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ABSTRACT 

As one of the most devastating natural hazards, flash floods are responsible for major and abrupt 
geomorphic effects in the fluvial system as well as significant loss of life and socio-economic damages. 
Flash floods are characterized by strong spatio-temporal rainfall variability and therefore show 
variations in discharge and energy expenditure: associated geomorphic effects depend on geological 
controls on channel geometry and sediment characteristics, as well as on variations in flood intensity. 
Geomorphic effects usually take the form of erosional and depositional modification of the pre-flood 
channel. The central question of this thesis is to evaluate why flash floods of similar magnitudes and 
intensities sometimes produce dissimilar geomorphic results. The use of peak instantaneous hydraulic 
flow parameters such as discharge, velocity, shear stress, and stream power to quantify geomorphic 
changes has commonly been non-deterministic. This thesis aims at investigating how factors such as 
channel geometry, substrate, and flood magnitude and duration can interact and influence geomorphic 
effectiveness of high magnitude floods. A combined analysis of data from post-flood surveys and 
hydrological modelling permitted a comprehensive hydro-geomorphic investigation of seven major 
flash flood that occurred between 2007 and 2014 in different hydro-climatic regions in central and 
southern Europe. High peak discharge coupled with long flow duration ensured significant geomorphic 
impacts in Mediterranean basins. Values of stream power are generally consistent with observed 
geomorphic changes in the studied cross sections. However, bedrock channels show the highest values 
of energy expenditure but no visible erosion, whereas major erosion has been observed in alluvial 
channels. The trends in semi-alluvial channels urge the recognition of local or event-specific conditions 
that increase the resistance of channel bed and banks to erosion. Short flow duration caused major 
sedimentological effects but limited channel widening in most semi-alluvial channels. Eight rivers that 
were highly affected by three of the studied flash floods were selected for detailed analysis and 
modelling of the contiguous downstream variability in stream power. Power functions adequately 
interpreted the systematic downstream increase in peak discharge, whereas contrary to the usual 
exponential function, a quadratic function better interpreted the high downstream variability in channel 
gradient. The performance of the resulting empirical models for cross-sectional stream power and unit 
stream power were essentially influenced by channel gradient. The availability of high-resolution pre- 
and post-flood satellite images allowed assessment of channel changes along seven of these channels. 
Statistical analysis indicated that hydraulic forces alone are not adequate to interpret the rate of channel 
widening, which is primarily influenced by the degree of channel confinement. Together with lateral 
confinement, unit stream power better predicted channel widening in steep channels, whereas 
cumulative energy expenditure was relatively better for moderate channel reaches. The use of different 
erosion-resistance thresholds to quantify the geomorphological changes of riverbeds supports the 
conclusion that the determination of these changes is much more difficult than to determine the 
hydraulic variables involved. 
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SOMMARIO 

Le piene improvvise (flash flood) sono fra i processi naturali più devastanti e sono responsabili di 
rilevanti e subitanei effetti morfologici, nonché della perdita di vite umane e di gravi danni economici. 
Le piene improvvise sono caratterizzate dalla forte variabilità spazio-temporale delle precipitazioni 
innescanti, cui consegue una forte variabilità delle portate e della potenza della corrente. Gli effetti 
geomorfologici delle piene improvvise dipendono sia dal controllo che l’assetto geologico esercita 
sulla geometria del canale e sulle caratteristiche del sedimento, sia dall’intensità della piena. Gli effetti 
geomorfologici delle piene improvvise si manifestano attraverso processi sia erosivi che deposizionali 
che determinano variazioni nell’assetto del canale rispetto alle condizioni antecedenti l’evento. La 
questione centrale di questa tesi è valutare perché piene improvvise di simile intensità producano 
talvolta effetti morfologici nettamente differenti. L’uso dei valori istantanei massimi di variabili di tipo 
idraulico, quali la portata, la velocità, lo sforzo tangenziale e la potenza della corrente, si è spesso 
rivelato non conclusivo nel quantificare i cambiamenti morfologici.  Questa tesi mira a studiare come 
fattori quali la geometria del canale, il substrato, l’intensità e la durata dell’evento possano interagire e 
influenzare l’azione morfologia delle piene improvvise. Un’analisi combinata, basata rilievi post-
evento e sulla modellazione idrologica, ha consentito di caratterizzare sette importanti eventi di piena 
improvvisa verificatisi fra il 2007 e il 2014 in diverse regioni dell’Europa centrale e meridionale. Nei 
bacini mediterranei gli elevati valori delle portate di picco, uniti alla durata relativamente lunga degli 
eventi, hanno determinato le condizioni favorevoli a significativi impatti geomorfologici. I valori della 
potenza della corrente sono generalmente coerenti con i cambiamenti morfologici osservati. Inoltre, i 
canali in roccia mostrano i valori di dispendio energetico più elevati  ma senza erosioni apprezzabili, 
mente ingenti fenomeni di erosione sono stati osservati in canali alluvionali. Gli andamenti dei processi 
geomorfologici nei canali semi alluvionali richiedono il riconoscimento di situazioni locali che 
aumentano la resistenza del letto del canale e delle sponde all’erosione, o di condizioni specifiche di un 
particolare evento. Piene di breve durata causano talvolta abbondante trasporto solido, peraltro non 
associato a significativi allargamenti del canale nella maggior parte degli alvei semi-alluvionali. Otto 
corsi d’acqua, individuati fra quelli maggiormente interessati da tre delle piene studiate sono stati scelti 
per ulteriori analisi e per la modellazione della variazione longitudinale dei valori della potenza della 
corrente. Funzioni di potenza interpretano adeguatamente l’aumento verso valle delle portate di picco, 
mentre funzioni quadratiche si sono dimostrate più soddisfacenti delle relazioni esponenziali 
comunemente utilizzate per rappresentare la variazione longitudinale della pendenza dell’alveo. Le 
prestazioni dei modelli empirici per la variazione longitudinale della potenza della corrente per unità di 
larghezza dell’alveo (unit stream power) evidenziano il fondamentale controllo esercitato dalla 
pendenza dell’alveo. La disponibilità di immagini satellitari ad elevata risoluzione riprese prima e dopo 
gli eventi oggetto di studio  ha permesso di valutare le modifiche del canale lungo sette di questi canali. 
Analisi statistiche hanno indicato che le sole variabili idrauliche non sono sufficienti per interpretare il 
tasso di allargamento del canale, che è principalmente influenzato dal grado di confinamento del canale 
stesso. Insieme al confinamento laterale, la potenza della corrente per unità di larghezza dell’alveo  
appare un valido predittore dell’allargamento in alvei ad elevata pendenza, mentre l’energia 
complessiva della corrente calcolata per l’intero evento fornisce prestazioni migliori nell’interpretare la 
variabilità dell’allargamento dell’alveo in canali a pendenza moderata. L'uso di differenti soglie di 
resistenza all’erosione per quantificare i cambiamenti geomorfologici degli alvei supporta la 
conclusione che la determinazione di tali cambiamenti è molto più difficile della determinazione delle 
variabili idrauliche coinvolte.  
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a.s.l.   (Height) Above Sea Level 

AMC  Antecedent Moisture Condition 

ArcGIS GIS software package developed by Esri 

CET  Central European Time (UTC+01.00) 

CN  Curve Number 

DEM  Digital Elevation Model 

EU  European Union 

HG  Hydraulic Geometry 

HWM  High Water Mark 

HYDRATE Hydrometeorological Data Resources and Technologies for Effective Flash Flood 

Forecasting   

IPEC  Intensive Post-Event Campaign  

KLEM  Kinematic Local Excess Model (Hydrological model) 

MatLab Matrix Laboratory 

SCS-CN Soil Conservation Service- Curve Number  

 

CROSS-SECTION TYPES (XS TYPES): 

AL  Alluvial 

S-A  Semi-alluvial 

BR  Bedrock 

AT  Artificial 

 

OBSERVED GEOMORPHIC EFFECTS (OGE): 

M  Major 

S-M  Small-to-Moderate 

N  Negligible 
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1 INTRODUCTION AND DESCRIPTION OF THE STATE-OF-THE-ART WITH 

RESPECT TO FLOOD GEOMORPHIC EFFECTS 

1.1 BACKGROUND AND JUSTIFICATION 

Exceptional rainstorms can shed light on the geomorphic processes that shape the landscape. In 

the long standing debate of which event magnitudes are more significant in long term landscape 

evolution, i.e., frequent, moderate-size rain events (Wolman and Miller, 1960) or exceptional rain 

events (Hack and Goodlett, 1960), less is known about the latter (Kirchner et al., 2001). Wolman and 

Miller (1960) argued that events of moderate frequency and magnitude are more effective in doing 

geomorphic work (defined as mass transfer of sediments) than extreme rainstorm events because of the 

high frequency of occurrence. Baker and Pickup (1987), however, recognized that rare, large events 

play the most important geomorphic role in some fluvial environments, and 100-year floods may be 

necessary to transport the coarser sediment in some streams. As indicated by Kirchner et al. (2001), 

these formative events often arise from extremely episodic sediment delivery, dominated by events that 

are large but rare; so rare that they are unlikely to be reflected in measurements over years or decades. 

Typical of such rare events are floods that occur over limited spatial and temporal scales and in, an 

extreme case, described as ‘flash floods in small basins that rise quickly and are gone in a matter of 

minutes’ (Costa and O’Connor, 1995, p. 55). 

Flash floods are usually the consequence of short, high-intensity rainfalls mainly of spatially 

confined convective origin and commonly orographically enhanced (Gaume et al., 2009). Other flash 

flood types exist in the form of landslide-, man-made dam-, or glacial lake outbreaks, but those are 

typically designated by their specific name and are not considered here. Because of the limited duration 

of flash-flood triggering storms, the area of the impacted catchment is relatively small (generally less 

than 1000 km2). The response time of flash floods therefore depends on both the catchment size and the 

activation surface runoff that generates the process (Marchi et al., 2010). The surface runoff generation 

process depends on the combination of rainfall intensity, antecedent moisture condition and soil 

hydraulic properties, which are influenced by land use changes, and climate change and variability. 

Land use changes resulting from socio-economic development and/or human influences are potential 

cause of the increasing frequency and severity of flash flood hazards as well as related risks (Marchi et 
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al., 2010; Borga et al., 2011). According to Huntington (2006), the global hydrological cycle has been 

intensifying due to global warming. This is supported by evidence of increasing heavy regional 

precipitation (Groisman et al., 2004; Beniston, 2009) and global precipitation (Groisman et al., 2005; 

Trenberth et al., 2007; Giorgi et al., 2011). Global climate change and variability could be responsible 

for the increase in the magnitude and severity of flood peaks in many regions of the world (e.g., Milley 

et al., 2002), through the impacts on storm–weather systems and river discharge conditions. 

The co-occurrence of flash floods and major geomorphic effects is of particular concern, because 

it may amplify the hazard corresponding to the individual generative processes alone. Indeed, the 

simultaneous occurrence of intense flooding, landslides and/or debris flows may trigger cascading or 

progressive events (e.g., Helbing, 2013). These floods are commonly associated with widespread slope 

failures, and high flood power that causes significant erosion and sedimentation in alluvial channels 

and floodplains. Flash floods are therefore natural candidates for analysing the geomorphic effects of 

floods. Stream power has widely been used in literature as a measure of the geomorphic effectiveness 

of floods because its measures quantify river energy expenditure in fluvial systems (Rhoads, 1987). 

Several studies (e.g., Miller, 1990; Magilligan, 1992; Costa and O'Connor, 1995; Magilligan et al., 

2015; Marchi et al., 2016) have built on the pioneering work by Baker and Costa (1987) to explore 

river energy expenditure associated with extreme rainstorms that are usually responsible for major and 

abrupt morphological changes in river channels and valley floors. Energy expenditure (or dissipation) 

plays a key role in fluvial and geomorphic processes (i.e., supply and transport of water and sediment 

loads). This is because as potential energy of runoff across the basin is converted into kinetic energy, 

most of the energy is dissipated by friction at the channel boundary (grain, form, system roughness), 

morphological adjustment (bed and bank erosion) and in sediment transport (Molnar, 2013). Stream 

power therefore represents the time rate of energy lost as water flows downstream in channel reaches, 

and provides an effective measure of energy available to drive fluvial, geomorphological and 

ecological changes (Barker et al., 2009). 

Geomorphic modification is expected to occur in river channels when driving forces (i.e., 

hydraulic and abrasive forces of water and sediment acting on the channel) exceed threshold of 

resisting forces (i.e., the ability of channel boundaries to remain unchanged by the passage of water and 

sediments). However, these driving and resisting forces that determine the capacity of floods to modify 
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existing channel configuration are extremely difficult to quantify (Wohl et al., 2001; Kale, 2008). 

Stream power measures associated with geomorphic effectiveness of extreme floods are usually 

estimated in relation to peak instantaneous discharge, either at-a-station (e.g., Baker and Costa, 1987; 

Miller, 1990; Magilligan, 1992; Wohl et al., 2001), or along the longitudinal profile of channel reaches 

(e.g., Lawler, 1992; Lecce, 1997; Knighton, 1999; Fonstad, 2003; Reinfelds et al., 2004; Barker et al., 

2009; Surian et al., 2016), or with respect to spatial variability across different climatic and topographic 

regions (e.g., Marchi et al., 2016). Lawler (1992) initially revealed a theoretical assumption of non-

linear downstream variations in stream power, which has been confirmed through empirical studies by 

Lecce (1997), Knighton (1999), Fonstad (2003) and Reinfelds et al. (2004). Significant advances have 

also been made in the representation of the spatial distribution of stream power and other hydraulic and 

topographic variables, through use of high resolution DEM, which led to the development of useful 

stream assessment tools (e.g., Reinfelds et al., 2004; Barker et al., 2009; Krapesch et al., 2011; Vocal 

Ferencevic and Ashmore, 2012; Thompson and Croke, 2013; Parker et al., 2014). Spatial 

representation of stream power sheds more light on how the geographical variability of energy 

expenditure within a high mountain stream basin could fully capture the variability in geomorphic 

effects (e.g., Fonstad, 2003). 

The hydrologic and geomorphic impacts of extreme floods in a valley (i.e., erosion and 

sedimentation) are highly contingent on time- and place-specific factors, which make it important to 

examine geomorphic effects of flash floods in a variety of situations (Phillips, 2002). The study of the 

relations between floods and geomorphic changes in channels is fully within the scope of 

hydrogeomorphology, a research approach that has been defined by Sidle and Onda (2004 p. 598) as 

‘an interdisciplinary science that focuses on the interaction and linkage of hydrologic processes with 

landforms or earth materials and the interaction of geomorphic processes with surface and subsurface 

water in temporal and spatial dimensions’. Indeed, the geomorphic effectiveness of extreme floods is 

likely to depend on the combined influences of the geological controls on channel geometry and 

sediment characteristics, as well as on variations in flood intensity. The time- and place-specific 

hydrologic and geomorphic settings that control the spatial distribution of stream power are therefore 

very crucial in quantifying the geomorphic effects of flash floods for a specific catchment and/or 

hydro-climatic region (Costa and O’Connor, 1995). The variation of stream power and other 
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topographic controls (mainly channel gradient and geo-lithologic features) along the longitudinal 

profile of river channels could better explain the intricate downstream geomorphic processes including 

sediment yield, transport and deposition during rainfall-runoff events (Knighton, 1999; Reinfelds et al., 

2004). Coupling reach-level channel processes with the spatial arrangement of the reach morphologies, 

their interaction with hillslope processes and external forcing by confinement, riparian vegetation and 

woody debris enhances understanding and predicting channel responses to both human and natural 

disturbances, because the gradient and morphology of mountain channels are highly variable and prone 

to forcing by external influences (Montgomery and Buffington, 1997). 

On the other hand, we note that flash floods are very difficult to observe, due to the mismatch 

between the space-time scales of occurrence and the features of the typical hydrometeorological 

sampling networks (Borga et al., 2011). The recognition of the poor observability of flash floods has 

stimulated the development of a post-event monitoring methodology in the last decade, which involves 

post-flood indirect estimation of peak discharges and the use of weather radar observations for 

hydrological modelling. These observations provide the link between the real-world processes and the 

perceptual and mathematical models developed to understand flash flood responses and make 

predictions for unobserved variability. The observation strategy was developed under the EC 
FLOODsite project (Gaume, 2006) and refined and tested under the EC HYDRATE project (Borga et 

al., 2011). The objective is to collate flash flood data by combining hydrometeorological monitoring 

and the acquisition of complementary information from post-flood surveys (Gaume and Borga, 2008; 

Borga et al., 2008; Marchi et al., 2009a). The systematic application of this observation strategy in 

specific regions permitted the development of a freely accessible European Flash Flood Database 

including hydrometeorological data and related observations concerning a wide number of flash flood 

occurrences in Europe since 1998 (Borga et al., 2011). Part of this archive is used, together with data 

from more recent flash floods, as the reference database for the work proposed in this thesis. 

It should be remembered that investigations on the geomorphic effects of flash floods have 

significant impacts on the management of the relevant flood and geomorphic risks (Borga et al., 2014). 

The occurrence of flash floods and associated hazards has been a major concern in hydrology and 

natural hazard sciences, in terms of the proportion of fatalities and economic losses during individual 

events (Marchi et al., 2010). Both event- and long-term flood risk analysis and management approaches 
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are gaining ground and fall within the EC ‘Directive on the assessment of flood risks (2007/60/EC)’. 

Significant progress has been made in the last decades in the risk management of flash floods and 

geomorphic hazards (mainly shallow landslides and debris flows), predominantly considered in 

isolation. However, effective response to the problem posed by the management of the combined 

occurrence of flash flood and geomorphic hazards requires more than the recognition of the two 

individual sources of risks. With the joint occurrence of both large specific discharges and erosion at 

almost the same spatial scale, channel configuration becomes unstable due to sediment input from 

landslides and/or debris flows. Furthermore, these are associated, under appropriate conditions, with 

recruitment and transport of large wood (Wohl et al., 2009; Comiti et al., 2016). The analysis of the 

combined effects of these multiple hazard sources requires the identification of the spatial scale where 

the hazard coupling occurs and the development of an adequate integrated process analysis. 

 

1.2 THE FLUVIAL SYSTEM 

 FORMS AND PROCESSES 1.2.1

The fluvial system is a landscape unit consisting of different morphological elements that are 

connected by hillslope and fluvial processes and driven by water and sediment transport. Hillslopes 

constitute about 90% of the global ice-free landscape, whereas river bodies and their floodplains 

occupy the remaining 10% (Huggett, 2007). Hillslopes receive precipitation and supply runoff and 

sediments into river channels, which then drain and transport the runoff downstream within the channel 

reach. The predominant types of river channels are bedrock, alluvial, and semi-controlled or 

channelized channels (Huggett, 2007). Bedrock channels cut into bedrock in their upper reaches where 

steep gradients and coarser bed load materials are dominant. These channels are resistant to erosion and 

tend to persist for long periods without significant changes. Alluvial channels, on the contrary, are 

usually formed through the transport of sediments by the action of flowing water and are less resistant 

to erosion compared to bedrock channels. Their formation and development depend on the variability 

in the grain size of the alluvium, which ranges from clay to boulders. Changes in their forms are highly 

influenced by changes in discharge and sediment supply. Channelized streams are structurally 

engineered (human-influenced) to control floods, improve drainage and maintain navigation. 
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River channels are classified according to the morphology of their plan and bed forms. In plain 

view, alluvial channels exhibit five forms of graded series – straight, meandering, braided, wandering 

and anastomosing. These classifications are usually applicable to long channel reaches or large basins 

and are distinguished by entrenchment, gradient, width/depth ratio and sinuosity (e.g., Leopold et al., 

1960; Rosgen, 1994). On the basis of bed forms, Montgomery and Buffington (1997) categorized 

seven distinct reach types in mountain streams – bedrock, colluvial and five alluvial channels (cascade, 

step-pool, plane bed, pool riffles and dune ripples) – based on Schumm’s (1977) general delineation of 

erosion, transport and deposition processes. These classifications are based on channel slope, drainage 

area, relative bed roughness and the bed-surface grain sizes. The relative magnitudes and trends of 

sediment supply and transport capacity exhibit significant influence on the stability of alluvial channels 

(Montgomery and Buffington, 1997).  

Streams are powerful geomorphic agents capable of eroding, transporting and depositing 

sediments by the fluvial action of flowing water. The largest size of sediment that can be moved in 

traction as bed load defines a stream’s competence, while its capacity describes the maximum amount 

of debris that can be carried in traction as bed load (Huggett, 2007; Wainwright et al., 2015). The 

capacity of a stream to do geomorphic work is related to its power, i.e., the rate at which a stream 

works by transporting sediments, overcoming frictional resistance and generating heat (Wolman and 

Miller, 1960). The three main fluvial processes in alluvial channels (sediment production, transport and 

deposition) are presented in an idealized model of the fluvial system in Fig. 1.1 (Schumm, 1977). 

Upstream reaches dominate the sediment production or erosional landform (Zone 1). This is also the 

water and sediment source area. The main river channel is characterised by sediment transport (Zone 2) 

as a result of the high energy gradient of the flowing water, whereas depositional landforms (Zone 3) 

store sediments because of the abrupt change in topographic gradient. In reality, sediment production 

(erosion), transport and deposition are interconnected, complex processes that occur at almost the same 

spatial scale (Lee, 2005). However, these processes are dominant in the respective zones as illustrated 

in Fig. 1.1 (Grant et al., 2013), which are influenced by the flow and sediment characteristics together 

with the topographic gradient along a channel-reach. 
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FIG.1.1. Idealized model of the fluvial system (Schumm, 1977) (Adapted from Grant et al., 2013). 

 

Streamflow causes channel bed and bank erosions under suitable flow and channel conditions. 

Streams attack their channel beds and banks by three main erosional processes: corrosion, corrasion 

and cavitation (Huggett, 2007). Corrosion refers to the chemical weathering of beds and banks by 

streamflow that produces dissolved stream loads. Corrasion (abrasion) describes the wearing away of 

surfaces by the shear action of particles moving with the water body. Evorsion is a form of corrasion 

caused by the action of flowing water with negligible effect of stream load. This latter process is 

termed ‘hydraulicking’ in alluvial channels and describes the removal of loose materials by the action 

of water alone. This is also known as ‘plucking’ in alluvial channels and ‘quarrying’ in bedrock 

channels. Cavitation on the contrary, is a process whereby high flow velocity causes sufficiently large 

reduction in absolute pressure of the flowing water such that the water vapour pressure is reached. The 

water vapour occurs in small bubbles or voids, which implode and generate intense shockwaves that 

smash into channel walls and cause intense erosion, typical of bedrock channel erosion processes (e.g., 

Baker and Kale, 1998). Streams may erode their channels downwards (vertical erosion) or sideways 

(lateral erosion) (Huggett, 2007). Vertical erosion in alluvial channels is identified as a net removal of 

sediments, characterized by channel bed aggradation and degradation processes. Lateral erosion 



INTRODUCTION

 

 

 
Stream power and geomorphic effects of flash floods                                                                           8 
 

usually occurs during flooding, when the channel banks are worn away due to bank overflow. This is 

also accomplished when streamflow undercuts the channel bank, which leads to slumping and bank 

collapse. 

A river in flood demonstrates sediment transport from source to mouth under different conditions. 

Materials carried in streamflow (stream loads) are classified as dissolved, suspended and bed loads 

(Lee, 2005; Huggett, 2007). The flow conditions within a river reach determine the composition of 

solid-debris load (combination of suspended and bed loads). Solid-debris loads may move as singles or 

groups by rolling or sliding along channel beds and banks. The movement partly depends on the grain 

size and shape – coarse grains move more easily and faster than fine particles, while rounded particles 

move more readily than flat and angular ones (Huggett, 2007). Bed load moves more slowly in traction 

than the water flow and hence requires high flow velocity for traction. Stream power has widely been 

used as a basis to quantify sediment transport in fluvial systems (Bagnold, 1977). 

Rivers deposit stream loads anywhere along their course but mainly at locations with low 

gradients (e.g., valley bottoms), with abrupt change in gradient and where channels diverge, causing a 

reduction in flow depth and velocity (Huggett, 2007). Stream loads may be deposited along channels, 

on channel margins, on valley margins, as overbank floodplain deposits or on alluvial fans. Stream 

erosion and deposition are dominant during flood events, characterized by high specific discharges and 

flow velocities. Erosion rates increase with discharge and velocity and hence streambeds are 

significantly scoured during floods. As a flood abates, sediments are redeposited along the channel 

network subject to suitable flow and channel conditions. Changes in sediment storage and overall 

channel form along a river reach after flood events strongly depend on the magnitude of the flow forces 

to erode and transport sediments on one hand, and the channel boundary forces to resist bed and bank 

erosion on the other hand. Therefore, for a specific channel reach, geomorphic changes are likely to 

depend on magnitude and history of external perturbations. 

 

 CHANNEL HYDRAULIC GEOMETRY 1.2.2

Hydraulic geometry (HG) describes the relationships between the mean stream channel form 

(width, depth, cross-section, meander length) and discharge both at-a-station and downstream along a 
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stream network in a hydrologically homogeneous basin (Singh, 2003). Changes in channel hydraulic 

properties (channel top width, flow depth, and mean flow velocity) have been shown to depend 

primarily on the variations in discharge (Leopold and Maddock, 1953; Wohl and Wilcox, 2005) rather 

than the usual ‘master variable’ – drainage area (e.g., Modrick and Georgakakos, 2014 and references 

therein). The dependency of hydraulic geometry on variations in discharge is obvious for flash floods, 

which are characterized by strong spatial gradients of rainfall inputs that hit different parts of a river 

basin with different intensity. While simple HG relates specifically to at-a-station hydraulic geometry 

(AHG), regime theory is more related to downstream hydraulic geometry (DHG) (Gleason, 2015). 

Another distinction relates to the reference discharge: mean annual and bankfull discharge are usually 

used to describe HG, whereas stable, regime discharge is used for regime theory (Clifford, 2004).  

Regime theory describes the relations amongst governing equations used to predict the geometry 

of a stable channel if discharge and sediment supply and characteristics are known (Eaton et al., 2004; 

Kaless et al., 2014). Singh (2003) discussed a number of theories governing channel hydraulic 

geometry but pointed out that the classic work of Leopold and Maddock (1953) still remains the 

benchmark contribution. These power function relations have been validated using a set of data at 

mean annual discharge (Dury, 1976) and shown to be similar over varying environments (Chong, 

1970), although Park (1977) argued that simple power functions may be misleading. For example, the 

downstream power function models may not reflect the true hydraulic nature if the rate of change in 

channel roughness, confinement and slope are not uniform (e.g., Richards, 1973, 1976). Nevertheless, 

the work of Leopold and Maddock (1953) is the basis in recent studies on regime theories of hydraulic 

geometry (Eaton et al., 2004; Wohl and Wilcox, 2005; Kaless et al., 2014; Gleason, 2015). Correlations 

between (bankfull) discharge, Q [m3 s-1], and the corresponding cross-sectional channel top width, w 

[m], flow depth, d [m] and mean flow velocity, V [m s-1] usually take the form of power-law 

regressions as follows (Leopold and Maddock, 1953): 

ݓ = ܽ ∙ ܳ௕            [1.1] 

݀ = ܿ ∙ ܳ௙            [1.2] 

ܸ = ݇ ∙ ܳ௠            [1.3] 

such that, ܾ +  ݂ +  ݉ =  1; and ܽ ∙ ܿ ∙ ݇ =  1, since ܳ = ݓ ∙ ݀ ∙ ܸ. 
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Eaton et al. (2004) developed a theoretical rational regime model for predicting equilibrium 

alluvial channel form. The model is based on three relations that govern geometry of a canal 

(Henderson, 1966): (i) a bed material transport equation; (ii) a flow resistance equation; and (iii) a bank 

stability criterion. The model combines independent governing variables (discharge, sediment supply 

and characteristics, and channel gradient) to define a dimensionless alluvial state that exhibits unique 

values of Froude number and sediment concentration. Kaless et al. (2014) used the concept of regime 

theory based on models that incorporate external hypothesis (Miller, 2005) and other physically based 

models (Ikeda et al., 1988; Parker et al., 2007), to explain morphological changes and to predict 

potential recovery in Italian rivers under the classical hypothesis that, while channel width and depth 

adjust quickly to changes in discharge and sediment supply, reach slope persists over longer time 

spans. 

Gleason (2015) discussed the importance of the utilities of channel hydraulic geometry of natural 

rivers as well as aspects that may direct future research. Hydraulic geometry is useful for the following 

reasons: (i) rating curves based on hydraulic geometry provide critical discharge monitoring capacity of 

rivers, (ii) applied to estimate flood risks and extent, (iii) investigate flow conditions in the distant past, 

and (iv) understand river habitat conditions. Gleason (2015, p. 19) highlighted the main issues with the 

use of hydraulic geometry by noting that: ‘The utility of hydraulic geometry is unquestioned, but its 

elevation from empirically observed relationship to physical principle is not complete, despite 

universal acceptance of its existence. It may be that such a transition is never made, in which case 

future research of hydraulic geometry will focus almost exclusively on its applications.’ 

 

1.3 FLASH FLOODS: OBSERVATIONS AND CHARACTERISATION 

Flash floods are generated by extreme rainstorms that occur in basins that are relatively small and 

with short response time (Borga et al., 2007; Marchi et al., 2010). Flash flood occurrences are 

characterised by large spatial and temporal variability of precipitation in complex terrains that make 

monitoring and forecasting of rainfall very difficult (Borga et al., 2010). There exists a substantial body 

of work on physical flood processes in small research catchments where processes can be observed by 

field campaigns and detailed instrumentation (e.g., Delrieu et al., 2005; Boudevillain et al., 2011). 
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However, a central problem in the study of extreme floods and flash floods is that investigations are 

focused precisely in the realm of events that are locally rare and spatially limited and characterized by 

spatially highly heterogeneous precipitation forcing, and peak discharge distributions even within small 

catchments, with the majority of highly impacted small tributaries usually ungauged (Gaume and 

Borga, 2008). Dunne (1978, p. 290) characterizes this problem by noting that “within a particular 

basin, the dominant runoff process may vary with the characteristics of rainstorms. Even the highest 

infiltration capacities of forest soils will not accommodate the highest recorded rainfall intensities.” 

The main challenges affecting flash flood predictions are tied to the relevant temporal and spatial 

scales of their occurrence. Fig. 1.2 presents the monitoring capabilities and the scales of convective 

cells, mesoscale convective systems (MCS) and fronts that usually trigger extreme floods. The flash 

floods in Fig. 1.2 are characterized by small spatial and temporal scales (usually less than 1000 km2 

and 36 hours, respectively). The mismatch between the spatial and temporal scales of flash flood 

occurrences and the associated conventional rainfall and river discharge measurement networks makes 

such events very difficult to observe (Creutin and Borga, 2003; Borga et al., 2010). 

 
FIG.1.2. Spatio-temporal scales of flash flood-triggering storms versus monitoring capabilities of radar and 
raingauge networks. Dots represent a number of flash flood generating storms observed in Europe (Borga, 2007) 
(Adapted from Borga et al., 2008). 
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Lack of long-term hydro-meteorological data with the appropriate spatial and temporal 

resolutions has rendered the process understanding of these extreme events relatively poor (Borga et 

al., 2008). Observation of such extreme events using raingauge networks is uncertain. Although the 

accuracy of weather radar rainfall estimates are influenced by orography (Pellarin et al., 2002; 

Germann et al., 2006), they provide relatively better spatial rainfall representation compared to rain 

gauge networks (Fig. 1.2). However, BASC (2005) demonstrated that radar rainfall estimations become 

less reliable with high intensity rainfall; which characterises flash floods. 

The challenges affecting flash flood investigations are highly linked to the uncertainties affecting 

the estimation of spatially variable precipitation forcing, the complexity of the hydrogeomorphic 

response of the physical processes and the potential co-occurrence of flash floods and other hazards 

(e.g., debris flows and/or landslides). These challenges may affect the quality of flash flood predictions 

(Collier, 2007) and may pose uncertainties in flash flood warning procedures in real-time, which plays 

a key role in the design and planning of flood risk management measures (Norbiato et al., 2008). The 

need for coping with these hazardous phenomena has stimulated research on meteorological, 

hydrological and hydraulic aspects of flash floods (Borga et al., 2010), as well as on their social impact 

(Ruin et al., 2014). A proposed methodology for post-flash flood survey (Gaume and Borga, 2008) 

plays a critical role in gathering essential observations concerning flash floods, thereby ‘gauging the 

ungauged extremes’ (Borga et al., 2008). The key methodologies involved are: (i) use of radar rainfall 

estimates for water balance and hydrologic response analysis; (ii) post-event survey to document 

geomorphic effects and peak discharges, and (iii) eye-witness interviews to establish the chronology of 

the event. Standard use of post-flood surveys has been recommended to gather flood peak magnitude 

and timing with the objective to advance understanding of flash floods and causative processes 

(Lumbroso and Gaume, 2012; Le Boursicaud et al., 2016). Traces left by water and sediments during a 

flood provide an opportunity for assessing peak discharge by means of detailed post-flood surveys 

along the channel network. The spatially detailed flood peak estimates may be compared with the flood 

simulations from hydrological models driven by the space–time estimates of rainfall typically obtained 

by means of radar rainfall analysis, with the objective of evaluating the consistency between the 

rainfall and discharge observations. The hydrological simulations so obtained ensure closure of the 

water balance at the event scale and consistent dynamics of the rainfall-runoff sequence. 
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Characterising flash floods over various spatial and temporal scales is very important in climatic 

and hydrologic studies. This is typically built on investigations to examine the control of watershed 

physiographic and channel network geometry to flood response (Gaume et al., 2009). Climate 

variability influences flood-generating processes in two ways. First, directly through the variability of 

precipitation and flow characteristics (Lane et al., 2007) and secondly, in an indirect way associated to 

its effect on the seasonality of rainfall and evapotranspiration, which affect the water balance of 

catchments for specific storm events (Sivapalan et al., 2005). Catchments under energy-limited 

conditions are mostly predominant in humid climatic regions, which affect the antecedent moisture 

condition of soils for individual storm events. As an example, Penna et al. (2011) found that soil 

moisture exerts strong influence on runoff in an alpine headwater catchment. European flash floods 

occur both under energy-limited conditions and under water supply-limited conditions; the latter 

characterise Mediterranean environments (Marchi et al., 2010). Climate may also influence runoff 

response to extreme rainstorms through the control of soil formation and erosion processes. 

Orographic effects causing rainfall and topographic relief accelerating concentration of stream 

flow are the main mechanisms associated with a catchment’s physiographical factors that affect flash 

flood occurrence (O’Connor and Costa, 2004). The orography of a basin plays a major role in the type, 

amount, intensity and duration of precipitation events. In addition, orography is one of the important 

elements that causes convective systems (Davolio et al., 2006). This is why flash floods are 

predominant in regions of steep terrain. Heavy convective rains may fall on plains, but to promote high 

flow concentration along drainage paths, the topographic relief of a catchment plays a key role in 

ensuring a kinematic component that propagates high discharges over diverse time scales and produces 

the hazard potentials of flash floods. Hillslope and channel gradients and the ratio of catchment area to 

channel length are the basic characterization of the steepness or topographic relief of a catchment 

(Collier and Fox, 2003). 

Rainfall amount and duration are the main characteristic variables of rainstorms that control flash 

flood generation and are controlled by the local climate. The relationship between total event rainfall 

accumulation and duration gives a clear idea about the intensity and severity of a storm event. For 

similar total event rainfall depths, shorter rainfall duration would produce higher peak discharges than 

long rainfall duration over a specific catchment and hence intense and severe floods, which is a 
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characteristic feature of flash flood-generating rainstorms. However, rainstorm characteristic 

relationship between rainstorm duration and the ratio of total event rainfall to mean annual 

precipitation provides a context to compare rainstorms under different climatic conditions, most 

importantly considering the differences in the mean annual precipitation. Flash floods are locally rare 

and therefore the impacts of flash flood-generating rainstorms on the local annual water balance for 

different climates may vary. Marchi et al. (2010) reported that the ratio of event to annual precipitation 

in Mediterranean climatic regions is generally higher than that of Continental, Alpine and Alpine-

Mediterranean regions. In addition, major flash floods in the Mediterranean region (e.g., Italy, southern 

France and Spain) occur in the autumn months, whereas those in the Continental region (e.g., 

Germany, Austria and Romania) mostly occur in the summer months. These analyses have revealed 

smaller spatial extent and duration for Continental events compared to Mediterranean events. This 

shows the seasonality effects and associated space-time scales in the distribution of flash flood events 

across different climatic regions in Europe. 

One of the important characteristics of flash floods is the high magnitude of unit peak discharges 

(i.e., peak discharges normalized by the upstream contributing area) produced. Gaume et al. (2009) 

developed the following envelope curve for the relationship between unit peak discharges and 

catchment area for multiple flash flood events in Europe: 

ܳ௨ = 97.0 ∙  ଴.ସ           [1.4]ିܣ 

where Qu [m
3 s-1 km-2] is the unit peak discharge and A [km2] is the upstream contributing area. The 

exponent in the power-law relationship (Eq. 1.4) is smaller than that resulting from another study on 

high magnitude floods in Europe (Herschy, 2002) and that developed for the analysis of 41 maximum 

floods in the world (Herschy and Fairbridge, 1998). This can be ascribed to the fact that these analyses 

included other flood types. 

The importance of analysing flash floods is the potential ability to reveal unexpected hydrological 

behaviour on the basis of weaker response or unobserved behaviours which might be anticipated 

(Delrieu et al., 2005; Archer et al., 2007; Borga et al., 2007), hence enhancing the learning process and 

understanding of these extreme events. Documenting runoff response to extreme storms also provides a 
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guidance to extend hydrological predictability with increasing storm severity (Blöschl and Zehe, 2005). 

Marchi et al. (2010, p. 119) expressed the importance of flash flood characterisation by noting that: 

‘Characterising the response of a catchment during flash flood events, thus, may provide new and 

valuable insights into the rate-limiting processes for extreme flood response and their dependency on 

catchment properties and flood severity’. In conclusion, flash flood investigations aim at identifying 

the landscape and hydro-climatic variables that control hydrogeomorphic response to extreme rainfalls. 

 

1.4 FLOOD POWER: SHEAR STRESS AND STREAM POWER 

An important concept in fluvial geomorphology is the ‘flood power’, which is linked to the 

geomorphic effectiveness of floods in channels and valley floors (Baker and Costa, 1987). Fluvial 

adjustments only occur when the flood power exceeds the channel boundary resistance threshold, 

which depends on river bed and bank cohesive forces along the channel reach. The boundary shear 

stress and stream power are the two dominant expressions that characterize flood power (Magilligan, 

1992). Channel boundary shear stress and stream power have been shown to be more useful concepts 

than discharge alone in assessing the potential of floods to cause geomorphic changes (Baker and 

Costa, 1987). Therefore, the magnitude of geomorphic adjustment for any flood event can be focused 

on flood power, which represents the flow energy and not just the (peak) discharge (Magilligan, 1992; 

Knighton, 1999). 

A body of water moving downstream along a channel reach exerts an instantaneous shear force 

on the wetted perimeter of the channel cross section that is equal to the downslope component of its 

weight. Shear force per unit wetted area is given by: 

߬ = ߩ ∙ ݃ ∙ ܴ ∙ ܵ           [1.5] 

where τ [N m-2] is the shear stress or tractive force, ρ [1000 kg m-3] is the density of water, g [9.81 m s-

2] is the gravitational acceleration, R [m] is the hydraulic radius and S [m m-1] is the channel or energy 

gradient (defined as H/X with reference to Fig. 1.3). The shear stress defines a stream’s ability to set a 

sediment particle in motion; hence, it is directly related to the transport capacity of the stream flow 
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(Rhoads, 1987). Work is performed when the body of water moves downstream through a distance, as 

the gravitational potential energy of the flowing water is converted to kinetic energy (Fig. 1.3). 

The concept of stream power was first introduced by Bagnold (1966) and has since been used 

extensively as a basis to quantify sediment transport (Bagnold, 1977), explain bedrock channel incision 

(Whipple et al., 2000), bank erosion (Lawler et al., 1999), channel pattern (Chang, 1979) and riparian 

habitat development (Bendix and Hupp, 2000). Stream power is therefore an effective measure of 

energy available to drive fluvial, geomorphological and ecological changes (Barker et al., 2009). The 

term stream power is associated with flowing water having the properties of mechanical power 

(Rhoads, 1987), which is defined by McEwen (1994, p. 359) as ‘the rate of energy supply at the 

channel bed that is available for overcoming friction and transporting sediments’. Rhoads (1987) 

found the literature on stream power confusing and therefore proposed a standardized nomenclature for 

the application of its associated measures. However, the commonly used term in literature is the stream 

power per unit channel length, Ω [W m-1], referred to as cross-sectional stream power and expressed 

as: 

ߗ = ߩ ∙ ݃ ∙ ܳ ∙ ܵ           [1.6] 

where Q [m3 s-1] is the flood discharge. Stream power per unit-wetted area is termed unit stream power, 

⍵ [W m-2] and expressed as: 

߱ =  [1.7]            ݓ/ߗ

where w [m] is the top channel width corresponding to the flood level. Substituting Eq. [1.5] and [1.6] 

into Eq. [1.7] and approximating channel width as the wetted-channel perimeter yields: 

߱ = ߬ ∙ ܸ             [1.8] 

where V [m s-1] is the average flow velocity. The various stream power variables presented in Fig. 1.3 

are defined above, except for power per unit weight of water VS, which is often not applied as a 

measure of stream power (Rhoads, 1987). 
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FIG.1.3. Channel dimensions describing stream power variables (Adapted from Fonstad, 2003). 

 

The downstream variation in stream power is primarily influenced by the interplay of catchment 

hydrology, channel gradient and degree of confinement, which usually changes systematically along 

the longitudinal profile of river channels (Knighton, 1999; Reinfelds et al., 2004). Lawler (1992) 

initially developed a conceptual model for the spatial distribution of stream power by establishing 

empirical relationships among downstream changes in hydraulic properties of rivers. The model 

suggests that the downstream changes in discharge, Q [m3 s-1] and slope, S [m m-1] are better 

represented respectively by power and exponential functions of the channel length, L [m] as follows: 

ܳ = ߙ ∙  ఉ            [1.9]ܮ

ܵ = ܵ௢ ∙ ݁ି௥௅              [1.10] 

where α and β are dimensionless power function constants, So [m m-1] is the initial slope at an upstream 

reference section and r is the coefficient of slope reduction. Substituting Eq. [1.9] and [1.10] into [1.6] 

yields a generalized reach-scale downstream change model for cross-sectional stream power: 



INTRODUCTION

 

 

 
Stream power and geomorphic effects of flash floods                                                                           18 
 

Ω = ߩ] ∙ ݃ ∙ ߙ) ∙ (ఉܮ ∙ (ܵ௢ ∙ ݁ି௥௅)]          [1.11] 

The model shows a non-linear downstream change in stream power and suggests an intermediate 

location of maximum total stream power along the longitudinal profile of channel reaches. This 

theoretical assumption has been confirmed through empirical studies by Lecce (1997), Knighton (1999) 

and Reinfelds et al. (2004). Lawler (1995) and Knighton (1999) further predict that unit stream power 

is expected to peak about half way between the source of river and the location of the maximum cross-

sectional stream power. Magilligan (1992) recognized two main controlling factors on stream power in 

relation to differing geo-lithological features which may be responsible for the non-linear downstream 

pattern. At-a-station, the dominant control on stream power is attributed to the local geologic and 

geomorphic characteristics whereas the general downstream changes in the longitudinal profile of 

rivers control the downstream variations in stream power. Lithological controls on valley width and 

channel slopes reflect the irregular downstream pattern of stream power, especially in relation to valley 

width (Magilligan, 1992). Narrow (usually resistant) valleys convey large amounts of runoff during 

large magnitude floods as the increasing rate of flood depth increases, thus maximizing flood power, 

while wide valleys on the other hand minimize flood power due to limited boundary resistance. 

The effect of flood power on the fluvial system includes a variety of sedimentologic and 

hydraulic processes such as suspension of gravels, erosion of alluvial and bedrock channels, movement 

of large diameter boulders and the transport of large quantities of sediment (Baker and Costa, 1987). In 

relation to sediment transport, Baker and Costa (1987) reported that exceptionally powerful floods with 

shear stresses of 1000 N m-2 can transport gravels of diameter between 10 and 30 cm as suspended 

loads. Also, Williams (1983) reported that unit stream power of about 1000 W m-2 can move boulders 

of approximately 1.5 m in diameter, whereas shear stresses of about 500 N m-2 will move boulders of 

approximately 3 m in diameter. In relation to erosion intensity, Miller (1990) and Magilligan (1992) 

identified a unit stream power value (300 W m-2) as the potential threshold above which significant 

geomorphic adjustment is likely to occur in unconfined channel reaches. This threshold, usually 

referred to as the Miller-Magilligan critical threshold (e.g., Kale, 2008), although perhaps questionable 

for universal acceptance, has been used and supported in several studies (e.g., Hauer and Habersack, 

2009; Ortega and Heydt, 2009; Thompson and Croke, 2013; Buraas et al., 2014). However, Magilligan 

(1992) highlighted that this value is not rigidly an absolute threshold, but represents a close 
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approximation of the minimum threshold. Miller (1990, p 128) expressed the relations among flood 

power, erosion intensity and channel-reach morphology types by noting that: ‘The largest values of 

unit stream power and boundary shear stress are developed in bedrock canyons, where the boundaries 

are resistant to erosion and the flow cross-section cannot adjust its width to accommodate extreme 

discharges’. 

In relation to comparing the geomorphic effectiveness of different flood events at the channel-

reach scale, Costa and O’Connor (1995) considered the importance of flood-flow duration and 

cumulative energy expenditure by developing a conceptual model that combines flow duration, stream 

power per unit area and threshold for alluvial and bedrock channel erosion. However, it should be 

noted that quantifying landscape-scale erosional thresholds is much more difficult than quantifying the 

hydraulic forces. Three distinct flood types are identified in the conceptual model with respect to the 

combined influence of flood-flow duration and cumulative energy expenditure on quantifying the 

geomorphic effectiveness of extreme floods (Fig. 1.4). 

 

FIG.1.4. Conceptual model of Costa and O'Connor (1995) describing the relative role of flow duration and unit 
stream power in generating an effective flood (Adapted from Magilligan et al., 2015). 
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Curve A represents floods with long duration and large cumulative energy expenditure but low 

peak instantaneous stream power that may not be effective channel- and floodplain-disrupting events. 

Curve B corresponds to floods with a combination of high peak instantaneous stream power, sufficient 

flow duration and large cumulative energy expenditure, which may significantly alter landforms. Curve 

C represents floods with very large peak instantaneous stream power per unit area but low cumulative 

energy expenditure (as a results of short flow duration), which may also not be effective events. The 

shortfall of the model is to evaluate a feasible critical landscape-scale erosion-resistant threshold to 

estimate the proportion of cumulative energy available for significant geomorphic changes. In a nut 

shell, while peak instantaneous stream power values are necessary to cross landscape-scale erosional 

resistant thresholds to significantly disrupt channels and floodplains, flow-duration and cumulative 

energy expenditure may also play important roles in assessing the geomorphic work of the flow. 

 

1.5 GEOMORPHIC EFFECTS OF FLASH FLOODS ON THE FLUVIAL SYSTEM 

 CONCEPT 1.5.1

Flash floods usually occur in small-sized, rugged-relief catchments in mountain areas. The 

combined effect of very intense rainstorms and high specific discharges is such that the occurrence of 

flash floods in complex terrain represents an important geomorphic agent in the fluvial system. Given 

the association of large runoff generation and steep topography, it is not surprising that where abundant 

sediment is available for entrainment, flash floods are associated with debris flows, erosion and 

sediment transport (Borga et al., 2014; Bodoque et al., 2015). However, the large spatial variability of 

precipitation forcing and geomorphological settings associated with the occurrence of flash flood in 

complex terrains implies that the corresponding  geomorphic response would vary even within small 

catchments. A basin’s response to extreme floods depends on an intricate set of variables associated 

with the spatio-temporal characteristics of the precipitation forcing, spatial distribution of channel-

reach morphology types and hillslope hydrology. It is therefore important to focus on time- and place-

specific hydrologic and geomorphic settings in assessing a basin’s response to flash floods (Phillips, 

2002). 
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The concept of magnitude and frequency of floods as a surrogate of effectiveness of their 

geomorphic forces has often been inconclusive through field investigations (e.g., Andrews, 1980). 

Wolman and Gerson (1978) reported that the magnitude and frequency approach, which is usually 

invoked in terms of the geomorphic work performed by floods, does not satisfactorily explain the 

effectiveness of an individual event to shape or form the landscape. The authors defined effective 

events as those responsible for creating or modifying landscape forms that persist over time while 

geomorphic work is basically the sediment transport rate, which often adjusts fluvial systems in 

equilibrium to external perturbations and internal feedbacks. Therefore geomorphic effects of extreme 

floods should be focused on disequilibrium rather than on equilibrium conditions (Magilligan, 1992). 

A central problem in associating energy expenditure with the resulting geomorphic impacts of 

extreme floods hinges on initial channel conditions, particularly the recovery processes between two 

high magnitude events (Wolman and Gerson, 1978; Newson, 1980). For instance, Wohl et al. (2001) 

extrapolated the relations between hydraulic variables and mapped patterns of erosion and deposition 

landforms, which then permitted prediction of probable future geomorphic patterns along neighbouring 

channels in Nepal. Furthermore, quantitative data on channel erodibility, sediment volume and 

transport rates to corroborate stream power measures are rarely available at the space and time scale of 

flash flood occurrences. In effect, geomorphic impacts or hazards usually take the form of erosional 

and depositional modification of the pre-flood channel and valley geometry (Wohl et al., 2001). Post-

flood field surveys and observations provide important context to assess the magnitude of channel 

modification caused by extreme floods at cross-sectional or channel-reach scales. Remote sensing may 

also be used to estimate channel widening from high resolution digital images, usually expressed as 

width ratio (i.e., ratio of channel width after flood to channel width before flood), which also provides 

an important quantitative measure of geomorphic response to floods (Krapesh et al., 2011; Magilligan 

et al., 2015; Surian et al., 2016). 

Rinaldi et al. (2016) proposed an integrated methodological framework for assessment of 

geomorphic responses to extreme floods according to the schematic diagram in Fig. 1.5. The 

methodology uses a range of approaches at different spatial scales with interlinked 

hydrometeorological and geomorphological observations and analyses to investigate the geomorphic 

impacts of extreme rainstorm events on the fluvial system. 
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FIG.1.5. Schematic diagram of spatial scales, approaches, and coupling of process controls on the flood 
timescale (Adapted from Rinaldi et al., 2016). 

 

 GEOMORPHIC EFFECTS AT THE CHANNEL-REACH SCALE 1.5.2

The geomorphic impacts of flash floods at the channel-reach scale are predominantly channel bed 

and bank erosion, and transport and deposition of sediment and woody debris, which cause abrupt and 

significant channel changes. Flash floods produce the most effective discharge, which leaves 

geomorphological traces such as boulder berms (Foulds et al., 2014) in some fluvial environments 

where more common bank-full discharges have no significant impact in terms of coarser sediment 

transport and channel modification (Baker and Costa, 1987). The dominant determinants of 

geomorphic effects are flow magnitude (e.g., peak instantaneous discharge, stream power and shear 

stress) and hydrogeomorphic resisting factors (e.g., valley width, flood duration, sequence and initial 

conditions of floods), which are place- and time-specific factors (Phillips, 2002). However, channel-

reach morphology types exhibit different response potentials to extreme rainfall events due to the 

coupled influence of reach-level channel processes with spatial arrangement of the reach morphologies, 
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their interaction with hillslope processes and external forcing by confinement, riparian vegetation and 

woody debris (Montgomery and Buffington, 1997). 

Stream power has widely been used in literature as a predictor of geomorphic changes at the 

channel-reach scale because its measures quantify energy expenditure in fluvial systems (Rhoads, 

1987). The use of stream power and its associated measures have been advocated to ‘be used in a 

conceptual context only’ (Rhoads, 1989, p 189). This is because it is extremely difficult to quantify 

geomorphic effects of floods at the channel-reach scale based on computed stream power values 

because quantitative data on channel erodibility, sediment volume and transport rates to corroborate 

stream power measures are rarely available at the space and time scales of flash-flood occurrence. 

Fonstad (2003) described stream power as a principal indicator of river energy expenditure that has 

significant influence on many form and process attributes of the fluvial system. Stream power has also 

been used as a ‘screening tool’ (e.g., Brookes and Wishart, 2006) – an indicator of how a river channel 

might be potentially affected by processes of erosion and sedimentation. Vocal Ferencevic and 

Ashmore (2012) used the concept of stream power as an initial stream assessment method to develop a 

DEM-based stream power map. This is particularly useful to compare with other geographical data as a 

tool to assess the main controls on stream power distribution, and from the point of view of public 

safety, to assess infrastructure vulnerability, particularly to extreme floods. 

The application of stream power to quantify the geomorphic effectiveness of extreme floods has 

shown that this variable is ‘just a conceptual’ representation of the time rate of energy expenditure as 

water travels down a channel reach (e.g., Miller, 1990; Magilligan, 1992; Costa and O'Connor, 1995; 

Magilligan et al., 2015; Marchi et al., 2016), because the actual energy expended in causing 

geomorphic adjustments in the fluvial system is extremely difficult to measure (Fonstad, 2003). 

Furthermore, Miller (1990) highlights the unreliability of this variable as a predictor of geomorphic 

change for individual sites, suggesting that a detailed investigation of interactions between local site 

characteristics and the flood flow patterns would provide a better understanding of flood impacts on 

valley floors. Fonstad (2003) posed the following two principal questions on associating stream power 

to the spatial distribution of river forms: (i) how does stream power vary geographically within a high 

mountain stream basin? and (ii) if traditional hydraulic geometry variables describing the stream power 

distribution do not fully capture the geographic variability, are there other variables and methods that 
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can be used instead? These questions throw light on how the present measures of stream power usually 

misrepresent the geomorphic impacts of high magnitude floods in most fluvial environments. 

The concept of flood-flow duration and cumulative energy expenditure (Costa and O’Connor, 

1995) is very important with respect to geomorphic effectiveness of floods because the use of peak 

instantaneous hydraulic variables such as discharge, velocity, shear stress, and stream power to 

quantify channel response to extreme floods has often been inconclusive and/or non-deterministic (e.g., 

Miller, 1990; Magilligan, 1992; Marchi et al., 2016; Surian et al., 2016). Magilligan et al. (2015) 

investigated the combined role of flow duration and cumulative energy expenditure on hydraulic and 

geomorphic impacts produced by the tropical storm Irene in two gravel-bed rivers of the north-eastern 

United States. Their study reveals that floods with high instantaneous peak stream power but short 

duration may show limited erosion and produce minimal channel widening, but may be formative 

events, in that they are associated with widespread long-lasting impacts (e.g., Wolman and Gerson, 

1978; Hicks et al., 2005). These floods are usually responsible for major sedimentological effects, 

including entrainment and transport of coarse sediment and its deposition across floodplains 

(Magilligan et al., 2015). Kale (2008) attributed the main geomorphic role of high cumulative energy 

expenditure of maximum annual floods in the monsoon-fed Narmada River (central India) to the 

transport of sediment supplied from upstream areas. These studies reveal that flow duration and 

cumulative energy expenditure may play complex roles in the capability of floods to produce 

significant geomorphic impacts, which is less studied at the regional scale. Specifically, investigations 

are needed on how factors such as channel geometry, substrate, riparian vegetation, sediment supply, 

and flood magnitude and duration can interact and influence geomorphic effectiveness of high 

magnitude floods. 

 

 GEOMORPHIC EFFECTS AT THE BASIN-SCALE 1.5.3

Geomorphic systems are viewed as the operation of a large physical system with a series of 

interlinked complex systems operating at different scales (Fookes and Lee, 2005) rather than the 

isolated physical systems depicted by Schumm’s model of the fluvial system (Fig. 1.1). This implies 

that any process at any location within a basin would affect the form and process at another location. 
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Most studies of high magnitude flood events have focused on the geomorphic impact at the channel 

scale with little or no attention to the tremendous impacts of hillslope processes on channel form and 

stability. Channel and hillslope processes are intricate processes that occur at almost the same spatial 

scale within a river basin and are responsible for landscape forms. The nine-unit hillslope surface 

profile (Dalrymple et al., 1968) (which includes from the summit, interfluve, seepage slope, convex 

creep slope, fall face, transportational midslope, colluvial footslope, alluvial toeslope, channel wall and 

channel bed) clearly depicts the interconnection between hillslope and fluvial processes. Hillslopes 

mainly supply water and sediment (and large wood) to river channels within a river basin, but their 

forms may be influenced by fluvial activities at the valley floor. On one hand, hillslope failures, thus 

mass movement of sediment (e.g., debris flows and/or landslides) can cause large-scale deposition 

(alluviation) and dams, which affect the form and stability of river channels and fluvial processes. On 

the other hand, active fluvial processes on the valley floor may cause significant scouring or 

undercutting of channel banks which eventually leads to slope instability and collapse. It is therefore 

necessary to take the broad perspective of erosion and deposition associated with fluvial and hillslope 

processes to better understand the geomorphic impacts of high magnitude floods at the basin scale. 

The concept of sediment connectivity (Hooke, 2003; Cavalli et al., 2013; Fryirs, 2013; Bracken et 

al., 2015), which quantifies coupling and decoupling of hillslope and channel processes (Harvey, 2001) 

and longitudinal stream connectivity (Wohl et al., 2016), may be very important in assessing the 

geomorphic effectiveness of floods at the basin scale. The spatial characterization of connectivity 

patterns can help in estimating the transfer paths of the sediment detached from source areas within a 

catchment. Sediment connectivity can also be linked to hydrological connectivity in runoff-dominated 

catchments (Bracken and Croke, 2007) to address the concept of transport capacity and sediment 

supply in fluvial systems (Montgomery and Buffington, 1997). Effective coupling between hillslope 

and channel processes, which is controlled by morphological conditions of catchments, is expected to 

provide efficient downstream transfer of sediments and vice versa. However, the peculiar 

characteristics of flash floods may render the concept of sediment connectivity non-deterministic in 

assessing catchment-scale geomorphic effectiveness of such extreme floods. On one hand, the 

devastating nature of flash floods may create effective coupling between hillslopes and channels in the 

realm of the event to ensure efficient sediment delivery. On the other hand, the short duration of flash 
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flood-triggering rainstorms as well as the corresponding flood response may delay the delivery of 

sediment supply from hillslope processes (landslide) relative to the time of adequate transport capacity 

to ensure effective channel processes (debris flows and sediment transport). The latter phenomenon 

may cause channel obstructions (i.e., barriers sensu Fryirs, 2013), which may require floods of similar 

magnitude to achieve equilibrium conditions. 

The comparison of the geomorphic effectiveness of two successive high magnitude flood events 

studied by Newson (1980) in a basin in mid-Wales in August 1973 and 1977, respectively clearly 

shown the effects of hillslope processes on the flood response of river basins. These two rare floods 

had similar return periods and identical rate of work. As indicated by Newson (1980), the August 1973 

flood was more effective on slopes whereas the August 1977 flood had severe impact on the channel 

forms. These distinct phenomena may imply that most of the hillslope stability thresholds were crossed 

by the first event and hence the second flood had no significant impact on the already adjusted slopes. 

However, the second flood was very effective in adjusting channel geometry through erosion and 

transport of deposited sediments from the slope failures mostly caused by the first flood. Wolman and 

Gerson (1978) recognized that the biggest information gap in assessing the geomorphic effectiveness of 

flood events at the basin scale is that concerning the recovery time between high magnitude events, 

which suggests that a better quantification of the geomorphic effectiveness at the basin scale can be 

achieved and predictions made of the influence of the next rare event by considering the impacts of the 

previous rare event and the recovery processes between the two events. 

Borga et al. (2014) reviewed early warning systems for flash floods, shallow rainfall-induced 

landslides, and debris-flows. Most of the efforts in this area focus on evaluating the likelihood of 

triggering flash flood or debris flow activity in terms of alert levels by comparing quantitative 

precipitation forecasts against rainfall intensity–duration thresholds and antecedent precipitation 

conditions (soil wetness). The challenges in these early warning systems are the relationships among 

hydrological, hydro-geological and slope stability during individual events, the uncertainty in the 

characterization of geotechnical conditions, including land use, and lead time of the precipitation 

forecasts. Due to the small areas and steep slopes of headwater catchments in mountainous regions, 

large rainfall events tend to produce flash flood response and multiple debris flows within the same 

watershed. From the point of view of public safety and warning systems, predicting the flash flood 
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peaks and the location of debris flow occurrence is essential, although ultimately the utility of the 

forecast strongly hinges on the lead time (Tao and Barros, 2014). 

The need for coupling spatially explicit, dynamic hydrologic models with debris flow 

susceptibility models has been articulated earlier (Simoni et al., 2008; Tao and Barros, 2014; and 

references therein). Most of the available literature is focused on the coupling of dynamically 

distributed hydrologic models with slope stability models for the prediction of shallow landslides, 

which are triggered by increases in pore water pressure at a slip surface (e.g., Iverson, 2000; Baum et 

al., 2010). Distributed models have been developed to analyse the control of topography and the 

hydraulic and mechanical characteristics of soils on shallow landslides (Montgomery and Dietrich, 

1994; Pack et al., 1998). These models couple a saturated subsurface flow model with the infinite slope 

stability approach; the topography is represented through digital terrain models. The model 

SHALSTAB (Montgomery and Dietrich, 1994) includes a module that simulates landslide routing, 

which can assess the possibility that material mobilised by landslides reaches the channel network. 

Steady-state stability models (Montgomery and Dietrich, 1994; Pack et al., 1998) assess slope 

stability/instability for constant rainfall rates, representing the control of topography on shallow 

landslides. Quasi-dynamic models (Iida 1999, 2004; Borga et al., 2002; Lanni et al., 2012) take into 

account the intensity and duration of rainfall, thus representing a closer link between the topographic, 

hydrologic and mechanical characteristics of landslide-prone hillslopes and landslide-triggering 

rainfall. 

However, in several areas debris flow initiation is typically due to runoff from low-permeability 

surfaces during rainstorms, which at a critical discharge threshold mobilizes loose sediment downslope 

(Coe et al., 2008a). In these cases, debris flows initiate through channel bed mobilization mechanisms 

when a critical surface discharge, rather than a critical groundwater level, is reached (Berti and Simoni, 

2005; Larsen et al., 2006; Godt and Coe, 2007). Slope stability analyses used to assess slide prone 

areas are therefore inappropriate for areas that are susceptible to debris flows generated through runoff 

and erosion. At closely monitored sites, calibrated rainfall-runoff models have been successfully used 

to investigate the hydrological conditions for channelized debris flows, by providing estimates of the 

rainfall needed to produce the critical level of discharge for debris flow initiation (Berti and Simoni, 

2005; Coe et al., 2008a,b; Gregoretti and Dalla Fontana, 2008). 
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1.6 RESEARCH QUESTIONS AND OBJECTIVES 

Two main research questions are examined in this study. The first is a general question in fluvial 

geomorphology, an observation Costa and O’Connor (1995, p 45) describe as ‘a dilemma for 

geomorphologists’: why do flash floods of similar magnitudes and intensities sometimes produce 

dissimilar geomorphic results? An overarching phenomenon is that large magnitude floods do not 

always produce major geomorphic changes in channels and valley floors. In fact, some lower 

magnitude floods in terms of discharge per unit of drainage area have been found to produce more 

major geomorphic damage than some high magnitude events (e.g., Miller, 1990). This phenomenon 

presupposes that the magnitude (discharge) and frequency (recurrence interval) of flash floods do not 

adequately quantify the geomorphic modifications caused by such extreme events in channels and 

slopes (Baker and Costa, 1987; Miller, 1990; Magilligan, 1992; Marchi et al., 2016). Integrated 

analysis of the relevant topographic, climatic and vegetation controls may provide an essential insight 

to understanding the hydrologic and geomorphic responses to extreme floods. 

The second question is directly linked to the overall research objective of this study, thus, can the 

analysis of the distribution and variation of stream power contribute to explain the variability of the 

geomorphic effects a of flash flood? As indicated by Miller (1990), the highest values of stream power 

are usually developed in bedrock channels which are resistant to erosion and hence the use of 

computed stream power values to quantify the geomorphic effects or as an indicator of channel 

adjustment at such cross-sections becomes questionable. Several questions have been raised about the 

association of peak instantaneous unit stream power with the corresponding geomorphic effects (e.g., 

Fonstad, 2003; Kale, 2008; Magilligan et al., 2015). The influence of flood flow-duration and 

cumulative energy expenditure will be examined together with peak instantaneous stream power and 

the relevant topographic variables (mainly, variations in channel slopes, lithology and reach level 

morphologies) at cross-sections and downstream variation along the longitudinal profile of river 

channels. The latter may provide an explanation of the complex processes of sediment production, 

transport and deposition that occur during extreme flash floods. 

The general objective of this thesis is to explore and analyse the spatial distribution of the various 

measures of stream power for a number of flash flood events in Europe and the relevant topographic, 
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hydro-climatic and hydraulic controls to better quantify and discuss the geomorphic effectiveness of 

such events at the channel-reach scale. In collaboration with a Ph.D project at the Department of 

Geosciences (University of Padova), this thesis focussed on estimating, modelling and evaluating the 

hydro-climatic and hydraulic variables, whereas the other thesis focussed on the geomorphic responses. 

The specific objectives are: 

1. To establish a common archive of flash floods, through combined analysis of data from post-

flood surveys and hydrological modelling, for selected flash floods across different hydro-

climatic and geomorphic settings in central and southern Europe, 

2. To analyse the spatial variation and distribution of stream power and other hydraulic and 

topographic variables for the studied flash floods to quantify the main controls on geomorphic 

responses at the cross-sectional scale, 

3. To evaluate the combined influences of flood-flow duration and cumulative energy expenditure 

on geomorphic effectiveness of extreme floods, relative to peak instantaneous stream power, 

4. To model the downstream variations in stream power and other relevant controls along 

longitudinal profiles of selected rivers and, 

5. To quantify channel widening associated with flash flood responses and the corresponding 

controlling factors at the channel-reach scale. 

These questions will be examined through field observations and model-based analyses of seven 

major flash flood events that occurred across different hydro-climatic and geomorphic settings between 

2007 and 2014 in central and southern Europe. This project is expected to develop better understanding 

of the regional behaviour of stream power and the corresponding geomorphic impacts for extreme flash 

floods in Europe, thus contributing to bridging the scientific gap between hydrologic and geomorphic 

processes in flash flood studies. Research results are expected to be suitable for managers of flood-

prone catchments and regulatory agencies in land use planning, hillslope management and flash flood 

hazard and risk management. 
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2 STUDY AREAS AND FLOODS 

This section gives an overview of seven selected flash flood events that occurred in different 

hydro-climatic and geomorphic settings in central and southern Europe between 2007 and 2014. These 

floods have been documented through post-event surveys and analysis of comprehensive 

hydrometeorological and geomorphological data. Selected channels in three highly impacted 

catchments of the studied floods (Magra, Posada and Lierza rivers) are also used to explore the 

downstream trends in stream power and the corresponding channel changes at the reach-scale. 

 

2.1 STUDIED FLASH FLOODS 

Table 2.1 presents summary information of the seven selected flash floods for this study, with 

their spatial locations mapped over the Köppen-Geiger climate classification system (Peel et al., 2007) 

in Fig. 2.1. The impacted catchments are characterised by temperate climate, with four of them without 

a dry season throughout the year (Selška Sora, Starzel, Vizze, and Lierza) and the remaining three 

under dry-summer Mediterranean climate. The Vizze basin, located in the inner core of the Alps is also 

characterized by cold winter and mild summer. The Selška Sora catchment features mild to warm 

summer without a dry season. The Lierza catchment (Fig. 2.1) is located in a hilly area of northern 

Italy. Although Lierza lies close to the Adriatic Sea, the local climate lacks typical features of 

Mediterranean areas and is classified as humid subtropical (Cfa) according to the Köppen–Geiger 

classification. The Argens, Magra and Cedrino-Posada catchments, on the contrary, are located in the 

Mediterranean region, featuring warm to hot and a dry summer. These flash flood events were selected 

based on the following criteria (i) coverage of different hydro-climatic regions, (ii) rainfall of high 

return period (> 100 years, at least for some rainfall duration in some sectors of the studied 

catchments), (iii) availability of data collected and validated by means of homogeneous procedures, 

and (iv) rainfall-caused floods only (with durations up to 24 hours). 

Data were collected for 119 cross sections; the number of cross sections per event ranges between 

2 (Vizze) and 33 (Magra), mostly depending on the overall area impacted by the flood. Only two cross 

sections were surveyed in Vizze, which were considered sufficient to document the flood in the main 
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river, whereas the tributaries were affected by debris flow. The catchments corresponding to the 

surveyed cross sections range in area between 0.5 and 1981 km2; however, only two catchments are 

larger than 1000 km2 in size, which fits the space scale definition of flash flood adopted in this study 

(see also Gaume et al., 2009; Marchi et al., 2010). The duration of the events is linked to the maximal 

drainage areas, with the rainstorms lasting 20 hours or more in the case of those impacting areas larger 

than 500 km2 (Argens, Magra, and Cedrino–Posada). Interestingly, these three events occurred in the 

Mediterranean region. This is consistent with observations by Gaume et al. (2009) and Marchi et al. 

(2010), who noted that the spatial extent and duration of the flash flood events is generally smaller for 

continental floods relative to those occurring in the Mediterranean area. Actually, shorter duration and 

smaller affected areas characterize the floods in continental and alpine areas (Starzel, Selška Sora, and 

Vizze), as well as the Lierza. 

 
FIG.2.1. Location and climatic context of the studied flash flood events; Köppen-Geiger climate classification 
from Peel et al. (2007). (Adapted from Marchi et al., 2016). 
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TABLE 2.1. Summary data of the seven studied flash floods 

 
River basin 
(Country) 

 
Date of 

occurrence 

Climatic 
region 
(Köppen-
Geiger) 

 
Watershed 

area 
[km2] 

 
No.  of 
studied 
basins 

 
Storm 

duration 
[h] 

 
Maximum 
rainfall 
[mm] 

 
Previous studies 

Selška Sora 
(Slovenia) 
 

September 
18, 2007 

Alpine-
Mediterranean 
(Cfb - Cfc) 

 
150 

 
19 

 
16.5 

 
400 

Marchi et al., 
2009a; Zanon et 
al., 2010 

Starzel  
(Germany) 

June 2, 
2008 

Continental 
(Cfb) 

120 17 8 130 Ruiz-Villanueva et 
al., 2012 

Argens 
(France) 

June 15, 
2010 

Mediterranean 
(Csa - Csb) 

 
2700 

 
24 

 
20 

 
400 

Payrastre et al., 
2012; Ruin et al., 
2014 

Magra  
(Italy) 

October 25 
- 26, 2011 

Mediterranean 
(Csa - Csb) 

 
1717 

 
33 

 
24 

 
540 

Surian et al., 2016; 
Amponsah et al, 
2016 

Vizze  
(Italy) 

August 4 - 
5, 2012 

Alpine-
Mediterranean 
(Cfb - ET) 

 
140 

 
2 

 
8 

 
130 

 

Cedrino-
Posada 
(Italy) 

November 
18 - 19, 
2013 

Mediterranean 
(Csa) 

 
1500 

 
17 

 
24 

 
450 

Niedda et al., 2015; 
Amponsah et al, 
2017; Righini et 
al., 2017 

Lierza  
(Italy) 

August 2, 
2014 

Alpine-
Mediterranean 
(Cfa) 

 
10 

 
7 

 
1.5 

 
200 

Destro et al., 2016 

 

 SELŠKA SORA, SLOVENIA (SEPTEMBER, 2007) 2.1.1

The Selška Sora watershed is located in north-western Slovenia. The upper part of the watershed 

(closed at Železniki - 150 km2), which was most severely affected by the flood of 18 September 2007, 

has been considered in this study. The topography of the watershed consists of steep slopes and a high 

gradient river network. The watershed is dominated by narrow valleys and ranges from 450 to 1680 m 

a.s.l. in elevation. The meteorology of the catchment is monitored by the Lisca weather radar, and 

several rain gauges (Fig. 2.2-A). The mean annual precipitation over the basin ranges between 1700 

and 2300 mm, which is highly influenced by the orography (Zanon et al., 2010). Forests, with 

grassland and grazing fields in the flood plain, dominate the land use types of the basin. The geology 

consists of various highly fractured and fissured rock types, including limestone, schist and shale. The 

northern portion of the basin consists of karst geology, which influences the runoff production (Zanon 
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et al., 2010). On 18 September 2007, a mesoscale convective system hit north-western Slovenia, 

starting from 5.00 CET and lasted for over 16 hours. The flood-generating rainstorm produced an event 

accumulation up to 400 mm (Fig. 2.2-B). This caused severe flash floods with six casualties. Out of 

210 local communities in Slovenia, 60 reported flood damages, with the total flood-related damage 

estimated at 210 million Euro (Rusjan et al., 2009). The Selška Sora watershed was one of the severely 

affected catchments, with basin averaged rainfall up to 240 mm (Fig. 2.2-B). Point hourly rainfall 

estimates were up to 150 mm, with a recurrence interval exceeding 200 years (Rusjan et al., 2009). 

Among 12 extreme floods documented in this catchment for the last century, this event recorded the 

highest magnitude (Komac et al., 2008; Marchi et al., 2009a). The flash flood caused widespread 

geomorphic impacts in the Selška Sora watershed, including shallow soil failures and several debris 

flows, and trees recruited into channels because of widespread bank erosion and channel avulsion in 

the forested valley floors (Marchi et al., 2009a). The rainfall intensity and duration were adequate to 

produce positive pore-water pressure necessary to reduce shear strength and initiate slope failures. 

Sediment supply from hillslopes and small tributaries, combined with extreme flows in river channels 

led to channel widening, local avulsion and overbank deposition in most of the impacted tributaries. 

 

FIG.2.2. (A) Location of the Selška Sora watershed and the Lisca radar, with the topography of the study basins, 
and (B) event cumulative rainfall of the September 18, 2007 storm (Adapted from Zanon et al., 2010). 
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 STARZEL, GERMANY (JUNE, 2008) 2.1.2

The Starzel River basin closing at Rangendingen (120 km2) is located in south-western Germany, 

within the Neckar River system. The elevation of the catchment ranges between 419 and 954 m a.s.l. 

The meteorology of the catchment is monitored by the Türkheim and Feldberg weather radars (Fig. 

2.3-A). The mean annual precipitation over the Starzel catchment is 836 mm, with maxima in the 

summer months (Ruiz-Villanueva et al., 2012). The main land use types are forests, agriculture and 

urban areas. The catchment is dominated by coniferous, mixed and deciduous forests on the slopes. 

Agricultural areas are mostly arable lands, orchards and meadows. Three urban areas are located within 

the catchment: Jungingen, Hechingen and Rangendingen (Fig. 2.3-B). The geological features of the 

catchment consist of Jurassic sedimentary rocks, predominantly limestone, marls and clay stone. Karst 

topography in the eastern part of the catchment, where limestone outcrops with fissures, sinkholes and 

caverns, influences runoff production in this part of the catchment (Ruiz-Villanueva et al., 2012). 

The flash flood producing rainstorm on the Starzel catchment was part of a sequence of 

mesoscale precipitation systems (called Hilal - Ruiz-Villanueva et al., 2012), which occurred from 28 

May to 2 June 2008 covering most of western Germany. The thunderstorms formed along a stationary 

air mass boundary separating warm, moist Mediterranean air in the southwest from dry air in the 

northeast. The first system occurred on 28 May in mid-west Germany (Dortmund) and the second on 

29-30 May, causing flooding in Luxembourg, Rhineland-Palatinate and North Rhine-Westphalia (Ruiz-

Villanueva et al., 2012). On the evening of 2 June, the Neckar River system was hit by extremely high 

intensity torrential storms that led to flash flooding and inundation. The Starzel catchment was severely 

affected by this flash flooding. The most intense phase of the rainstorm over the catchment, which 

lasted for 90 minutes, produced intensities up to 55.5 mm h-1 with mean areal rainfall depth of 85.6 mm 

in 10 hours for the entire storm event. This rainstorm was exceptional in the Starzel catchment because 

a 100-year rainfall of 10 hours duration amounts to 67.6 mm (DWD, 2006). The flash flood triggered 

only few shallow landslides on the catchment area most impacted by the storm close to the town of 

Jungingen (Ruiz-Villanueva et al., 2012). This can be ascribed to the morphological characteristics of 

the catchment (relatively short hillslopes) and, more importantly, the short duration of the most intense 

phase of the rainstorm. 
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FIG.2.3.  (A) Location of the Starzel basin with the two weather radars, Türkheim and Feldberg (crosses) and 
corresponding 150 km range circles; and (B) the basin with orography and the location of the four raingauge 
stations within the catchment and of the streamgauge (Adapted from Ruiz-Villanueva et al., 2012). 

 

 ARGENS, FRANCE (JUNE, 2010) 2.1.3

The Argens River is located within the Var department (southern France) and drains a total area 

of approximately 2700 km2. The basin drains several tributaries and then flows into the Mediterranean 

Sea. The catchment is characterized by differing geo-lithological features; the geology of the basin is 

dominated by limestones and granite. On 15-16 June 2010, the Var department was hit by a violent 

storm. The daily accumulated rainfall which caused flash flooding reached 200 and 300 mm over 2000 

and 250 km2, respectively (Rouzeau et al., 2010). The maximum rain amount recorded at the Meteo-

France station (Fig. 2.4) reached over 400 mm in 20 hours (including 330 mm in less than 10 hours), 

corresponding to a return period of the order of 100-years (Martin, 2010; Payrastre et al., 2012). The 

rainstorm was characterized by two phases (Ruin et al., 2014): first, the atmospheric flux came from S-

SW and led to intense precipitation up to 16:00 local time but it quickly swept nearly the entire Var 

department. During the second phase, the flow was oriented SE and precipitation stayed quasi-

stationary after 16:00 local time over the Nartuby watershed (184 km2) upstream from Draguignan. The 

event caused 27 casualties and economic damages were evaluated at 1 billion Euros (Ruin et al., 2014). 

Large karst formations in the limestone area attenuated runoff formation in one of the sectors of the 

basin in which very high rainfall accumulation occurred (Payrastre et al. 2012). 
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FIG.2.4. Total precipitation amount from 0600 UTC 15 Jun 2010 to 0600 UTC 16 Jun 2010 from Meteo-France 
(Adapted from Ruin et al., 2014). 

 

 MAGRA, ITALY (OCTOBER, 2011) 2.1.4

The Magra River basin is located in central-northern Italy within the Tuscany and Liguria regions 

with highest elevation of 1900 m a.s.l. and ends at the Tyrrhenian/Ligurian Sea (Fig. 2.5-A). The total 

drainage area of the affected basin is 1717 km2, of which the Vara River (the major tributary to the 

Magra River) drains an area of 605 km2. The climate is Mediterranean, with a dry summer and high 

precipitation, especially in the autumn months. The mean annual precipitation of the river system 

accumulates up to 1770 mm, and reaches 3000 mm in the upper parts of the basins due to orographic 

effects. The Magra basin is monitored by the Monte Sette Pani weather radar (station located at 100 km 

west of the basin), and about 40 rain gauges. The geology of the basin mostly consists of arenaceous 

and muddy bedrock, featuring low permeability and high erodibility. Three main land use classes can 

be identified within the study basin: forest (> 80% of the total area), agricultural lands (predominant in 

the valley floor) and urbanized areas and infrastructure. 
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On October 25, 2011, the Magra River basin was hit by a mesoscale convective system from 

01:00 CET that lasted for 24 hours. The rainstorm produced rainfall intensities up to 150 mmh-1 and 

accumulations up to 540 mm (Fig. 2.5-B). Large rainfall accumulations in this region typically result 

from the coupled influences of orographic effect and low-level mesoscale flow over the Ligurian Sea 

that develop pronounced convergence bands (Buzzi et al., 2014). This phenomenon usually produces 

intense and quasi-stationary mesoscale convective structures near the coast, as observed over the 

Magra basin on October 25, 2011. The rainstorm of October 25, 2011 produced flash flooding in the 

main river channels and in several tributaries, with severe damage to roads, building and infrastructure 

in downstream settlements; nine people died as a consequence of the flash flood. The extreme 

rainstorm also triggered widespread landslides (mostly earthflows, soil slips and translational slides), 

especially in the sectors of the basin that were affected by the highest rainfall rates (Mondini et al., 

2014). The flood caused major morphological changes in the channel of the studied basin and in some 

tributaries (Nardi and Rinaldi, 2015; Rinaldi et al., 2016; Surian et al., 2016) and recruited large 

amounts of large wood from the floodplain (Lucía et al., 2015). Several bridges were partly or fully 

clogged by large wood jams. 

 

FIG.2.5. (A) The Magra basin with topography and the three stream gauge stations. Locations of surveyed cross 
sections are also reported, with the corresponding intensities of observed geomorphic impacts, and (B) total 
rainfall accumulation with raingauge network (Adapted from Amponsah et al., 2016). 
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 VIZZE, ITALY (AUGUST, 2012) 2.1.5

The Vizze basin (140 km2) is located in the Autonomous Province of Südtirol - Bolzano (Italy). 

The basin is located about 45 km north of the city of Bolzano, on the border with Austria and within 

the Upper Adige basin on the Eastern Italian Alps. The region is characterised by a cold, Alpine-

continental climate and records mean annual precipitation up to 800 mm, with maximum occurring in 

the month of July. The Vizze basin is monitored by the Monte Macaion weather radar (station located 

at 60 km south of the basin) and surrounded by few rain gauges. The land use is dominated by forest, 

with agricultural activities in the low altitudinal plains. The geology of the valley consists of 

metamorphic rocks (gneiss, micaschist, calcschist, amphibolite); Quaternary deposits (moraine and 

scree) are widespread. The Vizze basin is an alpine watershed, and the morphology shows several 

interferences developed among alluvial, glacial and fluvio-glacial depositions and widespread erosional 

surfaces (Astori and Venturini, 2011). 

The August 4-5, 2012 extreme rainstorm that affected the Vizze basin, started around 16:00 CET 

and lasted for 8 hours. The event-rainfall accumulation (Fig. 2.6-B) shows that the area close to the 

basin outlet received the highest event-rainfall accumulation, with up to 120 mm. The storm total 

precipitation decreases moving towards the upper part of the basin, and from the left side to the right 

side of the valley. The storm total rainfall distribution reflects southwest–northeast motion of the storm 

elements and west–east shift of the tracks of the storms. The storm accumulation can be distinguished 

in two phases. In the initial period (16:00–18:00 CET) the rainfall maxima (30-50 mm) concentrated 

over the area close to the basin outlet. In the second period (18:30-22:00 CET) the entire left side of the 

basin was impacted by heavy rainfall, ranging from 40 to 80 mm. While these cumulative values are 

relatively moderate when compared to those reported for Mediterranean flash flood events (Marchi et 

al., 2010), the severity of the storm event is significant when considered in the frame of the local 

climatology. The return period for the largest rainfall depths, considered over the basin for different 

duration, increases from 30 years at one hour duration to 300 years for six hours duration, which 

approximately corresponds to rainstorm duration, to decrease again to 30 years for 24 hours duration.  

The causative rainfall event triggered a large number of debris flows in the tributaries of the Vizze 

valley, causing two casualties and an estimated 18 million Euros in economic damages (Dinale et al., 

2014). 
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FIG.2.6. (A) The Vizze basin with topography and two stream gauge stations; locations of two surveyed cross 
sections are also reported, and (B) total rainfall accumulation. 

 

 CEDRINO - POSADA, ITALY (NOVEMBER, 2013) 2.1.6

Cedrino and Posada are two rivers of eastern Sardinia (Italy). The main impacted area (Fig. 2.7) 

is up to 1500 km2 (central-north-eastern Sardinia), which includes the catchments of Cedrino, ending at 

the Prede Othoni dam (627 km2), and Posada, ending at Maccheronis dam (611 km2) and the 

intermediate Sologo basin (300 km2). The Sologo River is a tributary of the Cedrino basin downstream 

of the dam. The study basin is monitored by the Monte Rasu weather radar and a dense rain gauge 

network (Fig. 2.7-B). Two dominant geological landscapes can be distinguished in the region: (i) 

metamorphic and granitic rocks, and (ii) sedimentary rocks (dolostones and limestones). Sedimentary 

rocks outcrop especially in the Rio Flumineddu catchment area, within the catchment closing at the 

Cedrino dam. The Rio Flumineddu catchment is characterised by karst landscape, with sub dendritic 

drainage pattern. The metamorphic and granitic rocks mostly occupy the northern part of the catchment 

closing at the Posada dam with dendritic drainage pattern. Main river channels are aligned according to 

faults in the phyllites and their steep slopes testify to their rapid evolution. Land cover is characterized 

by Mediterranean maquis on the Palaeozoic rocks (with a more or less thin soil cover) and degraded 

Quercus Ilex forests on the carbonate rocks (De Waele et al., 2010). The largest urban area is the town 

of Nuoro (approximately 37,000 inhabitants) in the upper part of the Cedrino catchment; a number of 

smaller settlements are present in the studied catchments. 
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On November 18, 2013, the central-north-eastern part of Sardinia was impacted by extreme flash 

flooding associated with an extra tropical cyclone in the western Mediterranean basin, which developed 

slow-moving embedded thunderstorm complexes, as cold air flowing from the north entered the 

Mediterranean and interacted with warm moist air to the east. The cyclone brought extremely heavy 

rain to the area, with up to 450 mm of rain in 24 hours, starting from 07:00 CET, resulting in flooding 

over a large area and swollen rivers bursting their banks. Two convective bands impacted the region 

with a SSE to NNW direction (Fig. 2.7-B) and both developed during two storm bursts at: 06:00-13:00 

and 13:00-20:00 CET (Amponsah et al., 2017). Despite the strong observed winds, convection 

continued to be triggered over the same locations, accumulating rainfall over a relatively small area. 

The strong spatial gradients of the precipitation and geo-lithological features had a major influence on 

flood responses, with large differences in peak discharges among neighbouring catchments. The flash 

flooding caused up to 1 billion Euro in economic damages and 19 casualties (Niedda et al., 2015), but 

most of them were outside the Cedrino and Posada basins. 

 
FIG.2.7. (A) The Cedrino-Posada basins with topography and Sologo River; locations of surveyed cross sections 
are also reported, and (B) total rainfall accumulation, with the M. Rasu weather radar (Adapted from Amponsah 
et al., 2017). 
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 LIERZA, ITALY (AUGUST, 2014) 2.1.7

The Rio Lierza creek (Fig. 2.8-A) is located in the north-eastern Italian Pre-alps (Veneto region) 

and belongs to the Piave River system. The basin is characterized by hilly topography and maximum 

elevations are up to 470 m a.s.l. The study area is located in the monoclinal relief of hogback type 

called Vette Feltrine, typical of the Southern Alps. The geology consists of Miocene conglomerates and 

mudstone affected by tectonic deformation. The soils are mostly silt loams, with low permeability 

underlying clayey bedrocks. The upper Lierza basin features both forests and vineyards as the 

dominant land use. The basin is ungauged: the closest rain gauge station is located approximately 5 km 

NW of the basin, where data are available since 1994. Examination of rainfall data from this rain gauge 

station shows that average annual precipitation amounts to 1630 mm, with the highest monthly average 

precipitation in May and November. On August 2, 2014, the Lierza Creek was hit by an extreme 

rainstorm that triggered severe flash flooding and shallow landslides (Destro et al., 2016). The flood-

generating rainstorm produced maximum accumulations exceeding 200 mm (Fig. 2.8-B) within 1.5 

hours. Post-flood observations have shown a complex spatial pattern and large variability in the 

intensity of sediment transport. In some channel reaches there are no evidences of sediment transport, 

whereas in others intense sediment transport is demonstrated by overbank deposits up to the size of 

large cobbles. Also, channel erosion was characterized by major spatial variability: in spite of extreme 

flood flows, significant channel widening was observed only at some sites. The flood response also 

involved interaction with infrastructure; four people died as a result of the flash flood. 

 
FIG.2.8. (A) The Lierza basin with topography and locations of surveyed cross sections, and (B) total rainfall 
accumulation (Adapted from Destro et al., 2016). 
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2.2 SELECTED CHANNELS 

Eight river channels that were affected by three of the studied flash floods (Magra, Cedrino-

Posada, and Lierza – Fig. 2.1) were selected for a more detailed analysis of the downstream trends in 

stream power and the corresponding channel responses. Table 2.2 reports summary data of the selected 

river profiles: five within the Magra basin, two within the Posada basin and the main Lierza Creek. The 

selected channels are located in the sector of the corresponding major basins that received maximum 

rainfall, which could shed more light on the main controlling factors on the downstream changes in 

channels affected by extreme floods. The study reaches correspond to the middle and lower portions of 

these creeks, which are characterized by partly confined or unconfined channel conditions. The number 

of sub reaches of the selected catchments vary from 12 (Geriola) to 28 (Posada), depending on the 

stream length, and, more importantly, the spatial unit of the sub reach length. Sub reaches are defined 

as spatial units with approximately constant channel slope, confinement, morphology and hydrology 

(Rinaldi et al., 2013; Surian et al., 2016). The catchment areas are generally larger for the two Posada 

channels compared to the channels of the Magra River and the Lierza Creek. This also reflects the 

length of the studied reaches and the corresponding peak discharges at the outlets. Catchment sizes 

may also affect the basin-averaged rainfall accumulation, although the maximum event rainfall (Table 

2.1) reflects total rainfall accumulations reported in Table 2.2. The Lierza Creek is located in a hilly 

area of northern Italy and is characterised by relatively lower basin relief compared to the other 

catchments. The channels of the Posada River have much lower channel gradients. 

 
TABLE 2.2. Summary data of the selected channels of the Magra, Posada and Lierza rivers 

 
Major 
Basins 

 
Selected 
Channels 

Watershed 
area 
[km2] 

Basin 
relief  
[m] 

Stream 
length 
[km] 

Mean 
gradient 

[%] 

No. of 
studied 
reaches 

Total 
rainfall 
[mm] 

Unit peak 
discharge 

[m3 s-1 km-2] 

Magra Pogliaschina 25.1 95 – 706 4.6 5.6 13 387 23.7 
 Gravegniola 34.6 95 – 1177 5.5 7.0 14 387 15.1 
 Mangiola 26.2 144 – 1155 8.9 6.6 27 376 15.5 
 Osca 21.8 68 – 1159 8.0 4.1 22 243 12.8 
 Geriola 8.5 120 – 1010 5.5 8.8 12 267 14.2 
Posada Posada 562 70 – 1116 22.4 1.1 28 215 6.6 
 Mannu di Bitti 305 42 – 1116 18.2 0.7 20 250 7.3 
Lierza Lierza Creek 7.5 169 – 470 1.8 2.5 23 147 17.6 
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 TRIBUTARIES OF THE MAGRA RIVER 2.2.1

Five catchments in the Magra River basin (Pogliaschina, Gravegnola, Mangiola Osca, and 

Geriola – Fig. 2.9) that were highly impacted by the October 25, 2011 flash flood have been selected to 

explore the downstream variations of stream power and channel response. The Mangiola, Geriola, and 

Osca Rivers are tributaries of the main Magra River, while Pogliaschina and Gravegnola Rivers are 

tributaries of the Vara River (Fig. 2.9). The length of the studied sub reaches are in the order of 300–

500 m. All five Magra tributaries exhibit typical characteristics of mountain rivers with average 

channel slope (Table 2.2) ranging from 4.1 % (Osca) to 8.8 % (Geriola), coarse sediments (mainly 

gravels and cobbles), and a wide range of conditions in terms of lateral confinement. The tributaries of 

the Magra River show similar flood responses with unit peak discharges of 15.5 (Mangiola), 12.8 

(Osca) and 14.2 m3 s-1 km-2 (Geriola), consistent with basin-averaged rainfall and catchment area 

(Table 2.2). An interesting observation is the flood responses at the outlets of the two tributaries of the 

Vara River; unit peak discharges of 15.1 (Gravegnola) and 23.7 m3 s-1 km-2 (Pogliaschina) for equal 

rainfall accumulation. This phenomenon can be ascribed to the space and time organisation of the 

convective rainstorm over these catchments, relative to the channel network orientation (cf. Fig. 2.5-B). 

 
FIG.2.9. Locations and topographic features of the five selected channels of the Magra River. 
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 THE POSADA AND MANNU DI BITTI RIVERS 2.2.2

The Posada River closing at Maccheronis dam (611 km2), which was highly impacted by the 

November 18, 2013 flash flood in the Sardinia region of Italy has also been selected to explore the 

downstream variations of stream power and channel response. Studied channel reaches were selected 

on the main Posada stream and the Mannu di Bitti channel (the major tributary of the Posada River – 

Fig. 2.10). The length of the sub reaches are in the order of 700–1100 m. The Mannu di Bitti River 

contributes approximately 50% drainage area to the main Posada channel. The two channels are 

characterised by relatively low average reach gradients (Table 2.2). The morphology of the channels is 

partly influenced by lithology, with rugged and steep mountain and hilly areas, predominantly 

characterised by metamorphic and granite rocks. Unit peak discharges of 6.6 (Posada) and 7.3 m3 s-1 

km-2 (Mannu di Bitti) for drainage areas in the range of 300 – 600 indicate relatively high flood 

responses. 

 

FIG.2.10. Locations and topographic features of the Posada and Mannu di Bitti Rivers. 
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 THE LIERZA CREEK 2.2.3

The Lierza Creek, identified by the outlet at Molinetto della Croda (Mill of the rock fall) covers 

about 7.5 km2 (Fig. 2.11). The creek is about 1800 m long, characterized by hilly topography and 

elevations range between 170 and 470 m a.s.l. (the mean elevation is 295 m a.s.l.), with average 

channel gradient of 2.5% for the surveyed sub reaches. The lengths of the sub reaches are in the order 

of 15–200 m. The studied channel reaches consist of cohesive bed and bank materials, mostly clayey 

rocks, with riparian vegetation, which makes the river network highly resistant to erosion. Unit peak 

discharge of 17.6 m3 s-1 km-2 generated by basin-average rainfall accumulation of about 150 mm for a 

duration of 1.5 h indicates intense flood response at the outlet of this small basin. This caused intense 

sediment transport in some channel reaches, but limited widening. 

 

FIG.2.11. Location and topographic features of the Lierza Creek. 
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3 RESEARCH METHODOLOGY 

Observational difficulties of hydrometeorological synopsis of flash floods (Borga et al., 2011) 

and lack of a comprehensive archive of flood events across Europe (Marchi et al., 2010) hinder the 

development of a coherent framework for the analysis of regional flood climatology, hazard and 

vulnerability at the pan-European scale (Barredo, 2007). The main methodological framework of this 

thesis is based on an integrated interdisciplinary approach for the collation of data and analyses of 

flood responses, and subsequent estimations and analysis of the various measures of stream power to 

quantify the geomorphic effectiveness of extreme flash flood that occurred in different hydro-climatic 

and geomorphic settings in Europe between 2007 and 2014. An integrated methodological framework 

that integrates hydrometeorological and geomorphological observations and analyses at different 

spatial scales (Rinaldi et al., 2016) is adopted to investigate the geomorphic impacts of the studied flash 

floods. 

 

3.1 INTENSIVE POST-EVENT CAMPAIGN (IPEC) 

Intensive Post-Event Campaign (hereinafter referred to as IPEC) has been carried out to 

document the flood responses and geomorphic effectiveness of the studied flash floods. IPEC include 

collation of data from river authorities, post-flood field observations and surveys, and interviews with 

eyewitnesses to events. Table 3.1 presents detailed guidelines of a methodology on how to identify, 

collect and analyse data available after extreme flash flood events (Gaume and Borga, 2008). The 

methodological framework for data collection and elaboration includes (i) assessment of event rainfall 

from weather radar observations and rain gauge networks, (ii) post-flood surveys to document flood 

peaks in ungauged rivers and, (iii) geomorphic reconnaissance to assess the magnitude of geomorphic 

impacts in different channel reach types. The principles of methodology outlined in Table 3.1 have 

been employed to document and analyse the studied flash floods. 
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TABLE 3.1. Principles of methodology for post-flash flood data collection and analysis (Adapted from Gaume 
and Borga (2008), p 177) 

Data collation process Data analysis process 

Phase 1: Just after the flood 

 Collect the data on the rainfall event (rain 
gauge measurements, radar images) to 
locate the affected areas. 

 If possible, the first reconnaissance visit of 
the affected areas, pictures (flood marks, 
large debris, river bed state) can be taken, 
but no survey work can generally be 
conducted during the crisis time 

 
Phase 2: A few weeks after the flood 

The cross-section surveys can begin as well 
as some interviews of witnesses depending 
on the local atmosphere. 

 
Phase 3: A few months after the flood 

 It is certainly the best period for the survey 
work especially for the interviews. The area 
is fully accessible and the stress has fallen 
again. The river beds and marks may have 
been cleaned out; this is why the pictures 
taken in phase 1or 2 are important. 

 Collect additional data useful for the 
analysis (river gauge measurements, digital 
terrain model, soil, land-use, geological 
map, soil moisture measurements, satellite 
or pictures taken by plane, flood mark 
inventories, etc.) 
Preparation of the rainfall-runoff 
stimulations to support the interpretations. 

 
Phase 4: The year after the flood 

Owing to the inaccuracy of the available 
data, a post flood investigation has some 
similarities with police inquiries. It is a 
long-lasting work, requiring cross-checking 
and possible returns to the phase 3. 

Step 1: peak discharges estimation and mapping 

 Based on the cross sections surveyed, peak 
discharges and specific discharges can be 
estimated at various locations of the considered 
river and of its tributes and reported on a map. 

 Test of the spatial constituency of the estimates 
and comparison with rainfall data to get a first 
idea of possible runoff rates. 

 A comparison with rainfall, geological, land use 
maps gives some first idea of the possible factors 
affecting the flood  magnitude. 

 
Step 2: Rainfall-runoff dynamics 

 Where radar quantitative representation 
precipitation estimates appear reliable and where 
complete or spatial flood hydrographs can be 
retrieved from measured data or accounts or 
documents (dated pictures) from the witnesses, 
they can be compared with simple rainfall-runoff 
(RR) simulations to get better idea about the RR 
dynamics, especially about the revolutions of 
runoff rates during the flood. 

 
Step 3: Comparison with previous floods  

 If step 2 could be performed, the same RR 
simulations can be conducted for previous large 
floods that occur on the same catchment if it is 
gauged or on nearby similar gauged catchments. 

 
Step 4: Accompanying process 

 When the runoff is described, accompanying 
processes such as erosion intensity on hill slopes, 
sediments transport or local flow characteristics 
can be studied. 
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 RADAR-RAINFALL ESTIMATION 3.1.1

Rainfall estimates for each event were obtained by combining available weather radar 

observations and rain gauge data. The small scales as well as the localized nature of flash-flood 

triggered rainstorms is a crucial problem in the estimation of rainfall fields (Krajewski and Smith, 

2002; Bouilloud et al., 2010). Reflectivity data from the original radar volume scans were elaborated 

using a set of algorithms and procedures described by Marra et al. (2014) in order to correct radar-

related errors associated with heavy rain. The correction methods include, (i) analysis of the detection 

domain and correction for ground/anthropic clutters (Pellarin et al., 2002), (ii) implementation of 

corrections for range-dependent errors (e.g., screening, attenuation, vertical profiles of reflectivity), and 

(iii) optimization of the rainfall estimation procedure by comparison between radar and rain gauges at 

the event scale (Bouilloud et al., 2010). Detailed algorithms for the correction of radar reflectivity due 

to heavy rains can be found in Bouilloud et al. (2009). Rain rate estimates are produced using a 

reflectivity-to-rain rate (Z-R) relationship derived from measurement of convective events in the study 

regions (e.g., Anagnostou et al., 2010), and adjusting the residual bias with respect to ground data 

(Berne and Krajewski, 2013). 

Radar and rain gauge measurements were merged using the technique based on adaptive multi-

quadric surface fitting algorithm described by Martens et al. (2013) to produce a spatial representation 

of the flash flood-generated rainfall fields. The assessments of radar rainfall estimation accuracy were 

performed by comparison with ground based observations, on the event-cumulative values in order to 

minimize the sampling uncertainties due to the different scales of gauges and radar at short time 

intervals (Gires et al., 2014). The assessment of the quality of the final rainfall estimates were carried 

out by using a leave-one-out cross-validation (Efron, 1983). Three statistical parameters (fractional 

standard error, biases and correlation coefficient), largely used for this kind of assessment (Marra et al., 

2014), were calculated for the quantitative assessment of the total water volume of radar estimates over 

raingauges. The spatial distribution of event-rainfall accumulations over the studied river basins are 

presented in section 2.1, whereas the maximum values are reported in Table 2.1 for the studied flash 

floods. Re-analysis of the radar rainfall fields helps to identify sections within the impacted areas that 

received significant amounts of rainfall for flood investigation through field surveys and observations, 

as well as being used to force a spatially distributed hydrological model for water balance analysis. 
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 POST-FLOOD SURVEYS AND INDIRECT PEAK DISCHARGE ESTIMATES 3.1.2

Flood documentation by means of post-flood survey is an opportunistic, event-based approach 

that focuses on specific extreme events rather than on specific watersheds. In basins where runoff data 

are unavailable or scanty, post-flood surveys provide relevant information and observations in 

developing and consolidating a flash flood database and hence play a very important role in ‘gauging 

the ungauged extremes’ (Borga et al., 2008). Post-flood surveys aim at understanding the hydro-

meteorological, hydraulic and geomorphological processes that operate during extreme floods. The 

main types of data collated in the survey include; (i) discharge data at stream gauge stations and 

reservoir operations, (ii) peak discharge estimates at ungauged cross sections, and (ii) reconstructing 

the time sequence of the flood. This is valuable to document the spatially variable flood responses 

associated with flash floods, particularly in ungauged basins. Selected pictures during post-flood field 

surveys of the studied flash floods are presented in Appendix A1. 

The aim of the cross-sectional surveys (Phase 2 and 3, Table 3.1) is to collate data on channel 

geometry and flood marks to reconstruct the peak discharges in the river sections of the studied flash 

floods. Surveyed cross sections were selected based on the following criteria: (i) preference to natural 

channels, (ii) spatial distribution to enable detection of flood response in different sectors of the basin 

and (iii) sections with different geomorphic impacts. The slope conveyance method (Gaume and Borga, 

2008) was used for the indirect estimation of the flood peaks. This method requires topographical 

survey of cross-sectional geometry, high water marks (corresponding to flood levels), channel bed 

slope and the estimation of flow roughness to compute peak discharge at a single river section by 

means of the one-dimensional Manning-Strickler hydraulic equation, which assumes a uniform flow 

along a channel reach according to the following equation: 

ܳ௣ = ܸ ∙ ௖ܣ ≅
ଵ

௡
∙ ௖ܣ ∙ ܴ

ଶ
ଷൗ ∙ ܵ

ଵ
ଶൗ           [3.1] 

where Qp [m
3 s-1] is the peak discharge, V [m s-1] is the average flow velocity, Ac [m

2] is the wetted 

cross-sectional area, R [m] is the hydraulic radius, S [m m-1] is the energy line slope (usually estimated 

by the water surface and channel bed slope) and n is the roughness coefficient. The roughness 

coefficient is estimated based on complex parameters and processes such as channel bed forms, 
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sediment characteristics, riparian vegetation, flow type and regimes, and geomorphological processes 

(Lumbroso and Gaume, 2012). 

Fig. 3.1 presents cross-sectional longitudinal and transversal profiles based on data obtained 

through post-flood field surveys for illustration purpose. The longitudinal profile (Fig. 3.1-A) provides 

the values of the water surface and channel bed slopes from the surveyed flood marks and longitudinal 

profile, respectively. These two slopes are usually parallel and a surrogate for the energy line slope, Se. 

The transversal profile (Fig. 3.1-B) provides the detailed parameters of the cross-sectional hydraulic 

geometry required for the estimation of the flood peak. The area bounded by the channel cross section 

and the water surface is the wetted cross-sectional area, Ac [m
2]. The wetted perimeter, P [m] is the 

wetted length of the channel cross section below the water surface and hence the hydraulic radius can 

be estimated as R = Ac/P. With these parameters, peak discharges at surveyed cross sections were 

estimated based on Eq. [3.1]. The length of the water surface (Fig. 3.1-B) represents post-flood channel 

width w [m], which was used to compute unit stream power at the various cross sections. 

 

FIG.3.1. (A) Longitudinal and (B) transversal profiles of a surveyed cross section 
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 GEOMORPHOLOGICAL RECONNAISSANCE: CHANNEL TYPES AND OBSERVED GEOMORPHIC EFFECTS 3.1.3

Geomorphological reconnaissance is usually carried out before conducting indirect peak 

discharge estimates to recognize and distinguish the types of flow processes: water floods and/or debris 

flows (Marchi et al., 2009b; Amponsah et al., 2016). This is because the non-Newtonian nature of 

debris flows may result in gross overestimation of discharges with the use of Newton-based relations 

(Jarrett, 1994). The geomorphological settings of 59 surveyed cross sections were investigated for the 

four recent flash floods in Italy (Magra, Vizze, Cedrino-Posada and Lierza) through field observations 

and aerial photo interpretation; aerial photos have also enabled recognition of pre-flood channel 

conditions for these floods. Such a detailed analysis of flood impacts was not possible for previous 

floods (Selška Sora, Starzel, and Argens). 

The surveyed channel cross sections were categorized into four distinct channel reach types 

according to bed and bank materials (Marchi et al., 2016): Alluvial, Semi-alluvial, Bedrock and 

Artificial. Alluvial cross sections consist entirely of alluvial material; Semi-alluvial cross sections 

partly consist of alluvial materials and other parts could have been artificially modified or consist of 

bedrock outcrops. Bedrock cross sections are entirely on bedrock (thin sediment cover can be present); 

and artificial cross sections are lined channels, channel banks protected with riprap. 

Observed geomorphic effects were categorized into negligible, small-moderate and major through 

field observations and digital image analysis of the cross sections (Marchi et al., 2016). Negligible 

geomorphic impacts are usually without significant modification to channel form. Small to moderate 

geomorphic effects are characterized by localized erosion and small widening of the cross sections 

mainly due to fluvial entrainment, whereas major impacts are classified as relevant channel widening, 

with major erosion of banks and floodplains. Fig. 3.2 presents examples of cross-section types and 

observed geomorphic effects in the studied channel reaches, whereas the corresponding cross-

tabulation is reported in Table 3.2. These classifications served to qualitatively associate stream power 

values with observed geomorphic effects in different channel cross sections, which may shed more 

light on how the geographical variability of stream power within mountain stream basins could fully 

capture the variability in geomorphic effects (e.g., Fonstad, 2003). 
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TABLE 3.2. Cross-tabulation of channel types and observed geomorphic effects for the 59 surveyed sections in 
the Magra, Vizze, Cedrino-Posada and Lierza Rivers 

 
Channel types 

Observed geomorphic effects 
Major  
(M) 

Small-to-moderate 
(S-M) 

Negligible 
(N) 

Alluvial (AL) 10 11 - 
Semi-alluvial (S-A) 5 16 5 
Bedrock (BR) - - 4 
Artificial (AT) - - 8 

 

 

 

FIG.3.2. Examples of channel types and different intensities of observed geomorphic impacts of floods in the 
studied river channels: (A) major geomorphic impacts in alluvial channels, (B) major geomorphic impacts in 
semi-alluvial channels, (C) negligible geomorphic impacts in bedrock channels, and (D) negligible geomorphic 
impact in artificial channels. 
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3.2 BASIN ANALYSIS AND CHANNEL CHARACTERISATION 

MATLAB (Matrix Laboratory) numerical programming language functions in TopoToolbox 

(Schwanghart and Kuhn, 2010) and ArcGIS were combined and used to extract important data and 

information from high resolution DEM and aerial photos. For all river sections of interest (both cross 

sectional and sub reaches of the selected channels), the master variable ‘drainage area’ and channel 

networks were extracted from DEM for hydrological modelling and analysis of the scale-dependent 

flood responses. For sub reach units along longitudinal profiles of the selected channels of the Magra, 

Cedrino, and Lierza, channel gradients were extracted from DEM, whereas morphological changes 

represented by channel widening, as well as channel confinement, were estimated from high-resolution 

aerial photos for the Magra and Cedrino channels only. 

 

 DELINEATION OF BASIN AREA AND CHANNEL NETWORK 3.2.1

The corresponding MATLAB functions in TopoToolbox (Schwanghart and Kuhn, 2010) were 

used to calculate flow direction and flow accumulation from high-resolution DEM of the studied 

catchments. The ArcGIS algorithm ‘fill’ was used to eliminate ‘pits’ or small imperfections in the 

surface raster that could destruct the theoretical down-slope flow of the hydrological process. The ‘flow 

direction’ function uses the D8 algorithm to create a raster flow direction from the adjusted surface 

raster by assigning direction codes to each cell such that each cell flows into the steepest of the eight 

adjacent cells. The ‘flow accumulation’ function then creates a raster of accumulated number of cells 

flowing into each cell using the flow direction raster. The upslope area draining to each cell was 

calculated as the product of the flow accumulation value and the unit area of the resolution of the grid 

cells. The channel network of the basin is delineated from the last raster by applying a constant flow 

accumulation threshold to distinguish between hillslope and channel paths. 
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 ESTIMATION OF CHANNEL GRADIENT, WIDENING, AND CONFINEMENT  3.2.2

In collaboration with a PhD project at the Department of Geosciences of the University of Padova 

(PhD candidate: Margherita Righini; Supervisor: Prof. Nicola Surian), remote sensing was used to 

estimate important channel properties for sub reaches of the selected channels. Sub reaches were in the 

range of 300–500, 700–1100, and 15–200 m in length on the Magra, Posada, and Lierza respectively, 

partly depending on the total length of the selected channels. Channel gradients were estimated for the 

Magra, Posada, and Lierza sub reaches from the DEM using the corresponding MATLAB function in 

TopoToolbox (Schwanghart and Kuhn, 2010). The algorithm is similar to the ‘horizontal slice’ method 

suggested by Vocal Ferencevic and Ashmore (2012). Unlike the GIS slope-based algorithm, which 

calculates slope as an average over the entire landscape or the maximum slope between any cells 

surrounding a target cell, the horizontal slice method calculates slopes in a specific direction along the 

channel in order to estimate channel slope and/or an approximation of water-surface slope. 

The availability of pre-flood and post-flood aerial satellite imagery with high spatial resolution 

permitted estimation of channel widening and confinement index for the Magra (Surian et al., 2016) 

and Posada (Righini et al., 2017) Rivers. Morphological response to the studied flash flood was defined 

in terms of channel widening – the main geomorphic effects that occurred along the studied channels of 

the Magra and Posada Rivers. Analysis and interpretation of pre-flood and post-flood aerial satellite 

imagery enabled quantification of the geomorphic changes at the channel-reach scale that prevailed 

during the extreme flood. Active channel areas before and after the flood, and alluvial plain widths 

were digitized from the respective aerial photos using ArcGIS. Average channel widths, were then 

estimated as the ratio of the channel areas to the corresponding length of the sub-reach units. The width 

ratio, defined as the ratio of the channel width after the flood to the channel width before the flood 

(Krapesch et al., 2011) was used as representative of channel widening. Confinement index was 

defined as the ratio of the alluvial plain width to the channel width before the flood (Rinaldi et al., 

2013). Fig. 3.3 shows an example of remotely sensed channel changes and lateral confinement from 

pre- and post-flood aerial photos of the studied rivers. 
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FIG.3.3. Examples of remotely sensed channel changes observed along the longitudinal profiles of one of the 
studied rivers (Adapted from Surian et. al., 2016). 
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3.3 FLOOD MODELLING AND UNCERTAINTY ANALYSIS 

 SPATIALLY DISTRIBUTED FLOOD RESPONSE MODEL 3.3.1

The Kinematic Local Excess Model (KLEM), which integrates spatially distributed radar rainfall 

estimates and basin properties (i.e., DEM, soil hydraulic properties, land use, antecedent moisture 

conditions), has been implemented to check the consistency of the rainfall-runoff dynamics for the 

studied flash floods and to simulate peak discharge for the computation of stream power in ungauged 

cross sections. The model uses a mixed Curve Number – Green-Ampt method for rainfall excess 

modelling (Grimaldi et al., 2013). The procedure consists of applying the SCS-CN approach (Ponce 

and Hawkins, 1996) to quantify the storm net rainfall total amount and using this value to estimate the 

effective saturated hydraulic conductivity of the Green-Ampt method. Using the Green-Ampt 

infiltration model with moisture redistribution (Ogden and Saghafian, 1997), rainfall in each point of 

the catchment is divided into surface and subsurface runoff components. In the method, the relationship 

between the effective rainfall (or direct runoff) accumulated up to time t, Pe (t) and the cumulative 

precipitation at the same time P (t) is given by: 

௘ܲ(ݐ) = ൝
(௉(௧)ିூೌ)మ

(௉(௧)ିூೌାௌ)
, (ݐ)ܲ ൐ ௔ܫ

(ݐ)ܲ                  ,0 ൏ ௔ܫ

         [3.2] 

where S [mm] is a conceptual subsurface reservoir volume, defined by the maximum soil-water 

retention and Ia [mm] represents the initial abstraction before direct runoff begins, given as a function 

of S. Following Ponce and Hawkins (1996), the value of the S parameter in the SCS-CN method for a 

given soil is related to the curve number CN parameter through a calibration parameter X, called 

infiltration storativity. The potential value of the volume infiltrated S, is represented by: 

ܵ = 254.0 ቀଵ଴଴

஼ே
− 1ቁ ∙ ܺ          [3.3] 

CN is a spatially distributed absorption parameter, which is a function of the hydrologic soil-cover 

complex. Unlike CN, which is spatially distributed, the X parameter is assigned to the basin or sub 

basin scale. The parameter X is a function of the absorption capacity of the superficial layers of the soil 

over the duration of the event. The use of this parameter ensures the calibration of a spatial distribution 



RESEARCH METHODOLOGY

 

 

 
Stream power and geomorphic effects of flash floods                                                                           57 
 

of CN values in order to correctly simulate the observed flood water balance. In the conceptualization 

of the model, the initial wetting states of the basin are represented in three classes of AMC (Antecedent 

Moisture Condition, AMC-I, AMC-II and AMC-III), representing, respectively, initially dry, normal, 

and wet soil conditions. The index parameter AMC adjusts the CN originally assigned to generate a 

correct distributions of ܥ ௔ܰௗ௝, according to the formula: 

ܥ ௔ܰௗ௝ = ஼ே ∙ ஺

(஼ே ∙ ஻)ାଵ଴
           [3.4] 

where, ܣ = 2.08454 (0.80709 ܥܯܣ)݌ݔ݁ − 0.0.47225  and ܤ =
஺ିସ.ଶ

ଵ଴଴
− 0.058 

The distributed runoff propagation is based on the identification of drainage paths and requires 

the characterization of hillslope and channel paths. A simple model (Da Ros and Borga, 1997; 

Giannoni et al., 2003) is used to represent the runoff propagation for the response of the drainage 

system. This requires the separation of hillslope and channel elements based on a channelization 

support area, As, which is considered constant at the sub basin scale and two invariant hillslope and 

channel flow velocities. The model computes discharge Q (t) at any location (x, y) along the river 

network as follows: 

(ݐ)ܳ = ׬ ݐ]ݍ − ,ݔ)߬ ,(ݕ ,ݔ) [(ݕ
஺  [3.5]          ܣ݀

where A is the area draining to the specific outlet location (x, y), q (t, x, y) is the total runoff at time t; 

and τ (x, y) is the routing time from a generic point (x, y) to the outlet of the basin specified by the 

region A. The routing time is defined as: 

,ݔ)߬ (ݕ = ௅೓(௫,௬)

௩೓
+ ௅೎(௫,௬)

௩೎
          [3.6] 

where Lh (x, y) is the distance from point (x, y) to the channel network following the steepest descent 

path; Lc (x, y) is the length of the subsequent channel drainage path to the watershed outlet and vh and 

vc are the two invariant hillslope and channel flow velocities, respectively. The use of invariant channel 

and hillslope velocities for flash-flood simulation has been discussed by Ruiz-Villanueva et al. (2012). 

Rodriguez-Iturbe and Rinaldo (1997) support the assumption that models of the hydrologic response 

employing basin-constant channel celerity explain observed travel time distributions, at least for high 

flow conditions (e.g., Giannoni et al., 2003; Nicótina et al., 2008; Marchi et al., 2010). The invariant 
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hillslope celerity assumption is more conceptual in nature (Botter and Rinaldo, 2003). In fact, great 

variability in hillslope transport properties is expected, particularly when it is driven by local 

topographic gradients as subsurface runoff through partially saturated areas and in the presence of 

preferential flow paths (Dunne 1978; Beven and Wood, 1983). 

The model framework is based on six calibration parameters: the channelization support area (As), 

two kinematic parameters (vh and vc), the infiltration storativity parameter, X required for the 

calibration of the SCS-CN procedure and the parameters Ia and AMC required for the specification of 

the initial abstraction and antecedent moisture conditions, respectively. The model also includes a 

linear relation for base flow modelling, whose input is computed using the SCS-CN method (Borga et 

al., 2007). The application and verification procedure of the flood response model is based on the 

concept of ‘hydrological similarity’ (Parajka et al., 2013), which involves (i) calibration on runoff data 

at a gauged station, (ii) verification of the constructed model through cross-validation by comparing 

simulated peak discharges with field-estimated values from post flood surveys at the ungauged sections 

and (iii) transposition of model parameters to simulate runoff responses at any location of interest 

within the region defined by the gauged station. 

 

 UNCERTAINTY FRAMEWORK FOR THE INTEGRATION OF FIELD-ESTIMATED AND MODEL-BASED PEAK 3.3.2

DISCHARGES 

Post-flood indirect peak discharge estimates can be undermined by theoretical errors and are 

affected by significant observational uncertainties, which should be considered together with the 

important uncertainties in the rainfall-runoff modelling of flash floods response (Amponsah et al., 

2017). Theoretical error, which can be avoided by means of proper recognition of the flow process, 

involves assumptions and application of hydraulic models suitable for water flows to non-Newtonian 

flows (e.g., debris flows and hyper-concentrated flows – Costa and Jarrett, 1981, 2008; Hungr et al., 

1984; Jarrett, 1994; Prochaska et al., 2008), as well as the causative processes leading to the flood 

peaks is very important in documenting and understanding flood response. Some flood peaks are 

caused by failure of landslide dams or other types of channel obstructions. Landslides and large wood 

jams may block the river and, when these burst, it may generate a flood peak which is not related to 
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rainfall-runoff generation processes, but rather to the volume of water stored and the velocity of dam 

breaching. Hence, estimates of these flood peaks should not be used for comparison with rainfall-

runoff models. Even when a post-flood estimate passes the theoretical consistency checks in relation to 

flow process type and channel obstruction, it is important to carry out an uncertainty estimate which 

accounts for observational errors that may affect the accuracy of the estimated peak discharge. Fig. 3.4 

presents a flowchart for a sound estimate of peak discharge using the slope conveyance method and a 

subsequent comparison with model-based peak discharges. 

 

FIG.3.4. Flowchart for integrated hydrologic flash flood analysis: indirect estimate of peak discharge, 
uncertainty assessment and comparison with rainfall-runoff model results (Adapted from Amponsah et al., 2016). 
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Observational errors involve the discrepancies between true values of all variables and the 

corresponding surveyed, estimated and assumed values actually used in the estimation of the flood 

peak. These may include measurement errors in high water mark and channel geometry, choice of 

roughness coefficient, and channel erosion and/or aggradation that might potentially modify surveyed 

channel geometry with respect to peak flow hydraulic conditions. Geomorphic processes and impacts 

may place considerable limitations on the reliability of indirect methods for flood peak estimation 

(Gaume and Borga, 2008). For instance, scour and/or fill may occur after the high water marks are left 

by the current. The effect is that the cross-section geometry surveyed after the flood is different from 

the one existing at the time of the peak flow. The uncertainties in indirect estimation of peak flows 

during post-event surveys are evaluated by error analysis of the slope-conveyance peak discharge 

determination (Amponsah et al., 2016; 2017). 

The linear error analysis permits explicit consideration of the effects of discrepancies between the 

true values of a number of variables and the corresponding measured or estimated values (Kirby, 

1987). The effect of these error sources on the accuracy of the computed peak discharge is estimated by 

statistical error analysis using a Taylor-series approximation of the discharge equation and the equation 

for the variance of a sum of correlated random variates as follows (Amponsah et al., 2016): 

௣ܳ∆ ݎܽݒ = ቀ
డொ೛

డ௛ೢ
ቁ

ଶ
ℎ௪∆ݎܽݒ + ቀ
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ቁ

ଶ
ܮ∆ݎܽݒ + ቀ

డொ೛
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ቁ

ଶ
݊∆ݎܽݒ + ቀ

డொ೛

డ஺
ቁ

ଶ
ܣ∆ݎܽݒ + ቀ

డொ೛

డ௉
ቁ

ଶ
ܲ∆ݎܽݒ +

2 ቀ
డொ೛

డ௉
ቁ ቀ

డொ೛

డ஺
ቁ  [3.7]          ܣ∆ݎܽݒܲ∆ݎܽݒ

where the terms ܣ∆ ݎܽݒ and ݎܽݒ ∆ܲ, which represent the variances in the change in measured cross-

sectional area and wetted-perimeter, respectively, incorporate the errors in the measurements of the 

section width (b), section mean depths (d) and scour/fill (s). The scour (if any) is assumed to be of 

constant depth across the section. Fill is treated as negative scour. The development of the Eq. [3.7] 

through partial derivatives with respect to the variables in the Manning-Strickler discharge equation 

(Eq. [3.1]) and assuming the algebraic sum of the covariance terms to be either zero or else negligible 

as compared to the squared terms yields the following approximation of the error variance in the 

estimated peak discharge: 
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ଶ     [3.8] 

where N is the number of ground points and the term ߝ௭
ଶ indicates the relative error variance in the 

measurement or estimation of the variable z and the corresponding influence coefficients of error 

variance obtained through the partial derivative of the discharge equation. Eq. [3.8] reveals that the 

various error variances are observable although errors themselves are not observable (Kirby, 1987). In 

Eq. [3.8], measurement errors in d and s are expressed in terms of relative error variances ߝௗ
ଶ

 and ߝ௦
ଶ, 

respectively, referenced to mean depth A/b, whereas the errors in b are expressed in terms of relative 

error variance ߝ௕
ଶ

 referenced to b/(N-1), i.e., the average spacing between ground points. Eq. [3.8] 

shows that the observational error variance depends on the measurement uncertainties (ߝௌ೐
ଶ ௕ߝ ;

ଶ; ߝௗ
ଶ), on 

the uncertainties in the evaluation of the roughness parameter (ߝ௡
ଶ), and on the impact of the 

geomorphic effects (ߝ௦
ଶ). It should be noted that geomorphological changes are likely to affect both 

terms ߝ௦
ଶ and ߝ௡

ଶ, given the influence that changes in bed geometry and morphology may have on flow 

resistance (Ferguson, 2007; Church and Ferguson, 2015). The standard deviation obtained from Eq. 

[3.8] is used to derive confidence intervals for the field-based estimates of the peak flows. Flood peak 

simulations obtained from hydrological models may then be compared with these uncertainty ranges 

according to the flowchart presented in Fig. 3.4. 

The observational variances were categorised and stratified according to the three impacts of 

geomorphic effects – negligible, small-to-moderate and major – as reported in Table 3.3. The table 

shows that the error terms ߝ௦ and ߝ௡ are variable with the geomorphic changes, whereas the other terms 

are kept constant, since they depend only on the topographical and HWM surveying uncertainties. 

Errors in the surveying of HWM and of the cross sections are distinguished because the measurements 

of ground points and of high water marks are characterised by different accuracies. The evaluation of 

errors in section width and section mean depth that define channel cross-sectional area and wetted-

perimeter, was based on sensitivity analysis of the surveyed cross-sectional geometry because of the 

non-uniformity of the channel morphology. 
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TABLE 3.3. Summary values of the error variances of peak discharge uncertainty for the three categories of 
geomorphic effects 

Relative  
error terms 

Geomorphic impacts 
Negligible Small to moderate Major 

 ௦ 0.04 0.12 0.20ߝ
௛ೢߝ

 0.10 0.10 0.10 
 ௕ 0.01 0.01 0.01ߝ
 ௗ 0.02 0.02 0.02ߝ
 ௡ 0.10 0.10 0.15ߝ
 ௅ 0.01 0.01 0.01ߝ

ݎܽݒ ݌ܳ∆ ݌ܳ
ଶൗ (10ିସ) 182 537 1373 

.݀ݐݏ  37.1± 23.2± 13.5± (%)݌ܳ/݌ܳ߂ݒ݁݀

 

Observational error variance in the energy line gradient (ߝௌ೐
ଶ ), was evaluated as the sum of 

squared errors of surveyed HWM with respect to the regression that defines the energy line gradient in 

both axes, respectively, defined in Table 3.3 as error terms in HWM assessment (ߝ௛ೢ) and location 

along the channel reach (ߝ௅). It should be noted that in the slope-conveyance peak discharge 

determination method, multiple flood mark points are identified everywhere they are visible on channel 

banks for estimating the energy line gradient, and hence surveys in both HWM and the corresponding 

location along reach length are subject to random measurement errors. The Orthogonal Distance 

Regression (ODR) is therefore appropriate as the errors-in-variables regression method to account for 

errors in both variables, rather than the classical Ordinary Least Squares (OLS) analysis, in which best 

fit is chosen to minimize the residual errors in the y direction only. The values of the error standard 

deviation are computed by using N=11 for the ground points, which represent a mean value across the 

IPEC sections. The confidence interval, which extends one standard deviation on both sides of the 

central estimate, may thus be expressed based on Eq. [3.8] with percentage uncertainty bounds of 

±13.5%, ±23.2% and ±37.1% for cross sections that showed negligible, small to moderate and major 

geomorphic impacts, respectively (Table 3.3). 

A statistical analysis of the accuracy of the model was performed using the Nash Sutcliffe 

Statistics Efficiency score (NSE) (Nash and Sutcliffe, 1970). NSE permits reliable comparison between 

the estimated and simulated peak discharges since it is dimensionless and easy to interpret. This 

efficiency score is given as: 



RESEARCH METHODOLOGY

 

 

 
Stream power and geomorphic effects of flash floods                                                                           63 
 

ܧܵܰ = 1 −
∑ ൫ொ೔

ೝିொ೔
ೞ൯

మ೙
೔సభ

∑ ൫ொ೔
ೝିொೌೡ೐

ೝ ൯
మ೙

೔సభ

          [3.9] 

where ܳ௜
௥ is the estimated peak discharge value for the ith-basin; ܳ௜

௦ is the simulated peak discharge 

value for the ith-basin, and ܳ௔௩௘
௥  is the mean value of the estimated peak discharges. 

According to Eq. [3.9], if NSE = 1, then the model is perfect (zero errors) and if NSE = 0, the 

model is considered as good as the average of the observed values. Negative NSE implies that the 

residual variance is larger than the data variance and therefore the mean of the estimated peak 

discharge values could be a better predictor than the model. 

 

3.4 STREAM POWER ANALYSIS 

 PEAK STREAM POWER AND UNCERTAINTY ASSESSMENT 3.4.1

This section presents standardized measures of stream power associated with flash floods based 

on a combined analysis of field data from post-flood surveys and hydrological modelling to better 

quantify their geomorphic effectiveness and the corresponding hydrologic and hydraulic controls. Two 

sets of stream power measures related to field-based peak instantaneous discharges were computed for 

the 119 surveyed cross sections of the seven studied flash floods: cross-sectional stream power and 

unit stream power. Cross-sectional stream power, Ω [W m-1], which expresses the rate of energy 

expenditure per unit channel length, is calculated as follows: 

ߗ = ߛ ∙ ܳ௣ ∙ ܵ            [3.10] 

where γ [9810 N m-3] is the specific weight of water, Qp [m
3 s-1] is peak discharge and S [m m-1] is the 

channel bed slope. Unit stream power, ω [W m-2] is calculated as cross-sectional stream power per unit 

channel width w [m] and represents the rate of energy expenditure per unit area of the channel bed. 

߱ = ߗ ⁄ݓ                 [3.11] 

For purposes of error analysis, we express the estimated cross-sectional stream power as a 

function of the following variables ߗ = ݂(ܳ௣, ܵ) according to Eq. [3.10]. The error in Ω due to errors 

 :and ∆ܵ, in ܳ௣ and ܵ respectively, may then be treated in first-order Taylor series as follows ݌ܳ∆
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ߗ∆ = ߗ߲
݌߲ܳ

݌ܳ∆ + ߗ߲
߲ܵ

∆ܵ + 2 ൬
ߗ߲

݌߲ܳ
൰ ቀ

ߗ߲
߲ܵ

ቁ  [3.12]        ܵ∆݌ܳ∆

where 
డఆ

డ௭
 .only ݖ in variable ݖ∆ is the error in Ω due to an error ݖ∆

Squaring Eq. [3.12] and conveniently taken the algebraic sum of the covariance term as either zero or 

else negligible as compared to the squared terms yields: 

ଶߗ∆ = ൬
డఆ

డொ೛
∆ܳ௣൰

ଶ

+ ቀ
డఆ

డௌ
∆ܵቁ

ଶ
         [3.13] 

The error variance in estimated cross-sectional stream power may then be treated in first-order Taylor 

series as follows: 

ߗ∆ ݎܽݒ = ൬ డߗ
డொ೛

൰
ଶ

௣ܳ∆ݎܽݒ + ቀ
డߗ
డௌ

ቁ
ଶ

 [3.14]        ܵ∆ݎܽݒ

௩௔௥ ∆ఆ

ఆమ = ఆߝ
ଶ = ݌ܳߝ

ଶ + ௦ߝ
ଶ          [3.15] 

The errors in the energy line gradient is expressed as a function of errors affecting the measurements of 

HWMs (ℎ௪) and channel length (ܮ): ܵ = ݂(ℎ௪, -Relative standard deviation in estimated cross .(ܮ

sectional stream power may then be expressed as: 

ఆߝ = ± ቀ݌ܳߝ

ଶ + ௛ೢߝ
ଶ + ௅ߝ

ଶቁ
ଵ

ଶൗ
          [3.16] 

Errors in peak instantaneous unit stream power is affected by errors in the estimation of cross-

sectional stream power as well as the intensity of geomorphic impacts that may cause discrepancy 

between channel width at the time of flood peak and the measured post-flood channel width actually 

used in the computation of unit stream power. This effect may be represented by the scour/fill 

parameter. From Eq. [3.11], the errors in estimated unit stream power can be expressed as a function of 

the following variables ߱ = ,ߗ)݂  Relative standard deviation in unit stream power may then be .(ݏ

expressed as: 

ఠߝ = ఆߝ)±
ଶ + ௦ߝ

ଶ)ଵ
ଶൗ            [3.17] 
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TABLE 3.4. Summary values of the observational error variances of cross-sectional stream power and unit 
stream power for the three categories of geomorphic effects 

Relative  
error terms 

Geomorphic impacts 
Negligible Small to moderate Major 

݌ܳߝ
 0.135 0.232 0.371 

௛ೢߝ
 0.10 0.10 0.10 

 ௅ 0.01 0.01 0.01ߝ
 ௦ 0.04 0.12 0.20ߝ

ݎܽݒ ߗ∆ ⁄ଶߗ (10ିସ) 283 639 1477 

.݀ݐݏ  ±38.4 ±25.3 ±16.8 (%)ߗ/ߗ߂ݒ݁݀
ݎܽݒ ∆߱ ߱ଶ⁄ (10ିସ) 299 783 1877 
.݀ݐݏ  ±43.3 ±28.0 ±17.3 (%)߱/߱߂ݒ݁݀

 

From Table 3.3, the relative errors in estimated peak discharge amounted to percentage 

uncertainty bounds of ±13.5%, ±23.2% and ±37.1% for cross sections that underwent negligible, small 

to moderate and major geomorphic impacts, respectively. Table 3.4 reports the observational error 

variances for the estimation of cross-sectional stream power and unit stream power, categorized 

according to the three classes of geomorphic impacts. Relative errors in measurements of HWMs and 

channel length as well as the scour/fill parameter are from Table 3.3. Relative errors in estimated cross-

sectional stream power (unit stream power) amounted to percentage uncertainty bounds of ±16.8%, 

±25.3% and ±38.4% (±17.3%, ±28.0% and ±43.3%) for cross sections that underwent negligible, small 

to moderate and major geomorphic impacts, respectively. Table 3.4 shows that observational error 

variances increases for peak discharges, cross-sectional stream power and unit stream power in that 

order. This is because of the increase in the number of parameters used in the estimation of the 

corresponding variables that increases the sum of correlated random variates. 

 

 STREAM POWER HYDROGRAPH AND CUMULATIVE ENERGY EXPENDITURE 3.4.2

The distributed flood response model was implemented to compute flood hydrograph 

characteristics for 59 basins of the four recent floods in this study (Magra, Vizze, Cedrino-Posada and 

Lierza floods) and the 159 sub reaches of the selected channels. The flood hydrograph was combined 

with channel slope and cross-sectional channel width to produce the stream power hydrograph (Fig. 

3.5). This provided a context to evaluate the combined influence of flood-flow duration and cumulative 
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energy expenditure (Costa and O’Connor, 1995; Kale, 2008; Magilligan, et al., 2015) on the potential 

geomorphic effectiveness of different flood events relative to peak instantaneous stream power 

measures. Cumulative energy expenditure, Ɛ [J m-2] represents the distribution of stream power per unit 

cross-sectional area throughout the flood hydrograph, computed by integrating unit stream power ω [W 

m-2] over the duration of the flood event, t = to→T [s] as follows: 

ℇ = ׬ ߛ] ∙ (ݐ)ܳ ∙ ܵ/w]݀ݐ 
்

௧೚
          [3.18] 

Two main parameters were derived from the stream power hydrograph (Fig. 3.5). First, the event 

energy expenditure (Ɛe [J m-2], hereinafter), computed as the area under the hydrograph between the 

inflection points. The inflection points on the stream power hydrograph, as shown in Fig. 3.5 (joined by 

the dot-dash line), correspond to the duration of the flood response, i.e., from the start to the end of the 

runoff event. The value of the starting point of Ɛe on the rising limb corresponds to unit stream power 

value at the first rise of event hydrograph. The end of Ɛe, on the other hand, was identified graphically 

on the recession limb plotted on a logarithmic chart, corresponding to the end of event direct runoff. 

Second, a proportion of Ɛe associated with energy above the threshold for major geomorphic change, 

referred to as above-threshold energy expenditure (Ɛth [J m-2], hereinafter). In Fig. 3.5, Ɛth is defined as 

the energy above the Miller-Magilligan critical stream power threshold of 300 W m-2. A dimensionless 

parameter, referred to as energy ratio (Ɛr, hereinafter) is proposed as a predictor of possible occurrence 

of geomorphic changes and defined as the ratio of the energy above the threshold for major 

geomorphic change to the overall energy expended as follows: 

ℇ௥ = Ɛ௧௛ Ɛ௘⁄             [3.19] 
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FIG.3.5. Stream power hydrograph of a typical flash flood. Discharge data from model simulations, together 
with channel cross-sectional geometry and slope data, were used to generate unit stream power. Dashed line 
indicates the Miller-Magilligan critical threshold (300 W m-2), and the dot-dash line joins the inflection points on 
the rising and recession limbs of the hydrograph. (Modified from Magilligan et al., 2015). 
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4 RESULTS 

4.1 FLASH FLOOD RESPONSE 

The reference database for this study consists of 119 catchments that were affected by seven 

major flash floods in Europe. Table 4.1 presents a summary of basin, flood response and channel 

hydraulic properties of the studied flash floods, with cross sections ranging per event between 2 

(Vizze) and 33 (Magra), mostly depending on the spatial extent of affected watershed and on the 

topology of the channel network. The database for the 119 catchments of the seven studied flash floods 

is reported in Appendix A2. 

 

TABLE 4.1. Summary parameters of the flood database for the seven studied flash floods: average and 
(standard deviation) 

Parameters, 
Symbol [unit] 

Selška 
Sora  

Starzel 
 

Argens 
 

Magra 
 

Vizze 
 

Cedrino-
Posada 

Lierza 
 

No. of sections 19 17 24 33 2 17 7 
Catchment size, 
A [km2] 

24.6 
(26.9) 

29.3 
(33.2) 

219.1 
(498.2) 

20.0 
(17.5) 

59.1 
(19.6) 

184.6 
(196.8) 

4.7 
(3.9) 

Peak discharge, 
Qp [m

3/s] 
100.2 

(107.5) 
52.1 

(50.2) 
339.9 

(462.6) 
154.9 

(136.0) 
74.2 
(6.0) 

1644.6 
(1409.5) 

74.8 
(47.0) 

Energy line gradient,  
S [m/m] 

0.023 
(0.014) 

0.019 
(0.009) 

0.019 
(0.016) 

0.027 
(0.025) 

0.015 
(0.001) 

0.014 
(0.008) 

0.025 
(0.010) 

Cross-sectional area, 
Ac [m

2] 
33.9 

(35.8) 
19.5 

(20.1) 
111.1 

(138.1) 
46.2 

(38.2) 
23.1 
(1.8) 

316.3 
(270.0) 

21.9 
(11.3) 

Top channel width, 
w [m] 

25.2 
(26.1) 

11.9 
(10.5) 

30.2 
(26.1) 

27.7 
(22.7) 

13.5 
(0.7) 

71.5 
(44.3) 

12.8 
(2.6) 

Wetted perimeter, 
P [m] 

27.4 
(25.4) 

13.2 
(11.1) 

33.6 
(27.1) 

30.8 
(24.4) 

14.9 
(0.5) 

74.2 
(44.7) 

14.4 
(2.9) 

Hydraulic radius, 
R [m] 

1.11 
(0.48) 

1.34 
(0.74) 

2.59 
(1.44) 

1.45 
(0.43) 

1.54 
(0.07) 

3.69 
(1.75) 

1.45 
(0.48) 

Mean flow depth, 
d [m]: 

1.28 
(0.36) 

1.43 
(0.74) 

3.03 
(1.58) 

1.66 
(0.50) 

1.71 
(0.05) 

3.88 
(1.84) 

1.64 
(0.57) 

Mean flow velocity,  
V [m/s]: 

3.12 
(1.01) 

2.87 
(0.66) 

3.52 
(0.95) 

3.00 
(0.63) 

3.22 
(0.01) 

5.00 
(1.10) 

3.24 
(0.67) 

Froude number, 
Fr [-] 

0.81 
(0.24) 

0.76 
(0.21) 

0.67 
(0.22) 

0.75 
(0.12) 

0.78 
(0.01) 

0.85 
(0.14) 

0.82 
(0.13) 

Manning’s roughness 
coefficient, n [-] 

0.054 
(0.014) 

0.056 
(0.027) 

0.063 
(0.012) 

0.067 
(0.021) 

0.050 
(0.000) 

0.050 
(0.010) 

0.060 
(0.013) 

Cross-sectional stream 
power, Ω [W/m] 

16494 
(13623) 

8658 
(13132) 

33706 
(30976) 

33390 
(27296) 

7053 
(3186) 

132569 
(147621) 

8856 
(5130) 

Unit stream power, 
ω [W/m2] 

866 
(602) 

666 
(509) 

1651 
(1845) 

1409 
(1124) 

517 
(209) 

1850 
(1371) 

661 
(311) 
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 CHANNEL HYDRAULIC GEOMETRY 4.1.1

The relationships between peak discharges and channel hydraulic properties, including channel 

width, flow depth, and mean flow velocity, are reported in Fig. 4.1 for the studied cross sections. The 

regressions clearly show a linear dependence of the hydraulic properties on peak discharge, with 

differing orders of magnitude. Channel geometry, i.e., width and depth that define the cross-sectional 

area and are directly used to compute peak discharge, exerts much influence on the pattern of estimated 

peak discharge compared to the estimated flow velocity. The relatively lower explained variance for 

the relationship between peak discharge and flow velocity (Fig. 4.1C) can be attributed to the high 

uncertainties in the evaluation of the roughness parameter and assumptions concerning the estimation 

of energy line gradient compared to errors in the measurement of channel width (Fig. 4.1A) and flow 

depth (Fig. 4.1B), which depend only on the surveying accuracy. 

Table 4.2 reports a summary of the power-law regressions (and explained variances, R2) 

developed for the relationship between peak discharges, and the corresponding channel width, flow 

depth and flow velocity for the studied cross sections. The sum of the exponents, and product of the 

multipliers for the power-law regressions (Table 4.2), approaches unity for each event, which is 

comparable to the average regressions reported in Fig. 4.1. This result supports the usually described 

downstream correlations in power-law regressions between bankfull discharge and channel hydraulic 

geometry reported in literature based on the classic work on regimes theories of channel hydraulic 

geometry (Leopold and Maddock, 1953).  

 
FIG. 4.1. Relationship between peak discharge and (A) top channel width, (B) mean flow depth, and (C) flow 
velocity. 
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TABLE 4.2. At-a-station channel hydraulic geometry for the studied flash floods 

 
Study  
basins 

Width-discharge 
relationship 

Depth-discharge 
relationship 

Velocity-discharge 
relationship 

Regression R2 Regression R2 Regression R2 
Selška Sora ݓ = 0.81 ∙ ܳ௣

଴.଻ହ 0.88 ݀ = 0.76 ∙ ܳ௣
଴.ଵଶ 0.34 ܸ = 1.23 ∙ ܳ௣

଴.ଶଶ 0.59 

Starzel ݓ = 1.05 ∙ ܳ௣
଴.଺ଶ 0.77 ݀ = 0.48 ∙ ܳ௣

଴.ଷ଴ 0.57 ܸ = 2.12 ∙ ܳ௣
଴.଴଼ 0.16 

Argens ݓ = 1.20 ∙ ܳ௣
଴.ହ଻ 0.81 ݀ = 0.55 ∙ ܳ௣

଴.ଷଵ 0.60 ܸ = 1.92 ∙ ܳ௣
଴.ଵଵ 0.32 

Magra ݓ = 0.92 ∙ ܳ௣
଴.଺଼ 0.77 ݀ = 0.84 ∙ ܳ௣

଴.ଵସ 0.20 ܸ = 1.60 ∙ ܳ௣
଴.ଵଷ 0.29 

Vizze* ݓ = 0.84 ∙ ܳ௣
଴.଺ହ 1 ݀ = 0.40 ∙ ܳ௣

଴.ଷସ 1 ܸ = 2.86 ∙ ܳ௣
଴.଴ଷ 1 

Cedrino-
Posada 

ݓ = 1.94 ∙ ܳ௣
଴.ହ଴ 0.80 ݀ = 0.25 ∙ ܳ௣

଴.ଷ଼ 0.79 ܸ = 1.86 ∙ ܳ௣
଴.ଵସ 0.54 

Lierza ݓ = 4.92 ∙ ܳ௣
଴.ଶଷ 0.49 ݀ = 0.20 ∙ ܳ௣

଴.ହ଴ 0.95 ܸ = 1.03 ∙ ܳ௣
଴.ଶ଻ 0.59 

*regressions for only two data points of the Vizze River 

 

 HYDROLOGICAL MODELLING 4.1.2

The availability of high-resolution radar rainfall estimates, digital elevation models and soil-cover 

hydrologic complex for specific flash floods and affected catchments permitted an integrated analysis 

for the reconstruction of 6 out of 7 of the studied flash floods (Selška Sora, Starzel, Magra, Vizze, 

Cedrino-Posada and Lierza) using the spatially distributed rainfall-runoff model described in section 

3.3.1. Model results for Selška Sora and Starzel were obtained from Zanon et al. (2010) and Ruiz-

Villanueva et al. (2012), respectively. A similar modelling approach had been applied (Payrastre et al., 

2012) for the analysis of the Argens flood. Reference is made to the previous studies reported in Table 

2.1 for a more complete description of the application of the spatially explicit hydrologic model for the 

specific events. Fig. 4.2 presents a comparison between field-estimated and model-simulated flood 

peaks for the 6 flash floods. The Nash-Sutcliffe efficiency scores (NSE) reported for the regressions 

indicate a high correspondence between simulated and observed peak and unit peak discharges. The 

relatively lower efficiency score reported in Fig. 4.2-B can be attributed to bias corresponding to the 

comparison when peak discharges are normalized by upstream drainage area. Model simulations have 

served to check the consistency between rainfall and discharge data collated after such extreme events. 
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FIG. 4.2. Regression between field-estimated and model-simulated (A) peak discharges, and (B) unit peak 
discharges for 6 of the studied flash floods. NSE: Nash-Sutcliffe model efficiency score. 

 

The accuracy of the simulations for the four recent flash floods in Italy (Magra, Vizze, Cedrino-

Posada and Lierza), where comprehensive geomorphic reconnaissance was carried out together with 

indirect peak flow estimates, included the observational error analysis of the slope-conveyance method 

(cf. section 3.3.2). Fig. 4.3A-B reports the relationship between simulated peak discharges and the 

corresponding relative uncertainty deviations for the four flood events and observed geomorphic 

effects, respectively for the 59 studied basins. The relative uncertainty deviation was estimated as the 

ratio of the relative errors in simulated peak discharges (with respect to the field-estimated central 

values) to the geomorphic effects-based standard errors of the field values. A threshold of relative 

uncertainty deviation of 1 indicates that the simulated peak discharge is within the uncertainty range 

provided by the error analysis. From Fig. 4.3, thresholds of 1, 1.5 and 2 indicate that for 61%, 73% and 

85% of the studied cross sections, respectively, the simulated peak discharges were within the 

observational uncertainty bound. As expected, in most cases, cross sections that underwent major 

geomorphic changes, which are responsible for larger uncertainty in estimated peak discharges, 

provided simulations within the uncertainty bounds compared to sections that underwent negligible and 

moderate changes. 
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FIG. 4.3. Relationship between simulated peak discharges and relative uncertainty deviations based on (A) flood 
event, and (B) observed geomorphic effects, for the four recent floods in Italy. 

 

 ANALYSIS OF THE FLOOD RESPONSE PROPERTIES 4.1.3

The dependency of discharge on watershed area gives a fundamental idea about the spatial extent 

and severity of the flood responses to rainstorm events. The relationship between unit peak discharge 

and upstream drainage area was investigated for the studied flash floods in a log-log plot (Fig. 4.4). 

The resulting envelope curve is analysed. Fig. 4.4 shows two upper limit envelope curves: the grey-

dashed line represents the envelope curved developed by Gaume et al. (2009) and confirmed by Marchi 

et al. (2010) for multiple flash flood events in Europe between 1994 and 2008. The database for this 

study, which includes some recent and severe flash floods, provides an envelope curve as follows: 

ܳ௨ = 45.0 ∙  ଴.ଶ           [4.1]ିܣ 

where, Qu [m
3 s-1 km-2] is the unit peak discharge and A [km2] is the upstream drainage area. The 

exponent of the envelope curve for this study indicates slow decrease of unit peak discharge and shows 

that high unit peak discharges are also observed for larger drainage areas. This can be observed for the 

flood responses in basins of the Cedrino-Posada Rivers, which cross the upper envelope of European 

flash floods and passed the rainfall-runoff consistency checks through hydrological modelling. 
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FIG. 4.4. Unit peak discharge against upslope drainage area for the studied flash floods. Envelope curves: Grey 
line from Gaume et al.(2009) for European flash floods between 1994 and 2008; Black line from the dataset of 
this study. 

 

Similar to the findings by Gaume et al. (2009) and Marchi et al. (2010), the highest unit peak 

discharges are observed for events from the Mediterranean regions (Magra, and Cedrino-Posada) due 

to the larger peak discharges that characterize flash floods in this region. The Lierza flood approaches 

the envelope curve for drainage areas less than 10 km2 (Fig. 4.4). The upper limit envelope is defined 

by unit peak discharges up to 20-30 m3 s-1 for basin areas less than 10 km2 in the Magra, Cedrino-

Posada, and Lierza Rivers whereas unit peak discharges reached up to 10-20 m3 s-1 for basin areas 

larger than 100 km2 in the Cedrino-Posada Rivers. 
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The relationships between basin-averaged rainfall accumulation and flood response features (unit 

peak discharge and runoff coefficient) are reported for the floods of Magra, Vizze, Cedrino-Posada and 

Lierza in Fig. 4.5. Runoff coefficient is computed as the ratio of the direct runoff to the event rainfall 

depth. The direct runoff was obtained by separating the baseflow component from the simulated flood 

hydrographs. Baseflow was assumed to remain constant up to the time of flood peak, and then to 

increase linearly until the end of direct runoff (Marchi et al., 2010). The end of direct runoff was 

identified graphically on the recession limb plotted on a logarithmic chart (Tallaksen, 1995). From Fig. 

4.5, there is a general pattern of increasing rainfall intensities with both unit peak discharges and runoff 

coefficients. Runoff coefficient for the Lierza, Vizze and moderate rainfall basins of the Magra flood 

are generally below 0.3, whereas that for Cedrino-Posada and high rainfall basins of the Magra flood 

are above, although with a wide scatter between different floods. This suggests that a threshold of 0.3 

runoff coefficient could discriminate flood response intensities for rainfall accumulation around 200-

250 mm. 

 

FIG. 4.5. Relationship between event rainfall accumulation and (A) unit peak discharge and, (B) runoff 
coefficient for the four recent floods in Italy. 
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4.2 AT-A-STATION STREAM POWER 

 PEAK STREAM POWER AND CONTROLLING FACTORS 4.2.1

Stream power incorporates river discharge and channel gradient to express river energy 

expenditure, which has been considered as an index of the hydraulic energy required for geomorphic 

work associated with major floods (e.g., Baker and Costa, 1987; Magilligan, 1992; Thompson and 

Croke, 2013), as well as near-bankfull flows (e.g., Knighton, 1999; Fonstad, 2003). The analyses of the 

main hydrologic and topographic controlling factors (i.e., peak discharge and channel gradient) and 

their relationship with the master variable ‘drainage area’ permitted exploration of the variability of 

stream power for specific flood events and among the different flood events for this study. Figs. 4.6A-

B present the relationship between upslope drainage area and the corresponding peak discharge and 

channel gradient at the surveyed cross sections, i.e., the two variables used for computing cross-

sectional stream power (Eq. 3.10), respectively. The relationship between peak discharge and drainage 

area is highly linear on the logarithmic scale for most of the studied flash floods. The upper limit 

reported in Fig. 4.6A is characterized by a slope of 0.8 and features flash flood events in the Magra, 

Cedrino-Posada, and Lierza Rivers. This implies that the slope of the upper envelope between peak 

discharges and drainage area for the studied flash floods has increased to a more linear value of 0.8, 

which translates to a gradient of -0.2 for the upper envelope of the relationship between drainage area 

and unit peak discharge (Fig. 4.4). Peak discharges exceeded 1000 m3 s-1 for catchments draining 

greater than 100 km2 in Mediterranean basins (Argens, and Cedrino-Posada). 

The relationship between energy slope and drainage area (Fig. 4.6B), on the contrary, is 

characterized by two upper envelopes at a break point of about 100 km2, where the slope of the power-

law regression increases from -0.193 to -0.981. This represents a sharp decrease in channel slope for 

upslope drainage areas greater than 100 km2, which feature basins affected by the flash floods in the 

Mediterranean climates (Cedrino-Posada, and Argens rivers). Contrary to the systematic increase in 

peak discharge with drainage area (Fig. 4.6A), there is not an unique upper envelope over the whole 

range of basin area for the relationship with energy gradient (Fig. 4.6B). The wide scatter in Fig. 4.6B 

can be attributed to the geological controls on channel morphology that are highly variable and 

independent of the contributing drainage area. 
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FIG. 4.6. Relationship between upslope drainage area and stream power variables (A) peak discharge and (B) 
channel gradient for the seven studied flash floods. 

 

 

FIG. 4.7. Relationship between upslope drainage area and (A) cross-sectional stream power, and (B) unit stream 
power. 
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The relationship between cross-sectional stream power and drainage area (Fig. 4.7A) reflects the 

flood intensities and spatial extent of the flood responses as reported in Fig. 4.6A. Maximum cross-

sectional stream power values were up to 400,000 W m-1 for the Cedrino-Posada flood in catchments 

draining 100-1000 km2. The upper limit envelope is defined by the Mediterranean events (Magra, and 

Cedrino-Posada), although the other Mediterranean event in the Argens River features lower values 

even for similar drainage areas. The relationship is non-linear, with an increase of cross-sectional 

stream power with upslope drainage area and a subsequent decrease at a break point of 100 km2. The 

reported upper envelope curves in Fig. 4.7A reflect the upper envelopes provided in Fig. 4.6A-B, 

which indicate that the rate of decrease and the non-linear trend of channel gradient with drainage area 

may influence the available energy expenditure for geomorphic work at the channel-reach scale, 

particularly for larger basins. 

The scatter plot between unit stream power and upslope drainage area (Fig. 4.7B) shows higher 

values of unit stream power for Mediterranean events (Cedrino-Posada, Magra, and Argens). The 

highly non-linear trend in Fig. 4.7B is influenced by the variability in the degree of confinement at the 

individual cross sections, expressed as post-flood channel width. Post-flood channel width 

corresponding to high water marks was used to estimate unit stream power because it was possible to 

carefully measure it in the field and it is consistent with topographic and hydraulic variables related to 

peak discharge computation. It should, however, be noted that the use of post-flood channel width for 

the computation of unit stream power at a cross section may underestimate the potential maximum 

energy expenditure if post-flood channel width occurred in whole or in part during flood recession. The 

smallest catchment in our database draining an area of 0.5 km2 recorded unit stream power of 5000 W 

m-2. This bedrock channel with no significant channel changes typically exemplifies the effects of the 

use of post-flood channel width for different cross-section types affected by different intensities of 

geomorphic effects. Peak instantaneous unit stream power values for about 88% of the 119 studied 

cross-sections were greater than the Miller-Magilligan critical threshold of 300 W m-2. This implies 

that the studied flash floods were geomorphically significant events. 

The nonlinear variation of unit stream power with drainage area has been interpolated by Lecce 

(1997) using power functions or log quadratic functions. The application of log-quadratic regression to 

six of the studied flash floods (Vizze basin was excluded because data are available for two cross 
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sections only) is shown in Fig. 4.8 (Marchi et al., 2016). In four of the six cases, the log-quadratic 

fitting permits a satisfactory interpretation of the dependence of unit stream power on basin area, 

although the explained variance is rather low. Because of small sample sizes and uneven distribution of 

drainage areas within some samples, single cases may have a major impact on the representation of the 

relationship between unit stream power and drainage area. This is clearly visible in the Magra: one 

small catchment (0.5 km2, indicated by an arrow in Fig. 4.8D), which lies in the sector of the basin that 

received the most intense rainfall, is drained by a steep bedrock channel and is not balanced by other 

catchments of similar size with different morphological characteristics. This catchment biases the value 

of maximum unit stream power toward small-sized basins (dashed line in Fig. 4.8D). This catchment 

was retained in the database and used in all other analyses as it can be deemed representative of high 

values of stream power attained in small, steep bedrock channels. However, it was not considered for 

fitting the regression of unit stream power with basin area (continuous line in Fig. 4.8D). A decrease of 

unit stream power with increasing basin area is not clearly visible for the Cedrino-Posada flood (Fig. 

4.8E). 

 

FIG. 4.8. Log-quadratic interpolation between unit stream power and drainage area for six of the studied flash 
floods. 
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The variance explained by a log quadratic regression for the Cedrino–Posada flood is very low 

(Fig. 4.8E) and only marginally higher than that of a power relationship that would indicate a slight 

increase of unit stream power with increasing basin area. This can be partly ascribed to the large extent 

of flood-generating convective bands, which produced very high values of peak discharge even for 

large drainage areas. Moreover, the lowermost, low-slope channel reaches, which could have shown a 

decrease of unit stream power because of the low slope near the river outlet to the sea, have not been 

surveyed because the flood discharge was altered by the presence of reservoirs. A similar pattern (i.e., 

the absence of a clearly defined decrease of unit stream power with increasing drainage area) was 

observed in the Lierza (Fig. 4.8F), where it can be attributed to the structural controls on local channel 

slope, which frequently cause very gentle slopes even for small drainage areas. 

The drainage area at which the log-quadratic regression identifies maximum values of unit stream 

power shows relevant differences between the six studied floods and ranges from 6.4 km2 for the 

Lierza to 94 and 123 km2 for the Argens and the Cedrino–Posada, respectively. The areas 

corresponding to the highest values of unit stream power depend on the extent of the rainstorm that 

triggered the flood and on the spatial organization of the drainage network affected. Significantly, in 

the Magra flood, notwithstanding the large total area of the drainage basin considered (more than 900 

km2 in the main stream and 500 km2 in its main tributary), the log-quadratic interpolation indicates the 

maximum value of unit stream power for a drainage area of 18 km2, closer to the floods of the Selška 

Sora and Starzel (14 and 12 km2, respectively) than to the other large-extent Mediterranean floods. This 

can be attributed to the spatial distribution of the rainfall that caused the flood of 25 October 2011 in 

the Magra River, which occurred with the highest intensity in a narrow belt that covered the right 

tributaries of the main river and the central sector of its most important tributary, the Vara River 

(Rinaldi et al., 2016; Surian et al., 2016). As a consequence, very intense flash floods occurred in 

several catchments that drain areas up to approximately 40 km2 (Mondini et al., 2014; Rinaldi et al., 

2016) and are characterized by relatively steep and narrow channels, thus resulting in high values of 

unit stream power. The peak discharge in the main channels, although relevant, was attenuated by the 

limited contribution from the sectors of their drainage basins that had received significantly lower 

rainfall amounts. Accordingly, unit stream power peaked at small drainage areas and substantially 

decreased in the largest basins. 
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 INFLUENCE OF FLOOD-FLOW DURATION 4.2.2

The influences of flow duration and cumulative energy expenditure in relation to geomorphic 

effectiveness were evaluated for the 59 cross sections of the four recent flash floods in Italy (Magra, 

Vizze, Cedrino-Posada and Lierza). This was based on an integrated analysis of flood hydrographs 

from hydrological simulations and field data to compute unit stream power for the whole flood 

hydrograph (cf. section 3.4.2). Figs. 4.9A-B report regressions between simulated and field-estimated 

cross-sectional and unit stream power, respectively. The Nash-Sutcliffe efficiency scores reported in 

both regressions indicate a high correspondence between field-estimated and model-simulated peak 

instantaneous stream power, which permits use of the simulated flood hydrographs for this analysis. 

However, to ensure consistency in the evaluation of the combined influence of flow duration and total 

energy expenditure on geomorphic responses, five basins (two each for Magra and Cedrino-Posada and 

one for Lierza) were eliminated from the analysis because the maximum unit stream power values were 

below the Miller-Magilligan critical threshold (300 W m-2), hence no energy was available for major 

geomorphic change according to Fig. 3.5. Detailed datasets for the 59 catchments of the four recent 

flash floods in Italy are reported in Appendix A3. 

 
FIG. 4.9. Regression between estimated and simulated (A) cross-sectional stream power, and (B) unit stream 
power. NSE: Nash-Sutcliffe model efficiency score. 
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The accuracy of the simulated cross-sectional stream power and unit stream power for the cross-

sections reported in Fig. 4.9 was carried out using the observational error analysis of field-estimated 

peak instantaneous stream power (cf. section 3.4.1). Fig. 4.10A-B reports the relationship between 

relative uncertainty deviations, and simulated cross-sectional stream power and unit stream power, 

respectively for the 59 studied basins. The relative uncertainty deviation was estimated as the ratio of 

the relative errors in simulated stream power (with respect to the field-estimated values) to the 

geomorphic effects-based standard errors of the field values. A threshold of relative uncertainty 

deviation of 1 indicates that the simulated cross-sectional (or unit) stream power is within the 

uncertainty range provided by the error analysis. From Fig. 4.10A, thresholds of 1, 1.5 and 2 indicate 

that for 64%, 76% and 90% of the studied cross sections, respectively, the simulated cross-sectional 

stream power are within the observational uncertainty bound. Similarly, from Fig. 4.10B, thresholds of 

1, 1.5 and 2 indicate that for 68%, 81% and 90% of the studied cross sections, respectively, the 

simulated unit stream power are within the observational uncertainty bound. As expected, in most 

cases, cross sections that underwent major geomorphic changes, which are responsible for larger 

uncertainty in estimated stream, provided simulations within the uncertainty bounds compared to 

sections that underwent negligible and moderate changes. 

 

FIG. 4.10. Relationship between estimated relative uncertainty deviation and simulated (A) cross-sectional 
stream power, and (B) unit stream power for the four recent floods in Italy. 
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Figs. 4.11A-D report the spatial extent of peak instantaneous unit stream power, event energy 

expenditure, above-threshold energy expenditure, and above-threshold flow duration (defined as the 

flow duration above the Miller-Magilligan critical threshold) for the 54 considered cross sections in a 

log-log plot with upstream drainage area. The plots show similar large scatter and suggest that 

cumulative energy expenditure and flow duration are likely to depend on the area hit by the flood rather 

than peak stream power for the individual flood events. As to the climatic context, the highest values of 

the considered energy expenditure usually occur in Mediterranean regions (Magra, and Cedrino-

Posada), which can be attributed to the combined influences of high discharges and long duration 

rainstorms that characterize these flash floods. The short flood duration (1.5 hours) associated with the 

Lierza flood produced relatively lower cumulative energy expenditure compared to the Mediterranean 

events, although the peak instantaneous unit stream power values are comparable. 

 

FIG. 4.11. Relationship between upslope drainage area and (A) unit stream power, (B) event energy expenditure, 
(C) above-threshold energy expenditure, and (D) above-threshold flow duration. 
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Another important analysis is to assess the relationship between peak unit stream power and the 

variables related to the combined influences of flow duration and cumulative energy expenditure. Figs. 

4.12A-D report regressions between unit stream power and event energy expenditure, above-threshold 

energy expenditure, above-threshold flow duration and energy ratio, respectively. It should be recalled 

that energy ratio is defined as the ratio of above-threshold energy expenditure to event energy 

expenditure. The relationships are characterized by differing regressions, better represented by log-

quadratic (Fig. 4.12-A and D) and log-linear (Fig. 4.12-B and C) functions. The scatter and higher 

explained variances imply that above-threshold energy expenditure and flow duration (Fig. 4.12-B and 

C) potentially increase linearly with peak instantaneous unit stream power. This suggests that peak 

instantaneous unit stream power, which is usually used as a surrogate for the most effective energy 

expenditure in literature, has similar trends as the combined influences of flow duration and cumulative 

energy expenditure for short duration, high magnitude floods such as flash floods. 

 

FIG. 4.12. Regressions between unit stream power and (A) event energy expenditure, (B) above-threshold 
energy expenditure, (C) above-threshold flow duration, and (D) energy ratio. 
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Table 4.3 reports a compilation of the various measures of the flash flood-related energy 

expenditure for the four studied events excluding the five basins with peak instantaneous unit stream 

power less than 300 W m-2. Generally, higher energy expenditures were estimated for the affected 

basins in the Magra and Cedrino-Posada rivers compared to the Lierza and Vizze Rivers. This can be 

ascribed to the combined influences of large spatial extent of the flood responses and the high duration 

of flash flood-triggered rainstorms in Mediterranean regions compared to other European climatic 

regions (Marchi et al., 2010). The Magra event recorded higher cumulative energy expenditure than the 

Cedrino-Posada event, although the latter had relatively higher peak instantaneous stream power and 

flow duration above the Miller-Magilligan critical threshold. An interesting observation in Table 4.3 

relates to the mean values of energy ratio for the Magra and Lierza events, with similar mean and 

standard deviation values. The fact that the Magra event was associated with significant geomorphic 

effects compared to the Lierza event suggests that the non-dimensional parameter is event specific and 

should therefore be compared between different sectors of the same impacted river basin. 

 

TABLE 4.3. Compilation of energy expenditure for the 54 basins affected by the four recent flash floods in Italy: 
mean and standard deviation values. Ω: cross-sectional stream power; ω: unit stream power; ℇe: event energy 
expenditure; Ɛth: above-threshold energy expenditure; Tth: above-threshold flow duration; ℇr: energy ratio 

Event 
No. of 
cross 

sections 

Catchment 
size 

[km2] 

 
Ω  

[W m-1] 

 
ω  

[W m-2] 

 
ℇe  

[MJ m-2] 

 
Ɛth  

[MJ m-2] 

 
Tth  

[s*103] 

 
ℇr  
[-] 

Magra 
31  

(2*) 
19.9 

(17.8) 
33930 

(34558) 
1509 

(1224) 
546 

(499) 
189 

(261) 
17.1 

(10.8) 
0.21 

(0.18) 

Vizze 
2 
 

59.1 
(19.6) 

6468 
(2965) 

474 
(195) 

131 
(61) 

4 
(5.5) 

3.7 
(1.4) 

0.02 
(0.03) 

Cedrino-
Posada 

15 
(2*) 

136.4 
(152.0) 

114121 
(126748) 

1511 
(1035) 

331 
(290) 

155 
(207) 

24.0 
(12.1) 

0.32 
(0.22) 

Lierza 
6 

(1*) 
5.2  

(3.9) 
12174 
(5959) 

900 
(407) 

60 
(28) 

17 
(16) 

4.6 
(1.5) 

0.22 
(0.17) 

*number of cross sections with peak instantaneous unit stream power less than 300 W m-2 
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 RELATIONS WITH CHANNEL TYPES AND OBSERVED GEOMORPHIC EFFECTS 4.2.3

Post-flood field observations provide important context to assess and document the magnitude of 

channel modification caused by extreme floods at cross-sectional or channel-reach scales. Geomorphic 

observations and reconnaissance were carried out for 59 cross sections impacted by the four recent 

flash floods in Italy (Magra, Vizze, Cedrino-Posada and Lierza). To recall from section 3.1.3, cross-

sectional types were classified into alluvial, semi-alluvial, bedrock and artificial, whereas observed 

geomorphic effects were also categorized as negligible, small to moderate, and major impacts. Figs. 

4.13A-B report the spatial extent of peak instantaneous energy expenditure for the cross-sectional 

channel types and observed geomorphic effects, respectively, in a log-log plot of unit stream power 

against upstream drainage area. The scatter shows no particular trend to discriminate the influence of 

unit stream power on the cross-sectional types and the observed geomorphic effects, with five sections 

of different channel materials and geomorphic impacts recording unit stream power values below the 

Miller-Magilligan critical threshold for major channel adjustment. Negligible geomorphic effects in 

bedrock channels, represented by the least catchment size in the database (Fig. 4.13), recorded the 

maximum unit stream power because relatively immovable channel boundaries cause rapidly 

increasing discharge with flow depth. Major geomorphic modifications generally occurred in alluvial 

channels with approximately 10-100 km2 catchment sizes and unit stream power above the Miller-

Magilligan critical threshold. 

 
FIG. 4.13. Relationship between upslope drainage area and unit stream power based on (A) cross-section types, 
and (B) observed geomorphic effects. 
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TABLE 4.4. Compilation of energy expenditure based on channel types and observed geomorphic effects: mean 
and standard deviation values. Ω: cross-sectional stream power; ω: unit stream power; ℇe: event energy 
expenditure; Ɛth: above-threshold energy expenditure; Tth: above-threshold flow duration; ℇr: energy ratio 

Channel type/ 
Geomorphic 
Effects 

No. of 
cross 

sections 

Catchment 
size 

[km2] 

 
Ω  

[W m-1] 

 
ω  

[W m-2] 

 
ℇe  

[MJ m-2] 

 
Ɛth  

[MJ m-2] 

 
Tth  

[s*103] 

 
ℇr  
[-] 

Alluvial         

    Major 
9 

(1*) 
36.1 

(25.8) 
63495 

(41438) 
1226 
(909) 

393 
(361) 

100 
(128) 

19 
(9.9) 

0.20 
(0.16) 

    Small-moderate 
11 40.7  

(82.9) 
46891 

(100195) 
1194 

(1157) 
437 

(606) 
194 

(350) 
13.9 

(14.1) 
0.20 

(0.25) 
    Negligible 0         

Semi-alluvial         

    Major 
5 10.5  

(7.7) 
50296 

(42221) 
1815 

(1054) 
682 

(475) 
203 

(209) 
19.8 
(8.2) 

0.23 
(0.13) 

    Small-moderate 
15 

(1*) 
90.8 

(153.7) 
67422 

(94971) 
1472 
(760) 

380 
(362) 

159 
(202) 

21 
(13.5) 

0.32 
(0.18) 

    Negligible 
5 38.5 

(24.4) 
19551 

(15204) 
931 

(702) 
225 

(254) 
62 

(121) 
9.9 

(9.0) 
0.16 

(0.17) 
Bedrock         

    Major 0        

    Small-moderate 0        

    Negligible 
3 

(1*) 
108.4 
(103) 

128761 
(163853) 

3665 
(2093) 

885 
(647) 

440 
(356) 

24.6 
(10.8) 

0.42 
(0.24) 

Artificial         

    Major 0        

    Small-moderate 0        

    Negligible 
6 

(2*) 
18.1 

(29.3) 
12923 

(15272) 
803 

(460) 
216 

(190) 
39 

(49) 
10.8 
(8.0) 

0.11 
(0.11) 

*number of cross sections with peak instantaneous unit stream power less than 300 W m-2 

 

Table 4.4 reports a compilation of summary data of energy expenditure and observed geomorphic 

effects for the 54 studied cross sections. Bedrock channels show the highest values of the various 

measures of stream power but with no visible erosion, whereas artificial channels showed relatively 

moderate values. This is ascribed to lower energy gradients associated with artificially modified 

channels (mean slope of 0.047 for bedrock and 0.017 for artificial cross sections). For alluvial cross 

sections, peak stream power and cumulative energy expenditure values are not significantly different 

for relatively equal numbers of cross sections with observed major and moderate geomorphic effects. 

The trend of the mean values reported in Table 4.4 could imply that, for alluvial channels, peak 
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instantaneous stream power values may be necessary to cross landscape-scale thresholds of erosional 

resistance and to significantly disrupt channel configurations whereas the coupled influences of flow 

duration and cumulative energy expenditure may play important roles in doing geomorphic work (i.e., 

sediment transport). The trend observed for the various measures of energy expenditure in semi-

alluvial channels can be attributed to the degree of channel resistance to erosion, which suggests the 

need to focus on local or event-specific conditions that increase the resistance of channel bed and banks 

to erosion and/or reduce the geomorphic effectiveness of the flood. An interesting observation relates 

to the five basins excluded from the analysis because the maximum unit stream power estimated at 

these cross sections was less than the Miller-Magilligan threshold. From Table 4.4, these correspond to 

one section each of alluvial and semi-alluvial with respectively, major and moderate geomorphic 

impacts, and one bedrock and two artificial cross sections with negligible geomorphic impacts. This 

highlights the fact that 300 W m-2 is not rigidly an absolute erosional threshold and suggests the 

feasibility to consider other erosion-resistant thresholds in relation to specific events and/or catchments. 

 

4.3 DOWNSTREAM VARIATIONS IN STREAM POWER 

 DOWNSTREAM TRENDS OF PEAK DISCHARGE AND CHANNEL GRADIENT 4.3.1

The downstream trends of peak discharges and channel gradient were modelled for five 

tributaries of the Magra River (Pogliaschina, Gravegnola, Mangiola, Osca, and Geriola), two tributaries 

of the Posada River (Posada, and Mannu di Bitti) and the Lierza Creek. Detailed datasets for 159 sub 

reaches on these channels are reported in Appendix A4. Peak discharges were obtained through model 

simulations for the reconstruction of the respective flood events, whereas channel gradients were 

obtained from the DEM of the respective catchments. Fig. 4.14 and 4.15 present the empirical 

relationships for the downstream variations in peak discharges Qp [m
3 s-1] and channel gradient, S [m 

m-1], respectively, represented by power and exponential functions of the channel length, L [m] as 

follows: 

ܳ௣ = ߙ ∙  ఉ            [4.2]ܮ

ܵ = ܵ௢ ∙ ݁ି௥௅              [4.3] 
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where k and m are dimensionless constants, So [m m-1] is the initial slope at an upstream reference 

section and r is the coefficient of slope reduction. The regressions in Fig. 4.13 (4.15) show generally 

increasing (decreasing) peak discharges (channel gradient) downstream along the channel reaches. The 

cumulative downstream lengths of the channel reaches were set to start at an arbitrary point of 100 m 

for each tributary to avoid dealing with zeros (0) in the power and exponential functions. The reported 

power-law regressions between peak discharge and channel length (Fig. 4.14) generally show high 

explained variances for the studied tributaries. Major tributaries contribute to the Gravegnola and 

Posada Rivers, with the Mannu di Bitti River channel the major tributary of the latter, which made it 

imperative to estimate the regressions for the upstream and downstream reaches, as shown in Fig. 4.14. 

The discontinuity of the general exponential trend between slope and downstream length observed in 

some of the studied rivers in Fig. 4.15 can be attributed to geo-lithological controls that produce the 

striking downstream differences in morphology in mountain river systems (Knighton, 1999). 

 
FIG. 4.14. Downstream trends of peak discharge as power function of channel length along the channels. 
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FIG. 4.15. Downstream trends of channel gradient as exponential function of channel length along the channels. 

 

Contrary to the empirical regression proposed in literature for the downstream variation in 

channel gradient as an exponential function of channel length (Eq. [4.3]) (Lawler, 1992; Lecce, 1997; 

Knighton, 1999; Reinfelds et al., 2004), the studied tributaries generally showed relatively higher 

explained variance using quadratic function (Fig. 4.16), represented as: 

ܵ = ଶܮଵܥ + ܮଶܥ + ܵ௢           [4.4] 

where C1 and C2 are exponents of the quadratic function and So [m m-1] is the initial slope at an 

upstream reference section. It can be noted that two out of 8 rivers (Mangiola and Mannu di Bitti) 

feature the highest gradient in the middle/intermediate sector along the longitudinal profile, and one 

(Lierza) shows a tendency (although weak) to downstream increase of slope. Generally, the quadratic 

function also shows a high tendency to model the striking high downstream variability in channel 

gradient compared to the exponential function. 
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FIG. 4.16. Downstream trends of channel gradient as quadratic function of channel length along the channels. 

 

 MODELLING THE DOWNSTREAM TRENDS OF PEAK STREAM POWER 4.3.2

Fig. 4.17 presents the downstream variations in cross-sectional stream power for the studied 

tributaries. Cross-sectional stream power for each channel reach was estimated based on Eq. [3.10], 

using simulated peak discharges and DEM-derived channel gradient along the tributaries of the Magra, 

Posada and Lierza Rivers. The estimated stream power trend reported in Fig. 4.17 shows tremendous 

downstream variability, which may be attributed primarily to the high downstream variability in 

channel gradient (Figs. 4.15 and 4.16). Downstream trends in cross-sectional stream power were 

represented by the trends of peak discharge and channel gradient, which yield two generalized 

modelled downstream variations in cross-sectional stream power (Fig. 4.17) as follows: 
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Ω௠௢ௗଵ = ߛ] ∙ ߙ) ∙ (ఉܮ ∙ (ܵ௢ ∙ ݁ି௥௅)]          [4.5] 

Ω௠௢ௗଶ = ߛ] ∙ ߙ) ∙ (ఉܮ ∙ 2ܮ1ܥ) + ܮ2ܥ +  [4.6]         [(݋ܵ

where Ωmod1 represents the modelled downstream trend using exponential function of the channel 

gradient, and Ωmod2 represents the modelled downstream trend using quadratic function of the channel 

gradient. Channel gradients usually decrease but some channels show a different trend (Figs. 4.15 and 

4.16); discharges increase (Fig. 4.14) and channels generally become less confined as they enter their 

distal coastal or alluvial plains. These patterns usually ensure an intermediate location between the 

headwaters and the basin outlet where appropriate discharge and channel gradient combine to 

maximize stream power. The trends in Fig. 4.17 support this theoretical assumption, which has also 

been confirmed through empirical studies by Lecce (1997), Knighton (1999) and Reinfelds et al. 

(2004). 

 
FIG. 4.17. Downstream variations in cross-sectional stream power for the studied tributaries; reporting variations 
in both estimated and modelled trends. NSE: Nash-Sutcliffe model efficiency score. 
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Estimated cross-sectional stream power shows high variability along the studied tributaries 

whereas the modelled trends shows consistent smoothness, depending on the nature of the downstream 

empirical regressions of peak discharge and channel gradient. The Nash-Sutcliffe efficiency scores 

(NSE) reported for the comparison between the downstream trend of the estimated and two modelled 

trends for the studied tributaries (Fig. 17) can be attributed primarily to the corresponding downstream 

regressions of exponential and/or quadratic functions of channel gradient (Figs. 4.15 and 4.16), since 

the power functions of the downstream trends of peak discharge (Fig. 4.17) generally show close 

correlations. Quadratic regressions of the downstream trend in channel gradient resulted in higher NSE 

for Gravegnola, Osca, Mannu di Bitti, and Lierza, whereas exponential regressions produced relatively 

higher NSE for Pogliaschina, Mangiola, Geriola, and Posada. The negative NSE for both modelled 

trends of the Pogliaschina, the quadratic model for Gravegnola and Posada, as well as the exponential 

model of the Mannu di Bitti imply that the average estimated values could be better predictors of the 

downstream variations in cross-sectional stream power. For the Mangiola tributary, the two models are 

as good as the average of the estimated values. 

A similar analysis was carried out for the downstream trends in unit stream power, which were 

calculated based on Eq. [3.11]. Pre-flood channel width was used to calculate peak instantaneous unit 

stream power because it has been shown to perform better in terms of predicting channel adjustment 

compared to the use of post-flood channel width (e.g., Krapesch et al., 2011; Surian et al., 2016). The 

distinction between estimated and modelled unit stream power (Fig. 4.18) follows that of cross-

sectional stream power. Unit stream power has also been predicted to peak at about half way between 

the source of river and the location of the maximum cross-sectional stream power (Lawler, 1995; 

Knighton, 1999). However, in most cases, unit stream power peaked at almost the same location where 

cross-sectional stream power peaked along the studied tributaries. The Nash-Sutcliffe efficiency scores 

(NSE) reported for the comparison between the estimated and modelled unit stream power for the 

studied tributaries (Fig. 4.18) generally show better model performance than for the modelled 

downstream trends of cross-sectional stream power (Fig. 4.17). Similar to the modelled trends of cross-

sectional stream power, the two modelled trends of unit stream power for the Pogliaschina tributary did 

not perform significantly better than the use of the average value of the estimated trends. 
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FIG. 4.18. Downstream variations in unit stream power for the studied tributaries; reporting variations in both 
estimated and modelled trends. Unit stream power is calculated as cross-sectional stream power per unit pre-
flood channel width. NSE: Nash-Sutcliffe model efficiency score. 

 

 CHANNEL WIDENING AND CONTROLLING FACTORS 4.3.3

Channel widening, represented by width ratio (i.e., the ratio of channel width after flood to the 

corresponding pre-flood channel width) was estimated through remote sensing for the tributaries of the 

Magra and Posada Rivers, where pre- and post-flood high resolution aerial satellite imagery are 

available (section 3.2.2). Figs. 4.19A-B report scatter plots between width ratio, and channel width 

before and after the floods, respectively. The reported explained variances suggest that the channel 

modifications to the extreme floods primarily depend on the pre-flood channel conditions (e.g., Wohl et 

al., 2001). 
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FIG. 4.19. Relationship between channel width ratio and (A) channel width before the floods and (B) channel 
width after the floods for the tributaries of the Magra and Posada Rivers. 

 

Generally, maximum channel widening (> 6 times the initial channel width) was observed in the 

Magra tributaries, with pre-flood channel with less than 10 m (Fig. 4.19A). On the contrary, most of 

the studied reaches of the Posada tributaries were characterized by width ratios less than 6. Channel 

response to extreme floods is likely to depend on the combined influences of the geological controls on 

channel geometry and sediment characteristics, as well as on variations in flood intensity. The efficacy 

of the hydraulic forces of the flood responses were quantitatively assessed by comparing the various 

measures of stream power with potential channel modification in the form of channel widening 

(represented by width ratio) for the eight studied tributaries of the Magra and Posada Rivers. 

Figs. 4.20 and 4.21 present the downstream variations in peak instantaneous unit stream power 

and cumulative energy expenditure, respectively, together with variations in width ratio. The patterns 

show similar trends for both stream power measures in most of the tributaries, with somewhat striking 

similar trends with the corresponding observed channel response. The plots indicate that the studied 

tributaries are characterized by extreme downstream variability of driving forces, with observed peaks 

mostly occurring at intermediate locations between the headwaters and basin outlet. This supports the 

non-linear downstream change in stream power findings by Lawler (1992), Lecce (1997), Knighton 

(1999), Fonstad (2003), Reinfelds et al. (2004) and Barker et al., 2009. The trend of decreasing energy 
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expenditure at the outlet is not clearly observed along the main Pogliaschina reach (Fig. 4.20 and 4.21), 

because the studied channel reach of Pogliaschina Creek does not end at the outlet. The downstream 

reach of Pogliaschina was excluded from the analysis because post-flood conditions had been altered 

by restoration works implemented immediately after the flood. The observed non-linear pattern 

between the hydraulic forces and width ratio can be attributed to the combined influences of catchment 

hydrology, channel gradient and degree of confinement, especially the geo-lithological controls that 

produce the striking downstream differences in morphology along the longitudinal profile of river 

channels. Although the downstream variability in stream power is non-linear and could not adequately 

explain channel widening, this pattern is usually responsible for the complex geomorphic hazards in the 

form of erosional and depositional modification of channel boundaries during a flood (Wohl et al., 

2001). 

 
FIG. 4.20. Downstream variations in peak unit stream power and channel width ratio for the tributaries of the 
Magra and Posada Rivers. 
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FIG. 4.21. Downstream variations in cumulative energy expenditure and channel width ratio for the tributaries of 
the Magra and Posada Rivers. 

 

The efficacy of peak instantaneous stream power and the combined influences of flow duration 

and cumulative energy expenditure were quantitatively assessed by comparing with potential channel 

modification in the form of channel widening for the seven studied tributaries of the Magra and Posada 

Rivers. Figs. 4.22A-D show regressions for the relationship between width ratio and unit stream power, 

event energy expenditure, above-threshold energy expenditure and energy ratio respectively, for the 

studied tributaries. The regressions are interpreted by power-law functions. The regressions in Fig. 4.22 

show that the peak unit stream power and event energy expenditure are not significantly different in 

explaining the observed variations in channel widening, whereas above-threshold energy expenditure 

and energy ratio performed less well. The slope of the power-law regressions and explained variances 
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in Figs. 4.22A and B indicate that peak instantaneous unit stream power and cumulative event energy 

expenditure are equal predictors of the rate of channel widening in the studied rivers. 

A lack of or more specifically, the uncertainties surrounding the quantification of resisting forces, 

in particular, renders the association between the magnitude of energy expenditure (or driving forces) 

and the resulting geomorphic effectiveness of floods non-deterministic (Wohl et al., 2011; Magilligan 

et al., 2015). The relatively low performance of the above-threshold energy expenditure and energy 

ratio in quantifying channel widening (Fig. 4.22) indicates that the Miller-Magilligan critical threshold 

(300 W m-2) is not a representative of unit stream power above which  major geomorphic adjustment 

occurred in the studied channels. This suggests the usefulness of considering other critical erosional 

thresholds for these specific events and/or channels. 

 
FIG. 4.22. Regressions between channel width ratio, and (A) unit stream power, (B) event energy expenditure, 
(C) above-threshold energy expenditure, and (D) energy ratio for the Magra and Posada tributaries. 
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A sensitivity analysis of the critical stream power threshold for significant channel modification 

was carried out to evaluate the influence on channel widening for the studied channels. In addition to 

the Miller-Magilligan critical threshold of 300 W m-2, thresholds of 200, 400, and 500 W m-2 were 

considered in computing the above-threshold energy expenditure. The Pearson correlation coefficient 

statistic was used to assess the linear dependence between the response variable (channel width ratio) 

and the explanatory stream power hydraulic variables under the assumption that channel widening rate 

increases with the magnitude of the hydraulic force. 

Table 4.5 reports the Pearson correlation coefficient for the linear dependence of width ratio, and 

the stream power measures for the studied channels. The statistics generally show positive correlation 

between the response and explanatory variables, which indicate increasing rate of channel widening 

with increasing energy expenditure. The correlations reveal that unit stream power and total energy 

expenditure can better explain the channel responses associated with the Magra and Posada channels 

than the arbitrary thresholds for major channel erosion. An interesting observation is that the 

performance of the above-threshold energy expenditure and the energy ratio decreases, but not 

drastically, when the erosion-resistant threshold is increased. This points out that whereas peak 

instantaneous stream power was necessary to cross reach-scale erosional thresholds, the overall energy 

expenditure was also important for the overall channel modification. The results point out that 

hydraulic variables alone are not adequate to explain the rate of channel widening along complex 

morphologic settings in mountain river systems, which suggests the usefulness of considering other 

location specific factors, particularly the degree of channel confinement (e.g., Surian et al., 2016). 

 

TABLE 4.5. Pearson correlation coefficient (r) between channel width ratio (response variable) and the stream 
power measures (explanatory variables) for the studied channels. ω: unit stream power; ℇe: event energy 
expenditure; ℇth,Z: above-threshold energy expenditure using unit stream power threshold of Z Wm-2; ℇr,Z: 
corresponding energy ratio 

 ω ℇe Ɛth,200 Ɛth,300 Ɛth,400 Ɛth,500 ℇr,200 ℇr,300 ℇr,400 ℇr,500 

r 0.55 0.51 0.49 0.47 0.45 0.43 0.47 0.47 0.42 0.43 
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 INFLUENCE OF CHANNEL CONFINEMENT ON CHANNEL WIDENING 4.3.4

The degree of channel confinement and its variability along the studied reaches provides an idea 

of the topographic constraints, whose interaction with hydraulic forces may be necessary to explain the 

rate of channel widening. It should be remembered that geomorphic adjustment is likely to depend on 

the complex interactions between driving and resisting forces. Fig. 4.23 reports a linear regression 

between channel confinement index and width ratio. It should be recalled from section 3.2.2 that 

channel width ratio is defined as the ratio of the channel width after the flood to the channel width 

before the flood, whereas channel confinement index is defined as the ratio of the alluvial plain width 

to the channel width before the flood. Fig. 4.23A shows the regression for the whole 136 dataset for the 

Magra and Posada channels, where confinement index explains 34% of the rate of channel widening. 

Fig. 4.23B shows the regression when the outliers in Fig. 4.23A are eliminated, which resulted in high 

explained variance (0.62) between the degree of channel confinement and channel widening. These 

outliers correspond to five and two sub reaches along the Osca and Mangiola channels, respectively, 

where high confinement index resulted in relatively lower channel widening. This can be attributed to 

the striking downstream differences in morphology as well as the high variability in precipitation 

forcing and the corresponding flood responses along the longitudinal profile of river channels. 

 
FIG. 4.23. Regressions between channel width ratio and confinement index for sub reaches of the Magra and 
Posada Rivers: (A) the whole 136 dataset, and (B) 126 dataset excluding the outliers. 
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To elucidate the combined influences of hydraulic forces and the degree of channel confinement 

on the flood-triggered channel widening, least square multiple regressions were carried out with the R- 

statistical software. Four different multiple regression models were carried out on the dataset, including 

136 sub reaches of the studied channels of the Magra and Posada Rivers, corresponding to the four 

separate independent variables in order to avoid the multicollinearity issue. The models included the 

geomorphic variable (confinement index) and each of the considered stream power measures (unit 

stream power [ω], event energy expenditure [ℇe], above-threshold energy expenditure [ℇth], and energy 

ratio [ℇr]). The above-threshold energy expenditure and the corresponding energy ratio were computed 

based on the Miller-Magilligan critical value (300 W m-2), since other thresholds did not produce 

significantly different and improved results (Table 4.5). The p-values, the R2 and the adjusted R2 were 

compared to select the model with the best fit. The p-values and R2 of the individual variables within 

each model were also compared to assess which variables were the most influential for the response 

variable (i.e., width ratio) in the models. This analysis could give more robustness on models carried 

out by Surian et al. (2016) and Righini et. al. (2017) for the Magra and Posada Rivers respectively, 

adding an important dimension in terms of flood-flow duration and cumulative energy expenditure. 

All the four multiple regression models turned out to be significant (p-value < 0.05) operating at 

the 95% significance level, which indicates that significant relationships exist between width ratio and 

the four models (Table 4.6). The best model was the model that include confinement index and peak 

unit stream power (model 1), which explains 53% of variation in channel widening, followed by model 

4 (50%) whereas models 2 and 3 preformed relatively the same. Indeed in all four models, the most 

influential explanatory variable for channel widening was the confinement index  (R2 = 0.34). Though 

all four stream power measures were individually significant in explaining channel widening (p-value 

< 0.05), peak unit stream power performed relatively better than the overall event energy expenditure, 

whereas the above-threshold energy expenditure performs equally as the proportion of the energy 

expenditure above the Miller-Magilligan unit stream power threshold proposed for significant channel 

modification. 
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TABLE 4.6. Summary results of multiple regression models for predicting channel widening (i.e., width ratio) 
for all sub reaches of the studied channels (136 sub reaches). CI: confinement index, ω: unit stream power,  ℇe: 
event energy expenditure; Ɛth: above-threshold energy expenditure; ℇr: energy ratio 

 Model 1 Model 2 Model 3 Model 4 

R2 0.53 0.49 0.49 0.50 
R2 adj. 0.52 0.48 0.48 0.49 
p-value <0.0001 <0.0001 <0.0001 <0.0001 

 R2 p-value R2 p-value R2 p-value R2 p-value 

CI 0.34 <0.0001 0.34 <0.0001 0.34 <0.0001 0.34 <0.0001 
ω 0.31 <0.0001 − − − − − − 
ℇe − − 0.26 <0.0001 − − − − 
Ɛth − − − − 0.23 <0.0001 − − 
ℇr − − − − − − 0.22 <0.0001 

 

In order to achieve a better understanding about the combined influences of hydraulic forces and 

the degree of channel confinement, as in Surian et al. (2016), the dataset was split into two subsets 

based on channel gradient: one set with channel slope below the threshold of 4% (subset 1) and another 

equal or greater than 4% in channel gradient (subset 2). Multiple regression analyses were carried out 

on a subset of 100 sub reaches (subset 1), comprising 52 sub reaches of the Magra River and all 48 sub 

reaches of the Posada River, as well as a subset of 36 sub reaches of the Magra River (subset 2). The 

four models follow similar combinations as in Table 4.6. 

Table 4.7 reports the statistics of the four models for subset 1. The analysis showed that all the 

four models were statistically significant  (p-value < 0.05), which indicate that a relation exit between 

width ratio and the four models. Models 1 and 3 performed relatively equal and better in explaining 

49% of variations in channel widening for sub reaches with channel gradients less than 4%, compared 

to 47% for model 2 and 46% for model 4 (Table 4.7). As in the previous models (Table 4.6), 

confinement index was also an influential explanatory variable for these sub reaches (R2 = 0.34). 

Interestingly, above-threshold energy expenditure performs better in model 3 (R2 = 0.32), compared to 

peak unit stream power in model 1 (R2 = 0.28), event energy expenditure in model 2 (R2 = 0.30), and 

energy ratio in model 4 (R2 = 0.21). This implies that reach-scale erosion-resistant threshold could be a 

better predictor of channel modification for channel reaches in the dataset with moderate channel 

gradient (< 4%). 
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TABLE 4.7. Summary results of multiple regression models for predicting channel response (i.e., width ratio) 
for 100 sub-reaches characterized by channel gradient < 4% (subset 1). CI: confinement index, ω: unit stream 
power,  ℇe: event energy expenditure; Ɛth: above-threshold energy expenditure; ℇr: energy ratio 

 Model 1 Model 2 Model 3 Model 4 

R2 0.49 0.47 0.49 0.46 
R2 adj. 0.47 0.46 0.48 0.44 
p-value <0.0001 <0.0001 <0.0001 <0.0001 

 R2 p-value R2 p-value R2 p-value R2 p-value 

CI 0.32 <0.0001 0.32 <0.0001 0.32 <0.0001 0.32 <0.0001 
ω 0.28 <0.0001 − − − − − − 
ℇe − − 0.30 <0.0001 − − − − 
Ɛth − − − − 0.32 <0.0001 − − 
ℇr − − − − − − 0.21 <0.0001 

 

The analysis of subset 2 also showed four statistically significant models (p-value < 0.05) and a 

significant increase in R2 and adjusted R2 in all the four models (Table 4.8) compared to the 

respectively models run on the whole dataset (Table 4.6). Models 1 and 4 performed relatively better in 

explaining 75% each of variations in channel widening for sub reaches with channel gradients greater 

than 4% (Table 4.8). Similar to the models for the whole dataset (Table 4.6), peak unit stream power 

performed better in model 1 (R2 = 0.36), compared to flow duration measures (Table 4.8) This implies 

that the magnitude of peak instantaneous stream power is necessary for channel modification for 

channel reaches in the dataset with steep gradients  (≥ 4% ). 

 

TABLE 4.8. Summary results of multiple regression models for predicting channel response (i.e., width ratio) 
for 36 sub-reaches characterized by channel gradient ≥ 4% (subset 2). CI: confinement index, ω: unit stream 
power,  ℇe: event energy expenditure; Ɛth: above-threshold energy expenditure; ℇr: energy ratio 

 Model 1 Model 2 Model 3 Model 4 

R2 0.75 0.74 0.73 0.75 
R2 adj. 0.73 0.71 0.71 0.73 
p-value <0.0001 <0.0001 <0.0001 <0.0001 

 R2 p-value R2 p-value R2 p-value R2 p-value 

CI 0.65 <0.0001 0.65 <0.0001 0.65 <0.0001 0.65 <0.0001 
ω 0.36 0.0001 − − − − − − 
ℇe − − 0.29 0.0008 − − − − 
Ɛth − − − − 0.25 0.0017 − − 
ℇr − − − − − − 0.18 0.01 
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5 DISCUSSION 

5.1 FLASH FLOOD DOCUMENTATION AND ANALYSIS 

A fundamental issue in hydrology is to identify the landscape and climate variables that control 

the runoff response to heavy rainfall. This question has important practical implications concerning the 

accuracy of flood predictions for ungauged basins, which are commonly driven by observation of 

specific and measurable catchment attributes as indicators of hydrological similarity (Blöschl, 2005; 

Parajka et al., 2013). The International PUB (Prediction in Ungauged Basins) initiative is already 

leading to significant advances in flow estimation methods in many parts of the world. The 

documentation and analysis of flash floods is important because these events often reveal aspects of 

hydrological behaviour that either were unexpected on the basis of weaker responses or highlight 

anticipated but previously unobserved behaviour (Delrieu et al., 2005; Archer et al., 2007). The 

mismatch between space-time scales of flash flood occurrence and typical hydrometeorological 

monitoring networks has stimulated the development of post-event integrated hydrologic strategy, 

which involves post-flood indirect estimation of peak discharges, use of weather radar observation for 

rainfall rate estimation, and hydrological modelling for water budget analysis (Borga et al., 2008; 

Amponsah et al., 2016). These observations were used in the analysis of the studied flash floods, which 

provided the link between the real-world processes and the rainfall-runoff model implemented to 

understand the physical flood response processes. 

Post-flood surveys and observations played an important role in the collection of rainfall maxima 

that produce the storm event and in the indirect estimation of peak discharges along ungauged channel 

networks. Flash flood peak observations and model analyses of hydrologic response also permitted to 

elaborate how storm structure and evolution translate into scale-dependent flood response. The spatial 

extent of unit peak discharge for the studied floods supports the behaviour of the different space and 

time scales of the generating storm events (Gaume et al., 2009; Marchi et al., 2010). The upper limit 

envelope for unit peak discharges against catchment sizes shows a decreasing gradient of -0.2 

compared to -0.4 reported for the larger HYDRATE dataset of European flash floods (Gaume et al., 

2009). Differences are attributed to observed higher peak discharges for larger drainage areas in our 

dataset, more specifically in the Cedrino-Posada catchments, which were not included in the 
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HYDRATE dataset. Also, the HYDRATE dataset (Gaume et al., 2009) consists of extreme unit peak 

discharges for smaller drainage areas compared to our dataset. This occurred in spite of our effort to 

document flash floods for small catchments, especially in the Magra catchment, which are 

underrepresented in other Mediterranean databases (Marchi et al., 2010). The coefficient of the 

envelope for the relationship between drainage area and unit peak discharges of the studied flash floods 

(45) shows lower magnitude flood responses compared to 97 reported for other European flash floods 

in the HYDRATE project (Gaume et al., 2009) as well as 350 for the world envelope (Costa, 1987). 

The patterns reported for the relationship between drainage area and unit peak discharges point out the 

larger space and time scales of flash-flood generating rainstorms for Mediterranean climates compared 

to Continental regions (Marchi et al., 2010). 

The integrated hydrologic flash flood analysis presented in Fig. 3.4 (Amponsah et al., 2016) is 

affected by significant uncertainties, which affects the accuracy of event reconstruction as well as our 

understanding of the physical processes. The main sources of uncertainties associated with the slope-

conveyance peak discharge determination adopted in this study were attributed to i) dispersion and/or 

vague evaluation of high water marks, which affects both the assessment of cross-sectional geometry 

and energy line slope (Amponsah et al., 2017), ii) evaluation of the roughness parameter for the 

estimation of flow velocity (Lumbroso and Gaume, 2012), and iii) effect of scour or fill after flood 

peak on post-flood cross-sectional geometry (Kirby, 1987; Amponsah et al., 2016; 2017). Uncertainties 

related to rainfall predictions, stage-discharge transformation, indirect peak flow estimates and model 

parameterization may underpin flash flood warning procedures in real-time, which plays a key role in 

the design and planning of flood risk management measures. The results from the geomorphic impact-

related uncertainty assessment of the indirect peak discharge estimates of the studied flash floods, with 

percentage standard errors of ±13.5%, ±23.2% and ±37.1% for cross sections that showed negligible, 

moderate and major geomorphic effects, respectively, are comparable to values reported by Kirby 

(1987) in the range of ±16% to ±24%. Di Baldassarre and Montanari (2009) also reported ±21% 

uncertainty-related deviation for the highest discharge value at the Po River outlet. The 

geomorphically-influenced uncertainty assessment agrees with conclusions from Kirby (1987 p. 138), 

who stated that “…the most significant improvements in discharge accuracy can be obtained by 

reducing the uncertainty in the scour term”. The integration provided a context to advance 
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understanding of flash floods and causative processes. It also allowed us to extend at-a-station stream 

gauge measurements and indirect peak discharge estimates to simulating flood hydrographs along the 

channel networks, which provided detailed spatial assessment of the flow characteristics (magnitude 

and duration) of the flood responses. 

Post-flood reconstruction of peak discharge could benefit from current progress in observation 

techniques, such as Structure from Motion (SfM), whose suitability for (flash) floods has been 

demonstrated by Smith et al. (2014). SfM does not overcome the problems regarding the recognition of 

clear and reliable HWMs, but enables fast survey of a whole channel reach, thus permitting fast 

application of slope conveyance. Pre-flood high-resolution digital terrain models from LiDAR surveys 

were not available for the studied floods, but are increasingly accessible in a number of geographical 

areas. When pre-floods HR-DTMs are available, their comparison with post-flood surveys by SfM (or 

terrestrial laser scanning) permits to quantitatively assess the severity of geomorphic changes, thus 

enabling more precise choice of the error parameters associated with geomorphic adjustment. This 

thesis used a qualitative categorisation of geomorphic impact into three classes: this approach has 

permitted to rate of the influence of cross-section changes on the accuracy of flow peak assessment, but 

leaves room to some subjectivity. Quantitative data on channel scour/fill or widening could permit a 

more objective assessment of the parameters required for uncertainty computation or could even lead to 

discard some cross sections, if topographic evidences indicate that major cross section changes would 

undermine the reliability of discharge estimates. 

 

5.2 AT-A-STATION STREAM POWER AND RELATIONS WITH GEOMORPHIC EFFECTS 

A fundamental issue in fluvial geomorphology relates to the association between energy 

expenditure of flood events and the resulting geomorphic impacts. Several studies (e.g., Baker and 

Costa, 1987; Miller, 1990; Magilligan, 1992; Costa and O’Connor, 1995; Wohl et al., 2001; Kales, 

2008; Magilligan et al., 2015; Marchi et al., 2016) have related stream power as a surrogate of the 

actual energy expenditure to quantify geomorphic effects of high magnitude floods at the channel-reach 

scale. However, key questions still remain unanswered. Can stream power explain the intensity of 
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flood-related geomorphic impacts along a specific channel reach? How can we quantify geomorphic 

effects of high magnitude floods? From the classic delineation of the concepts of ‘geomorphic 

effectiveness’ and ‘geomorphic work’ (Wolman and Gerson, 1978), effective events are attributed to 

those responsible for creating or modifying landscape forms that persist over time whereas geomorphic 

work may relate to the sediment transport rate, which often adjust fluvial systems in equilibrium to 

external perturbations and internal feedbacks. Geomorphic modification is expected to occur in the 

fluvial system when driving forces exceed the threshold of resisting forces. Furthermore, geomorphic 

effectiveness of extreme floods is likely to depend on the combined influences of the geological 

controls on channel geometry and sediment characteristics, as well as on variations in flood intensity. 

In some fluvial environments, 100-year floods may be necessary to transport the coarser sediment in 

streams and/or create significant geomorphic modifications, which draws in the concept of frequency 

and magnitude. High magnitude events such as flash flood events with recurrence intervals more than 

50-100 years represent one of, if not the most, geomorphically effective events in some river basins. 

This study focused on quantifying the hydraulic forces in 119 cross sections and the 

corresponding geomorphic responses. The concept of stream power, which represents river energy 

expenditure was used as the basis for quantifying the driving forces in these channels. The combined 

analysis of results from post-flood surveys and hydrological modelling adopted for the analysis of the 

studied flash floods enabled computation and assessment of the efficacy of peak instantaneous stream 

power and cumulative energy expenditure. The relationship between the two variables used for 

computing cross-sectional stream power, i.e., peak discharge and energy line gradient and basin were 

analysed. The upper limit for the relationship between peak discharge and drainage area for the seven 

studied flash floods was represented by a continuous power-law function with an exponent of 0.8 (Fig. 

4.6A), contrary to the value of 0.6 generally reported for this regression (e.g., Castellarin, 2007; Gaume 

at al., 2009). The results were essentially influenced by the high peak discharges in large basins of the 

Cedrino-Posada River. On the contrary, the exponent of the power function of the upper limit for the 

relationship between energy gradient and drainage area decreased at a slow rate for drainage areas less 

than 100 km2 and a sharp decrease for larger drainage areas (Fig. 4.6B) defined by Mediterranean 

catchments (Cedrino-Posada, and Argens). This break point (100 km2) also defines the two contrasting 
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upper limits for the envelope curve for the relationship between cross-sectional stream power and 

drainage area (Fig. 4.7A). 

The studied flash floods are usually characterized by very high values of unit stream power, 

which in 88% of the considered cross sections exceeds the Miller-Magilligan value of 300 W m−2 

indicated by Miller (1990) and referred to in other studies (Magilligan, 1992; Nanson and Croke, 1992) 

as the minimum threshold for major erosion. This could indicate severe flood and geomorphic 

responses, as observed for most the studied channels. Surveyed post-flood channel width was used for 

unit stream power assessment because it was possible to carefully measure it in the field and it is 

consistent with topographic and hydraulic variables related to peak discharge computation, whereas 

pre-flood channel width was not known in several of the studied cross sections for the floods. Possible 

problems in the use of post-flood width for channel cross sections where significant widening has 

occurred during the flood must be mentioned. Since channel widening may occur, entirely or in part, 

during the recession phase of the flood, post-flood channel width may underestimate the maximum 

value of unit stream power. Moreover, in cross sections affected by relevant widening, the estimation 

of peak discharge is affected by major uncertainties. These phenomena are reflected in the results of 

this study. High values of unit stream power were observed in bedrock and artificially-reinforced 

channels, where erosion-resistant channel boundaries maximize stream power with no channel 

adjustment to accommodate increasing rate of discharge. Also, cross sections that underwent 

significant geomorphic changes were associated with high observational uncertainty in indirect peak 

discharge estimation (Amponsah et al., 2016). 

Within each flood, the variability of stream power is controlled by hydrologic and topographic 

factors. The catchments in the sectors most severely hit by the flood obviously feature high peak 

discharge and high stream power, whereas the nonlinear change in channel slope with increasing 

drainage area contributes to attenuating the increase of cross-sectional stream power. Local topographic 

conditions may alter these general patterns. Log-quadratic interpolation (Lecce, 1997) has proved 

capable of interpreting the curvilinear variation of unit stream power with catchment area, but the 

variance explained by the regression equation is generally low (Fig. 4.8). Differently from the data 

analysed by Lecce (1997), which derived from bankfull discharge at different cross sections along the 

same channels, the database for this study mainly consists of data collected in different catchments for 
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each flash flood. The variability in geo-lithological conditions among different catchments, which is 

usually higher than between different parts of the same catchment, also increases the variability of 

stream power, causing its weaker correlation with drainage area. Moreover, data analysed in this study 

relate to flash floods, which are characterized by strong spatial variation in rainfall rate and hence in 

the intensity of flood response, even between adjacent catchments. This factor also causes the 

variability of stream power to be higher than the one resulting from downstream variation at bankfull 

discharge. A further factor that may influence the relationships between unit stream power and 

catchment area is the cross-sectional widening caused by the flood. As discussed above, the use of 

post-flood channel width may have caused underestimation of maximum value of unit stream power in 

the cross sections where channel widening occurred. In the plot of unit stream power against drainage 

area, this leads to values of stream power lower than those observed in catchments of similar size for 

cross sections that did not feature relevant morphological changes. The drainage basin area at which 

unit stream power shows the highest values varies between the studied floods and is apparently 

controlled by the area hit by the flood, with Mediterranean flash floods featuring the largest drainage 

areas. This result could partly be influenced by the choice of the sample of studied catchments, 

especially regarding the selection of the river sections that drain the largest areas. 

Costa and O'Connor (1995) and Magilligan et al. (2015) have stressed the importance of flow 

duration as a measure of the distribution of stream power throughout a flood hydrograph, in 

combination with maximum flow rate, for determining the geomorphic effectiveness of floods. In this 

study, the integrated hydrologic flash flood analysis has permitted us to extend the assessment of peak 

stream power to modelling the characteristic stream power hydrograph at the 59 surveyed cross 

sections of the four recent flash floods in Italy (Magra, Vizze, Cedrino-Posada, and Lierza). 

Uncertainty assessment for the field estimation of cross-sectional stream power yielded percentage 

standard errors of ±16.8%, ±25.3% and ±38.4% for cross sections that showed negligible, moderate 

and major geomorphic effects, respectively, essentially influenced by the uncertainties in the estimation 

of peak discharge through post-flood surveys. Also, percentage standard errors for the estimations of 

unit stream power were ±17.3%, ±28.0% and ±43.3% for cross sections that showed negligible, 

moderate and major geomorphic effects, respectively. The increase in percentage standard errors 

between cross-sectional stream power and unit stream power can be attributed to the potential 
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discrepancy between the measured channel width used in the estimation of peak unit stream power and 

the actual channel width at the time of flood peak. The uncertainty assessment provided a framework to 

extend field-estimated stream power values to modelling the flow magnitude and duration for the cross 

sections. 

Cumulative energy expenditure above the Miller-Magilligan threshold and the corresponding 

flow duration relate in a log-linear regression to unit stream power, whereas the overall energy 

expenditure accumulation and the corresponding proportion above the threshold relate in a log-

quadratic function to unit stream power. Comprehensive geomorphic reconnaissance in these channels 

also permitted adequate qualitative evaluation of the channel materials and the intensity of the 

geomorphic impacts. Mediterranean flash floods (Argens, Magra, and Cedrino–Posada), in addition to 

high peak discharge, also feature longer duration than flash floods studied in the other considered 

regions, so they meet both favourable conditions to cause significant landform changes (Costa and 

O'Connor, 1995). The coupled influences of low peak discharges and flow duration in the main Vizze 

channel resulted in the lowest values of the various measures of stream power and energy expenditure 

in the studied database and corresponding minimal geomorphic effects. However, the steep-gradient 

small tributaries of the Vizze River were associated with intense channelized debris flows essentially 

influenced by the availability of mobilisable bed materials. 

 

FIG.5.1. Overbank gravel and cobble deposits along the Lierza Creek. (A) Travelled path (muddy marks on the 
grass and elongated deposit), and (B) detail of the deposit (Adapted from Marchi et al., 2016). 
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The flash flood in the small catchment of the Lierza, caused by a rainstorm that lasted only 1.5 h, 

lies at the opposite end of the flood duration range. The limited channel erosion observed in semi-

alluvial cross sections of the Lierza, in spite of high values of cross-sectional and unit stream power, is 

in agreement with the reduced capability of short-duration floods to produce significant channel 

changes. Field observations in the Lierza, however, showed overbank pebble deposits in channel 

reaches where undisturbed riparian vegetation reflected the absence of channel widening (Fig. 5.1). 

Such evidence of intense sediment transport supports the study of Magilligan et al. (2015), which 

distinguishes sedimentological effects from erosive impacts: in the Lierza, short flood duration (and 

erosion-resistant cohesive channel banks) prevented significant channel and bank erosion, but readily 

mobilisable channel bed sediment was entrained and transported. 

Evaluation of the various measures of stream power and the corresponding geomorphic impacts 

provided a context to understand the geomorphic effectiveness of extreme flash floods in different 

channel reaches. High values of stream power measures agree with the occurrence of relevant erosion 

in most alluvial cross sections. However, other alluvial and semi-alluvial cross sections show minor 

erosion, or even lack evidence of erosion in some semi-alluvial cross sections (Table 4.4). This can be 

mainly attributed to local conditions (e.g., bank cohesion) that increased the resistance of channel 

banks to erosion or to effects of flood duration that reduced the geomorphic effectiveness of 

streamflow, particularly in the case of the Lierza flood. The rather loose correspondence between the 

stream power measures and channel erosion for the studied cross sections confirms its limited 

suitability as an index of geomorphic action of floods at specific locations (e.g., Miller, 1990). Buraas 

et al. (2014) demonstrated the effectiveness of parameters related to the stress in bends in assessing 

channel reaches susceptible to widening. The cross sections analysed in this study, however, are mostly 

located in straight channel reaches, which provide the best conditions for indirect peak discharge 

estimation by means of the slope-conveyance method (Gaume and Borga, 2008): this limits the 

suitability of the stress on bend metric developed by Buraas et al. (2014) in this study, which better 

applies to more complex reach geometries. 

Closer relationships between the stream power measures and geomorphic changes in channels 

were identified at the channel reach scale. For instance, Krapesch et al. (2011) found that unit stream 

power computed on pre-flood channel width satisfactorily predicted channel widening caused by 
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catastrophic floods in gravel bed rivers of Austria. Working at the reach scale permits avoiding, or at 

least averaging, the effects of local conditions that may affect stream power values and the geomorphic 

effects of the flood (Krapesch et al., 2011; Parker et al., 2014; Nardi and Rinaldi, 2015). In turn, 

analysis at the cross-sectional scale for which discharge data are available, although potentially prone 

to bias in stream power computation because of local conditions, has the advantage of relying on 

detailed observations of water level and cross-sectional geometry, derived from either streamflow 

gauging or, as in the case of this study, a combined analysis of post-flood observations and 

hydrological modelling. Cross-sectional scale enables an overview of stream power variability between 

different catchments in which field analysis at the channel reach scale could be difficult because of 

logistic and economic constraints. Moreover, the assessment of discharge and stream power at selected 

channel cross sections may serve to ‘anchor’ the analysis of stream power and geomorphic response at 

the channel reach scale to specific sites where detailed measurements and hydraulic estimates have 

been conducted. 

The differences in the stream power measures observed between the studied flash floods can be 

mainly ascribed to different flood intensity, which is higher in Mediterranean regions as noted in 

previous studies (Gaume et al., 2009; Marchi et al., 2010), whereas geomorphic responses are partly 

attributed to the geomorphic controls on channel geometry and sediment characteristics. Unit stream 

power values in several cross sections of the studied channels exceed the values of 212–2134 W m−2, 

reported by Grodek et al. (2012) for an extreme flash flood that caused intense channel erosion in small 

streams of the Mediterranean climatic region of Israel. Also, cumulative energy expenditure in several 

of the studied channels exceed the values 13.5–16 MJ m−2 reported by Magilligan et al. (2015) for 

extreme geomorphic response associated with the tropical storm Irene in the Saxton and Williams 

Rivers in the north-eastern United States. Costa and O’Connor (1995) reported a range of unit stream 

power (4,000–90,000 W m−2) and cumulative energy expenditure (4–220,000 MJ m−2) for extreme 

geomorphic impacts in selected river basins in the United States. The extreme geomorphic impacts 

were influenced by the combined influences of adequate flow duration and high magnitude peak unit 

stream power (flood type B in Fig. 1.4) compared to river basins with small geomorphic impacts (flood 

types A and C). The energy expenditure values reported for the Magra and Cedrino-Posada, which 

were associated with significant geomorphic impacts, are higher than that reported for major 
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geomorphic effects produced by the tropical storm Irene in the Saxtons and Williams Rivers in the 

north-eastern United States (Magilligan et al., 2015) and that reported for maximum annual floods in 

the monsoon-fed Narmada River in central India, which have been observed to be significant 

hydrologic and geomorphic events in the basin (Kale, 2008). The Magra and Cedrino-Posada floods 

exhibited similar patterns with high peak unit stream power, long duration and cumulative energy 

expenditure (Table 4.3), producing high-impact geomorphic effects compared to the Lierza and Vizze 

floods. This points out that the geomorphic effectiveness of floods should exclusively focus on place- 

and time -specific hydrologic and geomorphic settings (Phillips, 2002). In this study, the observational 

and modelling capabilities to extend the magnitude of peak instantaneous flow parameters (discharge, 

velocity, shear stress and stream power) to include flow duration and cumulative energy expenditure 

have provided a comprehensive assessment of dominant energy expenditure measures. However, the 

association between these driving forces and the resulting geomorphic effectiveness still remains 

somewhat vague and non-deterministic. This can partly be attributed to the qualitative assessment and 

evaluation of geomorphic effects, which were potentially affected by subjectivity, particularly the 

distinctions between major and moderate geomorphic impacts. 

 

5.3 DOWNSTREAM VARIATION IN STREAM POWER 

The downstream variation in stream power has been modelled to explore the pattern of energy 

expenditure along the longitudinal profile of rivers (e.g., Lawler, 1992: 1995; Lecce, 1997; Knighton, 

1999; Reinfelds et al., 2004; Barker et al., 2009). Such studies depend on the ability to determine the 

downstream trends of peak discharge and channel gradient, the two main variables required for the 

computation of cross-sectional stream power. Most of these studies have focused on the estimation of 

bankfull or near-bankfull discharges and channel gradient based on field measurements at selected 

cross-sections, as well as the use of area-discharge relations (e.g., Fonstad, 2003). These provide a 

framework to investigate a detailed spatial behaviour of stream power and the form and dynamics of 

river systems. Peak discharges generally have power functions whereas channel gradients have 

exponential form along river channels. Reinfelds et al. (2004) demonstrated how coupled DEM-based 

channel gradient through GIS analyses and catchment area based discharge estimation techniques 
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provide a relatively simple means of modelling the contiguous downstream variations in stream power. 

Barker et al. (2009) also used the combined automated flood, elevation and stream power (CAFES) 

novel methodology to quantify downstream change in stream power for two-year flood discharges. 

Barker et al. (2009) advocated extending the CAFES approach to higher magnitude floods. However, 

the high space-time variability of extreme flash flood-triggered rainstorms implies that flood intensities 

and responses may vary even along the same river channel. Stream power values may thus show 

similar high variations that depend on geological controls on channel geometry and sediment 

characteristics, as well as on the variations of flood intensity, which require more sophisticated 

integrated hydrologic and geomorphic approaches. 

The integrated hydrologic flash flood analysis implemented for the study of the Magra flood 

(Amponsah et al., 2016), Cedrino-Posada flood (Amponsah et al., 2017) and Lierza flood (Destro et al., 

2016) permitted comprehensive modelling and assessment of the flow magnitude and duration along 

the eight selected rivers (Pogliaschina, Gravegnola, Mangiola, Osca, Geriola, Posada, Mannu di Bitti, 

and Lierza). Empirical modelling of the downstream trends of peak discharges were better represented 

by power-law functions of the cumulative downstream length (Fig. 4.14). Peak discharges along the 

studied tributaries showed a systemic downstream increase. An interesting observation along the 

Gravegnola and Posada channels was the contributions of large tributaries, which led to two separate 

empirical models each. The Mannu di Bitti channel, in particular, contributes about of the 50% 

drainage area to the main Posada channel. The relatively low explained variances (R2 < 0.9) for the 

empirical interpretation of peak discharges along the Mangiola and Mannu di Bitti compared to the 

other studied channels, were due to a series of closely spaced tributaries that were not large enough to 

cause a significant jump in peak discharge as observed for the Gravegnola and Posada channels (Fig. 

4.14). The contributions of series of tributaries along the channel networks could mean that 

downstream changes in peak discharges more likely correlate strongly with the upstream drainage area 

scaling variable than the cumulative distance downstream (Barker et al., 2009). 

DEM-derived channel gradient showed high downstream variability for the longitudinal profile of 

the studied channels. The regressions were represented by exponential (Fig. 4.15) and quadratic (Fig. 

4.16) functions, with the latter generally performing better in most cases. Contrary to the usual 

exponential function used in literature (Knighton, 1999; Reinfelds et al., 2004; Barker et al., 2009), 
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which shows systematic downstream decay in channel gradient, the quadratic function shows more 

flexibility to capture the striking downstream variability in channel gradient as a result of geological 

controls in some sections along the river channel. For instance, the high variability in the downstream 

trend of channel gradient along the Mangiola and Mannu di Bitti channels was better interpreted with 

curvilinear quadratic functions compared to exponential functions, with explained variances increasing 

from 0.06 and 0.15 to 0.24 and 0.33, respectively. This high downstream variability is primarily 

attributed to geo-lithological controls on channel geometry that produce the striking downstream 

differences in morphology in mountain river systems (Knighton, 1999). The alternating morphology of 

the sub reaches along the studied river channels (Surian et al., 2016; Righini et al., 2017) particularly 

contributes to high downstream variability of channel gradient. The use of DEMs for the estimation of 

channel gradient may partly be responsible for errors in the estimation, but this should be minimised 

considering the high resolution of the DEM used (5–10 m) relative to the length of the channel reaches 

(100–1000 m). Also, the ‘horizontal slice’ method used to extract the DEM-based channel gradient has 

been extensively used in literature (e.g., Knighton, 1999; Jain et al., 2006), as well as verified using 

field-measured slopes (Vocal Ferencevic and Ashmore, 2012). 

The downstream variations in cross-sectional stream power and unit stream power were estimated 

using simulated peak discharges and DEM-derived channel gradient. The empirical power-law function 

for the downstream trend of peak discharges and exponential/quadratic functions for channel gradient 

resulted in two modelled downstream variations in stream power. The performance of the empirical 

models for the downstream variations in stream power was assessed using the Nash-Sutcliffe model 

efficiency scores (Figs. 4.17 and 4.18). Generally, empirical model 2, which was derived from a 

downstream power-law function of peak discharge and a quadratic function of the downstream trend of 

channel gradient, showed closer agreement with the estimated downstream variations in stream power 

than model 1 (with exponential function of channel gradient). For the downstream variations in cross-

sectional stream power (Fig. 4.17), model 2 showed significant improvement for the empirical 

interpretation for the Gravegnola, Osca, Mannu di Bitti, and Lierza channels, whereas model 1 was 

better for the Geriola and Posada channels. Both models were not significant to interpret the observed 

downstream variations of cross-sectional stream power for Pogliaschina and Mangiola. For unit stream 

power (Fig. 4.18), model 2 was significant to interpret the downstream variations for the Gravegnola, 
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Mangiola, Mannu di Bitti, and Lierza channels, whereas  model 1 was better for only the Geriola 

channel. Both models were significant to interpret the observed downstream variations of unit stream 

power for Osca and Posada, whereas they were both not significant for Pogliaschina. This indicates that 

quadratic functions better interpreted the high downstream variability in channel gradient of the studied 

channels compared to the exponential functions usually implemented for interpreting this kind of 

regression (Lawler, 1992: 1995; Lecce, 1997; Knighton, 1999; Reinfelds et al., 2004; Barker et al., 

2009). 

The estimated trends for both cross-sectional and unit stream power (Figs. 4.17 and 4.18) vary 

nonlinearly downstream, with peaks at mid or lower basins. These results are in line with other results 

reported in literature (Lawler, 1992, 1995; Lecce, 1997; Barker et a., 2009), whereas the modelled 

trends generally follow a simple monotonic downstream increase or decrease in stream power (Graf, 

1983; Knighton, 1984). The estimated trends for both cross-sectional and unit stream power peaked at 

about 5-50% of the total stream length within the headwaters for the studied channels. This can be 

compared to similar trends reported by Lecce (1995) and Knighton (1999), who both reported locations 

for maximum cross-sectional stream power within 50% of the total stream length. Maximum values for 

unit stream power occurred at the same location as the peak cross-sectional stream power for Mangiola, 

Geriola, Posada, and Mannu di Bitti, whereas for Pogliaschina and Lierza, maximum values of unit 

stream power occurred at the most downstream locations. Similar to results from Lecce (1995), unit 

stream power for the Osca channel peaked at about halfway between the headwaters and the location of 

maximum cross-sectional stream power, whereas the opposite was observed for Gravegnola channel. 

Knighton (1999) proposed an estimate of the location of maximum stream power as the ratio between 

the downstream rates of change of discharge and slope from the power-law and exponential functions, 

respectively (Figs. 4.14 and 4.15). These locations for maximum stream power were not absolute for 

the studied channels but a close estimate. It should be noted that the trends reported in Figs. 4.17 and 

4.18 show no specific location of distinct high spikes in stream power. These results supports the 

assertion by Lecce (1997) that downstream changes in stream power are likely to vary considerably 

even between streams within a single watershed, partly because of different patterns of flow addition 

but largely because of variations in channel gradient at the profile and local scales. The high 
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downstream variability in stream power is responsible for the intricate erosional and depositional 

landforms usually observed after extreme floods (Wohl et al., 2001). 

 

5.4 CHANNEL WIDENING AND CONTROLLING FACTORS 

The analysis of channel widening caused by bank erosion predominantly focus on hydraulic 

controls, especially the excess bank shear relative to bank cohesiveness (Hooke, 1979; Lawler, 1993; 

Julian and Torres, 2006), but Surian et al. (2016) demonstrated that hydraulic controls alone are not 

adequate to explain channel widening. The disparity between the hydraulic forces and the resulting 

geomorphic effects also suggests that floods of similar magnitude can result in diverse impacts at a site 

over time as well as between sites (Hooke, 2015), highlighting the fact that not all extreme floods 

generate major geomorphic effects (Wolman and Gerson, 1978; Costa and O'Connor, 1995). This 

presupposes that other factors such as lateral confinement, channel slope, hillslope sediment supply, 

and percentage of reach length with artificial structures (Surian et al., 2016) as well as the role of flow 

duration (Costa and O'Connor, 1995; Magilligan et al., 2015) are required to quantify bank erosion and 

channel widening. Flow duration, in particular, adds an important dimension (i.e., the combined 

influences of flood-flow duration and cumulative energy expenditure) to stream power measures, 

which may be important to explain why floods with lower values of peak instantaneous discharges, 

shear stress and/or stream power can have significant geomorphic impact in some alluvial channels 

than floods with larger instantaneous peak values (e.g., Miller, 1990), though ultimately the magnitude 

of geomorphic impacts of extreme floods hinges on the initial channel conditions (Wohl et al., 2001). 

Flow duration have significant effects on bank saturation, which fundamentally increases pore water 

pressure and subsequently reduces bank shear strength. Soil saturation further plays a key role in 

channel bank failure and erosion by increasing the unit weight of the channel bank material (e.g., 

Thorne, 1982; Springer et al., 1985; Rinaldi and Darby, 2007; Marchi et al., 2009a). 

The availability of high-resolution pre- and post-flood satellite images enabled a comprehensive 

assessment of potential channel widening for seven channels of the Magra and Posada Rivers. This was 

represented by width ratio (the ratio of channel width after the flood to channel width before the flood). 

The combined influences of high peak discharges and relatively long flood flow duration (10 – 16 
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hours) ensured significant widespread channel bank failure and erosion along the selected channels of 

tributaries of the Magra river and Posada Rivers. Such spatial data were not available for Lierza Creek, 

where aerial views of the narrow channel reaches were partially, and in some cases completely, 

covered by vegetation along the banks. It should be recalled that the rate of channel changes along 

Lierza Creek were mostly insignificant for the August 2, 2014 flash flood. As discussed in the previous 

sections, the Lierza flood was associated with limited channel erosion in mostly semi-alluvial reaches 

but intense sediment transport (Fig. 5.1). This was mainly attributed erosion-resistant cohesive channel 

banks coupled with short flood duration. Also, the short duration of the Lierza flood supports the 

findings by Magilligan et al. (2015), in that short duration floods cause intense sediment transport 

rather than erosive impacts. The downstream trends of channel widening follows almost similar 

variations in unit stream power and cumulative energy expenditure as observed for the Pogliaschina, 

Gravegnola, Mangiola, Osca, Geriola, Mannu di Bitti and Lierza Rivers (Fig. 4.20 and 4.21). An 

interesting observation is the generally lower unit stream power and cumulative energy expenditure 

measures and the resulting relatively lower width ratio in the most downstream sections of the studied 

channels. This was attributed to initially wider downstream reaches, which implies relatively minimum 

unit stream power and limited widening. However, this is not observed for the most downstream point 

of the Pogliaschina channel, where both stream power and width ratio are higher. This is because the 

most downstream section of the Pogliaschina River was not included in this study due to the 

complexity of the channel network with a series of significant tributaries joining and channel lining in 

an urban area close to the catchment outlet. It should be remembered that pre-flood channel width was 

used to calculate unit stream power, following the finding that unit stream power computed with 

channel width before a flood generally better predicts channel widening compared to the use of post-

flood channel width (Krapesch et al., 2011; Surian et al., 2016). These studies also contributed to the 

main assumption for the estimation of the cumulative energy expenditure, where pre-flood channel 

width was used to calculate unit stream power for the rising limb of the flood hydrograph through the 

peak instantaneous value and post-flood channel width was used to calculate unit stream power for the 

recession limb. The underlying assumption is that, channel widening occurs in part or in whole during 

flood recession. 
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Both unit stream power and cumulative event energy expenditure relates log-linearly to channel 

width ratio, explaining respectively, 33 and 32% of the variability in channel widening (Fig. 4.22A-B). 

The inclusion of cumulative above-threshold energy expenditure based on the Miller-Magilligan 

erosional threshold of 300 W m-2 and the corresponding energy ratio (i.e., the ratio between above-

threshold energy expenditure and energy expenditure) in the  analysis has been attempted to improve 

the quantification of geomorphic effects. The two regressions with width ratio (Fig. 4.22C-D), also 

interpreted by log-linear functions, with the magnitude performing better than the ratio. Explained 

variances of 0.25 and 0.15 for above-threshold energy expenditure and energy ratio, respectively, 

clearly lag the performance of unit stream power and event energy expenditure. This can simply imply 

that the Miller-Magilligan critical erosional threshold is not an absolute threshold (Magilligan, 1992). 

The use of erosional thresholds of 200, 400 and 500 W m-2 did not prove any more significant than the 

Miller-Magilligan threshold. The Pearson linear correlation coefficient (Table 4.5) still showed higher 

performance of the unit stream power and event energy expenditure in explaining the rate of channel 

widening compared to the use of above-threshold cumulative energy expenditure. Generally, the 

Pearson efficiency decreased as we moved from thresholds of 200 to 500 W m-2, for the linear 

relationship between channel width ratio and both above-threshold energy expenditure and energy 

ratio. This indicates that the total energy expended is equally significant to quantify channel 

adjustment. These results support conclusions made by Costa and O’Connor (1995, p. 55) that, 

“…..quantifying landscape resistance and erosion thresholds will prove to be much more difficult than 

quantifying the hydraulic forces.” 

Channel adjustment and changes are essentially influenced by the interplay of catchment 

hydrology, channel gradient and degree of confinement, especially the geo-lithological controls that 

produce the striking downstream differences in morphology along the longitudinal profile of river 

channels (Knighton, 1999). Surian et al. (2016) integrated geomorphic and hydraulic factors and 

demonstrated the weakness of hydraulic variables alone to explain the rate of channel widening 

associated with the October 25, 2011 Magra flood. Channel confinement index (i.e., ratio between the 

alluvial plain width and the channel width before the flood) was be the most variable geomorphic 

parameters to interpret channel widening, among other variables such as channel slope, hillslope 

sediment supply, and percentage of reach length with artificial structures. For the hydraulic variables, 
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unit stream power computed with pre-flood channel width was better than cross-sectional stream power 

and unit stream power computed with post-flood channel width. These results motivated the multiple 

regression models develop for this study (Table 4.6). The explained variances for the four models range 

between 0.49 and 0.53, which indicates that a combination of lateral confinement and any of the four 

stream power variables (unit stream power, event energy expenditure, above-threshold energy 

expenditure and energy ratio) are significant and can better predict channel widening. It should be 

noted that confinement index performs better compared to any of the hydraulic variables.  

The partition of the dataset into two subsets based on the steepness of the reaches partially 

includes the influence of channel gradient in the individual models. The models obtained for the 

moderate sub reaches (< 4%), showed relatively better performance of cumulative energy expenditure 

in explaining the rate of channel widening compared to peak instantaneous unit stream power (Table 

4.7). Interestingly the above-threshold energy expenditure was the best for these sub reaches. In the 

steep sub reaches (≥ 4%), channel widening occurred mainly through lateral erosion and, as confirmed 

by field observations, depositional processes were less significant (Surian et al., 2016). In these sub 

reaches, unit stream power and lateral confinement showed good relationships with the degree of 

channel widening (i.e., width ratio) compared to the influences of flood flow duration, although 

significant statistical models were obtained (Table 4.8). This suggests that the magnitude of peak unit 

stream power can represent the rate of geomorphic response in steep channel reaches. These results 

suggest that widening at the lower slopes and with less confined channels is a more complex process 

and that additional factors should be considered to better understand geomorphic response in these 

reaches. Likely, widening in these cases results from a combination of bar formation and lateral. 

erosion, with sediment (volumes and size) supplied from landslides and upstream reaches becoming 

significant. Notable bar formation and channel aggradation were observed in several of these reaches 

(Rinaldi et al., 2016), and repeated avulsion processes might have occurred during the event in these 

aggrading sub reaches. As to additional factors, large riparian trees coupled with wood jams could have 

played a role by occasionally reinforcing banks and, therefore, hampering channel widening. These 

results suggest that the widening process is essentially controlled by two main factors: flood power and 

valley confinement. 
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The severe effects of the flood in the tributaries of Magra and in some reaches of Posada mainly 

reflected channel dynamics (i.e., bank erosion, bed aggradation, channel avulsion, intense transport of 

large wood) or inundation processes caused or enhanced by bridge clogging due to large wood. 

Therefore, in terms of hazard, documenting the type and magnitude of channel response is crucial in 

identifying controlling factors of such responses and in developing tools to enable channel dynamic 

predictions (Surian et al., 2016). The weak correlations between the hydraulic forces and the rate of 

channel widening can partly be attributed to the methodology employed to estimate channel changes. 

The use of satellite images to estimate the rate of channel widening is potentially subject to biases and 

uncertainties, particularly since no field data were available for validation. A peculiar uncertainty could 

relate to digitizing overbank flows as channel bank failure and erosion. This analysis generally supports 

the conclusions of Buraas et al. (2014), who stated that there is still a general lack in the capability to 

predict where major geomorphic changes take place during an extreme flood event. Our analysis also 

supports conclusions by Newson (1980) that geomorphological effectiveness of extreme floods is 

easier to quantify than to justify. 

 

5.5 GENERAL DISCUSSION AND PERSPECTIVES FOR FUTURE RESEARCH 

The effects that flash floods can exert on channel geometry are a central point in this PhD thesis. 

This issue is of high relevance as flash floods are difficult to predict, monitor, and model, and yet they 

are sources of major risks on the built environment, especially in mountain areas. The thesis takes 

advantage of literature data and hard-gained data collected in the field over the past few years in 

Europe. This thesis focuses specifically on the geomorphic effectiveness of flash floods, and the use of 

unit stream power and cumulative energy expenditure as empirical predictor of channel changes, 

especially channel widening. To better understand the geomorphic response of a fluvial system to 

floods the approach needs to be multidisciplinary (joining hydrology, hydraulics and geomorphology) 

and also multi-scaled (river reach, network and watershed scales), in order to analyse properly the 

different factors and processes involved. The work conducted in this thesis combined fieldwork, 

geomorphological mapping, statistical analysis, hydraulic calculations and hydrological modelling. 
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Thus, the PhD brings together more traditional methods with very advanced techniques and data is 

analysed with appropriate statistical tools, in particular, uncertainty is treated appropriately. 

Post-flood surveys and analyses at 119 river cross sections affected by seven major flash floods in 

Europe were used to establish a common archive of flash flood database (Specific Objective 1) and 

analyse at-a-station stream power and controlling factors (Specific Objective 2). Hydrological 

modelling and geomorphic impacts assessment at 59 river cross sections affected by four major flash 

floods in Italy were also used to assess the combined influences of flow duration and cumulative 

energy expenditure on channel changes (Specific Objective 3). Furthermore, the evaluation of the 

contiguous downstream trends in the two main variables of stream power (peak discharge and energy 

gradient) for 8 selected channels affected by three flash floods in the Magra, Posada and Lierza basins 

were used to provide empirical models of the downstream variations in stream power (Specific 

Objective 4). Finally, assessment of channel widening through remote sensing for 7 channels affected 

by two flash floods in the Magra and Posada basins were used to quantify and associate channel 

changes and the relevant hydraulic and geomorphic controlling factors (Specific Objective 5). In a nut 

shell, the thesis uses a remarkable dataset, with appropriate statistical tools to analyse and address the 

research objectives of this intensive work. 

The work presented in this thesis has contributed to the flood geomorphology research, with the 

doctoral candidate authoring and co-authoring several scientific articles in international journals. For 

instance, post-flood surveys and analysis of these extreme flash floods permitted to evaluate the upper 

limit of flash flood stream power in Europe (Marchi et al., 2016). The integration of post-flood field 

surveys, hydraulic analysis and hydrological modelling, taking into accounts the relevant uncertainties 

permitted a comprehensive reconstruction of the flood event to better understand the 

hydrometeorological synopsis (Amponsah et al., 2016; 2017). Such event reconstruction provided 

estimates of the hydraulic forces (peak discharge and stream power), which formed the basis for a 

proposed integrated approach that uses different methods and types of evidence to provide fundamental 

information for characterizing and understanding the geomorphic effects of intense flood events 

(Rinaldi et al., 2016) as well as evaluating the main controlling factors for channel responses to 

extreme floods (Surian et al., 2016; Righini et al., 2017). Finally, the quantitative assessment of 

geomorphic effects of extreme floods was integrated with the Event Dynamics Classification (EDC) of 
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the IDRAIM framework (Rinaldi et al., 2015) to propose practical procedure for predicting the 

expected channel widening, a guide to river corridor planning and management (Comiti et al., 2016). 

Thus, the assessment of the hydraulic forces and association with the corresponding geomorphic 

effectiveness  provide fundamental knowledge of flash flood physical processes that could be helpful 

for practitioners of river management and flood mitigation agencies. 

Some insight into the flood energy expenditure and the associated geomorphic impacts can be 

gained from the results provided above. In general, enormous amount of energy was expended by the 

studied flash floods and the Miller-Magilligan minimum threshold of critical unit stream power (300 

Wm-1) associated with major morphological changes was exceeded in over 88% of the studied cross-

sections and in almost all the studied channel reaches along the longitudinal profiles of the selected 

rivers. Under such hydraulic conditions, it is expected that the flash floods perform a variety of 

geomorphic impacts including erosion of bed and bank material and transportation of coarse sediments 

during the extreme events. However, geomorphic effectiveness was limited to qualitative assessment of 

the intensity of geomorphic impacts at the cross-sectional scale and channel widening at the channel-

reach scale. Though peak stream power and cumulative energy expenditure showed some capability 

(although weak) to explaining the rate of channel modification, several factors could contribute to the 

scatter of the collected data, especially for channel widening. Results are not always straight forward to 

interpret, as correlations are rarely very high, the discussion points out some of the intricate factors and 

physical processes that are responsible for the relatively weak correlation between energy expenditure 

and the corresponding geomorphic effects associated to extreme floods. 

Several questions that were not addressed in this thesis but could be responsible for explaining 

the large scatter between energy expenditure and the associated geomorphic impacts produced by the 

studied flash floods need to be discussed. For example, what roles do the type of soil and vegetation 

growing on the floodplain play on lateral adjustments? Righini et al (2017) demonstrated that lateral 

erosion and incision are more dominant in alluvial channels compared to boundary resistant channels. 

Bedrocks cannot substantially widen, incise or shift bed and banks without eroding bedrock (Meshkova 

et al, 2012). This suggests that the type of soil and bed material can influence the geomorphic 

effectiveness of even high magnitude floods. Vegetation on the other hand, has several effects on 

lateral adjustment and the corresponding quantification of channel widening through remote sensing. 
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The geomorphic effectiveness of extreme floods can be progressive and cascading if impact is focussed 

on in-channel vegetation and on the channel walls eroding the topsoil and riparian riverside vegetation. 

Vegetation in forested areas can also make the quantification of channel widening from aerial photos 

much more difficult compared to urban areas. Secondly, what is the potential influence that the 

magnitude of previous floods can have on channel adjustment? Ideally, more lateral changes are 

expected in river basins where no major events occurred over a certain period before the flood under 

examination. Newson (1980) investigated the geomorphic effectiveness of two successive major floods 

in mid-Wales within four years, demonstrating the influence of previous flood on the geomorphic 

impacts of the latter flood. Could this factor play a role in trends of the studied floods and the scatter of 

the collected data? How to consider this factor in the analysis? Should one consider the time passed 

from the previous event and the magnitude of that event? How to parameterize this in a synthetic 

index? 

Another question worth discussing relates to vertical changes in channel geometry caused by 

erosion and deposition during floods. This thesis focussed on lateral changes in cross-sectional 

geometry but extreme floods are responsible for overall abrupt and major changes in both lateral and 

vertical directions. Vertical changes are much more difficult to quantify because topographic surveys 

are required as aerial photos cannot provide straightforwardly this information. Structure for motion 

(SfM) techniques (Smith et al., 2014) may allow quantification of these changes. Also, DEM of 

Difference (DoD) techniques (Wheaton et al., 2010; Picco et al., 2013) can be useful provided high-

quality pre- and post-flood DEMs are available. Is stream power likely to be a good predictor for 

vertical changes too? Is armouring a factor that could play a similar role on vertical adjustment that 

confinement plays with lateral changes? How should human infrastructure be considered in the 

framework analysis? These open questions are necessary for future research to advance our 

understanding of floods and their geomorphic effectiveness. 
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6 CONCLUSIONS 

The main findings from this thesis are summarized as follows: 

1. A comprehensive flash flood database has been established for seven major flash floods in 

different hydro-climatic regions of central and southern Europe by means of post-flood surveys 

and analysis of hydrometeorological data; data collection has involved 119 cross sections 

draining catchments from 0.5 to 1981 km2. The database includes a variety of hydraulic and 

hydro-meteorological variables that describe flood responses and enable computation of stream 

power. Spatial distribution of the channel hydraulic geometry for the established database is in 

agreement with the relationships commonly reported in literature. The spatial extent of unit 

peak discharges shows higher values for recent Mediterranean events, with two basins of the 

Cedrino-Posada River crossing the upper limit envelope curve developed for flash floods in 

Europe. 

2. The highest values of cross-sectional stream power and unit stream power occur in 

Mediterranean regions and are mainly ascribed to the large peak discharges that characterize 

flash floods in these regions. Mediterranean flash floods are also of longer duration than flash 

floods in alpine and continental regions. Channel slope, which has great importance for local 

variability of stream power, is not responsible for systematic differences between the study 

areas. The variability of unit stream power with catchment area has been represented by log-

quadratic relations. The values of catchment area corresponding to the maximum values of unit 

stream power show relevant differences between the studied floods and are linked to the spatial 

extent of the events. If compared to threshold values reported in the literature, unit stream 

power in most cross sections is high and able to induce major channel changes. 

3. A combined analysis of data from post-flood surveys and hydrological modelling permitted 

estimation of the cumulative energy expenditure for 59 basins of the four most recent floods in 

our database. Comprehensive geomorphic reconnaissance at the outlets of these basins also 

permitted us to qualitatively classify the impacts of geomorphic effects into three classes 

(major, small-to-moderate, and negligible) and compared with cross-section characteristics 

(alluvial, semi-alluvial, bedrock, and artificially reinforced cross sections). The results confirm 

the findings of previous studies regarding the dominant control of cross-section characteristics 
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on morphological changes, with bedrock and artificially reinforced channel banks undergoing 

negligible erosion despite high energy expenditure values, and regarding alluvial channels 

prone to significant widening. The analysis, however, does not display a clear  association 

between stream power measures and the geomorphic effects. This was attributed to the complex 

controls on channel changes, that cannot be adequately explained only by unit stream power or 

related indices of energy expenditure. Also the use of post-flood channel width, which may 

influence unit stream power and cumulative energy expenditure values in channel sections with 

different geomorphic impacts, may weaken the correspondence between unit stream power and 

channel changes. 

4. Downstream variations in stream power have been modelled for eight selected river channels 

that were affected by three of the studied flash floods. Hydrological modelling permitted 

simulation of the contiguous downstream trends of peak discharges, whereas remote sensing 

was used to extract the corresponding channel gradient from high-resolution DEMs. 

Downstream variations in peak discharge were better interpreted by power functions, whereas 

the corresponding channel gradients were interpreted by exponential and quadratic functions, 

with the latter generally performing better for this study. Exponential downstream variations in 

channel gradient better explained channels with systematic downstream decays, while quadratic 

functions better captured the high downstream variability in channel gradients. The 

performance of the two resulting empirical models for cross-sectional stream power and unit 

stream power were essentially influenced by channel gradient, with similar high downstream 

variability. 

5. Hydraulic variables alone were not adequate to predict the downstream rates of channel 

widening, which were digitized from high resolution satellite images, whereas a major role is 

played by topographic settings, namely the confinement index (the ratio of the alluvial plain 

width to the channel width before the flood). Integration of lateral channel confinement and 

stream power variables provided improved predictions of channel widening. Results show that 

the rate of channel adjustment is primarily influenced by the rate of channel confinement. 

Regression models indicate that together with lateral confinement, peak instantaneous unit 

stream power can better predict the degree of channel widening in steep channels, whereas 

cumulative energy expenditure is a better hydraulic variables for changes in moderate channel 
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reaches. This study revealed that the hydraulic forces are much easier to quantify than erosional 

thresholds, whereas geomorphic effectiveness of floods are also easier to quantify than to 

justify with empirical predictors. 

6. The results from this research highlight the geomorphic effectiveness of flash floods, and the 

use of unit stream power and cumulative energy expenditure as empirical predictor of the type, 

location and magnitude of geomorphic change. In particular, the questions why similar floods 

produce significantly different geomorphic results and whether the variation of stream power 

explains these geomorphic effects have been addressed. A multidisciplinary approach 

implemented at multi-scales of the river basins highlighted the complex processes that 

determine the association between energy expenditure and the associated geomorphic 

effectiveness of flash floods. This study has focussed on the physical factors that cause 

disruption of river channels during floods. Given the broad ecological and social vulnerability 

to extreme events, and the considerable loss to infrastructure and other domestic and economic 

damages, the analysis of hydraulic and geomorphological factors, together with the recognition 

of social impacts and preparedness at all scales, represents a fundamental step to better cope 

with extreme flash floods 
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APPENDIX 

A1: SELECTED PICTURES DURING POST-FLOOD FIELD SURVEYS OF THE STUDIED FLASH FLOODS 

   
Total station at the Lierza basin IPEC team for the Cedrino-Posada flood Field survey in the Magra River 

   
Field survey in the Cedrino River Field survey in the Vizze River Field survey in the Lierza River 



 

 

 
Stream power and geomorphic effects of flash floods                                                                                                                                   138 
 

A2: DATASET OF THE 119 SURVEYED CROSS SECTIONS FOR THE SEVEN STUDIED FLOODS 

Event Code A 
[km2] 

Qp 
[m3/s] 

S 
[m/m] 

Ac 
[m2] 

w  
[m] 

P  
[m] 

R  
[m] 

d  
[m] 

V 
[m/s] 

Fr  
[–] 

n  
[–] 

Ω  
[W/m] 

ω 
[W/m2] 

Selška 
Sora 

SS01 2.25 9.0 0.011 6.5 7.0 18.2 0.36 0.93 1.33 0.46 0.040 971 139 
SS02 2.60 7.5 0.011 4.8 6.3 9.9 0.48 0.75 1.62 0.58 0.040 809 128 
SS03 1.93 7 0.020 4.3 4.8 9.7 0.45 0.91 1.24 0.54 0.067 1373 286 
SS04 8.98 40 0.030 11.3 8.0 21.3 0.53 1.41 3.39 0.96 0.033 11772 1472 
SS05 24.72 105 0.020 43.8 38.8 25.0 1.75 1.13 2.13 0.72 0.083 18578 479 
SS06 9.22 100 0.040 23.3 18.0 19.6 1.19 1.29 4.48 1.21 0.050 41375 2299 
SS07 3.87 40 0.060 10.1 13.6 14.2 0.71 0.74 3.90 1.48 0.050 15491 1139 
SS08 40.72 140 0.013 53.4 43.9 44.7 1.19 1.22 3.54 0.76 0.050 16641 379 
SS09 44.84 170 0.014 41.8 24.1 25.9 1.61 1.73 4.02 0.99 0.040 22979 953 
SS10 46.75 200 0.010 69.4 60.0 61.2 1.13 1.16 4.54 0.86 0.040 18227 304 
SS11 9.77 55 0.030 23.3 19.2 20.0 1.25 1.22 3.02 0.68 0.067 15937 830 
SS12 21.42 155 0.020 53.0 28.0 29.6 1.79 1.89 3.16 0.68 0.067 46703 1668 
SS13 4.19 8 0.035 2.9 2.9 4.5 0.65 1.01 2.80 0.86 0.050 4669 1610 
SS14 31.86 100 0.015 39.4 19.7 21.1 1.86 2.00 3.39 0.57 0.067 14974 760 
SS15 80.42 320 0.010 125.5 94.7 96.0 1.31 1.32 4.08 0.71 0.050 29670 313 
SS16 7.46 16 0.050 5.8 5.8 7.8 0.74 1.00 2.75 0.88 0.067 7848 1353 
SS17 95.53 380 0.012 109.0 73.8 78.2 1.39 1.48 4.20 0.92 0.040 35233 477 
SS18 5.68 9 0.020 3.3 2.4 2.6 1.26 1.38 2.48 0.74 0.067 2120 883 
SS19 25.82 43 0.019 14.1 8.2 10.1 1.40 1.72 3.16 0.74 0.050 8015 977 

Starzel SZ01 9.3 9 0.040 3.2 3.1 5.0 0.6 1.0 2.97 0.90 0.050 931 300 
SZ02 53.7 150 0.007 64.7 40.2 41.6 1.6 1.6 3.30 0.58 0.050 14757 367 
SZ03 119.5 125 0.005 49.8 25.5 27.5 1.8 2.0 2.63 0.57 0.040 5623 221 
SZ04 47.5 120 0.007 32.2 13.8 16.5 2.0 2.3 3.53 0.78 0.037 3106 225 
SZ05 87.0 115 0.010 50.7 28.7 29.6 1.7 1.8 2.62 0.54 0.067 55642 1939 
SZ06 1.0 3.7 0.020 2.4 5.7 5.9 0.4 0.4 1.54 0.74 0.050 697 122 
SZ07 1.1 6.4 0.010 4.6 5.9 6.7 0.7 0.8 1.45 0.50 0.050 548 93 



 

 

 
Stream power and geomorphic effects of flash floods                                                                                                                                   139 
 

Appendix A2 continues 

Event Code A 
[km2] 

Qp 
[m3/s] 

S 
[m/m] 

Ac 
[m2] 

w 
[m] 

P 
[m] 

R 
[m] 

d 
[m] 

V 
[m/s] 

Fr 
[–] 

n 
[–] 

Ω  
[W/m] 

ω 
[W/m2] 

Starzel SZ08 24.8 20 0.022 6.6 5.8 7.1 0.9 1.1 2.83 0.91 0.050 4291 740 
SZ09 29.9 45 0.024 15.3 14.7 15.5 1.0 1.0 3.83 0.92 0.040 6698 456 
SZ10 30.6 65 0.010 19.0 10.4 11.4 1.7 1.8 3.52 0.81 0.040 6682 642 
SZ11 30.7 80 0.020 24.0 15 18.2 1.3 1.6 3.40 0.84 0.050 15696 1046 
SZ12 36.7 80 0.020 35.0 10 17.0 2.1 3.5 2.29 0.39 0.100 15696 1570 
SZ13 2.2 8 0.025 2.7 1.8 1.8 1.5 1.5 3.11 0.77 0.067 1962 1090 
SZ14 2.1 25 0.025 10.0 7 3.0 3.3 1.4 2.47 0.67 0.143 6131 876 
SZ15 1.8 3 0.020 1.2 1.2 1.4 0.9 1.0 3.19 0.80 0.040 589 491 
SZ16 17.6 20 0.025 6.0 8.5 9.9 0.6 0.7 2.82 1.28 0.040 4905 577 
SZ17 1.9 11 0.030 4.3 5.7 6.3 0.7 0.8 3.35 0.93 0.040 3237 568 

Argens AR01 217 750 0.006 233.6 43.2 47.4 4.93 5.41 3.14 0.43 0.071 47456 1099 
AR02 1646 1200 0.003 377.4 71.3 76.6 4.93 5.41 3.54 0.33 0.077 35316 495 
AR03 1981 2100 0.003 600.8 112.9 121.9 4.93 5.41 3.51 0.34 0.067 61803 547 
AR04 3 10 0.020 5.3 5.4 6.4 0.83 0.99 1.90 0.60 0.067 1962 363 
AR05 6 10 0.020 5.6 5.8 6.8 0.82 0.96 1.90 0.58 0.067 1962 338 
AR06 19 70 0.010 98.6 18.6 20.0 4.93 5.41 3.27 0.69 0.050 556 30 
AR07 35 210 0.010 261.1 51.0 53.0 4.93 5.41 2.98 0.56 0.067 14400 282 
AR08 12 70 0.010 24.0 12.6 13.8 1.75 1.91 2.90 0.67 0.050 6867 545 
AR09 148 350 0.030 88.8 28.4 31.6 2.81 3.13 4.14 0.75 0.083 109323 3847 
AR10 148 350 0.030 84.4 26.7 29.2 2.89 3.16 4.22 0.76 0.083 103005 3861 
AR11 75 200 0.024 56.8 12.0 21.8 2.61 4.75 3.52 0.52 0.083 79598 6661 
AR12 196 400 0.008 114.1 68.1 71.0 1.61 1.68 3.59 0.91 0.033 34570 508 
AR13 3.5 15 0.050 5.3 3.5 6.5 0.81 1.50 3.50 0.74 0.067 14715 4204 
AR14 35 140 0.010 50.0 30.4 31.8 1.57 1.64 3.24 0.69 0.056 20725 681 
AR15 65 370 0.014 84.2 23.7 26.9 3.13 3.56 5.00 0.80 0.056 58474 2472 
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Appendix A2 continues 

Event Code A 
[km2] 

Qp 
[m3/s] 

S 
[m/m] 

Ac 
[m2] 

w 
[m] 

P 
[m] 

R 
[m] 

d 
[m] 

V 
[m/s] 

Fr 
[–] 

n 
[–] 

Ω  
[W/m] 

ω 
[W/m2] 

Argens AR16 87 480 0.008 137.0 34.9 40.6 3.37 3.92 4.26 0.63 0.056 24957 714 
AR17 87 460 0.008 139.4 47.6 50.8 2.74 2.93 3.97 0.63 0.056 24278 510 
AR18 62 220 0.020 65.9 17.4 22.9 2.87 3.78 3.64 0.55 0.067 42581 2442 
AR19 54 160 0.036 29.9 14.5 16.6 1.80 2.06 6.00 1.20 0.056 54277 3735 
AR20 4.5 45 0.075 9.9 6.9 9.6 1.04 1.44 4.78 1.27 0.059 31674 4604 
AR21 4.2 22 0.016 11.8 10.8 13.0 0.90 1.09 1.89 0.58 0.063 3354 309 
AR22 19 75 0.013 24.6 9.3 14.8 1.67 2.64 2.89 0.57 0.056 2384 255 
AR23 169 200 0.010 62.7 24.5 27.0 2.32 2.56 3.15 0.63 0.056 18443 752 
AR24 183 250 0.010 94.7 45.2 47.1 2.01 2.10 3.50 0.60 0.067 16260 360 

Magra MA01 7.5 55 0.020 32.0 32.0 34.0 0.94 1.00 1.63 0.65 0.083 10791 337 
MA02 4.6 50 0.029 16.6 12.5 13.7 1.21 1.32 3.00 0.79 0.067 14043 1123 
MA03 30.2 436 0.024 85.5 62.1 90.9 0.94 1.38 3.17 0.74 0.067 97562 1571 
MA04 25.8 90 0.010 31.7 17.1 18.8 1.68 1.85 2.83 0.66 0.050 6984 408 
MA05 13.6 50 0.020 21.3 17.4 18.1 1.18 1.22 2.37 0.68 0.067 11654 672 
MA06 19.9 245 0.020 80.1 44.6 46.0 1.74 1.80 3.07 0.73 0.067 73714 1654 
MA07 3.4 30 0.020 9.9 7.6 8.9 1.11 1.30 3.00 0.85 0.050 7069 933 
MA08 38.6 395 0.019 102.4 38.3 40.3 2.54 2.68 3.85 0.75 0.067 25032 654 
MA09 43.0 340 0.021 87.0 33.9 36.8 2.37 2.57 3.86 0.77 0.067 70844 2091 
MA10 11.8 210 0.040 61.4 35.0 35.9 1.71 1.75 3.40 0.83 0.083 84011 2400 
MA11 23.4 270 0.027 31.2 31.6 33.1 0.94 0.99 3.88 0.81 0.071 73687 2332 
MA12 27.4 90 0.040 24.2 16.8 18.3 1.32 1.44 3.61 0.96 0.067 56488 3368 
MA13 19.6 36 0.025 16.5 17.8 18.4 0.90 0.93 2.21 0.73 0.067 9115 514 
MA14 8.8 22 0.035 8.6 9.0 9.8 0.88 0.95 2.58 0.85 0.067 6572 728 
MA15 10.9 55 0.020 17.4 9.9 12.6 1.39 1.76 3.17 0.76 0.056 12323 1250 
MA16 5.5 115 0.030 32.8 20.0 21.3 1.54 1.64 3.46 0.86 0.067 36428 1821 
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Appendix A2 continues 

Event Code A 
[km2] 

Qp 
[m3/s] 

S 
[m/m] 

Ac 
[m2] 

w 
[m] 

P 
[m] 

R 
[m] 

d 
[m] 

V 
[m/s] 

Fr 
[–] 

n 
[–] 

Ω  
[W/m] 

ω 
[W/m2] 

Magra MA17 6.8 29 0.010 12.6 9.7 10.2 1.23 1.30 2.30 0.64 0.050 3269 337 
MA18 21.5 365 0.017 121.5 82.7 83.5 1.45 1.47 3.00 0.95 0.050 61480 743 
MA19 47.4 150 0.023 39.2 24.0 24.8 1.58 1.63 3.40 0.96 0.056 36581 1522 
MA20 12.0 110 0.060 30.9 15.2 17.1 1.81 2.03 3.64 0.82 0.100 61660 4054 
MA21 21.5 75 0.019 43.7 22.5 35.1 1.24 1.94 2.39 0.67 0.067 14818 659 
MA22 8.2 115 0.010 35.3 12.8 16.9 2.09 2.76 3.27 0.63 0.050 11090 867 
MA23 4.5 55 0.020 16.0 8.0 12.0 1.33 2.00 3.43 0.77 0.050 10791 1349 
MA24 33.9 70 0.005 33.4 23.6 24.7 1.35 1.41 2.16 0.58 0.040 2568 109 
MA25 39.6 95 0.035 33.4 20.6 24.7 1.35 1.62 3.70 0.87 0.067 32516 1580 
MA26 77.4 295 0.015 75.1 31.1 37.2 2.02 2.41 3.90 0.80 0.050 47200 1517 
MA27 1.7 37 0.034 12.6 10.0 11.2 1.12 1.26 2.98 0.85 0.067 17771 1784 
MA28 0.5 11 0.150 5.1 3.1 5.9 0.86 1.63 2.10 0.52 0.167 16187 5205 
MA29 5.7 160 0.025 48.9 20.2 24.1 2.03 2.42 3.48 0.75 0.067 46319 2295 
MA30 7.32 200 0.012 67.0 35.5 37.6 1.78 1.89 2.76 0.61 0.061 23878 673 
MA31 3.79 65 0.012 30.4 27.3 28.2 1.08 1.11 1.64 0.50 0.067 8462 310 
MA32 22.35 510 0.020 179.1 113.3 115.3 1.55 1.58 2.84 0.72 0.067 56035 495 
MA33 51.3 280 0.018 81.5 48.2 50.2 1.62 1.69 2.93 0.72 0.067 54936 1140 

Vizze VZ01 72.9 78.4 0.014 24.4 14.0 15.3 1.59 1.74 3.22 0.77 0.050 9306 665 
VZ02 45.2 69.9 0.015 21.8 13.0 14.6 1.50 1.67 3.21 0.79 0.050 4800 369 

Cedrino-
Posada 

CP01 206.2 2100 0.020 356.0 74.8 77.1 4.62 4.76 5.88 0.86 0.067 412020 5510 
CP02 46.8 463 0.005 142.0 37.7 40.5 3.50 3.77 3.26 0.54 0.050 24890 660 
CP03 8.3 200 0.018 54.3 33.1 33.7 1.61 1.64 3.69 0.92 0.050 31039 939 
CP04 124.1 1015 0.018 167.6 38.8 42.2 3.97 4.32 6.05 0.93 0.056 22802 588 
CP05 97 1340 0.012 246.2 59.5 62.6 3.93 4.14 5.46 0.86 0.050 107135 1799 
CP06 118.6 1390 0.013 211.7 39.1 44.0 4.81 5.41 6.55 0.90 0.050 57680 1474 
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Appendix A2 continues 

Event Code A 
[km2] 

Qp 
[m3/s] 

S 
[m/m] 

Ac 
[m2] 

w 
[m] 

P 
[m] 

R 
[m] 

d 
[m] 

V 
[m/s] 

Fr 
[–] 

n 
[–] 

Ω  
[W/m] 

ω 
[W/m2] 

Cedrino-
Posada 

CP07 549.7 3400 0.003 612.8 131.3 132.8 4.61 4.67 5.57 0.82 0.029 28017 213 
CP08 542.6 3900 0.005 825.5 130.5 134.6 6.13 6.32 4.74 0.60 0.050 14538 111 
CP09 542.3 3900 0.010 766.3 118.0 123.2 6.22 6.49 6.76 0.85 0.050 406311 3442 
CP10 294.5 3500 0.006 696.9 95.6 101.3 6.88 7.29 5.04 0.60 0.056 206010 2154 
CP11 230.5 3000 0.006 473.2 103.4 105.1 4.50 4.58 6.33 0.94 0.033 176580 1707 
CP12 3.9 100 0.030 30.7 21.1 22.1 1.39 1.45 3.24 0.86 0.067 47696 2259 
CP13 287.8 2100 0.010 437.2 162.2 164.2 2.66 2.70 4.80 0.93 0.040 949912 5856 
CP14 34.4 590 0.010 149.7 73.9 75.2 1.99 2.03 3.96 0.89 0.040 56316 762 
CP15 20.5 410 0.020 92.8 46.2 47.9 1.94 2.01 4.40 0.99 0.050 108436 2345 
CP16 9.7 160 0.030 35.5 18.7 20.9 1.70 1.90 4.44 1.03 0.056 59849 3206 
CP17 21.5 390 0.019 79.5 32.2 34.0 2.34 2.47 4.86 0.99 0.050 49584 1539 

Lierza LZ01 7.29 130 0.010 39.2 17.1 19.0 2.06 2.29 3.24 0.68 0.050 14309 837 
LZ02 4.19 74 0.040 20.5 14.1 15.5 1.32 1.45 3.61 0.96 0.067 15346 1089 
LZ03 1.45 40 0.025 11.4 9.3 10.4 1.10 1.23 3.37 0.97 0.050 2496 269 
LZ04 2.75 54 0.029 15.4 10.3 12.7 1.21 1.50 3.48 0.91 0.056 6087 594 
LZ05 1.47 24 0.030 12.0 11.7 12.5 0.96 1.02 2.02 0.64 0.083 5580 477 
LZ06 12.22 149 0.015 36.1 14.0 16.5 2.19 2.59 4.13 0.82 0.050 5408 387 
LZ07 3.48 53 0.025 18.6 13.1 14.3 1.30 1.42 2.83 0.76 0.067 12769 974 
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A3: DATASET OF THE 59 SIMULATED CROSS SECTIONS WITH GEOMORPHIC RECONNAISSANCE FOR THE FOUR RECENT 

FLOODS IN ITALY 

 
Event 

 
Code 

 
A 

[km2] 

Observations Simulations 

XS type 
(OGE) 

Qp 
[m3/s] 

±Qp 
[m3/s] 

Qp 
[m3/s] 

P 
[mm] 

RC 
[–] 

Ω 
[W/m] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
Tth 

[s*103] 
ℇth 

[MJ/m2] 
ℇr 

[–] 
Magra MA01 7.5 AT (N) 55 48–62 23 163 0.13 4495 140 17 0.0 0.0 0.000 

MA02 4.6 S-A (M) 50 32–69 63 267 0.54 17617 1409 435 18.0 91 0.209 
MA03 30.2 AL (M) 436 274–598 486 385 0.64 108848 1753 847 25.2 252 0.297 
MA04 25.8 S-A (N) 90 78–102 96 207 0.21 7484 438 99 3.6 0.7 0.007 
MA05 13.6 AL (S-M) 50 38–62 28 161 0.08 6464 373 66 1.8 0.1 0.002 
MA06 19.9 AL (M) 245 154–336 486 404 0.60 146245 3281 1152 25.2 368 0.319 
MA07 3.4 AT (N) 30 26–34 43 253 0.43 10158 1340 408 18.0 75 0.183 
MA08 38.6 AL (M) 395 249–542 414 336 0.60 26214 685 397 27.0 53 0.132 
MA09 43.0 S-A (S-M) 340 261–419 243 274 0.51 50613 1494 1279 41.4 583 0.456 
MA10 11.8 S-A (M) 210 132–288 305 465 0.67 122124 3489 1407 28.8 542 0.385 
MA11 23.4 S-A (M) 270 170–370 184 250 0.54 50213 1589 794 25.2 247 0.311 
MA12 27.4 AL (S-M) 90 69–111 79 247 0.47 49687 2963 1342 32.4 815 0.607 
MA13 19.6 AL (S-M) 36 28–44 41 188 0.10 10387 585 200 10.8 10.3 0.052 
MA14 8.8 AL (S-M) 22 17–27 27 238 0.16 7930 878 332 12.6 35 0.104 
MA15 10.9 S-A (S-M) 55 42–68 34 157 0.13 7534 764 103 5.4 4.3 0.042 
MA16 5.5 S-A (M) 115 72–158 124 372 0.61 39129 1956 640 19.8 128 0.200 
MA17 6.8 AL (S-M) 29 22–36 29 209 0.18 3253 335 48 1.8 0.1 0.001 
MA18 21.5 AL (M) 365 230–500 256 242 0.56 43108 521 171 5.4 2.2 0.013 
MA19 47.4 S-A (S-M) 150 115–185 162 222 0.26 39411 1640 546 19.8 154 0.281 
MA20 12.0 AL (S-M) 110 85–136 97 250 0.42 54393 3576 1862 36.0 938 0.504 
MA21 21.5 AL (S-M) 75 58–92 77 234 0.21 15207 676 212 12.6 19 0.090 
MA22 8.2 AT (N) 115 100–131 103 320 0.48 9901 774 336 16.2 38 0.112 
MA23 4.5 AT (N) 55 48–62 17 220 0.47 3320 415 72 5.4 1.6 0.023 
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Appendix A3 continues 

 
Event 

 
Code 

 
A 

[km2] 

Observations Simulations 

XS type 
(OGE) 

Qp 
[m3/s] 

±Qp 
[m3/s] 

Qp 
[m3/s] 

P 
[mm] 

RC 
[–] 

Ω 
[W/m] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
Tth 

[s*103] 
ℇth 

[MJ/m2] 
ℇr 

[–] 
MA24 33.9 AT (N) 70 61–80 47 131 0.12 1738 74 8.4 0.0 0.0 0.000 
MA25 39.6 S-A (N) 95 82–108 130 216 0.24 44452 2160 674 25.2 278 0.412 
MA26 77.4 AT (N) 295 255–335 272 224 0.10 43589 1401 415 19.8 121 0.291 
MA27 1.7 S-A (S-M) 37 28–46 56 445 0.66 26716 2682 577 21.6 207 0.358 
MA28 0.5 BR (N) 11 9–13 11 429 0.44 16828 5411 1520 23.4 706 0.465 
MA29 5.7 S-A (S-M) 160 123–197 148 407 0.58 42809 2121 426 23.4 174 0.408 
MA30 7.32 S-A (M) 200 126–274 188 413 0.53 22395 631 134 7.2 5.7 0.042 
MA31 3.79 AL (S-M) 65 50–80 65 305 0.54 8410 308 64 1.8 0.0 0.000 
MA32 22.35 AL (M) 510 321–699 401 390 0.63 44082 389 139 3.6 0.3 0.002 
MA33 51.3 AL (M) 280 176–384 180 222 0.23 35316 733 221 12.6 22 0.098 

Vizze VZ01 72.9 S-A (N) 78.4 68–89 72 38 0.10 8564 612 174 4.6 7.9 0.045 
VZ02 45.2 AL (S-M) 69.9 54–86 64 42 0.22 4372 336 89 2.7 0.2 0.002 

Cedrino-
Posada 

CP01 206.2 BR (N) 2100 1817–2384 1615 181 0.71 316830 4237 908 36 578 0.636 
CP02 46.8 S-A (N) 463 401–526 426 194 0.75 22905 607 117 10.8 8.2 0.070 
CP03 8.3 S-A (S-M) 200 154–246 102 180 0.76 15826 479 60 3.6 0.1 0.002 
CP04 124.1 S-A (S-M) 1015 780–1251 828 339 0.28 18600 480 76 7.2 2.6 0.034 
CP05 97 AL (M) 1340 843–1837 1075 334 0.49 85933 1443 240 18 54 0.225 
CP06 118.6 BR (N) 1390 1202–1578 1268 310 0.48 52625 1345 41 0.0 0.0 0.000 
CP07 549.7 AL (M) 3400 2139–4661 3593 210 0.70 29606 225 61 0.0 0.0 0.000 
CP08 542.6 BR (N) 3900 3374–4427 3644 212 0.72 13582 104 28 0.0 0.0 0.000 
CP09 542.3 S-A (S-M) 3900 2995–4805 3669 212 0.72 382242 3238 1035 39.6 663 0.640 
CP10 294.5 S-A (S-M) 3500 2688–4312 2062 237 0.68 121392 1270 414 39.6 187 0.450 
CP11 230.5 S-A (S-M) 3000 2304–3696 2238 273 0.72 131706 1274 338 36 139 0.412 
CP12 3.9 S-A (S-M) 100 77–123 56 295 0.50 26843 1272 196 18 48 0.245 
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Appendix A3 continues 

 
Event 

 
Code 

 
A 

[km2] 

Observations Simulations 

XS type 
(OGE) 

Qp 
[m3/s] 

±Qp 
[m3/s] 

Qp 
[m3/s] 

P 
[mm] 

RC 
[–] 

Ω 
[W/m] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
Tth 

[s*103] 
ℇth 

[MJ/m2] 
ℇr 

[–] 
Cedrino-
Posada 

CP13 287.8 AL (S-M) 2100 1613–2587 1625 268 0.42 735108 4532 1106 39.6 873 0.789 
CP14 34.4 AL (M) 590 371–809 562 388 0.62 53651 726 125 21.6 27 0.214 
CP15 20.5 S-A (S-M) 410 315–505 310 467 0.34 81950 1772 313 25.2 117 0.374 
CP16 9.7 AL (M) 160 100–219 75 217 0.58 28059 1503 248 32.4 127 0.512 
CP17 21.5 S-A (S-M) 390 300–480 229 261 0.68 29055 902 151 21.6 36 0.236 

Lierza LZ01 7.29 S-A (N) 130 112–148 130 92 0.13 14350 839 60 5.4 16 0.263 
LZ02 4.19 S-A (S-M) 74 56–91 93 108 0.14 19294 1369 88 6.0 38 0.426 
LZ03 1.45 S-A (S-M) 40 31–49 42 96 0.12 2641 285 12.2 0.0 0.0 0.000 
LZ04 2.75 AT (N) 54 47–61 45 73 0.12 5078 495 30 2.4 0.9 0.031 
LZ05 1.47 AL (S-M) 24 18–30 49 121 0.14 11497 982 50 4.8 11 0.209 
LZ06 12.22 AT (N) 149 129–169 151 69 0.12 5489 393 32 3.0 0.8 0.026 
LZ07 3.48 S-A (S-M) 53 40–65 71 100 0.13 17335 1322 96 6.0 35 0.358 
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A4: DATASET OF THE 159 CHANNEL REACHES FOR THE EIGHT STUDIED RIVERS 

River Code L  
[m] 

A  
[km2] 

Qp 
[m3/s] 

S  
[m/m] 

wbefore 
[m] 

wafter 
[m] 

wr  
[–] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
ℇth 

[MJ/m2] 
ℇr 

[–] 

Pogliaschina 1 100 2.7 66 0.074 7.5 14.8 2.0 6423 1186 756 0.64 
2 481 2.9 71 0.067 7.6 14.8 1.9 6064 1129 713 0.63 
3 862 4.1 104 0.054 7.3 14.8 2.0 7492 1373 893 0.65 
4 1162 4.9 122 0.046 7.4 14.8 2.0 7531 1448 896 0.62 
5 1538 5.4 133 0.058 4.5 14.8 3.3 16926 3002 1996 0.66 
6 1914 5.7 140 0.046 3.8 12.6 3.4 16775 2962 1967 0.66 
7 2291 6.1 153 0.026 3.8 17.1 4.5 10254 2026 1224 0.60 
8 2667 6.3 163 0.046 3.8 22.5 5.9 19255 3602 2429 0.67 
9 3063 6.7 177 0.005 3.7 22.5 6.1 2272 415 138 0.33 
10 3459 7.0 189 0.029 4.3 30.2 7.1 12624 2253 1378 0.61 
11 3855 7.4 203 0.003 3.3 14.6 4.4 2064 355 94 0.26 
12 4266 7.7 215 0.021 3.1 13.7 4.4 14106 2493 1639 0.66 
13 4678 7.9 222 0.034 3.0 26.4 8.7 24387 4322 2796 0.65 

Gravegnola 1 100 9.8 271 0.031 4.6 17.9 3.9 17855 4580 3109 0.68 
2 454 10.8 290 0.034 5.3 20.9 3.9 18355 4907 3346 0.68 
3 809 11.0 292 0.043 6.2 32.3 5.2 20089 5562 4175 0.75 
4 1163 12.0 305 0.031 7.0 19.7 2.8 13276 4108 2891 0.70 
5 1518 12.3 306 0.026 9.7 12.4 1.3 8176 2571 1717 0.67 
6 1872 29.5 481 0.034 14.9 75.4 5.1 10836 4116 2753 0.67 
7 2373 30.2 483 0.025 13.1 65.0 5.0 9135 3684 2341 0.64 
8 2873 31.7 501 0.022 10.8 59.3 5.5 10011 4032 2581 0.64 
9 3374 32.1 511 0.022 10.4 60.7 5.8 10532 4189 2689 0.64 
10 3812 32.4 514 0.017 20.5 57.1 2.8 4233 1721 835 0.49 
11 4250 32.6 516 0.016 22.3 69.3 3.1 3686 1484 705 0.47 
12 4688 32.8 520 0.021 24.3 76.3 3.1 4447 1771 864 0.49 
13 5168 33.6 520 0.024 18.9 96.4 5.1 6469 2488 1419 0.57 
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Appendix A4 continues 

River Code L  
[m] 

A  
[km2] 

Qp 
[m3/s] 

S  
[m/m] 

wbefore 
[m] 

wafter 
[m] 

wr  
[–] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
ℇth 

[MJ/m2] 
ℇr 

[–] 
Gravegnola 14 5647 33.8 522 0.010 76.7 190.9 2.5 651 259 25 0.10 

Mangiola 1 100 5.6 143 0.058 6.6 29.6 4.5 12326 4180 2406 0.58 
2 481 5.8 148 0.026 13.9 50.3 3.6 2734 938 229 0.24 
3 863 9.5 259 0.031 9.9 23.4 2.4 7868 2682 1112 0.41 
4 1174 12.8 319 0.028 15.0 56.9 3.8 5851 2021 798 0.40 
5 1544 13.6 331 0.036 8.4 35.2 4.2 14083 4846 3647 0.75 
6 1819 13.9 332 0.043 12.3 36.1 2.9 11315 4039 2303 0.57 
7 2094 14.0 332 0.008 7.0 23.7 3.4 3825 1349 425 0.32 
8 2435 14.3 333 0.053 7.6 32.7 4.3 23018 8034 6784 0.84 
9 2783 15.2 340 0.028 7.5 21.6 2.9 12576 4692 3756 0.80 
10 3173 16.1 342 0.046 6.8 26.4 3.9 22635 9037 8498 0.94 
11 3471 16.6 354 0.086 6.2 58.5 9.4 48063 19242 17503 0.91 
12 3728 16.8 363 0.074 6.0 49.3 8.2 44043 18492 16841 0.91 
13 3984 17.0 370 0.061 6.1 39.7 6.5 36501 15257 13797 0.90 
14 4321 17.7 376 0.039 7.2 72.1 10.0 20104 8489 6526 0.77 
15 4658 18.0 381 0.053 6.4 29.7 4.6 30657 13117 11784 0.90 
16 4984 18.6 385 0.044 5.7 22.7 3.9 28896 12682 11374 0.90 
17 5309 18.9 386 0.062 5.3 20.4 3.9 44709 19791 18060 0.91 
18 5709 21.1 397 0.005 6.4 46.5 7.2 2847 1275 399 0.31 
19 5965 21.2 397 0.051 8.3 50.1 6.0 23634 11280 10058 0.89 
20 6220 22.2 398 0.041 13.3 77.0 5.8 12128 6023 4503 0.75 
21 6617 23.1 402 0.022 21.4 75.5 3.5 4108 2054 876 0.43 
22 6999 23.7 403 0.024 15.7 82.9 5.3 6002 2983 1514 0.51 
23 7352 23.9 403 0.022 18.3 91.1 5.0 4659 2318 1071 0.46 
24 7704 24.5 403 0.026 41.1 110.9 2.7 2546 1323 467 0.35 
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Appendix A4 continues 

River Code L  
[m] 

A  
[km2] 

Qp 
[m3/s] 

S  
[m/m] 

wbefore 
[m] 

wafter 
[m] 

wr  
[–] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
ℇth 

[MJ/m2] 
ℇr 

[–] 
Mangiola 
 

25 8203 25.7 404 0.025 29.1 90.3 3.1 3462 1824 793 0.43 
26 8572 25.9 404 0.026 21.0 56.2 2.7 4848 2576 1269 0.49 
27 8941 26.1 405 0.018 31.3 64.3 2.1 2304 1253 408 0.33 

Osca 1 100 4.0 101 0.034 3.0 23.9 8.0 11123 3321 1704 0.51 
2 396 4.8 117 0.053 3.0 32.2 10.7 20048 5932 4586 0.77 
4 1212 5.5 124 0.050 3.0 19.2 6.4 20412 6170 4775 0.77 
5 1648 8.5 181 0.030 3.0 29.4 9.8 17925 5300 3908 0.74 
6 1978 10.5 205 0.030 3.0 31.7 10.6 20287 5997 4476 0.75 
7 2308 11.5 209 0.025 3.0 31.1 10.4 17263 5150 3648 0.71 
8 2703 11.7 211 0.042 3.0 22.7 7.6 28777 8552 6784 0.79 
9 3098 12.4 211 0.053 3.0 30.8 10.3 36696 10859 8741 0.80 
10 3856 14.4 231 0.028 3.0 18.6 6.2 20816 7128 5386 0.76 
11 4219 14.8 239 0.028 3.0 17.7 5.9 21561 7194 5841 0.81 
12 4582 15.1 244 0.055 4.3 16.9 3.9 30494 10184 8753 0.86 
13 4945 15.2 247 0.006 6.5 18.1 2.8 2368 772 163 0.21 
14 5102 17.3 262 0.028 6.5 24.1 3.7 11299 3685 1694 0.46 
15 5455 18.8 268 0.030 5.4 20.4 3.8 14389 4755 3046 0.64 
16 5790 19.6 274 0.023 4.9 19.4 4.0 12927 4193 2538 0.61 
17 6215 20.2 275 0.025 4.6 27.4 6.0 14754 4844 2873 0.59 
18 6639 20.6 275 0.035 9.5 42.7 4.5 10101 3345 1469 0.44 
19 7064 21.0 277 0.018 10.4 28.3 2.7 4739 1622 559 0.34 
20 7488 21.2 278 0.020 21.7 44.8 2.1 2551 869 188 0.22 
21 7785 21.5 278 0.014 37.5 65.4 1.7 1032 359 32 0.09 
22 8082 21.6 279 0.013 38.1 53.0 1.4 913 331 29 0.09 
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Appendix A4 continues 

River Code L  
[m] 

A  
[km2] 

Qp 
[m3/s] 

S  
[m/m] 

wbefore 
[m] 

wafter 
[m] 

wr  
[–] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
ℇth 

[MJ/m2] 
ℇr 

[–] 
Geriola 1 100 0.7 16 0.206 5.6 14.0 2.5 5721 1591 585 0.37 

2 605 2.7 54 0.133 6.6 21.0 3.2 10723 3118 1635 0.52 
3 1133 3.3 63 0.104 6.5 21.5 3.3 9826 2853 1251 0.44 
4 1518 3.6 67 0.078 8.6 19.0 2.2 5967 1807 691 0.38 
5 1904 3.9 70 0.084 8.7 34.1 3.9 6611 1903 738 0.39 
6 2379 5.0 86 0.073 8.9 40.0 4.5 6934 1981 774 0.39 
7 2855 5.7 95 0.074 7.4 36.4 4.9 9209 2634 1142 0.43 
8 3486 6.4 102 0.062 8.0 48.7 6.1 7802 2197 873 0.40 
9 3948 7.6 117 0.042 12.1 53.4 4.4 3988 1163 348 0.30 
10 4494 8.0 119 0.041 9.7 47.6 4.9 4860 1407 477 0.34 
11 5041 8.2 120 0.030 18.8 55.3 2.9 1899 582 81 0.14 
12 5525 8.4 124 0.040 18.3 47.1 2.6 2677 906 234 0.26 

Posada 1 100 44.2 620 0.033 17.6 37.7 2.1 11396 2427 1224 0.50 
2 951 112.7 1214 0.035 14.6 47.3 3.2 28539 6244 3660 0.59 
3 1802 113.5 1264 0.020 13.7 50.1 3.7 18096 3857 2015 0.52 
4 2653 114.4 1296 0.022 15.2 55.1 3.6 18395 3888 2033 0.52 
5 3504 114.9 1303 0.018 15.9 41.2 2.6 14469 3077 1583 0.51 
6 4341 116.2 1315 0.016 16.2 50.2 3.1 12744 2680 1366 0.51 
7 5163 117.4 1327 0.017 14.1 49.2 3.5 15690 3225 1667 0.52 
8 5985 118.4 1338 0.011 17.8 47.5 2.7 8114 1634 789 0.48 
9 6821 166.0 1406 0.006 15.1 48 3.2 5481 1472 632 0.43 
10 7672 166.4 1418 0.010 13.8 62.6 4.5 10081 2570 1305 0.51 
11 8523 167.8 1423 0.001 29.3 92.2 3.1 476 120 4 0.03 
12 9374 168.5 1454 0.012 14.8 70.9 4.8 11562 2678 1365 0.51 
13 10273 180.7 1475 0.006 17.6 108.3 6.2 4932 1163 484 0.42 
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Appendix A4 continues 

River Code L  
[m] 

A  
[km2] 

Qp 
[m3/s] 

S  
[m/m] 

wbefore 
[m] 

wafter 
[m] 

wr  
[–] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
ℇth 

[MJ/m2] 
ℇr 

[–] 
Posada 14 11266 181.5 1509 0.008 15.1 64.5 4.3 7844 1802 794 0.44 

15 12305 200.8 1544 0.009 15.3 53.6 3.5 8909 2191 1094 0.50 
16 13256 205.1 1590 0.011 13.2 45 3.4 13001 3747 1947 0.52 
17 14119 207.0 1661 0.004 15.7 72.1 4.6 4152 1160 480 0.41 
18 14982 208.6 1672 0.012 15.8 68.1 4.3 12456 3520 1824 0.52 
19 15846 210.9 1691 0.009 18.1 52.2 2.9 8248 2358 1182 0.50 
20 16709 211.2 1700 0.004 13.3 54.1 4.1 5014 1419 605 0.43 
21 17573 237.4 1972 0.005 28.2 59.5 2.1 3431 1002 435 0.43 
22 18457 542.1 3636 0.006 15.1 83.7 5.5 14174 5006 3162 0.63 
23 19382 542.7 3648 0.006 18.8 98.2 5.2 11421 3949 2253 0.57 
24 20456 546.8 3661 0.001 19.9 111.1 5.6 1805 608 201 0.33 
25 21507 553.4 3680 0.006 24 132.9 5.5 9025 2956 1654 0.56 
26 22462 554.1 3692 0.002 38.2 114.5 3.0 1896 632 207 0.33 
27 23448 559.2 3711 0.008 82.3 101.2 1.2 3539 1316 708 0.54 
28 24409 560.7 3724 0.001 141 156.5 1.1 259 98 0 0.00 

Mannu di 
Bitti 

1 100 204.3 1809 0.002 20 52.1 2.6 1775 646 193 0.30 
2 1222 205.2 1858 0.009 19.2 49 2.6 8546 2741 1662 0.61 
3 2217 217.5 1937 0.007 14.2 50.4 3.5 9367 2797 1698 0.61 
4 3208 223.7 1944 0.007 9.3 43.4 4.7 14357 4335 2723 0.63 
5 4323 224.0 1967 0.008 14.7 47.8 3.3 10503 3257 2004 0.62 
6 5438 227.4 1979 0.006 19.8 45.2 2.3 5884 2363 1410 0.60 
7 6553 228.6 1983 0.004 18.9 48.7 2.6 4116 1623 845 0.52 
8 7587 229.5 1988 0.010 15.7 63.4 4.0 12423 4708 2968 0.63 
9 8541 230.5 1993 0.010 22.1 97.7 4.4 8847 3293 2030 0.62 
10 9488 284.0 2072 0.017 12.2 76.1 6.2 28320 10391 6743 0.65 
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Appendix A4 continues 

River Code L  
[m] 

A  
[km2] 

Qp 
[m3/s] 

S  
[m/m] 

wbefore 
[m] 

wafter 
[m] 

wr  
[–] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
ℇth 

[MJ/m2] 
ℇr 

[–] 
Mannu di 
Bitti 

11 10357 292.2 2088 0.010 12.5 69.5 5.6 16385 6057 3862 0.64 
12 11264 292.6 2093 0.001 21.5 49.7 2.3 955 364 66 0.18 
13 12177 293.6 2121 0.004 26.8 54.3 2.0 3105 1174 570 0.49 
14 13167 294.7 2121 0.008 27.1 48.2 1.8 6143 2344 1387 0.59 
15 14159 299.1 2149 0.006 15 28.5 1.9 8434 3177 2101 0.66 
16 14975 299.7 2187 0.003 15.5 59 3.8 4153 1288 642 0.50 
17 15921 300.8 2193 0.003 30.6 74.3 2.4 2109 698 261 0.37 
18 16999 301.9 2200 0.006 17.9 59.1 3.3 7234 2293 1244 0.54 
19 18077 302.4 2215 0.002 17.6 40.9 2.3 2470 822 361 0.44 
20 19155 302.9 2221 0.001 16.9 47.2 2.8 1289 410 101 0.25 

Lierza 1 100 1.45 40.3 0.100 – 4.4 – 8978 550 411 0.75 
2 130 1.46 40.6 0.066 – 5.7 – 4614 282 154 0.55 
3 155 1.47 41.0 0.045 – 4.1 – 4411 269 146 0.54 
4 171 1.47 41.0 0.070 – 9.1 – 3097 189 80 0.42 
5 206 1.48 41.2 0.110 – 8.2 – 5416 330 185 0.56 
6 260 3.03 64.9 0.045 – 4.1 – 6989 555 415 0.75 
7 292 3.04 65.2 0.054 – 9.6 – 3596 285 170 0.60 
8 326 3.06 65.6 0.052 – 5 – 6693 530 395 0.74 
9 439 3.27 72.0 0.120 – 6 – 14120 1095 1037 0.95 
10 575 3.31 72.3 0.049 – 6.4 – 5428 423 267 0.63 
11 664 3.41 74.9 0.070 – 8.2 – 6275 487 335 0.69 
12 680 3.44 75.5 0.046 – 5.1 – 6683 520 386 0.74 
13 755 3.47 75.8 0.037 – 8.2 – 3355 262 153 0.59 
14 833 3.49 76.0 0.085 – 8.7 – 7281 570 427 0.75 
15 883 4.18 91.7 0.200 – 8.2 – 21942 1687 1628 0.97 



 

 

 
Stream power and geomorphic effects of flash floods                                                                                                                                   152 
 

Appendix A4 continues 

River Code L  
[m] 

A  
[km2] 

Qp 
[m3/s] 

S  
[m/m] 

wbefore 
[m] 

wafter 
[m] 

wr  
[–] 

ω 
[W/m2] 

ℇe 

[MJ/m2] 
ℇth 

[MJ/m2] 
ℇr 

[–] 
Lierza 16 952 4.19 91.7 0.095 – 6.9 – 12385 954 895 0.94 

17 997 4.23 92.4 0.050 – 9.4 – 4820 372 231 0.62 
18 1159 4.28 92.6 0.020 – 6.9 – 2633 205 105 0.51 
19 1257 4.29 91.9 0.180 – 11.8 – 13758 1080 1022 0.95 
20 1370 7.23 127.6 0.130 – 4.9 – 33208 2713 2655 0.98 
21 1560 7.42 130.9 0.140 – 9.5 – 18922 1528 1470 0.96 
22 1616 7.44 131.3 0.220 – 9.8 – 28918 2330 2272 0.97 
23 1669 7.45 131.6 0.050 – 10.5 – 6149 495 365 0.74 

 


