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Abstract

In this thesis we discuss the behaviour of direct sum decomposition in addi-
tive categories and in particular in categories of modules.

In the first part of the thesis, we investigate the ring theoretical properties
that play a main role in the theory of factorization in additive categories, like the
exchange property, semilocality and Goldie dimension. We stress the importance
of the latter and we investigate with care the infinite case of the dual Goldie
dimension of rings.

In the rest of the thesis, we use a more categorical approach, studying the
behaviour of direct sum decomposition in additive categories. Given an additive
category C, its skeleton V (C) has the structure of a commutative monoid under
the operation of direct sum, and all the information about the regularity of the
direct sum decomposition in the category C are traceable from the monoid V (C).
We study classes of categories where the direct sum decomposition behaves
quite regularly; mainly we restrict to categories C whose monoid V (C) is a
Krull monoid, underlining the prominent role played by semilocal endomorphism
rings. We analyze the peculiar behaviour of direct sum decomposition in some
categories of modules, where the uniqueness of the decomposition is obtained
up to two permutations, and we notice how this phenomenon is due to the
presence of endomorphism rings of type two. In the last chapter we investigate
what happens when we pass from finite direct sum of indecomposable objects to
infinite direct sums, and we develop the setting for the phenomena we studied
in the finite case to appear, both at a monoid theoretical and at a categorical
level.

Sommario

In questa tesi discutiamo il comportamento della decomposizione in somma
diretta in categorie additive e in particolare in categorie di moduli.

Nella prima parte della tesi, investighiamo le proprietà degli anelli che gio-
cano un ruolo prominente nella teoria della fattorizzazione nelle categorie addi-
tive, come per esempio la proprietà di scambio, la semilocalità e la dimensione
di Goldie. Vogliamo sottolineare l’importanza di quest’ultima e investighiamo
con attenzione il caso infinito della dimensione duale di Goldie di un anello.

Nel resto della tesi, utilizziamo un approccio più categoriale, studiando il
comportamento della decomposizione in somma diretta nelle categorie addi-
tive. Data una categoria additiva C, il suo scheletro V (C) ha la struttura di
un monoide commutativo rispetto all’operazione di somma diretta, e tutte le
informazioni riguardo la regolarità della decomposizione in somma diretta nella
categoria C sono rintracciabili attraverso il monoide V (C). Studiamo classi di
categorie in cui la decomposizione in somma diretta assume un comportamento
abbastanza regolare; principalemente ci restringiamo a categorie C il cui monoide



V (C) è un monoide di Krull, evidenziando il ruolo prominente occupato da parte
degli anelli degli endomorfismi semilocali. Analizziamo il comportamento pe-
culiare della decomposizione in somma diretta in alcune categorie di moduli,
dove l’unicità della decomposizione è garantita a meno di due permutazioni, e
notiamo come questo fenomeno sia dovuto alla presenza di anelli degli endo-
morfismi di tipo due. Nell’ultimo capitolo investighiamo cosa succede quando
passiamo da somme dirette finite di oggetti indecomponibili a somme dirette
infinite, e sviluppiamo l’ambiente in cui i fenomeni studiati precedentemente
nel caso finito si manifestano, sia ad un livello di teoria dei monodi sia ad un
livello categoriale.
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Introduction

In the determination of a complex structure, there are two key steps: first it
is necessary to identify the simplest elements, the basic constituents, the ele-
mentary pieces. Then one has to analyze how these elements interacts between
them to give rise to more complicated structures. In various fields of knowledge,
we have examples of this procedure.� The first example that comes in mind is given by nature itself, since we

understand matter as constituted by ατoµoς . The idea that matter is
composed of elementary particles dates back to ancient Greece, thanks
to philosophers as Leucippus, Democritus and Epicurus. Only from the
19th century, though, this approach was backed by some physical experi-
ment. Nowadays, particle physics is the branch of physics that studies the
elementary subatomic constituents of matter and radiation, and the inter-
actions between them. Strictly speaking, in this context, the term particle
is a misnomer because the dynamics of particle physics are governed by
quantum mechanics and, as such, they exhibit wave-particle duality dis-
playing particle-like behaviour under certain experimental conditions and
wave-like behaviour in others (more technically they are described by state
vectors in a Hilbert space).� In the investigation of human kinds and their society, psychology studies
the behaviour of individuals and their mental processes. Such a study
regards the internal dynamics of a person, the links that intervene be-
tween him and what surrounds him, the human behaviour and the mental
processes that exist between external stimulation and related answers. So-
ciology instead is the science that studies social structures, their organiza-
tions, the norms and the processes that unite, or separate, people not only
as individuals but as exponents of associations, groups and institutions.� In the LEGO construction game, the player is given a precise amount of
building blocks and he has to follow closely the instructions to combine
the pieces to construct a model. More generally, one can try, given a fair
amount of bricks, to combine them appropriately to create a new model.� A quite interesting example is provided by linguistics. On the one hand,
this subject studies how phonemes, i.e. the smallest segmental units of
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sound, are used in the different languages to construct words and hence
to communicate verbally. On the other hand, it investigates how differ-
ent alphabets are used by different cultures to produce, by juxtaposition,
words, and, composing them, sentences and written texts. Moreover, it
analyzes also how one aspect translates into the other, that is how it is
possible to pass from oral to written communication and viceversa.

Now we provide some mathematical examples.� In mathematical logic, an atomic formula is a formula with no deeper
propositional structure, that is, a formula that does not contain logical
connectives or equivalently that has no strict sub-formulas. Using logical
connectives and quantifiers it is possible to construct propositions starting
from atomic formulas. On an higher level, the rules of inference allow then
to deduce conclusions from assumed axioms.� Every finite group G has a composition series, i.e. a subnormal series
1 = H0 ⊲ H1 ⊲ . . . ⊲ Hn = G such that each Hi is a maximal nor-
mal subgroup of Hi+1. Equivalently Hi+1/Hi is a simple group for every
i = 0, . . . , n − 1. This allows us to decompose any finite group as a family of
finite simple groups. The latter have been classified completely, providing
a complete list of the building blocks that give rise to all finite groups
through composition series. Moreover the Jordan-Hölder Theorem states
that any two composition series of a given group are equivalent. That is,
they have the same composition length and the same composition factors,
up to permutation and isomorphism. Anyhow, this is not enough to con-
clude the classification of all finite groups, since a composition series does
not determine the group itself.� An integral domain R is atomic if every non-zero non-unit element can be
written as the product of finitely many irreducible elements. If this can be
done in a unique way, up to the multiplication by a unit and a reordering
of the factors, R is said to be a unique factorization monoid.

Now we try to summarize in an abstract way what we are trying to illustrate
with the above examples. Let M be an atomic monoid, i.e. every element is the
sum of finitely many atoms. To study the behaviour of its operation, we can go
through three steps:

1. identify the atoms of M ;

2. determine when the sum of two finite families of atoms coincide;

3. determine all the possible factorizations for every element of the monoid.

In the easiest case, M is a free commutative monoid, i.e. M ≅ N(I)
0

for some

set I. In fact, the atoms of a free commutative monoid N
(I)
0

are the elements
with a unique non-zero entry equal to 1. Moreover, the sum of two finite families
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{mi}ki=1 and {nj}lj=1 of atoms of N
(I)
0

coincide if and only if k = l and there exists
a permutation σ of {1, . . . , k} such that mi = nσ(i) for every i = 1, . . . , k.

We are particularly interested in the monoids that describe the behaviour
of the direct sum decomposition for some additive category C. This monoids
are defined as follows. Given an additive category C, any skeleton of C has the
structure of a commutative monoid V (C), where the operation is the direct sum
of objects.

In this case, the atoms of the monoid V (C) are the indecomposable objects
of the category C. It is of clear interest to know for which additive categories C
the monoid V (C) is free. The theorems that prove that the monoid V (C) is free
for some additive category C are generally known as Krull-Schmidt theorems.

The Krull-Schmidt Theorem and its weaker ver-

sions

The starting point of the history of the Krull-Schmidt Theorem is the well known
result of Frobenius and Stickelberger, that states that every finitely generated
abelian group is isomorphic to a direct sum of primary cyclic groups and infinite
cyclic groups, and this decomposition is unique [28].

The next step came in 1909, when Wedderburn proved that any two direct
product decompositions of a finite group G into indecomposable factors G =
H1 × . . . × Hr = K1 × . . . ×Ks are isomorphic [53]. Wedderburn’s Theorem is
stated as an exchange property between direct decompositions of maximum
length. However, his proof makes no use of automorphisms.

Two years later, Remak [46] derived the same result showing also that the
indecomposable factors are centrally isomorphic, i.e. there is an automorphism
σ of G that is the identity modulo the center Z(G) of G such that, after suitable
relabeling of the indexes, σ(Hi) =Ki.

Subsequently, Krull [38] and Schmidt [49] extended this result to modules
with finite length, obtaining the following Theorem.

Theorem 0.0.1 (Krull-Schmidt) Let R be a ring and MR a right R-module
of finite length. Then there exists a decomposition

M =M1 ⊕ . . .⊕Mr

where each Mi, i = 1, . . . , r, is an indecomposable submodule of M . Moreover, if
M = N1⊕ . . .⊕Ns is another decomposition of M into indecomposable modules,
then r = s and there exists a permutation σ of {1, . . . , r} such that Mi ≅ Nσ(i)

for every i = 1, . . . , r.

In 1950 Azumaya [6] extended the Theorem to the case of arbitrary direct
sums of modules with local endomorphism ring. This result goes under the
name of Krull-Schmidt-Azumaya Theorem (Theorem 1.2.8).

After proving the Theorem for the class of modules of finite length, Krull
asked in 1932 whether a similar theorem holds also for the class of artinian
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modules. During the years, many partial results were obtained. For example,
in 1969 Warfield [51] proved that such a theorem holds if the ring R is either
commutative or noetherian. Anyhow, in 1995, in [21] it was proven that a Krull-
Schmidt theorem cannot hold in general for the class of artinian modules over
a ring R.

A problem similar to that of Krull was posed in 1975 by Warfield [52]. He
proved that every finitely presented module over a serial ring is a direct sum of
uniserial modules, and asked if such a decomposition is unique. In other words,
Warfield asked if a Krull-Schmidt theorem holds for serial modules. The solution
to this problem, a negative answer again, was provided in 1996 by Facchini [13].
Anyway, a certain regularity in the possible direct sum decompositions can still
be observed. To be precise, there are two invariants under isomorphism ∼m
and ∼e on the class of uniserial modules such that the following holds: given
uniserial modules U1, . . . , Un, V1 . . . , Vm, we have U1 ⊕ . . .⊕Un ≅ V1 ⊕ . . .⊕ Vm if
and only if m = n and there are two permutations σ, τ of {1, . . . , n} such that
Ui ∼m Vσ(i) and Ui ∼e Vτ(i) for every i = 1, . . . , n. We can say then that the
uniqueness of the decomposition is given not up to one permutation, but up to
two permutations.

In the following years, other classes where such a weak Krull-Schmidt theo-
rem holds were found. For instance the class of uniserial modules can be gen-
eralized to the class of biuniform modules, i.e. modules that are both uniform
and couniform. Other classes are kernels of morphisms between indecomposable
injective modules [11], cyclically presented modules over local rings [2], couni-
formly presented modules [17], artinian modules whose socle is isomorphic to
the direct sum of two non isomorphic simple modules.

Following the evolution of the classical Krull-Schmidt Theorem into the
Krull-Schmidt-Azumaya Theorem, a natural question to ask, investigating di-
rect sum decompositions, is what happens when one considers arbitrary direct
sums instead of finite ones. In the above mentioned examples, where a weak
Krull-Schmidt theorem holds, one notices how some form of regularity is pre-
served in the infinite case. In the case of cyclically presented modules over a
local ring, the behaviour is analogous to the finite case; in fact the uniqueness
of the direct sum decomposition is still granted up to two bijections [3]. When
we consider the case of uniserial modules, the situation becomes more com-
plicated. We don’t have anymore a completely symmetrical behaviour for the
presence of the so-called non-quasi-small modules [42]. Anyway, we can still give
a complete description of the direct sum decomposition. In fact, the following
happens: given two families {Ui ∣ i ∈ I} and {Vj ∣ j ∈ J} of uniserial modules,
we have ⊕i∈IUi ≅ ⊕j∈JVj if and only if there are two bijections σ∶ I → J and
τ ∶ I ′ = {i ∈ I ∣ Ui is quasi-small } → J ′ = {j ∈ J ∣ Vj is quasi-small } such that
Ui ∼m Vσ(i) for every i ∈ I and Vi ∼e Vτ(i) for every i ∈ I ′ [45].

This thesis aims to present a collection, definitely not comprehensive, of
recent results in the field obtained by the author and others. We combine
together some well-known theorems and techniques, some results among the
recent ones and some aside results which show how the literature is, as it is
natural, full of material that could help spreading our comprehension and finding
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new approaches and ideas. Particular care is given, obviously, in pointing out
the authors own contribution to the research in the field.

Organization of the thesis

The thesis is organized as follows.
In chapter 1, we collect the classical results that we need in ring theory. In

particular we provide a proof of the Krull-Schmidt-Azumaya Theorem using the
exchange property and we investigate semilocal rings. The latter would turn out
to be a key concept for the regularity of the direct sum decomposition and, as a
first evidence of this, we prove that a module with semilocal endomorphism ring
cancels from direct sum. We also dedicate a whole section to Goldie dimension
and dual Goldie dimension and we present their relation with the structure of
rings.

In chapter 2, we generalize the Goldie dimension to the infinite case, trying
to reprove in this setting the results we obtained in the finite case. We are
particularly interested in the dual Goldie dimension, since its finiteness is strictly
related to the cancellation of modules from direct sum. Making use of lattice
theoretical techniques, we compute the dual Goldie dimension of some classes of
rings, as Boolean rings, rings of continuous functions and abelian von Neumann
regular rings.

Chapter 3 deals with the concepts of monoid theory that we need. This
is very useful, since monoids are the proper setting to investigate factorization
problems. In particular, the skeleton V (C) of an additive category C has the
structure of a monoid, when we consider the direct sum as operation, and the
information about the regularity of the direct sum decomposition in the categoryC are traceable from the monoid V (C). The correct family of monoids to consider
to investigate the weak versions of the Krull-Schmidt theorem that we illustrated
above are Krull monoids. By definition these are the monoids M that admit a
divisor homomorphism into a free commutative monoid; this means that we can
read the divisibility, and hence the factorization of the elements, of M looking
at the divisibility in some free commutative monoid. Applying the theory of
Krull monoids to the case of direct sum decomposition in additive categories,
we provide a strategy to identify additive categories whose skeleton is a Krull
monoid.

In chapter 4, we merge methods from category theory with the instruments
developed in the previous chapter. With an high resemblance to what it is widely
known for rings, we study maximal ideals of preadditive categories and the
related simple categories. Maximal ideals do not exist in general for an arbitrary
preadditive category C, but they do always exist when C is semilocal, i.e. whenC is a preadditive category with a non-zero object in which the endomorphism
ring of every non-zero object is a semilocal ring. If C is a semilocal category, we
get an isomorphism reflecting functor F ∶C → ⊕M∈Max(C)C/M, where Max(C) is
the class of all maximal ideals of C, which allows us to get a good representation
of the structure of semilocal categories. For an additive semilocal category C,
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the functor F induces a monoid homomorphism V (F ) of the monoid V (C)
into the free commutative monoid V (⊕M∈Max(C)C/M) ≅ N(Max(C))

0
. If moreover

idempotents split in C, as V (F ) turns out to be a divisor homomorphism, the
monoid V (C) is necessarily a Krull monoid.

In chapter 5, we describe with accuracy the phenomenon of the weak Krull-
Schmidt theorems. The key concepts here are those of ring and object of finite
type. A ring R is said to be of finite type if R/J(R) is isomorphic to a product
of division rings and an object A of a preadditive category C is of finite type
if its endomorphism ring EndC(A) is so. Categories which have all objects
of finite type are the natural setting where the so called weak Krull-Schmidt
theorems hold. To underline this, we provide a fair number of examples. We
conclude this chapter investigating categories C in which every object is of type≤ 2. It turns out that the behaviour of direct sums of finitely many objects
of type 2 is completely described by a graph whose connected components are
either complete graphs or complete bipartite graphs. The vertices of the graphs
are ideals in C. The edges are isomorphism classes of objects. The complete
bipartite graphs give rise to a behaviour described by a weak Krull-Schmidt
theorem.

Chapter 6 is dedicated to generalize the weak Krull-Schmidt theorems to
the infinite case. To follow a similar path to the one we took in the finite
case, we first investigate the problem at a monoid theoretical level. Since usual
monoids do not allow infinite sums, we introduce a new algebraic structure,
that we call commutative infinitary monoid, where arbitrary infinite sums are
possible. We look at the first properties of this structure, showing that there
is a canonical way to pass from usual commutative monoids to infinitary ones.
With this in hand, we define properly the Infinite 2-Krull-Schmidt Property,
we give a complete description of the phenomenon and we apply our results to
the skeleton V (C) of a cocomplete category C, endowed with the coproduct as
operation. At this point we notice that we need some more generality to include
the case of uniserial modules, where the existence of non-quasi-small modules
ruins the symmetry of the Infinite 2-Krull-Schmidt Property. Therefore we need
to go back to the monoid theoretical level and define a more general Infinite
Quasi 2-Krull-Schmidt Property. Eventually we apply our results to the case of
a preadditive category, obtaining a theorem that includes and generalizes the
uniserial case.

For what concerns the fatherhood of the results, chapters 1, 3 and 5 are
extracted from already known results, to give the appropriate setting for the
author’s own results. Generally, for each result, the reference from where it is
taken is cited in the text. Chapter 2 is taken from [40] and chapter 4 from [22].
Chapter 6 is a personal work of the author not published yet.

Notations

For the reader convenience, we record here the assumptions we will taking for
granted throughout the thesis and the use of the symbols that could be misin-
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terpreted.
All rings we consider are associative rings R with 1R ≠ 0R. Anyhow, we will

sometimes call ring also the endomorphism ring of the zero object of a category.
We will try to be careful about this. Modules are, if not differently stated,
unital right R-modules. All our monoids are commutative additive monoids,
i.e. commutative additive semigroups with an identity element 0.

Subsets will be denoted by ⊆ and proper subsets by ⊊. In general ≤ will
denote a preorder and a < b means a ≤ b and a ≠ b.

The symbols N,N0,Z,Q,R will denote respectively the set of positive inte-
gers, of the non-negative integers, of the integers, of the rationals and of the
real numbers.

When writing Mod-R and mod-R we will mean the category of right R-
modules and of finitely generated right R-modules, respectively.

We will use calligraphic letters (A,B,C, . . .) to denote categories and ideals
of categories, capital letters (A,B,C, . . .) to denote rings, modules and objects
of a category and small letters (a, b, c, . . .) to denote elements. Moreover, to
denote cardinal numbers we will use Hebrew letters (ℵ,ℶ, ℷ, . . .).

Foundations

In these years of research in subjects strictly related with category theory, I
came across with several problems concerning the largeness of the structures
I was working with. This is strictly related with the foundations of category
theory. It is clear that the usual set theory, i.e. Zermelo-Fraenkel with the
axiom of choice, which is denoted by ZFC, is not sufficient because category
theory deals often with collections that are not sets but proper classes. Hence
there is the need of a more powerful axiomatic set theory to work with. The
requirements that one would ask for such a theory are the following.� There should exist all the natural categories, as the category of all sets

(with functions), the category of all groups (with group morphisms), the
category of all topological spaces (with continuous maps) and even the
category of all categories (with functors).� If A and B are two categories, then there should be a category of all
functors from A to B, with natural transformations as functors.� Standard set-theoretic operations used throughout mathematics, as taking
unions and intersections of a set of sets or constructing powersets and order
pairs, should be possible.� The framework should be provably consistent from some standard set-
theoretic background.

Many different approaches to the construction of such an axiomatic system exist,
but none of them in fact satisfy all the above requirements. We just mention
two paths that we do not follow: the first is the so called Grothendieck axiom of
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universe, that add to the usual ZFC the axiom that every set is contained in a
universe. A universe is just a transitive set, which also contains the powerset of
any of its members, and also contains the range of any definable function applied
to any set inside the universe. The main negative aspect of this assumption is
that the categories of all sets, all groups, etc. do not exist, but we are restricted
to consider the categories of sets and groups inside a given universe.

The second approach is the one followed by Feferman, based on Quine’s New
Foundations (NF). NF is an axiomatic set theory that constitutes only of two
axioms, extensionality and a comprehension schema, that solves the standard
set-theoretical paradoxes using the concept of stratified formula. Doing so, there
are no more problems in constructing big sets; in this theory, we have a set of
all sets, a set of all groups, etc. The negative aspect of this theory is that some
weird things happen at the basic set theoretical level. For example, it is no more
true that the cardinality of the powerset must be bigger than the one of the set
itself, and in fact it can be lower. From the point of view of a non-expert of
the field as I am, this seems to be the most interesting way to find a satisfying
axiomatization for category theory. Anyhow, due to the scarce understanding
of it, I preferred to follow a most usual path.

We trail the most common road, following the approach of MacLane that
distinguishes between small and large objects. This means that we have to
consider an ontology that consists not only of sets, but also of classes. Lousily
speaking, classes are the collections that are too big to be sets. Being more
precise, sets are classes that are elements of other classes. The two most common
axiomatic set theories, that are extensions of ZFC and add classes to their
ontology, are Von Neumann-Bernays-Gödel set theory (NBG) and Morse-Kelley
set theory (MK). The former is a conservative extension of ZFC and can be
finitely axiomatized; by contrast, the latter is a proper extension of ZFC and
cannot be finitely axiomatized. MK’s strength stems from its axiom schema
of Class Comprehension being impredicative, meaning that quantified variables
can range over classes. This means that, for instance, we can have unions or
intersections of classes of classes.

Anyway, there still are some problems with the use of MK. The difficulties
arise from the fact that a class cannot be a member of another class. Hence, for
examples, we cannot consider a class having as elements functors from a large
category, or we cannot have classes with ideals of large categories as elements.
Also, many times we had the need to consider the quotient class of a proper
class with respect to an equivalence relation. It turns out that the quotient
class, defined as the class of all the equivalence classes, cannot exist in MK,
since an equivalence class can be a proper class and a class can have only sets
as its elements. The solution to this problem is the use of a choice function,
which chooses a representative element for every equivalence class, to construct
a class of representatives of the equivalence classes.

Throughout the thesis we generally assume MK, whose axiomatization can
be found well described in the appendix of the original book by Kelley [37]. The
ad hoc solutions of the set-theoretical problems, that arose during the writing
of this thesis, will be explained when they are needed.
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Chapter 1

Semilocal endomorphism

rings and Goldie dimension

1.1 Semisimple rings and modules

Let R be an associative ring with identity 1 ≠ 0. An R-module M is called a
simple module if M ≠ 0 and M has no other submodules than 0 and M itself. An
R-module M is called semisimple if every submodule of M is a direct summand.

By these definitions, note that the zero module is semisimple but not simple.
Clearly, every simple module is semisimple.

Lemma 1.1.1 Every submodule and every quotient module of a semisimple
module is semisimple.

Proof. Let M be a semisimple module and N a submodule of M . If N ′ is
a submodule of N , by the semisimplicity of M we have M = N ′ ⊕N ′′ for some
submodule N ′′ of M . Hence

N = N ∩M =N ∩ (N ′ ⊕N ′′) = N ′ ⊕ (N ∩N ′′).
Now let N = M/M1 be a factor module of the semisimple module M . Let

M2 be a submodule of M such that M =M1⊕M2. Then M2 is semisimple and
N is isomorphic to M2. Hence N is semisimple.

There is a close relation between simple an semisimple modules. To under-
stand it we first prove the following.

Lemma 1.1.2 Any non-zero semisimple module contains a simple module.

Proof. Let m be a non-zero element of M . By our previous Lemma, it
suffices to prove our statement for the case M =mR. By Zorn’s Lemma, there
exists a submodule N of M maximal with respect to the property that m ∉ N .
Take a submodule N ′ of M such that M = N ⊕N ′. To conclude we prove that
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N ′ is simple. Indeed if N ′′ is a non-zero submodule of N ′, then N ⊕N ′′ must
contain m and so N ⊕N ′′ =M , which implies that N ′′ = N ′ as desired.

Now we prove two other characterizations of semisimple modules, that are
often used as definition of semisimplicity.

Proposition 1.1.3 Let R be a ring and M an R-module. The following are
equivalent:

1. M is semisimple;

2. M is the sum of a family of simple submodules;

3. M is the direct sum of a family of simple submodules.

Proof.

(1)⇒(2) Let M1 be the sum of all the simple submodules of M , and write
M =M1 ⊕M2, where M2 is a suitable submodule of M . If M2 is different from
the zero module, then it must contain a simple submodule. But this must be
also in M1. Hence M2 = 0 and M =M1.

(2)⇒(1) Let {Mi ∣ i ∈ I} be a family of simple modules such that M = ∑i∈I Mi

an let N be any submodule of M . Consider the subsets J ⊆ I satisfying the
following conditions:� ∑j∈J Mj is a direct sum;� N ∩∑j∈J Mj = 0.

It is easy to check that Zorn’s Lemma applies to the family of all such J ’s, with
respect to ordinary inclusion. Thus we can pick a J to be maximal. For this J ,
let

M ′ = N +∑
j∈J

Mj = N ⊕⊕
j∈J

Mj .

To conclude the proof we need o show that M ′ =M . For this, it suffices to prove
that M ′ ⊇Mi for every i ∈ I. If some Mi ⊈M ′, the simplicity of Mi implies that
M ′ ∩Mi = 0. From this we have

M ′ +Mi = N ⊕⊕
j∈J

Mj ⊕Mi

that contradicts the maximality of J .
(2)⇒(3) Follows form the argument above applied to N = 0.
(3)⇒(2) Obvious.

For a module M the (Jacobson) radical of M is defined to be the intersection
of all maximal submodules of M , and is denoted by Rad(M). If M has no
maximal submodules, we define Rad(M) =M .

Lemma 1.1.4 Let M and N be two R-modules. Then:

1. given an R-homomorphism f ∶M →N , we have f(Rad(M)) ⊆ Rad(N);
10



2. if f ∶M → N is an epimorphism and ker(f) ⊆ Rad(M), then Rad(N) =
f(Rad(M)). In particular Rad(M/Rad(M)) = 0.

Proof.

1. Let N ′ be a maximal submodule of N . It is enough to show that there
exists a maximal submodule M ′ of M such that f(M ′) ⊆ N ′. The homo-
morphism f composed with the canonical projection π∶N → N/N ′ induces
an homomorphism πf from M to the simple module N/N ′. If πf(M) = 0,
then f(M) is contained in N ′. If πf(M) ≠ 0, it must be equal to N/N ′
since this module is simple. Hence ker(πf) is a maximal submodule of M
such that f(ker(πf)) ⊆ N ′.

2. Since the submodules of the quotient module M/Rad(M) correspond to
the submodules of M containing Rad(M) it is clear that the maximal
submodules of M/Rad(M) correspond to the maximal submodules of M
and hence Rad(M/Rad(M)) = 0. If f ∶M → N is an epimorphism and
ker(f) ⊆ Rad(M), we have an isomorphism M/Rad(M) ≅ N/f(Rad(M)).
We obtain that Rad(N/f(Rad(M))) = 0 and this implies that Rad(N) ⊆
f(Rad(M)).

Lemma 1.1.5 If {Mi ∣ i ∈ I} is a family of R-modules, then Rad(⊕i∈IMi) =
⊕i∈IRad(Mi). In particular, if e is an idempotent of R, Rad(eR) = eRad(R).

Proof. By our previous Lemma we have that Rad(⊕i∈IMi) ⊇ ⊕i∈IRad(Mi).
Now let m = (mi)i∈I ∈ Rad(⊕i∈IMi). Consider an index j ∈ I. For any maximal
submodule N of Mj, N ⊕⊕i∈I∖{j}Mi is a maximal submodule of ⊕i∈IMi, so
m ∈ N ⊕ ⊕i∈I∖{j}Mi, which implies that mj ∈ N . Therefore we have mj ∈
Rad(Mj) and similarly we can prove mi ∈ Rad(Mi) for any i ∈ I. This shows
that Rad(⊕i∈IMi) ⊆ ⊕i∈IRad(Mi).

The last sentence is justified from the fact that R = eR ⊕ (1 − e)R for any
idempotent e ∈ R.

For a ring R we define its Jacobson radical to be Rad(RR) and we denote
it by J(R).
Lemma 1.1.6 Let y be an element of a ring R. Then the following are equiv-
alent:

1. y ∈ J(R);
2. 1 − yx is right invertible for any x ∈ R;
3. My = 0 for any simple right R-module M .

11



Proof. (1)⇒(2) Let y ∈ Rad(M). If 1 − yx is not right invertible for some
x ∈ R, then (1 − yx)R ⊊ R is contained in a maximal right ideal M of R. But
1 − yx ∈M and y ∈M implies that 1 ∈M , a contradiction.

(2)⇒(3) Assume my ≠ 0 for an element m ∈M . Then we must have myR =
M . In particular m = myx for some x ∈ R, so m(1 − yx) = 0. Using (2) we get
that m = 0, a contradiction.

(3)⇒(1) For any maximal ideal M of R, the quotient module R/M is simple.
By (3) we have (R/M)y = 0, which implies that y ∈M . By the very definition
we get y ∈ J(R).

For any R-module M , the annihilator of M is defined to be

Ann(M) = {r ∈ R ∣Mr = 0}.
It is easy to see that it is a two-sided ideal of R. From (3) of Lemma 1.1.6 it
follows immediately the following characterization of the Jacobson radical.

Corollary 1.1.7 For any ring R, the Jacobson radical J(R) equals the inter-
section of all the annihilators Ann(M), where M ranges among all the simple
modules of R.

The main consequence of this characterization is that in fact J(R) is a two-
sided ideal of R.

Lemma 1.1.8 The following are equivalent for an element y of a ring R:

1. y ∈ J(R);
2. 1 − xy is left invertible for any x ∈ R;
3. 1 − xyz is two-sided invertible for any x, z ∈ R.
Proof. It is enough to prove that (1)⇔(3). The equivalence with (2)

follows by symmetry. The implication (3)⇒(1) is obvious.
(1)⇒(3) Let y ∈ J(R) and x, z ∈ R. Since J(R) is a two-sided ideal, xy ∈

J(R) and hence there exists u ∈ R such that (1 − xyz)u = 1. Also xyz ∈ J(R)
and hence u = 1 + (xyz)u is right invertible. Since it is also left invertible, we
have that u is two-sided invertible and therefore 1 −xyz is two-sided invertible.

Lemma 1.1.9 Let I be a two-sided ideal of a ring R. Then:

1. if I ⊆ J(R), then J(R/I) = J(R)/I;
2. if J(R/I) = 0, then J(R) ⊆ I.
Proof.

1. The Jacobson radical of R/I is the intersection of all the maximal ideals
of R containing I.
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2. If x ∉ I, there exists a maximal ideal M of R containing I such that x ∉M ,
so x ∉ J(R).

Now we prove Nakayama’s Lemma, which will turn out quite helpful.

Lemma 1.1.10 If M is a right module over a ring R, then MJ(R) ⊆ Rad(M).
Proof. Let N be any maximal submodule of M . Since J(R) annihilates

all simple R-modules, (M/N)J(R) = 0. Therefore MJ(R) ⊆ N . But N is an
arbitrary maximal submodule of M , hence MJ(R) ⊆ Rad(N).
Corollary 1.1.11 (Nakayama’s Lemma) Let M be a finitely generated R-
module and let N be a submodule of M such that N +MJ(R) = M . Then
N =M .

Proof. Let M be a finitely generated R-module and let N be a proper sub-
module of M . Every non-zero finitely generated module has maximal submod-
ules, so that Rad(M/N) is strictly contained in M/N . Lemma 1.1.10 implies
that (M/N)J(R) ⊊M/N , so that MJ(R)+N ⊊M .

We say that a ring R is J-semisimple or semiprimitive if J(R) = 0. It is
clear that for any ring R, the quotient ring R/J(R) is semiprimitive. The rings
R and R/J(R) share some important properties.

Lemma 1.1.12 The rings R and R/J(R) have the same simple modules. An
element x ∈ R is left invertible (resp. right invertible, invertible) if and only if
x + J(R) is left invertible (resp. right invertible, invertible) in R/J(R).

Proof. Every simple module of a ring S is of the form S/M for some
maximal ideal M of S. Since every maximal ideal of R/J(R) is of the form
M/J(R) for some maximal ideal M of R, all the simple R/J(R)-modules are
of the form (R/J(R))/(M/J(R)) ≅ R/M .

For the second statement, let y ∈ R such that (y + J(R))(x + J(R)) = 1 in
R/(J(R)). Then 1−yx ∈ J(R), so 1−(1−yx) = yx is left invertible. This clearly
implies that x is left invertible in R.

Now we relate the Jacobson radical of a ring with semisimplicity.

Proposition 1.1.13 Let R be a ring. The following conditions are equivalent:

1. RR is a semisimple module;

2. every right R-module is semisimple;

3. every short exact sequence of right R-modules splits;

4. every right R-module is projective;

5. every right R-module is injective;
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6. the ring R is right artinian and J(R) = 0.

Proof. (1)⇔(2) It is clear that (2) implies (1). Assume RR is semisimple
module. Hence every cyclic module is semisimple and every module M is the
sum of its cyclic submodules.

(2)⇔(3) Clear from the definition of semisimple module.
(3)⇔(4)⇔(5) Clear by the homological characterization of injective and

projective modules.
(1)⇒ (6) Let RR = ∑i∈IMi, where Mi are simple ideals. Since 1 ∈ R, this

sum must be finite. Hence RR has finite composition length and therefore it is
artinian (in fact it follows that it is also noetherian).

Since RR is semisimple, there exist a right ideal I of R such that RR =
J(R)⊕ I and idempotents e, f ∈ R such that J(R) = eR, I = fR and e + f = 1.
Then f = 1− e is invertible since e ∈ J(R). Since it is also idempotent, it follows
f = 1 and hence e = 0. In particular J(R) = eR = 0.

(6)⇒ (1) Since R is right artinian it is clear that every non-zero right ideal
contains a minimal right ideal. Moreover, every minimal right ideal I is a direct
summand of RR. Indeed, since I ≠ 0 = J(R), there exists a maximal right ideal
M not containing I. Then I ∩M = 0 and RR = I ⊕M .

Now suppose that RR is not semisimple. Take a minimal right ideal I1 of
R, and write RR = I1 ⊕ J1. Since RR is not semisimple J1 ≠ 0 and hence there
exists a minimal right ideal I2 ⊆ J1. The ideal I2 is a direct summand of RR

and hence also of J1, so we can write J1 = I2 ⊕ J2. Continuing in this fashion,
we get a descending chain of right ideals

J1 ⊇ J2 ⊇ . . .
This contradicts the fact that R is right artinian and therefore RR must be
semisimple.

A ring satisfying the equivalent conditions of Proposition 1.1.13 is said to be
(right)semisimple artinian. It is possible to describe in a easy way the structure
of semisimple artinian rings. We denote by Mn(R) the ring of n × n matrices
over a ring R.

Theorem 1.1.14 (Wedderburn-Artin) A ring R is semisimple artinian if
and only if there exist a finite number of division rings D1, . . . ,Dt and positive
integers n1, . . . , nt such that R ≅∏t

i=1Mni
(Di).

Proof. First we prove that a ring of the formR ≅∏t
i=1Mni

(Di) is semisim-
ple artinian. To do this we show that Mn(D) is a simple ring, right semisimple,
for every division ring D and every positive integer n, and that the finite product
of semisimple artinian rings is again a semisimple artinian ring.

Let D be a division ring. It is simple and hence, since every ideal of Mn(D)
is of the form Mn(I) for an ideal I of D, also Mn(D) is simple. Let V be the
n-tuple row space Dn. The ring Mn(D) acts on the right by matrix multipli-
cation, so we can view V as a right Mn(D)-module. Elementary linear algebra
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shows that V is a simple right Mn(D)-module. Now consider the direct sum
decomposition

Mn(D) = R1 ⊕ . . . ⊕Rn

where Ri is the right ideal o Mn(D) consisting of matrices all of whose rows are
zero except for the i-th one. As a right Mn(D)-module, every Ri is isomorphic
to V , hence Mn(D) ≅ nV . This shows that the ring Mn(D) is right semisimple.

Now let R1, . . . ,Rn be (right) semisimple artinian rings and let R be their
direct product. We can write Ri = Ii1⊕ . . .⊕Iimi

as a sum of simple right ideals.
Viewing Ri as an ideal in R, every Iij can be seen a simple right ideal of R.
From

RR = R1 ⊕ . . .⊕Rn = ⊕i,jIi,j ,

we conclude that R is right semisimple.
To prove the other implication, let R be a right semisimple artinian ring.

Decompose RR into a finite direct sum of simple right ideals. Grouping these
according to their isomorphism type as right R-modules, we can write

RR = n1V1 ⊕ . . .⊕ ntVt,

where V1, . . . , Vt are mutually non-isomorphic simple right R-modules. Let us
now compute the endomorphism ring of the twoR-modules in the above equality.
On one side we have EndR(R) = R. On the other side, let Di = EndR(Vi). By
Schur’s Lemma, it is a division ring. Moreover we have that EndR(nVi) =
Mn(Di) and that there are no non-zero morphisms between Vi and Vj if i ≠ j.
Hence we have

EndR(n1V1 ⊕ . . .⊕ ntVt) = EndR(n1V1) × . . . ×EndR(ntVt)
= Mn1

(D1) × . . . ×Mnt
(Dt).

Thus, we get a ring isomorphism R ≅Mn1
(D1) × . . . ×Mnt

(Dt).
Since the condition in the Wedderburn-Artin Theorem is right-left symmet-

ric it follows that “right” can be replaced by “left” everywhere in Proposition
1.1.13 and we can remove the adjective “right” from the definition of semisimple
artinian ring.

1.2 Local rings and the exchange property

Proposition 1.2.1 The following conditions are equivalent for a ring R:

1. R/J(R) is a division ring;

2. J(R) is a maximal right ideal;

3. R has a unique maximal right ideal;

4. the sum of two non-invertible elements of R is non-invertible;
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5. J(R) is the set of non-invertible elements of R.

Proof.

(1)⇒(2) A ring is a division ring if and only if it has no non-trivial right
ideals. Hence a quotient ring R/I is a division ring if and only if I is a maximal
ideal.

(2)⇒(3) Every maximal ideal M of R contains J(R). Hence if J(R) is
maximal, it must be the unique one.

(3)⇒(4) Every non-invertible element is contained in a maximal right ideal.
Since there is only one maximal right ideal, every non-invertible element belongs
to it.

(4)⇒(5) Our hypothesis says that the set of non-invertible elements is an
ideal. It is clearly the unique maximal right ideal and henceforth equal to
J(R).

(5)⇒(1) Let x + J(R) be a non-zero element of R/J(R). Then there exist
y ∈ R such that (x+J(R))(y +J(R)) = 1+J(R) and R/J(R) is a division ring.

Condition (1) is left/right symmetric and hence we can replace “right” with
“left” in the other conditions of our proposition. A ring satisfying these equiv-
alent conditions is called local .

The main role played by local rings in non-commutative algebra is as en-
domorphism ring of modules. The first easy observation is that a module with
local endomorphism ring is indecomposable, i.e. it has no non-trivial direct sum
decomposition. Now our aim is to prove the Krull-Schmidt-Azumaya Theorem,
which shows the importance of local endomorphism rings in the decomposition
of modules. We begin with a definition.

Definition 1.2.2 Given a cardinal ℵ, an R-module M is said to have the ℵ-
exchange property if for anyR-module G and any two direct sum decompositions

G =M ′ ⊕N = ⊕i∈IAi,

where M ′ ≅ M and ∣I ∣ ≤ ℵ, there are R-submodules Bi of Ai, i ∈ I, such that
G =M ′ ⊕⊕i∈I Bi.

It is easy to prove that in fact the R-submodule Bi of Ai is a direct summand
ofAi for every i ∈ I. A module has the exchange property if it has the ℵ-exchange
property for every cardinal ℵ. It has the finite exchange property if it has the
ℵ-exchange property for every finite cardinal ℵ. The class of modules with the
ℵ-exchange property is closed under finite direct sums and direct summands.

Lemma 1.2.3 Let M1 and M2 be two R-modules and M =M1⊕M2 their direct
sum. Then, for any cardinal ℵ, the direct sum M has the ℵ-exchange property
if and only if M1 and M2 have the ℵ-exchange property.

Proof. Suppose M =M1 ⊕M2 has the ℵ-exchange property,

G =M ′
1 ⊕N = ⊕i∈IAi,
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M ′
1 ≅ M1 and ∣I ∣ ≤ ℵ. Then G′ = M2 ⊕ G = M ′ ⊕ N = M2 ⊕ ⊕i∈I Ai, where

M ′ = M ′
1 ⊕M2 ≅ M . Fix an element k ∈ I and set I ′ = I ∖ {k}. Then G′ =

M ′⊕N = (M2⊕Ak)⊕⊕i∈I′ Ai. Hence there exist submodules B ⊆M2⊕Ak and
Bi ⊆ Ai for every i ∈ I ′ such that

G′ =M ′ ⊕B ⊕⊕
i∈I′

Bi.

Since M2 ⊆ M2 ⊕ B ⊆ M2 ⊕ Ak, it follows that M2 ⊕ B = M2 ⊕ Bk, where
Bk = (M2⊕B)∩Ak. Thus M ′⊕B =M ′

1⊕M2⊕B =M ′
1⊕M2⊕Bk. Substituting

this into the above equality we obtain

G′ =M ′
1 ⊕M2 ⊕⊕

i∈I

Bi.

An application of the modular identity to the modules M ′
1 ⊕⊕i∈I Bi ⊆ G and

M2 yields G ∩ (M2 + (M ′
1 ⊕ ⊕i∈I Bi)) = (G ∩M2) + (M ′

1 ⊕ ⊕i∈I Bi), that is,
G =M ′

1 ⊕⊕i∈I Bi. Thus M1 has the ℵ-exchange property.
Conversely suppose M1 and M2 have the ℵ exchange property and

G =M ′
1 ⊕M

′
2 ⊕N = ⊕i∈IAi,

where M ′
1 ≅ M1, M ′

2 ≅ M2 and ∣I ∣ ≤ ℵ. Since M1 has the ℵ-exchange property
there are submodules A′i ⊆ Ai such that G =M ′

1⊕M
′
2 ⊕N =M ′

1 ⊕⊕i∈I A
′
i. This

implies that

G/M ′
1 = (M ′

2 +M
′
1/M ′

1)⊕ (N +M ′
1/M ′

1) = ⊕i∈I(A′i +M ′
1/M ′

1).
By the ℵ-exchange property of M2 ≅ M ′

2 +M
′
1/M ′

1, we obtain that there exist
submodules Bi ⊆ A′i such that

G/M ′
1 = (M ′

2 +M
′
1/M ′

1)⊕⊕
i∈I

(Bi +M ′
1/M ′

1).
From this we deduce that G = M ′

1 +M2 + ∑i∈I Bi. In order to show that the
sum is direct, suppose m1 +m2 + ∑i∈I bi = 0, where m1 ∈ M ′

1, m2 ∈ M ′
2 and

bi ∈ Bi almost all zero. We have (m2 +M ′
1)+∑i∈I(bi +M ′

1) = 0 in G/M ′
1 so that

m2 ∈ M ′
1 and bi ∈M ′

1 for every i ∈ I. Then we get that m2 ∈ M ′
2 ∩M

′
1 = 0 and

bi ∈ Bi ∩M ′
1 = 0. Therefore also m1 = 0. This proves that

G =M ′
1 ⊕M

′
2 ⊕⊕

i∈I

Bi.

Thus M =M1 ⊕M2 has the ℵ-exchange property.

Every module has the 1-exchange property. Now we show that the 2-
exchange property is equivalent to the finite exchange property.

Lemma 1.2.4 If an R-module M has the 2-exchange property, then it has also
the finite exchange property.
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Proof. It is sufficient to show, for an arbitrary integer n ≥ 2, that if M has
the n-exchange property, then it has also the (n+1)-exchange property. Hence,
let M be a module with the n-exchange property (n ≥ 2) and suppose

G =M ′ ⊕N = A1 ⊕ . . .⊕An+1,

where M ′ ≅M . Set P = A1⊕ . . .⊕An, so that G =M ′⊕N = P ⊕An+1. Since M
has the 2-exchange property, there exist submodules P ′ ⊆ P and Bn+1 ⊆ An+1

such that G = M ′ ⊕ P ′ ⊕Bn+1. From P ′ ⊆ P ⊆ P ′ ⊕ (M ′ ⊕Bn+1) and Bn+1 ⊆

An+1 ⊆ Bn+1 ⊕ (M ′ ⊕ P ′) we get P = P ′ ⊕ P ′′ and An+1 = Bn+1 ⊕ A′n+1, where
P ′′ = (M ′ ⊕Bn+1) ∩P and A′n+1 = (M ′ ⊕P ′)⊕An+1. From the decompositions

G =M ′ ⊕ P ′ ⊕Bn+1 = (P ′′ ⊕A′n+1)⊕ (P ′ ⊕Bn+1)
we infer that P ′′ is isomorphic to a direct summand of M ′. Therefore P ′′ has
the n-exchange property by Lemma 1.2.3. Since

P = P ′ ⊕P ′′ = A1 ⊕ . . .⊕An,

there exist submodules Bi ⊆ Ai, i = 1, . . . , n, such that

P = P ′′ ⊕B1 ⊕ . . .⊕Bn.

From P ′′ ⊆ M ′ ⊕ Bn+1 ⊆ G = P
′′ ⊕ (P ′ ⊕ An+1) we deduce that M ′ ⊕ Bn+1 =

P ′′ ⊕ P ′′′, where P ′′′ = (M ′ ⊕Bn+1) ∩ (P ′ ⊕An+1). Therefore

G = M ′ ⊕P ′ ⊕Bn+1 = P
′ ⊕ P ′′ ⊕ P ′′′ = P ⊕ P ′′′

= B1 ⊕ . . .⊕Bn ⊕ P ′′ ⊕ P ′′′ = B1 ⊕ . . .⊕Bn ⊕Bn−1 ⊕M ′

that is, M has the (n + 1) exchange property.

Now we show a relation between the exchange property and local rings.

Proposition 1.2.5 The following conditions are equivalent for an indecompos-
able R-module M :

1. M has local endomorphism ring;

2. M has the finite exchange property;

3. M has the exchange property.

Proof. (1)⇒(2) Suppose M is a module with local endomorphism ring
EndR(M). By Lemma 1.2.4 it is enough to show that M has the 2-exchange
property. Hence suppose that G =M ⊕N = A1 ⊕A2. We obtain

1M = πM εM = πM(εA1
πA1
+ εA2

πA2
)εM = πM εA1

πA1
εM + πM εA2

πA2
εM ,

where with ε and π we denote the canonical injections and projections, re-
spectively. Since M has local endomorphism ring, one of the two summands,
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say πM εA1
πA1

εM , must be an automorphism. Let H be the image of the
monomorphism εA1

πA1
εM so that εA1

πA1
εM induces an isomorphism M → H

and πM ∣H ∶H → M is an isomorphism. This implies that G = N ⊕H and the
projection G→H with respect to this decomposition is (πM ∣H)−1πM . Since

H = εA1
πA1

εM(M) ⊆ A1 ⊆H ⊕N = G

it follows that A1 = H ⊕ B1, where B1 = N ∩ A1 and the projection A1 → H

with respect to this decomposition is (πM ∣H)−1πM ∣A1
. Therefore G = A1⊕A2 =

H⊕(B1⊕A2). With respect to the last decomposition ofG the projectionG→H

is (πM ∣H)−1πM ∣A1
πA1

= (πM ∣H)−1πM εA1
πA1

, and this mapping restricted to
M is (πM ∣H)−1πM εA1

πA1
εM . This is an isomorphism and this implies that

G =M ⊕B1 ⊕A2.
(2)⇒(3) Let M be an indecomposable module with the finite exchange prop-

erty and suppose G =M ⊕N = ⊕i∈IAi. Fix a non-zero element x ∈M . There is
a finite subset F of I such that x ∈ ⊕i∈FAi, so that G =M ⊕N = ⊕i∈FAi ⊕A′,
where A′ = ⊕i∈I∖FAi. Since M has the finite exchange property, there exist
direct sum decompositions Ai = Bi ⊕Ci, i = 1, . . . , n, and A′ = B′⊕C′ such that

G =M ⊕N =M ⊕B1 ⊕ . . .⊕Bn ⊕B′.

This implies that M ≅ C1⊕ . . .⊕Cn⊕C. Since M is indecomposable it must be
isomorphic to one of the direct summands and all the other summands are zero.
It is not possible that M ≅ C because this would imply that M ∩⊕i∈F Ai = 0.
Hence there is an index j ∈ F and a submodule B of Aj such that

G =M ⊕B ⊕ ⊕
j≠i∈F

Ai ⊕A′ =M ⊕B ⊕ ⊕
j≠i∈I

Ai.

(3)⇒(1) Let M be an indecomposable module and suppose that EndR(M)
is not a local ring. Then there exist two elements ϕ,ψ ∈ EndR(M) which are not
automorphisms of M , such that ϕ − ψ = 1M . Let A =M1 ⊕M2 be the external
direct sum of two modules M1,M2, both equal to M , and let πi∶A→Mi, i = 1,2,
be the canonical projections. The composition of the mappings

( ϕ

ψ
) ∶M →M1 ⊕M2 and ( 1M −1M ) ∶M1 ⊕M2 →M

is the identity mapping of M . Hence, if M ′ denotes the image of ( ϕ

ψ
) and

K the kernel of ( 1M −1M ), we have A =M ′ ⊕K. If the exchange property
were to hold for M , there would be direct summands B1 of M1 and B2 o M2

such that A =M ′ ⊕K =M ′ ⊕B1 ⊕B2. Since M1 and M2 are indecomposable,
we would have either A =M ′⊕M1 or A =M ′⊕M2. If A =M ′⊕M1, then π2∣M ′

is an isomorphism. Therefore, the composite mapping π2 ( ϕ

ψ
) ∶M →M2 is an

isomorphism. But π2 ( ϕ

ψ
) = ψ, contradiction. Similarly if A =M ′ ⊕M2.
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Now we relate the exchange property with the existence of common refine-
ments of direct sum decompositions. Let M be an R-module. Suppose that{Mi ∣ i ∈ I} and {Nj ∣ j ∈ J} are two families of R-submodules of M such that
M = ⊕i∈IMi = ⊕j∈JNj. These two decompositions are said to be isomorphic
if there is a bijection ϕ∶ I → J such that Mi ≅ Nϕ(i) for every i ∈ I, and the
second decomposition is a refinement of the first if there exists a surjective map
ϕ∶J → I such that Nj ⊆Mϕ(j) for every j ∈ J .

Proposition 1.2.6 Let ℵ be a cardinal, let M be an R-module with the ℵ-
exchange property and let M = ⊕i∈IMi = ⊕j∈JNj be two direct sum decomposi-
tions of M with I finite and ∣J ∣ ≤ ℵ. Then these two direct sum decompositions
of M have isomorphic refinements.

Proof. We assume I = {0,1, . . . , n}. We shall construct a chain Nj ⊇ N
′
0,j ⊇

N ′1,j ⊇N
′
n,j for every j ∈ J such that

M = (⊕k
i=0Mi)⊕ (⊕j∈JN

′
k,j)

for every k = 0, . . . , n. We do this by induction on k. For k = 0, the module M0

has the ℵ-exchange property and hence there exist submodules N ′
0,j of Nj such

that M =M0 ⊕⊕j∈J N
′
0,j. Now suppose 1 ≤ k ≤ n and that the modules N ′k−1,j

such that M = (⊕k−1
i=0 Mi) ⊕ (⊕j∈JN

′
k−1,j) have been constructed. Consider the

direct sum decompositions

M =Mk ⊕ (⊕n
i=k+1Mi)⊕ (⊕k−1

i=0 Mi) = (⊕j∈JN
′
k−1,j)⊕ (⊕k−1

i=0 Mi).
Since Mk has the ℵ-exchange property, there exist submodules N ′k,j of N ′k−1,j
such that M =Mk ⊕ (⊕j∈JN

′
k,j)⊕ (⊕k−1

i=1 Mi), which is what we had to prove.
For k = n, we have M = (⊕n

i=1Mi) ⊕ (⊕j∈JN
′
n,j) so that N ′n,j = 0 for every

j ∈ J . Since the N ′k,j are direct summands of M contained in N ′k−1,j there is
a direct sum decomposition N ′k−1,j = N

′
k,j ⊕Nk,j for every k and j. Similarly

Nj = N
′
0,j ⊕N0,j . Hence Nj = N0,j ⊕N1,j ⊕ . . . ⊕Nn,j for every j ∈ J , so that

M = ⊕j∈J ⊕n
i=0 Ni,j is a refinement of the decomposition M = ⊕j∈JNj .

As M = (⊕k−1
i=0 Mi)⊕(⊕j∈JN

′
k−1,j) = (⊕k

i=0Mi)⊕(⊕j∈JN
′
k,j) for k = 1,2, . . . , n,

factorizing modulo (⊕k−1
i=0 Mi) ⊕ (⊕j∈JN

′
k,j) we obtain that Mk ≅ ⊕j∈JNk,j for

k = 1,2, . . . , n. Similarly M0 ≅ ⊕j∈JN0,j. Hence for every i = 0, . . . , n there
is a decomposition Mi = ⊕j∈JN

′′
i,j with N ′′i,j ≅ Ni,j for every i and j. Thus

⊕n
i=0⊕j∈J N

′′
i,j is a refinement of the decomposition M = (⊕k

i=0Mi) isomorphic to
M = ⊕j∈J ⊕n

i=0 Ni,j .

Now we are almost ready to prove the Krull-Schmidt-Azumaya Theorem.
Before doing it, we need a last Lemma.

Lemma 1.2.7 If a module M is a direct sum of modules with local endomor-
phism ring, then every indecomposable direct summand of M has local endo-
morphism ring.
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Proof. Suppose M = A ⊕ B = ⊕i∈IMi, where A is indecomposable and
all the modules Mi have local endomorphism ring. Let F be a finite subset
of I such that A ∩ ⊕i∈FMi ≠ 0 and set C = ⊕i∈FMi. The module C has the
exchange property, hence there exist direct sum decompositions A = A′ ⊕ A′′

and B = B′ ⊕B′′ such that M = C ⊕A′⊕B′. Note that A′ is proper submodule
of A, because A ∩ C ≠ 0 and A′ ∩ C = 0. Since A is indecomposable, it follows
that A′ = 0. Thus M = C ⊕B′ and C ≅ A ⊕B′′. Hence A is isomorphic to a
direct summand of C. It follows that A has the exchange property by Lemma
1.2.3. Therefore A has local endomorphism ring by Proposition 1.2.5.

Theorem 1.2.8 (Krull-Schmidt-Azumaya) Let M be a module that is a
direct sum of modules with local endomorphism rings. Then any two direct sum
decompositions of M into indecomposable direct summands are isomorphic.

Proof. Suppose that M = ⊕i∈IMi = ⊕j∈JMj, where the modules Mi and
Nj are indecomposable. By Lemma 1.2.7 all the modules Mi and Nj have local
endomorphism rings. For I ′ ⊆ I and J ′ ⊆ J let

M(I ′) = ⊕i∈I′Mi and N(J ′) = ⊕j∈J ′Nj.

We know that M(I ′) and M(J ′) have the exchange property whenever I ′ and J ′

are finite. Since the summands Nj are indecomposable, for every finite subset
I ′ ⊆ I there exists a subset J ′ ⊆ J such that M = M(I ′) ⊕ N(J ∖ J ′) and
hence M(I ′) ≅ N(J ′). By proposition 1.2.6 applied to the decompositions
M(I ′) ≅ N(J ′), the two decompositions M(I ′) = ⊕i∈I′Mi and N(J ′) = ⊕j∈J ′Nj

have isomorphic refinements. From the indecomposability of the Mi and Nj we
obtain that there is a bijection ϕ∶ I ′ → J ′ such that Mi ≅ Nϕ(i) for every i ∈ I ′.
For every R-module A set

I(A) = {i ∈ I ∣Mi ≅ A} and J(A) = {j ∈ J ∣ Nj ≅ A}.
From what we have just seen it follows that I(A) finite implies ∣I(A)∣ ≤ ∣J(A)∣
and if I(A) ≠ 0 also J(A) ≠ 0. Similarly J(A) finite implies that ∣J(A)∣ ≤ ∣I(A)∣
and if J(A) ≠ 0 also I(A) ≠ 0. In order to prove the theorem it suffices to show
that ∣I(A)∣ = ∣J(A)∣ for every R-module A.

Suppose first that I(A) is finite. In this case we argue by induction on∣I(A)∣. If ∣I(A)∣ = 0, then ∣J(A)∣ = 0. If ∣I(A)∣ ≥ 1, fix an index i0 ∈ I(A). Then
there is an index j0 ∈ J such that M =M({i0})⊕N(J ∖ {j0}). If we factorize
modulo M({i0}) we obtain

N(J ∖ {j0}) ≅M(I ∖ {i0}).
From the inductive hypothesis we obtain ∣I(A)∖{i0}∣ = ∣J(A)∖{j0}∣ and hence∣I(A)∣ = ∣J(A)∣.

By symmetry we can conclude that J(A) finite implies ∣I(A)∣ = ∣J(A)∣ as
well.

Hence we can suppose that both I(A) and J(A) are infinite sets. By sym-
metry it is sufficient to show that ∣J(A)∣ ≤ ∣I(A)∣ for an arbitrary module A.
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For each i ∈ I(A) set Ji = {j ∈ J ∣ M = Mi ⊕ N(J ∖ {j})}. Obviously
Ji ⊆ J(A). If x is a non-zero element of Mi, then there is a finite subset J ′′ of J
such that x ∈ N(J ′′). Hence Mi ∩N(K) ≠ 0 for every K ⊆ J that contains J ′′.
Thus Ji ⊆ J

′′, so that Ji is finite.
We claim that ∪i∈I(A)Ji = J(A). In order to prove the claim, fix j ∈ J(A).

Then there exists a finite subset I ′ of I such that Nj ∩M(I ′) ≠ 0. Hence there
exists a finite subset J ′ of J such that M = M(I ′) ⊕ N(J ∖ J ′). Note that
j ∈ J ′. Since N(J ′ ∖ {j}) has the exchange property, we obtain that for every
i ∈ I ′ there exists a direct summand M ′

i of Mi such that M = N(J ′ ∖ {j}) ⊕(⊕i∈I′M
′
i)⊕N(J ∖ J ′). Then Nj ≅ ⊕i∈I′M

′
i , so that there exists an index k ∈ I ′

with M ′
k = Mk and M ′

i = 0 for every i ∈ I ′, i ≠ k. Note that Mk ≅ Nj ≅ A, so
that k ∈ I(A). Thus

M =N(J ′ ∖ {j})⊕Mk ⊕N(J ∖ J ′) =Mk ⊕N(J ∖ {j}),
that is j ∈ Jk. Hence j ∈ ∪i∈I(A)Ji, which proves the claim.

It follows that

∣J(A)∣ = ∣ ∪i∈I(A) Ji∣ ≤ ∣I(A)∣ℵ0 = ∣I(A)∣.

Now we provide some examples of classes of modules with local endomor-
phism ring, providing the proper setting where to apply the Krull-Schmidt-
Azumaya Theorem.

Lemma 1.2.9 Let M be a right R-module and f an endomorphism of M .� If n is a positive integer such that fn(M) = fn+1(M), then ker(fn) +
fn(M) =M .� If M is an artinian module, then f is an automorphism if and only if it
is injective.

Proof. If fn(M) = fn+1(M), then f t(M) = f t+1(M) for every t ≥ n,
so that fn(M) = f2n(M). If x ∈ M , then fn(x) ∈ fn(M) = f2n(M), so that
fn(x) = fn(y) for some y ∈ fn(M). Therefore z = x − y is in ker(fn), and
x = y + z ∈ fn(M)+ ker(fn).

Now suppose that M is artinian. If f is injective endomorphism of M , the
descending chain

M ⊇ f(M) ⊇ f2(M) ⊇ . . .
is stationary, so that ker(fn) + fn(M) = M by the above. As fn is injective,
ker(fn) = 0, and therefore fn(M) =M . In particular, f is surjective.

Proposition 1.2.10 Every artinian module with simple socle has local endo-
morphism ring.
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Proof. Let M be an artinian module with simple socle. By previous
lemma, we have that an endomorphism f of M is not an automorphism if and
only if it is not injective. Since the socle of an artinian module is essential, this is
equivalent to f(soc(M)) = 0. Since the set of all endomorphisms of M with this
property form an ideal of EndR(M), we obtain that EndR(M) is a local ring
with unique maximal ideal J(EndR(M)) = {f ∈ EndR(M) ∣ f(soc(M)) = 0}.

In a similar way one can prove that noetherian modules with a unique max-
imal submodule have local endomorphism ring. Now we provide another class
of modules with local endomorphism ring. They are called Fitting modules due
to this Lemma by Fitting.

Lemma 1.2.11 If M is a module of finite length n and f is an endomorphism
of M , then M = ker(fn)⊕ fn(M).

Proof. Since M is of finite length n, both the chains

M ⊇ f(M) ⊇ F 2(M) ⊇ . . .
and

ker(f) ⊆ ker(f2) ⊆ ker(f3) ⊆ . . .
are stationary at the n-th step. Applying Lemma 1.2.9 and its dual version, we
obtain that M = ker(fn)⊕ fn(M).

We say that a right R-module is a Fitting module if for every endomorphism
f ∈ EndR(M), there is a positive integer n such that M = ker(fn) ⊕ fn(M).
From Lemma 1.2.11 it is clear that modules of finite length are Fitting modules.
It is easily seen that direct summands of Fitting modules are Fitting modules.

Proposition 1.2.12 The endomorphism ring of any indecomposable Fitting
module is local.

Proof. If M is a Fitting module and f is an endomorphism of M , there
exists a positive integer n such that M = ker(fn)⊕fn(M). If M is indecompos-
able, two cases can occur. In the first case fn(M) =M and ker(fn) = 0. Then
fn is an automorphism of M , so that f itself is an automorphism of M . In the
second case, fn(M) = 0, that is, f is nilpotent. Hence every endomorphism of
M is either nilpotent or an automorphism.

In order to show that EndR(M) is local, we must show that the sum of two
non-invertible endomorphism is non-invertible. Suppose that f and g are two
non-invertible endomorphisms of M such that f +g is invertible. If h = (f +g)−1
is the inverse of f + g, then fh + gh = 1. Since f and g are not automorphisms,
neither fh nor gh are automorphisms. Therefore there exists a positive integer
n such that (gh)n = 0. Since

1 = (1 − gh)(1 + gh + (gh)2 + . . . + (gh)n−1)
the endomorphism 1 − gh = fh is invertible. This contradiction proves the
Lemma.
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In particular, applying the Krull-Schmidt-Azumaya Theorem to the case of
modules with finite length, we can recover the classical Krull-Schmidt Theorem.

Proposition 1.2.13 Let M be an indecomposable injective R-module. Then:� an endomorphism of M is an automorphism of M if and only if it is
injective;� the endomorphism ring of M is local.

Proof. If f ∈ EndR(M) is a monomorphism, then f(M) is a submodule
of M isomorphic to M . In particular f(M) is a non-zero direct summand of
M . Since M is indecomposable, f(M) =M and f is an automorphism.

To prove that EndR(M) is a local ring,we have to show that the sum of two
non-invertible endomorphisms f and g of M is non-invertible. By the above
ker(f) ≠ 0 and ker(g) ≠ 0. Since an irreducible injective module is uniform, we
have ker(f) ∩ ker(g) ≠ 0. Now

ker(f) ∩ ker(g) ⊆ ker(f + g),
so that ker(f + g) ≠ 0. Therefore f + g is not invertible.

1.3 Goldie dimension

In this section we treat the concept of Goldie dimension, both for modular
lattices and for modules, and we underline its connection with semilocal rings.

Throughout this section (L,∨,∧) will denote a bounded modular lattice, that
is a lattice with a smallest element 0 and a greatest element 1 such that a∧(b∨c) =(a ∧ b) ∨ c for every a, b, c ∈ L with c ≤ a. If a, b ∈ L, we call [a, b] = {x ∈ L ∣ a ≤
x ≤ b} the interval between a and b.

A finite subset {ai ∣ i ∈ I} of L ∖ {0} is said to be join-independent if ai ∧(⋁i≠j∈I aj) = 0 for every i ∈ I. The empty subset of L ∖ {0} is join-independent.
An infinite subset of L∖ {0} is join-independent if all its finite subsets are join-
independent.

Lemma 1.3.1 Let A ⊆ L∖{0} be a join-independent subset of a modular lattice
L. For any non-zero element a ∈ L such that a ∧ (⋁b∈B b) = 0 for every finite
subset B ⊆ A, we have that A ∪ {a} is join-independent.

Proof. We have to prove that every finite subset of A ∪ {a} is join-
independent. It is clear for finite subsets of A. Hence it suffices to show that
B ∪{a} is join-independent for every finite subset B ⊆ A. Since a∧ (⋁b∈B b) = 0,
it remains to prove that b ∧ (a ∨ ⋁x∈B∖{b} x) = 0 for each b ∈ B. Now

(⋁
y∈B

y) ∧ (a ∨ ⋁
x∈B∖{b}

x) = ((⋁
y∈B

y) ∧ a) ∨ ( ⋁
x∈B∖{b}

x)
= 0 ∨ ⋁

x∈B∖{b}

x = ⋁
x∈B∖{b}

x,
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so that

b ∧ (a ∨ ⋁
x∈B∖{b}

x) = b ∧ (⋁
y∈B

y) ∧ (a ∨ ⋁
x∈B∖{b}

x)
= b ∧ ⋁

x∈B∖{b}

x = 0.

By Zorn’s Lemma, every join-independent subset of L ∖ {0} is contained in
a maximal join-independent subset of L ∖ {0}.

An element a ∈ L is essential if a∧x = 0 implies x = 0. Thus 0 ∈ L is essential
if and only if L = {0}. If a ≤ b are elements of L, the element a is said to be
essential in b if it is essential in [0, b].
Lemma 1.3.2 Let a, b and c be elements of L. If a is essential in b and b is
essential in c, then a is essential in c.

Proof. Let x be a non-zero element of [0, c]. Now b ∧ x ≠ 0 since b is
essential in c. Hence a ∧ x = a ∧ (b ∧ x) ≠ 0 since a is essential in b.

Lemma 1.3.3 Let a1, . . . , an and b1, . . . , bn be elements such that {b1, . . . , bn}
is join-independent. If ai is essential in bi for every i = 1, . . . , n, then a1∨. . .∨an
is essential in b1 ∨ . . . ∨ bn.

Proof. Using induction, it is enough to prove the case with n = 2. Hence
we can suppose that we have elements a1, a2 and b1, b2 such that b1 ∧ b2 = 0
and ai is essential in bi for i = 1,2. If any of the four elements is zero, then the
statement of the Lemma is trivial, hence we can assume they are all non-zero.

First we prove that a1 ∨ b2 is essential in b1∨ b2. Assume the contrary. Then
there exists a non-zero element x ∈ L such that x ≤ b1 ∨ b2 and (a1 ∨ b2) ∧ x =
0. Since {a1, b2} is join-independent, the set {a1, b2, x} is join-independent by
Lemma 1.3.1. In particular, a1 ∧ (b2 ∨x) = 0, so that a1 ∧ b1 ∧ (b2 ∨x) = 0. Since
a1 is essential in b1, this implies that b1 ∧ (b2 ∨ x) = 0. Now {b2, x} ⊆ {a1, b2, x}
is join-independent, and thus b1 ∧ (b2 ∨ x) = 0 forces that {b1, b2, x} is join-
independent. In particular x ∧ (b1 ∨ b2) = 0. But x ≤ b1 ∨ b2, so that x = 0. This
contradiction proves the claim.

If we apply the claim to the four elements a2, b2, a1, a1 we obtain that a1∨a2
is essential in a1 ∨ b2. The conclusion now follows from Lemma 1.3.2.

A lattice L ≠ {0} is uniform if all its non-zero elements are essential in L.
An element a of L is called uniform if it is non-zero and the lattice [0, a] is
uniform.

Lemma 1.3.4 If a modular lattice L does not contain infinite join-independent
subsets, then for every non-zero element a ∈ L there exists a uniform element
b ∈ L such that b ≤ a.
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Proof. Let a be a non-zero element of L and suppose that every element
b ≤ a is not uniform. We shall define by induction a sequence a1, a2, . . . of non-
zero elements of [0, a] such that, for every n ≥ 1, the set {ai ∣ i = 1, . . . , n} is
join-independent and ⋁n

i=1 ai is not essential in [0, a]. For n = 1, it is enough
to notice that a is not uniform and hence there exist two non-zero elements
a1, a

′
1 ∈ [0, a] such that a1 ∧ a′1 = 0, i.e. a1 has the required properties. Now

suppose that a1, . . . , an−1 have already been defined. Since a1 ∨ . . .∨ an−1 is not
essential in [0, a], there exists an elements b ≤ a such that b∧(a1∨ . . .∨an1

) = 0.
This element b is not uniform, hence there exist non-zero elements an, a

′
n ≤ b

such that an ∧ a′n = 0. Then an ∧ (a1 ∨ . . . ∨ an−1) = 0, so that {a1, . . . , an} is
join-independent by Lemma 1.3.1. Moreover

a′n ∧ (a1 ∨ . . . ∨ an) = a′n ∧ b ∧ ((a1 ∨ . . . ∨ an−1) ∨ an)
= a′n ∧ ((b ∧ (a1 ∨ . . . ∨ an−1)) ∨ an)
= a′n ∧ (0 ∨ an) = 0.

This completes the construction. Then we obtain an infinite join-independent
set {an ∣ n ≥ 1}.
Theorem 1.3.5 The following conditions are equivalent for a bounded modular
lattice L:

1. L does not contain infinite join-independent subsets;

2. L contains a finite join-independent subset {a1, . . . , an} with ai uniform
for every i = 1, . . . , n and a1 ∨ . . . ∨ an essential in L;

3. the cardinality of every join-independent subset of L is ≤ m for a non-
negative integer m;

4. if a0 ≤ a1 ≤ . . . is an ascending chain of elements of L, then there exists
an index i ≥ 0 such that ai is essential in aj for every j ≥ i.

Moreover, if these equivalent conditions hold and {a1, . . . , an} is a finite join-
independent subset of L with ai uniform for every i = 1, . . . , n and a1 ∨ . . . ∨ an
essential in L, then any other join-independent subset of L has cardinality ≤ n.

Proof. (1)⇒(2) Let F be the family of all join-independent subsets of
L consisting only of uniform elements. The family F is non-empty by Lemma
1.3.4 and hence by Zorn’s Lemma it has a maximal element X with respect
to inclusion. By (1), the set X is finite, say X = {a1, . . . , an}. The element
a1 ∨ . . . ∨ an must be essential in L, otherwise there would exist a non-zero
element x ∈ L such that (a1 ∨ . . . ∨ an) ∧ x = 0, and by Lemma 1.3.4 there
would be a uniform element b ∈ L such that b ≤ x. Hence (a1 ∨ . . . ∨ an) ∧ b = 0
and {a1, . . . , an, b} would be a join-independent subset of L strictly containing{a1, . . . , an}, a contradiction.

(2)⇒(3) Suppose that (2) holds, so that there exists a finite join-independent
subset {a1, . . . , an} with ai uniform for every i = 1, . . . , n and a1∨. . .∨an essential
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in L. Assume that there exists a join-independent subset {b1, . . . , bk} of L of
cardinality k > n. For every t = 0,1, . . . , n we shall construct a subset Xt of{a1, . . . , an} of cardinality t and a subset Yt of {b1, . . . , bk} of cardinality k − t
such that Xt ∩Yt = ∅ and Xt ∪Yt is a join-independent set. For t = 0 set X0 = ∅
and Y0 = {b1, . . . , bk}. Now suppose that Xt and Yt have been constructed for
some 0 ≤ t < n. We shall construct Xt+1 and Yt+1. Since ∣Yt∣ = k − t > n − t > 0,
there exists j = 1, . . . , k with bj ∈ Yt. Set

c = ⋁
y∈Xt∪Yt∖{bj}

y.

We claim that c ∧ al = 0 for some l = 1, . . . , n. Otherwise, if c ∧ ai ≠ 0 for every
i = 1, . . . , n, then c∧ai is essential in ai because ai is uniform, so that ⋁n

i=1 c∧ai
is essential in ⋁n

i=1 ai by Lemma 1.3.3. Since ⋁n
i=1 ai is essential in 1, it follows

that ⋁n
i=1 c ∧ ai is essential in 1. Then c ≥ ⋁n

i=1 c ∧ ai is essential in 1, so that
c ∧ bj ≠ 0. This contradicts the fact that Xt ∪ Yt is join-independent and this
contradiction proves the claim. From Lemma 1.3.1 and the claim it follows
that (Xt ∪ {al}) ∪ (Yt ∖ {bj}) is join-independent, so that Xt+1 =Xt ∪ {al} and
Yt+1 = Yt ∖ {bj} have the required properties. This completes the construction
of the sets Xt and Yt.

For t = n we have a non-empty subset Yn of {b1, . . . , bk} such that

{a1, . . . , an} ∪ Yn
is a join-independent subset of cardinality k, so that (a1 ∨ . . . ∨ an) ∧ y = 0 for
every y ∈ Yn, and this contradicts the fact that a1 ∨ . . . ∨ an is essential in L.
Hence every join-independent subset of L has cardinality ≤ n.

(3)⇒(4) If (4) does not hold, there is a chain a0 ≤ a1 ≤ . . . of elements of L
such that for every i ≥ 0, the element ai is not essential in ai+1. Then for every
n ≥ 0, there exists a non-zero element bn ≤ an+1 such that an ∧ bn = 0. The set{bn ∣ n ≥ 0} is join-independent, so (3) does not hold.

(4)⇒(1) If (1) is not satisfied, then L contains a countable infinite join-
independent subset {bi ∣ i ≥ 0}. Set an = ⋁n

i=0 bi. Then a0 ≤ a1 ≤ a2 ≤ . . . and, for
every n ≥ 0, the element an is not essential in an+1 since an ∧ bn+1 = 0. Hence
(4) is not satisfied.

The last part of the statement has already been seen in the proof of (2)⇒(3).

Thus, for a modular lattice L, either there is a finite join-independent subset{a1, . . . , an} with ai uniform for i = 1, . . . , n and a1 ∨ . . .∨ an essential in L, and
in this case n is said to be the Goldie dimension of L, denoted by dimL, or
it contains an infinite join-independent subset, in which case it is said to have
infinite Goldie dimension.

Now we apply the concepts we just introduced above to the modular latticeL(M) of all submodules of a given R-module M . The Goldie dimension of M ,
denoted by dimM , is the Goldie dimension of the modular lattice L(M).

Since a module M is essential in its injective envelope E(M), we have that
dimM = dimE(M).
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We say that a module M is uniform if its lattice of submodules L(M) is
a uniform lattice. By Theorem 1.3.5 it is clear that a module M has finite
Goldie dimension if and only if contains an essential submodule that is the
direct sum of uniform submodules U1, . . . , Un. In this case E(M) = E(U1) ⊕
. . . ⊕ E(Un) is the finite direct sum of n indecomposable modules. Since any
indecomposable injective module has local endomorphism ring, by the Krull-
Schmidt-Azumaya Theorem, we have that the number of summands in any
indecomposable decomposition of E(M) does not depend on the decomposition.
Hence a module M has Goldie dimension n if and only if its injective envelope
is the direct sum of n indecomposable modules.

Now we collect the basis properties of the Goldie dimension for a module
M . Their proof is elementary.

Proposition 1.3.6 Let M be a module.

1. dimM = 0 if and only if M = 0;

2. dimM = 1 if and only if M is uniform;

3. if N ⊆ M and M has finite Goldie dimension, then N has finite Goldie
dimension and dimN ≤ dimM ;

4. if N ⊆M and M has finite Goldie dimension, then dimN = dimM if and
only if N is essential in M ;

5. if M and M ′ are modules of finite Goldie dimension, then M ⊕M ′ has
finite Goldie dimension and dimM ⊕M ′ = dimM + dimM ′.

Artinian modules and noetherian modules have finite Goldie dimension. For
an artinian module M , the Goldie dimension of M equals the composition length
of the socle soc(M).

We shall now apply our results to the dual lattice of the lattice L(M) of
all submodules of a module M . The dual lattice of a modular lattice is also
modular, so we can apply the results of this section to the dual of the latticeL(M) and translate them into the language of modules.

Let M be a right module. A finite set {Ni ∣ i ∈ I} of proper submodules
of M is said to be coindependent if Ni + ⋂i≠j∈I Nj = M for every i ∈ I. An
arbitrary set A of proper submodules of M is said to be coindependent if all its
finite subsets are coindependent. A submodule N of M is said to be superfluous
if it is essential in the dual of the lattice L(M), i.e. if N + A ⊊ M for every
proper submodule A ⊊ M . An R-module M ≠ 0 is said to be couniform if the
dual of the lattice L(M) is uniform. Every local module, that is, a module
with a unique maximal submodule, is clearly couniform. From Theorem 1.3.5
we obtain the following.

Theorem 1.3.7 The following conditions are equivalent for a module M :

1. there do not exist infinite coindependent sets of proper submodules of M ;
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2. there exists a finite coindependent set {N1, . . . ,Nn} of proper submodules
of M with M/Ni couniform for every i = 1, . . . , n and N1 ∩ . . .∩Nn super-
fluous in M ;

3. the cardinality of the coindependent sets of proper submodules is ≤ m for
a non-negative integer m;

4. if N0 ⊇ N1 ⊇ N2 ⊇ . . . is a descending chain of submodules of M , then there
exists i ≥ 0 such that Ni/Nj is superfluous in M/Nj for every j ≥ i.

Moreover, if these equivalent conditions hold and {N1, . . . ,Nn} is a finite coin-
dependent set of proper submodules of M with M/Ni couniform for all i and
N1∩. . .∩Nn superfluous inM , then every other coindependent set has cardinality
≤ n.

We define the dual Goldie dimension of a module M , denoted by codim(M),
to be the Goldie dimension of the dual of the lattice L(M). It is clear, from (4) of
previous theorem, that every artinian module has finite dual Goldie dimension.
Dualizing Proposition 1.3.6, we obtain the following.

Proposition 1.3.8 Let M be a module.

1. codim(M) = 0 if and only if M = 0;

2. codim(M) = 1 if and only if M is couniform;

3. if N ⊆ M and M has finite dual Goldie dimension, then M/N has finite
dual Goldie dimension and codim(M/N) ≤ codim(M);

4. if N ⊆ M and M has finite dual Goldie dimension, then codim(M) =
codim(M/N) if and only if N is superfluous in M ;

5. if M and M ′ are modules with finite dual Goldie dimension, then M ⊕
M ′ is a module with finite dual Goldie dimension and codim(M ⊕M ′) =
codim(M) + codim(M ′).

For a semisimple module, the dual Goldie dimension coincides with the com-
position length of the module. Hence for a semisimple artinian ring

dim(RR) = dim(RR) = codim(RR) = dim(RR).
We shall denote this finite dimension dim(R).

1.4 Semilocal rings

A ring R is a semilocal ring if R/J(R) is a semisimple artinian ring. Since
J(R/J(R)) = 0 for every ring R, it is clear that a ring R is semilocal if and only
if R/J(R) is a right artinian ring, if and only if R/J(R) is a left artinian ring.
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Proposition 1.4.1 If a ring R has finitely many maximal right ideals, then it
is semilocal. If R/J(R) is commutative, also the converse holds.

Proof. It is clear that for both conclusions, we may assume J(R) = 0.
Assume that M1, . . . ,Mn are all the maximal right ideals of R. Then ∩ni=1Mi = 0
and hence we have a injection of right R-modules

R → ⊕n
i=1R/Mi.

The latter has a composition series; thus, so does the former. This implies that
the ring R is right artinian, and hence semilocal. Conversely, assume that R is
commutative and artinian. Since we have assumed that J(R) = 0, the ring R is
a direct product of a finite number of fields (for instance, by Theorem 1.1.14).
Then the number of maximal ideals o R equals the number of factors in this
decomposition.

We remark that in general it is not true that a semilocal ring has finitely
many right ideals. For example, a matrix algebra over a field is semilocal, but
it may have infinitely many maximal right ideals.

Now we give some examples of semilocal rings.� Any local ring is semilocal.� Every right (or left) artinian ring is semilocal.� If R is a semilocal ring, the ringMn(R) of n×nmatrices with entries in R is
semilocal. In fact J(Mn(R)) =Mn(J(R)) and henceMn(R)/J(Mn(R)) ≅
Mn(R/J(R)). If R is semilocal, its quotient R/J(R) is semisimple ar-
tinian, and this implies that the matrix ring Mn(R/J(R)) is semisimple
artinian.� The direct product of two semilocal rings is semilocal.� Every homomorphic image of a semilocal ring is a semilocal ring. In
fact, let I be an ideal of a semilocal ring R. Since every simple R/I-
module is a simple R-module, if π∶R → R/I i the canonical projection,
then π(J(R)) ⊆ J(R/I). Hence π induces a surjective homomorphism
R/J(R)→ (R/I)/J(R/I). But every homomorphic image of a semisimple
artinian ring is a semisimple artinian ring, and thus R/I is semilocal.

With the next two propositions we provide some more examples of semilocal
rings.

Proposition 1.4.2 Let k be a commutative semilocal ring and R be a k-algebra
that is finitely generated as k-module. Then J(R) ⊇ J(k)R and R is a semilocal
ring.

Proof. In order to show that J(R) ⊇ J(k)R, it is sufficient to prove that
MJ(k) = 0 for every simple R-module M . Now MJ(k) is a submodule of M ,

30



because MJ(k)R =MRJ(k) =MJ(k). Since M is simple, either MJ(K) =M
or MJ(k) = 0. But Rk is finitely generated and M is an homomorphic image of
R, so that Mk is finitely generated. By Nakayama’s Lemma (1.1.11), MJ(k) =
M implies M = 0, a contradiction. Therefore MJ(k) = 0.

Then R/J(k)R is a module-finite algebra over the artinian commutative ring
k/J(k). Since k/J(k) is artinian, R/J(k)R is an artinian module. In particular
R/J(k)R is an artinian ring, so R is semilocal.

Proposition 1.4.3 If R is a semilocal ring and e is a non-zero idempotent of
R, then eRe is a semilocal ring.

Proof. It is enough to show that if R/J(R) is a right artinian ring, then
also eRe/J(eRe) is a right artinian ring. Suppose that there is a descending
chain J1 ⊇ J2 ⊇ . . . of right eRe/J(eRe)-ideals. It is clear that J1R+J(R) ⊇ J2R+
J(R) ⊇ . . . is a descending chain of right R/J(R)-ideals, hence it is stationary. If
we show that (IR+J(R))∩eRe = I for every right eRe-ideal containing J(eRe),
it is clear that also the initial chain must be stationary. Let ∑k ikrk + j = ere
be an element of (IR + J(R)) ∩ eRe, with ik ∈ I, r, rk ∈ R and j ∈ J(R). Then
ere = e(∑k ikrk + j)e = ∑k eikerke + eje ∈ IeRe + eJ(R)e ⊆ I.

Now we show that there is a strong connection between the semilocality of
a ring and its dual Goldie dimension.

Proposition 1.4.4 The following are equivalent for a ring R:

1. R is semilocal;

2. the right R-module RR has finite dual Goldie dimension;

3. the left R-module RR has finite dual Goldie dimension.

Moreover, if these conditions hold,

codim(RR) = codim(RR) = dim(R/J(R)).
Proof. (1)⇒(2) Let R be a semilocal ring and suppose that RR has infinite

dual Goldie dimension, i.e. there exists an infinite coindependent set {In ∣ n ≥ 1}
of proper right ideals of R. Then R/∩kn=1 In is a direct sum of k non-zero cyclic
modules for every k ≥ 1. If C is a non-zero cyclic module, C/CJ(R) is a non-
zero module. Therefore R/J(R) + ∩kn=1In is a direct sum of at least k non-zero
modules for every k ≥ 1. In particular R/J(R) can not have finite length, so
that R can not be semilocal.

(2)⇒(1) Suppose that RR has finite dual Goldie dimension. Let I be the set
of all right ideals of R that are finite intersection of maximal right ideals. Note
that if I, J ∈ I and I ⊆ J then R/I and R/J are semisimple modules of finite
length and

codim(R/J) ≤ codim(R/I).
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Since codim(R/I) ≤ codim(R) for every I, it follows that every descending chain
in I is finite, i.e. the partially ordered set I is artinian. In particular I has a
minimal element. Since any intersection of two elements of I belongs to I, the
set I has a least element, which is the Jacobson radical J(R). Hence J(R) ∈ I is
a finite intersection of maximal right ideals. Therefore R/J(R) is a semisimple
artinian right R-module, hence R is semilocal.

Since (1) is left-right symmetric, (1), (2) and (3) are equivalent. Finally,
J(R) is a superfluous module of RR(Lemma 1.1.11), so that if (2) holds, then
codim(RR) = codim(R/J(R)) by Proposition 1.3.8(4).

Corollary 1.4.5 Let PR be a finitely generated projective module over a semilo-
cal ring R. Then every surjective endomorphism of PR is an automorphism. In
particular, every right or left invertible element of a semilocal ring is invertible.

Proof. Sice R is semilocal, the right module RR has finite dual Goldie
dimension, so that PR has finite dual Goldie dimension. If f ∶PR → PR is a
surjective endomorphism of PR, then ker(f) is a direct summand of PR, and
ker(f)⊕ PR ≅ PR. Thus codim(ker(f)) = 0, so ker(f) = 0.

For the second part of the statement, we show that if x and y are elements
of R such that xy = 1, then also yx = 1. Since xy = 1, left multiplication by x is a
surjective endomorphism µx∶RR → RR. From xy = 1 it follows yR⊕ker(µx) = R.
Hence yR = R and then y is also right invertible. Thus y is invertible and x is
its two-sided inverse.

Now we want to prove another characterization of semilocal rings, due to
Camps and Dicks [9].

Lemma 1.4.6 Let M be a right module over a ring R and let f and g be two
endomorphisms of M . Then:

1. ker(f − fgf) = ker(f)⊕ ker(1 − gf);
2. coker(f − fgf) ≅ coker(f)⊕ coker(1 − fg).
Proof.

1. It is clear that ker(f) + ker(1 − gf) ⊆ ker(f − fgf). Conversely, if x ∈
ker(f − fgf), then (1 − gf)(x) ∈ ker(f), gf(x) ∈ ker(1 − gf) and x =(1− gf)(x)+ gf(x), so that ker(f)+ ker(1− gf) = ker(f − fgf). It is easy
to verify that ker(f) ∩ ker(1 − gf) = 0.

2. Consider the mapping ϕ∶M → coker(f)⊕ coker(1− fg) defined by ϕ(x) =(x+f(M), x+(1−fg)(M)), for every x ∈M . We show that ϕ is a surjective
mapping. Note that M = fg(M) + (1 − fg)(M) ⊆ f(M) + (1 − fg)(M).
Therefore for any y, z ∈M , there exist v ∈ f(M) and w ∈ (1−fg)(M) such
that y − z = v +w. Set x = y − v = z +w. Then

ϕ(x) = (y + f(M), z + (1 − fg)(M)).
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This shows that ϕ is surjective. The kernel of ϕ is f(M) ∩ (1 − fg)(M)
and thus we must show that f(M) ∩ (1 − fg)(M) = (f − fgf)(M). Now
if f(x) = (1 − fg)(y), with x, y ∈M , then y = f(x) + fg(y), so that

f(x) = (1 − fg)(y) = (1 − fg)(f(x)+ fg(y)) = (f − fgf)(x + g(y)).
This proves that f(M) ∩ (1 − fg)(M) ⊆ (f − fgf)(M). The opposite
inclusion is easily verified.

Theorem 1.4.7 (Camps and Dicks) The following conditions are equivalent
for a ring R:

1. R is semilocal;

2. There exist an integer n ≥ 0 and a function d∶R → {1, . . . , n} such that

(a) for every a, b ∈ R, d(1 − ab) + d(a) = d(a − aba);
(b) if a ∈ R and d(a) = 0, then a ∈ U(R).

3. There exists a partial order ≤ on the set R such that

(c) (R,≤) is an artinian poset;

(d) if a, b ∈ R and 1 − ab ∉ U(R), then a − aba < a.
Proof. (1)⇒(2) If R is a semilocal ring, then RR has finite dual Goldie

dimension. Let n = codim(RR) and d∶R → {1, . . . , n} be defined by d(a) =
codim(R/aR) for every a ∈ R.

In order to prove that d has property (a), consider two elements a, b ∈ R and
apply Lemma 1.4.6(2) to the two endomorphisms of the module RR given by left
multiplication by a and b respectively. Then R/(a−aba)R ≅ R/aR⊕R/(1−ab)R
implies that d(1 − ab) + d(a) = d(a − aba).

If a ∈ R and d(a) = 0, then R/aR = 0, so that a is right invertible. Hence it
is clear that a ∈ U(R) by Corollary 1.4.5.

(2)⇒(3) If (2) holds, define a partial order ≤ on R by a ≤ b if and only if
a = b or d(a) > d(b). Then (3) is easily verified.

(3)⇒(1) Let R denote R/J(R) and let r denote r+J(R) ∈ R/J(R) for every
r ∈ R. Set

F = {r ∈ R ∣ r2 = r and (1 − r)R is a right ideal of finite length of R}.
Note that F ≠ 0, because 1 ∈ F . Since (R,≤) is artinian, there exists an element
a ∈ F minimal with respect to the order ≤.

Suppose a ≠ 0. Then a ∉ J(R), so that aR ∖ J(R) ≠ ∅ and we can choose
an element ab ∈ aR ∖ J(R) that is minimal with respect to the order ≤. Since
ab ∉ J(R), there exists c ∈ R such that 1 − abc ∉ U(R). Then by (d) we get
a − abca < a. Set a′ = a − abca, so that a′ < a. We show that a′ ∈ F .
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We claim that if x ∈ R and 1 − abx ∉ U(R), then abxab = ab. In order
to prove the claim fix x ∈ R with 1 − abx ∉ U(R). From property (d) we
get that ab − abxab < ab. Since ab is minimal in aR ∖ J(R), it follows that
ab − abxab ∈ J(R). Hence ab = abxab.

Now apply the claim to x = c. Then abcab = ab, so that abc is idempotent.
Then a′ is also idempotent, because

a′
2

= a − abca
2

= a − abca − abca + abcabca = a − abca = a′.

Note that a − a′ = abca also is idempotent.
It is easily verified that {1 − a, a − a′, a′} is a complete set of orthogonal

idempotents in R. Therefore R
R
= (1 − a)R ⊕ (a − a′)R ⊕ a′R. We show that

(a − a′)R is a simple R-module. Since a − a′ = abca, we get that

(a − a′)R = abcaR = abR.
Moreover abR ≠ 0, otherwise ab ∈ J(R). Now consider any abd ∈ abR ∖ J(R).
Since abd ∉ J(R), there exists e ∈ R such that 1 − abde ∉ U(R). Applying the
claim with x = de, we see that abdeab = ab, so that abdR = abR. This shows that(a − a′)R is a simple R-module.

Now (1 − a)R is a module of finite length, so that

(1 − a)R⊕ (a − a′)R = (1 − a′)R
has finite length. Thus a′ ∈ F .

But a′ < a and a was minimal in F . This contradiction shows that a = 0.
Therefore (1 − a)R = R

R
has finite length, that is, R is right artinian and the

proof of (1) is concluded.
Now suppose the equivalent conditions of the statement hold. We want to

show that if m = dim(R) = codim(R) and n is any integer satisfying condition
(2), then m ≤ n. As m = dim(R), there are elements e1, . . . , em ∈ R such that{e1, . . . , em} is a complete set of non-zero orthogonal idempotents of R. Define
a0, . . . , am ∈ R by induction as follows: a0 = 1 and ai = ai−1 − ai−1eiaa−i for
i = 1, . . . ,m. Note that ai = ei+1 + ei+2 + . . . + em for every i = 0, . . . ,m, so
that 1 − ai−1ei = 1 − ei ∉ U(R). It follows that 1 − ai−1ei ∉ U(R). Applying
property (b) we see that d(1 − ai−1ei) > 0, and applying property (a) we get
d(1 − ai−1ei) + d(ai−1) = d(ai), so that d(ai−1) < d(ai) for every i = 1, . . . ,m.
from d(a0) < . . . < d(am) we obtain m ≤ n.

The last characterization that we give of semilocal ring uses the concept of
local morphisms. Given two rings R and S, a ring morphism ϕ∶R → S is said to
be local if r is invertible whenever ϕ(r) is invertible. For instance, if R is a ring
and I is an ideal of R contained in J(R), the canonical projection R → R/I is a
local morphism. In the following Lemma we collect the first properties of local
morphisms.

Lemma 1.4.8 Let ϕ∶R → S and ψ∶S → T be two ring morphisms. Then:
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1. if ϕ is local, then ker(ϕ) ⊆ J(R);
2. if ϕ and ψ are local, then ψϕ is local;

3. if ψϕ is local, then ϕ is local.

Proof.

1. Let y ∈ ker(ϕ). Since ϕ(1R−xy) = 1S is invertible, also 1R−xy is invertible,
for any x ∈ R. This means that y ∈ J(R).

2. Let r ∈ R such that ψϕ(r) is invertible in T . Since ψ is local, ϕ(r) is
invertible in S. Hence r is invertible in R since ϕ is local.

3. Let r ∈ R such that ϕ(r) is invertible. Then also ψϕ(r) is invertible and
hence r is invertible since ψϕ is local.

Theorem 1.4.9 If ϕ∶R → S is a local morphism and codim(S) is finite, then
codim(R) ≤ codim(S). In particular, a ring R is semilocal if and only if there
exists a local morphism of R into a semilocal ring, if and only if there exists a
local morphism of R into a semisimple artinian ring.

Proof. Let ϕ∶R → S be a local morphism. By Proposition 1.4.4 and
Theorem 1.4.7 there is a function d∶S → {0, . . . ,m}, where m = codim(S),
satisfying (a) and (b) of (2) of Theorem 1.4.7. We want to show that the
function dϕ∶R → {0, . . . ,m} satisfies (a) and (b) of (2) of Theorem 1.4.7 and
hence, always by Theorem 1.4.7, we have that codim(R) ≤ codim(S). In fact
we have

dϕ(1 − xy) + dϕ(x) = d(1 −ϕ(x)ϕ(y)) + d(ϕ(x))
= d(ϕ(x) −ϕ(x)ϕ(y)ϕ(x))
= dϕ(x − xyx)

for any x, y ∈ R, and

dϕ(x) = 0⇒ ϕ(x) ∈ U(S)⇒ x ∈ U(R)
for any x ∈ R, since ϕ is local.

1.5 Semilocal endomorphism rings

In this section we prove some properties of objects that have a semilocal en-
domorphism ring. We say that a ring R has left stable range 1 if, whenever
Ra +Rb = R, there exists r ∈ R such that a + rb is invertible.

Proposition 1.5.1 (Bass) Every semilocal ring R has left stable range 1.
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Proof. Recalling that u ∈ R is a unit if and only if u ∈ R/J(R) is a
unit, we may replace R with R/J(R) and assume that R/J(R) is semisimple
artinian. Using the Wedderburn-Artin Theorem we may further assume that
R = EndD(V ), where V is a finite dimensional right vector space over a division
ring D. Now suppose that Ra+Rb = R. The left ideal Rb gives rise to a subspace
W = {v ∈ V ∣ Rbv = 0} of V . In fact, we have that Rb = Ann(W ) = {f ∈ R ∣
f(W ) = 0}.

Note that the restriction of the action of a on W gives an isomorphism W →
aW . To see this, write 1 = ra+r′b, where r, r′ ∈ R. If w ∈W is such that a(w) = 0,
then w = (ra + r′b)w = r′b(w) = 0, as desired. Now pick a D-automorphism f

of V such that f(w) = a(w) for every w ∈ W . Then f − a ∈ Ann(W ) = Rb, so
a +Rb contains the unit f of R.

Using the above Proposition now we show that modules with semilocal en-
domorphism rings cancel from direct sums.

Proposition 1.5.2 Let A,B and C be objects of a preadditive category C. Sup-
pose E = EndR(A) has left stable range 1. Then A⊕B ≅ A⊕C implies B ≅ C.

Proof. Since A⊕B ≅ A⊕C there are two inverse morphisms

F = ( fA,A fB,A

fA,C fB,C
) ∶A⊕B → A⊕C

and

G = ( gA,A gC,A

gA,B gC,B
) ∶A ⊕C → A⊕B.

Since GF is the identity on A⊕B we have

( gA,AfA,A + gC,AfA,C gA,AfB,A + gC,AfB,C

gA,BfA,A + gC,BfA,C gA,BfB,A + gC,BfB,C
) = ( 1A 0

0 1B
) .

From gA,AfA,A + gC,AfA,C = 1A it follows that EfAA
+EgC,AfA,C = E. Hence

there exists t ∈ E such that u = fA,A + tgC,AfA,C is an automorphism of A.
Consider the mapping

G′ = ( 1A tgC,A

gA,B gC,B
) ∶A⊕B → A⊕C.

Then

G′F = ( u vB,A

0 1B
)

is clearly an automorphism of A⊕B. Since F ∶A⊕B → A⊕C is an automorphism,
it follows that G′∶A ⊕B → A⊕C is an automorphism as well. But then

( 1A 0
−gA,B 1B

)G′ ( 1A −tgC,A

0 1C
) = ( 1A 0

0 gC,B − gA,BtgC,A
)
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and hence the homomorphism gC,B − gA,BtgC,A∶C → B is an isomorphism of C
into B.

If MR is a right R-modules, let add(MR) denote the full subcategory of
Mod-R whose objects are all the modules isomorphic to direct summands of
direct sums of finitely many copies of MR. For example add(RR) = proj-R.

Lemma 1.5.3 Let MR be a non-zero right R-module and let E = EndR(M) be
its endomorphism ring. The functors

HomR(M,−)∶Mod-R →Mod-E and −⊗EM ∶Mod-E →Mod-R

induce an equivalence between the full subcategory add(MR) of Mod-R and the
full subcategory proj-E of Mod-E.

We use this Lemma to prove the following.

Proposition 1.5.4 Let A and B two right R-modules. If A has semilocal en-
domorphism ring and there exists an integer n such that An ≅ Bn, then A ≅ B.

Proof. We shall suppose that we have M = ⊕n
i=1Ai = ⊕n

i=1Bi, where each
Ai ≅ A and Bi ≅ B, A has local endomorphism ring, and prove that A1 ≅ B1.

Note that M has semilocal endomorphism ring, since

EndR(M) =Mn(EndR(A)).
Let εi∶Ai → M and πi∶M → Ai, i = 1, . . . , n, be the canonical morphisms with
respect to the decomposition M = ⊕n

i=1Ai and ε′i∶Bi → M and π′i∶M → Bi,
i = 1, . . . , n, be the canonical morphisms with respect to the decomposition
M = ⊕n

i=1Bi. Denote by ei = εiπi and fi = ε
′
iπ
′
i. Applying Lemma 1.5.3 we

obtain that there are monomorphism HomR(M,εi)∶HomR(M,Ai) → E, whose
image is eiE, and monomorphisms HomR(M,ε′i)∶HomR(M,Bi) → E, whose
image is fiE. Therefore we have eiE ≅ e1E and fiE ≅ f1E for every i, so that
eiE/eiJ(E) ≅ e1E/e1J(E) and fiE/fiJ(E) ≅ f1E/f1J(E). Hence

E/J(E) ≅ ⊕n
i=1eiE/eiJ(E) ≅ ⊕n

i=1fiE/fiJ(E).
Since E is semilocal, E/J(E) is a semisimple rightE-module of finite length, and
therefore e1E/e1J(E) ≅ f1E/f1(E). By Proposition 3.3(b) of [14] e1E ≅ f1E,
so that A1 ≅ B1 by Lemma 1.5.3, as desired.

Proposition 1.5.5 Let A be a right R-module with semilocal endomorphism
ring such that codim(EndR(A)) = n. Then A has at most 2n isomorphic classes
of direct summands.

Proof. By Lemma 1.5.3 it is clear that direct summands of A corresponds
to direct summands of its endomorphism ring E = EndR(A). Hence it is enough
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to show that E has at most 2n non-isomorphic direct summands eE. By proposi-
tion 3.3(b) of [14] it suffices to show that E/J(E) has at most 2n non-isomorphic
direct summands. This is obvious because E/J(E) is semisimple artinian and
dim(E/J(E)) = codim(E) = n.

Now we want to give some examples of modules with semilocal endomor-
phism ring. To do this we first need the following useful criterion.

Proposition 1.5.6 (Herbera and Shamsuddin) Let MR be a right module
over a ring R.

1. If MR has finite Goldie dimension and every injective endomorphism of
MR is bijective, then the endomorphism ring EndR(M) is semilocal and

codim(EndR(M)) ≤ dim(MR);
2. ifMR has finite dual Goldie dimension and every surjective endomorphism

of MR is bijective, then the endomorphism ring EndR(M) is semilocal and

codim(EndR(M)) ≤ codim(MR);
3. if MR has finite Goldie dimension and finite dual Goldie dimension, then

the endomorphism ring EndR(M) is semilocal and

codim(EndR(M)) ≤ dim(MR) + codim(MR).
Proof.

1. If dim(MR) is finite, set n = dim(MR) and define

d1∶ EndR(M) → {1, . . . , n}
f ↦ dim(ker(f)).

By Lemma 1.4.6(1), the mapping d1 satisfies conditions (a) and (b) of
Theorem 1.4.7. This proves (1).

2. If codim(MR) is finite, set m = codim(MR) and define

d2∶ EndR(M) → {1, . . . ,m}
f ↦ codim(coker(f)).

By Lemma 1.4.6(2), the mapping d2 satisfies conditions (a) and (b) of
Theorem 1.4.7. This proves (2).

3. If dim(MR) and codim(MR) are both finite, set

d = d1 + d2∶EndR(M)→ {1, . . . ,m + n}.
From this (3) follows.
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Proposition 1.5.7 Every artinian module has semilocal endomorphism ring.

Proof. It is enough to apply (1) of previous Proposition, since every
artinian module has finite Goldie dimension and every injective endomorphism
is bijective.

Dually, we have the following.

Proposition 1.5.8 Every noetherian module of finite dual Goldie dimension
has semilocal endomorphism ring.

Proof. It is enough to apply (2) of Proposition 1.5.6.

In the following chapters we will meet other relevant examples of objects
(mainly modules) with semilocal endomorphism ring.
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Chapter 2

Infinite dual Goldie

dimension

We saw in the previous chapter that the Goldie dimension and the dual Goldie
dimension play an important role in module theory. Till now we investigated
only the finite case, and we saw that a ring has finite dual Goldie dimension
if and only if it is semilocal. In this chapter we want to define and investigate
the infinite case, focusing mainly on the dual Goldie dimension of the right R-
module RR. We start from the most general setting where the Goldie and the
dual Goldie dimension makes sense, that is, the setting of bounded modular
lattices. First, we analyze which properties of the finite Goldie dimension still
hold in the infinite case and which do not. Then, we restrict our attention to
the case of the dual Goldie dimension of the right R-module RR. For this study,
in which we are particularly interested, we can consider only the maximal right
ideals of R instead of the whole lattice of right ideals of R. Eventually, we
study in detail some relevant examples, computing their dual Goldie dimension.
These examples show the difficulties that arise in passing from the finite case
to the infinite one.

2.1 Goldie dimension on lattices

Let L be a bounded modular lattice, that is, a lattice L that satisfies the modular
law x ≤ b⇒ x∨ (a ∧ b) = (x ∨ a)∧ b and has a greatest element 1 and a smallest
element 0. Recall that a subset {ai ∣ i ∈ I } of L ∖ {0} is said to be join-
independent if ai ∧ (⋁i≠j∈F aj) = 0 for every i ∈ I and every finite subset F ⊆ I
containing i.

Generalizing the definition that we gave in the previous chapter, we say that
the Goldie dimension of L, denoted by dim(L), is defined as the supremum of
all cardinals ℵ such that L contains a join-independent subset of cardinality ℵ.

Remember that a subset A = {ai ∣ i ∈ I } of L is coindependent if for every
finite subset F ⊆ I and i ∈ F we have ai ∨ (⋀j≠i∈F aj) = 1.
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The dual Goldie dimension of L, denoted by codim(L), is the Goldie di-
mension of Lop, i.e. the supremum of all cardinals ℵ such that L contains a
coindependent subset of cardinality ℵ.

Given a cardinal number ℵ, say that ℵ is attained in L if L contains a join-
independent subset of cardinality ℵ. We recall that an infinite cardinal ℵ is called
regular if ℵi < ℵ for i ∈ I with ∣I ∣ < ℵ implies ∑ℵi < ℵ. Otherwise it is called
singular . An uncountable, regular, limit cardinal is said to be inaccessible. We
remind that the existence of inaccessible cardinals can not be proved in ZFC
(Zermelo-Fraenkel with the axiom of choice) and that there are no such cardinals
in the constructible universe (see for example [12]). In [48], Santa-Clara and
Silva proved, generalizing results in [10] and [12], that the Goldie dimension of
L can be not attained only if it is an inaccessible cardinal.

Definition 2.1.1 Let L be a bounded modular lattice and let A = {ai ∣ i ∈ I }
be a subset of L. A is called an essential subset if for every non-zero element
b ∈ L, there exists a finite subset F of I such that (⋁i∈F ai) ∧ b ≠ 0.

Similarly, A is a superfluous subset if for every 1 ≠ b ∈ L, there exists a finite
subset F of I such that (⋀i∈F ai) ∨ b ≠ 1. Obviously A is a superfluous subset
in L if and only if A is an essential subset in Lop.

Let a be an element of L and A = {ai ∣ i ∈ I } a subset of L such that ai ≤ a
for every i ∈ I. We say that A is essential in a if it is an essential subset of the
lattice [0, a].

A finite subset A = {ai ∣ i ∈ I } ⊆ L is essential if and only if ⋁i∈I ai is essential
in L. Similarly, A is superfluous if and only if ⋀i∈I ai is superfluous in L.

Theorem 2.1.2 Let L ≠ 0 be a bounded modular lattice such that every non-
zero element of L contains a uniform element. Let ℵ be a cardinal number.
Then the following are equivalent:

1. L does not contain join-independent subsets of cardinality ≥ ℵ;

2. L contains an essential join-independent subset {ai ∣ i ∈ I } of cardinality
strictly less than ℵ, with ai uniform for every i ∈ I;

3. there exists a cardinal ℶ < ℵ such that every join-independent subset of L
has cardinality ≤ ℶ.

Moreover, if these equivalent conditions hold, every essential join-independent
subset {ai ∣ i ∈ I }, with ai uniform for every i ∈ I, attains the Goldie dimension
of L.

Proof.

(1)⇒(2) Let F be the set of all join-independent subsets of L consisting only
of uniform elements. Since every element of L contains a uniform element, F
is non-empty. By Zorn’s lemma, F has a maximal element X with respect to
inclusion. By (a), card(X) < ℵ. At this point, we claim that X is an essential
subset of L; otherwise there would exist a non-zero element x ∈ L such that
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(⋁y∈F y) ∧ x = 0 for every finite subset F ⊆ X and, by hypothesis, there would
be a uniform element b ∈ L such that b ≤ x. Then X ∪ { b} would be a join-
independent set of uniform elements strictly containing X , a contradiction to
the maximality of X .

(2)⇒(3) Suppose that there exists an essential join-independent subset A ={ai ∣ i ∈ I } with every ai uniform, card(I) = ℶ < ℵ.
We claim that A is maximal between the join-independent subsets of L; other-
wise there exists a non-zero element b ∈ L such that A∪{ b} is join-independent.
This means that for every finite subset F of I we have that (⋁i∈F ai) ∧ b = 0,
but this clearly contradicts the hypothesis that A is an essential subset.
Then, by Theorem 1 of [33], we have

card(J) ≤ card(I)
for every join-independent subset { bj ∣ j ∈ J } of L.

(3)⇒(1) Obvious.
The final remark is clear form the proof (b)⇒ (c).
The hypothesis that every non-zero element contains a uniform element is

not only necessary, but also sufficient to claim that the lattice has an essential
independent subset of uniform elements.

Proposition 2.1.3 Let L be a bounded modular lattice. If L contains an es-
sential join-independent subset {ai ∣ i ∈ I} with ai uniform for every i ∈ I, then
every non-zero element of L contains a uniform element.

Proof. Let x be a non-zero element of L. Since {ai ∣ i ∈ I} is an essential
set, there exists a finite subset F ⊆ I such that x ∧ (⋁i∈F ai) ≠ 0. Now

dim([0, x ∧ (⋁
i∈F

ai)]) ≤ dim([0,⋁
i∈F

ai]) = ∣F ∣.
Hence, by Theorem 1.3.5, there is a uniform element u ≤ x ∧ (⋁i∈F ai) ≤ x.

In the finite case one has that also the following statement is equivalent to
the ones in the theorem:� if a0 ≤ a1 ≤ a2 ≤ . . . is an ascending chain of elements of L, then there

exists i ≥ 0 such that ai is essential in aj for every j ≥ i.

One can try to generalize this to the infinite case and ask if the following con-
dition is equivalent to the ones in the theorem:

4. there does not exist an ascending chain X of elements of L of cardinality
ℵ such that { b ∈ X ∣ b < a} is not an essential set in a, for every a in the
chain.

What happens is that just one implication continues to hold. We have that
(3)⇒(4): if (4) does not hold, there exists an ascending chain X of elements of L
of cardinality ℵ such that { b ∈X ∣ b < a} is not an essential set in a, for every a
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in the chain. Then, for every a in the chain, there exist a non-zero element ca ≤ a
in L such that (⋁F b) ∧ ca = 0, for any finite subset F of { b ∈ X ∣ b < a}. This
implies that these elements ca form a join-independent subset of L of cardinality
ℵ. Thus (3) does not hold.

The problem is that the other implication is no longer true when we pass to
the infinite case. Let us show that the implication (4)⇒(1) is false in general.
Let X be a set of cardinality ℵ; consider L to be the sublattice of (℘(X),⊆)
consisting of ∅, X itself and all the finite subsets of X . It is clear that L is
modular, since it is a sublattice of a distributive lattice. Every singleton is an
uniform element in L, then every non-zero element of L contains a uniform
element.

Since x ∧ (⋁n
i=1 xi) = 0 for x,xi singletons of X with x ≠ xi, i = 1, . . . , n, we

have that the set of the singletons is a join-independent subset of L.
On the other hand it is also obvious that every chain in L can have at most

countable cardinality.

Proposition 2.1.4 Let L be a bounded modular lattice and let E ⊆ ℘(L) be the
set of essential sets of L. If A is an independent essential set of L, then it is
minimal in E.

Proof. Let A be an independent essential set of L. If A′ is an essential set
strictly contained in A and a ∈ A ∖A′, there exists a finite set F ⊆ A′ such that
a ∧ (⋁i∈F ai) ≠ 0. This clearly contradicts the fact that A is independent.

Conversely, it is not true in general that a minimal essential set is indepen-
dent. To see this it is enough to look at the following example. Let L be the
lattice

●

��
��
��
�

??
??

??
?

a ●

??
??

??
? ● b ●

��
��
��
�

??
??

??
?

●

??
??

??
? ● c

��
��
��
�

●
It is clear that the set {a, b} is minimal essential but it is not independent.

In fact, Puczy lowski proved in [41] that the one above is the only pathology that
can appear considering minimality of essential subsets of uniform elements.

Before stating the next proposition, if L and L′ are two bounded modular
lattices, we denote by L⊕L′ the direct sum of L and L′, which, as a set, consists
of the elements (l, l′), with l ∈ L and l′ ∈ L′ and have the operations defined
componentwise.

Proposition 2.1.5 Let L be a bounded modular lattice.

1. dim(L) = 0 if and only if L = 0;

2. dim(L) = 1 if and only if L is uniform;

43



3. dim([0, a]) ≤ dim(L) for every a ∈ L;

4. dim([0, a]) = dim(L) if a is essential in L;

5. if L′ is another modular lattice bounded, then dim(L ⊕ L′) = dim(L) +
dim(L′).

Proof. The proof of (1), (2), (3) and (4) are elementary (the original article
of Alfred Goldie where these things were observed is [31]). To prove (5) it is
enough to observe that if {ai ∣ i ∈ I } is an essential join-independent subset of
uniform elements of L1 and { bj ∣ j ∈ J } is an essential join-independent subset
of uniform elements of L2, then { (ai,0) ∣ i ∈ I }∪ { (0, bj) ∣ j ∈ J } is an essential
join-independent subset of uniform elements of L1 ⊕L2.

We notice that the converse implication of (4) holds only in the finite case.

Remark 2.1.6 The hypothesis that every element of the lattice contains a
uniform element is always satisfied by the dual lattice of the right (left) ideals
of a ring, since every right (left) ideal is contained in a maximal one. Therefore
the dual Goldie dimension (left or right) of a ring is always attained.

2.2 Dual Goldie dimension of rings

In view of the previous remark, now we restrict to the case of the right dual
Goldie dimension of a ring R. We can easily observe here a certain number of
facts:� the Jacobson radical is a superfluous ideal ([5], Prop. 9.18). This means

that codim(RR) = codim(RR/J(RR)) and so we can restrict our attention
to semiprimitive rings;� when we look for coindependent sets we can restrict to maximal right
ideals. If I1, . . . , In are coindependent right ideals, i.e. Ii + (⋂j≠i Ij) =
R, choosing maximal ideals Mi ⊇ Ii, we have that Mi + (⋂j≠iMj) = R,
which means that M1, . . . ,Mn are coindependent maximal right ideals.
Moreover M1, . . . ,Mn are all distinct; in fact, if Mi = Mj , we have that
Mi = Mi +Mj ⊇ Ii + Ij , and this contradicts the fact that Ii and Ij are
coindependent.

Let us see now how the concepts that we introduced above translate in this
particular case. Let {Mi ∣ i ∈ I } be a set of maximal right ideals.

The set {Mi ∣ i ∈ I } is coindependent if for every finite subset F ⊆ I and i ∈ F ,
we haveMi+(⋂i≠j∈F Mj) = RR, that is equivalent to saying that ⋂i≠j∈F Mj ⊈Mi;
this, thanks to the Chinese Remainder Theorem, is also equivalent to

R

⋂i∈F Mi

≅⊕
i∈F

R

Mi

.
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We have that ⋂i∈I Mi is a superfluous ideal in R if and only if it is equal to
the Jacobson radical J(R). It is clear that ⋂i∈I Mi ⊇ J(R), since J(R) is the
intersection of all maximal right ideals; on the other side the Jacobson radical
of a ring R is the biggest superfluous right ideal ([5], Prop. 9.18), and therefore

⋂i∈I Mi must be contained in it.
The set {Mi ∣ i ∈ I } is superfluous, by definition, if for any proper right ideal

J ⊆ RR there exists a finite subset F ⊆ I such that J + ⋂i∈F Mi ≠ RR. Clearly,
without loss of generality, we can take J to be a maximal ideal; therefore the
condition we get is that for any maximal right ideal M ⊆ RR there exists a
finite subset F ⊆ I such that M + ⋂i∈F Mi ≠ RR; this is equivalent to saying
that for every maximal right ideal there exists a finite subset F ⊆ I such that

⋂i∈F Mi ⊆M .
It is clear that if the set is superfluous, then ⋂i∈I Mi = J(R) is superfluous.

The converse implication is not true in general.

Example 2.2.1 Consider the polynomial ring Q[x] in one variable over the
rational numbers. It is a principal ideal domain and (p(x)) is a maximal ideal if
and only if p(x) is an irreducible polynomial. Let T = { (x − a) ∣ a ∈ Z}; we can
notice that, since (x − a) +∏n

i=1(x − bi) = Q[x] for any distinct a, b1, . . . , bn, the
set T is coindependent. It is clear also that ⋂T (x−a) = (0) = J(Q[x]). Anyway,
if we take p(x) to be an irreducible polynomial of degree bigger than 1, there
does not exist a finite number of elements in T such that (p(x)) ⊆ ⋂n

i=1(x− ai).
Example 2.2.2 In this example we will show that the cardinalities of a su-
perfluous coindependent set of maximal right ideals and of a coindependent set
of maximal right ideals with superfluous intersection can be different. Let us
consider the ring of continuous functions of the real numbers C(R); for every
a ∈ R, the subset Ma = { f ∈ C(R) ∣ f(a) = 0} ⊆ C(R) is a maximal ideal. The
set {Ma ∣ a ∈ Q} is a coindependent set of cardinality ℵ0, but it is not coinde-
pendent since none of the maximal ideals Ma, with a ∈ R ∖Q, contains a finite
intersection of maximal ideals in this set. Since Q is dense in R, the intersection
of {Ma ∣ a ∈ Q} consists only of the zero function. On the other hand it is clear
that to have a coindependent superfluous set it is necessary that it contains all
the maximal ideals Ma, with a ∈ R, and therefore it has cardinality at least c.

We saw that if {Mi ∣ i ∈ I } is a coindependent set we have, for any finite
subset F ⊆ I, an isomorphism R

⋂i∈F Mi
≅ ⊕i∈F

R
Mi

. Therefore, in this situation,

{Mi ∣ i ∈ I } is a superfluous set if, for any maximal right ideal M of RR, we
have that there exists a finite subset F ⊆ I such that M

⋂i∈F Mi
is a maximal ideal

of the semisimple ring ⊕i∈F
R
Mi

.

Now we show that in the case of the dual Goldie dimension of a ring R, the
converse of Proposition 2.1.4 holds.

Proposition 2.2.3 Let MR be the set of all maximal right ideals of a ring R
and F ⊆ ℘(MR) the set of all superfluous sets of maximal ideals. If F has a
minimal element T ∗, then T ∗ is coindependent and hence ∣T ∗∣ = codim(RR).
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Proof. Let T ∗ be a minimal superfluous set of maximal ideals. To prove
that it is coindependent, we have to show that for any M1, . . . ,Mn ∈ T , we have
that Mi + (⋂j≠iMj) = R for any i = 1, . . . , n. Suppose not, i.e. there exists an
i such that we have Mi + (⋂j≠iMj) ⊊ R; this means that Mi + (⋂j≠iMj) ⊇Mi

is contained in a maximal ideal, that clearly must be Mi itself. From this it
follows that ⋂j≠iMj ⊆Mi contradicting the fact that T ∗ is minimal. Thanks to
Theorem 2.1.2, it is clear that ∣T ∗∣ = codim(RR).

It clearly follows that

Corollary 2.2.4 All minimal superfluous sets T of maximal right ideals of a
ring R have the same cardinality.

2.3 Examples and computations

In this section we want to analyze some concrete examples of lattices and rings
and compute their dual Goldie dimension. We start with an example that will
turn out to be very helpful. First we need some definitions.

Definition 2.3.1 Let L be a lattice. An ideal I of L is a non-empty subset of
L such that:� for every x ∈ I and y ∈ L, x ∧ y is in I;� for every x, y ∈ I, their join x ∨ y is in I.

An ideal I is maximal if the only ideal that properly contains I is the whole
lattice L.

Dually, a filter F of L is a non-empty subset of L such that:� for every x ∈ F and y ∈ L, x ∨ y is in F ;� for every x, y ∈ F , their meet x ∧ y is in F .

A filter F is maximal if the only filter that properly contains F is the whole
lattice L. In this case it is called ultrafilter .

Given an element a of a lattice L, the set of all the elements b ∈ L such that
b ≤ a forms an ideal of L, called the principal ideal generated by a and denoted
by (a]. By Zorn’s Lemma it is clear that every ideal of a bounded lattice is
contained in a maximal ideal.

The set I(L) of all ideals of L is a bounded lattice, considering the intersec-
tion of ideals as meet and the ideal generated by I and J , i.e. the intersection
of all the ideals containing I and J , as the join of I and J . We have that if L
is modular or distributive, then so is I(L).

The same holds also for the set of all filters of L, since they are in fact the
ideals of the dual lattice Lop.

An ideal I is prime if it is proper and for every a, b ∈ L such that a ∧ b ∈ I,
then either a ∈ I or b ∈ I.
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We recall that a complement for an element a of a bounded lattice L is an
element b such that a∧b = 0 and a∨b = 1. A bounded lattice L is complemented
if every element in L has a complement.

Lemma 2.3.2 1. If L is a distributive lattice, every maximal ideal is prime;

2. if L is complemented, every prime ideal is maximal;

3. if P is a prime ideal and I and J are ideals of a lattice L, then I ∩ J ⊆ P
implies that either I ⊆ P or J ⊆ P .

Proof.

1. Suppose I ⊆ L is a maximal ideal and let a, b ∈ L be such that a ∧ b ∈ I. If
a ∉ I, the ideal generated by I and (a] is the whole lattice, so that b ≤ i∨a
for some element i ∈ I. Then b = b ∧ b ≤ (i ∨ a) ∧ b = (i ∧ b) ∨ (a ∧ b) ∈ I.

2. Suppose I is a prime ideal of L. We show that for any element a ∈ L∖I, the
ideal generated by I and (a] is the whole lattice. Let b be a complement
of a, then b ∈ I, since a∧ b = 0 and I is prime. Now 1 = a∨ b is in the ideal
generated by (a] and I.

3. Let P be a prime ideal containing the intersection of two ideals I and J .
If neither I ⊆ P nor J ⊆ P there exist two elements i ∈ I ∖P and j ∈ J ∖P .
Then i ∧ j ∈ I ∩ J ⊆ P and this contradicts the fact that P is prime.

The same observations we made about ideals of a ring hold for ideals of
a lattice. Hence, the dual Goldie dimension of the lattice I(L) of ideals of a
lattice L is always attained and to compute it, it is enough to find a superfluous
coindependent family of maximal ideals.

Proposition 2.3.3 If L is a bounded distributive lattice, the family of all max-
imal ideals is coindependent. Hence the dual Goldie dimension of I(L) equals
the cardinality of the set of maximal ideals of L.

Proof. A family of maximal ideals {Mi}i∈I is coindependent if and only if
for every ı ∈ I and every finite subset F ⊆ I we have that ⋂i∈F Mi ⊆Mı implies
that ı ∈ F . The maximal ideal Mı is prime and hence ⋂i∈F Mi ⊆Mı implies, by
(3) of Lemma 2.3.2, that there exists an i ∈ I such that Mi ⊆Mı. Since they are
both maximal ideals, they must coincide.

Since the set of all maximal ideals is clearly superfluous, it is clear that the
dual Goldie dimension of I(L) equals the cardinality of the set of maximal ideals
of L.

If a lattice B is Boolean, i.e. distributive and complemented, it is usual
to express the concepts in terms of filters and ultrafilters instead of ideals and
maximal ideals. The situation does not change a lot since there is a one to one
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correspondence between maximal ideals and ultrafilters given by the comple-
ment. The set of ultrafilters is the underlying set of a topological space, called
the Stone space and denoted by S(B). The topology for S(B) is generated by
a basis consisting of all the sets of the form

{x ∈ S(B) ∣ b ∈ x}
where b is an element of B.

Since the ring theoretical notion of ideal in Boolean rings corresponds to the
lattice theoretical notion of ideal in Boolean lattices, in the correspondence that
there is between the two categories, we have obviously the following.

Theorem 2.3.4 Given a Boolean ring B, its dual Goldie dimension is given
by the cardinality of its Stone space S(B).

As a particular case, using ([29],9.2), we get the following.

Corollary 2.3.5 Let X be a set. The dual Goldie dimension of the Boolean

ring (℘(X),∆,∩) is equal to 22
∣X∣

.

The boolean ring (℘(X),∆,∩) can be seen also as the ring 2X of functions
from the set X to the field with two elements. If we take any field K, what
we proved above holds also for the ring KX of functions from the set X to the
field K. To show this it is enough to establish an inclusion preserving bijection
between the set of proper ideals of KX and the set of proper filters of X .

Let I be a proper ideal of the ring KX , we want to show that the collection
Z(I) of zero sets of elements of I form a filter of X . To do this we observe the
following:� the empty set is not a zero set, since the identity function does not belong

to I;� if A ⊆ X is a zero set of an element f ∈ I and A ⊆ B ⊆ X , then B is
the zero set of the element f ⋅ χX∖B ∈ I, where with χY we denote the
characteristic function of the set Y ⊆X ;� let A and B be the zero set of two elements in I. Multiplying them by the
appropriate elements in the ring we find that also χX∖A and χX∖B are in
the ideal I; therefore we have that χX∖A + χX∖B − χX∖A ⋅ χX∖B (the last
term is needed only when the characteristic of K is 2) is an element of the
ideal I, having as zero set A ∩B.

On the other hand, let F be a proper filter on X . We want to prove that the
set I(F ) = { f ∶X →K ∣ Z(f) ∈ F }, where Z(f) indicates the zero set of f , is a
proper ideal of the ring KX . To do this we notice the following:� the identity of KX is not in I since the empty set is not in F ;� if f ∈ I and g ∈KX , we have that fg ∈ I since Z(f) ⊆ Z(fg) ⊆X ;
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� if f and g are elements of I, then f + g ∈ I since Z(f + g) ⊇ Z(f)∩Z(g).
To check that these two maps are each other’s inverse, we observe that, for

any proper ideal I of KX

IZ(I) = {f ∈KX ∣ Z(f) ∈ Z(I)} = {f ∈KX ∣ ∃g ∈ I such that Z(f) = Z(g)}.
From the equality Z(f) = Z(g) we deduce that also f ∈ I and so IZ(I) = I.

On the other hand, let F be a proper filter of X . We have

ZI(F ) = {Z(f) ⊆X ∣ f ∈ I(F )} = {Z(f) ⊆X ∣ Z(f) ∈ F}.
It is clear that ZI(F ) ⊆ F . To check that the equality holds it is enough to
notice that every subset Y of X is of the form Z(f) for some function f ∈KX .
Since the two maps are clearly order preserving, in this way we have a lattice
isomorphism between the lattice of ideals of KX and the lattice of filters of the
lattice ℘(X). Hence we can conclude as follows.

Proposition 2.3.6 Let X ba a set and K any field. Then the dual Goldie

dimension of the ring KX is equal to 22
∣X∣

.

Now let X be a topological space and consider the ring C(X) of continuous
functions from X to the reals. Let Z(f) be the zero set of an element f ∈ C(X)
and let Z(X) = {Z(f) ∣ f ∈ C(X)}. Now we want to show that the set Z(X)
is in fact a sublattice of the distributive lattice ℘(X), and hence a distributive
lattice itself. Let Z(f) and Z(g) be the zero sets of two elements f, g ∈ C(X).
From the equalities

Z(f)∪Z(g) = Z(fg)
and

Z(f) ∩Z(g) = Z(f2
+ g2) = Z(∣f ∣ + ∣g∣)

we easily deduce what we wanted. Now we want to show that there is a bijection
between the set of ideals of the ring C(X) and the set of filters of the distributive
lattice Z(X).

Let I be an ideal of the ring C(X). The set Z(I) = {Z(f) ∣ f ∈ I} is an ideal
of Z(X) since� if f ∈ I and g ∈ C(X), then Z(f) ∪Z(g) = Z(fg) ∈ Z(I) since fg ∈ I;� if f, g ∈ I, then Z(f)∩Z(g) = Z(f2 + g2) ∈ Z(I) since f2 + g2 ∈ I.

On the other hand, let F be a filter of Z(X). The set I(F ) = {f ∈ C(X) ∣
Z(f) ∈ F} is an ideal of C(X), in fact� if Z(f) ∈ F and g ∈ C(X), then fg ∈ I(F ) since Z(fg) ⊇ Z(f) ∈ F ;� if Z(f) and Z(g) are in F , then f +g ∈ I(F ) since Z(f +g) ⊇ Z(f)∩Z(g) ∈

F .

Lemma 2.3.7 Let X be a topological space.
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1. For every filter F of Z(X), we have ZI(F ) = F ;
2. for every ideal I if C(X), we have IZ(I) ⊇ I.
Proof.

1. Let F be a filter of Z(X). From

ZI(F ) = {Z(f) ∣ f ∈ I(F )} = {Z(f) ∣ f such that Z(f) ∈ F}
follows that ZI(F ) ⊆ F . Since every element of Z(X) is of the form Z(f)
for some f ∈ C(X), it is clear that in fact the equality holds.

2. Let I be an ideal of C(X). Form

IZ(I) = {f ∈ C(X) ∣ Z(f) ∈ Z(I)}
= {f ∈ C(X) ∣ ∃g ∈ I such that Z(f) = Z(g)}

it becomes clear that IZ(I) ⊇ I.

In (2) the inclusion may be proper, as the following example shows.

Example 2.3.8 Consider the principal ideal I = (i) of C(R), where i denotes
the identity function. This consists of all the functions f ∈ C(R) such that
f(x) = xg(x) for some function g ∈ C(R). Since Z(i) = {0} and Z(I) is a filter
of Z(R), the filter Z(I) is the set of all subsets of R containing 0. Hence the
ideal M = IZ(I) clearly consists of all the functions in C(R) that vanish at 0.
Hence M contains I. However M ≠ I. For instance i1/3 ∈M ∖ I. That i3 ∈M is
obvious. If i1/3 ∈ I, then i1/3 = ig for some g ∈ C(R). But then g(x) = i−2/3 for
x ≠ 0, so that g can not be continuous at 0.

This example tells us that, for a generic topological space X , there is not
a bijection between the set of ideals of C(X) and the set of filters of the dis-
tributive lattice Z(X). Anyway from Lemma 2.3.7 we can deduce that there is
a bijection between maximal ideals of C(X) and ultrafilters of Z(X). In fact,
if M is a maximal ideal of C(X), the ideal IF (M) is proper and contains M ,
hence it needs to be equal to M . Moreover, if M,M1, . . . ,Mn are maximal ideals
of C(X), we have that

M ⊇
n

⋂
i=1

Mi ⇐⇒ Z(M) ⊇ n

⋂
i=1

Z(Mi).
To show this we need to prove that Z(⋂n

i=1Mi) = ⋂n
i=1 Z(Mi). It is clear that

the inclusion ⊆ holds. For the other inclusion, let Y ∈ ⋂n
i=1 Z(Mi); hence Y =

Z(fi), with fi ∈ Mi, for every i = 1, . . . , n. But then Y = Z(f1 ⋅ . . . ⋅ fn), and
f1 ⋅ . . . ⋅ fn ∈M1 ⋅ . . . ⋅Mn ⊆ ⋂n

i=1Mi. Hence we have
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M ⊇
n

⋂
i=1

Mi ⇒ Z(M) ⊇ Z( n

⋂
i=1

Mi) = n

⋂
i=1

Z(Mi)
⇒ M = IZ(M) ⊇ I( n

⋂
i=1

Z(Mi)) = IZ( n

⋂
i=1

Mi) ⊇ n

⋂
i=1

Mi.

From this we deduce that a set of maximal ideals of C(X) is coindependent
if and only if the corresponding set of filters of X is coindependent. From this
we can conclude the following.

Proposition 2.3.9 Let X be a topological space. Then the dual Goldie dimen-
sion of the ring C(X) is equal to the cardinality of the set of ultrafilters of the
lattice Z(X).

Proof. To what we said above, it is enough to add that every ultrafilter
of Z(X) is prime, since the lattice Z(X) is distributive. Hence the set of all
ultrafilters of Z(X) is coindependent.

For any topological space X , the set of all ultrafilters of the lattice Z(X)
gives rise to a topological space, with the same topology that we introduced
above for a general Stone space. This topological space is called the Stone-
Čech compactification of X , which is denoted by βX . It is a compact Hausdorff
topological space endowed with a continuous map from X to βX , having the
following universal property: any continuous map f ∶X → K, where K is a
compact Hausdorff space, lifts uniquely to a continuous map βf ∶βX →K.

Corollary 2.3.10 Let X be a topological space. Then the dual Goldie dimen-
sion of the ring C(X) is equal to the cardinality of the Stone-Čech compactifi-
cation βX of X.

Now we want to generalize what we did above to abelian von Neumann
regular rings.

Proposition 2.3.11 For a ring R, the following conditions are equivalent:

1. for every element x ∈ R there exists y ∈ R such that xyx = x;

2. every principal right (left) ideal of R is generated by an idempotent;

3. every finitely generated right (left) ideal of R is generated by an idempo-
tent.

Proof. (1)⇒(2) Given an element x ∈ R, there exists y ∈ R such that
xyx = x. Then xy is an idempotent of R such that xR = xyR.

(2)⇒(3) It suffices to show that xR + yR is principal for any x, y ∈ R. Now
xR = eR for some idempotent e ∈ R, and since y − ey ∈ xR + yR we see that
xR+yR = eR+(y−ey)R. There is an idempotent f ∈ R such that fR = (y−ey)R
and we note that ef = 0. Consequently, g = f − fe is an idempotent orthogonal
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to e. Observing that fg = g and gf = f , we see that gR = fR = (y − ey)R,
whence xR + yR = eR + gR. Inasmuch as e and g are orthogonal, we conclude
that xR + yR = (e + g)R.

(3)⇒(1) Given x ∈ R, there exists an idempotent e ∈ R such that eR = xR.
Then e = xy for some y ∈ R and x = ex = xyx.

A ring that satisfies these equivalent conditions is called a von Neumann
regular ring. Such a ring is said to be abelian if all its idempotents are central.
It is a general fact that the central idempotents of a ringR form a boolean lattice,
where e ∧ f = ef = fe and e ∨ f = e + f − ef for any two central idempotents
e, f ∈ R. In the case of abelian von Neumann regular rings the lattice of central
idempotents is isomorphic to the lattice of finitely generated ideals. In fact we
have

eR ∩ fR = efR and eR + fR = (e + f − ef)R.
Moreover we notice that in abelian von Neumann rings, every one-sided ideal is
also two-sided, so we will talk just of ideals and not of right or left ideals.

As we did in our previous cases, we want to find a bijection between the
set of ideals of R and the set of ideals of a Boolean lattice. For an abelian von
Neumann regular ring R, the Boolean lattice of all the idempotents of R is what
we are looking for.

Theorem 2.3.12 Let R be an abelian von Neumann regular ring and let B(R)
be the Boolean lattice formed by all the idempotents of R. Then there is a
bijection between the set of ideals of R and the set of ideals of B(R). Hence
the dual Goldie dimension of the ring R is equal to the cardinality of the Stone
space of the lattice B(R).

Proof. Let R be an abelian von Neumann regular ring and let I be an
ideal of R. Then the set of idempotents φ(I) = {e ∈ B(R) ∣ e ∈ I} is an ideal of
B(R), in fact:� φ(I) is not empty since every principal ideal of R is generated by an

idempotent;� if e ∈ φ(I) and f ∈ B(R), then e ∧ f = ef ∈ I, so that e ∧ f ∈ φ(I);� if e, f ∈ φ(I), then e ∨ f = e + f − ef ∈ I, so that e ∨ f ∈ φ(I).
Conversely, if J is an ideal of the Boolean lattice B(R), we can associate to it
the ideal ψ(I) generated by I.

Now we need to prove that φ and ψ are inverse mappings. To show this, let I
be an ideal of R. It is obvious that ψφ(I) ⊆ I. The other inclusion is clear since
R is a von Neumann regular ring and hence every principal ideal is generated by
an idempotent. Conversely, let J be an ideal of the Boolean lattice B(R). It is
obvious that φψ(J) ⊇ J . To prove the other implication, let e be an idempotent
in the ideal generated by J . Hence e belongs to the ideal generated by a finite
number of idempotents e1, . . . , en in J . Since the ideal generated by e1, . . . , en
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is equal to the ideal generated by e1 ∨ . . .∨ en, we have that e ∈ (e1 ∨ . . .∨ en)R.
Hence e = e(e1 ∨ . . . ∨ en) belongs to the ideal J .

The last sentence clearly follows from Theorem 2.3.4.
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Chapter 3

Krull monoids

One of the most natural problem to consider in module theory is the behaviour
of the direct sum decomposition of modules. We saw in chapter 1 the Krull-
Schmidt-Azumaya Theorem, which describes completely the direct sum decom-
positions of any module that is a direct sum of modules with local endomorphism
ring. If we consider the category of vector spaces over a division ring, it is well
known that the linear dimension is an invariant that completely describes the
behaviour of the direct sum of vector spaces up to isomorphism. In general the
situation is not so clear and it is of great interest to have some more insight.

The proper setting to investigate problems about the behaviour of the direct
sum in module categories, or more generally of additive categories, is the one
of commutative monoids. In fact, every category C has a skeleton V (C), that
is, a full, isomorphism-dense subcategory in which no two distinct objects are
isomorphic. It is well known that any two skeletons of C are isomorphic and
they are equivalent to C. If C is an additive category, or, in a particular case,
a subcategory of the category Mod-R of all R-modules closed under isomor-
phism and direct sum, any skeleton V (C) of C is endowed with the structure of
commutative monoid, with respect to the operation defined by

⟨A⟩ + ⟨B⟩ = ⟨A⊕B⟩,
where with the angled brackets ⟨A⟩ we denote the element of the skeleton as-
sociated to A. We remark that, if the category C is not skeletally small, any
skeleton V (C) of C is not a set, but a proper class. To include this case, we do
not require that a monoid is a set, but we allow it to be a proper class. It we
need the underlying class to be a set, we will call it a proper monoid.

We denote by U(M) the set of invertible elements of a monoid M . We call
the monoid M reduced if U(M) = {0}, that is, if a + b = 0 implies a = b = 0.
In any case, we denote by Mred the factor monoid M/U(M) consisting of all
cosets x +U(M) with x ∈M . Note that Mred is a reduced monoid. If a and b

are two elements of the monoid M , define a ≤ b if there exists an element c ∈M
such that a + c = b. The relation ≤ is reflexive, transitive and invariant under
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translation, i.e. for any d ∈ M , a ≤ b implies a + d ≤ b + d. Thus ≤ defines a
preorder on M , usually called the algebraic preorder of M .

Remark 3.0.1 Let C be an additive category. Then the monoid V (C) is re-
duced and ⟨A⟩ ≤ ⟨B⟩ if and only if A is a direct summand of B in C.

An atom of a monoid M is an element a ∈ M such that a = b + c implies
b = 0 or c = 0. For an additive category V (C), the atoms of the monoid V (C)
correspond exactly to the indecomposable elements of C. We say that a monoid
M is atomic if every element a ∈M is equal to the sum of finitely many atoms
and, similarly, an additive category C is atomic if its monoid V (C) is so.

Let k be a division ring. We denote by Vect−k the category of all right
k-vector spaces and by vect−k the full subcategory of all finitely generated right
k-vector spaces. It is easy to see that V (vect−k) ≅ N0 and V (Vect−k) ≅ Card,
where Card is the class of cardinal numbers endowed with the operation given by
the sum of cardinals. Both isomorphism are provided by the dimension function
dim that associates to every vector space its linear dimension.

The Krull-Schmidt-Azumaya Theorem implies the following. Let R be a
ring and C the subcategory of Mod-R of modules which are finite direct sums of
modules with local endomorphism ring. Then the monoid V (C) is free on the
base given the class of modules with local endomorphism ring. Generally, an
additive category C is said to be a Krull-Schmidt category if the commutative
monoid V (C) is free, that is, it is atomic and if A1, . . . ,Am and B1, . . . ,Bn are
indecomposable objects in C such that ⊕m

i=1Ai ≅ ⊕
n
j=1Bj , then m = n and there

exists a permutation σ ∈ Sn such that Ai ≅ Bσ(i) for every i = 1, . . . , n.
Now we consider the category proj-R of finitely generated projective modules

over the ring R. Our aim is to understand the monoid V (proj-R). We know
that the monoid V (C) is reduced and we notice that the module RR is an order-
unit of the monoid V (C). A non-zero element u of a monoid M is an order-unit
if for every element a ∈ M there exists an integer n ≥ 0 such that a ≤ nu. We
can define the category of monoids with an order-unit in the following way. Its
objects are the commutative monoids M with a distinguished element u ∈ M ,
which is an order-unit. A morphism f ∶M →M ′ of commutative monoids with
order-units is a morphism of commutative monoids that sends the order-unit
u ∈M to the order-unit u′ ∈M ′. The next Theorem, due to Bergman and Dicks
([7, Theorem 6.2 and Theorem 6.4] and [8, p. 315]), tells us that in fact the
monoids of the form V (proj-R) are exactly all reduced commutative monoids
with order unit.

Theorem 3.0.2 Let k be a field and let M be a reduced commutative proper
monoid with order unit u. Then there exists a right and left hereditary k-algebra
R such that V (proj-R) and M are isomorphic as monoid with order unit.

As a corollary of this result, we show that the theory of factorization in a
commutative integral domain can be interpreted as direct sum decomposition in
a suitable class of modules. Recall that if R is a commutative integral domain,
Q is its field of fractions, Q∗ is the multiplicative group of non-zero elements
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of Q and U(R) is the group of units of R, then the factor group G = Q∗/U(R)
is a partially ordered abelian group, called the group of divisibility of R. Its
positive cone G+ is R∗/U(R), where R∗ = R ∖ {0}.
Corollary 3.0.3 Let R be a commutative integral domain and G+ the positive
cone of the group of divisibility G of R. Then there exists a class C of finitely
generated R-modules over a suitable ring R, closed for finite direct sums, direct
summands and isomorphism, such that V (C) ≅ G+.

Proof. Set M = G+∪{+∞}. The addition on G+ extends to an associative
addition on M with a+(+∞) = (+∞)+a = +∞ for every a ∈M . The element u =
+∞ is an order-unit in the reduced commutative monoid M . By Theorem 3.0.2,
there exists a ring S with V (proj-S) ≅ M as monoids with order-unit. Hence
the class of all finitely generated projective right S-modules not isomorphic to
S has the required properties.

This corollary makes clear the connection between factorization in commu-
tative integral domains and direct sum decomposition in additive categories and
in fact show how the latter is a wider problem than the former.

3.1 Krull monoids

The easiest class of monoids to handle is the one of free monoids. For what
concerns factorization problems, the next family to consider is the one of Krull
monoids, where we can control divisibility by looking in a free monoid anyway.

Let M be a monoid. A non-zero monoid homomorphism v∶M → N0 is called
a valuation of M , and e(v) = gcd(v(M)) is called its index . If v is a valuation,
then e(v)−1v(M) is a numerical monoid, that means, N0∖e(v)−1v(M) is a finite
set. A valuation v∶M → N0 is essential if for all x, y ∈M such that v(x) ≤ v(y),
there exists some s ∈M such that x ≤ y+s and v(s) = 0. Obviously, v is essential
if and only if e(v)−1v is essential.

A submonoid M ′ of M is divisor-closed if for any x, y ∈M such that x ≤ y,
y ∈M ′ implies x ∈M ′. For any subset U ⊆M , we denote by [[U]] the smallest
divisor-closed submonoid containing U . A prime ideal of M is a proper subset
P ⊊M such that M ∖P is a divisor-closed submonoid, that is, for any x, y ∈M
we have x + y ∈ P if and only if x ∈ P or y ∈ P . If U is any subset of M , then
M ∖ [[M ∖U]] is the largest prime ideal contained in U . A prime ideal P of a
commutative monoid M is said to be a prime ideal of height one if it is minimal
among non-empty prime ideals of M [15].

If P is a prime ideal of M , then the localization MP of M at P is the monoid
whose elements are all formal differences x−s, where x, s ∈M , s ∉ P and, for all
x,x′ ∈M and s, s′ ∈M ∖P , we have x−s = x−s′ in MP if and only if there exists
t ∈M ∖P such that x + s′ + t = x′ + s + t in M . In particular G(M) =M∅ is the
Grothendieck group of M. The monoid (MP )red is called the reduced localization
of M at P . If x,x′ ∈M and s, s′ ∈M ∖P , then x− s+U(MP ) = x′ − s′ +U(MP )
in (MP )red if and only if there exist elements t, t′ ∈M ∖P such that x+t = x′+t′.
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In particular, the homomorphism M → (MP )red, defined by x↦ x−0+U(MP),
is surjective.

A monoid M is called cancellative if, for all x, y, z ∈M , x + z = y + z implies
x = y. If M is cancellative, then it is contained in its Grothendieck group
G(M), usually called in this case the quotient group or the group of differences
ofM . If R is a ring, then the monoid V (proj-R) is reduced, andG(V (proj-R)) =
K0(R) is the Grothendieck group of the isomorphism classes of finitely generated
projective R-modules.

A monoid M is called a discrete valuation monoid if Mred is isomorphic to
N0. If M is a discrete valuation monoid, then there is a unique isomorphism
θ∶Mred → N0 and the map vM ∶M → N0, defined by vM(x) = θ(x+U(M)), is an
essential surjective valuation. If v∶M → N0 is any valuation of M , it is easy to
see that v = e(v)vM .

Lemma 3.1.1 Let M be a monoid, v∶M → N0 a valuation and P = {x ∈ M ∣
v(x) > 0}.

1. P is a prime ideal of M and v induces a surjective homomorphism

v∶ (MP )red → v(M)
defined by v(x − s +U(Mp)) = v(x) for all x ∈M and s ∈M ∖P ;

2. the following are equivalent:

(a) v is essential;

(b) v(M) = e(v)N0 and v is an isomorphism;

(c) MP is a discrete valuation monoid.

3. If v is essential, then P is a prime ideal of height one of M .

Proof.

1. It is easy to check that P is indeed a prime ideal. If x,x′ ∈ M and
s, s′ ∈ M ∖ P are such that x − s + U(MP ) = x′ − s′ + U(MP ), then there
exist t, t′ ∈M ∖ P such that x + t = x′ + t′, whence v(x) = v(x′). Hence v
induces a surjective homomorphism v as asserted.

2. (a)⇒(b) Set e0 = min(v(M) ∖ {0}) = v(x0) for some x0 ∈ M . We shall
prove that v(M) = e0N0. Suppose that x ∈M and v(x) = e0k + r, where
k, r ∈ N0 with r < e0. Since v(kx0) = ke0 ≤ v(x), there exists some s ∈M
such that kx0 ≤ x + s and v(s) = 0. Thus x + s = kx0 + y for some y ∈M ,
from which v(y) = r, and therefore r = 0.

To prove that v is injective, let x,x′ ∈ M and s, s′ ∈ M ∖ P such that
v(x− s+U(MP)) = v(x′ − s′ +U(MP )). Then v(x) = v(x′) and thus there
exist elements y ∈M and t ∈M ∖P such that x+ y = x′ + t. It follows that
v(y) = 0, hence y ∈M ∖P and x − s +U(MP ) = x′ − s′ +U(MP ).
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(b)⇒(a) Let x and y be elements of M such that v(x) ≤ v(y). Then
there exists an element a ∈M such that v(x) + v(a) = v(y), which means
v(x + a + U(MP )) = v(y + U(MP )). Therefore there exist elements s, t ∈
M ∖ P satisfying x + a + s = y + t and consequently x ≤ y + t and v(t) = 0.

The equivalence of (b) and (c) follows directly from the definition of dis-
crete valuation monoid observing that v(M) = v((MP )red) by (1).

3. By (2), MP is a discrete valuation monoid. Hence it possesses exactly one
non-empty prime ideal and therefore P is a prime ideal of height one of
M .

A divisor homomorphism between two monoids M and N is a monoid ho-
momorphism ϕ∶M →N such that ϕ(x) ≤ ϕ(y) implies x ≤ y for every x, y ∈M .
This means that we can read the algebraic preorder of M by looking at the
algebraic preorder of N using ϕ. A commutative monoid M is a Krull monoid
if there exists a divisor homomorphism ϕ∶M → F into a free monoid F . This
means that there exists a family of valuations vi, i ∈ I, given by the non-zero
components of the divisor homomorphism, such that, for every a, b ∈M :� vi(a) = vi(b) for every i ∈ I if an only if a +U(M) = b +U(M);� a ≤ b if and only if vi(a) ≤ vi(b) for every i ∈ I;� vi(a) = 0 for almost all i ∈ I.

With the next Lemma we prove the first properties of Krull monoids.

Lemma 3.1.2 Let M be a commutative monoid.

1. Every divisor homomorphism ϕ∶M → F into a free monoid F induces an
isomorphism Mred → ϕ(M);

2. every reduced Krull monoid is cancellative;

3. M is a Krull monoid if and only if Mred is a Krull monoid.

Proof.

1. Let ϕ∶M → F be a divisor homomorphism of M into a free monoid F .
Since U(F ) = {0} it is possible to define the induced homomorphism
ϕ∶Mred → F . To prove that it is injective it is enough to notice that for
an element a ∈M , ϕ(a) = 0F = ϕ(0M) implies a ≤ 0M , that is a ∈ U(M).

2. If M is a reduced Krull monoid, from (1) we have that M is isomorphic
to a submonoid of a free monoid F . Since F is cancellative, also M is so.
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3. It is clear that if ϕ∶M → F is a divisor homomorphism into a free monoid
F , also the induced homomorphism ϕ∶Mred → F is a divisor homomor-
phism. Conversely, suppose that ψ∶Mred → F is a divisor homomorphism
of Mred into a free monoid F . We can define a monoid homomorphism
ϕ∶M → F by ϕ(a) = ψ(a+U(M)) for every a ∈M , that turns out to be a
divisor homomorphism.

Since we know that V (C) is reduced for any additive category C, Lemma
3.1.2(2) tells us that a necessary condition for V (C) to be a Krull monoid is
that it must be cancellative.

Proposition 3.1.3 A monoid M is a reduced Krull monoid if and only if it is
isomorphic to N(I) ∩G, where N(I) is the free monoid on the basis I and G is
a subgroup of Z(I).

Proof. Since M is a reduced Krull monoid, there is an injective divisor

homomorphism ϕ∶M → N
(I)
0

, for some class I. Hence we can suppose that

M ⊆ N
(I)
0

. The monoid M is cancellative and thus we can embed it in its

Grothendieck group G(M) ⊆ Z(I). Therefore M ⊆ G(M) ∩N(I)
0

. To prove the

opposite inclusion, let x − s ∈ G(M) ∩ N(I)
0

. This means that ϕ(x) ≥ ϕ(s) and
hence, since ϕ is a divisor homomorphism, we have x ≥ s. This implies that
there exists an element y ∈M such that x = y + s, thus y = x − s in G(M).

Proposition 3.1.3 tells us that a reduced Krull monoid has a very nice geo-
metrical behaviour. In fact it is the intersection of a lattice G ⊆ Z(I) with the
positive cone N(I), so that the failure of the uniqueness of the factorization is
minimal, due only to the presence of the border of N(I) ∩G.

Now we want to provide some examples of Krull monoids that are relevant
in the study of factorizations.

Example 3.1.4 The example that gave rise to the study of Krull monoids
is the following. An integral domain R is a Krull domain if and only if its
multiplicative monoid R● = R ∖ {0} is a Krull monoid.

Example 3.1.5 A nonzero element a of a ring R is said to be a regular element
if it is neither a left nor a right zero divisor. An ideal a of R is called regular
if it contains a regular element of R. A Marot ring is a non-zero commutative
ring such that every regular ideal can be generated by regular elements. Then a
Marot ring R is a Krull ring, in the sense of [36], if and only if the multiplicative
monoid of regular elements of R is a Krull monoid.

Example 3.1.6 Let R be a Krull domain, I ⊆ R a non-zero ideal and G ⊆(R/I)× a subgroup. Then the monoid

HG = {a ∈ R● ∣ a + I ∈ G}
is a Krull monoid, called the (regular) congruence monoid defined in R modulo
I by G.
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Example 3.1.7 Let G be an abelian group and let G0 ⊆ G be a non-empty
subset. Denote by F (G0) the free monoid on the basis G0. Then

B(G0) = {∏
g∈G0

gng ∈ F (G0) ∣ ∑
g∈G

ngg = 0} ⊆ F (G0)
is called the block monoid over G0. Clearly, the embedding i∶ B(G0) → F (G0)
is a divisor homomorphism and hence B(G0) is a Krull monoid.

We now present an example that is not of purely algebraic nature and comes
from analytic number theory. We say that a submonoid H ⊆ D is saturated if
a, b ∈H , c ∈ D and a = b + c imply c ∈H .

Example 3.1.8 A quasi-formation [D,H, ∣ ⋅ ∣] consists of:� a free monoid D = F (P ) on the basis P ,� a homomorphism ∣ ⋅ ∣∶D → (N, ⋅) such that ∣a∣ = 1 if and only if a = 0, and
the Dirichlet series

∑
p∈P

∣p∣−s converges for Re(s) > 1,� a saturated submonoid H ⊆ D such that G = D/H is finite, and for every
g ∈ G the function ψg, defined by

ψg(s) = ∑
p∈P∩g

∣p∣−s − 1

∣G∣ log
1

s − 1
for Re(s) > 1,

has a holomorphic extension to s = 1.

If [D,H, ∣ ⋅ ∣] is a quasi-formation, then H is a Krull monoid.
For a concrete example of a quasi-formation, let R be the ring of integers

of an algebraic number field or a holomorphy ring in an algebraic function field
over a finite field and H =H(R) the multiplicative monoid of non-zero principal
ideals of R. Let D be the multiplicative monoid of all non-zero ideals of R, and
for I ∈ D, let ∣I ∣ = (D ∶ I). Then [D,H, ∣ ⋅ ∣] is a quasi-formation.

3.2 Divisor theories

Throughout this section we suppose that M is a cancellative monoid.
A divisor homomorphism ϕ∶M → F into a free monoid F is a divisor theory

if for every u ∈ F there exist a finite family {x1, . . . , xn} of elements of M such
that u = min{ϕ(x1), . . . , ϕ(xn)}, where the minimum is taken with respect to
the algebraic preorder of F . Every cancellative Krull monoid possesses a divisor
theory and if ϕ∶M → F and ϕ′∶M → F ′ are two divisor theories, then there
exists a unique isomorphism Φ∶F → F ′ such that Φ ○ϕ = ϕ′ [35, Theorems 23.4
and 20.4].
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Let ϕ∶M → F ≅ N
(I)
0

be a divisor theory. Then ϕ has a unique extension to
a group homomorphism G(ϕ)∶G(M) → G(F ) ≅ Z(I). The cokernel of G(ϕ) is
determined up to canonical isomorphism by ϕ and it is called the class group of
M , denoted by Cl(M). If π∶G(F ) → Cl(M) denotes the canonical projection,
we have that Cl(M) = π(F ). It follows that M is free if and only if the divisor
theory ϕ is surjective, and Cl(M) is a torsion group if and only if for every
u ∈ F there exists some q ≥ 1 such that qu ∈ ϕ(M).

Given a divisor homomorphism ϕ = (ϕi)i∈I ∶M → N
(I)
0

into a free monoid,
there is a way to obtain from it a divisor theory. First, we observe that ϕ′ =

(λiϕi)i∈I′ ∶M → N
(I′)
0

, where i ∈ I ∖ I ′ implies ϕi = 0 and λi ∈ e(ϕi)−1N0 ∖ {0},
is again a divisor homomorphism into a free monoid N

(I′)
0

.

Proposition 3.2.1 Let M be a Krull monoid, and let ϕ = (ϕi)i∈I ∶M → N
(I)
0

be a divisor homomorphism such that ϕi ≠ 0 for every i ∈ I and e(ϕi)−1ϕi ≠

e(ϕj)−1ϕj whenever i ≠ j ∈ I. Let J be the set of all the indices of j ∈ I for
which ϕj is essential.

1. The map ϕ∗ = (e(ϕj)−1ϕj)j∈J ∶M → N
(J)
0

is a divisor theory, and ϕ is a
divisor theory if and only if I = J and e(ϕi) = 1 for every i ∈ I.

2. If v∶M → N0 is an essential valuation of M , then there exists some j ∈ J
such that e(v)−1v = e(ϕj)−1ϕj .

Proof. See [34, Satz 1, Satz 2 and Korollar].

We say that two valuations v1, v2∶M → N0 of a monoid M are equivalent
if e(v1)−1v1 = e(v2)−1v2. With the next proposition we prove that in Krull
monoids there is a strong connection between essential valuations and prime
ideals of height one.

Proposition 3.2.2 Let M be a cancellative Krull monoid. Then:

1. every non-empty prime ideal of M contains a prime ideal of height one of
the form Pv = {x ∈M ∣ v(x) > 0} for some essential valuation v;

2. two essential valuations v1, v2∶M → N0 are equivalent if and only if Pv1 =

Pv2 ;

3. a valuation v∶M → N0 is essential if and only if Pv = {x ∈M ∣ v(x) > 0}
is a prime ideal of height one.

Proof.

1. Let ϕ = (ϕj)j∈J ∶M → N
(J)
0

be a divisor theory for M , such that every
essential valuation of M is equivalent to some ϕj , j ∈ J . If P is a prime
ideal of M and P ⊉ Pϕj

for every j ∈ J , then for every j ∈ J there exists
xj ∉ P such that ϕj(xj) > 0. Let p be a fixed element of P , so that
ϕj(p) > 0 if and only if j belongs to a finite subset F of J . Then

p ≤ ∑
j∈F

ϕj(p)xj ∉ P,

61



so that p ∉ P . This contradiction shows that P = ∅. Thus every non-empty
prime ideal of M contains a prime ideal of the form Pϕj

. In particular,
every prime ideal of height one of M is of the type Pϕj

.

We already know from Lemma 3.1.1 that for any monoid, Pv is a prime
ideal of height one for every essential valuation v.

2. It is clear that two equivalent valuations v1, v2∶M → N0 give rise to the
same ideal Pv1 = Pv2 . If v1 and v2 are two non-equivalent essential val-
uations, we can suppose that v1 = ϕi and v2 = ϕj for i ≠ j ∈ J , where

ϕ = (ϕj)j∈J ∶M → N
(J)
0

is a divisor theory of M . Then there exists
x ∈M with ϕi(x) ≠ 0 and ϕj(x) = 0 because ϕ is a divisor theory. Hence
Pϕi
≠ Pϕj

.

3. It is true in any monoid that the ideal Pv associated to an essential valua-
tion v is minimal non-empty, as we saw in Lemma 3.1.1. If v is a valuation
for which the ideal Pv is a prime ideal of height one, we know by (1) and
(2) that v must be equivalent to an essential valuation, and hence it is
essential itself.

When a Krull monoid M has a divisor theory ϕ∶M → Nm
0 , for some m ≥ 1,

we can describe prime ideals associated to non-essential valuations as the union
of prime ideals of height one. We notice that this is the case if and only if Mred

is finitely generated and non-zero.

Proposition 3.2.3 Let M be a Krull monoid, m ≥ 1, ϕ = (ϕ1, . . . , ϕm)∶M →
Nm

0 a divisor theory and Pj = {x ∈ M ∣ ϕj(x) > 0}. Let v∶M → N0 be any
valuation of M and Pv = {x ∈ M ∣ v(x) > 0} its associated ideal. Then there
exist non-negative real numbers c1, . . . , cm such that v = c1ϕ1 + . . . + cmϕm. If
v = c1ϕ1 + . . . + cmϕm is any such representation of v, then Pv = ⋃cj>0 Pj.

Proof. Since ϕ induces an isomorphism Mred → ϕ(M) and the canonical
homomorphism M → Mred, defined by x ↦ x + U(M), induces a bijection be-
tween the prime ideals of M and Mred and also between the valuations of M
and Mred, we may assume that M is a submonoid of Nm

0 and that the divisor
theory ϕ∶M → Nm

0 is the inclusion map.
Let U ⊆ Rm be the subspace generated by M , C = {∑x∈M λxx ∣ λx ∈ R≥0, λx =

0 for almost all x} the cone in U generated byM andQ = G(M) the subgroup of
Zm generated by M . Let πj ∶R

m → R be the projection onto the j-th coordinate
and φj = πj∣U ∶U → R its restriction to U . Since ϕ = (φ1∣M , . . . , φm∣M )∶M → Nm

0 is
a divisor theory, it follows that C = ⋃m

j=1 φ
−1R≥0, and by the H. Weyl’s Theorem

[47, Theorem 17.3] the dual cone Č is the cone generated by ϕ1, . . . , ϕm ∈ R≥0
in the dual space U∗ = Hom(U,R). If v∶M → N0 is any valuation, then there
exists some ϕ ∈ U∗ such that ϕ∣M = v and therefore ϕ ∈ Č. Hence there exist
c1, . . . , cm ∈ R≥0 such that ϕ = c1φ1 + . . . + cmφm and restriction to M implies
v = c1ϕ1+ . . .+cmϕm. The representation of P as a union of Pj ’s is now obvious.
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With the next Theorem we give an equivalent characterization of Krull
monoids as intersection of the localization at the prime ideals of height one.

Theorem 3.2.4 The following conditions are equivalent for any cancellative
monoid M :

1. M is a Krull monoid;

2. The localization MP is a discrete valuation monoid for every prime ideal
of height one P , every x ∈M is contained in at most finitely many prime
ideals of height one, and M = ∩PMP , where P varies among prime ideals
of height one.

Proof. (1)⇒(2) Let M be a Krull monoid and let ϕ = (ϕi)i∈I ∶M → N
(I)
0

be
a divisor theory. If P is a prime ideal of height one, we know from Proposition
3.2.2 that P = Pϕi

for some i ∈ I. Then MP = MPϕi
is a discrete valuation

monoid by Lemma 3.1.1, and v induces an isomorphism v∶ (MP )red → e(v)N0.
As M is cancellative, M ⊆MP ⊆M∅ for every prime ideal of height one, so that
M ⊆ ∩PMP , where P varies among prime ideals of height one.

For the opposite inclusion, suppose x−y ∈ ∩PMP ⊆M∅ with x, y ∈M . Then
ϕi(x−y) ≥ 0, so that ϕi(x) ≥ ϕi(y), for every i ∈ I. Thus ϕ(x) ≥ ϕ(y) and hence
x ≥ y. Therefore x − y belong to the cancellative monoid M . Finally, for every

x ∈ M we have that ϕ(x) ∈ N(I)
0

, so that ϕi(x) ≠ 0 for at most finitely many
i ∈ I. Thus x is contained in finitely many prime ideals of height one.

(2)⇒(1) Let M be a cancellative monoid satisfying the conditions stated
in (2). Then the canonical homomorphisms M → (MP )red, P ranging among
prime ideals of height one, have the property that every x ∈M is mapped to zero
for almost all minimal non-empty primes P , and each (MP )red is isomorphic
to N0. Thus these canonical homomorphisms define a monoid homomorphism

ϕ∶M → N
(I)
0

, where I is a class of indexes for the prime ideals of height one
of M . In order to show that ϕ is a divisor homomorphism, let x, y ∈ M such
that ϕ(x) ≤ ϕ(y). Then, for every prime ideal of height one P , there exists
sP ∈ (MP )red such that x + sP = y in (MP )red. Thus for every prime ideal of
height one P , there exist uP ∈ M and tP ∈ M ∖ P with y + tP = x + uP . Then
y−x = uP −tP ∈MP for every prime ideal of height one P , from which y−x ∈M ,
that is, x ≤ y in M .

3.3 Additive categories and Krull monoids

In this section we want to apply the theory about Krull monoids we developed
in this chapter to the monoids of the form V (C), where C is an additive cate-
gory. We noticed already that such monoids are reduced and, if they are Krull
monoids, they must also be cancellative. To avoid set theoretical complications,
in this section we restrict to the case C skeletally small.

We say that idempotents split in a category C, or that C has splitting idem-
potents, if every idempotent morphism in C has a kernel. If {Cλ ∣ λ ∈ Λ} is
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a family of additive categories indexed in a set Λ, let ∏λ∈Λ Cλ be the product
category, whose objects are the sequences S = (Aλ)λ∈Λ with Aλ ∈ Cλ, and whose
morphisms are given by Hom∏λ∈Λ Cλ((Aλ)λ∈Λ, (A′λ)λ∈Λ) =∏λ∈Λ HomCλ(Aλ,A

′
λ).

Let ∐λ∈Λ Cλ be the full subcategory of ∏λ∈Λ Cλ whose objects are the sequences
S = (Aλ)λ∈Λ with almost all Aλ = 0.

Since we want the monoid V (C) to be cancellative, it is natural to look at the
case when every endomorphism ring EndC(A) is semilocal, for any object A ∈ C.
It is easier to start with the case when every endomorphism ring is semisimple
artinian.

Proposition 3.3.1 The following conditions are equivalent for any skeletally
small additive category C.

1. Idempotents splits in C and the endomorphism rings EndC(A) of all objects
A of C are semisimple artinian;

2. there exists a set {kλ ∣ λ ∈ Λ} of division ring such that A is equivalent to

∐λ∈Λ vect−kλ.

Proof. (1)⇒(2) Let C be a skeletally small additive category with splitting
idempotents in which every endomorphism ring is semisimple artinian. As C
is skeletally small, there exists a set {Aλ ∣ λ ∈ Λ} of representatives of the
indecomposable objects of C up to isomorphism. Since idempotents split in C,
the endomorphism ring of every Aλ is a division ring kλ. Every object A of C
decomposes as a direct sum of finitely many objects whose endomorphism rings
are division rings, hence they are necessary indecomposable objects. Assume
that Aλ and Aλ′ are indecomposable objects and that HomC(Aλ,Aλ′) ≠ 0. We
have already remarked that the endomorphism rings of Aλ and Aλ′ are division
rings. In the additive category C, the endomorphism ring of Aλ ⊕ Aλ′ is the
matrix ring

E = ( HomC(Aλ,Aλ) HomC(Aλ′ ,Aλ)
HomC(Aλ,Aλ′) HomC(Aλ′ ,Aλ′) )

which is a semisimple artinian ring. Let f ∶Aλ → Aλ′ be a non-zero morphism.

Then the element ( 0 0
f 0

) ∈ E is a non-zero element of E that induces by left

multiplication a non-zero morphism of right E-modules from the indecompos-
able right ideal

( 1Aλ
0

0 0
)E

into the indecomposable right ideal

( 0 0
0 1Aλ′

)E.
As indecomposable right ideals are simple E-modules because E is semisimple
artinian, the non-zero morphism induced by left multiplication is an isomor-
phism, and thus it has an inverse isomorphism. The inverse isomorphism is
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given by left multiplication by an element α ∈ E, which is necessarily of the

form α = ( 0 g

0 0
). So g∶Aλ′ → Aλ is a morphism in C such that gf = 1Aλ

and

fg = 1Aλ′
. We have thus proved that if Aλ and Aλ′ are two objects whose endo-

morphism rings are division rings and there is a non-zero morphism Aλ → Aλ′ ,
then Aλ ≅ Aλ′ .

As every object A of C decomposes as a direct sum of finitely many ob-
jects with local endomorphism rings, by the Krull-Schmidt-Azumaya Theo-
rem there are only finitely many λ’s such that HomC(Aλ,A) ≠ 0. Thus F =

∏λ∈Λ HomC(Aλ,−)∶ C →∐λ∈Λ vect−kλ is an equivalence.
(2)⇒(1) is obvious.

The skeletally small additive categories satisfying the equivalent conditions
of Proposition 3.3.1 are called amenable semisimple. They are necessarily
abelian.

For every additive category C, there exists a functor F ∶ C → Ĉ into an additive
category Ĉ in which idempotents split, uniquely determined up to categorical
equivalence, with the following universal property: for every functor G∶ C → C′ of
C into an additive category C′ in which idempotents split, there exists a unique
functor H ∶ Ĉ → C′ such that G = HF . The category Ĉ is called an idempotent
completion of C. To prove the existence of the idempotent completion of C, take
as objects of Ĉ the pairs (A,e), where A is an object of C and e in an idempotent
of EndC(A), and as morphisms (A,e) → (B,f) the morphisms ϕ∶A → B in C
such that fϕe = ϕ. Define the functor F ∶ C → Ĉ by F (A) = (A,1A) for every
object A of C.

Corollary 3.3.2 The following conditions are equivalent for a skeletally small
additive category C:

1. The endomorphism ring EndC(A) of every object A ∈ C is a semisimple
artinian ring;

2. there exist a set {kλ ∣ λ ∈ Λ} of division rings and a full and faithful functor
H ∶ C →∐λ∈Λ vect−kλ.

Proof. (1)⇒(2) Assume that (1) holds for the category C. Then (1) also
holds for the idempotent completion C. Apply Proposition 3.3.1 to the skeletally
small additive category Ĉ, so that there exist a set {kλ ∣ λ ∈ Λ} of division rings
and an equivalence G∶ Ĉ → ∐λ∈Λ vect−kλ. The composite functor H = GF of G
and the canonical functor F ∶ C → Ĉ is full and faithful.

(2)⇒(1) is obvious.

The Jacobson radical of a preadditive category C is the ideal J of C defined,
for every pair A,B of objects of C, by J (A,B) = { f ∈ HomC(A,B) ∣ 1A − gf
has a left inverse for all g ∈ HomC(B,A) }. The quotient category C/J has zero
Jacobson radical and there is a canonical functor G∶A → A/J .

Let A and B be additive categories and F ∶A → B an additive functor. We
say that F is:
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� isomorphism reflecting if for every pair A,A′ of objects of A, F (A) ≅
F (A′) implies A ≅ A′;� direct-summand reflecting if for every pair A,A′ of objects of A with F (A)
isomorphic to a direct summand of F (A′), A is isomorphic to a direct
summand of A′;� local if, for every pair A,A′ of objects of A and every morphism f ∶A→ A′

such that F (f)∶F (A) → F (A′) is an isomorphism, f is an isomorphism.

Lemma 3.3.3 Let C be an additive category and J its Jacobson radical. Then:� the canonical functor G∶ C → C/J is a full, isomorphism reflecting, local
functor;� if idempotents split in C, then G is also direct-summand reflecting.

Proof. It is clear that G is a full functor. If we prove that G is local,
then it is automatically also isomorphism reflecting. Hence let A,A′ be two
objects of A and f ∶A → A′ a morphism of C such that F (f)∶F (A) → F (A′) is
an isomorphism. This means that there exists a morphism g∶A′ → A in C such
that 1A − gf ∈ J (A,A) and 1A′ − fg ∈ J (A′,A′). Using the definition of the
Jacobson radical it is straightforward to prove that in fact g is an inverse of f
in C.

Assume now that C is an additive category in which idempotents split. In
order to show that G is direct-summand reflecting, take two objects A,A′ of
C with G(A) isomorphic to a direct summand of G(A′). Then there exist
morphisms f ∶A→ A′ and g∶A′ → A such that 1A−gf ∈ J (A,A). Thus gf ∶A→ A

has a two-sided inverse, so that A is isomorphic to a direct summand of A′.

Proposition 3.3.4 Let C be an additive category with Jacobson radical J . Let
G∶ C → Ĉ/J be the canonical functor of C into the idempotent completion Ĉ/J of
the factor category C/J . Then G is a full, isomorphism reflecting, local functor.
If, moreover, idempotents split in C, then G is also direct-summand reflecting.

Proof. The objects of Ĉ/J are the pairs (A,ϕ), where A is an object of
C and ϕ∶A → A is an endomorphism of A in C such that ϕ = ϕ +J (A,A) is an

idempotent of EndC(A)/J(EndC(A)). The morphisms (A,ϕ) → (B,ψ) in Ĉ/J
are the cosets f = f + J (A,B), where f ∶A → B is a morphism in C such that
ψfϕ − f ∈ J (A,B).

The canonical functor G∶ C → Ĉ/J is the composite functor of:� the functor C → C/J , which is full, isomorphism reflecting, local and, when
idempotents split in C, also direct-summand reflecting;� the functor C/J → Ĉ/J , which is full, faithful, isomorphism reflecting and
local.
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Then G is full, isomorphism reflecting and local.
Now assume that idempotents split in C. Let A,A′ be a pair of objects

of C with G(A) isomorphic to a direct summand of G(A′). Let (K,ω) be an

object in Ĉ/J such that G(A) ⊕ (K,ω) ≅ G(A′). Then there are morphisms
f = f + J (A,A′)∶ (A,1A) → (A′,1A′) and g = g + J (A′,A)∶ (A′,1A′) → (A,1A)
with gf = 1A and ker(g) = ker(fg) = (K,ω). Then 1a − gf ∈ J (A,A), so that
gf is invertible in the ring EndC(A). Thus f(gf)−1g∶A → A′ is idempotent.
Write 1A′ − f(gf)−1g = kl for some l∶A′ → B and some k∶B → A′ with lk = 1B,
so that k is the kernel of f(gf)−1g. Applying the functor G we get that, for

the idempotent f(gf)−1g = fg, one has 1A′ − fg = kl with kl = 1B, so that
k∶G(B) → G(A′) is the kernel of fg. As kernels are unique up to isomorphism,
we conclude that G(B) ≅ (K,ω). In particular, this proves that G is direct-
summand reflecting, because k kernel of the idempotent f(gf)−1g implies A ⊕
B ≅ A′.

When the endomorphism rings EndC(A) are all semilocal, the functor G∶ C →
Ĉ/J maps to the particularly good category Ĉ/J , as the next result shows.

Proposition 3.3.5 Let C be a skeletally small additive category with Jacobson
radical J and with the property that EndC(A) is a semilocal ring for every object

A of C. Then the idempotent completion Ĉ/J of the factor category C/J is an
amenable semisimple category.

Proof. As the endomorphism ring of every object in C is semilocal, the
endomorphism ring of every object in C/J is semisimple artinian, so that Ĉ/J
is an amenable semisimple category by Proposition 3.3.1.

Eventually, we prove that, if C is a skeletally small additive category with
splitting idempotents has the property that EndC(A) is a semilocal ring for
every object A ∈ C, then V (C) is a Krull monoid.

Theorem 3.3.6 Let C be a skeletally small additive category. Let F be an
additive functor of C into an amenable semisimple category D. If either� F is direct-summand reflecting, or� idempotents split in C, and F is local,

then V (C) is a Krull monoid.

Proof. The functor F ∶ C → D induces a monoid homomorphism

V (F )∶V (C)→ V (D).
The monoid V (D) is free because D is amenable semisimple.

The functor F is direct-summand reflecting if and only if V (F ) is a divisor
homomorphism. If this is the case then V (C) is a Krull monoid.

If idempotents split in C and F is local, then F induces a local ring homo-
morphism EndC(A)→ EndD(F (A)) for every object A of C. Thus the endomor-
phism rings of all objects of C are semilocal rings. By Proposition 3.3.5, there
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is a direct-summand reflecting functor G of C into the amenable semisimple
category Ĉ/J . Thus V (C) is a Krull monoid by the first case.

To conclude the chapter we want to remark that, when one consider module
categories, it is possible to invert the implication that states that a skeletally
small full subcategory C of Mod-R closed under finite direct sums, direct sum-
mands and isomorphisms and such that EndR(A) is semilocal for every A ∈ C,
provides a reduced Krull monoid V (C).

First, we notice that we can restrict to categories of finitely generated pro-
jective modules with semilocal endomorphism ring. Let C be a skeletally small
full subcategory of Mod-R closed under finite direct sums, direct summands
and isomorphisms and such that EndR(A) is semilocal for every A ∈ C; let
MR be the direct sum of the modules in V (C) and E = EndR(M) its endo-
morphism ring. For a ring R, denote with SR the full subcategory of Mod-R
consisting of all finitely generated projective modules with semilocal endomor-
phism ring. The categories C and SE turn out to be equivalent via the functors
HomR(M,−)∶ C → SE and − ⊗E M ∶ SE → C. In particular, the monoids V (C)
and V (SE) are isomorphic.

Our next Theorem [26, Theorem 2.1] states that we can realize every reduced
Krull monoid in the form V (SR) for some ring R.

Theorem 3.3.7 Let k be a field, M a reduced Krull monoid, I a set and T ∶M →
N
(I)
0

a divisor homomorphism. Then there exist a k-algebra R and two monoid

isomorphisms M → V (SR) and N
(I)
0
→ V (SR/J(R)) such that if τ ∶V (SR) →

V (SR/J(R)) is the homomorphism induced by the canonical projection π∶R →
R/J(R), then the diagram of monoids and monoids homomorphisms

M
T

ÐÐÐÐ→ N(I)×××Ö≅
×××Ö≅

V (SR) τ
ÐÐÐÐ→ V (SR/J(R))

commutes.
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Chapter 4

Maximal Ideals in

Preadditive Categories and

Semilocal Categories

In this chapter, our first aim is to study the maximal ideals of a preadditive
category C. To describe the maximal ideals of C, we make use of the ideal AI of
the category C associated to an ideal I of the endomorphism ring EndC(A) of an
object A of C. The ideal AI consists of all morphisms f ∶X → Y in C such that
βfα ∈ I for every pair of morphisms α∶A → X and β∶Y → A in C. These ideals
AI of the category C turn out to be an elementary, but useful and powerful,
tool. They were already introduced in [23] and [24] in the case in which C is a
category of modules.

When C is the category proj-R of all finitely generated projective right mod-
ules over a ring R, the maximal ideals of C are in one-to-one correspondence
with the maximal two-sided ideals of the ring R. We give a complete description
of simple preadditive categories, that is, the preadditive categories with exactly
two ideals, necessarily the trivial ones. An additive category C with splitting
idempotents is simple if and only if C is equivalent to the category proj-R for
some simple ring R. Maximal ideals do not exist in general for an arbitrary
preadditive category C, but they do always exist when C is semilocal, i.e. when
C is a preadditive category with a non-zero object in which the endomorphism
ring of every non-zero object is a semilocal ring. If C is a semilocal category and
M is a maximal ideal of C, the factor category C/M is not only simple, but also
equivalent to a full subcategory of Mod-R whose objects are finitely generated
semisimple right modules over a simple artinian ring R. Thus the objects B
of C are completely described by a set of natural numbers indexed in the class
Max(C) of all maximal ideals of C. The natural number corresponding to a
maximal idealM of C is the Goldie dimension of B in the factor category C/M,
hence coincides with the dual Goldie dimension of the ring EndC(B)/M(B,B).
Thus we get an isomorphism reflecting functor F ∶ C → ⊕M∈Max(C)C/M, which
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allows us to get a good representation of the structure of semilocal categories.
When the category C is additive, any skeleton V (C) of C has the structure

of a large monoid, in which the operation is induced by coproduct. For an
additive semilocal category C with splitting idempotents, the functor F induces
a monoid homomorphism V (F ) of the monoid V (C) into the free commutative

monoid V (⊕M∈Max(C)C/M) ≅ N
(Max(C))
0

. As V (F ) turns out to be a divisor
homomorphism, one finds that the monoid V (C) is necessarily a Krull monoid.
For an additive semilocal category C with splitting idempotents, we can therefore
characterize the essential valuations of the monoid V (C) and give some natural
divisor homomorphisms and divisor theories of V (C).

The associated ideals allow us also to study when there are canonical one-
to-one-correspondences between the two-sided ideals of the endomorphism rings
EndC(A) and EndC(B) of two objects A and B of a preadditive category
C. This condition is strictly stronger than the Morita-equivalence of the two
rings EndC(A) and EndC(B). For further information on modules with Morita-
equivalent endomorphism rings, see [1].

4.1 Associated ideals and maximal ideals

Let C be a preadditive category. For any object A of C and any two-sided ideal I
of EndC(A), let AI be the ideal of the category C defined as follows: a morphism
f ∶X → Y in C is in AI(X,Y ) if and only if βfα ∈ I for every pair of morphisms
α∶A →X and β∶Y → A in C. The ideal AI is called the ideal of C associated to I
[23, 24]. The ideal AI is the greatest of the ideals I ′ of C with I ′(A,A) ⊆ I. It
is easily seen that AI(A,A) = I. Clearly, the ideals of the category C associated
to two distinct ideals of EndC(A) are distinct.

Lemma 4.1.1 Let A and B be non-zero objects of a preadditive category C, let
I be a maximal ideal of EndC(A) and let AI be the ideal of C associated to I.
Set I ′ = AI(B,B) and assume that I ′ ≠ EndC(B). Then:

1. the ideal of C associated to I ′ is equal to AI ;

2. if EndC(B) is a semilocal ring, I ′ is a maximal ideal of EndC(B).
Proof.

1. Clearly, I ′ is an ideal of EndC(B). Let AI′ be the ideal of C associated
to I ′. We must show that AI = AI′ . In order to prove that AI ⊆ AI′ , fix
a morphism f ∈ AI(X,Y ). Then, for every α∶B → X and β∶Y → B, one
has that βfα ∈ AI(B,B) = I ′. Hence f ∈ AI′(X,Y ).
For the inverse inclusion, suppose that f ∶X → Y is a morphism in the
category C with f ∉ AI(X,Y ). Then there are α∶A → X and β∶Y → A

with g = βfα ∉ I. Then EndC(A)gEndC(A) + I = EndC(A). Suppose that
g ∈ AI′(A,A). Then

HomC(A,B)EndC(A)HomC(B,A)
= HomC(A,B)(EndC(A)gEndC(A) + I)HomC(B,A) ⊆ I ′.
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It follows that the whole ring EndC(A) is contained in AI′(A,A). As
I ′ ≠ EndC(B), we have that 1B ∉ I

′ = AI(B,B), so that there exist
ϕ∶A → B and ψ∶B → A with ψϕ ∉ I. Then ψϕEndC(A)ψϕ /⊆ I be-
cause maximal ideals are prime. But ϕEndC(A)ψ ⊆ I ′ = AI(B,B), so
that ψϕEndC(A)ψϕ ⊆ I, a contradiction. This shows that g ∉ AI′(A,A).
Hence there are homomorphisms α′∶B → A and β′∶A → B with β′βfαα′ ∉
I ′. In particular, f ∉ AI′(X,Y ).

2. Assume EndC(B) semilocal. The Jacobson radical J of the category C
is the greatest ideal of C such that J (A,A) coincides with the Jacobson
radical J(EndC(A)) of the ring EndC(A) for every non-zero object A in C.
Since every maximal ideal is primitive and J(EndC(A)) is the intersection
of all primitive ideals of EndC(A), it follows that J (A,A) ⊆ I. As AI is
the greatest of the ideals of C with this property, we get that J ⊆ AI .
Thus J (B,B) ⊆ AI(B,B), that is, J(EndC(B)) ⊆ I ′. Now I ′ is a proper
ideal of EndC(B). As EndC(B) is semilocal, it follows that EndC(B)/I ′ is
a semisimple artinian ring. In order to show that I ′ is maximal, we will
prove that EndC(B)/I ′ is a simple artinian ring.

Assume the contrary, so that there exist elements f, g of EndC(B) such
that f +I ′, g+I ′ are non-trivial orthogonal central idempotents of the ring
EndC(B)/I ′. Since these idempotents are non-zero, there exist α,α′∶A →
B and β,β′ ∈ B → A with βfα ∉ I and β′gα′ ∉ I. Then we have
β′gα′ EndC(A)βfα /⊆ I. As f + I ′, g + I ′ are orthogonal and central, we
know that gEndC(B)f ⊆ I ′. Hence, a fortiori, gα′EndC(A)βf ⊆ I ′. Now
I ′ = AI(B,B) implies β′I ′α ⊆ I. Thus β′gα′EndC(A)βfα ⊆ I, a contra-
diction that proves that I ′ is a maximal ideal.

Lemma 4.1.2 Let A and A′ be two fixed non-zero objects of a preadditive cat-
egory C, let M (resp. M ′) be a maximal two-sided ideal of EndC(A) (resp.
EndC(A′)) and let AM (resp. AM ′) be the ideal of C associated to M (resp.
M ′). The following conditions are equivalent:

1. AM ⊇AM ′ ;

2. AM(B,B) ⊇ AM ′(B,B) for every object B in C;

3. M ⊇ AM ′(A,A);
4. there exists an object C ∈ Ob(C) such that

EndC(C) ≠ AM(C,C) ⊇ AM ′(C,C).
Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious. To prove(4) ⇒ (1), it is enough to observe that, by Lemma 4.1.1(1), the ideal of C

associated to AM(C,C) is equal to AM and therefore AM is the greatest of the
ideals I of C such that AM(C,C) ⊇ I(C,C). Thus AM ⊇ AM ′ .
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Let A be an object of a preadditive category C. For every X,Y ∈ Ob(C),
let HomC(A,Y )HomC(X,A) be the subgroup of HomC(X,Y ) generated by
all composite morphisms fg where f ranges in HomC(A,Y ) and g ranges in
HomC(X,A).
Proposition 4.1.3 Let A and A′ be two non-zero objects of a preadditive cat-
egory C, let M (resp. M ′) be a maximal two-sided ideal of EndC(A) (resp.
EndC(A′)) and let AM (resp. AM ′) be the ideal of C associated to M (resp.
M ′). The following conditions are equivalent:

1. AM =AM ′ ;

2. AM(B,B) = AM ′(B,B) for every B ∈ Ob(C);
3. M = AM ′(A,A);
4. M ′ = AM(A′,A′);
5. there exists an object C ∈ Ob(C) such that

EndC(C) ≠ AM(C,C) = AM ′(C,C);
6. HomC(A,A′)MHomC(A′,A) ⊆M ′ and HomC(A,A′)HomC(A′,A) ⊈M ′;

7. HomC(A′,A)M ′HomC(A,A′) ⊆M and HomC(A′,A)HomC(A,A′) ⊈M ;

8. there exist two morphisms ϕ∶A→ A′, ψ∶A′ → A such that

ψEndC(A′)ϕ /⊆M, ϕEndC(A)ψ /⊆M ′, ψM ′ϕ ⊆M and ϕMψ ⊆M ′.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (5) and (2)⇒ (4)⇒ (5) are
obvious. The implication (5)⇒ (1) follows from the previous lemma.(3)⇒ (6) Assume (3), so that HomC(A,A′)MHomC(A′,A) ⊆M ′.
If HomC(A,A′)HomC(A′,A) ⊆ M ′, then EndC(A) ⊆ AM ′(A,A) = M , a contra-
diction.(6)⇒ (8) Suppose that (6) holds, so that there exist two morphisms ϕ∶A →
A′, ψ∶A′ → A with ϕψ ∉M ′, but ϕMψ ⊆M ′. From ϕψ ∉M ′, using the fact that
M ′ is a prime ideal, we get that ϕψEndC(A′)ϕψ /⊆ M ′. From (6), it follows
that ψEndC(A′)ϕ /⊆M . Finally, ϕEndC(A)ψM ′ϕEndC(A)ψ ⊆M ′ because M ′

is an ideal of EndC(A′), so that, ϕ(EndC(A)ψM ′ϕEndC(A)+M)ψ ⊆M ′. Using(6) again, we get that EndC(A)ψM ′ϕEndC(A) ⊆M , from which ψM ′ϕ ⊆M .(8) ⇒ (1) Assume that (8) holds. Let X and Y be two objects of C and
f ∶X → Y be a morphism in AM(X,Y ). We want to show that f belongs to
AM ′(X,Y ). Fix arbitrary morphisms α∶A′ →X and β∶Y → A′. We must prove
that βfα ∈M ′. Now f ∈ AM(X,Y ) implies that

(EndC(A)ψEndC(A′)β)f(αEndC(A′)ϕEndC(A)) ⊆M.

By (8), we get that

ϕ(EndC(A)ψEndC(A′)βfαEndC(A′)ϕEndC(A))ψ ⊆M ′,
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so that

EndC(A′)(ϕEndC(A)ψEndC(A′)βfαEndC(A′)ϕEndC(A)ψ)EndC(A′) ⊆M ′.

This is the product of the three ideals

EndC(A′)ϕEndC(A)ψEndC(A′), EndC(A′)βfαEndC(A′)
and

EndC(A′)ϕEndC(A)ψEndC(A′)
of the ring EndC(A′) with EndC(A′)ϕEndC(A)ψEndC(A′) /⊆M ′ by (8). As M ′

is prime, we get βfα ∈M ′. This proves that AM ⊆ AM ′ .
The proofs that AM ′ ⊆ AM and (4)⇒ (7)⇒ (8) are similar.

We say that an ideal M of a preadditive category C is maximal if the im-
proper ideal of C is the unique ideal of the category C properly containing M.
Clearly, if all objects of C are zero objects, maximal ideals do not exist in C.
The next lemma characterizes maximal ideals.

Lemma 4.1.4 Let C be a preadditive category and M be a proper ideal of C.
ThenM is a maximal ideal if and only if, for every object A of C withM(A,A) ≠
EndC(A), one has that: (1) M(A,A) is a maximal ideal of EndC(A), and (2)
M is the ideal of C associated toM(A,A).

Proof. Let M be a maximal ideal of C, and let A be an object of C with
M(A,A) ≠ EndC(A). Clearly, M(A,A) is an ideal of EndC(A). If M(A,A) is
not a maximal ideal of EndC(A), let I be a maximal ideal of EndC(A) properly
containing it, and let AI be the ideal associated to I. Then M(A,A) ⊊ I, so
that M ⊊ AI . Thus AI is the improper ideal, which is a contradiction because
AI(A,A) = I.

Now let AM be the ideal of C associated to the maximal ideal M =M(A,A)
of EndC(A). Then M ⊆ AM . Since AM is proper, it follows that M = AM is
the ideal associated to M(A,A).

Conversely, let M be a proper ideal of C with the property that, for every
object A of C with M(A,A) ≠ EndC(A), (1) and (2) hold. Let I be an ideal
properly containing M. Then I(A,A) ⊇M(A,A) for every object A ∈ Ob(C).
If I(A,A) =M(A,A)) ≠ EndC(A) for some A ∈ Ob(C), then I ⊆M, because
M is the ideal associated to M(A,A), that is, the greatest of the ideals I ′

with I ′(A,A) ⊆ M(A,A). This is a contradiction, because M is properly
contained in I. Therefore, for every A ∈ Ob(C), either I(A,A) ⊃M(A,A) or
I(A,A) =M(A,A) = EndC(A). In both cases, I(A,A) = EndC(A), so I is the
improper ideal, as we wanted to prove.

For a ring R, let proj-R denote the full subcategory of Mod-R whose objects
are all finitely generated projective modules.

Proposition 4.1.5 For any ring R, the maximal ideals of the category proj-R
are exactly the ideals of proj-R associated to the maximal two-sided ideals of the
ring R.
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Proof. Let M be a maximal ideal in proj-R. Then M(RR,RR) is either
equal to EndR(R) ≅ R or is a maximal ideal of EndR(R) ≅ R (Lemma 4.1.4). If
M(RR,RR) = EndR(R), then M(PR, PR) = EndR(P ) for every finitely gener-
ated projective module PR, andM is the improper ideal, contradiction. Hence
M(RR,RR) is a maximal ideal M of EndR(R) ≅ R, so that M is associated to
M by Lemma 4.1.4(2).

Conversely, let M be any maximal two-sided ideal of EndR(R) and let
AM be the ideal of proj-R associated to M . Let I be an ideal of proj-R
containing AM . Then I(RR,RR) is an ideal of R ≅ EndR(R) containing
AM(RR,RR). If I(RR,RR) = EndR(R), then I is the improper ideal. If
I(RR,RR) = AM(RR,RR), then AM = I by the maximality of the associated
ideal AM among the ideals I ′ with I ′(RR,RR) ⊆ AM(RR,RR).

4.2 Simple additive categories

Let A be an object of a preadditive category C. Let add(A) denote the subclass
of Ob(C) consisting of all objects B ∈ Ob(C) for which there exist n > 0 and
morphisms f1, . . . , fn∶A→ B and g1, . . . , gn∶B → A with ∑n

i=1 figi = 1B. When C
is additive with splitting idempotents, then add(A) is the class of objects of the
smallest additive full subcategory of C with splitting idempotents containing A
and closed under isomorphism. For example, if C =Mod-R, then add(RR) coin-
cides with the class proj-R of all finitely generated projective right R-modules.
We will denote as add(A) not only the subclass of Ob(C), but also the full
subcategory of C whose class of objects is add(A).
Lemma 4.2.1 Let A be a non-zero object of a preadditive category C, set R =
EndC(A) and consider the additive functor F = HomC(A,−)∶ C → Mod-R. The
following properties hold:

1. the functor F induces a full and faithful functor add(A)→ proj-R;

2. if C is an additive category with splitting idempotents, then F induces an
equivalence add(A)→ proj-R.

Proof. Let B be an object of add(A), so that there exist f1, . . . , fn∶A →
B and g1, . . . , gn∶B → A with ∑n

i=1 figi = 1B. Applying F , we obtain that

∑n
i=1 F (fi)F (gi) = 1F (B), where F (fi)∶F (A) → F (B) and F (gi)∶F (B) → F (A).

Thus the module F (B) is a direct summand of F (A)n ≅ Rn
R, hence a finitely

generated projective right R-module. To see that the restriction of F to add(A)
is faithful, let f ∶B → B′ be a morphism of add(A) such that F (f) = 0, i.e.
fh = 0 for every h ∈ HomC(A,B). Since 1B = ∑n

i=1 figi, we have f = f1B =

∑n
i=1(ffi)gi = 0. In order to prove that the restriction of F is full, let B,B′ be

a pair of objects in add(A) and let ϕ∶HomC(A,B) → HomC(A,B′) be a right
R-module morphism. Define f ∶B → B′ by f = ∑n

i=1 ϕ(fi)gi. We want to show
that F (f) = ϕ. The right R-module HomC(A,B) is generated by the n elements
fi, because every g ∈ HomC(A,B) can be written as 1Bg = ∑n

i=1 figig. Therefore
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it suffices to show that F (f)(fk) = ϕ(fk) for every k = 1, . . . , n. This is true,
because, by the EndC(A)-linearity of ϕ, F (f)(fk) = ffk = ∑n

i=1 ϕ(fi)gifk =
ϕ(∑n

i=1 figifk) = ϕ(fk). This proves (1).
Now assume C additive and with splitting idempotents. Let P be a finitely

generated projective right R-module. There are morphisms αi∶P → RR and
βi∶RR → P such that 1P = ∑n

i=1 βiαi. Therefore the endomorphism of Rn
R

defined by the matrix (αiβj) is an idempotent endomorphism with image P . As
C is additive and the restriction of F to add(A) is full, there is an endomorphism
f of An in C such that F (f) = (αiβj). Since the restriction of F is faithful, f
must be idempotent, hence splits. Let g∶An → B and h∶B → An be morphisms
in C with hg = f and gh = 1B. Then F (g)∶F (An) → F (B) and F (h)∶F (B) →
F (An) are right R-module morphisms with F (h)F (g) = F (f) and F (g)F (h) =
1F (B). Hence F (g) is onto, so that F (h) and F (f) have the same image. Now
the image of F (f) = (αiβj) is P , and F (g)F (h) = 1F (B) implies that the image
of F (h) is isomorphic to F (B). Thus P ≅ F (B), as desired.

We say that a preadditive category is simple if it has exactly two ideals,
necessarily the trivial ones. Hence, a simple category has non-zero objects.
Clearly, the dual of a simple category is a simple category.

Theorem 4.2.2 The following conditions are equivalent for a preadditive cat-
egory C:

1. C is a simple category;

2. C has a non-zero object, the endomorphism ring of every non-zero object
of C is a simple ring, and, for every A,B,C ∈ Ob(C) with A ≠ 0 and every
f ∶B → C, if βfα = 0 for every α∶A → B and every β∶C → A, then f = 0;

3. C has a non-zero object, and every non-zero object of C is a generator and
a cogenerator for C and has a simple endomorphism ring;

4. C has a non-zero object and there exists a simple ring R such that C is
equivalent to a full subcategory of the category proj-R of all finitely gen-
erated projective right R-modules.

Proof. (1) ⇒ (2) follows immediately from Lemma 4.1.4, because if C
is simple, then, for every non-zero object A, the zero ideal of C is the ideal
associated to the zero ideal of EndC(A).(2) ⇒ (3) Assume that (2) holds. Let A be a non-zero object. We must
show that A is a generator, that is, if f ∶B → C is a non-zero morphism in C,
then there exists a morphism α∶A → B such that fα ≠ 0. Now, by Condition
(2), f ≠ 0 implies that there exist α∶A → B and β∶C → A such that βfα ≠ 0. In
particular, fα ≠ 0. Thus A is a generator. Similarly, A is a cogenerator.(3) ⇒ (4) Suppose that (3) holds. Let A be a fixed non-zero object of C,
so that the endomorphism ring R = EndC(A) of A is a simple ring. Let us
show that add(A) = C. Let B ≠ 0 be an object of C. As B is a generator and
1A ≠ 0A, there exists α∶B → A with 1Aα ≠ 0Aα, that is, α ≠ 0. As B is a
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cogenerator, there exists β∶A → B with βα ≠ 0. As EndC(B) is simple, the
two-sided ideal of EndC(B) generated by βα is the whole ring, that is, there
exist γ1, . . . , γn, γ

′
1, . . . , γ

′
n ∈ EndC(B) with 1B = ∑n

i=1 γiβαγ
′
i. Hence B is an

object of add(A), and add(A) = C. By Lemma 4.2.1(1), the additive functor
F = HomC(A,−)∶ C →Mod-R is full and faithful.(4) ⇒ (1) Let C be a full subcategory of proj-R for some simple ring R

and let I be a non-zero ideal of C. We must show that I is the improper
ideal. Fix a non-zero morphism f ∶A → B in I. We must prove that every
morphism g∶X → Y in C is in I. There exist an epimorphism πA∶R

n → A

and a monomorphism εB ∶B → Rm. Hence the morphism εBfπA∶R
n → Rm

is a non-zero morphism in Mod-R. Thus there exist morphisms εR∶R → Rn

and πR∶R
m → R with πRεBfπAεR∶R → R non-zero. As R is simple, there

exist endomorphisms f1, . . . , fn, g1, . . . , gn ofRR with∑n
i=1 fiπRεBfπAεRgi = 1R.

Now Y is a direct summand of Rt
R, so that there exist α∶Y → Rt

R and β∶Rt
R → Y

with βα = 1Y . Let π1, . . . , πt∶R
t → R and ε1, . . . , εt∶R → Rt be such that

∑t
j=1 εjπj = 1Rt . Then g = βαg = β1Rtαg = ∑t

j=1 βεjπjαg = ∑
t
j=1 βεj1Rπjαg =

∑n
i=1∑

t
j=1(βεjfiπRεB)f(πAεRgiπjαg) is in I(X,Y ).

Remark 4.2.3 By Condition (4) of Theorem 4.2.2, every simple preadditive
category is necessarily skeletally small.

By the same Condition (4), every full subcategory of a simple preadditive
category containing a non-zero object is a simple category.

Proposition 4.2.4 An additive category C with splitting idempotents is simple
if and only if it is equivalent to the category proj-R for some simple ring R.

Proof. If R is a simple ring, the category proj-R is simple by Theo-
rem 4.2.2, (4)⇒ (1).

Conversely, let C be a simple additive category with splitting idempotents.
By Theorem 4.2.2, every non-zero object of C has a simple endomorphism
ring. In the proof of Theorem 4.2.2, (3) ⇒ (4), we have seen that if A is
a fixed non-zero object, then add(A) = C. By Lemma 4.2.1(2), the functor
F = HomC(A,−)∶ C → proj-R is an equivalence.

Remark 4.2.5 Maximal ideals of a preadditive category C coincide with ker-
nels of non-zero functors F ∶ C → proj-R, where R ranges in the class of simple
rings. Let us show that it suffices to consider the simple rings R of the type
EndC(A)/M , where A is a non-zero object of C and M is a maximal ideal of
EndC(A). If M is a maximal ideal of a category C, then M is associated to a
maximal ideal M of the endomorphism ring EndC(A) of a non-zero object A
of C (Lemma 4.1.4). The image of A in the factor category C/M is a non-zero
object of C/M whose endomorphism ring is the simple ring EndC(A)/M . We
have seen in the proof of (3)⇒ (4) in Theorem 4.2.2 that the functor

F = HomC/M(A,−)∶ C/M→ proj-(EndC(A)/M)
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is full and faithful. Hence the kernel of the functor

HomC(A,−)/M(A,−) = HomC/M(A,−)∶ C → proj-(EndC(A)/M)
is M.

4.3 Existence of maximal ideals in a preadditive

category. Examples. The Jacobson radical.

We begin this section showing that maximal ideals do not necessarily exist in a
preadditive category C with a non-zero object, even in the case in which C is a
small abelian category.

Example 4.3.1 Let k be a division ring and V k a right vector space of infinite
dimension d. Let C be either the whole category Vect−k or the full subcategory
of Vect−k whose objects are all vector subspaces of V k of dimension strictly
less than d. Recall that for any k-linear mapping f ∶Vk → Wk, the rank ρ(f)
of f is the dimension of the image im(f). Let ℵ be an infinite cardinal, and
consider the ideal Iℵ of C defined, for every Vk,Wk ∈ Ob(C), by Iℵ(Vk,Wk) ={ f ∈ Homk(V,W ) ∣ ρ(f) < ℵ}. We leave to the reader the verification that, for
f ∶Vk →Wk and f ′∶V ′k →W ′

k, there exist α∶Vk → V ′k and β∶W ′
k →Wk such that

f = βf ′α if and only if ρ(f) ≤ ρ(f ′). It follows that the ideals of C are the zero
ideal, the improper ideal and the ideals Iℵ for every infinite cardinal ℵ (clearly,
in the second case, in which C ≠ Vect−k, the improper ideal and the ideals Iℵ
with ℵ ≥ d coincide). An object Vk of C becomes the zero object in the factor
category C/Iℵ if and only if dim(Vk) < ℵ. For the category Vect−k, maximal
ideals do not exist, and in the second case, in which C ≠ Vect−k, maximal ideals
exist in C if and only if d is the successor of a cardinal d′ (and in this case C has
a unique maximal ideal, which is the ideal Id′). For instance, if d = ℵω, then d is
not the successor of a cardinal, the ideals of the small abelian category C are the
two trivial ideals and the ideals Iℵn with n finite ordinal, and maximal ideals
do not exist in C. If d = ℵ1, then d is the successor of the cardinal ℵ0, and C has
Iℵ0 as its unique maximal ideal. In this case, the canonical functor C → C/Iℵ0 is
not isomorphism-reflecting, because all finitely-dimensional objects of C become
zero objects in the factor category C/Iℵ0 .

This example also shows that, though every maximal ideal of a category C is
the ideal associated to a maximal ideal of the endomorphism ring of a non-zero
object of C (Lemma 4.1.4), the converse is not always true, even if the category
is small. In the previous example, if Vk is a vector space of infinite dimension ℵ
that is an object of C, the ideal Iℵ is the ideal associated to the maximal ideal
of Endk(V ) that consists of all the endomorphisms of Vk of rank strictly less
than ℵ. If Vk ≠ 0 is a vector space of finite dimension that is an object of C, the
zero ideal of C is the ideal associated to the maximal ideal of Endk(V ), which
is the zero ideal of Endk(V ).

77



Definition 4.3.2 A semilocal category is a preadditive category with a non-zero
object such that the endomorphism ring of every non-zero object is a semilocal
ring.

The rest of this chapter will be mainly devoted to describing the structure
of semilocal categories.

Proposition 4.3.3 Let C be a semilocal category. Then:

1. every ideal of C associated to a maximal ideal of the endomorphism ring
of a non-zero object of C is a maximal ideal of C;

2. in C, every proper ideal is contained in a maximal ideal;

3. maximal ideals exist in C.

Proof.

1. Let M be a maximal two-sided ideal of the endomorphism ring EndC(A)
for some non-zero object A ∈ Ob(C). We will prove that the ideal AM

associated to M is maximal. Let I be an ideal in C properly containing
AM . By Lemma 4.1.1(2), for any non-zero object B in the semilocal
category C, AM(B,B) is always either EndC(B) or a maximal ideal of
EndC(B). Since I properly contains AM , the ideal I(B,B) also must
be either EndC(B) or the maximal ideal AM(B,B) of EndC(B). If we
suppose that I(B,B) = AM(B,B) is a maximal ideal of EndC(B), by
Lemma 4.1.1(1) we obtain that I ⊆ AM . This is not possible because I
properly contains AM . Therefore I is the improper ideal and so AM is
maximal.

2. Let I be a proper ideal of C, so that there exists a non-zero object A of C
with I(A,A) ≠ EndC(A). If M is a maximal ideal of EndC(A) containing
I(A,A), Part (1) yields that the ideal associated to M is a maximal ideal
of C containing I.

3. Follows from (2) applied to the zero ideal of C.

Recall that if R is a simple artinian ring, then R has a unique simple right
module S up to isomorphism, and all finitely generated right R-modules M are
semisimple and isomorphic to Sn, where n is the Goldie dimension of M .

Corollary 4.3.4 Let C be a semilocal category and M a maximal ideal of
C. Then there exist a simple artinian ring R and a full and faithful functor
F ∶ C/M → fgss-R of the factor category C/M into the full subcategory fgss-R
of Mod-R whose objects are all finitely generated semisimple right R-modules.
Moreover, for every object B of C, the Goldie dimension of the semisimple right
R-module F (B) is equal to codim(EndC(B)/M(B,B)).
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Proof. Argue as in the proof of Theorem 4.2.2((3) ⇒ (4)) applying
Lemma 4.2.1(1). Let A be a non-zero object of the factor category C/M. The
ring R is the ring EndC(A)/M(A,A), which is simple artinian becauseM(A,A)
is a maximal ideal in the semilocal ring EndC(A). Over such a ring R, every
module is semisimple and projective. For every finitely generated semisimple
module M , the Goldie dimension of M coincides with the dual Goldie dimen-
sion of its endomorphism ring, so that for every object B of C, dim(F (B)) =
codim(EndR(F (B))) = codim(EndC/M(B)) = codim(EndC(B)/M(B,B)).

If C is a semilocal category, we can consider the class of all pairs (A,M),
where A ranges in the class of all non-zero objects of C and M is a maximal ideal
in the endomorphism ring EndC(A). Define an equivalence relation ∼ on this
class by (A,M) ∼ (A′,M ′) if AM = AM ′ . Cf. Proposition 4.1.3. Let Max(C)
be a class of representatives modulo ∼. We call Max(C) the maximal spectrum
of C. For a semilocal category, the class Max(C) collects all maximal ideals
of C but, since an ideal of a large category is not a set, we cannot define the
maximal spectrum as the class of all maximal ideal of C; we have then to give
this alternative definition, which is correct in MK.

Example 4.3.5 Let C be a preadditive category in which EndC(A) is a local
ring for every A ∈ Ob(C). In particular, C has no zero objects. We will prove
that there is a bijection f between Max(C) and V (C), defined by f(A,M) = ⟨A⟩
for every (A,M) ∈Max(C). To prove that f is injective, let (A,M), (A′,M ′) ∈
Max(C) be such that A ≅ A′. If g∶A → A′ is an isomorphism, then, for every
morphism h∶X → Y in C, h ∈ AM(X,Y ) if and only if the endomorphism βhα

of A is not an automorphism of A for every α∶X → A and every β∶Y → A, if and
only if the endomorphism gβhαg−1 of A′ is not an automorphism of A′ for every
α∶X → A and every β∶Y → A′, if and only h ∈ AM ′(X,Y ). Thus AM = AM ′

and (A,M) ∼ (A′,M ′), so that (A,M) = (A′,M ′) in Max(C).
In order to show that f is onto, fix A ∈ V (C). Then A is non-zero, so that

the local ring EndC(A) has a maximal ideal M . Let (A′,M ′) ∈Max(C) be such
that (A,M) ∼ (A′,M ′). Then AM = AM ′ implies that there exist g∶A → A′,
h∶A′ → A and α∶A′ → A′ with hαg an automorphism of A by Proposition 4.1.3,
(1) ⇒ (6). Thus there exists g′∶A → A with hαgg′ = 1A. Hence h is right
invertible and αgg′h is a non-zero idempotent of EndC(B). As EndC(B) is
a local ring, its only non-zero idempotent is the identity. Thus h is also left
invertible, hence an isomorphism. Thus ⟨A′⟩ = ⟨A⟩ and f(A′,M ′) = ⟨A⟩.
Example 4.3.6 There are two standard operations that can be performed on
a preadditive category C. We can construct the category sum(C) whose objects
are formal direct sums of finitely many objects of C, so that sum(C) is an additive
category containing C, and we can construct the category Ĉ whose objects are all
pairs (A,e), with A ∈ Ob(C) and e an idempotent in EndC(A), so that Ĉ turns
out to be a category with splitting idempotents containing C. As morphisms
between finite direct sums are matrices of morphisms, and a matrix is in an
ideal if and only if all entries of the matrix are in the ideal, it is clear that both
operations do not change the ideals of the category. Thus the maximal ideals
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are essentially the same for the three categories C, sum(C) and Ĉ. For instance,
if C is the category of Example 4.3.5, then sum(C) is a category in which every
object is a direct sum of finitely many objects with a local endomorphism ring,
and the maximal ideals of sum(C) correspond to the objects of V (C).

For a further example of maximal spectrum of a semilocal category, letR be a
ring and SR be the full subcategory of proj-R whose objects are the finitely gen-
erated projective R-modules with a semilocal endomorphism ring. Let us briefly
describe the structure of the objects of SR. If AR is a finitely generated projec-
tive module and EndR(A) is semilocal, then AR/ARJ(R) is a finitely generated
projectiveR/J(R)-module and EndR/J(R)(A/AJ(R)) ≅ EndR(A)/J(EndR(A))
is semisimple artinian [5, Corollary 17.12], so that AR/ARJ(R) is a direct
sum of finitely generated projective indecomposable R/J(R)-modules, that is,
AR/ARJ(R) is a direct sum of finitely many simple R-modules (cf. the remark
after the statement of Theorem 2.1 in [4]). Let H be the full subcategory
of Mod-R whose objects are all simple homomorphic images of finitely gener-
ated projective modules with a semilocal endomorphism ring, and let V (H)
be a skeleton of H. Thus AR/ARJ(R) ≅ ⊕S∈V (H)S

nS for suitable integers
nS ≥ 0, almost all zero. For every S ∈ V (H), there is a unique R-submodule
AS of AR, with AS ⊇ ARJ(R) and AS/ARJ(R) the S-socle of AR/ARJ(R),
that is, AS/ARJ(R) ≅ SnS , so that AR/ARJ(R) = ⊕S∈V (H)AS/ARJ(R). Now
EndR(A)/J(EndR(A)) ≅ EndR/J(R)(A/AJ(R)) ≅ ∏S∈V (H)EndR(AS/AJ(R)),
where each EndR(AS/AJ(R)) is the zero ring if nS = 0 and is a simple artinian
ring otherwise. It follows that the maximal ideals of EndR(A) are the ideals
MS = { f ∈ EndR(A) ∣ f(AS) ⊆ ARJ(R) }, where S ranges in the objects of
V (H) with nS > 0.

Theorem 4.3.7 Let R be a ring, SR be the full subcategory of proj-R whose
objects are the finitely generated projective R-modules with semilocal endomor-
phism rings, and H be the full subcategory of Mod-R whose objects are all simple
homomorphic images of finitely generated projective modules with a semilocal
endomorphism ring. Then there is a bijection Max(SR) → V (H).

Proof. We use the notation introduced in the paragraph immediately be-
fore the statement of the Theorem. Let (AR,M) ∈ Max(SR), so that M is a
maximal ideal of the semilocal endomorphism ring of the finitely generated pro-
jective module AR. Define a correspondence Φ∶Max(SR) → V (H) associating
to (AR,M) the unique S ∈ V (H) with nS > 0 and M =MS.

In order to show that the correspondence Φ is onto, fix S ∈ V (H). The
module S is a homomorphic image of an object AR of SR. Let (A′R,M ′)
be the element of Max(SR) with (A′R,M ′) ∼ (AR,MS). We will prove that
Φ(A′R,M ′) = S. For this, we must show that M ′ = { f ∈ EndR(A′) ∣ f(A′S) ⊆
A′RJ(R) }. Let N be the ideal in the right term of this equality. We know that
N is always either a maximal ideal or the improper ideal of EndR(A′). Hence
it suffices to prove that N ⊆M ′. By Proposition 4.1.3((1)⇔ (3)), the condition(A′R,M ′) ∼ (AR,MS) implies that M ′ =AMS

(A′R,A′R) = { f ∈ EndR(A′) ∣ βfα ∈
MS for every α∶AR → A′R and β∶A′R → AR } = { f ∈ EndR(A′) ∣ βfα(AS) ⊆
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ARJ(R) for every α∶AR → A′R and β∶A′R → AR }. To show that N ⊆ M ′,
assume f ∈ N , α∶AR → A′R and β∶A′R → AR. Then α(AS) ⊆ A′S , so that
βfα(AS) ⊆ βf(A′S) ⊆ β(A′RJ(R)) ⊆ ARJ(R). This proves that N ⊆M ′, and Φ
is onto.

In order to prove that Φ is injective, fix two finitely generated projec-
tive modules AR and A′R with semilocal endomorphism rings, let M and M ′

be two maximal ideals of EndR(A) and EndR(A′) respectively, and suppose
Φ(AR,M) = Φ(A′R,M ′). Then there exists S ∈ V (H) such that M = MS ={ f ∈ EndR(A) ∣ f(AS) ⊆ ARJ(R) } and M ′ =M ′

S = { f ′ ∈ EndR(A′) ∣ f ′(A′S) ⊆
A′RJ(R) }. We must prove that AM = AM ′ . By Propositions 4.1.3 and 4.3.3,
it suffices to show that AM(A′R,A′R) = { f ′ ∈ EndR(A′) ∣ βf ′α(AS) ⊆ ARJ(R)
for every α∶AR → A′R, β∶A

′
R → AR } is contained in M ′. Let f ′ be a mor-

phism in EndR(A′) ∖M ′. Then f ′(A′S) /⊆ A′RJ(R), so that f ′ induces a non-
zero endomorphism f ′ of A′S/A′RJ(R). Now AS/ARJ(R) and A′S/A′RJ(R)
are direct sums of a non-zero finite number of copies of S, so that there exist
morphisms α∶AS/ARJ(R) → A′S/A′RJ(R) and β∶A′S/A′RJ(R) → AS/ARJ(R)
with βf ′α ≠ 0. As AR and A′R are projective, α and β can be lifted to mor-
phisms α∶AR → A′R and β∶A′R → AR, so that βf ′α(AS) /⊆ ARJ(R). Thus
f ′ ∉ AM(A′R,A′R).

Let Cλ be a preadditive category for every index λ ranging in a class Λ.
We define the weak direct sum ⊕λ∈ΛCλ of the categories Cλ as follows. The
objects of ⊕λ∈ΛCλ are the finite sets { (λ1,A1), (λ2,A2), . . . , (λn,An) }, where
n ≥ 0 is an integer, λ1, . . . , λn are distinct elements of Λ and Ai is a non-zero
object of Cλi

for every i = 1,2, . . . , n. The set of all morphisms between two ob-
jects { (λ1,A1), (λ2,A2), . . . , (λn,An) } and { (µ1,B1), (µ2,B2), . . . , (µm,Bm) }
of the category ⊕λ∈ΛCλ is

⊕
i = 1, . . . ,n

j = 1, . . . ,m

λi = µj

HomCλi
(Ai,Bj).

The following remarks are probably redundant, but help clarify the notion
of weak direct sum, which we have just introduced.

(a) The weak direct sum ⊕λ∈ΛCλ of preadditive categories Cλ is a preadditive
category.

(b) The category ⊕λ∈ΛCλ has always a unique zero object, given by the empty
set.

(c) Any two objects

{ (λ1,A1), (λ2,A2), . . . , (λn,An) } and { (µ1,B1), (µ2,B2), . . . , (µm,Bm) }
of ⊕λ∈ΛCλ are isomorphic if and only if {λ1, . . . , λn } = {µ1, . . . , µm } and Ai ≅ Bj

in Cλi
for every i and j with λi = µj .

(d) Suppose that the class Λ is a set, so that we can construct the product
category ∏λ∈Λ Cλ. Assume that all the preadditive categories Cλ have a zero
object. Then the weak direct sum ⊕λ∈ΛCλ is equivalent to the full subcategory
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of the product category ∏λ∈Λ Cλ whose objects are the sequences (Aλ)λ∈Λ of
objects Aλ ∈ Ob(Cλ) with Aλ a zero object of Cλ for almost all λ ∈ Λ.

In (e) and (f) below, for any preadditive category C, let C+ denote the cat-
egory obtained from C adjoining a further zero object (so that C+ and C are
equivalent if C already has a zero object), and let C∗ denote the full subcategory
of C whose objects are all non-zero objects of C.

(e) Let M be a subclass of Λ. Then the categories ⊕λ∈ΛCλ and (⊕λ∈MC
∗
λ)⊕(⊕λ∈Λ∖MCλ) are isomorphic.

(f) Let C1, . . . ,Cn be n ≥ 1 preadditive categories. Then the category ⊕n
i=1Ci

is isomorphic to the category (∏n
i=1 C

∗
i )+.

For every λ0 ∈ Λ, there is a canonical functor Eλ0
∶ Cλ0

→ ⊕λ∈ΛCλ, which is
full and faithful. Moreover, let D be an additive category with a zero object
and Gλ∶ Cλ → D be an additive functor for every λ ∈ Λ. Then there exists an
additive functor G∶ ⊕λ∈ΛCλ → D such that GEλ is naturally isomorphic to Gλ

for every λ ∈ Λ. The additive functor G with this property is unique up to
natural isomorphism.

Let D be a preadditive category and Fλ∶D → Cλ, where λ ranges in the
class Λ, be an additive functor. Assume that, for every object A ∈ Ob(D), the
object Fλ(A) is a zero object of Cλ for almost all λ ∈ Λ. Define an additive
functor F ∶D → ⊕λ∈ΛCλ in the following way. Consider the composite functors
EλFλ∶D → ⊕λ∈ΛCλ, λ ∈ Λ. Let A be an object of D and let λ1, . . . , λn be
the elements λ ∈ Λ such that Fλ(A) is a non-zero object of Cλ. Let F (A) be
the coproduct in ⊕λ∈ΛCλ of the objects Eλ1

Fλ1
(A), . . . ,Eλn

Fλn
(A). Now let

f ∶A → B be a morphism in D and let µ1, . . . , µm be the elements µ ∈ Λ such
that Fµ(B) is a non-zero object of Cµ. Then F maps f to the m × n matrix
having (i, j)-entry equal to Eµi

Fµi
(f) for µi = λj , and all the other entries equal

to zero.
We say that the functor F ∶D → ⊕λ∈ΛCλ is induced by the collection of

functors Fλ∶D → Cλ, λ ∈ Λ.

Theorem 4.3.8 Let C be a semilocal category. Then:

1. the Jacobson radical of C is the intersection of all maximal ideals of C
and, for every object A in C, there exist finitely many maximal ideals
M1, . . . ,Mn (n ≥ 0) such that, for every maximal ideal M in C, A is a
non-zero object in C/M if and only if M =Mi for some i ∈ {1, . . . , n};

2. the functor F ∶ C → ⊕M∈Max(C)C/M, induced by the collection of canonical
functors C → C/M,M ∈Max(C), is isomorphism reflecting;

3. if C is additive with splitting idempotents, the functor F is direct-summand
reflecting.

Proof.

1. Let A,B be objects of C. Let f be a morphism in J (A,B). Let M be a
maximal ideal of C. We want to prove that f ∈M(A,B). By Lemma 4.1.4,
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either M(A,A) = EndC(A) or M(A,A) is a maximal ideal of EndC(A)
and M is the ideal of C associated to M(A,A). If M(A,A) = EndC(A),
then M(A,B) = HomC(A,B), so that f ∈ M(A,B) and we are done.
Hence we can assume that M =M(A,A) is a maximal ideal of EndC(A)
and M is the ideal of C associated to M . Now f ∈ J (A,B), so that
βfα ∈ J (A,A) = J(EndC(A)) ⊆M for every α∶A → A and every β∶B → A.
Thus f is in the maximal ideal M associated to M .

Conversely, assume that f ∈M(A,B) for every maximal idealM of C. If
A is a zero object in C, then f = 0 ∈ J (A,B). If A is not a zero object in C,
let M be any maximal ideal of the ring EndC(A). Let AM be the ideal in
C associated to M , so that AM is maximal by Proposition 4.3.3(1). Now
f ∈ AM(A,B) implies that gf ∈ AM(A,A) =M for every g∶B → A. Since
this is true for every maximal ideal M of EndC(A), which is a semilocal
ring, it follows that gf ∈ J (A,A) for every g∶B → A. Thus 1A − gf has
a left inverse, and f ∈ J (A,B). Thus J is the intersection of all the
maximal ideals of C.

Now let A be an object of C. If A = 0 in C, then A = 0 in C/M for all
maximal idealsM. AssumeA non-zero. Then EndC(A) is a semilocal ring.
Let M1, . . . ,Mn be the maximal ideals of EndC(A), and AM1

, . . . ,AMn

be the corresponding associated ideals. Let M be a maximal ideal of
C different from AMi

for every i = 1, . . . , n. As M is not associated to
M1, . . . ,Mn, we get that M(A,A) = EndC(A) by Lemma 4.1.4. Thus A
is the zero object in C/M.

This concludes the proof of (1). Notice that (1) allows us to say that the
collection of canonical functors C → C/M, M ∈Max(C) induces a functor
F into the weak direct sum category. It sends the object A of C into the
finite set {(M1,A1), . . . , (Mn,An)}, where Ai is the image of A in C/Mi.

2. Let B be a non-zero object of C. By (1), there are only finitely many
maximal ideals M with B non-zero in C/M. Let M1, . . . ,Mn be these
finitely many distinct maximal ideals. ThusMi(B,B) ≠ EndC(B), so that
Mi is the ideal associated to the maximal ideal Mi(B,B) of EndC(B)
by Lemma 4.1.4. By Proposition 4.3.3(1), the maximal ideals of the ring
EndC(B) are exactly the n idealsMi(B,B). Since EndC(B) is semilocal,
we have a canonical isomorphism

EndC(B)/J(EndC(B)) ≅ n

∏
i=1

EndC(B)/Mi(B,B).
Hence there exists, for every i = 1, . . . , n, a δi ∈ EndC(B) such that δi ≡ 1B(modMi(B,B)), δi ≡ 0B (modMj(B,B)) for every j ≠ i, and δiδj ∈

J(EndC(B)) for every i ≠ j.

In order to prove (2), let A be an object of C with A ≅ B in C/M for
every maximal ideal M of C. Then A also is non-zero in C, otherwise
B = 0 in C/M for every maximal ideal M of C, so that B = 0 in C/J ,
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hence B = 0 in C, contradiction. Thus A and B are both non-zero in
C. Moreover, for every M, A = 0 in C/M if and only if B = 0 in C/M.
Hence we can apply the argument of the previous paragraph to A also,
and we find that there exist endomorphisms δ′1, . . . , δ

′
n ∈ EndC(A) such

that δ′i ≡ 1A (modMi(A,A)), δ′i ≡ 0A (modMj(A,A)) for j ≠ i, and
δ′iδ
′
j ∈ J(EndC(A)) for i ≠ j.

For every i = 1, . . . , n, let fi∶A → B be a morphism in C that becomes an
isomorphism in C/Mi and gi∶B → A be a morphism that lifts to C the
inverse of fi in C/Mi. Set f = ∑n

i=1 δ
′
ifiδi and g = ∑n

i=1 δigiδ
′
i. Then

gf =∑
i,j

δigiδ
′
iδ
′
jfjδj ≡ δigiδ

′
ifiδi ≡ gifi ≡ 1A (modMi)

for all i, hence modulo J , so that f is left invertible in C. Similarly, the
composite morphism fg is invertible in C, so that f is right invertible.
Thus f is an isomorphism in C.

3. In order to prove (3), assume C additive with splitting idempotents and
A an object of C with F (A) a direct summand of F (B). Now we have
morphisms fi∶A → B and gi∶B → A such that gifi ≡ 1A (modMi), i =
1, . . . , n. Set f = ∑n

i=1 δifi and g =∑n
i=1 giδi. Then

gf =∑
i,j

giδiδjfj ≡
n

∑
i=1

giδifi (mod J ),
so that gf ≡ gifi (modMi), that is, gf ≡ 1A (modMi) for every i =

1, . . . , n. As F (A) is a direct summand of F (B) andM(B,B) = EndC(B)
for every maximal ideal M of C different from M1, . . . ,Mn, it follows
that M(A,A) = EndC(A) for every maximal ideal M of C different from
M1, . . . ,Mn, so that gf ≡ 1A (modM) for every M ∈ Max(C). By (1),
gf ≡ 1A (mod J ), so that gf is left invertible in EndC(A). Thus g′f = 1A
for a suitable g′. Hence A is isomorphic to a direct summand of B.

This theorem does not hold omitting the hypothesis that the category be
semilocal. For instance, if C is the category of all vector spaces of dimension
≤ ℵ1, then C has a unique maximal idealM consisting of all morphisms of rank
≤ ℵ0, and all vector spaces of dimension ≤ ℵ0 turn out to be isomorphic modulo
M.

4.4 The monoid V (C)

Let Mλ be a small monoid for every index λ ranging in a class Λ. The direct sum
of the monoids Mλ is the large monoid ⊕λ∈ΛMλ defined as follows. Let ⊕λ∈ΛMλ

be the class having as elements the finite sets { (λ1, a1), (λ2, a2), . . . , (λn, an) },
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where n ≥ 0 is an integer, λ1, . . . , λn are distinct elements of Λ and ai is a non-
zero element of Mλi

for every i = 1, . . . , n. If λ1, . . . , λn, µ1, . . . , µm, ν1, . . . , νp are
distinct elements of Λ, define

{(λ1, a1), . . . , (λn, an), (µ1, b1), . . . , (µm, bm)}
+{(λ1, c1), . . . , (λn, cn), (ν1, d1), . . . , (νp, dp)}

= {(λ1, a1 + c1), . . . , (λn, an + cn), (µ1, b1), . . . , (µm, bm), (ν1, d1), . . . , (νp, dp)}.
Then ⊕λ∈ΛMλ with this operation becomes a large commutative monoid. If
every monoid Mλ coincide with a single monoid M , we denote the direct sum
⊕λ∈ΛM by M (Λ).

Let C be an additive semilocal category in which idempotents split. The
direct-summand reflecting functor F ∶ C → ⊕M∈Max(C)C/M of Theorem 4.3.8(3)
induces a unique monoid homomorphism V (F )∶V (C) → V (⊕M∈Max(C)C/M),
which is a divisor homomorphism. Moreover,

V (⊕M∈Max(C)C/M) ≅ ⊕M∈Max(C)V (C/M) ≅ N(Max(C))
0

by Corollary 4.3.4. Thus there is a divisor homomorphism of V (C) into a free
commutative monoid, and the monoid V (C) turns out to be a Krull monoid.

Let us show that this argument can be inverted. Let X be a set, N
(X)
0

the free commutative monoid with free set X of generators and Z(X) the free

abelian group with free set X of generators. The elements of N
(X)
0

will be
denoted as functions s∶X → N0 with s(x) = 0 for almost all x. The support of

an element s ∈ N
(X)
0

is the finite set supp(s) = {x ∈ X ∣ s(x) ≠ 0}. For every

preadditive category C let sum(C) and Add(C) = ̂sum(C) denote the additive
category generated by C and the additive category with splitting idempotents
generated by C respectively. Notice that the maximal ideals of C, sum(C) and
Add(C) coincide as we saw in Example 4.3.6.

Theorem 4.4.1 Let X be a set and S be a subset of the monoid N
(X)
0

such that

⋃s∈S supp(s) =X. Let N0S be the submonoid of N
(X)
0

generated by S and ZS be
the subgroup of Z(X) generated by S. Then there exists a preadditive category
C such that the full and faithful embeddings C ↪ sum(C) ↪ Add(C) induce a
commutative diagram of sets and mappings

S ↪ N0S ↪ ZS ∩N
(X)
0

↪ N
(X)
0

↓ ≅ ↓ ≅ ↓ ≅ ↓ ≅
V (C) ↪ V (sum(C)) ↪ V (Add(C)) ↪ N

(Max(C))
0

.

Here the vertical arrows represent bijections, and the squares in the middle and
on the right are commutative squares of monoids and monoid homomorphisms.

Proof. The embedding ZS ∩ N
(X)
0
↪ N

(X)
0

is a divisor homomorphism,

so that ZS ∩ N
(X)
0

is a reduced Krull monoid. For any ring R, let SR denote
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the full subcategory of Mod-R consisting of all finitely generated projective
right R-modules with semilocal endomorphism rings. Let k be a field. By [26,
Theorem 2.1], there exist a k-algebra R and two monoid isomorphisms g∶ZS ∩

N
(X)
0
→ V (SR) and h∶N

(X)
0
→ V (SR/J(R)) such that if τ ∶V (SR) → V (SR/J(R))

is the homomorphism induced by the natural surjection π∶R → R/J(R), then
the diagram of monoids and monoid homomorphisms

ZS ∩N
(X)
0

↪ N
(X)
0

g ↓ ≅ h ↓ ≅
V (SR) τ

Ð→ V (SR/J(R))
commutes.

We claim that V (SR/J(R)) ≅ N(Max(SR))
0

. In order to prove the claim, notice

that V (SR/J(R)) ≅ N
(X)
0

. Hence it suffices to show that there is a one-to-one
correspondence between Max(SR) and the class of atoms of V (SR/J(R)). By
Theorem 4.3.7, Max(SR) ≅ V (H) (notation as in Theorem 4.3.7). By [26,
Proposition 2.5], the class of atoms of V (SR/J(R)) consists of a class of repre-
sentatives of the simple projective R/J(R)-modules. Thus it suffices to prove
that a simple R-module M is a homomorphic image of a finitely generated
projective R-module with a semilocal endomorphism ring if and only if it is a
projective R/J(R)-module. Now if the simple R-module M is a homomorphic
image of a finitely generated projective R-module AR with EndR(A) semilocal,
then M⊗R/J(R) ≅M is a homomorphic image of AR⊗R/J(R) ≅ AR/ARJ(R),
which is a direct sum of finitely many simple modules, as we have remarked in
the paragraph before the statement of Theorem 4.7. Hence, since AR/ARJ(R)
is a projective R/J(R)-module, the R/J(R)-module M also is projective. Con-
versely, if M is a simple projective R/J(R)-module, then M corresponds to an
element x ∈ X via the isomorphism h, so that x ∈ supp(s) for some s ∈ S. This
element s corresponds to a projective module AR ∈ V (SR) via g and M is a
homomorphic image of AR. Thus M ∈H. This concludes the proof of the claim.

Define the category C as the full subcategory of SR whose class of objects
is g(S). Then Add(C) is equivalent to SR and there is a monoid isomorphism
N0S ≅ V (sum(C)).

4.5 Comparing ideals of endomorphism rings of

distinct objects

This section is devoted to comparing the ideals of the endomorphism ring of
two objects A and B of a preadditive category C. The most natural way of
associating to every ideal of EndC(A) an ideal of EndC(B) is to associate to
the ideal I of EndC(A) the ideal AI(B,B) of EndC(B), where AI denotes the
ideal in the category C associated to I. Similarly, we can associate to each ideal
K of EndC(B) the ideal AK(A,A) of EndC(A). We will compare the ideals
of EndC(A) and those of EndC(B) via these correspondences. The lattice of
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all two-sided ideals of the endomorphism ring EndC(A) of an object A will be
denoted by L(EndC(A)).
Lemma 4.5.1 The following conditions are equivalent for two non-zero objects
A and B of a preadditive category C:

1. the mappings

α∶ L(EndC(A))→ L(EndC(B)),
I ∈ L(EndC(A)) ↦AI(B,B) ∈ L(EndC(B)),

and
β∶ L(EndC(B))→ L(EndC(A)),
K ∈ L(EndC(B))↦ AK(A,A) ∈ L(EndC(A)),

where AI and AK are the ideals associated to I and K respectively, are
such that αβ = 1L(EndC(B));

2. HomC(A,B)HomC(B,A) = EndC(B);
3. add(B) ⊆ add(A).

Moreover, if the category C is additive with splitting idempotents, the previous
conditions are also equivalent to:

4. there exists a non-negative integer n such that B is isomorphic to a direct
summand of An.

Proof. (1)⇒ (2) SetK = HomC(A,B)HomC(B,A). The correspondence β
sends K to β(K) = EndC(A) and α sends EndC(A) to α(EndC(A)) = EndC(B).
Thus (1) implies that HomC(A,B)HomC(B,A) = EndC(B).

(2)⇒ (3) Assume D ∈ add(B), so that there exist morphisms f1, . . . , fn∶B →
D and g1, . . . , gn∶D → B with 1D = ∑n

i=1 figi. If (2) holds, there exist morphisms
h1, . . . , hm∶A → B and l1, . . . , lm∶B → A such that 1B = ∑m

j=1 hj lj . Hence 1D =

∑n
i=1 fi1Bgi = ∑i,j fihj ljgi. Therefore D ∈ add(A).

(3)⇒ (1) The composition αβ sends an ideal K ∈ L(EndC(B)) to the ideal
αβ(K) = { g ∈ EndC(B) ∣ αδgγβ ∈ K for every α∶A → B,γ∶A → B,β∶B →
A, δ∶B → A}. Obviously, K ⊆ αβ(K). If (3) holds, then 1B = ∑

n
i=1 fihi for

suitable fi ∈ HomC(A,B) and hi ∈ HomC(B,A). Therefore g ∈ αβ(K) implies
g = ∑i,j fihigfjhj ∈K.

(2)⇔ (4) is trivial.

Let A and B be non-zero objects of a preadditive category C. Consider the
bimodules

EndC(B)PEndC(A) = HomC(A,B) and EndC(A)QEndC(B) = HomC(B,A)
and the bimodule homomorphisms θ∶P⊗Q → EndC(B), defined by θ(f⊗g) = fg,
and φ∶Q ⊗ P → EndC(A), defined by φ(g ⊗ f) = gf for every f ∈ P and g ∈ Q.
Since θ(f ⊗ g)f ′ = fφ(g ⊗ f ′) and gθ(f ⊗ g′) = φ(g ⊗ f)g′ for f, f ′ ∈ P, g, g′ ∈ Q,
the couple (θ,φ) defines a Morita pair for (P,Q) [5, Exercise 22.5].

When θ and φ are both epic, the rings EndC(A) and EndC(B) are Morita
equivalent [5, Exercise 22.7].
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Theorem 4.5.2 The following conditions are equivalent for two non-zero ob-
jects A and B of a preadditive category C:

1. the mappings

α∶ L(EndC(A))→ L(EndC(B)),
I ∈ L(EndC(A)) ↦AI(B,B) ∈ L(EndC(B)),

and
β∶ L(EndC(B))→ L(EndC(A)),
K ∈ L(EndC(B))↦ AK(A,A) ∈ L(EndC(A)),

are mutually inverse one-to-one correspondences;

2. the ideal HomC(A,B)HomC(B,A) equals the whole ring EndC(B) and
similarly HomC(B,A)HomC(A,B) = EndC(A);

3. add(A) = add(B);
4. in the Morita pair (θ,φ) for the bimodules

EndC(B)PEndC(A) = HomC(A,B) and EndC(A)QEndC(B) = HomC(B,A),
both θ and φ are epic.

Moreover, if the category C is additive with splitting idempotents, the previous
are equivalent also to:

5. there exist two non-negative integers n and m such that A is isomorphic
to a direct summand of Bn and B is isomorphic to a direct summand of
Am.

Proof. (1) ⇔ (2) ⇔ (3) ⇔ (5) follow immediately from Lemma 4.5.1.
(2)⇔ (4) is obvious.

Remark 4.5.3 Condition (4) is strictly stronger than the condition “The rings
EndC(A) and EndC(B) are Morita equivalent.” For instance, it is easy to con-
struct examples of abelian groups G that are not free, but whose endomorphism
ring is isomorphic to Z. The simplest example is probably the subgroup G of
Q generated by all p−1, where p ranges in the set of all prime numbers. The
group G contains Z. As G is torsion-free of rank 1, its endomorphism ring
EndZ(G) is a subring of Q, that is, consists of multiplications by rational num-
bers q. More precisely, EndZ(G) consists of all q ∈ Q with qp−1 ∈ G. Thus
EndZ(G) = { q ∈ Q ∣ q ∈ ⋂p pG}. Now G/Z ≅ ⊕pZ/pZ, so that ⋂p pG ⊆ Z. It
follows that EndZ(G) ≅ Z. In particular, EndZ(G) and Z are Morita equivalent,
but add(GZ) ≠ add(ZZ).
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4.6 Trace ideals

Let C be a preadditive category. For any subclass U of Ob(C), define the trace
Tr(U) of U in C as the ideal of C given by

Tr(U)(B,C) = ∑
A∈U

HomC(A,C)HomC(B,A)
for any pair B,C of objects of C. An ideal I of C is called a trace ideal if it is
equal to Tr(U) for some subclass U of Ob(C). In particular, the improper ideal
is Tr(Ob(C)) and the zero ideal is Tr(∅), so that they are both trace ideals.
By a maximal trace ideal , we mean a trace ideal that is maximal in the class
of all proper trace ideals. Notice that the trace of U , when U consists of a
unique object, has already appeared in Proposition 4.1.3, Conditions (5) and
(5’) (cf. the paragraph before the statement of Proposition 4.1.3) and in the
previous section.

Remark 4.6.1 We call these ideals of the category C trace ideals, because
when C is a full subcategory of Mod-R and RR is an object of C, the ideal
Tr(U)(RR,RR) of EndR(R) ≅ R is what is usually called the trace of the class
U of modules. More generally, Anderson and Fuller define on Page 109 of [5]
the trace of a class U in a module MR as the submodule of MR generated by
U . This corresponds to the submodule Tr(U)(RR,MR) of HomR(R,M) ≅MR.

Lemma 4.6.2 For any subclass U of Ob(C), the trace Tr(U) is the smallest
ideal I of C such that I(B,B) = EndC(B) for every object B ∈ U . That is, it is
the ideal of C generated by the class {1B ∣ B ∈ U }.

Proof. Let U be a subclass of Ob(C) and let I be an ideal of C such
that I(B,B) = EndC(B) for every object B ∈ U . If a morphism f ∶C → D is in
Tr(U), then f = f1 + . . .+ fn, where every fi is a morphism that factors through
an object Ai of U . Since I(Ai,Ai) = EndC(Ai) for every i = 1, . . . , n, it follows
that fi ∈ I for every i = 1, . . . , n. Hence f ∈ I, and therefore Tr(U) ⊆ I.

Let C be a preadditive category and U be a subclass of Ob(C). Let add(U)
denote the subclass of Ob(C) consisting of all objects B ∈ Ob(C) for which there
exist n ≥ 0, A1, . . . ,An ∈ U and morphisms fi∶Ai → B and gi∶B → Ai with

∑n
i=1 figi = 1B. Clearly, U ⊆ add(U). We say that a subclass U of Ob(C) is

additively closed if U = add(U). The class add(U) when U consists of a unique
object A has already appeared at the beginning of Section 4.2 and in Section 4.5.

Let I be an ideal of a preadditive category C. We will denote by Z(I) the
class of all objects A ∈ Ob(C) that become the zero object in the factor category
C/I, that is, the objects A ∈ Ob(C) with 1A ∈ I(A,A).
Proposition 4.6.3 Let C be a preadditive category.

1. If I is an ideal of C, then the subclass Z(I) of Ob(C) is additively closed;

2. Z(Tr(U)) ⊇ U for every subclass U of Ob(C);
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3. a subclass U of Ob(C) is additively closed if and only if Z(Tr(U)) = U ;
4. Tr(Z(I)) ⊆ I for every ideal I of C;

5. an ideal I of C is a trace ideal if and only if Tr(Z(I)) = I;
6. there is an inclusion-preserving one-to-one correspondence between the

trace ideals of C and the additively closed subclasses of Ob(C).
Proof.

1. We must prove that add(Z(I)) ⊆ Z(I). This is easily seen.

2. is trivial.

3. The implication (⇐) follows from (1). In order to prove the implication
(⇒), it suffices to prove that Z(Tr(U)) ⊆ U by (2). Hence, assume U
additively closed and A ∈ Z(Tr(U)). As Tr(U) is the ideal of C generated
by {1B ∣ B ∈ U }, it follows that, for every X,Y ∈ Ob(C), Tr(U)(X,Y ) ={∑n

i=1 figi ∣ n ≥ 0, A1, . . . ,An ∈ U , fi∶Ai → Y, gi∶X → Ai }. Thus A ∈
Z(Tr(U)) implies 1A ∈ Tr(U)(A,A), so that A ∈ add(U) = U .

4. If I is an ideal, then Z(I) consists of the objects A with 1A ∈ I(A,A),
and the trace Tr(Z(I)) is the ideal of C generated by these 1A’s. Hence
Tr(Z(I)) ⊆ I.

5. The implication (⇐) is trivial. For the reverse implication, let I = Tr(U)
be a trace ideal. Here U is a subclass of Ob(C). The correspondences
Tr(−) and Z(−) are clearly inclusion-preserving, that is, U ⊆ V implies
Tr(U) ⊆ Tr(V) and I ⊆ J implies Z(I) ⊆ Z(J ). By (2), Z(Tr(U)) ⊇ U .
Hence Tr(Z(Tr(U))) ⊇ Tr(U), that is, Tr(Z(I)) ⊇ I.

6. is now clear.

If C is any category, not necessarily preadditive, we can consider the class
V (C) of objects of a skeleton of the category C. The class V (C) is pre-ordered by
the pre-order ⪯ defined, for every A,B ∈ V (C), by B ⪯ A if there exist morphisms
f ∶A → B and g∶B → A with fg = 1B. If the category C is additive, then V (C)
is a large monoid via the operation induced by direct sum. Hence not only has
V (C) the pre-order ⪯, but also the algebraic pre-order ≤. Clearly, B ≤ A implies
B ⪯ A for every A,B ∈ V (C). When the category C is additive and idempotents
split, the two pre-orders coincide. If, moreover, C is directly finite, then the two
equal pre-orders on V (C) are partial orders.

Let M be any monoid. Recall that a submonoid M ′ of M is divisor-closed
if x, y ∈ M , x ≤ y in M and y ∈ M ′ implies x ∈ M ′. Clearly, if C is an addi-
tive category with splitting idempotents, there is a one-to-one correspondence
between additively closed subclasses of Ob(C) and divisor-closed submonoids of
V (C). The complements of the divisor-closed submonoids of a monoid M are
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the prime ideals of M . It follows that there is an order-reversing one-to-one cor-
respondence between trace ideals of C and prime ideals of V (C). Clearly, there
is a one-to-one correspondence between maximal trace ideals of C and prime
ideals of V (C) of height one.

For the rest of the chapter, assume that C is an additive semilocal category
with splitting idempotents. Then V (C) is a reduced Krull monoid, hence a
cancellative monoid. If v∶V (C) → N0 is a valuation of V (C) and Pv = {B ∈
V (C) ∣ v(B) > 0}, then Pv is a prime ideal of V (C), and v is essential if and
only if the prime ideal Pv has height one, by Lemma 3.2.2. In a Krull monoid M ,
every non-empty prime ideal M contains a prime ideal of height one. Thus every
proper trace ideal of an additive semilocal category C with splitting idempotents
is contained in a maximal trace ideal.

In the next Proposition, we describe the valuations associated to the maximal
ideals of the category C. If M is a maximal ideal of an additive semilocal
category C with splitting idempotents, the associated valuation is wM∶V (C) →
V (C/M) ≅ N0. Thus wM(A) is the Goldie dimension of the semisimple object
A of C/M. Equivalently, wM(A) is the dual Goldie dimension of the semilocal
ring EndC(A)/M(A,A) (Corollary 4.3.4).

Proposition 4.6.4 LetM be a maximal ideal of an additive semilocal category
C with splitting idempotents. Let wM∶V (C) → V (C/M) ≅ N0 be the valuation
of the Krull monoid V (C) induced by the canonical projection C → C/M. Let A
be a non-zero object of C and M be a maximal ideal of the endomorphism ring
of A such that the maximal ideal M is associated to M . Then:

1. the prime ideal PwM of V (C) associated to the valuation wM is

V (C) ∖Z(M) = {B ∈ V (C) ∣ HomC(B,A)HomC(A,B) /⊆M };
2. the following conditions are equivalent:

(a) the valuation wM is essential;

(b) the prime ideal PwM is of height one;

(c) the divisor-closed submonoid

DM = {B ∈ V (C) ∣ HomC(B,A)HomC(A,B) ⊆M }
of V (C) is maximal among the proper divisor-closed submonoids of
V (C);

(d) the additively closed subclass {B ∈ C ∣ HomC(B,A)HomC(A,B) ⊆
M } of Ob(C) is maximal among the additively closed proper sub-
classes of Ob(C).

Proof.
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1. An object B of V (C) is in PwM if and only if wM(B) > 0, that is, if and
only if B is not a zero object in C/M, i.e. if and only if B ∉ Z(M).
Moreover, B is not a zero object in C/M if and only if 1B ∉ M(B,B),
that is, if and only if there exist α∶A → B and β∶B → A with βα ∉M , i.e.
if and only if HomC(B,A)HomC(A,B) /⊆M .

2. The equivalence of (a) and (b) is proved in Lemma 3.2.2. The equivalence
of (b), (c) and (d) follows from the one-to-one correspondences between
prime ideals of V (C), divisor-closed submonoids of V (C) and additively
closed subclasses of C.

In the next two results, we consider the valuations associated to the prime
ideals of the Krull monoid V (C). If P is a prime ideal of V (C), then IP =
Tr(V (C)∖P ) is a trace ideal of C, and we can define a valuation vP ∶V (C)→ N0

by vP (A) = codim(EndC(A)/IP (A,A)) for every A ∈ V (C). Recall that two
valuations v, v′ of a monoid M are said to be equivalent if e(v)−1v = e(v′)−1v′.
For a reduced Krull monoid M , there is a one-to-one correspondence between
prime ideals of height one and essential valuations modulo equivalence.

Proposition 4.6.5 Let C be an additive semilocal category with splitting idem-
potents.

1. If P is a prime ideal of V (C), then PvP = P . In particular, P is of height
one if and only if the valuation vP is essential.

2. If v∶V (C) → N0 is any essential valuation, then Pv is a prime ideal of
height one and vPv

is equivalent to v.

Proof.

1. Let P be a prime ideal of V (C). The prime ideal PvP consists of all the
objects A ∈ V (C) such that IP (A,A) ≠ EndC(A), i.e. PvP consists of the
elements of V (C) ∖ Z(IP ). Thus PvP = P . The second part follows by
Lemma 3.2.2.

2. follows from (1) and Lemma 3.2.2.

Thus, if C is an additive semilocal category with splitting idempotents, the
monoid V (C) is a Krull monoid, and therefore we can equivalently study essen-
tial valuations of V (C), prime ideals of height one in V (C) or maximal trace
ideals of C. In this correspondence, to every maximal trace ideal I, we can as-
sociate an essential valuation wI of V (C) defined by wI(A) = v(V (C)∖Z(I))(A).
Notice that, if I is a maximal M ideal of C, this last wI notation is consistent
with the valuations wM, which we had previously introduced.

In the next lemma, we consider small categories to avoid set-theoretical
problems.
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Theorem 4.6.6 If C is an additive semilocal small category with splitting idem-
potents, then the maximal trace ideals of C form a set Max(Tr) and the mapping

w = (wI)I∈Max(Tr)∶V (C) → N
(Max(Tr))
0

, defined by wI = e(wI)−1wI for every
I ∈Max(Tr), is a divisor theory.

Proof. We have Max(Tr) = {IP ∣ P is a prime ideal of height one in
the monoid V (C)}. By Proposition 4.6.5, every essential valuation of V (C) is
equivalent to a valuation of the form wI for some maximal trace ideal I. Now
conclude by Proposition 3.2.1.

Finally, we will consider the valuations associated to any ideal I of an addi-
tive semilocal category C with splitting idempotents. For any such ideal I, we
can define a valuation wI ∶V (C) → N0 by wI(A) = codim(EndC(A)/I(A,A)).
Notice that this notation is consistent with the valuations wM, which we had
previously introduced only in the case of M a maximal ideal of C, and with
the valuations wI , where I is a trace ideal. Moreover, we have vP = wIP . For
any ideal I of C, the corresponding prime ideal V (C) ∖ Z(I) will be denoted
by Φ(I). In the next Proposition, we characterize for which ideals I of C the
valuation wI is essential.

Proposition 4.6.7 Let C be an additive semilocal category with splitting idem-
potents. The following conditions are equivalent for a proper ideal I of C:

1. the valuation wI is essential;

2. the prime ideal Φ(I) of V (C) has height one;

3. the ideal I contains a maximal trace ideal.

Proof. (1) ⇔ (2) The prime ideal Φ(I) = V (C) ∖ Z(I) is equal to the
prime ideal PwI . We conclude by Lemma 3.2.2.

(2) ⇒ (3) If Φ(I) = V (C) ∖ Z(I) is a prime ideal of height one, then
V (C) ∩ Z(I) is a maximal divisor-closed submonoid of V (C), so that Z(I)
is a maximal additively closed proper subclass of Ob(C). Thus the correspond-
ing trace ideal Tr(Z(I)) is a maximal trace ideal of C. But Tr(Z(I)) ⊆ I by
Proposition 4.6.3(4).

(3)⇒ (2) Let I be an ideal of C containing a maximal trace ideal J . Then
Z(I) ⊇ Z(J ), so that Φ(I) = V (C) ∖ Z(I) ⊆ V (C) ∖ Z(J ) = Φ(J ). As J
is a maximal trace ideal, its corresponding prime ideal Φ(J ) has height one.
Since I is a proper ideal, Z(I) must be a proper subclass of Ob(C), so that
Φ(I) = V (C) ∖Z(I) is not the empty ideal. Thus Φ(I) = Φ(J ).
Example 4.6.8 Let R be the localization of the ring Z of integers at the mul-
tiplicatively closed subset of Z consisting of the integers prime with 6, so that
R is a commutative semilocal principal ideal domain with two maximal ideals
generated by 2 and 3 respectively. Let C be the full subcategory proj-R of
Mod-R. Then C is an additive semilocal category with splitting idempotents.
Since every finitely generated projective R-module is free, the monoid V (C) is
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isomorphic to N0. By Proposition 4.1.5, C has exactly two maximal ideals,M2

andM3. The canonical monoid homomorphism V (C)→ V (C/M2)⊕V (C/M3)
corresponds to the monoid homomorphism N0 → N0 ⊕N0, n ↦ (n,n). The two
valuations wM2

and wM3
are essential and coincide. The monoid N0 has exactly

two prime ideals, which are the empty ideal and the ideal N of positive integers.
Correspondingly, C has exactly two trace ideals, necessarily the zero ideal and
the improper ideal. Thus C has only one maximal trace ideal, which is the zero
ideal, corresponding to the prime ideal N of N0. The corresponding valuation
vN∶V (C) → N0, defined by vN(A) = codim(EndC(A)) for every A ∈ V (C), sends
the free module Rn to 2n.

We conclude giving a further divisor homomorphism of the monoid V (C)
into a free commutative monoid. Let C be a small additive semilocal category
with splitting idempotents. For every finite subset S of Ob(C), set

DS = ⋃
I∈Max(Tr)

S∩Z(I)=∅

Z(I).

Let νS ∶V (C) → N0 be the valuation defined, for every A ∈ V (C), by νS(A) =
codim(EndC(A)/Tr(DS)(A,A)). Notice that νS = wTr(DS).

Theorem 4.6.9 Let C be a small additive semilocal category with splitting idem-
potents. Let ℘f(Ob(C)) be the set of all finite subsets of the set Ob(C). Then
the mapping ν = (νS)S∈℘f (Ob(C)) is a divisor homomorphism of the monoid V (C)
into the free commutative monoid N

(℘f (Ob(C)))
0

.

Proof. We have seen in Theorem 4.6.6 that w = (wI)I∈Max(Tr)∶V (C) →
N
(Max(Tr))
0

is a divisor theory. In order to prove the theorem, it suffices to
show that, for every I ∈ Max(Tr), there exists S ∈ ℘f(Ob(C)) with wI and
νS equivalent valuations. Fix an ideal I ∈ Max(Tr). Let δI be the element

of N
(Max(Tr))
0

that is one in the coordinate indexed by I and zero in all the
other coordinates. By the definition of divisor theory, there exists a finite set
T = {A1, . . . ,Am } of objects of V (C) such that δI = min{w(A1), . . . ,w(Am)}.
We claim that DT = Z(I). To prove the claim notice that an object B of C is
in DT if and only if there exists K ∈Max(Tr) with T ∩Z(K) = ∅ and B ∈ Z(K).
Now T ∩ Z(K) = ∅ if and only if wK(Ai) > 0 for every i = 1, . . . ,m, if and
only if wK(Ai) > 0 for every i = 1, . . . ,m. Now δI = min{w(A1), . . . ,w(Am)}
implies that wK(Ai) > 0 for every i = 1, . . . ,m if and only if K = I. Thus B
belongs to DT if and only if B ∈ Z(I). This proves our claim. In particular,
DT is an additively closed subclass of Ob(C). In order to conclude the proof
of the theorem, it suffices to show that wI and νT are equivalent valuations.
For this, it is enough to show that PwI = {A ∈ V (C) ∣ wI(A) > 0} is equal to
PνT = {A ∈ V (C) ∣ νT (A) > 0}. (Notice that wI essential implies that νT also is
essential by Lemma 3.2.2 Now PwI = {A ∈ V (C) ∣ 1A ∉ I(A,A) } = V (C)∖Z(I),
and PνT = {A ∈ V (C) ∣ EndC(A) ≠ Tr(DT )(A,A) } = V (C)∖Z(Tr(DT )). Hence

94



it remains to show that Z(I) = Z(Tr(DT )). But Z(Tr(DT )) =DT because DT

is an additively closed subclass of Ob(C), and DT = Z(I) as we have seen in
the claim. Thus PwI = PνT and wI is equivalent to νT by Lemma 3.2.2.
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Chapter 5

Weak Krull-Schmidt

Theorems

5.1 Rings and objects of finite type

In our previous chapters we investigated Krull monoids and issues concerning
factorizations in them, applying it mainly to the case of the monoid V (C) as-
sociated to an additive category C. Though the Krull-Schmidt Theorem does
not hold in general for Krull monoids, we saw that they still preserve a certain
regularity in the factorization. In this chapter we want to present a particular
class of categories C that provide examples of Krull monoids. In these categories
the uniqueness of the direct sum decomposition is not controlled by a single per-
mutation, as it is in the usual Krull-Schmidt Theorem, but by a finite number
of permutations. The meaning of this will be clarified in what follows.

We say that a ring R has type n if the factor ring R/J(R) is a direct product
of n division rings and we say that R has finite type if it has type n for some
integer n ≥ 1. If a ring R has finite type, then the type n of R coincides with
the dual Goldie dimension codim(RR) of RR according to Proposition 1.4.4.

A ring R has type 1 if and only if it is a local ring, if and only if there
is a local morphism of R into a division ring. With the next proposition, we
generalize this fact.

Before stating the proposition, we need to recall that a completely prime
ideal P of a ring R is a proper ideal P of R such that for every x, y ∈ R, xy ∈ P
implies that either x ∈ P or y ∈ P . Recall that if R is a ring, P1, . . . , Pn are
completely prime two-sided ideals of R, and I is a right ideal of R contained in

⋃n
i=1 Pi, then I ⊆ Pi for some i.

Proposition 5.1.1 The following conditions are equivalent for a ring R with
Jacobson radical J(R) and a positive integer n:

1. the ring R has type n;
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2. there exists a local morphism of the ring R into a direct product of m
division rings for some positive integer m, and n is the smallest of such
positive integers m;

3. R has exactly n distinct maximal right ideals, and they are all two-sided
ideals in R.

Proof. (1)⇒(2) The canonical projection R → R/J(R) is always a local
morphism. From R/J(R) ≅ D1 × . . . ×Dn, with Di a division ring for every i =
1, . . . , n we have that there is an onto local morphismR → R/J(R) ≅D1×. . .×Dn

with kernel J(R). For an arbitrary local morphism ϕ∶R →D′1×. . .×D
′
m of R into

the direct product of m division rings D′1, . . . ,D
′
m, the dual Goldie dimension

codim(R) = n must be less or equal than codim(D′1× . . .×D′m) =m by Theorem
1.4.9.

(2)⇒(3) Assume that (2) holds. Let ϕ∶R →D1×. . .×Dn be a local morphism
with D1, . . . ,Dn division rings. Set Pi = ker(πiϕ), where πi is the canonical
projection of D1 × . . . ×Dn onto Di. Then Pi is a completely prime two-sided
ideal of R, and U(R) = R ∖ (∪ni=1Pi) because ϕ is a local morphism.

Any proper right ideal of R is contained in ⋃n
i=1 Pi, hence in one of the Pi’s.

In particular, the unique maximal right ideals of R are at most P1, . . . , Pn and
they are all two-sided ideals. Assume that the Pi’s are not all distinct, or that
one of them is not maximal. In both cases there exist two indices i, j = 1, . . . , n
with i ≠ j and Pi ⊆ Pj . It is then easy to check that (π1ϕ, . . . , ˆπiϕ, . . . , πnϕ)∶R →
D1 × . . .× D̂i × . . .×Dn is a local morphism, which contradicts the minimality of
n.

(3)⇒(2) If Q1, . . . ,Qn are all the maximal right ideals of R, then they are
pairwise comaximal, so that the canonical projection π∶R → ⊕n

i=1R/Qi is a
right R-module morphism, which is onto by the Chinese Remainder Theorem.
Since they are all two-sided, π is a ring morphism, with kernel J(R). Hence
R/J(R) ≅ ∏n

i=1R/Qi, and the rings R/Qi do not have non-trivial right ideals.
Therefore the R/Qi’s are division rings.

Notice that the definition of having type n is a left/right symmetric con-
dition, so that it is equivalent also to: R has exactly n distinct maximal left
ideals, and they are all two-sided in R. Hence, for rings of finite type, the set
of all maximal right ideals, the set of all maximal left ideals and the set of all
maximal two-sided ideals coincide, and we will talk simply of maximal ideals,
without mentioning the side.

We say that an object A of a preadditive category C has type n if its endo-
morphism ring EndC(M) is a ring of type n. It may be convenient to consider
the zero object of a category the unique object of type 0. We will say that an
object A has finite type if it has type n for some positive integer n. Objects of
type one are exactly the objects with a local endomorphism ring.

Lemma 5.1.2 Let A and B be two objects of a preadditive category C with split-
ting idempotents, with A of finite type. If A is isomorphic to a direct summand
of Bk for some k ≥ 1, then A is isomorphic to a direct summand of B.
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Proof. Let P1, . . . , Pn be all the maximal ideals of EndC(A). Suppose
there are morphisms f ∶A → Bk and g∶Bk → A such that gf = 1A. Then 1A =

∑k
i=1 gεiπif , where εi∶B → Bk and πi∶B

k → B are the canonical injections and
projections, respectively. Since EndC(A)/J(EndC(A)) is canonically isomorphic
to ∏n

j=1 EndC A/Pj , there exists, for every j = 1, . . . , n an endomorphism qj ∈

EndC(A) such that qj ∉ Pj but qj ∈ ⋂l≠j Pl. Then ∑k
i=1(qjgεi)(πifqj) = q2j ∉ Pj .

Hence for every j = 1, . . . , n there exists an index i with (qjgεi)(πifqj) ∉ Pj .
For this index i, set fj = πifqj and gj = qjgεi, so that fj ∶A → B and gj ∶B → A

are such that gjfj ∉ Pj but gjfj ∈ ⋂l≠j Pl. Now consider the homomorphisms
f ′∶A→ B and g′∶B → A defined by f ′ = ∑n

j=1 fjqj and g′ = ∑n
j=1 qjgj. Obviously

g′f ′ is not contained in any maximal ideal of EndC(A), hence is left invertible.
If h is a left inverse of g′f ′, then (hg′)f ′ = 1A. Therefore A is isomorphic to a
direct summand of B, since idempotents split in C.

Let C be a preadditive subcategory and A an object of C of type n. If I is
an ideal of C, we say that I ∈ V (A) is I is equal to the ideal AP of C associated
to a maximal ideal P of the endomorphism ring EndC(A).
Theorem 5.1.3 Let C be a preadditive category and A,B objects of C of type
m and n, respectively. Then A ≅ B if and only if, for any ideal I of C, we have
I ∈ V (A) ⇐⇒ I ∈ V (B).

Proof. Assume that I ∈ V (A) ⇐⇒ I ∈ V (B), for an ideal I of C. Then
A and B have the same type n, and the n maximal ideals of EndC(A) and
EndC(B) can be labeled in such a way that if P1, . . . , Pn are the maximal ideal
of EndC(A) and P ′1, . . . , P

′
n are the maximal ideal of EndC(B), then APi

= AP ′
i

for every i = 1, . . . , n.
Suppose that we can find homomorphisms α1, . . . , αn∶A → B and homomor-

phisms β1, . . . , βn∶B → A such that αiβi, βiαi ∉ APi
= AP ′

i
but αi, βi ∈ APj

for
any i, j = 1, . . . , n with i ≠ j. Consider α = ∑n

i=1 αi and β = ∑n
i=1 βi. Then βα

is not contained in any maximal ideal of EndC(A) and αβ is not contained in
any maximal ideal of EndC(B). Therefore βα and αβ are automorphisms and
A ≅ B.

It remains to explain how one can find those α1, . . . , αn and β1, . . . , βn. Let
h ∈ EndC(A) be such that h ∉ P1 and h ∈ ⋂n

j=2 Pj . Then the same relations

hold for h2. In particular h2 ∉ AP1
= AP ′

1
, therefore there are f ∶B → A and

g∶A → B such that gh2f ∉ P ′1. Similarly, there are f ′∶A → B and g′∶B → A

such that g′gh2ff ′ ∉ P1. Put α1 = f
′g′gh and β1 = hf . Since h ∈ ⋂n

j=2 Pj ,

we have that α1, β1 ∈ ⋂n
j=2APj

. On the other hand neither α1β1 = f
′g′gh2f

nor β1α1 = hff
′g′gh are in AP1

= AP ′
1

because P1 is completely prime and

(g′gh2ff ′)2 = g′gh2ff ′g′gh2ff ′ = g′gh2f(f ′g′gh2f)f ′ = g′gh(hff ′g′gh)hff ′ ∉
P1. Similarly we can find α2, . . . , αn and β2, . . . , βn.

Proposition 5.1.4 Let C be an additive category whose objects are direct sums
of finitely many objects of finite type. For every object A of finite type, let P be
a maximal ideal of EndC(A) and let AP the ideal of C associated to P . Then
the categories C/AP and vect−EndC(A)/P are equivalent.
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Proof. Let F be the canonical functor F ∶ C → C/AP . We verify that
G = HomC/AP

(F (A),−) is a category equivalence of the category C/AP into
the category of all right vector spaces over the division ring EndR(A)/P . From
Lemma 4.1.1 we deduce that every object of C/AP is isomorphism to an object
of the form F (At). Since G induces an isomorphism between the endomorphism
ring of F (A) in C/AP and the endomorphism ring of the vector space G(F (A)),
it is clear that G is a categorical equivalence.

Now, following the approach of chapter 3, we prove our next Proposition.

Proposition 5.1.5 Let C be an additive category whose objects are direct sums
of finitely many objects of finite type. The canonical functor

U ∶ C → ⊕IC/I,
where I varies among the ideals of C of the form AP for some maximal ideal
P of the endomorphism ring EndC(A) of some object A of C of finite type, is
full. The ideal Ker(U) is the Jacobson radical of the category C and therefore
the functor U is local and isomorphism reflecting.

Moreover, if idempotents split in C, then U is direct-summand reflecting.

Proof. Let us prove that U is full. Let A,B be objects of C. There
exist objects A1, . . . ,Ak and B1, . . . ,Bl of finite type such that A = ⊕k

i=1Ai and
B = ⊕l

j=1Bj . Since U preserves finite direct sums, it is enough to consider
the case k = l = 1. Thus suppose that A and B are modules of finite type.
Let f ∶U(A) → U(B) be a morphism in ⊕IC/I. We have to find a morphism
f ∶A→ B such that U(f) = f . Recall that there are only finitely many ideals Ii,
i = 1, . . . , n of C of the form AP for some maximal ideal P of the endomorphism
ring EndC(C) of some object C of C of finite type, such that A and B can
be non-zero objects in the quotient category C/Ii. For every such ideal Ii,
let fi∶A → B be a morphism such that its image in the category C/Ii is the
corresponding component of f .

Since we have that EndC(A)/J(EndC(A)) is canonically isomorphic to the
direct product of EndC(A) modulo its maximal ideals, we have that, for ev-
ery ideal Ii, i = 1, . . . , n, there exists δi ∈ EndC(A) such that δi ≡ 1A modulo
Ii(A,A), and δi ≡ 0A modulo every other maximal ideal of EndC(A). Then put
f = ∑n

i=1 fiδi.
To prove that Ker(U) is equal to the Jacobson radical J of C, let f ∶B → C

be a morphism in J (B,C). Since βfα ∈ J (A,A) = J(EndC(A)) for every
morphism α∶A → B and β∶C → A, it clear that U(f) = 0. Conversely, suppose
that f ∉ J (B,C). This implies that there exist a morphism g∶C → B such
that 1B − gf is not right invertible. Hence there exists a maximal ideal P of
EndC(B) with 1B −gf ∈ P . Thus gf ∉ P and this implies that f ∉ AP and hence
f ∉ Ker(U).

Let us prove now that U is a local functor. Let A and B be objects of C
and let f ∶A→ B be a morphism such that U(f) is an isomorphism. Since U is
full, there exists g∶B → A such that U(1A − gf) = 0 and U(1B − fg) = 0. That
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is 1A − gf ∈ J(EndC(A)) and 1B − fg ∈ J(EndC(B)). So fg and gf are both
automorphisms and then also f is an isomorphism. Any local and full functor
is isomorphism reflecting, so U must be so.

To prove the last sentence of the Proposition, suppose that C has splitting
idempotents. Let A and B be objects of C such that U(A) is isomorphic to a
direct summand of U(B). In particular, there are morphisms f ∶U(A) → U(B)
and g∶U(B) → U(A) such that gf = 1U(A). Since U is full and local, there exists
f ∶A→ B and g∶B → A such that gf is an isomorphism. Since idempotents split
in C, it follows that A is a direct summand of B in C.

It is a direct consequence of our last Proposition and Theorem 3.3.6 that
the monoid V (C) is a Krull monoid, for any additive category C with splitting
idempotents whose objects are direct sums of finitely many objects of finite
type.

5.2 Examples of objects of finite type

With this section we want to provide various examples of modules of finite type,
that will provide the setting for the next section and the starting point for our
next, and last, chapter.

We will say that a module MR over a ring R is heterogenous if for every
direct-sum decomposition MR =M1 ⊕M2 ⊕M3, M1 ≅M2 implies M1 =M2 = 0;
that is, if MR does not have two distinct non-zero isomorphic direct summands.
For instance a semisimple module is heterogeneous if and only if it is a direct sum
of a family of pairwise non-isomorphic simple modules. Clearly, a heterogeneous
finitely generated semisimple module is a module of finite type.

For a projective module PR we have the following.

Lemma 5.2.1 The following conditions are equivalent for a projective right
modules PR over an arbitrary ring R:

1. PR is couniform;

2. PR is the projective cover of a simple module;

3. PR has type 1;

4. there exists an idempotent e ∈ R such that PR ≅ eR and eRe a local ring;

5. PR is a local finitely generated module;

6. PR is finitely generated, non-zero and all its proper submodules are super-
fluous.

Proof. (1)⇒(2) By [5, Proposition 17.14] we know that PR has a maximal
submodule QR. Hence the module PR/QR is simple and, since PR is couniform,
QR is superfluous in PR.
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(2)⇒(1) Clearly PR is the projective cover of a simple module if and only if
PR contains a superfluous maximal module QR. Hence every submodule of PR

must be contained in QR and so PR is uniform.
(2)⇒(3) Let J = J(R) be the Jacobson radical of R. Since PJ is contained

in every maximal submodule of P and contains every superfluous submodule
of P , it turns out that PJ is a superfluous maximal submodule of P . By [5,
Corollary 17.12] we have

EndR(P )/J(EndR(P )) ≅ EndR(P /PJ),
that is a division ring by Schur’s Lemma. Thus EndR(P ) is local.

(3)⇒(2) Suppose that EndR(P ) is a local ring. Thus PR is non-zero and by
[5, Proposition 17.14] there is a maximal submodule K ⊊ P . We claim that the
epimorphism p∶P → P /K is a projective cover. To show this we have to prove
that K is superfluous in P . Suppose that K +L = P for some L ⊆ P . Then

P /K ≅ (L +K)/K ≅ L/(L ∩K);
so there is a non-zero homomorphism f ∶P → L/(L ∩ K). Thus, since P is
projective, there is an endomorphism s∶P → L ⊆ P such that ps = f . Since
f ≠ 0, im(s) ⊈ K, from which it follows that im(s) is not superfluous in P .
Therefore s ∉ J(EndR(P )) and, by [5, Proposition 17.11], s is an invertible
endomorphism of P . Then L = P . We showed that K is superfluous in P .

(2)⇒(4) Every simple module is an epimorphic image of R so, by [5, Lemma
17.17], a projective cover of PR must be isomorphic to a direct summand of RR.
That is PR ≅ eR for some idempotent e ∈ R. By (3) the endomorphism ring
EndR(eR) = eRe is a local ring.

(4)⇒(5) It is clear that PR ≅ eR is finitely generated and it is local since it
has a superfluous maximal submodule.

(5)⇒(6) In a finitely generated module, every proper submodule is contained
in a maximal submodule. Hence PR local implies that PR has a greatest sub-
module, necessarily superfluous.

(6)⇒(2) Trivial.

More generally, we can characterize finitely generated projective modules of
type n.

Proposition 5.2.2 The following conditions are equivalent for a finitely gen-
erated projective module P over a ring R:

1. PR has type n;

2. P /PJ(R) is a heterogeneous semisimple module of Goldie dimension n;

3. PR is the projective cover of a heterogeneous semisimple module of Goldie
dimension n.

Proof. (1)⇒(2) Let E = EndR(P ). Since E is of type n, P has at most n
maximal submodules. Let M1, . . . ,Mm be the maximal submodules of PR. Then
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P /PJ(R) is isomorphic to a submodule of P /M1 ⊕ . . . ⊕ P /Mm. So P /PJ(R)
is isomorphic to S1 ⊕ . . . ⊕ Sk, where S1, . . . , Sk are simple modules. Suppose
f ∶S1 → S2 and g∶S2 → S1 are mutually inverse isomorphisms. We know that
I1 = {f ∈ E ∣ f(P /PJ(R)) ⊆ S2 ⊕S3 ⊕ . . .⊕Sk} and I2 = {f ∈ E ∣ f(P /PJ(R)) ⊆
S1 ⊕ S3 ⊕ . . . ⊕ Sk} cannot be contained in the same maximal right ideal of
E because I1 + I2 = E. Let h ∈ E be such that h = f ⊕ g ⊕ 1S3

⊕ . . . ⊕ 1Sk
.

The homomorphism h is an isomorphism and hence h is an invertible element
of E. Clearly h(I1) ⊆ I2 and so I1 ⊆ h

−1(I2), and we have a contradiction,
because all the maximal ideals of E are two-sided. Thus S1, . . . , Sk are pairwise
non-isomorphic.

It remains to prove that k = n. Clearly EndR(S1 ⊕ . . . ⊕ Sk) has exactly k

maximal right ideals. But this ring is factor of E modulo the superfluous ideal
I = {f ∈ E ∣ f(P ) ⊆ PJ(R)}.

(2)⇒(1) Suppose that P /PJ(R) = S1 ⊕ . . . ⊕ Sn, where the Si are pairwise
non-isomorphic simple modules. Then the ring EndR(P /PJ(R)) has exactly n
maximal right ideals and each maximal right ideal is two-sided. This ring is a
factor of E modulo a superfluous ideals. Thus (1) holds.

(2)⇔(3) is analogous to the proof of (2)⇔(5) of Lemma 5.2.1.

Dually, an injective module of finite Goldie dimension is of finite type if and
only if it is a heterogeneous module, if and only if it is the direct sum of finitely
many pairwise non-isomorphic indecomposable injective modules.

Proposition 5.2.3 Let MR be a module of finite Goldie dimension n with in-
jective envelope E(MR) heterogeneous and with the property that every injective
endomorphism of MR is bijective. Then MR has type ≤ n.

Proof. Consider the ring homomorphism

ϕ∶EndR(M)→ EndR(E(M))/J(EndR(E(M)))
defined, for every f ∈ EndR(M), by ϕ(f) = f0 + J(EndR(E(M))), where
f0 ∈ EndR(E(M)) denotes any extension of f to E(MR). Notice that ϕ is
well defined, that is, it does not depend on the choice of the extension f0,
because if f ′0 is any other extension of f , then f0 − f

′
0 is zero on the essen-

tial submodule MR of E(MR), hence belongs to J(EndR(E(M))). The ring
morphism ϕ is a local morphism, because if f ∈ EndR(M) and ϕ(f) is invert-
ible in EndR(E(M))/J(EndR(E(M))), then f0 is invertible in EndR(E(M)),
hence f is injective. Thus f is invertible in EndR(M) by hypothesis. Finally,
E(MR) is heterogenous, that is E(MR) = E1⊕ . . .⊕En with E1, . . . ,En pairwise
non-isomorphic indecomposable injective modules. Hence every homomorphism
Ei → Ej with i ≠ j has non-zero kernel. Thus EndR(E(M))/J(EndR(E(M))) ≅
∏n

i=1 EndR(Ei)/J(EndR(Ei)) is a product of division rings.

Corollary 5.2.4 IfMR is an artinian module with an heterogeneous socle, then
MR is a module of type n, where n ≤ dim(MR).
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Proof. Heterogeneous socle implies E(MR) heterogeneous. Moreover
every injective endomorphism of MR is bijective.

Consider the category (Mod-R)′ with the same objects as Mod-R and, for
right R-modules A and B, with

Hom(Mod-R)′(A,B) = lim
Ð→

HomR(A,B/B′),
where the direct limit is taken over the upward directed family of superfluous
submodules B′ of B. Let F ∶Mod-R → (Mod-R)′ be the canonical functor. We
shall denote the image F (A) in (Mod-R)′ of a right R-module A by A, and the
image F (f) of a morphism f by f .

Proposition 5.2.5 Let MR a module of finite dual Goldie dimension n with
the property that every surjective endomorphism of MR is bijective. If every
homomorphic image of MR is heterogeneous, then MR has type ≤ n.

Proof. The canonical functor F ∶Mod-R → (Mod-R)′ induces a ring mor-
phism ϕ∶EndR(M) → End(Mod-R)′(F (M)), defined, for every f ∈ EndR(M),
by ϕ(f) = f . The ring morphism ϕ is a local morphism, because if f ∈ EndR(M)
and ϕ(f) is invertible in End(Mod-R)′(F (M)), then f is a surjective endomor-

phism of MR, hence f is invertible in EndR(M) by hypothesis.
Since MR has finite dual Goldie dimension n, there exist n submodules

N1, . . . ,Nn of MR such that every quotient M/Ni is a couniform module, the
submodule N = ∩ni=1Ni is superfluous in MR and the canonical injective mapping

MR/N →M/N1 ⊕ . . .⊕M/Nn

is bijective. Hence F (MR) ≅ F (MR/N) ≅ F (M/N1) ⊕ . . . ⊕ F (M/Nn) in(Mod-R)′, so that

End(Mod-R)′(F (M)) ≅ End(Mod-R)′(F (M/N1)⊕ . . .⊕F (M/Nn)).
Now the endomorphism rings End(Mod-R)′(F (M/Ni)) are division rings, and

Hom
(Mod-R)′(F (M/Ni), F (M/Nj)) = 0

for i ≠ j because every homomorphic image of MR is heterogeneous. Thus
End(Mod-R)′(F (M)) ≅∏n

i=1 End(Mod-R)′(F (M/Ni)) is a direct product of di-
vision rings.

Corollary 5.2.6 If MR is a noetherian module with MR/MRJ(R) heteroge-
neous semisimple, thenMR is a module of type n, where n ≤ dim(MR/MRJ(R)).

Proof. It suffices to apply the previous Proposition. Notice that:� if MR is a noetherian module, then MRJ(R) is superfluous in MR by
Nakayama’s Lemma, so that

codim(MR) = codim(MR/MRJ(R)) = dim(MR/MRJ(R));
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� every surjective endomorphism of MR is bijective;� if MR/MRJ(R) is a heterogeneous semisimple module, then every ho-
momorphic image of MR is heterogeneous. To prove this, notice that if
MR/N = S⊕S′⊕C with S ≅ S′, then (MR/N)/(MR/N)J(R) = S/SJ(R)⊕
S′/S′J(R)⊕C/CJ(R), and (MR/N)/(MR/N)J(R) ≅MR/(MRJ(R)+N)
is heterogeneous because it is a homomorphic image of the heterogeneous
semisimple module MR/MRJ(R). Hence S/SJ(R) = S′/S′J(R) = 0. But
S,S′ are finitely generated because MR is noetherian, so that S = S′ = 0
by Nakayama’s Lemma.

Proposition 5.2.7 Let E and E′ be injective heterogeneous modules of finite
Goldie dimension n,m respectively, and let ϕ∶E → E′ be a module morphism.
Then ker(ϕ) has type ≤m + n.

Proof. By [20, Lemma 5.2], there is a local morphism

χ∶EndR(ker(ϕ)) → EndR(E(ker(ϕ)))
J(EndR(E(ker(ϕ)))) ×

EndR(E(ϕ(E)))
J(EndR(E(ϕ(E)))) .

Now E,E′ heterogeneous implies E(ker(ϕ)), E(ϕ(E)) heterogeneous, so that

EndR(E(ker(ϕ)))
J(EndR(E(ker(ϕ)))) and

EndR(E(ϕ(E)))
J(EndR(E(ϕ(E))))

are direct products of ≤ n and ≤m division rings, respectively.

Proposition 5.2.8 Let MR be a module of finite Goldie dimension n, of finite
dual Goldie dimension m, with injective envelope E(MR) heterogeneous and
with the property that every homomorphic image of MR is heterogeneous. Then
MR has type ≤ n +m.

Proof. By [20, Proposition 6.4], there is a local morphism

ϕ∶EndR(M)→ EndR(E(M))/J(EndR(E(M))) ×End(Mod-R)′(F (M)).
The ring EndR(E(M))/J(EndR(E(M))) is a direct product of ≤ n division
rings and End(Mod-R)′(F (M)) is a direct product of ≤m division rings.

Proposition 5.2.9 If there is an exact sequence

0→KR
ε
→ PR

π
→MR → 0,

where PR is a projective module of type m and K is a superfluous submodule of
PR of type n, then MR is a module of type ≤m + n.
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Proof. Since PR and KR are of finite type, their endomorphism rings
EndR(P ) and EndR(K) have finite dual Goldie dimension, respectively m and
n. Given any endomorphism f ∈ EndR(M), there are endomorphisms f0, f1 of
PR and KR, respectively, making the following diagram commute:

0 ÐÐÐÐ→ KR ÐÐÐÐ→ PR ÐÐÐÐ→ MR ÐÐÐÐ→ 0

f1
×××Ö

×××Öf0
×××Öf

0 ÐÐÐÐ→ KR ÐÐÐÐ→ PR ÐÐÐÐ→ MR ÐÐÐÐ→ 0.

Let us prove that the position Ψ∶f → (f0+J(EndR(P )), f1+J(EndR(M))) well
defines a local morphism

Ψ∶EndR(M)→ EndR(P )/J(EndR(P )) ×EndR(K)/J(EndR(K)).
In order to prove that Ψ is well defined, assume that both f0 and f ′0 lift f to
PR, then f0 − f

′
0 maps PR into KR, so that the image of f0 − f

′
0 is superfluous

in PR. This implies f0 − f
′
0 ∈ J(EndR(P )). Let us prove that f1 + J(EndR(K))

depends only on f and not on the choice of the lifting f0 of f . Let f ′0 be another
lifting of f and f ′1 the corresponding restriction to KR. We must show that
f1−f

′
1 ∈ J(EndR(K)). Since both f0 and f ′0 lift f , we have (f0−f ′0)(PR) ⊆KR,

and hence the difference f0−f
′
0∶PR → PR factors through the kernel ε∶KR → PR

of π, i.e. f0 − f
′
0 = εg for a suitable morphism g∶PR → KR. In order to prove

that f1−f
′
1 ∈ J(EndR(K)), we must prove that for any endomorphism h of KR,

1K − h(f1 − f ′1) is an automorphism of KR. Now h(f1 − f ′1)∶KR → KR is the
restriction to KR of hg∶PR → KR. Hence 1K − h(f1 − f ′1) is the endomorphism
of KR obtained by restriction of the endomorphism 1P − εhg of PR. As K is
superfluous in P , the image εhg(PR) ⊆ KR is superfluous in PR. Therefore
1P − εhg is a surjective endomorphism of PR, hence a splitting epimorphism.
Since modules with a semilocal endomorphism ring are directly finite, 1P − εhg
is an automorphism of PR. We obtain a commutative diagram

0 ÐÐÐÐ→ KR ÐÐÐÐ→ PR ÐÐÐÐ→ MR ÐÐÐÐ→ 0

1K−h(f1−f
′
1
)
×××Ö

×××Ö1P−εhg
×××Ö1M

0 ÐÐÐÐ→ KR ÐÐÐÐ→ PR ÐÐÐÐ→ MR ÐÐÐÐ→ 0.

By the Snake Lemma, 1P − εhg and 1M automorphisms imply 1K − h(f1 − f ′1)
automorphism, as desired. This proves that Ψ is a well defined ring mor-
phism. It is a local morphism, because if f ∈ EndR(M), f0 + J(EndR(P ))
is invertible in EndR(P )/J(EndR(P )) and f1 + J(EndR(K)) is invertible in
EndR(K)/J(EndR(K)), then f0 is an automorphism of PR and f1 is an auto-
morphism of KR. By the Snake Lemma, f is an automorphism of MR.

5.3 The Krull-Schmidt Theorem in the case 2

In this section we restrict to objects of type 2. There is nothing really special
about the number 2, except that everything can be expressed in easier terms.
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Anyway, it is possible to generalize what we present in this section to the case
n.

During this section we will denote by D a preadditive category of indecom-
posable objects of type ≤ 2 and by C = sum(D) the additive category generated
by D. For such a category C, we already know that the monoid V (C) is can-
cellative. Also, the monoid V (C) is half-factorial , i.e. if a1, . . . , an, b1, . . . , bm
are atoms such that ∑n

i=1 ai = ∑
m
j=1 bj , then m = n. More precisely, if U1, . . . , Un

and U ′1, . . . , U
′
m are objects of type 1, and V1, . . . , Vr and V ′1 , . . . , V

′
s are inde-

composable objects of the type 2, and

U1 ⊕ . . .⊕Un ⊕ V1 ⊕ . . .⊕ Vr ≅ U
′
1 ⊕ . . .⊕U

′
m ⊕ V

′
1 ⊕ . . .⊕ V

′
s ,

then m = n, r = s, there is a permutation σ of {1, . . . , n} such that Ui ≅ U
′
σ(i)

for every i = 1, . . . , n, and V1 ⊕ . . . ⊕ Vr ≅ V
′
1 ⊕ . . . ⊕ V

′
s . To see this, notice that

if an object with local endomorphism ring is a direct summand of the direct
sum of two objects, then it is isomorphic to a direct summand of one of the two
objects, and proceed by induction using the fact that objects with semilocal
endomorphism rings cancel from direct sum. This proves that n =m, that there
is a permutation σ of {1, . . . , n} such that Ui ≅ U

′
σ(i), for every i = 1, . . . , n, and

that V1 ⊕ . . . ⊕ Vr ≅ V
′
1 ⊕ . . . ⊕ V

′
s . In order to prove that r = s, notice that the

dual Goldie dimension of the endomorphism ring EndR(V1 ⊕ . . .⊕ Vr) is 2r.
From this it follows that V (C) decomposes as the direct product of a free

commutative monoid and a monoid V (C2), where C2 = sum(D2) and D2 is the
full subcategory of D whose objects are indecomposable objects of type 2.

The property that we look for is the following. We say that 2-Krull-Schmidt
Property holds for a category D of indecomposable objects if there exist two
equivalence relations ∼ and ≡ on the class of objects of D such that, for objects
U1, . . . , Un, V1, . . . , Vm, we have U1⊕. . .⊕Un ≅ V1⊕. . .⊕Vm in sum(D) if and only
if m = n and there are two permutations σ, τ of {1, . . . , n} such that Ui ∼ Vσ(i)
and Ui ≡ Vτ(i) for every i = 1, . . . , n.

Assume that the Krull-Schmidt Theorem holds for a category D of indecom-
posable objects of type ≤ 2. If ρ is an equivalence relation on the class V (D) with
the property that if U1, . . . , Un, V1, . . . , Vm ∈ V (D) and U1⊕. . .⊕Un ≅ V1⊕. . .⊕Vm
in sum(D), then m = n and there exists a permutation σ on {1, . . . , n} such that
UiρVσ(i) for every i = 1, . . . , n, it follows that the restriction of ρ to the class
V (D2), where D2 denoted the full subcategory of objects of type 2, has the
same property. Conversely, if the 2-Krull-Schmidt holds for D2 with respect
to the equivalence relations ρ2 and ρ′2, then it holds for D as well. To see
this, extend the equivalence relation ρ2 on V (D2) to the equivalence relation
∆V (D1)

.
∪ ρ2, where D1 is the full subcategory of D of objects of type 1 and

∆V (D1) = {(U,U) ∣ U ∈ V (D1)} is the diagonal of V (D1). Similarly for ρ′2. This
proves the following Lemma.

Lemma 5.3.1 Let D be a preadditive category of indecomposable objects of type
≤ 2 and D2 the full subcategory of indecomposable objects of type 2. Then the
2-Krull-Schmidt Property holds for D if and only if it holds for D2.
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In order to study the behaviour of the direct-sum decomposition in an addi-
tive category C whose objects are finite direct sums of indecomposable objects
of type 2, we will now associate a graph G(D) to the full subcategory D of
indecomposable objects. The graph G(D) = (V,E) associated to the class D
has as its class V of vertices the class Max(D). For every object A of D,
set V (A) = {(A,P ), (A,Q)} ⊆ Max(D), where P and Q are the two maxi-
mal ideals of the endomorphism ring EndD(A). The class of edges of G is
E = {V (A) ∣ A ∈ D}. The edge V (A) = {(A,P ), (A,Q)} joins the two vertices(A,P ) and (A,Q) in Max(D). The graph G(D) has no multiple edges and no
loops, by Theorem 5.1.3.

We can associate a commutative monoid V (G) to any graph G = (V,E).
Given the graph G = (V,E), where the elements of E are subsets of V of

cardinality 2, consider the free commutative monoid N
(V )
0

having as free class
of generators the class {δv ∣ v ∈ V }. If l = {v,w} ∈ E is an edge of G, define

δl = δv + δw ∈ N
(V )
0

. Let V (G) be the submonoid of N
(V )
0

generated by all the

elements δl ∈ N
(V )
0

, where l ranges in E. By Proposition 5.1.5, for any category
D of indecomposable objects of type 2, the monoids V (sum(D)) and V (G(D))
are isomorphic.

All the previous results about categories can be stated in the language of
graphs. For instance, we can say that the 2-Krull-Schmidt Property holds for
the graph G = (V,E) if there exist two equivalences ∼ and ≡ on the class E of
edges of G with the following property. Let l1, . . . , ln, e1, . . . , em ∈ E be edges of
G; then δl1 + . . . + δln = δe1 + . . . + δem in V (G) if and only if m = n and there
exist two permutations σ, τ of {1, . . . , n} such that li ∼ eσ(i) and li ≡ eτ(i) for
every i = 1, . . . , n.

Recall that a graph if bipartite it there exists a partition X
.
∪ Y of its class

of vertices for which X ≠ ∅, Y ≠ ∅ and every edge connects a vertex in X to a
vertex in Y . A graph is bipartite if and only if it does not contain cycles of odd
length. A graph is called a complete bipartite graph if there is a partition X

.
∪ Y

of its set of vertices for which X ≠ ∅, Y ≠ ∅, and there are no edges between
any two vertices of X , no edges between any two vertices of Y , and there is
exactly one edge between any vertex in X and any vertex in Y . For every pair
of disjoint set X and Y , let B(X .

∪ Y ) be the complete bipartite graph with
the disjoint union X

.
∪ Y as set of vertices and one edge e(x,y) connecting any

vertex x ∈ X and any vertex y ∈ Y .

Proposition 5.3.2 The following conditions are equivalent for a graph G =(V,E):
1. the 2-Krull-Schmidt Property holds for the graph G;

2. there exist a complete bipartite graph B(X .
∪ Y ) and an injective monoid

homomorphism V (G)→ V (B(X .
∪ Y )) that sends atoms to atoms.

Proof. (1)⇒(2) Let ∼ and ≡ be two equivalence relations on E such that,
for every l1, . . . , ln, e1, . . . , em ∈ E, δl1+. . .+δln = δe1+. . .+δem in V (G) if and only
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if m = n and there exist two permutations σ, τ of {1, . . . , n} such that li ∼ eσ(i)
and li ≡ eτ(i) for every i = 1, . . . , n. Let E/ ∼ be the quotient set of E modulo ∼.
The canonical projection π∼∶E → E/ ∼ induces a monoid homomorphism π̂∼ of

V (G) into the free commutative monoid N
(E/∼)
0

. It is defined as follows. If we
denote by [l]∼ the image of l ∈ E in E/ ∼, then π̂∼ maps an arbitrary element
δl1 + . . . + δln of V (G) to δ[l1]∼ + . . . + δ[ln]∼ . Similarly, for the other equivalence

relation ≡, we get a monoid homomorphism π̂≡∶V (G)→ N
(E/≡)
0

, and the product

morphism π̂∼ × π̂≡∶V (G)→ N
(E/∼)
0

×N
(E/≡)
0

is injective.
Now consider the bipartite graph B(X .

∪ Y ) with X = E/ ∼ and Y = E/ ≡.
The monoid V (B(X .

∪ Y )) is the submonoid of the free commutative monoid

N
(X .
∪Y )

0
, which has X

.
∪ Y = E/ ∼ .

∪ E/ ≡ as free class of generators, generated

by the elements δ[l]∼ + δ[e]≡ ∈ N
(X .
∪Y )

0
. Since the image of π̂∼ × π̂≡ is generated

by the elements δ[l]∼ + δ[l]≡ with l ∈ E, it follows that the image of the injective

monoid morphism π̂∼ × π̂≡ is contained in V (B(X .
∪ Y )). Finally, the atoms δl

of V (G) are mapped by π̂∼ × π̂≡ to the atoms δ[l]∼ + δ[l]≡ of V (B(X .
∪ Y )).

(2)⇒(1) Suppose that there exist a complete bipartite graph B(X .
∪ Y ) and

an injective monoid homomorphism ϕ∶V (G) → V (B(X .
∪ Y )) that sends atoms

to atoms. For every edge e ∈ E, the atom δe ∈ V (G) is sent by ϕ to an atom
ϕ(δe) = δeX + δeY ∈ V (B(X .

∪ Y )), where eX is a vertex in X and eY is a vertex
in Y . Define an equivalence relation ∼ on E as follows. Given two edges e, l ∈ E,
we have e ∼ l if eX = lX . Similarly define an equivalence relation ≡ on E by e ≡ l
if and only if eY = lY . Since ϕ is injective, for edges e1, . . . , en, l1, . . . , lm, we have
that ∑n

i=1 δei = ∑
m
j=1 δlj if and only if ϕ(∑n

i=1 δei) = ∑n
i=1 ϕ(δei) = ∑n

i=1 δeiX + δeiY
equals ϕ(∑m

j=1 δli) = ∑m
j=1 ϕ(δli) = ∑m

j=1 δliX + δliY . This clearly happens if and
only if m = n and there are two bijections σ, τ of {1, . . . , n} such that δeiX =
δlσ(i)X and δeiY = δlτ(i)Y for every i = 1, . . . , n. Hence ∑n

i=1 δei = ∑
m
j=1 δlj if and

only if m = n and ei ∼ lσ(i) and ei ≡ lτ(i) for every i = 1, . . . , n.

Corollary 5.3.3 The 2-Krull-Schmidt Property holds for a graph G if and only
if it holds for all the connected components of G.

Condition (2) of Proposition 5.3.2 is hereditary in the sense that if it holds
for a graph G, it holds for any subgraph of G.

Corollary 5.3.4 If the 2-Krull-Schmidt Property holds for a graph G, it also
holds for any subgraph of G.

Corollary 5.3.5 The 2-Krull-Schmidt Property holds for any bipartite graph
G.

Proof. A bipartite graph G is contained in a complete bipartite graph
B(X .

∪ Y ) and the inclusion V (G)→ V (B(X .
∪ Y )) sends atoms to atoms.

If ℵ is a cardinal number, the complete graph on a set of vertices of cardi-
nality ℵ will be denoted by Kℵ. If ℵ ≥ ℶ ≥ 1 are cardinal numbers, the complete
bipartite graph B(X .

∪ Y ) with ∣X ∣ = ℵ and ∣Y ∣ = ℶ will be denoted by Kℵ,ℶ .
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(The graphs we deal with are sometimes large, in the sense that vertices and
edges can form classes that are not sets. It is clear that we can define the com-
plete graph Kα and the complete bipartite graph Kα,β for arbitrary classes α
and β also).

Proposition 5.3.6 If the 2-Krull-Schmidt Property holds for a graph G, then
G does not contain copies of the complete graph K4.

Proof. By corollary 5.3.4 it suffices to show that the 2-Krull-Schmidt
Property does not hold for the complete graph G = K4. Assume the contrary.
Then G =K4 has six edges l1, . . . , l6 such that δl1 + δl2 = δl3 + δl4 = δl5 + δl6 , and,
by Proposition 5.3.2, there are a complete bipartite graph B(X .

∪ Y ) and an
injective monoid homomorphism ψ∶V (G)→ V (B(X .

∪ Y )) that sends atoms to
atoms. Let l′i be the edge of B(X .

∪ Y ) such that δl′
i
= ψ(δli). Then l′1, . . . , l

′
6

are six distinct edges of B(X .
∪ Y ) and δl′

1
+δl′

2
= δl′

3
+δl′

4
= δl′

5
+δl′

6
. This implies

that any vertex of l′1 is incident both to l′3 or l′4 and to l′5 or l′6, hence has degree
at least three in the subgraph of B(X .

∪ Y ) with the six edges l′i. Since the
sum of the degrees of the vertices is equal to twice the number of edges, that
is, is equal to twelve, it follows that the subgraph of B(X .

∪ Y ) with the six
edges l′i has four vertices of degree three. Hence this subgraph of B(X .

∪ Y )
is isomorphic to K4. In particular, K4 would be a bipartite graph, which is a
contradiction.

Proposition 5.3.7 If a graph G has at most one cycle of odd length in each
connected component, then the 2-Krull-Schmidt Property holds for the graph G.

Proof. By Corollary 5.3.3, we can assume the graph G = (V,E) connected.
By Corollary 5.3.5 we can assume the connected graph G has exactly one cycle
l1, . . . , ln of odd length n ≥ 3. The edge l1 is not on any cycle of even length, be-
cause if l1, e1, . . . , em is a cycle of even lengthm+1, then e1, . . . , em, ln, ln−1, . . . , l2
would be another cycle of odd length m + n − 1. Thus the graph G and the
graph G′ = (V,E ∖ {l1}) have the same cycles of even length. It follows that
V (G) ≅ V (G′)⊕N0. Now apply Proposition 5.3.2 and Corollary 5.3.5.

Let C be an additive category and D a full subcategory of C. We will say
that D satisfies condition (DSP) if whenever we have A⊕B ≅ C ⊕D in C with
A,B,C ∈ D, then also D ∈ D.

Every full subcategory D of an additive category C with splitting idempo-
tents has a (DSP)-closure, that is, there is a smallest full subcategory D′ of C,
containing D and satisfying condition (DSP). Define D0 = D and D′n+1 as the
full subcategory of C whose class of objects is the class of object of D′n together
with the objects D ∈ C for which there exist A,B,C ∈ D′n with A⊕B ≅ C ⊕D,
for every n ≥ 0. Then the full subcategory of C whose class of objects is the
union of the classes of objects of the categories D′n is the (DSP)-closure of D.

Recall that if codim denotes the dual Goldie dimension and A,B are arbi-
trary objects of an additive category C, then

codim(EndC(A⊕B)) = codim(EndC(A)) + codim(EndC(B)).
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If D is a full subcategory of indecomposable objects of type ≤ 2 of an additive
category C, then its (DSP)-closure D′ is a full subcategory of C of indecompos-
able objects with semilocal endomorphism ring of dual Goldie dimension ≤ 2. To
see this, argue by induction on n. If A,B,C ∈ D′n have semilocal endomorphism
ring of dual Goldie dimension ≤ 2 and A⊕B ≅ C ⊕D, then the endomorphism
ring of D cannot have dual Goldie dimension ≥ 3, otherwise C has local endo-
morphism ring, hence C ≅ A and B ≅ D or C ≅ B and A ≅ D, contradiction.
Hence codim(EndC(D)) ≤ 2. If D is not indecomposable, then it must be a
direct sum of two objects with local endomorphism ring, hence isomorphic to
either A or B, and we get a contradiction again. Similarly, one sees that if D is
a full subcategory of indecomposable objects of type 2 of an additive category
C, then its (DSP)-closure D′ is a full subcategory of C of indecomposable objects
with semilocal endomorphism ring of dual Goldie dimension = 2.

We say that a full subcategory D of indecomposable objects of type 2 of an
additive category C satisfies weak (DSP) if for every U,U ′,W ∈ D such that the
edges V (U) and V (U ′) are not incident, and for every objectX ∈ C, U⊕U ′ ≅W⊕
X implies X ∈ D. By [25, Lemma 5.1], any full subcategoryD of indecomposable
objects of type 2 of an additive category C with splitting idempotents satisfies
weak (DSP). If a full subcategory D of indecomposable objects of type 2 of
an additive category C satisfies weak (DSP), then in the graph V (D) any two
distinct vertices connected by a path of length 3 are adjacent.

Lemma 5.3.8 Let G be a connected graph with the property that any two dis-
tinct vertices connected by a path of length 3 are adjacent. Then G is either a
complete graph or a complete bipartite graph.

Proof. Assume that G = (V,E) satisfies the hypotheses. The statement
is trivial for ∣V ∣ ≤ 2, so we can suppose ∣V ∣ ≥ 3. Fix a vertex v0 ∈ V . Let
X = {v ∈ V ∣ v is adjacent to v0} and Y = V ∖X , so that in particular v0 ∈ Y
and X ≠ ∅. Let G′ be the subgraph of G defined by G′ = (V,E′), where
E′ = {{v,w} ∈ E ∣ {v,w} ∩X ≠ ∅ and {v,w} ∩ Y ≠ ∅}. Then G′ is a bipartite
graph. Let us prove that it is a complete bipartite graph. If x ∈ X and y ∈ Y ,
then x is adjacent to v0 and y is not. If y = v0, there is an edge between x and
y. If y ≠ v0, then there is a path in G between y and v0, which can be shortened
to a path of length ≤ 2. Since y ≠ v0 is not adjacent to v0, there is a path of
length 2 in G between y and v0. Hence there is a path of length 3 in G between
y and x, so that x and y are adjacent in G.

Now if E = E′, then G is a complete bipartite graph and we are done.
Assume E′ ⊊ E. There exists an edge in E with both vertices either in X or
in Y . Suppose that x0, x

′
0 are two vertices in X with {x0, x′0} ∈ E. Fix any

two distinct vertices x,x′ ∈ X . Then {x, v0},{v0, x0},{x0, x′0},{x′0, v0},{v0, x′}
is a path in E of length 5, possibly with equal consecutive edges. In any case,
this path can be shortened to a path of length 1 in G between the two distinct
vertices x,x′. Thus all vertices of X are adjacent. Now fix any two distinct
vertices y, y′ ∈ Y . Then {y, x0},{x0, x′0},{x′0, y′} ∈ E is a path of length 3 in G

between the two distinct vertices y, y′ of G. Thus y and y′ are adjacent in G.
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Proposition 5.3.9 Let C be an additive category. The following conditions
are equivalent for a full subcategory D of C of indecomposable objects of type 2
satisfying weak (DSP):

1. the 2-Krull-Schmidt Property holds for D;

2. the graph G(D) does not contain subgraphs isomorphic to K4;

3. every connected component of G(D) is either a complete bipartite graph
or isomorphic to K3.

Proof. (1)⇒(2) has been proved in 5.3.6.
(2)⇒(3) By Lemma 5.3.8, the graph G(D) is a disjoint union of complete

bipartite graphs and complete graphs. The only complete graphs that do not
contain subgraphs isomorphic to K4 are K1, K2 and K3. Now K1 cannot appear
as a connected component of G(D) and K2 ≅K1,1.

(3)⇒(1) follows from Corollaries 5.3.3 and 5.3.5 and Proposition 5.3.7.

The full subcategoryD2 of all indecomposable objects of type 2 of an additive
category C with splitting idempotents satisfies weak (DSP), hence we have the
following.

Theorem 5.3.10 Let D2 be the full subcategory of all indecomposable objects
of type 2 of an additive category C with splitting idempotents. The 2-Krull-
Schmidt Property holds for D2 if and only if G(D2) does not contain subgraphs
isomorphic to K4, if and only if every connected component of G(D2) is either
isomorphic to K3 or a complete bipartite graph.

Theorem 5.3.11 Let C be an additive category. Then exactly one of the follow-
ing two conditions holds for a full subcategory D of C of indecomposable objects
of type 2 satisfying weak (DSP).� Either there exist two objects U1, U2 ∈ D such that U1 ⊕U2 has three non-

isomorphic direct-sum decompositions.� Or there exist two ideals I,K of the full subcategory S = sum(D) of C,
whose objects are all finite direct sums of objects in D, with S/I and
S/K amenable semisimple categories and the canonical functor F ∶ S →
S/I × S/K isomorphism reflecting.

Proof. The dichotomy corresponds to the fact if G(D) contains or not a
subgraph isomorphic to K4. For the first point, it suffices to notice that a graph
G = (V,E) contains a copy of the graph K4 if and only if there exist six distinct
edges l1, . . . , l6 ∈ E such that δl1 + δl2 = δl3 + δl4 = δl5 + δl6 in V (G).

Hence, suppose that G(D) does not contain subgraphs isomorphic to K4,
or, equivalently, that every connected component of G(D) is either isomorphic
to K3 or bipartite. For every connected component of G(D) isomorphic to K3,
fix an object A with V (A) in the connected component. Let D′ be the full
subcategory of D whose objects are all objects in D not isomorphic to any of
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the fixed objects A. Hence the graph G(D′) is now bipartite, because we have
interrupted all triangles in G(D), and the graphs G(D) and G(D′) have the
same class V of vertices. Let S′ = sum(D′) be the full subcategory of S whose
objects are all direct sums of finitely many objects in D′. Let CFT be the full
subcategory of C whose objects are finite direct sums of objects of finite type.
Thus we have full subcategories S′ ⊆ S ⊆ CFT ⊆ C. Correspondingly, we have a
commutative diagram of canonical functors

S′ ÐÐÐÐ→ S ÐÐÐÐ→ CFT×××ÖF ′
×××ÖF

×××ÖU
⊕I S′/I E

ÐÐÐÐ→ ⊕I S/I ÐÐÐÐ→ ⊕I CFT /I,
where I varies among the ideals of the category of the formAP for some maximal
ideal P of the endomorphism ring EndC(A) of some object A of the category.
Since the canonical functor U is full and isomorphism reflecting by Proposition
5.1.5, also F must be isomorphism reflecting. Let V =X1

.
∪ X2 be a bipartition

corresponding to the bipartite graph G(D′). The square on the left in the
previous diagram becomes

S′ ÐÐÐÐ→ S×××ÖF ′1×F ′2
×××ÖF1×F2

⊕I∈X1
S′/I ⊕⊕I∈X2

S′/I E1×E2ÐÐÐÐ→ ⊕I∈X1
S/I ⊕⊕I∈X2

S/I.
Consider the ideals Ker(Fi) of the category S, i = 1,2. The functor Fi∶ S →
⊕I∈Xi

S/I induces a faithful functor Gi∶ S/Ker(Fi) → ⊕I∈Xi
S/I. In order to

conclude, it suffices to prove that the faithful functor Gi is an equivalence. Now
U full implies F full, hence Fi full, so that Gi is full. Similarly for S′. Hence
we find a faithful functor G′i∶ S

′/Ker(Fi) → ⊕I∈Xi
S′/I, which now is not only

full, but clearly also dense, hence an equivalence. We claim that S′/I ≅ S/I for
every ideal I of the form AP for some maximal ideal P of the endomorphism
ring EndC(A) of some object A of the category. From the claim, it will follow
that Ei is an equivalence. Now F ′i and Ei dense, imply Fi dense. Thus Gi is an
equivalence.

Hence it suffices to prove the claim. Clearly, the inclusion S′ → S induces a
full and faithful functor S′/I → S/I. We must prove that this functor is dense,
and for this it suffices to show that for any of the originally fixed objects A there
exists an object A′ of S′ with A′ ≅ A in the category S/I. If I is a vertex of D
that is not one of the two vertices of the edge V (A), we can take A′ = 0. Assume
that I is one of the two vertices of V (A). We can assume that the connected
component of G(D) is the triangle with three edges V (A1), V (A2), V (A3), with
three vertices I1,I2,I3, that each edge is V (Ai) = {Ik,Il} for {i, k, l} = {1,2,3},
that V (A) = V (A1) and I = I2. Then A1 ≅ A3 in the category S/I, so that A3

has the required property. This proves the claim.

Let C be an additive category and D a full subcategory of C whose class of
objects is a class of indecomposable objects of C. An ideal of the category D
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is said to be completely prime if, for every A,B,C object of D and morphisms
f ∶A→ B and g∶B → C, one has gf ∈ I if and only if f ∈ I or g ∈ I. For the rest
of the section we will suppose also that a completely prime ideal I of D satisfies
I(A,A) ≠ EndD(A) for every object A of D. Notice that if I is a completely
prime ideal of D, in the quotient category C/I the endomorphism ring of every
object is an integral domain, not necessarily commutative. If A,B are objects
of D, we will say that A and B have the same I-class, and write [A]I = [B]I ,
if there exist morphisms f ∶A→ B and g∶B → A in D that are not in I. Having
the same I-class turn out to be an equivalence relation on the class of objects
of D.

Proposition 5.3.12 Let C be an additive category, D a full subcategory of C of
indecomposable objects and D2 its full subcategory consisting of all the objects
of type 2. The following conditions are equivalent:

1. there exist two completely prime ideals P, Q of D such that, for every
object U ∈ D, the set EndD(U) ∖ (P(U,U) ∪ Q(U,U)) is the set of all
automorphisms of U ;

2. all objects of D have type ≤ 2 and the graph G(D2) is bipartite;

3. there exist two additive functors Fi∶D →Ai, i = 1,2, of the full subcategory
D of C into two amenable semisimple categories Ai, such that, for every
object U ∈ D, Fi(U) is a simple object of Ai and for every f ∈ EndD(U),
f is an automorphism of U if and only if F1(f) and F2(f) are automor-
phisms of F1(U) and F2(U) respectively.

Proof. (1)⇒(2) Assume that there exist two ideals P ,Q satisfying con-
dition (1) and let U be an object in D. One of the two following conditions
hold: either the ideals P(U,U) and Q(U,U) are comparable, in which case
EndD(U) is a local ring with unique maximal ideal the biggest ideal among
P(U,U) and Q(U,U), or P(U,U) and Q(U,U) are not comparable, they are
the two distinct maximal ideals of EndD(U), EndD(U) is a ring of type two,
J(EndD(U)) = P(U,U) ∩ Q(U,U) and EndD(U)/J(EndD(U)) is canonically
isomorphic to the direct product of the two division rings EndD(U)/P(U,U)
and EndD(U)/Q(U,U). In particular EndD(U) is a ring of type ≤ 2 for every
object U ∈ D.

Let I be a vertex of G(D2). Then I is the ideal associated to a maximal ideal
I of EndD(U) for some object U ∈ D2. Now EndD(U) ∖ (P(U,U) ∪ Q(U,U))
is the set of all automorphisms of U , and EndD(U) is a ring of type 2, so that
either I = P(U,U) or I = Q(U,U), but not both. Therefore either P ⊆ I or
Q ⊆ I but not both. Let X be the class of the vertices I with P ⊆ I and Y

be the class of the vertices I with Q ⊆ I, so that the set of vertices of G(D2)
is X

.
∪ Y . For every object U ∈ D, the edge V (U) connects the ideal of D

associated to P(U,U) and the ideal of D associated to Q(U,U). That is, a
vertex of X and a vertex of Y .

(2)⇒(3) Assume that condition (2) holds. The idea of the proof of Theorem
5.3.11 yields a functor F ′∶D2 → ⊕ID2/I, with I ranging in the class V of
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vertices of G(D2). The bipartition V =X1

.
∪ X2 of G(D2) induces two functors

F ′i ∶D2 → ⊕I∈Xi
D2/I, i = 1,2. Notice that ⊕I∈Xi

D2/I is an amenable semisimple
category. For every morphism f in D2, either F ′1(f) is an isomorphism or
F ′1(f) = 0. Similarly for F ′2(f). Therefore P = Ker(F ′1) and Q = Ker(F ′2) are
completely prime ideals of D2, obtained as intersections of ideals associated to
maximal ideals of the rings EndD(U), with U ranging in the objects of D2, and
D2/P ≅ ⊕I∈X1

D2/I andD2/Q ≅ ⊕I∈X2
D2/I are amenable semisimple categories.

For every object U of D2, the ideals P(U,U) and Q(U,U) are the two maximal
ideals of EndD(U), so that EndD(U) ∖ (P(U,U) ∪ Q(U,U)) is the set of all
automorphisms of U .

We will now extend P and Q to completely prime ideals of the category
D. Let J be the Jacobson radical of the category D. Since the ideals P , Q
are intersections of ideals associated to maximal ideals of endomorphism rings
of objects of modules of type 2, the restriction of J to D2 is contained both
in P and Q. Let D1 be the full subcategory of D whose objects are all the
objects of D of type 1. Define P(A,B) = J (A,B) if A ∈ D1 or B ∈ D1. Observe
that J (A,B) = HomD(A,B) provided A ∈ D1 and B ∈ D2, or A ∈ D2 and
B ∈ D1. Moreover, J (A,B) is the set of all non-isomorphisms of HomD(A,B)
if A,B ∈ C1. Now it is straightforward to check that P is a completely prime
ideal in D and that D/P ≅ D2/P × D1/J is an amenable semisimple category.
The ideal Q can be extended to D in a similar way. The canonical functors
F1∶D → D/P and F2∶D → D/Q are the required functors.

(3)⇒(1) It suffices to define P = Ker(F1) and Q = Ker(F2).
Theorem 5.3.13 Let C be an additive category and D a full subcategory of C
of indecomposable objects. Let P ,Q be a pair of completely prime ideals of D
with the property that, for every object A ∈ D, f ∶A → A is an automorphism if
and only if f ∉ P(A,A) ∪Q(A,A). Let A1, . . . ,An,B1, . . . ,Bm be objects of D.
Then the objects A1⊕ . . .⊕An and B1⊕ . . .⊕Bm of C are isomorphic if and only
if n =m and there are two permutations σ, τ of {1, . . . , n} with [Ai]P = [Bσ(i)]P
and [Ai]Q = [Bτ(i)]Q for every i = 1, . . . , n.

Proof. (⇒) By Proposition 5.3.12, the objects of D are of type 1 or 2.
Assume A1 ⊕ . . .⊕An ≅ B1 ⊕ . . .⊕Bm. We have seen that m = n and that there
are two permutations α,β of {1, . . . , n} and a positive integer k ≤ n such that:� Aα(1), . . . ,Aα(k),Bβ(1), . . . ,Bβ(k) have type 2,� Aα(1) ⊕ . . .⊕Aα(k) ≅ Bβ(1) ⊕ . . .⊕Bβ(k) and� Aα(k+1) ≅ Bβ(k+1), . . . ,Aα(n) ≅ Bβ(n) are objects of type 1.

Assume for the moment, for simplicity of notation, that α and β are the identity
permutations. Let D2 be the full subcategory of D of objects of type 2. Let
Max(D2) be the class of all the ideals I of D2 associated to a maximal ideal
I of EndD2

(A) for some object A of D2. By Proposition 5.1.4, there is an

injective homomorphism ⊕I∈Max(D2)dI ∶V (D2) → N
(Max(D2))
0

. In the proof of
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previous proposition we have seen that, for every I ∈Max(D2), either P ⊆ I or
Q ⊆ I, but not both. That is, there is a partition SP

.
∪ SQ of Max(D2), where

SP = {I ∈ Max(D2) ∣ P ⊆ I} and SQ = {I ∈ Max(D2) ∣ Q ⊆ I}. Thus we have

an injective morphism ⊕I∈SP dI ⊕⊕I∈SQ dI ∶V (D2)→ N
(SP)
0
⊕N

(SQ)
0

. For every
A in D2, there is exactly one I ∈ SP with dI(A) = 1, and dI(A) = 0 for all the
other I’s in SP . Similarly for Q. Hence A1⊕. . .⊕An ≅ B1⊕. . .⊕Bm implies that
there exists a permutation σ of {1, . . . , k} such that, for every I ∈ SP , one has
Ai ≅ Bσ(i) in the factor category D2/I. Similarly, there exists a permutation
τ of {1, . . . , k} such that, for every I ∈ SQ, one has Ai ≅ Bτ(i) in the factor
category D2/I. Hence, for every I ∈ SP and every i = 1, . . . , k, there exist
morphisms ϕi,I ∶Ai → Bσ(i) and ψi,I ∶Bσ(i) → Ai with ψi,Iϕi,I − 1Ai

∈ I(Ai,Ai)
and ϕi,Iψi,I −1Bσ(i)

∈ I(Bσ(i),Bσ(i)). Now, for every i = 1, . . . , k, P(Ai,Ai) is a
maximal ideal of EndD2

(Ai), so that its associated ideal is an ideal I ∈Max(D2)
necessarily contained in P , that is, an ideal I ∈ SP . Thus ψi,Iϕi,I − 1Ai

∈

I(Ai,Ai) for this I implies ψi,Iϕi,I ∉ P(Ai,Ai). Hence ϕi,I ∉ P(Ai,Bσ(i)) and
ψi,I ∉ P(Bσ(i),Ai). Thus [Ai]P = [Bσ(i)]P . Similarly, [Ai]Q = [Bτ(i)]Q for
every i = 1, . . . , k.

Now that we have found the permutations σ and τ , we go back to the
notations of the first paragraph of this proof and see that βσα−1 is a bijection
between the Ai’s and the Bi’s of type 2 that preserves the P classes. Similarly,
βτα−1 is bijection between the Ai’s and the Bi’s of type 2 that preserves the Q
classes. As Aα(i) ≅ Bβ(i) for every i = k+1, . . . , n one sees that βα−1 is a bijection
between the Ai’s and the Bi’s of type 1 that preserves the isomorphism classes,
hence the P classes. Combining these two bijections, one find a permutation of{1, . . . , n} that preserves the P classes, as desired. Similarly for the Q classes.

(⇐) Let A1, . . . ,An,B1, . . . ,Bn be objects in D and let σ, τ be permutations
of {1, . . . , n} with [Ai]P = [Bσ(i)]P and [Ai]Q = [Bτ(i)]Q for every i = 1, . . . , n.
Let S denote the full subcategory of C whose objects are all finite direct sums of
finitely many objects in D. In order to show that A1⊕ . . .⊕An ≅ B1⊕ . . .⊕Bn, it
suffices to show that their images in the category S/I are isomorphic objects of
S/I for every ideal I of S associated to a maximal ideal I of the endomorphism
ring of some object A in D. Assume A ∈ D and let I be a maximal ideal of the
ring EndD(A). As we have seen in the proof of Proposition 5.3.12((1)⇒(2)),
either I = P(A,A) or I = Q(A,A). Suppose, for instance, that I = P(A,A).
Then I ⊇ P . Let us prove that Ai ≅ Bσ(i) in S/I for every i = 1, . . . , n. In the
factor category S/I, the images of the objects of D are either zero or isomorphic
to the image of A by Lemma 4.1.1. Hence it suffices to show that Ai is zero in
S/I if and only if Bσ(i) is zero in S/I. If Ai is zero in S/I, then I(Ai,Ai) =
EndD(Ai), so that hl ∈ I = P(A,A) for every h∶Ai → A and l∶A → Ai. In order
to prove that Bσ(i) is zero in S/I, fix α∶A → Bσ(i) and β∶Bσ(i) → A. We must
prove that βα ∈ I. From [Ai]P = [Bσ(i)]P , we get that there are morphisms
f ∶Ai → Bσ(i) and g∶Bσ(i) → Ai with f ∉ P(Ai,Bσ(i)) and g ∉ P(Bσ(i),Ai). If
βα ∉ I = P(A,A), then β,α ∉ P , so that βf ∉ P(Ai,A) and gα ∉ P(A,Ai)
because P is completely prime, contradicting the fact that hl ∈ I = P(A,A) for
every h∶Ai → A and l∶A → Ai. This proves that βα ∈ I, so that Bσ(i) is zero
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in S/I. Similarly Bσ(i) zero in S/I implies Ai zero in S/I. Thus Ai ≅ Bσ(i) in
S/I for every i = 1, . . . , n, so that A1 ⊕ . . .⊕An ≅ B1 ⊕ . . .⊕Bn in S/I for every
associated ideal I. This concludes the proof.

We conclude the chapter with some examples of completely prime ideals and
applications of the theory we have developed above.

Example 5.3.14 If R is a ring, U is the full subcategory of Mod-R whose
objects are all uniform right R-modules, and P is defined by P(A,B) = {f ∶A→
B ∣ f non-injective}, then P is a completely prime ideal of U .

Example 5.3.15 Dually, if C is the category of all couniform right R-modules
and Q(A,B) consists of all non-surjective morphisms from A to B, then Q is a
completely prime ideal of C.

Example 5.3.16 If B is the category of all biuniform right R-modules and P ,
Q are the restrictions to B of the previous completely prime ideals, then the pair
P , Q satisfies the hypotheses of Theorem 5.3.13. The class B satisfies (DSP).

Example 5.3.17 If C is the full subcategory of Mod-R whose objects are all
right R-modules whose endomorphism is local, the Jacobson radical is a com-
pletely prime ideal of C. The class C satisfies (DSP).

Example 5.3.18 Let K be the full subcategory of Mod-R whose objects are
all kernels of morphisms f ∶E1 → E2, where E1 and E2 range in the class of
all uniform injective modules. If E1,E2,E

′
1,E

′
2 are uniform injective modules

and ϕ∶E1 → E2 and ϕ′∶E′1 → E′2 are two non-injective morphisms, any mor-
phisms f ∶ker(ϕ) → ker(ϕ′) extend to a morphism f1∶E1 → E2. Moreover f1
induces a morphism f̃1∶E1/ker(ϕ) → E2/ker(ϕ′), which extends to a morphism
f2∶E2 → E′2. If Q is defined by Q(ker(ϕ),ker(ϕ′)) = {f ∶ker(ϕ) → ker(ϕ′) ∣
f2 is not injective}, then Q is a completely prime ideal of K. If P is the re-
striction of the ideal in Example 5.3.14 to the category K, then the pair P ,
Q satisfies the hypotheses of Theorem 5.3.13. The class K satisfies condition
(DSP). Cf. [11].

Example 5.3.19 Dualizing our previous example, we say that a module MR

is couniformly presented if it is non-zero and there exists an exact sequence

0→ CR → PR →MR → 0

with PR projective and both CR and PR couniform. Given any two couniformly
presented modules MR and M ′

R with their couniform presentations 0 → CR →
PR →MR → 0 and 0→ C′R → P ′R →M ′

R → 0, every morphism f ∶MR →M ′
R lift to

a morphism f0∶PR → P ′R, that induces a morphism f1∶CR → C′R by restriction.
If P is defined by P(MR,M

′
R) = {f ∶MR → M ′

R ∣ f1 is not surjective}, then P
is a completely prime ideal of the full subcategory S of Mod-R whose objects
are all couniformly presented modules. If Q is the restriction of the ideal in
Example 5.3.15 to the category S, then the pair P , Q satisfies the hypotheses
of Theorem 5.3.13. The class S satisfies condition (DSP). Cf. [17].
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Example 5.3.20 Let R be a ring and let S1, S2 be two fixed non-isomorphic
simple right R-modules. Let C be the full subcategory of Mod-R whose objects
are all artinian right R-modules AR with soc(AR) ≅ S1 ⊕ S2. Set Pi(A,B) ={f ∶A → B ∣ f(socSi

(AR)) = 0}. The pair of completely prime ideals P1, P2

satisfies the hypotheses of Theorem 5.3.13.
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Chapter 6

The infinite Krull-Schmidt

Property in the case 2

We saw in the previous chapter some examples of categories where the 2-Krull-
Schmidt Property holds. A natural question is to ask what happens when one
considers arbitrary direct sums instead of finite ones. The purpose of this chap-
ter is to study, in an abstract setting, the Infinite 2-Krull-Schmidt Property.
To achieve the most possible generality, we first investigate the problem at a
monoid theoretical level. Since usual monoids do not allow infinite sums, we in-
troduce a new algebraic structure, that we call commutative infinitary monoid,
where arbitrary infinite sums are possible. In section 6.2 we define this new
structure and look at its first properties, showing that there is a canonical way
to pass from usual commutative monoids to infinitary ones. Then we define
properly the Infinite 2-Krull-Schmidt Property and we give a complete descrip-
tion of the phenomenon (Theorem 6.3.6). Eventually, we apply our results to
the main example of commutative infinitary monoid, that is the skeleton V (C)
of a cocomplete category C, endowed with the coproduct as operation.

6.1 Completely prime ideals and associated ide-

als

Given an ideal I of a preadditive category C and two objects A,B ∈ C, we write
A ∼I B when there exist morphisms α∶A → B and β∶B → A such that α ∉ I
and β ∉ I. In general, the relation A ∼I B is only symmetric. Recall that I is
a completely prime ideal of C if the composition gf ∶A → C of two morphisms
f ∶A→ B and g∶B → C is in I if and only if f ∈ I or g ∈ I and every object of C
is non-zero in C/I. If this is the case, then the relation ∼I is also reflexive and
transitive. We denote by [A]I the equivalence class of ∼I containing A.

Lemma 6.1.1 Let C be a preadditive category and let I be a completely prime
ideal of C. Let A be an object of C. Let I = I(A,A) and AI be the ideal of C
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associated to I. Then the following are equivalent for an object B of C:

1. B is a non-zero object in C/AI ;

2. [A]I = [B]I ;
3. AI(B,B) = I(B,B) ≠ EndC(B).

If EndC(A)/I is a division ring, then the previous are equivalent also to:

4. EndC(B)/AI(B,B) is a division ring.

Proof.

(1)⇔(2) B is a non-zero object of C/AI if and only if 1B ∉ AI(B,B). By
definition of associated ideal, this means that there exist a morphism α∶A → B

and a morphism β∶B → A such that β1Bα = βα ∉ I = I(A,A). Since I is
completely prime, this is equivalent to saying that α and β are not in I.

(2)⇒(3) It is enough to prove that AI(B,B) = I(B,B). If we suppose
that an endomorphism f of B is in I(B,B), then βfα ∈ I = I(A,A) for every
α∶A → B and β∶B → A. Then f ∈ AI(B,B). Conversely, suppose f ∉ I(B,B).
By (2) we know that there exist morphisms α∶A → B and β∶B → A such that
α,β ∉ I. Therefore, since I is completely prime, βfα ∉ I = I(A,A) and this
means that f ∉ AI(B,B).

(3)⇒(1) Obvious.
Assume now that EndC(A)/I is a division ring.
(2)⇒(4) If (2) holds, there exist a morphism α∶A → B and a morphism

β∶B → A such that α,β ∉ I. Since EndC(A)/I is a division ring, we have
that, for any f ∈ EndC(B) that is not in AI(B,B) = I(B,B), there exists
g ∈ EndC(A) such that 1A−βfαg ∈ I. Then also α(1A−βfαg)β = αβ(1B−fαgβ)
is in I(B,B). Since I is completely prime and α,β are not in I, we have that
1B − fαgβ ∈ I(B,B). In other words, αgβ + I(B,B) is a right inverse for
f + I(B,B) in EndC(B)/I(B,B) = EndC(B)/AI(B,B).

(4)⇒(1) Obvious.

Remark 6.1.2 Let C be a preadditive category and let I be a completely prime
ideal of C. Let A and B be two objects of C. Then in C there is not a biproduct
of A and B. To see this, suppose that in C there exists a biproduct A⊕B and
consider the canonical embeddings εA, εB and the canonical projections πA, πB .
We have that 1A = πAεA and 1B = πBεB imply that εA, εB, πA, πB are not in I.
But, since I is completely prime, πBεA = 0 implies that either πB or εA is in I.
This is a contradiction.

Following [23], if A is an object of a preadditive category C and I is an ideal
in EndC(A), we say that A is I-small if for every family of objects Mλ, λ ∈ Λ,
and morphisms α∶A → ⊕λ∈ΛMλ and β∶ ⊕λ∈ΛMλ → A with βα ∉ I, there exists
µ ∈ Λ such that βεµπµα ∉ I.

119



If R is a ring and C is a preadditive full subcategory of Mod-R, we denote
by Sum(C) the category whose objects are direct sums of (possibly infinitely
many) objects in C.

At this point, we can generalize Proposition 5.1.4 to the infinite case.

Proposition 6.1.3 Let R be a ring, C be a full preadditive subcategory of
Mod-R and let I be a completely prime ideal of C. Let A be an object of C
such that EndC(A)/I(A,A) is a division ring. Let I = I(A,A) and AI be the
ideal of Sum(C) associated to I. If A is I-small, then the category Sum(C)/AI

is equivalent to the category of all right vector spaces over the division ring
EndC(A)/I(A,A).

Proof. By Lemma 6.1.1 we have that, for every object B of C, when we
pass to the factor category C/AI , either B = 0 or B ≅ A . Then it is enough to
use [23, Lemma 3.2]

Therefore there is a direct-summand preserving functor of Sum(C) into the
category of right vector spaces over the division ring EndC(A)/I with the prop-
erty that, for every object X = ⊕λ∈ΛMλ of Sum(C), with the Mλ’s in C, the
dimension of the vector space corresponding to X is equal to the cardinality
of the set {λ ∈ Λ ∣ [Mλ]I = [A]I }. Hence this cardinality depends only on X

and not on the direct-sum representation X = ⊕λ∈ΛMλ of X as a direct sum of
elements of C.

6.2 Commutative infinitary monoids

Let M be a class. If ℵ is a cardinal number, we can define the class Mℵ ={f ∶ ℵ→M ∣ f is a function }. An ℵ-operation on M is a function pℵ∶M
ℵ →M .

We define a commutative infinitary monoid to be a class M together with
an operation pℵ for every cardinal number ℵ such that:� p1∶M

1 → M is the canonical bijection that sends the map f ∶1 → M ,
defined by f(1) =m, to the element m ∈M ;� if ℵi, i ∈ I, and ℵ are cardinal numbers, γi∶ ℵi → ℵ, i ∈ I, are injective
maps such that ℵ = ⋃̇i∈Iγi(ℵi) and ℵI = ∣I ∣, then, for any f ∈Mℵ, pℵ(f) =
pℵI (Γ), where Γ ∈ M I is the function from I to M defined by Γ(i) =
pℵi(fγi), for any i ∈ I.

Remark 6.2.1 In a similar way to what we did above, we can define classes of
monoids where one can perform sums only up to a given regular cardinal. In
fact, if ℶ is a regular cardinal, one defines a commutative ℶ-infinitary monoids
to be a class M together with operations pℵ for every cardinal number ℵ < ℶ
satisfying the above axioms. In this fashion, it is easy to notice that commutative
ℵ0-infinitary monoids are exactly the usual commutative monoids.
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Denote by e the image of the empty function, that is the only element of
M0, through p0. The element e behaves like an identity element for M , i.e. if
we sum infinitely many times e to an element m ∈ M we obtain m again. To
show this, consider any pair of cardinals ℵ and ℶ and any function f ∶ ℵ → M ;
by our second axiom, choosing ℵ1 = ℵ and ℵi = 0 for every i ∈ ℶ, we obtain the
equality pℵ(f) = pℶ+1(Γf), where Γf ∈ M

ℶ+1 is the function from ℶ + 1 to M

that sends 1 to pℵ(f) and i ∈ ℶ to p0(∅) = e for every i ∈ ℶ.
If we choose ∣I ∣ = 1 in our second axiom, we obtain that pℵ(f) = pℵ(fσ) for

any cardinal ℵ, any f ∈ Mℵ and any permutation σ∶ ℵ → ℵ. This means that
the order of the summands does not influence the result. Hence it makes sense
to call such a structure commutative.

Similarly, it is easy to show that the associative property holds.

Example 6.2.2 Let Card be the class of all cardinal numbers. Endow Card
with the operations pℵ∶Cardℵ → Card defined by pℵ(f) =∑i∈ℵ f(i). Then Card
becomes a commutative infinitary monoid. In fact p1(fℶ) = ℶ for every ℶ ∈ Card,
where fℶ is the map that sends 1 to ℶ. Moreover, given a cardinal ℵ and injective
maps γi∶ ℵi → ℵ, i ∈ I such that ℵ = ⋃̇i∈Iγi(ℵi), we have that pℵ(f) = ∑i∈ℵ f(i)
is equal to pℵI(Γ) =∑i∈I pℵi(fγi) = ∑i∈I ∑j∈ℵi fγi(j).

If I is a class and for any i ∈ I we have a commutative infinitary monoid
Mi, we define in the following way their direct sum ⊕i∈IMi. The elements
of ⊕i∈IMi are the sets {(iλ,miλ)}λ∈Λ, where Λ is a set, the iλ are distinct
elements of I and miλ is an element of Miλ for every λ ∈ Λ. We identify
two elements {(iλ,miλ)}λ∈Λ and {(jµ,mjµ)}µ∈Λ′ of ⊕i∈IMi when miλ = mjµ if
iλ = jµ, miλ = eiλ for every iλ that is different from any jµ, µ ∈ Λ′, and mjµ = ejµ
for every jµ that is different from any iλ, λ ∈ Λ.

Define the operations p⊕ℵ on ⊕i∈IMi in the following way. If f ∈ (⊕i∈IMi)ℵ
is a function from ℵ to ⊕i∈IMi that sends a ∈ ℵ to {(iaλ,ma

iλ
)}λ∈Λa

, set p⊕ℵ(f) ={(if
λ
, piℵ(fiλ))}λ∈Λ where Λ = ⋃a∈ℵΛa and fiλ ∈M

ℵ
i is the function from ℵ to Mi

that sends a ∈ ℵ to ma
iλ
∈Mi, where without loss of generality we can consider

ma
iλ
= e if λ ∉ Λa.

We can consider the category M̂on of all commutative infinitary monoids.
The morphisms between two commutative infinitary monoids M1 and M2 are
the functions α between the classes M1 and M2 such that for every cardinal ℵ
and every f ∈Mℵ

1 , we have αp1ℵ(f) = p2ℵ(αf).
Proposition 6.2.3 Let I be a class and let Mi be a commutative infinitary
monoid for every i ∈ I. Then the direct sum ⊕i∈IMi is the coproduct of the Mi’s
in the category of commutative infinitary monoids.

Proof. For any index ı ∈ I, there is a morphism of commutative infinitary
monoids fı from Mı to ⊕i∈IMi that sends every element m ∈Mı to {(ı,m)}. If
there is another commutative infinitary monoid N together with morphisms of
commutative infinitary monoids gi∶Mi → N for every i ∈ I, then there exists a
unique morphism of commutative infinitary monoids f ∶ ⊕i∈IMi → N such that
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gi = f ○fi for every i ∈ I, defined in the following way: an element {(iλ,miλ)}λ∈Λ
of ⊕i∈IMi is sent by f to the element pNℵ (ι) where ℵ = ∣Λ∣ and ι ∈ Nℵ is the
function from Λ to N that sends λ ∈ Λ to giλ(miλ).

We notice that, if I is a set, then ⊕i∈IMi is the product of the monoids Mi.
If I is not a set, but a proper class, the product of the commutative infinitary
monoids Mi, i ∈ I, does not exist in MK.

Lemma 6.2.4 The direct sum of copies of Card, indexed in a class I, is a free
object on a basis I in the category of commutative infinitary monoids.

Proof. Let I be a class and F ≅ ⊕i∈ICard be the direct sum of ∣I ∣ copies
of Card. The canonical injection is the map of classes ι∶ I → F that sends an
element i ∈ I to the element {(i,1)} ∈ F . Let M be any commutative infinitary
monoid with a map of classes κ∶ I →M . We need to prove that there is a unique
morphism of commutative infinitary monoids κ̃∶F →M such that κ = κ̃ι. It is
clear that we need to define κ̃({(iλ,ℵλ)}λ∈Λ) = pM∣Λ∣(p) where p∶ ∣Λ∣ → M is the

map that associates to every λ ∈ Λ the element pMℵλ(κiλ), and kiλ ∶ ℵλ →M sends
any s ∈ ℵλ to κ(iλ).

An element m of M is an atom if m = pℵ2(m1,m2) implies m1 = e or
m2 = e. We say that M is atomic if every element of M is a sum of possibly
infinitely many atoms. Unless otherwise explicitly mentioned, lowercase letter
will always denote atoms of an atomic commutative infinitary monoid and we
will write generic elements of an atomic commutative infinitary monoid as sum
of atoms.

We will identify every function f ∈Mℵ with the image of the elements of ℵ
and denote any ℵ-operation pℵ of M by the symbol ∑, since this will not create
any confusion.

It is clear that every commutative infinitary monoid M can be seen as a
usual commutative monoid. Indeed, this gives rise to a forgetful functor f from
the category M̂on of commutative infinitary monoids to the category Mon of
usual commutative monoids. The functor f forgets all the ℵ-operations pℵ for
ℵ ≥ ℵ0.

There is also a functor from the category of commutative monoids to the
category of commutative infinitary monoids. We can define it in the following
way. Let M be a commutative monoid. Consider the class {ℵ →M ∣ ℵ ∈ Card}
of all the functions from a cardinal to M and quotient it by the equivalence
relation ∼ defined by (f ∶ ℵ1 → M) ∼ (g∶ ℵ2 → M) if and only if ℵ1 = ℵ2 and
there exists a bijection σ∶ ℵ1 → ℵ2 such that f = gσ. On this class, that we will
denote by M ′, we define the ℵ-operations pℵ. Given a cardinal ℵ, we define the
ℵ-operation pℵ∶M

′ℵ → M ′ by juxtaposition of functions, i.e. if f ∈ M ′ℵ sends
s ∈ ℵ to fs∶ ℶs →M , the ℵ-operation pℵ sends f to

pℵ(f)∶ ∪̇s∈ℵℶs → M

x ∈ ℶs ↦ fs(x).
In this way the class M ′ becomes a commutative infinitary monoid. Our func-
tor from the category of commutative monoids to the category of commutative
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infinitary monoids is defined sending a commutative monoid M to the commu-
tative infinitary monoid M̂ obtained by taking the quotient of the commutative
infinitary monoid M ′ with respect to the congruence generated by the relation
α+β ≡ γ, where α∶1 →M ′ sends 1 to m1, β∶1 →M ′ sends 1 to m2 and γ∶1→M ′

sends 1 to m1 +m2.
If we are given a morphism of commutative monoids f ∶M1 → M2, the

morphism of commutative infinitary monoids f̂ ∶M̂1 → M̂2 is defined as fol-
lows. If α∶ ℵ → M1 is an element of M̂1, its image through f̂ is defined to be
f̂(α) = fα∶ ℵ →M2.

Proposition 6.2.5 The functors f ∶M̂on →Mon is right adjoint to the functor
ˆ∶Mon → M̂on.

Proof. We have to prove that for every commutative monoid M and
every commutative infinitary monoidN , there is a bijection HomMon(M,Nf) ↔
HomM̂on(M̂,N). Let α be a morphism of commutative monoids between M

and Nf . To it we associate the morphism of commutative infinitary monoids
pα̂, where p is the morphism of commutative infinitary monoids defined by

p∶ N̂f → N(h∶ ℵ→ Nf) ↦ pℵ(h).
Conversely, if β∶M̂ → N is a morphism of commutative infinitary monoids,
we associate to it he morphism of commutative monoids βf q, where q is the
morphism of commutative monoids defined by

q∶ M → M̂f

m ↦ (q(m)∶1↦m).
To prove the proposition we need to prove that the composition of the two maps
that we defined is the identity in both ways. To show this, let α be a morphism
of commutative monoids between M and Nf . We have

(pα̂)fq(m) = (pα̂)f(q(m)∶1↦m) = (pα̂)(q(m)∶1↦m)
= p1(αq(m)∶1↦ α(m)) = α(m),

for any m ∈ M . Hence (pα̂)fq = α. On the other hand, if β∶M̂ → N is a
morphism of commutative infinitary monoids and κ∶ ℵ→M is an element of M̂ ,
we have

p(̂βfq)(κ) = pℵ( ℵ → Nf )
i ↦ βfqκ(i) = β(q(κ(i))∶1↦ κ(i))

= β(pℵ(q(κ(i))∶1↦ κ(i))) = β(κ)
and this proves p(̂βfq) = β.
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6.3 Infinite 2-Krull-Schmidt Property

In the setting of commutative infinitary monoids, we can generally define when
a monoid satisfies an infinite Krull-Schmidt property. We say that the Infinite
Krull-Schmidt Property holds for an atomic commutative infinitary monoid M
if, given two families {ai ∣ i ∈ I } and { bj ∣ j ∈ J } of atoms of M , we have

∑i∈I ai =∑j∈J bj if and only if there exists a bijection σ∶ I → J such that ai = bσ(i)
for every i ∈ I. It is clear that a commutative infinitary monoid satisfies the
Infinite Krull-Schmidt Property if and only if it is free.

We say that the Infinite 2-Krull-Schmidt Property holds for an atomic com-
mutative infinitary monoid if there exist two equivalence relations ∼ and ≡ on the
class A of atoms of M such that, given two families {ai ∣ i ∈ I } and { bj ∣ j ∈ J }
of atoms of M , we have ∑i∈I ai = ∑j∈J bj if and only if there exist two bijections
σ, τ ∶ I → J such that ai ∼ bσ(i) and ai ≡ bτ(i) for every i ∈ I.

In this chapter, by a graph we mean a class V of vertices together with a
class E of edges, which are 2-element subsets of V . We can associate an atomic
commutative infinitary monoid M(G) to any graph G = (V,E). Given a graph
G = (V,E), where the elements of E are subsets of V of cardinality 2, consider
the free commutative infinitary monoid F (V ) on the basis { δv ∣ v ∈ V }. If
l = {v,w} ∈ E is an edge of G, define δl = δv + δw ∈ F (V ). Let M(G) be the
commutative infinitary submonoid of F (V ) generated by the elements δl, where
l ranges in E.

More generally, given a class A we denote by the symbol F (A) the free
commutative infinitary monoid on the basis A.

Proposition 6.3.1 Let M be an atomic commutative infinitary monoid. Then
the following are equivalent:

1. the Infinite 2-Krull-Schmidt Property holds for M ;

2. there exist a complete bipartite graph B(X∪̇Y ) and an injective morphism
of commutative infinitary monoids M → M(B(X∪̇Y )) that sends atoms
to atoms.

Proof. Suppose that the Infinite 2-Krull-Schmidt Property holds for M .
Let A be the class of atoms of M and let A/ ∼ and A/ ≡ be the quotient classes
of A modulo the equivalence relations ∼ and ≡, respectively. The canonical
projection π∼∶A→ A/ ∼ induces a morphism of commutative infinitary monoids
π̂∼∶M → F (A/ ∼) defined as follows, π̂∼(∑i∈I ai) = ∑i∈I π∼(ai). Similarly, the
other canonical projection π≡∶A → A/ ≡ induces a morphism of commutative
infinitary monoids π̂≡∶M → F (A/ ≡) defined by π̂≡(∑i∈I ai) = ∑i∈I π≡(ai).

Since the Infinite 2-Krull-Schmidt Property holds, the product morphism
π̂∼ × π̂≡∶M → F (A/ ∼) ×F (A/ ≡) is injective.

Now consider the complete bipartite graph B(X∪̇Y ), where X = A/ ∼ and
Y = A/ ≡. The monoid M(B(X∪̇Y )) is the submonoid of the free commutative
infinitary monoid F (X∪̇Y ) on the basis X∪̇Y = A/ ∼ ∪̇A/ ≡, generated by the
elements [l]∼ + [e]≡, with l and e ranging in A. Since the image of π̂∼ × π̂≡ is

124



generated by the elements [l]∼ + [l]≡, with l ∈ A, it follows that the image of the
injective morphism of commutative infinitary monoids π̂∼ × π̂≡ is contained in
M(B(X∪̇Y )).

Finally, the atoms a of M are mapped by π̂∼ × π̂≡ to the atoms [a]∼ + [a]≡ of
M(B(X∪̇Y )). This completes the proof of (1)⇒ (2).

Assume now that there exist a complete bipartite graph B(X∪̇Y ) and an
injective morphism of commutative infinitary monoids ϕ∶M → M(B(X∪̇Y ))
that respects infinite sums and sends atoms to atoms. Therefore every atom
a of M is sent by ϕ to an atom ϕ(a) = xa + ya of M(B(X∪̇Y )), with xa ∈ X

and ya ∈ Y . Since ϕ preserves infinite sums, an element ∑i∈I ai of M is sent to

∑i∈I(xai
+ yai

). Therefore two elements a = ∑i∈I ai and b = ∑j∈J bj of M are
equal if and only if ϕ(a) = ∑i∈I xai

+yai
is equal to ϕ(b) =∑j∈J xbj +ybj . This is

equivalent to say that there exist two bijections σ, τ ∶ I → J such that xai
= xbσ(i)

and yai
= ybτ(i) for every i ∈ I. Defining a ∼ b if and only if xa = xb and a ≡ b if

and only if ya = yb it becomes clear that the Infinite 2-Krull-Schmidt Property
holds.

We can interpret the commutative infinitary monoid associate to a graph
from another point of view.

Example 6.3.2 Let K and L be two classes. Consider the class D of all pairs

( a
b
) with a ∈ K and b ∈ L. Let F be the free commutative infinitary monoid

on the basis D. We can look to the elements of F as 2 × ℵ matrices, with ℵ
any cardinal number, such that all the entries of the first row are in K and all
the entries of the second row are in L; with this interpretation, the operation of
F is just the juxtaposition of matrices. We have to be careful since two 2 × ℵ
matrices M and N are equal in F if there exist a bijection ρ∶ ℵ → ℵ such that
the i-th column of M is equal to the ρ(i)-th column of N , for every i ∈ ℵ. On F
we consider the congruence ∼ defined by the following: given two 2×ℵ matrices
M and N we have M ∼ N if and only if there are two bijections σ, τ ∶ ℵ → ℵ
such that m1,i = n1,σ(i) and m2,i = n2,τ(i) for every i ∈ ℵ. Lousily speaking,
M ∼ N if and only if the first row of M has the same entries of the first row of
N , counting with multiplicity, and the second row of M has the same entries of
the second row of N , counting with multiplicity.

Let C be the quotient monoid of F by the congruence ∼. Then C is a
commutative infinitary monoid and it is clear that the Infinite 2-Krull-Schmidt
Property holds for C.

It easy to see that the commutative infinitary monoids constructed in this
way are exactly the monoids M(B(X∪̇Y )). In fact it is enough to take X =K
and Y = L. Hence, given any atomic commutative infinitary monoid M for
which the Infinite 2-Krull-Schmidt Property holds with respect to the equiva-
lence relations ∼ and ≡, there exist an atomic commutative infinitary monoid
C constructed as in Example 6.3.2 and an injective morphism of commutative
infinitary monoids ϕ∶M → C. It is enough to take K equal to the class of
equivalence classes of the atoms of M with respect to the equivalence relation ∼
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and L equal to the class of equivalence classes of the atoms of M with respect
to the equivalence relation ≡. Then we can define ϕ∶M → C as the morphism
of commutative infinitary monoids that sends an atom a ∈ M to the matrix

( [a]∼[a]
≡

). Since the Infinite 2-Krull-Schmidt Property holds both for M and C,

it is clear that ϕ is well-defined and injective.

Lemma 6.3.3 Let ∼ and ≡ be two equivalence relations on a class S. Then the
following are equivalent:

1. a ∼ b and a ≡ c implies that there exists d ∈ S such that d ∼ c and d ≡ b;

2. [b]∼ ∩ [c]≡ ≠ ∅ implies [b]≡ ∩ [c]∼ ≠ ∅;
3. the composite relation ∼ ○ ≡ is symmetric;

4. ∼ ○ ≡ is equal to ≡ ○ ∼.

We say that two relations on a class S are permutable if they satisfy the
equivalent conditions of Lemma 6.3.3. It is clear that if σ = τ , then σ and τ are
permutable. We will see more interesting examples of permutable relations in
the following chapters.

We say that the Strong Infinite 2-Krull-Schmidt Property holds for an atomic
commutative infinitary monoid M if the Infinite 2-Krull-Schmidt Property holds
with respect to two permutable equivalence relations, i.e. if there exist two
permutable equivalence relations ∼ and ≡ on the class A of atoms of M such
that, given two families {ai ∣ i ∈ I } and { bj ∣ j ∈ J } of atoms of M , we have

∑i∈I ai = ∑j∈J bj if and only if there exist two bijections σ, τ ∶ I → J such that
ai ∼ bσ(i) and ai ≡ bτ(i) for every i ∈ I.

Theorem 6.3.4 Let M be an atomic commutative infinitary monoid. Suppose
that there are two permutable equivalence relations ∼ and ≡ on the class A of
atoms of M such that:

1. a = b if and only if a ∼ b and a ≡ b;

2. if a ∼ b and a ≡ c, there exists an element d ∈ A such that a+d = b+c, d ∼ c
and d ≡ b.

Let {ai ∣ i ∈ I } and { bj ∣ j ∈ J } be two families of atoms of M . Then ∑i∈I ai =

∑j∈J bj if there exist two bijections σ, τ ∶ I → J such that ai ∼ bσ(i) and ai ≡ bτ(i)
for every i ∈ I.

Proof. Consider two families {ai ∣ i ∈ I } and { bj ∣ j ∈ J } of atoms of M
and suppose that there are two bijections σ, τ ∶ I → J such that ai ∼ bσ(i) and
ai ≡ bτ(i) for every i ∈ I. We have to show that ∑i∈I ai = ∑j∈J bj.

The symmetric group SI consisting of all bijections I → I acts on the family
I in a natural way. Let C be the cyclic subgroup of SI generated by τ−1σ ∈ SI .
Then C acts on the family I. For every element i ∈ I let [i] = { (τ−1σ)z(i) ∣
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z ∈ Z} denote the C-orbit of i. Let σ([i]) be the image of the orbit i via the
bijection σ.

Fix i ∈ I. We claim that ∑k∈[i] ak =∑l∈σ([i]) bl.
Set iz = (τ−1σ)z(i), jz = σ(iz), az = aiz and bz = bjz . In this notation the

equality ai ∼ bσ(i) for every i ∈ I implies that az ∼ bz for every z ∈ Z and similarly
the equality ai ≡ bτ(i) implies that az ≡ bz−1 for every z ∈ Z.

We now prove that there are elements xn and yn in A satisfying the following
properties for every n ≥ 1:� xn−1 + yn = bn−1 + b−n and xn + yn = an + a−n;� xn ∼ an and xn ≡ a−n;� yn ∼ b−n and yn ≡ bn−1.

Set x0 = a0. Since a0 ∼ b0 and a0 ≡ b−1, there is an element y1 ∈ A such
that b0 + b−1 = x0 + y1 with y1 ∼ b−1 and y1 ≡ b0. Therefore a1 ≡ b0 ≡ y1 and
a−1 ∼ b−1 ∼ y1. Hence there is an element x1 ∈ A such that a1 + a−1 = x1 + y1
with x1 ∼ a1 and x1 ≡ a−1. Thus x0, x1 and y1 have the required properties.

Now let n > 1 and suppose that xt and yt satisfying the required properties
have already been constructed for t < n. Since xn−1 ∼ an−1 ∼ bn−1 and xn−1 ≡

a−n+1 ≡ b−n, there exists an element yn ∈ A such that xn−1 + yn = bn−1 + b−n with
yn ∼ b−n and yn ≡ bn−1. From a−n ∼ b−n and an ≡ bn−1 it follows that yn ∼ a−n
and yn ≡ an. Again, there exists an element xn ∈ A such that xn + yn = an + a−n
with xn ∼ an and xn ≡ a−n.

Now suppose that the orbit [i] is an infinite set. Then

∑
k∈[i]

ak = ∑
n∈Z

an = a0 + ∑
n≥1

(an + a−n) = x0 + ∑
n≥1

(xn + yn) =
= ∑

n≥1

(xn−1 + yn) = ∑
n≥1

(bn−1 + b−n) = ∑
n∈Z

bn =

= ∑
l∈σ([i])

bl.

Now suppose that the orbit [i] is a finite set with q = 2n + 1 elements. Then
xn ∼ an ∼ bn and xn ≡ a−n ≡ b−n−1 = bn imply xn = bn and

∑
k∈[i]

ak = a0 +
n

∑
k=1

(ak + a−k) = x0 + n

∑
k=1

(xk + yk) =
=

n

∑
k=1

(xk−1 + yk) + xn = n

∑
k=1

(bk−1 + bk) + bn =
= ∑

l∈σ([i])
bl.

For the case q = 2n, n ≥ 1, we have an = a−n, hence yn ∼ a−n and yn ≡ an imply
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that yn = an. Then

∑
k∈[i]

ak = a0 +
n−1

∑
k=1

(ak + a−k) + an = x0 + n−1

∑
k=1

(xk−1 + yk) + yn =
=

n

∑
k=1

(xk−1 + yk) = n

∑
k=1

(bn−1 + b−n) =
= ∑

l∈σ([i])
bl.

When the index i runs over all the indices in I, we get that the orbits [i] form a
partition of I into disjoint countable subsets I = ⋃i∈I[i] and their images form
a partition of J into disjoint countable subsets J = ⋃i∈I σ([i]). By the claim

∑k∈[i] ak =∑l∈σ([i]) bl for every orbit [i], so that ∑i∈I ai =∑j∈J bj .

We say that an atomic monoid M is a-cancellative if for any atom b and any
other elements c, d ∈M , we have b + c = b + d⇒ c = d.

We say that an equivalence relation ∼ on the class A of atoms of an atomic
commutative infinitary monoid controls the infinite if the following is true:
consider two sets {ai ∣ i ∈ I} and {bj ∣ j ∈ J} of atoms of M and the sets
I∼(k) = { i ∈ I ∣ ai ∼ ak } and J∼(k) = { j ∈ J ∣ bj ∼ ak } for k ∈ I. When-
ever ∑i∈I ai = ∑j∈J bj and the sets I∼(k) and J∼(k) are both infinite, for ev-
ery t ∈ I∼(k) there exists a subset A(t) ⊆ J with ∣A(t)∣ ≤ ∣I∼(k)∣ such that
J∼(k) ⊆ ⋃t∈I∼(k)A(t) and, similarly, for every u ∈ J∼(k) there exists a subset
B(u) ⊆ I with ∣B(u)∣ ≤ ∣J∼(k)∣ such that I∼(k) ⊆ ⋃u∈J∼(k)B(u).
Theorem 6.3.5 Let M be an atomic a-cancellative commutative infinitary mo-
noid. Suppose that there are two permutable equivalence relations ∼ and ≡ on
the class A of atoms of M such that:

1. a = b if and only if a ∼ b and a ≡ b;

2. if a is a summand of ∑j∈J bj, then there exist j1, j2 ∈ J such that a ∼ bj1
and a ≡ bj2 ;

3. if a ∼ b and a ≡ c, there exists an element d ∈ A such that a+d = b+c, d ∼ c
and d ≡ b.

If ∼ controls the infinite, the equality ∑i∈I ai = ∑j∈J bj implies that there is a
bijection σ∶ I → J such that ai ∼ bσ(i) for every i ∈ I.

Proof. Fix an index k ∈ I and consider the two subclasses I∼(k) = { i ∈
I ∣ ai ∼ ak } of I and J∼(k) = { j ∈ J ∣ bj ∼ ak } of J . It is obvious that the
I∼(k), k ∈ I, form a partition of I. Note that the J∼(k), k ∈ I, also form a
partition of J because for every j ∈ J there is a k ∈ I with bj ∼ ak and for every
k ∈ I there is a j ∈ J with bj ∼ ak by (2).

In order to establish the existence of the bijection σ∶ I → J preserving the
∼-classes of {ai ∣ i ∈ I } and { bj ∣ j ∈ J }, it is sufficient to prove that the
cardinalities ∣I∼(k)∣ and ∣J∼(k)∣ are equal for every k ∈ I.
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Suppose first that either I∼(k) or J∼(k) is a finite set. Without loss of
generality we may assume ∣I∼(k)∣ ≤ ∣J∼(k)∣. Suppose that ∣I∼(k)∣ < ∣J∼(k)∣. Take
ı ∈ I∼(k); then, by (2), there exist j1, j2 ∈ J such that aı ∼ bj1 and aı ≡ bj2 .

If j2 ∈ J∼(k), then aı = bj2 by (1) and, since M is a-cancellative, we get

∑i∈I∖{ı} ai =∑j∈J∖{j2} bj .
On the other hand, if j2 ∉ J∼(k) we have that, by (3), there exists d ∈ A such

that d ∼ bj2 /∼ aı, d ≡ bj1 and bj1 + bj2 = aı + d. Then ∑i∈I ai = ∑j∈J bj = bj1 + bj2 +

∑j∈J∖{j1,j2} bj = aı + d +∑j∈J∖{j1,j2} bj implies ∑i∈I∖{ı} ai = d +∑j∈J∖{j1,j2} bj.
An easy induction shows that after ∣I∼(k)∣ steps we get the required contra-

diction.
Now suppose that I∼(k) and J∼(k) are both infinite. By symmetry it is

sufficient to prove that ∣J∼(k)∣ ≤ ∣I∼(k)∣. By hypothesis, for every t ∈ I∼(k) there
exists a subclass A(t) ⊆ J with ∣A(t)∣ ≤ I∼(k) such that J∼(k) ⊆ ⋃t∈I∼(k)A(t).
Looking at the cardinalities, we obtain that ∣J∼(k)∣ ≤ ∣I∼(k)∣∣I∼(k)∣ = ∣I∼(k)∣.
Hence ∣J∼(k)∣ = ∣I∼(k)∣ if I∼(k) and J∼(k) are both infinite.

Combining the results of Theorem 6.3.4 and Theorem 6.3.5, we obtain the
following.

Theorem 6.3.6 Let M be an atomic commutative infinitary monoid and let ∼
and ≡ be two permutable equivalence relations on the class A of atoms of M .
Then the following are equivalent:

1. the Strong Infinite 2-Krull-Schmidt Property holds for ∼ and ≡;

2. the following hypotheses hold for M :

(a) M is a-cancellative;

(b) a = b if and only if a ∼ b and a ≡ b;

(c) if a is a summand of ∑j∈J bj there exist j1, j2 ∈ J such that a ∼ bj1
and a ≡ bj2 ;

(d) if a ∼ b and a ≡ c, there exists an element d ∈ A such that a+d = b+ c,
d ∼ c and d ≡ b;

(e) ∼ controls the infinite;

(f) ≡ controls the infinite.

3. There exist a complete bipartite graph B(X∪̇Y ) and an injective morphism
of commutative infinitary monoids ϕ∶M →M(B(X∪̇Y )) that sends atoms
to atoms and such that, for any z1 ∈ X and z2 ∈ Y , we have d(z1, z2) ≤ 3
in ϕ(M) implies d(z1, z2) = 1 in ϕ(M).

Proof. (1)⇒(2) Suppose that the Strong Infinite 2-Krull-Schmidt Property
holds for ∼ and ≡. Then it is clear that a = b if and only if a ∼ b and a ≡ b. If a is a
summand of ∑j∈J bj , there exist atoms ck, k ∈K, such that a+∑k∈K ck = ∑j∈J bj ;
then by the Infinite 2-Krull-Schmidt Property, there exist j1, j2 ∈ J such that
a ∼ bj1 and a ≡ bj2 . Conversely, if a ∼ bj1 and a ≡ bj2 , by the permutability
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of ∼ and ≡, there exists a d ∈ M such that d ∼ bj2 and d ≡ bj1 ; then it is clear
that a + d = bj1 + bj2 . To prove that M is a-cancellative, let a be an atom and

∑j∈J bj and ∑k∈K ck be generic elements of M ; then, if a+∑j∈J bj = a+∑k∈K ck,
by the Infinite 2-Krull-Schmidt Property we get that there exist two bijections
σ, τ ∶J ′ → K ′, with ∣J ′∣ = ∣J ∣ + 1 and ∣K ′∣ = ∣K ∣ + 1, such that the conclusion of
the Theorem holds; σ and τ clearly induces bijections between J and K for
which the conclusion of the Theorem holds, but then ∑j∈J bj = ∑k∈K ck and M

is a-cancellative.
To prove (e) and (f), suppose ∑i∈I ai = ∑j∈J bj . By the Infinite 2-Krull-

Schmidt Property, there exist two bijections σ, τ ∶ I → J such that ai ∼ bσ(i)
and ai ≡ bτ(i) for every i ∈ I. Then we can take A(t) = {σ(t)} and we get
J∼(K) ⊆ ⋃t∈I∼(K){σ(t)}. Similarly, defining B(u) = {σ−1(u)}, we get I∼(K) ⊆
⋃u∈J∼(K){σ−1(u)}. We can do the same for ≡ using τ instead of σ.

(2)⇒(1) The hypothesis of Theorem 6.3.4 are satisfied and then we have

∑i∈I ai = ∑j∈J bj if there exist two bijections σ, τ ∶ I → J such that ai ∼ bσ(i) and
ai ≡ bτ(i) for every i ∈ I.

It is clear that if we assume (2) all the hypothesis of Theorem 6.3.5 are
satisfied both for ∼ and ≡. Then ∑i∈I ai = ∑j∈J bj implies that there exist two
bijections σ, τ ∶ I → J such that ai ∼ bσ(i) and ai ≡ bτ(i) for every i ∈ I.

We just proved that the Strong Infinite 2-Krull-Schmidt Property holds.
(1)⇔(3) It is enough to use Proposition 6.3.1 and notice that the permutabil-

ity of the relations ∼ and τ translates into the condition that, for any z1, z2 both
in X or in Y , we have d(z1, z2) ≤ 3⇒ d(z1, z2) = 1.

6.4 Infinite 2-Krull-Schmidt Property in cocom-

plete categories

Let C be an additive category. Any skeleton V (C) of C has the structure of a
large commutative monoid, in which the operation is induced by coproduct. If
the category C is cocomplete, i.e. any set of objects of C admits a coproduct, then
V (C) is a commutative infinitary monoid. We will always assume that every
element of our category C is a (possibly infinite) coproduct of indecomposable
objects of C, so that the commutative infinitary monoid V (C) is always atomic.

We say that the Infinite 2-Krull-Schmidt Property holds for a cocomplete
category C if it holds for the monoid V (C). Similarly, we say that the Strong
Infinite 2-Krull-Schmidt Property holds for C if it holds for V (C).

Now we want to investigate how we can obtain the conditions of Theorem
6.3.6(2) when we are considering the commutative infinitary monoid V (C) as-
sociated to a cocomplete category C.

We will say that two ideals I and J of a ring R realize all maximal ideals, if
for every maximal one-sided ideal M of R, we have M = I or M = J . It is clear,
by Proposition 5.1.1, that if the ideals I and J realize all the maximal ideals of
a ring R, then R is a ring of type ≤ 2.
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Lemma 6.4.1 Let I and J be two completely prime ideals of a preadditive
category D and let A and B be two objects of D such that I(A,A) and J (A,A)
are proper ideals of EndD(A) realizing all maximal ideals of EndD(A), and
I(B,B) and J (B,B) are proper ideals of EndD(B) realizing all maximal ideals
of EndD(B). Then A ≅ B in D if and only if [A]I = [B]I and [A]J = [B]J .

Proof. Since I(A,A), J (A,A), I(B,B) and J (B,B) are all proper
ideals, it is clear that A ≅ B implies [A]I = [B]I and [A]J = [B]J .

On the other hand, suppose that [A]I = [B]I and [A]J = [B]J . This means
that there exist morphisms α,γ∶A → B and β, δ∶B → A such that α and β are
not in I and γ and δ are not in J . Among the three morphisms α,γ and α+ γ
we can find a morphism f ∶A → B that is not in I and not in J . Similarly,
among the three morphisms β, δ and β + δ we can find a morphism g∶B → A

that is not in I and not in J . The composite morphisms fg and gf are not in
I and not in J , and therefore are automorphisms.

From now on, suppose that C is a cocomplete category and let D be the full
subcategory of indecomposable objects of C.

Suppose that I and J are two completely prime ideals of D. We say that
the category C is D-splitting if, for any A,B,C ∈ D with [A]I = [B]I and[A]J = [C]J , there exists an object D ∈ D such that A ⊕D = B ⊕ C. In the
expression D-splitting, there is no direct reference to the ideals I and J , since
they will always be clear from the context.

Lemma 6.4.2 Let C be a cocomplete category. Let I and J be two completely
prime ideals of D and let A ≠ 0 and U1, . . . , Un, n ≥ 2 be objects of D such that
I(A,A) and J (A,A) are proper ideals of EndD(A) realizing all maximal ideals
of EndD(A). Suppose that A is isomorphic to a direct summand of U1⊕ . . .⊕Un

and A /≅ Ui for every i. Then there are two distinct indices i, j = 1, . . . , n such
that [A]I = [Ui]I and [A]J = [Uj]J .

Proof. Let A ≠ 0 and U1, . . . , Un, n ≥ 2, be objects of D such that
I(A,A) and J (A,A) are proper ideals of EndD(A) realizing all maximal ideals
of EndD(A). Suppose that A is isomorphic to a non-zero direct summand of
U1 ⊕ . . . ⊕ Un and A /≅ Ui for every i = 1, . . . , n. Hence there are morphisms
f = (fk)nk=1∶A → U1 ⊕ . . . ⊕ Un and g = (gk)nk=1∶U1 ⊕ . . . ⊕ Un → A such that
gf = ∑n

k=1 gkfk = 1A and none of the gkfk is an isomorphism. Therefore
there exist two distinct indices i and j in 1, . . . , n such that gifi ∉ I(A,A)
and gjfj ∉ J (A,A). It follows that [A]I = [Ui]I and [A]J = [Uj]J .

Corollary 6.4.3 Let C be a D-splitting additive category. Let I and J be two
completely prime ideals of D and let A, U1 and U2 objects of D such that the
ideals I(A,A) and J (A,A) are proper ideals of EndD(A) realizing all maximal
ideals of EndD(A), and I(Ui, Ui) and J (Ui, Ui) are proper ideals of EndD(Ui)
realizing all maximal ideals of EndD(Ui), i = 1,2. Then [A]I = [U1]I and[A]J = [U2]J implies that there exists an object D of C such that [D]I = [U2]I
and [D]J = [U1]J .
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Proof. Since the category C is D-splitting and [A]I = [U1]I and [A]J =[U2]J , there exists an object D ∈ D such that A⊕D = U1 ⊕U2. Now, using the
fact that U1 and U2 are direct summands of A⊕D, by Lemma 6.4.2 we get that
either A or D is in the same ∼I-class of U2 and similarly either A or D is in
the same ∼J -class of U1. If [U1]J = [A]J we get by Lemma 6.4.1 that A ≅ U1.
Using again Lemma 6.4.2 we have that either U1 or U2 is in the same ∼J -class
of D. Since [U1]J = [A]J = [U2]J , we have also [D]J = [U1]J . Similarly, if[U2]I = [A]I we get that A ≅ U2. Using Lemma 6.4.2 we have that either U1

or U2 is in the same ∼I -class of D. Hence [U1]I = [A]I = [U2]I implies that[D]I = [U2]I .

Remark that this corollary states that the equivalence relations ∼I and ∼J
are permutable.

Definition 6.4.4 Let C be a cocomplete category and let I be an ideal of C.
We say that an object U in D is I-quasi-small if for every family of objects
Mλ ∈ D, λ ∈ Λ, and homomorphisms α∶U → ⊕λ∈ΛMλ and β∶ ⊕λ∈ΛMλ → U with
βα ∉ I, the class {µ ∈ Λ ∣ βεµπµα ∉ I } is non-empty.

With the following Lemma we remark that being I-quasi-small is invariant
under ∼I -equivalence.

Lemma 6.4.5 Let C be a cocomplete category and let I be a completely prime
ideal of D. Let A and B be two objects of D such that [A]I = [B]I . Then A is
I-quasi-small if and only if B is I-quasi-small.

Proof. Let f ∶A → B and g∶B → A morphisms that are not in I and
suppose A is I-quasi-small. To prove that also B is I-quasi-small, suppose that
we have a family {Mλ ∣ λ ∈ Λ} of objects of D and morphisms α∶B → ⊕λ∈ΛMλ

and β∶ ⊕λ∈ΛMλ → B with βα ∉ I. Then also gβαf ∉ I and this implies that the
class {µ ∈ Λ ∣ gβεµπµαf ∉ I } is non-empty. Since I is completely prime, this is
equivalent to say that the class {µ ∈ Λ ∣ βεµπµα ∉ I } is non-empty.

Proposition 6.4.6 Let C be a cocomplete category and let I be a completely
prime ideal of D. Let A be an I-quasi-small object of D that is non-zero in C/I.
If A is a direct summand of ⊕λ∈ΛMλ for a family of objects Mλ ∈ D, λ ∈ Λ, then
there exists an index µ ∈ Λ such that [A]I = [Mµ]I .

Proof. Since A is a direct summand of ⊕λ∈ΛMλ, there are morphisms
εA∶A → ⊕λ∈ΛMλ and πA∶ ⊕λ∈ΛMλ → A such that πAεA = 1A ∉ I. Then, since
A is I-quasi-small, the class {µ ∈ Λ ∣ πAεµπµεA ∉ I } is non-empty. Hence, for
every µ in this class, we have that [A]I = [Mµ]I .

Definition 6.4.7 Let C be a cocomplete category and let I be an ideal of D.
We say that an object U in D is I-small if for every family of objects Mλ ∈ D,
λ ∈ Λ, and homomorphisms α∶U → ⊕λ∈ΛMλ and β∶ ⊕λ∈ΛMλ → U with βα ∉ I,
the set {µ ∈ Λ ∣ βεµπµα ∉ I } is finite non-empty.
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It is clear that every I-small object is also I-quasi small, for any ideal I of
the category D.

Remark 6.4.8 If C is a cocomplete category of right R-modules, I is an ideal
of D and U is an object of D such that EndD(U)/I(U,U) is a division ring,
then U is I-small if and only if it is I-quasi-small. In fact, suppose that for
every family of R-modules Mλ ∈ D, λ ∈ Λ and homomorphisms α∶U → ⊕λ∈ΛMλ

and β∶ ⊕λ∈ΛMλ → U with βα ∉ I, the class {µ ∈ Λ ∣ βεµπµα ∉ I } is non-
empty. Suppose also that there exist a family of R-modules Nλ ∈ D, λ ∈ Λ
and homomorphisms γ∶U → ⊕λ∈ΛNλ and δ∶ ⊕λ∈ΛNλ → U such that there are
infinitely many indices µi ∈ Λ, i ∈ N, with fi = δεµi

πµi
γ ∉ I for every i ∈ N.

Since EndD(U)/I(U,U) is a division ring, we have that there exists a morphism
gi ∈ EndD(U)/I(U,U) with hi = 1U − gifi ∈ I(U,U) for every i ∈ N. Consider
the morphism H ∶U → U (N) whose i-th component is defined as

Hi = hi − hi−1 = 1U − gifi − 1U + gi−1fi−1 = gi−1fi−1 − gifi

(define h0 to be 0). If we denote by Σ∶U (N) → U the morphism that sends an
element of U (N) to the sum of its components, we obtain that ΣH = 1U ∉ I(U,U)
but ΣεiπiH =Hi ∈ I for every i ∈ N. This contradicts our hypothesis.

Now we use together our two previous Theorems to obtain a sufficient con-
dition for an additive category C to satisfy the Strong Infinite 2-Krull-Schmidt
Property.

Theorem 6.4.9 Let C be a D-splitting cocomplete category and let I and J be
completely prime ideals of D. Suppose that, for every object A in D, the ideals
I(A,A) and J (A,A) are proper ideals realizing all maximal ideals of EndD(A).
Suppose also that every object in D is I-small and J -small.

Let {Ui ∣ i ∈ I } and {Vj ∣ j ∈ J } be two families of objects of D. Then
⊕i∈IUi ≅ ⊕j∈JVj if and only if there are two bijections σ, τ ∶ I → J such that[Ui]I = [Vσ(i)]I and [Ui]J = [Vτ(i)]J for every i ∈ I.

Proof. Observe that the conclusion of the Theorem is that the Strong
Infinite 2-Krull-Schmidt Property holds for the monoid V (C) with respect to
the equivalence relations ∼I and ∼J .

Then, to prove the theorem, it is enough to verify that all the conditions
of (2) in Proposition 6.3.6 hold. Since all the endomorphism rings of Ui and
Vj are semilocal, it is clear that V (C) is a-cancellative. Condition (b) is given
by Lemma 6.4.1. Condition (c) by Proposition 6.4.6. Condition (d) comes
from the D-splitting property and Corollary 6.4.3. To prove condition (e),
suppose ⊕i∈IUi ≅ ⊕j∈JVj and consider the classes I∼I (k) = {i ∈ I ∣ Ui ∼I Uk} and
J∼I (k) = {j ∈ J ∣ Vj ∼I Uk} for an element k ∈ I. For any t ∈ I∼I (k), the canonical
injection εt∶Ut → ⊕j∈JVj and the canonical projection πt∶ ⊕j∈JVj → Ut satisfy
πtεt = 1U ∉ I and hence, since Ut is I-small, the set A(t) = {j ∈ J ∣ πtεjπjεt ∉ J}
is finite non-empty. We are left to prove that J∼I (k) ⊆ ⋃t∈I∼I (k)A(t). To show

this consider V ∈ J∼I (k). Since V is a direct summand of ⊕i∈IUi, as above
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we get that the set B() = {i ∈ I ∣ πεiπiε ∉ I} is finite non-empty. Since I is
completely prime, we have that πεiπiε ∉ I if and only if πiεπεi ∉ I. Hence we
have that  ∈ A(i) for every i ∈ B(). We can prove the same for J to conclude
the proof for (e). Similarly we prove also condition (f).

6.5 Artinian modules with heterogeneous socle

of length 2

In this section we want to apply what we did in our previous section to a concrete
category. Let R be a ring, S1 and S2 two non-isomorphic simple R-modules and
consider the category D = {M ∈ Mod-R ∣ M artinian, soc(M) ≅ S1 ⊕ S2 }. For
any module MA ∈ D, we settle soc(MA) =M1

A⊕M
2

A with M1

A ≅ S1 and M2

A ≅ S2.
Let C = Sum(D) be the category whose objects are direct sums of objects in

D. In D we define the ideals I1 and I2 in the following way: for every pair of
objects MA and MB of D let I1(MA,MB) = { f ∶MA → MB ∣ f(M1

A) = 0} and
I2(MA,MB) = { f ∶MA →MB ∣ f(M2

A) = 0}.
Proposition 6.5.1 Let C = Sum(D) the category whose objects are direct sums
of objects in D. Then I1 and I2 are completely prime ideals of D and every
(right, left, two-sided) maximal ideal of the endomorphism ring of an objects
MA of D is equal either to I1(MA,MA) or to I2(MA,MA).

Proof. First, we want to prove that I1 and I2 are in fact ideals of D.
Since the situation is completely symmetric, we prove it only for I1. It is clear
that the zero morphism is in I1 and that f, g ∈ I1 implies f + g ∈ I1. Now
suppose f ∈ I1(MA,MB). If g∶MB →MC is any morphism in C, then it is easy
to see that gf ∈ I1(MA,MC). If g∶MC →MA, to prove that fg ∈ I1(MC ,MB)
it is enough to show that g(M1

C) ⊆M1

A. Since every morphism sends the socle
to the socle, we know that g(M1

C) ⊆ M1

A ⊕M
2

A. The simple component M1

C is
sent by g to zero or to a module isomorphic to S1. Then it is easy to deduce
that g(M1

C) ⊆M1

A.
Next we show that the ideals I1 and I2 are completely prime. Again, we

show this only for I1. To prove it, consider f ∶MA → MB and g∶MB → MC

such that gf ∈ I1. Suppose that f ∉ I1 so that f(M1

A) ≠ 0. This implies that
f(M1

A) =M1

B and then g(M1

B) = gf(M1

A) = 0 means that g ∈ I1.
Eventually, we show that I1 and I2 realize all maximal ideals of the en-

domorphism ring of an object MA in D. Suppose first that I1(MA,MA)
and I2(MA,MA) are comparable. Without loss of generality we can assume
I1(MA,MA) ⊇ I2(MA,MA). In this case, for any morphism f ∶MA →MA that
is not in I1(MA,MA), we have that ker(f) ∩ soc(MA) = 0. Since the socle is
essential in an artinian module, f must be injective, and hence an automor-
phism of MA. This means that I1(MA,MA) is the unique maximal ideal of
EndD(MA). On the other hand, suppose that I1(MA,MA) and I2(MA,MA)
are not comparable. To prove that I1(MA,MA) is a maximal ideal, consider

134



g ∈ EndD(MA) that is not in I1(MA,MA). If g(M2

A) ≠ 0, then g is an auto-
morphism. If g(M2

A) = 0, take an element f ∈ I1(MA,MA)∖I2(MA,MA); then
ker(f + g) = 0 and so f + g is an automorphism. Similarly we can prove that I2

is a maximal ideal.
With the same argument as above we can prove that if an ideal of EndD(MA)

is not contained in I1(MA,MA) or in I2(MA,MA), then it contains an auto-
morphism and so it is the whole endomorphism ring.

To apply Theorem 6.4.9 we need to show that C is D-splitting. To show
this, let MA,MB and MC be three objects in D such that [MA]I1 = [MB]I1

and [MA]I2 = [MC]I2 . This means that there exist morphisms f ∶MA → MB,
g∶MB →MA, h∶MA →MC and l∶MC →MA with f, g ∉ I1 and h, l ∉ I2. If gf is
an automorphism, MA ≅MB and then MA⊕MC ≅MB ⊕MC . Similarly, if lh is
an automorphism, we haveMA ≅MC and hence MA⊕MB ≅MB⊕MC . If gf and
lh are not automorphism, then gf ∈ I2 ∖ I1 and lh ∈ I1 ∖ I2. Therefore gf + lh
is an automorphism of MA factoring through MB ⊕MC and so there exists an
R-module D such that MA⊕D ≅MB ⊕MC . To conclude, we need to show that
D ∈ D, i.e. D is artinian and soc(D) ≅ S1 ⊕ S2. It is clear that D is artinian.
Moreover, we have that soc(MA⊕D) ≅ soc(MA)⊕ soc(D) ≅M1

A⊕M
2

A⊕ soc(D)
is isomorphic to soc(MB ⊕MC) ≅ soc(MB)⊕ soc(MC) ≅M1

B ⊕M
2

B ⊕M
1

C ⊕M
2

C ;
by cancellation we get soc(D) ≅ S1 ⊕ S2.

Lemma 6.5.2 Every object in D is I1-small and I2-small.

Proof. We prove the Lemma only for I1, then by symmetry it works also
for I2. By Remark 6.4.8 it is enough to prove that any object MA in D is
I1-quasi-small. To prove this we have to show that for any family of objects
Mλ, λ ∈ Λ, in D and homomorphisms α∶MA → ⊕λ∈ΛMλ and β∶ ⊕λ∈ΛMλ → MA

with βα ∉ I1, the class {µ ∈ Λ ∣ βεµπµα ∉ I1 } is not empty. Suppose then that
βα ∉ I1, i.e. βα(M1

A) ≠ 0. The image α(M1

A) is a submodule of ⊕λ∈FM
1

λ for
some finite F ⊆ Λ. Since β(⊕λ∈FM

1

λ) ≠ 0, there exists an element µ ∈ F such
that β(M1

µ) ≠ 0. But this means that βεµπµα(M1

A) ≠ 0 and hence βεµπµα is

not in I1.

Theorem 6.5.3 Let R be a ring, S1 and S2 two non-isomorphic simple R-
modules and consider the category D = {M ∈ Mod-R ∣ M artinian, soc(M) ≅
S1 ⊕ S2 }. Let C = Sum(D) be the category whose objects are direct sums of
objects in D and I1 = { f ∶MA → MB ∣ f(M1

A) = 0} and I2 = { f ∶MA → MB ∣
f(M2

A) = 0}. Then the Strong Infinite 2-Krull-Schmidt Property holds for C,
with respect to the equivalence relations ∼I1 and ∼I2 .

6.6 Noetherian modules of dimension two over

their radical

We can dualize everything we did in our previous section. Let R be a ring
and S1 /≅ S2 be two non-isomorphic simple R-modules. Consider the category
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D = {M ∈Mod-R ∣M noetherian,M/Rad(M) ≅ S1 ⊕ S2 } and its closure under
small coproducts C = Sum(D). For every object MA ∈ D, denote by M1

A the
submodule of MA containing Rad(MA) such that M1

A/Rad(MA) ≅ S1 and by
M2

A the submodule of MA containing Rad(MA) such that M2

A/Rad(MA) ≅ S2.
For every pair of objects MA and MB of D define I1(MA,MB) = { f ∶MA →
MB ∣ f(MA) ⊆M1

B } and I2(MA,MB) = { f ∶MA →MB ∣ f(MA) ⊆M2

B }.
Proposition 6.6.1 Let C = Sum(D) the category whose objects are direct sums
of objects in D. Then I1 and I2 are completely prime ideals of D and every
(right, left, two-sided) maximal ideal of the endomorphism ring of an object MA

of D is equal either to I1(MA,MA) or to I2(MA,MA).
Proof. First, we want to prove that I1 and I2 are ideals of D. It is clear

that the zero morphism is in I1 and that f, g ∈ I1 implies f + g ∈ I1. Now
suppose f ∈ I1(MA,MB). If g∶MB → MC is a morphism in C, we have that
g(M1

B) is contained in M1

C and hence gf(MA) ⊆ g(M1

B) ⊆M1

C . If g∶MC →MB,
it is easy to see that fg ∈ I1(MC ,MB) since fg(MC) ⊆ f(MA) ⊆M1

B. Similarly
for I2.

Next we show that the ideals I1 and I2 are completely prime. By symmetry,
we show it only for I1. To prove this, consider f ∶MA →MB and g∶MB →MC

such that gf ∈ I1. Suppose that g ∉ I1 so that g(MB) ⊈M1

C . This implies that
f(MA) is contained in M1

B and then f ∈ I1.
Eventually, we show that I1 and I2 realize all the maximal ideals of the

endomorphism ring of an object MA in D. Suppose first that I1(MA,MA)
and I2(MA,MA) are comparable. Without loss of generality we can assume
I1(MA,MA) ⊇ I2(MA,MA). In this case, for any morphism f ∈ EndD(MA) ∖
I1(MA,MA), we have im(f)+Rad(MA) =MA. Since the radical of a noetherian
module is superfluous, we get that f must be surjective, and hence an automor-
phism of MA. This means that I1(MA,MA) is the unique maximal ideal of
EndD(MA). On the other hand, suppose that I1(MA,MA) and I2(MA,MA)
are not comparable. To prove that I1(MA,MA) is a maximal ideal, consider
g ∈ EndD(MA) that is not in I1(MA,MA). If g(MA) ⊈ M2

A, then g is an au-
tomorphism. If g(MA) ⊆M2

A, take an element f ∈ I1(MA,MA) ∖ I2(MA,MA);
then (f + g)(MA) =MA and so f + g is an automorphism. In the same way we
can prove that I2 is a maximal ideal.

With the same argument as above we can prove that if an ideal of EndD(MA)
is not contained in I1(MA,MA) or in I2(MA,MA), then it contains an auto-
morphism and so it is the whole endomorphism ring.

To apply Theorem 6.4.9 we need to show that C is D-splitting. To show
this, let MA,MB and MC be three objects in D such that [MA]I1 = [MB]I1
and [MA]I2 = [MC]I2 . This means that there exist morphisms f ∶MA → MB,
g∶MB →MA, h∶MA →MC and l∶MC →MA with f, g ∉ I1 and h, l ∉ I2. If gf is
an automorphism, MA ≅ MB and then MA ⊕MC ≅MB ⊕MC . Similarly, if lh
is an automorphism, we have MA ≅ MC and hence MA ⊕MB ≅ MB ⊕MC . If
gf and lh are not automorphism, then gf ∈ I2 ∖ I1 and lh ∈ I1 ∖ I2. Therefore
gf + lh is an automorphism of MA factoring through MB ⊕MC and so there
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exists an R-module D such that MA ⊕D ≅ MB ⊕MC . To conclude, we need
to show that D ∈ D, i.e. D is noetherian and M/Rad(M) ≅ S1 ⊕ S2. It is clear
that D is noetherian. We have that MA ⊕D/Rad(MA ⊕D) ≅MA/Rad(MA)⊕
D/Rad(D) ≅ S1⊕S2⊕D/Rad(D) is isomorphic to MB⊕MC/Rad(MB⊕MC) ≅
MB/Rad(MB) ⊕MC/Rad(MC) ≅ S1 ⊕ S2 ⊕ S1 ⊕ S2; by cancellation we get
D/Rad(D) ≅ S1 ⊕ S2.

Lemma 6.6.2 Every object in D is I1-small and I2-small.

Proof. We prove the Lemma only for I1, by symmetry it holds also for I2.
By Remark 6.4.8 it is enough to prove that any object MA in D is I1-quasi-small.
To prove this we have to show that for any family of objects Mλ ∈ D, λ ∈ Λ,
and homomorphisms α∶MA → ⊕λ∈ΛMλ and β∶ ⊕λ∈ΛMλ → MA with βα ∉ I1,
the class {µ ∈ Λ ∣ βεµπµα ∉ I1 } is not empty. Suppose then that βα ∉ I1, i.e.
βα(MA) ⊈ M1

A. This means that there exists an element m ∈ MA such that
βα(m) ∉ M1

A. Let F be a finite subset of Λ such that α(m) ∈ ⊕λ∈FMλ. Then
βα(m) = ∑λ∈F βελπλα(m) ∉M1

A. This implies that there exists an index µ ∈ Λ
such that βεµπµα ∉ I1.

Theorem 6.6.3 Let R be a ring, S1 and S2 two non-isomorphic simple R-
modules and consider the category

D = {M ∈Mod-R ∣M noetherian, M/Rad(M) ≅ S1 ⊕ S2 }.
Let C = Sum(D) be the category whose objects are direct sums of objects in D and
I1 = { f ∶MA → MB ∣ f(MA) ⊆ M1

B } and I2 = { f ∶MA → MB ∣ f(MA) ⊆ M2

B }.
Then the Strong Infinite 2-Krull-Schmidt Property holds for C, with respect to
the equivalence relations ∼I1 and ∼I2 .

6.7 Representations of type 1 pointwise of quiv-

ers with 2 vertices

A quiver Q = (Q0,Q1) is a directed graph, whose set of vertices is Q0 and
whose set of arrows is Q1. For any arrow a ∈ Q1, we denote by i(a) the initial
vertex and by t(a) the terminal vertex of the arrow a. Thus a∶ i(a) → t(a). A
path p is a juxtaposition of arrows a1, . . . , an such that i(ai+1) = t(ai) for every
i = 1, . . . , n − 1. We define also i(p) = i(a1) and t(p) = t(an) and we say that n
is the length of the path. If p, q are paths such that t(p) = i(q), then pq is the
juxtaposition of p and q. We will consider only quivers with two vertices and a
finite number of arrows.

A quiver can be seen as a category in a natural way, by taking Q0 as the set
of objects and paths between vertices as the morphisms with the juxtaposition
as composition. In order to obtain a category, we need to allow for every vertex
v ∈ Q0 the trivial path ev with initial and terminal vertex both equal to v, such
that pev = p and evq = q for every path p with t(p) = v and every path q with
i(q) = v.
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Let R be a ring. The category of functors (Q,Mod-R) from the category as-
sociated to the quiver Q described above to the category Mod-R is the category
of representations of Q by right R-modules and R-modules homomorphisms.
Since Mod-R is abelian, it follows that (Q,Mod-R) is abelian and limits are
computed pointwise.

More explicitly, a representation M of the quiver Q = (Q0,Q1) in the cate-
gory (Q,Mod-R) is a family {Mi}i∈Q0

of right R-modules together with a family
of R-modules homomorphisms {Ma∶Mi(a) →Mt(a)}a∈Q1

. A morphism of repre-
sentations f ∶M →M ′ is a collection of morphisms {fi∶Mi →M ′

i}i∈Q0
such that

M ′
afi(a) = ft(a)Ma for all arrows a ∈ Q1.
The path ring is the ring obtained by considering the free right R-module

R[Q] on the set of paths P of Q. The product of two paths x and y is defined
to be their juxtaposition xy if t(x) = i(y) and to be 0R[Q] if t(x) ≠ i(y). For
arbitrary elements of R[Q] the product is defined as

∑
x∈P

xrx ⋅ ∑
y∈P

yr′y = ∑
x,y∈P

xyrxr
′
y.

Note that in general the ring R[Q] may not have an identity. Nevertheless, if
Q0 is finite, R[Q] is an associative ring with identity e = ∑i∈Q0

ei and R embeds
in R[Q] via the injective ring morphism r ↦ er.

There is an equivalence of categories between Mod-R[Q] and (Q,Mod-R)
thus representations of quivers can be seen as modules over a suitable ring.

Let Q be a quiver with two vertices. We consider the category D of repre-
sentations of Q pointwise of type 1, i.e of representations M = {M1,M2} of Q
such that Mi is of type 1 for i = 1,2. Morphisms between two representations
M = {M1,M2} and N = {N1,N2} are couples of arrows {f1∶M1 → N1, f2∶M2 →
N2} such that f2Ma = Naf1 for any arrow a∶1 → 2 in Q and f1Mb = Nbf2 for
every arrow b∶2 → 1 in Q. Let C = Sum(D) be the category whose objects are
direct sums of objects in D.

Recall that, for any ring R, the Jacobson radical

J (M,N) = {f ∶M →N ∣ 1M − gf has a left inverse for every g∶N →M}
= {f ∶M →N ∣ 1M − gf has an inverse for every g∶N →M}

is a two-sided ideal of the category Mod-R.

Lemma 6.7.1 Let R be any ring and L be the full subcategory of Mod-R of
objects with local endomorphism ring. Then J is a completely prime ideal in L.

Proof. Let M , M1 and M2 be right R-modules with local endomorphism
ring. Consider two morphisms f ∶M1 → M and g∶M → M2 such that gf ∈
J (M1,M2). This means that 1M1

−hgf is left invertible for every h∶M2 →M1.
If we suppose that g ∉ J (M,M2) we have that there exists l∶M2 →M such that
1M − lg is not invertible in EndR(M). Since M has local endomorphism ring, it
needs to be 1M − lg ∈ J (M,M) = J(EndR(M)) and hence lg is invertible. This
implies that g is left invertible and therefore we must have f ∈ J (M1,M).
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Given objects M and N in D, we define the ideals J1(M,N) = {f ∶M →N ∣
f1 ∈ J (M1,N1)} and J2(M,N) = {f ∶M → N ∣ f2 ∈ J (M2,N2)}.
Proposition 6.7.2 The ideals J1 and J2 are completely prime ideals of D such
that they realize all (right, left, two-sided) maximal ideals of the endomorphism
rings of the objects of D.

Proof. Since the situation is completely symmetric, we prove the propo-
sition only for J1. First, we want to prove that J1 is in fact an ideal of D.
It is clear that the zero morphism is in J1. If we are given two morphisms
f, g∶M → N in J1(M,N), we have that f1, g1 ∈ J (M1,N1) and this implies
f + g ∈ J1(M,N), i.e. (f + g)1 = f1 + g1 ∈ J (M1,N1). It is clear that if we
compose f ∈ J1(M,N) with any morphism g in C, we remain in J1, since J
itself is an ideal.

To show that the ideal J1 is completely prime in D it is enough to apply
Lemma 6.7.1.

Now we show that, given an object M of D, the ideals J1(M,M) and
J2(M,M) realize all maximal ideals of the endomorphism ring EndD(M).
Suppose first that J1(M,M) and J2(M,M) are comparable. Without loss
of generality we can assume J1(M,M) ⊇ J2(M,M). In this case, for any mor-
phism f ∉ J1(M,M) we have that both f1 and f2 are isomorphisms and hence
f itself must be an isomorphism of M . Therefore J1(M,M) is the unique
maximal ideal of EndD(M). Now suppose that J1(M,M) and J2(M,M)
are not comparable. To prove that J1(M,M) is a maximal ideal, consider
g ∈ EndD(M) ∖ J1(M,M). This means that g1 is an isomorphism. If also g2
is an isomorphism then g itself must be an isomorphism. If g2 ∈ J (M2,M2),
choose an element f ∈ J1(M,M)∖J2(M,M); then f +g is neither in J1(M,M)
nor J2(M,M) and hence it must be an isomorphism. Similarly we can prove
that J2(M,M) is a maximal ideal of EndD(M).

With the same argument as above we can prove that if an ideal of EndD(M)
is not contained in J1(M,M) or in J2(M,M), then it contains an automorphism
and so it must be the whole endomorphism ring.

To apply Theorem 6.4.9 we need to show that C is D-splitting. To show
this, let M,N and P be three objects in D such that [M]J1

= [N]J1
and[M]J2

= [P ]J2
. This means that there exist morphisms f ∶M → N , g∶N →M ,

h∶M → P and l∶P →M with f, g ∉ J1 and h, l ∉ J2. Hence the homomorphisms
of R-modules f1∶M1 →N1, g1∶N1 →M1, h2∶M2 → P2 and l2∶P2 →M2 are in fact
isomorphisms. Consider the representation T of our quiver Q having T1 = P1,
T2 = N2 and such that for every arrow a∶Q1 → Q2 we have Ta = Nag

−1
1 l1 and for

every arrow a′∶Q2 → Q1 we have Ta′ = g2l
−1
2 Pa′ . To prove that M ⊕ T ≅ N ⊕ P

we consider the following morphism of representations e, defined by:

M1 ⊕P1 M2 ⊕N2

⎛
⎜
⎝
f1 g−11 l1
h1 1

⎞
⎟
⎠

×××Ö
×××Ö
⎛
⎜
⎝
f2 1
h2 l−12 g2

⎞
⎟
⎠

N1 ⊕ P1 N2 ⊕ P2.
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To be morphisms of representations of the quiver Q they need to commute
with the morphisms Ma ⊕ Ta and Na ⊕ Ta for every arrow a∶Q1 → Q2 and they
need to commute with the morphisms Ma′ ⊕ Ta′ and Na′ ⊕ Ta′ for every arrow
a′∶Q2 → Q1. To check this we verify that

( f2 1
h2 l−12 g2

)( Ma 0
0 Ta

) = ( Na 0
0 Pa

)( f1 g−11 l1
h1 1

)
for every arrow a∶Q1 → Q2 and

( f1 g−11 l1
h1 1

)( Ma′ 0
0 Ta′

) = ( Na′ 0
0 Pa′

)( f2 1
h2 l−12 g2

)
for every arrow a′∶Q2 → Q1. To verify the equalities it is enough to use the
commutativity of f, g, h and l with the morphisms of the representations.

Lemma 6.7.3 Every object in D is J1-small and J2-small.

Proof. We prove the Lemma only for J1, then by symmetry it works
also for J2. By Remark 6.4.8 it is enough to prove that any object M ∈ D is
J1-quasi-small. To prove this we have to show that for any family of objects
Mλ ∈ D, λ ∈ Λ, and homomorphisms α∶M → ⊕λ∈ΛM

λ and β∶ ⊕λ∈ΛM
λ → M

with βα ∉ J1, the class {µ ∈ Λ ∣ βεµπµα ∉ J1} is not empty. Suppose then that
βα ∉ J1, i.e. β1α1 ∉ J (M1,M1). Fix an element m ∈ M1; then there exists a
finite subset F ⊆ Λ such that α1(m) ∈ ⊕λ∈ΛM

λ
1 . Let M ′ = ⊕λ∈Λ∖FM

λ
1 . Then

we have β1α1 = β11⊕λ∈ΛM
λ
1

α1 = β1(εM ′πM ′ +∑λ∈F ελπλ)α1. Since β1α1 is not
in J , also one of the summands must not belong to J . It can not be that
β1εM ′πM ′α1 is not in J (M1,M1), because this would mean that β1εM ′πM ′α1

is an isomorphism and this contradicts πM ′α1(m) = 0. Hence there exists and
index µ ∈ F such that β1εµπµα1 ∉ J (M1,M1).
Theorem 6.7.4 Let R be a ring and Q a quiver with two vertices. Consider
the category D of representations of Q pointwise of type 1. Let C = Sum(D) be
the category whose objects are direct sums of objects in D. In D we have the
ideals J1(M,N) = {f ∶M → N ∣ f1 ∈ J (M1,N1)} and J2(M,N) = {f ∶M → N ∣
f2 ∈ J (M2,N2)}. Then the Strong Infinite 2-Krull-Schmidt Property holds for
C with respect to the equivalence relations ∼J1

and ∼J2
.

6.8 Infinite Quasi 2-Krull-Schmidt Property

In this section we want to generalize our section 6.3. Let M be an atomic
commutative infinitary monoid and let A be the class of atoms of M . Suppose
we are given two subclasses A′ and A′′ of A such that A′∪A′′ = A, an equivalence
relation ∼ on A′ and an equivalence relation ≡ on A′′. We say that the Infinite
Quasi 2-Krull-Schmidt Property holds for M with respect to the equivalence
relations ∼ and ≡ if for any couple of families {ai ∣ i ∈ I } and { bj ∣ j ∈ J }
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of atoms of M , we have that ∑i∈I ai = ∑j∈J bj if and only if there exist two
bijections σ∶ I ′ = { i ∈ I ∣ ai ∈ A′ } → J ′ = { j ∈ J ∣ bj ∈ A′ } and τ ∶ I ′′ = { i ∈ I ∣ ai ∈
A′′ } → J ′′ = { j ∈ J ∣ bj ∈ A′′ } such that ai ∼ bσ(i) for every i ∈ I ′ and ai ≡ bτ(i)
for every i ∈ I ′′.

Proposition 6.8.1 Let M be an atomic commutative infinitary monoid and let
A be the class of atoms of M . Suppose we are given two subclasses A′ and A′′

of A such that A′ ∪A′′ = A, an equivalence relation ∼ on A′ and an equivalence
relation ≡ on A′′. Then the following are equivalent:

1. the Infinite Quasi 2-Krull-Schmidt Property holds for M ;

2. there exist a complete bipartite graph B(X∪̇Y ) and an injective morphism
of commutative infinitary monoids ϕ∶M → F (X∪̇Y ) that sends atoms of
M either to vertices of B(X∪̇Y ) or to edges of B(X∪̇Y ) such that at
least one of the two vertices is not in the image.

Proof. Suppose that the Infinite Quasi 2-Krull-Schmidt Property holds
for M . Let A′/ ∼ and A′′/ ≡ be the quotient classes of A′ and A′′ modulo ∼ and
≡, respectively. The canonical morphism

π∼∶ A → A′/ ∼
a ↦ [a]∼ if a ∈ A′

a ↦ 0 if a ∉ A′

induces a canonical morphism π̂∼∶M → F (A′/ ∼) defined by π̂∼(∑i∈I ai) =
∑i∈I π∼(ai). Similarly, the canonical morphism

π≡∶ A → A′′/ ≡
a ↦ [a]≡ if a ∈ A′′

a ↦ 0 if a ∉ A′′

induces a canonical morphism π̂≡∶M → F (A′′/ ≡) defined by π̂≡(∑i∈I ai) =
∑i∈I π≡(ai). Since the Infinite Quasi 2-Krull-Schmidt Property holds for M ,
the product morphism π̂∼ × π̂≡∶M → F (A′/ ∼) ×F (A′′/ ≡) ≅ F (A′/ ∼ ∪̇A′′/ ≡) is
injective. For every atom a ∈ A of M , we have that

π̂∼ × π̂≡(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[a]∼ if a ∈ A′ ∖A′′

[a]≡ if a ∈ A′′ ∖A′

[a]∼ + [a]≡ if a ∈ A′ ∩A′′

Hence π̂∼ × π̂≡ is a morphism of commutative infinitary monoids from M to the
free commutative infinitary monoid F (A′/ ∼ ∪̇A′′/ ≡), that has as basis the
vertices of the bipartite graph B(A′/ ∼ ∪̇A′′/ ≡), that sends atoms of M to
vertices or edges of B(A′/ ∼ ∪̇A′′/ ≡). It is not possible that, given three atoms
a, a1 and a2 of M , we have π̂∼ × π̂≡(a) = [a]∼ + [a]≡, π̂∼ × π̂≡(a1) = [a]∼ and
π̂∼ × π̂≡(a2) = [a]≡. In fact, this means that

π̂∼ × π̂≡(a) = π̂∼ × π̂≡(a1) + π̂∼ × π̂≡(a2) = π̂∼ × π̂≡(a1 + a2).
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Since π̂∼ × π̂≡ is injective, we get a = a1 + a2 but this contradicts the fact that a
is an atom.

Now suppose that there exist a complete bipartite graph B(X∪̇Y ) and an
injective morphism of commutative infinitary monoids ϕ∶M → F (X∪̇Y ) that
sends atoms of M to vertices or edges of B(X∪̇Y ). Let A′ be the subclass of
A consisting of the atoms such that ϕ(a) contains a vertex in X and let A′′ be
the subclass of A consisting of the atoms such that ϕ(a) contains a vertex in
Y . Given an atom a ∈ A, we set ϕ(a) = xa + ya, with xa ∈ X and ya ∈ Y , where
one of the two summands can be zero. Hence we get A′ = {a ∈ A ∣ xa ≠ 0}
and A′′ = {a ∈ A ∣ ya ≠ 0}. Since ϕ preserves infinite sums, we have that
ϕ(∑i∈I ai) = ∑i∈I(xai

+ yai
), where, for every i ∈ I, one among xai

and yai
can

be zero. Since ϕ is injective, we have that ∑i∈I ai and ∑j∈J bj are equal if and
only if ϕ(∑i∈I ai) = ∑i∈I(xai

+yai
) is equal to ϕ(∑j∈J bj) =∑j∈J(xbj +ybj). This

happens if and only if there exist two bijections σ∶ I ′ = { i ∈ I ∣ ai ∈ A′ } → J ′ ={ j ∈ J ∣ bj ∈ A′ } and τ ∶ I ′′ = { i ∈ I ∣ ai ∈ A′′ } → J ′′ = { j ∈ J ∣ bj ∈ A′′ } such that
xai
= xbσ(i) for every i ∈ I ′ and yai

= ybτ(i) for every i ∈ I ′′. If we define a ∼ b
if xa = xb ≠ 0 and a ≡ b if ya = yb ≠ 0 it becomes clear that the Infinite Quasi
2-Krull-Schmidt Property holds for M .

Similarly to what we had in section 6.3, also here we can interpret the above
Proposition from another point of view.

Example 6.8.2 Let K and L be two classes and let K ′ ⊆ K and L′ ⊆ L.

Consider the class D of all the couples ( a
b
) with a ∈ K and b ∈ L such that

a ∈ K ′ or b ∈ L′. Let F be the class containing all 2 × ℵ matrices, with ℵ any
cardinal number, such that all the columns are elements of D. On the class
F we consider the following equivalence relation: given a 2 × ℵ matrix M and
a 2 × ℶ matrix N we say that M ∼ N if and only if there exist two bijections
σ∶ I ′ = {i ∈ ℵ ∣ m1,i ∈ K

′} → J ′ = {j ∈ ℶ ∣ n1,j ∈ K
′} and τ ∶ I ′′ = {i ∈ ℵ ∣ m2,i ∈

L′} → J ′′ = {j ∈ ℶ ∣ n2,j ∈ L
′} such that m1,i = n1,σ(i) for every i ∈ I ′ and

m2,i = n2,τ(i) for every i ∈ I ′′.
We define an atomic commutative infinitary monoid C considering the class

F / ∼ together with the operation induced by the juxtaposition of matrices. It
is clear that the Infinite Quasi 2-Krull-Schmidt Property holds for C.

Given any atomic commutative infinitary monoid M for which the Infinite
Quasi 2-Krull-Schmidt Property holds with respect to the equivalence relations
∼ on A′ and ≡ on A′′, there exist an atomic commutative infinitary monoid
C constructed as in Example 6.8.2 and an injective morphism of commutative
infinitary monoids ϕ∶M → C. It is enough to take K ′ equal to the class of
equivalence classes of A′ with respect to the equivalence relation ∼, ∣K ∣ = ∣K ′∣+1,
L′ equal to the class of the equivalence classes A′′ with respect to the equivalence
relation ≡ and ∣L∣ = ∣L′∣ + 1. Then we can define ϕ∶M → C as the morphism
of commutative infinitary monoids that sends an atom a ∈ M to the matrix

( [a]∼[a]
≡

), where we define [a]∼ = ∗ if a ∉ A′ and [a]≡ = ⋆ if a ∉ A′′. Since the
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Infinite Quasi 2-Krull-Schmidt Property holds both for M and C, it is clear that
ϕ is well-defined and injective.

Given the equivalence relation ∼ on A′ we can extend it to an equivalence
relation ∼′ on the whole A in the following way: we say that a ∼′ b if either
a, b ∈ A′ and a ∼ b, or both a and b are not in A′. Similarly we can extend the
equivalence relation ≡ on A′′ to an equivalence relation ≡′ on A.

If ∼ is an equivalence relation on A′ and ≡ is an equivalence relation on A′′,
we say that ∼ and ≡ are permutable if, given a ∈ A′ ∩A′′, b ∈ A′ and c ∈ A′′ such
that a ∼ b and a ≡ c, there exists d ∈ A such that d ∼′ c and d ≡′ b.

Example 6.8.3 In the setting of Example 6.8.2, the induced equivalence rela-
tions of D are permutable if it is not to possible to have the following: given two
elements a, a′ ∈ K such that a′ ∈ K ′ and a ∈ K ∖K ′ and two elements b, b′ ∈ L

such that b′ ∈ L′ and b ∈ L ∖L′, the matrices ( a

b′
), ( a′

b′
) and ( a′

b
) belong

to D. One way to avoid such problems is to ask that K =K ′ or L = L′.

Theorem 6.8.4 Let M be an atomic commutative infinitary monoid. Suppose
that there are two permutable equivalence relations ∼ on A′ and ≡ on A′′ such
that:

1. a = b if and only if a ∼′ b and a ≡′ b;

2. if a ∼ b and a ≡ c, then there exists an element d ∈ A such that a+d = b+ c,
d ∼′ c and d ≡′ b;

3. if we have two families {ai ∣ i = 0,1, . . . } and { bj ∣ j = 0,1, . . . } such that
a0 ∉ A

′, all the other elements are in A′ ∩ A′′ and bi ≡ ai and bi ∼ ai+1,
then ∑∞i=0 ai = ∑

∞
j=0 bj;

4. if we have two families {ai ∣ i = 0,1, . . . } and { bj ∣ j = 0,1, . . . } such that
a0 ∉ A

′′, all the other elements are in A′ ∩ A′′ and bi ∼ ai and bi ≡ ai+1,
then ∑∞i=0 ai = ∑

∞
j=0 bj.

Let {ai ∣ i ∈ I } and { bj ∣ j ∈ J } be two families of elements of A. Then ∑i∈I ai =

∑j∈J bj if there are two bijections σ∶ I ′ = { i ∈ I ∣ ai ∈ A′ }→ J ′ = { j ∈ J ∣ bj ∈ A′ }
and τ ∶ I ′′ = { i ∈ I ∣ ai ∈ A′′ } → J ′′ = { j ∈ J ∣ bj ∈ A′′ } such that ai ∼ bσ(i) for
every i ∈ I ′ and ai ≡ bτ(i) for every i ∈ I ′′.

Proof. Suppose that there are two bijections σ∶ I ′ = { i ∈ I ∣ ai ∈ A′ } →
J ′ = { j ∈ J ∣ bj ∈ A′ } and τ ∶ I ′′ = { i ∈ I ∣ ai ∈ A′′ } → J ′′ = { j ∈ J ∣ bj ∈ A′′ } such
that ai ∼ bσ(i) for every i ∈ I ′ and ai ≡ bτ(i) for every i ∈ I ′′.

For every element i ∈ I we construct inductively two sets, [i] ⊆ I and [[i]] ⊆
J . We start from imposing i ∈ [i]. Then k ∈ [i] ∩ I ′ implies that σ(k) ∈ [[i]]
and k ∈ [i] ∩ I ′′ implies that τ(k) ∈ [[i]]. Similarly, k ∈ [[i]] ∩ J ′ implies
that σ−1(k) ∈ [i] and k ∈ [[i]] ∩ J ′′ implies that τ−1(k) ∈ [i]. We claim that

∑k∈[i] ai =∑l∈[[i]] bl.
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To simplify the notation we set i0 = i and, if they exist, for z ∈ Z, jz = σ(iz)
if z ≥ 0 and jz = τ(iz+1) if z < 0, and iz = τ

−1(jz−1) if z > 0 and iz = σ
−1(jz) if

z < 0. We set also az = aiz and bz = bjz whenever they exist. Then, when they
exist, we have az ∼ bz and az ≡ bz−1. We can distinguish, up to symmetry and
reindexing, three cases:

(a) every element az and bz exists and is in A′ ∩ A′′. In this case we can
prove the claim exactly as in the proof of Theorem 6.3.4.

(b) a0 ∉ A
′′, az ∈ A

′ ∩A′′ for every z ≥ 1 and bz ∈ A
′ ∩A′′ for every z ≥ 0. In

this case the claim is equivalent to our hypothesis (4).
(c)There exists an integer n ≥ 0 such that a0, bn ∉ A

′′ and az, bz ∈ A
′ ∩ A′′

for every other z. If n = 0, by (1) we have that a0 = b0 and the claim is proved.
To prove the claim in the case n > 0 we will show by induction that for every
0 < k ≤ n there exists dk ∈ A

′∖A′′ such that dk ∼ ak and ∑k
i=0 ai = (∑k−1

j=0 bj)+dk .
We know that b0 ∼ a0 and b0 ≡ a1. Hence by (2) there exists an element d1 such
that d1 ∼ a1, d1 ∉ A

′′ and b0+d1 = a0+a1. Now suppose that dk has been defined
for every k < t. We have that bt−1 ∼ at−1 ∼ dt−1 and bt−1 ≡ at. By (2) we get that
there exists dt such that dt ∼ at, dt ≡

′ dt−1, i.e. dt ∉ A
′′, and bt−1 + dt = dt−1 + at.

Since by inductive hypothesis we have ∑t−1
i=0 ai = (∑t−2

j=0 bj) + dt−1 we obtain that

∑t
i=0 ai = (∑t−2

j=0 bj)+dt−1+at = (∑t−1
j=0 bj)+dt. Since dn and bn are not in A′′ and

dn ∼ an ∼ bn, by (1) we obtain that dn = bn concluding the proof of the claim.
It can not happen that there is an integer n ≥ 1 such that a0 ∉ A

′′, an ∉ A
′

and az, bz ∈ A
′ ∩A′′ for every other z. In fact, if n = 1 we have that a0 ∼ b0 and

a1 ≡ b0 imply that there exists d ∈ A such that d ∼′ a1 and d ≡′ a0. Since a0 ∉ A
′′

and a1 ∉ A
′ such an element d does not exist. If n > 1, we prove by induction

that for every 1 ≤ k < n there exists ck ∈ A
′ ∩A′′ such that ck ∼ a0, ck ≡ bk and

∑k
i=1 ai + ck = ∑

k
j=0 bj . From the relations a1 ∼ b1 and a1 ≡ b0 we deduce that

there exists c1 ∈ A
′ ∩A′′ such that c1 ∼ b0 ∼ a0, c1 ≡ b1 and a1 + c1 = b0 + b1. Now

suppose we constructed ck−1. From the relations ak ∼ bk and ak ≡ bk−1 ≡ ck−1
we obtain that there exists ck ∈ A

′ ∩ A′′ such that ck ∼ ck−1 ∼ a0, ck ≡ bk and
ak+ck = ck−1+bk. Since by inductive hypothesis we have ∑k−1

i=1 ai+ck−1 = ∑
k−1
j=0 bj

we obtain that ∑k
i=1 ai + ck = ∑

k
j=0 bj . Since cn−1 ∼ a0 and cn−1 ≡ bn−1 ≡ an, by

(2) there should exist d ∈ A such that d ∼′ an and d ≡′ a0. Since a0 ∉ A
′′ and

an ∉ A
′ such an element d can not exist.

When the index i runs all over the indices in I, we get that the sets [i]
form a partition of I and the sets [[i]] form a partition of J . By the claim

∑k∈[i] ai =∑l∈[[i]] bl for every i ∈ I and therefore ∑i∈I ai = ∑j∈J bj .

Similarly to the concept defined in section 6.3, we say that the equivalence
relation ∼ on A′ controls the infinite on A′ if the following happens: let {ai ∣ i ∈
I } and { bj ∣ j ∈ J } be two families of elements of A such that ∑i∈I ai = ∑j∈J bj .
Considering, for k ∈ I ′, the classes I∼(k) = { i ∈ I ∣ ai ∼ ak } and J∼(k) ={ j ∈ J ∣ bj ∼ ak } we suppose that, whenever I∼(k) and J∼(k) are infinite, for
every t ∈ I∼(k) there exists a subset A(t) ⊆ J with ∣A(t)∣ ≤ ∣I∼(k)∣ such that
J∼(k) ⊆ ⋃t∈I∼(k)A(t) and, similarly, for every u ∈ J∼(t) there exists a subset
B(u) ⊆ I with ∣B(u)∣ ≤ ∣J∼(k)∣ such that I∼(k) ⊆ ⋃u∈J∼(k)B(u).
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Theorem 6.8.5 Let M be an atomic a-cancellative commutative infinitary mo-
noid. Let A′ and A′′ be two subclasses of the class A of atoms of M such that
A′ ∪A′′ = A. Suppose that there are two permutable equivalence relations ∼ on
A′ and ≡ on A′′ such that:

1. a = b if and only if a ∼′ b and a ≡′ b;

2. let a ∈ A be a summand of ∑j∈J bj. If a ∈ A′ there exists j1 ∈ J such that
a ∼ bj1 ; if a ∈ A

′′ there exists j2 ∈ J such that a ≡ bj2 ;

3. given atoms a ∈ A′ ∩A′′, b ∈ A′ and c ∈ A′′ such that a ∼ b and a ≡ c, then
there exists an element d ∈ A such that a + d = b + c, d ∼′ c and d ≡′ b.

If ∼ controls the infinite on A′, then ∑i∈I ai = ∑j∈J bj implies that there is a
bijection σ∶ I ′ → J ′ such that ai ∼ bσ(i) for every i ∈ I ′.

Proof. Let {ai ∣ i ∈ I } and { bj ∣ j ∈ J } be two families of elements of A
such that ∑i∈I ai = ∑j∈J bj. Fix an index k ∈ I ′ and consider the two subclasses
I∼(k) = { i ∈ I ∣ ai ∼ ak } of I ′ and J∼(k) = { j ∈ J ∣ bj ∼ ak } of J ′. As in proof
of Theorem 6.3.5, the classes I∼(k), k ∈ I ′ form a partition of I ′ and the classes
J∼(k), k ∈ I ′ form a partition of J ′.

In order to establish the existence of the bijection between the ∼-classes of{ai ∣ i ∈ I ′ } and { bj ∣ j ∈ J ′ }, it is sufficient to prove that the cardinalities∣I∼(k)∣ and ∣J∼(k)∣ are equal for every k ∈ I ′.
Suppose first that either I∼(k) or J∼(k) is a finite set. Without loss of

generality we may assume ∣I∼(k)∣ ≤ ∣J∼(k)∣. Suppose that ∣I∼(k)∣ < ∣J∼(k)∣. Take
ı ∈ I∼(k); then, by (2), there exist j1 ∈ J

′ such that aı ∼ bj1 . Suppose first
that ı ∉ I ′′. If bj1 ∉ A

′′ then aı = bj1 and, since M is a-cancellative, we get

∑i∈I∖{ı} ai = ∑j∈J∖{j1} bj . If bj1 ∈ A
′′ then there exists ai1 such that bj1 ≡ ai1 . If

ai1 ∼ bj1 we obtain ai1 = bj1 and hence ∑i∈I∖{i1} ai = ∑j∈J∖{j1} bj . If ai1 /∼′ bj1 ,
we can exclude the case ai1 ∉ A

′, since if this is true we obtain by (3) that
there should exist an atom d that is neither in A′ nor in A′′. Hence we must
have ai1 ∈ A

′; then by (3) there exists d ∈ A such that d ∼ ai1 , d ∉ A′′ and
bj1 + d = aı + ai1 . Therefore

∑
i∈I

ai = aı + ai1 + ∑
i∈I∖{ı,i1}

ai = bj1 + d + ∑
i∈I∖{ı,i1}

ai =∑
j∈J

bj

implies d +∑i∈I∖{ı,i1} ai = ∑j∈J∖{j1} bj.
If ı ∈ I ′′ there exists also j2 ∈ J

′′ such that aı ≡ bj2 . We can exclude that
bj1 ∉ A

′′ and bj2 ∉ A
′ since this would imply, by (3), that there exists an atom

d that is neither in A′ nor in A′′. If aı ≡ bj1 we obtain aı = bj1 and hence

∑i∈I∖{ı} ai = ∑j∈J∖{j1} bj since M is a-cancellative. If j2 ∈ J∼(k), then aı = bj2
by (1) and we get ∑i∈I∖{ı} ai = ∑j∈J∖{j2} bj . In the remaining case, where j2 ∉

J∼(K), aı /≡′ bj1 and at least one among bj1 and bj2 is in A′ ∩A′′ we have, by
(3), that there exists d such that d ∼′ bj2 , d ≡′ bj1 and bj1 + bj2 = aı + d. Then

∑
i∈I

ai =∑
j∈J

bj = bj1 + bj2 + ∑
j∈J∖{j1,j2}

bj = aı + d + ∑
j∈J∖{j1,j2}

bj
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implies ∑i∈I∖{ı} ai = d +∑j∈J∖{j1,j2} bj .
An easy induction shows that after ∣I∼(K)∣ steps we get the required con-

tradiction.
If I∼(k) and J∼(k) are both infinite, the proof goes exactly as in the last

paragraph of the proof of Theorem 6.3.5.
Therefore we get that there exists a bijection σ∶ I ′ → J ′ such that ai ∼ bσ(i)

for every i ∈ I ′.

Combining the results of Theorem 6.8.4 and Theorem 6.8.5, we obtain the
following.

Theorem 6.8.6 Let M be an atomic commutative infinitary monoid. Let A′

and A′′ be two subclasses of the class A of atoms of M such that A′ ∪A′′ = A.
Suppose that there are two permutable equivalence relations ∼ on A′ and ≡ on
A′′. Then the following are equivalent:

1. the Infinite Quasi 2-Krull-Schmidt Property holds for ∼ and ≡;

2. the following hypotheses hold for M :

(a) M is a-cancellative;

(b) a = b if and only if a ∼′ b and a ≡′ b;

(c) let a ∈ A be a summand of ∑j∈J bj. If a ∈ A′ there exists j1 ∈ J such
that a ∼ bj1 ; if a ∈ A

′′ there exists j2 ∈ J such that a ≡ bj2 ;

(d) given atoms a ∈ A′ ∩A′′, b ∈ A′ and c ∈ A′′ such that a ∼ b and a ≡ c,
then there exists an element d ∈ A such that a + d = b + c, d ∼′ c and
d ≡′ b;

(e) if we have two families {ai ∣ i = 0,1, . . . } and { bj ∣ j = 0,1, . . . } such
that a0 ∉ A

′, all the other elements are in A′ ∩ A′′ and bi ≡ ai and
bi ∼ ai+1, then ∑∞i=0 ai = ∑

∞
j=0 bj;

(f) if we have two families {ai ∣ i = 0,1, . . . } and { bj ∣ j = 0,1, . . . } such
that a0 ∉ A

′′, all the other elements are in A′ ∩ A′′ and bi ∼ ai and
bi ≡ ai+1, then ∑

∞
i=0 ai = ∑

∞
j=0 bj;

(g) ∼ controls the infinite on A′;

(h) ≡ controls the infinite on A′′.

Proof. The implication (2)⇒ (1) comes directly from Theorem 6.8.4 and
6.8.5.

The implication (1) ⇒ (2) is obtained applying the Infinite Quasi 2-Krull-
Schmidt Property in some particular cases. It is clear that a = b if and only if
a ∼′ b and a ≡′ b. If a ∈ A is a summand of ∑j∈J bj it is clear from the Infinite
Quasi 2-Krull-Schmidt Property that, if a ∈ A′, there exists j1 ∈ J such that
a ∼ bj1 and, if a ∈ A′′, there exists j2 ∈ J such that a ≡ bj2 . If we are given atoms
a ∈ A′ ∩A′′, b ∈ A′ and c ∈ A′′ such that a ∼ b and a ≡ c, the Property would tell
us that a = b + c if b ∉ A′′ and c ∉ A′; this is clearly not possible, since a is an
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atom. Hence at least one among b and c is in A′ ∩ A′′, the permutability of ∼
and ≡ provides us an element d ∈ A such that d ∼′ c and d ≡′ b and the Property
assures us that a + d = b + c. If a is an atom of M and ∑i∈I ai and ∑j∈J bj are
two any other elements of M such that a+∑i∈I ai = a+∑j∈J bj , by the Property
we obtain that there exist a bijection σ∶ I ′ ∪ {∗}→ J ′ ∪ {∗} such that ai ∼

′ bσ(i)
for every i ∈ I ′ ∪ {∗} and a bijection τ ∶ I ′′ ∪ {∗} → J ′′ ∪ {∗} such that ai ≡

′ bτ(i)
for every i ∈ I ′′ ∪ {∗}. Then it is clear that we have also bijections σ′∶ I ′ → J ′

such that ai ∼ bσ′(i) for every i ∈ I ′ and τ ′∶ I ′′ → J ′′ such that ai ∼ bτ ′(i) for every
i ∈ I ′′ and hence ∑i∈I ai = ∑j∈J bj.

To prove (g) and (h), suppose ∑i∈I ai = ∑j∈J bj . By the Infinite Quasi 2-
Krull-Schmidt Property, there exist two bijections σ∶ I ′ → J ′ such that ai ∼ bσ(i)
for every i ∈ I ′ and τ ∶ I ′′ → J ′′ such that ai ≡ bτ(i) for every i ∈ I ′′. Then
we can take, for every t ∈ I ′, A(t) = {σ(t)} and we get J∼(k) ⊆ ⋃t∈I∼(k){σ(t)}
for every k ∈ I ′. Similarly, defining B(u) = {σ−1(u)} for every u ∈ J ′, we get
I∼(k) ⊆ ⋃u∈J∼(k){σ−1(u)} for every k ∈ I ′. We can do the same for ≡ using τ

instead of σ.

6.9 Infinite quasi 2-Krull-Schmidt Property in

cocomplete categories

Let C be a D-splitting cocomplete category and let I and J be completely
prime ideals of D. Suppose that for every object A in D the ideals I(A,A) and
J (A,A) are proper realizing all maximal ideals of EndD(A). In this setting
we would like to find conditions that make the Infinite Quasi 2-Krull-Schmidt
Property hold for ∼I and ∼J .

We know from section 6.4 that the Strong Infinite 2-Krull-Schmidt Property
holds for the class of objects of C that are direct sum of I-small and J -small
objects of D.

The first step that we need to do, to create the setting for a Infinite Quasi
2-Krull-Schmidt Property for the commutative infinitary monoid V (C), is to
determine the subclasses D′ and D′′ of D that will play the role of the classes
A′ and A′′ of the previous section. To define D′ and D′′ we look at Theorem
6.8.6 and we extrapolate the hypotheses that A′ and A′′ need to satisfy. Since
the situation is completely symmetric, we will deal only with D′ and A′. We
get the following:� ∼ controls the infinite on A′.

Similarly to what we did in section 6.4 we can assume that every object
in D′ is I-small to assure the validity of this hypothesis.� let a ∈ A be a summand of ∑j∈J bj. If a ∈ A′ there exist j1 ∈ J such that
a ∼ bj1 .
Since we assume that every element of D′ is I-small, it is I-quasi small
and so by Proposition 6.4.6 we get that also this hypothesis is satisfied.
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� if we have two families {ai ∣ i = 0,1, . . . } and { bj ∣ j = 0,1, . . . } such that
a0 ∉ A

′, all the other elements are in A′ ∩ A′′ and bi ≡ ai and bi ∼ ai+1,
then ∑∞i=0 ai = ∑

∞
j=0 bj.

We say that the couple of ideals I and J is I-starting if, given two families{Bi ∣ i = 0,1, . . . } and {Cj ∣ j = 0,1, . . . } such that B0 is not I-small, all
the other elements are both I-small and J -small and [Ci]J = [Bi]J and[Ci]I = [Bi+1]I , then ⊕∞i=0Bi = ⊕

∞
j=0Cj .� given a, b ∉ A′, we have a = b if and only if a ≡ b.

We say that the ideals I and J are complementary if, given two non-I-
small objects B and C in D, they are equal if and only if [B]J = [C]J ,
and similarly if B and C are non-J -small, they are equal if and only if[B]I = [C]I .

With these hypotheses we get the following.

Theorem 6.9.1 Let C be a D-splitting cocomplete category and let I and J be
completely prime ideals of D. Suppose that for every object A ∈ D, the ideals
I(A,A) and J (A,A) are proper ideals of EndD(A) realizing all maximal ideals
of EndD(A). Suppose that the couple of ideals I and J is both I-starting and
J -starting and that I and J are complementary.

Let {Ui ∣ i ∈ I} and {Vj ∣ j ∈ J} be two families of objects of D. Then
⊕i∈IUi ≅ ⊕j∈JVj if and only if there is a bijection σ∶ I ′ = {i ∈ I ∣ Ui is I-small}→
J ′ = {j ∈ J ∣ Vj is I-small} and a bijection τ ∶ I ′′ = {i ∈ I ∣ Ui is J -small} →
J ′′ = {j ∈ J ∣ Vj is J -small} such that [Ui]I = [Vσ(i)]I for every i ∈ I ′ and[Ui]J = [Vτ(i)]J for every i ∈ I ′′.

Proof. It is enough to check that all the conditions of the second point of
Theorem 6.8.6 are satisfied.

The endomorphism ring of every object A ∈ D is semilocal and hence A

cancels from direct sums.
By Lemma 6.4.1 and the hypothesis that the ideals I and J are comple-

mentary, we get that B ≅ C if and only if [B]′I = [C]′I and [B]′J = [C]′J , where
with the ′ we denote the extended equivalence relation as we defined it before
Theorem 6.8.4.

Suppose that B ∈ D is a direct summand of ⊕j∈JCj . If B is I-small, there is
a j ∈ J such that [B]I = [Cj]I . Similarly, if B is J -small, there is a j ∈ J such
that [B]J = [Cj]J .

If we are given objects B, C and D in D such that [B]I = [C]I and [B]J =[D]J , by Corollary 6.4.3 there exists an object E ∈ D such that B⊕E ≅ C ⊕D,[E]I = [D]I and [E]J = [C]J ; a fortiori it must be [E]′I = [D]′I and [E]′J =[C]′J .
Since the couple of ideals I and J is both I-starting and J -starting, it is easy

to see that all the entries of (2) in Theorem 6.8.6 are satisfied and hence the
Infinite Quasi 2-Krull-Schmidt Property holds for the commutative infinitary
monoid V (C) with respect to the equivalence relations ∼I and ∼J considered
respectively on the classes D′ of I-small objects and D′′ of J -small objects.
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6.10 Uniserial modules

In this section we want to present the unique (up to now) known example of
cocomplete category where the Infinite Quasi 2-Krull-Schmidt Property holds
but the Infinite 2-Krull Schmidt Property does not.

Throughout this section we will consider unital right modules over an asso-
ciative ring R with 1 ≠ 0. We say that an R-module M is uniserial if its lattice
of submodules is linearly ordered under inclusion. Let D be the full subcategory
of Mod-R consisting of all non-zero uniserial R-modules and let C = Sum(D) be
its closure under infinite direct sum. In the category D we define the ideals I
and J in the following way: given any two uniserial modules M,N ∈ D let

I(M,N) = {f ∶M →N ∣ f is not a monomorphism },
and

J (M,N) = {f ∶M → N ∣ f is not an epimorphism }.
Lemma 6.10.1 The ideals I and J are completely prime ideals of D.

Proof. Let M , N and P be three non-zero objects of D.
To prove that I is a completely prime ideal of D we show that for any

morphisms α∶N → M and β∶M → P such that βα is a monomorphism, we
have that both α and β are monomorphisms. It is clear that α must be a
monomorphism since ker(α) ⊆ ker(βα). To prove that β is a monomorphism
notice that βα monomorphism implies that α(N) ∩ ker(β) = 0; since M is
uniserial we have that either α(N) = 0 or ker(β) = 0. It can not happen that
α(N) = 0 since we proved α to be a monomorphism, hence it must be ker(β) = 0.

To prove that J is a completely prime ideal of D we show that for any
morphism γ∶N → M and δ∶M → P such that δγ is an epimorphism, we have
that both γ and δ are epimorphisms. It is clear that δ is an epimorphism since
im(δ) ⊇ im(δγ). Now suppose that γ is not an epimorphism, so that γ(N) ⊊M .
Since P ≠ 0, we have also ker(δ) ⊊M . Then, since M is uniserial, we have that
γ(N)+ker(δ) ⊊M . Now δ induce a one-to-one order preserving correspondence
between the submodules of M containing ker(δ) and the submodules of P .
Hence γ(N) + ker(δ) ⊊ M implies δ(γ(N) + ker(δ)) = δγ(N) ⊊ δ(M). This
contradicts the fact that δγ is an epimorphism, hence γ must be an epimorphism.

Proposition 6.10.2 Let M be a non-zero uniserial R-module and E its endo-
morphism ring EndR(M). Then I(M,M) and J (M,M) are proper ideals of
E, every proper ideal of E is contained either in I(M,M) or in J (M,M) and
either� I(M,M) and J (M,M) are comparable so that E is a local ring with

maximal ideal I(M,M) ∪ J (M,M), or
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� I(M,M) and J (M,M) are not comparable, I(M,M) ∩ J (M,M) is the
Jacobson radical J(E) of E and E/J(E) is canonically isomorphic to the
direct product E/I(M,M)×E/J (M,M) of the division rings E/I(M,M)
and E/J (M,M).

Proof. Let K be an arbitrary proper left or right ideal of E. Since
I(M,M)∪J (M,M) is the set of non-invertible elements of EndR(M), it must
be K ⊆ I(M,M) ∪ J (M,M). If we suppose K ⊈ I(M,M) and K ⊈ J (M,M),
there must be elements x ∈ K ∖ I(M,M) and y ∈ K ∖ J (M,M). Then x must
be in J (M,M) and y ∈ I(M,M). Hence we get that x + y ∈ K ∖ (I(M,M) ∪
J (M,M)). This contradicts the fact that K ⊆ I(M,M) ∪ J (M,M).

Thus every right or left ideal of E is contained either in I(M,M) or in
J (M,M). Therefore the unique maximal ideals (right, left and two-sided)
can be only I(M,M) and J (M,M). If these two ideals are comparable it
is the clear that E is a local ring with maximal ideal I(M,M) ∪ J (M,M).
Otherwise I(M,M) and J (M,M) are the only two distinct maximal ideals of
E. Therefore I(M,M)∩J (M,M) is the Jacobson radical J(E) of E and there
is a canonical injective ring morphism E/J(E) → E/I(M,M) × E/J (M,M).
Since E = I(M,M)+J (M,M) this morphism is onto by the Chinese Remainder
Theorem.

From this it follows that every object in D has semilocal endomorphism ring
and hence it cancels from direct sums. This means that the monoid V (C) is
a-cancellative.

With our next Lemma we prove that the category C is D-splitting.

Lemma 6.10.3 LetM,N and P be uniserial R-modules such that [M]I = [N]I
and [M]J = [P ]J . There is a uniserial module Q such that M ⊕Q ≅ N ⊕ P .

Proof. If we have three non-zero uniserial modules M,N and P such that[M]I = [N]I and [M]J = [P ]J , we have morphisms f ∶M → N , g∶N → M ,
h∶M → P and l∶P →M such that f, g ∉ I and h, l ∉ J . Consider the morphisms

( f
h
) ∶M →N ⊕ P

and ( g l )∶N ⊕ P →M

whose composite map is

( g l )( f
h
) = gf + lh∶M →M.

If gf is an isomorphism, then also f and g are isomorphisms by Lemma 6.10.1.
This means that M ≅ N and we can choose Q to be P . Similarly, if lh is an
isomorphism, also h and l are isomorphisms, M is isomorphic to P and we can
choose Q to be isomorphic to N .
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Hence we can suppose that neither gf nor lh are isomorphisms. Then gf +lh
is neither in I(M,M) nor in J (M,M) and therefore it must be an isomorphism.
Hence M is a direct summand of N ⊕ P and, more precisely, we have that

N ⊕P ≅M ⊕ ker( g l ).
Moreover

ker( g l ) = {n⊕ p ∈ N ⊕ P ∣ g(n) + l(p) = 0}
= {(g←(l(−p)), p) ∣ l(p) ∈ g(N)}
≅ l←(g(N)),

and l←(g(N)) is a uniserial module because it is a submodule of P . Hence we
can choose Q = ker( g l ).

Now we want to investigate the classes of I-small and J -small uniserial
modules.

Lemma 6.10.4 Every non-zero uniserial module is I-small.

Proof. By Remark 6.4.8 it is enough to prove that every uniserial module
is I-quasi-small. Let ⊕i∈IAi be a direct sum of uniserial modules and suppose
U⊕B = ⊕i∈IAi for a non-zero uniserial module U . We denote by εU ∶U → ⊕i∈IAi

and πU ∶ ⊕i∈IAi → U the canonical morphisms with respect o the direct summand
U and by εj ∶Aj → ⊕i∈IAi and πj ∶ ⊕i∈IAi → Aj the canonical morphisms with
respect to the direct summand Aj . We need to prove that there exists an index
k ∈ I such that πU εkπkεU is an injective endomorphism of U .

To do this, take a non-zero element x ∈ U . Then x ∈ Ai1 ⊕ . . .⊕Ain for some
i1, . . . , in ∈ I. Set C = ⊕i≠i1,...,inAi and let εC ∶C → ⊕i∈IAi and πC ∶ ⊕i∈IAi → C

be the canonical morphisms with respect to the direct summand C. Then

1U = πU εU = πU(εi1πi1 + . . . + εinπin + εCπC)εU
= πU εi1πi1εU + . . . + πU εinπinεU + πU εCπCεU .

Since 1U ∉ I, at least one of the summands must be a monomorphism. It can not
be the last one since πU εCπCεU(x) = 0. Therefore there is an index t = 1, . . . , n
such that πU εitπitεU is a monomorphism.

On the other hand, it is not true that every non-zero uniserial module is
J -small. An example of a non-zero uniserial module over a uniserial domain
that is not J -small was given by Puninski in [42].

From our previous Lemma we deduce that the couple of ideals I and J is
I-starting since there are no non-I-small non-zero uniserial modules. Hence, to
be able to use Theorem 6.9.1, we are left to prove that the couple of ideals is
J -starting and complementary. To prove these conditions we refer to [44] and
[45].
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For any uniserial module U , define the submodule Um ⊆ U as the intersection
of all the submodules of U that are isomorphic to U . If S ⊆ EndR(U) is the set of
all monic endomorphisms of U , then Um = ⋂f∈S im(f). Dually, let T ⊆ EndR(U)
be the set of all epic endomorphisms of U and define Ue = ∑f∈T ker(f).

Recall that an R-module M is said to be small if for every family {Ni ∣ i ∈ I}
of R-modules and any homomorphism ϕ∶M → ⊕i∈INi there is a finite subset
F ⊆ I such that πif = 0 for every i ∈ I ∖F . Clearly any small module is I-small
with respect to any ideal I. For uniserial modules we have the following.

Lemma 6.10.5 ([14, Proposition 2.45]) Every uniserial module that is not
small is countably generated.

Recall that a family of morphisms fλ∶U →Mλ, λ ∈ Λ is summable if for every
x ∈ U there is a finite subset Λ′ ⊆ Λ such that fλ(x) = 0 for every λ ∈ Λ ∖Λ′.

Proposition 6.10.6 A uniserial module is non-J -small if and only if Um ⊊

U = Ue and U is a countably generated module.

Proof. Let U be a uniserial module that is not J -small. Since it is
not small, it has to be countably generated. Any uniserial module with local
endomorphism ring is J -small since it has the exchange property [14, Example
9.29], so U has not local endomorphism ring and hence Um ⊊ U .

Now we need to prove that for any element x ∈ U there is an endomorphism
f ∈ EndR(U) such that f(x) = x but f is not an automorphism. By contradic-
tion, suppose that there exists an element u ∈ U such that for every endomor-
phism f of U , f(u) = u implies that f is an automorphism. Let Mλ, λ ∈ Λ be a
family of uniserial modules and let α∶U → ⊕λ∈ΛMλ and β∶ ⊕λ∈ΛMλ → U be mor-
phisms such that βα = 1U . Let Λ′ be a finite subset of Λ such that βελπλα(u) = 0
for every λ ∈ Λ∖Λ′. Then ∑λ∈Λ′ βελπλα(u) = u, hence ∑λ∈Λ′ βελπλα is an auto-
morphism. It is clear that one of the summands must be an epimorphism. This
contradicts our hypothesis that U is non-J -small. Hence, for any u ∈ U , there is
a morphism f ∶U → U such that f is not an automorphism and f(u) = u. Then
1 − f is an epimorphism having u in its kernel, thus Ue = U .

Now let U be a countably generated uniserial module satisfying Um ⊊ U = Ue.
To prove that U is not finitely generated, let 0 ≠ u ∈ Ue. By definition of Ue

there exists an epimorphism f of U such that f(u) = 0. Let v ∈ U such that
f(v) = u. Then f2(v) = 0 and v ∈ Ue. Since u ≠ 0, vR ⊈ uR.

Next we prove that for any element u ∈ U there is a monomorphism of U
such that f(u) = u but f is not an automorphism. Let 0 ≠ u ∈ U = Ue. Then
there is an epimorphism f ∶U → U such that f(u) = 0. Let g∶U → U be any
monomorphism that is not an automorphism. Then f + g is an automorphism
and (f + g)(u) = g(u). Now (f + g)−1g∶U → U is a monomorphism that is not
an automorphism and (f + g)−1g(u) = u.

Let xn, n ≥ 0 be a countable set of generators of U with 0 ⊊ x0R ⊊ x1R ⊊ . . ..
For every n there is a monomorphism f of U such that f(xn) = xn but f is
not an automorphism. Define a family of endomorphisms as follows: g0 = f0
and gn = fn − fn−1 for every n ≥ 1. It is easy to see that {gn ∣ n ≥ 0} is a
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summable family of endomorphisms of U , ∑n≥0 gn = 1U and every gn is not an
epimorphism. Hence U is not J -small.

Lemma 6.10.7 Let U be a uniserial module satisfying Um ⊊ Ue. Then for any
uniserial module V such that [U]I = [V ]I we have Vm ⊊ Ve. Moreover, Ue is
the union of its proper submodules that are isomorphic to V .

Proof. We can suppose that V is a submodule of U such that Um ⊊ V ⊊

Ue because [V ]I = [Ue]I . Now there is an epimorphism f ∶U → U such that
f(V ) = 0. The submodule W = f−1(V ) is isomorphic to V , let g∶V →W be an
isomorphism. Then Wm = Um and gf∣W ∶W →W is an epimorphism having V ,
and thus also Wm, in its kernel. Hence Wm ⊊We.

Let X be a submodule of Ue which is a union of proper submodules of Ue that
are isomorphic to V . Suppose X ≠ Ue. Then there is an epimorphism f ∶U → U

such that f(X) = 0. Now f−1(V ) is a proper submodule of Ue isomorphic to V .
Since X ⊊ f−1(V ), we have a contradiction and X = Ue.

With our next Proposition we prove that the couple of ideals I and J is
complementary.

Proposition 6.10.8 Let U and V be non-zero uniserial modules that are not
J -small. Then [U]I = [V ]I if and only if U ≅ V .

Proof. Suppose that [U]I = [V ]I . To prove the claim it is enough to find
an epimorphism f ∶V → U . By Proposition 6.10.6 we can apply Lemma 6.10.7
and hence U is a union of submodules isomorphic to V . As U is countably
generated, there is a chain X1 ⊆ X2 ⊆ . . . ⊆ U such that for any i ∈ N there
is an epimorphism f ∶V → Xi. The sum of these epimorphisms induces an
epimorphism ϕ∶ ⊕i∈NVi → U , where Vi = V and ϕ(Vi) = Xi for any i ∈ N. Since
V = Ve and V is countably generated, it is possible to construct by induction
elements v1, v2, . . . ∈ V and homomorphisms h1, h2, . . . such that the following
conditions are satisfied:� v1, v2, . . . generate V ;� for any i ∈ N, the homomorphism hi∶V → Vi is an epimorphism and

hi+1(vi) = 0;� for any i ≥ 2, ϕ(hi(vi)) ∉Xi−1.

The family {hi ∣ i ∈ N} is a summable family of homomorphisms V → ⊕i∈NVi,
since hj(vi) = 0 whenever j > i. Let f = ϕh, where h = ∑i∈N hi. By the properties
of the hi, f(vi) ∉ Xi−1 for any i ≥ 2. Thus f is an epimorphism and we are done.

The last condition that we need is that the couple of ideals I and J is
J -starting. We just state it without proving it.
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Proposition 6.10.9 ([45, Lemma 2.5]) Let {Bi ∣ i = 0,1, . . .} and {Cj ∣ j =
0,1, . . . } be two families of uniserial modules such that B0 is not J -small, all
the other modules are both I-small and J -small and [Ci]I = [Bi]I and [Ci]J =[Bi+1]J , then ⊕∞i=0Bi = ⊕

∞
j=0Cj.

At this point we can apply Theorem 6.9.1 and obtain the following.

Theorem 6.10.10 Let {Ui ∣ i ∈ I} and {Vj ∣ j ∈ J} be non-empty families
of non-zero uniserial modules. Let I ′ = {i ∈ I ∣ Ui is J -small} and J ′ = {j ∈
J ∣ Vj is J -small}. Then ⊕i∈IUi ≅ ⊕j∈JVj if and only if there exist a bijection
σ∶ I → J and a bijection τ ∶ I ′ → J ′ such that [Ui]I = [Vσ(i)]J for any i ∈ I and[Ui]J = [Vτ(i)]J for any i ∈ I ′.
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Divisor theory, 60
Divisor-closed submonoid, 56
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Essential element, 25
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I-small, 119
associated, 70
completely prime, 96, 113
maximal ideal of a category, 73

Ideal of a lattice, 46
principal, 46

161



prime, 46
Infinite 2-Krull-Schmidt Property, 124

for a cocomplete category, 130
strong, 126

for a cocomplete category, 130
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of a ring, 11

Join-independent subset, 24

Lattice, 24
Boolean, 47
complemented, 47
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uniform, 25

Left stable range 1, 35
Lemma

Nakayama’s, 13
Local morphism, 34
Localization, 56

Maximal spectrum of a category, 79
Module

couniform, 28
couniformly presented, 116
Fitting, 23
heterogeneous, 100
semisimple, 9
simple, 9
small, 152
superfluous, 28
uniserial, 149

Monoid
atomic, 55
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cancellative, 57
discrete valuation, 57
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Krull, 58
numerical, 56
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of finite type, 97
of type n, 97
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representation, 138

Rank of a linear map, 77
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of finite type, 96
of type n, 96
semilocal, 29
semiprimitive, 13
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saturated, 60
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Krull-Schmidt, 3
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Wedderburn-Artin, 14

Trace ideal, 89
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maximal, 89

Ultrafilter, 46
Uniform element, 25
Uniform module, 28

Valuation, 56
equivalent, 61
essential, 56
index, 56

Weak direct sum, 81
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