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1. ABSTRACT 

Recent revolutionary progress in human genomics is reshaping the approach to therapy 

and diagnosis. Nucleic acid–based testing is the major diagnostic tool not only in the 

setting of inherited genetic disease but in a wide variety of neoplastic and infectious 

processes. The “Reverse Line Blot” (RLB) is a robust method for the molecular 

characterization of several disorders. It is a simple technique that can be used in 

diagnostic routine also by small laboratories, because the request instruments are few 

and not expensive. 

The aim of our project is to exploit the potential of this method for assessment of two 

different disorders: a rare hereditary disease (atypical cystic fibrosis) and a hepatic 

pathology caused by the Hepatitis C Virus (HCV).  

In the first part of the study we explore the potentiality of RLB in detecting known 

genetic mutations in the human genome and our interest was focused on atypical CF. 

This pathology is characterized by cystic fibrosis (CF) mild symptoms, involvement of few 

organs, and only one or none mutations in the CFTR gene. This phenotypic heterogeneity 

could be explained by modifier genes of the CFTR gene, such as the genes coding for the 

Epithelial Sodium Channel (ENaC). During this project, we developed a new RLB 

molecular assay for detection of nine already described variations in the ENaC genes, 

involved in CF-like disorders. The performance of the method were evaluated analyzing 

208 patient samples, with respiratory or pancreatic manifestations, and 169 true healthy 

individuals as control group. Among the atypical CF patients, with one or none CFTR 

mutations and showing respiratory symptoms, we found seven ENaC different variants: 

the mutations p.S82C-SCNN1B, p.P267L-SCNN1B, p.G294S-SCNN1B, p.E539K-SCNN1B, 

p.1670-2A>G-SCNN1B, and the polymorphisms p.W493R-SCNN1A and p.R181W-

SCNN1A. In particular, p.P267L-SCNN1B, p.G294S-SCNN1B, p.E539K-SCNN1B, p.1670-

2A>G-SCNN1B showed a frequency significantly higher in patients rather in controls 

(P<0.05), while for the other variants there was no significantly differences between the 

two groups. Instead, in the group of patients with pancreatitis, we found only 3 variants 

(p.W493R-SCNN1A, p.R181W-SCNN1A, p.S82C-SCNN1B), but without significantly 

differences between patient group and controls. 

In the second part of the study, we explore the potentiality of RLB in the identification 

of the genotypic strand of Hepatitis C virus. HCV is a single-strand positive RNA virus, 

which strains can be classified into 7 genotypes. Knowing HCV genotype is essential for 

the therapeutic management and it is related to antiviral therapy outcome. The 5’ 

untranslated region (5’ UTR) of the HCV genome is used as target region in most 

genotyping test. However it is not enough informative for subtyping genotype 1, 

distinguishing 1a and 1b, and for discrimination of genotypes 1 from 6 (subtypes c-l). 

During this project, we developed a molecular assay for HCV genotyping, which allows 

reliable distinction between genotypes and subtypes. The method is based on reverse-

transcription of two viral regions (5’UTR and core), followed by RLB genotyping.  For the 

performance evaluation of the developed assay, 283 serum samples were collected: 212 

HCV positive, 71 HCV negative and 8 synthetic samples (representative of less common 
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genotypes 5, 6 and 7a). Another CE-IVD genotyping assay and the sequencing of NS5b 

viral region were used as reference methods. Our results showed that the use of two 

viral regions for genotyping allows a better discrimination of subtypes 1a and 1b. Among 

145 genotype 1 samples, 22 samples (whose subtyping 1a or 1b was not solved by the 

use of the sole 5’UTR) were correctly typed as 1a or 1b. The genotyping of other 8 

samples, previously incorrectly subtyped, were solved. Moreover, the new assay has 

successfully genotyped 5 samples with genotype 6 that were misdiagnosed as genotype 

1 with the analysis of 5’UTR. Our assay showed a diagnostic specificity of 100% and a 

sensibility of 98.6% both at genotype and subtype levels, in a range of viral loads 

between 1 x 103 and 6 x 107 IU/mL.  

Therefore, combined analysis of both 5’UTR and core regions could be very useful for a 

better discrimination between subtypes 1a and 1b, and between genotypes 1 and 6, 

leading to a more powerful instrument for the application of appropriate therapeutic 

regimen. 

In conclusion, this work has demonstrated that RLB is a robust method for the 

management of several diseases, requiring a genetic characterization. However, genetic 

knowledge about target disorders must to be well defined. 
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RIASSUNTO 

I recenti progressi nel campo della genomica umana hanno fortemente influenzato 

l’approccio diagnostico e terapeutico alle patologie. La biologia molecolare si è 

affermata come strumento di elezione per la diagnosi non solo di malattie ereditarie ma 

anche di una grande varietà di processi neoplastici ed infettivi. Tra le metodologie di 

questa disciplina, il “Reverse Line Blot” (RLB) occupa un posto di rilievo, grazie alla sua 

versatilità. E’ una tecnologia molto semplice e può essere utilizzata per la routine 

diagnostica anche da piccoli laboratori, in quanto la strumentazione necessaria è 

limitata e non eccessivamente costosa. L'obiettivo del nostro progetto è stato quello di 

sfruttare le potenzialità di questa tecnologia applicandola allo studio di due diverse 

patologie: una malattia ereditaria (fibrosi cistica atipica) ed una patologia epatica 

causata dall’infezione del virus dell'epatite C (HCV). 

Nella prima parte dello studio, abbiamo esplorato le potenzialità della tecnologia RLB 

per l’identificazione di mutazioni genetiche note, concentrandoci sullo studio della 

fibrosi cistica atipica. Si tratta di una patologia caratterizzata dagli stessi sintomi della 

fibrosi cistica (FC), che si presentano però in forma più lieve, con il coinvolgimento 

solamente di alcuni organi, ed una o nessuna mutazione nel gene CFTR. Questa 

eterogeneità fenotipica può essere dovuta all’azione di geni modificatori di CFTR, come, 

per esempio, quelli che codificano il canale epiteliale del sodio (ENaC). Nel corso di 

questo progetto è stato sviluppato un nuovo test molecolare basato sulla metodologia 

RLB, per la rilevazione di 9 varianti nei geni ENaC, coinvolte nella FC atipica e 

precedentemente descritte da altri gruppi. Le performance del metodo sono state 

valutate analizzando 208 campioni di pazienti con sintomi respiratori o manifestazioni 

pancreatiche, e 169 individui sani del gruppo di controllo. Tra i pazienti con sintomi 

respiratori e affetti da FC atipica, recanti una o nessuna mutazione CFTR, abbiamo 

trovato 7 diverse varianti ENaC: le mutazioni p.S82C-SCNN1B, p.P267L-SCNN1B, 

p.G294S-SCNN1B, p.E539K-SCNN1B, p.1670-2A>G-SCNN1B, ed i polimorfismi p.W493R-

SCNN1A e p.R181W-SCNN1A. In particolare, p.P267L-SCNN1B, p.G294S-SCNN1B, 

p.E539K-SCNN1B, p.1670-2A>G-SCNN1B mostravano una frequenza significativamente 

più alta nei pazienti rispetto ai controlli (p <0,05), mentre per le altre varianti non 

abbiamo rilevato differenze significative tra i 2 gruppi. Invece nel gruppo di pazienti con 

pancreatiti, abbiamo identificato 3 varianti ENaC (p.W493R-SCNN1A, p.R181W-SCNN1A, 

p.S82C-SCNN1B), ma le loro frequenze non erano significativamente diverse tra il 

gruppo degli affetti e quello dei controlli.  

Nella seconda parte dello studio, abbiamo esplorato le potenzialità della tecnologia RLB 

per l’identificazione dei ceppi genotipici del virus dell’epatite C.  HCV è un virus a RNA, 

a singolo filamento positivo, i cui ceppi possono essere classificati in 7 genotipi. 

L’identificazione del genotipo di HCV è essenziale per la gestione terapeutica ed è 

correlato all’esito della terapia antivirale. La regione non tradotta al 5’ (5' UTR) del 

genoma di HCV viene utilizzata come target nella maggior parte dei test di 

genotipizzazione. Tuttavia tale regione, sebbene altamente conservata, si è rivelata non 
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sufficientemente informativa per la distinzione dei sottotipi HCV 1a e 1b, e per la 

discriminazione dei genotipi 1 dal genotipo 6 (sottotipi da c a l).  

Nel corso di questo progetto è stato sviluppato un test molecolare per la 

genotipizzazione di HCV, che consente una buona distinzione tra genotipi e sottotipi. Il 

metodo è basato sulla retrotrascrizione di due regioni virali (5'UTR e core), seguita dalla 

genotipizzazione in RLB. Per la valutazione delle performance del nostro test sono stati 

analizzati 283 campioni di siero: 212 erano positivi per HCV, 71 erano negativi, mentre 

8 erano campioni sintetici, e corrispondevano ai rari genotipi 5, 6 a 7a. Come metodi di 

riferimento sono stati utilizzati un dispositivo CE-IVD che analizza la sola regione 5’UTR 

ed il sequenziamento della regione virale NS5b. 

I risultati ottenuti hanno dimostrato che l'utilizzo di due regioni virali per la 

genotipizzazione consente una migliore discriminazione dei sottotipi 1a e 1b. Su un 

totale di 145 isolati con genotipo 1, 22 campioni, non sottotipizzati mediante la sola 

analisi della 5’UTR, sono stati correttamente tipizzati come 1a o 1b grazie all’analisi 

combinata 5’UTR e core. Inoltre il nostro metodo ha permesso di effettuare la 

sottotipizzazione di altri 8 campioni, per i quali l’analisi della sola 5’UTR aveva assegnato 

una tipizzazione non corretta. Per quanto riguarda i campioni con genotipo 6, il test 

sviluppato è stato in grado di tipizzarne correttamente 5, che erano stati erroneamente 

definiti come genotipo 1 mediante l’analisi della sola regione 5’UTR. Il nostro test ha 

evidenziato una specificità diagnostica del 100% e una sensibilità del 98,6%, sia a livello 

di genotipizzazione che di sottotipizzazione, in un range di carica virale compreso tra 1 

x 103 and 6 x 107 UI/mL. Pertanto, l'analisi combinata delle due regioni 5'UTR e core 

determina un’accurata discriminazione tra i sottotipi 1a e 1b, e tra i genotipi 1 e 6, e 

diventa uno strumento molto importante per l'applicazione del regime terapeutico più 

appropriato. 

In conclusione, il nostro lavoro ha dimostrato che la tecnologia RLB è un metodo 

affidabile per la diagnosi di molte patologie, per le quali si renda necessaria una 

caratterizzazione genetica. Va però sottolineato che dispositivi basati sulla metodologia 

RLB possono diventare validi strumenti diagnostici solo per malattie ben caratterizzate 

da un punto di vista genetico. 
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2. FOREWORD 

This project concerns about the work that I carried out at AB ANALITICA s.r.l. in the 

context of an advanced apprenticeship program for the acquisition of a Ph. D. 

qualification. AB ANALITICA is a certified company established in 1990 and specialized 

in the design, development, production and trade of in vitro medical diagnostic devices 

(IVD) of diagnostic molecular systems. Fields of interest are microbiology, virology, onco-

hematology and genetics. 

Recent revolutionary progress in human genomics is reshaping the approach to therapy 

and diagnosis. Nucleic acid–based testing is becoming a crucial diagnostic tool not only 

in the setting of inherited genetic disease, but in a wide variety of neoplastic and 

infectious processes. Following diagnosis, molecular testing can help guide to 

appropriate therapy by identifying specific therapeutic targets of several newly tailored 

drugs, thus playing an integral role in the application of pharmacogenomics. Molecular 

diagnostics provides the necessary support for any successful application of gene 

therapy or biologic response modifiers. It offers a great tool for assessing disease 

prognosis and therapy response and detecting minimal residual disease [1]. 

Molecular diagnostic techniques for viral testing have experimented a rapid 

development during last years, and have been introduced in the majority of laboratories 

as a new way for the diagnosis of human pathogens like viruses.  The use of amplification 

techniques such as polymerase chain reaction (PCR), real-time PCR or reverse line blot 

(RLB) for virus detection, genotyping and quantification have some advantages like high 

sensitivity and reproducibility, as well as a broad dynamic range. 

Molecular diagnostic methods for the inherited genetic disease can be divided in 2 main 

groups: direct techniques that test for known mutations (genotyping) and indirect 

techniques that scan for any mutation in a particular target region (mutation scanning). 

There are several well-known genotyping and scanning methods in routine diagnostic 

use. 

A direct technique for genotyping is the Reverse Line (or Dot) Blot (RLB or RDB), a 

relatively simple and less expensive method that can be used in diagnostic routine also 

by small laboratories. Reverse allele specific oligonucleotide assays provide a robust 

method for the molecular characterization of several disorders, caused by genetic 

mutations or by infective agents. RLB rely upon highly multiplexed PCR reactions 

containing biotinylated primers and upon the hybridization between amplification 

products and oligonucleotides bound on a nylon or nitrocellulose membrane. The 

detection system is based on a colorimetric reaction, catalysed by strepatvidin alkaline 

phosphatase or by streptavidin horseradish peroxidase. 

Briefly the protocol involves the extraction of DNA or RNA from the specimen and then 

the selectively amplification of the sample. A strip is coated with highly specific probes, 

which are complementary to the amplified nucleic acid sequences. The amplification 

products are chemically denatured, and they are specifically bound by the 

complementary probes during the hybridization step. Non-specifically bound products 

are removed in subsequent washing steps. In the following step, bound product is 
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labelled with the enzyme alkaline phosphatase and made visible by a colorimetric 

reaction. In this way, a specific band pattern appears on the strip (fig. 1-2).  

 

 

The technique can be utilized in a number of ways. Multiple probes can be designed to 

detect sequence variation within a single amplified product, or multiple targets can be 

amplified simultaneously, with one (or more) probes used for subsequent detection. A 

combination of both approaches can also be used within a single assay. The ability to 

include multiple probes for a single target sequence makes the assay highly specific. The 

flexibility of the method allows its use for a wide range of applications. 

The entire procedure from patient’s sample to result usually requires less than 1 day.  

Large numbers of individuals can be rapidly screened for multiple targets using this 

technology. The method is simple, rapid, and generally shows high sensitivity and 

specificity. Commercial instruments are available, that automate the hybridization and 

colour development. In addition, scanning software can capture the probe reactivity 

pattern and interpret it in terms of a genotype. 

RLB is rapidly becoming a standard molecular tool for diagnostic and epidemiological 

studies in an increasing number of laboratories all over the world, thanks to its peculiar 

features. 

 

 

RLB is a method that can be applied to several fields, such as human genetics, 

microbiology and parasitology.   

Fig. 1 Schematic representation of the reverse line blot 

technique. 

Fig. 2 Image of a developed strip. 
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2. AIM OF THE STUDY 

The aim of our project was the development of RLB tests and the evaluation of their 

application in the management of diseases, requiring a genetic characterization. 

We focused our attention on two different disorders, one regarding a hereditary disease 

and the other caused by an infectious agent. 

In the first part of the study, we explored the potentiality of RLB in detecting known 

genetic mutations in the human genome and our interest was focused on atypical cystic 

fibrosis. This is a rare genetic disease, not well genetically characterized and probably 

related to the presence of mutations in the ENaC genes. Knowledge about causative 

mutations, in this case, is very limited. 

In the second part of the study, we evaluated usefulness of RLB in the identification of 

the genotypic strand of Hepatitis C virus (HCV), an infectious agent that causes chronic 

hepatitis, cirrhosis and hepatocellular carcinoma. In this case, information about HCV 

genotypes is widely defined. 

Our purpose was to evaluate potentiality of RLB in the application to clinical diagnosis 

and therapy management of both diseases, different not only in the transmission way 

but also in the genetic knowledge available for each one. 
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3. PART I: ATYPICAL CYSTIC FIBROSIS 

3.1. INTRODUCTION 

Cystic fibrosis (CF) is the most common autosomal disorder in Caucasians, with a 

frequency of about 1 in 2500 live births [2]. 

This pathology affects the chloride transport of polarized epithelia cells. Abnormally 

viscous secretions in the airways of the lungs cause obstructions that lead to 

inflammation and subsequent chronic bacterial infections by pathogens such as 

Pseudomonas aeruginosa, Staphylococcus aureus and Burkholderia cepacia. Finally, the 

chronic inflammation lead to tissue damage and destruction of the organ system; 

obstructive lung disease is currently the primary cause of morbidity and is responsible 

for about 80% of mortality in these patients. 

Other organ systems containing epithelia, such as ducts of the pancreas, the sweat 

gland, biliary duct of the liver, the male reproductive tract and the intestine, are also 

affected. Loss of pancreatic exocrine function results in malnutrition and poor growth, 

which leads to death in the first decade of life for most untreated individuals [3]. 

98% of men with cystic fibrosis are infertile, with aspermia secondary to atretic or absent 

vasa deferentia and dilated or absent seminal vesicles. Female reproductive function is 

normal, although cervical mucus can be dehydrated, which might impair fertility [2]. 

3.1.1. CFTR  

Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane regulator 

(CFTR) gene, which has been identified in the 1989 by positional cloning. It is located on 

long arm of chromosome 7 and it is composed by 27 exons, spanning over 230 kb [4] 

(fig. 3). 
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The predicted structure of the CFTR, based on aminoacid sequence, is composed by 

twelve transmembrane domains, two nucleotide binding motifs and a regulatory R 

domain in the center [6]. These topological features associated the CFTR with the 

members of the ABC (ATP binding cassette) superfamily of transporters (fig. 4). 

Protein purification and gene transfer studies have demonstrated that CFTR functions 

as a chloride channel regulated by cyclic AMP (cAMP)-dependent phosphorylation [7]. 

It is expressed in the apical membrane of the epithelial cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Scheme of CFTR gene, transcript, and mutation distribution. (A) Scaled schematic of exons 

and introns followed by current and historical exon numbering. (B) A rescaled exon scheme with 

minimized introns, which are drawn not to scale. (C) Distribution of known mutations and

polymorphisms as vertical bars [5]. 

 

Fig. 4 Structure of CFTR protein 
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3.1.2. Epidemiology of CFTR mutations 

Almost 2000 variants have been reported to the Cystic Fibrosis Mutation Database, one 

of the first locus-specific databases.  

The most common mutation is F508del, which accounts for approximately two thirds of 

all CFTR alleles in patients with CF, with a decreasing prevalence from Northwest to 

Southeast Europe. The remaining third of alleles is substantially heterogeneous, with 

fewer than 20 mutations occurring at a worldwide frequency of more than 0.1% (tab. 

1). In Europe, on average 1 in 2000-3000 newborns are affected with CF. Even where 

populations appear relatively homogeneous, there may be marked local and regional 

variations.  

CFTR gene mutations have been well characterized in most European populations. 

F508del frequencies vary from a maximum of 100% in the isolated Faroe Islands of 

Denmark, to a minimum of about 20% in Turkey. In central, northern, western, and 

north-eastern Europe, F508del has a frequency of about 70%. Apart from F508del, 5 to 

10 relatively frequent mutations contribute to 10%-15% of all CF-causing CFTR 

mutations, such as the G542X, N1303K, and G551D mutations. Ethnic specific mutations 

are observed in some populations such as the Nordic mutation 394delTT, the 3905insT 

mutation in Switzerland, the R1162X mutation in Northeast Italy, and the Eastern Slavic 

CFTR dele 2,3 (21kb) mutation. The remaining mutations are heterogeneous, private, or 

limited to a small number of individuals [8]. 

 

3.1.3. Type of CFTR mutations 

Among the reported 2000 variants, 40% are predicted to cause substitution of a single 

aminoacid, 36% are expected to alter RNA processing (including nonsense, frameshift 

and mis-splicing variants), about 3% involve large rearrangements of CFTR, and 1% 

affects promoter regions; 14% seem to be neutral variants, and the effect of the 

Tab.  1 Geographical distribution of the most common CFTR mutations [9]. 



 
15 

 

remaining 6% is unclear. Disease-causing variants can affect the quantity and/or 

function of CFTR at the cell membrane [3]. 

Historically, CFTR variants have been grouped into five functional classes.  

1. The I class comprise nonsense, frameshift and splice junction mutations, that 

lead to nonfunctional proteins, rapidly degraded. 

2. Mutations of II class are associated to defective processing and maturation of 

the CFTR protein, that is degraded before to reach plasmatic membrane. They 

are missense variants. This class includes the F508del. 

3. The III class comprises missense mutations that lead to defective regulation of 

the channel. They are located in the ATP binding domain or in site of 

phosphorylation into the R domain and cause suppression of CFTR function. 

4. Mutations of class IV are associated to defective conductance of the chloride. 

These are missense mutations that lead to functional CFTR protein, but with 

minor activity [10]. 

5. The V class includes splicing defects and missense mutations, leading to a 

reduced function and/or synthesis of CFTR channel (fig. 5).  

In general, patients homozygous for class I–III mutations exhibit a phenotype associated 

with pancreatic insufficiency, higher frequency of meconium ileus, premature mortality, 

earlier and more severe deterioration of lung function, higher incidence of malnutrition 

and severe liver disease. Class IV–V mutations are usually associated with milder lung 

disease, older age at death, pancreatic sufficiency. Class IV–V mutations are 

phenotypically dominant when occurring in combination with class I–III mutations [11]. 

 

 

  

Fig. 5 Molecular consequences of variants in CFTR. The degree to which epithelial ion transport is altered 

in an individual with cystic fibrosis is determined by the effect of each disease-causing variant on the 

quantity and the function of cystic fibrosis transmembrane conductance regulator (CFTR) [3]. 
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CFTR mutations can be clustered also according to their predicted clinical consequences 

[9]. They are divided into 4 groups: 

a. mutations that cause CF disease; 

b. mutations that results in a CFTR-related disorder; 

c. mutations with no known clinical consequences; 

d. mutations of unproven or uncertain clinical relevance. 

There is some overlapping of groups A and B, as some mutations may sometimes be 

detected in association with pancreatic sufficient CF, some other times with CFTR-

related, mono-symptomatic disorders (tab. 2). However, these relationships between 

certain classes of CFTR mutations and phenotypes are looser than expected and the 

phenotypic consequences of a significant number of CFTR gene changes remain unclear. 

Factors such as the age related progression of the disease, the environment, and 

modifier genes, all play a role in the clinical heterogeneity of patients carrying these 

“borderline” mutations [9]. 

 

3.1.4. Diagnosis 

The diagnosis of CF is suggested by one or more clinical signs and confirmed by an 

increased sweat chloride concentration. 

In 1998, a first consensus statement listing criteria for the diagnosis of CF was issued by 

the US Cystic Fibrosis Foundation [12].  

The fundamental criteria were: (i) one or more of the phenotypic features of the disease 

or (ii) a history of CF in a sibling or (iii) a positive immunoreactive trypsin (IRT, a neonatal 

screening test), in association with at least one other feature. The additional features 

Tab.  2 Examples of CFTR mutations with regard to their clinical consequences. 

(⁎) mutations which may belong either to Group A or to Group B. 

(⁎⁎) mutations which may belong either to Group B or to Group C. 

(⁎⁎⁎) certain common sequence (missense) variants with subclinical molecular consequences (e.g. 

M470V) may co-segregate on the same chromosome and exert more potent, cumulative phenotypic 

effect [9]. 
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included a positive sweat test result on two occasions, a CF-causing mutation in each 

CFTR gene or an abnormal nasal potential difference (NPD) [12]. 

In 2006 a European working group proposed a modified consensus statement, by 

focusing on different diagnosis of classic CF and atypical manifestation of CF. They 

suggested two diagnostic alghoritms, starting from different fundamental criteria 

exhibited by patients [13]. 

The CF diagnostic cascade start with the finding of one of these three situations: (1) 

clinical manifestations; (2) neonatal screening; and (3) family history. 

Clinical manifestation 

Many clinical problems are compatible with a diagnosis of CF, because this multiorgan 

disease is very heterogeneous and it has, at times, an atypical clinical presentation. 

The phenotypic features consistent with a diagnosis of CF are: 

1. Chronic sinopulmonary disease, manifested by persistent colonization/infection 

with typical CF pathogens, chronic cough and sputum production, persistent 

chest radiograph abnormalities, airway obstruction and nasal polyps. 

2. Gastrointestinal and nutritional abnormalities, including intestinal 

manifestations, pancreatic disease, hepatic symptoms. 

3. Salt loss syndromes. 

4. Male urogenital abnormalities resulting in obstructive azoospermia (CBAVD) 

[12]. 

Neonatal screening 

CF neonatal screening is based on the immunoreactive trypsinogen (IRT) assay, which is 

relatively inexpensive and adaptable to large numbers. Increased IRT concentrations at 

birth are characteristic of newborns affected by CF, but can also be found in healthy 

infants [13]. 

Family history 

It is strongly advised that siblings of affected children are investigated by a sweat test. 

Because of the remarkable clinical heterogeneity, even within families, lack of symptoms 

is insufficient to exclude the diagnosis of CF.  

 

The two different diagnostic CF algorithms proposed by Boeck et al. could be applied in 

the presence of one of the above mentioned three situations. In settings where the 

sweat test is available, the approach starting with this analysis is the preferred route. In 

patients with atypical disease manifestations the reliability of the sweat test is much 

lower and additional diagnostic tests will be necessary to substantiate the diagnosis. 

Thus, the algorithm starting with DNA analysis could be more appropriate. 

Sweat test 

The sweat test retains its position as a key diagnostic test for CF: the only acceptable 

procedure is the quantitative pilocarpine iontophoresis sweat test. 
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A sweat chloride concentration of more than 60 mmol/L is consistent with the diagnosis 

of CF, but the result must be interpreted in the context of the patient’s age and clinical 

picture by a physician knowledgeable about CF. On the other hand, levels below 40 

mmol/L are considered normal, but with a cautious interpretation in infancy and 

prematurity. The diagnosis of CF should be made only if the elevated sweat chloride 

concentration (>60 mmol/L) is revealed on two separate occasions [12]. 

CFTR mutation analysis 

The analysis for the identification of CFTR mutations could be divided into 3 categories: 

1. The analysis of first level identify specific or most common mutations, through 

technologies such as Reverse Dot Blot (RDB), Oligo Ligation Assay (OLA) or 

Amplification Refractory Mutation System (ARMS). Several commercial assays 

are available for CFTR mutation screening. Most tests only screen for about 30 

mutations, the majority of which are associated with classic CF. 

2. The second level analysis examine large portions of the gene to search every type 

of eventually present variants: they includes Denaturing HPLC (D-HPLC), 

Denaturing Gradient Gel Electrophoresis (DGGE) analysis, sequencing of the 

exons and intron-exon junctions of CFTR gene. They can be used in case of 

borderline sweat test and negative first level analysis. 

3. Finally, the third level analysis could identify rare rearrangements and intron 

variants not so close to exons and that cause splicing alterations. The 

technologies used are Multiplex Ligation-dependent Probe Amplification 

(MLPA), Quantitative Multiplex Polymerase chain reaction of Short Fluorescent 

fragments (QMPSF) and the study of nasal epithelia CFTR mRNA [14]. 

Only sequencing will approach 100% sensitivity. The other techniques, such as indirect 

mutation scanning assays, allow sensitivities varying from close to 100% to as low as 

90%. Even if a mutation is found, its involvement in disease may not be clear. For many 

CFTR mutations the functional consequences are unknown; they may even be 

polymorphisms [13]. 

Nasal potential difference 

Respiratory epithelia, including nasal epithelia, regulate the composition of fluids that 

wet airway surfaces by transport of ions such as sodium (Na+) and chloride (Cl–). This 

active transport of ions generates a transepithelial electrical PD, which can be measured 

in vivo. Abnormalities of ion transport in respiratory epithelia of patients with CF are 

associated with a different pattern of nasal PD compared with normal epithelia [12]. 
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3.1.5. Atypical CF 

There is great heterogeneity in the clinical manifestations of cystic fibrosis. Some 

patients may have all the classical manifestations of CF from infancy and have a 

relatively poor prognosis, while others have much milder or even atypical disease 

manifestations and still carry mutations on each of the CFTR genes. The CF phenotype is 

a continuum of symptoms and cannot be easily defined in two distinct disease categories 

(typical versus atypical CF). 

It has been demonstrated that, apart from their involvement in classical CF, CFTR 

mutations also cause, or contribute to, the CFTR-Related Disorders and so-called atypical 

CF. Patients with non-classic or atypical CF have a CF phenotype in at least one organ 

system and a normal (40 mmol/l) or borderline (40–60 mmol/l) sweat chloride level. 

Most of these patients has exocrine pancreatic sufficiency and milder lung disease [13]. 

A CFTR-related Disorder (CFTR-RD) is defined as a clinical entity associated with CFTR 

dysfunction that does not fulfill the diagnostic criteria for CF. Three main clinical entities 

illustrate these phenotypes: disseminated bronchiectasis, acute recurrent or chronic 

pancreatitis and congenital bilateral absence of the vas deferens (CBAVD) [15]. 

Disseminated bronchiectasis 

Bronchiectasis is a pathological description of lung damage characterized by an 

abnormal and irreversible dilatation of thick-walled bronchi. Affected areas are inflamed 

and easily collapsible, resulting in airflow obstruction and impaired clearance of 

secretions. Symptoms include recurrent lower respiratory tract infections, chronic 

cough and mucopurulent sputum production. In approximately 50% of cases, 

bronchiectasis is associated with underlying conditions such as CF, childhood infections, 

allergic broncho-pulmonary aspergillosis, immune defects, primary ciliary dyskinesia, 

aspiration of irritants, ulcerative colitis, rheumatoid arthritis and other connective tissue 

disorders. In the remainder of cases, causative factors cannot be identified [16]. An 

increased incidence of CFTR gene mutations has been found in bronchiectasis. At least 

one CFTR mutation was reported in 10–50% of a series of patients in different studies 

[17, 18]. Two mutations were found in 5–20% of cases, but not all studies specified 

whether a segregation analysis had been performed to establish if those subjects carried 

the two mutations in cis or in trans. Often, in these patients only one mutation is CF-

causing. No specific CFTR mutation is associated directly with bronchiectasis. Instead, a 

wide spectrum of CFTR mutations have been identified, most being uncommon and 

likely to result in residual CFTR function [18, 19]. The variety of CFTR mutations 

associated with bronchiectasis reflects the heterogeneous nature of this condition [15]. 

Idiopathic chronic pancreatitis (ICP) 

Chronic pancreatitis (CP) is a progressive inflammatory disease in which pancreatic 

secretory parenchyma is destroyed and replaced by fibrous tissue, eventually leading to 

impairment of the exocrine and endocrine functions of the organ [20]. 

About 10-30% of patients with chronic pancreatitis do not have an apparent underlying 

cause, and disease is classified as idiopathic pancreatitis [21]. 
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Genetic studies led to identification of a number of potential defects in genes, involved 

into pancreatic activities, which may contribute to the development of pancreatitis.  

In 1998 a research group reported an association between CFTR mutations and 

idiopathic chronic pancreatitis (ICP), by starting from three evidences: (i) both ICP and 

CF pancreatic disease show early ductal plugging resulting from inspissated secretions, 

(ii) CF patients occasionally suffer from pancreatitis and (iii) chronic pancreatitis is a 

known cause of false-sweat tests [22]. 

In the human exocrine pancreas, CFTR is predominantly expressed at the apical 

membrane of the ductal and centro acinar cells that line small pancreatic ducts, and 

controls cAMP-stimulated HCO−3 secretion into the duct lumen. The major role of CFTR 

in pancreatic ducts is to dilute and alkalinize the protein-rich acinar secretions, thereby 

preventing the formation of protein plugs that predispose to pancreatic injury [23]. 

About 30% of patients with ICP or recurrent acute pancreatitis are found to carry CFTR 

mutations. No specific CFTR mutations are associated with ICP, but rare or private class 

4 or class 5 mutations are generally found in these patients. CF-causing mutations, 

F508del being the most common, that generally have < 2% of normal CFTR function, 

lead typically to pancreatic insufficiency in homozygotes. In contrast, CF patients with 

genotypes producing about 5% of normal CFTR function often have pancreatic 

sufficiency [24].  

Recently, in a group of 33 patients with recurrent pancreatitis, Segal et al. [25] found 

that seven (21%) had an abnormal NPD even though their sweat chloride concentration 

and mutation profile did not differ from control subjects. 

CBAVD  

Congenital bilateral absence of the vas deferens (CBAVD) in otherwise healthy males 

accounts for approximately 3% of cases of infertility. The incidence of CBAVD, based on 

estimations, is approximately 1:1000 males [26]. While the prevalence of CF is very low 

in non-Caucasian countries, the prevalence of CBAVD does not seem to differ between 

populations.  

In the majority of cases, isolated CBAVD is recognized as an autosomal recessive genetic 

disorder associated with anomalies of the CFTR gene: alterations that retain enough 

residual CFTR function might result in milder phenotypes such as CBAVD. 

CBAVD is caused by mutations in the two copies of the CFTR gene in 70–90% of cases 

depending on ethnic/geographic populations [27]. Thereby, the distribution of CFTR 

mutations and genotypes in CBAVD differs substantially from classical CF. Among males 

with two identified CFTR mutations, CF patients have either two severe (88%) or one 

severe and one mild/variable CFTR mutations (12%), whereas CBAVD males have either 

a severe and a mild/variable (88%) or two mild/variable (12%) CFTR mutations [28]. The 

two most common compound heterozygous genotypes found in European males with 

CBAVD are F508del in trans with IVS8-5T (28%) and F508del in trans with R117H (6%). 

CFTR gene defects in CBAVD are essentially point mutations. However, in a very small 

number of cases large rearrangements (deletions or duplications) within the CFTR locus 

are identified [29]. 
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Several studies provide evidence for genetic heterogeneity in CBAVD: a proportion of 

extensively studied men with CBAVD, variable depending on country of origin (6–15% in 

Europe [29]), do not display any abnormalities in the CFTR gene.  

3.1.6. CFTR modifier genes  

In the vast majority of classical CF patients both copies of the CFTR gene are mutated. 

However, in a minority of CF patients a mutation cannot be identified on both CFTR 

genes, i.e., in 1 to 2% of the CF patients of Northern Europe and in up to 8 to 10% in CF 

patients of Southern Europe (www.who.int/genomics/publications/en). In an even 

higher proportion of patients with CBAVD, atypical CF, chronic pancreatitis, or 

disseminated bronchiectasis, a mutation cannot be identified on both CFTR genes [28, 

30]. 

There is substantial evidence that genes other than CFTR may cause CF or CF-like 

disease. Indeed, a German family was described with a CF patient without CFTR 

mutations, and with an unaffected healthy sister who inherited the same CFTR genes 

from her parents [31]. In two American families, each with two affected sibs, no 

mutations could be found on both CFTR genes, the affected sibs inherited different 

parental CFTR genes [32]. 

Extensive understanding of CF pathophysiology presents an opportunity to interrogate 

candidate genes as potential modifiers (fig. 6). In the lungs, loss of CFTR leads to 

inflammation, neutrophil recruitment, tissue damage and replacement with fibrotic 

connective tissue. At least 50 genes encoding proteins that participate in these cellular 

and tissue functions have been investigated as candidate modifiers [33]. 

Moreover, apart from the defective chloride secretion, it has been demonstrated that 

loss of functional CFTR leads to an increased sodium absorption in the airways of CF 

patients. Sodium transport is mediated through the amiloride sensitive epithelial 

sodium channel (ENaC) [34]. Thus, ENaC could be considered a good candidate as CFTR 

modifier gene. 

 

  

Fig. 6 The relative contribution of modifier genes, CFTR, and environment on phenotype [35]. 
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3.1.7. ENaC  

The ENaC proteins were identified by expression cloning in the early 1990s [36].  

The ENaC subunits belong to the degenerin/ENaC family of ion channels, which fulfills a 

key role in Na+ and water homeostasis. 

ENaC forms a heteromeric channel composed of three homologous subunits α, β and γ. 

Each subunit has two trans-membrane domains, a large extracellular loop and cytosolic 

N- and C-termini. There are multiple ENaC proteins expressed in various epithelia, with 

the prototypical ENaC thought to consist of at least 1α, 1β, and 1γ ENaC subunit 

interacting to form a channel (fig. 7). Of these, the α-ENaC subunit is required for a 

functional channel, while β-ENaC or γ-ENaC alone do not appear to form a conducting 

protein [36].  

The three subunits are encoded by three different genes: SCNN1A (sodium channel 

nonvoltage-gated 1, alpha, 12p13), SCNN1B (sodium channel nonvoltage-gated 1, beta, 

16p12.2-p12.1) and SCNN1G (sodium channel nonvoltage-gated 1, gamma, 16p12).  

ENaC proteins are found in the apical membrane of sodium-absorbing epithelial cells, 

e.g. in the respiratory tract, distal nephron, distal colon, sweat and salivary ducts. In 

these epithelia, ENaC is the rate-limiting step of sodium absorption [37, 38].  

 

Interaction between CFTR and ENaC 

At present, the molecular mechanisms of the regulatory relationship of the three 

subunits within ENaC, and between ENaC and CFTR, are incompletely understood and 

subject of considerable controversy. 

In 1995 Stutts et al found that MDCK cells and 3T3 fibroblasts, when co-transfected with 

CFTR and αβγ-ENaC, exhibited reduced amiloride sensitive Na+ current in a Cl− free 

solution as compared to cells expressing αβγ-ENaC in the absence of CFTR [34]. 

Following studies observed the inhibitory effects of CFTR on ENaCs also in other cells 

[39, 40].  

Although there is a general agreement that understanding of the CFTR–ENaC interaction 

can clarify the pathophysiology of CF, the exact mechanism of their relationship is not 

clear. A number of possible mechanisms have proposed, such as regulation by chloride 

Fig. 7 Schematic representation of ENaC structure. 
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concentration [41], indirect effect through intermediary proteins [42, 43, 44] or direct 

protein–protein interaction between the two molecules [45]. 

Despite the poor knowledge about mechanism of interaction between CFTR and ENaC, 

it is generally accepted that the coordinated regulation and activity of CFTR and ENaC 

determine the composition of the airway surface liquid (ASL) in the lungs (fig. 8). CFTR-

mediated Cl– secretion enhances ASL volume while ENaC mediated Na+ absorption 

reduces it. Thus, an appropriate balance between CFTR and ENaC activity is essential for 

maintaining an optimal ASL volume; if not, disease will occur [46, 47]. 

In classical CF patients with loss-of-function mutations in both copies of the CFTR gene, 

the ASL depletion is explained by the lack of CFTR-mediated Cl– secretion and 

accelerated Na+ absorption. Interestingly, transgenic mice that overexpress SCNN1B in 

the lower airways have increased airway epithelial sodium absorption and present CF-

like lung disease symptoms [48, 49]. 

 

ENaC mutations and other diseases 

Mutations in ENaC are also known to be involved in two different human genetic 

diseases. Either too low or too high amounts of ENaC will thus cause disease. Activation 

of ENaC by mutations in either SCNN1B or SCNN1G causes Liddle’s syndrome, an 

inherited form of salt-sensitive arterial hypertension with enhanced renal sodium 

retention [51]. These dominant gain of function mutations lead to an enhanced channel 

activity by increasing the number of ENaC channels expressed at the cell surface and by 

increasing the channel’s open probability [52, 53]. Loss of function mutations in 

SCNN1A, SCNN1B, or SCNN1G cause autosomal recessive pseudohypoaldosteronism 

type I, characterized by severe renal salt-wasting and arterial hypotension [54]. 

Moreover, in PHA-I patients, the reduced reabsorptive capacity of the lungs leads to an 

increased ASL volume, which often results in recurrent respiratory problems [55]. 

Indeed, PHA-I patients were found with chronic lung disease that resembles that of CF 

in the absence of common CFTR mutations [56, 57]. 

Fig. 8 Na+ hyperabsorption leads to increased O2 consumption and airway surface liquid (ASL) volume 

depletion. A and B, schematic diagrams of Na+ absorption in normal and cystic fibrosis airway epithelia, 

respectively. Na+ is transported down its electrochemical gradient through ENaC in the apical membrane 

and is pumped out across the basolateral membrane by the Na+/K+-ATPase. Because airway epithelia are 

highly water permeable and have NaCl-permeable paracellular pathways, Cl− and H2O follow Na+ [50]. 
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ENaC mutations and atypical CF 

Given the observation that sodium hyperabsorption through ENaC is part of the basic CF 

pathology, and that mice that overexpress SCNN1B present CF-like disease, mutations 

in the genes encoding ENaC may potentially explain disease in patients with CF-like 

disease in whom a mutation cannot be identified on both CFTR genes.  

Two different groups have analyzed patients with atypical CF and with one or none CFTR 

mutations, to find causative ENaC mutations [58, 59]. 

In 2005 Sheridan et al. have analyzed 20 non-classic CF patients without CFTR mutations, 

showing respiratory manifestations. They sequenced the exons and the flanking introns 

of the genes encoding the α, β and γ-subunits of ENaC and they identified six novel 

sequence changes. Five were predicted to cause amino acid changes: R181W in SCNN1A 

and S82C, P267L, G294S and E539K in SCNN1B, whereas the sixth changed the highly 

conserved penultimate A in the 3’ splice site of SCNN1B intron 12 (1670–2 A to G). P267L, 

G294S and E539K variants were not found in ethnically matched control alleles; the 

three aminoacids mutated in patients were completely conserved in ENaC orthologues 

and paralogues in human, rabbit, mouse and rat. 

RT–PCR analysis of nasal epithelial RNA revealed that the 1670–2 A to G mutation 

resulted in two stable SCNN1B transcripts. The first retains 83 nucleotides from the 3’ 

end of intron 12 and is predicted to alter the amino acid sequence following codon 514 

and terminate after the addition of 188 novel residues. The second transcript lacks the 

first 33 nucleotides of SCNN1B exon 13 leading to a deletion of 11 amino acids that 

precede the second transmembrane domain (fig. 9). These results confirmed that    

1670-2 A to G causes aberrant splicing leading to mRNA transcripts with substantial 

alterations in sequence. 

 

 

They also investigated the effect of the three missense mutations on ENaC function, by 

using Xenopus laevis oocytes; they found that oocytes injected with E539K βENaC or 

Fig. 9 RT–PCR analysis of SCNN1B 1670–2 A to G.  

RT-PCR with primers placed in SCNN1B exons 12 and 13 to analyze the exon 12/exon 13 junction in 

transcripts was performed. RT–PCR products were sequenced. Two different mutant transcripts were 

present [58]. 
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P267L βENaC generated Na+ currents significantly lower than those of wild-type. In 

contrast, the co-expression of G294S βENaC produced Na+ currents that were 

significantly higher than those of wild-type. Thus, each of the found missense SCNN1B 

mutations was associated with abnormal function (fig. 10). 

Together, these data indicate that the SCNN1B mutations discovered in these patients 

were likely to be deleterious [58]. 

 

 

 

In 2009 Azad et al. have analyzed 76 patients with CF or CF-like lung symptoms, carrying 

one or none CFTR mutation and/or with a positive or borderline sweat test. They 

sequenced the exons and the flanking introns of the genes encoding α, β and γ-subunits 

of ENaC. They identified a total of 30 sequence variants, some of which were previously 

described by Sheridan (fig. 11). 

Among selected variants, only the hyperactive V114I and hypoactive F61L mutations in 

SCNN1A were observed once in their patients, but not in controls. They suggested that 

these mutations could potentially cause disease by a Mendelian mechanism. 

Interestingly, the hyperactive V114I-SCNN1A mutation was identified in the German 

patient that provided the first evidence that mutations in other genes than CFTR may 

cause CF-like disease [31]. 

The cumulative frequency of mutations that have a minor allele frequency of <2.5% in 

controls had a more than three-fold significantly increased cumulative frequency (30%) 

in the studied patient group. Among these, the most relevant functional variant   

W493R-SCNN1A was found at a more than two-fold significantly increased incidence in 

patients (8%). 

From a genetic point of view, all these observations suggested an involvement of ENaC 

in disease in some of these patients [59]. 

Fig. 10 Functional studies of SCNN1B mutants expressed in Xenopus oocytes. Histogram of normalized 

mean currents (+SEM) at a membrane potential of -100 mV for oocytes injected with RNA encoding wild-

type α- and γ-ENaC plus wild-type βENaC, n= 40 from nine batches; βENaC P267L, n= 14 from four batches; 

βENaC G294S, n= 27 from six batches; or βENaC E539K, n=12 from six batches. Asterisks indicate P-values 

less than 0.005 when compared with wild-type [58]. 
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Fig. 11 Schematic diagram of the different SCNN1A, SCNN1B, and SCNN1G mutations found in the study 

of Azad et al. The coding exons and their flanking 30 nucleotides in the introns were analyzed. Translation 

initiation and termination are shown by arrows. Open boxes refer to the untranslated region (UTR), black 

boxes refer to coding exon, and gray boxes refer to protein [59]. 
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3.2. MATERIALS AND METHODS 

3.2.1. Design of ENac typing test prototype 

A prototype for identification of ENaC variants, probable involved in pathogenesis of 

atypical cystic fibrosis (GENEQUALITY ENaC-TYPE), was planned. After an in silico study 

for primers and probes selection, the prototype was manufactured.  

Our test allows detection of 9 ENaC variants through RLB technology. These mutations 

have been previously described, first by Sheridan et al. [58] and then by Azad et al. [59]. 

They demonstrated a correlation between these functional variants and atypical 

respiratory phenotypes. Mutations frequencies were significantly higher in patients 

rather than in controls. 

Variants, their genomic position, their effect on protein and frequency in the general 

population are summarized in tab. 5. 

3.2.2. PCR design 

Design of primers 

Design and analysis of primers can be divided into three phases: 

1. Selection of the target region. 

2. Design of primer pairs. 

3. Analysis of primers. 

The genomic target sequence was identified using GenBank and dbSNP. These are open 

access databases of the NCBI (National Center for Biotechnology Information) 

containing a collection of publicly available nucleic acid and protein sequences and their 

genetic variations within and across different species. 

The UCSC Genome Browser is a web-based graphical viewer that allows locating DNA 

sequences in the whole genome. It provides a fast display of any requested portion of 

the genome at any scale, together with annotation tracks (known genes, predicted 

genes, ESTs, mRNAs, CpG islands, assembly gaps and coverage, chromosomal bands, 

mouse homologies, and more) to recognize other possibly relevant features present in 

such a region.   

NCBI genomic sequences used are summarized in tab. 3. 

Primers have been designed by using 2 bioinformatics tools: Primer Express® Software 

v3.0.1  (Life Technologies) and DNA Mate (http://melolab.org/dnaMATE/tm-pred.html). 

Primer Express® is a tool licensed from Life Technologies, that allows to design primers 

and probes using TaqMan® and SYBR® Green I dye chemistries for gene quantitation and 

allelic discrimination (SNP) real-time PCR applications. It is possible to project primers 

starting form an input sequence given by the operator or to draw manually 

oligonucleotides. Finally, for each primer, it gives information about temperature of 

melting, content of GC, amplicon length, probability of secondary structures formation. 
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DNA Mate is a program that calculates the annealing or melting temperature of any 

given short DNA sequence (in the range of 16-30 nt) using five different approximations. 

A merged or consensus temperature among all calculations is also given. In addition to 

this, the server will inform to the user about the expected variation of the melting 

temperature estimation, which depends on the specific oligonucleotide sequence.  

All the selected primers satisfy some common features:  

- primer length: 18-25bp 

- amplicon length: 100-300bp 

- no dinucleotide repeats or long stretches of guanosine (G) 

- less than 3bp difference in length between primer pairs 

- melting temperatures (Tm) between 60°C and 65°C 

- GC content between 40% and 60% 

- balanced distribution of GC-rich and AT-rich domains 

- no intra-primer homology (more than 3 bases that complement within the 

primer) or inter-primer homology (forward and reverse primers having 

complementary sequences) to avoid self-dimers or primer-dimer formation. 

After designing primers, a BLAST search was performed to determine their specificity 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The goal is to avoid no specific alignment with 

other regions different from the target sequence, not only in the human genome, but 

also for other microorganisms. 

Sequences of primers are not reported, in protection of trade secret. 



 

29 

 

 

 

Tab. 3. Description of ENaC variants detected with our test.   * chromosomic localization of variants, as reported in UCSC (Human Genome Browser).  ** frequency of each variant, 

reported in the 1000 Genomes database, for European population

SNP GENE ALTERNATE NAMES 
REFERENCE SEQUENCE 

(RefSeq-GeneBank ID) 
GENOMIC POSITION*  

GENIC 

FUNCTION 

FREQUENCY ** AMPLIFIED 

PRODUCT 

rs61758859 SCNN1A 
c. C183A 

p. F61L 

NT_009759.15 

NM_001038.4 

chr12: 6,483,717-6,483,817 

band:12p13.31 

exon 2 

Loss of function 

mutation 

 

N.A. 

 

290 bp 

rs61759861 SCNN1A 
c. C340T 

p. V114I 

NT_009759.15 

NM_001038.4 

chr12: 6,483,560-6,483,660 

band: 12p13.31 

exon 2 

Gain of function 

mutation 

 

MAF < 0.01 (T) 

 

290 bp 

rs61759925 SCNN1A 

c.G541A 

p.R181W 

 

NT_009759.15 

NM_001038.4 

chr12: 6,472,702-6,472,802 

band: 12p13.31 

exon 3 

Gain of function 

polymorphism 

 

MAF=0.02 (A) 

 

70 bp 

rs5742912 SCNN1A 
c.A1477G 

p.W493R 

NT_009759.15 

NM_001038.4 

chr12: 6,458,300-6,458,400 

band: 12p13.31 

exon 10 

Gain of function 

polymorphism 

 

MAF=0.02 (G) 

 

150 bp 

rs35731153 SCNN1B 
c.C245G 

p.S82C 

NT_010393.15 

NM_000336.2 

chr16: 23,360,115-23,360,215 

band: 16p12.2 

exon 2 

Loss of function 

mutation 

 

MAF < 0.01 (G) 

 

200 bp 

rs137852709 SCNN1B 
c.C799T 

p.P267L 

NT_010393.15 

NM_000336.2 

chr16: 23,379,150-23,379,250 

band: 16p12.2 

exon 5 

Loss of function 

mutation 

 

N.A. 

 

300 bp 

rs72654338 SCNN1B 
c.G880A 

p.G294S 

NT_010393.15 

NM_000336.2 

chr16: 23,379,230-23,379,330 

band: 16p12.2 

exon 5 

Gain of function 

mutation 

 

MAF < 0.01 (A) 

 

300 bp 

No registered SCNN1B p.1670-2A>G 
NT_010393.15 

NM_000336.2 

chr16: 23,391,764-23,391,739 

band: 16p12.2 

Intron 12 

Loss of function 

mutation 

 

N.A. 

 

260 bp 

rs137852710 SCNN1B 
c.G1615A 

p.E539K 

NT_010393.15 

NM_000336.2 

chr16: 23,391,764-23,391,864 

band: 16p12.2 

exon 12 

Loss of function 

mutation 

 

N.A. 

 

260 bp 
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Design of PCR reaction 

The polymerase chain reaction (PCR) is a technology that allow the specific and 

exponential amplification of a specific sequence of DNA.  

The method relies on thermal cycling, consisting of cycles of repeated heating and 

cooling of the reaction for DNA melting and enzymatic replication of the DNA.  

Specificity is given by primers, which are complementary to the target region; they also 

be necessary for the initiation of DNA synthesis by DNA polymerase. This enzyme 

enzymatically assembles a new DNA strand from the nucleotides, by using single-

stranded DNA as a template.  

The reaction of PCR is composed by three phases: denaturation, annealing and 

extension, which are repeated for a number of times variable between 25 and 50. 

For our amplification protocol, a particular Hot Start Taq Polymerase has been used; it 

is a recombinant enzyme, given in inactive state through link with antibodies, and  

requires a thermal activation. This enzyme avoid no specific amplifications during phases 

of reagents preparation, which could be performed at room temperature. 

A specific reaction buffer, provided with Taq polymerase and containing the denaturing 

agent DMSO, has been used in order to raise efficiency of amplification for some 

sequences with a high percentage of guanine and cytosine. 

The amplification protocol has been designed as a multiplex PCR; all the investigated 

ENaC variants are amplified in a unique reaction. 

Commercial names of reaction Mix and Taq polymerase, qualitative and quantitative 

composition of oligomix are omitted, in protection of trade secret. 

In the following table the thermal profiling of PCR is reported. 

 

Hold Temperature Time Number of 

cycles 
Hot start 95°C  5 minutes 1 

Denaturation 95°C  30 seconds 

40 Annealing 58°C  90 seconds 

Extension 72°C  30 seconds 

Final Extension 68°C  10 minutes 1 

Storage 10°C  ∞ 1 

 

Tab. 4. Thermal cycling used for the multiplex amplification of ENaC variants. 
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3.2.3. RLB design 

Design of probes 

For each investigated ENaC variant two probes have been designed: one specific for the 

wild-type sequence and one for the allelic variant. In total 18 probes have been 

designed. Genotyping probes have been elaborated on the same genes RefSeq, used for 

the primers. 

3 bioinformatics tools have been used:  

1. DNA Mate (http://melolab.org/dnaMATE/tm-pred.html), for the evaluation of 

melting temperature. 

2. DNA Folding Form application (http://mfold.rna.albany.edu/?q=mfold), to 

analyze the amplicon folding and to evaluate the presence of possible secondary 

structures that can prevent annealing with probe. 

3. Two state melting application (http://mfold.rna.albany.edu/?q=DINAMelt), to 

evaluate temperature of hybridization between probe and target sequence. 

All the selected probes satisfy some common features:  

- central position, in the sequence, of mismatch that differentiate wild-type from 

variant; 

- average length of 20 base pairs; 

- designed in regions not involved in strong secondary structures; 

- 53°C as temperature of hybridization with specific sequences; 

- ΔT of almost 4°C between temperatures of hybridization of the probes that 

identify the two allelic variants; 

- average temperature of melting between 65° and 70°C. 

Sequences of probes are not reported, in protection of trade secret. 

Strip manufacturing 

The support of the strip is a nitrocellulose baked membrane. The probes are spotted on 

nitrocellulose through an automatic work-station and then are immobilized on support 

by exposure to UV light, which induces the covalent bounds between oligos and 

membrane. 

Then, spotted membrane is incubated with a blocking solution containing BSA, for 30 

minutes in moderate shaking. This step prevents non-specific background binding of the 

DNA to membrane. 

Finally, membrane is cutted into single strips, through an automatic instrument. 

Each strip contains 18 genotyping probes: in the upper part of the strip there are probes 

relatives to variant alleles, while in the bottom part there are probes for wild-type 

alleles. Moreover, there is a staining control that guarantee the correct execution of 

post-hybridization steps and a reference line for the interpretation of resulting pattern 

(tab. 5 – fig. 12). 
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Probes concentration, buffer compositions, commercial name of nitrocellulose 

membrane and other details are omitted, for respecting intellectual proprietary and 

trade secret. 

Design of RLB protocol 

A RLB assay is influenced by several interconnected parameters. 

The stringency of the assay could be achieved by acting on two fundamental factors: 

temperature and ionic strenght of solutions. 

Temperature is a key on which it is possible to operate in order to achieve more 

stringency; a higher temperature makes less stable nonspecific duplex DNA-oligo and  

limits their formation. Temperature of the assay depends essentially by the optimal 

temperature of hybridization between DNA and probe. This is given by the structure of 

Position Description 

   Staining control 

  1 M. F61L 

  2 M. V144I 

  3 M. R181W 

  4 M. W493R 

  5 M. S82C 

  6 M. P267L 

  7 M. G294S 

  8 M. 1670-2A>G 

  9 M. E539K 

  10 W. F61L 

  11 W. V144I 

  12 W. R181W 

  13 W. W493R 

  14 W. S82C 

  15 W. P267L 

  16 W. G294 S 

  17 W. 1670-2A>G 

  18 W. E539K 

Staining control 

M. F61L                  1 

M. V114I                2 

M. R181W             3 

M. W493R             4 

M. S82C                 5 

M. P267L               6 

M. G294S              7 

M. 1670-2A>G     8 

M. E539K              9 

W. F61L               10 

W. V114I             11 

W. R181W          12 

W. W493R          13 

W. S82C              14 

W. P267L            15 

W. G294S           16 

W. 1670-2A>G  17 

W. E539K           18 

 

Tab. 5. Position of probes on strip. Probes M. type (pos. 1-9) identify variant alleles. Probes W. type (pos. 

10-18) identify wild-type alleles. 

 

Fig. 12 Example of probes pattern. Sample 1: individual omozygous wild-type for all analyzed variants.

Sample 2: individual omozygous for F61L mutation and wild-type for all the other variants. Sample 3: 

individual heterozygous for F61L mutation and omozygous wild-type for all the other variants. Sample 4: 

individual heterozygous for F61L mutation and R181W polymorphism and omozygous wild-type for all the 

other variants. 
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the probes: it is influenced by content of GC, length of oligos, number, position and types 

of mismatch between DNA target and oligos.  

The other factor that influences stringency of the assay is the ionic strength of the 

hybridization and washing solutions. A minor ionic strength results in a higher 

stringency. 

Finally, it is possible to act on incubation time of the several washing steps. 

Table 6 summarizes the RLB protocol of our test. 

 

Step Reagents Incubation 
Time of 

incubation 

1) Denaturation of amplicon 
Amplicon + Denaturation Solution, 

containing Sodium hydroxide 
Room temperature 5’ 

2) Hybridization 

Hybridization solution, containing 

Sodium citrate, Sodium chloride, Sodium 

dodecyl sulfate and preservatives 

52°C 

Moderate shaking 
30’ 

3) Stringent wash 

Stringent wash solution, containing 

Sodium citrate, Sodium chloride, Sodium 

dodecyl sulfate, and preservatives 

52°C 

Moderate shaking 
10’ 

5) Incubation with 

Streptavidine AP-Conjugated 

Streptavidine AP-Conjugated diluted in 

stringent wash solution 

52°C 

Moderate shaking 
30’ 

6) Wash 

Rinse solution, containing magnesium 

chloride, sodium chloride, Trizma and 

detergents. 

Room temperature 

Moderate shaking 
2’ 

7) Wash 

Rinse solution, containing magnesium 

chloride, sodium chloride, Trizma and 

detergents. 

Room temperature 

Moderate shaking 
2’ 

8) Colorimetric reaction 
NBT/BCIP solution, containing NBT, BCIP, 

Tris buffer and MgSO4 

Room temperature 

Moderate shaking 

AT DARK LIGHT 

10’ 

9) Blocking of reaction Blocking solution, containing Citric acid  
Room temperature 

Moderate shaking 
2’ 

10) Final wash Distilled water 
Room temperature 

Moderate shaking 
2’ 

 

Tab. 6. Scheme of visualization on strip protocol. 

3.2.4. DNA sequencing 

Samples resulting carrier of ENaC variants by RLB assay were sequenced to confirm the 

outcome. 

Amplicons have been purified by using ExoSap-IT® (Affymetrix), according to the 

manufacturer’s protocol. Reaction of sequencing was performed by BMR Genomics, 

with the BigDyes terminator cycle sequencing kit v3.1 (Applied Biosystems). The 

sequencing reactions were run on ABI 3730XL (Applied Biosystems) and ABI 3100 

(Applied Biosystems) and were analyzed with FinchTV software v1.4 (Geospiza).  
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3.2.5. Statistical analysis 

Differences in allelic frequencies between patients and controls were tested for each 

SNP with the use of a Fisher exact probability, because more than 25% of the cells had 

a count of <5. Genotypic odds ratios (ORs) and 95% confidence intervals (CIs) were 

estimated. 

3.2.6. Samples 

Clinical samples used in this study have been provided by different Italian institutes and 

analysis laboratories. Samples have been selected and afterwards they were made 

anonymous, randomized, classified and stored with a biobanking system. 

Genomic DNA was extracted from peripheral whole blood with the systems routinely 

used by the providing laboratory (tab. 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tab. 7. Providing laboratory, matrix, extraction system and geographical information of the clinical 

samples. 

  

Number Laboratory of origin Matrix 
Extraction 

system 

Geographical 

informations 

226 

Laboratory of 

Molecular Pathology, 

Department of 

Pathology and 

Diagnostics, University 

Hospital of Verona 

Peripheral 

blood 

Qiamp DNA 

Blood Mini 

Kit (QIAGEN) 

Northern 

Italy 

7 

Laboratory of 

Molecular Pathology, 

Department of 

Pathology and 

Diagnostics, University 

Hospital of Verona 

Peripheral 

blood 

Qiamp DNA 

Blood Mini 

Kit (QIAGEN) 

Central 

Europe 

100 

Laboratory of 

Molecular Pathology, 

Department of 

Pathology and 

Diagnostics, University 

Hospital of Verona 

Peripheral 

blood 

BioRobot EZ1 

DSP system 

(QIAGEN) 

Northern 

Italy 

69 

Analysis Laboratory, 

Hospital of 

Bentivoglio, USL 

Bologna Nord 

Peripheral 

blood 

MagNA Pure 

Compact 

System 

(ROCHE) 

Northern 

Italy 



 
35 

 

In the following table, features of subjects, as phenotype and number of CFTR 

mutations, are summarized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Number of subjects analyzed, divided on the basis of phenotype and number of CFTR 

mutations.*defined by second level analysis 

 
Phenotype 

CFTR mutation number Total of 

subjects 2 1 0* 

Number of 

subjects 

Respiratory 

manifestations 
58 9 27 94 

Chronic 

pancreatitis 
13 28 29 70 

Recurrent 

pancreatitis 
12 25 32 69 

Healthy - - 169 169 
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3.3. RESULTS AND DISCUSSION 

3.3.1. Optimization of ENaC typing test prototype 

In this Ph. D. project, we have developed a prototype for identification of ENaC variants, 

named GENEQUALITY ENaC-TYPE.  

Preliminary experimental tests have been made to set conditions of PCR and 

visualization on strip. We tested samples of known mutational status with different 

master mixes, different concentrations of primers and probes. The visualization of the 

PCR products by RLB was optimized testing different combinations of temperatures, 

washing solutions, and duration of incubation. Step by step, we compared the different 

conditions considering both intensity of signal on strip and absence of aspecific bands, 

to select a compromise between these features. 

3.3.2. Validation of ENaC typing test prototype 

After achieving the prototype standardization of our test, a phase of the project 

dedicated to the evaluation of the diagnostic performance was started. 

The performances of this assay have been evaluated on a total of 233 samples from 

affected patients and 169 from healthy individuals, as control group. 

The clinical criteria for patient recruitment were the presence of CF or CF-like lung or 

pancreatic symptoms, as well as of a positive or borderline sweat test and/or the 

presence of one CF-causing CFTR mutation. Only patients truly carrying one or no CF-

causing CFTR mutations were included. The absence of two CFTR mutations was 

confirmed by second level molecular analysis, such as sequencing of the complete CFTR 

coding region and its exon/intron junctions, or mutation scanning of the complete CFTR 

coding region and its exon/intron junctions using DGGE or dHPLC. The sensitivity of 

these scanning assays may not reach 100%, so a CFTR mutation might have escaped 

detection.  

Patients have been divided into 2 groups on the bases of their phenotype: 94 individuals 

with respiratory symptoms and 139 patients with pancreatic manifestations. 

Healthy control group 

The prevalence of ENaC variants was first determined in the group of 169 healthy 

individuals. 

In this group, 17 individuals carried an ENaC variant, mainly the polymorphism p.W493R-

SCNN1A. A smaller part showed the mutation p.S82C-SCNN1B or the polymorphism 

p.R181W-SCNN1A. 
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In the following table there is summarized the identified ENaC variants for the 17 

individuals. 

 

N. of individuals SCNN1A VARIANT SCNN1B VARIANT 

10 W493R - 

3 R181W - 

4 - S82C 

 

Tab. 9. Distribution of ENaC variants in the group of healthy controls. 

 

Patients with respiratory manifestations 

Patients with CF-like lungs symptoms were divided into 3 groups based on the number 

of CFTR mutations: 

A. 9 individuals with atypical CF, heterozygous for CFTR mutation  

B. 27 patients with atypical CF, without any CFTR mutation 

C. 58 patients with classic CF, homozygous or compound heterozygous for CFTR 

mutations 

In the group A, 7 ENaC variants have been identified: two polymorphisms p.R181W-

SCNN1A and p.W493R-SCNN1A and five mutations p.S82C-SCNN1B, p.P267L-SCNN1B, 

p.G294S-SCNN1B, p.E539K-SCNN1B and p.1670-2A>G-SCNN1B. Three patients carried a 

single ENaC variant, while five were compound heterozygous for ENaC mutations. One 

individual did not carry any ENaC variant. Patients n. 5 and n. 6 belonged from the same 

family; the same was for individuals n. 7 and n. 8. 

Table 10 summarizes the identified ENaC variants and CFTR mutation for each patient. 

 

PATIENT AH* SCNN1A VARIANT SCNN1B VARIANT CFTR MUTATION 

1  R181W - G542X 

2  W493R - ΔF508 

3  - S82C 3849+10 kbC>T 

4  W493R S82C R347P 

5 - 
P267L 

1670-2A>G 
ΔF508 

6 - 
P267L 

1670-2A>G 
ΔF508 

7  - 
G294S 

E539K 
ΔF508 

8  - 
G294S 

E539K 
ΔF508 

9  - - R1162X 

 

Tab. 10. Atypical heterozygous patients, with relative ENaC variants and CFTR mutation (group A). *AH= 

Atypical Heterozygous 
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In the group B, only three patients carried ENaC variants: one showed the polymorphism 

p.R181W-SCNN1A, and two the p.W493R-SCNN1A polymorphism, as summarized in 

table 11. 

 

PATIENT AN* SCNN1A VARIANT SCNN1B VARIANT 

1  R181W - 

2  W493R - 

3  W493R - 

 

Tab. 11. Atypical patients without CFTR mutations and their ENaC variants (group B). *AN= Atypical No 

CFTR mutation 

 

In the group C, only three individuals carried ENaC variants. Two of them showed the 

p.W493R-SCNN1A polymorphism, while the other carried the p.S82C-SCNN1B mutation, 

as summarized in table 12. 

 

PATIENT CCF* SCNN1A VARIANT SCNN1B VARIANT CFTR MUTATIONS 

1  - S82C ΔF508/3849+10 kbC>T 

2  W493R - ΔF508/ΔF508 

3  W493R - ΔI507/ΔI507 

 

Tab. 12. Classic CF patients with relative ENaC variants and CFTR mutations (group C). *CCF= Classic CF 

 

The prevalence and distribution of each ENaC variant in patients and control groups 

have been analyzed and relative allelic frequencies have been calculated (tab. 13). 

 

SNP REFERENCE VARIANTS 

OBSERVED ALLELIC FREQUENCY 

(mutated allele) EXPECTED 

ALLELIC 

FREQUENCY* 

ATYPICAL CF 

PATIENTS 

(n=36) 

CLASSIC CF 

PATIENTS 

(n=58) 

TRUE 

CONTROLS 

(n=169) 

rs61758859 C>A F61L - - - no data 

rs61759861 C>T V114I - - - 0 

rs61759925 G>A R181W 0.03 - 0.009 0.02 

rs5742912 A>G W493R 0.05 0.02 0.03 0.02 

rs35731153 C>G S82C 0.03 0.009 0.01 <0.01 

rs137852709 C>T P267L 0.03 - - no data 

rs72654338 G>A G294S 0.03 - - <0.01 

No registered A>G 1670-2A>G 0.03 - - no 

registered SNP rs137852710 G>A E539K 0.03 - - no data 

 

Tab. 13. Summary of the detected ENaC variants and their allelic frequencies. *Frequencies reported in 

the 1000 Genomes Database, for European population. 
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The allelic frequencies have been used to perform a statistical analysis, in order to 

evaluate possible significative differences between atypical affected and healthy 

controls. 

On the total of seven identified variants in this group of patients, only four had a 

frequency significantly higher in affected than in controls. These are the loss of function 

mutations p.E539K-SCNN1B, p.1670-2A>G-SCNN1B and p.P267L-SCNN1B and the gain 

of function mutation p.G294S-SCNN1B. They were found in two atypical patients (5.5%), 

at a more than five-fold increased incidence compared to controls (0%) (p-value=0.03), 

with an OR of 5.97 (95% CI, 4.39-8.11). 

The four significative mutations are located on SCNN1B gene. These results are partial 

in agreement with the findings that transgenic mice, overexpressing SCNN1B in the 

lower airways, have increased airway epithelial sodium absorption and present CF-like 

lung disease symptoms. It is possible that the amount of different ENaC subunits that is 

present in the cell is likely not equal. Indeed, the amount of a given subunit depends on 

many factors at the transcriptional and translational level. One subunit will thus be the 

limiting factor for the generation of functional ENaC channels. SCNN1B might be the 

limiting factor in the formation of functional ENaC channels, such that overexpression 

results in more ENaC activity and disease in transgenic mice [48].  

The polymorphism p.R181W-SCNN1A and the loss of function mutation p.S82C-SCNN1B 

were found in two affected individuals (5.5%), a three-fold increased incidence respect 

to control group of healthy individuals (1.7%), but the statistical analysis revealed that 

this difference was not significant (p-value=0.21). 

The remaining polymorphism p.W493R-SCNN1A was identified in four patients (11.1%) 

and in ten healthy individuals (5.6%); also in this case the difference was not significantly 

different between the two groups (p-value=0.27). 

The only difference between frequencies observed in our group of control and those 

reported in database was identified for p.R181W-SCNN1B polymorphism. This finding 

could be related to different geographical belonging of individuals. Our control group 

was entirely composed by Italian individuals, while frequencies reported by 1000 

Genomes Database were calculated on individuals from different European countries. 

Despite this difference, p.R181W-SCNN1B frequency in our group of atypicals was 

similar to value reported by database, although patients carrying the polymorphism 

were Italian. 

The four significative variants, identified in this study, were found in patients 

heterozygous for CFTR. They carried ΔF508 mutation, the most common causative 

variant of CF. When a disease-causing mutation is found on both CFTR genes, CFTR  

network is almost completely nonfunctional. However, in patients in whom a mutation 

is only found on one CFTR gene, about 50% of the network is still functional. This part of 

CFTR network may be rendered nonfunctional by a mutation in at least one other 

member of the CFTR network, such as ENaC. In these cases, ΔF508 account for damage 

of CFTR network and, probably, p.E539K-SCNN1B, p.1670-2A>G-SCNN1B, p.P267L-
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SCNN1B, p.G294S-SCNN1B affect functionality of remaining 50%. Thus, it is possible that 

ENaC mutation, in combination with a loss-of function mutation in one copy of the CFTR 

gene, may cause or predispose to CF or CF-like disease. 

However it is very difficult to develop an explanation of the effect of the different 

mutations, especially in the light that either too low or too high amounts of ENaC can 

already result in two different diseases, which will be even further complicated if the 

CFTR protein is implicated. 

Other ENaC variants were also detected in patients with explained CF and in healthy 

individuals, but their effect was null. In CF affects, disease is essentially given by the two 

CFTR disease-causing mutations, as expected. Therefore, it is possible to speculate that 

no disease will occur when these mutations are found alone in a heterozygous state.  

Patients with pancreatic manifestations 

Patients with CF-like pancreatic symptoms (chronic or recurrent) were divided in 3 

groups based on the number of CFTR mutations: 

A. 53 individuals with atypical CF, heterozygous for CFTR mutation 

B. 61 patients with atypical CF, without any CFTR mutation 

C. 25 patients with classic CF, homozygous or compound heterozygous for CFTR 

mutations 

In the group A, we have identified four individuals carrying ENaC variants. In particular, 

two of them showed chronic pancreatitis, while the other two had a clinical picture of 

recurrent pancreatitis. They carried the polymorphisms p.R181W-SCNN1A and 

p.W493R-SCNN1A and the mutation p.S82C-SCNN1B. Patients were heterozygous for CF 

causing mutations, as summarized in the table 14. 

 

PATIENT 

AH* 
PHENOTYPE 

SCNN1A 

VARIANT 

SCNN1B 

VARIANT 
CFTR MUTATION 

1  Recurrent pancreatitis R181W - W1282X 

2  Recurrent pancreatitis W493R - P5L 

3  Chronic pancreatitis R181W - ΔF508 

4  Chronic pancreatitis - S82C ΔF508 

 

Tab. 14. Atypical heterozygous patients with pancreatic symptoms, relative ENaC variants and CFTR 

mutations (group A). *AH= Atypical Heterozygous 

 

In the group B, only five patients carried ENaC variants: four of them showed the 

p.W493R-SCNN1A polymorphism, while one the p.R181W-SCNN1A. 
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Table 15 summarizes the identified ENaC variants for the five patients. 

 

PATIENT AN* PHENOTYPE SCNN1A VARIANT SCNN1B VARIANT 

1  Recurrent pancreatitis R181W - 

2  Recurrent pancreatitis W493R - 

3  Chronic pancreatitis W493R - 

4  Chronic pancreatitis W493R - 

5  Chronic pancreatitis W493R - 

 

Tab. 15. Atypical patients with pancreatic manifestations and no CFTR mutations and their ENaC variants 

(group B). *AN= Atypical No CFTR mutation 

The prevalence of the ENaC variants was also determined in the group C (tab. 16). 

In this group, only two individuals carried ENaC variants: one was a compound 

heterozygous for p.R181W-SCNN1A and p.S82C-SCNN1B, while the other carried the 

p.S82C-SCNN1B mutation. Interestingly, these two patients exhibited chronic 

pancreatitis, while individuals with recurrent pancreatitis did not carry any ENaC 

variants. 

 

PATIENT CCF* PHENOTYPE SCNN1A VARIANT SCNN1B VARIANT 
CFTR 

MUTATIONS 

1  Chronic pancreatitis R181W S82C ΔF508/(TG)12T5 

2  Chronic pancreatitis - S82C ΔF508/D1152H 

 

Tab. 16. Classic CF patients with relative ENaC variants and CFTR mutations (group C). *CCF= Classic CF 

patients 

 

In addition, the prevalence and distribution of each ENaC variant, in the group of 

patients with pancreatic manifestations, have been analyzed and relative allelic 

frequencies have been calculated (tab. 17).  

 

SNP REFERENCE VARIANTS 

OBSERVED ALLELIC FREQUENCY 

(mutated allele) 
EXPECTED ALLELIC 

FREQUENCY* 
ATYPICAL CF 

PATIENTS 

(n=114) 

CLASSIC CF 

PATIENTS 

(n=25) 

TRUE 

CONTROLS 

(n=169) 

rs61758859 C>A F61L - - - no data 

rs61759861 C>T V114I - - - 0 

rs61759925 G>A R181W 0.01 0.01 0.009 0.02 

rs5742912 A>G W493R 0.02 - 0.03 0.02 

rs35731153 C>G S82C 0.004 0.009 0.01 <0.01 

rs137852709 C>T P267L - - - no data 

rs72654338 G>A G294S - - - <0.01 

No registered A>G 1670-2A>G - - - no registered SNP 

rs137852710 G>A E539K - - - no data 

 

Tab. 17. Summary of the detected mutations and their allelic frequencies. *Frequencies reported in the 

1000 Genomes Database, for European population. 
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Statistical analysis, performed on allelic frequencies calculated above, has underlined 

the absence of any significative differences between atypical affected and healthy 

controls. 

The two polymorphisms p.R181W-SCNN1A, p.W493R-SCNN1A and loss of function 

mutation p.S82C-SCNN1B were identified both in the group of patients and in the 

controls, without any statistical difference between them.  

The polymorphism p.R181W-SCNN1A was found in three affected individuals (2.6%) and 

in three healthy individuals (1.7%); the difference was not clearly statistical significant 

(p-value=0.39). The second polymorphism p.W493R-SCNN1A was identified in five 

atypicals (4.4%) and in ten controls (5.6%) (p-value=0.78); finally p.S82C-SCNN1B 

mutation was found in only one affected (0.87%) and in the control group with the value 

of 1.7% (p-value=0.65). 

Interestingly, ENaC variants that appeared significative in the group of patients with 

respiratory symptoms (e.g. p.P267L-SCNN1B, p.G294S-SCNN1B, p.E539K-SCNN1B and 

p.1670-2A>G-SCNN1B), have not been identified in individuals with pancreatic 

manifestations.  

Frequency of identified ENaC variants were not significantly different between patients 

with recurrent pancreatitis and individuals with chronic pancreatitis. Among the 

patients with explained CF, only individuals with chronic pancreatitis carried ENaC 

variants. This finding has no statistical significance, because ENaC variants were 

detected in affected with recurrent pancreatitis, carrying one or none CFTR mutations. 

Therefore, the observed situation could be due to the low number of individuals in the 

group. 

All the variants identified by RLB assay were confirmed through sequencing (data not 

shown).  
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4. PART II: HCV GENOTYPING 

4.1. INTRODUCTION 

Hepatitis C virus (HCV) has been cloned in the 1989 [60, 61], and it is the principal cause 

of the so-called post-transfusion non-A, non-B hepatitis. 

HCV is a single-strand RNA virus, member of Flaviviridae family, Hepacivirus genus, 

although it is different in many details of its genome organization from the original 

members of the family. HCV is additionally distinct and somewhat unusual for an RNA 

virus in being able to establish persistent infections in the majority of exposed 

individuals. This phenomenon has attracted the greatest interest in HCV research, not 

least because long-term, chronic infections underlie its disease manifestations and 

effective therapy must break this ongoing cycle of replication in the liver [62]. 

4.1.1. Genetic variability of HCV 

Genetic variability of HCV exists at several different levels. Most obvious is the 

substantial genetic divergence of the main genotypes of HCV, which frequently show 

specific geographical ranges in the human population and associations with particular 

risk groups for infection. Below this, variability is observed between individual variants 

(or strains). It reflects processes of neutral sequence drift over time after the 

introduction of HCV into new risk groups in the 20th century. Some of the sequence 

divergence may represent phenotypically selected changes, associated with adaptation 

for replication in individuals with different immune responses. Finally, HCV diversifies  

within an infected individual overtime, forming what has been described as a 

quasispecies. This pre-existing genetic variability, combined with an extremely large 

replicating population size of HCV in a chronically infected individual, provides a large 

pool of genetic variants that can adapt to new selection pressures [62]. 

4.1.2. Genotypes 

Comparison of nucleotide sequences of variants, recovered from infected individuals in 

different risk groups for infection and from different geographical regions, has revealed 

the existence of at least seven major genetic groups. On average over the complete 

genome, these differ in 30–35% of nucleotide sites, with more variability concentrated 

in regions such as the E1 and E2 glycoproteins. Whereas sequences of the core gene and 

some of the non-structural protein genes, such as NS3, are more conserved. The lowest 

sequence variability between genotypes is found in the 5’ UTR, where specific sequences 

and RNA secondary structures are required for replication and translation functions. 

Within each genotype, HCV is further classified into 67 confirmed and 20 provisional 

subtypes (fig. 13) that typically differ from each other by 20–25% in nucleotide 

sequences [63].  
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Fig. 12 Phylogenetic tree of 129 representative complete coding region sequences. Up to two 

representatives of each confirmed genotype/subtype were aligned and a neighbor joining tree 

constructed using maximum composite likelihood nucleotide distances between coding regions using 

MEGA5.Sequences were chosen to illustrate the maximum diversity within a subtype. Tips are labeled by 

accession number and subtype (*unassigned subtype). For genotypes 1, 2, 3, 4, and 6, the lowest common 

branch shared by all subtypes and supported by 100% of bootstrap replicates (n= 1,000) is indicated by● 

[63]. 

 

Distribution of HCV genotypes 

The contemporary global geographic distribution of HCV genotypes is complex. It has 

already been established that a few subtypes—specifically 1a, 1b, 2a, and 3a—are 

widely distributed across the globe and account for a large proportion of HCV infections 

in high income countries. These so-called “epidemic subtypes” are thought to have 

spread rapidly in the decades prior to the discovery of HCV by way of infected blood, 

blood products, injecting drug use, and other routes [64, 65, 66].  

The model suggested by these genotype distributions is that HCV has been endemic in 

sub-Saharan Africa and South-East Asia for a considerable time, and that the occurrence 

of infection in Western and other non-tropical countries represents a relatively recent 

emergence of infection in new risk groups [67, 68]. In the 20th century, parenteral 

exposure to blood-borne viruses became frequent through the widespread adoption of 

blood transfusion since the 1940s, the medical use of often unsterilized needles for 

injections and vaccinations (a practice that continues in many developing countries) and, 

most specifically, to industrialized countries, injecting drug use and the sharing of 
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injection equipment. These new routes for transmission plausibly account for the 

epidemiological and genetic evidence for recent epidemic spread of HCV over the past 

50 years in Europe, Egypt and elsewhere [68, 69, 70]. 

Many other HCV subtypes are considered “endemic” strains; these are comparatively 

rare and have circulated for long periods in more restricted regions. Endemic strains 

from genotypes 1 and 2 are primarily in West Africa, 3 in south Asia, 4 in Central Africa 

and the Middle East, 5 in Southern Africa, and 6 in South East Asia (fig.14) [64, 67, 69]. 

To date, only one genotype 7 infection has been reported; it was isolated in Canada from 

a Central African immigrant [71]. 

The global distribution of HCV genetic variation has likely been influenced by historical 

and contemporary trends in human migration. For example, strains from West Africa 

appear to have been transferred to the America by way of the trans-Atlantic slave trade 

[72]. 

Globally, genotype 1 is estimated to account for more HCV cases than any other 

genotype at 83.4 million (46.2%), with over one-third of genotype 1 cases located in East 

Asia.  

HCV genotype 3 is the next most common and is estimated to account for 54.3 million 

(30.1%) cases globally, approximately three-quarters of which occur in south Asia; the 

remaining are located in parts of Scandinavia. 

Genotypes 2, 4, and 6 are responsible for the majority of the remaining cases of HCV 

worldwide, with an estimated 16.5 million (9.1%), 15.0 million (8.3%), and 9.8 million 

(5.4%) cases, respectively. East Asia accounts for the greatest numbers of genotype 2 

and genotype 6 HCV cases, while North Africa and the Middle East have the largest 

number of genotype 4 cases.  

Genotype 5 is responsible for the fewest HCV cases globally (1.4 million, <1% of all HCV 

cases), the great majority of which occur in Southern and Eastern sub-Saharan Africa. 

Genotype 6 is present at the highest frequencies in East and Southeast Asia, but is the 

dominant genotype in only one country, Laos; it is also prevalent in neighboring Vietnam 

[73]. 
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Fig. 14 Relative prevalence of each HCV genotype. Size of pie charts is proportional to the number of 

seroprevalent cases [74]. 
 

4.1.3. Viral structure  

HCV is an enveloped virus with a positive single-stranded RNA genome, of approximately 

9400 nucleotides in length. The genome contains a single ORF (Open Reading Frame), 

which is translated into polyprotein of 3000 aminoacids. This polyprotein is 

subsequently processed by viral and host proteases into 10 different proteins, three 

structural and seven nonstructural.  

The three structural proteins, which constitute the viral particle, include the core protein 

and the envelope glycoproteins E1 and E2. Two regions in E2, known as hypervariable 

regions 1 and 2, are reported to have extreme sequence variability. The seven 

nonstructural components include the p7 polypeptide, the NS2-3 protease, the NS3 

serine protease and RNA helicase, the NS4A polypeptide, the NA4B and NS5A proteins, 

and the NS5B RNA-dependent RNA polymerase. 

At both ends of the open reading frame lie the 5’- and 3’-untranslated regions (5’-UTR 

and 3’-UTR). The 5′-UTR is highly conserved among different HCV isolates and it is 

composed by four highly ordered domains numbered I to IV. Domains II and III constitute 

the IRES that is essential for cap-independent translation of the viral RNA. Domains I and 

II are both essential for HCV RNA replication [74]. The 3′-UTR is composed of a short 

variable region, a poly (U/UC) tract with an average length of 80 nucleotides, and an 

almost invariant 98 nucleotide RNA element, designated the X-tail. The conserved 

elements in the 3′-UTR, including a minimal poly (U) tract of about 25 bases, are essential 

for replication [75]. 

Besides the 5′- and 3′-UTRs, an essential cis-acting replication element (CRE) was 

identified in the sequence that encodes the C-terminal region of NS5B [76].  

 



 
47 

 

Virion structure 

Based on filtration and electron microscopic studies, HCV particles are 40–70 nm in 

diameter. It is thought that the core protein and the envelope glycoproteins E1 and E2 

are the principal protein components of the virion. E1 and E2 are presumably anchored 

to a host cell-derived double-layer lipid envelope that surrounds a nucleocapsid 

composed of multiple copies of the core protein and the genomic RNA (fig. 15). 

HCV circulates in various forms in the infected host. Virus can be associated with low-

density lipoproteins (LDL) and very-low-density lipoproteins (VLDL), both of which seem 

to represent the infectious fraction. It also circulates as free virions or bound to 

immunoglobulins [77].  

 

 

 

Structure and function of the viral proteins 

Core 

The first structural protein encoded by the HCV open reading frame is the core protein, 

which forms the viral nucleocapsid. An internal signal sequence located between the 

core and E1 sequences targets the nascent polypeptide to the endoplasmic reticulum 

(ER) membrane for translocation of the E1 ectodomain into the ER lumen. Cleavage of 

the signal sequence by signal peptidase yields an immature 191 aminoacids core protein. 

Further C-terminal processing yields the mature 21-kDa core protein of 173–179 

aminoacids. 

The N-terminal hydrophilic domain (D1) of the core protein contains a high proportion 

of basic aminoacid residues and has been implicated both in RNA binding and homo-

oligomerization. The core protein is a α-helical protein that is found on membranes of 

the ER and on the surface of lipid droplets. The association with lipid droplets, which is 

mediated by the central, relatively hydrophobic domain (D2), may have a role during 

viral replication and/or virion morphogenesis [78]. 

Fig. 15 Structure of HCV virion. 



 
48 

 

 

Envelope glycoproteins 

The envelope proteins E1 and E2 are glycosylated and form a non-covalent complex, 

which is the building block for the viral envelope. HCV glycoprotein maturation and 

folding is a complex process that involves the ER chaperone machinery and depends on 

disulphide bond formation as well as glycosylation. The transmembrane domains of E1 

and E2, located at their C-termini, are involved in heterodimerization and have ER 

retention properties. Each of them contains a hydrophobic patch that functions as an 

internal signal peptide for the downstream E2 and p7 proteins [79].  

p7 

p7 is a 63 aminoacid polypeptide that is often incompletely cleaved from E2. HCV p7 is 

not required for RNA replication in vitro but is essential for productive infection in vivo. 

It has been suggested to belong to the viroporin family, and that could have an 

important role in viral particle maturation and release [80]. 

NS2–3 protease  

The NS2–3 protease is also known as the autoprotease. As with all of the HCV proteins, 

NS2 is associated with intracellular membranes. It is dispensable for RNA replication in 

vitro but is essential for the complete replication cycle in vitro and in vivo, possibly by 

affecting a late step of the viral life cycle [81].  

NS3–4A complex 

NS3 is a multifunctional protein, with a serine protease located in the N-terminal one 

third and an RNA helicase/NTPase located in the C-terminal two thirds of the protein. 

The NS4A polypeptide functions as a cofactor for the NS3 serine protease. Its central 

portion is incorporated as an integral component into the enzyme core, and its N-

terminal portion is responsible for membrane association of the NS3–4A complex [82].  

NS4B 

NS4B is a relatively poorly characterized 27-kDa protein. One of its functions is to induce 

the formation of the membranous network, the specific membrane alteration that 

serves as a scaffold for the HCV replication complex [83]. 

NS5A  

NS5A is a phosphoprotein that can be found in basally phosphorylated (56 kDa) and 

hyperphosphorylated (58 kDa) forms. Phosphorylation of NS5A is a conserved feature 

among hepaciviruses and pestiviruses and is also found in flavivirus NS5 proteins. Thus, 

NS5A has an important role in the HCV lifecycle and probably modulates the efficiency 

of HCV RNA replication. NS5A would attach the viral RNA onto intracellular membranes 

and coordinate its different fates during HCV replication [84].  
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NS5B 

NS5B RNA-dependent RNA polymerase (RdRp) is the key enzyme responsible for HCV 

replication. First, a complementary negative-strand RNA is synthesized using the 

genome as a template and then, a genomic positive-strand RNA is synthesized from this 

negative-strand RNA template. This enzyme lacks of a proof-reading function; this 

feature, together with the high replicative activity, accounts for genetic variability of 

HCV. NS5b RdRp has been extensively characterized, and has emerged as a major target 

for antiviral intervention. [85]. 

ARFP/F proteins 

An alternative reading frame (ARF) was identified in the HCV core coding region, as a 

result of a –2/+1 ribosomal frameshift in genotype 1a. It has the potential to encode a 

protein of up to 160 amino acids, designated ARFP (alternative reading frame protein) 

or F (frameshift) protein. Amino-acid sequencing indicated that the frameshift probably 

occurs at, or near to, codon 11 of the core protein sequence [86]. 

However, the functions, if any, of the ARFP/F proteins in the life cycle and pathogenesis 

of HCV remain to be elucidated.  

 

 

 
 

  

Fig. 16 Genetic organization and polyprotein processing of hepatitis C virus (HCV). The 9.6-kb positive-

strand RNA genome is schematically depicted at the top. Simplified RNA secondary structures in the 5′- 

and 3′-UTR and the core gene are shown. Internal ribosome entry site (IRES)-mediated translation yields 

a polyprotein precursor that is processed into the mature structural and non-structural proteins. Amino-

acid numbers are shown above each protein (HCV H strain; genotype 1a; GenBank accession number 

AF009606). Solid diamonds denote cleavage sites of the HCV polyprotein precursor by the endoplasmic 

reticulum signal peptidase. The open diamond indicates further C-terminal processing of the core protein 

by signal peptide peptidase. Arrows indicate cleavages by the HCV NS2–3 and NS3–4A proteases. Dots in 

E1 and E2 indicate the glycosylation of the envelope proteins [75]. 
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4.1.4. Life cycle 

Viral entry 

HCV only infects humans and chimpanzees. Hepatocytes are the main target cells but 

infection of B cells, dendritic cells and other cell types has also been reported. CD81, a 

tetraspanin protein that is found on the surface of many cell types, including 

hepatocytes, the LDL receptor (LDLR), the scavenger receptor class B type I (SR-BI) and, 

most recently, claudin-1 (CLDN1) have, among others, been proposed as HCV receptors 

[87, 88, 89], but their role remains still not fully elucidated. CLDN1 functions at a late 

stage of cell entry, possibly at tight junctions of polarized hepatocytes. 

Virus internalization depends on clathrin-mediated endocytosis and the acidification of 

the endosome induces HCV glycoprotein membrane fusion. Little is known about the 

uncoating process, which results in genome release into the cytosol. 

Translations of viral proteins 

Domains II, III and IV of the 5′-UTR, together with the first 24–40 nucleotides of the core 

coding region, constitute the IRES. HCV translation initiation occurs through the 

formation of a binary complex between the IRES and the 40S ribosomal subunit. Then, 

a 48S-like complex is assembled at the AUG initiation codon, after the association of 

eukaryotic translation initiation factor3 (eIF3) and ternary complex (eIF2•Met-

tRNAi•GTP) [75]. 

Polyprotein processing   

Translation of the HCV open reading frame yields a polyprotein precursor that is co- and 

post-translationally processed by cellular and viral proteases into the mature structural 

and non-structural proteins. The structural proteins and the p7 polypeptide are 

processed by the ER signal peptidase whereas the non-structural proteins are processed 

by two viral proteases, the NS2–3 protease and the NS3–4A serine protease [75]. 

The viral replication complex 

The peculiar steps of HCV replication are the formation of a membrane-associated 

replication complex, the composition of viral proteins, replication of RNA and alteration 

of cellular membranes. Replication might occur on altered membranes derived from the 

ER, Golgi apparatus, mitochondria or even lysosomes. 

The role of membranes in viral RNA synthesis is not well understood. Several functions 

have been suggested: physical support and organization of the RNA replication complex, 

compartmentalization and local concentration of viral products, attachment of the viral 

RNA during unwinding, provision of lipid constituents important for replication and 

protection of the viral RNA from double-strand RNA-mediated host defenses or RNA 

interference [75]. 



 
51 

 

Recent studies have revealed a complex interaction between HCV RNA replication and 

cellular lipid metabolism, presumably through the trafficking and association of viral and 

host proteins with intracellular membranes [90].  

Packaging, assembly and particle release 

Little is known about the late steps of the viral lifecycle. NS2 and possibly other non-

structural proteins, as well as undefined RNA structures, are involved in these processes. 

Virions presumably form by budding into the ER, or an ER-derived compartment, and 

exit the cell through the secretory pathway [75]. 

 

 

4.1.5. Infections by HCV 

The World Health Organization (WHO) estimates that 170–200 million people 

worldwide, i.e., 3% of the world’s population, is infected with HCV. 

HCV prevalence is characterized by a high variability between world’s regions, individual 

countries and between age and risk groups. HCV prevalence is highest in Africa and the 

Middle East, where Egypt, Cameroon, Saudi Arabia, Iraq and Syria account for the 

majority of cases and prevalence ranges from 2% to 15%. North America, Australia, 

Japan and Northern and Western Europe report lower prevalence of HCV infection, with 

no country showing a rate > 2%. China, India, Egypt, Pakistan and Indonesia account for 

approximately half of the global HCV-infected subjects [91]. In general, developing 

countries present the major HCV-related burden but also the major limitations in 

surveillance: data from most African, Asian and South American countries are lacking.  

HCV prevalence in the majority of developed countries is classified as low, but marked 

differences in the epidemiological picture exist among countries, principally related to 

Fig. 17 Lifecycle of hepatitis C virus (HCV). Virus binding and internalization (a); cytoplasmic release and 

uncoating (b); IRES-mediated translation and polyprotein processing (c); RNA replication (d); packaging 

and assembly (e); virion maturation and release (f) [75]. 
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temporal and transmission factors and resulted in diverse age-specific distribution of 

HCV cases [92]. 

Natural history of HCV 

Acute HCV infection is mostly asymptomatic and rarely recognized clinically. 

In up to 45% of cases, acute HCV infection completely resolves, and this seems to be 

associated with a younger age at infection, female sex, and possibly certain major 

histocompatibility complex genes. However, about 55% to 86% of HCV infected patients 

develop chronic infection, manifested by the persistence of detectable HCV in the 

serum. This has been primarily attributed to the propensity of HCV to mutate and evade 

host defenses [93]. 

Chronic HCV is usually characterized by a lack of symptoms or only fatigue or vague 

abdominal pain. Extra hepatic manifestations of chronic HCV may be identified, and 

these are associated primarily with autoimmune or lymphoproliferative states. 

Increases in serum alanine aminotransferase (ALT) reflect hepatocyte injury, but these 

values typically fluctuate overtime and may be even normal on occasion. 

The major complication of chronic HCV infection is progressive hepatic fibrosis leading 

to cirrhosis, which develops in about 20% of patients with chronic HCV [94]. The natural 

history of chronic HCV is variable, and progression of chronic liver disease is insidious in 

most patients. About one third of patients with chronic HCV develop hepatic cirrhosis 

15 to 20 years after infection (‘‘rapid fibrotic progressors’’), one third develop cirrhosis 

20 to 30 years after infection (‘‘intermediate fibrotic progressors’’). The remaining one 

third develop it only after 30 years of HCV infection (‘‘slow fibrotic progressors’’) [95]. 

However, a number of factors can accelerate progression to advanced liver disease, such 

alcohol consumption, co-infection with HIV or hepatitis B virus, and older age at the time 

of infection. Obesity and hepatic steatosis are also emerging independent predictors of 

more severe liver fibrosis. 

Chronic HCV infection is associated with an increased risk of hepatocellular carcinoma, 

but this occurs primarily in patients with cirrhosis. Factors that increase the risk of 

hepatocellular carcinoma among HCV infected people include male sex, older age, 

chronic hepatitis B infection, and heavy alcohol ingestion (>50 grams/day). Once 

cirrhosis is established, the incidence of hepatocellular carcinoma is 1% to 4% per year. 

Death from chronic HCV typically occurs because of decompensated cirrhosis or 

hepatocellular carcinoma [94]. 
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4.1.6. Therapy 

The treatment available for HCV has changed significantly over recent decades, with the 

standard of care shifting from conventional interferon (IFN) monotherapy to IFN and 

ribavirin combination therapy to PEGylated IFN (PEG-IFN) with ribavirin. IFNα has potent 

antiviral activity due to its ability to induce IFN-stimulated genes that encode proteins, 

inhibiting various stages of viral replication. In addition, IFNα has an immunomodulatory 

effect, interacting with both the adaptive and innate immune response of the host. IFNα 

promotes T-helper (Th) cell differentiation of T-lymphocytes over Th2 cells, leading to 

increased production of interleukin (IL)-2 and IFNγ. Moreover, IFNα exerts an anti-

inflammatory effect by inhibiting the synthesis of various cytokines, including tumor 

necrosis factor-alpha and IL-1 [96].  

The mechanisms of action of ribavirin are not fully understood. It has been postulated 

that ribavirin acts via direct inhibition of HCV replication, inhibition of the host inosine 

monophosphate dehydrogenase enzyme, induction of mutagenesis to drive a rapidly 

Fig. 18 Natural history of HCV infection [94]. 
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replicating virus beyond the threshold to error catastrophe, and immunomodulation by 

inducing a Th1 immune response [97]. 

The primary goal of antiviral therapy in patients with chronic hepatitis C is achieving a 

Sustained Virological Response (SVR), defined as undetectable serum HCV-RNA by a 

sensitive molecular assay 24 weeks after completion of therapy. Although the standard 

of care improves SVR rates in HCV genotypes 2 and 3, the response is still suboptimal in 

genotypes 1 and 4 and in particular patient populations; therapy fails in 50%–60% of 

patients with HCV genotype 1 and approximately in 20% of those with HCV 2 and 3. 

Management of relapsers and nonresponders remains a challenging and controversial 

issue. In addition, all of the IFN-based regimens have moderate to severe side effects, 

including hematologic adverse events (neutropenia, thrombocytopenia), fatigue, 

irritability, fever, myalgia, arthralgia, inflammation at the injection site, and cardiac 

dysrhythmia, that negatively influence the tolerability and adherence of patients with 

therapy [98]. 

Moreover, a number of host and viral factors influence SVR rates in patients with chronic 

HCV. A SVR is more likely in young individuals, females, patients infected with genotypes 

2 or 3, and those with low pretreatment HCV-RNA levels, no or minimal liver fibrosis, 

and adequate adherence to therapy. Infection with HCV genotype 1 or 4, high baseline 

HCV RNA levels (>800,000 IU/mL), steatosis, insulin resistance, and co-infection with HIV 

are associated with low response rates [99]. 

Since genotype 1 is the most frequent genotype in chronically infected patients 

worldwide, the need for more efficacious therapies is becoming urgent. 

All of the above factors have driven a need to develop new treatments that are safer 

and more effective. Recently, a number of direct-acting antiviral agents (DAAs) have 

been developed for use with PEG-IFN/ribavirin as triple therapies or IFN-free therapy. 

The efficacy of such therapeutic regimens varies according to genotype and host 

characteristics.  

Direct-acting antiviral agents 

DAAs were developed to increase SVR rates, reduce adverse events, and improve 

adherence to therapy in HCV patients.  

Increased understanding of the HCV life cycle in recent years has supported the 

development of direct-acting antiviral (DAA) agents that specifically target post-

translational processing and HCV replication. 

The targets of currently approved or in development molecules are related with HCV 

replication, specifically translation and polyprotein processing (NS3/4A), HCV genome 

replication (NS5B polymerase and NS5A), and viral assembly (NS5A) [100]. 
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NS3/4A Inhibitors 

Inhibition of NS3 and its cofactor, NS4A, results in blocking proteolytic maturation of a 

large portion of the nonstructural region of the HCV polyprotein, NS3 to NS5B.  

A number of other protease inhibitors, which have been developed and in phase II or III 

clinical trials, are classified as “first-generation” and “second-generation” according to 

degree of genetic barrier to resistant HCV and genotype coverage. The first-generation 

protease inhibitors include boceprevir, telaprevir, simeprevir (TMC-435), faldaprevir 

(BI201335), vaniprevir (MK-7009), and asunaprevir (BMS-650032).  

The second-generation protease inhibitors, characterized by potent activity against pan-

genotypes and high genetic barrier to resistance, include MK-5172 and ACH-2684 in 

phase II clinical trial [102]. 

Boceprevir and telaprevir represents the first-wave of the first-generation oral protease 

inhibitors and they have been assessed in large clinical trials. These agents have been 

approved by regulatory authorities and are currently used in clinical practice. Boceprevir 

acts as a noncovalent inhibitor of cytochrome P450 A4 and P-glycoprotein. Addition of 

boceprevir or telaprevir to PEG-IFN and ribavirin significantly increased SVR rates and 

shortened the treatment duration in naïve, relapsing, and partially responding patients.  

Current practice guidelines recommend a triple therapy regimen combining PEG-IFN, 

ribavirin, and telaprevir or boceprevir. However, triple therapy has some drawbacks, 

including drug–drug interactions and viral resistance. This regimen increases adverse 

events such as rash and moderate to severe anemia to an extent that might require 

reduction of the ribavirin dose. Boceprevir and telaprevir are only effective against 

genotype 1, with recent studies showing that these protease inhibitors have no antiviral 

Fig. 19 Steps in the HCV life cycle targeted by DAAs (shown in cyan). Abbreviations: E, enevelope 

glycoprotein; NS, nonstructural protein; + and -, positive and negative HCV RNA strands. aNot approved 

by the US Food and Drug Administration [102]. 
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activity against genotype 2, 3, or 4. Further, triple therapy is ineffective in patients who 

have not responded to previous dual PEG-IFN/ribavirin therapy [98]. 

The second-wave of first-generation protease inhibitors comprises simeprevir, 

asunaprevir, and danoprevir, which are currently being evaluated in an effort to 

overcome the limited efficacy of the first-wave protease inhibitors in HCV genotypes 2, 

3, and 4 and to minimize their adverse events [98]. 

NS5A Inhibitors 

NS5A is a dimeric protein required for HCV RNA replication and virion assembly. NS5A 

inhibitors have potent antiviral activity, but the genetic barrier to resistance is low. 

Daclatasvir (BMS-790052) is the first of DAA targeting against hepatitis C virus NS5A 

showing a very potent antiviral effect on several HCV genotypes. The overall adverse 

event profile is acceptable. Due to a relatively low genetic barrier, combination regimen 

including daclatasvir and other NS3/4A, PEG-IFN/RBV, or NS5B drugs is recommended 

for the treatment of hepatitis C [103]. 

NS5B Inhibitors 

Polymerase inhibitors are another class of DAAs that have recently shown much 

potential. These drugs bind to NS5B polymerase to stop replication of the virus.  

They can be divided into 2 groups: the nucleoside analog inhibitors, that are 

incorporated into the HCV RNA chain, leading to direct chain termination, and the non-

nucleoside inhibitors that bind to several discrete sites outside of the polymerase active 

center, causing a conformational protein change. 

The nucleoside analog inhibitors are potentially active against all HCV genotypes, and 

viral resistance to these agents is low and less frequent than with the non-nucleoside 

inhibitors. 

Sofosbuvir is a nucleoside analog inhibitor and has recently been approved by the US 

Food and Drug Administration. It has a high barrier to viral resistance, and no virologic 

breakthrough has been recorded so far. One major feature of sofosbuvir is its pan-

genotypic antiviral effect [104]. Actually, sofosbuvir has opened the first window for the 

era of “interferon-free” treatment of hepatitis C. Many clinical trials of sofosbuvir are 

now ongoing to optimize the regimen and treatment duration for each HCV genotype. 
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4.1.7. Diagnosis   

Diagnosis and management of HCV infection can be achieved through two major types 

of assays: direct methods, that detect viral components (e.g., the core antigen or the 

viral genome) and indirect assays, which detect HCV specific antibodies. 

Indirect diagnosis 

Serologic assays detect HCV specific total antibodies (IgM and IgG) and they are used to 

screen and diagnose HCV exposure. However, these assays do not discriminate between 

active and resolved infections. 

Serological methods can be divided into screening assays and confirmatory methods. 

Screening assays 

Since 1989, when HCV was discovered and its immunodominant epitopes were 

identified, HCV infection has been mainly diagnosed by detecting HCV antibodies from 

serum samples using enzyme immunoassays (EIA). Over time, serologic assays have 

evolved, and current third-generation assays now include multiple recombinant HCV 

antigens from the core, NS3, NS4 and NS5 regions. This has resulted in the reduction of 

the window period and in an overall improved detection of patients exposed to HCV. 

 

 

Fig. 20 A schematic of drugs approved for treating hepatitis C virus (HCV) infection as well as drugs in 

advanced development with tentative future launch dates. PEG-IFN, peglyated-interferon; r, ritonavir 

[106]. 
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Confirmatory assays 

Recombinant immunoblot assays (RIBA) can be used to confirm the presence of HCV 

specific antibodies for individuals who have tested positive by EIA, especially in the 

screening populations with a low prevalence of HCV infection. This assay is highly 

specific, as the presence of antibodies against each of several HCV proteins is assessed 

as individual bands on a membrane strip [106]. 

Direct diagnosis 

The detection of viral components is needed to diagnose an active HCV infection. Direct 

methods include molecular HCV assays and quantification of HCV Core antigen.  

Molecular HCV assays 

Molecular assays to detect the HCV genome are used for several purposes in the clinical 

setting. First, the presence of circulating HCV-RNA reflects viral replication, such that 

sensitive molecular assays (with a lower limit of detection < 50 IU/mL) are used to 

diagnose active HCV infection in patients with a positive antibody test. Second, 

molecular testing is required for an early diagnosis of acute HCV infection, as the HCV-

RNA can be detected before specific antibodies become detectable (within 1-3 weeks 

after exposure). Finally, the diagnosis of a chronic HCV infection is confirmed by the 

presence of both HCV antibodies (with the exception of severely immunosuppressed 

patients) and HCV RNA over 6 months [107]. 

The highly conserved HCV 5’UTR region is the target of choice for HCV genome detection 

across different genotypes. Real-time reverse-transcription PCR (RT-PCR) is the method 

of reference for the quantification of HCVRNA levels in clinical practice according to 

European and American guidelines, given its high sensitivity and wide dynamic range of 

quantification. 

Quantitative tests are also used to monitor antiviral therapy. In order to minimize side-

effects, emergence of resistance and costs, HCV-RNA must be periodically quantified to 

strictly follow treatment stopping rules. 

With the advent of new treatment regimens that include a protease inhibitor and the 

response-guided treatment algorithms, only assays with a lower limit of quantification 

of ≤ 25 IU/mL and a lower limit of detection of approximately 10-15 IU/mL, should be 

used. Additionally, the presence of detectable but not quantifiable HCV-RNA below 

those levels is clinically relevant, as it reflects true viremia [108]. 

HCV Core antigen detection and quantification 

The HCV Core antigen can be detected in the serum of HCV-infected patients, and its 

levels are significantly related to those of HCV-RNA [109]. 

HCV Core assays could be used as an alternative to HCV-RNA assays for three different 

situations:  

(1) to distinguish active from resolved HCV infections;  
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(2) to identify HCV infection in the antibody window period;  

(3) to identify HCV infection in seronegative individuals at high risk for HCV infection, 

such as in hemodialysis patients.  

When HCV infection is confirmed, the following step is the determination of HCV 

genotype, in order to apply the correct therapeutic regimen. 

HCV genotyping assays  

HCV genotype is considered to be the major baseline predictor of a sustained virological 

SVR to IFN-α-based therapy. Moreover, new DAAs (e.g. boceprevir and telaprevir), 

already available, have shown different efficacies on various HCV genotypes. 

While subtyping is not considered to be clinically relevant for PegIFN-α and RBV 

treatment regimens, it may be relevant in the era of directly acting antivirals. 

For instance, subtypes 1a and 1b have been described to have subtype-specific 

resistance profiles to linear protease inhibitors [105]. 

Since the HCV genotype is predictive of the response to, genotyping is mandatory to 

tailor dose and duration of treatment. Furthermore, it is necessary for deciding on triple 

therapy eligibility with currently approved protease inhibitors, which are effective 

against HCV genotype 1. 

The gold standard for HCV genotyping is genome sequencing of the NS5B region and 

subsequent phylogenetic analysis [62]. However, this in-house method is restricted to 

reference centers.  

Actually, many commercial assays for HCV genotyping are available and they are based 

on Real-Time technology or upon RLB technique. 

The target of choice for commercially available genotyping assays has classically been 

the highly conserved 5’UTR. This region allows a well differentiation between several 

HCV genotypes (1 to 7a), except genotype 1 from 6, subtypes c to l. Moreover, 

discrimination among subtypes 1a and 1b is not always reliable using this region. 

Pickett et al. demonstrated that exist two distinct clades within the 1a subtype (clade I 

and II) with each clade having a star-like tree topology and lacking definite correlation 

between time or place of isolation and phylogeny. Identification of significant 

phylogenetically-informative sites at the nucleotide level revealed positions not only 

contributing to clade differentiation, but which are located at or proximal to codons 

associated with resistance to: protease inhibitors (NS3 Q41) or polymerase inhibitors 

(NS5B S368). Synonymous/non synonymous substitution mutation analyses revealed 

that the majority of nucleotide mutations yielded synonymous amino acids, indicating 

the presence of purifying selection pressure across the polyprotein with pockets of 

positive selection also being detected [110]. 

Moreover, Chevaliez demonstrated that the two clades share some nucleotides with 

subtype 1b in the 5’UTR, in particular in positions 107 and 204 (fig. 21). At position 107 

subtype 1a clade I exhibit a G, as subtype 1b, leading to a msidiagnosis. 
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At position 204, A is the most frequent nucleotide for subtype 1a clade I, whereas C is 

the most frequent nucleotide for subtype 1a clade II, and C or T are the most frequent 

nucleotides for subtype 1b. The usual presence of a C at position 204 in subtype 1a clade 

II explains why misclassifications were far more frequent with this clade than with 

subtype 1a clade I [111]. 

 

 

 

 

The analysis of the sole 5’UTR is not sufficient to allow a good discrimination between 

subtypes 1a and 1b, and a differentiation of genotype 1 and 6. Thus, assays targeting 

other regions in addition to the 5′UTR have been recently developed.  

The two regions most frequently chosen for the combined analysis with the 5’UTR are 

NS5b and core regions. They are informative to discriminate subtypes and genotypes 1 

to 6, but also sufficiently conserved to allow primers annealing. 

Commercialized genotyping assays may result in <5% of indeterminate results due to 

the high genetic variability of HCV. Clinicians are forced to treat patients with an 

indeterminate result as if they were infected with genotypes 1 or 4 (resulting in longer 

treatment duration and higher ribavirin doses than for genotypes 2 and 3) and cannot 

decide on triple therapy eligibility. Therefore, patients with an indeterminate genotype 

result should be retested using either an alternative commercial assay or the reference 

method. 

  

Fig. 21 Alignment of the 5’ UTR consensus sequences of subtype 1a clade I (1a-I), subtype 1a clade II (1a-

II) and subtype 1b. Positions 107 and 204, that differentiate subtypes 1a and 1b are in bold [111]. 
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4.2. MATERIALS AND METHODS 

4.2.1. Design of HCV genotyping test prototype 

A prototype for HCV genotyping (AMPLIQUALITY HCV TYPE PLUS) was planned and 

manufactured, after an in silico study for primers and probes selection. 

An approach of two viral regions combined analysis was chosen. The first selected region 

was 5’UTR, because it is the most conserved one and it allows a good discrimination 

between genotypes. The choice of second region was based on bibliographic and 

bioinformatic research. Targets as NS5b, E1 and core were evaluated. NS5b and E1 

regions are too polymorphic for this type of assay. Their high variability could affected 

primers annealing and led to a failure of test. On the other hand, core region contains 

both polymorphic and conserved regions, ideal for primers and genotyping probes 

design. 

The new prototype for HCV genotyping targets 5’UTR and core regions, to allow a good 

discrimination between genotypes 1 to 7a and subtypes 1a and 1b. 

4.2.2. HCV sequences databases 

In order to create a dataset of sequences for each HCV genotype and subtype, suitable 

for the design of specific primers and probes, different databases were used. 

All available HCV partial and whole genome sequences were obtained from: 

1. Virus Pathogen Database and Analysis Resources-ViPR (www.virpr.org) 

2. BLAST tool (www.ncbi.nlm.nih.gov/blast/). 

ViPR is a publicly available database and analysis resource. ViPR integrates data from 

external sources (GenBank, UniProt, Immune Epitope Database, Protein Data Bank), 

direct submissions, internal curation and analysis pipelines. It provides a suite of 

bioinformatics analysis and visualization tools and allows several types of studies on 

pathogenic viruses.  

The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between 

sequences. The software compares nucleotide or protein sequences to databases and 

calculates the statistical significance of matches. BLAST can be used to infer functional 

and evolutionary relationships between sequences, as well as help identify members of 

gene families. 

Sequences of complete or partial genomes were obtained for all the 7 genotypes and 

for the main subtypes. Each HCV subtype is represented by a certain number of single 

isolates, and this number varies consistently among different subtypes, in particular for 

subtype 1a and 1b, being the most frequent ones. (tab. 18) 
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GENOTYPE/SUBTYPE 
COMPLETE GENOME 

SEQUENCES 

PARTIAL GENOME 

SEQUENCES 

TOTAL OF 

SEQUENCES 

1a 409 3805 4214 

1b 204 4283 4487 

2 (all subtypes) 113 345 458 

3 (all subtypes) 30 1904 1934 

4 (all subtypes) 30 675 705 

5 (all subtypes) 2 72 74 

6 (all subtypes) 17 553 570 

7a - 1 1 

 

Tab.  18 Sequences obtained by ViPR Database, divided on the basis of HCV genotype or subtype. 

 

4.2.3. Design of RT-PCR 

Design of primers 

Design and analysis of primers can be divided into three phases: 

1. Alignment of all available sequences for 5’UTR and core region of the seven 

genotypes. 

2. Design of primer pairs. 

3. Analysis of primers. 

The sequence alignment was performed by using two bioinformatics tools: 

- MUSCLE (Multiple Sequence Comparison by Log-Expectation) algorithm in the 

ViPR database (www.virpr.org), to align sequences belonging from the same 

genotype. 

- ClustalW2 software (www.ebi.ac.uk/Tools/msa/clustalw2/), to align sequences 

belonging from the same subtype. 

Because of high sequences variability, no one software was used for primer design. For 

each alignment, conserved part of sequences were identified as possible regions for 

primer design. Shared sequences between all genotypes were analyzed in order to 

evaluate consensus primers both for the 5’UTR and the core regions. 

Since HCV variability is very high, some isolates cannot be amplified by consensus 

primers, because of high number of SNPs in the sequence. In this case, design of specific 

primers was preferred to degenerate ones.  

Primers analysis was performed by using 3 bioinformatic tools: 

- Primer Express® Software v3.0.1 (Life Technologies); 

- DNA Mate (http://melolab.org/dnaMATE/tm-pred.html);  

- BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

Primer Express® and DNA Mate software were used to analyze melting temperature, 

content of GC, amplicon length and the probability of secondary structures formation. 
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Primers have been also analyzed by using BLAST tool:  

- to avoid no specific alignment with other regions different from the target 

sequence, not only in the HCV genome, but also in other microorganisms and 

human genome; 

- to check if all HCV isolates can be amplified by selected primers or if there was 

some SNP that could affect primer annealing. 

All the selected primers satisfy some common features:  

- specificity for all isolates of the genotype 

- primer length: 20-28bp 

- amplicon length: 200-300bp 

- no dinucleotide repeats or long stretches of guanosine (G) 

- less than 3bp difference in length between primer pairs 

- melting temperatures (Tm) between 65°C and 70°C 

- GC content between 50% and 60% 

- balanced distribution of GC-rich and AT-rich domains 

- no intra-primer homology (more than 3 bases that complement within the 

primer) or inter-primer homology (forward and reverse primers having 

complementary sequences) to avoid self-dimers or primer-dimer formation. 

Sequences of designed primers are not reported, for respecting intellectual proprietary 

and trade secret. 

RNA internal control (IC-RNA) 

Diagnostic assays require an internal control (IC), in order to monitoring the presence of 

inhibitors or other factors which may cause false-negative results. Internal controls are 

used as indicator of good nucleic acid extraction, quality of samples and PCR. In case of 

clinical samples from human, the internal control will indicate the samples have been 

collected, transported and stored properly. An IC for diagnostic RT-PCR assays should be 

easy to produce and to standardize. Additionally, ICs should be stable, noninfectious, 

absent from clinical samples, and suitable for different assays. 

An endogenous IC is a template that occurs naturally within the specimen being 

analyzed. In gene expression analysis and virus screenings, housekeeping genes are 

often used as ICs and references for transcript quantification, but they have to be proven 

for each experiment and target. Exogenous ICs are added before nucleic acid isolation 

(extraction control) or amplification (amplification control), where co-amplification is 

performed within the same reaction. Ideally, these ICs hybridize to the same primers, 

have identical amplification efficiencies, and contain discriminating features, such as 

length or sequence variations, targeted by hybridization probes. However, these 

competitive ICs can lower the amplification efficiency, which results in a lower detection 

limit. Therefore, noncompetitive IC templates are used, where the target and IC are 
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amplified with different primer sets. The disadvantage is that amplification of the IC may 

not accurately reflect amplification of the target. 

For viral nucleic acid amplification tests (NAT), the detection of model viruses, such as 

Escherichia coli bacteriophages, has been described. In these approaches, clinical 

specimens were spiked with a known amount of an animal virus to monitor the 

efficiency of extraction, reverse transcription, and amplification. The advantage of such 

model viruses is the stability of RNA and the control of decapsulation of the viral RNA 

during the extraction procedure [112]. 

Since human serum is not a cellular matrix, the amplification of a housekeeping gene is 

not possible and therefore, the addition of an external amplifiable nucleic acid in the 

PCR assay serves as an internal control. We decide to design, for our assay, an IC able to 

monitoring all the analytical protocol: from viral RNA extraction to strip visualization. 

For this purpose, an E. coli phage was selected as IC. It is resistant to RNase degradation, 

even at high storage temperatures, sufficiently stable for routine use and it does not 

interfere with the multiplex RT-PCR. 

The E. coli phage genome sequence is absent from the human specimens, cell cultures, 

and veterinary samples. The IC is reverse-transcribed and amplified in the same 

multiplex reaction of the target pathogen; primers and relative probe have been 

designed. Our IC did not affected efficiency of amplification.  

Sequences of IC primer pairs and probe designed are not reported, for respecting 

intellectual proprietary and trade secret. 

RT-PCR reaction design 

Reverse transcription polymerase chain reaction (RT-PCR) is one of the variants of 

polymerase chain reaction (PCR). In RT-PCR, the RNA template is first converted into a 

complementary DNA (cDNA) using a reverse transcriptase. The cDNA is then used as a 

template for exponential amplification using PCR.  

This process can be achieved as either a one-step or a two-step reaction. In the one-step 

approach, the entire reaction from cDNA synthesis to PCR amplification occurs in a single 

tube. The one-step approach minimizes experimental variation by containing all of the 

enzymatic reactions in a single environment. However, the starting RNA templates are 

prone to degradation in the one-step approach, and the use of this method is not 

recommended when repeated assays from the same sample is required.  

On the other hand, the two-step reaction requires that the reverse transcriptase 

reaction and PCR amplification be performed in separate tubes. The disadvantage of the 

two-step approach is susceptibility to contamination due to more frequent sample 

handling. 

A multiplex one-step approach was decided for our test. The entire reaction, from RNA 

to amplified products, is made in a single tube, without intermediated manipulations. 

Both reverse transcription and amplification of cDNA are performed by using specific 
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primers for 5’UTR and core HCV regions in a unique reaction. The run time of the 

reaction is 2 hours and 10 minutes; the detailed thermal profile is reported in table 19. 

 

Hold Temperature Time Number of cycles 

Reverse transcription 48°C 30 minutes 1 

HotStart 95°C 10 minutes 1 

Denaturation 95°C 30 seconds 
45 

Annealing and Extension 60°C 90 seconds 

Storage 10°C ∞ 1 

 

Tab.  19 Thermal profile used for the multiplex reverse transcription and amplification of 5’UTR and core 

HCV regions. 

 

Several mixtures of enzymes have been commercially available: these mixes contains 

both the Reverse Transcriptase and the Hot Start Taq polymerase.  

Reverse Transcriptase are active in a range of temperatures between 42°C and 50°C, on 

the basis of their chemical features. Hot Start Taq polymerases are supplied in an 

inactive state and they have no enzymatic activity at room temperature. The enzyme 

remains completely inactive during the reverse-transcription reaction and does not 

interfere with it. This prevents formation of misprimed RT-PCR products and primer-

dimers during reaction setup, reverse transcription and the first denaturation step. The 

enzyme is activated after the reverse-transcription by a denaturation step. The hot start 

also inactivates the Reverse Transcriptase, ensuring temporal separation of reverse 

transcription and PCR, allowing both steps to be performed sequentially in a single tube. 

Several commercial mixtures of enzymes were tested in order to choose the best 

performing reagent that fitted our purpose. Commercial names of reaction mix and 

enzymes, qualitative and quantitative composition of oligomix are not reported, in 

protection of industrial secrecy. 

4.2.4. RLB design 

Design of probes 

Probes have been designed using the alignments of 5’UTR and core regions, previously 

made for primers selection. 

Conserved parts of sequences, delimitated by primers, have been identified both in the 

5’UTR and in the core regions. Among these conserved segments, one sequence in the 

5’UTR and one in the core region were selected for the design of the universal probes. 

These oligos ensure to identify the presence of HCV RNA, even in case of high 

polymorphic sequences. 

Instead, discriminative parts of sequence have been identified to design genotyping 

probes. In the 5’UTR specific probes for all genotypes have been determined, while in 

the core region only probes for subtypes 1a and 1b and genotype 6 have been evaluated. 



 
66 

 

Once defined these regions, 30 nucleotides in length, genotyping probes have been 

designed, by using 3 bioinformatic tools:  

4. DNA Mate (http://melolab.org/dnaMATE/tm-pred.html), to evaluate melting 

temperature. 

5. DNA Folding Form application (http://mfold.rna.albany.edu/?q=mfold), to 

analyze the amplicon folding and to evaluate the presence of possible secondary 

structures that can prevent annealing with probe. 

6. Two state melting application (http://mfold.rna.albany.edu/?q=DINAMelt), to 

evaluate temperature of hybridization between probe and target sequence. 

All the selected probes satisfy some common features:  

- average length of 20 base pairs; 

- designed in regions not involved in strong secondary structures; 

- 50°C as temperature of hybridization with specific sequences; 

- average temperature of melting between 60° and 65°C. 

Sequences of probes are not reported, in protection of industrial secrecy. 

 
gi_254546399_4d   CCGGAATCGCCGGGACGACCGGGTCCTTTCTTGGA-TAAACCCGCTCAAT 149 
gi_239836688_4d   CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGAT-AAACCCGCTCAAT 149 
L29625_4e       CCGGAATCGCCGAGATGACCGGGTCCTTTCTTGGA-TCAACCCGCTCAAT 126 
L29591_4e         CCGGAATCGCCGAGATGACCGGGTCCTTTCTTGGA-TCAACCCGCTCAAT 126 
EF115679_4e       CCGGAATCGCCGAGATGACCGGGTCCTTTCTTGGA-TTAACCCGCTCAAT 121 
Gi_239836676_4f   CCGGAATCGCCGGGACGACCGGGTCCTTTCTTGGA-TAAACCCGCTCAAT 149 
gi_254546397_4f   CCGGAATCGCCGGGACGACCGGGTCCTTTCTTGGA-TTAACCCGCTCAAT 149 
gb_JX227963.1_4g  CCGGAATCGCCGGGACGACCGGGTCCTTTCTTGGAACAAACCCGCTCAAT 138 
EF115673_4h       CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGAACTAACCCGCTCAAT 122 
gi_239836678_4k   CCGGAATCGCCGGGACGACCGGGTCCTTTCTTGGAACAAACCCGCTCAAT 150 
gi_239836690_4k   CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGAACTAACCCGCTCAAT 150 
gi_239836692_     CCGGAATCGCCAGGACGACCGGGTCCTTTCTTGGATTAACCCGCTCAATG 149 
gb_JX227958.1_4L  CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGA-TCAACCCGCTCAAT 137 
gb_JX227957.1_4L  CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGA-TTAACCCGCTCAAT 135 
gi_239836680_4m   CCGGAATCGCCAGGACGACCGGGTCCTTTCTTGGATCAAACCCGCTCAAT 150 
gb_JX227972.1_4m  CCGGAATCGCCAGGACGACCGGGTCCTTTCTTGGATTAAACCCGCTCAAT 138 
gb_JX227961.1_4m  CCGGAATCGCCAGGACGACCGGGTCCTTTCTTGGATCAACCCGCTCAATG 138 
gb_JX227970.1_4n  CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGA-TTAACCCGCTCAAT 137 
gi_239836696_4n   CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGA-TCAACCCGCTCAAT 148 
gb_JX227979.1_4o  CCGGAATCGCCGGGACGACCGGGTCCTTTCTTGGAACAAACCCGCTCAAT 97 
gb_JX227978.1_4o  CCGGAATCGCCGGGACGACCGGGTCCTTTCTTGGAACAAACCCGCTCAAT 97 
gi_239836682_4q   CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGAACAAACCCGCTCAAT 150 
gb_JX227976.1_4r  CCGGAATCGCCAGGACGACCGGGTCCTTTCTTGGATTAACCCGCTCAATG 138 
gb_JX227962.1_4r  CCGGAATCGCCAGGACGACCGGGTCCTTTCTTGGATTAACCCGCTCAATG 138 
gb_JX227960.1_4v  CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGAATAAACCCGCTCAAT 101 
gb_JX227959.1_4v  CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGAACAAACCCGCTCAAT 148 
SEQ_AB_BEP051038  CCGGAATCGCCGGGATGACCGGGTCCTTTCTTGGAT-AAACCCGCTCAAT 112 
Probe   CCGGAATCGCCAGGACGACCGGGTCCTTTCTTGGA--------------- 35 
                  ***********  ** *******************                            

 

 

  

Fig. 22 Example of alignment between several genotype 4 isolates and selection of a discriminative region 

for probe design. 
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Strip manufacturing 

The support of the strip is a nitrocellulose baked membrane. The probes are spotted on 

nitrocellulose through an automatic work-station and then are immobilized on support 

by exposure to UV light, which induces the covalent bounds between oligos and 

membrane. 

Then, spotted membrane is incubated with a blocking solution containing BSA, for 30 

minutes in moderate shaking. This step prevents non-specific background binding of the 

DNA to membrane. 

Finally, membrane is cutted into single strips, through an automatic instrument. 

Probes concentration, buffer compositions, commercial name of nitrocellulose 

membrane and other details are omitted, for respecting intellectual proprietary and 

trade secret. 

Design of RLB protocol 

A RLB assay is influenced by several interconnected parameters. 

The stringency of the assay could be achieved by acting on two fundamental factors: 

temperature and ionic strenght of solutions. It is also possible to vary incubation time of 

the several washing steps. 

Table 20 summarizes the RLB protocol of our genotyping test. 

 

Tab.  20 Scheme of protocol for visualization on strip. 

STEP REAGENTS INCUBATION 
TIME OF 

INCUBATION 

1) Denaturation of 

amplicon 

Amplicon + Denaturation Solution, 

containing Sodium hydroxide 
Room temperature 5’ 

2) Hybridization 

Hybridization solution, containing Sodium 

citrate, Sodium chloride, Sodium dodecyl 

sulfate and preservatives 

50°C 

Moderate shaking 
1 h 

3) Stringent wash 

Stringent wash solution, containing Sodium 

citrate, Sodium chloride, Sodium dodecyl 

sulfate, and preservatives 

50°C 

Moderate shaking 
2’ 

5) Incubation with 

Streptavidine AP-

Conjugated 

Streptavidine AP-Conjugated diluted in 

stringent wash solution 

50°C 

Moderate shaking 
15’ 

6) Wash 

Rinse solution, containing magnesium 

chloride, sodium chloride, Trizma and 

detergents. 

Room temperature 

Moderate shaking 
2’ 

7) Wash 

Rinse solution, containing magnesium 

chloride, sodium chloride, Trizma and 

detergents. 

Room temperature 

Moderate shaking 
2’ 

8) Colorimetric reaction 
NBT/BCIP solution, containing NBT, BCIP, Tris 

buffer and MgSO4 

Room temperature 

Moderate shaking 

AT DARK LIGHT 

10’ 

9) Blocking of reaction Blocking solution, containing Citric acid 
Room temperature 

Moderate shaking 
2’ 

10) Final wash Distilled water 
Room temperature 

Moderate shaking 
2’ 
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4.2.5. Sequencing  

NS5b sequencing is still the gold standard method for HCV genotyping.  

In order to confirm results of RLB subtyping, NS5b sequencing of genotype 1 samples 

was performed. 

RT-PCR was made with specific primers for NS5b region, previously reported by Sandres-

Sauné et al. [113]; the same enzyme mix utilized for our HCV genotyping test was used, 

but with a different thermal profile, that fitted to melting temperature of these primers. 

Table 21 summarizes thermal profile used for NS5b amplification. 

 

Hold Temperature Time Number of cycles 

Reverse transcription 48°C  30 minutes 1 

HotStart 95°C  10 minutes 1 

Denaturation 95°C 30 seconds 

40 Annealing 52°C  60 seconds 

Extension 60°C 60 seconds 

Storage 10°C  ∞ 1 

 

Tab.  21 Thermal profile of NS5b sequencing. 

 

Amplified products have been purified by using ExoSap-IT® (Affymetrix), according to 

the manufacturer’s protocol. Reaction of sequencing was performed by BMR Genomics, 

with the BigDyes terminator cycle sequencing kit v3.1 (Applied Biosystems). The 

sequencing reactions were run on ABI 3730XL (Applied Biosystems) and ABI 3100 

(Applied Biosystems) and were analyzed with FinchTV software v1.4 (Geospiza).  

4.2.6. Samples 

Clinical samples used in this study have been provided by the Molecular Hepatology 

Laboratory of VIMM (Venetian Institute of Molecular Medicine, Padova). Samples have 

been selected and afterwards they were made anonymous, randomized, classified and 

stored with a biobanking system. 

All human serum samples were previously analyzed for detection of HCV RNA with a 

Real Time PCR system by the Molecular Hepatology Laboratory: 212 samples were 

positive for HCV RNA and 71 were negative (tab. 22).  

The 212 HCV positive samples were representative of genotypes 1, 2, 3 and 4; they also 

reflected different stages of viral infection, characterized by different viral loads. 

For the less common genotypes 5, 6 and 7a, commercial synthetic controls were used 

(tab. 22). The AcroMetrix® HCV Control (Life Tecnologies) has been carefully formulated 

to mimic naturally occurring human specimens containing HCV RNA. They are prepared 

by quantitatively diluting HCV positive human serum or plasma of a specific genotype 

into normal human plasma (NHP). The NHP was previously tested and found to be non-
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reactive for antibodies to HIV-1, HIV-2, HTLV-I-II, and HCV, HIV1-RNA, HBsAg, HBV DNA, 

HCV RNA, WNV RNA and CMV DNA. Each control contains HCV RNA calibrated against 

the WHO International Standard for HCV RNA, which is genotype 1. The final viral load 

of these controls is about 2x104 IU/mL. 

In this study, we have used AcroMetrix® controls for genotypes 5a and 6a. 

For the other rare subtypes of genotype 6 (6c, 6d, 6e, 6l and 6n) and for genotype 7a, 

plasmids pEX-A2, containing both 5’UTR and core sequences, were provided by Eurofins 

genomics. 

They were quantified and diluted to a final concentration of 104 c/μL. 

 

Number Matrix HCV 

212 Human serum positive 

71 Human serum negative 

2 Synthetic serum added with HCV 

(Acrometrix® controls) 

positive 

6 Synthetic DNA controls 

(Eurofins genomics plasmids) 

positive 

 

Tab.  22 List of samples used in the evaluation study 

 

4.2.7. RNA extraction  

Total RNA was extracted from both clinical and synthetic human serum, by using the 

BioRobot EZ1 DSP system, with the EZ1 DSP Virus kit (QIAGEN, Hilden, Germany), 

according to the manufacturer’s instructions. 

RNA was extracted from 400 μL of human serum and it was eluted in 60 μL. 

In order to monitoring the efficiency of extraction, 10 μL of internal control was also 

added during the elution step of RNA, according to the manufacturer’s instructions. 
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4.3. RESULTS 

4.3.1. OPTIMIZATION OF HCV GENOTYPING TEST PROTOTYPE 

In this Ph. D. project, we have developed a prototype for a new HCV genotyping test, 

named AMPLIQUALITY HCV TYPE PLUS, with the 5’UTR and core as target regions. 

Preliminary experimental tests have been made to set conditions of RT-PCR and 

visualization on strip. During the optimization phase of the project, these conditions 

were tested with a subset of 50 samples selected for their positivity to different 

genotypes, with different viral load. This evaluation phase shows a randomly failure of 

the test. Therefore, a series of experiments was planned in order to investigated the 

cause. 

Evaluation of enzyme mixture 

Different commercial mix were tested to select the best performing enzyme mixture for 

RT-PCR. Testing experiments were planned in order to achieve the major intra-assay 

variability: samples with different viral loads and various genotypes were used. Tests 

were made in parallel, to lower variability of other factors, that can affect result. 

We also evaluated the introduction of an enhancer solution (constituted by DMSO) to 

avoid the typical secondary structures of RNA, and to increase the RT-PCR efficiency. 

However, the enhancer solution did not led to the expected amplification improvement, 

but conversely it seemed to have a sort of inhibition effect. (fig. 23) 

 

Evaluation of RT-PCR efficiency  

We optimized the multiplex amplification reaction step by step, in order to obtain a good 

amplification of both the target regions: 5’UTR and Core. 

Indeed, the two regions showed an impaired amplification efficiency, with the 

prevalence of 5’UTR on core. The 5’UTR region was always correctly amplified, instead 

in some samples, the core amplification failed. 

MW     1         2        3         4 

Fig. 23 Imagine of agarose gel visualization of core region simplex PCR, performed on two different RNA 

samples, without and with the adding of the enhancer. The amplified product has a length of 280 bp. 

Legend: MW Molecular Weight (501-489, 404, 331, 242, 190, 147, 111-110, 67, 34-34, 26 bp), 1= sample 

1, mix without enhancer; 2= sample 1, mix with enhancer; 3= sample 2, mix without enhancer; 4= sample 

2, mix with enhancer. 
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One hypothesis was the absence of binding between probes and amplicon of core 

region, caused by the possible formation of secondary structures.  The visualization of 

PCR products by gel electrophoresis showed that the band of core region (280 bp) was 

not present. This result demonstrated that there was a problem in the RT-PCR set up. 

The relationship between this PCR failure and samples viral load or storage condition 

(i.e. number of freeze and thaw cycles) were excluded, because of the random way with 

which it occurs. 

Once excluded these factors, we have focused our attention on the primers efficiency. 

We decided to perform a simplex PCR reaction with synthetic DNA for genotype 1 and 6 

to investigate the primers efficiency. Results showed that primers for 5’UTR worked well 

and had a good signal on strip, while those for core led to results of less intensity. 

Therefore, we decided to test the effect of increasing the PCR annealing temperature, 

by experiments with gradient tool. The current annealing temperature of 52° was 

increased to 60°C (fig. 24). 

 

 

 

 

 

 

As shown in fig. 24, the intensity of core amplification product was less with the 

annealing temperature of 52° and get better in combination with increasing of 

temperature. 

A similar experiment with gradient tool, showed that also annealing temperature of 

5’UTR primers could be increased at 60°C without impairment (data not shown). 

Therefore, the annealing temperature of 60°C was selected as a good compromise for 

the efficient amplification of both viral regions.  

HCV RNA positive samples were tested with the new annealing condition of reverse-

transcription. The reaction was yet not proficient for all the samples tested, and 

randomly the core amplification has continued to fail. 

 

MW     1         2        3         4        5        6         7        8 

Fig. 134 Imagine of agarose gel visualization of core region simplex PCR, performed on synthetic DNA for 

genotype 1, with gradient tool. The amplification product has a length of 280 bp. Legend: MW Molecular 

Weight (501-489, 404, 331, 242, 190, 147, 111-110, 67, 34-34, 26 bp), 1= annealing temperature of 52.0°C, 

2= 52.5°C, 3= 53.5°C, 4= 54.9°C, 5= 56.8°C, 6= 58.4°C, 7= 59.4°C, 8= 60.0°C. 
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Primers evaluation and redesign 

At the beginning of this study, primers have been newly designed on a dataset 

containing all the available sequences for HCV genotypes and major subtypes. This 

bioinformatics study has taken long time and led to a design of a primer set for HCV 

5’UTR and core regions. Moreover, primers for amplification of the internal control, an 

E. coli phage, were evaluated. 

The entire set is constituted by several primers, because of the high variability of HCV 

sequences. Specific primers, covering all SNP, were preferred to degenerate primers 

that can impair RT-PCR efficiency.  

Because of the continues random failure of the multiplex reaction, even though efforts 

made for RT-PCR set up, we decided to modify the primers sequence. For the new 

design, the same position in the viral genome was more or less maintained, but certain 

number of nucleotides down or upstream were shifted respect the old localization. 

Newly designed primers were tested with the selected amplification conditions 

(annealing temperature of 60°C) and they led to good results with all samples of the 

subset. 

Starting materials evaluation 

During the optimization phase, also the amount of RNA used in RT-PCR was 

standardized. 

Initially we have tried to solve the random failure of amplification by increasing the 

quantity of RNA, added in RT-PCR, to a final volume of 20 μL. The results were not clear, 

because a major amount of RNA lead to a good results in some samples, but has an 

inhibitory effect on others.  

At the end the use of 10 μL of RNA extracted from 400 μL of human serum was 

established as best condition. 

Evaluation of genotyping strip 

The layout of HCV genotyping strip, obtained at the end of the optimization phase of 

this project, is shown in fig 25. The first part of the strip is dedicated to 5’UTR region and 

it contains 16 probes, able to recognize genome sequence of genotypes 1-7a. A detailed 

description of these probes is shown in table 23. 

The bottom part of the strip is reserved to core region, and has three specific probes 

respectively for HCV 1a and 1b subtypes and for genotype 6. This part of the strip must 

be considered only in presence of a genotype 1 pattern obtained in the 5’UTR. A detailed 

description of these probes is shown in table 24. 

Every strip also contains 4 control lines: 

- Internal control line, that hybridizes IC amplification product and allows the user 

to monitor the success of extraction and RT-PCR procedure; 

- Staining control line, that guarantee the correct execution of post-hybridization 

steps; 



 
73 

 

- Universal 5’UTR line, that hybridizes amplification product of this region; 

- Universal core line, that hybridizes amplification product of this region and must 

be evaluated only in presence of a genotype 1 pattern obtained in the 5’UTR 

region. 

 

Probe Number Description 

1 Identification of HCV 1 genotype 

2 Identification of HCV 1 genotype 

3 Identification of HCV 1b subtype 

4 Identification of HCV 1b subtype 

5 Identification of HCV 1a subtype 

6 Identification of HCV 2 genotype 

7 Identification of HCV 2a/2c subtype 

8 Identification of HCV 2b subtype 

9 Identification of HCV 3 genotype 

10 Identification of HCV 3a subtype 

11 Identification of  HCV 3h subtype 

12 Identification of HCV 4 genotype 

13 Identification of HCV 4a subtype 

14 Identification of HCV 4r and 4m subtypes 

15 Identification of HCV 5 genotype, subtype a 

16 Identification of HCV 6 genotype, subtype a and b 

 

Tab.  23 Probes for 5’UTR genotyping and their specificity. 

 

 

Probe Number Description 

17 This probe is specific for HCV 1a subtype 

18 This probe is specific for HCV 1b subtype 

19 This probe identifies HCV 6 genotype, all subtypes 

 

Tab.  24 Probes for core genotyping and their specificity. 

  



 
74 

 

 

 

 

 

Strip results interpretation 

The results of the genotyping test is not immediate to understand, because more probes 

give a signal for the same genotype. Therefore, every genotype can have more patterns 

of bands, due to the high sequence variability of HCV genome. 

Moreover, even if each probe is specific for a certain genotype or subtype, it could led 

to a signal also for others, because of cross-reactivity of oligos. Some SNP differences 

did not affected annealing between probe and amplified products, because they are 

located at the extremity of the probe.  

The bioinformatics analysis led us to create a series of putative hybridization patterns of 

HCV isolates, determined by this set of probes.  

In order to simplify the interpretation procedure, we have decided that the analysis of 

core region must be considered only in presence of a genotype 1 pattern obtained in 

the 5’UTR. Probes designed in the 5’UTR, alone are not able to correctly subtype all 

genotype 1 samples, but there are not problems for subtyping genotype 2, 3, 4 and 5. 

Moreover, subtypes 6a and 6b can be discriminated in the 5’UTR, because the 

hybridization pattern is well defined, but subtypes 6c to 6n show the same profile 

Fig. 25 Scheme of strip layout. 
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pattern of genotype 1. In this case, the analysis of 5’UTR alone is not sufficient and the 

core region information are needed to avoid a misdiagnosis. 

This complicated situation makes necessary the use of a tool for strip interpretation. For 

this reason an interpretation chart were developed, as shown in fig. 26. 

For each genotype, several probe patterns were identified, as reported in table 25. 

 

Genotype Number of patterns (5’UTR) 

1 23 

2 13 

3 8 

4 38 

5 2 

6 5 

7a 4 

 

Tab. 25 Number of band patterns reported in the interpretation chart for each genotype. 
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Fig.  26 Part of the interpretation chart, relative to patterns of genotypes 1 and 6. On the left genotype 1 and 6 patterns in the 5’UTR, on the right patterns relative to core 

region
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Evaluation of RLB protocol 

A series of tests were performed in order to achieve a triple objective: the 

standardization of RLB protocol, the presence of a good signal and the absence of 

background. Different combination of hybridization and washing solutions, by 

modulating level of stringency, were tried. The final formulation obtained allow results 

with well defined bands on strip and absence of aspecific signals. 

4.3.2. VALIDATION OF HCV GENOTYPING TEST PROTOTYPE 

After achieving the prototype standardization of HCV genotyping test, a phase of the 

project dedicated to the evaluation of the diagnostic performance was started. As 

requested by the Common Technical Specifications for in vitro diagnostic medical devices 

(2009) for the test validation, the following parameters were investigated: diagnostic 

specificity and diagnostic sensitivity. 

Diagnostic specificity 

Diagnostic specificity is the conditional probability that a person not having a disease 

will be correctly identified by a clinical test. It is calculated from the number of true 

negative results divided by the total number of those without the disease (which is the 

sum of the numbers of true negative plus false positive results).  

Diagnostic specificity of our assay was assessed by the evaluation of 71 negative samples 

for HCV RNA. As reference method another CE in vitro dispositive, that target the 5’UTR 

alone, was used. 

All the samples were negative with our genotyping test and results were concordant 

with reference method (fig. 27). 

Therefore, our HCV genotyping test shows a diagnostic specificity of 100%. 

 

 
 

Fig. 27 Comparison of results obtained with AMPLIQUALITY HCV TYPE PLUS (5’UTR and core) and with 

reference method (5’UTR alone). 
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Diagnostic sensitivity 

Diagnostic sensitivity is the conditional probability that a person having a disease will be 

correctly identified by a clinical test. It is calculated from the number of true positive 

results divided by the total number with the disease (which is the sum of the numbers 

of true positive plus false negative results).  

Diagnostic sensitivity of our genotyping test was defined by the evaluation of 220 

positive samples, considering both clinical and synthetic ones. 

The major part of samples had HCV genotype 1 (n=145, 66%), reflecting the worldwide 

distribution of viral strains. In Italy, genotype 1 is largely diffused and it is not so difficult 

recruiting patients with this HCV genotype. Instead, genotypes 2, 3 and 4 are less 

common and samples with these strains are rare. 

Genotype 5, 6 and 7a are the less represented, because of their epidemiological 

distribution. In Europe genotypes 5 and 6 are extremely rare, they are prevalently 

diffused in Southern Africa and East Asia. Thus, the availability of these particular 

samples is very limited.  

On the other hand, genotype 7a was officially classified only in January 2014, by the 

publication of consensus classification of HCV variants by Smith et al. [63]; only one 

genotype 7 infection has been reported and it was isolated in Canada from a Central 

African immigrant [71]. 

Therefore, for genotypes 5 and 6a, we have used Acrometrix® synthetic controls (human 

serum added with HCV, at a final viral load of 2 x 104 IU/mL). While, for subtypes 6c, 6d, 

6e, 6l, 6n and genotype 7a, we were forced to use synthetic customized DNA control, to 

check efficiency of primers and probes. 

 

 

 

Genotype 1

65,9%

Genotype 2

18,6%

Genotype 3

5,5%

Genotype 4

6,4%

Genotype 

5

0,5%

Genotype 

6

2,7%
Genotype 7a

0,5%

Fig. 28 Distribution of samples in relation to their genotype. 
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Samples used in this study showed different viral loads, included in a range between 1 x 

103 and 6 x 107 IU/mL. The major part of samples fell into the range > 500.000 IU/mL e 

< 5.000.000 IU/mL.  

We have also 37 samples with an elevated viral load, useful to determine possible 

impairment of reaction due to high amount of RNA. Instead, we had only 4 samples with 

a viral load lower of 5000 IU/mL. We had no data about viral loads of 14 samples. 

Figure 29 summarizes the distribution of samples in relation to viral load. 

 

 
 

Fig. 29 Distribution of samples in relation to viral load. 
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First, diagnostic sensitivity was assessed at genotype level. Results obtained with our 

test were compared to those achieved with the reference method, the assay that target 

the 5’UTR alone. Discrepant results were confirmed by NS5b sequencing, as second 

reference method. 

 

Genotype 

5’UTR + core 

(AMPLIQUALITY 

HCV TYPE PLUS) 

Sole 5’UTR 

(1st reference method) 

NS5b sequencing 

(2nd reference method) 

1 143 148 143 

2 41 41 n.a. 

3 12 12 n.a. 

4 14 14 n.a. 

5 1 1 n.a. 

6 6 1 n.a. 

7 1 1 n.a. 

 

Tab.  26 Comparison of genotyping results obtained with different methods. Total of genotyped samples 

is 218, because of 2 samples RT-PCR failure. 

 

The concordance between the two genotyping methods was 97.7%. Samples with 

genotype 2, 3, 4, 5 and 7 were identified in the same way, while for genotype 1 and 6 

there were some discrepancy. 

Sequencing of NS5b region of samples with discrepant results had confirmed the 

AMPLIQUALITY HCV TYPE PLUS genotyping. This allow to calculate for our assay a 

diagnostic sensitivity, at genotype level, of 100%. 

Furthermore these data demonstrate that the 5’UTR alone is not able to discriminate 

between genotype 1 and 6, subtypes c-n; the resulting pattern of band on strip is the 

same of a genotype 1, leading to a misdiagnosis. Combining the analysis of 5’UTR and 

core regions, a discrimination between these genotypes is allowed, as shown in fig. 30. 
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Then we have calculated diagnostic sensitivity at subtype level, in particular for 

genotype 1.  

Results obtained with our test were compared to those achieved both with the 

genotyping of the sole 5’UTR and NS5b sequencing.  

Regard samples infected by subtype HCV 1a, results obtained with our assay are similar 

to those of NS5b sequencing. Two samples were not genotyped, because of failure of 

RT-PCR. 

The analysis of 5’UTR alone led to a correct subtyping only for 20 samples (44.4%); other 

19 samples (42.2%) were not subtyped and defined only as genotype 1. Four samples 

(8.9%) were wrongly identified as subtype 1b (tab. 27). 

Regard samples infected by subtype HCV 1b, results obtained with our assay are similar 

to those of NS5b sequencing. One sample was not genotyped, because of failure of RT-

PCR. 

The analysis of 5’UTR alone led to a correct subtyping of 92 samples (92%); other 3 

samples (3%) were not subtyped and defined only as genotype 1. Instead, 4 samples 

(4%) were wrongly identified as subtype 1a (tab. 28). 

5’UTR probes 5’UTR probes 

Core probes 

A. B. 

Fig. 30 Imagine of strip result for a genotype 6 sample.  

A. Strip relative to the analysis of sole 5’UTR: band pattern identifies a 1b isolate, leading to a 

misdiagnosis.  

B. Strip relative to combined analysis 5’UTR and core: band pattern of core region identifies a genotype 

6 isolate. (see interpretation chart page 76) 

Staining control Staining control 
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Combining the analysis of 5’UTR and core regions, a discrimination between these 

subtypes is allowed, as shown in fig. 31. 

In conclusion, our HCV genotyping test shows a diagnostic sensitivity, at subtype level, 

of 100%.  

 

Genotype 

5’UTR + core 

(AMPLIQUALITY 

HCV TYPE PLUS) 

Sole 5’UTR 

(1st reference method) 

NS5b sequencing 

(2nd reference method) 

1a 43 20 45 

1b 0 4 0 

1 0 19 0 

No genotyping 2 2 0 

Tot 45 45 45 

 

Tab.  27 Comparison of subtyping results obtained with AMPLIQUALITY HCV TYPE PLUS assay and the two 

reference methods. 

 

 

Genotype 

5’UTR + core 

(AMPLIQUALITY 

HCV TYPE PLUS) 

Sole 5’UTR 

(1st reference method) 

NS5b sequencing 

(2nd reference method) 

1b 99 92 100 

1a 0 4 0 

1 0 3 0 

No genotyping 1 1 0 

Tot 100 100 100 

 

Tab.  28 Comparison of subtyping results obtained with AMPLIQUALITY HCV TYPE PLUS assay and the two 

reference methods. 
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>gb|FJ024281.1|  Hepatitis C virus subtype 1a isolate HCV-1a/US/BID-V1718/2007,  

complete genome 

Length=9301 

 

Score =  501 bits (271),  Expect = 1e-138 

Identities = 302/317 (95%), Gaps = 2/317 (0%) 

Strand=Plus/Plus 

  

Staining control Staining control 

5’UTR probes 

5’UTR probes 

Core probes 

Fig. 31 Comparison of results obtained with the 3 genotyping methods for a misdiagnosed sample.  

A. Strip relative to the analysis of sole 5’UTR: band pattern identifies a 1b isolate, leading to a misdiagnosis. 

B. Strip relative to combined analysis 5’UTR and core: band pattern of core region identifies a subtype 1a 

isolate. (see interpretation chart page 76) 

C. Electropherogram relative to NS5b sequence of the sample. 

D. BLAST result relative to NS5b sequence: sample is confirmed to be subtype 1a. 

A. B. 

C. 
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5. DISCUSSION AND CONCLUSIONS 

Reverse Line Blot is rapidly becoming a standard molecular tool for diagnostic and 

epidemiological studies in an increasing number of laboratories all over the world, 

thanks to its high grade of usability. RLB is a simple technique that can be used in 

diagnostic routine also by small laboratories, because the request instruments are few 

and not expensive. 

The technique can be utilized in a number of ways. Multiple probes can be designed to 

detect sequence variation within a single amplified product, or multiple targets can be 

amplified simultaneously, with one (or more) probes used for subsequent detection. A 

combination of both approaches can also be used within a single assay. The ability to 

include multiple probes for a single target sequence makes the assay highly specific. The 

flexibility of the method allows its use for a wide range of applications. 

The aim of our project was the development of RLB tests and the evaluation of their 

application in the management of diseases, requiring a genetic characterization.  

In the first part of the study we explore the potentiality of RLB in detecting known 

genetic mutations in the human genome and our interest was focused on atypical CF. 

This is a rare genetic disease, not well genetically characterized and probably related to 

the presence of mutation in the ENaC genes, as discussed in recent epidemiological 

studies [58, 59]. Until today, only sequencing approach was used for investigate the 

presence of specific ENaC mutations, and this limiting the diffusion of this type of 

investigation. 

We developed GENEQUALITY ENaC-TYPE, which is a device based on RLB, able to detect 

9 ENaC variants, previously identified by sequencing works of Sheridan and Azad.  

Once defined and analytically validate the prototype, the assay has been evaluated on 

a series of patients with atypical CF, in collaboration with Laboratory of Molecular 

Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, a 

reference center for cystic fibrosis. 

Two groups of patients were selected on the basis of their different CF phenotypes: 

lungs disease vs. pancreatic manifestation and the results were separately analyzed. 

Until now, studies about correlation of ENaC mutations with atypical cystic fibrosis have 

been performed only on atypical CF patients with respiratory symptoms and not on 

individuals with different CF phenotypes. 

In the group of lungs disease phenotypes, four significative variants were detected 

(p.E539K-SCNN1B, p.1670-2A>G-SCNN1B, p.P267L-SCNN1B and p.G294S-SCNN1B). 

Mutations were found at a more than five-fold significantly increased in patients (5.5%) 

respect to the controls (0%).  

Patients that carried these variants were heterozygous for CFTR mutations. Thus, about 

50% of the CFTR network is still functional. However, the remainder 50% may be 
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rendered nonfunctional by a mutation in at least one other member of the network, 

such as ENaC. 

In the group of pancreatic disease phenotypes, none ENaC mutation showed a 

frequency significantly higher in patients rather than in controls. 

Despite CFTR, which expression and activity in pancreatic cells have been well 

established, ENaC role in pancreas is still an argument of controversial opinions. Findings 

of several studies are in contrast about presence of functional ENaC in pancreatic cells 

and the possible physiologic function of ENaC, therefore, remains obscure. Thus, it is 

impossible to define if our results are due to lack of ENaC involvement in the 

pathogenesis of CF-like pancreatic disorders or to absence of functional channels in 

pancreatic cells. 

RLB method is limited to the detection of specific ENaC mutations; functional analysis of 

each variants has not been performed. Thus, it is impossible to develop an explanation 

of the effect of the different mutations, especially in the light that either too low or too 

high amounts of ENaC can already result in two different diseases, which will be even 

further complicated if the CFTR protein is implicated.  

Despite classic CF in which a large part of CFTR causative mutations has been defined, 

role of ENaC variants in atypical cystic fibrosis is still to be defined. Studies about 

prevalence of ENaC mutations in patients with CF-like disorders are very few and the 

causative relationship between ENaC and disorder is only supposed. Phenotypes of 

atypical CF are very wide, suggesting an implication of additional genes/proteins and 

environmental factors. Indeed, in a considerable number of these patients no 

involvement of ENaC was found. 

Our test has demonstrated to be easily applied to a diagnostic routine, for his usability 

and simple results interpretation but it allows detection of only 9 specific variants. In a 

context of undefined correlation, this test is too limited. Further studies of sequencing 

of all exons and exon/intron junctions have to be performed on patients with different 

CF-like disorder, to collect more data. Then, functional studies will clarify effect of 

identified variants on phenotype.  

Therefore, this test at the moment could not be used as a confirmatory assay for 

diagnosis and management of therapy. Probably our assay could find a collocation in the 

epidemiological field, to evaluate prevalence of the 9 variant in particular group of 

individuals. Moreover, we think that this study has given preliminary results that could 

be achieved for a future work based on a more advanced technology, such as Next 

Generation Sequencing. For example, we have seen that study could be performed on 

patients with CF-like lungs disorder and not on individuals with pancreatic pathology. 

Moreover, it could be interesting to evaluate prevalence of ENaC variants in patients 

with CBAVD, one of the major related CF pathologies. 

We have defined that RLB is not the ideal approach for studying a genetic disease with 

so many obscure points. On the other hand, this technique is appropriate for diagnosis 

of disorder in which causative mutations have been well defined, e. g. classic CF. In this 
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case RLB is a very useful method that allow contemporary detection of principal 

mutations in each individual. Each strip can contain more diffuse mutations and regional 

variants. This could be a test of first analysis, to screen a part of patients. 

In the second part of the study, we explore the potentiality of RLB in the identification 

of the genotypic strand of Hepatitis C virus. Genotypes differ at 31-34 % of nucleotide 

positions of complete genomic sequences with approximately 30% amino acid sequence 

divergence. 

HCV genotype is one of the factor influencing the disease progression and the major 

predictor of a SVR to double therapy peg-IFN/ribavirin. SVR vary according to the HCV 

genotype involved. HCV genotype 1 and 4 were found to be the prevalent resistant 

genotypes. Moreover, new DAAs have shown different efficacy on subtypes 1a and 1b, 

due to different resistance profile of these subtypes. Thus, HCV genotyping is essential 

to apply the most appropriate therapeutic regimen. 

The gold standard for HCV genotyping is NS5b sequencing and subsequent phylogenetic 

analysis. Generally, this type of assay is used by reference centers, which design home-

made protocols, based on their specific required. Therefore, other type of assay, based 

on Real-Time PCR or RLB technologies, are commercially available. The major part of 

them target the viral 5’UTR, because it is the most conserved one. This region is able to 

well differentiate the virus at the genotype level, except for genotype 1 and 6 (subtypes 

c to l). Moreover, it cannot lead to the subtyping genotype 1, because the HCV subtype 

1a segregates in two distinct clades, which are termed 1a clade I and 1a clade II. The 

5’UTR sequence of 1a clade I is identical to that of subtype 1b. Recent study shows that 

using the sole 5’UTR as target for genotyping, there is a mistyping approximately of 25% 

and 10% of HCV subtype 1a and 1b strains, respectively [111]. 

Therefore, it is evident that the analysis of the sole 5’UTR is not sufficient to allow a good 

determination of HCV genotype/subtype and that evaluation of another region is 

necessary.  

The AMPLIQUALITY HCV TYPE PLUS device designed and developed during the second 

part of this project is an RLB assay which can well differentiate genotype 1 to 6 and 

subtypes 1a and 1b, thanks to the presence of core as target region in addition to 5’UTR.  

We selected the core gene because it contains both conserved and variable regions and 

this condition is optimal for designing primers and probe, respectively. 

The optimization of the assay, unlike of the experience of GENEQUALITY ENaC-TYPE 

development, has taken long time. The most critical issue was the randomly failure of 

HCV RNA identification in several samples. Step by step, we have analyzed all the 

possible reasons and focused our attention on RT-PCR efficiency, probably limited by 

the first set of primers designed. 

A more accurate selection of the primers have led to better results, suitable for 

diagnostic purpose. For performance evaluation of our HCV genotyping assay a set of 

220 samples were used. 
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Our assay showed a diagnostic specificity of 100% and a diagnostic sensitivity of 98.6% 

both at genotype and subtype levels. 

Results were compared with two reference methods: a CE-IVD assay that target the sole 

5’UTR and NS5b sequencing. As confirmed by NS5b sequencing, our test using a 

combined analysis of 5’UTR and core regions was able to correctly genotype all the 

samples. Conversely, the analysis of the sole 5’UTR has showed  mistyping of genotype 

6 samples. As reported in literature, this region is not able alone to recognize genotype 

6, subtypes c to n, and to differentiate them from genotype 1 [114]. 

This kind of mistyping could affect the management of therapeutic regimen. Indeed, SVR 

rates for genotypes 5 and 6 with PEG-based therapy are minor than SVR for genotypes 

2 and 3, but major than SVR for genotype 1. Dose of drugs is the same for genotypes 1 

and 6, but duration is lesser for genotype 6. On the other hand, clinical studies about 

administration of new DAAs to patients infected with genotype 6 are very few. 

Knowledge about efficacy, adverse effects, resistant profiles of strains are very limited. 

The major part of available DAAs shows a great efficacy against only genotype 1 strains. 

Among new DAAs, only sofosbuvir (Gilead) has been tested on patients infected by 

genotype 6 HCV (NEUTRINO clinical study) and can be used in the clinical practice. 

Therefore, misdiagnosis of a genotype 6 HCV in a genotype 1 could led to administration 

of a not adequate therapy, with risk for patient health. 

At subtype level, NS5b sequencing confirmed that our assay had correctly assigned the 

subtype to all samples infected with genotype 1. Instead, the analysis of the sole 5’UTR 

showed discrepant results, mainly in the subtyping of 1a strains, confirming the findings 

reported in previous studies [111]. The 5’UTR was not able to subtype almost half of 

samples 1a and about 10% was misdiagnosed as 1b. Less critical was the mistyping in 

the 1b samples group, in which the discrepancy was 4%. 

Until the introduction of new DAAs in the clinical practice, HCV subtyping was not 

mandatory to define correct therapeutic approach. However, antivirals molecules, such 

telaprevir and boceprevir, have shown variable efficacies on subtypes 1a and 1b. 

Probably the genetic barrier and resistance profiles substantially differ between the 

various genotype 1 subtypes. For this reason, the correct identification of HCV subtypes 

1a and 1b become crucial in clinical trials assessing new HCV drugs in order to stratify 

and interpret efficacy and resistance data. Misdiagnosis between subtypes 1a and 1b 

could led to application of a not appropriate therapy, causing failure of SVR and selection 

of resistant strains. 

The good subtyping results obtained by our test, confirm that RLB assay is an ideal tool 

for HCV genotyping. It is a simple and fast method and exhibits a high sensitivity and 

specificity. The same detailed genotyping information could be achieved with Real-Time 

technologies, but is necessary performing multiple amplification reactions for each 

sample. Instead, RLB allows the acquisition of a lot of sequence information in a single 

run. RLB is also the ideal technology for identification of co-infections by different HCV 

strains. NS5b sequencing can give a definite result for genotype but evaluation of more 
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HCV isolates presence in the same sample is very difficult. On the other hand, a critical 

issue of our test could be the results interpretation that required the careful use of an 

interpretation table, in which more than 90 different patterns are reported. For this 

reason, our study probably will continue with the implementation of an interpretative 

software tool. 

In conclusion, this work has demonstrated that RLB is a robust method for the 

management of several diseases, requiring a genetic characterization. However, genetic 

knowledge about target disorders must to be well defined. 
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