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Introduzione

In molti campi ci troviamo di fronte al problema di aggregare un insieme di risultati nu-
merici, per ottenere un determinato valore; ciò avviene non soltanto in matematica ed in fisica,
ma anche nell’ingegneria e nella maggior parte delle scienze economiche e sociali. Le funzioni
di aggregazione, pertanto, sono usate per ottenere un risultato globale per ogni alternativa che
consideri determinati criteri, anche se i problemi d’aggregazione sono molto vasti ed etero-
genei. Ci sono, ad esempio, molti contributi sull’aggregazione di un numero finito od infinito
di inputs reali [6, 7, 24, 31, 46, 61, 83], su argomenti che trattano input su scala ordinale [32]
o sul problema di aggregare input complessi (come le distribuzioni di probabilità [81, 91] o i
fuzzy sets [105]).
Le funzioni d’aggregazione, in particolare, giocano un ruolo importante nell’area dei processi
decisionali, dove, infatti, i valori da aggregare sono tipicamente gradi di preferenza o di sod-
disfazione e, quindi, appartengono all’intervallo [0,1].
Sia n ∈N, n ≥ 2. Una funzione d’aggregazione n–aria è una mappa A da [0,1]n in [0,1], che
soddisfa alle seguenti proprietà:

(A1) A(0, . . . ,0) = 0 e A(1, . . . ,1) = 1;

(A2) A è crescente in ogni componente.

Una particolare classe di funzioni d’aggregazione è data dalle n-copule, la cui definizione è
dovuta a A. Sklar nel 1959 [94]: una n-copula è la restrizione al cubo unitario [0,1]n di una
funzione di distribuzione cumulativa multivariata, le cui marginali sono uniformi su [0,1].
Più precisamente, una n-copula è una funzione C : [0,1]n→ [0,1] che soddisfa:

(C1) C(u) = 0 se ui = 0 per ogni i = 1, . . . ,n;

(C2) C(u) = ui se tutte le coordinate di u sono 1 eccetto ui, cioè C ha marginali monodimen-
sionali uniformi;

(C3) C è n-crescente, cioè VC(B) ≥ 0 per ogni n-box B = [u1,v1]× [u2,v2]× . . .× [un,vn] ⊆
[0,1]n con ui ≤ vi, i = 1,2, . . . ,n, dove il C-volume dell’n-box B è dato da

VC(B) = ∑ε(z1, . . . ,zn) ·C(z1, . . . ,zn)≥ 0 (1)

con

ε(z1, . . . ,zn) =

{
1 se zi = ui per un numero pari di i,
−1 se zi = ui per un numero dispari di i.
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e la somma in (2.15) è estesa a tutti i vertici di B.

Le condizioni (C1) e (C2) sono note come condizioni sui bordi, mentre la condizione (C3) è
nota come monotonia.

Nel caso bivariato la 2-crescenza è equivalente alla supermodularità e gli operatori d’aggrega-
zione binari supermodulari, di cui le copule bivariate sono una sottoclasse, sono stati analizzati
in dettaglio in [37, 39]. Ricordiamo che, considerata una funzione A : [0,1]n → [0,1], A è
supermodulare se, per ogni x, y ∈ [0,1]n,

A(x∧y)+A(x∨y)≥ A(x)+A(y),

dove
x∨y = (max{x1,y1},max{x2,y2}, · · · ,max{xn,yn}),
x∧y = (min{x1,y1},min{x2,y2}, · · · ,min{xn,yn}).

Una forma più forte di supermodularità è data dall’ultramodularità, che è stata discussa in
generale in [67] e nell’applicazione alle copule in [56]. A nostro avviso l’ultramodularità è il
modo più semplice per conservare l’assioma principale delle copule nel caso bivariato, perché,
invece di essere definita sui rettangoli, lo è sui parallelogrammi (Fig. 3.1). Si può, quindi,
verificare che una copula sia ultramodulare, controllando, soltanto, che le sezioni monodimen-
sionali della copula siano convesse, essendo la supermodularità data per definizione.
Queste analisi ci consentiranno di costruire, ad esempio, nuove copule Archimediane, che
meritano particolare attenzione per la convessità dei loro generatori additivi ed il legame stretto,
che vedremo esserci tra convessità ed ultramodularità.
L’ultramodularità, infine, gode anche di un’altra proprietà interessante, ossia della chiusura per
composizione, a differenza della supermodularità. Affinchè ciò avvenga in quest’ultimo caso,
abbiamo bisogno di comporre la supermodularità con l’ultramodularità.

I particolari risultati trovati nel caso bidimensionale hanno indirizzato tale lavoro verso
l’investigazione del caso multidimensionale. La supermodularità e l’assioma di n-crescenza
non coincidono, sebbene tra essi vi sia, comunque, una stretta connessione (Def. 1.2 in
[11]). La supermodularità è più forte della monotonia e nel caso multidimensionale è detta
2-monotonia, mentre l’ultramodularità forte 2-monotonia.
Nel caso multivariato si analizzano, dunque, concetti che generalizzano l’assioma di monotonia
per le funzioni d’aggregazione con un duplice intento:

1. studiare le copule come particolari tipi di funzioni d’aggregazione,

2. vedere quando la proprietà di n-crescenza incontra la richiesta di monotonia per gli ope-
ratori d’aggregazione. Quest’approccio, infatti, porta alla definizione di k-monotonia,
che per k = n coincide con la n-crescenza.

Si ottengono, quindi, vari metodi di costruzione per copule multivariate e, di conseguenza,
nella modellizzazione della dipendenza stocastica di vettori casuali con dimensione n ≥ 3.
Nell’Esempio B.1.7, in particolare, la chiusura delle funzioni d’aggregazione k-monotone
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rispetto alla composizione con una funzione totalmente monotona, ci permetterebbe di ottenere
una copula trivariata, anche se un problema aperto riguarda anche la possibilità di rilassare
l’ipotesi di totale monotonia con quella più debole di forte k-monotonia. Con questo metodo
otterremmo, comunque, una copula e non semplicemente un operatore d’aggregazione, perché
per composizione si conserverebbe la proprietà di forte 3-monotonia, che coincide esattamente
con la 3-crescenza nelle copule trivariate.
Nella prima parte (Esempio 4.3.10 (ii)) si considera, invece, un’applicazione al caso bivariato,
utilizzando il Teorema 4.3.9.
Dal punto di vista probabilistico la supermodularità richiede semplicemente che una copula
C sia una funzione di distribuzione valida. Considerandola, infatti, come funzione di dis-
tribuzione di due variabili casuali U1 e U2, osserviamo che, per ogni u11,u12,u21,u22 con
u11,u12,u21,u22 ∈ [0,1], la disuguaglianza

C(u12,u22)−C(u12,u21)−C(u11,u22)+C(u11,u21)≥ 0

è equivalente alla seguente:

P(u11 ≤U1 ≤ u12,u21 ≤U2 ≤ u22)≥ 0.

L’interpretazione statistica dell’ultramodularità si collega, invece, allo studio delle proprietà di
dipendenza delle variabili casuali. Le copule ultramodulari, in particolare, descrivono la strut-
tura di dipendenza di vettori casuali stocasticamente decrescenti.
Le copule, quindi, in quanto funzioni di distribuzione congiunta, sono strettamente connesse
con la misura di probabilità.
Questa tesi rappresenta, di conseguenza, un tipo di approccio unificante, poiché i concetti alge-
brici della teoria dei reticoli (supermodularità ed ultramodularità) si generalizzano con concetti
tipici della teoria della misura (k-monotonia e forte k-monotonia) e le copule s’inseriscono
esattamente in continuità fra i due differenti approcci.
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Preface

Aggregation functions are mathematical objects that have the function of reducing a set
of numbers into a unique representative number, combining several degrees of membership
into one aggregated value. Particular kinds of aggregation functions are copulas which permit
to represent joint distribution functions by splitting the marginal behaviour, embedded in the
marginal distributions, from the dependence captured by the copula itself.
The word copula is a Latin noun that means a “link” and is used in grammar and logic to
describe “that part of proposition which connects the subject and predicate” (Oxford English
Dictionary). This word was first employed in a mathematical or statistical sense by Abe Sklar
(1959) in the theorem (which now bears his name) describing the function that “joins together”
one-dimensional distribution functions to form multivariate distribution functions. This theo-
rem is a theorem of existence and, in the case of continuous marginal distribution functions
is also a theorem of uniqueness, but it’s not a constructive theorem. Moreover, the concept of
copula can be extended to n dimensions, but multivariate extensions are generally not easily to
be done.
This thesis addresses and develops a new unified approach to copula-based modelling and char-
acterizations of aggregation functions in the multivariate case. In fact the copula approach is
particularly useful when we investigate the interaction between different arguments of aggre-
gation functions. The problem of modelling interaction between attributes remains a difficult
question in the theory of aggregation functions. The way to construct aggregation functions
can be analyzed under various aspects: algebraic [23, 58, 60], analytical [12–16], probabilis-
tic [37,39], and our aim is to propose some methods of construction connected with these points
of view, in order to study n-increasing aggregation functions which are copulas. To cope with
this problem, we have to understand the algebraic structure of lattice and supermodularity on
a general lattice, because supermodularity is strictly connected to 2-increasingness (Def. 1.2
in [11]) and in the bivariate case copulas are a subclass of supermodular aggregation functions.
Supermodularity is also connected to measure theory. For example it is known that a Choquet
integral operator based on a fuzzy measure µ is superadditive if, and only if, the fuzzy measure
µ is supermodular (see prop. 7.1.8).
Fuzzy measures are one of the most important areas in mathematics and so is the integral with
respect to the fuzzy measure. The classical measure and the integral theory is based on the ad-
ditivity of the set function. Additive property is sometimes important in some applications but
sometimes becomes ineffective in the reasoning about the real world environment e.g., fuzzy
logic, decision making, artificial intelligence, etc. In particular, with the introduction of fuzzy
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set theory by Lofti A. Zadeh in 1965, which handles real life problems i.e. vagueness and am-
biguity, the additive property of classical measures becomes a subject of controversy. During
the seventies, M. Sugeno studied a common type of non-additive and monotonic set functions,
called fuzzy measures.
So, a further aim of this thesis is to find out what is the connection between fuzzy measures
and supermodular aggregation functions and in particular we want to investigate under which
conditions Choquet integral yields supermodular aggregation functions.
Finally, our purpose is to open a new way for constructing supermodular aggregation functions
in the multivariate case, which allows to extend several properties of copulas as well. In fact,
in the multivariate case there are a lot of unsolved problems, in particular with regard to the
multivariate decomposition of aggregation functions in a sum of copulas.

Organization

The thesis contains an introductory chapter with general definitions and a chapter presenting
some other introductory topics with regard to the problems solved in the bivariate case. The
others chapters discuss the multivariate case, by using some tools, such as aggregation evalua-
tors.
In particular, we recall that the mathematical concept of supermodularity formalizes the idea
of complementarity and in the literature it is defined for functions on a general lattice. So in
the Introduction we are going to define some important definitions and properties for lattices,
supermodularity and increasing differences.

Chapter 2 describes mainly supermodular and ultramodular functions at large, by starting to
locate these concepts in the setting of aggregation functions and copulas.

In Chapter 3 we discuss supermodular and ultramodular aggregation functions in the mul-
tivariate case, with an interesting characterization of ultramodular functions which are also
continuous.

Chapter 4 presents the copula approach to aggregation functions. The class of copulas has
many distinct families, but we discuss few families of copulas suitable for our constructions,
including a study of structural properties in connection with methods which yield ultramodular
copulas in the bivariate case.

In Chapter 5 we will introduce triangular norms which are particular families of copulas,
in order to find the solutions of a functional inequality which generalizes Frank’s functional
equation. Moreover, we will study aggregation evaluators and their connections with t-norms
and t-conorms.

In Chapter 6 we present a new type of approach to aggregation functions, by using t-norms
and in particular triangular norm-based measures, briefly called T -measures. So, we introduce
T S-supermodularity like an extension of supermodular fuzzy measures.

Chapter 7 outlines some of analytical and algebraic methods connected with supermodular
and ultramodular aggregation functions and that we use in the construction of copulas.
In this chapter we continue to deal with the multivariate case, by introducing two properties
which are stronger than the monotonicity of aggregation functions, with some representation
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results and with an application for constructing copulas.
Appendix A presents an application of multivariate copulas in the framework of multivariate

dependence.
The thesis finishes with Appendix B where a number of the main open problems are listed

after the detailed discussion treated in each section of this work. Of course the list is not
exhaustive.
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Chapter 1

Introduction

This chapter introduces general concepts and relevant results for the present perspective on
aggregation functions based on copulas. In particular, we discuss supermodular functions on
a lattice and we explore some of their basic properties. Various common functional transfor-
mations maintain or generate supermodularity and, above all, there is an equivalence between
supermodularity and a standard notion of complementarity, known also as “increasing dif-
ferences”. The concept of complementarity is well established in economics at least since
Edgeworth and the basic idea of complementarity is that the marginal value of an action is
increasing in the level of other actions avalaible. The mathematical concept of supermodular-
ity formalizes the idea of complementarity and in the literature it is defined for functions on a
general lattice, but our aim is to define supermodularity for aggregation functions.

1.1 Partially Ordered Sets and Lattices

This section introduces and develops concepts and properties involving order and lattices,
by giving also characterizations of sublattice structure.
A lattice is a system of elements with two basic operations: formation of meet and formation
of join, which are respectively denoted by a∧ b and a∨b; this notation has been favoured by
Birkhoff and MacLane.
To introduce lattices we define first the relation of partial order and then partially ordered
sets, including chains. Whenever discussing a general partially ordered set, the associated
ordering relation is denoted�. Sometimes, the same symbol�may be used to denote different
ordering relations on different partially ordered sets, where the particular context precludes any
ambiguities. Any subset ofRn is taken to have ≤ as the associated ordering relation.

Let L be a set of elements; then a relation � of partial order over L is any dyadic relation
over L which is:

(i) reflexive: for every a ∈ L, a� a;

(ii) anti-symmetric: if a� b and b� a, then a = b;

(iii) transitive: if a� b and b� c, then a� c.
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If a � b or b � a, we say that a,b are comparable, otherwise a and b are incomparable, in
notation a‖b.
A set L over which a relation � of partial order is defined is called a partially ordered set or
poset.
Notice that elements of a partially ordered set need not be comparable with one another, though
each must be comparable with itself.
If for every pair of elements a,b of a partially ordered set L we have either a � b or b � a or
both, the set L is said to be simply or totally ordered and is called a chain. Since a � b and
b � a imply a = b, hence we may define a chain as a partially ordered set in which for every
pair of distinct elements a,b we have either a≺ b or b≺ a (linearity or ordering property). We
note that any subset of a chain is itself a chain. A finite chain of n elements has a least and a
greatest member, and is isomorphic with the sequence of natural numbers (1,2,3, . . . ,n).

Suppose that L is a partially ordered set and A is a subset of L. If x′ is in L and x� x′ (x′ � x)
for each x ∈ A, then x′ is an upper (lower) bound for A. If x′ in A is an upper (lower) bound
for A, then x′ is the greatest (least) element of A. If x′ is in A and there does not exist any x′′

in A with x′ ≺ x′′ (x′′ ≺ x′), then x′ is a maximal (minimal) element of A. A greatest (least)
element is a maximal (minimal) element. A partially ordered set can have at most one greatest
(least) element, but it may have any number of maximal (minimal) elements. Distinct maximal
(minimal) elements do not have ordering property, that is they are unordered. If the set of up-
per (lower) bounds of A has a least (greatest) element, then this least upper bound (greatest
lower bound) of A is the supremum (infimum) of A and is denoted supL(A) (infL(A)) if the
set L is not clear from context or sup(A) (inf(A)) if the set L is clear from context.
If two elements, x′ and x′′, of a partially ordered set L have a least upper bound (greatest lower
bound) in L, it is their join (meet) and is denoted x′∨x′′ (x′∧x′′). A partially ordered set that
contains the join and the meet of each pair of its elements is a lattice 〈L,∨,∧〉. It shall be
convenient to lay down the convention

∨
/0 =

∧
/0 =⊥.

A function f (x) from a partially ordered set L to a partially ordered set Y is increasing (de-
creasing) if x′ � x′′ in L implies f (x′)� f (x′′) ( f (x′′)� f (x′)) in Y . A function is monotone if
it is either increasing or decreasing. A function f (x) from a partially ordered set L to a partially
ordered set Y is strictly increasing (strictly decreasing) if x′ ≺ x′′ in L implies f (x′)≺ f (x′′)
( f (x′′) ≺ f (x′)) in Y . It is common in the lattice theory literature [10, 97], to use the terms
isotone and antitone rather than “increasing” and “decreasing”, respectively, but the latter are
used herein in order to maintain a more familiar terminology.

1.1.1 Sublattice Structure

If A is a subset of a lattice L and A contains the join and meet (with respect to L) of each
pair of elements of A, then A is a sublattice of L. For a lattice L, let L (L) denote the set of
all nonempty sublattices of L. If A is a sublattice of a lattice L, then A is itself a lattice and in
A the join and meet of any two elements are the same as the join and meet of those same two
elements in L. If L is a lattice, A is a sublattice of L, and A′ is a sublattice of A, then A′ is a
sublattice of L. If A is a sublattice of L, L and A are lattices with the same ordering relation,



1.1 Partially Ordered Sets and Lattices 3

i.e. x�A y for x,y ∈ A implies x�L y, A is not necessarily a sublattice of L.
If f (x) is a function from a set L into a partially ordered set Y , then the level sets of f (x)

on L are the sets {x : x ∈ L,y � f (x)} for y in Y . A function f (x) from a set L into a partially
ordered set Y is a generalized indicator function for a subset A of L if

f (x) =

{
y′′ for x ∈ A,
y′ for x ∈ L and x /∈ A

where y′ ≺ y′′ in Y ; that is, if the only level sets of f (x) on L are L, A and perhaps the empty
set. An indicator function is a generalized indicator function with Y =R1, y′ = 0 and y′′ = 1.

If L is a partially ordered set, A is a subset of L and L∩ [x,∞) is a subset of A for each
x ∈ A, then A is an increasing set. Equivalently, a subset A of a partially ordered set L is an
increasing set if the indicator function of A∩ [x,∞) is an increasing function on L for each
x ∈ A. Increasing sets are useful in characterizing properties of parameterized collections of
distribution functions.

It can be shown that a nonempty finite lattice has a greatest element and a least element
(Lemma 2.2.1 in [98]). A different proof of this result comes from combining the properties
that any nonempty finite partially ordered set has a maximal element and a minimal element
and that a maximal (minimal) element of a lattice is the greatest (least) element.
If Li is a partially ordered set with binary relation �i for each i ∈ I, then the direct product of
these partially ordered sets is the partially ordered set consisting of the set×i∈ILi with the pro-
duct relation � where x′ � x′′ in ×i∈ILi if x′i �i x′′i for each i in I. A special case of this direct
product example is the partially ordered setRn = {(x1, . . . ,xn) : xi ∈R1 ∀ i = 1, . . . ,n} with the
ordering relation ≤ where x′ ≤ x′′ inRn if x′i ≤ x′′i inR1 for i = 1, . . . ,n. In fact I = {1, . . . ,n},
Li =R

1 withR1 having the usual ordering relation ≤ for each i in I andRn =×i∈ILi.
If L and T are sets and S is a subset of L×T , then the section of S at t in T is St = {x : x ∈
L,(x, t) ∈ S} and the projection of S on T is ΠT S = {t : t ∈ T,St is nonempty}. Lemma 2.2.2
and Lemma 2.2.3 in [98] show that intersections, sections and projections of sublattices are
also sublattices. Furthermore, the direct product of lattices is a lattice and of sublattices is a
sublattice. Essential properties characterizing sublattices of the direct product of any finite col-
lection of lattices can be expressed in terms of sublattices of the direct product of two lattices.
A lattice in which each nonempty subset A has a supremum ∨A and an infimum ∧A is com-
plete. The concept is self-dual and obviously half of the hypothesis is redundant. For a com-
plete lattice L, the supremum of L is denoted by 1 and the infimum of L is denoted by 0. Thus
L is a bounded lattice, with 1 as its greatest element and 0 as its least element.
By Lemma 2.2.1 in [98], any finite lattice is complete. A nonempty complete lattice has a
greatest element and a least element. If A is a sublattice of a lattice L and if, for each nonempty
subset A′ of A, supL(A

′) and infL(A′) exist and are contained in A, then A is a subcomplete
sublattice of L. By Lemma 2.2.1, any finite sublattice of a lattice is subcomplete. Hence any
sublattice of a finite lattice is subcomplete. Each closed interval in a complete lattice L is
a subcomplete sublattice of L and the supremum and infimum with respect to the closed in-
terval of any subset of the closed interval are the same as the supremum and infimum with
respect to L of that same subset. If L is a lattice and A is a subcomplete sublattice of L, then
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supL(A
′) = supA(A

′) and infL(A′) = infA(A′) for each nonempty subset A′ of A, A itself is a
complete lattice, and A has a greatest element and a least element if A is nonempty.

1.1.2 Lattice Homomorphisms

A monotone map g : L→M between lattices need not, in general, preserve meets and joins,
but the following statements are equivalent:

• g is increasing;

• g(x∧ y)≤ (g(x)∧g(y))), ∀x,y ∈ L;

• g(x∨ y)≥ (g(x)∨g(y))), ∀x,y ∈ L.

The mapping g is called a meet-morphism if g(x∧ y) = (g(x)∧ g(y))), ∀x,y ∈ L and a join-
morphism if g(x∨ y) = (g(x)∨ g(y))), ∀x,y ∈ L. Obviously, meet- and join-morphisms are
increasing mappings, but the converse does not hold. Similarly, the mapping g is called an
inf-morphism if for any non-empty family (xi)i∈I in L it holds that

g(inf
i∈I

xi) = inf
i∈I

g(xi)

and a sup-morphism if for any non-empty family (xi|i ∈ I) in L it holds that

g(sup
i∈I

xi) = sup
i∈I

g(xi).

If we consider the particular case of a function ϕ : [0,1]⇒ [0,1], the following statements are
equivalent:

• ϕ is increasing;

• (ϕ(min(x,y)) = min(ϕ(x),ϕ(y))), ∀(x,y) ∈ [0,1]2;

• (ϕ(max(x,y)) = max(ϕ(x),ϕ(y))), ∀(x,y) ∈ [0,1]2.

Clearly, an increasing function ϕ : [0,1]→ [0,1] is right-continuous if and only if it is an inf-
morphism, and left-continuous if and only if it is a sup-morphism.
A function g : L→M that preserves finite meets and joins, that is, for which

• g(x∧ y) = (g(x)∧g(y)))

• g(x∨ y) = (g(x)∨g(y)))

is called a lattice homomorphism.

1. A lattice monomorphism or lattice embedding is an injective lattice homomorphism;

2. a lattice epimorphism is a surjective lattice homomorphism;
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3. a lattice endomorphism of L is a lattice homomorphism from L to itself;

4. a lattice isomorphism is a bijective lattice homomorphism, or equivalently, an order iso-
morphism.

Definition 1.1.1 Let L= (L,∧L,∨L,0L,1L) and M= (M,∧M,∨M,0M,1M) be bounded lattices.
A function g : L→M for which g(0L) = 0M and g(1L) = 1M is called a {0,1}-homomorphism
if g(0L) = 0M and g(1L) = 1M.

If L and M are complete lattices, a continuous homomorphism from L to M is a function
h : L→M such that :

h(∧A) = ∧h(A) h(∨A) = ∨h(A)

for every nonempty subset A of L.

1.2 Increasing differences and supermodular functions

Suppose that L and T are partially ordered sets and f (x, t) is a real-valued function on
a subset S of L× T . For t in T , let St denote the section of S at t. If f (x, t ′′)− f (x, t ′)
is increasing, decreasing, strictly increasing, or strictly decreasing in x on St ′′ ∩ St ′ for all
t ′ ≺ t ′′ in T , then f (x, t) has, respectively, increasing differences, decreasing differences,
strictly increasing differences or strictly decreasing differences in (x, t) on S. The con-
ditions of these definitions do not distinguish between the first and second variables because
f (x′, t ′′)− f (x′, t ′)≤ f (x′′, t ′′)− f (x′′, t ′) if and only if f (x′′, t ′)− f (x′, t ′)≤ f (x′′, t ′′)− f (x′, t ′′),
and similarly for a strict inequality.
Suppose that Li is a partially ordered set for each i in a set A, L is a subset of ×i∈ALi, an ele-
ment x in L is expressed as x = (xi)i∈I , where xi is in Li for each i in I and f (x) is a real-valued
function on L. If, for all distinct i′ and i′′ in I and for all x′i in Li for all i in I \ {i′, i′′}, f (x)
has increasing differences, decreasing differences, strictly increasing differences, or strictly
decreasing differences in (xi′ ,xi′′) on the section of L at {x′i : i ∈ A \ {i′, i′′}}, then f (x) has,
respectively, increasing differences, decreasing differences, strictly increasing differences,
or strictly decreasing differences on L. If f (x) is differentiable onRn, then f (x) has increas-
ing differences on Rn if and only if ∂ f (x)/∂xi′ is increasing in xi′′ for all distinct i′ and i′′ and
all x. If f (x) is twice differentiable on Rn, then f (x) has increasing differences on Rn if and
only if ∂2 f (x)/∂xi′∂xi′′ ≥ 0 for all distinct i′ and i′′ and all x.
Suppose that f (x) is a real-valued function on a lattice L. If

f (x′)+ f (x′′)≤ f (x′∨ x′′)+ f (x′∧ x′′)

for all x′ and x′′ in L, then f (x) is supermodular on L. If

f (x′)+ f (x′′)< f (x′∨ x′′)+ f (x′∧ x′′)

for all unordered x′ and x′′ in L, then f (x) is strictly supermodular on L. If − f (x) is (strictly)
supermodular, then f (x) is (strictly) submodular. A function that is both supermodular and
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submodular is a valuation.
Theorem 2.6.1 and Corollary 2.6.1 in [98] show that a function has increasing differences on
the direct product of a finite collection of chains if and only if the function is supermodular
on that direct product, thereby characterizing supermodularity on the direct product of a finite
collection of chains (and, in particular, on Rn) in terms of the nonnegativity of all pairs of
cross–differences. As in Lemma 2.2.4 in [98] the number 2 plays a fundamental role in char-
acterizing sublattice structure, likewise it has a fundamental role for supermodular functions,
since supermodularity on any finite product of chains is equivalent to supermodularity on the
product of each pair of the chains. Thus supermodularity is a second–order property in the
sense that for twice–differentiable functions on Rn each class of functions can be character-
ized by certain conditions on the matrix of second partial derivatives.
Theorem 2.6.1 in [98] shows that supermodularity implies increasing differences for a function
on a sublattice of the direct product of lattices. Corollary 2.6.1 in [98] states that increasing dif-
ferences imply supermodularity on the direct product of a finite collection of chains. This result
is a consequence of Theorem 2.6.2 because any real–valued function on a chain is (strictly) su-
permodular. The result of Corollary 2.6.1, characterizing supermodularity in terms of increas-
ing differences, is limited to domains that are the direct product of finitely many chains. Note
that this corollary states that a function is supermodular on the direct product of finitely many
chains if the function is supermodular on each 4-element sublattice {x′,x′′,x′∨x′′,x′∧x′′} such
that x′ and x′′ each differ from x′∧ x′′ in exactly one component.
A function f :R2→R has increasing differences if, for any t ≥ t ′, g(x) = f (x, t)− f (x, t ′) is
an increasing function of x. A function f : RS → R has increasing differences if for any s, t
and x, the function f̂ :R2→R,

f̂ (x̂s, x̂t) = f (x−s,t , x̂s, x̂t),

obtained by allowing only xs and xt to vary from x, has increasing differences.
There is an equivalence of supermodularity and increasing differences for a function f : L→R,
where L is a finite dimensional product set L =×i∈ILi, where each Li is a chain in its order �i

and L ordered by the product order (see [98], Corollary 2.6.1).
Say that x and y are disjoint, written x ⊥ y, if the infimum of x and y is zero, i.e., if x∧ y = 0
(see [89], Chapter 5, Section 1). So a mapping f : RS → R is supermodular if and only if
it displays increasing differences and so the following proposition characterizes supermodular
functions.

Proposition 1.2.1 A function f : L⊆Rn→R is supermodular if and only if

f (x+h+ k)− f (x+ k)≥ f (x+h)− f (x) (1.1)

when x,y ∈ L, for all h,k with h,k ≥ 0 , h⊥ k such that x+h,x+ k,x+h+ k ∈ L.

Increasing difference transfers the supermodularity condition to one involving the linear struc-
ture ofRn.
It is worth noting that the supermodularity condition is only an “inter-attribute" relation. Intu-
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itively increasing differences say that there must be “complementarity" between attributes.

Proposition 1.2.2 An n-ary function f : [0,1]n→ [0,1] is supermodular if and only if each of
its two-dimensional sections is supermodular, i.e., for each x∈ [0,1]n and all i, j ∈ {1,2, . . . ,n}
with i 6= j, the function fx,i, j : [0,1]2→ [0,1] given by fx,i, j(u,v) = f (y), where yi = u, y j = v
and yk = xk for k ∈ {1,2, . . . ,n}\{i, j}, is supermodular.

Proof : On a generic lattice we have the similar result in the Definition 1.2 in [11]. The same
result can be applied to our case as well, because [0,1]n is a lattice, 2

Remark 1.2.3 (Supermodular lattices) It is clear that with a supermodular indicator func-
tion we can define a supermodular sublattice in a lattice. This definition and in particular the
description of supermodular sublattices in products of relatively complemented lattices can be
found in [63].

Definition 1.2.4 A sublattice L′ of a lattice L is called supermodular (in L) if, for any x ∈ L′

and y ∈ L, at least one of the elements x∧ y,x∨ y belongs to L′.

Prototypical examples of supermodular sublattices in any lattice are its ideals, filters, and (set-
theoretic) unions of an ideal and a filter.

In the next chapters we will apply all these concepts in the theory of aggregation functions
and copulas, but, first of all, we are going to introduce the basic background, definitions and
properties in this context.
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Chapter 2

Aggregation functions and Copulas

Supermodular functions are extensively investigated in different research areas, both pure
and applied. The supermodular property also goes by a variety of names such as L-superadditive
(where L is mnemonic for lattice), superadditive and quasimonotone. Our aim is to apply this
concept to aggregation functions, but, first of all, we recall the basic definitions and properties
both for aggregation functions and copulas. Moreover, we will focus our attention to the main
problem that we have when we want to deal with multivariate copulas as aggregation functions.

2.1 Aggregation Functions

Aggregation operators (also referred to as means or mean operators) correspond to particu-
lar mathematical functions used for information fusion, the broad area that studies methods to
combine data or information supplied by multiple sources. Generally, we consider mathemati-
cal functions that combine a finite number of inputs, called arguments, into a single output.
So, aggregation has for purpose the simultaneous use of different pieces of information pro-
vided by several sources, in order to come to a conclusion or a decision. They are applied in
many different domains and in particular aggregation functions play important role in different
approaches to decision making, where values to be aggregated are typically preference or sa-
tisfaction degrees and thus belong to the unit interval [0,1]. For more details, see [42].
A basic consideration for any aggregation operator is the type of data it is going to fuse. At
present, there exists a large number of aggregation operators applicable to a broad range of data
representation formalisms. For example, aggregation operators on the following formalisms
have been considered in the literature: numerical data, ordinal scales, fuzzy sets, belief func-
tions, among others. The construction of new functions on the basis of new properties or
when considering new knowledge representation formalisms has been studied for a long time.
For example, in the framework of aggregation of preferences, Llull (thirteenth century) and
Nicholas Cusanus (fifteenth century) proposed methods that were later rediscovered by Con-
dorcet and Borda (eighteenth century). They are the Condorcet rule (with the Copeland method
for solving ties) and the Borda count.
Currently, in these early years of the 21st century, an important amount of literature is already
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available, many significant results have been found (such as characterizations of various fami-
lies of aggregation functions), and many connections have been done with other related fields
or former works, such as triangular norms, conorms, uninorms, generalized means and ordered
weighted aggregation (OWA) operators. Within these classes various important families have
been identified, like the arithmetic mean, which is an aggregation function defined by

AM(x1, . . . ,xn) =
1
n

n

∑
i=1

xi.

It is clear that any aggregation of the numbers x1, . . . ,xn cannot be made by means of usual
arithmetic operations, unless these operations involve only order. For example, computing the
arithmetic mean is forbidden, but the median or any order statistic is permitted.
To define general aggregation operators we use the definition given by Beliakov, Mesiar and
Valášková (see page 220 in [5]). If we consider the behaviour of the aggregation in the best and
in the worst case we expect that an aggregation satisfies the following boundary conditions:

A(0, . . . ,0) = 0 and A(1, . . . ,1) = 1

These conditions mean that if we observe only completely bad (or satisfactory) criteria the total
aggregation has to bee completely bad (or satisfactory). We consider aggregation functions that
satisfy the boundary conditions.
Increasingness is another property, which is often required for aggregation and commonly
accepted for functions used to aggregate preferences.
So, as it has been shown in [75], we can define an aggregation operator as a function

A :
⋃

n∈N
[0,1]n→ [0,1]

that satisfies:

• (Idempotency) A(x) = x ∀x ∈ [0,1];

• (Boundary conditions) A(0, . . . ,0) = 0 and A(1, . . . ,1) = 1;

• (Monotonicity) A(x1, . . . ,xn)≤ A(y1, . . . ,yn) if (x1, . . . ,xn)≤ (y1, . . . ,yn).

Idempotency and monotonicity imply that aggregation operators are functions that yield a value
between the minimum and the maximum of the input values. Formally, they are operations that
satisfy internality:

min
i

xi ≤ A(x1, . . . ,xn)≤max
i

xi.

2.1.1 Lattice-Ordered Semigroups and the case [0,1]n

Now we define basic building blocks of the theory to be developed here: groups, lattice-
ordered groups [9, 27], even if most of these concepts is probably known to the reader.
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Definition 2.1.1 A set of elements g ∈ G forms a group with respect to a law of composition
(a,b)→ a∗b : G ×G → G if is satisfies the following axioms:

(a) (closure) the set is closed with respect to multiplication; for any two elements a,b∈G , the
composition a∗b ∈ G;

(b) (associative law) the multiplication is associative (a ∗ b) ∗ c = a ∗ (b ∗ c) for any three
elements a,b,c ∈ G;

(c) (existence of an identity element) there exists an identity element e ∈ G such that

e∗g = g∗ e for any g ∈ G

(d) (existence of inverses) for each g ∈ G , there exists an g′ ∈ G such that g∗g′ = e = g′ ∗g.

If (a), (b) and (c) hold, but not necessarily (d), then G is called a semigroup. (Some authors
don’t require a semigroup to contain an identity element.)

We usually write a∗b and e as a b and 1, or as a+b and 0.

If the group is finite, the number of elements is called the order of the group and denoted
|G|.
If the operation a∗b = b∗a is commutative for all a,b ∈ G , the group is abelian.
Two groups with the same multiplication table are said to be isomorphic.
The concept of a lattice ordered semi-group, or l-semigroup, arose naturally in the ideal theory.

Definition 2.1.2 By a multiplicative lattice or m-lattice, we mean a lattice L with a binary
multiplication satisfying

a (b∨ c) = a b∨a c and (a∨b) c = a c∨b c. (2.1)

A zero of an m-lattice L is an element 0 satisfying

0∧ x = 0 x = x 0 = 0 ∀x ∈ L. (2.2)

A unity of an m-lattice L is an element e satisfying

e x = x e = x ∀x ∈ L. (2.3)

A infinity of L is an element I satisfying

I∨ x = I x = x I = I ∀x ∈ L. (2.4)

L is called commutative or associative if

x y = y x or (x y) z = x (y z) (2.5)
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for all x,y,z ∈ L. If L is conditionally complete and satisfies the unrestricted distributive laws

a∨bα = ∨(a bα) and (∨aα) b = ∨(aα b), (2.6)

it is called a complete m-lattice or cm-lattice. An associative m-lattice with unity is called a
lattice ordered semigroup, or l-semigroup; if complete, it is called a cl-semigroup.

Now we recall the following theorem (theorem 1 in [9] on page 201):

Theorem 2.1.3 In any m-lattice we have

a≤ b implies x a≤ x b and a y≤ b y ∀x,y; (2.7)

(a∧b)(a∨b)≤ b a∨a b ∀a,b. (2.8)

If the m-lattice has a unity e, then

a∨b = e implies a∧b = b a∨a b, and (2.9)

a∨b = a∨ c = e implies a∨b c = a∨ (b∧ c) = e. (2.10)

If it has an element z≤ e satisfying z x = x z = z for all x, then this z is a zero.

A particular lattice ordered semigroup is [0,1]n.
In fact we can easily check that [0,1]n is a semigroup with respect to the standard multiplication
because it has the properties of closure, associativity and existence of an identity.
This structure of a semigroup, combined with the structure of a lattice, implies that [0,1]n is an
m-lattice. Moreover, it is associative and complete, so [0,1]n is a cl-semigroup.
Concerning distributivity, [0,1]n is not distributive in general for n > 1, because it’s not true
that, given a ≤ x ≤ b, at most one y exists satisfying x∧ y = a and x∨ y = b (corollary 1 on
page 134 in [9]). We recall also that in a general lattice-ordered group LV we have the following
identity (see page 207 in [89]): ∀x,y ∈ LV

x+y = x∨y+x∧y. (2.11)

This equality holds also for the lattice [0,1]n, even if this one is not a lattice-ordered group.

2.1.2 Copulas

Particular aggregation functions are copulas and many of the basic results about copulas
can be traced to the early work of Wassily Hoeffding. He also obtained best possible bound
inequalities for these functions, characterized the distributions corresponding to those bounds
and studied measures of dependence that are scale-invariant, that is invariant under strictly
increasing transformations. In 1951 Fréchet obtained independently many of the same results
of Hoeffding’s work. In recognition of the shared responsibility for these important ideas we
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will refer to “Fréchet-Hoeffding bounds” and “Fréchet-Hoeffding classes”.
When Sklar wrote his paper in 1959 with the term “copula”, he was collaborating with Bertold
Schweizer in the development of the theory of probabilistic metric spaces. During the period
from 1958 through 1976, most of the important results concerning copulas were obtained in
the course of the study of probabilistic metric spaces, mainly in the study of binary operations
in the space of the probability distribution functions. In 1942, Karl Menger (see [71]) proposed
a probabilistic generalization of the theory of metric spaces, by replacing the number d(p,q)
by a distribution function Fpq, whose value Fpq(x) for any real x is the probability that the
distance between p and q is less than x. The first difficulty in the construction of probabilistic
metric spaces comes when one tries to find a “probabilistic” analogue of the triangle inequality.
Menger proposed Fpr(x+y)≥ T (Fpq(x),Fqr(y)), where T is a triangle norm or t-norm. Some t-
norms are copulas, and conversely, some copulas are t-norms. For a history of the development
of the theory of probabilistic metric spaces, see [90] and [91]. So, at the beginning, copulas
were mainly used in the development of the theory of probabilistic metric spaces. Later, they
were of interest to define nonparametric measures of dependence between random variables.
In fact, with regard to the link between copulas and the study of dependence among random
variables, it appears in the paper by Schweizer and Wolff (1981). In that paper they presented
the basic invariance properties of copulas under strictly monotone transformations of random
variables and introduced the measure of dependence now known as Schweizer and Wolff’s σ.
Since then, copulas began to play an important role in probability and mathematical statistics.

Definition 2.1.4 A 2-copula, or simply, a copula is a function C : [0,1]2→ [0,1] that satisfies:

(a) C(0,u) =C(u,0) = 0 C(1,u) =C(u,1) = u ∀u ∈ [0,1];

(b) C is a supermodular function.

It is easy to see that the function Π(u,v) = uv satisfies conditions (i) and (ii) and hence is
a copula. The copula Π, called the product copula, has an important statistical interpretation.
The following Sklar’s Theorem [94], which partially explains the importance of copulas in
statistical modelling, justifies the role of copulas as dependence functions.

Theorem 2.1.5 (Sklar’s theorem) . Let H be a 2-dimensional distribution function with mar-
gins F and G. Then there exists a 2-copula C such that for all (x,y) inR

2
,

H(x,y) =C(F(x),G(y)). (2.12)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on Ran F×
Ran G. Conversely, if C is a 2-copula and F and G are distribution functions, then the function
H defined by (2.12) is a 2-dimensional distribution function with margins F and G.



14 Aggregation functions and Copulas

2.1.3 The Fréchet-Hoeffding Bounds for Joint Distribution

As a consequence of Sklar’s Theorem, if X and Y are random variables with a joint distri-
bution function H and margins F and G, respectively, then for all x,y in R,

max(F(x)+G(y)−1,0)≤ H(x,y)≤min(F(x),G(y)) (2.13)

or (since H(x,y) =C(F(x),G(y)))

W (u,v) = max(u+ v−1,0)≤C(u,v)≤min(u,v) = M(u,v). (2.14)

Since M and W are copulas, the above bounds are joint distribution functions, and are called
the Fréchet-Hoeffding bounds for joint distribution functions H with margins F and G.
The copulas M, W and Π have important statistical interpretations. Let X and Y be continuous
random variables, then:

(i) the copula of X and Y is M(u,v) if and only if each of X and Y is almost surely an increasing
function of the other;

(ii) the copula of X and Y is W (u,v) if and only if each of X and Y is almost surely a decreasing
function of the other;

(iii) the copula of X and Y is Π(u,v) = uv if and only if X and Y are independent.

Among the most important results in probabilistic metric spaces - for the statistician - is the
class of Archimedean t-norms, those t-norms T that satisfy T (u,u) < u for all u ∈ (0,1).
Archimedean t-norms that are also copulas are called Archimedean copulas.

2.1.4 Archimedean Copulas

Here we focus on the class of Archimedean copulas because their properties fit the needs of the
aggregation problem.
The family of Archimedean copulas is particularly interesting because they can be defined by
means of a single function. Let φ be a continuous, strictly decreasing function from [0,1] to
[0,∞] such that φ(1) = 0. The pseudo-inverse of φ is the function φ[−1] with Dom φ[−1] = [0,∞]
and Ran φ[−1] = [0,1] given by

φ
[−1](t) =

{
φ−1(t), 0≤ t ≤ φ(0),
0, φ(0)≤ t ≤ ∞.

Note that φ[−1] is continuous and non-increasing on [0,∞], and strictly decreasing on [0,φ(0)].
The function C defined by

C(u,v) = φ
[−1](φ(u)+φ(v)) u,v ∈ [0,1]2

is a copula if and only if φ is convex.
Copulas of the form described above are called Archimedean copulas and the function φ is
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called a generator of the copula.
Because of their simple forms, the ease with which they can be constructed and their many nice
properties, Archimedean copulas frequently appear in discussions of multivariate distributions.

2.2 The main problem: the axiom of n-increasingness

The concept of copula can be extended to n dimensions, where an n-copula is the restriction
to the unit n-cube [0,1]n of a multivariate cumulative distribution function, whose marginals
are uniform on [0,1]. More precisely, an n-copula is a function C : [0,1]n→ [0,1] that satisfies:

(a) C(u) = 0 if ui = 0 for any i = 1, . . . ,n, that is C is grounded;

(b) C(u) = ui if all coordinates of u are 1 except ui, that is C has uniform one-dimensional
marginals;

(c) C is n-increasing, i.e. VC(B)≥ 0 for any n-box B = [u1,v1]× [u2,v2]× . . .× [un,vn]⊆ [0,1]n

with ui ≤ vi, i = 1,2, . . . ,n, where the C-volume of the n-box B is given by

VC(B) = ∑ε(z1, . . . ,zn) ·C(z1, . . . ,zn)≥ 0, (2.15)

with

ε(z1, . . . ,zn) =

{
1 if zi = ui for an even number of i’s,
−1 if zi = ui for an odd number of i’s

and the sum in (2.15) is extended to all vertices of B.

Conditions (a) and (b) are known as boundary conditions, whereas condition (c) is known as
monotonicity.
A copula C : [0,1]n→ [0,1] is called absolutely continuous if, when considered as a joint cdf,
it has a joint density given by ∂nCn(u1, . . . ,un)/∂u1, . . . ,∂un.
If C has nth-order derivatives, n-increasing is equivalent to ∂n

∂u1...∂un
C ≥ 0.

This definition is the multivariate extension of the concept of “increasing” for a univariate
function when we interpret “increasing” as “increasing as a distribution function”.
Various properties of copulas have been studied in literature, but most part of the research
concentrates on the bivariate case, since multivariate extensions are generally not easily to
be done. So we can begin with the construction of 3-copulas. We recall that 2-copulas join
one-dimensional distribution functions to form bivariate distribution functions. The "naive"
approach to constructing multidimensional distributions via copulas would be to use 2-copulas
to join other 2-copulas. Unfortunately, this procedure can fail, i.e. a 3-place function C via
2-copulas is unnecessarily a 3-copula, as shown in [81]. If C1 and C2 are 2-copulas such that
C2(C1(u,v),w) is a 3-copula, we say that C1 is directly compatible with C2. The following
theorem provides criteria for direct compatibility when one of C1 or C2 is M, W or Π. Its proof
can be found in [86].
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Theorem 2.2.1 1. Every 2-copula C is directly compatible with Π;

2. The only 2-copula directly compatible with M is M.

3. The only 2-copula directly compatible with W is M.

4. M is directly compatible with every 2-copula C;

5. W is directly compatible only with Π; and

6. Π is directly compatible with a 2-copula C if and only if for all v1, v2, w1, w2 in I such
that v1 ≤ v2 and w1 ≤ w2, the function

u→VC([u v1,u v2]× [w1,w2])

is nondecreasing on I.
From Sklar’s theorem, we know that if C is a 2-copula and F and G are univariate distribution
functions, then C(F(x),G(y)) is always a two dimensional distribution function. Can we ex-
tend this procedure to higher dimensions by replacing F and G by multivariate distributions
functions? That is, given m+ n ≥ 3, for what 2-copulas C is it true that if F(x) is an m−
dimensional distribution function and G(y) is an n− dimensional distribution function, then
C(F(x),G(y)) is an (m+n)−dimensional distribution function? The answer is provided in the
following theorem [44]:

Theorem 2.2.2 Let m and n be positive integers such that m+ n ≥ 3 and suppose that C is
a 2-copula such that H(x,y) =C(F(x),G(y)) is an (m+n)-dimensional distribution function
with margins H(x,∞) = F(x) and H(∞,y) = G(y) for all m-dimensional distribution functions
F(x) and n-dimensional distribution functions G(y). Then C = Π.

The following theorem [91] presents related results for the cases when the 2-copula C in the
previous theorem is Π or M, and the multidimensional distribution functions F and G are
copulas (or, if the dimension is 1, the identity function):

Theorem 2.2.3 Let m and n be integers ≥ 2. Let C1 be an m-copula and C2 an n-copula.

1. Let C be the function from Im+n to I given by

C(u1,u2, . . . ,um+n) = M(C1(u1,u2, . . . ,um),C2(um+1,um+2, . . . ,um+n)).

Then C is an (m+n)-copula if and only if C1 = Mm and C2 = Mn.

2. Let C′, C′′ and C′′′ be the functions defined by

C′(u1,u2, . . . ,um+1) = Π(C1(u1,u2, . . . ,um),um+1),

C′′(u1,u2, . . . ,un+1) = Π(u1,C2(u2,u3, . . . ,un+1)),

C′′′(u1,u2, . . . ,um+n) = Π(C1(u1,u2, . . . ,um),C2(um+1,um+2, . . . ,um+n)).
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Then C′ is always an (m+ 1)-copula, C′′ is always an (n+ 1)-copula and C′′′ is always an
(m+n)-copula.

For further information on this subject, we refer to [81] and [49].
So, in constructing copulas of higher dimensions, only few such methods are known in the
literature. In particular, when we treat copulas as aggregation functions, the main problem is
the crucial requirement of n-increasingness for aggregation functions.
We will see that this concept is strictly connected to k-monotonicity and to the bounded varia-
tion of a function. So, we will connect and apply both of them to the multivariate decomposi-
tion of aggregation functions in a sum of copulas.

2.3 Lattice-valued Aggregation Operators

Now, for completeness of information, we analyse the case when aggregation operators are
defined on a general lattice. By definition, they need to have values in the same general lattice,
endowed with a new operation, in order to introduce a more general concept of supermodular-
ity.
Let L = (L,≤,O,1,∗) a lattice with the least element O and the greatest element 1. The or-
dering structure on L can be coordinate-wisely extended to Ln (n ∈N+), i.e. for the relation ≤
on Ln, defined by

(α1, . . . ,αn)≤ (β1, . . . ,βn)⇔ αi ≤ βi ∀i = 1, . . . ,n,

and for the elements On = (O, . . . ,O), 1n = (1, . . . ,1) of Ln, Ln = (Ln,≤,On,1n) forms a
lattice with universal bounds On,1n.
We consider a bounded lattice L and we denote by ∗ : L → L an operation called lattice
operation. Our basic requirements are the following, for any x,y,z,w ∈ L:

1. Commutativity: x∗ y≥ y∗ x,

2. Monotonicity: w∗ x≥ y∗ z, if w≥ y and x≥ z,

3. Associativity: x∗ (y∗ z) = (x∗ y)∗ z,

4. Neutral element: ∃ e ∈ L, such that x∗ e = e∗ x = x.

Definition 2.3.1 A mapping A :
⋃

n∈N+ Ln→ L is called an aggregation operator on Ln if the
following conditions are fulfilled:

(AO1) A preserves universal bounds, i.e.

A(On) =O and A(1n) = 1 for all n ∈N+;

(AO2) A preserves the order on Ln for all n ∈N+, i.e.

(α1, . . . ,αn)≤ (β1, . . . ,βn)⇒ A(α1, . . . ,αn)≤ A(β1, . . . ,βn)
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(AO3) A is the identity mapping idL on L, i.e. A(α) = α for all α ∈ L.

For n≥ 2, a mapping B : Ln→ L is called an n-ary aggregation operator on Ln = (Ln,≤,O,1)
if and only if the conditions (AO1) and (AO2) are satisfied. A 1-ary aggregation operator
B : L→ L is the identity mapping idL on L.

An aggregation operator A can be identified by a family of n-ary aggregation operators
{An|n ∈N+}. This means that for a given aggregation operator A on Ln, we may associate a
family of n-ary aggregation operators {An|n ∈N+} to A, which is defined by An(α1, . . . ,αn) =
A(α1, . . . ,αn). Conversely, if {An|n ∈N+} is a family of n-ary aggregation operators on Ln,
then we can define an aggregation operator A on Ln by A(α1, . . . ,αn) = An(α1, . . . ,αn). It
is obvious that the connection between the aggregation operators and the families of n-ary
aggregation operators is bijective. Thus an aggregation operator and its associated family of
n-ary aggregation operators {An|n ∈N+} can be conceived as the same thing.

2.3.1 Classification and general properties

We introduce some properties which could be desirable for the aggregation of criteria.
Associativity is also an interesting property for aggregation operators. The associativity prop-
erty concerns the “clustering” character of an aggregation operator.

Definition 2.3.2 Let A be an aggregation operator on Ln = (Ln,≤,O,1).

• A is called to be associative iff

A(α1, . . . ,αk, . . . ,αn) = A2(Ak(α1, . . . ,αk),An−k(αk+1, . . . ,αn))

for all n≥ 2, k = 1, . . . ,n−1 and αi ∈ L, i = 1, . . . ,n.

• A is called to be symmetric iff

A(α1, . . . ,αn) = A(ασ(1), . . . ,ασ(n))

for all n ∈N+, αi ∈ L i = 1, . . . ,n and for all permutations σ of {1, . . . ,n}.

• A has the neutral element e ∈ L iff for all n ≥ 2 and αi ∈ L i = 1, . . . ,n, if αk = e for
some k ∈ {1, . . . ,n}, then

A(α1, . . . ,αn) = A(α1, . . . ,αk−1,αk+1αn).

2.3.2 Transformed aggregation operators

The idea of transformation of aggregation operators can be transparently illustrated on the
well-known relation of the two basic arithmetic operations of addition and multiplication. In-
deed, the addition Σ on [−∞,∞] (respectively on [0,∞], [−∞,0]) and the multiplication Π on
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[0,∞] (respectively on [0,1], [1,∞]) are related by the logarithmic transformation

n

∑
i=1

(− logxi) =− log(
n

∏
i=1

)xi. (2.16)

Formally, (2.16) can be written into

n

∏
i=1

xi = ϕ
−1(

n

∑
i=1

ϕ(xi)), (2.17)

where ϕ : [0,∞]→ [−∞,∞] is given by ϕ(x) = − logx. The relation (2.17) between ∏ and ∑

can be generalized to construct new supermodular aggregation functions from a given one.
We present the following transformation construction method for n-ary aggregation functions
only, because the extension to the construction of extended aggregation functions is obvious.

Proposition 2.3.3 Consider two bounded lattices L and M with an isomorphism ϕ : L→ M.
For n ∈N, let A : Mn→M be an n-ary aggregation function. Then the function Aϕ : Ln→ L
defined in the following way

Aϕ(x1, . . . ,xn) := ϕ
−1(A(ϕ(x1), . . . ,ϕ(xn))) (2.18)

is an n-ary aggregation function on Ln. Aϕ is called the ϕ−transform of A.

Proof : Since ϕ is an isomorphism, it preserves the lattice operations, that is ϕ(x∨ y) = ϕ(x)∨
ϕ(y) and ϕ(x∧y) = ϕ(x)∧ϕ(y) and both ϕ and ϕ−1 preserve the order, i.e., ϕ(x)≤ ϕ(y) if and
only if x ≤ y. At last the non decreasing monotonicity of A ensures the non decreasing mono-
tonicity of Aϕ. Moreover, the boundary conditions are satisfied because ϕ is an isomorphism.
So, Aϕ is an n-ary aggregation function on Ln. 2

2.3.3 ∗−Supermodularity

Now we consider two bounded lattices Ln = (Ln,≤,O,1,∗) and Mn = (Mn,≤,O,1,∗ϕ)
with their different operations ∗ and ∗ϕ, where ∗ϕ is called the ϕ−transform of ∗ and we have
the following result:

Proposition 2.3.4 Consider an n-ary aggregation function as defined by (2.18).
A is ∗-supermodular if and only if Aϕ is ∗ϕ-supermodular.

Proof : The sufficient condition is obvious, by taking ϕ = id. With regard to the necessary
one we have to prove that Aϕ(x∨ y) ∗ϕ Aϕ(x∧ y) ≥ Aϕ(x) ∗ϕ Aϕ(y). But we know that A is
∗−supermodular, i.e.

A(ϕ(x1∨ y1), . . . ,ϕ(xn∨ yn))∗A(ϕ(x1∧ y1), . . . ,ϕ(xn∧ yn))≥
≥ A(ϕ(x1), . . . ,ϕ(xn))∗A(ϕ(y1), . . . ,ϕ(yn)).
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If ϕ is an isomorphism, also ϕ−1 is an isomorphism and it preserves the order. So, we have

ϕ
−1(A(ϕ(x1∨ y1), . . . ,ϕ(xn∨ yn))∗A(ϕ(x1∧ y1), . . . ,ϕ(xn∧ yn))

)
≥

≥ ϕ
−1(A(ϕ(x1), . . . ,ϕ(xn))∗A(ϕ(y1), . . . ,ϕ(yn))

)
.

Clearly, the previous expression is equivalent to

ϕ
−1(A(ϕ(x1∨ y1), . . . ,ϕ(xn∨ yn)))∗ϕ ϕ

−1(A(ϕ(x1∧ y1), . . . ,ϕ(xn∧ yn)))≥
≥ ϕ

−1(A(ϕ(x1), . . . ,ϕ(xn)))∗ϕ ϕ
−1(A(ϕ(y1), . . . ,ϕ(yn))), i.e.

our thesis. 2

For example, if we take L = [0,1], M = [−∞,0] and ϕ(x) = logx with ∗ = + on M, we have
that ∗ϕ = · on L.
So, if we have A : [−∞,0]n → [−∞,0], we obtain A(x ∨ y) + A(x ∧ y) ≥ A(x) + A(y) and
B := Aϕ : [0,1]n→ [0,1], so that B(u∨v) ·B(u∧v)≥ B(u) ·B(v).
Note that we have introduced another kind of supermodularity, called ∗(∗ϕ)-supermodularity,
because in a general lattice ∨-supermodularity holds trivially. In fact A(x∨ y)∨A(x∧ y) =
A(x ∨ y) ≥ A(x)∨ A(y) surely, because x ∨ y ≥ x, x ∨ y ≥ y ⇒ A(x ∨ y) ≥ A(x) and A(x ∨
y) ≥ A(y). A special subclass of ∗(∗ϕ)-supermodular aggregation functions is that formed
by ∗(∗ϕ)−modular aggregation functions, i.e. those A(Aϕ)’s for which

A(x∨ y)∗A(x∧ y) = A(x)∗A(y)

(respectively, Aϕ(x∨ y)∗ϕ Aϕ(x∧ y) = Aϕ(x)∗ϕ Aϕ(y)).

2.4 Stronger forms of supermodularity: ultramodularity

Now we consider the similar class of ultramodular functions that play an eminent role in
different contexts. Ultramodular functions are also called “directionally convex functions” or
“functions having increasing increments” and ultramodular functions are supermodular func-
tions while the converse is in general false. For a detailed study of the properties of super-
modular and ultramodular functions we refer to [67], [69], [93], [97] and [98] as well as the
references therein contained.
We have said that, if we consider the special product set Rn, we endow R

n with the usual
product order, which says that x > y if xi ≥ yi for i = 1,2, . . . ,n. With this orderRn becomes a
lattice, i.e., it is a partially ordered set where there is a supremum and an infimum to every pair
of points in Rn. We have denoted in the first section the supremum and infimum of x and y by
x∨ y and x∧ y respectively; it is not hard to see that

x∨ y = (max{x1,y1},max{x2,y2}, . . . ,max{xn,yn}) and

x∧ y = (min{x1,y1},min{x2,y2}, . . . ,min{xn,yn}).



2.4 Stronger forms of supermodularity: ultramodularity 21

A subset L of Rn is a sublattice (of Rn) if for every pair of points x and y in L, both x∨ y and
x∧y are also contained in L. Like supermodularity, ultramodular functions can be also defined
on a generic lattice, ( [48], [97] and [98]), but we focus our attention on functions f defined on
a generic sublattice L⊆Rn.

Definition 2.4.1 A function f : L⊆Rn→R is said to be ultramodular iff

f (x+h+ k)− f (x+ k)≥ f (x+h)− f (x)

for all x ∈ L with h,k ∈ L+.

2.4.1 Ultramodularity and convexity

Every subset of the lattice R1 is a sublattice of R1 and for real functions convexity in one
variable is an interesting and fundamental analytical property, playing an important role in
several mathematical fields and applications, especially when solving optimization problems
[87, 88, 100, 103].

Definition 2.4.2 Let I be a subinterval ofR and f : I→R be a real function.

(i) f is said to be convex if, for all x,y ∈ I and for all λ ∈ [0,1],

λ · f (x)+(1−λ) · f (y)≥ f (λ · x+(1−λ) · y); (2.19)

(ii) f is said to be Jensen convex if, for all x,y ∈ I,

f (x)+ f (y)
2

≥ f
(x+ y

2

)
. (2.20)

Trivially, each convex function is also Jensen convex. There is a number of conditions which
are equivalent to the convexity (2.19), as stated by the following remark.

Remark 2.4.3 Let I be a subinterval ofR and f : I→R be a real function. Then we have:

(i) f is convex if and only if, for all x,y ∈ I and for all ε > 0 such that x < y and y+ ε ∈ I,

f (y+ ε)− f (y)≥ f (x+ ε)− f (x). (2.21)

(ii) If f is a continuous function then f is convex if and only if it is Jensen convex.

(iii) If f is a monotone function then f is convex if and only if it is Jensen convex.

(iv) If f is a bounded function then f is convex if and only if it is Jensen convex.

However, for real functions defined on subsets of Rn with n > 1, these definitions of con-
vexity are no more equivalent, in general. For such functions, ultramodularity and convexity
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are quite unrelated properties.
Ultramodular functions are supermodular, but the converse is in general false. For example,
the function (∏n

i=1 xi)
1/n is supermodular but it is not ultramodular because it is concave. This

can be verified in several ways, such as directly verifying this inequality f (θx+(1− θ)y) ≤
θ f (x)+ (1− θ) f (y) ∀x,y ∈ [0,1]n and 0 ≤ θ ≤ 1, verifying that the Hessian is positive
semidefinite, or restricting the function to an arbitrary line and verifying concavity of the re-
sulting function of one variable.

The following result (Corollary 4.1 of [67]) states the exact relationship between ultramo-
dular and supermodular functions A : [0,1]n→ [0,1]:

Proposition 2.4.4 A function A : [0,1]n → [0,1] is ultramodular if and only if A is supermo-
dular and each of its one-dimensional sections is convex, i.e., for each x ∈ [0,1]n and each
i∈ {1, . . . ,n} the function Ax,i : [0,1]→ [0,1] given by Ax,i(u) = f (y), where yi = u and y j = x j

whenever j 6= i, is convex.

Bivariate copulas are closely linked to the convexity of one-dimensional functions (e.g., ad-
ditive generators of Archimedean copulas are convex). Copulas of higher dimensions describe
the stochastic dependence structure of k-dimensional random vectors with k > 2, and they are
linked to a stronger form of convexity of one-dimensional functions. For example, in the case
of Archimedean copulas, the corresponding additive generator has a derivative of (k− 2)-th
order which is convex [70]. In the next chapter we will deeply analyse the idea of ultramodular
functions and in the last chapter we will propose and study stronger versions of ultramodular-
ity, leading to the stronger forms of convexity mentioned above in the case of functions in one
variable.
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Chapter 3

Supermodular and Ultramodular
aggregation functions

In this chapter we will characterize the connections between the general class of all su-
permodular n–aggregation functions AS

n and ultramodular ones Un. We will see that there are
several modifications and constructions of aggregation functions which preserve the supermod-
ularity, but only few of them preserve also ultramodularity.
Section 3.2.2 is devoted to some constructions of ultramodular aggregation functions, espe-
cially those based on the composition of appropriate functions. The structure of ultramodular
functions is discussed in Section 3.3. We will also introduce modular aggregation functions
and some basic results will be recalled.

3.1 Characterizations of some subclasses of supermodular aggre-
gation functions

First results are related to the characterization of some subclasses of AS
n , following the state-

ments considered in [37].
Specifically, we are proving the following results.

Proposition 3.1.1 Let A ∈ AS
n . Then:

(a) the neutral element e ∈ [0,1] of A, if it exists, is equal to 1;

(b) the annihilator a ∈ [0,1] of A, if it exists, is equal to 0.

(c) if A is continuous on the border of [0,1]n, then A is continuous on [0,1]n.

Proof : (a) Let A∈AS
n . Then the bivariate marginals are supermodular and have neutral element

e = 1 by the proposition 3.1 in [37] and we have

A(1,xβ) = A(a1, . . . ,aα−1,1,aα+1, . . . ,aβ−1,xβ,aβ+1, . . . ,an) = xβ,
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for any couple of integers α, β such that 1 ≤ α < β ≤ n. So, by taking ai = 1 ∀i = 1, . . . ,n,
i 6= β, we can conclude that the neutral element e of A ∈ AS

n is equal to 1.
(b) Similarly,

A(0,xβ) = A(a1, . . . ,aα−1,0,aα+1, . . . ,aβ−1,xβ,aβ+1, . . . ,an) = 0

and so a = 0 is the annihilator.
(c) Let A be continuous on the border of [0,1]n and let x = (x1, . . . ,xn) be a point in ]0,1[n

such that A is not continuous in x. Suppose, without loss of generality, that there exists a
sequence {x1,α}α∈N in [0,1], x1,α ≤ x1 for every α ∈ N, such that {x1,α}α∈N tends to x1 as
α→+∞ and

lim
α→+∞

A(x1,α,x2, . . . ,xn)< A(x1,x2, . . . ,xn).

Therefore, there exists ε > 0 and α0 ∈ N such that

A(x1, . . . ,xn)−A(x1,α, . . . ,xn,α)> ε

for every α≥α0. But, because A is continuous on the border of the unit square, there exists α>
α0 such that A(x1,1, . . . ,1)−A(x1,α,1, . . . ,1) < ε. But this violets the supermodular property,
because, in this case,

A(x1,1, . . . ,1)+A(x1,α,x2, . . . ,xn)−A(x1, . . . ,xn)−A(x1,α,1, . . . ,1)< 0

Thus, the only possibility is that A is continuous on [0,1]n. 2

3.1.1 Bounds on arbitrary subsets of supermodular agops

Given a supermodular agop A, it is obvious that

AS(x1, . . . ,xn)≤ A(x1, . . . ,xn) ∀xi ∈ [0,1],

and AS is the best-possible lower bound in the set AS
n , because it is supermodular.

Moreover, the best-possible upper bound in AS
n is the greatest agop

AG(x1, . . . ,xn) =

{
0 if (x1, . . . ,xn) = (0, . . . ,0),
1 otherwise.

Notice that AG is not supermodular, e.g.

A(1, . . . ,1)+A(0)−A(1, . . . ,1,0, . . . ,0)−A(0, . . . ,0,1, . . . ,1) =−1,



3.1 Characterizations of some subclasses of supermodular aggregation functions 25

but it is the pointwise limit of the sequence An of supermodular agops, defined by

An(x1, . . . ,xn) =

{
1 if (x1, . . . ,xn) ∈ [1/n,1]n;
0 otherwise.

In particular, (AS
n ,≤) is not a complete lattice. But the following result holds.

Proposition 3.1.2 Every n-aggregation function is the supremum (wrt the pointwise order) of
a suitable subset of AS

n .

Proof : Let A be an agop; we may (and, in fact do) suppose that A 6= AG, since this case has
already been considered, and that A is not supermodular, this case being trivial. For every
x0 ∈ [0,1], let z0 = A(x0) and consider the following supermodular agop:

Âx0 :=


1 if x = 1;
z0 if x ∈ [x0,1]n\{1};
0 otherwise.

In fact we have the following situation:

x+h+k ∈ x+k ∈ x+h ∈ x ∈ Âx0 ∈ AS
n

{1} [x0,1]n\{1} [x0,1]n\{1} [x0,1]n\{1} 1≥ z0
[x0,1]n\{1} [x0,1]n\{1} ([x0,1]n\{1})C ([x0,1]n\{1})C 0≥ 0
([x0,1]n\{1})C ([x0,1]n\{1})C ([x0,1]n\{1})C ([x0,1]n\{1})C 0≥ 0

Then one has A(x1, . . . ,xn) = sup{Âx0 : x0 ∈ [0,1]n}. 2

3.1.2 Quasi–arithmetic means and Weighted quasi-arithmetic means

Now we see how to use convex functions in the construction of supermodular aggregation
ones.

Proposition 3.1.3 Let M f be a quasi–arithmetic mean, viz. let a continuous strictly monotone
function f : [0,1]→ R exist such that

M f (x) := f−1
(

f (x1)+ · · ·+ f (xn)

n

)
.

Then M f ∈ AS
n if, and only if, f−1 is convex.

Proof : M f ∈ AS
n if, and only if, for any couple of integers α, β, such that 1 ≤ α < β ≤ n,

M f (xα,xβ) = M f (a1, . . . ,aα−1,xα,aα+1, . . . ,aβ−1,xβ,aβ+1, . . . ,an) ∈ AS
2 , if and only if f−1 is
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convex. 2

Due to well-known characterization of quasi-arithmetic means M f bounded from above by the
arithmetic mean M, that is thanks to lemma 1 in [24], we have the next result.

Corollary 3.1.4 M f ∈ AS
n if and only if M f ≤M.

A similar result holds for weighted quasi-arithmetic means, that is with n-dimensional weight-
ing vector w = (w1, . . . ,wn) ∈ [0,1]n such that ∑

n
i=1 wi = 1 and Wf := f−1 (∑n

i=1 wi f (xi)) we
have

Corollary 3.1.5 Wf ∈ AS
n if and only if Wf ≤W.

Proof : Thanks to convexity of f−1, by using Jensen’s inequality we have:

Wf = f−1
( n

∑
i=1

wi f (xi)

)
≤

n

∑
i=1

wi f−1( f (xi)) =
n

∑
i=1

wixi =W.

2

A special class of aggregation operators are the so called OWA operators (ordered weighted
averaging operators) introduced in [104] and related to the Choquet integral [45]. We recall
that the OWA operator is given by

OWA(x1, . . . ,xn) =
n

∑
i=1

wi · xσ(i),

where (xσ(1), . . . ,xσ(n)) is a nondecreasing permutation of the n-tuple (x1, . . . ,xn). Following
[31], it is known that a Choquet integral operator based on a fuzzy measure m is supermodular
if, and only if, the fuzzy measure m is supermodular. So, OWA operators are supermodular if
and only if their weighting vector (w1, . . . ,wn) is decreasing.

3.1.3 Modular aggregation functions

A special subclass of AS
n is that formed by modular aggregation functions, i.e. those A’s for

which
A(x∧y)+A(x∨y) = A(x)+A(y),

for all x,y ∈ [0,1]n. For these operators the following characterization holds.

Proposition 3.1.6 For an agop A the following statements are equivalent:

(a) A is modular;

(b) there exist increasing functions fi from [0,1] into [0,1], such that

A(x1, . . . ,xn) =
n

∑
i=1

fi(xi), (3.1)
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with fi(0) = 0, ∀i = 1, . . . ,n and ∑
n
i=1 fi(1) = 1;

(c) A is strongly additive, i.e., if x∧y = 0 and x+y ∈ [0,1]n, then A(x+y) = A(x)+A(y).

Proof : (a)⇒ (b) If A is modular, set fi(xi) := A(0, . . . ,xi, . . . ,0), ∀i = 1, . . . ,n.
From modularity of A,

A(x)+A(0) = A(x1,0 . . . ,0)+A(0,x2, . . . ,xn) = f1(x1)+A(0,x2, . . . ,xn).

But A(0,x2, . . . ,xn) is modular and so we have:

A(0,x2, . . . ,xn)+A(0) = A(0,x2,0 . . . ,0)+A(0,0,x3 . . . ,xn) =

= f2(x2)+A(0,0,x3, . . . ,xn),

which implies (b) recursively.
(b)⇒ (c) A(x+y) = A(x1 + y1, . . . ,xn + yn) = ∑

n
i=1 fi(xi + yi).

But x∧y = 0 and so ∑
n
i=1 fi(xi + yi) = ∑

n
i=1 fi(xi)+ fi(yi), that is our thesis.

(c)⇒ (a) We note that x+y = x∧y+x∨y. So,

A(x∧y)+A(x∨y) = A(x+y) = A(x)+A(y).

2

3.2 Ultramodular multivariate aggregation functions

Definition 3.2.1 An n-ary aggregation function A : [0,1]n → [0,1] is called ultramodular if,
for all x,y,z ∈ [0,1]n with x+y+ z ∈ [0,1]n,

A(x+y+ z)−A(x+y)≥ A(x+ z)−A(x). (3.2)

Ultramodularity implies supermodularity of aggregation functions. To see this, for arbitrary
x,y ∈ [0,1]n put first u = y−x∧y and v = x−x∧y. Then we get

x∨y = x+y−x∧y = x∧y+u+v

and, because of (3.2),

A(x∨y)+A(x∧y) = A(x∧y+u+v)+A(x∧y)
≥ A(x∧y+v)+A(x∧y+u)
= A(x)+A(y).

In the case of one-dimensional aggregation functions, ultramodularity (3.2) is just standard
convexity. Therefore, ultramodularity can also be seen as an extension of one-dimensional
convexity.
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Remark 3.2.2 (i) Because of Proposition 1.2.2 and Proposition 2.4.4, for an n-ary aggre-
gation function A : [0,1]n→ [0,1] the following are equivalent:

(a) A is ultramodular;

(b) each two-dimensional section of A is ultramodular;

(c) each two-dimensional section of A is supermodular and each one-dimensional sec-
tion of A is convex.

(ii) Another equivalent condition to the ultramodularity (3.2) of an n-ary aggregation func-
tion A : [0,1]n→ [0,1] is the validity of

A(x+u)+A(x−u)≥ A(x+v)+A(x−v) (3.3)

for all x,u ∈ [0,1]n, v ∈Rn with |v| ≤ u and x+u,x−u,x+ v,x− v ∈ [0,1]n (indeed,
it is sufficient to put y = u+ v and z = u− v). Relaxing the requirement u ∈ [0,1]n

and |v| ≤ u into u ∈ Rn and |v| ≤ |u| we get the definition of symmetrically mono-
tone functions given in [96]. Note that symmetrically monotone aggregation functions
A : [0,1]n → [0,1] are exactly ultramodular aggregation functions which are modular,
i.e., A(x) = ∑

n
i=1 fi(xi) with fi : [0,1]→ [0,1] being convex for each i ∈ {1, . . . ,n} (com-

pare Propositions 3.1.6 and 2.4.4).

(iii) For n = 2, the ultramodularity (3.2) of an aggregation function A : [0,1]2 → [0,1] is
equivalent to A being P-increasing (see [41]), i.e., to

A(u1,v1)+A(u4,v4)≥max
(
A(u2,v2)+A(u3,v3),A(u3,v2)+A(u2,v3)

)
for all u1,u2,u3,u4,v1,v2,v3,v4 ∈ [0,1] satisfying u1 ≤ u2∧u3 ≤ u2∨u3 ≤ u4, v1 ≤ v2∧
v3 ≤ v2∨ v3 ≤ v4, u1 +u4 ≥ u2 +u3, and v1 + v4 ≥ v2 + v3.

(iv) Given a copula C : [0,1]2→ [0,1], for each c ∈ [0,1] the horizontal section hc : [0,1]→
[0,1] given by hc(x) = C(x,c) obviously satisfies hc(0) = 0 and hc(1) = c. Then the
strongest convex horizontal section hc is given by hc(u) = c · u, corresponding to the
product copula Π. It is easy to verify that Π is an ultramodular copula, and hence Π is
the strongest ultramodular copula. From a statistical point of view this means that each
ultramodular copula is Negative Quadrant Dependent (NQD, for more details see [82]).

3.2.1 Connections with supermodular aggregation functions and copulas

As in [37] for the case n = 2 we consider the notion of P-increasing functions where a func-
tion ψ : [0,1]n→ [0,1] is called P-increasing if it is increasing and ultramodular.
A function K : [0,1]n→ [0,1]m is said to be supermodular if the coordinate functions K1, . . . ,Km,
i = 1, . . . ,m defined by K(x) = (K1(x), . . . ,Km(x)) are supermodular.
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Figure 3.1: Modularity (left), supermodularity (center), and ultramodularity of f : [0,1]2→ [0,1]

Proposition 3.2.3 If ψ : [0,1]m→ [0,1] is a P-increasing function and K : [0,1]n→ [0,1]m

is a supermodular increasing function then the function H : [0,1]n→ [0,1] given by

H(x1, . . . ,xn) = ψ(K)(x) = ψ(K1(x), . . . ,Km(x))

is supermodular.

Proof : We consider 3 vectors x,h,k such that h,k≥ 0 and h⊥ k.
For all i = 1, . . . ,m, Ki(x+h+k)−Ki(x+k)≥Ki(x+h)−Ki(x) and then there exist si, ti with
ti ≥ si ≥ 0 such that

Ki(x+h+k) = Ki(x+k)+ ti Ki(x+h) = Ki(x)+ si

So there exist s, t vectors inRm such that t≥ s≥ 0 and

K(x+h+k) = K(x+k)+ t K(x+h) = K(x)+ s.

Since ψ is a P-increasing function and K is increasing in each variable one has:

ψ(K)(x+h+k)−ψ(K)(x+k) = ψ(K(x+k))+ t)−ψ(K(x+k))≥

ψ(K(x+k)+ s)−ψ(K(x+k))≥ ψ(K(x)+ s))−ψ(K(x)) =

ψ(K(x+h))−ψ(K(x)) = ψ(K)(x+h)−ψ(K)(x).

2

Corollary 3.2.4 Let A ∈ AS
n . Let ϕ : [0,1]→ [0,1] be a continuous increasing and convex

function with ϕ(0) = 0 and ϕ(1) = 1 then the function

Aϕ(x) := ϕ(A(x1, . . . ,xn))

is in AS
n .
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Proof : It is obvious that Aϕ(0) = 0 and Aϕ(1) = 1. Then, it suffices to apply the above theo-
rem to the function H(x1, . . . ,xn) = ψ(K1(x)), with ψ = ϕ and K1 = A. In fact scalar convex
functions are ultramodular and so ψ is P-increasing. 2

Corollary 3.2.5 Let fi be increasing functions from [0,1] into [0,1] such that fi(0) = 0 and
fi(1) = 1 for every i = 1,2 . . . ,n . Let A be in AS

n . Then, the function defined by

A f1,..., fn(x1, . . . ,xn) := A( f1(x1), . . . , fn(xn))

is in AS
n .

Proof : It is obvious that A f1,..., fn(0, . . . ,0) = 0, A f1,..., fn(1, . . . ,1) = 1 and A f1,..., fn is increasing
in each place, since it is the composition of increasing functions. Moreover, given x j

1 ≤ x j
2,

∀ j = 1, . . . ,n, one obtains

A f1,..., fn(x
1
1,x

2
1, . . . ,x

n
1)+A f1,..., fn(x

1
2,x

2
2, . . . ,x

n
2)≥

A f1,..., fn(x
1
2, . . . ,x

h
2,x

h+1
1 , . . . ,xn

1)+A f1,..., fn(x
1
1, . . . ,x

h
1,x

h+1
2 , . . . ,xn

2),

because of the supermodularity of A and the increasingness of fi. 2

Corollary 3.2.6 Let A ∈ AS
n . Let ϕ : [0,1]→ [0,1] be a continuous and strictly monotone

function with ϕ(0) = 0 and ϕ(1) = 1. The following statements are equivalent:

(a) ϕ is concave;

(b) for every A ∈ AS
n , the function

Aϕ(x) := ϕ
−1 (A(ϕ(x1), . . . ,ϕ(xn)))

is in AS
n .

Proof : (a)⇒ (b) If ϕ is concave and positive, then ϕ−1 is convex. So, by using the results of
the corollaries 3.2.4 and 3.2.5 we have our thesis.
(b)⇒ (a) If Aϕ(x) is in AS

n , we can consider

Mϕ(x) := ϕ
−1
(

ϕ(x1)+ · · ·+ϕ(xn)

n

)
.

Thanks to proposition 3.1.3, Mϕ(x) ∈ AS
n if and only if ϕ−1 is convex. So, ϕ is concave. 2

Corollary 3.2.7 Let A,B be two n–dimensional copulas and let C be a P-increasing bivariate
copula. Then the function H : [0,1]n→ [0,1] given by

H(x1, . . . ,xn) =C(A(x1, . . . ,xn),B(x1, . . . ,xn))

is an element of AS
n .
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Proof : By applying the proposition 3.2.3 with ψ =C, A = K1 and B = K2 we have our thesis.
2

Corollary 3.2.8 Let C1,C2,C3 be 3 bivariate copulas and ψ : [0,1]3 → [0,1] a P-increasing
function. Then the function H : [0,1]3→ [0,1] given by

H(x1,x2,x3) = ψ(C1(x1,x2),C2(x1,x3),C3(x2,x3))

is a supermodular aggregation function.

Proof : As in the previous proof, by posing K1 =C1, K2 =C2 and K3 =C3. 2

3.2.2 Other constructions

Ultramodularity is preserved by the composition of aggregation functions (here the mono-
tonicity of the aggregation functions is crucial). First of all, we give the following result:

Theorem 3.2.9 Let A : [0,1]n→ [0,1] be an aggregation function and k ≥ 2. Then the follow-
ing are equivalent:

(i) A is ultramodular.

(ii) If B1, . . . ,Bn : [0,1]k → [0,1] are nondecreasing supermodular functions then the com-
posite D : [0,1]k → [0,1] given by D(x) = A(B1(x), . . . ,Bn(x)) is a supermodular func-
tion.

Proof : To show that (i) implies (ii), let A be an ultramodular aggregation function and B1, . . . ,Bn

be nondecreasing supermodular functions. Evidently, D is an aggregation function. Choose
x,y∈ [0,1]k and denote, for each i∈{1, . . . ,n}, ai =Bi(x)−Bi(x∧y) and bi =Bi(y)−Bi(x∧y),
u = (a1, . . . ,an), v = (b1, . . . ,bn), and z = (B1(x∧y), . . . ,Bn(x∧y)). The monotonicity of the
Bi’s implies u,v ∈ [0,1]n, and their supermodularity (B1(x∨ y), . . . ,Bn(x∨ y)) ≥ u+ v+ z.
Now, the monotonicity and the ultramodularity of A yield

D(x∨y)≥ A(z+u+v)
≥ A(z+u)+A(z+v)−A(z)
= D(x)+D(y)−D(x∧y),

i.e., D is supermodular.
Now suppose that (ii) holds. To show that the one-dimensional sections of A are convex, con-

sider, without loss of generality, the function f : [0,1]→ [0,1] given by f (x) = A(x,u2, . . . ,un),
where u2, . . . ,un ∈ [0,1] are fixed. Define the functions B1, . . . ,Bn : [0,1]k→ [0,1] by B1(x) =
x1+x2

2 and Bi(x) = ui for i > 1. If, for arbitrary x,y ∈ [0,1], we put x = (x,y,0, . . . ,0) and
y = (y,x,0, . . . ,0) then we obtain D(x) = D(y) = f

( x+y
2

)
, D(x∧y) = f (x∧y), and D(x∨y) =

f (x∨ y). Since B1, . . . ,Bn are nondecreasing supermodular functions, also D is supermodular,
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proving f (x)+ f (y)
2 ≥ f

( x+y
2

)
, i.e., the convexity of f . Note that, in the case n = 1, this means

that A is ultramodular. If n > 1, because of Proposition 1.2.2 it suffices to show the supermod-
ularity of the two-dimensional sections of A. This can be seen by defining g : [0,1]2→ [0,1] by
g(x) = A(x,y,u3, . . . ,un), B1(x) = x1, B2(x) = x2, and Bi(x) = ui for i > 2, and by using similar
arguments as above. 2

Now we are ready to show that the class of ultramodular aggregation functions is closed
under composition.

Theorem 3.2.10 Let A : [0,1]n→ [0,1] and B1, . . . ,Bn : [0,1]k→ [0,1] be ultramodular aggre-
gation functions. Then the composite function D : [0,1]k→ [0,1] given by

D(x) = A(B1(x), . . . ,Bn(x))

is also an ultramodular aggregation function.

Proof : Because of Theorem 3.2.9, D is supermodular (this holds also if k = 1; indeed, the first
part of the proof of Theorem 3.2.9 works also in the case k = 1), and thus only the convexity
of its one-dimensional sections needs to be shown.
Let g : [0,1]→ [0,1] be a one-dimensional section of the composite function D, i.e., there
are one-dimensional sections f1, . . . , fn : [0,1]→ [0,1] of B1, . . . ,Bn, respectively, (which are
convex because of Proposition 2.4.4) such that g(x) = A( f1(x), . . . , fn(x)). Of course, g is
nondecreasing and its convexity is equivalent to the validity of the Jensen inequality

g(x+a)−g(x)≤ g(x+2a)−g(x+a) (3.4)

for all x,a ∈ [0,1] with x+2a≤ 1. From the convexity of f1, . . . , fn we obtain

0≤ fi(x+a)− fi(x)≤ fi(x+2a)− fi(x+a),

for each i ∈ {1, . . . ,n}. Putting ai = fi(x+a)− fi(x) and bi = fi(x+2a)− fi(x+a), we have

g(x+2a) = A( f1(x+2a), . . . , fn(x+2a)) =

= A( f1(x)+a1 +b1, . . . , fn(x)+an +bn)≥
≥ A( f1(x)+a1, . . . , fn(x)+an)+A( f1(x)+b1, . . . , fn(x)+bn)+

−A( f1(x), . . . , fn(x))≥
≥ 2g(x+a)−g(x),

which proves (3.4). Here the first inequality follows from the ultramodularity and the second
one from the monotonicity of A. 2

Theorem 3.2.10 has several important consequences (some of them can be found in [67,
Proposition 4.1].
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Corollary 3.2.11 Let A1, . . . ,A j : [0,1]n→ [0,1] be n-ary ultramodular aggregation functions
and f : [0,1]→ [0,1] a nondecreasing function with f (0) = 0 and f (1) = 1. Then we have:

(i) each convex combination of A1, . . . ,A j is an n-ary ultramodular aggregation function;

(ii) the product of A1, . . . ,A j is an n-ary ultramodular aggregation function;

(iii) if A : [0,1]n→ [0,1] is an n-ary ultramodular aggregation function and f is convex then
the composition f ◦A is an n-ary ultramodular aggregation function;

(iv) if A : [0,1]2→ [0,1] is a binary associative ultramodular aggregation function then, for
each k > 2, the k-ary extension of A is an k-ary ultramodular aggregation function.

Proof : Statements (i)–(iii) follow from Theorem 3.2.10 taking into account that the weighted
arithmetic mean, the product Π (which is a copula with linear, i.e., convex one-dimensional
sections) and the function f in (iii) (for nondecreasing functions in one variable convexity
means ultramodularity) are ultramodular aggregation functions.
The proof of (iv) is done by induction: if the k-ary extension A(k) of A is ultramodular then
also A(k+1) : [0,1]k+1→ [0,1] given by A(k+1)(x1, . . . ,xk,xk+1)=A(A(k)(x1, . . . ,xk),xk+1) is also
ultramodular as a consequence of the ultramodularity of the functions B1,B2 : [0,1]k+1→ [0,1]
given by B1(x1, . . . ,xk,xk+1) = A(k)(x1, . . . ,xk) and B2(x1, . . . ,xk,xk+1) = xk+1, respectively. 2

3.3 Structure of ultramodular aggregation functions

We denote, for n ∈N, by Un the set of n-ary ultramodular aggregation functions and we put
U =

⋃
n∈N Un. Because of Theorem 3.2.10, the set U is closed under composition of functions.

Moreover, this means that each Un is a convex set (it is even a compact subset of the set of all
functions from [0,1]n to [0,1], equipped with the topology of pointwise convergence). The set
U1 consists of all convex, nondecreasing functions f : [0,1]→ [0,1] satisfying f (0) = 0 and
f (1) = 1, and its smallest and greatest elements are 1{1} and id[0,1], respectively. Since for each
f ∈U1 its restriction f |[0,1[ is continuous, it is possible to write f as a convex combination of
a continuous element g of U1 and 1{1}: indeed, f = λg+(1−λ)1{1} where λ = f (1−) and λg
is the continuous extension of f |[0,1[.

We start with showing that for an A ∈Un to be continuous it is sufficient to show that it is
continuous at the point 1:

Lemma 3.3.1 An n-ary ultramodular aggregation function A : [0,1]n→ [0,1] is continuous if
and only if sup{A(x) | x ∈ [0,1[n}= 1.

Proof : Suppose that A ∈ Un is non-continuous, but continuous at the point 1. Because of
the monotonicity of A, there is some non-continuous one-dimensional section of A. From the
convexity of this section we know that this non-continuity can occur only in its right endpoint.
This means that there is some i ∈ {1, . . . ,n} and some x ∈ [0,1]n such that for all s ∈ [0,1[

A(x1, . . . ,xi−1,1,xi+1, . . . ,xn)−A(x1, . . . ,xi−1,s,xi+1, . . . ,xn)≥ ε > 0.
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Since A is continuous in 1 there is an α ∈ [0,1[ such that

A(1)−A(1, . . . ,1,α,1, . . . ,1)< ε.

Putting u = (x1, . . . ,xi−1,1,xi+1, . . . ,xn) and v = (1, . . . ,1,α,1, . . . ,1) we obtain A(u∨ v)−
A(v) < ε and A(u)− A(u∧ v) ≥ ε, contradicting the supermodularity of A. The converse
implication is obvious. 2

Based on that, we have the following decomposition of elements of Un for n > 1:

Proposition 3.3.2 Each function A ∈Un can be written as a convex combination A = λA∗+
(1− λ)A∗∗ where λ = sup{A(x) | x ∈ [0,1[n}, A∗ ∈ Un is continuous and A∗∗ is an n-ary
aggregation function with A∗∗(x) = 0 for all x ∈ [0,1[n.

Proof : The monotonicity of A and the continuity of each of its one-dimensional sections imply
that A|[0,1[n is continuous (compare Remark 1.3(ii) in [59] for the case n = 2). Let B : [0,1]n→
[0,1] be the (unique) continuous extension of A|[0,1[n . If λ = B(1) = 0 then B = 0, and A∗ can
be chosen arbitrarily and A∗∗ = A. If λ > 0 then A∗ = 1

λ
B is a continuous element of Un. Now,

if λ = 1 then A∗ = B = A, and A∗∗ can be chosen arbitrarily. If 0 < λ < 1 then A∗∗ = A−B
1−λ

, and
we have A∗∗(1) = 1. Because of A|[0,1[n = B|[0,1[n we get A∗∗(x) = 0 for all x ∈ [0,1[n. The
monotonicity of A∗∗ is equivalent to the monotonicity of its one-dimensional sections which is
non-trivial only if, for some fixed a ∈ [0,1]n, one of its coordinates equals 1. Without loss of
generality, consider the section h : [0,1]→ [0,1] given by h(x) = A(x,1,a3, . . . ,an). For each
ε ∈ ]0,1[, the ultramodularity of A implies

A(y,1,a3, . . . ,an)−A(x,1,a3, . . . ,an)

≥ A(y,1− ε,a3, . . . ,an)−A(x,1− ε,a3, . . . ,an) (3.5)

for all x,y ∈ [0,1] with x < y. Taking the limit ε→ 0, (3.5) turns into

A(y,1,a3, . . . ,an)−A(x,1,a3, . . . ,an)≥ B(y,1,a3, . . . ,an)−B(x,1,a3, . . . ,an),

implying h(x)≤ h(y). 2

Remark 3.3.3 (i) The aggregation function A∗∗ mentioned in Proposition 3.3.2 is not ul-
tramodular, in general. Indeed, define A ∈U2 by

A(x,y) =


max(5xy− 9

2 ,0) if (x,y) ∈ [0,1[2 ,
max(5

9 y,5y−4) if x = 1,
max(5

9 x,5x−4) if y = 1.
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Then λ = 1
2 , and A∗ and A∗∗ are given by A∗(x,y) = max(10xy−9,0) and

A∗∗(x,y) =


0 if (x,y) ∈ [0,1[2 ,
min(10

9 y,1) if x = 1,
min(10

9 x,1) if y = 1.

The section h : [0,1]→ [0,1] given by h(x) = A∗∗(x,1) = min(10
9 x,1) is not convex, i.e.,

A∗∗ is not ultramodular.

(ii) Because of Proposition 3.3.2, the ultramodularity of an n-ary aggregation function im-
plies its continuity up to the right boundary of [0,1]n, extending a similar fact for nonde-
creasing functions to dimension n.

Given a fixed v ∈ [0,1]n and t1, . . . , tk ∈ [0,∞[n we define

Ev;t1,...,tk =

{
x ∈ [0,1]n

∣∣∣∣ x = v+
k

∑
j=1

α j · t j and α1, . . . ,αk ∈ [0,1]

}
.

Evidently, to cover all possible k-dimensional sections of [0,1]n, it is enough to consider k ≤ n
and independent vectors t1, . . . , tk. As special cases (with k = 1) we mention the i-th one-
dimensional section with arbitrary v and t = ei = (0, . . . ,0,1,0, . . . ,0), and the diagonal section
with v = (0, . . . ,0) and t = (1, . . . ,1). As a consequence of Definition 3.2.1, for a given ultra-
modular aggregation function A : [0,1]n→ [0,1], also the restriction A|Ev;t1 ,...,tk

of A to Ev;t1,...,tk

is ultramodular.

Theorem 3.3.4 Let A : [0,1]n → [0,1] be an aggregation function with A(x) = 0 for all x ∈
[0,1[n. Then A is ultramodular if and only if the following hold:

(i) all (n− 1)-dimensional sections Bi = A|Ei of A, i ∈ {1, . . . ,n}, are ultramodular, where
Ei = Eei;e1,...,ei−1,ei+1,...,en .

(ii) for all i, j ∈ {1, . . . ,n} with i 6= j and all x ∈ Ei∩E j we have

A(x)≥ sup{Bi(y) | y ∈ Ei,y < x}+ sup{B j(z) | z ∈ E j,z < x}.

Proof : Since the last inequality follows from the ultramodularity of A, the necessity is obvi-
ous. Conversely, evidently each one-dimensional section of A is either constant zero up to
the endpoint (and thus convex) or it coincides with some one-dimensional section of some Bi,
again showing its convexity. The validity of (ii) is trivial if x ∈ [0,1[n or y ∈ [0,1[n. Sup-
pose that x,y ∈ [0,1]n \ [0,1[n. Then there are i, j ∈ {1, . . . ,n} with x ∈ Ei and y ∈ E j. If
x∧y ∈ [0,1]n \ [0,1[n then we may suppose i = j, and (ii) follows from the supermodularity of
Bi. If x∧y ∈ [0,1[n then i 6= j and x∨y ∈ Ei∩E j, in which case (ii) follows from the fact that
x < x∧y and y < x∧y. 2



36 Supermodular and Ultramodular aggregation functions

Example 3.3.5 An aggregation function A : [0,1]2 → [0,1] is non-continuous, ultramodular
and satisfies A(x) = 0 for all x ∈ [0,1[2 if and only if there are numbers λ1,λ2,λ3,λ4 ∈ [0,1]
with λ1+λ2+λ3+λ4 ≤ 1 and continuous, nondecreasing convex functions f ,g : [0,1]→ [0,1]
such that

A(x,y) =


0 if (x,y) ∈ [0,1[2 ,
λ1 +λ2 · f (x) if (x,y) ∈ [0,1[×{1},
λ3 +λ4 ·g(y) if (x,y) ∈ {1}× [0,1[ ,
1 otherwise.

The smallest non-continuous ultramodular binary aggregation function vanishing on [0,1[2 is
1{(1,1)}, and there is no greatest aggregation function of this type. However, for each α ∈ [0,1],
the function Aα given by

Aα(x,y) =


0 if (x,y) ∈ [0,1[2 ,
α if (x,y) ∈ [0,1[×{1},
1−α if (x,y) ∈ {1}× [0,1[ ,
1 otherwise.

is a maximal non-continuous ultramodular binary aggregation function vanishing on [0,1[2.

We have the following characterization of maximal continuous binary ultramodular aggre-
gation functions:

Proposition 3.3.6 A function A : [0,1]2→ [0,1] is a maximal continuous ultramodular aggre-
gation function (i.e., there is no continuous ultramodular aggregation function B : [0,1]2 →
[0,1] with B(x,y) ≥ A(x,y) for all (x,y) ∈ [0,1]2 and B(x0,y0) > A(x0,y0) for some (x0,y0) ∈
[0,1]2) if and only if A is a weighted arithmetic mean, i.e., A(x,y) = λ · x+(1−λ) · y for some
λ ∈ [0,1].

Proof : Note that for each supermodular aggregation function A : [0,1]2→ [0,1] we necessarily
have A(1,0)+A(0,1)≤ 1. Moreover, if A(1,0)+A(0,1) = 1, i.e., A(1,1)−A(1,0)−A(0,1)+
A(0,0) = 0, then for each rectangle [x,x∗]× [y,y∗] necessarily A(x∗,y∗)−A(x∗,0)−A(x,y∗)+
A(x,y) = 0, and the aggregation function is additive, i.e., A(x,y) = A(x,0)+A(0,y). On the
other hand, since the one-dimensional sections of the ultramodular aggregation function A
are convex, we get A(x,0) ≤ x ·A(1,0) = λ · x and A(0,y) ≤ y ·A(0,1) = (1− λ) · y, where
λ = A(1,0). Then clearly each weighted arithmetic mean given by A(x,y) = λ · x+(1−λ) ·
y is a maximal element of the set of all continuous elements of U2. Moreover, these facts
also prove that each element of U2 satisfying A(1,0) +A(0,1) = 1 which is different from
the weighted arithmetic mean is bounded from above by a corresponding weighted arithmetic
mean (with coinciding values at the corner points of the unit square). On the other hand, if for
each continuous element A of U2 we put a = A(1,0) and b = A(0,1) and if a+ b < 1 then,
as already mentioned, A(x,0)≤ x ·a, and evidently A(0,y)≤ b · y < (1−a) · y. Moreover, due
to the convexity of the one-dimensional sections of A, we have A(1,y) ≤ a+(1− a) · y and
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A(x,1) ≤ (1− a)+ a · x, implying A(x,y) ≤ a · x+(1− a) · y for all (x,y) ∈ [0,1]2. Hence the
weighted arithmetic mean B given by B(x,y) = a · x+(1−a) · y satisfies B ≥ A and B(0,1)>
A(0,1), i.e., A is not a maximal element of the set of all continuous members of U2. 2
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Chapter 4

2-Increasing agops

In the case of aggregation functions we have denoted supermodular n–ary aggregation ones
by AS

n . Now we want to discuss the interesting connections between AS
n , AS

2 and copulas.
Section 4.3 deals with some special ultramodular aggregation functions, especially with ul-
tramodular copulas and in subsection 4.3.1 a method for constructing bivariate copulas based
ultramodular aggregation functions is proposed and exemplified. We will continue the discus-
sion about construction procedures which yield supermodular and ultramodular copulas known
as ordinal sums, flipping, and cycle shiftings.

4.1 A copula-based approach to aggregation functions

A binary aggregation function, briefly called agop, is said to be 2-increasing if, for all
x1,x2,y1 and y2 ∈ [0,1] with x1 ≤ x2 and y1 ≤ y2, one has

VA([x1,x2]× [y1,y2]) := A(x1,y1)+A(x2,y2)−A(x1,y2)−A(x2,y1)≥ 0. (4.1)

A deep analysis of this class of functions can be found in [37, 39]. Moreover, inequality (4.1)
is called rectangular inequality and VA([x1,x2]× [y1,y2]) is said to be the A-volume of [x1,x2]×
[y1,y2]. Notice that inequality (4.1) is equivalent to the fact that both the functions

t→ A(x2, t)−A(x1, t) ands→ A(s,y2)−A(s,y1)

are increasing for x1 ≤ x2 and y1 ≤ y2, respectively. This property is also known as moderate
growth (see [73]).
A 2-increasing aggregation function is also supermodular with respect to the pointwise order
on [0,1]2. In fact, if x∧ y and x∨ y denote, respectively, the componentwise minimum and
maximum of two points x and y of [0,1]2, then inequality (4.1) can be rewritten in the form
A(x∧y)+A(x∨y)≥ A(x)+A(y). The class of 2-increasing agops will be denoted by A2 and
the most important characterization between AS

n and AS
2 is Proposition 1.2.2.

The supermodularity of a function f : [0,1]n→ [0,1] is preserved if the arguments are distorted,
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i.e., if g1, . . . ,gn : [0,1]→ [0,1] are nondecreasing functions, then the function h : [0,1]n→ [0,1]
given by h(x) = f (g1(x1), . . . ,gn(xn)) is supermodular (if f is a supermodular aggregation
function with f (g1(0), . . . ,gn(0)) = 0 and f (g1(1), . . . ,gn(1)) = 1 then h is also a supermodu-
lar aggregation function).

Some important examples of supermodular aggregation functions are the restrictions to
[0,1]2 of bivariate distribution functions F such that F(0,0) = 0 and F(1,1) = 1, in partic-
ular copulas, which correspond to the case when the marginal distributions are uniform on the
unit interval (and in such a case, they possess a neutral element 1) (see [81, 82]), the smallest
agop, defined by

AS(x,y) =

{
1 if (x,y) = (1,1),
0 otherwise.

and the weighted arithmetic means (see [22]).
Copulas play an important role in the representation of supermodular binary aggregation func-
tions. The following result is taken from [39], Theorem 17:

Proposition 4.1.1 An aggregation function A : [0,1]2 → [0,1] is supermodular if and only if
there are nondecreasing functions g1,g2,g3,g4 : [0,1]→ [0,1] with gi(1) = 1 for i ∈ {1,2,3,4}
and g1(0) = g2(0) = 0, a copula C : [0,1]2 → [0,1] with C(g3(0),g4(0)) = 0, and numbers
a,b,c ∈ [0,1] with a+b+ c = 1 such that, for all (x,y) ∈ [0,1]2,

A(x,y) = a ·g1(x)+b ·g2(y)+ c ·C(g3(x),g4(y)). (4.2)

If 0 is an annihilator of the aggregation function A : [0,1]2→ [0,1], i.e., if A(x,0) =A(0,x) =
0 for all x ∈ [0,1], then (4.2) reduces to

A(x,y) =C( f (x),g(y)), (4.3)

where f ,g : [0,1]→ [0,1] are nondecreasing functions with f (1) = g(1) = 1 and C satisfies
C( f (0),g(0)) = 0. Note that then we have f (x) = A(x,1) and g(x) = A(1,x) for all x ∈ [0,1].

Proposition 4.1.1 can be read also in this way: each binary supermodular aggregation func-
tion is a convex combination of a modular aggregation function and a distorted copula.

In general, the composition of (super-)modular functions is not necessarily (super-)modular:
the functions A,B : [0,1]2→ [0,1] given by A(x,y) =

√
x and B(x,y) = x+y

2 are both modular
and, therefore, supermodular. However, the composition A(B,B) : [0,1]2 → [0,1] given by

A(B,B)(x,y) =
√

x+y
2 is not supermodular.

4.2 Binary ultramodular aggregation function

Propositions 4.1.1 and 3.2.2 imply the following representation for binary supermodular
aggregation functions:
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Corollary 4.2.1 If A ∈U2 then we have

A = λ ·A1 +(1−λ) ·A2, (4.4)

where A1 is a modular element of U2, A2 is a supermodular binary aggregation function with
annihilator 0, and λ = 1−A(1,0)−A(0,1) ∈ [0,1].

Proof : If A ∈ U2 then, because of Proposition 4.1.1, there exist nondecreasing functions
g1,g2,g3,g4 : [0,1]→ [0,1] with gi(1) = 1 for i ∈ {1,2,3,4} and g1(0) = g2(0) = 0, a cop-
ula C with C(g3(0),g4(0)) = 0, and numbers a,b,c ∈ [0,1] with a+b+c = 1 such that, for all
(x,y) ∈ [0,1]2,

A(x,y) = a ·g1(x)+b ·g2(y)+ c ·C(g3(x),g4(y)) = λ ·A1 +(1−λ) ·A2,

where λ = a+ b, A1(x,y) = 1
a+b · (a · g1(x)+ b · g2(y)) whenever λ > 0 (and A1 an arbitrary

modular element of U2 if λ = 0), and A2(x,y) = C(g3(x),g4(y)) (if λ = 1 then A2 can be
chosen arbitrarily). The supermodularity of A2 is a consequence of the supermodularity of C.

2

A full characterization of the elements of the set U2 is still missing. Obviously, if A2 ∈U2
has annihilator 0 then (4.4) yields an element A ∈ U2 for each modular A1 ∈ U2 and each
λ ∈ [0,1].

Remark 4.2.2 (i) The supermodular aggregation function A2 mentioned in Corollary 4.2.1
is not ultramodular, in general. Take, e.g., A ∈U2 given by

A(x,y) =

{
4
3 xy if (x,y) ∈

[
0, 1

2

]2
,

2x+2y−1
3 otherwise.

Then λ = 2
3 , A1(x,y) = f (x)+ f (y) with f (x) = max(2x−1,0) and A2(x,y) = g(x) ·g(y)

with g(x) = min(2x,1), and A2 is supermodular. However, A2 is not ultramodular, since
the section h : [0,1]→ [0,1] given by h(x) = A(x,1) = g(x) is not convex.

(ii) If A2 is a supermodular binary aggregation function with annihilator 0 which is not ul-
tramodular then the set [λ0,1] of all λ such that, for some modular A1 ∈U2, the convex
combination λ ·A1 +(1− λ) ·A2 is ultramodular, is a proper subset of [0,1]. In other
words, λ0 = 0 if and only A2 is ultramodular. It is not difficult to show that, for A1 and
A2 considered in (i), we have λ0 =

2
3 .

(iii) There are supermodular binary aggregation functions A2 with annihilator 0 such that the
set [λ0,1] in (ii) is trivial, i.e., λ0 = 1 (in which case A2 is necessarily non-ultramodular).
An example for such an A2 is the geometric mean, i.e., A2(x,y) =

√
x · y (note that it has

unbounded partial derivatives).

Proposition 4.2.3 A binary aggregation function A ∈U2 can be written as in (4.4) with A1 ∈
U2 being modular and A2 ∈ U2 having annihilator 0 if and only if, for all r,s ∈ [0,1], the
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functions hr,vs : [0,1]→ [0,1] given by hr(x) = A(x,r)−A(x,0) and vs(y) = A(s,y)−A(0,y),
respectively, are convex.

Proof : Assume that A can be written as in (4.4). If λ < 1 then hr(x) = (1−λ) ·A2(x,y) and
vs(y) = (1− λ) ·A2(x,y), i.e., hr and vs are multiples of sections of A2 ∈ U2 and, therefore,
convex. If λ = 1 then A1 = A, implying that hr = A(0,r) and vs = A(s,0) are constant and,
therefore, convex.

Conversely, suppose that all the functions hr and vs are convex. Because of Corollary 4.2.1,
A = λ ·A1 +(1−λ) ·A2 with A1 ∈U2 being modular and A2 being supermodular with annihi-
lator 0. Then vs(y) = λ ·A1(s,0)+(1−λ) ·A2(s,y), and the convexity of vs implies that either
λ = 1 (in which case A = A1 and A2 can be chosen arbitrarily) or g : [0,1]→ [0,1] given by
g(y) = A2(x,y) is a convex section of A2. Thus, if A is not modular then A2 is necessarily
ultramodular. 2

Now we present a way to construct continuous ultramodular aggregation operators from
(possibly) non-ultramodular ones.

Proposition 4.2.4 Let C : [0,1]2→ [0,1] be a copula, f ,g : [0,1]→ [0,1] nondecreasing sur-
jections, and assume that all sections of A2 : [0,1]2→ [0,1] given by A2(x,y) = C( f (x),g(y))
have bounded second derivatives. Then there is a λ ∈ [0,1[ and a modular aggregation func-
tion A1 ∈U2 such that A : [0,1]2→ [0,1] given by A = λ ·A1 +(1−λ) ·A2 is an ultramodular
aggregation function.

Proof : Define the functions α,β : [0,1]→R by

α(x) = inf
{

∂2

∂x2 A2(x,y)
∣∣ y ∈ [0,1]

}
,

β(y) = inf
{

∂2

∂y2 A2(x,y)
∣∣ x ∈ [0,1]

}
,

respectively, and the functions γ,δ,ε,ζ : [0,1]→R by

γ(x) =
∫ x

0
max(−α(u),0)du, ε(x) =

∫ x

0
max(−β(u),0)du,

δ(x) =
∫ x

0
γ(u)du ζ(x) =

∫ x

0
ε(u)du,

respectively. Then it is not difficult to check that, for λ0 =
δ(1)+ζ(1)

δ(1)+ζ(1)+1 , for each λ ∈ [λ0,1] and

for all a,b ∈ [0,1] with a+b = λ−λ0
λ·(1−λ0)

, the function A1 : [0,1]2→ [0,1] given by

A1(x,y) = a · x+ 1−λ

λ
·δ(x)+b · y+ 1−λ

λ
·ζ(y)

is modular, implying that A = λ ·A1 +(1−λ) ·A2 is an ultramodular aggregation operator. 2
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Example 4.2.5 Using the notations of Proposition 4.2.4 and of its proof, put C = Π and define
the functions f and g by f (x) = 2x−x2 and g(x) = 3x−x3

2 . Note that the function A2 is not ultra-
modular. Then we get α(x) =−2, β(x) =−3x, δ(x) = x2, ζ(x) = x3

2 , and λ0 =
3
5 . Finally, we

obtain the two-parametric family (Aλ,a)λ∈[ 3
5 ,1],a∈[0,

5λ−3
2λ

] of ultramodular aggregation functions
given by

Aλ,a(x,y) = λ
(
ax+ 1−λ

λ
x2 +(5λ−3

2λ
−a)y+ 1−λ

λ

y3

2

)
+(1−λ) (2x−x2)·(3y−y3)

2 .

4.2.1 Modifications and constructions

Now we recall some of the modifications and constructions in the framework of copulas
(i.e., which preserve supermodularity).

Remark 4.2.6 For each binary copula C : [0,1]2→ [0,1] we have W ≤C≤M, where the lower
and upper Fréchet-Hoeffding bounds W and M are given by W (x,y) = max(x+ y− 1,0) and
M(x,y) = min(x,y), respectively.

(i) Ordinal sum: If (Ck)k∈K is a family of copulas and if (]ak,bk[)k∈K is a family of pairwise
disjoint open subintervals of [0,1] then the ordinal sum C = (〈ak,bk,Ck〉)k∈K is given by

C(x,y) =

{
ak +(bk−ak)Ck

( x−ak
bk−ak

, y−ak
bk−ak

)
if (x,y) ∈ ]ak,bk[

2 ,

M(x,y) otherwise.

(ii) W-ordinal sum: If (Ck)k∈K is a family of copulas and if (]ak,bk[)k∈K is a family of pair-
wise disjoint open subintervals of [0,1] then the W -ordinal sum C =W -(〈ak,bk,Ck〉)k∈K
is given by (see [40, 54])

C(x,y) =

{
(bk−ak)Ck

( x−ak
bk−ak

, y−1+bk
bk−ak

)
if (x,y) ∈ ]ak,bk[× ]1−bk,1−ak[ ,

W (x,y) otherwise.

(iii) g-ordinal sum: If (Ck)k∈K is a family of copulas and if (]ak,bk[)k∈K is a family of pairwise
disjoint open subintervals of [0,1] then the g-ordinal sum C = g-(〈ak,bk,Ck〉)k∈K is given
by (see [74])

C(x,y) =

{
aky+(bk−ak) ·Ck

( x−ak
bk−ak

,y
)

if x ∈ ]ak,bk[ ,

xy otherwise.

(iv) Flipping: If C is a copula then the flippings C− and C− are given by (see [82])

C−(x,y) = x−C(x,1− y), (4.5)

C−(x,y) = y−C(1− x,y), (4.6)
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(v) Survival copula: If C is a copula then the survival copula Ĉ is given by (see [82])

Ĉ(x,y) = x+ y−1+C(1− x,1− y).

(vi) Cycle shifting: If C is a copula and s ∈ ]0,1[ then the cycle shiftings Cx-cshift
s and Cy-cshift

s

are given by (see [29])

Cx-cshift
s (u,v) =

{
C(u+ s,v)−C(s,v) if u ∈ [0,1− s] ,
C(u+ s−1,v)+ v−C(s,v) otherwise,

Cy-cshift
s (u,v) =

{
C(u,v+ s)−C(u,s) if v ∈ [0,1− s] ,
C(u,v+ s−1)+u−C(u,s) otherwise.

So, we see that there are several modifications and constructions of aggregation functions
which preserve the supermodularity. However, only few of them preserve also ultramodularity.
Without reference to distribution functions or random variables, we construct grounded 2-
increasing functions on I2 with uniform margins, utilizing some information of a geometric
nature, such as a description of the support or the shape of the graphs of horizontal, vertical, or
diagonal sections. In the “ordinal sum” construction the members of a set of copulas are scaled
and translated in order to construct a new copula.
The only copula whose ultramodularity is preserved by flipping or cycle shifting is the product
copula Π. From Remark 3.2.2(iv) we know that a necessary condition for a copula C to be
an ultramodular C ≤ Π, i.e., C is Negative Quadrant Dependent (NQD). However, flipping
changes the property NQD into PQD (Positive Quadrant Dependent, see [82]), i.e., if C ≤ Π

then C− ≥Π and C− ≥Π, implying that the only ultramodular copula remaining ultramodular
after flipping is Π. If C is a copula and hc a horizontal section thereof, then the corresponding
horizontal section h∗c of the copula Cx-cshift

s is given by

h∗c(u) =

{
hc(s+u)−hc(s) if u ∈ [0,1− s] ,
hc(u+ s−1)+ c−hc(s) otherwise.

Then, if hc is convex, h∗c is convex only if hc is linear, i.e., if hc(u) = c · u, implying C = Π.
Analogous reasoning based on vertical sections can be used for y-cycle shifting. Moreover, no
non-trivial ordinal sum or g-ordinal sum of copulas can be ultramodular. On the other hand, a
W -ordinal sum of copulas is ultramodular if and only if each summand copula is ultramodular.
Similarly, a survival copula Ĉ is ultramodular if and only if C is ultramodular.

4.3 Special ultramodular aggregation functions

If an ultramodular binary aggregation function with annihilator 0 has also neutral element 1
then it necessarily is an ultramodular copula, i.e., a copula with convex sections. In statistics,
where a copula C describes the dependence structure of a random vector (X ,Y ), the ultramod-
ularity of C is equivalent to X being stochastically decreasing with respect to Y (and Y being
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stochastically decreasing with respect to X). Clearly, the set Cu of all ultramodular binary cop-
ulas is convex. The greatest element of Cu is the product Π, and the smallest element of Cu is
the lower Fréchet-Hoeffding bound W .

Because of [82, 92], each associative copula is an ordinal sum [28, 82, 92] of Archimedean
copulas. However, if for a copula C we have C(a,a) = a for some a ∈ ]0,1[, then C(x,a) =
min(x,a) implies that there are non-convex sections, i.e., C cannot be ultramodular. Therefore,
each associative ultramodular copula C is a trivial ordinal sum of Archimedean copulas, i.e.,
C itself must be Archimedean. Recall that a binary aggregation function C : [0,1]2→ [0,1] is
an Archimedean copula if and only if there is a continuous, strictly decreasing convex function
t : [0,1]→ [0,∞] with t(1) = 0 such that for all (x,y) ∈ [0,1] (see [79])

C(x,y) = t−1(min(t(x)+ t(y), t(0))). (4.7)

The function t is called an additive generator of C, and it is unique up to a positive multiplicative
constant.

If we want to see whether an Archimedean copula is ultramodular, i.e., has convex horizontal
and vertical sections, its symmetry (as a consequence of (4.7)) and boundary conditions tell us
that it suffices to check the convexity of all horizontal sections for a ∈ ]0,1[.

Theorem 4.3.1 Let C : [0,1]2 → [0,1] be an Archimedean copula with a two times differen-
tiable additive generator t : [0,1]→ [0,∞]. Then C is ultramodular if and only if 1

t ′ is a convex
function.

Proof : Suppose that C is an Archimedean copula with a two times differentiable additive gen-
erator t. Then C is ultramodular if and only if, for each a ∈ ]0,1[ and c = t(a) ∈ ]0, t(0)[, the
section f : [0,1]→ [0,1] given by

f (x) =C(x,a) = t−1(min(t(x)+ c, t(0))),

is convex, which is equivalent to f ′′(x) ≥ 0 whenever f (x) > 0, i.e., for each x ∈ [0,1] with
f (x)+ c < t(0)

f ′′(x) =
t ′′(x) · (t ′(t−1(t(x)+ c)))2− (t ′(x))2 · t ′′(t−1(t(x)+ c))

(t ′(t−1(t(x)+ c)))3 ≥ 0.

Since t ′ is negative on ]0,1[, this means

t ′′(x)
(t ′(x))2 ≤

t ′′(t−1(t(x)+ c))
(t ′(t−1(t(x)+ c)))2 . (4.8)

Put u = t−1(t(x)+ c)< x. Because of t ′′(x)
(t ′(x))2 =

(
− 1

t ′(x)

)′, (4.8) can be rewritten as(
1

t ′(x)

)′
≥
(

1
t ′(u)

)′
. (4.9)
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Since a can be chosen arbitrarily, (4.9) holds for all u,x ∈ ]0,1[ with u < x, i.e., the derivative
of the function 1

t ′ is nondecreasing implying that 1
t ′ is convex. 2

Remark 4.3.2 (i) The requirement that the additive generator t of C be two times differen-
tiable cannot be dropped in Theorem 4.3.1: define t : [0,1]→ [0,∞] by

t(x) =

{
− log(8

9 x) if x ∈
[
0, 1

2

]
,

−2log 2x+1
3 otherwise.

Then 1
t ′ is given by 1

t ′(x) = max(−x,−2x+1
4 ), and it is convex, but the horizontal section at

3
4 of the Archimedean copula C generated by t is not convex, i.e., C is not ultramodular.

(ii) Theorem 4.3.1 gives also a hint how to construct ultramodular Archimedean copulas: if
g : [0,1]→ [0,∞] is a differentiable, convex, non-increasing function with g(1)< 0 then
t : [0,1]→ [0,∞] given by

t(x) =−
∫ 1

x

1
g(u)

du (4.10)

is an additive generator of an ultramodular Archimedean copula.

Example 4.3.3 For each λ ∈ ]0,1[, the function gλ : [0,1]→ [0,∞] given by gλ(x) =−x1−λ is
differentiable, convex, non-increasing and satisfies gλ(1) < 0. Then (4.10) yields the additive
generator tλ : [0,1]→ [0,∞] given by tλ(x) = 1−xλ

λ
, and the corresponding copula Cλ is given

by

Cλ(x,y) =
(
max(xλ + yλ−1,0)

) 1
λ .

Note that the limit cases for λ going to 0 and 1 are Π and W , respectively, and that (Cλ)λ∈]0,1]
is the family of non-strict Clayton copulas (see [82]).

As already mentioned in Section 3.2.2, some constructions involving copulas preserve the
convexity of their horizontal and vertical sections. First of all, for each ultramodular copula C,
also the corresponding survival copula Ĉ (see [82]) given by Ĉ(x,y) = x+y−1+C(1−x,1−y)
is ultramodular. Also, the W -ordinal sum (see [40,54]) of ultramodular copulas is ultramodular.

Example 4.3.4 (i) For λ = 0.5, the survival copula Ĉ0.5 of the corresponding Clayton cop-
ula is given by

Ĉ0.5(x,y) = x+ y−1+
(
max(

√
1− x+

√
1− y−1,0)

)2
,

it is ultramodular (but not associative).

(ii) The copula C =W -(〈0,0.5,Π〉) is given by

C(x,y) =

{
x · (2y−1) if (x,y) ∈ [0,0.5]× [0.5,1] ,
W (x,y) otherwise;
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it is also ultramodular (but not associative).

Two types of flipping [29, 82] of a copula C, leading to C− and C− given by (4.5) and (4.6)
turn convex sections into concave ones, and viceversa. Thus, starting from a copula C with
concave horizontal and vertical sections, the flipped copulas C− and C− are ultramodular. Con-
cerning copulas with concave sections we recall the following result [55, Theorem 3]:

Theorem 4.3.5 Let C be an Archimedean copula with additive generator t, let t ′ be the left
derivative of t on ]0,1] and t ′(0) = t ′(0+). Then all the one-dimensional sections of C are
concave if and only if t ′(0) = ∞, t ′ is finite on ]0,1], and 1

t ′ is concave.

Example 4.3.6 (i) Similarly as in Example 4.3.3, for each λ ∈ ]0,∞[, consider the concave
function gλ : [0,1]→ [0,∞] given by gλ(x) = −xλ−1. It is related via gλ = 1

t ′
λ

to the ad-

ditive generator tλ : [0,1]→ [0,∞] given by tλ(x) = x−λ−1
λ

, and the corresponding copula
Cλ is given by

Cλ(x,y) =
(
max(x−λ + y−λ−1,0)

)− 1
λ ,

which is exactly a strict Clayton copula (see [82]). Then both (Cλ)
− and (Cλ)− are

ultramodular (and not associatve):

(Cλ)
−(x,y) = x−

(
x−λ +(1− y)−λ−1

)− 1
λ ,

(Cλ)−(x,y) = y−
(
(1− x)−λ + y−λ−1

)− 1
λ ;

observe that (Cλ)−(x,y) = (Cλ)
−(y,x).

(ii) The only Archimedean copulas with the property that also the flipped copulas given
by (4.5) and (4.6) are Archimedean are the Frank copulas (Fλ)λ∈]0,∞[ given by

Fλ(x,y) =

{
x · y if λ = 1,

logλ

(
1+ (λx−1)·(λy−1)

λ−1

)
otherwise.

Observe that (Fλ)
− = (Fλ)− = F1

λ

, and that Fλ is ultramodular if and only if λ ∈ [1,∞[.

Recently, an interesting class of copulas which are invariant under univariate conditioning
was introduced in [36], compare also [74]. For each continuous, convex and strictly decreasing
function f : [0,1]→ [0,∞] with f (1) = 0 (i.e., for each additive generator of an Archimedean
copula, see (4.7)) define the function C f : [0,1]2→ [0,1] by

C f (x,y) =

{
0 if x = 0,
x · f−1

(
min
( f (y)

x , f (0)
))

otherwise.
(4.11)

It was shown in [36, Proposition 3.1] that C f is a copula, and f was called a horizontal gene-
rator of C f . In full analogy, we can use f as a vertical generator to construct the copula



48 2-Increasing agops

C f : [0,1]2→ [0,1] via

C f (x,y) =

{
0 if y = 0,
y · f−1

(
min
( f (x)

y , f (0)
))

otherwise.
(4.12)

Note also that we have Cc· f = C f and Cc· f = C f for each positive constant c. Using similar
reasoning as in the proof of Theorem 4.3.1 we obtain the following result:

Theorem 4.3.7 Let f : [0,1]→ [0,∞] be a two times differentiable horizontal or vertical gene-
rator. If 1

f ′ is a convex function then C f and C f are ultramodular.

Because of the similarity between the Theorems 4.3.1 and 4.3.7 we can give some examples
based on the same functions as those in Example 4.3.3.

Example 4.3.8 For each λ ∈ ]0,1[, define the function fλ : [0,1]→ [0,∞] by fλ(x) = 1− xλ.
Then all the requirements of Theorem 4.3.7 are fulfilled and, therefore, the (asymmetric) cop-
ulas C fλ

and C fλ given by

C fλ
(x,y) = max

(
xλ−1 · yλ + xλ− xλ−1,0

) 1
λ ,

C fλ(x,y) = max
(
xλ · yλ−1 + yλ− yλ−1,0

) 1
λ ,

are ultramodular.
Observe that C f1 = C f1 = W and that, taking into account f0 = limλ↘0 fλ = − log, we have
C f0 = limλ↘0C fλ

, where C f0 is given by

C f0(x,y) =

{
0 if x = 0,
x · y 1

x otherwise.

However, Theorem 4.3.7 provides only a sufficient condition for the ultramodularity of cop-
ulas (in contrast to Theorem 4.3.1 where a necessary and sufficient condition is given): indeed,
if f : [0,1]→ [0,1] is given by f (x) = 1

x −1, then the copulas C f and C f , given by

C f (x,y) =
x2y

1− y+ xy
, C f (x,y) =

xy2

1− x+ xy
,

are both ultramodular, but 1
f ′ is not convex (in fact, it is concave).

4.3.1 Constructing copulas by means of ultramodular aggregation functions

Theorem 3.2.10 has important implications for the construction of bivariate copulas.

Theorem 4.3.9 Let A : [0,1]n → [0,1] be a continuous ultramodular aggregation function,
C1, . . . ,Cn : [0,1]2→ [0,1] copulas and the functions f1, . . . , fn, g1, . . . ,gn : [0,1]→ [0,1] satisfy
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fi(1) = gi(1) = 1, for each i ∈ {1, . . . ,n} with A( f1(0), . . . , fn(0)) = A(g1(0), . . . ,gn(0)) = 0.
Define ξ,η : [0,1]→ [0,1] by

ξ(x) = sup{u ∈ [0,1] | A( f1(u), . . . , fn(u))≤ x},
η(x) = sup{u ∈ [0,1] | A(g1(u), . . . ,gn(u))≤ x}.

Then the function C : [0,1]2→ [0,1] given by

C(x,y) = A
(
C1( f1 ◦ξ(x),g1 ◦η(x)), . . . ,Cn( fn ◦ξ(x),gn ◦η(x))

)
(4.13)

is a copula.

Proof : Defining f ,g : [0,1]→ [0,1] by f (x)=A( f1(x), . . . , fn(x)) and g(x)=A(g1(x), . . . ,gn(x))
it is clear that f and g are surjective nondecreasing functions (and, therefore, continuous),
while ξ and η are the (upper) pseudo-inverses of f and g (see [58,92]). Consequently, proving
that 1 is the neutral element of C, f ◦ξ = g◦η = id[0,1]. Because of Theorem 3.2.10, C is also
ultramodular and, therefore, a copula. 2

Theorem 4.3.9 can be used to construct non-symmetric copulas from symmetric ones, some
of which have already been considered in the literature.

Example 4.3.10 (i) If we put n = 2, A =C1 = Π and define, for α,β ∈ [0,1], the functions
f1, f2,g1,g2 by f1(x) = x1−α, f2(x) = xα, g1(x) = x1−β, and g2(x) = xβ, then for each
copula C2 the construction in (4.13) yields the copula Cα,β given by

Cα,β = x1−α · y1−β ·C2(xα,yβ). (4.14)

Note that Cα,β was shown to be a copula in [50], and that a generalization of (4.14) based
on the n-ary product Π was given in [64].

(ii) If we put n = 2, A = W , C1 = C2 = M and define the functions f1, f2,g1,g2 by f1(x) =
g2(x) = x+2

3 and f2(x) = g1(x) = 2x+1
3 , then the construction in (4.13) yields the copula

C given by

C(x,y) =
1
3
·max(min(x+1,2y)+min(2x,y+1)−1,0).

(iii) If C1 and C2 are arbitrary copulas and f ,g : [0,1]→ [0,1] are continuous nondecreasing
functions with f (1) = g(1) = 1 then A : [0,1]2→ [0,1] given by

A(x,y) =W (C1( f (x),g(y)),C2(x+1− f (x),y+1−g(y)))

is a copula. If, e.g., C1 = C2 = Π and f (x) = 1+4x
5 and g(x) = 2+x

3 then A(x,y) =
max

( (2x+3)(2y+3)
10 ,0

)
. Observe that A is an Archimedean copula, its additive generator

t being given by t(x) = − log 2x+3
5 . In fact, each Archimedean copula whose additive
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generator t, for some c ∈ ]0,1], is given by t(x) =− log(c · x+1− c) can be obtained in
this way, and all these copulas are ultramodular.

(iv) Let A : [0,1]n → [0,1] be the n-ary extension of a binary ultramodular Archimedean
copula with additive generator t : [0,1]→ [0,∞], i.e.,

A(x) = t−1
(

min
(

t(0),
n

∑
i=1

t(xi)
))

.

Assume that C1 = · · ·=Cn = D, D being an Archimedean copula with additive generator
ψ : [0,1]→ [0,∞], and f1 = · · · = fn = g1 = · · · = gn = id[0,1]. Then the construction
in (4.13) yields an Archimedean copula C whose additive generator ρ : [0,1]→ [0,∞]

is given by ρ(x) = ψ
(
t−1
( t(x)

n

))
. If the additive generator t is two times differentiable

(implying that 1
t ′ is convex because of Theorem 4.3.1) then it is not difficult to check that

the function ζ : [0,1]→ [0,1] given by ζ(x) = t−1
( t(x)

n

)
is concave, strictly increasing

and satisfies ζ(1) = 1. Therefore, C is a ζ-transform of D, i.e.,

C(x,y) = ζ
−1(max(ζ(0),D(ζ(x),ζ(y))));

note that the concavity of ζ is sufficient to show that C is a copula [60].

4.4 Extensions of 2–increasing agops

In the literature, there is a variety of construction methods for aggregation functions (see [22]
and the references therein).
Some of these methods are used to obtain a supermodular aggregation function. An ordinal
sum for n–ary aggregation functions is a function defined in the following way:

D : [0,1]n→ [0,1]

is a symmetric continuous aggregation function which is strictly monotone (cancellative) on
]0,1[n. Then the D-ordinal sum AD : [0,1]n → [0,1] of idempotent aggregation functions Ai :
[ai−1,ai]

n→ [ai−1,ai], i = 1, . . . ,k, 0 = a0 < a1 < .. . < ak = 1, is given as a (unique) solution
of the equation

D(AD(x1, . . . ,xn),a1, . . . ,ak−1) = D(A1(x
(1)
1 , . . . ,x(1)n ), . . . ,Ak(x

(k)
1 , . . . ,x(k)n )).

Some results have been recently obtained on copulas in [76].
Let an agop A be defined in the following way:

A(x) :=
k

∑
i=1

Ai(x(i))−
k−1

∑
i=0

ai, (4.15)

where Ai : [ai−1,ai]
n→ [ai−1,ai], i= 1, . . . ,k, x(i)=min(ai,max(ai−1,x)), ∪k

i=1[ai−1,ai] = [0,1],
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with a0 = 0 and ak = 1. So, we have the following results.

Proposition 4.4.1 Let A be a bivariate aggregation function defined by (4.15). Then A is 2-
increasing if and only if every Ai is 2-increasing.

Proof : If A is 2-increasing ∀x1,x2,y1,y2 ∈ [0,1], with x1 ≤ x2 and y1 ≤ y2, we have

VA ([x1,x2]× [y1,y2]) := A(x1,y1)+A(x2,y2)−A(x1,y2)−A(x2,y1)≥ 0

In particular by taking x(i)1 ,x(i)2 ,y(i)1 ,y(i)2 ∈ [ai−1,ai], we have

VA

(
[x(i)1 ,x(i)2 ]× [y(i)1 ,y(i)2 ]

)
≥ 0,

that is Ai is 2-increasing.
Viceversa, if Ai is 2-increasing, we have A(x(i)1 ,y(i)1 )+A(x(i)2 ,y(i)2 )−A(x(i)1 ,y(i)2 )−A(x(i)2 ,y(i)1 )≥
0. So,

k

∑
i=1

A(x(i)1 ,y(i)1 )+A(x(i)2 ,y(i)2 )−A(x(i)1 ,y(i)2 )−A(x(i)2 ,y(i)1 )≥ 0

that is A is 2−increasing. 2

Proposition 4.4.2 Let A be a bivariate agop defined by (4.15). Then A is the maximal 2-
increasing agop extending A1, . . . ,An, that is A|Ii = Ai.

Proof : We can prove this by induction. For k = 2 we have two summands with points 0,a,1 on
the intervals I1 = [0,a] and I2 = [a,1] and so A|I1 = A1 and A|I2 = A2. If x≤ a≤ y then A(x,y) =
A(x,a)+A(a,y)−a; however, due to the nonnegativity of volume of box [x,a]× [a,y] of any 2-
increasing agop B extending A1 and A2, it follows that B(a,y)+B(x,a) = A2(a,y)+A1(x,a) =
A(a,y)+A(x,a)≥B(x,y)+B(a,a)=B(x,y)+a and thus B(x,y)≤A(a,y)+A(x,a)−A(a,a)=
A(x,y). Now we suppose this maximal extension for k− 1 summands is the strongest one
and we want to verify the same for k summands. So we suppose A(x,y) = ∑

k−1
i=1 Ai(x,y)−

∑
k−2
i=0 ai. Thus A(x,y) = ∑

k
i=1 Ai(x,y)−∑

k−1
i=0 ai = ∑

k−1
i=1 Ai(x,y)+Ak(x,y)−∑

k−2
i=0 ai− ak−1 ≤

∑
k−1
i=1 Bi(x,y)+Bk(x,y)−∑

k−2
i=0 ai− ak−1 ≤ ∑

k
i=1 Bi(x,y)−∑

k−1
i=0 ai = B(x,y). We have applied

2-summands extension to the last summand Ak on [ak−1,ak] and any extension B of the first
k−1 summands on [0,ak−1]. 2

Proposition 4.4.3 Let A be defined by (4.15). Then A is maximal 2-increasing agop extending
A1, . . . ,An, that is A|Ii = Ai in the multivariate case as well.

Proof : We recall that in the multivariate case A is 2-increasing if the functions obtained by fix-
ing n−2 variables are 2-increasing. For example in the trivariate case we need that A(x1,x2,b3),
A(b1,x2,x3) and A(x1,b2,x3) are 2-increasing.
In general A : [0,1]n→ [0,1] is 2-increasing if for any couple of integers α, β such that 1≤ α <
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β ≤ n and all xi ∈ [0,1] with i ∈ {1, . . . ,n} \ {α,β}, the function A : [0,1]α× [0,1]β → [0,1],
given by

A(xα,xβ) = A(a1, . . . ,aα−1,xα,aα+1, . . . ,aβ−1,xβ,aβ+1, . . . ,an)

is 2-increasing. The previous proposition says that they extend A1, . . . ,An and they are the
maximal. So, we can conclude that A is the maximal. 2

Proposition 4.4.4 Let A be a bivariate aggregation function defined by (4.15). Then, for
strictly increasing continuous concave (respectively decreasing, convex) functions f : [0,1]→
[−∞,∞], we have that A f is the 2-increasing agop extension, where

A f : [0,1]2→ [0,1] and

A f (x) := f−1

(
k

∑
i=1

f (Ai(x(i))−
k−1

∑
i=0

f (ai)

)
(4.16)

Proof : Let t(i)4 = Ai(x
(i)
2 ,y(i)2 ), t(i)3 = Ai(x

(i)
1 ,y(i)2 ), t(i)2 = Ai(x

(i)
2 ,y(i)1 ) and t(i)1 = Ai(x

(i)
1 ,y(i)1 ). We

recall that Ai is 2-increasing. Thus, for all f strictly monotone f ◦Ai is 2-increasing again
(corollary 3.2.6) and we have

f (t(i)4 )− f (t(i)3 )− f (t(i)2 )+ f (t(i)1 )≥ 0.

So,
k

∑
i=1

f (t(i)4 )− f (t(i)3 )− f (t(i)2 )+ f (t(i)1 )≥ 0.

Thus, applying lemma 2.5 in [78] and using that f−1 is convex and Ai is increasing in each
variable (t1 ≤ t2 ≤ t4 and t1 ≤ t3 ≤ t4), we have f−1(∑k

i=1 f (t(i)4 )− f (t(i)3 )− f (t(i)2 )+ f (t(i)1 ))≥ 0,
that is our thesis. 2

Note that x(i) = min(ai,max(ai−1,x)) is a point from [ai,bi] closest to x.
So, e.g., if f (x) = id(x) = x, we get

A(id)(x) :=

(
k

∑
i=1

Ai(x(i))−
k−1

∑
i=0

ai

)
,

that is (4.15).

Remark 4.4.5 The theorem 5 in [24] says that there need not exists neither an upper nor
a lower bound of M f in the class of quasi-arithmetic means. Similarly the extension in the
previous proposition is not maximal neither minimal.

Remark 4.4.6 Thanks to Proposition 1.2.2, we can conclude that aggregation functions de-
fined by (4.15) and (4.16) are supermodular ordinal sum if and only if every Ai is 2-increasing.
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Another way to construct a 2-increasing agop is the following one: let us consider F , G :
[0,1]d→ [0,1] and H : [0,1]2→ [0,1], like in the construction introduced by [25]. An aggrega-
tion function Ā ∈ AS

2d is a function Ā : [0,1]d× [0,1]d → [0,1], such that

(A1) Ā(0, . . . ,0) = 0 and Ā(1, . . . ,1) = 1;

(A2) Ā(x(d),y(d)) is 2-increasing.

In order to discuss 2-increasingness in the case of double aggregation operators, we use the
Cartesian partial ordering defined in the section 2.1 in [25].
So, let z = (x(n),y(m)) and z′ = (x′(r),y

′
(s)) be elements of [0,1]d × [0,1]d . The relation ≤2π is

defined as follows: z≤2π z′ if and only if x(n) ≤π x′(r) and y(m) ≤π y′(s). This implies that n = r,
m = s, x1 ≤ x′1, . . . ,xn ≤ x′n and y1 ≤ y′1, . . . ,ym ≤ y′m.
So, in our case, Ā is 2-increasing if

Ā(x(d),y(d))+ Ā(x′(d),y
′
(d))≥ Ā(x(d),y′(d))+ Ā(x′(d),y(d)), (4.17)

∀ x(d) ≤π x′(d) and y(d) ≤π y′(d), d ∈N.
Like in the bivariate case, the inequality (4.17) is equivalent to the fact that both the functions
t(d) → Ā(x(d), t(d))− Ā(x′(d), t(d)) and s(d) → Ā(s(d),y(d))− Ā(s(d),y′(d)) are increasing for all
x(d) ≤ x′(d) and for y(d) ≤ y′(d), respectively.

Remark 4.4.7 In general AS
2 = AS

n , but in particular we have the following relation between
AS

2d and AS
n , for any d, such that 2d = n.

Proposition 4.4.8 AS
2d ⊂ AS

n , for any d, such that 2d = n.

Proof : This result is a consequence of the general one given by [85], because supermodular
aggregation functions are a particular class of that one considered in the definition 2.4 [85].
Moreover the function defined in the counterexample of that proof is an aggregation function,
because it satisfies (A1) and (A2). 2

Now we want to characterize the concept of 2-increasingness of double aggregation functions
in terms of H.

Theorem 4.4.9 Let Ā=AF,G,H be a double aggregation function and≤2π the ordering relation
introduced previously. Then Ā ∈ AS

2d with respect to ≤2π if and only if H is 2-increasing.

Proof : F and G are increasing, because they are aggregation functions and so Ā = AF,G,H is
2-increasing if and only if the requirement (4.17) is satisfied, that is

H(F(x(d)),G(y(d)))+H(F(x′(d)),G(y′(d)))≥ H(F(x(d)),G(y′(d)))+

+H(F(x′(d)),G(y(d))),

∀F(x(d))≤F(x′(d)) and G(y(d))≤G(y′(d)). So Ā is 2-increasing if and only if H is 2-increasing.
2
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Remark 4.4.10 If Ā ∈ AS
2d and if it has a neutral element, then, thanks to the Proposition

(3.1.1), the neutral element is equal to 1. So, if H is 2-increasing and it has the neutral element,
then it has uniform one-dimensional marginals and H is a copula.
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Chapter 5

Triangular norms and Aggregation
Evaluators

In the Introduction, we presented ultramodular and supermodular properties on a generic
sublattice L ⊂ Rn. But on an arbitrary bounded lattice we can introduce also the general
definition of an evaluator and combine this concept with supermodularity and ultramodularity.
Moreover, we will see also interesting connections between evaluators and triangular norms
and conorms.

5.1 Triangular norms

A triangular norm (briefly t-norm) T is defined to be a two-place function

T : [0,1]× [0,1]→ [0,1]

fulfilling the following properties:

T (1,y) = y, for each y ∈ [0,1] Boundary Condition
T (x,y1)≤ T (x,y2), for all x,y1,y2 ∈ [0,1], if y1 ≤ y2 Monotonicity
T (x,y) = T (y,x), for all x,y ∈ [0,1] Commutativity
T (x,T (y,z)) = T (T (x,y),z), for all x,y,z ∈ [0,1]. Associativity

Note that a t-norm defines a semigroup on [0,1] with unit 1 and annihilator 0 and where the
semigroup operation is order-preserving and commutative.
Given a t-norm T , the two-place function

S : [0,1]× [0,1]→ [0,1],

defined by
S(x,y) = 1−T (1− x,1− y)

is called a t-conorm (or the dual of T ). Obviously S fulfills monotonicity, commutativity,
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associativity and
S(x,0) = x Boundary Condition

Here we deal with the Frank family of t-norms Ts, s ∈ [0,∞].
For each s ∈ [0,∞], the Frank t-norms are defined by the formulas

• the minimum t-norm, TM(x,y) := min{x,y},

• the product t-norm, TP(x,y) := x · y,

• the Łukasiewicz t-norm TL(x,y) := max{0,x+ y−1},

• if s ∈ (0,∞)\{1},

Ts(x,y) := logs

[
1+

(sx−1)(sy−1)
s−1

]
(5.1)

The basic t-conorms (dual of four basic t-norms) are:

• the maximum t-conorm, SM(x,y) := max{x,y},

• the probabilistic sum, SP(x,y) := x+ y− x · y,

• the Łukasiewicz t-conorm SL(x,y) := min{1,x+ y},

• if s ∈ (0,∞)\{1}, Ss(x,y) := 1− logs

[
1+

(s1−x−1)(s1−y−1)
s−1

]
.

Moreover, we have also the following kinds:

• the drastic product, TD(x,y) =
{

0, if max{x,y}< 1,
min{x,y}, if max{x,y}= 1,

• the drastic sum, SD(x,y) =
{

1, if min{x,y}> 0,
max{x,y}, if min{x,y}= 0,

• if γ≥ 0, T γ(x,y) =
x · y

γ+(1− γ)(x+ y− x · y)
,

• if γ≥ 0, Sγ(x,y) =
x+ y+(γ−2)x · y
1+(γ−1) · x · y

.

The family of t-norms {T γ|γ ≥ 0} was studied by Hamacher [47], while the family {Ts|s ∈
[0,∞]} appeared first in Frank’s [43] investigation of the functional equation

x+ y = T (x,y)+S(x,y), ∀x,y ∈ [0,1], (5.2)

where T is a triangular norm and S is an associative function on the unit square. Note that
the only strict solutions of (5.2) are just t-norms Ts for s ∈ [0,∞] (and T0 = TM with T∞ = TL

are the limits of these Ts) and the corresponding Ss are just the dual t-conorms, i.e., Ss(x,y) =
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1−Ts(1−x,1−y). In particular Frank [43] showed that the t-norms Ts, 0≤ s≤∞, form a single
family in the sense that TM, TP and TL are the limits of Ts corresponding to their subscripts. We
also have, for each t-norm T ,

TD ≤ T ≤ TM. (5.3)

5.1.1 Solutions of a functional inequality

If we define a function Ĉ from [0,1]2 into [0,1] by

Ĉ(x,y) = x+ y−1+C(1− x,1− y),

the function Ĉ is a copula and we refer to Ĉ as the survival copula of X and Y . Moreover the
operatorˆis involutive, i. e., (Ĉ)̂ =C. Notice that Ĉ “couples” the joint survival function to its
univariate margins in a manner completely analogous to the way in which a copula connects
the joint distribution function to its margins. Moreover the joint survival function C for two
uniform (0,1) random variables whose joint distribution function is the copula C is C(x,y) =
1− x− y+C(x,y) = Ĉ(1− x,1− y).
Two other functions closely related to copulas and survival copulas are the dual of a copula and
the co-copula [91]. The dual of a copula C is the function C̃ defined by C̃(x,y) = x+y−C(x,y)
and the co-copula is the function Cd defined by Cd(x,y) = 1−C(1−x,1−y). Neither of these
is a copula, but when C is the copula of a pair of random variables X and Y , the dual of the
copula and the co-copula each express a probability of an event involving X and Y .
A t-norm that satisfies supermodularity condition is a copula, and in view of Lemma 1.4.2
in [1] and the paragraph immediately preceding Definition 1.3.2 in [1], an associative copula
is a t-norm. Many of the important copulas and families of copulas are associative. However,
there are commutative copulas that are not associative, and hence not t-norms; and there are
t-norms that satisfy (2.14) but not supermodularity, and hence are not copulas. As observed
in [1], the first thing to note about (5.2) is that, since S is nondecreasing, T satisfies the 1-
Lipschitz condition. Hence T must be a copula, say C, and S must be C̃, the associated dual
copula of C which is given by C̃(x,y) = x+ y−C(x,y).
Thus, in view of Lemma 1.4.6 in [1], our aim is to determine all solution pairs (C,C̃) for which
C is an associative copula and the dual copula C̃ is also (simultaneously) associative.
A straightforward calculation yields that

x+ y−C(x,y) = 1−C(1− x,1− y)

i.e., that
C̃ =Cd

and since the associativity of Cα implies that Cd
α is associative, it follows that, for each α ∈

[0,+∞], the pair (Cα,Cd
α) is a solution of (5.2). The remarkable and surprising fact is that these

pairs (Cα,Cd
α) and pairs (C,C̃) for which C is an ordinal sum of Cα’s are the only solutions. In

fact this is the main subject of [43] in the following theorem:

Theorem 5.1.1 The pair (T,S) is a solution of (5.2) if and only if
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(a) T =Cα, where Cα is given by (5.1) for some α ∈ [0,+∞] and S =Cd
α; or

(b) T is an ordinal sum of Cα’s and S = T̃ .

So, Frank answered in [43] to the question when C and C̃ are simultaneously associative, that
is if and only if C belongs to the important family of copulas that now bears his name.
Similarly to Frank in [43] we want to study the functional inequality

T (x,y)+S(x,y)≤ x+ y, ∀x,y ∈ [0,1] (5.4)

Of course all the solutions of the functional equation in (5.2) are the solutions of functional
inequality (5.4). Now we have to find other solutions, but we observe that this means exactly
an associative copula.
In fact for theorem 5.1.1 the functional inequality (5.4) is equivalent to solve

C ≤ Ĉ(x,y),

which of course is not valid for each copula, but survival operation on copulas preserves their
ordering and thus C ≤ Ĉ implies Ĉ ≤ ˆ̂C = C , hence then necessarily C = Ĉ. So in copulas
the inequality is valid exactly for copulas stable under survival operation. For the previous
observation the same happens to the opposite inequality, that it is for

T (x,y)+S(x,y)≥ x+ y, ∀x,y ∈ [0,1], (5.5)

and inequality leads to the same results as equality.

5.1.2 Additive and multiplicative generators

It is straightforward that, given a t-norm T and a strictly increasing bijection ϕ : [0,1]→
[0,1], the function Tϕ : [0,1]2→ [0,1] given by

Tϕ(x,y) = ϕ
−1(T (ϕ(x),ϕ(y))) (5.6)

is again a t-norm.
In other words, the t-norms T and Tϕ are isomorphic in the sense that for all (x,y) ∈ [0,1]2

ϕ(Tϕ(x,y)) = T (ϕ(x),ϕ(y)).

If we want to construct t-norms as transformations of the additive semigroup ([0,∞],+) and
the multiplicative semigroup ([0,1], ·), respectively, monotone (but not necessarily bijective)
functions are used and a generalized inverse, the pseudo-inverse [58] (see also [59], Section
3.1) is needed.
The following result ( [59], Theorem 3.23) is more general in the sense that the continuity of
the one-place function is not needed, that the requirement of the closedness of the range under
addition can be relaxed, and that the inverse function is replaced by the pseudo-inverse. On
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the other hand, it is slightly more special since we want to construct an operation on the unit
interval with neutral element 1.

Theorem 5.1.2 Let f : [0,1]→ [0,∞] be a strictly decreasing function with f (1) = 0 such that
f is right-continuous at 0 and

f (x)+ f (y) ∈ Ran( f )∪ [ f (0),∞] (5.7)

for all (x,y) ∈ [0,1]2. The following function T : [0,1]2→ [0,1] is a t-norm:

T (x,y) = f (−1)( f (x)+ f (y)). (5.8)

In theorem 5.1.2, the pseudo-inverse f [−1] may be replaced by any monotone function g :
[0,∞]→ [0,1] with g|Ran( f ) = f [−1]|Ran( f ). In some very abstract settings (see, e.g., [91]), such
a function g (which may be non-monotone) is called a quasi-inverse of f .
It is obvious that a multiplication of f in Theorem 5.1.2 by a positive constant does not change
the resulting t-norm T .

Definition 5.1.3 An additive generator t : [0,1]→ [0,∞] of a t-norm T is a strictly decreasing
function which is right-continuous at 0 and satisfies t(1) = 0, such that for all (x,y) ∈ [0,1]2

we have

t(x)+ t(y) ∈ Ran(t)∪ [t(0),∞]

T (x,y) = t(−1)(t(x)+ t(y)).
(5.9)

For example, starting with the function t : [0,1]→ [0,∞] given by t(x) = 1− x we get the
Łukasiewicz t-norm TL and t(x) =− lnx produces the product TP.
Combining the continuity with some algebraic properties, we obtain two extremely important
classes of t-norms.

Definition 5.1.4 (i) A t-norm T is called strict if it is continuous and strictly monotone, i.e. if
0≤ a < b≤ 1;0 < c≤ 1 then T (a,c)< T (b,c).

(ii) A t-norm T is called nilpotent if it is continuous and if each a ∈]0;1[ is a nilpotent element
of T .

A consequence of Proposition 3.31 and 5.6 in [59] is that the product TP and the Łukasiewicz
t-norm TL are not only prototypical examples of strict and nilpotent t-norms, respectively, but
that each continuous Archimedean t-norm is isomorphic either to TP or to TL.

5.2 Uniform approximation of a continuous t-norm by means of
generators

Since Dombi [34] it is known that the strongest t-norm TM can be approximated by means
of generated t-norms (either strict or nilpotent ones).
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Theorem 5.2.1 Let f be an additive generator of a continuous Archimedean t-norm T . For
λ∈]0,∞[, define fλ : [0,1]→ [0,∞] by fλ(x) = ( f (x))λ. Then also fλ is an additive generator of
a continuous Archimedean t-norm Tλ (which is strict if and only if T is strict) for any λ∈]0,∞[.
More, for all x,y ∈ [0,1],

lim
λ→∞

Tλ(x,y) = TM(x,y) = min(x,y).

Moreover in [72] the author shows that each continuous t-norm T can be approximated with
an arbitrary small given accuracy by some strict t-norm.

Theorem 5.2.2 Let T be a continuous t-norm and let δ ∈]0,1[ be given. Then there exist a
strict t-norm T<δ> which is a δ-approximation of T , i.e., for all x,y ∈ [0,1] it is

|T (x,y)−T<δ>(x,y)|< δ.

5.3 Aggregation Evaluators

Let X 6= /0 be a given at most countable set. Then by L = [0,1]X we denote the system of all
functions f : X → [0,1]. Hence (L,∧,∨,>,⊥) is a lattice with top and bottom elements > and
⊥, equal to constants 1 and 0, respectively. In [14], so-called evaluators have been defined on
the system L. For the purpose of our work we define an evaluator as follows:

Definition 5.3.1 A function φ : L→ [0,1] is said to be a normalized evaluator on L iff it satisfies
the following properties:

• φ(0) = 0, φ(1) = 1,

• φ( f )≤ φ(g) for all f ,g ∈ L such that f ≤ g.

In fact, evaluators can be defined for an arbitrary bounded lattice. However, we restrict our
considerations to the lattice L.
An evaluator φ is called existential if for arbitrary x ∈ L,

φ(x) = 0⇒ x = 0.

An evaluator φ is called universal if for arbitrary x ∈ L,

φ(x) = 1⇒ x = 1.

The standard comparison of real numbers allows us to compare evaluators on the same system
of objects. In this case we utilize the usual pointwise ordering of functions. This means that if
φ1 and φ2 are two evaluators on L, we say that φ1 is greater than φ2, with notation φ2 ≤ φ1 if
for all x ∈ L, φ2(x) ≤ φ1(x). The greatest evaluator is the existential evaluator φE defined for
all x ∈ L by

φE(x) =
{

0 if x = 0,
1 otherwise.
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The smallest evaluator is the universal evaluator φU defined for all x ∈ L by

φU(x) =
{

1 if x = 1,
0 otherwise.

We consider finite distributive lattices (L1,≤1), . . . ,(Ln,≤n) and their product L := L1× . . .×Ln

endowed with the product order ≤. Elements x of L can be written in their vector form
(x1, . . . ,xn). L is also a distributive lattice whose join-irreducible elements are of the form
(⊥1, . . . ,⊥i−1, ji,⊥i+1, . . . ,⊥n), for some i and some join-irreducible element ji of Li. With
some abuse of language, we shall also call ji this element of L.
Lattice functions are real-valued mappings defined over product lattices of the above form. We
denote byRL the set of lattice functions over L.

Now we introduce the modular, supermodular and ultramodular evaluators on the general
bounded lattice 〈L,≤,0,1〉.

Definition 5.3.2 An operation SM : L→ [0,1] is said to be a supermodular evaluator iff it is
an evaluator and it satisfies the following property:

SM(x∧ y)+SM(x∨ y)≥ SM(x)+SM(y).

In the case of equality in the above equation, we have the modular evaluator.

Definition 5.3.3 An operation U : L→ [0,1] is said to be a ultramodular evaluator (UM eval-
uator for short) iff U is an evaluator satisfying the property:

U(x1)+U(x4)≥U(x2)+U(x3)

for all collections {x1,x2,x3,x4} of elements in L such that x1 ≤ x2 ≤ x4 and x1∨ x4 = x2∨ x3.

One of the most important consequences is that the t-norms are SM evaluators, while the t-
conorms are not.
It is known that aggregation of evaluators yields an evaluator (see Proposition 1 in [13]). Now
we continue the discussion about aggregation of several kinds of evaluators and we will focus
on aggregation of supermodular evaluators. The following propositions are respectively the
extensions of two important results which hold for aggregation functions, i.e. Proposition
3.2.3 and Corollary 3.2.4.

Let K1, . . . ,Km : L→ [0,1], i= 1,2, . . . ,m be SM evaluators. A function K : L→ [0,1]m given
by K(x) = (K1(x), . . . ,Km(x)) is said to be an SM evaluator.

Proposition 5.3.4 If ψ : [0,1]m→ [0,1] is an increasing UM evaluator and K : L→ [0,1]m

is an increasing SM evaluator, then the function H : L′→ [0,1] given by

H(x1, . . . ,xn) = ψ(K)(x) = ψ(K1(x), . . . ,Km(x))

is an SM evaluator.
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Corollary 5.3.5 Let A be an SM evaluator. If ϕ : [0,1]→ [0,1] is a continuous increasing and
convex function with ϕ(0) = 0 and ϕ(1) = 1 then the function

Aϕ(x) := ϕ(A(x1, . . . ,xn))

is an SM evaluator.

Proof : It is obvious that Aϕ(0) = 0 and Aϕ(1) = 1. Then, it suffices to apply the above theo-
rem to the function H(x1, . . . ,xn) = ψ(K1(x)), with ψ = ϕ and K1 = A. In fact scalar convex
functions are ultramodular and so ψ is increasing and ultramodular. 2

5.4 Aggregation of evaluators

Aggregation functions are special kinds of evaluators, because a particular bounded lattice
is [0,1] and as a consequence [0,1]n. Let n ∈ N, n ≥ 2. We recall that an n–ary aggregation
function is a mapping A :

⋃
n∈N+ [0,1]n→ [0,1] that satisfies the following properties:

(A1) A(0, . . . ,0) = 0 and A(1, . . . ,1) = 1;

(A2) A is increasing in each component.

Each aggregation function A can be canonically represented by a family (A(n))n∈N of n-ary
operations, e.g., functions A(n) : [0,1]n→ [0,1], given by

A(n)(x1, . . . ,xn) = A(x1, . . . ,xn).

Each function A(n) is an evaluator on the bounded lattice ([0,1]n,≤,0,1). If A(x1, . . . ,xn) = 0
implies that xi = 0 for i = 1, . . . ,n, we say that aggregation operator A does not have zero
divisors. In this case, function A(n) is an existentional evaluator and A is an existentional
aggregator. If A(x1, . . . ,xn) = 1 implies that xi = 1 for i = 1, . . . ,n, function A(n) is a universal
evaluator and A is a universal aggregator. Moreover, we have the following result (Proposition
6 in [14]).

Proposition 5.4.1 Let Φ = {φi}n
i=1 be an ordered system of evaluators on a bounded lattice

(L,≤,⊥,>) and let A be an aggregation function. Then the function AΦ : L→ [0,1] defined for
all a ∈ L by

AΦ(a) = A(φ1(a), . . . ,φn(a))

is an evaluator on L.

Aggregation of existential (universal) evaluators by an existential (universal) aggregation func-
tion yields an existential (universal) evaluator.
It is known that an aggregation function A dominates an aggregation function B, denoted by
A� B, if for all (xi1,...,xin) ∈ [0,1]n, i = 1, . . . ,m, and m,n ∈N

A(B(x11, . . . ,x1n),B(x21, . . . ,x2n), . . . ,B(xm1, . . . ,xmn))≥
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≥ B(A(x11, . . . ,xm1),A(x12, . . . ,xm2), . . . ,A(x1n, . . . ,xnm))

5.4.1 T S-evaluators

Now we recall the following definitions introduced in [14].

Definition 5.4.2 Consider a bounded lattice (L,≤,⊥,>), a t-norm T and a t-conorm S. An
evaluator φ on L is called a T -evaluator iff for all a,b ∈ L

T (φ(a),φ(b))≤ φ(a∧b),

and it is called an S-evaluator iff

S(φ(a),φ(b))≥ φ(a∨b).

Each T -evaluator is also a T1-evaluator for any t-norm T1 weaker than T . Each S-evaluator is
also an S1 evaluator for any t-conorm S1 stronger than S.
We recall also the following propositions proved in [14].

Proposition 5.4.3 Let T ∗ and S∗ be mutually dual t-norm and t-conorm, respectively. Assume
a De Morgan bounded lattice (L,≤,′ ,⊥,>). An evaluator φ on L is a T ∗-evaluator iff φ̄ is an
S∗-evaluator.

Proposition 5.4.4 Let T ∗ be a Frank t-norm and S∗ be its dual t-conorm. Assume a De Morgan
bounded lattice and complemented lattice (L,≤,′ ,⊥,>). An evaluator φ on L which is a T ∗

and at the same time an S∗-evaluator is a self-dual evaluator.

Now we can define a T S−evaluator in the following way:

Definition 5.4.5 Consider a bounded lattice (L,≤,⊥,>), a t-norm T and a t-conorm S. An
evaluator φ on L is called a T S-evaluator iff it is a T -evaluator and at the same time an S-
evaluator.

5.4.2 Triangular norms and supermodular evaluators

For a selected t-norm T ∗ (t-conorm S∗) from the four basic t-norms (t-conorms), we will
focus on the following issues:

• when supermodular evaluators are related to T ∗-evaluators (S∗-evaluators),

• when supermodular evaluators are related to other T -evaluators (S-evaluators).

Triangular norms are special types of aggregation functions. T -norms TM,TP,TL and TD are
universal aggregation functions, while t-conorms SM,SP,SL and SD are existential aggregation
functions. Concerning their dominance we have

TM � TP� TL� TD, SD� SL� SP� SM.
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So, now it is interesting to prove the dominance between SM-evaluators and the minimum
t-norm TM. In fact we have the following result:

Proposition 5.4.6 For any n∈N, the strongest t-norm TM dominates the class of SM-evaluators.

Proof : We need to prove that ∀x,y ∈ [0,1]n, we have that

TM(SM(x),SM(y))≥ SM(TM(x1,y1), . . . ,TM(xn,yn)).

In fact SM(y)≥ SM(x∧y) and also SM(x)≥ SM(x∧y). Then,

TM(SM(x),SM(y)) = min{SM(x),SM(y)} ≥ SM(x∧y)

and so we have

TM(SM(x),SM(y))≥ SM(x∧y) = SM(TM(x1,y1), . . . ,TM(xn,yn)),

that is our thesis: TM � SM. 2

Concerning t-conorms, we have the following result:

Proposition 5.4.7 For any n ∈ N, the class of SM-evaluators dominates the maximum t-
conorm SM.

Proof : We need to prove that ∀x,y ∈ [0,1]n, we have that

SM(SM(x),SM(y))≤ SM(SM(x1,y1), . . . ,SM(xn,yn)).

In fact SM(y)≤ SM(x∨y) and also SM(x)≤ SM(x∨y). Then,

SM(SM(x),SM(y)) = max{SM(x),SM(y)} ≤ SM(x∨y)

and so we have

SM(SM(x),SM(y))≤ SM(x∨y) = SM(SM(x1,y1), . . . ,SM(xn,yn)),

that is our thesis: SM� SM. 2

So, thanks to propositions 5.4.6 and 5.4.7 we can conclude that an SM-evaluator is not a TM

evaluator neither an SM evaluator, as we can see in the following example.

Example 5.4.8 Let (2X ,⊆,′ , /0,X) be the complemented bounded lattice with intersection and
union as the lattice operations, where X = {a,b,c}. Let φ : 2X → [0,1] be given for all A ∈ 2X

by

φ(A) =
{ 1

4−|A| if a ∈ A,
0 otherwise.
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Then φ(X) = 1, φ(a) =
1
3

, φ({a,b}) = φ({a,c}) = 1
2

, while

φ(c) = φ(b) = φ({c,b}) = φ( /0) = 0.
The authors in [14] have proved that φ is a TP-evaluator but not a TM-evaluator neither an
SP-evaluator. But each SM-evaluator is an SP-evaluator. So, if φ is not an SP-evaluator, it is
not an SM-evaluator either. Now we prove that φ is supermodular, that is an SM-evaluator. So,
we need to prove that ∀A,B⊂ 2X , we have that

φ(A∪B)+φ(A∩B)≥ φ(A)+φ(B).

In fact we have the following situation, by considering that we can exchange A with B and also
b with c. Moreover the only non trivial case is A * B, with a ∈ A, but a /∈ B as we can see in
the following scheme.

A B A∪B A∩B φ(A∪B)+φ(A∩B)≥ φ(A)+φ(B)
X ∀B A B φ(A)+φ(B)≥ φ(A)+φ(B)
A⊆ B B B A φ(A)+φ(B)≥ φ(A)+φ(B)
a /∈ A a /∈ B 0≥ 0

{a} {b} {a,b} /0
1
2
≥ 1

3
{a} {b,c} X /0 1≥ 1

3
{a,b} {c} X /0 1≥ 1

2

Remark 5.4.9 In general we cannot establish a dominance relationship in the following cases:

1. the dominance between SM-evaluators and the product t-norm TP. In fact we cannot say
that : for any n ∈N, the product t-norm TP dominates the class of SM-evaluators, i.e.
we cannot say that ∀x,y ∈ [0,1]n, we have

TP(SM(x),SM(y))≥ SM(TP(x1,y1), . . . ,TP(xn,yn)),

or equivalently In fact for n = 1, if we take SM(x) = 2x− x2 we have that SM(1
2) =

3
4

and so SM(1
2)SM(1

2) =
9
16 . Then if we take SM(1

2 ×
1
2) =

7
16 ≤

9
16 . So in this case

SM(x× x)≤ SM(x)×SM(x).
On the other side if we take SM(x) = 1−

√
1− x and x = 0.64 we have SM(0.64) = 0.4.

So SM(0.64)×SM(0.64)= 0.16, while SM(0.64×0.64)= 1−
√

0.36×1.64≥ 1−0.6×
1.3= 0.22. So, in this case we have the opposite inequality SM(x×x)≥ SM(x)×SM(x).

2. the dominance between the Łukasiewicz t-norm and SM-evaluators. In fact it cannot be

TL(SM(x),SM(y))≥ SM(TL(x1,y1), . . . ,TL(xn,yn))

because, if max{0,SM(x) + SM(y)− 1} = 0, then SM(TL(x1,y1), . . . ,TL(xn,yn)) ≤ 0,
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which violets the boundary conditions. On the other side it cannot be

TL(SM(x),SM(y))≤ SM(TL(x1,y1), . . . ,TL(xn,yn))

because, if
max{0,SM(x)+SM(y)−1}= SM(x)+SM(y)−1, then SM(x)+SM(y)−1≥ 0, and,
at the same time, if
SM(TL(x1,y1), . . . ,TL(xn,yn)) = 0, then SM(x)+SM(y)−1≤ 0,
which violets the hypothesis.

So, of course we have the following dominance relationship:

TM � SM� SM.
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Chapter 6

T -evaluators and supermodular fuzzy
measures

After combining the concept of evaluator with supermodularity and ultramodularity, we will
devote this chapter to know under which conditions aggregation of supermodular evaluators
yields a supermodular evaluator.
First of all, we will introduce a new kind of measures on crisp sets, called T -evaluator measure
and then, by introducing fuzzy sets theory, we will study in particular under which conditions
the Choquet integral of a fuzzy set with respect to a fuzzy measure is supermodular.

6.1 Choquet Integral

Now we are focusing our attention to the concept of the integral with respect to nonaddi-
tive set functions, known as the Choquet integral. This concept is useful in many fields such
as mathematical economics (e.g., Marinacci and Montrucchio [72]) and multicriteria decision
making (e.g., Grabisch et al. [42]), where the problem of ranking of alternatives with respect to
a set of criteria is the following one. Let X = {1, . . . ,n} be the set of criteria under consideration
in some decision problem. Let us consider a function µ : 2X →R such that µ( /0) = 0.
When µ is monotonic, that is µ(A)≤ µ(B) whenever A⊆B, then it is called a capacity (Choquet,
1953) or fuzzy measure (Sugeno, 1974). The capacity is normalized if in addition µ(X) = 1.

6.1.1 Fuzzy measures

For applications, several distinguished classes of fuzzy measures are important. We list
some of them in the next definitions for the sake of selfcontainedness, though these well known
properties can be found, e. g., in [31, 83, 101].

Definition 6.1.1 Let X = {1,2, . . . ,n},n ∈ N be a fixed set of criteria. A mapping µ : 2X →
[0,1] is called a fuzzy measure whenever µ( /0) = 0, µ(X) = 1 and for all A ⊆ B ⊆ X, it holds
µ(A)≤ µ(B).
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Distinguished classes of fuzzy measures are determined by their respective properties.

Definition 6.1.2 A fuzzy measure µ on X is called:

1. additive if
∀A,B ∈ 2X , µ(A∪B) = µ(A)+µ(B),

2. subadditive (submeasure) whenever

∀A,B ∈ 2X , µ(A∪B)≤ µ(A)+µ(B),

3. superadditive (supermeasure) whenever

∀A,B ∈ 2X , A∩B = /0, µ(A∪B)≥ µ(A)+µ(B),

4. submodular whenever

∀A,B ∈ 2X , µ(A∪B)+µ(A∩B)≤ µ(A)+µ(B),

5. supermodular whenever

∀A,B ∈ 2X , µ(A∪B)+µ(A∩B)≥ µ(A)+µ(B),

6. symmetric if for any subsets A,B, |A|= |B| implies µ(A) = µ(B).

The conjugate or dual of a capacity µ is a capacity µ defined by

µ(A) := µ(X)−µ(A), A⊆ X .

For other kinds of measures, like belief, plausibility, possibility and necessity, there is a deep
description in [99]. Observe that if a fuzzy measure is both submodular and supermodular, it
is modular and thus a probability measure on X . Evidently, each supermodular fuzzy measure
is also superadditive and similarly, each submodular fuzzy measure is subadditive.

Definition 6.1.3 Let S be a t-conorm and X = {x1, . . . ,xn}. The fuzzy measure µ : 2X → [0,1]
is called S-measure if for all A,B ∈ 2X such that A∩B = /0

µ(A∪B) = S(µ(A),µ(B)).

Let T be a t-norm. The fuzzy measure µ∗ : 2X → [0,1] is called T -measure if for all A,B ∈ 2X

such that A∪B = X
µ∗(A∩B) = T (µ∗(A),µ∗(B)).

Now we recall some results obtained in [95].

Theorem 6.1.4 Let S be a t-conorm. Then the following are equivalent:



6.1 Choquet Integral 69

i) each S-measure µ is subadditive

ii) S≤ S∞.

However, for superadditive measures we have only the following weaker result.

Theorem 6.1.5 Let S be a t-conorm, such that each S-measure µ is superadditive.
Then S≥ S∞.

For submodular fuzzy measures we have the next result.

Theorem 6.1.6 Let S be a continuous t-conorm. Then the following are equivalent:

i) each S-measure µ is submodular

ii) S is 1-Lipschitz t-conorm.

Note that there are non-continuous t-conorms S such that each S-measure µ is necessarily sub-
modular.

Proposition 6.1.7 An S-measure µ : 2X → [0,1] is an S-evaluator on 2X and a T -measure
µ∗ : 2X → [0,1] is a T -evaluator on 2X .

6.1.2 T -evaluator measure

Every strict (i.e., strictly increasing on (0,1]× (0,1] and continuous) t-norm T admits the
representation

T (a,b) = t−1(t(a)+ t(b)) (6.1)

for all a,b ∈ I, where the function f : I → [0,∞] is continuous and strictly decreasing with
t(0) = +∞ and t(1) = 0, and t−1 is the inverse of t. In the definition 5.1.3, we called t an
additive generator of T . Let T be a strict t-norm with an additive generator t : [0,1]→ [0,∞]
and µ be a fuzzy measure on a σ-algebra A of subsets of a set X , i.e. µ : A → [0,1].
Moreover, let µ be a T -evaluator, i.e. T (µ(A),µ(B))≤ µ(A∩B), then t−1(t(µ(A))+ t(µ(B)))≤
µ(A∩B). Now, by posing t ◦µ = ν we have

ν(A∩B)≤ ν(A)+ν(B) (6.2)

We observe that if A = Ec and B = Fc, then with C = (E ∪F)c we have

ν((E ∪F)c) = ν(Ec∩Fc)≤ ν(Ec)+ν(Fc)

Now, by considering the following measure M : A→ [0,∞], such that M(A)= ν(Ac)= t(µ(Ac)),
we have:

• M( /0) = 0, M(X) = +∞, i.e. M is an infinite measure;

• if A⊂ B then M(A)≤M(B), i.e. M is monotone;
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• M(A∪B)≤M(A)+M(B), i.e. M is subadditive.

Finally we take the set of all monotone infinite subadditive measures M = {M|M : A→ [0,∞]}
and we consider the set MT of all capacities which are T -evaluators, i.e.,

MT = {µ|µ : A → [0,1],µ is a T-evaluator}.

Thanks to the previous observations we have that µ ∈MT if and only if M ∈M and M(A) =
t(µ(Ac)) (or also µ(A) = t−1(M(Ac))).
Let us consider two strict t-norms T1 and T2, we see that µ1 ∈MT1 if and only if µ2 ∈MT2 , such
that t1(µ1(A)) = t2(µ2(A)) (i.e. µ2 = (t−1

2 ◦ t1)◦µ1).
Finally we want to prove the following result:

Theorem 6.1.8 Let X be a nonempty set and µ a capacity on X. Then the following are equiv-
alent:

• µ is a TM-evaluator;

• µ is a T -evaluator for any strict t-norm T .

Proof : Of course for any T 6= TM we have MTM ⊂MT and so MTM ⊂
⋂

strict t-norms T MT .
Now we want to prove the converse, i.e. MT ⊂MTM , ∀T 6= TM. In fact, ∀T 6= TM, and ∀µ∈MT ,
we have that µ is a T -evaluator, i.e. T (µ(A),µ(B))≤ µ(A∩B) with A and B subsets of X .
This means that µ(A∩B) = T (µ(A∩B),1) = T (µ(A∩B),µ(X))≥ T (µ(A),µ(B)).
As a consequence of Theorem 5.2.1, the strongest t-norm TM can be approximated by strict
t-norms, i.e., for any δ > 0 there is a strict t-norm Tδ, such that |TM(x,y)−Tδ(x,y)|< δ, for all
x,y ∈ [0,1]2.
Recall that starting from an arbitrary additive generator f of a strict t-norm T , the power
tλ = tλ, λ ∈]0,∞[, is again an additive generator of a strict t-norm, which we denote Tλ (see
also Theorem 5.2.1).
If µ is a Tλ-evaluator, then Tλ(µ(A),µ(B))≤ Tλ(µ(A∩B),1).
So,

lim
λ→∞

Tλ(µ(A),µ(B)) = TM(µ(A),µ(B))≤ lim
λ→∞

Tλ(µ(A∩B),1) = TM(µ(A∩B),1) = µ(A∩B).

This means that TM(µ(A),µ(B))≤ µ(A∩B), i.e. µ is a TM-evaluator, that is our thesis. 2

6.1.3 Choquet Integrals for Nonnegative Functions

Let X be a nonempty set, A a σ-algebra of subsets of X and µ : A → [0,∞] a monotone
measure, such that (X ,A ,µ) is a monotone measure space.
Also, let A ∈ A and f be a nonnegative measurable function on (X ,A). The Lebesgue integral
of f with respect to µ may be not well defined due to the nonadditivity of µ.
Fortunately, there are some equivalent definitions of the Lebesgue integral that may yet be
valid with respect to monotone measures. One of them is the Riemann integral, as shown in
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Section 8.1 of [102]. When it is used in this way, the integral is usually referred to as a Choquet
integral.

Definition 6.1.9 The Choquet integral of a nonnegative measurable function f with respect to
monotone measure µ on measurable set A , denoted by (C)

∫
A f dµ, is defined by the formula

(C)
∫

A
f dµ = (C)

∫
∞

0
µ(Fα∩A)dα,

where Fα = {x| f (x) ≥ α} for α ∈ [0,∞). When A = X, (C)
∫

X f dµ is usually written as
(C)

∫
f dµ.

Since f in Definition 6.1.9 is measurable, we know that Fα = {x| f (x)≥ α} ∈ A for α ∈ [0,∞)
and, therefore, Fα∩A∈A . So, µ(Fα∩A) is well defined for all α∈ [0,∞). Furthermore, Fα is a
class of sets that are nonincreasing with respect to α and so are sets in Fα∩A. Since monotone
measure µ is a nondecreasing set function, we know that µ(Fα∩A) is a nondecreasing function
of α and, therefore, the above Riemann integral makes sense. Thus, the Choquet integral of a
nonnegative measurable function with respect to a monotone measure on a measurable set is
well defined.

6.1.4 Properties of the Choquet Integral

Unlike the Lebesgue integral, the Choquet integral is generally nonlinear with respect to its
integrand due to the nonadditivity of µ. That is, we may have

(C)
∫
( f +g)dµ 6= (C)

∫
f dµ+(C)

∫
gdµ

for some nonnegative measurable functions f and g.
However, the Choquet integral has some properties of the Lebesgue integral. These properties
are listed in the following theorem, which can be found in Section 11.2 of [102].

Theorem 6.1.10 Let f and g be nonnegative measurable functions on (X ,A ,µ), A and B be
measurable sets and a be a nonnegative real constant. Then,

1. (C)
∫

A 1dµ = µ(A);

2. (C)
∫

A f dµ = (C)
∫

f ·χA dµ;

3. If f ≤ g on A, then (C)
∫

A f dµ≤ (C)
∫

A gdµ;

4. If A⊂ B then (C)
∫

A f dµ≤ (C)
∫

B f dµ;

5. (C)
∫

A a f dµ = a · (C)
∫

A f dµ.

For a given fuzzy measure µ, an aggregation operator can be built by means of any fuzzy
integral and we restrict our attention to the Choquet integral.
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6.1.5 Choquet integral-based aggregation functions

An axiomatic characterization of the Choquet integral as an aggregation operator was pro-
posed by Marichal in [66]. In particular, the discrete Choquet integral is an adequate aggre-
gation operator that extends the weighted arithmetic mean by taking into consideration of the
interaction among criteria. Moreover, the Choquet integral identifies with the weighted arith-
metic mean (discrete Lebesgue integral) as soon as the fuzzy measure is additive.

If n ∈N and X = {1, . . . ,n} then, for a fuzzy measure µ on X , i.e., a nondecreasing function
µ : 2X → [0,1] with µ( /0) = 0 and µ(X) = 1, and x ∈ [0,1]n the Choquet integral [26] is given
by

Ch(µ,x) =
∫ 1

0
µ({xi ≥ u})du

=
n

∑
i=1

xπ(i)
(
µ({π(i), . . . ,π(n)})−µ({π(i+1), . . . ,π(n)})

)
,

where π : X → X is a permutation of X with xπ(1) ≤ xπ(2) ≤ ·· · ≤ xπ(n) and, by convention,
{π(n+1),π(n)}= /0.

For a fixed fuzzy measure µ, the function Chµ : [0,1]n→ [0,1] given by Chµ(x) = Ch(µ,x)
is an aggregation function, a so-called Choquet integral-based aggregation function.

Two particular cases are of interest.

• If µ is additive, then the Choquet integral reduces to a weighted arithmetic mean:

Ch(µ,x) =
n

∑
i=1

xπ(i)µ(π(i)).

• If µ is symmetric, the Choquet integral reduces to the so-called Ordered Weighted Aver-
age (OWA) introduced by Yager (Yager, 1988):

Ch(µ,x) =
n

∑
i=1

(µn−i+1−µn−i)xπ(i)

with µi := µ(P), such that |P|= i, P⊆ X and π is defined as before.

It is possible to construct symmetric universal fuzzy measure with the help of a one-dimensional
generator g : [0,1]→ [0,1], a nondecreasing function with g(0) = 0, g(1) = 1, namely

µg(P) = g
( |P|

n

)
, with n ∈N. (6.3)

The corresponding Choquet integral based aggregation operator is given by

Ag(x1,x2, . . . ,xn) =
n

∑
i=1

xπ(i)

(
g
( i

n

)
−g
( i−1

n

))
=

n

∑
i=1

wi,nxπ(i),



6.2 Fuzzy sets 73

i.e., it is the OWA operator with the weights

wi,n = g
( i

n

)
−g
( i−1

n

)
, (6.4)

which are non-negative and sum up to one.
An additive universal fuzzy measure can be generated using

µg(P) = ∑
i∈P

(
g
( i

n

)
−g
( i−1

n

))
(6.5)

and the corresponding Choquet integral based operator is a weighted mean

Ag(x1,x2, . . . ,xn) =
n

∑
i=1

xi

(
g
( i

n

)
−g
( i−1

n

))
=

n

∑
i=1

wi,nxi.

Evidently, the only universal fuzzy measure which is both symmetric and additive is linked to
the identity generator g(x) = x, in which case Ag the arithmetic mean.
Summarizing, one can build Choquet integral based general aggregation operators with the help
of a one-dimensional generator g, by defining universal fuzzy measures using (6.3) (symmetric
measure) and (6.5) (additive measure). The corresponding operators are an OWA operator
and a weighted mean, with the weights defined by (6.4). Following [31], we will see later in
Proposition 7.1.8 that a Choquet integral operator based on a fuzzy measure µ is superadditive
if, and only if, the fuzzy measure µ is supermodular.

6.2 Fuzzy sets

Throughout this paper X will denote a nonempty set and, following [102,106], we recall the
definition of a fuzzy event inRn, through the use of the concept of a fuzzy set.
Specifically, a fuzzy set f ∈Rn is defined by a characteristic function m f :Rn→ [0,1] which
associates with each x in Rn its “grade of membership”, m f (x) in f . To distinguish between
the characteristic function of a nonfuzzy set and the characteristic function of a fuzzy set, the
latter will be referred to as a membership function.
A standard fuzzy set is called normalized if

sup
x∈X

m(x) = 1

Since any ordinary set F can be defined by its characteristic function χF : X → {0,1}, it is a
special standard fuzzy set.

Definition 6.2.1 If m f (x) ≤ mg(x) for any x ∈ X, we say that fuzzy set f is included in fuzzy
set g and we write f ⊂ g. If f ⊂ g and g⊂ f , we say that f and g are equal, which we write as
f = g.
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Definition 6.2.2 Let f and g be fuzzy sets. The standard union of f and g, f ∪g, is defined by

m f∪g(x) = m f (x)∨mg(x), ∀x ∈ X ,

where ∨ denotes the maximum operator.

Definition 6.2.3 Let f and g be fuzzy sets. The standard intersection of f and g, f ∩ g, is
defined by

m f∩g(x) = m f (x)∧mg(x), ∀x ∈ X ,

where ∧ denotes the minimum operator.

Similar to the way operations on ordinary sets are treated, we can generalize the standard union
and the standard intersection for an arbitrary class of fuzzy sets: if { fr|r ∈ R} is a class of fuzzy
sets, where R is an arbitrary index set, then ∪r∈R fr is the fuzzy set having membership function
supr∈R m fr(x), x ∈ X , and ∩r∈R fr is the fuzzy set having membership function infr∈R m fr(x),
x ∈ X .

Definition 6.2.4 Let f be a fuzzy set. The standard complement of f , f̄ , is defined by

m f̄ (x) = 1−m f (x), ∀x ∈ X .

Two or more of the three basic operations can also be combined. For example, the difference
f −g of fuzzy sets f and g can be expressed as f ∩ ḡ, so that

m f−g(x) = min[m f (x),1−mg(x)]

for all x ∈ X .

6.2.1 Operations on Fuzzy Sets

Operations on fuzzy sets are performed using triangular norms. As a natural generalization
of a measure space, Butnariu and Klement introduced T-tribes of fuzzy sets with T-measures.
They made the first steps towards a characterization of monotonic real-valued T-measures for
a Frank triangular norm T. Later on, Mesiar, Barbieri, Navara and Weber found independently
two generalizations, one for vector-valued T-measures with respect to Frank t-norms (in partic-
ular for nonmonotonic ones) [4], the other for monotonic real-valued T-measures with respect
to general strict t-norms [80].
The concept of a T-measure serves not only as a fuzzification of classical measure theory; if
was successfully applied in [21] to find solutions of games with fuzzy coalitions.
Being an associative operation, a t-norm T may be extended to an arbitrary finite number of
elements, then we denote it by T n

k=1ak. We may use this notation also for countably many
arguments,

Tn∈Nan = lim
n→∞

T n
k=1ak;
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as the limit of a monotonic bounded sequence, it is well defined.
Let X be a set and B be a σ−algebra of subsets of X . The B-generated tribe is the collection I
of all functions f : X → [0,1] (fuzzy subsets of X) which are B-measurable. In order to define
measures on I , we fix a t−norm T (fuzzy conjunction), i.e., a binary operation T : [0,1]2→
[0,1] which is commutative, associative, nondecreasing and satisfies the boundary condition
T (a,1) = a for all a ∈ [0,1] (see [91]). For the other necessary fuzzy logical operations, we
take the standard fuzzy negation ′ : [0,1]→ [0,1] defined by a′ := 1− a, and the t-conorm
S : [0,1]2→ [0,1] dual to T , i.e., S(a,b) := T (a′,b′)′.
We extend the operations T,′ and S to operations T, c, S (fuzzy intersection, fuzzy complement
and fuzzy union) on I pointwise:

T ( f ,g)(x) := T ( f (x),g(x)),

f c(x) := f (x)′,

S( f ,g)(x) := S( f (x),g(x)).

6.2.2 T -measures

Triangular norm-based measures (T -measures) appear under various names, and in specific
analytical forms, in fields ranging from Mathematical Statistics to Capacity Theory ( [43]),
Probability and Measure Theory ( [18,51–53]), Pattern Recognition and Game Theory ( [19]).
In [20] the authors study the triangular norm-based measures, namely T -measures defined
on subsets of the unit cube [0,1]X , which are triangular norm-based tribes (T − tribes) and
they find out under which conditions T -measures can be represented as integrals of specific
Markov kernels. The main result in [20] shows that any fundamental triangular norm based
T -tribe I consists of functions, which are measurable with respect to the intrinsic σ-algebra
I ∨ corresponding to I (i.e. with respect to the σ-algebra of those sets whose characteristic
functions belong to I ).

T -measures were introduced in [21] as a natural generalization of σ−additive measures on
σ−algebras.

Definition 6.2.5 A function µ : I → [0,1] is a monotone T -measure if it satisfies the following
axioms:

(M1) µ(0) = 0,

(M2) T (µ( f ),µ(g))+S(µ( f ),µ(g)) = µ( f )+µ(g),

(M3) fn↗ f ⇒ µ( fn)↗ µ( f ),

where the symbol↗ denotes monotone increasing convergence. If, moreover, µ(1) = 1, then µ
is called a normalized T -measure.

If, moreover, µ(1X)< ∞ and f ≤ g implies µ( f )≤ µ(g), then µ is called a finite monotone T -
measure. Note that if I consists of crisp elements only then a T -measure µ may be considered
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as an ordinary σ−additive measure.

The definition of T -measures does not relate T -measures to lattice operations; this is possi-
ble for strict Frank t-norms:

Proposition 6.2.6 [6, Lemma 5.5] Let T be a Frank t-norm. Then each T -measure µ is a
modular function, i.e., it satisfies

µ( f ∧g)+µ( f ∨g) = µ( f )+µ(g)

for all f ,g.

The extension of the operations intersection, union and complementation in ordinary set theory
to fuzzy sets was always done pointwise: one considered two two-place functions T : [0,1]×
[0,1]→ [0,1], S : [0,1]× [0,1]→ [0,1] and one-place function N : [0,1]→ [0,1] and extended
them in the usual way: if f , g are two fuzzy sets, then

T ( f ,g)(x) =T ( f (x),g(x)), (6.6)

S( f ,g)(x) =S( f (x),g(x)), (6.7)

N( f )(x) =N( f (x)). (6.8)

In his first paper Zadeh suggested to use T (x,y)=TM(x,y)=min(x,y) for intersection, S(x,y)=
SM(x,y) = max(x,y) for union and N(x) = 1− x for complementation.
Alsina et al. [2] and Prade [84] suggested to use a t-norm for intersection and its t-conorm for
union of fuzzy sets.
For the following two lemmas proved by Klement in [53], we consider a measurable space
(X ,A ), i.e., a non-empty set X and a σ−algebra A on X . As usual, the unit interval [0,1] is
equipped with the σ-algebra B of all Borel subsets of [0,1].

Lemma 6.2.7 Let T be a B2-measurable t-norm, S its dual, f ,g : (X ,A )→ ([0,1],B) mea-
surable functions and ( f )n∈N a sequence of measurable functions from (X ,A ) into ([0,1],B).
Then the following functions are also B2-measurable:

T ( f ,g), S( f ,g), >
n∈N

µn, S
n∈N

fn.

Lemma 6.2.8 Let T be a continuous t-norm, S its dual and µ : (X ,A )→ ([0,1],B) a measur-
able function. Then there exists a sequence (sn)n∈N of measurable step functions from (X ,A )
into ([0,1],B) such that

µ = S
n∈N

sn.

6.3 T S-supermodular fuzzy measures

Now we want to study T S-supermodularity like an extension of supermodular measures.
First of all, we recall that the support of a fuzzy set f ∈ [0,1]X is Supp f := {x ∈ X : f (x)> 0}.
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So we introduce the following measure. A function µ : I →R+ (where R+ denotes the set
of all nonnegative real numbers) is a monotone supermodular T -measure, briefly called T S-
measure, if it satisfies the following axioms:

(M1) µ(0) = 0

(M2) µ(T ( f ,g))+µ(S( f ,g))≥ µ( f )+µ(g)

(M3) fn↗ f ⇒ µ( fn)↗ µ( f ),

where the symbol↗ denotes monotone increasing convergence. If, moreover, µ(1) = 1, then
µ is called a normalized supermodular T S-measure.

Remark 6.3.1 If f ,g are constants, also S( f ,g) = const and similarly T ( f ,g) = const and so
we can conclude that

µ(S( f ,g)) = µ(T ( f ,g)) = T (µ( f ),µ(g)) = S(µ( f ),µ(g)) = 1

Proof : If f = const, then µ( f ) = µ({x ∈ X : f (x)≥ const}) = µ(X) = 1. A similar observation
holds also for g and so T (µ( f ),µ(g)) = T (1,1)) = 1 = S(µ( f ),µ(g)) = S(1,1).
On the other side µ(S( f ,g)) = µ({x ∈ X : (S( f ,g))(x) ≥ const}) = µ(X) = 1 and so we have
our thesis. 2

Proposition 6.3.2 A T S-measure µ : 2X → [0,1] is a T -evaluator on 2X .
Proof.

It’s a particular case of proposition 7 in [14], because from this one a T -measure is a T -
evaluator, so a T S-measure is a T -evaluator as well.

We recall also a result which can be found in [14] and which shows how TL- and SL-
evaluators of crisp sets can be extended to TL- and SL-evaluators of fuzzy sets.

Proposition 6.3.3 Consider X 6= /0. Let P be a fuzzy measure which is a TL- (SL)-evaluator on
2X . Then a mapping ϕ : F (X)→ [0,1] defined for all f ∈ F (X) by

ϕ( f ) = (C)
∫

f dP,

is a TL-(SL)- evaluator on F (X), where (C)
∫

f dP stands for the Choquet integral of the fuzzy
set f with respect to P.

Now concerning SM evaluators we want to prove the following result:
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Proposition 6.3.4 Consider X = {x1, · · · ,xn}. Let P be a fuzzy measure which is both a SM-
evaluator on 2X . Then a mapping ϕ : F (X)→ [0,1] defined for all f ∈ F (X) by

ϕ( f ) = (C)
∫

f dP,

is an SM-evaluator on F (X), where (C)
∫

f dP stands for the Choquet integral of the fuzzy-
valued function f with respect to P and so the following relation holds:

(C)
∫

( f ∨g)dP+(C)
∫

( f ∧g)dP≥ (C)
∫

f dP+(C)
∫

gdP, (6.9)

Proof : We skip the proof that ϕ is an evaluator. The Choquet integral can be expressed as

(C)
∫

f dP =
∫ 1

0
P({x ∈ X : f (x)≥ α})dα,

where the right-hand side integral is the standard Riemann integral.
By hypothesis we know that

P({x ∈ X : ( f ∨g)(x)≥ α})+P({x ∈ X : ( f ∧g)(x)≥ α})≥
≥ P({x ∈ X : f (x)≥ α})+P({x ∈ X : g(x)≥ α})

and hence also∫ 1

0
P({x ∈ X : ( f ∨g)(x)≥ α})dα+

∫ 1

0
P({x ∈ X : ( f ∧g)(x)≥ α})dα≥∫ 1

0
P({x ∈ X : f (x)≥ α})dα+

∫ 1

0
P({x ∈ X : g(x)≥ α})dα,

and so we have proved the inequality 6.9, i.e.

ϕ( f ∨g)+ϕ( f ∧g)≥ ϕ( f )+ϕ(g)

2

Example 6.3.5 Consider X = {x1,x2} and a supermodular measure P, such that P(x1) = ω1
with 0 < ω1 < 1 and P(x2) = 0.
In the following table we consider the fuzzy sets f and g.

x1 x2
f 0.4 0.7
g 0.8 0.5

So we have

1. (C)
∫

f dP =
∫ 1

0 P({x ∈ X : f (x)≥ t})dt =
∫ 0.4

0 P({X})dt = 0.4;
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2. (C)
∫

gdP=
∫ 1

0 P({x∈X : g(x)≥ t})dt =
∫ 0.5

0 P({X})dt+
∫ 0.8

0.5 P({x1})dt = 0.5+0.3ω1;

Now we consider the fuzzy sets f ∧g and f ∨g and their respective Choquet integrals:

x1 x2
f ∧g 0.4 0.5
f ∨g 0.8 0.7

1. (C)
∫
( f ∧g)dP =

∫ 1
0 P({x ∈ X : ( f ∧g)(x)≥ t})dt =

∫ 0.4
0 P({X})dt = 0.4;

2. (C)
∫
( f ∨g)dP =

∫ 1
0 P({x ∈ X : ( f ∨g)(x)≥ t})dt =

∫ 0.7
0 P({X})dt +

∫ 0.8
0.7 P({x1})dt =

0.7+0.1ω1;

and we see
1.1+0.1ω1 ≥ 0.9+0.3ω1, i.e. 0.2−0.2ω1 ≥ 0. So the Choquet integral is an SM– evaluator
on F (X), i.e. our thesis.

Example 6.3.6 Let X = {x1,x2,x3} and an SM–evaluator like in the example 5.4.8, i.e. P :
2X → [0,1] be given for all A ∈ 2X by

P(A) =
{ 1

4−|A| if x1 ∈ A,
0 otherwise.

In the following table we consider the fuzzy sets f and g.

x1 x2 x3
f 0.1 0.2 0.5
g 0.8 0.3 0.4

and we have

1. (C)
∫

f dP =
∫ 1

0 P({x ∈ X : f (x)≥ t})dt =
∫ 0.1

0 P({X})dt = 0.1;

2. (C)
∫

gdP =
∫ 1

0 P({x ∈ X : g(x)≥ t})dt =
∫ 0.3

0 P({X})dt +
∫ 0.4

0.3 P({x1,x3})dt +
+

∫ 0.8
0.4 P({x1})dt = 0.3+0.05+0.13 = 0.48;

Now we consider the fuzzy sets f ∧g and f ∨g and their respective Choquet integrals: and we

x1 x2 x3
f ∧g 0.1 0.2 0.4
f ∨g 0.8 0.3 0.5

have

1. (C)
∫
( f ∧g)dP =

∫ 1
0 P({x ∈ X : ( f ∧g)(x)≥ t})dt =

∫ 0.1
0 P({X})dt = 0.1;
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2. (C)
∫
( f ∨g)dP=

∫ 1
0 P({x∈X : ( f ∨g)(x)≥ t})dt =

∫ 0.3
0 P({X})dt+

∫ 0.5
0.3 P({x1,x3})dt+∫ 0.8

0.5 P({x1})dt = 0.3+0.2 ·0.5+0.3 · 1
3
= 0.6;

Finally we can see 0.7≥ 0.58 and so the Choquet integral is an SM- evaluator on F (X).
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Chapter 7

The multivariate case

Following the ideas of stronger forms of monotonicity for unary real functions and for ca-
pacities, this chapter aims at discussing aggregation functions A : [0,1]n → [0,1] which are
k-monotone or strongly k-monotone (see [57]). In Section 7.2, k-monotone and strongly k-
monotone aggregation functions are discussed in general, i.e., for k = 2,3, . . . ,∞. Under some
specific requirements, well-known aggregation functions are recovered. Section 7.2.1 is de-
voted to the particular cases k = 2 and k = ∞ and in Section 7.3 we investigate the copula
decomposition of n-monotone aggregation functions with interesting results for n≥ 3.

7.1 Stronger types of monotonicity

The monotonicity of a real function f : I → R, where I ⊆ R is some real interval, can be
strengthened into the total monotonicity. Recall that a real function f is totally monotone if it is
smooth and all its derivatives are nonnegative. In particular, a real function f : [0,1]→ [0,1] is
totally monotone if and only if f (x) = ∑

∞
i=0 ai ·xi with ai ≥ 0 for all i∈N∪{0} and ∑

∞
i=0 ai ≤ 1.

Observe that if f (0) = 0 and f (1) = 1 are required then necessarily a0 = 0 and ∑
∞
i=0 ai = 1.

Similarly, the monotonicity of capacities can be strengthened into the k-monotonicity, k =
2,3, . . . ,∞. Recall that, for a measurable space (X ,A), a mapping m : A → [0,1] is called a
capacity if m( /0) = 0, m(X) = 1 and m is monotone, i.e., m(E) ≤ m(F) whenever E ⊆ F . For
a fixed k ∈ N\{1}, m is called k-monotone if for all E1, . . . ,Ek ∈ A we have

m

(
k⋃

i=1

Ei

)
≥ ∑

/06=J⊆{1,...,k}
(−1)|J|+1m

(⋂
j∈J

E j

)
(7.1)

Moreover, if a capacity m satisfies (7.1) for all k ∈ N \ {1} then m is called an ∞-monotone
capacity (or, equivalently, a belief measure). For more details see [83, 102].

The k-monotonicity (7.1) of a capacity m can be formulated in an equivalent way: m is
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k-monotone if for all r ∈ {2, . . . ,k} and for all pairwise disjoint E,E1, . . . ,Er ∈ A ,

∑
J⊆{1,...,r}

(−1)r−|J|m
(

E ∪
⋃
j∈J

E j

)
≥ 0. (7.2)

Inequality (7.2) can be generalized to an arbitrary bounded lattice (L,∨,∧,0,1). Indeed, let
g : L → R be a nondecreasing mapping, i.e., g(a) ≤ g(b) whenever a ≤ b. Then g is k-
monotone, k ∈ N \ {1}, if for all r ∈ {2, . . . ,k}, for all a ∈ L, and for all pairwise disjoint
a1, . . . ,ar ∈ L (i.e., a1∧a2 = 0, etc.) we have

∑
J⊆{1,...,r}

(−1)r−|J|g
(

a∨
∨
j∈J

a j

)
≥ 0. (7.3)

If the lattice L under consideration is a sublattice of some vector lattice (and if 0 is the neutral
element of the addition on that vector space) then another condition equivalent to (7.3) can be
given: a nondecreasing mapping g : L→ R is k-monotone if for all r ∈ {2, . . . ,k} and for all
a,a1, . . . ,ar ∈ L with

a = a+
∨

ai = a+a1 + · · ·+ar ∈ L

we have
∑

J⊆{1,...,r}
(−1)r−|J|g

(
a+∑

j∈J
a j

)
≥ 0. (7.4)

(observe that
∨

ai = a1 + · · ·+ar is equivalent to a1, . . . ,ar being pairwise disjoint).

Moreover, in this case the following strong k-monotonicity related to (7.4) can be intro-
duced: a nondecreasing mapping g : L→R is called strongly k-monotone if for all r∈{2, . . . ,k}
and for all a,a1, . . . ,ar ∈ L with a+a1 + · · ·+ar ∈ L we have

∑
J⊆{1,...,r}

(−1)r−|J|g
(

a+∑
j∈J

a j

)
≥ 0. (7.5)

Observe that if (L,∨,∧,0,1) = (A ,∪,∩, /0,X) then conditions (7.2) and (7.3) coincide (if we
put m= g). Moreover, taking into account that each set E ∈A is represented by the correspond-
ing characteristic function 1E , then ι : A → RX defined by ι(E) = 1E provides an embedding
of (A ,∪,∩, /0,X) into the vector lattice (RX ,sup, inf,0,1), where 0 and 1 are the constant func-
tions assuming only the value 0 and 1, respectively. Then ι(A) is a bounded sublattice of RX

(and even a sublattice of {0,1}X ). Putting g(1E) = m(E), we see the equivalence of (7.2), (7.4)
and (7.5).

7.1.1 Exact evaluators

Consider a bounded real-valued mapping f defined on a non-empty subset X . The set of all
functions f on X is denoted by L and it is a lattice. In what follows, we use the term functional
to refer to a real-valued map defined on some subset A of a lattice L. If Γ denotes a functional,
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then Γ denotes its conjugate, defined by

Γ( f ) :=−Γ(− f ),

for any function f in −domΓ := {− f : f ∈ domΓ}. So, domΓ =−domΓ.
So, evaluators are particular kinds of functionals and it is interesting to introduce the family of
exact evaluators.
Exact functionals are real-valued functionals that are monotone, super-additive, positively ho-
mogenous and translation invariant (or constant additive). They were introduced and studied
by Maaß [65] in an attempt to unify and generalise a number of notions in the literature, such
as coherent lower previsions, exact cooperative games and coherent risk measures.
A special subclass of exact functionals are n-monotone exact functionals, for n≥ 1. They have
been studied in [30] and represented in terms of Choquet integral. Hence we will represent also
this subclass in terms of evaluators, but first of all we give the definition of exact evaluators.
An evaluator φ on L is called exact whenever for any functions f and g on X , any non-negative
real number λ, and any real number µ, it holds that

E1 φ(λ f ) = λφ( f ) (positive homogeneity);

E2 φ( f +g)≥ φ( f )+φ(g) (superadditivity);

E3 φ( f + c) = φ( f )+φ(c) (constant additivity).

An evaluator defined on an arbitrary subset of L is called exact if it can be extended to an exact
evaluator on all of L.
The following definition is a special case of Choquet’s general definition of n-monotonicity
[26].

Definition 7.1.1 Let n ∈ N∗ and let φ be an evaluator whose domain domφ is a lattice of
bounded real-valued mapping f on X. Then we call φ n-monotone if for all p ∈N, p≤ n and
all f , f1, . . . , fp in dom φ:

∑
I⊆{1,...,p}

(−1)|I|φ

(
f ∧

∧
i∈I

fi

)
≥ 0.

The conjugate of an n-monotone evaluator is called n-alternating. An ∞-monotone evaluator
(i.e, an evaluator which is n-monotone for all n ∈N) is also called completely monotone, and
its conjugate completely alternating.
In this definition, and further on, we use the convention that for I = /0,

∧
i∈I fi simply drops out

of the expressions (we could let it be equal to +∞). Clearly, if an evaluator φ is n-monotone,
it is also p-monotone for 1≤ p≤ n. The following proposition gives an immediate alternative
characterization for the n-monotonicity on evaluators.

Proposition 7.1.2 Let n ∈ N∗ and consider an evaluator φ whose domain domφ is a lattice
of bounded real-valued mapping f on X. Then φ is n-monotone if and only if for all p ∈N,
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2≤ p≤ n and all f1, . . . , fp in dom φ:

φ

(
p∨

i=1

fi

)
≥ ∑

/06=I⊆{1,...,p}
(−1)|I|+1

φ

(∧
i∈I

fi

)
.

Exactness guarantees n-monotonicity only if n = 1: any exact evaluator on a lattice of bounded
real-valued mapping f on X is monotone by definition, but not necessarily 2-monotone.

7.1.2 Superadditive evaluators

Concavity and supermodularity are two independent properties, but in a classic article Cho-
quet [26] (Theorem 54.1) claimed that supermodularity implies concavity for the important
class of the positively homogeneous functionals defined on ordered vector spaces. Unfortu-
nately his argument was incomplete and thus his claim remained open. Anyway it turned out
that Choquet’s claim is true in the special case of Rn with coordinate-wise order, but beyond
that it need not be true even for finite-dimensional Riesz spaces. The investigation to what
extent Choquet’s claim holds in general Riesz spaces can be found in [68].
For positively homogeneous evaluators (and so for Choquet integral as an aggregation operator)
concavity and superadditivity are equivalent properties. Moreover there is another interesting
result about supermodularity which implies superadditivity (the converse is trivial): we need
C2 for a positively homogeneous evaluator.

Definition 7.1.3 An evaluator φ :Rn
+→ [0,1] is positively homogeneous if φ(αx) = αφ(x) for

all α≥ 0 and all x ∈Rn
+.

Definition 7.1.4 An evaluator φ : Rn
+ → [0,1] is superlinear if it is positively homogeneous

and superadditive.

Theorem 7.1.5 Let φ :Rn
+→ [0,1] be an ultramodular evaluator. Then, φ is positively homo-

geneous if and only if it is linear.

Proof : This is a particular case of Theorem 5.1 in [67], where the authors show that ultramod-
ular functions are never positively homogeneous, unless they are linear. 2

Theorem 7.1.6 Let X be a nonempty set and consider a function f : X → [0,1]n. Then the
Choquet integral Chm( f ) is a positively homogeneous evaluator.

Proof : This is a particular case of the property 1.1 in [62]. 2

When constructing ultramodular aggregation functions, we can focus on special types of
aggregation functions. However, in some cases the ultramodularity can be a contradictory or
rather restrictive requirement. For instance, disjunctive aggregation functions (such as trian-
gular conorms [59]) cannot be ultramodular. As an example of the second type we have the
Choquet integral [26, 31] presented in 6.1.5.
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Theorem 7.1.7 An aggregation operator is ultramodular if and only if it is linear.

Proof : With regard to aggregation function we can write an aggregation function in the follow-
ing way:

A(x1,x2, . . . ,xn) =
n

∑
i=1

xπ(i)[m({π(i), . . . ,π(n)})−m({π(i+1), . . . ,π(n)})],

where µ is a given fuzzy measure. It follows from Denneberg that A is superadditive if and only
if µ is supermodular. Moreover, from Theorem 7.1.5 and Theorem 7.1.6, A is ultramodular if
and only if it is linear. 2

Now we give an alternative proof of this result in the following proposition:

Proposition 7.1.8 Let Chµ : [0,1]n→ [0,1] be a Choquet integral-based aggregation function
based on a fuzzy measure µ on X = {1, . . . ,n}. Then we have:

(i) Chµ is superadditive, i.e., for all x,y ∈ [0,1]n with x+y ∈ [0,1]n we have

Chµ(x+y)≥ Chµ(x)+Chµ(y),

if and only if the fuzzy measure µ is supermodular.

(ii) Chµ is ultramodular if and only if the fuzzy measure µ is modular, i.e., Chµ is a weighted
arithmetic mean.

Proof : Statement (i) follows from [31]. If µ is modular (i.e., a probability measure) then Chµ is
a weighted arithmetic mean and, thus, ultramodular. Conversely, if Chµ is ultramodular, then
Chµ is also superadditive (indeed, it suffices to put x = 0 in (3.2)), and thus µ is supermodular
because of (i), and each one-dimensional section of Chµ is convex. This means in particular
that, for an arbitrary permutation σ of X \{1}, the function f : [0,1]→ [0,1] given by

f (x) = Chµ

(
x, σ(2)−1

n , . . . , σ(n)−1
n

)
is convex. Clearly, f is a continuous piecewise linear function which is linear on each inter-
val
[ i−1

n , i
n

]
, i ∈ {1, . . . ,n}. If τ denotes the inverse permutation of σ then the correspond-

ing slopes of the restrictions f |[ i−1
n , i

n ]
, i ∈ {1, . . . ,n}, are given by µ({1,τ(2), . . . ,τ(i)})−

µ({τ(2), . . . ,τ(i)}) whenever i < n, and by µ({1}) for i = n. Therefore, the convexity of f
is equivalent to h : X → [0,1], where h(i) is the slope of f on the interval

[ i−1
n , i

n

]
, being non-

decreasing. A similar claim holds for each other coordinate j ∈ X , i.e., for all i, j ∈ X with
i 6= j and all B⊆ X \{i, j} we have

µ(B∪{i, j})−µ(B∪{i})≤ µ(B∪{ j})−µ(B). (7.6)

Because of the supermodularity of µ, the converse inequality of 7.6 holds, too, i.e., we have
µ(B∪{i, j})−µ(B∪{i}) = µ(B∪{ j})−µ(B). For B = /0 this means that µ({i, j}) = µ({i})+
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µ({ j}), and for B = {k} with k ∈ X \{i, j} we obtain

µ({i, j,k})+µ({ j}) = µ({i,k})+µ({ j,k})
= µ({i})+µ({k})+µ({ j})+µ({k}),

i.e., µ({i, j,k}) = µ({i})+µ({ j})+µ({k}). By induction, µ(B) = ∑i∈B µ({i}) for each B⊆ X ,
i.e., µ is modular. 2

Remark 7.1.9 Observe that each {0,1}-valued supermodular fuzzy measure on X has the form
µB, B being some non-empty subset of X , where µB(A) = 1 if B⊆ A, and µB(A) = 0 otherwise.
Then ChµB(x) = min{xi | i ∈ B} for each x ∈ [0,1]n. Moreover, a general supermodular fuzzy
measure on X is a convex combination of {0,1}-valued supermodular capacities on X , and
thus each superadditive Choquet integral-based aggregation function Chµ : [0,1]n→ [0,1] has
the form

Chµ(x) =
k

∑
j=1

λ j ·min{xi | i ∈ B j},

where k ∈ N, λ j > 0 and /0⊂ B j ⊆ X for j ∈ {1, ..,k}, and ∑
k
j=1 λ j = 1.

We shall identify the function min: [0,1]k→ [0,1] and the greatest lower bound min: 2[0,1]→
[0,1], i.e., both min(x1, . . . ,xn) and min{x1, . . . ,xn} mean the same, namely, the smallest of the
numbers x1, . . . ,xn ∈ [0,1]. Since min is supermodular for each arity, this implies that each su-
peradditive Choquet integral-based aggregation function Chµ : [0,1]n→ [0,1] is supermodular
(this result can be found in [83, Theorem 7.17]).

It is also interesting to see the equivalence between superadditivity and supermodularity in
the case of positively homogeneous evaluators.

Proposition 7.1.10 A positively homogeneous evaluator φ :R2
+→ [0,1] is superadditive if and

only if it is supermodular.

The example of Choquet [26] (p.288) shows that Proposition 7.1.10 does not hold in general
inR2 when n > 2. In particular in [68] there is the following key definition:

Definition 7.1.11 A class of evaluators φ :Rn
+→ [0,1] has the Choquet property if its members

are concave whenever they are supermodular.

In particular the class of positively homogeneous evaluators and the class of translation invari-
ant evaluators have the Choquet property. Observe that for positively homogeneous evaluators
concavity and superadditivity are equivalent properties and so for this case Definition 7.1.11
can be equivalently stated in terms of supermodularity and superadditivity.

Theorem 7.1.12 The positively homogeneous evaluators φ : Rn
+ → [0,1] have the Choquet

property.
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Proof : This is a particular case of Theorem 3 in [68]. 2

Proposition 7.1.13 Assume that an evaluator φ :]0,∞[n→ [0,1] is positively homogeneous and
C2. If φ is (sub/super) modular then it is (sub/super) additive.

Proof : This is a particular case of Proposition 2.2 in [62]. 2

7.2 (Strongly) k-monotone aggregation functions

Based on (7.4) and (7.5), we introduce the following stronger forms of monotonicity for
aggregation functions.

Definition 7.2.1 Let A : [0,1]n→ [0,1] be an aggregation function and k ∈ N\{1}.

(i) The aggregation function A is called k-monotone if for each r ∈ {2, . . . ,k} and for all
x,x1, . . . ,xr ∈ [0,1]n with x+x1 + · · ·+xr = x+

∨
xi ∈ [0,1]n we have

∑
J⊆{1,...,r}

(−1)r−|J|A
(

x+
∨
j∈J

x j

)
≥ 0. (7.7)

(ii) The aggregation function A is said to be strongly k-monotone if for each r ∈ {2, . . . ,k}
and for all x,x1, . . . ,xr ∈ [0,1]n with x+x1 + · · ·+xr ∈ [0,1]n we have

∑
J⊆{1,...,r}

(−1)r−|J|A
(

x+∑
j∈J

x j

)
≥ 0. (7.8)

(iii) The aggregation function A is called strongly ∞-monotone (totally monotone) if it is
strongly k-monotone for each k ∈ N\{1}.

Note that if x+ x1 + · · ·+ xr = x+
∨

xi ∈ [0,1]n then formulae (7.7) and (7.8) coincide (and
then x1, . . . ,xr have pairwise disjoint supports, i.e., min(xi,x j) = 0 for all i 6= j). Clearly, for an
n-ary aggregation function A, its k-monotonicity for k > n is equivalent to the n-monotonicity
of A, which is not true for strong monotonicity. For example, for a unary aggregation function
f : [0,1]→ [0,1], k-monotonicity is just the nondecreasingness of f, while strong 2-monotonicity
of f is equivalent to its convexity.

The following results can be found in [17].

Proposition 7.2.2 Let f : [0,1]→ [0,1] be an aggregation function. Then we have:

(i) f is strongly k-monotone for some k ∈ N\{1} if and only if all derivatives of f of order
1, . . . ,k−2 are nonnegative and f (k−2) is a nondecreasing convex function.

(ii) f is strongly ∞-monotone if and only if f is a totally monotone real function, i.e., it has
non-negative derivatives of all orders on [0,1[.



88 The multivariate case

Proposition 7.2.3 Let A : [0,1]n→ [0,1] be an aggregation function. Then A is totally mono-
tone if and only if all partial derivatives of A are nonnegative. In particular, this means that

A(u1, . . . ,un) = ∑ai1,...,in ·u1
i1 · · ·un

in ,

where i1, . . . , in run from 0 to ∞, a0,...,0 = 0, all ai1,...,in ≥ 0, and ∑ai1,...,in = 1.

As a particular consequence of Proposition 7.2.3 we see that, for each n ∈ N, the product
Π : [0,1]n→ [0,1] is a totally monotone aggregation function. Also, each weighted arithmetic
mean W : [0,1]n→ [0,1] given by W (u1, . . . ,un) = ∑wi ·ui is totally monotone.

Proposition 7.2.4 Fix k ∈ {2,3, . . . ,∞}. Then for all n,m ∈N and for all strongly k-monotone
n-ary aggregation functions A : [0,1]n→ [0,1] and for all strongly k-monotone m-ary aggrega-
tion functions B1, . . . ,Bn : [0,1]m→ [0,1] also the composite function D : [0,1]m→ [0,1] given
by

D(x) = A(B1(x), . . . ,Bn(x))

is strongly k-monotone.

It is possible to show that for each fixed n∈N and k∈ {2,3, . . . ,∞}, the class of all (strongly)
k-monotone n-ary aggregation functions is convex and compact (with respect to the topology
of pointwise convergence).

For n ∈ N \ {1} and for n-ary aggregation functions A : [0,1]n → [0,1], the notion of n-
increasingness was introduced in the framework of copulas [81, 94]:

Definition 7.2.5 Let n ≥ 2. An aggregation function A : [0,1]n→ [0,1] is called n-increasing
if for all x,y ∈ [0,1]n with x≤ y we have

∑
J⊆{1,...,n}

(−1)n−|J|A(zJ)≥ 0, (7.9)

where zJ ∈ [0,1]n is given by z j = y j if j ∈ J, and z j = x j otherwise.

It is not difficult to check that, under the hypotheses of Definition 7.2.5, formulae (7.9) and
(7.7) coincide, i.e., n-monotonicity and n-increasingness for n-ary aggregation functions mean
the same. Hence, k-monotonicity extends the notion of n-increasingness to higher dimensions.

Remark 7.2.6 (i) Because of [17], strong k-monotone aggregation functions are important
in the theory of non-additive measures: for k-monotone capacities m1, . . . ,mn acting on a
fixed measurable space (X ,A) and for a strongly k-monotone n-ary aggregation function
A, the set function A(m1, . . . ,mn) : A → [0,1] given by

A(m1, . . . ,mn)(E) = A(m1(E), . . . ,mn(E))

is a k-monotone capacity whenever A is strongly k-monotone (if |X | ≥ k, this is also
necessary condition if the claim should be valid for arbitrary k-monotone capacities
m1, . . . ,mn).
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(ii) k-monotonicity is an axiom for k-dimensional copulas [94].

(iii) Strong 2-monotonicity is known also as ultramodularity, and it was discussed in general
in [67] (see also [56]). Another name for 2-monotonicity is supermodularity, a widely
used concept in the theory of non-additive measures and of aggregation functions.

7.2.1 (Strongly) 2-monotone aggregation functions

Recall that an aggregation function C : [0,1]2 → [0,1] which is 2-monotone and satisfies
C(x,1) = C(1,x) = x for all x ∈ [0,1] is called a 2-copula (or, shortly, a copula). Copulas
play a key role in the description of the stochastic dependence of two-dimensional random
vectors and they are substantially exploited in several applications in finance, hydrology, etc.
The construction of new types of copulas is one of the important theoretical tasks allowing a
better modelling of real problems involving stochastic uncertainty. So, the result from [39], i.e.
proposition 4.1.1 can be written in the following way:

Proposition 7.2.7 An aggregation function A : [0,1]2→ [0,1] is 2-monotone if and only if there
are nondecreasing functions g1,g2,g3,g4 : [0,1]→ [0,1] with gi(0) = 0 and gi(1) = 1 for each
i∈ {1,2,3,4}, a binary copula C : [0,1]2→ [0,1], and numbers a,b,c∈ [0,1] with a+b+c= 1
such that, for all (x,y) ∈ [0,1]2,

A(x,y) = a ·g1(x)+b ·g2(y)+ c ·C(g3(x),g4(y)). (7.10)

Similarly, we can formulate respectively Remark 3.2.2(c) and Propositions 3.2.9 in the follow-
ing way:

Proposition 7.2.8 An aggregation function A : [0,1]2 → [0,1] is strongly 2-monotone if and
only if A is 2-monotone and each horizontal and each vertical section of A is a convex function.

In the class of copulas, the greatest strongly 2-monotone copula is the product copula Π,
while the smallest strongly 2-monotone copula is the Fréchet-Hoeffding lower bound W given
by W (x,y) = max(x+ y− 1,0). Note that the only totally monotone 2-copula is the product
copula Π.

Theorem 7.2.9 Let A : [0,1]n→ [0,1] be an aggregation function and k ≥ 2. Then the follow-
ing are equivalent:

(i) A is strongly 2-monotone.

(ii) If B1, . . . ,Bn : [0,1]k→ [0,1] are nondecreasing 2-monotone functions then the composite
D : [0,1]k→ [0,1] given by D(x) = A(B1(x), . . . ,Bn(x)) is a 2-monotone function.
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7.3 Construction of multivariate copulas

The subject of assessing probabilistic dependence between one-dimensional distribution
functions to construct a joint distribution function is an important task in probability theory
and statistics. As we have already told, copula function captures the dependence relationships
among the individual random variables as each multivariate distribution can be represented in
terms of its marginals through a given copula structure.
The aim of this section is to present the copula approach for studying aggregation problems. It
can be extended to n dimensions and for the sake of simplicity first of all we are considering
the case n = 2. Specifically, binary aggregation operators satisfying the 2-increasing property
are analysed in details in [37] and [39], with the most important result recalled in proposition
4.1.1. So, the proofs in the following section about the bivariate case will be provided just for
completeness of information.
We are studying a class of aggregation functions that can be expressed in terms of marginal
functions by using the method of copulas. Elimination of marginals through copulas helps to
model and understand dependence structure between variables more effectively, as the depen-
dence has nothing to do with the marginal behaviour.
Like for the bivariate case, for any n-copula:

W (u1, . . . ,un)≤C(u1, . . . ,un)≤M(u1, . . . ,un),

but, even if the upper function M is an n-copula for any n ∈N, the lower function W is not an
n-copula for any n > 2.
Moreover, Sklar’s theorem holds in the multivariate case as well.

Theorem 7.3.1 (Sklar [72]) Let H be an n-dimensional distribution function with margins
F1,F2, . . . ,Fn . Then there exists an n-copula C such that for all x ∈Rn

,

H(x1,x2, . . . ,xn) =C(F1(x1),F2(x2), . . . ,Fn(xn)) (7.11)

If F1,F2, . . . ,Fn are all continuous, then C is unique; otherwise, C is uniquely determined on
Ran F1×Ran F2× . . .×Ran Fn. Conversely, if C is an n-copula and F1,F2, . . . ,Fn are distribu-
tion functions, then the function H defined by (7.11) is an n-dimensional distribution function
with margins F1,F2, . . . ,Fn.

The following proposition gives an interesting characterization concerning multivariate copulas
and supermodular aggregation functions.

Proposition 7.3.2 The set of all n–dimensional copulas Cn is contained in AS
n .

Proof : In fact all n–dimensional copulas are n-increasing and so they are 2-increasing by
lemma 2.1 in [77] and by proposition 1.2.2 they belong to AS

n . 2
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Remark 7.3.3 The converse is not true: in fact, if we consider the smallest aggregation func-
tion Asmall , defined by Asmall(x) = 1 if x = (1, . . . ,1), and Asmall(x) = 0, otherwise, we see that
Asmall is an element of AS

n , but it is not a copula.

Let f be a real valued function on [a1,b1]× . . .× [an,bn] = [a,b] ⊂Rn, −∞ < a < b < ∞.
Given a set of indexes I ⊆ N = {1, . . . ,n}, let f (xI;y−I) denote the value of f at the point in
[a,b] whose ith element is equal to xi if i∈ I and is equal to yi otherwise. For any n-dimensional
rectangle R = [c,d] ⊆ [a,b], let ∆R f = ∑I⊆{1,...,n}(−1)|I| f (cI;d−I). For a nonempty I ⊆ N, let
fI denote the function on Πi∈I[ai,bi] obtained by fixing the jth argument of f equal to b j

whenever j /∈ I, and letting the other arguments vary (see [8]).
Now we are going to apply this observation to n-monotone aggregation functions, for n≥ 2, and
so we are going to see another approach to the bivariate case, which has been deeply analysed
in the previous chapters and in particular in Propositions 3.2.2 and 4.1.1 and Corollary 4.2.1.

7.3.1 The bivariate case

We define the following one-dimensional marginals of a binary aggregation function A:

F1(x1) = A(x1,1) F2(x2) = A(1,x2)

Proposition 7.3.4 A is a 2-increasing continuous binary aggregation function with

A(t,0) = 0 and A(0, t) = 0 ∀ t ∈ [0,1] (7.12)

if and only if there exist a copula C and two one-dimensional increasing and uniformly con-
tinuous functions F1 and F2 from [0,1] to [0,1] with F1(0) = 0 = F2(0) and F1(1) = 1 = F2(1),
such that

A(x1,x2) =C(F1(x1),F2(x2)) ∀ x1,x2 ∈ [0,1].

Proof.

Of course, if A(x1,x2) =C(F1(x1),F2(x2)), A is 2-increasing with A(0,0) = 0 and A(1,1) = 1.
So we must prove the necessary condition. We can observe thanks to the lemma 2.1.5 in [81]
that

|A(x1,x2)−A(x′1,x
′
2)| ≤ |F1(x1)−F1(x′1)|+ |F2(x2)−F2(x′2)|

for all x1,x′1,x2,x′2 ∈ [0,1]. Then, if F1(x1) = F1(x′1) and F2(x2) = F2(x′2), it follows that
A(x1,x2) = A(x′1,x

′
2). So, we can define a function C whose domain is [0,1]2 with range [0,1]

defined by C(u1,u2) = A(x1,x2) where u1 = F1(x1),u2 = F2(x2).
We can prove that A(x1,x2) =C(F1(x1),F2(x2)) is a copula. It follows directly from the prop-
erties of A that the function C is a 2-increasing function, such that C(0,u2) = 0 =C(u1,0). For
the other boundary condition we have:

u2 =C(1,u2) =C(1,F2(x2)) = A(1,u2),
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for each u2. Moreover, F1(x1) and F2(x2) are increasing and uniformly continuous thanks to
the definition 2.2.5 and the corollary 2.2.6 in [81].

Aggregation operators that satisfy equation (7.12) frequently appear in many applications. For
example, we can consider a multi-attribute decision problem where the attribute may be health
state and consumption level or decisions involving trade-offs between quality and quantity.
Now we generalize the previous proposition with the following one.

Proposition 7.3.5 A is a 2-monotone binary aggregation function if and only if there exist a
constant k, a copula C, two increasing functions A1, A2 and two one-dimensional increasing
functions G1(x1), G2(x2), such that

A(x1,x2) = A1(x1)+A2(x2)+ kC(G1(x1),G2(x2)) (7.13)

Proof : Let us start with the sufficient condition. Of course, A(x1,x2) = A1(x1) + A2(x2) +
kC(G1(x1),G2(x2)) is 2-monotone. Moreover A(0,0) = 0 and A(1,1) = A1(1)+A2(1)+k. So,
by taking k = 1−A1(1)−A2(1), we have that A(x1,x2) is an aggregation function.
Now we prove the necessary condition. First of all, by using the previous observation (see [8]),
we observe that R = [0,x1]× [0,x2], N = {1,2} and so I ∈ { /0,{1},{2},{1,2}}.
Therefore, we have the following decomposition

∆R(A), A(x1,x2)−A(x1,0)−A(0,x2)+A(0,0).

So, rearranging the previous equation, we have

A(x1,x2) = A(x1,0)+A(0,x2)+∆R(A).

We observe that

V∆R(A)([0,x1]× [0,x2]) = ∆R(A)(x1,x2)−∆R(A)(x1,0)−∆R(A)(0,x2)+∆R(A)(0,0)

= VA([0,x1]× [0,x2])≥ 0,

and so ∆R(A) is 2-monotone and satisfies the hypothesis of Proposition 7.3.4 if ∆R(A)(1,1) =
1. If, otherwise, ∆R(A)(1,1) = k, with 0 < k < 1, the hypothesis of Proposition 7.3.4 are
satisfied by using the function ∆R(A)(x1,x2)/∆R(A)(1,1) and so there exists a copula C and
two increasing functions G1 and G2 such that ∆R(A)(x1,x2) = ∆R(A)(1,1)C(G1(x1),G2(x2)).

2

7.3.2 The trivariate case

The next proposition introduces an analogy between probability distributions and this class
of aggregation functions, but first of all we define the following one-dimensional marginal
functions

F1(x1) = A(x1,1,1), F2(x2) = A(1,x2,1), F3(x3) = A(1,1,x3)
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Proposition 7.3.6 (Particular case) A is a 3-monotone trivariate aggregation function with

A(x1,x2,0) = A(x1,0,x3) = A(0,x2,x3) = 0 (7.14)

if and only if there exists a copula C and three one-dimensional increasing and uniformly
continuous marginals, such that

A(x1,x2,x3) =C(F1(x1),F2(x2),F3(x3))

Proof : Like for the bivariate case, the sufficient condition is trivial. So, we prove the necessary
condition only. Thanks to the previous observations, we have again the following decomposi-
tion with R = [0,x1]× [0,x2]× [0,x3]:

∆R(A) , A(x1,x2,x3)−A(x1,x2,0)−A(x1,0,x3)+A(x1,0,0)+

− A(0,x2,x3)+A(0,x2,0)+A(0,0,x3)−A(0,0,0)

= A(x1,x2,x3)−A(x1,x2,0)−A(x1,0,x3)−A(0,x2,x3)+

+ A(x1,0,0)+A(0,x2,0)+A(0,0,x3),

because A(0,0,0) = 0 for the property of aggregation function. So, for our hypothesis we
obtain

A(x1,x2,x3) = ∆R(A).

It remains to prove that ∆R(A) is a copula. Surely it is 3-monotone, because this is our hypoth-
esis for A. So, we must prove that ∆R(A) is grounded and it has one-dimensional marginals.
We can observe thanks to the Lemma 2.10.4 in [81] that

|A(x1,x2,x3)−A(y1,y2,y3)| ≤ |F1(x1)−F1(y1)|+ |F2(x2)−F2(y2)|+ |F3(x3)−F3(y3)|

for all x,y ∈ [0,1]. Then, if F1(x1) = F1(y1), F2(x2) = F2(y2) and F3(x3) = F3(y3) it fol-
lows that A(x) = A(y). So, it is well-defined a function C whose domain is [0,1]3 with
range [0,1], such that C(F1(x1),F2(x2),F3(x3)) = A(x1,x2,x3). Therefore, we can prove that
A(x) =C(F1(x1),F2(x2),F3(x3)) has one-dimensional marginals. In fact we have

C(1,1,F3(x3)) = A(1,1,x3) = F3(x3).

Verifications of the other conditions are similar. Moreover, F1(x1), F2(x2) and F3(x3) are in-
creasing and uniformly continuous thanks to the Lemma 2.10.3 and the Theorem 2.10.7 in [81].

2

Now we give the more general proposition.

Proposition 7.3.7 (General case) A is a 3-monotone trivariate aggregation function if and
only if there exist three increasing functions A1, A2, A3, three 2-monotone functions A1,2, A2,3,
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A1,3, a constant k0 and a copula C0, such that

A(x1,x2,x3) = A1,2(x1,x2)+A1,3(x1,x3)+A2,3(x2,x3)+

− A1(x1)−A2(x2)−A3(x3)+ k0C0(F0
1 (x1),F0

2 (x2),F0
3 (x3)) (7.15)

Proof : Thanks to the previous observations, it is enough to define

A1(x1) := A(x1,0,0), A2(x2) := A(0,x2,0), A3(x3) := A(0,0,x3) (7.16)

and

A1,2(x1,x2) := A(x1,x2,0), A1,3(x1,x3) := A(x1,0,x3), A2,3(x2,x3) := A(0,x2,x3). (7.17)

With respect to the sufficient condition we observe that

∆R(A)(1,1,1)C0(F0
1 (x1),F0

2 (x2),F0
3 (x3))

is 3-increasing and A1,2(x1,x2) is 2-increasing, that is

VA1,2([0,x1]× [0,x2]) = A1,2(0,0)−A1,2(0,x2)+A1,2(x1,x2)−A1,2(x1,0) =

= A1,2(x1,x2)−A2(x2)−A1(x1)≥ 0.
(7.18)

So A1,2(x1,x2)−A1(x1)≥ A1,2(x1,x2)−A1(x1)−A2(x2)≥ 0.
Similarly A1,3(x1,x3)−A3(x3) ≥ 0 and A2,3(x2,x3)−A2(x2) ≥ 0. Then we can conclude that
A(x1,x2,x3) is 3-monotone.
With regard to the necessary condition, we must prove that (7.16) and (7.17) are increasing and
2-monotone, respectively.
We have already said that increasingness is a property required to aggregation preferences. It
remains to prove 2-monotonicity. We observe that A1,2(x1,x2) := A(x1,x2,0) = A(x1,x2,x3)−
A(0,0,x3) and so it’s 2-monotone thanks to the lemma 2.1 in [77].
At last, we must prove that

C0(F0
1 (x1),F0

2 (x2),F0
3 (x3)) =

∆R(A)
k0

is a copula, with k0 = ∆R(A)(1,1,1) 6= 0. Indeed, ∆R(A) satisfies the hypothesis of proposition
(7.3.6) for its construction. So, there exists a copula C0 and three one-dimensional marginals
F0

1 , F0
2 and F0

3 , such that

∆R(A) = k0C0(F0
1 (x1),F0

2 (x2),F0
3 (x3)).

This ends the proof. 2

As a consequence, we have the following result.

Corollary 7.3.8 A is a trivariate 3-monotone aggregation function if and only if there exist
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three increasing functions A1, A2, A3, four constants ki, for i = 0,1, . . . ,3, three copulas and a
trivariate one, such that

A(x1,x2,x3) = A1(x1)+A2(x2)+A3(x3)+ k0C0(F0
1 (x1),F0

2 (x2),F0
3 (x3))+

+ k1C1(F1
2 (x2),F1

3 (x3))+ k2C2(F2
1 (x1),F2

3 (x3))+ k3C3(F3
1 (x1),F3

2 (x2))

Proof : The sufficient condition is obvious. As regards the necessary one, we use the bivariate
case, that is we have studied that

A(x1,x2,0) = A(x1,0,0)+A(0,x2,0)+∆R(A)(1,1,0)C3(F3
1 (x1),F3

2 (x2)).

Of course A(1,1,0)< 1 because A(1,1,1) = 1 and we must multiply A(x1,x2,0) by A(1,1,0)−1

to have an aggregation function. Anyway, we have the following decomposition:

A(x1,0,x3) = A1(x1)+A3(x3)+∆R(A)(1,0,1)C2(F2
1 (x1),F2

3 (x3))

and
A(0,x2,x3) = A2(x2)+A3(x3)+∆R(A)(0,1,1)C1(F1

2 (x2),F1
3 (x3)).

So,

A(x1,x2,x3) = A(x1,x2,0)+A(x1,0,x3)+A(0,x2,x3)−A(x1,0,0)−A(0,x2,0)+

− A(0,0,x3)+∆R(A) =

= 2A(x1,0,0)+2A(0,x2,0)+2A(0,0,x3)+∆R(A)(0,1,1)C1(F1
2 (x2),F1

3 (x3))+

+ ∆R(A)(1,0,1)C2(F2
1 (x1),F2

3 (x3))+∆R(A)(1,1,0)C3(F3
1 (x1),F3

2 (x2))+

− A(x1,0,0)−A(0,x2,0)−A(0,0,x3)+∆R(A) =

= A(x1,0,0)+A(0,x2,0)+A(0,0,x3)+∆R(A)(0,1,1)C1(F1
2 (x2),F1

3 (x3))+

+ ∆R(A)(1,0,1)C2(F2
1 (x1),F2

3 (x3))+∆R(A)(1,1,0)C3(F3
1 (x1),F3

2 (x2))+

+ ∆R(A)(1,1,1)C0(F0
1 (x1),F0

2 (x2),F0
3 (x3))

At last, we must prove that
∆R(A)

∆R(A)(1,1,1)

is a copula. In fact, it satisfies the hypothesis of proposition (7.3.6) for its construction. So,
there exists a copula C0 and three one-dimensional marginals F0

1 (x1), F0
2 (x2) and F0

3 (x3), such
that ∆R(A) = ∆R(A)(1,1,1)C0(F0

1 (x1),F0
2 (x2),F0

3 (x3)).
As a consequence, by posing k0 = ∆R(A)(1,1,1), k1 = ∆R(A)(0,1,1), k2 = ∆R(A)(1,0,1) and
at last k3 = ∆R(A)(1,1,0), we have our thesis. 2
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7.3.3 The general case

Let us consider A(x1,x2,x3,x4), with R = [0,x1]× [0,x2]× [0,x3]× [0,x4]. By using the
previous observation, we note that

A(x1,x2,x3,x4) = A(x1,x2,x3,0)+A(x1,0,x3,x4)+A(x1,x2,0,x4)+A(0,x2,x3,x4)+

− A(x1,0,0,x4)−A(x1,x2,0,0)−A(x1,0,x3,0)−A(0,x2,x3,0)+

− A(0,x2,0,x4)−A(0,0,x3,x4)+A(x1,0,0,0)+A(0,x2,0,0)+

+ A(0,0,x3,0)+A(0,0,0,x4)+∆R(A).

By using and iterating this decomposition, we obtain at the end:

1. Three bivariate copulas C(Fi,Fj) ∀i = 1,2,3 j > i, with Fi = Fi(xi).

2. One trivariate copula C(Fi,Fj,Fl) ∀i = 1,2,3 i < j < l.

In fact the trivariate copulas come out only from the respective trivariate aggregation func-
tions, while, about the bivariate ones, we have that, for the same i and j only one goes out
from the respective bivariate aggregation function. We have the other two thanks to the trivari-
ate aggregation functions. For example, we have three C(F1,F2): one from A(x1,x2,0,0),
that is k34C34(F34

1 ,F34
2 ), another from A(x1,x2,x3,0), that is k4C4(F4

1 ,F
4

2 ) and the last from
A(x1,x2,0,x4), that is k3C3(F3

1 ,F
3

2 ).
So we can write the following decomposition:

A(x1,x2,x3,x4) =
4

∑
i=1

Ai(xi)+
4

∑
{h,k}
h=1

α
{{h,k}=0}C{{h,k}=0}(F{{h,k}=0}

h ,F{{h,k}=0}
k )+

+
4

∑
{i, j,l}

i=1

α
{{i, j,l}=0}C{{i, j,l}=0}(F{{i, j,l}=0}

i ,F{{i, j,l}=0}
j ,F{{i, j,l}=0}

l )+αC(F1,F2,F3,F4).

where {{h,k} = 0} is the set of complementary attributes of {xh,xk}, when, at least one of
them is equal to zero and {{i, j, l}= 0} is the set of complementary attributes of {xi,x j,xl},
when, at least one of them is equal to zero too.
Now we can prove the general result.

Proposition 7.3.9 (General case) A is an n-monotone aggregation function if and only if there
exist n increasing functions Ai(xi),

(n
2

)
bivariate copulas C,

(n
k

)
k-copulas.... and an n-copula,

such that

A(x1, . . . ,xn) =
n

∑
i=1

Ai(xi)+
n

∑
{r,s}
r=1

αr,sC(Fr,s)+ . . .

. . . +
n

∑
{r,s,...,t}

r=1

αr,s,...,tC(Fr,s,...,t)+ . . .+αC(F1, . . . ,Fn), (7.19)
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with

Ai(xi) = A(0, . . . ,xi, . . . ,0)

Fr,s,...,t = (F{{r,s,...,t}=0}
r ,F{{r,s,...,t}=0}

s , . . . ,F{{r,s,...,t}=0}
t )

and {r,s,. . . ,t} denotes the set of attributes that are not equal to zero.

Proof : The sufficient condition is obvious, so we can prove the necessary one by induction:
n = 2 and n = 3 are right and n−1⇒ n. So our inductive hypothesis is:

A(x1, . . . ,xn−1) =
n−1

∑
i=1

Ai(xi)+
n−1

∑
{r,s}
r=1

αr,sC(Fr,s)+ . . .

. . . +
n−1

∑
{r,s,...,t}

r=1

αr,s,...,tC(Fr,s,...,t)+ . . .+αC(F1, . . . ,Fn−1)

and we can apply this to the previous formula, but first we define A(x1, . . . ,x j, . . . ,xn)|x j=0 =

A(x j
◦),

where x j
◦ is the set of complementary attributes of x j, with x j = 0 and similarly x{ j,l,...,m}

◦ as the
set of complementary attributes of x j = xl = . . .= xm = 0.
So, we have

A(x1, . . . ,xn) =
n

∑
j=1

A(x j
◦)︸ ︷︷ ︸

n

−
n

∑
j=1
l> j

A(x j,l
◦ )

︸ ︷︷ ︸
(n

2)

+ . . .+(−1)k−1
n

∑
j=1
l> j
...

m>l

A(x j,l,...,m
◦ )

︸ ︷︷ ︸
(n

k)

+ . . .+∆R(A)(F1, . . . ,Fn).

(7.20)

Then, by using our hypothesis, we obtain

A(x j
◦) = A(x1, . . . ,x j, . . . ,xn)|x j=0 = A(x1, . . . ,xn−1) =

n−1

∑
i=1
i 6= j

Ai(xi)+

+
n−1

∑
{r,s}
r=1

αr,sC(Fr,s)+ . . .+
n−1

∑
{r,s,...,t}

r=1

αr,s,...,tC(Fr,s,...,t)+ . . .

. . . +α
jC(F1, . . . ,Fn−1) ∀ j
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Similarly we get

A(x j,l
◦ ) =

n−2

∑
i=1

i 6=( j,l)
l> j

Ai(xi)+
n−2

∑
{r,s}
r=1

αr,sC(Fr,s)+ . . .

. . . +
n−2

∑
{r,s,...,t}

r=1

αr,s,...,tC(Fr,s,...,t)+ . . .+α
j,lC(F1, . . . ,Fn−2) ∀ j, l

and

A(x j,l,...,m
◦ ) =

n−k

∑
i=1

i6=( j,l,...,m)
l> j
...

m>l

Ai(xi)+
n−k

∑
{r,s}
r=1

αr,sC(Fr,s)+ . . .

. . . +
n−k

∑
{r,s,...,t}

r=1

αr,s,...,tC(Fr,s,...,t)+ . . .+α
j,l,...,mC(F1, . . . ,Fn−k) ∀ j, l,m.

So, we replace these latter equations in (7.20) with

n

∑
j=1

A(x j
◦) =

n

∑
j=1

n−1

∑
i=1
i 6= j

Ai(xi)+
n

∑
j=1

n−1

∑
{r,s}
r=1

αr,sC(Fr,s)+ . . .

. . . +
n

∑
j=1

n−1

∑
{r,s,...,t}

r=1

αr,s,...,tC(Fr,s,...,t)+ . . .+
n

∑
j=1

α
jC(F1, . . . ,Fn−1);

n

∑
j=1
l> j

A(x j,l
◦ ) =

n

∑
j=1
l> j

n−2

∑
i=1

i 6=( j,l)
l> j

Ai(xi)+
n

∑
j=1
l> j

n−2

∑
{r,s}
r=1

αr,sC(Fr,s)+ . . .

. . . +
n

∑
j=1
l> j

n−2

∑
{r,s,...,t}

r=1

αr,s,...,tC(Fr,s,...,t)+ . . .+
n

∑
j=1
l> j

α
j,lC(F1, . . . ,Fn−2)
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and

n

∑
j=1
l> j
m>l

A(x j,l,...,m
◦ ) =

n

∑
j=1
l> j
...

m>l

n−k

∑
i=1

i6=( j,l,...,m)
l> j
...

m>l

Ai(xi)+
n

∑
j=1
l> j
...

m>l

n−k

∑
{r,s}
r=1

αr,sC(Fr,s)+ . . .

. . . +
n

∑
j=1
l> j
...

m>l

n−k

∑
{r,s,...,t}

r=1

αr,s,...,tC(Fr,s,...,t)+ . . .

. . . +
n

∑
j=1
l> j
...

m>l

α
j,l,...,mC(F1, . . . ,Fn−k).

Therefore, we have our thesis. 2
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Appendix A

Example: the multivariate dependence

A.1 Copulas and Random Variables

We will use capital letters, such as X and Y , to represent random variables and lower case
letters x, y to represent their values. We will say that F is the distribution function of the ran-
dom variable X when for all x inR, F(x) = P[X ≤ x]. We are defining distribution functions of
random variables to be right-continuous, even if this is simply a matter of custom and conve-
nience. Left-continuous distribution functions would serve equally as well. A random variable
is continuous if its distribution function is continuous.
We will let I denote the unit interval [0,1].
The following theorem shows that the product copula Π(u,v) = uv characterizes independent
random variables when the distribution functions are continuous. Its proof follows from Sklar’s
theorem and the observation that X and Y are independent if and only if H(x,y) = F(x)G(y)
for all (x,y) inR2.

Theorem A.1.1 Let X and Y be continuous random variables. Then X and Y are independent
if and only if CXY = Π.

Much of the usefulness of copulas in the study of non parametric statistics derives from the fact
that for strictly monotone transformations of the random variables copulas are either invariant,
or change in predictable ways. Recall that if the distribution function of a random variable
X is continuous, and if α is a strictly monotone function whose domain contains Ran X , then
the distribution function of the random variable α(X) is also continuous. First we recall the
theorem 2.4.3 in [81], where the case of strictly increasing transformations has been treated.

Theorem A.1.2 Let X and Y be continuous random variables with copula CXY . If α and β

are strictly increasing on Ran X and Ran Y respectively, then Cα(X)β(Y ) = CXY . Thus CXY is
invariant under strictly increasing transformations of X and Y .

When at least one of α and β is strictly decreasing, we obtain results in which the copula of the
random variables α(X) and β(Y ) is a simple transformation of CXY . Specifically, we have:
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Theorem A.1.3 Let X and Y be continuous random variables with copula CXY . Let α and β

be strictly monotone on Ran X and Ran Y respectively.

1. If α is strictly increasing and β is strictly decreasing, then

Cα(X)β(Y )(u,v) = u−CXY (u,1− v).

2. If α is strictly decreasing and β is strictly increasing, then

Cα(X)β(Y )(u,v) = v−CXY (1−u,v).

3. If α and β are both strictly decreasing, then

Cα(X)β(Y )(u,v) = u+ v−1+CXY (1−u,1− v).

A.1.1 Symmetry properties

Let (a,b) ∈ R2 and (X ,Y ) a random pair. We say that X is symmetric about a if the cu-
mulative distribution functions of (X −a) and (a−X) are identical. The following definitions
generalize this symmetry concept to the bivariate case:

• X and Y are exchangeable if (X ,Y ) and (Y,X) are identically distributed;

• (X ,Y ) is marginally symmetric about (a,b) if X and Y are symmetric about a and b
respectively;

• (X ,Y ) is radially symmetric about (a,b) if (X − a,Y − b) and (a−X ,b−Y ) follow the
same joint cumulative distribution function;

• (X ,Y ) is jointly symmetric about (a,b) if the pairs of random variables

(X−a,Y −b), (a−X ,b−Y ), (X−a,b−Y ) and (a−X ,Y −b)

have a common joint cumulative distribution function.

The following theorem provides conditions on φ to ensure that the couple (X ,Y ) with associ-
ated copula Cθ is radially (or jointly) symmetric.

Theorem A.1.4 (i) If X and Y are identically distributed then X and Y are exchangeable.
Besides, if (X ,Y ) is marginally symmetric about (a,b) then:

(ii) (X ,Y ) is radially symmetric about (a,b) if and only if either ∀u ∈ I, φ(u) = φ(1− u) or
∀u ∈ I, φ(u) =−φ(1−u);

(iii) (X ,Y ) is jointly symmetric about (a,b) if and only if ∀u ∈ I, φ(u) =−φ(1−u).
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A.1.2 Survival Copulas

In many applications, the random variables of interest represent the lifetimes of individuals
or objects in some population. The probability of an individual living or surviving beyond time
x is given by F(x) = P[X > x] = 1−F(x), called survival function (or survivor function, or
reliability function), where, as before, F denotes the distribution function of X . When dealing
with lifetimes, the natural range of a random variable is often [0,+∞); however, we will use
the term “survival function” for P[X > x] even when the range isR.

For a pair (X ,Y ) of random variables with joint distribution function H, the joint survival
function is given by H(x,y) = P[X > x,Y > y]. The margins of H are the functions H(x,+∞)
and H(−∞,y), which are the univariate survival functions F and G, respectively.

A.2 Concepts of dependence

In this section we note (X ,Y ) a random pair with joint cdf H, copula C and margins F and
G. For the sake of simplicity, we assume that X and Y are exchangeable. Several concepts of
dependence have been introduced and characterized in terms of copulas. X and Y are

• Positive Function Dependent (PFD) if for any integrable real-valued function g

Eh[g(X)g(Y )]−Eh[g(X)]Eh[g(Y )]≥ 0,

where Eh is the expectation symbol relative to the density h.

• Positively Quadrant Dependent (PDQ) if P(X ≤ x,Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y), for all
(x,y) ∈R2 or equivalently

∀(u,v) ∈ I2, C(u,v)≥ uv. (A.1)

• Left Tail Decreasing (LT D(Y |X)) if P(Y ≤ y|X ≤ x) is non-increasing in x for all y, or
equivalently, see Theorem 5.2.5 in Nelsen (2006), u→ C(u,v)/u is non-increasing for
all v ∈ I.

• Right Tail Increasing (RT I(Y |X)) if P(Y > y|X > x) is nondecreasing in x for all y or,
equivalently, u→ (v−C(u,v))/(1−u) is non-increasing for all v ∈ I.

• Stochastically Increasing (SI(Y |X)) if P(Y > y|X = x) is nondecreasing in x for all y .

• Left Corner Set Decreasing (LCSD) if P(X ≤ x,Y ≤ y|X ≤ x′,Y ≤ y′) is non-increasing
in x′ and y′ for all x and y, or equivalently, see Corollary 5.2.17 in Nelsen (2006), C is a
totally positive function of order 2 (T P2), i.e. for all (u1,u2,v1,v2)∈ I4 such that u1 ≤ u2
and v1 ≤ v2, one has

C(u1,v1)C(u2,v2)−C(u1,v2)C(u2,v1)≥ 0. (A.2)
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This property is equivalent to Positively Likelihood Ratio Dependent (PLR), which is
defined if and only if C is absolutely continuous and its density c satisfies (A.2), with C
replaced by c.

• Right Corner Set Increasing (RCSI) if P(X > x,Y > y|X > x′,Y > y′) is nondecreasing in
x′ and y′ for all x and y, or equivalently, the survival copula Ĉ associated to C is a totally
positive function of order 2.

More broadly, one has the following definition:

Definition A.2.1 Let A and B be subsets of [0,1]. A function C defined on A×B is said to
be totally positive of order k, denoted T Pk, if for all m, 1 ≤ m ≤ k and all u1 < .. . < um,
v1 < .. . < vm (ui ∈ A ,v j ∈ B)

C
(

u1, . . . ,um

v1, . . . ,vm

)
≡ det

[
C(u1,v1), . . . ,C(u1,vm)
C(um,v1), . . . ,C(um,vm)

]
≥ 0. (A.3)

When the inequalities (A.3) are strict for m = 1, . . . ,k, C is called strictly totally positive of
order k (ST Pk).
There are several obvious consequences of the definition.

1. If a and b are nonnegative functions defined, respectively, on A and B and if K is T Pk
then a(u)b(v)C(u,v) is T Pk.

2. If g and h are defined on A and B, respectively, and monotone in the same direction, and
if C is T Pk on g(A)×h(B), then C(g(u),h(v)) is T Pk on A×B.

The following Corollary 5.2.6 in Nelsen [81] gives us the criteria for tail monotonicity in terms
of the partial derivatives of C.

Corollary A.2.2 Let X and Y be continuous random variables with copula C. Then

1. LTD(Y |X) if and only if for any v in I, ∂C(u,v)
∂u ≤ C(u,v)

u for almost all u;

2. LTD(X |Y ) if and only if for any u in I, ∂C(u,v)
∂v ≤ C(u,v)

v for almost all v;

3. RT I(Y |X) if and only if for any v in I, ∂C(u,v)
∂u ≥ v−C(u,v)

(1−u) for almost all u;

4. RT I(X |Y ) if and only if for any u in I, ∂C(u,v)
∂v ≥ u−C(u,v)

(1−v) for almost all v.

When X and Y are exchangeable, there is no reason to distinguish SI(Y |X) and SI(X |Y ), which
will be both noted SI. Similarly, we will denote LT D the equivalent properties LT D(Y |X) and
LT D(X |Y ), and RT I, RT I(Y |X) or RT I(X |Y ). The following theorem in [3] is devoted to the
study of properties of positive dependence of any pair (X ,Y ) associated with the copula Cθ

defined by (A.5). Similar results can be established for the corresponding concepts of negative
dependence.
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Theorem A.2.3 Let θ > 0 and (X ,Y ) a random pair with copula Cθ.

• X and Y are PFD.

• X and Y are PQD if and only if either ∀u ∈ I,φ(u)≥ 0 or ∀u ∈ I,φ(u)≤ 0.

• X and Y are LT D if and only if φ(u)/u is monotone.

• X and Y are RT I if and only if φ(u)/(u−1) is monotone.

• X and Y are LCSD if and only if they are LT D.

• X and Y are RCSI if and only if they are RT I.

• X and Y are SI if and only if φ(u) is either concave or convex.

• X and Y have the T P2 density property if and only if they are SI.

A.3 Multivariate dependence modeling using copulas

Analyzing the dependence between the components X1, . . . ,Xn of a random vector X is
subject to various lines of statistical research. For this purpose, copula functions (or sim-
ply copulas) have been introduced by Sklar (1959) which allow for a separation between the
marginal distributions and the dependence structure. Moreover, construction principles for
copulas based on certain functions (“generator functions”) have gained in importance. For ex-
ample, Archimedean copulas are constructed by (a possibly rather complicated) composition
of a specific generator function and its corresponding pseudo inverse. In contrast to that, Am-
blard and Girard (2002) discuss a very simple construction principle of copulas on the basis
of certain generator functions and a “dependence parameter” θ. Specific generalized Farlie -
Gumbel (or Sarmanov) copulas are generated by a single function (so-called generator or gen-
erator function) defined on the unit interval. An alternative approach to generalize the FGM
family of copulas is to consider the semi-parametric family of symmetric copulas. This family
is generated by a univariate function, determining the symmetry (radial symmetry, joint sym-
metry) and dependence property (quadrant dependence, total positivity) of copulas.
A multivariate data set, which exhibit complex patterns of dependence, particularly in the tails,
can be modelled using a cascade of lower-dimensional copulas. Moreover, these copulas allow
for a direct characterization of symmetry properties, ordering properties and association mea-
sures. Recently, Amblard and Girard (2004) also state a semiparametric estimation method for
the underlying generator function. However, the parameter θ is not identified in the semipara-
metric context.
One of the most popular parametric families of copulas is the Farlie-Gumbel-Morgenstern
(FGM) family defined when θ ∈ [−1,1] by

CFGM
θ (u,v) = uv+θu(1−u)v(1− v) (A.4)
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and studied in Farlie (1960), Gumbel (1960) and Morgenstern (1956).
An alternative approach to generalize the FGM family of copulas is to consider the semi-
parametric family of symmetric copulas defined by

CSP
θ,φ(u,v) = uv+θφ(u)φ(v), (A.5)

with θ ∈ [−1,1] and φ is a function on I = [0,1]. It was first introduced in Rodríguez-Lallena
(1992), and extensively studied in Amblard and Girard (2002, 2005).

A.3.1 The general case

Many of the dependence properties encountered in earlier sections have natural extensions
to the multivariate case. In three or more dimensions, rather than quadrants we have “orthants”,
and the generalization of quadrant dependence is known as orthant dependence.
So we are going to examine the role played by n-copulas in the study of multivariate depen-
dence.

Definition A.3.1 Let X = (X1,X2, . . . ,Xn) be an n-dimensional random vector.

1. X is positively lower orthant dependent (PLOD) if for all x = (x1,x2, . . . ,xn) inRn,

P[X≤ x]≥
n

∏
i=1

P[Xi ≤ xi]; (A.6)

2. X is positively upper orthant dependent (PUOD) if for all x = (x1,x2, . . . ,xn) inRn,

P[X > x]≥
n

∏
i=1

P[Xi > xi]; (A.7)

3. X is positively orthant dependent (POD) if for all x inRn, both (A.6) and (A.7) hold.

Negative lower orthant dependence (NLOD), negative upper orthant dependence (PUOD) and
negative orthant dependence (NOD) are defined analogously, by reversing the sense of the
inequalities in (A.6) and (A.7).
For n = 2, (A.6) and (A.7) are equivalent to (A.1).
The following definitions are from Brindley and Thompson (1972), Harris (1970), Joe (1997).

Definition A.3.2 Let X = (X1,X2, . . . ,Xn) be an n-dimensional random vector and let the sets
A and B partition of {1,2,. . . ,n}.

1. LT D(XB|XA) if P[XB ≤ xB|XA ≤ xA] is nonincreasing in xA for all xB;

2. RT I(XB|XA) if P[XB > xB|XA > xA] is nondecreasing in xA for all xB;

3. SI(XB|XA) if P[XB > xB|XA = xA] is nondecreasing in xA for all xB;
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4. LCSD(X) if P[X≤ x|X≤ x′] is nonincreasing in x′ for all x;

5. RCSI(X) if P[X > x|X > x′] is nondecreasing in x′ for all x.

We recall that for x ∈Rn a phrase such as “nondecreasing in x” means nondecreasing in each
component xi, i = 1,2, . . . ,n.

In the bivariate case, the corner set monotonicity properties were expressible in terms of
total positivity (Corollary 5.2.16 in [81]). The same is true in the multivariate case with the
following generalization of total positivity: a function f from R

n to R is multivariate totally
positive of order two (MT P2) if

f (x∨y) f (x∧y)≥ f (x) f (y) (A.8)

for all x,y ∈Rn, where

x∨y = (max{x1,y1},max{x2,y2}, . . . ,max{xn,yn}),

x∧y = (min{x1,y1},min{x2,y2}, . . . ,min{xn,yn}).

Lastly, X is positively likelihood ratio dependent if its joint n-dimensional density h is MT P2.
A first one-parameter multivariate extension of the class of copulas given by (A.4) is

CSP
θ,φi

(u) =
n

∏
i=1

ui +θ

n

∏
i=1

φi(ui), u ∈ In, (A.9)

where θ∈R and φi, 1≤ i≤ n, are n non-zero absolutely continuous functions such that φi(0) =
φi(1) = 0. Note that all the k−dimensional margins, 2 ≤ k < n, are ∏

k. The density function
of (A.9) is

cSP
θ,φi

(u) = 1+θ

n

∏
i=1

φ
′
i(ui), (A.10)

whose parameter θ has the admissible range

−1/supu∈D+(
n

∏
i=1

)φ′i(ui)≤ θ≤−1/infu∈D−(
n

∏
i=1

)φ′i(ui),

where D− = {u ∈ In : ∏
n
i=1 φ′i(ui)< 0} and D+ = {u ∈ In : ∏

n
i=1 φ′i(ui)> 0}.

The survival function and the survival n-copula associated with the n-copula CSP
θ,φi

are given by

CSP
θ,φi

(u) =
n

∏
i=1

(1−ui)+(−1)n
θ

n

∏
i=1

φi(ui)

and

ĈSP
θ,φi

(u) =
n

∏
i=1

ui +(−1)n
θ

n

∏
i=1

φi(1−ui),



108 Appendix A. Example: the multivariate dependence

respectively, for every u ∈ In. Let CSP
θ,φi

be the corresponding family of n-copulas given by
(A.9). Then, CSP

θ,φi
is positively ordered if and only if ∏

n
i=1 φi(ui)≥ 0 for all u in In. Let

CSP
θ1,φi

(u) =
n

∏
i=1

ui +θ1

n

∏
i=1

φi(ui) and CSP
θ2,φi

(u) =
n

∏
i=1

ui +θ2

n

∏
i=1

γi(ui)

be two n−copulas. Then, CSP
θ1,φi

is more PLOD (respectively, PUOD) than CSP
θ2,φi

if and only if

θ1

n

∏
i=1

φi(ui)≥ θ2

n

∏
i=1

γi(ui)

(respectively, (−1)nθ1 ∏
n
i=1 φi(1− ui) ≥ (−1)nθ2 ∏

n
i=1 γi(1− ui)). Much of the theory of bi-

variate dependence presents considerable difficulty when one attempts to generalize it to more
than two dimensions. We want to extend in this paper to more than two random variables,
X1, . . . ,Xn the problem of dependence.
The following theorem is from Dolati and Úbeda-Flores (2006) [33].

Theorem A.3.3 Let X be an n-dimensional random vector whose associated n-copula CSP
θ,φi

is
defined by (A.9) and such that the functions φi, i = 1, . . . ,n and θ are non-negative. Let XA and
XB be two subsets of X as in the preceding definition. Then:

(i) LT D(XB|XA) if and only if φi(u)≥ uφ′i(u) for all u ∈ I and for every i ∈ A;

(ii) RT I(XB|XA) if and only if φi(u)≥ (u−1)φ′i(u) for all u ∈ I and for every i ∈ A;

(iii) SI(XB|XA) if and only if (−1)nφ′′i (u)∏h∈A−{i} φ′h(uh)≥ 0 for every i ∈ A, and u, uh ∈ I.

A.3.2 Other properties

Now we want to study the previous properties extended to n dimensions, using the copula
approach, in particular with regard to the family given by (A.9). So, we prove the following
theorem.

Theorem A.3.4 Let X be an n-dimensional random vector whose associated n-copula CSP
θ,φi

is
defined by (A.9) and such that the functions φi, i = 1, . . . ,n and θ are non-negative. Let XA and
XB be two subsets of X as in the preceding theorem. Then:

(i) X is PFD if n is even;

(ii) X is PLOD;

(iii) X is MT P2 if XA and XB are LT D;

(iv) X is RCSI if XA and XB are RT I;

(v) XA and XB are SI if and only if X has the MT P2 density property.
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Proof :

(i) Let g be an integrable real-valued function on I. The density distribution cSP
θ,φi

of the cumu-
lative distribution CSP

θ,φi
is given by (A.10). Routine calculations yield

EcSP
θ,φi

[g(X1) . . .g(Xn)]−EcSP
θ,φ1

[g(X1)] . . .EcSP
θ,φn

[g(Xn)] = θ

[∫ 1

0
g(t)φ′i(t)dt

]n

≥ 0,

since θ≥ 0 and n is even.

(ii) The vector X is PLOD if and only if the uniform I-margins vector U with distribution
CSP

θ,φi
is PLOD. For U, condition (A.6) simply rewrites C(u1, . . . ,un) ≥ u1 . . .un, that is

θ∏
n
i=1 φi(ui)≥ 0, ∀ui ∈ I and the conclusion follows.

(iii) Let the partition of {1,2, . . . ,n} be in two subsets A and B, such that max(ui,vi) = ui and
max(u j,v j) = v j, ∀i ∈ A and ∀ j ∈ B respectively. So,

CSP
θ,φi

(u∨v) =CSP
θ,φi

(. . . ,ui, . . . ,v j, . . .) = ∏
i∈A
j∈B

uiv j +θ∏
i∈A
j∈B

φi(ui)φ j(v j) u,v ∈ In,

and

CSP
θ,φi

(u∧v) =CSP
θ,φi

(. . . ,ui, . . . ,v j, . . .) = ∏
i∈AC

j∈BC

uiv j +θ ∏
i∈AC

j∈BC

φi(ui)φ j(v j) u,v ∈ In.

We observe that AC = B and A∪AC = {1, . . . ,n}. Therefore

CSP
θ,φi

(u∨v)CSP
θ,φi

(u∧v)−CSP
θ,φi

(u)CSP
θ,φi

(v) =

=
(
∏
i∈A
j∈B

uiv j +θ∏
i∈A
j∈B

φi(ui)φ j(v j)
)(

∏
i∈AC

j∈BC

uiv j +θ ∏
i∈AC

j∈BC

φi(ui)φ j(v j)
)
−

−
( n

∏
i=1

ui +θ

n

∏
i=1

φi(ui)
)( n

∏
i=1

vi +θ

n

∏
i=1

φi(vi)
)
=

=
( n

∏
i=1

uivi +θ
2

n

∏
i=1

φi(ui)φi(vi)+θ∏
i∈A
j∈B

uiv j ∏
i∈AC

j∈BC

φi(ui)φ j(v j)+

+θ ∏
i∈AC

j∈BC

uiv j ∏
i∈A
j∈B

φi(ui)φ j(v j)
)
−
( n

∏
i=1

uivi +θ
2

n

∏
i=1

φi(ui)φi(vi)+

+θ

n

∏
i=1

uiφi(vi)+θ

n

∏
i=1

viφi(ui)
)
.
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So, by rearranging the expression, we have

CSP
θ,φi

(u∨v)CSP
θ,φi

(u∧v)−CSP
θ,φi

(u)CSP
θ,φi

(v) =

= θ

n

∏
i=1

uivi

(
∏
i∈A
j∈B

φi(ui)φ j(v j)

uiv j
+ ∏

i∈AC

j∈BC

φi(ui)φ j(v j)

uiv j
−

n

∏
i=1

φi(ui)

ui
−

n

∏
i=1

φi(vi)

vi

)
=

= θ

n

∏
i=1

uivi

[
∏
i∈A

φi(ui)

ui
−∏

i∈A

φi(vi)

vi

][
∏
j∈B

φ j(v j)

v j
−∏

j∈B

φ j(u j)

u j

]
.

Now
φi(u)

u
is derivable because the ratio of two derivable functions and we have

d
du

(
∏
i∈A

φi(u)
u

)
=
(

φ′i(u)u−φi(u)
u2

)
∏

h∈A\{i}

φh(uh)

uh
≤ 0, ∀u ∈ I

for the hypothesis of LT D. The same happens to the other factor. So we have two
monotonically decreasing functions and, as a consequence, MT P2 property, that is our
thesis.

(iv) It is similar to (iii). In fact X is RCSI if and only if the survival copula associated to C,
ĈSP

θ,φi
(u) = ∏

n
i=1 ui +(−1)nθ∏

n
i=1 φi(1−ui) is MT P2. So we have

ĈSP
θ,φi

(u∨v)ĈSP
θ,φi

(u∧v)−ĈSP
θ,φi

(u)ĈSP
θ,φi

(v) =

= (−1)n
θ

n

∏
i=1

uivi

[
∏
i∈A

φi(1−ui)

ui
−∏

i∈A

φi(1− vi)

vi

][
∏
j∈B

φ j(1− v j)

v j
−∏

j∈B

φ j(1−u j)

u j

]
.

Now we do the same thought as in the previous case:(
φi(1−u)

u

)′
=
−uφ′i(1−u)−φi(1−u)

u2 .

We use RT I property, by putting u′ = 1−u and in fact we have

−uφ
′
i(1−u)−φi(1−u) = (u′−1)φ′i(u

′)−φi(u′)≤ 0, ∀u′ ∈ I

and so we have MT P2 property again.

(v) X has the MT P2 density property if and only if the density of the copula verifies

cSP
θ,φi

(u∨v)cSP
θ,φi

(u∧v)− cSP
θ,φi

(u)cSP
θ,φi

(v)≥ 0, (A.11)
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which rewrites solving the calculations like in the point (iii)

cSP
θ,φi

(u∨v)cSP
θ,φi

(u∧v)− cSP
θ,φi

(u)cSP
θ,φi

(v) =
(

1+θ∏
i∈A
j∈B

φ
′
i(ui)φ

′
j(v j)

)(
1+θ ∏

i∈AC

j∈BC

φ
′
i(ui)φ

′
j(v j)

)
+

−
(

1+θ

n

∏
i=1

φ
′
i(ui)

)(
1+θ

n

∏
i=1

φ
′
i(vi)

)
=
(

1+θ
2

n

∏
i=1

φ
′
i(ui)φ

′
i(vi)+θ ∏

i∈AC

j∈BC

φ
′
i(ui)φ

′
j(v j)+

+θ∏
i∈A
j∈B

φ
′
i(ui)φ

′
j(v j)

)
−
(

1+θ
2

n

∏
i=1

φ
′
i(ui)φ

′
i(vi)+θ

n

∏
i=1

φ
′
i(vi)+θ

n

∏
i=1

φ
′
i(ui)

)
=

= θ

(
∏
i∈A
j∈B

φ
′
i(ui)φ

′
j(v j)+ ∏

i∈AC

j∈BC

φ
′
i(ui)φ

′
j(v j)−

n

∏
i=1

φ
′
i(vi)−

n

∏
i=1

φ
′
i(ui)

)
=

= θ

[
∏
i∈A

φ
′
i(ui)−∏

i∈A
φ
′
i(vi)

][
∏
j∈B

φ
′
j(v j)−∏

j∈B
φ
′
j(u j)

]
.

Now,
d
du

(
∏
i∈A

φ
′
i(ui)

)
=± φ

′′
i (u) ∏

h∈A\{i}
φ
′
h(uh)≥ 0

for our hypothesis. The same happens to the other factor and so we have proved our
thesis. Conversely, assume that (A.11) holds. So, the function ∏i∈A φ′i is either increasing
or decreasing and then XA and XB are SI.

2

Example We can consider the example 2.2 proposed by Dolati and Úbeda-Flores in [33].
Let fi(u) = ub(1−u)a, 1≤ i≤ 3, with a,b≥ 1. Then, for all (u1,u2,u3) ∈ [0,1]3, the function

CSP
θ,φi

(u1,u2,u3) = u1u2u3 +θub
1(1−u1)

aub
2(1−u2)

aub
3(1−u3)

a

is a 3-copula. In particular, if a = b = 1, we have a one-parametric trivariate extension of the
FGM family with θ ∈ [−1,1]. Suppose θ > 0, then, from theorem 2.1 in [33] we have that
CSP

θ,φi
is LT D if and only if b = 1, CSP

θ,φi
is RT I if and only if a = 1, and CSP

θ,φi
is SI if and only if

a = b = 1.
As a consequence from the theorem 4, we can also conclude that CSP

θ,φi
is MT P2 if b = 1. If

a = 1 CSP
θ,φi

is RCSI and it has the MT P2 density property if and only if a = b = 1. Moreover
CSP

θ,φi
is PLOD, but it is not PFD.
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Appendix B

Open problems

In this overview about the multivariate aggregation functions connected with copulas and
fuzzy measures, interesting and important open problems come from our discussion. We divide
them into two groups and we wish all the possible solvers great success and satisfaction from
their solution.

B.1 Aggregation functions

Problem B.1.1 An interesting generalization of copulas is the notion of semi-copula, namely a
binary operation on [0,1] that satisfies the boundary condition ∀x ∈ [0,1]C(x,1) =C(1,x) = x
and the property of increasingness in each place, that is C(x,y) ≤C(x′,y′) for all x ≤ x′ and
y≤ y′. But, as it has been shown in [38], the first generalization of copulas has been the concept
of quasi-copula. In detail, a quasi-copula Q : [0,1]2 → [0,1] satisfies the conditions of semi-
copula and it is also 1-Lipschitz: |C(x,y)−C(x′,y′)| ≤ |x−x′|+ |y−y′| for all x,x′,y,y′ ∈ [0,1].
The study of quasi-copula as an aggregation operator is an open problem.

Problem B.1.2 There is a close link between supermodularity and Schur-concavity, but this is
another open problem.

Problem B.1.3 In Chapter 7 we have introduced two properties which are stronger than the
monotonicity of aggregation functions, with some representation results and with an applica-
tion for constructing copulas. Anyway, it is not clear whether there are strongly 3-monotone
copulas different from the product Π. Also it is still open whether/how the conditions of The-
orem B.1.6 can be relaxed yielding still the same result — is the strong k-monotonicity of A
sufficient?

Problem B.1.4 By generalizing the procedures in [35], we denote by Θ the class of all in-
creasing functions f : [0,1]→ [0,1]. Given f i

j,∀i, j = 1,2,3 ∈ Θ and a trivariate operation H
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on [0,1], let F be the mapping defined on [0,1]3 by

F(x1,x2,x3) :=H(A( f 1
1 (x1), f 1

2 (x2), f 1
3 (x3)),B( f 2

1 (x1), f 2
2 (x2), f 2

3 (x3)),C( f 3
1 (x1), f 3

2 (x2), f 3
3 (x3))),
(B.1)

for all A,B and C in the class of trivariate aggregation operators. The function F is called
generalized composition of (A,B,C) with respect to the 10−tuple ( f i

j,H), which is called gen-
erating system. The prefix “generalized” is used here to distinguish the function F from the
classical composition that is obtained when f i

j = id[0,1].
Our aim is to establish which conditions on the generating system ensure that, for every choice
of A,B and C in a given subset (for instance, in the subset of copulas), F is also 3−monotone
agop.

Problem B.1.5 Let f : [0,1]→ [0,1] be an increasing function, such that f (0) = 0 and f (1) =
1 and let B : [0,1]m→ [0,1] be a 3-monotone aggregation function. Is the composite function
f (x) = f (B(x)) a 3-monotone aggregation function?

Problem B.1.6 An extension of the previous problem for k-monotone aggregation functions
is the following one. Let A : [0,1]n → [0,1] be a totally monotone aggregation function, and
let B1, . . . ,Bn : [0,1]m→ [0,1] be k-monotone aggregation functions. Is the composite function
D : [0,1]m→ [0,1] given by D(x) = A(B1(x), . . . ,Bn(x)) a k-monotone aggregation function?
This method can be applied to the construction of k-dimensional copulas (i.e., k-monotone
aggregation functions C : [0,1]k→ [0,1] satisfying

C(x,1, . . . ,1) =C(1,x, . . . ,1) =C(1, . . . ,1,x) = x

for all x ∈ [0,1]) in a way similar to Theorem 4.3.9.

Example B.1.7 Consider the totally monotone aggregation function A : [0,1]n → [0,1] given
by A(x) = xp1

1 · · ·x
pn
n , where p1, . . . , pn ∈N∪{0} and p = ∑ pi > 0. Then for all k-dimensional

copulas C1, . . . ,Cn : [0,1]k→ [0,1], the aggregation function C : [0,1]k→ [0,1] given by C(x) =
A(C1(τ(x)), . . . ,Cn(τ(x))), where τ : [0,1]k→ [0,1]k is given by τ(x) = (x1/p

1 , . . . ,x1/p
k ), is a k-

dimensional copula. This result can be derived also from [64]. For example, for n = 2 and
A(x,y) = x · y2 (i.e., p = 3) and for the ternary copulas C1 = M (i.e., M(x,y,z) = min(x,y,z))
and C2 = Π (i.e., Π(x,y,z) = xyz), the composite function C : [0,1]3→ [0,1] given by

C(x,y,z) = min
(

x(yz)
2
3 ,y(xz)

2
3 ,z(xy)

2
3
)

is a ternary copula.
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B.2 Fuzzy measures

Problem B.2.1 Let us consider the following situation which comes from the Theorem 6.3.4,
that is a mapping ϕ : F (X)→ [0,1] defined for all f ∈ F (X) by

ϕ( f ) = (C)
∫

f dP,

which is an SM-evaluator on F (X), where (C)
∫

f dP stands for the Choquet integral of the
fuzzy-valued function f with respect to P. Is this mapping also a TP-evaluator?
We know that P is TP-evaluator, i.e., by posing α := α1∧α2

P({x ∈ X : ( f ∧g)(x)≥ α})≥ P({x ∈ X : f (x)≥ α1}) ·P({x ∈ X : g(x)≥ α2}).

We recall that we are working in the discrete case and so we are considering the following
partitions of the interval [0,1]:

1. s(n) = {s1, · · · ,sn};

2. t(n) = {t1, · · · , tn};

3. y(n) = {s1∧ t1, · · · ,sn∧ tn};

4. z(n) = {s1∨ t1, · · · ,sn∨ tn};

and respectively we have

1. f = {s1x1, · · · ,snxn};

2. g = {t1x1, · · · , tnxn};

3. f ∧g = {(s1∧ t1)x1, · · · ,(sn∧ tn)xn};

4. f ∨g = {(s1∨ t1)x1, · · · ,(sn∨ tn)xn};

Hence, we see the following situation:

1. (C)
∫

f dP =
∫ 1

0 P({x ∈ X : f (x)≥ α})dα = ∑
n
i=1

∫ sπ(i)
sπ(i−1)P({x ∈ X : f (x)≥ sπ(i)})dα;

2. (C)
∫

gdP =
∫ 1

0 P({x ∈ X : g(x)≥ α})dα = ∑
n
i=1

∫ tπ(i)
tπ(i−1)

P({x ∈ X : g(x)≥ tπ(i)})dα;

3. (C)
∫
( f ∧g)dP = ∑

n
i=1

∫ yπ(i)
yπ(i−1)P({x ∈ X : ( f ∧g)(x)≥ yπ(i)})dα;

4. (C)
∫
( f ∨g)dP = ∑

n
i=1

∫ zπ(i)
zπ(i−1)P({x ∈ X : ( f ∨g)(x)≥ zπ(i)})dα;

where πs : s(n)→ s(n) is a permutation of s(n) with sπ(1) ≤ sπ(2) ≤ ·· · ≤ sπ(n) and, by convention,
s0 = 0. We take a similar permutation also for t(n), x(n) and z(n).
Now, by posing respectively pi = P({x ∈ X : f (x) ≥ sπ(i)}), qi = P({x ∈ X : g(x) ≥ tπ(i)}),
p′i = P({x ∈ X : ( f ∧g)(x)≥ yπ(i)}) and q′i = P({x ∈ X : ( f ∨g)(x)≥ zπ(i)}), we have:
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1. (C)
∫

f dP = ∑
n
i=1 pi ai, where ai = sπ(i)− sπ(i−1);

2. (C)
∫

gdP = ∑
n
i=1 qi bi, where bi = tπ(i)− tπ(i−1);

3. (C)
∫
( f ∧g)dP = ∑

n
i=1 p′i di, where di = yπ(i)− yπ(i−1);

4. (C)
∫
( f ∨g)dP = ∑

n
i=1 q′i ei, where ei = zπ(i)− zπ(i−1).

and we have

TP

(
(C)

∫
f dP,(C)

∫
gdP

)
=

∫ 1

0
P({x ∈ X : f (x)≥ α})dα ·

∫ 1

0
P({x ∈ X : g(x)≥ α})dα =

=
n

∑
i=1

pi ai

n

∑
i=1

qi bi ≤
n

∑
i=1

p′i di = (C)
∫
( f ∧g)dP.

Since P is a TP-evaluator we have pi qi ≤ p′i ∀i = 1, . . . ,n. In order to prove that the Choquet
integral of the fuzzy-valued function f with respect to P is a TP-evaluator we need to show
either that

ai

n

∑
i=1

bi ≤ di or that bi

n

∑
i=1

ai ≤ di ∀i = 1, . . . ,n.

Problem B.2.2 Consider X = {x1, · · · ,xn}. Let P be a fuzzy measure which is both a TP-(SP)-
evaluator and supermodular on 2X . Is a mapping ϕ : F (X)→ [0,1] defined for all f ∈ F (X)
by

ϕ( f ) = (C)
∫

f dP,

both a TP-(SP)-evaluator and a TPSP-supermodular evaluator on F (X), where (C)
∫

f dP
stands for the Choquet integral of the fuzzy-valued function f with respect to P? In partic-
ular is it possible the following relation?

(C)
∫

TP( f ,g)dP+(C)
∫

SP( f ,g)dP≥ (C)
∫

f dP+(C)
∫

gdP (B.2)

We can consider the following partitions of the interval [0,1]:

1. s(n) = {s1, · · · ,sn};

2. t(n) = {t1, · · · , tn};

3. y′(n) = {s1t1, · · · ,sntn};

4. z′(n) = {s1 + t1− s1t1, · · · ,sn + tn− sntn};

and respectively we have

1. f = {s1x1, · · · ,snxn};

2. g = {t1x1, · · · , tnxn};
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3. TP( f ,g) = {(s1t1)x1, · · · ,(sntn)xn};

4. SP( f ,g) = {(s1 + t1− s1t1)x1, · · · ,(sn + tn− sntn)xn};

Hence, we see the following situation:

1. (C)
∫

f dP =
∫ 1

0 P({x ∈ X : f (x)≥ α})dα = ∑
n
i=1

∫ sπ(i)
sπ(i−1)P({x ∈ X : f (x)≥ sπ(i)})dα;

2. (C)
∫

gdP =
∫ 1

0 P({x ∈ X : g(x)≥ α})dα = ∑
n
i=1

∫ tπ(i)
tπ(i−1)

P({x ∈ X : g(x)≥ tπ(i)})dα;

3. (C)
∫

TP( f ,g)dP = ∑
n
i=1

∫ y′
π(i)

y′
π(i−1)

P({x ∈ X : TP( f ,g)(x)≥ y′
π(i)})dα;

4. (C)
∫

SP( f ,g)dP = ∑
n
i=1

∫ z′
π(i)

z′
π(i−1)

P({x ∈ X : SP( f ,g)(x)≥ z′
π(i)})dα;

where πs : s(n)→ s(n) is a permutation of s(n) with sπ(1) ≤ sπ(2) ≤ ·· · ≤ sπ(n) and, by convention,
s0 = 0. We take a similar permutation also for t(n), y′(n) and z′(n).
This situation is equivalent to the following one:

1. (C)
∫

f dP = ∑
n
i=1 (C)

∫
Ai

f dP, where Ai = [sπ(i−1),sπ(i)];

2. (C)
∫

gdP = ∑
n
i=1 (C)

∫
Bi

gdP, where Bi = [tπ(i−1), tπ(i)];

3. (C)
∫

TP( f ,g)dP = ∑
n
i=1 (C)

∫
Di

f gdP, where Di = [y′
π(i−1),y

′
π(i)];

4. (C)
∫

SP( f ,g)dP = ∑
n
i=1 (C)

∫
Ei

f +g− f gdP, where Ei = [z′
π(i−1),z

′
π(i)].

Thanks to the following examples we think that our inequalities should work in the general
finite case.

Example B.2.3 Consider X = {x1,x2} and a supermodular measure P, such that P(x1) = ω1
with 0 < ω1 < 1 and P(x2) = 0.
In the following table we consider the fuzzy sets f and g.

x1 x2
f 0.4 0.7
g 0.8 0.5

So we have

1. (C)
∫

f dP =
∫ 1

0 P({x ∈ X : f (x)≥ t})dt =
∫ 0.4

0 P({X})dt = 0.4;

2. (C)
∫

gdP=
∫ 1

0 P({x∈X : g(x)≥ t})dt =
∫ 0.5

0 P({X})dt+
∫ 0.8

0.5 P({x1})dt = 0.5+0.3ω1;

Now we consider the fuzzy sets TP( f ,g) and SP( f ,g) and their respective Choquet integrals:

1. (C)
∫

TP( f ,g)dP =
∫ 1

0 P({x ∈ X : ( f ·g)(x)≥ t})dt =
∫ 0.32

0 P({X})dt = 0.32;
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x1 x2
TP( f ,g) 0.32 0.35
SP( f ,g) 0.88 0.85

2. (C)
∫

SP( f ,g)dP =
∫ 1

0 P({x ∈ X : ( f +g− f ·g)(x)≥ t})dt =
∫ 0.85

0 P({X})dt+
+
∫ 0.88

0.85 P({x1})dt = 0.85+0.03ω1;

and we see 1.17+0.03ω1 ≥ 0.9+0.3ω1, i.e. 0.27−0.27ω1 ≥ 0. So the Choquet integral is a
TPSP-supermodular evaluator on F (X).
Now we check if the Choquet integral is also a TP-evaluator on F (X). We need to prove that
∀ f ,g ∈ F (X), we have that

TP(ϕ( f ),ϕ(g)))≤ ϕ( f ∧g),

In our case we have the following values for f ∧g:

x1 x2
f ∧g 0.4 0.5

and

ϕ( f ∧g) =
∫ 1

0
P({x ∈ X : ( f ∧g)(x)≥ t})dt =

∫ 0.4

0
P({X})dt = 0.4.

On the other side

TP(ϕ( f ),ϕ(g))) = 0.4(0.5+0.3ω1) = 0.2+0.12ω1 ≤ 0.4 = ϕ( f ∧g) = ϕ( f ),

We have proved that the Choquet integral is also a TP-evaluator on F (X). Moreover

(C)
∫

f ·gdP+(C)
∫

f +g− f ·gdP = 2 · (C)
∫

f dP+(C)
∫

gdP =

= (C)
∫

f dP+(C)
∫

gdP+(C)
∫

f ∧gdP

i.e. the inequality (B.2) is satisfied.

Example B.2.4 Let X = {x1,x2,x3} and a supermodular measure like in the example 5.4.8,
i.e. P : 2X → [0,1] be given for all A ∈ 2X by

P(A) =
{ 1

4−|A| if x1 ∈ A,
0 otherwise.

In the following table we consider the fuzzy sets f and g.

x1 x2 x3
f 0.1 0.2 0.5
g 0.8 0.3 0.4
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First of all we verify the following inequality: ϕ( f )+ϕ(g)≤ ϕ(TP( f ,g))+ϕ(SP( f ,g)), i.e.

(C)
∫

f dP+(C)
∫

gdP≤ (C)
∫

f ·gdP+(C)
∫

f +g− f ·gdP

In fact we have

1. (C)
∫

f dP =
∫ 1

0 P({x ∈ X : f (x)≥ t})dt =
∫ 0.1

0 P({X})dt = 0.1;

2. (C)
∫

gdP =
∫ 1

0 P({x ∈ X : g(x)≥ t})dt =
∫ 0.3

0 P({X})dt +
∫ 0.4

0.3 P({x1,x3})dt+
+
∫ 0.8

0.4 P({x1})dt = 0.3+0.05+0.13 = 0.48;

Now we consider the fuzzy sets TP( f ,g) and SP( f ,g) and their respective Choquet integrals:

x1 x2 x3
TP( f ,g) 0.08 0.06 0.2
SP( f ,g) 0.82 0.44 0.7

1. (C)
∫

TP( f ,g)dP=
∫ 1

0 P({x∈X : ( f ·g)(x)≥ t})dt =
∫ 0.06

0 P({X})dt+
∫ 0.08

0.06 P({x1,x3})dt =
0.06+0.01 = 0.07;

2. (C)
∫

SP( f ,g)dP =
∫ 1

0 P({x ∈ X : ( f +g− f ·g)(x)≥ t})dt =
∫ 0.44

0 P({X})dt+
+
∫ 0.7

0.44 P({x1,x3})dt +
∫ 0.82

0.7 P({x1})dt = 0.44+0.13+0.04 = 0.61;

Finally we can see 0.61+0.07= 0.68≥ 0.58 and so the Choquet integral is a TPSP-supermodular
evaluator on F (X).
Now we check that the Choquet integral is also a TP-evaluator on F (X). We need to prove that
∀ f ,g ∈ F (X), we have that

TP(ϕ( f ),ϕ(g)))≤ ϕ( f ∧g),

In our case we have the following values for f ∧g:

x1 x2 x3
f ∧g 0.1 0.2 0.4

and

ϕ( f ∧g) =
∫ 1

0
P({x ∈ X : ( f ∧g)(x)≥ t})dt =

∫ 0.1

0
P({X})dt = 0.1,

So we can see
TP(ϕ( f ),ϕ(g))) = 0.048≤ 0.1 = ϕ( f ∧g) = ϕ( f ),

So, also in this case we have proved that the Choquet integral is a TP-evaluator on F (X).
Moreover

(C)
∫

f ·gdP+(C)
∫

f +g− f ·gdP = 2 · (C)
∫

f dP+(C)
∫

gdP =

= (C)
∫

f dP+(C)
∫

gdP+(C)
∫

f ∧gdP
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i.e. the inequality (B.2) is satisfied.
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[74] R. Mesiar, V. Jágr, M. Juráňová, and M. Komorníková. Univariate conditioning of
copulas. Kybernetika (Prague), 44:807–816, 2008.

[75] R. Mesiar and S. Saminger. Domination of ordered weighted averaging operators over
t-norms. Soft Computing, 8(1-2):562–570, 2004.

[76] R. Mesiar and C. Sempi. Ordinal sums and idempotents of copulas. Aequationes Math.,
79(1–2):39–52, 2010.

[77] P. M. Morillas. A characterization of absolutely monotonic (∆) functions of a fixed
order. Publ. Inst. Math. (Beograd) (N.S.), 78(92):93–105, 2005.

[78] P. M. Morillas. A method to obtain new copulas from a given one. Metrika, 61(2):169–
184, 2005.

[79] R. Moynihan. On τT semigroups of probability distribution functions II. Aequationes
Math., 17:19–40, 1978.

[80] M. Navara. Characterization of measures based on strict triangular norms. J. Math.
Anal. Appl., 236:370–383, 1999.

[81] R. B. Nelsen. An Introduction to Copulas, volume 139 of Lecture Notes in Statistics.
Springer, New York, 1999.

[82] R. B. Nelsen. An Introduction to Copulas, volume 139 of Lecture Notes in Statistics.
Springer, New York, second edition, 2006.

[83] E. Pap. Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht, 1995.

[84] H. Prade. Unions et intersections d’ensembles flous. Busefal, 3:58–62, 1980.

[85] G. Puccetti and M. Scarsini. Multivariate comonotonicity. Journal of Multivariate
Analysis, Volume 101(1):291–304, 2010.

[86] J. J. Quesada Molina and J. A. Rodríguez Lallena. Some advances in the study of the
compatibility of three bivariate copulas. J. Ital. Statist. Soc., (3):397–417, 1994.

[87] A. W. Roberts and D. E. Varberg. Convex functions, volume 57. Academic Press, New
York, 1973. Pure and Applied Mathematics.

[88] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.



BIBLIOGRAPHY 127

[89] H. H. Schaefer and M. P. Wolff. Topological vector spaces, volume 3 of Graduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1999.

[90] B. Schweizer. Thirty years of copulas. In Advances in Probability Distributions with
Given Marginals. Beyond the Copulas. Lectures Presented at a Symposium Held in
Rome, Italy, volume 67 of Mathematics and Its Applications, pages 13–50. Kluwer Aca-
demic Publishers, Dordrecht, 1991.

[91] B. Schweizer and A. Sklar. Probabilistic metric spaces. North-Holland Series in Prob-
ability and Applied Mathematics. North-Holland Publishing Co., New York, 1983.

[92] B. Schweizer and A. Sklar. Probabilistic Metric Spaces. Dover Publications, Mineola,
N. Y., 2006.

[93] M. Shaked and J. G. Shanthikumar. Stochastic orders. Springer Series in Statistics.
Springer, New York, 2007.

[94] A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist.
Univ. Paris, 8:229–231, 1959.
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