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Abstract

During the last decade, the perceived scarcity of spectrum resources along with

the proliferation of new wireless technologies have motivated a substantial research

effort on dynamic spectrum management. Although a fixed frequency assignment

policy has guiltily led to an alarming spectrum crowding belief, a noticeable under-

utilization of the allocated frequency bands has been revealed by extensive spec-

trum occupancy measurements. Therefore, a dynamic re-utilization of the licensed

frequencies would be a breakthrough toward a mitigation of the troublesome in-

efficiency in the spectrum management, aggressively answering to the unceasing

demand of resources for new wireless services.

Prominent in this context is the hierarchical spectrum access, an emerging

model that envisages secondary users (a.k.a. cognitive radios) aiming to access to

the frequency bands of the licensed systems (a.k.a. primary users) in a dynamical

and nonintrusive manner. Envisioned as autonomous entities endowed with learning

and decisional capabilities, secondary devices accomplish spectrum sensing and

dynamical radio resource allocation tasks, thus enabling an opportunistic access to

portions of the spectrum under the primary-secondary hierarchy.

The consequent continuous need for a concrete situational awareness required by

the cognitive radios demands for innovative signal processing algorithms for high-

resolution primary users’ activity monitoring, efficient transmission opportunity

exploitation and, most importantly, accurate characterization of the surrounding

RF propagation environment. Due to the lack of explicit coordination between the

two networks, as envisaged in the cognitive radio paradigm, learning the features

of the propagation environment is conceivably critical for adaptation of operational

system parameters and obligatory protection of the licensed primary system.

To strike the foregoing sensing and control objectives reliably, a significant

departure from a one-dimensional view of the RF environment, conventionally at-

tained by point-to-point feedback strategies to acquire channel coefficients as well

as interference levels on a per-link basis, is advocated. Toward this direction the

present Thesis introduces the concept of channel gain cartography, a groundbreak-



ing geostatistics-inspired application that enables a portrayal of the RF environ-

ment impinging upon arbitrary locations in space. The most appealing feature of

the proposed tool consists in the non-trivial capability of inferring the channel gain

between arbitrary transmitter-receiver locations, based on the only measurements

taken among collaborating cognitive radios. Such ability in estimating any-to-any

channel gains may open the door to aggressive resource allocation techniques, thus

leading to markedly higher spectral efficiency - and finds well-motivated applica-

tions not only in the cognitive radio context.

With an accurate RF environment description close at hand, the Thesis presents

a primary system’s state tracker based on a parsimonious model accounting for the

reasonable sparse activity of the primary sources - due to well-known mutual in-

terference concerns - in the monitored geographical area. Motivated by recent

advances in sparse linear regression, where the `1-norm places itself as a corner-

stone for lassoing the non-zero support of the estimand, a sparsity-cognizant state

tracker is developed in both centralized and distributed formats. As a byproduct

ensued from the parsimonious model, the tracker possesses localization and primary

transmission power estimation abilities, which lead to a capability of estimating the

actual power spectral density map of the primary system, a continuously-updated

portrayal of the aggregate primary power impinging upon the whole monitored ge-

ographical region. Detection of the so called spectrum spatial holes is efficiently

attainable, thus enhancing the spatial re-use of the primary frequency bands.

Due to the aforementioned lack of explicit support from the primary system,

sensing algorithms often face difficulty in acquiring secondary-to-primary users

channels. Moreover, the sensing algorithms cannot detect silent licensed receivers,

which nevertheless have to be obligatorily protected. Based on primary coverage

map and channel gain cartography, the approach pursued here is to exploit statis-

tical knowledge of the secondary-to-primary channels, where the combined effect of

shadow fading as well as small-scale fading is accounted for, to maximize a given

secondary network utility function under chance constraints that ensure protection

to any potential licensed user. Albeit a non-convex interference-constrained net-

work utility maximization problem is derived, Karush-Kuhn-Tucker solutions are

provably obtained by the proposed algorithms.

Error-corrupted measurements and missing and/or outdated channel gain es-

timates may undoubtedly compromise the accomplishment of the power control

task. To overcome this issue, a novel probabilistic approach encompassing channel

knowledge uncertainty on both secondary-to-secondary and secondary-to-primary

links is also presented.

The foregoing technical findings are fully corroborated by numerical tests.
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Sommario

Durante l’ultimo decennio, la proliferazione di nuove tecnologie wireless, unitamente

all’apparente scarsità di risorse spettrali disponibili, ha motivato una considerevole

attività di ricerca rivolta a tecniche di gestione dinamica dello spettro. Sebbene una

allocazione statica dello spettro abbia colpevolmente indotto alla percezione di un

preoccupante sovraffollamento delle bande disponibili, un sostanziale sottoutilizzo

di tali frequenze è stato rilevato durante campagne di misurazione dell’occupazione

effettiva di bande di frequenza ad uso esclusivo. Un riutilizzo dinamico di tali

frequenze potrebbe essere un passo in avanti fondamentale per risolvere l’attuale

sistematica inefficienza nella gestione dello spettro e, quindi, rispondere alla con-

tinua richiesta di risorse spettrali per nuovi sistemi wireless.

In questo contesto si posiziona in maniera prominente il modello ad accesso

gerarchico, modello che prevede utenti secondari (chiamati anche cognitive radio)

che accedono alle bande di frequenza allocate agli utenti licenziatari (chiamati

comunemente utenti primari) in maniera dinamica e non intrusiva. Immaginati

come entità autonome con capacità decisionali e di apprendimento dell’ambiente

di propagazione, gli utenti secondari sono in grado di riutilizzare porzioni dello

spettro in maniera opportunistica, rispettando la gerarchia tra sistemi licenziatari

e sistemi secondari. Operazioni necessarie per tale accesso opportunistico sono il

sensing dello spettro e l’allocazione dinamica delle risorse radio disponibili.

Il conseguente bisogno di una continua cognizione situazionale da parte degli

utenti secondari richiede soluzioni algoritmiche innovative per monitorare l’attività

degli utenti primari in maniera affidabile, utilizzare efficientemente le porzioni di

spettro quando libere, e acquisizione di un’accurata caratterizzazione dell’ambiente

di propagazione. Infatti, data la mancanza di una cooperazione esplicita tra sistemi

primario e secondario, il continuo apprendimento delle caratteristiche dell’ambiente

di propagazione è di fondamentale importanza per l’adattamento dei parametri di

sistema e la protezione obbligatoria del sistema primario.

Per compiere in maniera affidabile sensing e allocazione dinamica delle risorse

disponibili è richiesto un significativo scostamento dalla visione uni-dimensionale



dell’ambiente di propagazione, la quale si basa sulle tecniche classiche di stima di

canale e acquisizione dei livelli di interferenza via feedback su collegamenti punto-

punto. In questa direzione, la presente tesi introduce il concetto di cartografia

del guadagno di canale, una tecnica innovativa con origini dalla geostatistica che

permette l’acquisizione di una descrizione completa dell’ambiente di propagazione

percepito in punti arbitrari di una regione geografica. La caratteristica principale

di tale tecnica consiste nella capacità di stimare il guadagno di canale tra coppie

arbitrarie trasmettitore-ricevitore, partendo da delle misurazioni effettuate sui soli

link tra cognitive radio cooperanti.

Con un’accurata descrizione dell’ambiente di propagazione a portata di mano,

nella tesi viene introdotto un algoritmo per la stima della potenza trasmissiva degli

utenti licenziatari attivi e la loro localizzazione. L’algoritmo è basato su un modello

di sistema parsimonioso che tiene in considerazione la sparsità nel dominio spaziale

di utenti primari attivi, sparsità che è strettamente legata a fenomeni ben noti di in-

terferenza mutua. La stima della potenza trasmissiva degli utenti primari, della loro

posizione geografica e, infine, del loro atlante del guadagno di canale, permettono

la ricostruzione dell’area di copertura del sistema primario e, conseguentemente,

la rivelazione delle aree geografiche in cui le frequenze primarie sono inutilizzate.

In questo caso, l’atlante del guadagno di canale permette si superare la classica

semplificazione circolare e tempo invariante dell’area di copertura.

Data la mancanza di una cooperazione esplicita tra i due sistemi, la stima dei

canali di comunicazione tra utenti primari e secondari non puó essere effettuata;

inoltre, gli algoritmi di sensing classici possono rivelare la presenza di trasmetti-

tori primari ma non dei ricevitori primari, i quali devono essere obbligatoriamente

protetti. Per superare tali ostacoli, e garantire la protezione degli utenti primari

da interferenza causata dai trasmettitori secondari, l’approccio seguito nella tesi

prevede l’utilizzo della stima dell’area di copertura e della descrizione statistica dei

canali tra utenti primari e secondari, in modo tale da garantire che la probabilità di

interferenza sia tenuta sotto una certa soglia in tutte le posizioni geografiche in cui

ricevitori primari possono risiedere. Anche se il problema di massimizzazione della

funzione di utilità della rete secondaria, sotto vincoli probabilistici che limitano

l’interferenza causata al sistema primario, risulta essere non convesso, l’algoritmo

proposto nella tesi dimostra una sicura convergenza a un punto di minimo (almeno)

locale. Inoltre, in un contesto come quello ad accesso gerarchico, anche i canali tra

gli utenti secondari possono non essere stimati correttamente. Un nuovo approccio

comprendente vincoli probabilistici sia sull’interferenza arrecata al sistema primario

che sugli eventi di outage sui collegamenti tra utenti secondari è quindi proposto.

Tutti i risultati ricavati nella tesi sono corroborati via simulazioni numeriche.
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Chapter 1

Introduction

The conventional license-based fixed frequency assignment policy has led

to an alarming spectrum crowding belief and, thus, an apparent scarcity

of spectral resources for next-generation wireless systems. Nonetheless, a

substantial underutilization of a large swath of licensed bands was revealed

in recent spectrum occupancy measurements, thus indicating that the culprit

for such perceived scarcity of spectral resources is the exclusive-use spectrum

management policy rather than the physical lack of usable frequencies.

To mitigate such cumbersome inefficiency in the current management of

the licensed spectrum, and in a tentative that strives for making some room

in the spectrum allocation chart for emerging wireless technologies, new

spectrum management policies and access techniques have been the subject

of research efforts in the last decade or so. The underlying idea behind the

flurry of exciting activities envisions an improvement of the spectrum utiliza-

tion upon permitting a conceivable dynamical access to the licensed bands

on either a negotiated or an opportunistic basis, but without compromising

the transmission opportunities granted to the licensed users.

The present thesis focuses on the hierarchical access model, probably

the most appreciated model thank to an envisaged coexistence of licensed

and secondary users without the demand for new network infrastructures

or new spectrum rights regulations. As the secondary users are envisioned

as entities endowed with learning and decisional capabilities, able to op-

portunistically and dynamically reuse the under-utilized primary bands in
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an autonomous and non-intrusive manner, several new challenges have to

be addressed compared to conventional wireless networking setups. A com-

prehensive description of the hierarchical access model along with its main

critical challenges are provided in chapter 2. Also, chapter 2 explains the

ambitious vision that motivated the research activities subject of the ensuing

parts as well as the main contribution of the present dissertation.

With the motivation provided in chapter 2 in mind, chapter 3 collects

innovative large-scale channel gain estimation algorithms that permit acqui-

sition of a global, multidimensional view of the RF ambient, with a signifi-

cant departure from classical channel estimation techniques. The proposed

tools will be shown to provide dramatic benefits in the hierarchical access

setup, but may find applications also in several other contexts. Then, chap-

ters 4 and 5 present collaborative and adaptive signal processing algorithms

that accomplish the objectives of layered sensing and a novel power alloca-

tion technique, which cope with the impossibility of estimating the channels

between primary and secondary users. All the chapters are self-contained,

in the sense that comparison with prior art, formal problem statement and

solution approach are meticulously provided, in each chapter.

The technical findings collected in the present thesis were carried out

during part of my Ph.D. at the Department of Information Engineering at

the University of Padova, under the supervision of Prof. Silvano Pupolin.

They are also a result of the collaboration with Prof. Georgios B. Giannakis,

who is also my co-supervisor, and the with other members of the SPiNCOM

research group during my stay at the University of Minnesota.
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Chapter 2

Spatio-temporal Spectrum

Reuse: Principles

Although a fixed frequency assignment policy has led to an alarming spec-

trum crowding belief, a substantial underutilization of the licensed frequency

bands has been revealed by extensive spectrum occupancy measurements. To

alleviate such cumbersome inefficiency in the management of the spectrum

and make a swath of frequencies available for emerging wireless services, a

considerable research effort has focused on dynamic spectrum re-utilization

techniques. Prominent in this context is the hierarchical spectrum access,

where cognitive radios aim to make a spatio-temporal re-use of the licensed

bands in an autonomous and non-intrusive manner. To this end, cognitive

radio devices have to accomplish to spectrum sensing and dynamical radio

resource allocation tasks for transmission opportunity detection and exploita-

tion. Although many issues in technical, regulatory and economical aspects

still need to be addressed, research efforts have made to devise innovative

signal processing algorithms able to cope with new challenges entailed by a

practical implementation of the hierarchical access model.

2.1 Motivation for Dynamic Spectrum Access

Traditionally, frequency assignment policy has regulated allocation of por-

tions of the spectrum in a fixed manner, where non-overlapping swaths of
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bandwidth were granted to existing wireless systems for exclusive use. This

rigid spectrum-licensing policy has the vivid merit of ruling out mutual inter-

ference concerns among heterogeneous systems but, however, it has guiltily

led to an alarming perception of scarcity of available spectrum resources for

emerging wireless technologies. Such belief is certainly strengthened when

it comes to look for available frequencies in both the overly-crowded U.S.

frequency allocation chart and its European counterpart.

Nonetheless, a substantial underutilization of a large amount of licensed

frequency bands was revealed in recent extensive spectrum occupancy mea-

surements, thus indicating that the current utilization of the spectrum is

grossly inefficient [1]; in other words, measurements pointed out that at any

given time instant and geographical location, a consistent amount of licensed

spectrum lies idle. Surprisingly, the culprit for such scarcity of spectral re-

sources is then the exclusive-use spectrum management policy rather than

the physical lack of usable frequencies.

Examples of test-validated evidences of spectrum underutilization com-

prise the frequency occupancy measurement campaign performed in Chicago,

Washington, D.C., and New York City [2] in the licensed bands between

30MHz and 3, 000MHz; a significant amount of exclusive-use spectrum was

found to be scarcely occupied, with temporary idle frequencies that some-

times span even contiguous spectrum blocks. Likewise, frequent availabil-

ity of licensed spectrum was revealed by analyzing data collected in some

European locations such as, e.g., Aachen, Germany [3], Amsterdam, The

Netherlands [4] and Barcelona, Spain [5].

To alleviate such cumbersome inefficiency in the management of the li-

censed spectrum, and in a tentative that strives for addressing the unceasing

demand for spectrum resources for emerging wireless technologies, a blast of

research activities have been devoted for devising new spectrum management

policies and access techniques. The underlying idea envisions an improve-

ment of the spectrum utilization upon permitting a conceivable dynamical

access to the licensed bands on either a negotiated or an opportunistic ba-

sis, but without compromising the transmission opportunities granted to the

licensed users [6, 7].

Although the fast proliferation of spectrum leasing and re-use techniques
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Figure 2.1: A taxonomy of dynamic spectrum access models.

had led to a large amount of technical terms coined so far, dynamic spectrum

access (DSA) strategies can be mainly categorized into three basic models,

namely [6]:

i. dynamic exclusive use model;

ii. open sharing model;

iii. hierarchical access model.

Dynamic exclusive use model maintains a rigid allocation policy, as spec-

trum bands are still licensed to wireless systems for exclusive use. However,

such method introduces a flexibility in the management of the spectrum

that entails a trading or leasing of the licensed bands by means of spectrum

property rights [8, 9] or dynamic spectrum allocation [10]. The approach

based on spectrum property permits licensed systems to lease and trade

portions of their frequency bands. Clearly, more emphasis is given on the

economy and market side, as leasing and trading may be done for pure

profit. However, sharing is not mandatory, and it is freely up to the licensed

systems. Dynamic spectrum allocation was brought forth by the European

Union funded DRiVE project [10]. It aims to enable multimedia services

in a heterogeneous multi-radio environment in a spectrum-efficient manner.

Essentially, by exploiting spatial and temporal traffic statistics of different

wireless services, spectrum is dynamically allocated in time and space to the

targeted services, but still for exclusive use.

It is thus clear that the dynamic exclusive use model introduces a flex-

ibility in the management of the spectrum, making somehow room for new

wireless technologies. However, since the exclusive use policy still governs
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the spectrum utilization, the aforementioned approaches hardly address the

need for an improved efficiency in the spectrum occupation, because of the

bursty nature of wireless traffic and the intermittent spectrum usage still

entailed by some technologies.

Motivated by the actual co-existence of multiple wireless services operat-

ing in, e.g., the unlicensed industrial, scientific, and medical (ISM) frequency

band, in the open sharing model peer users use a common portion of the

spectrum by properly managing the interference they would cause to each

other [11, 12]. This model, which falls also under the spectrum commons

tag, adheres to classical interference management problems and is thus far

from pure economy and market concerns. However, if applied to the nowa-

days scenario, it would require explicit coordination among current licensed

systems and devices that aim to re-use the primary frequencies; in fact, such

collaboration is essential for limiting mutual interference and managing the

access to the wireless medium. Thus, incorporating the open sharing model

in the current allocation policy may be hard in practice, as licensed sys-

tems may refuse to spend computational energies in cooperating with other

devices without getting any advantage out of that.

Probably the most prominent model so far, hierarchical spectrum access

model envisages secondary users aiming to access to the frequency bands of

the licensed systems, also referred to as primary users (PUs), in a dynamical

and nonintrusive manner [13, 14]. Dynamical because of the opportunistic

nature that entails a prompt exploitation of transmission opportunities in

the time, frequency and spatial domains, thus requiring agility in access-

ing to different portions of the spectrum in different instants and locations;

nonintrusive in the sense that no harmful interference is caused to the PUs.

Hierarchical spectrum access model has the well-appreciated merit of allow-

ing coexistence of licensed users and secondary users without requiring new

infrastructures or new regulations of the primary system.

Secondary devices, also referred to as cognitive radios (CRs), access to

portions of the spectrum under the primary-secondary hierarchy without

requiring any sort of explicit cooperation with the PUs. Differently from

software-defined radios, which supports multiple air interfaces and proto-

cols, CRs are envisioned as autonomous entities endowed with learning and
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decisional capabilities; this context-aware intelligence along with the capa-

bility of adapting the operational system parameters to the communication

environment, allow autonomous detection of the transmission opportunities,

or “spectrum holes”, and dynamical radio resource exploitation, thus en-

abling an opportunistic access to portions of the spectrum and performance

optimization under given interference constraints.

Several approaches to spectrum sharing under the primary-secondary

hierarchy have been proposed so far, as explained in the next section.

2.2 Hierarchical spectrum access model

In the hierarchical spectrum access model secondary users access to the li-

censed spectrum a dynamical and nonintrusive manner. Ideally, a primary

channel can be considered as an opportunity by the CRs if it is not cur-

rently used by any PU or if the interference that would be caused to the

licensed users could be safely kept under a predetermined limit. Clearly, the

interference limit is set by the PU system according to its quality of system

(QoS) requirements.

Depending on the dimension(s) where the transmission opportunity is

available and on the specific interference constraints, the classification of

the access techniques provided next is generally considered.

2.2.1 Inter-Weave, Overlay, and Underlay Access

Although there is sometimes a compound of confusion about their actual

distinguishing features, three approaches have been proposed as the basis for

sharing licensed spectrum under the primary-secondary hierarchy, namely

(see, e.g., [15, 16, 17]):

iii.1. inter-weave;

iii.2. overlay;

iii.3. underlay.

The inter-weave model is essentially based on the idea of on opportunis-

tic re-use the spectrum in the spatial domain; in other words, CRs can
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utilize the primary spectrum in geographical areas where primary activity is

absent. Exploitation of the so called “spatial spectrum holes” is attracting

an increasing interest, since many current licensed systems like, e.g., TV

broadcasting and cellular systems, show a non-contiguous and non-uniform

spatial coverage due to self-interference concerns and infrastructure limita-

tions. A pictorial example is portrayed in Fig. 2.3(b), where “CR 1” can

ideally serve some of the secondary users since no PU activity is present in

its proximity. Clearly, transmission power has to be properly calibrated, so

that overlaps among the coverage regions of “CR 1” and “PU 1” and “PU 2”

are avoided; conversely, if regions overlapped, “CR 1” would have harmed

the primary system.

From this simple example, it is immediate to understand that actual

implementation of the inter-weave model involves challenges related to the

estimation of the actual spatial spectrum hole; such ambitious challenges

were not present in conventional peer-to-peer wireless setups. Due to a lack

of explicit coordination between PU and CR systems, inter-weave model calls

for innovative signal processing algorithms for high-resolution PU sources

localization and PU transmission power estimation. Calibration of the CR

transmission power is, at a first glance, not an issue here, as transmit power

should be limited by the CR sensing range (detection distance). However,

as discussed in section 2.3, transmit power must be carefully set in order

to avoid harmful interference to the PU system, which may unexpectedly

happen due to fading propagation effects not accounted for.

In a sense, the approach governing the inter-weave model in the spatial

domain is mirrored in the time domain by the overlay model. This model,

firstly known under the name of spectrum pooling, exploits PU inactivity

in time and, clearly, in frequency [16]. It does not impose any particular

restriction on the transmission power of CRs, as long as transmissions end

before a new burst of PU data. Take, for example, “CR 2” in Fig. 2.3(b);

lying inside the coverage region of “PU 2”, “CR 2” is restricted to transmit

data only during the periods where “PU 2” is silent.

Besides detecting the presence of PU activity in the nearby area, over-

lay access model requires the non-trivial acquisition of the statistics of the

PU transmissions. In fact, the sensing module mounted in the CR plat-
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Figure 2.2: Exemplification of spectrum opportunities.

form cannot listen to the channel - determining the presence of ongoing PU

transmissions - while the transmission module is actively operating; thus,

a characterization of the PU activity is essential for calibrating the dura-

tion of the CR transmissions and thus avoid overlaps between PU and CR

communications in time.

In its first conception, underlay access envisaged CRs to operate below

the noise floor of the PUs, entailing an undercurrent of CR communications

without PUs being aware of. Thus, CRs would operate under severe spec-

tral mask constraints, contributing to a minor increase of the PU noise floor.

This was essentially the underlaying idea behind the recently proposed cog-

nitive ultrawideband (UWB) system [18]. Taking a look to Fig. 2.3(b), it

is clear that both “CR 1” and “CR 2” can ideally continuously transmit

no matter when PUs are present or not in their area. Note, however, that

“CR 1” confines itself to have a lower communication rate with its intended

receivers, being the PU inactivity not accounted for in the power allocation

process.

Closer in spirit to traditional wireless networks, constraints on the in-

terference took the place of the receiver noise floor in recent extensions of

the underlay model [17]; CR and PU now can coexist in the same band,
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location and time as long as the interference to PUs remains tolerable, i.e.,

below a prescribed interference threshold. This vision introduces a handful

of challenging issues comprising a proper statistical modeling of the aggre-

gate interference that CRs would cause to the PUs and localization of the

PU receivers.

2.3 Motivation: a Multi-Dimensional Vision

As mentioned in the preceding discussion, inter-weave and overlay strate-

gies aim to exploit the transmission opportunities in the spatial and time

domain, respectively, whereas the underlay concept involves a more com-

plicated communication scenario with more emphasis on the interference

avoidance aspect.

Ideally, a primary channel can be considered as an opportunity if it is not

currently used by PUs or if communications among CRs can happen with

the interference that would be caused to the licensed users kept below a

predetermined limit. The concept of spectrum opportunity is however more

involved than that it may appear at a first glance. Demystifying the sharp

cut among frequency, time, and space domains, it is thinkable that for an

aggressive and full opportunistic re-use of the licensed resources under the

primary-secondary hierarchy, a multi-dimensional nature of the spectrum

hole should be envisaged, with interference concerns incorporated as well.

In a sense, considering one dimension individually is not sufficient (or, at

least, not optimal), as transmission opportunities or interference hitches may

appear in another dimension. CRs should fill the spectrum gap in space,

time and frequency simultaneously, with protection of the incumbent PU

system systematically guaranteed.

Just to make an elucidative example, suppose that a set of CRs reveal

no PU activity at a given time instant in their proximity, i.e., in the area

determined by their detection radii. Thus, CRs may ideally send some

bursts of data in an overlay setup. However, in practice, CRs can neither

set an indiscriminately high transmission power nor restrict their coverage

region to be contained in (or equal to) their detection area. In fact, sensing

algorithm can detect primary transmitters within the detection distance
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but cannot detect silent licensed receivers, which nevertheless have to be

obligatorily protected; thus, a näıve implementation of the overlay model

based on the detection radius would potentially harm PU receivers. Learning

the PU power spectral density (PSD) distribution in space, rather then

having cognition of the only PU transmitters’ state, is thus essential in order

to detect the regions where PU receivers may potentially reside; thus, PU

system can be protected by limiting the interference. In some sense, inter-

weave, overlay, and underlay setups should be merged together, leading to a

technique that conceivably fills the spectrum holes jointly in time, frequency

and space, under the obligatory constraints on the interference caused to any

primary receiver.

Critical for the spectrum opportunity detection and the succeeding op-

portunity exploitation is the characterization of the radio frequency (RF)

propagation environment that surrounds primary and secondary systems.

As no collaboration among primary and secondary systems is envisaged and,

thus, PU-to-CR channels and interference levels cannot be acquired via con-

ventional point-to-point feedback on a per-link basis, a continuous learning

the RF ambient in an autonomous manner is of paramount importance. This

allows a significant departure from a simple and inaccurate model based on

the only deterministic path loss and, thus, a reliable detection of the PU ac-

tivities in time and space. Also, no matter whether instantaneous or mean

interference is concerned, cognition of the channel states actually enforces

interference constraints, which may be unduly violated when it comes to

adopt a path loss-only propagation model.

Take, for example, the setup in Fig. 2.3(a), where the PSD map of a PU

source is portrayed relying on a path loss-based model. Assuming that the

interference threshold for the PUs is set to −60dB, one can notice that a

CR transmitter is allowed to communicate with all the CR receivers since

they lie outside the PU coverage region. However, the true coverage region

is significantly different from a simple disk-shaped time-invariant area, as

propagation impairments provide shadow and multi-path fading phenom-

ena. This can be noticed in Fig. 2.3(b), where a realization of the actual PU

coverage region is portrayed and where one can notice that the CR trans-

mitter can actually serve only one receiver; then, following a path loss-only
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Figure 2.3: Spatio-temporal spectrum opportunity at a given instant.
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model, CR system would interfere PU receivers.

The aforementioned multi-dimensional vision of the transmission oppor-

tunities along with the lack of explicit coordination among primary and

secondary systems demand for a continuous situational awareness for the

CR system. This, in turn, calls for large-scale signal processing algorithms,

complemented by collaborative and adaptive sensing and control platforms,

to accomplish to the objectives of layered sensing and interference-limited

opportunistic spectrum access. Innovative large-scale algorithms enabling

a meticulous and autonomous RF propagation learning and, thus, a sig-

nificant departure from conventional per-link channel gain and interference

level acquisition are also advocated.

In a tentative to address the aforementioned ambitious challenges in-

volved by a hierarchical spectrum access with no cooperation among primary

and secondary systems, the present thesis offers the following contribution.

2.4 Contribution of the Thesis

The contribution of the present thesis is threefold: RF propagation environ-

ment learning, large-scale spectrum sensing, and interference-limited power

control are considered throughout the ensuing chapters. Inside each subject,

motivation are renewed and main novelties are stressed next.

1. Introduction of the channel gain cartography concept. Due to lack of

collaboration mechanisms between PU and CR systems, estimating

the CR-to-PU channels requires considerable effort, especially when

prior information about the PU signalling scheme is nor available.

More challenging is acquiring channel between CRs and passive PU

receivers, which do not transmit RF energy but just listen. The prob-

lem addressed in this work entails tracking the spatio-temporal evo-

lution of channel gains (CGs) in a given geographical region through

a collaborative network of CRs. Based on the CG measurements ob-

tained among the CRs, it is proposed a large-scale algorithm that

allows estimation of the actual CGs of wireless links from any point

to any other point in space. The non-trivial capability of estimating
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the channel gain between arbitrary transmitter-receiver locations en-

ables a significant departure from the classical one-dimensional view

of the propagation environment, with a consistent global-view of the

RF ambient viewed from arbitrary points in space. As shown through-

out the thesis, the so called CR maps or atlases improve the spectrum

sensing performance and enable a coverage region reconstruction and

a reliable interference-constrained power allocation. Beyond the CR

context, the vision is to use such CG atlas for cross-layer design and

assessment of the system-level performance of wireless networks and

to enhance hand-off, localization, routing, and resource allocation. To

address scalability and robustness concerns, a distributed consensus-

based algorithm is also derived.

2. Sparsity-aware spectrum sensing and PSD maps. Spectrum opportuni-

ties identification in an autonomous manner is performed via spectrum

sensing. Based on a parsimonious model accounting for PU mutual in-

terference concerns, and motivated by recent advances in sparse linear

regression, a collaborative sparsity-cognizant state tracker is developed

in centralized and distributed formats. The appealing features of the

proposed algorithms consist in the PU transmission power estimation

and PU localization capabilities. With these information close at hand,

CRs can reconstruct the actual power spectral density (PSD) map of

the primary system by employing the PU CG map. Thus, detection

of the spatio-temporal spectrum spatial holes is efficiently attainable,

enhancing the re-use of the primary frequency bands.

3. Chance-constrained power allocation under channel gain uncertainty.

In a conventional power allocation problem, channels among devices

can be accurately acquired via training and, based on those estimates,

a given network utility function is to be maximized. In the cogni-

tive radio context, actual protection of the PU receivers encounters

the nuisance impossibility of estimating the CR-to-PU receiver chan-

nel gains. One way to estimate the potential PU receiver locations,

and eventually their channel gains, is to rely on the idea of channel

gain cartography. Based on location information of the (potential)
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PU receivers and, possibly, an estimate of the PU receivers CG maps,

the approach pursued in the present thesis is to exploit the statisti-

cal channel knowledge of the CR-to-PU channels. As PU protection

constraints must be enforced with high reliability, probabilistic con-

straints will be imposed in order to guarantee that the interference

power experienced by PU receivers falls below a tolerable level with a

given high probability. Acquisition of instantaneous CR-to-CR chan-

nel state information is rendered challenging by, e.g., mobility of the

nodes, fast variation of the CR environment, and prolonged occupancy

of the primary bands. To address this case, a robust network utility

maximization problem is considered, where per-CR link probability of

outage constraints are enforced.
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Chapter 3

The Concept of Channel

Gain Cartography

The present chapter introduces the concept of channel gain cartography, a

groundbreaking geostatistics-inspired application that enables a portrayal of

the RF environment impinging upon arbitrary locations in space. The most

appealing feature of the proposed tool consists in the non-trivial capability of

inferring the channel gain between arbitrary transmitter-receiver locations,

based on the only measurements taken among a set of collaborating devices.

The vision is to use such channel gain atlas for cross-layer design and assess-

ment of the system-level performance of wireless networks and to enhance

hand-off, localization, routing, spectrum sensing, and resource allocation.

3.1 Preliminaries and motivation

Conventional acquisition of channel coefficients and interference levels on a

per-link basis might become inadequate for emerging wireless technologies,

as a continuous need for a concrete situational awareness is unrelentingly

demanded to accomplish layered sensing and dynamical spectrum control.

Innovative signal processing algorithms enabling a significant departure from

such a one-dimensional view of the propagation environment are thus advo-

cated [19], [20], [21].

Critical to this departure is characterizing the spatio temporal evolution



20 Chapter 3. The Concept of Channel Gain Cartography

of wireless fading links. The fast-varying small-scale fading process is due to

multi-path propagation effects, and is roughly uncorrelated across time and

when samples are taken on the order of few carrier wavelengths apart [22].

The medium-scale fading, or shadowing, arises from attenuation and diffrac-

tion of propagating signals owing to obstructions such as hills, buildings, and

trees. Shadowing is more challenging to characterize statistically, especially

when correlations among different locations and time instants are accounted

for.

Well-established correlation models for shadow fading are available for

cellular networks, in which mobile terminals are assumed to move with con-

stant velocity [23]. An extension involving one mobile and two base stations

was proposed in [24], and multi-hop relay scenarios were studied in [25].

The main limitation of Gudmundson’s correlation model [23] consists in

completely neglecting possible cross-correlations among links that do not

have any communication ending point in common; hence, it is rarely ap-

plicable to model shadowing (cross-) correlations in ad hoc networks. The

importance of shadowing correlation in analyzing performance of wireless ad

hoc networks was pointed out in [26], which introduced a model to capture

shadowing (spatial) correlation among any wireless links in the deployment

area. An experimentally validated parametric model for nomadic as well as

distributed channels was reported in [27]; spatio-temporal shadowing corre-

lation was also analyzed for the different propagation scenarios.

Answering to the advocated departure from a one-dimensional view of

the RF environment, the problem addressed here entails tracking the spatio-

temporal evolution of channel gains (CGs) in a given geographical region

through a collaborative network of CRs. Based on the CG measurements

obtained among the radios, it is desired to predict the actual CGs from any

point in space to the radios, which are henceforth termed local CG maps; as

well as the CGs of wireless links from any point to any other point in space

(i.e., links that do not have communication ending points in common with

the CR-to-CR links), which constitute what is hereafter termed as global

CG map. See Fig. 3.1 for a schematic representation.

The vision is to use such atlas for cross-layer design and assessment of the

system-level performance of wireless networks [28], [29], [30]; also, maps may
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Figure 3.1: Channel gain maps.

play an instrumental role to enhance hand-off, localization, and routing. In

CR networks, CG maps can provide vital information for spectrum sensing

and resource allocation tasks [31], [32].

Efforts to model and estimate a spatial description of the RF environ-

ment are growing. The ambient RF power spectrum was viewed as a random

field in [33], [34], and the Kriging spatial interpolation technique [35] was

adopted to estimate the spatial power spectral density (PSD). Kriging is

a linear spatial interpolator that was originally developed for the mining

industry, but has now found a wide range of application areas including

earth and environmental sciences and engineering [35], [36], [37]. Assuming

that the PSD map is confined to a low-dimensional subspace, [38] devised

a distributed projection algorithm to reduce observation noise. In [39], the

PSD map was estimated by exploiting the underlying sparsity inherent to

the system model and a simple path loss-only channel model. The spline

interpolation technique was employed in [40] to accommodate shadowing

effects and to estimate potentially time-varying PSD maps.

The overarching contribution of the present work is to introduce the

concept of CG cartography and develop algorithmic solutions for effectively

reconstructing the desired maps starting from the CR-to-CR CG measure-

ments [31], [41]. Going into the details of the framework, first, the shadowing

correlation model of [26] is judiciously extended to accommodate temporal

variations of the shadow fading. Time-varying CG maps are then tracked

by adapting to the problem at hand the Kriged Kalman filtering (KKF),
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a tool with widely appreciated merits in spatial statistics and geo-sciences

used for estimating time-varying random fields. A distributed KKF, which

involves message passing only among one-hop neighboring nodes, is then de-

veloped to address scalability and robustness concerns about the centralized

algorithm. Specifically, distributed Kalman filtering (KF) is developed to

track the mean field of the shadow fading process in space and time; and

a distributed Kriging interpolator is derived to interpolate a spatially col-

ored yet temporally white shadow fading component. The present work is

the first to model the spatio-temporal correlation of any-to-any CGs, and

develop corresponding estimation algorithms in both centralized and dis-

tributed set-ups.

Numerical tests verify that the collaborative approach significantly en-

hances the accuracy of CG map estimation over a non-collaborative alter-

native.

3.2 Channel gain model

Consider a radio link from position x to position y at time t, where x and y

are arbitrary points in a geographical area A ⊂ R2. Let ġx→y(t) denote the

instantaneous channel gain of link x→ y at time t, which can be expressed

as [42, Ch. 2]

ġx→y(t) = g0,x→y · ||x− y||−η2 · sx→y(t) · |hx→y(t)|2 (3.1)

where g0,x→y collects the antenna and other propagation gains [42, Ch. 2],

η is the path loss exponent, sx→y(t) the shadow fading, and |hx→y(t)|2 the

squared envelope of the small-scale fading. Denote as Ġx→y(t) the instan-

taneous channel gain expressed in dB, i.e., Ġx→y(t) := 10 log10 ġx→y(t).

Shadowing sx→y(t) has been experimentally shown to be accurately

modeled by a log-Normal-distributed first-order spatial autoregressive pro-

cess [26],[27] whereas a Nakagami-m distributed multipath fading [43], inde-

pendent of sx→y(t), is assumed here. Nakagami-m distribution offers a closer

match to empirical data than Rayleigh or Ricean distribution [44]. However,

it is well known that Nakagami-m distribution boils down to Rayleigh and

Ricean distributed fading by properly choosing the parameter m > 1/2 [42,
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Ch. 2]. Independent realizations of the small-scale fading over different links

are assumed.

It is first essential to provide a statistical characterization of the com-

posite shadowed Nakagami fading, which will henceforth be denoted as

ax→y := sx→y · |hx→y|2. Furthermore, let Ax→y := 10 log10 ax→y be the

composite fading expressed in dB. Upon denoting the mean and the variance

of the Gaussian-distributed shadowing component Sx→y := 10 log10 sx→y in

dB as µSx→y and σ2
Sx→y

, respectively, the probability density function (p.d.f.)

of random variable (r.v.) ax→y is given by the Gamma-log-normal density

fax→y(a) =
∫ ∞

0

(m
u

)m am−1

Γ(m)
e−

ma
u · 1√

2πκσSx→yu
e
−

(10 log10(u)−µSx→y)2

2σ2
Sx→y du

(3.2)

where κ := 1
10 ln 10, and Γ(·) is the Gamma function. It is known that this

can be well-approximated by the log-normal density as [42, Ch. 2]

fax→y(a) ≈ 1√
2πκσAx→ya

e
−

(10 log10(a)−µAx→y)2

2σ2
Ax→y (3.3)

where µAx→y and σ2
Ax→y

are given by

µAx→y = κ−1

(
− lnm− C +

m−1∑
m′=1

1
m′

)
+ µSx→y (3.4)

σ2
Ax→y

= κ−2ζ(2,m) + σ2
Sx→y

(3.5)

respectively. Here, C ≈ 0.5772 is the Euler’s constant and ζ(·, ·) the Hur-

witz’s zeta function, i.e., ζ(a, b) =
∑+∞

k=0
1

(k+b)a , a, b > 1. Under (3.3),

the channel gain ġx→y(t) turns out to be (approximated as) log-Normal

(cf. (3.6)). For future use, denote as µGx→y and σGx→y mean and standard

deviation, respectively, of the Gaussian-distributed channel gain Ġx→y(t).

The approximation in (3.3) is quite accurate in the propagation scenarios

of practical interest, but starts deteriorating when m = 1 (Rayleigh fading)

and σSx→y < 6 dB [45]. The approximation was used in [46] in a cellular

network context, and more recently for interference modeling in CR net-

works [47]. The overarching advantage of approximation (3.3) consists in
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offering the possibility of sidestepping the hurdle represented by the nui-

sance lack of mathematical tractability of (3.2). In this way, approximate

analysis can be readily and elegantly carried out in a log-Normal domain -

in a Gaussian domain when quantities are expressed in dB. Such statistical

description will be meticulously employed in the ensuing chapters, espe-

cially when the challenging system coverage region estimation and power

allocation problems will be faced.

The Bayesian inference framework proposed next for reconstructing lo-

cal/global CG maps requires knowledge of (only) the averaged CG function,

which can be written as [cf. (3.1)]

gx→y(t) := g0,x→y · ||x− y||−η2 · sx→y(t) . (3.6)

Note that gx→y(t) is modeled as a log-Normal r.v., being the path loss

g0,x→y · ||x−y||−η2 a constant and sx→y(t) log-Normal [26], [27]. The corre-

sponding quantity expressed in dB - which is Gaussian distributed - is given

by

Gx→y(t) = G0,x→y − 10η log10(‖x− y‖2) + Sx→y(t) . (3.7)

where G0,x→y := 10 log10 g0,x→y. Since shadowing and small-scale fading

are characterized by a different coherence time [27], measuring gx→y(t) is

possible upon observing the channel for an amount of time sufficient for

averaging out the effect of hx→y(t); see, for example, [48].

Before proceeding with the explanation of the powerful channel gain map

estimation machinery, it is necessary to setup a suitable spatio-temporal

model for the shadow fading - the subject of the ensuing section.

3.2.1 Dynamic shadow fading model

While small-scale fading is roughly uncorrelated across time and when dis-

tance among links is on the order of few carrier wavelengths apart, a chal-

lenge in statistical modeling of shadowing lies in accurately characterizing

its spatio-temporal correlation. In an effort to establish a shadowing cor-

relation model suitable for ad hoc network scenarios, the concept of spatial

loss field was introduced in [26]. The spatial loss field essentially captures

the obstructions in the area where the network is deployed. The shadowing
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effects experienced by individual links in the network are then modeled by

line integrals of this common field. The resulting shadow fading correlation

matches field measurements, as well as the conventional correlation models

in the literature [26]. The scope of this approach is considerably broadened

here by incorporating the temporal dynamics as well.

Let `(x, t) denote the spatial loss field at location x ∈ A at time t ∈ N,

which is assumed to be Gaussian [26]. The spatio-temporal dynamics of the

spatial loss field are characterized by the following relations (see also [49])

`(x, t) = ¯̀(x, t) + ˜̀(x, t) (3.8)

¯̀(x, t) =
∫
A
w(x,u)¯̀(u, t− 1)du + η(x, t) (3.9)

where ¯̀(x, t) represents the component that is colored both in space and

time through the filter w(x,u) capturing the interaction of loss ¯̀ at position

x at time t, with the loss ¯̀ at position u at time t − 1; ˜̀(x, t) and η(x, t)

are spatially colored yet temporally white zero-mean Gaussian stationary

random fields. Process η(x, t) captures unmodeled dynamics uncorrelated

with ˜̀(u, τ), ∀u, τ . Moreover, E{˜̀(x, t)¯̀(u, t)} = E{η(x, t)¯̀(u, t − 1)} = 0

for all x, u and t. For stability, the filter w(x,u) must satisfy the condition∣∣ ∫
Aw(x,u)du

∣∣ < 1, ∀x.

Using the loss function `, the shadow fading process in dB for the link

x→ y is modeled as (see also [26])

Sx→y(t) =
1

‖x− y‖
1
2
2

∫
x→y

`(u, t)du (3.10)

which, after using (3.8), yields

Sx→y(t) = S̄x→y(t) + S̃x→y(t) (3.11)

where

S̄x→y(t) :=
1

‖x− y‖
1
2
2

∫
x→y

¯̀(u, t)du (3.12)

S̃x→y(t) :=
1

‖x− y‖
1
2
2

∫
x→y

˜̀(u, t)du. (3.13)
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Remark 3.2.1. In a recent measurement campaign in the 2.4 GHz band for

nomadic as well as mobile channels, it was confirmed that shadow fading,

when expressed in dB, can be accurately modeled by a Gaussian-distributed

first-order spatio-temporal autoregressive process [27]. An analogy can be

drawn between the shadow fading model developed here and the model

experimentally confirmed by [27], as follows: S̄x→y(t) captures the static

shadowing component (both the obstruction-based as well as the multipath-

based static shadowing), and the spatially correlated dynamic shadowing

component; while S̃x→y(t) represents the time-varying shadowing compo-

nent possessing spatial structure but no temporal correlation. The lack of

temporal structure may be due to a low sampling frequency, compared to

the time scale of the small-scale movements in the environment, which cause

dynamic shadowing. Note that when w(x,u) ≡ 0, i.e., in the absence of tem-

poral structure, the model described in this section reduces precisely to the

one in [26]. 2

3.2.2 Finite dimensional state-space model

The state-space model described by (3.8) and (3.9) is infinite-dimensional.

A standard approach to reduce its dimensionality and render it computa-

tionally tractable from a signal processing perspective is to employ a basis-

expansion representation [49], [50]. If {ψk(·)}∞k=1 denotes a complete or-

thonormal basis defined on the two-dimensional domain A, then, ¯̀(·) and

w(·) can be expressed as

¯̀(x, t) =
∞∑
k=1

αk(t)ψk(x) (3.14)

w(x,u) =
∞∑
k=1

βk(x)ψk(u) (3.15)

where {αk(t)} and {βk(x)} are the basis-expansion coefficients for ¯̀(·) and

w(·), respectively.

To obtain a finite-dimensional approximation, consider retaining only

the K dominant terms in the expansions. Upon defining the K × 1 vectors

α(t) := [α1(t) . . . αK(t)]T , β(x) := [β1(x) . . . βK(x)]T , and ψ(x) :=

[ψ1(x) . . . ψK(x)]T and exploiting the orthonormality of the basis, (3.9)
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can be written as

ψT (x)α(t) = βT (x)α(t− 1) + η(x, t). (3.16)

Now, consider Nr positions {xr ∈ A}Nrr=1 where measurements of ¯̀ are

available. Upon defining the (Nr ×K)-matrices B := [β(x1) . . . β(xNr)]T

and Ψ := [ψ(x1) . . . ψ(xNr)]T , and the (Nr×1)-dimensional vector η(t) :=

[η(x1, t) . . . η(xNr , t)]T , the state evolution observed at the Nr sampling

positions can be expressed as [cf. (3.16)]

Ψα(t) = Bα(t− 1) + η(t). (3.17)

Thus, selectingNr ≥ K and assuming that ΨTΨ is non-singular, one obtains

the following state evolution equation

α(t) = Tα(t− 1) + Ψ†η(t) (3.18)

where Ψ† := (ΨTΨ)−1ΨT is the pseudo-inverse of Ψ and T := Ψ†B is the

state transition matrix.

Note, furthermore, that by plugging (3.14) into (3.12), the shadowing

component S̄x→y(t) can be further expressed as

S̄x→y(t) =
∞∑
k=1

[
1

‖x− y‖1/22

∫
x→y

ψk(u)du

]
︸ ︷︷ ︸

:=φx→y,k

αk(t) (3.19)

≈ φTx→yα(t) (3.20)

where only K terms have been retained in (3.20), and the entries of the

basis coefficients vactor φx→y := [φx→y,1 . . . φx→y,K ]T depend only on the

spatial coordinates x and y.

Next, the spatial correlation model for S̃x→y(t) is established. To do

this, the spatial correlation for ˜̀(x, t) need to be first modeled.

3.2.3 Spatial correlation model

Given α(t), S̄x→xr(t) represents the deterministic time-varying mean of the

shadowing Sx→xr(t), which is referred to as trend in the spatial statistics

parlance [51]. Likewise, conditioned on α(t), ¯̀(x, t) corresponds to the trend
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of the spatial loss field `(x, t). Noting that [26] models spatial loss effects

as a zero-mean random field reveals that the modeling and analysis of [26]

actually hold for the de-trended zero-mean random field ˜̀(x, t) in the present

context. This justifies modeling ˜̀(x, t) the same way [26] modeled the spatial

loss field.

Thus, the covariance of the de-trended spatial loss field ˜̀(x, t) at time t

can be modeled as

C˜̀(x,y) := E{˜̀(x, t)˜̀(y, t)} =
σ2
S̃

d˜̀
exp

(
−‖x− y‖2

d˜̀

)
(3.21)

where σ2
S̃

is the variance of S̃x→y(t), and d˜̀ denotes the coherence distance

of the ˜̀-field. Correspondingly, the cross-correlation of S̃x→y(t) and S̃u→v(t)

for arbitrary links x → y and u → v, respectively, is given by [cf. (3.13)

and (3.21)]

CS̃(x→ y,u→ v) := E{S̃x→y(t)S̃u→v(t)} (3.22)

=
σ2
S̃

d˜̀‖x− y‖
1
2
2 ‖u− v‖

1
2
2

∫
x→y

∫
u→v

exp
(
−‖x1 − x2‖2

d˜̀

)
dxT1 dx2

(3.23)

which can be evaluated numerically.

3.3 Map tracking via Kriged Kalman filtering

Time-varying channel gain maps are tracked via KKF. In its essential parts,

KKF is constituted by a Kalman filter (KF), which is in charge for tracking

the spatio-temporal evolution of the trend field S̄x→y, augmented with a

Kriging linear spatial interpolator for the estimation of S̃x→y(t). The latter

was originally developed for the mining industry, but has now found a wide

range of application areas including earth and environmental sciences and

engineering.

From the model set forth in Sec. 3.2, it is clear that estimating the shad-

owing Sx→y(t) can benefit from fusing the observations of all sensing devices

indexed by r ∈ {1, 2, . . . , Nr}, thanks to the existence of an underlying spa-

tial loss field. To this end, it is necessary to set up a measurement model,

which is the subject of the next section.



3.3. Map tracking via Kriged Kalman filtering 29

3.3.1 Measurement model

Consider a network of Nr sensors, whose geographical positions {xr}Nrr=1 are

known to one another. In order to estimate the gains of the sensor-to-sensor

channels, training signals transmitted by the sensors will be exploited. The

training signals are generally present in the data packets to aid synchroniza-

tion and channel estimation at the intended receivers. For simplicity, it is

assumed that the sensors transmit unit-power training packets in a time-

division multiple access (TDMA)-fashion. Suppose sensor j 6= r transmits

a training signal for sensor r to acquire an estimate of Gxj→xr(t) by simply

measuring the received power. Using (3.6), it is then possible to obtain a

noisy version of Sxj→xr(t) modeled as [31]

S̆xj→xr(t) = Sxj→xr(t) + εxj→xr(t) (3.24)

where εxj→xr(t) denotes zero-mean Gaussian measurement noise resulting

from averaging out small-scale fading and interference [48]. From (3.20),

this measurement can be re-expressed as

S̆xj→xr(t) = φTxj→xrα(t) + S̃xj→xr(t) + εxj→xr(t). (3.25)

Suppose that each sensor r can measure the received powers from the

transmissions of the set Mr of sensors, where Mr ⊂ {1, 2, . . . , Nr}\{r}.
Specifically, denote as dcomm the sensors’ communication range and assume

that Mr is given by Mr = {j, j 6= r : ‖xj − xr‖2 ≤ dcomm}. Let Mr be

the cardinality of the set Mr, and M :=
∑Nr

r=1Mr. Define Φr to be the

(Mr ×K)-matrix obtained by stacking the vectors φTxj→xr , j ∈ Mr, in the

order of increasing j. Likewise, define the (Mr × 1)-vectors S̆r(t), S̃r(t)

and εr(t) through appropriate vectorizations of S̆xj→xr(t), S̃xj→xr(t), and

εxj→xr(t), j ∈ Mr, respectively. Then, the vector S̆r(t) acquired by sensor

r at time t is

S̆r(t) = Φrα(t) + S̃r(t) + εr(t). (3.26)

Also, by pooling measurements from all sensors to an (M × 1)-super-vector

S̆(t), one can write

S̆(t) = Φα(t) + S̃(t) + ε(t) (3.27)

where Φ := [ΦT
1 . . . ΦT

Nr ]
T , S̃(t) := [S̃T1 (t) . . . S̃TNr(t)]

T , and finally ε(t) :=

[εT1 (t) . . . εTNr(t)]
T .
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3.3.2 Kriged Kalman filtering

In a centralized setting, KKF collects all measurements to a central processor

to perform KKF. Given the state equation (3.18) and the measurement

equation (3.27), the minimum mean-square error (MMSE) estimate of the

state vector α(t) at time t can be obtained via ordinary KF. Define CS̃ :=

cov{S̃(t)}, Cε := cov{ε(t)}, Cη := cov{η(t)}, and Σ := CS̃ + Cε. Also,

let S̆1:t denote the (M × t)-matrix containing the cumulative measurements

{S̆(τ)}tτ=1.

Upon defining α̂(t|t − 1) := E{α(t)|S̆1:t−1}, α̂(t|t) := E{α(t)|S̆1:t},
P(t|t−1) := cov{α(t)|S̆1:t−1}, and P(t|t) := cov{α(t)|S̆t}, the KF equations

in the information form are given by [52, Ch. 3]

P(t|t− 1) = TP(t− 1|t− 1)TT + Ψ†CηΨ†
T

(3.28)

α̂(t|t− 1) = Tα̂(t− 1|t− 1) (3.29)

P(t|t) =
[
ΦTΣ−1Φ + P−1(t|t− 1)

]−1
(3.30)

α̂(t|t) = α̂(t|t− 1) + P(t|t)ΦTΣ−1
[
S̆(t)−Φα̂(t|t− 1)

]
. (3.31)

The Kalman filter-estimate α̂r(t|t) can thus be used to track the dynamic

component S̄x→y(t) through E{S̄x→y(t)|S̆1:t} = φTx→yα̂r(t|t). Note that

the line integral that transforms the spatial loss field to shadow fading has

been absorbed into φx→y for the “trend” part via (3.19)–(3.20), and the

cross-correlation structure for S̃x→y is directly modeled via (3.22)–(3.23).

Therefore, the model fits well into the KKF framework delineated in [31]

and [50]. That is, since the peculiarities of adopting the spatial loss field

model have been completely absorbed by the state space model, and the

measurements are jointly Gaussian with the shadowing field, the following

proposition in [31] and [50] adapted here for the collective measurements

applies. It reveals that the KF-based trend estimate augmented by Kriging

spatial interpolation yields the desired estimate of the shadowing field.

Proposition 3.3.1. Conditioned on the measurements S̆1:t, the shadow fad-

ing process Sx→y(t) for any x,y ∈ A, is Gaussian distributed with mean and
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variance given, respectively, by

Ŝx→y(t) := E{Sx→y(t)|S̆1:t}

= φTx→yα̂(t|t) + cT
S̃

(x,y)Σ−1
[
S̆(t)−Φα̂(t|t)

]
(3.32)

var{Sx→y(t)|S̆1:t} = σ2
S̃
− cT

S̃
(x,y)Σ−1cS̃(x,y)

+
[
φTx→y − cT

S̃
(x,y)Σ−1Φ

]
P(t|t)

[
φx→y −ΦTΣ−1cS̃(x,y)

]
(3.33)

where cS̃(x,y) := E{S̃(t)S̃x→y(t)}.

Proof: See section 3.6.1. 2

Note that (3.32) provides the MMSE estimate Ŝx→y(t) of the shadow

fading process Sx→y(t) at any x,y and t, using only the preselected bases

in Φ and the estimates S̆1:t acquired at the sensors.

Given the KKF estimate Ŝx→y(t), the CG map estimate Ĝx→y(t) for an

arbitrary x,y ∈ A can be readily constructed by adding back the determin-

istic (and known) path loss component as [cf. (3.6)]

Ĝx→y(t) = G0,x→y − 10η log10(‖x− y‖2) + Ŝx→y(t). (3.34)

Remark 3.3.2. Besides the MMSE estimate Ŝx→y(t) of the shadow fading

Sx→y(t), the KKF carries out the conditional variance var{Sx→y(t)|S̆1:t}.
Hence, sufficient information for computing the conditional distribution of

the shadow fading is available, being Gx→y(t) Gaussian. The distribution

of Gx→y(t) and, hence, of Ġx→y(t) (see (3.2), where in this case σ2
Sx→y

=

var{Sx→y(t)|S̆1:t}) may provide vital information for spectrum sensing and

resource allocation tasks. 2

3.3.3 Handling measurement losses

In a challenging scenario such as the hierarchical spectrum access, training

signals need to respect the PU-CR hierarchy. Thus measurements cannot be

acquired if the PUs are continuously active over an extended period of time.

Measurement misses may also occur when the control channel is congested.

In case of missing measurements, i.e., vector S̆(t) is not collected, the

KKF update must be performed open-loop. Specifically, if the measurement
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is missing at time t, the prediction step of Kalman filtering is the same as

in (3.28)–(3.29), but the correction step in (3.30)–(3.31) is replaced by [53]

P(t|t) = P(t|t− 1) (3.35)

α̂r(t|t) = α̂r(t|t− 1) . (3.36)

Then, the KKF estimate at time t then becomes

Ŝx→y(t) = φTx→yα̂r(t|t) (3.37)

var{Sx→y(t)|S̆r(t)} = σ2
S̃

+ φTx→yP(t|t)φx→y. (3.38)

It should be noted that under proper stability conditions, the measure-

ment losses over an extended period will eventually bring the KKF estimate

Ŝx→y(t) down to 0. In this case, the KKF-based model falls back to the path

loss-only model [cf. (3.6)]. This is a nice safety feature ensuring that the

proposed algorithms perform no worse than the alternatives which account

only for path-loss effects. Note also that it is natural to initialize the CG

map estimates with the path-loss-only map.

3.3.4 Estimation of model parameters

The KKF is optimal when exact knowledge of the model covariances Cε,

Cη and CS̃ as well as the state transition matrix T is available. Also, the

cross-covariance CS̃(x → y,u → v) for arbitrary points x,y,u, and v is

required to perform the Kriging interpolation in Proposition 3.3.1.

In this work, an empirical Bayesian approach is pursued to estimate the

required parameters in (3.18) and (3.27) from the data, and use them in the

KKF recursions. In [49], the standard method of moments was employed to

obtain the necessary estimates. This approach is adopted here for simplicity.

To estimate σ2
S̃

and d˜̀ in (3.21), an exhaustive search over the (σ2
S̃
, d˜̀)-space

will be performed.

Estimation of model covariances Supposing that the measurement

noise εxj→xr(t) is white in space and time, it follows that Cε = σ2
ε IM ,

where σ2
ε can be obtained during the calibration process of the measure-

ment device. The estimate ĈS̆ of CS̆ := cov{S̆(t)} is readily found using
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the sample covariance of the data S̆(t) (assuming ergodicity of Sx→y(t)).

Then, the estimate of CS := cov{S(t)} is obtained as ĈS = ĈS̆ −Cε. Since

S̄(t) belongs to the subspace spanned by the columns of matrix Φ, it is

possible to estimate CS̄ by a projection operation as

ĈS̄ = ΦΦ†ĈSΦ†TΦT . (3.39)

Similarly, ĈS̃ can be obtained as

ĈS̃ = (IM −ΦΦ†)ĈS̃(IM −ΦΦ†)T . (3.40)

With ĈS̃ close at hand, it is now possible to estimate the model parame-

ters σ2
S̃

and d˜̀ inherent to S̃x→y(t); see (3.21). An exhaustive search over the

(σ2
S̃
, d˜̀)-space can be performed, which entails finding the couple of parame-

ters (σ2
S̃
, d˜̀) that minimize the quadratic quadratic cost ||Ĉs̃−Cs̃(σ2

s̃ , d˜̀)||22,

where the entries CS̃(σ2
s̃ , d˜̀) are numerically computed via (3.23).

Before estimating Cη, observe that the KKF recursion (3.29) requires

only an estimate of the product Ψ†CηΨ†T , and not an estimate of Cη in iso-

lation. Define Cα := cov{α(t)} and C(1)
α := E{α(t)αT (t− 1)}. Then, note

that CS̄ = ΦCαΦT , and that C(1)

S̆
:= E{S̆1:tS̆T (t−1)} is given by [cf. (3.27)]

C(1)

S̆
= E

{[
Φα(t) + S̃(t) + ε(t)

]
·
[
Φα(t− 1) + S̃(t− 1) + ε(t− 1)

]T}
(3.41)

= ΦC(1)
α ΦT . (3.42)

Thus, Cα = Φ†CS̄Φ†T and C(1)
α = Φ†C(1)

S̆
Φ†T hold; hence, [cf. (3.18)]

Ψ†CηΨ†T

= E
{

[α(t)−Tα(t− 1)] [α(t)−Tα(t− 1)]T
}

(3.43)

= Φ†CS̄Φ†T −Φ†C(1)

S̆
Φ†TTT −TΦ†rC

(1)

S̆
Φ† + TΦ†CS̄Φ†TTT . (3.44)

Matrix Ψ†CηΨ†T can now be estimated by plugging into (3.44) the expres-

sion for ĈS̄ found as in (3.39), and the estimate Ĉ(1)

S̆
obtained via sample

averaging.
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Estimation of the state transition matrix To estimate the state tran-

sition matrix T, note first that [cf. (3.17) and (3.27)]

C(1)

S̆
= E{[Bα(t− 1) + η(t) + S̃(t) + ε(t)]

· [Φα(t− 1) + η(t− 1) + S̃(t− 1) + ε(t− 1)]T } (3.45)

= BΦ†CS̄Φ†TΦT (3.46)

where the relation Cα = Φ†CS̄Φ†T is again used to get (3.46). Thus, an

estimate of matrix B is obtained as

B̂ = Ĉ(1)

S̆
Φ†T [Φ†ĈS̄Φ†T ]−1 (3.47)

and T̂ = Φ†B̂.

Recall that Ψ (and hence Φ) is formed using pre-selected basis functions.

One such basis can be constructed easily for a rectangular area A using the

set of Legendre polynomials in two variables [54, Ch. 2].

Table 3.1 summarizes the overall algorithm for tracking the CG map

Gx→y(t) across time t, for any arbitrary points of interest x,y in the geo-

graphical area A.

3.4 Distributed Kriged Kalman filtering

In certain cases, a distributed algorithm may be more desirable since it

does not require all the measurements to be collected at a single processor,

but rather performs consensus-based in-network processing. Moreover, a

centralized algorithm may face scalability and robustness concerns because

the fusion center constitutes an isolated point of failure. These considera-

tions motivated the development next to perform the KKF operation in a

distributed fashion.

3.4.1 Distributed Kalman Filtering

Consider the computation of the KF recursion (3.28)–(3.31). Recall that

matrices T, Σ and Ψ†CηΨ†
T

are known to all sensors (at least an estimate of

them). The prediction step in (3.28)–(3.29) can be performed locally at each

node, provided that α̂(t−1|t−1) and P(t−1|t−1) are available. However, to
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Acquisition of observation S̆(t)

During time interval [t, t+ 1) in the j-th slot, sensor j 6= r transmits

a training signal with power pj(t) in a TDMA fashion.

Sensor r measures the received power π(j)
r (t) in slot j 6= r

and computes the channel gain estimate by ĝxj→xr(t) = π
(j)
r (t)/pj(t).

Compute Ĝxj→xr(t) = 10 log10 ĝxj→xr(t).

Compute S̆xj→xr(t) = Ĝxj→xr(t)−G0,xj→xr + 10η log10 ||xr − xj ||2.

Collect S̆xj→xr(t), j ∈Mr and form S̆r(t).

Collect S̆r(t), r = 1, . . . , Nr and form S̆1:t.

Model parameter estimation

Obtain ĈS̆ and Ĉ(1)

S̆
from sample covariances.

Compute ĈS = ĈS̆ −Cε.

Obtain ĈS̄ from (3.39) and ĈS̃ from (3.40).

Compute σ2
S̃

and d` by least squares model fitting.

Compute B̂ from (3.47) and set T̂ = Φ†B̂.

Obtain an estimate of Ψ†CηΨ†T from (3.44).

Map tracking via KKF

1: Initialize t = 0

2: If S̆(t) is not available, update KF open-loop by

(3.28)–(3.29) and (3.36)–(3.35).

Compute the KKF estimate Ŝx→y(t) by (3.37).

Go to Step 4.

3: If S̆(t) is available, update KF by (3.28)–(3.31).

Compute the KKF estimate Ŝx→y(t) by (3.33).

4: Compute estimate Ĝx→y(t) by (3.34).

5: Increment t and go to Step 2.

Table 3.1: Summary of the centralized map tracking algorithm.
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perform the correction step in (3.31), the measurements from other sensors

are required. To reduce the substantial message-passing overhead associated

with globally sharing (i.e., flooding) the measurements in each update step,

a distributed algorithm is desired. To this end, consider the innovation

process

y(t) := S̆(t)−Φα̂(t|t− 1) (3.48)

and define a (K × 1)-vector

χ(t) := ΦTΣ−1y(t). (3.49)

It is clear from (3.31) that if χ(t) were available at each sensor, the Kalman

steps in (3.28)–(3.31) could be performed locally at individual sensors.

Distributed computation of χ(t) was considered in [55], using the stan-

dard consensus averaging algorithm. In [56], the consensus problem was

re-cast as a convex optimization problem, which was then solved in a dis-

tributed manner by a set of “bridge” nodes based on the alternating direction

method of multipliers (ADMoM) [57, p. 253]. This latter approach has the

additional benefit of improved robustness to communication and quantiza-

tion noise [56]. However, the distributed KF algorithm developed here does

not require election of bridge nodes; each sensor needs to exchange informa-

tion only with its single-hop neighbors. Note that a similar approach was

taken in [31] to obtain a distributed solution for a sparse regression problem.

To distribute χ(t), consider re-writing it as a sum of Nr terms, each

of which contains only local information. Let Hr denote the (K × Mr)-

matrix formed by the
(∑r−1

r′=1Mr′ + 1
)

-st to the (
∑r

r′=1Mr′)-th columns of

ΦTΣ−1. Using Hr and yr(t) := S̆r(t)−Φrα(t|t−1), it is possible to express

χ(t) as

χ(t) =
Nr∑
r=1

Hryr(t). (3.50)

A key observation is that (3.50) is equivalent to

χ(t) = arg min
χ

Nr∑
r=1

‖χ−NrHryr(t)‖22. (3.51)
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To show the equivalence between (3.50) and (3.51), rewrite (3.51) as

χ(t) = arg min
χ

Nr∑
r=1

[
χTχ− 2Nrχ

THryr(t) +N2
r ‖χTHryr(t)‖22

]
(3.52)

= arg min
χ

[
χTχ− 2χT

Nr∑
r=1

Hry̆r(t)

]
. (3.53)

The solution of the unconstrained problem (3.53) can be readily obtained

in closed-form and it coincides with (3.50).

To distribute (3.50), introduce local copies of χ(t) per sensor, and denote

them as χr(t), r = 1, 2, . . . , Nr. Denote as Nr the set of one-hop neighboring

nodes of sensor r; note that Mr and Mr might be in general different,

especially if detection radius (for CG measurement) and communication

range (for packet exchange) are different. Then, (3.51) can be re-formulated

as the following constrained optimization problem:

{χr(t)}Nrr=1 = arg min
{χr}

Nr∑
r=1

‖χr −NrHryr(t)‖22 (3.54)

subject to χr = χ%, ∀% ∈ Nr, r = 1, . . . , Nr (3.55)

where the constraints in (3.55) enforce the local copies of χ(t) to coincide

within the set of one-hop neighbors Nr of node r, ∀r ∈ {1, 2, . . . , Nr}. Under

the assumption that the network remains connected, i.e., there exist (possi-

bly multi-hop) paths from any node to any other node in the network, the

constraints in (3.55) ensure global consensus on χr(t), ∀ r = 1, . . . , Nr.

Employing the ADMoM, one can show that the following iterative algo-

rithm attains the solution to (3.54)–(3.55):

ζ(j)
r (t) = ζ(j−1)

r (t) + c

|Nr|χ(j)
r (t)−

∑
%∈Nr

χ(j)
% (t)

 (3.56)

χ(j+1)
r (t) = (1 + c|Nr|)−1

·

NrHryr(t)−
1
2
ζ(j)
r (t) +

c

2

|Nr|χ(j)
r (t) +

∑
%∈Nr

χ(j)
% (t)


(3.57)

where ζ(j)
r (t) denotes the Lagrange multiplier corresponding to (3.55) up-

dated at sensor r during the KF iteration indexed by t; superscript j indexes
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consensus iterations; c > 0 is a constant that can be chosen arbitrarily; and

|Nr| denotes the cardinality of the set Nr.
At iteration j, sensor r needs to collect from its neighbors the current

estimates {χ(j)
% (t)}%∈Nr to update the auxiliary vector ζ(j)

r (t) via (3.56), and

to subsequently compute χ(j+1)
r (t) via (3.57). Derivation of (3.56)–(3.57) as

well as the proof of the convergence result stated in the following proposition

are deferred to in section (3.6.2)

Proposition 3.4.1. Assume that the network of sensors is connected and

the links are bi-directional; i.e., % ∈ Nr implies r ∈ N%. By performing

the updates in (3.56)–(3.57) at each sensor r = 1, 2, . . . , Nr, iteratively for

j = 1, 2, . . ., the local copies χr(t) for all r converge and coincide with χ(t)

of (3.51) as j → ∞, for any positive c, and initialization {χ(1)
r (t)} and

{ζ(0)
r (t)}. 2

After reaching consensus on χ(t) and, thus, performing step (3.31),

S̄x→y(t) can be readily estimated by [cf. (3.20)]

E{S̄x→xr(t)|S̆1:t} = φTx→xrα̂(t|t). (3.58)

3.4.2 Distributed Kriging

To obtain S̃x→y(t) in (3.32) locally per sensor, it is first noted from (3.31)

that

cT
S̃

(x,y)Σ−1
[
S̆(t)−Φα̂(t|t)

]
= cT

S̃
(x,y)Σ−1y(t)−cT

S̃
(x,y)Σ−1ΦP(t|t)χ(t).

(3.59)

Thus, one only needs to obtain ξ(t) := cT
S̃

(x,y)Σ−1y(t) in a distributed

manner. Upon denoting the (Mr×1) vector collecting the
(∑r−1

r′=1Mr′ + 1
)

-

st to the (
∑r

r′=1Mr′)-th entries of cT
S̃

(x,y)Σ−1 into the vector σTr , it follows

that the scalar quantity ξ(t) can be rewritten as [cf. (3.50)]

ξ(t) =
Nr∑
r=1

σTr yr(t). (3.60)

Therefore, in the same manner used to derive (3.56)–(3.57), a distributed

algorithm can be devised to obtain ξ(t) per sensor via (3.56)–(3.57) with
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χ
(j)
r (t) and Hr replaced by ξ(j)

r (t) and σTr , respectively. Specifically, consider

the constrained optimization problem

{ξr(t)}Nrr=1 = arg min
{ξr}

Nr∑
r=1

(ξr − σTr yr(t))2 (3.61)

subject to ξr = ξ%, ∀% ∈ Nr, r = 1, . . . , Nr (3.62)

where {ξr(t)}Nrr=1 are local copies of ξ(t) and, again, the constraints in (3.62)

enforce the local copies of ξ(t) to coincide within the set of one-hop neighbors

Nr of node r, ∀r ∈ {1, 2, . . . , Nr} - and, hence, in the entire network under

the assumption of network connectivity.

Employing the ADMoM to iteratively solve (3.61)–(3.62), one can show

that the following steps can be derived and are to be performed at each

iteration j:

ν(j)
r (t) = ν(j−1)

r (t) + cξ

|Nr|ξ(j)
r (t)−

∑
%∈Nr

ξ(j)
% (t)

 (3.63)

ξ(j+1)
r (t) = (1 + cξ|Nr|)−1

·

Nrσ
T
r yr(t)−

1
2
ν(j)
r (t) +

cξ
2

|Nr|ξ(j)
r (t) +

∑
%∈Nr

ξ(j)
% (t)


(3.64)

where ν(j)
r (t) denotes the Lagrange multiplier corresponding to (3.62) and

cξ > 0. Through and through similar to proposition 3.4.1, convergence of

iterations (3.63)–(3.64) can be stated.

Proposition 3.4.2. Under network connectivity and link bidirectional links

assumptions, by performing the updates in (3.63)–(3.64) at each sensor

r = 1, 2, . . . , Nr, iteratively for j = 1, 2, . . ., the local copies ξr(t) for all

r converge and coincide with ξ(t) of (3.61) as j → ∞, for any positive cξ,

and initialization {ξ(1)
r (t)} and {ν(0)

r (t)}. 2

Note, finally, that iterations (3.56)–(3.57) and (3.63)–(3.64) can be com-

puted in parallel. Table 3.2 summarizes the overall distributed algorithm.
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Acquisition of local observation S̆r(t)

During time interval [t, t+ 1) in the j-th slot, sensor j 6= r transmits

a training signal with power pj(t) in a TDMA fashion.

Sensor r measures the received power π(j)
r (t) in slot j 6= r

and computes the channel gain estimate by ĝxj→xr(t) = π
(j)
r (t)/pj(t).

Compute Ĝxj→xr(t) = 10 log10 ĝxj→xr(t).

Compute S̆xj→xr(t) = Ĝxj→xr(t)−G0,xj→xr + 10η log10 ||xr − xj ||2.

Collect S̆xj→xr(t), j ∈Mr and form S̆r(t).

Map tracking via distributed KKF

At each sensor r:

1: Initialize t = 0

2: If S̆(t) is not available

update KF open-loop locally by

(3.28)–(3.29) and (3.36)–(3.35).

Compute the KKF estimate Ŝx→y(t) by (3.37).

Go to Step 4.

3: If S̆(t) is available

Initialize {χ(0)
r (t)}, {ζ(0)

r (t)} {ξ(1)
r (t)}, and {ν(0)

r (t)}.
for j = 1, 2, . . . , NI , at each sensor r:

collect {χ(j)
% (t)}%∈Nr

update ζ(j)
r (t) via (3.56)

compute χ(j+1)
r (t) via (3.57)

collect {ξ(j)
% (t)}%∈Nr

update {ν(j)
r (t) via (3.63)

compute ξ(j+1)
r (t) via (3.64)

transmit ξ(j+1)
r (t) and ξ

(j+1)
r

Compute the KKF estimate Ŝx→y(t) by (3.33).

4: Compute estimate Ĝx→y(t) by (3.34).

5: Increment t and go to Step 2.

Table 3.2: Summary of the distributed map tracking algorithm.
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3.5 Numerical results

Numerical tests were performed to assess the performance of the proposed

algorithms. A geographical area of 200m × 200m was considered, where

40 sensors were randomly deployed. Two networks were considered: first,

the nodes collaborating were Nr = 20 and were positioned at the locations

marked with black circles in Fig. 3.2. Then, sensor positioned at the lo-

cations marked with grey circles were added in order to attain a network

comprising Nr = 40 nodes.

The path loss parameters were set to G0,x→y = 0 dB for each x,y,

and η = 3. The variance of the CG measurement noise εxj→xr(t) was set

to 10 [48]. For the basis expansion, K = 15 Legendre polynomials [54,

Ch. 2] were used. The shadow fading was generated via the model set

forth in section 3.2.1, with w(x,u) = w0 exp(‖x − u‖2/dw), where w0 =

7.3 × 10−3 and dw = 50m were used, and the covariance of η(x, t) was

set to E{η(x1, t)η(x2, τ)} = σ2
η exp(‖x1 − x2‖2/dη)δ(t − τ), with ση = 0.25

and dη = 30m. The model parameters for ˜̀(x, t) were set to σs̃ = 0.5 dB

and d˜̀ = 30m. The generated shadow fading had mean 0dB and standard

deviation 10dB. The parameters of the state-space model were estimated

from the generated shadowing, as discussed in Sec. 3.3.4.

To assess the map tracking performance of the proposed algorithm, the

CG estimation errors were averaged over the 35 links from each of the uni-

formly spread grid points, denoted by the squares in Fig. 3.2, to the grid posi-

tion xg at (149, 83); as well as over 20 independent shadowing realizations. It

was assumed that two sensors could communicate only if they were within a

given communication range dcomm; i.e.,Mr = {j|j 6= r, ‖xr−xj‖ ≤ dcomm}.
Thus, dcomm essentially limits the number of CG measurements that each

sensor can obtain. Fig. 3.3(a) depicts the root-mean-square-errors (RMSEs)

of:

i) the centralized KKF proposed in this work;

ii) the distributed KKF;

iii) the non-collaborative KKF at sensor r = 1 (see Fig. 3.2), in which the

sensor uses only its local CG measurements to run the KKF recursions;
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Figure 3.2: CG map estimation. Simulation scenario.

hence, no collaboration among nodes is involved;

iv) the path loss-only map.

The value of dcomm was varied in [50, 200]m and it was assume to be the same

to construct {Mr} and {Nr}. 15 iterations of the KKF were performed. For

the distributed KKF, 100 consensus iterations were performed per time t.

Figs. 3.3(b) presents the same set of trajectories corresponding to the set-up

Nr = 40.

It is seen from Fig.s 3.3(a) and 3.3(b) that the proposed collaborative

algorithm clearly outperforms the non-collaborative alternative. This hap-

pens because the non-collaborative algorithm uses only M1 local CG mea-

surements, whereas the collaborative KKF makes use of all M =
∑Nr

r=1Mr

measurements through consensus iterations. Certainly, it would be challeng-

ing for the non-collaborative algorithm to predict the shadow fading for a

transmitter that is far from CR 1 due to the lack of informative measure-

ments, while the collaborative algorithm can extract a single coherent view

of the global shadowing field. As dcomm increases, the non-collaborative

approach performs considerably better due to the increased number of mea-

surements, but still remains inferior to the collaborative approach.

It is also noted that when dcomm is very small, the performance of the dis-

tributed algorithm degrades slightly compared to the centralized algorithm,
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as a larger number of hops would be necessary to achieve full consensus.

This effect is negligible when Nr = 40, where full consensus is achieved even

for small communication radii.

After having assessed the average estimation performance of the KKF,

consider next a location of interest xs, marked with a red square in Fig. 3.2,

and its (true) channel gain map at a given time instant depicted in Fig. 3.4.

Clearly, the channel gain map peaks at the location xs due to the path loss

effect; however, the spatially inhomogeneous shadowing component renders

the overall CG map non-isotropic. Also, consider discretizing the monitored

area A by using a finer grid; specifically, use 402 uniformly spread grid points

- 5m of spacing among points.

It is of interest to reconstruct the current channel gain map, i.e., estimate

the channel gain of links between the grid points and the position xs. Fig. 3.5

reports the portrayal of the channel gain map inherent to xs collaboratively

carried out by the sensor network. The communication range was set to

dcomm = 150m, Nr = 20 (first network configuration) and 100 consensus

iterations were performed in both the distributed KF and the distributed

Kriging. The error in reconstructing the map was of 4.05 dB, which is

remarkably low if be compared to 10.77dB of standard deviation experienced

in the current shadow fading map realization. An inspection of Fig. 3.6,

where the error in estimating the channel gain is reported, reveals that a

substantial contribution in the experienced estimation error is due to grid

points close to the edge of A (points that, however, might not be of relevant

interest), which is essentially due to a lack of measurements on that portion

of area (see, e.g., the upper border).

Wrapping up, the shadow fading effect is well captured in the estimated

channel gain map, confirming that the KKF machinery can effectively pre-

dict the values of the shadow fading and, hence, avoid the oversimplified disc-

shaped description of the propagation environment, as depicted in Fig. 3.7,

entailed by a simple path loss-only model.
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(a) Nr = 20.
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Figure 3.3: CG map estimation RMSEs.
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Figure 3.4: Global CG map estimation, snapshot, true CG map.
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Figure 3.6: Global CG map estimation, snapshot, estimation error.
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Figure 3.7: Global CG map estimation, snapshot, path loss model.



3.6. Appendix: Proof of the propositions 47

3.6 Appendix: Proof of the propositions

3.6.1 Proof of proposition 3.3.1

Recall that the cross-covariance between S̃x→y(t) and S̃xi→xj (t) for two

arbitrary (and possibly disjoint, i.e., x 6= xi,xj and y 6= xi,xj) links x→ y

and xi → xj follows (3.23). Also, recall that the M × t matrix S̆1:t collects

the measurements gathered by all the nodes up to the current time instant

t. Define the (Mt × 1) vector Š1:t := vec(S̆1:t). It can be verified from

the modeling assumptions that Š1:t and Sx→y(t) = φTx→yα(t)+ S̃x→y(t) are

jointly Gaussian. Thus, conditioned on Š1:t, the process Sx→y(t) is Gaussian

distributed.

Derivation of the conditional mean. To derive (3.32), note first that

E{Sx→y(t)|Š1:t} = E
{

E
{
Sx→y(t)

∣∣Š1:t,α(t)
} ∣∣∣Š1:t

}
(3.65)

where the outer expectation is with respect to α(t)|Š1:t.

Define the (M × 1) vector cS̃(x,y) = E{S̃(t)S̃x→y(t)}, which entries are

computed according to (3.23). To compute the inner expectation recall that,

by modeling assumption, one has that

E{S̄x→y(t)Sx→y(t)} = 0 (3.66)

E{S̃x→y(t)S̃xi→xj (τ)} = 0, if τ 6= t (3.67)

E{S̃x→y(t)εxi→xj (τ)} = 0, forall τ, t,x,y,xi,xi. (3.68)

Rewrite then the inner expectation in (3.65) as E{S̄x→y(t)
∣∣Š1:t,α(t)} +

E{S̃x→y(t)
∣∣Š1:t,α(t)}, where the first term reads E{S̄x→y(t)|Š1:t,α(t)} =

φTx→yα(t). Then, it remains to compute E{S̃x→y(t)|Š1:t,α(t)}. To do so,

from [58, Theorem 10.2] it follows that

E{S̃x→xr(t)|Š1:t,α(t)} = E{S̃x→xr(t)|α(t)}

− cov
{
S̃x→xr(t)|α(t), Š1:t|α(t)

}T (
var
{
Š1:t|α(t)

})−1 (Š1:t − E{Š1:t}
)

(3.69)

where E{S̃x→xr(t)|α(t)} = 0. From the modeling assumptions (3.67)–(3.67)

one can show that cov{S̃x→xr(t)|α(t), S̆1:t|α(t)} = [cT
S̃

(x,y),01×(M−1)t]T
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and var{Š1:t|α(t)} is block-diagonal with copies of the M ×M matrix Σ on

its main diagonal. Then,

E{S̃x→xr(t)|Š1:t,α(t)} = cT
S̃

(x,y)Σ−1[S̆(t)−Φα(t)] (3.70)

and the inner expectation is evaluated as

E{Sx→xr(t)|Š1:t,α(t)} = φTx→xrα(t) + cT
S̃

(x,y)Σ−1[S̆(t)−Φα(t)] . (3.71)

Plugging (3.71) into (3.65), and using the definition α̂(t|t) := E{α(t)|Š1:t},
we obtain

E{Sx→y(t)|Š1:t} = φTx→yα̂(t|t) + cT
S̃

(x,y)Σ−1
[
S̆(t)−Φα̂(t|t)

]
. (3.72)

Derivation of the conditional variance. To verify (3.33) in Proposi-

tion 3.3.1, recall first the variance decomposition formula

var{Sx→y(t)
∣∣Š1:t} = E

{
var
{
Sx→y(t)

∣∣Š1:t,α(t)
} ∣∣Š1:t

}
+ var

{
E
{
Sx→y(t)

∣∣Š1:t,α(t)
} ∣∣Š1:t

}
. (3.73)

The first term on the right hand side of (3.73) can be re-written as

E
{

var
{
Sx→y(t)

∣∣Š1:t,α(t)
} ∣∣Š1:t

}
= E

{
var
{
φTx→yα(t) + S̃x→y(t)

∣∣Š1:t,α(t)
} ∣∣Š1:t

}
(3.74)

= E
{

var
{
S̃x→y(t)

∣∣Š1:t,α(t)
} ∣∣Š1:t

}
(3.75)

= E
{
σ2
S̃
− cT

S̃
(x,y)Σ−1cS̃(x,y)

∣∣Š1:t

}
(3.76)

= σ2
S̃
− cT

S̃
(x,y)Σ−1cS̃(x,y) (3.77)

where (3.76) follows from [58, Theorem 10.2], using the fact that S̃x→y(t)

is jointly Gaussian with Š1:t, temporally white and uncorrelated with α(t).

The second term on the right hand side of (3.73) is found to be

var
{
E
{
Sx→y(t)

∣∣Š1:t,α(t)
} ∣∣Š1:t

}
(3.78)

= var
{[
φTx→y − cT

S̃
(x,y)Σ−1Φ

]
α(t) + cT

S̃
(x,y)Σ−1S̆(t)

∣∣Š1:t

}
(3.79)

=
[
φTx→y − cT

S̃
(x,y)Σ−1Φ

]
P(t|t)

[
φx→y −ΦTΣ−1cS̃(x,y)

]T
. (3.80)

Then, plugging (3.77) and (3.80) into (3.73) yields (3.33), and completes the

proof of the proposition.
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3.6.2 Derivation of the ADMoM-based consensus algorithm

The steps of the iterative algorithm (3.56)–(3.57) will be meticulously de-

rived and the proof of proposition 3.4.1 will be provided. The derivation

of (3.63)–(3.64) as well as the proof of proposition 3.4.2 follow a similar

procedure.

The solution {χr(t)}Nrr=1 to the constrained optimization problem (3.54)–

(3.55) will coincide with the solution χ(t) of (3.51) when the wireless net-

work is connected. Thus, it suffices to show that the iterates (3.56)-(3.57)

yield the sequences of {χ(j)
r (t)}Nrr=1}, j = 0, 1, . . ., that converge to the op-

timum solution of (3.54)–(3.55). We will establish this by showing that

iterates (3.56)-(3.57) corresponds to the steps involved by the provably con-

vergent ADMoM.

Denote as A the Nr × Nr adjacency matrix that carries the informa-

tion on the connectivity of the CR network. The (i, j)-th entry of A is

set to one if j ∈ Ni and it is zero otherwise. It holds that A = AT . De-

fine the (
∑Nr

r=1 |Nr|)K × NrK matrix B := [BT
1 , . . . ,B

T
Nr

]T , where Br =

[bTr1 , . . . ,b
T
r|Nr |

]T ⊗ IK and br,j is a (Nr × 1) vector with entry rj set to one

and zero elsewhere, j = 1, . . . , |Nr|; r1 > r2 > . . . > r|Nr| are the indexes of

the non-zero entries on the r-th column of A. Moreover, define

Jr(χr) := ‖χr − y̌r(t)‖22 = χTr χr − 2χTr yr(t) + yTr (t)yr(t) . (3.81)

with, for notation simplicity, yr := NrHryr, r = 1, . . . , Nr.

Problem (3.54)–(3.55) can be re-formulated as

{χr}Nrr=1 = min
χ
F1(χ) + F2(q)

subject to q = Bχ (3.82)

where χ := [χT1 , . . . ,χ
T
Nr

]T , F1(χ) :=
∑Nr

r=1 Jr(χr) and F2(Bχ) = 0. Note

that (3.82) is in the same form of the optimization problem in [57, p. 255,

Eq. (4.76)] and, thus, the ADMoM can be applied to iteratively find its

optimum solution.

To find the steps involved by the ADMoM, we conveniently rewrite (3.82)
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in the following form:

min
{χr},{qr,%}

%∈Nr, r=1,2,...,Nr

Nr∑
r=1

Jr(χr)

subject to χr = qr,% ∀% ∈ Nr, r = 1, 2, . . . , Nr

qr,% = q%,r ∀% ∈ Nr, r = 1, 2, . . . , Nr (3.83)

where {qr,%} are auxiliary optimization (K × 1) dummy vector variables

associated to the links r → % (collected in q). Consider the augmented

(partial) Lagrangian function given by

L({χr}, {qr,%}, {ξr,%}) =
Nr∑
r=1

Jr(χr)

+
Nr∑
r=1

∑
%∈Nr

ξTr,%(χr − qr,%)

+ c

Nr∑
r=1

∑
%∈Nr

‖χr − qr,%‖22 (3.84)

where {ξr,%} are the Lagrange multipliers, and c is a positive arbitrary con-

stant. The curly brackets {·} = {·}Nrr=1,%∈Nr indicates the set of all variables

included. With j = 0, 1, . . . denoting the iteration index, the ADMoM

procedure updates the primal variables {χr}, {qr,%} and the dual variables

{ξr,%}, alternately, as

{χ(j+1)
r } = arg min

{χr}
L({χr}, {q(j)

r,%}, {ξ(j)
r,%}) (3.85)

{q(j+1)
r,% } = arg min

qr,%=q%,r,
%∈Nr, r=1,2,...,Nr

L({χ(j+1)
r }, {qr,%}, {ξ(j)

r,%}) (3.86)

ξ(j+1)
r,% = ξ(j)

r,% + 2c
(
χ(j+1)
r − q(j+1)

r,%

)
, % ∈ Nr, r = 1, 2, . . . , Nr. (3.87)

Since (3.54)–(3.55) is convex and it can be shown that matrix BTB is in-

vertible, Proposition 4.2 in [57] implies that the sequence χ(j)
r , j = 1, 2, . . .,

generated by (4.43)–(4.45) converges to the optimal solution χr of (3.83)

for each r (equivalently, converges to the optimal solution of (3.82)) for an

arbitrary initial χ(0)
r and any positive constant c.
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It is now shown that the iterates (3.56)–(3.57) can be derived from (4.43)–

(4.45). First, it is noted that (4.44) can be re-written as

{q(j+1)
r,% }

= arg min
qr,%=q%,r,

%∈Nr, r=1,2,...,Nr

−
Nr∑
r=1

∑
%∈Nr

ξ(j)T
r,% qr,% + c

Nr∑
r=1

∑
%∈Nr

‖χ(j+1)
r − qr,%‖22

(3.88)

= arg min
{qr,%}

∑
{(r,%)|%∈Nr,r>%}

{
−(ξ(j)

r,% + ξ(j)
%,r)

Tqr,%

+c
[
‖χ(j+1)

r − qr,%‖22 + ‖χ(j+1)
% − qr,%‖22

]}
(3.89)

where in the last step the conditions {qr,% = q%,r} and the assumption

that the links are bi-directional are used. Note that (4.47) is quadratic and

unconstrained in the set of variables {q(j+1)
r,% }; furthermore, it decouples in

sub-problems in one variable that can be solved in close form. In particular,

q(j+1)
r,% is given by

q(j+1)
r,% =

1
2

(
χ(j+1)
r + χ(j+1)

%

)
+

1
4c

(
ξ(j)
r,% + ξ(j)

%,r

)
, % ∈ Nr, r = 1, 2, . . . , Nr.

(3.90)

By substituting (4.48) into (4.45), one obtains

ξ(j+1)
r,% = c

(
χ(j+1)
r − χ(j+1)

%

)
+

1
2

(
ξ(j)
r,% − ξ(j)

%,r

)
, % ∈ Nr, r = 1, 2, . . . , Nr.

(3.91)

Thus, it can be verified by inspection that

ξ(j)
r,% + ξ(j)

%,r = 0, % ∈ Nr, r = 1, 2, . . . , Nr. (3.92)

From (4.50) and (4.48)–(4.49), it follows readily that

q(j+1)
r,% =

1
2

(
χ(j+1)
r + χ(j+1)

%

)
, % ∈ Nr, r = 1, 2, . . . , Nr (3.93)

ξ(j+1)
r,% = ξ(j)

r,% + c
(
χ(j+1)
r − χ(j+1)

%

)
, % ∈ Nr, r = 1, 2, . . . , Nr. (3.94)
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Consider now equation (4.43). It can be re-written as

{χ(j+1)
r } = arg min

{χr}

Nr∑
r=1

Jr(χr) +
∑
%∈Nr

ξ(j)T
r,% χr + c

∑
%∈Nr

‖χr − q(j)
r,%‖22


(3.95)

= arg min
{χr}

Nr∑
r=1

[
(1 + c|Nr|)−1χTr χr

+χTr

−2y̌r(t) +
∑
%∈Nr

ξ(j)
r,% − 2c

∑
%∈Nr

q(j)
r,%

 . (3.96)

The quadratic unconstrained problem (3.96) can be decoupled for each vari-

able χr into Nr subproblems. Clearly, χ(j+1)
r can be obtained in closed-form

as

χ(j+1)
r = (1 + c|Nr|)−1

y̌r(t)−
1
2

∑
%∈Nr

ξ(j)
r,% + c

∑
%∈Nr

q(j)
r,%

 (3.97)

Upon defining ζ(j)
r :=

∑
%∈Nr ξ

(j)
r,%, and substituting (4.51) to (4.55), (3.57)

is obtained. Finally, (3.56) follows from the definition of ζ(j)
r and (4.52).



Chapter 4

Sparsity-aware Cooperative

Spectrum Sensing

Tracking the primary system activity is the first essential step toward a dy-

namical reuse of the available licensed spectrum. Based on a parsimonious

model accounting for PU mutual interference concerns, and motivated by re-

cent advances in sparse linear regression, a sparsity-cognizant state tracker

is developed in this chapter in both centralized and distributed formats. The

PU transmission power estimation and PU localization capabilities offered

by the proposed scheme lead to the ability in estimating the actual power

spectral density (PSD) map of the primary system. Thus, detection of the

so called spectrum spatial holes is efficiently attainable, enhancing the spa-

tial re-use of the primary frequency bands. In this context, the channel

gain map estimate provides an invaluable means to overcome a disc-shaped

over-simplification of the per-user coverage region, portraying the effect of

propagation phenomena more accurately.

4.1 Preliminaries

4.1.1 Spectrum sensing

Due to a lack of explicit cooperation between primary system and CRs [59],

spectrum sensing algorithms are essential for spectrum opportunities iden-

tification in an autonomous and dynamical manner. In its primal, although
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näıve, implementation, a sensing algorithm entails a single CR to listen to

the spectrum in order to reveal the presence of ongoing PU transmissions

or, equivalently, the primary channel idle time intervals.

Prior knowledge of the PU signal features might not be available and,

thus, CR system needs to resort to less efficient detection techniques. Tak-

ing into consideration also transceiver complexity concerns, the non-coherent

energy detector [60] has been vastly employed as a building block for spec-

trum sensing algorithms. See, e.g., [61], and [62], where a bank of energy

detectors was used to sense a large swath of bandwidth. Also, see [63], where

a sequential sensing algorithm was developed for OFDM-based CR systems.

Conversely, if prior information on the signal waveform or statistical proper-

ties of the PU signals is available, alternative techniques based on coherent

matched-filter detection [61] or feature detection [64] can be devised.

At the expense of increased communication overhead among CRs, coop-

erative sensing schemes can achieve significantly improved performance rela-

tive to single-CR sensing [62], [65], [66]. Conceivably, through fusion of local

measurements, cooperative sensing can collect the spatial diversity provided

by different propagation distances and fading experienced by the PU-to-CR

channels. Thus, the hurdle represented by the fading-induced “hidden ter-

minal” problem, which affects the performance of single-CR sensing, can be

effectively overcome [67].

In this cooperative sensing context, a weighted sum of the power mea-

surements was used as a test statistic at the fusion center (FC) in [68]

in order to maximize the probability of detecting available primary bands.

However, PU-to-CR channel gains were assumed to be mutually uncorre-

lated, and thus spatial correlation of observations across CR nodes was not

accounted for. In [67], the sensing decisions made by individual CRs were

combined at the FC using a linear-quadratic fusion rule, which takes into

account correlated observations. However, the signal-to-noise-ratios (SNRs)

of all channels were assumed to have identical means, which may not be

realistic.

Recently, the sensing vision has advocated the utilization of the spa-

tial dimension besides the temporal and frequency ones. Thus, interest has

grown in spatio-temporal spectrum re-use techniques, where CR transmis-
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sions are permitted as long as the SINR requirements of the PU receivers

are satisfied thanks to attenuation in the propagation paths [15], [32]. It is

thus clear that primary and secondary devices can coexist in the same time

instant and deployment area provided that any ongoing PU transmission is

protected, i.e., spectrum holes are filled in time and space in an underlay

fashion.

Toward this direction, initial efforts have been devoted to construct PSD

maps, as explained in the previous chapter. PSD maps portray the ambi-

ent RF power distribution in space, time, and frequency and provide vivid

description of which region in the area of interest is “crowded” in terms of

RF interference caused by PUs. Thus, areas that must be avoided by the

CR transceivers. To reconstruct such interference atlas starting from raw

power measurements, a spatial interpolation technique called Kriging [69]

was employed by [33] and [70]; however, time-varying PU activities are not

accounted for, being maps obtained in a batch setup. In [40], a smooth

PSD map was computed using the method of splines; compared to [33]

and [70], [40] has the well-appreciate merit of accounting for shadowing

propagation effects. However, these works cannot cope with time-varying

channel gains.

In this chapter, a cooperative CR sensing scheme is developed, in which

PU positions and transmit powers are tracked by exploiting raw power mea-

surements obtained via energy detection in the area where the CR network

is deployed.

First, a parsimonious system model accounting for the thin presence of

active PU transmitters in the same area, which happens due to well-known

mutual interference concerns, is stated. The parsimony in modeling the

spatial distribution of the simultaneously active PUs naturally leads to the

formulation of a sparse regression problem, which is to be collaboratively

solved by the CRs in order to accomplish to the sensing task. Motivated by

recent advances in compressive sampling [71], this underlying sparsity was

exploited to estimate transmission powers and the positions of an unknown

number of active PUs in [39]. Here, this approach is considerably broad-

ened in order to track time-varying PU activities; also, the CG maps are

pragmatically incorporated to enhance the performance of the algorithm.
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For completeness, a high-level introduction to sparse regression is briefly

reported in 4.1.2 along with the main machinery that will be employed in

this chapter to devise the sparsity-cognizant PU state tracker.

Motivated by scalability and robustness concerns, a distributed version

of the PU state tracker is also developed. Based on the ADMoM, the dis-

tributed algorithm is provably convergent to the solution of its centralized

counterpart and entails only local message-passing among neighboring nodes

in the CR network.

PSD maps cannot be used by the CR transmitters to prevent disruption

to the existing PU links in a succeeding power allocation phase. In fact,

in addition to coping with time-varying environments, the latter constitutes

the major complementary information provided by CG maps that is not

available with PSD maps. To allow aggressive opportunistic reuse of the

spectrum resources in a non-intrusive manner, CG cartography is exploited

to reconstruct the PSD map of the primary system and the interference

map of the CRs; from the former, which can be obtained (and tracked)

using the estimated locations and transmission powers of the PUs, the PU

coverage area can be extracted. Remarkably, CG cartography represents a

bright means for sidestepping the time-invariant disc-shaped simplification

of coverage and interference regions that would be obtained by relying on a

path loss-only propagation model.

Coverage area and (potential) interference map can then be used to

compute the maximum interference-free transmit-power (MIFTP) [32] that

a CR transmitter can afford; i.e., the maximum value of the transmission

power such that the interference constraint that protects any PU receiver is

observed.

Before proceeding with the problem formulation, sparse linear regression

problems along with the techniques for their solution used in the ensuing

sections are briefly introduced.

4.1.2 Sparse linear regression

Sparse linear regression is a topic of intense research in the last decade, mo-

tivated by the sparsity inherent to a plethora of natural as well as man-made
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signals and systems. Just to make few examples, exploiting the sparsity of

the underlying model has vital importance in applications as diverse as im-

age compression [72], signal decomposition using overcomplete bases [73],

and, entering in the wireless communications context, estimation of wireless

multipath channels [74].

Then, consider the classical setup for linear regression comprising a real-

valued p× 1 input vector h := [h1, . . . , hp]T , a scalar response y ∈ R, and a

linear approximation to the regression function E[y|h], namely, f(h) = hTβ,

with β := [β1, . . . , βp]T the vector of model coefficients. Also, consider a

training data set {yn,hn}Nn=1, where n is the sampling index. The vector

β is sparse if condition ‖β)‖0 � p holds, where ‖β‖0 := |supp(β)| is the

`0-(pseudo-)norm of vector β. Then, given the training data set, the model

parameter vector β is to be estimated according to a given criterion.

The most popular criterion for estimating β is the least-squares (LS)

which however fails to provide a parsimonious model estimate where only

the prominent predictor variables must be selected and, furthermore, often

times yields unsatisfactory prediction accuracy. The least-absolute shrink-

age and selection operator (Lasso), which combines the features of subset

selection and ridge regression, was proposed to overcome the aforementioned

limitations of the LS [71]. Note that subset selection and ridge regression

address the unawareness of a sparse model parameter vector and the unsat-

isfactory prediction accuracy of the LS separately. See, also, [73], where the

term basis pursuit denoising was coined.

Define the N × 1 observation vector y := [y1, . . . , yN ]T and the N × p
(input) regression matrix H := [h1, . . . ,hN ]T . Then, the Lasso estimator is

the minimizer of the following non-smooth convex optimization problem:

β̂ = arg min
β

1
2
‖y −Hβ‖22 + λ‖β‖1 (4.1)

where ‖β‖1 :=
∑p

i=1 |βi| is the `1-norm of the vector β, and λ > 0 is a

tuning parameter that controls the sparsity of the solution. Here, the `1-

norm, which is a regularization term that augments the LS cost, places itself

as a cornerstone for lassoing the non-zero support of β. The parameter λ

is typically chosen via model selection techniques such as cross-validation;
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see, e.g., [75]. Note that the Lasso has well-documented merits in sparse

problems also in case of under-determined linear systems, i.e., when N < p.

In linear regression problems, the training set {yn,hn}Nn=1 is convention-

ally assumed to be fully available at a central processor unit, so that β̂ can

be obtained by solving (4.1) in a batch form. A typical approach for obtain-

ing β̂ in (4.1) is to use a cyclic coordinate descent (CCD) algorithm [76],

which entails cyclic iterative minimization of in the cost in (4.1) with respect

to one entry of β per iteration cycle. Denote as JLasso(β) the cost in (4.1);

also, denote as β(j)(N) the solution at time N (after acquisition of the entire

training set) at iteration j. Then, the CCD entails an update of the i-th

entry of β at iteration j by solving the following problem

β̂
(j)
i (N) = arg min

β
JLasso([β̂(j)

1 (N), . . . , β̂(j)
i−1(N), β,

β̂
(j−1)
i+1 (N), . . . , β̂(j−1)

p (N)]) (4.2)

for i = 1, . . . , P . Basically, at the j-th cycle of the CCD algorithm each

coordinate βi, i = 1, . . . , p, is optimized by keeping fixed the pre-cursor

coordinates indexed by i′ < i to their values obtained at the j-th cycle, and

the post-cursor coordinates i′′ > i to their values at the (j − 1)-st cycle.

Note that the cost in (4.13) is convex, but non-differentiable. However,

in view of the results of [77], convergence of the CCD algorithm for Lasso

problems can be readily established. Also, comparative studies show numer-

ical stability of the algorithm and verify that CCD requires a computational

effort that is similar to the state-of-the-art batch Lasso solvers [76], [78].

4.1.3 Online Lasso

Knowledge of the whole set {yn,hn}Nn=1 is typically assumed in linear regres-

sion problems and, hence, (4.1) can be solved in a batch form. However, in

many practical applications, (possibly noisy) observations may be collected

sequentially in time. In this case, solving (4.1) in a batch fashion would

incur computational burden and memory requirements that grow as time

goes by. Also, the support of the sparse vector β may vary with time along

with the values of its nonzero entries.

To overcome these issues, a time-wighted (TW) Lasso was devised in [79],
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which ensures recursive estimation and tracking of possibly time-varying

sparse signals based on sequentially gathered observations. Specifically,

upon denoting as µN,n ∈ (0, 1] a possibly time-varying forgetting factor,

the TW-Lasso is the minimizer of the following convex problem:

β̂(N) = arg min
β

1
2

N∑
n=1

µN,n
(
yn − hTnβ

)2
+ λN‖β‖1 (4.3)

where the sparsity-encouraging parameter λN is also allowed to vary with

the time index N . For future use, denote as JTWL
N (β) the cost function

in (4.3), where the sub-script N stresses the time variability of the cost

function. The TW-Lasso (4.3) offers adaptability and tracking capability

but, still, it requires to solve a convex program as a new datum is acquired,

being the solution of (4.3) not available in closed form.

To cope with the possibly high computational burden demanded by (4.3)

and to address the need for a real-time signal processing capability, [79] in-

troduced the online coordinate descent (OCD) algorithm, an adaptive coun-

terpart of the batch CCD Lasso where a new observation is incorporated at

each iteration of the algorithm. In other words, the iteration index j in the

CCD is replaced by the time index N in OCD.

For notational convenience, let us express the time index as N = kp+ i,

with i ∈ {1, . . . , N} indexing the entry of β̂(N) updated at time N , and

k = dNp e − 1 representing the number of times that the i-th entry β̂i(N)

of β̂(N) has been updated. Then, the online coordinate descent update can

be expressed as

β̂OCD
i (N) = arg min

β
JTWL
N ([β̂OCD

1 (N − 1), . . . , β̂OCD
i−1 (N − 1), β,

β̂OCD
i+1 (N − 1), . . . , β̂OCD

p (N − 1)]) . (4.4)

Note that, in the update (4.4) of entry β̂OCD
i (N) at time N , the coordi-

nates {β̂OCD
i′ (N − 1)}i−1

i′=1 have been updated k + 1 times, whereas entries

{β̂OCD
i′ (N − 1)}pi′=i+1 have been updated k times.
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Next, upon defining the following quantities

R(N) :=
N∑
n=1

µN,nhnhTn = µN,NR(N − 1) + hNhTN (4.5)

r(N) :=
N∑
n=1

µN,nynhTn = µN,Nr(N − 1) + yNhTN (4.6)

which can be computed recursively, and neglecting constant terms, JTWL
N (βi)

can be re-written as

JTWL
N (βi) =

1
2
Ri,i(N)β2

i − r̃i(N)βi + λN |βi| (4.7)

where Ri,j(N) and ri(N) denote the (i, j)-th entry of R(N), and the i-th

entry of r(N), respectively, and

r̃i(N) := ri(N)−
p∑

j=1,j 6=i
Ri,j(N)β̂OCD

j (N − 1). (4.8)

Then, since (4.4) is a scalar optimization problem, the solution β̂OCD
i (N) is

obtained in closed form as [79]

β̂OCD
i (N) =

sgn(r̃i(N))
Ri,i(N)

[r̃i(N)− λN ]+ (4.9)

where [a]+ := max{a, 0} enforces convergence to a sparse solution and sgn(·)
is the sign function.

The OCD Lasso will be considered in the ensuing sections as a building

block for the proposed spectrum sensing algorithm, upon adapting it to the

problem at hand.

4.2 Problem Formulation

Consider again a set of Nr CRs located in A and assume, as in the previous

chapter, that their locations {xr ∈ A}Nrr=1 are known to one another. The

CRs cooperate in order to monitor the activity of an incumbent PU system.

In lieu of prior information on the PU signal characteristics, and motivated

by low-complexity considerations, assume that the CRs employ non-coherent

energy detectors to detect the presence of PU signals [60], [61]. Suppose
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that Np PU transmitters (sources) are located at Sp := {xp ∈ A}
Np
p=1. Nei-

ther the number of PU transmitters nor their positions are known to the

CRs.

Recall that gx→xr(t) denotes the averaged channel gain1 (with the small-

scale fading averaged out) from an arbitrary position x ∈ A to CR r at

time t. Assuming that the PU signals are statistically independent, the

receive-power in the band of interest measured by CR r at time t is given by

πr(t) =
Np∑
p=1

gxp→xr(t)pp(t) + zr(t), r = 1, 2, . . . , Nr (4.10)

where pp(t) is the transmit-power of the PU located at xp at time t, and zr(t)

the receiver noise at CR r at time t with mean zero and variance2 σ2
z .

Consider a set of Ns candidate PU source locations S := {xs ∈ A}Nss=1.

Without prior knowledge of the potential PU positions, S can be formed

simply by discretizing the area A into a set of equidistant grid points. As-

sume that Sp ⊂ S, as the grid can be designed sufficiently dense to incor-

porate the actual locations of the PUs. Let p(t) := [p1(t) . . . pNs(t)]T ,

ps ∈ R+ for all s, where ps(t) > 0 implies presence of an active PU trans-

mitter at location xs at time t, while ps(t) = 0 the absence of the same.

With gr(t) := [gx1→xr(t) . . . gxNs→xr(t)]T , the power measurement equa-

tion (4.10) can be compactly re-written as

πr(t) = gTr (t)p(t) + zr(t), r = 1, 2, . . . , Nr. (4.11)

Since the number of active transmitters over the same spectral band in a

given geographical area is limited due to mutual interference concerns [80],

the number of non-zero entries of p(t) at a given time t is far smaller than

Ns for large Ns, i.e., for sufficiently dense grid points. Thus, the vector p(t)

is sparse, i.e., Ns � Np holds.

Motivated by the recent advances in sparse linear regression, as briefly

discussed in sections 4.1.2 and 4.1.3, the spectrum sensing problem has been

1Henceforth, the analysis applies on a per frequency f basis; but f is dropped for

notational brevity.
2When all the PUs are silent, i.e., pp(t) = 0 for all p = 1, . . . , Np, zr(t) is restricted to

take only non-negarive values, being an error component affecting a power.
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formulated as a sparse regression problem with an `1-norm-based regulariza-

tion term in [39]. This formulation is considerably broadened here in order

to account for not only for time-varying PU activities but also for spatio-

temporal shadow fading propagation effects via the use of the CG maps. In

order to track the time-varying PU activities, the following time-weighted

non-negative Lasso formulation is considered:

p̂(t) = arg min
p�0

[
1
2

t∑
τ=1

µt−τ
Nr∑
r=1

(
πr(τ)− gTr (τ)p

)2
+ λt‖p‖1

]
(4.12)

where µ ∈ (0, 1] denotes the forgetting factor and λt > 0 is the sparsity-

encouraging parameter. Note that for λt = 0, (4.12) boils down to the cost

function of the recursive LS (RLS) [79].

Albeit non-differentiable, problem (4.12) is convex; thus, it can be solved

efficiently using standard quadratic programming iterations. However, solv-

ing it in a batch fashion would incur considerable overhead in terms of

computational complexity and memory requirement. Thus, adaptive online

algorithms are developed in the ensuing section, both in centralized and

distributed formats.

4.3 Online PU State Tracker

4.3.1 Centralized algorithm for state tracking

In a centralized setup, the power measurements and the CG estimates from

all cooperating CRs are collected at a central unit, also known as fusion

center (FC). The central processing unit may be be either one of the CR

nodes, or a separate control node.

To track PU activities centrally at the FC, one can employ the adaptive

OCD-Lasso explained in section 4.1.3. Recall that OCD performs cyclic

iterative minimization of the TW-Lasso cost, with respect to one entry of p

per iteration. Here, OCD-Lasso is employed upon properly adapting it to

the vector observation case, and by imposing the non-negativity constraints

on the PU transmission powers.

For the sake of notation commodity, express the time index as t = iNs+

n, with n ∈ {1, . . . , Ns} corresponding to the entry of p̂(t) updated at time t,
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and i = d t
Ns
e−1 representing the number of times that the n-th entry p̂n(t)

of p̂(t) has been updated. With Jt(p) denoting the objective function of the

optimization problem in (4.12), the cyclic coordinate descent update can be

expressed as

p̂n(t) = arg min
p̂n≥0

Jt([p̂1(t− 1), . . . , p̂n−1(t− 1),

p̂n, p̂n+1(t− 1), . . . , p̂Ns(t− 1)]) (4.13)

p̂j(t) = p̂j(t− 1) ∀j 6= n. (4.14)

Now define

R(t) :=
t∑

τ=1

µt−τ
Nr∑
r=1

gr(τ)gTr (τ) (4.15)

r(t) :=
t∑

τ=1

µt−τ
Nr∑
r=1

πr(τ)gr(τ) (4.16)

which can be recursively updated as

R(t) = µR(t− 1) +
Nr∑
r=1

gr(t)gTr (t) (4.17)

r(t) = µr(t− 1) +
Nr∑
r=1

πr(t)gr(t). (4.18)

Then, the update in (4.13) is equivalent to

p̂n(t) = arg min
p̂n≥0

1
2
Rn,n(t)p̂2

n − r̃n(t)p̂n + λt|p̂n| (4.19)

where Rn,j(t) and rn(t) denote the (n, j)-th entry of R(t), and the n-th

entry of r(t), respectively, and

r̃n(t) := rn(t)−
Ns∑

j=1,j 6=n
Rn,j(t)p̂j(t− 1). (4.20)

Being a scalar optimization problem, the minimization problem (4.19) ac-

cepts a closed-form solution, namely:

p̂n(t) =
[r̃n(t)− λt]+
Rn,n(t)

. (4.21)

Note that equation (4.21) amounts to a soft-thresholding operation that sets

to zero inactive entries. It is thus clear that possible changes in the support

of p as time goes by can be caught.
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4.3.2 Distributed algorithm for state tracking

In certain cases, a distributed algorithm may be more desirable than a cen-

tralized implementation, due to scalability and robustness issues. A dis-

tributed algorithm does not require all the measurements to be collected at

a single processor, but rather performs consensus-based in-network process-

ing, which requires only local message-passing among single-hop neighboring

nodes in the CR network.

Recall from the previous chapter that Nr ⊂ {1, . . . , r − 1, r + 1, . . . , Nr}
denotes the set of one-hop neighbors of CR r. Also, assumed that the links

in the CR network are bi-directional; i.e., % ∈ Nr implies r ∈ N%. Fol-

lowing the approach pursued in section 3.4, define local copies pr(t) :=

[pr,1(t), . . . , pr,Ns(t)]T , r = 1, . . . , Nr, of the global vector p(t) and solve a

constrained optimization problem where local copies in the one-hop neigh-

borhood are enforced to be coherent; i.e., constant. Under the assumption

that the network is connected, i.e., that there are paths from any node in

the network to any other nodes, the localized problem is equivalent to the

original centralized problem.

Specifically, consider the coordinate descent update at time t for the n-

th coordinate of p̂(t) given in (4.13). Define the per CR (i.e., local) cost

function Jr,t(pr) as [cf. (4.12)]

Jr,t(pr) :=
1
2

t∑
τ=1

µt−τ
(
πr(τ)− gTr (τ)pr

)2
+
λt
Nr
||pr||1. (4.22)

Then, the following formulation, which is equivalent to (4.13), is amenable

to distributed implementation:

{p̂r,n(t)}Nrr=1 = arg min
p̂r,n≥0,
r=1,...,Nr

Nr∑
r=1

Jr,t([p̂r,1(t− 1), . . . ,

p̂r,n−1(t− 1), p̂r,n, p̂r,n+1(t− 1), . . . , p̂r,Ns(t− 1)]T )

subject to p̂r,n = p̂%,n, ∀% ∈ Nr, r = 1, 2, . . . , Nr. (4.23)

Using the ADMoM, a solver of (4.23) will be devised next, which con-

verges to to the solution of (4.13)–(4.14) using only local message-passing.

To this end, and similar to the centralized algorithm, define the following
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quantities

Rr(t) :=
t∑

τ=1

µt−τgr(τ)gTr (τ) = µRr(t− 1) + gr(t)gTr (t) (4.24)

rr(t) :=
t∑

τ=1

µt−τπr(τ)gr(τ) = µrr(t− 1) + πr(τ)gr(t) (4.25)

r̃r,n(t) := rr,n(t)−
Ns∑
n′=1
n′ 6=n

Rr,n,n′(t)p̂r,n′(t− 1) (4.26)

where Rr,n,n′(t) and rr,n(t) denote the (n, n′)-th element of Rr(t) and the

n-th entry of rr(t), respectively. Note that the computation of Rr(t), rr(t)

and r̃r,n is performed locally, and does not require any message passing

between nodes. Then, at time t, each CR r performs the following updates

iteratively:

p̂(j+1)
r,n (t) =

[
r̃r,n(t)− λt

Nr
− ζ(j)

r + c
(
|Nr|p̂(j)

r,n(t) +
∑

%∈Nr p̂
(j)
%,n(t)

)]
+

Rr,n,n(t) + 2c|Nr|
(4.27)

ζ(j+1)
r = ζ(j)

r + c

|Nr|p̂(j+1)
r,n (t)−

∑
%∈Nr

p̂(j+1)
%,n (t)

 (4.28)

where j is the iteration index, c > 0 is a given constant, and |Nr| denotes

the cardinality of the set Nr. To compute p̂(j+1)
r,n (t), CR r must collect from

its one-hop neighbors, the power estimates p̂(j)
%,n(t), % ∈ Nr, of the previous

iteration. These messages are exchanged over a dedicated control channel.

The following proposition states the convergence property of the dis-

tributed algorithm.

Proposition 4.3.1. By performing the updates in (4.27) and (4.28) at each

CR r ∈ {1, 2, . . . , Nr} per iteration j = 0, 1, . . . , the local copies p̂(j)
r,n(t) for all

r ∈ {1, 2, . . . , Nr} converge and coincide with p̂n(t) of (4.13) as j →∞, for

any positive c and any initialization for {p̂(0)
r,n(t)}, provided that the network

is connected, and the links in the network are bi-directional.

Proof: See section 4.5. 2

The overall centralized and distributed spectrum sensing algorithms are

schematized in Table 4.1.
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0: Initialize t = 0.

1: Acquire measurements {πr(t)} at CR r ∈ {1, . . . , Nr}.
2: [Centralized Algorithm]

Collect the measurements {πr(t)}Nrr=1 at an FC.

Update R(t) and r(t) by (4.15) and (4.16).

Compute p̂n(t) by (4.21).

2’: [Distributed Algorithm]

Set p̂(0)
r,n(t) = p̂r,n(t) for all r.

Update Rr(t) and rr(t) by (4.24) and (4.25), for all r.

For j = 0, 1, . . . , NI − 1

For each CR r ∈ {1, 2, . . . , Nr}
Collect from the neighbors p̂(j)

%,n(t), % ∈ Nr.
Compute p̂(j+1)

r,n (t) from (4.27).

Next r

Next j

Set p̂r,n(t) = p̂
(NI)
r,n (t) for all r.

3: Increment t and go to Step 1.

Table 4.1: Summary of the spectrum sensing algorithms.
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4.3.3 Incorporating CG atlases

The proposed sensing algorithms entails utilization of the CG maps in the

updates (4.15)–(4.16) and (4.24)–(4.25) of the centralized and distributed

algorithms, respectively. Then, the estimates {ĝr(t)} of the CG vectors

{gr(t)} replace the ideal quantities in the aforementioned recursions.

CG atlases can be effectively employed in order to avoid the utilization

of a crude path loss-only propagation model and, thus, enhance tracking and

localization accuracy of the sensing algorithm. Note that, in a challenging

scenario such as the hierarchical spectrum access, the training signals re-

quired for CG update purposes have to respect the PU-CR hierarchy. Hence,

CG measurements can be acquired only when the PUs are silent; some mea-

surements can be acquired if no PU activity is present in a sub-region of A,

as it will be shown in chapter 5.

CG map update without current measurements being available was ad-

dressed in section 3.3.3; it was shown that the KKF-based model safely falls

back to the path loss-only model [cf. (3.6)] if measurements can not be ac-

quired for a prolonged period of time. However, it should be noted that in

the usual deployment scenarios for CRs, the probability of PU presence is

very low. Moreover, shadowing typically varies very slowly compared to the

coherence time of the PU activities. These considerations indicate that a

prolonged outage of measurements should be a rare event.

4.3.4 Numerical results

Numerical tests are now performed to verify the performance of the pro-

posed sensing algorithms. Also, the profit in terms of power estimation and

localization offered by the algorithms when CG maps are employed will be

emphasized.

The CR network of Nr = 20 nodes used in the previous chapter is consid-

ered again. Here, the CRs’ communication range is set to 150m, leading to

the connected network shown in Fig. 4.1. Also, the detection range, which

is used for the CG measurements, is set to 200m. Two PUs are involved at

positions marked by the triangles in Fig. 4.1, with the time-varying activi-

ties depicted in Fig. 4.2. The square dots represent Ns = 36 grid points. It
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Figure 4.1: PU state tracking. Simulation scenario.
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Figure 4.2: PU state tracking. PU activity patterns.

is assumed that the PUs transmit at a constant power of 1W when active.

The path loss parameters were set to {G0,xj→xr
= 0} dB and η = 3.

The measurement noise variance σ2
ε was set to 10, and K = 15 orthonor-

mal Legendre polynomials were used for the basis expansion. To generate

the space-time shadow fading field for each CR, the model in chapter 3

was adopted and the same simulation parameters were used. The generated

shadow fading has standard deviation σS = 10 dB, coherence distance of ap-

proximately 70m, and coherence time corresponding to 9.9 KKF iterations.

The CG map and the PU state tracking are performed in two different

time scales, since the shadow fading evolves very slowly with the coherence
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time on the order of seconds to minutes [22], while agility is desired in de-

tecting the changes in spectrum occupancy. In the experiments, 40Ns OCD-

Lasso iterations were performed between consecutive map updates; i.e., the

Lasso iteration index tLasso = 40Nst, where t is the KKF iteration index.

However, if the spectrum is sensed to be occupied, the training signals cannot

be transmitted; in this case, the map was updated open-loop, as described

in Section 3.3.3.

Remark 4.3.2. Actual design of the PU detection strategies goes beyond

the scope this work, and all the numerical tests assume that the detection

is practically error-free. There are a couple of justifications for such an

idealization. In CR systems, the miss detection, which is the event of not

identifying active PU transmissions, must be strictly regulated to protect the

licensed PU systems. In other words, no matter which detector is selected, it

has to be designed to yield very low probability of miss detection. Therefore,

the implication of miss detection to the map tracking performance would be

negligible. On the other hand, false alarms, which are the cases where

the detector erroneously reports the presence of active PUs, may affect the

map tracking performance through missed measurements. However, as was

discussed in section 3.3.3, the performance degradation is lower-bounded

by the schemes based on the path-loss-only map. In fact, the PU tracking

performance is hardly affected even if the path loss-only map is used, when

there are no active PUs. 2

To track the PU state centrally at the FC, the forgetting factor µ =

0.9 was used, and weighting factor λt for the `1-penalty term was set as

suggested in [79] to

λtLasso = σz

√√√√2 · (log10Ns)
tLasso∑
τ=1

µ2(tLasso−τ) (4.29)

where tLasso is the iteration index for the OCD-Lasso algorithm, and σ2
z =

10−10 was used.

In Fig. 4.3, the average performance of the centralized algorithm is con-

sidered. Specifically, the mean-squared error (MSE), i.e., E{‖p(t)− p̂(t)‖22},
is plotted in Fig. 4.3 and it was computed by averaging over 20 independent
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shadow fading realizations. The trajectories of the PU state estimate MSE

are shown for four different cases:

i) perfect knowledge of the grid-to-CR CGs, i.e., Ĝxj→xr(t) = Gxj→xr(t),

∀xj ∈ S, ∀ r, t;

ii) by resorting to the path loss-only model, which sets Ŝxj→xr(t) = 0,

∀xj ∈ S, ∀ r, t;

iii) using the CG maps estimated via KKF;

iv) employing the plain recursive least-squares (RLS) and the estimated

CG maps.

With the latter trajectory, which is obtained by setting λt = 0, the merits

of the sparsity-exploiting technique can be stressed.

The plain RLS, which does not exploit sparsity of the estimand is seen to

yield much higher MSE in the whole considered sensing interval. Note that,

compared to the sparsity-aware algorithm proposed here, the error of the

plain RLS is more pronounced when both PUs are silent. In this case, the

RLS algorithm essentially reports the presence of low-power PUs, which may

cause false alarm events. Turning the attention to the proposed algorithm,

it is noticed that by exploiting the estimated CG maps, the estimation

performance of the PU power levels is significantly improved with respect

to a crude path loss-only model. This in turn may have vital importance

when it comes to consider spatial reuse techniques, which performance may

be significantly compromised when CRs fail to accurately estimate the PU

power levels and locations.

Fig. 4.3(b) plots the mean spurious power (MSP), which is the MSE

evaluated only at those grid points where PUs are absent. The MSP, which

should ideally be zero, is an index that assesses the accuracy in localizing the

active PUs of the proposed centralized algorithm. Again, the KKF-based

method exhibits superior performance with respect to the path loss-based

method, which yields large spurious power, thus indicating that the positions

of the RF emitters are not correctly identified.

Fig. 4.4(a) depicts the trajectories for the MSE when the distributed

algorithm is employed. The parameter c = 0.1 was used and the number
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Figure 4.3: Average performance of the centralized algorithm and the plain RLS
algorithm. (a) MSE evaluated over all grid points. (b) MSP evaluated at the grid
points where the PU activity is absent.
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Figure 4.4: Average performance of the distributed algorithm. (a) MSE evaluated
over all grid points. (b) MSP evaluated at the grid points where the PU activity is
absent.
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of iterations to reach consensus on the power estimates was set to NI =

50. Comparing Fig. 4.4(a) with Fig. 4.3(a), it is clear that the distributed

algorithm achieves tracking performance very close to that of its centralized

counterpart, even if the number of iterations to reach consensus was kept

substantially small to address practical complexity concerns.

Fig. 4.4(a) shows the MSE curves for the distributed algorithm when:

i) the channel is perfectly known; ii) the path loss-only model is adopted;

and iii) the KKF-based CG map estimates are utilized. The MSE is seen

to be a bit larger than that of the centralized case when all the PUs are

silent. This is because the number of consensus iterations NI is sometimes

insufficient to bring the local estimates to convergence. In other words, there

is a trade-off between message-passing overhead and tracking performance

in the distributed algorithm. In Fig. 4.4(b), the trajectories corresponding

to the MSP are reported. In this case, it is observed that after t = 203,

there is difference in the convergence speed of the three cases. For example,

it is seen that it takes longer for the path loss-based scheme than for the

KKF-based scheme for the same number of iterations NI .

4.4 System coverage and interference maps

In this section, the usefulness of the CG map information is demonstrated

when it comes to study resource allocation techniques for CR networks.

In order to make opportunistic spatial reuse of the spectrum, the unused

spectral resources, or spectrum holes in the space domain [15] have to be

detected. In this context, the PSD maps provide vivid description of which

region in the area of interest is crowded in terms of RF interference, and

must hence be avoided by the CR transceivers. In other words, the coverage

region of the primary system can be extracted from the PSD map.

Once the PU coverage region is obtained, the CG atlases can be used

even to compute the range of power levels that can be used by the CR

transmitters to prevent disruption to the existing PU links. In addition to

coping with time-varying environments, CG maps provide vital information

about the CR-to-PU CGs, which is not available with PSD maps [33], [81],

allowing PU protection under shadowing propagation effects.
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4.4.1 Coverage map estimation

Once the information on the RF environment is acquired, the CR network

can perform resource allocation to make the most use of the available trans-

mission opportunities. Here, it is assumed that power control is employed

so as to restrict the interference exposed to the PU links. For simplicity,

suppose that a single PU transmitter has been detected to be active at lo-

cation xs at transmit-power level ps. The exposition can be easily extended

to the multi-PU case.

However, the positions of the PU receivers are assumed unknown. To

reveal the potential locations where PU receivers could reside, consider es-

timating the coverage region [82, Ch. 3] of the PU system. To this end, let

Π(x) denote the averaged power in dB that is received at location x ∈ A
due to the PU transmission, which can be expressed as [cf. (3.7)]

Π(x, t) = Ps +G0,xs→x − 10η log10 ‖xs − x‖2 + Sxs→x(t) (4.30)

where Ps := 10 log10 ps. Using a path loss-based model, Π(x) can be modeled

as Gaussian with mean Ps + G0,xs→x − 10η log10 ‖xs − x‖2 and variance

σ2
Sxs→x

; recall that σ2
Sxs→x

is the variance of the shadow fading, a parameter

that might be available from measurements campaigns and, usually, it does

not change over the links [26].

Since a PU receiver can reliably decode the desired message only if the

received power level exceeds a threshold Πmin (dB), one can compute the

probability of coverage that a PU receiver at location x would experience as

Pcov(x) := Pr{Π(x) ≥ Πmin}

=Q
(

Πmin − Ps −G0,xs→x + 10η log10 ‖xs − x‖2
σSxs→x

)
(4.31)

where Q(·) is the standard Gaussian tail function. Conversely, with the

estimated CG map of the PU {Gxs→x(t)}, Π(x, t) can be modeled as Gaus-

sian with mean Ps +G0,xs→x− 10η log10 ‖xs− x‖2 + Ŝxs→x(t) and variance

var{Sxs→x(t)|S̆1:t}, which is given by (3.33), with x and y replaced by xs
and x, respectively. Thus, the probability of coverage that a PU receiver at
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location x would experience becomes

Pcov(x, t) =Q

Πmin − Ps −G0,xs→x + 10η log10 ‖xs − x‖2 − Ŝxs→x(t)√
var{Sxs→x(t)|S̆1:t}


(4.32)

and it is now allowed to vary with the time index t, being Ŝxs→x(t) and

var{Sxs→x(t)|S̆1:t} time-varying quantities.

The PU coverage region can be defined as the set of locations in A, for

which the coverage probability is no smaller than a threshold νs; i.e.,

Cs(t) := {x ∈ A|Pcov(x, t) ≥ νs}. (4.33)

Note that, if the CG map is not used, Cs is a time-invariant disc centered at

xs. The CG map estimate thus provides an invaluable means to overcome

this over-simplification, and portray the coverage region more accurately.

Also, the temporal evolution of the coverage region can be caught.

4.4.2 Maximum transmit power estimation

In order to maximize its own transmission rate, the CR transmitter needs to

maximize the transmit-power, while adhering to the interference constraints.

The CG map can provide valuable information in this set-up, allowing one

to predict the MIFTP [32] that the CR transmitter can afford, based on the

potential locations of the PU receivers.

To obtain the MIFTP for CR transmission, note first that the power

received at position x due to a CR transmitter located at xr employing

transmit-power Pr (dB) can be characterized as a Gaussian random variable

with mean Pr +G0,xr→x−10η log10 ||xr−x||2 and variance σ2
Sxr→x

if a path

loss-only model is employed. Thus, the probability that the CR interference

at position x exceeds a prescribed threshold Imax is given by

Pint(x) = Q

(
Imax − Pr −G0,xr→x + 10η log10 ||xr − x||2

σSxr→x

)
. (4.34)

and it is a time-invariant quantity. By using the CG map of the CR, the

power received at position x can be characterized as a Gaussian random

variable with mean Pr+G0,xr→x−10η log10 ||xr−x||2+Ŝxr→x(t) and variance
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var{Sxr→x(t)|S̆1:t}. The probability that the CR interference at position x

exceeds a prescribed threshold Imax then becomes

Pint(x, t) = Q

Imax − Pr −G0,xr→x + 10η log10 ||xr − x||2 − Ŝxr→x(t)√
var{Sxr→x(t)|S̆1:t}

 .

(4.35)

Thus, the CR interference map can be defined as the set of locations in A,

for which the interference probability is no smaller than a threshold νr; i.e.,

Ir(t) := {x ∈ A|Pint(x, t) ≥ νr}. (4.36)

Again, the CG map estimate provides an invaluable means to overcome

a disc-shaped time-invariant simplification of the interference region. The

MIFTP can then be defined as the maximum value of Pr that yields a Pint(x)

no larger than a given outage threshold νr > 0 for all potential receivers in

the PU coverage region; that is,

P ∗r (t) := maxPr subject to Pint(x, t) ≤ νr, ∀x ∈ Cs(t) . (4.37)

Equivalently, P ∗r (t) can be defined as the maximum value for Pr such that

Cs(t) and Ir(t) do not overlap, i.e., Cs(t) ∩ Ir(t) = ∅. Note that constraint

Pint(x, t) ≤ νr can be equivalently re-written as follows:

Pr + Ĝxr→x(t) +Q−1 (νr)
√

var{Sxr→x(t)|S̆1:t} ≤ Imax . (4.38)

Then, the MIFTP can be obtained by solving the following linear program

(LP)

P ∗r (t) := max
Pr

Pr (4.39)

subject to Pr + Ĝxr→x(t) +Q−1 (νr)
√

var{Sxr→x(t)|S̆1:t} ≤ Imax (4.40)

∀x ∈ Cs(t) .

Note that, if CRs transmit in a TDMA fashion, P ∗r (t) in (4.37) guaran-

tees observation of the averaged interference temperature bounds at all the

potential PU receivers. Conversely, if simultaneous CR transmissions are

allowed, the per-CR maximum power P ∗r (t) can be used so as to restrict the

transmission power allocated to the CRs via power control techniques, as it

will be shown in the ensuing chapter 5.
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Remark 4.4.1. If the instantaneous interference caused to the PU system

is a concern, then the estimate of the shadow fading along with the condi-

tional variance carried out by the KKF can be used to compute mean and

variance of the instantaneous dB-scale CGs {Ġxs→x} and {Ġxr→x}, which

can be approximates as Gaussian, as shown in section 3.2 and in the ensuing

chapter 5. 2

4.4.3 Numerical example

To illustrate the merits of the CG map in the CR resource allocation prob-

lem, consider again the CR network depicted in Fig. (4.1). Suppose that

only PU 1 is transmitting at Ps = 0dBW, as happens for t > 204 in Fig. 4.2.

A realization of the true received power map Π(x) due to the PU transmis-

sion is depicted using the contour plot in Fig. 4.5(a). In Fig. 4.6(a) there

is another contour plot of the true CG map Gxr→x from the CR located at

xr = (192, 15), see Fig. 4.1. It is noted that the contours are not concen-

tric circles, due to the shadowing effect. Thus, estimating the shadowing

field is essential for efficient CR resource allocation. An estimated version of

Fig. 4.5(a) using the distributed KKF is shown in Fig. 4.5(b). Likewise, the

estimated CG map of the considered CR is depicted in Fig. 4.6. Number of

consensus iterations and ADMoM-related constants were set as in chapter 3.

Based on the estimated CG map, the PU coverage region was estimated

for Πmin = −60dBW and νs = 0.4, which is depicted by round dots in

Fig. 4.7(a). Note that by setting νs < 0.5 yields a conservative characteriza-

tion of the PU coverage region. By setting Imax = −80dB and νr = 0.01, the

MIFTP for the considered CR transmitter was found to be 7.2dBm with the

use of the estimated CG maps. The estimated region in which the interfer-

ence power due to the CR transmission is no less than Imax with probability

at least νr is shown with square dots in Fig. 4.7(a). Note that although the

estimated MIFTP is slightly conservative compared to the true MIFTP of

7.6dBm, it is vastly improved compared to the path loss-only map-based

calculation that yields an MIFTP of only −18.5dBm.

The PU coverage region, as well as the interference region based on

the path loss map is shown in Fig. 4.7(b). It can be seen that the PU
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Figure 4.5: RF power map due to PU transmission
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Figure 4.6: CG map for a CR transmitter.
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coverage region is grossly over-estimated, thus limiting the spatial reuse of

the primary spectrum resources.

4.5 Appendix

The proof of (4.27)–(4.28) and proposition 4.3.1 follows steps that are similar

to those in section 3.6.2. However, as a matter of completeness, and since

the underlying optimization problem involves further challenges such as, e.g.,

non-negativity of the estimand, the complete proof will be reported next.

Then, consider the following equivalent re-formulation of (4.23):

min
p̂r,n≥0, qr,%

%∈Nr, r=1,2,...,Nr

Nr∑
r=1

J̃r,t(p̂r,n)

subject to p̂r,n = qr,% ∀% ∈ Nr, r = 1, 2, . . . , Nr

qr,% = q%,r ∀% ∈ Nr, r = 1, 2, . . . , Nr (4.41)

where J̃r,t(p̂r,n) := Jr,t([p̂r,1(t−1), . . . , p̂r,n−1(t−1), p̂r,n, p̂r,n+1(t−1), . . . , p̂r,Ns(t−
1)]T ), and {qr,%} are auxiliary optimization variables. Problem (4.41) is in

the form to which the alternating direction method of multipliers (ADMoM)

can be applied [57, p. 253].

Specifically, consider the augmented (partial) Lagrangian given by

L({p̂r,n}, {qr,%}, {ξr,%}) =
Nr∑
r=1

J̃r,t(p̂r,n)

+
Nr∑
r=1

∑
%∈Nr

ξr,%(p̂r,n − qr,%)

+ c

Nr∑
r=1

∑
%∈Nr

(p̂r,n − qr,%)2 (4.42)

where {ξr,%} are the Lagrange multipliers, and c is a positive constant. The

ADMoM procedure updates the primal variables {p̂r,n}, {qr,%} and the dual
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variables {ξr,%}, alternately, as

{p̂(j+1)
r,n } = arg min

{p̂r,n≥0}
L({p̂r,n}, {q(j)

r,%}, {ξ(j)
r,%}) (4.43)

{q(j+1)
r,% } = arg min

qr,%=q%,r,
%∈Nr, r=1,2,...,Nr

L({p̂(j+1)
r,n }, {qr,%}, {ξ(j)

r,%}) (4.44)

ξ(j+1)
r,% = ξ(j)

r,% + 2c
(
p̂(j+1)
r,n − q(j+1)

r,%

)
,

% ∈ Nr, r = 1, 2, . . . , Nr. (4.45)

Proposition 4.2 in [57] implies that the sequence p̂(j)
r,n, j = 1, 2, . . ., generated

by (4.43)–(4.45) converges to the optimal solution p̂r,n(t) of (4.41), for each

r, for an arbitrary initial p̂(0)
r,n and any positive constant c.

It is now shown that the procedure (4.43)–(4.45) can be simplified to (4.27)–

(4.28). First, it is noted that (4.44) can be re-written as

{q(j+1)
r,% } = arg min

qr,%=q%,r,
%∈Nr, r=1,2,...,Nr

−
Nr∑
r=1

∑
%∈Nr

ξ(j)
r,%qr,% + c

Nr∑
r=1

∑
%∈Nr

(p̂(j+1)
r,n − qr,%)2

(4.46)

= arg min
{qr,%}

∑
{(r,%)|%∈Nr,r>%}

{−(ξr,% + ξ%,r)qr,%

+ c
[
(p̂(j+1)
r,n − qr,%)2 + (p̂(j+1)

%,n − qr,%)2
]}

(4.47)

where in the last step the conditions {qr,% = q%,r} and the assumption that

the links are bi-directional are used. It is clear from (4.47) that {q(j+1)
r,% } can

be obtained as

q(j+1)
r,% =

1
2

(
p̂(j+1)
r,n + p̂(j+1)

%,n

)
+

1
4c

(
ξ(j)
r,% + ξ(j)

%,r

)
, (4.48)

% ∈ Nr, r = 1, 2, . . . , Nr.

By substituting (4.48) into (4.45), one obtains

ξ(j+1)
r,% = c

(
p̂(j+1)
r,n − p̂(j+1)

%,n

)
+

1
2

(
ξ(j)
r,% − ξ(j)

%,r

)
, (4.49)

% ∈ Nr, r = 1, 2, . . . , Nr.

Thus, it can be verified that

ξ(j)
r,% + ξ(j)

%,r = 0, % ∈ Nr, r = 1, 2, . . . , Nr. (4.50)
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From (4.50) and (4.48)–(4.49), it follows readily that

q(j+1)
r,% =

1
2

(
p̂(j+1)
r,n + p̂(j+1)

%,n

)
, (4.51)

ξ(j+1)
r,% = ξ(j)

r,% + c
(
p̂(j+1)
r,n − p̂(j+1)

%,n

)
, (4.52)

% ∈ Nr, r = 1, . . . , Nr

Now, consider (4.43), which can be re-written as

{p̂(j+1)
r,n }

= arg min
{p̂r,n≥0}

Nr∑
r=1

J̃r,t(p̂r,n) +
∑

%∈Nr

ξ(j)r,% p̂r,n + c
∑

%∈Nr

(p̂r,n − q(j)r,%)2

 (4.53)

= arg min
{p̂r,n≥0}

Nr∑
r=1

−r̃r,n +
λt

Nr
+
∑

%∈Nr

ξ(j)r,% − 2c
∑

%∈Nr

q(j)r,%

 p̂r,n

+
(

1
2
Rr,n,n + c|Nr|

)
p̂2

r,n

]
. (4.54)

Clearly, {p̂(j+1)
r,n } can be obtained in closed-form as

p̂(j+1)
r,n =

[
r̃r,n − λt

Nr
−
∑

%∈Nr ξ
(j)
r,% + 2c

∑
%∈Nr q

(j)
r,%

]
+

Rr,n,n + 2c|Nr|
(4.55)

r = 1, 2, . . . , Nr.

Upon defining ζ(j)
r :=

∑
%∈Nr ξ

(j)
r,% , and substituting (4.51) to (4.55), (4.27)

is obtained. Finally, (4.28) follows from the definition of ζ(j)
r and (4.52).
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Chapter 5

Power Allocation Under

Channel Gain Uncertainty

Due to lack of mechanisms between CR and PU systems, sensing algorithms

face difficulty in acquiring CR-to-PU users channels. Moreover, the sensing

algorithms cannot detect silent licensed receivers, which nevertheless have

to be obligatorily protected. To make spatio-temporal spectrum re-use even

in such challenging scenarios, a power control problem with probabilistic in-

terference constraints is thus well-motivated. Based on primary coverage

map and channel gain cartography, the approach presented in this chapter

exploits statistical knowledge of the CR-to-PU channels to maximize a given

secondary network utility function under chance constraints that ensure pro-

tection to any potential licensed user. In addition to the CR-to-PU channel,

the channel between the CR transceivers may contain uncertainty. Then, a

probabilistic approach encompassing channel knowledge uncertainty on both

secondary-to-primary and secondary-to-secondary links is also presented.

5.1 Preliminaries

Compared to the broadly-investigated power control for ad hoc networks [83],

[84], [85], [86], [87], several additional challenges need to be considered for

channel-adaptive resource allocation schemes to be employed by CRs. In

particular, power allocation for underlay (ad hoc) CR networks demands
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for instantaneous CR-to-PU CG knowledge, information that is critical in

order to ensure protection to the licensed PU system from secondary trans-

missions [59], [15] and, thus, effectively reuse the spectrum resources in a

non-intrusive manner.

Recently, power control in an underlay CR scenario has been studied

essentially under the assumption of perfect CR-to-PU CG knowledge. See,

e.g., [88], [89], [90], [91], [92]. The classical problems inherent to ad hoc net-

works such as, e.g., rate maximization [88], [89] and admission control [90]

have been tailored to the application in context, where the additional con-

straint on the amount of interference that would be caused to the PU re-

ceivers must be present. A scenario comprising a single primary link and

a single CR link, i.e., a revisitation of the “Z”-channel, was considered

in [88], [91]; also, a CR transmitter equipped with multiple antennas was

considered in [92]. An ad hoc setting was considered in, e.g., [89] and [90].

Assumptions of perfect knowledge of the instantaneous CGs might be

unrealistic for many practical systems, especially when mobile nodes as well

as ad hoc infrastructure of the CR systems are considered. Recent research

effort has been devoted on adaptive schemes that rely on quantization of

the CG information, where a quantized version of the channel is pragmat-

ically acquired via a limited-rate receiver-to-transmitter feedback link [93].

A robust power control approach encompassing error-corrupted and out-

dated channel estimates was proposed in [94], where cellular networks were

considered. Focusing on the so called “X”-channel, the achievable capac-

ity of a single CR link under interference constraints that protect ongoing

transmissions on a single PU link was analyzed under imperfect channel

gain information in [95]. However, typically due to lack of collaboration

mechanisms between PU and CR systems, especially between PU receivers

and CRs, even the assumption of partial CR-to-PU receiver CG knowledge

might not be adequate in a CR setup.

Reliably detecting the presence of PU transmissions, and estimating the

CR-to-PU channels require considerable effort. More challenging is acquir-

ing passive PU receivers, which do not transmit RF energy but just listen.

Nonetheless, those receivers still need to be protected under the PU-CR

hierarchy. One way to estimate the potential PU receiver locations, and
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eventually their channel gains, is to rely on the idea of channel gain cartog-

raphy. As shown in chapter 4, once the locations of the PU transmitters are

acquired through CR sensing, the channel gain maps allow estimation of the

corresponding PU coverage regions, in which the PU receivers must reside.

Based on location information of the (potential) PU receivers and, pos-

sibly, an estimate of the PU receivers CG maps, the approach pursued here

is to exploit the statistical channel knowledge of the CR-to-PU channels.

Since the wireless channel involves shadow fading as well as small-scale

fading, both sources of uncertainty must be taken into account. As PU

protection constraints must be enforced with high reliability, probabilistic

constraints will be imposed in order to guarantee that the interference power

experienced by PU receivers falls below a tolerable level with a given high

probability.

The randomness of the composite shadowed Nakagami fading can be

well-captured by a log-Normal r.v., as shown in section 3.2. See, also, [42,

Ch. 2],[46] and [47]. Since exact computation of the aggregate interfer-

ence is not tractable due to a lack of closed form expression for the pdf of a

sum of correlated log-Normal r.v.’s, approximation techniques are employed.

Specifically, the sum of the CR interfering signal powers is approximated as

log-Normal through the use of Fenton-Wilkinson method [96]. Although a

multiplicity of methods were proposed to approximate a sum of correlated

log-Normal r.v.’s, the Fenton-Wilkinson method may be the most appealing

approach thank to its accuracy over a wide range of parameters that are

of practical interest [97] and the low computational burden required to get

closed-form expressions for mean and variance of the resultant approximat-

ing log-Normal r.v.

With a statistical characterization of the potential interference that would

be caused to the PUs, a secondary network utility maximization framework

comprising probabilistic constraints on the instantaneous interference power

is proposed. Specifically, specifications about the probability of exceeding a

prescribed interference temperature threshold at the PUs are embraced by

the proposed optimization problem. The resulting chance-constrained net-

work utility maximization problem is non-convex, but can be re-formulated

so that its Karush-Kuhn-Tucker (KKT) solutions are obtained via sequen-
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tial geometric programming (GP). This is remarkable considering the fact

that the power allocation problem with perfect channel knowledge is also

typically non-convex and requires a sequential GP approach [85]. The se-

quential GP formulation can also benefit from the availability of efficient

interior-point solvers [98, Ch. 11] optimized for GPs.

Perfect knowledge of the instantaneous CR-to-CR CGs is required in the

utility maximization process. However, error-corrupted measurements and

missing and/or outdated channel gain estimates may compromise the accom-

plishment of the power control task. Acquisition of instantaneous channel

state information is rendered challenging by, e.g., mobility of the nodes and

fast variation of the CR environment. Even more dramatically, the power

gains might not be even estimated in an hierarchical cognitive setup. In

fact, a prolonged occupancy of the primary bands might render impossible

the communication among all the other secondary devices; or, simply, CRs

might not want to waste precious primary resources by performing a time-

consuming any-to-any time domain multiple access (TDMA)-based channel

training.

To address this case, a robust network utility maximization problem is

considered, where the SINR thresholds for CR links are optimized under

prescribed outage probabilities. Again, the log-normal approximation of

the SINR statistics proves to be vital for tractability of such formulations.

5.2 System Model and Problem Formulation

Consider a CR network comprising K ≤ Nr transmitter-receiver pairs1,

sharing spectrum licensed to a PU system. It is assumed that the locations

of the CR transmitters and receivers are known to the CR system. Let

xk and uk denote the locations of the k-th CR transmitter and receiver,

respectively, where k ∈ {1, 2, . . . ,K}.
In order to make opportunistic use of the spectrum under PU-CR hier-

archy, the CR system first employs spectrum sensing algorithms to detect

1For the sake of exposition simplicity, each CR transmitter is assumed to serve a

unique secondary receiver per time instant; however, generalization to point-to-multipoint

transmissions is straightforward.
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the PU system activity in space and time domains, as the PU state tracker

presented in chapter 4. See also, e.g., [81], [99]. Based on the sensing re-

sults, power control is performed to prevent excessive interference to the PU

system, and to maximize the CR network performance. The CR network is

supposed to operate in a time-block fashion.

Recall from section 3.2 that2 ġxk→uk
denotes the instantaneous CG of

link xk → uk i.e., ġxk→uk
= g0,xk→uk ||xk − uk||−η2 sxk→uk

|hxk→uk
|2. Let

pk ∈ (0, pmax
k ] denote the transmission power of CR k, capped by pmax

k , and

p := [p1, . . . , pK ]T collect the transmit-powers of all K CRs. Let also π̇k

denote the instantaneous received PU signal power as well as other interfer-

ence measured at the k-th CR receiver. Then, the instantaneous signal-to-

interference-plus-noise power ratio (SINR) at CR receiver k can be expressed

as

γk :=
pkġxk→uk∑K

i=1,i 6=k piġxi→uk
+ π̇k + σ2

k

, k = 1, 2, . . . ,K (5.1)

where σ2
k is the receiver noise statistical power at CR receiver k, which can

be in general different from receiver to receiver if the CR network comprises

heterogeneous devices. Define γ := [γ1, . . . , γK ]T .

Denote as U(γ(p)) a continuous (possibly non-concave) CR network util-

ity function. Specifically, the following utility functions are of interest [84].

i) (Weighted) Sum-rate utility:

U(γ(p)) =
K∑
k=1

wk log2 (1 + γk(p)) . (5.2)

with {wk ≥ 0}Kk=1 weighting factors.

ii) Proportional fair utility:

U(γ(p)) =
K∑
k=1

log2 (log2 (1 + γk(p))) . (5.3)

iii) Harmonic-rate utility:

U(γ(p)) =

[
K∑
k=1

1
log2(1 + γk(p))

]−1

. (5.4)

2Hereafter, the time slot index t is dropped for brevity.
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iv) Min-rate utility:

U(γ(p)) = min
k

log2(1 + γk(p)) . (5.5)

Note that, in terms of user fairness, the order is reversed.

If no PUs were present in the area where the CR network is operating,

the power control problem would consist in finding the set of transmis-

sion powers p such that U(γ(p)) is maximized [85], [100]. However, the

CR underlay paradigm envisions an opportunistic spatio-temporal reuse of

the primary bands by the secondary system provided that the amount of

interference caused to any PU receiver is kept below a given prescribed

threshold [59], [15]. Then, consider R (potential) PU receivers located at

{rr}Rr=1 ⊂ A and denote as ir the instantaneous aggregate interference

caused to the PU receiver r due to the incoherent superimposition of K

interfering CR transmissions [46]. Specifically, ir can be expressed as

ir(p) =
K∑
k=1

pkġxk→rr . (5.6)

Remark 5.2.1. A set of R (potential) PU receivers are considered and their

locations are assumed to be known to the CR network. If the knowledge of

{rr}Rr=1 is not directly available, the coverage region of the primary system

can be alternatively considered. See chapter 4. With the estimate of the

PU coverage region close at hand, the set {rr}Rr=1 may be chosen upon dis-

cretizing its boundary. By forcing the interference constraints to be fulfilled

on the boundary, it is essentially guaranteed that potential PU receivers are

not interfered in the whole PU coverage region. 2

If the CR-to-CR channel gains {ġxk→uk
} as well as the CR-to-PU chan-

nel gains {ġxk→rr} were perfectly known to the CR network, the optimal

transmission power vector p that maximizes a given network utility without

causing harmful interference to the PU system would be obtained by solving

(P1) max
p�0

U(γ(p)) (5.7)

subject to pk ≤ pmax
k , k = 1, . . . ,K (5.8)

ir(p) ≤ imax
r , r = 1, . . . , R (5.9)
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where imax
r denotes the maximum interference power that can be tolerated

by PU receiver r. Problem (P1) is in general non-convex; however, as will

be shown later on, a successive convex approximation technique can be

employed to obtain a locally optimal solution efficiently [85].

In consistency with the cognitive radio philosophy, any sort of collabo-

ration between PU system and CRs is not assumed here. As a consequence,

the instantaneous gains {ġxk→rr} are not known at the CR network side and,

thus, problem (5.7) can not be actually solved in practice. A näıve tentative

to sidestep this hurdle would be to evaluate the linear constraint (5.9) by

relying on a crude path loss-only model. Clearly, the solution of (5.7) that

would be obtained by merely neglecting the randomness of channels does

not guarantee the actual fulfillment of the interference bounds (5.9).

Instead, statistical knowledge of {ġxk→rr} may be collected and used.

In this case, to protect the PU transmissions under channel uncertainty,

probabilistic interference constraints are well motivated. Then, the problem

of interest becomes

(P2) max
p�0

U(γk(p)) (5.10)

subject to pk ≤ pmax
k , k = 1, . . . ,K (5.11)

Pr{ir(p) > imax
r } ≤ εr, r = 1, . . . , R (5.12)

where εr ∈ (0, 1) is a prescribed parameter representing the upper-bound

on the probability that the interference due to CR transmissions exceeds a

given threshold imax
r at PU receiver r. On top of the non-convexity issue, an

additional challenge in solving (P2) is the chance constraint (5.12). A suit-

able approximation method will be employed in section 5.3 to first address

the challenge associated with (5.12).

In addition to the CR-to-PU channel uncertainty, the channel between

the CR transceivers may contain uncertainty. Error-corrupted or outdated

CG estimates can happen due to, e.g., mobility of the CR nodes or insuf-

ficient time for training owing to prolonged PU activity. Or, simply, CR

might not want to waste precious primary resources in a cumbersome time-

consuming TDMA-based training.

To incorporate CR-to-CR channel uncertainty, the idea pursued here is
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to resort to a chance-constrained utility maximization problem encompass-

ing outage probability specification on a per-CR link basis. Define as γ̄k > 0

the SINR threshold on the CR link xk → uk. Also, denote as νk ∈ (0, 1)

a per-CR receiver parameter capping the outage probability. Then, the

following {νk}-outage utility maximization problem is formulated:

(P3) max
p�0
γ̄�0

U(γ̄k) (5.13)

subject to pk ≤ pmax
k , k = 1, . . . ,K (5.14)

Pr{ir(p) > imax
r } ≤ εr, r = 1, . . . , R (5.15)

Pr{γk(p) < γ̄k} ≤ νk, k = 1, . . . ,K (5.16)

where utility U(·) is here a function of γ̄ := [γ̄1, . . . , γ̄K ]T rather than of γ.

System parameters {νk} might be selected a priori according to CR QoS

policies.

In section 5.4, a statistical approximation for the SINR will be derived

to first address the extra challenge represented by constraint (5.16). Then,

(P3) will be re-formulated and a successive GP approximation technique

will be employed in order to obtain an optimal (at least locally) solution of

the surrogate chance-constrained problem.

5.3 Power Control Under Interference Probability

Constraints

In order to solve (P2), the chance constraints (5.12) must be written explic-

itly in terms of the optimization variable p. As the r.v. ir involves summa-

tion of powers affected by possibly correlated shadow fading and small-scale

fading, direct characterization of its distribution will not lead to a tractable

optimization formulation. To sidestep this hurdle, the distribution of ir is

first approximated in the sequel.

5.3.1 Approximation of Interference Constraints

As shown in section 3.2, the composite fading axk→rr can be approximated

by a log-Normal density. See [42, Ch. 2], [45]. The overall channel gain
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ġxk→rr is thus also approximately log-normal [cf. (3.6)], and the correspond-

ing CG in dB Ġxk→rr is approximately Gaussian with mean and variance

given by [cf. (3.4), (3.5)]

µĠxk→rr
= µAxk→rr

+G0,xk→rr
− 10η log10 ‖xk − rr‖2

= κ−1

(
− lnm− C +

m−1∑
m′=1

1
m′

)
+ µSxk→rr

+G0,xk→rr

− 10η log10 ‖xk − rr‖2 (5.17)

and

σ2
Ġxk→rr

= σ2
Axk→rr

= κ−2ζ(2,m) + σ2
Sxk→rr

(5.18)

respectively. Also, let

CĠxk→rr ,Ġxj→rn
:= E{(Ġxk→rr − µĠxk→rr

)(Ġxj→rn − µĠxj→rn
)} (5.19)

= E{Sxk→rrSxj→rn}

denote the cross-covariance of Ġxk→rr and Ġxj→rn for (k, r) 6= (j, n). Note

that CĠxk→rr ,Ġxj→rn
collects the spatial correlation of the only shadow fad-

ing, being processes {hxk→rr}k,m assumed to be mutually uncorrelated.

Thus, the r.v. ir can be viewed as a sum of (possibly correlated) log-

Normal r.v.’s. The statistical characterization of ir encounters a nuisance

difficulty that happen due to a lack of an exact closed form expression for the

pdf of a sum of correlated log-Normal r.v.’s. However, considerable effort

has been devoted to find an accurate statistical approximation for the log-

Normal sum and powerful tools have been devised. The Fenton-Wilkinson

method [96] and the Schwartz-Yeh method [101] were used to approximate

the pdf of a sum of independent log-Normal r.v.’s with the pdf of a sin-

gle log-Normal r.v. The matching cumulant approach was also proposed

in [102]. The aforementioned approaches were extended to the case of sum

of correlated lognormal r.v.’s in [97] and their ability in approximating the

complementary cumulative distribution function (c.c.d.f.) of the resultant

random variable with the one of a single log-Normal random variable was
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numerically evaluated. The Fenton-Wilkinson method may be the most ap-

pealing approach thank to its accuracy over a wide range of parameters that

are of practical interest [97] and the low computational effort required to get

close-form expressions for mean and variance of the resultant approximated

log-Normal process. Henceforth, it will be considered here to get statistical

characterization of ir. It is worth mentioning that the approach presented

in [103] may have superior accuracy than the Fenton-Wilkinson but, unfor-

tunately, might be too complex for the optimization framework proposed

here.

Define as Ir := 10 · log10 ir the instantaneous aggregate interference

perceived at PU receiver r in dB. Note that each single interferer Ir,k :=

10 · log10(pkġxk→rr), k ∈ {1, . . . ,K}, is Gaussian with mean Pk + µĠxk→rr

and variance σ2
Ġxk→rr

, where Pk := 10 · log10 pk. Retracing the Fenton-

Wilkinson method, first rewrite (5.6) as

ir =
K∑
k=1

eκIr,k (5.20)

and then, to approximate ir in (5.6) with a single log-Normal random vari-

able ĩr, set
K∑
k=1

eκIr,k ∼= eκĨr (5.21)

where Ĩr := 10 · log10 ĩr is the Gaussian random variable that approximates

Ir. Denote as µĨr and σ2
Ĩr

the mean and the variance of Ĩr, respectively. By

matching the first two moments of ir and eκĨr one can readily get a close

form expression for µĨr and σ2
Ĩr

. Setting E{eκĨr} = E{ir} gives (cf. (5.20))

e
κµĨr+κ2

2
σ2
Ĩr =

K∑
k=1

e
κPk+κµĠxk→rr

+κ2

2
σ2
Ġxk→rr

=
K∑
k=1

pke
κµĠxk→rr

+κ2

2
σ2
Ġxk→rr (5.22)

where the identity κPk = ln pk was used to get (5.22). Matching the second
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moment, i.e., setting E{e2κĨr} = E{i2r}, one obtains

e
2κµĨr+2κ2σ2

Ĩr =
K∑
k=1

e
2κPk+2κµĠxk→rr

+2κ2σ2
Ġxk→rr +

+ 2
K−1∑
k=1

K∑
i=k+1

e
κPk+κµĠxk→rr

+κPi+κµĠxi→rr

· e
κ2

2
(σ2
Ġxk→rr

+σ2
xi→rr+2CĠxk→rr ,Ġxi→rr

)

=
K∑
k=1

p2
ke

2κµĠxk→rr
+2κ2σ2

Ġxk→rr +

+ 2
K−1∑
k=1

K∑
i=k+1

pkpie
κµĠxk→rr

+κµĠxi→rr

· e
κ2

2
(σ2
Ġxk→rr

+σ2
Ġxi→rr

+2CĠxk→rr ,Ġxi→rr
)
. (5.23)

The system of equations (5.22)-(5.23) can now be solved for µĨr and σ2
Ĩr

.

Upon defining the following real and positive quantities

ar,k := e
κµĠxk→rr

+κ2

2
σ2
Ġxk→rr (5.24)

br,k := e
2κµĠxk→rr

+2κ2σ2
Ġxk→rr (5.25)

b′r,k,i := e
κµĠxk→rr

+κµĠxi→rr e
κ2

2
(σ2
Ġxk→rr

+σ2
Ġxi→rr

+2CĠxk→rr ,Ġxi→rr
)

(5.26)

it can be shown that mean and variance of Ĩr are given by

µĨr = κ−1 ln

ξIr,1
ξ

1/2
Ir,2

 (5.27)

and

σ2
Ĩr

= κ−2 ln
(
ξIr,2
ξIr,1

)
(5.28)

with

ξIr,1 :=

(
K∑
k=1

pkar,k

)2

(5.29)

ξIr,2 :=
K∑
k=1

p2
kbr,k + 2

K−1∑
k=1

K∑
i=k+1

pkpib
′
r,k,i (5.30)
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respectively. Thus, given the first- and the second-order statistics of the

shadow fading processes in dB scale, and the m parameter of the Nakagami-

m-distributed small-scale fading, the distribution of the dB-scale interference

powers {Ir} at PU locations {rr} can be approximated as Gaussian with

mean and variance given in terms of the optimization variable p.

Based on the foregoing discussion, and with Imax
r := 10 log10 i

max
r , the

interference constraints (5.12) can be approximated by

Pr
{
ĩr(p) > imax

r

}
= Pr

{
eκĨr(p) > imax

r

}
= Pr

{
Ĩr(p) > Imax

r

}
= Q

(
Imax
r − µĨr(p)
σĨr(p)

)
(5.31)

where Q(x) :=
∫∞
x

1√
2π
e−

t2

2 dt is the standard Gaussian tail function. Con-

straints (5.31) can be equivalently written as

µĨr(p) +Q−1(εr)σĨr(p) ≤ Imax
r , r = 1, 2, . . . , R. (5.32)

Next, (P2) with (5.12) replaced by (5.32) will be tackled by employing a

successive convex approximation method.

5.3.2 Problem re-formulation

Plugging (5.27)-(5.28) directly into (5.32) does not lead to a tractable for-

mulation. Instead, upon introducing a set of positive auxiliary variables

zr := [zr,1, zr,2]T , r = 1, 2, . . . , R, the following set of constraints equivalent

to (5.32) is considered:

µĨr(p) ≤ ln(zr,1), r = 1, . . . , R (5.33)

σ2
Ĩr

(p) ≤ ln(zr,2), r = 1, . . . , R (5.34)

φr(zr) := ln(zr,1) +Q−1(εr)
√

ln(zr,2)− Imax
r ≤ 0,

r = 1, . . . , R. (5.35)
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Using (5.27)-(5.28), it is possible to express after some manipulations (5.33)

and (5.34) as the following ratios of posynomials

ξ2
Ir,1

(p)

ξIr,2(p)z2κ
r,1

≤ 1, r = 1, . . . , R (5.36)

ξIr,2(p)
ξIr,1(p)zκ2

r,2

≤ 1, r = 1, . . . , R . (5.37)

The objective functions also need to be re-formulated. Next, convenient

surrogates for the utility functions listed in section 5.2 are derived.

i) (Weighted) Sum-rate utility. Maximizing the sum-rate (5.2) is equiv-

alent to minimizing the function
∏K
k=1 (1 + γk(p))−wk . Then, upon

introducing auxiliary variables t := [t1, . . . , tK ]T � 0, minimization of

U ′(t) =
K∏
k=1

twkk (5.38)

with the extra constraints

ξU ,k(p, t) =

∑K
i=1,i 6=k pkġxi→uk

+ π̇k + σ2
k∑K

i=1 pkġxi→uk
+ π̇k + σ2

k

t−1
k ≤ 1, k = 1, . . . ,K

(5.39)

yields maximization of the network (weighted) sum-rate.

ii) Proportional fair utility. Maximization of utility (5.3) is attained in an

equivalent manner by minimizing
∑K

k=1− log2 (log2 (1 + γk(p))) and,

hence, function
∏K
k=1(log2 (1 + γk(p))−1. Next, consider approxima-

tion [104]

ln(x) ≈ a(x1/a − 1), x > 0 (5.40)

with a � 1. Using (5.40) and employing auxiliary variables t, yield

the following utility

U ′(t) =
K∏
k=1

tk (5.41)

which has to be minimized, with the K associated extra constraints

[cf. (5.1)]:

ξU ,k(p, t) = (1 + t−1
k )a

∑K
i=1,i 6=k pkġxi→uk

+ π̇k + σ2
k∑K

i=1 pkġxi→uk
+ π̇k + σ2

k

≤ 1 . (5.42)
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iii) Harmonic-rate utility. Consider minimizing function
∑K

k=1
1

log(1+γk(p)) .

Making use of (5.40) and, again, employing auxiliary variables t, max-

imization of the harmonic-rate utility can be achieved by minimizing

U ′(t) =
K∑
k=1

tk (5.43)

under constraints (5.42).

iv) Min-rate utility. Note, first, that maximization of (5.5) and minimiza-

tion of the cost maxk 1
1+γk(p) are equivalent. Then, upon introducing a

real auxiliary variable t > 0, maximization of (5.5) can be equivalently

attained by minimizing utility

U ′(t) = t (5.44)

under the K extra constraints expressed by means of rational functions

of posynomials [cf. (5.1)]

ξU ,k(p, t) =

∑K
i=1,i 6=k pkġxi→uk

+ π̇k + σ2
k∑K

i=1 pkġxi→uk
+ π̇k + σ2

k

t−1 ≤ 1, k = 1, . . . ,K.

(5.45)

Based on the preceding discussion, the surrogate problem for (P2) that

is to be solved here becomes

(P2b) min
p�0,{zr�0},t�0

U ′(t) (5.46)

subject to ξU ,k(p, t) ≤ 1, k = 1, . . . ,K (5.47)

pk ≤ pmax
k , k = 1, . . . ,K (5.48)

ξ2
Ir,1

(p)

ξIr,2(p)z2κ
r,1

≤ 1, r = 1, . . . , R (5.49)

ξIr,2(p)
ξIr,1(p)zκ2

r,2

≤ 1, r = 1, . . . , R (5.50)

φr(zr) ≤ 0, r = 1, . . . , R. (5.51)

Problem (P2b) involves constraints expressed as ratio-of-posynomials in

(5.47) and (5.49)–(5.50), which are in general non-convex. Another manifest

source of non-convexity is (5.51).
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Thus, a globally optimal solution of (P2b) is in general difficult to obtain.

Recall nonetheless that this is true even for the case of perfect channel knowl-

edge in (P1) [85]. Therefore, we resort to a successive convex approximation

method to obtain (at least locally) optimal solutions [105]. Remarkably,

it can be shown that this approach boils down to sequential GP as in the

perfect channel knowledge case [85].

5.3.3 Successive Convex Approximation

Here, the general successive convex approximation method is briefly de-

scribed [105]. Consider an optimization problem

min
p∈P

f0(p) (5.52)

subject to fk(p) ≤ 0, k = 1, 2, . . . ,K (5.53)

where f0(p) is convex and differentiable, fk(p), k = 1, . . . ,K, are differ-

entiable functions, and the feasible region F := {p ∈ P|fk(p) ≤ 0, k =

1, . . . ,K} is compact3. Then, starting from a feasible point p(0) ∈ F , a

series of approximate problems is solved to locate a KKT point of the origi-

nal (non-convex) problem. For each k = 1, . . . ,K, let f̃k(p; p(j)) denote the

surrogate function for fk(p), which may depend on the solution p(j) to the

problem of the (previous) (j − 1)-st iteration. The approximate problem to

solve per iteration j is

min
p∈P

f0(p) (5.54)

subject to f̃k(p; p(j)) ≤ 0, k = 1, 2, . . . ,K (5.55)

and its feasible region is denoted by F (j). Provided that f̃k(p; p(j)) satisfies

the following conditions

c1) fk(p) ≤ f̃k(p; p(j)), ∀p ∈ F (j)

c2) fk(p(j)) = f̃k(p(j); p(j))

3If function f0(p) is non-convex, the objective function can be moved to the constraints

by introducing an auxiliary scalar variable q and writing minp∈P,q q subject to the addi-

tional constraint f0(p) ≤ q.
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c3) ∇fk(p(j)) = ∇f̃k(p(j); p(j))

for each k = 1, . . . ,K, the series of solutions to the approximate problems

converge to the KKT point of the original problem.

5.3.4 Sequential GP

In order to apply the successive convex approximation method to (P2b),

appropriate surrogate constraints for the non-convex constraints need to be

determined.

The single condensation method [106] can be effectively used to cope with

the non-convexity of constraints expressed by means of a rational function

of posynomials. Such method entails the approximation of the posynomial

at the denominator with a monomial, leading to a constraint in posynomial

form4. Let n(p)
d(p) , with n(p) =

∑
i ni(p) and d(p) =

∑
i di(p), be a rational

function of posynomials. Then, exploiting the arithmetic-geometric mean

inequality, the best local monomial approximation of d(p) around a point

p(j) in the sense of first order Taylor approximation reads

d(p) ≤ d̃(p; p(j)) =
∏
i

(
di(p)
αi

)αi
(5.56)

with

αi :=
di(p(j))∑
l dl(p(j))

. (5.57)

Then, a constraint given by ∑
i ni(p)∑
i di(p)

≤ 1 (5.58)

can be is approximated as ∑
i ni(p)∏

i

(
di(p)
αi

)αi ≤ 1 . (5.59)

By viewing the left hand side of (5.58) and (5.59) as fk(p) and f̃k(p; p(j)),

respectively, it can be readily shown that they satisfy conditions c1)–c3) in

Sec. 5.3.3 [85].
4A posynomial divided by a monomial is a posynomial.
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To handle the non-convexity in (5.51), it is first noted that φr(zr) is

a concave function for zr � 0, which can be easily verified by examining

the second-order derivatives of each term [cf. (5.35)], and recalling that the

sum of concave functions is concave. Thus, an upper-bound of φr(zr) that

satisfies c1)–c3) can be obtained via the supporting hyperplane as

φ̃r(zr; z(j)
r ) :=

zr,1

z
(j)
r,1

+
Q−1(εr)zr,2

2z(j)
r,2

√
ln z(j)

r,2

− cr(z(j)
r ) (5.60)

cr(z(j)
r ) := 1 +

Q−1(εr)

2
√

ln z(j)
r,2

− φr(z(j)
r ). (5.61)

It is apparent from (5.61) and (5.51) that cr(z
(j)
r ) > 0 provided that z(j)

r is

a feasible point, and εr < 0.5. Therefore, a surrogate constraint for (5.51) is

1

cr(z
(j)
r )

φ̃′r(zr; z
(j)
r ) ≤ 1, r = 1, . . . , R. (5.62)

with

φ̃′r(zr; z
(j)
r ) :=

zr,1

z
(j)
r,1

+
Q−1(εr)zr,2

2z(j)
r,2

√
ln z(j)

r,2

. (5.63)

The left hand side is affine, and thus it is a posynomial.

Overall, the successive approximation algorithm consists in solving at

the j-th iteration the following problem:

(P2b(j)) min
p�0,{zr�0},t�0

U ′(p, t) (5.64)

subject to ξ̃U ,k(p, t; p(j−1), t(j−1)) ≤ 1, k = 1, . . . ,K (5.65)

pk ≤ pmax
k , k = 1, . . . ,K (5.66)

ξ2
Ir,1

(p)

ξ̃Ir,2(p; p(j−1))z2κ
r,1

≤ 1, r = 1, . . . , R (5.67)

ξIr,2(p)
ξ̃Ir,1(p; p(j−1))zκ2

r,2

≤ 1, r = 1, . . . , R (5.68)

1

cr(z
(j)
r )

φ̃′r(zr; z
(j)
r ) ≤ 1, r = 1, . . . , R. (5.69)

with p(j−1), {z(j−1)
r }, t(j−1) the solution of (P2b(j−1)), (5.65) and (5.67)–

(5.68) computed by using the single condensation method, and (5.69) given

by (5.62).
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Proposition 5.3.1. Given an initial feasible starting point p(0), {z(0)
r }, t(0),

the sequence p(j), {z(j)
r }, t(j)j = 1, 2, . . . converges to a KKT point of (P2b).

Proof : see [105, Theorem 1]. 2

It is immediate that this problem is a GP problem, which involves mini-

mizing a posynomial subject to posynomial inequality constraints. GP prob-

lems can be solved efficiently through optimized interior-point methods [98,

Ch. 11]. Although GP problems are not convex in their original form, their

globally optimal solution can be obtained by convex re-formulation through

a log change of variables [104].

Remark 5.3.2. From a practical perspective, the sequential GP algorithm

requires a stopping criterion. Upon defining an error tolerance υ > 0, a

simple stopping rule may consist in checking whether condition U ′(t(j−1))−
U ′(t(j)) ≤ υ is satisfied at each iteration. 2

5.3.5 Addressing Power Consumption Concerns

Hardware limitations or battery consumption concerns may invoke a trade

off between network utility maximization and transmission power limitation.

Denote first as C(p) a cost inherent to the CR transmission power p that

would be spent. To limit the power consumption, it would be desirable to

minimize C(p). As an example, C(p) can be simply set to [83]

C(p) = ‖p‖1 =
K∑
k=1

pk . (5.70)

Then, a joint power minimization and utility maximization of a given

network utility U(p) can be attained by setting in (P2) the following objec-

tive function

Ǔ(p) = ε C(p)− (1− ε)U(p) , (5.71)

which has to be minimized, with ε ∈ [0, 1) a pre-determined CR system

parameter. In (P2b), the objective function amounts to

Ǔ ′(p) = ε C(p)− (1− ε)U ′(p) , (5.72)
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with the additional auxiliary constraints, depending on the specific utility

considered.

If a pure power minimization is targeted [83], [90], i.e., if ε would be

set to 1, a constraint imposing a minimum value for U(p) has to added to

(P2) (a minimum value for U ′(p) in (P2b), respectively). As an example,

minimum per-link rate requirements can be set.

5.4 Extensions to Uncertain CR-to-CR Channels

Fast variations of the CR environment, insufficient time for training owing to

prolonged PU activity, or difficulty in acquiring instantaneous channel power

estimates lead to uncertain CR-to-CR CGs. Problem (P3) addresses the

consequent difficulties in evaluating the actual SINRs by considering network

utilities that depends on the outage thresholds; CR-to-CR CG uncertainty

is incorporated by explicitly adding outage probability constraints on a per-

CR link basis. Clearly, interference constraints enforcing protection of the

PU system are still present.

In section 5.3.2 a Gaussian approximation for {Ir} was derived and a

proper re-formulation of interference constraints (5.15) was obtained in order

to solve (P2). Likewise, here the solution of (P3) is approached by re-writing

the outage constraints (5.16) in terms of the optimization variables p and

γ̄. To this end, a suitable approximation for r.v.’s {γk} is devised next.

Remark 5.4.1. Upon disabling the constraints on the probability of inter-

ference, problem (P3) - and, thus (P3b) - may find a place in the ad hoc

network context as well. Compared to prior works, see, e.g. [83], [85], [87],

the attracting feature of (P3) consists in the possibility of obtaining the pow-

ers p maximizing U(p) in either a channel-agnostic setup (if channel gain

maps are not used) or a semi channel-agnostic (if shadowing is estimated)

way. In the first case, only information about receivers’ locations is needed

and, thus, extensive any-to-any channel gain measurement is avoided. Note

that updates of the transmission powers can be carried out at a time scale

that is way larger than the coherence time of the fast-time varying small-

scale fading; precisely, an update is needed every time that the location of

either a transmitter or a receiver is changed. In the second case, the problem
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inherent to the use of outdated estimates of the (instantaneous) channels is

sidestepped; in fact, since the estimate of average CG is contained in the CG

maps used, power updates can be carried out at a time scale of the shadow

fading rather than of the small-scale fading. 2

5.4.1 Approximation of the Distribution of SINRs

Express first γ−1
k as

γ−1
k =

K∑
j=1,j 6=k

p−1
k pj ġ

−1
xk→uk

ġxj→uk
+ p−1

k ġ−1
xk→uk

(π̇k + σ2
w,k) . (5.73)

and notice that {p−1
k pj ġ

−1
xk→uk

ġxi→uk
} and p−1

k ġ−1
xk→uk

are still log-Normal.

Specifically, using lemmas 5.7.1 and 5.7.2 in Appendix 5.7, one can show

that

p−1
k pj ġ

−1
xk→uk

ġxj→uk
∼

logN
(
−Pk + Pj − µĠxk→uk

+ µĠxj→uk
,

σ2
Ġxj→uk

+ σ2
Ġxk→uk

− 2CĠxk→uk
,Ġxj→uk

)
(5.74)

and, as a sub-case of (5.74),

p−1
k ġ−1

xk→uk
(π̇k + σ2

w,k) ∼

logN
(
−Pk − µĠxk→uk

+ 10 log10(π̇k + σ2
w,k), σ

2
Ġxk→uk

)
(5.75)

The r.v. γ−1
k thus involves summation of correlated log-Normal r.v.’s. Again,

the Fenton-Wilkinson method can be employed to find a log-Normal ap-

proximation for r.v. γ−1
k and, thus, for r.v. γk (see lemma (5.7.1)). Let

Γk := 10 log10 γk be the SINR at CR receiver k in dB, and consider a Gaus-

sian r.v. Γ̃k := 10 log10 γ̃k with mean µΓ̃k
and variance σ2

Γ̃k
. By matching

the first two moments of γ−1
k and γ̃−1

k = e−κΓ̃k , one can establish (see, also,

lemma (5.7.1))

µΓ̃k
:= κ−1 ln

ξ1/2

Γ̃k,2

ξΓ̃k,1

 (5.76)

σ2
Γ̃k

:= κ−2 ln

(
ξΓ̃k,2

ξΓ̃k,1

)
(5.77)
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where

ξΓ̃k,1
:=

 K∑
j=1,j 6=k

p−1
k pjαk,j + p−1

k αk,K+1

2

(5.78)

ξΓ̃k,2
:=

K∑
j=1
j 6=k

p−2
k p2

jβk,j + p−2
k βk,K+1 + 2

K−1∑
j=1
j 6=k

K∑
i=j+1
i 6=k

p−2
k pjpiβ

′
k,j,i

+ 2
K−1∑
j=1
j 6=k

p−2
k pjβ

′′
k,j,K+1 (5.79)

and

αk,j := e
κ

„
µĠxj→uk

−µĠxk→uk

«
·

· e
κ2

2

„
σ2
Ġxj→uk

+σ2
Ġxk→uk

−2CĠxj→uk
,Ġxk→uk

«
(5.80)

αk,K+1 := (π̇k + σ2
w,k)e

−κµĠxk→uk
+κ2

2
σ2
Ġxk→uk (5.81)

βk,j := e
2κ

„
µĠxj→uk

−µĠxk→uk

«
·

· e
2κ2

„
σ2
Ġxj→uk

+σ2
Ġxk→uk

−2CĠxj→uk
,Ġxk→uk

«
(5.82)

βk,K+1 := (π̇k + σ2
w,k)

2e
−2κµĠxk→uk

+2κ2σ2
Ġxk→uk (5.83)

β′k,j,i := e
κ

„
µĠxj→uk

+µĠxi→uk
−2µĠxk→uk

«
·

· e
κ2

2

„
σ2
Ġxj→uk

+σ2
Ġxi→uk

+4σ2
Ġxk→uk

−4CĠxj→uk
,Ġxk→uk

−

−4CĠxi→uk
,Ġxk→uk

+2CĠxi→uk
,Ġxj→uk

«
(5.84)

β′′k,j,K+1 := (πk + σ2
w,k)e

κ

„
µĠxj→uk

−2µĠxk→uk

«
·

· e
κ2

2

„
σ2
Ġxj→uk

+4σ2
Ġxk→uk

−4CĠxj→uk
,Ġxk→uk

«
. (5.85)

Thus, the SINRs in dB {Γk} can be approximated as Gaussian, with

mean and variance that solely depend on the CR transmission powers p

provided that {µĠxi→uk
}, {σ2

Ġxi→uk

} and covariances {CĠxj→uk
,Ġxi→uk

} are

known to the CR system.
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Using the Gaussian approximation for the dB-scale SINRs, constraint (5.16)

can be re-expressed as follows

Pr {γ̃k(p) < γ̄k} = Pr
{
eκΓ̃k(p) < γ̄k

}
= Pr

{
Γ̃k(p) < κ−1 ln (γ̄k)

}
= 1−Q

(
κ−1 ln (γ̄k)− µΓ̃k

(p)

σΓk(p)

)
≤ νk (5.86)

which can be further re-written as

−µΓ̃k
(p)−Q−1(1− νk)σΓ̃,k(p) + κ−1 ln (γ̄k) ≤ 0 . (5.87)

5.4.2 Solution Approach

To overcome the cumbersome intractability of the expression that one would

obtain by plugging (5.76)–(5.77) directly into (5.87), consider the following

equivalent set of constraints:

− µΓ̃k
(p) ≤ ln(yk,1), r = 1, . . . , R (5.88)

σ2
Γ̃k

(p) ≤ ln(yk,2), r = 1, . . . , R (5.89)

ψk(yk, γ̄k) := ln(yk,1)−Q−1(1− νk)
√

ln(yk,2) + κ−1 ln(γ̄k) ≤ 0,

k = 1, . . . ,K. (5.90)

where the set of positive real variables yk := [yk,1, yk,2]T , k = 1, . . . ,K, is

employed. Note that −Q−1(1−ηk) > 0 preserves the concavity of ψk(yk, γ̄k).

Then, using (5.76)–(5.77), constraints (5.88)–(5.89) can be re-written as

ξ2
Γ̃k,1

(p)

ξΓ̃k,2
(p)y2κ

k,1

≤ 1, k = 1, . . . ,K (5.91)

ξΓ̃k,2
(p)

ξΓ̃k,1
(p)yκ2

k,2

≤ 1, k = 1, . . . ,K . (5.92)

Before stating a surrogate problem for (P3), a proper reformulation of

the outage-based utility functions is provided next.

i) (Weighted) Outage sum-rate utility. Maximizing the (weighted) sum-

outage-rate
∑

k wk log2(1 + γ̄k) is equivalent to minimizing the func-

tion
∏K
k=1 (1 + γ̄k)

−wk . Consider introducing K auxiliary variables
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t := [t1, . . . , tK ]T � 0. Then, the (weighted) sum-outage-rate can be

maximized by minimizing

U ′(t) =
K∏
k=1

twkk (5.93)

with the extra constraints

ξU ,k(γ̄k, tk) =
1

(1 + γ̄k)tk
≤ 1, k = 1, . . . ,K. (5.94)

ii) Proportional fair utility. Consider cost
∑K

k=1− log2 (log2 (1 + γ̄k)),

which has to be minimized. Noticing that one can equivalently min-

imize
∏K
k=1(log2 (1 + γ̄k)

−1 and using (5.40), proportional fair utility

is maximized upon minimization of

U ′(t) =
K∏
k=1

tk (5.95)

subject to

ξU ,k(γ̄k, tk) =
(1 + t−1

k )a

1 + γ̄k
≤ 1 . (5.96)

iii) Harmonic-outage-rate utility. Based on the foregoing re-formulations,

maximization of the harmonic-outage-rate utility can be attained by

minimizing

U ′(t) =
K∑
k=1

tk (5.97)

under constraints (5.96).

iv) Min-outage-rate utility. Introduce an auxiliary variable t > 0. Then,

maximization of mink log2(1 + γ̄k) can be attained by minimizing

U ′(t) = t (5.98)

under the following K extra constraints

ξU ,k(p, t) =
1

(1 + γ̄k)t
≤ 1, k = 1, . . . ,K. (5.99)
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With the re-formulation the outage constraints (5.16) as well as of the

outage-based network utilities, the surrogate problem for (P3) becomes:

(P3b) min
p�0,{zr�0},{yk�0},γ̄�0,t�0

U ′(t) (5.100)

subject to ξU ,k(γ̄k, tk) ≤ 1, k = 1, . . . ,K (5.101)

pk ≤ pmax
k , k = 1, . . . ,K (5.102)

ξ2
Ir,1

(p)

ξIr,2(p)z2κ
r,1

≤ 1, r = 1, . . . , R (5.103)

ξIr,2(p)
ξIr,1(p)zκ2

r,2

≤ 1, r = 1, . . . , R (5.104)

φr(zr) ≤ 0, r = 1, . . . , R. (5.105)

ξ2
Γ̃k,1

(p)

ξΓ̃k,2
(p)y2κ

k,1

≤ 1, k = 1, . . . ,K (5.106)

ξΓ̃k,2
(p)

ξΓ̃k,1
(p)yκ2

k,2

≤ 1, k = 1, . . . ,K (5.107)

ψk(yk, γ̄k) ≤ 0, k = 1, . . . ,K. (5.108)

where (5.106)–(5.108) have been added to the constraints (5.103)–(5.105)

that cap the probability of interfering the PU system. Clearly, (P3b) is

non-convex. On top of the non-convexity of problem (5.100)–(5.105), it is

easy to recognize that (5.103) and (5.104) are expressed by means of rational

functions of posynomials. Also, the function ψk(yk, γ̄k) is concave for yk � 0

and γ̄k > 0, as can be verified by computing the second-order derivatives

with respect to each optimization variable. Next, it will be shown that

a KKT point of (P3b) can be obtained by resorting to the sequential GP

approach.

5.4.3 Sequential GP for outage-based utility maximization

Appropriate surrogate constraints for the non-convex interference constraints

(5.103)–(5.105) was derived in section 5.3.4.

Here, in order to use the successive GP method to solve (P3b), proper ap-

proximating GP-consistent constraints for (5.101) and (5.106)–(5.108) need

to be determined.
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Note that (5.101) and (5.91)–(5.92) are rational functions of posynomi-

als. Thus, the single condensation method (5.59) can be employed. Also,

since ψk(yk, γ̄k) is concave for yk � 0 and γ̄k > 0, the supporting hyper-

plane at a given point y(j)
k , γ̄

(j)
k can be used to obtain an upper bound on

ψk(yk, γ̄k). This leads to

ψ̃k(yk, γ̄k; y
(j)
k , γ̄

(j)
k ) :=

yk,1

y
(j)
k,1

+
yk,2Q

−1(ηk)

2 y(j)
k,2

√
ln(y(j)

k,2)
+

γ̄k

κγ̄
(j)
k

− ck,y(y
(j)
k , γ̄

(j)
k )

(5.109)

with

cy,k(y
(j)
k , γ̄

(j)
k ) = (1 + κ−1) +

Q−1(ηk)

2
√

ln(y(j)
k,2)
− φy,k(y

(j)
k , γ̄

(j)
k ) (5.110)

and it satisfies c1)–c3). Note from (5.108) and (5.109) that, for points

y(j)
k , γ̄

(j)
k that are feasible and for νk < 0.5, cy,k(y

(j)
k , γ̄

(j)
k ) > 0 holds. Then,

upon defining

ψ̃′k(yk, γ̄k; y
(j)
k , γ̄

(j)
k ) :=

yk,1

y
(j)
k,1

+
yk,2Q

−1(ηk)

2 y(j)
k,2

√
ln(y(j)

k,2)
+

γ̄k

κγ̄
(j)
k

, (5.111)

an appropriate surrogate of constraints (5.108) is

1

ck,y(y
(j)
k , γ̄

(j)
k )

ψ̃′k(yk, γ̄k; y
(j)
k , γ̄

(j)
k ) ≤ 1 . (5.112)

Wrapping up, the successive GP approach for solving (P2b) entails the

solution of the following GP at each iteration j = 1, 2, . . .



110 Chapter 5. Power Allocation Under Channel Gain Uncertainty

(P3b(j)) min
p�0,{zr�0},{yk�0},γ̄�0,t�0

U ′(t) (5.113)

subject to ξ̃U ,k(γ̄k, tk; γ̄
(j−1)
k , t

(j−1)
k ) ≤ 1, k = 1, . . . ,K (5.114)

pk ≤ pmax
k , k = 1, . . . ,K (5.115)

ξ2
Ir,1

(p)

ξ̃Ir,2(p; p(j−1))z2κ
r,1

≤ 1, r = 1, . . . , R (5.116)

ξIr,2(p)
ξ̃Ir,1(p; p(j−1))zκ2

r,2

≤ 1, r = 1, . . . , R (5.117)

1

cr(z
(j−1)
r )

φ̃′r(zr; z
(j−1)
r ) ≤ 1, r = 1, . . . , R. (5.118)

ξ2
Γ̃k,1

(p)

ξ̃Γ̃k,2
(p; p(j−1))y2κ

k,1

≤ 1, k = 1, . . . ,K (5.119)

ξΓ̃k,2
(p)

ξ̃Γ̃k,1
(p; p(j−1))yκ2

k,2

≤ 1, k = 1, . . . ,K (5.120)

1

ck,y(y
(j)
k , γ̄

(j−1)
k )

ψ̃′k(yk, γ̄k; y
(j−1)
k , γ̄

(j−1)
k ) ≤ 1, k = 1, . . . ,K.

(5.121)

with p(j−1), {z(j−1)
r }, {y(j−1)

k }, γ̄(j−1), t(j−1) the solution carried out at the

(j − 1)-th iteration.

Proposition 5.4.2. Given an initial feasible starting point p(0), {z(0)
r },

{y(0)
k }, γ̄

(0), t(0), the sequence of solutions p(j), {z(j)
r }, {y(j)

k }, γ̄
(j), t(j) of

(P3b(j)) j = 1, 2, . . ., converges to a KKT point of (P3b). 2

5.5 A Method to Obtain a Feasible Starting Point

Initial points that lie in the feasible region of (P2b) and (P3b), respec-

tively, are required at the first iteration of the sequential GP method. Next,

a method to obtain feasible points for (P2b) and (P3b) is devised. See,

also, [107].

Denote as ξj,i(p) a generic posynomial in the variables p; also, let φl(z)

be a concave function. Then, the aforementioned feasibility problem en-

tails the computation of a solution p∗, z∗ of the following set of non-convex
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constraints:

ξj,1(p)
ξk,2(p)

≤ 1 j = 1, . . . , J (5.122)

φl(z) ≤ 0 l = 1, . . . , L . (5.123)

To find p∗, z∗, pick first an arbitrary point p′ � 0, z′ � 0, where 0 <

p′k ≤ pmax
k ∀ k. Then, compute the following quantities {ωj}:

ωj := max
{

1,
ξj,1(p′)
ξk,2(p′)

}
j = 1, . . . , J (5.124)

ωl+J := max
{

1, φl(z′)
}

l = 1, . . . , L. (5.125)

If ωj = 1 ∀ j, then p∗ = p′, z∗ = z′ is a feasible solution for (5.122)–(5.123).

Hence, can be used as a starting point for the sequential GP algorithm. If

ωj 6= 1 for at least one j ∈ {1, . . . , J +L}, then a feasible point for (5.122)–

(5.123) can be found by solving the following problem:

(P4) min
p�0,z�0,ω�0

J+L∏
j=1

ωj (5.126)

subject to : pk ≤ pmax
k k = 1, . . . ,K (5.127)

ωj ≥ 1 j = 1, . . . , J + L (5.128)

ξj,1(p)
ξk,2(p)

ω−1
j ≤ 1 j = 1, . . . , J (5.129)

φl(zi)ω−1
l+J ≤ 1 l = 1, . . . , L (5.130)

where ω := [ω1, . . . , ωJ+L]T . Clearly, problem (P4) is non-convex, be-

ing (5.129) ratios of posynomials and (5.130) concave in z.

However, an optimal (at least locally) solution for (P4) can be attained

by using the sequential GP approach. Specifically, GP-consistent surrogate

constraints can be obtained by applying the single condensation and the

hyperplane-based approximation to (5.129) and (5.130), respectively. If the

solution p′′, z′′,ω′′ of (P4), obtained via sequential GP, satisfies condition∏J+L
j=1 ω′′j = 1, then p∗ = p′′, z∗ = z′′. Conversely, if

∏J+L
j=1 ω′′j > 1 the

sequential GP algorithm failed to converge to a global optimum point for

(P4) and, then, the routine described in this section has to be repeated.
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Figure 5.1: Test scenario.

5.6 Numerical Tests

Consider the scenario depicted in Fig. 5.1, where K = 3 CR links (shown

in solid red lines) are present in a geographical area of 300× 300m. Also, a

single (R = 1) PU link is active (dashed blue line), with a transmit-power

of 0.1W. The path loss parameters were set to g0,x→u = 1, for all x,u, and

γ = 3.5; m = 10 was chosen for the Nakagami-m fading. The spatially-

correlated shadow fading was generated according to the loss fileld-based

model seth forth in [26]. Specifically, the parameters of the isotropic and

exponentially decaying covariance function (3.21) were set to σ` = 12dB and

d` = 30m. This led to a generated shadow fading with zero mean and stan-

dard deviation of approximately 10dB. The maximum transmission power

was fixed to pmax
k = 5W for all the CR transmitters. The interference tem-

perature threshold at the PU receiver was assumed to be Imax
r = −80dB,

and the probability of exceeding such value was limit to εr = 0.01. In order

to terminate the iterations of the sequential GP algorithm, the threshold υ

was set to 10−4. Also, to make the feasible set compact and avoid compu-

tational problems while performing the single-condensation method (5.59),

transmission powers were lower bounded by pk ≥ 10−10.

Consider maximizing the sum-rate (5.2) of the CR network. Set unitary
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weighting coefficients in (5.2), i.e., wk = 1 ∀k = 1, . . . ,K. Also, consider

first the case in which the CR-to-CR CGs are perfectly known. Thus power

control via (P2) is firstly analyzed.

Evaluation of the actual interference that is perceived at the PU receiver

when CRs make use of the transmission powers obtained by solving (P2b)

is critical in order to assess the quality of the statistical approximations em-

ployed and the effectiveness of the proposed algorithm. For this purpose,

the complementary cumulative distribution function (c.c.d.f.) of the inter-

ference caused at the PU receiver is plotted in Fig. 5.2. The curve with

square markers corresponds to the case where only the location information

was utilized to obtain the channel gain statistics; in this case, the mean of

shadow fading is set to 0 dB, and the correlations were computed based

on (3.23). The curve with ‘X’ markers represents the case where shadowing

measurements were used to estimate the CR-PU channel gain via channel

gain maps, as shown in chapter 3. Thus, the channel gain was estimated

reliably with error standard deviation of 4 dB. In these two cases, (P2b)

was solved to obtain the CR transmission powers. As a benchmark, the

curve with the circle markers depicts the case of perfect CR-to-PUchannel

knowledge; in this case, (P1) was solved to obtain optimal powers. Also,

the curve with the ‘+’ markers represent the case when (P1) is solved by

resorting to a path loss-only model, with shadowing and small-scale fading

completely neglected. 5, 000 independent realizations were used to generate

the plot.

From Fig. 5.2, it is seen that with perfect CR-to-PU CG information

is available, the CRs push the interference ir(p) to the limit Imax
r in order

to maximize the network sum-rate. This explains the sharp transition at

Imax
r , point that is never exceeded. Conversely, the fulfillment of the linear

interference bound in (P1) is seriously jeopardized when the randomness

of the CG is completely neglected; in this case, the CRs unduly harm the

PU receiver. Fig. 5.2 clearly shows that solving (P2b) enforces the desired

interference constraint, which also verifies the accuracy of the associated

approximations. In fact, with crude channel gain statistics, the interference

constraint is seen to be over-satisfied, while channel gain cartography leads

to a tightly met constraint.
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Fig. 5.3 shows the c.c.d.f.’s of the SINRs {γk} of the CR links. The solid,

dashed, and dotted curves represent different CR links, and the markers are

used in the same manner as in Fig. 5.2. It can be seen that especially

when the channel gains are estimated from measurements, the performance

degradation from the perfect channel gain case is not too large. The path

loss-only case exhibits better SINRs than the proposed schemes, but only

at severe interference to the PU system.

To see how close the obtained KKT solutions are to the globally optimal

solution, an exhaustive grid-based search was performed. Fig. 5.4 depicts

the weighted sum-rate objectives obtained by solving (P1) and (P2b) for

50 different channel realizations. It is seen that the sequential GP-based

objectives very often coincide with the globally optimal objectives even in

the case with channel uncertainty.

Finally, Table 5.1 collects the average number of GPs (rounded up) that

were solved up until the stopping condition for the sequential GP was met.

See remark 5.3.2. Also, the average number of iterations (rounded up) of

the sequential GP that were required to solve the feasibility problem (P4)

is reported. The computational burden required to solve (P2b) without

employing the CG maps is not exorbitantly higher than that for solving
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Table 5.1: Average number of iterations required to solve (P1) and (P2b) via
sequential GP, for scenario in Fig. 5.1

Feasible problem Power control

(P1) - perfect CG 1 8

(P1) - path loss-only 1 8

(P2b) - without CG maps 6 9

(P2b) - with CG maps 3 17

(P1). With the use of the CG maps, more GPs are required; however, in

this case, the profit from using CG maps is to achieve firmly higher sum-

rates.

Then, consider the case of imperfectly known CR-to-CR CGs and target

the maximization of the {νk}-outage network sum rate. Set the weighting

coefficients in (5.93) to 1 and limit the probability of exceeding the outage

threshold γ̄k to νk = 0.01 for all the CRs. Also, υ = 10−4. Finally, to make

the feasible set compact, variables γ̄k were lower bounded as γ̄k ≥ 10−10.

To test out the quality of the statistical approximations for the SINRs

and, consequently, verify observation of the outage constraints, the variables

{γ̄k} solving (P3b) in 50 different experiments are plotted in Fig. 5.5; these

are compared with the actual values of the outage thresholds, which were

computed by employing the set of powers obtained from (P3b), by generat-

ing 5, 000 independent fading realizations (shadowing and small scale-fading

were generated to obtain Fig. 5.5(a), only small-scale fading was generated

to obtain Fig. 5.5(b)), and, finally, by computing the cumulative distribution

function (c.d.f.) of the received SINR at the CR receivers.

From Fig. 5.5(a), where only the location information was utilized to

obtain the CR-to-CR channel statistics, it is seen that solving (P3b) always

ensures observation of the desired outage constraints. In fact, the actual

SINR outage thresholds for users “2” and “3” are higher than γ̄k for each

CR link, thus indicating that the outage constraints are over-satisfied. In

Fig. 5.5(b), channel gain maps were used to obtain the channel gain statis-

tics. In this case, approximation errors sometimes cause a slight violation
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Table 5.2: Average number of iterations required to solve (P3b) via sequential GP,
for scenario in Fig. 5.1

Feasible problem Power control

(P3b) - without CG maps 20 26

(P3b) - with CG maps 11 32

of the outage constraints, which are nevertheless profusely fulfilled most of

the time.

Again, an exhaustive grid-based search was performed to check whether

the KKT solutions are globally optimal. The sum-outage-rate achieved in

50 different experiments are plotted in Fig. 5.6. The solutions of (P3b) ob-

tained via sequential GP, with and without CG maps, often coincide with

the globally optimal objectives. Note that without CG maps, the optimal

objective is always the same, being the solution dependent on only the lo-

cations of the users.

Table 5.2 reports the average number of GPs (rounded up) that were

solved up until the stopping condition was met. As general remark, solution

of (P3b) requires a higher number of iterations of the sequential GP algo-

rithm compared to (P2b); a higher computational burden is the price to pay
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for not being able to estimate the instantaneous CR-to-CR CGs reliably.

5.7 Appendix

The following lemmas were used to devise a statistical approximation for

the SINRs {γk}.

Lemma 5.7.1. Let x ∼ logN (µx, σ2
x), with µx and σ2

x the mean and the

variance of the Gaussian-distributed random variable X := ln(x). Then,

x−1 is log-Normally-distributed and x−1 ∼ logN (−µx, σ2
x).

Proof. Rewrite x−1 as x−1 = (eX)−1 = e−X and recall that N (µx, σ2
x).

Then, it can be readily shown that −X ∼ N (−µx, σ2
x). 2

Lemma 5.7.2. Let x ∼ logN (µx, σ2
x) and y ∼ logN (µy, σ2

y) be two corre-

lated log-Normal random variables. Then, xy−1 is log-Normally-distributed

and xy−1 ∼ logN (µx − µy, σ2
x + σ2

x − 2cov{X,Y }), where X := ln(x) and

Y := ln(y).

Proof. Rewrite first xy−1 as xy−1 = eXe−Y = eX−Y . Recall that X ∼
N (µx, σ2

x) and Y ∼ N (µy, σ2
y). The statistical description of xy−1 is com-

plete upon computing the first two central moments of Z := X − Y . From

the linearity of the expectation operator, E{Z} = µx − µy. The variance of

Z is obtained as follows.

σ2
Z := E{(Z − E{Z})2}

= E
{

((X − Y )− (µx − µy))2
}

= var{X}+ var{Y } − 2E{XY }+ 2µxµy

= σ2
x + σ2

x − 2cov{X,Y } .

2
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Chapter 6

Conclusions

In an effort that strives for addressing the ambitious challenges involved

by the emerging hierarchical spectrum access setup, where continuous sit-

uational awareness is unceasingly demanded for opportunistic and non-

intrusive CR spectrum reuse purposes, the present thesis introduced innova-

tive large-scale collaborative algorithms for accurate RF ambient character-

ization and spectrum opportunity detection. These were complemented by

novel resource allocation techniques, which allow to circumvent the hurdles

that a lack of explicit coordination between primary and secondary systems

has engendered.

A consistent portion of the work concentrated on the channel gain car-

tography framework. The problem addressed entailed tracking the evolution

of the channel gains on arbitrary transmitter-receiver pairs starting from

channel gain measurements among collaborating CRs. In a sense, the aim

was to enable acquisition of a consistent, global, multidimensional view of

the RF ambient viewed from arbitrary points in space, thereby involving a

significant departure from the conventional cooperative point-to-point chan-

nel estimation philosophy. To do so, a spatio-temporal evolution of shadow

fading was first characterized by judiciously extending an experimentally

verified model in order to capture both spatial and temporal correlations.

Then, a novel KKF-based algorithm was shown to be capable of obtaining

the distribution of unknown CGs of wireless links at arbitrary transceiver

locations, conditioned on measurements taken by the collaborating CRs. To
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address scalability and robustness concerns, a distributed version of the KKF

algorithm was derived using the ADMoM framework. The proposed collab-

orative map tracking algorithm showed excellent performance, especially

when compared to the non-collaborative counterpart in terms of channel

gain map MSE.

The problem of monitoring the activity of the primary system jointly in

the spatial, temporal and frequency domains was addressed. Based on a par-

simonious model accounting for mutual interference concerns among primary

transmitters, a sparsity-exploiting linear regression problem was formulated

to estimate the PU locations and transmit power levels in real-time. In the

derivation of the sparsity-cognizant algorithm, tools with well-appreciated

merits in sparse linear regression and optimization theory, namely, Lasso

and cyclic coordinate descent, were adapted to the problem at hand. Both

centralized and distributed implementations of the sensing algorithm were

developed. In particular, the latter was derived by using the ADMoM frame-

work. Extensive numerical experiments were performed to show the consid-

erable improvement in estimating not only the positions of the PUs but

also their power levels compared to the sparsity-agnostic RLS algorithm.

Also, the CG atlas was shown to remarkably improve both localization and

power estimation accuracy with respect to a simple model based on only

the deterministic path loss. Then, based on the CG maps, the outcome of

the sensing algorithm was used to reconstruct the actual PSD map of the

primary system and, thus, the PU system coverage region. In other words,

complementing the sensing algorithm with the CG maps is it possible to re-

veal the locations where potential PU receivers can reside. In this context,

CG atlas was shown to constitute an invaluable means to overcome a disk-

shaped time-invariant over-simplification of the per-PU coverage region.

Then, resource allocation under constraints that limit the interference

perceived by the incumbent PU system was considered. In this context,

the major issue is represented by the impossibility of getting an estimate

of the channels between CRs and PUs. Moreover, conventional sensing

algorithms can detect PU transmitters but cannot localize silent licensed

receivers, which nevertheless have to be obligatorily protected. Based on

location information of the potential PU receivers provided by the proposed
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sensing algorithm and on an estimate of the PU CG maps, a CR power allo-

cation algorithm was developed under CR-to-PU channel gain uncertainty

arising from shadowing and small-scale fading effects. As PU protection

constraints must be enforced with high reliability, probabilistic constraints

were imposed in order to guarantee that the interference power experienced

by any PU receiver falls below a tolerable level with a given high probability.

Fenton-Wilkinson-type approximations were employed to model the received

interference power at the PUs as log-normal, which led to a tractable net-

work utility maximization formulation. Due to the truly non-convexity of

the problem, a successive convex approximation technique was adopted to

obtain a KKT solution. This approach was shown to boils down to a se-

quential GP algorithm as in the perfect channel knowledge case. Uncertain

CR-to-CR channels were also considered, and an outage-based utility max-

imization with per-CR link outage probability requirements was proposed.

Fenton-Wilkinson method was used again to approximate the distribution

of the SINRs as log-normal, leading to a formulation where a sequential

GP-based solution still applied.

The main results of the present Ph.D. Thesis have been submitted for

publication to journals and international conferences; the list of the papers

already accepted for publication and currently under revision is provided in

the following.

1. E. Dall’Anese, S.-J. Kim, G. B. Giannakis, and S. Pupolin, “Chance-

Constrained Power Allocation for Cognitive Radio Networks Under

Channel Uncertainty”, IEEE Trans. on Wireless Communications, in

preparation.

2. E. Dall’Anese, S.-J. Kim, and G. B. Giannakis, “Channel Gain Map

Tracking via Distributed Kriging”, IEEE Trans. on Vehicular Tech-

nology, submitted May 2010, revised December 2010.

3. S.-J. Kim, E. Dall’Anese, and G. B. Giannakis, “Cooperative Spec-

trum Sensing for Cognitive Radios Using Kriged Kalman Filtering ”,

IEEE Journal of Selected Topics in Signal Processing (JSTSP), Febru-

ary 2011.
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4. E. Dall’Anese, S.-J. Kim, G. B. Giannakis, and S. Pupolin, “Power

Allocation for Cognitive Radio Networks Under Channel Uncertainty”,

IEEE International Conference on Communications 2011, submitted,

September 2010.

5. S.-J. Kim, E. Dall’Anese, G. B. Giannakis, and S. Pupolin, “Collab-

orative Channel Gain Map Tracking for Cognitive Radios,” in Proc.

of The Second International Workshop on Cognitive Information Pro-

cessing (CIP), Elba Island, Italy, June 2010.

6. E. Dall’Anese, “Geostatistics-Inspired Sparsity-Aware Cooperative Spec-

trum Sensing for Cognitive Radio Networks,” Proc. of The Second

International Workshop on Mobile Opportunistic Networking (Ph.D.

Forum), Pisa, Italy, Feb. 2010.

7. S.-J. Kim, E. Dall’Anese, and G. B. Giannakis, “Spectrum Sensing

for Cognitive Radios Using Kriged Kalman Filtering,” Proc. of The

Third International Workshop on Computational Advances in Multi-

Sensor Adaptive Processing, Aruba, Dutch Antilles, Dec. 2009 (invited

paper).

8. S.-J. Kim, E. Dall’Anese, and G. B. Giannakis, “Sparsity-Aware Co-

operative Cognitive Radio Sensing Using Channel Gain Maps,” Proc.

of Asilomar Conference on Signal, Systems and Computers, Pacific

Groove, CA, USA, Nov. 2009.

Indeed, there could be several extensions of the work presented in this

dissertation that would be worth investigating. Beyond the CR setup, CG

atlas is envisioned as a tool that can help cross-layer design and assessment

of the system-level performance of wireless networks and to enhance hand-

off, localization, routing, and resource allocation. It would be interesting to

analyze the actual applicability of the maps to the aforementioned problems

and corroborate their potential benefits.

As for the sensing algorithm, actual design of PU detection strategies is

of interest; in other words, it would be desirable to devise a thresholding-

based rule in order to decide whether a non-zero entry of the estimand
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corresponds to a PU transmitter or it is just corrupted by some spurious

power. Unfortunately, the derivation of an optimal decision rule encounters

insurmountable difficulties arising from a lack of exact statistical charac-

terization of Lasso-like estimates; however, sub-optimal heuristic decision

criteria may be devised. Also, an approach similar to the one pursued in

the total least-squares (T-LS) framework may be taken to cope with errors

introduces by a grid-based discretization of the geographical area and errors

in reconstructing the CG maps.

When QoS policies impose minimum-rate requirements on the CR-to-

CR links, the power control problem may encounter feasibility concerns;

i.e., all the per-CR QoS constraints may not be simultaneously satisfied.

In this case, an admission control scheme is advocated. It is thus worth

investigating an extension of the proposed power allocation algorithm that

incorporates prior minimum CR transmission rates constraints and, eventu-

ally, user selection techniques that cope with the possible infeasibility of the

problem.
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