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Abstract

Genomic studies aim at identifying genes’ location and function across the

genome of living organisms of interest. In the last decades, this field of research

has been the object of lively interest, motivated by the introduction of microarray

and sequencing technologies, capable of providing huge amounts of data concern-

ing several aspects of the genome. Statistical tools have proven to be necessary in

this context, to support and sometimes lead biological investigation, impractical or

impossible to be conducted over the whole set of data provided by the above men-

tioned technologies. In this Thesis, we introduce novel statistical tools for dealing

with well-known problems in the genomic field, such as identifying differential

expression in microarray data, and evaluating differential binding in the context of

ChIP-Seq data. Our specific interest will be inference on quantiles, motivated by

their interpretability, even for irregularly shaped distributions of the data, and by

the fact that they allow to compare different aspects of the whole distribution of

the data. We propose Studentized and pseudo-Studentized statistics, whose struc-

ture resembles closely that of a classic t-test, and evaluate their performances via

simulated studies and application to real data.
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Sommario

Gli studi di genomica hanno l’obiettivo di identificare posizione e funzione

dei geni all’interno del genoma di organismi oggetto di interesse. Negli ultimi

vent’anni, questo campo di ricerca è stato oggetto di vivace interesse, motivato

dall’introduzione di microarray e tecnologie di sequenziamento, capaci di produrre

enormi quantità di dati riguardanti diversi aspetti del genoma. In questo contesto,

gli strumenti statistici si sono dimostrati necessari per supportare e in alcuni casi

guidare la ricerca biologica, poco pratica o impossibile da condurre sull’intero in-

sieme di dati prodotto dalle tecnologie di cui sopra. In questa Tesi, si introdurranno

nuovi strumenti statistici per affrontare problemi noti nell’ambito genomico, come

l’identificazione di geni differenzialmente espressi tramite dati di microarray, e

l’analisi dei siti di legame nel contesto dei dati di ChIP-Seq. L’interesse speci-

fico sarà l’inferenza sui quantili, motivato dalla loro interpretabilità, anche per dis-

tribuzioni dei dati dalle forme irregolari, e dal fatto che permettono di confrontare

differenti aspetti della distribuzione dei dati. Si proporranno statistiche Studentiz-

zate e pseudo-Studentizzate, la cui struttura richiama da vicino quella di un t-test

classico, e si valuterà il loro comportamento attraverso studi di simulazione e ap-

plicazione su dati reali.
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Chapter 1

Introduction

1.1 Overview

Comparison of two (or more) independent groups has always been a fundamental

problem in statistics, and in applications to the genomic field. It often arises in the

setting where quantitative information is collected from two samples, and it can

be thought of as a realisation of some underlying random variables, say XA and

XB , with density functions pXA
and pXB

, respectively. In this setting, one might

be interested in summarising the information in the samples by use of appropriate

statistics, and in using them to test hypotheses on specific aspects of the underlying

distributions. When doing this, one of the main points of concern is how to take

into account variability of the measures. Since the introduction of the t-test by

Student (1908), a multitude of methods has been developed for this task, including

comparison of means, medians, variances, and ranks of the observations. Statistical

hypotheses of interest are often expressed as:

H0 : θ(pXA
) = θ(pXB

),

where θ(pXA
) and θ(pXB

) are parameters of interest.

It is apparent how this simple problem finds application to numerous different

settings. In the last twenty years, the field of genomics has been a vast and ever-

changing experimental area for the application of statistical tools for testing this

kind of hypotheses. Since the development of technologies capable of providing

huge amounts of data, such as microarray (Schena et al., 1995) and ChIP-Seq data
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(Johnson et al., 2007), the pace at which new statistical tests have been released has

been very intense. For example, Pan (2002) and Jeffery et al. (2006) give an idea of

the impressive number and variety of statistical methods for identifying differential

expression between two groups in microarray studies, while Wilbanks & Facciotti

(2010a) report how in the three years that followed the first public release of ChIP-

Seq data, at least 31 dedicated open source programs were developed and released.

Of course, this complexity generates difficulties in finding shared guidelines to

choose the appropriate tool for every problem of interest. However, statistical tests

for group comparison have been a crucial help for fundamental discoveries in bi-

ological and medical research concerning, for example, the relation between gene

expression and the development of different kinds of tumours (Lambert et al., 2013;

Curry et al., 2013).

This Thesis aims to introduce novel quantile-based test statistics for group

comparison, with an interest driven by application to genomic studies. The spe-

cific interest in inference on quantiles, firstly presented in a systematic way by

Koenker & Bassett Jr (1978), is motivated by their interpretability, even for irreg-

ularly shaped distributions of the data, and by the fact that they allow to compare

different aspects of the whole distribution of the data. We will initially propose

Studentized statistics inspired by the work of Chung et al. (2013), and then move

to the definition of novel pseudo-Studentized statistics, whose structure resembles

closely that of a classic t-test. In Chapter 2, we introduce the test statistics, derive

their most important properties, and discuss their main advantages and limitations

over existing methods. We also provide simulation studies to test their perfor-

mances in terms of control of type I error rate and power under a variety of sta-

tistical models. In Chapter 3 and Chapter 4, we provide application to differential

expression analysis for microarray data and to the analysis of peaks obtained from

ChIP-Seq data, respectively. Chapter 5 contains a general discussion of the results

and some possible future directions to be explored.
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1.2 Main contributions of the Thesis

With respect to the current literature, the main contributions of this Thesis may be

summarized as follows:

1. analysis of the relationships existing between different parameters of trans-

formed variables on different scales and their consequences on hypotheses

testing;

2. introduction of novel Studentized test statistics for group comparison and

evaluation of their performances from a theoretical and numerical point of

view;

3. introduction of novel pseudo-Studentized test statistics, with simple struc-

ture, that might be used in everyday lab practice for investigating a variety of

statistical hypotheses on the distribution of the populations, and assessment

of their properties;

4. application of the above-mentioned tools to data from arrays, with the aim

to identify differentially expressed genes between different biological condi-

tions;

5. application of the same methods to data from sequencing, with the aim to

compare the distribution of the reads in binding sites identified in different

samples from ChIP-Seq data.





Chapter 2

Quantile-based Inference for Two
Samples Comparison

In genomic studies, data are often collected on a continuous scale for two groups,

and can be thought of as realizations of some underlying absolutely continuous ran-

dom variables,XA andXB , with density functions pXA
and pXB

, respectively, i.e.,

XA ∼ pXA
and XB ∼ pXB

. Before conducting statistical inference on some pa-

rameters of interest, data often undergo some transformation, say gA(·) and gB(·),

to minimize the effect of experimental and/or technical variations and to achieve

desirable distributional properties, such as normality or symmetry, on the trans-

formed random variables YA = gA(XA) and YB = gB(XB). Usually, the trans-

formation for both samples is the same, i.e., YA = g(XA) and YB = g(XB);

depending on the context and on the nature of the data, a frequently used transfor-

mation for obtaining normality is the natural logarithm, as it is commonly accepted

that “relative or absolute gene expression measurements are approximately normal

on the log scale” (Tai et al., 2006). When normality is not necessarily desired, but

symmetry is, a modification of the Box-Cox transformation is an option (Draper &

Cox, 1969).

After data have been transformed, inference is conducted, often in the form of

a test of statistical hypotheses. A common hypothesis of interest is equality of the

means µYK , K ∈ {A,B} of the transformed variables YK , i.e.,

H0 : µYA = µYB . (2.1)
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When testing (2.1), we are implicitly testing a hypothesis on some parameters of

the distribution of the original variables XA and XB , too, although, in general,

these parameters do not have a direct interpretation. In fact, testing (2.1) is in

general different from testing

H0 : µXA
= µXB

,

due to Jensen’s inequality. However, under certain conditions, it is possible to re-

trieve a meaningful interpretation of (2.1) on the X scale, too. Starting from these

simple considerations, in this Chapter we will try to understand under which condi-

tions it is possible to establish an explicit relationship between testing hypotheses

on the X and on the Y scale. In fact, a solid knowledge of what is the true sta-

tistical hypothesis being tested at any time of the data analysis process seems a

crucial matter from the point of view of the investigators, who should be aware

of the correct interpretation of the statistical procedure applied to the data. After

having investigated these relationships, we will investigate possible ways to exploit

them to define new test statistics that test directly hypotheses on the original scale

X , without necessarily having to transform the data, while mantaining the desired

interpretation.

In Section 2.1, we investigate the relations between parameters of interest for

statistical models on different scales. In Section 2.2, we derive several novel Stu-

dentized statistics for group comparison, following the approach of Chung et al.

(2013). In Sections 2.3, we discuss a key case in applications, i.e., a commonly

encountered situation in genomic studies, that also allows for simplifications in the

expression of the test statistics. For this key case, we assess the properties of the

proposed test statistics in terms of type I error rate control and power for a variety

of statistical models. In Section 2.4 we introduce a novel “pseudo-Studentized”

statistic, i.e., an alternative test statistic completely based on quantiles on the X

scale, whose structure recalls closely that of a classic t-test. Control of type I error

rate and power properties are evaluated by means of simulation studies for this test

statistic, too.
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2.1 Relations between Parameters of Statistical Models
on Different Scales

Our first aim is to explore whether it is possible to establish a connection between

the means on the transformed random variables YA and YB , µYA and µYB , and the

τ -quantiles, with τ ∈ (0, 1), of the original variables,XA andXB , in the following

denoted as ξXA
(τ) and ξXB

(τ). Our choice is motivated by several considerations:

a) the means on the Y scale are key quantities, as they are the parameters most

frequently investigated in practice, and allow easy inference based on the

sample mean estimators;

b) on the other hand, quantiles are very interpretable parameters, even for irreg-

ularly shaped distributions, and allow comparison of different aspects of the

whole distribution of the data;

c) taking into account the previous two points, we wish to formulate proce-

dures which are based on the sample mean estimators, and exploit the re-

lations between parameters, to test hypotheses concerning quantiles of the

distributions either on the transformed or on the original scale.

To explore the relation between µYK and ξXK
(τ), for K ∈ {A,B}, we start from

the simple consideration that testing (2.1) is in general equivalent to testing

H0 : h(µYA) = h(µYB ), (2.2)

for any strictly monotone function h(·) that does not contain other nuisance param-

eters, i.e., that is a reparameterization of µYK , for K ∈ {A,B}. If the distribution

of YK is such that there exist a relationship between µYK and its τ -level quantile,

denoted as ξYK (τ), i.e., if there exists a strictly monotone function h(·) such that

ξYK (τ) = h(µYK ), (2.3)

then (2.1) has a straightforward interpretation in terms of the quantiles of YK , for

K ∈ {A,B}. In fact, when (2.3) holds, it is immediate to see that (2.2) is equiva-

lent to

H0 : ξYA(τ) = ξYB (τ). (2.4)
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If one now assumes that YA = g(XA) and YB = g(XB), and thanks to the fact

that quantiles enjoy the property of invariance with respect to strictly monotone

transformations1, i.e., with our notation,

ξYK (τ) = g(ξXK
(τ)),

for K ∈ {A,B}, then (2.4) is equivalent to

H0 : ξXA
(τ) = ξXB

(τ). (2.5)

In other words, the hypothesis of equality of means on the Y scale is equivalent to

the hypothesis of equality of the τ -quantiles on the X scale, and, by testing (2.1),

one is implicitely testing (2.5), too.

Before moving on to the next steps, it is worth noting that the test of equality

of the quantiles ξXA
(τ) and ξXB

(τ) could be addressed with the classic tools of

quantile inference (Koenker & Bassett Jr, 1978). In particular, assume to have two

independent simple random samples of size nA and nB for the two populations,

respectively, and let ξ̂U (τ) be the sample quantile estimator for the generic random

variable U ∼ pU . On recalling that the asymptotic distribution of ξ̂U (τ) satisfies

√
nU (ξ̂U (τ)− ξU (τ))∼̇N

(
0, σ2U (τ)

)
,

where

σ2U (τ) =
τ(1− τ)

pU (ξU (τ))2
(2.6)

and nU is the sample size, Chung et al. (2013) propose a statistic for median com-

parison. This statistic is based on the quantity

√
n(ξ̂XA

(1/2)− ξ̂XB
(1/2)),

where n = nA + nB is the total sample size. The Authors define a Studentized

statistic S as follows:

S =

√
n(ξ̂XA

(1/2)− ξ̂XB
(1/2))√

n
nA
σ̂2XA

(1/2) + n
nB
σ̂2XB

(1/2)
,

1Invariance of quantiles with respect to strictly monotone transformations is easily seen by con-

sidering the definition of ξXK as the quantity that satisfies P (XK ≤ ξXK (τ)) = τ . In fact, this

equality can be rewritten in terms of the quantiles of YK as: P (g−1(YK) ≤ ξXK (τ)) = P (YK ≤
g(ξXK (τ))) = τ . Then, by applying the definition of ξYK (τ), one has: ξYK (τ) = g(ξXK (τ)).



2.1 Relations between Parameters of Statistical Models on Different Scales 9

where the quantity σ̂2XK
(1/2) is a consistent estimator for the asymptotic variance

of ξ̂XK
(1/2), i.e., for the quantity 1/(4pXK

(ξXK
(τ))2), for K ∈ {A,B}, and

prove that its permutation distribution coincides asymptotically with the its true

unconditional distribution under 2.5 while retaining exactness property for finite

samples when pXA
= pXB

.

However, the use of quantile inference tools might be not immediate when n is

low. In fact, estimating the variance of the median estimators (or, more in general,

of τ -quantile estimators) can be a cumbersome task, as it includes estimating the

density of the distribution of the variable to which it refers at the quantile of inter-

est. This is usually done via kernel methods (Delaigle et al., 2011) or resampling

methods such as the bootstrap (Efron, 1979) or the smoothed bootstrap (Hall et al.,

1989), that for low sample sizes, or for extreme values of τ ∈ (0, 1), might fail to

provide accurate estimates of the variances. Moreover, these methods can be com-

putationally quite intensive, and the choice of the procedure to be applied requires

some degree of subjectivity from the investigators. These considerations might

make such methods not completely attractive for an everyday use in lab practice.

Nevertheless, test statistics based on quantiles have also very appealing properties,

most notably the fact that they do not require any (additional) hypothesis on the

distribution of the variables of interest (in our case, XA and XB), in order to be

used. In fact, the two populations might even have different probability laws, giv-

ing room for application to the wide set of practical problems where the assumption

of normality or homoscedasticity of the data, for example, do not hold.

These considerations motivate us in moving further and defining statistical

tools, with performances comparable to those of Chung et al. (2013), that test

(2.5) without needing estimation of the density functions pXK
. Relationships (2.1)

through (2.5) suggest that it is possible to make use of mean estimators on the Y

scale for this task. We will exploit this idea to define a consistent estimator ξ̃XK
(τ)

of ξXK
(τ), alternative to ξ̂XK

(τ), in the following way:

ξ̃XK
(τ) = g−1(h(Y K)).

Then, the consistency of the sample mean estimator and the strict monotonicity of

both g(·) and h(·) guarantee the consistency of ξ̃XK
(τ) with respect to ξXK

(τ). In
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fact,

ξ̃XK
(τ)

p−→ g−1(h(µYK )) = ξXK
(τ),

where the
p−→ operator indicates convergence in probability. The asymptotic dis-

tribution of ξ̃XK
(τ) can be easily recovered by an application of the delta method

to the asymptotic distribution of Y K , therefore opening the possibility of defining

novel test statistics for quantile comparison.

Remark: An alternative way to obtain a consistent estimator of the quantile of

interest is available if the likelihood function of the model is known. In fact, con-

sider a generic random variable U ∼ fU (u; θ), with distribution function FU (u; θ)

depending only on the parameter θ. The definition of its τ -quantile, for τ ∈ (0, 1),

which is

ξU (τ) = F−1U (τ ; θ),

is in fact a reparameterization of the parameter θ. The theory of likelihood assures

that, under regularity conditions, the maximum likelihood estimator θ̂ is asymptot-

ically normal, i.e.,

θ̂∼̇N(θ, j(θ̂)−1),

where j(·) denotes the observed information. Then, a simple application of the

delta method shows that

ξ̂U (τ) = F−1U (τ ; θ̂)∼̇N

(
ξU (τ), j(ξ̂U (τ))−1

1

(F ′U (F−1U (τ ; θ)))2

)
,

which can be rewritten as:

ξ̂U (τ) = F−1U (τ ; θ̂)∼̇N
(
ξU (τ), j(ξ̂U (τ))−1

1

fU (ξU (τ))2

)
,

therefore obtaining an asymptotic result for the distribution of the sample quantile

estimator, based on a likelihood result, and a consistent estimator for ξU (τ). How-

ever, also in this case the density of U at the quantile of interest should be estimated

in order to have an estimator of the asymptotic variance.

The definition of the test statistics, derivation of their asymptotic behaviour and

study of their properties will be object of the next Section. However, before moving

to the construction of the test statistics, three key questions arise. A first point of
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interest could be wondering how common relationships such as (2.3) are. Actually,

there are many notable cases of distributions for which this kind of relationships

holds, for given quantiles, as shown in the following examples.

Example 2.1.1. Assume Y ∼ Exp(λ). In this case, µY = 1/λ and ξY (τ) =

−log(1 − τ)/λ, which implies that ξY (τ) = −µY log(1 − τ). In particular, for

τ = 1/2, it holds that ξY (1/2) = µY log(2), i.e., that h(t) = tlog(2). 4

Example 2.1.2. Assume Y ∼ fY , with fY symmetric. In this case, it is well-

known that ξY (1/2) = µY , i.e., that for τ = 1/2, h(·) is the identity function. 4

In other cases, an appropriate h(·) exists if some other model parameters can

be assumed to be known, as shown in the following examples.

Example 2.1.3. Assume Y ∼ N(µ, σ20). In this case, µY = µ, and the following

relationship holds:

ξY (τ) = µY + σ0Φ
−1(τ),

where Φ(·) is the distribution function of a standard Normal random variable.

Then, if σ20 was known, we would have that h(t) = t + σ0Φ
−1(τ), for any fixed

τ ∈ (0, 1). 4

Example 2.1.4. Assume Y ∼ LN(µ, σ20), i.e., Y is distributed as a Log-Normal

random variable whose logarithmic transformation is a Normal random variable

with mean µ and variance σ20 . In this case, µY = eµ and ξY (1/2) = eµ+σ
2
0/2.

Then, the following relationship holds:

ξY (1/2) = µY e
σ2
0/2.

Then, if σ20 was known, we would have that h(t) = teσ
2
0/2, for τ = 1/2. A strictly

monotone relation between ξY (1/2) and σ20 exists also if µ was known. 4

Example 2.1.5. Assume Y ∼ Logistic(µ, s). In this case, µY = µ and ξY (τ) =

µ− slog((1− τ)/τ). Then,the following relationship holds:

ξY (τ) = ξY (τ) = µY − slog

(
1− τ
τ

)
.
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Then, if s was known, we would have that h(t) = t− slog((1− τ)/τ), for a fixed

τ ∈ (0, 1). Of course, for τ = 1/2, the relationship reduces to the identity, being

the Logistic distribution symmetric. 4

Example 2.1.6. Assume Y ∼ Uniform(a, b). In this case, µY = (a + b)/2 and

ξY (τ) = a+ (b− a)τ . Then, the following relationship holds:

ξY (τ) = 2µY (1− τ)− b(1− 2τ).

Then, if b was known, we would have that h(t) = 2t(1 − τ) − b(1 − 2τ), for

τ ∈ (0, 1). Of course, for τ = 1/2, the relationship reduces to the identity, being

the Uniform distribution symmetric. 4

Example 2.1.7. Assume Y ∼ Laplace(µ, b), with b > 0. In this case, µY = µ

and ξY (τ) = µ + blog(2τ) if ξY (τ) ≥ µ, and ξY (τ) = µ + blog(2(1 − τ)) if

ξY (τ) ≤ µ. Then, the following relationships hold:

ξY (τ) = µY + blog(2τ) if ξY (τ) ≥ µY

ξY (τ) = µY + blog(2(1− τ)) if ξY (τ) ≤ µY .

Then, if b was known, we would have that:

h(t) = t+ blog(2τ) if ξY (τ) ≥ t

h(t) = t+ blog(2(1− τ)) if ξY (τ) ≤ t,

for a fixed τ ∈ (0, 1). Of course, for τ = 1/2, the relationship reduces to the

identity, being the Laplace distribution symmetric. 4

As a second point of interest, it is worth noting that relationship (2.3) could

actually be different in the two populations, i.e.,

ξYA(τ) = hA(µYA)

ξYB (τ) = hB(µYB ),

with hK strictly monotone for K ∈ {A,B}, but hA(·) 6= hB(·). In this case,

testing (2.5) starting from the quantities Y A and Y B might require additional steps.

We will illustrate this case in the following example.
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Example 2.1.8. Assume XA ∼ LGa(1, 1), XB ∼ LLaplace(log(2), 1), where

LGa(α, λ) indicates a random variable whose logarithmic transformation has a

Gamma distribution with shape α and rate λ and LLaplace(µ, b) indicates a random

variable whose logarithmic transformation has a Laplace distribution with mean µ

and scale b. Let τ = 1/2, and assume YA = log(XA) and YB = log(XB). In this

case, it holds that ξYA(1/2) = ξYB (1/2) = log(2) (see examples 2.1.1 and 2.1.7),

while 1 = µYA 6= µYB = log(2). Therefore,

hA(t) = tlog(2)

hB(t) = t,

and testing

H0 : µYA = µYB

is equivalent to testing

H0 : h−1A (ξYA(1/2)) = h−1B (ξYB (1/2)),

i.e.,

H0 :
ξYA(1/2)

log(2)
= ξYB (1/2).

The relation linking (2.1) to (2.4) cannot be retrieved in this case. However, let us

consider the transformed random variables:

Y ∗A = hA(YA) = YAlog(2)

Y ∗B = hB(YB) = YB.

It is easy to see that the sample mean estimator Y ∗K , based on the transformed

random variable Y ∗K , is consistent for ξYK (1/2), for K ∈ {A,B}. In fact:

Y
∗
A = Y Alog(2)

p−→ µYA log(2) = h−1A (ξYA(1/2))log(2) = ξYA(1/2)

Y
∗
B = Y B

p−→ µYB = h−1B (ξYB (1/2)) = ξYB (1/2).

This suggests that Y A and Y B can still be used to test

H0 : ξYA(1/2) = ξYB (1/2),

and implicitly

H0 : ξXA
(1/2) = ξXB

(1/2),
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provided that appropriate transformations are applied. Consider to this aim the

transformed estimators g−1(Y ∗A) and g−1(Y ∗B), where g(t) = log(t). Then, it

holds that:

g−1(Y
∗
A) = eY

∗
A = eY Alog(2) p−→ eµYA log(2) = eξYA (1/2) = ξXA

(1/2)

g−1(Y
∗
B) = eY

∗
B = eY B

p−→ eµYB = eξYB (1/2) = ξXB
(1/2),

and therefore g−1(Y ∗K) is a consistent estimator for ξXK
(1/2), and we might write

ξ̃XK
(1/2) = g−1(Y

∗
K) , for K ∈ {A,B}. 4

Of course, example 2.1.8 can be generalised to any situation where hA(·) 6=
hB(·), provided they are both strictly monotone, and to a generic quantile level

τ ∈ (0, 1). Formally, if there exist hA(·) and hB(·) such that ξYA(τ) = hA(µYA)

and ξYB (τ) = hB(µYB ), then one can define the auxiliary random variables Y ∗A =

hA(YA) and Y ∗B = hB(YB), and use the sample mean estimators based on the

transformed variables, Y ∗A and Y ∗B , to define the consistent estimators ξ̃XA
(τ) =

g−1(Y
∗
A) and ξ̃XB

(τ) = g−1(Y
∗
B), which can be used for testing hypothesis (2.5).

The third observation refers to the transformation function g(·), and leads to

a further generalisation. In fact, it is possible to retrieve estimators of the class

ξ̃XK
(τ) even when the initial transformations applied to XA and XB are different

between the two groups, i.e., gA(·) and gB(·), provided that they are strictly mono-

tone. With the help of the following example, we will see how to generalise the

possibility of using Y A and Y B to test H0 : ξXA
(τ) = ξXB

(τ) under the more

general setting:

YA = gA(XA)

YB = gB(XB),

where gA(·) 6= gB(·), provided that both functions are still strictly monotone.

Example 2.1.9. Assume that XA ∼ IG(1, 1) and XB ∼ LLaplace(log(2), 1),

where IG(α, γ) indicates an Inverse Gamma distribution with shape α and rate λ.

Let τ = 1/2, and assume that YA = 1/XA and YB = log(XB). In this case,
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consider again the transformed variables (see example 2.1.8):

Y ∗A = hA(YA)

Y ∗B = hB(YB).

Then, the following results hold:

g−1A (Y
∗
A) =

1

Y Alog(2)

p−→ 1

µYA log(2)
=

1

ξYA(1/2)
= ξXA

(1/2)

g−1B (Y
∗
B) = eY B

p−→ eµYB = eξYB (1/2) = ξXB
(1/2),

and we can define ξ̃XK
(τ) = g−1K (Y

∗
K), for K ∈ {A,B}. 4

Of course, example 2.1.9 can be generalised to any situation where hA(·) 6=
hB(·) and gA(·) 6= gB(·), provided they are all strictly monotone functions, and

to a generic quantile level τ ∈ (0, 1). In these cases, it is possible to define the

consistent estimators ξ̃XA
(τ) = g−1A (Y

∗
A) and ξ̃XB

(τ) = g−1B (Y
∗
B), which can be

used for testing hypothesis (2.5).

It seemed necessary to make these three considerations before defining the ac-

tual test statistics, to give an idea of the spectrum of situations where they could

be applied. Even if some of these settings might occur quite rarely in practice, we

feel that it was important to emphasise the possibility to generalise them to a wider

framework of application. To summarise, it seems possible to conclude that, if gK
and hK are strictly monotone functions, for K ∈ {A,B}, then it is possible to find

suitable transformations

fA = g−1A ◦ hA

fB = g−1B ◦ hB,

where the ◦ operator denotes composition of functions, that allow to exploit Y A

and Y B to test (2.5). The key result concerning consistency of the estimators can

be expressed as:

ξ̃XK
(τ) = fK(Y K)

p−→ g−1K (hK(µYK )) = g−1K (ξYK (τ))) = ξXK
(τ). (2.7)

The next Section will formalize the results obtained so far to develop novel test

statistics for inference on ξXK
(τ), for K ∈ {A,B}, and give the main results

concerning their properties and asymptotic behaviour.
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2.2 Studentized Statistics

Our aim in this Section is to test H0 : ξXA
(τ) = ξXB

(τ), starting from the sample

means Y A and Y B . Let XK1, . . . , XKnK
be two simple random samples of size

nK , independent from each other, from the density function pXK
, having quantiles

ξXK
(τ), τ ∈ (0, 1), for K ∈ {A,B}. Moreover, let n = nA + nB be the total

sample size. In the following, we will assume that all the transformations applied

to the quantities involved are such that the resulting random variables have finite

variances. Let YK1, . . . , YKnK
be the transformed samples on the Y scale, i.e.,

YKi = gK(XKi), with density function pYK , mean µYK and variance σ2YK < ∞,

for i = 1, . . . , nK and K ∈ {A,B}. Let ξYK (τ) = hK(µYK ), where hK(·) is a

reparameterization of µYK . Let Y K = 1
nK

∑nK
i=1 YKi be the sample mean estima-

tor of µYK and S2
YK

= 1
nK−1

∑nK
i=1(YKi − Y K)2 be the unbiased sample variance

estimator of σ2YK , for K ∈ {A,B}.

To test (2.1), we could consider the natural estimator of µYK , i.e., the sample

mean estimator Y K . A well-known result due to the central limit theorem, i.e.,

√
nK(Y K − µYK )

d−→ N(0, σ2YK ),

gives rise to the following approximation for the asymptotic distribution of Y K :

Y K∼̇N

(
µYK ,

σ2YK
nK

)
. (2.8)

However, we are interested in how we could use this result to make inference on

the quantity ξXK
(τ), which is related to µYK through the following relationship:

ξXK
(τ) = g−1K (hK(µYK )). (2.9)

Therefore, we aim to obtain a consistent estimator of g−1K (hK(µYK )).

For this task, let fK = g−1K ◦ hK , which is strictly monotone as it is a com-

position of strictly monotone functions, and let ξ̃XK
(τ) = fK(Y K). On noting

that

ξ̃XK
(τ)

p−→ ξXK
(τ),

as seen in (2.7), let

W = ξ̃XA
(τ)− ξ̃XB

(τ),
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for which

W
p−→ ξXA

(τ)− ξXB
(τ)

holds, thanks to the consistency of sample quantile estimators, ξ̃XK
(τ). The asymp-

totic distribution of W descends immediately from (2.8) through the delta method.

In fact,

f(Y K)∼̇N

(
ξXK

(τ),
σ2YK
nK

f ′(µYK )2

)
,

and therefore,

W ∼̇N(ξXA
(τ)− ξXB

(τ), V (W )), (2.10)

with

V (W ) =
σ2YA
nA

f ′A(µYA)2 +
σ2YB
nB

f ′B(µYB )2. (2.11)

Result (2.10) gives rise to the approximately standard Normal Z random variable,

defined as:

Z =
W − (ξXA

(τ)− ξXB
(τ))√

V (W )
∼̇N(0, 1).

In order to be able to use Z for inference, we need an estimator for the variance

of W , which is not known. For this purpose, we introduce the estimator V̂ (W ),

defined as:

V̂ (W ) =
S2
YA

nA
f ′A(Y A)2 +

S2
YB

nB
f ′B(Y B)2.

Since YK has mean and finite variance, we can recall that Y K
p−→ µYK and S2

YK

p−→
σ2YK . We also note that, since fK(·) is strictly monotone because it is a compo-

sition of strictly monotone functions, then it is continuous almost everywhere in

its domain. Then, by means of the continuous mapping theorem (Mann & Wald,

1943), it holds that

f ′(Y K)2
p−→ f ′(µYK )2.

Therefore, since convergence in probability of the generic random variables U1

and U2 implies convergence in probability of the random vector (U1, U2), and the

continuous mapping theorem applies to vectors, too, then we can write:

S2
YK

nK
f ′(Y K)2

p−→
σ2YK
nK

f ′(µYK )2. (2.12)

Application of the continuous mapping theorem to the sum of the quantities defined

in (2.12) for K ∈ {A,B}, proves that V̂ (W ) is a consistent estimator for the true
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variance of W . In fact, it holds that

S2
YA

nA
f ′A(Y A)2 +

S2
YB

nB
f ′B(Y B)2

p−→
σ2YA
nA

f ′A(µYA)2 +
σ2YB
nB

f ′B(µYB )2,

i.e.,

V̂ (W )
p−→ V (W ). (2.13)

By applying the Slutsky’s theorem, it is possible to show that the asymptotic dis-

tribution of the statistic T , with

T =
W − (ξXA

(τ)− ξXB
(τ))√

V̂ (W )
(2.14)

is standard Normal, so that it is possible to use it to compute an approximate level

of significance for testing (2.5).

Note that the expression (2.11) hides quantiles either on the Y or on the X

scale. In fact, let us compute f ′K(µYK ):

f ′K(µYK ) =
∂

∂y
g−1K (hK(y))

∣∣∣∣
y=µYK

=
h′K(µYK )

g′K(g−1K (hK(µYK )))
. (2.15)

This expression can be written in terms of ξYK (τ) as:

f ′K(µYK ) =
h′K(h−1K (ξYK (τ)))

g′K(g−1K (ξYK (τ)))
, (2.16)

or in terms of ξXK
(τ) as:

f ′K(µYK ) =
h′K(h−1K (g(ξXK

(τ))))

g′K(ξXK
(τ))

, (2.17)

where the invertibility and differentiability of hK(·) and gK(·) is guaranteed by

their strict monotonicity. The above equalities introduce the possibility of defining

different estimators for the variance of W , such as, for example,

V̂ (W ) =
∑

K∈{A,B}

S2
YK

nK

(
h′K(h−1K (Y K))

g′K(g−1K (Y K))

)2

,

which is based on (2.15), or

V̂ (W ) =
∑

K∈{A,B}

S2
YK

nK

(
h′K(h−1K (ξ̂YK (τ)))

g′K(g−1K (ξ̂YK (τ)))

)2

,
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which is based on (2.16), or

V̂ (W ) =
∑

K∈{A,B}

S2
YK

nK

(
h′K(h−1K (g(ξ̂XK

(τ))))

g′K(ξ̂XK
(τ))

)2

,

which is based on (2.17). Plugging either of these expressions in (2.14) does not

affect the asymptotic distribution of T , which remains standard Normal, and can

be used to define a pivot for testing (2.5).

It is worth noting that the test statistic T introduced above satisfies the condi-

tions of Theorem 2.2. in Chung et al. (2013), with V̂ (W ) replaced by any of the

consistent estimators for the variance of W that we have defined, and therefore its

permutation distribution coincides with its asymptotic counterpart for sufficiently

large sample sizes under (2.5), while retaining exactness property for finite sam-

ples when pXA
= pXB

. For the reader’s convenience, Theorem 2.2. in Chung et al.

(2013) is reported in the Appendix of the present Chapter, along with a proof of its

applicability to T . In the next Section, we will introduce a special case, which is

frequently encountered in practice, which also allow for simplification of the ex-

pressions introduced above.

2.3 A Key Case

Consider the case gA(·) = gB(·) = g(·) and ξYK (τ) = µYK for K ∈ {A,B}, i.e.,

hA(·) = hB(·) = h(·) is the identity function. In other words, consider the case

where it is possible to find a common transformation g(·) for which ξYK (τ) = µYK

for K ∈ {A,B}. This situation is common in applications, often with τ = 1/2,

and allows to construct test statistics with an easy structure, based on results of

the previous Section. Some examples of such cases are listed below, chosen for

comparison with Chung et al. (2013). The models are chosen in such a way that,

although the two population do not share the same distribution, in all cases the

relationship µYK = ξYK (1/2) = eξXK
(1/2) holds for K ∈ {A,B}.

Example 2.3.1. Let XA ∼ LN(µA, σ
2
A), XB ∼ LN(µB, σ

2
B); YA = log(XA)

and YB = log(XB) (see example 2.1.4). Then µYK = eξXK
(1/2), for K ∈ {A,B}.
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4

Example 2.3.2. Let XA ∼ LN(µA, σ
2
A), XB ∼ Lt(µB, d); YA = log(XA) and

YB = log(XB), where Lt(µB, d) indicates a random variable whose logarithmic

transformation has a Student’s t distribution with non-centrality parameter µB and

d degrees of freedom. Then µYK = eξXK
(1/2), for K ∈ {A,B}. 4

Example 2.3.3. Let XA ∼ LLog(µ, s), XB ∼ LU(a, b); YA = log(XA) and

YB = log(XB), where LLog(µ, s) indicates a random variable whose logarith-

mic transformation has a Logistic distribution with location µ and scale s, and

LU(a, b) indicates a random variable whose logarithmic transformation has a Uni-

form distribution on the interval (a, b). Then µYK = eξXK
(1/2), forK ∈ {A,B}.4

Example 2.3.4. Let XA ∼ LGa(α, λ), XB ∼ LLap(µ, b); YA = log(XA) and

YB = log(XB) (see example 2.1.8). Then µYK = eξXK
(1/2), for K ∈ {A,B}. 4

In these cases, it is easy to see that fA(·) = fB(·) = f(·) = g−1(·); f ′(·) =

1/(g′ ◦ g−1)(·), and some useful simplifications of the results seen so far occur. In

fact, if ξYK (τ) = µYK , the variance of W becomes:

V (W ) =
∑

K∈{A,B}

σ2YK
nK

1

g′(g−1(µYK ))2
. (2.18)

or, equivalently,

V (W ) =
∑

K∈{A,B}

σ2YK
nK

1

g′(g−1(ξYK (τ)))2
, (2.19)

or, equivalently,

V (W ) =
∑

K∈{A,B}

σ2YK
nK

1

g′(ξXK
(τ))2

. (2.20)

Therefore, examples of consistent estimators for the variance of W are:

V̂1(W ) =
∑

K∈{A,B}

S2
YK

nK

1

g′(g−1(Y K))2
,
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or

V̂2(W ) =
∑

K∈{A,B}

S2
YK

nK

1

g′(g−1(ξ̂YK (τ)))2
,

or

V̂3(W ) =
∑

K∈{A,B}

S2
YK

nK

1

g′(ξ̂XK
(τ))2

.

Although the condition ξYK (τ) = µYK , implying that the mean is equal to the

τ -level quantile on the Y scale, might be difficult to find in practice, it assumes a

more meaningful interpretation when τ = 1/2. In fact, as we have recalled in ex-

ample 2.1.2, this is the case of YK having a symmetric density function (although

not necessarily Normal) for K ∈ {A,B}, which might be of special interest in

applications.

If the null hypothesis (2.5) holds, it is possible to exploit it to further simplify

the expression of the variance of W under H0. Note that the simplification can

be achieved without introducing any new hypotheses on the distribution for the

two populations, such as, for example, homogeneity of the variances. Let µYP
be the common mean of the two populations on the Y scale, i.e., µYP = µYA =

µYB , let ξYP (τ) be the common τ -level quantile of the two populations on the Y

scale, i.e., ξYP (τ) = ξYA(τ) = ξYB (τ) = µYP , and let ξXP
(τ) be the common

τ -level quantile of the two populations on the X scale, i.e., ξXP
(τ) = ξXA

(τ) =

ξXB
(τ) = g−1(µYP ). Then, under (2.5), expression (2.18) becomes:

V (W ) =
1

g′(g−1(µYP ))2

(
σ2YA
nA

+
σ2YB
nB

)
;

expression (2.19) becomes:

V (W ) =
1

g′(g−1(ξYP (τ)))2

(
σ2YA
nA

+
σ2YB
nB

)
;

and expression (2.20) becomes:

V (W ) =
1

g′(ξXP
(τ))2

(
σ2YA
nA

+
σ2YB
nB

)
.
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It is possible therefore to construct simpler estimators for the variance of W , valid

under (2.5), from which to derive pivots for hypothesis testing. We stress again

the fact that, also in this case, we do not require any additional assumption, such

as, for example, homoscedasticity, on the distribution of the two populations. An

example of such estimators is:

V̂4(W ) =
1

g′(g−1(Y P ))2

(
S2
YA

nA
+
S2
YB

nB

)
, (2.21)

where

Y P =
1

n

∑
K∈{A,B}

nK∑
i=1

YKi,

i.e., Y P is the mean estimator of the sample Y = (YA1, . . . , YAnA
, YB1, . . . , YBnB

),

and a consistent estimator for the common mean µYP . When (2.5) is true, the weak

law of large numbers guarantees that Y P
p−→ µYP , and the continuous mapping the-

orem proves convergence in probability, under (2.5), of V̂4(W ) to V (W ), similarly

to what we have seen in (2.13). Other possible estimators for V (W ) under (2.5)

are:

V̂5(W ) =
1

g′(g−1(ξ̂YP (τ)))2

(
S2
YA

nA
+
S2
YB

nB

)
, (2.22)

where ξ̂YP (τ) is the sample τ -quantile of the pooled sample Y , as well as

V̂6(W ) =
1

g′(ξ̂XP
(τ))2

(
S2
YA

nA
+
S2
YB

nB

)
, (2.23)

where ξ̂XP
(τ) is the sample τ -quantile of the pooled sampleX = (XA1, . . . , XAnA

,

XB1, . . . , XBnB
). Consistency under (2.5) of the estimators ξ̂YP (τ) and ξ̂XP

(τ)

for ξYP (τ) and ξXP
(τ), respectively, can be proven via the asymptotic representa-

tion of quantiles of pooled samples proposed by Liu & Yin (1994), which is based

on the Bahadur representation of quantiles (Bahadur, 1966).

These alternative estimators of the variance allow to construct several test statis-

tics, which we define under (2.5) as:

Tj =
W√
V̂j(W )

, j = 1, . . . , 6,
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and whose asymptotic normality under (2.5) is guaranteed by the Slutsky’s theorem

in analogy to what we have seen as a general result for T . Of course, different

test statistics might behave differently in terms of type I error rate control and

power relative to the sample sizes considered. Before evaluating these aspects via

simulation studies in the next Subsection, we show that the statistics assume a

quite simple form when the transformation function is g(·) = log(·), which is also

a case frequently encountered in practice, possibly making their application more

appealing for everyday lab practice.

Example 2.3.5. One of the most commonly applied transformations in practical

applications is the natural logarithm. When h(·) is the identity function and g(·) =

log(·), the equivalence (2.9) becomes:

ξXK
(τ) = eξYK (τ) = eµYK ,

and the quantity W is:

W = eY A − eY B .

Under (2.5), the variance estimators that we have seen throughout Section 2.3 be-

come, respectively:

V̂1(W ) =
∑

K∈{A,B}

S2
YK

nK
e2Y K ;

V̂2(W ) =
∑

K∈{A,B}

S2
YK

nK
e2ξ̂YK (τ);

V̂3(W ) =
∑

K∈{A,B}

S2
YK

nK
ξ̂2XK

(τ);

V̂4(W ) = e2Y P

(
S2
YA

nA
+
S2
YB

nB

)
;

V̂5(W ) = e2ξ̂YP (τ)

(
S2
YA

nA
+
S2
YB

nB

)
;

V̂6(W ) = ξ̂2XP
(τ)

(
S2
YA

nA
+
S2
YB

nB

)
.

The corresponding test statistics from T1 to T6 all follow asymptotically a standard

Normal distribution under (2.5). 4
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Example 2.3.6. Useful simplifications can be obtained with the logarithmic trans-

formation even if some of the assumptions in this Section are not met. For exam-

ple, assumeXA ∼ LLap(log(2), 1), XB ∼ LGa(1, 1) (see example 2.3.4). In this

case, hA(t) = tlog(2), while hB(t) = t. The quantity W becomes:

W = eY Alog(2) − eY B ,

and its asymptotic variance is

V (W ) =
σ2YA
nA

e2µYA log(2)log(2)2 +
σ2YB
nB

e2µYB ,

which can be rewritten as:

V (W ) =
σ2YA
nA

e2ξYA (1/2)log(2)2 +
σ2YB
nB

e2ξYB (1/2)

or as:

V (W ) =
σ2YA
nA

ξ2XA
(1/2)log(2)2 +

σ2YB
nB

ξ2XB
(1/2).

Possible estimators of V (W ), in analogy to the ones seen in example 2.3.5, are

then:

V̂1(W ) =
S2
YA

nA
e2Y Alog(2)log(2)2 +

S2
YB

nB
e2Y B ;

V̂2(W ) =
S2
YA

nA
e2ξ̂YA (1/2)log(2)2 +

S2
YB

nB
e2ξ̂YB (1/2);

V̂3(W ) =
S2
YA

nA
ξ̂2XA

(1/2)log(2)2 +
S2
YB

nB
ξ̂2XB

(1/2);

and, upon recalling that Y ∗A = YAlog(2) and Y ∗B = YB , also:

V̂4(W ) = e2Y
∗
P

(
S2
YA

nA
+
S2
YB

nB

)
;

V̂5(W ) = e
2ξ̂Y ∗

P
(τ)

(
S2
YA

nA
+
S2
YB

nB

)
;

V̂6(W ) = ξ̂2X∗
P

(τ)

(
S2
YA

nA
+
S2
YB

nB

)
,

where Y ∗P and ξ̂Y ∗
P

(τ) are computed over the pooled sample Y ∗ and ξ̂2X∗
P

(τ) is

computed over the pooled sample X∗. 4
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In the next Subsection, we will evaluate control of the type I error rate provided

by test statistics from T1 to T6 via simulation studies, comparing the asymptotic

type I error rates based on the standard Normal approximation, αasymp, and the

permutation type I error rates αperm, to the nominal type I error rate, α, for a variety

of statistical models of interest.

2.3.1 Simulation Studies: Type I Error Rate Control

In this Subsection, we assume the conditions of the key case and in particular of

example 2.3.5, i.e., hA(·) = hB(·) = h(·) is the identity function and gA(·) =

gB(·) = g(·) = log(·). Under these assumptions, we test (2.5) on simulated data,

assuming τ = 1/2. For comparison purposes, we choose simulation settings simi-

lar to those in Chung et al. (2013), to which we add a mixture model that introduces

a small contamination for studying robustness, and a model that does not satisfy

one of the conditions of the key case, namely hA(·) = hB(·). The models, which

are chosen in such a way that YK = log(XK) have a well-known distribution, for

K ∈ {A,B}, are the following ones:

1. XA ∼ LN(0, 1), XB ∼ LN(0, 5) (see example 2.3.1);

2. XA ∼ LN(0, 1), XB ∼ Lt(0, 5) (see example 2.3.2);

3. XA ∼ LLog(0, 1), XB ∼ LU(−10, 10) (see example 2.3.3).

The model with a small contamination is:

4. XA ∼ LN(−0.003, 1),XB ∼MD(0, 1,−3, 1, 0.999), whereMD(µ1, σ
2
1, µ2, σ

2
2, ε)

indicates an exponential transformation of a mixture of two Normal random

variables with means µ1 and µ2, variances σ21 and σ22 , and weights ε ∈ (0, 1)

and 1− ε, respectively.

The model that does not satisfy the assumptions of the key case is:

5. XA ∼ LLap(log(2), 1), XB ∼ LGa(1, 1) (see example 2.3.6).

Each simulation experiment is ran for different sample sizes, nA and nB . In each

experiment, m = 999 permutations are used, except when nA = nB = 5; in that

case, all available m = 252 permutations are used. The number of replicates in

each experiment is 10000. Samples are generated under the null hypothesis (2.5).
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We expect that the asymptotic type I error rate approaches the nominal one, which

is chosen to be α = 0.05, for sufficiently large sample sizes. We expect a simi-

lar behaviour from the permutation type I error rate, thanks to the result of Chung

et al. (2013), although we do not expect the permutation result to be exact for finite

sample, as pXA
6= pXB

.

In the following, we display the results obtained from simulation studies. Each

Table refers to one of the five models of interest above mentioned, and displays

permutation and asymptotic type I error rates. Different test statistics are displayed

by row, while every column refers to a different sample size.

Table 2.1 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
LN(0, 5) case. It seems that all the test statistics achieve the nominal type I error

rate for a sufficiently large sample size. Moreover, the asymptotic p-value performs

in a comparable way to the permutation one for several statistics, even for moder-

ate to low sample sizes. The best performances, in terms of smaller sample size

needed to approximate α, are obtained by the test statistics that exploit the null hy-

pothesis in estimating the variance of W , namely T4, T5 and T6. It is worth noting

that these tests provide exactly the same permutation p-value. An explanation of

this phenomenon is provided in the final remarks of the Section.
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nA = nB

5 11 101 1001 5001

T1 αperm 0.0847 0.1063 0.0729 0.0576 0.0501

αasymp 0.0926 0.0929 0.0712 0.0588 0.0513

T2 αperm 0.0825 0.1114 0.0840 0.0622 0.0520

αasymp 0.1005 0.0904 0.0714 0.0596 0.0508

T3 αperm 0.0865 0.1122 0.0843 0.0627 0.0527

αasymp 0.1005 0.0904 0.0714 0.0596 0.0508

T4 αperm 0.0536 0.0542 0.0487 0.0504 0.0454

αasymp 0.0990 0.0716 0.0520 0.0525 0.0479

T5 αperm 0.0536 0.0542 0.0487 0.0504 0.0454

αasymp 0.0647 0.0452 0.0392 0.0475 0.0451

T6 αperm 0.0536 0.0542 0.0487 0.0504 0.0454

αasymp 0.0466 0.0425 0.0486 0.0521 0.0478

Table 2.1: Monte Carlo permutation and asymptotic type I error rates for the

LN(0, 1) vs. LN(0, 5) case under ξXA
(1/2) = ξXB

(1/2). Nominal type I er-

ror rate α = 0.05.
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Table 2.2 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
Lt(0, 5) case. Results seem better than in the previous scenario for all the statistics,

in the sense that both the permutation and the asymptotic p-value are closer to the

nominal one at lower sample sizes than in the previous setting. This might be due

to the fact that the distributions of XA and XB are actually more similar in this

case, being a Lt(0, 5) distribution closer to a LN(0, 1) than a LN(0, 5) is. This

fact might enhance both the performance of the asymptotic type I error rate (which

approaches α for lower sample sizes) and those of the permutation type I error rate

(which is more likely to be conditionally “almost” exact for finite samples if the

two distributions are very similar). Again, T4, T5 and T6 perform the best, but the

difference to the other test statistics is greatly reduced.

nA = nB

5 11 101 1001 5001

T1 αperm 0.0546 0.0445 0.0544 0.0501 0.0459

αasymp 0.0543 0.0526 0.0544 0.0510 0.0472

T2 αperm 0.0427 0.0544 0.0537 0.0503 0.0458

αasymp 0.0567 0.0538 0.0521 0.0504 0.0461

T3 αperm 0.0550 0.0460 0.0539 0.0509 0.0459

αasymp 0.0538 0.0567 0.0521 0.0504 0.0461

T4 αperm 0.0427 0.0495 0.0503 0.0482 0.0453

αasymp 0.0739 0.0636 0.0528 0.0496 0.0465

T5 αperm 0.0427 0.0495 0.0503 0.0482 0.0453

αasymp 0.0689 0.0611 0.0489 0.0480 0.0458

T6 αperm 0.0427 0.0495 0.0503 0.0482 0.0453

αasymp 0.0492 0.0505 0.0514 0.0495 0.0465

Table 2.2: Monte Carlo permutation and asymptotic type I error rates for the

LN(0, 1) vs. Lt(0, 5) case under ξXA
(1/2) = ξXB

(1/2). Nominal type I error

rate α = 0.05.



2.3 A Key Case 29

Table 2.3 shows Monte Carlo results for the XA ∼ LLog(0, 1) vs. XB ∼
LU(−10, 10) case. The distributions are quite different, and, as a consequence,

more marked differences between the test statistics seem to emerge. Test statistics

T4, T5 and T6 perform much better than the others, that possibly require larger

sample sizes than those considered to approach the nominal level, although the type

I error rates are closer to the nominal one as the sample sizes increase. Test statistic

T6 seems to have a conservative behaviour (low type I error rate) for low sample

sizes, which might be due to the increased differences between the distributions.

nA = nB

5 11 101 1001 5001

T1 αperm 0.0847 0.1063 0.0729 0.0691 0.0611

αasymp 0.0926 0.0929 0.0712 0.0614 0.0614

T2 αperm 0.1236 0.2038 0.1753 0.0991 0.0747

αasymp 0.1255 0.1312 0.1496 0.0891 0.0713

T3 αperm 0.0865 0.1122 0.0843 0.1002 0.0755

αasymp 0.1005 0.0904 0.0714 0.0891 0.0713

T4 αperm 0.0573 0.0511 0.0535 0.0480 0.0521

αasymp 0.1500 0.0999 0.0625 0.0488 0.0529

T5 αperm 0.0573 0.0511 0.0535 0.0480 0.0521

αasymp 0.0716 0.0360 0.0265 0.0348 0.0475

T6 αperm 0.0573 0.0511 0.0535 0.0480 0.0521

αasymp 0.0054 0.0012 0.0419 0.0465 0.0522

Table 2.3: Monte Carlo permutation and asymptotic type I error rates for the

LLog(0, 1) vs. LU(−10, 10) case under ξXA
(1/2) = ξXB

(1/2). Nominal type I

error rate α = 0.05.
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Table 2.4 shows Monte Carlo results for the XA ∼ LN(−0.003, 1) vs. XB ∼
MD(0, 1,−3, 1, 0.999) case, i.e., for the small contamination scenario. As ex-

pected, since the contamination is very small and samples of size nK < 500 are

likely to have been unaffected by it, all of the considered statistics, with some mi-

nor differences, seem to perform well, proving to be robust to this specific kind of

small deviation from the null hypothesis.

nA = nB

5 11 101 1001 5001

T1 αperm 0.0467 0.0462 0.0506 0.0490 0.0487

αasymp 0.0494 0.0407 0.0498 0.0498 0.0497

T2 αperm 0.0467 0.0490 0.0501 0.0488 0.0485

αasymp 0.0597 0.0478 0.0497 0.0495 0.0493

T3 αperm 0.0506 0.0495 0.0505 0.0491 0.0493

αasymp 0.0597 0.0478 0.0497 0.0495 0.0493

T4 αperm 0.0460 0.0457 0.0501 0.0490 0.0489

αasymp 0.0797 0.0596 0.0519 0.0501 0.0497

T5 αperm 0.0460 0.0457 0.0501 0.0490 0.0489

αasymp 0.0826 0.0652 0.0510 0.0500 0.0495

T6 αperm 0.0460 0.0457 0.0501 0.0490 0.0489

αasymp 0.0589 0.0489 0.0510 0.0499 0.0497

Table 2.4: Monte Carlo permutation and asymptotic type I error rates for the

LN(−0.003, 1) vs. MD(0, 1,−3, 1, 0.999) case under ξXA
(1/2) = ξXB

(1/2).

Nominal type I error rate α = 0.05.
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Table 2.5 shows Monte Carlo results for the XA ∼ LLap(log(2), 1) vs. XB ∼
LGa(1, 1) case. The majority of the statistics seem to provide good control of the

type I error rate, even for moderate sample sizes, being the only exceptions test

statistics T2 and T3, which show a conservative behaviour for large sample sizes.

nA = nB

5 11 101 1001 5001

T1 αperm 0.0720 0.0574 0.0462 0.0481 0.0448

αasymp 0.0380 0.0287 0.0426 0.0491 0.0450

T2 αperm 0.0670 0.0485 0.0337 0.0362 0.0345

αasymp 0.0805 0.0704 0.0649 0.0664 0.0625

T3 αperm 0.0700 0.0493 0.0345 0.0367 0.0360

αasymp 0.0805 0.0704 0.0649 0.0664 0.0625

T4 αperm 0.0699 0.0642 0.0545 0.0509 0.0458

αasymp 0.1008 0.0785 0.0564 0.0524 0.0468

T5 αperm 0.0699 0.0642 0.0545 0.0509 0.0458

αasymp 0.1489 0.1272 0.0924 0.0828 0.0780

T6 αperm 0.0699 0.0642 0.0545 0.0509 0.0458

αasymp 0.0748 0.0651 0.0545 0.0521 0.0468

Table 2.5: Monte Carlo permutation and asymptotic type I error rates for the

LLap(log(2), 1) vs. LGa(1, 1) case under ξXA
(1/2) = ξXB

(1/2). Nominal type

I error rate α = 0.05.

Overall, it seems that for sufficiently large sample sizes both the permutation

and the asymptotic type I error rates for most test statistics approach the nomi-

nal one for the proposed models. In more than one case, we remark that both the

asymptotic and the permutation type I error rates approach the nominal level even

for moderate to low sample sizes. The test statistics that perform most consistently

well across models are T4, T5 and T6, i.e., those that exploit (2.5) to estimate the

variance of W . The improvement over test statistics T1, T2 and T3 is particularly

evident for the cases where the two distributions are more different from each other.
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Remark: As mentioned above, the permutation behaviour of T4, T5 and T6 is

exactly the same for the three test statistics. We recall that, under (2.5), variance

estimators for W are expressed in (2.21), (2.22) and (2.23), respectively. Both W

and the term
S2
YA

nA
+
S2
YB

nB

take in general different values for each permutation, but their values are the same

for the three test statistics considered. The other term of Tj , which is Y P , ξ̂YP (τ)

and ξ̂XP
(τ) for j = 4, 5, 6, respectively, is, instead, constant across permutations,

as it is computed on the pooled sample Y for T4 and T5 and on the pooled sam-

ple X for T6. Therefore, the permutation p-value is exactly the same for the three

statistics considered.

In the following Subsection, the power of the proposed test statistics will be

evaluated via simulation for the same models.

2.3.2 Simulation Studies: Power

In order to assess the power of the proposed statistics, we choose the same gener-

ating models proposed in the previous Subsection (with the exception of the con-

taminated model), but we assume the two populations to have different medians on

the X scale, i.e., we simulate data under the alternative hypothesis. The shift in the

medians is chosen in such a way that the behaviour of the estimators can be com-

pared in terms of power for moderate to low sample sizes. In the model description,

recall that the parameters are often referred to the distribution after the logarithmic

transformation; this should be kept into account in order to have a correct idea of

the scale of the shift. For example, ifXA ∼ LN(0, 1) andXB ∼ LN(−1, 5), then

µYA − µYB = ξYA(1/2) − ξYB (1/2) = 1, but ξXA
(1/2) − ξXB

(1/2) = 1 − e−1.

The models are chosen as follows:

1. XA ∼ LN(0, 1), XB ∼ LN(−1, 5);

2. XA ∼ LN(0, 1), XB ∼ Lt(−1, 5);

3. XA ∼ LN(0, 1), XB ∼ Lt(−0.5, 5);

4. XA ∼ LLog(0, 1), XB ∼ LU(−10, 5);
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5. XA ∼ LLap(2, 1), XB ∼ LGa(1, 1).

Each simulation experiment is ran for different sample sizes, nA and nB . In

each experiment, m = 999 permutations are used, except when nA = nB = 5; in

that case, all availablem = 252 permutations are used. The number of replicates in

each experiment is 10000. We expect the power to increase with increasing sample

sizes, and to approach 1 if the test is consistent.

In the following, we display the results obtained from simulation studies. Each

Table refers to one of the five models of interest above mentioned, and displays

permutation and asymptotic power. Different test statistics are displayed by row,

while every column refers to a different sample size.

Table 2.6 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
LN(−1, 5) case. While at large sample sizes all of the test statistics seem to ap-

proach 1, some differences can be seen at smaller sample sizes. It seems that the

test statistics T4, T5 and T6, that controlled better than the other ones the type I

error rate, are less powerful for the settings with sample sizes lower than 51. This

result could be due to the fact that these test statistics exploit (2.5), which, in these

setting, is not true, to estimate the variance of W .
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nA = nB

5 11 21 51 101

T1 αperm 0.2868 0.5320 0.7194 0.9365 0.9953

αasymp 0.2973 0.4979 0.6924 0.9296 0.9954

T2 αperm 0.2560 0.5315 0.7277 0.9416 0.9960

αasymp 0.3003 0.4662 0.6688 0.9214 0.9480

T3 αperm 0.2644 0.5326 0.7286 0.9417 0.9961

αasymp 0.3003 0.4662 0.6688 0.9214 0.9948

T4 αperm 0.2122 0.3713 0.5847 0.8908 0.9916

αasymp 0.3290 0.4380 0.6236 0.9009 0.9923

T5 αperm 0.2122 0.3713 0.5847 0.8908 0.9916

αasymp 0.2171 0.3033 0.4856 0.8516 0.9884

T6 αperm 0.2122 0.3713 0.5847 0.8908 0.9916

αasymp 0.1606 0.3167 0.5544 0.8888 0.9918

Table 2.6: Monte Carlo permutation and asymptotic power for the LN(0, 1) vs.

LN(−1, 5) case.
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Table 2.7 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
Lt(−1, 5) case. The power is uniformly higher for all of the tests than in the

previous case, and is above 0.90 even for nA = nB = 21. This could be due

to the lesser variability of a Lt(−1, 5) distribution with respect to a LN(−1, 5)

distribution, which makes it more clearly separated from a LN(0, 1) distribution.

nA = nB

5 11 21 51 101

T1 αperm 0.3975 0.7621 0.9537 0.9996 1.0000

αasymp 0.3891 0.7462 0.9501 0.9996 1.0000

T2 αperm 0.3393 0.7078 0.9414 0.9996 1.0000

αasymp 0.3840 0.6858 0.9313 0.9996 1.0000

T3 αperm 0.3494 0.7088 0.9417 0.9996 1.0000

αasymp 0.3840 0.6858 0.9313 0.9993 1.0000

T4 αperm 0.4124 0.7555 0.9472 0.9950 1.0000

αasymp 0.5492 0.7974 0.9543 0.9950 1.0000

T5 αperm 0.4124 0.7555 0.9472 0.9950 1.0000

αasymp 0.4860 0.7418 0.9378 0.9995 1.0000

T6 αperm 0.4124 0.7555 0.9472 0.9995 1.0000

αasymp 0.3991 0.7379 0.9447 0.9995 1.0000

Table 2.7: Monte Carlo permutation and asymptotic power for the LN(0, 1) vs.

Lt(−1, 5) case.
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Table 2.8 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
Lt(−0.5, 5) case. This setting is reported to compare how power changes with

respect to the previous case when a smaller shift in the median difference occurs.

As expected, the power is consistently lower across all of the test statistics, but it

is above 0.8 for all of the test statistics for sample sizes equal to or larger than 51.

nA = nB

5 11 21 51 101

T1 αperm 0.1653 0.3319 0.5281 0.8347 0.9794

αasymp 0.1835 0.3225 0.5176 0.8319 0.9795

T2 αperm 0.1513 0.3117 0.5163 0.8311 0.9787

αasymp 0.1864 0.2933 0.4840 0.8191 0.9784

T3 αperm 0.1582 0.3129 0.5186 0.8316 0.9788

αasymp 0.1864 0.2933 0.4840 0.8191 0.9784

T4 αperm 0.1686 0.3152 0.5050 0.8190 0.9769

αasymp 0.2652 0.3663 0.5313 0.8308 0.9783

T5 αperm 0.1686 0.3152 0.5050 0.8190 0.9769

αasymp 0.2359 0.3299 0.4965 0.8140 0.9771

T6 αperm 0.1686 0.3152 0.5050 0.8190 0.9769

αasymp 0.1794 0.3079 0.5007 0.8227 0.9778

Table 2.8: Monte Carlo permutation and asymptotic power for the LN(0, 1) vs.

Lt(−0.5, 5) case.
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Table 2.9 shows Monte Carlo results for the XA ∼ LLog(0, 1) vs. XB ∼
LU(−10, 5) case. In this case, quite different results occur for different test statis-

tics. In fact, as in the first setting, it seems that T1, T2 and T3 perform better than

T4, T5 and T6, with T1 achieving the highest power for all sample sizes. However,

all of the test statistics seem to achieve a reasonably good results (permutation

power over 0.7) for sample sizes equal to or larger than 21.

nA = nB

5 11 21 51 101

T1 αperm 0.4410 0.7609 0.9116 0.9959 0.9999

αasymp 0.1994 0.4539 0.8257 0.9940 0.9999

T2 αperm 0.3316 0.6909 0.8803 0.9922 0.9999

αasymp 0.2729 0.4255 0.6912 0.9668 0.9989

T3 αperm 0.3316 0.6909 0.8803 0.9922 0.9999

αasymp 0.2729 0.4255 0.6912 0.9668 0.9989

T4 αperm 0.2431 0.5032 0.7713 0.9847 0.9999

αasymp 0.4774 0.6422 0.8281 0.9889 0.9999

T5 αperm 0.2431 0.5032 0.7713 0.9847 0.9999

αasymp 0.2343 0.2842 0.4419 0.8445 0.9959

T6 αperm 0.2431 0.5032 0.7713 0.9847 0.9999

αasymp 0.0240 0.0523 0.4753 0.9758 0.9999

Table 2.9: Monte Carlo permutation and asymptotic power for the LLog(0, 1) vs.

LU(−10, 5) case.
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Table 2.10 shows Monte Carlo results for the XA ∼ LLap(2, 1) vs. XB ∼
LGa(1, 1) case. In this setting, it seems that exploiting the null hypothesis (2.5)

when estimating the variance ofW does not have a negative influence on the power

of the test statistics. For moderate to low sample sizes it even seems to have a pos-

itive effect, which is apparently in opposition to results obtained for previous set-

tings. Possibly, this might be due to the fact that in this setting variance estimation

is more stable even when computed under the null hypothesis.

nA = nB

5 11 21 51 101

T1 αperm 0.3939 0.5861 0.7854 0.9806 0.9998

αasymp 0.2340 0.4170 0.7080 0.9780 0.9998

T2 αperm 0.3333 0.4821 0.6541 0.9442 0.9992

αasymp 0.3382 0.4836 0.6924 0.9626 0.9996

T3 αperm 0.3333 0.4821 0.6541 0.9442 0.9992

αasymp 0.3382 0.4836 0.6924 0.9626 0.9996

T4 αperm 0.3840 0.6100 0.8113 0.9846 0.9999

αasymp 0.4851 0.6566 0.8302 0.9867 0.9998

T5 αperm 0.3840 0.6100 0.8113 0.9846 0.9999

αasymp 0.5430 0.7072 0.8653 0.9906 0.9999

T6 αperm 0.3840 0.6100 0.8113 0.9846 0.9999

αasymp 0.3839 0.5960 0.8071 0.9851 0.9998

Table 2.10: Monte Carlo permutation and asymptotic power for the LLap(2, 1) vs.

LGa(1, 1) case.
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Overall, it seems that all proposed test statistic show a reasonable power for all

the considered settings, with the best results obtained by T1, T2 and T3.

2.4 Pseudo-Studentized Statistics

In the Section 2.2, we have introduced Studentized statistics for testing hypothe-

ses on the difference of quantiles of two populations. The main feature of these

statistics is to be able to exploit the distributional properties of the sample mean

estimator and relationships between parameters to test hypotheses on quantiles,

therefore avoiding variance estimation of sample quantile estimators, which might

produce unstable results for small sample sizes. However, with the help of a few

approximations, the statistics above might assume a simpler form. In particular,

our aim in this Section is to produce test statistics which are approximately equiv-

alent to those of Section 2.2, but are entirely defined on the X scale, therefore

making data transformation unnecessary. In this Section, we will introduce such

statistics, which will be called “pseudo-Studentized” statistics, for testing (2.5),

and will show how their structure recalls closely that of a classic t-test. The novel

test statistics are defined under the conditions of the key case illustrated in Sec-

tion 2.3. As a starting point, consider τ = 1/2 and let us recall that, under the

assumptions of Section 2.3, the variance of W can be written as

V (W ) =
σ2YA
nA

1

g′(ξXA
(1/2))2

+
σ2YB
nB

1

g′(ξXB
(1/2))2

.

Our first step will be to try to express the quantity σYK , for K ∈ {A,B} as a func-

tion of parameters on the X scale. We will show that, indeed, a simple relationship

exists between σYK and the interquantile range of level ψK ∈ (0, 1/2) on the X

scale, i.e., the quantity ξXK
(1−ψK)− ξXK

(ψK), for K ∈ {A,B}. Let UK be the

standardized version of YK , i.e.,

UK =
YK − µYK
σYK

∼ pUK
(u),

so that E(UK) = 0 and V (UK) = 1. It is possible to show that linear relationship

exists between the quantiles of YK and those of UK . In fact, by definition of

quantiles, it holds that:

τ = P (UK ≤ ξUK
(τ)) = P

(
YK − µYK
σYK

≤ ξUK
(τ)

)
.
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This equivalence yields:

P (YK ≤ µYK + σYKξUK
(τ)) = τ,

i.e.,

ξYK (τ) = µYK + σYKξUK
(τ).

Consider a quantile difference on the YK scale, i.e., a quantity such as ξYK (1 −
ψK) − ξYK (ψK), with ψK ∈ (0, 1/2). This can be written in terms of a quantile

difference on the UK scale as:

ξYK (1− ψK)− ξYK (ψK) = µYK + σYKξUK
(1− ψK)− µYK − σYKξUK

(ψK)

= σYK (ξUK
(1− ψK)− ξUK

(ψK)).

On solving the above equation for σYK , we obtain the following result for the

standard deviation:

σYK =
ξYK (1− ψK)− ξYK (ψK)

ξUK
(1− ψK)− ξUK

(ψK)
,

i.e., the standard deviation of YK can be expressed as the ratio between an in-

terquantile range of level ψK ∈ (0, 1/2) of YK and the same quantity for its

standardized version UK . Note that this holds without any assumptions on the

distribution of YK , for K ∈ {A,B}.

A further simplification occurs if we take into account the symmetry of YK ,

and therefore of UK , thanks to which we can rewrite the above expression as:

σYK =
ξYK (1− ψK)− ξYK (1/2)

ξUK
(1− ψK)

.

This expression might be simplified on choosing an appropriate quantile level ψ∗K
such that ξUK

(1− ψK) = 1, i.e., ψ∗K = 1− P (UK ≤ 1). In this case:

σYK = ξYK (1− ψ∗K)− ξYK (1/2),

which, thanks to quantile invariance properties, can be rewritten as:

σYK = gK(ξXK
(1− ψ∗K))− gK(ξXK

(1/2)).

Therefore, we can express V (W ) as follows:

V (W ) =
∑

K∈{A,B}

(gK(ξXK
(1− ψ∗K))− gK(ξXK

(1/2)))2

nKg′(ξXK
(1/2))2

. (2.24)
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It is possible to provide an approximation of (2.24) by considering a Taylor

expansion of the function g(x) in a neighborhood of ξXK
(1/2) in order to have a

linear approximation for the expression of σYK :

g(x) = g(ξXK
(1/2)) + (x− ξXK

(1/2))g′(ξXK
(1/2)) + . . .

and therefore

g(x)− g(ξXK
(1/2))=̇(x− ξXK

(1/2))g′(ξXK
(1/2)).

Computation in ξXK
(1− ψ∗K) yields:

g(ξXK
(1− ψ∗K))− g(ξXK

(1/2))=̇(ξXK
(1− ψ∗K)− ξXK

(1/2))g′(ξXK
(1/2)),

where the linearization gives a good approximation if ξXK
(1 − ψ∗) is close to

ξXK
(1/2), i.e., if ψ∗ ≈ 1/2. Note that this condition might be in conflict with

the definition of ψ∗ given above. In fact, ψ∗ ≈ 1/2 if 1 − P (UK ≤ 1) ≈ 1/2,

i.e., if P (UK ≤ 1) ≈ 1/2. This means that the approximation is good when the

standardized random variable UK has the median close to 1, for K ∈ {A,B}. The

expression for the variance of W can then be approximated as:

V (W )=̇
(ξXA

(1− ψ∗A)− ξXA
(1/2))2

nA
+

(ξXB
(1− ψ∗B)− ξXB

(1/2))2

nB
. (2.25)

Approximation (2.25) has a simple structure, that resembles that of the denomi-

nator of a t-test. However, the dependence from the distribution of YK via the

parameter ψ∗K , for K ∈ {A,B}, still stands. We wish to find an estimator for this

parameter, but the most natural solution, i.e., deriving it from the empirical distri-

bution function of UA and UB , would be clearly impractical. A different possibility

exploits the reformulation of the standard deviation in terms of quantile level, i.e.,

of a parameter bounded in (0, 1/2). Therefore, it seems a reasonable choice to fix

a working quantile level qK ∈ (0, 1/2), for K ∈ {A,B}, to approximate the vari-

ability. A good guess could be to choose qK ≈ 1/2, for the reasons stated above.

Assuming that such a value could be found, in order to use the approximation for

the variance of W stated in (2.25), which is an unknown quantity, we need an es-

timator for it. Thanks to continuous mapping theorem, a suitable quantity for this
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task could be:

V̂A(W )=̇
∑

K∈{A,B}

(ξ̂XK
(1− qK)− ξ̂XK

(1/2))2

nK
,

which we might use to build an approximated “pseudo-Studentized” test statistic

TA, which under (2.5) could be written as:

TA =
W√
V̂A(W )

.

If the value of qK provides an accurate enough linear approximation through (2.22),

then goodness of the approximation relies only on goodness of the linearization of

g(·).

However, there is further room for improvement from the interpretability point

of view. In fact, the quantity W is still defined on the Y scale, and does not have

an immediate “natural” interpretation. Therefore, let us move a step further, and

try to replace W with an asymptotically equivalent estimator, based completely

on the X scale and with an immediate interpretation. For this aim, we will keep

the structure and the rationale behind it, but abandon the formal definition of a

Studentized statistic provided by Chung et al. (2013), introducing a new class of

tests, based on test TA obtained in the previous Section. The basic idea is to replace

W with the asymptotically equivalent quantity

QW (1/2) = ξ̂XA
(1/2)− ξ̂XB

(1/2).

As we have seen in Section 2.2, this quantity is asymptotically equivalent to W ,

since both are consistent for the quantile difference ξXA
(1/2)− ξXB

(1/2). In the

notation, we stress the dependence on the quantile level, as we will define the more

general statistic QW (τ), for τ ∈ (0, 1), further in this Section.

We introduce the pseudo-Studentized test statistic QT (1/2, ψ∗A, ψ
∗
B), defined

as follows:

QT (1/2, ψ∗A, ψ
∗
B) =

ξ̂XA
(1/2)− ξ̂XB

(1/2)− (ξXA
(1/2)− ξXB

(1/2))√
(ξXA

(1−ψ∗
A)−ξXA

(1/2))2

nA
+

(ξXB
(1−ψ∗

B)−ξXB
(ψB))2

nB

,
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with ψ∗K ∈ (0, 1/2), for K ∈ {A,B}. Under the null hypothesis (2.5), on fix-

ing the working level qK , for K ∈ {A,B}, and on consistently estimating the

denominator of QT (1/2, ψ∗A, ψ
∗
B), the pseudo-Studentized test statistic is:

QT (1/2, qA, qB) =
ξ̂XA

(1/2)− ξ̂XB
(1/2)√

(ξ̂XA
(1−qA)−ξ̂XA

(1/2))2

nA
+

(ξ̂XB
(1−qB)−ξ̂XB

(1/2))2

nB

. (2.26)

We notice that the structure of the test statistic (2.26) resembles closely that of

a Welch test, i.e., a generalisation of the t-test for the comparison of the means of

two heteroscedastic populations, which is usually written as:

TWelch =
XA −XB√

1
nA
S2
XA

+ 1
nB
S2
XB

.

Therefore the QT (1/2, qA, qB) statistic might be interpreted as a sort of quan-

tile version of the Welch t statistic, where the mean difference is replaced by a

median difference, and the standard deviation for each group is replaced by the

semi-interquantile range of level qK , for K ∈ {A,B}. The relationship between

different measures of variability, and in particular between standard deviation and

interquartile range has been explored in the literature, for example by DasGupta

& Haff (2006), who have provided the correlation between the two measures for

several distributions. The analogy of structure with a well-known and widely used

test statistic seems to improve the ease of interpretability, which in the genomic

setting can be viewed as a crucial point: since the biological interpretation of the

quantities in play is often complicated, we think it is a desirable property of the

statistical methods to leave the interpretability as intact as possible.

In order to apply QT (1/2, qA, qB) to hypothesis testing, its asymptotic distri-

bution can be derived. This will be the object of the the next Subsection; however,

we will do it for the generalised version QT (τ, qA, qB), for τ ∈ (0, 1), which we

define in the following. As a preliminary step, we define

QW (τ) = ξ̂XA
(τ)− ξ̂XB

(τ),

Then, under the null hypothesis (2.5), the generalised pseudo-Studentized test

statistic is defined as

QT (τ, qA, qB) =
ξ̂XA

(τ)− ξ̂XB
(τ)√

(ξ̂XA
(1−qA)−ξ̂XA

(1/2))2

nA
+

(ξ̂XB
(1−qB)−ξ̂XB

(1/2))2

nB

. (2.27)
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We will derive its asymptotic distribution and study its properties in the next Sub-

section.

Remark: If the sample size is low, p-values can be computed via resampling

methods such as permutation or the bootstrap. Unlike results we have seen in

Chapter 2, results of Chung et al. (2013) are not a reason in this case to privilege

permutation methods, since the structure of a properly Studentized statistic is not

matched by QT (τ, qA, qB).

Remark: A simplified version of QT (τ, qA, qB) can be produced when the

distribution in the two samples can be assumed to be the same, at least in the

quantiles ξXK
(1− qK) and ξXK

(qK), for K ∈ {A,B}. Assuming that nA = nB ,

the simplified test statistic can be defined, under the null hypothesis, as:

QT (τ, q) =
ξ̂XA

(τ)− ξ̂XB
(τ)

ξ̂X(1− q)− ξ̂X(q)
,

whereX is the pooled sample. The choice of pooling the samples seems reasonable

under the assumption of equal distribution in the two populations. The asymptotic

normality of QT (τ, q) can be proven as follows. Thanks to independence of the

two samples, its numerator is asymptotically normal, if the sample sizes converge

at a comparable rate, i.e. if nA/nB → c 6= 0. In this case,

(ξ̂XA
(τ)− ξ̂XB

(τ))− (ξXA
(τ)− ξXB

(τ))∼̇N

(
0,
σ2XA

(τ)

nA
+
σ2XB

(τ)

nB

)
,

with σ2XK
(τ) defined as in (2.6), for K ∈ {A,B}. Moreover, the Cramér and

Wold device shows that the denominator of QT (τ, q) converges in probability as

follows:
√
n((ξ̂X(1− q)− ξ̂X(q))− (ξX(1− q)− ξX(q)))

d−→ N(0, σ2X(q)),

where

σ2X(q) =
q(1− q)

fX(ξX(1− q))2
+

q(1− q)
fX(ξX(q))2

− (1− q)2

fX(ξX(q))fX(ξX(1− q))
and fX is the density function for the pooled sample. The result implies conver-

gence in probability:

ξ̂X(1− q)− ξ̂X(q)
p−→ ξX(1− q)− ξX(q).
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Asymptotic normality of QT (τ, q) is now guaranteed by Slutsky’s Theorem. Pro-

vided that ξX(1− q)− ξX(q) 6= 0, one has that, under (2.5):

QT (τ, q)∼̇N
(
0, ω2

)
where

ω2 =

σ2
XA

(τ)

nA
+

σ2
XB

(τ)

nB

(ξX(1− q)− ξX(q))2
.

Therefore, if nA and nB are sufficiently large, one can use the asymptotic distri-

bution to compute p-values for QT (τ, q). However, the above mentioned problem

of density estimation would persist. In this case, a proper Studentization is not

available and therefore results of Chung et al. (2013) do not apply. Moreover,

the denominator of QT (τ, q) is invariant with respect to data permutation, which

would make permutation p-values equal to those computed for the numerator only.

An alternative option is to compute p-values via bootstrap resampling, although

behaviour of unconditional type I error levels remains to be studied.

2.4.1 Asymptotic Distribution of QT (τ, qA, qB)

We have recalled in Chapter 2 the asymptotic distribution of quantile estimators.

As a direct consequence, the following asymptotic result holds:

QW (τ)∼̇N

(
ξXA

(τ)− ξXB
(τ),

τ(1− τ)

nAp2XA
(ξXA

(τ))
+

τ(1− τ)

nBp2XB
(ξXB

(τ))

)
,

provided that the sample sizes converge at a comparable rate, i.e. if nA/nB →
c 6= 0 when nK → ∞, for K ∈ {A,B}. The denominator of QT (τ, qA, qB)

converges in probability, as can be shown by using asymptotic joint distribution of

quantiles together with Cramer and Wold device, which reduces the convergence

of multivariate distribution functions to the convergence of univariate distribution

functions. As a preliminary result, we show that:

√
nK(ξ̂XK

(1− qK)− ξ̂XK
(1/2)− (ξXK

(1− qK)− ξXK
(1/2)))

d−→ N(0, σ2Q),

where

σ2Q =
qK(1− qK)

pXK
(ξXK

(1− qK))2
+

1/4

pXK
(ξXK

(1/2))2
− (1− qK)

pXK
(ξXK

(1− qK))pXK
(ξXK

(1/2))
.
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Note that we are not treating qK as an estimator, but not as a non-random ap-

proximation of ψ∗K , for K ∈ {A,B}. The previous result implies convergence in

probability of the quantity ξ̂XK
(1− qK)− ξ̂XK

(1/2):

ξ̂XK
(1− qK)− ξ̂XK

(1/2)
p−→ ξXK

(1− qK)− ξXK
(1/2),

and therefore continuous mapping theorem guarantees that the denominator of

QT (τ, qA, qB) converges in probability:√
(ξ̂XA

(1− qA)− ξ̂XA
(1/2))2

nA
+

(ξ̂XB
(1− qB)− ξ̂XB

(1/2))2

nB

p−→ w,

where

w =

√
(ξXA

(1− qA)− ξXA
(1/2))2

nA
+

(ξXB
(1− qB)− ξXB

(1/2))2

nB
.

Asymptotic normality ofQT (τ, qA, qB) is then proven by Slutsky’s Theorem. Pro-

vided that ξXK
(1− qK)− ξXK

(1/2) 6= 0 for K ∈ {A,B}, one has that, under the

null hypothesis (2.5),

QT (τ, qA, qB)∼̇N

(
0,

1

w2

(
τ(1− τ)

nAp2XA
(ξXA

(τ))
+

τ(1− τ)

nBp2XB
(ξXB

(τ))

))
.

This result allows us to use the standardized version of QT (τ, qA, qB) as a

pivotal quantity for hypothesis testing when nA and nB are sufficiently large. Un-

fortunately, this would require estimation of the density function at the quantile of

interest, which rises problems similar to those encountered in Chapter 2. Neverthe-

less, we can resort to resampling methods. We will investigate the performances of

QT (τ, qA, qB) in terms of type I error rate control and power, for the same models

seen in Chapter 2, evaluating also the choices of the parameter qK , K ∈ {A,B}.

2.4.2 Simulation Studies: Type I Error Rate Control

In this Section, we will perform tests on the median of the distribution, i.e., we

assume τ = 1/2, under the same models of Subsection 2.3.1, and we simulate two

independent samples of size nA and nB from the following models:

1. XA ∼ LN(0, 1), XB ∼ LN(0, 5) (see example 2.3.1);
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2. XA ∼ LN(0, 1), XB ∼ Lt(0, 5) (see example 2.3.2);

3. XA ∼ LLog(0, 1), XB ∼ LU(−10, 10) (see example 2.3.3);

4. XA ∼ LN(−0.003, 1), XB ∼MD(0, 1,−3, 1, 0.999) for robustness;

5. XA ∼ LLap(log(2), 1), XB ∼ LGa(1, 1) (see example 2.3.4), which does

not satisfy the assumptions of the key case.

We choose qA = qB = q and compute the QT (1/2, q, q) statistics for q ∈
{0.10, 0.25, 0.40, 0.45}. In each simulation experiment, m = 999 permutations

are used to compute p-values, except when nA = nB = 5; in that case, all avail-

able m = 252 permutations are used. The number of replicates in each simulation

experiment is 10000. Samples are generated under the null hypothesis (2.5).

In the following, we will display the results obtained from simulation studies.

Each Table refers to one of the five models of interest above mentioned, and dis-

plays permutation type I error rates. Different test statistics are displayed by row,

while every column refers to a different sample size.

Table 2.11 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
LN(0, 5) case. Type I error rate is closer to the nominal one for low sample sizes

for q ∈ {0.25, 0.40, 0.45} than for q = 0.10. As expected, best results are obtained

for a value of q closer to 0.50. It is worth noting that even a little shift in the value

of q has a relevant impact on the estimated type I error rate, especially for larger

sample sizes. It also seems that the test statistics are more conservative for larger

value of nA and nB .

Table 2.12 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
Lt(0, 5) case. A more similar behaviour than in the previous caseis observed for

all of the four considered test statistics. Results are also more stable for differ-

ent sample sizes. This reflects the greater similarity of the distributions in the two

groups compared to those of the previous case.

Table 2.13 shows Monte Carlo results for the XA ∼ LLog(0, 1) vs. XB ∼
LU(−10, 10) case. The behaviour of the four test statistics is quite different, and
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nA = nB

5 11 101 1001 5001

QT (0.5, 0.10, 0.10) αperm 0.0386 0.0358 0.0166 0.0102 0.0068

QT (0.5, 0.25, 0.25) αperm 0.0523 0.0541 0.0299 0.0212 0.0147

QT (0.5, 0.40, 0.40) αperm 0.0523 0.0576 0.0534 0.0445 0.0353

QT (0.5, 0.45, 0.45) αperm 0.0523 0.0576 0.0629 0.0502 0.0423

Table 2.11: Monte Carlo permutation and asymptotic type I error rates for the

LN(0, 1) vs. LN(0, 5) case under ξXA
(1/2) = ξXB

(1/2). Nominal type I error

rate α = 0.05.

nA = nB

5 11 101 1001 5001

QT (0.5, 0.10, 0.10) αperm 0.0397 0.0463 0.0466 0.0461 0.0437

QT (0.5, 0.25, 0.25) αperm 0.0353 0.0493 0.0474 0.0507 0.0482

QT (0.5, 0.40, 0.40) αperm 0.0353 0.0462 0.0491 0.0516 0.0478

QT (0.5, 0.45, 0.45) αperm 0.0353 0.0462 0.0505 0.0519 0.0487

Table 2.12: Monte Carlo permutation and asymptotic type I error rates for the

LN(0, 1) vs. Lt(0, 5) case under ξXA
(1/2) = ξXB

(1/2). Nominal type I error

rate α = 0.05.

it seems that the type I error rate is not controlled by most test statistics. However,

the test statistics employing q = 0.45 performs slightly better than the other ones

for larger sample sizes. A possible explanation might be in the approximation re-

quired in the construction of QT (τ, q), which might be less accurate than for the

previous cases for these specific distributions.

Table 2.14 shows Monte Carlo results for theXA ∼ LN(−0.003, 1) vs. XB ∼
MD(0, 1,−3, 1, 0.999) case. The four statistics all produce a type I error rate

which is stable with respect with a small contamination of the data.
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nA = nB

5 11 101 1001 5001

QT (0.5, 0.10, 0.10) αperm 0.0365 0.0249 0.0002 0.0000 0.0000

QT (0.5, 0.25, 0.25) αperm 0.0819 0.0489 0.0022 0.0000 0.0000

QT (0.5, 0.40, 0.40) αperm 0.0819 0.0900 0.0555 0.0067 0.0016

QT (0.5, 0.45, 0.45) αperm 0.0819 0.0900 0.1032 0.0361 0.0192

Table 2.13: Monte Carlo permutation and asymptotic type I error rates for the

LLog(0, 1) vs. LU(−10, 10) case under ξXA
(1/2) = ξXB

(1/2). Nominal type I

error rate α = 0.05.

nA = nB

5 11 101 1001 5001

QT (0.5, 0.10, 0.10) αperm 0.0409 0.0494 0.0514 0.0483 0.0504

QT (0.5, 0.25, 0.25) αperm 0.0361 0.0499 0.0517 0.0477 0.0504

QT (0.5, 0.40, 0.40) αperm 0.0361 0.0429 0.0514 0.0485 0.0501

QT (0.5, 0.45, 0.45) αperm 0.0409 0.0429 0.0511 0.0495 0.0510

Table 2.14: Monte Carlo permutation and asymptotic type I error rates for the

LN(−0.003, 1) vs MD(0, 1,−3, 1, 0.999) case under ξXA
(1/2) = ξXB

(1/2).

Nominal type I error rate α = 0.05.

Table 2.15 shows Monte Carlo results for the XA ∼ LLap(log(2), 1) vs.

XB ∼ LGa(1, 1) case. Type I error rates seem very close to the nominal one

for all the considered statistics, even for moderate to low sample sizes, even when

the assumption of the key case presented in Section 2.3 do not hold.

Overall, it seems that control of type I error is guaranteed in all the considered

settings, at least for the test statistics whose values of q are closer to 0.50, apart

from the LLog(0, 1) vs LU(−10, 10) case. In this case, it seems that most of the

test statistics provide liberal estimates of the type I error rate for small sample sizes

and very conservative estimates of the type I error rate for moderate to large sample

sizes. This is particularly true for q ∈ {0.10, 0.25}. This can be explained by the
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nA = nB

5 11 101 1001 5001

QT (0.5, 0.10, 0.10) αperm 0.0297 0.0432 0.0447 0.0488 0.0497

QT (0.5, 0.25, 0.25) αperm 0.0314 0.0419 0.0438 0.0478 0.0494

QT (0.5, 0.40, 0.40) αperm 0.0314 0.0436 0.0448 0.0476 0.0490

QT (0.5, 0.45, 0.45) αperm 0.0314 0.0436 0.0476 0.0472 0.0492

Table 2.15: Monte Carlo permutation and asymptotic type I error rates for the

LLap(log(2), 1) vs LGa(1, 1) case under ξXA
(1/2) = ξXB

(1/2). Nominal type I

error rate α = 0.05.

fact that the Taylor approximation might not work well in this case. For the other

settings:

1. when q ∈ {0.40, 0.45}, control of the type I error rate seems guaranteed

across different sample sizes larger than 5, and it is usually slightly conser-

vative for nA = nB = 5 (except for the LN(0, 1) vs LN(0, 5) case);

2. a similar behaviour is observed when q ∈ {0.10, 0.25}, but for the LN(0, 1)

vsLN(0, 5) case test statistics seem very conservative for large sample sizes.

In the next Subsection, we will evaluate power of the QT (τ, qA, qB) test statis-

tics for the same models.

2.4.3 Simulation Studies: Power

In order to assess the power of the proposed statistics, we choose the same mod-

els proposed in the analogous Subsection 2.3.2, i.e., we simulate two independent

samples of size nA and nB from the following models:

1. XA ∼ LN(0, 1), XB ∼ LN(−1, 5);

2. XA ∼ LN(0, 1), XB ∼ Lt(−1, 5);

3. XA ∼ LN(0, 1), XB ∼ Lt(−0.5, 5);

4. XA ∼ LLog(0, 1), XB ∼ LU(−10, 5);
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5. XA ∼ LLap(2, 1), XB ∼ LGa(1, 1).

We report results for the same test statistics considered in Subsection 2.4.2, i.e.,

for QT (1/2, qA, qB) with qA = qB = q ∈ {0.10, 0.25, 0.40, 0.45}. In each sim-

ulation experiment, m = 999 permutations are used, to compute p-values, except

when nA = nB = 5; in that case, all available m = 252 permutations are used.

The number of replicates in each simulation experiment is 10000.

In the following, we report Tables containing the estimated permutation power

of the test statistics for each of the above mentioned settings. In each Table, each

row refers to a different test statistic, while each column refers to a different sam-

ple size. The permutation power is computed as the number of times that the null

hypothesis would be rejected, with a threshold α = 0.05.

Table 2.16 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
LN(−1, 5) case. All of the test statistics provide power that goes to 1 for large

sample sizes, with the highest power provided when q = 0.25 (which also led con-

servative type I error rates) for all sample sizes.

nA = nB

5 11 21 51 101

QT (0.5, 0.10, 0.10) αperm 0.1532 0.2287 0.3840 0.6589 0.8999

QT (0.5, 0.25, 0.25) αperm 0.1473 0.2689 0.4209 0.7624 0.9582

QT (0.5, 0.40, 0.40) αperm 0.1473 0.2139 0.3821 0.7575 0.9453

QT (0.5, 0.45, 0.45) αperm 0.1473 0.2139 0.3053 0.6946 0.9362

Table 2.16: Monte Carlo permutation power for the LN(0, 1) vs. LN(−1, 5) case.

Table 2.17 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
Lt(−1, 5) case. The power of all of the statistics is higher than in the previous

case, similarly to what we noticed for the Tj , for j = 1, . . . , 6 test statistics, possi-

bly due to the clearer separations between the two distributions generating the data.

Highest power is achieved at all sample sizes when q = 0.10.
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nA = nB

5 11 21 51 101

QT (0.5, 0.10, 0.10) αperm 0.3399 0.5401 0.8069 0.9945 1.0000

QT (0.5, 0.25, 0.25) αperm 0.2044 0.4606 0.7105 0.9827 1.0000

QT (0.5, 0.40, 0.40) αperm 0.2044 0.3175 0.5621 0.9154 0.9976

QT (0.5, 0.45, 0.45) αperm 0.2044 0.3175 0.4432 0.8579 0.9868

Table 2.17: Monte Carlo permutation power for the LN(0, 1) vs. Lt(−1, 5) case.

Table 2.18 shows Monte Carlo results for the XA ∼ LN(0, 1) vs. XB ∼
Lt(−0.5, 5) case. As expected, there is some loss in power with respect to the

previous case, due to a smaller shift in the medians for the two groups. A power of

about 0.80 or higher is obtained for all of the test statistics only for a sample size

of 101. The best results are provided when q ∈ {0.10, 0.25}.

nA = nB

5 11 21 51 101

QT (0.5, 0.10, 0.10) αperm 0.1455 0.2308 0.3693 0.6898 0.9112

QT (0.5, 0.25, 0.25) αperm 0.1025 0.2084 0.3267 0.6602 0.8945

QT (0.5, 0.40, 0.40) αperm 0.1025 0.1578 0.2660 0.5722 0.8466

QT (0.5, 0.45, 0.45) αperm 0.1025 0.1578 0.2211 0.5051 0.7930

Table 2.18: Monte Carlo permutation power for theLN(0, 1) vs. Lt(−0.5, 5) case.

Table 2.19 shows Monte Carlo results for the XA ∼ LLog(0, 1) vs. XB ∼
LU(−10, 5) case. We report them for completeness, even though in this case

it seemed from the previous Subsection that control of type I error rate is not

achieved. Power seems to achieve 1 for large sample sizes for all of the test statis-

tics, with QT (0.5, 0.40, 0.40) providing the highest power for most sample sizes.

Table 2.20 shows Monte Carlo results for the XA ∼ LLap(2, 1) vs. XB ∼
LGa(1, 1) case. The permutation power for all of the test statistics approaches 1
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nA = nB

5 11 21 51 101

QT (0.5, 0.10, 0.10) αperm 0.1484 0.2083 0.3194 0.5728 0.8546

QT (0.5, 0.25, 0.25) αperm 0.1812 0.2644 0.3948 0.7011 0.8950

QT (0.5, 0.40, 0.40) αperm 0.1812 0.2455 0.4157 0.7929 0.9554

QT (0.5, 0.45, 0.45) αperm 0.1812 0.2455 0.3476 0.7394 0.9607

Table 2.19: Monte Carlo permutation power for the LLog(0, 1) vs LU(−10, 5)

case.

for large sample sizes, with QT (0.5, 0.10, 0.10) providing the highest power al-

most always across different sample sizes.

nA = nB

5 11 21 51 101

QT (0.5, 0.10, 0.10) αperm 0.3662 0.5651 0.8069 0.9844 1.0000

QT (0.5, 0.25, 0.25) αperm 0.2398 0.5238 0.7967 0.9891 1.0000

QT (0.5, 0.40, 0.40) αperm 0.2398 0.4034 0.6804 0.9643 1.0000

QT (0.5, 0.45, 0.45) αperm 0.2398 0.4034 0.5459 0.9308 0.9988

Table 2.20: Monte Carlo permutation power for the LLap(2, 1) vs LGa(1, 1) case.

Overall, it seems that all of the test statistics are consistent, i.e., that their power

approaches 1 when the sample sizes increase. The sample sizes required in or-

der to obtain a reasonably good power (say over 0.80) vary considerably for the

different models. For the LLap(2, 1) vs LGa(1, 1) case good power results are

achieved for most statistics already when nA = nB = 21, while for the LN(0, 1)

vs. Lt(−0.5, 5) case possibly a sample size of 51 or even 101 is needed. Overall,

it seems that the test statistics employing q ∈ {0.10, 0.25} provide higher power

than the other ones for most cases.
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2.5 Final Remarks

In this Chapter, we have built Studentized statistics for the comparison of two

groups. After having defined them for a very general case, we have derived sim-

plified versions for a specific key case, i.e., when both samples can be transformed

by the same function in order to obtain a distribution for which ξXK
(τ) = µYK

holds. Under these assumptions, we have assessed performances of the test statis-

tics in terms of type I error control rate and power. Our main findings may be

summarized as follows:

• it seems that all the proposed statistics perform well in most of the considered

statistical models, both in terms of type I error control rate and power, even

if with several differences between them;

• statistics T4, T5 and T6 achieve the best type I error rate control. This can be

due to the fact that their variance estimators take into account the fact that

data are generated under the null hypothesis. They also provide the same

permutation p-values, as noted in Subsection 2.3.1;

• statistics T1, T2 and T3 achieve the best power for most of the considered

models.

Afterwards, we have defined a t-test-like Pseudo-Studentization, entirely based

on quantiles on the X scale. Preliminary results show that also these test statistics

perform well for most proposed models, both in terms of control of the type I error

rate, for which a small value of the parameters qA and qB seems necessary, and in

terms of power.
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Appendix

In this Appendix we will report, with minor modifications, Theorem 2.2 in Chung

et al. (2013), and prove that the main conditions hold for the statistics T to T6,

taking T as an example.

Permutation Distribution of S

Assume YK1, . . . , YKnK
are i.i.d. with distribution function PYK , forK ∈ {A,B},

independent from each other. Assume also that the vector of all observations Y =

(YA1, . . . , YAnA
, YB1, . . . , YBnB

) can be interpreted as a vector of i.i.d. random

variables from the mixture population, i.e. with distribution functionP Y = qPYA+

(1−q)PYB , with q ∈ (0, 1), where V (Y ) <∞. Consider testingH0 : θA = θB for

some parameter of interest θK . For this purpose, consider θ̂K , an asymptotically

linear estimator for θK , i.e, an estimator such that there exist functions lK(·) such

that:

n
1/2
K (θ̂K − θK) =

1√
n

nK∑
i=1

lK(YKi) + oP (1),

under PYK , and the same holds for the mixture population Y ∼ P Y . The functions

lK(·) must be such that E(lK(YKi)) = 0 and E(l2K(YKi)) < ∞, both under PYK
and under P Y . A Studentized statistic is then defined as:

S =
n1/2(θ̂A − θ̂B)√
n
nA
σ̂2YA −

n
nB
σ̂2YB

,

where σ̂2YK is a consistent estimator of σ2YK , and σ̂2YK is consistent also for σ2Y when

Y1, . . . , Yn are i.i.d. from P Y . Let nA → ∞, nB → ∞, with nA/n → q ∈ (0, 1)

and nA/n− q = O(n−1/2). Define the permutation distribution of S as

R̂S(s) =
1

n!

∑
π∈Gn

I
{
S
(
Yπ(1), . . . , Yπ(n)

)
≤ s
}

where {π(1), . . . , π(n)} is any permutation of {1, . . . , n}, and Gn is the set of all

the permutations π of {1, . . . , n}. Then it holds that

sup
s
|R̂S(s)− Φ(s)| p−→ 0.

Therefore the permutation distribution of S is asymptotically standard Normal, as

is its true unconditional limiting distribution.
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Computation of S permutation p-value

An exact level α permutation test can be constructed as follows: for each permuta-

tion π ∈ Gn, compute the statistic S(Y ), and let their ordered values be:

S(1)(Y ), . . . , S(n!)(Y )

Fix a nominal level α ∈ (0, 1) and let k = n!− [αn!], where [a] denotes the largest

integer less or equal to a. Let M+(Y ) = #{S(j)(Y ) : S(j)(Y ) > S(k)(Y ), j =

1 . . . , n!} and M0(Y ) = #{S(j)(Y ) : S(j)(Y ) = S(k)(Y ), j = 1 . . . , n!}, where

#{A} is the cardinality of set A. The randomization test function is defined as:

φ(Y ) =


1 if S > S(k)(Y )

αn!−M+(Y )

M0(Y )
if S = S(k)(Y )

0 if S < S(k)(Y )

and E(φ(Y )) = α exactly.

To compute the permutation p-value of S, we refer to the general theory of

permutation tests, keeping in mind the observations of Smyth & Phipson (2011) to

make sure that the permutation p-values are never null. We will assume that the

YKi are all distinct, so that the test statistic can assume n! possible distinct values,

with equal probability. The original idea of permutation tests was that all possible

permutations would be enumerated (Fisher, 1935). However n! can be very large

even for moderate sample sizes. In this case, it is common practice to examine

a random subset of the possible permutations, of size m ≤ n!. Then the exact

permutation p-value is:

pperm =
b+ 1

m
,

where b is the number of permutation S(j)(Y ) which are equally or further from

the null hypothesis than the observed S computed on the original sample. The

quantity pperm converges to the asymptotic p-value for large n.

Asymptotic Linearity of ξ̃XK
(τ)

We will now prove that the quantity ξ̃XK
(τ) = fK(Y K) is asymptotically linear

in the sense of Theorem 2.2 in Chung et al. (2013). From a Taylor expansion,

centered in µYK and computed in Y K , we have that:
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fK(Y K) = fK(µYK ) + (Y K − µYK )f ′K(µYK )

+

∞∑
j=2

∂jfK(t)

∂tj

∣∣∣∣
t=µYK

(Y K − µYK )j

j!
.

This can be rewritten as:

fK(Y K)− fK(µYK ) =

nK∑
i=1

YKi − µYK
nK

f ′K(µYK )

+
∞∑
j=2

∂jfK(t)

∂tj

∣∣∣∣
t=µYK

(Y K − µYK )j

j!
,

and as:

n
1/2
K (fK(Y K)− fK(µYK )) = n

−1/2
K

nK∑
i=1

(YKi − µYK )f ′K(µYK )

+ n
1/2
K

∞∑
j=2

∂jfK(t)

∂tj

∣∣∣∣
t=µYK

(Y K − µYK )j

j!
.

Then we could define lK(YKi) = (YKi − µYK )f ′K(µYK ). We still have to prove

that

n
1/2
K

∞∑
j=2

∂jfK(t)

∂tj

∣∣∣∣
t=µYK

(Y K − µYK )j

j!
= oP (1).

Because of the weak law of large numbers,

Y K − µYK = oP (1),

and therefore

(Y K − µYK )j = oP (1).

Since the other quantities are non-random, it also holds that:

∂jfK(t)

∂tj

∣∣∣∣
t=µYK

(Y K − µYK )j

j!
= oP (1).

The sum of the quantities above is dominated in probability by the j = 2 term, i.e.,
∞∑
j=2

∂jfK(t)

∂tj

∣∣∣∣
t=µYK

(Y K − µYK )j = oP (1)

And finally, since n−1/2K = o(1),

1
√
nK

∞∑
j=2

∂jfK(t)

∂tj

∣∣∣∣
t=µYK

(Y K − µYK )j = oP (1).

Therefore, ξ̃XK
(τ) is an asymptotically linear estimator.
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Additional Simulation Studies

While performing initial simulation studies, we also generated data under the hy-

pothesis of equal distribution of the two populations, pXA
= pXB

. In these cases,

permutation p-values not only approach asymptotically the actual ones, but are also

exact for finite sample sizes (Chung et al., 2013). This was done for some of the

models considered in Subsection 2.3.1, i.e.,

1. XK ∼ LN(0, 1), for K ∈ {A,B};

2. XK ∼ LN(0, 5), for K ∈ {A,B};

3. XK ∼ Lt(0, 5), for K ∈ {A,B};

4. XK ∼MD(0, 1,−3, 1, 0.999), for K ∈ {A,B};

5. XK ∼ LGa(1, 1), for K ∈ {A,B}.

In each simulation experiment, m = 999 permutations are used to compute

p-values, except when nA = nB = 5; in that case, all available m = 252 permuta-

tions are used. The number of replicates in each simulation experiment is 1000.

In the following, we will display the results obtained from simulation studies.

Each Table refers to one of the five models of interest above mentioned, and dis-

plays permutation and asymptotic type I error rates. Different test statistics are

displayed by row, while every column refers to a different sample size. It seems

that, for most models, the type I error is closer to the nominal one even for low

sample sizes, as expected.
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Table 2.21 shows Monte Carlo results for the XK ∼ LN(0, 1) case, for K ∈
{A,B}. As expected, permutation type I error rates seem much closer to the nom-

inal type I error rate even for low sample sizes.

nA = nB

5 11 101 1001 5001

T1 αperm 0.047 0.044 0.038 0.049 0.052

αasymp 0.057 0.037 0.040 0.048 0.049

T2 αperm 0.049 0.051 0.036 0.050 0.052

αasymp 0.066 0.049 0.041 0.047 0.049

T3 αperm 0.054 0.051 0.036 0.055 0.052

αasymp 0.066 0.049 0.041 0.047 0.049

T4 αperm 0.047 0.041 0.038 0.049 0.052

αasymp 0.083 0.052 0.044 0.048 0.049

T5 αperm 0.047 0.041 0.038 0.049 0.052

αasymp 0.084 0.060 0.045 0.048 0.049

T6 αperm 0.047 0.041 0.038 0.049 0.052

αasymp 0.058 0.041 0.042 0.048 0.049

Table 2.21: Monte Carlo permutation and asymptotic type I error rates for the

LN(0, 1) case under pXA
= pXB

. Nominal type I error rate α = 0.05.
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Table 2.22 shows Monte Carlo results for the XK ∼ LN(0, 5) case, for K ∈
{A,B}. Also in this case, as expected, permutation type I error rates seem much

closer to the nominal type I error rate even for low sample sizes.

nA = nB

5 11 101 1001 5001

T1 αperm 0.049 0.052 0.038 0.050 0.052

αasymp 0.022 0.008 0.033 0.046 0.049

T2 αperm 0.052 0.059 0.040 0.051 0.052

αasymp 0.062 0.049 0.035 0.048 0.049

T3 αperm 0.058 0.059 0.040 0.051 0.052

αasymp 0.062 0.049 0.035 0.048 0.049

T4 αperm 0.047 0.041 0.038 0.049 0.052

αasymp 0.106 0.068 0.046 0.049 0.049

T5 αperm 0.047 0.041 0.038 0.049 0.052

αasymp 0.127 0.081 0.045 0.050 0.050

T6 αperm 0.047 0.041 0.038 0.049 0.052

αasymp 0.022 0.021 0.037 0.048 0.049

Table 2.22: Monte Carlo permutation and asymptotic type I error rates for the

LN(0, 5) case under pXA
= pXB

. Nominal type I error rate α = 0.05.
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Table 2.23 shows Monte Carlo results for the XK ∼ Lt(0, 5) case, for K ∈
{A,B}. Also in this case, as expected, permutation type I error rates seem much

closer to the nominal type I error rate even for low sample sizes.

nA = nB

5 11 101 1001 5001

T1 αperm 0.041 0.053 0.057 0.041 0.054

αasymp 0.042 0.036 0.057 0.038 0.053

T2 αperm 0.037 0.051 0.058 0.039 0.054

αasymp 0.057 0.046 0.058 0.040 0.054

T3 αperm 0.040 0.051 0.058 0.039 0.054

αasymp 0.057 0.046 0.058 0.040 0.054

T4 αperm 0.046 0.054 0.053 0.041 0.054

αasymp 0.076 0.062 0.059 0.038 0.053

T5 αperm 0.046 0.054 0.053 0.041 0.054

αasymp 0.085 0.066 0.059 0.040 0.054

T6 αperm 0.046 0.054 0.053 0.041 0.054

αasymp 0.051 0.050 0.057 0.038 0.053

Table 2.23: Monte Carlo permutation and asymptotic type I error rates for the

Lt(0, 5) case under pXA
= pXB

. Nominal type I error rate α = 0.05.
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Table 2.24 shows Monte Carlo results for the XK ∼ MD(0, 1,−3, 1, 0.999)

case, i.e., for the small contamination scenario, for K ∈ {A,B}. The property of

exactness for finite samples does not seem affected by a small contamination in the

data.

nA = nB

5 11 101 1001 5001

T1 αperm 0.057 0.049 0.038 0.053 0.043

αasymp 0.045 0.046 0.039 0.056 0.044

T2 αperm 0.050 0.047 0.038 0.052 0.043

αasymp 0.054 0.042 0.041 0.055 0.044

T3 αperm 0.052 0.047 0.038 0.052 0.043

αasymp 0.054 0.042 0.041 0.055 0.044

T4 αperm 0.058 0.052 0.039 0.053 0.043

αasymp 0.081 0.059 0.042 0.056 0.044

T5 αperm 0.058 0.052 0.039 0.053 0.043

αasymp 0.087 0.063 0.043 0.055 0.044

T6 αperm 0.058 0.052 0.039 0.053 0.043

αasymp 0.064 0.053 0.040 0.056 0.044

Table 2.24: Monte Carlo permutation and asymptotic type I error rates for the

MD(0, 1,−3, 1, 0.999) case under pXA
= pXB

. Nominal type I error rate α =

0.05.
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Table 2.25 shows Monte Carlo results for the XK ∼ LGa(1, 1) case, for K ∈
{A,B}. The property of exactness for finite samples seem to hold well even for this

setting, that does not satisfy the assumptions of the key case presented in Section

2.3.

nA = nB

5 11 101 1001 5001

T1 αperm 0.047 0.068 0.048 0.046 0.045

αasymp 0.016 0.033 0.047 0.047 0.046

T2 αperm 0.046 0.065 0.046 0.047 0.045

αasymp 0.065 0.099 0.110 0.123 0.114

T3 αperm 0.049 0.065 0.046 0.047 0.045

αasymp 0.065 0.099 0.115 0.123 0.114

T4 αperm 0.043 0.067 0.047 0.047 0.045

αasymp 0.071 0.077 0.052 0.048 0.046

T5 αperm 0.043 0.067 0.047 0.047 0.045

αasymp 0.128 0.127 0.118 0.123 0.113

T6 αperm 0.043 0.067 0.047 0.047 0.045

αasymp 0.050 0.064 0.051 0.048 0.046

Table 2.25: Monte Carlo permutation and asymptotic type I error rates for the

LGa(1, 1) case under pXA
= pXB

. Nominal type I error rate α = 0.05.





Chapter 3

Application to Microarray Data

3.1 An Introduction to Gene Differential Expression in
Microarray Data

A gene is currently defined as “a locatable region of genomic sequence, corre-

sponding to a unit of inheritance, which is associated with regulatory regions, tran-

scribed regions, and or other functional sequence regions” Pearson (2006). Gene

expression is the process by which information from a gene is used in the synthesis

of a functional gene product, such as RNA or proteins. Depending on the specific

cell they belong to, genes’ expression is regulated in a different way, so that spe-

cific needs of the cell are satisfied. However, differences in expression might be due

also, for example, to mutations in the genome or degenerative processes. The con-

sequence of abnormally high (or low) gene expressions can result in pathologies

(as in the case of deregulation of insuline expression) and in different responses

to drugs and treatments. Therefore, gene expression studies are a crucial tool for

understanding genes’ participation in biological processes (Alberts et al., 2013),

and to develop appropriate response to abnormal behaviours.

From a statistical point of view, a way to identify genes of potential interest

(i.e., genes that express differently between two conditions) is to collect data re-

garding several genes from different samples and identify which ones are consis-

tently either up- or down-regulated in the two groups. The groups might refer, for

example, to mutant and wild-type genes, healthy and sick tissues, or different arms
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of a clinical trial. DNA microarrays have been one of the technologies of choice for

this task. After early attempts in the 1980s, a focused use for gene profiling is first

reported in Schena et al. (1996). Since then, microarrays have been a major source

of information about gene expression, providing in the last two decades crucial in-

sights in important areas of biological investigation. Tailor-suited statistical tools

have grown together with the development and diffusion of data from microarray.

In fact, one of the most critical features of microarray experiments is the capabil-

ity of measuring the expression of a large number of genes simultaneously, while

the number of biological or technical replicates is usually kept quite small due to

practical reasons and economic constraints. Situations where tens of thousands of

genes are sampled over a few tens of biological or technical replicates are not infre-

quent. In this setting, the experimenter’s goal is usually to identify a small subset

of genes that show differential expression between the two groups of interest. The

selected genes will then be the object of further biological analysis, impractical or

impossible to be done over the original whole set of genes. Therefore, statistical

methods are necessary to identify genes that exhibit a “significantly” different be-

haviour in the two conditions.

The so-called “small n, large p” context, where n is the number of replicates

and p is the number of genes, together with the difficulty to find a shared sta-

tistical and biological definition of the complex concept of “differential expres-

sion”, makes the development of suitable statistical tools a delicate matter. In fact,

practice has shown that different methods, or even different versions of the same

method, can lead to quite different results, i.e., to the identification of different sets

of “differentially expressed” genes. As a consequence, statistical contributions

have been numerous and diverse. The earliest and simplest methods used to deem

a gene to be differentially expressed if its fold-change (the log ratio of the means

in the two groups) exceeded a prefixed threshold such as 2 (Schena et al., 1996).

Classical t-statistics and many subsequent modifications have improved the basic

fold-change methods by incorporating statistical variability in the process, there-

fore providing inference and introducing the concept of “statistical significance” to

the difference of gene expression between two groups of interest. Modifications of

the basic t-test have often aimed at “moderating” the value of the statistic by arti-

ficially increasing the variability of the genes, i.e., by increasing the denominator
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of the test statistic. The aim of this moderation is to reduce the significance of the

genes which might report a low variability only by chance, and therefore might be

identified as false positives in the search for differentially expressed genes. Among

the most notable examples, the SAM procedure introduced a stabilisation factor

for experimental variability (Tusher et al., 2001), later developed in the context

of an empirical Bayesian model by Efron et al. (2001). The Bayesian perspective

has been the instrument of choice also for Smyth et al. (2004), that developed an

alternative Bayesian framework for the moderation problem. The research on the

topic is still very active, and both modifications of the above methods and orig-

inal solutions have been proposed. For a comparison of different alternatives we

refer, for example, to Kooperberg et al. (2005), Jeffery et al. (2006) and Pan (2002).

However, we feel that some aspects of commonly used statistical procedures

have not been fully explored: possibly the need to quickly obtain biologically

meaningful results has sometimes made some of the properties of the test methods

not sufficiently investigated. Moreover, as we have mentioned in Chapter 2, trans-

formation of the data, which is often a routine step of these procedures, has often

the consequence of transforming also the statistical hypotheses under investigation,

but this phenomenon is not always acknowledged by researchers. Therefore, we

would like to propose the statistical test statistics developed in Chapter 2 as alterna-

tives to existing methods, capable of providing sound statistical inference, robust-

ness of interpretation with respect to data transformation, and not less importantly,

interpretable results. As a reference method, we will take the widespread SAM

statistic (Tusher et al., 2001), one of the earliest and still most used tools. The

choice is motivated by its extreme popularity in current literature: although it was

proposed in 2001 and many other statistical procedures for microarray data analy-

sis have been introduced since, the original SAM article has been cited more than

9000 times since its publication, and more than 400 times in 2014 alone, according

to Google Scholar indexes at the moment of the writing. However, we underline a

major difference between the SAM procedure and our proposed methods, i.e., the

former one is specifically designed for multiple hypothesis testing, while the latter

ones are univariate procedures. In the next Section, we provide an overview of the

SAM procedure and point out some aspects of interest; in the following Sections,

we compare the performance of some of our proposed test statistics to those of
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SAM in simulated and real-data experiments.

3.2 Overview of the SAM procedure

Assume the setting of Chapter 2, i.e., let XK1, . . . , XKnK
be two simple random

samples of size nK , independent from each other, from the density function pXK
,

forK ∈ {A,B}, and let n = nA+nB be the total sample size. Let YK1, . . . , YKnK

be the transformed samples on the Y scale, i.e., YKi = gK(XKi), with density

function pYK , mean µYK and variance σ2YK < ∞, for i ∈ {1, . . . , nK} and K ∈
{A,B}. Moreover, let p be the number of genes under investigation. The SAM

statistic is defined for the gene j as:

SAMj =
Y Aj − Y Bj

Sj + S0
, j = 1, . . . , p

where

Sj =

√
1

nA
+

1

nB
×

√
(nA − 1)S2

YAj
+ (nB − 1)S2

YBj

nA + nB − 2
, j = 1, . . . , p

and S0 is the so-called “fudge factor”, added for the aim of moderation. In the ex-

pressions above, Y Kj and S2
YKj

are the sample mean and the unbiased sample vari-

ance estimators for gene j, j = 1, . . . , p, and group K, K ∈ {A,B}, respectively.

The fudge factor is computed as a function of the empirical distribution of the Sj
values, often in a numerical way. In the original paper, the fudge factor is chosen in

such a way that minimises the coefficient of variation of the SAMj statistics, but

several different methods have been proposed, see for example Broberg (2002).

The aim of the fudge factor is to artificially increase the variance of genes with

very low variability, which might have happened only by chance due to low sam-

ple sizes. In fact, unstable estimates of the variance might provide an excessively

high level of significance for some genes, in some cases producing a “false posi-

tive”, i.e., a gene which is deemed by the procedure to be differentially expressed

while it is actually not.
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Of course, an explicit expression for the distribution of SAMj is not available,

neither for finite samples nor asymptotically. The Authors, therefore, resort to per-

mutation methods. According to the proposed procedure, a gene is deemed to be

differentially expressed if the difference between the observed value of SAMj and

its expected value computed over a number B of permuted samples is larger than

some moving threshold ∆. For each value of ∆, the False Discovery Rate (FDR)

proposed by Benjamini & Hochberg (1995) is computed, and the set of differen-

tially expressed genes is chosen according to an “acceptable” value of the FDR.

Permutation p-values can also be produced as a measure of statistical significance,

and genes that show an (adjusted) p-value lower than a prefixed threshold such as

α = 0.05 are deemed to be differentially expressed.

We argue that the procedure arises few controversial points. Firstly, the null

hypothesis under investigation is not explicitly stated, nor is it specified if data un-

dergo some kind of transformation before hypothesis testing. Therefore, it is not

immediate to compare the procedure to other methods testing equivalent hypothe-

ses. In the following, we assume that the SAM procedure tests equality of the

means after a logarithmic transformation, which seems a reasonable choice since

the test statistic is based on a t-test statistic. Under this assumption, results ob-

tained in the following for the SAM procedure are comparable to those provided

in Chapter 2 of this Thesis. Although a permutation procedure requires the distri-

bution in the two samples to be the same, the so-called randomisation hypothesis

in Lehmann & Romano (2006), to guarantee control of type I error rates, the SAM

procedure proves to be very robust with respect to deviations from this hypothesis.

Its power depends on the underlying models, but in all cases approaches 1 for large

enough sample sizes. We report results concerning type I error rates and power in

Table 3.1 and Table 3.2, respectively, for the same models considered in Chapter 2.

A second point of concern is that the fudge factor is computed over the whole

set of the genes. This is done with the aim of having as a moderation factor a

quantity produced by taking into account all the genes present in the experiments,

but can be also be a source of irreproducibility of results. In fact, a different data

set might produce different value of the SAMj statistic even if the observed data

for the gene j were exactly the same, due to the presence of different genes in the
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nA = nB

5 11 101 1001 5001

LN(0, 1) vs LN(0, 5) 0.0555 0.0498 0.0480 0.0499 0.0464

LN(0, 1) vs Lt(0, 5) 0.0522 0.0511 0.0501 0.0485 0.0466

LLog(0, 1) vs LU(−10, 10) 0.0617 0.0538 0.0529 0.0484 0.0532

LN(0, 1) vs 0.0548 0.0497 0.0528 0.0463 0.0498

MD(0, 1,−3, 1, 0.999)

LLap(log(2), 1) vs 0.0572 0.0551 0.0529 0.0505 0.0488

LGa(log(2), 1)

Table 3.1: Monte Carlo permutation type I error rates for the SAM procedure for

the models of Chapter 2 under ξXA
(1/2) = ξXB

(1/2). Nominal type I error rate

α = 0.05.

nA = nB

5 11 101 1001 5001

LN(0, 1) vs LN(−1, 5) 0.1521 0.2601 0.4594 0.8184 0.9827

LN(0, 1) vs Lt(−1, 5) 0.2682 0.5570 0.8806 0.9980 1.0000

LN(0, 1) vs Lt(−0.5, 5) 0.1143 0.2122 0.3761 0.7183 0.9556

LLog(0, 1) vs LU(−10, 5) 0.2020 0.3868 0.6478 0.9616 0.9996

LLap(2, 1) vs LGa(log(2), 1) 0.2921 0.4964 0.7261 0.9733 0.9997

Table 3.2: Monte Carlo permutation power for the SAM procedure for the models

of Chapter 2 under ξXA
(1/2) = ξXB

(1/2).

experiment. It is possible to imagine cases where the set of shared genes between

two experiments is quite limited: in that case, comparison of the statistics (and of

their level of significance) runs the risk of producing ambiguous results.

One last, more extensive point, regards the choice of permutation methods used

together with variance moderation in the sense proposed by the SAM procedure.

In fact, although many different options have been proposed for the computation of

S0 (which might be a point of concern in itself, since, to the best of our knowledge,
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shared guidelines do not seem to exist in the literature), they all share a potential

issue. This is due to the fact that re-computation of S0 in the permutation process is

likely to yield quite similar values for each permutation, and therefore to produce

levels of statistical significance quite close to those provided, by permutation, by a

classical Student’s t-test, or even by a plain mean difference estimator. To see why

this is true, let us first prove that a permutation p-value obtained from a Student’s

t-test coincides with the permutation p-value that would be obtained from the ab-

solute value of the mean difference statistic |Y A − Y B|. In this context, we refer

to quantities computed over the original sample with the superscript or subscript

oss, and to quantities computed over the permuted sample without any superscript

or subscript: for example, Toss denotes the observed value of the test statistic, and

T the test statistic computed over the permuted sample. Therefore, we will prove

that, for T > Toss to hold, it is sufficient that |Y A − Y B| > |Y
oss
A − Y

oss
B | holds.

Let us denote with BSS the sum of squares between groups and with WSS the

sum of squares within groups, i.e.,

BSS =
∑

K∈{A,B}

nK(Y K − Y )2 =
nAnB
n

(Y A − Y B)2,

where Y is the mean of the pooled sample Y , and

WSS =
∑

K∈{A,B}

nK∑
i=1

(YKi − Y K)2 =
nAnB
n

S2.

Let us denote the total sum of squares with TSS, where TSS = BSS + WSS.

Then, it is possible to write the squared T statistic as

T 2 =

(
Y A − Y B

S

)2

=
BSS

WSS
,

which is the F -statistic interpretation in the context of the analysis of variance for

two groups comparison. As a preliminary observation, we note that the total sum

of squares is constant across permutation, i.e., TSS = TSSoss = c. We will use

this result in the following. Therefore, we prove that

T 2 > T 2
oss⇐⇒BSS > BSSoss,

which is equivalent to prove that

T 2 > T 2
oss⇐⇒|Y A − Y B| > |Y

oss
A − Y

oss
B |.
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Proof:

T 2 > T 2
oss

⇐⇒ BSS

WSS
>
BSSoss
WSSoss

⇐⇒ BSS

TSS −BSS
>

BSSoss
TSSoss −BSSoss

⇐⇒ BSS

c−BSS
>

BSSoss
c−BSSoss

⇐⇒BSS(c−BSSoss) > BSSoss(c−BSS)

⇐⇒cBSS −BSSossBSS > cBSSoss −BSSossBSS

⇐⇒cBSS > cBSSoss

⇐⇒BSS > BSSoss �

We will prove that an analogous result holds when a positive constant, such as the

fudge factor S0, is added to the denominator of the T statistic. For the moment, we

will assume that S0 is constant across permutation, i.e., S0 = Soss0 , and we will

prove that

SAM2 > SAM2
oss⇐⇒BSS > BSSoss,

which is equivalent to prove that

SAM2 > SAM2
oss⇐⇒|Y A − Y B| > |Y

oss
A − Y

oss
B |.

Proof:

SAM2 > SAM2
oss

⇐⇒
n

nAnB
BSS(√

n
nAnB

WSS + S0

)2 > n
nAnB

BSSoss(√
n

nAnB
WSSoss + S0

)2
⇐⇒

n
nAnB

BSS

n
nAnB

WSS + S2
0 + 2S0

√
n

nAnB

√
WSS

>

n
nAnB

BSSoss

n
nAnB

WSSoss + S2
0 + 2S0

√
n

nAnB

√
WSSoss

⇐⇒ BSS

WSS + nAnB
n S2

0 + 2S0
√

nAnB
n

√
WSS

>
BSSoss

WSSoss + nAnB
n S2

0 + 2S0
√

nAnB
n

√
WSSoss
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⇐⇒WSSossBSS +
nAnB
n

S2
0BSS + 2S0

√
nAnB
n

√
WSSossBSS

> WSSBSSoss +
nAnB
n

S2
0BSSoss + 2S0

√
nAnB
n

√
WSSBSSoss

⇐⇒cBSS −BSSossBSS

+
nAnB
n

S2
0BSS + 2S0

√
nAnB
n

√
WSSossBSS

> cBSSoss −BSSBSSoss +
nAnB
n

S2
0BSSoss

+ 2S0

√
nAnB
n

√
WSSBSSoss

⇐⇒BSS
(
c+

nAnB
n

S2
0 + 2S0

√
nAnB
n

√
WSSoss

)
> BSSoss

(
c+

nAnB
n

S2
0 + 2S0

√
nAnB
n

√
WSS

)
⇐⇒

(
c+

nAnB
n

S2
0

)
(BSS −BSSoss)

+

(
2S0

√
nAnB
n

)
(BSS

√
WSSoss −BSSoss

√
WSS) > 0.

The last inequality implies that BSS > BSSoss. We can prove this by contra-

diction. In fact, if it held that BSS ≤ BSSoss, then both addends in the last

inequality would be non positive, therefore making the inequality not hold, and

proving the initial statement by contradiction. In detail, the first term would be

non positive as the quantity c + nAnB
n S2

0 is a sum of positive quantities, and

BSS − BSSoss ≤ 0 by assumption. The second term would also be non posi-

tive, since the quantity 2S0
√

nAnB
n S2

0 is the product of positive quantities and the

quantity BSS
√
WSSoss − BSSoss

√
WSS is non positive. In fact, we have that

BSS
√
WSSoss ≤ BSSoss

√
WSS, under the assumption that BSS −BSSoss ≤

0, which implies alsoWSSoss−WSS ≤ 0. Therefore, the above inequality holds,

and we can write

SAM2 > SAM2
oss⇐⇒BSS > BSSoss. �

Therefore, adding a constant to the denominator has no effect on the permuta-

tion p-value of a Student’s t-test (if this value is kept fixed across permutations),

which remains equal to the permutation p-value of a raw mean difference test.
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So far, we have assumed that S0 was constant across permutations. This seems

a reasonable approximation of what happens in real life experiments, where p is

usually high and there is little reason to believe that a function of the distribution

of the standard deviations changes substantially across permutations.

These considerations should make researchers cautious with employing the

SAM procedure. Notwithstanding the good results obtained over a variety of dif-

ferent models generating the data, when the randomisation hypothesis does not

hold, there is no formal guarantee that, unconditionally, the actual type I error rate

provided by the SAM procedure is close to the nominal one even asymptotically.

This is instead true for the Tj statistics, j = 1, . . . , 6 introduced in Chapter 2 of the

present Thesis, because of the results provided by Chung et al. (2013).

In the next Section, we will compare the test statistics introduced in Chapter 2,

i.e., Tj , for j = 1, . . . , 6, and QT (τ, qA, qB) for different values of the parameters,

to the SAM procedure for simulated data that mimic actual microarray data. We

will compare the different methods in terms of type I error rate control and power.

We will also propose useful measures for evaluating the ranking of the genes.

3.3 Comparison of Procedures via Simulation Studies

We simulate data from a model that recreates with good approximation actual

microarray gene expression data, following the directions of Kendziorski et al.

(2003). Data are simulated according to a two-step Log-Normal-Normal hierar-

chical model. The first step generates the means of the different genes according

to a Normal distribution with pre-specified parameters, therefore allowing for dif-

ferent genes to have different means, which is expected to happen with real data.

The second step generates the actual expression data according to a Log-Normal

distribution with the means generated at the previous step and pre-fixed variances.

Formally, the first step generates the gene means according to:

µ
Y j
K
|(µ0, τ20 ) ∼ N(µ0, τ

2
0 ), j = 1, . . . , p, K ∈ {A,B}
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and the second step, conditioned on the first one, generates the actual expression

data according to:

Y j
Ai|(µY j

A
, σ20) ∼ LN(µ

Y j
A
, σ20), i = 1, . . . , nA, j = 1, . . . , p,

Y j
Bi|(µY j

B
, σ20) ∼ LN(µ

Y j
B
, σ20), i = 1, . . . , nB, j = 1, . . . , p.

Values for hyperparameters are fixed by following Chiogna et al. (2009), who chose

based on real-life observations, and are defined as σ20 = 0.164, τ20 = 0.895 and

µ0 = 7.9. In this setting, a gene is set to be differentially expressed with probability

π ∈ (0, 1). In this case, the means in the two groups are generated independently

from each other, i.e., µ
Y j
A
6= µ

Y j
B

. For equivalently expressed genes, instead, the

means are the same in the two groups, i.e., µ
Y j
A

= µ
Y j
B

.

3.3.1 Type I Error Rate Control

Following the setting of Chapter 2, we generate 10000 gene values for different

sample sizes, and compute asymptotic and permutation p-values for the test statis-

tics introduced in Chapter 2 and, for reference, for the SAM statistic. The permu-

tation p-values are computed on the basis of m = 999 permuted samples. Data

are generated assuming π = 0, i.e., that the null hypothesis holds for all the genes.

The sample size settings are chosen as follows:

1. small sample sizes setting, i.e., nA = nB = 11;

2. strongly unbalanced sample sizes, i.e., nA = 101; nB = 11;

3. large sample sizes setting, i.e., nA = nB = 101.

Results are reported in Table 3.3. It seems that the type I error rate is consistently

close to the nominal one for all the statistics, across the different sample sizes.

Results based on asymptotic distributions seem to generally produce larger type I

error rates than permutation ones, in particular for the low sample size setting and

the strongly unbalanced setting. Among the QT (1/2, q, q) statistics, as expected,

the best results are provided when q is closer to 1/2. Results seem in general

comparable with those obtained by SAM .
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nA 11 101 101

nB 11 11 101

T1 αperm 0.0514 0.0523 0.0504

αasymp 0.0590 0.0653 0.0518

T2 αperm 0.0512 0.0518 0.0498

αasymp 0.0598 0.0656 0.0518

T3 αperm 0.0512 0.0518 0.0498

αasymp 0.0598 0.0656 0.0518

T4 αperm 0.0515 0.0438 0.0502

αasymp 0.0597 0.0556 0.0516

T5 αperm 0.0517 0.0434 0.0502

αasymp 0.0597 0.0553 0.0518

T6 αperm 0.0517 0.0434 0.0502

αasymp 0.0597 0.0553 0.0518

QT (1/2, 0.10, 0.10) αperm 0.0388 0.0383 0.0309

QT (1/2, 0.25, 0.25) αperm 0.0436 0.0447 0.0403

QT (1/2, 0.40, 0.40) αperm 0.0514 0.0457 0.0439

QT (1/2, 0.45, 0.45) αperm 0.0514 0.0475 0.0473

SAM αperm 0.0498 0.0496 0.0493

Table 3.3: Monte Carlo permutation and asymptotic type I error rates for different

test statistics for the Log-Normal-Normal model with π = 0. Nominal type I error

rate α = 0.05.
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3.3.2 Power

To investigate power, we choose π = 1, under the constraint that µ
Y j
A
> µ

Y j
B

, for

j = 1, . . . , p, in order to generate data under a unilateral alternative hypothesis.

Before proceeding, it is worth noting that, given the structure of the model generat-

ing the data, the difference in the means between the two groups could be very little

up to the point where they are undistinguishable from each other. This allows the

setting to include differentially expressed genes that are harder than others to spot,

which mimics well actual data. Let us call a true positive an actual differentially

expressed gene which is deemed by the test statistic to be differentially expressed,

and a true negative an actual equivalently expressed gene which is deemed by the

test statistic to be equivalently expressed. Power of the statistics is then measured

by the proportion of true positives among all the genes which are claimed to be

differentially expressed by the test statistic.

As in the previous Subsection, we generate 10000 samples for different sample

sizes, and compute asymptotic and permutation p-values for the test statistics in-

troduced in Chapter 2 and, for reference, for the SAM statistic. The permutation

p-values are computed on the basis of m = 999 permuted samples. The sample

size settings are chosen as follows:

1. small sample sizes setting, i.e., nA = nB = 11;

2. strongly unbalanced sample sizes, i.e., nA = 101; nB = 11;

3. large sample sizes setting, i.e., nA = nB = 101.

Results are reported in Table 3.4. It seems that the power of the test statistics is

very large, and quite similar to that of SAM for most settings. There do not seem

to exist notable differences between the Tj statistics, for j = 1, . . . , 6. On the

contrary, QT (1/2, q, q) statistics display a small power for low sample sizes when

q is closer to 1/2.
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nA 11 101 101

nB 11 11 101

T1 αperm 0.9230 0.9470 0.9741

αasymp 0.9277 0.9511 0.9739

T2 αperm 0.9229 0.9465 0.9742

αasymp 0.9273 0.9510 0.9741

T3 αperm 0.9229 0.9465 0.9742

αasymp 0.9273 0.9510 0.9741

T4 αperm 0.9229 0.9420 0.9741

αasymp 0.9275 0.9476 0.9739

T5 αperm 0.9229 0.9420 0.9741

αasymp 0.9272 0.9478 0.9742

T6 αperm 0.9229 0.9420 0.9741

αasymp 0.9272 0.9478 0.9742

QT (1/2, 0.10, 0.10) αperm 0.9011 0.9344 0.9666

QT (1/2, 0.25, 0.25) αperm 0.8953 0.9339 0.9673

QT (1/2, 0.40, 0.40) αperm 0.6009 0.9024 0.9660

QT (1/2, 0.45, 0.45) αperm 0.6009 0.8996 0.9627

SAM αperm 0.9120 0.8841 0.9563

Table 3.4: Monte Carlo permutation and asymptotic power for different test statis-

tics for the Log-Normal-Normal model with π = 1. Threshold for significance

α = 0.05.
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3.3.3 Ranking

Several considerations can be done regarding the use of p-values in the context of

identifying differentially expressed genes. The first concerns the issue of multiple

testing. It is well-known that the overall type I error rate, when considering test-

ing simultaneously several null hypothesis, is not equal in general to the nominal

level α. Many methods for dealing with this problem have been developed, from

simple Bonferroni correction to control of the False Discovery Rate proposed by

Benjamini & Hochberg (1995) and employed by the SAM procedure, to the min-

p and max-T procedure proposed by Westfall & Young (1993) and implemented

in the context of microarray data analysis by Dudoit et al. (2002). Although we

do not face directly the issue of multiple testing in this Thesis, a starting point for

extending our results could be given by Chung & Romano (2013), that provide

useful results about Studentized statistics in the context of multiple testing. We

also notice that two other specific issues arise in the context of permutation test-

ing. The first one is that the lower bound of the p-value depends on the number m

of permutations used by the procedure, i.e., is equal to 1/m. Therefore, in order

to obtain p-values small enough for the desired threshold, a very large number of

permutations might be needed, which is not always computationally feasible. The

second one is that there is a non-null probability that two genes share the exact

same p-value, due to the fact that permutation p-value can take only one out of m

possible values and generally p� m.

As a last aspect, let us consider another key specific feature of microarray data

analysis. As we have mentioned before, usually researchers are interested in identi-

fying a subset of differentially expressed genes. From this point of view, in addition

to statistical significance, ranking on the genes might be also of interest. The SAM

procedure itself incorporates the idea of ranking (Tusher et al., 2001), introducing

a tuning parameter, ∆, which accounts for the number of false positives that are ex-

pected in the set of genes deemed to be differentially expressed. Starting from this

idea, we propose some simple measures for the analysis of the ranking produced

by the test statistics introduced in Chapter 2. First of all, we notice that a ranking

based on the p-values is basically the same as a ranking based on the values of

the test statistic themselves. In fact, if the p-value is computed based on a pivotal
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quantity, then it is a strictly monotone transformation of the observed test statistic.

Otherwise, if the p-value is computed according to a resampling procedure, it still

can be seen as a monotone transformation of the observed test statistic, for a large

enough m. Then, in both cases, the ranking of the genes produced by the p-values

is equal to the one produced by ranking the test statistics themselves. This brings

an alternative to p-values computation for obtaining quick results. We also notice

that use of “meaningful” values as ranking measures, i.e., values on the scale of

the data, rather than transformation with a mere statistical interpretation, such as

the p-value, can provide also some benefits. In fact, for some genes the change in

expression might be statistically significant, but not large enough, from a biologi-

cal point of view, to be of actual interest for further investigation, while “biological

significance” is easier to assess on the scale of the data. Moreover, problems of

ties in the ranking, i.e., of genes with the same ranking score, are reduced if using

the values of the test statistic as opposed to permutation p-values, for the reasons

stated above. Of course, a ranking approach does not provide measures of statis-

tical significance, but it could still be useful as an integrative tool for microarray

data analysis (Boulesteix & Slawski, 2009). An example of integration of statisti-

cal and biological significance is provided by the volcano plots proposed by Cui &

Churchill (2003).

In the following, we report some ranking-based measures that could be of inter-

est for comparing different procedures. We refer, in particular, to the lowest, high-

est and average position held in the ranking by true differentially expressed gene,

and average number of true and false positives (expressed as a ROC curve). Of

course, these measures are valid only if the set of differentially expressed genes is

known in advance, therefore is most suitable for simulation studies. We choose the

same generating mechanism of the previous Subsection to simulate the data, choos-

ing π = 0.05, so that a small percentage of the genes is differentially expressed,

which is what is usually expected in real life experiments. Since, of course, a cru-

cial aspect is choice of the threshold, which is as arbitrary as the choice of the

significance level for a p-value, we report results for different thresholds. In real

life experiments, the threshold can be defined a priori based on the number of dif-

ferentially expressed genes that the investigator expects to find or is able to analyse

afterwards. As in the previous Subsection, we generate 10000 samples for different
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sample sizes, and compute the observed values of the test statistics introduced in

Chapter 2 and, for reference, of the SAM statistic. We repeat the experiment 100

times and average the results, and compute average measures over the 100 repli-

cations. We notice that, since the ranking is computed according to the magnitude

of the test statistic, a gene with a larger value of the test statistic will have a lower

ranking than one with a smaller value of the test statistic. The sample size settings

are chosen as follows:

1. small sample sizes setting, i.e., nA = nB = 11;

2. strongly unbalanced sample sizes, i.e., nA = 101; nB = 11;

3. large sample sizes setting, i.e., nA = nB = 101.

Table 3.5 contains the average over the 100 replications of the lowest rank among

differentially expressed genes. All of the test statistics almost always put a truly

differentially expressed gene in the first position of the ranking.

average lowest rank nA 11 101 101

nB 11 11 101

T1 1.00 1.00 1.00

T2 1.00 1.00 1.00

T3 1.00 1.00 1.00

T4 1.00 1.00 1.00

T5 1.00 1.00 1.00

T6 1.00 1.00 1.00

QT (1/2, 0.10, 0.10) 1.00 1.00 1.00

QT (1/2, 0.25, 0.25) 1.00 1.00 1.00

QT (1/2, 0.40, 0.40) 1.03 1.00 1.00

QT (1/2, 0.45, 0.45) 1.03 1.00 1.00

SAM 1.00 1.00 1.00

Table 3.5: Monte Carlo average lowest rank of differentially expressed genes for

different test statistics for the Log-Normal-Normal model with π = 0.05.
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Table 3.6 contains the average over the 100 replications of the median rank

among differentially expressed genes. All of the test statistics, apart from the

QT (τ, q, q) statistic with q ∈ {0.40, 0.45} for the low sample size scenario, dis-

play a value very close to 250, meaning that, on average, half of the differentially

expressed genes are in the top 250 positions of the ranking. Since the expected to-

tal number of differentially expressed genes is equal to πp = 500, it seems that the

top 250 positions of the rank are on average held by truly differentially expressed

genes. The effect of the sample size is almost null for most statistics, but for ex-

ample for QT (1/2, 0.45, 0.45) it can be seen that the median indicator approaches

250 with larger sample sizes. It is worth noting that the variability of the indica-

tor across different test statistics is barely perceivable both for Studentized and for

pseudo-Studentized statistics. For the latter, best results seem to be obtained for

low values of qA and qB , as it happened in the power context.

average median rank nA 11 101 101

nB 11 11 101

T1 250.57 250.94 250.14

T2 250.57 250.94 250.14

T3 250.57 250.94 250.14

T4 250.57 250.94 250.14

T5 250.57 250.94 250.14

T6 250.57 250.94 250.14

QT (1/2, 0.10, 0.10) 250.92 250.94 250.14

QT (1/2, 0.25, 0.25) 251.94 250.94 250.14

QT (1/2, 0.40, 0.40) 324.76 250.98 250.14

QT (1/2, 0.45, 0.45) 324.76 251.71 250.14

SAM 250.57 250.94 250.10

Table 3.6: Monte Carlo average median rank of differentially expressed genes for

different test statistics for the Log-Normal-Normal model with π = 0.05.

Table 3.7 contains the average over the 100 replications of the highest rank
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among differentially expressed genes. Results are slightly more variable than for

the previous measures, but still quite similar across different statistics, with worse

results provided by the QT (τ, q, q) statistic with q ∈ {0.40, 0.45} for the low sam-

ple size scenario. The average highest rank is in general very large (over 8000),

meaning that at least one differentially expressed gene has a quite small difference

in means between the two groups and is therefore hard to find by all of the test

statistics, SAM included. As the sample sizes increase, as expected, it seems that

the average highest rank of differentially expressed genes tends to decrease, i.e.,

even the genes with highest ranking tend to lower their position.

average highest rank nA 11 101 101

nB 11 11 101

T1 9157.33 8871.85 8046.76

T2 9160.61 8860.68 8045.75

T3 9160.61 8860.68 8045.75

T4 9158.24 8868.49 8046.91

T5 9156.72 8869.17 8047.32

T6 9156.69 8869.17 8047.32

QT (1/2, 0.10, 0.10) 9200.37 9171.45 8441.58

QT (1/2, 0.25, 0.25) 9236.62 9162.57 8460.13

QT (1/2, 0.40, 0.40) 9436.39 9138.12 8424.39

QT (1/2, 0.45, 0.45) 9436.39 9149.28 8453.56

SAM 9144.70 8843.05 8044.71

Table 3.7: Monte Carlo average highest rank of differentially expressed genes for

different test statistics for the Log-Normal-Normal model with π = 0.05.
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In addition to the above presented measures, in Figure 3.1 we report Receiver

Operating Characteristic (ROC) curves for the three different sample sizes settings.

ROC curves display the number of true and false positives identified by the statis-

tics for different thresholds. All of the curves are overlapping for most values,

meaning that the ranking that they provide is quite similar. Moreover, all the curves

are all quite steep, i.e., the number of false positives decrease very slowly when

the number of true positives increases. This seems to suggest that the ranking

procedure is quite effective for identifying differentially expressed genes for the

proposed model.
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Figure 3.1: Left to right: ROC curves relative to the nA = nB = 11 setting, to the

nA = 101, nB = 11 setting, and to the nA = nB = 101 setting.

It seems that ranking the genes according to the magnitude of the test statistics

produces quick and accurate results, and it could be an interesting tool for compar-

ing different methods for identifying differentially expressed data. Of course, for

an evaluation of this kind to be possible, the set of truly differentially expressed

genes should be known a priori. In the next Section, we will provide application of

Studentized and pseudo-Studentized test statistics to real data from microarray.
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3.4 Application to Real Data from Microarray

In this Section, we compare the capacity to identify well-known differentially ex-

pressed genes by the Studentized test statistics Tj , for j = 1, . . . , 6, by pseudo-

Studentized test statistics QT (τ, qA, qB) and, for comparison, by the SAM pro-

cedure, by means of a real microarray dataset. The chosen dataset was published

by Chiaretti et al. (2005) and contains gene expression from microarray exper-

iments conducted on sample cells of patients with acute lymphocytic leukemia

(ALL), which are associated with known genotypic abnormalities in adult patients.

Working expression data appropriately are already normalised according to robust

multiarray analysis and quantile normalisation (Martini et al., 2013). The dataset

contains 37 observations from patient with the so-called “chimeric” BCR/ABL

gene rearrangement, linked with ALL, and 41 observations from patients without

the rearrangement, over 8384 genes in total. Our aim is to check if, according to

our test statistic, the BCR/ABL gene is identified as differentially expressed be-

tween the two groups of patients, as expected, and to compare the overall set of

differentially expressed genes identified by our proposed statistics and by SAM .

Table 3.8 contains the observed p-value for the “chimera” (gene BCR/ABL),

and its ranking across the whole set of genes, for the statistics of interest. Permu-

tation p-values are computed over m = 999 permutations. All of the proposed

methods identify the chimera as statistically significant, and the majority of them

place it first in the ranking computed according to the magnitude of the test statis-

tic. Test statistics T5, T6 and QT (1/2, q), for q ∈ {0.25, 0.40, 0.45} rank the gene

in a top position, however not in the first one. Results are very similar to those

obtained by the SAM procedure both in terms of statistical significance and of

ranking (the statistical significance computed by SAM for the chimeric gene is 0

up to the third decimal place).

Since a larger list of true differentially expressed genes is not available in this

context, we focus on comparison of results provided by our test statistics with those

provided by SAM , in terms of ranking, i.e., we compute the percentage of overlap

in the top-ranking provided by our test statistics and the SAM procedure. Fig-

ure 3.2 contains the results of this comparison. On the horizontal axis, thresholds
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permutation p-value rank

T1 0.001 1

T2 0.001 1

T3 0.001 1

T4 0.001 1

T5 0.001 2

T6 0.001 2

QT (1/2, 0.10, 0.10) 0.001 1

QT (1/2, 0.25, 0.25) 0.001 3

QT (1/2, 0.40, 0.40) 0.007 15

QT (1/2, 0.45, 0.45) 0.025 8

SAM 0.000 1

Table 3.8: Permutation p-values and rank position for the chimeric gene for differ-

ent test statistics.

for the identification of differentially expressed genes are reported, ranging from

1 to 100. On the vertical axis, the length of the intersection of the top rankings

(rankings above the threshold) is reported as a fraction of the length of the top

ranking, for the considered thresholds. The dashed line, drawn as a reference, indi-

cates complete overlap at all thresholds, i.e., identical overall ranking. Solid lines

represent results for the different test statistics. Results show how the Studentized

test statistics produce a ranking more similar to the ranking provided by SAM ,

than the pseudo-Studentized ones for most thresholds, with T4 resulting the most

similar to SAM . However, we remark that the true set of differentially expressed

genes is not known, so that Figure 3.2 is only a way to compare our statistics to

SAM , not to investigate their efficacy in general. This implies, for example, that

pseudo-Studentized statistics produce a ranking which is quite different than the

one produced by SAM , which means that they propose different genes as can-

didates for differential expression. Since simulation studies reported good results

also for the pseudo-Studentized statistics, it could be worth to consider inclusion

also of these genes (which would not be identified by SAM ) in further analysis.
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Figure 3.2: Percentage of overlap of top ranking for different thresholds for differ-

ent test statistics compared to the SAM procedure.

3.5 Final Remarks

In this Chapter, we have applied our novel Studentized and pseudo-Studentized test

statistics introduced in Chapter 2 to simulated data and real data from microarray,

and compared them with the performance of the SAM procedure. The following

observations seem to have emerged:



88 3. Application to Microarray Data

1. simulation experiments from a Log-Normal-Normal model that mimics well

data from microarray show that both Studentized and pseudo-Studentized

test statistics give satisfactory results (comparable to those of SAM ) both

in terms of control of type I error rate and power for different sample sizes,

including strongly unbalanced ones;

2. synthesis measures based on the ranking of the genes have been proposed,

that show how ranking the genes according to the magnitude of the test statis-

tics is a procedure which is able to discriminate well differentially expressed

genes from the rest, both for Studentized and most pseudo-Studentized statis-

tics;

3. application to real data has shown the efficacy of the proposed statistics in

identifying a specific gene, known to be differentially expressed between the

two conditions considered, and overall agreement with the SAM procedure

on the top ranking of differentially expressed genes for different thresholds

(more for the Studentized than for the pseudo-Studentized statistics).

In the next Chapter, we will propose application of our pseudo-Studentized

statistics to a different kind of data, i.e., data from sequencing following chromatin-

immunoprecipitation (ChIP-Seq). The basic idea is to briefly illustrate an example

of different application of the pseudo-Studentized statistics, to show how they are

not strictly confined to the context of microarray data analysis.



Chapter 4

Application to ChIP-Seq Data

4.1 An Introduction to ChIP-Seq Data

The so-called “ChIP-Seq” technology takes its name from the process of Chromatin-

ImmunoPrecipitation followed by Sequencing (Barski et al., 2007; Johnson et al.,

2007). One of the main aims of the procedure is to identify binding sites of tran-

scription factors of interest, i.e., how a transcription factor is deployed across the

genome for a given cell. In order to investigate this, the ChIP-Seq goes through the

following steps to produce data: the first step includes using an immune reagent

specific for a DNA binding factor to enrich target DNA sites. After immunoprecip-

itation, a large number of “short reads”, i.e., short fragments of genetic material,

are collected, and mapped to the reference genome. Then, for each chromosome,

the number of reads mapping to every genomic location is counted. In this way,

the raw data for identifying transcription sites are the counts of how many reads

map to any single location in the genome. Usually, the interest is not in a single

genomic position, instead counts are considered together for a continuous genomic

region with at least one read at each position, called “island”. After having pooled

reads into islands, biologists are often interested in identifying “peaks”, i.e., is-

lands where the number of mapped reads is particularly large. These regions are

usually a few kilobase-pairs long, but in some cases, like for histone modifications

analysis, can also be much longer. In order to identify peaks along the chromo-

some, which might correspond to location of binding of the transcription factor,

a reference sample is usually needed. This is often a control sample that did not
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undergo immunoprecipitation, or that was immunoprecipitated with a generic an-

tibody. Comparison between the ChIP sample and the reference makes it possible

to evaluate if an island is significantly enriched in the ChIP sample with respect to

the reference. After identification of significant peaks, annotation procedures link

them to biological areas of interest, so that knowledge of gene functions and bio-

logical pathways can be updated. Of course, this setting gives wide opportunities

for application and development of statistical methods, in particular concerning the

search for statistically significant peaks.

In the last years, many statistical approaches have been developed in order

to identify peaks and compute their statistical significance. A review of methods

for peak calling, most of which are based on modifications of Poisson models,

is provided by Wilbanks & Facciotti (2010b). An interesting aspect brought to

light by the Authors is the very poor agreement of different methods in identify-

ing peaks, which underlines the complexity of the problem and the lack of shared

guidelines in such a new and challenging topic. Among the most popular methods,

it is worth mentioning the CisGenome algorithm (Ji et al., 2011), the MACS pro-

cedure (Zhang et al., 2008), and the spp model (Kharchenko et al., 2008). A more

complete discussion about challenges posed by analysis of ChIP-Seq data might

be found in Park (2009). In the following, we will briefly overview some of the

statistical aspects involved with the identification of peaks in ChIP-Seq data. We

will limit the description to some key aspects that will be employed in the next

Section, dedicated to application of our pseudo-Studentized statistics to real data

from ChIP-Seq. In this context, when the research hypothesis can be phrased in

terms of counts comparison between two groups, and therefore be translated into

a statistical hypothesis concerning two distributions, our pseudo-Studentized test

statistics can be suitably applied. We remark the fact that, in this context, our pro-

posed Studentized statistics like Tj , for j ∈ {1, . . . , 6} do not seem appropriate,

since no result is available concerning relationship between parameters of the data

(such as symmetry) or of some transformation of them, similarly to what happened

with microarray data. We stress again that this Chapter aims only at showing a

possible different field of application for the pseudo-Studentized test statistics we

introduced in Chapter 2, with data different from microarray. Therefore we will

not go too far in the detail, and leave some consideration to the last Section of



4.1 An Introduction to ChIP-Seq Data 91

this Chapter. Before showing an example of an application of pseudo-Studentized

statistics in the next Section, we point out some aspects of interest specific of ChIP-

Seq data and related to the test statistics we want to apply:

1. a general point of interest is how to compare two islands that are not entirely

overlapping between the sample of interest and the reference, which is in

general expected to happen. Several solutions have been proposed, including

use of the union or the intersection of the islands from both samples. We feel

that using the intersection might be an appropriate solution in order not to

have two possibly very unbalanced sample sizes; however, in the following

we also report results obtained for the union of the two islands (on non-

overlapping regions, and therefore for samples of different sizes). We remark

that the union is intended in the sense of considering the specific island for

each sample, not in the sense of extending the shorter island to the region of

the wider one. In this way, we avoid the introduction of many zero counts in

the sample with a shorter island;

2. data are counts. Therefore, before applying our pseudo-Studentized statis-

tics, they must undergo some transformation such that they are on a con-

tinuous scale. For this task, several solutions exist. We choose to take the

jittering approach proposed by Machado & Silva (2005), which consists in

constructing a continuous random variable whose quantiles have a one-to-

one relation with those of XK , for K ∈ {A,B}. Such a variable can be

built by adding to the raw counts, XA and XB , standard Uniform random

variables, say UA and UB . The uniform distribution is chosen for simplicity,

even if any continuous distribution with support on the interval (0, 1) could

be used instead. The test statistics are then computed on the transformed

variables X ′A and X ′B;

3. data have a strong spatial correlation across the genome. In the following,

we will not take this correlation into account, and treat the data from each

sample as independent realisations from an underlying generating model.

This is clearly a simplification, but it is worth noting that many other methods

consider only the sum of the counts for a specific island in the process of peak

calling, therefore not taking into account spatial correlation either.
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Having said this, we will show how the test statistic QT (τ, qA, qB) can be com-

puted, for an island of interest for different values of τ ∈ (0, 1) and of qK ∈
{0, 1/2}, for K ∈ {A,B}, and its significance computed via permutation. In the

next Section, we will report a brief example of application.

4.2 Analysis of Data from ChIP-Seq

We apply the pseudo-Studentized statistics introduced in Chapter 2 to a real dataset,

made public by Chen et al. (2008) and partially included in the R library chipseq,

containing ChIP-Seq data for the mouse genome. The R dataset contains a subset

of the original data, over chromosomes 10, 11 and 12, for a sample of interest

(ctcf) and a reference sample (gfp). For illustration purposes, we will focus on

comparison of two specific islands on chromosome 11. The islands we take into

account range from position 3045392 to 3047368, therefore with a width of 1977,

for the sample of interest, and from position 3045752 to 3046466, therefore with

a width of 715, for the reference sample. Hence the second island is a subset of

the first one, and we can either work on the union or on the intersection of the two

islands. In the latter case, we obtain two samples of equal size 715. In order to

apply our test statistics, the next step is applying the jittering procedure that we

have mentioned in the previous Section. Figure 4.1 shows how the jittering does

not alter substantially the distribution of the data; Figure 4.2 shows how the same

holds also for data over the union of the islands.

In the following, we report statistical significance obtained via permutation

for the pseudo-Studentized test statistics computed on the two samples (on the

jittered data). For comparison, we report also the significance that would be ob-

tained by a classic t-test on the jittered data, and by a Poisson and a Negative

Binomial model for two groups comparison on the count data. Pseudo-Studentized

statistics are computed for qA = qB ∈ {0.10, 0.25, 0.40, 0.45}, in order to eval-

uate the influence of the qA and qB parameters on the results, and for values of
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Figure 4.1: Probability density function before (left) and after (right) jittering for

the sample of interest (solid line) and the reference (dashed line) for the data on the

intersection of the islands.
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Figure 4.2: Probability density function before (left) and after (right) jittering for

the sample of interest (solid line) and the reference (dashed line) for the data on the

union of the islands.

τ ∈ {0.10, 0.25, 0.50, 0.75, 0.90}, to investigate differences at different points of

the distributions. Moreover, results are reported both for the union (nA = 1977;
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nB = 715) and the intersection (nA = nB = 715) of the islands. The alterna-

tive hypothesis is unilateral, as we expect the counts to be higher for the sample

of interest than in the reference sample. Table 4.1 contains the results. The effect

of qA and qB seems almost non-existent in this case, while the statistics computed

at different values of τ have very different significance levels. In fact, for the data

based on the union of the islands, only differences at the 0.1- and at the 0.9-level

quantiles are significant, while the ones at the quartiles and at the median are not

significant. It is interesting to note how these differences would not be spotted by

a classic t-test, or via a Poisson or Negative Binomial model, being located in an

area of the distribution which is far from the mean. The same computation over the

data based on the intersection of the islands data, for which the sample sizes are

heavily unbalanced between the two samples, brings very similar results for all the

considered quantiles except for the 0.1-level, where the test statistic becomes non

significant possibly due to the fact that the difference between the islands, excluded

from the intersection, refers to the tails of the peak, i.e., to counts that are mostly 1,

which influences mainly the lower quantiles. Since a large number of counts equal

to 1 is expected for any island, one could consider excluding those counts from

computation in further analysis.

4.3 Final Remarks

In this Chapter, we have briefly introduced ChIP-Seq data analysis, with a focus on

identifying differences in peaks between two groups. Although the one presented

is a very simple example, it seems that there is actually space for application of our

pseudo-Studentized statistics in the field of ChIP-Seq data; in particular, in appli-

cation on the mouse data, pseudo-Studentized statistics were capable of identify a

statistically significant difference on the 0.90 quantile of the two distributions, that

a classic test on the means of the two groups would fail to notice. This brings sup-

port to the idea that use of the proposed statistic can contribute to the analysis of

data from different sources, and it is by no means limited to the context of analysis

of data from microarray.
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p-value p-value

test statistic data from union data from intersection

QT (0.10, 0.10, 0.10) 0.001 1.000

QT (0.10, 0.25, 0.25) 0.001 1.000

QT (0.10, 0.40, 0.40) 0.001 1.000

QT (0.10, 0.45, 0.45) 0.001 1.000

QT (0.25, 0.10, 0.10) 1.000 1.000

QT (0.25, 0.25, 0.25) 1.000 1.000

QT (0.25, 0.40, 0.40) 1.000 1.000

QT (0.25, 0.45, 0.45) 1.000 1.000

QT (0.50, 0.10, 0.10) 1.000 1.000

QT (0.50, 0.25, 0.25) 1.000 1.000

QT (0.50, 0.40, 0.40) 1.000 1.000

QT (0.50, 0.45, 0.45) 1.000 1.000

QT (0.75, 0.10, 0.10) 0.520 1.000

QT (0.75, 0.25, 0.25) 0.520 1.000

QT (0.75, 0.40, 0.40) 0.520 1.000

QT (0.75, 0.45, 0.45) 0.528 1.000

QT (0.90, 0.10, 0.10) 0.001 0.020

QT (0.90, 0.25, 0.25) 0.001 0.002

QT (0.90, 0.40, 0.40) 0.001 0.001

QT (0.90, 0.45, 0.45) 0.001 0.001

t-test 0.911 1.000

Poisson model 0.933 1.000

Negative Binomial model 0.893 1.000

Table 4.1: p-values for pseudo-Studentized test statistics for jittered data from

ChIP-Seq.





Chapter 5

Conclusions

In this Thesis, we have explored some possible approaches to inference on quan-

tiles in the context of genomic data analysis. In Chapter 2, we have developed novel

statistical tools for testing statistical hypothesis when relationships exist between

different parameters of the distributions, therefore making it possible to exploit

the mean estimator to test hypothesis on quantiles of the distributions. Following

the approach of Chung et al. (2013), we have developed Studentized statistics for

quantile comparison, which do not require estimation of the density function at the

quantile of interest, like classic test statistics on quantiles would. The permutation

p-value of the proposed statistics coincides asymptotically with the true uncondi-

tional one, though retaining the exactness property for finite samples when the two

samples have the same distribution. We have also proposed pseudo-Studentized

test statistics, which are an approximation of the above mentioned ones, with a

simple structure and easy interpretation. Although the test statistics are developed

in the context of analysis of genomic data, their use is quite general, and could be

easily extended to the analysis of different kinds of data. Further development of

the methodology could include comparison of different groups, or extensions to

regression models. Moreover, extensions to the context of multiple testing could

be an area of further investigation, possibly based on the results provided by Chung

& Romano (2013). In Chapter 3, we have applied the proposed statistics to data

from microarray, both in simulation experiments and with a real dataset, and their

performances in terms of identification of correct identification of differentially

expressed genes have proven at least comparable with those of the most popular
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method in this context, the SAM procedure proposed by Tusher et al. (2001). In

Chapter 4, we have applied pseudo-Studentized statistics to data from ChIP-Seq,

obtaining interesting results when comparing peaks for different samples. In this

context, the ability of quantile-based statistics to investigate different aspects of

the distribution of the data seems a desirable feature to discover differences not

detected by traditional methods devoted to comparison of the means of the distri-

butions. Overall, the results obtained in this Thesis seem promising, and further

investigation both from a methodological point of view and in application to ge-

nomic data and other kinds of data might widen the result and incorporate them in

larger statistical frameworks of analysis.
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