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Dipartimento di Scienze Statistiche

Corso di Dottorato di Ricerca in Scienze Statistiche

Ciclo XXXII

Nonparametric methods for complex

spatial domains: density estimation and

hypothesis testing

Coordinatore del Corso: Prof. Massimiliano Caporin

Supervisore: Prof. Laura M. Sangalli

Co-supervisore: Prof. Livio Finos

Dottorando/a: Ferraccioli Federico

September 30, 2019





Abstract

The analysis of not only big, but increasingly complex data represents a thriving branch

of statistics. Modern applications ranging from neuroscience, geo-sciences, astronomy

and engineering pose stimulating challenges to classical statistics and require the de-

velopment of novel methodologies. In this thesis we propose nonparametric approaches

to density estimation and hypothesis testing over multidimensional domains with com-

plex shapes. The synergy of ideas and techniques from applied mathematics, numerical

analysis and statistics allows us to obtain flexible and efficient tools.

The thesis is organized in three main threads. The first considers the problem of den-

sity estimation over multidimensional domains with complex shapes. Here we combine

a nonparametric likelihood approach with a regularization involving partial differential

operators. The second thread examines two sample hypothesis testing. Inspired by

the first part, we take advantage of permutation procedures to develop high dimen-

sional multinomial tests for distributions defined over complex domain. The last thread

moves toward a parallel direction, that is the study of hypothesis testing procedures

for semiparametric spatial regression models. After a careful analysis of their theoret-

ical properties, we propose a nonparametric randomization approach to test the linear

components of such models.





Sommario

L’analisi di dati non solo ad alta dimensionalità, ma soprattutto ad alta complessità

rappresenta una fervente branca della statistica. Numerose applicazioni recenti derivan-

ti da neuroscienze, geoscienze, astronomia e ingegneria cosituiscono nuove stimolanti

sfide alla statistica classica e richiedono lo sviluppo di nuove metodologie. In questa

tesi proponiamo degli approcci non-parametrici al problema di stima della densità e di

test di ipotesi nel caso di domini multidimensionali aventi forme complesse. La sinergia

tra idee e tecniche provenienti dalla matematica applicata, dall’analisi numerica e dalla

statistica ci ha permesso di ottenere strumenti flessibili ed efficienti.

La tesi si sviluppa in tre principali direzioni. Nella prima viene considerato il proble-

ma di stima della densità nel caso di domini multidimensionali aventi forme complesse.

In questo caso proponiamo una soluzione che combina un approccio di verosimiglianza

non-parametrico ad una penalizzazione che coinvolge operatori differenziali. La seconda

direzione prende in considerazione il problema di test di ipotesi a due campioni. Pren-

dendo spunto dalla prima parte e grazie all’utilizzo di un approccio permutazionale,

sviluppiamo dei test per multinomiali ad alta dimensionalità definite su domini com-

plessi. La terza parte si muove in una direzione parrallela a quest’ultima, in particolare

viene considerato lo studio di test di ipotesi per modelli semiparametrici di regressio-

ne spaziale. Dopo aver sviluppato la teoria asintotica, proponiamo un approccio di

randomizzazione per testare la componente lineare di questi modelli.
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Introduction

Overview

The thesis develops nonparametric methods for density estimation and hypothesis test-

ing over multidimensional domains with complex shapes. This is motivated by important

applications from varied applicative fields, ranging from life-sciences (and in particular

neurosciences), to geo-sciences, astronomy and engineering. Classical statistical meth-

ods are often inadequate to handle the complexity of such data, whose analysis calls for

the definition of innovative methods. In this work we propose possible solutions that

merge ideas and approaches from statistics, applied mathematics and engineering.

Sangalli et al. (2013) introduces a spatial regression model with differential regulariza-

tion, that enables the estimation of spatial fields over multidimensional domains with a

non-trivial geometry. The thesis extends this method in various directions. In the first

part, a nonparametric penalized likelihood approach for density estimation is presented.

The nonparametric likelihood approach gives great flexibity and allows the estimation

over planar domain with complex shapes, characterized by strong concavities or interior

holes. For example, figure 1 illustrates the study of criminality in the city of Portland,

Oregon, USA. The figure shows the point process of crimes. In this case, the non-trivial

conformation of the domain, characterized by the presence of the river, is crucial in the

study of the phenomenon. The northern area of the city is affected by much higher crim-

inality on the East side of the river with respect to the West side. Similarly to Sangalli

et al. (2013), the proposed method features a regularizing term involving partial differ-

ential operators. In particular, we target the smoothness of the estimate by the Laplace

operator applied to the logarithm of the density. Standard likelihood approaches are

not suitable for the estimation of the proposed model. To solve the problem, we resort

to numerical techniques, and in particular we use a finite element approach.

In the same setting of the previous part, we consider nonparametric one and two sample

goodness-of-fit tests. As an example, we might be interested in comparing the distribu-

tion of crimes in different years. The significance levels are provided via a permutational

3



4 Main contributions of the thesis
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Figure 1: In red, the locations of crimes in the city of Portland, with the boundary
of the municipality in black.

approach. The complexity of the spatial domain is taken into account using a partition

defined by a Voronoi tessellation.

In the third part, we fill an important theoretical and methodological gap for the model

introduced by Sangalli et al. (2013). We first study the asymptotic properties of the

corresponding estimators. We then develop statistical tests for the linear components

of such models. The tests are based on random sign flipping of the score components of

the model, inspired by the approach of Hemerik et al. (2019).

Main contributions of the thesis

Density estimation over complex planar domains

The vast majority of density estimators are restricted to univariate domains or to

unbounded multivariate domains (Scott, 2015). None of these methods address the case

density estimation over domains with complex shapes. In the univariate case, a classical

approach is to consider a penalized likelihood formulation. Two main choices for the

regularization term has been considered. The first roughness penalty R(f) = ||(√f)(1)||22
of Good and Gaskins (1980), and the penalization functional R(f) = ||(log f)(3)||22 of

Silverman (1982), where the exponent denotes the first and third derivative respectively.
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Both proposals naturally impose the positive constraint on f in their formulation. Al-

though both models could be in principle extended to the multivariate setting, the

generalization to domain with complex shapes is far for trivial.

We propose a new method for density estimation able to deal with data distributed over

complex planar domains. We consider the penalization functional given by the Laplacian

of the log-density. This functional is a measure of local curvature and therefore controls

the smoothness of the estimates. A key feature of the Laplacian is the invariance with

respect to Euclidean transformations of the spatial coordinates. It therefore ensures that

the concept of smoothness does not depend on the orientation of the coordinate system.

The density corresponding to the null family of the operator is the uniform distribu-

tion over the domain. We study the theoretical properties of the method. Moreover,

we provide an appropriate discretization of the infinite dimensional estimation problem

via the Finite Element Method (FEM). This methodology is often used in engineer-

ing applications to solve partial differential equations. A crucial advantage of the use

of these numerical techniques consists in the possibility of considering spatial domains

with complex shapes (instead of simple tensorized domains as considered by most of

the available spatial methods). The strong synergy between statistical and numerical

approaches and tools ensures the high flexibility and the computational efficiency of

the proposed method. Extensive simulation studies show that the method compare

favourably to existing density estimation techniques, both on simple two dimensional

domains and, even more, on domain with complex shapes.

One and two samples hypothesis testing for distribution over

complex domains

The problem of goodness-of-fit tests has been studied in details in the case of univari-

ate data. Classical well-known nonparametric tests are for example the Kolmogorov-

Smirnov test, the number of runs test and the longest run test. Much less work has

been devoted to higher dimensional cases, particularly in the cases where no directional

alternatives are defined. A recent work by Arias-Castro et al. (2018) develops the theory

of histogram tests in arbitrary dimension, extending the work of Ingster (1987).

We propose a nonparametric procedure for two samples hypothesis testing for distri-

butions over complex spatial domains. In particular, we considers tests on smooth

distributions by recasting the problem to an appropriate high-dimensional multinomial

test. Recent results on these approaches are given in Balakrishnan and Wasserman

(2018). The continuous densities are quantized via an appropriate Voronoi tessellation

of the spatial domain. Differently from the histogram method in Arias-Castro et al.



6 Main contributions of the thesis

(2018), the proposed approach based on Voronoi tessellation has higher flexibility and

can handle domains with complex shapes in any dimension. A permutation procedure

is used to provide the distribution under the null hypothesis and the corresponding

p-values.

Hypothesis testing in spatial regression models

The Spatial Regression models with differential regularization proposed in Sangalli

et al. (2013) have been shown to be numerically efficient and capable to handle complex

applied problems (see for example Azzimonti et al. (2015) and Lila et al. (2016a)). On

the other hand, the theoretical properties are still largely unexplored. Here we study the

consistency and the asymptotic normality of such estimators, following and approach

proposed by Yu and Ruppert (2002) for penalized spline estimation.

Although the resulting asymptotic distribution of the estimators might be used for

hypothesis testing, the corresponding performances are far from acceptable. In the

finite sample scenario, the variance is usually overestimated due to the regularization

term. To reduce this problem, we proposed nonparametric test procedure based on

random sign flipping of the score components of the model, inspired by Hemerik et al.

(2019). The proposed method uses Random Domain Decomposition, in the same fashion

as Menafoglio et al. (2018), to reduce the effect of the spatial dependence without

additional parametric assumption on the form of the correlation structure.



Chapter 1

Definition of tools and techniques

1.1 Methodology

A recurring motif in this thesis is the combination of methods and ideas from statis-

tics, applied mathematics and engineering. This is motivated by the complexity of

modern real data applications, where the complexity might come from certain underly-

ing physical process or the geometry of the domains involved. These challenges call for

the development of new methods able to handle such complexity. In this first section

we introduce some concepts and tools that are not frequently discussed in the statistical

literature.

1.1.1 Functional spaces

We first start with some basic definition of functional spaces that we use throughout

the thesis. Let Lp(Ω) the Lebesgue space

Lp(Ω) := {u : ||u||Lp(Ω) <∞},

equipped with the norm

‖u‖Lp(Ω) :=

(∫
Ω

|u|p dx
)1/p

,

in the case 1 ≤ p <∞, while for p =∞ we have

‖u‖L∞(Ω) := sup
x∈Ω
|u(x)|.

Let W k,p(Ω) the Sobolev space defined as

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) ∀|α| ≤ k} .
7
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The space W k,p(Ω) is equipped with the norm

‖u‖Wk,p(Ω) :=

∑
|α|≤k

‖Dαu‖pLp(Ω)

 1
p

,

in the case 1 ≤ p <∞, while in the case p =∞

‖u‖Wk,∞(Ω) := max
|α|6k
‖Dαu‖L∞(Ω) ,

where the symbol Dαu denote the weak derivative (see e.g. Adams (1975) for a more

detailed treatment of Sobolev spaces). In the rest of the thesis, we denote the Hilbert

space W k,2(Ω) by H2(Ω). Sobolev spaces with p = 2 are especially important because

of their connection with Fourier series and because they form a Hilbert space.

All these concepts are used in the following chapters for the definition of the methods

and in some of the proofs.

1.1.2 Differential operators

We now introduce one of the key ingredient of modern mathematics, Partial Differ-

ential Equations (PDE). PDEs represents an extremely powerful tool to describe many

natural phenomena, such as sound and heat diffusion, fluid dynamics, quantum me-

chanics and gravitational fields. These equations involve rates of change with respect to

continuous variables, i.e. multivariable functions and partial derivatives. In this thesis

we consider second order linear PDEs, that have the general form

Afxx + 2Bfxy + Cfyy +Dfx + Efy + u = 0,

In particular we focus on the case where B2−AC < 0. This lead to the so called elliptic

PDEs, equations characterized by smooth solutions within the interior of the region

where the equation and solutions are defined.

The most simple and probably most studied elliptic PDE is the Laplace equation, defined

in Cartesian coordinates as

∆f =
∂2f

∂x2
+
∂2f

∂y2
= 0.

The Laplacian operator ∆f gives the difference between the average value of a function

in the neighboring of a point, and its value at that point. In order to have a unique



Chapter 1 - Definition of tools and techniques 9

solution to this equation, we need to add some boundary conditions, such as

f = g on Γ ⊂ ∂Ω, (1.1)

know as the Dirichlet boundary conditions, or

∂nf = ∇f · n = g on ∂Ω\Γ,

known as Neumann boundary conditions, where ∇f · n denotes the normal derivative

on the boundary. We use these equations in Chapter 2 and Chapter 4 to introduce

regularization functionals in the proposed models.

In the case of Dirichlet boundary conditions, the Laplace equation has a nice interpre-

tation in terms of heat. Imagine we have a square metal plate and fix the temperature

of the boundary according to the specified conditions. Then let the heat flow until it

reaches a stationary state. The temperature distribution is given by the solution of the

corresponding Dirichlet problem. In other words, the Laplace equation can be thought

of as the steady-state of another very important equation, the heat equation, defined as

∂f

∂t
= α∆f.

The equation says that the rate ∂f
∂t

at which a material at a point will heat up (or cool

down) is proportional to how much hotter (or cooler) the surrounding material is. The

coefficient α in the equation takes into account the thermal conductivity, the specific

heat, and the density of the material. This equation has an interesting properties from a

statistical points of view. The fundamental solution of the heat equation, corresponding

to the initial condition of an initial point source of heat at a known position, is the heat

kernel

Φ(x, t) =
1√

4απt
exp

(
− x2

4αt

)
.

The relationship between the solution of the heat equation and the concept of smoothing

has been discussed in various works, such as Chaudhuri and Marron (1999) and Botev

et al. (2010). In Chapter 2 we use a similar concept of smoothing in the development

of a density estimation method.

1.1.3 Finite element method

Closely related to PDE is the Finite Element Method (FEM), a numerical method

widely used in engineering and mathematical physics. Let us briefly introduce the theory
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behind it. We start with a domain Ω to which our observations belong. As first step,

we need an appropriate partition of this domain. A convenient choice is to consider a

subdivision into triangles, also called triangulation. Let us call this triangulation T .

The triangles must fulfill a rule, that is, they cannot overlap. If two triangles have

some intersection, it is either a common vertex or a common full edge. Having defined

a triangulation of the domain, we can now build the second piece of the puzzle. First

consider two triangles sharing a common edge, T and T ′. We can build a piecewise linear

function simply defining its value at the four vertices. Moreover, since the value on the

common edge depend only on the values on the two common vertices, the resulting

function is continuous.

Doing this for every triangle, we end up with a function that is linear on each triangle

and globally continuous. The space of such function is defined as

VT =
{
fT ∈ C(Ω̄)| fT |T ∈ P1, ∀T ∈ T

}
, ,

where P1 is the space of polynomial function with degree at most one. Fixing the values

on the set of vertices of the triangulation gives a unique fT ∈ VT with those values on

the vertices. Every element of VT is therefore uniquely determined by its values on the

set of vertices.

Let us now denote pi the i-th vertex of the triangulation, with i varying from 1 to the

number of vertices K. If we fix one node (vertex) and associate the value one to this

node and zero to all others, there exists a unique function ψi ∈ VT that has this values,

that is

ψi(pj) = δij =

1 j = i

0 j 6= i
.

The function ψi vanishes on a triangle T if the triangle has not pi as vertex. The support

of ψi is therefore the union of triangles that has pi as vertex.

We now have the building block to define

fT =
K∑
i=1

fT (pi)ψi.

It is easy to prove that {ψi|i = 1, . . . , K} is a basis of VT and therefore dimVT = K.

Moreover, every element of VT can be written as linear combination of the element of

the basis, with coefficients the values of the function at the vertices. The FEM is the

basis for the development af the methods in Chapter 2 and Chapter 4.
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1.1.4 Delaunay triangulation and Voronoi tessellation

As we discussed in the previous section, FEM relies on the definition of a partition

of the domain of interest. Since we are dealing with quite general domains Ω, with

possibly complex shapes, an appropriate choice is a Delaunay triangulation. Given a

set of points K in some domain Ω ∈ Rd, a Delaunay is a triangulation such that no

point in K is inside the circum-hypersphere of any d-simplex of the triangulation. A

generalization of this method is the so called constrained Delaunay triangulation. This

type of triangulation allows to force certain required segments, for instance boundary

segments. We use this method in all the chapters of the thesis as a starting point of our

modelization.

In the case of Euclidean space, the dual graph for a Delaunay triangulation corresponds

to the Voronoi tessellation for the same set of points. The Voronoi tessellation is a

partitioning of a domain into regions based on the distance to a specific set of points.

Let P = {D1, . . . , DK ⊂ Ω} be a partition of the domain into disjoint sub-regions. Each

Voronoi cell Dk is defined as

Dk = {x ∈ X | d(x, ck) ≤ d(x, cj) for all j 6= k},

where the points (c1, . . . , ck) represent the centers of each cell. Different choices of the

distance d(·, ·) lead to different types of tessellation. Classical choices are the Euclidean

distance d(p, q) =
√∑d

i=1(pi − qi)2, or the Manhattan distance d(p, q) =
∑d

i=1 |pi−qi|.
We use the Voronoi tessellation in Chapter 3 and Chapter 4 to define an appropriate

nonparametric test procedure.

1.2 Spatial regression with differential regulariza-

tion

In the first section we briefly introduced the reader to some basic concepts of modern

applied mathematics and numerical analysis. Now we define what represents the starting

point for various chapters of the thesis, the spatial regression with differential regular-

ization method (SR-PDE). The SR-PDE, introduced by Sangalli et al. (2013), comprises

a class of models that can handle data displaying complex spatial or spatiotemporal de-

pendencies. In these models, unlike classical spatial data analysis approach (see Cressie

(1992) for a review), where the unknown spatial field is assumed to be stochastic and the

covariance of the stochastic field is used to model the second order spatial dependence of

the phenomenon under study, the unknown spatial field is assumed to be deterministic
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and the spatial structure of the phenomenon is modelled via the PDE in the regulariz-

ing term. The regularization based on elliptic differential operators represent a rich and

flexible tool to model spatial and spatio-temporal variation, and can naturally include

various forms of anisotropy and non-stationarity. If problem-specific knowledge about

the phenomenon under study is available, this information might be suitably formalized

in a PDE that can be used to define the spatial or spatio-temporal structure of the

model. We now define the model and describe its numerical solution, that resorts on

numerical analysis techniques, such as finite elements analysis or isogeometric analysis

based on advanced spline bases (see for example Quarteroni and Quarteroni (2009)).

1.2.1 The model

Suppose we have {pi, i = 1, . . . , n} data locations over a bounded regular domain

Ω ⊂ R2, with boundary ∂Ω ∈ C2. We observe n realizations zi ∈ R, that correspond

to the values of the variable of interest at point pi. Let also wi ∈ Rq be a the vector

covariates associated to the observation zi, and f is an unknown deterministic mean

field that captures the spatial structure of the problem. With these ingredients, we

define a semi-parametric model of the form

zi = w>i β + f(pi) + εi, i = 1, . . . , n, (1.2)

where β ∈ Rq is the vector of regression coefficients, and εi are i.i.d. random errors with

zero mean and variance σ2. The estimation problem can be solved using the method

proposed in Sangalli et al. (2013), minimizing the regularized least squares

n∑
i=1

(zi −w>i β − f(pi))
2 + λ

∫
Ω

(Lf − u)2 dp, (1.3)

where λ > 0 is the smoothing parameter and L denotes an elliptic differential operator.

To define the form of the operator, we need to introduce a symmetric and positive

definite matrix K = {Kij} ∈ R2×2, named diffusion tensor, a vector b = {bj} ∈ R2,

named transport vector, and a real scalar c > 0, named reaction term. The operator L

can be defined as

Lf = −div(K∇f) + b∇f + cf, (1.4)

where the first term in the sum is a second order differential operator defined as

div(K∇f) =
∂

∂p1

(
K11

∂f

∂p1

+K12
∂f

∂p2

)
+

∂

∂p2

(
K21

∂f

∂p1

+K22
∂f

∂p2

)
,
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the second term is a first order differential operator defined as

b∇f = b1
∂f

∂p1

+ b2
∂f

∂p2

,

and the last term is a zeroth order operator. The three terms in (1.4) can model various

form of anisotropy and non-stationarity. The first element div(K∇f) of (1.4), is a

diffusion term that induces a smoothing in all the directions. If the matrix K is a

multiple of the identity matrix I, it induces an isotropic smoothing effect. Otherwise

it implies an anisotropic smoothing with a preferential direction, that corresponds to

the first eigenvector of the diffusion tensor K. The degree of anisotropy induced by the

diffusion tensor K is controlled by the ratio between its first and second eigenvalue. The

transport term b∇f induces a smoothing only in the direction specified by the transport

vector b. Finally, the reaction term cf has instead a shrinkage effect, since penalization

of the L2 norm of f induces a shrinkage of the surface to zero. The term u in (1.3) is

called forcing term, and can either be the null function u = 0 (so-called homogeneous

case), or u 6= 0 (non-homogeneous case), even further increasing the flexibility in the

modeling of space variation. A special case is the the Laplacian ∆f , obtained setting

K = I, b = 0, c = 0 and u = 0. The Laplacian induces an isotropic and stationary

smoothing.

1.2.2 Well-posedness of the estimation problem and character-

ization of the solution

The well-posedness of the estimation problem (1.3) and the uniqueness of its solutions

are discussed in Sangalli et al. (2013) and Azzimonti et al. (2014). In particular, they

show that (1.3) is well defined for β ∈ Rq and f ∈ H2(Ω). The solution is also unique

imposing appropriate boundary conditions on f . To state the exact results, we need to

introduce some relevant quantities. Let V (Ω) be the subspace of H2(Ω) characterized

by the chosen boundary conditions. Set z = (z1, . . . , zn) the vector of observed data

values, and, for any function v = (v(p1), . . . , v(pn)) the vector of evaluations of v at

the n spatial locations. In presence of covariates, denote by W the n× q matrix whose

i-th row is given by wt
i, the vector of q covariates associated with observation zi at pi,

and assume that W has full rank. Moreover, set Q = I −W (W>W )−1W>, the matrix

that projects onto the orthogonal complement of Rn with respect to the subspace of Rn

spanned by the columns of W . Finally, let us denote by f̂n the vector of evaluations of

f at the n data locations, f̂n = (f(p1, . . . ,pn)). The following proposition characterizes

the solution to the estimation problem, under homogeneous boundary conditions and
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forcing terms u = 0. The case for non-homogeneous boundary conditions and forcing

terms is discussed in Azzimonti et al. (2014) .

Proposition 1.1. There exists a unique pair of estimators (β̂ ∈ Rq, f̂ ∈ V (Ω)) which

minimize (1.3). Moreover

β̂ = (W>W )−1W>(z− f̂n),

and f̂ satisfies

v>nQf̂n + λ

∫
Ω

(Lv)(Lf̂) = v>nQz, ∀v ∈ V (Ω). (1.5)

1.2.3 Numerical solution

The solution to the fourth order differential problem (1.5) cannot be found analyti-

cally. It is therefore necessary to use advanced numerical discretization procedures, as

shown in Sangalli et al. (2013). One possibility is to use the FEM, described in the

previous sections. We now introduce some quantities, related to this method, that are

used in the following chapters. First, let T denote a regular triangulation of the domain

Ω. The domain is consequently approximated by the union of all triangles ΩT , while the

boundary ∂Ω is approximated by a polygon (or multiple polygons in case of a domain

with holes). On T , we define the finite element space V r
T , with r = 1, 2, . . . , as the

space of continuous surfaces over ΩT that are polynomials of degree r when restricted

to any triangle in T . Let Ψ be the n × NT matrix evaluating the NT basis functions

ψ1, . . . , ψNT at the n data locations

Ψ =


ψ1(p1) . . . ψNT (p1)

...
. . .

...

ψ1(pn) . . . ψNT (pn)

 .
This matrix allows to evaluate the value of each function in V r

T as a linear combination

of the set of basis. Let also R0 and R1 be the NT ×NT matrices

R0 =

∫
ΩT

ψψ> and R1 =

∫
ΩT

∇ψK∇ψ> + bψ∇ψ> + cψψ>,

where ψ = (ψ1, . . . , ψK)> is the vector of basis functions. These matrices are called mass

and stiffness matrix, and represent the system of linear equations related approximation

of the operator in the penalization term. Having defined these quantities, the problem

(1.5) can now be recasted in the finite element space.
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Proposition 1.2. There exists a unique pair of estimators (β̂, f̂) which solve the discrete

counterpart of the estimation problem (Sangalli et al., 2013). Moreover,

β̂ = (W>W )−1W>(z − f̂n),

and f̂ = Ψf̂ , with f̂ satisfying[
−Ψ>QΨ/n λR>1

λR1 λR0

][
f̂

g

]
=

[
−Ψ>Qz/n

0

]
. (1.6)

Although the system is typically large, being of order 2NT , it is highly sparse because the

matrices R0 and R1 are highly sparse, since the cross-products of nodal basis functions

and of their partial derivatives are mostly zero, due to local support of the bases. For

simplicity, we define P = R1R
−1
0 R1, a symmetric positive definite matrix. Moreover, let

S be the n× n matrix

S = Ψ(Ψ>QΨ + λP )−1Ψ>Q.

With this notation, we have

f̂n = Sz,

β̂ = (W>W )−1W>(I − S)z. (1.7)

Note that the estimators β̂ and f̂ are linear in the observed data values z. In Chapter

4, we will develop the asymptotic properties of this model, in particular focusing on

consistency and asymptotic normality.





Chapter 2

Nonparametric likelihood density

estimation

2.1 Introduction

Density estimation represents a core tool in statistic. It is essential for the visual-

ization of data structures in exploratory data analysis and represents the starting point

for regression and classification problems. Furthermore, it is fundamental in the more

recently studied density based clustering and ridge estimation. In this Chapter in par-

ticular we consider density estimation over planar domains with non-trivial geometries,

including those with complex boundaries, sharp concavities or interior holes. Figure 2.1

illustrates the kind of problem we are considering. The points correspond to crime loca-

tions in the municipality of Portland, Oregon. The data come from the Portland Police

Bureau, and they comprise a collection of different crime categories in different years.

The interest here is to estimate the distribution of crimes, in order to identify critical

and dangerous areas in the city. In this case, the complex geographical conformation

of the domain, characterized by the presence of the river, is crucial in the study of the

phenomenon. For instance, in the northern area of the city, a much higher criminality

is observed on the East side of the river with respect to the West side. Standard den-

sity estimators, such as the gold standard kernel density estimator (KDE) (Wand and

Jones, 1994) or the spline density estimator (Gu and Qiu, 1993), are not appropriate

in this case. These methods in fact rely on Euclidean distances, thus leading to inaccu-

rate estimate when the phenomenon under studies is influenced by shape of the spatial

domain. The same hold for the other recent proposals to density estimation, such as

shape-constrained methods (Carando et al., 2009; Cule et al., 2010; Samworth, 2018)

and heat diffusion estimators (Chaudhuri and Marron, 1999; Botev et al., 2010).

17
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Figure 2.1: The figure displays the municipality of Portland, with the locations of
motor vehicle thefts. The city is divided in two parts by the Willamette river. The
phenomenon under study appears influenced by the complex shape of the municipality.
For instance, in the northern area of the city, a much higher criminality is observed
on the East side of the river with respect to the West side. This is also the case
for the southern part of the city and for Hayden Island, in the northern part toward
Vancouver, where the number of occurrences is much higher than in the inland nearby
part of the municipality.

The modelling of data distributed over complex planar domains has recently attracted

an increasing interest; see, e.g., Ramsay (2002); Lai and Schumaker (2007); Wang and

Ranalli (2007); Wood et al. (2008); Sangalli et al. (2013); Scott-Hayward et al. (2014);

Menafoglio et al. (2018); Niu et al. (2019). To the best of our knowledge, no one has so

far considered the problem of density estimation in such setting.

In this Chapter we develop a flexible density estimation method, based on a nonparamet-

ric likelihood approach, with a regularizing term involving a partial differential operator.

We study the theoretical properties of the proposed estimator, such as uniqueness and

consistency. From a theoretical perspective, an analogous regularized nonparametric

likelihood approach has been considered in the context of simple multidimensional do-

mains by Gu and Qiu (1993), and formerly, in the univariate case, by Good and Gaskins

(1980) and Silverman (1982); on the other hand, the generalization of the latter esti-

mators to complex domains is not obvious. Another sensible strategy would be to

use a log-linear expansion within a sieve likelihood framework, such as in Shen (1997).
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Although the sieve maximum likelihood possesses interesting efficiency properties, the

choice of an appropriate expansion and the generalization to complex domains is again

not straightforward. Here we propose an highly innovative method to tackle the es-

timation problem. This method leverages on advanced numerical analysis techniques,

making use of finite elements. The finite element method (see, e.g., Ciarlet, 2002) is

often used in engineering applications to solve partial differential equations. A crucial

advantage of such techniques consists in the possibility of considering spatial domains

with complex shapes, instead of simple tensorized domains, as considered by Gu and

Qiu (1993) and by the other available methods for density estimation. Moreover, the

proposed method for density estimation does not impose any shape constraints, allow-

ing for the estimation of fairly complex structures. In particular, thanks to the finite

element formulation, the method is able to capture highly localized features, and lower

dimensional structures such as ridges. This ability also makes the method particularly

well suited in research areas such as density based clustering (Chacón, 2015) and ridge

estimation (Genovese et al., 2014). As a byproduct, we also describe an innovative heat

diffusion estimator, inspired by the works of Chaudhuri and Marron (1999) and Botev

et al. (2010), that is able to handle data distributed over complex domains.

The Chapter is organized as follows. Section 2.2 introduces the proposed nonparamet-

ric likelihood density estimator with differential regularization. The same section also

outlines the equivalence of the considered problem with Poisson process intensity es-

timation. In Section 2.3 we study its theoretical properties and prove the consistency

of the estimator. In Section 2.4.1 we describe the estimation procedure. Section 5 re-

ports some simulation studies that show the performances of the proposed method with

respect to state of the art techniques. Section 6 gives the application to the Portland

crime data. Section 2.7 discusses possible directions for future research.

2.2 Density estimation with differential regulariza-

tion

We consider the problem of estimating a density function f on a spatial domain

Ω ⊂ R2. Let x1, . . . ,xn be n independent realizations from f. We use the logarithm

transform g = log f , and propose to estimate f by finding the function g that minimizes

the negative penalized log likelihood

L(g) = − 1

n

n∑
i=1

g(xi) +

∫
Ω

exp(g) + λ

∫
Ω

(
∆g
)2

(2.1)
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where λ > 0. The first term in (2.1) is the negative log-likelihood. The second term is

necessary to ensure that the estimate integrates to one. The third term is a regular-

ization, necessary to avoid unbounded likelihoods. In fact, unlike classical parametric

density estimation, where the parameter space is finite dimensional and the form of f

is assumed known, here we deal with an infinite class of densities. In particular, the

regularization term we use involves the Laplacian, a differential operator defined as

∆g =
∂2g

∂x2
1

+
∂2g

∂x2
2

where x = (x1, x2). The Laplacian provides a measure of the local curvature of g. This

regularization thus controls the roughness of the estimate. In particular, when the

smoothing parameter λ increases, the solution should ideally flatten out and presents

less bumps.

Instead of the simple Laplacian, the regularizing term could as well involve more com-

plex partial differential operators, or the misfit of a Partial Differential Equation (PDE).

This is particularly interesting when some problem-specific information about the phe-

nomenon is available, that can be formalized in terms of a PDE. This is explored in the

context of spatial and spatio-temporal regression methods in Azzimonti et al. (2015)

and Arnone et al. (2019).

2.2.1 Equivalence to Poisson process intensity estimation

In thhis section we briefly discuss the relationship of the proposed estimator with the

problem of estimating a Poisson intensity and a possible extension of our proposal. The

estimation of spatial point processes, especially inhomogeneous, are emerging as funda-

mental in many applications. Some likelihood approaches for inhomogeneous process

have been proposed by Guan and Shen (2010) and Waagepetersen and Guan (2009).

Here weighted estimating equations incorporate information on both inhomogeneity and

dependence of the process. More recent approaches are studied in Diggle et al. (2013),

that focuses on log-gaussian Cox process estimated via MCMC, Coeurjolly and Møller

(2014), based on a variational procedure, and in Flaxman et al. (2017), that proposes a

nonparametric approach based on Reproducing Kernel Hilbert Spaces. All these mod-

els are nonetheless inappropriate and not easily generalizable for data distributed over

complex spatial domains.

Let us consider n i.i.d. observations x1, . . . ,xn from a Poisson counting process on Ω
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with inhomogeneous intensity function γ. The likelihood of the process is

n∏
i=1

γ(xi) exp

(∫
Ω

(1− γ(u)) du

)
.

If we set g(x) = log(γ(x)) and we omits the constant term
∫

Ω
1 du = |Ω|, we obtain the

negative log-likelihood

−
n∑
i=1

g(xi) + n

∫
Ω

exp(g(u)) du .

Finally, likewise in the case of density estimation, we can add a regularization, and

consider the functional

−
n∑
i=1

g(xi) + n

∫
Ω

exp(g(u)) du + λ̃

∫
Ω

(
∆g
)2

(2.2)

with a positive smoothing parameter λ̃. The minimization of the functional (2.2) is

equivalent to the minimization of (2.1), setting λ̃ = nλ. We can thus tackle the mini-

mization of (2.2) along the same lines detailed below for the density estimation problem

considered in Section 2.2. Thus, our proposal also defines an innovative method for

the study of inhomogeneous Poisson processes, that is able to accurately handle data

observed over complex spatial domains.

2.3 Theoretical properties

In this section we formalize the minimization problem introduced in the previous

sections, and we demonstrate that this estimation problem is well posed, proving the

existence of a unique minimizer in an appropriate functional space.

2.3.1 Well posedness of the estimation problem

Let L2(Ω) denote the space of square integrable functions over Ω. The Sobolev space

Hk(Ω) is defined as

Hk(Ω) =
{
g ∈ L2(Ω) : Dαg ∈ L2(Ω) ∀|α| ≤ k

}
and is equipped with the standard norm ‖g‖2

Hk(Ω)
=
∑
|α|≤k ‖Dαg‖2

L2(Ω) where the symbol

Dαg denote the weak derivative of order α (see, e.g., Adams, 1975, for a detailed
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treatment of Sobolev spaces).

Define the space

V =

{
g ∈ H2(Ω) :

∂g

∂ν
= 0 on ∂Ω

}
where ν is the normal versor to the boundary of the domain ∂Ω, and ∂g

∂ν
is the derivarive

in the normal direction. The space V is the Sobolev space of functions that have two

weak derivatives in L2 and satisfy homogeneous Neuman boundary conditions, i.e., that

have null normal derivative at the boundary of the domain. In this space, the density

corresponding to the null family of the operator, i.e., when λ → +∞, is the uniform

distribution over Ω. In the formulation of the problem of Poisson intensity estimation,

outlined in Section 2.2.1, when λ→∞, the obtained estimates tend to an homogeneous

Poisson intensity on Ω. The following Theorem states that the minimization problem

is well posed in the space V .

Theorem 2.1. The functional L(g) defined in equation (2.1) has a unique minimizer

in V .

Proof. The proof is deferred to Appendix .1

The same result of course holds for the functional in equation (2.2), setting λ̃ = nλ,

although in the following, for simplicity of exposition, we restrict our attention to the

density setting.

2.4 Estimation procedure

The minimization of the functional (2.1) is an infinite dimensional problem and its

solution is not analytically available. Here we consider a discretization of such infinite

dimensional problem based on finite elements (see, e.g., the textbook Ciarlet, 2002, for

an introduction to finite elements). In particular, we consider a linear approximation

of the function g and correspondingly of the functional (2.1). This leads to a tractable

estimation procedure. Moreover, the proposed technique permits to efficiently handle

data scattered over domains with complicated shapes.

The implementation of the method is based on the R package fdaPDE (Lila et al., 2016b).

2.4.1 Finite elements

First, we consider a discretization of the domain Ω using a constrained Delaunay

triangulation; this is a generalization of the Delaunay triangulation (see for example

Hjelle and Dæhlen, 2006) that enables the definition of the boundary of the domain,
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Figure 2.2: Mesh used for the study of motor vehicle theft in the city of Portland.
The mesh represent very well the complex morphology of the domain, cut through by
the Willemette river. The mesh is obtained as a constrained Delaunay triangulation
using the functions in the R package fdaPDE (Lila et al., 2016b).

Figure 2.3: A linear finite element basis function on a triangulation.

forcing the required segments into the triangulation. The resulting domain is denoted

by ΩT , where T is the set of all the triangles. In the simulation studies and application

presented in the following sections, the triangulation is constructed starting from the

boundary; the triangulation is then refined according to criteria concerning maximal

allowed triangle area and minimal allowed triangle angle. The R package fdaPDE (Lila
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et al., 2016b) provides the functions to construct the mesh and refine it.

Figure 2.2 shows the mesh that we use for the estimation of the distribution of crimes

in Portland. The mesh is able to represent very well this complex domain, accurately

rendering the Willamette river, that cuts through the city, and other detailed features

of the domain. It is also possible to consider data-driven meshes, that are constructed

starting from constrained Delaunay triangulations of the data, or a subsample of them,

and then refined according to criteria of minimal allowed triangle angle and maximal

allowed triangle edge. Such data-driven meshes permit to capture strongly localized

features of the density while being parsimonious, (i.e., using a limited number of mesh

nodes). An example is this sense is shown in Section 2.6.

We now define the piecewise polynomial functions over ΩT . For simplicity of exposition

we present the linear case, but higher order polynomials can be used as well. To this

aim, we define a system of bases. Let us denote by ξk, k = 1, . . . , K, the nodes of the

mesh. In the case of linear finite elements, these nodes coincide with the vertices of the

triangles. Specifically, for each node ξk we consider the finite element basis ψk, defined

as the piecewise linear function that has value 1 at node ξk and value 0 at any other

node ξ`, with ` 6= k. Figure 2.3 shows one such finite element function.

Any function g, that is globally continuous on ΩT and is linear when restricted to

any triangle of T , can be obtained as an expansion of the K bases ψ1, . . . , ψK , i.e.,

g(·) = gTψ(·), where g = (g1, . . . , gK)> is the K-vector of coefficients of the basis

expansion, and and ψ := (ψ1, . . . , ψK)> is the vector that packages the K finite element

basis. Moreover, it turns out that the vector g of coefficients of the basis expansion

coincides with the vector of evaluations of the function at the K nodes of the mesh, i.e.,

g = (g(ξ1), . . . , g(ξK))>. In fact, since ψk(ξj) = δjk, where δjk is the Kronecker delta

(δjk = 1 if j = k and δjk = 1 otherwise), we have that

g(ξj) =
K∑
k=1

gkψk(ξj) =
K∑
k=1

gkδjk = gj.

The finite element space of functions has thus been constructed so that any function in

such space is completely defined by the values its assumes at the K nodes.

2.4.2 Discretization of the infinite dimensional estimation prob-

lem

We now discretize the infinite dimensional estimation problem, associated with the

minimization of the functional (2.1), using the finite elements introduced in Section
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2.4.1.

Let Ψ be the n × K matrix having as entries the evaluations of the K finite element

basis functions ψ1, . . . , ψK at the n data points (x1, . . . ,xn), i.e.,

Ψ :=


ψ1(x1) . . . ψK(x1)

...
. . .

...

ψ1(xn) . . . ψK(xn)

 .
Moreover, let 1 denote the K-vector with entries all equal to 1. With this notation,

using the piecewise linear function g = g>ψ, we can discretize the negative penalized

log-likelihood that constitutes the first term in (2.1) by −1>Ψg.

To discretize the second term in (2.1), i.e.,
∫

Ω
exp(g), we need an appropriate quadra-

ture rule (Quarteroni et al., 2010); here in particular we use a Gaussian quadrature rule.

In general, for each triangle τ ∈ T , we consider q quadrature nodes and an associated

vector of quadrature weights w ∈ Rq, and we denote by Ψτ the q×K matrix having as

entries the evaluations of the K basis functions ψ1, . . . , ψK at the q quadrature nodes in

the triangle τ . The second term in (2.1) can hence be discretized as
∑

τ∈T w> exp(Ψτg).

Finally, to approximate the third term in (2.1), i.e., the roughness penalty, we need to in-

troduce the vectorsψx1 := (∂ψ1/∂x1, . . . , ∂ψK/∂x1)> andψx2 := (∂ψ1/∂x2, . . . , ∂ψK/∂x2)>,

and K ×K matrices

R0 :=

∫
ΩT

(ψψ>) and R1 :=

∫
ΩT

(ψx1ψ
>
x1

+ψx2ψ
>
x2

).

Following Ramsay (2002) and Sangalli et al. (2013), the regularization can hence be

discretized by λg>R1R
−1
0 R1g. Such approximation only involves the first derivatives of

the function g = g>ψ.

Summarizing, the negative penalized log-likelihood functional (2.1) can be discretized

as

LT (g) = −1>Ψg +
∑
τ∈T

w> exp(Ψτg) + λg>R1R
−1
0 R1g (2.3)

The minimization of the functional (2.3) can be performed using classical steepest

descent approaches, such as the gradient descent algorithm, as described in Section

2.4.3. In Section 2.4.4 we propose a possible initialization for such algorithms.

2.4.3 Gradient descent algorithm

A classical steepest descent algorithm is the gradient descent, a first-order iterative

optimization method. The algorithm starts with an initial guess g0 and takes steps
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proportional to the negative of the gradient of the function at the current point. In

particular, the values at step m+ 1 are computed as

gm+1 ← gm − αL′

T (gm) ,

where α is the step of the gradient descent algorithm, and L
′
T is the derivative of LT

with respect to g.

Here we consider the simplest formulation of the gradient descent method, but other

algorithms, such as Nesterov accelerated gradient (Nesterov, 2018), can be implemented

with simple modification of the updates. The selection of the optimal step α is a classical

problem in the numerical analysis literature; we therefore refer to a classic textbook such

as Lange (2013) for a thorough discussion.

The gradient descent method is proved to converge when the functional to be minimized

is strictly convex, as it is in our case. However, the number of iterations needed to

converge clearly depends on the goodness of the initial guess g0. A standard choice for

the initial condition would be g0 = 0, that corresponds to a uniform distribution over

Ω. In next session we propose a better initial value g0 which improves the performance

in term of computational time.

2.4.4 Initialization of the gradient descent algorithm

We initialize the vector of parameters by means of a heat diffusion estimator, inspired

by the work of Chaudhuri and Marron (1999). In particular, Chaudhuri and Marron

(1999) propose an approach to curve estimation based on a heat diffusion process, ex-

ploiting the close relationship between heat diffusion processes and Gaussian kernels.

The approach is motivated by the “scale-space” models from computer visions and the

idea is to explore the whole space of solutions for increasing levels of smoothness. Botev

et al. (2010) uses the same idea to define a density estimator and studies the properties

of the method. This approach to density estimation, based on the heat diffusion process,

gives elegant solutions in the case of univariate domains or multivariate domains with

simple shapes. On the other hand, the method discussed in Botev et al. (2010) cannot

account for domains with complex shapes.

To overcome this problem, differently from Chaudhuri and Marron (1999) and Botev

et al. (2010), we consider a discretization of the heat diffusion process, that enables us

to deal with domains with complex shapes. We stress the fact that we use such method

only to compute an initial guess for the gradient descent algorithm described in Section

2.4.3.
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Figure 2.4: Top left: A sample of 200 observations from a mixture of Gaussian
distributions with a Voronoi tessellation of the domain. Top right: Voronoi tessella-
tion and the dual Delaunay triangulation. Middle and bottom rows: heat diffusion
estimates as the time increases.

Let δ(·) denote the Dirac measure. Given n realizations x1, . . . ,xn, consider the heat
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equation 

∂

∂t
f̃(x; t) =

1

2
∆f̃(x; t) x ∈ Ω, t > 0

∂f̃

∂ν
(x) = 0 x ∈ ∂Ω

f̃(x; 0) =
1

N

N∑
i=1

δ(x− xi)

(2.4)

The initial condition of the equation, f̃(x; 0), is the empirical density of the data. The

use of homogeneous Neumann boundary conditions (second equation of the system)

ensures that, for every t ≥ 0, the solution f̃ integrates to one over the domain Ω,

thus being a proper density (see Botev et al., 2010). While the initial condition, the

empirical density, constitutes an extremely rough solution, as t increases, the solution

f̃(x; t) becomes progressively more smooth, converging to a uniform density over Ω

when t → ∞. The main idea is that, for a certain time t, f̃(x; t) provides a good

initial guess for the true density f , that we can use in the gradient descent algorithm.

In particular, differently from Chaudhuri and Marron (1999) and Botev et al. (2010),

we solve the heat-diffusion problem (2.4) numerically, using a forward Euler integration

scheme (see for example Butcher, 2016); moreover, we consider an appropriate finite

element formulation. Specifically, let us first of all consider the Voronoi tesselation of

the spatial domain of interest, associated with the triangulation of the domain discussed

in Section 2.4.1. The triangulation and the Voronoi tessellation constitutes two dual

partitions of the domain of interest. Figure 2.4 illustrates the relationship between the

triangulation and the Voronoi tesselation: in the top right panel, on a squared domain,

we show in gray a triangulation of the domain and in red the corresponding Voronoi

tesselation. For k = 1, . . . , K, we denote by Rk the k-th Voronoi tile: this is the set of

all points in ΩT that are closer to node ξk of the triangulation than to any other node

ξj, with j 6= k, i.e.: Rk = {x ∈ Ω | d(x, ξk) ≤ d(x, ξj) for all j 6= k}, where d(·, ·)
denotes the Ecuclidean distance, computed within the domain of interest (i.e., without

crossing the boundaries of the domain). We hence approximate the empirical density

of the data by the finite element function f̃ 0 = f̃0>ψ that takes the following values at

the nodes:

f̃ 0
k = f̃ 0(ξk) =

1

n

n∑
i=1

|Rk|
|Ω| I(xi ∈ Rk) for k = 1, . . . , K (2.5)

where I is the indicator function, |Rk| denotes the area of the k−th tile and |Ω| the area

of the spatial domain Ω. The value of this function at the k−th node hence corresponds

to the proportion of data that fall within the k−th tile, weighted by the relative area

of the tile. With a sufficiently fine triangulation, and correspondingly small tiles, such
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function provides a good approximation of the empirical density. We thus use this

function to approximate the initial condition of the heat diffusion problem (2.4). We

hence discretize (2.4) by finite elements in space and a forward Euler scheme in time,

setting the temporal step size to ∆t. This means that, starting from the initialization

in equation (2.5), we compute an approximation of f̃(x; t), at times t = m∆t, where

m = 1, 2, . . . is the iteration index, by the finite element function f̃m = f̃m>ψ, setting

the following values of the functions at the nodes

f̃m+1
k = f̃mk + ∆t

1

#(Nk)
∑
j∈Nk

(f̃mj − f̃mk ), k = 1, . . . , K . . .

whereNk is the set of nodes that are closest neighbours of ξk and #(Nk) is its cardinality.

Looking at the solutions for different time instants (i.e. for different m) we obtain a

set of functions that ranges from the extremely rough sum of spikes at the observations

(m = 0) to the uniform distribution over Ω (m→∞). Figure 2.4 illustrates this process.

The top left panel shows a sample of 200 data from the mixture of Gaussian distributions

using in the first simulation case, and detailed in Section 2.5.1; the same figure also

displays the Voronoi tessellation of the domain. The top right panel report a zoom of

the Voronoi tessellation, with the associated triangulation. The central left panel shows

the corresponding approximation of the empirical density, f̃ 0. The remaining panels

shows progressively smother solutions f̃m.

Among the various solutions f̃m, we then use as a starting guess for the gradient descent

algorithm the solution f̃m, such that gm = log(f̃m) minimizes the functional (2.1). The

maximum m is chosen large enough to have a complete diffusion of the heat flow.

2.4.5 Selection of the smoothing parameter

The selection of the smoothing parameter λ is crucial for an accurate estimation

and to ensure a right balance between the bias and the variance of the estimator. We

consider here a k-fold cross-validation procedure based on the L2 norm. This norm is

frequently used in literature and leads to a particularly tractable selection algorithm

(Marron, 1987). The value of λ can be chosen minimizing

R̂(λ) =

∫
(f̂
−[k]
λ (x))2 − 2

#(x[k])

∑
i∈[k]

f̂
−[k]
λ (x[k]) (2.6)

where k is the fold index, f̂
−[k]
λ (x) is the density estimated without the k-th fold, x[k]

is the subset of observations of the k-th fold and #(x[k]) its cardinality. The first term
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in (2.6) can be easily computed thanks to the finite element formulation. The latter

consists of the evaluation of the estimated density in the left out points and its a simple

linear combinations of the vertices of the mesh.

2.5 Simulation studies and applications

In this section we present some simulation studies where we compare the performance

of the proposed nonparametric Density Estimator with Partial Differential regularization

(DE-PDE) with Kernel Density Estimation (KDE). KDE is implemented using the R

package ks (Duong, 2018), that consider anisotropic Gaussian kernels, automatically

selecting the bandwidth matrix H.

We consider two simulation studies, with density functions defined over two different

domains. The first domain is a simple rectangular domain, and the density we consider

on this domain is not influenced by the shape of the domain. The second domain has the

shape of an horseshoe, and the density we consider over this domain displays different

values on the two sides of the horseshoe. In both cases, we simulate 100 samples of

200 observations each. We select the bandwidth matrix H for KDE and the smoothing

parameter λ for DE-PDE using 5-fold cross-validation.

2.5.1 Simulation 1: mixture of gaussians over squared domain

We first simulate from a mixture of four Gaussian with means

µ1 =

(
−2

−1.5

)
, µ2 =

(
2

−2

)
, µ3 =

(
−2

1.5

)
, µ4 =

(
2

2

)
,

and variances

Σ1 =

[
0.8 −0.2

−0.2 0.8

]
,Σ2 =

[
1.5 0

0 1.5

]
,Σ3 =

[
0.8 0

0 0.8

]
,Σ4 =

[
1 0.9

0.9 1

]
,

and mixing weights π =
(

1
4
, 1

4
, 1

4
, 1

4

)
. The results are shown in Figure 2.5. The top

left panel represent the contour lines of the true density. The bottom panels display

the means of the estimates obtained by KDE and by DE-PDE over the 100 simulation

repetitions. Both estimators are able to capture the shape of the true density. The

top right panel shows the boxplots of the Mean Integrated Squared Error (MISE) of

the two estimator, over the 100 simulation repetition. For completeness, we also show

the MISE of the solutions obtained by the heat-diffusion estimator (Heat) described in
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Figure 2.5: Simulation 1: mixture of gaussians over squared domain. Top left: true
density. Top right: boxplots of the Mean Integrated Squared Error (MISE), over the
100 simulation repetitions, of the estimates provided by Kernel Density Estimation
(KDE) and the proposed Density Estimation with PDE regularization (DE-PDE);
for completeness, we also display the MISE of the heat diffusion estimates that we
use as starting guesses for the gradient descent algorithm that provides DE-PDE
estimates. Bottom left: mean of the estimates yielded by KDE over the 100 simulation
repetitions. Bottom right: mean of the estimates yielded by DE-PDE over the 100
simulation repetitions.

Section 2.4.4, and that we use as starting values for the gradient descent algorithm that

leads to DE-PDE estimates. The boxplots highlight a clear advantage of the proposed

DE-PDE over KDE. This is probably due to the different shapes of the components of

the mixtures, that make more difficult the choice of an appropriate bandwidth matrix

for the KDE.
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True density
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Figure 2.6: Simulation 2: density over horseshoe domain. Panels as in Figure 2.5.
KDE cannot accurately deal with data over this non-trivial domain: it returns esti-
mates where the high density values in the upper horseshoe arm are partly smoothed
into the low density values in the bottom part of the domain, with isolines very dif-
ferent from those of the true density. The proposed DE-PDE estimates is not affected
by this problem and does not display any strange behavior at the boundaries of the
domain; instead it is able to very well capture the overall structure of the true density.

2.5.2 Simulation 2: density over horseshoe domain

We consider the horseshoe domain defined in Ramsay (2002) and considered in a

number of subsequent papers. The density we use in this test is defined starting from

the function defined in Wood et al. (2008) (Section 5.1), translating the function by 5

and diving by its integral in order to be a proper density. The top left panel of Figure

2.6 shows the true density. The function follows the shape of the domain, with higher

values on the upper branch and lower values on the lower branch. This simulation

setting presents similar difficulties as the analysis of crimes in Portland, outlined in

the Introduction. In both cases, the domain is characterized by a strong concavity, that

almost separates two parts of the domains, with one part displaying much higher density
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Figure 2.7: Estimated density for motor vehicle thefts.

values that the other part. Methods that fully rely on the Euclidean distance, without

accounting for the shape of the domain, return in this case inaccurate estimates. This is

evidenced by the bottom left panel of Figure 2.6, that report the means of the estimate

obtained by KDE over the 100 simulation repetitions. KDE is clearly unable to identify

the true structure of the density, and pours the higher density values of the top horseshoe

arm into the lower density values of the bottom horseshoe arm, returning estimates

that are particularly poor near the boundaries. The proposed DE-PDE instead does

not suffer from this problem and is able to accurate handle the data returning estimates

that capture the structure of the true density and do not display any particular problem

near the boundary of the domain. This is further highlighted by the boxplots of the

MISE over the 100 simulation replicates: the boxplots show the neat superiority of

DE-PDE over KDE.

2.6 Portland crimes

We consider the problem of estimating the crimes distribution in the city of Montreal.

The data come from NIJ “Real-Time Crime Forecasting Challenge” and consists of calls-

for-service positions from the Portland Police Bureau. Wilhelm and Sangalli (2016)

also offer a study of crime data over the city of Portland, but they aggregate crimes
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KDE DE-PDE

Figure 2.8: Enlargement of the estimates provide by KDE (left) and the proposed
DE-PDE (right) on Hayden Island. The figure shows that KDE estimator is not able
to comply with the complex structure of the domain: though a very high number of
motor vehicle theft is observed in the island, while almost no theft is observed in the
nearby inland part of the municipality, KDE return an estimate that is everywhere
low. Instead, the proposed DE-PDE estimator can efficiently deal with the complex
morphology of the domain, returning an estimate of the theft density that is much
higher over the Hayden Island.

per district, and consider a generalized linear model to analyze crime counts over the

various municipality districts. Figure 2.1 shows the location of motor vehicle theft over

the municipality, in the year 2012. Figure 2.3 shows the municipality of Portland, along

with a Delaunay triangulation based on 788 nodes. Note that two areas are not part

of the domain of interest: the airport, in the northern part of the city, and the western

part of Hayden Island, in the north, toward Vancouver. As already commented in the

Introduction, the frequency of occurrences of motor vehicle thefts varies significantly

over the various part of the municipality; moreover, the complex morphology of the

city clearly influences the phenomenon under study. For instance, rather different theft

numbers are observed on the two sides of the river. In northern part of the city, a much

higher occurrence of vehicle thefts is observed on the east side of the river; the same can

be said in the southern part of the city. In the city center instead, more occurrences are

present on the west side of the river. A similar situation applies for the Hayden Island,

in the north toward Vancouver, where there are clearly more vehicle thefts that in the

inland nearby part of the municipality. In general, the phenomenon is not smooth across

the river, that acts as a physical barrier. Figure 2.7 shows the estimate of the vehicle

theft density obtained by the proposed DE-PDE method. The estimate accurately

complies with the shape of the domain and is able to capture localized features. The two

main distribution masses are concentrated in the city center and in the Lloyd district, a
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primarily commercial neighborhood in the North and Northeast sections of the city. In is

also interesting to note the high density region on the eastern part of the city, along the

War Veterans Memorial freeway, a main highway that serves the Portland-Vancouver

metropolitan area and passes near three of the largest shopping centers of the city. All

these areas have huge amounts of parking lots, with cars parked for long periods of time.

It is interesting to note the high concentration area in the Eastern part of Hayden Island.

This part of the island, named Jantzen Beach, has highly developed retail areas near the

freeway, hotels, offices, manufactured home communities, and condominium complexes.

Despite the complexity of the domain, our estimator is able to identify the high density

region on the island, without interfering with the estimation on the opposite side of

the river, where almost no observation are present. See also Figure 2.8 that shows two

enlargements of this picture over Hayden Island.

Figure 2.9 instead considers crimes related to prostitution (data corresponding to year

2012). The top left panel of the figure shows the crime locations, that are concentrated

along the Northest 82nd Avenue. This is a major arterial on the Eastside, that has long

had a reputation as a hub for prostitution and other aspects of Portland’s sex industry.

The central right and bottom right panels of the same figure show the DE-PDE estimate

of the crime density obtained considering a regular fine triangulation with around 3000

nodes and selecting the smoothing parameter by cross validation. These figures highlight

how accurately the proposed method captures the density mass concentrated around a

segment that corresponds to the Northest 82nd Avenue. The proposed estimator is

flexible enough to detect a low dimensional structure of the underlying density, a ridge,

without oversmoothing it. The top right panel of the same figure displays a coarse

data-drive triangulation, with 612 nodes: this is a constrained Delaunay triangulation

of a random subsample of the crime locations, refined setting a minimum value for the

triangle angles. The central and bottom right panels shows the corresponding DE-PDE

estimate, obtained setting the smoothing parameter by cross validation. This estimate,

while being more parsimonious and requiring the estimation of a smaller number of

parameters, is nevertheless able to accurately represent the highly anisotropic data

density. The KDE, on the contrary, returns a very rough estimate, with many spikes,

being unable to select a proper bandwidth matrix that could represent the ridge.

2.7 Future research

The proposed density estimation method can be extended in various directions.

A first fascinating direction goes toward higher dimensional and non-euclidean domains.
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These include two-dimensional curved domains with non-trivial geometries, and three-

dimensional domains with complex boundaries. Data observed over these complex do-

mains are common in modern applications (see, e.g., (Niu et al., 2019)). In the neuro-

sciences, for instance, data are measured over a domain characterized by a formidably

complicated morphology, the brain. Brain imaging studies can either focus on the cere-

bral cortex, a two dimensional curved domain with an highly convoluted nature (Lila

et al., 2016a; Chung et al., 2016), or consider the whole organ, a three-dimensional do-

main with highly complex internal and external boundaries. In the geo-sciences, data

are commonly acquired over two-dimensional curved domains or three-dimensional do-

mains with complex orography. In astronomy, such as in cosmic web reconstruction

(Chen et al., 2015), flexible density estimators are needed to identify and characterize

intrinsic lower dimensional structures, such as smooth manifolds. Density estimation

over complicated multidimensional domains requires flexible methods able to overcome

the classical concept of Euclidean distance. Some proposals generalize the kernel density

estimation to Riemaniann manifolds, using the concept of exponential map to solve the

problem (see, e.g., Kim and Park, 2013; Berry and Sauer, 2017). In our setting, the flex-

ible formulation of DE-PDE in terms of finite elements enables the extension to curved

two-dimensional domains and to complex three-dimensional domains. In particular, we

can here resort respectively to surface finite elements, likewise in (Lila et al., 2016a),

and to volumetric finite elements.

Another interesting direction of research concerns the development of time-dependent

density estimation methods. The modeling of densities over time permits the under-

standing of the evolution of underlying processes generating the data. However, very

little attention has so far been devoted to the development of such models, especially

in more than one dimension (see, e.g., Gervini (2019) and references therein for some

first proposal in this regard). The proposed DE-PDE method could be generalized to

space-time point data. This can be done by considering two regularizations, one in time

and one in space, or alternatively a unique regularization involving a time-dependent

differential operator, in analogy to the spatio-temporal regression methods presented in

Bernardi et al. (2017) and Arnone et al. (2019).

An intriguing alternative to the described framework would consist in exploring the pro-

posed approach from a bayesian perspective. The considered penalization could in fact

be interpreted as a Gaussian prior over a graph, the triangulation. This may lead to

interesting considerations in terms of random processes, especially in the case of Poisson

intensity estimation.

Finally, as commented in Section 2.2, we could consider regularizing terms involving
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more complex differential operators and partial differential equations, similarly to what

done in Azzimonti et al. (2014) and Arnone et al. (2019) in the context of spatial regres-

sion. This possibility would enable the inclusion in the density estimator of problem-

specific information concerning the physics of the process generating the data.
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Points Data-driven mesh

DE-PDE fine regular mesh DE-PDE coarse data-driven mesh

Figure 2.9: Prostitution in Portland. Top left: locations of prostitution related
crimes, in the year 2012. Top right: coarse data-driven mesh. Central and bot-
tom panels: DE-PDE estimated densities, using a fine regular mesh with about 3000
nodes (left) and using the coarse data-driven mesh with about 600 nodes (right) .
These images highlight how accurately the proposed method captures the density
mass concentrated along Northest 82nd Avenue, that appears as a neat ridge in the
three-dimensional visualization.



Chapter 3

Two samples hypothesis testing

3.1 Introduction

In this second work, we study nonparametric hypothesis two samples testing proce-

dures. In the same setting of the previous chapter, we focus on densities defined over

complex domains. As an example, we use data about the criminality in the city of Port-

land. Our interest is to study if the distribution of a particular crime has changed over

the years. We study the problem from a permutational perspective, defining different

statistics using nonparametric combinations of partial tests on appropriate partitions

of the domain. This allows us to redefine the problem in terms of a high dimensional

multinomial test. We then study the theoretical properties of the proposed tests, in

particular focusing on unbiasedness and consistency.

The problem of two samples hypothesis testing can be considered a fairly old subject.

Some examples among the many nonparametric tests are the Kolmogorov-Smirnoff test

(Kolmogorov (1933); Smirnov (1939)) and the number-of-runs test (Wald and Wolfowitz,

1940). On the multivariate setting, a classic example is the works Hotelling (1951), that

describes the t-test for multivariate Gaussian distribution. The subject has nonetheless

prompted a recent attraction in the statistical literature, specially related to the study

of high dimensional multinomials. One of the first works that consider multinomial data

in the high-dimensional case is by Fienberg and Holland (1973). Here the authors study

the case where the number of cells is large while the number of observations per cell

is moderate. A more recent work by Arias-Castro et al. (2018) shows the connection

between high dimensional multinomials and the two sample testing on continuous dis-

tributions. Generalizing a work of Ingster (1987), they study the minimax properties

of the histogram test, under suitable smoothness assumptions, for both goodness of fit

and two samples tests. A recent review on this topic is provided in Balakrishnan and

39
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Wasserman (2018), where they compare various testing procedures based on different

metrics.

Here we move in the same direction, defining the test as an high dimensional multi-

nomial test. The main difficulty is that in a typical histogram testing framework we

consider counts on a regular grid. The problem we are facing here is slightly more com-

plex, because we are dealing with densities defined over a general domain Ω, possibly

with a complex shape. It is therefore necessary to define an appropriate partition of

the domain of under study. This opens the way to permutation procedures such as the

nonparametric combination (NPC), defined in Pesarin and Salmaso (2010). We also

evaluate various combining methods that have been proposed for the two samples prob-

lem, and identify those that provide the best Type I error control and power across a

range of situations.

The chapter develops as follows: in Section 2 we introduce the proposed methodology;

in Section 3 we study the theoretical properties; in Section 4 we present some simulation

studies and in Section 5 an application to the Portland crime data.

3.2 Methodology

Suppose we have observations X1, . . . , Xn1 from some distribution F and Y1, . . . , Yn2

from some distribution G. Let f and g be Lebesgue measurable densities correspond-

ing to the distributions F and G, respectively. Our interest is to test whether these

two groups of observations have been drawn from the same distribution or not. The

formalization of this hypothesis takes the form

H0 : F = G versus H1 : δ(F,G) ≥ ε, (3.1)

where d(·, ·) is some specified distance. In the case of continuous distributions, various

distances have been used in the literature. Some examples are the L1 and the L2

distances, the Hellinger and the Kullback-Leibler distances. The choice of the distance

is far from universal and can lead to more or less interpretable tests. Here we focus on

the total variation distance (TV), defined as

δ(F,G) = sup
A
|F (A)−G(A)| .

This distance is closely related to the `1 norm when the set is countable, in particular

TV (F,G) =
1

2
‖f − g‖1.
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Figure 3.1: On the left, the Delaunay triangulation in black and its dual graph, the
Voronoi tessellation in red. On the right, the crimes related to human trafficking in
the city of Portland, together with the tessellation of the domain.

In the context of probability distribution theory, the TV distance has a clear interpreta-

tion. It represent the largest possible difference between the probabilities that the two

probability distributions can assign to the same event. This distance is also invariant

to natural transformation (Devroye and Györfi, 1985).

3.2.1 Definition of the test statistic

The test in (3.1) is defined in a fully nonparametric fashion, with no specific direc-

tional alternatives. In these cases, a possible solution is to consider test statistics based

on appropriate partition of the domain under study. The most common example being

the widely used histogram test (see for example Ingster (1987) and Arias-Castro et al.

(2018)). This type of test is particularly appealing in a variety of applied problem. It

is fairly easy to define and simple to use, and it has many interesting theoretical prop-

erties. In this work we consider a similar approach. In particular, we redefine (3.1) as

a high dimensional multinomial test.

Here we focus our attention to densities defined over a complex domain Ω ∈ R2, possibly

with boundaries. Given the non regular shape of the domain, it is reasonable to use a

Voronoi tessellation as a possible partition. Let P = {D1, . . . , DK ⊂ Ω} be a partition

of the domain into disjoint sub-regions. Each Voronoi cell Dk is defined as

Dk = {x ∈ X | d(x, ck) ≤ d(x, cj) for all j 6= k}
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where the points (c1, . . . , ck) represent the centers of each cell. In this case we consider

as distance d(·, ·) the classic Euclidean distance. Note that the cell satisfies

Ω =
K⋃
k=1

Dk and Di ∩Dj = ∅, ∀ i, j = 1, . . . , K, i 6= j.

In figure 3.1 we see the Voronoi tessellation, in black, of the city of Portland. The

Voronoi graph is the dual graph of the Delaunay triangulation, in red, defined in the

previous chapter for the estimation of the density.

Having defined a sensible partition, we define the quantized versions of f and g as

p = (p1, . . . , pK) and q = (q1, . . . , qK), with

pk =
|Dk|
|Ω|

∫
Dk

f(x)dx qk =
|Dk|
|Ω|

∫
Dk

g(x)dx.

The two vectors p and q can be seen as probability vectors indexed by K, the number

of tiles in the defined tessellation. In particular, the two vectors defines multinomial

probability distributions on the partitioned domain. Note that the methodology we

develop is generalizible to higher dimension by considering different partitions.

Given the two vectors of observations X = (X1, . . . , Xn1) and Y = (Y1, . . . , Yn2), we

define on each partition the simple statistics

Sk(X) =
|Dk|
n1

n1∑
i=1

I(Xi ∈ Dk) and Sk(Y ) =
|Dk|
n2

n2∑
i=1

I(Yi ∈ Dk).

Unlike the classical histogram test, here the tiles does not have the same area. The term

|Dk| =
∫
Dk

1 is therefore needed to weight for the dimension of each tile. In the case of

Portland, this correspond to count the number of observations belonging to each tiles,

as in figure 3.1.

3.2.2 Nonparametric combination

We now define various test statistics using the concept of nonparametric combination

(NPC), defined in Pesarin and Salmaso (2010). We specify the hypothesis (3.1) as

H0 :
K⋂
k=1

pk = qk vs H1 :
K⋃
k=1

pk 6= qk.

The NPC is combined with a permutation approach, that gives many advantages. The

global properties of the test are easy to derive the global properties using the properties
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of the partial tests. Moreover, it enables the researcher to obtain not only a global

p-value, like in traditional tests, but also a p-value for each of the defined aspects or

domains.

In the following we indicate by T 0
k and T ∗k the observed and permutation values of Tk.

The assumptions necessary for the nonparametric combination of the set of partial tests

Tk are:

(a) All permutation partial tests T ∗k are marginally unbiased and significant for large

values, so that they are larger in H1 that in H0.

(b) All permutation partial tests T ∗k are consistent, that is,

lim
n→∞

P(T ∗k ≥ T 0
kα|X, Y,H1k)→ 1, ∀α > 0, k = 1, . . . , K,

where Tkα < ∞ is the critical value of Tk at level α. In order to obtain global

traditional consistency it suffices that at least one partial test is consistent Pesarin

and Salmaso (2010).

Here we only define the test statistics, leaving to the next section the study of the

unbiasedness and the consistency. We use different combination of S(·) to define tests

based on different metrics:

1. `1:

T`1 =
K∑
i=1

|Sk(X)− Sk(Y )| ,

2. `2:

T`2 =
K∑
i=1

(Sk(X)− Sk(Y ))2 ,

3. Max:

T∞ = max
k
|Sk(X)− Sk(Y )| ,

4. Log-Ratio:

TLR =
K∑
i=1

log

(
Sk(X)

Sk(Y )

)
,

5. Centered χ2:

Tχ2 =
K∑
i=1

(ñSk(X)− ñSk(Y ))2 − (ñ2Sk(X) + ñ2Sk(Y ))

ñ2Sk(X) + ñ2Sk(Y )
,

where ñ = n1n2.
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These tests are among the most widely used in the literature and may lead to optimality

in different scenarios. In particular, the `1 and the χ2 seem to be quite promising. The

work of Arias-Castro et al. (2018) shows the minimaxity of the χ2 histogram test under

fairly general smoothness conditions. This result generalizes the work of Ingster (1987)

in the univariate case. A more recent work by Chan et al. (2014) proposes the centered

version of the χ2 and studies its optimality. On the other hand, the `1 test appears to be

a good contender in the case of unbalanced sample sizes (Balakrishnan and Wasserman,

2018). In the next section we study the theoretical properties of these tests and then

propose some simulation studies to compare their performances.

3.3 Theoretical properties

Let us first introduce the partial test

Tk(X, Y ) = Sk(X)− Sk(Y ) =
1

n1

n1∑
i=1

I(xi ∈ Dk)−
1

n2

n2∑
i=1

I(yi ∈ Dk). (3.2)

The partial test Tk has to verify the assumptions (a) and (b), necessary for the nonpara-

metric combination. We first consider the unbiasedness of the considered test statistic

with respect to permutations.

Proposition 3.1. Suppose that the data X and Y are exchangeable under the null

hypothesis. Then test Tk defined in (3.2) is conditionally and unconditionally unbiased

under permutation. The Tk is also an exact test.

Proof. The statistic S is defined as the count of observations that belong to that cell.

The function S is therefore symmetric, that is, invariant with respect to rearrangements

of the observations. It is also monotonic non-increasing, that is, S(X + δ) ≥ S(X) for

any observation X and any δ ≥ 0. This last property ensures that large values of T give

evidence against H0. It follows from Theorem 1 and Theorem 2 of Pesarin and Salmaso

(2010) that Tk is conditionally and unconditionally unbiased, and also exact. A similar

argument can be used to prove the unbiasedness for logS, used in the log-ratio test.

We now consider the consistency of the partial tests Tk.

Proposition 3.2. Suppose that the data X = (X1, . . . , Xn1) and Y = (Y1, . . . , Yn2) are

such that n1/n2 → λ as n1, n2 → ∞. Then test Tk defined in (3.2) is consistent under

permutation.
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Proof. The study of the consistency of each partial test depends on the asymptotic

distribution of the test statistic involved. To simplify the notation, lat us denote Tk = T

and define

Z = (Z1, . . . , Zn) = (I(x1 ∈ Dk), . . . , I(xn1 ∈ Dk), I(y1 ∈ Dk), . . . , I(yn1 ∈ Dk)),

where n = n1 + n2. Let also (π(1), . . . , π(n)) and (π
′
(1), . . . , π

′
(n)) be independent

random permutations of 1, . . . , n and independent from Z. We now define the vector

(T ∗n , T
∗′
n ) =

(
√
n1

n∑
i=1

ZiWi,
√
n1

n∑
i=1

ZiW
′

i

)
,

where

Wi =

1 π(i) ≤ n1

−n1

n2
π(i) > n1

,

and W
′
i is defined in the same way with π

′
. The subscript n underline the dependence

on the sample size. It is easy to see that E(Wi) = E(WiZi) = 0. We also have

Var(T ∗n) =
n1

n2

pk(1− pk) + qk(1− qk),

and

Cov(T ∗n , T
∗′
n ) =

n∑
i=1

n∑
j=1

E(WiW
′

jZiZj) = 0,

using the independence of Wi and W
′
i . We therefore have the convergence

(T ∗n , T
′∗
n )

d→ (T ∗, T
′∗),

where (T ∗, T
′∗) is a bivariate normal with same marginal distribution, having mean 0

and variance λpk(1−pk)+(1−qk). The convergence for the case of the log-ratio test can

be obtained in the same way, using the difference of the logarithmic transformations.

In the case of T 0
k , we have the convergence

(T 0
n , T

′0
n )

d→ (T 0, T
′0),

where (T, T
′
) is a bivariate normal with same marginal distribution, having mean 0 and

variance pk(1− pk) + λqk(1− qk).
Consider the situations where Z = Zn() is an increasing sequence of i.i.d observations.

Let us denote by T 0
α(Z(n)) the critical value at level α of the statistic T 0.We now have
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to verify assumption (b), that is

lim
n→∞

P(T ∗(Z(n)) ≥ T 0
α(Z(n))|Z(n), H1)→ 1, ∀α > 0, k = 1, . . . , K.

As n → ∞, the value T 0
α(Z(n)) converges to the quantile T 0

α of a normal distribution

N (0, pk(1− pk) + λqk(1− qk)). We therefore obtain

lim
n→∞

P

(
√
n1

(
N∑
i=1

ZiWi

)
≥ T 0

α

∣∣∣∣∣Z(n), H1

)
→ 1.

Note that, although the distribution of T 0 and T ∗ have slightly different variances in

the case of unbalanced samples sizes, we still have the asymptotic consistency. In the

case on balanced sample sizes, we may be able to obtain stronger properties, such as

a test that is locally asymptotically uniformly most powerful (Lehmann and Romano,

2006).

We now consider the consistency of global tests.

Proposition 3.3. The global tests (1) to (5) are conditionally and unconditionally un-

biased and consistent under permutations.

Proof. The combining functions (1) to (5) are admissible since they define convex ac-

ceptance regions (see Section 4.2.6 of Pesarin and Salmaso (2010) for a characterization

of admissible combining functions). This property conbined by the two previous results

gives the unbiasedness and the consistency of the globals tests.

3.4 Simulations

We consider different simulation scenarios in order to compare the performances of

the proposed tests. In the first case we consider a distribution with center of mass that

shift away under the alternative. In the second case, we consider a distribution with

center of mass that shrink toward its center. In the third case we consider a uniform

distribution over a increasingly smaller support. In the fourth and last case we consider

a uniform distribution against a spike distribution with increasingly smaller support.

In each case we performed 1000 simulations and the critical value is provided using a

permutation procedure with 500 random permutations. For each scenario we consider

three different settings, with different ratios between n, the number of observations, and

K, the number of cells of the multinomial.
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3.4.1 n bigger than K

In the first setting n > K, that is the number of observation is larger that the number

of cells of the multinomial. In particular we consider the case where n1 = n2 = 1000

while K = 400. Remind that n = n1 + n2, the sum of the number of samples in each

group. This can be considered as a standard asymptotic setting. In figure 3.2 are

presented the power curves in the case where the two samples are unbalanced. In each

scenario the centered Chi-square has better performances with respect to all the other

tests. The `1 test is almost as good as the Chi-square, while the `2 has slightly less

power. The log-ratio test performs poorly in the last two cases, where the distributions

are supported over a smaller region of the domain and a high number of cells have low

probability mass.

3.4.2 n smaller than K

In the second setting, we consider a reverse situation, where n < K. In this setting

the curse of dimensionality may affect the power of some of . In figure 3.3 are presented

the power curves for each test in each case, where the values are an average over the 1000

simulations. In particular we consider the case where n1 = n2 = 100 while K = 400. In

this scenario, the centered Chi-square and the `1 still remain the more powerful tests

overall. The `2 and the log-ratio have slightly worse performances. The max test shows

low power when the distributions are more diffuse and when a shift in the center of mass

is present. Nonetheless, it regain power in presence of more spiky distributions.

3.4.3 Unbalanced case

In the last setting, we consider an unbalanced situation, where the sample sizes are

n1 = 4000 and n2 = 400. This seems to represents a more delicate situation. The

Chi-square test, although minimax optimal in the balanced case, has somehow worse

performances. This result is in line with the work of Balakrishnan and Wasserman

(2018). The `1 and `2 have generally the best behavior, with an `1 predominance in the

first two cases where the support of the distributions is more concentrated and most

of the multinomial cells have zero counts. The log-ratio has acceptable power is some

cases but it seems problematic when the distribution have small support. The max test

remains generally the worst of all the proposals.
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Figure 3.2: A comparison between the five tests proposed in four different scenarios.
The power of the tests are plotted against the `1 distance between F and G. The
sample sizes are n1 = n2 = 1000 while the number of cells of the multinomial is
K = 400. Each point in the graph is an average over 1000 simulations.

3.5 Application

In the previous chapter, we applied the proposed density estimation method to the

crime data in the city of Portland, Oregon. It is clear from 2.9 that the East-side of the

city seems to be a fairly critical area. The problem of human trafficking was particularly

evident in the early 2000’s. Since then, the Police department and the State of Oregon

started various campaigns to reduce or at least control this problem.

In 2013 East Precinct began an innovative partnership with the Multnomah

County District Attorney’s Office to respond to the increase of crime, par-

ticularly violent crimes related to gang activity and drug trafficking, in east
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Figure 3.3: A comparison between the five tests proposed in four different scenarios.
The power of the tests are plotted against the `1 distance between F and G. The
sample sizes are n1 = n2 = 100 while the number of cells of the multinomial is
K = 400. Each point in the graph is an average over 1000 simulations.

Multnomah County. [. . . ] The Street Crimes Unit and the Prostitution Co-

ordination Team were both brought back to full strength. Each team now

has four officers reporting to a single sergeant. By bringing these two units

under one supervisor the ability to impact the problem has increased as

these units grow in understanding of how sex trafficking and gang violence

overlap. Hales and Reese (2013)

As a result, we would like to test if the distribution of crimes, in particular related to

human trafficking, has changed over the years. We apply the centered χ2 to test the

distribution of each year against the previous one. The differences result all significant

except for the last two years. The improvement of prosecution policies and the increase

control and prevention of the Police Department seem to have positively influenced
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Figure 3.4: A comparison between the five tests proposed in four different scenarios.
The power of the tests are plotted against the `1 distance between F and G. The
sample sizes are n1 = 4000 and n2 = 400, while the number of cells of the multinomial
is K = 400. Each point in the graph is an average over 1000 simulations.

the situation. There is a clear reduction in the critical area around the Northeast 82nd

Avenue (figure 3.5). It is worth noting that the significant differences in the distributions

are not the result of a decrease in number of cases (table 3.1).

Table 3.1: Number of crimes from 2012 to 2017

Year 2012 2013 2014 2015 2016 2017

Count 229 188 143 109 198 159

This is more evident if we estimate the distributions with the method proposed in

chapter 1, as in figure 3.6. Here we see that the mode of the distribution shifts from the

Northeast 82nd avenue to the northern part of the city, near the airport. The modes in
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Figure 3.5: From the top-left, distribution of the crimes concerning human traffick-
ing in the city of Portland from 2012 to 2017.

Figure 3.6: From the top-left, estimated densities of the distributions of crimes
concerning human trafficking in the city of Portland from 2012 to 2017.
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the last two years correspond probably to the position of illegal brothels. The human

trafficking problem is therefore reduced, especially in the streets, but more efforts are

needed for a complete eradication.



Chapter 4

Hypothesis testing for spatial

regression models

4.1 Introduction

In this final chapter we move back to the SR-PDE introduced in Sangalli et al. (2013).

Here we study the asymptotic properties of such estimators, focusing on the consistency

and the asymptotic normality. We also develop two nonparametric procedure to test

the linear components of such models.

The SR-PDE represents a set of numerically efficient regression models, capable to han-

dle complex applied problems (see for example Azzimonti et al. (2015) and Lila et al.

(2016a)). These models use a regularized estimation scheme, similar to other semipara-

metric models such as penalized splines regression (Yu and Ruppert, 2002), thin plate

splines (Wood, 2003) and soap film smoothing (Wood et al., 2008). The main difference

resides in the regularization functional, based on partial differential operator. These

operators allows to include various types of anisotropy and non-stationarity, and also

to consider boundary conditions. These peculiarities pose new challenges for the study

of the theoretical properties of these models, that are still largely unexplored. The

work of Sangalli et al. (2013) presents the well posedness of the estimation problem and

the characterization of its solution. The work of Azzimonti et al. (2014) shows that the

infinite-dimensional estimator f̂ in (1.5) and the discrete estimator f̂ in (1.6) are asymp-

totically unbiased. Although promising, the results are nonetheless restricted to the case

where no covariates are present. The results that we present here consider focuses on the

discrete estimator, with the inclusion of covariates. Although the resulting asymptotic

distribution of the estimators might be used for hypothesis testing, the corresponding

53
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Figure 4.1: Switzerland rainfall data. These include 467 daily rainfall measurements
recorded in Switzerland on May 8, 1986. The size and color of point markers represent
the value of the rainfall at each location, highlighting a strong spatial anisotropy.

performances are far from acceptable. In the finite sample scenario, the variance is usu-

ally overestimated due to the regularization term. To reduce this problem, we propose

a nonparametric test procedure based on random sign flipping of the score components

of the model, inspired by the work of Hemerik et al. (2019). Nonetheless, the presence

of possible spatial dependence structures make the testing procedure less accurate. As

an example, Figure 4.1 shows rainfall measurements recorded in Switzerland on May 8,

1986. This dataset was used for the Spatial Interpolation Comparison 97 (Dubois et al.,

2003). The size and color of point markers represent the value of the rainfall at each

location, highlighting a strong spatial anisotropy, with higher rainfall values alternating

with lower rainfall values along elongated regions oriented in the northeast-southwest

direction. In this case, where a strong spatial dependence is present, we propose a

generalization based on a Random Domain Decomposition (RDD). This partitioning

approach helps to reduce the effect of the spatial dependence, without the necessity to

introduce additional parametric assumptions on the form of the correlation structure.

Here we focus on the SR-PDE, but the same tests can be extended to other generalized

semiparametric models, such as penalized splines regression (Yu and Ruppert, 2002),

thin plate splines (Wood, 2003) and soap film smoothing (Wood et al., 2008).

The chapter develops as follows: in Section 2 we briefly introduce the SR-PDE frame-

work; in Section 3 we study the asymptotic properties of the estimators; in Section 4

we present the hypothesis testing procedure and in Section 5 some simulation studies

and an application to rainfall data in Switzerland.
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4.2 Model

Let {pi, i = 1, . . . , n} be a set of n data locations over a bounded regular domain

Ω ⊂ R2, with boundary ∂Ω ∈ C2. Let zi ∈ R be the value of the variable of interest

observed at point pi, and let wi ∈ Rq be a the vector covariates associated to the

observation zi. We assume a semi-parametric model of the form

zi = w>i β0 + f0(pi) + εi, i = 1, . . . , n, (4.1)

where β0 ∈ Rq is the vector of true parameters, f0 is an unknown deterministic mean

field that captures the spatial structure of the problem and εi are i.i.d. random errors

with zero mean and variance σ2. The estimation problem can be solved minimizing the

regularized least squares

n∑
i=1

(zi −w>i β − f(pi))
2 + λ

∫
Ω

(∆f)2 dp, (4.2)

where λ > 0 is the smoothing parameter and ∆ denotes the Laplace operator, defined

as

∆f(p) =
∂2

∂p1

f(p) +
∂2

∂p2

f(p).

where p = (p1, p2). The functional (4.2) is well defined for β ∈ Rq and f ∈ H2(Ω) and

the estimation problem has unique solution imposing appropriate boundary conditions

(see Sangalli et al. (2013), Azzimonti et al. (2014) for details). If problem-specific

information is available, it is possible to consider more complex regularization term

instead of the simple Laplacian. In particular, if this information can be formalized in

terms of a PDE Lf = u, it makes sense to estimate the unknown β and f by minimizing

a functional that trades-off a data fidelity criterion, the least square term, and a model-

fidelity criterion, the PDE. This can be done by introducing a regularization of the

form ∫
Ω

(Lf − u)2 dp.

This regularizing term enables a very rich modeling of space variation, including anisotropic

and directional smoothing. We point to the works of Azzimonti et al. (2014) and Azzi-

monti et al. (2015) for more details.
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4.2.1 Discrete Estimator

Here we briefly remind the reader of the results presented in Chapter 1 about the

SR-PDE method. In particular, the reduction of the infinite dimensional problem (4.2)

to a linear system using the FEM.

We first introduce an appropriate partition of the domain Ω, for instance using a De-

launay triangulation. This triangulation T defines an approximated domain ΩT , rep-

resented by a mesh with NT nodes. Given the triangulation, we then define a set of

basis functions ψ1, . . . , ψNT , and a corresponding n ×NT matrix Ψ = {ψj(pi)}ij. This

matrix consists of the evaluations of the NT basis functions ψ1, . . . , ψNT at the n data

locations. Now let z = (z1, . . . , zn) be the vector of observed data values. Let also

W be the n × q matrix whose i-th row is given by wt
i, the vector of q covariates as-

sociated with observation zi at pi, and assume that W has full rank. Moreover, set

Q = I −W (W>W )−1W>, the matrix that projects into the orthogonal complement of

Rn with respect to the subspace of Rn spanned by the columns of W . Finally, let us

denote by f̂n the vector of evaluations of f at the n data locations, f̂n = (f(p1, . . . ,pn)).

As shown in (see Sangalli et al. (2013), there exists a unique pair of estimators (β̂, f̂)

which solve the discrete counterpart of the estimation problem (4.2), expressed as

β̂ = (W>W )−1W>(z− f̂n),

with f̂ satisfying [
−Ψ>QΨ/n λR>1

λR1 λR0

][
f̂

g

]
=

[
−Ψ>Qz/n

0

]
. (4.3)

The matrices R0 and R1 are called mass and stiffness matrix, respectively, and represent

the system of linear equations related to theapproximation of the operator in the regu-

larization term. For simplicity, let us denote P = R>1 R
−1
0 R1, the positive semi-definite

matrix that represent the discretization of the regularization term in (4.2). Let also S

be the n× n matrix

S = Ψ(Ψ>QΨ + λP )−1Ψ>Q.

Using this notation, we have

f̂n = Sz,

β̂ = (W>W )−1W>(I − S)z. (4.4)

Note that the estimators β̂ and f̂ are linear in the observed data values z.
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4.3 Asymptotic properties

We present some results on the asymptotic properties of the discrete estimators β̂

and f̂ . Here we assume the number of basis NT to be fixed in advance, and such that

the corresponding triangulation results fine enough to capture all the aspects of the

problem. Some results on the asymptotic properties of these estimators are proposed in

Arnone (2018). These results are nonetheless limited to rates of convergence. Here we

provide more practical results, that are the consistency and the convergence to a known

normal distribution.

First, we study the asymptotic behavior of the nonparametric component and its con-

sistency. These are necessary to develop the results for the linear part.

Proposition 4.1. Let (f̂n,λn) be a sequence of sr-PDE estimators. Assume that a non-

singular limit A = lim
n
An exists. If λn = o(n1/2) and n − q ≥ NT , then f̂n,λn is a

consistent estimator for f0, with asymptotic distribution

√
n(f̂ − f0)|W n∼ NNT (0, σ2A).

Proof. Recall from (4.3) that f̂ is the solution of the linear system−Ψ>QΨf̂/n+ λR>1 g = −Ψ>Qz/n

λR1f̂ + λR0g = 0
.

Using (4.1), the first equation can be rewritten as

−Ψ>QΨf̂/n+ λR>1 g = −Ψ>Q(Wβ0 + Ψf0 + ε)/n,

where f0 denotes the evaluation of the true function f0 on the nodes, and β0 the vector

of parameters of the linear component. Substituting the expression for g, we obtain

(Ψ>QΨ/n+ λP )(f̂ − f0) + λP f0 = Ψ>Qε/n. (4.5)

Remember that QW and has all entries equal to 0 by construction. To simplify the

notation, let us define An =
(
Ψ>QΨ/n

)−1
, where the subscript n underline the depen-

dence on the sample size. The right side of the equation (4.5) can be used as a pivot

to derive the asymptotic distribution of our estimator. First, we need to study the bias

term

− λ(Ψ>QΨ/n+ λP )−1P f0. (4.6)
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Starting from the analytic expression for f̂ in (4.4), we can compute the bias expansion

bn(λ) = −λAnP f0 + λ2AnPAnP f0 + o(λ2).

Note that the first order term of the bias expansion corresponds to (4.6). The variance

of the estimator has the expansion

Varn(λ) =
σ2

n

(
An − 2λAnPAn + 3λAnPAnPAn +O(λ3)

)
.

Finally, the mean square error for the sr-PDE estimator can be computed as

Mn(λ) = Varn(λ) + bn(λ)bn(λ)>

=
σ2

n

(
An − 2λAnPAn + 3λAnPAnPAn +O(λ3)

)
+ λ2AnP f0f

>
0 PAn + o(λ2).

(4.7)

The bias of the estimator for the nonparametric component is then of the order O(λ). If

λ = o(n−1/2), the asymptotic bias of
√
n(f̂ − f0) will vanish. Otherwise, if λ→ 0 slower

than n−1/2, the bias term dominates. The work of Yu and Ruppert (2002) develops a

similar theory in the case of penalized regression splines. Nonetheless, in our case the

higher flexibility of the estimation procedure, provided by the FEM, results in a more

delicate handling of the asymptotic quantities. In particular, we need to be careful

about the behaviour of the term An in the asymptotic regime. Recall that Q is a

projection matrix of order n and rank(An) = n − q, while Ψ is a n × NT matrix with

rank(Ψ) = min(n,NT ). To check if An is well defined, let us rewrite

Ψ>QΨ = Ψ>V ΛV >Ψ = (Ψ>V )Λ1/2Λ1/2(V >Ψ),

where V is the matrix of eigenvectors Q, and Λ is the diagonal matrix whose diagonal

elements are the corresponding eigenvalues, Λii = λi. Without loss of generality, let us

define Λ so that the last q eigenvalues are equal to zero. These q eigenvalues annihilate

the last q rows of B = Λ1/2(V >Ψ). We than have

Ψ>QΨ = B>B,

that is a NT ×NT square matrix with rank(Ψ>QΨ) = min(n− q,NT ). In order to have

a nonsingular matrix, we need n− q ≥ NT .

To obtain the consistency, we need E(f̂−f0)2 → 0. Using (4.7), the condition is satisfied
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with λn = o(n1/2). Thus f̂n,λn converges to f0 in probability.

The special case where λ = cn−1/2, with c > 0, is more subtle. Here we would obtain

√
n(f̂ − f0)|W n∼ NNT (−cΣ−1Pf0, σ

2A).

We can therefore still achieve the
√
n consistency, but with a more involved asymptotic

mean.

Given (4.1), we now consider a similar result for the linear component of the model.

Proposition 4.2. Let (β̂n) be a sequence of SR-PDE estimators. Let Θ be a compact

parameter space, with β0 as interior point. Assume Σ = lim
n

Σn exists and is nonsingular.

Then given a consistent estimate f̂ , the estimator β̂n is consistent for β0, with asymptotic

distribution

√
n(β̂ − β0)|W n∼ Nq(0, σ2(Σ−1 + Σ−1W>ΨAΨ>WΣ−1)).

Proof. Given a consistent estimator f̂ , the vector β̂ is the solution of the score equation

1

n
W>(z−W β̂ −Ψf̂) = 0,

Using (4.1), we get

1

n
W>W (β̂ − β0) +

1

n
W>Ψ(f̂ − f0) =

1

n
W>, ε.

Let us define Σ̂n = W>W/n. We obtain

Σ̂n(β̂ − β0) =
1

n
W>ε− 1

n
W>Ψ(f̂ − f0).

The right side can be used as a pivoting quantity to obtain the result.

The consistency follows from Lemma 4.1 and the central limit theorem.

Note that the estimation of the nonparametric component affects the variance of the

linear estimator. This result is consistent with classic on smoothing methods for regres-

sion.

4.4 Hypothesis testing

The development of the asymptotic theory in the previous section leads to the ques-

tion on how to define appropriate testing procedure. In the case of semiparametric



60 Section 4.4 - Hypothesis testing

regression, we might be interest to test whether the linear component has an effect on

the variable of interest. In the example of Figure 4.1, we would like to test if altitude

influences the amount of rain. If we consider the definition of (4.1), we specify the

system of hypotheses

H0 : β0 = 0 versus H1 : β0 6= 0.

A possible solution is to rely on the asymptotic normality of β̂ and use a classic Wald

type test. A more robust alternative is to use the same test together with a sandwich

estimate of the variance, as in Yu and Ruppert (2002). Both these parametric alternative

may nonetheless be unreliable in a finite sample scenario. The bias may be non negligible

and there is an high chance to overestimates the variance.

Here we consider a possible alternative inspired by the work of Hemerik et al. (2019).

In particular, we define a randomization test based on random sign flipping of the score

component. Although robust to various types of misspecification Hemerik et al. (2019),

the test may lose power if a strong spatial correlation in the score component is present.

If that is the case, we propose a generalization of such test, able to reduce the effect of

the spatial correlation.

4.4.1 Flip-score test

We first introduce the simplest version of the flip-score test. Let π = (π1, . . . , πn) be

a random vector uniformly distributed in {−1, 1}n\(1, . . . , 1). Let also Π be a diagonal

matrix with entries Πii = πi. We denote by T the classic score statistic

T = W>(z−Wβ −Ψf).

Given a matrix Π, we define in what follows the flip-score statistic T ∗ as

T ∗ = W>Π(z−Wβ −Ψf).

As a first step, we consider the behavior of both the expected value and the variance of T

and T ∗ under the null hypothesis. To simplify the notation, let us define Bn = (Ψ>Ψ/n+

λP )−1. The randomization procedure should leave unchanged these two quantities. For

the expected value, it is easy to see that

E(T ) = E(W>(z−Ψf̂)) = W>E(Ψf0 −Ψf̂ + ε) = λnW
>ΨBnPf0 → 0,
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Algorithm 1 Simple sign-flipping

1: Compute the score components under H0

2: Compute the the observed test statistic T obs

3: for i ∈ 1, . . . , B do
4: Generate a sign flipping matrix Πi

5: Compute the test statistic

T i = W>Πi(z−Wβ −Ψf)

6: end for
7: Use the T 1, . . . , TB to obtained the p-value

and

E(T ∗) = E(W>Π(z−Ψf̂)) = W>ΠE(Ψf0 −Ψf̂ + ε) = λnW
>ΠΨBnPf0 → 0,

where we used the expression (4.5). Both T and T ∗ are asymptotically unbiased under

H0. However, it is worth noting that in the finite sample case we might have to pay a

small price due to the regularization on the nonparametric component. We discuss this

problem in the next sections.

We now consider variance of T and T ∗ under the null. In the case of T , we obtain

Var(T ) = Var(W>(z−Ψf̂))

= W>Var(Ψf0 −Ψf̂ + ε)W

= W>ΨVar(λBnPf0 +BnΨ>ε)Ψ>W +WVar(ε)W

= σ2W>ΨBnΨ>ΨBnΨ>W + σ2W>W.

In the case of T ∗, we have

Var(T ∗) = Var(W>Π(z−Ψf̂))

= W>ΠVar(Ψf0 −Ψf̂ + ε)ΠW

= W>ΠΨVar(λBnPf0 +BnΨ>ε)Ψ>ΠW +WVar(ε)W

= σ2W>ΠΨBnΨ>ΨBnΨ>ΠW + σ2W>W.

In order to have a permutation invariant test, we should have ΨBnΨ> = I, so that it

can commute with Π. Although this can be achieved in the asymptotic case, in the

finite sample case this can be an hypothesis way too restrictive.

To better understand the problem, let us focus on the structure of the matrix Bn, shown

in figure 4.2. The matrix has a similar structure to a weighted adjacency matrix of an
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Figure 4.2: On the left, heatmap of the matrix Bn. On the right, Reordering of Bn
with M = 15 groups.

undirected graph, where the graph in this case is given by the mesh. There is a clear

distinction of two main blocks. The first block correspond to the nodes forming the

boundaries, while the second block correspond to the internal nodes. The second block

has itself the structure similar to a block diagonal matrix. This is more clear if we look

at the expansion of ΨBnΨ>, given by

ΨBnΨ> = (I + λ(P1 − P2P
−1
4 P3))−1 = I− λ(P1 − P2P

−1
4 P3) +O(λ2),

where Pi are the block of the matrix P . Here we used the fact that Ψ = [In|O] is a

n×NT block matrix, with an order n identity matrix as first block and an n×NT − n
matrix of zeros as second block. The structure of ΨBnΨ> is close to an identity matrix,

but it has nonzero element outside the diagonal in correspondence to the connected

nodes of the mesh. This induces a local correlation in the residuals that is not preserved

by the simple sign flipping.

4.4.2 Block sign-flip test

In order to reduce this problem, we propose a blockwise sign-flip procedure. The

idea is to try to define a sign-flipping matrix the mimics the structure of ΨBnΨ>. Since

the blocks are induced by the connections of the nodes of the mesh, it seems reasonable

to define a partition of the domain that groups nodes that are close together.

Let P = {D1, . . . , DM ⊂ Ω} be a partition of the domain into disjoint sub-regions such
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Figure 4.3: On the left, mesh and centroids of the RDD. On the right, the corre-
sponding RDD with M = 15 blocks.

that

Ω =
M⋃
m=1

Dm and Di ∩Dj = ∅, ∀ i, j = 1, . . . ,M, i 6= j.

The first step is to use the Delaunay triangulation of the domain in the estimation step

as a graph. Let us denote the nodes of such triangulation as (ξ1, . . . , ξNT ). We now

randomly select a sub-sample of size M of the nodes. These will define the centroid

(c1, . . . , cm) of each sub-domain (D1, . . . , DM). The Delaunay triangulation has a cor-

responding dual graph, called Voronoi tessellation. Let us call (t1, . . . , tNT ) the tiles of

such tesselletion. We define each block Dm of the RDD as the union of the tiles ti that

are closer to the centroid. As a distance between two nodes we consider the (Euclidean)

length of the shortest path on the graph connecting the two sites: this is computed by

the Dijkstra’s algorithm (Dijkstra, 1959). More generally, the distance between a nodes

ξi ∈ T and a node ξj belonging to the graph, is computed by measuring the length of

the shortest path connecting ξi and ξj (see figure 4.3). A similar partition of the domain

is used in Menafoglio et al. (2018) for spatial kriging.

Given a random partition, we define a block sign-flipping matrix ΠB, where diagonal el-

ements belonging to the same block shares the same sign. The partition induces a block

structure in Bn that mimics the one of ΠB. For simplicity, let us denote B̃n = ΨBnΨ>.
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Algorithm 2 Block sign-flipping

1: Compute the score components under H0

2: Compute the the observed test statistic T obs

3: for l ∈ 1, . . . , L do
4: Generate P1, . . . ,PL different partitions of the domain of interest
5: for i ∈ 1, . . . , B do
6: Generate a block sign flipping matrix Πi

l

7: Compute the test statistic

Tm,i = W>Πi
l(z−Wβ −Ψf)

8: end for
9: end for

10: Use the L ·B obtained statistics to compute the p-value

This gives

Var(T ∗) = Var(W>ΠB(z−Ψf̂))

= W>ΠBVar(Ψf0 −Ψf̂ + ε)ΠBW

= W>ΠBΨVar(λBnPf0 +BnΨ>ε)Ψ>ΠBW +WVar(ε)W

= σ2W>ΠBB̃nB̃nΠBW + σ2W>W

= σ2W>B̃L
n B̃

R
nW + σ2W>W,

where B̃L
n B̃

R
n has the same blocks and the same diagonal elements of B̃nB̃n. The two

matrices differs only in the signs of the off the off-diagonal blocks. This gives us a test

that is almost exact and it is a reasonable approximation in a spatial regression setting.

There is nonetheless a parameter that has to be chosen, that is the number of blocks in

each RDD. We suggest the following criterion based on the bandwidth of the matrix. As

first step, we use the Reverse Cuthill-McKee algorithm on the matrix B̃n (see (Cuthill

and McKee, 1969)). This algorithm is widely used in linear algebra to find a permutation

of a sparse matrix that has a symmetric sparsity pattern into a band matrix form with

a small bandwidth. A band matrix is simply a sparse matrix whose non-zero entries are

confined to a diagonal band. For each row i of B̃n, we compute κi = #{bij = 0,∀j > i}.
The suggested number of blocks will be given by

M =
n∑n

i=1 κi/n
=

n2∑n
i=1 κi

.

The idea behind the criterion is to find a block structure that covers most of the non-zero

element of the matrix.
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4.4.3 Random covariates

In the previous section we made the somehow usual assumption of fixed covariates.

It is nonetheless interesting to consider the case where the covariates W are themselves

random variables. This case might be of interest for spatial regression or more gen-

eral semiparametric regression models, if the goal is to construct a model for prediction

purposes. An intriguing perspective on random designs in linear regression is given in

Buja et al. (2015). This scenario is also closely connected to the theory of estimating

equations Tsiatis (2007) and the model-robust inference with sandwich estimators and

bootstrap.

Let W be a random vector with E(W ) = 0 and Var(W ) = ΣW . For simplicity here we

assume q = 1. If we consider the test T defined above, we obtain

E(T ) = E(E(W>(z−Ψf̂)|W ))

= E(W>E(Ψf0 −Ψf̂ + ε|W ))

= E(W>ΨE(λBnPf0 +BnΨ>ε|W ) + E(ε|W ))

= λE(W )>ΨBnPf0 = 0.

With fairly general assumptions on the expectation of W , we obtain the unbiasedness

even in the finite sample case. Following the same reasoning for T ∗, we have

E(T ∗) = E(E(W>Π(z−Ψf̂)|W ))

= E(W>ΠE(Ψf0 −Ψf̂ + ε|W ))

= E(W>ΠΨE(λBnPf0 +BnΨ>ε|W ) + ΠE(ε|W ))

= λE(W )>ΠΨBnPf0 = 0.
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We now consider the variance of both T and T ∗. The former lead to

Var(T ) = E(Var(W>(z−Ψf̂)|W )) + Var(E(W>(z−Ψf̂)|W ))

= E(W>Var(Ψf0 −Ψf̂ + ε|W )W )

= E(W>ΨVar(λBnPf0 +BnΨ>ε|W )Ψ>W +WVar(ε|W )W )

= σ2E(W>(B̃nB̃n + I)W )

= σ2E(W>B̃nB̃nW ) + σ2E(W>W )

= σ2E(tr(W>B̃nB̃nW )) + σ2E(W>W )

= σ2E(tr(B̃nWW>B̃n)) + σ2E(W>W )

= σ2tr(E(B̃nWW>B̃n)) + σ2E(W>W )

= σ2tr(B̃nE(WW>)B̃n) + σ2tr(E(WW>))

= σ2tr(B̃nΣW B̃n) + σ2tr(ΣW ),

where we used the fact that the trace of a product is invariant under cyclical permu-

tations of the factors, and that the trace is a linear operator, so it commutes with

expectation. With similar calculation we obtain

Var(T π) = E(Var(W>Π(z−Ψf̂)|W )) + Var(E(W>Π(z−Ψf̂)|W ))

= E(W>ΠVar(Ψf0 −Ψf̂ + ε|W )ΠW )

= E(W>ΠΨVar(λBnPf0 +BnΨ>ε|W )Ψ>ΠW +WΠVar(ε|W )ΠW )

= σ2E(W>Π(B̃nB̃n + I)ΠW )

= σ2tr(B̃nΠΣWΠB̃n) + σ2tr(ΣW ).

Note that in this case a central role is played by the structure of the covariance matrix

ΣW . If the covariates have no spatial dependence, that is the covariance structure

ΣW = I, then Π commutes with ΣW and we obtain an exact test. On the other hand,

if spatial dependence is present, we may need to consider other strategies, based for

instance on the eigenvalue decomposition of ΣW , in order to obtain more powerful tests.

4.5 Simulations and application

In this section we present some simulation studies to investigate the finite sample

performance of the proposed tests. We compare our tests to a classical Wald type test

based on the asymptotic distribution of β̂, and to the possibly more robust sandwich

version of the same test. A detailed explanation of sandwich estimator in the case of
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Figure 4.4: In the first column, the mesh used for the regression in the two two
simulation scenarios. In the second column, one sample of RDD for each domain. In
the third column, the spatial fields f considered in the simulations.

penalized semiparametric regression models can be found in Yu and Ruppert (2002).

In the first case we consider a square domain with spatial field f0 defined as f(x, y) =

cos
(

2x+y
4

)
+
(
x+y
15

)2
(see figure 4.4). The covariates are generated from random fields

with different mean and covariance structures using the function RFsimulate of the R

package RandomFields (Schlather et al., 2015), but remain fixed over the simulations.

In particular, we consider four covariates generated as follows:

Table 4.1: Covariance structure of the generated random fields

Covariance structure Smoothness, ν Variance, v Scale, s

S1 Gaussian 0.3

S2 Matern 1 8 0.5

S3 Exponential 1 2

S4 Matern 5 2 1

In the second case we consider a horseshoe domain (Ramsay, 2002) with spatial field

defined using the fs.test function of the R package mgcv (Wood, 2003), shown in figure

4.4 . Similarly to the first simulation, we genereted four covariates as follows:
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Table 4.2: Covariance structure of the generated random fields

Covariance structure Smoothness, ν Variance, v Scale, s

S1 Gaussian 0.1

S2 Matern 2 8 0.3

S3 Exponential 1 1

S4 Matern 5 1 0.3

We compared four different test procedures. In red, the block sign-flipping with Ran-

dom Domain Decomposition, in green, the standard sign-flipping, in cyan, the Wald

test based on sandwich estimator, and in purple the classical Wald test. For each

of the covariates, we generated 500 samples from with values of the coefficient β =

(0, 0.05, 0.1, 0.5). The value β = 0 correspond to the null hypothesis and is used to

check the Type-I error control. The other values are used to check the power of the test

with increasing values of the parameter.

In the case of square domain, in figure 4.6, the proposed nonparametric tests outperform

both the parametric variants. As the scale and the smoothness of the covariate increase,

the nonparametric test shows a slightly conservative behavior. This may be due to the

problem of exchangeability discussed in the previous section. In all the cases, the power

is nonetheless fairly high. The performances of the parametric variants are far worse,

due to the overestimation of the variance.

In the case of horseshoe domain, in figure 4.7, the difference in performances are more

distinct. The proposed nonparametric tests still outperform both the parametric vari-

ants. As in the previous case, when scale and the smoothness of the covariate increase,

the nonparametric test shows a slightly less control of the Type-I error. The problem

is more pronounces in the last case, where the covariate is particularly smooth. Again,

this is due to the problem of exchangeability discussed in the previous section, enhanced

by the more complex shape of the domain. The power is nonetheless acceptable in all

the cases. The parametric variants have still far worse performances.

4.5.1 Application to Switzerland rainfall

We apply the proposed method to the analysis of the dataset of 467 daily rainfall

measurements recorded in Switzerland on May 8, 1986; this dataset was used for the

Spatial Interpolation Comparison 97 (Dubois et al., 2003). The data are shown in Figure

4.5. The data include the elevation at the 467 locations, that we use here as a covariate

since intuition suggests that the orography of the region may play an important role in
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Figure 4.5: Switzerland rainfall data. These include 467 daily rainfall measurements
recorded in Switzerland on May 8, 1986. The size and color of point markers represent
the value of the rainfall at each location, highlighting a strong spatial anisotropy.

the rainfall phenomenon; see figure 4.5 that shows the elevation over Switzerland. We

estimated the model under the null using the anisotropic version of the SR-PDE model.

Then we used the block sign-flipping test with 15 block to test the coefficient for the

altitude. With a p-value of 0.52, the elevation seems not to have a significant impact

on the rainfall. This is probably due to the fact that the effect of elevation on rainfall

is not linear; the distribution of rainfall is the result of more complex phenomena, such

as the interaction between the geomorphology and the atmospheric circulation.
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Conclusions

Discussion

The analysis of complex data structures represents an exciting area of research. It

poses new stimulating challenges and fuels one of the fastest growing fields of statistics.

Taking inspiration from different methodologies from different fields - numerical analy-

sis, engineering, functional analysis - we developed novel procedures for data displaying

complex spatial dependencies. The complexity in the structure of spatial variation may

be due to different reasons. In some cases, the complexity originates from the complex

physics of the phenomenon under study. In other cases, the complex spatial variation

is the consequence of the non-trivial conformation of the domain where the data are

observed.

In Chapter 2, we developed a nonparametric penalized likelihood approach for den-

sity estimation. Our method can be applied to densities defined over planar domains

with complex shapes, characterized by strong concavities or interior holes. This type of

complexity is handled using a nonparametric likelihood approach combined with a regu-

larization involving partial differential operators. This method gives great flexibity and

allows the estimation over domains that influence the behavior of the distribution. To

solve the estimation problem, we resorted on numerical techniques, and in particular we

used a finite element method. This approach makes the optimization computationally

tractable even in high dimensional scenarios. The proposed method compared favorably

with state of the art density estimators.

In Chapter 3, we considered various nonparametric two sample tests. In the same setting

of the previous chapter, we focused on densities defined over complex domains. Using

a permutational approach, we defined the tests as nonparametric combinations based

on high dimensional multinomials. These procedures showed promising results and led

to satisfactory asymptotic properties. With appropriate partitions of the domain, the

proposed methodology can be used for hypothesis testing in any dimension.

In Chapter 4, we started with the development of the asymptotic properties of the
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SR-PDE class. We obtained consistency and asymptotic normality of the discrete esti-

mators under general conditions. We then developed two nonparametric tests for the

linear components of such models. The randomization procedure used for the tests

showed encouraging results, even in cases where strong spatial correlation is present.

This peculiarity is extremely useful in applied spatial regression models with covariates.

Future directions of research

The procedures developed in this thesis take an initial step towards addressing im-

portant questions for complex spatial data, but several exciting areas remain still open

for future researches. In the context of density estimation, a first interesting direction is

to consider higher dimensional and non-euclidean domains. These include the cases of

curved surfaces with non-trivial geometries, and three-dimensional domains with com-

plex boundaries. These features are important in modern applications in fields such as

neuroscience, where the data are observed over a domain characterized by the formidably

complicated morphology, the brain (Lila et al., 2016a). Geo-sciences, where the spatio-

temporal dependence and the presence of complex boundaries have to be considered

(Bernardi et al., 2017). Astronomy, such as cosmic web reconstruction (Chen et al.,

2015), where flexibile estimators are needed to identify and characterize intrinsic lower

dimensional structures, such as smooth manifolds. Density estimation over complicated

multidimensional domains requires flexible methods able to overcome the classical con-

cept of Euclidean distance. Some proposals generalize the kernel density estimation to

Riemaniann manifolds, using the concept of exponential map to solve the problem (Kim

and Park (2013); Berry and Sauer (2017)). In our setting, the flexibility of FEM allows

to define discretizations of curved surfaces and also higher dimensional structures. The

proposed method can therefore be generalized to these types of domains. In these cases,

more advanced theoretical tools may be required to study the inferential properties of

the estimators, driving more challenging and more exciting researches. Another appeal-

ing direction concerns the development of time-dependent density estimation methods.

The modeling of densities over time permits the understanding of the evolution of un-

derlying processes generating the data. However, very little attention has been devoted

to the development of such models, especially in more than one dimension. Finally,

a fascinating alternative is to tell the whole story from a Bayesian perspective. The

penalization can indeed be associated with prior over a graph, the triangulation. In

particular, a Gaussian prior with a covariance structure induced by the specified form
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of the partial differential operator. The estimation procedure will follow an equiva-

lent approach, namely a maximum a posteriori solution. This may lead to interesting

considerations in terms of random processes, especially in the case of Poisson intensity

estimation.

The possible directions for two samples hypothesis testing are pretty much aligned with

the ones for density estimation. The development of two samples testing procedures

for higher dimensional domains, and in particular for non-euclidean surfaces seems very

interesting. Closely related to the development of time-dependent density estimators

is the study of sequential two testing procedures. Modern applications often include a

time dimension that has to be properly considered. In neuroscience for example, it is of

interest to study possible changes in brain activity over times or during different tasks.

With regard to this topics, a huge number of new researches is devoted to change points

analysis (see for example Cunen et al. (2018); Chen (2019); Gao et al. (2019)). In the

case of spatial processes that develop in time, another possibility is to define local tests,

i.e. tests that focuses on subset of the domain. This possibility is related to the study

of multi-scale tessellations, characterized by a finer discretization where the mass of the

distribution is concentrated. This may involve the definition of appropriate two stage

procedures.

Moving to hypothesis testing in the case of regression models, a first problem to ad-

dress is a more thorough study of the asymptotic properties. This may involve group

theory methods, used for example in Hoeffding (1952), and more recently by Chung

and Romano (2013) and Hemerik and Goeman (2018). Moreover, it is of interest to

extend the proposed methodology to the generalized SR-PDE (Wilhelm and Sangalli,

2016). Again, the first step is to study the asymptotic properties of the corresponding

estimators. Similar results in the case of other semiparametric regression models are

given, for example, in Wood (2012) and Marra and Wood (2012). The second step

is to develop nonparametric hypothesis testing, possibly considering the sign-flipping

procedure proposed. The work of Hemerik et al. (2019), that develops the theory in

the case of classic GLM, may constitute the starting point for a generalization to penal-

ized models. Encouraging results may also drive the extension of the hypothesis testing

methodology to more general semiparametric models (for example Wood et al. (2008)

and Wood (2003)).





Appendix

.1 Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the following two lemmas.

Lemma .1. The functional J(g) = − 1
n

∑n
i=1 g(Xi)+

∫
Ω

exp(g) is continuous and strictly

convex in V .

Proof. The continuity of J is obvious since the first term is linear and both the expo-

nential and the integral are continuous operators. Let now g1, g2 ∈ V , γ ∈ [0, 1] and

g = γg1 + (1− γ)g2. We have to show that J(g) ≤ γJ(g1) + (1− γ)J(g2) and that the

equality holds only if g1 = g2. We have:

J(g) = J(γg1 + (1− γ)g2)

= − 1

n

n∑
i=1

{γg1(Xi) + (1− γ)g2(Xi)}+

∫
Ω

exp(γg1 + (1− γ)g2)

= γ

{
− 1

n

n∑
i=1

g1(Xi)

}
+ (1− γ)

{
− 1

n

n∑
i=1

g2(Xi)

}
+

∫
Ω

exp(γg1) exp((1− γ)g2)).

Using Holder’s inequality with p = 1/γ and q = 1/(1− γ) we have

∫
Ω

exp(γg1) exp((1− γ)g2)) ≤
{∫

Ω

exp(g1)

}γ {∫
Ω

exp(g2)

}1−γ

.

Moreover, using Young’s inequality with the same p and q we have{∫
Ω

exp(g1)

}γ {∫
Ω

exp(g2)

}1−γ

≤ γ

{∫
Ω

exp(g1)

}
+ (1− γ)

{∫
Ω

exp(g2)

}
.

This leads to J(g) ≤ γJ(g1) + (1− γ)J(g2).
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It remains to show that the equality holds if and only if g1 = g2. In Holder’s

inequality, the equality holds only if there exists a, b 6= 0 such that

a exp(g1) = b exp(g2) ⇔ g1 = g2 + log(b/a).

Moreover, in Young’s inequality, the equality holds only when∫
Ω

exp(g1) =

∫
Ω

exp(g2).

Substituting g1 = g2 + log(b/a) in the equation above, we get a = b; this in turn implies

g1 = g2. Thus J is strictly convex in V .

Let now V0 denote the null space of the Laplacian in V , i.e., V0 = {g ∈ V : ‖∆g‖L2 =

0}. Let V∆ denote the complementary space of V0 in V , i.e., V = V0 ⊕ V∆, where ⊕
denotes the direct sum.

Lemma .2. V0 is of finite dimension. Moreover ‖∆·‖L2 is a norm in the space V∆,

equivalent to the H2 norm.

Proof. Jet g0 ∈ V0. The g0 is a solution of the differential equation∆g = 0 in Ω

∂g

∂ν
= 0 on ∂Ω

This implies that g0 is a constant function over Ω, that is, V0 = {g : Ω→ R : g = c, c ∈
R}. Thus V0 is a finite dimensional space.

It remains to prove that ‖∆·‖L2 and ‖·‖H2 are equivalent in V∆. By definition of the

H2 norm, we have that, for all g ∈ H2(Ω),

‖∆g‖2
L2 ≤ ‖g‖2

H2
.

In addition, for all g ∈ V,

‖g‖H2
≤ C{‖g‖L2 + ‖∆g‖L2}.

Since we can always write g = c + g̃, with c ∈ R and ‖g̃‖L2 = 0, then, for each g̃ ∈ V∆,

we have

‖g̃‖H2
≤ C ‖∆g̃‖L2 .
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Thanks to Lemma .1 and Lemma .2, we can leverage on Theorem 4.1 of Gu and

Qiu (1993). Thanks to this theorem we have that functional L(g) in (2.1) has a unique

minimizer in V if and only if − 1
n

∑n
i=1 g(Xi) +

∫
Ω

exp(g) has a minimizer in V0. The

latter condition is verified since V0 is the space of constant functions. This concludes

the proof that the functional L(g) in (2.1) has a unique minimizer in V.
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2019.

Density estimation via nonparametric penalized likelihood. ISNPS 2018, University of Salerno. June
2018.

Nonparametric penalized likelihood for density estimation. SIS 2018, University of Palermo. June
2018.

Nonparametric density estimation with differential regularization (invited). ISA Workshop, ”Fron-
tiers in Functional Data Analysis”, University College Dublin. March 2018.



Exponential family graphical models. SIS 2017. University of Firenze. July 2017.

Teaching experience

March 2019
Statistica Iterazione, Master degree.
Specialized lecture, ”Classification models for text mining”.
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