account of about 20 working days for delivery. Once

the cameras arrived, several off-line tests were performed to ensure the correct

synchronization of the streams, to choose the correct fabric to use for the blue

screen and to decide the number of computer that had to be involved during the

acquisition. The end of these tests declared the effectively end of the project

planning stage.

The human resources assigned to this project were myself and another guy,

named Marco, that was working on his master thesis about 3DVideo acquisition

systems.

The next sections describe the elements and the problematics of a generic

multi-camera recording room for motion capture purposes, namely, the blue

screen, the lighting and the recording system. Then for each element, the choices

made for our particular case, are described.
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Figure 5.2: (Left) The location of the “Casetta”. (Middle) The outside. (Right)

One of the first test picture taken inside the room that soon would have become

the set for the Blue-Room.

5.2 The blue screen

As for the body scanner, the chroma keying technique revealed to be the best

solution to adopt in order to achieve a good background subtraction. Indeed,

when the shadows can be neglected, the obtained segmentation has one pixel

accuracy. The only one drawback is the requirement that all the background,

falling inside the cameras fields of view, has to be solid colored (usually blue or

green, to contrast the skin color). This condition can be satisfied by the use of

a “screen” that can be made of fabric, wood or other sophisticated materials1

which avoid specular reflections and strong Lambertian proprieties, or in other

words, it reflects the light equally in each direction.

In our particular case, the room sized 6.35mx4.45mx2.8m and to cover almost

all the cameras field of view, the height of the blue screen had to be at least 1.9

meters from the floor. The choice for the fabric fell onto the IKEA2 DITTE

(Blue), a very inexpensive cloth (about 2.14 euros per square meter) sold with

a fixed width of 1.4 meters. The total area to cover was 69.3m2 and since the

number of seams has to be limited, to maintain the color uniformity, the needed

cloth was about 75m2 cut in the way shown by Figure 5.3. The pieces in line

(b) were sewed together to make the floor cover while the others (a), (c), (d) and

(e) were used to cover the walls. The light blue piece in line (c) instead, was

discarded.

In order to stick the fabric onto the walls, a wood frame, all around the

room at about 1.9 meters from the floor, had to be built up. The floor screen,

instead, made a good friction with the moquette keeping it in place and avoiding

1http://www.reflecmedia.com/
2http://www.ikea.com/
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(b)

(a)

(d)

(e)

(c)

Figure 5.3: Cut and sew diagram for the blue fabric used as blue screen.

dangerous slides. However, due to the high humidity, the cotton fibers relaxed

during the time and so, during the first twenty days, there had been the needed

to tense the cloth up more than one time.

5.3 The lighting system

In order to obtain a good background subtraction, the blue screen has to be

sufficiently and uniformly illuminated even if an object in present in the scene.

Therefore, shadows and shading effects that could appear onto the screen have

to be eliminated as much as possible. Moreover, in order to acquire good quality

videos, the foreground people and the objects interacting inside the room have

to be correctly illuminated. In other words, high gradients of illumination on

foreground objects have to be avoided, because, with normal cameras (non-HDR

cameras), this generates images with both overexposed and underexposed regions.

This situation cannot be corrected adjusting the camera settings: the only way

to do it, is to operate on the illuminants.

The design the lighting system for a blue room is not exactly equal to do it

for a standard office room, because, a blue screen absorbs much more light than a

normal office furniture, thus, the light reflections are lower. Moreover, if one plans

to arrange the illuminants only at the ceiling, as in our case, the illuminance3 of

the wall screens is the first design constraint to take into account. These regions,

indeed, shown a minimum of the illuminance function since they are far away to

be perpendicular with respect to the incoming light rays.

The light spectrum is also important factor in the lighting system design.

A full spectrum light is usually preferred since it avoids strong software white

3Illuminance is defined as the quantity of light, or luminous flux, falling on unit area of a
surface.
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Figure 5.4: (Left) A commercial light meter. (Right) Diagram of the filters

arrangement and luminous flux attenuation.

balance processes to get the actual colors.

In our case, in order to achieve 600lux on the wall screens we used six 3F

Linda luminaires4 with two 58watt linear fluorescent-lamps5 each, for a total

electrical power of about 700watt. Each lamp generates 4000 lumen at the fre-

quency of 100Hz and operated at full spectrum (5500◦K). The luminaires were

uniformly installed on the ceiling with the long side parallel to the short side of

the room. Even if they were simple and inexpensive, they did their job, distribut-

ing smoothly the light in such a way to avoid shading effects, like bright and dark

lines onto the blue screen.

Once the wall screens were correctly illuminated, the problem moved to the

control of the illuminance on the floor and on the foreground objects. More

specifically, the aim is to ensure a almost constant illuminance over all the actor

surface, for every position and pose that he can be. Moreover, the same has to

ensured for the floor surface. Clearly, it is impossible with only ceiling illuminants,

but if we consider only the central part of the room, i.e., the part where the actions

would effectively take place, then this can be archived by the use of some filters6.

Indeed, in this way one can control the amount of light in every direction with

small incremental steps. The arrangement of these filters cannot be planned on a

computer simulation, in practice the right way to do it, is to equip ourselves with

a light meter like the one in figure Figure 5.4(Left) and check in every point, the

amount of incoming light from a specified direction, i.e., the illuminance.

Figure 5.4(Right) and Figure 5.12 show the filters arrangement inside the

4http://www.3f-filippi.it/
5http://www.philips.it/
6The simplest way to build up a light filter is to use thin polystyrene sheets.
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blue-room. In particular, the central one stops the light coming from the top to

the head of the actor while it still frees all the light directed to the wall screens.

The lateral filters instead, avoid the overexposure of the upper body parts with

respect to the lower body parts of the actor.

5.4 The recording system

A digital video recording system consists of several hardware components namely

a digital camera, a transmission medium, a codec system and a storage system.

The images captured by the camera are transformed into a digital signal transmit-

ted through the transmission medium to a device which encodes it. The result is

then stored in a non-volatile media which is usually an hard drive (see Figure 5.5).

All the hardware involved in the recording process have to be able to deal with

the amount of data that they have to process. This is one of the main constraints

in the design of a digital video recording system.

The amount of data produced by the camera depends upon the chosen spatial

and time resolution and the chosen pixel format. In particular, this latter one

describes how the color information is stored in the image, i.e., which color space

and chroma subsampling are used. The color is usually represented using a RGB,

YUV or a YCbCr space but the pixel itself does not always hold the entire

information related to its color. This, is normally spread out to the neighboring

pixels in order to reduce the bandwidth of the final stream with a simple and

little lossy compression. This process is specified by the chroma subsampling

parameter which can be 4:4:4 (no compression), 8:4:4, 4:2:2, 4:2:1, 4:1:1, 4:2:0,

4:1:0, 3:1:1 or specifically for digital cameras RAW BG, RAW GB, RAW RG or

RAW GR.

From the previous considerations, Bvideo, the amount of data produced by the

Transmission Medium Storage SystemCodec SystemCamera

Figure 5.5: The scheme of a generic digital video recording system.

86



5.4. THE RECORDING SYSTEM

Camera
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CPU
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Figure 5.6: Bandwidth analysis of a digital video recording system with a single

camera.

camera is

Bvideo = resX ∗ resY ∗ pixel size ∗ fps (5.1)

where resX, resY and fps represent the spatial and time resolution of the video

and pixel size is the average size of a pixel. The maximum throughput Bt of the

transmission medium instead, has to be greater than Bvideo

Bt > Bvideo (5.2)

The codec hardware has to able to read the input stream and compress it at

the same rate. This device is usually made up of a computer with a particular

data acquisition card. In this case, the controller, which is the main component

of the data acquisition card, has to read the input stream and transmit it through

the card BUS to the motherboard. This latter component dispatch the stream

first to the CPU, which encode it, and then from the CPU to the storage system.

Referring to the scheme depicted in Figure 5.6, the bandwidth constrains are:

Bc > Bvideo (5.3)

Bcb > Bvideo (5.4)

Bmb > (1 + α)Bvideo (5.5)

Bcpu > Bvideo (5.6)

Bhd > αBvideo (5.7)

where α is the compression ratio obtained by the codec hardware.
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Figure 5.7: Digital video recording system with two cameras and a single com-

puter.

In case of more than one camera, more controllers and separated card buses

are needed, in order to avoid bottlenecks. Figure 5.7 describes the case of two

cameras. However, the constraints regarding the codec system still increase lin-

early with the number of camera n

Bmb > n ∗ (1 + α)Bvideo (5.8)

Bcpu > n ∗Bvideo (5.9)

Bhd > n ∗ αBvideo (5.10)

In fact, with the current technology and high video bandwidth, the solution with

n controllers turns out to be very expensive. Thus, a solution with n separated

computers, each one dealing with only one camera, is preferred.

The choice for the cameras model fell onto the Basler7 Scout scA1000-30fc, a

30 fps firewire-b camera based on a 1/3′′ Sony color CCD of resolution 1034x779

pixels. The chosen pixel format was the YUV 4:2:2 and the images were acquire

at 21 fps for a total bandwidth of about 32 MB/s. The transmission medium was

a 3 meters long shielded firewire-b cable (IEEE1394b 9-9pin) with a maximum

transfer rate of about 750 Mbit/s (90 MB/s) in full-duplex. The used acquisition

cards were four commercial 1394b to 32bit PCIe-1x host adapter interfaces each

with a single 54 MB/s controller. Note that the maximum throughput for the

7http://www.baslerweb.com/
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PCIe bus is 250 MB/s. For this specific configuration, also the size of the data

packets has to be considered to ensure a safe transmission of all the frames from

the camera to the controller. Big packets increase the cable throughput since no

redundant header data is transmitted. However, if a packet is lost or corrupted,

the retransmission time increases linearly with the packet size. Fortunately, the

packet loss rate of a firewire cable is very low and thus, the best solution is use

packets of the maximum allowed size, which is usually much smaller than an

entire image data.

Four computers, one for each camera, were installed. Due to the limitation

on the firewire cable length (10 meters cable is a very expensive technology), two

of them had to be placed near the cameras, in the center of the room, just above

the blue screen (as in Fig. 5.12). The other two computers were installed outside

the room, in the antechamber, where an operator can easily control them. The

available computers were four Dell Optiplex, each based on a 2.2GHz Intel Core2

Duo processor with 2GB of DDR2 RAM and a 250MB SATA/300 hard drive

running at 7200 rpm. All the computers were linked together by a 100BASE-T

LAN and a central hub (see Fig. 5.8(Right)). An ad hoc software was developed

to control the recording state of each camera from the one of computers placed

in the control room. This software is also, in part, responsible for the stream

synchronization as it will be described in the subsection 5.4.3.

5.4.1 The design of the optics

In the design of a multi-camera video recording system for monitoring a generic

area, two important aspects have to be taken into account, namely the optical

properties and the arrangement of the cameras. Thus, field of views, resolutions,

CCD size, distortions as well as the points of view have to be fixed in a planning

stage considering all the requirements.

Specifically for a motion capture system, once the area to be monitored is

defined, one has to ensure that each camera sees each point of this area. This

is not a mandatory requirement but it is suggested for a good quality tracking.

Computer simulations and on-site measurements help to achieve this step. The

result is a set of constraints on the cameras positions and their optical proprieties.

Moreover, for a good motion tracking, the cameras have to be arranged all

around the area to monitor in a non-symmetrical way. This is due to the fact that

silhouette information extracted from a couple of symmetrical cameras, is redun-

dant. More precisely, the worst case happens when the optical axes, belonging to
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(b)

1

3

24

(a)

Figure 5.8: (Left Top/Bottom) Arrangement of the cameras inside the blue-

room. (Right) Schematic of the blue-room. Green, red and blue lines represent

respectively LAN cables, synchronization cables and firewire cables. (a) represents

the synchronization trigger while (b) represents the LAN hub.

these two cameras, are parallel to the segment connecting the respective centers

of projection and the object to analyze is placed in the center of this segment.

Indeed, if the object is small enough with respect to the size of this segment, the

silhouettes obtained from these two cameras are exactly the same8.

The optical proprieties are strongly correlated to the arrangement of the cam-

eras, since both determine the fields of view of the images. For instance, a camera

can be placed close to the subject to record, but in this case, the focal length has

to be short enough to maintain the subject inside its field of view. Unfortunately,

short focal length, in commercial lenses, means also high image distortions, and

these not always can be easily modeled by a calibration software, due to the

elevate number of distortion coefficients.

A description on how to estimate the optical parameters for a scene can be

found in Appendix A. The chosen camera arrangement for our blue room is

depicted in Figure 5.8(Left). Camera 2, 3 and 4 mount a 4.5mm lens while

camera 1 mount a 3.5mm lens. Each camera is also equipped with a lens hood

8This is, for instance, the case of the four cameras HumanEva dataset [141].
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in order to prevent glare and lens flare.

5.4.2 The camera settings

In a final stage, once almost everything is ready, the camera settings can be

adjusted in order to maximize the video quality. In other words, the optimal

values for the aperture, the in-focus volume, the exposure time, the white balance,

the sensor gain and the brightness of each camera, have to be found.

Although the concept of video quality does not have a mathematical formu-

lation, some formal considerations can be made: the subject must fall inside the

in-focus volume, overexposed as well as underexposed regions have to be avoided,

colors must be similar to the actual ones and the histogram of the image have

to cover all the possible intensities values (i.e., the image have to have a good

contrast). Moreover, frame contrast and brightness must be kept constant during

the time and motion blur artifacts have to be avoided. Normally, these conditions

cannot be satisfy for the whole image, however, it is very important to respect

them for at least the regions of interest.

The pixel intensity of an image is related to the camera settings by these

formulas

pixel intensity = brightness+ gain ∗ (signal + noise)

signal = f (aperture) ∗ g (exposure time) ∗ pixel illuminance

where both f (·) and g (·) are monotonically increasing function, pixel illuminance

[lux] represents illuminance received by the CCD cell and signal [volt] is the elec-

trical quantity used to store internally the pixel intensity information. This latter

one is always subjected to a thermal noise that increases with the working tem-

perature.

In order to maintain a constant brightness and contrast of the images the

exposure time has to be set as a multiple of the working frequency of the lighting

system (in our case 100Hz). Moreover, this value has to be kept small to avoid

motion blur artifacts. This last condition is in contrast with the fact that the

exposure time determines the entire brightness of the image because in this way,

it cannot be set below a certain threshold.

To avoid this problem, a solution could be the increase of the aperture size with

the drawback of a smaller in-focus volume which is bounded to contain the central

area of the room. Another solution could be the increase of the gain and the
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Image Capture N
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Figure 5.9: Overlapped Readout and Exposure.

brightness factors with the drawbacks that, in the first case, the sensor noise

increases while in the second one, the image contrast decreases.

5.4.3 The time synchronization

A correct multi-camera recording system have to ensure that all the recorded

images are synchronized and taken at fixed time intervals. Therefore for each

time slot (fixed equal to 1/fps, where fps is the number of frames per second

captured by the system) all the cameras have to shoot all, at the same time.

The most common solution to the synchronization problem, is the use of an

external centralized trigger which gives, to every cameras, the shoot command

through a bus.

Most of the professional cameras have the possibility to be triggered either

by the data-bus (the Firewire or the USB bus) or by a dedicated channel. The

former case is also called software triggering while the latter one, hardware or

external triggering. Once the trigger signal is recognized, the shutter is opened

and the image acquired. After a time equal to the exposure time plus a data

packing time, the camera is ready to accept another trigger signal. This event is

often signaled by a trigger ready state sent to the synchronization device.

Even if the camera is ready to acquire another frame, the previous one still

inside its memory for as long as it takes to transmit it on the other side of the

data-bus. This process is called readout and it is often done in parallel with the

subsequent frame acquisition (this situation is called overlapped acquisition and

it is represented in Figure 5.9).
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Figure 5.10: (Left) Control room setup. (Right) Digital function generator used

as trigger for the synchronization system.

Figure 5.8(Right) shows schematically the used synchronization system. Each

camera is connected to the trigger by a 50Ω coaxial cable ending up with a 12-

pin Hirose connector. Even if the distances between the trigger and the cameras

were not always the same, the length of each cable was kept constant in order to

ensure a constant communication delay. A digital function generator (Fig. 5.10)

were used as a trigger and was placed in the antechamber together with the other

two computers to give the possibility to the operator to start the recording from

there.

5.4.4 The space calibration

Space calibration can be done in several way. We chose to use a checkerboard

based calibration with a modified fully-automatic version of the Matlab Camera

Calibration Toolbox [18] extended to work with multi-camera systems.

In the design of a checkerboard, parameters like the number of the squares,

their size as well as the material which are made, have to be chosen considering

the environment to calibrate. The best accuracy can be obtained using a glass

checkerboard since this material maintains its geometrical properties for a long

time. Paper based checkerboards instead, are sensitive to humidity which deforms

themselves in a non-isotropic way. These last checkerboards can be only used for

few days after they were printed.

The numbers of the squares, in a checkerboard, have to be odd in one side

and even in the other, so that a vision system can automatically recognize its

orientation. The number of corners coincides with the number of information
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Figure 5.11: (Left) Checkerboard used in the calibration stage. (Right) A cali-

bration photo taken at low brightness to increase the corners detection accuracy.

that the calibration software uses to calibrate a view, thus it has to be high.

Moreover, the corner detectability increases with the size of the squares.

In our case, we built up a 0.8mx1.4m checkerboard with 5x8 squares printed

on a high quality paper (see Fig. 5.11(Left)). The support was made of thick

wood to avoid the bends (about 20mm).

Clearly, the camera settings chosen to achieve good quality images in a record-

ing stage are not, in general, valid to achieve good quality images of a checker-

board. Moreover, in the calibration case, the concept of good quality also changes.

Indeed, low brightness images are preferred, since the white squares of the checker-

board, which are very sensitive to overexposure, cause blurring effects that in-

crease the corners detection error (see Fig. 5.11(Right)).

To record low brightness images, the best technique is to lower the exposure

time, since it is the only one hardware parameter which modifies the brightness

without altering the geometric proprieties of the camera, i.e., the calibration

results. Then the electrical parameters, i.e., the brightness and the gain, have

to be adjusted to ensure a hight contrast image in the proximity of the corners.

Note that, in this case, the exposure time can assume values that are not multiple

of 100Hz, since the brightness coherence between frame is not required.

Photos taken with the checkerboard close to the camera and perpendicular to

the viewing rays are useful to calibrate the camera distortions since they cover

at the same time all its field of view. On the other hands, photos taken with

high inclined checkerboard, in both directions, are useful for the estimate of the

camera focal lengths.
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Figure 5.12: A picture of the Blue-Room.

Figure 5.13: A panoramic view of the Blue-Room cut in two slices.
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Chapter 6

System Evaluation

This chapter describes the experiments made to evaluate the entire system and

discusses the obtained results. The body scanner results are analyzed in the first

section, while, the results obtained with the motion capture system are described

in the following sections.

6.1 Body scanner

The body scanner was tested on seven actors and three objects. The obtained

meshes count, typically, more than 500 thousands faces, however, the related

textures were reconstructed only for their simplified versions, namely counting

only 13 thousand faces. This downsampling was necessary to limit the used

computer resources, especially the RAM.

Texture resolution was limited to 21 MPixels (6000x3500 pixels). This can be

considered the maximum resolution that can be obtained from 60 images at 6.1

MPixels each, where the person covers, in average, the 8.6% of the each image.

Over this limit, the quantity of information carried by the texture remains the

same, while, the added pixels are due to only an interpolation, implicit in the

texture reconstruction procedure.

As expected, the adopted technique was able to generate, textures free from

the illumination artifacts, ghostings and blurs. The possibility to recover this kind

of information is a peculiarity of all the passive scanning systems differently from

their active counterparts. Indeed, these latter ones require working conditions
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Figure 6.1: Typical reconstruction obtainable with our body scanner. (Top Left)

Rough mesh model counting 902 thousand faces. (Top Right) Related texture at

21 MPixels. (Bottom Left and Right) Low resolution textured model.

which are not suitable for the acquisition of the texture, like, for instance, the

low illumination.

Figure 6.1 shows the reconstruction of an actor with his related texture. As

the reader can see, in the top left of this figure, our system have generated a

good quality mesh without holes and spurious detached surfaces. This is mainly

due to the use of the deformable models which imposes the just observed mesh

characteristics. The quality of the mesh can be evaluated numerically using the

parameters Qequ and Qplan defined in [53]. For the particular example of Fig. 6.1,

their values are 0.81 for the Qequ and 0.998 for Qplan.

Concerning the geometry, the achieved reconstruction error is difficult to eval-
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Figure 6.2: Comparison between the silhouettes of a reconstructed actor and the

silhouettes of the real one. Black pixels mean disagreement between the two.

uate directly, because no ground truth, with the same characteristics of the human

body, is available. Instead, an indirect measurement of this error is possible and

can be performed by estimating the errors introduced by all the factors contribut-

ing for it. The reconstruction error is then, a combination of these factors.

The reconstruction error, in our system, is determined by three factors namely,

the plays of the camera positioning system, i.e., the calibration errors, the ac-

tor’s movements during the acquisition and the errors introduced by the passive

reconstruction pipeline.

As mentioned in Chapter 3, our system achieves an angular error in repo-

sitioning the camera smaller than 0.071◦. This value can be easily neglected,

because the corresponding reprojection error on the surface of the actor, is less

than 0.25 pixels.

Concerning the second factor, in spite of all the precautions undertaken to

prevent movements of the actor during an acquisition session, these last ones,

even in small parts, are still present, and cannot be neglected during the es-

timation of the reconstruction error. The actor’s movements, in fact, generate

conflicting stereo results, which, when fused together, lead to a global reduction

of the final reconstruction details, i.e., to blurred surfaces. Concerning the silhou-

ette information instead, these movements typically reduce the size of the limbs

because the fusion process tends to satisfy all the extracted silhouettes, also the

displaced ones. Figure 6.2 compares the silhouettes of a reconstructed actor with
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the silhouettes of the real one. In this case, the actor’s movements are visible on

his back and on his left arm. The other discrepancies instead, are due to errors

in the reconstruction pipeline. As said in Chapter 3, the maximum movement of

the actor is limited, by our expedients, to 5 pixels, which corresponds to an error

smaller than 0.5cm.

The error introduced by the reconstruction pipeline is estimated running these

algorithms on the synthetic images generated by rendering a known geometry.

This geometry provides the ground truth that can be compared with the output

of the reconstruction. The differences between these two models are evaluated

using both a volume discrepancy measure and a surface discrepancy measure.

The former is defined as follows. Let’s denote with α the surface of the ground

truth and with β the reconstructed one. Moreover, let’s denote with A and B the

two solids contained respectively inside the two surfaces α and β. The volume

discrepancy εV (A,B) is defined as follows

εV (A,B) = 2
V ol ((A\B) ∪ (B\A))

V ol (A) + V ol (B)
(6.1)

where V ol (·) is the operator computing the volume of a solid. In practice, the

term εV (A,B) indicates the percentage of volume in disagreement between A

and B with respect to the average volume of these two solids.

The surface error εS (α, β) is, instead, defined as follows

εS (α, β) =

∫
α
d (P, β) ds

2
∫
α
ds

+

∫
β
d (P, α) ds

2
∫
β
ds

(6.2)

where d (P, ·) is the distance between the surface · and the point P . Roughly

speaking, this term measures the average distance between the two surfaces.

Experiments showed that the volume discrepancy error is always less than the

0.6% and the average distance between the actual and the reconstructed surface is

around 4.2mm, value corresponding to the size of a pixel. The standard deviation

is 3.2mm, corresponding to three quarters of a pixels. This means that, the

achieved reprojection error is, in average, one pixel with a standard deviation of

0.75.

In conclusion, we can state that, the entire system achieves a reconstruction

error which, in the best case, has an average of 4.2mm and a standard deviation

of 3.2mm. This error inevitably increases in regions where the actor’s move-

ments, during the acquisition, become visible, i.e., where their size exceed one

pixel. However, since the adopted precautions, these movements are limited to

a maximum displacement of 5 pixels, leading to a final error always below the

2.1cm.
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Figure 6.3: Computational resources used to process the acquired video streams.

The most powerful used computer consists in a single core 3.4Ghz Intel P4 with

2Gb of RAM.

6.2 Motion capture

The motion capture system was tested on about 120 video sequences. Since

this large amount of data, the required computational power was considerable.

Videos were acquired during the day while, their processings were performed by

five computers during the night (see Fig. 6.3).

The acquired sequences cover many different types of motions and they are

classified in three main groups namely, single person sequences, single person and

multiple objects interactions sequences and multiple people and multiple objects

interactions sequences.

The first group concerns scenes with only a single person performing motions

like walks, jumps, break-dances, pirouettes, somersaults, hand stands, stretching,

press-ups, sit-ups and lone kick-boxing. The second group, instead, concerns

the interactions between a person and some objects present in the scene. In

this group, the acquired motions consist in sword swings, tennis forehand and

backhand shots, volleyball serves and bumps, golf shots, baseball hits, soccer

kicks, and soccer juggles. At last, the third group contains sequences where more

than a single person interact in the same scene either with other people or with

objects. Concerning this group, we recorded sequences like two people walks,

handshakes, boxing and soccer passes.

The algorithm performance was evaluated both qualitatively and quantita-

tively. The former evaluation consisted in a visual comparison between each re-

constructed frame and the original one. The latter evaluation, instead, was based
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frames mean [%] st. dev. [%]
walk 390 8.84 0.93
break-dance 170 12.43 3.81
pirouette & jump 490 11.74 2.24
somersault 170 11.05 4.8
hand stand 200 12.03 3.9
press up 280 11.34 1.91
synthetic sequence 120 5.80 2.50
lone kick-boxing 790 11.84 1.75
soccer kicks 530 9.53 1.52
soccer juggles 590 11.32 1.70
golf shots 560 11.08 1.94
walk & handshake 190 10.77 1.32
boxing 300 9.32 1.25
soccer passes (1) 570 10.03 0.96
soccer passes (2) 860 9.83 1.17

Table 6.1: Pixel discrepancy error statistics of some of the tested sequences.

on the Pixel Discrepancy Error (PDE) computed as follows. The silhouettes, ei-

ther obtained by segmenting the video streams or by rendering the reconstructed

model, were represented as binary images, with the convention that the back-

ground pixels are white (1) and object pixels are black (0). For every frame, a

XNOR operator was applied between the extracted silhouette and the silhouette

of the reconstructed model. The percentage of black pixels, with respect to the

total number of pixels forming the extracted silhouette, represents the PDE.

Table 6.1 reports the PDE statistics computed over the whole reconstruction,

for some of the tested sequences. It is worth pointing out that, by definition,

the PDE may be due either to an actual pose estimation error or to background

subtraction errors and mismatches between the actual actor’s shape and the used

reconstruction acquired by the body scanner. Therefore, the values in Table 6.1

generally overestimate the actual pose estimation error especially in sequences like

the somersault and the pirouette where, fast movements and ground interactions,

make the silhouette extraction process rather critical. Furthermore, let’s note that

our actors wear casual clothes and two of them have long hair. This increases the

mismatches between the actual actor’s shape and the used reconstruction, indeed,

for instance, it is very difficult to tie their hair in the same way as during the 3D

scanning process. All the above factors contribute to an increase the PDE but,

this increase is not related to an actual increment of the pose estimation error.

In order to exemplify the visual meaning of the PDE, let’s consider the case
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Figure 6.4: Walk sequence. (Left) Pixel discrepancy error evaluated in each

frame of the sequence. (Middle) A frame of the sequence. (Right) Detail of the

reconstructed model.

of frame 63 of the somersault sequence shown in Fig. 6.6 (row 2, column 2). This

frame has a PDE of 10.2% which, in spite of its considerable value, has a visual

impact rather contained.

Concerning simple sequences like, for instance, the walk (390 frames), the

algorithm performance is rather accurate both in terms of PDE and in terms of

visual quality. Indeed, as shown in Figure 6.4(Left), the PDE is rather low with

an average of 8.84%. In the same figure it is also depicted, a reconstructed frame

of the walk sequence where also small details, such as the right foot articulation,

are accurately reproduced.

The sequences with fast movements pose a twofold problem. In this case,

in fact, the implicit assumption, of the tracking algorithm, that θ(t − 1) is a

good starting point for the minimization, does not hold anymore. Moreover, fast

movements cause motion blur which, consequently, deteriorates the quality of

silhouette information typically altering the real object size. These artifacts are

clearly shown in the top row of Figure 6.5 where the actor leg, during an hand

stand, becomes smaller and some of its parts disappear. However, optical flow

information, in these situations, effectively overcomes such problems since the

visual quality of the reconstruction remains remarkably good, as shown in the

bottom row of Figure 6.5.

The reconstruction power of the proposed method can be appreciated by the

somersault sequence which combines fast movements, spine bends, clavicles ro-

tations and a lot of self occlusions given by the fact that actor bends himself on
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Figure 6.5: Hand stand sequence. (Top row) Extracted silhouettes. (Bottom row)

Silhouettes of the estimated 3D model.

the ground.

Figure 6.6 shows some frames of such a sequence. The first rows represents

the original video recorded by one of the cameras of the acquisition system. The

third row shows the reconstructed actor while the second one shows a graphical

representation of the PDE. More precisely, the black pixels represent disagreement

between the two silhouettes while, the agreement is represented by both the

white and the light grey pixels. In particular, a light grey pixel means that the

reconstructed and the observed data represent both an object point while, a white

pixel that they both represent a background point. At last, the forth row shows

the skeletal structure.

It is worth noting that, thanks to the LBS model, the back of the actor is

perfectly tracked. Indeed, the reconstructed silhouette lies exactly on the real

one. Furthermore, this sequence could not be successfully processed without the

use of the optical flow information because, the extracted silhouettes, alone, are

not able to supply any information about body parts which do not belong to

any silhouette of any point of view. Optical flow, in fact, overcomes the intrinsic

limitation of the silhouettes, providing the missing information.

Finally, let’s note that, in this sequence, hands are not correctly tracked, e.g.

see frames 83, 106, 115 and 126. This is simply due to the fact that the used

human model does not have an accurate description of the hands’ shape and its

skeleton does not contain finger bones. Therefore, it cannot model widely opened

hands such the ones in the previously enumerated frames.

The current implementation of the algorithm is not time optimized. Its run-

ning time for processing a single frame depends on the actor’s movement speed,
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Figure 6.6: Some frames of the somersault sequence. From top to bottom: real

images acquired from one of the cameras of the acquisition system, PDE, recon-

structed model and the reconstructed skeleton.
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i.e., how far the actual solution is from its initial guess. Typical running time on

a single core 3.4Ghz Intel P4 with 2Gb of RAM is at most 20 seconds per frame.

6.2.1 Multiple entities results

This section describes the results obtained testing the sequences of the second

and the third group. As mentioned before, these include both human to object

interactions and human to human interactions. We started with simple sequences

having only 52 degrees of freedom, more precisely, consisting in a person interact-

ing with a single rigid object, and subsequently, we tested several sequences with

more than 80 degrees of freedom. In particular, the most complex one counts 92

degrees of freedom and consists in two people and two rigid objects interacting

in the same scene.

In spite of the few number of cameras and the high number of degrees of

freedom, our algorithm behaves pretty well detecting the ambiguities that the

multitude of occlusions arises. In the next paragraphs, the most relevant se-

quences are presented and discussed one by one.

In the single person soccer sequences, the actor performs some juggles and

some kicks with the ball. One of these sequences is shown in Figure 6.7. Odd rows

represent the original frames of the sequence, while even rows, the reconstructed

ones.

In this case, the shape matching metric reveals itself as indispensable for an

accurate tracking of both the ball and the actor’s feet during a kick. Indeed,

without this metric, the tracking procedure could fall into a local minima which

often consists in a penetration of the ball inside one of the actor’s feet.

Figure 6.8 depicts this situation. The first row shows the evolution of the

algorithm during a pose estimation without the use of the shape matching metric.

A red binary image, representing the silhouette of current model estimate, is

superimposed, using a XOR operator, to a white one representing the actual

silhouette extracted from the video stream. Red lines represent the silhouette

correspondences. At each algorithm iteration the ball is attracted to the actor’s

foot by a lot of silhouette correspondences which do not take into account for the

local shape of their silhouettes. The second row, instead, shows the evolution of

the algorithm estimating the same pose but, this time, using the shape matching

metric. As the reader can see, most of correspondences pulling the ball inside

the actor’s foot are discarded and, instead, the correspondences puling the ball

to the right place becomes stronger and stronger.
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Figure 6.7: Soccer kicks and juggles. The odd rows represent the original frames

of the sequence, while the even rows represent the reconstructed ones.
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Figure 6.8: Evolution of the algorithm during an estimation of the pose repre-

sented by the white silhouette. (Top row) No shape information is used to compute

the silhouettes correspondences. (Bottom row) Shape matching metric is used.

This sequence reveals also the importance of the optical flow information to

recover fast movements. The silhouette information alone is, in fact, not able

to capture fast movements because fundamentally, it is a local information. The

silhouette correspondences are sought in the surrounding areas of the current

pose estimate, therefore, if the actual pose is far away from its initial estimate,

the algorithm is not be able to recover it converging into a local minima. More-

over, motion blur alters completely the shape of the silhouettes leading the shape

matching metric to be unusable and counterproductive. However, the optical flow

compensates for this lack providing the missing information.

Finally, an overall evaluation of the algorithm behavior on this sequence is

given by the average PDE which, in this case, as stated by Table 6.1, is equal to

11.32.

Concerning the handshaking sequence, two actors walk alternatively in a cir-

cle, occluding each other on each pair of cameras. Afterwards, they stop, shake

their hands and say goodbye with an hand gesture while they are walking in

opposite directions. The generated occlusions are handled by both the visibil-

ity constraint and the shape matching metric. More precisely, the fact that we

are considering the two actors as a unique entity (see Sec. 4.4.4) allows us to

treat the inter-actor occlusions as self occlusions which are already considered by

the visibility constraint. On Figure 6.9 we propose a comparison between the

108



6.2. MOTION CAPTURE

A
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B

Figure 6.9: Comparison between our approach to deal with multiple entities (Left)

and the naive procedure (Right) consisting in estimating their poses one at a time,

neglecting the inter-actor occlusions.

correspondences detected using our procedure and the correspondences detected

applying our pose estimation algorithm separatively on each entity. Let’s call

A the background actor walking on the right and B the foreground one walking

on the left. It is worth to point out that using the latter approach, some points

of the A’s right foot are considered in the correspondences extraction procedure

even if they are occluded by the B’s belly. The founded correspondences tend to

move, erroneously, the A’s foot towards the B’s back. The same happens to the

A’s belly which is attracted by the B’s head. The other bad correspondences,

visible in this figure, are due to the absence of the shape matching metric. On

the other hand, our approach solves most of these mentioned issues as it can be

seen in the left of Fig. 6.9.

For this sequence, since the obtained segmentation was accurate we achieved

an average PDE of 10.77. However, it is worth pointing out that during the

handshake a perfect contact between the two hands was not always achieved, as

shown in Fig. 6.10. The hands were, in fact, not well seen by the cameras so their

triangulation was hard. Moreover, the accuracy of their geometries was pretty
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Figure 6.10: Some real and reconstructed frames of the handshaking sequence.

At the bottom two close up views of the hands positions during the handshake are

proposed.

low since the body scanner was not able to capture such a small detail. Indeed,

hands are very small with respect to the rest of the human body and they are

very sensible to the background subtraction errors.

On the contrary, better results are obtained in the sequences acted by the

boxer model. The geometries of his gloves were, in fact, easy to acquired ac-

curately. In particular, in the punching sequence, two actors punch and slap

each other in the center of the room. In this case, the contact points between

the boxer’s gloves and the face of the other actor is very accurate as shown in

Figure 6.11.

It is important to note that, in this case, the two actors were very close each

other, therefore, the number of occlusions was higher than in other sequences

while the number of extractable motion cues was lower. An evident effect of
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Figure 6.11: (Left) A reconstructed frame of the punching sequence. (Right)

Close up view of the contact point.

this lack of information was observed in the estimation of the pose of both the

actors’ pelvis and their first spinal bones. The estimate was, in fact, corrupted

by an high frequency noise which decreases the quality of the final rendering. To

overcome on this situation a low-pass gaussian filter in the SE (3) domain was

applied to the motion capture data of the whole scene.

We finally propose, in Figure 6.12, some frames of the soccer passes sequence

where two actors play for 860 frames with a ball. The first two and the last two

rows depict the sequence from camera number three while the middle two from

camera number one. It is interesting to observe that we were able to recover

the actor’s pose also during the cross leg pass depicted in the first column row

number three and four.

6.2.2 Synthetic results

In order to evaluate the pose estimation error achieved by our algorithm, an

experiment in a synthetic environment was performed. A generic human model

was drawn, animated and rendered to provide both the synthetic video streams

and the ground truth to be compared with the output of our algorithm.

Differently from the human models adopted in the real data tests, the one

used for this test has only 39 degrees of freedom arranged in 17 bones. This is

due to the fact that, in the drawn sequence, hands, toes and the last spinal bone

were not animated, therefore, there was no need to estimate them.

The drawn animation was a kick sequence (see Fig. 6.13) characterized by fast
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Figure 6.12: Soccer passes sequence. The odd rows represent the original frames

of the sequence, while the even rows represent the reconstructed ones.
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Figure 6.13: Some frames of the kick sequence.

and large movements for all the body parts, especially for the clavicles and for

the spinal bones. Four cameras, each with a field of view of 45◦, were arranged

around the model at an average distance of 5.5m. The videos were rendered at

a resolution of 800x600 pixels, so that, the image of the actor covers, in average,

the 2.8% the each frame.

Figure 6.14 and Figure 6.15 show a qualitative evaluation of the pose esti-

mation error superimposing respectively the estimated model on the actual one

and the estimated skeletal structure on the actual one. The visual inspection of

such superposition shows general agreement even if both models were rendered

from a viewpoint different to any of the ones used to generates the video streams.

Discrepancies between the two models are visible when some body parts are oc-

cluded with respect to every cameras in the scene, or when the model constraints

limit some particular movements.

The availability of a ground truth allows to go beyond the qualitative eval-

uation. In fact, the pose estimation error was evaluated using two quantitative

measurements namely, the joint position error and the bone orientation error.

The former represents the error between the joints positions of the estimated

skeleton with respect to the joints positions of the ground truth. Table 6.2(Left)

reports the statistics of the joint position error over the whole sequence for all the

joints of skeleton. Figure 6.16 shows graphically the same error measured at each

frame of the sequence for some significant joints namely, the elbows, the knees

and the shoulders.

It is worth noting that the maximum error is achieved by left knee exactly

during the kick, around frame 40, and it amounts to about 10cm. This is due to

the fact that, the left leg performing the kick makes a so wide movement that it

touches, for one instant, the chest of the actor, loosing some silhouette informa-

tion. Moreover, the left arm partially occludes the knee from the viewpoint of

some cameras during exactly the kick (see Fig. 6.13). This lack of information

can justify the obtained position error.
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Figure 6.14: Superposition of the ground truth model (blue) on the reconstructed

one (red) seen from a viewpoint not belonging to any of the cameras used to render

the sequence.
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Figure 6.15: Superposition of the ground truth skeleton (blue) on the recon-

structed one (red). All these frames are in one to one correspondence with the

frames shown Figure 6.14.
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Figure 6.16: Joint position error measured at each frame of the kick sequence.

In spite of this situation, all the other joints are correctly estimated with an

average error always below 2.5 centimeters. In particular, both shoulders and

spinal bones achieve an average error below 2.1cm.

The latter quantitative measurement compares the rotation angles of the

bones of the estimated skeleton against those of the ground truth. Namely, we

compared the θj values related to the pose of this two models. This is a rather

demanding comparison since the rotation error of each bone is very sensible to

the rotation error of its father.

Table 6.2(Right) reports the statistics of the bone orientation error over the

whole kick sequence for each bone of the skeleton. Figure 6.17 compares graph-

ically the actual bones orientations with the estimated ones at each frame of

the sequence for some significant bones, namely the lower legs, the clavicles and

the forearms. Blue lines represents the ground truth angles while red lines, the

estimated ones.

As the reader can see from Fig. 6.17, blue and red lines are pretty close to each

other in all the graphs, except for the orientation of the left clavicle during the

interval starting from frame 40 to frame 90. In fact, the estimated orientation,
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Position [cm]
mean st. dev.

L Elbow 1.94 1.58
R Elbow 2.41 2.21
L Shoulder 2.10 1.88
R Shoulder 1.95 1.47
L Clavicle joint 0.96 0.62
R Clavicle joint 1.00 0.66
L Thigh joint 1.80 2.09
R Thigh joint 1.40 1.27
L Knee 1.85 2.36
R Knee 1.30 1.24
L Ankle 1.75 2.25
R Ankle 1.10 0.73
Pelvis 1.03 0.81
Spine lv. 0 1.45 1.18
Spine lv. 1 0.85 0.58
Head Base 1.28 0.82

Orientation [deg]
mean st. dev.

L Forearm Z 2.88 2.58
R Forearm Z 2.58 3.24
L UpperArm X 5.55 6.93
L UpperArm Y 5.37 5.49
L UpperArm Z 6.08 6.49
R UpperArm X 9.29 7.73
R UpperArm Y 5.13 5.80
R UpperArm Z 7.81 6.41
L Clavicle X 3.84 2.70
L Clavicle Y 3.19 2.74
R Clavicle X 4.21 3.79
R Clavicle Y 3.26 2.38
L Thigh X 3.78 4.79
L Thigh Y 4.25 5.56
L Thigh Z 6.21 7.57
R Thigh X 2.63 3.75
R Thigh Y 4.36 5.40
R Thigh Z 5.14 5.17
L Lower Leg Z 1.90 2.33
R Lower Leg Z 1.53 1.99
L Foot X 6.88 3.01
L Foot Z 5.76 7.70
R Foot Y 11.65 2.18
R Foot Z 3.85 2.83
Pelvis X 3.28 4.09
Pelvis Y 4.79 4.73
Pelvis Z 3.85 5.18
Spine lv. 0 X 3.34 2.72
Spine lv. 0 Y 4.81 6.43
Spine lv. 0 Z 6.64 6.91
Spine lv. 1 X 3.50 2.85
Spine lv. 1 Y 2.37 2.18
Spine lv. 1 Z 2.23 1.99
Head X 4.37 3.45
Head Y 3.91 3.27
Head Z 3.70 3.76

Table 6.2: Error statistics over the whole kick sequence. (Left) Joint position

error [cm]. (Right) Bone orientation error [deg].
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Figure 6.17: Bones orientations comparison for each frame of the kick sequence.

(Blue) Ground truth orientation angles. (Red) Estimated orientation angles.
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in this interval, stays stuck at −15◦. This is due to the fact that the model does

not allow such a wide movement constraining the clavicle y-rotation to be above

−15◦ with respect to the Vitruvian man’s pose.

In spite of this problem, the average orientation error is about 4.5◦ with a

standard deviation of 4.7◦.

6.2.3 Robustness tests

Some tests were performed to evaluate the robustness of the algorithm on missing

and wrong input data. In particular we tested our method in sequences where

no silhouette information was supplied and in sequences where the used human

model differed a lot from the actual actor.

More precisely, we used the soccer player model, used in the synthetic data

tests, to track the performance of a real actor during a walk sequence. Clearly,

the two models do not match each other especially in the legs, where the soccer

player model wears shorts and, instead, the real actor wears jeans. However, even

the presence of these discrepancies, the algorithm still tracks rather well but, with

an obvious increase of the pixel discrepancy error.

In the no silhouette information test, we observe that only short sequences

can be tracked. The optical flow information, used alone, suffers indeed of a

drift problem leading to a misalignment of the 3D pose after about two hundred

frames.

The algorithm was also tested on sequences with a fewer number of cameras

namely, respectively with three and two cameras. In the latter case, we observe

that only for simple movements, the full 3D pose can be recovered with a reason-

able accuracy. On the contrary the three cameras case does not shows big issues,

at least for the single entity sequences. What we explicitly observed is that, if a

body part is not seen as silhouette from at least two cameras at the same time

its pose estimation accuracy decreases. Nevertheless, a lack of silhouette infor-

mation can be recovered by an optical flow information, therefore, if a body part

has an optical flow correspondence and a silhouette one its pose can be recovered

precisely.
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Chapter 7

Conclusions

In this thesis, we presented a system for capturing the shape, the appearance

and the motion of interacting people and objects using only passive and non-

invasive techniques. Given a scene, where multiple people are interacting with

each other and with some other objects, our system is able to provide a time-

varying description of the whole 3D sequence considering both its geometry and

its appearance. A user is therefore able to navigate inside this representation

and look at the action from any point of view. Moreover, since the whole scene

is modeled by articulated deformable models, the result of the capturing process

can be used in any commercial animating software.

The acquisition is performed in two separate steps. First the shape and the

appearance of each actor is acquired using a passive body scanner. Subsequently,

the actors are invited inside a second location where the actual action will take

place. A marker-less motion capture system is used to simultaneously capture

their motions and the motion of all the objects which they interact with.

This thesis proposed an optimization framework for the pose estimation capa-

ble of handling, simultaneously and in a unified way, multiple entities interacting

in the same scene. This framework also take into account the non-rigid deforma-

tions of the actors’ skin allowing an accurate pose estimation of also the small

and high flexible parts of the body, like the spine and the clavicles.

Two distinct sources of information, namely optical flow and silhouette, are

extracted from the videos and used synergically to overcome the lacks of data

given by the use of a few number of cameras recording the scene (four, in our

case) and the high number of degrees of freedom to estimate (more than 80).

The analysis-by-synthesis approach was adopted fusing together these two kind of
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information using a 2D domain functional which also avoid full 3D reconstructions

of the entire scene.

The entire system was tested on seven actors and about 120 video sequences

covering many different types of motions starting from the single person ones to

the multiple people and multiple objects interactions sequences. Each action was

recorded by four 0.8 MPixels cameras inside a blue room. The more complex

evaluated sequence counts 92 degrees of freedom.

The algorithm performance was evaluated both qualitatively and quantita-

tively. The pixel discrepancy error was used to evaluate the converging proper-

ties of the algorithm and its peculiarity to avoid local minima. A more precise

evaluation is provided by the tests made on synthetic data, where the possibility

of having the ground truth, allows us to measure the exact pose estimation error

in terms of both joint position error and bone angle error. The average errors

found in our experiments were respectively of 2.5cm for the joint position error

and 4.5◦ for the bone angle error.

Experiments show that, the use of the LBS deformation model inside the inter-

nal body representation allows us to correctly estimate also the pose of small and

high flexible body parts. Numerically, both shoulders and spinal bones achieve

an average error below 2.1cm.

Test reveals that the use of the optical flow information is indispensable to

recover sequences with fast motions and multiple occlusions. The silhouette in-

formation alone is, in fact, not able to achieve our purposes in these situations

because, firstly it is a local information and secondly the motion blur generated

by the fast movements corrupts the results of the background subtraction pro-

cess. Moreover, silhouettes give information only on those body parts belonging

to the contours of the subject seen from at least one camera. If this condition

is not satisfied, like in most of the body parts during the somersault sequence,

the number of pose ambiguities increases. Optical flow, instead, is able to pro-

vide motion information over the entire image, overcoming the silhouette lack.

However, the optical flow alone cannot reconstruct long sequences as seen from

Sec. 6.2.3 because it suffers of drift problems which cannot be neglected after 200

frames. Therefore, only the synergically use of these two kind of information can

recover the full motion information of the tested sequences.

The experiments described in Sec. 6.2.1 showed that the use of the shape

matching metric and our formulation for multiple entities allows us to recover

simultaneously the motion of multiple people and objects interacting in the same

scene. Their inter-occlusions are treated as self-occlusions of an unique entity,
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while, the shape matching discriminates the silhouette belonging to each object.

The proposed body scanner, costing less than two thousand euros, was able to

provide us the initial shapes of our actors, counting more than 500 thousands faces

and with an accuracy of 4.2mm. The proposed appearance capture procedure

allows us to recover textures of about 21 MPixels free from the illumination

artifacts, ghostings and blurs.

Currently, the entire system suffers of two main limitations, namely, the need

of a controlled environment to acquire the scene and the need of a separate step

to acquire the shape and the appearance of each subject. The latter one could not

be considered as a limitation if the purposes of the acquisition are, for instance,

character animations, while the former one could be relaxed using some of the

recent progresses on the segmentation procedure. In this case, the target is to

export our system to acquire accurately the motion also in crowded urban areas.

Moreover, the formulation proposed in Chapter 4 and, in particular, the multi-

band analysis of the deformable models, suggest an easy future extension of this

work for capturing also the deformations which cannot be modeled by the LBS

model, like, for instance, the ones of normal clothes.
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Appendix A

3D Content Creation by Passive Optical

Methods

ATTENTION: This chapter is a copy of my work published in the book “3D

ONLINE MULTIMEDIA AND GAMES: Processing, Visualization and Trans-

mission” [11] which can be found in the libraries starting from fall 2008.

A.1 Introduction

The term 3D Digitizing/Modeling is referred to the action of representing a real

object by a mathematical description, called 3D model, that can be processed by a

computer. Since the beginning, the possibility of obtaining 3D models of real ob-

jects or scene has paved the way to a wide range of new applications in fields such

as cultural heritage documentation, medicine, media and entertainment (movies,

video games, etc...), virtual simulation, human-computer interaction (HCI), in-

dustrial prototyping, reverse engineering, scientific visualization, e-commerce and

marketing, surveillance, just to name a few.

The construction of the 3D model of a real object or scene by optical sensors,

also referred to as 3D modeling pipeline, essentially consists of four steps: 1) data

acquisition, 2) calibration, 3) reconstruction, and 4) model editing. Any optical

sensing device used to collect data can only capture the surface front side and

not what is occluded by it. Therefore, a full model must be built from a number

of images covering the entire object (data acquisition). In order to perform 3D
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reconstruction, the camera’s parameters must be estimated by a procedure called

calibration. Such information can also be obtained from the acquired images if

they represent some common regions (by a procedure which is typically called

self-calibration). Reconstruction is then performed and the resulting model is

stored in an efficient description such as polygonal meshes, implicit surfaces,

depth maps or volumetric descriptions. In practical situations, reconstruction

may lead to models with some imperfections; thus, a further repairing step is

recommend (model editing) [39, 83].

Optical 3D reconstruction methods can be classified into passive or active

methods based on the type of sensors used in the acquisition process. Passive

sensing refers to the measurement of the visible radiation which is already present

in the scene; active sensing refers instead, to the projection of structured light

patterns into the scene to scan. Active sensing facilitates the computation of

3D structure by intrinsically solving the correspondence problem which is one

of the major issues with some passive techniques. For a detailed description of

the operations of the 3D modeling pipeline by active sensing see [131, 129]. In

general, active techniques such as those based on laser scanning tend to be more

expensive and slower than their passive counterparts. However, the best active

methods generally produce more accurate 3D reconstructions than those obtained

by any passive technique.

Passive optical methods, as previously mentioned, do not need auxiliary light

sources. In this case, the light reflected by the surface of the object comes from

natural sources, that is, sources whose characteristics are generally unknown and

in most cases, not controllable by the acquisition process. Furthermore, passive

methods do not interact in any way with the observed object, not even with

irradiation. Passive reconstruction, in principle, can use any kind of pictures,

i.e., it does not need pictures taken for 3D reconstruction purposes (even holi-

day photographs could be used). Passive methods are more robust than their

active counterparts, can capture a wider range of objects, can be obtained by

inexpensive hardware (such as a simple digital camera) and are characterized

by fast acquisition times. Such features are the reason for the attention they

received and they continue to receive. Their drawbacks concern accuracy and

computational costs. Indeed, passive reconstruction algorithms are complex and

time-consuming. Moreover, since their acquisition scenarios are often far from the

ideal conditions, noise level is typically much higher than that of active methods

which tend to guarantee optimal conditions.

Passive optical methods are classified by the types of visual cues used for
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Figure A.1: Overview of existing passive optical methods.

3D reconstruction. For this reasons, they are also called “Shape from X” (SfX)

techniques, where X stands for the cue or the cues used to infer shape. Methods

which deal with one single type of visual cue are called monomodal whereas

methods jointly exploiting information of different types are called multimodal.

The simultaneous use of different cues, in principle, is clearly more powerful than

the use of a single one; however, this poses the challenge of how to synergistically

fuse different information avoiding mutual conflicts.

Figure A.1 proposes a taxonomy of the passive optical methods. Typical

information used for reconstruction are:

• Silhouette or apparent contour;

• Shading;

• Shadow;

• Focusing;

• Pictures differences, i.e., stereo information;

• Texture;

• Motion;

This chapter reviews 3D reconstruction by passive optical methods. This is

not an easy task in light of the broad scope of the topic. The spirit we adopted

is to give a conceptual outline of the field, referring the reader to the literature

for details. We also reserve special attention to recent methods. section A.2

introduces basic concepts and terminology about the image formation process.

section A.3 reviews major monomodal methods: shape from silhouette, shape

from shading, shape from shadows, shape from focus/defocus and shape from

stereo. Finally, in section A.4 we introduce a framework for multimodal methods,
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focusing on the deformable model technique.

A.2 Basic notation and calibrated images

A calibrated image is an image for which all the parameters of the camera used to

take it are known. Formally, a calibrated image is an ordered pair (I, ζ) where I

is an image and ζ is an image formation function <3 → <2 that maps the points

from the physical 3D world to the image plane. An image is a function from a

rectangular subset of <2 representing the image space coordinates to an interval

of < representing the image intensity values. In this section, the image formation

process is approximated using the ideal pinhole camera model (see Fig. A.2) with

lens distortion. This means that neither the effects due to finite aperture nor

other types of lens aberrations are considered. In this case, ζ can be expressed

as the combination of two functions, namely

ζ = φ ◦ V (A.1)

where φ : <2 → <2 is a nonlinear bijection representing the camera lens distortion

and V is a function <3 → <2, called view, incorporating both the pinhole model

and the camera point of view information. Function V is a combination of two

further functions, i.e., V = π◦T . Function π is the pinhole perspective projection1

simply defined as π (x, y, z) =
(
x
z
, y
z

)
for all point P = (x, y, z) in <3 with z > 0.

Function T : <3 → <3 is an affine bijective transformation which performs 3D

coordinates transformation from the world space to the camera space. Let us note

that, given a calibrated image (I, ζ), one can always find its non-distorted version

(I ◦ φ, V ) by estimating camera lens distortion parameters φ from image I. This

is a classical inverse problem for which a vast literature is available. Popular

methods are due to [154] which estimates φ using known calibration patterns and

to [122] which uses the knowledge that the image represents straight lines of the

scene.

Projective Geometry is a powerful framework for describing the image for-

mation process, not adopted in this chapter for reasons of simplicity. Interested

readers are referred to [59] for an excellent introduction.

By definition, transformation T can be written as

T (P ) = M · P +O (A.2)

1This model was first proposed by Brunelleschi at the beginning of the 15th century.
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where M is an invertible 3x3 matrix and O,P ∈ <3. Furthermore, M and O

form to the so-called projection matrix K, a 3x4 matrix defined as follows

K =
[
M O

]
(A.3)

Projection matrix K is related to the physical model of the ideal pinhole camera

and can be decomposed according to the following scheme

K = I ×

1 0 0 0

0 1 0 0

0 0 1 0

× E (A.4)

where I is the intrinsic matrix, depending on the so-called intrinsic parameters

only due to the camera internal characteristics, and E is the extrinsic matrix,

depending on the so-called extrinsic parameters only due to the camera position

and orientation in the space. Namely, matrix I is defined as follows

I =


f
px

(tanα)f
py

cx

0 f
py

cy

0 0 1

 (A.5)

where f (expressed in millimeters) is the camera focal length, that is the distance

between the sensor surface (also known as retinal plane or image plane) and

pinhole C (also known as center of projection); px, py respectively are the width

and the height in millimeters of a single pixel on the retinal plane; α is the skew

angle, measuring how much the image axes x and y are away from orthogonality;

c = (cx, cy, 1) is the principal point of the camera, i.e., the point at which the

optical axis intersects the retinal plane. We recall that the optical axis is the

line, orthogonal to the retinal plane, passing through the center of projection C.

Another useful parameter is the camera field-of-view along the y axis defined as

FOVy = 2arctan

(
py Ny

2f

)
(A.6)

where Ny is the vertical resolution of the sensor. Figure A.2(above) shows the

ideal pinhole camera. Rays of light pass through the pinhole and form an inverted

image of the object on the sensor plane. Figure A.2(below) shows an equivalent

pinhole model where the image plane is placed in front of the center of projection

obtaining a non-inverted image.

Matrix E is defined as

E =

[
R tT

0 1

]
(A.7)
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Figure A.2: Ideal pinhole camera (above) and its equivalent model (below) where

the image plane is placed in front of the center of projection.
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where R is 3x3 rotation matrix and t is a vector belonging to <3. For example,

given a camera with center of projection C, optical axis D and up-vector U (that

is the y axis of the camera reference system), the relative extrinsic matrix is:

E =

[
B−1 −B−1CT

0 1

]
(A.8)

where:

B =
[
(U ×D)T UT DT

]
(A.9)

The center of projection C = (Xc, Yc, Zc) can be obtained from the columns

of projection matrix K =
[
k1 k2 k3 k4

]
as follows

Xc =
det
([
k2 k3 k4

])
Q

(A.10)

Yc = −
det
([
k1 k3 k4

])
Q

(A.11)

Zc =
det
([
k1 k2 k4

])
Q

(A.12)

where:

Q = − det
([
k1 k2 k3

])
(A.13)

In order to extract 3D information from a set of images, the related view

functions must be estimated for each image of this set. This can be done in

two ways: conventional calibration or self-calibration. The first approach uses

pictures imaging a known target object such as a planar checkerboard. In this

case, function V can be estimated by solving an overconstrained linear system

[59]. Self-calibration instead, computes the view functions associated to a set of

un-calibrated images without any information about the scene or any object in

it. These methods, see for instance [99], essentially extract relevant features from

two or more images then, find the matching between them and finally, proceed

like conventional calibration methods.

A.3 Monomodal methods

This section introduces the most common monomodal methods namely, the meth-

ods using silhouette, shading, shadow, focus and stereo as 3D reconstruction
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information. Texture and motion are excluded from this analysis, however the

interested reader is referred to [51] and [67] for an example of these two techniques.

A.3.1 Silhouette

Algorithms which reconstruct 3D objects using only silhouette information ex-

tracted from a set of images are called “Shape from Silhouette” methods. They

were first proposed in [13] and afterwards formalized in [78], where the concept

of visual hull was first introduced.

All these methods must face the problem of extracting silhouette information

from the set of images. In other words, in each picture, they must identify the

points belonging to the object to be acquired with respect to the background.

This problem does not have a general solution as it strongly depends on the

scene characteristics. The most common approaches to this task are chroma

keying (e.g., blue screen matting [29]), background subtraction [117], clustering

[120] and many other segmentation techniques. For a comprehensive account see

[88]. However, silhouette information is affected by two types of error. The first

one is the quantization error due to image resolution and it is directly proportional

to the camera-object distance z as

εx =
px
2f
z, εy =

py
2f
z (A.14)

The second one depends on the specific silhouette extraction method and its

amount is usually confined within ±1 pixel.

In order to recall the concept of visual hull, some definitions related to the

notion of contour may be useful. Given a view V and a closed surface M in <3,

let us denote by V (M) the projection (or the silhouette) of M on the image plane

of V , i.e., the shape of M viewed by V , and by

γVM = ∂V (M) (A.15)

the apparent contour of M viewed by V , and by

ΓVM = V −1
(
γVM
)

(A.16)

the 3D contour of M viewed by V .

By definition V (M) is a set of points in <2 and its boundary γVM is a set of

curves in <2 which do not intersect each other. As we can easily see with the aid

of Figure A.3, neither V (M) nor γVM are generally regular. Indeed, it is likely
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Figure A.3: M is a 3D object. V (M) represents the silhouette of M , γVM its

apparent contour and ΓVM its 3D contour. In the figure, ΓVM is slightly rotated

with respect to the point of view of the other three pictures in order to evidence

that ΓVM is a set of not necessarily closed 3D curves.

that they have some singularities. On the contrary, ΓVM is a set of not necessarily

closed curves in <3, with points belonging to M .

Shape from silhouette methods use V (M) as source of information. However,

there exists a class of methods, called “Shape from Contour” [32], that use the

apparent contour γVM instead of V (M) in order to infer shape.

The concept of visual hull [78] is a fundamental definition for the shape from

silhouette methods.

Definition 1 Given a set of views R = (V1, . . . , Vn) and a closed surface M

in <3, the visual hull of M with respect to R, denoted as vh (M,R), is the set

of points of <3 such that P ∈ vh (M,R) if and only if for every view Vi ∈ R,

the half-line starting from the center of projection of Vi and passing through P ,

contains at least one point of M .

In other words, the visual hull of a surface M related to a set of views R is the

set of all points in the 3D space which are classified as belonging to the object

for every view Vi ∈ R. Laurentini [78] proved that the boundary of the visual

hull ∂vh (M,R) is the best approximation of M that can be obtained using only

silhouette information coming from the projections of M in each view of R. Some

implications of this result follow:

• the visual hull always includes the original surface, i.e., M ⊆ vh (M,R), or

in other words, the visual hull is an upper-bound of the original object;
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Figure A.4: Computation of the visual hull as intersection of the visual cones

generated by V1 and V2.

• ∂vh (M,R) and M have the same projections in R, in other words for every

V ∈ R, we have:

V (M) = V (∂vh (M,R)) (A.17)

• If R1 ⊆ R2 then vh (M,R2) ⊆ vh (M,R1)

• vh (M,R) =
⋂
V ∈R vh (M, {V })

The last property suggests a method for computing the visual hull as the inter-

section of the visual cones vh (M, {V }) generated by M for every view V ∈ R

(see Fig. A.4). A visual cone vh (M, {V }) is formed by all the half-lines starting

from the center of projection of V and intersecting the projection of M on the

image plane of V .

All shape from silhouette methods are based on the above principle. They

can be classified by the way the visual hull is internally represented, namely by

voxels or by polyhedra. The former class, called “Volume Carving” algorithms

[121], was the first to be proposed. The idea behind it is to divide space into cubic

elements of various sizes, called voxels, in order to store volume information of the

reconstructed object. The latter class of algorithms, recently formulated in [95],

represents the boundary of the reconstructed visual hull by polygonal meshes.

They are proposed for real-time applications aimed at acquiring, transmitting

and rendering dynamic geometry. Indeed, polyhedral visual hull can be rapidly

computed and rendered using the projective texture mapping feature of modern
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Figure A.5: (a) Space subdivision by an octree. (b) Example of surface M for

which its external visual hull has genus lower than the genus of M . The visual

hull cannot completely describe the topology of this surface.

graphics cards [86]. Besides, polyhedral representations give exact estimations

of the visual hulls avoiding the quantization and the aliasing artifacts typical of

the voxel approach. However, voxel representations are preferred when the result

of shape from silhouette is used as first approximation to be refined by other

reconstruction algorithms such as shadow carving (see section A.3.3) and some

multimodal methods (see section A.4).

For this reason the remaining of this section focuses on the volume carving

algorithms. In this case, the 3D space is divided into voxels which can bear three

types of relationship with respect to the visual hull: “belong”, “partially belong”

or “not belong”. In order to verify such characteristics one must check if a voxel

completely belongs to every visual cone2. In this case the voxel belongs to the

visual hull of M . Otherwise, if the voxel is completely outside at least one visual

cone, then it does not belong to the visual hull. In any other case, the voxel

partially belongs and one must further subdivide it and repeat the check with

respect to its sub-voxels until the desired resolution is reached.

Data structures like octrees [43] allow for a fast space subdivision and reduce

the memory requirements. An octree is a tree where each internal node has 8

children. Every node j is associated with a cube B such that the set of the

cubes associated to each child of j is an equipartition of B. The root of the tree

represents the whole space under analysis, which is divided into 8 cubes of equal

size as shown in Fig. A.5(a). Each of these cubes can be again subdivided into 8

further cubes or alternatively be a leaf of the tree. The possibility of arbitrarily

stopping the subdivision is the key characteristic of octrees. In fact, octrees can

2Observe that, since voxels are cubes, one can determine whether all their points belong to
a visual cone only by checking the eight vertices of the cube.
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Figure A.6: Model obtained by volume carving algorithm.

optimize memory requirements since they allow to describe volumes by a multi-

resolution grid where detailed regions are described at resolutions higher than

those in uniform regions.

Finally, in order to find a polygonal mesh representation of the boundary of

the estimated volume, one may resort to the “marching cubes” algorithm [33].

Figure A.6 shows an example of a model obtained by a volume carving algorithm.

Let us observe that given the set of all possible views whose centers of projec-

tion are outside the convex hull of M , the relative visual hull, called vh∞ (M), is

in general not equal to M . In fact, vh∞ (M) cannot describe the concave regions

of M which are not visible from viewpoints outside the convex hull of M . As a

consequence, in general, the visual hull cannot completely capture the topology

of a surface. vh∞ (M) is called the external visual hull and it is a subset of the

convex hull of M . Figure A.5(b) shows an object for which its external visual

hull has genus lower than that of the original surface.

In conclusion, shape from silhouette algorithms are fast and robust but can

only reconstruct a small set of objects, i.e., those objects the visual hulls of which,

related to the available views, are similar to their surfaces.
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A.3.2 Shading

Shading information is used in both photometric stereo and shape from shading

algorithms. The former operates with a series of pictures of the object taken

under different lighting conditions. The latter instead, recovers the surface shape

from the brightness of a single picture.

Both methods rest on approximations of the reflectance characteristics of the

object to be reconstructed, that are the relationships between incoming illumi-

nation to a point on the surface and the light reflected by it. For this reason, it

may be useful to recall some radiometric definitions.

Light power is the amount of light energy per unit time, measured in Watt

[W ]. The outgoing radiance at surface point P in the direction ωo = (θo, φo)

(where θo and φo are the two angles defining direction ωo) is the light power per

unit area perpendicular to ωo emitted at P in the unit solid angle of direction ωo.

Such a radiance is denoted as Lo (P, ωo) where the subscript o denotes that it is an

outgoing radiance. It is measured in [W ][m]−2[sr]−1, where Steradian [sr] is the

unit of solid angle. On the other hand, the incoming radiance Li (P, ωi) at surface

point P in direction ωi = (θi, φi) is the incident light power at P per unit area

perpendicular to ωi in the unit solid angle of direction ωi. Note that, if the surface

normal at P forms an angle β with respect to direction ωi, the infinitesimal area

dA centered at P seen from the direction ωi is dA cos (β). Therefore, the incoming

light power per unit area contributed to P by the light sources through the

infinitesimal solid angle dω of direction ωi, is Li (P, ωi) cos (β) dω. This quantity is

called incident irradiance at surface point P in the direction ωi and it is measured

in [W ][m]−2.

The bidirectional reflectance distribution function (BRDF) was introduced in

[110] as a unified notation of reflectance in terms of incident and reflected beam

geometry. It is defined as the ratio between the outgoing radiance at surface

point P in the direction ωo and the incident irradiance at P in the direction ωi,

i.e.,

fr (P, ωo, ωi) =
Lo (P, ωo)

Li (P, ωi) cos (β) dω
(A.18)

and it is measured in [sr]−1.

The actual BRDF of an object is usually a very complex function and it is

difficult to estimate in practical situations, therefore a number of approximations

are used instead. For example, Lambertian (or ideal diffuse) surfaces, i.e., surfaces

that reflect light equally in all directions, lead to a strong simplification namely,
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they have a constant BRDF

fr (P, ωo, ωi) = ρ (P ) (A.19)

where ρ is called the albedo or the diffuse reflectance of the object. Models for

partially specular surfaces were developed by Torrance-Sparrow [153], Phong [116]

and Blinn [17]. The last two models are widely used in computer graphics.

The algorithms described in this section consider only Lambertian surfaces

and local shading models; thus, neither specularity nor interreflections are con-

sidered. However, state of the art of photometric stereo and shape from shad-

ing algorithms make use of more general BRDF models such as the simplified

Torrance-Sparrow model used in [61].

Some definitions used in both types of algorithms are in order. Let M be the

unknown surface in <3 and let I (x, y) be the image intensity seen by a view V .

If the surface point P ∈ M is visible from the viewpoint V then I (V (P )) is its

brightness. Clearly, I (V (P )) is proportional to the outgoing radiance leaving P

in direction of the center of projection of V . Therefore, for Lambertian objects

illuminated by a single point light source, one can write

Lo (P, ωo) = ρ (P )Li (P, ωi) cos (β) (A.20)

thus,

I (V (P )) = ρ (P ) l (P )L (P ) ·N (P ) (A.21)

where l (P ) and L (P ) are respectively, intensity and direction of the incident

light at P , ρ (P ) is the surface albedo at P and N (P ) is the surface normal.

Photometric stereo

Photometric stereo was first introduced in [163]. Given a set of calibrated images

(I1, V ) , . . . , (In, V ) taken from the same point of view V but under different

lightings L1, . . . , Ln, one can estimate surface normal N (P ) for every visible

point of M . Let

I (x, y) = [I1 (x, y) , . . . , In (x, y)] (A.22)

be the vector of all measured brightness at image point (x, y) = V (P ), for any

visible point P of M , and let

L (x, y) =

 l1 (P )L1 (P )
...

ln (P )Ln (P )

 (A.23)
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be the matrix of all light directions and intensities incident at P . From Eq. (A.21),

one may write

IT (x, y) = ρ (P ) L (x, y)×NT (P ) (A.24)

which is a linear system of n equations in the three unknowns ρ (P )N (P ) 3.

Eq. (A.24) has a unique solution when n > 3 and it can be solved using least

square methods.

Once the values of ρ (P )N (P ) are available for each visible point P , one can

extract the surface albedo and the normal at P using ρ (P ) = ‖ρ (P )N (P )‖
and N (P ) = ρ (P )N (P ) / ‖ρ (P )N (P )‖ respectively. Retrieving shape from

normals is trivial under the assumption that the view V performs an orthographic

projection. Indeed, let us represent M by a Monge patch description, i.e.,

M = {(x, y, z (x, y)) | ∀ (x, y)} (A.25)

where z (x, y) is the surface depth at (x, y). Consequently, the surface normal at

P = V −1 (x, y) = (x, y, z (x, y)) is

N (P ) =
(∂zx, ∂zy,−1)√
1 + ∂z2

x + ∂z2
y

(A.26)

where (∂zx, ∂zy) are the partial derivatives of z (x, y) with respect to x and y.

(∂zx, ∂zy) can be recovered from N (P ) = (Nx (P ) , Ny (P ) , Nz (P )) using the

following

(∂zx, ∂zy) (P ) =

(
−Nx (P )

Nz (P )
,−Ny (P )

Nz (P )

)
(A.27)

Surface M can be finally reconstructed by integrating a one-form:

z (x, y) = z (x0, y0) +

∫
γ

(∂zxdx+ ∂zydy) (A.28)

where γ is a planar curve starting at (x0, y0) and ending at (x, y). (x0, y0, z (x0, y0))

is a generic surface point of known height z (x0, y0). Clearly, if z (x0, y0) is un-

known, the result will be the actual surface up to some constant depth error.

Unfortunately, errors in surface normal measurements can propagate along

the curve γ generating unreliable solutions. For this reason, [155] suggests an

alternative height recovery method based on local information only. The more

general case where V performs a perspective projection is treated in [149].

3ρ (P )N (P ) has only three degrees of freedom because N (P ) is assumed to be normalized.
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Shape from shading

Shape from shading algorithm operates only on a single image I, therefore for

each image point (x, y) = V (P ), we have one equation in three unknowns

I (x, y) = ρ (P ) l (P )L (P ) ·N (P ) (A.29)

which cannot be solved without imposing additional constraints.

The first attempt to solve Eq. (A.29) was done by Horn in his PhD thesis [63].

Since then, many other solution approaches were developed typically classified

into: minimization approaches, propagation approaches, local approaches and

linear approaches. For an extensive description of all these methods the reader

is referred to [169].

In this chapter we only introduce the minimization approach suggested in [65].

Ikeuchi and Horn [65] reformulated the solution of Eq. (A.29) as the minimization

of a cost functional ξ defined as

ξ(M) = Bc (M) + λ · Sc (M) (A.30)

where Bc (M) is the brightness constraint and Sc (M) is the smoothness con-

straint. The former measures the the total brightness error of the reconstructed

image compared with the input image, namely

Bc (M) =

∫ ∫ (
I (x, y)− I (x, y)

)2
dxdy (A.31)

where I (x, y) is the input image and I (x, y) is the image related to the estimated

surface M .

Cost functional Sc (M) penalizes non-smooth surfaces, reducing the degrees of

freedom of Eq. (A.29). It is defined as

Sc (M) =

∫ ∫ (∥∥∥∥∂N∂x (x, y)

∥∥∥∥2

+

∥∥∥∥∂N∂y (x, y)

∥∥∥∥2
)
dxdy (A.32)

Constant λ controls surface smoothness.

In this formulation, ρ (P ) is assumed to be known for all P ∈M thus, one can

add another constraint which imposes normals to be unit. This is what Brooks

and Horn [20] did in 1985. The new term was named unit normal constraint and

it was defined as follows ∫ ∫ (
1− ‖N (x, y)‖2) dxdy (A.33)

The numerical solution is typical achieved using gradient descent algorithms

on the Euler-Lagrange equation related to Eq. (A.30) (see section A.4.1 for ad-

ditional information).
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Figure A.7: An example of the concave/convex ambiguity: it seems that this two

images represent two different objects, a concave and a convex one. Nevertheless,

the first image is a rotated version of the second one.

Estimating the light source properties

It can be proven that both photometric stereo and shape from shading become

ill-posed problems if light direction, intensity and surface albedo are unknown.

This means that a solution may not be unique and it strongly depends on these

three parameters4. The so-called concave/convex ambiguity, occurring when light

orientation is unknown, is a clear example of this ill-posed characteristic. The con-

cave/convex ambiguity refers to the fact that, the same image seems to describe

two different objects, one concave and the other convex as shown in Fig. A.7.

More generally, [14] showed that a surface (x, y, z (x, y)) is indistinguishable

from its “generalized bas-relief” (GBR) transformation, defined as

z (x, y) = λz (x, y) + µx+ νy (A.34)

if its albedo and the light properties are unknown. More precisely for all possible

values of λ, µ and ν there exists an albedo ρ (x, y) and a light L such that the

brightness image related to the depth map z is equal to the one related to z.

Moreover, Belhumeur et al. [14] showed that even if self-shadow information is

used in addition to shading, the two surfaces z and z remain indistinguishable.

Two interesting methods to estimate light direction are due to [74] and [157].

The former recovers the azimuthal angle of the light sources from a single image

using texture information. The limit of this approach is the assumption that

the textured surface has to be an isotropic gaussian random rough surface with

constant albedo.

Instead, [157] use the brightness values of the contour points of the imaged

4If we suppose Lambertian surfaces, ρ (P ) an l (P ) can be grouped together thus, we have
only three degrees of freedom.
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object in order to estimate light direction by equation Eq. (A.21). Indeed in such

points, surface normals can be retrieved knowing that they are perpendicular to

the viewing ray connecting these points to the center of projection of the camera.

A.3.3 Shadows

Scene shadows bear a lot of information about the shape of the existing objects.

They can give information when no other sources do, indeed shadow regions

represent the absence of any other type of information. Methods which exploit

this particular visual cue are called either “Shape form Shadows” or “Shape from

Darkness”. They first appear in [140] where shadows were used to relate the

orientations of two surfaces. Subsequent works on shadows generally used either

the shape of the object casting the shadow in order to constrain the shape of

the object being shadowed or vice versa. Indeed, one can infer the shape of

an unknown object from the shadows casted on it by a known one. This is

the same principle used in structured light projectors with the only difference

that the methods based on shadow information use shadow patterns instead of

light patterns. The interested reader is sent to [19] for the description of a low

cost scanner based on this principle. On the contrary, if an unknown object

casts shadows on a known one, for simplicity, let it be a plane, one can use an

appropriately modified shape from silhouette method in order to reconstruct its

shape. This approach is proposed in [81] in order to avoid segmentation problems

implicit in shape from silhouettes methods.

However, in general, shape from darkness methods deal only with the shadow

that an object casts on itself, the so-called self-shadow. In this case, both the

object that casts the shadow and the object being shadowed are unknown as they

are all parts of the same unknown surface. Nevertheless, self-shadow can reveal a

lot of information. Indeed, let us observe the situation depicted in Figure A.8(a)

where p1 is first shadow boundary points and p2 is the last one. Knowing their

coordinates, one can obtain an upper bound for the shadowed region, i.e., the line

η. In other words, a point in such a region cannot be above line η, otherwise it

would be a lighted point. Furthermore, all lighted points at the right of p1 must

be above η otherwise they would be shadowed. Thus, η is also a lower bound

for the lighted points. Obviously, same results can be obtained if one knows the

coordinates of the light source and the coordinates of one of the points p1 or p2.

Figure A.8(b) shows a situation similar to the previous one but, in this case,

it is assumed that the coordinates of p1 and p2 are unknown. Moreover, it is
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Figure A.8: Shadowed surfaces: (a) the coordinates of p1 and p2 are assumed to

be known; (b) α and w are known.

supposed that the camera performs an orthographic projection of the scene and

that the light source casts parallel rays of known direction α. This can be obtained

by placing both the camera and the light source far away from the scene. The

measured shadow width w can be used to estimate the relative height between

p1 and p2 using the following

∆h = w tan (α) (A.35)

Moreover, if one assumes that the unknown surface M admits a tangent plane in

p1, such a plane must be parallel to η.

¿From the above considerations, using multiple images taken with different

light source positions, one can estimate the unknown surface by constraining a

model (e.g. a spline) to fit all the extracted information about relative heights

and tangent planes (see [60]).

Furthermore, combining equations of type (A.35) together with the linear in-

equality constraints related to the various η, one can obtain a set of upper/lower

bounds and equations which can be solved by Linear Programming algorithms as

in [167] or by iterative relaxation methods like in [38].

[145] introduced the concept of shadowgram. Let us suppose the situation

depicted in Fig. A.9(a) where θ is the angle between the x-axis and the light rays.

A shadowgram is a binary function f (x, θ) recording, for each value of θ, a 0

(black) value at the x coordinates of the shadow points and a 1 (white) value

at the x coordinates of the lighted points. Therefore, a shadowgram typically

looks like two irregular black stripes of variable thickness. Smith and Kender
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[145] demonstrate that the real surface can be reconstructed from the curves

representing the discontinuities of the shadowgram f (x, θ), i.e., the edges of the

dark stripes.

The definition of self-shadow consistency follows. Let us assume first that the

scene is only illuminated by a point light source positioned at `. Given an object

M , the self-shadow generated on M by the light ` is the set of all the points on

its surface not visible from `. Let Θ (M, `) denote this set. In other words, a

generic point P belongs to Θ (M, `) if and only if the segment joining P and `

intersects M in at least one point different from P . Therefore, given a calibrated

image (I, V ), the shadow region generated by ` on M and viewed by V is the set

of the V -projections of all the points of Θ (M, `) visible from V . Let Ω (M, `, V )

denotes this set; then, formally it is

Ω (M, `, V ) = V (Θ (M, `) ∩ Π (M,V )) (A.36)

where Π (M,V ) is the set of all the points of M visible from V . Now, given the

image I and the estimated shadow regions on I, call them ω (I), one can say

that M is self-shadow consistent with image I if and only if ω (I) ⊆ Ω (M, `, V ).

In other words, it is consistent if V does not see shadow points which are not

theoretically generated by M . The contrary is not required, since, as we will

describe below in this section, in practical situations, only subsets of ω (I) can

be accurately estimated. In this way, the consistent condition is relaxed making

consistent surfaces which are not. However, for correctness, one could also esti-

mate ω (I), i.e. the complement of ω (I), and define that consistency holds when

also ω (I) ⊆ Ω (M, `, V ) holds. Extension to multiple lights is trivial; since, given

the set of active lights (`1, . . . , `k) one can define

Ω (M,L, V ) =
⋃
∀`j

Ω (M, `j, V ) (A.37)

Besides, consistency for multiple views holds if only if it holds for each singular

view. Finally, given an unknown surface Λ and a set of images taken under

different lighting conditions, one can build the maximal surface5 consistent with

the extracted shadow information. Let Ψ (Λ) denotes this surface, then it is

obvious that it contains the actual surface Λ, since Λ is consistent with shadow

information.

5A maximal surface for a property Q is the surface which satisfied Q and contains every
other surfaces that satisfied Q. In order to avoid degeneration, the maximal surface is typically
upper bounded.
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Figure A.9: (a) Surface to be reconstructed using the shadowgram technique. (b)

Conservative shadow carving.

In [133] a carving approach is proposed to the problem of finding Ψ (Λ). The

algorithm, called “Shadow Carving”, computes first a coarse estimate of the sur-

face using volume carving then it incrementally carves the model removing in-

consistencies with self-shadow information. It is known, from section A.3.1 that

volume carving computes a volume which certainly contains the original object.

The subsequent carving based on shadow cue is performed in a conservative way,

i.e., in such a way that the carved model will always contain the actual surface

Λ.

Given the situation shown in Fig. A.9(b) where Λ is the actual surface and

M is its current estimates. Let (I, V ) be a calibrated image, c the center of

projection of V and ω (I) the shadow region on I generated by the light source

`. Let us call inconsistent shadow region s, the set of all surface points which

are visible from both c and ` and such that they project in ω (I). Savarese et al.

[133] proved that the cross-hatched area in Fig. A.9(b) can be removed from M

in a conservative way, i.e., obtaining a new estimate that still contains the actual

surface Λ.

The major problem of all these algorithms is how to decide whether a surface

point P lies on a shadow region or not. This is not a trivial task since it is difficult

to distinguish low reflectance points from points in actual shadow regions. The

camera only measures radiance coming from some point of the scene. Thus,

low radiance measured in a particular direction can be due to a low reflectance

(dark textured) point as well as to insufficient illumination. Moreover, insufficient

illumination may be due to light sources too far from the object or to an actual

shadow region. In the latter case, one must ensure that the shadow is generated

by the object itself and not by other objects in the scene. Using only a single
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image, there is no way to distinguish between these four cases. Furthermore, even

if a shadow region is detected, it difficult to accurately extract its boundaries,

because shadows, in general, vanish gradually on the surface. Unfortunately,

shadow detection plays an important role in reconstruction since small errors can

lead to a totally incorrect reconstruction.

Savarese et al. [132] propose a conservative shadow detection method, i.e., a

technique which classifies a point as shadow only when it is certain that it is a

shadow. The inverse condition is not required so that there can be shadow points

classified as non-shadow. Obviously, the more shadow points are detected the

more accurate is the reconstruction result. First of all, one must fix a threshold

δ which separates light points from dark points. A point P of the surface is “de-

tectable” if and only if in at least one picture it appears lighter than δ, otherwise

it is “undetectable”. This provision ensures that P is not a low reflectance point,

but unfortunately, it excludes many points not lighted by the actual light sources.

For every image, a point is a shadow point if and only if it is “detectable” and it

is darker than the threshold δ.

It is finally worth observing that, like shading information, also shadow is

subject to the rules of the GBR [76]. Therefore, even if the exact position of the

light source is not known, one can reconstruct the observed surface up to a GBR

transformation.

A.3.4 Focus/Defocus

There are two techniques to infer depth from a set of defocused images, called

“Shape from Focus” (SfF) and “Shape from Defocus” (SfD). The first one, SfF, ac-

quires a large number of images with small focal settings differences. On the other

hand, the second one, SfD, needs only few differently focused images, typically

two or three, in order to estimate depth information. In both cases, defocused

images are obtained by varying settings like the camera or the lens focal length,

the aperture radius or the distance between the object to be acquired and the

camera. Afterwards, depth is estimated by comparing the blurriness of different

regions in the acquired images.

Both methods are based on the assumption that a defocused image is obtained

by convolving the focused one with a kernel hsφ, called point spread function

(PSF), that depends on the camera optic φ as well as on the scene shape s.

Such an assumption comes from the observation that, since pinhole cameras with

an infinitesimal aperture are not feasible, each point of the image plane is not
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Figure A.10: Camera with lens: all the light rays coming from a point P in the

focal plane are projected into a single point p in the image plane.

illuminated by a single light ray but by a cone of light rays subtending a finite

solid angle. Consequently, these points appear blurry. This effect can be reduced

by a proper use of lenses. Indeed, it is well known that in this case, there exists

a plane Π, called the focal plane, parallel to the retinal plane, the points of which

are all in focus, or in other words, each point of Π projects into a single point of

the image plane. The situation is shown in Figure A.10, where z is the distance

between Π and the center of the lens (the equivalent of the center of projection),

fL is the focal length of the lens and f is the camera focal length defined in

section A.2. These quantities are related by the thin lens equation

1

z
+

1

f
=

1

fL
(A.38)

Figure A.10 shows that all light rays coming from a point P in the focal plane

are projected into a single point p in the image plane. Consequently, an object

is perfectly imaged only if it lies exactly on Π, otherwise, it appears blurred. As

shown in Fig. A.11, all the rays coming from a point P ′′ outside the focal plane

are projected to a circular region Θ on the image plane.

The image of P ′′ can be modeled as the integral of the ideal image, where

P ′′ is correctly imaged, weighted by a function (the PSF) which generates the

blur effect. Therefore, the relationship between the actual image I and the ideal

image where all the scene points are correctly imaged I is given by

I (p) =

∫
hsφ (p, q) I (q) dq (A.39)

If the surface to be acquired is parallel to the focal plane then the PSF can be

assumed to be shift invariant, i.e., hsφ (p, q) = hsφ (p− q) and Eq. (A.39) can be
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Figure A.11: All the light rays coming from a point P ′′ outside the focal plane

are projected to a circular region Θ on the image plane.

rewritten as a convolution

I (p) =

∫
hsφ (p− q) I (q) dq =

(
hsφ ∗ I

)
(p) (A.40)

As a first approximation, the blur intensity depends on the radius r of Θ, also

known as the blurring radius, which is proportional to the distance δ between

the actual image plane and an ideal one where P would be correctly imaged (see

Fig. A.11). More precisely,

r =
δR

f
(A.41)

where R is the radius of the lens.

As mentioned above, both SfF and SfD estimate depth from Eq. (A.40).

Namely, SfF identifies the regions of the input images where hsφ has not been

applied, i.e., the in-focus regions. Since hsφ is a low pass filter, a defocused region

appears poor of high spatial frequency. Furthermore, if the surface to be acquired

has high spatial frequency content, i.e., for instance it is a rough surface, a fo-

cused region can be recognized by analyzing its local Fourier transform.

The typical approach is to filter each input image I with a high pass FIR with

impulse response ω and to evaluate the level of blur v (p) of each point p as

v (p) =

∫
Aε(p)

(
ω ∗ I

)
(q) dq (A.42)

where Aε (p) is a neighborhood of p. Once these values are computed for a set of

images
(
I1, . . . , In

)
, shape can be inferred by the following algorithm:

• Let vi (p) be the level of blur of the point p of image Ii

• Let zi be the depth of the focus plane related to Ii
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• For each point p, find j such that j = arg max {vj (p)} (i.e., find the image

Ij with the sharpest representation of p)

• assign to p depth zj

For a more precise reconstruction using gaussian interpolation the reader is

referred to [108].

SfD methods instead, try to invert directly Eq. (A.40). The difficulty lies in

the fact that neither hsφ nor I are known. Thus, blind deconvolution techniques

are used in this task. Given a set of blurred images
(
I1, . . . , In

)
, from Eq. (A.40),

one can write

I1 = hsφ1
∗ I

...

In = hsφn ∗ I (A.43)

where φi is the optical setting used for image Ii. Many strategies were devel-

oped to solve the above ill-posed problem. Classical approaches can be found in

[27]. Effective variational and optimization approaches are due to [68] and [48]

respectively. In particular, in [49] shape is estimated by inferring the diffusion

coefficient of a heat equation.

These methods are widely used in optical microscopy because microscopes

have narrow depth of field; therefore, it is easy to obtain pictures containing both

blurry and sharp regions.

A.3.5 Picture differences: stereo methods

Algorithms which exploit the differences between two or more pictures of a scene

are called “stereo-matching algorithms” [93]. They are based on the same process

used by human vision system to perceive depth, called stereopsis. For this reason,

this particular depth cue is typically called stereo information.

In stereo methods, 3D reconstruction is accomplished in two main steps, the

first addressing the so-called correspondences (or matching) problem and the

second addressing the so-called reconstruction problem. The former recognizes

if two or more points belonging to different images are the projection of the

same point P of the 3D scene. The latter uses these correspondences in order to

estimate the exact position of P in the 3D space.

Reconstruction task is achieved by triangulation. For example, let p1 and p2 be

a pair of matched points in two different images I1 and I2 respectively. Thus, the
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Figure A.12: From a pair of matched points p1 and p2, the 3D coordinates of

point P can be computed by triangulation.

real point P which they refer to, belongs to both the optical rays r1 and r2 related

to p1 and p2 respectively. The situation is schematically depicted in Fig. A.12.

Therefore, P must lie at the intersection of r1 and r2. In practice, r1 and r2 may

not intersect due to a imperfect camera calibration or to image discretization

errors. The associated depth estimation problem in projective geometry is a linear

overconstrained system with three unknowns and four independent equations

which can be solved by least squared methods. Details can be found in any

computer vision book, for instance in [59].

Stereo methods were widely used in many applications; hence, various ver-

sions of these algorithms were developed in order to cope with different types of

practical challenges. Recent comparisons of existing stereo matching techniques

can be found in [134] and in [138]. A classification of these techniques is not easy

because of the number of characteristics to take into account. In the following,

stereo methods will be presented according to a basic taxonomy distinguishing

them with respect to baselines lengths, number of input images and type of corre-

spondences used. A baseline is a segment connecting the centers of projection of a

pair of cameras. Stereo methods which operate with long baselines are called wide

baseline stereo methods, otherwise they are called small baseline stereo methods.

Matching problem is different in these two situations. For example, perspective

deformations effects can be ignored in the small baseline case but not in the wide

baselines case.

Algorithms which use two, three and n > 3 images as input are called respec-

tively binocular stereo, trifocal stereo and multi-view stereo. The use of multiple

cameras simplifies the reconstruction task reducing errors in the 3D coordinates

estimation; moreover, in many situations it eliminates matching ambiguities. In

fact, one can use a third camera to check if an hypothetical match is correct or
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not.

Binocular stereo stores matching information in a map, called disparity map,

which associates each pixel of the first input image with the matched pixel of the

second input image as follows

p2 = p1 + d (p1) (A.44)

where p1 and p2 are the coordinates of the two matched pixels and d is the

disparity map.

In a multi-view stereo algorithm the matching and reconstruction tasks are

mixed together. Therefore, a disparity map is typically replaced by a complex

internal scene representation, such as, a volumetric or a level-sets [47] representa-

tion. In particular, using a volumetric representation, reconstruction is achieved

by techniques like voxel coloring [137], space carving [77] and max-flow [130, 158].

Space carving applies the above mentioned carving paradigm. In this case, voxels

are carved out if they do not project consistently into the set of input images.

Therefore, starting from an initial estimate of the surface which includes the

actual one, the algorithm finds the maximal surface, called Photo Hull, photo-

consistent with all the input images. Instead, voxel coloring operates in a single

pass through the entire volume of the scene, computing for each voxel a likelihood

ratio used to determine whether this voxel belongs to the scene or not.

With respect to the type of correspondences used, an important family of

algorithms, called features based stereo (FBS), concerns the methods which use

image features as stereo information. A feature is a high level data structure that

captures some information locally stored in an image. The most used features

are edges and corners, but in the literature one can find many other higher order

primitives such as regions [34] or topological fingerprints [50]. It is important

to note that a feature in the image space does not always correspond to a real

feature in the 3D scene.

Restricting matching problem to a small set of a priori fixed features has two

big advantages. First of all, features are not affected by photometric varia-

tions because they are simple geometrical primitives. Furthermore, since the

correspondence search space is highly reduced, the matching task is speeded up.

Unfortunately, any feature space gives a discrete description of the scene; thus,

reconstruction results in a sparse set of 3D points.

Methods which perform matching between two or more points comparing

the regions around them are called area based stereo (ABS) methods. These

techniques are based on the assumption that given two or more views of the same
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scene, the image regions surrounding corresponding points look similar. This can

be justified by the fact that since corresponding points are the projection of the

same point P , their surrounding regions are the projection of the same piece of

surface around point P . Therefore, what ABS methods do is to perform matching

using only the local reflectance properties of the objects to be acquired.

A formal explanation requires some definitions. Let P be a point of surface

M and denote by Aε (P ) ⊂ M the surface neighborhood of P with radius ε. Let

(I1, V1) and (I2, V2) be two calibrated images, assume that P is visible on both

images and let (p1, p2) = (V1 (P ) , V2 (P )) be a valid correspondence. Therefore,

V1 (Aε (P )) and V2 (Aε (P )) are the projection of Aε (P ) on the image space of I1

and I2 respectively. Suppose that the cameras are placed in such a way that the

shapes of the image regions V1 (Aε (P )) and V2 (Aε (P )) look similar, i.e., they are

subject to a limited projective distortion. This can be achieved by a pair of par-

allel cameras with equal up-vectors (see section A.2) and small baseline/depth

ratio. In other words, the surface to be acquired has to be far away from the

point of views or/and the camera baseline has to be small. Assume that surface

M , in Aε (P ), behaves as a pure Lambertian surface. Therefore, the radiance

leaving Aε (P ) is independent of the viewpoint. Consequently, the image inten-

sities acquired by the viewpoints V1 and V2 in V1 (Aε (P )) and V2 (Aε (P )) must

be equal, up to different camera optical settings (such as focusing, exposure or

white balance). More formally, let

n1 (p1) = I1|V1(Aε(P ))

n2 (p2) = I2|V2(Aε(P )) (A.45)

be the image intensities around the corresponding points p1 and p2, i.e., the

restrictions of the images I1 and I2 to respectively V1 (Aε (P )) and V2 (Aε (P )).

Since V1 (Aε (P )) and V2 (Aε (P )) can be supposed to be equal, images n1 (p1) and

n2 (p2) are defined in the same domain up to different discretization of the image

space. Therefore, one can make a one to one intensities comparison between

n1 (p1) and n2 (p2) using simple similarity measures such as for example, Sum

of Squared Differences (SSD), Sum of Absolute Differences (SAD) or Intensity

Correlation Distance (ICD), respectively defined as:

SSD (p1, p2) = ‖n1 (p1)− n2 (p2)‖2

SAD (p1, p2) = ‖n1 (p1)− n2 (p2)‖1 (A.46)

ICD (p1, p2) = 〈n1 (p1) , n2 (p2)〉

where ‖·‖1, ‖·‖2 and 〈·, ·〉 are respectively the one-norm, the two-norm and the

dot-product in function space. In order to make the above measures invariant to
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Figure A.13: Left and right images of a stereo pair: ` is the epipolar line asso-

ciated to p1.

camera settings such as white balance and exposure, n1 (p1) and n2 (p2) should

be replaced by their normalized versions n1 (p1) and n2 (p2), where

n (p) =
n (p)− µ

σ
(A.47)

with µ the sample mean of n (p) and σ2 its sample variance.

If the above assumptions were satisfied, one could choose an arbitrary shape

for image region V1 (Aε (P )) and V2 (Aε (P )) and compare them by one of the

“metrics”of Eq. (A.46). Usually, square or rectangular shaped windows are pre-

ferred since they simplify the computation. Window size plays a crucial role

in matching problem. Indeed, small windows are unable to solve matching am-

biguities, while large windows make no longer valid the assumption of limited

perspective distortion.

In synthesis, given a metric D (·, ·), the matching problem is reduced to finding

all correspondences (p1, p2) such that D (p1, p2) is less than a given threshold.

Matching task is time expensive since it has to compare each pixel of each image

with all the pixels of the other images. However, the knowledge of the calibration

parameters can help to restrict the correspondence search space. Indeed, given

a scene point P and its projection p1 on the image I1, then P certainly belongs

to the optical ray r1 related to p1 as depicted in Fig. A.12. Ray r1 starts from

the center of projection c1 of the image I1 and passes through p1 in the image

plane of I1. Therefore, if p2 is the projection of P on the second image I2, then

p2 must belong to the projection of ray r1 on I2, i.e., it must belong to the half-

line ` = V2 (r1) called the epipolar line associated to p1 (see Fig. A.13). As a

consequence, the correspondence search space related to point p1 is reduced from

a two-dimensional search domain to a one-dimensional one.

In order to improve speed in binocular stereo one may replace the two input
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images I1 and I2 with their rectified versions, i.e., the two equivalent pictures

obtained with cameras positioned in such a way to have a common image plane

parallel to the baseline and equal up-vectors. Such a process, known as rectifica-

tion, is achieved by projecting the original images I1 and I2 into the new image

plane. For a comprehensive tutorial on image rectification the reader is referred

to [55]. The main characteristic of a rectified image is that its epipolar lines are

either all horizontal or all vertical, thus, the search for the correspondences can

be performed only along rows or columns. In this case, disparity in Eq. (A.44)

can be rewritten as

x2 = x1 + d (x1, y1) , y2 = y1 (A.48)

where p1 = (x1, y1) and p2 = (x2, y2). Consequently, the matching problem is

reduced to the following maximization problem

d (x1, y1) = −x1 + arg max {D((x1, y1) , (x2, y1)) | ∀x2 ∈ [1, NX ]} (A.49)

where D (·, ·) is a generic similarity metric and NX is the image width.

Sometimes rectification is used also in multi-view stereo systems with appropriate

adjustments.

The physics of the image formation process imposes that each image point has

at most one corresponding point in each other image. Therefore, an ambiguity

occurs when the solution of the maximization Problem (A.49) is not unique.

Such an ambiguity can be solved by adding constraints to the problem, such as

surface continuity, disparity bounds or disparity ordering constraint which the

scene to be acquired may respect or not. The first type of constraints is obvious

while the second says that d (x1, y1) must be less than a given threshold for all

possible values of (x1, y1). The third imposes that the ordering along the epipolar

lines must be preserved. This last one allows one to use dynamic programming

approaches to the matching problem as in [97].

Computation can be further speeded up if it is organized in a pyramidal struc-

ture. In this case, each image is partitioned into different resolution layers (e.g.

a Gaussian or a Laplacian pyramid) and the 3D reconstruction is performed at

each resolution. At the first iteration, the algorithm runs at the lowest resolution

layer creating a first coarse estimate of the surface. At the subsequent stages, the

correspondence search interval is restricted using information extracted at the

previous layer so that the search is considerably simplified. A detailed account

of this method can be found in [98].

Unfortunately, the pure Lambertian assumption for the surface reflectance is

too strict for general purpose, indeed objects with constant BRDF are rather rare

154



A.4. MULTIMODAL METHODS

while surfaces with some kind of specularity are much more common. Therefore,

since the radiance reflected by a surface point P changes as a function of the

point of view, image intensities n1 (p1) and n2 (p2) can be quite different. A

typical example is the highlight on a specular surface which moves as the point of

view moves. In order to face this problem, one can estimate the object radiance

together with its shape as in [69]. Another solution is proposed in [168] which

describes a similarity measure invariant with respect to the specularity effects.

Another difficulty in the matching task is due to the fact that it is not always

possible to have V1 (Aε (P )) and V2 (Aε (P )) within limited projective distortions.

Indeed, in general, they are only related by a projective transformation; thus,

their shapes can differ in scale, orientation and so on. Sometimes rectification

may help to reduce projective distortions. Several techniques were developed to

avoid this problem. It is worth recalling the level set method proposed in [47]

which uses the current geometry estimate to infer shape and size of the matching

windows V1 (Aε (P )) and V2 (Aε (P )). This method iteratively refines the model

geometry and performs the match with the estimated windows.

A.4 Multimodal methods

As previously mentioned, multimodal methods reconstruct the shape of an ob-

ject from more than just one type of information. Since some methods work

well in some situations but fail in others, the basic idea of multimodal methods

is to integrate information not supplied by one method with that provided by

the others. These methods hold the promise of reconstructing a wide range of

objects, avoiding the restrictions characterizing individual monomodal methods.

Furthermore, the possibility of measuring the same information in different ways

allows us to reduce errors typical of specific methods. In short, the characteristics

that make these methods superior to monomodal methods, are their robustness

and the possibility of acquiring wider ranges of objects.

Unfortunately, the use of more types of information increases algorithmic and

time complexity. Indeed, multimodal methods often need a computationally ex-

pensive final stage that fuses together all the data extracted and processed in the

previous stages. In the literature there exist several ways to combine these data

and the specific algorithms depend on the type of data to be fused. For example,

[159] proposes a method that combines silhouette and shading information. In
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particular silhouettes are employed to recover camera motion and to construct

the visual hull. This is then used to recover the light source position and finally,

the surface is estimated by a photometric stereo algorithm. In [161] a method

is described that combines texture and shading cues. More precisely, this lat-

ter information is used to solve surface estimation ambiguities of the shape from

texture algorithm.

However, most techniques combine multiple cues by classical paradigms like

carving or optimization. In particular, as we mentioned before, the carving ap-

proach leads to a maximal surface consistent with all the extracted information

and certainly including the actual surface. The idea behind multimodal meth-

ods based on carving, is to carve all voxels inconsistent with at least one type

of information. “Shadow carving” and “Space carving” are examples of this ap-

proach combining respectively shadow and silhouette information and stereo and

silhouette information.

On the other hand, the optimization paradigm minimizes a cost functional

that takes into account of all the various types of information, delivering as solu-

tion a surface fitting the extracted data as much as possible. More formally:

Problem 2 Given Ω the set of all closed surfaces in <3, i.e., the set of all the

possible surfaces that can be reconstructed, and (α1, α2, . . . , αj) a j-tuple, where

αi is information of type i extracted from the input images, the multimodal fusion

problem consists in finding M such that

M = arg min {ξ(M) | ∀M ∈ Ω} (A.50)

where ξ : Ω→ < is the cost functional

ξ (M) = κint · ξint (M) +
∑
i

κi · ξi (M,αi) (A.51)

with ξint a cost functional that penalizes non-smooth surfaces and ξi (·, αi) func-

tionals that penalize surfaces inconsistent with information αi; κint and κ1, . . . , κj

are constants a priori fixed.

Consequently, the solution surface M will be as smooth as possible and con-

sistent with as many data as possible. Constants κint and κ1, . . . , κj balance the

impact of the various types of information and the smoothness requirement.

Typically ξint is related to the mean or to the Gaussian curvature of the

surface. For example, it can be defined as

ξint =

∫
M

κds (A.52)
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Figure A.14: In order to evaluate Eq. (A.53), one must measure the distance

between Σ and each infinitesimal part of the surface.

where κ is the mean curvature.

Functionals ξi (·, αi) instead, depend on the type of information to which they

are related. The literature reports many of such functionals accounting for a

great variety of visual cues. An interesting functional which penalizes surfaces

far from a generic cloud of points Σ is defined as

ξcloud (M) =

(∫
M

dΣ(P )kds

) 1
k

(A.53)

where dΣ(P ) is the minimum distance between point P ∈ M and the points of

set Σ (see Fig. A.14). Therefore, Eq. (A.53) can be used as one of the ξi, in order

to penalize surfaces inconsistent with information extracted, for example, by the

stereo-matching algorithm.

Let us observe that Eq. (A.53) accounts for the contribution dΣ(P ) of the

distance between each P ∈M and Σ. Therefore, a surface through empty regions

of Σ is bound to have a high value of ξcloud. Consequently, the solution will be a

surface that avoids those regions. This is not always desirable because the empty

regions of Σ may be due to actual holes in the object or to failures of the stereo

matching algorithm (e.g. in case of dark or poor texture areas).

Several works in the literature address the multimodal fusion problem by

an optimization approach. [162] uses both shading and shadow information to

reconstruct the lunar surface. [54] fuses together stereo and shading. [58] uses

stereo and focus information. [46, 94, 143] fuse stereo and silhouette. [9] combines

silhouette, stereo and shadow information.

Problem (2) can be solved in several ways, but, the current trends are the max-

flow/min-cut and the deformable models techniques. Max-flow/min-cut tech-

niques transform the fusion problem into a graph problem where the optimal

surface is obtained as the minimum cut solution of a weighted graph. For a

recent account see [143]. Instead, deformable models techniques [70, 113] solve
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Problem (2) by a gradient descent algorithm on the Euler-Lagrange equation

obtained from functional ξ as described in the next section.

A.4.1 Deformable models

A deformable model is a manifold deforming itself under forces of various nature.

Typically, but not always, these forces make the surface minimize an a priori fixed

functional. These forces are classified as internals or externals. The former are

generated by the model itself and usually have an elastic nature while the latter

depend on the specific problem to solve.

Deformable models appeared for the first time in [70] within the definition of

snake or active contour. A snake is a parametric curve x(s) in the two-dimensional

image space that deforms itself maintaining its smoothness and converging to the

boundary of a represented object in the image. It is associated to a functional

similar to the one of Eq. (A.51) with

ξint (x) =
1

2

∫ 1

0

[
α |x′ (s)|2 + β |x′′ (s)|2

]
ds (A.54)

ξ1 (x) = −
∫ 1

0

|5[Gσ ∗ I](x(s))|2 ds (A.55)

where I (x, y) is the image intensity function and Gσ (x, y) the zero mean bi-

dimensional gaussian function with standard deviation σ. Note that, in this case,

the manifold M of Eq. (A.51) is replaced by the snake, x (s), which is a specific

parameterization of M .

Since their introduction, deformable models were used in many computer

vision tasks, such as: edge-detection, shape modeling [150, 96], segmentation

[85, 45] and motion tracking [85, 151]. Actually, in the literature there exist two

types of deformable models: the parametric (or classical) one [70, 150, 35] and

the geometric one [23, 24, 113]. The former are the direct evolution of snakes,

while the latter are characterized by the fact that their surface evolution only

depends on the geometrical properties of the model.

Geometrical framework is based on the level set methods. In this case, the

model M is a surface in <3, for which there exists a regular function ψ : <3 → <
and a constant c ∈ < such that

M =
{
x ∈ <3 | ψ (x) = c

}
= LevelSetψ(c) (A.56)

In other words, M is the section of level c of a function <3 → < (see Fig. A.15).

Besides, the forces are applied to ψ and not directly to M and only when conver-

158



A.4. MULTIMODAL METHODS

Figure A.15: Left: representation of LevelSetψ(c) where ψ : <2 → <. Right: the

result of the operation.

gence is reached, M is computed. Thus, both ψ and M evolve over time according

to the partial differential equation{
ψ (0) = ψ0
∂ψ
∂t

(t) = F (ψ (t))
(A.57)

where ψ (t) is the function ψ at time t, ψ0 is its initial state and F (ψ (t)) is

the force applied to ψ at time t. Hence, since this method operates only on ψ,

surface M can dynamically change its topology. Roughly speaking, M can change

its number of holes. For example, the reader could imagine to move upwards and

downwards the plane of Figure A.15, as the plane moves one obtains sections of

ψ with a different number of connected components. Dynamic topology is the

key feature that makes the geometrical framework a more powerful tool than the

parametric one. The interested reader is sent to [114] for further details.

The remainder of this section is focused on classical deformable model tech-

niques. In this case, in order to solve the minimum problem researchers propose

a standard variational approach based on the use of a gradient descent on the

Euler-Lagrange equation obtained from functional ξ, which we explain by way of

the following example.

Let s be a specific parameterization of M , i.e., s is a function from an open subset

A ⊂ <2 to <3, and consider the functional

ξ (s) = κint · ξint + κcloud ·
∫

A

dΣ(s (u, v))dudv (A.58)

where dΣ is the same as in Eq. (A.53) and

ξint =

∫
A

∥∥∥∥∂s∂u
∥∥∥∥2

+

∥∥∥∥∂s∂v
∥∥∥∥2

dudv+

∫
A

∥∥∥∥∂2s

∂u2

∥∥∥∥2

+

∥∥∥∥∂2s

∂v2

∥∥∥∥2

+2

∥∥∥∥ ∂2s

∂v∂u

∥∥∥∥2

dudv (A.59)

where the first term penalizes non-isometric parameterizations of M and the

159



APPENDIX A. 3D CONTENT CREATION BY PASSIVE OPTICAL
METHODS

second term is equal to the total curvature of M if s is an isometry, thus penalizing

non-smooth surfaces.

The related Euler-Lagrange equation [52] is:

−∇2s (u, v) +∇4s (u, v)− Fcloud (s (u, v)) = 0 (A.60)

where∇2s, ∇4s are respectively the laplacian and the bi-laplacian of s and Fcloud :

<3 → <3 is a field that associates to each point P in the space a unit vector

pointing to the point of Σ nearest to P .

The problem of finding M which minimizes ξ has been turned into the problem

of finding s, a parameterization of M , which satisfies Eq. (A.60). Therefore,

the solution can be computed by a gradient descent algorithm on the following

problem

arg min
{∥∥−∇2s (u, v) +∇4s (u, v)− Fcloud (s (u, v))

∥∥ ,∀s} (A.61)

Consequently, this algorithm can be interpreted as the deformation of a paramet-

ric surface s subject to two forces defined as follows

Fint = ∇2s−∇4s (A.62)

Fext = Fcloud (A.63)

Let s (t) be the model s at time t, therefore the evolution is described by the

following partial differential equation{
s (0) = s0

∂s
∂t

(t) = β · (Fint + Fext)
(A.64)

where s0 is the initial surface and β determines the evolution speed. In order to

find a numerical solution of Eq. (A.64), one can use forward Euler and apply the

forces to all the vertices of the mesh. The discrete versions of ∇2 and ∇4 on a

triangular mesh can be computed using the umbrella ∆̃ and the squared umbrella

∆̃2 operators respectively [46].

The advantages and the drawbacks of geometric and parametric deformable

models can be summarized as follows. Geometric models have dynamic topology

but are not easy to control. Their computation is typically slower than that of

parametric models. On the other hand, parametric models have a fixed topology

and suffer local minima problems in proximity of concavities. Their computation

is faster and by a suitable parameters choice one can also control the parametric

characteristics of the final mesh.
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A.4.2 Application examples

Multimodal methods, in principle, can use any combination of the visual cues pre-

viously seen. Clearly, some combinations can be more effective and manageable

than others. This section reviews two multimodal techniques recently proposed

in the literature.

A method that combines silhouette and stereo information using classical

deformable models is described in [94, 46]. A first estimate s0 of M is found by

volume carving. Starting from s0, the model evolves subject to three types of

forces:
∂s

∂t
(t) = β · (Fint + Fstereo + Fsil) (A.65)

where Fint is defined as above, Fstereo enforces stereo consistency and Fsil silhou-

ette information.

In order to avoid local minima problems, [46] defines Fstereo as the gradient

vector flow (GVF) [165] of Σ, that is a vector field solution of a diffusion equation.

Let P1, . . . , Pm be the projections (silhouettes) of the real surface Λ viewed by

V1, . . . , Vm respectively and M be the mesh that currently approximates Λ. Let

v be a vertex of mesh M , Fsil (v) in [46] is defined as

Fsil (v) = α (v) · dvh (v) ·N (v) (A.66)

where N (v) is the surface normal in v, dvh is the signed distance between the

visual hull and the projection of vertex v, defined as

dvh (v) = min
j
d (Vj (v) , Pj) (A.67)

where d (Vj (v) , Pj) is the signed distance between Vj (v) and Pj, i.e., it is positive

if v belongs to the visual hull and negative otherwise. α (v) is defined as

α (v) =

{
1 if dvh (v) ≤ 0
1

(1+d(Vc(v),Vc(M)))k
if dvh (v) > 0

(A.68)

where c = arg minj d (Vj (v) , Pj) and Vc (M) is the projection of M viewed by

Vc. This means that if v is outside the visual hull, Fsil (v) is equal to dvh (v) ·
N (v). Instead, if v is inside the visual hull, α (v) controls the transition of

v from a contour point where d (Vc (v) , Vc (M)) = 0 to a concave point where

d (Vc (v) , Vc (M)) > 0. In this way, Fsil reduces its intensity as much as v is

inside the visual hull and parameter k controls the decreasing factor. Figure A.16

exemplifies the situation.
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Figure A.16: Distances involved in Fsil computation.

As we can see in Figure A.17(a) and in Fig. A.17(b), silhouette information

cannot describe model concavities which cannot be seen from the acquisition

viewpoints, while stereo based methods fail in low variance regions and con-

tours. Silhouette and stereo fusion Fig. A.17(c) makes a better reconstruction of

the original surface correcting errors and integrating information missing in each

monomodal reconstruction. The final mesh turns out to be smooth and rather

uniformly sampled.

An algorithm which combines stereo, silhouette and shadow information using

the deformable model framework is proposed in [9]. In particular Fshadow, i.e.,

the force related to shadow information, is defined in a way that minimizes the

inconsistency with shadow information. In fact, like in the carving approach, the

inconsistent surface portions (for example, portion s in Figure A.9(b)) are pushed

inside the surface. More formally,

Fshadow (v) = −i (v) ·N (v) (A.69)

where N (v) is the outer normal to the surface in v and i (v) is a scalar function

equal to 1 if the vertex v is inconsistent with shadow information, and equal to 0

otherwise.

Shadow information can improve the reconstruction obtained from just stereo

and silhouette information; indeed, it can describe the shape of the concavities

where stereo and silhouette information are missing.
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Figure A.17: Multimodal vs monomodal methods: (a) smoothed model obtained

by volume carving; (b) model obtained by fusing together different partial models

obtained by stereo matching; (c) model obtained by silhouette and stereo fusion;

(d) model obtained by texturing model c.
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Appendix B

Digital Keying

Keying is the most popular technique in visual effects for extracting objects from

an image, more precisely, for separating the regions of the image representing

foreground objects from the other regions representing background elements.

Differently from image segmentation and background subtraction, the purpose

of keying is to generate a matte representing the transparency information about

the original image, in such a way that, each pixel is not labeled as belonging or not

to a foreground object but, instead, it assumes a continuous value representing

how much it is transparent with respect to the background. For this reason,

keying is also referred as matting [135], [30], [31], [144].

Originally, the term matte refers to the strip of monochrome film that was

used in film-making to cover some parts of the original color film strip, so that

only parts of the movie were visible. In computer graphics, a matte is a single

channel image used to define the transparency of the foreground elements in a

composite [164]. The composition, in fact, is the direct version of the problem

solved by the keying.

According to [119], the composition equation relating the composite image

C, the foreground image F , the background image B and the matte α is the

following

C (p) = α (p)F (p) + (1− α (p))B (p) (B.1)

where p is a generic point of the composite and C (p), F (p), B (p) are expressed

in the same color space. α (p) instead, is a real value belonging to [0, 1].

The keying aims to recover the values of F , B and α given the observation

C. For each single pixel, this results in an under-constrained problem with 7

unknown and 3 equations.
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In order to solve this problem, some a priori knowledge about the background

and the foreground has to be assumed. C (p), F (p), B (p) and α (p) are usually

modeled as stochastic processes and, in particular, the last three are considered

independent. Their statistical characteristics can be inferred from the input image

and subsequently, given an observation C (p), the value of α (p) can be recovered

maximizing a statistical criteria like, for instance, the likelihood.

When dealing with video footage, the previous analysis has to be extended

along the time line to the precesses C (p, t), F (p, t), B (p, t) and α (p, t), keeping

into account that each of these, is not, in general, independent along the t co-

ordinate. However, most of the keying techniques neglect this fact avoiding the

issues that may arise with some hacks.

Literature proposes a wide variety of keying approaches, each providing its

advantages and its drawbacks. An excellent classification of these techniques can

be found in [30]. Here we focus only on two approaches namely, the difference

keying and the chroma keying.

Difference keying presumes that the background is known up to some error

modeled, in its turn, as a zero-mean gaussian process. For each point of the

image, let’s denote with B the known background color, with η the error and

with B the actual background color, so that B = B + η. Subtracting the known

background B from the composition color C we obtain

C −B = α

(
F −B + η

(
α− 1

α

))
(B.2)

Now, if we assumes that F and B differ each other by an amount higher than

η
(
α−1
α

)
, we can state that if

(
C −B

)
is equal to zero then α is also equal to zero.

In all the other cases, instead, no information about α can be inferred, only that

it is different from 0. However
(
C −B

)
is often used as matte.

On the contrary, chroma keying technique assumes that C (p), F (p), B (p)

and α (p) are independently identically distributed stochastic processes and that

the distributions of F (p) and B (p) are known and separable. This situation is

typically achieved by the use of a solid colored screen placed as background and

by ensuring that the foreground objects colors are different from the background

color.

Under these assumptions, one can define a surface separating the two color

distributions classifying each color as a background or a foreground one. The

labeling function related to this surface can be relaxed obtaining a continuous

function that can be used as an approximation of the matte α. This approach,

however, is still under-constrained therefore, an user has to define manually some
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parameters of this function, like, for instance, its smoothness.

The chroma keying techniques can be classified according to both the used

color space and the allowed shapes of the boundary surface. For instance, the

HLS keying techniques use the HLS representation of the color while the boundary

surfaces are always boxes with edges parallel to the canonical plane. A particular

case of HLS keying technique is the luma keying technique which surfaces are

strips in the luma coordinate. The 3D keying techniques, instead, use the RGB

representation of the color while the boundary surfaces can be spheres, convex

polygons or ellipsoids.
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