

UNIVERSITA' DEGLI STUDI DI PADOVA

DIPARTIMENTO DI GEOSCIENZE

DOTTORATO DI RICERCA IN SCIENZE DELLA TERRA XIX CICLO

STUDIO CRISTALLOCHIMICO E STRUTTURALE DI CHEVKINITI-(Ce) NON METAMITTICHE

Coordinatore:Ch.mo Prof. Bernardo CesareSupervisore:Ch.ma Prof.ssa Susanna CarboninCotutore:Ch.ma Prof.ssa Elena Belluso

Dottoranda: Federica Liziero

31 gennaio 2008

RINGRAZIAMENTI

Ringrazio di cuore il mio supervisore, Prof.ssa S.Carbonin, per avermi sostenuto e incoraggiato, con la sua preziosa esperienza, per tutta la durata della tesi. Ringrazio il Prof. G. Menegazzo per il supporto informatico, il Prof. U. Russo e il Dott. L. Nodari per le indagini Mössbauer, il Prof. A. Renzulli e il Dott. F. Ridolfi per aver fornito i campioni delle Azzorre e per tutte le informazioni a riguardo. Si ringraziano, inoltre, per la collaborazione:

- Direttore e personale tecnico dell'ex Dipartimento di Mineralogia e Petrologia dell'Università di Padova,

- Direttore e personale tecnico del Dipartimento di Scienze Mineralogiche e Petrologiche dell'Università di Torino,

- Direttore e personale tecnico del C.N.R. (I.G.G. sez. di Padova),

- Cotutore Prof.ssa E. Belluso,
- Prof. A. Dal Negro
- Sig. R. Carampin (C.N.R. -I.G.G.)

INDICE

Riassunto

Abstract		
Introduzione		1
Capitolo 1 -	Chevkinite	3
Capitolo 2 -	Campioni studiati e relativo contesto geologico	7
	2.1 Campioni delle Azzorre	7
	2.2 Campioni del Pakistan	9
Capitolo 3 -	Analisi diffrattometriche su cristallo singolo	11
	3.1 Introduzione	11
	3.2 Raccolta dati	11
	3.3 Raffinamento strutturale	12
	3.4 Risultati	14
Capitolo 4 -	Indagini chimiche	19
	4.1 Strategie di analisi	19
	4.2 Discussione dei dati	21
Capitolo 5 -	Studio con spettroscopia Mössbauer	27
	5.1 Introduzione	27
	5.2 Dati Mössbauer	29
Capitolo 6 -	Ripartizione cationica	31
Capitolo 7 -	Studio con microscopio elettronico in trasmissione	37
	7.1 Generalità	37
	7.2 Discussione dei dati	40
Capitolo 8 -	Conclusioni	43
Bibliografia		45
Tabelle		
Appendice I – Immagini TEM		

Appendice II – Minerali metamittici e studio preliminare di un

campione di chevkinite-(Ce) metamittico

RIASSUNTO

La chevkinite-(Ce), uno dei membri del gruppo della chevkinite, è un silicato ricco di Ti e di Terre Rare (REE) con formula generale $A_4BC_4O_8(Si_2O_7)_2$, dove A = REE, Ca, Th, Sr; B = Fe, Mn, Mg; C = Ti, Fe, Nb, Mg, Al. La struttura è costituita da due tipi di fogli, uno fatto dai gruppi Si₂O₇ e dagli ottaedri B, e l'altro dagli ottaedri C, entrambi paralleli al piano *ab* e alternanti lungo l'asse *c*. Le Terre Rare giacciono tra un foglio e l'altro.

La chevkinite si rinviene spesso allo stato metamittico: le particelle alpha derivanti dal decadimento radioattivo del torio, costantemente presente, causano danneggiamenti alla struttura che sono i responsabili della parziale o completa amorfizzazione del minerale.

Sono stati svolti accurati studi strutturali su chevkiniti non metamittiche del Pakistan e delle Azzorre. Il campione proveniente dal Pakistan è stato rinvenuto in una vena pneumatolitica di alta temperatura nella valle del Tangir, mentre dall'isola di São Miguel, nell'arcipelago delle Azzorre, provengono altri due campioni (AZ1 e AZ4) rinvenuti in clasti sienitici saturi/sovrassaturi in silice. Per la caratterizzazione delle chevkiniti sono state utilizzate diverse metodologie: diffrazione X su cristallo singolo, analisi con la microsonda elettronica, spettroscopia Mössbauer e microscopia elettronica in trasmissione.

Le analisi chimiche quantitative hanno dato differenti contenuti di REE nei siti A e di (Zr+Nb) nei siti ottaedrici per le chevkiniti del Pakistan e delle Azzorre. Anche il rapporto Fe³⁺/Fe_{tot} si è rivelato differente: più elevato nel Pakistan (in media 0.43), più basso nelle Azzorre (0.21 in AZ1 e 0.23 in AZ4).

La formula chimica media per le tre chevkiniti è la seguente:

Pakistan (Ce_{1.81} La_{0.81} Nd_{0.59} Pr_{0.18} Sm_{0.05} Gd_{0.01} Ca_{0.46} Th_{0.07} Sr_{0.03}) Σ =4.01 (Fe²⁺0.80 Mg_{0.10} Mn_{0.10} Y_{0.01}) Σ =1.01 (Fe²⁺0.35 Fe³⁺0.87 Ti_{2.65} Nb_{0.04} Zr_{0.01} Al_{0.04}) Σ =3.96 Si_{4.02} O₂₂;

Azzorre AZ1(Ce_{1.71} La_{1.05} Nd_{0.39} Pr_{0.14} Sm_{0.03} Gd_{0.01} Ca_{0.63} Th_{0.04}) Σ =4.00 (Fe²⁺0.86 Mn_{0.09} Y_{0.02} Zr_{0.03}) Σ =1.00 (Fe²⁺0.70 Mg_{0.01} Fe³⁺0.40 Ti_{2.45} Nb_{0.36} Zr_{0.04} Al_{0.02}) Σ =3.98 Si_{4.00} O₂₂;

Azzorre AZ4 (Ce_{1.66} La_{1.00} Nd_{0.40} Pr_{0.13} Sm_{0.03} Gd_{0.02} Ca_{0.74} Th_{0.05})_{Σ =4.03} (Fe²⁺_{0.85} Mg_{0.04} Mn_{0.08} Y_{0.03})_{Σ =1.00} (Fe²⁺_{0.59} Fe³⁺_{0.42} Ti_{2.55} Nb_{0.30} Zr_{0.10} Al_{0.04})_{Σ =4.00} Si_{4.00} O₂₂.

Il raffinamento strutturale è stato fatto nel gruppo spaziale C 2/m utilizzando Fo²_{hkl}. La struttura cristallina è stata raffinata con fattori di accordo convenzionali R(I/ σ (I)>4) di 2%. Non si sono usati vincoli chimici durante il raffinamento. Il disaccordo tra elettroni calcolati dal raffinamento e quelli derivanti dall'analisi chimica è attorno a 1%, o meno.

Si è trovato che l'angolo e la lunghezza a della cella sono correlati positivamente con il contenuto di (Ca + Sr) nei siti A.

L'analisi Mössbauer è stata svolta a 10 K su 50 mg di polvere cristallina del campione del Pakistan per determinare lo stato di ossidazione e la coordinazione degli atomi di Fe. Il fit migliore ha permesso di determinare due specie di Fe^{2+} e una specie di Fe^{3+} , tutte in coordinazione ottaedrica. Il rapporto Fe^{3+}/Fe_{tot} misurato è in buon accordo con quello della formula calcolata dall'analisi chimica.

La determinazione della distribuzione cationica nei siti cristallografici delle chevkiniti del Pakistan e delle Azzorre è stata fatta sulla base dei risultati dell'analisi chimica, di quella cristallografica e, dove possibile, anche del rapporto Fe³⁺/Fe_{tot} misurato con la spettroscopia Mössbauer. Per distribuire tutte le specie chimiche nei vari siti strutturali A, B, e C, è stata eseguita la minimizzazione di una funzione di errore. I risultati sono stati i) Ce e Ca sono ben distribuiti tra i siti A1 e A2; ii) la Terra Rara più leggera, La, si trova solo nel sito A2; iii) le Terre Rare più pesanti, i.e. Pr, Nd, Sm, Gd, nello stesso sito A1, assieme al Th. In tutti i campioni, il sito B è occupato prevalentemente da Fe²⁺. I siti C sono più disordinati. Nel sito C1 i cationi dominanti sono Fe e Ti; mentre nella chevkinite del Pakistan Fe è solo Fe³⁺, nelle chevkiniti delle Azzorre (dove il rapporto Fe^{3+}/Fe_{tot} è più basso che nel Pakistan), sono presenti sia Fe^{2+} che Fe^{3+} . Nei siti C2, in tutti i campioni, il Ti è il catione dominante con minori quantità di Fe²⁺. Le chevkiniti delle Azzorre sono anche caratterizzate da un significativo contenuto di Zr e di Nb: lo Zr si trova ordinato nel sito C2A; il Nb disordinato tra C2A e C2B. Sono state esaminate le distorsioni dei poliedri B e C alla luce della distribuzione dei cationi: i siti B e C sono meno distorti man mano che Fe^{2+} e Ti dominano, rispettivamente, sugli altri cationi.

La somma delle valenze di legame (BVS) secondo Brown sono state determinate sulla base della distribuzione cationica ottenuta.

I risultati del raffinamento strutturale non hanno indicato danneggiamenti strutturali.

Una conferma che le chevkiniti del Pakistan e delle Azzorre non sono metamittiche è venuta dalle indagini con il microscopio elettronico in trasmissione (TEM). Con il TEM sono state ottenute diverse informazioni: immagini a ingrandimenti medi, immagini di diffrazione (SAED, Selected Area Electron Diffraction) per individuare il grado di cristallinità e i difetti, per mettere in relazione caratteri morfologici e orientazioni cristallografiche (per es. spigoli e direzioni), ed infine per orientare opportunamente i cristalli al fine di ottenere immagini in HRTEM; immagini TEM in alta risoluzione (HRTEM) per indagare le caratteristiche strutturali e identificare il tipo di difetti locali

eventualmente presenti. Le immagini SAED hanno mostrato l'elevata cristallinità dei granuli di chevkinite, evidenziando così la loro non metamitticità; è stato confermato inoltre il reticolo di tipo *C*. Anche le immagini HRTEM hanno messo in evidenza la perfetta cristallinità dei campioni analizzati e l'assenza di difetti strutturali nei piani osservati.

ABSTRACT

Chevkinite-(Ce), a member of the chevkinite group of minerals, is a Ti- and Rare Earth Element (REE)- rich silicate, with general formula $A_4BC_4O_8(Si_2O_7)_2$, in which A = REE, Ca, Th, Sr; B = Fe, Mn, Mg; and C = Ti, Fe, Nb, Mg, Al. The structure consists of two kinds of sheets, one made up of Si₂O₇ groups and B-octahedra, and one of C-octahedra, both parallel to the *ab* plane and alternating along the *c* axis. Rare Earth ions lie between the sheets. Chevkinite is often metamict: alpha particles from radioactive decay of constantly present thorium cause damage to the structure, leading to partial or complete amorphization.

Accurate structural studies were carried out on non-metamict chevkinite from Pakistan and the Azores. One sample (Pakistan) was found in a high-temperature pneumatolithic vein from the Tangir valley and two others (AZ1, AZ4) in silica-saturated/over-saturated syenite clasts from São Miguel Island (Azores). Various methods were used to characterize them: single-crystal X-ray diffraction, electron microprobe analyses, Mössbauer spectroscopy, and transmission electron microscopy.

Quantitative chemical analyses gave chevkinites different REE in A sites and (Zr+Nb) in octahedral sites in the samples from both Pakistan and the Azores. The Fe^{3+}/Fe_{tot} ratio was also quite different, being higher in Pakistan (0.43 in average) and lower in the Azores (0.21 in AZ1 and 0.23 in AZ4).

Their average chemical formulae were:

Pakistan (Ce_{1.81} La_{0.81} Nd_{0.59} Pr_{0.18} Sm_{0.05} Gd_{0.01} Ca_{0.46} Th_{0.07} Sr_{0.03}) Σ =4.01 (Fe²⁺0.80 Mg_{0.10} Mn_{0.10} Y_{0.01}) Σ =1.01 (Fe²⁺0.35 Fe³⁺0.87 Ti_{2.65} Nb_{0.04} Zr_{0.01} Al_{0.04}) Σ =3.96 Si_{4.02} O₂₂;

Azzorre AZ1(Ce_{1.71} La_{1.05} Nd_{0.39} Pr_{0.14} Sm_{0.03} Gd_{0.01} Ca_{0.63} Th_{0.04}) $_{\Sigma=4.00}$ (Fe²⁺_{0.86} Mn_{0.09} Y_{0.02} Zr_{0.03}) $_{\Sigma=1.00}$ (Fe²⁺_{0.70} Mg_{0.01} Fe³⁺_{0.40} Ti_{2.45} Nb_{0.36} Zr_{0.04} Al_{0.02}) $_{\Sigma=3.98}$ Si_{4.00} O₂₂;

Azzorre AZ4 (Ce_{1.66} La_{1.00} Nd_{0.40} Pr_{0.13} Sm_{0.03} Gd_{0.02} Ca_{0.74} Th_{0.05}) $_{\Sigma=4.03}$ (Fe²⁺_{0.85} Mg_{0.04} Mn_{0.08} Y_{0.03}) $_{\Sigma=1.00}$ (Fe²⁺_{0.59} Fe³⁺_{0.42} Ti_{2.55} Nb_{0.30} Zr_{0.10} Al_{0.04}) $_{\Sigma=4.00}$ Si_{4.00} O₂₂.

Structural refinement was carried out against Fo_{hkl}^2 in space group *C* 2/*m*. The crystal structure was refined to conventional R(I/ σ (I)>4) of 2%. No chemical constraints were imposed on the refinement. The discrepancy between the electrons calculated from structure refinement and the analogous value calculated from the chemical composition was about 1% or less. The angle and *a* cell parameters were found to be positively correlated with (Ca + Sr) in the A sites.

Mössbauer analysis was carried out at 10 K on 50 mg of Pakistan crystal powder, to determine the oxidation state and coordination number of Fe. The best fit involved two Fe^{2+} and one Fe^{3+} , all in octahedral coordination. The Fe^{3+}/Fe_{tot} ratio was in good agreement with that of the mineral formula calculated from chemical analyses.

The cation distribution in the crystallographic sites of the two types of chevkinites was determined on the basis of the chemical and crystal structure results and also of the Fe³⁺/Fe_{tot} ratio, if measured (given) by Mössbauer spectroscopy. In order to allocate all the chemical species in sites A, B and C, minimization of an error function was performed. As a result, i) Ce and Ca were found to be fairly well distributed between A1 and A2; *ii*) the lightest REE, La, was found only in A2 site; *iii*) the heavier REE, i.e., Pr, Nd, Sm and Gd, were found together with Th in the same site, A1. In all samples, B site was dominantly occupied by Fe²⁺. C sites were all disordered. At C1 site, dominant cations were Fe and Ti; in the Pakistan chevkinite Fe is only Fe³⁺; and in the Azores chevkinites (where the Fe^{3+}/Fe_{tot} ratio was lower than in Pakistan) both Fe^{2+} and Fe^{3+} were present. At C2 sites, in all samples, Ti dominated over other cations with minor Fe²⁺. The Azores chevkinites were also distinctive for their significant amounts of Zr and Nb: Zr was found ordered in C2A site; Nb mainly disordered between C2A and C2B sites. Distortions in B and C octahedra were examined in the light of cation distribution: B and C sites became less distorted as Fe^{2+} and Ti dominated, respectively, over the other cations.

Bond valence sums (BVS) were determined on the basis of Brown theory.

Good structural refinement results showed no clue to structural damage. Confirmation that the Pakistan and Azores chevkinites are non-metamict came from TEM investigations. Various types of information were obtained from TEM: low- and medium- magnification images, and Selected Area Electron Diffraction (SAED), to examine morphology and sizes and crystallinity degree and defects, to relate morphology with crystallographic directions, and to align crystals along the directions useful for obtaining structural images; and high-resolution TEM images (HRTEM) to evaluate structural characteristics and identify the kinds of local defects, if present. SAED showed the high crystallinity of the chevkinite grains in all samples, confirming that they are non-metamict, and confirmed the C lattice. HRTEM images also showed similar structural regularity. In addition, SAED observed along b axis, i.e., perpendicularly to the stacking direction of the structural layers, did not show streaked spots indicating the regularity of layer alternation.

INTRODUZIONE

Lo studio di minerali contenenti Uranio e Torio, elementi che in seguito al processo di decadimento radioattivo possono provocare danneggiamenti della struttura, è di fondamentale importanza per le datazioni geologiche.

L'interesse per questo tipi di minerali iniziò a partire dagli anni cinquanta, quando Holland e Kulp (1950) e Hurley and Fairbairn (1952, 1953) proposero di datare materiale geologico quantificando, negli zirconi, i danni da radiazione mediante la misura degli spostamenti dei massimi di diffrazione. Una messa a punto delle loro idee avvenne subito dopo, con il classico lavoro di Holland e Gottfried (1955), che documentarono in maniera quantitativa significativi cambiamenti delle proprietà fisiche di zirconi caratterizzati da decadimento α in dosi comprese tra 10¹⁵ e 10¹⁶ eventi/mg (vedi Appendice II). Questi cambiamenti consistevano nel calo della densità e degli indici di rifrazione, e nella espansione anisotropa della cella (c > a), con conseguente aumento del volume di cella, fino al raggiungimento di uno stadio di completa amorfizzazione del materiale alla diffrazione X.

I vari stadi di metamittizzazione, attraverso i quali la struttura cristallina originaria viene distrutta, vennero poi chiariti da Murakami et al. (1991), in un altro classico lavoro sugli zirconi, svolto combinando diffrazione dei raggi X e microscopia elettronica in trasmissione in alta risoluzione (HRTEM) (vedi Appendice II). Grazie alle metodologie utilizzate, i suddetti autori poterono dimostrare che il processo di amorfizzazione è il risultato di sovrapposizioni multiple di cascate di dislocazioni, cioè di un accumulo di difetti piuttosto che un singolo evento di dislocazione. Inoltre, il confronto tra i risultati ottenuti su zirconi naturali e uno drogato con plutonio dimostrò che dosi diverse tra loro (anche di un fattore dell'ordine di 10⁸) non hanno influenza sul processo di accumulo dei danneggiamenti. Quest'ultima osservazione può avere importanti applicazioni nel campo ambientale, perché può descrivere il comportamento a lungo termine di solidi usati per l'immobilizzazione dei residui radioattivi nell'industria nucleare.

Un minerale caratterizzato dalla costante presenza di Th, che in parecchi casi si rinviene in natura allo stato metamittico (Jaffe et al., 1956; Mitchell, 1966), è la chevkinite, un accessorio tipico di rocce alcaline, avente una composizione chimica complessa e ricca di elementi strategici quali Ti, Terre Rare, Nb e Zr.

L'indagine preliminare di chevkiniti strutturalmente molto danneggiate, rinvenute in una sienite a feldspati alcalini della provincia alcalina "Alto Paraguay", è stata affrontata in

due tesi di laurea (Fuso, 1999; Liziero, 2001) e in lavori successivi (Liziero et al., 2003; Carbonin et al., 2005). Dalle problematiche emerse (impossibilità di arrivare ad una attendibile formula unitaria per problemi di non stechiometria, ottenimento di effetti di diffrazione molto deboli, presenza di materiale amorfo alle indagini in microscopia elettronica in trasmissione), è nata la necessità di effettuare accurati studi cristallochimici e strutturali su minerali non ancora interessati da un processo di metamittizzazione, per poter successivamente esaminare materiali con diversi gradi di danneggiamento e quindi quantificare i danni da radiazione.

A questo proposito, Sokolova et al. (2004) dimostrano come lo stato metamittico di una chevkinite rinvenuta in un granito alcalino della Mongolia, impedisca di ottenere risultati attendibili in uno studio cristallografico.

Nella presente tesi di dottorato è stata effettuata una accurata caratterizzazione cristallochimica e strutturale di campioni di chevkinite-(Ce) geologicamente giovani, privi di difetti, e non ancora metamittici. Le indagini cristallochimiche sono state svolte a Padova, presso il Dipartimento di Mineralogia e Petrologia dell'Università, e quelle microstrutturali all'Università di Torino, presso il Dipartimento di Scienze Mineralogiche e Petrologiche.

Capitolo 1

CHEVKINITE- (Ce)

La chevkinite-(Ce) è un titanosilicato ricco in Terre Rare con formula $A_4BC_4O_8(Si_2O_7)_2$, dove i siti A, a coordinazione (8+3), ospitano(REE), Ca, Sr, Th, ; il sito B, ottaedrico, ospita Fe²⁺, Ti, Mn, Mg; i siti C, ottaedrici, ospitano Ti, Fe²⁺, Fe³⁺, Nb, Zr, Mg, Al. Appartiene al gruppo della chevkinite, il quale si suddivide in due sottogruppi:

- 1) sottogruppo della chevkinite, che comprende:
 - la chevkinite-(Ce);
 - la stronziochevkinite (Sr,REE)₄Fe²⁺(Ti,Fe)₄(Si₂O₇)₂O₈,
 - la polyakovite-(Ce) Ce₄MgCr³⁺₂Ti₂(Si₂O₇)₂O₈,
- 2) sottogruppo della perrierite, che comprende:
 - la perrierite-(Ce) $Ce_4Fe^{2+}(Ti,Fe)_4(Si_2O_7)_2O_8$,
 - la rengeite Sr₄ZrTi₄(Si₂O₇)₂O₈,
 - la matsubaraite Sr₄Ti₅(Si₂O₇)₂O₈.

La chevkinite-(Ce) è spesso considerata un minerale accessorio raro, ma Macdonald and Belkin (2002) sottolineano: "it is very likely that chevkinite has commonly been misidentified during routine petrological examinations, as, *inter alia*, aenigmatite, ilmenite, allanite or sphene and that it is much more widespread mineral than currently established". Si forma, principalmente, in rocce ignee chimicamente evolute come sieniti e graniti alcalini-peralcalini e relative pegmatiti, in trachiti, in rioliti e in feniti associate a complessi carbonatitici (Segalstad & Larsen, 1978; Chakmouradian & Mitchell, 1999; Ridolfi, 2000; Yang et al., 2002; Ridolfi et al., 2003; Troll et al., 2002), ma può cristallizzare da fusi arricchiti in Terre Rare in larghi intervalli di P-T*-f*O₂.

Dal momento che la chevkinite può frazionare elementi in tracce con comportamento geochimico simile, ad es. REE leggere da REE pesanti, può diventare un minerale utile (i) per modellizzare l'evoluzione geochimica dei magmi per mezzo della cristallizzazione frazionata o (ii) per studiare il ruolo giocato dalle fasi accessorie restitiche durante l'anatessi crostale.

Le chevkiniti-(Ce) sono sorosilicati con struttura a strati. Osservando la fig. 1.1, in cui è riportata la proiezione della struttura normale all'asse b, è possibile distinguere due tipi di strati paralleli al piano ab che si alternano secondo la direzione dell'asse c: ci sono fogli formati interamente da ottaedri di tipo C e fogli formati invece da catene di ottaedri di

tipo B alternate a gruppi Si_2O_7 disposti su due livelli. Tra un foglio e l'altro vi sono ioni con largo raggio ionico. I siti C ottaedrici dal punto di vista cristallografico si distinguono in C1, C2A e C2B, come evidenziato nella proiezione su (001) di fig. 1.2.

Fig. 1.1 Proiezione su (010) della struttura della chevkinite.

Fig. 1.2 Proiezione su (001) del livello ottaedrico della chevkinite.

In letteratura esistono molti lavori riguardanti le chevkiniti, in cui sono state determinate la composizione chimica e la corrispondente formula (es. Segalstad and Larsen, 1978; McDowell, 1979; Platt et al., 1987; Imaoka and Nakashima, 1994; Kopylova et al., 1997; MacDonald et al. 2002; MacDonald and Belkin, 2002); i dati riguardanti la struttura di questo minerale sono, invece, molto pochi. Gli studi effettuati su cristalli sintetici di chevkinite hanno dimostrato che il gruppo spaziale è $P2_1/a$ (Ito and Arem, 1971; Calvo e Faggiani, 1974). Il gruppo spaziale determinato nelle chevkiniti naturali è invece C2/m(Pen e Pan, 1964; Yang et al., 2002, Sokolova et al., 2004). Tale discrepanza sembra essere dovuta alle differenze di composizione tra il materiale sintetico e quello naturale.

Le chevkiniti naturali si presentano spesso allo stato metamittico a causa della costante presenza di Th, e in alcuni casi anche di U, e del decadimento α associato a questi radionuclidi.

I cristalli in natura possono avere abito lamellare, lenticolare e prismatico; la chevkinite può essere però anche massiva. La frattura è concoide; la lucentezza è resinosa; il colore varia da nero a marrone-rosso scuro; la densità misurata è compresa tra 4.53 e 4.67; la densità calcolata per Z=2 è uguale 4.9; la durezza è 5-6. La chevkinite è biassica negativa con 2V=70°. Il materiale non metamittico ha $n_{\alpha} = 2.00$ e $n_{\gamma} = 2.05$; in quello metamittico gli indici scendono di circa 0.2. Il pleocroismo è marcato: α =giallo-marrone chiarissimo, β =marrone-rosso chiaro, γ = marrone-rosso scuro.

Capitolo 2

CAMPIONI STUDIATI E RELATIVO CONTESTO GEOLOGICO

La chevkinite si presenta in parecchi casi allo stato metamittico, precludendo così l'ottenimento di risultati attendibili in uno studio cristallografico (Sokolova et al., 2004). Per questo motivo si è posta particolare cura alla scelta dei campioni da studiare, indirizzando l'attenzione su campioni geologicamente giovani, privi di difetti, e non ancora metamittici.

2.1 Campioni delle Azzorre

Alcuni dei cristalli di chevkinite studiati sono stati rinvenuti in due campioni di roccia provenienti dall'isola di São Miguel, che è una delle isole più orientali dell'arcipelago delle Azzorre (fig. 2.1a Ridolfi et al., 2003). Il minerale è stato rinvenuto per la prima volta in questo arcipelago da Ridolfi et al. (2003) in alcuni clasti sienitici saturi e sovrasaturi in silice, debolmente peralcalini, dei depositi di pomici di Fogo A eruttati 5000 anni fa dal vulcano di Agua de Pau (fig. 2.1b Ridolfi et al., 2003).

Fig. 2.1a. Arcipelago delle Azzorre (Ridolfi et al., 2003).

Fig. 2.1b. Isola di São Miguel. Il cerchio nero indica la posizione di rinvenimento delle rocce ospitanti le chevkiniti studiate. (Ridolfi et al., 2003).

Queste sieniti si sono formate a bassa profondità, come prodotto del lento raffreddamento del magma trachitico eruttato e sono costituite da feldspato (82-95%), da anfibolo (0-8%), da clinopirosseno (0-3%), da annite (0-3%), da ossidi di Fe-Ti (1-5%) e da quarzo (0-5%). Minerali accessori, oltre alla chevkinite, sono apatite, titanite, aenigmatite, zircone, pirocloro, dalyite e thorite. La chevkinite è cristallizzata sia negli interstizi, che all'interno dei margini, dei feldspati, da un liquido residuale tardivo fortemente arricchito di volatili, di alcali, di HFSE e di REE, e si rinviene in piccoli cristalli (70-200 μ m) prismatici sub-euedrali (fig. 2.2 e 2.3 Ridolfi et al., 2003). La chevkinite-(Ce), la cui cristallizzazione presume un abbassamento della fugacità di ossigeno del liquido magmatico in raffreddamento, si ritrova spesso in associazione ad enigmatite e anfiboli a basso contenuto in Fe³⁺, anch'essi indicativi di bassi valori della *f*O₂ (bibliografia in Ridolfi et al., 2003).

Nei capitoli successivi verranno analizzate dettagliatamente le caratteristiche cristallochimiche e strutturale di cinque cristalli di chevkinite delle Azzorre, uno denominato AZ1 separato dal campione di roccia AZLdF1, e 4 separati dal campione AZLdF4 indicati con i nomi AZ4gr, AZ4A, AZ4Q, AZ4L.

Fig. 2.2. Chevkinite bruno-arancio inclusa in Na-Ca anfibolo verdastro interstiziale con associati cristalli di zircone (Ridolfi et al., 2003).

Fig. 2.3. Cristallo euedrale di chevkinite di colore arancio associata ad anfiboli bruni e bruno-verdastri e feldspati alterati a) a nicols paralleli b) a nicols incrociati (fotografia di F. Ridolfi, comunicazione personale).

2.2 Campioni del Pakistan

La restante parte dei cristalli oggetto di studio proviene da un campione commerciale di chevkinite immesso alcuni anni fa dal Sig. Umberto Righi nel mercato dei collezionisti e degli appassionati di minerali. Il campione è stato rinvenuto in esemplari di eccezionale bellezza e grandezza (fig. 2.4) in una vena pneumatolitica di alta temperatura nella Valle del Tangir, Pakistan (Federico Pezzotta, comunicazione personale). Minerali di ganga sono feldspato, titanite, attinolite. La roccia ospitante è probabilmente un ortogneiss. Le informazioni sul luogo di provenienza sono purtroppo molto limitate, in quanto Umberto Righi, sino a poco tempo fa, ha chiesto che nulla si facesse sapere sulla zona di provenienza allo scopo di proteggere il proprio commercio. Nonostante questo, il campione è stato scelto per il presente studio in quanto i cristalli perfettamente euedrali e di notevoli dimensioni, avrebbero permesso di eseguire, oltre allo studio cristallografico-strutturale anche indagini con la spettroscopia Mössbauer. Sono stati studiati in dettaglio sette cristalli, i cui nomi sono costituiti dal prefisso P (Pakistan) seguito da una sigla identificativa, e precisamente P1, P2, PN, P4, P5, P6, P7.

Fig. 2.4. Chevkinite-(Ce) della Valle del Tangir di colore nero splendente. Dimensioni 3x3x1cm. (fotografia di C. Brogiato)

ANALISI DIFFRATTOMETRICHE SU CRISTALLO SINGOLO

3.1 Introduzione

Sono stati selezionati i cristalli di chevkinite che, ad un'osservazione al binoculare, si distinguevano per l'accentuata trasparenza e che, al microscopio polarizzatore, presentavano un marcato pleocroismo dal giallo al rosso scuro. Su questi campioni è stata effettuata un'indagine diffrattometrica.

La raccolta delle intensità diffratte è stata effettuata utilizzando un diffrattometro a cristallo singolo del tipo a quattro cerchi a geometria euleriana, mod. Stadi 4 CCD, dotato di un rivelatore ad area con sistema CCD (Charge-Coupled Device). La radiazione utilizzata è quella del molibdeno monocromatizzata da un cristallo di grafite (MoK α = 0.70930 Å).

Il rilevatore ad area è costituito da un detector, localizzato immediatamente dietro a una finestra di berillio, che converte i fotoni X in luce visibile successivamente inviata nel rivelatore CCD attraverso fibre ottiche poste in un'unità tronco-conica. Il CCD raccoglie le intensità di molti riflessi in modo simultaneo a differenza di un convenzionale diffrattometro. Ogni riflesso si trova in parecchie immagini consecutive, fornendo così profili tridimensionali dei riflessi. La raccolta di riflessi simmetricamente equivalenti o dello stesso riflesso ad angoli differenti del diffrattometro, offre la possibilità di misurare riflessi che potrebbero essere parzialmente coperti dal para-raggio diretto.

3.2 Raccolta dati

Per ciascun campione di chevkinite è stata effettuata una raccolta dati preliminare, costituita da un unico gruppo ("run") di immagini ("frame") (tabella 1.a), in modo da poter scegliere i cristalli con le migliori caratteristiche di intensità e forma del profilo dei raggi diffratti. Ogni immagine è data dall'insieme di riflessi ottenuti per un determinato valore angolare in un preciso tempo di conteggio. Ogni singola immagine è ottenuta in seguito a una rotazione secondo ω , con un tempo di conteggio, in questi primi esperimenti, pari a 0.067°/s. Le condizioni operative sono state di 45 kV e 30 mA.

Per i cristalli migliori è stata successivamente effettuata una raccolta dati completa, costituita da 6 run di frame (tabella 1b). I tempi di scansione in queste riprese sono stati

fatti variare tra 0.025° /s e 0.067° /s a seconda della dimensione del cristallo in esame. Le condizioni operative sono state di 50 kV e 40 mA.

In ciascuna ripresa completa sono stati raccolti circa 5000 riflessi in un intervallo di 20 compreso tra 6 e 86°. Una volta terminata la ripresa, alcune routine del programma che gestisce il diffrattometro, individuano all'interno dei frame tutti i riflessi con intensità superiore ad una certa soglia, e vi associano una posizione in termini di valori angolari. I riflessi così selezionati sono stati elaborati con il programma RECIPE v. 1.04 (copyright "STOE & Cie G.m.b.H.") che permette la visualizzazione dei riflessi selezionati nello spazio reciproco e il calcolo dei parametri di cella. L'elaborazione della cella è stata fatta limitando superiormente l'intervallo 2 θ a 80, 70, 60, 50: in base allo studio dei lati di cella di spinelli standard svolto da Maini (2003), che ha effettuato riprese di stessi cristalli sia con diffrattometro con rivelatore ad area, sia con diffrattometro con rivelatore juntuale, e da quanto emerso dall'utilizzo di certi cristalli standard presso il laboratorio di diffrattometria, si è deciso di considerare più attendibili i parametri di cella calcolati tagliando i riflessi con 2 θ superiore a 50.

Nella tabella 2 sono riportati i lati di cella dei singoli cristalli e i parametri della raccolta dati.

3.3 Raffinamento strutturale

Le intensità dei dati raccolti sono stati corretti secondo i fattori di Lorentz e di polarizzazione, e per gli effetti di assorbimento con i programmi X-RED v. 1.20 e X-SHAPE v. 1.06.

I cristalli di chevkinite sono stati raffinati con il programma SHELX-97 (Sheldrick, 1997), usando Fo^2_{hkl} . Il raffinamento è stato condotto nel gruppo spaziale *C2/m* senza l'impiego di vincoli legati al chimismo dei cristalli partendo dai parametri atomici e fattori termici del lavoro di Yang et al.(2002).

I parametri raffinati sono: il fattore scala, le coordinate atomiche, le occupanze dei siti A, B, C, e i relativi fattori termici prima isotropi e poi anisotropi, per un totale di 107 variabili.

Attraverso una serie di cicli di minimizzazione si calcolano i fattori di struttura Fc, necessari per minimizzare le differenze Fo-Fc. In tal modo si ottiene il fattore di discrepanza:

$$R = \frac{\sum |Fo| - |Fc|}{\sum |Fo|}$$

che è tanto più basso tanto migliore è l'approssimazione del modello teorico calcolato. SHELX-97 applica sistematicamente anche uno schema di pesatura w; poiché il calcolo è basato su Fo², il fattore di discrepanza è dato da

wR2 =
$$\sqrt{\frac{\sum w(Fo^2 - Fc^2)^2}{\sum w(Fo^2)^2}}$$

e risulta più alto di R. Un altro parametro statistico che dà un'indicazione dell'accuratezza dell'approssimazione Fo-Fc è Goof:

$$Goof = \sqrt{\frac{\sum w(Fo - Fc)^2}{(n - p)}}$$

dove n = numero di riflesssi

p = numero di parametric utilizzati nel raffinamento.

Nello stadio iniziale del raffinamento sono state assegnate le seguenti curve di diffusione atomica neutre: nei siti A1 e A2 la curva relativa al Ce; nel sito B la curva del Fe, nei siti C la curva del Ti, nei siti tetraedrici la curva del Si. Da questo primo tentativo sono emersi i seguenti risultati:

- nei siti A: occupanze inferiori a 1, sia nelle chevkiniti del Pakistan che in quelle delle Azzorre;

- nel sito B: occupanza inferiore a 1 nelle chevkiniti del Pakistan, circa uguale a 1 in quelle delle Azzorre;

- nei siti C: occupanze leggermente superiori a 1 in entrambi i tipi di chevkinite.

Nei successivi raffinamenti si è quindi ritenuto opportuno utilizzare per ogni sito due curve di scattering:

nei siti A, vista l'evidenza della sostituzione del Ce da parte di elementi più leggeri, Ce vs. Ca,;

- nel sito B delle chevkinite del Pakistan Fe vs. Mg (solo in questo caso il Fe è sostituito da elementi più leggeri, mentre nelle chevkiniti delle Azzorre il Fe è il catione predominante);

- nei siti C curve di elementi con numero atomico più elevato del Ti vs. Ti, e precisamente, in C1 Fe vs. Ti (sia nei campioni del Pakistan che per quelli delle Azzorre), in C2A e C2B del Pakistan Fe vs. Ti, mentre in C2A e C2B delle Azzorre Nb vs. Ti.

Con l'obiettivo di migliorare ulteriormente l'accordo Fo-Fc si è deciso di utilizzare curve totalmente ionizzate per Ce, Ca, Mg, Fe, Nb, Ti; per Si e O sono state scelte curve parzialmente ionizzate, rispettivamente 0.625 % of Si⁺⁴ contro 0.375 % di Si e 0.50 % di O⁻¹ contro di O⁻² (Tokonami, 1965).

Nella scelta delle strategie di raffinamento è stata prestata attenzione alle correlazioni tra variabili; in particolare, per evitare la forte correlazione tra le occupanze di A1 e di A2, sono stati eseguiti cicli di minimizzazione variando in maniera alternata l'occupanza di A1, o quella di A2, e tutti gli altri parametri.

Una volta raffinate le coordinate atomiche, per tutti i cristalli sono state calcolate le distanze di legame, gli angoli di legame, i volumi dei poliedri, le relative varianze angolari e le elongazioni quadratiche medie (Robinson et al., 1971).

I risultati dei raffinamenti, ottenuti al raggiungimento della convergenza, sono riportati nelle tabelle 3-15.

Va sottolineato che per il calcolo delle distanze medie di ciascun poliedro, presentate nelle tabelle 5.a e 5.b, si è scelto di utilizzare la media pesata, con peso $1/\sigma$, e non la media aritmetica, dato che ciascuna distanza di legame è affetta da una diversa incertezza.

3.4 Risultati

I raffinamenti dei cristalli di Pakistan e Azzorre hanno fornito parametri statistici molto buoni (tabella 3): R con I > $4\sigma(I)$ è quasi in tutti i casi circa 2%, wR2 varia tra 3.5 e 7.5, Goof è molto vicino a 1.

I dati di raffinamento mostrano che i siti A1 e A2 hanno distanze interatomiche rispettivamente comprese tra 2.474 e 2.865 Å e tra 2.411 e 2.989 Å (tabelle 5a e 5b). Osservando il numero degli elettroni riportati nella tabella 3, emerge che i contenuti di REE negli A dei cristalli del Pakistan e della Azzorre sono sensibilmente diversi, dato confermato successivamente dall'analisi chimica.

Interessante è analizzare i risultati riguardanti i siti ottaedrici.

Il sito B risulta essere il sito ottaedrico più grande, con distanze interatomiche comprese tra 2.011 e 2.221 Å, e il più distorto, con valori di varianza angolare tra 110 e 119 (tabelle 5 e 6). La fig. 3.1 mette in evidenza come la distorsione (è indifferente considerare l'elongazione quadratica media o la varianza angolare in quanto linearmente correlate; Robinson et al., 1971) sia mediamente maggiore nei siti B delle chevkiniti del Pakistan, dove il numero di elettroni è compreso tra 24 e 25, e minore in quelli delle Azzorre, dove il numero di elettroni è molto vicino a 26; si osserva inoltre un'ampia variabilità all'interno dei campioni del Pakistan. Per la comprensione di tali dati è necessario un confronto, che verrà fatto successivamente, con le distribuzioni dei cationi nei singoli siti dei differenti campioni.

Fig. 3.1 Relazione tra la varianza angolare (Robinson et al., 1971) e il numero di elettroni dei siti B per i campioni studiati.

Tra i siti C il sito più grande risulta essere il C2A, con distanze medie comprese tra 2.004 e 2.016 Å (tabelle 5). Le distanze con gli ossigeni O2 sembrano essere tendenzialmente più lunghe nelle Azzorre, dove variano tra 2.007 e 2.014 Å, rispetto a quelle del Pakistan, dove variano tra 2.000 e 2.006 Å. Dall'analisi delle lunghezze degli spigoli (tabella 7) si vede inoltre che l'unica differenza tra i campioni del Pakistan e delle Azzorre si riscontra nello spigolo O2^I-O2^{II} condiviso con il poliedro C2B, che è maggiore nelle Azzorre e minore nel Pakistan.

I siti C1 e C2B hanno distanze medie simili, che variano tra 1,986 e 1,991 Å nel primo caso e tra 1,981 e 1,991 Å nel secondo caso.

Come osservato per il sito C2A, anche nel sito C2B le distanze con gli ossigeni O2 sembrano essere più lunghe nelle Azzorre (1.976 - 1.981 Å) che nel Pakistan (1.968 - 1.974 Å); la cosa si ripercuote, come visto prima, sullo spigolo O2^I-O2^{II} condiviso con il poliedro C2A, che è maggiore nelle Azzorre e minore nel Pakistan.

Il sito più distorto tra i C è il C1. La fig. 3.2 mostra che le varianze angolari dei C1 del Pakistan differiscono poco da quelle dei C1 delle Azzorre, anche se sono tendenzialmente maggiori; nei due tipi di chevkinite sono molto simili anche gli elettroni. Per quanto riguarda i siti C2A, la fig. 3.2 mette in evidenza 2 gruppi con varianze ed elettroni distinti: i C2A dei campioni del Pakistan hanno una varianza angolare compresa tra 11.7 e 13.3 ed un numero di elettroni vicino a 23, i C2A delle Azzorre hanno varianze tra 10.3 e 11.5 ed un numero di elettroni tra 26.4 e 27.5.

Infine nella fig. 3.2 si può vedere che, per quanto riguarda i siti C2B, non ci sono significative differenze nelle distorsioni dei due tipi di chevkiniti che invece si distinguono chiaramente per il numero di elettroni.

I risultati messi in evidenza per i siti C verranno ripresi in esame nel capitolo riguardante la ripartizione cationica.

Fig. 3.2 Relazione tra le varianze angolari (Robinson et al., 1971) e il numero di elettroni dei siti C per i campioni studiati..

Dall'analisi dei dati riguardanti i poliedri S1 e S2 emerge che, mentre S1 è un tetraedro estremamente regolare con varianza angolare di circa 2 (angolo interno minimo = 107.5° e massimo = 111.4°), S2 ha una varianza angolare decisamente più elevata pari a 22-24 (angolo interno minimo = 103.9° e massimo = 114.1°). La presenza di due tetraedri cristallograficamente diversi, indotta dall'impacchettamento strutturale, è stata osservata anche in altri sorosilicati; ad esempio nella serie di epidoti studiati da Merli e Caucia (1997) il tetraedro T2 ha una varianza angolare compresa tra 2 e 5, mentre il T1 ha una varianza che oscilla tra 8 e 11.

Capitolo 4

INDAGINI CHIMICHE

4.1 Generalità

Sui cristalli studiati sono state effettuate indagini chimiche quantitative con microsonda elettronica, presso l'Istituto di Geoscienze e Georisorse, CNR – Padova. Per le analisi sono state utilizzate una microsonda Cameca/Camebax nella prima parte dell'attività e una Cameca Sx50 nell'ultima parte.

Il lavoro si è dimostrato piuttosto complesso a causa del notevole numero di elementi da analizzare, ma soprattutto per la presenza nella chevkinite di un elevato contenuto di Terre Rare, elementi che presentano una sovrapposizione delle linee L.

Per risolvere le interferenze sono state fatte diverse prove variando il tipo di cristallo analizzatore, lo standard, la lambda caratteristica presa in esame e i tempi di conteggio al picco e al fondo.

Nei esperimenti iniziali sono stati analizzati i primi cristalli separati e analizzati con diffrattometro a cristallo singolo, anche se non presentavano caratteristiche, di intensità e forma del profilo dei raggi diffratti, molto buone.

Nel primo tentativo di analisi quantitativa sono stati analizzati 13 elementi (Si, Ti, Al, Ca, Mn, Fe, Nb, Ce, La, Pr, Nd, Sm, Th), individuati nell'osservazione dello spettro del campione ottenuto con spettrometro EDS, con le condizioni di lavoro indicate in "prova 1" della tabella 8; come esempio sono state riportate in tabella 9.a le composizioni dei punti analisi del cristallo Pak2prova: sono indicate le percentuali in peso degli ossidi e i cationi calcolati sulla base di 22 ossigeni. La chiusura media delle percentuali in peso degli ossidi, ottenuta in questo esperimento, è intorno al 95-96%.

Nella seconda prova sono stati aumentati tensione di accelerazione, corrente del fascio e alcuni tempi di conteggio; sono stati utilizzati come standard per tutte le Terre Rare non più vetri (con un contenuto troppo basso di REE per il minerale in esame) ma fosfati di Terre Rare, ed inoltre per alcuni di questi elementi sono stati cambiati, sulla base degli studi eseguiti da Fialin et al. (1997), il tipo di cristallo analizzatore e la lambda caratteristica ("prova 2" della tabella 8). Dalla tabella 9.b, sempre riferita al cristallo Pak2prova, emerge che in questo esperimento è migliorata la chiusura delle percentuali in peso degli ossidi, mediamente intorno al 97%.

Dopo l'analisi del primo database riguardante il chimismo delle chevkiniti (Macdonald and Belkin, 2002), sono state apportate alcune modifiche alla strategia di lavoro finora perfezionata come indicato nella prova 3 della tabella 8; i risultati delle analisi eseguite con questa metodologia sono riportati nella tabella 9.c.

Dopo questi primi esperimenti si è deciso di analizzare i cristalli migliori, ripresi nel frattempo con il diffrattometro a cristallo singolo, utilizzando i cristalli analizzatori, le lambda caratteristiche e gli standard della prova 3 e aggiungendo anche l'analisi di Sr, Zr e Y ("prova 4" tabella 8). E' stata utilizzata la microsonda Cameca/Camebax per i campioni P1, P2, PN, P4, P5, AZ1; la microsonda Cameca Sx50 per P6, P7, AZ4gr, AZ4A, AZ4Q, AZ4L.

Infine alcuni cristalli (P4, P5, P6, P7, AZ1, AZ4gr, AZ4A) sono stati rianalizzati prendendo in esame anche il Gd e il F, e utilizzando per la misura dell'Y un cristallo analizzatore e uno standard diversi dalla prova 4 ("prova 5" tabella 8).

Nelle tabelle 10-21 sono riportate le composizioni dei punti analisi dei cristalli analizzati nelle prove 4 e 5: sono indicate le percentuali in peso degli ossidi e i cationi calcolati, con l'utilizzo del metodo stechiometrico di Droop (1987), sulla base di 22 ossigeni e vincolando la chiusura della formula a 13 cationi. Come si nota, non è stato riportato il contenuto di F: dato che dal ricalcolo in cationi si otteneva un valore costante molto piccolo 0.003 atomi per formula unitaria (a.f.u.), e data la forte interferenza tra la linea k α del F (energia 0.675, lambda 18.367) e la linea Mz1 del Ce, elemento tra quelli con contenuti più elevati, (energia 0.678, lambda 18.286), si è deciso di escludere la presenza di F nei campioni studiati.

Nella tabella 22 sono riportati i limiti di rivelabilità DL riferiti al cristallo AZ4gr che sono stati calcolati sulla base delle condizioni operative con l'utilizzo della formula seguente:

$$DL = \frac{2\sqrt{2B}}{P - B}C_{o}$$

con

- $B = \frac{BgStdCps}{StdCurrent} (2 * BgTime) * Current$
- $P = \frac{PkStdCps}{StdCurrent} (PkTime) * Current$

dove

C_o = frazione in peso dell'elemento nello standard PkStdCps = intensità del picco sullo standard (cps) BgStdCps = intensità media del fondo sullo standard (cps) StdCurrent = corrente del fascio sullo standard (nA) BgTime = tempo di conteggio del fondo sul campione (s) PkTime = tempo di conteggio del picco sul campione (s) Current = corrente del fascio sul campione (nA)

Per le chevkiniti è possibile dire che i limiti di rivelabilità, ottenuti con la strategia di analisi utilizzata, in generale siano:

- al di sotto di 200 ppm per Si, Ti, Ca, Mg, Al;
- intorno a 300 ppm per Fe e Mn;
- comprese tra 600 e 800 ppm per Nb, Zr, Sr, Y, Th;
- vicino a 1000 ppm per le REE.

Sulla base dei dati della tabella 22 si può affermare che lo Sr analizzato nei campioni delle Azzorre (valore medio = 70 ppm) non sia significativo, visto che il limite di rivelabilità è 10 volte superiore. Per quanto riguarda le misure di Y fatte nei campioni del Pakistan potrebbero essere non significative considerando che il valore medio pari a 500 ppm è dello stesso ordine di grandezza del relativo limite di rivelabilità.

Va inoltre sottolineato che gli errori sugli ossidi sono <1% se la percentuale in peso è >10, tra 5-10% se la percentuale in peso è circa 1, tra 10-20% se la percentuale in peso è compresa tra 0.2-1, tra 20-40% se la percentuale in peso è < 0.1.

4.2 Discussione dei dati

Dall'analisi delle tabelle 10-21 (prove 4 e 5) si osserva, in tutti i casi, un eccesso di cationi in A e un leggero difetto nei siti ottaedrici, ma, considerando le deviazioni standard dei singoli cationi, ci si accorge che tali differenze dalle chiusure ideali sono ampiamente entro l'errore. Emergono poi 3 grosse differenze tra le chevkiniti del Pakistan e quelle delle Azzorre:

 I campioni del Pakistan sono caratterizzati da un maggior contenuto di REE e una minore quantità di Ca rispetto a quelli delle Azzorre. La fig. 4.1 mette in evidenza questa caratteristica e mostra inoltre come sia possibile distinguere, tra i cristalli delle Azzorre, due sottotipi, AZ1 e AZ4, il primo con più REE e meno Ca rispetto al secondo. Dalla fig. 4.1 è evidente anche che nei siti A della struttura avviene una sostituzione tra (Ca +Sr) e REE, vista la buona relazione lineare negativa esistente tra queste due grandezze, che è peraltro ben documentata in letteratura (Segalstad and Larsen, 1978; McDowell, 1979; Parodi et al.,1994; Macdonald and Belkin, 2002).

Fig. 4.1 - Relazione tra il contenuto di REE e di (Ca + Sr) nei siti A delle chevkiniti studiate. Equazione della retta di regressione tracciata: y = -0.932x + 3.759 (coeff. di correlazione $R^2 = 0.95$).

Per il principio di bilanciamento delle cariche, se si verifica una sostituzione REE (trivalenti) – Ca (bivalente) nei siti A, ci deve essere anche una sostituzione, a livello dei siti ottaedrici, tra ioni bivalenti, trivalenti e ioni tetravalenti, pentavalenti: la fig. 4.2 mette in evidenza la buona relazione lineare positiva tra i bivalenti dei siti A e i tetra-pentavalenti dei siti C.

In definitiva si può quindi affermare che, date le varie sostituzioni nei siti A e C, esista una buona correlazione lineare negativa tra REE dei siti A e la somma di (Ca + Sr) dei siti A con (Ti + Zr + Nb) dei siti ottaedrici (fig. 4.3).

Fig. 4.2 – Relazione tra il contenuto di (Ti + Zr + Nb) nei siti C e di (Ca + Sr) nei siti A delle chevkiniti studiate. Equazione della retta di regressione tracciata: y = 0.919x - 1.982 (coeff. di correlazione $R^2 = 0.93$).

Fig. 4.3 – Relazione tra il contenuto di REE nei siti A e quelli di (Ca+Sr) nei siti A + (Ti + Zr + Nb) nei siti C delle chevkiniti studiate. Equazione della retta di regressione tracciata: y = -1.88x + 9.79 (coeff. di correlazione $R^2 = 0.94$).

- 2. I cristalli del Pakistan presentano un rapporto tra Fe^{3+} e Fe_{tot} più elevato rispetto a quelli delle Azzorre. Tale rapporto, nelle analisi con le condizioni della prova 5, varia tra 0.40 e 0.48 nei cristalli del Pakistan, e tra 0.21 a 0.24 nei campioni delle Azzorre.
- 3. Le chevkiniti delle Azzorre si distinguono dal Pakistan per l'abbondanza nei siti ottaedrici di Nb e Zr, rispettivamente 0.30 e 0.10 a.f.u. nelle Azzorre, 0.04 e 0.01 a.f.u. nel Pakistan.

Le variazioni chimiche osservate dei due tipi di chevkinite si riflettono su alcuni parametri di cella. La fig. 4.4 mostra come un maggior contenuto di (Ca+Sr), cationi con raggio ionico più grande rispetto a quello delle REE, provochi un aumento dell'angolo β : si può quindi distinguere il gruppo di campioni del Pakistan con un contenuto di (Ca+Sr) di circa 0.5 a.f.u. e un angolo β compreso tra 100.5° e 100.6°, e il gruppo delle Azzorre con circa 0.7 a.f.u. di (Ca+Sr) e un angolo β di 100.7°.

Fig. 4.4 – Variazione dell'angolo β in funzione del contenuto di (Ca+Sr) nei siti A delle chevkiniti studiate.

Variazioni di qualche unità sulla seconda decimale, sempre in funzione del contenuto di (Ca+Sr), si possono osservare anche sui lati di cella *a* e *b* (figg. 4.5 e 4.6).

Fig. 4.5 - Variazione del lato cella a in funzione del contenuto di (Ca+Sr) nei siti A delle chevkiniti studiate.

Fig. 4.6 – Variazione del lato cella b in funzione del contenuto di (Ca+Sr) nei siti A delle chevkiniti studiate.

Nelle tabelle 10-21 sono riportati, per ciascuna analisi, anche il confronto tra il numero medio di elettroni chimici ($n_{med}e_{chimici}$) e il numero di elettroni di raffinamento ($ne^{-r_{affinamento}}$). Tra i due dati si nota un ottimo accordo, infatti le differenze tra i due dati sono al massimo del 2% e nella maggior parte dei casi intorno all'1%.

Viste le difficoltà incontrate nell'analisi chimica quantitativa con microsonda elettronica delle chevkiniti, si era pensato di utilizzare, per lo studio del chimismo, anche un'altra metodologia, la spettrometria di massa a emissione di plasma con accoppiamento induttivo. A tale scopo sono stati separati e macinati 50 mg di chevkinite del Pakistan e quindi si è passati alla dissoluzione del minerale con la procedura di Shapiro (Casetta et al., 1990) in modo tale che non rimanessero residui di acido fluoridrico che avrebbero potuto causare danni alla macchina. Tale procedura si è rivelata però troppo poco aggressiva per questi materiali e quindi è stata abbandonata questa strada.

Capitolo 5

STUDIO CON SPETTROSCOPIA MÖSSBAUER

5.1 Introduzione

L'effetto Mössbauer consiste nell'assorbimento risonante di fotoni senza perdita di energia per rinculo nucleare. Infatti, i fotoni prodotti dal decadimento di un nucleo radioattivo, possono promuovere a stati eccitati altri nuclei dello stesso isotopo che si trovano inizialmente allo stato fondamentale (fig. 5.1). E' essenziale che questo fenomeno avvenga senza rinculo, altrimenti l'energia trasportata dalla radiazione diventa minore di quella necessaria per fare avvenire l'assorbimento (differenza di energia fra i due livelli).

L'effetto Mössbauer si verifica per diversi elementi della tabella periodica, e tra questi i più correntemente usati sono il ferro, lo stagno, l'europio e l'antimonio.

Fig. 5.1. Schema dell'effetto Mössbauer.

Un nucleo immerso in un solido ha una probabilità non nulla di emettere ed assorbire fotoni senza rinculo. Infatti, all'interno di una matrice solida, il nucleo non è isolato, ma vincolato nel reticolo e non può rinculare liberamente. In queste condizioni, esiste una frazione di eventi che avviene senza rinculo e di conseguenza una probabilità non nulla di avere emissione e assorbimento di fotoni senza dispersioni di energia. La probabilità che un evento avvenga senza rinculo è anche funzione della temperatura. A bassa temperatura, c'è infatti un aumento della frazione di eventi senza rinculo dovuto soprattutto all'irrigidimento del sistema. Per ottenere dunque l'effetto Mössbauer, è necessario lavorare soltanto con campioni solidi o soluzioni congelate. I nuclei risentono dell'influenza dell'intorno chimico e sono immersi in campi elettrici e magnetici creati dagli elettroni e dalle cariche degli ioni circostanti. Inoltre, presentano vari tipi di momenti nucleari i quali interagiscono con i campi magnetici ed elettrici presenti nella regione nucleare, con conseguente perturbazione dei livelli energetici del nucleo stesso. Tali perturbazioni, chiamate interazioni nucleari iperfini, si riflettono nello spettro Mössbauer e vengono definite mediante i parametri:

- shift isomerico (δ)
- splitting di quadrupolo (ΔE_Q)
- splitting magnetico (ΔE_M).

Shift isomerico (δ)

Se il nucleo sorgente e quello contenuto nel campione sono identici, ovvero se l'intorno elettronico nei due casi è identico, l'energia della transizione sarà la stessa e si avrà un assorbimento Mössbauer. Non si verifica invece alcun assorbimento se il nucleo Mössbauer nel campione è anche solo leggermente diverso dalla sorgente, perchè l'energia della transizione non è più la stessa. Si ripristina l'assorbimento variando debolmente l'energia della sorgente mediante effetto Doppler, imprimendo, cioè, alla sorgente un moto con velocità variabile in modo accuratamente controllato. A sorgente e campioni identici, si rileva un massimo di assorbimento centrato a velocità zero ($\delta = 0$), altrimenti si avrà uno spostamento del picco di assorbimento rispetto a tale velocità noto come shift isomerico δ .

Lo shift isomerico risente di ogni fattore che può fare variare la densità elettronica, e quindi, cambiamenti degli stati di ossidazione, numero di coordinazione, ibridazione e polarità dei legami.

Splitting di quadrupolo (ΔE_Q)

I nuclei che si trovano in stati con un valore del numero quantico di spin nucleare I > 1/2hanno distribuzioni di carica non sferiche caratterizzate da un momento di quadrupolo. Quando questo risente di un campo elettrico asimmetrico, prodotto dalla distribuzione di carica elettronica o disposizione dei leganti non simmetriche, la degenerazione dei livelli nucleari viene persa.

Si può illustrare lo splitting di quadrupolo con l'isotopo ⁵⁷Fe. Il suo stato fondamentale è caratterizzato da uno spin I = $\pm 1/2$ mentre lo stato eccitato, che ha energia +14.4 KeV rispetto al primo, ha spin I = $\pm 3/2$. La presenza di un gradiente di campo elettrico (EFG) non interferisce con lo stato fondamentale, mentre lo stato eccitato viene separato in due sottolivelli caratterizzati da m₁ = $\pm 1/2$ e m₂ = $\pm 3/2$. Sono quindi possibili due transizioni

dallo stato fondamentale. In conclusione, lo splitting di quadrupolo permette di ricavare informazioni sulla distribuzione elettronica e sulla natura dei leganti nell'intorno del nucleo Mössbauer.

La strumentazione necessaria per eseguire uno spettro Mössbauer è costituita essenzialmente da una sorgente di radiazioni, un sistema di dispersione dei fotoni in base alla loro energia (dispersore Doppler), il campione, un rivelatore dei fotoni e un sistema di raccolta dei dati. La principale differenza rispetto ad altre spettroscopie è dovuta all'alto intervallo di energia in cui si lavora, poiché sfrutta l'assorbimento risonante dei raggi. La sorgente usata per le misure è costituita dall'isotopo radioattivo ⁵⁷Co.

Le sorgenti emettono una radiazione esclusivamente monocromatica, a differenza delle altre spettroscopie. Applicando l'effetto Doppler, la sorgente viene messa in movimento rispetto al campione in modo da modulare l'energia della radiazione. In questo modo, si riesce a variare in modo continuo l'energia emessa dalla sorgente.

Il campione deve contenere un isotopo Mössbauer attivo ed è preparato pesando alcuni milligrammi di sostanza finemente macinata che viene sospesa in paraffina. La sospensione così ottenuta viene inserita in una lamina di piombo quadrata spessa 2 mm, con un foro nella parte centrale di diametro di circa 1.5 cm. Il campione viene investito continuamente dai raggi. ma soltanto i fotoni che hanno energia opportuna vengono assorbiti.

5.2 Risultati

Gli spettri Mössbauer relativi a un campione di chevkinite del Pakistan (fig. 5.2) sono stati raccolti utilizzando un spettrometro convenzionale che lavorava ad accelerazione costante e utilizzava una sorgente a temperatura ambiente di ⁵⁷Co in matrice di Rodio. I parametri iperfini, shift isomerico δ , splitting di quadrupolo ΔE_Q e ampiezza di linea Γ , tutti espressi in mm/s, sono stati ottenuti mediante una tecnica standard di minimizzazione dei minimi quadrati. Gli spettri sono stati ottimizzati usando il minor numero possibile di componenti utilizzando profili lorentziani. Lo shift isomerico è riportato rispetto al ferro metallico a temperatura ambiente. In un primo tempo lo spettro è stato raccolto a temperatura ambiente ottenendo due forti e asimmetrici assorbimenti a bassa velocità ed un terzo a velocità maggiori, indicando la presenza di uno o più siti contenenti ferro(III) e ancora uno o più contenenti ferro(II). Un'analisi accurata, però, ha portato a risultati ambigui e certamente non univoci che erano, inoltre, in disaccordo con

quanto ottenuto mediante la ripartizione cationica. Questo ha spinto a raccogliere lo spettro a bassa temperatura (10 K) nella speranza che la dipendenza dalla temperatura dei vari parametri tipici di ciascun componente portasse ad uno spettro più facilmente interpretabile. In questo modo si è giunti a convergenza con un modello che prevede un sito ottaedrico distorto a ferro(III) che rende conto del 52% del ferro totale e due siti, ancora ottaedrici, contenenti ferro(II) rispettivamente per il 21 e 28% sempre del ferro totale e diversi tra loro per differenti distorsioni riguardanti l'aspetto geometrico e/o la seconda sfera di coordinazione.

T (K)	δ	ΔE_Q	Γ	A (%)	Attribuzione
	0.36	1.00	0.49*	52	Fe(III)M
10 K	1.25	1.99	0.33	21	Fe(II)M
	1.31	2.27	0.32	28	Fe(II)M

Fig. 5.2 Parametri e spettro Mössbauer relativi al campione di chevkinite del Pakistan alla temperatura di 10K.

Capitolo 6

RIPARTIZIONE CATIONICA

6.1 Introduzione

Come già rivelato dal raffinamento strutturale delle occupanze, è evidente che nessun sito può essere considerato totalmente occupato da un unico catione. Le ragioni principali sono le seguenti:

<u>Siti A</u>

La Terra Rara più leggera è il La con numero atomico 57; eppure sia nei siti A1 che nei siti A2 è presente un numero medio di elettroni (n*e*⁻) significativamente inferiore: rispettivamente 54.66 e 52.18 in Pakistan, 53.40 e 51.47 in AZ1, 52 e 50 in AZ4 (tabella 24); questo significa che né A1 né A2 sono completamente occupati dalle Terre Rare ma piuttosto da una miscela di Ca e REE. Inoltre, il rapporto costante tra n*e*⁻ A1 e n*e*⁻ A2 segnala simili meccanismi di distribuzione cationica sia nei campioni del Pakistan che in quelli delle Azzorre. Ancora, n*e*⁻ A1 è sempre maggiore di n*e*⁻ A2, il che indica la presenza di cationi più pesanti nel sito A1 a coordinazione 8 che nel sito A2 a coordinazione 10.

Siti ottaedrici

Il sito B è il più grande (distanza media ~2.156Å in tutti i campioni), perciò è quello maggiormente occupato da Fe²⁺. Il ne⁻ B in Pakistan, significativamente minore di 26 (24.7), indica comunque una piccola sostituzione di Fe²⁺ da parte di specie cationiche più leggere (es. Mg); nelle Azzorre invece ne⁻ B è più vicino a 26, e quindi vi è una maggiore occupanza di Fe²⁺ rispetto al Pakistan.

I siti C sono caratterizzati da distanze di legame più corte che nel sito B, indicando in tutti i casi una maggiore occupanza di Ti^{4+} . Il sito C2B è quello con la maggiore occupanza di Ti^{4+} dato il minore numero di elettroni e la distanza di legame più corta: in Pakistan, ad esempio, n*e*⁻ è 22.70 e la distanza di legame media è 1.984 Å e quindi ci si può aspettare una quasi totale occupanza del Ti^{4+} ; nelle Azzorre la distanza di legame media è appena più lunga (~ 1.988Å) e n*e*⁻C2B, significativamente maggiore (~26), indica la presenza di un catione più pesante (ma con raggio ionico non tanto più grande) del Ti^{4+} (es.. Nb).

Tra i siti C, C2A ha la distanza media maggiore e ciò comporta significative sostituzioni del Ti⁴⁺ da parte di un catione a raggio ionico maggiore (es. Fe²⁺). Questa sostituzione da

parte di cationi più grossi e più pesanti (es. Fe^{2+} e Nb) è più evidente nelle Azzorre dove anche il numero di elettroni è più elevato (~ 27).

Infine il sito C1 è caratterizzato da un numero di elettroni maggiore di 22 (23.8 in Pakistan e ~23.4 e nelle Azzorre), il che indica la presenza di uno o più cationi più pesanti assieme al Ti^{4+} (Fe³⁺ e forse anche Fe²⁺).

Si è deciso di elaborare una distribuzione dei cationi nei singoli siti cristallografici solo per i cristalli di cui si disponeva di un chimismo completo (analizzati con la strategia di lavoro indicata nella prova 5 della tabella 8), e precisamente, per AZ1, AZ4gr, AZ4A, P4, P5, P6, P7.

I primi tentativi di ripartizione sono stati eseguiti con un foglio elettronico partendo dai seguenti dati:

- frazioni atomiche per unità di formula ottenute dall'analisi chimica;
- numero di elettroni di ciascun sito cristallografico, escludendo quelli del tetraedro nel quale è sempre stata assunta una occupanza piena del Si;
- distanze medie dei siti ottaedrici.

Di volta in volta venivano fatte variare i contenuti dei vari siti tenendo sotto controllo le differenze tra elettroni calcolati ed elettroni osservati e tra distanze medie calcolate e distanze medie osservate. Le distanze medie calcolate sono state ottenute assumendo un contributo lineare di ciascuna frazione atomica alle distanze; sono stati utilizzate per i cationi le dimensioni dei raggi ionici puri (Shannon, 1976), e si è considerato il raggio dell'anione pari a 1.37 Å, tenendo conto della coordinazione media dell'ossigeno in questa struttura (Sokolova et al., 2004).

Queste prime elaborazioni hanno portato ad un buon esito per gli elementi maggiori, mentre non si è riusciti ad arrivare ad un'assegnazione univoca degli elementi minori.

Una distribuzione completa di tutte le specie cationiche nei numerosi siti strutturali delle chevkiniti, è stata ottenuta con l'utilizzo di un programma che cerca il minimo di una funzione di errore utilizzando il metodo del simplesso (Nelder and Mead, 1965.; Giorgio Menegazzo, comunicazione personale). Sono state prese in esame per ciascun cristallo 49 grandezze, considerate con il loro errore, e precisamente:

- grandezze ottenute dal raffinamento strutturale:
 - numero di elettroni, e loro errori, nei siti A1, A2, B, C1, C2A, C2B (tabella 3) (n. di dati: 6);
 - 2. distanze di legame medie, e loro errori, nei siti B e C (tabelle 5) (n. di dati: 4);

- grandezze ottenute dall'analisi chimica:
 - singole frazioni atomiche per 22 ossigeni considerate con le loro deviazioni standard ottenute mediando i punti analisi delle prove 5 (tabelle 10b, 11b, 12b, 18b, 19b, 20b, 21b); va sottolineato che gli errori sul Fe²⁺ e Fe³⁺ sono stati considerati notevolmente più elevati della loro deviazione standard, a causa della propagazione di errori dovuta al calcolo della ripartizione Fe²⁺ - Fe³⁺ eseguita su base stechiometrica (n. di dati: 19);
 - la somma degli elettroni, e relativo errore, delle frazioni atomiche occupanti A, B,
 e C, ottenute dall'analisi chimica (n. di dati: 1);
- somma dei cationi nei singoli siti A1, A2, B, C1, C2A, C2B, Si1, Si2 (σ ± 0.001) (n. di dati: 8);
- numero totale di cationi (= 13) per 22 ossigeni ($\sigma \pm 0.005$) (n. di dati: 1);
- numero totale di cariche negative (44) per unità di formula ($\sigma \pm 0.05$) (n. di dati: 1);
- "bond valence sums" (BVS) (Brown, 2002) per ciascun ossigeno, calcolate di volta in volta sulla base della distribuzione cationica ($\sigma \pm 0.2$) (n. di dati: 8);
- il rapporto Fe³⁺/Fe_{tot} misurato attraverso la spettroscopia Mössbauer (σ ± 0.05) (n. di dati: 1), solo per i campioni del Pakistan.

Per le chevkiniti studiate, sono state fatte inoltre le seguenti assunzioni riguardo alla possibile distribuzione di cationi:

- entrambi i siti A possono essere occupati da REE, Ca, Th, e Sr;
- il sito B può essere occupato da Fe²⁺, Mg, Mn, Ca, Y e Zr;
- i siti C possono essere occupati da Fe^{2+} , Mg, Fe^{3+} , Ti, Nb, Zr e Al.

6.2 Risultati

Le distribuzioni dei singoli cristalli ottenute con il programma di minimizzazione sono presentate nella tabella 23; si è ritenuto utile determinare anche la distribuzione di un cristallo medio per il Pakistan (P_{medio}) e un cristallo medio per i cristalli AZ4 (AZ4_{medio}) partendo da grandezze mediate. I dettagli dei risultati della minimizzazione sono riportate nella tabella 24.

La distribuzione cationica nei siti A con coordinazione 8 e 10, rispettivamente A1 e A2, è stata calcolata tenendo in considerazione il numero di elettroni. Come risultato, Ce e Ca si trovano quasi equamente distribuiti tra A1 e A2; il La, la Terra Rara più leggera, si trova solo nel sito A2, mentre Pr, Nd, Sm e Gd, più pesanti, si trovano solo nel sito A1 assieme al Th. La distribuzione dei cationi così ottenuta è in accordo anche con le

distanze di legame osservate: il poliedro A1, che è più piccolo di A2, ospita cationi con raggio ionico più piccolo, mentre A2 ospita cationi con raggio ionico maggiore. Di fatto Ito (1967) ha dimostrato, attraverso la crescita sperimentale di chevkiniti e perrieriti, che tutta la geometria delle chevkiniti, a partire dai parametri di cella, è influenzata dalle specie cationiche residenti nei siti A. Ulteriore conferma dell'attendibilità di questa distribuzione è fornita dalla geochimica: le Terre Rare più pesanti Pr, Nd, Sm, Gd risiedono tutte nello stesso sito, A1.

Il sito B, in tutti i campioni, è dominato dal Fe^{2+} . I campioni del Pakistan si distinguono però da quelli delle Azzorre per il minor contenuto di Fe^{2+} (circa 0.80 nel Pakistan, circa 0.85 a.f.u. nelle Azzorre). Nei cristalli del Pakistan è presente, inoltre, un quantità media di Mg pari a 0.1 a.f.u., e sembra che, proprio questa sostituzione Fe^{2+} - Mg, sia responsabile della maggiore distorsione dei siti B del Pakistan rispetto a quelli delle Azzorre (fig 3.1); il diverso contenuto di Mg anche tra i singoli cristalli del Pakistan (es. confronto tra P5 e P7 della tabella 23) determina una certa variabilità della distorsione, come osservato nel capitolo 3.

I siti C sono disordinati.

Nel sito C1 i cationi dominanti sono Fe e Ti; mentre nel Pakistan il Fe è solo Fe³⁺, nelle chevkiniti delle Azzorre in cui il rapporto Fe³⁺/ Σ Fe è più basso che nel Pakistan, sono presenti sia Fe²⁺ che Fe³⁺.

Nei siti C2 il Ti è il catione dominante rispetto a tutti gli altri, mentre il Fe^{2+} è presente in minore quantità. I C2 delle chevkiniti delle Azzorre si distinguono anche per il notevole contenuto di Zr e di Nb; lo Zr si trova ordinato in C2A, mentre il Nb si disordina tra i siti C2A e C2B.

La fig. 6.1 evidenzia che il diverso contenuto di Ti+Nb+Zr nei siti C potrebbe essere responsabile della loro diversa distorsione; la varianza angolare sembra diminuire in relazione al maggior contenuto di penta-tetravalenti, e quindi alla minore quantità di Fe. Sono state calcolate anche le valenze di legame (BVS) con il metodo di Brown (2002) (tabella 25), che hanno confermato l'attendibilità della distribuzione determinata. Dalla tabella 25 emerge che l'O6 è l'unico ossigeno sottosaturo, ma questo è probabilmente dovuto alla sottostima del contributo di carica.

Fig. 6.1 Relazione tra la varianza angolare (Robinson et al., 1971) e il contenuto di (Ti + Zr + Nb) nei siti C dei campioni studiati.

Capitolo 7

STUDIO CON MICROSCOPIO ELETTRONICO IN TRASMISSIONE

7.1 Generalità

Sui campioni di chevkinite è stato effettuato uno studio microstrutturale, condotto presso il Dipartimento di Scienze Mineralogiche e Petrologiche dell'Università di Torino, con un microscopio elettronico in trasmissione (TEM) Philips CM12 (che opera a tensione massima di 120 kV, con un cristallo di LaB₆) a cui è annessa una microanalisi EDS (con rivelatore di Si drogato Li).

Tale indagine ha permesso di ottenere diversi tipi di immagini:

- 1) immagini a ingrandimenti medi (13000 76000 ingrandimenti);
- 2) immagini di diffrazione (SAED, Selected Area Electron Diffraction);

3) immagini di reticolo diretto (HRTEM) a elevati ingrandimenti secondo precise orientazioni cristallografiche.

Nella microscopia elettronica in trasmissione, se si osserva solo il fascio diretto si hanno le immagini in campo chiaro (bright field), mentre si possono avere immagini in campo scuro (dark field) quando si osserva un fascio diffratto.

Le immagini in campo scuro vengono spesso utilizzate come una parte complementare all'immagine in campo chiaro. Il termine campo scuro è dovuto al fatto che la maggior parte del cristallo viene lasciata al buio.

Se il campione analizzato è cristallino, la radiazione incidente viene diffratta dal campione secondo angoli obbedienti alla legge di Bragg, analogamente a quanto avviene per i raggi X.

La lunghezza d'onda degli elettroni (nel caso presente 0.032 Å con tensione di lavoro di 120 kV, contro valori dell'ordine di 1 Å per i raggi X), il tipo di interazione tra questi ed il materiale cristallino è tale per cui si ottengono effetti di diffrazione registrabili immediatamente. Inoltre, deformazioni e/o variazioni anche molto piccole nei reticoli cristallini comportano variazioni locali nella orientazione dei piani reticolari che possono essere messe in evidenza con facilità. La figura di diffrazione elettronica consiste in una sezione piana, non distorta, del reticolo reciproco (r.r.) perpendicolare all'asse del microscopio e costituita da un grande numero di macchie di diffrazione o fasci diffratti ("spots").

Misurando direttamente sulle lastre fotografiche le periodicità tra queste macchie R (cioè la distanza tra lo spot centrale, corrispondente al fascio trasmesso, e lo spot diffratto in esame), conoscendo la lunghezza d'onda utilizzata λ e la distanza L tra il campione e la lastra fotografica (distanza di lavoro in mm o lunghezza della camera, indicata dalla macchina e periodicamente tarata) si risale alle distanze interplanari d_{hkl}.

Dalla legge di Bragg: $\lambda = 2d_{hkl}\sin\theta$ si ricava: $\lambda/d_{hkl} = 2\sin\theta$;

dalla fig. 7.1, si osserva che R = Ltg2 θ ; per cui: tg2 θ = R/L;

considerando che a 120 kV : $\lambda = 0.032$ Å e $\theta = 1-2^{\circ}$

si ha che: $tang2\theta \approx 2sin\theta$

per cui: $R/L \approx \lambda/d_{hkl} \longrightarrow d_{hkl} = \lambda L/R$

Fig. 7.1. Condizioni necessarie per la diffrazione.

Se il vettore reciproco perpendicolare al piano di r.r. in esame è particolarmente corto, data la notevole lunghezza del raggio della sfera di Ewald, è possibile talvolta registrare, su una singola lastra fotografica, uno o più piani di r.r. appartenenti ad uno o più ordini superiori ed inferiori. In questi casi è possibile sia simulata la presenza di macchie di diffrazione nel piano di r.r. preso in esame, magari in posizioni vietate dalla simmetria o simulanti periodicità errate. In alcuni casi è anche possibile, mediante opportune misure e relazioni, risalire al valore del parametro reticolare diretto nella terza dimensione, cioè lungo l'asse di osservazione. Questi particolari effetti di diffrazione possono a volte essere riconosciuti mediante l'osservazione in diffrazione di regioni di campione più spesse ed anche ruotando leggermente il campione. La diffrazione elettronica serve, quindi, sia per definire la struttura (anche locale) di un campione e, insieme a dati ottenuti con altri metodi, per consentirne la modellizzazione, sia anche per orientare il

campione secondo direzioni cristallografiche opportune per l'osservazione del reticolo cristallino in alta risoluzione.

Le immagini in HRTEM si ottengono facendo interferire il fascio trasmesso ed un certo numero di fasci diffratti (orientati simmetricamente rispetto al fascio trasmesso) ed effettuando le osservazioni ad elevati ingrandimenti, superiori a 100.000. L'immagine risultante, sotto determinate condizioni (orientazione, spessore e conduttività del campione opportuni, corretto allineamento delle lenti, alta risoluzione puntuale dello strumento, distanze interplanari non inferiori alla risoluzione puntuale, etc.) avrà una struttura periodica bidimensionale direttamente relativa alla distribuzione atomica nel cristallo. Nelle opportune condizioni di lavoro è possibile quindi osservare direttamente, anche se localmente, la struttura cristallina e molte caratteristiche strutturali non rilevabili con altre tecniche, quali per esempio: difetti reticolari, difetti di impilamento strutturale, difetti polisomatici, direzioni di crescita o di dissoluzione, ecc..

Il materiale da esaminare al TEM deve essere preparato secondo procedure lunghe e complesse. L'ottenimento infatti di diffrattogrammi elettronici adatti alle indagini sopraddette, e anche di immagini in alta risoluzione, dipende molto da questo fattore.

Dato che l'interazione degli elettroni con il materiale è molto forte, il campione deve avere uno spessore minore di 200 Å (meglio ancora se dell'ordine di 100 Å) perché possa essere considerato trasparente agli elettroni a 120 kV.

Le tecniche di preparazione dei campioni con spessore opportuno per indagini strutturali sono principalmente due:

- ♦ macinazione,
- assottigliamento per via ionica.

In questo lavoro di tesi, i campioni sono stati ridotti di dimensioni per macinazione ad umido (con alcool isopropilico), in un mortaio di agata e utilizzando un pestello di agata; la sospensione è stata poi depositata su retini di Cu ricoperti da un sottile film di C.

Il campione preparato viene collocato in un'asta porta-campioni. C'è la possibilità di scegliere tra diversi tipi di portacampioni: fisso, ad una sola inclinazione, ad inclinazione e rotazione, a doppia inclinazione. Per gli studi di carattere cristallografico il portacampione più adatto è quello "a doppia inclinazione": quello utilizzato nel lavoro consiste di due assi di rotazione perpendicolari tra loro e contenuti nel piano normale all'asse del microscopio.

7.2 Discussione dei dati

I microgranuli osservati appaiono generalmente molto scuri e in alcuni casi presentano spigoli netti.

Nell'appendice I sono riportati alcuni esempi rappresentativi di immagini ottenute con il TEM:

- figg. 1-8: immagini di microcristalli di chevkinite, a ingrandimenti medi, visti secondo direzioni principali, e relativi SAED.

- fig. 9 immagine a ingrandimenti elevati che mostra le frange reticolari;

- figg. 10-11 immagini in alta risoluzione.

Le immagini di diffrazione mostrano tutte macchie di diffrazione nette e luminose e questo significa che i campioni studiati sono caratterizzati da elevata cristallinità; gli spots sono inoltre tutti perfettamente puntiformi a dimostrazione che nelle direzioni cristallografiche osservate non vi sono difetti strutturali alla scala della diffrazione.

Le figure di diffrazione mostrano solamente riflessi (hk0) con h+k=2n, a conferma che il reticolo della chevkinite è di tipo C; nella fig. 7.2 è riportato, come esempio, un SAED di un microgranulo delle Azzorre visto secondo la direzione [010] con la relativa indicizzazione.

Fig. 7.2. SAED di un microgranulo delle Azzorre (Azz33)visto secondo la direzione [010].

In alcuni SAED sono stati osservati riflessi di debole intensità non ammessi dalle regole di estinzione dovute alla simmetria cristallina (elementi di simmetria con scorrimento).

La presenza di riflessi "proibiti" nella diffrazione di elettroni è dovuta ad "effetti dinamici" (possibili con gli elettroni e non con i raggi X). Infatti, gli elettroni diffratti da una famiglia di piani reticolari possono giocare il ruolo di fascio primario per un'altra famiglia di piani e quindi essere nuovamente diffratti. In pratica, secondo una certa orientazione del campione rispetto al fascio primario si ha un "cambiamento di origine" e, se esistono i punti di diffrazione di indici $h_1 k_1 l_1 e h_2 k_2 l_2$, può comparire un riflesso di indici $h_1 - h_2$, $k_1 - k_2$, $l_1 - l_2$ oppure $h_1 + h_2$, $k_1 + k_2$, $l_1 + l_2$. Una rotazione del campione di pochi gradi fa sparire tali riflessi deboli.

Per simulare le diffrazioni elettroniche, confrontarle con quelle sperimentali e quindi identificare e/o convalidare la direzione di osservazione e il piano di diffrazione osservato, è stato usato il programma Ca.R.Ine Crystallography 3-1 (Boudias & Monceau, 1998).

Nelle figg. 1-8 dell'appendice I si è cercato di mettere in relazione i caratteri morfologici dei granuli studiati con le orientazioni cristallografiche principali, in particolare per vedere se esistono delle direzione preferenziali di fatturazione, sovrapponendo le immagini a ingrandimenti medi con i corrispondenti SAED. Dalla tabella riassuntiva dell'Appendice, che riporta per ciascun tipo di spigolo indicizzato la frequenza nei vari microgranuli, emerge che non ci sono direzioni preferenziali di fratturazione. spigoli preferenziale secondo le cui direzioni. Le figg. 9-11 in alta risoluzione sono riportate come esempio della perfetta cristallinità dei campioni analizzati e dell'assenza di difetti strutturali nei piani di osservazione.

Capitolo 8

CONCLUSIONI

La chevkinite, minerale contenente Torio, è interessata spesso da processi di decadimento radioattivo, che provocano danneggiamenti strutturali e che rendono il minerale parzialmente o totalmente metamittico. Per poter esaminare materiali con diversi gradi di danneggiamento, e quindi quantificare i danni da radiazione, è necessario aver caratterizzato dal punto di vista cristallografico e strutturale minerali non ancora interessati da un processo di metamittizzazione.

Con la presente tesi sono stati svolti accurati studi strutturali su chevkiniti non metamittiche del Pakistan e delle Azzorre. Per la caratterizzazione delle chevkiniti sono state utilizzate diverse metodologie: diffrazione X su cristallo singolo, analisi con la microsonda elettronica, spettroscopia Mössbauer e microscopia elettronica in trasmissione.

I principali risultati ottenuti sono:

- 1. Il raffinamento strutturale è stato eseguito nel gruppo spaziale C 2/m e si è concluso con fattori di accordo convenzionali di 2%. Il gruppo spaziale è stato confermato dalle indagini con microscopio elettronico in trasmissione. Non essendo stati usati vincoli chimici durante il raffinamento, risulta molto soddisfacente la differenza, attorno a 1%, tra elettroni calcolati dal raffinamento e quelli derivati dall'analisi chimica.
- 2. Sono state esaminate le distorsioni dei poliedri B e C alla luce della distribuzione dei cationi: i siti B e C sono meno distorti man mano che Fe²⁺ e Ti diventano i cationi dominanti. Si è trovato che l'angolo β e la lunghezza *a* della cella sono correlati positivamente con il contenuto di (Ca + Sr) nei siti A.
- 3. Per distribuire tutte le specie chimiche nei vari siti strutturali A, B, e C, è stata eseguita la minimizzazione di una funzione di errore. Singolare è risultata la distribuzione cationica delle Terre Rare tra i siti A1 e A2 della struttura, derivata dal numero di elettroni del raffinamento: le Terre Rare più pesanti, i.e. Pr, Nd, Sm, Gd, risiedono tutte nello stesso sito A1, assieme al Th; la Terra Rara più leggera, il Lantanio, solo nel sito A2; il Cerio, la Terra Rara più abbondante nella chevkinite, quasi equamente distribuito tra i siti A1 e A2. Singolare è risultata anche la distribuzione del Ca, anch'esso, come il Ce, quasi equamente distribuito

tra A1 e A2. Il sito B è occupato prevalentemente da Fe^{2+} . I siti C sono più disordinati. Nel sito C1 i cationi dominanti sono Fe e Ti; nei siti C2, il catione dominante è il Ti. Nelle chevkiniti delle Azzorre, caratterizzate da un significativo contenuto di Zr e di Nb, lo Zr si trova ordinato nel sito C2A; il Nb disordinato tra C2A e C2B. Per quanto è stato possibile conoscere, sono pochi, in letteratura, i lavori che affrontano il problema della distribuzione cationica. Per quanto riguarda i siti A1 e A2, McDowell (1979), sulla base di accurate indagini con la microsonda elettronica, ha ipotizzato che il Ca sostituisca solo le terre rare più leggere e con raggio ionico più grande, Lantanio e Cerio, e che l'entità della sostituzione Ca-Terre Rare diminuisca con l'aumentare del numero atomico. Ulteriori considerazioni sui raggi ionici condussero inoltre il suddetto autore a concludere che le terre rare più pesanti e con raggio ionico più piccolo presumibilmente occupavano il sito a più bassa coordinazione, A1, e che il Ca sostituiva le terre rare con raggio ionico più grande nel sito a coordinazione più elevata, A2. Per quanto riguarda i siti ottaedrici, Yang et al. (2002) per la chevkinite-(Ce) di Mianning, Sichuan, Cina, propongono Fe e Ti parzialmente ordinati tra i siti ottaedrici B, C1, C2A and C2B; $Fe^{2+} e Fe^{3+}$ sono entrambi presenti nei siti B e C, e il Nb è disordinato tra i siti C1, C2A and C2B. Sokolova et al. (2004) per la chevkinite-(Ce) della Mongolia propongono il sito B occupato prevalentemente da Fe^{2+} , con piccole quantità di Mn^{2+} (e Zr^{4+}), e i siti C1, C2A, C2B occupati da Ti, Fe³⁺ e Nb. Per i siti C1 i suddetti autori propongono due distribuzioni alternative, una con Fe³⁺ dominante, e l'altra con Ti⁴⁺ dominante.

- 4. Dall'analisi Mössbauer è emerso che mentre per la distribuzione del Fe²⁺ c'è un buon accordo con la distribuzione cationica eseguita su base cristallochimica, per quanto riguarda il Fe³⁺ la spettroscopia Mössbauer distingue una sola specie di Fe³⁺ ottaedrico, quest'ultimo fatto probabilmente dovuto all'elevato disordine cationico nei vari siti ottaedrici.
- 5. Una conferma che le chevkiniti del Pakistan e delle Azzorre non sono metamittiche è venuta dalle indagini con il microscopio elettronico in trasmissione (TEM). Le immagini HRTEM hanno messo in evidenza la perfetta cristallinità dei campioni analizzati e l'assenza di difetti strutturali nei piani osservati .Esistono pochi dati in letteratura che riportino indagini al TEM sulle chevkiniti (Yang et al., 1991; Li et al., 2005).

BIBLIOGRAFIA

Brown I. (2002): The Chemical Bond in Inorganic Chemistry: The Bond Valence Model, 278 p. Oxford University Press, New York.

Calvo C., Faggiani R. (1974): A re-investigation of the crystal structures of chevkinite and perrierite. Am. Mineral. 59, 1277-1285.

Carbonin S., Liziero F., Fuso C. (2005): Mineral Chemistry of Accessory Minerals in Alkaline Complexes from the Alto Paraguay Province. In: Gomes C.B., Comin-Chiaramonti P. (editors): Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform. Edusp/Fapesp, Sao Paulo, pp. 149-157.

Casetta B., Giaretta A., Mezzacasa G. (1990): Determination of rare earth and other trace elements in rock samples by ICP-Mass Spectrometry: comparison with other techniques. Atomic Spectroscopy 11, 222-228.

Chakmouradian A.R., Mitchell R.H. (1999): Primary, agpaitic and deuteric stages in the evolution of accessory Sr, REE, Ba and Nb-mineralization in nepheline-syenite pegmatites at Pegmatite Peak, Bearpaw Mountains, Montana. Miner. Petrol. 67, 85-110.

Droop G.T.R. (1987): A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag. 51, 431-435.

Fialin M., Outrequin M. and Staub P.F.(1997): A new tool treat peak overlaps in electron-probe microanalysis of rare-earth-element L-series X-rays. Eur. J. Mineral. 9, 965-968.

Fuso C. (1999): Minerali accessori in sieniti dell'"Alto Paraguay": Titanosilicati ricchi di Terre Rare ed eudialiti. Tesi di laurea. Università degli Studi di Padova.

Holland H.D., Gottfried D. (1955): The effect of nuclear radiation on the structure of zircon. Acta Cryst. 8, 291-300.

Holland H.D., Kulp J.L. (1950): Geologic age from metamict minerals. Science 111, 312.

Hurley P.M., Fairbairn H.W. (1952): Alpha radiation damage in zircon. J. App. Phys. 23, 1408.

Hurley P.M., Fairbairn H.W. (1953): Radiation damage in zircon: a possible age method. Bull. Geol. Soc. America 64, 659-673.

Imaoka T., Nakashima K. (1994): Chevkinite in syenites from Cape Ashizuri, Shikoku Island, Japan. Neues Jahrbuch fűr Mineralogie. Mh. 8, 358-366.

Ito J., AremJ.E. (1971): Chevkinite and perrierite: Synthesis, crystal growth and polymorphism. Am. Mineral. 56, 307-319.

Jaffe H.W., Evans H.T., Chapman R.W. H.D. (1956): Occurrence and age of chevkinite from the Devil's Slide fayalite-quartz syenite near Stark, New Hampshire. Am. Mineral. 41, 474-487.

Kopylova M.G., Rickard R.S., Kleyenstueber A., Taylor W.R., Gurney J.J., Daniels L.R.M. (1997b): First occurrence of strontian K-Cr-loparite and Cr-chevkinite in diamonds. Russian Geology and Geophysics 38, 405-420.

Li G., Yang G., Ma Z., Shi N., Xiong M., Fan H., Sheng G. (2005): Crystal structure of natural non-metamict Ti- and Fe²⁺-rich Chevkinite-(Ce). Acta Geologica Sinica 79, 3, 325-331.

Liziero F. (2001): Titanosilicati ricchi di Fe, Nb e Terre Rare in sieniti dell'"Alto Paraguay": indagini chimiche, cristallografiche e microstrutturali. Tesi di laurea. Università degli Studi di Padova.

Liziero F., Carbonin S., Belluso E. (2003): Disomogeneità ed eterogeneità in titanosilicati di sieniti dell'Alto Paraguay. FIST GEOITALIA 2003 – 4° Forum Italiano di Scienze della Terra, Bellaria, pp. 638-639.

Macdonald R., Belkin H.E. (2002): Compositional variation in minerals of the chevkinite group. Mineral. Mag. 66(6), 1075-1098.

McDowell S.D. (1979): Chevkinite from the Little Chief Granite porphyry stock, California. Am. Mineral. 64, 721-727.

Maini L. (2003): Sintesi e caratterizzazione cristallochimica di ossidi misti, ed in particolare di cristalli appartenenti al gruppo degli spinelli .Tesi di dottorato di Scienze della Terra. Ciclo XVI, Università degli Studi di Padova.

Merli M., Caucia F. (1997): Nuovi contributi alla cristallochimica degli epidoti. Atti Ticinensi Sc. Terra 39, 149-162.

Mitchell R. S. (1966): Virginia metamict minerals: perrierite and chevkinite. Am. Mineral. 51, 1394-1405.

Murakami T., Chakoumakos B.C., Ewing R.C., Lumpkin G.R., Weber W.J. (1991): Alpha-decay event damage in zircon. Am. Mineral. 76, 1510-1532.

Nelder J.A., Mead R. (1965): A Simplex Method for Function Minimization. Computer Journal, 7, 308.

Parodi G.C., Della Ventura G., Mottana A., Raudsepp M. (1994): Zr-rich non metamict perrierite-(Ce) from holocrystalline ejecta in the Sabatini volcanic complex (Latium, Italy). Mineral. Magaz. 58, 607-613.

Pen C.C., Pan C.L. (1964): The crystal structure of chevkinite. Scientia Sinica (in Russian) 13, 1539-1545.

Platt R.G., Wall F., Williams C.T., Woolley A.R. (1987): Zirconolite, chevkinite and other rare earth element minerals from nepheline syenites and peralkaline granites and syenites of the Chilwa Alkaline Province, Malawi. Mineral. Magaz. 51, 253-263.

Ridolfi F. (2000): Studio petrografico e geochimico dei clasti sienitici inclusi nei prodotti vulcanici di São Miguel (Azzorre) e Tenerife (Canarie). Tesi di dottorato di Scienze della Terra. Università degli Studi di Urbino.

Ridolfi F., Renzulli A., Santi P., Upton B.G.J (2003): Evolutionary stages of crystallization of weakly peralkaline syenites: evidence from ejecta in the plinian deposits of Agua de Pau volcano (São Miguel, Azores Islands). Mineral. Mag. 67, 4, 749-767.

Robinson K., Gibbs G.V., Ribbe P.H. (1971): Quadratic elongation, a quantitative measure of distorsion in coordination polyedra. Science 172, 567-570.

Segalstad T.V., Larsen A.O. (1978): Chevkinite and perrierite from the Oslo region, Norway. Am.. Mineral. 63, 499-505.

Sheldrick G.M. (1997): SHELXL-97, Program for the refinement of crystal structures. University of Gottingen, Germany.

Sokolova E., Hawthorne F., Della Ventura G., Kartashov P. (2004): Chevkinite-(Ce): crystal structure and the effect of moderate radiation-induced damage on site-occupancy refinement. Can. Miner. 42, 4-17.

Tokonami M. (1965): Atomic scattering factor for O²⁻. Acta Cryst. 19, 486.

Troll V.R., Schmincke H.-U. (2002): Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite "A" Gran Canaria, Canary Islands. J. Petr. 43, 243-270.

Yang G., Pan Z., Wu X., Zhao W. (1991): A study of chevkinite occurring in a rare-earth mineral deposit in Northern Xichang, Sichan Province, China. Acta Mineral. Sinica 11, 109-114.

Yang Z., Fleck M., Smith M., Tao K., Song R., Zhang P. (2002): The crystal structure of natural Fe-rich chevkinite-(Ce). Eur. J. Mineral. 14, 969-975.

TABELLE

Tab. 1.a. Run list delle analisi diffrattometriche preliminari.

	Interva	llo di w		2θ	χ	φ
Run 1:	-45.000	50.000 (95 frames) con	40.000,	-50.000,	-170.000

Tab. 1.b. Run list delle analisi diffrattometriche complete.

	Interval	lo di w	2θ	χ	φ
Run 1:	-45.000	50.000 (95 frames) con	40.000,	-50.000,	-170.000
Run 2:	-45.000	50.000 (95 frames) con	40.000,	-40.000,	-30.000
Run 3:	-45.000	50.000 (95 frames) con	40.000,	-20.000,	70.000
Run 4:	-45.000	70.000 (115 frames) con	60.000,	-90.000,	-50.000
Run 5:	-45.000	40.000 (85 frames) con	30.000,	-20.000,	170.000
Run 6:	-45.000	40.000 (85 frames) con	30.000,	-10.000,	-90.000

Tab. 2. Parametri di cella dei singoli cristalli e condizioni delle raccolte dati.

	P1	P2	PN	P4	Р5	P6	P7
<i>a</i> (Å)	13,391(1)	13,386(1)	13,388(3)	13,386(3)	13,384(1)	13,381(2)	13,387(2)
<i>b</i> (Å)	5,7431(8)	5,7451(9)	5,740(1)	5,7408(7)	5,7446(7)	5,7363(8)	5,7363(9)
<i>c</i> (Å)	11,067(1)	11,067(1)	11,063(2)	11,068(2)	11,071(1)	11,064(2)	11,059(2)
β (°)	100,62(1)	100,54(1)	100,57(2)	100,59(2)	100,58(1)	100,61(1)	100,60(1)
Volume (Å ³)	836,53(2)	836,7(2)	835,7(3)	836,1(3)	836,7(1)	834,7(2)	834,7(2)
Dimensione cristallo (mm)	0,09x0,14x0,18	0,05x0,14x0,15	0,08x0,09x0,16	0,06x0,13x0,15	0,05x0,11x0,13	0,05x0,15x0,15	0,07x0,13x0,13
Coefficiente assorbimento (mm ⁻¹)	13,68	13,67	13,69	13,68	13,67	13,39	13,71
Densità calcolata (g/cm ³)	4,998	4,997	5,003	5,001	4,997	4,959	5,009
Velocità di scansione(°/s)	0,050	0,025	0,050	0,050	0,025	0,050	0,050
2 theta min e max	7,5 - 86,2	7,5 - 86,2	7,7 - 85,9	7,7 - 86,0	7,5 - 86,2	7,7 - 86,3	7,7 - 86,1
	AZ1	AZ4gr	AZ4A	AZ4Q	AZ4L		
<i>a</i> (Å)	13,419(2)	13,407(2)	13,412(2)	13,402(2)	13,398(2)		
<i>b</i> (Å)	5,7371(5)	5,7349(8)	5,7332(8)	5,7341(5)	5,7307(5)		
<i>c</i> (Å)	11,064(2)	11,062(1)	11,065(2)	11,055(2)	11,055(2)		
β (°)	100,70(1)	100,69(1)	100,67(1)	100,66(1)	100,69(1)		
Volume (Å ³)	836,9(2)	835,8(2)	836,1(2)	834,9(2)	834,1(2)		
Dimensione cristallo (mm)	0,03x0,09x0,10	0,06x0,16x0,17	0,05x0,15x0,17	0,10x0,10x0,12	0,08x0,09x0,17		
Coefficiente assorbimento (mm ⁻¹)	13,33	13,75	13,47	13,76	13,78		
Densità calcolata (g/cm ³)	4,836	5,030	4,848	5,036	5,041		
Velocità di scansione(°/s)	0,025	0,067	0,067	0,025	0,025		
2 theta min e max	7,5 - 86,3	7,7 - 86,1	7,7 - 85,8	6,6 - 86,1	6,6 - 86,0		

Tab. 3. Elettroni di raffinamento e parametri statistici dei singoli cristalli.

	P1	P2	PN	P4	Р5	P6	P 7	AZ1	AZ4gr	AZ4A	AZ4Q	AZ4L
ne ⁻ A1	54,68 (0,06)	55,32 (0,07)	54,48 (0,10)	54,59 (0,07)	54,67 (0,09)	54,17 (0,07)	54,16 (0,06)	53,40 (0,06)	51,48 (0,06)	52,14 (0,13)	52,04 (0,12)	51,82 (0,05)
ne ⁻ A2	52,26 (0,06)	53,01 (0,06)	51,87 (0,10)	52,30 (0,07)	52,30 (0,08)	51,46 (0,06)	51,59 (0,06)	51,47 (0,06)	49,51 (0,06)	50,10 (0,12)	50,39 (0,11)	49,90 (0,05)
ne ⁻ B	24,94 (0,06)	25,13 (0,07)	24,42 (0,11)	24,64 (0,07)	25,07 (0,09)	24,69 (0,07)	24,67 (0,06)	26,36 (0,10)	25,58 (0,11)	26,01 (0,15)	25,86 (0,13)	26,00 (0,09)
ne ⁻ C1	23,97 (0,01)	23,83 (0,01)	23,97 (0,02)	23,76 (0,01)	23,90 (0,02)	23,69 (0,01)	23,77 (0,01)	23,62 (0,01)	23,56 (0,01)	23,36 (0,02)	23,37 (0,02)	23,51 (0,01)
ne ⁻ C2A	23,22 (0,02)	23,24 (0,02)	23,34 (0,03)	23,21 (0,02)	23,24 (0,03)	23,22 (0,02)	23,24 (0,02)	27,47 (0,05)	26,80 (0,06)	26,40 (0,07)	26,74 (0,07)	26,84 (0,05)
ne ⁻ C2B	22,73 (0,02)	22,73 (0,02)	22,74 (0,03)	22,55 (0,02)	22,65 (0,03)	22,72 (0,02)	22,75 (0,02)	26,65 (0,05)	25,83 (0,06)	25,94 (0,07)	26,16 (0,07)	25,91 (0,05)
ne ⁻ tot	332,72	335,43	331,11	331,69	332,71	329,25	329,70	337,45	327,30	329,56	330,36	329,21
R _{4s} (%)	1,88	1,87	3,12	2,10	2,59	1,91	1,69	1,60	1,77	1,84	1,80	1,57
N_{4s}	1227	1209	1165	1154	1177	1180	1181	1190	1200	1179	1247	1234
R _{all} (%)	2,1	2,2	3,56	2,54	3,08	2,23	2,09	2,06	2,11	2,22	2,05	1,82
N _{all}	1331	1332	1331	1319	1334	1326	1326	1325	1334	1326	1325	1321
wR ₂	4,7	4,56	7,48	4,66	6,29	4,16	3,76	3,44	4,09	4,43	5,24	3,58
Goof	1,033	1,032	0,977	0,950	0,995	0,960	0,872	0,946	1,026	0,988	0,920	1,012

Tab. 4.a. Coordinate atomiche e fattori termici del cristallo AZ1.

	х	У	Z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35625	0,00000	0,23311	0,01323	0,01604	0,01158	0,00000	0,00133	0,00000	0,01374
	0,00002	0,00000	0,00002	0,00013	0,00014	0,00013	0,00000	0,00009	0,00000	0,00009
A2	0,06977	0,00000	0,23936	0,00980	0,02874	0,00986	0,00000	0,00178	0,00000	0,01614
	0,00002	0,00000	0,00002	0,00013	0,00017	0,00013	0,00000	0,00009	0,00000	0,00009
В	0,50000	0,00000	0,00000	0,01144	0,00950	0,00710	0,00000	-0,00049	0,00000	0,00963
	0,00000	0,00000	0,00000	0,00039	0,00041	0,00038	0,00000	0,00026	0,00000	0,00024
C1	0,25000	0,25000	0,50000	0,01096	0,01112	0,00746	0,00004	0,00087	0,00029	0,00995
	0,00000	0,00000	0,00000	0,00029	0,00033	0,00029	0,00023	0,00020	0,00023	0,00019
C2A	0,50000	0,00000	0,50000	0,01268	0,01495	0,01202	0,00000	0,00152	0,00000	0,01331
	0,00000	0,00000	0,00000	0,00040	0,00044	0,00041	0,00000	0,00028	0,00000	0,00026
C2B	0,00000	0,00000	0,50000	0,01214	0,01638	0,01063	0,00000	0,00228	0,00000	0,01303
	0,00000	0,00000	0,00000	0,00041	0,00047	0,00042	0,00000	0,00028	0,00000	0,00027
Si1	-0,20102	0,50000	0,23154	0,00844	0,00727	0,00695	0,00000	0,00092	0,00000	0,00762
	0,00007	0,00000	0,00009	0,00045	0,00046	0,00043	0,00000	0,00034	0,00000	0,00019
Si2	-0,35771	0,50000	0,04604	0,01085	0,01023	0,00684	0,00000	0,00115	0,00000	0,00937
	0,00008	0,00000	0,00010	0,00046	0,00050	0,00044	0,00000	0,00036	0,00000	0,00020
01	0,22812	0,26559	0,31432	0,02044	0,00882	0,00843	0,00035	0,00088	0,00124	0,01279
	0,00015	0,00036	0,00017	0,00094	0,00094	0,00081	0,00076	0,00068	0,00081	0,00039
O2	0,47782	0,25342	0,37249	0,01230	0,01448	0,01141	-0,00252	0,00288	-0,00315	0,01264
	0,00013	0,00036	0,00016	0,00086	0,00103	0,00086	0,00081	0,00067	0,00079	0,00039
O3	0,42580	0,27249	0,09329	0,03163	0,02252	0,01579	0,00454	0,00032	0,01493	0,02383
	0,00017	0,00043	0,00019	0,00120	0,00125	0,00100	0,00094	0,00085	0,00104	0,00051
O4	0,14590	0,00000	0,47758	0,00914	0,01122	0,01062	0,00000	0,00256	0,00000	0,01023
	0,00019	0,00000	0,00024	0,00118	0,00134	0,00130	0,00000	0,00099	0,00000	0,00054
05	0,34821	0,00000	0,48904	0,01007	0,01067	0,01409	0,00000	0,00196	0,00000	0,01165
	0,00020	0,00000	0,00025	0,00123	0,00134	0,00137	0,00000	0,00104	0,00000	0,00055
O6	-0,08459	0,50000	0,17110	0,01193	0,05815	0,01382	0,00000	-0,00330	0,00000	0,02869
	0,00022	0,00000	0,00028	0,00142	0,00271	0,00148	0,00000	0,00116	0,00000	0,00088
07	-0,27036	0,50000	0,12870	0,02990	0,05899	0,01962	0,00000	0,01707	0,00000	0,03457
	0,00027	0,00000	0,00030	0,00187	0,00293	0,00169	0,00000	0,00144	0,00000	0,00098
08	0,18677	0,00000	0,09737	0,01686	0,01326	0,00908	0,00000	0,00162	0,00000	0,01317
	0,00021	0,00000	0,00025	0,00137	0,00144	0,00125	0,00000	0,00104	0,00000	0,00057

Tab. 4.b. Coordinate atomiche e fattori termici del cristallo AZ4gr.

	х	У	Z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35620	0,00000	0,23318	0,01433	0,01526	0,00994	0,00000	0,00035	0,00000	0,01342
	0,00002	0,00000	0,00002	0,00015	0,00015	0,00014	0,00000	0,00010	0,00000	0,00010
A2	0,06997	0,00000	0,23962	0,01045	0,02961	0,00838	0,00000	0,00106	0,00000	0,01624
	0,00002	0,00000	0,00003	0,00015	0,00019	0,00014	0,00000	0,00010	0,00000	0,00010
В	0,50000	0,00000	0,00000	0,01106	0,00800	0,00432	0,00000	-0,00120	0,00000	0,00813
	0,00000	0,00000	0,00000	0,00044	0,00042	0,00039	0,00000	0,00028	0,00000	0,00026
C1	0,25000	0,25000	0,50000	0,01243	0,01112	0,00732	0,00008	0,00048	0,00004	0,01046
	0,00000	0,00000	0,00000	0,00034	0,00035	0,00031	0,00025	0,00022	0,00026	0,00020
C2A	0,50000	0,00000	0,50000	0,01387	0,01385	0,01162	0,00000	0,00084	0,00000	0,01330
	0,00000	0,00000	0,00000	0,00046	0,00047	0,00045	0,00000	0,00032	0,00000	0,00028
C2B	0,00000	0,00000	0,50000	0,01264	0,01577	0,00976	0,00000	0,00128	0,00000	0,01282
	0,00000	0,00000	0,00000	0,00048	0,00050	0,00045	0,00000	0,00032	0,00000	0,00030
Si1	-0,20123	0,50000	0,23176	0,00994	0,00701	0,00664	0,00000	0,00050	0,00000	0,00799
	0,00009	0,00000	0,00010	0,00052	0,00049	0,00046	0,00000	0,00038	0,00000	0,00022
Si2	-0,35748	0,50000	0,04593	0,01174	0,01005	0,00544	0,00000	0,00076	0,00000	0,00919
	0,00009	0,00000	0,00010	0,00052	0,00052	0,00046	0,00000	0,00038	0,00000	0,00022
01	0,22818	0,26561	0,31478	0,02078	0,00843	0,00745	0,00071	0,00039	0,00158	0,01251
	0,00017	0,00037	0,00018	0,00108	0,00097	0,00086	0,00078	0,00074	0,00087	0,00042
02	0,47737	0,25361	0,37277	0,01336	0,01357	0,01027	-0,00208	0,00206	-0,00250	0,01242
	0,00016	0,00037	0,00018	0,00099	0,00107	0,00091	0,00083	0,00073	0,00086	0,00042
03	0,42600	0,27245	0,09326	0,03206	0,02318	0,01449	0,00377	0,00044	0,01402	0,02374
	0,00020	0,00045	0,00020	0,00138	0,00131	0,00104	0,00098	0,00093	0,00114	0,00056
04	0,14582	0,00000	0,47783	0,01106	0,01163	0,01106	0,00000	0,00198	0,00000	0,01126
	0,00022	0,00000	0,00026	0,00139	0,00144	0,00138	0,00000	0,00111	0,00000	0,00059
05	0,34811	0,00000	0,48960	0,01232	0,00941	0,01430	0,00000	0,00092	0,00000	0,01221
	0,00023	0,00000	0,00027	0,00145	0,00140	0,00145	0,00000	0,00116	0,00000	0,00061
06	-0,08509	0,50000	0,17089	0,01019	0,06154	0,01251	0,00000	-0,00332	0,00000	0,02878
	0,00025	0,00000	0,00030	0,00157	0,00292	0,00154	0,00000	0,00124	0,00000	0,00095
07	-0,27013	0,50000	0,12774	0,02829	0,06410	0,02098	0,00000	0,01569	0,00000	0,03637
	0,00031	0,00000	0,00034	0,00212	0,00325	0,00186	0,00000	0,00160	0,00000	0,00109
08	0,18717	0,00000	0,09772	0,01693	0,01628	0,00669	0,00000	-0,00096	0,00000	0,01370
	0,00024	0,00000	0,00026	0,00157	0,00156	0,00128	0,00000	0,00112	0,00000	0,00063

Tab. 4.c. Coordinate atomiche e fattori termici del cristallo AZ4A.

	х	У	Z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35633	0,00000	0,23319	0,01220	0,01550	0,01011	0,00000	0,00161	0,00000	0,01266
	0,00002	0,00000	0,00003	0,00016	0,00016	0,00016	0,00000	0,00011	0,00000	0,00011
A2	0,06982	0,00000	0,23957	0,00860	0,02986	0,00835	0,00000	0,00233	0,00000	0,01551
	0,00002	0,00000	0,00003	0,00016	0,00021	0,00017	0,00000	0,00011	0,00000	0,00012
В	0,50000	0,00000	0,00000	0,00982	0,00845	0,00492	0,00000	0,00003	0,00000	0,00790
	0,00000	0,00000	0,00000	0,00048	0,00046	0,00046	0,00000	0,00032	0,00000	0,00030
C1	0,25000	0,25000	0,50000	0,01030	0,01011	0,00629	-0,00022	0,00162	0,00031	0,00889
	0,00000	0,00000	0,00000	0,00036	0,00037	0,00035	0,00026	0,00025	0,00028	0,00023
C2A	0,50000	0,00000	0,50000	0,01099	0,01275	0,01031	0,00000	0,00204	0,00000	0,01134
	0,00000	0,00000	0,00000	0,00050	0,00050	0,00050	0,00000	0,00035	0,00000	0,00031
C2B	0,00000	0,00000	0,50000	0,01062	0,01579	0,00981	0,00000	0,00266	0,00000	0,01197
	0,00000	0,00000	0,00000	0,00052	0,00053	0,00052	0,00000	0,00036	0,00000	0,00033
Si1	-0,20096	0,50000	0,23172	0,00818	0,00614	0,00617	0,00000	0,00172	0,00000	0,00678
	0,00009	0,00000	0,00011	0,00057	0,00050	0,00052	0,00000	0,00043	0,00000	0,00023
Si2	-0,35732	0,50000	0,04602	0,00911	0,00885	0,00563	0,00000	0,00146	0,00000	0,00785
	0,00010	0,00000	0,00011	0,00056	0,00054	0,00052	0,00000	0,00043	0,00000	0,00024
01	0,22818	0,26543	0,31451	0,01944	0,00906	0,00623	0,00163	0,00131	0,00255	0,01171
	0,00019	0,00039	0,00020	0,00118	0,00102	0,00095	0,00083	0,00083	0,00094	0,00045
02	0,47767	0,25372	0,37259	0,00977	0,01390	0,00992	-0,00219	0,00307	-0,00215	0,01104
	0,00017	0,00039	0,00020	0,00104	0,00111	0,00102	0,00089	0,00082	0,00091	0,00045
03	0,42574	0,27336	0,09299	0,03026	0,02238	0,01186	0,00321	0,00024	0,01524	0,02197
	0,00022	0,00047	0,00022	0,00150	0,00134	0,00113	0,00102	0,00102	0,00121	0,00059
O4	0,14576	0,00000	0,47740	0,00756	0,01126	0,01104	0,00000	0,00371	0,00000	0,00970
	0,00024	0,00000	0,00028	0,00147	0,00149	0,00155	0,00000	0,00123	0,00000	0,00063
05	0,34830	0,00000	0,49011	0,00845	0,00874	0,01481	0,00000	0,00283	0,00000	0,01058
	0,00024	0,00000	0,00029	0,00153	0,00144	0,00164	0,00000	0,00129	0,00000	0,00065
O6	-0,08464	0,50000	0,17103	0,01112	0,05949	0,01131	0,00000	-0,00163	0,00000	0,02778
	0,00029	0,00000	0,00033	0,00179	0,00301	0,00172	0,00000	0,00142	0,00000	0,00100
07	-0,26986	0,50000	0,12774	0,02593	0,06504	0,01752	0,00000	0,01746	0,00000	0,03444
	0,00034	0,00000	0,00036	0,00230	0,00337	0,00200	0,00000	0,00176	0,00000	0,00115
08	0,18704	0,00000	0,09747	0,01389	0,01506	0,00726	0,00000	0,00020	0,00000	0,01229
	0,00026	0,00000	0,00029	0,00168	0,00158	0,00146	0,00000	0,00126	0,00000	0,00066

Tab. 4.d. Coordinate atomiche e fattori termici del cristallo AZ4Q.

	х	У	z	sof	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35625	0,00000	0,23322	0,42158	0,01302	0,01622	0,01122	0,00000	0,00095	0,00000	0,01365
	0,00002	0,00000	0,00002	0,00161	0,00014	0,00015	0,00014	0,00000	0,00009	0,00000	0,00010
A2	0,06972	0,00000	0,23951	0,39984	0,00991	0,03102	0,00971	0,00000	0,00163	0,00000	0,01691
	0,00002	0,00000	0,00002	0,00148	0,00014	0,00018	0,00014	0,00000	0,00009	0,00000	0,00011
В	0,50000	0,00000	0,00000	0,24864	0,01104	0,00967	0,00665	0,00000	-0,00070	0,00000	0,00942
	0,00000	0,00000	0,00000	0,00129	0,00038	0,00039	0,00036	0,00000	0,00025	0,00000	0,00024
C1	0,25000	0,25000	0,50000	0,17151	0,01100	0,01147	0,00787	-0,00016	0,00069	0,00012	0,01025
	0,00000	0,00000	0,00000	0,00208	0,00028	0,00033	0,00029	0,00021	0,00019	0,00021	0,00019
C2A	0,50000	0,00000	0,50000	0,06235	0,01251	0,01490	0,01222	0,00000	0,00128	0,00000	0,01334
	0,00000	0,00000	0,00000	0,00091	0,00039	0,00042	0,00040	0,00000	0,00027	0,00000	0,00026
C2B	0,00000	0,00000	0,50000	0,05475	0,01265	0,01754	0,01134	0,00000	0,00243	0,00000	0,01382
	0,00000	0,00000	0,00000	0,00098	0,00041	0,00045	0,00041	0,00000	0,00027	0,00000	0,00028
Si1	0,20101	-0,50000	0,23159	0,50000	0,00976	0,00763	0,00734	0,00000	0,00041	0,00000	0,00839
	0,00008	0,00000	0,00009	0,00000	0,00044	0,00046	0,00044	0,00000	0,00033	0,00000	0,00023
Si2	0,35738	-0,50000	0,04584	0,50000	0,01104	0,01121	0,00742	0,00000	0,00156	0,00000	0,00991
	0,00008	0,00000	0,00009	0,00000	0,00045	0,00048	0,00045	0,00000	0,00033	0,00000	0,00024
O1	0,22812	0,26525	0,31423	1,00000	0,02192	0,00904	0,00897	0,00124	0,00003	0,00170	0,01367
	0,00016	0,00034	0,00017	0,00000	0,00095	0,00087	0,00083	0,00069	0,00069	0,00075	0,00041
O2	0,47751	0,25442	0,37229	1,00000	0,01159	0,01502	0,01089	-0,00266	0,00201	-0,00302	0,01251
	0,00014	0,00035	0,00017	0,00000	0,00081	0,00097	0,00084	0,00073	0,00065	0,00072	0,00040
O3	0,42612	0,27293	0,09331	1,00000	0,03266	0,02481	0,01503	0,00378	-0,00112	0,01479	0,02487
	0,00019	0,00044	0,00021	0,00000	0,00125	0,00118	0,00096	0,00089	0,00086	0,00100	0,00053
04	0,14606	0,00000	0,47761	0,50000	0,00967	0,01161	0,01425	0,00000	0,00360	0,00000	0,01167
	0,00020	0,00000	0,00025	0,00000	0,00117	0,00129	0,00125	0,00000	0,00098	0,00000	0,00053
O5	0,34787	0,00000	0,48958	0,50000	0,01001	0,01060	0,01376	0,00000	-0,00096	0,00000	0,01186
	0,00020	0,00000	0,00026	0,00000	0,00117	0,00128	0,00125	0,00000	0,00098	0,00000	0,00054
O6	0,08463	-0,50000	0,17134	0,50000	0,01287	0,06365	0,01410	0,00000	-0,00513	0,00000	0,03118
	0,00025	0,00000	0,00030	0,00000	0,00140	0,00276	0,00146	0,00000	0,00115	0,00000	0,00091
07	0,27027	-0,50000	0,12808	0,50000	0,02870	0,06292	0,02228	0,00000	0,01826	0,00000	0,03624
	0,00030	0,00000	0,00034	0,00000	0,00183	0,00290	0,00172	0,00000	0,00149	0,00000	0,00100
O8	0,18670	0,00000	0,09765	0,50000	0,01443	0,01575	0,00897	0,00000	0,00046	0,00000	0,01326
	0,00021	0,00000	0,00025	0,00000	0,00125	0,00133	0,00118	0,00000	0,00098	0,00000	0,00055

Tab. 4.e. Coordinate atomiche e fattori termici del cristallo AZ4L.

	х	У	Z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35627	0,00000	0,23319	0,01331	0,01617	0,01096	0,00000	0,00075	0,00000	0,01367
	0,00002	0,00000	0,00002	0,00012	0,00012	0,00011	0,00000	0,00007	0,00000	0,00008
A2	0,06990	0,00000	0,23962	0,00974	0,03061	0,00930	0,00000	0,00155	0,00000	0,01658
	0,00002	0,00000	0,00002	0,00012	0,00015	0,00012	0,00000	0,00008	0,00000	0,00009
В	0,50000	0,00000	0,00000	0,01044	0,00961	0,00642	0,00000	-0,00074	0,00000	0,00912
	0,00000	0,00000	0,00000	0,00033	0,00033	0,00031	0,00000	0,00022	0,00000	0,00020
C1	0,25000	0,25000	0,50000	0,01134	0,01145	0,00772	0,00005	0,00082	0,00030	0,01029
	0,00000	0,00000	0,00000	0,00025	0,00027	0,00025	0,00019	0,00017	0,00019	0,00016
C2A	0,50000	0,00000	0,50000	0,01281	0,01473	0,01216	0,00000	0,00139	0,00000	0,01335
	0,00000	0,00000	0,00000	0,00035	0,00036	0,00035	0,00000	0,00024	0,00000	0,00022
C2B	0,00000	0,00000	0,50000	0,01207	0,01700	0,01051	0,00000	0,00204	0,00000	0,01320
	0,00000	0,00000	0,00000	0,00036	0,00039	0,00036	0,00000	0,00025	0,00000	0,00023
Si1	-0,20100	0,50000	0,23169	0,00920	0,00771	0,00674	0,00000	0,00111	0,00000	0,00793
	0,00006	0,00000	0,00008	0,00039	0,00038	0,00036	0,00000	0,00029	0,00000	0,00016
Si2	-0,35742	0,50000	0,04589	0,01077	0,01101	0,00627	0,00000	0,00136	0,00000	0,00938
	0,00007	0,00000	0,00008	0,00039	0,00041	0,00036	0,00000	0,00029	0,00000	0,00017
01	0,22817	0,26544	0,31456	0,02020	0,00931	0,00806	0,00110	0,00015	0,00167	0,01284
	0,00013	0,00029	0,00014	0,00082	0,00075	0,00068	0,00060	0,00058	0,00066	0,00032
02	0,47754	0,25366	0,37272	0,01159	0,01412	0,01138	-0,00162	0,00230	-0,00273	0,01234
	0,00012	0,00030	0,00014	0,00073	0,00082	0,00072	0,00064	0,00057	0,00064	0,00032
O3	0,42598	0,27272	0,09307	0,02996	0,02460	0,01525	0,00394	0,00013	0,01497	0,02379
	0,00015	0,00037	0,00016	0,00104	0,00103	0,00081	0,00076	0,00072	0,00086	0,00043
O4	0,14623	0,00000	0,47776	0,00775	0,01262	0,01222	0,00000	0,00202	0,00000	0,01084
	0,00017	0,00000	0,00021	0,00100	0,00111	0,00107	0,00000	0,00084	0,00000	0,00044
O5	0,34821	0,00000	0,48966	0,00925	0,01126	0,01464	0,00000	0,00061	0,00000	0,01193
	0,00017	0,00000	0,00021	0,00105	0,00110	0,00112	0,00000	0,00088	0,00000	0,00046
O6	-0,08474	0,50000	0,17116	0,01165	0,06102	0,01283	0,00000	-0,00252	0,00000	0,02911
	0,00020	0,00000	0,00024	0,00122	0,00228	0,00122	0,00000	0,00097	0,00000	0,00074
07	-0,26974	0,50000	0,12790	0,02572	0,06171	0,02157	0,00000	0,01537	0,00000	0,03493
	0,00024	0,00000	0,00027	0,00155	0,00245	0,00145	0,00000	0,00123	0,00000	0,00082
08	0,18684	0,00000	0,09803	0,01622	0,01581	0,00801	0,00000	0,00072	0,00000	0,01354
	0,00018	0,00000	0,00021	0,00117	0,00118	0,00101	0,00000	0,00087	0,00000	0,00047

Tab. 4.f. Coordinate atomiche e fattori termici del cristallo P1.

	х	У	Z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35659	0,00000	0,23473	0,01343	0,01550	0,01327	0,00000	0,00158	0,00000	0,01418
	0,00002	0,00000	0,00002	0,00014	0,00014	0,00013	0,00000	0,00009	0,00000	0,00009
A2	0,06968	0,00000	0,24057	0,00957	0,03019	0,01130	0,00000	0,00225	0,00000	0,01698
	0,00002	0,00000	0,00002	0,00014	0,00018	0,00014	0,00000	0,00009	0,00000	0,00011
В	0,50000	0,00000	0,00000	0,01661	0,01243	0,00904	0,00000	0,00013	0,00000	0,01297
	0,00000	0,00000	0,00000	0,00047	0,00046	0,00042	0,00000	0,00031	0,00000	0,00028
C1	0,25000	0,25000	0,50000	0,01160	0,00903	0,00983	-0,00034	0,00091	0,00039	0,01029
	0,00000	0,00000	0,00000	0,00030	0,00032	0,00030	0,00022	0,00020	0,00022	0,00019
C2A	0,50000	0,00000	0,50000	0,01153	0,01092	0,01178	0,00000	0,00081	0,00000	0,01158
	0,00000	0,00000	0,00000	0,00047	0,00048	0,00047	0,00000	0,00033	0,00000	0,00029
C2B	0,00000	0,00000	0,50000	0,01181	0,01432	0,01215	0,00000	0,00310	0,00000	0,01265
	0,00000	0,00000	0,00000	0,00049	0,00052	0,00049	0,00000	0,00034	0,00000	0,00031
Si1	0,20074	-0,50000	0,23141	0,00926	0,00697	0,00844	0,00000	0,00155	0,00000	0,00823
	0,00008	0,00000	0,00009	0,00046	0,00045	0,00045	0,00000	0,00035	0,00000	0,00020
Si2	0,35726	-0,50000	0,04580	0,01245	0,01265	0,00767	0,00000	0,00160	0,00000	0,01096
	0,00009	0,00000	0,00010	0,00049	0,00051	0,00044	0,00000	0,00037	0,00000	0,00021
01	0,22797	0,26571	0,31416	0,02057	0,00799	0,01106	0,00175	0,00093	0,00162	0,01346
	0,00016	0,00035	0,00018	0,00101	0,00090	0,00085	0,00074	0,00073	0,00080	0,00040
O2	0,47787	0,25401	0,37382	0,01144	0,01387	0,01297	-0,00276	0,00309	-0,00310	0,01265
	0,00015	0,00037	0,00018	0,00090	0,00102	0,00090	0,00078	0,00071	0,00077	0,00040
O3	0,42579	0,27183	0,09373	0,03074	0,02595	0,01804	0,00535	-0,00096	0,01214	0,02560
	0,00019	0,00046	0,00021	0,00132	0,00127	0,00105	0,00097	0,00093	0,00108	0,00054
O4	0,14664	0,00000	0,47785	0,00799	0,00890	0,01443	0,00000	0,00324	0,00000	0,01029
	0,00021	0,00000	0,00026	0,00122	0,00129	0,00130	0,00000	0,00102	0,00000	0,00053
O5	0,34756	0,00000	0,49002	0,00883	0,00898	0,01703	0,00000	0,00262	0,00000	0,01158
	0,00021	0,00000	0,00026	0,00125	0,00130	0,00138	0,00000	0,00106	0,00000	0,00055
O6	0,08377	-0,50000	0,17116	0,01040	0,05796	0,02163	0,00000	-0,00343	0,00000	0,03081
	0,00026	0,00000	0,00033	0,00149	0,00273	0,00169	0,00000	0,00127	0,00000	0,00091
07	0,26885	-0,50000	0,12724	0,03037	0,06768	0,02676	0,00000	0,01987	0,00000	0,03975
	0,00032	0,00000	0,00036	0,00211	0,00324	0,00195	0,00000	0,00168	0,00000	0,00110
O8	0,18612	0,00000	0,09780	0,01860	0,01815	0,01123	0,00000	0,00234	0,00000	0,01605
	0,00024	0,00000	0,00027	0,00149	0,00150	0,00129	0,00000	0,00112	0,00000	0,00060

Tab. 4.g. Coordinate atomiche e fattori termici del cristallo P2.

	Х	у	Z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35651	0,00000	0,23497	0,01484	0,01721	0,01422	0,00000	0,00250	0,00000	0,01544
	0,00002	0,00000	0,00002	0,00013	0,00014	0,00013	0,00000	0,00009	0,00000	0,00009
A2	0,06953	0,00000	0,24062	0,01090	0,03199	0,01213	0,00000	0,00314	0,00000	0,01821
	0,00002	0,00000	0,00003	0,00014	0,00019	0,00014	0,00000	0,00010	0,00000	0,00010
В	0,50000	0,00000	0,00000	0,01944	0,01499	0,00921	0,00000	0,00134	0,00000	0,01471
	0,00000	0,00000	0,00000	0,00051	0,00051	0,00045	0,00000	0,00033	0,00000	0,00030
C1	0,25000	0,25000	0,50000	0,01221	0,01003	0,00946	-0,00025	0,00157	0,00006	0,01062
	0,00000	0,00000	0,00000	0,00032	0,00034	0,00032	0,00024	0,00022	0,00024	0,00020
C2A	0,50000	0,00000	0,50000	0,01248	0,01278	0,01247	0,00000	0,00137	0,00000	0,01269
	0,00000	0,00000	0,00000	0,00050	0,00053	0,00051	0,00000	0,00035	0,00000	0,00031
C2B	0,00000	0,00000	0,50000	0,01314	0,01564	0,01309	0,00000	0,00373	0,00000	0,01379
	0,00000	0,00000	0,00000	0,00053	0,00057	0,00053	0,00000	0,00037	0,00000	0,00033
Si1	0,20055	-0,50000	0,23117	0,01110	0,00819	0,00940	0,00000	0,00183	0,00000	0,00957
	0,00009	0,00000	0,00010	0,00051	0,00050	0,00048	0,00000	0,00039	0,00000	0,00021
Si2	0,35714	-0,50000	0,04607	0,01343	0,01493	0,00793	0,00000	0,00207	0,00000	0,01208
	0,00009	0,00000	0,00011	0,00053	0,00057	0,00048	0,00000	0,00040	0,00000	0,00023
01	0,22790	0,26553	0,31430	0,02361	0,00955	0,01018	-0,00009	0,00161	0,00140	0,01464
	0,00018	0,00038	0,00019	0,00110	0,00101	0,00090	0,00081	0,00078	0,00088	0,00043
02	0,47784	0,25377	0,37354	0,01224	0,01590	0,01335	-0,00234	0,00465	-0,00325	0,01354
	0,00016	0,00039	0,00019	0,00094	0,00112	0,00095	0,00087	0,00075	0,00084	0,00043
O3	0,42524	0,27308	0,09423	0,03241	0,02815	0,01900	0,00540	0,00041	0,01359	0,02706
	0,00021	0,00050	0,00022	0,00140	0,00144	0,00115	0,00108	0,00099	0,00119	0,00059
04	0,14622	0,00000	0,47788	0,00988	0,01081	0,01338	0,00000	0,00449	0,00000	0,01106
	0,00022	0,00000	0,00027	0,00131	0,00142	0,00139	0,00000	0,00110	0,00000	0,00057
O5	0,34753	0,00000	0,48938	0,01055	0,01069	0,01669	0,00000	0,00442	0,00000	0,01240
	0,00022	0,00000	0,00028	0,00136	0,00142	0,00148	0,00000	0,00115	0,00000	0,00060
O6	0,08372	-0,50000	0,17162	0,01143	0,06326	0,02195	0,00000	-0,00527	0,00000	0,03326
	0,00027	0,00000	0,00035	0,00160	0,00316	0,00182	0,00000	0,00136	0,00000	0,00103
07	0,26860	-0,50000	0,12675	0,03593	0,06741	0,02864	0,00000	0,02304	0,00000	0,04183
	0,00034	0,00000	0,00039	0,00235	0,00356	0,00214	0,00000	0,00188	0,00000	0,00122
08	0,18621	0,00000	0,09771	0,02087	0,02004	0,01083	0,00000	0,00181	0,00000	0,01738
	0,00026	0,00000	0,00029	0,00163	0,00169	0,00138	0,00000	0,00120	0,00000	0,00066
Tab. 4.h. Coordinate atomiche e fattori termici del cristallo PN.

	х	У	z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35646	0,00000	0,23466	0,01650	0,01448	0,01088	0,00000	0,00227	0,00000	0,01398
	0,00003	0,00000	0,00004	0,00024	0,00023	0,00022	0,00000	0,00015	0,00000	0,00016
A2	0,06977	0,00000	0,24042	0,01210	0,02877	0,00903	0,00000	0,00277	0,00000	0,01653
	0,00003	0,00000	0,00004	0,00023	0,00030	0,00023	0,00000	0,00015	0,00000	0,00017
В	0,50000	0,00000	0,00000	0,01833	0,01193	0,00623	0,00000	0,00130	0,00000	0,01228
	0,00000	0,00000	0,00000	0,00082	0,00077	0,00070	0,00000	0,00053	0,00000	0,00048
C1	0,25000	0,25000	0,50000	0,01493	0,00758	0,00725	-0,00013	0,00150	0,00020	0,00999
	0,00000	0,00000	0,00000	0,00052	0,00052	0,00049	0,00036	0,00035	0,00037	0,00032
C2A	0,50000	0,00000	0,50000	0,01481	0,01019	0,01013	0,00000	0,00173	0,00000	0,01178
	0,00000	0,00000	0,00000	0,00082	0,00080	0,00077	0,00000	0,00056	0,00000	0,00049
C2B	0,00000	0,00000	0,50000	0,01407	0,01247	0,01016	0,00000	0,00382	0,00000	0,01203
	0,00000	0,00000	0,00000	0,00084	0,00085	0,00081	0,00000	0,00058	0,00000	0,00051
Si1	0,20073	-0,50000	0,23136	0,01131	0,00659	0,00639	0,00000	0,00173	0,00000	0,00808
	0,00013	0,00000	0,00016	0,00079	0,00077	0,00073	0,00000	0,00060	0,00000	0,00034
Si2	0,35753	-0,50000	0,04584	0,01345	0,01299	0,00575	0,00000	0,00171	0,00000	0,01073
	0,00014	0,00000	0,00017	0,00081	0,00088	0,00073	0,00000	0,00062	0,00000	0,00036
01	0,22770	0,26440	0,31454	0,02486	0,00672	0,00758	0,00241	0,00133	-0,00013	0,01326
	0,00028	0,00059	0,00029	0,00173	0,00152	0,00140	0,00122	0,00123	0,00137	0,00067
02	0,47771	0,25418	0,37391	0,01593	0,01225	0,01093	-0,00363	0,00493	-0,00327	0,01272
	0,00025	0,00061	0,00030	0,00157	0,00168	0,00147	0,00131	0,00122	0,00130	0,00067
O3	0,42579	0,27202	0,09324	0,03025	0,02541	0,01934	0,00563	0,00064	0,01155	0,02549
	0,00032	0,00078	0,00035	0,00211	0,00217	0,00181	0,00167	0,00157	0,00180	0,00090
O4	0,14625	0,00000	0,47827	0,00883	0,01013	0,01089	0,00000	0,00337	0,00000	0,00975
	0,00034	0,00000	0,00042	0,00199	0,00223	0,00210	0,00000	0,00169	0,00000	0,00088
O5	0,34784	0,00000	0,48927	0,01362	0,00964	0,01158	0,00000	0,00033	0,00000	0,01186
	0,00036	0,00000	0,00042	0,00219	0,00223	0,00217	0,00000	0,00181	0,00000	0,00094
O6	0,08421	-0,50000	0,17041	0,01205	0,06034	0,02070	0,00000	-0,00331	0,00000	0,03183
	0,00042	0,00000	0,00055	0,00252	0,00486	0,00279	0,00000	0,00215	0,00000	0,00159
07	0,26979	-0,50000	0,12787	0,03720	0,06954	0,02765	0,00000	0,02640	0,00000	0,04220
	0,00053	0,00000	0,00062	0,00373	0,00580	0,00335	0,00000	0,00301	0,00000	0,00198
08	0,18669 0.00039	0,00000	0,09796 0.00044	0,01832 0.00239	0,01597 0.00246	0,00760 0.00204	0,00000	-0,00043 0.00180	0,00000	0,01432 0.00098

Tab. 4.i. Coordinate atomiche e fattori termici del cristallo P4.

	х	У	z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35654	0,00000	0,23473	0,01431	0,01873	0,01442	0,00000	0,00105	0,00000	0,01602
	0,00002	0,00000	0,00003	0,00016	0,00018	0,00017	0,00000	0,00011	0,00000	0,00011
A2	0,06971	0,00000	0,24061	0,01053	0,03345	0,01263	0,00000	0,00181	0,00000	0,01891
	0,00002	0,00000	0,00003	0,00016	0,00023	0,00017	0,00000	0,00011	0,00000	0,00012
В	0,50000	0,00000	0,00000	0,01658	0,01567	0,01039	0,00000	-0,00039	0,00000	0,01458
	0,00000	0,00000	0,00000	0,00058	0,00062	0,00054	0,00000	0,00039	0,00000	0,00036
C1	0,25000	0,25000	0,50000	0,01231	0,01124	0,01091	-0,00036	0,00070	0,00028	0,01167
	0,00000	0,00000	0,00000	0,00037	0,00042	0,00038	0,00030	0,00026	0,00029	0,00024
C2A	0,50000	0,00000	0,50000	0,01264	0,01468	0,01265	0,00000	0,00037	0,00000	0,01357
	0,00000	0,00000	0,00000	0,00059	0,00065	0,00060	0,00000	0,00042	0,00000	0,00037
C2B	0,00000	0,00000	0,50000	0,01269	0,01624	0,01295	0,00000	0,00267	0,00000	0,01392
	0,00000	0,00000	0,00000	0,00061	0,00069	0,00063	0,00000	0,00044	0,00000	0,00039
Si1	0,20078	-0,50000	0,23127	0,01067	0,00992	0,01001	0,00000	0,00078	0,00000	0,01034
	0,00010	0,00000	0,00012	0,00059	0,00061	0,00056	0,00000	0,00046	0,00000	0,00026
Si2	0,35738	-0,50000	0,04579	0,01361	0,01630	0,00940	0,00000	0,00104	0,00000	0,01324
	0,00011	0,00000	0,00013	0,00061	0,00071	0,00057	0,00000	0,00048	0,00000	0,00028
01	0,22770	0,26566	0,31450	0,02382	0,01223	0,01138	0,00045	0,00110	0,00235	0,01608
	0,00020	0,00047	0,00022	0,00126	0,00126	0,00106	0,00099	0,00091	0,00108	0,00052
02	0,47789	0,25405	0,37378	0,01392	0,01626	0,01389	-0,00172	0,00415	-0,00317	0,01449
	0,00018	0,00047	0,00021	0,00111	0,00134	0,00110	0,00104	0,00089	0,00102	0,00051
03	0,42578	0,27238	0,09339	0,02843	0,02934	0,02285	0,00537	-0,00083	0,01229	0,02758
	0,00023	0,00059	0,00025	0,00148	0,00173	0,00137	0,00131	0,00114	0,00137	0,00068
O4	0,14650	0,00000	0,47823	0,01041	0,01221	0,01359	0,00000	0,00155	0,00000	0,01215
	0,00025	0,00000	0,00031	0,00151	0,00175	0,00166	0,00000	0,00129	0,00000	0,00070
05	0,34819	0,00000	0,48971	0,00882	0,01226	0,01548	0,00000	0,00176	0,00000	0,01225
	0,00025	0,00000	0,00031	0,00150	0,00172	0,00169	0,00000	0,00129	0,00000	0,00069
O6	0,08407	-0,50000	0,17124	0,01113	0,06706	0,02262	0,00000	-0,00427	0,00000	0,03454
	0,00030	0,00000	0,00039	0,00182	0,00382	0,00209	0,00000	0,00158	0,00000	0,00124
07	0,26952	-0,50000	0,12733	0,03745	0,06974	0,02632	0,00000	0,02155	0,00000	0,04251
	0,00038	0,00000	0,00042	0,00271	0,00431	0,00237	0,00000	0,00210	0,00000	0,00143
08	0,18667	0,00000	0,09798	0,02146	0,02057	0,01251	0,00000	0,00146	0,00000	0,01839
	0,00029	0,00000	0,00033	0,00188	0,00205	0,00165	0,00000	0,00144	0,00000	0,00079

Tab. 4.1. Coordinate atomiche e fattori termici del cristallo P5.

	х	У	Z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,3566	0,0000	0,2350	0,0147	0,0164	0,0108	0,0000	0,0006	0,0000	0,0142
	0,0000	0,0000	0,0000	0,0002	0,0002	0,0002	0,0000	0,0001	0,0000	0,0001
A2	0,0695	0,0000	0,2407	0,0105	0,0318	0,0084	0,0000	0,0010	0,0000	0,0170
	0,0000	0,0000	0,0000	0,0002	0,0003	0,0002	0,0000	0,0001	0,0000	0,0001
В	0,5000	0,0000	0,0000	0,0204	0,0139	0,0059	0,0000	-0,0007	0,0000	0,0138
	0,0000	0,0000	0,0000	0,0007	0,0007	0,0006	0,0000	0,0005	0,0000	0,0004
C1	0,2500	0,2500	0,5000	0,0128	0,0105	0,0069	-0,0001	0,0000	0,0000	0,0103
	0,0000	0,0000	0,0000	0,0005	0,0005	0,0004	0,0003	0,0003	0,0003	0,0003
C2A	0,5000	0,0000	0,5000	0,0134	0,0124	0,0096	0,0000	-0,0001	0,0000	0,0121
	0,0000	0,0000	0,0000	0,0007	0,0007	0,0007	0,0000	0,0005	0,0000	0,0004
C2B	0,0000	0,0000	0,5000	0,0132	0,0151	0,0097	0,0000	0,0015	0,0000	0,0128
	0,0000	0,0000	0,0000	0,0007	0,0008	0,0007	0,0000	0,0005	0,0000	0,0004
Si1	0,2004	-0,5000	0,2314	0,0105	0,0083	0,0065	0,0000	0,0002	0,0000	0,0086
	0,0001	0,0000	0,0001	0,0007	0,0007	0,0006	0,0000	0,0005	0,0000	0,0003
Si2	0,3569	-0,5000	0,0461	0,0138	0,0138	0,0044	0,0000	0,0004	0,0000	0,0108
	0,0001	0,0000	0,0001	0,0007	0,0008	0,0006	0,0000	0,0005	0,0000	0,0003
01	0,2280	0,2654	0,3141	0,0239	0,0103	0,0062	0,0014	-0,0002	0,0022	0,0138
	0,0002	0,0005	0,0003	0,0015	0,0014	0,0012	0,0011	0,0010	0,0012	0,0006
02	0,4775	0,2541	0,3737	0,0144	0,0161	0,0105	-0,0025	0,0036	-0,0031	0,0135
	0,0002	0,0005	0,0003	0,0014	0,0015	0,0013	0,0012	0,0010	0,0012	0,0006
03	0,4252	0,2721	0,0940	0,0308	0,0250	0,0165	0,0054	-0,0025	0,0110	0,0250
	0,0003	0,0007	0,0003	0,0019	0,0018	0,0015	0,0014	0,0013	0,0015	0,0008
04	0,1463	0,0000	0,4775	0,0103	0,0093	0,0103	0,0000	0,0023	0,0000	0,0099
	0,0003	0,0000	0,0004	0,0018	0,0019	0,0018	0,0000	0,0015	0,0000	0,0008
05	0,3481	0,0000	0,4894	0,0134	0,0099	0,0132	0,0000	0,0009	0,0000	0,0124
	0,0003	0,0000	0,0004	0,0019	0,0019	0,0020	0,0000	0,0016	0,0000	0,0008
O6	0,0838	-0,5000	0,1720	0,0103	0,0622	0,0187	0,0000	-0,0058	0,0000	0,0314
	0,0004	0,0000	0,0005	0,0021	0,0042	0,0024	0,0000	0,0018	0,0000	0,0014
07	0,2687	-0,5000	0,1261	0,0350	0,0628	0,0250	0,0000	0,0214	0,0000	0,0389
	0,0005	0,0000	0,0005	0,0031	0,0045	0,0028	0,0000	0,0025	0,0000	0,0016
08	0,1865	0,0000	0,0979	0,0221	0,0161	0,0102	0,0000	0,0017	0,0000	0,0163
	0,0004	0,0000	0,0004	0,0022	0,0022	0,0019	0,0000	0,0017	0,0000	0,0009

Tab. 4.m. Coordinate atomiche e fattori termici del cristallo P6.

	х	У	Z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35661	0,00000	0,23460	0,01498	0,01576	0,01232	0,00000	0,00130	0,00000	0,01451
	0,00002	0,00000	0,00002	0,00015	0,00015	0,00015	0,00000	0,00010	0,00000	0,00010
A2	0,06969	0,00000	0,24048	0,01071	0,03017	0,01010	0,00000	0,00185	0,00000	0,01700
	0,00002	0,00000	0,00003	0,00015	0,00020	0,00015	0,00000	0,00010	0,00000	0,00011
В	0,50000	0,00000	0,00000	0,01720	0,01255	0,00740	0,00000	0,00003	0,00000	0,01266
	0,00000	0,00000	0,00000	0,00053	0,00051	0,00048	0,00000	0,00034	0,00000	0,00031
C1	0,25000	0,25000	0,50000	0,01255	0,00973	0,00823	-0,00030	0,00058	0,00018	0,01034
	0,00000	0,00000	0,00000	0,00034	0,00035	0,00033	0,00025	0,00022	0,00026	0,00021
C2A	0,50000	0,00000	0,50000	0,01318	0,01186	0,01157	0,00000	0,00072	0,00000	0,01240
	0,00000	0,00000	0,00000	0,00054	0,00055	0,00054	0,00000	0,00037	0,00000	0,00033
C2B	0,00000	0,00000	0,50000	0,01335	0,01479	0,01078	0,00000	0,00279	0,00000	0,01290
	0,00000	0,00000	0,00000	0,00055	0,00059	0,00056	0,00000	0,00038	0,00000	0,00034
Si1	0,20065	-0,50000	0,23135	0,00993	0,00807	0,00770	0,00000	0,00104	0,00000	0,00864
	0,00009	0,00000	0,00010	0,00052	0,00051	0,00050	0,00000	0,00039	0,00000	0,00022
Si2	0,35732	-0,50000	0,04588	0,01276	0,01340	0,00720	0,00000	0,00127	0,00000	0,01119
	0,00009	0,00000	0,00011	0,00054	0,00058	0,00050	0,00000	0,00041	0,00000	0,00024
01	0,22823	0,26590	0,31433	0,02255	0,00792	0,00967	0,00022	0,00004	0,00201	0,01375
	0,00018	0,00038	0,00019	0,00113	0,00100	0,00095	0,00082	0,00078	0,00090	0,00044
02	0,47797	0,25352	0,37385	0,01278	0,01349	0,01134	-0,00238	0,00293	-0,00206	0,01245
	0,00016	0,00039	0,00019	0,00099	0,00110	0,00096	0,00087	0,00075	0,00087	0,00043
O3	0,42588	0,27302	0,09363	0,03093	0,02646	0,01778	0,00585	-0,00177	0,01317	0,02585
	0,00020	0,00049	0,00021	0,00141	0,00142	0,00118	0,00107	0,00099	0,00120	0,00059
O4	0,14636	0,00000	0,47845	0,00935	0,01076	0,01211	0,00000	0,00366	0,00000	0,01053
	0,00023	0,00000	0,00027	0,00135	0,00145	0,00148	0,00000	0,00113	0,00000	0,00060
05	0,34802	0,00000	0,48959	0,01111	0,00938	0,01459	0,00000	0,00176	0,00000	0,01177
	0,00023	0,00000	0,00028	0,00142	0,00142	0,00153	0,00000	0,00116	0,00000	0,00061
O6	0,08441	-0,50000	0,17129	0,01078	0,05927	0,02089	0,00000	-0,00506	0,00000	0,03133
	0,00027	0,00000	0,00034	0,00165	0,00299	0,00188	0,00000	0,00138	0,00000	0,00100
07	0,26876	-0,50000	0,12664	0,03549	0,06111	0,02505	0,00000	0,02195	0,00000	0,03847
	0,00034	0,00000	0,00037	0,00238	0,00331	0,00208	0,00000	0,00178	0,00000	0,00114
08	0,18632	0,00000	0,09812	0,02057	0,01626	0,01036	0,00000	0,00197	0,00000	0,01584
	0,00026	0,00000	0,00029	0,00169	0,00163	0,00145	0,00000	0,00123	0,00000	0,00067

Tab. 4.n. Coordinate atomiche e fattori termici del cristallo P7.

	x	У	Z	U11	U22	U33	U23	U13	U12	Ueq
A1	0,35652	0,00000	0,23442	0,01428	0,01585	0,01220	0,00000	0,00171	0,00000	0,01420
	0,00002	0,00000	0,00002	0,00013	0,00014	0,00013	0,00000	0,00009	0,00000	0,00009
A2	0,06986	0,00000	0,24025	0,01022	0,02988	0,01052	0,00000	0,00249	0,00000	0,01680
	0,00002	0,00000	0,00002	0,00013	0,00018	0,00014	0,00000	0,00009	0,00000	0,00009
В	0,50000	0,00000	0,00000	0,01549	0,01347	0,00816	0,00000	0,00049	0,00000	0,01259
	0,00000	0,00000	0,00000	0,00046	0,00048	0,00042	0,00000	0,00031	0,00000	0,00027
C1	0,25000	0,25000	0,50000	0,01194	0,00944	0,00882	-0,00011	0,00133	0,00028	0,01014
	0,00000	0,00000	0,00000	0,00030	0,00033	0,00029	0,00023	0,00020	0,00023	0,00018
C2A	0,50000	0,00000	0,50000	0,01221	0,01083	0,01119	0,00000	0,00115	0,00000	0,01154
	0,00000	0,00000	0,00000	0,00047	0,00049	0,00047	0,00000	0,00034	0,00000	0,00029
C2B	0,00000	0,00000	0,50000	0,01252	0,01450	0,01150	0,00000	0,00335	0,00000	0,01270
	0,00000	0,00000	0,00000	0,00049	0,00054	0,00050	0,00000	0,00035	0,00000	0,00030
Si1	-0,20082	0,50000	0,23145	0,01040	0,00769	0,00746	0,00000	0,00149	0,00000	0,00853
	0,00008	0,00000	0,00010	0,00048	0,00047	0,00044	0,00000	0,00036	0,00000	0,00020
Si2	-0,35743	0,50000	0,04563	0,01256	0,01407	0,00732	0,00000	0,00160	0,00000	0,01134
	0,00008	0,00000	0,00010	0,00049	0,00055	0,00045	0,00000	0,00038	0,00000	0,00022
01	0,22798	0,26529	0,31420	0,02033	0,00899	0,01001	0,00025	0,00169	0,00179	0,01325
	0,00015	0,00035	0,00017	0,00098	0,00096	0,00085	0,00076	0,00071	0,00083	0,00040
02	0,47790	0,25413	0,37352	0,01151	0,01544	0,01211	-0,00305	0,00259	-0,00270	0,01297
	0,00014	0,00036	0,00017	0,00088	0,00107	0,00089	0,00081	0,00069	0,00081	0,00040
03	0,42614	0,27144	0,09306	0,02990	0,02717	0,01850	0,00608	-0,00022	0,01394	0,02578
	0,00018	0,00046	0,00020	0,00123	0,00136	0,00108	0,00099	0,00090	0,00110	0,00054
04	0,14645	0,00000	0,47847	0,00842	0,00923	0,01263	0,00000	0,00299	0,00000	0,00996
	0,00020	0,00000	0,00024	0,00119	0,00132	0,00133	0,00000	0,00102	0,00000	0,00054
05	0,34781	0,00000	0,48989	0,01044	0,01002	0,01647	0,00000	0,00410	0,00000	0,01210
	0,00021	0,00000	0,00026	0,00127	0,00135	0,00143	0,00000	0,00110	0,00000	0,00057
06	-0,08397	0,50000	0,17070	0,01355	0,06079	0,01909	0,00000	-0,00533	0,00000	0,03220
	0,00024	0,00000	0,00031	0,00155	0,00287	0,00167	0,00000	0,00128	0,00000	0,00094
07	-0,27041	0,50000	0,12882	0,03396	0,07079	0,02414	0,00000	0,02056	0,00000	0,04103
	0,00030	0,00000	0,00034	0,00210	0,00341	0,00191	0,00000	0,00165	0,00000	0,00113
08	0,18667 0.00023	0,00000	0,09784 0.00027	0,01920 0.00149	0,01879 0.00161	0,01110 0.00134	0,00000 0.00000	0,00245 0.00114	0,00000 0.00000	0,01641 0.00062

Tab. 5.a. Distanze di legame dei cristalli delle Azzorre.

		AZ1	AZ4gr	AZ4A	AZ4Q	AZ4L
A1-08		2,4818 (0,0028)	2,4742 (0,0031)	2,4794 (0,0035)	2,4798 (0,0028)	2,4753 (0,0024)
A1-O2	x2	2,4938 (0,0019)	2,4916 (0,0020)	2,4928 (0,0022)	2,4917 (0,0019)	2,4905 (0,0016)
A1-O3	x2	2,4989 (0,0024)	2,5000 (0,0026)	2,5028 (0,0027)	2,5008 (0,0025)	2,5002 (0,0020)
A1-01	x2	2,5805 (0,0020)	2,5799 (0,0022)	2,5792 (0,0023)	2,5754 (0,0020)	2,5771 (0,0017)
A1-05		2,8536 (0,0028)	2,8586 (0,0030)	2,8647 (0,0032)	2,8570 (0,0028)	2,8573 (0,0024)
d media		2,5536	2,5526	2,5553	2,5526	2,5511
A2-08		2,4185 (0,0029)	2,4182 (0,0032)	2,4206 (0,0033)	2,4139 (0,0028)	2,4114 (0,0024)
A2-O2	x2	2,5235 (0,0019)	2,5271 (0,0021)	2,5222 (0,0022)	2,5171 (0,0020)	2,5228 (0,0016)
A2-01	x2	2,6211 (0,0020)	2,6185 (0,0022)	2,6195 (0,0024)	2,6180 (0,0021)	2,6163 (0,0017)
A2-O3	x2	2,6246 (0,0024)	2,6250 (0,0026)	2,6254 (0,0029)	2,6193 (0,0026)	2,6230 (0,0021)
A2-04		2,6440 (0,0026)	2,6427 (0,0029)	2,6401 (0,0032)	2,6418 (0,0028)	2,6416 (0,0023)
A2-O6	x2	2,9823 (0,0009)	2,9830 (0,0010)	2,9813 (0,0011)	2,9805 (0,0010)	2,9797 (0,0008)
d media		2,7310	2,7306	2,7263	2,7211	2,7238
B-06	x2	2,0185 (0,0029)	2,0187 (0,0031)	2,0185 (0,0036)	2,0197 (0,0032)	2,0181 (0,0026)
B-O3	x4	2,2096 (0,0023)	2,2067 (0,0024)	2,2105 (0,0025)	2,2072 (0,0024)	2,2053 (0,0019)
d media		2,1553	2,1542	2,1610	2,1561	2,1552
C1-O5	x2	1,9667 (0,0018)	1,9634 (0,0021)	1,9641 (0,0022)	1,9608 (0,0018)	1,9628 (0,0016)
C1-O4	x2	1,9853 (0,0018)	1,9848 (0,0021)	1,9855 (0,0022)	1,9822 (0,0018)	1,9796 (0,0015)
C1-01	x2	2,0226 (0,0019)	2,0172 (0,0020)	2,0208 (0,0022)	2,0220 (0,0019)	2,0183 (0,0016)
d media		1,9910	1,9889	1,9901	1,9877	1,9867
C2A-O2	x4	2,0092 (0,0020)	2,0074 (0,0021)	2,0092 (0,0023)	2,0137 (0,0020)	2,0066 (0,0017)
C2A-O5	x2	2,0179 (0,0027)	2,0182 (0,0031)	2,0172 (0,0032)	2,0207 (0,0027)	2,0156 (0,0023)
		2,0116	2,0101	2,0113	2,0156	2,0090
C2B-O2	x4	1,9810 (0,0019)	1,9776 (0,0020)	1,9785 (0,0022)	1,9773 (0,0019)	1,9764 (0,0016)
C2B-O4	x2	2,0187 (0,0026)	2,0150 (0,0030)	2,0163 (0,0031)	2,0180 (0,0026)	2,0193 (0,0022)
		1,9911	1,9870	1,9884	1,9882	1,9878
Si1-O6		1,5812 (0,0031)	1,5775 (0,0034)	1,5802 (0,0040)	1,5787 (0,0033)	1,5771 (0,0028)
Si1-07		1,5980 (0,0033)	1,6037 (0,0037)	1,6035 (0,0038)	1,6013 (0,0034)	1,5990 (0,0028)
Si1-01	x2	1,6297 (0,0020)	1,6303 (0,0021)	1,6301 (0,0023)	1,6297 (0,0020)	1,6294 (0,0017)
		1,6142	1,6153	1,6160	1,6148	1,6138
Si2-08		1,5881 (0,0029)	1,5907 (0,0031)	1,5890 (0,0034)	1,5870 (0,0029)	1,5916 (0,0025)
Si2-07		1,6150 (0,0034)	1,6074 (0,0039)	1,6082 (0,0040)	1,6069 (0,0036)	1,6115 (0,0029)
Si2-O3	x2	1,6231 (0,0023)	1,6256 (0,0025)	1,6199 (0,0026)	1,6250 (0,0023)	1,6231 (0,0019)
		1,6135	1,6141	1,6108	1,6128	1,6139

Tab. 5.b. Distanze di legame dei cristalli delle Pakistan.

		P1	P2	PN	P4	Р5	P6	P7
A1-08		2,4964 (0,0032)	2,4975 (0,0034)	2,4883 (0,0051)	2,4892 (0,0038)	2,4936 (0,0046)	2,4911 (0,0033)	2,4876 (0,0031)
A1-02	x2	2,4928 (0,0020)	2,4907 (0,0021)	2,4939 (0,0033)	2,4931 (0,0024)	2,4893 (0,0029)	2,4908 (0,0021)	2,4925 (0,0019)
A1-03	x2	2,5028 (0,0026)	2,5015 (0,0028)	2,5060 (0,0043)	2,5069 (0,0032)	2,5000 (0,0037)	2,5053 (0,0028)	2,5046 (0,0025)
A1-01	x2	2,5741 (0,0021)	2,5719 (0,0022)	2,5719 (0,0036)	2,5767 (0,0027)	2,5707 (0,0030)	2,5716 (0,0023)	2,5717 (0,0020)
A1-05		2,8501 (0,0029)	2,8400 (0,0030)	2,8402 (0,0047)	2,8448 (0,0035)	2,8407 (0,0041)	2,8446 (0,0031)	2,8490 (0,0028)
d media	l	2,5548	2,5531	2,5536	2,5550	2,5515	2,5524	2,5533
A2-08		2,4158 (0,0031)	2,4176 (0,0032)	2,4164 (0,0050)	2,4190 (0,0039)	2,4211 (0,0045)	2,4127 (0,0035)	2,4149 (0,0030)
A2-02	x2	2,5199 (0,0020)	2,5163 (0,0021)	2,5216 (0,0034)	2,5185 (0,0025)	2,5184 (0,0029)	2,5199 (0,0022)	2,5187 (0,0020)
A2-01	x2	2,6169 (0,0021)	2,6179 (0,0023)	2,6097 (0,0036)	2,6137 (0,0027)	2,6181 (0,0031)	2,6184 (0,0023)	2,6132 (0,0021)
A2-O3	x2	2,6299 (0,0026)	2,6288 (0,0029)	2,6321 (0,0044)	2,6307 (0,0032)	2,6317 (0,0037)	2,6242 (0,0027)	2,6302 (0,0026)
A2-04		2,6382 (0,0028)	2,6386 (0,0030)	2,6427 (0,0046)	2,6419 (0,0034)	2,6351 (0,0040)	2,6439 (0,0030)	2,6454 (0,0027)
A2-O6	x2	2,9875 (0,0010)	2,9872 (0,0012)	2,9882 (0,0018)	2,9866 (0,0013)	2,9864 (0,0015)	2,9842 (0,0012)	2,9845 (0,0011)
d media	I	2,7274	2,7154	2,7208	2,7233	2,7241	2,7171	2,7161
B-06	x2	2,0157 (0,0034)	2,0211 (0,0036)	2,0113 (0,0058)	2,0186 (0,0040)	2,0249 (0,0048)	2,0197 (0,0035)	2,0116 (0,0032)
B-O3	x4	2,2092 (0,0025)	2,2209 (0,0026)	2,2057 (0,0042)	2,2086 (0,0031)	2,2157 (0,0036)	2,2108 (0,0027)	2,1990 (0,0024)
d media	l	2,1572	2,1679	2,1540	2,1555	2,1637	2,1576	2,1479
C1-O5	x2	1,9579 (0,0019)	1,9588 (0,0020)	1,9612 (0,0032)	1,9635 (0,0023)	1,9633 (0,0028)	1,9610 (0,0021)	1,9589 (0,0018)
C1-O4	x2	1,9779 (0,0019)	1,9820 (0,0020)	1,9809 (0,0031)	1,9785 (0,0023)	1,9807 (0,0027)	1,9786 (0,0021)	1,9782 (0,0018)
C1-01	x2	2,0253 (0,0019)	2,0240 (0,0021)	2,0201 (0,0032)	2,0217 (0,0024)	2,0266 (0,0027)	2,0231 (0,0021)	2,0233 (0,0019)
d media	l	1,9870	1,9877	1,9873	1,9874	1,9905	1,9876	1,9861
C2A-O2	x4	2,0034 (0,0021)	2,0051 (0,0022)	2,0027 (0,0035)	2,0036 (0,0026)	2,0057 (0,0030)	1,9995 (0,0022)	2,0042 (0,0020)
C2A-O5	x2	2,0239 (0,0028)	2,0228 (0,0029)	2,0187 (0,0047)	2,0143 (0,0033)	2,0156 (0,0041)	2,0157 (0,0031)	2,0198 (0,0027)
d media	I	2,0090	2,0100	2,0070	2,0066	2,0084	2,0037	2,0084
C2B-O2	x4	1,9701 (0,0020)	1,9738 (0,0021)	1,9680 (0,0033)	1,9700 (0,0025)	1,9720 (0,0029)	1,9703 (0,0021)	1,9700 (0,0020)
C2B-O4	x2	2,0232 (0,0027)	2,0165 (0,0028)	2,0159 (0,0044)	2,0193 (0,0033)	2,0191 (0,0039)	2,0160 (0,0030)	2,0179 (0,0026)
d media	I	1,9845	1,9854	1,9811	1,9835	1,9848	1,9821	1,9833
Si1-O6		1,5853 (0,0035)	1,5822 (0,0037)	1,5820 (0,0058)	1,5814 (0,0041)	1,5785 (0,0049)	1,5749 (0,0036)	1,5848 (0,0033)
Si1-07		1,5964 (0,0038)	1,5971 (0,0038)	1,5982 (0,0060)	1,5998 (0,0045)	1,6076 (0,0053)	1,6005 (0,0040)	1,5954 (0,0035)
Si1-01	x2	1,6306 (0,0020)	1,6345 (0,0023)	1,6383 (0,0034)	1,6328 (0,0027)	1,6332 (0,0030)	1,6302 (0,0022)	1,6309 (0,0021)
d media	I	1,6164	1,6174	1,6206	1,6163	1,6181	1,6143	1,6153
Si2-O8		1,5884 (0,0031)	1,5909 (0,0034)	1,5924 (0,0051)	1,5921 (0,0039)	1,5931 (0,0045)	1,5927 (0,0033)	1,5878 (0,0031)
Si2-07		1,6147 (0,0039)	1,6089 (0,0040)	1,6106 (0,0063)	1,6086 (0,0046)	1,6008 (0,0055)	1,6102 (0,0042)	1,6117 (0,0036)
Si2-O3	x2	1,6313 (0,0025)	1,6238 (0,0027)	1,6269 (0,0042)	1,6267 (0,0031)	1,6286 (0,0035)	1,6240 (0,0026)	1,6318 (0,0024)
d media	l	1,6153	1,6182	1,6134	1,6153	1,6143	1,6180	

	AZ1	AZ4gr	AZ4A	AZ4Q	AZ4L
Volume A1 (Å ³)	25.924 (0.0079)	25.881 (0.0086)	25.961 (0.0093)	25.883 (0.0083)	25.850 (0.0067)
Volume A2 (Å ³)	35.815 (0.0132)	35.832 (0.0144)	35.801 (0.0157)	35.651 (0.0140)	35.693 (0.0114)
Volume B (Å ³)	12.520 (0.0121)	12.497 (0.0133)	12.538 (0.0148)	12.490 (0.0131)	12.469 (0.0106)
Volume C1 (Å ³)	10.468 (0.0082)	10.423 (0.0092)	10.499 (0.0100)	10.416 (0.0084)	10.397 (0.0071)
Volume C2A (Å ³)	10.810 (0.0091)	10.790 (0.0101)	10.809 (0.0108)	10.872 (0.0093)	10.769 (0.0077)
Volume C2B (Å ³)	10.512 (0.0087)	10.463 (0.0097)	10.475 (0.0105)	10.474 (0.0090)	10.471 (0.0076)
Volume Si1 (Å ³)	2.138 (0.0051)	2.142 (0.0056)	2.144 (0.0062)	2.139 (0.0054)	2.135 (0.0044)
Volume Si2 (Å ³)	2.134 (0.0051)	2.134 (0.0057)	2.123 (0.0061)	2.129 (0.0054)	2.135 (0.0045)
λ di B	1.0364	1.0358	1.0360	1.0368	1.0362
σ^2 di B	111.4540	109.8055	109.7703	112.8381	111.0572
λ di C1	1.0042	1.0040	1.0040	1.0043	1.0041
σ^2 di C1	14.4011	13.8291	13.7046	14.7504	14.2500
λ di C2A	1.0032	1.0034	1.0030	1.0033	1.0032
σ ² di C2A	10.8449	11.4727	10.2523	11.1492	11.0530
λ di C2B	1.0033	1.0030	1.0033	1.0031	1.0031
σ^2 di C2B	11.0827	9.8313	10.8435	10.1555	10.1811
λ di Si1	1.0009	1.0007	1.0008	1.0009	1.0008
σ ² di Si1	2.6131	1.7165	2.0705	2.5816	2.0026
O1-Si1-O1 e [2x]O6-Si1-O1	111.22 109.73	111.08 109.79	111.18 109.85	111.38 109.69	111.17 109.79
[2x]07-Si1-O1 e O6-Si1-O7	107.55 111.05	107.89 110.37	107.72 110.48	107.58 110.89	107.76 110.52
λ di Si2	1.0054	1.0053	1.0050	1.0054	1.0051
σ^2 di Si2	23.5327	22.6451	21.8555	23.6069	22.0942
O3-Si2-O3 e [2x]O7-Si2-O3	107.06 104.00	106.79 104.23	106.67 104.39	106.50 104.19	106.73 104.32
[2x]08-Si2-O3 e 08-Si2-O7	113.98 112.84	114.03 112.58	113.93 112.62	114.00 112.98	113.89 112.77
Si1-07-Si2	169.41	168.75	168.71	169.17	168.72

Tab. 6.a. Volumi dei poliedri, elongazioni quadratiche medie (λ), varianze angolari (σ^2) (Robinson et al., 1971), angoli dei tetraderi dei cristalli delle Azzorre.

	P1	P2	PN	P4	Р5	P6	P7
Volume A1 (Å ³)	25.980 (0.0086)	25.944 (0.0092)	25.903 (0.0143)	25.990 (0.0105)	25.884 (0.0124)	25.923 (0.0090)	25.915 (0.0083)
Volume A2 (Å ³)	35.792 (0.0149)	35.778 (0.0159)	35.787 (0.0248)	35.788 (0.0179)	35.810 (0.0212)	35.749 (0.0155)	35.748 (0.0142)
Volume B (Å ³)	12.463 (0.0138)	12.625 (0.0149)	12.426 (0.0228)	12.486 (0.0166)	12.591 (0.0196)	12.519 (0.0144)	12.340 (0.0130)
Volume C1 (Å ³)	10.393 (0.0099)	10.412 (0.0093)	10.399 (0.0145)	10.411 (0.0106)	10.441 (0.0126)	10.407 (0.0095)	10.394 (0.0084)
Volume C2A (Å ³)	10.774 (0.0097)	10.785 (0.0102)	10.733 (0.0162)	10.724 (0.0116)	10.749 (0.0140)	10.690 (0.0103)	10.763 (0.0094)
Volume C2B (Å ³)	10.422 (0.0094)	10.428 (0.0099)	10.368 (0.0154)	10.403 (0.0114)	10.423 (0.0134)	10.390 (0.0101)	10.398 (0.0090)
Volume Si1 (Å ³)	2.143 (0.0056)	2.148 (0.0059)	2.156 (0.0093)	2.147 (0.0067)	2.152 (0.0080)	2.136 (0.0060)	2.141 (0.0053)
Volume Si2 (Å ³)	2.151 (0.0057)	2.132 (0.0060)	2.142 (0.0093)	2.139 (0.0068)	2.137 (0.0080)	2.137 (0.0060)	2.147 (0.0054)
λ di B	1.0385	1.0389	1.0368	1.0377	1.0385	1.0377	1.0373
σ ² di B	118.1798	118.8419	112.3508	115.6455	119.1332	115.3781	114.7197
λ di C1	1.0045	1.0046	1.0045	1.0042	1.0046	1.0042	1.0043
σ^2 di C1	15.2757	15.5222	15.4264	14.4366	15.5959	14.0946	14.4034
λ di C2A	1.0035	1.0036	1.0039	1.0036	1.0038	1.0035	1.0034
σ ² di C2A	11.9177	12.3795	13.3459	12.2066	13.0222	11.8817	11.6705
λ di C2B	1.0034	1.0032	1.0030	1.0032	1.0032	1.0032	1.0031
σ ² di C2B	10.5522	10.3062	9.6082	10.0826	10.1919	10.2133	9.7951
λ di Si1	1.0007	1.0007	1.0009	1.0007	1.0008	1.0007	1.0010
σ^2 di Si1	2.4516	1.5817	2.0007	1.5634	1.8242	1.5704	2.7782
01-Si1-O1 e [2x]O6-Si1-O1	111.21 109.73	111.00 109.70	111.27 109.75	110.95 109.61	111.22 109.74	110.92 109.95	111.28 109.79
[2x]07-Si1-O1 e O6-Si1-O7	107.89 110.36	107.98 110.47	107.79 110.46	108.01 110.63	107.87 110.36	107.92 110.14	107.46 111.00
λ di Si2	1.0052	1.0054	1.0053	1.0053	1.0051	1.0051	1.0056
σ^2 di Si2	22.7140	23.3769	23.0169	22.9840	21.5737	21.9483	24.4437
O3-Si2-O3 e [2x]O7-Si2-O3	106.89 104.18	106.80 104.13	107.10 104.06	106.89 104.14	107.00 104.31	106.59 104.41	106.93 103.91
[2x]08-Si2-O3 e 08-Si2-O7	113.92 112.83	114.11 112.59	113.95 112.77	114.00 112.71	113.91 112.50	113.99 112.54	113.90 113.29
Si1-07-Si2	168.05	167.71	168.86	168.49	167.45	167.70	169.76

Tab. 6.b. Volumi dei poliedri, elongazioni quadratiche medie (λ), varianze angolari (σ^2) (Robinson et al., 1971), angoli dei tetraderi dei cristalli del Pakistan.

		AZ1	AZ4gr	PN
	04 ^{II} -05 ^{II} e 04 ^I -05 ^I	2,694	2,691	2,679
	04 ^{II} -05 ^I e 04 ^I -05 ^{II}	2,891	2,889	2,892
Spigoli di	01 ¹ -04 ¹¹	2,746	2,744	2,738
C1	01 ¹ -05 ¹	2,902	2,891	2,893
	01 ¹ -04 ¹	2,919	2,913	2,917
	01 ¹ -05 ¹¹	2,738	2,737	2,736
	02 ¹ -02 ¹¹	2,773	2,767	2,753
Spigoli di	02 ^l -02 ^l e 02 ^{ll} -02 ^{ll}	2,908	2,909	2,916
C2A	02 ¹ -05 ¹	2,930	2,930	2,929
	02 ^{II-} O5	2,763	2,760	2,762
	02 ¹ -02 ¹¹	2,773	2,767	2,753
Spigali di	02 ^I -02 ^I e 02 ^{II} -02 ^{II}	2,829	2,826	2,829
C2B	02 ¹ -04 ¹¹	2,733	2,734	2,732
	02 ["] -04 ["]	2,921	2,910	2,909

Tab. 7. Lunghezze degli spigoli dei poliedri C1, C2A, C2B, dei cristalli AZ1, AZ4gr e PN.

			Prova 1	1			Prova 2					Prova 3							
tensione accelerazione			15 kV				20 kV							20 kV					
corrente fascio			15 nA						20 nA					20 nA					
		lambda caratteristica	cristallo analizzatore	Pk Time (s)	Bg Time (s)	Standard		lambda caratteristica	cristallo analizzatore	Pk Time (s)	Bg Time (s)	Standard		lambda caratteristica	cristallo analizzatore	Pk Time (s)	Bg Time (s)	Standard	
	Si	Κα	TAP	10	5	CaSiO ₃	Si	Κα	TAP	10	5	CaSiO ₃	Si	Κα	TAP	10	5	CaSiO ₃	
	Ti	Κα	TAP	10	5	MnTiO ₃	Ti	Κα	PET	10	5	MnTiO ₃	Ti	Κα	PET	10	5	MnTiO ₃	
	Al	Κα	PET	10	5	Al_2O_3	Al	Κα	TAP	20	10	Al_2O_3	Al	Κα	TAP	20	10	Al_2O_3	
	Ca	Κα	PET	10	5	CaSiO ₃	Ca	Κα	PET	20	10	CaSiO ₃	Ca	Κα	PET	20	10	CaSiO ₃	
	Mn	Κα	LIF	10	5	MnTiO ₃	Mn	Κα	LIF	20	10	MnTiO ₃	Mn	Κα	LIF	20	10	MnTiO ₃	
	Fe	Κα	LIF	10	5	Fe_2O_3	Fe	Κα	LIF	10	5	Fe_2O_3	Fe	Κα	LIF	10	5	Fe_2O_3	
alamanti	Nb	Lα	PET	10	5	Nb	Nb	Lα	PET	10	5	Nb	Nb	Lα	PET	10	5	Nb	
analizzati	Ce	Lα	LIF	10	5	vetro 4% Ce ₂ O ₃	Ce	Lα	PET	10	5	CePO ₄	Ce	Lα	LIF	10	5	CePO ₄	
	La	Lα	LIF	10	5	vetro 4% La ₂ O ₃	La	Lα	LIF	10	5	LaPO ₄	La	Lα	LIF	10	5	LaPO ₄	
	Pr	Lα	LIF	10	5	vetro 4% Pr ₂ O ₃	Pr	Lβ	LIF	10	5	PrPO ₄	Pr	Lβ	LIF	10	5	PrPO ₄	
	Nd	Lα	LIF	10	5	vetro 4% Nd ₂ O ₃	Nd	Lα	LIF	10	5	NdPO ₄	Nd	Lβ	LIF	10	5	NdPO ₄	
	Sm	Lα	LIF	10	5	vetro 4% Sm ₂ O ₃	Sm	Lβ	LIF	20	10	SmPO ₄	Sm	Lβ	LIF	20	10	SmPO ₄	
	Th	Μα	PET	10	5	ThO_2	Th	Μα	PET	20	10	ThO_2	Th	Μα	PET	20	10	ThO_2	
													Mg	Κα	TAP	20	10	MgO	

Tab. 8. Condizioni di lavoro utilizzate nelle indagini chimiche quantitative.

			Prova	4			Prova 5							
tensione accelerazione			20 kV	Ι			20 kV							
corrente fascio			20 nA	١			20 nA							
		lambda caratteristica	cristallo analizzatore	Pk Time (s)	Bg Time (s)	Standard		lambda caratteristica	cristallo analizzatore	Pk Time (s)	Bg Time (s)	Standard		
	Si	Κα	TAP	10	5	CaSiO ₃	Si	Κα	TAP	10	5	CaSiO ₃		
	Ti	Κα	PET	10	5	MnTiO ₃	Ti	Κα	PET	10	5	MnTiO ₃		
	Al	Κα	TAP	10	5	Al_2O_3	Al	Κα	TAP	10	5	Al_2O_3		
	Ca	Κα	PET	10	5	CaSiO ₃	Ca	Κα	PET	10	5	CaSiO ₃		
	Mn	Κα	LIF	10	5	MnTiO ₃	Mn	Κα	LIF	10	5	MnTiO ₃		
	Fe	Κα	LIF	10	5	Fe ₂ O ₃	Fe	Κα	LIF	10	5	Fe ₂ O ₃		
	Nb	Lα	PET	10	5	Nb	Nb	Lα	PET	10	5	Nb		
	Ce	Lα	LIF	10	5	CePO ₄	Ce	Lα	LIF	10	5	CePO ₄		
elementi	La	Lα	LIF	10	5	LaPO ₄	La	Lα	LIF	10	5	LaPO ₄		
ananzzau	Pr	Lβ	LIF	10	5	PrPO ₄	Pr	Lβ	LIF	10	5	PrPO ₄		
	Nd	Lβ	LIF	10	5	NdPO ₄	Nd	Lβ	LIF	10	5	NdPO ₄		
	Sm	Lβ	LIF	10	5	$SmPO_4$	Sm	Lβ	LIF	10	5	$SmPO_4$		
	Th	Μα	PET	10	5	ThO ₂	Th	Μα	PET	10	5	ThO ₂		
	Mg	Κα	TAP	10	5	MgO	Mg	Κα	TAP	10	5	MgO		
	Sr	Lα	PET	10	10	$SrSO_4$	Sr	Lα	PET	10	10	$SrSO_4$		
	Zr	Lα	PET	20	10	Zr	Zr	Lα	PET	20	10	Zr		
	Y	Lα	ТАР	10	5	vetro 4% Y ₂ O ₃	Y	Lα	PET	10	5	YPO ₄		
							Gd	Lβ	LIF	10	5	GdPO ₄		
							F	Κα	TAP	10	5	FCa ₅ (PO ₄) ₃ F		

Tab. 8. continua. Condizioni di lavoro utilizzate nelle indagini chimiche quantitative.

	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	Nb_2O_5	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	ThO ₂	Somma
	0,11	18,89	2,12	16,99	0,55	11,36	0,61	10,72	22,73	2,94	7,16	0,78	1,00	95,97
	0,09	18,38	2,10	16,95	0,66	11,01	0,30	9,94	23,05	3,01	6,89	0,90	0,87	94,15
	0,10	18,70	2,13	17,07	0,65	10,94	0,63	10,60	23,49	2,89	7,07	0,51	1,04	95,81
	0,07	18,13	2,34	16,96	0,46	10,96	0,32	9,92	24,22	3,14	7,56	0,74	0,87	95,70
	0,09	18,81	2,03	16,98	0,55	10,86	0,32	11,19	23,48	2,64	7,06	0,60	0,81	95,42
	0,12	18,69	2,24	17,09	0,57	10,99	0,21	10,12	23,24	2,91	7,32	0,63	0,69	94,82
	0,09	18,62	2,23	17,69	0,63	11,34	0,53	10,25	23,42	3,47	7,35	0,63	0,80	97,05
	0,09	18,79	2,06	17,13	0,62	11,31	0,43	10,38	23,72	3,17	7,38	0,63	1,00	96,71
	0,13	18,46	2,09	16,94	0,60	11,13	0,44	10,66	23,33	3,01	7,36	0,99	1,03	96,17
	0,11	18,36	2,05	16,82	0,67	11,08	0,62	10,08	23,99	3,28	7,40	0,67	0,98	96,12
	0,06	18,87	2,22	17,11	0,71	11,12	0,26	10,80	22,49	3,15	7,30	0,67	1,11	95,86
	0,09	18,52	2,30	17,50	0,49	11,26	0,59	10,42	22,76	3,21	7,16	0,49	0,72	95,50
	0,14	18,83	2,38	16,95	0,67	11,05	0,28	9,65	23,14	3,08	7,36	0,94	0,89	95,36
media	0,10	18,62	2,18	17,09	0,60	11,11	0,43	10,36	23,31	3,07	7,26	0,71	0,91	95,74
dev.st.	0,02	0,23	0,12	0,24	0,07	0,16	0,16	0,43	0,50	0,21	0,18	0,16	0,13	
						21								
	AI	Si	Ca	Ti	Mn	Fe ²⁺	Nb	La	Ce	Pr	Nd	Sm	Th	
	AI 0,029	Si 4,107	Ca 0,494	Ti 2,779	Mn 0,102	Fe²⁺ 2,066	Nb 0,060	La 0,860	Ce 1,810	Pr 0,233	Nd 0,556	Sm 0,058	Th 0,050	13,202
	AI 0,029 0,024	Si 4,107 4,079	Ca 0,494 0,499	Ti 2,779 2,830	Mn 0,102 0,123	Fe²⁺ 2,066 2,044	Nb 0,060 0,030	La 0,860 0,814	Ce 1,810 1,873	Pr 0,233 0,243	Nd 0,556 0,546	Sm 0,058 0,069	Th 0,050 0,044	13,202 13,218
	AI 0,029 0,024 0,025	Si 4,107 4,079 4,081	Ca 0,494 0,499 0,499	Ti 2,779 2,830 2,801	Mn 0,102 0,123 0,119	Fe²⁺ 2,066 2,044 1,997	Nb 0,060 0,030 0,063	La 0,860 0,814 0,853	Ce 1,810 1,873 1,876	Pr 0,233 0,243 0,229	Nd 0,556 0,546 0,551	Sm 0,058 0,069 0,038	Th 0,050 0,044 0,052	13,202 13,218 13,185
	Al 0,029 0,024 0,025 0,019	Si 4,107 4,079 4,081 4,003	Ca 0,494 0,499 0,499 0,554	Ti 2,779 2,830 2,801 2,816	Mn 0,102 0,123 0,119 0,085	Fe²⁺ 2,066 2,044 1,997 2,022	Nb 0,060 0,030 0,063 0,032	La 0,860 0,814 0,853 0,807	Ce 1,810 1,873 1,876 1,957	Pr 0,233 0,243 0,229 0,252	Nd 0,556 0,546 0,551 0,596	Sm 0,058 0,069 0,038 0,057	Th 0,050 0,044 0,052 0,044	13,202 13,218 13,185 13,245
	Al 0,029 0,024 0,025 0,019 0,024	Si 4,107 4,079 4,081 4,003 4,121	Ca 0,494 0,499 0,499 0,554 0,478	Ti 2,779 2,830 2,801 2,816 2,798	Mn 0,102 0,123 0,119 0,085 0,103	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990	Nb 0,060 0,030 0,063 0,032 0,031	La 0,860 0,814 0,853 0,807 0,904	Ce 1,810 1,873 1,876 1,957 1,884	Pr 0,233 0,243 0,229 0,252 0,210	Nd 0,556 0,546 0,551 0,596 0,553	Sm 0,058 0,069 0,038 0,057 0,045	Th 0,050 0,044 0,052 0,044 0,041	13,202 13,218 13,185 13,245 13,183
	Al 0,029 0,024 0,025 0,019 0,024 0,030	Si 4,107 4,079 4,081 4,003 4,121 4,107	Ca 0,494 0,499 0,499 0,554 0,478 0,528	Ti 2,779 2,830 2,801 2,816 2,798 2,825	Mn 0,102 0,123 0,119 0,085 0,103 0,107	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990 2,019	Nb 0,060 0,030 0,063 0,032 0,031 0,021	La 0,860 0,814 0,853 0,807 0,904 0,821	Ce 1,810 1,873 1,876 1,957 1,884 1,869	Pr 0,233 0,243 0,229 0,252 0,210 0,233	Nd 0,556 0,546 0,551 0,596 0,553 0,574	Sm 0,058 0,069 0,038 0,057 0,045 0,048	Th 0,050 0,044 0,052 0,044 0,041 0,034	13,202 13,218 13,185 13,245 13,183 13,215
	Al 0,029 0,024 0,025 0,019 0,024 0,030 0,023	Si 4,107 4,079 4,081 4,003 4,121 4,107 4,013	Ca 0,494 0,499 0,554 0,554 0,528 0,514	Ti 2,779 2,830 2,801 2,816 2,798 2,825 2,868	Mn 0,102 0,123 0,119 0,085 0,103 0,107 0,115	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990 2,019 2,044	Nb 0,060 0,030 0,063 0,032 0,031 0,021 0,052	La 0,860 0,814 0,853 0,807 0,904 0,821 0,814	Ce 1,810 1,873 1,876 1,957 1,884 1,869 1,848	Pr 0,233 0,243 0,229 0,252 0,210 0,233 0,272	Nd 0,556 0,546 0,551 0,596 0,553 0,574 0,565	Sm 0,058 0,069 0,038 0,057 0,045 0,048 0,047	Th 0,050 0,044 0,052 0,044 0,041 0,034 0,039	13,202 13,218 13,185 13,245 13,183 13,215 13,217
	Al 0,029 0,024 0,025 0,019 0,024 0,030 0,023 0,023	Si 4,107 4,079 4,081 4,003 4,121 4,107 4,013 4,076	Ca 0,494 0,499 0,554 0,554 0,528 0,514 0,478	Ti 2,779 2,830 2,801 2,816 2,798 2,825 2,868 2,796	Mn 0,102 0,123 0,119 0,085 0,103 0,107 0,115 0,114	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990 2,019 2,044 2,051	Nb 0,060 0,030 0,063 0,032 0,031 0,021 0,052 0,042	La 0,860 0,814 0,853 0,807 0,904 0,821 0,814 0,831	Ce 1,810 1,873 1,876 1,957 1,884 1,869 1,848 1,884	Pr 0,233 0,243 0,229 0,252 0,210 0,233 0,272 0,250	Nd 0,556 0,546 0,551 0,596 0,553 0,574 0,565 0,572	Sm 0,058 0,069 0,038 0,057 0,045 0,045 0,047 0,047	Th 0,050 0,044 0,052 0,044 0,041 0,034 0,039 0,050	13,202 13,218 13,185 13,245 13,183 13,215 13,217 13,213
	Al 0,029 0,024 0,025 0,019 0,024 0,030 0,023 0,023 0,033	Si 4,107 4,079 4,081 4,003 4,121 4,107 4,013 4,076 4,043	Ca 0,494 0,499 0,554 0,554 0,528 0,514 0,478 0,491	Ti 2,779 2,830 2,801 2,816 2,798 2,825 2,868 2,796 2,790	Mn 0,102 0,123 0,119 0,085 0,103 0,107 0,115 0,114 0,111	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990 2,019 2,044 2,051 2,038	Nb 0,060 0,030 0,063 0,032 0,031 0,021 0,052 0,042 0,044	La 0,860 0,814 0,853 0,807 0,904 0,821 0,814 0,831 0,861	Ce 1,810 1,873 1,876 1,957 1,884 1,869 1,848 1,884 1,870	Pr 0,233 0,229 0,252 0,210 0,233 0,272 0,250 0,240	Nd 0,556 0,546 0,551 0,596 0,553 0,574 0,565 0,572 0,576	Sm 0,058 0,069 0,038 0,057 0,045 0,045 0,047 0,047 0,047	Th 0,050 0,044 0,052 0,044 0,041 0,034 0,039 0,050 0,051	13,202 13,218 13,185 13,245 13,183 13,215 13,217 13,213 13,223
	Al 0,029 0,024 0,025 0,019 0,024 0,030 0,023 0,023 0,033 0,028	Si 4,107 4,079 4,081 4,003 4,121 4,107 4,013 4,076 4,043 4,028	Ca 0,499 0,499 0,554 0,558 0,528 0,514 0,478 0,491 0,481	Ti 2,779 2,830 2,801 2,816 2,798 2,825 2,868 2,796 2,790 2,776	Mn 0,102 0,123 0,085 0,103 0,107 0,115 0,114 0,111 0,125	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990 2,019 2,044 2,051 2,038 2,034	Nb 0,060 0,030 0,063 0,032 0,031 0,021 0,052 0,042 0,044 0,062	La 0,860 0,814 0,853 0,807 0,904 0,821 0,814 0,831 0,861 0,816	Ce 1,810 1,873 1,876 1,957 1,884 1,869 1,848 1,848 1,870 1,927	Pr 0,233 0,243 0,229 0,252 0,210 0,233 0,272 0,250 0,240 0,263	Nd 0,556 0,546 0,551 0,553 0,574 0,565 0,572 0,576 0,580	Sm 0,058 0,069 0,038 0,057 0,045 0,045 0,047 0,047 0,074 0,051	Th 0,050 0,044 0,052 0,044 0,041 0,034 0,039 0,050 0,051 0,049	13,202 13,218 13,185 13,245 13,183 13,215 13,217 13,213 13,223 13,221
	Al 0,029 0,024 0,025 0,019 0,024 0,030 0,023 0,023 0,023 0,028 0,015	Si 4,107 4,079 4,081 4,003 4,121 4,107 4,013 4,076 4,043 4,028 4,113	Ca 0,499 0,499 0,554 0,558 0,518 0,514 0,478 0,491 0,481 0,517	Ti 2,779 2,830 2,801 2,816 2,798 2,825 2,868 2,796 2,790 2,776 2,804	Mn 0,102 0,123 0,119 0,085 0,103 0,107 0,115 0,114 0,111 0,125 0,131	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990 2,019 2,044 2,051 2,038 2,034 2,026	Nb 0,060 0,030 0,032 0,031 0,021 0,052 0,042 0,044 0,062 0,026	La 0,860 0,814 0,853 0,807 0,904 0,821 0,814 0,814 0,861 0,868	Ce 1,810 1,873 1,876 1,957 1,884 1,869 1,848 1,848 1,870 1,927 1,794	Pr 0,233 0,243 0,229 0,252 0,210 0,233 0,272 0,250 0,240 0,263 0,250	Nd 0,556 0,546 0,551 0,596 0,553 0,574 0,565 0,572 0,576 0,580 0,568	Sm 0,058 0,069 0,038 0,057 0,045 0,048 0,047 0,047 0,074 0,051 0,050	Th 0,050 0,044 0,052 0,044 0,034 0,039 0,050 0,051 0,049 0,055	13,202 13,218 13,185 13,245 13,183 13,215 13,217 13,213 13,223 13,221 13,221
	Al 0,029 0,024 0,025 0,019 0,024 0,030 0,023 0,023 0,033 0,028 0,015 0,022	Si 4,107 4,079 4,081 4,003 4,121 4,107 4,013 4,076 4,043 4,028 4,113 4,038	Ca 0,499 0,499 0,554 0,554 0,528 0,514 0,478 0,491 0,481 0,517 0,537	Ti 2,779 2,830 2,801 2,816 2,798 2,825 2,868 2,796 2,796 2,776 2,804 2,869	Mn 0,102 0,123 0,119 0,085 0,103 0,107 0,115 0,114 0,111 0,125 0,131 0,090	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990 2,019 2,044 2,051 2,038 2,034 2,026 2,053	Nb 0,060 0,030 0,032 0,031 0,021 0,052 0,042 0,044 0,062 0,026 0,058	La 0,860 0,814 0,853 0,807 0,904 0,821 0,814 0,814 0,861 0,868 0,838	Ce 1,810 1,873 1,876 1,957 1,884 1,869 1,848 1,848 1,844 1,870 1,927 1,794 1,816	Pr 0,233 0,243 0,229 0,252 0,210 0,233 0,272 0,250 0,240 0,263 0,250	Nd 0,556 0,546 0,551 0,596 0,553 0,574 0,565 0,572 0,576 0,580 0,568 0,557	Sm 0,058 0,069 0,038 0,057 0,045 0,045 0,047 0,047 0,074 0,051 0,050 0,037	Th 0,050 0,044 0,052 0,044 0,034 0,039 0,050 0,051 0,049 0,055 0,035	13,202 13,218 13,185 13,245 13,215 13,217 13,213 13,223 13,221 13,217 13,217
	Al 0,029 0,024 0,025 0,019 0,024 0,030 0,023 0,023 0,023 0,033 0,028 0,015 0,022 0,036	Si 4,107 4,079 4,081 4,003 4,121 4,107 4,013 4,076 4,043 4,028 4,113 4,038 4,116	Ca 0,499 0,499 0,554 0,528 0,514 0,478 0,478 0,491 0,481 0,517 0,537 0,558	Ti 2,779 2,830 2,801 2,816 2,798 2,825 2,868 2,796 2,796 2,776 2,804 2,869 2,787	Mn 0,102 0,123 0,119 0,085 0,103 0,107 0,115 0,114 0,111 0,125 0,131 0,090 0,124	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990 2,019 2,044 2,051 2,038 2,034 2,026 2,053 2,021	Nb 0,060 0,030 0,032 0,031 0,021 0,052 0,042 0,044 0,062 0,026 0,058 0,027	La 0,860 0,814 0,853 0,807 0,904 0,821 0,814 0,831 0,861 0,868 0,838 0,778	Ce 1,810 1,873 1,876 1,957 1,884 1,869 1,848 1,848 1,884 1,870 1,927 1,794 1,816 1,852	Pr 0,233 0,243 0,229 0,252 0,210 0,233 0,272 0,250 0,240 0,263 0,255 0,246	Nd 0,556 0,546 0,551 0,596 0,553 0,574 0,565 0,572 0,576 0,580 0,568 0,557 0,574	Sm 0,058 0,069 0,038 0,057 0,045 0,045 0,047 0,047 0,047 0,074 0,051 0,050 0,037 0,071	Th 0,050 0,044 0,052 0,044 0,034 0,039 0,050 0,051 0,049 0,055 0,035 0,035	13,202 13,218 13,185 13,245 13,183 13,215 13,217 13,213 13,223 13,221 13,217 13,207 13,207
media	Al 0,029 0,024 0,019 0,024 0,030 0,023 0,023 0,023 0,023 0,023 0,023 0,025 0,026 0,036 0,025	Si 4,107 4,079 4,081 4,003 4,121 4,107 4,013 4,076 4,043 4,028 4,113 4,028 4,113 4,038 4,116 4,071	Ca 0,494 0,499 0,554 0,528 0,514 0,478 0,478 0,478 0,491 0,481 0,517 0,537 0,558 0,510	Ti 2,779 2,830 2,801 2,816 2,798 2,825 2,868 2,796 2,790 2,776 2,804 2,869 2,787 2,811	Mn 0,102 0,123 0,119 0,085 0,103 0,107 0,115 0,114 0,111 0,125 0,131 0,090 0,124 0,111	Fe ²⁺ 2,066 2,044 1,997 2,022 1,990 2,019 2,044 2,051 2,038 2,034 2,034 2,026 2,053 2,021 2,031	Nb 0,060 0,030 0,032 0,031 0,021 0,052 0,042 0,044 0,062 0,026 0,026 0,027 0,042	La 0,860 0,814 0,853 0,807 0,904 0,821 0,814 0,831 0,861 0,868 0,838 0,838 0,778 0,836	Ce 1,810 1,873 1,876 1,957 1,884 1,869 1,848 1,848 1,870 1,927 1,794 1,816 1,852 1,866	Pr 0,233 0,229 0,252 0,210 0,233 0,272 0,250 0,240 0,263 0,255 0,246 0,244	Nd 0,556 0,546 0,551 0,596 0,553 0,574 0,565 0,572 0,576 0,580 0,568 0,557 0,574 0,574	Sm 0,058 0,069 0,038 0,057 0,045 0,045 0,047 0,047 0,047 0,071 0,050 0,037 0,071 0,053	Th 0,050 0,044 0,052 0,044 0,034 0,039 0,050 0,051 0,049 0,055 0,035 0,044 0,045	13,202 13,218 13,185 13,245 13,183 13,215 13,217 13,213 13,221 13,221 13,217 13,207 13,203 13,214

Tab.9.a. Composizione dei punti analisi del campione Pak2prova nella prova 1: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

Tab.9.b. Composizione dei punti analisi del campione Pak2prova nella prova 2: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	Nb_2O_5	La_2O_3	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	ThO ₂	Somma
	0,11	18,83	2,03	16,99	0,60	10,97	0,28	10,88	24,31	2,28	8,16	0,10	0,84	96,37
	0,13	19,15	2,18	17,14	0,58	10,86	0,35	11,41	23,98	2,41	7,93	0,13	1,01	97,26
	0,15	19,39	2,77	17,58	0,39	11,28	0,42	10,08	23,54	2,49	8,53	0,22	0,70	97,54
	0,09	18,82	2,14	17,25	0,59	11,08	0,40	10,80	24,27	1,86	8,10	0,13	0,85	96,38
	0,11	18,92	2,16	17,07	0,65	11,04	0,44	10,72	24,31	1,89	8,34	0,21	0,90	96,78
	0,08	19,14	2,21	17,31	0,65	11,19	0,40	11,31	24,47	2,43	8,56	0,01	0,92	98,69
	0,10	18,99	1,94	17,14	0,59	11,20	0,44	10,91	24,50	2,42	8,27	0,24	0,91	97,64
	0,11	18,86	2,21	17,21	0,62	10,98	0,39	10,19	24,39	2,23	8,28	0,08	0,94	96,47
	0,08	19,09	2,01	17,27	0,66	11,05	0,40	11,00	24,51	2,16	8,41	0,08	0,88	97,61
	0,08	19,13	2,11	17,38	0,62	11,05	0,21	10,85	24,72	2,50	8,52	0,18	0,76	98,13
	0,13	19,05	2,56	17,67	0,47	11,22	0,45	10,75	24,17	2,37	8,06	0,25	0,92	98,06
	0,11	18,75	2,12	17,01	0,56	11,12	0,48	10,97	24,18	2,56	8,09	0,13	0,89	96,96
	0,11	19,10	2,14	17,21	0,60	11,16	0,47	10,98	24,82	2,57	8,33	0,15	0,89	98,54
media	0,11	19,02	2,20	17,25	0,58	11,09	0,39	10,84	24,32	2,32	8,28	0,15	0,88	97,42
dev.st.	0,02	0,18	0,23	0,20	0,08	0,12	0,08	0,37	0,33	0,23	0,20	0,07	0,08	
	AI	Si	Ca	Ti	Mn	F م ²⁺	Nb		<u>Co</u>	Dr	Nd	C	Th	
		0.	ou	••		10	UN	La	Ce	FI	Nu	5111	IN	
	0,028	4,102	0,474	2,784	0,111	1,999	0,027	La 0,874	1,938	0,181	0,635	0,007	0,041	13,201
	0,028 0,032	4,102 4,122	0,474 0,503	2,784 2,776	0,111 0,106	1,999 1,956	0,027 0,034	∟a 0,874 0,906	1,938 1,890	0,181 0,189	0,635 0,610	0,007 0,009	0,041 0,049	13,201 13,183
	0,028 0,032 0,039	4,102 4,122 4,119	0,474 0,503 0,631	2,784 2,776 2,809	0,111 0,106 0,070	1,999 1,956 2,004	0,027 0,034 0,040	La 0,874 0,906 0,790	1,938 1,890 1,831	0,181 0,189 0,192	0,635 0,610 0,647	0,007 0,009 0,016	0,041 0,049 0,034	13,201 13,183 13,221
	0,028 0,032 0,039 0,023	4,102 4,122 4,119 4,084	0,474 0,503 0,631 0,498	2,784 2,776 2,809 2,816	0,111 0,106 0,070 0,108	1,999 1,956 2,004 2,011	0,027 0,034 0,040 0,039	0,874 0,906 0,790 0,865	1,938 1,890 1,831 1,928	0,181 0,189 0,192 0,147	0,635 0,610 0,647 0,627	0,007 0,009 0,016 0,010	0,041 0,049 0,034 0,042	13,201 13,183 13,221 13,199
	0,028 0,032 0,039 0,023 0,029	4,102 4,122 4,119 4,084 4,097	0,474 0,503 0,631 0,498 0,501	2,784 2,776 2,809 2,816 2,780	0,111 0,106 0,070 0,108 0,119	1,999 1,956 2,004 2,011 1,999	0,027 0,034 0,040 0,039 0,043	0,874 0,906 0,790 0,865 0,856	1,938 1,890 1,831 1,928 1,927	0,181 0,189 0,192 0,147 0,149	0,635 0,610 0,647 0,627 0,645	0,007 0,009 0,016 0,010 0,016	0,041 0,049 0,034 0,042 0,044	13,201 13,183 13,221 13,199 13,205
	0,028 0,032 0,039 0,023 0,029 0,021	4,102 4,122 4,119 4,084 4,097 4,078	0,474 0,503 0,631 0,498 0,501 0,506	2,784 2,776 2,809 2,816 2,780 2,774	0,111 0,106 0,070 0,108 0,119 0,118	1,999 1,956 2,004 2,011 1,999 1,995	0,027 0,034 0,040 0,039 0,043 0,039	0,874 0,906 0,790 0,865 0,856 0,889	1,938 1,890 1,831 1,928 1,927 1,909	0,181 0,189 0,192 0,147 0,149 0,189	0,635 0,610 0,647 0,627 0,645 0,652	0,007 0,009 0,016 0,010 0,016 0,001	0,041 0,049 0,034 0,042 0,044 0,044	13,201 13,183 13,221 13,199 13,205 13,214
	0,028 0,032 0,039 0,023 0,029 0,021 0,025	4,102 4,122 4,119 4,084 4,097 4,078 4,090	0,474 0,503 0,631 0,498 0,501 0,506 0,448	2,784 2,776 2,809 2,816 2,780 2,774 2,777	0,111 0,106 0,070 0,108 0,119 0,118 0,108	1,999 1,956 2,004 2,011 1,999 1,995 2,017	0,027 0,034 0,040 0,039 0,043 0,039 0,043	0,874 0,906 0,790 0,865 0,856 0,889 0,866	1,938 1,890 1,831 1,928 1,927 1,909 1,931	0,181 0,189 0,192 0,147 0,149 0,189 0,190	0,635 0,610 0,647 0,627 0,645 0,652 0,636	0,007 0,009 0,016 0,010 0,016 0,001 0,001	0,041 0,049 0,034 0,042 0,044 0,044 0,044	13,201 13,183 13,221 13,199 13,205 13,214 13,192
	0,028 0,032 0,039 0,023 0,029 0,021 0,025 0,027	4,102 4,122 4,119 4,084 4,097 4,078 4,090 4,089	0,474 0,503 0,631 0,498 0,501 0,506 0,448 0,513	2,784 2,776 2,809 2,816 2,780 2,774 2,777 2,807	0,111 0,106 0,070 0,108 0,119 0,118 0,108 0,114	1,999 1,956 2,004 2,011 1,999 1,995 2,017 1,992	0,027 0,034 0,040 0,039 0,043 0,039 0,043 0,038	0,874 0,906 0,790 0,865 0,856 0,889 0,866 0,815	1,938 1,890 1,831 1,928 1,927 1,909 1,931 1,936	0,181 0,189 0,192 0,147 0,149 0,189 0,190 0,176	0,635 0,610 0,647 0,627 0,645 0,652 0,636 0,641	0,007 0,009 0,016 0,010 0,016 0,001 0,018 0,006	0,041 0,049 0,034 0,042 0,044 0,044 0,044	13,201 13,183 13,221 13,199 13,205 13,214 13,192 13,200
	0,028 0,032 0,039 0,023 0,029 0,021 0,025 0,027 0,021	4,102 4,122 4,119 4,084 4,097 4,078 4,090 4,089 4,101	0,474 0,503 0,631 0,498 0,501 0,506 0,448 0,513 0,462	2,784 2,776 2,809 2,816 2,780 2,774 2,777 2,807 2,791	0,111 0,106 0,070 0,108 0,119 0,118 0,108 0,114 0,121	1,999 1,956 2,004 2,011 1,999 1,995 2,017 1,992 1,986	0,027 0,034 0,040 0,039 0,043 0,039 0,043 0,038 0,039	0,874 0,906 0,790 0,865 0,856 0,889 0,866 0,815 0,872	1,938 1,890 1,831 1,928 1,927 1,909 1,931 1,936 1,928	0,181 0,189 0,192 0,147 0,149 0,149 0,189 0,190 0,176 0,169	0,635 0,610 0,647 0,627 0,645 0,652 0,636 0,641 0,645	0,007 0,009 0,016 0,010 0,016 0,001 0,018 0,006 0,006	0,041 0,049 0,034 0,042 0,044 0,044 0,044 0,046 0,043	13,201 13,183 13,221 13,199 13,205 13,214 13,192 13,200 13,185
	0,028 0,032 0,039 0,023 0,029 0,021 0,025 0,027 0,021 0,021	4,102 4,122 4,119 4,084 4,097 4,078 4,078 4,090 4,089 4,101 4,095	0,474 0,503 0,631 0,498 0,501 0,506 0,448 0,513 0,462 0,483	2,784 2,776 2,809 2,816 2,780 2,774 2,777 2,807 2,791 2,798	0,111 0,106 0,070 0,108 0,119 0,118 0,108 0,114 0,121 0,113	1,999 1,956 2,004 2,011 1,999 1,995 2,017 1,992 1,986 1,979	0,027 0,034 0,040 0,039 0,043 0,039 0,043 0,038 0,039 0,020	0,874 0,906 0,790 0,865 0,856 0,889 0,866 0,815 0,872 0,857	1,938 1,890 1,831 1,928 1,927 1,909 1,931 1,936 1,928 1,937	0,181 0,189 0,192 0,147 0,149 0,149 0,189 0,190 0,176 0,169 0,195	0,635 0,610 0,647 0,627 0,645 0,652 0,636 0,641 0,645 0,652	0,007 0,009 0,016 0,010 0,016 0,001 0,018 0,006 0,006 0,014	0,041 0,049 0,034 0,042 0,044 0,044 0,044 0,046 0,043 0,037	13,201 13,183 13,221 13,199 13,205 13,214 13,192 13,200 13,185 13,201
	0,028 0,032 0,039 0,023 0,029 0,021 0,025 0,027 0,021 0,021 0,032	4,102 4,122 4,119 4,084 4,097 4,078 4,090 4,089 4,101 4,095 4,057	0,474 0,503 0,631 0,498 0,501 0,506 0,448 0,513 0,462 0,483 0,583	2,784 2,776 2,809 2,816 2,780 2,774 2,777 2,807 2,791 2,798 2,830	0,111 0,106 0,070 0,108 0,119 0,118 0,108 0,114 0,121 0,113 0,085	1,999 1,956 2,004 2,011 1,999 1,995 2,017 1,992 1,986 1,979 1,998	0,027 0,034 0,040 0,039 0,043 0,039 0,043 0,038 0,039 0,020 0,020 0,044	0,874 0,906 0,790 0,865 0,856 0,889 0,866 0,815 0,872 0,857 0,844	1,938 1,890 1,831 1,928 1,927 1,909 1,931 1,936 1,928 1,937 1,884	0,181 0,189 0,192 0,147 0,149 0,189 0,190 0,176 0,169 0,195 0,184	0,635 0,610 0,647 0,627 0,645 0,652 0,636 0,641 0,645 0,652 0,613	0,007 0,009 0,016 0,010 0,016 0,001 0,018 0,006 0,006 0,014 0,018	0,041 0,049 0,034 0,042 0,044 0,044 0,044 0,044 0,043 0,037 0,044	13,201 13,183 13,221 13,199 13,205 13,214 13,192 13,200 13,185 13,201 13,216
	0,028 0,032 0,039 0,023 0,029 0,021 0,025 0,027 0,021 0,021 0,032 0,027	4,102 4,122 4,119 4,084 4,097 4,078 4,090 4,089 4,101 4,095 4,057 4,068	0,474 0,503 0,631 0,498 0,501 0,506 0,448 0,513 0,462 0,483 0,583 0,494	2,784 2,776 2,809 2,816 2,780 2,774 2,777 2,807 2,791 2,798 2,830 2,775	0,111 0,106 0,070 0,108 0,119 0,118 0,108 0,114 0,121 0,113 0,085 0,103	1,999 1,956 2,004 2,011 1,999 1,995 2,017 1,992 1,986 1,979 1,998 2,017	0,027 0,034 0,040 0,039 0,043 0,039 0,043 0,038 0,038 0,039 0,020 0,044 0,047	0,874 0,906 0,790 0,865 0,856 0,856 0,866 0,815 0,872 0,857 0,844 0,878	1,938 1,890 1,831 1,928 1,927 1,909 1,931 1,936 1,928 1,937 1,884 1,920	0,181 0,189 0,192 0,147 0,149 0,189 0,190 0,176 0,169 0,195 0,184 0,202	0,635 0,610 0,647 0,627 0,645 0,652 0,636 0,641 0,645 0,652 0,613 0,627	0,007 0,009 0,016 0,010 0,016 0,001 0,018 0,006 0,006 0,014 0,018 0,010	In 0,041 0,049 0,034 0,042 0,044 0,044 0,044 0,044 0,045 0,046 0,037 0,044 0,044	13,201 13,183 13,221 13,199 13,205 13,214 13,192 13,200 13,185 13,201 13,216 13,211
	0,028 0,032 0,039 0,023 0,029 0,021 0,025 0,027 0,021 0,021 0,032 0,027 0,027	4,102 4,122 4,119 4,084 4,097 4,078 4,090 4,089 4,101 4,095 4,057 4,068 4,079	0,474 0,503 0,631 0,498 0,501 0,506 0,448 0,513 0,462 0,483 0,583 0,494 0,489	2,784 2,776 2,809 2,816 2,780 2,774 2,777 2,807 2,791 2,798 2,830 2,775 2,765	0,111 0,106 0,070 0,108 0,119 0,118 0,108 0,114 0,121 0,113 0,085 0,103 0,109	1,999 1,956 2,004 2,011 1,999 1,995 2,017 1,992 1,986 1,979 1,998 2,017 1,994	0,027 0,034 0,040 0,039 0,043 0,039 0,043 0,038 0,038 0,039 0,020 0,044 0,047 0,046	0,874 0,906 0,790 0,865 0,856 0,856 0,866 0,815 0,872 0,857 0,844 0,878 0,865	1,938 1,890 1,831 1,928 1,927 1,909 1,931 1,936 1,938 1,937 1,884 1,920 1,941	0,181 0,189 0,192 0,147 0,149 0,189 0,190 0,176 0,169 0,195 0,184 0,202 0,200	0,635 0,610 0,647 0,627 0,645 0,652 0,636 0,641 0,645 0,652 0,613 0,627 0,636	Sin 0,007 0,009 0,016 0,010 0,016 0,011 0,018 0,006 0,014 0,018 0,014 0,018 0,014 0,018 0,010	In 0,041 0,049 0,034 0,042 0,044 0,044 0,044 0,043 0,037 0,044 0,044	13,201 13,183 13,221 13,199 13,205 13,214 13,192 13,200 13,185 13,201 13,216 13,211 13,204

0,005 0,018 0,049 0,020 0,014 0,016 0,007 0,030

dev.st.

0,031 0,017 0,013 0,005 0,004

	MgO	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	Nb_2O_5	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	ThO ₂	Somma
	0,34	0,13	19,14	2,42	17,53	0,54	10,86	0,35	10,49	23,52	2,47	7,86	0,22	0,93	96,80
	0,37	0,13	19,01	2,19	17,28	0,60	10,89	0,59	11,03	24,20	2,50	7,62	0,13	0,98	97,53
	0,32	0,10	18,74	2,03	17,01	0,66	11,14	0,47	10,72	23,65	2,26	7,74	0,22	0,91	95,96
	0,33	0,13	18,70	2,06	17,07	0,56	11,09	0,57	11,22	24,65	2,26	8,09	0,23	0,94	97,90
	0,36	0,10	18,95	2,03	17,23	0,63	11,13	0,52	11,38	24,44	2,49	8,10	0,25	1,02	98,63
	0,38	0,10	18,76	2,17	17,55	0,54	11,13	0,28	10,78	24,76	2,21	8,13	0,01	0,85	97,66
	0,32	0,09	19,25	2,02	17,38	0,59	11,18	0,65	11,17	24,20	2,41	8,35	0,33	1,00	98,94
	0,37	0,10	18,79	2,04	17,28	0,57	10,89	0,50	10,82	24,39	2,19	7,95	0,33	0,77	96,98
	0,36	0,20	19,43	3,00	18,08	0,39	11,00	0,38	10,39	22,92	2,35	7,71	0,28	0,72	97,21
	0,35	0,11	18,91	2,19	17,42	0,57	10,80	0,29	11,11	23,73	2,40	7,81	0,20	0,86	96,76
	0,34	0,13	18,97	2,15	17,31	0,64	10,88	0,55	11,13	23,63	2,23	8,04	0,09	0,91	96,99
	0,41	0,10	19,16	2,33	17,38	0,62	10,72	0,42	10,85	23,84	2,20	7,91	0,21	0,96	97,11
	0,37	0,09	18,85	2,31	17,49	0,61	10,91	0,67	10,50	24,31	2,11	7,89	0,25	0,84	97,19
media	0,36	0,12	18,97	2,23	17,39	0,58	10,97	0,48	10,89	24,02	2,31	7,94	0,21	0,90	97,36
dev.st.	0,03	0,03	0,22	0,27	0,26	0,07	0,15	0,13	0,31	0,52	0,13	0,20	0,09	0,09	
				_			_ 2+			_	_		_		
	Mg	AI	Si	Ca	Ti	Mn	Fe ²⁺	Nb	La	Ce	Pr	Nd	Sm	Th	
	Mg 0,108	AI 0,034	Si 4,099	Ca 0,555	Ti 2,824	Mn 0,098	Fe²⁺ 1,945	Nb 0,033	La 0,828	Ce 1,844	Pr 0,193	Nd 0,601	Sm 0,016	Th 0,045	13,224
	Mg 0,108 0,118	AI 0,034 0,033	Si 4,099 4,069	Ca 0,555 0,503	Ti 2,824 2,782	Mn 0,098 0,109	Fe²⁺ 1,945 1,950	Nb 0,033 0,057	La 0,828 0,871	Ce 1,844 1,896	Pr 0,193 0,195	Nd 0,601 0,582	Sm 0,016 0,009	Th 0,045 0,048	13,224 13,223
	Mg 0,108 0,118 0,103	Al 0,034 0,033 0,026	Si 4,099 4,069 4,076	Ca 0,555 0,503 0,474	Ti 2,824 2,782 2,783	Mn 0,098 0,109 0,122	Fe²⁺ 1,945 1,950 2,027	Nb 0,033 0,057 0,046	La 0,828 0,871 0,860	Ce 1,844 1,896 1,884	Pr 0,193 0,195 0,179	Nd 0,601 0,582 0,602	Sm 0,016 0,009 0,016	Th 0,045 0,048 0,045	13,224 13,223 13,243
	Mg 0,108 0,118 0,103 0,106	Al 0,034 0,033 0,026 0,033	Si 4,099 4,069 4,076 4,024	Ca 0,555 0,503 0,474 0,474	Ti 2,824 2,782 2,783 2,762	Mn 0,098 0,109 0,122 0,103	Fe ²⁺ 1,945 1,950 2,027 1,996	Nb 0,033 0,057 0,046 0,055	La 0,828 0,871 0,860 0,890	Ce 1,844 1,896 1,884 1,941	Pr 0,193 0,195 0,179 0,177	Nd 0,601 0,582 0,602 0,621	Sm 0,016 0,009 0,016 0,017	Th 0,045 0,048 0,045 0,046	13,224 13,223 13,243 13,245
	Mg 0,108 0,118 0,103 0,106 0,115	Al 0,034 0,026 0,033 0,026	Si 4,099 4,069 4,076 4,024 4,041	Ca 0,555 0,503 0,474 0,474 0,464	Ti 2,824 2,782 2,783 2,762 2,764	Mn 0,098 0,109 0,122 0,103 0,113	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986	Nb 0,033 0,057 0,046 0,055 0,050	La 0,828 0,871 0,860 0,890 0,896	Ce 1,844 1,896 1,884 1,941 1,908	Pr 0,193 0,195 0,179 0,177 0,194	Nd 0,601 0,582 0,602 0,621 0,617	Sm 0,016 0,009 0,016 0,017 0,018	Th 0,045 0,048 0,045 0,046 0,050	13,224 13,223 13,243 13,245 13,241
	Mg 0,108 0,118 0,103 0,106 0,115 0,120	Al 0,034 0,033 0,026 0,033 0,026 0,027	Si 4,099 4,069 4,076 4,024 4,041 4,023	Ca 0,555 0,503 0,474 0,474 0,464 0,499	Ti 2,824 2,782 2,783 2,762 2,764 2,831	Mn 0,098 0,109 0,122 0,103 0,113 0,099	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986 1,996	Nb 0,033 0,057 0,046 0,055 0,050 0,027	La 0,828 0,871 0,860 0,890 0,896 0,853	Ce 1,844 1,896 1,884 1,941 1,908 1,943	Pr 0,193 0,195 0,179 0,177 0,194 0,173	Nd 0,601 0,582 0,602 0,621 0,617 0,622	Sm 0,016 0,009 0,016 0,017 0,018 0,001	Th 0,045 0,048 0,045 0,046 0,050 0,042	13,224 13,223 13,243 13,245 13,241 13,255
	Mg 0,108 0,118 0,103 0,106 0,115 0,120 0,102	Al 0,034 0,033 0,026 0,033 0,026 0,027 0,023	Si 4,099 4,069 4,076 4,024 4,041 4,023 4,075	Ca 0,555 0,503 0,474 0,474 0,464 0,499 0,458	Ti 2,824 2,782 2,783 2,762 2,764 2,831 2,768	Mn 0,098 0,109 0,122 0,103 0,113 0,099 0,105	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986 1,996 1,980	Nb 0,033 0,057 0,046 0,055 0,050 0,027 0,062	La 0,828 0,871 0,860 0,890 0,896 0,853 0,872	Ce 1,844 1,896 1,884 1,941 1,908 1,943 1,875	Pr 0,193 0,195 0,179 0,177 0,194 0,173 0,186	Nd 0,601 0,582 0,602 0,621 0,617 0,622 0,631	Sm 0,016 0,009 0,016 0,017 0,018 0,001 0,024	Th 0,045 0,048 0,045 0,046 0,050 0,042 0,048	13,224 13,223 13,243 13,245 13,241 13,255 13,210
	Mg 0,108 0,118 0,103 0,106 0,115 0,120 0,102 0,119	Al 0,034 0,026 0,033 0,026 0,027 0,023 0,024	Si 4,099 4,069 4,076 4,024 4,041 4,023 4,075 4,053	Ca 0,555 0,503 0,474 0,474 0,474 0,464 0,499 0,458 0,471	Ti 2,824 2,782 2,783 2,762 2,764 2,831 2,768 2,804	Mn 0,098 0,109 0,122 0,103 0,113 0,099 0,105 0,104	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986 1,980 1,964	Nb 0,033 0,057 0,046 0,055 0,050 0,027 0,062 0,049	La 0,828 0,871 0,860 0,890 0,896 0,853 0,872 0,861	Ce 1,844 1,896 1,884 1,941 1,908 1,943 1,875 1,926	Pr 0,193 0,195 0,179 0,177 0,194 0,173 0,186 0,172	Nd 0,601 0,582 0,602 0,621 0,617 0,622 0,631 0,612	Sm 0,016 0,009 0,016 0,017 0,018 0,001 0,024 0,024	Th 0,045 0,048 0,045 0,046 0,050 0,042 0,048 0,038	13,224 13,223 13,243 13,245 13,241 13,255 13,210 13,222
	Mg 0,108 0,118 0,103 0,106 0,115 0,120 0,102 0,119 0,115	Al 0,034 0,026 0,033 0,026 0,027 0,023 0,024 0,049	Si 4,099 4,069 4,076 4,024 4,041 4,023 4,075 4,053 4,097	Ca 0,555 0,503 0,474 0,474 0,474 0,464 0,499 0,458 0,471 0,678	Ti 2,824 2,782 2,783 2,762 2,764 2,831 2,768 2,804 2,867	Mn 0,098 0,109 0,122 0,103 0,113 0,099 0,105 0,104 0,070	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986 1,980 1,964 1,939	Nb 0,033 0,057 0,046 0,055 0,050 0,027 0,062 0,049 0,036	La 0,828 0,871 0,860 0,890 0,896 0,853 0,872 0,861 0,808	Ce 1,844 1,896 1,884 1,941 1,908 1,943 1,875 1,926 1,769	Pr 0,193 0,195 0,179 0,177 0,194 0,173 0,186 0,172 0,181	Nd 0,601 0,582 0,602 0,621 0,617 0,622 0,631 0,612 0,680	Sm 0,016 0,009 0,016 0,017 0,018 0,001 0,024 0,024 0,020	Th 0,045 0,048 0,045 0,046 0,050 0,042 0,048 0,038 0,035	13,224 13,223 13,243 13,245 13,241 13,255 13,210 13,222 13,243
	Mg 0,108 0,118 0,103 0,106 0,115 0,120 0,102 0,112 0,115 0,113	Al 0,034 0,026 0,033 0,026 0,027 0,023 0,024 0,049 0,027	Si 4,099 4,069 4,076 4,024 4,041 4,023 4,075 4,053 4,097 4,074	Ca 0,555 0,503 0,474 0,474 0,464 0,499 0,458 0,471 0,678 0,506	Ti 2,824 2,782 2,783 2,762 2,764 2,831 2,768 2,804 2,867 2,823	Mn 0,098 0,109 0,122 0,103 0,113 0,099 0,105 0,104 0,070 0,105	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986 1,996 1,980 1,964 1,939 1,947	Nb 0,033 0,057 0,046 0,055 0,050 0,027 0,062 0,049 0,036 0,029	La 0,828 0,871 0,860 0,890 0,896 0,853 0,872 0,861 0,808 0,883	Ce 1,844 1,896 1,884 1,941 1,908 1,943 1,875 1,926 1,769 1,872	Pr 0,193 0,195 0,179 0,177 0,194 0,173 0,186 0,172 0,181 0,188	Nd 0,601 0,582 0,602 0,621 0,617 0,622 0,631 0,612 0,580 0,601	Sm 0,016 0,009 0,016 0,017 0,018 0,001 0,024 0,024 0,020 0,015	Th 0,045 0,048 0,045 0,046 0,050 0,042 0,048 0,038 0,035 0,042	13,224 13,223 13,243 13,245 13,241 13,255 13,210 13,222 13,243 13,225
	Mg 0,108 0,118 0,103 0,106 0,115 0,120 0,102 0,119 0,115 0,113 0,109	Al 0,034 0,026 0,033 0,026 0,027 0,023 0,024 0,029 0,027 0,032	Si 4,099 4,076 4,024 4,024 4,023 4,075 4,053 4,053 4,097 4,074	Ca 0,555 0,503 0,474 0,474 0,464 0,499 0,458 0,458 0,471 0,678 0,506 0,494	Ti 2,824 2,782 2,783 2,762 2,764 2,831 2,768 2,804 2,867 2,823 2,798	Mn 0,098 0,109 0,122 0,103 0,113 0,099 0,105 0,104 0,070 0,105 0,117	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986 1,980 1,964 1,939 1,947 1,956	Nb 0,033 0,057 0,046 0,055 0,050 0,027 0,062 0,049 0,036 0,029 0,053	La 0,828 0,871 0,860 0,890 0,890 0,853 0,872 0,861 0,808 0,883 0,882	Ce 1,844 1,896 1,884 1,941 1,908 1,943 1,875 1,926 1,769 1,872 1,858	Pr 0,193 0,195 0,179 0,177 0,194 0,173 0,186 0,172 0,181 0,188 0,174	Nd 0,601 0,582 0,602 0,621 0,617 0,622 0,631 0,612 0,580 0,601 0,617	Sm 0,016 0,009 0,016 0,017 0,018 0,001 0,024 0,024 0,020 0,015 0,007	Th 0,045 0,048 0,045 0,046 0,050 0,042 0,048 0,038 0,035 0,042 0,044	13,224 13,223 13,243 13,245 13,241 13,255 13,210 13,222 13,243 13,225 13,217
	Mg 0,108 0,118 0,103 0,106 0,115 0,120 0,102 0,119 0,115 0,113 0,109 0,132	Al 0,034 0,033 0,026 0,033 0,026 0,027 0,023 0,024 0,049 0,027 0,032 0,024	Si 4,099 4,069 4,076 4,024 4,024 4,041 4,023 4,075 4,053 4,097 4,074 4,076 4,101	Ca 0,555 0,503 0,474 0,474 0,464 0,499 0,458 0,471 0,678 0,506 0,494 0,533	Ti 2,824 2,782 2,762 2,764 2,831 2,768 2,804 2,867 2,823 2,798 2,799	Mn 0,098 0,109 0,122 0,103 0,113 0,099 0,105 0,104 0,070 0,105 0,117 0,112	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986 1,980 1,964 1,939 1,947 1,956 1,919	Nb 0,033 0,057 0,046 0,055 0,050 0,027 0,062 0,049 0,036 0,029 0,053 0,041	La 0,828 0,871 0,860 0,890 0,896 0,853 0,872 0,861 0,808 0,883 0,882 0,857	Ce 1,844 1,896 1,884 1,941 1,908 1,943 1,875 1,926 1,769 1,872 1,858 1,868	Pr 0,193 0,195 0,179 0,177 0,194 0,173 0,186 0,172 0,181 0,188 0,174 0,171	Nd 0,601 0,582 0,602 0,621 0,617 0,622 0,631 0,612 0,580 0,601 0,617 0,604	Sm 0,016 0,009 0,016 0,017 0,018 0,001 0,024 0,024 0,024 0,020 0,015 0,007 0,016	Th 0,045 0,048 0,045 0,046 0,050 0,042 0,048 0,038 0,035 0,042 0,044 0,047	13,223 13,243 13,245 13,241 13,255 13,210 13,222 13,243 13,225 13,217 13,223
	Mg 0,108 0,118 0,103 0,106 0,115 0,120 0,102 0,112 0,113 0,109 0,132 0,117	Al 0,034 0,026 0,033 0,026 0,027 0,023 0,024 0,049 0,027 0,032 0,024 0,022	Si 4,099 4,069 4,076 4,024 4,041 4,023 4,075 4,053 4,053 4,097 4,074 4,076 4,101 4,040	Ca 0,555 0,503 0,474 0,474 0,474 0,464 0,499 0,458 0,471 0,678 0,506 0,494 0,533 0,531	Ti 2,824 2,782 2,783 2,762 2,764 2,831 2,768 2,804 2,867 2,823 2,798 2,799 2,820	Mn 0,098 0,109 0,122 0,103 0,113 0,099 0,105 0,104 0,070 0,105 0,117 0,112 0,111	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986 1,980 1,964 1,939 1,947 1,956 1,919 1,955	Nb 0,033 0,057 0,046 0,055 0,050 0,027 0,062 0,049 0,036 0,029 0,053 0,041 0,065	La 0,828 0,871 0,860 0,890 0,896 0,853 0,872 0,861 0,808 0,883 0,882 0,857 0,830	Ce 1,844 1,896 1,884 1,941 1,908 1,943 1,875 1,926 1,769 1,872 1,858 1,868 1,908	Pr 0,193 0,195 0,179 0,177 0,194 0,173 0,186 0,172 0,181 0,188 0,174 0,171 0,165	Nd 0,601 0,582 0,602 0,621 0,617 0,622 0,631 0,612 0,580 0,601 0,617 0,604 0,604	Sm 0,016 0,009 0,016 0,017 0,018 0,001 0,024 0,024 0,020 0,015 0,007 0,016 0,018	Th 0,045 0,048 0,045 0,046 0,050 0,042 0,048 0,038 0,035 0,042 0,044 0,047 0,041	13,224 13,223 13,243 13,245 13,241 13,255 13,210 13,222 13,243 13,225 13,217 13,223 13,228
media	Mg 0,108 0,118 0,103 0,106 0,115 0,120 0,102 0,112 0,113 0,109 0,132 0,117 0,114	AI 0,034 0,026 0,033 0,026 0,027 0,023 0,024 0,049 0,027 0,032 0,024 0,022 0,029	Si 4,099 4,069 4,076 4,024 4,041 4,023 4,075 4,053 4,097 4,074 4,076 4,101 4,040 4,065	Ca 0,555 0,503 0,474 0,474 0,464 0,499 0,458 0,471 0,678 0,506 0,494 0,533 0,531 0,511	Ti 2,824 2,782 2,763 2,762 2,764 2,831 2,768 2,804 2,867 2,823 2,798 2,799 2,820 2,820 2,802	Mn 0,098 0,109 0,122 0,103 0,113 0,099 0,105 0,104 0,070 0,105 0,117 0,112 0,111 0,105	Fe ²⁺ 1,945 1,950 2,027 1,996 1,986 1,980 1,964 1,939 1,947 1,956 1,919 1,955 1,966	Nb 0,033 0,057 0,046 0,055 0,050 0,027 0,062 0,049 0,036 0,029 0,053 0,041 0,065 0,046	La 0,828 0,871 0,860 0,890 0,896 0,853 0,872 0,861 0,808 0,883 0,882 0,857 0,830 0,861	Ce 1,844 1,896 1,884 1,941 1,908 1,943 1,875 1,926 1,769 1,872 1,858 1,868 1,908 1,884	Pr 0,193 0,195 0,179 0,177 0,194 0,173 0,186 0,172 0,181 0,188 0,174 0,171 0,165 0,181	Nd 0,601 0,582 0,602 0,621 0,617 0,622 0,631 0,612 0,580 0,601 0,617 0,604 0,604 0,604	Sm 0,016 0,009 0,016 0,017 0,018 0,001 0,024 0,024 0,020 0,015 0,007 0,016 0,018 0,016	Th 0,045 0,048 0,045 0,046 0,050 0,042 0,048 0,038 0,035 0,042 0,044 0,047 0,041 0,044	13,224 13,223 13,243 13,245 13,241 13,255 13,210 13,222 13,243 13,225 13,217 13,223 13,228 13,231

Tab.9.c. Composizione dei punti analisi del campione Pak2prova nella prova 3: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

Tab. 10.a. Composizione dei punti analisi del campione AZ1 nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La_2O_3	Ce_2O_3	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	ThO ₂	Somma			
	0,05	0,10	18,56	2,93	15,59	0,52	10,91	0,00	0,00	0,83	3,67	13,81	22,85	1,85	4,76	0,63	1,10	98,18			
	0,03	0,06	18,55	2,75	15,36	0,56	10,98	0,00	0,00	0,51	4,08	13,88	23,17	1,91	5,09	0,30	0,85	98,08			
	0,00	0,06	18,69	2,95	15,31	0,56	11,07	0,00	0,00	0,72	4,09	14,24	22,47	1,72	5,10	0,47	0,74	98,19			
	0,04	0,09	18,57	3,01	15,39	0,49	11,12	0,00	0,00	0,74	4,19	14,13	22,89	1,43	5,14	0,30	0,73	98,27			
	0,00	0,04	18,44	2,76	15,40	0,54	10,99	0,00	0,00	0,59	4,30	13,95	23,22	1,79	4,72	0,32	0,72	97,78			
	0,01	0,04	18,65	2,79	15,12	0,55	11,21	0,02	0,00	0,55	4,11	14,14	22,54	1,46	4,91	0,15	0,62	96,86			
	0,04	0,06	18,66	3,05	15,13	0,53	11,18	0,00	0,00	0,83	4,63	13,76	23,07	1,70	4,86	0,70	0,70	98,89			
	0,04	0,12	18,51	3,14	15,42	0,53	10,80	0,00	0,00	0,79	4,28	14,43	22,84	1,57	4,74	0,36	0,62	98,19			
	0,09	0,12	18,44	2,96	15,77	0,38	10,65	0,00	0,00	0,74	4,15	13,71	22,47	1,70	4,95	0,37	0,79	97,31			
	0,00	0,00	18,54	2,85	15,14	0,52	11,17	0,00	0,00	0,66	4,46	14,40	22,99	1,76	4,76	0,54	0,55	98,34			
	0,08	0,09	18,54	3,08	15,83	0,49	10,95	0,00	0,00	1,01	3,72	13,70	22,59	1,54	5,03	0,29	0,89	97,83			
media	0,04	0,07	18,56	2,93	15,41	0,52	11,00	0,00	0,00	0,72	4,15	14,01	22,83	1,68	4,91	0,40	0,76	97,99			
dev.st.	0,03	0,04	0,08	0,13	0,24	0,05	0,17	0,01	0,00	0,15	0,28	0,27	0,27	0,16	0,16	0,16	0,15				
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	0,015	0,026	3,919	0,664	2,477	0,093	1,463	0,464	0,000	0,000	0,085	0,350	1,076	1,767	0,143	0,359	0,046	0,053	0,241	4,106	4,974
	0,009	0,016	3,932	0,626	2,450	0,100	1,521	0,425	0,000	0,000	0,052	0,391	1,085	1,798	0,148	0,385	0,022	0,041	0,218	4,104	4,964
	0,000	0,015	3,942	0,666	2,429	0,100	1,494	0,460	0,000	0,000	0,074	0,390	1,108	1,736	0,132	0,384	0,034	0,036	0,235	4,096	4,962
	0,013	0,023	3,911	0,679	2,437	0,087	1,478	0,481	0,000	0,000	0,076	0,399	1,097	1,764	0,110	0,387	0,022	0,035	0,246	4,094	4,995
	0,000	0,010	3,920	0,628	2,463	0,097	1,578	0,375	0,000	0,000	0,061	0,413	1,093	1,807	0,138	0,359	0,024	0,035	0,192	4,084	4,997
	0,003	0,010	3,975	0,638	2,425	0,099	1,536	0,462	0,002	0,000	0,057	0,396	1,111	1,759	0,114	0,373	0,011	0,030	0,231	4,039	4,987
	0,012	0,016	3,913	0,684	2,386	0,094	1,503	0,456	0,000	0,000	0,085	0,439	1,064	1,770	0,130	0,364	0,050	0,033	0,233	4,097	4,990
	0,014	0,031	3,900	0,708	2,443	0,095	1,452	0,452	0,000	0,000	0,081	0,408	1,121	1,762	0,121	0,356	0,026	0,030	0,237	4,124	4,976
	0,030	0,030	3,916	0,674	2,520	0,069	1,575	0,318	0,000	0,000	0,077	0,399	1,074	1,747	0,131	0,375	0,027	0,038	0,168	4,067	5,017
	0,000	0,000	3,920	0,646	2,408	0,093	1,535	0,440	0,000	0,000	0,068	0,426	1,123	1,779	0,136	0,360	0,039	0,026	0,223	4,109	4,971
	0,025	0,024	3,905	0,695	2,509	0,088	1,461	0,469	0,000	0,000	0,104	0,354	1,065	1,742	0,118	0,378	0,021	0,043	0,243	4,062	5,033
media	0,011	0,018	3,923	0,664	2,450	0,092	1,509	0,436	0,000	0,000	0,075	0,397	1,092	1,766	0,129	0,371	0,029	0,036	0,224	4,089	4,988
dev.st.	0,010	0,010	0,021	0,027	0,041	0,009	0,044	0,049	0,001	0,000	0,015	0,027	0,022	0,022	0,012	0,012	0,012	0,007			
																			n _{medio} e _{chimici}		ne raffinamento

339,39 337,45

Tab. 10.b. Composizione dei punti analisi del campione AZ1 nella prova 5: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La_2O_3	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Gd_2O_3	ThO ₂	Somma
	0,00	0,08	19,21	2,89	15,78	0,52	11,38	0,00	0,42	0,74	3,97	13,97	22,84	1,75	5,16	0,51	0,24	0,91	100,39
	0,00	0,09	19,35	2,91	15,86	0,44	11,24	0,00	0,17	0,84	3,87	13,88	22,43	1,79	5,48	0,52	0,05	0,71	99,64
	0,00	0,12	19,33	2,82	15,60	0,59	11,40	0,00	0,21	0,60	3,96	13,96	22,93	2,21	5,33	0,37	0,01	0,81	100,24
	0,00	0,05	19,37	2,78	15,53	0,60	11,52	0,00	0,15	0,68	4,12	13,80	22,90	2,14	5,16	0,52	0,18	0,76	100,26
	0,02	0,05	19,25	2,74	15,74	0,56	11,49	0,00	0,00	0,57	4,01	13,87	22,31	1,66	5,51	0,21	0,32	0,86	99,18
	0,00	0,05	19,26	2,75	15,38	0,50	11,20	0,00	0,22	0,78	3,74	13,66	22,01	1,97	5,41	0,41	0,24	1,22	98,80
	0,06	0,14	19,34	2,97	15,81	0,42	11,17	0,00	0,31	0,87	3,34	13,63	22,49	1,66	5,17	0,58	0,22	0,97	99,14
	0,13	0,16	19,35	2,85	16,02	0,52	11,10	0,00	0,28	0,71	3,91	13,61	22,81	1,95	4,89	0,61	0,25	0,89	100,05
media	0,03	0,09	19,31	2,84	15,71	0,52	11,31	0,00	0,22	0,72	3,87	13,80	22,59	1,89	5,27	0,47	0,19	0,89	99,71
dev.st.	0,05	0,04	0,06	0,08	0,20	0,06	0,15	0,00	0,12	0,10	0,24	0,15	0,33	0,21	0,21	0,13	0,11	0,16	

Mg Si Ca Ti Mn Fe²⁺ Fe³⁺ Sr Y Zr Nb La Pr Sm Gd Th Fe³⁺/Fe_{tot} Siti A Siti B+C Al Ce Nd 0,000 0,020 3,960 0,639 2,446 0,091 1,532 0,429 0.000 0,046 0,074 0,370 1,062 1,724 0,132 0,380 0.036 0,017 0,043 0,219 4,031 5,009 0,000 0,022 4,004 0,646 2,468 0,077 1,591 0,353 0,000 0,019 0,084 0,362 1,059 1,699 0,135 0,405 0,037 0,003 0,033 0,182 4,018 4,978 0,000 0,030 3,988 0,622 2,421 0,103 1,521 0,445 0,000 0,023 0,060 0,370 1,062 1,731 0,166 0,393 0,026 0,000 0,038 0,226 4,039 4,973 0,012 3,996 0,614 2,410 0,104 1,562 0,425 0,000 0,017 1,050 0,161 0,380 0,037 0,013 0,214 4,020 4,984 0,000 0,069 0,385 1,730 0,036 4,002 1,601 0,398 0,000 0,015 0,022 0,199 0,007 0,013 0,609 2,461 0,099 0,000 0,058 0,377 1,063 1,698 0,126 0,409 0,041 3,984 5,013 0,000 0,012 4,035 0,617 2,423 0,088 1,600 0,363 0,000 0,024 0,080 0,354 1,056 1,688 0,150 0,405 0,030 0,017 0,058 0,185 4,021 4,945 0,019 0,034 4,013 0,660 2,466 0,074 1,486 0,452 0,000 0,034 0,088 0,313 1,043 1,708 0,125 0,383 0,042 0,015 0,046 0,233 4,022 4,966 0,043 0,042 3,989 0.039 0,040 3,984 0,628 2,481 0,090 1,548 0,364 0,000 0,031 0,071 0,364 1,034 1,719 0,146 0,360 0,017 0,190 5,027 0,389 media 0,008 0,023 3,998 0,629 2,447 0,091 1,555 0,404 0,000 0,024 0,073 0,362 1,054 1,712 0,143 0,033 0,013 0,042 0,206 4,015 4,987 dev.st. 0,014 0,011 0,022 0,018 0,026 0,011 0,041 0,040 0.000 0,014 0,011 0,022 0,011 0.016 0,016 0,017 0,009 0,007 0,008 n_{medio}e _{chimici}

nedio e chimici ne raffinamento 336,53 337,45 Tab. 11.a. Composizione dei punti analisi del campione AZ4gr nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	ThO ₂	Somma			
	0,13	0,13	20,15	3,64	16,26	0,42	10,35	0,00	0,00	1,17	3,29	13,08	22,26	1,76	5,51	0,63	0,71	99,49			
	0,15	0,12	19,79	3,54	16,47	0,52	10,53	0,00	0,00	1,08	3,14	13,18	21,43	1,71	4,87	0,43	0,80	97,74			
	0,08	0,16	19,93	3,67	16,29	0,48	10,59	0,00	0,00	1,32	3,49	12,64	21,83	2,19	5,43	0,38	0,66	99,13			
	0,12	0,13	20,06	3,64	16,52	0,41	10,54	0,00	0,00	1,02	3,31	13,42	22,67	2,10	5,56	0,48	0,78	100,78			
	0,11	0,13	20,04	3,63	16,62	0,39	10,47	0,14	0,06	0,99	3,34	12,93	22,28	1,89	5,30	0,19	0,77	99,28			
	0,13	0,14	19,77	3,34	16,49	0,43	10,56	0,00	0,05	1,02	3,09	13,04	23,27	1,56	4,82	0,55	0,83	99,10			
	0,13	0,12	19,81	3,35	16,49	0,43	10,56	0,00	0,00	0,97	3,22	13,21	23,42	1,69	5,22	0,54	0,88	100,04			
	0,14	0,17	19,70	3,42	16,45	0,43	10,66	0,00	0,00	1,17	3,12	12,20	22,17	1,67	4,98	0,27	0,95	97,49			
	0,17	0,20	19,74	3,40	16,40	0,39	10,56	0,00	0,00	1,12	3,16	13,13	22,62	1,96	5,44	0,46	1,09	99,84			
	0,18	0,15	19,85	3,37	16,37	0,46	10,61	0,00	0,00	1,04	3,29	13,84	22,12	1,77	4,86	0,13	1,08	99,10			
	0,20	0,14	19,77	3,45	16,23	0,41	10,71	0,00	0,00	1,33	3,11	13,59	22,83	1,60	5,05	0,53	1,01	99,97			
	0,15	0,15	19,81	3,35	16,26	0,43	10,66	0,00	0,00	0,98	3,43	12,97	21,99	1,85	5,07	0,66	0,98	98,74			
	0,19	0,18	19,89	3,36	16,45	0,50	10,51	0,00	0,00	1,19	2,91	12,97	22,11	1,66	5,38	0,40	1,15	98,85			
	0,11	0,20	19,74	3,28	16,14	0,44	10,87	0,00	0,00	0,74	3,52	13,12	22,80	1,88	5,05	0,44	0,62	98,95			
media	0,14	0,15	19,86	3,46	16,39	0,44	10,59	0,01	0,01	1,08	3,24	13,09	22,41	1,81	5,18	0,43	0,88	99,18			
dev.st.	0,03	0,03	0,14	0,13	0,13	0,04	0,12	0,04	0,02	0,15	0,17	0,39	0,55	0,18	0,26	0,15	0,17				
																			2		
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	0,038	0,031	4,115	0,796	2,498	0,073	1,463	0,305	0,000	0,000	0,116	0,304	0,985	1,664	0,131	0,402	0,044	0,033	0,173	4,056	4,829
	0,045	0,028	4,089	0,783	2,559	0,091	1,462	0,358	0,000	0,000	0,109	0,293	1,004	1,621	0,129	0,359	0,030	0,038	0,197	3,964	4,946
	0,023	0,039	4,075	0,803	2,506	0,084	1,478	0,334	0,000	0,000	0,132	0,323	0,953	1,635	0,163	0,396	0,027	0,031	0,184	4,008	4,918
	0,036	0,031	4,061	0,790	2,516	0,069	1,424	0,361	0,000	0,000	0,101	0,303	1,002	1,680	0,155	0,402	0,034	0,036	0,202	4,099	4,840
	0,034	0,031	4,091	0,793	2,551	0,067	1,484	0,304	0,017	0,006	0,098	0,309	0,973	1,665	0,141	0,387	0,013	0,036	0,170	4,024	4,885
	0,041	0,034	4,064	0,735	2,550	0,075	1,479	0,336	0,000	0,005	0,102	0,287	0,989	1,752	0,117	0,354	0,039	0,039	0,185	4,025	4,910
	0,040	0,030	4,050	0,734	2,536	0,075	1,470	0,335	0,000	0,000	0,097	0,298	0,996	1,753	0,126	0,381	0,038	0,041	0,185	4,069	4,880
	0,043	0,043	4,083	0,760	2,564	0,075	1,516	0,332	0,000	0,000	0,118	0,292	0,933	1,682	0,126	0,369	0,019	0,045	0,180	3,934	4,984
	0,053	0,048	4,039	0,746	2,524	0,068	1,444	0,363	0,000	0,000	0,112	0,293	0,991	1,695	0,146	0,398	0,033	0,051	0,201	4,058	4,903
	0,055	0,036	4,073	0,741	2,527	0,079	1,490	0,332	0,000	0,000	0,104	0,305	1,048	1,662	0,132	0,356	0,009	0,051	0,182	3,999	4,928
	0,061	0,035	4,037	0,755	2,493	0,070	1,397	0,432	0,000	0,000	0,132	0,287	1,024	1,706	0,119	0,368	0,037	0,047	0,236	4,056	4,907
	0,048	0,037	4,080	0,740	2,519	0,075	1,520	0,316	0,000	0,000	0,099	0,319	0,986	1,658	0,139	0,373	0,047	0,046	0,172	3,988	4,932
	0,059	0,043	4,086	0,741	2,542	0,086	1,456	0,351	0,000	0,000	0,119	0,270	0,983	1,663	0,125	0,395	0,028	0,054	0,194	3,988	4,926
	0,033	0,047	4,062	0,723	2,498	0,077	1,486	0,385	0,000	0,000	0,074	0,327	0,996	1,718	0,141	0,371	0,031	0,029	0,206	4,009	4,929
media	0,043	0,037	4,072	0,760	2,527	0,076	1,469	0,346	0,001	0,001	0,108	0,301	0,990	1,682	0,135	0,379	0,031	0,041	0,191	4,020	4,908
dev.st.	0,011	0,007	0,021	0,027	0,024	0,007	0,033	0,034	0,004	0,002	0,015	0,016	0,028	0,039	0,013	0,017	0,011	0,008			
																			n _{medio} e _{chimici} 327,97		ne _{raffinamento} 327,30

Tab. 11.b. Composizione dei punti analisi del campione AZ4gr nella prova 5: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La_2O_3	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Gd_2O_3	ThO ₂	Somma
	0,19	0,20	19,39	3,34	16,63	0,41	10,85	0,07	0,15	1,02	3,24	12,78	22,12	1,78	5,40	0,46	0,00	0,91	98,94
	0,10	0,15	19,58	3,64	16,68	0,40	10,64	0,00	0,37	1,22	3,09	13,10	21,57	1,94	5,15	0,68	0,34	0,82	99,48
	0,07	0,13	19,58	3,61	16,63	0,49	10,85	0,00	0,11	1,09	3,76	13,04	22,35	1,72	5,09	0,37	0,16	0,91	99,96
	0,19	0,17	19,59	3,36	16,56	0,37	10,82	0,02	0,17	0,75	2,99	13,30	21,96	1,47	5,50	0,47	0,03	1,10	98,83
	0,13	0,20	19,44	3,19	16,71	0,52	10,71	0,00	0,27	0,91	3,09	13,54	22,41	1,93	5,46	0,58	0,27	0,97	100,35
	0,21	0,10	19,67	3,33	16,50	0,41	10,77	0,00	0,33	1,11	3,38	13,91	22,28	1,47	5,41	0,64	0,43	1,06	100,99
	0,09	0,14	19,44	3,24	16,32	0,44	10,74	0,00	0,18	1,26	3,49	13,18	21,68	1,74	5,44	0,31	0,19	1,00	98,87
	0,16	0,14	19,59	3,33	16,45	0,45	10,74	0,00	0,33	1,04	3,15	13,54	22,21	1,75	5,77	0,28	0,10	0,80	99,83
	0,13	0,17	19,60	3,63	16,80	0,47	10,47	0,00	0,38	1,22	3,14	13,07	22,53	1,35	5,25	0,46	0,26	0,70	99,63
	0,15	0,19	19,81	3,67	16,55	0,41	10,69	0,00	0,21	1,15	3,66	12,68	22,06	1,57	5,72	0,52	0,26	0,82	100,12
	0,07	0,13	19,50	3,64	16,66	0,45	10,75	0,06	0,18	0,80	3,49	13,31	21,94	1,73	5,45	0,43	0,31	0,82	99,73
	0,04	0,17	19,70	3,33	16,41	0,50	11,19	0,00	0,12	0,73	3,79	12,42	21,50	1,68	5,68	0,56	0,25	0,83	98,89
media	0,13	0,16	19,58	3,44	16,58	0,45	10,77	0,01	0,23	1,03	3,35	13,16	22,05	1,68	5,44	0,48	0,22	0,89	99,64
dev.st.	0,05	0,03	0,12	0,18	0,14	0,05	0,17	0,02	0,10	0,19	0,28	0,41	0,33	0,18	0,21	0,13	0,13	0,12	

Fe³⁺/Fe_{tot} Mg Al Si Ca Ti Mn Fe²⁺ Fe³⁺ Sr Y Zr Nb La Ce Pr Nd Sm Gd Th Siti A Siti B+C 3,986 0.058 0,048 0,735 2,571 0,072 1,430 0,435 0,008 0,017 0,103 0,301 0,969 1.665 0,133 0,396 0,033 0,000 0.042 0,233 3,980 5.034 0,031 0,037 4,003 0,798 2,565 0,070 1,400 0,419 0,001 0,040 0,122 0,286 0,988 1,614 0,145 0,376 0,048 0,023 0,038 0,230 4,030 4,968 0,021 0,032 3,988 0,788 2,547 0,085 1,484 0,365 0,000 0,012 0,108 0,346 0,980 1,667 0,128 0,370 0,026 0,011 0,042 0,198 4,012 5,000 0,740 0,042 4,030 2,563 0,064 1,412 0,450 0,003 0,019 0,075 0,278 1,009 1,655 0,110 0,404 0,033 0,002 0,051 0,242 4,008 0,058 4,962 0,040 0,047 3,972 0,699 2,570 0,091 1,419 0,412 0,000 0,030 0,091 0,285 1,021 1,677 0,143 0,399 0,041 0,019 0,045 0,225 4,044 4,984 0.064 0,024 3,994 0,724 2,519 0,071 1,433 0,396 0,000 0,035 0,110 0,310 1,042 1,656 0,109 0,392 0,044 0,029 0,049 0,217 4,044 4,962 0.033 4,019 0,717 2,538 0,077 1,561 0,296 0.000 0,020 0,127 1,005 0,131 0,401 0,022 0.013 0,047 0,159 5,005 0,027 0,326 1,641 3,977 0.050 0.034 4,007 0,729 2,531 0,079 1,404 0,434 0,000 0,035 0,104 0,291 1,022 1,663 0,130 0,422 0,020 0,007 0.037 0,236 4,030 4,963 0,038 0,041 3,999 0,793 2,578 0,082 1,397 0,389 0,000 0,041 0,121 0,289 0,984 0,101 0,383 0,032 0,018 0,032 0,218 4,024 4,977 1,682 0,046 0,046 4,019 0,798 2,526 0,071 1,452 0,361 0,000 0,022 0,114 0,335 0,949 1,638 0,116 0,414 0,036 0,018 0,038 0,199 4,006 4,974 0.022 0,030 3,985 0,796 2,561 0,077 1,407 0,430 0,007 0,020 0,080 0,323 1,003 1,642 0,129 0,398 0,030 0,021 0,038 0,234 4,064 4,951 0,012 0,040 0,731 2,534 1,563 0,000 0,126 0,040 0,017 0,039 0,186 3,925 4,044 0,087 0,358 0,013 0,073 0,351 0,940 1,615 0,417 5,031 0,039 0,038 4,004 0,754 2,550 1,447 0,001 0,025 0,102 0,310 0,993 1,651 0,125 0,398 0,034 0,015 0,042 0,215 4,012 4,984 media 0,077 0,395 dev.st. 0.017 0,007 0,021 0,037 0,020 0,008 0,059 0,044 0,003 0,010 0,019 0,025 0,030 0,022 0,014 0,016 0,009 0,009 0,006 ne raffinamento n_{medio}e _{chimici}

330,18 327,30

Tab. 12.a. Composizione dei punti analisi del campione AZ4A nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y ₂ O ₃	ZrO ₂	Nb ₂ O ₅	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	ThO ₂	Somma			
	0,21	0,20	19,81	3,25	16,39	0,42	10,74	0,00	0,00	0,83	3,03	13,31	22,57	2,07	5,10	0,58	1,01	99,52			
	0,12	0,16	19,69	3,19	16,61	0,42	10,57	0,00	0,00	0,75	3,19	12,49	22,06	2,05	5,01	0,49	0,86	97,66			
	0,16	0,15	19,65	3,35	16,40	0,43	10,59	0,00	0,00	1,21	3,34	12,90	21,58	1,99	5,18	0,35	0,90	98,18			
	0,20	0,16	19,87	3,35	16,43	0,46	10,57	0,00	0,00	1,00	3,12	13,07	22,30	1,89	5,19	0,49	0,91	99,01			
	0,11	0,18	19,74	3,21	16,47	0,41	10,71	0,01	0,00	0,78	3,14	13,02	22,55	1,63	5,53	0,59	1,05	99,14			
	0,11	0,13	19,64	3,24	16,30	0,51	10,84	0,00	0,03	0,62	2,83	12,59	21,94	1,72	5,25	0,27	0,90	96,92			
	0,18	0,18	19,62	3,12	16,31	0,47	10,72	0,00	0,00	0,69	3,36	13,69	22,29	1,63	5,45	0,27	0,82	98,80			
	0,12	0,16	19,78	3,22	16,18	0,50	10,72	0,00	0,00	0,69	3,09	13,19	22,40	1,76	5,67	0,41	1,07	98,97			
	0,20	0,15	19,54	3,41	16,53	0,43	10,64	0,00	0,00	1,00	3,00	13,81	22,69	1,78	5,25	0,50	0,86	99,79			
	0,20	0,21	19,54	3,43	16,77	0,43	10,78	0,00	0,10	1,03	3,03	12,98	22,36	1,92	4,77	0,27	1,00	98,82			
	0,20	0,20	19,76	3,42	16,59	0,46	10,75	0,00	0,00	0,98	2,94	12,87	22,67	1,94	5,39	0,43	0,77	99,36			
	0,11	0,15	19,72	3,35	16,44	0,41	10,60	0,00	0,00	1,03	3,14	13,51	22,45	2,05	5,62	0,06	0,79	99,43			
	0,17	0,14	19,89	3,42	16,71	0,44	10,57	0,00	0,00	0,98	2,74	13,87	22,22	1,86	5,64	0,40	0,83	99,86			
media	0,16	0,17	19,71	3,30	16,47	0,45	10,68	0,00	0,01	0,89	3,07	13,18	22,31	1,87	5,31	0,39	0,90	98,88			
dev.st.	0,04	0,03	0,11	0,11	0,17	0,03	0,09	0,00	0,03	0,18	0,18	0,44	0,31	0,15	0,27	0,15	0,10				
							•	2.											21		
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	0,064	0,049	4,059	0,713	2,525	0,074	1,425	0,414	0,000	0,000	0,083	0,281	1,006	1,693	0,154	0,373	0,041	0,047	0,225	4,026	4,915
	0,038	0,038	4,092	0,709	2,596	0,075	1,582	0,256	0,000	0,000	0,076	0,300	0,958	1,678	0,155	0,372	0,035	0,041	0,139	3,947	4,961
	0,050	0,036	4,063	0,741	2,551	0,074	1,538	0,294	0,000	0,000	0,122	0,312	0,984	1,634	0,150	0,383	0,025	0,042	0,161	3,959	4,978
	0,063	0,038	4,078	0,737	2,537	0,080	1,459	0,355	0,000	0,000	0,101	0,290	0,989	1,676	0,141	0,380	0,035	0,043	0,196	4,000	4,922
	0,035	0,044	4,065	0,708	2,551	0,072	1,512	0,332	0,001	0,000	0,078	0,292	0,989	1,700	0,122	0,407	0,042	0,049	0,180	4,019	4,916
	0,033	0,031	4,101	0,726	2,561	0,090	1,454	0,439	0,000	0,003	0,063	0,268	0,970	1,677	0,131	0,391	0,020	0,043	0,232	3,958	4,941
	0,055	0,045	4,052	0,690	2,533	0,082	1,493	0,358	0,000	0,000	0,070	0,314	1,043	1,685	0,122	0,402	0,019	0,038	0,193	3,999	4,949
	0,038	0,038	4,080	0,711	2,511	0,087	1,451	0,399	0,000	0,000	0,069	0,289	1,003	1,692	0,133	0,418	0,029	0,050	0,216	4,036	4,883
	0,061	0,037	3,999	0,749	2,546	0,075	1,356	0,466	0,000	0,000	0,100	0,277	1,042	1,701	0,133	0,384	0,035	0,040	0,256	4,083	4,917
	0,061	0,051	4,007	0,755	2,587	0,074	1,415	0,434	0,000	0,011	0,103	0,281	0,982	1,679	0,143	0,350	0,019	0,046	0,235	3,975	5,018
	0,062	0,048	4,037	0,748	2,549	0,080	1,372	0,465	0,000	0,000	0,098	0,271	0,970	1,696	0,145	0,393	0,030	0,036	0,253	4,018	4,945
	0,033	0,036	4,049	0,738	2,539	0,071	1,469	0,351	0,000	0,000	0,103	0,292	1,024	1,688	0,153	0,412	0,005	0,037	0,193	4,056	4,894
	0,052	0,033	4,058	0,747	2,564	0,075	1,389	0,413	0,000	0,000	0,097	0,253	1,043	1,659	0,138	0,411	0,028	0,038	0,229	4,065	4,877
media	0,050	0,040	4,057	0,729	2,550	0,078	1,455	0,383	0,000	0,001	0,090	0,286	1,000	1,681	0,140	0,390	0,028	0,042	0,208	4,011	4,932
dev.st.	0,012	0,006	0,030	0,020	0,023	0,006	0,065	0,065	0,000	0,003	0,017	0,017	0,030	0,018	0,011	0,020	0,010	0,005	-		
																			n _{medio} e _{chimici}		ne raffinamento

328,63 329,56

Tab. 12.b. Composizione dei punti analisi del campione AZ4A nella prova 5: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb_2O_5	La_2O_3	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	Gd_2O_3	ThO ₂	Somma
	0,13	0,15	19,36	3,34	16,65	0,56	10,79	0,00	0,28	0,94	3,24	12,98	22,13	1,56	5,10	0,48	0,34	0,98	99,02
	0,22	0,21	19,35	3,25	16,62	0,39	10,89	0,00	0,37	0,86	3,08	13,02	21,18	1,61	5,58	0,70	0,37	1,11	98,79
	0,11	0,14	19,32	3,20	16,29	0,49	11,04	0,05	0,29	0,74	3,41	12,83	22,21	1,78	6,05	0,54	0,27	1,30	100,07
	0,17	0,13	19,43	3,06	16,32	0,48	11,09	0,00	0,29	0,83	3,58	13,26	22,84	1,80	5,74	0,36	0,33	1,05	100,79
	0,16	0,16	19,45	3,27	16,64	0,51	10,66	0,00	0,30	0,74	3,24	13,15	22,50	2,02	5,46	0,42	0,31	1,14	100,13
	0,10	0,16	19,38	3,31	16,37	0,51	10,93	0,00	0,22	0,88	3,26	13,13	21,27	1,72	5,49	0,36	0,11	1,11	98,32
	0,12	0,18	19,48	3,04	16,26	0,43	11,06	0,00	0,32	0,84	3,44	13,19	22,88	1,95	5,79	0,42	0,22	0,82	100,45
	0,18	0,20	19,74	3,32	16,56	0,46	11,09	0,00	0,35	1,09	3,14	13,62	22,51	1,78	5,41	0,71	0,10	1,05	101,31
	0,12	0,17	19,31	3,38	16,83	0,48	10,73	0,00	0,14	0,92	3,07	13,47	22,13	1,73	5,55	0,57	0,16	1,09	99,84
	0,18	0,16	19,61	3,44	16,70	0,41	10,81	0,00	0,17	1,14	2,86	12,95	21,39	1,76	5,32	0,31	0,12	0,99	98,33
	0,18	0,12	19,61	3,19	16,57	0,47	10,92	0,00	0,26	0,65	3,08	13,52	22,24	2,09	5,37	0,59	0,35	1,13	100,34
media	0,15	0,16	19,46	3,26	16,53	0,47	10,91	0,00	0,27	0,88	3,22	13,19	22,12	1,80	5,53	0,50	0,24	1,07	99,76
dev.st.	0,04	0,03	0,14	0,12	0,19	0,05	0,15	0,01	0,07	0,15	0,21	0,25	0,60	0,16	0,26	0,13	0,11	0,12	

Fe²⁺ Fe³⁺/Fe_{tot} Si Ca Ti Mn Fe³⁺ Sr Y Zr Nb Ce Pr Gd Th Siti A Siti B+C Mg Al La Nd Sm 0,040 0,038 3,983 0,736 2,577 0,098 1,428 0,429 0,000 0,031 0,094 0,301 0,985 1,666 0,117 0,375 0,034 0,023 0,046 0,231 3,982 5,035 2,576 0,049 0.025 0,052 0,068 0,051 3,987 0,717 0.068 1,422 0,454 0,000 0,041 0,086 0,287 0,989 1,597 0,121 0,410 0,242 3,961 5,052 0,034 3,967 0,704 2,517 0,085 1,424 0,005 0,032 0,074 0,317 0,972 0,133 0,444 0,038 0,019 0,061 0,249 4,045 4,988 0,033 0,472 1,670 0,053 0,030 3,966 0,670 2,506 0,083 1,459 0,434 0,000 0,032 0,082 0,331 0,998 1,707 0,134 0,418 0,025 0,023 0,049 0,229 4,023 5,010 0,039 3,981 0,717 2,562 0,089 1,412 0,412 0,000 0,033 0,074 0,299 0,993 1,686 0,151 0,399 0.030 0,021 0,053 0,226 4,049 4,970 0,050 0,038 0,734 2,549 1,458 0,435 0,000 0,089 1,003 0,130 0,026 0,007 0,052 0,230 0,032 4,011 0,089 0,024 0,306 1,612 0,406 3,969 5,020 0.037 0,045 3,985 0,667 2,502 0,074 1,469 0,424 0,000 0,034 0,084 0,318 0,995 1,714 0,146 0,423 0,030 0,015 0,038 0,224 4,028 4,987 0,054 0,047 3,983 0,718 2,514 0,079 1,375 0,496 0,000 0,037 0,107 0,287 1,014 1,663 0,131 0,390 0,049 0,006 0,048 0,265 4,020 4,997 0,040 0,036 0,040 3,958 0,743 2,594 0,083 1,401 0,437 0,000 0,015 0,091 0,284 1,018 1,660 0,129 0,406 0,011 0,051 0.238 4,059 4,983 0,055 0,039 4,036 0,759 2,584 0,072 1,427 0,434 0,000 0,019 0,115 0,266 0,983 1,612 0,132 0,391 0,022 0,008 0,046 0,233 3,953 5,011 0,054 0,028 4,006 0,698 2,545 0,081 1,403 0,462 0,000 0,028 0,065 0,284 1,018 1,663 0,156 0,392 0,041 0,024 0,053 0,248 4,044 4,950 4,012 5,000 media 0,047 0,039 3,988 0,715 2,548 0,082 1,425 0,445 0,001 0,030 0,088 0,298 0,997 1,659 0,134 0,405 0,035 0,017 0,050 0,238 0,028 0,002 0.038 0,009 0,006 dev.st. 0,011 0,007 0,022 0,029 0,034 0,008 0,024 0,008 0,015 0,019 0,015 0,012 0,019 0,007 ne raffinamento n_{medio}e _{chimici}

331,98 329,56

Tab. 13. Composizione dei punti analisi del campione AZ4Q nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	ThO ₂	Somma			
	0,20	0,16	19,68	3,37	16,36	0,44	10,86	0,00	0,00	0,99	3,31	14,11	23,07	1,79	5,01	0,39	0,86	100,62			
	0,13	0,12	19,70	3,22	15,99	0,44	10,86	0,00	0,00	1,06	3,80	13,87	22,29	1,84	5,27	0,41	0,99	100,02			
	0,24	0,16	19,78	3,31	16,70	0,39	10,52	0,00	0,00	1,23	3,24	13,64	23,48	2,01	4,81	0,52	0,86	100,89			
	0,34	0,28	19,76	3,45	16,90	0,41	10,30	0,00	0,00	1,16	2,86	13,56	22,38	1,63	5,32	0,31	0,75	99,41			
	0,23	0,21	19,43	3,43	16,77	0,34	10,33	0,00	0,00	1,16	2,58	13,98	22,36	1,97	5,34	0,55	0,76	99,45			
	0,29	0,29	19,70	3,49	16,81	0,39	10,44	0,00	0,00	1,28	2,74	13,15	22,27	1,55	5,21	0,29	0,62	98,52			
	0,21	0,17	19,66	3,44	16,26	0,38	10,86	0,00	0,00	1,00	3,28	12,89	22,53	1,60	5,38	0,33	0,79	98,79			
	0,13	0,20	19,64	3,24	15,96	0,50	10,85	0,00	0,00	0,98	3,41	13,23	22,72	1,65	5,62	0,55	0,89	99,58			
media	0,22	0,20	19,67	3,37	16,47	0,41	10,63	0,00	0,00	1,11	3,15	13,55	22,64	1,76	5,25	0,42	0,82	99,66			
dev.st.	0,07	0,06	0,11	0,10	0,38	0,05	0,26	0,00	0,00	0,12	0,40	0,43	0,43	0,18	0,25	0,11	0,11				
	Ma	41	S ;	Ca	т	Mn	E- ²⁺	E- ³⁺	S	V	7.	Nh	La	Ca	Du	Nd	Sm	ть	Fa ³⁺ /Fa	S:+: A	Siti D±C
	Nig	AI	4 000	Ca	2 502	NIII 0.076	Fe 1 270	Fe	5r	1 0.000	Zr	0.204	La 1.050	1 717	rr 0.422	Nu	0.029	111	C 252	SIII A	5111 D⊤C
	0,060	0,030	4,002	0,734	2,502	0,076	1,379	0,467	0,000	0,000	0,096	0,304	1,050	1,717	0,132	0,364	0,028	0,040	0,253	4,073	4,925
	0,040	0,029	4,039	0,708	2,465	0,077	1,536	0,326	0,000	0,000	0,106	0,353	1,048	1,673	0,138	0,386	0,029	0,046	0,175	4,029	4,932
	0,074	0,038	4,013	0,720	2,548	0,067	1,455	0,330	0,000	0,000	0,122	0,297	1,020	1,744	0,149	0,348	0,036	0,040	0,185	4,057	4,930
	0,102	0,067	4,026	0,754	2,591	0,071	1,367	0,389	0,000	0,000	0,116	0,263	1,019	1,670	0,121	0,387	0,022	0,035	0,221	4,008	4,966
	0,072	0,050	3,991	0,754	2,591	0,060	1,326	0,447	0,000	0,000	0,116	0,239	1,059	1,681	0,148	0,392	0,039	0,035	0,252	4,108	4,901
	0,087	0,071	4,036	0,767	2,590	0,067	1,370	0,419	0,000	0,000	0,128	0,254	0,993	1,671	0,116	0,382	0,020	0,029	0,234	3,977	4,986
	0,065	0,040	4,040	0,758	2,513	0,065	1,411	0,455	0,000	0,000	0,100	0,305	0,977	1,695	0,120	0,395	0,023	0,037	0,244	4,005	4,955
	0,039	0,049	4,035	0,714	2,467	0,088	1,436	0,429	0,000	0,000	0,098	0,317	1,003	1,709	0,123	0,412	0,039	0,042	0,230	4,042	4,922
media	0,067	0,048	4,023	0,739	2,533	0,071	1,410	0,408	0,000	0,000	0,111	0,291	1,022	1,695	0,131	0,383	0,029	0,038	0,224	4,038	4,940
dev.st.	0,022	0,015	0,019	0,022	0,054	0,009	0,065	0,055	0,000	0,000	0,011	0,037	0,031	0,027	0,013	0,020	0,008	0,005			
																			n _{medio} e _{chimic}	i	ne ⁻ raffinamer

tio e chimici ne raffinamento 329,90 330,36

82

	MgO	AI_2O_3	S1O ₂	CaO	110_2	MnO	FeO	SrO	Y_2O_3	ZrO_2	Nb_2O_5	La_2O_3	Ce_2O_3	Pr_2O_3	Na_2O_3	Sm_2O_3	I nO ₂	Somma			
	0,19	0,17	19,75	3,43	16,47	0,47	10,70	0,00	0,00	1,23	3,28	13,02	23,21	1,53	5,23	0,40	0,66	99,75			
	0,17	0,17	19,57	3,31	16,55	0,38	10,46	0,00	0,00	1,01	3,28	13,72	23,06	1,98	5,00	0,31	0,96	99,92			
	0,20	0,24	19,73	3,50	16,91	0,37	10,48	0,00	0,00	1,14	2,78	13,36	22,26	1,75	5,08	0,51	0,84	99,15			
	0,28	0,18	19,78	3,38	16,94	0,36	10,45	0,00	0,00	0,84	2,57	13,29	21,81	2,08	5,47	0,42	0,79	98,63			
	0,22	0,20	19,67	3,31	16,71	0,42	10,45	0,00	0,00	0,96	2,88	13,62	21,49	1,77	5,39	0,23	0,70	98,02			
	0,17	0,19	19,66	3,42	16,20	0,41	10,66	0,00	0,00	1,10	3,32	13,57	22,57	1,89	5,62	0,53	0,73	100,03			
	0,16	0,18	19,68	3,33	16,43	0,43	10,82	0,00	0,00	1,07	3,29	13,25	22,57	1,76	5,36	0,47	0,68	99,50			
	0,15	0,16	19,45	3,19	16,04	0,43	10,91	0,00	0,00	1,15	3,16	13,29	22,22	1,78	5,14	0,36	0,96	98,38			
	0,34	0,28	19,71	3,59	16,93	0,46	10,40	0,00	0,00	1,25	2,53	13,30	22,32	1,51	5,45	0,35	1,10	99,53			
	0,21	0,20	19,45	3,28	16,67	0,43	10,96	0,00	0,00	0,72	2,83	13,14	22,28	1,99	5,22	0,54	1,10	99,02			
media	0,21	0,20	19,65	3,37	16,58	0,41	10,63	0,00	0,00	1,05	2,99	13,36	22,38	1,80	5,30	0,41	0,85	99,19			
dev.st.	0,06	0,04	0,12	0,12	0,31	0,04	0,21	0,00	0,00	0,17	0,31	0,22	0,52	0,19	0,19	0,10	0,17				
																			2.		
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	0,059	0,042	4,028	0,748	2,527	0,080	1,426	0,400	0,000	0,000	0,122	0,303	0,979	1,732	0,114	0,381	0,028	0,031	0,219	4,013	4,959
	0 050	0.040	1 011	0 7 7 7	2 552	0.066	1.474	0.319	0 0 0 0 0	0 000	0 101	0.304	1.038	1,732	0,148	0.366	0.022	0.045	0 179	4,077	4,909
	0,052	0,040	4,014	0,727	2,002	-,	.,	0,010	0,000	0,000	0,101	0,001	.,			-,	0,022	0,040	0,170		
	0,052 0,061	0,040 0,057	4,014 4,036	0,727 0,767	2,601	0,064	1,412	0,380	0,000	0,000	0,101	0,257	1,008	1,667	0,130	0,371	0,036	0,040	0,212	4,018	4,946
	0,052 0,061 0,086	0,040 0,057 0,044	4,014 4,036 4,061	0,727 0,767 0,744	2,601 2,617	0,064 0,062	1,412 1,385	0,380 0,410	0,000 0,000 0,000	0,000 0,000 0,000	0,101 0,114 0,084	0,257 0,238	1,008 1,007	1,667 1,639	0,130 0,156	0,371 0,401	0,036 0,030	0,049 0,039 0,037	0,212 0,228	4,018 4,014	4,946 4,925
	0,052 0,061 0,086 0,067	0,040 0,057 0,044 0,049	4,014 4,036 4,061 4,065	0,767 0,764 0,732	2,601 2,617 2,597	0,064 0,062 0,073	1,412 1,385 1,457	0,380 0,410 0,349	0,000 0,000 0,000	0,000 0,000 0,000 0,000	0,101 0,114 0,084 0,096	0,257 0,238 0,269	1,008 1,007 1,038	1,667 1,639 1,626	0,130 0,156 0,134	0,371 0,401 0,397	0,036 0,030 0,016	0,039 0,037 0,033	0,178 0,212 0,228 0,193	4,018 4,014 3,977	4,946 4,925 4,958
	0,052 0,061 0,086 0,067 0,052	0,040 0,057 0,044 0,049 0,046	4,014 4,036 4,061 4,065 4,020	0,727 0,767 0,744 0,732 0,749	2,601 2,617 2,597 2,490	0,064 0,062 0,073 0,071	1,412 1,385 1,457 1,394	0,380 0,410 0,349 0,428	0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,114 0,084 0,096 0,109	0,257 0,238 0,269 0,307	1,008 1,007 1,038 1,023	1,667 1,639 1,626 1,689	0,130 0,156 0,134 0,140	0,371 0,401 0,397 0,410	0,036 0,030 0,016 0,037	0,039 0,037 0,033 0,034	0,212 0,228 0,193 0,235	4,018 4,014 3,977 4,083	4,946 4,925 4,958 4,897
	0,052 0,061 0,086 0,067 0,052 0,048	0,040 0,057 0,044 0,049 0,046 0,044	4,014 4,036 4,061 4,065 4,020 4,029	0,727 0,767 0,744 0,732 0,749 0,730	2,601 2,617 2,597 2,490 2,529	0,064 0,062 0,073 0,071 0,075	1,412 1,385 1,457 1,394 1,454	0,380 0,410 0,349 0,428 0,399	0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000	0,114 0,084 0,096 0,109 0,107	0,257 0,238 0,269 0,307 0,305	1,008 1,007 1,038 1,023 1,001	1,667 1,639 1,626 1,689 1,692	0,130 0,156 0,134 0,140 0,131	0,371 0,401 0,397 0,410 0,391	0,036 0,030 0,016 0,037 0,033	0,039 0,037 0,033 0,034 0,032	0,212 0,228 0,193 0,235 0,215	4,018 4,014 3,977 4,083 4,010	4,946 4,925 4,958 4,897 4,961
	0,052 0,061 0,086 0,067 0,052 0,048 0,045	0,040 0,057 0,044 0,049 0,046 0,044 0,039	4,014 4,036 4,061 4,065 4,020 4,029 4,034	0,727 0,767 0,744 0,732 0,749 0,730 0,709	2,502 2,601 2,617 2,597 2,490 2,529 2,503	0,064 0,062 0,073 0,071 0,075 0,075	1,412 1,385 1,457 1,394 1,454 1,461	0,380 0,410 0,349 0,428 0,399 0,432	0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000	0,101 0,114 0,084 0,096 0,109 0,107 0,116	0,257 0,238 0,269 0,307 0,305 0,296	1,008 1,007 1,038 1,023 1,001 1,017	1,667 1,639 1,626 1,689 1,692 1,688	0,130 0,156 0,134 0,140 0,131 0,134	0,371 0,401 0,397 0,410 0,391 0,381	0,036 0,030 0,016 0,037 0,033 0,026	0,043 0,039 0,037 0,033 0,034 0,032 0,045	0,212 0,228 0,193 0,235 0,215 0,228	4,018 4,014 3,977 4,083 4,010 3,999	4,946 4,925 4,958 4,897 4,961 4,967
	0,052 0,061 0,086 0,067 0,052 0,048 0,045 0,102	0,040 0,057 0,044 0,049 0,046 0,044 0,039 0,068	4,014 4,036 4,061 4,065 4,020 4,029 4,034 4,010	0,727 0,767 0,744 0,732 0,749 0,730 0,709 0,782	2,601 2,617 2,597 2,490 2,529 2,503 2,590	0,064 0,062 0,073 0,071 0,075 0,075 0,079	1,412 1,385 1,457 1,394 1,454 1,461 1,277	0,380 0,410 0,349 0,428 0,399 0,432 0,492	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,101 0,114 0,084 0,096 0,109 0,107 0,116 0,124	0,257 0,238 0,269 0,307 0,305 0,296 0,232	1,008 1,007 1,038 1,023 1,001 1,017 0,998	1,667 1,639 1,626 1,689 1,692 1,688 1,662	0,130 0,156 0,134 0,140 0,131 0,134 0,112	0,371 0,401 0,397 0,410 0,391 0,381 0,396	0,036 0,030 0,016 0,037 0,033 0,026 0,025	0,039 0,037 0,033 0,034 0,032 0,045 0,051	0,212 0,228 0,193 0,235 0,215 0,228 0,278	4,018 4,014 3,977 4,083 4,010 3,999 4,026	4,946 4,925 4,958 4,897 4,961 4,967 4,965
	0,052 0,061 0,086 0,067 0,052 0,048 0,045 0,102 0,064	0,040 0,057 0,044 0,049 0,046 0,044 0,039 0,068 0,048	4,014 4,036 4,061 4,065 4,020 4,029 4,034 4,010 3,999	0,727 0,767 0,744 0,732 0,749 0,730 0,709 0,782 0,722	2,502 2,601 2,617 2,597 2,490 2,529 2,503 2,590 2,578	0,064 0,062 0,073 0,071 0,075 0,075 0,079 0,074	1,412 1,385 1,457 1,394 1,454 1,461 1,277 1,366	0,380 0,410 0,349 0,428 0,399 0,432 0,492 0,518	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,101 0,114 0,084 0,096 0,109 0,107 0,116 0,124 0,072	0,257 0,238 0,269 0,307 0,305 0,296 0,232 0,263	1,008 1,007 1,038 1,023 1,001 1,017 0,998 0,996	1,667 1,639 1,626 1,689 1,692 1,688 1,662 1,677	0,130 0,156 0,134 0,140 0,131 0,134 0,112 0,149	0,371 0,401 0,397 0,410 0,391 0,381 0,396 0,383	0,036 0,030 0,016 0,037 0,033 0,026 0,025 0,038	0,039 0,037 0,033 0,034 0,032 0,045 0,051	0,212 0,228 0,193 0,235 0,215 0,228 0,278 0,275	4,018 4,014 3,977 4,083 4,010 3,999 4,026 4,017	4,946 4,925 4,958 4,897 4,961 4,967 4,965 4,984
media	0,052 0,061 0,086 0,067 0,052 0,048 0,045 0,102 0,064 0,064	0,040 0,057 0,044 0,049 0,046 0,044 0,039 0,068 0,048 0,048	4,014 4,036 4,061 4,020 4,020 4,029 4,034 4,010 3,999 4,029	0,727 0,767 0,744 0,732 0,749 0,730 0,709 0,782 0,722 0,741	2,602 2,601 2,617 2,597 2,490 2,529 2,503 2,590 2,578 2,559	0,064 0,062 0,073 0,071 0,075 0,075 0,079 0,074 0,072	1,412 1,385 1,457 1,394 1,454 1,461 1,277 1,366 1,411	0,380 0,410 0,349 0,428 0,399 0,432 0,432 0,492 0,518 0,413	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,101 0,114 0,084 0,096 0,109 0,107 0,116 0,124 0,072 0,105	0,257 0,238 0,269 0,307 0,305 0,296 0,232 0,263 0,277	1,008 1,007 1,038 1,023 1,001 1,017 0,998 0,996 1,010	1,667 1,639 1,626 1,689 1,692 1,688 1,662 1,677 1,680	0,130 0,156 0,134 0,140 0,131 0,134 0,112 0,149 0,135	0,371 0,401 0,397 0,410 0,391 0,381 0,386 0,383 0,388	0,036 0,030 0,016 0,037 0,033 0,026 0,025 0,038 0,029	0,039 0,037 0,033 0,034 0,032 0,045 0,051 0,051 0,040	0,212 0,228 0,193 0,235 0,215 0,228 0,278 0,275 0,226	4,018 4,014 3,977 4,083 4,010 3,999 4,026 4,017 4,023	4,946 4,925 4,958 4,897 4,961 4,967 4,965 4,984 4,947
media dev.st.	0,052 0,061 0,086 0,067 0,052 0,048 0,045 0,102 0,064 0,064 0,018	0,040 0,057 0,044 0,049 0,046 0,044 0,039 0,068 0,048 0,048 0,009	4,014 4,036 4,061 4,065 4,020 4,029 4,034 4,010 3,999 4,029 0,021	0,727 0,767 0,744 0,732 0,749 0,730 0,709 0,782 0,722 0,721 0,721	2,601 2,617 2,597 2,490 2,529 2,503 2,590 2,578 2,559 0,044	0,064 0,062 0,073 0,071 0,075 0,075 0,075 0,079 0,074 0,072 0,006	1,412 1,385 1,457 1,394 1,454 1,461 1,277 1,366 1,411 0,059	0,380 0,410 0,349 0,428 0,399 0,432 0,432 0,492 0,518 0,413 0,060	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	0,101 0,114 0,084 0,096 0,109 0,107 0,116 0,124 0,072 0,105 0,017	0,257 0,238 0,269 0,307 0,305 0,296 0,232 0,263 0,277 0,029	1,008 1,007 1,038 1,023 1,001 1,017 0,998 0,996 1,010 0,019	1,667 1,639 1,626 1,689 1,692 1,688 1,662 1,677 1,680 0,035	0,130 0,156 0,134 0,140 0,131 0,134 0,112 0,149 0,135 0,014	0,371 0,401 0,397 0,410 0,391 0,381 0,386 0,388 0,388 0,014	0,036 0,030 0,016 0,037 0,033 0,026 0,025 0,038 0,029 0,007	0,039 0,037 0,033 0,034 0,032 0,045 0,051 0,051 0,040 0,008	0,212 0,228 0,193 0,235 0,215 0,228 0,278 0,275 0,226	4,018 4,014 3,977 4,083 4,010 3,999 4,026 4,017 4,023	4,946 4,925 4,958 4,897 4,961 4,967 4,965 4,984 4,947

Tab. 14. Composizione dei punti analisi del campione AZ4L nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

tio e chimici ne raffinamento 328,92 329,21

Tab.15. Composizione dei punti analisi del campione P1 nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La_2O_3	Ce_2O_3	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	ThO ₂	Somma			
	0,29	0,17	18,71	2,15	16,54	0,39	11,75	0,15	0,00	0,01	0,50	10,60	24,30	2,15	7,88	0,64	0,76	97,01			
	0,32	0,18	18,68	2,13	16,70	0,29	12,00	0,37	0,00	0,03	0,61	11,14	24,50	2,16	7,51	0,68	1,08	98,40			
	0,34	0,18	18,72	2,14	16,65	0,39	11,70	0,07	0,00	0,06	0,26	11,28	23,72	2,31	7,29	0,59	0,91	96,63			
	0,35	0,21	18,85	2,51	16,95	0,50	11,16	0,25	0,00	0,19	0,34	10,26	23,78	2,26	7,39	0,59	1,21	96,80			
	0,35	0,19	18,76	2,14	16,82	0,41	11,49	0,24	0,00	0,00	0,42	10,32	24,23	2,46	7,57	0,69	0,84	96,93			
	0,30	0,15	18,51	2,17	16,74	0,37	11,63	0,12	0,00	0,04	0,41	10,61	24,17	2,44	7,81	0,77	0,86	97,10			
	0,30	0,14	18,59	2,15	16,69	0,39	11,58	0,31	0,00	0,01	0,37	11,16	24,48	2,35	7,73	0,67	0,83	97,74			
	0,38	0,15	18,73	2,10	16,72	0,36	11,66	0,16	0,00	0,04	0,49	11,93	23,78	2,21	7,73	0,61	0,96	98,02			
	0,31	0,20	18,74	2,35	17,02	0,51	11,32	0,14	0,00	0,14	0,48	10,81	23,27	2,01	7,65	0,70	1,31	96,97			
	0,32	0,20	18,64	2,23	16,82	0,39	11,48	0,17	0,00	0,13	0,39	11,27	23,52	2,27	7,59	0,80	0,79	97,01			
media	0,33	0,18	18,69	2,21	16,76	0,40	11,58	0,20	0,00	0,07	0,43	10,94	23,98	2,26	7,61	0,67	0,96	97,26			
dev.st.	0,03	0,02	0,09	0,13	0,14	0,06	0,23	0,09	0,00	0,07	0,10	0,52	0,42	0,14	0,18	0,07	0,19				
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	0,092	0,042	3,964	0,489	2,636	0,070	1,064	1,017	0,019	0,000	0,001	0,048	0,828	1,885	0,166	0,596	0,047	0,037	0,489	4,066	4,970
	0,099	0,045	3,915	0,478	2,633	0,052	1,044	1,059	0,045	0,000	0,003	0,058	0,861	1,880	0,165	0,562	0,049	0,052	0,503	4,092	4,992
	0,108	0,045	3,972	0,487	2,658	0,071	1,055	1,020	0,009	0,000	0,007	0,025	0,883	1,843	0,179	0,552	0,043	0,044	0,492	4,040	4,989
	0,110	0,052	3,976	0,568	2,688	0,089	1,010	0,959	0,030	0,000	0,020	0,033	0,798	1,836	0,174	0,556	0,043	0,058	0,487	4,063	4,962
	0,109	0,047	3,970	0,486	2,677	0,073	1,068	0,965	0,030	0,000	0,000	0,040	0,806	1,877	0,190	0,572	0,050	0,041	0,475	4,051	4,980
	0,096	0,038	3,928	0,493	2,671	0,066	1,053	1,010	0,015	0,000	0,005	0,039	0,830	1,877	0,189	0,591	0,056	0,042	0,490	4,094	4,978
	0,094	0,035	3,928	0,486	2,652	0,069	1,006	1,040	0,038	0,000	0,001	0,036	0,870	1,893	0,181	0,583	0,049	0,040	0,508	4,139	4,933
	0,118	0,038	3,941	0,474	2,646	0,064	1,055	0,996	0,019	0,000	0,005	0,046	0,926	1,831	0,170	0,581	0,044	0,046	0,486	4,091	4,968
	0,098	0,049	3,959	0,532	2,705	0,090	1,096	0,905	0,017	0,000	0,015	0,046	0,843	1,800	0,155	0,577	0,051	0,063	0,452	4,038	5,003
	0,102	0,050	3,945	0,505	2,677	0,070	1,050	0,982	0,021	0,000	0,014	0,037	0,880	1,823	0,175	0,573	0,058	0,038	0,483	4,073	4,982
media	0,103	0,044	3,950	0,500	2,664	0,071	1,050	0,995	0,024	0,000	0,007	0,041	0,853	1,855	0,174	0,575	0,049	0,046	0,487	4,075	4,976
dev.st.	0,008	0,006	0,021	0,029	0,023	0,011	0,026	0,044	0,011	0,000	0,007	0,009	0,039	0,032	0,011	0,014	0,005	0,009			
																			n _{medio} e _{chimic}	ci	ne raffinamen

dioneraffinamento336,34332,72

	MgO	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La_2O_3	Ce_2O_3	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	ThO ₂	Somma			
	0,29	0,18	18,22	1,93	15,91	0,41	11,91	0,20	0,00	0,06	0,44	10,65	23,53	2,14	7,30	0,68	1,97	95,81			
	0,33	0,15	18,04	1,90	15,94	0,44	11,80	0,15	0,00	0,14	0,50	10,92	23,94	2,24	7,33	0,61	2,05	96,48			
	0,30	0,17	18,17	1,89	16,13	0,46	11,74	0,09	0,00	0,00	0,32	11,07	23,77	2,25	7,61	0,77	2,09	96,84			
	0,35	0,15	18,22	1,88	16,13	0,47	11,72	0,00	0,00	0,05	0,40	10,44	23,69	2,23	7,73	0,56	2,06	96,07			
	0,29	0,13	18,28	1,98	16,32	0,55	11,72	0,05	0,00	0,02	0,35	10,90	23,25	2,29	7,80	0,49	2,14	96,58			
	0,26	0,21	18,11	1,86	16,12	0,49	11,64	0,14	0,00	0,09	0,15	10,93	23,83	2,55	7,28	0,68	1,99	96,33			
	0,28	0,19	18,28	1,86	16,24	0,48	11,65	0,16	0,00	0,15	0,32	10,84	23,33	2,29	7,56	0,59	2,29	96,52			
	0,31	0,22	18,19	1,90	16,27	0,43	11,74	0,34	0,00	0,00	0,38	10,89	24,69	2,01	7,50	0,70	2,16	97,73			
media	0,30	0,17	18,19	1,90	16,13	0,47	11,74	0,14	0,00	0,06	0,36	10,83	23,75	2,25	7,51	0,64	2,09	96,54			
dev.st.	0,03	0,03	0,08	0,04	0,15	0,04	0,08	0,10	0,00	0,06	0,10	0,20	0,45	0,15	0,20	0,09	0,10				
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	0,095	0,046	3,937	0,446	2,586	0,075	1,072	1,080	0,025	0,000	0,006	0,043	0,848	1,862	0,169	0,563	0,050	0,097	0,502	4,060	5,003
	0,106	0,039	3,892	0,440	2,587	0,080	1,048	1,081	0,019	0,000	0,014	0,049	0,869	1,891	0,176	0,565	0,045	0,101	0,508	4,105	5,003
	0,097	0,043	3,908	0,436	2,609	0,084	1,055	1,057	0,011	0,000	0,000	0,031	0,878	1,871	0,176	0,584	0,057	0,102	0,501	4,116	4,975
	0,114	0,037	3,932	0,436	2,618	0,086	1,099	1,017	0,000	0,000	0,005	0,039	0,831	1,872	0,176	0,596	0,042	0,101	0,481	4,053	5,014
	0,093	0,032	3,925	0,456	2,636	0,101	1,079	1,026	0,006	0,000	0,002	0,034	0,864	1,827	0,179	0,598	0,037	0,104	0,487	4,072	5,003
	0,083	0,053	3,912	0,431	2,620	0,090	1,048	1,056	0,018	0,000	0,009	0,015	0,871	1,885	0,201	0,562	0,051	0,098	0,502	4,115	4,973
	0,091	0,047	3,935	0,428	2,630	0,087	1,129	0,969	0,020	0,000	0,016	0,031	0,861	1,839	0,180	0,581	0,044	0,112	0,462	4,065	5,001
	0,097	0,055	3,881	0,434	2,611	0,078	1,019	1,075	0,042	0,000	0,000	0,037	0,857	1,929	0,156	0,571	0,051	0,105	0,513	4,145	4,974
media	0,097	0,044	3,915	0,438	2,612	0,085	1,069	1,045	0,018	0,000	0,007	0,035	0,860	1,872	0,177	0,578	0,047	0,103	0,494	4,091	4,993
dev.st.	0,009	0,008	0,021	0,009	0,018	0,008	0,034	0,039	0,013	0,000	0,006	0,010	0,015	0,031	0,012	0,015	0,007	0,005			
																			n _{medio} e ⁻ chimic	2i	ne ⁻ raffinamento
																			342,21		335,43

Tab. 16. Composizione dei punti analisi del campione P2 nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

Tab.17. Composizione dei punti analisi del campione PN nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y ₂ O ₃	ZrO ₂	Nb ₂ O ₅	La_2O_3	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	ThO ₂	Somma			
	0,35	0,16	18,60	2,31	16,98	0,57	11,56	0,14	0,00	0,13	0,59	11,00	24,18	2,04	7,62	0,76	1,66	98,64			
	0,30	0,15	18,93	2,45	17,12	0,50	11,10	0,17	0,00	0,22	0,32	10,86	23,35	2,36	7,38	0,53	1,14	96,88			
	0,31	0,13	18,54	2,13	16,70	0,38	11,85	0,11	0,00	0,00	0,53	10,84	24,20	2,11	7,63	0,43	0,95	96,85			
	0,34	0,19	18,86	2,46	17,06	0,51	11,19	0,33	0,00	0,13	0,41	10,97	23,75	2,10	7,45	0,59	1,31	97,65			
	0,32	0,08	18,54	1,69	17,10	0,40	11,35	0,12	0,00	0,01	0,28	10,93	23,99	2,34	8,44	0,56	0,88	97,04			
	0,34	0,20	18,73	2,34	16,99	0,46	11,15	0,04	0,00	0,12	0,49	11,03	23,55	2,12	7,59	0,53	1,44	97,12			
	0,39	0,18	18,68	2,36	17,04	0,49	11,53	0,28	0,00	0,14	0,53	10,52	24,04	2,54	7,48	0,57	1,48	98,25			
	0,36	0,17	18,81	2,33	17,01	0,55	11,29	0,23	0,00	0,04	0,41	9,96	24,23	2,47	7,27	0,68	1,48	97,31			
	0,40	0,12	18,65	2,00	16,85	0,52	11,20	0,28	0,00	0,13	0,57	10,86	23,74	2,16	7,04	0,44	2,06	97,04			
	0,33	0,15	18,68	2,30	16,92	0,51	11,20	0,50	0,00	0,21	0,36	10,42	24,14	2,30	7,18	0,69	1,44	97,32			
	0,33	0,16	18,60	2,30	16,84	0,49	11,28	0,34	0,00	0,10	0,36	10,96	23,40	2,30	7,28	0,53	1,46	96,76			
	0,29	0,11	18,88	2,46	17,22	0,57	11,27	0,38	0,00	0,26	0,54	10,79	23,52	2,35	7,66	0,58	1,24	98,13			
media	0,34	0,15	18,71	2,26	16,99	0,50	11,33	0,24	0,00	0,12	0,45	10,76	23,84	2,27	7,50	0,57	1,38	97,42			
dev.st.	0,03	0,03	0,13	0,22	0,14	0,06	0,21	0,13	0,00	0,08	0,11	0,31	0,33	0,16	0,36	0,10	0,32				
	Mg	AI	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	Mg 0,108	AI 0,040	Si 3,893	Ca 0,519	Ti 2,672	Mn 0,101	Fe²⁺ 1,026	Fe³⁺ 0,997	Sr 0,017	Y 0,000	Zr 0,013	Nb 0,056	La 0,849	Ce 1,852	Pr 0,155	Nd 0,570	Sm 0,055	Th 0,079	Fe ³⁺ /Fe _{tot} 0,493	Siti A 4,094	Siti B+C 5,013
	Mg 0,108 0,096	Al 0,040 0,036	Si 3,893 3,993	Ca 0,519 0,554	Ti 2,672 2,717	Mn 0,101 0,090	Fe²⁺ 1,026 1,089	Fe³⁺ 0,997 0,871	Sr 0,017 0,021	Y 0,000 0,000	Zr 0,013 0,023	Nb 0,056 0,031	La 0,849 0,845	Ce 1,852 1,804	Pr 0,155 0,181	Nd 0,570 0,556	Sm 0,055 0,038	Th 0,079 0,055	Fe^{3⁺}/Fe_{tot} 0,493 0,444	Siti A 4,094 4,055	Siti B+C 5,013 4,952
	Mg 0,108 0,096 0,099	Al 0,040 0,036 0,033	Si 3,893 3,993 3,935	Ca 0,519 0,554 0,484	Ti 2,672 2,717 2,666	Mn 0,101 0,090 0,068	Fe ²⁺ 1,026 1,089 1,085	Fe³⁺ 0,997 0,871 1,018	Sr 0,017 0,021 0,014	Y 0,000 0,000 0,000	Zr 0,013 0,023 0,000	Nb 0,056 0,031 0,051	La 0,849 0,845 0,849	Ce 1,852 1,804 1,880	Pr 0,155 0,181 0,163	Nd 0,570 0,556 0,578	Sm 0,055 0,038 0,031	Th 0,079 0,055 0,046	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484	Siti A 4,094 4,055 4,046	Siti B+C 5,013 4,952 5,020
	Mg 0,108 0,096 0,099 0,107	Al 0,040 0,036 0,033 0,046	Si 3,893 3,993 3,935 3,958	Ca 0,519 0,554 0,484 0,553	Ti 2,672 2,717 2,666 2,692	Mn 0,101 0,090 0,068 0,090	Fe ²⁺ 1,026 1,089 1,085 1,013	Fe ³⁺ 0,997 0,871 1,018 0,950	Sr 0,017 0,021 0,014 0,040	Y 0,000 0,000 0,000 0,000	Zr 0,013 0,023 0,000 0,013	Nb 0,056 0,031 0,051 0,039	La 0,849 0,845 0,849 0,849	Ce 1,852 1,804 1,880 1,825	Pr 0,155 0,181 0,163 0,161	Nd 0,570 0,556 0,578 0,558	Sm 0,055 0,038 0,031 0,042	Th 0,079 0,055 0,046 0,062	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484	Siti A 4,094 4,055 4,046 4,091	Siti B+C 5,013 4,952 5,020 4,951
	Mg 0,108 0,096 0,099 0,107 0,101	Al 0,040 0,036 0,033 0,046 0,019	Si 3,893 3,993 3,935 3,958 3,957	Ca 0,519 0,554 0,484 0,553 0,387	Ti 2,672 2,717 2,666 2,692 2,747	Mn 0,101 0,090 0,068 0,090 0,073	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801	Sr 0,017 0,021 0,014 0,040 0,015	Y 0,000 0,000 0,000 0,000	Zr 0,013 0,023 0,000 0,013 0,001	Nb 0,056 0,031 0,051 0,039 0,027	La 0,849 0,845 0,849 0,849 0,861	Ce 1,852 1,804 1,880 1,825 1,875	Pr 0,155 0,181 0,163 0,161 0,182	Nd 0,570 0,556 0,578 0,558 0,644	Sm 0,055 0,038 0,031 0,042 0,041	Th 0,079 0,055 0,046 0,062 0,043	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484 0,395	Siti A 4,094 4,055 4,046 4,091 4,048	Siti B+C 5,013 4,952 5,020 4,951 4,994
	Mg 0,108 0,096 0,099 0,107 0,101 0,107	Al 0,040 0,036 0,033 0,046 0,019 0,049	Si 3,893 3,993 3,935 3,958 3,957 3,963	Ca 0,519 0,554 0,484 0,553 0,387 0,530	Ti 2,672 2,717 2,666 2,692 2,747 2,703	Mn 0,101 0,090 0,068 0,090 0,073 0,082	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225 1,117	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801 0,856	Sr 0,017 0,021 0,014 0,040 0,015 0,005	Y 0,000 0,000 0,000 0,000 0,000	Zr 0,013 0,023 0,000 0,013 0,001 0,012	Nb 0,056 0,031 0,051 0,039 0,027 0,047	La 0,849 0,845 0,849 0,849 0,861 0,860	Ce 1,852 1,804 1,880 1,825 1,875 1,823	Pr 0,155 0,181 0,163 0,161 0,182 0,164	Nd 0,570 0,556 0,578 0,558 0,644 0,574	Sm 0,055 0,038 0,031 0,042 0,041 0,039	Th 0,079 0,055 0,046 0,062 0,043 0,069	Fe³⁺/Fe tot 0,493 0,444 0,484 0,484 0,395 0,434	Siti A 4,094 4,055 4,046 4,091 4,048 4,064	Siti B+C 5,013 4,952 5,020 4,951 4,994 4,973
	Mg 0,108 0,096 0,099 0,107 0,101 0,107 0,122	Al 0,040 0,036 0,033 0,046 0,019 0,049 0,045	Si 3,893 3,993 3,935 3,958 3,957 3,963 3,906	Ca 0,519 0,554 0,484 0,553 0,387 0,530 0,529	Ti 2,672 2,717 2,666 2,692 2,747 2,703 2,680	Mn 0,101 0,090 0,068 0,090 0,073 0,082 0,087	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225 1,117 0,997	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801 0,856 1,020	Sr 0,017 0,021 0,014 0,040 0,015 0,005 0,034	Y 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,013 0,023 0,000 0,013 0,001 0,012 0,014	Nb 0,056 0,031 0,051 0,039 0,027 0,047 0,050	La 0,849 0,845 0,849 0,869 0,861 0,860 0,811	Ce 1,852 1,804 1,880 1,825 1,875 1,823 1,841	Pr 0,155 0,181 0,163 0,161 0,182 0,164 0,194	Nd 0,570 0,556 0,578 0,558 0,644 0,574 0,559	Sm 0,055 0,038 0,031 0,042 0,041 0,039 0,041	Th 0,079 0,055 0,046 0,062 0,043 0,069 0,071	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484 0,395 0,434 0,506	Siti A 4,094 4,055 4,046 4,091 4,048 4,064 4,080	Siti B+C 5,013 4,952 5,020 4,951 4,994 4,973 5,014
	Mg 0,108 0,096 0,099 0,107 0,101 0,107 0,122 0,112	Al 0,040 0,036 0,033 0,046 0,019 0,049 0,045 0,043	Si 3,893 3,993 3,935 3,958 3,957 3,963 3,906 3,963	Ca 0,519 0,554 0,484 0,553 0,387 0,530 0,529 0,527	Ti 2,672 2,717 2,666 2,692 2,747 2,703 2,680 2,696	Mn 0,101 0,090 0,068 0,090 0,073 0,082 0,087 0,098	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225 1,117 0,997 1,048	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801 0,856 1,020 0,942	Sr 0,017 0,021 0,014 0,040 0,015 0,005 0,034 0,029	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,013 0,023 0,000 0,013 0,001 0,012 0,014 0,004	Nb 0,056 0,031 0,051 0,039 0,027 0,047 0,050 0,039	La 0,849 0,845 0,849 0,861 0,860 0,811 0,774	Ce 1,852 1,804 1,880 1,825 1,875 1,823 1,841 1,869	Pr 0,155 0,181 0,163 0,161 0,182 0,164 0,194 0,190	Nd 0,570 0,556 0,578 0,558 0,644 0,574 0,559 0,547	Sm 0,055 0,038 0,031 0,042 0,041 0,039 0,041 0,049	Th 0,079 0,055 0,046 0,062 0,043 0,069 0,071 0,071	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484 0,395 0,434 0,506 0,474	Siti A 4,094 4,055 4,046 4,091 4,048 4,064 4,080 4,055	Siti B+C 5,013 4,952 5,020 4,951 4,994 4,973 5,014 4,982
	Mg 0,108 0,096 0,099 0,107 0,107 0,122 0,122 0,128	Al 0,040 0,036 0,033 0,046 0,019 0,049 0,045 0,043 0,031	Si 3,893 3,993 3,935 3,958 3,957 3,963 3,906 3,963 3,966	Ca 0,519 0,554 0,484 0,553 0,387 0,530 0,529 0,527 0,455	Ti 2,672 2,717 2,666 2,692 2,747 2,703 2,680 2,696 2,696	Mn 0,101 0,090 0,068 0,090 0,073 0,082 0,087 0,098 0,094	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225 1,117 0,997 1,048 1,173	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801 0,856 1,020 0,942 0,820	Sr 0,017 0,021 0,014 0,040 0,015 0,005 0,034 0,029 0,035	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,013 0,023 0,000 0,013 0,001 0,012 0,014 0,004 0,013	Nb 0,056 0,031 0,051 0,039 0,027 0,047 0,050 0,039 0,054	La 0,849 0,845 0,849 0,861 0,860 0,811 0,774 0,852	Ce 1,852 1,804 1,880 1,825 1,875 1,823 1,841 1,869 1,849	Pr 0,155 0,181 0,163 0,161 0,182 0,164 0,194 0,190 0,168	Nd 0,570 0,556 0,578 0,558 0,644 0,574 0,559 0,547 0,534	Sm 0,055 0,038 0,031 0,042 0,041 0,039 0,041 0,049 0,033	Th 0,079 0,055 0,046 0,062 0,043 0,069 0,071 0,071 0,100	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484 0,395 0,434 0,506 0,474 0,411	Siti A 4,094 4,055 4,046 4,091 4,048 4,064 4,080 4,055 4,025	Siti B+C 5,013 4,952 5,020 4,951 4,994 4,973 5,014 4,982 5,009
	Mg 0,108 0,099 0,107 0,101 0,107 0,122 0,112 0,128 0,103	AI 0,040 0,036 0,033 0,046 0,019 0,049 0,045 0,043 0,031 0,037	Si 3,893 3,993 3,935 3,958 3,957 3,963 3,906 3,963 3,966 3,947	Ca 0,519 0,554 0,484 0,553 0,530 0,529 0,527 0,455 0,520	Ti 2,672 2,717 2,666 2,692 2,747 2,703 2,680 2,696 2,696 2,688	Mn 0,101 0,090 0,068 0,090 0,073 0,082 0,087 0,098 0,094 0,092	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225 1,117 0,997 1,048 1,173 1,019	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801 0,856 1,020 0,942 0,820 0,960	Sr 0,017 0,021 0,014 0,040 0,015 0,005 0,034 0,029 0,035 0,061	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,013 0,023 0,000 0,013 0,011 0,012 0,014 0,004 0,013 0,022	Nb 0,056 0,031 0,051 0,039 0,027 0,047 0,050 0,039 0,054 0,034	La 0,849 0,845 0,849 0,861 0,860 0,811 0,774 0,852 0,812	Ce 1,852 1,804 1,825 1,825 1,875 1,823 1,841 1,869 1,849 1,867	Pr 0,155 0,181 0,163 0,161 0,182 0,164 0,194 0,190 0,168 0,177	Nd 0,570 0,556 0,578 0,558 0,644 0,574 0,559 0,547 0,534 0,542	Sm 0,055 0,038 0,031 0,042 0,041 0,039 0,041 0,049 0,033 0,050	Th 0,079 0,055 0,046 0,062 0,043 0,069 0,071 0,071 0,100 0,069	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484 0,395 0,434 0,506 0,474 0,411 0,485	Siti A 4,094 4,055 4,046 4,091 4,048 4,064 4,080 4,055 4,025 4,098	Siti B+C 5,013 4,952 5,020 4,951 4,994 4,973 5,014 4,982 5,009 4,955
	Mg 0,108 0,099 0,107 0,101 0,107 0,122 0,112 0,128 0,103 0,106	AI 0,040 0,036 0,033 0,046 0,019 0,049 0,045 0,043 0,031 0,037 0,040	Si 3,893 3,993 3,958 3,957 3,963 3,966 3,966 3,947 3,949	Ca 0,519 0,554 0,484 0,553 0,530 0,529 0,527 0,455 0,520 0,524	Ti 2,672 2,717 2,666 2,692 2,747 2,703 2,680 2,696 2,696 2,688 2,689	Mn 0,101 0,090 0,068 0,090 0,073 0,082 0,087 0,098 0,094 0,092 0,088	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225 1,117 0,997 1,048 1,173 1,019 1,029	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801 0,856 1,020 0,942 0,820 0,960 0,972	Sr 0,017 0,021 0,014 0,040 0,015 0,005 0,034 0,029 0,035 0,061 0,042	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,013 0,000 0,013 0,001 0,012 0,014 0,004 0,013 0,022 0,011	Nb 0,056 0,031 0,051 0,039 0,027 0,047 0,050 0,039 0,054 0,034 0,035	La 0,849 0,845 0,849 0,861 0,860 0,811 0,774 0,852 0,812 0,858	Ce 1,852 1,804 1,800 1,825 1,875 1,823 1,841 1,869 1,849 1,849 1,867 1,819	Pr 0,155 0,181 0,163 0,161 0,182 0,164 0,194 0,190 0,168 0,177 0,178	Nd 0,570 0,556 0,578 0,558 0,644 0,574 0,559 0,547 0,534 0,542 0,552	Sm 0,055 0,038 0,031 0,042 0,041 0,039 0,041 0,049 0,033 0,050 0,039	Th 0,079 0,055 0,046 0,062 0,043 0,069 0,071 0,100 0,069 0,071	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484 0,395 0,434 0,506 0,474 0,411 0,485 0,486	Siti A 4,094 4,055 4,046 4,091 4,048 4,064 4,080 4,055 4,025 4,098 4,083	Siti B+C 5,013 4,952 5,020 4,951 4,994 4,973 5,014 4,982 5,009 4,955 4,969
	Mg 0,108 0,099 0,107 0,101 0,107 0,122 0,112 0,128 0,103 0,106 0,092	AI 0,040 0,036 0,033 0,046 0,019 0,049 0,045 0,043 0,031 0,037 0,040 0,028	Si 3,893 3,993 3,958 3,957 3,963 3,966 3,966 3,947 3,949 3,945	Ca 0,519 0,554 0,484 0,553 0,530 0,529 0,527 0,455 0,520 0,524 0,552	Ti 2,672 2,717 2,666 2,692 2,747 2,703 2,680 2,696 2,696 2,688 2,689 2,707	Mn 0,101 0,090 0,068 0,090 0,073 0,082 0,087 0,098 0,094 0,092 0,088 0,101	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225 1,117 0,997 1,048 1,173 1,019 1,029 1,050	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801 0,856 1,020 0,942 0,820 0,960 0,972 0,920	Sr 0,017 0,021 0,040 0,040 0,015 0,005 0,034 0,029 0,035 0,061 0,042 0,046	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,013 0,000 0,013 0,001 0,012 0,014 0,004 0,013 0,022 0,011 0,026	Nb 0,056 0,031 0,051 0,039 0,027 0,047 0,050 0,039 0,054 0,034 0,035 0,051	La 0,849 0,849 0,849 0,861 0,860 0,811 0,774 0,852 0,812 0,858 0,831	Ce 1,852 1,804 1,880 1,825 1,875 1,823 1,841 1,869 1,849 1,867 1,819 1,800	Pr 0,155 0,181 0,163 0,161 0,182 0,164 0,194 0,190 0,168 0,177 0,178 0,179	Nd 0,570 0,556 0,578 0,578 0,558 0,644 0,574 0,559 0,547 0,534 0,542 0,552 0,572	Sm 0,055 0,038 0,031 0,042 0,041 0,039 0,041 0,033 0,050 0,039 0,041	Th 0,079 0,055 0,046 0,062 0,043 0,069 0,071 0,100 0,069 0,071 0,059	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484 0,395 0,434 0,506 0,474 0,411 0,485 0,486 0,467	Siti A 4,094 4,055 4,046 4,091 4,048 4,064 4,080 4,055 4,025 4,028 4,083 4,080	Siti B+C 5,013 4,952 5,020 4,951 4,994 4,973 5,014 4,982 5,009 4,955 4,969 4,975
media	Mg 0,108 0,099 0,107 0,101 0,107 0,122 0,112 0,112 0,103 0,106 0,092 0,107	AI 0,040 0,036 0,043 0,049 0,049 0,043 0,043 0,037 0,040 0,028 0,037	Si 3,893 3,993 3,955 3,957 3,963 3,966 3,963 3,966 3,947 3,949 3,945 3,948	Ca 0,519 0,554 0,484 0,553 0,530 0,529 0,527 0,455 0,520 0,522 0,522 0,552 0,552	Ti 2,672 2,717 2,666 2,692 2,747 2,703 2,680 2,696 2,696 2,688 2,689 2,707 2,696	Mn 0,101 0,090 0,068 0,090 0,073 0,082 0,087 0,098 0,094 0,092 0,088 0,101 0,089	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225 1,117 0,997 1,048 1,173 1,019 1,029 1,050 1,072	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801 0,856 1,020 0,942 0,820 0,942 0,820 0,960 0,972 0,920 0,927	Sr 0,017 0,021 0,014 0,040 0,015 0,035 0,034 0,029 0,035 0,061 0,042 0,046 0,030	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,013 0,000 0,013 0,001 0,012 0,014 0,004 0,013 0,022 0,011 0,026 0,013	Nb 0,056 0,031 0,051 0,039 0,027 0,047 0,050 0,039 0,054 0,034 0,035 0,051 0,043	La 0,849 0,849 0,849 0,861 0,860 0,811 0,774 0,852 0,812 0,858 0,831 0,838	Ce 1,852 1,804 1,825 1,875 1,823 1,841 1,869 1,849 1,867 1,819 1,800 1,842	Pr 0,155 0,181 0,163 0,161 0,182 0,164 0,194 0,190 0,168 0,177 0,178 0,179 0,174	Nd 0,570 0,556 0,578 0,644 0,574 0,559 0,547 0,534 0,542 0,552 0,572 0,572 0,565	Sm 0,055 0,038 0,031 0,042 0,041 0,039 0,041 0,033 0,050 0,039 0,041 0,042	Th 0,079 0,055 0,046 0,062 0,043 0,069 0,071 0,071 0,071 0,069 0,071 0,059 0,066	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484 0,395 0,434 0,506 0,474 0,411 0,485 0,486 0,467 0,464	Siti A 4,094 4,055 4,046 4,091 4,048 4,064 4,080 4,055 4,025 4,025 4,098 4,083 4,080 4,068	Siti B+C 5,013 4,952 5,020 4,951 4,994 4,973 5,014 4,982 5,009 4,955 4,969 4,975 4,984
media dev.st.	Mg 0,108 0,096 0,099 0,107 0,101 0,107 0,122 0,112 0,128 0,103 0,106 0,092 0,107 0,010	AI 0,040 0,036 0,049 0,049 0,045 0,043 0,031 0,037 0,040 0,028 0,037 0,009	Si 3,893 3,993 3,955 3,957 3,963 3,966 3,966 3,947 3,949 3,945 3,948 0,027	Ca 0,519 0,554 0,484 0,553 0,530 0,529 0,527 0,455 0,520 0,524 0,552 0,552 0,511 0,048	Ti 2,672 2,717 2,666 2,692 2,747 2,703 2,680 2,696 2,696 2,688 2,689 2,707 2,696 0,021	Mn 0,101 0,090 0,068 0,090 0,073 0,082 0,087 0,098 0,094 0,092 0,088 0,101 0,089 0,010	Fe ²⁺ 1,026 1,089 1,085 1,013 1,225 1,117 0,997 1,048 1,173 1,019 1,029 1,050 1,072 0,069	Fe ³⁺ 0,997 0,871 1,018 0,950 0,801 0,856 1,020 0,942 0,820 0,942 0,820 0,960 0,972 0,920 0,927 0,075	Sr 0,017 0,021 0,014 0,040 0,015 0,035 0,034 0,029 0,035 0,061 0,042 0,046 0,030 0,016	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,013 0,023 0,000 0,013 0,012 0,014 0,014 0,013 0,022 0,011 0,026 0,013 0,008	Nb 0,056 0,031 0,051 0,039 0,027 0,047 0,050 0,039 0,054 0,034 0,035 0,051 0,043 0,010	La 0,849 0,849 0,849 0,861 0,860 0,811 0,774 0,852 0,812 0,858 0,831 0,838 0,026	Ce 1,852 1,804 1,825 1,875 1,823 1,841 1,869 1,849 1,867 1,819 1,800 1,842 0,028	Pr 0,155 0,181 0,163 0,161 0,182 0,164 0,194 0,190 0,168 0,177 0,178 0,179 0,174 0,012	Nd 0,570 0,558 0,578 0,544 0,574 0,559 0,547 0,534 0,542 0,552 0,572 0,572 0,565	Sm 0,055 0,038 0,031 0,042 0,041 0,039 0,041 0,033 0,050 0,039 0,041 0,042 0,007	Th 0,079 0,055 0,046 0,062 0,043 0,069 0,071 0,071 0,069 0,071 0,059 0,066 0,015	Fe ³⁺ /Fe _{tot} 0,493 0,444 0,484 0,484 0,395 0,434 0,506 0,474 0,411 0,485 0,486 0,467 0,464	Siti A 4,094 4,055 4,046 4,091 4,048 4,064 4,080 4,055 4,025 4,025 4,098 4,083 4,080 4,068	Siti B+C 5,013 4,952 5,020 4,951 4,994 4,973 5,014 4,982 5,009 4,955 4,969 4,975 4,984

lio^e chimici ne raffinamento 336,24 331,11

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y ₂ O ₃	ZrO ₂	Nb ₂ O ₅	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	ThO ₂	Somma			
	0,36	0,21	18,53	2,06	16,34	0,31	11,95	0,21	0,00	0,08	0,34	10,64	23,71	2,45	7,58	0,66	1,38	96,82			
	0,33	0,26	18,69	1,92	16,37	0,39	11,66	0,25	0,00	0,07	0,32	10,70	24,47	2,39	7,96	0,61	1,66	98,03			
	0,31	0,15	18,73	2,07	16,37	0,37	11,95	0,16	0,00	0,03	0,35	10,54	24,00	2,33	8,17	0,66	1,58	97,77			
	0,36	0,18	18,40	2,12	16,45	0,31	11,55	0,33	0,00	0,09	0,48	10,50	24,37	2,37	7,45	0,49	1,62	97,08			
	0,33	0,18	18,44	2,08	16,33	0,35	11,50	0,18	0,00	0,12	0,43	10,65	23,97	2,19	7,59	0,58	1,67	96,59			
	0,37	0,15	18,57	2,13	16,42	0,29	11,67	0,31	0,00	0,07	0,36	10,75	24,01	2,42	7,39	0,73	1,63	97,27			
	0,35	0,19	18,34	2,09	16,35	0,32	11,91	0,28	0,00	0,00	0,44	10,83	22,88	2,37	7,77	0,61	1,64	96,35			
	0,38	0,21	18,59	2,16	16,42	0,28	11,86	0,17	0,00	0,06	0,41	10,96	23,68	2,29	7,71	0,55	1,60	97,33			
	0,36	0,22	18,45	2,04	16,23	0,29	11,73	0,06	0,00	0,10	0,47	10,35	24,50	2,32	7,75	0,53	1,62	97,01			
	0,34	0,18	18,59	2,08	16,36	0,37	11,74	0,31	0,00	0,10	0,45	10,32	23,55	2,46	7,50	0,57	1,46	96,38			
	0,31	0,21	18,48	2,01	16,14	0,36	11,47	0,25	0,00	0,16	0,40	10,35	24,03	2,13	7,55	0,70	1,74	96,27			
media	0,35	0,19	18,53	2,07	16,34	0,33	11,73	0,23	0,00	0,08	0,40	10,60	23,92	2,34	7,67	0,61	1,60	96,99			
dev.st.	0,02	0,03	0,12	0,06	0,09	0,04	0,17	0,08	0,00	0,04	0,06	0,21	0,47	0,11	0,23	0,07	0,10				
																			2		
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	0,114	0,053	3,941	0,470	2,614	0,057	1,030	1,095	0,026	0,000	0,008	0,033	0,834	1,845	0,190	0,576	0,049	0,067	0,515	4,056	5,003
	0,103	0,064	3,955	0,435	2,604	0,069	1,067	0,995	0,031	0,000	0,007	0,030	0,835	1,895	0,184	0,601	0,045	0,080	0,483	4,106	4,940
	0,099	0,037	3,959	0,469	2,603	0,067	1,054	1,059	0,020	0,000	0,003	0,033	0,822	1,857	0,179	0,617	0,048	0,076	0,501	4,088	4,954
	0,114	0,046	3,919	0,483	2,636	0,056	1,041	1,018	0,041	0,000	0,009	0,046	0,825	1,900	0,184	0,567	0,036	0,079	0,494	4,115	4,966
	0,105	0,045	3,948	0,478	2,630	0,063	1,088	0,971	0,022	0,000	0,013	0,042	0,841	1,879	0,170	0,580	0,043	0,082	0,472	4,095	4,957
	0,117	0,039	3,945	0,484	2,623	0,052	1,030	1,043	0,038	0,000	0,007	0,034	0,842	1,867	0,188	0,560	0,053	0,079	0,503	4,111	4,944
	0,113	0,047	3,921	0,478	2,629	0,057	1,031	1,098	0,034	0,000	0,000	0,042	0,854	1,791	0,185	0,593	0,045	0,080	0,516	4,061	5,018
	0,119	0,052	3,937	0,490	2,616	0,050	1,033	1,067	0,021	0,000	0,006	0,039	0,856	1,836	0,177	0,583	0,040	0,077	0,508	4,080	4,983
	0,113	0,055	3,937	0,467	2,604	0,052	1,081	1,012	0,007	0,000	0,010	0,045	0,814	1,914	0,180	0,590	0,039	0,079	0,484	4,091	4,972
	0,110	0,045	3,965	0,475	2,625	0,067	1,068	1,027	0,038	0,000	0,010	0,043	0,812	1,839	0,191	0,572	0,042	0,071	0,490	4,040	4,995
	0,099	0,052	3,972	0,463	2,609	0,065	1,101	0,960	0,031	0,000	0,016	0,038	0,820	1,891	0,166	0,579	0,052	0,085	0,466	4,087	4,941
media	0,110	0,049	3,945	0,472	2,618	0,060	1,057	1,031	0,028	0,000	0,008	0,039	0,832	1,865	0,181	0,583	0,045	0,078	0,494	4,084	4,970
dev.st.	0,007	0,008	0,017	0,015	0,012	0,007	0,026	0,046	0,010	0,000	0,005	0,005	0,015	0,036	0,008	0,016	0,005	0,005			_
																			n _{medio} e _{chimici} 338,81		ne _{raffinamento} 331,69

Tab. 18.a. Composizione dei punti analisi del campione P4 nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

87

Tab. 18.b. Composizione dei punti analisi del campione P4 nella prova 5: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb_2O_5	La_2O_3	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Gd_2O_3	ThO ₂	Somma			
	0,37	0,16	19,32	2,06	16,61	0,39	12,11	0,35	0,00	0,21	0,55	9,81	23,51	2,59	8,25	0,41	0,50	1,69	98,90			
	0,44	0,19	19,39	2,01	16,47	0,31	12,22	0,43	0,00	0,18	0,39	10,26	23,05	2,09	7,46	0,47	0,26	1,82	97,44			
	0,29	0,18	19,43	2,06	16,44	0,34	11,97	0,29	0,00	0,15	0,52	10,53	24,14	2,58	7,64	0,74	0,36	1,73	99,41			
	0,41	0,17	19,10	1,96	16,49	0,32	12,23	0,23	0,06	0,04	0,41	10,34	23,47	2,20	8,16	0,56	0,13	2,07	98,33			
	0,33	0,18	19,30	2,08	16,52	0,36	11,98	0,18	0,11	0,15	0,31	9,97	23,69	2,51	8,37	0,61	0,29	1,68	98,62			
	0,36	0,18	19,33	2,07	16,50	0,33	12,20	0,24	0,00	0,03	0,35	10,41	23,85	2,34	7,87	0,65	0,14	1,68	98,55			
	0,37	0,21	19,35	2,10	16,60	0,30	12,14	0,46	0,09	0,15	0,40	10,17	24,34	2,56	8,68	0,98	0,10	1,61	100,61			
	0,40	0,24	19,18	2,03	16,63	0,41	12,11	0,29	0,07	0,09	0,33	10,02	24,56	2,42	7,89	0,80	0,24	1,82	99,52			
	0,40	0,17	19,23	2,08	16,52	0,35	11,86	0,48	0,07	0,17	0,39	10,28	23,77	2,41	8,43	0,50	0,29	1,61	99,00			
	0,37	0,29	19,31	1,92	16,30	0,40	11,97	0,41	0,02	0,14	0,36	10,17	24,97	2,39	7,80	0,72	0,16	1,84	99,53			
media	0,37	0,20	19,29	2,04	16,51	0,35	12,08	0,33	0,04	0,13	0,40	10,20	23,94	2,41	8,06	0,65	0,25	1,76	98,99			
dev.st.	0,04	0,04	0,10	0,06	0,10	0,04	0,13	0,10	0,04	0,06	0,08	0,22	0,57	0,17	0,38	0,17	0,12	0,14				
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Gd	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	Mg 0.113	Al 0.040	Si 4 013	Ca 0 459	Ti 2 596	Mn 0.069	Fe ²⁺ 1 129	Fe ³⁺ 0 975	Sr 0.042	Y 0.000	Z r 0.021	Nb 0.051	La 0 751	Ce 1.788	Pr 0 196	Nd 0.612	Sm 0.029	Gd 0 034	Th 0.080	Fe ³⁺ /Fe _{tot} 0 463	Siti A 3 992	Siti B+C 4 995
	Mg 0,113 0,138	Al 0,040 0.047	Si 4,013 4,057	Ca 0,459 0.450	Ti 2,596 2.592	Mn 0,069 0.055	Fe ²⁺ 1,129 1,133	Fe ³⁺ 0,975 1.006	Sr 0,042 0.052	Y 0,000 0.000	Zr 0,021 0.018	Nb 0,051 0.037	La 0,751 0.792	Ce 1,788 1,767	Pr 0,196 0,159	Nd 0,612 0.558	Sm 0,029 0.034	Gd 0,034 0.018	Th 0,080 0.087	Fe ³⁺ /Fe _{tot} 0,463 0,470	Siti A 3,992 3.916	Siti B+C 4,995 5.026
	Mg 0,113 0,138 0.090	Al 0,040 0,047 0.045	Si 4,013 4,057 4,035	Ca 0,459 0,450 0,459	Ti 2,596 2,592 2,568	Mn 0,069 0,055 0,060	Fe ²⁺ 1,129 1,133 1,153	Fe ³⁺ 0,975 1,006 0,926	Sr 0,042 0,052 0.035	Y 0,000 0,000 0,000	Zr 0,021 0,018 0.015	Nb 0,051 0,037 0.049	La 0,751 0,792 0.807	Ce 1,788 1,767 1,836	Pr 0,196 0,159 0,195	Nd 0,612 0,558 0,567	Sm 0,029 0,034 0.053	Gd 0,034 0,018 0.025	Th 0,080 0,087 0.082	Fe ³⁺ /Fe _{tot} 0,463 0,470 0.445	Siti A 3,992 3,916 4.058	Siti B+C 4,995 5,026 4,907
	Mg 0,113 0,138 0,090 0,127	Al 0,040 0,047 0,045 0,041	Si 4,013 4,057 4,035 3,998	Ca 0,459 0,450 0,459 0,439	Ti 2,596 2,592 2,568 2,597	Mn 0,069 0,055 0,060 0,057	Fe ²⁺ 1,129 1,133 1,153 1,125	Fe ³⁺ 0,975 1,006 0,926 1,015	Sr 0,042 0,052 0,035 0,028	Y 0,000 0,000 0,000 0,006	Zr 0,021 0,018 0,015 0,004	Nb 0,051 0,037 0,049 0,039	La 0,751 0,792 0,807 0,798	Ce 1,788 1,767 1,836 1,799	Pr 0,196 0,159 0,195 0,168	Nd 0,612 0,558 0,567 0,610	Sm 0,029 0,034 0,053 0,041	Gd 0,034 0,018 0,025 0,009	Th 0,080 0,087 0,082 0,099	Fe ³⁺ /Fe _{tot} 0,463 0,470 0,445 0,474	Siti A 3,992 3,916 4,058 3,989	Siti B+C 4,995 5,026 4,907 5,012
	Mg 0,113 0,138 0,090 0,127 0,103	Al 0,040 0,047 0,045 0,041 0,044	Si 4,013 4,057 4,035 3,998 4,027	Ca 0,459 0,450 0,459 0,439 0,466	Ti 2,596 2,592 2,568 2,597 2,593	Mn 0,069 0,055 0,060 0,057 0,063	Fe ²⁺ 1,129 1,133 1,153 1,125 1,119	Fe ³⁺ 0,975 1,006 0,926 1,015 0,972	Sr 0,042 0,052 0,035 0,028 0,022	Y 0,000 0,000 0,000 0,006 0,012	Zr 0,021 0,018 0,015 0,004 0,015	Nb 0,051 0,037 0,049 0,039 0.029	La 0,751 0,792 0,807 0,798 0,767	Ce 1,788 1,767 1,836 1,799 1,810	Pr 0,196 0,159 0,195 0,168 0,191	Nd 0,612 0,558 0,567 0,610 0,624	Sm 0,029 0,034 0,053 0,041 0.044	Gd 0,034 0,018 0,025 0,009 0.020	Th 0,080 0,087 0,082 0,099 0,080	Fe ³⁺ /Fe _{tot} 0,463 0,470 0,445 0,474 0,465	Siti A 3,992 3,916 4,058 3,989 4,022	Siti B+C 4,995 5,026 4,907 5,012 4,951
	Mg 0,113 0,138 0,090 0,127 0,103 0,112	Al 0,040 0,047 0,045 0,041 0,044 0,044	Si 4,013 4,057 4,035 3,998 4,027 4,027	Ca 0,459 0,450 0,459 0,439 0,466 0,462	Ti 2,596 2,592 2,568 2,597 2,593 2,585	Mn 0,069 0,055 0,060 0,057 0,063 0,058	Fe ²⁺ 1,129 1,133 1,153 1,125 1,119 1,099	Fe ³⁺ 0,975 1,006 0,926 1,015 0,972 1,026	Sr 0,042 0,052 0,035 0,028 0,022 0,029	Y 0,000 0,000 0,000 0,006 0,012 0,000	Zr 0,021 0,018 0,015 0,004 0,015 0,004	Nb 0,051 0,037 0,049 0,039 0,029 0,033	La 0,751 0,792 0,807 0,798 0,767 0,800	Ce 1,788 1,767 1,836 1,799 1,810 1,819	Pr 0,196 0,159 0,195 0,168 0,191 0,178	Nd 0,612 0,558 0,567 0,610 0,624 0,586	Sm 0,029 0,034 0,053 0,041 0,044 0,047	Gd 0,034 0,018 0,025 0,009 0,020 0,010	Th 0,080 0,087 0,082 0,099 0,080 0,080	Fe ³⁺ /Fe _{tot} 0,463 0,470 0,445 0,474 0,465 0,483	Siti A 3,992 3,916 4,058 3,989 4,022 4,012	Siti B+C 4,995 5,026 4,907 5,012 4,951 4,961
	Mg 0,113 0,138 0,090 0,127 0,103 0,112 0,115	Al 0,040 0,047 0,045 0,041 0,044 0,044	Si 4,013 4,057 4,035 3,998 4,027 4,027 3,974	Ca 0,459 0,450 0,459 0,439 0,466 0,462 0,461	Ti 2,596 2,592 2,568 2,597 2,593 2,585 2,564	Mn 0,069 0,055 0,060 0,057 0,063 0,058 0,053	Fe ²⁺ 1,129 1,133 1,153 1,125 1,119 1,099 1,018	Fe ³⁺ 0,975 1,006 0,926 1,015 0,972 1,026 1,068	Sr 0,042 0,052 0,035 0,028 0,022 0,029 0,055	Y 0,000 0,000 0,000 0,006 0,012 0,000 0,010	Zr 0,021 0,018 0,015 0,004 0,015 0,004 0,015	Nb 0,051 0,037 0,049 0,039 0,029 0,033 0,037	La 0,751 0,792 0,807 0,798 0,767 0,800 0,770	Ce 1,788 1,767 1,836 1,799 1,810 1,819 1,830	Pr 0,196 0,159 0,195 0,168 0,191 0,178 0,191	Nd 0,612 0,558 0,567 0,610 0,624 0,586 0,636	Sm 0,029 0,034 0,053 0,041 0,044 0,047 0,070	Gd 0,034 0,018 0,025 0,009 0,020 0,010 0,007	Th 0,080 0,087 0,082 0,099 0,080 0,080 0,075	Fe ³⁺ /Fe _{tot} 0,463 0,470 0,445 0,474 0,465 0,483 0,512	Siti A 3,992 3,916 4,058 3,989 4,022 4,012 4,096	Siti B+C 4,995 5,026 4,907 5,012 4,951 4,961 4,930
	Mg 0,113 0,138 0,090 0,127 0,103 0,112 0,115 0,124	Al 0,040 0,047 0,045 0,041 0,044 0,044 0,050 0,059	Si 4,013 4,057 4,035 3,998 4,027 4,027 3,974 3,972	Ca 0,459 0,450 0,459 0,439 0,466 0,462 0,461 0,450	Ti 2,596 2,592 2,568 2,597 2,593 2,585 2,564 2,590	Mn 0,069 0,055 0,060 0,057 0,063 0,058 0,053 0,072	Fe ²⁺ 1,129 1,133 1,153 1,125 1,119 1,099 1,018 1,039	Fe ³⁺ 0,975 1,006 0,926 1,015 0,972 1,026 1,068 1,059	Sr 0,042 0,052 0,035 0,028 0,022 0,029 0,055 0,034	Y 0,000 0,000 0,000 0,012 0,000 0,010 0,007	Zr 0,021 0,018 0,015 0,004 0,015 0,004 0,015 0,009	Nb 0,051 0,037 0,049 0,039 0,029 0,033 0,037 0,031	La 0,751 0,792 0,807 0,798 0,767 0,800 0,770 0,765	Ce 1,788 1,767 1,836 1,799 1,810 1,819 1,830 1,863	Pr 0,196 0,159 0,195 0,168 0,191 0,178 0,191 0,183	Nd 0,612 0,558 0,567 0,610 0,624 0,586 0,636 0,584	Sm 0,029 0,034 0,053 0,041 0,044 0,047 0,070 0,057	Gd 0,034 0,018 0,025 0,009 0,020 0,010 0,007 0,016	Th 0,080 0,087 0,082 0,099 0,080 0,080 0,075 0,086	Fe ³⁺ /Fe _{tot} 0,463 0,470 0,445 0,474 0,465 0,483 0,512 0,505	Siti A 3,992 3,916 4,058 3,989 4,022 4,012 4,096 4,038	Siti B+C 4,995 5,026 4,907 5,012 4,951 4,961 4,930 4,990
	Mg 0,113 0,138 0,090 0,127 0,103 0,112 0,115 0,124 0,123	Al 0,040 0,047 0,045 0,041 0,044 0,044 0,050 0,059 0,041	Si 4,013 4,057 4,035 3,998 4,027 4,027 3,974 3,972 4,001	Ca 0,459 0,450 0,459 0,439 0,466 0,462 0,461 0,450 0,464	Ti 2,596 2,592 2,568 2,597 2,593 2,585 2,564 2,590 2,585	Mn 0,069 0,055 0,060 0,057 0,063 0,058 0,053 0,072 0,062	Fe ²⁺ 1,129 1,133 1,153 1,125 1,119 1,099 1,018 1,039 1,047	Fe ³⁺ 0,975 1,006 0,926 1,015 0,972 1,026 1,068 1,059 1,018	Sr 0,042 0,052 0,035 0,028 0,022 0,029 0,055 0,034 0,057	Y 0,000 0,000 0,006 0,012 0,000 0,010 0,007 0,007	Zr 0,021 0,018 0,015 0,004 0,015 0,004 0,015 0,009 0,017	Nb 0,051 0,037 0,049 0,039 0,029 0,033 0,037 0,031 0,036	La 0,751 0,792 0,807 0,798 0,767 0,800 0,770 0,765 0,789	Ce 1,788 1,767 1,836 1,799 1,810 1,819 1,830 1,863 1,811	Pr 0,196 0,159 0,195 0,168 0,191 0,178 0,191 0,183 0,183	Nd 0,612 0,558 0,567 0,610 0,624 0,586 0,586 0,584 0,626	Sm 0,029 0,034 0,053 0,041 0,044 0,047 0,070 0,057 0,036	Gd 0,034 0,018 0,025 0,009 0,020 0,010 0,007 0,016 0,020	Th 0,080 0,087 0,082 0,099 0,080 0,080 0,080 0,075 0,086 0,076	Fe ³⁺ /Fe _{tot} 0,463 0,470 0,445 0,474 0,465 0,483 0,512 0,505 0,493	Siti A 3,992 3,916 4,058 3,989 4,022 4,012 4,012 4,096 4,038 4,063	Siti B+C 4,995 5,026 4,907 5,012 4,951 4,961 4,930 4,990 4,937
	Mg 0,113 0,138 0,090 0,127 0,103 0,112 0,115 0,124 0,123 0,113	Al 0,040 0,047 0,045 0,041 0,044 0,044 0,050 0,059 0,041 0,070	Si 4,013 4,057 4,035 3,998 4,027 4,027 3,974 3,972 4,001 4,009	Ca 0,459 0,450 0,459 0,466 0,462 0,461 0,450 0,464 0,428	Ti 2,596 2,592 2,568 2,597 2,593 2,585 2,564 2,590 2,585 2,546	Mn 0,069 0,055 0,060 0,057 0,063 0,058 0,053 0,072 0,062 0,071	Fe ²⁺ 1,129 1,133 1,153 1,125 1,119 1,099 1,018 1,039 1,047 1,062	Fe ³⁺ 0,975 1,006 0,926 1,015 0,972 1,026 1,068 1,059 1,018 1,016	Sr 0,042 0,052 0,035 0,028 0,022 0,029 0,055 0,034 0,057 0,049	Y 0,000 0,000 0,006 0,012 0,000 0,010 0,007 0,007 0,002	Zr 0,021 0,018 0,015 0,004 0,015 0,004 0,015 0,009 0,017 0,014	Nb 0,051 0,037 0,049 0,039 0,029 0,033 0,037 0,031 0,036 0,034	La 0,751 0,792 0,807 0,798 0,767 0,800 0,770 0,765 0,789 0,779	Ce 1,788 1,767 1,836 1,799 1,810 1,819 1,830 1,863 1,811 1,898	Pr 0,196 0,159 0,168 0,191 0,178 0,191 0,183 0,183 0,183	Nd 0,612 0,558 0,567 0,610 0,624 0,626 0,636 0,584 0,626 0,579	Sm 0,029 0,034 0,053 0,041 0,044 0,047 0,070 0,057 0,036 0,051	Gd 0,034 0,018 0,025 0,009 0,020 0,010 0,007 0,016 0,020 0,011	Th 0,080 0,087 0,082 0,099 0,080 0,080 0,075 0,086 0,076 0,087	Fe ³⁺ /Fe _{tot} 0,463 0,470 0,445 0,474 0,465 0,483 0,512 0,505 0,493 0,489	Siti A 3,992 3,916 4,058 3,989 4,022 4,012 4,096 4,038 4,063 4,063	Siti B+C 4,995 5,026 4,907 5,012 4,951 4,961 4,930 4,990 4,937 4,929
media	Mg 0,113 0,138 0,090 0,127 0,103 0,112 0,115 0,124 0,123 0,113 0,116	Al 0,040 0,047 0,045 0,041 0,044 0,044 0,050 0,059 0,041 0,070 0,048	Si 4,013 4,057 4,035 3,998 4,027 4,027 3,974 3,972 4,001 4,009 4,011	Ca 0,459 0,450 0,439 0,466 0,462 0,461 0,450 0,464 0,428 0,454	Ti 2,596 2,592 2,568 2,597 2,593 2,585 2,564 2,590 2,585 2,546 2,546 2,582	Mn 0,069 0,055 0,060 0,057 0,063 0,058 0,053 0,072 0,062 0,071 0,062	Fe ²⁺ 1,129 1,133 1,153 1,125 1,119 1,099 1,018 1,039 1,047 1,062 1,093	Fe ³⁺ 0,975 1,006 0,926 1,015 0,972 1,026 1,068 1,059 1,018 1,016 1,008	Sr 0,042 0,052 0,035 0,028 0,029 0,055 0,034 0,057 0,049 0,040	Y 0,000 0,000 0,006 0,012 0,000 0,010 0,010 0,007 0,007 0,002 0,005	Zr 0,021 0,018 0,015 0,004 0,015 0,004 0,015 0,009 0,017 0,014 0,013	Nb 0,051 0,037 0,049 0,039 0,029 0,033 0,037 0,031 0,036 0,034 0,038	La 0,751 0,792 0,807 0,767 0,800 0,770 0,765 0,789 0,779 0,782	Ce 1,788 1,767 1,836 1,799 1,810 1,819 1,830 1,863 1,811 1,898 1,822	Pr 0,196 0,159 0,168 0,191 0,178 0,191 0,183 0,183 0,181 0,183	Nd 0,612 0,558 0,567 0,610 0,624 0,626 0,586 0,584 0,626 0,579 0,598	Sm 0,029 0,034 0,053 0,041 0,044 0,047 0,070 0,057 0,036 0,051 0,046	Gd 0,034 0,018 0,025 0,009 0,020 0,010 0,007 0,016 0,020 0,011 0,017	Th 0,080 0,087 0,082 0,099 0,080 0,080 0,075 0,086 0,076 0,087 0,083	Fe ³⁺ /Fe _{tot} 0,463 0,470 0,445 0,474 0,465 0,483 0,512 0,505 0,493 0,489 0,480	Siti A 3,992 3,916 4,058 3,989 4,022 4,012 4,096 4,038 4,063 4,063 4,063 4,025	Siti B+C 4,995 5,026 4,907 5,012 4,951 4,961 4,930 4,930 4,937 4,929 4,964
media dev.st.	Mg 0,113 0,138 0,090 0,127 0,103 0,112 0,115 0,124 0,123 0,113 0,116 0,013	Al 0,040 0,047 0,045 0,041 0,044 0,050 0,059 0,041 0,070 0,048 0,010	Si 4,013 4,057 4,035 3,998 4,027 4,027 3,974 3,972 4,001 4,009 4,011 0,027	Ca 0,459 0,450 0,459 0,439 0,466 0,462 0,461 0,450 0,464 0,428 0,454 0,012	Ti 2,596 2,592 2,568 2,597 2,593 2,585 2,564 2,590 2,585 2,546 2,582 0,017	Mn 0,069 0,055 0,060 0,057 0,063 0,058 0,053 0,072 0,062 0,071 0,062 0,007	Fe ²⁺ 1,129 1,133 1,153 1,125 1,119 1,099 1,018 1,039 1,047 1,062 1,093 0,047	Fe ³⁺ 0,975 1,006 0,926 1,015 0,972 1,026 1,068 1,059 1,018 1,016 1,008 0,042	Sr 0,042 0,052 0,035 0,028 0,022 0,029 0,055 0,034 0,057 0,049 0,040 0,013	Y 0,000 0,000 0,006 0,012 0,000 0,010 0,007 0,007 0,007 0,002 0,005	Zr 0,021 0,018 0,015 0,004 0,015 0,004 0,015 0,009 0,017 0,014 0,013 0,006	Nb 0,051 0,037 0,049 0,039 0,029 0,033 0,037 0,031 0,036 0,034 0,038 0,007	La 0,751 0,792 0,807 0,798 0,767 0,800 0,770 0,765 0,789 0,779 0,782 0,018	Ce 1,788 1,767 1,836 1,799 1,810 1,819 1,830 1,863 1,811 1,898 1,822 0,038	Pr 0,196 0,159 0,195 0,168 0,191 0,178 0,191 0,183 0,183 0,183 0,181 0,183 0,012	Nd 0,612 0,558 0,567 0,610 0,624 0,586 0,636 0,584 0,626 0,579 0,598 0,027	Sm 0,029 0,034 0,053 0,041 0,044 0,047 0,070 0,057 0,036 0,051 0,046 0,012	Gd 0,034 0,018 0,025 0,009 0,020 0,010 0,010 0,016 0,020 0,011 0,017 0,008	Th 0,080 0,087 0,082 0,099 0,080 0,080 0,075 0,086 0,076 0,087 0,083 0,007	Fe ³⁺ /Fe _{tot} 0,463 0,470 0,445 0,474 0,465 0,483 0,512 0,505 0,493 0,489 0,480	Siti A 3,992 3,916 4,058 3,989 4,022 4,012 4,012 4,096 4,038 4,063 4,063 4,063	Siti B+C 4,995 5,026 4,907 5,012 4,951 4,951 4,961 4,930 4,930 4,937 4,929 4,964

336,17 331,69

	MgO	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La_2O_3	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	ThO ₂	Somma			
	0,27	0,14	18,43	2,07	16,76	0,60	11,30	0,26	0,00	0,05	0,33	11,64	24,25	2,12	7,47	0,48	2,08	98,26			
	0,33	0,17	18,47	2,09	16,77	0,63	11,43	0,09	0,00	0,08	0,35	11,33	23,35	2,50	7,15	0,47	2,06	97,26			
	0,34	0,14	18,46	2,07	16,61	0,65	11,08	0,20	0,00	0,09	0,34	11,43	24,11	2,18	7,54	0,71	2,08	98,03			
	0,28	0,17	18,51	2,11	16,76	0,57	11,39	0,44	0,00	0,14	0,50	11,74	24,01	2,23	7,27	0,50	2,19	98,80			
	0,30	0,17	18,54	2,04	16,68	0,61	10,89	0,21	0,00	0,09	0,46	11,16	23,96	2,54	7,11	0,50	1,96	97,23			
	0,32	0,11	18,43	2,09	16,70	0,59	11,45	0,35	0,00	0,03	0,45	11,06	23,57	2,08	7,24	0,61	2,01	97,07			
	0,37	0,13	18,25	2,07	16,55	0,55	11,20	0,23	0,00	0,01	0,33	10,58	23,51	1,91	7,04	0,64	1,97	95,32			
	0,33	0,09	18,35	2,11	16,63	0,60	11,46	0,25	0,00	0,12	0,35	10,92	23,69	2,09	7,29	0,55	2,13	96,98			
	0,37	0,14	18,55	2,10	16,66	0,62	11,28	0,02	0,00	0,11	0,30	10,68	24,07	2,23	7,42	0,49	2,19	97,23			
	0,29	0,08	18,62	2,13	16,66	0,53	11,25	0,29	0,00	0,05	0,28	11,12	23,10	1,83	7,04	0,60	2,09	95,97			
media	0,32	0,13	18,46	2,09	16,68	0,59	11,27	0,23	0,00	0,08	0,37	11,17	23,76	2,17	7,26	0,55	2,08	97,21			
dev.st.	0,03	0,03	0,11	0,03	0,07	0,04	0,18	0,12	0,00	0,04	0,07	0,38	0,37	0,22	0,18	0,08	0,08				
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	Mg 0,087	Al 0,034	Si 3,905	Ca 0,470	Ti 2,671	Mn 0,108	Fe ²⁺ 1,048	Fe ³⁺ 0,953	Sr 0,032	Y 0,000	Zr 0,005	Nb 0,032	La 0,910	Ce 1,881	Pr 0,163	Nd 0,565	Sm 0,035	Th 0,100	Fe ³⁺ /Fe _{tot} 0,476	Siti A 4,156	Siti B+C 4,939
	Mg 0,087 0,104	Al 0,034 0,043	Si 3,905 3,925	Ca 0,470 0,475	Ti 2,671 2,680	Mn 0,108 0,114	Fe ²⁺ 1,048 1,077	Fe ³⁺ 0,953 0,955	Sr 0,032 0,011	Y 0,000 0,000	Zr 0,005 0,009	Nb 0,032 0,034	La 0,910 0,888	Ce 1,881 1,817	Pr 0,163 0,194	Nd 0,565 0,542	Sm 0,035 0,034	Th 0,100 0,099	Fe ³⁺ /Fe _{tot} 0,476 0,470	Siti A 4,156 4,060	Siti B+C 4,939 5,015
	Mg 0,087 0,104 0,107	Al 0,034 0,043 0,035	Si 3,905 3,925 3,919	Ca 0,470 0,475 0,471	Ti 2,671 2,680 2,654	Mn 0,108 0,114 0,117	Fe ²⁺ 1,048 1,077 1,028	Fe ³⁺ 0,953 0,955 0,939	Sr 0,032 0,011 0,024	Y 0,000 0,000 0,000	Zr 0,005 0,009 0,009	Nb 0,032 0,034 0,033	La 0,910 0,888 0,895	Ce 1,881 1,817 1,875	Pr 0,163 0,194 0,168	Nd 0,565 0,542 0,571	Sm 0,035 0,034 0,052	Th 0,100 0,099 0,101	Fe ³⁺ /Fe _{tot} 0,476 0,470 0,477	Siti A 4,156 4,060 4,158	Siti B+C 4,939 5,015 4,923
	Mg 0,087 0,104 0,107 0,087	Al 0,034 0,043 0,035 0,041	Si 3,905 3,925 3,919 3,897	Ca 0,470 0,475 0,471 0,476	Ti 2,671 2,680 2,654 2,655	Mn 0,108 0,114 0,117 0,101	Fe ²⁺ 1,048 1,077 1,028 1,048	Fe ³⁺ 0,953 0,955 0,939 0,958	Sr 0,032 0,011 0,024 0,054	Y 0,000 0,000 0,000 0,000	Zr 0,005 0,009 0,009 0,015	Nb 0,032 0,034 0,033 0,047	La 0,910 0,888 0,895 0,912	Ce 1,881 1,817 1,875 1,850	Pr 0,163 0,194 0,168 0,171	Nd 0,565 0,542 0,571 0,546	Sm 0,035 0,034 0,052 0,036	Th 0,100 0,099 0,101 0,105	Fe ³⁺ /Fe _{tot} 0,476 0,470 0,477 0,478	Siti A 4,156 4,060 4,158 4,151	Siti B+C 4,939 5,015 4,923 4,951
	Mg 0,087 0,104 0,107 0,087 0,096	Al 0,034 0,043 0,035 0,041 0,043	Si 3,905 3,925 3,919 3,897 3,957	Ca 0,470 0,475 0,471 0,476 0,467	Ti 2,671 2,680 2,654 2,655 2,678	Mn 0,108 0,114 0,117 0,101 0,110	Fe ²⁺ 1,048 1,077 1,028 1,048 1,129	Fe ³⁺ 0,953 0,955 0,939 0,958 0,815	Sr 0,032 0,011 0,024 0,054 0,026	Y 0,000 0,000 0,000 0,000 0,000	Zr 0,005 0,009 0,009 0,015 0,010	Nb 0,032 0,034 0,033 0,047 0,044	La 0,910 0,888 0,895 0,912 0,879	Ce 1,881 1,817 1,875 1,850 1,872	Pr 0,163 0,194 0,168 0,171 0,198	Nd 0,565 0,542 0,571 0,546 0,542	Sm 0,035 0,034 0,052 0,036 0,037	Th 0,100 0,099 0,101 0,105 0,095	Fe ³⁺ /Fe _{tot} 0,476 0,470 0,477 0,478 0,478 0,419	Siti A 4,156 4,060 4,158 4,151 4,117	Siti B+C 4,939 5,015 4,923 4,951 4,926
	Mg 0,087 0,104 0,107 0,087 0,096 0,102	Al 0,034 0,043 0,035 0,041 0,043 0,028	Si 3,905 3,925 3,919 3,897 3,957 3,924	Ca 0,470 0,475 0,471 0,476 0,467 0,477	Ti 2,671 2,680 2,654 2,655 2,678 2,675	Mn 0,108 0,114 0,117 0,101 0,100 0,106	Fe ²⁺ 1,048 1,077 1,028 1,048 1,129 1,057	Fe ³⁺ 0,953 0,955 0,939 0,958 0,815 0,982	Sr 0,032 0,011 0,024 0,054 0,026 0,043	Y 0,000 0,000 0,000 0,000 0,000	Zr 0,005 0,009 0,009 0,015 0,010 0,003	Nb 0,032 0,034 0,033 0,047 0,044 0,043	La 0,910 0,888 0,895 0,912 0,879 0,869	Ce 1,881 1,817 1,875 1,850 1,872 1,837	Pr 0,163 0,194 0,168 0,171 0,198 0,161	Nd 0,565 0,542 0,571 0,546 0,542 0,551	Sm 0,035 0,034 0,052 0,036 0,037 0,044	Th 0,100 0,099 0,101 0,105 0,095 0,098	Fe ³⁺ /Fe _{tot} 0,476 0,470 0,477 0,478 0,419 0,482	Siti A 4,156 4,060 4,158 4,151 4,117 4,080	Siti B+C 4,939 5,015 4,923 4,951 4,926 4,996
	Mg 0,087 0,104 0,107 0,087 0,096 0,102 0,119	Al 0,034 0,043 0,035 0,041 0,043 0,028 0,032	Si 3,905 3,925 3,919 3,897 3,957 3,924 3,947	Ca 0,470 0,475 0,471 0,476 0,467 0,477 0,479	Ti 2,671 2,680 2,654 2,655 2,678 2,675 2,692	Mn 0,108 0,114 0,117 0,101 0,100 0,100	Fe ²⁺ 1,048 1,077 1,028 1,048 1,129 1,057 1,075	Fe ³⁺ 0,953 0,955 0,939 0,958 0,815 0,982 0,952	Sr 0,032 0,011 0,024 0,054 0,026 0,043 0,028	Y 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,005 0,009 0,009 0,015 0,010 0,003 0,001	Nb 0,032 0,034 0,033 0,047 0,044 0,043 0,032	La 0,910 0,888 0,895 0,912 0,879 0,869 0,844	Ce 1,881 1,817 1,875 1,850 1,872 1,837 1,861	Pr 0,163 0,194 0,168 0,171 0,198 0,161 0,150	Nd 0,565 0,542 0,571 0,546 0,542 0,551 0,544	Sm 0,035 0,034 0,052 0,036 0,037 0,044 0,047	Th 0,100 0,099 0,101 0,105 0,095 0,098 0,097	Fe ³⁺ /Fe _{tot} 0,476 0,470 0,477 0,478 0,419 0,482 0,470	Siti A 4,156 4,060 4,158 4,151 4,117 4,080 4,051	Siti B+C 4,939 5,015 4,923 4,951 4,926 4,996 5,002
	Mg 0,087 0,104 0,107 0,087 0,096 0,102 0,119 0,103	Al 0,034 0,043 0,035 0,041 0,043 0,028 0,032 0,023	Si 3,905 3,925 3,919 3,897 3,957 3,924 3,947 3,915	Ca 0,470 0,475 0,471 0,476 0,467 0,477 0,479 0,484	Ti 2,671 2,680 2,654 2,655 2,678 2,675 2,692 2,670	Mn 0,108 0,114 0,117 0,101 0,100 0,100 0,109	Fe ²⁺ 1,048 1,077 1,028 1,048 1,129 1,057 1,075 1,044	Fe ³⁺ 0,953 0,955 0,939 0,958 0,815 0,982 0,952 1,002	Sr 0,032 0,011 0,024 0,054 0,026 0,043 0,028 0,030	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,005 0,009 0,015 0,010 0,003 0,001 0,013	Nb 0,032 0,034 0,033 0,047 0,044 0,043 0,032 0,034	La 0,910 0,888 0,895 0,912 0,879 0,869 0,844 0,859	Ce 1,881 1,817 1,875 1,850 1,872 1,837 1,861 1,851	Pr 0,163 0,194 0,168 0,171 0,198 0,161 0,150 0,163	Nd 0,565 0,542 0,571 0,546 0,542 0,551 0,544 0,556	Sm 0,035 0,034 0,052 0,036 0,037 0,044 0,047 0,040	Th 0,100 0,099 0,101 0,105 0,095 0,098 0,097 0,104	Fe ³⁺ /Fe _{tot} 0,476 0,470 0,477 0,478 0,419 0,482 0,470 0,490	Siti A 4,156 4,060 4,158 4,151 4,117 4,080 4,051 4,087	Siti B+C 4,939 5,015 4,923 4,951 4,926 4,996 5,002 4,998
	Mg 0,087 0,104 0,107 0,087 0,096 0,102 0,119 0,103 0,117	Al 0,034 0,043 0,035 0,041 0,043 0,028 0,032 0,023 0,035	Si 3,905 3,925 3,919 3,897 3,957 3,924 3,947 3,915 3,947	Ca 0,470 0,475 0,471 0,476 0,467 0,477 0,479 0,484 0,480	Ti 2,671 2,680 2,654 2,655 2,678 2,675 2,692 2,670 2,667	Mn 0,108 0,114 0,117 0,101 0,100 0,100 0,109 0,111	Fe ²⁺ 1,048 1,077 1,028 1,048 1,129 1,057 1,075 1,044 1,079	Fe ³⁺ 0,953 0,955 0,939 0,958 0,815 0,982 0,952 1,002 0,928	Sr 0,032 0,011 0,024 0,054 0,026 0,043 0,028 0,030 0,002	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,005 0,009 0,015 0,010 0,003 0,001 0,013 0,011	Nb 0,032 0,034 0,033 0,047 0,044 0,043 0,032 0,034 0,029	La 0,910 0,888 0,895 0,912 0,879 0,869 0,844 0,859 0,839	Ce 1,881 1,817 1,875 1,850 1,872 1,837 1,861 1,851 1,875	Pr 0,163 0,194 0,168 0,171 0,198 0,161 0,150 0,163 0,173	Nd 0,565 0,542 0,571 0,546 0,542 0,551 0,554 0,556 0,564	Sm 0,035 0,034 0,052 0,036 0,037 0,044 0,047 0,040 0,036	Th 0,100 0,099 0,101 0,105 0,095 0,098 0,097 0,104 0,106	Fe ³⁺ /Fe _{tot} 0,476 0,470 0,477 0,478 0,419 0,482 0,470 0,480 0,462	Siti A 4,156 4,060 4,158 4,151 4,117 4,080 4,051 4,087 4,076	Siti B+C 4,939 5,015 4,923 4,951 4,926 4,996 5,002 4,998 4,977
	Mg 0,087 0,104 0,107 0,087 0,096 0,102 0,119 0,103 0,117 0,093	Al 0,034 0,043 0,035 0,041 0,043 0,028 0,032 0,023 0,035 0,020	Si 3,905 3,925 3,919 3,897 3,957 3,924 3,947 3,915 3,947 3,997	Ca 0,470 0,475 0,471 0,476 0,467 0,477 0,479 0,484 0,480 0,490	Ti 2,671 2,680 2,654 2,655 2,678 2,675 2,692 2,670 2,667 2,689	Mn 0,108 0,114 0,117 0,101 0,100 0,100 0,100 0,111 0,097	Fe ²⁺ 1,048 1,077 1,028 1,048 1,129 1,057 1,075 1,044 1,079 1,133	Fe ³⁺ 0,953 0,955 0,939 0,958 0,815 0,982 0,952 1,002 0,928 0,887	Sr 0,032 0,011 0,024 0,054 0,026 0,043 0,028 0,030 0,002 0,036	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,005 0,009 0,015 0,010 0,003 0,001 0,013 0,011 0,005	Nb 0,032 0,033 0,047 0,044 0,043 0,032 0,034 0,032 0,034 0,032 0,034	La 0,910 0,888 0,895 0,912 0,879 0,869 0,844 0,859 0,839 0,839	Ce 1,881 1,817 1,875 1,850 1,872 1,837 1,861 1,851 1,875 1,816	Pr 0,163 0,194 0,168 0,171 0,198 0,161 0,150 0,163 0,173 0,144	Nd 0,565 0,542 0,571 0,546 0,542 0,551 0,544 0,556 0,564 0,540	Sm 0,035 0,034 0,052 0,036 0,037 0,044 0,047 0,040 0,036 0,044	Th 0,100 0,099 0,101 0,105 0,095 0,098 0,097 0,104 0,106 0,102	Fe ³⁺ /Fe _{tot} 0,476 0,470 0,477 0,478 0,479 0,482 0,470 0,482 0,470 0,490 0,462 0,439	Siti A 4,156 4,060 4,158 4,151 4,117 4,080 4,051 4,087 4,076 4,052	Siti B+C 4,939 5,015 4,923 4,951 4,926 4,996 5,002 4,998 4,977 4,951
media	Mg 0,087 0,104 0,107 0,087 0,096 0,102 0,119 0,103 0,117 0,093 0,102	Al 0,034 0,043 0,035 0,041 0,043 0,028 0,032 0,023 0,023 0,023 0,020 0,033	Si 3,905 3,925 3,919 3,897 3,957 3,924 3,947 3,915 3,947 3,997 3,933	Ca 0,470 0,475 0,471 0,476 0,477 0,479 0,484 0,480 0,490 0,477	Ti 2,671 2,680 2,654 2,655 2,678 2,675 2,692 2,670 2,667 2,689 2,673	Mn 0,108 0,114 0,117 0,101 0,100 0,100 0,109 0,111 0,097 0,107	Fe ²⁺ 1,048 1,077 1,028 1,048 1,129 1,057 1,075 1,044 1,079 1,133 1,072	Fe ³⁺ 0,953 0,955 0,939 0,958 0,815 0,982 0,952 1,002 0,928 0,887 0,887 0,937	Sr 0,032 0,011 0,024 0,054 0,026 0,043 0,028 0,030 0,002 0,036 0,029	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,005 0,009 0,015 0,010 0,003 0,001 0,013 0,011 0,005 0,008	Nb 0,032 0,033 0,047 0,044 0,032 0,034 0,032 0,034 0,032 0,034 0,035 0,036	La 0,910 0,888 0,895 0,912 0,879 0,869 0,844 0,859 0,839 0,839 0,881 0,877	Ce 1,881 1,817 1,875 1,850 1,872 1,837 1,861 1,851 1,875 1,816 1,854	Pr 0,163 0,194 0,168 0,171 0,198 0,161 0,150 0,163 0,173 0,144 0,169	Nd 0,565 0,542 0,571 0,546 0,542 0,551 0,544 0,556 0,564 0,564 0,540 0,552	Sm 0,035 0,034 0,052 0,036 0,037 0,044 0,047 0,040 0,036 0,044 0,041	Th 0,100 0,099 0,101 0,105 0,095 0,098 0,097 0,104 0,106 0,102 0,101	Fe ³⁺ /Fe _{tot} 0,476 0,477 0,478 0,479 0,482 0,470 0,482 0,470 0,490 0,462 0,439 0,466	Siti A 4,156 4,060 4,158 4,151 4,117 4,080 4,051 4,087 4,076 4,052 4,099	Siti B+C 4,939 5,015 4,923 4,951 4,926 4,996 5,002 4,998 4,977 4,951 4,968
media dev.st.	Mg 0,087 0,104 0,107 0,096 0,102 0,119 0,103 0,117 0,093 0,102 0,011	Al 0,034 0,043 0,043 0,041 0,043 0,028 0,032 0,023 0,023 0,020 0,035 0,020	Si 3,905 3,919 3,897 3,957 3,924 3,947 3,915 3,947 3,997 3,933 0,029	Ca 0,470 0,475 0,471 0,476 0,467 0,477 0,479 0,484 0,480 0,480 0,490 0,477 0,007	Ti 2,671 2,680 2,654 2,655 2,678 2,675 2,692 2,670 2,667 2,689 2,673 0,013	Mn 0,108 0,114 0,117 0,101 0,100 0,100 0,100 0,109 0,111 0,097 0,006	Fe ²⁺ 1,048 1,077 1,028 1,048 1,129 1,057 1,075 1,075 1,074 1,079 1,133 1,072 0,035	Fe ³⁺ 0,953 0,955 0,939 0,958 0,815 0,982 0,952 1,002 0,928 0,887 0,937 0,053	Sr 0,032 0,011 0,024 0,054 0,026 0,043 0,028 0,030 0,030 0,036 0,029 0,015	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,005 0,009 0,015 0,010 0,003 0,001 0,013 0,011 0,005 0,008 0,004	Nb 0,032 0,033 0,047 0,043 0,032 0,034 0,029 0,028 0,036 0,007	La 0,910 0,888 0,895 0,912 0,879 0,869 0,844 0,859 0,839 0,881 0,877 0,025	Ce 1,881 1,817 1,875 1,850 1,872 1,837 1,861 1,851 1,816 1,854 0,024	Pr 0,163 0,194 0,168 0,171 0,198 0,161 0,150 0,163 0,173 0,144 0,169 0,017	Nd 0,565 0,542 0,571 0,546 0,542 0,551 0,544 0,556 0,564 0,540 0,540 0,552 0,011	Sm 0,035 0,034 0,052 0,036 0,037 0,044 0,047 0,040 0,036 0,044 0,041 0,006	Th 0,100 0,099 0,101 0,105 0,095 0,098 0,097 0,104 0,106 0,102 0,101 0,003	Fe ³⁺ /Fe _{tot} 0,476 0,477 0,478 0,479 0,482 0,470 0,482 0,470 0,490 0,462 0,439 0,466	Siti A 4,156 4,060 4,158 4,151 4,117 4,080 4,051 4,087 4,076 4,052 4,099	Siti B+C 4,939 5,015 4,923 4,951 4,926 4,996 5,002 4,998 4,977 4,951 4,968

Tab. 19.a. Composizione dei punti analisi del campione P5 nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

n_{medio}e_{chimici}ne_{raffinamento} 339,96332,71 Tab. 19.b. Composizione dei punti analisi del campione P5 nella prova 5: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb_2O_5	La_2O_3	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm_2O_3	Gd_2O_3	ThO ₂	Somma
	0,35	0,11	19,46	1,99	16,77	0,55	11,53	0,21	0,00	0,00	0,47	10,75	23,68	2,31	8,03	0,62	0,09	2,37	99,27
	0,26	0,19	19,33	1,92	17,00	0,47	11,35	0,43	0,16	0,05	0,38	10,68	24,06	2,03	7,92	0,47	0,20	1,27	98,15
	0,35	0,18	19,32	2,08	16,78	0,59	11,88	0,26	0,00	0,21	0,47	10,96	22,87	2,54	7,57	0,65	0,08	2,10	98,88
	0,38	0,15	19,31	2,01	16,85	0,49	11,72	0,38	0,00	0,13	0,35	10,61	23,14	2,39	7,63	0,73	0,09	2,07	98,43
	0,36	0,13	19,32	2,00	16,84	0,52	11,37	0,44	0,14	0,11	0,39	10,65	23,38	2,51	7,49	0,54	0,20	2,17	98,58
	0,38	0,16	19,09	2,01	16,75	0,60	11,67	0,06	0,09	0,00	0,33	10,37	23,22	2,03	7,33	0,66	0,20	2,21	97,16
	0,34	0,24	19,28	1,95	16,70	0,63	11,78	0,08	0,20	0,00	0,54	10,87	23,10	2,36	7,51	0,85	0,25	2,08	98,76
media	0,35	0,16	19,30	1,99	16,81	0,55	11,61	0,27	0,08	0,07	0,42	10,70	23,35	2,31	7,64	0,65	0,16	2,04	98,46
dev.st.	0,04	0,04	0,11	0,05	0,10	0,06	0,20	0,16	0,08	0,08	0,08	0,19	0,40	0,20	0,25	0,12	0,07	0,35	

	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Gd	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	0,108	0,026	4,053	0,444	2,627	0,097	1,207	0,802	0,025	0,000	0,000	0,044	0,826	1,806	0,175	0,597	0,045	0,006	0,113	0,399	4,036	4,911
	0,081	0,046	4,051	0,431	2,680	0,083	1,222	0,768	0,052	0,017	0,005	0,036	0,825	1,846	0,155	0,593	0,034	0,014	0,061	0,386	4,011	4,938
	0,108	0,043	4,014	0,463	2,623	0,103	1,140	0,924	0,031	0,000	0,022	0,044	0,840	1,740	0,192	0,562	0,047	0,006	0,099	0,448	3,980	5,006
	0,119	0,036	4,032	0,450	2,647	0,086	1,153	0,892	0,046	0,000	0,013	0,033	0,817	1,768	0,182	0,568	0,053	0,006	0,099	0,436	3,989	4,979
	0,111	0,033	4,041	0,448	2,648	0,093	1,171	0,818	0,054	0,016	0,011	0,037	0,822	1,790	0,191	0,560	0,039	0,014	0,103	0,411	4,021	4,938
	0,121	0,039	4,030	0,454	2,660	0,107	1,170	0,891	0,007	0,010	0,000	0,031	0,807	1,795	0,157	0,553	0,048	0,014	0,106	0,432	3,941	5,029
	0,105	0,060	4,019	0,435	2,618	0,111	1,175	0,878	0,010	0,022	0,000	0,051	0,836	1,763	0,179	0,559	0,061	0,017	0,099	0,428	3,960	5,022
media	0,108	0,040	4,034	0,447	2,643	0,097	1,177	0,853	0,032	0,009	0,007	0,039	0,825	1,787	0,176	0,570	0,047	0,011	0,097	0,420	3,991	4,975
dev.st.	0,013	0,011	0,015	0,011	0,022	0,011	0,029	0,057	0,019	0,009	0,008	0,007	0,011	0,034	0,015	0,018	0,009	0,005	0,017	0,022	0,034	0,046

n_{medio}e⁻_{chimici} ne⁻_{raffinamento} 335,17 332,71

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb_2O_5	La_2O_3	Ce ₂ O ₃	Pr_2O_3	Nd_2O_3	Sm_2O_3	ThO ₂	Somma			
	0,24	0,16	19,44	1,95	16,52	0,65	11,49	0,15	0,00	0,01	0,46	11,15	24,34	2,20	7,33	0,61	1,66	98,38			
	0,24	0,18	19,67	2,42	17,13	0,47	11,46	0,17	0,00	0,04	0,28	11,18	23,70	2,32	7,64	0,44	1,26	98,62			
	0,26	0,17	19,78	2,42	17,07	0,52	11,27	0,10	0,00	0,06	0,46	10,50	24,45	2,39	7,70	0,59	1,25	99,01			
	0,32	0,20	19,74	2,44	17,12	0,60	11,55	0,35	0,00	0,13	0,38	10,80	23,66	1,94	7,86	0,80	1,26	99,16			
	0,37	0,15	19,70	2,37	17,17	0,52	11,30	0,22	0,00	0,16	0,39	10,83	24,02	2,13	7,93	0,40	1,34	99,01			
	0,36	0,19	19,81	2,42	17,17	0,45	11,32	0,26	0,00	0,20	0,65	10,91	23,71	2,39	7,64	0,69	1,28	99,43			
	0,34	0,24	19,57	2,43	16,97	0,58	11,36	0,18	0,00	0,24	0,68	11,00	23,63	2,22	7,40	0,35	1,18	98,37			
	0,41	0,16	19,50	1,93	16,75	0,64	11,36	0,27	0,00	0,09	0,42	11,11	23,77	2,48	6,78	0,58	2,01	98,26			
	0,33	0,19	19,70	2,45	17,15	0,53	11,14	0,35	0,00	0,11	0,40	10,55	23,60	2,37	7,99	0,61	1,04	98,50			
media	0,32	0,18	19,66	2,31	17,00	0,55	11,36	0,23	0,00	0,11	0,46	10,89	23,88	2,27	7,59	0,56	1,36	98,75			
dev.st.	0,06	0,03	0,13	0,21	0,23	0,07	0,12	0,09	0,00	0,07	0,13	0,25	0,32	0,17	0,37	0,15	0,29				
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	Mg 0,075	Al 0,038	Si 4,077	Ca 0,438	Ti 2,606	Mn 0,115	Fe ²⁺ 1,204	Fe ³⁺ 0,810	Sr 0,018	Y 0,000	Zr 0,001	Nb 0,044	La 0,863	Ce 1,869	Pr 0,168	Nd 0,549	Sm 0,044	Th 0,079	Fe ³⁺ /Fe _{tot} 0,402	Siti A 4,029	Siti B+C 4,894
	Mg 0,075 0,074	Al 0,038 0,044	Si 4,077 4,075	Ca 0,438 0,537	Ti 2,606 2,669	Mn 0,115 0,082	Fe ²⁺ 1,204 1,146	Fe ³⁺ 0,810 0,840	Sr 0,018 0,021	Y 0,000 0,000	Zr 0,001 0,004	Nb 0,044 0,026	La 0,863 0,854	Ce 1,869 1,797	Pr 0,168 0,175	Nd 0,549 0,565	Sm 0,044 0,031	Th 0,079 0,059	Fe ³⁺ /Fe _{tot} 0,402 0,423	Siti A 4,029 4,041	Siti B+C 4,894 4,885
	Mg 0,075 0,074 0,081	Al 0,038 0,044 0,042	Si 4,077 4,075 4,087	Ca 0,438 0,537 0,535	Ti 2,606 2,669 2,653	Mn 0,115 0,082 0,091	Fe ²⁺ 1,204 1,146 1,170	Fe ³⁺ 0,810 0,840 0,778	Sr 0,018 0,021 0,013	Y 0,000 0,000 0,000	Zr 0,001 0,004 0,006	Nb 0,044 0,026 0,043	La 0,863 0,854 0,800	Ce 1,869 1,797 1,850	Pr 0,168 0,175 0,180	Nd 0,549 0,565 0,568	Sm 0,044 0,031 0,042	Th 0,079 0,059 0,059	Fe ³⁺ /Fe _{tot} 0,402 0,423 0,399	Siti A 4,029 4,041 4,047	Siti B+C 4,894 4,885 4,865
	Mg 0,075 0,074 0,081 0,099	Al 0,038 0,044 0,042 0,048	Si 4,077 4,075 4,087 4,055	Ca 0,438 0,537 0,535 0,537	Ti 2,606 2,669 2,653 2,645	Mn 0,115 0,082 0,091 0,105	Fe ²⁺ 1,204 1,146 1,170 1,060	Fe ³⁺ 0,810 0,840 0,778 0,923	Sr 0,018 0,021 0,013 0,042	Y 0,000 0,000 0,000 0,000	Zr 0,001 0,004 0,006 0,013	Nb 0,044 0,026 0,043 0,036	La 0,863 0,854 0,800 0,818	Ce 1,869 1,797 1,850 1,780	Pr 0,168 0,175 0,180 0,146	Nd 0,549 0,565 0,568 0,577	Sm 0,044 0,031 0,042 0,057	Th 0,079 0,059 0,059 0,059	Fe ³⁺ /Fe _{tot} 0,402 0,423 0,399 0,465	Siti A 4,029 4,041 4,047 4,015	Siti B+C 4,894 4,885 4,865 4,930
	Mg 0,075 0,074 0,081 0,099 0,114	Al 0,038 0,044 0,042 0,048 0,036	Si 4,077 4,075 4,087 4,055 4,065	Ca 0,438 0,537 0,535 0,537 0,525	Ti 2,606 2,669 2,653 2,645 2,664	Mn 0,115 0,082 0,091 0,105 0,091	Fe ²⁺ 1,204 1,146 1,170 1,060 1,125	Fe ³⁺ 0,810 0,840 0,778 0,923 0,825	Sr 0,018 0,021 0,013 0,042 0,026	Y 0,000 0,000 0,000 0,000 0,000	Zr 0,001 0,004 0,006 0,013 0,016	Nb 0,044 0,026 0,043 0,036 0,037	La 0,863 0,854 0,800 0,818 0,825	Ce 1,869 1,797 1,850 1,780 1,815	Pr 0,168 0,175 0,180 0,146 0,160	Nd 0,549 0,565 0,568 0,577 0,585	Sm 0,044 0,031 0,042 0,057 0,028	Th 0,079 0,059 0,059 0,059 0,063	Fe ³⁺ /Fe _{tot} 0,402 0,423 0,399 0,465 0,423	Siti A 4,029 4,041 4,047 4,015 4,026	Siti B+C 4,894 4,885 4,865 4,930 4,908
	Mg 0,075 0,074 0,081 0,099 0,114 0,111	Al 0,038 0,044 0,042 0,048 0,036 0,045	Si 4,077 4,075 4,087 4,055 4,065 4,070	Ca 0,438 0,537 0,535 0,537 0,525 0,532	Ti 2,606 2,669 2,653 2,645 2,664 2,652	Mn 0,115 0,082 0,091 0,105 0,091 0,078	Fe ²⁺ 1,204 1,146 1,170 1,060 1,125 1,169	Fe ³⁺ 0,810 0,840 0,778 0,923 0,825 0,775	Sr 0,018 0,021 0,013 0,042 0,026 0,031	Y 0,000 0,000 0,000 0,000 0,000	Zr 0,001 0,004 0,006 0,013 0,016 0,020	Nb 0,044 0,026 0,043 0,036 0,037 0,060	La 0,863 0,854 0,800 0,818 0,825 0,826	Ce 1,869 1,797 1,850 1,780 1,815 1,783	Pr 0,168 0,175 0,180 0,146 0,160 0,179	Nd 0,549 0,565 0,568 0,577 0,585 0,560	Sm 0,044 0,031 0,042 0,057 0,028 0,049	Th 0,079 0,059 0,059 0,059 0,063 0,060	Fe ³⁺ /Fe _{tot} 0,402 0,423 0,399 0,465 0,423 0,399	Siti A 4,029 4,041 4,047 4,015 4,026 4,020	Siti B+C 4,894 4,885 4,865 4,930 4,908 4,910
	Mg 0,075 0,074 0,081 0,099 0,114 0,111 0,105	Al 0,038 0,044 0,042 0,048 0,036 0,045 0,058	Si 4,077 4,075 4,087 4,055 4,065 4,070 4,051	Ca 0,438 0,537 0,535 0,537 0,525 0,532 0,538	Ti 2,606 2,669 2,653 2,645 2,664 2,652 2,642	Mn 0,115 0,082 0,091 0,105 0,091 0,078 0,103	Fe ²⁺ 1,204 1,146 1,170 1,060 1,125 1,169 1,134	Fe ³⁺ 0,810 0,840 0,778 0,923 0,825 0,775 0,834	Sr 0,018 0,021 0,013 0,042 0,026 0,031 0,022	Y 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,001 0,004 0,006 0,013 0,016 0,020 0,024	Nb 0,044 0,026 0,043 0,036 0,037 0,060 0,064	La 0,863 0,854 0,800 0,818 0,825 0,826 0,840	Ce 1,869 1,797 1,850 1,780 1,815 1,783 1,791	Pr 0,168 0,175 0,180 0,146 0,160 0,179 0,168	Nd 0,549 0,565 0,568 0,577 0,585 0,560 0,547	Sm 0,044 0,031 0,042 0,057 0,028 0,049 0,025	Th 0,079 0,059 0,059 0,059 0,063 0,060 0,056	Fe ³⁺ /Fe _{tot} 0,402 0,423 0,399 0,465 0,423 0,399 0,424	Siti A 4,029 4,041 4,047 4,015 4,026 4,020 3,986	Siti B+C 4,894 4,885 4,865 4,930 4,908 4,908 4,910 4,963
	Mg 0,075 0,074 0,081 0,099 0,114 0,111 0,105 0,127	Al 0,038 0,044 0,042 0,048 0,036 0,045 0,058 0,039	Si 4,077 4,075 4,087 4,055 4,065 4,070 4,051 4,077	Ca 0,438 0,537 0,535 0,537 0,525 0,532 0,538 0,433	Ti 2,606 2,669 2,653 2,645 2,664 2,652 2,642 2,635	Mn 0,115 0,082 0,091 0,105 0,091 0,078 0,103 0,113	Fe ²⁺ 1,204 1,146 1,170 1,060 1,125 1,169 1,134 1,190	Fe ³⁺ 0,810 0,840 0,778 0,923 0,825 0,775 0,834 0,796	Sr 0,018 0,021 0,013 0,042 0,026 0,031 0,022 0,033	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,001 0,004 0,006 0,013 0,016 0,020 0,024 0,009	Nb 0,044 0,026 0,043 0,036 0,037 0,060 0,064 0,039	La 0,863 0,854 0,800 0,818 0,825 0,826 0,840 0,857	Ce 1,869 1,797 1,850 1,780 1,815 1,783 1,791 1,820	Pr 0,168 0,175 0,180 0,146 0,160 0,179 0,168 0,189	Nd 0,549 0,565 0,568 0,577 0,585 0,560 0,547 0,506	Sm 0,044 0,031 0,042 0,057 0,028 0,049 0,025 0,042	Th 0,079 0,059 0,059 0,063 0,060 0,056 0,096	Fe ³⁺ /Fe _{tot} 0,402 0,423 0,399 0,465 0,423 0,399 0,424 0,401	Siti A 4,029 4,041 4,047 4,015 4,026 4,020 3,986 3,975	Siti B+C 4,894 4,885 4,865 4,930 4,908 4,910 4,963 4,948
	Mg 0,075 0,074 0,081 0,099 0,114 0,111 0,105 0,127 0,102	Al 0,038 0,044 0,042 0,048 0,036 0,045 0,058 0,039 0,047	Si 4,077 4,075 4,087 4,055 4,065 4,070 4,051 4,077 4,076	Ca 0,438 0,537 0,535 0,537 0,525 0,532 0,538 0,433 0,542	Ti 2,606 2,669 2,653 2,645 2,664 2,652 2,642 2,635 2,669	Mn 0,115 0,082 0,091 0,105 0,091 0,078 0,103 0,113 0,093	Fe ²⁺ 1,204 1,146 1,170 1,060 1,125 1,169 1,134 1,190 1,102	Fe ³⁺ 0,810 0,840 0,778 0,923 0,825 0,775 0,834 0,796 0,825	Sr 0,018 0,021 0,013 0,042 0,026 0,031 0,022 0,033 0,042	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,001 0,004 0,006 0,013 0,016 0,020 0,024 0,009 0,011	Nb 0,044 0,026 0,043 0,036 0,037 0,060 0,064 0,039 0,038	La 0,863 0,854 0,800 0,818 0,825 0,826 0,840 0,857 0,805	Ce 1,869 1,797 1,850 1,780 1,815 1,783 1,791 1,820 1,787	Pr 0,168 0,175 0,180 0,146 0,160 0,179 0,168 0,189 0,179	Nd 0,549 0,565 0,568 0,577 0,585 0,560 0,547 0,506 0,590	Sm 0,044 0,031 0,042 0,057 0,028 0,049 0,025 0,042 0,043	Th 0,079 0,059 0,059 0,063 0,060 0,056 0,096 0,049	Fe ³⁺ /Fe _{tot} 0,402 0,423 0,399 0,465 0,423 0,399 0,424 0,401 0,428	Siti A 4,029 4,041 4,047 4,015 4,020 3,986 3,975 4,037	Siti B+C 4,894 4,885 4,865 4,930 4,908 4,910 4,963 4,948 4,886
media	Mg 0,075 0,074 0,081 0,099 0,114 0,111 0,105 0,127 0,102 0,099	Al 0,038 0,044 0,042 0,048 0,036 0,045 0,058 0,039 0,047 0,044	Si 4,077 4,075 4,087 4,055 4,065 4,070 4,051 4,077 4,076 4,070	Ca 0,438 0,537 0,535 0,537 0,525 0,532 0,538 0,433 0,542 0,513	Ti 2,606 2,653 2,645 2,645 2,652 2,642 2,635 2,649 2,648	Mn 0,115 0,082 0,091 0,105 0,091 0,078 0,103 0,113 0,093 0,097	Fe ²⁺ 1,204 1,146 1,170 1,060 1,125 1,169 1,134 1,190 1,102 1,144	Fe ³⁺ 0,810 0,840 0,778 0,923 0,825 0,775 0,834 0,796 0,825 0 ,823	Sr 0,018 0,021 0,042 0,026 0,031 0,022 0,033 0,042 0,027	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,001 0,004 0,006 0,013 0,016 0,020 0,024 0,009 0,011 0,012	Nb 0,044 0,026 0,037 0,060 0,064 0,039 0,038 0,044	La 0,863 0,854 0,800 0,818 0,825 0,826 0,840 0,857 0,805 0,805 0,832	Ce 1,869 1,797 1,850 1,780 1,815 1,783 1,791 1,820 1,787 1,810	Pr 0,168 0,175 0,180 0,146 0,160 0,179 0,168 0,189 0,179 0,171	Nd 0,549 0,565 0,568 0,577 0,585 0,560 0,547 0,506 0,590 0,590	Sm 0,044 0,031 0,042 0,057 0,028 0,049 0,025 0,042 0,043 0,040	Th 0,079 0,059 0,059 0,063 0,060 0,056 0,096 0,049 0,064	Fe ³⁺ /Fe _{tot} 0,402 0,423 0,399 0,465 0,423 0,399 0,424 0,401 0,428 0,418	Siti A 4,029 4,041 4,047 4,015 4,020 3,986 3,975 4,037 4,020	Siti B+C 4,894 4,885 4,865 4,930 4,908 4,910 4,963 4,948 4,886 4,910
media dev.st.	Mg 0,075 0,074 0,081 0,099 0,114 0,111 0,105 0,127 0,102 0,099 0,018	Al 0,038 0,044 0,042 0,048 0,036 0,045 0,058 0,039 0,047 0,044 0,007	Si 4,077 4,075 4,087 4,055 4,065 4,070 4,051 4,077 4,076 4,070 0,012	Ca 0,438 0,537 0,535 0,537 0,525 0,532 0,538 0,433 0,542 0,513 0,044	Ti 2,606 2,653 2,645 2,645 2,652 2,642 2,635 2,669 2,648 0,020	Mn 0,115 0,082 0,091 0,105 0,091 0,078 0,103 0,113 0,093 0,097 0,013	Fe ²⁺ 1,204 1,146 1,170 1,060 1,125 1,169 1,134 1,190 1,102 1,144 0,045	Fe ³⁺ 0,810 0,840 0,778 0,923 0,825 0,775 0,834 0,796 0,825 0,823 0,044	Sr 0,018 0,021 0,042 0,026 0,031 0,022 0,033 0,042 0,027 0,010	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,001 0,004 0,006 0,013 0,016 0,020 0,024 0,009 0,011 0,012 0,007	Nb 0,044 0,026 0,043 0,036 0,037 0,060 0,064 0,039 0,038 0,043 0,012	La 0,863 0,854 0,800 0,818 0,825 0,826 0,840 0,857 0,805 0,832 0,023	Ce 1,869 1,797 1,850 1,780 1,815 1,783 1,791 1,820 1,787 1,810 0,031	Pr 0,168 0,175 0,180 0,146 0,160 0,179 0,168 0,179 0,179 0,179 0,171 0,013	Nd 0,549 0,565 0,568 0,577 0,585 0,560 0,547 0,506 0,590 0,590 0,561 0,025	Sm 0,044 0,031 0,042 0,057 0,028 0,049 0,025 0,042 0,043 0,040 0,010	Th 0,079 0,059 0,059 0,059 0,063 0,060 0,056 0,096 0,049 0,064 0,014	Fe ³⁺ /Fe _{tot} 0,402 0,423 0,399 0,465 0,423 0,399 0,424 0,401 0,428 0,418	Siti A 4,029 4,041 4,047 4,015 4,026 4,020 3,986 3,975 4,037 4,020	Siti B+C 4,894 4,885 4,865 4,930 4,908 4,910 4,963 4,948 4,886 4,910

Tab. 20.a. Composizione dei punti analisi del campione P6 nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

n_{medio}e chimici ne raffinamento 331,59 329,25 Tab. 20.b. Composizione dei punti analisi del campione P6 nella prova 5: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La_2O_3	Ce_2O_3	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	Gd_2O_3	ThO ₂	Somma			
	0,31	0,11	19,28	1,94	16,84	0,60	11,53	0,12	0,00	0,19	0,44	10,93	24,24	2,28	7,81	0,53	0,12	1,959	99,23			
	0,40	0,21	19,52	2,36	17,08	0,55	11,44	0,12	0,07	0,21	0,48	10,03	23,31	2,12	7,80	0,66	0,17	1,338	97,85			
	0,37	0,19	19,45	2,45	17,32	0,63	11,39	0,54	0,06	0,23	0,35	11,17	22,85	2,04	7,56	0,43	0,12	1,418	98,55			
	0,21	0,23	19,55	2,42	17,37	0,55	11,45	0,18	0,00	0,12	0,39	10,29	23,16	1,70	8,16	0,52	0,18	1,322	97,80			
	0,27	0,19	19,50	2,35	17,21	0,45	11,43	0,00	0,00	0,29	0,45	10,78	23,14	2,05	7,86	0,72	0,39	1,560	98,66			
	0,36	0,17	19,60	2,39	17,33	0,47	11,36	0,39	0,00	0,13	0,43	10,83	23,42	2,26	8,16	0,49	0,05	1,379	99,23			
	0,25	0,17	19,32	2,00	17,03	0,63	11,54	0,19	0,08	0,23	0,50	10,81	23,71	2,35	7,96	0,49	0,22	2,031	99,50			
	0,27	0,16	19,81	2,28	17,25	0,58	11,32	0,22	0,11	0,13	0,49	10,46	23,25	2,82	7,91	0,73	0,22	1,250	99,25			
	0,34	0,18	19,50	2,39	17,13	0,62	11,51	0,41	0,12	0,31	0,28	11,05	23,80	2,40	7,61	0,58	0,27	1,736	100,23			
media	0,31	0,18	19,50	2,29	17,17	0,56	11,44	0,24	0,05	0,20	0,42	10,70	23,43	2,22	7,87	0,57	0,19	1,55	98,92			
dev.st.	0,06	0,03	0,15	0,19	0,17	0,07	0,08	0,17	0,05	0,07	0,07	0,37	0,42	0,31	0,21	0,11	0,10	0,29				
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Gd	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	0,096	0,026	4,022	0,433	2,643	0,106	1,212	0,800	0,015	0,000	0,020	0,042	0,841	1,851	0,174	0,582	0,038	0,009	0,093	0,397	4,035	4,943
																						=
	0,124	0,052	4,055	0,525	2,670	0,097	1,139	0,848	0,014	0,007	0,021	0,045	0,768	1,773	0,160	0,579	0,047	0,012	0,063	0,427	3,941	5,004
	0,124 0,113	0,052 0,045	4,055 4,014	0,525 0,543	2,670 2,689	0,097 0,110	1,139 1,026	0,848 0,941	0,014 0,065	0,007 0,006	0,021 0,023	0,045 0,032	0,768 0,850	1,773 1,726	0,160 0,153	0,579 0,557	0,047 0,030	0,012 0,008	0,063 0,067	0,427 0,478	3,941 4,000	5,004 4,985
	0,124 0,113 0,064	0,052 0,045 0,056	4,055 4,014 4,066	0,525 0,543 0,540	2,670 2,689 2,717	0,097 0,110 0,096	1,139 1,026 1,207	0,848 0,941 0,784	0,014 0,065 0,022	0,007 0,006 0,000	0,021 0,023 0,012	0,045 0,032 0,036	0,768 0,850 0,790	1,773 1,726 1,764	0,160 0,153 0,129	0,579 0,557 0,606	0,047 0,030 0,037	0,012 0,008 0,012	0,063 0,067 0,063	0,427 0,478 0,394	3,941 4,000 3,962	5,004 4,985 4,972
	0,124 0,113 0,064 0,085	0,052 0,045 0,056 0,048	4,055 4,014 4,066 4,048	0,525 0,543 0,540 0,523	2,670 2,689 2,717 2,687	0,097 0,110 0,096 0,080	1,139 1,026 1,207 1,236	0,848 0,941 0,784 0,748	0,014 0,065 0,022 0,000	0,007 0,006 0,000 0,000	0,021 0,023 0,012 0,029	0,045 0,032 0,036 0,042	0,768 0,850 0,790 0,825	1,773 1,726 1,764 1,759	0,160 0,153 0,129 0,155	0,579 0,557 0,606 0,583	0,047 0,030 0,037 0,052	0,012 0,008 0,012 0,027	0,063 0,067 0,063 0,074	0,427 0,478 0,394 0,377	3,941 4,000 3,962 3,997	5,004 4,985 4,972 4,955
	0,124 0,113 0,064 0,085 0,109	0,052 0,045 0,056 0,048 0,041	4,055 4,014 4,066 4,048 4,037	0,525 0,543 0,540 0,523 0,527	2,670 2,689 2,717 2,687 2,685	0,097 0,110 0,096 0,080 0,082	1,139 1,026 1,207 1,236 1,114	0,848 0,941 0,784 0,748 0,843	0,014 0,065 0,022 0,000 0,047	0,007 0,006 0,000 0,000 0,000	0,021 0,023 0,012 0,029 0,013	0,045 0,032 0,036 0,042 0,040	0,768 0,850 0,790 0,825 0,823	1,773 1,726 1,764 1,759 1,766	0,160 0,153 0,129 0,155 0,170	0,579 0,557 0,606 0,583 0,600	0,047 0,030 0,037 0,052 0,035	0,012 0,008 0,012 0,027 0,004	0,063 0,067 0,063 0,074 0,065	0,427 0,478 0,394 0,377 0,431	3,941 4,000 3,962 3,997 4,036	5,004 4,985 4,972 4,955 4,927
	0,124 0,113 0,064 0,085 0,109 0,078	0,052 0,045 0,056 0,048 0,041 0,041	4,055 4,014 4,066 4,048 4,037 4,013	0,525 0,543 0,540 0,523 0,527 0,445	2,670 2,689 2,717 2,687 2,685 2,660	0,097 0,110 0,096 0,080 0,082 0,111	1,139 1,026 1,207 1,236 1,114 1,229	0,848 0,941 0,784 0,748 0,843 0,776	0,014 0,065 0,022 0,000 0,047 0,023	0,007 0,006 0,000 0,000 0,000 0,009	0,021 0,023 0,012 0,029 0,013 0,023	0,045 0,032 0,036 0,042 0,040 0,047	0,768 0,850 0,790 0,825 0,823 0,828	1,773 1,726 1,764 1,759 1,766 1,803	0,160 0,153 0,129 0,155 0,170 0,178	0,579 0,557 0,606 0,583 0,600 0,591	0,047 0,030 0,037 0,052 0,035 0,035	0,012 0,008 0,012 0,027 0,004 0,015	0,063 0,067 0,063 0,074 0,065 0,096	0,427 0,478 0,394 0,377 0,431 0,387	3,941 4,000 3,962 3,997 4,036 4,014	5,004 4,985 4,972 4,955 4,927 4,973
	0,124 0,113 0,064 0,085 0,109 0,078 0,084	0,052 0,045 0,056 0,048 0,041 0,041 0,039	4,055 4,014 4,066 4,048 4,037 4,013 4,083	0,525 0,543 0,540 0,523 0,527 0,445 0,503	2,670 2,689 2,717 2,687 2,685 2,660 2,674	0,097 0,110 0,096 0,080 0,082 0,111 0,101	1,139 1,026 1,207 1,236 1,114 1,229 1,204	0,848 0,941 0,784 0,748 0,843 0,776 0,747	0,014 0,065 0,022 0,000 0,047 0,023 0,026	0,007 0,006 0,000 0,000 0,000 0,009 0,012	0,021 0,023 0,012 0,029 0,013 0,023 0,013	0,045 0,032 0,036 0,042 0,040 0,047 0,046	0,768 0,850 0,790 0,825 0,823 0,828 0,795	1,773 1,726 1,764 1,759 1,766 1,803 1,754	0,160 0,153 0,129 0,155 0,170 0,178 0,212	0,579 0,557 0,606 0,583 0,600 0,591 0,582	0,047 0,030 0,037 0,052 0,035 0,035 0,052	0,012 0,008 0,012 0,027 0,004 0,015 0,015	0,063 0,067 0,063 0,074 0,065 0,096 0,059	0,427 0,478 0,394 0,377 0,431 0,387 0,383	3,941 4,000 3,962 3,997 4,036 4,014 3,998	5,004 4,985 4,972 4,955 4,927 4,973 4,919
	0,124 0,113 0,064 0,085 0,109 0,078 0,084 0,105	0,052 0,045 0,056 0,048 0,041 0,041 0,039 0,043	4,055 4,014 4,066 4,048 4,037 4,013 4,083 3,994	0,525 0,543 0,540 0,523 0,527 0,445 0,503 0,525	2,670 2,689 2,717 2,687 2,685 2,660 2,674 2,640	0,097 0,110 0,096 0,080 0,082 0,111 0,101 0,107	1,139 1,026 1,207 1,236 1,114 1,229 1,204 1,012	0,848 0,941 0,784 0,748 0,843 0,776 0,747 0,959	0,014 0,065 0,022 0,000 0,047 0,023 0,026 0,049	0,007 0,006 0,000 0,000 0,000 0,009 0,012 0,013	0,021 0,023 0,012 0,029 0,013 0,023 0,013 0,031	0,045 0,032 0,036 0,042 0,040 0,047 0,046 0,026	0,768 0,850 0,790 0,825 0,823 0,828 0,795 0,835	1,773 1,726 1,764 1,759 1,766 1,803 1,754 1,785	0,160 0,153 0,129 0,155 0,170 0,178 0,212 0,179	0,579 0,557 0,606 0,583 0,600 0,591 0,582 0,556	0,047 0,030 0,037 0,052 0,035 0,035 0,052 0,041	0,012 0,008 0,012 0,027 0,004 0,015 0,015 0,018	0,063 0,067 0,063 0,074 0,065 0,096 0,059 0,081	0,427 0,478 0,394 0,377 0,431 0,387 0,383 0,487	3,941 4,000 3,962 3,997 4,036 4,014 3,998 4,069	5,004 4,985 4,972 4,955 4,927 4,973 4,919 4,937
media	0,124 0,113 0,064 0,085 0,109 0,078 0,084 0,105 0,095	0,052 0,045 0,056 0,048 0,041 0,041 0,039 0,043 0,043	4,055 4,014 4,066 4,048 4,037 4,013 4,083 3,994 4,037	0,525 0,543 0,540 0,523 0,527 0,445 0,503 0,525 0,507	2,670 2,689 2,717 2,687 2,685 2,660 2,674 2,640 2,674	0,097 0,110 0,096 0,080 0,082 0,111 0,101 0,107 0,099	1,139 1,026 1,207 1,236 1,114 1,229 1,204 1,012 1,153	0,848 0,941 0,784 0,748 0,843 0,776 0,747 0,959 0,827	0,014 0,065 0,022 0,000 0,047 0,023 0,026 0,049 0,029	0,007 0,006 0,000 0,000 0,009 0,012 0,013 0,005	0,021 0,023 0,012 0,029 0,013 0,023 0,013 0,031 0,021	0,045 0,032 0,036 0,042 0,040 0,047 0,046 0,026 0,040	0,768 0,850 0,790 0,825 0,823 0,828 0,795 0,835 0,817	1,773 1,726 1,764 1,759 1,766 1,803 1,754 1,785 1,776	0,160 0,153 0,129 0,155 0,170 0,178 0,212 0,179 0,168	0,579 0,557 0,606 0,583 0,600 0,591 0,582 0,556 0,582	0,047 0,030 0,037 0,052 0,035 0,035 0,052 0,041 0,041	0,012 0,008 0,012 0,027 0,004 0,015 0,015 0,018 0,013	0,063 0,067 0,063 0,074 0,065 0,096 0,059 0,081 0,073	0,427 0,478 0,394 0,377 0,431 0,387 0,383 0,487 0,418	3,941 4,000 3,962 3,997 4,036 4,014 3,998 4,069 4,006	5,004 4,985 4,972 4,955 4,927 4,973 4,919 4,937 4,957
media dev.st.	0,124 0,113 0,064 0,085 0,109 0,078 0,078 0,084 0,105 0,095 0,019	0,052 0,045 0,056 0,048 0,041 0,041 0,039 0,043 0,043 0,009	4,055 4,014 4,066 4,048 4,037 4,013 4,083 3,994 4,037 0,029	0,525 0,543 0,540 0,523 0,527 0,445 0,503 0,525 0,507 0,040	2,670 2,689 2,717 2,687 2,685 2,660 2,674 2,640 2,674 0,024	0,097 0,110 0,096 0,080 0,082 0,111 0,101 0,107 0,099 0,012	1,139 1,026 1,207 1,236 1,114 1,229 1,204 1,012 1,153 0,086	0,848 0,941 0,784 0,748 0,843 0,776 0,747 0,959 0,827 0,078	0,014 0,065 0,022 0,000 0,047 0,023 0,026 0,049 0,029 0,021	0,007 0,006 0,000 0,000 0,009 0,012 0,013 0,005	0,021 0,023 0,012 0,029 0,013 0,023 0,013 0,031 0,021 0,007	0,045 0,032 0,036 0,042 0,040 0,047 0,046 0,026 0,040 0,007	0,768 0,850 0,790 0,825 0,823 0,828 0,795 0,835 0,817 0,027	1,773 1,726 1,764 1,759 1,766 1,803 1,754 1,785 1,776 0,035	0,160 0,153 0,129 0,155 0,170 0,178 0,212 0,179 0,168 0,023	0,579 0,557 0,606 0,583 0,600 0,591 0,582 0,556 0,582 0,017	0,047 0,030 0,037 0,052 0,035 0,035 0,052 0,041 0,041 0,008	0,012 0,008 0,012 0,027 0,004 0,015 0,015 0,018 0,013 0,007	0,063 0,067 0,063 0,074 0,065 0,096 0,059 0,081 0,073 0,014	0,427 0,478 0,394 0,377 0,431 0,387 0,383 0,487 0,418	3,941 4,000 3,962 3,997 4,036 4,014 3,998 4,069 4,006	5,004 4,985 4,972 4,955 4,927 4,973 4,919 4,937 4,957

n_{medio}e chimici ne raffinamento 332,74 329,25

	MgO	Al ₂ O ₃	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y ₂ O ₃	ZrO ₂	Nb_2O_5	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd_2O_3	Sm ₂ O ₃	ThO ₂	Somma			
	0,21	0,06	19,52	1,62	16,81	0,86	11,16	0,15	0,00	0,11	0,59	11,04	25,21	2,69	8,25	0,74	0,71	99,73			
	0,38	0,12	19,60	2,52	17,47	0,49	11,18	0,34	0,00	0,22	0,53	11,28	23,57	2,24	7,85	0,54	1,08	99,42			
	0,29	0,11	19,75	2,58	17,50	0,53	11,01	0,26	0,00	0,30	0,40	10,41	23,81	2,21	7,13	0,78	0,81	97,86			
	0,24	0,03	19,25	1,68	17,20	0,78	11,33	0,37	0,00	0,09	0,54	10,54	24,67	2,34	7,98	0,55	0,74	98,34			
	0,33	0,08	19,46	1,85	17,33	0,74	10,89	0,24	0,00	0,00	0,42	10,74	24,50	2,38	8,07	0,62	0,82	98,48			
	0,31	0,06	19,25	1,59	16,72	0,76	11,18	0,29	0,00	0,00	0,56	10,05	25,18	2,24	8,65	0,66	0,64	98,15			
	0,30	0,01	19,37	1,69	17,01	0,78	11,06	0,14	0,00	0,12	0,66	10,40	24,59	2,36	8,72	0,92	0,78	98,93			
	0,31	0,14	19,56	2,64	17,41	0,52	11,03	0,20	0,00	0,18	0,45	11,02	24,06	2,24	7,60	0,61	0,96	98,91			
	0,32	0,10	19,57	2,33	17,05	0,57	11,27	0,34	0,00	0,26	0,54	10,46	24,58	2,40	7,67	0,70	1,08	99,24			
	0,30	0,06	19,33	1,74	16,98	0,70	11,22	0,17	0,00	0,04	0,39	10,64	25,17	2,47	8,26	0,48	0,80	98,75			
media	0,30	0,08	19,46	2,02	17,15	0,67	11,13	0,25	0,00	0,13	0,51	10,66	24,53	2,36	8,02	0,66	0,84	98,78			
dev.st.	0,05	0,04	0,16	0,44	0,28	0,13	0,13	0,08	0,00	0,11	0,09	0,37	0,58	0,14	0,49	0,13	0,15				
							2.	2.													
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	Mg 0,066	Al 0,015	Si 4,066	Ca 0,361	Ti 2,634	Mn 0,152	Fe ²⁺ 1,259	Fe ³⁺ 0,687	Sr 0,018	Y 0,000	Zr 0,011	Nb 0,055	La 0,848	Ce 1,923	Pr 0,204	Nd 0,614	Sm 0,053	Th 0,034	Fe ³⁺ /Fe _{tot} 0,353	Siti A 4,055	Siti B+C 4,879
	Mg 0,066 0,116	Al 0,015 0,029	Si 4,066 4,024	Ca 0,361 0,555	Ti 2,634 2,698	Mn 0,152 0,086	Fe ²⁺ 1,259 1,096	Fe ³⁺ 0,687 0,824	Sr 0,018 0,041	¥ 0,000 0,000	Zr 0,011 0,022	Nb 0,055 0,049	La 0,848 0,855	Ce 1,923 1,772	Pr 0,204 0,168	Nd 0,614 0,576	Sm 0,053 0,038	Th 0,034 0,051	Fe ³⁺ /Fe _{tot} 0,353 0,429	Siti A 4,055 4,054	Siti B+C 4,879 4,921
	Mg 0,066 0,116 0,090	Al 0,015 0,029 0,026	Si 4,066 4,024 4,094	Ca 0,361 0,555 0,572	Ti 2,634 2,698 2,728	Mn 0,152 0,086 0,093	Fe ²⁺ 1,259 1,096 1,179	Fe ³⁺ 0,687 0,824 0,729	Sr 0,018 0,041 0,031	Y 0,000 0,000 0,000	Zr 0,011 0,022 0,030	Nb 0,055 0,049 0,037	La 0,848 0,855 0,796	Ce 1,923 1,772 1,807	Pr 0,204 0,168 0,167	Nd 0,614 0,576 0,528	Sm 0,053 0,038 0,055	Th 0,034 0,051 0,038	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382	Siti A 4,055 4,054 3,993	Siti B+C 4,879 4,921 4,913
	Mg 0,066 0,116 0,090 0,076	Al 0,015 0,029 0,026 0,007	Si 4,066 4,024 4,094 4,037	Ca 0,361 0,555 0,572 0,378	Ti 2,634 2,698 2,728 2,712	Mn 0,152 0,086 0,093 0,139	Fe ²⁺ 1,259 1,096 1,179 1,258	Fe ³⁺ 0,687 0,824 0,729 0,729	Sr 0,018 0,041 0,031 0,044	Y 0,000 0,000 0,000 0,000	Zr 0,011 0,022 0,030 0,010	Nb 0,055 0,049 0,037 0,051	La 0,848 0,855 0,796 0,815	Ce 1,923 1,772 1,807 1,894	Pr 0,204 0,168 0,167 0,178	Nd 0,614 0,576 0,528 0,598	Sm 0,053 0,038 0,055 0,040	Th 0,034 0,051 0,038 0,035	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382 0,367	Siti A 4,055 4,054 3,993 3,982	Siti B+C 4,879 4,921 4,913 4,981
	Mg 0,066 0,116 0,090 0,076 0,104	Al 0,015 0,029 0,026 0,007 0,019	Si 4,066 4,024 4,094 4,037 4,066	Ca 0,361 0,555 0,572 0,378 0,415	Ti 2,634 2,698 2,728 2,712 2,724	Mn 0,152 0,086 0,093 0,139 0,131	Fe ²⁺ 1,259 1,096 1,179 1,258 1,229	Fe ³⁺ 0,687 0,824 0,729 0,729 0,674	Sr 0,018 0,041 0,031 0,044 0,030	Y 0,000 0,000 0,000 0,000 0,000	Zr 0,011 0,022 0,030 0,010 0,000	Nb 0,055 0,049 0,037 0,051 0,039	La 0,848 0,855 0,796 0,815 0,827	Ce 1,923 1,772 1,807 1,894 1,874	Pr 0,204 0,168 0,167 0,178 0,181	Nd 0,614 0,576 0,528 0,598 0,602	Sm 0,053 0,038 0,055 0,040 0,045	Th 0,034 0,051 0,038 0,035 0,039	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382 0,367 0,354	Siti A 4,055 4,054 3,993 3,982 4,013	Siti B+C 4,879 4,921 4,913 4,981 4,921
	Mg 0,066 0,116 0,090 0,076 0,104 0,098	Al 0,015 0,029 0,026 0,007 0,019 0,014	Si 4,066 4,024 4,094 4,037 4,066 4,057	Ca 0,361 0,555 0,572 0,378 0,415 0,360	Ti 2,634 2,698 2,728 2,712 2,724 2,651	Mn 0,152 0,086 0,093 0,139 0,131 0,135	Fe ²⁺ 1,259 1,096 1,179 1,258 1,229 1,217	Fe ³⁺ 0,687 0,824 0,729 0,729 0,674 0,753	Sr 0,018 0,041 0,031 0,044 0,030 0,035	Y 0,000 0,000 0,000 0,000 0,000	Zr 0,011 0,022 0,030 0,010 0,000 0,000	Nb 0,055 0,049 0,037 0,051 0,039 0,053	La 0,848 0,855 0,796 0,815 0,827 0,781	Ce 1,923 1,772 1,807 1,894 1,874 1,943	Pr 0,204 0,168 0,167 0,178 0,181 0,172	Nd 0,614 0,576 0,528 0,598 0,602 0,651	Sm 0,053 0,038 0,055 0,040 0,045 0,048	Th 0,034 0,051 0,038 0,035 0,039 0,031	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382 0,367 0,354 0,382	Siti A 4,055 4,054 3,993 3,982 4,013 4,021	Siti B+C 4,879 4,921 4,913 4,981 4,921 4,922
	Mg 0,066 0,116 0,090 0,076 0,104 0,098 0,094	Al 0,015 0,029 0,026 0,007 0,019 0,014 0,002	Si 4,066 4,024 4,094 4,037 4,066 4,057 4,055	Ca 0,361 0,555 0,572 0,378 0,415 0,360 0,379	Ti 2,634 2,698 2,728 2,712 2,724 2,651 2,678	Mn 0,152 0,086 0,093 0,139 0,131 0,135 0,138	Fe ²⁺ 1,259 1,096 1,179 1,258 1,229 1,217 1,280	Fe ³⁺ 0,687 0,824 0,729 0,729 0,674 0,753 0,657	Sr 0,018 0,041 0,031 0,044 0,030 0,035 0,018	Y 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,011 0,022 0,030 0,010 0,000 0,000 0,012	Nb 0,055 0,049 0,037 0,051 0,039 0,053 0,063	La 0,848 0,855 0,796 0,815 0,827 0,781 0,803	Ce 1,923 1,772 1,807 1,894 1,874 1,943 1,885	Pr 0,204 0,168 0,167 0,178 0,181 0,172 0,180	Nd 0,614 0,576 0,528 0,598 0,602 0,651 0,652	Sm 0,053 0,038 0,055 0,040 0,045 0,048 0,066	Th 0,034 0,051 0,038 0,035 0,039 0,031 0,037	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382 0,367 0,354 0,354 0,382 0,339	Siti A 4,055 4,054 3,993 3,982 4,013 4,021 4,021	Siti B+C 4,879 4,921 4,913 4,981 4,921 4,922 4,925
	Mg 0,066 0,116 0,090 0,076 0,104 0,098 0,094 0,094	Al 0,015 0,029 0,026 0,007 0,019 0,014 0,002 0,034	Si 4,066 4,024 4,094 4,037 4,066 4,057 4,055 4,036	Ca 0,361 0,555 0,572 0,378 0,415 0,360 0,379 0,583	Ti 2,634 2,698 2,728 2,712 2,724 2,651 2,678 2,702	Mn 0,152 0,086 0,093 0,139 0,131 0,135 0,138 0,090	Fe ²⁺ 1,259 1,096 1,179 1,258 1,229 1,217 1,280 1,094	Fe ³⁺ 0,687 0,824 0,729 0,729 0,674 0,753 0,657 0,810	Sr 0,018 0,041 0,031 0,044 0,030 0,035 0,018 0,024	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,011 0,022 0,030 0,010 0,000 0,000 0,012 0,019	Nb 0,055 0,049 0,037 0,051 0,039 0,053 0,063 0,042	La 0,848 0,855 0,796 0,815 0,827 0,781 0,803 0,838	Ce 1,923 1,772 1,807 1,894 1,874 1,943 1,885 1,817	Pr 0,204 0,168 0,167 0,178 0,181 0,172 0,180 0,169	Nd 0,614 0,576 0,528 0,598 0,602 0,651 0,652 0,560	Sm 0,053 0,038 0,055 0,040 0,045 0,048 0,066 0,043	Th 0,034 0,051 0,038 0,035 0,039 0,031 0,037 0,045	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382 0,367 0,354 0,382 0,382 0,339 0,425	Siti A 4,055 4,054 3,993 3,982 4,013 4,021 4,021 4,080	Siti B+C 4,879 4,921 4,913 4,981 4,921 4,922 4,925 4,885
	Mg 0,066 0,116 0,090 0,076 0,104 0,098 0,094 0,094 0,100	Al 0,015 0,029 0,026 0,007 0,019 0,014 0,002 0,034 0,024	Si 4,066 4,024 4,094 4,037 4,066 4,057 4,055 4,036 4,043	Ca 0,361 0,555 0,572 0,378 0,415 0,360 0,379 0,583 0,517	Ti 2,634 2,698 2,728 2,712 2,724 2,651 2,678 2,702 2,649	Mn 0,152 0,086 0,093 0,139 0,131 0,135 0,138 0,090 0,100	Fe ²⁺ 1,259 1,096 1,179 1,258 1,229 1,217 1,280 1,094 1,113	Fe ³⁺ 0,687 0,824 0,729 0,729 0,674 0,753 0,657 0,810 0,834	Sr 0,018 0,041 0,031 0,044 0,030 0,035 0,018 0,024 0,040	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,011 0,022 0,030 0,010 0,000 0,000 0,012 0,019 0,026	Nb 0,055 0,049 0,037 0,051 0,039 0,053 0,063 0,042 0,051	La 0,848 0,855 0,796 0,815 0,827 0,781 0,803 0,838 0,797	Ce 1,923 1,772 1,807 1,894 1,874 1,943 1,885 1,817 1,859	Pr 0,204 0,168 0,167 0,178 0,181 0,172 0,180 0,169 0,181	Nd 0,614 0,576 0,528 0,598 0,602 0,651 0,652 0,560 0,566	Sm 0,053 0,038 0,055 0,040 0,045 0,048 0,066 0,043 0,050	Th 0,034 0,051 0,038 0,035 0,039 0,031 0,037 0,045 0,051	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382 0,367 0,354 0,382 0,339 0,425 0,428	Siti A 4,055 4,054 3,993 4,013 4,021 4,021 4,080 4,060	Siti B+C 4,879 4,921 4,913 4,981 4,921 4,922 4,925 4,885 4,896
	Mg 0,066 0,116 0,090 0,076 0,104 0,098 0,094 0,094 0,094 0,095	Al 0,015 0,029 0,026 0,007 0,019 0,014 0,002 0,034 0,024 0,015	Si 4,066 4,024 4,037 4,066 4,057 4,055 4,036 4,043 4,046	Ca 0,361 0,555 0,572 0,378 0,415 0,360 0,379 0,583 0,517 0,390	Ti 2,634 2,698 2,728 2,712 2,724 2,651 2,678 2,702 2,649 2,674	Mn 0,152 0,086 0,093 0,139 0,131 0,135 0,138 0,090 0,100 0,125	Fe ²⁺ 1,259 1,096 1,179 1,258 1,229 1,217 1,280 1,094 1,113 1,205	Fe ³⁺ 0,687 0,824 0,729 0,674 0,753 0,657 0,810 0,834 0,759	Sr 0,018 0,041 0,031 0,044 0,030 0,035 0,018 0,024 0,040 0,021	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,011 0,022 0,030 0,010 0,000 0,000 0,012 0,019 0,026 0,004	Nb 0,055 0,049 0,057 0,051 0,053 0,063 0,051 0,053 0,053 0,053 0,053 0,053	La 0,848 0,855 0,796 0,815 0,827 0,781 0,803 0,838 0,797 0,822	Ce 1,923 1,772 1,807 1,894 1,874 1,843 1,845 1,817 1,859 1,930	Pr 0,204 0,168 0,167 0,178 0,181 0,172 0,180 0,169 0,181 0,189	Nd 0,614 0,576 0,528 0,598 0,602 0,651 0,652 0,560 0,566 0,618	Sm 0,053 0,038 0,055 0,040 0,045 0,048 0,066 0,043 0,050 0,035	Th 0,034 0,051 0,038 0,035 0,039 0,031 0,037 0,045 0,051 0,038	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382 0,367 0,354 0,354 0,382 0,339 0,425 0,428 0,386	Siti A 4,055 4,054 3,993 4,013 4,021 4,021 4,080 4,060 4,041	Siti B+C 4,879 4,921 4,913 4,981 4,921 4,922 4,925 4,885 4,896 4,913
media	Mg 0,066 0,116 0,090 0,076 0,104 0,098 0,094 0,094 0,094 0,095 0,093	Al 0,015 0,029 0,026 0,007 0,019 0,014 0,002 0,034 0,024 0,015 0,019	Si 4,066 4,024 4,037 4,066 4,057 4,055 4,036 4,043 4,046 4,052	Ca 0,361 0,555 0,572 0,378 0,415 0,360 0,379 0,583 0,517 0,390 0,451	Ti 2,634 2,698 2,728 2,712 2,724 2,651 2,678 2,702 2,649 2,674 2,685	Mn 0,152 0,086 0,093 0,139 0,131 0,135 0,138 0,090 0,100 0,125 0,119	Fe ²⁺ 1,259 1,096 1,179 1,258 1,229 1,217 1,280 1,094 1,113 1,205 1,193	Fe ³⁺ 0,687 0,824 0,729 0,674 0,753 0,657 0,810 0,834 0,759 0,745	Sr 0,018 0,041 0,031 0,044 0,030 0,035 0,018 0,024 0,024 0,021 0,030	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,011 0,022 0,030 0,010 0,000 0,010 0,012 0,019 0,026 0,004 0,013	Nb 0,055 0,049 0,051 0,053 0,063 0,051 0,053 0,053 0,051 0,053 0,053 0,053 0,053 0,053 0,054 0,057 0,037 0,048	La 0,848 0,855 0,796 0,815 0,827 0,781 0,803 0,838 0,797 0,822 0,818	Ce 1,923 1,772 1,807 1,894 1,874 1,943 1,845 1,817 1,859 1,930 1,870	Pr 0,204 0,168 0,167 0,178 0,181 0,172 0,180 0,169 0,181 0,189 0,179	Nd 0,614 0,576 0,528 0,598 0,602 0,651 0,652 0,560 0,566 0,618 0,596	Sm 0,053 0,038 0,055 0,040 0,045 0,043 0,066 0,043 0,050 0,035 0,047	Th 0,034 0,051 0,038 0,035 0,039 0,031 0,037 0,045 0,051 0,038 0,040	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382 0,367 0,354 0,382 0,339 0,425 0,428 0,386 0,386 0,385	 Siti A 4,055 4,054 3,993 3,982 4,013 4,021 4,021 4,080 4,041 4,032 	Siti B+C 4,879 4,921 4,913 4,981 4,921 4,922 4,925 4,885 4,896 4,913 4,916
media dev.st.	Mg 0,066 0,116 0,090 0,076 0,104 0,098 0,094 0,094 0,094 0,100 0,095 0,093 0,014	Al 0,015 0,029 0,026 0,007 0,019 0,014 0,002 0,034 0,024 0,015 0,019 0,010	Si 4,066 4,024 4,037 4,066 4,057 4,055 4,036 4,043 4,043 4,046 4,052 0,020	Ca 0,361 0,555 0,572 0,378 0,415 0,360 0,379 0,583 0,517 0,390 0,451 0,094	Ti 2,634 2,698 2,728 2,712 2,724 2,651 2,678 2,702 2,649 2,674 2,685 0,033	Mn 0,152 0,086 0,093 0,139 0,135 0,135 0,138 0,090 0,100 0,125 0,119 0,024	Fe ²⁺ 1,259 1,096 1,179 1,258 1,229 1,217 1,280 1,094 1,113 1,205 1,193 0,070	Fe ³⁺ 0,687 0,824 0,729 0,674 0,674 0,657 0,810 0,834 0,759 0,745 0,063	Sr 0,018 0,041 0,031 0,044 0,030 0,035 0,018 0,024 0,021 0,030 0,010	Y 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000	Zr 0,011 0,022 0,030 0,010 0,000 0,010 0,010 0,019 0,026 0,004 0,013 0,011	Nb 0,055 0,049 0,057 0,051 0,053 0,063 0,042 0,051 0,054 0,054	La 0,848 0,855 0,796 0,815 0,827 0,781 0,803 0,838 0,797 0,822 0,818 0,024	Ce 1,923 1,772 1,807 1,894 1,874 1,843 1,845 1,817 1,859 1,930 1,870 0,057	Pr 0,204 0,168 0,167 0,178 0,181 0,172 0,180 0,169 0,181 0,189 0,179 0,011	Nd 0,614 0,576 0,528 0,602 0,651 0,652 0,560 0,566 0,618 0,596 0,040	Sm 0,053 0,038 0,055 0,040 0,045 0,048 0,066 0,043 0,050 0,035 0,047 0,009	Th 0,034 0,051 0,038 0,035 0,039 0,031 0,037 0,045 0,051 0,038 0,040 0,007	Fe ³⁺ /Fe _{tot} 0,353 0,429 0,382 0,367 0,354 0,382 0,382 0,339 0,425 0,428 0,386 0,386 0,385	Siti A 4,055 4,054 3,993 3,982 4,013 4,021 4,021 4,020 4,060 4,041 4,032	Siti B+C 4,879 4,921 4,913 4,981 4,921 4,922 4,925 4,885 4,896 4,913 4,916

Tab. 21.a. Composizione dei punti analisi del campione P7 nella prova 4: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

nedione334,44329,70

Tab. 21.b. Composizione dei punti analisi del campione P7 nella prova 5: percentuale in peso degli ossidi e formula calcolata sulla base di 22 ossigeni.

	MgO	Al_2O_3	SiO ₂	CaO	TiO ₂	MnO	FeO	SrO	Y_2O_3	ZrO ₂	Nb ₂ O ₅	La ₂ O ₃	Ce_2O_3	Pr ₂ O ₃	Nd ₂ O ₃	Sm_2O_3	Gd_2O_3	ThO ₂	Somma			
	0,22	0,01	19,20	1,70	17,02	0,75	11,36	0,40	0,01	0,02	0,52	10,73	23,99	2,28	8,80	0,67	0,21	0,87	98,78			
	0,36	0,13	19,40	1,95	17,15	0,75	11,61	0,31	0,27	0,19	0,43	10,91	24,24	2,22	8,02	0,81	0,06	1,09	99,89			
	0,29	0,10	19,30	1,95	17,42	0,77	10,98	0,23	0,00	0,23	0,38	10,25	24,44	2,32	7,93	0,66	0,10	1,03	98,38			
	0,22	0,03	19,36	1,63	17,22	0,79	11,20	0,35	0,13	0,05	0,56	11,11	24,51	2,66	9,11	0,53	0,33	1,05	100,84			
	0,26	0,12	19,26	2,20	17,20	0,67	11,11	0,26	0,07	0,00	0,64	10,56	24,12	2,66	8,41	0,55	0,37	1,04	99,52			
	0,30	0,13	19,43	2,27	17,18	0,66	11,23	0,20	0,03	0,26	0,59	10,21	23,81	2,39	7,97	0,50	0,27	1,19	98,62			
	0,27	0,08	19,10	1,55	17,15	0,71	11,21	0,11	0,30	0,00	0,39	10,58	24,99	2,16	8,64	0,67	0,26	0,72	98,89			
	0,31	0,03	19,12	1,60	16,93	0,76	11,33	0,27	0,11	0,00	0,36	10,79	24,60	2,52	8,49	0,66	0,10	0,57	98,55			
	0,37	0,16	19,50	2,56	17,73	0,60	11,15	0,44	0,00	0,24	0,54	10,86	23,70	1,90	7,89	0,53	0,03	1,16	99,37			
	0,36	0,09	19,32	2,08	17,18	0,68	11,31	0,16	0,08	0,18	0,27	10,54	23,83	2,55	7,95	0,69	0,39	0,94	98,58			
media	0,30	0,09	19,30	1,95	17,22	0,71	11,25	0,27	0,10	0,12	0,47	10,65	24,22	2,37	8,32	0,63	0,21	0,97	99,14			
dev.st.	0,05	0,05	0,13	0,33	0,22	0,06	0,17	0,11	0,11	0,11	0,12	0,28	0,41	0,24	0,43	0,10	0,13	0,20				
							2.	2.												3+		
	Mg	Al	Si	Ca	Ti	Mn	Fe ²⁺	Fe ³⁺	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Gd	Th	Fe ³⁺ /Fe _{tot}	Siti A	Siti B+C
	Mg 0,069	Al 0,001	Si 4,026	Ca 0,381	Ti 2,685	Mn 0,133	Fe ²⁺ 1,223	Fe ³⁺ 0,770	Sr 0,049	Y 0,001	Zr 0,002	Nb 0,050	La 0,830	Ce 1,842	Pr 0,174	Nd 0,659	Sm 0,049	Gd 0,015	Th 0,041	Fe ³⁺ /Fe _{tot} 0,387	Siti A 4,040	Siti B+C 4,934
	Mg 0,069 0,110	Al 0,001 0,032	Si 4,026 3,994	Ca 0,381 0,430	Ti 2,685 2,656	Mn 0,133 0,131	Fe ²⁺ 1,223 1,091	Fe ³⁺ 0,770 0,908	Sr 0,049 0,037	Y 0,001 0,029	Zr 0,002 0,019	Nb 0,050 0,040	La 0,830 0,828	Ce 1,842 1,827	Pr 0,174 0,166	Nd 0,659 0,590	Sm 0,049 0,058	Gd 0,015 0,004	Th 0,041 0,051	Fe ³⁺ /Fe _{tot} 0,387 0,454	Siti A 4,040 3,990	Siti B+C 4,934 5,016
	Mg 0,069 0,110 0,090	Al 0,001 0,032 0,025	Si 4,026 3,994 4,035	Ca 0,381 0,430 0,436	Ti 2,685 2,656 2,740	Mn 0,133 0,131 0,136	Fe ²⁺ 1,223 1,091 1,230	Fe ³⁺ 0,770 0,908 0,689	Sr 0,049 0,037 0,027	Y 0,001 0,029 0,000	Zr 0,002 0,019 0,023	Nb 0,050 0,040 0,036	La 0,830 0,828 0,790	Ce 1,842 1,827 1,871	Pr 0,174 0,166 0,177	Nd 0,659 0,590 0,592	Sm 0,049 0,058 0,048	Gd 0,015 0,004 0,007	Th 0,041 0,051 0,049	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359	Siti A 4,040 3,990 3,997	Siti B+C 4,934 5,016 4,968
	Mg 0,069 0,110 0,090 0,068	Al 0,001 0,032 0,025 0,008	Si 4,026 3,994 4,035 4,006	Ca 0,381 0,430 0,436 0,362	Ti 2,685 2,656 2,740 2,680	Mn 0,133 0,131 0,136 0,139	Fe ²⁺ 1,223 1,091 1,230 1,234	Fe ³⁺ 0,770 0,908 0,689 0,703	Sr 0,049 0,037 0,027 0,042	Y 0,001 0,029 0,000 0,015	Zr 0,002 0,019 0,023 0,005	Nb 0,050 0,040 0,036 0,052	La 0,830 0,828 0,790 0,848	Ce 1,842 1,827 1,871 1,857	Pr 0,174 0,166 0,177 0,200	Nd 0,659 0,590 0,592 0,673	Sm 0,049 0,058 0,048 0,038	Gd 0,015 0,004 0,007 0,022	Th 0,041 0,051 0,049 0,049	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359 0,363	Siti A 4,040 3,990 3,997 4,091	Siti B+C 4,934 5,016 4,968 4,903
	Mg 0,069 0,110 0,090 0,068 0,081	Al 0,001 0,032 0,025 0,008 0,030	Si 4,026 3,994 4,035 4,006 3,995	Ca 0,381 0,430 0,436 0,362 0,489	Ti 2,685 2,656 2,740 2,680 2,683	Mn 0,133 0,131 0,136 0,139 0,118	Fe ²⁺ 1,223 1,091 1,230 1,234 1,128	Fe ³⁺ 0,770 0,908 0,689 0,703 0,798	Sr 0,049 0,037 0,027 0,042 0,031	Y 0,001 0,029 0,000 0,015 0,007	Zr 0,002 0,019 0,023 0,005 0,000	Nb 0,050 0,040 0,036 0,052 0,060	La 0,830 0,828 0,790 0,848 0,808	Ce 1,842 1,827 1,871 1,857 1,832	Pr 0,174 0,166 0,177 0,200 0,201	Nd 0,659 0,590 0,592 0,673 0,623	Sm 0,049 0,058 0,048 0,038 0,039	Gd 0,015 0,004 0,007 0,022 0,025	Th 0,041 0,051 0,049 0,049 0,049	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359 0,363 0,414	Siti A 4,040 3,990 3,997 4,091 4,098	Siti B+C 4,934 5,016 4,968 4,903 4,907
	Mg 0,069 0,110 0,090 0,068 0,081 0,091	Al 0,001 0,032 0,025 0,008 0,030 0,033	Si 4,026 3,994 4,035 4,006 3,995 4,036	Ca 0,381 0,430 0,436 0,362 0,489 0,506	Ti 2,685 2,656 2,740 2,680 2,683 2,684	Mn 0,133 0,131 0,136 0,139 0,118 0,116	Fe ²⁺ 1,223 1,091 1,230 1,234 1,128 1,175	Fe ³⁺ 0,770 0,908 0,689 0,703 0,798 0,776	Sr 0,049 0,037 0,027 0,042 0,031 0,024	Y 0,001 0,029 0,000 0,015 0,007 0,004	Zr 0,002 0,019 0,023 0,005 0,000 0,026	Nb 0,050 0,040 0,036 0,052 0,060 0,055	La 0,830 0,828 0,790 0,848 0,808 0,782	Ce 1,842 1,827 1,871 1,857 1,832 1,810	Pr 0,174 0,166 0,177 0,200 0,201 0,181	Nd 0,659 0,590 0,592 0,673 0,623 0,591	Sm 0,049 0,058 0,048 0,038 0,039 0,036	Gd 0,015 0,004 0,007 0,022 0,025 0,019	Th 0,041 0,051 0,049 0,049 0,049 0,056	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359 0,363 0,414 0,398	Siti A 4,040 3,990 3,997 4,091 4,098 4,004	Siti B+C 4,934 5,016 4,968 4,903 4,907 4,960
	Mg 0,069 0,110 0,090 0,068 0,081 0,091 0,084	Al 0,001 0,032 0,025 0,008 0,030 0,033 0,019	Si 4,026 3,994 4,035 4,006 3,995 4,036 4,010	Ca 0,381 0,430 0,436 0,362 0,489 0,506 0,348	Ti 2,685 2,656 2,740 2,680 2,683 2,684 2,708	Mn 0,133 0,131 0,136 0,139 0,118 0,116 0,127	Fe ²⁺ 1,223 1,091 1,230 1,234 1,128 1,175 1,253	Fe ³⁺ 0,770 0,908 0,689 0,703 0,798 0,776 0,714	Sr 0,049 0,037 0,027 0,042 0,031 0,024 0,014	Y 0,001 0,029 0,000 0,015 0,007 0,004 0,034	Zr 0,002 0,019 0,023 0,005 0,000 0,026 0,000	Nb 0,050 0,040 0,036 0,052 0,060 0,055 0,037	La 0,830 0,828 0,790 0,848 0,808 0,782 0,819	Ce 1,842 1,827 1,871 1,857 1,832 1,810 1,920	Pr 0,174 0,166 0,177 0,200 0,201 0,181 0,165	Nd 0,659 0,590 0,592 0,673 0,623 0,591 0,648	Sm 0,049 0,058 0,048 0,038 0,039 0,036 0,049	Gd 0,015 0,004 0,007 0,022 0,025 0,019 0,018	Th 0,041 0,051 0,049 0,049 0,049 0,056 0,034	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359 0,363 0,414 0,398 0,363	Siti A 4,040 3,990 3,997 4,091 4,098 4,004 4,016	Siti B+C 4,934 5,016 4,968 4,903 4,907 4,960 4,975
	Mg 0,069 0,110 0,090 0,068 0,081 0,091 0,084 0,097	Al 0,001 0,025 0,008 0,030 0,033 0,019 0,008	Si 4,026 3,994 4,035 4,006 3,995 4,036 4,010 4,016	Ca 0,381 0,430 0,436 0,362 0,489 0,506 0,348 0,360	Ti 2,685 2,656 2,740 2,680 2,683 2,684 2,708 2,675	Mn 0,133 0,131 0,136 0,139 0,118 0,116 0,127 0,135	Fe ²⁺ 1,223 1,091 1,230 1,234 1,128 1,175 1,253 1,162	Fe ³⁺ 0,770 0,908 0,689 0,703 0,703 0,798 0,776 0,714 0,829	Sr 0,049 0,037 0,027 0,042 0,031 0,024 0,014 0,033	Y 0,001 0,029 0,000 0,015 0,007 0,004 0,034 0,012	Zr 0,002 0,019 0,023 0,005 0,000 0,026 0,000 0,000	Nb 0,050 0,040 0,036 0,052 0,060 0,055 0,037 0,034	La 0,830 0,828 0,790 0,848 0,808 0,782 0,819 0,836	Ce 1,842 1,827 1,871 1,857 1,832 1,810 1,920 1,892	Pr 0,174 0,166 0,177 0,200 0,201 0,181 0,165 0,193	Nd 0,659 0,590 0,592 0,673 0,623 0,591 0,648 0,637	Sm 0,049 0,058 0,048 0,038 0,039 0,036 0,049 0,048	Gd 0,015 0,004 0,007 0,022 0,025 0,019 0,018 0,007	Th 0,041 0,051 0,049 0,049 0,049 0,056 0,034 0,027	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359 0,363 0,414 0,398 0,363 0,417	Siti A 4,040 3,990 3,997 4,091 4,098 4,004 4,016 4,032	Siti B+C 4,934 5,016 4,968 4,903 4,907 4,960 4,975 4,952
	Mg 0,069 0,110 0,090 0,068 0,081 0,091 0,084 0,097 0,114	Al 0,001 0,032 0,025 0,008 0,030 0,033 0,019 0,008 0,039	Si 4,026 3,994 4,035 4,006 3,995 4,036 4,010 4,016 3,997	Ca 0,381 0,430 0,436 0,362 0,489 0,506 0,348 0,360 0,561	Ti 2,685 2,656 2,740 2,680 2,683 2,684 2,708 2,675 2,734	Mn 0,133 0,131 0,136 0,139 0,118 0,116 0,127 0,135 0,104	Fe ²⁺ 1,223 1,091 1,230 1,234 1,128 1,175 1,253 1,162 1,079	Fe ³⁺ 0,770 0,908 0,689 0,703 0,703 0,776 0,714 0,829 0,832	Sr 0,049 0,037 0,027 0,042 0,031 0,024 0,014 0,033 0,052	Y 0,001 0,029 0,000 0,015 0,007 0,004 0,034 0,012 0,000	Zr 0,002 0,019 0,023 0,005 0,000 0,026 0,000 0,000 0,023	Nb 0,050 0,040 0,036 0,052 0,060 0,055 0,037 0,034 0,050	La 0,830 0,828 0,790 0,848 0,808 0,782 0,819 0,836 0,821	Ce 1,842 1,827 1,871 1,857 1,832 1,810 1,920 1,892 1,779	Pr 0,174 0,166 0,177 0,200 0,201 0,181 0,165 0,193 0,142	Nd 0,659 0,590 0,592 0,673 0,623 0,591 0,648 0,637 0,577	Sm 0,049 0,058 0,048 0,038 0,039 0,036 0,049 0,048 0,038	Gd 0,015 0,004 0,022 0,025 0,019 0,018 0,007 0,002	Th 0,041 0,049 0,049 0,049 0,056 0,034 0,027 0,054	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359 0,363 0,414 0,398 0,363 0,417 0,435	Siti A 4,040 3,990 3,997 4,091 4,098 4,004 4,016 4,032 4,027	Siti B+C 4,934 5,016 4,968 4,903 4,907 4,960 4,975 4,952 4,976
	Mg 0,069 0,110 0,090 0,068 0,081 0,091 0,084 0,097 0,114 0,110	AI 0,001 0,032 0,025 0,008 0,030 0,033 0,019 0,008 0,039 0,022	Si 4,026 3,994 4,035 4,006 3,995 4,036 4,010 4,016 3,997 4,022	Ca 0,381 0,430 0,436 0,362 0,489 0,506 0,348 0,360 0,561 0,465	Ti 2,685 2,656 2,740 2,680 2,683 2,684 2,708 2,675 2,734 2,690	Mn 0,133 0,131 0,136 0,139 0,118 0,116 0,127 0,135 0,104 0,119	Fe ²⁺ 1,223 1,091 1,230 1,234 1,128 1,175 1,253 1,162 1,079 1,113	Fe ³⁺ 0,770 0,908 0,689 0,703 0,778 0,776 0,714 0,829 0,832 0,856	Sr 0,049 0,037 0,027 0,042 0,031 0,024 0,014 0,033 0,052 0,019	Y 0,001 0,029 0,000 0,015 0,007 0,004 0,034 0,012 0,000 0,009	Zr 0,002 0,019 0,023 0,005 0,000 0,026 0,000 0,000 0,023 0,018	Nb 0,050 0,040 0,052 0,060 0,055 0,037 0,034 0,050 0,050	La 0,830 0,828 0,790 0,848 0,808 0,782 0,819 0,836 0,821 0,810	Ce 1,842 1,827 1,871 1,857 1,832 1,810 1,920 1,892 1,779 1,816	Pr 0,174 0,166 0,177 0,200 0,201 0,181 0,165 0,193 0,142 0,193	Nd 0,659 0,590 0,592 0,673 0,623 0,591 0,648 0,637 0,577 0,591	Sm 0,049 0,058 0,048 0,038 0,039 0,036 0,049 0,048 0,038 0,050	Gd 0,015 0,004 0,022 0,025 0,019 0,018 0,007 0,002 0,027	Th 0,041 0,051 0,049 0,049 0,056 0,034 0,027 0,054 0,045	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359 0,363 0,414 0,398 0,363 0,417 0,435 0,435	Siti A 4,040 3,990 3,997 4,091 4,098 4,004 4,016 4,032 4,027 4,015	Siti B+C 4,934 5,016 4,968 4,903 4,907 4,960 4,975 4,952 4,976 4,963
media	Mg 0,069 0,110 0,090 0,068 0,081 0,091 0,084 0,097 0,114 0,110 0,091	AI 0,001 0,032 0,025 0,008 0,030 0,033 0,019 0,008 0,039 0,022 0,022	Si 4,026 3,994 4,035 4,006 3,995 4,036 4,010 4,016 3,997 4,022 4,014	Ca 0,381 0,430 0,436 0,362 0,489 0,506 0,348 0,360 0,561 0,465 0,434	Ti 2,685 2,656 2,740 2,680 2,683 2,684 2,708 2,675 2,734 2,690 2,693	Mn 0,133 0,131 0,136 0,139 0,118 0,116 0,127 0,135 0,104 0,119 0,126	Fe ²⁺ 1,223 1,091 1,230 1,234 1,128 1,175 1,253 1,162 1,079 1,113 1,169	Fe ³⁺ 0,770 0,908 0,689 0,703 0,778 0,776 0,714 0,829 0,832 0,856 0,788	Sr 0,049 0,037 0,027 0,042 0,031 0,024 0,014 0,033 0,052 0,019 0,033	Y 0,001 0,029 0,000 0,015 0,007 0,004 0,034 0,012 0,000 0,009 0,011	Zr 0,002 0,019 0,023 0,005 0,000 0,026 0,000 0,000 0,023 0,018 0,012	Nb 0,050 0,040 0,052 0,060 0,055 0,037 0,034 0,050 0,026 0,044	La 0,830 0,828 0,790 0,848 0,808 0,808 0,821 0,836 0,821 0,810 0,810	Ce 1,842 1,877 1,877 1,857 1,832 1,810 1,920 1,892 1,779 1,816 1,844	Pr 0,174 0,166 0,177 0,200 0,201 0,181 0,165 0,193 0,142 0,193 0,179	Nd 0,659 0,590 0,592 0,673 0,623 0,591 0,648 0,637 0,591 0,591 0,618	Sm 0,049 0,058 0,048 0,038 0,039 0,036 0,049 0,048 0,038 0,050 0,045	Gd 0,015 0,004 0,007 0,022 0,025 0,019 0,018 0,007 0,002 0,027 0,015	Th 0,041 0,051 0,049 0,049 0,056 0,034 0,027 0,054 0,045 0,046	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359 0,363 0,414 0,398 0,363 0,417 0,435 0,435 0,403	Siti A 4,040 3,990 3,997 4,091 4,098 4,004 4,016 4,032 4,027 4,015 4,031	Siti B+C 4,934 5,016 4,968 4,903 4,907 4,960 4,975 4,952 4,976 4,963 4,955
media dev.st.	Mg 0,069 0,110 0,090 0,068 0,081 0,091 0,084 0,097 0,114 0,110 0,091 0,017	AI 0,001 0,025 0,008 0,030 0,033 0,019 0,008 0,039 0,022 0,022 0,022	Si 4,026 3,994 4,035 4,006 3,995 4,036 4,010 4,016 3,997 4,022 4,014 0,016	Ca 0,381 0,430 0,436 0,362 0,489 0,506 0,348 0,360 0,561 0,465 0,434 0,072	Ti 2,685 2,656 2,740 2,680 2,683 2,684 2,708 2,675 2,734 2,690 2,693 0,026	Mn 0,133 0,131 0,136 0,139 0,118 0,116 0,127 0,135 0,104 0,119 0,126 0,011	Fe ²⁺ 1,223 1,091 1,230 1,234 1,128 1,175 1,253 1,162 1,079 1,113 1,169 0,064	Fe ³⁺ 0,770 0,908 0,689 0,703 0,778 0,776 0,714 0,829 0,832 0,856 0,788 0,071	Sr 0,049 0,037 0,027 0,042 0,031 0,024 0,014 0,033 0,052 0,019 0,033 0,013	Y 0,001 0,029 0,000 0,015 0,007 0,004 0,034 0,012 0,000 0,009 0,011 0,012	Zr 0,002 0,019 0,023 0,005 0,000 0,026 0,000 0,000 0,023 0,018 0,012 0,011	Nb 0,050 0,040 0,052 0,060 0,055 0,037 0,034 0,050 0,026 0,044 0,011	La 0,830 0,828 0,790 0,848 0,808 0,782 0,819 0,836 0,821 0,810 0,810 0,817 0,020	Ce 1,842 1,827 1,871 1,857 1,832 1,810 1,920 1,892 1,779 1,816 1,844 0,042	Pr 0,174 0,166 0,177 0,200 0,201 0,181 0,165 0,193 0,142 0,193 0,179 0,019	Nd 0,659 0,590 0,673 0,623 0,623 0,691 0,648 0,637 0,591 0,591 0,618 0,034	Sm 0,049 0,058 0,048 0,039 0,036 0,049 0,048 0,038 0,050 0,045 0,007	Gd 0,015 0,004 0,022 0,025 0,019 0,018 0,007 0,002 0,027 0,015 0,009	Th 0,041 0,051 0,049 0,049 0,056 0,034 0,027 0,054 0,045 0,045 0,009	Fe ³⁺ /Fe _{tot} 0,387 0,454 0,359 0,363 0,414 0,398 0,363 0,417 0,435 0,435 0,403	Siti A 4,040 3,990 3,997 4,091 4,098 4,004 4,016 4,032 4,027 4,015 4,015	Siti B+C 4,934 5,016 4,968 4,903 4,907 4,960 4,975 4,952 4,976 4,963 4,955

n_{medio}e _{chimici} ne _{raffinamento} 336,33 329,70 Tab. 22. Limiti di rivelabilità riferiti al cristallo AZ4gr.

	Mg	Al	Si	Ca	Ti	Mn	Fe	Sr	Y	Zr	Nb	La	Ce	Pr	Nd	Sm	Gd	Th
% elemento	0,0842	0,0843	9,1240	2,3958	9,9222	0,3545	8,4233	0,0073	0,1986	0,7062	2,2991	11,2334	18,8534	1,4832	4,7038	0,4202	0,2001	0,8590
Limtite rivelabilità	0,0170	0,0179	0,0129	0,0171	0,0173	0,0292	0,0364	0,0699	0,0793	0,0605	0,0798	0,0996	0,0943	0,1178	0,1051	0,1030	0,1085	0,0810

Tab. 23. Ripartizione cationica nei siti A1, A2, B, C1, C2A, C2B, Si1, Si2, di alcuni cristalli del Pakistan e delle Azzorre.

					A1										A2				
	P4	P5	P6	P7	P _{medio}	AZ1	AZ4gr	AZ4A	AZ4 _{medio}		P4	P5	P6	P7	P _{medio}	AZ1	AZ4gr	AZ4A	AZ4 _{medio}
Ce	0,422	0,441	0,440	0,452	0,452	0,539	0,508	0,504	0,512	Ce	0,483	0,453	0,440	0,455	0,452	0,315	0,311	0,315	0,310
La	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	La	0,390	0,413	0,404	0,405	0,408	0,526	0,486	0,497	0,494
Nd	0,295	0,285	0,289	0,298	0,285	0,193	0,196	0,199	0,193	Nd	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Pr	0,091	0,088	0,080	0,087	0,087	0,070	0,060	0,066	0,064	Pr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Sm	0,022	0,023	0,020	0,022	0,022	0,016	0,016	0,017	0,015	Sm	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Gd	0,008	0,005	0,006	0,007	0,007	0,006	0,006	0,008	0,007	Gd	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Th	0,041	0,038	0,032	0,021	0,027	0,021	0,020	0,024	0,020	Th	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Ca	0,122	0,121	0,133	0,113	0,120	0,154	0,194	0,182	0,189	Ca	0,107	0,108	0,140	0,123	0,125	0,158	0,202	0,188	0,195
Sr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Sr	0,021	0,026	0,017	0,017	0,015	0,000	0,001	0,000	0,001
					В										C1				
	P4	P5	P6	P7	P _{medio}	AZ1	AZ4gr	AZ4A	AZ4 _{medio}		P4	P5	P6	P7	P _{medio}	AZ1	AZ4gr	AZ4A	AZ4 _{medio}
Fe ²⁺	0,839	0,788	0,814	0,778	0,799	0,878	0,859	0,865	0,851	Fe ²⁺	0,000	0,012	0,008	0,016	0,000	0,253	0,172	0,162	0,177
Mg	0,089	0,099	0,081	0,081	0,096	0,001	0,039	0,023	0,045	Mg	0,006	0,002	0,009	0,006	0,004	0,000	0,000	0,011	0,000
Mn	0,062	0,098	0,100	0,126	0,095	0,090	0,077	0,082	0,076	Fe ³⁺	0,513	0,503	0,489	0,467	0,509	0,166	0,239	0,247	0,231
Ca	0,000	0,000	0,000	0,004	0,000	0,001	0,000	0,000	0,000	Ti	0,457	0,464	0,473	0,500	0,469	0,574	0,566	0,562	0,571
Y	0,004	0,011	0,005	0,010	0,008	0,028	0,025	0,030	0,028	Nb	0,000	0,000	0,000	0,000	0,000	0,000	0,004	0,000	0,001
Zr	0,005	0,004	0,000	0,000	0,002	0,000	0,000	0,000	0,000	Zr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
										Al	0,024	0,018	0,022	0,010	0,018	0,007	0,019	0,019	0,020
					C2A										C2B				
	P4	P5	P6	P7	P _{medio}	AZ1	AZ4gr	AZ4A	AZ4 _{medio}		P4	P5	P6	P7	P _{medio}	AZ1	AZ4gr	AZ4A	AZ4 _{medio}
Fe ²⁺	0,160	0,184	0,150	0,183	0,178	0,122	0,111	0,128	0,117	Fe ²⁺	0,048	0,060	0,043	0,054	0,051	0,084	0,066	0,069	0,076
Mg	0,015	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,000	Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fe ³⁺	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Fe ³⁺	0,067	0,010	0,028	0,034	0,037	0,040	0,000	0,000	0,000
Ti	0,786	0,791	0,816	0,789	0,793	0,615	0,661	0,669	0,656	Ti	0,880	0,912	0,905	0,891	0,893	0,660	0,753	0,745	0,735
Nb	0,031	0,021	0,015	0,018	0,021	0,181	0,124	0,114	0,121	Nb	0,005	0,018	0,023	0,021	0,018	0,215	0,181	0,185	0,188
Zr	0,008	0,004	0,020	0,009	0,008	0,081	0,104	0,089	0,105	Zr	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Al	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	Al	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
					Si1										Si2				
	P4	P5	P6	P7	P _{medio}	AZ1	AZ4gr	AZ4A	AZ4 _{medio}		P4	P5	P6	P7	P _{medio}	AZ1	AZ4gr	AZ4A	AZ4 _{medio}
Si	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	Si	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Tab. 24. Grandezze del programma di minimizzazione: osservate, calcolate, relativo errore e somma dei quadrati dei residui (SSQ).

		P4			P5			P6			P7			P _{medio}			AZ1			AZ4A			AZ4gr		1	AZ4 _{media}	,
	Calc	Oss	Errore	Calc	Oss	Errore	Calc	Oss	Errore	Calc	Oss	Errore	Calc	Oss	Errore	Calc	Oss	Errore									
Fe ²⁺	1,047	1,093	0,472	1,056	1,177	0,472	1,023	1,153	0,472	1,047	1,169	0,472	1,028	1,112	0,472	1,591	1,555	0,472	1,386	1,425	0,472	1,381	1,447	0,472	1,400	1,415	0,472
Mg	0,117	0,116	0,013	0,104	0,108	0,013	0,099	0,095	0,019	0,093	0,091	0,017	0,103	0,103	0,015	0,001	0,008	0,014	0,045	0,047	0,011	0,039	0,039	0,017	0,045	0,052	0,020
Mn	0,062	0,062	0,007	0,098	0,097	0,011	0,100	0,099	0,012	0,126	0,126	0,011	0,095	0,093	0,023	0,090	0,091	0,011	0,082	0,082	0,008	0,077	0,077	0,008	0,076	0,076	0,009
Ca	0,458	0,454	0,012	0,458	0,447	0,011	0,545	0,507	0,040	0,476	0,434	0,072	0,490	0,473	0,051	0,625	0,629	0,018	0,739	0,715	0,029	0,792	0,754	0,037	0,769	0,736	0,032
Y	0,004	0,005	0,005	0,011	0,009	0,009	0,005	0,005	0,005	0,010	0,011	0,012	0,008	0,008	0,008	0,028	0,024	0,014	0,030	0,030	0,008	0,025	0,025	0,010	0,028	0,027	0,007
Fe ³⁺	1,093	1,008	0,500	1,015	0,853	0,500	1,006	0,827	0,500	0,969	0,788	0,500	1,056	0,897	0,500	0,372	0,404	0,500	0,493	0,445	0,500	0,478	0,395	0,500	0,461	0,422	0,500
Ti	2,579	2,582	0,017	2,632	2,643	0,022	2,666	2,674	0,024	2,680	2,693	0,026	2,624	2,653	0,049	2,424	2,447	0,026	2,537	2,548	0,034	2,546	2,550	0,020	2,534	2,544	0,038
Nb	0,036	0,038	0,007	0,039	0,039	0,007	0,038	0,040	0,007	0,040	0,044	0,011	0,039	0,041	0,009	0,396	0,362	0,022	0,299	0,298	0,019	0,312	0,310	0,025	0,310	0,295	0,031
Zr	0,013	0,013	0,006	0,008	0,007	0,008	0,020	0,021	0,007	0,009	0,012	0,011	0,010	0,011	0,008	0,081	0,073	0,011	0,089	0,088	0,015	0,104	0,102	0,019	0,105	0,100	0,018
Al	0,048	0,048	0,010	0,037	0,040	0,011	0,043	0,043	0,009	0,021	0,022	0,013	0,036	0,037	0,013	0,014	0,023	0,011	0,039	0,039	0,007	0,037	0,038	0,007	0,041	0,042	0,010
Sm	0,044	0,046	0,012	0,046	0,047	0,009	0,040	0,041	0,008	0,044	0,045	0,007	0,044	0,045	0,009	0,033	0,033	0,009	0,033	0,035	0,009	0,032	0,034	0,009	0,030	0,032	0,008
Th	0,081	0,083	0,007	0,076	0,097	0,017	0,064	0,073	0,014	0,042	0,046	0,009	0,053	0,070	0,024	0,041	0,042	0,008	0,048	0,050	0,006	0,039	0,042	0,006	0,039	0,043	0,007
Sr	0,042	0,040	0,013	0,052	0,032	0,019	0,034	0,029	0,021	0,033	0,033	0,013	0,029	0,029	0,014	0,000	0,000	0,000	0,001	0,001	0,002	0,002	0,001	0,003	0,001	0,001	0,002
Ce	1,808	1,822	0,038	1,788	1,787	0,034	1,759	1,776	0,035	1,815	1,844	0,042	1,809	1,833	0,045	1,710	1,712	0,016	1,638	1,659	0,038	1,640	1,651	0,022	1,645	1,667	0,034
La	0,779	0,782	0,018	0,825	0,825	0,011	0,808	0,817	0,027	0,810	0,817	0,020	0,817	0,829	0,033	1,052	1,054	0,011	0,994	0,997	0,015	0,971	0,993	0,030	0,988	1,002	0,029
Nd	0,590	0,598	0,027	0,569	0,570	0,018	0,578	0,582	0,017	0,597	0,618	0,034	0,570	0,580	0,029	0,387	0,389	0,017	0,399	0,405	0,019	0,391	0,398	0,016	0,385	0,394	0,019
Pr	0,181	0,183	0,012	0,176	0,176	0,015	0,160	0,168	0,023	0,173	0,179	0,019	0,174	0,177	0,015	0,140	0,143	0,016	0,132	0,134	0,012	0,120	0,125	0,014	0,127	0,131	0,013
Gd	0,016	0,017	0,008	0,011	0,011	0,005	0,012	0,013	0,007	0,013	0,015	0,009	0,014	0,014	0,004	0,013	0,013	0,007	0,016	0,017	0,007	0,012	0,015	0,009	0,015	0,016	0,006
Si	4,000	4,011	0,027	4,001	4,034	0,015	4,000	4,037	0,029	4,000	4,014	0,016	4,000	3,995	0,029	4,000	3,998	0,022	4,000	3,988	0,022	4,000	4,004	0,021	4,000	4,003	0,026
d _{media} B	2,148	2,156	0,085	2,150	2,164	0,085	2,151	2,158	0,086	2,154	2,148	0,083	2,150	2,156	0,085	2,158	2,155	0,048	2,156	2,161	0,048	2,154	2,154	0,047	2,155	2,156	0,084
d _{media} C1	1,995	1,987	0,025	1,996	1,991	0,027	1,995	1,988	0,026	1,996	1,986	0,027	1,995	1,987	0,027	2,025	1,991	0,014	2,013	1,990	0,014	2,013	1,989	0,013	2,014	1,988	0,024
d _{media} C2A	2,007	2,007	0,005	2,008	2,008	0,004	2,004	2,004	0,007	2,009	2,008	0,007	2,008	2,008	0,008	2,012	2,012	0,002	2,012	2,011	0,002	2,011	2,010	0,003	2,012	2,011	0,005
d _{media} C2B	1,986	1,984	0,022	1,987	1,985	0,021	1,984	1,982	0,020	1,987	1,983	0,021	1,986	1,984	0,022	1,999	1,991	0,009	1,993	1,988	0,010	1,993	1,987	0,009	1,995	1,988	0,018
ne ⁻ B	24,811	24,635	0,768	24,722	25,074	0,433	24,833	24,688	0,584	24,847	24,670	1,131	24,687	24,740	0,740	26,252	26,358	0,205	25,993	26,038	0,245	25,692	25,576	0,657	25,664	25,857	0,402
ne ⁻ C1	23,772	23,760	0,150	23,872	23,900	0,085	23,700	23,690	0,113	23,778	23,770	0,218	23,837	23,843	0,143	23,611	23,617	0,022	23,349	23,360	0,073	23,545	23,557	0,072	23,461	23,467	0,046
ne ⁻ C2A	23,222	23,210	0,216	23,212	23,240	0,120	23,230	23,220	0,162	23,249	23,240	0,318	23,265	23,271	0,205	27,397	27,468	0,104	26,265	26,375	0,331	26,664	26,799	0,343	26,660	26,717	0,206
ne ⁻ C2B	22,561	22,550	0,213	22,623	22,650	0,119	22,730	22,720	0,162	22,757	22,750	0,311	22,695	22,701	0,206	26,585	26,652	0,101	25,799	25,917	0,341	25,701	25,833	0,337	25,884	25,944	0,211
ne ⁻ A1	55,469	54,590	0,756	55,389	54,670	0,417	54,743	54,170	0,610	55,192	54,160	1,124	55,068	54,664	0,742	53,384	53,397	0,118	52,426	52,144	0,352	51,802	51,477	0,355	51,985	51,792	0,261
ne ⁻ A2	53,131	52,300	0,732	52,942	52,300	0,394	51,952	51,460	0,564	52,578	51,590	1,094	52,556	52,186	0,706	51,458	51,470	0,113	50,365	50,094	0,344	49,817	49,513	0,343	50,063	49,888	0,248
ne tot	335,339	336,168	4,913	334,962	335,173	4,842	331,582	332,736	5,145	333,951	336,329	5,513	333,569	336,431	5,974	337,138	336,531	2,858	330,338	331,982	3,331	328,385	330,180	3,651	329,227	330,740	3,689
Fe ³⁺ /Fe _{tot}	0,511	0,550	0,050	0,490	0,550	0,050	0,496	0,550	0,050	0,480	0,550	0,050	0,507	0,550	0,050	0,190			0,263			0,257			0,248		
SSQ	6,556			19,828			9,491			9,587			5,717			15,273			8,489			10,582			7,779		

AZ1	A1	A2	В	C1	C2A	C2B	Si1	Si2	
01	^{2x} 0,28	^{2x} 0,27		^{2x} 0,52			^{2x} 0,98		2,06
O2	^{2x} 0,36	^{2x} 0,35			^{4x} 0,62	^{4x} 0,66			1,98
O3	^{2x} 0,35	^{2x} 0,26	^{4x} 0,29					^{2x} 1,00	1,91
O4		0,25		^{2x} 0,58		^{2x} 0,59			2,01
O5	0,13			^{2x} 0,61	^{2x} 0,61				1,96
O6		^{2x} 0,10	^{2x} 0,48				1,12		1,80
07							1,07	1,02	2,10
O8	0,37	0,46						1,10	1,93
BVS	2,48	2,68	2,11	3,43	3,69	3,83	4,16	4,13	
Vi	2,82	2,84	2,03	3,32	3,94	4,01	4,00	4,00	

AZ4gr	A1	A2	В	C1	C2A	C2B	Si1	Si2	
O1	^{2x} 0,28	^{2x} 0,26		^{2x} 0,53		4x	^{2x} 0,98		2,05
O2	^{2x} 0,35	^{2x} 0,34	4x		^{4x} 0,62	0,67			1,97
O3	^{2x} 0,34	^{2x} 0,26	0,29			2x	2	^{2x} 1,00	1,88
O4		0,25		^{2x} 0,58		0,60			2,01
O5	0,13		2x	^{2x} 0,62	^{2x} 0,60				1,97
O6		^{2x} 0,10	0,48				1,13		1,81
07		-			-		1,06	1,05	2,10
O8	0,37	0,45						1,09	1,91
BVS	2,44	2,61	2,10	3,46	3,68	3,86	4,16	4,13	
Vi	2,83	2,80	2,02	3,40	3,90	4,05	4,00	4,00	

AZ4A	A1	A2	В	C1	C2A	C2B	Si1	Si2	
01	^{2x} 0,28	^{2x} 0,26		^{2x} 0,53			^{2x} 0,98		2,05
O2	^{2x} 0,35	^{2x} 0,34			^{4x} 0,61	^{4x} 0,66			1,97
O3	^{2x} 0,34	^{2x} 0,26	^{4x} 0,29					^{2x} 1,01	1,90
O4		0,25		^{2x} 0,58		^{2x} 0,60			2,01
O5	0,13			^{2x} 0,61	^{2x} 0,60				1,95
O6		^{2x} 0,10	^{2x} 0,48				1,13		1,80
07							1,06	1,04	2,10
O8	0,36	0,45						1,10	1,92
BVS	2,44	2,64	2,10	3,43	3,63	3,86	4,15	4,17	
Vi	2,84	2,81	2,03	3,39	3,86	4,05	4,00	4,00	

Tab. 25. Valenze di legame (Brown, 2002) dei cristalli AZ1, AZ4gr, AZ4A, P4, P5, P6, P7.

P4	A1	A2	В	C1	C2A	C2B	Si1	Si2		P5	A1	A2	В	C1	C2A	C2B	Si1	Si2	
O1	^{2x} 0,28	^{2x} 0,28		^{2x} 0,52			^{2x} 0,98		2,06	O1	^{2x} 0,29	^{2x} 0,27		^{2x} 0,52			^{2x} 0,98		2,06
O2	^{2x} 0,36	^{2x} 0,36			^{4x} 0,58	^{4x} 0,65			1,94	O2	^{2x} 0,36	^{2x} 0,36			^{4x} 0,58	^{4x} 0,65			1,94
O3	^{2x} 0,34	^{2x} 0,26	^{4x} 0,28				2	^{2x} 0,99	1,88	O3	^{2x} 0,35	^{2x} 0,26	^{4x} 0,28				2	^{2x} 0,99	1,88
O4		0,26		^{2x} 0,59		^{2x} 0,56			1,99	O4		0,26		^{2x} 0,58		^{2x} 0,57			2,00
O5	0,14			^{2x} 0,61	^{2x} 0,57				1,93	O5	0,14			^{2x} 0,61	^{2x} 0,56				1,93
O6		^{2x} 0,10	^{2x} 0,47				1,12		1,79	O6		^{2x} 0,10	^{2x} 0,46				1,13		1,80
07							1,07	1,04	2,11	07							1,05	1,06	2,11
O8	0,36	0,47						1,09	1,92	O8	0,36	0,47						1,09	1,91
BVS	2,47	2,73	2,05	3,44	3,47	3,71	4,14	4,12		BVS	2,50	2,72	2,03	3,43	3,44	3,73	4,13	4,13	
Vi	2,92	2,87	2,01	3,45	3,68	3,84	4,00	4,00		Vi	2,92	2,87	2,02	3,45	3,65	3,89	4,00	4,00	
P6	A1	A2	В	C1	C2A	C2B	Si1	Si2		P 7	A1	A2	В	C1	C2A	C2B	Si1	Si2	
O1	^{2x} 0,29	^{2x} 0,27		^{2x} 0,52			^{2x} 0,98		2,06	O1	^{2x} 0,29	^{2x} 0,28		^{2x} 0,52			^{2x} 0,98		2,07
O2	^{2x} 0,36	^{2x} 0,35			^{4x} 0,59	^{4x} 0,65			1,96	O2	^{2x} 0,36	^{2x} 0,36			^{4x} 0,58	^{4x} 0,65			1,95
O3	^{2x} 0,34	^{2x} 0,26	^{4x} 0,28				2	^{2x} 1,00	1,88	O3	^{2x} 0,35	^{2x} 0,26	^{4x} 0,29				2	^{2x} 0,98	1,88
O4		0,25		^{2x} 0,59		^{2x} 0,58			2,00	O4		0,25		^{2x} 0,59		^{2x} 0,57			2,00
O5	0,14			^{2x} 0,62	^{2x} 0,57				1,94	O5	0,14			^{2x} 0,62	^{2x} 0,56				1,94
O6		^{2x} 0,10	^{2x} 0,47				1,14		1,81	O6		^{2x} 0,10	^{2x} 0,48				1,11		1,80
07							1,07	1,04	2,10	07							1,08	1,03	2,11
O8	0,36	0,47						1,09	1,92	08	0,36	0,47						1,09	1,93
BVS	2,48	2,68	2,05	3,45	3,51	3,76	4,17	4,13		BVS	2,49	2,71	2,13	3,47	3,44	3,74	4,16	4,09	
Vi	2,90	2,84	2,01	3,46	3,71	3,91	4,00	4,00		Vi	2,91	2,86	2,01	3,48	3,65	3,88	4,00	4,00	

Tab. 25. continua. Valenze di legame (Brown, 2002) dei cristalli AZ1, AZ4gr, AZ4A, P4, P5, P6, P7.

APPENDICE I Immagini TEM

Figg. 1. Immagini ottenute dalla rotazione dello stesso cristallo (Azz700): a) cristallo visto secondo la direzione [011] ingrandito 45000 volte e relativo SAED; b) SAED visto lungo [121]; c) cristallo visto secondo la direzione [02-1] ingrandito 60000 volte e relativo SAED.

Fig. 2. Immagine ingrandita 17000 volte del microframmento Azz33 visto secondo la direzione [010] e relativo SAED.

Fig. 3. Immagine ingrandita 45000 volte del microframmento Azz37 visto secondo la direzione [-130] e relativo SAED.

Fig. 4. Immagine ingrandita 28000 volte del microframmento Azz39 visto secondo la direzione [1-1-2] e relativo SAED.

Fig. 5. Immagine ingrandita 13000 volte del microframmento Azz89 visto secondo la direzione [110] e relativo SAED.

Fig. 6. Immagine ingrandita 76000 volte del microframmento P118 visto secondo la direzione [010] e relativo SAED.

Fig. 7. Immagine ingrandita 28000 volte del microframmento P130 visto secondo la direzione [0-31] e relativo SAED.

Fig. 8. Immagine ingrandita 46000 volte del microframmento P116 visto secondo la direzione [-130] e relativo SAED.

Spigoli	frequenza
100	1
101	1
10-1	1
01-1	1
012	1
1-1-1	1
1-1-3	1
203	1
213	1
3-1-3	1
313	1
315	1
-3-11	1
40-3	1
512	1
5-11	1
531	1

Tabella 1. Frequenze degli spigoli osservati nei diversi microcristalli.

Figg. 9. a) SAED visto lungo la direzione [100] e b) relative frange.

a)

a)

c)

Figg. 10. a) SAED, b) immagine a ingrandimenti medi, c) immagine ad alta risoluzione del microframmento AZ33 visto secondo la direzione [010].

Fig. 11. a) SAED, b) immagine a ingrandimenti medi, c) immagine ad alta risoluzione del microframmento P116 visto secondo la direzione [-130].

APPENDICE II

Minerali metamittici e studio preliminare di un campione di chevkinite-(Ce) metamittico

MINERALI METAMITTICI E STUDIO PRELIMINARE DI UN CAMPIONE DI CHEVKINITE-(Ce) METAMITTICO

I minerali metamittici sono caratterizzati dalla parziale perdita dell'originaria distribuzione ordinata degli atomi.

Il termine metamittico ha più di cento anni; fu proposto nel 1893 dal danese Brøgger per indicare quelle sostanze che in origine erano cristalline e che nel corso del tempo hanno acquisito le caratteristiche delle sostanze amorfe. La parola metamittico deriva dal greco μεταμιγυυμ che significa mescolato in modo diverso: Brøgger riteneva infatti che nei minerali metamittici fosse avvenuto un riarrangiamento "molecolare" a causa di "influenze esterne".

Prima della scoperta della radioattività (Becquerel, 1914) nessuno poteva ipotizzare che lo stato metamittico fosse causato dalle radiazioni emesse da elementi radioattivi presenti nella struttura originaria (in particolare U e Th) (Fig. 1).

Fig. 1. Radiazioni emesse da isotopi energicamente instabili.

Per primo Hamberg (1914) suggerì che soprattutto il decadimento α fosse responsabile del processo di metamitizzazione e quindi del passaggio da struttura periodica a struttura aperiodica.

Il danneggiamento è causato da due processi, associati al decadimento α , che avvengono simultaneamente ma separatamente:

 Le particelle α, formate da 2 protoni e 2 neutroni e caratterizzate da un'alta energia cinetica (~ 4.5 MeV), dissipano la maggior parte della loro energia attraverso interazioni elettroniche con un cammino libero medio dell'ordine della decina di µm e provocano verso la fine della loro traiettoria lo spostamento di molte centinaia di atomi creando isolati difetti di Frenkel (difetti puntuali caratterizzati dall'assenza di uno ione in una determinata posizione strutturale, ione che si va a sistemare in un sito interstiziale).

2. I nuclidi figli, decisamente più pesanti rispetto alle particelle α e aventi un'energia cinetica più bassa, causano dislocamenti di migliaia di atomi in un range dell'ordine della decina di nm, creando in tal modo delle tracce di materiale disordinato.

Durante il processo di metamittizzazione si verifica una variazione delle proprietà ottiche e fisiche caratteristiche del minerale; si osservano:

- variazioni del colore;
- diminuzione degli indici di rifrazione e della birifrangenza;
- diminuzione della durezza;
- diminuzione della densità;
- progressiva idratazione;
- aumento del volume;
- presenza di microfratture (fratture interne al minerale o nei minerali adiacenti).

Uno studio con il microscopio elettronico in trasmissione, combinato con un'indagine diffrattometrica a raggi X, è indispensabile per comprendere cosa avvenga effettivamente all'interno della struttura. Nella figura 2 vengono presentate alcune immagini HRTEM tratte dal lavoro di Murakami et al. (1991) su zirconi metamittici nel quale vengono individuati quattro possibili stadi di danneggiamento.

Stadio 1: zircone perfettamente cristallino

Il reticolo non presenta irregolarità, gli spot di diffrazione sono puntiformi, i riflessi di Bragg sono stretti ed intensi.

Stadio 2: zircone con inizio di danneggiamento

Si vedono delle zone in cui non è possibile distinguere le frange reticolari, ma ci sono ancora ampie regioni cristalline; gli spot di diffrazione sono meno puntiformi, più diffusi. In questo stadio si ha l'accumulo di difetti di Frenkel che causa un allargamento dei riflessi di Bragg e uno spostamento dei massimi di diffrazione verso valori più bassi di 20. Si verifica un aumento dei parametri di cella.

Stadio 3: zircone moderatamente danneggiato

Nella microstruttura si osservano zone cristalline distorte e zone aperiodiche nelle quali si ha una sovrapposizione di tracce di materiale disordinato dovute ai nuclidi figli. Ciò comporta una diminuzione dell'intensità dei massimi di diffrazione che diventano anche asimmetrici.

Stadio 4: zircone fortemente danneggiato

La periodicità a lungo raggio è stata completamente persa: vi è una completa sovrapposizione di tracce causate dai nuclidi figli. Il pattern di diffrazione mostra solo alcuni anelli diffusi per cui il materiale è diventato amorfo.

Fig. 2. Immagini HRTEM di zirconi con diverso grado di metamittizzazione (Murakami et al., 1991).

Nell'ultima parte della tesi, i petrologi dell'Università di Urbino ci hanno inviato un campione di quarzo sienite, geologicamente molto antico (1156 ± 1.1 milioni di anni, Alberto Renzulli, comunicazione personale), del complesso Tugtutoq della Provincia di Gardar (Groenlandia), nel quale avevano individuato dei cristalli di chevkiniti-(Ce).

Dal campione macinato sono stati separati, al binoculare, alcuni cristalli di chevkinite. La separazione si è rivelata molto più difficile rispetto all'esperienza con il materiale delle Azzorre, in quanto la concentrazione di chevkiniti nella roccia di Tugtutoq era più bassa; inoltre il minerale presentava al microscopio caratteri un po' diversi rispetto ai campioni di São Miguel: il colore rosso era poco marcato e la birifrangenza era più bassa (fig. 3).

Fig. 3. Cristallo di chevkinite di colore rosso-bruno associata ad anfiboli bruni e bruno-verdastri e feldspati (fotografia di F. Ridolfi, comunicazione personale).

Lo studio con diffrattometro a cristallo singolo con rivelatore areale ha messo in evidenza la parziale metamitticità del materiale della Groenlandia. Nella tabella 1 dell'Appendice vengono confrontate le riprese di un cristallo di Tugtutoq e uno delle Azzorre, con le stesse dimensioni, effettuate con le stesse condizioni di lavoro: il numero di riflessi rilevati nel primo caso è estremamente basso (circa 70) rispetto al secondo caso (circa 5000) e questo è un chiaro indizio della parziale perdita della cristallinità. Altro dato a favore della metamitticità del campione è il significativo aumento dei lati di cella *a*, *b*, *c*, e della diminuzione dell'angolo β .

Dall'esame delle indagini chimiche quantitative delle chevkiniti di Tugtotoq, effettuate dai colleghi di Urbino, con microsonda elettronica, su sezioni sottili, e presentate nella tabella 2 dell'Appendice, si può inoltre osservare che la variabilità del Th è decisamente maggiore rispetto a quella dei campioni di Pakistan e Azzorre.

Campione	Condizioni di lavoro	r (mm)	n.picchi osservati con 3°<2 theta<80°	а	b	с	β
Groenlandia	50KV 40mA 0.5°x30s	0,067	70	13.51(2)	5.76(1)	11.11(2)	100.4(1)
Azzorre	50KV 40mA 0.5°x20s	0,067	5687	13.406(1)	5.7336(3)	11.058(1)	100.67(1)

Tab. 1. Parametri di cella e condizioni delle raccolte dati diffrattometriche di un campione della Groenlandia e di uno delle Azzorre.

Campione	CTG1	CTG1	CTG1	CTG1	CTG1	CTG1	CTG1							
P. A.	2/1.	6/2.	7/8.	16/1.	16 / 2 .	19/8.	19/10.							
Nh-O-	0.40	0.26	0.71	2 21	2.00	1 49	1 67							
SiO ₂	19.31	18 81	18 69	18 41	18.32	18 85	19.36							
TiO ₂	17,27	16,99	17.55	14.86	14.92	16,36	16,49							
ZrO ₂	1.33	0.01	0.30	0.19	0.10	0.31	0.35							
HfO ₂	0,52	0,43	0,45	0,34	0.38	0,45	0,44							
ThO ₂	0,67	0,38	0.80	2,44	1,87	4,14	0,96							
Al ₂ O ₃	0,40	0,18	0,21	0,12	0,11	0,35	0,28							
Y ₂ O ₃	0,37	1,07	0,27	0,73	0,81	0,86	0,47							
La_2O_3	14,92	9,46	11,62	10,92	10,26	11,42	12,17							
Ce_2O_3	19,26	22,36	22,92	20,48	20,96	19,72	21,67							
Pr ₂ O ₃	1,47	2,42	2,16	1,91	1,96	1,62	1,89							
Nd_2O_3	4,70	8,90	7,37	6,67	7,14	5,40	6,19							
Sm ₂ O ₃	0,69	1,35	0,90	0,94	0,98	0,78	0,81							
Gd_2O_3	0,28	0,55	0,25	0,46	0,49	0,36	0,32							
Dy_2O_3	0,19	0,23	0,11	0,19	0,19	0,22	0,18							
CaO	2,90	1,76	1,84	2,10	1,66	2,93	2,64							
MnO	0,19	0,27	0,25	0,23	0,21	0,16	0,21							
FeO _{tot}	9,73	12,61	10,83	11,85	11,77	11,50	10,74							
SrO	0,00	0,00	0,01	0,00	0,00	0,00	0,00							
Na ₂ O	0,16	0,00	0,09	0,10	0,18	0,00	0,03							
K ₂ O	0,10	0,02	0,01	0,01	0,01	0,00	0,00							
F	0,17	0,18	0,17	0,15	0,07	0,15	0,26							
Cl	0,13	0,06	0,17	0,05	0,06	0,03	0,03							
Somma	95,15	98,29	97,67	95,34	94,43	97,08	97,15							
$\mathbf{O} = \mathbf{F}, \mathbf{CI}$	-0,10	-0,09	-0,11	-0,07	-0,04	-0,07	-0,12							
Totale	95,05	98,21	97,56	95,27	94,39	97,01	97,03							
Formula strutturale: A (O, F, Cl) = 22														
ть	0.000	0.040	, 	0.400	0.005	0.000	0.047							
III V	0,033	0,019	0,039	0,123	0,095	0,202	0,047							
I Lo	0,042	0,122	0,030	0,000	0,097	0,096	0,053							
La	1,179	0,747	0,919	1,650	0,040	0,904	0,900							
CC Pr	0.115	0.190	0.160	0.154	0.160	0 1 26	0 1 4 7							
Nd	0,113	0,109	0,109	0,134	0,100	0,120	0,147							
Sm	0,000	0,001	0.067	0.072	0,000	0.057	0,470							
Gd	0,001	0,100	0,007	0.034	0,075	0,007	0,000							
Dv	0.013	0.016	0.007	0.014	0.014	0.015	0.013							
- J Ca	0.665	0.404	0.423	0.499	0.398	0.674	0.601							
Sr	0.000	0.000	0.001	0.000	0.000	0.000	0.000							
Na	0,066	0,000	0,035	0,043	0,076	0,000	0,012							
K	0,027	0,004	0,004	0,002	0,004	0,000	0,001							
Somma A	4,080	4,073	4,074	4,102	4,084	4,065	4,068							
Fe ²⁺ (B)	1 000	1 000	1 000	1 000	1 000	1 000	1 000							
IC (D)	1,000	1,000	1,000	1,000	1,000	1,000	1,000							
Nb	0,039	0,025	0,069	0,221	0,202	0,144	0,160							
	0,78	0,74	0,83	0,47	0,51	0,64	0,64							
Zr	0,139	0,001	0,032	0,020	0,011	0,033	0,036							
HI	0,032	0,026	0,028	0,021	0,024	0,027	0,027							
Al Mr	0,100	0,045	0,052	0,030	0,029	0,089	0,069							
	0,035	0,049	0,045	0,043	0,040	0,029	0,038							
re Somme C	0,744 1 074	1,259 2 4 44	0,942	1,192 2 000	2 040	2 029	0,911							
Somma C	1,0/1	2,141	1,998	2,000	2,010	2,028	1,000							
Ti (D)	2,000	2,000	2,000	2,000	2,000	2,000	2,000							
Si	4,137	4,027	4,008	4,073	4,093	4,046	4,119							
F	0,117	0,121	0,113	0,106	0,046	0,103	0,174							
Cl	0,049	0,020	0,063	0,018	0,022	0,012	0,012							

Tab. 2. Composizione chimica della chevkinite-(Ce) nelle rocce sienitiche del complesso centrale di Tugtutoq. Da Ridolfi, 2000.