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Abstract8

Clustering geographical units based on a set of quantitative features observed at several
time occasions requires to deal with the complexity of both space and time information. In
particular, one should consider (1) the spatial nature of the units to be clustered, (2) the
characteristics of the space of multivariate time trajectories, and (3) the uncertainty related
to the assignment of a geographical unit to a given cluster on the basis of the above com-
plex features. This paper discusses a novel spatially constrained multivariate time series
clustering for units characterised by different levels of spatial proximity. In particular, the
Fuzzy Partitioning Around Medoids algorithm with Dynamic Time Warping dissimilarity
measure and spatial penalization terms is applied to classify multivariate Spatial-Temporal
series. The clustering method has been theoretically presented and discussed using both
simulated and real data, highlighting its main features. In particular, the capability of
embedding different levels of proximity among units, and the ability of considering time
series with different length.
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1. Introduction11

As Caiado et al. (2015) highlights, the (1) model- (2) feature- and (3) observation-12

based approaches are the main methodological veins developed in the past to aggregate13

units characterised by similar behaviour across time (for more details, see also Warren Liao,14

2005; Caiado et al., 2015; D’Urso et al., 2016).15

The idea behind the model-based clustering algorithms is to find the best mathemat-16

ical/statistical model able to describe given time-varying data. The clustering is then17

performed on the parameter estimates (or on the residuals) of the fitted models (see, e.g.,18

Piccolo, 1990; Maharaj, 1996; Garcia-Escudero & Gordaliza, 1999; Kalpakis et al., 2001;19

James & Sugar, 2003; Alonso & Maharaj, 2006; Caiado & Crato, 2010; Otranto, 2010;20

D’Urso et al., 2013b,a, 2016; D’Urso et al., 2017). Examples of model-based fuzzy cluster-21

ing algorithms for univariate time series can be found in D’Urso et al. (2013a,b).22
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Following the feature-based clustering approach, time series are clustered according to23

one of their specific features, such as the autocorrelation function (ACF), the periodogram,24

the density function or the wavelet information (see, e.g., Alonso & Maharaj, 2006; Caiado25

et al., 2006, 2009; D’Urso & Maharaj, 2009; Maharaj & D’Urso, 2010, 2011; D’Urso &26

Maharaj, 2012; D’Urso et al., 2014; Lafuente-Rego & Vilar, 2016; Vilar et al., 2017). In27

the fuzzy clustering framework, both univariate and multivariate time series wavelet fea-28

tures have been considered in Maharaj et al. (2010) and D’Urso & Maharaj (2012), while29

frequency domains of univariate time series have been taken into account in Maharaj &30

D’Urso (2011).31

Observed time series, or suitable transformations, are instead the segmentation data32

used in the observation-based approach (see, e.g., D’Urso, 2005a; Coppi et al., 2010, and33

references therein). In the last decade, different fuzzy clustering algorithms have been34

proposed for both univariate and multivariate time series (see, e.g., Coppi & D’Urso, 2002,35

2003, 2006; D’Urso, 2005b; D’Urso et al., 2015, 2016; D’Urso et al., 2017; D’Urso et al.,36

2017; Vilar et al., 2017).37

Similarly, different methods have been suggested in the clustering literature to discover38

spatial patterns for different kind of spatial units, e.g., urban areas or image pixels. The39

main challenge these methods deal with is the identification of an appropriate algorithm40

to capture both spatial dependence and spatial heterogeneity. Following the categorisation41

suggested by Caiado et al. (2015), Fouedjio (2016) classifies clustering of spatial data42

into four main approaches: (1) non-spatial clustering with geographical coordinates as43

additional variables; (2) non-spatial clustering based on a spatial dissimilarity measure;44

(3) spatially constrained clustering; (4) model-based clustering. An example of spatially45

constrained fuzzy algorithm for urban areas is provided by Di Nola et al. (2000). Examples46

of applications for image pixels segmentation can be found in Tolias & Panas (1998a,b);47

Pham & Prince (1999); Liew et al. (2000, 2003); Pham (2001); Liew et al. (2003); Chuang48

et al. (2006).49

A fifth approach worth of notice consists in including a spatial penalty term in the50

objective function of the clustering method, as suggested by Pham (2001). While this51

proposal has been introduced for solving image segmentation problem, the idea beyond52

can be easily extended to the clustering of geographical areas (Coppi et al., 2010).53

When time information are available for space unit, the spatial time data array is a54

three-way data array (i.e. arrays of the type: spatial objects × variables × occasions).55

The spatial time data array X can be reduced to a bi-dimensional array by combining two56

of the three dimensions on the rows and assigning the remaining dimension to the columns57

(Krishnapuram & Freg, 1992; Shekhar et al., 2015). This dimensionality reduction allows58

for the classification of units by means of a traditional clustering technique at the expense59

of information loss. To overcome this drawback, several clustering for spatial-temporal60

series have been suggested in the literature. Following Disegna et al. (2017), clustering of61

spatial-temporal series can be classified into: (i) non-spatial time series clustering based on62

a spatial dissimilarity measure (Izakian et al., 2013); (ii) density-based clustering (Ester63

et al., 1996; Wang et al., 2006; Birant & Kut, 2007; Ienco & Bordogna, 2016; Xie et al.,64

2016); (iii) model-based clustering (Basford & McLachlan, 1985; Viroli, 2011; Torabi, 2014,65
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2016; Disegna et al., 2017); (iv) spatially constrained time series clustering (Hu & Sung,66

2006; Coppi et al., 2010; Gao & Yu, 2016). Three-way data arrays have also been analysed67

by means of several fuzzy clustering algorithms (see, e.g., Sato & Sato, 1994; Sato et al.,68

1997; Gordon & Vichi, 2001; D’Urso, 2004, 2005a; Coppi et al., 2010). As for space data,69

Coppi et al. (2010) proposed the inclusion of the spatial penalty term in the objective70

function of a fuzzy clustering algorithm for spatial-temporal data too. The aim of this71

term is to reduce the membership degrees of all units contiguous to the generic i-th unit72

computed in all clusters but the c-th cluster to which the i-th unit belongs (Coppi et al.,73

2010).74

In this study a generalisation of the fuzzy clustering algorithm with spatial penalization75

introduced by Coppi et al. (2010) is proposed. In particular, the innovation is threefold:76

firstly, we suggest to substitute the Euclidean distance with the Dynamic Time Warping77

(DTW) dissimilarity measure; secondly, we extend the Coppi et al. (2010)’s algorithm to78

the case in which data are characterised by different sources of spatial information; thirdly,79

a measure of spatial autocorrelation, the Fuzzy Moran (FM)’s index, is defined to study80

the autocorrelation of the final imprecise partition when several spatial penalty terms are81

considered.82

The DTW dissimilarity measure has been selected instead of other more traditional83

distance measures, such as the well known Euclidean distance, mainly for its flexibility, the84

possibility to simultaneously consider both intensity and dynamic existing between time85

series, and thanks to its ability to compute distance among multivariate time series not86

necessarily of the same length.87

The necessity to consider more than one spatial penalty term in the clustering algorithm88

is motivated by practical case studies in which units are characterised by different levels,89

or concepts, of proximity. For instance, European region are classified into three levels of90

Nomenclature of Territorial Units for Statistics (NUTS) geography classification and any91

clustering analysis of European cities should take into consideration these three levels.92

Therefore, the Dynamic Time Warping Fuzzy C-Medoids for Spatial-Temporal Trajec-93

tories (DTW-FCMd-STT) clustering algorithm with penalty terms is proposed and de-94

scribed in this manuscript.95

The paper is structured as follows: in section 2 the suggested algorithm is described96

and discussed in depth; in section 3 different simulated case studies are presented in order97

to show the main features of the algorithm; in section 4 the methodology is illustrated98

by analysing real data describing the behaviour of the tourism flows in a destination, i.e.99

spatial region. section 5 concludes.100

2. The methodology101

The starting point is represented by a spatial time data array (three-way data array),102

algebraically formalised as (D’Urso, 2000, 2004, 2005a):103

X ≡ {xijt : i = 1, . . . , I; j = 1, . . . , J ; t = 1, . . . , T} (1)
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where i indicates the generic unit (geographical area or region), j the variable, and t the104

generic time; xijt is the value of the j-th variable observed for the i-th unit at time t.105

Notice that the time data array X can be synthetically represented by means of a bi-
dimensional matrix combining two of the three indices i, j, t on the rows and assigning the
remaining index to the columns. For instance, the time data array can be defined as the
set of bi-dimensional matrices Xi,Xt, or Xj as follows:

Xi ≡ {xijt : j = 1, . . . , J ; t = 1, . . . , T}
Xt ≡ {xijt : i = 1, . . . , I; j = 1, . . . , J}
Xj ≡ {xijt : i = 1, . . . , I; t = 1, . . . , T}.

We also assume to have K additional pieces of information on spatial location of each106

units in relation with the others, i.e., K different levels of spatial proximity. Each level of107

proximity is defined by a (I × I) symmetric data matrix Pk (k = 1, . . . , K), whose generic108

entry pkii′ is a measure of a particular definition of spatial proximity between the i-th and109

i′-th units (i, i′ = 1, . . . , I), where 0 ≤ pkii′ ≤ 1 and pkii = 0. For instance, pkii′ = 1 if110

the two areas are contiguous, pkii′ = 0 otherwise. Alternatively, pkii′ could be inversely111

proportional to the geographic distance between i and i′. We will further illustrate different112

kind of proximity matrix in section 2.2.113

Figure 1 graphically represents the bundle of available information and the dimensions114

of the data array typically used in spatial-temporal analysis.115
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I

I

PK
I

⋮

I

J

T

Spatial	static	information	
on	geographical	units

Legend:
I geographical	units
J time-varying	observed	variables
T period	of	time

Space-time	data	array

Figure 1: Spatial-temporal data array

For classification purpose, the i-th multivariate time trajectory is formalized by the116
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matrix Xi ≡ {xit : t = 1, . . . , T}, where xit ≡ (xi1t, . . . , xijt, . . . , xiJt), i = 1, . . . , I, t =117

1, . . . , T .118

2.1. Dynamic Time Warping119

The Dynamic Time Warping (DTW) (Velichko et al., 1970; Berndt, 1994; Izakian et al.,120

2015; D’Urso et al., 2018) allows to locally stretch or compress multivariate time series to121

make their shape as similar as possible.122

To this end, the functions that allow to remap each multivariate time series need to be123

identified. This kind of function is called warping function and its aim is to “realign” the124

time indices of the multivariate time series.125

Given a “query” (or test) multivariate time series Xi and a “reference” multivariate126

time series, Xi′ , with length T and T ′ (T R T ′) respectively, the total distance between Xi127

and Xi′ is computed by means of the warping path. The warping path allows to compare128

each data point in Xi with the closest data point in Xi′ , and is defined as129

Φl = (ϕl, ψl), l = 1, . . . , L.

under the following constraints.130

1. boundary condition: Φ1 = (1, 1), ΦL = (T, T ′);131

2. monotonicity condition: ϕ1 ≤ . . . ≤ ϕl ≤ . . . ≤ ϕL and ψ1 ≤ . . . ≤ ψl ≤ . . . ≤ ψL.132

The total dissimilarity between the two “warped” multivariate time series is:133

L∑
l=1

d(xi,ϕl
,xi′,ψl

)ml,Φ

where ml,Φ is a local weighting coefficient, and d(., .) is, usually, the Euclidean distance134

for multivariate time series (Giorgino et al., 2009). Since there are several warping curves,135

the DTW dissimilarity measure is the one which correspond to the optimal warping curve,136

Φ̂l = (ϕ̂l, ψ̂l), (l = 1, . . . , L), which minimizes the total dissimilarity between Xi and Xi′ :137

D(Xi,Xi′) = min
Φl

L∑
l=1

d(xi,ϕl
,xi′,ψl

)ml,Φ =
L∑
l=1

d(xi,ϕ̂l
,xi′,ψ̂l

)ml,Φ̂. (2)

The DTW dissimilarity measure is particularly useful when comparing multivariate138

time series. First, by preserving the time ordering of the sequence, the DTW goes beyond139

the instantaneous features of time data. Indeed, DTW dissimilarity measure copes with140

both the instantaneous and the variational features of the multivariate time trajectories,141

i.e., the instantaneous position of the trajectories and their dynamic evolution over time,142

thus providing a more complete comparison that takes into account also the different rates143

at which phenomena change over times. Second the DTW dissimilarity measure is also144

more flexible than the Euclidean distance since it allows for comparison of multivariate time145

series of different lengths. Third, no assumptions are required regarding the multivariate146
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time series properties. Furthermore, Euclidean distance is calculated in a one-to-one man-147

ner, while DTW dissimilarity measure tries to find the best warping. Finally, by taking148

explicitly into account the ordering of the observations, DTW also deals with the presence149

of possible time shits in the data.150

For all these reasons, DTW is now usually adopted as a suitable alternative to Euclidean151

distance in time series cluster analysis (see, among others, Berndt, 1994; Oates et al., 1999;152

Jeong et al., 2011; Petitjean et al., 2011; Begum et al., 2015; Izakian et al., 2015; Mure et al.,153

2016) In particular, Ding et al. (2008) and Rakthanmanon et al. (2012) experimentally154

proved the effectiveness of DTW in data mining problems—like time series clustering is—155

with respect to other distance measures.156

Furthermore, while DTW is more computationally demanding than Euclidean distance,157

by adopting a Partitioning-Around-Medoids (PAM, Kaufman & Rousseeuw, 2005) ap-158

proach (see section 2.3 below), the distance matrix should be computed only once at the159

start of the overall clustering procedure (D’Urso et al., 2018).160

2.2. Dealing with space: proximity matrix161

When dealing with spatial data the within group dispersion has to be minimised and the162

spatial autocorrelation between contiguous spatial units has to be taken into consideration.163

This spatial information can be analytically embedded in the clustering process using a164

“proximity” matrix, say P, that is a symmetric matrix of order I whose elements signal the165

proximity between two spatial areas (Pham, 2001; Coppi et al., 2010). In the literature,166

there are different ways of defining proximity and consequently there are different ways of167

constructing proximity matrices among spatial units (Gordon, 1999; Páez & Scott, 2005).168

Two of the most common definitions are based on connectivity, i.e. travel time or distance169

between pairs of units, and physical contiguity.170

Connectivity can be coped with by means of a proximity matrix P whose elements171

are given by the inverse of a generic measure of the distance between i and i′ (distance172

between the two spatial units, trip duration and/or cost, etc.), normalized to range in173

[0, 1]. The more two spatial areas are connected, the lower is the value in the proximity174

matrix. Obviously, diagonal elements are all equal to 0.175

Spatial contiguity, on its turn, can be specified in several ways. For instance, two176

spatial units can be contiguous either if they are adjacent (neighbours) or if they belong177

to the same macro-area, even if they are not adjacent. In this case, P is constructed as a178

symmetric matrix with 0 diagonal elements and with off-diagonal elements given by:179

pii′ =

{
1 if i is contiguous to i′

0 otherwise
i = 1, . . . , I, i 6= i′. (3)

2.3. The DTW-Fuzzy C-Medoids clustering algorithm for Spatial-Temporal Trajectories180

(DTW-FCMd-STT)181

In this paper, following a PAM apprach in a fuzzy framework, the Fuzzy C-Medoids182

(FCMd, Krishnapuram et al., 2001) clustering algorithm is adopted. With respect to stan-183

dard (crisp) clustering algorithms, fuzzy clustering algorithms are generally more efficient—184

dramatic changes in the value of cluster membership are less likely to occur in estimation185
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procedures—and they are less affected by both local optima and convergence problems186

(Everitt et al., 2001; Hwang et al., 2007). With complex data as multivariate time series187

are, it could be difficult to identify a clear boundary between clusters in real applications.188

In this sense, fuzzy clustering appears more attractive than the crisp clustering methods189

?Wedel & Kamakura (2000). Finally, the membership degrees produced by fuzzy cluster-190

ing methods, that indicate the belonging of each unit to each cluster, also indicate whether191

there is a second-best cluster almost as good as the best cluster, a scenario which crisp192

clustering methods cannot uncover Everitt et al. (2001).193

Regarding the choice of the fuzzy clustering method, with respect to Fuzzy C-Means194

(FCM, Bezdek, 1981), FCMd allows for more appealing and easy to interpret results of the195

final partition (Kaufman & Rousseeuw, 2005) by obtaining non-fictitious representative196

time series (i.e. the medoids) as final result (see section 2.6).197

Dealing with Spatial-Temporal trajectories, possible spillover effects between adjacent198

units have to be taken into account. As observed in section 2.2, since there could be199

different, say K (K ≥ 1), definitions of proximity, K spatial penalty terms are added to200

the objective function. Following Pham & Prince (1999) and Coppi et al. (2010), the201

DTW-Fuzzy C-Medoids clustering algorithm for Spatial-Temporal Trajectories (DTW-202

FCMd-STT) is then formalised as follows:203 
min :

I∑
i=1

C∑
c=1

umicD(Xi, X̃c) +
K∑
k=1

βk
2

I∑
i=1

C∑
c=1

umic
I∑

i′=1

∑
c′∈Cc

pkii′u
m
i′c′

s.t.
C∑
c=1

uic = 1, uic ≥ 0

(4)

where Xi and X̃c are the multivariate time trajectories of the i-th spatial unit and of the204

c-th spatial medoid (c = 1, . . . , C), respectively; D(·, ·) is the DTW dissimilarity measure205

for multivariate spatial time series; m > 1 is the fuzziness parameter; βk ≥ 0 is the206

tuning parameter of the k-th spatial information; pkii′ is the generic element of the (I × I)207

“proximity” matrix Pk; Cc is the set of the C clusters, with the exclusion of cluster c; uic208

is the membership degree of the unit i to the cluster c.209

The objective function in (4) is made up by two distinguished terms:210

• the time dependent term (see section 2.3.1)211

I∑
i=1

C∑
c=1

umicD(Xi, X̃c); (5)

• the spatial dependent term212

K∑
k=1

βk
2

I∑
i=1

C∑
c=1

umic

I∑
i′=1

∑
c′∈Cc

pkii′u
m
i′c′ (6)

which is the sum of K spatial penalty terms (see section 2.3.2).213
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The two terms (5) and (6) are computed over the same data range, i.e., over the same214

observations. In the clustering process, one term could dominate the other depending on215

the data at hand. The way in which both terms contribute to the clustering results will216

be clarified in sections 2.3.1-2.3.2.217

The optimal iterative solution for the objective function in (4) is:218

uic =

[
D(Xi, X̃c) +

K∑
k=1

βk
I∑

i′=1

∑
c′∈Cc

pkii′u
m
i′c′

]− 1
m−1

C∑
c′=1

[
D(Xi, X̃c′) +

K∑
k=1

βk
I∑

i′=1

∑
c′′∈Cc′

pkii′umi′c′′

]− 1
m−1

(7)

As a final remark, the overall optimization of the objective function in (4) ensures that219

the cohesion within clusters is maximized and that the spatial autocorrelation existing in220

the data at hand is properly coped with, simultaneously, as it will be explained in the221

following.222

2.3.1. Time dependent term223

The time dependent term (5) is the within cluster dispersion due to the time-varying224

features of multivariate trajectories. As observed in section 2.1, in this term the whole time225

information is inherited by the Dynamic Time Warping measure, that takes into account226

both the instantaneous and the variational features of the multivariate time trajectories.227

When there are no spatial information, the time dependent term (5) coincides with the228

Dynamic Time Warping Fuzzy C-Medoids (DTW-FCMd) for multivariate time trajectories229

introduced by D’Urso et al. (2018).230

2.3.2. Spatial dependent term231

The spatial dependent term (6) suitably allows the objective function to incorporate232

different sources of spatial information. The term (6) is the sum of K (K ≥ 1) spatial233

penalty terms (Pham, 2001; Coppi et al., 2010), one for each definition of proximity among234

areas considered. In this way, the clustering method captures the information connected235

to the different levels of proximity (multilevel proximity). For instance, we can consider236

the simple case illustrated in Figure 2 in which 5 units, i.e. towns, and 2 macroarea, i.e.237

valleys, are considered. In this specific case, two kinds of proximity can be defined: (i)238

proximity among towns (level 1 proximity); belonging to the same valley (level 2 proximity).239

Therefore, four different scenarios can be identified: 1) two towns (a1 and a2) are close to240

each other (level 1 proximity) and they belong to the same valley (level 2 proximity); 2)241

two towns (a1 and b1) are close to each other (level 1 proximity) but they do not belong242

to the same valley; 3) two towns (a1 and a3) are not close to each other but they belong243

to the same valley (level 2 proximity); 4) two towns (a1 and b2) are not close to each other244

and they do not belong to the same valley.245

In each spatial penalty term two parameters are relevant, the proximity matrix Pk, and246

the tuning parameter βk.247
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a1

a3

a2

b2

b1

Figure 2: Example of proximity among areas where a1, a2, a3, b1, and b2 are towns and the light green
and dark green areas represent two valleys

The role of the k-th proximity matrix, Pk, is to increase the membership degree of unit248

i in cluster c and, at the same time, to increase the membership degrees of the units that249

are connected, in some way, to i in cluster c, while reducing these membership degrees250

in the other clusters. We define this spatial smoothing as “proximity effect”, where, as251

previously observed, the concept of proximity is vast enough to encompass different types of252

connectivity between areas. The tuning parameter βk must be set depending on the spatial253

autocorrelation among data (see section 2.5 below). βk could enhance the proximity effect254

due to Pk if the spatial autocorrelation between units is high, e.g., if the features of a spatial255

unit display a certain degree of concordance with those of its neighbours. Otherwise, βk256

could counterbalance, if not neutralise at all, the proximity effect, if there is relatively low257

spatial autocorrelation between areas. Then, the greater the value of βk, the greater is the258

weight of the concept of proximity ascribed to it in the clustering process. Let say that259

β1 corresponds to the distance between areas, and β2 to the belonging to the same macro-260

area, then, if β1 > β2, “closeness” plays a major role than “belonging” in the optimization261

process.262

As already observed, the choice of the value of βk is data dependent. Coppi et al.263

(2010) observed that the choice should be made according to a measure of a within cluster264

spatial autocorrelation (see section 2.5), to avoid that the spatial smoothing induced by265

the proximity matrix overcome the cluster separation. Indeed, an excessively high value266

of one or more βk’s could constraint all neighbour units to be classified in one cluster,267

regardless the features observed. A heuristic procedure for a custom-made choice of βk’s268
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is illustrated in section 4.269

Finally, it should be stressed that by combining Pk and βk in the clustering process,270

we are able to take into account also the spatial autocorrelation which is more informative271

than the spatial proximity alone.272

2.3.3. A remark on the use of spatial information273

As highlighted in the Introduction, in spatial clustering there are different approaches274

to incorporate spatial information in a clustering framework. In particular, spatial infor-275

mation can be represented in a clustering method by considering the contiguity/adjacencies276

between each pair of territorial (spatial) units (Gordon, 1999). This information is usu-277

ally formalized in the clustering method by means of contiguity/adjacencies constraints278

or suitable spatial weights associated to distance measures. This approach is preferred in279

hierarchical clustering (i.e. agglomerative) or in relational clustering where the distance280

measure is taken for each pair of territorial units. In doing so the spatial information is281

represented algebraically by a squared matrix (called either contiguity matrix or spatial282

matrix) associated to the squared distance matrix. Each element of this matrix represents283

the territorial proximity between two units that can be represented by either dichotomous284

values (0 or 1), indicating if the units are neighbouring or not, or quantitative values285

representing the road distances or travel times.286

In the literature, another well-known approach used to incorporate spatial information287

in the clustering procedure is to introduce a suitable penalty term in the objective function288

used in the optimization procedure for clustering territorial units (see, e.g., Pham, 2001; ?;289

Coppi et al., 2010). This approach is used in non-hierarchical framework (e.g. hard or fuzzy290

C-means clustering and hard or fuzzy partitioning around medoids procedures, as the hard291

or fuzzy C-medoids clustering), where the spatial information cannot be represented by292

squared matrix. In fact, in these cases, the dimension of the distance matrix is rectangular293

(the matrix contains values representing, e.g., the distance between each territorial unit294

and each centroid or between each territorial unit and each medoid, where centroids and295

medoids are the prototypes representing the clusters). This approach is quite common in296

the spatial clustering literature. As remarked by Pham (2001), “a classical approach to297

incorporating spatial information is to penalize the [...] objective function [of the fuzzy298

clustering] to constrain the behavior of the membership functions, similar to methods used299

in regularization and Markov random field (MRF) theory (?). This penalty can be used300

to discourage unlikely or undesirable configurations in the membership functions, such as301

a high membership value immediately surrounded by low values of the same class”. The302

Markov random field (MRF) theory has been used by ? “which used standard first order303

differences as a penalty to force membership values to be similar to neighbouring values.304

The main problem with such a penalty function, however, is that it can drastically alter305

the characteristics of the membership function in an undesirable fashion. For example, first306

order differences will cause membership functions to be nearly piecewise constant. Second307

order differences will cause membership functions to be more smooth. However, depending308

on the value of the [m] parameter, this may contradict the desired characteristics of the309

membership functions. [In our method], the objective function [see formula (4)] includes a310
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penalty term that is reminiscent of MRF priors but is consistent with the desired behavior311

of the membership functions dictated by the value of the m parameter” (Pham, 2001). As312

remarked before, the use of penalty terms for taking into account the spatial proximity is313

largely used in the literature, in different research areas (see, among others, ??????????).314

Then, it is a consolidated methodological approach in the spatial clustering analysis.315

Notice that, since our clustering method classify territorial units following a non-316

hierarchical approach, we cannot consider the spatial information represented by conti-317

guity or spatial measures (that compare pair of units) formalized as constraints or weights318

associated to distance matrix (as in the hierarchical approach). In addition, since we con-319

sider different levels of contiguity, considering different adjacency matrices as weights to320

embed would considerably increase the complexity of the procedure. Nonetheless, as will321

be remarked in the Conclusions, in the future we will explore the possibility to take into322

account the spatial information in the clustering process following another clustering ap-323

proach, i.e. the fuzzy relational method (?Kaufman & Rousseeuw, 2005; D’Urso, 2015).324

We will aslo investigate the computational and operational complexity of this alternative325

clustering procedure (scalability, etc.).326

2.4. Validity measure327

In general, internal validity measures provide useful guidelines in the identification of328

the best partition (Handl et al., 2005; D’Urso, 2015). Suitable measures for fuzzy clustering329

algorithm have been suggested by Xie & Beni (1991) and Campello & Hruschka (2006).330

The Xie and Beni cluster validity index (Xie & Beni, 1991) is the ratio between com-331

pactness and separation among clusters and it can be expressed as:332

XB =

I∑
i=1

C∑
c=1

upicD(Xi, X̃c)

I min
p 6=q

D(X̃p, X̃q)
(8)

where (p, q) ∈ {1. . . . , C}. The smaller XB, the more compact and separate are the333

clusters.334

The Fuzzy Silhouette (FS) index (Campello & Hruschka, 2006) is computed as the335

weighted average of individual silhouettes width, λi, (Kaufman & Rousseeuw, 2005), with336

weights derived from the fuzzy membership matrix U = {uic : i = 1, . . . , I; c = 1, . . . , C}337

as follows:338

FS =

∑I
i=1(uip − uiq)α · λi∑I
i=1(uip − uiq)α

, λi =
(bi − ai)

max{bi, ai}
(9)

Here, ai is the average distance between the i-th unit and the units belonging to the339

cluster p (p = 1,...,C) with which i is associated with the highest membership degree; bi is340

the minimum (over clusters) average distance of the i-th unit to all units belonging to the341

cluster q with q 6= p; (uip−uiq)α is the weight of each λi calculated upon U, where p and q342

are, respectively, the first and second best clusters (accordingly to the membership degree)343
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to which the i-th unit is associated; α ≥ 0 is an optional user defined weighting coefficient.344

The traditional (crisp) Silhouette coefficients is obtained by setting α = 0. The higher345

the value of FS, the better the assignment of the units to the clusters simultaneously346

obtaining the minimisation of the intra-cluster distance and the maximisation of the inter-347

cluster distance.348

2.5. Spatial autocorrelation349

In this paper, we introduce a new measure of spatial autocorrelation to assess the350

post-cluster autocorrelation between units, the Fuzzy Moran (FM) index. This index is a351

multivariate fuzzy generalisation of the Moran’s index (Gittleman & Kot, 1990) and it is352

a generalization of the spatial autocorrelation measure introduced by Coppi et al. (2010).353

The idea of the FM index is to compute the spatial autocorrelation between classified354

units in which both the fuzzy membership matrix U and the spatial proximity matrices355

Pk are considered. The FM index is defined as follows:356

FM =
tr
[
X̄′U

1
2
c P̃U

1
2
c X̄
]

tr
[
X̄′U

1
2
c diag(P̃′P̃)U

1
2
c X̄
] (10)

where Uc is the square diagonal matrix of order I of the membership degrees of cluster c;357

X̄ is the centred “compromise” matrix (mean of the T data matrices Xt); P̃ is the weighted358

spatial matrix obtained as linear combination between the K proximity matrices as follows359

360

P̃ =
K∑
k=1

wkPk (11)

where 0 ≤ wk ≤ 1 and
∑K

k=1wk = 1. The FM index (as the Moran’s index) ranges between361

-1 and 1. A value of 1 indicates perfect positive spatial autocorrelation, i.e. neighbouring362

units have similar values, 0 indicates no autocorrelation, i.e. units are spatially random363

located, and -1 indicates perfect negative spatial autocorrelation, i.e. neighbouring units364

have dissimilar values (Páez & Scott, 2005). Thus, the higher the FM value, the better365

the geographical assignment of the units to the clusters.366

Moreover, the Fuzzy Moran’s index, as the Moran’s index, can be interpreted as a mea-367

sure of spatial spill-over effect (Ma et al., 2015; Yang, 2012). In the literature, the spatial368

spill-over effect is considered as the indirect or unintentional effects that a geographical369

area exerts on other neighbour areas (Yang & Fik, 2014). A positive spill-over effect is370

obtained when an area benefits of their neighbours influence due to the existence of spatial371

externalities across area.372

2.6. Some comparative assessment373

Our proposal inherits all the advantages of the ingredients considered in the method-374

ological framework. In particular, in a comparative assessment point of view, with respect375

to some methods suggested in the literature we have the following evidences.376
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• The fuzzy clustering methods proposed by D’Urso et al. (2018) show very good377

performance for clustering units with time-varying information. However, when the378

units are regions, geographical areas, etc., it is more useful to analyse this kind of units379

by considering clustering methods capable to capture the territorial nature of the380

units. To this purpose, the method proposed in this paper is able to cluster units not381

only considering time information but also taking into account additional information382

connected to spatial characteristics of the units. In particular, our method is able383

to cluster territorial units considering explicitly in the objective function the spatial384

information connected to the units—territorial proximity and spatial autocorrelation385

(see sections 2.2 and 2.3.2). Notice that, the fuzzy clustering methods proposed by386

D’Urso et al. (2018) could be applied to territorial units, but ignoring the territorial387

information that characterizes this type of unit. However, this would represent a388

relevant loss of information in the spatial analysis process. Furthermore, with respect389

to the fuzzy clustering methods suggested by D’Urso et al. (2018) based on the390

Euclidean distance, the proposed method inherits all the advantages of the DTW-391

based dissimilarity measure (see, section 2.1).392

• The Fuzzy C-Means clustering method for spatial time series proposed by Coppi393

et al. (2010) (Cross-Sectional Fuzzy C-Means for Spatial-Temporal Trajectories, CS-394

FCM-STT) is able to cluster territorial units with time-varying information. With395

respect to this method our proposal has two more advantages inherited: (i) by the396

kind of prototypes utilized in our method (i.e. medoids vs centroids); (ii) by the397

characteristics of the spatial component considered in the objective function of the398

proposed method.399

(i) With respect to the advantage connected to the kind of prototypes (i.e. medoids),400

adopting PAM approach, the prototypes of each cluster (medoids) are territorial units401

actually observed and not “virtual” territorial units like the “centroids” derived with402

a Fuzzy C-Means—as in the method suggested by Coppi et al. (2010). Overall,403

having non-fictitious representative territorial units available makes interpreting the404

obtained clusters easier, which is often very useful in geographical and territorial405

applications. In fact, “in many clustering problems one is particularly interested406

in a characterization of the clusters by means of typical or representative objects407

[territorial units]. These are objects [territorial units] that represent the various408

structural aspects of the set of objects [territorial units] being investigated. There can409

be many reasons for searching for representative objects [territorial units]. Not only410

can these objects [territorial units] provide a characterization of the clusters, but they411

can often be used for further work or research, especially when it is more economical412

or convenient to use a small set of k objects [C territorial units in our case] instead413

of the large set one started off with” (Kaufman & Rousseeuw, 2005). Furthermore,414

PAM clustering approach is slightly more robust than C-Means approach (Garcia-415

Escudero & Gordaliza, 1999; ?; Estivill-Castro & Yang, 2004; Kaufman & Rousseeuw,416

2005), hence DTW-FCMd-STT is relatively more resistant to the presence of noise417

in the data than CS-FCM-STT.418
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(ii) With respect to the advantages connected to spatial dependent term of the ob-419

jective function, our spatial term is more general compared with the spatial term420

considered in the method suggested by Coppi et al. (2010). In fact, as remarked in421

section 2.3.2, it is capable to consider different level of spatial proximity (multilevel422

proximity) and then it is more informative in a spatial point of view in the sense that423

it is able to capture in deep the political and physical geographical characteristics424

-e.g. administrative and economic features and geophysical and orographic nuances-425

of the analysed territorial area. In this way, the spatial dependent term used in Coppi426

et al. (2010) is a particular case of the term adopted in our method. See section 2.3.2427

for more details.428

3. Illustration with simulated data429

3.1. Simulation study 1430

In the following, a simulation study in which two contiguity matrices are considered for431

simplicity, is presented. The aim of this exercise is to assess the sensitivity of the clustering432

process to the contiguity matrices, according to the k-th spatial parameters βk (formula433

4).434

An artificial data set is generated with two natural clusters and two units close to each435

other and characterized by soft memberships to one of the two clusters. Two contiguity436

matrices, one with contiguity only among the units within the natural clusters (including437

the soft membership unit) and one including the contiguity between the soft membership438

units as well, are generated. The aim of the simulation is to verify the decreasing of the439

fuzzy membership degrees of the two soft membership units with respect to their natural440

clusters and, eventually, even their memberships to the same cluster while increasing the441

spatial penalty coefficient of the matrix including contiguity between them. For this reason,442

the spatial penalty coefficients β1 and β2 range in (0, 8).443

The number of units, variables, and periods of time considered are I = 8, J = 2, and444

T = 6, respectively. In the contiguity matrix P2, two sets of contiguous units are defined,445

i.e. (1, 2, 3, 4) and (5, 6, 7, 8), whereas in P1 the contiguity between units 4 and 5 is446

added. The contiguity matrices P1 and P2 are the following:447

P1 =



u1 u2 u3 u4 u5 u6 u7 u8
u1 1 1 1 1 0 0 0 0
u2 1 1 1 1 0 0 0 0
u3 1 1 1 1 0 0 0 0
u4 1 1 1 1 1 0 0 0
u5 0 0 0 1 1 1 1 1
u6 0 0 0 0 1 1 1 1
u7 0 0 0 0 1 1 1 1
u8 0 0 0 0 1 1 1 1


448
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P2 =



u1 u2 u3 u4 u5 u6 u7 u8
u1 1 1 1 1 0 0 0 0
u2 1 1 1 1 0 0 0 0
u3 1 1 1 1 0 0 0 0
u4 1 1 1 1 0 0 0 0
u5 0 0 0 0 1 1 1 1
u6 0 0 0 0 1 1 1 1
u7 0 0 0 0 1 1 1 1
u8 0 0 0 0 1 1 1 1


The generation process of the dataset is summarized in Table 1. The defined clusters449

are (1, 2, 3) and (6, 7, 8). Units 4 and 5 are characterized by a fuzzy membership to450

clusters (1, 2, 3) and (6, 7, 8), respectively. Going from data configuration 1) to data451

configuration 4), we can note that units 4 and 5 are getting closer and closer (Table 1 and452

Figure 3).453

Configuration units 1,2,3 unit 4 unit 5 units 6,7,8

1)
j=1 U [0.0, 0.5] U [0.8, 1.0] U [1.0, 1.2] U [1.5, 2.0]
j=2 U [0.0, 0.5] U [0.8, 1.0] U [1.0, 1.2] U [1.5, 2.0]

2)
j=1 U [0.0, 0.5] U [0.85, 1.0] U [1.0, 1.15] U [1.5, 2.0]
j=2 U [0.0, 0.5] U [0.85, 1.0] U [1.0, 1.15] U [1.5, 2.0]

3)
j=1 U [0.0, 0.5] U [0.9, 1.0] U [1.0, 1.1] U [1.5, 2.0]
j=2 U [0.0, 0.5] U [0.9, 1.0] U [1.0, 1.1] U [1.5, 2.0]

4)
j=1 U [0.0, 0.5] U [0.95, 1.0] U [1.0, 1.05] U [1.5, 2.0]
j=2 U [0.0, 0.5] U [0.95, 1.0] U [1.0, 1.05] U [1.5, 2.0]

Table 1: Data generation process for simulation study 1. Two clusters are generated from the data. Going
from configuration 1) to configuration 4), units 4 and 5 are getting closer

The membership degree obtained in the case of the fourth data configuration (see Table454

1 and Figure 3) are reported in Table 2. By suitably tuning the values of β1 and β2, and455

therefore the separate influence of the two contiguity matrices P1 and P2, we can see how456

the two units 4 and 5 become more clearly separated, and then classified to the respective457

clusters when β1 < β2, or, on the contrary, are classified in the same cluster, when β1 > β2.458

For more details on the membership degrees and on performance results, see the Ap-459

pendix Appendix A.1 to this paper.460

3.2. Simulation study 2461

This simulation study is similar to that presented in section 3.1. We increased the462

number of objects and of clusters, to show the performance of DTW-FCMd-STT in a463

more complex environment. Similarly as in an simulation study 1, artificial data set is464

generated with four natural clusters and four units close to each other characterized by465

soft membership to one of the four clusters. Two contiguity matrices, one with contiguity466
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Figure 3: Data generation process for simulation study 1. Two clusters are generated from the data. Going
from configuration 1) to configuration 4), units 4 and 5 are getting closer

(β1, β2) (0, 0) (4, 0) (0, 4) (8, 0) (0, 8)

cluster 1 2 1 2 1 2 1 2 1 2

1 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
2 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
3 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
4 0.6271 0.3729 0.6853 0.3147 0.6689 0.3311 0.7168 0.2832 0.7051 0.2949
5 0.4874 0.5126 0.5256 0.4744 0.4603 0.5397 0.5169 0.4831 0.4138 0.5862
6 0.0000 1.0000 0.0000 1.0000 0.0001 0.9999 0.0000 1.0000 0.0001 0.9999
7 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
8 0.0003 0.9997 0.0001 0.9999 0.0004 0.9996 0.0001 0.9999 0.0004 0.9996

Note: Medoids’ membership degrees are in bold.

Table 2: Membership degrees for simulation study 1 obtained under the data configuration 4), according
to different combinations of β1 and β2
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only among the units within the natural clusters (including the soft membership unit) and467

one including the contiguity among the soft membership units as well, are generated. The468

aim of the simulation is to verify the decreasing of the fuzzy membership degree of the469

four soft membership units to the natural clusters and eventually even their membership470

to the same cluster while increasing the spatial penalty coefficient of the matrix including471

contiguity among them. To this end, the spatial penalty coefficients β1 and β2 range in472

(0, 20).473

The number of units, variables, and periods of time considered are I = 16, J = 2, and474

T = 6, respectively. In the first contiguity matrix (P2), the contiguous units are (1, 2, 3,475

4), (5, 6, 7, 8), (9, 10, 11, 12) and (13, 14, 15, 16), whereas in P1 the contiguity among476

units 4, 5, 12, 13 is added.477

The generation process of the dataset is summarized in Table 3. The defined clusters478

are (1, 2, 3), (6, 7, 8), (9, 10, 11), (14, 15, 16). Units 4, 5, 12, 13 are characterized by479

a fuzzy membership to clusters (1, 2, 3), (6, 7, 8), (9, 10, 11), (14, 15, 16), respectively.480

Going from data configuration 1) to data configuration 4) units 4, 5, and 12, 13 are getting481

closer and closer, respectively (Table 3 and Figure 4).482

Configuration units 1,2,3 unit 4 unit 5 units 6,7,8 units 9,10,11 unit 12 unit 13 units 14,15,16

1)
j=1 U [0.0, 0.5] U [0.6, 0.7] U [0.6, 0.7] U [0.0, 0.5] U [1.5, 2.0] U [1.3, 1.4] U [1.3, 1.4] U [1.5, 2.0]
j=2 U [0.0, 0.5] U [0.6, 0.7] U [1.3, 1.4] U [1.5, 2.0] U [1.5, 2.0] U [1.3, 1.4] U [0.6, 0.7] U [0.0, 0.5]

2)
j=1 U [0.0, 0.5] U [0.7, 0.8] U [0.7, 0.8] U [0.0, 0.5] U [1.5, 2.0] U [1.2, 1.3] U [1.2, 1.3] U [1.5, 2.0]
j=2 U [0.0, 0.5] U [0.7, 0.8] U [1.2, 1.3] U [1.5, 2.0] U [1.5, 2.0] U [1.2, 1.3] U [0.7, 0.8] U [0.0, 0.5]

3)
j=1 U [0.0, 0.5] U [0.8, 0.9] U [0.8, 0.9] U [0.0, 0.5] U [1.5, 2.0] U [1.1, 1.2] U [1.1, 1.2] U [1.5, 2.0]
j=1 U [0.0, 0.5] U [0.8, 0.9] U [1.1, 1.2] U [1.5, 2.0] U [1.5, 2.0] U [1.1, 1.2] U [0.8, 0.9] U [0.0, 0.5]

4) j=1 U [0.0, 0.5] U [0.9, 1.0] U [0.9, 1.0] U [0.0, 0.5] U [1.5, 2.0] U [1.0, 1.1] U [1.0, 1.1] U [1.5, 2.0]
j=2 U [0.0, 0.5] U [0.9, 1.0] U [1.0, 1.1] U [1.5, 2.0] U [1.5, 2.0] U [1.0, 1.1] U [0.9, 1.0] U [0.0, 0.5]

Table 3: Data generation process for simulation study 2. Four clusters are generated from the data. Going
from configuration 1) to configuration 4), units 4, 5, and 12, 13 are getting closer

Once again, according to the combination of β1 and β2, the fuzzy units get more sepa-483

rated when β1 < β2, while eventually are classified in the same cluster when β1 > β2.484

For more details on the membership degrees and on performance results, see the Ap-485

pendix Appendix A.2 to this paper.486

3.3. Simulation study 3487

In this simulation study we highlight two main features of the proposed clustering488

method:489

1. the capability to deal with time series of different length;490

2. the capability to fully exploit spatial information.491

We simulated a dataset of 20 three-variate (I = 20, J = 3) time series of length ranging492

from T = 6 to T = 10. The data generation process yielded to three partially overlapping493

clusters (C = 3) of size 10, 5 and 5, respectively (see Figure 5).494
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Figure 4: Data generation process for simulation study 2. Four clusters are generated from the data.
Going from configuration 1) to configuration 4), units 4, 5, and 12, 13 are getting closer
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x y z

Cluster 1 Cluster 2 Cluster 3

Figure 5: Simulated data for simulation study 3. Data are generated to be classified into three partially
overlapping clusters. Time series belonging to different clusters are depicted with different colours and
line types

As for the spatial dependence, we generated two proximity matrices, P1 and P2, illus-495

trated in Figure 6. A black square indicate that there is some kind of proximity between i496

and j. The two matrices refer to different notions of proximity, which are closely related to497

those observed in the empirical application: P1 refers to a situation in which two units are498

neighbours if they share a border; P2 represents a situation in which proximity is due to499

the fact that belong to the same macro-area, even if they are not neighbour. Furthermore,500

each macro-area corresponds to a different cluster. By observing P1 and P2, there are some501

units that are neighbours even if they belong to different macro-areas, and some units that502

belong to the same macro-area but they are not neighbour. Finally, the parameters β1 and503

β2 are set to 0 or 1.8, depending on how the spatial information is exploited.504

The purpose of the present simulation is to show the capability of DTW-FCMd-TSS505

to individuate the three clusters, even if data are rather noise, by exploiting the spatial506

information. For comparison’s sake we consider four cases, described in Table 4. The first507

case refers to DTW-FCMd clustering method described in D’Urso et al. (2018). The second508

and the third cases are particular instances of the proposed DTW-FCMd-STT, in which509

we exploited only a part of the spatial information provided by the proximity matrices P1510

and P2 (see Figure 6). In the fourth case, the spatial information is fully exploited.511

To evaluate the classification capability, we used the Fuzzy Rand Index (FRI) proposed512

by Hüllermeier et al. (2012), comparing the fuzzy partition obtained with the theoretical513

crisp reference partition. The closer FRI is to 1, the closer the fuzzy partition to the514

theoretical crisp reference partition. The results of the simulation are reported in the last515

column of Table 4. DTW-FCMd provides a partition that takes into account only the516

time dimension, which is rather fuzzy as explained, thus explaining the relative low value517

of FRI (case A). Exploiting only a part of the spatial information slightly enhances the518

classification capability of DTW-FCMd-STT with respect to DTW-FCMd (cases B and519
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Figure 6: Proximity matrices – black squares indicate the proximity between two generic units (simulation
study 3)

Case Method P1 P2 β1 β2 FRI

A DTW-FCMd No No 0.0 0.0 0.720
B DTW-FCMd-STT Yes No 1.8 0.0 0.734
C DTW-FCMd-STT No Yes 0.0 1.8 0.741
D DTW-FCMd-STT Yes Yes 1.8 1.8 0.985

Table 4: Fuzzy Rand Indices for simulation study 3, according to different clustering models (row wise)
and different settings of spatial parameters (column wise)
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C). On the contrary, by exploiting the whole spatial information, the clustering method520

is capable to correctly identify the clustering structure of the data at hand, properly in-521

corporating the spatial information (case D). This evidence is further corroborated by the522

membership degrees obtained in the four cases, illustrated by the ternary plots1 reported523

in Figure 7. In the ternary plot, every point represents the membership degrees of the524

corresponding time series in the three cluster. The more a point is close to a vertex of525

the triangle, the less uncertain is the assignment of the time series to the corresponding526

cluster.527

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●●
●●
●

20

40

60

80

10020
40

60
80

100

20 40 60 80 10
0

C
luster 2C

lu
st

er
 1

Cluster 3

●

●

●

●
●

●
●

●

●

●

●●
●

●●

●●
●●
●

20

40

60

80

10020
40

60
80

100

20 40 60 80 10
0

C
luster 2C

lu
st

er
 1

Cluster 3

●

●

●

●
●

●

●
●

●

●

●●
●

●●

●●
●●
●

20

40

60

80

10020
40

60
80

100

20 40 60 80 10
0

C
luster 2C

lu
st

er
 1

Cluster 3

●●●● ●●●●●
●

●●
●●

●

●●
●

●●

20

40

60

80

10020
40

60
80

100

20 40 60 80 10
0

C
luster 2C

lu
st

er
 1

Cluster 3

Scenario 3 Scenario 4

Scenario 1 Scenario 2

Figure 7: Membership degrees (simulation study 3)

As a final word, it should be stressed that the purpose of the present simulation is to528

clarify how the spatial information is embedded into the proposed clustering method.529

3.4. Simulation study 4530

For this simulation study, we partly replicated a simulation study proposed by D’Urso531

(2005a) and D’Urso et al. (2018) with an artificial dataset characterised by three well-532

separated clusters of four, three, and three multivariate time trajectories, respectively, and533

one outlier time trajectory (Figure 8). The length of each time series simulated is T = 6.534

The proximity matrix in Figure 9 represents the spatial component that has been included535

in this simulation study. Notice that a black square indicates proximity between units i536

and i′, while a red square indicates proximity between an outlier and a generic unit.537

Being the time series of the same length and having added only one proximity matrix,538

DTW-FCMD (D’Urso et al., 2018), our proposed clustering method (DTW-FCMd-STT),539

CS-FCM (D’Urso, 2005a), and CS-FCM-STT (Coppi et al., 2010) are fully comparable.540

1The ternary plots have been produced by means of the R package ggtern (Hamilton & Ferry, 2018).
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cluster 1 cluster 2 cluster 3 outlier

Figure 8: Simulated data for simulation study 4. Data are generated to be classified into three well
separated clusters and one outlier time series. Time series belonging to different clusters and the outliers
are depicted with different colours and line types
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Figure 9: Proximity matrix – black squares indicate the proximity between two generic units: red squares
indicate the proximity between the outlier and the corresponding unit (simulation study 4)
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Case Method Outlier
Spatial

FRI
information

A
DTW-FCMd

No No 0.984
B Yes No 0.797

C
DTW-FCMd-STT

No Yes 0.978
D Yes Yes 0.978

E
CS-FCM

No No 0.990
F Yes No 0.780

G
CS-FCM-STT

No Yes 0.948
H Yes Yes 0.761

Table 5: Fuzzy Rand Indices for simulation study 4, according to different clustering models (row wise)
and to the presence of spatial information and/or the outlier time series (column wise)

Therefore, the simulation study is aimed to compare the classification capability of the541

above mentioned methods. Implicitly, we also compare DTW-FCMd-STT and CS-FCM-542

STT in the way they exploit the spatial information, in particular in the presence of a slight543

disturbance, given by the outlier time series. The value of β for both DTW-FCMd-STT544

and CS-FCM-STT has been set to 1.545

In Table 5, FRI values for the different cases examined are reported. As expected,546

when the outlier time series is dropped from data, all clustering methods display a very547

good clustering performance. On the contrary, only DTW-FCMD-STT is able to resist to548

the presence of one outlier in the dataset.549

4. Illustration with economic data550

4.1. Study data551

In this analysis, we consider annual tourist arrivals in the municipalities located in552

South-Tyrol region (Northern Italy) collected by ASTAT (the local institute of statistics)553

from 2008 to 2014. Given a geographic region having various localities as possible tourist554

attractions, we aim at identifying agglomerations of cities characterised by a common trend555

of the tourist flows over time taking into account the particular geographical and political556

underlined structure. South–Tyrol is in fact a tourist destination characterised by 116557

municipalities grouped into eight administrative districts that follow the geomorphology of558

the region (see Figure 10).559

Therefore, each municipality is characterised by two spatial information: whether two560

units are contiguous or not; whether two units belong to the same district or not. In561

this paper, each municipality is described by the annual time series on tourist flows from562

the two main markets, i.e. Germany and Italy (domestic tourists). Table 6 shows the563

descriptive characteristics of the two time series highlighting the high variability of arrivals564

among municipalities in each year observed.565
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Figure 10: South–Tyrol region

Mean SD MIN MAX
Year Germany Italy Germany Italy Germany Italy Germany Italy

2008 19843.34 18198.87 20058.15 25493.66 0 0 103026 109185
2009 20334.71 18849.07 20735.57 26094.45 0 0 106228 113199
2010 21005.07 18997.12 21771.90 26757.23 0 2 111202 115211
2011 21901.66 18952.86 22375.17 26338.25 0 2 114095 112591
2012 23066.78 18774.24 23464.45 25751.07 0 2 117825 113070
2013 23300.02 18188.68 23779.26 25245.33 0 3 117064 110082
2014 23889.45 18024.78 23973.20 24675.21 0 0 111843 111070

Table 6: Descriptive statistics of annual tourist arrivals from Germany and Italy
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As highlighted in Figure 11, units are spatially autocorrelated, especially with regards566

to domestic tourists who are mainly grouped in Val Pusteria (East part of the region).567

Figure 11: Average annual tourist flows

By means of the suggested DTW-FCMd-STT clustering algorithm with spatial penalty568

terms, we have the opportunity to: 1) identify agglomerations of cities characterised by569

similar tourist arrival trends, by considering units’ geographical proximity and district570

memberships; 2) recognise the medoid of each agglomeration, i.e. the municipality that571

characterises each agglomeration and that can be considered as the representative touristic572

municipality (in statistical terms) of a given sub-region.573

4.2. Clustering results574

The optimal iterative solution is obtained by solving the DTW-FCMd-STT algorithm575

with the Lagrangian multipliers method where:576

(1) the fuzziness parameter has been fixed to m = 1.5 (Kamdar & Joshi, 2000);577

(2) the optimal number of clusters C of the DTW-FCMd-STT algorithm without penalty578

terms has been identified by means of the fuzzy cluster validity measures presented in579

section 2.4;580

(3) the values of the two spatial penalty coefficients (i.e. β1 and β2) have been selected581

in order to maximize the multivariate spatial autocorrelation of the whole area (with-582

out considering the possible clustering structure) when both proximity matrices are583

considered.584

Figure 12 summarises the values of the FS and XB indices calculated for any partition585

C from 2 to 9 when the spatial penalty terms are not included in the WTD-FCMd clustering586

algorithm. The trajectories of the two indices suggest that the best partitions are C = 2587

followed by the four and six clusters partitions.588

The weighted multivariate spatial autocorrelation of the whole area has been computed589

by means of equation 10 imposing X̄ equals to the identity matrix. The weighting spatial590

matrix P̃ is computed through equation 11 fixing K = 2:591

P̃ = w1P1 + w2P2

26



●

● ●

●

●

● ●
●

Number of clusters

V
al

id
ity

 in
de

x

●

●

●

●

●

●

●

●

2 3 4 5 6 7 8 9

0.
08

0.
28

0.
48

0.
68

0.
88

1.
08

1.
28

1.
48

1.
68

●

● ●

●

●

●

FS
XB

Figure 12: FS and XB validity index values for each cluster partition C from 2 to 9

where P1 is a non-negative (116 × 116) data matrix, whose generic entry p1ii′ can be592

interpreted as the spatial proximity between the i-th and i′-th units (i, i′ = 1, . . . , 116), P2593

is another non-negative (116×116) data matrix, whose generic entry p2ii′ describes whether594

the i-th and i′-th units belong to the same district or not, w1 = 1 − w2 is the parameter595

to be identified in order to maximize the weighted multivariate spatial correlation. Once596

the optimal value of w1, i.e. w∗1, is identified, we suggest to define the two spatial penalty597

parameters, i.e. β1 and β2, such as w1 = β1
β1+β2

. Consequently, the best combination598

of β1 and β2 will be the one that allows to obtain the closer value to w∗1. In this way599

we guarantee that the higher w1, the higher β1, i.e. the two parameters related to the600

same proximity matrix P1 go on the same direction. In this study, the maximum value601

of the weighted multivariate spatial autocorrelation for the whole area is 0.21, indicating602

a positive spatial autocorrelation between observed municipalities in inbound tourist from603

Germany and domestic tourist flows, and w∗1 = 0.68, as represented in Figure 13.604

In the following, we will concentrate our attention on the four-clusters and six-clusters605

solutions. In fact, from a managerial and practical perspective, the two-clusters is not an606

appealing solution since it is not generally informative and useful to draw new policies and607

strategies.608

Fixing C = 4, the best combination of β1 and β2, i.e. the one that allows to maximize609

the weighted multivariate spatial autocorrelation, is β1 = 0.01 and β2 = 0.005, which610

allows to obtain a fairly high spatial autocorrelation between geographical units (FM =611

0.50). Comparing the final 4 clusters obtained with and without the two spatial proximity612

matrices, it emerges that the spatial information allows making small adjustments to the613

membership degrees of the final matrix but not severe changes in the final fuzzy cluster614

partition.615
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Figure 13: Values of the multivariate spatial autocorrelation of the whole area when proximity matrices
are considered

Conversely, when C = 6 the best combination of β1 and β2 is β1 = 0.61 and β2 = 0.32,616

which allows to obtain a fairly high spatial autocorrelation between geographical units617

(FM = 0.47). As in the previous configuration, the proximity between areas is more618

relevant than the belonging to the same district. Figure 14 compares the membership619

degrees of each unit computed using DTW-FCMd-STT with and without penalty terms.620

The most evident changes, both in terms of intensity and frequency, are observable in621

cluster 1, 4, and 5. A similar conclusion can be reached observing the fuzzy cluster size,622

i.e. the sum of membership degrees per cluster, represented in Table 7. This measure is623

a proxy of the cluster size usually gather from crisp algorithm and it allows to spot both624

niches (as cluster 2 and 6) and bigger clusters (as cluster 4 and 5). Overall, cluster 1, 4,625

and 5 are the biggest clusters that highlight also the biggest changes.626

1 2 3 4 5 6

Without spatial terms 10.7047 6.22686 9.02877 60.9413 22.6855 6.41291
With spatial terms 11.5986 6.19582 9.04499 61.2298 21.5608 6.37000

Table 7: Sum of the membership degrees by cluster

For a deeper understanding and interpretation of the differences between the results627

of the two clustering algorithms, the membership degrees of each town/village, along with628

the medoids of each cluster, are represented in Figure 15.629

The final membership degrees to cluster 1, 4, and 5 obtained excluding and including630

the penalty terms are compared to point out the most relevant changes. It is worthy of631
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Figure 14: Comparing unit membership degrees to each cluster obtained using DTW-FCMd-STT with
and without spatial terms

notice that the inclusion of the penalty terms in the clustering algorithm does not force632

final clusters to be made by neighbours town/village or to recall the districts. The change633

in the medoid of cluster 1 is the most noticeable and important change observable. This634

result have important practical consequences when policies and strategies are made at an635

aggregate (medoid) level instead of at a municipality (geographical unit) level.636

For instance, marketing and promotional strategies to attract and host domestic or637

German tourists will be different depending on the decision to include or not the penalty638

terms (see Figure 16a). Furthermore, in Figure 16b the average cluster time series of the639

tourist flows coming from Germany and Italy are represented. Tourist flows are unchanged640

(domestic tourist) or slightly change (tourist from Germany) for cluster 2, 3, and 6, while641

the remaining clusters present more consistent variations, especially for tourists coming642

from Germany.643

Therefore, due to the particular geographical and political structure of the region,644

ignoring the two proximity levels may lead to incorrect results and policies.645

5. Conclusions646

In this paper, the Dynamic Time Warping Fuzzy C-Medoids for Spatial-Temporal Tra-647

jectories (DTW-FCMd-STT) clustering algorithm with penalty terms, a new clustering648

algorithm for the classification of units described by both multivariate time series and spa-649

tial information, has been introduced. In particular, the main aim of this study is to present650

a multivariate generalisation of the Coppi et al. (2010) clustering algorithm by 1) adopting651

a more flexible distance measure, the DTW dissimilarity measure, and 2) extending the652
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(a) Without spatial terms (b) With spatial terms

Figure 15: DTW-FCMd-STT without (on the left) and with (on the right) spatial terms when C = 6
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Figure 16: Medoids time series (16a) and weighted average arrivals by cluster (16b)
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possibility to classify units on which either different kinds or different levels of proximity653

are identifiable. Furthermore, a new weighted multivariate spatial autocorrelation index654

to evaluate the autocorrelation of the final fuzzy partition, i.e. the Fuzzy Moran’s index,655

has been defined and presented.656

Different simulation studies and a real dataset drawn by the tourism field have been657

presented to illustrate the usefulness and effectiveness of the suggested clustering method658

for spatial-temporal series. In particular, the findings of the simulation studies describe659

the sensitivity of the DTW-FCMd-STT clustering algorithm to changes in the proxim-660

ity matrices. The application to the real case study shows that the DTW-FCMd-STT661

algorithm may help in the identification of groups that are spatially close, making more662

appealing the applicability of the results of the cluster analysis. Furthermore, the Fuzzy663

Moran’s index reveal that a fairly high spatial autocorrelation between geographical units664

exists. Consequently, this result also indicate the presence of a positive spill-over effect665

among municipalities, i.e. one municipality’s tourism industries affects the tourism flows666

of neighbours municipalities due to the existence of spatial externalities.667

Finally, it is worth exploring also the possibility of obtaining more robust version of668

the proposed clustering algorithm, in order to cope with the presence of noise both in the669

time and in the spatial dimensions.670
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Appendix A. Simulation studies909

Appendix A.1. Simulation study 1910

In this section, we report some further comments on the first simulation study.911

The medoids and the fuzzy membership obtained are illustrated in Table A.8. The912

medoids’ membership degrees are highlighted in bold. As we can observe, the medoids are913

units 3 and 7 over all the data configurations. Furthermore, in each data configuration914

the membership degrees of units 4 and 5 to each cluster decrease or increase alternating915

the greater weight between the contiguity matrices P1 and P2. In data configuration 4),916

where units 4 and 5 are closest, units 5 is in the same cluster of unit 4 when the weight of917

P1 is greater than the weight of P2 (β1 = 4 and β2 = 0; β1 = 8 and β2 = 0); in different918

clusters when the weight of P2 is greater than the weight of P1 (β1 = 0 and β2 = 4; β1 = 0919

and β2 = 8). In data configuration 4) when β1 = 8 and β2 = 0 the clusters are (medoid920

in bold) (1, 2, 3, 4, 5) and (6, 7, 8); when β1 = 0 and β2 = 8 the clusters are (medoid in921

bold) (1, 2, 3, 4) and (5, 6, 7, 8).922

The performance of the proposed clustering method measured by the Fuzzy Silhouette923

index FS—is described in Table A.9. As it can be seen, going from configuration 1) to 4)924

the value of the silhouette increases. In fact the medoids remain the same (3 and 7) and925

the fuzzy units 4 and 5 decrease their membership to the natural clusters (1, 2, 3) and926

(7, 8, 9).927

Appendix A.2. Simulation study 2928

In this section, we report some further comments on the second simulation study.929

The medoids and the fuzzy membership are illustrated in Tables A.10 and A.11. As930

we can observe, the medoids are units 3, 7, 9, 14 over the data configurations 1) and 2);931

units 4, 5, 12, 13 over almost all the data configurations 3) and 4). Table A.10 and A.11932

show that in each data configuration the membership degrees of units 4, 5, 12, 13 to each933

cluster decrease or increase alternating the greater weight between P1 and P2. In data934

configuration 3), where units 4, 5, 12, 13 are getting closer: 1) when β1 = 20 and β2 = 0935

the units 4, 5, 12, 13 are in the same cluster and the clusters are (medoid in bold): (1, 2,936

3), (6, 7, 8), (4, 5, 9, 10, 11, 12, 13), (14, 15, 16); 2) when β1 = 0 and β2 = 20 the units937

4, 5, 12, 13 are in different clusters and the clusters are (medoid in bold) (1, 2, 3, 4), (5,938

6, 7, 8), (9, 10, 11,12), (13, 14, 15, 16).939

In Table A.12 the main conclusions of the simulation study are reported. Notice that,940

going from configuration 1), 2) to 3), 4), the value of the silhouette decreases. In configu-941

rations 1), 2) the medoids are 3, 7, 9, 14; in configurations 3), 4) the medoids are almost942

always 4, 5, 12, 13 (the fuzzy units). The performances get worse in data configuration943

3) and 4) in relation to the increased similarity of the fuzzy units 4, 5, 12, 13. The best944

performance in data configuration 3) is (β1, β2)= (20, 0) where the medoids are 3, 7, 12,945

14 and the high weight of P1 constraints the four fuzzy units in the same cluster (medoid946

12).947
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(β1, β2) (0, 0) (4, 0) (0, 4) (8, 0) (0, 8)

Data configuration 1)

cluster 1 2 1 2 1 2 1 2 1 2

1 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
2 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
3 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
4 0.7907 0.2093 0.8086 0.1914 0.8160 0.1840 0.8235 0.1765 0.8372 0.1628
5 0.3311 0.6689 0.3305 0.6695 0.2934 0.7066 0.3308 0.6692 0.2611 0.7389
6 0.0000 1.0000 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999
7 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
8 0.0003 0.9997 0.0003 0.9997 0.0003 0.9997 0.0003 0.9997 0.0003 0.9997

Data configuration 2)

cluster 1 2 1 2 1 2 1 2 1 2

1 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
2 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
3 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
4 0.7407 0.2593 0.7654 0.2346 0.7715 0.2285 0.7860 0.2140 0.7976 0.2024
5 0.3889 0.6111 0.3848 0.6152 0.3457 0.6543 0.3824 0.6176 0.3083 0.6917
6 0.0000 1.0000 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999
7 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
8 0.0003 0.9997 0.0003 0.9997 0.0003 0.9997 0.0003 0.9997 0.0004 0.9996

Data configuration 3)

cluster 1 2 1 2 1 2 1 2 1 2

1 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
2 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
3 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
4 0.6844 0.3156 0.7654 0.2346 0.7715 0.2285 0.7860 0.2140 0.7976 0.2024
5 0.4500 0.5500 0.3848 0.6152 0.3457 0.6543 0.3824 0.6176 0.3083 0.6917
6 0.0000 1.0000 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999
7 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
8 0.0003 0.9997 0.0003 0.9997 0.0003 0.9997 0.0003 0.9997 0.0004 0.9996

Data configuration 4)

cluster 1 2 1 2 1 2 1 2 1 2

1 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
2 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001 0.9999 0.0001
3 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
4 0.6271 0.3729 0.6853 0.3147 0.6689 0.3311 0.7168 0.2832 0.7051 0.2949
5 0.4874 0.5126 0.5256 0.4744 0.4603 0.5397 0.5169 0.4831 0.4138 0.5862
6 0.0000 1.0000 0.0000 1.0000 0.0001 0.9999 0.0000 1.0000 0.0001 0.9999
7 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
8 0.0003 0.9997 0.0001 0.9999 0.0004 0.9996 0.0001 0.9999 0.0004 0.9996

Note: Medoids’ membership degrees are in bold.

Table A.8: Membership degrees for simulation study 1, according to different combinations of β1 and β2
and data configurations
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Data (β1, β2)
configuration (0, 0) (4, 0) (0, 4) (8, 0) 0, 8

1) 0.82 0.82 0.81 0.81 0.80
2) 0.82 0.82 0.81 0.81 0.80
3) 0.84 0.82 0.81 0.81 0.80
4) 0.90 0.89 0.83 0.89 0.80

Table A.9: Fuzzy Silhouette index values for simulation study 1 according to different setting of the
parameters β1, β2 (column wise) and to data configuration (row wise)
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Data (β1, β2)
configuration 8, 0 (0, 8) (12, 0) (0, 12) (16, 0) (0, 16) (20, 0) (0, 20)

1) 0.90 0.89 0.90 0.89 0.90 0.89 0.90 0.89
2) 0.84 0.82 0.84 0.82 0.84 0.82 0.84 0.82
3) 0.56 0.60 0.57 0.57 0.58 0.58 0.84 0.75
4) 0.16 0.16 0.23 0.23 0.26 0.26 0.29 0.29

Table A.12: Fuzzy Silhouette index values for simulation study 2 according to different setting of the
parameters β1, β2 (column wise) and to data configuration (row wise)
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