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Abstract

Generating motions for humanoid robots is to this day a very challenging problem. These

robots often features a high number of degrees of freedom, 20 or more, even for small-sized

ones. This strongly limits the applicability of classical artificial intelligence approaches,

and requires the design of specialized solutions.

Some specific tasks, like locomotion or grasping, have been deeply studied, and im-

portant concepts like the Zero Moment Point (ZMP) for stable walking or the Grasping

Shape Primitives were introduced. Previous relevant work also explored planning strate-

gies for these two important tasks and ongoing research keeps improving the algorithms

in terms of speed, robustness and applicability.

When dealing with more generic tasks, a demonstration from a human can be used

to derive an initial movement, which is then often optimized by the robot itself. In

particular, one of the most common approaches is to directly acquire the movement of a

human performer and adapt it to the robot. Ideally, this technique can yield very natural

looking motions. This is a strong advantage, since human likeness of motions is very

important for communication between human and robots, but no general mathematical

formulation has been provided to date.

The retargeting of human motions to robot motions presents indeed several inconve-

niences. First of all, the instrumentation for acquiring motion data is expensive, requires

a careful setup and may not be accessible to most of the users. Second, a human actor

who is able to perform the desired movement may not be available. Finally, the differ-

ences in the shape, degrees of freedom, power and weight distribution between humans

and robots may require an intensive modification of the human motion in order to adapt

it to the robot. During this adaptation process, the quality of movement appearance can

end up to be significantly reduced.

An alternative approach that does not suffer from these issues is the direct physical

interaction between the robot and a human teacher. In a typical setup the instructor

moves the humanoid’s limbs, showing the robot how the task needs to be accomplished.

The idea behind this technique, called “kinesthetic demonstration”, actually appeared

very early in robotics. Although under different names like “teach-in”, “guiding”, “play

back”, “direct teaching” or “walk-through programming”, it constitutes one of the most

effective methodologies for programming industrial robot arms.

When teaching a robot using this technique the joints are usually let free to move.

This approach has the disadvantage that the joints move under the force of gravity, so

some setups include gravity compensation or workarounds to make the joints passive only

when the teacher touches the robot. Apart from applying forces that compensate for

gravity, when kinesthetic demonstration is used the robot usually just responds passively

to the forces applied.

In order to ease the teaching process, this thesis proposes a new paradigm, termed

i



“teaching by touching”. This approach consists in having the robot interpret the meaning

of the tactile instructions it receives and move based on its own understanding of the

user’s will, instead of limiting its behavior to a mere passive movement.

For instance, if the robot is squatting, and the user pushes the sensors on both sides

of the robot, the robot will guess that the user wants it to stand up and will apply by

itself forces on its knees. Using the classical approach, instead, the robot would not move

when touched on both sides, and would require the user to actually lift up the robot’s

body.

In other terms, the proposed methodology changes the way of interacting between

humans and robots: with the classical, kinesthetic demonstration approach, the robot

moves passively under the user forces like a puppet, while within the teaching by touching

approach, touch is considered a way of communication between humans and robots that

allows the robot to take an active role in the teaching process.

Among the many ways of communication between humans, touch is actually one of

the least studied but most powerful. Touch is often used by instructors in sport or dance

classes to adjust the student’s posture in a very intuitive way. Tactile instructions thus

appear to be a very appealing modality for developing humanoid robot motions as well.

Interpretation of tactile instructions spontaneously given by human teachers reveals

to be a complex task for artificial systems. In fact, the way users employ touch to com-

municate their intention is still completely unexplored even in the interaction between

humans, and models are not available. This thesis reports the first results obtained in

the realization of a system for robot motion creation based on tactile interaction.

In particular, it will be shown that the meaning of tactile instructions is both context

dependent and user dependent. An example of context dependence of tactile instructions

can be readily provided. If a user presses the upper part of the leg when the robot is

standing he or she could imply that the robot should bend the leg backwards. However,

when the robot is squatting, the same touch on the leg could mean that the robot should

bend its knees further.

In regard to user dependence, experiments showed that when asked to interact freely

with the robot, different people tend to give different meaning to similar tactile instruc-

tions. In detail, preliminary results seem to suggest that the differences in the way of

teaching could be partially explained by the diverse abstraction level at which teachers

provide their instructions. For instance, some subjects decided to use a nearly direct

mapping from a small set of sensors to the joints. Other users adopted a mapping

between sensors and joints that appears to be derived from physical considerations. Ex-

pressly, the relationship between the pressed part and the way the robot should move

according to the user can be estimated by imagining each joint to have a spring inside

and to move according to the applied force. Finally, other people employed a mapping

between a single touch and a complete movement. Using this approach, for instance, a

step with one leg is symbolized by a tap on the knee of that leg.
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The experiments were conducted initially with simulated touch sensors. A technique

that permits the interaction with virtual sensors displayed on a touch screen while making

the real robot execute the motion will be introduced. The strongest advantage of this

setup is that it allows applying teaching by touching even to cheap humanoids on the

market that are usually lacking tactile sensors.

A second set of experiments was then conducted with M3-Neony, a new humanoid

robot equipped with touch sensors over the whole body, that will be shortly introduced.

Data analysis confirmed the complexity of the mapping between touch instructions and

the movement to be executed. On the other hand, it will be shown that experimental

data suggest that the way in which the robot should respond to touch instructions can

be described by using a low-dimensional subspace of the complete joint space.

Interestingly, this subspace seems to be highly correlated to the subspace where the

motion being developed lies. This fact suggests that the postures assumed by the robot

during the movement could be used to improve the interpretation of tactile instructions.

The final part of the thesis will briefly deal with very simple techniques used to

improve the robustness of the motions taught to the robot. In detail, two approaches

that use sensory information to automatically make small modification to the movement

during its execution will be introduced. The first, graph based one, simply tries to

make the robot return to a known state as soon as possible when a perturbation brings

the robot state far from the expected one. The second approach, inspired from the

chemotaxis of bacteria like Escherichia Coli, works by the addition of random noise of

intensity that depends on whether the robot state evolves as expected or not.
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Sommario

Nonostante la ricchezza di soluzioni proposte in letteratura, la generazione di movimenti

per robot umanoidi si rivela ancora un problema non risolto. I robot umanoidi presentano

spesso oltre 20 gradi di libertà, anche nel caso di umanoidi di dimensioni ridotte. Questo

rende impossibile applicare gli approcci classici dell’intelligenza artificiale, e richiede lo

sviluppo di soluzioni specifiche per ciascun problema.

Alcuni task particolari, come la locomozione o il grasping, sono stati studiati appro-

fonditamente, e sono stati introdotti importanti concetti come lo Zero Moment Point

(ZMP) per la camminata stabile o le grasping shape primitives per il grasping.

Quando si ha che fare con task più generici, una dimostrazione da parte di un essere

umano può essere utilizzata per derivare un movimento preliminare, che può poi venir

ottimizzato dal robot stesso. In particolare, uno degli approcci più comuni é far eseguire

il movimento direttamente ad un attore umano, registrarlo ed adattarlo al robot. Questa

tecnica si rivela efficace nel produrre movimenti che appaiono naturali, e viene infatti

spesso utilizzata nel campo della computer grafica. Questo è un grosso vantaggio, in

quanto, sebbene avere movimenti naturali risulti importante per la comunicazione tra

utenti e robot, al momento non esistono formalizzazioni matematiche.

Il trasferire i movimenti da esseri umani a robot presenta tuttavia alcuni inconveni-

enti. Innanzitutto, la strumentazione per l’acquisizione di movimenti è costosa, richiede

particolare cura per l’allestimento del sistema e non è fruibile alla maggior parte degli

utenti. In secondo luogo, un attore in grado di compiere il movimento che si vuole far

eseguire al robot potrebbe non essere disponibile. Infine, le differenze di forma, gradi di

libertà, forza e distribuzione del peso tra esseri umani e umanoidi potrebbe richiedere

di modificare in modo sostanziale il movimento. Durante questo processo di adatta-

mento, caratteristiche importanti del movimento potrebbero venir modificate con una

conseguente perdita di naturalezza del movimento.

Un approccio alternativo che non presenta questi problemi è ottenere il movimento

mediante interazione diretta tra il robot ed un insegnante umano. Un modo tipico di

effettuare questo trasferimento di conoscenza è prevedere che l’insegnante muova diret-

tamente gli arti del robot, mostrando come il task debba essere eseguito. L’idea di base

di questa tecnica, denominata “kinesthetic demonstration”, è comparsa molto presto in

robotica, e sebbene sotto diversi nomi come “teach-in”, “guiding”, “play back”, “direct

teaching” o “walk-through programming”, costituisce uno degli approcci più efficaci e

diffusi per la programmazione di bracci robotici industriali.

Solitamente quando viene impiegato questo approccio i giunti vengono lasciati liberi

di muoversi. Se non vengono presi opportuni accorgimenti, quindi, vi è lo svantaggio che

il robot si muova per il semplice effetto della forza di gravità. Sistemi per compensare

automaticamente la forza di gravità sono stati proposti in letteratura. Altre soluzioni

adottate sono rendere i giunti passivi solo localmente, quando l’utente tocca il robot.
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A parte eventuali compensazioni della gravità, quando viene impiegata la kinesthetic

demonstration il robot si muove in modo totalmente passivo sotto effetto delle forze

applicategli.

Allo scopo di facilitare l’insegnamento di movimenti, questa tesi propone un nuovo

paradigma di programmazione, chiamato “teaching by touching”. Questo approccio con-

siste nel prevedere che il robot interpreti il significato delle istruzioni tattili che riceve,

e si muova in base alla stima dell’intenzione sottostante all’istruzione tattile, anziché

limitarsi a muoversi passivamente sotto l’effetto delle forze applicate.

Per esempio, se il robot è accovacciato, e l’utente preme i sensori sui fianchi del robot,

il robot potrebbe intuire che l’utente desideri che il robot si alzi, e potrebbe applicare

forze agli arti inferiori in modo da assumere una posizione eretta. Viceversa, se viene

utilizzata la kinesthetic demonstration classica, il robot non si muove quando gli vengono

applicate forze ad ambo i lati del corpo, e per fare in modo che il robot si alzi l’utente

deve esplicitamente sollevare il robot. In altri termini, la metodologia proposta cambia

il modo di interagire tra esseri umani e robot: con la kinesthetic demonstration classica

il robot si muove passivamente come farebbe una marionetta, mentre con il teaching

by touching, le istruzioni tattili sono considerate come una forma di comunicazione tra

uomo e robot ed il robot assume un ruolo attivo nel processo di apprendimento.

Tra le varie forme di comunicazione tra esseri umani, il tatto è infatti una di quelle

meno studiate ma più efficaci per trasferire una grande varietà di informazioni. Si pensi

ad esempio a come, con semplici tocchi, istruttori di sport o di danza riescano a sug-

gerire ai loro allievi come modificare il proprio movimento. Osservazioni di questo tipo,

suggeriscono come il tatto risulti quindi una forma di comunicazione interessante anche

per la comunicazione tra esseri umani e robot.

L’interpretazione di istruzioni tattili fornite in modo spontaneo da insegnati umani

risulta però essere complessa per sistemi artificiali. Infatti, il modo in cui gli esseri umani

usano il tatto per comunicare le loro intenzioni è un campo completamente inesplorato,

e modelli di come le istruzioni debbano essere interpretate sono completamenti assenti in

letteratura. Questa tesi riporta i primi risultati ottenuti nella realizzazione di un sistema

di sviluppo di movimenti per robot umanoidi basato su interazione tattile.

In particolare viene dimostrato come il significato delle istruzioni tattili dipenda sia

dal contesto che dall’utente che le fornisce. Un semplice esempio di dipendenza dal

contesto può essere facilmente fornito: se il robot è in posizione eretta e l’utente preme

la parte superiore della gamba allora ci si può aspettare che l’utente desideri portare

indietro la gamba, mentre se il robot è accovacciato si può pensare che l’utente desideri

che il robot pieghi le ginocchia per accovacciarsi ulteriormente.

Per quanto riguarda la dipendenza dall’utente, esperimenti hanno dimostrato che,

quando lasciati liberi di interagire a piacimento con il robot, utenti diversi tendono

talvolta ad associare significati sostanzialmente differenti a istruzioni molto simili. In

particolare, i risultati riportati in questa tesi sembrano suggerire che le differenze nel
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modo di insegnare di utenti diversi possano essere interpretate come differenze nel livello

di astrazione usato da diverse persone. Per esempio, alcuni utenti hanno deciso di utiliz-

zare un mapping fisso tra sensori e giunti. Altri soggetti hanno adottato una relazione

tra sensori premuti e movimenti che sembrano derivare da considerazioni fisiche, ed in

particolare dall’immaginare che i giunti siano elastici e che il robot si muova sotto l’effetto

delle forze applicate dall’utente o dalla reazione del pavimento. Infine, altri utenti impie-

gano un mapping tra un singolo tocco ed un movimento completo. Con questo approccio,

ad esempio, la pressione di un ginocchio è associata ad un passo effettuato con la relativa

gamba.

Gli esperimenti presentati sono stati condotti inizialmente con un sensori di tatto

simulati. Una tecnica che permette di interagire con sensori simulati, visualizzati su un

touch screen, è introdotta nella tesi. Il vantaggio di questo tipo di approccio sta nel

fatto che permette di applicare la tecnica del teaching by touching anche agli umanoidi

di basso costo tipicamente disponibili sul mercato.

Un secondo insieme di esperimenti è stato condotto con M3-Neony, una nuova pi-

attaforma robotica dotata di sensori tattili su tutto il corpo. L’analisi dei dati ha con-

fermato la complessità della struttura del mapping tra istruzioni tattili e modifiche del

movimento. D’altro canto, i risultati sperimentali indicano che i movimenti attesi come

riposta alle istruzioni tattili giacciono in un sottospazio dello spazio dei giunti.

In particolare, il fatto interessante è che tale sottospazio coincide con in sottospazio in

cui può essere proiettato il movimento che l’utente sta sviluppando. Questa constatazione

suggerisce che le posture assunte dal robot durante l’esecuzione del task possono essere

impiegate per migliorare la stima del significato delle istruzioni tattili.

La parte finale della tesi presenta brevemente due semplici tecniche che possono essere

utilizzate per migliorare la robustezza a perturbazioni esterne dei movimenti generati.

La prima, basata sulla costruzione di in grafo, tenta di far ritornare il robot in uno stato

conosciuto il prima possibile dopo che una perturbazione porta lo stato lontano da quello

aspettato. Il secondo approccio, derivato dalla chemiotassi di un batterio denominato

Escherichia Coli, si basa sull’aggiunta di rumore al controllo, con un intensità che dipende

dal fatto che lo stato evolva nel modo atteso o meno.
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1
Introduction

The field of robotics nowadays comprises a huge variety of robot types: industrial robot

arms, wheeled robots, quadrupeds, submarine robots and flying robots, just to cite some.

Among these many categories, humanoid robots draw particular attention.

Several reasons motivate research on humanoid robotics. First of all, much of the

tools, buildings, infrastructures are built for humans, with size and features suitable to

people. Stairs, knobs, vehicle handles and pedals are designed for humans. Robots with

a structure close to the human shape would be able to move in human environments and

use commonly available tools, without the need to create new facilities or devices for the

robots [1].

Secondly, robots are supposed to closely interact with humans in the near future.

Humans find easier to understand and communicate with artifacts with anthropomor-

phic shape. As an example, just notice that most of Disney characters assume human

form, although they’re animals. In fact, human-human communication is very rich, and

contains a lot of non-verbal clues, like pointing gestures [2, 3] or face expressions [4].

Last but not the least, by studying humanoid robots it is possible to understand more

about humans. In particular in recent years particular attention is given to Cognitive

Developmental Robotics [5], a new discipline that aims at studying mechanisms of human

intelligence, cognition, and development with robots and computer simulations. Usually,

in this approach, models of infant development deriving from brain science or psychology

are implemented in a humanoid robot with an anthropomorphic structure and a human-

like perceptual system. The actual implementation allows verifying the hypothesis by

comparing the phenomena observed in the resultant robot behaviors with the real infant

development. The growing interest in CDR and the consequent need of new baby robot

platforms seems to be confirmed by the recent development of Child robots like CB2,

Child-robot with Biomimetic Body [6], and iCub [7]. This thesis will briefly introduce a

new, small size child robot, called M3-Neony, in Section 4.1.

Much research is being conducted using small size humanoids. Although these hu-

manoids cannot employ tools designed for humans, they present advantages in terms

of reduced cost, eased maintenance and, thanks to the limited torques of their motors,
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safety.

The control of humanoid robots reveals to be very difficult due to their high num-

ber of degrees of freedom. Even small humanoid robots often present over 20 degrees

of freedom (DOFs). When dealing with humanoids, therefore, the curse of dimension-

ality problem [8] rules out the straightforward application of most classical Artificial

Intelligence algorithms.

Specific solutions for humanoids were thus presented. For instance, the use of com-

plete algorithms like [9] reveals unfeasible so the Rapidly-exploring Random Trees [10]

(RRTs) were proposed as a possible solution for motion planning [11]. When using these

algorithms, the space of configurations is sampled randomly, with a heuristic that allows

a rapid exploration of large unsampled areas and sample with increasing density in all

the regions of the configuration space.

Similarly, classical reinforcement learning [12] cannot be used to cope with humanoids

movements, and specific solutions were thus proposed. In fact, reinforcement learning

shows very good performances in low-dimensional, noise-free grid world. However, when

dealing with real world problems, the state and action spaces become highly dimensional

and often continuous. The approach usually taken is defining the value function and

the actions as a parametric function, for instance as a linear combination of nonlinear

functions. Research in that directions can be found in the humanoid field, for example,

in [13], where predefined basis functions are used to express the movement and in [14],

where the learned parameters of a dynamical systems are used to generate an appropriate

control signal.

Other approaches to reduce the state space when dealing with real world problems are

extracting high level features, like the presence or absence of an object, from sensory data.

This, however, both decreases the generality and, depending on the feature extractor,

could make the system decisions sensitive to noise. More general techniques, like the G

algorithm [15] or the U-tree [16], try to split the space only when necessary, but require

the acquisition of many data for having significant statistics.

In addition to the dimensionality problems, real world settings present the problems

of perceptual aliasing [17], i.e. qualitatively different world states are perceived as the

same by the sensory input. Furthermore, while in simulated worlds changes are usually

assumed to occur just as a consequence of robot actions, in the real world setup events

could change the world condition even if no actions are taken by the robot. In other

terms, therefore, while often grid worlds can be considered as Markov Decision Pro-

cesses (MDPs), real world problems often require to explicitly consider the robot-world

interaction as a Partially Observable Markov Decision Process (POMPD).

Furthermore, real world tasks often involve achieving a sequence of subgoals. In order

to have reasonable learning times, specific solutions for dealing with subgoals must be

taken. Examples of these heuristics are the construction of a different state space for

each of the subgoals [18], the realization of hierarchical architectures [19], or the use
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of “reward shaping” [20], i.e. specifically giving rewards for the subgoals, in terms of

“progress metrics”.

Given all these problems, to have reasonable learning times when dealing with hu-

manoids, the approach often taken to learn a good movement is to define the motion

parametrically and optimize the free parameters. Plenty of parameterizations can be

found, for instance, for walking patterns [21, 22]. Since smoothness is often a desir-

able aspects, and since often the actuators present a low-pass filtering effects in their

response, the usage of splines for defining the movement is one of the most diffused ap-

proaches [23, 24]. Definition of the movement in the frequency domain can be also found

in literature [25].

Another approach often adopted is defining the movement as a composition of “ba-

sis functions” or “motion primitives” [26]. Actually, living organisms seems to adopt a

similar strategy. Studies on frogs and rats [27] reveal in fact that the movements may

be generated by a superposition of basic primitives. Similarly, studies on humans show

that, despite the extremely high number of degrees of freedom, locomotion [28] or hand

movements [29] can be approximated very well even in very low dimensional subspaces.

Actually, similarity between humans and humanoid robots also motivated the extraction

of motion primitives from human movements, for their usage in control [30, 31] or even

in hardware design [32].

One important aspect of the motion representation is whether it is designed to be

used open-loop or if it can include feedback from the sensors. Among the motion repre-

sentation that are designed to undergo on-line modifications depending on the sensory

information, we can cite the Nonlinear Dynamical Systems movement primitives [33]. In

this setup, essentially, the movement is encoded as a low dimensional dynamical system

of predictable behavior, whose trajectory is mapped, by a learned nonlinear function,

to actual motor commands. The dynamical system has the role of giving a “phase” or

“virtual time” to the whole system. By modifying the evolution of this phase variable,

the whole robot movement is changed. For discrete movements, a dynamical system that

converges to an attractor point [34] as a leaky integrator is employed, while for periodic

movements, oscillators can be used [35].

Humanoid robot periodic motions are actually often generated by oscillators, or bet-

ter interconnection of oscillators [36, 37]. This approach takes inspiration from “Central

Pattern Generators” (CPGs), group of cells present in animals that exhibit periodic ac-

tivity and are responsible of the generation of periodic movements like gait [38]. CPGs

present the great advantages of being able to adapt to external perturbation and syn-

chronize with the environment once feedback is introduced. See Section 5.1 for a more

comprehensive introduction.

Given the difficulty of automatically learning movements, a lot of research exploit help

from humans, an approach also termed as “coaching” [39] when the interaction between

the robot and the user is an important factor of the transfer of knowledge. This support
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from humans given to humanoids, often eased by the similarity of the morphology, is

exploited in the so-called learning from demonstration approaches [40, 41]. In this setup

a human instructor directly executes the task, or controls the robot, in order to collect

information that can be used by the robot to generate a representation of a solution

for the task. This solution can also be automatically improved by the robot, once an

evaluation function is specified. In fact, often, even a movement shown by a user that

does not achieve the task can be a good starting point for an optimization that leads to

satisfactory performances [42].

In fact, one of the most direct approaches of teaching a motion to a humanoid is

making a person execute the motion. The movement can be recorded, for instance,

by using a motion capture system that stores the position of markers attached to the

performer’s body. The movement is then adapted to the robot’s structure so that the

motion can be replayed by the humanoid [43]. This motion retargeting approach is often

used in computer graphics as well.

In fact, generating human-like motions still reveals to be an open problem, mainly

due to the difficulty in providing mathematical formulations. Motion capture systems

are thus used to easily obtain human-like motions both for computer graphic character

animation [44] and for humanoids [43, 45].

However, this technique presents several inconveniences. First of all, the instrumen-

tation for acquiring motion data is expensive, it requires a careful setup and it may not

be accessible to most of the users. Secondly, a human actor who is able to perform

the desired movement may not be available. For instance, users may want to teach the

robot to execute a acrobatic flip even if they are not able to do it themselves. Finally,

the differences in the shape, degrees of freedom, power and weight distribution between

humans and robots require an intensive modification of the human motion to make it

executable by the robot. During this adaptation process, the quality of the movement

appearance may be strongly degraded.

Another very diffused motion generation methodology is direct manipulation of the

robot limbs. The trajectories are recorded and then used for motion playback. This

technique appeared very early in robotics, in the field of arm manipulators, and was

denoted with a great variety of terms such as teach-in, guiding, play back, direct teaching

or walk-through programming [46]. The approach is still largely employed and keeps

drawing attention [47, 48]. The idea of equipping mobile robots with tactile sensing

for recognizing gestures as an intuitive human interface is recurrent in literature [49,

50] as well. In the humanoids field, this technique, recently diffused under the name

of “kinesthetic demonstration”, appears to be a simple and valid solution for motion

development [51]. If several demonstrations are provided, then a probabilistic model

of the movement can be obtained [52] to know, for instance, whether when moving an

object the final position of the trajectory must be accurate or not.

Surprisingly, nowadays small humanoid robots are still programmed, even in the
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consumer market, in a very basic, low level way [53, 54, 55, 56, 57, 58]. In particular, the

robot motion is defined by a sequence of keyframes. Each keyframe defines the position

that the robot must assume at a specified time, and the position that the robot assumes

between two keyframes is defined by their interpolation. The position is usually specified

by setting the angle of each of the joints, using Graphical User Interfaces (GUIs) that

usually consist in simple sliders, which are moved to change the angles. The process is

time consuming and counter-intuitive, since inexperienced users often get confused on

how the joints should be moved to obtain a posture they have in mind.

Commercial editors, like Robovie Maker for VStone’s robot, HeartToHeart for Kondo’s

robots or RoboPlus for Bioloid robots1, usually follow this approach, apart from some

functions like the possibility of defining conditional or loop execution of motions, mod-

ifying the joint posture depending on the accelerometers information or solving some

inverse kinematic. Bigger robots, like the HRP-4c, are often programmed in a simi-

lar way, although the editors present further facilities like automatic adjustment of the

postures to maintain equilibrium [59].

The approach presented in this thesis, called “Teaching by touching”, relies on direct

physical interaction between the user and the robot. The approach is inspired from

the way sport coaches or dance instructors use simple touches to correct their trainee’s

postures.

In detail, within our setup, the user touches the robots, and the touch is interpreted

to modify the movement. The concept will be discussed extensively in Chapter 2. In

particular, we will present two ways of editing motions. The first approach is, for sim-

plicity, based on frames. In this case, however, the GUI is reduced essentially to a simple

time-line and play/stop buttons. The users select the time of the posture they want to

modify, and then they touch the robot to communicate how they want to modify the

robot’s posture. The second approach, presented in Chapter 5, is based on CPGs. In

this setup, the users are able to to modify whole periodic motions by simple touches.

The second part of the thesis, and explicitly Chapter 6, deals with simple and compu-

tationally lightweight techniques that can be used to improve the robustness of movement

execution. Their applicability is not restricted to movements taught with the teaching by

touching approach, nor to humanoid robots. However, the combination of the teaching

by touching approach and these techniques with minimal hardware requirements appear

to be an interesting solution for improving the usability of small humanoid robots that

are increasingly available on the consumer market.

Finally, Chapter 7 concludes the thesis by summarizing the main ideas and results

presented in the thesis and by illustrating future works.

1See www.vstone.co.jp/ for VStone robot’s, http://www.atr-robo.com/product/maker/
robo-maker.html for Robovie Maker, http://kondo-robot.com/ for the popular Kondo robots, and
http://www.robotis.com/xe/bioloid_en for the Bioloid robots.
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2
Interpretation of touch instructions

This chapter provides an introduction on the way touch can be used for communication.

In particular, Section 2.1 will provide a description on the the role of touch as a com-

munication means between humans. References to works on how touch can be used to

improve the communication in difficult environments, that require short response times,

will be given. Additionally, devices developed for replacing other sensory modalities, like

vision or audition, will be shortly described. The biological structures that permit tactile

sensing in humans will be briefly listed.

Section 2.2 will briefly explain the difficulties that artificial agents must face when

interpreting the tactile instructions given spontaneously by humans. In detail, examples

of why the meaning of the instructions is both user and context dependent will be

provided. The section then analyzes the possible alternatives that can be adopted to

enable humans and robot to communicate through touch.

In particular, the idea of learning the mapping between tactile instructions and their

meaning will be discussed. The possible ways to learn this mapping, and the respective

advantages and disadvantages will be considered. Specifically, the section will indicate

the reasons that lead to the choice of adopting an online, supervised learning setup for

the prototype system described in the next chapter.

2.1 Communication through touch

Abstractly, we regard communication as a process by which a sender encodes a concept

into a format suitable for transmission though a medium, and sends this information to

a receiver, which then reconstructs (or decodes) it. Human-to-human communication is

traditionally divided into verbal, i.e. when concepts are encoded in the form of words, or

non-verbal, when they are not [60]. Communication can also be broken down according

to the transmission channel used, such as communication via vision, sound, smell [61]

or touch. There are a great variety of studies dealing with characteristics of visual

communication, for example recognition of human gestures, see for instance [2, 3, 62], or

analysis of how a robot’s appearance affects human-robot interaction, i.e. the Uncanny
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valley phenomena [63].

However touch as a communication medium has received considerably less attention.

Touch is an important sense in animals and humans. It is the earliest developed sensory

system in all animals, in fact at two months of gestation, humans’ fingers already make

a grasping movement when the palm is touched and during the first year of life, infants

learn many things by touching objects with their mouth. Strictly speaking, touch is the

stimulation of the skin by mechanical, thermal chemical or electric stimuli that gives as

sensations pressure, warmth, vibration, pain, or muscle movements. The outermost layer

of the skin is the epidermis, whose surface is constituted by dead cells. Under this layer,

the dermis contains connective and nutritive tissues, and specialized nerve cells:

• Meissner’s corpuscles, which respond to the lightest form of stimulation (located

on hairless parts like fingertips or tongue);

• Pacinian corpuscles, which respond to pressure, vibrations, high frequency sounds

(located near the joints and mammary glands);

• Merkel’s disks, which respond to constant pressure;

• Ruffini endings, which register pressure and temperature.

Any stimulation of the skin is carried to the spinal cord on nerve fibers that are small

for pain and temperature information, and large if they carry mechanical information.

The information traveling to the brain then crosses the sensory cortex to the opposite

side of the brain where it is processed.

On the cortex, the space reserved for the body parts is a function of the density of

the nerves and not of the area of the body. For instance, a great area is reserved for the

abundant amount of information coming from fingers and lips. As a proof of different

sensitivity of different areas, if the skin is touched with one or two brush hairs and people

are asked how many points are felt, in sensitive areas (fingertips, lips, etc), two points

are perceived as distinct more readily than in other parts. The temperature sensitiveness

is very high, in fact an increase of only three-four degrees of the skin temperature causes

feeling of extreme heat, while even a decrease of one or two degrees is perceived as

deep cold. Experiments also show that the sensitivity is generally the same for both

the left and right sides of the body, but that women are more sensitive than men to

skin stimulation [64]. For a more complete introduction on the topic, refer, for instance,

to [65].

Touch can also replace other sensory systems in impaired people. For example, devices

like the Optacon (OPtical TActile CONverter) have been developed to replace vision.

The Optacon permits blind people to read printed material that has not been transcribed

into Braille; it consists of an electronics unit connected to a lens module. The main

electronics unit contains a ”tactile array”onto which the blind person places his/her index
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finger. The Optacon user moves the lens module across a line of print, and the image

under the lens module is transmitted via the connecting cable to the main electronics

unit. The tactile array in the main electronics unit contains a matrix of tiny metal rods

which are vibrated to form a magnified tactile representation of the image being viewed

by the lens module. As the user moves the lens module along the print line, an image

roughly the size of one print letter is felt moving across the tactile array from right to

left under the user’s finger. Similarly, images acquired from a camera can be converted

into a tactile representation. In [66] it was shown that blind subject, after few hours of

training, were even able to acquire concepts like perspective, shadow, shape distortion,

etc.

Devices to convert sounds into tactile stimulation have been developed as well [67].

In [68] a study on the possibility of recognizing words with one of such devices is reported.

The experiment shows that subjects learned to identify 50 words in less than 50 hours

of training.

Touch is a primitive but very powerful mean of communication. Simulation experi-

ments where subjects are asked to aim at a target with a mouse [69] show that tactile

cues can be used to nearly halve the time to initiate the movement toward the target.

Similarly [70] shows the feasibility of vibrating units located on a belt for navigating

pedestrians or pilots. In particular, experiments showed that the solution remains appli-

cable also in case of external perturbation, as in the case of people piloting fast boats or

helicopters. Plenty of applications of such devices are being outlined. For instance, they

could reveal a good solution for guiding firefighters in low visibility conditions.

Further examples of possible usages of touch based devices in the sports domain are

reported in [71]. The paper shows, for instance, that cues on where to go can be given to

soccer players. Hints on how to adjust the posture to maximize the performance can be

given to skaters and cyclists. Finally, the work highlights the possibility of using tactile

feedback to correct the timing of the movement of rowers.

Touch has an important role for humans since infancy. Plenty of studies show the

importance of the tactile interaction between infants and their caregivers [72]. Touch is

used to communicate both emotions, like happiness, fear or anger [73], and to convey

specific information, like the presence or absence of a caregiver or the identity of the

person touching the infant. Studies with toddlers [74] show that touch is so rich and

informative that it can provide by itself information on very high level and abstract

aspects like the “quality of interaction”. At older ages, tactile communication maintains

its importance. Tactile interaction can for instance be observed in dance, where it

assumes an important role in the coordination between the partners [75, 76]. Similarly

sport instructors intuitively correct the movement of their trainee by simple touches.

The intuitiveness and richness of touch makes it an appealing way of interacting with

robots as well. Direct physical interaction between robot arms and humans appeared

early in robotics, termed as teach-in, guiding, play back, direct teaching or walk-through
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programming [46]. The approach is still largely employed and keeps drawing atten-

tion [47, 48]. The idea of equipping mobile robots with tactile sensing for recognizing

gestures as an intuitive human interface is recurrent in literature [49, 50] as well.

Among robots, humanoids are the ones that can probably benefit the most from ex-

ploiting haptic communication. In fact, their anthropomorphic shape facilitates social

interaction, as people spontaneously tend to attribute human characteristics to inanimate

objects, animals or other entities trying to rationalize their actions [77]. The capability

of sensing forces can thus constitute a natural interface for human-robot interaction. An

example of the intuitiveness that can be achieved in robot programming by exploring

direct physical interaction is given by kinesthetic demonstration [52]. Within this ap-

proach, users directly grasp and move the robot limbs, providing demonstrations of the

task that are sufficient for the robot to extract a model of the movements to be executed.

This teaching method assumes the robot to move passively under the forces applied to

it. In fact, kinesthetic demonstration is often used with small humanoids whose motors

are switched off. As possible alternatives, a subset of the motors can be made passive

only when necessary [78], or compliant actuators can be employed [79, 80].

The approach presented in this thesis is based on the interpretation of tactile in-

teractions. In other terms, the robot tries to understand the meaning underlying the

touch, and moves accordingly. Within this paradigm, the robot responds actively, and

is not limited to a simple passive movement consequent to the external forces. Such an

approach presents several advantages in comparison to kinesthetic demonstration. The

robot could, for example, apply all the corrections assumed useful. For instance, when

receiving instructions on how to modify the motion, the robot could apply small mod-

ification in order to satisfy criteria like dynamical stability, or the minimization of the

torso oscillations. Similarly, the robot could try to satisfy the estimated user intention

while minimizing the load on the servomotors of the knees and the ankles. When the

user appear to be trying to set the right part of the body in a posture similar to the left

one, the robot could estimate the intention and impose perfect symmetry between the

right and left joints, which is difficult to be realized by the user’s direct manipulation.

Other advantages of the proposed technique over kinesthetic demonstration can be

readily provided. A single touch could be interpreted and correspond to a simultaneous

movement of both arms and legs, while it would be very difficult, if not impossible, to

move the four limbs of the robot simultaneously with classical kinesthetic demonstration.

Additionally, with big robots like HRP-2 [81], kinesthetic demonstration may reveal to

be unfeasible if solutions for compliance and gravity compensating are not adopted. The

teaching by touching approach does not suffer from these drawbacks since it assumes an

active movement performed by the robot.

Kinesthetic demonstration could be considered as a particular case of teaching by

touching. In fact, a robot controlled by the teaching by touching paradigm can behave

exactly as in the kinesthetic demonstration setup if the algorithm for mapping sensor
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pressure to movements is set according to inverse kinematics. For this reason, we could

state that the teaching by touching approach is at least as much powerful as kinesthetic

demonstration.

The concept of teaching by touching is very general. Touches could be converted to

body posture modifications, but in some cases, they could correspond to changes in the

movement velocity or timing. In a similar way, the approach does not put constraints

in the motion representation underlying the robot movement. For instance, Section 3.1

reports a possible implementation when the motion is modeled by a set of keyframes,

while Chapter 5 shows how touch instructions can be employed to edit the parameters

of a CPG responsible for the robot’s motion.

Similarly, touch is a very articulated communication means, exhibiting many features

such as the location of its application, its force direction, intensity and time. Also in this

case, although the specific implementations we will present take in considerations only

some of the features of tactile information (pushing force or pressure time), the idea of

teaching by touching is not constrained to a particular feature.

In order to interpret tactile patterns, humanoid robots must be equipped with a model

of the way users provide these instructions. Touch interpretation is in fact complex, user

dependent and context dependent, as will be highlighted in Section 2.2.

Unfortunately, models of how humans exploit touch to communicate precise infor-

mation like motion teaching are completely missing in literature. In fact, most of the

aspects of tactile communication in humans are still largely unexplored, as recent works

in the field of psychology point out [82]. Performing quantitative measurements in the

interaction between humans is very complicated, given the richness of tactile information.

On the other hand, acquiring data during the interaction with a humanoid robot is much

easier. For this reason, one of the ideas presented in this thesis is the possibility of using

the teaching by touching approach to investigate people’s way of using touch to com-

municate. One may argue that human-human interaction may differ from human-robot

interaction. However, we should notice that often people unconsciously treat robots that

appear human-like in a way very close to other humans. For instance, the way people

direct their gaze to humans and to mechanical objects is different, but when interacting

with androids, people’s gaze follows the behavior taken in the interaction with other

humans [83].

The teaching by touching approach can therefore be seen also as a tool for measuring

features of the tactile interaction between humans and humanoids. Once data from

a sufficient number of users is collected, it will be possible to construct a model for

the interpretation of touch instructions. This model will shed light on a completely

unexplored field of human science, the way humans employ touch to communicate precise

information. From an engineering point of view, the model will allow the building of

humanoids that are able to understand the meaning of touches, which can be provided

spontaneously by users that are not familiar with the robots.
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This thesis reports preliminary results on the analysis on the way people utilize touch.

In particular, it will be shown that as easily predictable, some basic motions, like closing

the arms, are converted by most of the users into similar instructions and that usually

users touch the limb they want to move. This appears however not to be true when the

users want to convey higher level behaviors to the robot. In the case considered in this

paper, for instance, a subject touched the head of the robot to make it squat or touched

its side to express the desire to turn the leg and bring the knee outwards. Furthermore, in

general, different users give different levels of abstraction to the touch meanings, ranging

from “when I press sensor s turn joint j” to “when I touch your knee, execute a step with

that leg”. Other findings regard the fact that usually the posture modifications desired

by the users lie in a (linear) subspace of the motor space. Interestingly this subspace

seems to be highly correlated to the subspace where the motion being developed lies.

This fact suggests us that the motion itself could be used to improve the interpretation

of tactile instructions. More detailed results can be found in Section 4.3.

2.2 Ambiguities in tactile interaction

As seen in the previous section, touch is an important and powerful means of communi-

cation. Observing a sport coach or a dance instructor, we often notice that the teacher

can convey much information with a single touch. The learners are able to interpret the

meaning in a spontaneous way. The same means of communication, naturally shared

between human beings, should allow inexperienced users to teach robots new motions.

As previously stated, however, no models of this interpretation are available. Interpre-

tation is complex because the meaning of tactile instructions is both context dependent

and user dependent. Figure 2.1 provides an example of how the context can be sufficient

to completely change the meaning of the same touch. If users press the upper part of

the leg when the robot is standing they could imply that the robot should bend the leg

backwards. However, when the robot is squatting, the same touch on the leg could mean

that the robot should bend its knees further.

Figure 2.2 shows an example of user dependence. When the robot is standing, as

previously stated, for a user touching the upper part of the leg the meaning of the touch

could be that the leg should be brought backwards. However, for another user, the same

touch could mean that the touched leg should be risen. Actually, this kind of interpre-

tation was actually given spontaneously by a novice user, as reported in Section 3.5.

One simple way to allow humans to communicate with robots through touch would be

to design a fixed protocol, and ask the user to learn it and use it. This solution presents

several advantages. It is simple to implement, the responses can be easily predicted and

the protocol can be optimized with respect to certain criteria. For instance, it would be

possible to test a set of different fixed protocols and choose the one that allows faster

programming.
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Figure 2.1: Different touch meaning in different contexts. The same touch corresponds to two
different intentions depending on the context.
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different 
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the user

Figure 2.2: Different touch meaning in different contexts. The same touch corresponds to two
different intentions depending on the context.

This may be a good solution for robot programmers: an optimized “sensor based

language” that allows easy programming. However, as shown in Fig. 2.3 this requires

an initial effort in learning the protocol. At least in the beginning phase, each time

the users want to communicate with the robot, they must put effort in expressing their

idea on how to modify the motion using the protocol available. In other terms, users

have an idea on how they want to modify the motion. If they were to interact with

another human, they would just touch the trainee without any need on thinking how to

express their intention. Conversely, with a fixed protocol, they need to mentally convert

their own motion modification intention into a set of touch instructions defined by the

protocol. This initial learning effort may be unacceptable for users who teach motions

very occasionally. On the robot’s side, the interpretation is clearly very easy, since the

instructions just need to be converted into a motion modification using the preestablished

protocol.

The complexity of the process can however be moved from the human side to the

robot side, as depicted in Fig. 2.4. In particular, if the robot is equipped with a better

estimator of the user intention, that mimics the interpretation unconsciously performed

by a human trainee, then the inexperienced teachers effort is reduced to the minimum. In

this setup, users are given no constraints on the way they provide their instructions, and

the robot estimator must be able to interpret them, possibly adapting to each particular

user. This parallels with what happens between humans: trainees understand their

teacher more and more as they spend time together.

One interesting question is whether, for robot programmers, the instructions given
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Figure 2.3: Touch interpretation by a fixed protocol. The communication occurs due to the ef-
fort of the user who converts its own motion modification intention into instructions
that the robot knows.
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Figure 2.4: Touch interpretation by natural provision of tactile instructions. The communi-
cation occurs due to the effort of the robot that converts the naturally provided
instructions into actual motion modifications.
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unconsciously are the faster way to program the robot or if it would be possible to

design a protocol that, once learned, is optimal for programming. In a similar fashion,

we could imagine to have several robot programmers interact freely with the robot, and

to compare their motion development time, to find out the protocol of “good teachers”.

It would then be possible to force the programmers to master the protocol of “good

teachers”, and observe whether such a protocol is in general good for everyone or if

unconsciously given instructions are really the best way to program robots not only for

inexperienced users but for experienced ones as well.

Given the lack of models for the interpretation of natural instructions, two approaches

can be taken. The first one is to actually collect data of the interaction between humans,

and derive a model. To collect data, we can design a simple experiment. Imagine having

two people. A video of a complex movement, for instance a dance, is shown to one of the

subjects, which we call the teacher. The other subject, who acts as a learner, is provided

no information on the movement he has to perform. The teacher is required to employ

exclusively touch to teach the motion to the learner. In other words, we want to see

how a human would behave if it were the robot of our current system. The movements

of the two subjects could be easily recorded by a motion capture system, and a data

glove could be worn by the teacher to accurately measure the forces he applies. Once we

collect data from human-human interaction, we can study an appropriate representation

for the touch and context information and derive a model of the interpretation of touch

instructions used by the human learners.

The second approach is to directly use a robot, and make it learn the protocol. For

learning, there are several aspects to be decided. The first is when the touch interpreta-

tion should be learned. One approach is to have a special preliminary session, in which

the robot is taught the protocol, and then, during motion development, such protocol is

used.

While this strategy presents the advantage of clearly separating the two concepts of

“teaching the meaning of a tactile instruction”and“teaching a motion”, several difficulties

arise. Concretely, one possible setup could be to define several couples of robot postures,

and ask the users to touch the robot as they would do to bring the robot from the first

to the second posture of the couple. This setup presents the problem that it is difficult

to imagine beforehand all the possible contexts that the robot will face and for which

the meaning of the touch instructions should be taught. Secondly, it may be difficult

for users to provide instructions in a natural way when they are requested to bring the

robot from a predefined posture to another one. Users may not be able to observe the

initial and target posture in a sufficiently accurate way, and may not grasp the actual

meaning of that movement, ending up providing an unnatural instruction. To mitigate

this effect, the users may be asked to freely teach meaning of tactile instructions. This

setup would assure that the instructions are given unconsciously. However, users may

restrict their teaching to particular contexts, and the data collected may be unsuitable
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to learn a protocol that can be used afterward.

Another approach is to have a “touch instruction training” session, but to have teach-

ers teach both the motion and the meaning of tactile instructions at the same time.

This solution provides several advantages. The instructions are provided just when the

user has a concrete idea on how he wants to modify the motion, and the instructions

are provided in a natural way. Furthermore, there is no need of thinking at all possi-

ble contexts, because the meaning of touch instructions can be provided at any time.

More in detail, such an approach allows teaching the meaning of tactile instructions just

when required. Practically, this means that the mapping between tactile instructions

and motion modification can be refined more and more just where needed.

The second aspect to be decided is how to teach the robot the meaning of tactile

instructions. In particular, it must be decided whether to use supervised learning or

reinforcement learning. Supervised learning corresponds to giving the robot examples of

a tactile instruction in a particular context and the desired motion modification. This is

the setup in which the user gives the most rich information to the robot.

Another approach is using reinforcement learning: the robot proposes a possible

motion modification to the user, and the user just evaluates the goodness of the response

by a scalar (possibly binary) evaluation. It is even not necessary to provide an evaluation

at every step. The user could, for instance, provide just negative rewards when the

motion modification is an undesired one. This approach requires the user to provide

less information, but more advanced algorithms are required. In particular, a naive

approach consisting in classical reinforcement learning appears unfeasible. If the robot

tries random motion modifications, and the user must evaluate them, then we can expect

that an impractically long time will be required before the system converges to good

motion modifications for each touch instruction.

Additionally, a possible setup is obtaining the reward information internally, and not

asking the user to provide it. Concretely, if the robot is equipped with an evaluation

function of the task, then the robot can assume that in general the user instructions are

always beneficial for the task, so when the task performance increases, the instruction

interpretation was probably correct, and that, conversely, when the task performance

decreases, the instruction was misunderstood. Although very appealing, this approach

requires a very good task description, that is able to give a good evaluation even to

partial improvements of the motion. For instance, if the task is crawling, the evaluation

function should consider lifting the arm positively, even if such action alone does not

directly reflect into an improvement of the task purpose, i.e. moving forwards.

Chapters 3 and 4 present the implementation of a system where the meaning of

instructions is taught during motion development, in a supervised learning setup. In

this setup the motion representation is trivial, and based on a sequence of frames, i.e.

postures that the robot must assume over time. Touches are actually used to modify

single posture. Chapter 5 focuses on the application of the teaching by touching approach
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to a more interesting motion representation, namely Central Pattern Generators. An

implementation where a simple fixed mapping between touch instructions and motion

modifications is described. Thanks to the CPG motion description, in this setup a single

touch corresponds to a modification of the whole motion.
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3
Supervised learning of tactile instructions

This chapter introduces an algorithm for tactile interpretation based on supervised learn-

ing. In the actual system implementation, the robot learns the meaning of tactile in-

structions on-line, i.e. during the motion development. As previously discussed, this

presents several advantages. Indeed, the user can provide instructions in a very natural

way. Furthermore, the mapping between tactile instructions and motion modifications

can be refined where required, i.e. where the robot misunderstands the meaning of tactile

instructions.

Figure 3.1 reports a schema of the motion development process in this framework.

The motion is taught by successive refinements. At each cycle, the user observes the

current state of the motion, decides what to change, and provides a tactile instruction.

If the robot correctly understands the instruction (“Correct estimation” path in Fig. 3.1)

then the user keeps editing the motion. Otherwise (“Wrong estimation” path in the

figure) the user teaches the correct interpretation of the instruction, and then proceeds

in editing the motion. When the correct meaning of the touch instruction is given, a

new example of an input (tactile instruction) and the corresponding output (the desired

motion modification) of the estimator is made available to the robot.

The robot can then use this piece of information to improve its touch instruction in-

terpreter. Concretely, with a model-based method, this would correspond to an update

of the model parameters. With a memory based method, as the algorithm presented in

this chapter, the new input-output mapping example is simply stored into a database.

To prevent any bias in the resulting mapping, the current system starts with an empty

database for each new user. The user, however, can reuse the same database over time.

This makes the tactile instruction interpreter more and more accurate over time, al-

though specific for a single user. The increase in the accuracy of the interpreter, in

turns, translates in a decrease over time of the need of teaching the meaning of touch

instructions, as will be shown in Sections 3.5 and 4.3.

In our first implementation, the motion is represented as a set of keyframes. During

the motion development, the user selects an instant in time at which the posture should

be changed. This can be done by a Graphical User Interface (GUI) that displays a
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Figure 3.1: A schema of the motion development cycle. The user touches the robot to edit the
motion. The robot interprets the meaning of the tactile instruction and changes the
motion. The user then evaluates the motion change. If the change corresponds to
the original intention then the user will continue to develop the motion, otherwise
he or she will teach the robot the meaning of the touch instruction.
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Figure 3.2: A conceptual schema of touch interpretation under the supervised learning frame-
work.

timeline. The timeline consists of a slider, and by dragging the cursor the robot assumes

the posture of the corresponding time.

Once the time is selected, the user can edit the posture of that time by touching. The

interpreter maps the tactile instructions given to motion modifications. In particular,

if a frame based representation is used, as in our case, the tactile instructions can be

mapped to changes of the current posture.

If the posture change does not correspond to the desired one, the user provides the

meaning of the tactile instruction, i.e. the expected posture change. Figure 3.2 provides

a conceptual schema of the approach. In order to teach the correct interpretation to

the robot, any communication means shared by the user and the humanoid could be

used. Speech recognition with commands like “bring the hand backward” or “raise the

knee more” could be employed. This appears as a very natural way of interaction with

the robot. However, it would require a lot of effort from the user, who would need to

learn the terms and grammar structures understood by the robot. Furthermore, it may

be difficult to use words for fine tuning the postures. Learning by watching [84] could

also be used, but in this case the complexity of the system would need to be strongly

increased.
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Figure 3.3: The input and the output of the touch instruction meaning estimation.

The system presented in this chapter provides the user with two simple communica-

tion modalities. The first is a classic GUI with a slider for each joint: the user can modify

each of the joint angles by operating the corresponding slider. The second is kinesthetic

demonstration [52]: the user can switch off some of the robot motors, move the joints

and reactivate them. When the user finishes editing the posture, it just restarts editing

the motion, and the association from the initial posture and the relative context to the

provided posture change is stored in the database.

The algorithm used to map a generic touch instruction (given in a certain context)

to a posture change is described in the following section. Essentially, the system uses a

Locally Weighted Learning [85] with a specifically designed kernel. A proof of concept

system implementation will be presented in Section 3.2. Finally, an analysis of user

dependence in the meaning of tactile instructions will be provided in Section 3.5.

3.1 Algorithm

The touch instruction estimator, core of the teaching by touching approach, is a module

that takes as inputs touch instructions and their context, and gives as output a motion

modification, as shown in Fig. 3.3.

As previously stated, a wide spectrum of possible choices are available for its im-

plementation. As discussed in Section 2.2, we decided to realize the mapping between

the input and the output using machine learning. In particular, we decided to employ
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Figure 3.4: Conceptual schema of the teaching by touching setup.

supervised learning.

Figure 3.4 provides a conceptual schema of the elements involved in the teaching by

touching approach. At each step of the motion refinement, the human teacher has an

intention on how to modify the motion. The robot is in a determinate physical context,

and the human user, unconsciously, evaluates some features of this context. Depending

on this perceived context, on the personal way of teaching and on the modification

intention, the user provides a touching pattern to express his or her will.

The role of the instruction interpreter algorithm is to estimate the user motion modi-

fication intention from the tactile instruction and the physical context, that consists, for

instance, of the joint angles of the robot, its orientation in the space or the velocities of

its limbs.

When the robot fails to estimate the meaning of the instruction, the user communi-

cates the meaning of the instruction through a shared channel. What happens is that the

mental image of the motion modification is transferred in the physical world through the

alternative communication channel. In the supervised learning framework, this informa-

tion provides the output of the input-output examples used for training the instruction

interpreter.

Several alternatives are available under the supervised learning framework. The first

choice is whether to use a parametric model or a memory based approach. A parametric

model would require defining a model of the input/output, and a fitting of the parameters.

One example would be employing a generative model [86]. The conceptual schema

reported in Fig. 3.4 could in fact be readily translated into a generative model, as will

be discussed in Chapter 7. This would need, however, some assumption on the family of

the distributions of the various elements of the schema. Other possibilities would be, for
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instance, the training of a neural network [87] or a regression tree with linear models in

the leafs [88].

In order to keep the mapping as general as possible, and for simplicity, we decided to

employ a memory based learning. This category of approaches are also called instance

based learning [89] or lazy learning. The latter name derives from the fact that usually no

computation is performed when new input-output examples are given, and the processing

occurs only when a query needs to be answered.

The most commonly used class of instance based learning methods is given by locally

weighted learning algorithms [90]. These algorithms approximate input-output functions

with local models around the query point. Usually this provides a better fitting than

function approximations that try to fit all input-output examples with a global function.

In the robotics field, these approaches have found interesting applications in challenging

robot control problems. A survey can be found in [85].

More precisely, in locally weighted learning, the prediction of the output for a given

query input is obtained by looking for examples in memory that have a similar input,

by fitting a local model to those points, and by making a prediction based on the model.

There are thus four components that define a memory based learner:

1. a distance metric, used for measuring how “similar” the stored inputs are to the

current input

2. the number of nearest neighbors considered for the computation

3. a weighting function, or kernel function, that weights the importance of each ex-

ample in the computation of the output

4. a local model, that is fitted to the points considered and used for the prediction of

the output

Typical examples of distance metrics are the Manhattan distance and the Euclidean

distance. When the examples are non-spherically distributed points, the variance and

covariance between the components of the example inputs should be taken into consid-

eration. In these cases, the Mahalanobis distance is usually employed.

The number of nearest neighbors considered usually depends on the problem. Par-

ticular cases are 1, that is considering only the closest example, and considering all the

examples. Note that, actually, even when all the examples are considered, most of the

weights could be set to 0 by the kernel function.

Weighting functions are usually chosen as decreasing functions of the distance between

the current query input and the input of the example. A widespread weighting function

is the Gaussian1

K(d) = e−αd

1Constant multiplying factors can be omitted as they do not influence the ratio between the weights.
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where d is the distance and α is a constant. Another example is the tricube kernel,

K(d) = (1− |d|3)3I|d|<1(d)

where I is the indicator function.

The most employed local models are the polynomial ones. In particular, degree 0 for

kernel regression, degree 1 for locally weighted linear regression and degree 2 for fitting

of quadratic models. More precisely, a widespread model of kernel regression is the one

proposed independently by Nadaraya [91] and Watson [92],

f(x) =

∑n
i=1K(x− xi)yi∑n
i=1 K(x− xi)

(3.1)

where x is the current input query, n is the number of examples, xi and yi are the input

and the output of the i-th example, respectively.

For locally weighted linear regression, the model can be easily obtained from classical

linear regression. Given the set of examples with input xi and output yi, the purpose is

finding the best matrix B, in terms of mean square error, such that

Y ≈ X̄B

where the i-th row of Y is given by yi and the i-th row of X is given by xi followed by a

1, to make the last row of B represent the constant terms. It can be readily found that

B = (X̄T X̄)−1X̄TY

If different weights are given to the errors of the examples, then

B = (X̄TWX̄)−1X̄TWY

where W is the matrix having the weights on the diagonal.

In model for locally weighted linear regression, the W matrix depends on the query

point, i.e. the i-th diagonal term is simply set toK(x−xi), and the prediction is calculated

as

f(x) = x̄T (X̄TW (x)X̄)−1X̄TW (x)Y (3.2)

where again x̄T is given by xT followed by a 1 to sum the constant term.

It is possible to observe that Eq. 3.1 of kernel regression can be thought as locally

weighted linear regression when only the constant terms (equal to 1) of x and X are

considered. In fact, denoting by en the column vector of n ones, when considering only

the constant terms, Eq. 3.2 becomes

f(x) = 1 · (eTnW (x)en)−1eTnW (x)Y
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that, with the definition of W(x) given, is exactly Eq. 3.1.

For keeping things simple, we decided to adopt a kernel regression method, similar

to Eq. 3.1. Given some features of the tactile instructions, a custom kernel was devised.

More specifically, in the current system implementation, the context consists of the

angular positions of all the motors, the robot’s orientation and its center of mass velocity

vector.

This leads to the decision of describing the input feature of the tactile instruction

as a vector of “touch intensities”, with one element for each of the sensors. Clearly,

extensions of the algorithm could consider other features, like a continuous value for the

touch location, or discriminate the instructions also depending on the contact area.

Formally, let us denote by n the number of tactile sensors of the robot and by m the

number of motors. Let us then indicate by o the number of components used to describe

the robot’s orientation2, and by v the number of components that describe the center

of gravity velocity, which is 3. The touch interpretation algorithm is a function that

given as input I∗ ∈ Rn+m+o+v, i.e. the touch pattern and its context, provides an output

M∗ ∈ Rm that expresses an angle modification for each of the joints. Let us denote by

E the number of examples of the mapping from touch instructions with their context to

posture modifications. For each of these examples let us consider its input Ii ∈ Rn+m+o+v

and the corresponding output Mi ∈ Rm, 1 ≤ i ≤ E. The estimation of the desired joint

modification can be calculated as a function of the stored outputs:

M∗ =
E∑
i=1

ω(I∗, Ii)Mi (3.3)

where the function ω(I∗, Ii) is a kernel that gives the similarity between the system input

I∗ and the input of the i-th example is Ii. The term being weighted, Mi, is the output

of the i-th example. In other terms, ω(I∗, Ii) takes the role of K, I the role of x and M

the role of y.

It appears reasonable to choose a function ω(I∗, Ii) that satisfies the following criteria:

1. The more the touch pattern and context of an example differ from the system

input, the less the movement associated to that example contributes to the output.

2. The stronger the user pushes the sensors, the further the robot joints are rotated.

3. The examples whose touch pattern includes the pressure of sensors that are not

pushed in the touch instruction I∗ provide no contribution to the output.

The first requirement is satisfied by most of the usual kernels, which give a weight that

decreases when the distance between the query input and the sample input increases.

2In our case o = 2, since the orientation is expressed as the inclination and the orientation around
the vertical, two quantities easily derivable from the accelerometer and gyroscope data [93].
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However, the second requirement, which appears to be very obvious, actually rules

out any conventional kernel based on the distance. In fact, any distance function d on

a given set M is, by definition, a function d : M ×M → R that satisfies the following

conditions:

• d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;

• it is symmetric: d(x, y) = d(y, x);

• it satisfies the triangle inequality: d(x, z) ≥ d(x, y) + d(y, z).

Due to the symmetry of the distance function, it is not possible to distinguish whether

the current input sensor has a higher or lower pushing intensity than an example in the

training set. This would lead, for any distance based kernel, to a very non-intuitive

behavior of the touch interpreter.

As a simplistic example, suppose to have just one training example, where a sensor

was pushed with an intensity of 300 N, and this corresponded to a single motor joint

change of 40 degrees. A user might naturally expect that pushing for less intensity will

cause a smaller change in that joint, while a more intense press should produce a larger

joint angle change. Conversely, in a system with a distance based kernel, any touch on

that sensor with a pushing intensity different from 300 N, both higher or lower, would

result in a smaller angle change. Figure 3.5 illustrates this problem.

The importance of the last requirement can be readily provided. Imagine the robot

to be sat with the legs stretched forward and that a user pushes the foot toes and the

heel of one leg simultaneously, teaching the robot to bend the knee and bring the legs

close to the body. Suppose that at a later moment the robot is touched only on the foot

toe. Many user could desire to associate this touch to a simple foot rotation. The third

of the criteria specified prevents the complete leg for being moved, given the absence of

the heel pressure in the query sensory input I∗.

Implicitly, the satisfaction of the last criterion also confers “priority” to the touch

information over the context. This is to avoid the output to be determined mainly by

the context instead of by the pushed parts, as it would happen with kernels that treat

tactile and context information in the same way. As a trivial example, suppose a user

is focusing on a leg motion and therefore only provides examples involving a leg. With

such a training set, if the user pushed on an arm, this will cause the leg to move, in

a way depending on the context. However, in such cases, the most reasonable choice

would probably be to provide a null joint modification. If a rule like the one specified by

the third requirement is not imposed, this kind of behavior is likely to happen since the

input space is highly dimensional, so it is very difficult to have, for a particular kind of

touch pattern, enough examples with different contexts, such that the touch pattern can

have influence for most of the contexts. Figure 3.6 provides some instances of database

examples that would be considered or discarded for a certain input.
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(a)

(b)

Figure 3.5: The behavior that would be expected is that the more a sensor is pressed, the
stronger is the motion modification, as shown in panel (a). However, any distance
based metric would have a behavior similar to the one shown in panel (b): the
motion modification would be maximum for a pressure intensity equal to the one
provided in the database example, and lower in any other case.
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Figure 3.6: Instances of database examples considered and discarded for a particular touch
information input.

Let us denote by Īi ∈ Rn the components of the i-th input corresponding to the

tactile sensors. Furthermore, let us indicate by Ī
(s)
i ∈ R the force applied to the s-th

tactile sensor, 1 ≤ s ≤ n, normalized in the range [0, 1]. Denote by Ĩi ∈ Rm+o the

remaining components of Ii, that constitute the context and that we assume normalized

by the respective variance in the dataset of E examples. Let us define by Ψi the set of

sensors pushed in the i-th example, i.e. Ψi = {s : Ī
(s)
i > 0}. Using this notation, after

a preliminary empirical evaluation of different functions that satisfy the three criteria

previously reported, we decided to set ω(I∗, Ii) as

ω(I∗, Ii) =


0 if ∃s : s ∈ Ψi ∧ s /∈ Ψ∗

Q
s∈Ψi

Ī
(s)
∗ /Ī

(s)
i

1+

r
‖Ĩ∗−Ĩi‖2

2
+

P
s:/∈Ψi

(Ī
(s)
∗ )2

otherwise

Essentially, the condition ω(I∗, Ii) = 0 if ∃s : s ∈ Ψi ∧ s /∈ Ψ∗ is used to satisfy the

third criterion. The numerator
∏

s∈Ψi
Ī

(s)
∗ /Ī

(s)
i is used to satisfy the second requirement,

in fact the more a sensor is pushed the stronger the motion modification is. The denomi-

nator 1 +

√∥∥∥Ĩ∗ − Ĩi∥∥∥2

2
+
∑

s:/∈Ψi
(Ī

(s)
∗ )2 is used to decrease the weight when the difference

between the current input and the input of the stored example increases.

As will be better described in the following sections, the algorithm revealed to be

applicable in real setups. In particular, Section 3.2 will describe an implementation with

simulated touch sensors, and while Section 4.2 will explain the setup of experiments

conducted with a real robot.
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3.2 Simulated touch sensor implementation

As previously stated, the main idea presented in this chapter is using interpretation of

tactile instructions for the creation of robot motions, in a classical “observe and correct”

motion development process.

Literature provides solutions for several solutions for realizing a tactile sensor skin.

For instance [94] proposes a very modular technique, while [95] presents a very original

approach to realize a stretchable tactile distribution sensor that detects pressure by

peripheral electrodes. Among humanoid robots with sensing capabilities on the whole

body we can cite, for instance, Macra [78] or CB2 [6]. Section 4.1 will briefly present a

small humanoid covered with touch sensors as well.

However, most of the humanoid robots available on the market are usually not

equipped with touch sensors for cost reasons. Customizing the robot by covering it

with tactile sensors may be expensive and not very easy. In fact, most of the robots on

the market are quite small and the wiring becomes complex. If the sensors provide an

analog output, (multiplexed) A/D converters must be employed and buses with sufficient

bandwidth must be designed.

If the robot is compliant, for instance if it uses pneumatic actuators, then it is possible

to read the error between the target position and the actual position to estimate the force

applied by the user. The readings are, however, restricted to the joints and estimating

the location of the touch may be difficult, as well as identifying simultaneous touch of

different parts.

Another alternative solution would be to use a shadow robot. This technique [96],

consists in having two identical robots, placed in the same position. The user interacts

with one of the two robots, and by comparing the torques with the ones of the second

robot, it is possible to distinguish the force applied by the user from other forces like

gravity or friction. This approach requires a careful setup, as well as a second robot,

which in general may not be available to users.

Finally, although interacting with a physical robot is probably more intuitive, simu-

lating the touch sensors is a very cost effective solution to allow tactile interaction with

a robot. Employing simulated tactile sensors presents several advantages. In fact, when

using virtual sensors, it is possible to simulate devices not currently available with the

current technology in terms of size, bandwidth, signal to noise ratio, etc.

The technique is general, and applicable to any kind of robot. Simulation allows a

safer interaction, both for the user and the robot. Interacting with a virtual world also

allows viewing the robot’s movement in slow play or stopping the motion with no effect

on the dynamics, something not feasible in the real world. For instance, slowing down a

jump motion to better observe the motion execution is possible in a virtual representation

of the world, but not in the real world. Another advantage is that in simulated world

additional information can be easily displayed. For example the displacement of the zero
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moment point [97] can be shown and considered by users developing the motion.

Obviously, the solution presents disadvantages as well. Interaction with 3D repre-

sentations of the robot may not be intuitive for inexperienced users. Much information

measurable by advanced touch sensors, such as the direction of the applied force, may

not be obtained by virtual touch sensors which are simulated, for instance, by mouse

clicks. Furthermore, while recent technological advances make multi-touch screen easily

available, in case a standard mouse is employed, the user cannot touch multiple sensors

simultaneously, as would be possible by employing a real robot.

For the advantages of low cost and possibility to easily realize a prototype system,

the first experiments on teaching by touching interfaces were conducted using simulated

touch sensors. In particular, we decided to simulate the touch sensors while employing

the real robot to obtain the motion dynamic. This presents the advantage of remov-

ing simulation-reality gap, that would arise from developing the motion completely in

simulation.

In other terms, the solution initially adopted is to provide an augmented reality [98]

that enhances the existing robot by providing virtual touch sensors. Figure 3.7 shows

a schema of the motion development using the proposed approach. In particular, the

motion development is carried on by repeating the following steps

1. The motion is played by the real robot, and the position of the robot over time is

acquired and recorded with a motion capture system. This allows recording the

evolution of the motion in the real environment, preventing any simulator-reality

gap. For instance, if a crawling motion is executed, then the real locomotion speed

can be observed.

2. The interface allows watching the recorded motion performed by a model of the

robot. Being a virtual representation slow-play, pausing and so forth are made

possible, easing the user in the development process.

3. The user chooses a time instant at which the posture of the robot should be mod-

ified.

4. The user interacts with the virtual robot by touching the virtual robot. In the

developed system, a touch screen was used for its intuitiveness, but other devices,

like a simple a mouse could be used.

A more detailed description of a prototype system developed using this setup is pro-

vided in the next section. Section 3.4 will provide the experimental results of preliminary

tests conducted on the system. These show the feasibility of the teaching by touching

approach for developing motions. Analysis of the data collected confirms the complexity

of the mapping from tactile instructions to motion modifications. In fact, even in the

case of motion description by frames used for the experiments, linear models reveal to

be inapplicable for explaining the mapping.
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Figure 3.7: Schema of the motion development using virtual touch sensors.

3.3 Experimental setup

As previously stated, the first experiments were conducted using an augmented reality

setup, where the real robot is used for playing the motion while a virtual model is

used for tactile interaction. In order to replay the motion in the virtual world, the

movement information is used to calculate the joint angles assumed by the servomotors

during the motion execution. The robot’s displacement and orientation assumed during

the motion execution are instead captured from the real world with a motion capture

system. As stated in the previous section, this permits avoiding any physical simulation

and verifying, for instance, the actual velocity achieved by a walking motion.

In detail, the robot physical position was obtained utilizing an Eagle Digital RealTime

System from Motion Analysis Corp3. More precisely, eight cameras were utilized: five

placed just above the ground level, equally spaced on a 1-meter radius circle (that is,

forming a pentagon) and pointed to the center of the circle, while the remaining three

positioned 1.5 meters above forming an equilateral triangle (inscribable in a circle with

a 1 meter radius) and directed toward the point headed by the lower cameras. To

acquire the robot position three 2cm diameter markers were placed on its main body. To

detect exchanges of the marker labels, a simple check was used: for each received data,

the developed system verifies that the marker label assignment operated by the motion

capture system is the one that, given the markers positions, minimizes the sum of the

errors in the distance between each pair of markers. If the received data does not satisfy

3For details see http://www.motionanalysis.com/html/animation/eagle.html.
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(a) (b)

Figure 3.8: The robot used in the prototype system (a) and its virtual model (b). In the virtual
world an orange sphere indicates the projection of the center of gravity on the floor
and a blue arrow depicts the velocity vector of the center of mass of the robot.

this property it is simply discarded.

The robot used in the experiment is VStone’s VisiON 4G. A picture of the robot is

available in Fig. 3.8. The schema of its 22-degrees of freedom is reported in Fig. 3.9.

The prototype interface, developed using Java 3D, models the robot’s parts by

cuboids, with size and joint positions corresponding to the real hardware. Each face

of the parallelepiped simulates a touch sensor. Using devices like a mouse or a classical

touch screen, however, it is not possible to push multiple parts simultaneously, and it

is not possible to measure the applied force. To circumvent this, the user is allowed to

click various parts of the 3D-model and the pushing time of each part is considered as a

measure of the pushing intensity. A visual feedback of the intensity is given to the user,

consisting of the pushed parts becoming redder and redder, as shown by figure 3.10.

To let the user teach the correct posture in case that the system fails to predict

the desired modification, the interface gives several possibilities. In particular, if the

response to the touch pattern is not the one desired, then the user can teach the expected

modification by using a set of sliders, one for each of the servomotors, as visible in figure

3.11. The interface also allows switching off the desired servomotors, move them on

the real robot and read their position. Once the expected resulting posture is set, it

is sufficient to press a button (RecPoint) to make the robot remember the association
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Figure 3.9: Degrees of freedom of VisiON 4G.

Figure 3.10: Visual feedback provided by the interface while pushing a robot’s part.
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Figure 3.11: Screenshot of the developed prototype interface.

between the tactile pattern provided and the modification shown.

As a preliminary proof of concept, a jumping and walking motion were developed.

Results, presented in the next section, show the feasibility of the teaching by touch-

ing approach for developing motions. In particular, it will be shown that the approach

resulted in a faster motion development time compared to a classic, slider based inter-

face. Furthermore, the input-output examples used to train the touch interpreter will be

analyzed, providing a preliminary analysis of the complexity of the meaning of tactile

instructions. Section 3.5 will then present experiments showing that the mapping is not

only nonlinear and complex, but also strongly user dependent.

3.4 Results

This section reports the first preliminary experiment consisted in the creation of a jump

motion. Actually, to make jumping feasible, a rubber band pulling the robot from the

top was used, since the torque of the leg servomotor was not sufficient. Figure 3.12

provides an image sequence of the realized movement.

The jumping motion was developed by the same user first with the proposed teaching

by touching interface, and then with a classic, slider based editor. In the former case

the motion took 17 minutes, in the latter over 40 minutes. Although not statistically
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Figure 3.12: Image sequence of the jump motion.

significant, this result supports the possibility for the approach to be a good solution for

motion development.

As already stated, one of the merits of using a supervised learning framework is that

the input-output examples provided by the user can be analyzed, to get insights on

the way humans use touch to develop motions. The next step was therefore developing

another motion, walking, and studying the databases of data collected for the two mo-

tions. The collected datasets, consisting of examples of the mapping from touch pattern

and context to joint modification, were studied first using linear regression, to verify how

well a linear model could explain the collected data, and then with the C4.5 decision tree

construction algorithm, to determine which are the features of the context that mostly

influence the meaning of touching.

3.4.1 Mapping nonlinearity

As a first step, supposing that the collected data could be roughly approximated by a

linear model, a simple linear regression was applied to each of the datasets, denoted in

the following as JUMP for the jumping motion and WALK for the walking motion.

Their union was also computed, and considered as a third database COMBINED =

JUMP ∪WALK. Particularly, given the data set D, let us denote by XD the matrix

having as the i-th row the i-th example input Ii (touch information and context) followed

by a 1 (to include the possibility of a constant term in the mapping) and similarly let

us indicate by YD a matrix having in the i-th row the i-th example output Mi (the joint

modification provided by the user), as done in Section 3.1.
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Let us then define LD as the matrix such that

YD ≈ XDLD

i.e.

YD = XDLD + ε

where ε is a matrix expressing the error due to the linear approximation.

The matrices LD (with D equal to JUMP , WALK and COMBINED) were cal-

culated using ridge regression, that is

LD = (XT
DXD + αI)−1XT

DYD (3.4)

The term α is a small constant which can be interpreted as an estimate of the standard

deviation of a Gaussian noise affecting the data [99], and which allows to prevent the

resultant matrices LD to have coefficients with huge absolute values. All the results

reported here were obtained by setting it to 0.1.

The absolute values of the entries in LD indicate the importance of each input features

in determining the modification for each motor, while the sign permits understanding

which features produce a similar effect and which produce an opposite effect. Figure 3.13

gives a visual representation of some of the entries of LD: for the outputs corresponding

to two of the robot’s joints each sensor is colored depending on the value of the entry

in LJUMP that determines how much such sensor value contributes to the joint position

variation.

Figure 3.13 shows that the importance of the input features in determining a joint

modification calculated by linear regression, at least for the sensors, has a strong rela-

tionship with the common sense. In fact, for instance, the sensors identified as important

for determining the head orientation are mainly the ones on the head. Nonetheless, the

linear model seems to be not articulated enough to capture the structure of the tactile

instructions and often overfit them. Actually, to get an idea of which features of the

context assume higher importance, for each column of the matrices LJUMP , LWALK and

LCOMBINED, the two features with the highest values were identified, but there was no

feature that revealed to be the most or the second most important feature for a certain

joint variation for all of the tree data sets. A comparison with the kernel regression

algorithm showed that the latter performs a lot better on test data not used for the

training. More specifically:

1. The matrices LJUMP , LWALK and LCOMBINED were calculated using Eq. 3.4 with

D equals to JUMP , WALK and COMBINED, respectively, that is, using one

of the three “training sets”.

2. Each of the matrices LD that was used to predict the output for each of the datasets

37



(a) (b)

(c) (d)

Figure 3.13: Graphical visualization of some of the entries in LJUMP . Panels (a) and (b)
visualize the importance of each of the sensors in determining the variation of
the head pitch angle. Panels (c) and (d) display the importance of each sensors
and the variation of the elbow joint angle. The sensors are colored red or green
depending on the sign of the relative coefficient, while the absolute value of the
coefficient is represented by the intensity of color. A yellow sphere is used to
highlight the position of the joint whose modification depends on the coefficients
used to color the sensors.
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Training Dataset Test Dataset Linear Reg. error Kernel Reg. error

JUMP JUMP 0.2846 0.1985
JUMP WALK 13.717 0.5938
JUMP COMBINED 3.7272 0.3006
WALK JUMP 2.0567 1.0198
WALK WALK 0.0314 0.0588
WALK COMBINED 1.5462 0.7778

COMBINED JUMP 0.3626 0.2223
COMBINED WALK 0.3219 0.1425
COMBINED COMBINED 0.3522 0.2028

Table 3.1: Average errors in the output prediction by linear regression and by kernel regression
in rads.

(used as “test sets”), that is ŶC,D = XCLD was calculated for all the combinations

of C and D (C and D can be JUMP , WALK or COMBINED).

3. The differences EC,D = ŶC,D−YC were calculated. Clearly, the i-th row of YC is the

output, provided by the user, that should be given when the input is the i-th row of

XC . Similarly, the i-th row of ŶC,D is the output of the mapping predicted by the

linear mode. Therefore, the i-th row of EC,D provides the error in the prediction of

the i-th example of the test dataset C when the linear model is constructed based

on the dataset D;

4. For each training dataset D and each test dataset C, the average error magnitude

over all of the examples of the test dataset was determined. This was computed as

the mean of the square roots of the sums of the squares of the values in each row

of EC,D.

Similarly, the kernel regression algorithm with the described weighting schema was

tested on the three data sets. In each test, the algorithm was given one of the sets as

training set, i.e. as the set of examples used to calculate the output, and using that

knowledge the prediction errors for the three databases were computed. Table 3.1 pro-

vides a comparison of errors made by the two algorithms. As can be seen especially

observing the second row, kernel regression strongly outperformed the linear model in

the test.

3.4.2 Context feature importance

In order to try to determine if the mapping presents “cases” and “subcases”, that is,

context conditions under which the mapping from I∗ to M∗ changes, decision trees from

each data set (JUMP , WALK and COMBINED) were constructed. Usually decision

trees are used for classification problems; in a decision tree each internal node corresponds
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to an attribute, and an arc to a child represents a possible value (or an interval of values,

if the attribute is continuous) of such variable. A leaf represents the predicted class of

an object, given the values of the attributes indicated by the path from the root.

In the experiments, decision trees were constructed using Quinlan’s C 4.5 algo-

rithm [100]. In detail, each collected example was regarded as an object with |I| =

n + m + o + v continuous attributes, where |.| is used to indicate the cardinality of a

vector, and n, m, o and v represent, using the notation of Section 3.1, the number of

touch sensors, motors, components of the robot orientation and velocity, respectively.

In the construction of the decision tree the class to which each object belongs must

be provided. Classes are discrete, therefore we operated a discretization of the outputs.

In particular, we mapped each sensor output Mi to the class Ci =
∑m

j=1 3j ∗q(M (j)
i ) ∈ N,

where the function q : R→ N is used to discretize each component of the output vector

M
(j)
i . In particular, the function f returns 0 if the rotation magnitude is less than 5

degrees, 1 if the motor should rotate more than 5 degrees in the clockwise direction and

2 if the motor should rotate more than 5 degrees in the counterclockwise direction.

Clearly, the possible number of classes is very big, 3m, with m = 22 in our case.

However, few of them are significant and will really appear in the collected data, since

many combinations have little meaning. For instance, it is improbable to collect an

example where the user provides an instruction that corresponds to moving the head

and one of the feet. In fact, the 238 examples collected during the development of the

two motions belonged to 97 classes.

Once the tree is built, observing the level in the tree at which each of the context

features appears it is possible to get insights on which features of the context are impor-

tant in changing the meaning of the touching, because the most important features will

appear at higher levels, near the root. Table 3.2 reports the levels in which each element

of the context appears constructing a decision tree using each of the JUMP , WALK

and COMBINED datasets. It should be noticed that the trees were constructed with

all of the input information as training data, that is providing the touch pattern too, but

just the context elements are reported in the table. Empty entries in the table means

that for the training dataset indicated by the column header the feature reported as row

header did not appear in the derived decision tree. The first 22 features correspond to

the position of the robot’s joints; the location of the various joints of the robot is shown

in Fig. 3.9.

The most interesting thing is that for all of the constructed trees (with different

training datasets) the position of the joints near the main body, that is the joints which

determine the global position of the limbs, is used as a discriminating attribute in high

levels of the tree, near the root. This fact, emerged from the data, is reasonable since

the meaning of the touch probably strongly depends on the overall position of the limbs.

It is also possible to note that the orientation of the robot and its center of gravity

velocity vector do not appear as important features. The current hypothesis to explain
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Feature JUMP WALK COMBINED

Pos. joint 0 2 2
Pos. joint 1 17,21,22 9 19,23
Pos. joint 2 3 3 3
Pos. joint 3 5,11
Pos. joint 4
Pos. joint 5 2
Pos. joint 6 20 22
Pos. joint 7 5,8,19 5,10
Pos. joint 8 1 3 1
Pos. joint 9
Pos. joint 10 10
Pos. joint 11 0 1 0
Pos. joint 12
Pos. joint 13 3
Pos. joint 14 2,8,10
Pos. joint 15 5 3,4 7
Pos. joint 16
Pos. joint 17
Pos. joint 18
Pos. joint 19
Pos. joint 20
Pos. joint 21

pitch 0,2
roll

velocity x
velocity y
velocity z

Table 3.2: Levels at which the various elements of the context appears in the decision trees
constructed by the C4.5 algorithm using the three training datasets.
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Training set JUMP WALK COMBINED
Test set J W C J W C J W C

Linear regr. 0.25 1.00 0.44 0.99 0.00 0.74 0.43 0.82 0.53
C 4.5 0.38 0.97 0.53 0.96 0.39 0.82 0.39 0.40 0.40

Kernel regr. 0.10 0.69 0.25 0.88 0.00 0.66 0.11 0.18 0.13

Table 3.3: Error rates of the tree algorithms in predicting the output class expressed as fractions
of unit (for example 0.1 means 10%). J, W and C stand, respectively, for JUMP,
WALK and COMBINED.

this is that the developed motions are quite static, and probably during the development

of more dynamical motions, the meaning will depend more on these features. Future

works will investigate this fact more deeply, and will try to confirm the importance of

the orientation of the joints near the body emerged in these tests.

One simple test was then carried on to see whether the kernel regression algorithm

with the introduced weighting can outperform C4.5 in predicting the “class” associated

to a certain touching pattern and context. This was done by translating the output of

the algorithm into a class, using the function q previously described. As done in the com-

parison with the linear regression, the algorithms were tested using the datasets WALK,

JUMP and COMBINED as training sets and test sets in all possible combinations.

Table 3.3 reports the error rate for each of the algorithms in determining the belonging

class. The output of linear regression was translated into classes too so a comparison

between the three algorithms is possible. Even if C4.5 is specifically designed for clas-

sification problems, the kernel regression algorithm usually performs better, probably

because its weighting schema was designed specifically for the touch instructions. As

could be expected, kernel regression outperformed linear regression in this case too.

Comparisons with other machine learning algorithms that provide a continuous out-

puts, like regression trees [88] or neural networks [87], would be very interesting, and will

be conducted as a future work.

In conclusion, results show that the mapping between tactile instructions and motion

modifications cannot be realized through linear models, as could be expected. Further-

more, a simple application of C4.5 showed the potential of performing data-mining on

the data collected by the system during user interactions. In detail, we identified that the

position of the joints near the torso have great influence of the context. This information

could be used when designing model based instruction interpreters.

The next section will present a preliminary analysis of user dependence conducted

with six subjects. Also in this case, the application of simple data analysis techniques

on the data shows the existence of clusters of users, that appear to be induced by the

different levels of abstraction used in teaching.
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Figure 3.14: Simulated VisiON 4G.

3.5 Analysis of user dependence

The fact that the meaning of tactile instructions depends on the user was highlighted

in Section 2.2. To verify this hypothesis, a preliminary experiment with six subjects

was conducted. Furthermore, the capability of the supervised learning algorithm was

investigated. More precisely, the assumption that the need of teaching the meaning of

tactile instructions decreases over time was verified.

In the experiment, subjects were requested to develop a walking and a kicking motion,

two fundamental capabilities required by a humanoid soccer robot. The six subjects are

all Italian male computer science students, and their age is in the range of 23-27 (mean

24.5, standard deviation 1.87). To assure the same conditions for all the users we asked

them to develop motions using a simulated robot, instead of using the real robot as done

in the previous experiments. We simulated VisiON 4G in a custom made simulator,

shown in Fig. 3.14 and briefly described in appendix A.

We asked the subjects to freely touch the robot to give commands and to teach their

meaning using the sliders when the robot did not understand them. Given the test

subjects’ similar background, all male computer science students, we expected them to

have provided very similar touch instructions. However, the touching manner greatly

varied, even in this very restricted setup.

As a first step of the analysis we studied the relationship between sensors and joints.

In detail, for each of the users we identified the joints moved in response to the pressure
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of a sensor (possibly in combination with other sensors). This allows us to identify if

there are direct mappings between sensors and joints that are intuitive for most of the

users. In Fig. 3.15 (as well as in all the subsequent figures) each row represents a sensor

and each column represents a joint. The rows and columns are divided into groups that

represent the part of the body where the sensor or joint is located.

The figures report just the sensors that were used by at least one of the subjects.

In each figure the headers of the sensors and joints, i.e. the row and column header,

respectively, are colored lighter if they were employed by the user.

In Figures 3.15, 3.16, 3.17, 3.18, 3.19 and 3.20, each intersection between a row and a

column is colored if in at least one touch the sensor corresponding to the row was pressed

and then it was taught to move the joint corresponding to the column (and possibly other

joints). We can observe that even if we fixed the task and employed subjects with similar

background, the mappings between sensors and joints are very different.

To better grasp the similarities and dissimilarities of these relationships between the

mappings, we plotted Fig. 3.21. In this table, the color of each entry indicates for how

many users the sensor corresponding to the row was pressed to move the joint identified

by the column. Figure 3.22 reports how many times each configuration was used by all

of the users in total.

We notice that the combinations that appear more frequently are the ones which

map sensors to joints of the same limb, that is, the sensor-joint combinations for which

the row group and the column group coincide. It is in fact very reasonable that most

of the users touch the limb they want to move. We can see a correlation between the

body sensors and the joints of the legs. The reason is that the users pushed the robot’s

body to bend the trunk, and this is done by moving the hip joints. At first glance, the

relatively high correlation between the sensors of one arm and the joints of the other is

surprising. A deeper analysis of the data showed that this is because most of the users

pushed both hands at the beginning to close the arms, which are opened in the initial

position (see Fig. 3.10 or Fig. 3.13).

It should be noted that if, after providing these kinds of examples, the user pushes

just one arm the other one is not moved, due to the third requirement given imposed to

the regression kernel and discussed in Section 3.1.

Observing the lower part of Fig. 3.21 we notice that just one subject touched sensors

on the left leg and moved the right one. By Fig. 3.19 we can see that this was done by

subject E. Unlike other people, E’s table shows a correlation between the body and the

arms. A direct analysis of the touch data showed that user E pushed the robot’s belly

and made it close the arms. He then touched the left knee and taught the robot to move

the left leg forward (and not backward, as one could imagine). Since we never observed

such kind of touch instruction we contacted E again and learned that this subject gave

a very high-level meaning to the touch instructions. For instance with a single touch on

the belly he wanted to say “go to the normal posture”, where “normal” is considered as

44



     
n
e
c
k

     
n
e
c
k
Y
a
w

     
R
s
h
o
u
l
d
e
r
P
i
t
c
h

     
R
s
h
o
u
l
d
e
r
R
o
l
l

     
R
e
l
b
o
w
R
o
l
l

     
L
s
h
o
u
l
d
e
r
P
i
t
c
h

     
L
s
h
o
u
l
d
e
r
R
o
l
l

     
L
e
l
b
o
w
R
o
l
l

     
R
h
i
p
Y
a
w

     
R
h
i
p
P
i
t
c
h

     
R
h
i
p
R
o
l
l

     
R
k
n
e
e
P
i
t
c
h
1

     
R
k
n
e
e
P
i
t
c
h
2

     
R
a
n
k
l
e
R
o
l
l

     
R
a
n
k
l
e
P
i
t
c
h

     
L
h
i
p
Y
a
w

     
L
h
i
p
P
i
t
c
h

     
L
h
i
p
R
o
l
l

     
L
k
n
e
e
P
i
t
c
h
1

     
L
k
n
e
e
P
i
t
c
h
2

     
L
a
n
k
l
e
R
o
l
l

     
L
a
n
k
l
e
P
i
t
c
h

bodyFront 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0
bodyLeft 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1
bodyBack 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0
bodyRight 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1
bodyUp 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0

neckBack 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0
headFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
headLeft 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

headRight 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RshoulderFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RshoulderRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RhandFront 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandLeft 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandBack 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandRight 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LshoulderLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandFront 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandLeft 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandBack 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandRight 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RlowerLegFront 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 0 0 0 0
RlowerLegBack 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
RupperLegFront 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 1 1 0 0
RupperLegBack 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0
RhipOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhipOuterRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RkneeFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RkneeBack 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
RkneeUp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RfootFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RfootUp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RankleInnerBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RankleOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RankleOuterUp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LlowerLegFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LlowerLegBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LupperLegFront 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0
LupperLegBack 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0
LhipOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhipOuterLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LkneeFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LkneeBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LfootFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LfootRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LankleOuterFront 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.15: Relationship between sensors (rows) and joints (columns) for subject A. The color
indicates the part of the robot where the sensor or joint is located: green for the
body, yellow for the head, red for the right arm, blue for the left arm, magenta
for the right leg and cyan for the left leg.

45



     
n
e
c
k

     
n
e
c
k
Y
a
w

     
R
s
h
o
u
l
d
e
r
P
i
t
c
h

     
R
s
h
o
u
l
d
e
r
R
o
l
l

     
R
e
l
b
o
w
R
o
l
l

     
L
s
h
o
u
l
d
e
r
P
i
t
c
h

     
L
s
h
o
u
l
d
e
r
R
o
l
l

     
L
e
l
b
o
w
R
o
l
l

     
R
h
i
p
Y
a
w

     
R
h
i
p
P
i
t
c
h

     
R
h
i
p
R
o
l
l

     
R
k
n
e
e
P
i
t
c
h
1

     
R
k
n
e
e
P
i
t
c
h
2

     
R
a
n
k
l
e
R
o
l
l

     
R
a
n
k
l
e
P
i
t
c
h

     
L
h
i
p
Y
a
w

     
L
h
i
p
P
i
t
c
h

     
L
h
i
p
R
o
l
l

     
L
k
n
e
e
P
i
t
c
h
1

     
L
k
n
e
e
P
i
t
c
h
2

     
L
a
n
k
l
e
R
o
l
l

     
L
a
n
k
l
e
P
i
t
c
h

bodyFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bodyLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bodyBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bodyRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bodyUp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

neckBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
headFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
headLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

headRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RshoulderFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RshoulderRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RhandFront 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LshoulderLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandFront 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RlowerLegFront 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1
RlowerLegBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RupperLegFront 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
RupperLegBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhipOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhipOuterRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RkneeFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RkneeBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RkneeUp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RfootFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RfootUp 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

RankleInnerBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RankleOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RankleOuterUp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LlowerLegFront 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1
LlowerLegBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LupperLegFront 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 1 1
LupperLegBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhipOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhipOuterLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LkneeFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LkneeBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LfootFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LfootRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LankleOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.16: Relationship between sensors (rows) and joints (columns) for subject B. The no-
tation is the same as Fig. 3.15.
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Figure 3.17: Relationship between sensors (rows) and joints (columns) for subject C. The no-
tation is the same as Fig. 3.15.
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Figure 3.18: Relationship between sensors (rows) and joints (columns) for subject D. The no-
tation is the same as Fig. 3.15.
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Figure 3.19: Relationship between sensors (rows) and joints (columns) for subject E. The no-
tation is the same as Fig. 3.15.
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bodyFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bodyLeft 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1
bodyBack 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 1
bodyRight 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1
bodyUp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

neckBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
headFront 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
headLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

headRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmFront 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmBack 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmRight 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RshoulderFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RshoulderRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RhandFront 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
RhandLeft 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandBack 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandRight 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmFront 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
LarmLeft 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmBack 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
LarmRight 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0

LshoulderLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandFront 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandLeft 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RlowerLegFront 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
RlowerLegBack 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 0
RupperLegFront 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
RupperLegBack 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
RhipOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhipOuterRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RkneeFront 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
RkneeBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RkneeUp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RfootFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RfootUp 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RankleInnerBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RankleOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RankleOuterUp 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
LlowerLegFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LlowerLegBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
LupperLegFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LupperLegBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhipOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhipOuterLeft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LkneeFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LkneeBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LfootFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LfootRight 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LankleOuterFront 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.20: Relationship between sensors (rows) and joints (columns) for subject F. The no-
tation is the same as Fig. 3.15.
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bodyFront 0 0 1 1 0 1 1 0 0 2 1 2 1 2 2 0 1 1 0 0 1 0
bodyLeft 0 0 1 0 0 1 0 0 0 2 1 1 1 2 2 1 2 0 0 0 0 2
bodyBack 0 0 0 0 0 0 0 0 0 3 2 3 2 3 3 0 3 3 1 1 3 2
bodyRight 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 2 0 0 0 0 2
bodyUp 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0

neckBack 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0
headFront 0 0 1 1 0 2 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0
headLeft 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

headRight 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmFront 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmBack 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmRight 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RshoulderFront 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
RshoulderRight 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1

RhandFront 0 0 5 3 2 3 2 1 0 0 2 1 1 2 0 0 0 0 0 0 0 0
RhandLeft 0 0 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandBack 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandRight 0 0 3 4 2 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmFront 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
LarmLeft 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmBack 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
LarmRight 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0

LshoulderLeft 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1
LhandFront 0 0 3 2 1 5 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandLeft 0 0 2 3 2 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandBack 0 0 0 0 0 2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
LhandRight 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0

RlowerLegFront 0 0 1 0 0 1 0 0 0 2 3 3 2 4 2 0 2 0 0 0 0 1
RlowerLegBack 0 0 0 0 0 0 0 0 0 0 1 1 2 2 0 0 0 1 0 0 1 0
RupperLegFront 0 0 1 0 0 1 0 0 0 2 4 3 3 5 2 1 2 2 1 1 1 0
RupperLegBack 0 0 0 0 0 1 0 0 0 0 2 1 1 2 0 1 1 1 1 1 0 0
RhipOuterFront 0 0 0 0 0 0 0 0 0 1 2 0 2 2 1 0 1 1 0 0 1 0
RhipOuterRight 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1

RkneeFront 0 0 1 0 0 1 0 0 0 1 2 0 1 2 1 0 1 1 0 0 1 1
RkneeBack 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0
RkneeUp 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
RfootFront 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1
RfootUp 0 0 1 1 0 1 0 0 0 2 3 1 0 3 2 0 1 1 0 1 0 0

RankleInnerBack 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
RankleOuterFront 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0
RankleOuterUp 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
LlowerLegFront 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1
LlowerLegBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
LupperLegFront 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 2 2 1 1 1
LupperLegBack 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0
LhipOuterFront 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 2 1 2 2 0
LhipOuterLeft 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1
LkneeFront 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1
LkneeBack 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
LfootFront 0 0 1 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0
LfootRight 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1

LankleOuterFront 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.21: Number of subjects that used each sensor-joint couple. Each row corresponds
to a sensor, each column to a joint. The value in the entry indicates the number
of users that associated the pressure of the corresponding sensor (and possibly of
others) to the rotation of the corresponding joint (and possibly of others). The
color of the row and column headers indicates the part of the robot where the
sensor or the joint is located.
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bodyFront 0 0 2 2 0 2 1 0 0 2 1 2 1 2 2 0 1 1 0 0 1 0
bodyLeft 0 0 1 0 0 1 0 0 0 3 1 1 1 2 3 1 3 0 0 0 0 2
bodyBack 0 0 0 0 0 0 0 0 0 5 4 3 2 5 5 0 5 5 1 2 5 2
bodyRight 0 0 0 0 0 0 0 0 0 2 0 0 0 0 2 0 2 0 0 0 0 2
bodyUp 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0

neckBack 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0
headFront 0 0 1 1 0 2 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0
headLeft 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

headRight 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmFront 0 0 1 2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmBack 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RarmRight 0 0 2 4 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RshoulderFront 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
RshoulderRight 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1

RhandFront 0 0 9 6 3 5 3 1 0 0 2 1 1 2 0 0 0 0 0 0 0 0
RhandLeft 0 0 1 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandBack 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RhandRight 0 0 3 6 3 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmFront 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0
LarmLeft 0 0 2 3 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LarmBack 0 0 2 0 0 2 0 0 0 0 2 0 0 2 0 1 0 0 0 0 0 0
LarmRight 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0

LshoulderLeft 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1
LhandFront 0 0 5 4 1 9 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandLeft 0 0 2 3 2 3 6 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LhandBack 0 0 0 0 0 2 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
LhandRight 0 0 1 1 0 1 2 2 0 1 1 1 0 1 1 0 0 0 0 0 0 0

RlowerLegFront 0 0 1 0 0 1 0 0 0 3 5 4 3 6 3 0 3 0 0 0 0 2
RlowerLegBack 0 0 0 0 0 0 0 0 0 0 1 2 3 2 0 0 0 1 0 0 1 0
RupperLegFront 0 0 2 0 0 2 0 0 0 2 5 4 4 7 2 1 2 2 1 1 1 0
RupperLegBack 0 0 0 0 0 1 0 0 0 0 2 3 3 3 0 1 1 1 1 1 0 0
RhipOuterFront 0 0 0 0 0 0 0 0 0 1 2 0 2 2 1 0 1 1 0 0 1 0
RhipOuterRight 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1

RkneeFront 0 0 1 0 0 1 0 0 0 1 2 0 1 2 1 0 1 1 0 0 1 1
RkneeBack 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0
RkneeUp 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
RfootFront 0 0 3 3 0 3 2 0 0 3 3 3 2 1 3 0 2 0 0 0 0 1
RfootUp 0 0 1 1 0 1 0 0 0 2 3 1 0 3 2 0 1 1 0 1 0 0

RankleInnerBack 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
RankleOuterFront 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 0
RankleOuterUp 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
LlowerLegFront 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 3 0 0 1
LlowerLegBack 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
LupperLegFront 0 0 0 0 0 0 0 0 0 2 0 1 1 1 2 0 2 3 2 1 2 1
LupperLegBack 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0
LhipOuterFront 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 2 1 2 2 0
LhipOuterLeft 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1
LkneeFront 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1
LkneeBack 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
LfootFront 0 0 2 2 0 2 1 0 0 2 2 2 1 1 2 0 1 0 0 0 0 0
LfootRight 0 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1

LankleOuterFront 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.22: Number of times that each sensor-joint couple appeared in a tactile instruction.
Each row corresponds to a sensor, each column to a joint. The value in the entry
indicates the number of instructions in the databases for which the pressure of the
corresponding sensor (and possibly of others) was associated to the rotation of
the corresponding joint (and possibly of others). The color of the row and column
headers indicates the part of the robot where the sensor or the joint is located.
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placing the arms along the body sides. He then tried to teach with a single touch on a

knee to make one step with that leg, i.e. to bring that leg forward (swing leg) and adjust

the other one to keep equilibrium.

Paying attention to the sensors of the body, which are quite particular because they

do not directly correspond to any joint, we can observe that subject A is the one who

used them more extensively. More specifically, he pushed the robot sides to make it

swing, imagining the joints to be “elastic” and supposing that by applying a force, the

robot will move accordingly given the constraints posed by the ground. Actually, this

is the approach we expected for most users. In fact, this approach is similar to kines-

thetic demonstration [52, 51]. This also bears a strong resemblance to Yamane and

Nakamura’s “pin and drag” model, presented for the animation of computer graphics

characters in [101]. Subjects B and D used a similar approach, though they seemed to

treat the interaction more abstractly. In detail, they identified one sensor which could

be associated with the joints they wanted to move and pressed that part any time they

needed to use that joints. This fact is easily observed in Fig. 3.23 that shows the sensors

used by each of the subjects. Comparing the six panels, we soon notice that subjects B

and D employed very few sensors to develop all the motions.

This strict correspondence between the joints to move and the pushed sensor was

not maintained by subjects C and F, who used more sensors to express similar joint

modifications.

These observations can be verified in a more quantitative way. More specifically, it

is possible to calculate a “distance” between the teaching ways, and see the formation of

clusters.

Figure 3.24 illustrates the process followed. First of all we created a test set containing

the touch instruction and relative context of all the examples provided by the users. For

each Ii, consisting of a touch instruction and its context, we calculated the corresponding

predicted joint modification using the estimators trained with the data of a single user

at a time. Let us denote by Mi,u the output of the estimator when Ii is given as input

and the data used for training are the ones of user u. We calculated the correlation

between the mapping of each couples of users u1 and u2 as the average of the cosines of

the outputs, i.e.

corr(u1, u2) = avg
i

(
MT

i,u1
·Mi,u2

‖Mi,u1‖ ‖Mi,u2‖

)
We derived a “distance” between a couple of user u1 and u2 taking the negative log

of the correlation absolute value:

dist(u1, u2) = − log(|corr(u1, u2)|)

The choice of this function comes from the results of practical experiments conducted

in [102]. However, other decreasing functions should provide similar results. Finally we
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Subject A Subject B Subject C

Subject D Subject E Subject F

Figure 3.23: For each subject, the sensors touched are displayed by coloring them red. The
robot is shown both from the front and from the back.
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Input Output

Figure 3.24: Schema of the analysis conducted on the data of the six subjects.
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applied multidimensional scaling [103] and obtained Fig. 3.25, a 2D representation of the

differences between the users’ mappings. We can observe that the locations of subject B

and subject D are close, subject E is far from all of the others and subjects C and F are

placed in another area. This quantitative analysis seems to confirm our intuitions based

on the direct analysis of the tables representing the relationships between sensors and

joints.

In detail, the horizontal axis, along which the distance is much bigger, has a role

similar to what could be interpreted as the complexity of the mapping:

• A nearly fixed mapping from a small set of sensors to the joints (subjects B and

D) or a mapping based on physical considerations (subject A).

• A loose mapping between sensors and motors located on the same limb (subjects

F and C).

• a very high level representation of the motion, where, for instance, the only in-

formation given through touch is the limb that should be moved; at this level of

abstraction a single touch corresponds to a motion primitive(subject E).

The vertical axis appears to represent, for the same complexity, variations in the

mapping. We can suppose that A appears near B and D in the low dimensional plot

because for many sensors, users B and D decided a fixed mapping that is very similar to

the application of force to the robot, i.e. the consideration done by subject A.

Given the clear partition in at least three groups of users we can assume the existence

of strong differences in the touching manners. Providing a customized model for each of

them would allow us to improve the system’s ability to interpret the touch instructions of

each group of users. In future works, the number of subjects will be increased to assure

statistical significance.
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Figure 3.25: Representation of the difference between the user’s mapping obtained by employ-
ing multidimensional scaling.
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4
Direct interaction with a real robot

The previous chapter presented a prototype implementation of the teaching by touching

approach that uses simulated touch sensors. Experimental results suggest the potential-

ities of using the teaching by touching approach for motion programming. Furthermore,

Sections 3.4 and 3.5 show that the data collected during the interaction can be used for

studying the way humans employ touch to communicate.

This chapter will present results obtained by implementing the teaching by touching

on a robot equipped with touch sensors over the whole body. Allowing the users to touch

a real humanoid improves the intuitiveness, making the interaction even closer to the

one between people. In fact, while with virtual sensors users need to rotate the 3D view

and click on the part they’d like to push, with a real robot they just need to touch the

part they want to, exactly as they would do with another human.

More precisely, the next section will briefly introduce M3-Neony, a new robotic plat-

form used in the experiments. Section 4.2 will briefly describe the implementation of the

teaching by touching approach on the real robot. Section 4.3 will conclude the chapter

by analyzing the data of four test subjects that interacted with the robot.

4.1 M3-Neony

In order to verify the feasibility of teaching motions to a real humanoid by touching it,

and to study how humans intuitively use touch to convey instructions, after experiments

limited to simulated touch sensors, we started the design of a small humanoid with touch

sensors on the whole body.

The developed robot, called M3-Neony, is visible in Fig. 4.1. M3-Neony is a com-

pletely autonomous humanoid, developed by the Socially-Synergistic Intelligence group

of JST ERATO Asada Project.

The target of the platform are researches in the field of Cognitive Developmental

Robotics (CDR)[5]. CDR is a new approach to study mechanisms of human intelligence,

cognition, and development with robots and computer simulations. In this approach

we usually hypothesize a model of infant development based on existing knowledge in
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(a) (b)

(c) (d)

Figure 4.1: Photos of M3-Neony. Two copies of the robot were developed. The two robots are
identical, the only difference is in their color.

60



psychology and brain science, implement the model in a humanoid robot that has human-

like kinematics and a perceptual system similar to humans, and verify the hypothesis

by comparing the resultant robot behaviors with the actual infant development. This

requires a humanoid robot which can behave in a baby-like manner and naturally interact

with people, and, therefore, the development of appropriate humanoid robot platform

is important. In order to cover a wider area of research issues on infant development,

it is desirable that the robot platform has a baby-sized body, a multimodal perception

system, and a motor system able to perform dynamic whole-body movements. Another

important factor in the development of a platform is modularity and ease of use, which

is necessary for sharing the platform among researchers who work in CDR.

The growing interest in CDR and the consequent need of new baby robot platforms

seems to be confirmed by the recent development of child robots like CB2, Child robot

with Biomimetic Body [6], and iCub [7]. CB2 is a humanoid robot driven by 56 actuators

most of which are pneumatic to allow a safe interaction with humans. This robot is

equipped with encoders on all of the joints, accelerometers and gyroscopes on the three

axis, two cameras located in the eyeballs, two microphones mounted in the head and

with PVDF (Polyvinylidene Difluoride [104]) film based tactile sensors distributed over

the whole body. Similarly, iCub presents a high number of degrees of freedom, precisely

53, which are however powered by electrical motors. This platform is also equipped

with encoders, a binocular vision system, gyroscopes and accelerometers, microphones

and force/torque sensors. A sensor skin, based on a mesh of sensors interconnected, is

currently under development [105]. Both of these two robots are quite big and heavy,

expressly CB2 is about 130cm high and weights 33Kg while iCub is 94cm tall and weights

22Kg.

In order to decrease the cost, to increase the user safety by diminishing the necessary

motor torques and to allow close interactions like hugging, M3-Neony was developed.

The developed platform is completely autonomous, and can be powered both by an

external supply or by batteries, two Nickel-metal hydride battery packs lodged in the

robot’s torso that provide 14.8 V and 1400 mAh. The robot weights about 3 kg and is

approximately 50 cm tall.

Despite its contained size and cost, it is equipped with a high number of sensors. In

detail, each joint includes a potentiometer and a temperature sensor. The torso mounts

two gyroscopes (ENC-03R by Murata Manufacturing Co.) and a three axis accelerometer

(Freescale Semiconductor’s MMA7260Q). Two cameras (Elecom’s UVC camera UCAM-

DFL30, see 4.1) and two microphones are located in the head (see Fig. 4.2(b)) and 90

touch sensors are distributed over the whole body.

Computation is provided by two boards. The first board, intended for high level

computation, is a generic low consumption 500 Mhz Geode based CPU board, PNM-SG3

from Pinon1. As a result of having an x86 compatible Geode LX800/CS5536 processor

1http://www.pinon-pc.co.jp/
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Table 4.1: Elecom UCAM-DFL30 characteristics

Pixel Count 300K Pixels
Photoreceptor 1/6 inch CMOS sensor
Max. resolution 640 × 480 pixels
Max. frame rate 30fps (when up to 640×480 pixels)
Number of colors 16,770,000(24bit)
Max. Power consumption Waiting: 0.25W, Working: 0.55W
Interface USB 2.0

(a)

(b)

(c)

Figure 4.2: Particulars of M3-Neony. (a) Parallel links give robustness to the robot legs. (b)
M3-Neony’s head, equipped with two microphones, two cameras and 15 tactile
sensors. (c) An alternative head, covered by polyurethane.
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and 512Mb of DDR400 RAM, the board is able to run a conventional operating systems

like Windows XP or Linux on the robot while keeping the power consumption very low

(only 5W). The board also features a conventional VGA output (resolution 1920x1440,

32bit color depth), a USB bus and two serials. Storage is provided by a compact flash

disk, and a supplementary compact flash slot allows plugging in a network card for

connection to conventional IEEE 802.11b and 802.11g wireless LANs.

The second board, dedicated to motor control, is a VS-RC003, a 60 MHz ARM7

powered control board from VStone2. This board, that is usually controlled by the

GEODE board through a serial connection, presents a USB mini B connector for direct

communication with an external PC. The USB communication protocol is managed

by VStone SDK that allows development of motions and acquisition of gyroscope and

accelerometer information by a set of high level API. These API are fully integrated with

the Robovie Maker development environment released by VStone and it is possible, for

instance, to create robot motions by a classical slider based interface and to execute it

by few lines of code. Simple signals can be sent to the ARM board also by a wireless

bluetooth Playstation 3 controller (SCPH-98040, trademarked ”SIXAXIS”), permitting,

for instance, real time execution of different sets of motions.

The mechanical structure of M3-Neony is based on VisiON 4G, a commercial hu-

manoid manufactured by VStone. VisiON 4G is a high performance humanoid robot

used by Team Osaka, a RoboCup [106] team that won the kid-size humanoid soccer

competition three times and the Louis Vuitton Best Humanoid Award for five consecu-

tive years.

VisiON 4G, shown in Fig. 4.3, was designed to resist impacts with opponents during

the RoboCup games, and therefore reveals to be a very robust robot. It is completely

built in aluminum and its legs are realized by parallel links. M3-Neony maintains these

technical solutions, as shown in Fig. 4.2(a). Furthermore, its touch sensors were devel-

oped aiming at maintaining this robustness, and actually the presence of elastic elements

in their structure even improves the absorption of shocks.

The 22 degrees of freedom (DOFs) of VisiON 4G are maintained unchanged in M3-

Neony, except for minor modifications in the head structure. In detail, the two robots

present 7 DOFs for each leg, 3 for each arm and 2 DOFs for the head, as shown in

Fig. 4.4. The joints are actuated by VS-SV410 servomotors, metal gear PID controlled

motors that are able to provide a torque of 41 kgf·cm. Each of the servomotors includes

a micro-controller, namely C8051F411 by Silicon Laboratories, that enables communi-

cation through a serial line. A simple protocol permits to set the joint target position,

modify the PID parameters, read the position, the temperature, the voltage and so

forth. All the servomotors are actually connected to an ARM based motor board by a

single serial bus, a solution that strongly simplifies the wiring and improves the modu-

larity of the system. Table 4.2 provides a summary of the motor characteristics, while

2http://www.vstone.co.jp
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(a) (b)

Figure 4.3: VisiON 4G. Apart from the head and the hands, M3-Neony’s metallic frame is
identical to the one of VisiON 4G.

Figs. 4.5 and 4.6 reports the measured response of the motor.

A modular structure, analogous to the ones employed for the motors, is used for

the tactile sensors. Expressly, groups of up to 8 analog tactile sensors are connected

to boards based on Silicon Lab’s C8051F411, a tiny microcontroller equipped with a 20

channels, 12-bit, 200 ksamples/s analog to digital converter (ADC). 19 of these boards

are distributed over the whole body and interconnected by a serial bus. A protocol

identical to the one of the servomotors provides access to each of the 90 sensors, whose

location is reported in Fig. 4.7.

Fig. 4.8 reports a schema of the structure of M3-Neony’s touch sensors. The working

principle is analogous to the force sensing adopted for the micro-mechanical gripper

Table 4.2: VS-SV410 characteristics

size 40.5 × 21.0 × 32.9mm
weight 62g
torque 41Kgf cm (at 16.8V)
speed 0.14s/60◦

range 180◦

power supply min 10V max 18V
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Figure 4.4: Degrees of freedom of M3-Neony. As can be seen, the structure is analogous to the
one of VisiON 4G (see Fig. 3.9) except for the head.
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Figure 4.5: Measured responses of the servomotor for a rotation of 90 degrees and different
configurations of the PID parameter. See the VS-SV410 manual for a complete list
of the parameters. The X axis reports the time from the provision of the command
in milliseconds, and the Y axis reports the angle read. Each plot corresponds
to one of the following configurations (unspecified parameters are kept to their
default value).

Config. PID P PID D Back-EMF Coeff PID I
A 1 0 0 0
B 16 0 0 0
C 32 0 0 0
D 32 32 0 0

E (default) 32 32 4 0
F 32 32 4 32
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Figure 4.6: Response for different target angles (22.5, 30, 45 and 90 degrees). The X axis
reports the time from the provision of the command in milliseconds, and the Y axis
reports the angle read.
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Figure 4.7: Arrangement of the touch sensors of M3-Neony.
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Figure 4.8: Schema of the touch sensors.

in [107]. Concretely, a photointerrupter (Sharp’s GP2S60) is mounted on a small (12x4

mm) board fixed to the robot’s aluminum frame, as shown in Fig. 4.9(a). A plastic plate,

visible in Fig. 4.9(b), is placed over the photointerrupter and kept at a distance of 5mm

by layer of polyurethane foam.

The light coming from the photoemitter of the photointerrupter is reflected by a white

disc attached to the plate and intercepted by the phototransistor of the photointerrupter.

When pressure is applied to the plastic plate the polyurethane foam acts as a spring that

compresses, and the white disc gets closer to the photointerrupter. Since change in the

distance translates in a variation of the reflected light, the amount of light captured by

the phototransistor can be used as an indicator of the applied force.

Although the relationship between the applied force and the reflected light measured

by the phototransistor is strictly monotonically increasing, it is nonlinear and the small

differences in the elasticity of the materials make calibration necessary for each of the

sensors. In particular, the range of the values read by each of the photointerrupters is

different. Note that, however, in human-robot interaction studies, categorizing the touch

in two or three classes like no pressure, soft pressure or strong pressure often suffices. In

these cases, a simple calibration that determines the offset value and the range of each

sensor reveals to be sufficient.

The access time for a single sensor is on average 10 ms (min 6 ms, max 19 ms), for the

8 sensors of a board is 20 ms (min 15 ms, max 32 ms) and for the whole 90 sensors is 110

ms (min 106, max 130 ms). The speed bottleneck is given by the serial communication,

so speed improvements could easily be obtained by increasing the number of serial buses,

at the expense of a more complex wiring.

Actually, these sampling times completely meet the teaching by touching require-

ments, as practical experiments showed. Next section will briefly introduce the teaching

69



(a) (b)

Figure 4.9: Structure of the tactile sensors. (a) The photo interrupter board. (b) One of the
plastic plates placed over a photointerrupter.

by touching system developed for the real robot, and Section 4.3 will present results of

preliminary experiments conducted with M3-Neony.

4.2 System description

Exploiting the interpretation of tactile instructions appears to be a possible solution for

motion design. In fact, the pilot study results in Section 3.4 showed promising results

in terms of reduction of motion development time. The intuitiveness of direct, physical

interaction with a real robot is expected to ease the realization of robot motions even

more. Consequently, we devised and implemented a system that allows developing robot

movements using tactile instructions.

The system was designed to keep the development process as simple as possible for

novice users. Expressly, as described in Chapter 3, the users first select a certain moment

of the motion using a time-line on the Graphical User Interface (GUI) shown in Fig. 4.10.

Then, using tactile instructions, they are able to set the position that the robot should

assume at that time. As was shown in Fig. 3.1, when users provide a touch instruction,

the robot may respond in ways that do not correspond to what the users expected. In

this case the users can employ kinesthetic demonstration to show the robot the posture

modification that they expected. The robot memorizes the association between the

haptic interaction and the desired movement, and gradually improves its capacity to

estimate the meaning of touch instructions.

More concretely, the interface presents two operating modes, the motion development

mode and the touch meaning provision mode. The system is usually in the motion de-

velopment mode, waiting for user touches that edit the robot’s posture at the selected

keyframe. When the robot does not understand correctly the meaning of the touch

pattern, the operator can switch the system to the touch meaning provision mode by
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stepping a USB pedal, a device commonly used in racing video games (see Fig. 4.11).

When the pedal is stepped, the robot moves back to the posture it had before misin-

terpreting the tactile instruction, and the users are able to show the robot the intended

movement by kinesthetic demonstration, i.e. they can move the robot to the posture it

should have gone by the provided touch instruction. In particular, during this mode,

when the sensors on both sides (palm and top) of one hand are pressed, the motors of

that arm are switched off so that the complete limb can be moved freely. When the

sensors are released, the power is turned back on and the new posture of the arm is

maintained. Similarly, the servos of each leg can be turned off by pressing the top and

bottom side of the corresponding foot and the motors of the head can be powered off

by pushing the front and back sensors of the head. Once the users want to terminate

demonstrating the robot how it should have moved, all they have to do is just to release

the pedal. This brings the system back to the motion development mode and the users

can continue their movement creation 3.

Actually, when the pedal is released, a new association between the touch pattern

given at the beginning of the touch meaning provision mode and the movement provided

is stored in a database used by the supervised learning algorithm described in Section 3.1.

Only a little difference exists between the algorithm used for the real robot and the

algorithm presented in Section 3.1. More precisely, given the limited importance of the

center of gravity velocity vector found in the experiments, we decided to remove it from

the context features, allowing the development of a system that does not require using

a motion capture system during the motion development. The orientation of the robot

was maintained as a context feature, but instead of being computed from the motion

capture data, it was estimated using the accelerometer and gyroscope data using the

algorithms in [93].

All of the other features of the prototype system are maintained. For instance, as

previously done, initially the database is empty and the robot does not respond to any

touch instruction. Using the touch meaning provision mode, the database is incremen-

tally populated and the interpretation is improved more and more. This presents the

advantages discussed in Chapter 3. More precisely, thanks to the supervised learning

approach the system completely adapts to the user, who is completely free in creating

associations between touch patterns and movement modifications. Additionally, as in the

previous setup the user is not requested to teach the meaning of the touch instructions

in a specifically devised session, but can provide them in contexts that naturally appear

during the motion development. Finally, as for the prototype system, data collected

during the interaction can be analyzed, and general policies underlying the user’s way of

3Note that the configuration at the end of the touch meaning provision mode is stored as a keyframe
of the motion, i.e. the robot does not return to the posture it had at the beginning of the touch meaning
provision mode. This is because, in most cases, after teaching the desired movement, the robot will
probably be in a state closer to the one desired for that moment.
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Figure 4.10: The graphical interface of our system. Exploitation of the touch sensors reduces
the interface essentially to a timeline.

associating touch patterns to robot movements can be extracted.

Actually, identifying the features of the mapping from touches to motor changes will

allow us to design new algorithms for the interpretation of haptic instructions. Hopefully,

algorithms specifically devised for the task will require the provision of less examples

of the mapping and will be more accurate in estimating the correct meaning of the

instructions.

Although, to keep things simple, both the prototype system and the real robot imple-

mentation use a key-frame based motion representation, we note once more that the idea

of interpreting the meaning of tactile instructions to modify the motion is not restricted

to a keyframe based motion representation. Surely, the usage of Nonlinear Dynamical

Systems [34], or of other motion representation that make use of the sensory feedback or

that keep a probabilistic representation of the motion [52], will improve the applicability

of the taught motions. In fact, Chapter 5 will present an implementation of the teaching

by touching approach where a Central Pattern Generator (CPG) is used to define the

movement.

We also need to note that the current system implementation uses kinesthetic demon-

stration for teaching the meaning of touches. We previously compared kinesthetic demon-

stration and the teaching by touching approach, and discussed the advantages of the

teaching by touching paradigm. In particular, we noticed that the teaching by touching

paradigm allows a single touch to be associated to a whole body movement, while when

using kinesthetic demonstration, moving more than one limb at a time may be impos-

sible. Furthermore, if no expedients for compensating the gravity are taken, interacting

with big robots may be problematic.

We could be puzzled on whether this could bring in the drawbacks of kinesthetic

demonstration. However, we note that

1. The kinesthetic demonstration is used just to teach the meaning of tactile instruc-

tions, and not for motion development.

2. The meaning of a touch needs to be taught just once, and can thereafter be reused.
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PedalRobot

GUI

Figure 4.11: Experimental setup. A pedal device, commonly used for racing games, is used to
switch between the motion development mode and the touch meaning provision
mode. A pedal allows the users to easily switch the mode without having to move
their hands away from the robot. Other modalities, like voice recognition, could
be introduced in future versions of the system.
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Figure 4.12: The graphical interface of the system when the sliders for direct joint control are
shown.

This means that the user needs to face the drawbacks much less frequently than

with kinesthetic demonstration.

3. Kinesthetic demonstration is just one way to teach the robot the meaning of the

touch. In fact, the interface already includes the possibility of displaying the panel

shown in Fig. 4.12. As with the prototype interface, the sliders in the GUI can be

used to accurately move the joints. Voice recognition, or any other human-robot

interface, could be used as well.

The next section will present preliminary experiments conducted with the system.

Results showed that users who were unfamiliar with the system could soon interact

with the robot through the teaching by touching approach, and successfully developed a

complex dance motion. Once more, the system revealed to be able to learn the meaning

of tactile instructions and require the user to teach less and less instructions over time.

Additionally, simple analysis of the data acquired during the interaction provided new

interesting insights on the interpretation of tactile instructions.
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4.3 Experimental results

This section will present an experiment conducted with the system introduced in the

previous section, and will provide an analysis of the touch instruction data gathered

during the interaction. In particular, the analysis confirms that the mapping between

touch instructions and the movement to be executed is not represented by a trivial

correspondence between sensors and posture changes. On the other hand, analysis of

the experimental data will suggest that the way in which the robot should respond to

touch instructions can be described by using a low-dimensional subspace of the complete

joint space. Interestingly, this low-dimensional subspace can be used to describe the

movements that should be performed in response to tactile instructions as well. This

allows us to advance the hypothesis of the possibility of exploiting knowledge on the

motion being taught to improve the interpretation of tactile instructions.

In the experiment, four users were asked to teach a humanoid robot a motion using

the teaching by touching algorithm. Expressly, the subjects were requested to develop

the first half of Algorithm Exercise. Algorithm Exercise is a famous dance appearing in a

TV show for kids aired by NHK, the Japanese national public broadcasting organization4.

This motion involves changing the facing direction and a series of simple hand and leg

movements, as shown in Fig. 4.13.

This dance was chosen because on the one hand it is complex enough to require the

teaching of a large number of different postures to the humanoid and on the other hand

it is simple from the viewpoint of robot balancing.

The four test subjects who participated in the experiments are Japanese Engineering

students at Osaka University, three males (subjects A, C and D), one female (subject B),

all right handed, age ranging from 23 to 25 years. These users are familiar with VisiON

4G, the robot lacking tactile sensors that was employed for the experiments reported in

Section 3.3. The subjects, however, never used the teaching by touching interface nor

knew its underlying concepts. All of the users could effectively employ our system to

develop the motion, with an explanation of the system usage that required less than 5

minutes. Snapshots of the realized motion5 are reported in Fig. 4.14.

During the motion development, the users provided the meaning of an average of 95.75

(standard deviation 6.55) tactile instructions. Actually, once instructions are taught,

these can not only be reused, but also combined, simply by pressing multiple sensors

simultaneously. For instance, imagine to teach the robot to look downwards when the

chin is pressed and then to instruct it to turn the head leftwards when the right cheek

is touched. If the chin and cheek are pushed together, the robot will head its gaze

to its own left foot. In the following let us denote by the word instruction a basic

association between sensors and angle changes taught, and by the term touch a tactile

4See http://www.nhk.or.jp/kids/program/pitagora.html for the details.
5A video is available at http://robotics.dei.unipd.it/~fabiodl/video.php?tbt
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Figure 4.13: Snapshots of a human performer executing the dance chosen for the experiment.

76



pattern applied to the robot, that, as in the previous example, can consist of multiple

instructions.

The subjects provided an average of 867.5 touches, that were translated into an

average of 1181.2 instructions, showing that the users actually exploited the superposition

of several tactile instructions in the same touch.

As explained before, when a tactile instruction is not understood, the user can teach

the robot the meaning of such instruction for further use. In this way, the robot’s

mapping is enriched and refined continuously. Figures 4.15, 4.16, 4.17 and 4.18 report

the ratio between the number of touch meanings taught and the number of touches

provided. It evidently appears that the users need to teach less and less instructions

over time because they can effectively reuse the ones already taught. The ratio between

the number of touch meanings taught and the number of instructions provided clearly

decreases even faster, since a single touch can activate multiple instructions previously

taught. In most of the cases there is a tendency in providing the meaning of many touch

instructions at the beginning and a progressive reduction in the need of teaching the

meaning of the tactile patterns, as clearly appears for subject C.

In order to get insights on the touch protocol spontaneously employed by the users, we

analyzed the examples of mapping between touch instructions and motor posture changes

taught by each user. In particular we calculated the mutual information between each

of the sensors and the rotation given for each of the motors. To compute the mutual

information, we initially discretized the data. Each sensor information was set to 0

if its value was less than 20% of the maximum force measurable by the sensor and 1

otherwise. Each motor change information was set to 0 if the user moved the motor

less than 5 degrees, to -1 if the user moved the motor more than 5 degrees in clockwise

direction and +1 if the user moved the motor in counter clockwise direction more than

5 degrees. The threshold of 20% for the sensor was chosen empirically, observing that

when users touch a sensor they commonly apply a force strongly higher than the 20%

of the maximum measurable force, while noise is far below this threshold. Similarly,

the threshold of 5 degrees for the motor rotations was selected observing that during the

touch meaning provision in the great majority of the cases, intentional joint angle changes

exceed 5 degrees while unintentional ones are usually contained under this threshold.

Let us denote the probability that the s-th sensor value is σ as ps(σ). The probability

ps(σ) was estimated from the collected data as ps(σ) =
∣∣∣Ī(s)
i = σ

∣∣∣ /E, where E is the

number of provided examples and
∣∣∣Ī(s)
i = σ

∣∣∣ denotes the cardinality of the set of collected

examples where the sensor s assumed a value of σ. Notice that due to our discretization

σ can assume only the values 0 and 1. Similarly, let us denote by pm(µ) the probability

that a touch instruction corresponds to a change in the position of the m-th motor of µ,

µ ∈ {−1, 0, 1}. Formally, we estimated pm(µ) by setting pm(µ) =
∣∣∣M (m)

i = σ
∣∣∣ /E, where

M
(m)
i denotes the position change for the m-th motor provided in the i-th example.
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(a) t=13 s (b) t=17 s (c) t=33 s

(d) t=39 s (e) t=52 s (f) t=56 s

(g) t=104 s (h) t=109 s (i) t=127 s

(j) t=173 s (k) t=175 s (l) t=183 s

Figure 4.14: Snapshots of the robot performing the dance chosen for the experiment.
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Figure 4.15: Touch meanings provision over time for subject A. The continuous line indicates
the ratio between the touch meanings taught and the number of touches applied
to the robot. The dashed line indicates the ratio between the number of touch
meanings taught and the number of touch instructions given. The dash dot line
indicates the ratio between the number of meanings taught before applying a
certain touch and the total number of meanings taught.
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Figure 4.16: Touch meanings provision over time for subject B. The notation is the same as
Fig. 4.15.

79



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1
Touch meanings provision over time

percentage of touches provided

ra
tio

 

 

meanings taught/touches

meanings taught/instructions

meanings taught/total meanings

Figure 4.17: Touch meanings provision over time for subject C. The notation is the same as
Fig. 4.15.
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Figure 4.18: Touch meanings provision over time for subject D. The notation is the same as
Fig. 4.15.
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Finally, let us denote by ps,m(σ, µ) the joint probability of the s-th sensor value being σ

and the change of the m-th motor being µ for the same example. The mutual information

between a sensor s, 0 ≤ s ≤ 89, and the change of the position of a motor m, 0 ≤ m ≤ 21,

was computed as

Îs,m =
∑
σ

∑
µ

ps,m(σ, µ) log2

(
ps,m(σ, µ)

ps(σ)pm(µ)

)
The normalized mutual information Is,m was then computed considering the en-

tropies [108], expressly Hs = −
∑

σ ps(σ) log2 ps(σ), Hm = −
∑

µ pm(µ) log2 pm(µ) and

Is,m =
Îs,m√
HsHm

Figures 4.19, 4.20, 4.21 and 4.22 illustrate the results. We notice that mainly the

users touched the sensors on a limb to move motors on the same limb. However, the

subjects didn’t restrict themselves to a one to one correspondence between joints and

sensors. Several sensors are used to actuate the same joint and conversely the same

sensor actuates several joints. Furthermore, we notice that different users tend to provide

different mappings, even if the experimental conditions (task, robot, etc.) are the same.

This confirms the user dependence of the touch protocol, and therefore the need of using

different mappings for different users.

We notice statistical dependence between the sensors on the top of the head and

the leg motors for some users. Direct inspection of the touch data of subject A show

that, for instance, this was done to teach the robot to squat when it is touched on the

head. Similarly subject D used the sensors on the back of the robot’s head to make

the robot lean forwards and sensors on the front of the head to make the robot lean

backwards. Even more interestingly, we can notice a statistical dependence between the

sensors placed on the side of the robot’s body and the corresponding leg for the first

user. Direct examination of the data shows that in these cases the user employed the

sensors on the side to tell the robot to rotate the corresponding leg and bring the knee

outwards on that side (see figures 4.14(c) and 4.14(e)). Statistical Dependence between

the sensors on the upper part of the left leg (s00.lHipB and s01.lHipF ) and motors of

the right leg (m10.rHipP ) also emerges, since often when the posture of one leg was

changed the other leg was moved as well to maintain the balance.

To ease the interpretation of the data, tables 4.3, 4.4, 4.5 and 4.6 report the meaning

of touch instructions provided by the users in terms of rules. In particular, assume to

define each acquired example Ii and Mi in terms of a set Ξi of sensors that were pressed

and a set Ψi of motors that were moved more than five degrees. A rule is defined as a

couple of sets Σj ⊆ Ξi and Θj ⊆ Ψi such that in all of the data acquired for that user,

when sensors Σj are pressed then also all of the motors Θj were rotated. In other terms,

we say that the set of motors is always rotated when some sensors are pushed if there

is no counterexample in the database such that the same set of sensors were pushed but
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some of the motors that appear in the rule were not rotated.

Formally, we define the rule Σj → Θj as valid if @i : Ξi ⊇ Σj ∧Ψi ( Θj. Clearly, by

the definition of a valid rule, if a rule Σj → Θj is valid then any rule Σ′j → Θj where

Σ′j ⊇ Σj is valid, since the “matches on the sensors” in the database will be a subset

of the matches of the original rule. Similarly, if a rule Σj → Θj is valid then any rule

Σj → Θ′j where Θ′j ⊆ Θj is valid.

Intuitively, we are thus interested in the smallest set of sensors pushed for which a

set of motors is always rotated. In other terms, the rules we aim to extract are the ones

with the smallest sets on the left side of the arrow and the bigger sets on the right side

of the arrow. Formally, we are interested in the rules Σj → Θj such that @Σ′j ( Σj with

Σ′j → Θj valid rule and such that @Θ′j ) Θj with Σj → Θ′j valid rule.

Furthermore, in some cases there exist a rule stating that the pressure of a set of

sensors always leads to the rotation of a set of motors, and there exist another rules

saying that the pressure of subsets of these sensors always leads to the rotation of subsets

of the motors. In these cases, what is of interest for the first rule is the set of motors

that are rotated just when all of the sensors are pressed. With the set notation, for the

rule Σj → Θj we are interested in the set of motors

Θ̄j = Θj r
⋃

k:Σk(Σj∧Σk→Θkis a valid rule

Θk

To write the rules in a more compact form, each row in the tables groups the rules

having the same set Θ of motors moved. The first column indicates the sensors that

must be pressed, using a notation close to the propositional logic. For instance, with such

notation the sets {α, β γ} and {α, βδ} are summarized using the expression α∧β∧(γ∨δ).
For the motors and sensors both their numerical ID and a shorthand name is reported.

Refer to figures 4.4 and 4.7 for their actual location on the robot.

The second column indicates the motors rotated. In particular, when subsets of the

motors rotated can be predicted by other rules that use a subset of the sensors, then

the set
⋃
k:Σk(Σj∧Σk→Θkis a valid rule Θk of motors that can be predicted by other rules are

reported in parentheses.

The last column reports the total number of Nj examples in the dataset for which

a superset of the sensors Σj indicated by the rule was pushed and a superset of the

motors Θj indicated by the rule was rotated. Intuitively, this figure, corresponding to

the support of association rules [109], indicates the statistical significance of the concept

expressed by the rule.

82



Table 4.3: Rules for subject A

Sensors Motors Nj

34rFpalm∧09lLeglowerL ∧ (28rFpalm ∨ 30rFpalm) 09lHipY 9
32rFpalm∧07lLeglowerR 19lAnkleP 7
84HeadtopC ∧ (28rFpalm ∨ 30rFpalm ∨ 32rFpalm) 14rKneeUP 15lKneeUP

19lAnkleP

5

40lArmupperB ∧ (28rFpalm ∨ 30rFpalm ∨
32rFpalm ∨ 34rFpalm ∨ 12lFpalm ∨ 17lFpalm) ∨
07lLeglowerR ∧ (28rFpalm ∧ (14lFpalm ∨
17lFpalm) ∨ 30rFpalm ∧ (14lFpalm ∨ 17lFpalm) ∨
12lFpalm) ∨ 20rLegupperL ∧ (14lFpalm ∨
17lFpalm) ∨ 51rArmupperB ∨ 45lHandpalmB

02rShoulderP 5

84HeadtopC∧12lFpalm 14rKneeUP 16rKneeLP
13lHipP 15lKneeUP
17lKneeLP 19lAnkleP

4

34rFpalm∧07lLeglowerR 09lHipY 15lKneeUP
17lKneeLP 19lAnkleP

4

86HeadtopR ∧ (28rFpalm ∨ 30rFpalm ∨ 32rFpalm

∨ 14lFpalm) ∨ 84HeadtopC∧14lFpalm

14rKneeUP 15lKneeUP
19lAnkleP

4

42lHandtopT ∨ 09lLeglowerL∧17lFpalm 05lShoulderR 07lElbowR 4
24rLeglowerR ∧ (28rFpalm∧12lFpalm ∨
10lFpalm∧14lFpalm ∨ 17lFpalm) ∨
20rLegupperL∧28rFpalm ∨ 23rKnee∧02lKnee

20rAnkleR 4

86HeadtopR ∧ (10lFpalm ∨ 12lFpalm) ∨
84HeadtopC∧10lFpalm

14rKneeUP 16rKneeLP
13lHipP 15lKneeUP
17lKneeLP 19lAnkleP

3

20rLegupperL ∧ (32rFpalm ∨ 34rFpalm) ∨
24rLeglowerR∧32rFpalm ∨
07lLeglowerR∧09lLeglowerL

10rHipR 14rKneeUP
16rKneeLP 20rAnkleR

3

20rLegupperL ∧ (10lFpalm ∨ 12lFpalm) 14rKneeUP 16rKneeLP
20rAnkleR

3

28rFpalm ∧ (20rLegupperL ∧ (14lFpalm ∨
17lFpalm) ∨ 22rLegupperR∧03lLegupperL ∨
09lLeglowerL∧14lFpalm) ∨ 14lFpalm ∧
(24rLeglowerR∧12lFpalm ∨
30rFpalm∧09lLeglowerL) ∨ 46lHandpalmT

05lShoulderR 07lElbowR 3
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07lLeglowerR ∧ (10lFpalm ∧ (14lFpalm ∨
17lFpalm) ∨ 61BackupperL ∨ 62BacklowerL ∨
66BacklowerR ∨ 67BackupperR ∨ 26rLeglowerL ∨
15lFoottopR) ∨ 15lFoottopR ∧ (61BackupperL ∨
66BacklowerR ∨ 67BackupperR ∨ 26rLeglowerL ∨
10lFpalm ∨ 12lFpalm) ∨ 24rLeglowerR ∧
(17lFpalm ∧ (30rFpalm ∨ 10lFpalm ∨ 12lFpalm) ∨
34rFpalm) ∨ 26rLeglowerL ∧ (61BackupperL ∨
62BacklowerL ∨ 66BacklowerR ∨ 67BackupperR)

∨ 30rFpalm ∧ (20rLegupperL ∨
23rKnee∧34rFpalm ∨ 02lKnee∧10lFpalm) ∨
40lArmupperB ∧ (10lFpalm ∨ 14lFpalm) ∨
38lArmupperF ∨ 41lHandtopB∧45lHandpalmB ∨
28rFpalm∧02lKnee∧10lFpalm

19lAnkleP 3

66BacklowerR∧02lKnee 08rHipY 10rHipR
18rAnkleP 20rAnkleR
09lHipY 13lHipP
15lKneeUP

2

73lRib ∨ 22rLegupperR∧30rFpalm∧03lLegupperL

∨ 31rAnkleB

09lHipY 13lHipP
15lKneeUP 17lKneeLP

2

23rKnee∧02lKnee ∧ (28rFpalm ∨ 30rFpalm ∨
10lFpalm) ∨ 20rLegupperL∧30rFpalm ∧ (14lFpalm

∨ 17lFpalm) ∨ 24rLeglowerR∧09lLeglowerL

08rHipY 10rHipR
16rKneeLP (14rKneeUP
20rAnkleR)

2

62BacklowerL ∧ (52rHandtopB ∨ 53rHandtopT ∨
56rHandpalmB ∨ 57rHandpalmT) ∨
22rLegupperR∧03lLegupperL ∧ (32rFpalm ∨
34rFpalm ∨ 14lFpalm ∨ 17lFpalm) ∨ 28rFpalm ∧
(20rLegupperL ∧ (10lFpalm ∨ 12lFpalm) ∨
24rLeglowerR∧17lFpalm) ∨ 23rKnee∧02lKnee ∧
(34rFpalm ∨ 17lFpalm) ∨ 49rArmupperF

02rShoulderP 06rElbowR 2
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34rFpalm ∧ (23rKnee ∧ (30rFpalm ∧ (28rFpalm ∨
32rFpalm ∨ 10lFpalm ∨ 12lFpalm) ∨ 14lFpalm) ∨
20rLegupperL ∧ (30rFpalm ∨ 10lFpalm ∨
12lFpalm) ∨ 24rLeglowerR∧14lFpalm ∨
07lLeglowerR∧12lFpalm) ∨ 45lHandpalmB ∧
(41lHandtopB ∧ (10lFpalm ∨ 14lFpalm) ∨
42lHandtopT ∧ (10lFpalm ∨ 14lFpalm)) ∨
20rLegupperL∧32rFpalm ∧ (30rFpalm ∨ 10lFpalm

∨ 12lFpalm) ∨ 46lHandpalmT ∧ (10lFpalm ∨
14lFpalm) ∨ 23rKnee ∧ (61BackupperL ∨
62BacklowerL) ∨ 66BacklowerR∧51rArmupperB ∨
33rFoottopR ∨
07lLeglowerR∧09lLeglowerL∧12lFpalm

12rHipP 2

Table 4.4: Rules for subject B

Sensors Motors Nj

22rLegupperR 10rHipR 12rHipP
20rAnkleR

5

22rLegupperR∧14lFpalm 16rKneeLP (10rHipR
12rHipP 20rAnkleR)

4

20rLegupperL 10rHipR 20rAnkleR 3
62BacklowerL∧54rArmlowerF 02rShoulderP 3
24rLeglowerR 16rKneeLP 20rAnkleR 2
41lHandtopB ∧ (30rFpalm ∨ 34rFpalm ∨ 10lFpalm

∨ 12lFpalm ∨ 14lFpalm) ∨ 20rLegupperL ∧
(32rFpalm ∨ 34rFpalm ∨ 14lFpalm) ∨
51rArmupperB ∨ 19rHipB ∨ 00lHipB ∨
03lLegupperL

02rShoulderP 2

Table 4.5: Rules for subject C

Sensors Motors Nj

41lHandtopB ∨ 42lHandtopT 07lElbowR 6
23rKnee 12rHipP 14rKneeUP 4
25rLeglowerF 14rKneeUP 16rKneeLP 3
21rLegupperF 12rHipP 3
62BacklowerL∧23rKnee 16rKneeLP 18rAnkleP

(12rHipP 14rKneeUP)

2
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66BacklowerR ∧ (32rFpalm ∨ 34rFpalm ∨
14lFpalm) ∨ 28rFpalm ∧ (32rFpalm ∨ 10lFpalm ∨
14lFpalm) ∨ 12lFpalm ∧ (32rFpalm ∨ 34rFpalm ∨
14lFpalm) ∨ 50rElbow ∨ 51rArmupperB ∨
52rHandtopB ∨ 53rHandtopT ∨ 56rHandpalmB ∨
57rHandpalmT ∨ 37lShoulderL ∨ 38lArmupperF ∨
40lArmupperB ∨ 45lHandpalmB ∨ 46lHandpalmT

∨ 18rHipF ∨ 20rLegupperL ∨ 22rLegupperR ∨
30rFpalm ∨ 03lLegupperL ∨ 06lAnkleF∧16lAnkleB

∨ 07lLeglowerR∧09lLeglowerL ∨ 17lFpalm

04rShoulderR 2

Table 4.6: Rules for subject D

Sensors Motors Nj

43lArmlowerF ∧ (14lFpalm ∧ (28rFpalm ∨
30rFpalm ∨ 12lFpalm) ∨ 17lFpalm ∧ (28rFpalm ∨
30rFpalm ∨ 12lFpalm)) ∨ 54rArmlowerF∧17lFpalm

∧ (28rFpalm ∨ 30rFpalm)

04rShoulderR 06rElbowR 4

44lArmlowerB ∧ (14lFpalm ∨ 17lFpalm) ∨
63rSideF ∨ 47rShoulderT

21lAnkleR 4

83HeadtopL ∨ 84HeadtopC ∨ 86HeadtopR 12rHipP 14rKneeUP
16rKneeLP 13lHipP
17lKneeLP

3

59lSideC 10rHipR 20rAnkleR
11lHipR 21lAnkleR

3

63rSideF∧64rSideC 10rHipR 20rAnkleR
11lHipR (21lAnkleR)

3

54rArmlowerF ∧ (14lFpalm ∧ (28rFpalm ∨
30rFpalm) ∨ 17lFpalm ∧ (10lFpalm ∨ 12lFpalm))

∨ 10lFpalm ∧ (43lArmlowerF ∧ (14lFpalm ∨
17lFpalm) ∨ 62BacklowerL∧23rKnee) ∨ 81lJaw ∨
87lEar

14rKneeUP 16rKneeLP 3
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51rArmupperB ∧ (28rFpalm ∨ 30rFpalm ∨
32rFpalm ∨ 34rFpalm ∨ 14lFpalm ∨ 17lFpalm) ∨
34rFpalm ∧ (49rArmupperF ∨
43lArmlowerF∧10lFpalm ∨ 08lLeglowerF) ∨
32rFpalm ∧ (43lArmlowerF∧10lFpalm ∨
08lLeglowerF) ∨
62BacklowerL∧55rArmlowerB∧17lFpalm ∨
49rArmupperF∧30rFpalm ∨ 36lShoulderT ∨
37lShoulderL ∨ 40lArmupperB ∨ 18rHipF ∨
19rHipB ∨ 16lAnkleB

06rElbowR 3

77ChinL ∨ 78ChinR 12rHipP 14rKneeUP
16rKneeLP 13lHipP
15lKneeUP 17lKneeLP

2

79rTemple ∨ 80rJaw ∨ 82lTemple ∨ 89rEar 10rHipR 16rKneeLP
13lHipP 15lKneeUP
19lAnkleP

2

02lKnee ∧ (62BacklowerL ∧ (23rKnee ∨ 28rFpalm

∨ 30rFpalm ∨ 10lFpalm ∨ 12lFpalm ∨ 14lFpalm ∨
17lFpalm) ∨ 34rFpalm ∧ (23rKnee ∨ 28rFpalm ∨
30rFpalm ∨ 10lFpalm ∨ 12lFpalm ∨ 14lFpalm ∨
17lFpalm)) ∨ 60lSideF ∨
23rKnee∧34rFpalm∧10lFpalm

16rKneeLP 20rAnkleR
11lHipR 21lAnkleR

2

63rSideF ∧ (62BacklowerL ∨ 30rFpalm ∨
32rFpalm) ∨ 81lJaw ∧ (10lFpalm ∨ 14lFpalm) ∨
87lEar ∧ (10lFpalm ∨ 14lFpalm) ∨ 44lArmlowerB

∧ (54rArmlowerF ∨ 43lArmlowerF)

10rHipR 20rAnkleR
11lHipR (21lAnkleR)

2

19rHipB ∧ (30rFpalm ∨ 34rFpalm ∨ 10lFpalm ∨
12lFpalm ∨ 14lFpalm ∨ 17lFpalm) ∨ 18rHipF ∧
(10lFpalm ∨ 12lFpalm ∨ 14lFpalm ∨ 17lFpalm) ∨
62BacklowerL ∧ (43lArmlowerF ∧ (14lFpalm ∨
17lFpalm) ∨ 54rArmlowerF∧17lFpalm) ∨
16lAnkleB ∧ (28rFpalm ∨ 30rFpalm ∨ 34rFpalm)

∨ 54rArmlowerF∧14lFpalm ∧ (10lFpalm ∨
12lFpalm) ∨ 08lLeglowerF ∧ (25rLeglowerF ∨
30rFpalm) ∨ 31rAnkleB ∨ 09lLeglowerL

04rShoulderR 06rElbowR 2
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08lLeglowerF ∧ (32rFpalm ∧ (62BacklowerL ∨
10lFpalm ∨ 12lFpalm ∨ 14lFpalm ∨ 17lFpalm) ∨
34rFpalm ∧ (62BacklowerL ∨ 10lFpalm ∨
12lFpalm ∨ 14lFpalm ∨ 17lFpalm)) ∨
62BacklowerL ∧ (44lArmlowerB ∧ (55rArmlowerB

∨ 14lFpalm ∨ 17lFpalm) ∨ 47rShoulderT ∨
54rArmlowerF∧43lArmlowerF ∨
55rArmlowerB∧14lFpalm ∨ 36lShoulderT) ∨
54rArmlowerF∧43lArmlowerF ∧ (28rFpalm ∨
30rFpalm ∨ 10lFpalm ∨ 12lFpalm) ∨
51rArmupperB ∧ (40lArmupperB ∨ 10lFpalm ∨
12lFpalm) ∨ 49rArmupperF ∧ (10lFpalm ∨
14lFpalm) ∨ 38lArmupperF ∧ (30rFpalm ∨
34rFpalm) ∨ 85Headback ∨ 48rShoulderR ∨
55rArmlowerB∧44lArmlowerB∧32rFpalm ∨
01lHipF ∨ 03lLegupperL

03lShoulderP

(02rShoulderP)

2

The collected data show that multiple motors are usually moved with a single touch

instructions. It is hence interesting to observe if there are consistencies in the relationship

between the motor changes of different motors in the set of modifications provided as

meaning of touch instructions. Computation of the mutual information between couples

of motors yields the results reported in figures 4.23(a), 4.23(b), 4.24(a) and 4.24(b). We

notice a very strong statistical dependence between motors that belong to the same limb.

Statistical dependence between the two legs is also observable, in particular for the fourth

user (Fig. 4.24(b)), or for the first user (Fig. 4.23(a)), between the pitch joints of the hips

(m10.rHipP and m17.lHipP ) and of the ankles (m13.rAnkleP and m20.lAnkleP ). As

previously reported, these statistical dependencies may be explained by the desire of the

test subjects to keep the robot balanced over the whole experiment.

These high statistical dependencies suggest that the motor changes given by the user

could actually be located in a low-dimensional manifold of the whole 22-dimensional

motor space. This fact could be exploited in the estimation of meaning of touch instruc-

tions. For simplicity we focused on linear subspaces as possible manifolds. In particular,

we analyzed how well the motor change relative to the e-th example fits in a subspace

of dimension q constructed from the previous e − 1 examples. More formally, we took

the motor changes specified in the first e− 1 examples M1 . . .Me−1. We subtracted the

mean, and applied Principal Component Analysis (PCA). We then considered the e-th

example motor change Me. We subtracted the same mean, and projected the resultant

vector on the subspace defined by the first q principal components v1 . . . vq. Finally, we
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Figure 4.19: Mutual information between sensors (rows) and motors (columns) for subject A.
The color of the intersection indicates the normalized mutual information value.
Only mutual information values higher than 0.01 are indicated, and only sensors
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Figure 4.20: Mutual information between sensors (rows) and motors (columns) for subject B.
The notation is the same as Fig. 4.19.
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Figure 4.21: Mutual information between sensors (rows) and motors (columns) for subject C.
The notation is the same as Fig. 4.19.
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Figure 4.22: Mutual information between sensors (rows) and motors (columns) for subject D.
The notation is the same as Fig. 4.19.
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Figure 4.23: Mutual information between couples of motors for subjects A and B. Each label
is given by a numerical id followed by a shorthand name separated by a dot. The
color of the intersection indicates the normalized mutual information value. The
areas of the map that correspond to motors of the same robot part (e.g. same
limb) are denoted by a dashed square.
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Figure 4.24: Mutual information between couples of motors for subjects C and D. The notation
is the same as Fig. 4.23.
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calculated the infinity norm of the reconstruction error6:

εq(e) =

∥∥∥∥∥Me −
q∑
i=1

MT
e vivi

∥∥∥∥∥
∞

Figures 4.25, 4.26, 4.27 and 4.28 report the reconstruction error for different settings of

q, 1 ≤ q ≤ 22, averaged over all of the examples e = 1 . . . E. For comparison, the error

obtained by applying PCA on the whole set of examples, i.e. M1 . . .ME is also reported.

We notice that the difference between the reconstruction error obtained using just the

first e− 1 examples is not much higher than the one obtained using the whole data set

M1 . . .ME.

As briefly stated in the introduction, it is a well known fact that for many tasks, the

complete movement of the robot lies on a small subspace [31]. It is therefore interesting

to analyze whether the subspace where motions can be projected with little errors is

related to the motor changes desired as response of touch instructions. For each of the

E examples provided by the user, we collected all the postures that the user brought

the robot to before teaching Me. For each of these sets of postures we then subtracted

the mean and applied PCA to determine the principal components v̄1 . . . v̄q. The average

reconstruction error norm obtained by projecting the touch examples Me on the subspace

of dimension q defined by v̄1 . . . v̄q is also reported in figures 4.25 to 4.28 . We notice that

except for low values of q (q < 5) the reconstruction error is comparable to the one of the

projection on the subspaces constructed using the motor change information. These are

preliminary results, and intensive verification must be made. However, it appears that

for all of the four subjects the posture modification expected by the users in response to

touch instruction could be limited to movements that lie in the subspace defined by the

motion the subjects want to develop.

In other terms, the users were requested to develop a motion, “Algorithm exercise”,

and realized it by defining a set of postures that lie in a certain subspace of the motor

space. When setting these postures that realize the task, instead of setting them in a

completely free manner using motor changes in the whole motor space, they restricted

their instructions to movements similar to the ones that compose the target motion.

This fact could be exploited to improve the touch interpretation. Expressly, knowl-

edge of the frames set by the users during the teaching could be used to constrain the

output of the mapping from touch instruction to motor movements.

Actually, this restriction in the movements used for teaching could partially be a

consequence of the task choice. In particular, it could be caused by the fact that for

dances, gestures are often more important than the actual postures taken. Conversely,

6We decided to employ the infinity norm because we are interested in the maximum reconstruction
error over all of the joints. If the Euclidean norm were used, the information on the maximum recon-
struction error would be lost. In fact, εq(e) could be small because the error is small for most of the
joints and is high for very few of them.
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Figure 4.25: Reconstruction error for different number of dimensions of the subspace for subject
A.
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Figure 4.26: Reconstruction error for different number of dimensions of the subspace for subject
B.

imagine a robot task to consist of grasping an object and rising it as high as possible.

We can imagine the robot motion to essentially lie on a subspace that makes the robot

arms move vertically. However, users would probably concentrate their instructions in

adjusting the hands distance in order to achieve an adequate grasp, and therefore it

would be likely that they provide a high number of instructions in a subspace orthogonal

to the one of the motion. Future works will need to include the analysis of data from

different types of tasks in order to verify these hypotheses.

Summarizing, all of the four subjects were able to develop the motion without prob-

lems, and could use the teaching by touching system without any training. Further tests

will need to validate the approach with completely naive users, that are not even familiar

with the robot. Data analysis showed that specific algorithms for interpretation of tactile
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Figure 4.27: Reconstruction error for different number of dimensions of the subspace for subject
C.

1 3 6 9 12 15 18 22
0

10

20

30

40

50

60

dimensions

av
er

ag
e 

re
co

ns
tr

uc
tio

n 
er

ro
r 

no
rm

 [d
eg

]

reconstruction error over subspaces

 

 
previous touches
all touches
previously provided postures

Figure 4.28: Reconstruction error for different number of dimensions of the subspace for subject
D.
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instructions are required, since it cannot be reduced to a simple mapping between sensor

and joint angle modifications. Inspection of the mappings provided by the subjects also

shows that, as expected, the mappings are user dependent. The approach of refining the

mapping online revealed to be a feasible solution. In fact, experimental results supported

the assumption that the need of teaching the meaning of tactile instructions decreases

over time when interacting with the real robot, as we saw for simulated touch sensors in

Section 3.5. We also identified general features of the mappings:

1. Sensors on one limb are very frequently employed to move joints of the same limb.

2. Associations between different parts, e.g. sensors on the head to make the robot

bend the knees, should also be considered by the touch instruction interpreter.

3. The angle modifications that should be performed in response to a tactile instruc-

tion can be constrained to a linear subspace of the whole motor command space.

4. The subspace generated by the keyframe of the motions under development is (at

least for some tasks) a good subspace for the representation of the movements

expected in response to a touch instruction.

This knowledge on the way users use touch to develop motions will allow the future

design of more advanced touch instruction predictors, that require the users to teach the

meaning of fewer touch instructions in the first phases of the interaction.

The next chapter will focus on the motion representation, and show that the teaching

by touching approach does not require the use of a posture based representation. In

particular, tactile instructions will be used to edit periodic motions produced by a Central

Pattern Generator.
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5
Editing full motions with single touches

The previous chapter presented an implementation of the teaching by touching approach

that employs a description of the motion based on a sequence of frames. However,

as we stressed several times, the teaching by touching paradigm does not impose the

use of this kind of motion representation. This chapter will focus on showing that the

approach can be applied to a completely different motion representation, Central Pattern

Generators (CPGs). The concept of sequence of postures and modification of postures,

used in the previous chapters, will be abandoned. In the system presented in this chapter,

parameter changes have effect on the whole signal generated by the CPG, thus a single

touch translates to a modification of the whole motion.

Central Pattern Generators are a biologically inspired approach for motor control.

Many of the periodic movements of animals, like swimming, walking or chewing, are

controlled by groups of neurons called Central Pattern Generators (CPGs) that can

produce a rhythmic activity even in the absence of external inputs. When motor and

sensory feedback is included, the resulting entrainment between the neural circuit and

the environment brings several advantages in terms of stability and ability to adapt to

environmental changes.

The inherent capability of synchronizing the motion to external perturbation and

adapting to the environment reveals to be very appealing in the robotics field, hence

artificial CPGs were proposed as a solution for motion control. Furthermore, their com-

putational cost is very limited, since the signal sent to the motors is generated by dy-

namical system, i.e. concretely by the evolution of a differential equation. Actually, even

hardware implementations can be found in literature, for instance [110] or [111]. In

other terms, CPGs allow the development of extremely simple, inexpensive, low power

consumption, compact and flexible controllers for motion control. Therefore, they repre-

sent an interesting choice for the control of small humanoids, which are one of the main

targets of the teaching by touching approach.

Often artificial CPGs consist of weakly coupled oscillators, where each oscillator

consists of a couple of neurons representing extensor and flexor neurons [112]. An in-

troduction on various oscillator models that can be found in literature will be presented
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in Section 5.1. The section will also briefly list the most diffused network types, i.e. the

way of interconnecting the neurons.

As reported in [14] the determination of the numerous CPG parameters is very dif-

ficult because their value depends both on the robot and on the environment. Usually

CPGs parameters are set automatically by genetic algorithms [112], policy gradient [113],

reinforcement learning [14], or similar techniques.

Although there are obvious advantages in terms of minimal user effort, these ap-

proaches gives the motion developer little control over the resulting movement. In

fact, the only strategy available for controlling the resultant motion is changing the

fitness/evaluation/reward function. Some features like the similarity to human move-

ment cannot be easily expressed mathematically. For instance, when developing a walk

motion for humanoid robots if the speed is used as a reward, it is difficult to prevent the

resultant motion from being fast and awkward.

Conversely manually setting each of the parameters, for instance from a console or a

slider-based graphical user interface, allows the user to finely control the motion. This

is, however, time-consuming, and, especially in the case of oscillators which are not easy

to predict, like Matsuoka’s neuron [114], it can be very unintuitive and difficult.

In this chapter, we propose the use of tactile interaction to set the CPG parameters

and create periodic motions. As in the previous chapter, we imagine the user to watch

the movement of a robot equipped with touch sensors. The user touches the robot,

and depending on the tactile instruction the CPG parameters, and thus the motion, are

modified. The user then observes the new motions and repeats the editing process until

the desired robot movement is satisfactory.

To allow this interactive process we need a highly predictable network of oscillators.

In fact, if similar touches could lead to quite different consequences we can imagine that

the usability of the system would be strongly negatively affected. Section 5.2 therefore

presents the highly predictable oscillator network we employed.

A strategy to convert user touches to CPG-parameter modifications must then be

defined. In Section 5.3 we illustrate a very simple fixed protocol. Obviously a supervised

learning setup, as the one presented in Chapter 3, could be used, but we preferred to

keep things as simple as possible and focus only on the motion representation.

Section 5.4 will briefly describe the practical implementation used for verifying the

feasibility of the approach. Finally, Section 5.5 will describe experiments on the realiza-

tion of humanoid robot motions with the proposed CPG programming by touching.

5.1 Central Pattern Generators

This section briefly describes Central Pattern Generators, with particular attention to

their robotic applications. In detail, after a brief introduction on the CPGs found in na-

ture, a survey on the most common types of oscillators used in robotics will be provided.
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The equations for sinusoidal, Hopf, adaptive Hopf, Rayleigh, Van Der Pol, FitzHugh-

Nagumo, Hopfield, Ekeberg and Matsuoka oscillators will be given. Then, the oscillator

network structures recurrent in literature will be briefly listed. Finally, considerations

on the predictability, a fundamental requirement for the teaching by touching approach,

will be reported.

5.1.1 Biological CPGs

Central Pattern Generators (CPGs) are neuronal circuits that can be found in living be-

ings. Many parts of their nervous system produce patterns independent of their sensory

input. One way for a neuronal circuit to oscillate is to have a neuron that generates

periodic activity and influences the neighboring neurons through the synaptic interac-

tions. In this case, the intrinsically oscillating neuron is called a ”pace-maker” because it

provides the pace for the whole network. In many cases, however, CPGs are composed

only by neurons that are unable to oscillate when isolated, but that exhibit periodic

activity when interconnected.

A single neuron or a network of neurons and, in general, any system of coupled os-

cillators which is able to exhibit rhythmic activity in the absence of sensory input is

defined as a Central Pattern Generator. Examples of central pattern generators found

in nature are the neuron networks that control periodic movements like the eels’ motion,

the fish swimming [115], the rhythmic movement of the wings of crickets during song

production [116], insects’ wing movements for flight, humans’ chewing [117] and walk-

ing [118]. Animal locomotion is usually characterized by rhythmic activity and the use

of multiple degrees of freedom, i.e. multiple joints and muscles. In fact, all types of ver-

tebrate locomotion rely on some kind of rhythmic activity to move forward: undulations

of the body and/or oscillations of fins, legs or wings. By rhythmically applying forces to

the environment (ground, water, or air), reactions forces are generated and these forces

move the body forward.

This type of locomotion is in contrast to most man-made machines which usually rely

on few degrees of freedom (e.g. a limited number of powered wheels, propellers, or jet

engines), and continuous, rather than rhythmic actuation [119]. Animal locomotion is

significantly more difficult to control than most wheeled or propelled machines, since the

oscillations of the multiple degrees of freedom need to be well coordinated to generate

efficient locomotion. However, as can be observed from the swimming of a dolphin or

from the running of a goat in an irregular terrain, animal locomotion presents many

interesting features, such as energy efficiency and adaptability.

Despite the diversity in types of locomotion, the general organization of vertebrate

locomotor circuits appears to be similar in most animals. Locomotion is just started

and modulated by descending pathways from the brain’s locomotor centers. Since the
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sixties, it is in fact known that simple electrical stimulation of the brain stem1 initiates the

walking gait in a decerebrated cat [38, 120], and progressive increase of the amplitude of

the stimulation leads to an increase of the oscillation frequency accompanied by a switch

from walking to trotting and eventually to galloping. This demonstrates that the brain

stem and the spinal cord contain most of the circuitry necessary for locomotion, including

complex phenomena such as gait transitions. In other terms, just a command signal is

produced in the brain, and this basically sets the central pattern generator going. The

CPG, by the motor neurons then makes the appropriate muscles contract and a motion

is generated. It is worth to note that since a single muscle can only move in one direction

and it cannot expand again without the help of an opposing muscle that contracts and

pulls the first muscle back, in order to create rhythmic movement there must be more

than one muscle, usually a flexor-extensor pair, connected to the CPG.

Although experiments with completely isolated spinal cords showed that no signal

is necessary to generate rhythmic patterns, usually CPG networks receive signals from

sensory feedback. Sensory feedback is essential for shaping and coordinating the neural

activity with the actual mechanical movements. The main sensory feedback to the CPGs

is provided by sensory receptors in joints and muscles, and in fact rhythmically moving

the tail or a limb of a decerebrated vertebrate is often sufficient to initiate the rhythmic

patterns of locomotion. The frequency of oscillations then matches the one used to

stimulate the limb movement. This kind of coupling permits, for instance, to maintain

a posture during locomotion.

5.1.2 Artificial CPGs

Although CPGs are usually discussed in terms of biological entities, as seen in the pre-

vious subsection, they can also be employed for a biologically inspired robot controller.

This allows to bring some of the desirable features of CPGs found in living beings, like

robustness and adaptability, to the robotics field.

Systems similar to animal CPGs, often realized as weakly coupled oscillators, have

been proposed for the control of many kinds of robots, such as hexapods [121], quadrupeds

[122, 123], bipeds [36, 124, 125, 126], snake robots [127], etc. CPGs offer several ad-

vantages in terms of simplicity and the ease with which sensory feedback can be in-

troduced [128] as well as in terms of the adaptability and robustness of the resultant

system [14].

Many alternatives are available in the choice of the type of oscillator/neurons em-

ployed for the realization of the CPG. One of the simplest oscillators is the sinusoidal

one, in which each of the oscillators of the network is controlled by the equation

1The brain stem is the lower part of the brain, the rostral continuation of the spinal cord.
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θ̇i = ωi +
∑
i

Wijsin(θj − θi − (i− j)φ)

where θi is a variable representing the internal state of the i-th oscillator, ωi is its natural

frequency, φ is the phase between two successive oscillators (i.e. the phase between the

i-th oscillator and the i − 1-th one) and Wij is the weight of the connection from the

j-th oscillator to the i-th. This kind of oscillator is often employed for snake robots like

in [129]. In [124], the controller and robot dynamics, represented respectively with the

two differential equations

φ̇c = ωc +Kcsin(φr − φc)

φ̇r = ωr +Krsin(φc − φr)

are coupled to oscillate with a common phase difference and frequency equal to

Ψ∗ = φr − φc =
ωr − ωc
Kc +Kr

ω∗ =
Krωc +Kcωr
Kc +Kr

Another choice is the Hopf oscillator, which can be expressed by the equations

ẋi = γi(µi − r2
i )xi − ωiyi +

∑
j

Wijxj

ẏi = γi(µi − r2
i )yi − ωixi

ri =
√
x2
i + y2

i

where as before ωi is its natural oscillation frequency and µi is its natural amplitude. γi
is a parameter used to control how fast the system approaches its natural amplitude after

a perturbation. The two real valued state variables xi and yi can be expressed using a

single variable zi assuming complex values. The resulting formulation, used for instance

in [130], is:

żi = γi(µi − |zi|2)zi + iωizi +
∑
j

Wijzj

In [131] it is also proposed to create a more complex oscillator connecting two oscil-

lators in “parallel”, i.e. giving the same input to both of them and getting as output a

weighted sum of the outputs of the two oscillators. An extension to this approach is used

in [125], where a set of modified Hopf oscillators are connected in parallel to construct

an oscillator that can produce a high variety of outputs (this is not possible with the

common Hopf oscillators). In detail, in this work the classical Hopf oscillator is modified

by making the natural frequency a state variable too, as done in [132]:
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ẋi = γi(µi − r2
i )xi − ωiyi + εF (t)

ẏi = γi(µi − r2
i )yi − ωixi

ω̇ = −εF (t)
yi
ri

where ε and γ are constants and F (t) is a periodic signal given as input to the oscilla-

tor. Due to the modification, the oscillator is able to adapt its frequency to the main

frequency component of the input signal. If n oscillators of this type are connected in

parallel, given a periodic input signal, each of the oscillators will adapt to one of the

frequency components. In detail, each oscillator will assume one of the main n frequency

components of the signal, or, in other terms, the set of oscillator performs a sort of

online Fourier transform of the input signal (note that it is not necessary to know any

of the features of the signal, like the main period). If the signal is composed by less

than n sinusoidal components, more than one oscillator can assume the same oscillation

frequency, but the various amplitudes will be such that the total amplitude is equal to

the one of the input signal.

Another kind of oscillator, used for instance in [126], is Rayleigh one, controlled by

the equation

ẍi − δ(1− qiẋi2)ẋi + ω2xi −
∑
j

Wijẋj = 0

which can also be expressed, giving a two dimensional representation, by the set of

equations

v̇i = δ(1− qiv2
i )vi − ω2xi +

∑
j

Wijvj

ẋi = vi

By differentiating the Rayleigh oscillator equation with respect to time and taking

the first derivative as the main variable, it is possible to derive the Van Der Pol oscillator:

ẍi + µ(x2
i − 1)ẋi + ω2xi +

∑
j

Wijxj

This kind of oscillator was used in robotics, for instance, in [133] and [134].

Other oscillator models were derived directly from the field of biology. In [135],

by studying the giant axon of a squid, Hodgkin and Huxley derived a model of how

action potentials in neurons are initiated and propagated. This model was simplified

by Richard FitzHugh, to conceptually isolate the essential mathematical properties of

excitation and propagation from the electrochemical properties of sodium and potassium
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ion flow. The model was in fact reduced to a two variable model for which the phase plane

analysis applies, and an equivalent electric circuit was developed by Jin-ichi Nagumo,

Suguru Arimoto and Shuji Yoshizawa in [136]. One possible formulation of this FitzHugh-

Nagumo model is:

τiu̇i = −vi + ui −
u3
i

3
+
∑
j

Wijuj

v̇i = τi(ui − βivi + γi)

where τi is a time constant that can be used to change the oscillation frequency. An

example of a quadruped controlled by this kind of oscillator is given in [123].

A very diffused neuron model is the Hopfield’s one, also called leaky integrator from

the form of its equation:

τiu̇i = −ui +
∑
j

Wijσ(uj) + ci

where σ is the standard logistic function, or sigmoid function

σ(x) =
1

1 + e−x

This simple model can be found in many applications, for instance [137, 138, 121, 139,

140]. In [141], the Hopfield model is modified to introduce synaptic depression. This is a

kind of adaptation, which is a common natural phenomena by which a constant stimulus

is perceived less and less. The modified model consists of the following two equations

u̇i = −ui +
∑
j

(1− dj)Wijσ(uj) + ci

τiḋi = −di +
1

2
σ(ui)

where the variable di is used to represent the depression value.

Another biologically inspired model comes from Grillner and colleagues’ work on

the lamprey spinal cord and the model of the lamprey central pattern generator then

developed by Örjan Ekeberg in [142]. The equations for each of the neurons are

τD ˙ξi+ = −ξi+ +
∑
j

Wijuj

τD ˙ξi− = −ξi− +
∑
j

Wijuj

τAϑ̇i = −ϑi + ui
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ui = [1− eΓ(Θ−ξi+) − ξi− − µϑi]+

where the notation []+ is used to indicate the positive part of the argument, that is

[x]+ =

{
0 if x ≤ 0

x otherwise

This model was used in the robotics field by A. J. Ijspeert [143].

One of the most utilized CPG is the one proposed by Matsuoka in 1985 [114]. The

equations for this model are

τuu̇i = −ui − βvi −
∑

wij[uj]
+ + ci

τvv̇i = −vi + [ui]
+

Among its direct applications, it is possible to cite [144] or [145]. Similarly, in [112]

Matsuoka oscillators are used for generating walking patterns, while in [146] they are

used to make the robot jump entrained with the environment feedback.

Among all of the possible structures for the connection between the oscillators, we

notice that essentially five structures are present in the literature, as shown in Fig. 5.1:

1. chain [147, 128, 148, 149], used mainly for snake robots

2. star [150, 151, 124, 152, 153], that is a “pacemaker”/ “clock” oscillator which pro-

vides a synchronizing signal to the other oscillators

3. tree [154, 155], where essentially the oscillators are connected as a tree, from prox-

imal to distal joints

4. connection between homologous joints [156, 157, 158, 159, 160, 161, 37, 162, 163],

i.e. joints with a similar function

5. full connection between the oscillators [164, 165, 166]

5.1.3 CPG predictability

As can be seen from the equations given in the previous subsection, most of the oscillators

found in literature are highly non linear. Often, this strong nonlinearities cause the

existence of multiple limit cycles. A very simple example can be given using a network

of Matsuoka oscillators. Suppose to connect four neurons as shown in Fig. 5.2. Neurons

N1 and N2 are interconnected and form an oscillator. This is a typical configuration,

with one neuron assumed to have the role of controlling the extension and another one

assumed to be controlling the flexion. When dealing with hinge joints, therefore, the
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Figure 5.1: Types of network of oscillators found in literature. Chain of oscillators, found for
instance for the control of a snake robot in [148]; tree shaped connection, found for
instance for the control of the gait of a humanoid robot in [155]; star configuration,
where a clock oscillator is used to synchronize the system, employed for instance
for a drumming task presented in [150]; full connection between the oscillators, as
proposed in [166] for the control of a quadruped robot; connection between the
homologous joints, as done in [158].
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N1

N2

N5

N6

N3

N4

Figure 5.2: Simple configuration exhibiting multiple limit cycles. Weight Wi,j is indicated by
an arrow from neuron Nj pointing to neuron Ni. Black is used for connections
between the neurons of the same oscillator, while red arrows represent connections
between neurons of different oscillators.

torque or angle is usually set as the difference of the values of the two neuron outputs,

i.e. in this case u1 − u2. In a completely analogous manner, neurons N3 and N4 form

another oscillator, whose output u3−u4 is assumed to control a second joint, and neurons

N5 and N6 control a third joint. The oscillators are then synchronized by connections,

shown in red in Fig. 5.2, that to using non null values for weights w3,1, w5,3 and w1,5.

Even this simple structure exhibits multiple limit cycles, that depend on the initial

condition. Figures 5.3 and 5.4 report the evolution of the outputs for identical parameter

settings and different initial conditions. We notice that the evolutions are qualitatively

different, and they don’t differ, for instance, just by a simple permutations of the outputs.

When employing the teaching by touching approach to change the CPG parameters,

such a behavior is unacceptable. In fact, if the parameters are changed during the

motion execution, the resulting robot behavior depends on the timing at which the

parameters are changed, and not solely on the parameters. This means that the same

tactile instruction would be translated into completely different motion modifications

depending on slight differences in the timing at which it is given.

One possibility to avoid this effect would be to use adaptive Hopf oscillators [125].

The limit cycle evolution preceding the tactile instruction could be stored in memory,

modified according to the instruction, and then used as a perturbation to make the

Hopf oscillator approximate the new motion. However, practical experiments show that

the adaptation of adaptive Hopf oscillators is too slow for online usage. Furthermore,

the convergence to one of the frequencies of the perturbations is guaranteed, but the
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Figure 5.3: Outputs of the three oscillators of Fig. 5.2 when the limit cycle is reached from
the initial conditions u = [0.0999, 0.5046, 0.7471,−0.7059,−0.9883, 0.9757]T and
v = [0.0768, 0.5865, 0.6040, 0.1839, 0.2886, 0.4419]T . Parameters were set to c = 2,

τu = 0.2, τv = 0.4,β = 2.5, W =
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Figure 5.4: Outputs of the three oscillators of Fig. 5.2 when the limit cycle is reached
the initial conditions u = [0.8981,−0.6008,−0.0319, 0.5365,−0.4061, 0.9221]T and
v = [0.4888, 0.2295, 0.0564, 0.5740, 0.3706, 0.3309]T . Parameters are identical to the
ones reported for Fig. 5.3
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frequency to which the oscillator converges depends on the initial conditions as well.

For these reasons, we excluded from our choice neurons that present the possibility

of having multiple attractors. We adopted the easily predictable classic Hopf oscillator,

with slight modifications to improve the synchronization of oscillators that have strongly

different limit cycle periods. Similarly, among the possible interconnection architectures

we decided to use the “star” one, because of its robustness to variations in the initial

conditions. Next section will describe in detail the CPG network designed for the teaching

by touching approach, and Section 5.3 will introduce a simple tactile protocol that can

be used to change its parameters.

5.2 A predictable CPG network

As seen in the previous section, many alternatives are available in the choice of the

type of oscillator/neurons employed for the realization of the CPG, as well as for the

interconnection between oscillators. Our purpose is to let the user modify the behavior

of the robot by changing the oscillator parameters through touching. We therefore need

to have predictable changes in the behavior of the oscillators, i.e. in the movement of the

robot, consequent to a change in the parameters. For these reasons, for its simplicity

and robustness, the Hopf oscillator thus appears to be a good choice.

The predictability of the system is then strongly influenced by the oscillator inter-

connections. In the previous section we saw that the structures found in literature can

be roughly categorized in five types: chain, star, tree, connection between homologous

joints and full connection. We decided to employ the star configuration, i.e. a network

with a“pacemaker”oscillator that provides a synchronizing signal to the other oscillators.

This network is highly predictable, since the pacemaker oscillator gives a synchronizing

signal to all of the oscillators controlling the joints but no unexpected effects occur due

to the interaction between groups of oscillators as in the case of connection between

homologous joints. Precisely, our implementation uses a directional coupling from the

clock oscillator to the others. This assures the maximum system predictability. Tests on

whether a bidirectional coupling can improve entrainment with the environment without

affecting the ability to foresee the system behavior will be performed in future works.

Furthermore, this configuration is very general and task independent since no as-

sumptions are made about which joints should be synchronized, a feature required by

our system. Star structure is also highly predictable, since the pacemaker oscillator

gives a synchronizing signal to all of the oscillators controlling the joints, but no unex-

pected effects occur due to the interaction between groups of oscillators, as in the case

of connection between homologous joints.

Formally, in our implementation each of the n degrees of freedom of the robot is

controlled by one oscillator and a further “clock” oscillator provides reference signals for

these oscillators. Let us identify by C0 the reference oscillator and by Cj, 1 ≤ j ≤ n, the
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oscillators controlling the robot joints.

Using the complex number representation for the Hopf oscillator [130] we have for

the j-th oscillator, 0 ≤ j ≤ n

żj = γ
(
µj − |zj|2

)
zj + iωjzj + Fj(t)

mj = <{zj}+ oj
(5.1)

In detail

• zj ∈ C is the state of the oscillator

• mj ∈ R is the control signal for the actuator

• γ is a coefficient for the speed of recovery after perturbation [125]

• µj ∈ R, µj ≥ 0 controls the amplitude of the oscillation

• ωj ∈ R, ωj ≥ 0 controls the oscillation frequency

• Fj(t) is an external perturbation signal

• oj is an offset value used to set the position around which the joint oscillates

Clearly CPGs are aimed at the development of periodic motions. Therefore, it ap-

pears natural to have a frequency for the whole motion, and setting the frequency of the

movement of single joints to an integer multiple of this frequency. For this reason, we

set

ωj = pjω0 (5.2)

where 1 ≤ j ≤ n and pj ∈ N. In the current prototype implementation no feedback

signal is introduced, so F0(t) is zero (the main clock is not influenced by the external

world), while for 1 ≤ j ≤ n the feedback is solely given by

Fj(t) = weiφjz
pj
0 (5.3)

In other terms, Fj(t) consists essentially of the perturbation from the clock oscillator

that permits a synchronization of the whole system. The reference signal z0 is elevated

to the power pj, so the frequencies of the oscillator and of the perturbation are close.

The similarity of the frequencies leads to an easier synchronization and a predictable

phase between the j-th oscillator and the reference oscillator [167]. The coefficient w

determines the coupling strength between C0 and the other oscillators while the term

eiφj changes the phase difference between the clock oscillators and the others.

In the current implementation we set µ0 = 1, w = 0.1 and γ = 1000. The other

parameters are set by exploiting user’s tactile instructions. Their initial values are µj = 0,

pj = 1, φj = 0, and oj = 0, 1 ≤ j ≤ n.
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The behavior of the network is easily predictable. In fact, the signal generated by

each oscillators consists essentially of a sinusoidal waveform. From the equations, it

clearly appears how the parameters affect the signal generated by the j-th oscillator:

µj affects the amplitude, pj the frequency, φj the timing of the movement and oj the

location around which the joint is moved. The way in which the parameters are changed

in response to tactile instructions will be provided in the next section.

5.3 Touch protocol

This section describes the protocol used to map tactile instructions into changes of the

CPG parameters. Since this work aims exclusively at validating the feasibility of the

approach, we decided to simplify the system as much as possible and opted for a static

mapping between the user actions and the parameter changes. Analysis of adaptable

systems that better fit the user’s way of touching will be conducted in future works.

As explained in the previous section, each joint of the robot is controlled by an

independent CPG, so it is possible to modify the movement of a single joint by changing

its parameters. In particular, from what has been shown in the previous section, for each

joint we can control

• the amplitude of the oscillation of each joint, by µj

• the frequency of the movement of each joint, by pj

• the phase of the movement, with respect to the main oscillator, through the pa-

rameter φj

• the zero position (offset) around which the joint moves, by oj

Given this possibility of controlling the individual joints, we based our protocol on the

assumption that touching the part whose movement is to be modified should be intuitive

for the users.

Therefore, depending on the pressed touch sensor, we decide which is the oscillator

whose parameters should be modified. This is done by selecting the most distal joint that

causes a movement of the pressed sensor in the direction normal to the sensor surface.

We then decide which feature of the movement (amplitude, frequency, phase or offset)

is affected depending on the pressure pattern. Expressly, if the user keeps pushing the

sensor for a very long time, the offset is modified. If the user pushes for a shorter time, the

amplitude is modified, while a single tap is used to change the phase. Two consecutive

taps are used to change the frequency, and in particular if the touch is applied to the

robot’s torso, then the frequency of the whole motion is changed. An increase in the

frequency is obtained by tapping the robot two times, with both of the taps of short

112



sensor
surface
tangent

ns

j1

j2

j3

touch
(a)

j1

j2

j3

sensor
surface
tangent

ns

touch

(b)

Figure 5.5: Example of the determination of the joint whose parameters should be modified
when a sensor is pressed. In the first case the parameters of joint j1 are modified.
In the second case, since the ρ1 =< ns, dj1 > is zero, j2 is selected.

length. A frequency decrease is set by tapping the robot two times, with the duration of

the second touch significantly longer then the first tap.

More formally, when a sensor is pushed, the joint for which the parameters should

be modified is chosen in the following way. Suppose that the robot’s torso is fixed in

space, and denote by dj the derivative of the position in the space of the center of the

pushed sensor when the j-th joint is rotated. Identify ns as the vector perpendicular to

the pushed sensor surface. Denote by j1, j2, ...jq the indices of the q joints that connect

the robot’s main body to the link where the sensor is located, in order from the most

distal to the most proximal, as exemplified in Fig. 5.5. We identify the joint js such that

ρs = nTs djs 6= 0 and nTs djk = 0 for s < k ≤ q. If this joint doesn’t exist we simply ignore

the sensor pressure, unless it is on the torso and the touch instruction aims at changing

the global motion frequency.

Once js is determined, the type of motion modification is chosen depending on the

number of times the sensor is pushed and on the pressure times, as previously described.

For measuring the pressure times, the phase of joint js (∠zjs) is used as a time reference.

Expressly, the pushing time τjs is measured in terms of phase difference between the

release time and the pushing time, counting for the phase resets, i.e. the phase difference

is considered a non-negative, monotonically increasing quantity that can be larger than

2π.

As previously stated and as shown in Fig. 5.6, we change

• the offset if the user keeps pushing for a very long time
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• the amplitude if the pressure lasts a shorter time

• the phase if the user operator taps one time

• the frequency if two taps are provided.

More precisely:

• If τjs > ΘO (the user pushes for a very long time) the offset parameter is changed

according to the direction of the applied force. i.e. ojs,new = ojs,old + sgn(ρjs)∆O,

where sgn is the sign function.

• If ΘA < τjs ≤ ΘO the amplitude parameter is updated by the value sgn((ρjs ∗
mjs)∆A where mjs is the value of the output at the pushing time.

• If the user pushes for a time τjs ≤ ΘA, releases the sensor and doesn’t push it for a

time ΘP then the phase parameter φjs is updated such that in the following cycles

the closest maximum of oscillation occurs at the pushing time, i.e. the quantity

−∠(mjs ∗ zjs) is added to φjs , where zjs and mjs are considered at the pushing

time.

• If the user pushes for a time τjs ≤ ΘA, releases the sensor and before a phase change

of ΘP pushes the sensor again then pjs is incremented or decremented respectively

if this second pushing time τjs,2 is greater or lower than ΘA.

• Similarly, if the user pushes the robot main body for a time ∆φ0 ≤ ΘA releases

the sensor and before a phase change of ΘP pushes the sensor again then ω0 is

increased or decreased by the quantity ∆ω0 respectively if the second pushing time

is greater or lower than ΘA.

In our implementation, all the ∆ and Θ values are constants, expressly ΘO = π, ΘA = π
6
,

ΘP = 2π
3

, ∆O = ∆A = π
12

, ∆ω0 = 1.

Although the protocol is arbitrary and fixed, we can expect a system that utilizes

tactile interaction to be more intuitive than designing the motion by a simple manual

parameter setting. For instance, if users want to change the center of oscillation of a

joints they have to consider the position of the various motors in the kinematic chain, and

decide which motor offsets should be modified. Then, depending on how each motor is

mounted on the robot and on the established conventions, they need to evaluate whether

the offset parameters of each joint should be increased or decreased. Conversely, with

our approach, the users are just required to keep pushing the robot parts in the direction

they want the centers of oscillation to be moved.

The next section will present a prototype implementation of the approach in a simu-

lated environment, and will provide results of experiments on motion development with

the proposed teaching by touching paradigm. The way of developing motions with the
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Figure 5.6: Representation of the touch patterns recognized by the system. The presence of a
line indicates the pressure of a sensor. The phase change axis (time reference) is
also reported.

CPG based system will differ substantially from the one of Chapters 2 and 4. In fact,

in the system presented in the next section, a single touch changes a global feature of

the motion, like the oscillation frequency of a joint or the timing differences between

different joints.

5.4 Prototype system

In order to validate the feasibility of the approach we developed a prototype system that

uses the network designed in Section 5.2 and the protocol devised in Section 5.3. We

decided to conduct experiments with a simulator for reducing the system development

and debug time. More precisely, M3-Neony, described in Section 4.1, was simulated using

the same simulator of the experiments in Section 3.5. The user is able to interact with

the 3D rendering of the robot. In particular, each link face simulates a touch sensor that

can be clicked with a mouse. Further details of the simulator can be found in appendix A.

Although the results presented here are obtained using a simulated robot, we aim

our technique to be applicable to real robots. When dealing with real robots, some

CPG parameter configurations set by the user during motion development could lead to

robot self-collisions that damage the actuators. Hence, these collisions must be predicted

online. The collision detection should therefore be very fast, but it can however be

inaccurate. More precisely, while we should assure collision positions to be avoided, we

are not required to recognize each collision free posture as such, i.e. we can reduce the

set of allowed postures to increase the computation speed. In our implementation, each

link is approximated by a set of slightly bigger cuboids, and the computation is limited

to checking the collisions between those cuboids.

In detail, the system memorizes the current motor positions as an n-dimensional

vector Ycurrent. Given a vector Ytarget representing the desired motors position, that is

the outputs mj of the oscillators, the collision detection module calculates what is the

maximum rotation of each joint toward Ytarget such that there’s no collision between the
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Figure 5.7: Output of the collision prevention system. The figure shows the motion that would
be generated if the collision prevention system were not enabled and highlights the
colliding parts by a red color.

cuboids. More precisely, for each joint, in a specified order, which is the joint ID in the

current implementation, the system calculates the maximum rotation from the current

angle to the target angle, with steps of 3 degrees, that doesn’t cause any collision between

the links moved by the rotation and the others. The position obtained in this way is sent

to the motors and stored in Ycurrent. As most of the movements are periodic, collision

detection computation is reduced further by employing a direct mapped cache. More

precisely, the content of the cache is a binary value expressing whether the configuration

causes self collisions or not. The position of each motor, discretized with granularity of

one degree, is used as the full address that should be accessed. The mapping function

between a generic address and the cache index is the hash function

f(Y ) = mod(
n∑
j=1

Y (j)%j, S)

where Y (j) is the angle of the j-th joint, %i is the j-th prime number, S is the cache size

and mod is the modulo function. In the current implementation we have n = 22 and

S = 27077. The system also includes a graphical representation of the collision detection

computation and highlights the parts that would collide without the intervention of the

prevention collision system, as depicted in Fig. 5.7. This information can be exploited

by the user to refine the robot movement and get a motion that does not require any

collision prevention.

Figure 5.8 provides a schema of the development cycle under the framework presented

in this chapter. Similarly to what was seen in Chapters 2 and Chapter 4, the user observes
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Figure 5.8: The teaching by touching approach applied to a CPG based motion representation.

the motion, touches the robot, the robot translates the tactile instruction into a motion

modification and the cycle is repeated. We should note that when the users touch the

robot, they may apply forces that interfere with the robot’s motion. However, these

forces are ignored since we imagine that the user touches the robot while it is moving,

waits for the movement to stabilize after the parameter change and then decides the next

modification.

Given the motion representation chosen, a network of Hopf oscillators, the system

clearly focuses on the development of periodic motions. The main peculiarity of the

approach presented here is clearly that single touches modify the whole motion. Fur-

thermore, no Graphical User Interfaces as the one presented in Section 3.3 are used. The

only way the user interacts with the robot is through touch sensors that, in this case,

are simulated.

Next section will present experiments conducted with the developed system. In par-

ticular, it will be shown that using a genetic algorithm in a naive way to automatically

set the CPG parameters produces awkward motions. Conversely, when interacting with

the robot, the user unconsciously optimizes several parameters of the motion, as will be

suggested by a quantitative analysis that compares the motion realized by the user and

the one obtained by the genetic algorithm.
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5.5 Experimental Results

In order to test the system described in the previous section, a crawling movement,

a walking gait and a side-step motion were developed. Screenshots2 of the resultant

motions are reported, respectively, in figures 5.9, 5.10 and 5.11.

The crawling motion was developed by a single user in 56 minutes, by providing 57

amplitude changes, 39 phase changes, 22 offset changes and 2 frequency changes. The

same user then realized a side-step movement in 29 minutes, using 31 amplitude changes,

4 frequency changes, 18 phase changes and 56 offset changes. Finally, a walking motion

was obtained in 34 minutes. This required 60 amplitude changes, 15 frequency changes,

28 phase changes and 132 offset changes. Although a single experiment with a single

user cannot provide any statistical evidence, we can notice that the number of commands

per minute was highly increased during the motion development. In detail, in the first

experiment, 2.14 commands/minute were provided, in the second, the frequency raised to

3.7 commands/minute and by the third motion the number of command/minute reached

6.9. This suggests that human operators can easily get accustomed the system. We

can in fact exclude learning of the robot dynamics, since the same simulator and robot

models were previously used by the user in plenty of experiments.

Table 5.1 reports the final values obtained for the CPG parameters for the three

motions. The final value for ω0 is 3.256 for the crawling, 5.256 for the side step and

1.256 for the walking motion. A further tuning, for instance to assure perfect movement

symmetry or to maximize the crawling or walking speed, could be performed, but this is

outside the scope of this paper.

We would also like to stress that the purpose of the experiment is not to achieve the

fastest locomotion speed that is possible, but to validate the feasibility of the approach by

developing a motion that is satisfactory for the user (in terms, for instance, of similarity to

human movements). We therefore didn’t even measure the walking velocity and ignored

speed comparisons with walking gaits obtained with other methodologies.

For comparison, however, Fig. 5.12 reports a crawling movement obtained with a

genetic algorithm (population size 20, 60 generations, real value encoding, roulette wheel

selection, mutation probability 1). The average speed over one minute was employed as

the evaluation function. We can see that the algorithm finds a shape for the legs that

minimizes the friction with the ground, and uses the head as a support point to proceed

forward by large arm movements. While this solution can lead to a good speed, it

definitely looks awkward to humans. A difference in the smoothness of the two motions

can be deduced quantitatively by observing the roll and pitch in the two cases (see

Fig 5.13). The ranges of variation for the roll and the pitch of the robot are 15.4 and

14.5 degrees respectively for the motion obtained by direct interaction with the CPG

and 34.7 and 23.9 for the motion optimized by the genetic algorithm.

2Videos are available at http://robotics.dei.unipd.it/~fabiodl/video.php?cpg
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t=0 s t=0.115 s

t=0.43 s t=2.26 s

t=3.085 s t=4.145 s

t=4.51 s t=4.855 s

Figure 5.9: Execution of the crawling movement.
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t=0 ms t= 95 ms t=190 ms t=285 ms

t=385 ms t=539 ms t=629 ms t=719 ms

Figure 5.10: Execution of the sidestepping movement.

Table 5.1: CPG parameter settings obtained for the three motions.
`````````̀Joint

Parameters Crawling Walking Side Step
µj pj φj oj µj pj φj oj µj pj φj oj

0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0
2 0.52 1 0.66 0.78 0.17 1 0.4 -0.7 0.35 1 0 -0.7
3 0.26 1 1.61 -0.52 0 1 0 0.35 0.17 1 1.86 0.17
4 0 1 9.72 0.52 0 1 0 1.22 0 1 0 1.05
5 0.52 1 2.31 0 0 1 0 -1.05 0.35 1 4.4 -1.4
6 0.26 1 2.20 0.78 0.17 1 0.49 -0.17 0 1 0 0
7 0.78 1 5.69 -0.52 0.17 1 0 -0.35 0 1 5.5 0
8 0 1 0 0 0 1 0 0 0 1 0 0
9 0 1 0 0 0 1 0 0 0 1 0 0
10 0 1 5.68 0 0 1 1.64 0 0 1 0 0
11 0 1 0 0 0 1 0 0 0.17 1 0 0
12 0 1 0 0 0 1 0 0 0 1 0 0
13 0 1 0 0 0 1 0 0 0 1 0 0
14 0.26 1 1.28 -1.05 0 1 0 -0.52 0 1 0 0
15 0.26 1 0 1.05 0.17 1 0.31 0.35 0 1 0 0
16 0.26 1 0 0 0 1 0 0.52 0 1 0 0
17 0.26 1 0 0 0 1 0 -0.52 0 1 0 0
18 0 1 0 0 0 1 0 0 0 1 0 0
19 0 1 0 0 0 1 0 0 0 1 0 0
20 0 1 0 0 0 1 0 0 0 1 0 0
21 0 1 0 0 0 1 0 0 0 1 0 0
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t=0 s t=1.695 s t=2.7 s t=3.488 s

t=4.135 s t=4.945 s t=5.305 s t=5.605 s

Figure 5.11: Execution of the walking movement.
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t=0 s t=2.889 s t=3.754 s

t=4.909 s t=6.269 s t=7.064 s

t=7.494 s t=7.944 s t=8.575 s

Figure 5.12: Execution of a crawling movement obtained with a genetic algorithm.

Obviously the pitch could be improved by introducing another term into the evalu-

ation function that penalizes the high pitch and roll excursions, although deciding the

weighting between the two terms is far from being a trivial task.

Furthermore we can imagine that users desire symmetries in the motion of the limbs.

This would require another evaluation term, whose weight would be again difficult to

guess. The difficulty in choosing the evaluation function weights highlights the richness

and complexity of the evaluation that human user can provide: many factors are intu-

itively weighted, with priorities that are difficult to express as a weighted combination of

evaluation functions. Indeed, developing systems that are able to directly exploit the hu-

man user evaluation appears very appealing, and the proof of concept results presented

in this section seems to suggest that CPG parameter tuning by touch could represent a

way to intuitively realize motions using a very simple and robust systems.

The actual implementation does not include feedback from the sensors or the gyro-

scope. Since we can expect entrainment with the environment and therefore a better
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Figure 5.13: Pitch and roll for the crawling motion obtained with the proposed approach (a)
and for the crawling motion obtained by a genetic algorithm (b).
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stability and motion variation, future research will aim at including feedback without

reducing the approach generality. The next chapter will provide two simple solutions to

include feedback in the motion in a very general way. Obviously, for specific problems,

custom use of the sensory feedback can probably give the best performances. How-

ever, we will show that with a very low computational cost, robustness during motion

execution can be highly increased.
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6
Increasing the robustness of motions

As previously stated, generation of humanoid robot motions is a complex task, mainly

due to the high number of degrees of freedom, usually 20 or more, i.e. 4-5 times the

number of degrees of freedom of a classical industrial robot arm. Furthermore in the

case of small humanoid robots the on board computing power is often quite limited. For

these reasons, usually at least part of the motion is generated off-line, by planning [168],

optimization of parametric trajectories [169, 170, 13], motion retargeting of human mo-

tions [43], design from scratch [58, 53, 54] or other techniques, like the one introduced

in this thesis.

To execute the motion, the most trivial approach consists in precomputing the joint

trajectories or torques and replaying them while ignoring the sensory feedback [171]. De-

spite its disadvantages, feed-forward control is still largely employed for small humanoid

robots, whose stability is usually improved by large footprints and a low center of mass

position.

For tasks like walking [172], running [173] or crawling [174] specific techniques to

exploit the sensory feedback in order to improve the robustness were developed. One

commonly used approach is to modify the robot movement to control the Zero Movement

Point [175], with the complexity of the controller ranging from the injection of torque

into the ankle joints [176] to whole body movements [177]. These techniques allow robots

which would otherwise be too unstable to be stabilized [178].

As previously seen, a biologically inspired approach consist of generating the motion

using a dynamical system, termed as Central Pattern Generator [112, 113]. Usually

CPGs are obtained by the interconnection of oscillators, which in turn often consist of

an extensor and a flexor neuron pair [112] that controls one of the actuators. In this case

the motion is implicitly described by the weight of the connections between the neurons

(appropriate weights are usually set automatically by the policy gradient [113] or genetic

algorithms [112]). Adaptation to the environment is obtained by interconnecting, with

proper weights, the sensory inputs to the neurons that generate the motion: this feedback

entrains the robot in stable limit cycles that depend both on the robot structure and the

environment.
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A recent, very appealing approach based on dynamical systems can be found in [179]

while [180] shows how locally weighted regression can be used to exploit demonstrations

to generate a suitable movements on-line for a large range of situations.

As can be easily imagined, generally speaking employing the feedback improves the

performance over open-loop playback, as experimentally shown in [181]. In short, with

open-loop the only information available when taking actions is the internal represen-

tation of time. Conversely, using sensory inputs the control algorithm can have a more

complete knowledge of the current state and can take appropriate actions to achieve the

desired robot state.

This however requires a design (or at least learning) of the relations between the

sensory inputs and the control action to be taken. The approaches adopted are often

both strongly task and robot dependent. Our aim is to devise general techniques that

exploit the information coming from the sensors to improve the system robustness with

minimal computational power requirements. Any comparison with specifically designed

controllers (e.g. ZMP based) will be omitted, since we can easily guess that the task and

robot specific knowledge exploited in the design phase can strongly improve the perfor-

mance of those algorithms compared to our completely general techniques. The next

sections describe two possible approaches to achieve the goal of an increased robustness

with a minimal computational cost. The first approach is based on a graph that stores

the motion as desired transition between states, and is used to try to bring the system

to a known state as soon as possible. The second approach, inspired from Escherichia

coli chemotaxis, works by random exploring the motor command space when things do

not behave as expected. The second approach could be seen as a generalization of the

first. In fact, the motion graph is based on the assumption that it should be easy to

bring the system to a state that has small Mahalanobis distance from the current state

but the second approach removes this heuristic.

6.1 A simple, graph based approach

The aim of the technique presented in this chapter is to correct deviations from the ex-

pected sensory inputs of an essentially stable systems due, for instance, to environmental

changes. Drastic changes of the movement, inverse dynamics computation or online re-

planning such as using the hands for support during walking [182] are completely outside

of our scope. We therefore assume to have perturbations in a range such that trying to

track the sensory states is sufficient to stabilize the motion.

Specifically, we assume the robot to have the body covered by force sensors, as in [183]

and the actuators equipped with potentiometers/encoders. Our approach consists in

two phases. In the first one, the off-line phase, we play the motion in open-loop in

a reference environment. We record the sensory information and store the transitions

between sensory states as a graph. This graph becomes our motion representation. In
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the second phase, the online one, we use the information contained in the graph to replay

the motion.

This is very similar to the StateNet approach [184] and presents the same advantages,

namely, quantitative comparability between the states, easily extensible robot’s knowl-

edge representation, and capability of online search of correction strategies. However,

while in [184] a transition is a complete movement like “Stand up”, our edges represent

small state transitions and so a motion like standing up can be decomposed into dozens

of states. This difference in granularity reflects our aim to make small corrections to

cope with environment disturbances. In fact, [184] deals with complete behaviors and,

for instance, if the robot falls down while walking then it will initiate a roll over, sit

and stand up sequence. In our case, we want to restrict the recovery actions to small

modifications of the motion to respond to disturbances.

Subsection 6.1.1 provides the details of the graph representation we designed. Sub-

section 6.1.1 explains the construction of the graph for a given motion, while Subsec-

tion 6.1.3 describes how the graph is exploited during the motion execution. Subsec-

tion 6.1.4 reports results obtained by experiments with a simulated robot, which suggest

the capability of the proposed approach to strongly improve the motion robustness over

plain motion playback.

6.1.1 Graph representation

The idea of storing multiple execution of a motion as a set of states is not new, and we

can find examples both for the Computer Graphics field [185, 186] and in the description

of robot behaviors [184]. Within our approach we assume to have a precomputed motor

command sequence, obtained for instance through human-robot interaction. The motion

is played open-loop in a controlled environment, the sensory information are sampled

and a transition graph between the sensory states is constructed. Specifically, each node

represents a hypercube in the sensory space, since we assume two sensory states to be

mapped to the same node if their infinity norm1 distance does not exceed a threshold

∆ (in other terms, a node corresponds to a point in the sensory space with a confidence

interval of size ∆). Each edge represents a motor command that causes a transition

between states. Every edge is labeled by a weight that indicates the number of times

that the transition was executed in the off line phase. In the online phase, at each

sampling time we identify the node corresponding to the sensory information. If the

state belongs to one of the nodes identified in the off line phase, we just execute the

transition with the highest weight. If the node is unknown, we determine the nearest

node explored in the off line phase and issue a command that should bring the robot

to that state. Note that since we simply compare the postures of the two states and

1We chose to employ the infinity norm for its low computational cost. Any other norm should also
be valid.
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avoid any dynamics consideration, the system is not guaranteed to move to the desired

state. As done in [184] we assume that moving between close states has a strong success

likelihood. In case the resulting state is different from the planned one, the system will

simply search once more the closest known state in the next step.

This is an important constraint in the choice of the sensory information contained

in the nodes. In fact, we need to be able to estimate on-line a command able to bring

the robot to the desired state (nearest known node hypercube center). One possible

choice, which is what we actually did, is to include proprioception information (state of

the actuators, e.g. joint angles) in the sensory state, so that the motor command to be

issued to reach the desired state can be obtained by a transition from the current joint

angles to the desired joint angles.

6.1.2 Graph construction

Let us denote the nodes and the edges of the graph G = {N,E} respectively by N =

n1, . . . , nP and E = e1, . . . , nQ where P is the number of nodes and Q the number of

edges. Let us then indicate using si the sensory information corresponding to the center

of the hypercube defined by the node ni and by wj the weight of edge ej. Initially, the

graphs consists of a single node, n0, corresponding to the robot’s initial state s0 with no

edges. The previous node n∗ is initialized to n0. At each sampling instant, the following

algorithm

Read the sensory information ŝ

if ‖s∗ − ŝ‖∞ > ∆ then

if nk such that ‖sk − ŝ‖∞ ≤ ∆ exists then

if edge ej between n∗ and nk then

wj ← wj + 1

else

Add edge eQ+1 between n∗ and nk
wQ+1 ← 1

end if

n∗ ← nk
else

Add node nP+1, a hypercube centered at ŝ

Add edge eQ+1 between n∗ and nP+1

wQ+1 ← 1

n∗ ← nP+1

end if

end if
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Note that self loops are avoided by the first control of the algorithm. In our im-

plementation, the motor command information associated to edge ej from node nA to

node nB includes a histogram of the time spent on node nA before taking the transition

between node nA and node nB. This allows the representation of motions where the

robot keeps still for some time, which would otherwise not be possible. For simplicity,

we assume the sampling frequency to be high and the value of ∆ to be small enough

so that motor commands can be approximated by linear transitions between the angles

stored in the nodes at the head and the tail of the edges. Under these simplifications the

motor command associated with each edge can be simply derived by the angle difference

between the centers of the hypercubes of the head and tail nodes. To avoid perceptual

aliasing [187] occurring if we had motions that contain repeated sub-movements, we in-

cluded time as state information stored in the nodes (note that for periodic motions the

time returns to 0 at every cycle). Summarizing, the motion description we obtain from

the off-line phase is a graph where

• Nodes represent the robot state. Each node contains information on

– joint angles (as measured by the simulated encoders)

– forces acquired by the tactile sensors (simulated Force-Sensing Resistors that

provide the perpendicular forces applied to each surface)

– time instant of the motion execution

• Edges represent state transitions. Each edge contains information on

– the number of times the transition was taken (stored as the node weight)

– a histogram of the time taken to perform the transition

Given the heterogeneity of the units of the node, these are normalized by normalizing

factors. In detail, joint angles and forces are divided by 3 times the standard deviation

of the sensor errors and the time instant by 50 ms (assuming this is a lower bound under

which no perceptual aliasing occur).

6.1.3 Motion reproduction

The graph obtained by the off-line phase constitutes a robust motion representation that

contains in a unified framework sensory information together with motor commands.

During the motion execution, a “virtual time” is used to avoid forcing the motion evo-

lution to have the same period as the trajectories used to generate the graph. To state

it more exactly, when a motor command is issued, the current time is assumed to be

the time of the target node, whether the target state was actually reached or not. This

virtual time is also used to avoid loops: assume the robot is in state A and tries to reach

state B, but ends up in state C. Imagine then that B is the closest known node from C,
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and that trying to reach B makes the robot remain in state C. Forcing the algorithm

to choose the closest node with a time higher than the virtual time is sufficient to avoid

the robot to get stuck in such loops. The simple algorithm used for motion reproduction

at each sensor sampling time is reported in listing 1. t∗ denotes the virtual time, while

nti indicates the time of node ni. To allow periodic motions, the transitions are accepted

also toward nodes with a highly smaller times, so that periodic motions can “restart”

(case or nti − t∗ < −Θ in the algorithm). The value Θ is set to the 90% of the period in

our implementation.

Algorithm 1 Motion reproduction algorithm

Read the sensory information ŝ
c← argi min ‖si − ŝ‖∞
if ‖sc − ŝ‖∞ ≤ ∆ then

h← argj max{wj : ej departs from nc}
execute the motor command eh
t∗ ← ntb where nb is the node pointed by eh

else
d← argi min ‖si − ŝ‖∞ s.t. nti > t∗ or nti − t∗ < −Θ
issue a motor command to reach state sd
t∗ ← ntd

end if

As described in the previous subsection, in our implementation each edge stores a

histogram of the time spent to execute the state transition. When edge ej is chosen

the reference angles sent to the motor’s PID controllers vary (linearly) from the position

specified in the tail node to the position specified in the head node. The time over which

this variation is performed is equal to the mode of the time statistics saved in ej.

When the system is in a state not belonging to the nodes generated during learning

(else branch in the previous algorithm), a motor command corresponding to a variation

between the current angles and the angles specified by the desired state sc is issued. In

this case, the motor transition is executed over a constant time TC (50 ms in the current

implementation).

We can soon notice that it is possible to prune the graph before the motion replaying,

leaving a single outgoing edge from every node (the one with the highest weight) and

storing just the mode instead of the complete waiting time statistics. In this case, the

complexity of the algorithm becomes O(P ), i.e. linear in the number of nodes, since

at each sampling time we need to search the closest node. In our experiments, nodes

were always in the order of few hundreds, so the computation is feasible even with low

computational power. If P increases and the computation becomes too slow, the Best

Bin First algorithm [188] can be employed.
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Figure 6.1: Simulation of M3-Neony, a robot with 22 degrees of freedom and touch sensors over
the whole body, crawling on a rough terrain.

6.1.4 Experiments

The described algorithm has been tested by obtaining a graph representation of a crawl-

ing motion performed by a humanoid robot. The experiments were conducted by em-

ploying a physics simulator, shortly described in Appendix A, and a model of M3-Neony,

as visible in Fig. 6.1.

Specifically, we developed a motion from scratch using a frame based motion editor

(i.e. the robot motion is defined as a set of key-frames, that is, a set of instants in time for

which the position of each and every joint is provided). We executed the motion 100 times

on a flat terrain and constructed a graph with the algorithm described in Subsection 6.1.2.

Even if the simulator does not include an explicit generation of sensor noise, numerical

approximations, random generation of the contact points between surfaces and a damping

of the lateral oscillation generated by the first step prevents the various executions from

being identical. The resulting graph, obtained for ∆ = 2, consists of 66 nodes and 158

edges. Figure 6.2 reports its structure. We then conducted three experiments

1. We verified whether the graph representation is able to store the original, trajectory

based representation. In other terms, we replayed the motion using the graph in

the environment used for graph construction.

2. We verified the robustness of the approach under several environmental changes.
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Figure 6.2: Graph representation obtained for the crawling motion. The color hue indicates,
using the HSV scale, the virtual time stored in each node.
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3. We added noise to the servomotor signals, in order to get the robot unstuck on

very rough terrains, and verify that also in this case we can take advantage from

the graph representation over the feed-forward solution.

We defined the crawling motion performance as the average velocity of the robot. Ex-

pressly, since during the execution of the crawling motion, lateral swings are present and

therefore instantaneous velocity of the center of mass is not very meaningful, we defined

the velocity at time t as

v(t) =

∥∥∥∫ Tτ=0
X(t− τ)dτ −

∫ 2T

τ=T
X(t− τ)dτ

∥∥∥
T

where X(t) is the (3D) position of the robot’s center of mass at time t, T is a constant

(4 seconds) and Euclidean norm is used.

6.1.4.1 Motion replay

We verified practically that the graph representation is sufficient to store the crawling

motion, as well as other motions like sitting down, turning over, crawl turning left and

right. In particular, unexpectedly, we could see that the use of the graph representation

strongly improves the performance even if the environment used to replay the motion is

identical to the one used to construct the graph: the average velocity (measured over

4 minutes) is 5.25 cm/s for the open loop execution and 7.86 cm/s for the graph based

approach (150%). This is quite surprising if we consider that the motions was hand

tuned for this environment.

The performance improvement is essentially due to two factors. First, oscillations

are quickly damped using the graph, in fact if we calculate the variance of the roll

angle during the motions we get 0.0084 rad2 for the open-loop case and 0.0047 rad2

for the graph based control. Secondly, the average crawling period is reduced. Both

these effects are due to “shortcuts” on the graph, which are performed when the robot

reaches unexpected states, that make the robot skip small parts of the graph. Figure 6.3

shows the nodes and paths visited in the online phase. Figure 6.4 shows part of the

graph, relative to the transition between states 53 and 5. For instance, the open-loop

control visited states 53, 0, 54, 0, 1, 54, 55, 3, 63, 64, 63, 3, 2, 3, 4 and 5. The short

loops that start and end in states 0 and 3 lasted, respectively 6 and 39 milliseconds,

and the complete transition between states 53 and 5 took 297 ms. Using the graph, the

robot arrived at state 53 and moved to state 54 (reached after 46 ms), planned to go to

state 0 but ended up in state 4 (at time 96 ms) and then proceeded to state 5 (reached

158 ms after the reaching of node 53). In this case, therefore, the small loop among

nodes 3 63 and 64, that consists of nodes where the robot doesn’t move the motors but

oscillate laterally due to the dynamics, was skipped. This didn’t affect the motion, but,

conversely, improved the performance. Note that the inclusion of time in the nodes to
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Figure 6.3: States visited during the online phase in the environment used for graph generation.
Filled nodes and solid line edges belong to the knowledge generated offline, while
empty nodes are states reached only in the online phase. Color (hue) indicates,
using the HSV scale, the creation time of each node. Vivid color (high saturation)
for the filled nodes indicates that the node was visited during the online phase,
faded color indicates that it was not.

prevent state aliasing also prevents clamping big loops that describe meaningful parts

of the movement (for example one complete step with a foot) since no “shortcuts” will

be created between nodes that have similar touch sensor and angle information but very

different times. However, future works will investigate whether the assumption that

“small” loops can be neglected is true, and will possibly introduce on-line learning that

automatically identifies the necessary loops.

6.1.4.2 Motion replay under different conditions

To verify the robustness of the approach, we compared the performance of the open loop

motion replay and the graph based execution under several environmental changes:

• Reduction of the friction coefficient with the floor to the 10% of the reference value:

open loop crawling velocity 4.84 cm/s, graph based 8.12 cm/s (168%). Fig. 6.5
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Figure 6.4: Part of the graph, executed when replaying the motion in the environment used
during the graph construction. Postures associated to each node are displayed by
a picture linked by a dotted line.
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reports the nodes visited during the movement execution.

• Halve the robot’s weight: open loop crawling velocity 4.62 cm/s, graph based 7.22

cm/s (156%). Fig. 6.6 reports the nodes visited during the movement execution.

• Walk on an ascending slope of 20 degrees: open loop 2.81 cm/s, graph based 5.79

cm/s (206%). Fig. 6.7 reports the nodes visited during the movement execution.

• Walk on a rough terrain: open loop 0.54 cm/s, graph based 1.37 cm/s (249%).

Fig. 6.8 reports the nodes visited during the movement execution.

The rough terrain, depicted in Fig.6.1, is obtained in the following way:

1. construct a square grid of 50 cm interspaced points on the floor

2. place a tile of 70× 70× 14 cm centered in each of the grid points

3. apply a random translation on the X-Y (floor) plane of each tile (uniformly dis-

tributed in the range [0, 30] cm)

4. change the pitch and roll of each tile by a random angle (uniformly distributed in

the range [0, 3] degrees)

6.1.4.3 Addition of noise to avoid stuck conditions

The performances on very rough terrains like the one previously described can be strongly

improved if noise is added to the servomotor commands when the robots gets stuck. We

decided to add Gaussian noise with standard deviation that is a decreasing function of

velocity. This is very similar to what happens in biological systems: the actions taken

are more and more deterministic the better the conditions are, and the more stochastic

the worse the conditions are. For instance, E. Coli proceeds by alternating forward

movements and random tumbles, and decreases the frequency of random tumbles when

the environment conditions are favorable [189, 190] (see Subsection 6.2.1 for further

details). In particular, we decided to use a simple piecewise linear function to map

velocities to the noise standard deviation

η(v) =


α if v ≤ vα
α + v−vα

vβ−vα
∗ (β − α) if vα < v ≤ vβ

β +
v−vβ
vβ−vγ

∗ (γ − β) if vβ < v ≤ vγ

γ ifv > vγ

We determined a good set of values for this piecewise function, namely α = 0.035, β =

0.014, γ = 0.0064, vα = 3.8, vβ = 5.9 and vγ = 6.4 using a genetic algorithm (population

size 20, 50 generations). Units are cm/s for velocities and radians for the standard
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Figure 6.5: States visited during the online phase in an environment with different ground
friction. Filled nodes and solid line edges belong to the knowledge generated offline,
while empty nodes are states reached only in the online phase. Color (hue) indicates,
using the HSV scale, the creation time of each node. Vivid color (high saturation)
for the filled nodes indicates that the node was visited during the online phase,
faded color indicates that it was not.
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Figure 6.6: States visited during the online phase when the robot’s weight is halved with
respect to its weight in the graph generation phase. The notation is the same as
Fig. 6.5.
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deviation (we apply noise to the motor target angle). Before executing each motor

command the robot’s velocity vt is evaluated (with the definition of instantaneous velocity

previously provided) and the target angles are perturbed with Gaussian noise of zero

average and standard deviation η(vt). To have a fair comparison between the graph based

representation and the open loop execution we measured the average state transition time

for the graph case and this resulted to be tT = 45ms. We then played the open loop

motion approximating it by linear transitions (over time spans of tT = 45ms) between

angle postures, where in each interval the target posture is given by the posture specified

by the “nominal” trajectory plus a noise given by the η(vT ) function. We repeated the

experiment for 30 times both for the open loop and graph based representation, obtaining

mean velocities of 1.2cm/s (standard deviation 0.94) and 1.9cm/s (standard deviation

0.94), respectively.

In conclusion, the presented technique provided a big difference in the performance

with respect to the open-loop system in several tests. We do not believe the technique

has better performances than specifically designed controllers, e.g. ZMP based stabilizing

controllers. Nonetheless, the approach here presented is general and does not require any

knowledge of the robot’s structure or dynamics. Future works will need to test whether

good performances are achieved in other tasks as well, and how much the tuning of the

piecewise linear function that adds noise to the system influences the task performances.

A possible improvement of the current system is introducing learning during the

motion execution, for instance in order to adapt to a different environment. This could

be realized by avoiding the graph pruning and updating the graph structure during the

on-line phase. However, if such modification is included, care must be taken not to

“forget” the previously acquired knowledge, because, for instance, changes on the edge

weights could prevent the robot from executing parts of the motion.

Finally, it is often very reasonable to assume that states at a short Euclidean distance

are easily reachable from each other. However, this heuristic constitutes one of the

strongest generality limitations of the approach. The next section presents two new

algorithms, based on bacteria chemotaxis, that do not require this assumption to be

true.

6.2 A biologically inspired algorithm

In the previous section, an algorithm for improving motion robustness based on motion

graph was presented. Within the presented approach, when the robot faces an unknown

state, it tries to recover to the closest known state. The algorithm presents some lim-

itations. In particular, the definition of “close” is simply “close in terms of Euclidean

distance”, while, depending on the task, specific measures could be required. Further-

more, the recovery is possible thanks to an appropriate choice of the sensory space,

that includes the proprioceptive information coming from the joint potentiometers. This
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section presents two new algorithms, that remove this assumptions and provide much

more general approaches. In particular, the following subsection will present Escherichia

Coli chemotaxis, the natural phenomenon that underlies the design of two algorithms.

Subsection 6.2.2 will describe a version of the algorithm based on biased random walk.

Experimental results on the approach will follow in Subsection 6.2.3, showing that the

algorithm is very robust to hardware faults and sensors noise. Some possible improve-

ments in the generality of the algorithm will be reported in Subsection 6.2.4, and a new

version of the algorithm will be provided in Subsection 6.2.5. Comparisons of the two

algorithms will be provided in Subsection 6.2.6. Finally, Subsection 6.2.7 will present

preliminary experiments obtained with a simulated humanoid robot.

6.2.1 Bacteria chemotaxis

One of the simplest behaviors found in nature is chemotaxis, the process by which bac-

teria [189, 191, 192] or eukaryotic cells [193, 194, 195, 196, 197] sense chemical gradients

and move with directional preference toward food sources.

Among the most thoroughly studied organisms with regards to chemotaxis we can

certainly cite Escherichia coli (E. coli), often taken in consideration due to its well-

characterized physiology, its simple chemotaxis signaling pathway, its capacity to sense

small concentration gradients of a chemoattractants, and its possible use as either a

natural host or a surrogate host for plasmids coding of desired features or products [198].

This bacterium moves by alternating clockwise and counter-clockwise rotations [189].

When it rotates counter-clockwise the rotation aligns its flagella into a single rotating

bundle and it swims in a straight line. Conversely, clockwise rotations break the flagella

bundle apart and the bacterium tumbles in place. The bacterium keeps alternating

clockwise and counterclockwise rotations. In absence of chemical gradients, the length

of the straight line paths, i.e. the counter-clockwise rotations, is independent of the

direction. The movement thus results in a random walk.

In case of a positive gradient of attractants, like food, E. Coli instead reduces the

tumbling frequency. In other terms, when the concentration of nutrients increases, the

bacterium proceeds in the same direction for a longer time. This strategy allows to bias

the overall movement toward increasing concentrations of the attractant. Such a simple

mechanism works despite the difficulties in precisely sensing the gradient. Actually, the

spatial gradients in concentration cannot be sensed directly due to the small dimensions

of the bacteria, so temporal difference in the concentration is used to estimate the nutrient

distribution.

A wide spectrum of models, from a very abstract point of view to the modeling of

the protein interactions, is available in literature [199, 200, 201].

Few studies however regard the effect of noise on the chemotactic behavior. Further-

more, the noise is seen mainly as a nuisance in sensing that should be filtered out by the
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bacterium [202, 198], similarly to what is usually done in control theory.

Using two very general models, instead, we show that external noise can actually

increase the performance. The first model, described in the next subsection, is based on

biased random walk, with a bias that is a function of the previous bias and of whether the

conditions are improving or not. The second one, designed to overcome some limitations

of the first biased random walk algorithm, is presented in Subsection 6.2.5 and analyzed

in Subsection 6.2.6.

6.2.2 Algorithm

When considering challenging environments like forests [203], planetary explorations [204]

or game fields where the robots can collide to each other, it is almost impossible to pre-

dict in advance all the problems which could arise in the task execution and the possible

failures the robot hardware might encounter. However, the current technology seems

still to be lacking in providing reliable robots able to cope with hardware failure or un-

certainties. Most techniques require a previous identification of the possible accidents

that can occur to the robot and the design of specific workarounds for each of them.

Some advanced self-modeling techniques were presented [205] but they request intensive

computation to estimate the current status of the robot from the sensor information.

Conversely, as highlighted in the previous subsection, very simple living beings like

bacteria can cope with very complex and variable environments, and often present a

highly adaptive and robust behavior despite their structural simplicity.

A simple possible modeling of the bacteria behavior is by random walk. Actually this

model has already been applied for controlling a mobile robot [206, 207]. The experiments

in [207] show that while gradient descent is faster for tracking a single source, the biased

random walk performs better in the presence of multiple and dissipative sources and

noisy sensors and actuators. Demonstrations of the effectiveness of introducing a random

term in the algorithm for preventing the robot from ending up in local minima are also

provided.

However, the robustness to hardware damages and noisy sensory information achiev-

able by biased random walk are not fully exploited. Expressly, in [207] the hardware

already provides two basic movements, proceed straight and change direction randomly,

and the biased random walk is performed at the behavior level. This approach limits

the robustness for unexpected hardware failures. In fact, if due to hardware failures

one of these basic movements does not operate as expected in many cases it will not

be possible to accomplish the tasks. Imagine for instance to have a mobile robot with

two wheels powered by independent motors and that due to an encoder problem one of

the motors starts to rotate in the opposite direction. In this case when the “go forward”

motor command is provided the robot spins around itself and the target will never be

reached, as schematized in Fig. 6.9.
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damage

Figure 6.9: Example of damage for which the robot will not be able to reach the goal if the
control bases on fixed low level behaviors. If a robot encoder damages, and the
wheel starts to rotate in the opposite way, then the “go forward” behavior will
become a spinning behavior, which is unable to bring the robot to the goal.

We propose, instead, to perform a biased random walk directly in the motor command

space, i.e. the behaviors themselves are determined online through the random walk. This

gives great robustness in case of hardware failures since new behaviors that exploit the

current hardware behavior are found online in an automatic way.

In general, performing a random walk in the motor command space allows deter-

mining at runtime how to exploit the dynamics of the hardware, which can change due

to hardware failures. By using this approach there is no need to explicitly identify the

failure and use preprogrammed alternative behaviors, which can be difficult to design

beforehand [208]. Despite the extreme simplicity and the absence of any information

on the hardware this proposed bio-inspired method is able to provide high adaptabil-

ity and robustness. We would like to stress that other, more task specific techniques

could probably be designed to achieve higher performance for specific task, but what we

are interested in achieving is a biologically inspired approach that gives robustness to

hardware failures and sensor noise.

Concretely, the control of the robot can be reduced to a single equation

ut = ut−1 + bt + βηt = ut−1 + αsgn (∆At)
ut−1

‖ut−1‖
+ βηt (6.1)

where ut ∈ Rm is the motor command control signal provided at time t. The modification

applied to the control signal is composed of two terms, a bias term bt = sgn (∆At)
ut−1

‖ut−1‖
and a purposely added random perturbation ηt ∈ Rm, multiplied respectively by two

scalar coefficients α and β.

The quantity ∆At ∈ R appearing in the bias term expresses the variation of the

“quality” of the robot state during the t-th time step. For instance, if the task consists in

reaching a target with a mobile robot, the quantity ∆At represents how much the robot

got closer to the target from time t − 1 to time t. Therefore, essentially, the bias term

states that if the robot got closer to the target using command ut then command ut+1

should be similar. The second term is the most interesting part. In fact, it can be shown

that by adding random perturbations of opportune magnitude to the control input, it is

possible improve the performances.

Figure 6.10 reports an example. Let us suppose to have a holonomic robot initially
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Figure 6.10: Performance for different perturbation magnitudes. The top panel reports the per-
formances for different values of β when α = 10−2. The performance is measured
as the average distance traveled toward the goal in 1000 time steps, calculated over
10000 simulations. The bottom panels report examples of trajectories obtained
for different values of β. Precisely, the first trajectory was obtained for a low per-
turbation level, β = 0.07, the second trajectory corresponds to an opportune level
of perturbation, β = 0.66 and finally the bottom right panel reports a trajectory
generated with β = 6.6.

placed at [10, 10]T (arbitrary units) that has to reach a target placed at [0, 0]T , and the

motor command to be simply the translations along the two axes. If the perturbation

is too small, then the effect of the bias will be strong, and even nearly tangential move-

ments that bring the robot slightly closer to the goal will be used for a long time. If the

perturbation is too big then the robot changes direction too frequently, even when the

movement is headed straight to the goal. If the perturbation amplitude is appropriate,

then the robot will reach the goal with a good trajectory 2. This result is confirmed ob-

serving the distribution of the robot heading direction compared to the optimal direction

in Fig. 6.11. When the perturbation is too little, essentially all headings that do not face

backwards are chosen with uniform distribution. When the noise is too big, the robot

tries all directions, with a small bias on the good ones. Finally, when the perturbation

level is appropriate the distribution has a peak in the optimal heading.

Actually, the performance depends essentially just on the ratio between the two

2A stochastic resonance effect can be observed. For details see [209, 210, 211].
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Figure 6.11: Distribution of the robot heading, compared to the optimal heading, for different
perturbation levels. The blue continuous graph reports the distribution for a
low perturbation magnitude, the green dashed graph represents the probability
density function obtained for an opportune perturbation coefficient (β = 0.66)
and the third, red dotted curve, shows the distribution of the heading for an high
perturbation level (β = 20).

coefficient α and β, and not on their values itself. However, the optimal ratio depends

on the hardware and environment conditions, as shown in the following subsection.

6.2.3 Experiments

In order to verify the feasibility of the algorithm, simulation and real world experiments

were conducted. In detail, to keep the problem simple and ease the result analysis,

wheeled robots were employed. Using ODE3, we simulated a mobile robot equipped with

three spherical wheels. The two front wheels are directly actuated by two independent

motors whose maximum velocity is 0.5 rad/s while the rear wheel is free to rotate in

any direction. The task is to reach a red hemisphere having radius of 4 m and placed

at a distance of 30m. The robot is equipped with an omni-directional camera (see

Fig. 6.12), and the number of red pixels perceived by the camera is used as an estimation

of the distance to the goal. In particular, given the RGB components of a pixel, this is

considered red if its R component is more than double the maximum of the G and B

components. The number of pixels considered red is used as the term At in Eq. 6.1. We

notice that since At appears just in the term sgn (∆At), the only information used by

the algorithm is whether the red pixels in the camera image are increasing or not.

The algorithm of Eq. 6.1 is run with a frequency of 0.2Hz and provides a 2 dimensional

3Open Dynamics Engine, a free library for simulating rigid body dynamics. For details see http:
//www.ode.org.
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(a) (b)

Figure 6.12: Scene rendered by the simulator and the same scene as seen by the robot camera.

velocity command u representing the velocities of the two wheels. We chose to employ

such a low sampling frequency to validate the robustness of the method even in the case

of low cost hardware with very poor performances, as in the case of a cheap webcam

connected to an outdated notebook.

To test the robustness of the algorithm in driving the robot to the goal we simulated

four types of damages (see Figure 6.13):

1. the right wheel size becomes 1.5 its normal size;

2. the right wheel becomes uncontrollable, i.e. its movement is completely random;

3. the right wheel rotation axis direction is turned 90 degrees along the Z axis and

becomes parallel to the longitudinal axis, i.e. instead of making the robot move

forward or backward, the rotation of the wheel causes the robot to move left or

right, sideways;

4. 20% of the camera image becomes black.

We assumed η ∼ N (0, 1) as a Gaussian variable of variance one and studied the

behavior for several values of α (the scaling coefficient of the bias) and β (the scaling

coefficient of the random perturbation). In particular, for each condition (no damage or

one of the damages listed) we determined the time spent contacting with the goal in 20000

simulated seconds. Each condition is simulated one time for 128 different positions of the

target, in particular assuming the robot’s chassis is placed at (0,0) we set the target in

each of the positions as (R · cos(θi), R · sin(θi)), θi = i·2π
128

, i = {0, . . . , 127} where R = 30

m.

In analogy with the examples reported in Fig. 6.10, the bias should be strong enough

to drive the robot toward the target in short time but small enough to avoid performing

the same action if the reduction of the distance to the goal is too little. We can expect

therefore the existence of an optimal value of the bias.

In other terms, if the α/β ratio is too high, then even if the velocity becomes nearly

tangential to the path that leads to the target, the robot will tend to proceed in that

direction, which results in traveling long paths that only achieve a short reduction of the
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(a) (b) (c)

(d)

Figure 6.13: The four damages simulated. (a) Variation in the size of one wheel. (b) Uncon-
trollability of one wheel (c) Rotation of the axle of one wheel (note the direction
of the stripes) (d) Obscuration of part of the acquired image.

distance to the goal. Conversely, if the α/β is too low, then although the bias eventually

drives the robot to the target, a long time may be required to reach the goal because of

unnecessary path deviations.

We can ask ourselves whether the optimal bias is constant or changes depending

on the hardware damage. The reaching experiment was therefore repeated for different

settings of the values of α and β both for the undamaged robot and for the four robot

conditions described beforehand.

Figure 6.14 depicts the results for the undamaged robot and for the four damages

previously listed. The x and y axis indicate the values of α and β respectively, while

the color represents the performance, in terms of ratio between the time spent touching

the target and the total simulation time (20000 seconds). For all damages the graphs

presents non zero values, i.e. the robot is able to reach the target and touch it. It is worth

to notice that some damages, especially the rotation of the axle of one wheel, completely

changes the effect of motor commands. However, our simple algorithm is able to identify

new efficient motor commands on the fly, without the need of any failure detection.

As expected, a completely deterministic behavior (β = 0) is often not able to drive

the robot to the target, since, without “exploration” of motor commands done by the

random part, the system can just provide a single type of motor command. Similarly,

when α = 0 the probability of touching the goal with a completely random movement is

so low that in the experiment none of the simulations ended up with the robot reaching

the target by the end of the simulation time.
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We can see that the color zones are approximately triangles departing from the origin,

i.e. the performance depends just on the ratio between α and β and not on their value.

Figure 6.14(f) shows the average performance for various α
β

ratios. We notice that for

the first type of damage (reduced wheel size) a ratio close to 2 gives the best performances,

while in the case of changed rotation axis the best performance is obtained with α
β
≈ 2.5.

The undamaged robot and the robot with damaged camera instead performs best with
α
β
≈ 3. For the uncontrollable wheel, higher values for α

β
, around 5, gives the best

performance. In this case, probably the noise introduced by the hardware itself reduces

the noise required in the control signal.

Observing Fig. 6.14, we notice that some damages seems easier to recover than oth-

ers. In detail, the performance decreases more abruptly when the size of one wheel is

changed and when the rotation axis is changed by 90 degrees, than when the camera is

partially obscurated or when one wheel become uncontrollable. In these cases, a lower
α
β

is more beneficial, i.e. intuitively speaking, it appears that when the task is difficult

the more stochastic the control is the better it is. These preliminary results provide

us an interesting hypothesis that will be verified by future works: the damage entity

determines the optimal α
β

ratio, with lower values for “harder” damages.

A second set of tests regards experiments with a real robot. Often the effect of noise,

environment uncertainties and modeling errors prevents algorithms to work in a real

world setup. We therefore decided to measure the performance of our algorithm in a real

world setup.

We validated the practical applicability of our algorithm by using a mobile robot,

namely B12 by Real World Interface4. The robot was equipped with a 640×480 Logitech

webcam placed on an omnidirectional mirror and an off-the-shelf mobile PC. A red

blanket placed on a chair was used as target, as visible in Fig. 6.15.

As in the simulation experiment, the control loop consists in acquiring the image,

counting the number of red pixels, performing the biased random walk and setting the

motor velocities. Once again, to show the applicability of our approach even in case

of very low-cost hardware, no particular hardware choice or software optimization were

performed, leading to a quite slow and jittery control loop time, 861 ms with a standard

deviation of 7.3 ms.

It is interesting to notice that the motor command space of the robot used in the

experiment is quite different from the one of the simulated robot. Expressly, while the

simulated robot has two driven-wheels independently actuated and a third rear caster

wheel, the real robot is a Synchro Drive platform, in which one motor drives the wheels,

while the other changes the wheel orientation. However, since our approach makes no

assumption on the hardware, no change in the algorithm is required when passing from

the simulation setup to the real robot experiment. The only parameter adjustment

required was the α/β ratio. For the real world experiment, we adopted α = 0.8, β =

4A video is available at http://robotics.dei.unipd.it/~fabiodl/video.php?navigation
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(a) (b)

(c) (d)

(e) (f)

Figure 6.14: Performances (ratio between the time spent touching the target and the total
simulation time) of the robot for various settings of α and β: (a) Without any
damage, (b) Change in the size of one wheel, (c) Uncontrollability of one wheel,
(d) Rotation of the axle of one wheel, (e) Obscuration of part of the image, (f)
plot of α/β vs. average performance.
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Figure 6.15: Setting of the real world experiment. A B12 mobile robot was equipped with
a webcam placed on an omnidirectional mirror. A red blanked was used as the
target.
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Figure 6.16: Paths covered by the robot for six different initial positions and goal settings.
Each path is drawn with a different color. Circles indicate starting points and
squares indicate end points (for some subsequent paths the starting point is the
ending point of the previous path).

0.025, determined experimentally with four trials to understand the order of magnitude.

The motors are equipped with encoders, which were used exclusively for data logging

and reconstruction of the robot path. The short length of the paths covered by the robot

in the experiments actually make the error accumulated by the encoders negligible. A

validation was nonetheless performed using image processing on a video captured from

the top of the experiment field.

Figure 6.16 shows some of the paths covered by the robots for different goal and robot

initial position settings. Initial distance were set with values from 164 to 364 cm, and for

all the 11 tests performed by the robot achieved target reaching, with times ranging from

32 to 167 seconds. The measured path lengths were in average 3.38 times the optimal

path. Notice that the performances could be improved by tuning the α/β ratio.

To illustrate the robustness to the real world noise Fig. 6.17 reports the relationship

between the distance in a straight line to the goal, obtained off-line from the encoder

values, and the number of red pixels measured during the robot motion. We can notice

that, although the number of pixels is approximately a decreasing function of the dis-

tance, for similar distances we often have very different values for the number of pixel

and, conversely, for a similar number of pixels the distances can be very different. Im-

pressively, despite these strong uncertainties in the actual target distance, our simple
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Figure 6.17: Relationship between the distance from the goal and the number of red pixels
measured during the experiments.

algorithm was always able to drive the robot to the goal in a reasonably short time.

In conclusion, experiments showed that our algorithm can be sufficient in many cases

to provide robustness to hardware damages and unexpected events. Practical results

were obtained using a mobile robot equipped with an omnidirectional camera that has

to reach a goal with very noisy information and while undergoing hardware damages.

We provided an experimental study on the optimal bias in the random walk, and showed

that performances can be optimized by adjusting the ratio between α and β. The results

suggest that the optimal bias is proportional to the random term with a coefficient

dependent on the hardware. Initial tests seem to suggest that the bias should be higher in

case of stronger damages, but this should be investigated more systematically with a clear

definition of the “strength” or “hardness” of damages. Limitations of the algorithm will

be highlighted in the next subsection, and a new algorithm, which comprises automatic

adaptation of the random perturbation size, will be described in Subsection 6.2.5.

6.2.4 Algorithm shortcomings

The previous subsection reported that our biased random walk based algorithm per-

formed well both in simulation and with the real robot. Extensive tests were performed,

and the algorithm was shown to work in most of the practical setups we tested. Actually,
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this comes from the fact that most of the real world system share common features, or

can be easily transformed to very similar problem descriptions.

For instance, in most systems, opposite motor commands generate an opposite effects,

at least in some regions of the motor command space, and scaled versions of the same

motor command provide a similar effect with different intensity. By observing carefully

Eq.6.1, it is possible to observe that the algorithm previously presented exploits these

facts. In fact, it assumes that if command ut is beneficial for the robot state at time t,

then ut
‖ut‖ will probably be a good bias for the following command ut+1. Furthermore,

if ut worsened the conditions during time t then it is assumed that − ut
‖ut‖ will be an

appropriate bias for ut+1. These considerations however do not hold for a generic motor

command spaces. Suppose to have a holonomic robot whose coordinates are xt ∈ R2.

Assume now ut ∈ R2 and its two components u
(1)
t and u

(2)
t to represent the velocity in

polar coordinates, i.e. xt+1 = xt +
∣∣∣u(1)
t

∣∣∣ · [ cos(u
(2)
t )

sin(u
(2)
t )

]
. The nonlinearity near the origin

introduced by the cosine prevents the algorithm from being able to drive the robot to

the goal.

Another disadvantage of using −ut as bias when the conditions worsen is that the

control algorithm performs badly if there are dead times in the response. Imagine, for

simplicity, a unidimensional case where the goal is at +10 and the position xt, initially 0,

changes by xt = xt−1 +ut−2, xt, ut ∈ R. In this case, the performance increases when the

bias is positive, i.e. ∆A is positive for a positive u and negative otherwise. Suppose to

start with u0 and u1 negative, and suppose the random perturbations to be small enough

that the sign of the motor command ut is determined by the sign of the bias bt. Since

u0 is negative ∆A2 will be negative, and the bias b2 and signal u2 will become positive.

However, in the next step, the effect of u1 will lead to a negative ∆A3, which in turn

will bring the bias b3 and u3 to become negative again. The effect of u2 will provide a

positive ∆A4, so the bias b4 will have the same sign of u3, i.e. it will be negative. At this

point the evolution of the bias will repeat, in a loop that contains two negative biases

and a positive one. If the magnitude of the biases is similar for the positive and negative

case, in general the bias will tend to bring the robot farther from the target instead of

bringing it closer, and the system will never reach the target +10. Table 6.1 reports

other examples of bias sequences that reveal to be a nuisance instead of being beneficial

to reach the target.

For similar reasons, the bias can become deleterious if the system includes delays

introduced by low pass filters. This can be a serious disadvantage of the algorithm, since

many physical systems present this kind of behavior. A simple example can be provided

by introducing an Infinite Impulse Response (IIR) filter in the example of a holonomic

robot moving on the plane. Concretely, assume the robot to change its position by

xt+1 = xt + vt where vt = (1 − 10−ρ) · vt−1 + 10−ρ · ut. Let us define a “bad bias” a

bias that has a heading that differs more than 90 degrees from the optimal one and
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Table 6.1: Bias sequences leading to performance decrease

t
0 1 2 3 4 · · ·

∆At - - + · · ·
ut - - + - - · · ·

∆At - + - · · ·
ut - + - - + · · ·

∆At + - - · · ·
ut + - - + - · · ·

Figure 6.18: Probability of biases that would bring the robot further from the goal. The X
axis represents the delay level (ρ), the Y axis represents the perturbation level
(β/α) and the color indicates the probability of bad biases (lighter color indicates
a higher probability). The yellow line indicates the noise level that gives the lowest
bad bias for each delay level.

would therefore bring the robot further from the goal. Figure 6.18 reports how the

probability of bad biases changes by varying the random perturbation level (β/α ratio)

and the delay level (ρ). Although the probability of bad biases can be minimized by

changing the random perturbation level, it can be observed that as the delay increases,

the probability increases. For instance, for a value of ρ equal to 3 the probability of bad

biases cannot be lower than 0.09.

It is worth noting that for a wide range of problems it is often possible to find

expedients that allow mitigating the weak points presented here and that allow the use of

the previous version of the algorithm. In fact, an adequate parametrization of the motor

command space reveals to be sufficient in most of the cases. However, the algorithm

presented in the next subsection strongly improves the generality without increasing the

algorithm complexity.
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6.2.5 Improved algorithm

As reported in Subsection 6.2.1, Escherichia Coli proceeds by movements in random

directions, but when moving toward increasing concentrations of nutrients, the movement

in that direction is prolonged. A similar behavior can be obtained by taking ut+1 = ut
if ∆At ≥ 0 and selecting ut+1 randomly5 if ∆At < 0. As in the previous version of the

algorithm, a random perturbation can improve the performances. In particular, it is

sufficient to add a perturbation to each of the components of the input when ∆At ≥ 0,

i.e. uit+1 = uit + ηiR, R ∼ N (0, 1) for each of the components of the input (1 ≤ i ≤ m).

Choosing the bias at random when the system is getting further from the goal removes

any assumption of linearity of the system. Clearly this leads to a performance decrease

for systems that are effectively linear, but considerably improves the generality of the

algorithm. Furthermore, in case of dead times periodic bias sequences with negative

effects are unlikely generated. For instance, in the case of the unidimensional example

provided in the previous subsection, if by chance a positive bias is followed by another

positive bias, then the system will keep a positive bias and reach the target6. Similarly,

better performances are expected when delays arising from low pass filter effects are

present. Imagine in fact to have a sequence of good motor commands that are not

recognized as such because their effect comes later. In the meanwhile, new commands

will be generated. If the system responds with an opposite behavior when the input

is negated (as for all linear systems and many other setups), then choosing a random

command is less deleterious than choosing the negated motor command.

Intuitively, the algorithm operates in a very simple way. It keeps using the same

motor command as long as the command is beneficial, otherwise it picks up a new one

at random. This provides intuition on how to adjust the magnitude of the random

perturbations. Expressly, if the random perturbations are appropriate and in general

good inputs are selected, these will be used for a long time. By observing the variance

of the produced motor commands, we can thus have an idea of the quality of the motor

command. In order to dynamically adapt ηit we can therefore estimate the variance of uit
by picking some samples, slightly increase(/decrease) ηit, and estimate the variance of uit
again. If the variance decreased then we increase(/decrease) ηit once more, otherwise we

decrease (/increase) it. This kind of effect can be showed by a simple example. Suppose,

as previously done, to have a holonomic robot that must approach a target located in

[0, 0]T . To reduce the problem to a system with a unidimensional motor command,

assume the robot to move by steps of fixed length s, along the angle indicated by ut.

Formally, let x ∈ R2 be the robot position, ut ∈ R, xt+1 = xt + s ·

[
cos(ut)

sin(ut)

]
. Assume

5In the following we assume to select ut ∈ Rm using a uniform distribution over the whole motor
command space, but the results remain essentially the same using different distributions.

6As previously stated, we assume the perturbations to be small enough. Notice, however, that a
sequence of two positive biases is sufficient for recovery if perturbations change the sign.
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Figure 6.19: Average performance and input variance obtained for different values of η. The
graphs were obtained placing the robot in x0 = [10, 10]T with s = 10−6, simulating
N = 103 steps and repeating the test 105 times.

then to express the performance ψ as the average decrease in the distance to the goal

for a single step over N steps, i.e. ψ = ‖x0‖−‖xN‖
N ·s .

Fig. 6.19 reports the average performance ψ and variance of ut for different values of

η. We notice that the maximum performance corresponds to the minimum variance. For

more complex setups the two peaks could not coincide, but choosing the perturbation

that gives the lowest motor command variance appears to be a reasonable choice in most

cases.

Assuming to estimate the variance using just two samples7 we derive the following

algorithm

uit+1 =

{
uit + ηitR if ∆At ≥ 0

random selection otherwise
(6.2)

δi0 = 1.1 (6.3)

σit =
(uit − uit−1)2

2
(6.4)

δit+1 =

{
1/δit if t odd ∧ σit ≥ σit−2

δit otherwise
(6.5)

7A higher number of samples provides a better estimate of the variance and therefore of the variance
change, but slows down the adaptation. Note that, however, two samples are always sufficient to
guarantee a right estimation of whether the variance increased or not with a probability higher then 0.5.
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ηit+1 =

{
ηitδ

i
t+1 if t odd

ηit otherwise
(6.6)

In this way we obtain an algorithm that is parameterless, is very robust and works

even with highly nonlinear systems. The next subsection will present experiments on

the algorithm, showing both its generality and performance in reasonable settings.

6.2.6 Comparison experiments

This subsection presents the results on the comparisons between the biased random

walk algorithm presented in Subsection 6.2.2 and the version presented in the previous

subsection. In particular, as a first step we compared the performances of the two

algorithms when coping with nonlinear systems. In this experiment, the movement of the

robot was set to xit+1 = xit + s · f i(ut) where f i(x) = 1
π

arctan
(

(sin(2πx+ξi))TQisin(2πx+ξi)
(sin(2πx+ζi))TP isin(2πx+ζi)

)
.

In this expression the sin function is applied element-wise and Qi, P i ∈ R2×2 and ξi, ζ i ∈
R2 were randomly initialized. Figure 6.20 shows the distance traveled toward the goal

in different trials. In detail the robot was placed in 6 different initial positions (10 ·
[sin (2kπ/6) cos (2kπ/6)]T , k ∈ N , 0 ≤ k ≤ 5) and for each position the experiment was

repeated 104 times. We notice that as expected the performance is generally higher for

the newer version of the algorithm. The newer version of the algorithm is able to drive

the robot to the goal even in case of the highly nonlinear mapping introduced in the

experiment.

The second test deals with dead times in the system. Expressly, we simulated the

case xt+1 = xt+ut−d, d ∈ N , xt, ut ∈ R2, −s ≤ xit ≤ s for N = 104 time steps. As visible

in Fig. 6.21, with the previous version of the algorithm the distance traveled toward the

goal drops off as soon as there is a dead time d. The performance of the new version

of the algorithm degrades as the dead time d increases, but does not reach 0, i.e. the

algorithm is still able to drive the robot to the goal whatever the dead time is.

We then tested the versions of the algorithm on a system that includes a low pass

filter as the one described in Subsection 6.2.4, i.e. we assumed the movement to be given

by xt+1 = xt + vt where vt = (1− 10−ρ) · vt−1 + 10−ρ ·ut. Figure 6.22 reports the distance

traveled toward the goal for different values of the filtering effect ρ. We can observe that

in the previous version of the algorithm, the distance traveled toward the goal decreases

as ρ increases and becomes nearly 0 for a value of ρ = 3. The newer version has better

performance for all of the ρ settings, and interestingly the performance increases for

ρ > 2.4. This is due to a smoothing effect introduced by the low pass filter that makes

the trajectories more straightly headed to the goal.

The tests on a mobile robot that undergoes hardware damages, described in Subsec-

tion 6.2.3, were repeated for the new algorithm.

As a result, the newer algorithm provides faster reaching times than the previous
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Figure 6.20: Distribution of the distance toward the goal traveled in N = 104 steps of size
s = 103 using the nonlinear functions f i(x). The robot was placed in 6 different
positions and for each position the test was repeated 104 times.
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Figure 6.21: Average movement toward the goal for different dead time values. The plot reports
the average distances traveled using the two algorithms, as well as the 0.05 and
0.95 quantiles, i.e. the distances traveled toward the goal are reported with their
90% confidence interval. The graphs were obtained setting the maximum velocity
s = 10−3, placing the robot at x0 = [100, 100]T , simulating the movement for
N = 104 steps and repeating the experiment 104 times.
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Figure 6.22: Average movement toward the goal for different values of the low pass filter entity
ρ. The plot reports the average distances traveled using the two algorithms, as well
as the quantile function for 0.05 and 0.95, i.e. the distances traveled toward the
goal are reported with their 90% confidence interval. The graphs were obtained
setting the maximum velocity s = 10−3, placing the robot at x0 = [100, 100]T ,
simulating the movement for N = 104 steps and repeating the experiment 104

times.
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Figure 6.23: Distribution of the time steps required to reach the target. The time step was set
to 5s, and the experiment was repeated 100 times for each robot condition. For
the previous version of the algorithm, the test was repeated for β/α equal to 0.01
to 0.91 with steps of 0.1 and the best performing noise level was chosen.

version (with α/β set as to maximize the performances) in most of the cases. In the

uncontrollable wheel case, however, the previous version obtained better performances,

because with that setup automatically setting the noise level becomes difficult. Fig-

ure 6.23 reports the distribution of the time steps required to reach the goal.

6.2.7 Humanoid robot results

Subsection 6.2.3 described experiments on the first versions of the algorithm inspired

from E. Coli chemotaxis. The previous subsection reported a comparison of the two

versions of the algorithm, showing the improvements over the previous version. In order

to reduce the time required for the experiments and easing the analysis, mobile robots

were used, both in simulation and in real world experiments. This subsection presents

preliminary experiments with a humanoid robot.

In detail, before applying the second version of the algorithm on humanoid robot, the
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Figure 6.24: Average movement toward the goal by the particles for different settings of the
space dimension p.

behavior of the algorithm in highly dimensional spaces was tested. The experiment was

conducted placing 104 particles in a p dimensional space at x0 = [−1, 0, . . . , 0]T ∈ Rp and

assuming their position to be modified by xt+1 = xt + s · ut where s = 10−4. Fig. 6.24

reports how much the particles got closer to the goal in N = 104 steps as p varies.

Although we would expect an exponential decrease of the distance traveled toward the

goal, we notice that the performance is reasonably high even for high values of p. This

ability to cope with high dimensional spaces makes the algorithm appealing for the

control of the humanoid robots.

When applying the algorithm to practical problems, the first thing to decide is how

to define the quantity ∆A. If a specific task is given beforehand, then defining A as an

indicator of the progress in the task achievement, as suggested in [20], and taking ∆A

as its derivative appears to be a good choice.

Since we are interested in the development of simple, task independent algorithms,

we assume the setup of having a generic motion, developed, for instance, by the teaching

by touching approach, that we can use as reference. Let us denote the motion as a

function that, given a time, returns the corresponding posture assumed by the robot

M(t) : R → Rn, where n is the number of motors. Note that, in order to simplify the

notation, in this definition and hereafter, the time is assumed continuous.

A possible way to define A in a generic way is by simply taking the Euclidean distance

between the position actually assumed by the motors, that we denote by x(t) ∈ Rn, and

the position specified by the motion, M(t). In particular, in order to allow our algorithm

to generate online interesting variations of the motions, we decided to compute M(t)

at a frequency lower than the frequency of the application of the algorithm. In other

terms, we sampled the motion at a set of time instants tk ∈ R, k ∈ Z, and set the

algorithm “goals” as M(T1) during the time [0, T1), M(T2) during the time [T1, T2), etc.

Formally, let us define M̄ (t, Tq) as the next target position, sampled with a step Tq i.e.
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M̄ (t, Tq) = M(Tq), q : Tq−1 ≤ t < Tq. With this definition, we can express A as

A = ‖x(t)− M̄(t, Tq)‖2

and, as usually, define ∆A as the variation of A between successive executions of the

control algorithm.

We notice that the same scalar, ∆A, is used to control all the motors as a whole, and

not a single joint. This permits, for instance, to start generating random movements on

all of the joints when one of them is stuck and cannot reach its target position. Clearly if

further sensory information is available, this can be introduced in the computation of the

distance between the expected robot’s state and the current one. The simplest approach

to know the expected state could be, for instance, playing the motion in a controlled

environment and storing the data, as done in Section 6.1.

In the experiment we decided use a crawling movement, developed by touching, as

a reference motion. The motion lasts 1162 ms. Its first and last posture are identical,

so that it can be repeated continuously. As in Subsection 6.1.4, a simulated M3-Neony

was employed. The motion execution was simulated in two environments. The first is a

flat floor, and the second is the rough terrain made by randomly inclined tiles that was

presented in Subsection 6.1.4.

The control algorithm, i.e. the computation of Eq. 6.2, was run every ∆T =3ms.

Various settings of the sampling interval of the motion were tested. In particular, we

conducted experiments with the sampling values Tq = 2k∆T , 0 ≤ k ≤ 9. To better

study the effect of the purposely added random perturbations, we decided to fix the

perturbation magnitude coefficients ηit to constant values, and evaluate the performance

for different settings. In particular we decided to adopt the same constant value for all

the joints, and measured the system performances for η = 0.01/2h, 0 ≤ h ≤ 8.

Figure 6.25 shows the results obtained on the flat terrain, while Fig. 6.26 reports

the performance for the rough terrain, for the various settings of k and h previously

described. The value used as index of the performance is the distance traveled in 5

simulated minutes, averaged over 50 trials.

We notice that in both cases the performance has a peak for η = 0.005 and 2k = 64.

When the motion is replayed in open loop, without using the proposed algorithm, the

average traveled distance is 5.40 m on flat terrain and 1.16 m on rough terrain. When

the proposed algorithm is used with η = 0.005 and 2k = 64, the average performance is

3.76 m for the flat terrain and 2.07 m for the rough terrain.

As could be expected, we see that with the flat terrain, where essentially the environ-

ment is predictable, using a random perturbation for the control decreases the perfor-

mance. When, instead, the environment changes, as in the case of the rough terrain, the

random component helps to adapt to the environment. As expected, from the graphs

we see that there exists a value of the random perturbation magnitude for which the
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Figure 6.25: Average distance traveled in 5 minutes on the flat terrain for different settings of
the random perturbation magnitude and motion subsampling.
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Figure 6.26: Average distance traveled in 5 minutes on the rough terrain for different settings
of the random perturbation magnitude and motion subsampling.
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performance is the highest, i.e. η = 0.005. Interestingly, there is also a value 2k 6= 1 of

the subsampling of the motor commands for which the performance is optimal. Actually,

we see that in both cases the performance decreases when 2k goes from 1 to 2, but then

increases, until 2k=64. This seems to confirm our idea that if the target posture is set

with a frequency lower than the one of the control algorithm, then the algorithm has

freedom to find good solutions for the movement execution. If the sampling time Tq is

too long, however, too much information on the original motion is lost and the resultant

movement looses performance in achieving the task.

Actually, the performances of the algorithm could be increased by choosing better

functions for A, or by introducing different functions for different limbs. The result

presented here is just a first preliminary experiment, but they suggest the feasibility of

the algorithm for controlling humanoid robots with a high number of degrees of freedom.
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7
Conclusions and future works

The idea of using interpretation of tactile instructions for programming humanoid robot

motions was presented in this thesis.

In general, when dealing with robots in real world setups, the curse of dimensionality

problem rules out any naive application of classic automated learning. For these reasons,

much works resort to solutions focused on a particular task. Another approach often

taken is the exploitation of the help of a teacher.

Our programming paradigm belongs to this second category. The help of a teacher is

used to develop the robot motion. This gives the user fine control on the resulting motion.

The problem of the emergence of awkward motions, that appears with naive automatic

optimizations of the movement, is thus removed, at the expense of an increased effort

from the teacher.

A wide spectrum of techniques that benefit from the coaching of a human teacher can

be found in literature. The methodologies differ under several aspects. From the point

of view of the richness of the information transferred from the teacher to the robot, we

find several levels, ranging from a simple critique of the performance to a detailed set of

instructions.

From the communication perspective, literature presents a huge variety of modalities,

among which we can cite physical interaction, vision, speech or physical interaction.

Another criteria for the classification of the modalities is the interactivity of the in-

teraction. Some approaches assume the robot to be passive, or to practice the movement

and learn by itself once the user demonstration is ended. In other setup, conversely,

the robot and the user mutually interact. The robot “proposes” a solution that the user

evaluates and criticizes or modifies.

In the case of whole body humanoid robot motions, which were considered in this the-

sis, two approaches are commonly used. The first one is motion retargeting, a technique

often employed in computer graphics for the animation of characters. The movement of

a human performer is recorded, and adapted to the robot. The approach is appealing

because human-like motions can be easily obtained.

However, the technique presents several inconveniences. The instrumentation for
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acquiring motion data is bulky, expensive and usually not available to average customers.

Moreover, a human actor who is able to perform the desired movement may not be

available. In some cases, users could desire to make the robot do movements impossible

to be done human beings. Last but not least, when porting the motion from a human

to a humanoid, it must be heavily modified due to the differences in the shape, degrees

of freedom, power and weight distribution between humans and robots. During this

adaptation process, the quality of movement appearance can be strongly degraded.

A second widely used approach for humanoid robot motion development is kines-

thetic demonstration. Within this setup, the user directly manipulates the robot, which

responds passively to the forces applied by the user. The robot stores the information

on the movement, and possibly derives a statistical model if multiple examples of the

movement are given.

The teaching by touching approach proposed in this thesis resembles kinesthetic

demonstration because of the direct, tactile interaction between user and robot. However,

the way of employing touch is different. Within the classical kinesthetic demonstration

approach, the impedance of the joints determines the way the robot responds to the

applied force. In the teaching by touching setup, instead, the robot tries to interpret the

meaning of the tactile instruction, and moves depending on its estimation of the meaning

of the tactile instruction.

The teaching by touching approach tries to make the robot training closer to the in-

teraction between humans. Ideally, when a robot is programmed by kinesthetic demon-

stration, the interaction is close to the one with a puppet, while teaching by touching

attempts to mimic the interaction between a human coach and a human trainee.

Advantages of the presented approach over kinesthetic demonstration can be read-

ily provided. When interpreted, a single touch could be made to correspond to the

simultaneous movement of both arms and legs, while it would be very difficult, if not

impossible, to move the four limbs of the robot simultaneously with classical kinesthetic

demonstration.

Additionally, with big robots, kinesthetic demonstration may reveal to be unfeasible if

solutions for compliance control and gravity compensating are not adopted. The teaching

by touching approach does not suffer from these drawbacks.

From another perspective, the presented approach is more general than kinesthetic

demonstration, and the latter can be considered as a particular case of the teaching by

touching approach. In fact, our system could behave exactly as in the kinesthetic demon-

stration setup by choosing an interpretation of the tactile instructions that corresponds

to the passive, compliant movement.

This generality derives from the fact that the teaching by touching considers touch

as a means of communication, instead of a simple way to transfer forces from the teacher

to the learner. If we observe humans learning sport or dance skills, we notice that

touch is intuitively employed as a communication means between the instructor and the
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learner. Indeed, humans can convey much information trough simple touches. However,

the interpretation of tactile instructions is complex for a humanoid robot. In fact, their

meaning is both user dependent and context dependent. The same touch can have

different meanings depending on the robot’s posture, body orientation, or on the personal

way of teaching of the user.

Literature provides no models for the meaning of tactile instructions. This thesis

presents a supervised learning approach that constructs a model for the interpretation

of tactile instructions through the interaction with the user.

A supervised learning setup reveals to be interesting for two different reasons. From

an engineering point of view, it constitutes a feasible solution for realization of practical

systems that employ touch as a communication mean between users and robot. From

the humans sciences perspective, the analysis of data collected during the interaction

can provide useful insights on the way humans use touch to communicate, a largely

uninvestigated research topic.

The thesis presents three variants of the implementation of the teaching by touch-

ing paradigm. The first implementation consists of an augmented reality setup. A real

robot is used, but virtual tactile sensors are employed. This allows using the teaching

by touching approach also with robots that lack tactile sensors. The second implemen-

tation shows that the approach can be easily ported to robots equipped with physical

sensor. Both of these two implementations use a classic motion representation, based on

a sequence of key-postures that are interpolated over time. The tactile instructions are

translated into changes of the posture assumed by the robot at a determinate time.

The third implementation shows that the teaching by touching approach can be used

to change the whole motion with a single touch. In particular, in the third imple-

mentation the motion is generated by a CPG. When the robot is touched, the tactile

instruction is translated into a change of the CPG parameters that, in turn, corresponds

to a modification of the whole movement.

As the most common humanoids on the market are small size humanoids, the thesis

focused the application of the methodology to this platforms. For this reason, one of the

main priorities of the algorithms developed was to keep the computational cost low.

Along these lines, the last part of the thesis presents simple, general solutions to im-

prove the motion robustness while keeping the computational cost low. The approaches

are completely general, and do not assume the motion to be developed by touching.

However, teaching by touching combined with these methods appears to be a solution

for developing motions and replaying them on small humanoid robots with limited com-

putational power in a robust way.

The topics presented in this thesis can be found in various publication. In particular,

Chapter 2 provided a conceptual analysis of the idea of interpreting tactile instructions

for motion development. After a short survey on the research that deals with touch

as a mean of communication, that was provided in Section 2.1, the difficulties in the
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estimation of the tactile instructions were given in Section 2.2. A first implementation

of the algorithm, based on simulated touch sensors, was given in Chapter 3.

More precisely, Section 3.1 provided the details on the algorithm used, kernel regres-

sion with a specifically designed kernel. Section 3.2 described the system, Section 3.3

explained the experimental setup and Section 3.4 reported an analysis of the data col-

lected in the experiment. Feasibility of the approach was demonstrated by the realization

of motions. Furthermore, data analysis showed that globally linear models are unable

to predict the mapping between tactile instructions and motion modifications. The sec-

tion also shows that classic data mining techniques can be easily applied to collected

data. In particular, extraction of the context features that are important for the tactile

interpretation was performed using the C4.5 algorithm.

These findings were initially published in [212]. In [213], the advantages of the sim-

ulated touch sensors were highlighted, and a more detailed description of the simulator

was provided. The theoretical formalization of the teaching by touching process, and

the considerations on the user effort reported at the beginning of the chapter were first

given in [214]. The same paper also provided the user dependence study reported in

Section 3.5.

Chapter 4 reported the experiments conducted with the real robot. In particular,

Section 4.1 described M3-Neony, the humanoid robot developed by out research group.

This robotic platform was introduced in [215]. The system description was provided in

Section 4.2 and the analysis of the experimental results was given in Section 4.3.

In particular, it was reported that the data suggest that usually a limb is moved by

touching touch sensors on the same limb, as could be expected, but, interestingly, this

appears not to be true when the users want to convey higher level behaviors to the robot.

Further analysis showed that usually the posture modifications desired by the users lie

in a linear subspace of the motor space. Interestingly this subspace seems to be highly

correlated to the subspace where the motion being developed lies. This fact suggests us

that the keyframes of the motion that the user is creating could be used to improve the

interpretation of tactile instructions. All these findings are reported, in a concise form,

in a paper under review at the time of writing.

Chapter 5 showed how to apply the teaching by touching paradigm to the program-

ming of CPGs. In particular Section 5.1 provided a survey on the types of oscillators and

coupling found in literature. Section 5.2 discussed the design of a predictable network,

and in Section 5.3 a simple protocol to translate tactile instructions to CPG parame-

ter modification is introduced. The chapter concludes with a very brief description of

the system implementation, reported in Section 5.4, and an analysis of the experimental

results, given in Section 5.5. Comparison of the motion developed by the user with a mo-

tion obtained by automatic parameter optimization suggested that users, unconsciously,

optimize many different criteria, that are not optimized by automatic algorithms if not

provided explicitly in the evaluation function. Part of these concepts were reported

170



in [216]. A more complete discussion can be found in [217].

Chapter 6 presented two solutions for increasing the robustness of motion. In partic-

ular, Section 6.1 reported a solution based on a motion graph. The idea, implementation

details and experimental results were published in [218].

Section 6.2 provided an alternative solution based on biologically inspired approach.

The solution removes heuristics used in the motion graph approach, improving the ap-

proach generality. More precisely, Subection 6.2.1 described bacteria chemotaxis, the

behavior mimicked by the algorithm we presented. Subsection 6.2.2 presented a first

version of the algorithm and Subsection 6.2.3 reported the related experiments. These

results can be found in [219].

Subsection 6.2.4 analyzed generality limitations of the algorithm, and Subsection 6.2.5

proposed a new version of the algorithm. This second version was compared to the first

one in Subsection 6.2.6, showing improved generality and performance. The same results

were published in [220]. Finally, Subsection 6.2.7 presented preliminary experiments

conducted with a humanoid robot.

Appendix A will give details on the simulator and on a library developed for the

realization of the systems presented in the thesis. A short description of demonstration

programs built using these libraries will be given. A very brief overview of the concept

underlying this toolset can be found in [221].

The work presented here can be improved and extended in multiple ways, as alterna-

tive solutions can be readily thought for most of the problems tackled here. One of the

points that present the most wide variety of possible alternatives is the touch interpreter

algorithm.

The version presented here uses a memory based approach, kernel regression. Testing

other memory based solutions, like local linear regression [90], and performing prediction

accuracy comparisons is of high interest. Additionally, the application of model based

approaches is worth investigating. More precisely, directed acyclic graphical models

appears to be a feasible solution for the estimation of tactile instruction.

Section 3.1 provided a conceptual formalization of the tactile instructions, schema-

tized in Fig. 3.4. Briefly, users have an intended motion modification they want to apply.

Depending on some of the features of the physical context that they unconsciously per-

ceive and on their own way of teaching, they provide a tactile instruction. The touch

instruction interpreter aims at constructing the inverse mapping from touch instruc-

tion and physical context to intended motion modification, by using examples consisting

in tuples that include the touch instruction, the context and a directly communicated

motion modification.

The translation of such conceptual formalization to a generative model is straightfor-

ward. Figure 7.1 provides a possible model. In brief, two multinomial random variables,

C and U , model the perceived context and the level of abstraction adopted by the user,

respectively. The multivariate Gaussians B and T represent the robot’s posture and
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Figure 7.1: A possible generative model for the interpretation of tactile instructions.

orientation in the physical world and the touch applied by the user, respectively. The

multivariate Gaussians M and D correspond to the movement taught as the response to

a touch instruction and to the movement actually desired when providing the touch. Fi-

nally, the matrices LTc,u and LM , model how the desired movement is mapped to touches

and actual movements.

As for other research direction that can be taken in future works, the main short-

coming of the present, supervised learning solution is the need to provide the meaning

of tactile instructions. In fact, the supervised learning approach is a good solution if the

user has to teach many tasks to the robot, because initially the teacher will need to teach

the meaning of many tactile instructions, but, as time goes on, he or she will be able to

teach the robot new tasks by mainly reusing previously taught tactile instructions.

However, if the user needs to teach movements to the robot only occasionally, teaching

the meaning of tactile instructions could constitute a non-negligible overhead. Further-

more, since human learners do not need to be taught the meaning of tactile instructions,

this process could be unnatural for users who interact for the first time with a humanoid

robot.

Therefore, removing the need for every user to teach the meaning of all tactile in-

structions, making the teaching process essentially identical to the one used between

instructors and their human trainees, appears of great interest.

As explained beforehand, devising a model of the meaning of tactile instructions in

human-human communication and porting it to the robotics domain is very difficult.

Touch is a very articulated communication means, exhibiting many features such as the

location of its application, its force direction, intensity and time. Performing quantitative

measurements in the interaction between humans is very complicated. However, as seen

in this thesis, acquiring data during the interaction with a humanoid robot is much

easier. In particular, the current supervised learning technique could be used to collect

data from a statistically significant set of users.

The idea is therefore to employ a humanoid for acquiring tactile interaction data from

a sufficient number of users, construct a model for the interpretation of touch instructions
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from these data and use the resulting model for the interpretation of touches of new users.

As we saw in Section 3.5, the way the instructions should be interpreted depends

on the user. When trained with the data from multiple users, the current supervised

learning system would just merge all the data together, and the result would be probably

unsatisfactory for many new users.

Conversely, if the way the user teaches is modeled explicitly, then when a new user

faces the robot, its teaching way can be estimated, and a correct interpreter could be

performed. A possible and elegant solution for this explicit modeling would be, for

instance, the described generative model. Examples of body posture, tactile pattern and

the desired joint movement could be collected using M3-Neony. These data could be

used to determine the model parameters, depicted by rectangles in Figure 7.1, using the

Expectation Maximization algorithm, in a way analogous to [222].

Such a system could also be made adaptive by imposing that when the confidence on

the meaning of the tactile instruction is low, the humanoid will automatically make its

actuators passive, similar to a trainee that relaxes his muscles telling his coach “please

show me how I should do it”. Detecting the forces applied by the user in a way similar to

kinesthetic demonstration and updating the model parameters to include the new data

will make the robot adapt to its user over time, similar to how humans understand a

teacher more and more as the time spent together gets longer.

Last but not least, future versions of the system should explicitly include heuristics

for features usually desired by the users, like balance, posture symmetries or movement

smoothness. These heuristics could be activated with weights that depend on the robot’s

state and used to apply small corrections to a first, “naive” interpretation.

For instance, when the user applies a correction to the right arm posture and this is

going to reach a position close to the one of the left arm, the robot could estimate that

the user is trying to make the arms assume the same position. In such case, the robot

could try to apply small variations to the first interpretation of the tactile instruction

in order to make the robot assume a completely symmetric arm position. Conversely,

when the arm positions is completely different, the robot could disable the heuristic and

do not apply any correction to reach the symmetry.

In conclusion, the implementations of the teaching by touching presented in this thesis

should be considered as a starting point for a new, powerful and user friendly human

robot communication based on direct tactile interaction.
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A
A toolset for humanoid robot simulation

This chapter describes very briefly the main design principles of the software developed

for the research topics previously presented. Particular attention will be given to pplayer,

a software used both for simulation and control of M3-Neony. The purpose of this chapter

is threefold. First of all, it allows a more concrete comprehension of the tools used for the

experiments reported in the previous chapters. Secondly, it provides a brief introduction

of the software available to users interested in using M3-Neony. Finally, it is intended

for relieving other users from the development of similar software tools, since the ones

presented here can be easily reused for newly developed robots.

A.1 Introduction

In the case of mobile robots we notice that some projects reached the maturity level and

are employed by many researchers. For instance Player and Stage [223] nearly constitute

a de facto standard, and their usage allows fast prototyping of new algorithms without

the need of reimplementing graphical user interfaces, and, for many commercial robots,

the software for the robot control.

For humanoid robots, instead, up to date no architecture seems to have spread among

different research groups. Most of the works are in fact based on custom-made simulators.

Sometimes these simulators are released as open source, as in the case of Gazebo [224] and

SimRobot [225], or are sold as a commercial product, as for Webots [226] and Microsoft

Robotics Studio, but none of them has reached the popularity that Player and Stage

have in the mobile robot community.

In many works [227, 228, 229], a library for simulating the dynamics of rigid bodies

called ODE (Open Dynamics Engine), which is already the simulation engine of exist-

ing simulators (Gazebo, SimsPark, Webots, etc.), is directly employed. The success of

this library is surely due to its simplicity. In fact, in a few hours, the complete API

description1 can be mastered, and the examples provided with the code are a very good

starting point of simulations required for fast prototyping of new algorithms. Conversely,

1http://www.ode.org/ode-latest-userguide.pdf
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projects that provide more sophisticated simulations (see [230] for a review) are often

not employed by researchers because of the complexity of their API. For instance, Bullet

is a very complete library for simulations. It allows simulations of rigid bodies as well as

soft bodies and that its integration with Blender [231] allows photorealistic renderings.

However, realizing even simple projects is quite difficult, so most of the researches resort

to simpler libraries such as ODE.

Nonetheless, ODE is designed for generic simulation of rigid bodies, and most of

the researchers reinvent the wheel by implementing wrapper classes used for modeling

humanoid robots. Expressly, usually researchers simulate the servomotors by an hinge

joint and develop a parser that converts a description of physical dimensions of the robot

to a set of rigid bodies in ODE. A rudimentary library, called drawstuff and distributed

with the ODE examples, is usually employed for visualization. While the library is very

simple to use, its design usually requires mixing code for visualization of the objects

and simulation steps. Moreover the library does not implement basic interaction, like

picking objects in the simulated world, which are usually desired by many researchers.

Every time such interaction is needed, the drawstuff library is hacked or reimplemented

by the various research groups, spending time on an extension that other people already

developed in their projects.

Our purpose is therefore to implement basic functions required for humanoid robot

simulations, while keeping the code simple enough to be usable in a short time. We even

aspire at having the code to be easily understandable so that researchers are not forced

to use it as a black box but can customize it for their own purposes without difficulties.

Our library does not therefore aim at substituting articulated projects, like SimSpark,

presented in [232], which provides very advanced functions like a path-name space map-

ping for management of objects or the simulation of a complete match between robots.

The target of our project is thus similar to the one of Simbad [233], although we stress the

fast prototyping aspect more than the educational purpose. Furthermore, we preferred

to employ C++ instead of Java.

The main reason lies in the fact that we intend to seamlessly port our code between

the simulation environment and the real world, but while Java Virtual Machines could

not be available on real robots, C++ compilers are available for all the platforms we are

interested in. We also preferred to employ ODE as the simulation physics library, which

is widely used and therefore debugged, instead of employing custom simulation engines

as in Simbad or MuRoSimF [234]. Since the simulation completely relies on ODE, our

toolset does not present particular difference in terms of simulation speed and accuracy

compared to other ODE based simulators, like Webots or Simspark. The simulator was

used in a wide set of experiments, among which we can cite, for instance, the tests on

user dependence described in Section 3.5.

The code was developed to be as self-contained as possible and we therefore re-

duced the number of employed libraries to a minimum set of widespread ones. In fact,
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we considered reducing the dependencies as a key point, because most users may find

very cumbersome installing many libraries just to be able to compile a simulator. Fur-

thermore, in the open source world backward compatibility is not guaranteed. These

incompatibilities could prevent the code from compiling in the future and could require

the users to install on their systems older versions of the libraries or to wait for code

fixes. Section A.2 describes the basic functions. Section A.3 reports some of the ideas

underlying its design and Section A.4 provides a short list of examples of programs that

use the library.

A.2 Functionalities

Our library for robot simulations is a part of a bigger set of software tools for robot

control, robot simulation and motion development. The main software, called pplayer,

is essentially a server that listens for commands on a socket and actuates the real robot

or a simulated robot, depending on the compilation directives.

We decided to employ commands that consist of simple strings in ASCII format. This

slightly reduces the efficiency of the communication, but allows a lot easier debugging and

permits controlling the robot by a simple telnet connection. The commands include basic

functions like switching on and off the motors or reading the robot sensors. Expressly,

the system provides two ways of reading the sensor values, polling or a proactive way in

which sensory data are sent as soon as they are collected.

Commands can be launched both in a synchronous and asynchronous way, i.e. in the

synchronous mode the next command is executed when the previous one has finished its

execution while in the asynchronous mode commands are executed in parallel. In our

implementation, in order to resemble the Linux bash, every command is launched in an

asynchronous way by simply placing an & after the command. A ps-like command, as in

the Unix world, allows seeing the commands running in a determinate moment, in order

to ease debugging.

Besides the basic sensor reading and actuators activation, pplayer server provides

functions for execution of movements as well. Expressly, most of the open loop hu-

manoid motion executions are based on the concept of key-frames: the angles of all the

joints are defined for certain time instants, termed keyframes, and intermediate postures

are calculated by interpolation. The software comprises commands for transferring the

keyframes to the robot, as well as for playing the motion with an arbitrary playing speed,

starting time and number of iterations.

The software toolset includes a GUI for the development of the motions, shown

in Fig. A.1. The interface provides all the functions common to classical commercial

editors like VStone’s Robovie Maker2 or Kondo’s Heart2Heart3. Notice that all of the

2http://www.vstone.co.jp
3http://www.kondo-robot.co.jp
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elements, like the sliders that allow modifying the joint angles of a frame, are generated

automatically by simply passing an object that describes the physical structure of the

robot. The same robot description is used for generating an ODE model. The simulator

is capable of simulating multiple robots, as shown in Fig. A.2, and allows easy insertion

of objects in the environment, as visible in Fig. A.3.

Rendering of the simulation can be enabled or disabled. When rendering is enabled

it is possible to interact with the mouse to move and rotate robots and objects in the

simulated environment. The rendering can be saved as a video by simply setting a

filename parameter in the function that enables the drawing. The simulator simulates

virtual cameras, which can be easily attached to any part of a robot, and virtual touch

sensors. In particular, while ODE provides contact forces between bodies, our API allows

detecting the forces that act on a single face.

The software toolset is composed by the following components

• A library for OS dependent functions, e.g. retrieving the date (in milliseconds) or

creating a socket

• Math utilities (matrix computations, generation of random numbers with Gaussian

distribution, integration of differential equations, description of graphs, etc.)

• Networking utilities (client sockets, multi-client server socket, classes for simple job

dispatching over the network, etc.)

• Utility classes for the creation of windows, keyboard and mouse callbacks, OpenGL

renderings and recording of videos of the generated renderings

• Classes for robot modeling

• Classes for the simulation (Object Oriented wrapper of ODE) and its visualization

• A graphical interface developed with gtkmm 4, that allows the development of

robot motions

A.3 Design policies

A.3.1 Basic classes

An important element in our system is the Motors superclass. The Motors class represent

a set of motors, which can correspond to real servomotors, simulated ones or more

abstract objects. Among the subclasses of Motors we can cite

• PrintMotors : saves the postures to a log file

4A C++ wrapper of gtk, http://www.gtkmm.org/
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Figure A.1: A classical slider based interface automatically generated for a specific robot using
our library, running in Windows XP, Ubuntu 9.10 and Mac OSX Snow Leopard.
The interface includes collision detection algorithms which display graphically the
parts that would collide when moving the actual robot.
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Figure A.2: Two M3-Neony robots in the simulated world during a one vs one soccer simulation.

Figure A.3: Views of the robot and some objects in the simulated world.
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• HubMotors : allows to attach multiple Motors objects to the HubMotors so that

when the HubMotors is rotated, all the attached Motors are rotated simultaneously.

• CollPrevMotors : when a Motors is attached to a CollPrevMotors and the Coll-

PrevMotors object is rotated, a fast collision detection computation is performed

at each rotation, and each motor of the Motors object is rotated to the maximum

extent that does not perform any self-collision of the robot (the computation is

performed as if the motors were turned one at a time, in an order specified by the

user).

Another basic class underlying our system is the Policy class. A policy is essentially

a parametrized function that is able to return joint angles for any time instant. For in-

stance, a classical key-frame based representation have as parameters the various frames

(with their time) and the values returned for intermediate times are the interpolation

of the previous and following keyframe (FramePolicy class). Another subclass of policy,

Sinpolicy, moves the joints using sine waves. Although very simple, by appropriately

setting the frequencies, amplitudes, phases and offset positions, simple sinusoidal move-

ments are able to generate a great variety of movements. In our code, Central Pattern

Generators were represented as a subclass of Policy as well (HopfPolicy), by introducing

variables describing the internal state.

A.3.2 Robot modeling

An important set of classes is used for modeling robots. In detail, any robot is modeled by

describing its kinematic chain in terms of SkeletonNode elements. The nodes are attached

in a graph structure, similarly to what is done in OpenSceneGraph [235]. Parts, described

by Part objects, are attached to the graph to describe the shape and mass distribution of

the robot. The Part objects can be described by a set of Element objects, that provide

the description for basic shapes like spheres or cuboids. The Element objects provide

easy customization of the appearance of the robot. For instance, simply specifying the

texture filename allows having photorealistic renderings.

Several functionalities can be added to the Element objects by using subclasses of

the Customization class. For example, by the simple insertion of a ForceSensorBox-

Customization object (subclass of Customization) in an Element class, it is possible to

describe the presence of a touch sensor on each face of the element. The representation

in terms of SkeletonNode, Part, Element and Customization objects can be obtained

automatically by an XML file, allowing easy development and debugging of new robot

models. The modeling is completely independent from the libraries used for simulation,

so it would be possible to easily include the support for other physics simulation libraries

like Bullet. In particular, once the PAL project5 is mature enough, we could employ

5Physics Abstraction Layer (http://www.adrianboeing.com/pal/index.html), a project aiming at
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PAL in place of ODE to have a completely transparent way to change the underlying

physics simulation. Expressly, in our current library, the model in terms of ODE prim-

itive objects is automatically generated when a SkeletonNode graph is inserted into an

OdeWorld object by the addRobot function. Multi-robot simulation is therefore trivial.

Adding static objects to the world, like the horizontal bar in Fig A.3 is very simple as

well, it is in fact sufficient to pass a SkeletonNode graph to the addStaticObject func-

tion of the OdeWorld class. During the simulation, all the information regarding the

robot can be easily obtained by functions like getPartRototranslation(double *rotoTra)

that returns in rotoTra the roto-translation matrix of a part, expressed in the absolute

reference frame.

A.3.3 Visualization

Creation of windows to display, for instance, the rendering of the simulation from a

third point of view or from a robot-mounted camera, is done using GlPrimitiveCanvas

objects. To add a window, it is in fact sufficient to add an element to the vector of Gl-

PrimitiveCanvas objects passed to the glDraw function. Each window allows chaining a

series of mouse (MouseInteraction objects) and keyboard managers (KeyboardInteraction

objects) that are called in sequence to deal with the user actions.

The library provides callbacks that allow picking and placing of objects in the sim-

ulated 3D world as well as movements of the camera observing the scene. A keyboard

managers that allow pausing the simulation, restoring the robot position to a standard

state, switching the visualization to a wireframe mode, activating a rotating camera and

so forth is provided as well.

Simulations without the scene rendering (to decrease the computational cost or allow

distributed simulations over command line sessions) can be obtained by simply avoid-

ing to invoke the glDraw function. In the cases when the simulation of the camera is

necessary, the library switches to offline rendering by the usage of the OSMesa library,

allowing simulations on systems that are not running any X-server or equivalent.

A.3.4 Command Parsing

As stated in the introduction, the pplayer program opens a TCP socket and listens for

commands. This is done by instantiating an AsciiServer object, i.e. a multi-client server

that expects non binary commands. The command parsing is very modular, to allow

easy extension or reorganizations of the command set. The AsciiServer provides the

registerCommandParser function, that enables adding a CommandParser object to a

chain of parsers. Each command parser has to specify its name, and the commands it

providing a common interface to different dynamic engines.
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manages. It can also expose some commands to the “shortcut” mode. Every command

is assumed to be composed of

1. Z, followed by the name of the parser that should manage it

2. a space

3. an action (i.e. a string)

4. a variable number of parameters, separated by spaces

5. the terminating character, in our implementation “;”

When a command is exported to the “shortcut” mode, the command parser name

does not need to be specified, i.e. the commands starts directly with the action.

The shortcut mode allows reducing typing for frequently sent commands, as well as

to make two managers handle the same command. In this case, the parsing priority

can be specified, as well as whether after using a manager to parse the command, other

managers should be invoked as well. Table A.1 reports the commands currently available.

Note that the syntax is highly variable, and designed mainly with the idea of providing

a handy way to interact with the robot by a command line interface.

Table A.1: Listing of the commands available

parser command meaning

H display the commands summary

HP show the running processes (commands)

[ZMO] P <joint> <0|1> set the power of joint <joint> off (0) or on

(1)

[ZMO] R JR <joint> <angle> rotate joint <joint> to angle <angle> (in

radians)

ZMO FR bypass any optimization and force the rota-

tion given by the following R JR command

[ZMO] D JR <joint> [<times>] read the position of joint <joint> controlling

to get similar results <times> times.

[ZSM] R JI <joint> <value> rotate the joint with <joint> by setting

the desired raw (potentiometer) position

<value>

[ZSM] D JI <joint> [<times>] read the raw (potentiometer) position of

joint <joint> controlling to get similar re-

sults <times> times.

ZMO TD stop continuous readings of the position
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ZSM TD stop continuous readings of the raw position

TD stop any continuous motor position reading

[ZSM] O <joint> <min>

<max> <zero>

replace the calibration of the joint <joint>

with values <min> <max> <zero>

ZSM PID <joint> <p> <d>

<e> <i>

set the PID parameters <p> <d> <e> <i>

for joint <joint> (see sect. 4.1)

ZSM VG VGET <joint>

<addr> <size>

get <size> bytes from the ROM of joint

<joint> starting from address <addr>

ZSM VS VSET joint addr size

value

set <size> bytes from the ROM of joint

<joint> starting from address <addr> with

the value <value> (little endian)

ZSM FR Force Rotate joint bypass any optimization and force the rota-

tion given by the following R JI command

[ZTS] U U<mode>[C] [<sensor

ids>]

read the touch sensors <sensor ids>, all if

none specified, continuously if C is present.

<mode> is N for being notified of the value

of all the sensors exceeding a threshold, P for

powering off the limbs grabbed (see sec. 4.2)

and I for retrieving the raw value measured

by all the sensors

[ZTS] TU stop continuous readings of the touch sensors

[ZGY] G G<mode>[C] read the accelerometer and gyroscope in-

formation, continuously if C is present.

<mode> is I for the raw readings and R for

the estimated robot rototranslation matrix

[ZPP] L <start time> <playing

speed> [<iterations>]

play the current motion from <start time>

at <playing speed> times the normal speed

for <iterations> times (1 if unspecified).

[ZGY] TG stop continuous readings of the accelerome-

ters and gyro

[ZPP] T stop playing a motion

[ZPP] Y <action><type>

[<params>]

operate on the current motion (policy).

<type> is F for a frame based policy and S

for moving all the joints by sine waves. <ac-

tion> is S for selecting the policy <type>

and P for setting its parameters (notion

specification).

[ZPP] S <joint> <time-position

sequence>

set the positions (frames) of the joint

<joint> for the policy type <F>
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ZPP RS[Z] <t> [<t2>] <target

joint values> [<start joint

values>]

rotate slowly (in <t> milliseconds) all the

joints from the position <start joint values>

(the current if unspecified) to the <target

joint values>. If Z is specified, to avoid col-

lisions, the robot assumes intermediately its

zero position in <t> milliseconds and then

moves to the target position in <t2> mil-

liseconds.

ZMP R <t> <id> <target joint

values>

rotate all the motors slowly (in <t> millisec-

onds) to the position <target joint values>

and return the <id> if no other ZMP R

commands are provided in<t>milliseconds,

otherwise accept the new ZMP R command

and ignore the current one.

[ZSIM] VG <variable name> get the value of variable <variable name> of

the simulator. Currently only MU (friction

coefficient) is supported.

[ZSIM] VS <variable name>

<variable value>

set the value of variable <variable name> of

the simulator. Currently only MU (friction

coefficient) is supported.

Notes: [.] indicates an optional value, < . >

indicates a parameter. <joint> set to -1

has the meaning of “all joints”. Similarly

<times> set to -1 is used to read continu-

ously and <iterations> set to -1 indicates

infinite iterations.

A.3.5 Client applications

The interface for motion development, reported in Fig. A.1, as well as most of the software

developed for experiments and demonstrations, acts as clients of the pplayer server. In

detail, all the software uses the AsciiClient class, that provides functions for rotating the

motors, reading the potentiometers or the touch sensor values and so forth. The TCP/IP

communication between the AsciiClient class and pplayer is completely transparent to

the client applications. All applications operate on the robot by simply invoking the

AsciiClient functions without any knowledge of the underlying communication. In other

terms, all applications invoke the AsciiClient functions as they were operating directly

with the robot’s hardware.
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A.3.6 Dependencies

All of the software is written in standard C++. The compilation was tested under

g++ versions 3.3, 3.4, 4.2, both in Linux and Cygwin environments and under Microsoft

Visual Studio 2005. The code strongly uses the Standard Template Library (STL) library

to improve its readability. Conversely, compiler dependent libraries like the Microsoft

Foundation Class Library (MFC) are avoided to assure code portability.

Each module of the system can be enabled or disabled by compilation directives.

This allows the exclusion of all things which are not relevant for particular applications,

simplifying the code and reducing the libraries required. In detail, the minimal require-

ments consist of the pthread library on Linux and the Winsock2 library on Windows

(when the source is compiled with Visual Studio). Enabling the simulation requires the

ODE library. In particular, the current code assumes the ODE library to be compiled

with the –enable-double-precision option.

Enabling the rendering requires the GLUT library. If the possibility to save videos

is included, then the Intel OpenCV library (and the related highgui) must be included.

Furthermore, if offline rendering is desired, then the OSMesa library should be installed.

When the possibility to parse models in the XML format is activated by the compilation

directives, the TinyXml6 library is required. The TinyXml is a minimal C++ XML

parser that can be easily integrated into other programs by simply including its object

files at compilation time.

Finally, if the graphical user interfaces are compiled, the gtkmm library, a C++

wrapper of Gtk, is required.

A.4 Usage Examples

The libraries were employed for the realization of all the experiments presented in the

previous chapters. Notably, they are currently being used by the JEAP RoboCup team

at Osaka University [236] as well.

Several demonstrations, that essentially consist of simple client programs that employ

the AsciiClient class, were developed as well. Fig. A.4 shows some keyframes of a simple

demonstration of the sensors available on the robot7. The program consists of a state

machine (implemented with the state design pattern [237]). At the beginning of the

demonstration the robot is sleeping. In this state, the robot waits for sounds of volume

crossing a certain threshold, as shown in Fig. A.4(a). When the user claps his hands, as in

Fig. A.4(b), the robots starts crying, as visible in Fig. A.4(c). When the accelerometers

indicate that the user lifted the robot with the head upwards, as shown in Fig. A.4(d),

then the robot stops crying. In this state the robot switches off the motors, and laughs

6See http://sourceforge.net/projects/tinyxml/
7A video is available at http://robotics.dei.unipd.it/~fabiodl/video.php?sensorDemo
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when the sensors on the belly are pressed, as in Fig: A.4(e). Finally, after laughing for

three times, the robot starts to follow red objects, as shown in figures A.4(f) and A.4(f).

Another demonstration is related to biological fluctuations, a very general phenomena

found in nature [238, 239, 240]. For instance, some cells can adapt to environmental

changes by altering their pattern of gene expressions and metabolic flux distribution.

These adaptive responses are usually explained by the signal transduction mechanisms,

a sort of a pre-wired logic circuit that modifies the gene expression depending on the

environmental condition. However, not all of the adaptations can be explained in terms

of transduction mechanisms and in [241] it was shown that cells can select states most

favorable for their survival among a large number of other possible states simply because

the cells that grow more (are more adapt to the environment) present a less stochastic

behavior. Biological fluctuations are often modeled for continuous time systems as

ẋ = Af(x) + η. (A.1)

where x ∈ Rm is the control signal or represents the value of some parameter that

determines the behavior (of the animal or, in our case, of the robot), f : Rm → Rm is a

deterministic function of the current value of x, η is a random variable and A : Rn → R
is a function, called “activity”, that indicates the fitness, or “quality” of a particular state

of the living being/robot. Intuitively, when the state is getting better, the value of A

increases and the control actions follow f and become mainly deterministic, while when

the conditions worsen the control becomes more and more stochastic.

If the states are discrete, the same effect can be obtained using a Markov chain and

assuming the transition probability from a state to itself as an increasing function of the

state fitness. In particular, we conducted an experiment where we controlled each joint

of a mobile robot by sine waves, and define the (crawling) velocity as the fitness of a

state. The frequency, amplitude and an offset values along which the motors oscillate

were set to a fixed value. The phases, i.e. the timing differences between the various

servomotors, were instead varied for 4 of the motors (the shoulder and the hip pitch

joints) to obtain different behaviors. In detail we prepared N = 8 states corresponding

to 8 different phase settings, as shown in Fig. A.5.

We assumed the transition probability from a state to itself to be equal to a, and

from to a state to another to be equal to (1−a)/(N −1), with a = σ (v − v0), where σ is

the sigmoid function, v is the robot velocity and v0 is a constant. We verified that with

this simple setup, the robot is able to find the phase setting most suitable to crawl and

to change it when the performance decreases because, for instance, an obstacle prevents

the robot movement8. Also in this case, the code is very limited, and is strongly based

on calls to the AsciiClient class methods. In fact, the whole program consist of a single

file of few hundreds of line of code.

8A video is available at http://robotics.dei.unipd.it/~fabiodl/video.php?yuragiCrawl
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure A.4: Scenes of a demonstration of the robot sensors: the microphone, the accelerometer,
the touch sensors and the cameras.
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