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Abstract
This dissertation is dedicated to the study of three dimensional transport in toroidal
magnetic configurations induced by the presence of the magnetic islands, which break
the nested flux surfaces and make the magnetic field intrinsically three dimensional.
The methodology applied is based on defining a certain symmetry so that the trans-
port study could be performed in the approximation of 1.5 dimensions. The work
has been carried out on both RFX-mod Reversed Field Pinch (RFP) and the TJ-II
stellarator.
RFX-mod is the largest RFP in the world. The RFP configuration is sustained by the
so-called dynamo mechanism, which is related to the non-linear interactions among
many resonating MHD tearing modes. The transport study on RFX-mod has been
performed on the three sub-states identified in the Quasi-Single Helicity regime, that
features one single mode (dominant mode) dominating the mode spectrum, while the
rest of the modes (secondary modes) remain at low amplitudes. In this regime proper
flux coordinates can be identified considering an equilibrium built on the underlying
axi-symmetric magnetic field plus the contribution from the dominant mode. In this
way, a 1.5 dimensional approximation transport study is possible by averaging dif-
ferent physical quantities over the flux surfaces. The transport study is focused on
the bean-shaped region where nearly conserved flux surfaces have been identified, on
which the formation of steep thermal gradients is observed, interpreted as electron
Internal Transport Barrier (eITB). Starting from experimental measurements, both
the thermal gradients and the thermal diffusivity have been calculated and their be-
haviors have been discussed within the framework of stochastic transport. Finally,
the energy confinement time has also been evaluated, adopting an improved method
with respect to past studies, and the results show a significant improvement.
The transport study on TJ-II stellarator focuses on the calculation of the enhanced
non-ambipolar radial electric field due to the presence of the magnetic islands. The
main idea of the study is that the magnetic islands could modify the toroidal plasma
viscosity, giving rise to an enhancement on the non-ambipolar particle fluxes. This
work started with the study of the Neoclassical Toroidal Viscosity developed by K. C.
Shaing for tokamak configurations, which ideally has a toroidal symmetry. Applying
this theory, the particle flux can be expressed as a function of a monotonic radial
coordinate and thus the transport study could be performed with a 1.5-dimensional
approach. A moderate modification on the original theory has been made and the
corresponding justification is presented, together with the detailed study in both
tokamak and TJ-II configurations. The results show that an ’extra’ local radial elec-
tric field is indeed induced by the magnetic islands in TJ-II plasmas, which could play
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a positive role in the plasma confinement properties by affecting the L-H transition,
which is believed to be strongly linked to the shear of EEE ×BBB flow.



Sommario
Questo lavoro di tesi è dedicato allo studio degli effetti tridimensionali sul trasporto
indotti dalla presenza di isole magnetiche in configurazioni toroidali per il confi-
namento magnetico. Le isole magnetiche producono la rottura delle superfici mag-
netiche annidate dando al campo magnetico caratteristiche intrinsecamente tridimen-
sionali. La metodologia pplicata si base sulla possibilità di definire un certo livello
di simmetria in maniera tale da poter studiare il trasporto nell’approssimazione di
1.5 dimensioni. Lo studio è stato fatto sul Reversed Field Pinch (RFP) RFX-mod e
sullo stellarator TJ-II.
RFX-mod è il più grande RFP al mondo. La configurazione RFP è sostenuta dal
meccanismo della dinamo, che è legato all’interazione non-lineare dei molti modi tear-
ing risonanti. Lo studio del trasporto in RFX-mod è stato eseguito sui tre sotto-stati
identificati nel regime a Quasi singola Elicità, il quale è caratterizzato da un singolo
modo (modo dominante) che risulta dominante nello spettro dei modi, mentre gli
altri modi (modi secondari) mantengono un’ampiezza ridotta. In questo regime,
sono identificabile delle coordinate di flusso magnetico basate sulla combinazione
dell’equilibrio assial-simmetrico sottostante con il contributo del modo dominante.
In questa modo un approccio 1.5 dimensionale allo studio del trasporto è possibile
considerando la media sulle superfici di flusso delle varie quantità fisiche. Lo studio
del trasporto è riferito alla regione a forma di fagiolo dove è possibile identificare
delle superfici di flusso quasi conservate dove si osserva la formazione di ripidi gra-
dienti termici, interpretabili come barriere interne di trasporto elettronico (eITB).
A partire dalle misure sperimentali, sono stati calcolati sia i gradienti termici che
il coefficiente di diffusione termica e il loro andamento è stato discusso nell’ambito
del trasporto stocastico. Alla fine è stato anche calcolato il tempo di confinamento
dell’energia, utilizzando un metodo migliorato rispetto a quanto fatto in passato,
dimostrando un significativo miglioramento delle prestazioni del plasma.
Lo studio del trasporto nello stellarator TJ-II si è concentrato nel calcolo dell’aumento
del campo elettrico non-ambipolare dovuto alla presenza di isole magnetiche. L’idea
alla base dello studio si basa sul fatto che un’isola magnetica potrebbe modificare la
viscosità toroidale del plasma, aumentando in questo modo il flusso non-ambipolare
delle particelle. Lo studio è partito dall’analisi del modello neoclassico di viscosità
toroidale sviluppato da K. C. Shaing per la configurazione tokamak, che idealmente
possiede una simmetria toroidale. Applicando questa teoria, il flusso di particelle può
essere descritto in funzione di una coordinata radiale monotona e quindi lo studio del
trasporto può essere affrontato nell’approssimazione 1.5 dimensionale. E’ stato nec-
essario considerare una parziale modifica della teoria originale la cui giustificazione
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viene presentata assieme allo studio dettagliato sia nella configurazione tokamak che
nello stellarator TJ-II. I risultati mostrano che un campo elettrico radiale ’aggiuntivo’
è effettivamente indotto da un’isola magnetica nei plasmi di TJ-II. Questo potrebbe
giocare un ruolo positivo nelle proprietà di confinamento del plasma, influenzando la
transizione L-H, che si ritiene sia fortemente legata allo shear del moto EEE ×BBB.
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1Toroidal Magnetic Confinement

The human civilization tends to grow exponentially within the past sev-
eral decades, at the same pace of energy usage efficiency and information
transportation speed. This brings us the dilemma between the dramatically
increased energy demand and the limited energy storage. Hence, efforts
have been made to find new energy sources, among which, the thermal
nuclear fusion is considered to be most promising. For the past 60 years,
great knowledge on fusion plasmas has been gained, both in plasma physics
and fusion technologies. This chapter describes the current energy issue
as well as a brief introduction on the toroidal magnetic configurations.
Also briefly, both ideal and resistive MHD theories are presented to de-
scribe the equilibrium conditions. The dynamo mechanism in reversed
field pinches is discussed and finally, descriptions on both RFX-mod and
TJ-II stellarator are presented.

1.1 Energy Issue and Thermal Nuclear Fusion
Looking back to the history of human civilization, it is obvious that it is the effi-
ciency of energy consumption and the efficiency of information transportation that
determine the level of our civilizations. With fast development of our society, the
usage of energy increases dramatically, as one could see from Figure 1.1, in which
the time trace of energy consumption is listed from year 1965 to year 2015. The
total energy consumption over this period increased up to 3.5 times and it is going
to increase more in the following decades. The total energy we could use, however, is
finite. Nowadays, we are strongly relying on the so-called traditional energy sources
like oil, gas and coal, which are, unfortunately nonrenewable meaning that once they
are consumed, there will be no more left (or it will take too long to recover). The
increasing needs for energy are conflicting with the fact of finite energy storage and
this brings us a very urgent issue: finding a sustainable way for our civilization.
Among countless solutions proposed, the most reasonable one is to find new energy
sources and this has been put into practice, as one could see in Figure 1.1. There
are many new energy sources being explored and used currently but the percentage
still remains low compared with the traditional ones.
Among those new energy sources, the thermal nuclear fusion is considered to be
most promising in long time term. There are several ’obvious’ advantages of nuclear
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Figure 1.1: World wide energy use between year 1965 and 2015. The data is from
British Petroleum.

fusion compared with other energy sources, given the fact that the fuels for fusion is
hydrogen and its isotopes. First of all, the fuels for nuclear fusion are nearly ’beyond
limit’ in the foreseen future. There is a huge amount of deuterium (D), one of the
isotopes of element hydrogen (H), in sea water and tritium (T), another isotope of
H, is believed that it can be self-sustained during nuclear fusion reactions. Secondly,
nuclear fusion brings no CO2 emission, which is considered to be the main reason
responsible for green house effect. Thirdly, there is hardly any danger compared
with nuclear fission.
The main principle of energy production from nuclear fusion is to find a way to ”fuse”
two nuclei into one and during this process, there should be a mass change ∆m with
∆m > 0. Through this process, certain amount of energy will be released according
to Einstein’s equation: E = ∆mc2 with E the released energy and c the speed of
light. This huge amount of energy per unit of fuel weight, compared with other en-
ergy sources, can be afterwards transformed into electricity for further use. In order
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to achieve nuclear fusion, particles must overcome the repelling Coulomb force [1]
which raises the requirement of seeking a way to heat particles up to a sufficiently
high energy within sufficiently long time to compensate the energy dispassion. With
such high energy, particles like hydrogen, deuterium, etc. will stay in excited state in
which the electrons are no longer bounded to the nucleus. This new state of matter
is named plasma, the fourth state of matter after solid, liquid and gas.
Fusion is one of the most efficient ”power plant” in our universe. Our energy source,
the sun, is working as a nuclear fusion power plant. The nuclei are pulled together
by the huge gravitational force due to the huge mass the sun has. This naturally
happened fusion reaction, unfortunately cannot be adopted on earth because there
is no way to create such huge amount of mass and control its behavior. There are
several alternative ways under consideration for the purpose of nuclear fusion energy
production. The first one, inertial fusion, is the one adopted by National Ignition
Facility (NIF) [2], located in the USA. It is designed to achieves nuclear fusion by
means of giving particles enough energy within very short time, thanks to the 192
high power lasers. The simultaneous high power lasers arriving at the fuel target,
which is a near perfect sphere, can generate high pressure and push the fuel sphere
inwards. During this process, the fuel particles reach fusion condition within a time
so short that they can not be repelled from each other and thus fusion reaction takes
place. The disadvantage of such fusion method is that it is difficult to keep a long-
time steady state operation, which is required by commercial use.
A more intuitive way, given that the fuels are made of charged particles, is to use
magnetic field to confine the plasmas. The concept of magnetic confinement for fu-
sion research is the first fusion idea proposed by Russian scientists and now it is the
most popular way of fusion research worldwide. The condition of achieving fusion is
believed to be related to three plasma parameters: plasma density n(m−3), plasma
temperature Te(KeV ) and energy confinement time τE(s):

nTeτE > 5× 1021 m−3 ·KeV · s (1.1)

This condition combines three plasma parameters and it was firstly derived by John
D. Lawson [3]. The energy confinement time is defined as the ratio between internal
energy (U) and input power (P):

τE = U/P (1.2)

From Equation 1.1 it is clear to see that the requirement of nuclear fusion is to
sustain sufficiently large plasma density at high temperature within sufficiently long
time.
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Figure 1.2: Reaction cross section of three typical fusion reactions: D-D, D-T and
D-H3

e . This figure is generated using the formulas presented in Reference [4].

In principle, any two elements before Fe could have fusion reaction under proper
conditions [5]. However, the energy needed to heat particles to reach fusion conditions
is quite different. Hence, it is reasonable to start with the easiest one, i.e. the one
with the biggest reaction cross-section. Figure 1.2 shows the cross section of three
different fusion reactions [6]:

D +D → H3
e (0.82MeV ) + n(2.45MeV )

D + T → H4
e (3.5MeV ) + n(14.1MeV )

D +H3
e → H4

e (3.6MeV ) + p(14.7MeV )

And it is clear that the D − T reaction has the biggest reaction cross-section at a
relatively low temperature (∼ 50keV ). Moreover, one of the products from D − T
reaction is helium (He) with 3.5 MeV energy, which is considered to be the critical
heating source for self-sustained fusion reaction through the so-called α (H4

e ) heating
process [7].
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1.2 Toroidal Magnetic Configurations

There have been several magnetic configurations proposed and studied for the re-
search of nuclear fusion with the help of magnetic confinement. They are, depending
on the configurations, linear devices and toroidal devices. Linear devices are not
suitable for fusion due to end loss issue [8]. By intuition, a toroidal devices without
open ends could solve this problem. However, a toroidal device with only toroidal
magnetic field still suffers bad plasma confinement due to the particle drifts induced
by the curvature and gradient of the magnetic field [6, 8]. In order to overcome this
issue, a rotational transform ι is introduced to the design of toroidal configurations
and thus the magnetic field becomes helical windings. The rotational transform mea-
sures the winding properties of the field lines.
There are mainly two types of toroidal magnetic configurations categorized by how
the magnetic field is generated. Tokamaks [6] and Reversed Field Pinches (RFPs)
[9], as the magnetic field is generated by both external coils and the plasma current,
belong to the so-called pinch family. The toroidal field in tokamaks is generated by
external coils and the poloidal component is generated by the plasma current, which
is induced by the primary transformer [10]. In advanced tokamak scenario, however,
most of the poloidal field component is generated by the so-called ’bootstrap’ current
which is induced by the density gradient [11, 12]. This concept has been realized
in JT-60U tokamak, showing that the bootstrap current fraction is up to 80% [13].
Nevertheless, the disadvantage for tokamak configuration is that it suffers a limita-
tion of plasma current due to plasma instabilities [14]. Consequently, extra heating
methods besides Ohmic heating are needed for plasma fusion in tokamaks. RFPs,
however, can sustain very high plasma currents and this makes it to be considered a
potential fusion device with only Ohmic heating. On the other hand, the generation
of plasma current needs a time variation of magnetic field which is sustained by the
primary transformer. This time variation makes both tokamaks and RFPs, on some
level, not in steady states. To overcome this problem, a toroidal configuration which
all the field components are generated by external coils is introduced. This device
is the so-called stellarator [15]. Figure 1.3 shows a sketch of these two families. The
left graph is a sketch of stellarator and the right one is a sketch of pinch. In the left
graph, the red coils aligned toroidally are the toroidal field coils and the green helical
ones are helical field coils. In the right graph, the red cylinder in the device center is
the primary transformer, responsible for the production of the plasma current. The
red coils aligned toroidally are the toroidal field coils and the two green ones on the
top and bottom of the device are the vertical stabilization coils. The stabilization
coils are introduced because, due to the existence of Shafranov shift [16] in toroidal
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Figure 1.3: Sketch of two types of toroidal magnetic configurations. The left figure
represents stellarator family and the right one represents pinch family. The stel-
larators have complicated coil designs while coils used in pinch family have simpler
shape.

devices, the plasma position needs to be optimized in order to prevent the plasma
from touching the first wall. The stellarator shows a much more complicated mag-
netic coil design than one in pinch family. Consequently, the manufacture process
for magnetic coils is more complex for stellarators than for pinches. On the other
hand, due to lack of plasma current in stellarators, it is almost free of disruptions
[17].
The magnetic field designed to confine plasmas in a toroidal configuration contains
two components: the poloidal component and the toroidal component. The corre-
sponding coordinate system to describe this toroidal system is the so-called toroidal
coordinate system (r,θ,ϕ), defined in Figure 1.4: r is the radial coordinate, θ and ϕ
are the poloidal and toroidal angles, respectively. The two components of the mag-
netic field are linked by the so-called safety factor q. In cylindrical approximation,
it is defined as:

q(r) = − r

R0

Bϕ(r)

Bθ(r)
(1.3)

The safety factor is introduced to describe the winding of magnetic field lines: how
many poloidal turns a field line completes before it completes one toroidal circle. Its
inverse quantity is the rotational transform: ι/2π = 1/q.
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φ

Z

r

RR0

a

θ

Figure 1.4: A sketch of magnetic coordinate. R0 is the major radius, a is the minor
radius, r is the radial coordinate, θ is the poloidal angle and ϕ is the toroidal angle.
The magnetic surfaces share one axis at which r = 0.

1.3 Ideal MHD
The goal for energy production from fusion reactions is to keep the plasmas in fu-
sion reaction state for a long time, i.e., the system should be in steady state. On
the purpose of understanding the physics of fusion plasmas, one need to study the
equilibrium state of fusion plasmas. A large variety of plasma properties, such as
the magnetic equilibria or several instabilities can be described by a fluid model
called Magnetohydrodynamics (MHD) [18]. It contains the fluid equations as well
as Maxwell equations. The fluid equations can be derived from Maxwell-Vlasov
equation, which is kinetic description of plasmas, by taking different order of veloc-
ity moments for distribution functions. The ideal MHD equations, with the main
assumption that plasmas have zero resistivity, are:

Fluid Equations:


Mass ∂ρ/∂t+∇ · (ρuuu) = 0

Momentum ρ(∂uuu/∂t+ uuu · ∇uuu) = −∇P + JJJ ×BBB

Energy d

dt
(p/ργ) = 0
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Maxwell Equations:



Gauss′s Law ∇ ·BBB = 0

Gauss′s Law ∇ ·EEE = q/ϵ0

Ampere′s Law ∇×BBB = µ0JJJ

Faraday′s Law ∂BBB/∂t = −∇×EEE

Ohm′s Law EEE + uuu×BBB = 0

Where ρ is the mass density, uuu is the flow velocity, P is the pressure, JJJ is the current
density, BBB is the magnetic field, EEE is the electric field, q is the charge of charged
particles, ϵ0 is the vacuum permittivity and µ0 is the vacuum permeability. The
basic assumptions used in ideal MHD equations are:

• Quasi-neutrality, electron and ion density ne
∼= ni.

• Plasma scale length ≫ Larmor radius. This condition indicates that plasmas
contain large amount of charged particles.

• Typical frequency ≪ Cyclotron frequency. This condition indicates the char-
acteristic time of the plasma system is much longer than the characteristic time
of one charged particle.

• Zero plasma resistivity and viscosity

• No trapped particles (no neoclassical effects)

Here the Larmor radius is the gyration radius of charged particles along a field line
and it is given as ρ = mv⊥/q|B| with m the particle mass, v⊥ the velocity component
perpendicular to the field line, q is the charge of particles and B is the modulus of the
magnetic field. In equilibrium state, which is required by steadily operated fusion
devices, we have: ∂/∂t = 0 and uuu = 0. Thus the equilibrium condition could be
easily obtained from the 8 equations mentioned above:

JJJ ×BBB = ∇P (1.4)

Equation 1.4 shows that a plasma equilibrium is sustained by the force balance
between JJJ × BBB and the pressure gradient ∇P . Moreover, it also shows that both
plasma current and the magnetic field lies on a surface defined by constant pressure:

JJJ · ∇P = 0 BBB · ∇P = 0 (1.5)

This can be easily proved by applying dot product of vector JJJ andBBB on Equation 1.4
respectively. These surfaces with constant pressure are the so-called flux surfaces.
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Figure 1.5: A sketch of flux surfaces, field lines (black helical) and the gyration of
a charged particle along one magnetic field line (the black half spring in the center,
not in scale with the torus) is presented.

Charged particles which follow the field lines are thus bonded on the surfaces and the
radial energy or particle loss are significantly reduced and the only loss is due to the
collisions among charged particles. The field lines are winding on the flux surfaces in
the helical direction. A sketch of flux surfaces, helical field line as well as the gyration
of a charged particle along one magnetic field line is shown in Figure 1.5. The yellow
torus represents the flux surfaces and the black helical lines represent the magnetic
field lines which lie on the surfaces. The small winding along the center field line
represents the gyration motion of a charged particle. Note that the gyration is not
in the correct scale.
The shape of the magnetic surfaces varies with the magnetic field conditions and
it always has the Shafranov shift due to the toroidicity of the configurations. The
Shafranov shift is induced by the toroidicity in the sense that on one flux surface,
the area in high field side SH is smaller than in low field side SL and thus a net
force towards low field side is generated: P (SL − SH). Figure 1.6 shows a sketch of
the Shafranov shift in circular plasmas. The black circle is the vacuum chamber and
the red circle represents the equilibrium plasma cross-section. The shift between the
vacuum chamber center and the plasma equilibrium center ∆(r) is the Shafranov
shift. This simplified model shows that all the flux surfaces are shifted towards low
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φ

Z

R

a
r

∆(r)R0

Figure 1.6: A sketch of Shafranov shift in a circular plasma with R0 the major radius,
a the minor radius and ϕ the toroidal direction. The black circle is the vacuum vessel
and the red dashed circle indicates a flux surface shifted outwards. The quantity ∆r
is the Shafranov shift and it usually is a function of r.

field side and since in general the Shafranov shift is a function of r, the shift value
is different for each flux surfaces.
The existence of Shafranov shift leads to different metrics compared to the concentric
circle configuration and this brings complexity in transforming between Cartesian
coordinate and the flux coordinate. From Equation 1.4 we know that the plasma
pressure, which is the product of both plasma density n and plasma temperature T ,
P = knT , is a function of flux surfaces with k the Boltzmann constant. In principle
the plasma density and temperature are not necessarily functions of flux surfaces.
Nevertheless, experimental observations have shown that the plasma density and
temperature can be considered as functions of flux surfaces. Thus, the use of flux
coordinates allows one write simpler equations (1.5 dimensional, meaning quantities
averaged over the poloidal angle) to study various phenomena such as plasma stability
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and transport process. Moreover, things could get more complicated if the topology
of the magnetic field is modified further by other phenomena.

1.4 Resistive MHD
In the framework of ideal MHD, the main assumption is that the plasma resistivity is
zero and the following consequence is that the plasma topology remains unchanged.
However, even a small, non-zero plasma resistivity could change the field topology
and this introduces further complexity into the metrics. The theory considering a
finite plasma resistivity is called resistive MHD [19, 20]. Here we consider the plasma
with a non-zero resistivity η. The corresponding Ohm’s law is:

EEE + vvv ×BBB = ηJJJ (1.6)

Together with Faraday’s Law and ∇×BBB = µ0JJJ , using the vector relation ∇×∇×A =
∇(∇ · A)−∇2A, the induction equation is obtained:

∂BBB/∂t = (η/µ0)∇2BBB +∇× (vvv ×BBB) (1.7)

The dimensionless form of induction equation is thus:

∂BBB/∂t̂ = (1/Rm)∇̂2BBB + ∇̂ × (v̂vv ×BBB) (1.8)

Where t̂ = tVA/L, ∇̂ = L∇, v̂vv = vvv/VA, L is the typical plasma length and VA is
the Alfvén wave velocity [21]. Rm = µLVA/η is the so-called Reynolds number and
it is also referred to as the Lundquist number S = τR/τA where τR ∼ µ0L

2/η is
the characteristics resistive diffusion time and τA ∼ L/VA is the Alfvén time. The
Lundquist number is a quantity indicating how far the plasma is from the ideal MHD,
i.e., when S → ∞, the plasma is close to ideal MHD. On the right side of induction
equation, there are two parts. When the resistivity η → 0, the induction equation
becomes to the form of ideal MHD. In such condition, there is no relative movements
between the plasma and the magnetic field and the plasma is ’frozen’ in the magnetic
field. On the other hand, when (1/Rm)∇̂2BBB > ∇̂ × (v̂vv ×BBB), the induction equation
becomes a diffusion equation of the field lines.
One of the most important result from resistive MHD is the so-called tearing mode.
The magnetic perturbations, in general tend to bend the magnetic field lines. This
bending effect increases the magnetic field energy. This is true as long as the wave
vector of the perturbation kkk is not perpendicular to the field lines: kkk · BBB ̸= 0. In
such conditions, the magnetic perturbations are damped and the equilibrium of the
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Fig. 5.2. Magnetic islands.

think of the field lines as stretched strings; the tension in them has been reduced
because breaking and reconnecting allows them to contract around the island axes.
The stored (potential) energy in the final configuration is less than in the original
configuration. The null-points of the magnetic field define O-points, at the axes of
the magnetic islands, and X-points, at the intersections of the separatrix.

Some dissipation is essential for any system to attain a lower energy state from
its initial state by a relaxation process and Taylor (1974) provided a mathematical
basis for this by applying a modification of Woltjer’s theorem to plasmas with small
but finite resistivity. As discussed in Section 4.3.4, Woltjer showed that the helicity,
K =

∫

V A · B dτ , of an ideal plasma is invariant when the integral is taken over
the volume V of a closed system. It follows that K is conserved for every volume
enclosed by a flux surface, i.e. every infinitesimal flux tube. This amounts to an
infinite set of integral constraints ensuring a one-to-one correspondence between
initial and final flux surfaces. Clearly, this no longer holds in a plasma with finite
resistivity since the continual breaking and reconnecting of field lines destroys the
identity of infinitesimal flux tubes. Taylor’s hypothesis states that only the helicity
associated with the total volume of the plasma is conserved. This replaces an
infinite set of constraints by a single constraint and allows the system access to
lower energy states which in ideal MHD are forbidden. It means, also, that the final
state of the plasma is largely independent of its initial conditions. Indeed a feature
of certain toroidal discharges is that after an initial, violently unstable phase, the
discharge relaxes to a grossly stable, quiescent state which depends only on a few
external parameters and not on the history of the discharge. The characteristics
of reversed field pinches, in particular, may be interpreted on the basis of Taylor’s
hypothesis. By contrast, relaxation does not play such a prominent role in tokamaks
on account of the strong toroidal magnetic field.

Assuming that the plasma is contained by perfectly conducting walls the only
flux surface that retains its identity is the plasma boundary. Taylor argued, there-

Figure 1.7: A typical magnetic island is presented. The field lines reconnect and the
topology of magnetic field changes. This figure is from Reference [22].

plasma is thus stable against such perturbations. However, this stabilization effect
vanishes when kkk · BBB = 0. In cylindrical approximation, kkk ≡ kkk(r) = (kr, kθ, kϕ).
With the wave length in poloidal direction λθ = 2πr/m and in toroidal direction
λϕ = 2πR/n, the wave vector in these two directions are: kθ = m/r and kϕ = n/R.
Hence, the unstable condition is:

kkk ·BBB =
m

r
Bθ +

n

R
Bϕ = 0 (1.9)

Recall the definition of safety factor q, Equation 1.9 can be written as:

q(r) = − r

R

Bϕ

Bθ

= −m
n

(1.10)

Now we arrive at a critical point that the unstable positions are those where the
mode number m and n are rational numbers and these unstable modes are the so-
called tearing modes. The result of tearing mode is that it modifies the magnetic
topology through reconnection process of magnetic field lines. Figure 1.7 shows
a typical magnetic island after reconnection of field lines. The reconnection of field
lines occurs in the resonant position and the topology of magnetic field thus changed.
The existence of magnetic islands distorts the nested flux surfaces and gives rise to
the three dimensional properties of the transport process in fusion plasmas.
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1.5 Equilibrium in RFPs: the Dynamo
Mechanism

In a typical RFP discharge, the poloidal component of the magnetic field (Bθ) is
comparable with the toroidal component (Bϕ) in their amplitudes and the poloidal
component Bθ dominates in the outer region where Bϕ reaches zero value and changes
sign. This magnetic configuration is quite different from the tokamak where the
toroidal component Bϕ is much larger than poloidal component Bθ. Moreover, the
safety factor profile in RFPs features q < 1 and its sign changes in the edge. A
typical magnetic field profile with the poloidal and toroidal components is shown in
Figure 1.8a, plotted as a function of the radius r normalized by the minor radius
a of the poloidal cross-section. The corresponding q profile in RFX-mod is shown
in Figure 1.8b. This q profile leads to the possibility of many MHD tearing modes,
which are represented by the black dots shown in Figure 1.8b. In the plasma cen-
ter, many tearing modes resonant and the magnetic islands overlap with each other,
breaking the nested flux surfaces, leading to a degradation of plasma confinement
with increased transport properties.
The edge reversal of toroidal magnetic field is a self-organized behavior, by means
of the so-called dynamo mechanism which is related to the non-linear interactions
of many MHD tearing modes [23]. To be more specific, the non-linear interactions
among resonant modes generate a non-zero part between velocity and magnetic per-
turbations:

⟨
ṽvv × b̃bb

⟩
in Ohm’s law with symbol ⟨· · · ⟩ meaning averaged value, play-

ing a role of effective electric field. The non-zero
⟨
ṽvv × b̃bb

⟩
connects the toroidal and

poloidal plasma current and as a consequence, the toroidal energy is converted into
poloidal energy through the dynamo mechanism and part of the toroidal magnetic
field is thus generated by the toroidal current.
A physical picture of the dynamo mechanism is presented in order to get a better un-
derstanding. A RFP discharge is presented in Figure 1.9, with the magnetic (upper
graph) and plasma current (lower graph) profiles along the normalized minor radius
r/a. The vertical dashed line represents the radial location of the reversal point,
where the toroidal field Bϕ reaches zero. It is clear to see that at the reversal point,
the value of the poloidal current JJJθ is not zero. By checking the induction equation
and Ohm’s law in the reversal location:

∂BBB/∂t = −∇×EEE EEE + vvv ×BBB = ηJJJ (1.11)

Where η is the plasma resistivity. One obtains EEEθ = 0 and EEEθ = ηηηJJJθ. The following
result JJJθ = 0 disagrees with the discharge profile. In fact, the poloidal current at
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Figure 1.8: (a). A typical magnetic field profile in a RFX discharge is presented with
both poloidal (in blue) and toroidal (in red) components, with the black horizontal
line representing BBB = 0. The amplitude of poloidal field dominants in the edge and
the toroidal field changes sign near the edge. (b). The corresponding safety factor q
profile is presented as a function of the radius r normalized by the minor radius a.
The circle markers on the curve are the corresponding resonant MHD modes with
the horizontal line indicating q = 0.

the reversal location is not generated by ∂BBBϕ/∂t. Instead, it is generated through
the dynamo mechanism mentioned above.

Taylor Relaxation Theory
The first explanation of the RFP configuration was proposed by J. Brian Taylor [24].
The main principle of his theory is that the RFP plasmas try to seek the minimum
energy. In his theory, the plasma pressure and velocity are neglected. The total
magnetic energy is defined as:

W =

∫
V

B2

2µ0

dV (1.12)



1.5. Equilibrium in RFPs: the Dynamo Mechanism 17

Figure 1.9: A model for one RFP plasma discharge. The profiles of two magnetic
field components Bϕ and Bθ are presented in the upper graph, plotted as a function
of the normalized minor radius. The two corresponding current density profiles JJJϕ

and JJJθ are presented in the lower graph.

The constrain proposed by Taylor is that the system has constant magnetic helicity:

K =

∫
V

AAA ·BBBdV (1.13)

Where AAA is the vector potential defined as BBB = ∇×AAA. It is true that the magnetic
helicity is conserved in non-resistive plasmas. When it comes to resistive plasmas,
the magnetic helicity K is considered to be approximately constant if the variation
of K is much slower than the magnetic energy variation [25].
By checking the force balance equation and neglecting the plasma pressure: JJJ ×
BBB = ∇P = 0, one obtains a force free system with J = µB, where µ is constant.
In cylindrical configurations, the solutions are the first and second kind of Bessel
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functions (J0 and J1) [23]: 
Br(r) = 0

Bθ(r) = B0J1(µr)

Bz(r) = B0J0(µr)

The above mentioned theory developed by Taylor shows that the plasma behavior is
mainly affected by the global plasma parameters. Hence, before further discussion,
we define two global plasma parameters:

Reversal parameter: F = Bϕ(a)/ ⟨Bϕ⟩ (1.14)
Pinch parameter: Θ = Bθ(a)/ ⟨Bϕ⟩ (1.15)

Where Bθ(a) and Bϕ(a) are the poloidal and toroidal magnetic field in the edge,
respectively. The symbol ⟨· · · ⟩ indicates the volume average. The comparison be-
tween Taylor’s theory and the experimental data shows a disagreement, especially
in the plasma edge. A modified theory known as α−Θ0 model [26], adopting a non-
constant µ along the normalized minor radius r/a as well as considering a non-zero
pressure, shows a good agreement with experimental data [23].
The two global parameters defined above allow us to go back to the dynamo mech-
anism for further discussions. The dynamo mechanism is a global RFP plasma
behavior. This self-organized plasma behavior allows the plasma current which flows
in the toroidal direction, flows in the poloidal direction and part of the toroidal field
is thus generated by the toroidal plasma current through this process. The contri-
bution of the toroidal magnetic field via dynamo mechanism can be expressed as:

⟨Bϕ⟩ = ⟨Bϕ,dynamo⟩+Bϕ(a) (1.16)
Where ⟨Bϕ,dynamo⟩ is the average paramagnetic toroidal field self-generated through
dynamo mechanism and Bϕ(a) is the toroidal field in the plasma edge. Hence,
⟨Bϕ,dynamo⟩ is an indicator for the dynamo mechanism. One can easily get:

(1− F )/Θ = ⟨Bϕ,dynamo⟩ /Bϕ(a) (1.17)

So the quantity (1− F )/Θ is the dynamo parameter for RFP plasmas.

1.6 Experimental Devices
This dissertation work has been carried out on two machines: the RFX-mod [27]
reversed field pinch and the TJ-II stellarator [28]. Here brief descriptions together
with main diagnostics of these two toroidal configurations are presented.
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Figure 1.10: A birdview of the RFX-mod device, located in Padova, Italy.

Revered Field eXperiment
The Reversed Field eXperiment modified (RFX-mod) [27] is currently the largest
RFP in the world, located in Padova, Italy. It has a major radius of R0 = 2m and
a minor radius of a = 0.459m. It is capable to reach plasma current up to 2 MA.
Figure 1.10 shows the bird view of the device. One of the most important innovations
in RFX-mod is the feedback control system based on 192 active saddle coils covering
the whole plasma volume (4 poloidally and 48 toroidally). This feedback system
functions to suppress the radial magnetic perturbations. Here a brief description of
diagnostics on RFX-mod is present.

• Magnetic diagnostics. Four Rogowski coils between the vacuum vessel and the
shell for measurement of toroidal magnetic flux as well as plasma current. (10
toroidal and 8 poloidal voltage loops for measurements of flux variations.) 192
pick-up coils, distributed along 48 toroidal directions and 4 poloidal directions,
measure toroidal and poloidal components of magnetic fields. 192 saddle probes
distributed the same as the pick-up coils, measuring the radial component of
the field, coupled to the active control coils.
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• Tomographic reconstruction [29]. It is meant for the reconstruction of the
poloidal emissivity map. The diagnostic is composed by 3 vertical fans each
with 19 lines of sight and 1 horizontal fan with 21 lines of sight. The total 78
lines of measurements almost entirely cover the plasma cross section.

• Thomson scattering diagnostic [30]. It features spacial resolution of 84 points
along the diameter of the vacuum chamber. The laser path lays on the mid-
plane (poloidal angle θ = 0(π)) at the toroidal angle ϕ = 82.5◦. The maximum
capacity per discharge is around 20:25 pulses.

• A multi-chord interferometer [31, 32]. It measures the electron density averaged
along 14 lines of sight. The measurement is performed measuring the phase
variation induced in a CO2 laser beam (λ = 5.4µm) that passes through the
plasma.

• Spectroscopic diagnostics [33]. It measures line intensities of radiation emitted
by main gas and by impurities, in order to calculate their influxes at the edge,
the toroidal flow of the plasma and the effective charge.

• Soft-X Rays multi-filter diagnostic [34]. It is used for measuring electron tem-
perature at the center of the plasma by means of comparing SXR emissions
measured by differently filtered silicon detectors. It allows a higher time reso-
lution with respect to the Thomson scattering, but with a lower spatial reso-
lution; 16 chords with different filter thicknesses (40 µm, 75 µm, 100 µm, 150
µm) are used in order to measure temperature in a wider range of emission
levels.

• An integrated system of internal sensors (ISIS) [35], which includes poloidal and
toroidal arrays of 139 magnetic pick-up coils and 97 electrostatic (Langmuir)
probes (used to measure and correlate fluctuations of electric and magnetic
fields), and 8 calorimetric sensors.

TJ-II Stellarator
TJ-II flexible Heliac [28] is a mid-size stellarator with fourfold periodicity under
operation in CIEMAT, Madrid, Spain. It has a major radius R0 = 1.5m and minor
radius a = 0.22m. The magnetic field on axis is up to 1.2T. Figure 1.11 shows a
CAD view of TJ-II. In TJ-II, the magnetic trap is obtained by means of various sets
of coils that completely determine the magnetic surfaces before plasma initiation.
The toroidal field is created by 32 coils. The three-dimensional twist of the central
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Figure 1.11: A CAD view of TJ-II stellarator is presented The blue parts are mag-
netic field coils. The gray parts are the structure of the machine and the ports for
diagnostic usage. The purple helical part represents the plasmas.

axis of the configuration is generated by means of two central coils: one circular and
one helical. The horizontal position of the plasma is controlled by the vertical field
coils. The combined action of these magnetic fields generate bean-shaped magnetic
surfaces. The heating systems are: Electron Cyclotron Resonant Heating, Neutral
Beam Injection (NBI), Electron Bernstein Wave Heating. The fueling systems are
gas puff, NBI and pellet injector.
The main diagnostic systems installed on TJ-II are:

• A set of magnetic field diagnostic. There are two straight arrays of Mirnov
coils [36, 37] and one poloidal array with 15 coils. The Mirnov coils are with
cylindrical shape and they measure the position of plasmas. Besides, there
are two sets of Rogowski coils installed to measure the poloidal magnetic flux.
Also two internal diamagnetic loops are installed to provide the toroidal loop
voltage.
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• Electron Cyclotron Emission [38]. Electron temperature profiles are measured
at TJ-II by means of a 16 channel heterodyne radiometer, covering the fre-
quency range 50-60 GHz, corresponding to the second harmonic of electron
cyclotron emission (ECE) in X-mode polarization at a magnetic field of 0.95
T on the plasma axis.

• Soft X-rays. The TJ-II multichannel soft X-ray system consists of 5 cam-
eras with 16 channels each, allowing tomographic reconstruction of the plasma
emissions [39, 40, 41].

• Bolometry. TJ-II has several bolometry systems [42, 43]. Three 20-channel pin-
hole cameras, monitoring the same poloidal section and used for tomographic
reconstructions [44] of the total plasma emissivity [45].

• Four spectroscopy system: 1. Multichannel system with nine-channel, high-
resolution, spectroscopic diagnostic system for measurements of ion impu-
rity temperature and poloidal rotation via passive emission spectroscopy. 2.
Toroidal rotation measurement. 3. Vacuum ultraviolet spectrometer (VUV)
spectroscopy, covers wavelength from 20 to 300 nm on the purpose of obtaining
the impurity ion temperature as well as its time evolution. 4. Charge exchange
recombination spectroscopy.

• Charge Exchange Spectroscopy. It is used to obtain the ion temperature profile,
assuming a Maxwellian energy distribution function.

• Fast Camera is installed for various studies like turbulence, dust, 2-dimensional
electron and ion temperature imaging.

• Interferometry [46] contains two parts: the microwave interferometer located
at ϕ = 264.4◦. The probing beam has an inclination of 18.7◦ with respect to
the vertical and a frequency of 140 GHz, corresponding to a wavelength of λ
= 2.14 mm. There is also a two-color interferometry (CO2 with 10.6 µm and
NdYAG with 1.064 µm) provides the line integrated density.

• The reflectometry contains three parts: an amplitude modulation reflectom-
etry system [47]; a fast frequency hopping reflectometer [48] and a doppler
reflectometer [49]. The amplitude modulation reflectometry is used for density
profile measurement with a temporal resolution of 2 ms. The fluctuation reflec-
tometer works in the frequency range between 33-50 GHZ and it was used to
study the velocity shear layer and the radial position of its origin. Doppler re-
flectometer, located at ϕ = 337◦ measures plasma density fluctuation velocities
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and their wave number spectra. The spacial resolution of doppler reflectometer
is about r/a = 0.6 : 0.9 with a the minor radius. The perpendicular wavenum-
ber can be selected between k⊥ = 3 and 15cm−1.

• Heavy ion beam probe [50] has been installed for measurements of plasma elec-
tric potential, electron density and poloidal magnetic field component. These
quantities are measured at one plasma location and it can scan through the
plasma cross-section.

• Two Langmuir probe system [51] installed at position ϕ = 38.2◦, R = 134cm
and position ϕ = 195◦ for plasma potential and plasma density measurements.
Also it can provides turbulence information. Several designs of the probe can
be mounted into the system like a rake probe, a multi-pin probe and a biasing
probe.

• Thomson scattering diagnostic [52] located at ϕ = 14.5◦. It provides electron
temperature, density and pressure profiles in a single discharge.

1.7 Summary
This chapter states out the importance of the realization of magnetic confined fusion.
Three main types of toroidal configurations are presented and the ideal and resistive
MHD are also briefly discussed, together with a short discussion on magnetic equi-
librium. Afterwards, the dynamo mechanism which is the key physics sustaining the
equilibrium in RFP configurations is presented and finally, two toroidal configura-
tions related to this dissertation work are briefly described.
One of the main issues for realization of fusion is that the plasmas suffer bad confine-
ment properties, which are caused by high transport processes both in energy and
particles. Intensive work has already been carried out on the topic of 1.5 dimensional
transport, considering the plasmas possess toroidal or helical symmetry, as well as
nested flux surfaces. In the next chapter, the three dimensional effect on transport
properties, induced by the presence of magnetic islands is discussed, together with
a brief discription of neoclassical transport and stochastic transport. These two dif-
ferent transport theories are relevant for the transport study in TJ-II stellarator and
RFX-mod, respectively.





2Three Dimensional Transport Induced
by the Presence of Magnetic Islands

Transport is a common phenomenon in fusion plasmas. The transport
phenomenon is induced by the Coulomb collisions between charged par-
ticles and through which, mass, momentum and energy are transferred.
Consequently, the transport phenomenon strongly affects the plasma con-
finement properties. In tokamak and stellarator configurations where the
flux surfaces are conserved, one of the possible transport theory, named
neoclassical transport, can be used to well described the transport phe-
nomenon, especially in low collisionality regime. However, the existence
of the magnetic islands in above mentioned devices breaks the symme-
try as well as nested flux surfaces and the transport process is intrinsi-
cally three dimensional. In RFPs, similar situation where many tearing
modes resonate also brings up three dimensional transport problems and
the transport process is dominated by stochastic transport. This chapter
describes the three dimensional transport induced by the presence of mag-
netic islands. General descriptions on both neoclassical transport and
stochastic transport theory are also presented.

The ultimate goal for fusion research is to realize a magnetic configuration sustain-
ing a continuous energy production state. This requires good plasma confinement
properties and consequently, the study of transport phenomena gains great impor-
tance. Transport phenomenon is caused by the Coulomb collisions between charged
particles, whose velocity vvv could be expressed into two parts: parallel vvv∥ and perpen-
dicular vvv⊥ components, with respect to the direction of the magnetic field lines. The
parallel component usually dominates the motion of charged particles. In toroidal
configurations with nested flux surfaces like tokamaks and stellarators, particles and
energy are strongly constrained on the flux surfaces and the main losses from the
system are through transport process across the flux surfaces. This transport mecha-
nism could be explained by the so-called neoclassical transport theory. On the other
hand, in toroidal configurations without preserved flux surfaces like RFPs, the par-
ticle and energy losses are induced by the parallel transport process along the field
lines. In such configurations, it is the so-called stochastic transport that dominates
the transport process. This chapter presents descriptions of these two theories, to-
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gether with a brief description of the three dimensional transport issue rising from
the presence of the magnetic islands.

2.1 Neoclassical Transport
The transport in magnetized plasmas is essentially induced by the Coulomb colli-
sions between charged particles. The Coulomb collisions, unlike the conventional
collisions between neutral particles, are long-range, elastic collisions induced by the
electric field generated by each charged particle. In a uniform magnetic field, charged
particles are bonded along the the field lines by the Lorentz force. This is the so-called
classical transport theory [53]. The transport losses in tokamaks were expected to
follow the predictions of classical transport theory, considering the nested flux sur-
face, on which the particles are bonded. However, the experimental results disagreed
with this prediction and people came to realize that the orbits in toroidal configu-
rations are much bigger than classical gyro-orbits [54, 55, 56, 57]. The so-called
neoclassical transport theory, considering the toroidicity of the configuration thus
was developed.
Neoclassical transport is a theory describing the transport process due to Coulomb
collisions in quiescent state, considering the field inhomogeneity of field lines induced
by the toroidicity of the configuration. Compared with classical transport theory, it
considers the complex geometry of the magnetic field, which gives rise to more com-
plex particle orbits and drifts than the gyration motion of charged particles. Here
we introduce the main particle drifts induced by the toroidicity in toroidal magnetic
configurations developed within the framework of neoclassical transport theory. First
of all, applying Ampère’s law:

∇×BBB = µ0JJJ (2.1)

We have the toroidal magnetic field:

Bϕ = µ0I/(2πR) (2.2)

Where JJJ is the current density, I is the total current in the toroidal magnetic coils and
R is the radial coordinate originated in the toroidal center. The toroidal component
of the magnetic field is the dominant one in tokamaks and it is inversely proportional
to the radius R. This 1/R dependence leads to a particle drift induced by the gradient
of the magnetic field:

vvvg =
µ

q

BBB ×∇BBB
BBB2

(2.3)



2.1. Neoclassical Transport 27

Besides the gradient drift, there is another particle drift caused by the curvature of
field lines and it is named curvature drift. When a particle moves along a curved
path, there is a centrifugal force, which in turn generates this particle drift in a
magnetic field. The curvature drift velocity is defined as:

vvvc = mvvv2∥(BBB × (BBB ×∇)BBB)/qB4 (2.4)

The two mentioned particle drifts depend on the sign of the charge q that particles
carry. Consequently, it leads to a charge separation and a local vertical electric field
thus appears. With the presence of the local electric field, another particle drift
motion, deducted from momentum equation easily, will occur:

vvvE = (EEE ×BBB) /B2 (2.5)

This drift motion is directed outwards, and it could lead to serious degradation of
plasma confinement. This is the reason for introducing the rotational transform into
toroidal configurations. With the rotational transform, the EEE ×BBB drifts, being the
consequence of the ∇B drifts, can be compensated. However, the particle motion
still suffers the ∇B drift, which leads to a change of the particle trajectory.
The 1/R dependence of the magnetic field also leads to the effect called ”magnetic
mirror”. The moduli of the perpendicular and parallel velocity vary as the change of
magnetic field:

v⊥ = (2Bµ/m)1/2 v∥ =
[
(2W −mv2⊥)/m

]1/2 (2.6)

Where W is the total energy and the electric field is neglected. Thus the kinetic
energy and the magnetic momentum are conserved. This variation of the two velocity
components is due to the energy exchange between the parallel and perpendicular
kinetic energy of a charge particle and consequently, certain particles could reach
a point where the parallel velocity vanishes at high field side and ’bounce’ back to
the low field side. Now let us consider a charged particle origins in point 1 and it’s
guiding center trajectory is moving to high field side, as shown in Figure 2.1 which is
a poloidal cross-section of a tokamak configuration. The flux surfaces are the dashed
concentric circles. The ∇B drift is upwards with such magnetic configurations. Thus,
the particles drifts off the original flux surfaces (1A2A3). At point 3, the whole
parallel kinetic energy is converted to the perpendicular kinetic energy, considering
the conservation of both the magnetic momentum and the kinetic energy (neglect the
electric field). So the particle is ’reflected’ by the so-called magnetic mirror effect. It
starts to move back, but is still pushed towards exterior surfaces by the ∇B drifts
(3A4A5). As it arrives as point 5, it is displaced outward by a certain amount,
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Figure 2.1: A sketch of banana orbit on the poloidal projection in a tokamak config-
uration. The concentric circles indicates the flux surfaces neglecting the Shafranov
shift. The ∇B drift is upwards in such a configuration. For simplicity reason, the
flux surfaces are drawn as concentric circles, without including the Shafranov shift.

compared to its initial position. As it goes on moving in the lower section of the
torus, the vertical drift brings it to more and more interior surfaces (5A6A7). At
point 7, the particle suffers again a reflection and starts moving back, passing again
through more and more interior surfaces (7A8A9) until the curve closes on itself.
Such a particle is trapped: it never enters the central region of strong magnetic
field. Because of its shape, the orbit of a trapped particle in a tokamak is called
”banana orbit”. Particles with trajectories within this banana orbit are called trapped
particles and particles who can explore the whole plasma volume, i.e., the poloidal
cross-section of their trajectories are complete circles are named passing particles.
The frequency for trapped particles to complete the banana orbit is called bounce
frequency and it is defined as:

ωb = v/(Rq) (2.7)
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Figure 2.2: Velocity space showing the trapped-passing boundary. The critical angle
θc defines the so-called loss cone which is the white space.

The boundary between trapped and passing particles is shown in velocity phase space
in Figure 2.2. The gray shadow is the trapped region and the white region is the
passing region. The boundary between trapped particles and passing particles is
characterized by the angle θc. The fraction f of the trapped particles is f = cos θc ≈
a/R0 = ϵ. Here ϵ is the inverse aspect ratio defined as the ratio between minor radius
a and major radius R0. There is another parameter, namely ’pitch parameter’ (k2)
which also defines the trapped and passing particle regions:

k2 = v2⊥/v
2
∥ (2.8)

Clearly, k2 < 1 defines trapped region and k2 > 1 defines the passing region. In par-
ticular, k2 ∼ 1 defines the region around trapping-detrapping region where trapped
particles and passing particles are exchanged due to collision.
The banana orbit described above is caused by the poloidal non-uniformity of mag-
netic field in toroidal configurations due to toroidal symmetry. Note that the Figure



30 Three Dimensional Transport Induced by the Presence of Magnetic Islands

Figure 2.3: Diffusion coefficient D is plotted in log-log scale, as a function of colli-
sionality ν∗. The solid line represents the neoclassical transport and the dashed line
represents the classical transport. This plot is valid in magnetic configurations with
toroidal symmetry. It starts with banana region, in which the collision frequency is
lower than bounce frequency. Particles within this region are trapped inside of the
banana orbit. The plateau regime is a constant line which does not depend on the
collisionality and finally the Pfrisch-Schlüter regime is the high collisionality regime.

2.2 shows a situation with no density gradient, i.e., the trapped particles between
two neighboring banana orbits are equal. However, in magnetically confined config-
urations, there exists the density gradient, which leads to the unbalance of trapped
particles between adjacent banana orbits. This will lead to momentum transfer be-
tween trapped particles and passing particles and consequently a net toroidal current
is formed and this is the so-called bootstrap current. In advanced tokamak scenario,
the bootstrap current could take a significantly part of the whole toroidal plasma
current.
Until now we defined three single particle drifts and its guiding center trajectory.
The total drift velocity can be written as:

vvvd = vvvE + vvvg + vvvc (2.9)

In fusion plasmas, the collective behavior of many charged particles must be taken
into account. Transport processes are the macroscopic result of the interactions
among charged particles in an electromagnetic field. The macroscopic thermody-
namic quantities like density, temperature, etc. can be deduced from the particle
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distribution function f(rrr,vvv, t), by taking different velocity moments. Consequently
the particle drifts enter into the flux function by definition: Γp =

∫
dvvvf(rrr,vvv, t)vvvdn

with Γp the particle flux and n the density. The time evolution of flux function
(particle or energy flux) is:

∂A/∂t = −∇ · (Γ) + S (2.10)

Where A is particle density (particle transport) or energy density (energy transport),
Γ = −D∇A is the particle or energy flux with D the diffusion coefficient, and S is
the source or sink. Note here the non compressive assumption as well as stationary
condition are taken (∇ · (vvvA) = 0). For a tokamak case, a sketch of diffusion
coefficient D versus the normalized collision frequency ν∗ = ν/ωb with ωb the bounce
frequency, is presented in Figure 2.3. There are three separated regions depending on
different collision frequency regimes, being banana region (blue line), plateau region
(red line) and Pfirsch-Schlüter region (black line). The classical transport diffusivity,
which is much lower than one from neoclassical transport theory, is also plotted
(dashed black line) for comparison. Trapped particles (banana orbits in tokamaks)
dominate the transport process at low collisionality regimes, where ν∗ ⩽ 1 and this
region is called low collisionality region. Particles in this region complete many
banana orbits before they collide with each other. The high collisionality regime is
called Pfirsch-Schlüter regime. This regime is connected to the banana regime by the
so-called plateau regime in which there is no dependence on the collision frequency.
For the neoclassical transport in stellarator configurations, things are more complex
because there is no toroidal symmetry in stellarators and thus there is no banana
orbits in such configurations. Indeed, the guiding center trajectories of particles are
non-closed ’banana orbits’ and this leads to a much higher transport coefficient in
stellarators than ones in tokamaks. Moreover, there are many local magnetic wells
in stellarators, in which particles are trapped either in the high or low field side.
These particles cannot ’feel’ the compensation effect from the rotational transform
introduced to compensate the EEE ×BBB drifts. Hence, these particles are lost from the
plasma.

2.2 Stochastic Transport
In RFP plasmas, many MHD tearing modes resonating at the same time, nested
flux surfaces no longer exist due to overlapping of many magnetic islands. Thus, the
transport in RFPs is dominated by stochastic transport. Here a brief description
of the stochastic transport theory, considering collisionless plasmas, developed by
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Rechester and Rosembluth [58] is presented. The model describes the parallel trans-
port in plasmas with destroyed magnetic surfaces due to many resonating modes.
First of all, in cylindrical geometry, the magnetic field can be written as BBB =
BBBz +BBBθ + δBBB, with the perturbation part:

δBBB =
∑
m,n

bbbm,n(r) exp[i(mθ − nz/R)] (2.11)

m and n are the wave numbers in poloidal and toroidal direction, respectively. Each
harmonic defines the resonance surface, which is the possible location for tearing
modes to develop. When many modes resonate at the same time, magnetic surfaces
conserve if the Poincaré plot on a poloidal cross-section shows smooth curves. Con-
sider a small area with radius of r0 in a plane z = const and map it by solving the
two equations dr/dz = Br/Bz, rdθ/dz = Bθ/Bz. This magnetic mapping is area
preserving, as a consequence of ∇ ·BBB = 0. There are two possible evolutions of this
process. The first one is that the circle will move as a whole and the second one is
that it will deform its shape stretching in one direction and contracting in the other.
An analytical expression for continuous mapping is:

l(z) = l0 exp(z/Lc) (2.12)

Where Lc is the correlation length with its one possible expression Lc = πR/ ln(πs/2).
This solution is obtained when the poloidal mode number m is fixed. in the case
with many m and n modes, this value is expected to be smaller [58]. Here s is the
so-called stochasticity parameter defined as:

s =
1

2
(∆m,n +∆m′,n′) /|rm,n − rm′,n′| (2.13)

Where m,n and m′, n′ represent any two harmonics which have neighboring rational
surfaces, ∆m,n and ∆m′,n′ represent the separatrix width of the corresponding mag-
netic islands and rm,n − rm′,n′ represents the distance between these two magnetic
islands. It is clear to see that the overlapping of neighboring magnetic islands occurs
when s > 1. Such behavior mentioned above is called stochastic instability of trajec-
tories. The width of the area δ will exponentially decrease in order to conserve the
total area: δ(z) = r0 exp(−z/Lc). This evolution process is shown in Figure 2.4. It is
clear to see that in a configuration with many tearing modes resonating at the same
time, the simply area (one circle) will evolve into a very complex shape. Note that
this process is strictly area preserving. The average squared radial displacement of
the ares can be described as: ⟨

(δr)2
⟩
= 2LDst (2.14)
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almost independently. The distance L„=L, in(r/
ml, ) plays the role of a correlation length for the
area. At this stage of the evolution the area looks
very complicated, as depicted in Fig. 1. It can
be shown that the average squared radial displace-
ment of the area can be described by a diffusion
formula

L is the distance in the z direction with L»L„,
and D„ is given by the quasilinear formula'

All processes of mapping are strictly reversible,
but because the width of the area becomes extra-
ordinarily small, any small spreading due to mo-
tion perpendicular to the field lines can be of
great importance as we will see later. The pre-
cise mathematics and all details can be found in
a good review on the subject. '
Let us turn now to the subject of this Letter:

electron heat transport in a braided magnetic
field. We note parenthetically that mass trans-
port will be limited by ambipolar potentials which
we will not consider here.
Suppose that in some small region we mark in-

stantaneously a number of electrons and then
watch for the time evolution of their radial dis-
tribution. Since the radial spreading of test
electrons is a Brownian process, the radial ther-
mal conductivity will be given by y„=((Ar)') /2t,
where ((hr)') is the mean square of the radial
displacements of electrons during the time inter-
val t. We will determine g„ in two limits: "col-
lisionless, "when the collisional mean free path
X is bounded by Hv/y„» A.» L„and collisional,
when X«L, . [We will make a number of simpli-
fying assumptions and not attempt to give detailed

numerical coefficients. ]
Consider the collisionless case. We assume

that guiding-center trajectories coincide with
the field lines. Instead of considering many dis-
crete particles, we visualize just one "particle"
which is spread over some initial area of the di-
mension x, (electron gyroradius) with equal prob-
ability. Then parallel motion along the field
lines produces a contiguous mapping of the area.
We may treat collisions as a discrete process
which takes place periodically with the time in-
terval v. As a result of collisions, the parallel
velocity of the particle will change its direction
or remain the same with equal probability. Also
the whole area will instantaneously diffuse radi-
ally a distance r, (or an electron "banana" width
in the toroidal case). The latter process models
the perpendicular jump of the guiding center at
the time of collision.
Let us start our experiment. Initially, we have

a small circle of radius r, . It moves before col-
liding a distance A. =vr along the trajectory, map-
ping into a complicated thin region of the kind
drawn in Fig. 1(c), with the width 5 =r, exp(- A./
L,). The average squared displacement of its ele-
ments in a radial direction is equal to ((hr)')
=2D„A.. The collision now increases the width of
this area to r, . We can now cut our area into a
large number of small square pieces of the size
x, and proceed in exactly the same way as in the
first step; see Fig. 1(c). Because for the colli-
sionless case r, »6(A), each of these new ele-
ments will evolve on the second step almost in-
dependently from its previous history. Obviously,
the spreading of our area in the radial direction
is similar to a random walk and the diffusion co-
efficient is given by

X, = &(&&)') /27 =D.gv ~

(a)

(c)
FIG. 1. The evolution of area mappirg.

This formula does not depend on collision fre-
quency in spite of the importance of collisional
spreading. "
It is instructive to compare this case with the

similar evolution without any perpendicular mo-
tion. Suppose that the particle reverses its pa-
rallel velocity after the first collision. Then the
second-step area will map exactly back to the
initial small circle. Obviously, the only way for
it to expand in the radial direction is to diffuse
collisionally along the field line. During a time
t» 7, the average squared distance moved by a
particle in the z direction is I.' =g~~t. We have
introduced here the usual classical parallel con-

Figure 2.4: A sketch of area mapping in multiple modes resonating magnetic field.

L is the distance in the z direction with L≫ Lc0 = Lc ln(rmr0). Dst is given:

Dst(r) = πR
∑
m,n

|bm,n(r)|2

B2
z

δ

(
m

q(r)
− n

)
(2.15)

Where bm,n(r) is the mode amplitude. The function q(r) is the safety factor which
is defined in Equation 1.10.
Now consider the time evolution of electrons in a small region. Being a Brownian
process, the radial spreading process has its thermal conductivity as χr = ⟨(∆r)2⟩ /2τ
with τ the time interval and ∆r the radial displacement within this time interval.
This is equivalent to the collisionless condition, which brings us the thermal conduc-
tivity in radial direction:

χr =
⟨
(∆r)2

⟩
/2τ = 2LDst/2τ = Dstv (2.16)

The thermal conductivity in a stochastic field is proportional to the ion thermal
velocity v = (2Ti/mi) instead of the collision frequency. Also it is proportional to
the sum of the squared amplitudes of all the modes, which is shown in the expression
of Dst(r) above. The physics meaning of this definition is that the stochasticity
produced in such a configuration has contributions from all the tearing modes. The
stochastic transport in RFPs is the dominant transport process due to the overlap of
resonant modes. This mechanism will be discussed in the study of thermal properties
in Quasi-Single Helicity state on RFX-mod, presented in Chapter 4.
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2.3 Three Dimensional Transport due to the
Presence of Magnetic Islands

Transport theory deals with the losses of particle and energy in fusion plasmas and it
is strongly related to the confinement properties. Field inhomogeneity is the funda-
mental reason responsible for particle and energy loss in toroidal configurations. The
transport study is commonly simplified to 1.5 dimensional to reduce the complex-
ity and time consuming of the numerical simulations. Here 1.5 dimensional means
quantities averaged over the magnetic flux surfaces. The particle and energy loss,
depending on different toroidal configurations, could be induced by either parallel or
perpendicular transport process:

• In tokamaks and stellarators who possess nested flux surfaces, the losses are
mainly caused by perpendicular transport process across the flux surfaces. Ex-
perimentally the kinetic quantities have been observed that they could be con-
sidered as the functions of flux surfaces. Temperature and density on one flux
surfaces can be considered constant due to very high parallel velocities. In
real magnetic configurations, however, the resonant MHD tearing modes rise
intrinsically three dimensional aspect in the transport study. In tokamaks and
stellarators, nested flux surfaces are distorted in vicinity of magnetic islands
and the toroidal symmetry is thus broken.

• In RFP discharges, it is the dynamo mechanism that sustains the configu-
ration by the non-linear interactions among many resonating tearing modes.
This leads to an obvious consequence: the magnetic flux surfaces are broken
and reconnected and the transport is intrinsically three dimensional, being
dominated by stochastic transport. This is true especially in Multiple Helicity
state, where all the modes have comparable amplitudes. In such state, the
flux surfaces are believed to be broken and the particle and energy losses are
mainly caused by the parallel transport process along the field lines. However,
when it comes to Quasi-Single Helicity (QSH) state where one single mode
dominates the mode spectrum, a special region, featuring bean-shaped flux
surfaces has been identified. In such region, steep thermal gradients develop
and the kinetic quantities like temperature, density could be treated as func-
tion of the flux surfaces. Consequently, it is believed that in such region, the
flux surfaces are nearly conserved [59, 60]. The transport study on RFX-mod
in this dissertation focuses on the region with steep thermal gradients, with the
assumption that the magnetic field consists the equilibrium magnetic field and
only the dominant mode. With this assumption, a helical symmetry could be
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defined in QSH plasmas and hence the transport study could be performed on
1.5 dimensional level by taking into account the flux surface averaged kinetic
quantities.

Facing the three dimensional transport issues rising from the fusion research commu-
nity, this dissertation is dedicated to the three dimensional transport study induced
by the presence of magnetic islands, on 1.5 dimensional level. The main difficulties
to perform 1.5 dimensional transport analysis are:

• In RFP plasmas, the dominant mode usually forms into a big island so that
in such configurations, multiple magnetic axes exist at the same time. Conse-
quently, no monotonic radial coordinate could be defined to describe the whole
plasma volume.

• The distorted flux surfaces break the toroidal symmetry in tokamaks, leading
to non-closed banana orbit of trapped particles and thus, particles are lost
via drifting outwards. In stellarators, such process is more serious since even
without the presence of the magnetic islands, the particle trajectories are not
closed banana orbits due to lack of toroidal symmetry. Hence, the magnetic
islands will introduce an enhanced particle flux in stellarator configurations
compared with tokamak configurations. This effect is essentially induced by
the increase of toroidal viscosity and the consequence is that it increases the
radial particle drifts.

In this dissertation, possible solutions for these two issues are presented:

• First of all, a solution named Multiple Domain Scheme (MDS) is adopted,
which was proposed by F. Porcelli [61] to overcome the the multiple axes issue.
A corresponding new transport code, named Multiple Axes Solver (MAxS) has
also been developed and benchmarked. This work has been carried out on
RFX-mod and detailed original work are presented in Chapter 3.
Besides, the application of MDS and MAxS has been done for the study of
three sub-states of Quasi-Single Helicity state, a RFP plasma regime observed
in all RFPs all over the world [60, 62]. The comparison on thermal properties
among these three sub-states as well as the energy transport study has been
firstly completed. The energy confinement time, using an improved method has
also been firstly evaluated. The physics behind the observed phenomenon is
discussed within the framework of stochastic transport. The detailed original
work is presented in Chapter 4.
The work carried in this part has been presented/published in:
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– Y. Zhang, F. Auriemma, A. Fassina, D. Lopez-Bruna, R. Lorenzini, E.
Martines, B. Momo, F. Sattin and D. Terranova, Multiple domain scheme
for heat transport analysis in plasmas with magnetic islands: a first study,
42th EPS conference.

– F. Auriemma, D. Lopez-Bruna, R. Lorenzini , B. Momo, Y. Narushima,
I. Predebon, F. Sattin , Y. Suzuki, D. Terranova, Y. Zhang, A novel
approach to the study of transport properties in plasma with magnetic
islands, to be submitted.

– Y. Zhang, F. Auriemma, A. Fassina, R. Lorenzini, D. Terranova, B.
Momo, and E. Martines, Thermal Properties of 3 sub-states of Quasi-
Single Helicity state on RFX-mod, Physics of Plasmas, under review.

• As for the second issue, the solution is to study the enhanced toroidal viscosity
induced by the presence of magnetic islands in tokamaks. The theory is de-
veloped by K. C. Shaing [63], which reveals the appearance of non-ambipolar
particle fluxes in vicinity of magnetic islands induced by the enhanced toroidal
viscosity. A brief description of this theory is presented in Chapter 5.
The application of this theory has been performed on TJ-II stellarator where
it has been reported that magnetic islands plays a role of transport barrier [64]
and also it modifies the local electric field [65]. A moderate modification on
the original theory has been made in order to apply it to TJ-II configurations,
considering much higher particle fluxes in stellarators compared with ones in
tokamaks. The transport simulations have been performed in TJ-II plasmas,
adopting the modified equations. The detailed original work is presented in
Chapter 6.
The work carried out in this part has been presented in:

– B. Momo, D. López-Bruna, Y. Zhang, F. Auriemma, R. Lorenzini, Island-
induced electric field modification: the TJ-II case, Theory of fusion plas-
mas, joint Varenna-Lausanne international workshop.
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3Quasi-Single Helicity and Multiple
Domain Scheme

Quasi-Single Helicity state has been observed on RFX-mod firstly and
confirmed by other RFP devices afterwards. It shows better confinement
properties compared with Multiple Helicity state. This chapter presents
the description of QSH state as well as its three sub-states. Moreover, this
chapter reviews the development of a tool for transport study in Multiple
magnetic AxeS configurations, named MAxS, based on the concept of
Multiple Domain Scheme.

3.1 Multiple Helicity and Quasi-Single Helicity
In RFX-mod discharges, due to unique safety factor profile q < 1, many MHD tear-
ing modes saturate intrinsically, producing superposition of many magnetic islands
and giving rise to a chaotic magnetic field in the plasma core. When the plasma
current is low (Ip < 1MA), these MHD modes have comparable amplitudes and this
is named Multiple Helicity (MH) state. Such chaotic magnetic field leads to high
transport in the center with very limited confinement properties. Indeed, the elec-
tron temperature in such states shows a flat, poloidally symmetric profile. On the
other hand, it is the nonlinear interactions among these modes that sustains the RFP
configurations. This is the dynamo mechanism presented in Chapter 1. Compared
with other fusion devices like tokamaks, RPFs in MH states are far behind due to
the bad plasma confinement properties.
Nevertheless, it has been theoretically predicated with 3-dimensional MHD simula-
tions [66, 67] that one single helical mode could sustain the dynamo mechanism and
this state is named Single Helicity state (SH). SH state shows a promising future for
RFPs in fusion research since nested helical flux surfaces are preserved and radial
transport could be significantly reduced compared with MH state. Experimentally,
however, SH state has never been observed while an intermediate state between MH
and SH state, with enhanced plasma confinement properties, has been observed in
RFX-mod and has been confirmed on all other RFP devices [62, 68, 69] with differ-
ent experimental conditions. Besides RFX-mod, there are mainly three RFP devices
under operations, being EXTRAP T2R [70], MST [71] and RELAX [72]. Also other
experiments can be considered such as TPE-RX [73], which has been shut down since

39
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Devices R/a(m) Plasma Current/Designed Plasma Current (kA)
EXTRAP T2P 1.24/0.183 <500/1000
RFX-mod 1.995/0.459 2000/2000
TPE-RX 1.72/0.45 500/1000
RELAX 0.5/0.25 50/100
MST 1.5/0.52 500/600
KTX 1/4/0.4 NULL/1000

Table 3.1: The main characteristics of six RFP devices.

many years and KTX that started operation recently in USTC, Hefei, China [74].
The main characteristics of these six devices are listed in Table 3.1. EXTRAP T2P
is a medium RFP device located at the Royal Institute of Technology in Stockholm.
The active control of plasma instabilities is applied through the intelligent shell IS
operation [75, 76, 77]. The dominant mode in EXTRAP T2R is different from the
one in RFX-mod and it could also vary during the discharge [78]. This dynamics
can be ascribed to a change in the magnetic equilibrium and hence in the safety
factor profile. MST is a large RFP device located in Madison, USA. Both RFX-mod
and EXTRAP T2P have active control on radial perturbations while in MST, the
suppression of radial perturbations is done by the thick shell. The dominant mode is
usually the innermost one, which is strongly affected by the aspect ratio. Neverthe-
less, the dominant mode can vary depending on different experimental conditions. In
RFX-mod, with relatively constant experimental conditions, the dominant mode is
the innermost one, being m=1, n=-7. In RELAX, the dominant mode is m=1, n=4
[79] and in MST, the dominant mode is usually m=1, n=5:6 [68, 80]. In EXTRAP
T2R, due to large aspect ratio and different experimental conditions, the dominant
mode varies among m=1, n=11:13.
The QSH state is an enhanced RFP plasma regime which appears periodically or
lasting during the whole discharge in the high plasma current discharges (IP > 1MA
in RFX-mod). In RFX-mod, it is obtained with active control of radial magnetic
perturbations [27, 60]. A typical discharge with IP > 1MA in RFX-mod is shown
in Figure 3.1. The upper graph is the time evolution of the plasma density (a), the
plasma current (b) and the lower one is the time evolution of the toroidal magnetic
tearing mode spectrum in which the red line represents the m=1, n=-7 mode, whose
amplitude dominates the spectrum periodically during the discharge and the blue
line represents the rest of the modes (secondary modes) defined as their combined
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Figure 3.1: A typical discharge in RFX-mod. (a): plasma density n. (b): plasma
current Ip. (c): The time evolution of toroidal magnetic component bϕ with red
line representing the dominant mode (m=1,n=-7) and the blue line representing the
secondary modes (m=1, n=-8:-17).

amplitudes:

bsec =

[
−17∑
n=−8

(b1,nϕ )2

]1/2

(3.1)

In this dissertation the toroidal mode number n=-8:-17 is adopted to compute
the amplitude of the secondary modes. The dominant mode amplitude shows a
periodical growth and crash evolution process. When the dominant mode grows to
high amplitude, QSH state appears and when its amplitude crashes to the same level
as the secondary modes, MH state appears. The QSH is quantitively defined through
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Figure 3.2: Typical toroidal field bϕ spectra (2ms averaged value) for m=1 mode
against the toroidal mode number n. The blue spectrum is for MH state and the red
one is for QSH state.

the so-called Ns spectral index:

Ns =


n2∑

j=n1

[(
bm,j
ϕ

)2/ n2∑
k=n1

(
bm,n
ϕ

)2]2


−1

(3.2)

The value of Ns becomes 1 when the pure SH state is realized and increases when
other modes grow. The duration time of one cycle has been found to increases with
the increase of the plasma current [81]. A typical mode spectrum of both QSH and
MH is presented in Figure 3.2. This mode spectrum is obtained by taking the aver-
age value of the mode amplitude over a time interval of 2ms. One could see that the
modes show a comparable amplitude in MH while in QSH, there is a single mode
dominating the spectrum.
Besides the magnetic field features mentioned above, QSH state has also been iden-
tified to have thermal structure: a helical thermal structure with high electron tem-
perature is formed in the plasma center. This has been observed with soft X-ray
tomographic reconstruction, on RFX-mod [82], EXTRAP T2R [83] and MST [84].
Moreover, on RFX-mod, electron temperature profiles along the equatorial plane
has been measured, thanks to the high spacial resolution of the Thomson scattering
diagnostic. The measured Te profile shows that in MH state, the profile is a flat,
poloidally symmetric one, indicating high stochastic transport in the whole plasma
volume. On the other hand, when it comes to QSH state, a different profile, with
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a high electron temperature structure in the center has been identified. The high
Te structure is sustained by steep thermal gradients, which are denoted as electron
Internal Thermal Barrier (eITB). What is more, two types of thermal structure pro-
files in QSH has been also identified: One is with a narrow high Te thermal structure
and the other one with a wide Te thermal structure. These two thermal structures,
together with the different magnetic structures, can be actually further categorized
into three sub-states. A detailed description on these three sub-states is presented
in the following section.

3.2 Three Sub-States in QSH state
Further study on QSH state shows that there may be up to three sub-states in one
cycle of QSH. These three sub-states feature different magnetic topologies as well as
different width of thermal structures. Here a description of these three sub-states is
presented using the experimental observations obtained in RFX-mod.
One cycle of QSH begins with the innermost mode starting to grow, while the rest of
the modes decrease at low amplitudes. The dominant mode forms one big magnetic
island with a separatrix. A bean-shaped thermal structure with narrow, off-axis elec-
tron temperature structure spontaneously forms inside the island. This is the first
stage of QSH and it is named Double Axes state (DAx) since there are two mag-
netic axes existing at the same time. Afterwards, the dominant mode grows further,
reaching the threshold on which a magnetic topological transition takes place: the X
point of the dominant mode anneals with the original magnetic axis and the O point
of the dominant mode survives as the new magnetic axis. During this process, the
bean-shaped thermal structure remains relatively unchanged: narrow and off-axis.
This is the second stage and it is named Single Helical Axis state (SHAxn) with
the subscript n indicating narrow thermal structures. When the dominant mode
grows up to 4% of the edge magnetic field, the high electron temperature structure
usually evolves from off-axis in SHAxn into a wider profile enclosing the geometri-
cal axis. This is the third stage of QSH and it is named SHAXw state with the
subscript w indicating wide thermal structures. Thus, QSH can manifest itself in
these three different sub-states. The three sub-states of QSH are shown in Figure
3.3. The lower three figures d, e, f, are electron temperature profiles measured with
an 84-point Thomson scattering diagnostic. The upper three figures a, b, c, are the
corresponding Te contour plots, calculated with the magnetic equilibrium reconstruc-
tion produced by the code SHEq [85], thanks to the fact that temperature, in QSH
states, is observed to be a helical flux function [60]. Both DAx and SHAxn feature
narrow and off-axis Te thermal structures. The SHAxw, on the other hand, has a
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Figure 3.3: Three sub-states: (a) DAx, (b) SHAxn and (c) SHAXw are presented.
The black horizontal lines in the contour plots represents the Thomson scattering
laser path and ones in the lower 3 plots are the width of the thermal structure.

wide thermal structure in the plasma core.
The three sub-states within one cycle of QSH state have different magnetic topolo-
gies as well as different thermal structures, leading to an interesting topic on the
understanding the evolution of the energy transport properties. Motivated by such
observations, the work on RFX-mod has been carried out on the topic of transport
study within these three sub-states. The main idea is to assume the magnetic field
in QSH is a pure SH state and the physical meaning of this assumption is to neglect
all the secondary modes. In such a way, a helical symmetry can be defined in QSH
state and also the flux surfaces. However, difficulties appear when it comes to DAx
state, which has two magnetic axes. In such magnetic configurations, it is impos-
sible to define a monotonic radial coordinate to perform transport analysis. Facing
this problem, a possible solution, named Multiple Domain Scheme, together with a
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transport solver have been studied and developed. The detailed work is presented in
the following section.

3.3 Multiple Domain Scheme and Multiple Axes
Solver

Transport research benefits of the availability of several well-developed 1.5D trans-
port codes, which have been widely used in single axis magnetic configuration for
decades. However, it is beyond their capability to treat situations with the presence
of magnetic islands due to the fact that it is impossible to find a monotonic radial
coordinate that can describe the whole plasma volume. Indeed, in plasma configura-
tions with multiple axes, a monotonic radial coordinate is undefinable in the whole
plasma volume, which, together with the correct metrics (the spatial derivative of
the volume and the first element of the metric tensor, denoted as V ′ and G1, re-
spectively), are essential to solve the energy transport equation, averaged over the
magnetic surfaces:

3

2
ne
∂Te
∂t

+
1

V ′
∂Γh

∂ρ
= Se (3.3)

Where ne and Te are the electron density and temperature, Γh = −V ′G1neχ∂Te
/
∂ρ

is the energy flux. In this dissertation, Γh indicates the heat flux and Γp indicates
the particle flux. χ is the thermal diffusivity and Se is the energy source or sink. ρ
is the radial coordinate and it could have several different definitions. Here one of
the definitions is adopted, which is defined as1 :

ρ = (Vρ/2π
2R0)

1/2 (3.4)

With Vρ the helical volume enclosed by each flux surface labeled by ρ and R0 being
the major radius of the device.
Facing this issue, a new scheme, named Multiple Domain Scheme (MDS) has been
studied. The idea of MDS has firstly been reported by F. Porcelli in Reference [61].
The main principle is to divide the total plasma volume into three separated regions.
Figure 3.4 shows a sketch of a poloidal cross-section of a magnetic field with the
presence of a magnetic island. The 3 regions are: Region I, the circular plasma
containing the original magnetic axis; Region II, the magnetic island containing its
own axis and Region III, the outer region in the plasma edge. The red line represents

1This definition is also adopted by code SHEq which produces the surfaces averaged Te profiles
based on this definition of the radial coordinate ρ.
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Figure 3.4: A sketch of poloidal cross-section of a magnetic field with the presence
of a magnetic island is presented. The total plasma volume is divided into three
separated regions: Region I is the circular plasma with the original magnetic axis;
Region II is the magnetic island with its own axis and Region III is the outer region.
The separatrix is the red line and it is the interface among these three regions.

the separatrix, which is a thin layer around the magnetic island and it features high
stochasticity. In each of the 3 zones, a monotonic coordinate ρ could be well defined
and the temperature could also be considered as a function of ρ in each zone, which
will be demonstrated later. The separatrix region is the interface among these three
zones and it has a very small volume compared with the three zones. Hence, in
the separatrix region, it is assumed that there is no heat source nor sink. What is
more, due to the high parallel transport in the separatrix, the electron temperature is
uniform everywhere in the separatrix. The boundary conditions for solving Equation
3.3 is listed as below:

Zone I: On the magnetic axis: ∂Te/∂ρ|ρ=0 = 0; at the separatrix: Te|ρ=ρsep = Tsep.

Zone II: On the island O-point: ∂Te/∂ρ = 0; at the separatrix: Te|ρ=ρsep = Tsep.
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Transport
Module

1. Set initial guess for χ(ρ).
2. Set boundary conditions.

Solve transport in zone I

Solve transport in zone II

Solve transport in zone III

Separatrix
Module

∂Tsep
∂t

=
2

3ne

ΓI + ΓII + ΓIII

Vsep

(Using small time step

∆t ∼= 10−7s to prevent
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∂Tsep/∂t ≤ CT

Convergence: Exit
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Yes

No

Figure 3.5: Flow chart of code MAxS.

Zone III: At the separatrix: Te|ρ=ρsep = Tsep.; at the plasma edge: Te|ρ=ρa = Ta.

Based on the concept of MDS, a corresponding new code, named Multiple Axes Solver
(MAxS), able to study the transport process in both single and multiple magnetic
axes configurations has been developed and tested on RFX-mod. The flow chart of
MAxS code is presented in Figure 3.5 and the main steps are:

• Make initial ’guess’ for thermal diffusivity χ in each zone and set the proper
boundary conditions.

• Evolve transport equations in three zones until the temperature profiles remain
unchanged. Then get the fluxes from the three zones, namely ΓI , ΓII and ΓIII .

• These fluxes enter into the separatrix region whose temperature Tsep evolves
according to:

∂Tsep/∂t = (2/3ne)[(ΓI + ΓII + ΓIII)/Vsep] (3.5)
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Where Vsep is the volume of the separatrix. Note Equation 3.5 is derived from
Equation 3.3, using the assumption of small volume. As mentioned before,
with such assumption, the source term Se = 0 and ∂Γ/∂V ≈ ∆Γ/∆V .

• If ∂Tsep/∂t ≤ 103eV /s then the code stops. The final χ profiles are the ones
we are seeking.

• If ∂Tsep/∂t > 103eV /s then go back to step 2, adjusting the χ profile and
repeating the following steps.

3.4 Electron Temperature Profile Remapping
To perform 1.5 dimensional transport study in these three sub-states, one needs to
define the proper radial coordinate, the correct metrics and the remapped electron
temperature over the flux surfaces. The radial coordinate, as well as the correct
metrics have been described in the framework of MDS. This section presents the
electron temperature remapped along a radial coordinate ρ. In this part, another
possible definition of ρ is adopted, which is calculated as the square root of the
normalized helical flux:

ρ =
√
Φ/Φ0 (3.6)

Where Φ is the helical flux defined as Φ = mΨ0 − nF0 +mψm,n − nfm,n with m=1,
n=-7 the dominant poloidal and toroidal mode number, Ψ0, F0 are the equilibrium
poloidal and toroidal magnetic flux [86]. The ψ, f are the poloidal and toroidal
magnetic flux of the dominant mode. The definition of the helical flux function is
essentially assuming a SH state in RFP plasmas. Φ0 is the helical flux on the plasma
edge [85]. Note that the suitable radial coordinate is arbitrary as long as it is well
defined. In this section, the radial coordinate defined in Equation 3.6 is used.
The remapping of electron temperature over the flux surfaces in the poloidal di-
rections is done under the assumption that the kinetic quantity, such as electron
temperature, is a function of the helical flux in one axis condition. To illustrate the
remapping process, a typical electron temperature profile, measured in SHAxw state
is presented in Figure 3.6(a), as a function of the radius r. There is one nearly flat
region with high electron temperature in the core and on both sides of the flat region,
there are two temperature gradients, marked as the gray shadow which are electron
Internal Transport Barrier (eITB) regions. The Te profile is split into two parts,
marked as blue and red, by a vertical green line which corresponds to the minimum
value of ρ. Using ρ as a new radial coordinate, the result of Te remapping along ρ is
shown in Figure 3.6(b) and it indicates the kinetic quantity Te can be described as a
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Figure 3.6: (a) Typical electron temperature in a SHAxw state as a function of the
radius (dots). The solid line represents the normalized helical flux function ρ. (b)
The same electron temperature profile as in (a), plotted as a function of ρ with the
two colors representing the two sides with respect to ρmin.

function of the normalized helical flux. The remapping is easy in single magnetic axis
situation while for multiple axes cases, things could get bit complex but the main
principle remains the same. Figure 3.7 shows a result of remapping done in a DAx
case, in which both the core region and the island region are detected by Thomson
scattering diagnostic. The detailed procedure and the panel of the Figure 3.7 of this
remapping in DAx case is:

Panel (a) Contour plot of the helical flux at Thomson scattering toroidal angle,
with the thick red curve representing the separatrix. There are four intersec-
tions between the separatrix and equatorial plane (θ = 0) and their locations
are marked with four dashed black vertical lines. The three vertical lines repre-
sent the location of maximum or minimum of the helical flux, red for magnetic
island region and blue for the core region.

Panel (b) The normalized helical flux ρ is plotted versus the geometrical radius.
There are two separated island regions detected by Thomson scattering, shown
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Figure 3.7: Electron temperature remapped on the flux surfaces in a DAx state.
Vertical dashed black lines represent the location of separatrix intersected by mid
plane at Thomson scattering angle ϕ = 82.5◦. The vertical thin lines represent the
local maximum or minimum of the helical flux (red for island region and blue for
the core region). (a) Contour plot for the helical flux on the poloidal cross-section
at Thomson scattering toroidal angle. The horizontal line represents the Thomson
scattering laser path and the thick red curve represents the separatrix. (b) The
normalized helical flux plotted versus the geometrical radial, zoomed at the island
region. The horizontal line represents the separatrix, intersected with the curve with
four intersections, marked with the dashed black line. There are two parts belonging
to the magnetic island, marked with red. The blue part is the core region and the
two black parts on both sides of the profile represent the outer region. (c) The
Thomson scattering profile versus radius of vacuum vessel. The colors represents
different regions. (d), (e) ,(f) The results of remapping in the magnetic island (d),
core (e) and outer region (f). The color pink represents left side and the color green
represents the right side of the local ρ minimum.
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as the two red curves, together with one core region, marked as blue. The
two black curves are the outer regions. The horizontal black line represents
the separatrix. The four vertical dashed black lines are the corresponding
intersections shown in graph a.

Panel (c) The electron temperature, measured by Thomson scattering diagnos-
tic, is plotted versus the geometrical radius. The red color indicates the island
region, the blue color indicates the core region and the black color indicates
the outer region.

Panel (d) Remapped electron temperature in island region is plotted versus ρ.
The remapping procedure consists in building the relations between Te and ρ,
through the information of the radial distribution. The pink color represents
the right side and the green color represents the left side.

Panel (e) The remapped electron temperature in the core region.

Panel (f) The remapped electron temperature in the outer region.

The minimum helical flux does not reach the value zero in Figure 3.7(b). This is
due to the fact that the Thomson scattering laser did not detect, in fact most of the
cases it cannot, the island center where the true minimum helical flux lays. This
points out the fact that the electron temperature measured with Thomson scatter-
ing diagnostic cannot necessarily show the whole thermal structure. Nonetheless,
the information of the thermal gradient can be, at least partially reflected via the Te
profiles obtained. Meanwhile, most of the Te points measured in experiments are in
outer region. This leads to the problem that the points in island region sometimes
are limited.
Now, with the well defined radial coordinate ρ, the remapped electron temperature,
one could perform 1.5 dimensional transport study on both multiple axes configura-
tions and single axis configurations, with the help of code MAxS. However, before
putting MAxS into practice, one needs to perform a benchmark study. In the next
section, the benchmark work is presented between MAxS and the well-know trans-
port code ASTRA [87].
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Figure 3.8: Two typical electron temperature profiles is presented as a function of the
radius r, obtained both in SHAxn state. These two cases are used in the benchmark
between MAxS and ASTRA.

3.5 Benchmark with ASTRA
MAxS has been developed and benchmarked with the well know 1.5 dimensional
transport code ASTRA. The benchmark has been carried out based on two SHAxn

cases obtained in RFX-mod with the corresponding electron temperature profiles
shown in Figure 3.8, measured with Thomson Scattering diagnostic. The quantities
ρ, Te(ρ), V ′ and G1 are provided by the code SHEq2 . The benchmark has been
carried out on two aspect:

1. Numerical point of view. On this point, the basic idea is that with the ’same’
input, being the thermal diffusivity profile, the same metrics and the power
deposition profiles, the two outputs, being the simulated electron temperature
profiles T sim

e , should show good agreement. The thermal diffusivity profile is
simplified to be one with straight line connecting some critical points which
are essential to describe the feature of the experimental temperature profile
T exp
e . The number of the critical points is a free parameter. In the present

test, the number and the position of nodes have been chosen to set the central

2Note that in the previous section the Te remapping is done with a radial coordinate defined
with the normalized helical flux (Equation 3.6). This remapping process is presented to show the
general technique of how to perform a remapping with a defined radial coordinate. However, this
definition is not used by SHEq. Instead, SHEq uses the definition from the volume (Equation 3.4).
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diffusivity, the starting and ending points of the eITB, the starting and ending
point of the external Te gradient and the edge diffusivity.

2. ’Physical’ point of view3. On this point, the basic idea is that the ’best’ solution
from MAxS code should be in the reasonable physical range4.

First of all, the benchmark has been carried out on the numerical point of view. The
main work is listed as follows:

• Provide MAxS the electron temperature profiles obtained from experiments,
being T exp

e , the metrics and the surface averaged power deposition profiles.

• Set the thermal diffusivity profile manually. With proper boundary conditions,
run MAxS and get the simulated T sim,MAxS

e profile.

• Compare T sim,MAxS
e and T exp

e . If these two profiles show good agreement, then
the corresponding χ profile is the one we are seeking for. If the two profiles
show bad agreement, go back to step 2 and manually change the χ profile until
these two profiles show good agreement.

• Apply the χ profile obtained above on ASTRA and get the corresponding
T sim,ASTRA
e .

• Compare T sim,MAxS
e with T sim,ASTRA

e . If these two profiles agree with each
other, the benchmark on the numerical point of view is good and otherwise it
is bad.

Using the two cases shown in Figure 3.8, the benchmark on the numerical part is
presented in Figure 3.9. The upper two graphs are the electron temperature pro-
files from experiments (black stars) and from simulations (red lines). The lower two
graphs are the corresponding thermal diffusivity profiles (red lines) used to perform
the simulations. It is obvious to see that the T sim,MAxS

e and T sim,ASTRA
e overlap with

each other, actually it is almost impossible to tell the difference between these two
red lines. This good agreement shows that MAxS is capable of producing solid sim-
ulations with good numerical stability.

3Here one needs to be aware that the physical benchmark is not between real experiments
and the simulation results. It is just a way to see if the results produced by MAxS is within the
reasonable range or not.

4The best range is provided by the ASTRA, generated automatically with Genetic Algorithm.
A more detailed description is given in the following part about physical benchmark.
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Figure 3.9: Results of benchmark between MAxS and ASTRA, applying two SHAxn

cases in RFX-mod. The lower two graphs are the thermal diffusivity profiles and
the upper two graphs are the corresponding electron temperature profiles. For the
numerical benchmark, the results are shown with red lines. The thermal diffusivity
profiles (two red lines in the lower graphs) are used to perform the simulations, both
in MAxS and ASTRA. The corresponding Te profiles are shown as the red lines in
the upper graphs. The two red Te lines shows good agreement, indicating a reliable
numerical stability of MAxS. For the physical benchmark, the results are shown as
the blue lines, being the CI’s generated by ASTRA via GA. The red lines, both with
Te profiles and the χ profiles are well agreed with CI’s, indicating a reliable capability
of producing solid physical simulations with MAxS.

With good results on the numerical benchmark, now the physical benchmark is per-
formed. As mentioned above, the χ profile obtained in MAxS manually should be in
the reasonable range on the physics point of view. The reasonable range in this work
is generated by the Genetic Algorithm (GA) implemented in ASTRA, which could
automatically generated a set of ’good quality’ χ profiles, named Confidence Intervals
(CI’s) [88]. The GA is a metaheuristic inspired by the process of natural selection
that belongs to the larger class of evolutionary algorithms. It is a numerical search
tool aiming at finding the global optimum of a given real objective function of one
or more real variables, possibly subjected to various linear or non-linear constraints.
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The ’quality’ of the provided χ profile is quantified by evaluating the normalized
squared distance d2 between T exp

e and T sim
e :

d2 =
∑[

(T exp
e − T sim

e )2/(T exp
e )2

]
(3.7)

The GA could automatically choose a set of χ profiles and afterwards, ASTRA can
generate the corresponding T sim

e profiles as well as the values of d2. The acceptance
of χ profiles is based on the criteria that the value of d2 is no larger than 10% of the
minimum d2, denoted as d2m:

d2 < 1.1d2m (3.8)
Through these processes, a set of ’good’ χ profiles, together with the corresponding
T sim
e profiles are thus obtained. The results are also shown in Figure 3.9, marked as

the blue lines. It is clear to see that both the χ profile and T sim
e profiles are well

agreed with the CI’s generated by ASTRA, showing that the χ profile obtained from
MAxS is reasonable from the physics point of view.
The above presented benchmark work shows that MAxS is capable of performing
robust transport simulations, both in terms of numerical stability and the physics
aspect, which gives confidence in using MAxS to perform further transport study.
Here it is worth mentioning that after the benchmark, the Genetic Algorithm has
also been implemented into MAxS for further work.

3.6 Summary
This chapter presents firstly a detailed description of QSH state as well as its three
sub-states observed in RFX-mod. The three sub-states feature different magnetic
topologies as well as different width of thermal structures, which rises the interest
of transport physics within these three sub-states. To begin the transport study,
the magnetic field is assumed to be a pure SH state by neglecting all the secondary
modes. In such a way, a helical symmetry can be defined, as well as the flux surfaces.
However, difficulties appear in DAx state which contains multiple magnetic axes and
no monotonic coordinate could be defined to describe the whole plasma volume.
Facing this issue, a Multiple Domain Scheme is adopted, dividing the whole plasma
into three separated regions and monotonic radial coordinate thus could be well
defined in each of these three regions. The separatrix plays a role of ’bridge’ to
connect these three separated regions, with assumptions of small volume and uniform
temperature. With the help of MDS, the radial coordinate as well as the correct
metrics are defined in each zone and the electron temperature, plasma current profile
can thus remapped over the flux surfaces. Finally, applying these ideas mentioned
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above, a code named MAxS has been developed and benchmarked in single helical
axis state with ASTRA, a well known transport code. The results of benchmark
show a good agreement between these two codes and this gives us the confidence
to perform energy transport study on these three sub-states of QSH, which will be
presented in the next chapter.



4Thermal Properties of Three sub-states
in QSH state

Three sub-states within one cycle of QSH state have been described in the
previous chapter. Here the study on thermal properties in eITB region,
with the help of a routine named TeGrA, as well as the study on the
energy transport, with the help of MAxS, are presented. The behavior
of thermal gradients with respect to both dominant and secondary modes
is presented and discussed within the framework of stochastic transport
theory. The transport study confirms the results obtained in the thermal
property study. In the end, the total energy confinement time is evaluated
within these three sub-states.

4.1 Transport and Thermal Properties of QSH
State

Transport study has been carried out on RFP plasmas. An energy transport study
on EXTRAP T2R shows that the thermal diffusivity is two orders magnitude lower
inside of the dominant magnetic island than outside [83]. This indicates a good
confined region is formed inside of the magnetic island. Nevertheless, the thermal
diffusivity inside of the magnetic island is still one order magnitude higher than the
one evaluated in tokamak configurations. This result implies that transport in QSH
state, although improved compared with MH state, is still dominated by stochas-
ticity. Indeed, further study on SHAxw thermal structures in RFX-mod shows that
the minimum thermal diffusivity, being one inside of the magnetic island increases
with the increase of the secondary modes [89]. This results confirms that the ther-
mal diffusivity is strongly affected by the stochasticity produced by the overlapping
of the secondary modes. Besides the study on the transport aspect, Reference [90]
also reported a thermal expansion phenomenon in which the thermal width among
these three sub-states shows a sudden jump from narrow to wide thermal structures.
Inspired by the transport study mentioned above, this chapter presents the study
on the thermal properties, transport and energy confinement behaviors of three sub-
states in QSH.
The work is based on a selected database which contains 208 electron temperature
profiles obtained in QSH state, with Thomson scattering diagnostic whose signal

57
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path lies in the equatorial plane at the toroidal angle ϕ = 82.5◦. The angle between
the Thomson scattering laser path and the line going through the maximum thermal
width is between -35◦ and 35◦ in order to be sure not to miss the highest temperature
region in the plasma. The detailed procedures have been described in Section 6.5,
Chapter 3. The database is further selected based on narrow plasma density and
current ranges. The plasma density varies between 2.5 and 3.5 1019m−3, and the
plasma current varies from 1.2 to 1.5MA. The purpose of this further selection is to
keep the plasma parameters relatively the same so that the phenomenon observed in
the data analysis part is independent from the variation of plasma parameters. This
new database contains 53 electron temperature profiles.

TeGrA Code
The thermal properties of the electron temperature profiles, especially in the eITB
region, should be studied to understand the evolution of the three sub-states of a
QSH state. For this purpose, a code named Thermal Gradient Automatic analysis
(TeGrA) has been developed to automatically detect the information of the eITB
region in the three sub-states. a typical electron temperature profile, which is shown
in Figure 4.1. It is measured in SHAxw state and it is plotted as a function of the
geometric radius r. There is one nearly flat region with high electron temperature
in the core and on both sides of the flat region, there are two temperature gradients,
marked with the blue shadow which are the eITB regions. The width of the eITB is
denoted as ∆rFoot,R−L with subscript Foot meaning the foot of the gradient and R−L
meaning the two regions located in the right and left side of the thermal structure.
The width of the flat top is denoted as ∆rTop. The corresponding temperature values
of the top and foot of the eITB region are denoted as Te,Top and Te,Foot, respectively.
The TeGrA code, in general, has the same procedure for all the Te profiles with
minor differences between narrow Te profile and wide ones. TeGrA is based on the
principle that the left and right of the eITB foot and top should share the same Te
value, which is equivalent to the assumption that Te is a function of the helical flux
surfaces labeled by ρ. The main steps for TeGrA are:

• Get the original Te(r) profile.

• Get the mean value of the Te(r) profile, TM
e .

• For top analysis, update the Te(r) profile according to Te(r) > (1−x1)TM
e with

0 < x1 < 1, a parameter to be decided based on the profiles.
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Figure 4.1: A typical electron temperature profile measured in SHAxw state is plotted
as a function of radius r. The blue shadow indicates the eITB region and the black
arrows represent the width of the thermal structure top ∆rTop and the width of the
eITB ∆rFoot,R−L with R − L indicating the right and left of the eITB. The black
dashed line represents the electron temperature value of the eITB for the top T Top

e

and foot T Foot
e .

• Repeat step 2 and 3 on the updated Te(r) profile until the value of TM
e does not

change anymore; the final value of TM
e is the top electron temperature Te,Top

with its corresponding two values of r, rTop,R−L on both sides of eITB, and the
width of top is thus calculated:

∆rTop = |rTop,R − rTop,L| (4.1)

For foot analysis, similar steps are applied with a difference in step 2 which is Te <
(1 + x2)T

M
e , where 0 < x2 < 1. The outcomes from the foot analysis are: the

foot temperature TFoot and the corresponding two locations rFoot,R−L on both sides
of the eITB. The left and right width of eITB foot, being ∆rFoot,L and ∆rFoot,R,
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Figure 4.2: The main steps for code TeGrA. Te(r) is the raw experimental electron
temperature profile, as a function of the radius r.
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respectively, are thus obtained:

∆rFoot,L = |rTop,L − rFoot,L| ∆rFoot,R = |rTop,R − rFoot,R| (4.2)

The choices of parameters x1 and x2 should be adjusted in order to get reliable fitting
results for all the profiles. The main steps of TeGrA are shown in Figure 4.2.

Thermal Gradient and Transport Study
Applying TeGrA on the selected database, the absolute value for left and right ther-
mal gradients of the electron temperature could be easily obtained, denoted as ∇TL

e

and ∇TR
e . The minimum values of the two gradients are shown in Figure 4.3, as a

function of the toroidal component of the dominant mode b1,−7
ϕ normalized to the

edge magnetic field B(a). The error bar is estimated as follows:

Figure 4.3: The minimum temperature ∇Tmin
e between ∇TL

e and ∇TR
e is presented

as a function of the dominant mode normalized by the edge magnetic field.

δ∇Te/∇Te =
√∑

(δTe/Te)2 +
∑

(δr/r)2 (4.3)

Where δTe and δr are the experimental error bars of the electron temperature and
the corresponding radial locations. The symbol

∑
means the sum over the total
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points which are included in the calculations of the top or foot temperatures in the
last step in code TeGrA. The error on the radius δr/r is much smaller than the error
of temperature δTe/Te, so here the error is only calculated based on the error of the
electron temperatures.
The thermal gradients shown in Figure 4.3 reveal two clear separations among those
three sub-states, with respect to the normalized dominant mode. The first separation
is between DAx and SHAxn states when the normalized dominant mode b1,−7

ϕ /B(a) ≈
2%, and the second separation is between SHAxn and SHAxw where b1,−7

ϕ /B(a) ≈
4%. Furthermore, with the increase of the normalized dominant mode, the minimum
temperature gradient shows an overall clear decreasing trend, with a wide spread in
DAx case. This result might give us a hint of a local increase of energy transport in
the eITB region and this might play a role in the energy confinement behavior. To
check this point, a transport study using MAxS has been performed. The simulation
has been performed on a small database containing these three sub-states of QSH
state. Typical thermal diffusivity profiles obtained from one DAx case and from
one SHAxn case are presented in Figure 4.4. The black lines are the results of
’good’ χ profiles, i.e., CI’s generated by the GA. The panel a, b, c are the χ profiles
obtained from one DAx case and they represents the core, island and outer regions,
respectively. The eITB region contains two points and they are characterized by
lowest thermal diffusivity, which is marked with blue shadow. Panel d is the χ
profiles from one SHAxn case and the eITB region is also marked with the blue
shadow. It is clear to see that outside the eITB region, the thermal diffusivity is
around two orders magnitude higher, which is consistent with the results reported
in Reference [83]. Here the mean value of the thermal diffusivity in eITB region,
⟨χth⟩, is used to characterize the overall thermal diffusivity in the eITB region and
the error is evaluated as:

δχ/ ⟨χth⟩ =
√
(σχ1

th/ ⟨χ1
th⟩)

2
+ (σχ2

th/ ⟨χ2
th⟩)

2 (4.4)

Here σχth indicates the standard deviation of the thermal diffusivity and the super-
script 1 and 2 indicate the two points in the eITB region. The two quantities

⟨
χ1,2
th

⟩
indicate the mean values of thermal diffusivity in each point. The simulation result
is shown in Figure 4.4e. Note that the GA has not applied to all the cases since the
time consuming is very high. Here only 10 cases (4 DAx, 3 SHAxn and 3 SHAxw)
are performed with GA to get the general idea of the error bar. The rest of the
points are using MAxS only. It shows a clear increase trend from DAx to SHAxn

and SHAxw. This trend suggests that the energy transport in eITB region indeed
increases within these three sub-states. This result confirms the guess made before
in Figure 4.3. Another point which should be clarified is that the value of thermal
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Figure 4.4: Panel (a), (b) and (c) are the χ profiles obtained from one DAx case
and they represent the core, island and outer regions, respectively. Panel (d) is the
χ profiles obtained from one SHAxn case. The black lines represent the χ profiles
obtained from GA and the minimum value of χ appears in the eITB region, which
is marked with blue shadow. Panel (e) is the results of the transport study on s
small database containing three sub-states of QSH. The mean value of the thermal
diffusivity in the eITB region, ⟨χth⟩ increases from DAx to SHAxn and SHAxw,
suggesting a local increase of the energy transport in eITB region.



64 Thermal Properties of Three sub-states in QSH state

diffusivity presented here is the average value while the value presented in Reference
[89] is the minimum one. This explains the reason why in Reference [89], the best
case of χ was found to be around value 5m2/s while here the value is above 15m2/s.
This behavior of thermal gradients with respect to the normalized dominant mode is
peculiar since they show a trend with the dominant mode which is opposite to that
of the amplitude of the thermal width. In order to understand this phenomenon,
further investigation on the secondary modes, which are the source of stochasticity
in RFP plasmas, has been carried out and it is presented in the following section.

4.2 Thermal Gradient Influenced by
Stochasticity within Three Sub-states

The thermal gradient behaves in a peculiar and unexpected way with respect to the
dominant mode and this result encourages us to further study the role of secondary
modes in setting thermal gradients in eITB regions. The amplitude of the secondary
modes used here is investigated using the cumulative amplitude, defined as: bsec =(∑−17

n=−8 b
2
1,n

)1/2. Figure 4.5a shows the minimum gradient versus the secondary
modes normalized to the edge field. The plot shows a clear separation between
two groups: group 1, with narrow thermal structures (SHAxn and DAx); group 2
with wide thermal structures (SHAxw). This separation between these two groups
occurs when the normalized secondary modes are around 0.85%.
The discussion on this two different behaviors needs the help of Reference [90]. To

be more specific, in that paper, two physical changes have been identified:

• First of all, among the secondary modes, the sub-dominant one, being m=1,
n=-8, shows a significant decrease in the wide thermal structure group (SHAxw

sate).

• Secondly, the location of the thermal gradients shows a difference between nar-
row (DAx and SHAxn) and wide (SHAxw) thermal structure groups. To be
more specific, in narrow thermal structure group, the location of thermal gradi-
ents is within the sub-dominant mode m=1, n=-8 resonance radius. However,
in wide thermal structure group, the location of thermal structures ’migrates’
to a new one, being between mode m=1, n=-8 and mode m=1, n=-9 resonance
radii.

The above mentioned two observations indicate that the source of stochasticity be-
tween narrow and wide thermal structure groups modifies. For the narrow thermal
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Figure 4.5: The minimum gradient is plotted versus the normalized secondary modes.
(a). The data is obtained at the TS angle. (b). The data is obtained in a new toroidal
angle at which the O-point (for DAx) or the magnetic axis (for SHAxn and SHAxw)
lies on the mid plane. In both DAx and SHAxn states, the secondary modes are in
the same range while their amplitude is reduced to a lower level in SHAxw.

structure group, since the thermal gradients are located within the m=1, n=-8 mode,
the thermal gradients are strongly influenced by the stochasticity produced by the
secondary modes m=1, n=-8, -9, -10, -11, · · · . However, in the wide thermal struc-
ture group, the thermal gradients ’relocate’ in the position between m=1, n=-8 and
m=1, n=-9. Consequently, the thermal gradients now are more sensitive to the
stochasticity produced by higher n modes, being m=1, n=-9, -10, -11, · · · . What is
more, the reason for the ’relocation’ phenomenon of the thermal gradients is that the
significant reduction of the sub-dominant mode m=1, n=-8. Now, based on these
discussions, the interpretation of Figure 4.5a is presented.
First of all, for narrow thermal structure group (DAx and SHAxn), the thermal gra-
dient tends to weakly increase with a wide spread, with the decrease of the secondary
modes and the highest thermal gradients exist only for lower secondary modes. The
spread in the data may be caused by the range of the selection angle of the helical
axis used to build the database. In order to check if the poloidal alignment of the
thermal structure with the Thomson Scattering is responsible for the observed data
spread, the thermal gradient has been computed remapping the Te profile over the
flux surfaces and rotating the poloidal cross-section along the toroidal angle so that
the O-point (for DAx) or the magnetic axis (for SHAxn and SHAxw) lies on the
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equatorial plane. With such operations, the thermal gradients now can be computed
along the line with the maximum steepness. This result is shown in Figure 4.5b. The
detailed technique of this rotation process is presented in Section 4.4 later in this
chapter. The new thermal gradients have higher values because now we are looking
in the direction perpendicular to the flux surfaces. Figure 4.5b shows a clearer trend
and this negative correlation between the thermal gradients and the secondary modes
suggests that in DAx and SHAxn groups, the heat transport is mainly driven by the
stochasticity since the stochastic transport in QSH is produced by overlapping of
secondary modes.
Secondly, for SHAxw group, the steepness of the gradient suddenly decreases. The
possible explanation for this behavior is that, during the widening process from
narrow to wide thermal structures, the thermal gradient is moving outward, as men-
tioned above. Thus, in SHAxw states, the thermal gradient ’relocates’ in more outer
regions and it is more sensitive to the stochasticity produced by higher n modes. This
also indicates that in wide thermal structures, the source producing the stochasticity
modifies. Thus, the thermal gradients in SHAxw suffer higher stochasticity level and
that justifies the sudden drop observed in the plot. Figure 4.6 gives a more intuitive
understanding of the relative position of eITBs and mode resonances. The black solid
curve represents the helical safety factor q profile of a typical SHAxn state and the
red dashed curve represents the one in SHAxw state. The two shadows represent the
range of eITB foot location in narrow (gray) and wide (red) thermal structure groups
in agreement with results shown in [90]. It is evident that the foot of the eITB is
located internally to the resonance radius of n=-8 mode in narrow thermal structure
group. Conversely, in the case of SHAxw, it ’migrates’ to an outer location beyond
the n=-8 mode resonance. Hence, the thermal gradients in wide thermal structure
groups are nearer and likely more sensitive to the high stochastization produced by
high n modes.
To confirm the conclusions made above, now we look at the behavior of the ther-
mal diffusivity in the eITB region, respect to the secondary mode and the result is
shown in Figure 4.7. It is clear to see that the same separation, shown in Figure
4.5, appears between narrow and wide thermal structure groups. The averaged ther-
mal diffusivity in the eITB region is above 10m2/s while for all the narrow thermal
structure group, the value is below 10m2/s. In narrow thermal structure group,
the averaged thermal diffusivity tends to decrease as the decrease of the secondary
modes, indicating that the secondary modes play a stabilization role in the energy
transport properties in the eITB region, as their amplitudes decrease. This trend is
consistent with the observation made in Figure 4.5. Moreover, between narrow and
wide thermal structure groups, a sudden increase on the thermal diffusivity appears,
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Figure 4.6: Two typical safety factor q profiles in both SHAxn (black solid curve)
and SHAxw (red dashed curve) states are plotted as a function of the normalized
radial coordinate. The two shadows represent the range of eITB foot locations in
narrow (gray) and wide (red) thermal structure.

at the point where bsec/B(a) ≈ 0.8. This behavior confirms the discussions presented
before. The eITB region in wide thermal structure groups is influenced by higher
stochasticity produced by higher n modes, due to the migration of the foot of the
thermal gradients. From the discussions above we know that both dominant mode
and secondary modes play a role in setting thermal gradient in eITB region. In both
DAx and SHAxn states, the thermal gradients are, on certain levels, negatively cor-
related with both the dominant mode and the secondary modes. While in SHAxw

state, the thermal gradient does not share the same behavior.
Now we investigate the weight of setting thermal gradients due to the dominant mode
and the secondary modes. The result is shown in Figure 4.8a. The data show a wide
spread and the same technique used in Figure 4.5 is applied here too, whose outcome
is shown in Figure 4.8b. In DAx state, thermal gradients show an increasing trend
with the decrease of the ratio bsec/b1,−7

ϕ while in both SHAxn and SHAxw, the ther-
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Figure 4.7: The averaged thermal diffusivity ⟨χth⟩ in the eITB region is plotted as a
function of the secondary modes.The same separation appears, as the one shown in
Figure 4.5 between narrow and wide thermal structure groups.

mal gradients are positively correlated with the value of bsec/b1,−7
ϕ . Here a possible

explanation is presented. This result could be explained by the stochastic reduction
due to the presence of the separatrix, which only exists in DAx state. In DAx state,
the thermal gradients are maintained by the reduction of stochastic transport due to
the separatrix as well as the stabilization effect from the secondary modes. After the
disappearance of the separatrix, being in SHAxn, the thermal gradients, still bene-
fiting from the stabilization of secondary modes, suffers more from the increases of
stochastic transport due to the expulsion of the separatrix. This explanation offers
a possible interpretation of different thermal gradient behaviors between DAx and
SHAxn, with respect to the quantity bsec/b1,−7

ϕ . However, to confirm this statement,
further investigations should be performed.
Up to now, the transport study in the three sub-states of the QSH state has been
presented. The results show an increase of local energy transport in eITB region with
the increase of the dominant mode. However, this local increase of energy transport
is induced by different sources of stochasticity. In both DAx and SHAxn states,
thermal gradient behaviors are influenced by the stochasticity produced mainly by
sub-dominant modes m = 1, n = −8 and m = 1, n = −9. However, in SHAxw state,
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Figure 4.8: Graph (a): The minimum thermal gradient is plotted as a function of
bsec/b

1,−7
ϕ . Graph (b), The same quantities obtained in a new toroidal angle at which

the maximum thermal gradients laying on the equatorial plane. In DAx group, the
thermal gradients shows a negative correlation with respect to the value of bsec/b1,−7

ϕ

while in both SHAxn and SHAxw groups, the thermal gradients show a positive
correlation, instead.

the thermal behavior is affected by the stochasticity produced by higher n modes be-
cause in such states, the thermal gradients form in the outer region compared with
narrow thermal structure states. And finally, between DAx and SHAxn states, the
expulsion of separatrix might also play a role in changing the level of stochasticity
in eITB regions.

Thermal Expansion Within Three Sub-states.
In Reference [90], a thermal expansion phenomenon, i.e., the enlargement of the
thermal structure, is reported in these three sub-states. Following the reported
results, here a detailed study on the process of thermal expansion process is presented.
The width of the thermal structure is defined as:

WTe = ∆rTop +∆rFoot,R +∆rFoot,L (4.5)

This quantity is reported that it shows a sudden jump when moving from the narrow
to the wide structures [90]. Since the total thermal width contains both the top width
and the foot width, here we look into the evolution of ∆rFoot and ∆rtop separately
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Figure 4.9: The maximum value of the gradient width ∆rmax
Foot (empty symbols) and

∆rTop (solid symbols) plotted as a function of the normalized dominant mode. The
foot shows a continuous growth while there is a sudden jump between SHAxn and
SHAxw.

and the results are shown in Figure 4.9. The maximum value between ∆rFoot,L

and ∆rFoot,R, ∆rmax
Foot (empty symbols), shows a continuous increase from DAx to

SHAxn,w as a function of the normalized dominant mode. ∆rTop (solid symbols),
on the other hand, shows a sudden jump in its amplitude from SHAxn to SHAxw.
This result indicates that the sudden jump in the thermal width WTe reported in
Reference [90] is due to the growth of the top width in Te profile rather than the
gradient width ∆rFoot. The sudden expansion of the top width is induced by the
’relocation’ process of the thermal structures which has been discussed already. The
continuous thermal expansion from DAx to SHAxn is sustained by the so-called
Quasi-Separatrix Layer (QSL) [90]. The QSL concept is proposed in this way: the
distorted magnetic flux surfaces play a role similar to the separatrix which separates
the good and bad confinement regions. So from DAx to SHAxn, even with the sudden
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Figure 4.10: The foot (a) and top (b) value of Te and the difference ∆Te (c) are shown
as a function of the normalized dominant mode. The foot electron temperature
slightly decreases from DAx to SHAxn and to SHAxw while the top value shows
a slightly increase trend from DAx to SHAxn and then decreases to SHAxw. The
corresponding value of ∆Te shows a increase trend from DAx to SHAxn and then
slightly decreases to SHAxw.

magnetic topology change (i.e., the expulsion of the separatrix), the thermal width
exhibits a moderate and smooth growth. However, the behavior of the foot width
between SHAxn and SHAxw needs to be clarified in the future.
Besides the evolution of the thermal width, the value of Te,Top, Te,Foot and ∆Te =
Te,top − Te,Foot have been calculated and the results are shown in Figure 4.10. The
upper graph is the evolution of electron temperature on the foot (Te,Foot) of the eITB
regions. The middle graph is the evolution of the one on the top (Te,Top) of the eITB
regions and the third graph is the difference between the top value and the foot
value (∆Te = Te,Top−Te,Foot). From the plots we see that the value of Te,Foot slightly
decreases within these three states. An explanation is that the foot of the eITB is
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expanding towards outer regions where the electron temperature is lower. The top
value, however, shows an increasing trend from DAx to SHAxn and afterwards, it
decreases in SHAxw. Consequently, the value ∆Te slightly increases from DAx to
SHAxn and then decreases in SHAxw.

4.3 Energy confinement time
The peculiar behavior of the thermal gradients presented in the previous shows an
increased local energy transport properties in the eITB region. This result encourages
us to check if this local increase could bring effects to the global energy confinement
properties. Following this idea, the total energy confinement time is investigated in
this section. The definition of the energy confinement time is:

τ =
3

2

∫
V

KBn(Te + Ti)dV
/
(Pin) (4.6)

Where KB is the Boltzmann constant, n is the electron density, Ti is the ion tem-
perature and Pin is the input power. Concerning the volume information, a more
precise approach, considering the real shape of the non-axisymmetric flux surfaces
is adopted with the helical reconstruction of the magnetic field using SHEq. Also,
all the profiles used here (Te, Ti and n) are remapped over the helical flux surfaces
based on the same reconstruction. In this way, a more precise energy confinement
time is obtained. The density profiles are assumed to have this shape:

n = 0.8n0

[
1− (r/a)10

]
+ 0.2n0 (4.7)

Where n0 is the plasma density in the core. This is due to the fact that in RFX-
mod, the shape of the density profile is mainly ruled by the interplay of stochastic
transport, electrostatic transport and source effects [91, 59].
Also the ion temperature is assumed to be the same as electron temperature. Note
that this assumption only affects the absolute value of the energy confinement time.
The confinement time, plotted as a function of the normalized dominant mode, is
shown in Figure 4.11a. In DAx states, the average confinement time is around 1.4ms.
It increases to 1.7ms in SHAxn and eventually in SHAxw, confinement time arrives at
around 2ms. The increase of the confinement time indicates a less chaotic plasma in
SHAxw than in DAx. This is confirmed by looking at the global dynamo parameter:
(1− F )/Θ. From Figure 4.11b it can be seen that the dynamo parameter decreases
with the increase of the normalized dominant mode, which means that from DAx to
SHAxw, the plasma goes into more ordered states.



4.4. Thermal Gradient in new Toroidal Angle 73

Figure 4.11: (a): Total energy confinement time as a function of normalized dominant
mode. The mean value increases from around 1.4ms in DAx up to around 2ms
in SHAxw. (b): The dynamo effect (1 − F )/Θ decreases with the increase of the
normalized dominant mode.

4.4 Thermal Gradient in new Toroidal Angle
As mentioned above, the database was selected based on the helical axis angle range
of -35◦ and 35◦, at the toroidal location of the Thomson scattering. The above
mentioned results are based on the experimental data. Here we briefly present the
results after rotating the helical axis lies on the equatorial plane. This corresponds
to the face that the point with minimum helical flux lies on the equatorial plane. The
rotation is based on the principle that after the rotation, the minimum helical flux
lies on the equatorial plane. The definition of the helical flux function Φ, containing
both the equilibrium flux and the dominant mode flux:

Φ = Φ0 + Φ̃ sin(mθ − nϕ+ ϕ0) (4.8)
Where Φ0 is the equilibrium flux function, Φ̃ is the amplitude of the m=1, n=-7
mode flux and ϕ0 is the phase of the dominant mode. The minimum helical flux
laying on the equatorial plane indicates the helical flux should reach the minimum
value and consequently we have:

mθ − nϕ+ ϕ0 = −π/2 (4.9)
If the minimum helical flux lies on the high field side, then θ = π. If the minimum
helical flux lies on the low field side, then θ = 0. Depending on these two differ-
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ent situations, the correct toroidal angle which should be used for rotation is thus
obtained. The rotation proceeds as follows:

• Get the information of eITB gradients, i.e., four critical locations of the eITB:
rRFoot, rLFoot, rRTop, rLTop and two critical temperatures: T Top

e and T Foot
e .

• Get the helical flux function ΦTS on the Thomson Scattering toroidal angle
ϕTS = 82.5◦.

• Interpolate the helical flux values on the four radial positions of the eITB
mentioned in step 1, being ΦTS

Foot,R, ΦTS
Toot,L, ΦTS

Top,R and ΦTS
Top,L.

• Obtain the new helical flux function Φnew at a new toroidal angle calculated
based on the rotation principle mentioned above.

• Find the new four radial locations via the four helical flux values obtained in
the previous step.

• Using the new radial locations, together with the temperature values obtained
in step 1, the new thermal gradients, after rotation are thus calculated.

An example of rotation, performed in a DAx state, is presented in Figure 4.12.
Graph (a) and (b) are the contour plots of the helical fluxes before and after rotation,
respectively. The red line represents the separatrix. Graph (c) shows the normalized
helical flux ρ, which is defined in Equation 3.6, on the equatorial plane versus the
geometrical radius. The red lines indicate before rotation and the blue lines indicate
after rotation. The vertical lines are the locations of the thermal gradients obtained
from TeGrA. Note that in DAx cases, one needs to pay attention that the remapping
should perform within the island region because for the same ρ value, there might be
another point in the core region. Also one may notice that the ρmin does not reach 0,
this should be the reason that the grid to obtain the value of ρ is not dense enough.

The reason why we apply code TeGrA on the Thomson scattering angle rather
than on the actual line of maximum thermal width is to reduce the errors induced
by the remapping process. As we mentioned in Chapter 3, The remapping suffers
some lack of accuracy in DAx cases. Moreover, in single axis situations, even if the
remapping results are acceptable, the extra error induced by remapping is hard to
evaluate. Nevertheless, here we neglect the errors induced by the remapping process,
only considering the error induced by TeGrA, and perform the calculations on the
remapped grid in machine coordinates. The results show good agreement with the
results shown above in the sense that they both show the same statistical trend.
Besides the rotation results shown in both Figure 4.5b and 4.8b, here we present the
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Figure 4.12: An example of rotation is presented. (a), The contour of helical flux
at Thomson scattering angle. (b), the contour of helical flux after rotation. (c),
The corresponding helical flux along equatorial plane before (red) and after (blue)
rotation. The vertical lines represent the location of the thermal gradients obtained
from TeGrA.

rest of the quantities discussed above, obtained after the rotation process and this
is shown in Figure 4.13. The results presented here show the same trend as before,
with increased or reduced spread trend. This is because even the rotation manually
moves the thermal structure to the equatorial plane, part of the information of the
eITB is missing due to the diagnostic angle in real experiments. Nevertheless, this
rotation technique provides us a reference to get better and clearer understanding of
the statistic results of the database.
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Figure 4.13: Thermal properties after rotation. (a), the minimum thermal gradients
versus the normalized dominant mode. (b), The maximum thermal gradient width
∆rmax

Foot (empty symbols) and the top width of the thermal structure ∆rTop (solid
symbols) versus the normalized dominant mode.

4.5 Summary

This chapter presents the thermal properties, transport and energy confinement be-
haviors within three sub-states in QSH state, together with the discussions on the
behavior of thermal gradients within the framework of stochastic transport, which is
believed to be the main transport mechanism in RFP plasmas.
The study on thermal properties begins with the development of the code TeGrA,
which could automatically get the eITB information. The outcome of TeGrA, being
the thermal gradients, shows a decreasing trend with the increase of the normalized
dominant mode. This trend suggests a local increase of energy transport in eITB
region and it is confirmed by performing the transport study on the database with
the help of the code MAxS. Indeed, the transport study shows that the thermal dif-
fusivity in the eITB region tends to increase as the increase of the dominant mode.
This peculiar behavior of thermal gradients encourages us to study the behavior
with respect to the secondary modes, which are the source of stochastic transport.
The result shows two different behaviors. In both DAx and SHAxn groups, the
thermal gradients weakly increase with the decrease of secondary modes. This can
be explained within the framework of stochastic transport: lower secondary modes
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indicate less stochastic transport and in turn, this could enhance the confinement
properties in eITB region. On the other hand, the thermal gradients show a sudden
drop from narrow to wide thermal structure groups. The possible explanation of this
result can still be done by the theory of stochastic transport. This different behavior
of thermal gradients is due to the modification of the source of stochasticity, which
is induced by the ’migration’ of their locations. In wide thermal structure states, the
location of eITB moves to outer regions compared with the ones in narrow thermal
structure states. Consequently, the eITB is more sensitive to the stochasticity pro-
duced by higher n modes and the thermal gradients in the wide thermal structure
group shows a sudden drop. This discussion has been further proved by checking
the behavior of the thermal diffusivity χ with respect to the secondary modes. The
result shows that the value of thermal diffusivity indeed jumps from narrow to wide
thermal structure groups, indicating the change of stochasticity source. The value
of χ tends to decrease as the decrease of the secondary modes, suggesting that the
secondary modes play a stabilization role in the eITB region, as their amplitudes
decrease. And the very high thermal diffusivity in SHAxw group indeed shows that
in such group, the eITB is more sensitive to the higher level of stochasticity produced
by higher n modes due to the migration of the foot of the thermal gradients.
Besides the study on the thermal gradients, the thermal expansion process has also
been studied, inspired by the results reported in Reference [90], which is that the
thermal width within these three sub-states shows a sudden jump between narrow
and wide thermal structure groups. Here a detailed study has been performed on
the expansion process. The results show that the sudden jump mentioned above is
caused by the top expansion rather than the foot expansion. Moreover, the change
on temperatures at the location of top and foot of the eITB is also presented and
discussed. The different behavior between top and foot of eITB during this expan-
sion process should be studied in the future.
The above mentioned transport behavior is only localized in eITB region. To get a
global view of energy confinement properties, an investigation on the total energy
confinement time has been performed, adopting an improved method which provides
the more accurate shape of the flux surfaces. The result shows a 40% increase from
DAx to SHAxw, indicating within the evolution of these three sub-states, the plasma
enters into more ordered state. This conclusion has been further confirmed by check-
ing the global dynamo parameter, which shows a clear decrease from DAx to SHAxw.
So far, the work on transport related study on RFX-mod has been presented. The
results of this work, though performed and discussed on RFX-mod, should also be
valid in other RFP devices. The reason is that the QSH state has been identified in
the existing RFP experiments all over the world. The magnetic field in QSH features
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the same helical structure spontaneously formed in the RFP discharges, from MH
to QSH. On the thermal structure point of view, however, it requires further study.
The reason is that RFX-mod is the only RFP device with high spacial resolution Te
measurement so that the thermal structure observed on RFX-mod should be further
checked experimentally in other devices. Nevertheless, experiments in MST that has
low spacial resolution Te measurement, showed different thermal structures in the
sense that the whole profile is peaked and shifted. The eITB region presented in this
chapter seems to be missing in MST Te profiles. This may due to lack of resolution
or it could be caused by much higher neutral particle penetration in MST than in
RFX-mod. Hence, detailed study on other RFPs should be carried out to clarify this
point.
The following chapters are dedicated to the study of transport modification due
to presence of magnetic islands in TJ-II stellarator. Unlike RFPs whose transport
process is dominated by stochastic transport, in stellarators and tokamaks, the neo-
classical transport plays a role in plasma transport process. Thus, the transport
study in the following chapters is based on the study of neoclassical transport. To
begin with, a brief description of modification of non-ambipolar fluxes in vicinity of
magnetic islands in tokamaks due to the enhanced neoclassical toroidal viscosity is
presented. Afterwards, this theory is adopted to TJ-II configuration with a moderate
modification to justify the differences between tokamaks and stellarators. And in the
end, the modification of radial electric field in TJ-II plasmas is studied.
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5Enhanced Radial Transport due to
Magnetic Islands in Tokamaks

A tokamak is a fusion configuration designed to have toroidal symmetry
and nested flux surfaces and this is called ideal tokamaks. However,
in real tokamak experiments, error fields or MHD activities could break
the nested flux surfaces as well as the toroidal symmetry, giving rise
to the enhancement of toroidal plasma viscosity. This chapter presents
the enhanced radial transport due to the magnetic islands which break
the toroidal symmetry and distort the nested flux surfaces in tokamak
configurations. More specifically, the enhanced radial transport in vicinity
of magnetic islands due to the enhanced toroidal viscosity is presented,
following Shaing’s theory [63].

5.1 Symmetry Breaking Effect: Enhanced Radial
Transport

The tokamak is a toroidal magnetic fusion device featuring toroidal symmetry.
Charged particles are bonded on the flux surfaces with small loss via radial transport
process across the flux surfaces. This is true within the framework of the neoclassical
transport theory, together with the magnetic configuration with possession of perfect
toroidal symmetry. In such ideal configurations, particle fluxes Γp are intrinsically
ambipolar:

Γp,i = Γp,e (5.1)

The subscribe i and e indicate ions and electrons, respectively. The ambipolar electric
field profile is thus constant over time in hydrogen plasmas and the particle fluxes
cannot modify it:

∂EEE/∂t = Γp,e − Γp,i = 0 (5.2)

In such configurations, the guiding center trajectories of particles are closed ba-
nana orbits on poloidal cross-section at low collisionality regime [92]. This tokamak
configuration with toroidal symmetry is called a ideal tokamak. However, in real
tokamak operations, the presence of error fields or MHD activities could break the
toroidal symmetry, leading to the increase of toroidal viscosity [63]. Consequently,
the banana orbits are not closed any more and particles are drifting outwards. An
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Figure 5.1: A sketch of particle diffusivity D11 is presented as a function of the
collisionality ν∗. This figure shows only the low collisionality region, i.e., ν∗ ⩽ 1.
There are three separated regions divided according to different collisionality regions:
ν,

√
ν and 1/ν. This figure is valid for tokamaks with broken toroidal symmetry and

stellarators who do not posses the toroidal symmetry.

enhanced radial particle flux is thus induced by the presence of the magnetic islands.
This tokamak configuration with broken toroidal symmetry is called a perturbed
tokamak.
Recalling the banana region in Figure 2.3, there is a single relation between particle
diffusivity D11 and collision frequency ν at low collisionality regime in tokamak con-
figurations. The particle orbits in such cases are closed banana orbits. This is true in
ideal tokamaks with perfect toroidal symmetry. However, when the toroidal symme-
try is broken by the presence of magnetic islands, the relationship between D11 and
ν is modified into three separated regions according to different collision frequencies
with higher diffusivity coefficient D11 and the particle orbits are no longer closed
banana orbits. These three regimes are ν,

√
ν and 1/ν, respectively and they are

exactly the same low collisionality regimes known in stellarators, where no axisym-
metry exists by construction. Here ν is the collision frequency. A sketch of particle
diffusivity versus collisionality is shown in Figure 5.1, for magnetic configurations
with no toroidal symmetry (perturbed tokamaks or stellarators). This will lead to
non-intrinsically ambipolar particle fluxes and a local electric field EEE is thus gener-
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ated. This radial electric field could play a role in plasma confinement properties by
means of the shear of EEE ×BBB flow, which is considered to play an important role in
the transition from Low confinement mode (L mode) to High confinement mode (H
mode), i.e., the so-called L-H transition by reducing the size of turbulence structure
in the plasma edge [93].
The magnetic islands, i.e., MHD tearing modes, exist in resistive plasmas. It modifies
the magnetic topology and breaks the toroidal symmetry by distorting and reconnect-
ing the nested magnetic flux surfaces. In vicinity of magnet islands, non-ambipolar
flux appears and this leads to the formation of local radial electric field. In the
following section, the methodology of Neoclassical Toroidal Viscosity (NTV) theory
developed by K. C. Shaing [63] is presented to derive non-ambipolar flux in tokamak
configurations with broken toroidal symmetry due to the presence of the magnetic
islands. There are two approaches for neoclassical particle fluxes, being moment
approach and kinetic approach and it has been shown that the non-ambipolar flux
in such configurations is caused by the toroidal viscosity [63] (see Appendix 7.5). In
the following sections, the radial electric field induced by the presence of magnetic
islands is presented.

5.2 Radial Electric Field in Vicinity of Magnetic
Island in Tokamaks

There are at least two mechanisms which can affect the toroidal viscosity. The first
one is the electromagnetic torque induced by the interaction between the islands and
the wall or error fields [94] and a detailed work has been carried out by A. J. Cole,
etc. in Reference [95]. The second one is the plasma viscosity induced by the distor-
tion of the magnetic surface in the vicinity of the magnetic islands. Here we present
the theory developed by K. C. Shaing [63], which is focused on the second mecha-
nism. More into detail, the magnetic field perturbation δB, on one side modifies the
modulus of the magnetic field and on the other side breaks the nested flux surfaces
when it is resonating. The former effect leads to a modification on the neoclassical
transport properties and the later one leads to an increase of the non-parallel vis-
cosity [63]. The main contribution to the non-intrinsically ambipolar fluxes comes
from the strong modification of the flux surfaces [63] and this is the contribution
that we are studying following Shaing’s calculations. And finally, Shaing’s theory
has been developed for the regions both inside and outside of the magnetic island,
but we focus only on the particle fluxes outside the separatrix due to the fact that
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ticle distribution, vd is the particle drift velocity, !!"
"#/qs is the helical angle, qs is the safety factor q at the
rational surface where the island is centered, $ is the helical
flux function, C( f ) is the Coulomb collision operator, and
fM is the Maxwellian distribution. A schematic diagram of a
magnetic island is shown in Fig. 1. The radial surface label
of constant $ is shown. The bounce averaged drift speed in
the %! direction is

&vd•%!'b!"(I/M)*(+$/+,*(B0"%"/B *

#(+J/+$*/(+J/+E *, (3*

where I!RBt , R is the major radius, Bt is the toroidal mag-
netic field strength, B!!B!, M is the mass, ) is the gyro-
frequency, , is the unperturbed equilibrium poloidal flux
function, and E is the particle energy. The second adiabatic
invariant J!" d" v # is

J!16(-B./M *1/2/E(0*"(1"02*K(0*1 , (4*

where .!2s$(%3w)($̄$cosm!)1/2, 2s is the inverse as-
pect ratio evaluated at the rational surface, 3w
!/2(qs)2,̃/(qs!Brs)11/2/R is the width of the island divided
by the major radius, ,̃ is the perturbed poloidal flux due to
the existence of the island, qs!!dq/dr evaluated at the ratio-
nal surface, rs is the radius of the rational surface, $̄ is the
normalized helical flux function defined as the ratio of the
helical flux function to (",̃), m is the poloidal mode num-
ber of the island, - is the magnetic moment, E(0) and K(0)
are the complete elliptic integrals of the second kind and first
kind, 02!(E"-B0"e4$-B0.)/(2-B.), e is the elec-
tric charge, and 4 is the electrostatic potential. The quantity
J is calculated based on the magnetic field model B!B0(1
". cos "), valid in the vicinity of a magnetic island.7 With J
given in Eq. (4*, we obtain

&vd•%!'b!"(I/M)*(+$/+,*(B0"%"/B */-B0(2E/K

"1 *+./+$"e4!1 , (5*

where 4!!+4/+$ . For a large aspect tokamak where .
&1, the EÃB drift dominates the &vd•%!'b drift away from
the island separatrix for thermal particles when e4/T51.
Here, T is the plasma temperature. For simplicity we assume
that the EÃB drift speed dominates the &vd•%!'b drift
speed. This assumption removes the possibility of forming
super-bananas which are caused by the cancellation of the
%B drift and the EÃB drift so that &vd•%!'b50. Note that
because 02 is a function of ! through its dependence on 3w ,
it is possible that trapped particles can be collisionlessly de-
trapped or the circulating particles can be trapped collision-
lessly when 02 is close to 1. We will ignore such a possibil-
ity, i.e., we neglect the 3w dependence after we obtain the
radial drift speed from it. This is equivalent to expanding J in
terms of 3w . Neglecting both of these effects, namely, super-
banana and collisionless trapping/detrapping, will not affect
the radial electric dependence in the transport fluxes. The
bounce averaged radial drift speed is

&vd•%$'b!(I/M)*(+$/+,*(B0"%"/B */-B0(2E/K

"1 *+./+!1 . (6*

It is obvious that Eq. (2* is a complex partial differential
equation with complete elliptical integrals as coefficients. To
make progress, we approximate K5(6/2)(1$02/4$¯)
and E5(6/2)(1"02/4$¯) for the trapped particles where
02'1. With these approximations, we have (2E/K"1)51
"02. Note that this approximation is not accurate at or close
to the boundary where 02 is unity, as expected. However,
this approximation is consistent with our purpose, since we
neglect the possibility of the collisionless trapping and de-
trapping that can occur when 02 is close to unity. The bounce
averaged collision operator is

&C( f *'b!(7/B */+(J-+ f /+-*/+-1/(+J/+E *. (7*

Since 02 is a more convenient pitch angle parameter, +/+- in
Eq. (7* can be approximated by +/+-5"(1/2-.)+/+02.
Because we neglect the ! dependence in 0, &C( f )'b is not a
function of ! either, except through the distribution f itself.
With this approximation, the solubility constraint is dramati-
cally simplified, as will be clear later.

Now we solve Eq. (2* in the regime where the collision
frequency is less than the EÃB drift frequency in the %!
direction. We expand Eq. (2* in terms of this small param-
eter. The lowest order equation is

&vd•%!'b+ f 0 /+!$&vd•%$'b+ fM /+$!0, (8*

and the next order equation is

&vd•%!'b+ f 1 /+!!&C( f 0*'b , (9*

where f 0 and f 1 are the lowest order and the next order
perturbed particle distribution functions. Because we only
keep the EÃB drift in &vd•%!'b and neglect the ! depen-
dence in 0, the solubility constraint in Eq. (9* is simplified to

$ d! f 0 /(+$/+,*!0. (10*

Note that the extra +$/+,!1"q/qs factor in Eq. (10* is
from &vd•%!'b . Integrating Eq. (8* we obtain

FIG. 1. A schematic diagram of a magnetic island. The constant $ contour
is shown here. The helical angle ! is similar to the polar angle in this
diagram.
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Figure 5.2: A schematic diagram of a magnetic island. The constant Ψ contour is
shown.

the size of the magnetic island is small in TJ-II.
To begin with, the proper coordinate system should be introduced. Since we are
dealing with regions in vicinity of magnetic islands, a good radial coordinate can
be defined with respect to the O-point of the magnetic island. Figure 5.2 shows a
contour with constant helical flux function Ψ = ΨP − ΨT/q with ΨP the the un-
perturbed equilibrium poloidal flux function, q the safety factor and ΨT the toroidal
flux function. The main idea is to solve the non-ambipolar equation in vicinity of
magnetic islands: ∂EEE/∂t = Γp,e − Γp,i and for which, we need an explicit formula
for the particle fluxes that are functions of the electric field. The particle flux, by
definition, is obtained by integration over the whole velocity space:

Γp =

∫
dvvvfvvvd · ∇Ψ (5.3)

This is an integration over vvv where vvv is the velocity, vvvd is the particle drift velocity, f
is the particle distribution function and ∇Ψ indicates the radial direction. The theory
is to obtain the distribution function f through solving the kinetic equation1 . The
theory focuses on the vicinity of magnetic islands and has the following assumptions:

1It is worth mentioning that in the end, it has been found that to get the expression of the
particle flux, one does not need the expression of the distribution function. Instead, the expression
of ∂f/∂k2 is enough.
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• The tokamak configuration has perfect toroidal symmetry before it is broken
by the magnetic islands. In other words, the other factors which could break
the toroidal symmetry is neglected, such as the error fields and the discrete
toroidal magnetic coils. Under such assumption, the modulus of the equilibrium
magnetic field on one flux surface varies only with the poloidal angle θ.

• The theory deals with low collisionality regime, meaning the calculations are
carried out on the particle fluxes due to the modification of the banana regime
in the three regions: ν,

√
ν and 1/ν.

• At low collisionality regimes, it is the trapped particles that dominate the
transport properties. In order to only consider the perpendicular transport,
the bounce averaged kinetic equation is solved with proper transport ordering,
to eliminate the parallel transport information. The particle fluxes derived
from the bounce averaged drift kinetic equation only contributes to the mo-
mentum balance not parallel to the magnetic field [63]. Moreover, the mo-
mentum balance depends on the particle drifts that are different for different
plasma species. This is the fundamental reason for the appearance of the
non-intrinsically ambipolar fluxes.

• The theory only considers the trapped particles in the banana regime, i.e.,
no new class of trapped particles are created by the magnetic perturbations.
In particular, the super-banana is not considered here2. One of the reason is
that it has been proved that including the super-banana does not change the
dependence of the particle flux on the radial electric field [96].

• Large aspect ratio devices. With this condition, the E × B drift velocity is
higher than ∇B drift and curvature drift. So the drift velocity could be ap-
proximately VE×B. The reason for this approximation is that the size of the
drift orbit is δr ∼ rVdr/VE×B where r is the minor radius, VE×B is the E × B
particle drift and Vdr is the radial drift speed due to both ∇B and curvature
drift. The physical meaning of this condition is to neglect the formation of sup-
per banana orbit [97, 98]. From a mathematical point of view, this assumption
is equivalent to the previous one.

• In this chapter, the process of trapping-detrapping process is neglected. Phys-
ically this assumption means that the pitch parameter k2 < 1. Allowing the

2In the next chapter we will see that we assume this hypothesis true also for stellarators,
considering that resonant perturbations have long wavelength, ’seen’ by particles trapped in banana
regime but not by particles trapped in helical wells (super-banana).
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trapping-detrapping process, being k2 ∼ 1, brings to the
√
ν regime [99]. But

this is not reported here.3

Solution of the Bounce Averaged Drift Kinetic Equation
The neoclassical toroidal viscosity developed by K. C. Shaing [63] adopts the kinetic
description, which starts with the guiding center description of drift kinetic equation.
The general kinetic equation for charged particles is:

∂f

∂t
+ vvv · ∇f + aaa · ∂f

∂vvv
= C(f) (5.4)

Where C(f) is the Coulomb collision operator and aaa, the acceleration, is given by
the Lorentz force:

aaa ≡ aaa (xxx,vvv, t) =
e

m

[
EEE(xxx, t) +

1

c
vvv ×BBB(xxx, t)

]
(5.5)

The equation 5.4 could be summarized as:

∂f

∂t
+
dzi

dt

∂f

∂zi
= C(f) (5.6)

Where zi represents the coordinates in kinetic space. Each guiding center can be
specified by its position xxx, magnetic moment µ and energy U : (xxx, µ, U). Adopting
this guiding center coordinate, equation 5.4 could be reformed as:

∂f

∂t
+ vvvgc · ∇f +

dU

dt

∂f

∂U
+
dµ

dt

∂f

∂µ
= C(f) (5.7)

Where vvvgc is the guiding center velocity.
Before further discussion on the drift kinetic equation, the gyroradius ordering should
be specified. First of all, define the scale length characterizing the plasma L (in
toroidal configurations usually L is taken as the minor radius a) and the thermal
gyroradius of a charged particle ρ = vt/Ω, vt ≡

√
2T/M particle thermal velocity

and Ω the gyrofrequency, then the plasma is magnetized if:

δ ≡ ρ/L≪ 1 (5.8)
3In the next chapter, an expression for

√
ν is presented.
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The quantity δ is the expansion parameter for the purpose of linearizing the drift
kinetic equation. For a quantity A written in form of A = A0 +A1, the A0 varies in
the scale of L and A1 varies in the scale of ρ. The collision frequency is in order of

ν/Ω ∼ δ (5.9)

The notation of ordering with expression ∼ δ means the quantity is in the same order
of δ and this could also be denoted as O(δ). The partial time derivative in Equation
5.6 is assumed to be small:

∂f

∂t
∼ δ3Ωf (5.10)

Note this is a stronger version of ordering and this is called the transport ordering
[100]. Adopting this ordering, the guiding center velocity vvvgc, who is dominated
along the magnetic field BBB can be expressed as:

vvvgc = bbbv∥ +O(δ) (5.11)

With v∥ the velocity component along the field line and bbb = BBB/B the unit vector
of magnetic fields. The higher order is vvvgc = bbbv∥ + vvvd +O(δ2), where vvvd is the drift
velocity and it is given by [100]:

vvvd = vvvE +
1

Ω
bbb×

(
µ

m
∇B + v2∥κκκ+ v∥

∂bbb

∂t

)
(5.12)

The first part vvvE is the EEE ×BBB drift velocity, the second and the third part are the
field gradient and curvature drift velocity and the last part is the drift velocity caused
by field time variation. The curvature is defined as κκκ = bbb · ∇bbb = −bbb× (∇× bbb). Since
here we neglect the super-banana effect as well as the time variation of the field, the
total drift velocity is thus

vvvd = vvvE (5.13)
The theory is to solve the linear version of Equation 5.7 by expressing the particle
distribution f as

f = f0 + f1 (5.14)
Where f0 is the zero order distribution function and f1 is the perturbed distribution
function. Thus, we have C(f) = C(f1). For simplicity reason, the acceleration part
in kinetic equation is neglected. Applying the ordering into the drift kinetic equation,
the zero order of equation 5.7 would be:

v∥bbb · ∇f0 = C(f0) (5.15)
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The solution is f0 = fM(Ψ) for an unperturbed tokamak with fM Maxwellian distri-
bution function and f0 = f0(Ψ, α) for a helically perturbed tokamak and stellarator,
where α is the helical angle defined as α = θ− ϕ/qs with θ the poloidal angle, ϕ the
toroidal angle and qs the safety factor at the resonance.
The first order of the drift kinetic equation is:

v∥bbb · ∇f1 + vvvd · ∇f0 = C(f1) (5.16)

The physics in the non-axisymmetric system is governed by the bounce averaged
drift kinetic equation in low collisionality regimes, which eliminates the information
along the magnetic field. The bounce average is defined as:

⟨·⟩b =
∮
dθ(·)BBB0/|v∥|

/∮
dθBBB0/|v∥| (5.17)

For the passing particles the integral is performed between 0 and 2π and for the
trapped particles the integral is performed between −θc to θc instead where θc is
the angle defining the boundary between trapped and passing particles. Taking the
bounce average of Equation 5.16, v∥bbb · ∇f1 could be annihilated (see Appendix 7.3)
and Equation 5.16 becomes:

⟨vvvd · ∇α⟩b
∂f0
∂α

+ ⟨vvvd · ∇Ψ⟩b
∂f0
∂Ψ

= ⟨C(f1)⟩b (5.18)

In order to solve Equation 5.18, a subsidiary ordering is adopted:
In the case of ⟨vvvd · ∇α⟩b ∂f0

/
∂α ∼ ⟨C(f1)⟩b > ⟨vvvd · ∇Ψ⟩b ∂f0

/
∂Ψ, which implies the

drift orbit is much smaller than the characteristic length of the plasma, equation
5.18 yields to:

⟨vvvd · ∇α⟩b
∂f00
∂α

= ⟨C(f00)⟩b (5.19)

And the solution is f00 = fM in the perturbed tokamaks and stellarators. The next
order equation in the subsidiary ordering is:

⟨vvvd · ∇α⟩b
∂f01
∂α

+ ⟨vvvd · ∇Ψ⟩b
∂fM
∂Ψ

= ⟨C(f01)⟩b (5.20)

In order to solve Equation 5.20, the relative strength of the helical drift frequency
and the collision frequency should be examined and this brings to the definition of
the different collisionality regimes.
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• The helical drift frequency is much smaller than the collision frequency. Equa-
tion 5.20 reduces to:

⟨vvvd · ∇Ψ⟩b
∂fM
∂ψ

= ⟨C(f01)⟩b (5.21)

The bounced averaged radial drift velocity is [101]:

⟨vvvd · ∇Ψ⟩ = 8
I

Ω

∂Ψ

∂ψ

√
µB0

M∆

(
EEE − KKK

2

)
∂∆

∂α
(5.22)

Where M is the mass, KKK and EEE are complete elliptic integrals of the first
and second kind, respectively, and ∆ = ϵs ± δW (Ψ̄ + cosmα)1/2 with ϵs the
inverse aspect ratio evaluated at the resonant surface, δw is the island width rW
normalized by the major radius R0 and Ψ̄ is the helical flux function normalized
by the perturbed poloidal flux function ψ̃ and B0 is the magnetic field on
the magnetic axis. The argument of the complete elliptic integrals is κ2 =
(E − µB0 − eΦ + µB0∆)/2µB0∆, which is the pitch parameter defining the
trapped particles [101]. For particles trapped in the toroidal magnetic mirrors,
κ2 < 1 and for circulating particles κ2 > 1.
With a pitch angle scattering Coulomb collision operator, Equation 5.21 can
be easily integrated once to obtain [101]:

∂f0
∂κ2

=
µB0

ν
∆
∂fM
∂Ψ

IB0 · ∇θ
MΩB0

∂Ψ

∂ψ

∂∆

∂α

∫ κ2

0
dκ2(2EEE −KKK)

[EEE − (1− κ2)KKK]
(5.23)

The flux surface averaged transport fluxes Γp =< NVVV ·∇Ψ >f is thus obtained
[101]:

Γp = −C1

2

(Innn0 · ∇θ)2

M7/2Ω2

(
q′s
qs
rw

)2

m2δW ϵ
3/2
s

F (Ψ̄)
√
1 + Ψ̄

K(κf )

∫
dWW 5/2 1

ν

∂fM
∂Ψ
(5.24)

Where N is the plasma density, VVV is the flow velocity, <>f indicates flux sur-
face average, C1 = 0.884, W =Mv2/2, F (Ψ̄) =

∮
dα(sinmα)2(∆/ϵs)

3/2/
√
Ψ̄ + cosmα,

I = RBt and κ2f = 2/(1 + Ψ̄). It is clear to see that the particle flux is inverse
proportional to the collision frequency.

• When the collision frequency decreases further,⟨C(f01)⟩b < ⟨vvvd · ∇α⟩b, Equa-
tion 5.20 reduces to:

⟨vvvd · ∇α⟩b
∂f010
∂α

+ ⟨vvvd · ∇Ψ⟩b
∂fM
∂Ψ

= 0 (5.25)
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And
⟨vvvd · ∇α⟩b

∂f011
∂α

= ⟨C(f010)⟩b (5.26)

The bounce averaged drift speed in the ∇α direction is [102]:

⟨vvvd · ∇α⟩b = −(I/MΩ)(∂Ψ/∂ψ)(BBB0 · ∇θ/B)(∂J/∂Ψ)/(∂J/∂E) (5.27)

Here E is the particle energy and J =
∮
dθv∥ is the second adiabatic invariant

[102]:
J = 16(µB∆/M)1/2

[
EEE(κ)− (1− κ2)KKK(κ)

]
(5.28)

Applying Equation 5.28, the helical drift velocity after bounce average is thus
[102]:

⟨vvvd · ∇α⟩b = −(I/MΩ)(∂Ψ/∂ψ)(BBB0 · ∇θ/B) [µB(2EEE/KKK − 1)∂∆/∂Ψ− eΦ′]
(5.29)

Where Φ′ = ∂Φ/∂Ψ. The radial drift speed after bounce average, neglecting
the super banana and trapping-detrapping process, is [102]:

⟨vvvd · ∇Ψ⟩b = −(I/MΩ)(∂Ψ/∂ψ)(BBB0 · ∇θ/B) [µB(2EEE/KKK − 1)∂∆/∂α] (5.30)

Applying these condition, we could obtain the distribution function f010 [102]:

f010 = −(µB0/eΦ
′)(1− κ2)

[
(±δW )(Ψ̄ + cosmα)1/2 ± C1

]
∂fM/∂Ψ (5.31)

Where C1 = −(π/2)(1 + Ψ̄)1/2/KKK(κf ) is the integration constant. The corre-
sponding particle flux is [102]:

Γp = −(π/
⟨
g1/2

⟩
)

∫
dα

∫
dE(νqs/MB∆)[(∂Ψ/∂ψ)

× (BBB0 · ∇θ/B)∂fM/∂Ψ]−1

∫ 1

0

dκ2J(∂f0/∂κ
2)2 (5.32)

With
⟨
g1/2

⟩
=

∫
dθ

∫
dα/∇Ψ×∇α · ∇θ. The particle flux now is proportional

to the collision frequency.

5.3 Summary
At this point, we have already obtained the formula of particle fluxes in tokamak
configurations, considering the presence of magnetic islands under the main assump-
tions of neglecting super banana effect. The Equation 5.24 and 5.32 are the particle
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flux functions obtained in 1/ν and ν regimes, respectively. These two equations con-
tain complex integrals, which bring difficulties to perform further study. In Chapter
6, the simplified equations, based on the cylindrical approximation are presented.
In such a way, the particle fluxes are expressed with a monotonic radial coordinate
so that further transport study on 1.5 dimensions could be carried out. The justifi-
cation of applying these equations originally developed for tokamaks on stellarators
is discussed. An combined equation which could well reproduce the three low colli-
sion regimes is presented and the transport study with this model, using the TJ-II
stellarator parameters is presented.





6Modification on Radial Electric Field
due to Magnetic Islands in TJ-II
Stellarator

TJ-II stellarator is capable of reaching high confinement mode, through
the L-H transition process. It is believed that the L-H transition is mo-
tivated by the shear of EEE ×BBB flow. Hence, the radial electric field rises
an important role in toroidal confinement research. In chapter 5, non-
intrinsically ambipolar particle fluxes in the vicinity of a magnetic island
have been written, following Shaing’s analytical theory. In particular, the
calculations for both the ν and 1/ν low collisionality regimes have been
shown. In this chapter we use these results, adding also the

√
ν regime,

to study how small magnetic islands can modify the TJ-II stellarator am-
bipolar electric field, in the framework of neoclassical theory. Shaing’s
analytical calculations have been developed for the simplified tokamak con-
figuration. We use almost the same equations to model the dependence
of the fluxes to the radial electric field, but using the TJ-II stellarator
parameters. A justification for this will be given in the text.

6.1 Radial Electric Field and Magnetic Islands in
TJ-II

TJ-II stellarator is capable of reaching high confinement mode (H-mode), in which
the plasma confinement properties are highly enhanced. The first H-mode was dis-
covered in ASDEX tokamak [103] and afterwards it was identified that the shear of
EEE × BBB flow is the key component for reducing the turbulence that produces large
confinement losses and the formation of transport barriers [93]. In TJ-II configu-
ration, it has also been identified that this sheared flow plays an important role in
L-H transition [104]. This rises the importance of radial electric field in stellarators
within the framework of neoclassical transport, which is the physical mechanism re-
sponsible for the radial electric field due to the non-ambipolar particle fluxes [105].
Several studies on radial electric field have been performed in TJ-II stellarator. The
Monte-Carlo simulations in Electron Cyclotron Heating (ECRH) plasmas show that
positive radial electric fields appear in the plasma core and negative radial electric

93
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fields appear in the plasma edge [106]. Further experimental study reveals that the
magnetic resonances plays an important role in modifying the local radial electric
field [65]. From the theoretical point of view, however, the neoclassical transport
simulations in TJ-II have not included the effect induced by the magnetic islands.
Hence, this chapter presents the study of the modification effect on the radial electric
field in TJ-II plasmas induced by the presence of the magnetic islands.
The study on the modification effect of the radial electric field induced by the pres-
ence of the magnetic islands is based on the NTV theory developed by K. C. Shaing
[63], originally devoted to tokamak configurations. A brief description of this theory
is presented in Chapter 5. The main idea is that the existence of magnetic islands
distorts the nested flux surfaces, leading to a modification of the toroidal plasma
viscosity, which in turn, modifies the local particle fluxes, giving rise to the local
electric field. This effect shares the same physics for all toroidal magnetic configura-
tions with the possession of nested flux surfaces, both in tokamaks and stellarators
and consequently, the same effects can be introduced in stellarator plasmas by the
presence of magnetic islands.
To begin the study, firstly a brief description of magnetic configurations as well as
the magnetic islands in TJ-II is presented. Two typical ι profiles, characterized by
two different resonant locations of the two resonance n/m=8/5 and n/m=5/3 (with
n=toroidal mode number and m=poloidal mode number), are shown in Figure 6.1.
The ι profile in TJ-II is nearly flat. Secondly, there are three points which should
be clarified in order to justify the validation of Shaing’s theory in stellarators:

• First of all, we assume that the contribution to the non-intrinsically ambipolar
particle fluxes in stellarators is due to a mechanism similar to tokamaks: there
is an added symmetry breaking effect that alters collisional fluxes from their
background in the absence of the islands.

• Secondly, the neoclassical transport particle flux in stellarators is much higher
than in tokamaks. This is true for stellarators with no transport optimization
[107]. The reason for this phenomenon is that in stellarators, transport related
to the trapped particles is much higher than ones in tokamaks because there
is no toroidal symmetry. Nevertheless, it is also worth mentioning that the
optimized stellarators can have lower neoclassical transport level than ones
in tokamaks [107]. TJ-II is a stellarator with no transport optimization so
that the particle diffusivity is much higher than one in tokamaks. Tokamak
diffusivity due to the islands are very small compared with the neoclassical
stellarator background. As we will see later, tokamak diffusivity from Shaing’s
theory have been multiplied by a geometrical factor G = 1000. This factor is
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Figure 6.1: Cross section of the vacuum flux surfaces in two magnetic configurations
of the TJ-II Heliac and corresponding ι profiles. The resonance ι = 8/5 is located
in ρ = 0.56 in configuration labeled 96_47_63 (left), while it shifts to ρ = 0.76
in configuration 100_44_64 (right). The circled crosses indicate the section of the
central conductors, which are protected from the plasma by the hard core. This
figure is from Reference [65].

chosen to have comparable contributions to the diffusivity from the background
and the island. Another point should be made is that this factor G = 1000
used in this dissertation is the same for both electron and ion particle fluxes,
which is a rough assumption. A more detailed work should be performed to
find different factors for electron and ion particle fluxes.

• And finally, Shaing’s theory, developed for tokamaks, refers to particles trapped
in banana orbits, excluding the formation of other trapped orbits, such as
super-bananas. The super-banana is caused by local trapped particles due local
magnetic mirrors. Particles trapped in the super-banana cannot explore the
whole magnetic field. Instead, they are trapped either on the high field surfaces
(upper surfaces) or on the low field surfaces (lower surfaces). Such situation will
let them directly drift out. In stellarators, local magnetic mirrors commonly
exists, which is shown in Figure 6.2. Nevertheless, here we still use Shaing’s
equations considering that the modification of the fluxes involves particles that
can explore the modification of the magnetic field due to the perturbation δB.
Resonant perturbations are long wave length perturbations so that they are
’difficult’ to be ’seen’ by locally trapped particles, and because of this we are
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Particle orbits in stellarators

Following a field-line around a tokamak the magnetic field
strength is approximately sinusoidal

In a classical stellarator, there is another harmonic

|B |

along field line

Stellarator

As in a tokamak, particles can be passing or trapped due to
toroidicity

There are also particles which get trapped in local minima

Dr Ben Dudson Magnetic Confinement Fusion (11 of 23)

Figure 6.2: Magnetic field strength |B| in tokamaks (dashed line) and stellarators
(solid line) along field line is presented. There are many local magnetic mirrors in
stellarators.

confident with Shaing’s model, at least for a first study. Nevertheless, it should
be checked in the future.

With these three assumptions, the detailed study of modification on radial electric
field induced by magnetic islands in TJ-II is presented in the following sections. In
Section 6.2 and Section 6.3, the complete particle flux equation who can describe
the three low collisionality regimes is presented and the validation of this equation
is discussed. In Section 6.4, a detailed study on the complete flux equation under
equilibria condition is presented, focused on the radial electric field. The modification
on the radial electric field due to different plasma parameters has been studied and
discussed. And finally, the study of modification on radial electric field due to the
presence of magnetic islands in both ’tokamak’1 and TJ-II configurations is presented,
using the code ASTRA.

6.2 Particle Fluxes in Low Collisionality
Regimes: ν and 1/ν

From here on, we discuss the particle flux equations derived by Shaing, in cylindrical
geometry. As mentioned in Chapter 2, there are mainly three sub-regimes in the
low collisionality regime: ν,

√
ν and 1/ν. For ν and 1/ν regimes, the particle flux

1This is not really a tokamak case because the experimental plasma parameters used here
is from TJ-II experiments. Nevertheless, the use of Shaing’s formula can be considered to be a
tokamak case since the formula only considers the magnetic field in tokamaks.
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equations have been presented in Chapter 5, being Equation 5.32 for ν regime and
Equation 5.24 for 1/ν regime. The corresponding simplified two equations have also
been presented by Shaing which could well describe the particle flux Γp in those two
collisionality regimes [108] :

Γν
p = −D11C = −C(0.22Nν)

(
eT

eBr

)2(
δW
ωE

)2

ϵ−1/2G(Ψ̄) (6.1)

Γ1/ν
p = −D11C = −C0.5

(
N

ν

)(
eT

eBr

)2

(R0BP )
2

(
q′srW
qs

)2

(mδW )2ϵ3/2H(Ψ̄) (6.2)

With the common factor C, related to the density gradient, is defined as C =
(P ′/P + eΦ′/T ), assuming T ′/T = 0 because here we only consider the convertinal
particle flux, i.e., Γp = −D11∇N . The superscript ν and 1/ν indicate the different
collision regimes. The basic quantities are: N is the electron density, ν is the colli-
sion frequency, c is the speed of light, T is the electron temperature, P = NT is the
plasma pressure, Φ is the electric potential and e is the electron charge. Φ′ = dΦ/dΨ
where Ψ the helical flux function functional as the radial coordinate. B is the mag-
netic field, BP is the poloidal component of the magnetic field, a is the minor radius,
R0 is the major radius, m is the poloidal mode number. rW =

√
2q2s ψ̃

/
(q′sBrs) is the

island width with qs the safety factor at the resonance, ψ̃ the perturbed equilibrium
poloidal flux function, q′s = dq/dr|r=rs evaluated at the resonance position rs with r
the effective radius centered in the magnetic axis, δW = rW/R0, ωE = cEΨ/(Br) is
the E ×B angular speed with EΨ = −dΦ/dΨ, ϵ = a/R0 is the reversed aspect ratio
and P ′ = dP/dΨ. The function G(Ψ̄) is related to the first and second elliptical
integrals and essentially it is a function that defines the location of the island region.
Hence, for simplicity reason, we use a Gaussian distribution function to replace it.
The same technique is applied for the H(Ψ̄) function and X(Ψ̄) functions which is
introduced later.
Equation 6.1 and Equation 6.2 can be unified into a ’combined’ equation [108] :

Γp = −D11C = −C N (cT/eBr)2 (ν/ϵ)(R0BP )
2(q′srW/qs)

2(mδW )2ϵ1/2

ω2
E(RBP )2(q′srW/qs)2m2/[0.22G(Ψ̄)] + (ν/ϵ)2/[0.5H(Ψ̄)]

(6.3)

Equation 6.3 can well reproduce Equation 6.1 and 6.2 in the limit νA0 and νA∞,
respectively. Applying Equation 6.3 with typical TJ-II plasma parameters shown in
Table 6.1, one could see the result of reproduction from Figure 6.3. The two graphs
are the log-log scale plots of particle diffusivity Di(e)

11 versus the collisionality ν∗. The
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Quantity Value
N(m−3) 0.36× 1019

Te(eV ) 350
Ti(eV ) Te/3
BT (T ) 0.995
B(T) 1
R0(m) 1.5
a(m) 0.2
m 5
n 8
q 1/[1.551 + 0.05238r/a− 0.07569(r/a)2 + 0.12862(r/a)3]

Table 6.1: Typical TJ-II plasma parameters.

superscript i and e represent ions and electrons. The black and blue dashed lines
are for ν and 1/ν regimes obtained from Equation 6.1 and Equation 6.2, respec-
tively . The black gray vertical lines represents the boundary between ν and 1/ν
regimes. The thine vertical red and blue lines represent the collisionality ν∗ of ions
and electrons in such plasma parameters, respectively. The red curves are produced
by Equation 6.3. The results show a good agreement between Equation 6.1, 6.2 and
Equation 6.3.
The boundary between ν and 1/ν (gray vertical line in Figure 6.3) is defined as [102]:

νeff < ωE(R0BP )(q
′
srW/qs) (6.4)

Where νeff = ν/ϵ is the effective collision frequency defined as the ration between the
collision frequency ν and the inverse aspect ratio ϵ.

6.3 Particle Flux in
√
ν Regime and the

Complete Particle Flux Equation
The Equation 6.3 presented above only covers two low collision regimes. In order to
get a complete equation for the particle flux including all three low collision regimes,
the study on the the

√
ν regime is presented. Applying the equation from Reference

[109], we could get the particle flux equation for
√
ν regime:

Γ
√
ν

p = −D11C = −C0.1
√
ν (cT/eBr)2 δ2W

√
BPR0m (−q′srW/qs)

0.5 |ωE|−1.5X(Ψ̄)
(6.5)
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Figure 6.3: Using TJ-II parameters, the combined function(in red) could well repro-
duce the two separated functions in ν(dashed black line) and 1/ν(dashed blue line)
regimes. The thick gray vertical line represents the critical ν∗ which indicates the
end of ν regime. The red vertical dashed line is the electron collisionality and the
blue dashed one is the ion collisionality.
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Figure 6.4: Comparison between equation 6.3(black, solid) and equation 6.6(red,
solid). The dashed green line represents the

√
ν. It is clear to see that the green line

and black line has a common point which also belongs to the gray vertical line which
is the end of ν regime. The vertical red and blue dashed lines are the collisionality
for electrons and ions, respectively.
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The superscript
√
ν indicates that the particle flux is in

√
ν regime. In order to write

a combined complete equation for the three low collisionality regimes, for simplicity
reason, we simplify the three separate particle flux functions as:

Γν
p = −D11C = −CKνν

Γ
√
ν

p = −D11C = −CK√
ν

√
ν

Γ1/ν
p = −D11C = −CK1/ν1/ν

And the corresponding coefficient Kν , K√
ν , K1/ν are defined as:

Kν = 0.22N(cT/eBr)2(δW/ωE)
2ϵ−1/2G(Ψ̄)

K√
ν = 0.1 (cT/eBr)2 δ2W

√
R0BPm (q′srW/q)

0.5 |ωE|−1.5X(Ψ̄)

K1/ν = 0.5N(cT/eBr)2(R0BP )
2(q′srW/qs)

2(mδW )2ϵ3/2H(Ψ̄)

Using these notations, we present the complete particle flux equation for ν∗ < 1
regime, including ν,

√
ν and 1/ν regimes:

Γp = −C
KνK√

νK1/ν · ν
(K√

ν +Kν ·
√
ν)(K1/ν +K√

ν · ν1.5)
(6.6)

Before putting this new equation into practice, one need to justify that it could
well reproduce Equation 6.3 from literature and also it could well describe the ’new’
regime, being the

√
ν regime introduced here. The comparison between Equation

6.3 and 6.6 is shown in Figure 6.4. The green dashed line represents the
√
ν regime

and it shares one common point with the black solid line from Equation 6.3 and the
gray vertical line from Equation 6.4. This common point shared by the three curves
indicates that the

√
ν regime starts from the point where ν regime stops. The red

solid line is from Equation 6.6. The results show that the three low collisionality
regimes are well described by Equation 6.6. Note Equation 6.6 is derived from
tokamak configurations and the proper application of this equation in stellarator
configurations needs to be justified.

Unit Analysis
The complete flux equation mentioned above is derived from the general definition of
particle fluxes: Γp = ⟨NV · ∇Ψ⟩ with ⟨· · · ⟩ represents the flux surface average and V
is the flow speed. This definition leads to a different flux unit [B]/(lt) since ∇Ψ has a
unit of [B]l which is different from 1. Here l is the unit of length, t is the unit of time
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and [B] indicates the unit of magnetic field. Secondly, the three partial differentials
P ′ = dP/dΨ, Φ′ = dΦ/dΨ and EΨ = −dΦ/dΨ have units which do not have the
conventional physical meaning. So here one coordinate transformation is needed to
convert the equations in order to use the physical quantities with international units.
To overcome this issue, one may assume a cylindrical model for the island, where the
angular part is neglected:

∇Ψ = ∂Ψ/∂r∇r + ∂Ψ/∂θ∇θ + ∂Ψ/∂ϕ∇ϕ ∼ ∂Ψ/∂r∇r (6.7)

Using the equilibrium poloidal flux ΨP (r), this can be written in the form:

dr/dΨ = (dr/dΨP )(dΨP/dΨ) = [(2πBPR0)(q
′
srW/qs)]

−1 (6.8)

Note that this ’extra’ step is due to the choice of coordinate [101]. Applying this
technique, the following quantities are obtained:

ωEΨ
= (dr/dΨ)ωEr (6.9)

Γp,Ψ = (dr/dΨ)Γp,r (6.10)
Φ′ = dΦ/dΨ = (dr/dΨ)dΦ/dr (6.11)

C = (dr/dΨP )(1/P · dP/dr + 1/T · dΦ/dr) (6.12)

Where ωEr = cEr/Br = −(c/Br)(dΦ/dr), Γp,Ψ is the particle flux with unit of
[B]/(lt) and Γp,r is the particle flux with unit of 1/(l2t). Therefore, the three coeffi-
cients Kν , K√

ν and K1/ν are:

Kν = 0.22(dr/dΨ)−2N(cT/eBr)2(δW/ωEr)
2ϵ−1/2G(Ψ̄) (6.13)

K√
ν = 0.1(dr/dΨ)−1.5 (cT/eBr)2 δ2W

√
R0BPm (q′srW/q)

0.5 |ωEr |
−1.5X(Ψ̄) (6.14)

K1/ν = 0.5N(cT/eBr)2(R0BP )
2(q′srW/qs)

2(mδW )2ϵ3/2H(Ψ̄) (6.15)

Applying those new expression into Equation 6.6, the part (q′srW/q) disappears in
those three coefficient. The complete equation, with the correct physical unit is thus
obtained.

Validation of The Complete Particle Flux Equation
Remind that differently from axi-symmetric tokamaks, in stellarator equilibrium
configurations the ambipolar electric field is not necessarily zero. The idea is to add
an ’extra’ contribution to non-ambipolar fluxes induced by the magnetic islands.
Equation 6.6 is the corresponding one to describe this extra contribution. Before



102 Enhanced Radial Electric Field due to Magnetic Islands in TJ-II Stellarator

Figure 6.5: Comparison between Equation 6.6 multiplied by the geometry factor
G = 1000 (colored lines with |Er| = 2300V /m) and the TJ-II data, which is the
black background figure from Ref [106]. The solid black lines are for electrons and
the dashed ones are for ions. From top to bottom the lines are generated with
the conditions eΦ/T = 0, 1, 2, 5, 10. The thick solid and dashed black lines are
corresponding curves to the equivalent tokamak. The red and blue lines represents
electrons and ions, respectively.
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applying this equation to TJ-II work, it is important to compare the typical particle
diffusivity in TJ-II with the magnetic island one described by Equation 6.6. Using
the Figure in Reference [106] as the standard TJ-II D11 − ν∗ diagram and applying
the same plasma parameters in Equation 6.6, the comparison is obtained and shown
in Figure 6.5. The black ’background’ figure is from Reference [106]. The red line
represents electrons and the blue line represents ions. Note that the geometry factor
G = 1000 has been multiplied to Equation 6.6 to include a rough estimation on
the contribution of the stellarator geometry in Shaing’s theory. The result shows
that a factor of 1000 to tokamak equations allows particle diffusivity due to the
magnetic island to be comparable to the TJ-II equilibrium non-ambipolar particle
fluxes. We believe that this justifies the usage of Equation 6.6 for further study on
TJ-II plasmas.
Note that this factor G used here has the same value for both electron and ion particle
fluxes. This is a rough assumption because it fits both ions and electrons well in the
comparison results presented above. Analytical solutions should be developed in
further study to justify this point. Nevertheless, here we assume this factor is the
same for both ions and electrons.

6.4 Discussions on the Complete Particle Flux
Equation

The complete particle flux in low collisionality regime has been presented and the
justification on the validation in TJ-II configuration is made, adopting a geometry
factor G . With finalization of these analytical work, now we move to the study on
the non-ambipolar particle fluxes, varying some plasma parameters. This section
presents the study of ambipolar electric field in different plasma parameters.

Validation of the collision frequency regime
The NTV theory is derived to describe the ”low” collision frequency regime, meaning
the ν∗i,e = νi,e/ωb,(i,e) < 1 with ν the collision frequency, ωb = vth/qR0 the bounce
frequency and vth the thermal speed of charged particles. This condition leads to
temperature limits in both electrons and ions:

Te > 2.22× 10−9
√
Ne lnΛe (6.16)

Ti > 1.86× 10−9Z2µ−1/4
√
Ni lnΛi (6.17)
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With electron collision frequency νe = 2.91 × 10−12Ne lnΛeT
−3/2
e and ion collision

frequency νi = 4.80 × 10−14Z4µ−1/2Ni lnΛiT
−3/2
i . Z is the ion charge, µ = mi/mp

where mi is the ion mass expressed in the proton mass mp. lnΛe,i is the Coulomb
logarithm for electrons (e) and ions (i). Given the Coulomb logarithm does not
change much in relatively narrow plasma parameters, it is clear to see that the ion
and electron temperature have low limits with respect to a given plasma density.
In the following sections, these two limits are always checked when other plasma
parameters vary.

Scan of the Er

The particle flux is a function of the radial electric field Er. In order to get a better
understanding on how the radial electric field affects the particle diffusivity, a scan of
the Er is performed and the results are shown in Figure 6.6 based on a typical TJ-II
plasma presented in Table 6.1. The upper graph is the scan on electrons and the
lower one is on ions. The different thin vertical lines represents the different values of
νeff with different colors representing the different value of Er, which is shown in the
legend. The thick vertical dashed red line in the upper graph and the thick vertical
dashed blue line in the lower graph represents the values of electron collisionality
and the ion collisionality. Several results could be interpreted from these two plots.
First of all, all the scans share the same 1/ν line. This is true because one could see
from Equation 6.2 that the particle flux does not depend on the radial electric field
in 1/ν regime. Secondly, as the radial electric field increases, the ν regime moves
towards higher collision regions and at some point, the

√
ν and 1/ν regimes might

vanish, left only the ν regime.

Effect on radial electric field Er from different plasma
parameters
After investigating the effect of radial electric field on the particle fluxes, now we
begin to study how different plasma parameters could effect the radial electric field.

q′
srW/qs. This parameter is not in the particle flux equation, as one could see

from the discussions on the unit analysis. So in principle the variation of this
parameter does not affect the particle flux. However, the island width rW is a
function of q′s. If the magnetic island width rW is fixed, then particle diffusivity
D11 does not depend on the parameter q′srW/qs. Therefore, changing this
parameter will lead to the same D11 and Er. The reason why this parameter
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Figure 6.6: Radial electric field Er scan in a typical TJ-II plasma. The upper graph is
the scan on electrons and the lower one is on the ions. The red thick vertical dashed
line in the upper graph is the electron collisionality and the blue thick vertical dashed
line in the lower graph is the ion collisionality. The thin vertical lines represent the
value of νeff/ωb with different electric field.
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is irrelevant to both D11 and Er is because it comes from the choice of the
flux coordinate system and when we calculate the particle fluxes, one should
convert back to machine coordinate. By doing so, this factor disappears.

Island Width rW . As one could see from Equation 6.6, the island width,
which is inside of δW = rW/R, is a universal parameter of the particle flux. The
three coefficients Kν,

√
ν,1/ν have common dependence on δW , which justifies the

comment before. Hence, the island width could only affect the absolute value
of the separated particle flux in each collisionality regime while as for the radial
electric field Er which is the root of equation of Γp,e = Γp,i, it is independent
of the island width and this is confirmed by the simulation results.
Nevertheless, it is worth to point out that the width of the island, in principle
should affect the function G(Ψ̄), H(Ψ̄) and X(Ψ̄) because these three functions
describe the location as well as the width of the island. In the previous section,
these three functions are simplified to Gaussian functions to ease the simulation
task. So if the width of the island increases, these three functions should be
modified accordingly to keep the modification consistent.

Poloidal Mode Number m. The poloidal mode number, especially the low
m number, in principle, should have big impact on the radial electric field [102].
Here the impact of poloidal mode number is investigated. The poloidal mode
number is functional when the collision frequency is in the

√
ν or 1/ν regimes,

as one could see from the diffusivity equations. The simulations are performed
on the same TJ-II plasma parameters used before and the result is shown in
Figure 6.7, where Γe−Γi is plotted as a function of the radial electric field Er.
The zero values of this function are the possible values of the ambipolar electric
field. One can see that changing the mode number does not change the value of
the radial electric field. This peculiar result encouraged us to study further on
this point and it is found out that the reason for this phenomenon is that the
electric field in these three calculations are around -300 V/m. Using this value
to back check in Figure 6.6, we find that roughly both electrons and ions are
all in 1/ν regime. In this case, the radial electric field is essentially obtained by
P ′
e/Pe + eΦ′/Te = P ′

i/Pi + ZΦ′/Ti. Consequently, the poloidal mode number
doesn’t play a role in the charge balance equation with the plasma parameters
of Table 6.1.

Scan of Ti. This section is dedicated to investigating the effect of ion tem-
perature Ti on the radial electric field. The exercises have been performed
based on the same plasma parameters presented in Table 6.1. The value of
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Figure 6.7: The value of function Γe−Γi is plotted as a function of the radial electric
field Er, applying three different poloidal mode number, being m=2, 3, 5. The zero
value of such function is the possible solution of the radial electric field. This plot is
generated using the plasma parameter listed in Table 6.1.

Γp,e − Γp,i is plotted as a function of both Er and Ti, shown in Figure 6.8.
The contour line which has the value of zero is where the root(s) of equation
Γp,e−Γp,i = 0 lay on, i.e., the solution of ambipolar electric field. At the region
Ti < 105eV, there is one single, positive ambipolar electric field root. When
ion temperature increases between 105eV and 250eV, three ambipolar electric
fields appear with the middle one usually the unstable one [105]. And in the
region with Ti > 250eV, one single, negative ambipolar electric field appears.
Moreover, one special point, which is around Ti = 105eV should be pointed
out. At this point, the electric field is zero, meaning the fluxes Γp,e = Γp,i fulfill
the ambipolar condition. This phenomenon is further studied below.

Scan of Ti/Te. Following the study of ion temperature, now we make scans on
both electron and ion temperatures and we calculated the value of ambipolar
electric field, by solving the charge balance equation Γp,e = Γp,i. The result of
these scans are shown in Figure 6.9. There is a vertical contour line with its
value Er = 0 around Ti/Te ≈ 0.3. This means ambipolar fluxes are generated
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Figure 6.8: The solution for electric field under steady state assumption. The plasma
parameters used in this calculation are presented in Table 6.1 with electron temper-
ature modified to 350 eV. The contour line with Er = 0 is the solution for ambipolar
conditions. With ion temperature below 105 eV, single positive electric field appears.
As the ion temperature increases, three electric field solutions, one negative and two
positive, appear. The middle solution is unstable [105]. And finally, when the ion
temperature increases above 250 eV, single negative ambipolar electric field appears.

in vicinity of magnetic islands under the condition of Ti/Te = 0.3. This can
be easily proved. Let us take the charge balance equation Γp,e = Γp,i with the
condition of Er = 0. One could easily get the solution:

(Ti/Te)
7/2 ≈ 60.42 (lnΛe/ lnΛi) (6.18)

where lnΛe and lnΛi are the Coulomb logarithm for electrons and ions, respec-
tively. The value of lnΛe/ lnΛi, despite of depending on the value of electron
and ion temperature as well as the plasma density, has tiny change around the
value 1.1. So the solution to Γp,e = Γp,i with Er = 0 is Ti/Te ≈ 0.3. This
confirmed the observation of Er = 0 around Ti = 105 eV in Figure 6.8. In that
case, the ratio Ti/Te = 105/350 ≈ 0.3.
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Figure 6.9: The solution for electric field under steady state assumption. The plasma
parameters used in this calculation are presented in Table 6.1. With a fixed electron
temperature, the solution of ambipolar electric field is positive in low ratio of Ti/Te <
0.3 and negative in high ratio of Ti/Te > 0.3. When the ratio between ion and electron
temperature equals 0.3, the ambipolar electric field equals zero, which is shown as
the vertical line at Ti/Te.

Plasma Density n. As the plasma density increases a factor of 50%, one root
solution appears in all Ti/Te region, which is shown in Figure 6.10. The same
Er = 0 point appears around Ti/Te ≈ 0.3, which is the same point as the one
in Figure 6.8.

From the discussion above, we know that the ambipolar electric field becomes to zero
when Ti/Te ≈ 0.3. This results shows that the modification effect due to magnetic
islands disappears and the particle fluxes are ambipolar. What is more, if we increase
the ratio between ion and electron temperature, the electric field changes its sign
from positive to negative and its amplitude also increases (neglecting the unstable
ones in the middle). This is true because getting closer to the plasma edge, the
ratio between ion temperature and electron temperature becomes bigger. In both
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Figure 6.10: The solution for electric field under steady state assumption. The
plasma parameters used are presented in Table 6.1 with 150% plasma density. At
all ion temperatures, the ambipolar electric field only has one solution, as indicated
by the 0 contour line. When the ion temperature is below 100 eV, the ambipolar
electric field is positive and above this value, it is negative.

References [65, 106] the positive radial electric field and negative radial electric field
have been reported, which confirms the conclusions we obtained. Finally, the plasma
density also plays a role of island modification effect. The unstable ambipolar electric
field region disappears with an increase of plasma density (in our case, 50% increases
on plasma density shows the disappearance of non-stable Er region). These studies
have been performed on an steady state situation ∂E/∂t = 0, which suffers lack
of time evolution process. In the next section, this model has been implemented
into ASTRA and further calculations on the radial electric field in steady state is
performed. The reason to perform steady-state transport simulation is that the time
variation of the electric field is much faster than the time variation of the plasma
temperature and density. In such conditions, the radial electric field can be calculated
in the stead-state plasmas, considering constant plasma parameters like temperature
and density.
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6.5 Simulation Results Using ASTRA
In order to study the time evolution of radial electric field, the above mentioned the-
ory is implemented in code ASTRA. However, Equation 6.6 only works in vicinity of
magnetic islands and far from the magnetic islands, the particle fluxes are ambipolar.
This is not true in TJ-II. In order to study the ’extra’ modification induced by the
magnetic islands, here we applied a ’background’ neoclassical particle flux, denoted
as Γneo

p . This background particle fluxes are generated by the conventional neoclas-
sical model and in this section, two models are used separately, being Kovrizhnykh’s
model [110] and Beidler’s model [111, 112].
The Kovrizhnykh’s model calculates particle fluxes by dividing them into axisym-
metric part ΓS

j and an asymmetric part ΓAS
j for both electrons j = e and ions j = i,

Γj = ΓS
j + ΓAS

j . The Beidler’s model provides mono-energetic transport coefficients
for an idealized stellarator field with a single helical mode and the transport coeffi-
cients are obtained by fitting with code DKES [113, 114]. Both Kovrizhnykh’s model
and Beidler’s model have been tested and compared with the experimental data in
TJ-II [115]. The main differences between these two conventional models compared
with Shaing’s model are:

1. Shaing’s model has been derived based on the assumption that the toroidal
configurations poses toroidal symmetry and only in vicinity of magnetic islands,
this symmetry is broken. Hence, particle fluxes far from the vicinity of magnetic
islands are intrinsically ambipolar. The radial electric field only appears in the
location near the magnetic island.

2. The two conventional neoclassical models, being Kovrizhnykh’s model and Bei-
dler’s model, on the other hand, deal with configurations with no toroidal sym-
metry, like stellarators. Hence, the non-ambipolar particle fluxes, in general
exist in the whole plasma volume. This has been confirmed by both experi-
mental [65] as well as simulations [104, 106, 115].

Here denote Γis
p the particle fluxes introduced by the magnetic islands and assume

the total particle flux generated by both the background and the magnetic island is
Γp = Γneo

p + Γis
p . With this assumption, we can carry out the transport study with

ASTRA. The plasma parameters used here is presented in Figure 6.11, as a function
of the normalized flux surface label ρ. The plasma is obtained with ECRH. The
island width is assumed to be 0.5cm.
First of all, the theory is tested on a scan of different resonant locations in a tokamak
case, i.e., Γneo

p = 0. The plasma parameters used here is the same as ones in Table
6.1, which is obtained on TJ-II. Note that the plasma parameters like density and
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Figure 6.11: The parameters of ECRH plasma in TJ-II plotted as a function of the
normalized flux surface label ρ. The blue solid line represents the electron density
and the dashed blue line represents the ion density. The red solid line represents
the electron temperature and the dashed one represents the ion temperature. This
parameters are used in the following calculations in ASTRA.

temperature is irrelevant to different configurations and even a TJ-II plasma is used,
the result should be valid in tokamak configurations with the same plasma parame-
ters. The result is shown in Figure 6.12, with four locations highlighted by different
colors. From the results, it seems that the radial electric field in tokamaks changes its
sign depending on different radial locations of the magnetic island. It is positive in
both ρ = 0.48 and ρ = 0.65 where ρ is the normalized flux label. When the resonant
position moves outwards, reaching ρ = 0.82, the electric field shows positive on the
inner side and negative on the other side. Thus, an electric shear is generated. With
further outer moving, arriving at ρ = 0.94, the electric field becomes negative. Also
it is clear that the electric field only appears around the resonant location. This is
true because in tokamaks, regions far away from the resonant surfaces, the electron
and ion fluxes are intrinsically ambipolar. However, the real physics behind of the
phenomena described above is not related to the position of the resonance. It is
the ratio between ion temperature and electron temperature that plays the role in
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Figure 6.12: Electric field profiles with scan of resonance positions in tokamak pa-
rameters. Many different island locations have been applied in ASTRA with Shaing’s
model, represented by many light blue lines. Four positions are marked at normalized
flux surface labels ρ = 0.48, 0.65, 0.82 and 0.94, respectively.

changing the sign of radial electric field. One should note that between ρ = 0.82
and ρ = 0.94, there is a location where the radial electric field is zero. By checking
the TJ-II parameters shown in Figure 6.11, one could see that this location is the
one with Ti/Te = 0.3. This could be seen more clear in Figure 6.13, which is the
value Ti/Te plotted as a function of the normalized radius ρ. This condition has been
proved that the particle fluxes are ambipolar if such condition is fulfilled. What is
more, it has been shown in Figure 6.9 that the radial electric field is negative when
the value Ti/Te > 0.3 and it is positive when the value Ti/Te < 0.3. By checking the
profile of Ti/Te, one could find that in the outer region, the negative radial electric
condition is fulfills and in the inner part, the positive radial electric field condition
is fulfilled. The reason for this special point with such temperature condition is
that the plasma temperature could significantly change the ion and electron collision
frequencies, given a fixed plasma density. So the fundamental explanation for this
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Figure 6.13: The ratio between ion temperature and electron temperature Ti/Te is
plotted as a function of the normalized radius, which is the black line. The two
dashed red lines indicates the location of radius where Ti/Te = 0.3.

phenomenon is that at the point with Ti/Te = 0.3, the ion and electron collision fre-
quencies reach a special condition which makes the radial electric field zero. Hence,
we could safely draw the conclusion that this change of sign on radial electric field is
strongly effected by the value Ti/Te. And finally, if the island contains the location
of Er = 0, the a big electric field shear could appear in the resonance region, which
brings the interesting operational proposal for L-H transition study.
Secondly, a neoclassical model developed by Kovrizhnykh [110] is included as the
background of the neoclassical transport, together with Shaing’s model. The sim-
ulation has been carried out on 4 different locations and the result is presented in
Figure 6.14. The smooth line represents the background profile, i.e., generated only
by Kovrizhnykh’s model. The 4 ’bumps’, located in the inner and outer regions, are
ones generated with Shaing’s formula. The last bump in the outermost region is very
small. The amplitude of the background profile is below 2 KV/m. The innermost
one shows a significant decrease effect. The electric field in this position is almost
zero. The second one shows a small increase respect to the background profile and
the third one shows a decrease effect on the amplitude of the electric field.
And finally, another neoclassical transport model developed by Beidler [111, 112]
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Figure 6.14: Electric field profiles obtained from Kovrizhnykh’s model, together with
Shaing’s model are presented as a function of the normalized flux surface label. The
smooth line represents the background of neoclassical transport, i.e., the profile gen-
erated only by Kovrizhnykh’s model. The three ’bumps’ are the results when Shaing’s
model is applied. In the inner locations, the electric field is positive with enhance-
ment or decrease of the background electric field. In the outer region, however, the
electric field is negative and it shows an enhancement of the background electric field.
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Figure 6.15: Electric field profiles obtained from Beidler’s model, together with
Shaing’s model are presented as a function of the normalized flux surface label. The
smooth line represents the background of neoclassical transport. The three ’bumps’
are the results with Shaing’s model. In this case all three resonant positions shows
a positive electric contribution from Shaing’s model and only the edge one shows an
enhancement respect to the background electric field.

is applied as the background transport, together with Shaing’s model. The same
four locations have been adopted in these simulations and the result is presented
in Figure 6.15. The amplitude of the background profile is below 4 kV/m, which
is higher than one obtained with Kovrizhnykh’s model. Also the zero point of this
profile is in the outer region compared with Kovrizhnykh’s model. Unlike the results
shown in Figure 6.14, the modification on the electric profile using Beidler’s model
shows that the amplitude of the radial electric field induced by the magnetic islands
is always positive in the first three locations with either decrease effect (first two)
or enhancement effect (the third one). The innermost resonant position shows a big
decrease effect on the background profile and the amplitude is almost zero, the same



6.5. Simulation Results Using ASTRA 117

as in Kovrizhnykh’s model. The third one also shows a increase effect. However, the
middle resonant position, shows a decrease effect which is different from the one in
Kovrizhnykh’s model. The outermost one is also very small.
Compared with the results from these two models, several things should be pointed

Figure 6.16: Two simulations are performed with different neoclassical models to-
gether with Shaing’s formula in NBI plasma obtained in TJ-II. The left graph is
obtained using both Kovrizhnykh’s model and Shaing’s formula. The right one is
obtained using both Beidler’s model and Shaing’s formula. The smooth line repre-
sents the background radial electric field and the ’bumps’ are the extra contribution
from Shaing’s theory. Clearly, the background radial electric field profile is always
negative and the contribution from Shaing’s theory is always positive, with respect
to the background radial electric field profiles.

out. First of all, the innermost position shows the biggest modification. To be more
specific, the amplitude of the electric field is almost zero in such position, with the
presence of the magnetic islands. The possible reason is that in such region, the
electron collision frequency is high due to high temperature. Hence, the island effect
is very strong. The electrons in high collision frequency region seems to be deceler-
ated by the magnetic islands. Secondly, the different behaviors for the second and
third positions may related to different background profiles. Nevertheless, this point
should be carefully checked in the further.
From the results shown above, we begin to understand the theory proposed by Shaing.
The island contribution affects the background electric field, showing either an en-
hancement or a decrease. Also the sign of the electric field from island contribution
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really differs from one model to another. What is more, the contribution from the
islands in ’tokamak’ case (Figure 6.12) shows higher or comparable amplitude of ra-
dial electric field with ones in TJ-II cases (third and fourth bumps in Figure 6.14 and
6.15). Another important thing needs to emphases is that so far, all the exercises
are done in ECRH plasmas.
Besides the simulations performed in ECRH plasmas, another work, using an Neu-
tral Beam Injection (NBI) plasma obtained in TJ-II has also been carried out. The
main difference between ECRH and NBI plasmas is that the plasma is more col-
lisional in NBI plasmas. Hence, different behaviors are expected in such plasmas.
The corresponding plasma parameters in such NBI shot are: the plasma density is
around 1.2 × 1019m−3, the central electron and ion temperatures are 0.35keV and
0.15keV , respectively. The same island width as well as the locations are used here,
adopting: 1, Kovrizhnykh’s model together with Shaing’s model; 2, Beidler’s
model with Shaing’s model. The results are shown in Figure 6.16. The left graph is
obtained using both Kovrizhnykh’s model and Shaing’s formula. The left one is ob-
tained using both Beidler’s model and Shaing’s formula. The smooth line represents
the background radial electric field and the ’bumps’ are the extra contribution from
Shaing’s theory. Indeed the NBI plasma shows quite different behaviors compared
with ECRH plasmas. First of all, the background radial electric field profiles in both
simulations are always negative. Secondly, the contributions from the presence of
magnetic islands are always positive in the sense that the contribution from magnetic
islands always increases the local radial electric field. The results in such plasmas
show consistent result between these two neoclassical models.

6.6 Summary and Discussions
The magnetic islands in TJ-II stellarator have been reported to play a role of mod-
ifying the local radial electric field, which in turn, plays a role in L-H transition by
modifying the shear ofEEE×BBB flow [65]. The main principle of this phenomenon is that
the existence of magnetic islands distorts the flux surfaces, leading to an increase of
the toroidal viscosity, which in turn, modifies the particle fluxes. A study based on
the neoclassical toroidal viscosity thus has been carried out on TJ-II plasmas, with
a moderate modification on the original theory.
First of all, in tokamak configurations, it has been shown that the ratio between
ion and electron temperature Ti/Te plays an important role in modifying the radial
electric field. When Ti/Te = 0.3, particle fluxes are intrinsically ambipolar. The
reason for this phenomenon is that the collision frequency is significantly affected by
the temperature. Interesting experimental proposal for the study of L-H transition
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rises from this result: a magnetic island exists in the location with Ti/Te = 0.3 could
generate big dEEE/dr, which could brings big impact on the plasma confinement prop-
erties.
Secondly, the study on ECRH plasma obtained in TJ-II shows that the presence of
the magnetic islands indeed modifies the radial electric field. The modification varies
with the choice of ’background’ neoclassical transport model. For different neoclas-
sical transport model, the modification shows either enhanced or decreased effect
on the background electric field profile. Moreover, the study on NBI plasmas has
also been performed. The results, however, differ from ones in ECRH plasmas. The
background profiles have always negative value and the modification due to magnetic
islands is always an enhancement.
What is more, it is worth mentioning that the results presented in this chapter are
based on the universal effect induced by the presence of magnetic islands, that is
the distortion on the nested flux surface. This distorting effect induced by the pres-
ence of magnetic islands is valid in all toroidal magnetic configurations with nested
flux surfaces. Hence, the results presented in this chapter should also be valid in
other devices. However, one needs to adjust the parameter G for each machine. The
reason is that this parameter is obtained from the comparison between the particle
diffusivity obtained from Shaing’s original theory and the neoclassical transport in
TJ-II. As mentioned in the beginning of this chapter, neoclassical transport in dif-
ferent stellarators differs from each other. Compared with tokamaks, devices like
TJ-II have much higher neoclassical transport while in other stellarators like W7-X
[116, 117], on the other hand, the neoclassical transport is lower [107]. Consequently,
the factor G should adjust for each configuration.
And finally, the assumption of neglecting the super-banana effect should be carefully
checked theoretically in the future. The super-banana effect is induced by the pres-
ence of local magnetic mirrors, which commonly exist in stellarators due to lack of
toroidal symmetry. This is true even with optimized stellarator configurations. An-
other point should be made is that the treatment of particle fluxes is a perturbative,
i.e., Γp = Γneo

p + Γis
p . Such treatment should be examined in the future work.
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7Summary, Conclusion and Future
Perspective
7.1 Summary

The realization of commercial fusion power plants becomes more and more urgent
with dramatically increased energy demand nowadays. After 60 years of research on
fusion plasmas in toroidal magnetic configurations, we are getting closer and closer.
One of the main issues in the fusion community is the low energy as well as par-
ticle confinement properties, due to high radial transport losses, which give rise to
the importance of transport study for better understanding the plasma confinement
properties.
Transport phenomenon in toroidal magnetic configurations contains two components,
the parallel transport and the perpendicular transport, with respect to the magnetic
field. Between these two components, it is usually the parallel transport that domi-
nants the transport process. In devices with nested flux surfaces like tokamaks and
stellarators, particles are strongly constrained on the flux surfaces and the radial
losses are mainly caused by the perpendicular transport across the flux surfaces.
Many studies show that in these devices transport phenomena can be well described
in the framework of neoclassical theory. On the other hand, in devices with no nested
flux surfaces like RFPs, the field lines fill the whole plasma volume and the radial
losses are mainly caused by the parallel transport along the field lines. The reason is
that the RFP configurations are sustained by the dynamo mechanism which is related
to the non-linear interactions among many resonating MHD tearing modes. Conse-
quently, the transport process in RFP plasmas is dominated by stochastic transport,
especially in Multiple Helicity state, where all the modes have comparable ampli-
tudes. However, when it comes to Quasi-Single Helicity state where a single mode
dominates the mode spectrum, a good confinement region where the flux surfaces are
nearly conserved has been identified. Indeed, in this region, steep thermal gradients
have been reported and the kinetic quantities like temperature and density could be
treated as functions of the flux surfaces. Hence, in QSH state, the transport study is
focused on this special region, considering that the magnetic field has the equilibrium
component and only the dominant mode.
The magnetic island, which commonly exists in fusion devices, is the result of resis-
tive tearing modes. It breaks the nested flux surfaces by reconnecting the field lines
and this leads to a degradation of the plasma confinement properties. Meanwhile,
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the presence of the magnetic island also breaks the symmetry that one device owns
and makes the magnetic field intrinsically three dimensional. Facing these issues, this
dissertation presents the transport study in toroidal configurations, focused on three
dimensional effect induced by the presence of magnetic islands. The methodology
is to find certain symmetry so that the transport study could be performed on 1.5
dimensions. Specifically, the transport study has been carried out on two devices,
one part on RFX-mod and the other part on TJ-II stellarator.

Work on RFX-mod
The work on RFX-mod has been carried out on the study of three sub-states of the
Quasi-Single Helicity state, which is a plasma regime observed in RFP devices. In
QSH state, the magnetic field is treated as a pure SH state, meaning that the sec-
ondary modes are neglected and only the equilibrium field and the dominant mode are
considered. In such a way, the RFP plasmas have helical symmetry which allows us
to perform 1.5 dimensional transport study. The three sub-states are: DAx, SHAxn

and SHAxw. However, obstacles encounter when attempts were made to study trans-
port properties in these three sub-states, especially in the DAx state. The issue is
that in DAx state, there are two magnetic axes, one being the original magnetic axis
and the other one being the island axis. Consequently, no monotonic coordinate as
well as the correct metrics can be defined to describe the whole plasma volume. In
order to overcome this problem, a Multiple Domain Scheme (MDS) is proposed, with
the main idea of dividing the whole plasma into three separated regions. By doing
so, a monotonic radial coordinate as well as the correct metrics can be well defined
in each region. The communication among these three separated regions is done by
the separatrix, which is a thin layer featuring high transport properties. With the
help of MDS, a routine named Multiple Axes Solver (MAxS), capable of dealing with
configurations containing either single or multiple magnetic axes has been developed
and benchmarked with code ASTRA, which is a well-know transport code in fusion
community. The good agreement between MAxS and ASTRA in the benchmark
results gives us confidence to proceed the transport study in these three sub-states.
The transport study on RFX-mod was firstly carried out on the analysis of the ther-
mal gradients in the electron Internal Transport Barrier (eITB) region. The electron
temperature profiles are obtained with Thomson Scattering diagnostic and they are
further selected based on a narrower plasma density and current range. The thermal
gradients are calculated by a routine named TeGrA, which has been developed and
tested on the purpose of automatic analyzing the eITB regions. The outcome of
routine TeGrA shows that the thermal gradient tends to decrease with the increase
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of the normalized dominant mode, indicating a local increase of energy transport in
the eITB region. To confirm this observation, a transport study on a small database
has been carried out, with the help of routine MAxS and the results indeed show
that the thermal diffusivity in the eITB region tends to increase with the increase of
the normalized dominant mode.
This peculiar behavior of thermal gradients encouraged us to study further on the
transport mechanism that is responsible for this observation. The investigation was
done with both the thermal gradients and the thermal diffusivity in the eITB re-
gion, with respect to the secondary modes, that are the source of the stochasticity in
RFP plasmas. Two different behaviors were identified, one in narrow thermal struc-
ture groups (DAx and SHAxn) and the other one in wide thermal structure group
(SHAxw). These results can be explained within the framework of the stochastic
transport theory:

• In narrow thermal structure group, the thermal gradients tend to increase with
the decrease of the secondary modes and consistently, the thermal diffusivity
shows the opposite behavior. This is true because the reduction of the sec-
ondary modes indicates a lower stochasticity level and this in turn, makes the
thermal gradient steeper.

• For for the wide thermal structure group, the thermal gradients show a sudden
decrease and for the thermal diffusivity, as expected, shows a sudden jump.
This result can still be explained by the stochastic transport. The difference
between narrow and wide groups is that the location of the eITB ’migrates’
from inner region (narrow group) to outer region (wide group). Consequently,
the source of stochasticity also changes between narrow and wide thermal struc-
ture groups. The thermal gradients in wide thermal structure group thus suffer
higher stochasticity produced by modes with higher toroidal mode number.

Besides the different thermal gradient behaviors mentioned above, the effect induced
by the migration of the thermal gradients is also responsible for the sudden jump
in the amplitude of the width of the thermal structures, reported in Reference [90].
Inspired by such work, a more detailed work on the thermal expansion process has
been carried out. The result reveals the fact that the sudden jump is only due to the
top expansion of the thermal structure. The foot of the the eITB shows a smooth
growth within these three sub-states. Nevertheless, one question remains unsolved:
what is the physical explanation to the different behaviors between the top and foot
width. Further study is required to clarify this point.
The final part on RFX-mod dedicates to investigating the energy confinement time.
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This study was motivated by the unexpected behavior of the local increased trans-
port properties in the eITB region. Here an improved method, considering the ’real’
shape of the distorted flux surfaces has been firstly adopted in such calculations.
The result shows that the energy confinement time increases up to 40% from DAx
to SHAxw. This result indicates that with the growth of the dominant mode, the
plasma enters into a more ordered state.

Work on TJ-II
The transport study in TJ-II differs from the one carried out in RFX-mod in the sense
that the physics governing the transport process is different. In TJ-II plasmas, it is
the neoclassical transport who dominates the radial transport in low collisionality
regime. In such configuration, the presence of the magnetic islands enhances the
toroidal viscosity, giving rise to a non-intrinsically ambipolar particle flux in vicinity
of magnetic islands and this effect, in turn, generates a local radial electric field,
which could bring an impact to the L-H transition. Based on this idea, a Neoclassical
Toroidal Viscosity theory developed by K. C. Shaing [63] is adopted, with a moderate
change, being to apply a factor G = 1000 on the original particle flux equations due
to the fact that the original theory has been developed for tokamak configurations.
The study on the particle transport equations revels some results:

• Increasing the radial electric field to a certain level leads to the disappearance
of the

√
ν (also possible 1/ν) collision regime and only ν regime survives.

• The electron and ion temperatures play a role in the sign and amplitude of
radial electric field. By increasing the ion temperature, the radial electric field
changes its sign from positive to negative, with its amplitude firstly decreasing
and then increasing.

• One special point has been identified, where intrinsically ambipolar fluxes
shows up with the condition Ti/Te = 0.3. At this point, the contribution
of the magnetic island to radial electric field is zero.

Inspired by these results, further study on the effects induced by the presence of mag-
netic islands in both tokamak and TJ-II configuration has been further performed,
by implementing the particle flux equations into ASTRA:

• For the study of tokamak configurations using a ECRH plasma, results show
that the radial electric field only shows up in vicinity of magnetic islands.
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Regions far away are with zero radial electric field. This is true because in
regions far away from the magnetic islands, due to intrinsically ambipolarity
in tokamak configurations the electric fields are intrinsically zero.

• The second result in tokamak configurations is that the sign of radial electric
field seems to depend on the location of the magnetic islands. Further study,
however, reveals that it is the ratio between ion and electron temperature that
determines the sign of radial electric field.

• Further study, applying a neoclassical background on TJ-II stellarator with the
same ECRH plasma parameters, shows that the presence of magnetic islands
plays a either enhancement or diminution role on the background radial electric
field profiles. The amplitude of modification also varies on the choice of the
’background’ neoclassical transport model. The fundamental reason for this
observation is that the plasma temperature greatly affects the collisionality,
which in turn, affects the radial electric field.

• The last part is the study on TJ-II stellarator with NBI plasma parameters.
Both the two neoclassical models show negative background radial electric
field profiles, with enhancement effects from the presence of magnetic islands,
despite of the different island locations.

• One more point should be made is that comparing between ’tokamak’ and TJ-II
results, the results shows that with a background electric field, the contribution
from the magnetic islands are reduced in its amplitude.

7.2 Conclusions and Future Perspective
The study on RFX-mod shows that the presence of the magnetic islands plays an
important role in determining the energy confinement properties. First of all, the
internal transport barrier weakens its strength with the growth of the dominant
tearing mode. This leads to an local increase of the energy transport. However, this
enhanced local transport shows no bad influence on the energy confinement prop-
erties. Indeed, an upgrade in energy confinement properties in RFX-mod plasmas
has been identified with the growth of the dominant tearing mode. This is partially
due to the increase of plasma volume with good confinement properties (thermal
structure expansion), and reductions on the source of bad confinement (decreas-
ing of the amplitude of the secondary modes). The work presented on RFX-mod,
although carried out on one device, should be valid and replicated in other RFP
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devices with two most fundamental reasons, being that first of all, the QSH state,
with the same magnetic field evolution process, has been observed in all RFP devices
under certain proper experimental conditions. The second reason is that the RFP
magnetic configurations, independent from different devices, are sustained by the dy-
namo mechanism, which is an universal behavior of RFP plasmas. Nevertheless, it is
worth mentioning that in MST, the preliminary results show that the thermal struc-
ture identified in RFX-mod seems missing. This might due to much higher neutral
particle penetration in MST. To clarify this point and to get a more solid physical
knowledge on this point, further analysis on other experimental devices should be
performed.
Several questions still remain in the work on RFX-mod. First of all, during the ther-
mal expansion process, the behavior of the foot width is different from one of the top
width. The explanation for the top width is presented while it remains to be clarified
for the foot width behavior. Secondly, the reduction of secondary modes seems to
reach a saturation state in SHAxw. The explanation for this phenomenon should be
clarified so that the further reduction or even diminution of secondary modes could
be realized in future RFP experiments. And finally, the investigation of particle
confinement properties within these three sub-states should also be carried out on
the purpose of plasma confinement study.
The study on TJ-II stellarator reveals the role of magnetic islands on the modification
of the radial electric field. The study in tokamak configurations shows an important
result, being that the radial electric field is zero at the location where Ti/Te = 0.3
and in the neighborhood, big dEEEr/dr appears. This result shows a good experimen-
tal proposal for both validating this theory as well as the L-H transition study. The
simulations in TJ-II configurations with ECRH plasmas show the modification effect
depends on several things. First of all, different modification effects appear with
different choices of the ’background’ neoclassical transport models, indicating the
applied background theory suffers lack of the whole transport properties. Unlike the
inconsistent results obtained with ECRH plasmas, the results with NBI plasmas, on
the other hand, show that both two background models behave the same in the sense
that negative radial electric field profiles are obtained from these two ’background’
models. Moreover, the modification induced by the magnetic islands also shows the
same enhancement effect. Nevertheless, these simulation results show a promising
way of changing the value of radial electric field, leading to interesting topics on L-H
transition in the future. These results obtained in TJ-II stellarators, in principle
should also be valid for other stellarators with some modifications. The main point
is the factor G we used in TJ-II configuration should be modified. This factor is
applied based on the fact that the neoclassical transport is much higher in TJ-II
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than in tokamaks due to the fact that TJ-II had not been optimized to reduce the
neoclassical transport. Devices with optimizations, on the other hand, have smaller
neoclassical transport compared with one in tokamaks. Consequently, the factor G
should be checked before applying on other configurations. And finally the factor G ,
in principle should be different between electron and ion particle fluxes, which was
not taken into account. Further study is needed to include this correction.
There are some remaining work for further studies. First of all, the study on TJ-II
plasmas uses a perturbative way, meaning the interactions between the background
model and the magnetic island model is Γp = Γneo

p +Γis
p . This assumption should be

further checked to carry out solid simulations. Secondly, the effect of super-banana
on the radial electric field should be further studied in stellarator configurations and
finally, the inconsistency of the results between two background models in ECRH
plasmas should be further studied.
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7.3 Flux Surface Average
The flux surface average of a function F is defined as follows:⟨

F

⟩
s

=

∫
Fdθdϕ

√
g∫

dθdϕ
√
g

(7.1)

θ is the poloidal angle and ϕ is the toroidal angle. √g is the Jacobian. If we consider
the toroidal symmetry and substitute √

g = 1
/
(B · ∇θ)we have:

⟨
F

⟩
s

=

∫
Fdθ

/
B · ∇θ∫

dθ
/

B · ∇θ
(7.2)

The orbit average of a function F is defined as follows:

⟨
F

⟩
o

=

⟨
FB

/
|u|

⟩
s⟨

B
/
|u|

⟩
s

=

∫
FBdθ

/
(|u|B · ∇θ)∫

Bdθ
/
(|u|B · ∇θ)

=

∫
Fdθ

/
(|u|n · ∇θ)∫

dθ
/
(|u|n · ∇θ)

(7.3)

With u the parallel velocity component, nnn = BBB/|B|. So if we take the orbit average

in the form of
⟨
u∇F

⟩
o

, we have:

⟨
u∇F

⟩
o
=

∫
n|u|∇Fdθ

/
(|u|n · ∇θ)∫

dθ
/
(|u|n · ∇θ)

=

∫
n · (∂F/∂θ∇θ)dθ

/
(n · ∇θ)∫

dθ
/
(|u|n · ∇θ)

=

∫
dθ∂F/∂θ∫

dθ
/
(|u|n · ∇θ)

(7.4)
The bounce condition is the distribution function is identical at the critical angle
of the banana orbit:

f+(θ = ±θb) = f−(θ = ±θb) (7.5)

With θb the angle at which the bounce takes place. Therefore, the bounce orbit
average is: ⟨

u∇F
⟩
o
= 0 (7.6)

This result indicates that the bounce orbit average will eliminate the information of
the parallel direction.
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7.4 Magnetic Field Strength in Tokamaks
This section is to derive a expression of the magnetic field strength in tokamak
configurations, which has 1/R dependence, with R the radius from the toroidal
center. The calculation starts with the Ampère’s law:

∇×B = µ0

(
J + ϵ0

∂E

∂t

)
(7.7)

Where B is the magnetic field, µ)0 is the magnetic permeability in vacuum, J is the
current density in the toroidal coils, ϵ0 is the electric permittivity in vacuum and E
the electric field. With a reasonable assumption: ∂E/∂t ≈ 0, we have:∮

S

Bdl = µ0J (7.8)

Which leads to
B =

µ0I

2πR
(7.9)

Here I the total current in the toroidal coils. For the magnetic field in the center of
the plasma (center of the vacuum vessel), R = R0, where R is the major radius, we
have B0 = µ0J/2πR0.
For any position r, here r is the poloidal local radius related to the magnetic axis,
we have:

B =
µ0J

2π
∣∣∣r⃗ + R⃗0

∣∣∣ (7.10)

So we have:
B

B0

=
r∣∣∣r⃗ + R⃗0

∣∣∣ (7.11)

Where
∣∣∣r⃗ + R⃗

∣∣∣ = √
(r2 +R2

0 + 2rR0 cos θ). Define ϵ = r/R0, we could get:

f(ϵ) =
1√

1 + ϵ2 + 2ϵ cos θ
(7.12)

And one could perform Taylor expansion to the 1st order at ϵ = 0:

f(ϵ) =
∞∑
n=0

f(0)(n)

n!
(ϵ− 0)n = f(0) + f(0)′ · ϵ (7.13)

= 1−
[
1

2

(
ϵ2 + 1 + 2ϵ cos θ

)−3/2
(2ϵ+ 2 cos θ)

]
ϵ=0

· ϵ (7.14)

= 1− ϵ · cos θ (7.15)
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So the magnetic field strength |BBB| = B0(1− ϵ cos θ)

7.5 Non-Ambipolar FLux and Toroidal Viscosity

Moment Approach
In this part, Hamada coordinate [118] (V, θ, ζ) is adopted with V the volume enclosed
inside the magnetic surfaces, θ the poloidal angle and ζ the toroidal angle. The
magnetic field can be represented as

BBB = ψ′∇V ×∇θ − χ′∇V ×∇ζ (7.16)

Where χ is the poloidal flux and ψ is the toroidal flux. The prime denotes d/dV .
The Jacobian is:

√
g = (∇V ×∇θ · ∇ζ) = 1 (7.17)

The particle flux is Γ = nv and its flux surface averaged in the direction of ∇χ is:

Γχ =

⟨
nv · ∇χ

⟩
(7.18)

The momentum equation is:

nm
∂v
∂t

= ne

(
E +

1

c
v × B

)
−∇p−∇ · ↔π (7.19)

Where ↔
π is the plasma viscosity. Taking the B×∇χ component of the steady-state

momentum equation and using (B ×∇χ)
/
B2 = (Bt · B)B

/
B2 −Bt, E×B · ∇χ =

E · B ×∇χ and Ic = Bt · B:, we have:

Γχ = ⟨nv · ∇χ⟩ =
⟨
nc

E × B · ∇χ
B2

⟩
+
⟨ c

eB2
B ×∇χ ·

(
∇p−∇ · ↔π

)⟩
(7.20)

Using a vector identity:

Bt =
(Bt · B)B

B2
− B ×∇χ

B2
(7.21)
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We could obtain:

Γχ =
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The non-axisymmetric flux is

ΓNA =
e

c

(
⟨Bt · ∇p⟩+

⟨
Bt · ∇ · ↔π

⟩)
(7.23)

In Hamada coordinates, ⟨Bt · ∇p⟩ = 0 for any non-axisymmetric torus and only⟨
Bt · ∇ · ↔π

⟩
contributes to non-axisymmetric partical flux ΓNA.

The Pfirsch-Schluter flux
ΓPS (7.24)

The banana-plateau flux

ΓBP = −c
e

⟨
B · ∇ · ↔πIc

B2

⟩
(7.25)

The classical flux
ΓCL (7.26)

The residual E × B flux

ΓE = nc ⟨E · B⟩ ⟨Ic⟩
⟨B2⟩

(
1− ⟨Ic⟩

⟨B2⟩
⟨B2⟩
⟨Ic⟩

V ′

4π2q

)
(7.27)

The flux associated with the moving velocity of the toroidal magnetic flux surface

Γg = nc ⟨E · B⟩
(

V ′

4π2q
− ⟨E · Bt⟩

)
(7.28)

Note that the ΓE, Γg are usually ignored and the ΓPS is not in the banana regime.
Also the ΓBP is the parallel viscous force part and goes to zero after solving the
bounced average of the kinetic equation.
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Kinetic approach
The definition for the neoclassical particle flux is:

Γχ =

⟨∫
dvfvd · ∇χ

⟩
+

⟨
nc

E(A) × B
B2

⟩
(7.29)

with vvvd = −v∥bbb × ∇(v∥/Ω) [119], the ∇χ direction component is thus: vd · ∇χ =
(v∥/B)∇ ·

[ (
(v∥/Ω)

)
B ×∇χ

]
, we have:
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Using a vector identity:
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(Bt · B)B
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The non-axisymmetric flux ΓNA is

ΓNA = −
⟨∫

dvf
(v∥
B

)
∇ ·

(
v∥B

2Bt

Ω

)⟩
(7.33)

This is equivalent to Equation 7.23 from the momentum approach, which indicates
the non-axisymmetric flux is due to the toroidal viscosity.





Acknowledgement

139





Acknowledgement

在和世界交手的这许多年，你是否光彩依旧，兴致盎然。

This three-year PhD study in Padova has been an excellent experience for me, not
only for academic aspect but also for personal growth. In the end of my doctoral
study, I would like to make my acknowledgement to all the people that walked into
my life.
First of all, I would like to express my gratitude to the funder of Erasmus Mundus
Fusion DC program, Prof. Dr. Guido Van Oost and the former coordinator in RFX,
Prof. Piero Martin. It is they who gave me this opportunity that allowed me to
study in Padova. Also I would like to thank the current coordinator of Fusion DC,
Prof. Dr. Jean-Marie Noterdaeme and current coordinator in RFX, Prof. Paolo
Bettini. They offered countless help during my PhD study.
I would like to express my great gratitude to my supervisor, Dr. David Terranova.
He gave me constant academic help during my PhD study as well as to complete this
dissertation. I also want to thank Dr. Fulvio Auriemma, Dr. Rita Lorenzini, Dr.
Barbara and Dr. Fabio Sattin. They offered me great help in the study of RFX-mod.
And I also want to thank Dr. Daniel López- Bruna and Prof. José Ramón Martín
Solís, who gave me great help when I studied on TJ-II, Madrid. Besides the help I
received, the more valuable thing I learned is the cautious attitude towards scientific
research.
I want to thank all my colleagues in RFX. They made my life in Italy colorful. This
means a lot for me especially because I am far away home. I want to thank Dr.
Shichong Guo who offered me great help when I just arrived at Italy. I want to
thank Flavia Raggi who helped me when I had problems with my accommodation.
And I want to thank Ms. Fiorella who offered many help during my study.
In the end, I want to thank all my family and all my friends. My Father, Hongshuai
Zhang and my mother, Kefen Sun, gave me great support for my PhD study.
For all the people who I met during my PhD study, I am deeply grateful for your
kindness and hospitality.

141





References

143





Bibliography
[1] Francis F. Chen. Introduction to Plasma Physics and Controlled Fusion.

Springer, 3rd ed. edition, 2015.

[2] John D Lindl, Peter Amendt, Richard L Berger, S Gail Glendinning,
Siegfried H Glenzer, Steven W Haan, Robert L Kauffman, Otto L Landen,
and Laurence J Suter. The physics basis for ignition using indirect-drive tar-
gets on the National Ignition Facility. Physics of Plasmas (1994-present),
11(2):339–491, 2004.

[3] John D Lawson. Some criteria for a power producing thermonuclear reactor.
Proceedings of the Physical Society. Section B, 70(1):6, 1957.

[4] Joseph Donald Huba. Nrl: Plasma formulary. Technical report, DTIC Docu-
ment, 2004.

[5] Jagdish K Tuli et al. Nuclear wallet cards, 2005.

[6] John Wesson and David J Campbell. Tokamaks, volume 149. Oxford University
Press, 2011.

[7] PR Thomas, P Andrew, B Balet, D Bartlett, J Bull, B De Esch, A Gibson,
C Gowers, H Guo, G Huysmans, et al. Observation of alpha heating in JET
DT plasmas. Physical review letters, 80(25):5548, 1998.

[8] Hartmut Zohm. Magnetohydrodynamic Stability of Tokamaks. John Wiley &
Sons, 2014.

[9] HAB Bodin. The reversed field pinch. Nuclear Fusion, 30(9):1717, 1990.

[10] Mitsuru Kikuchi, Karl Lackner, and Minh Quang Tran. Fusion physics. 2012.

[11] Olivier Sauter, Clemente Angioni, and YR Lin-Liu. Neoclassical conductivity
and bootstrap current formulas for general axisymmetric equilibria and arbi-
trary collisionality regime. Physics of Plasmas (1994-present), 6(7):2834–2839,
1999.

[12] WA Houlberg, KC Shaing, SP Hirshman, and MC Zarnstorff. Bootstrap cur-
rent and neoclassical transport in tokamaks of arbitrary collisionality and as-
pect ratio. Physics of Plasmas (1994-present), 4(9):3230–3242, 1997.

145



146 Bibliography

[13] T. Fujita, S. Ide, Y. Kamada, T. Suzuki, T. Oikawa, S. Takeji, Y. Sakamoto,
Y. Koide, A. Isayama, T. Hatae, H. Kubo, S. Higashijima, O. Naito, H. Shirai,
and T. Fukuda. Quasisteady high-confinement reversed shear plasma with large
bootstrap current fraction under full noninductive current drive condition in
JT-60U. Phys. Rev. Lett., 87:085001, Jul 2001.

[14] Kyōji Nishikawa and Masahiro Wakatani. Plasma Physics: basic theory with
fusion applications, volume 8. Springer Science & Business Media, 2013.

[15] Lyman Spitzer Jr. The stellarator concept. Physics of Fluids (1958-1988),
1(4):253–264, 1958.

[16] VD Shafranov. Equilibrium of a toroidal pinch in a magnetic field. Soviet
Atomic Energy, 13(6):1149–1158, 1963.

[17] Yuhong Xu. A general comparison between tokamak and stellarator plasmas.
Matter and Radiation at Extremes, 1(4):192–200, 2016.

[18] Jeffrey P Freidberg. Ideal magnetohydrodynamics. 1987.

[19] Jeffrey P Freidberg. Plasma physics and fusion energy. Cambridge university
press, 2008.

[20] Roscoe B White. The theory of toroidally confined plasmas. Imperial College
Press, 2006.

[21] Hannes Alfvén. Existence of electromagnetic-hydrodynamic waves. Nature,
150:405–406, 1942.

[22] Thomas James Morrow Boyd and Jeffrey John Sanderson. The physics of
plasmas. Cambridge University Press, 2003.

[23] Sergio Ortolani and Dalton D Schnack. Magnetohydrodynamics of plasma re-
laxation, volume 156. World Scientific, 1993.

[24] J Brian Taylor. Relaxation of toroidal plasma and generation of reverse mag-
netic fields. Physical Review Letters, 33(19):1139, 1974.

[25] DF Escande, R Paccagnella, S Cappello, C Marchetto, and F D’Angelo. Chaos
healing by separatrix disappearance and quasisingle helicity states of the re-
versed field pinch. Physical review letters, 85(15):3169, 2000.



Bibliography 147

[26] D Merlin, S Ortolani, R Paccagnella, and M Scapin. Linear resistive magneto-
hydrodynamic stability analysis of reversed field pinch configurations at finite
beta. Nuclear Fusion, 29(7):1153, 1989.

[27] P Sonato, G Chitarin, P Zaccaria, F Gnesotto, S Ortolani, A Buffa, M Bagatin,
WR Baker, S Dal Bello, P Fiorentin, et al. Machine modification for active
MHD control in RFX. Fusion engineering and design, 66:161–168, 2003.

[28] Carlos Alejaldre, Jose Javier Alonso Gozalo, Jose Botija Perez, Fran-
cisco Castejón Magaña, Jose Ramon Cepero Diaz, Jose Guasp Perez, A Lopez-
Fraguas, Luis García, Vladimir I Krivenski, R Martin, et al. TJ-II project: a
flexible heliac stellarator. Fusion Science and Technology, 17(1):131–139, 1990.

[29] Paolo Franz, Lionello Marrelli, Andrea Murari, Gianluca Spizzo, and Piero
Martin. Soft X ray tomographic imaging in the RFX reversed field pinch.
Nuclear fusion, 41(6):695, 2001.

[30] A Alfier and R Pasqualotto. New thomson scattering diagnostic on RFX-mod.
Review of scientific instruments, 78(1):013505, 2007.

[31] P Innocente and S Martini. A two color multichord infrared interferometer for
RFX. Review of scientific instruments, 63(10):4996–4998, 1992.

[32] P Innocente, S Martini, A Canton, and L Tasinato. Upgrade of the RFX CO2
interferometer using in-vessel optics for extended edge resolution. Review of
scientific instruments, 68(1):694–697, 1997.

[33] L Carraro, E Casarotto, R Pasqualotto, ME Puiatti, F Sattin, P Scarin, and
M Valisa. Impurity influx studies in the RFX reversed field pinch. Journal of
nuclear materials, 220:646–649, 1995.

[34] Andrea Murari, Paolo Franz, Luca Zabeo, Rosario Bartiromo, Lorella Car-
raro, Gianni Gadani, Lionello Marrelli, Piero Martin, Roberto Pasqualotto,
and Marco Valisa. An optimized multifoil soft X-ray spectrometer for the de-
termination of the electron temperature with high time resolution. Review of
scientific instruments, 70(1):581–585, 1999.

[35] G Serianni, T Bolzonella, R Cavazzana, G Marchiori, N Pomaro, L Lotto,
M Monari, and C Taliercio. Development, tests, and data acquisition of the
integrated system of internal sensors for RFX. Review of scientific instruments,
75(10):4338–4340, 2004.



148 Bibliography

[36] E Ascasíbar, J Qin, A López-Fraguas, JA Jiménez, OI Fedyanin, JM Delgado,
T Estrada, E de la Luna, F Castejón, TJ-II Team, et al. Energy content
and magnetic configuration scan in TJ-II plasmas. In Proc. 13th Stellarator
Workshop (Canberra, 2002), 1999.

[37] R Jiménez-Gómez, E Ascasibar, T Estrada, I García-Cortés, B Van Milligen,
A López-Fraguas, I Pastor, and D López-Bruna. Analysis of magnetohydrody-
namic instabilities in TJ-II plasmas. Fusion science and technology, 51(1):20–
30, 2007.

[38] E De la Luna, J Sánchez, V Tribaldos, and T Estrada. Multichannel elec-
tron cyclotron emission radiometry in TJ-II stellarator. Review of Scientific
Instruments, 72(1):379–382, 2001.

[39] F Medina, L Rodrıguez-Rodrigo, J Encabo-Fernández, A López-Sánchez,
P Rodrıguez, and C Rueda. X-ray diagnostic systems for the TJ-II flexible
heliac. Review of scientific instruments, 70(1):642–644, 1999.

[40] F Medina, MA Pedrosa, MA Ochando, L Rodrıguez, C Hidalgo, AL Fraguas,
BA Carreras, et al. Filamentary current detection in stellarator plasmas. Re-
view of Scientific Instruments, 72(1):471–474, 2001.

[41] F Medina, MA Ochando, A Baciero, and J Guasp. Characterization of ripple-
trapped suprathermal electron losses by their bremsstrahlung emission in the
soft X-ray range at the TJ-II stellarator. Plasma Physics and Controlled Fusion,
49(4):385, 2007.

[42] MA Ochando, F Medina, B Zurro, A Baciero, KJ McCarthy, MA Pedrosa,
C Hidalgo, E Sánchez, J Vega, AB Portas, et al. Up-down and in-out asym-
metry monitoring based on broadband radiation detectors. Fusion science and
technology, 50(2):313–319, 2006.

[43] B Zurro, MA Ochando, A Baciero, KJ McCarthy, F Medina, A López-Sánchez,
D Rapisarda, D Jimenez, A Fernandez, I Pastor, et al. Method to deduce lo-
cal impurity transport quantities from the evolution of tomographically recon-
structed bolometer signals during tracer injection at TJ-II. Review of scientific
instruments, 75(10):4231–4233, 2004.

[44] AP Navarro, MA Ochando, and A Weller. Equilibrium-based iterative tomog-
raphy technique for soft X-ray in stellarators. IEEE transactions on plasma
science, 19(4):569–579, 1991.



Bibliography 149

[45] E Barrera, M Ruiz, S López, D Machón, J Vega, and M Ochando. Real-
time data acquisition and parallel data processing solution for TJ-II bolometer
arrays diagnostic. Fusion engineering and design, 81(15):1863–1867, 2006.

[46] Horacio Lamela, Pablo Acedo, James Irby, et al. Laser interferometric ex-
periments for the TJ-II stellarator electron-density measurements. Review of
Scientific Instruments, 72(1):96–102, 2001.

[47] T Estrada, J Sánchez, B Van Milligen, L Cupido, A Silva, ME Manso, and
V Zhuravlev. Density profile measurements by am reflectometry in TJ-II.
Plasma physics and controlled fusion, 43(11):1535, 2001.

[48] L Cupido, J Sánchez, and T Estrada. Frequency hopping millimeter wave
reflectometer. Review of scientific instruments, 75(10):3865–3867, 2004.

[49] T Happel, T Estrada, E Blanco, V Tribaldos, A Cappa, and A Bustos. Doppler
reflectometer system in the stellarator TJ-II. Review of Scientific Instruments,
80(7):073502, 2009.

[50] IS Bondarenko, AA Chmuga, NB Dreval, SM Khrebtov, AD Komarov,
AS Kozachok, LI Krupnik, P Coelho, M Cunha, B Gonçalves, et al. Installa-
tion of an advanced heavy ion beam diagnostic on the TJ-II stellarator. Review
of Scientific Instruments, 72(1):583–585, 2001.

[51] MA Pedrosa, A López-Sánchez, C Hidalgo, A Montoro, A Gabriel, J Encabo,
J De La Gama, LM Martınez, E Sánchez, R Pérez, et al. Fast movable remotely
controlled Langmuir probe system. Review of scientific instruments, 70(1):415–
418, 1999.

[52] CJ Barth, FJ Pijper, HJ vd Meiden, J Herranz, and I Pastor. High-resolution
multiposition thomson scattering for the TJ-II stellarator. Review of scientific
instruments, 70(1):763–767, 1999.

[53] SI Braginskii. Reviews of plasma physics. 1965.

[54] AA Galeev and RZ Sagdeev. Nonlinear plasma theory. In Reviews of Plasma
Physics, Volume 7, volume 7, page 1, 1979.

[55] AA Galeev, RZ Sagdeev, HP Furth, and MN Rosenbluth. Plasma diffusion in
a toroidal stellarator. Physical Review Letters, 22(11):511, 1969.



150 Bibliography

[56] AA Galeev and RZ Sagdeev. Transport phenomena in a collisionless plasma
in a toroidal magnetic system. Soviet Journal of Experimental and Theoretical
Physics, 26:233, 1968.

[57] MN Rosenbluth, RD Hazeltine, and Fl L Hinton. Plasma transport in toroidal
confinement systems. Physics of Fluids (1958-1988), 15(1):116–140, 1972.

[58] AB Rechester and MN Rosenbluth. Electron heat transport in a tokamak with
destroyed magnetic surfaces. Physical Review Letters, 40(1):38, 1978.

[59] D Terranova, F Auriemma, A Canton, L Carraro, R Lorenzini, and P Inno-
cente. Experimental particle transport studies by pellet injection in helical
equilibria. Nuclear Fusion, 50(3):035006, 2010.

[60] Rita Lorenzini, E Martines, P Piovesan, D Terranova, P Zanca, M Zuin, A Al-
fier, D Bonfiglio, F Bonomo, A Canton, et al. Self-organized helical equilib-
ria as a new paradigm for ohmically heated fusion plasmas. Nature Physics,
5(8):570–574, 2009.

[61] Francesco Porcelli, E Rossi, G Cima, and A Wootton. Macroscopic magnetic
islands and plasma energy transport. Physical review letters, 82(7):1458, 1999.

[62] Piero Martin, L Marrelli, A Alfier, F Bonomo, DF Escande, P Franz, Lorenzo
Frassinetti, M Gobbin, R Pasqualotto, P Piovesan, et al. A new paradigm for
RFP magnetic self-organization: results and challenges. Plasma Physics and
Controlled Fusion, 49(5A):A177, 2007.

[63] KC Shaing, K Ida, and SA Sabbagh. Neoclassical plasma viscosity and trans-
port processes in non-axisymmetric tori. Nuclear Fusion, 55(12):125001, 2015.

[64] D. López-Bruna, M.A. Ochando, A. López-Fraguas, F. Medina, and E. As-
casíbar. Relationship between mhd events, magnetic resonances and transport
barriers in TJ-II plasmas. Nuclear Fusion, 53(7):073051, 2013.

[65] D López-Bruna, M A Pedrosa, M A Ochando, T Estrada, B Ph van Milligen,
A López-Fraguas, J A Romero, D Baião, F Medina, C Hidalgo, E Ascasíbar,
I Pastor, C Rodríguez, D Tafalla, and the TJ-II Team. Magnetic resonances
and electric fields in the TJ-II heliac. Plasma Physics and Controlled Fusion,
53(12):124022, 2011.

[66] S Cappello and DF Escande. Bifurcation in viscoresistive mhd: The hartmann
number and the reversed field pinch. Physical review letters, 85(18):3838, 2000.



Bibliography 151

[67] John M Finn, Rick Nebel, and Charles Bathke. Single and multiple helicity
ohmic states in reversed-field pinches. Physics of Fluids B: Plasma Physics
(1989-1993), 4(5):1262–1279, 1992.

[68] P Martin, L Marrelli, G Spizzo, P Franz, P Piovesan, I Predebon, T Bolzonella,
S Cappello, A Cravotta, DF Escande, et al. Overview of quasi-single helicity
experiments in reversed field pinches. Nuclear fusion, 43(12):1855, 2003.

[69] DF Escande, P Martin, S Ortolani, A Buffa, P Franz, L Marrelli, E Martines,
G Spizzo, S Cappello, A Murari, et al. Quasi-single-helicity reversed-field-pinch
plasmas. Physical review letters, 85(8):1662, 2000.

[70] PR Brunsell, Henric Bergsåker, Marco Cecconello, James Robert Drake,
RM Gravestijn, Anders Hedqvist, and Jenny A Malmberg. Initial results from
the rebuilt EXTRAP T2R RFP device. Plasma physics and controlled fusion,
43(11):1457, 2001.

[71] RN Dexter, DW Kerst, TW Lovell, SC Prager, and JC Sprott. The madison
symmetric torus. Fusion Science and Technology, 19(1):131–139, 1991.

[72] S Masamune et al. Research plans for low-aspect ratio reversed field pinch.
Fusion science and technology, 51(2T):197–199, 2007.

[73] Y Yagi, S Sekine, H Sakakita, H Koguchi, K Hayase, Y Hirano, I Hirota,
S Kiyama, Y Maejima, Y Sato, et al. Design concept and confinement pre-
diction of tpe-rx reversed-field pinch device. Fusion engineering and design,
45(4):409–419, 1999.

[74] Wandong Liu, Wenzhe Mao, Hong Li, Jinlin Xie, Tao Lan, Ahdi Liu, Shude
Wan, Hai Wang, Jian Zheng, Xiaohui Wen, et al. Progress of the keda torus ex-
periment project in china: design and mission. Plasma Physics and Controlled
Fusion, 56(9):094009, 2014.

[75] PR Brunsell, Dimitry Yadikin, D Gregoratto, R Paccagnella, T Bolzonella,
M Cavinato, Marco Cecconello, James Robert Drake, A Luchetta, G Manduchi,
et al. Feedback stabilization of multiple resistive wall modes. Physical review
letters, 93(22):225001, 2004.

[76] PR Brunsell, Dmitriy Yadikin, D Gregoratto, R Paccagnella, YQ Liu, T Bol-
zonella, M Cecconello, JR Drake, M Kuldkepp, G Manduchi, et al. Active
control of multiple resistive wall modes. Plasma physics and controlled fusion,
47(12B):B25, 2005.



152 Bibliography

[77] Per R Brunsell, Mattias Kuldkepp, Sheena Menmuir, Marco Cecconello, An-
ders Hedqvist, Dimitry Yadikin, James Robert Drake, and Elisabeth Rachlew.
Reversed field pinch operation with intelligent shell feedback control in extrap
t2r. Nuclear Fusion, 46(11):904, 2006.

[78] Lorenzo Frassinetti, Per R Brunsell, James R Drake, Sheena Menmuir, and
Marco Cecconello. Spontaneous quasi single helicity regimes in extrap t2r
reversed-field pinch. Physics of Plasmas (1994-present), 14(11):112510, 2007.

[79] S Masamune, A Sanpei, R Ikezoe, T Onchi, K Oki, T Yamashita, H Shimazu,
H Himura, and R Paccagnella. Mhd properties of low-aspect ratio rfp in relax.
Journal of fusion energy, 28(2):187, 2009.

[80] JS Sarff, AF Almagri, JK Anderson, M Borchardt, D Carmody, K Caspary,
BE Chapman, DJ Den Hartog, J Duff, S Eilerman, et al. Overview of results
from the mst reversed field pinch experiment. Nuclear Fusion, 53(10):104017,
2013.

[81] R Lorenzini, M Agostini, A Alfier, V Antoni, L Apolloni, F Auriemma,
O Barana, M Baruzzo, P Bettini, D Bonfiglio, et al. Improvement of the
magnetic configuration in the reversed field pinch through successive bifurca-
tionsa). Physics of Plasmas (1994-present), 16(5):056109, 2009.

[82] D Terranova, A Alfier, F Bonomo, P Franz, P Innocente, and R Pasqualotto.
Enhanced confinement and quasi-single-helicity regimes induced by poloidal
current drive. Physical review letters, 99(9):095001, 2007.

[83] Lorenzo Frassinetti, Per R Brunsell, and J Drake. Heat transport in the quasi-
single-helicity islands of extrap t2r. Physics of Plasmas, 16(3):032503, 2009.

[84] P Franz, L Marrelli, P Piovesan, I Predebon, F Bonomo, Lorenzo Frassinetti,
P Martin, G Spizzo, BE Chapman, D Craig, et al. Tomographic imaging of
resistive mode dynamics in the madison symmetric torus reversed-field pinch.
Physics of plasmas, 13(1):012510, 2006.

[85] Emilio Martines, Rita Lorenzini, Barbara Momo, David Terranova, Paolo
Zanca, Alberto Alfier, Federica Bonomo, Alessandra Canton, Alessandro
Fassina, Paolo Franz, et al. Equilibrium reconstruction for single helical
axis reversed field pinch plasmas. Plasma Physics and Controlled Fusion,
53(3):035015, 2011.



Bibliography 153

[86] Paolo Zanca and David Terranova. Reconstruction of the magnetic perturba-
tion in a toroidal reversed field pinch. Plasma Physics and Controlled Fusion,
46(7):1115, 2004.

[87] Gregorij V Pereverzev and PN Yushmanov. Astra. automated system for trans-
port analysis in a tokamak. 2002.

[88] G. Urso D. F. Escande F. Auriemma, F. Sattin. Exploiting genetic algorithms
in transport modeling in rfx-mod. 2015.

[89] R Lorenzini, A Alfier, F Auriemma, A Fassina, P Franz, P Innocente, D López-
Bruna, E Martines, B Momo, G Pereverzev, et al. On the energy transport in
internal transport barriers of rfp plasmas. Nuclear Fusion, 52(6):062004, 2012.

[90] R. Lorenzini, F. Auriemma, A. Fassina, E. Martines, D. Terranova, and F. Sat-
tin. Internal transport barrier broadening through subdominant mode stabi-
lization in reversed field pinch plasmas. Phys. Rev. Lett., 116:185002, May
2016.

[91] F Auriemma, R Lorenzini, M Agostini, L Carraro, G De Masi, A Fassina,
M Gobbin, E Martines, P Innocente, P Scarin, et al. Characterization of
particle confinement properties in RFX-mod at a high plasma current. Nuclear
Fusion, 55(4):043010, 2015.

[92] Radu Balescu. Transport processes in plasmas. 1988.

[93] H Biglari, PH Diamond, and PW Terry. Influence of sheared poloidal rotation
on edge turbulence. Physics of Fluids B: Plasma Physics (1989-1993), 2(1):1–4,
1990.

[94] R Fitzpatrick. Interaction of tearing modes with external structures in cylin-
drical geometry plasma. Nuclear Fusion, 33(7):1049, 1993.

[95] AJ Cole, CC Hegna, and JD Callen. Neoclassical toroidal viscosity and
error-field penetration in tokamaks. Physics of Plasmas (1994-present),
15(5):056102, 2008.

[96] Kenro Miyamoto. Plasma physics for nuclear fusion. Cambridge, Mass., MIT
Press, 1980. 625 p. Translation, 1980.

[97] HP Furth and MN Rosenbluth. Low-frequency plasma loss mechanisms in
MHD-stabilized toruses. In Plasma Physics and Controlled Nuclear Fusion



154 Bibliography

Research. Proceedings of the Third International Conference on Plasma Physics
and Controlled Nuclear Fusion Research. Vol. I, 1969.

[98] A. A. Galeev, R. Z. Sagdeev, H. P. Furth, and M. N. Rosenbluth. Plasma
diffusion in a toroidal stellarator. Phys. Rev. Lett., 22:511–514, Mar 1969.

[99] KC Shaing, TH Tsai, MS Chu, and SA Sabbagh. Theory for island induced neo-
classical toroidal plasma viscosity in tokamaks. Nuclear Fusion, 51(4):043013,
2011.

[100] Richard D Hazeltine and James D Meiss. Plasma confinement. Courier Cor-
poration, 2003.

[101] Ker-Chung Shaing. Symmetry-breaking induced transport in the vicinity of a
magnetic island. Physical review letters, 87(24):245003, 2001.

[102] Ker-Chung Shaing. Radial electric field and plasma confinement in the vicinity
of a magnetic island. Physics of Plasmas (1994-present), 9(8):3470–3475, 2002.

[103] F Wagner, G Becker, K Behringer, D Campbell, A Eberhagen, W Engelhardt,
G Fussmann, O Gehre, J Gernhardt, G v Gierke, et al. Regime of improved
confinement and high beta in neutral-beam-heated divertor discharges of the
ASDEX tokamak. Physical Review Letters, 49(19):1408, 1982.

[104] T Estrada, T Happel, L Eliseev, E Blanco, L Cupido, JM Fontdecaba, C Hi-
dalgo, L Krupnik, M Liniers, ME Manso, et al. Sheared flows and transition
to improved confinement regime in the TJ-II stellarator. Plasma Physics and
Controlled Fusion, 51(12):124015, 2009.

[105] DE Hastings, WA Houlberg, and Ker-Chung Shaing. The ambipolar electric
field in stellarators. Nuclear Fusion, 25(4):445, 1985.

[106] V. Tribaldos. Monte Carlo estimation of neoclassical transport for the TJ-II
stellarator. Physics of Plasmas, 8(4):1229–1239, 2001.

[107] HE Mynick. Transport optimization in stellarators. Physics of Plasmas (1994-
present), 13(5):058102, 2006.

[108] K. C. Shaing. Radial electric field and plasma confinement in the vicinity of a
magnetic island. Physics of Plasmas, 9(8):3470–3475, 2002.



Bibliography 155

[109] K. C. Shaing, M. S. Chu, C. T. Hsu, S. A. Sabbagh, Jae Chun Seol, and Y. Sun.
Theory for island induced neoclassical toroidal plasma viscosity in tokamaks.
Nuclear Fusion, 51(12):124033, 2011.

[110] LM Kovrizhnykh. Modeling of transport processes in stellarators. Plasma
Physics Reports, 32(12):988–995, 2006.

[111] CD Beidler. Neoclassical transport properties of HSR. IPP-Report, 2(331):194,
1996.

[112] CD Beidler, EE Simmet, et al. Density control problems in large stellarators
with neoclassical transport. Plasma physics and controlled fusion, 41(9):1135,
1999.

[113] SP Hirshman, KC Shaing, WI Van Rij, CO Beasley Jr, and EC Crume Jr.
Plasma transport coefficients for nonsymmetric toroidal confinement systems.
Physics of Fluids (1958-1988), 29(9):2951–2959, 1986.

[114] WI Van Rij and SP Hirshman. Variational bounds for transport coefficients
in three-dimensional toroidal plasmas. Physics of Fluids B: Plasma Physics
(1989-1993), 1(3):563–569, 1989.

[115] C Gutiérrez-Tapia, JJ Martinell, D López-Bruna, AV Melnikov, L Eliseev,
C Rodríguez, MA Ochando, F Castejón, J García, BP van Milligen, et al.
Analysis of TJ-II experimental data with neoclassical formulations of the radial
electric field. Plasma Physics and Controlled Fusion, 57(11):115004, 2015.

[116] G Grieger, W Lotz, P Merkel, J Nührenberg, J Sapper, E Strumberger,
H Wobig, R Burhenn, V Erckmann, U Gasparino, et al. Physics optimization of
stellarators. Physics of Fluids B: Plasma Physics (1989-1993), 4(7):2081–2091,
1992.

[117] T Sunn Pedersen, M Otte, S Lazerson, P Helander, S Bozhenkov, C Bieder-
mann, T Klinger, RC Wolf, H-S Bosch, The Wendelstein, et al. Confirmation
of the topology of the wendelstein 7-X magnetic field to better than 1: 100,000.
Nature Communications, 7, 2016.

[118] Shigeo Hamada. Hydromagnetic equilibria and their proper coordinates. Nu-
clear Fusion, 2(1-2):23, 1962.

[119] FL Hinton and RD Hazeltine. Theory of plasma transport in toroidal confine-
ment systems. Reviews of Modern Physics, 48(2):239, 1976.



List of Figures
1.1 World wide energy use between year 1965 and 2015. The data is from

British Petroleum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Reaction cross section of three typical fusion reactions: D-D, D-T and

D-H3
e . This figure is generated using the formulas presented in Reference

[4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Sketch of two types of toroidal magnetic configurations. The left figure

represents stellarator family and the right one represents pinch family.
The stellarators have complicated coil designs while coils used in pinch
family have simpler shape. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 A sketch of magnetic coordinate. R0 is the major radius, a is the minor
radius, r is the radial coordinate, θ is the poloidal angle and ϕ is the
toroidal angle. The magnetic surfaces share one axis at which r = 0. . . 9

1.5 A sketch of flux surfaces, field lines (black helical) and the gyration of
a charged particle along one magnetic field line (the black half spring in
the center, not in scale with the torus) is presented. . . . . . . . . . . . . 11

1.6 A sketch of Shafranov shift in a circular plasma with R0 the major radius,
a the minor radius and ϕ the toroidal direction. The black circle is the
vacuum vessel and the red dashed circle indicates a flux surface shifted
outwards. The quantity ∆r is the Shafranov shift and it usually is a
function of r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 A typical magnetic island is presented. The field lines reconnect and the
topology of magnetic field changes. This figure is from Reference [22]. . . 14

1.8 (a). A typical magnetic field profile in a RFX discharge is presented
with both poloidal (in blue) and toroidal (in red) components, with the
black horizontal line representing BBB = 0. The amplitude of poloidal field
dominants in the edge and the toroidal field changes sign near the edge.
(b). The corresponding safety factor q profile is presented as a function of
the radius r normalized by the minor radius a. The circle markers on the
curve are the corresponding resonant MHD modes with the horizontal
line indicating q = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 A model for one RFP plasma discharge. The profiles of two magnetic
field components Bϕ and Bθ are presented in the upper graph, plotted
as a function of the normalized minor radius. The two corresponding
current density profiles JJJϕ and JJJθ are presented in the lower graph. . . . 17

1.10 A birdview of the RFX-mod device, located in Padova, Italy. . . . . . . . 19

156



List of Figures 157

1.11 A CAD view of TJ-II stellarator is presented The blue parts are magnetic
field coils. The gray parts are the structure of the machine and the ports
for diagnostic usage. The purple helical part represents the plasmas. . . 21

2.1 A sketch of banana orbit on the poloidal projection in a tokamak con-
figuration. The concentric circles indicates the flux surfaces neglecting
the Shafranov shift. The ∇B drift is upwards in such a configuration.
For simplicity reason, the flux surfaces are drawn as concentric circles,
without including the Shafranov shift. . . . . . . . . . . . . . . . . . . . 28

2.2 Velocity space showing the trapped-passing boundary. The critical angle
θc defines the so-called loss cone which is the white space. . . . . . . . . 29

2.3 Diffusion coefficient D is plotted in log-log scale, as a function of col-
lisionality ν∗. The solid line represents the neoclassical transport and
the dashed line represents the classical transport. This plot is valid in
magnetic configurations with toroidal symmetry. It starts with banana
region, in which the collision frequency is lower than bounce frequency.
Particles within this region are trapped inside of the banana orbit. The
plateau regime is a constant line which does not depend on the colli-
sionality and finally the Pfrisch-Schlüter regime is the high collisionality
regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 A sketch of area mapping in multiple modes resonating magnetic field. . 33

3.1 A typical discharge in RFX-mod. (a): plasma density n. (b): plasma
current Ip. (c): The time evolution of toroidal magnetic component bϕ
with red line representing the dominant mode (m=1,n=-7) and the blue
line representing the secondary modes (m=1, n=-8:-17). . . . . . . . . . 41

3.2 Typical toroidal field bϕ spectra (2ms averaged value) for m=1 mode
against the toroidal mode number n. The blue spectrum is for MH state
and the red one is for QSH state. . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Three sub-states: (a) DAx, (b) SHAxn and (c) SHAXw are presented.
The black horizontal lines in the contour plots represents the Thomson
scattering laser path and ones in the lower 3 plots are the width of the
thermal structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 A sketch of poloidal cross-section of a magnetic field with the presence of
a magnetic island is presented. The total plasma volume is divided into
three separated regions: Region I is the circular plasma with the original
magnetic axis; Region II is the magnetic island with its own axis and
Region III is the outer region. The separatrix is the red line and it is the
interface among these three regions. . . . . . . . . . . . . . . . . . . . . . 46



158 List of Figures

3.5 Flow chart of code MAxS. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 (a) Typical electron temperature in a SHAxw state as a function of the
radius (dots). The solid line represents the normalized helical flux func-
tion ρ. (b) The same electron temperature profile as in (a), plotted as a
function of ρ with the two colors representing the two sides with respect
to ρmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Electron temperature remapped on the flux surfaces in a DAx state. Ver-
tical dashed black lines represent the location of separatrix intersected
by mid plane at Thomson scattering angle ϕ = 82.5◦. The vertical thin
lines represent the local maximum or minimum of the helical flux (red
for island region and blue for the core region). (a) Contour plot for the
helical flux on the poloidal cross-section at Thomson scattering toroidal
angle. The horizontal line represents the Thomson scattering laser path
and the thick red curve represents the separatrix. (b) The normalized
helical flux plotted versus the geometrical radial, zoomed at the island
region. The horizontal line represents the separatrix, intersected with the
curve with four intersections, marked with the dashed black line. There
are two parts belonging to the magnetic island, marked with red. The
blue part is the core region and the two black parts on both sides of the
profile represent the outer region. (c) The Thomson scattering profile
versus radius of vacuum vessel. The colors represents different regions.
(d), (e) ,(f) The results of remapping in the magnetic island (d), core (e)
and outer region (f). The color pink represents left side and the color
green represents the right side of the local ρ minimum. . . . . . . . . . . 50

3.8 Two typical electron temperature profiles is presented as a function of the
radius r, obtained both in SHAxn state. These two cases are used in the
benchmark between MAxS and ASTRA. . . . . . . . . . . . . . . . . . . 52



List of Figures 159

3.9 Results of benchmark between MAxS and ASTRA, applying two SHAxn

cases in RFX-mod. The lower two graphs are the thermal diffusivity
profiles and the upper two graphs are the corresponding electron tem-
perature profiles. For the numerical benchmark, the results are shown
with red lines. The thermal diffusivity profiles (two red lines in the lower
graphs) are used to perform the simulations, both in MAxS and ASTRA.
The corresponding Te profiles are shown as the red lines in the upper
graphs. The two red Te lines shows good agreement, indicating a reliable
numerical stability of MAxS. For the physical benchmark, the results are
shown as the blue lines, being the CI’s generated by ASTRA via GA. The
red lines, both with Te profiles and the χ profiles are well agreed with
CI’s, indicating a reliable capability of producing solid physical simula-
tions with MAxS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 A typical electron temperature profile measured in SHAxw state is plotted
as a function of radius r. The blue shadow indicates the eITB region
and the black arrows represent the width of the thermal structure top
∆rTop and the width of the eITB ∆rFoot,R−L with R − L indicating the
right and left of the eITB. The black dashed line represents the electron
temperature value of the eITB for the top T Top

e and foot T Foot
e . . . . . . 59

4.2 The main steps for code TeGrA. Te(r) is the raw experimental electron
temperature profile, as a function of the radius r. . . . . . . . . . . . . . 60

4.3 The minimum temperature ∇Tmin
e between ∇TL

e and ∇TR
e is presented

as a function of the dominant mode normalized by the edge magnetic field. 61

4.4 Panel (a), (b) and (c) are the χ profiles obtained from one DAx case and
they represent the core, island and outer regions, respectively. Panel (d)
is the χ profiles obtained from one SHAxn case. The black lines represent
the χ profiles obtained from GA and the minimum value of χ appears
in the eITB region, which is marked with blue shadow. Panel (e) is the
results of the transport study on s small database containing three sub-
states of QSH. The mean value of the thermal diffusivity in the eITB
region, ⟨χth⟩ increases from DAx to SHAxn and SHAxw, suggesting a
local increase of the energy transport in eITB region. . . . . . . . . . . . 63



160 List of Figures

4.5 The minimum gradient is plotted versus the normalized secondary modes.
(a). The data is obtained at the TS angle. (b). The data is obtained in a
new toroidal angle at which the O-point (for DAx) or the magnetic axis
(for SHAxn and SHAxw) lies on the mid plane. In both DAx and SHAxn

states, the secondary modes are in the same range while their amplitude
is reduced to a lower level in SHAxw. . . . . . . . . . . . . . . . . . . . . 65

4.6 Two typical safety factor q profiles in both SHAxn (black solid curve)
and SHAxw (red dashed curve) states are plotted as a function of the
normalized radial coordinate. The two shadows represent the range of
eITB foot locations in narrow (gray) and wide (red) thermal structure. . 67

4.7 The averaged thermal diffusivity ⟨χth⟩ in the eITB region is plotted as a
function of the secondary modes.The same separation appears, as the one
shown in Figure 4.5 between narrow and wide thermal structure groups. 68

4.8 Graph (a): The minimum thermal gradient is plotted as a function of
bsec/b

1,−7
ϕ . Graph (b), The same quantities obtained in a new toroidal

angle at which the maximum thermal gradients laying on the equatorial
plane. In DAx group, the thermal gradients shows a negative correlation
with respect to the value of bsec/b1,−7

ϕ while in both SHAxn and SHAxw

groups, the thermal gradients show a positive correlation, instead. . . . . 69
4.9 The maximum value of the gradient width ∆rmax

Foot (empty symbols) and
∆rTop (solid symbols) plotted as a function of the normalized dominant
mode. The foot shows a continuous growth while there is a sudden jump
between SHAxn and SHAxw. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 The foot (a) and top (b) value of Te and the difference ∆Te (c) are shown
as a function of the normalized dominant mode. The foot electron tem-
perature slightly decreases from DAx to SHAxn and to SHAxw while the
top value shows a slightly increase trend from DAx to SHAxn and then
decreases to SHAxw. The corresponding value of ∆Te shows a increase
trend from DAx to SHAxn and then slightly decreases to SHAxw. . . . . 71

4.11 (a): Total energy confinement time as a function of normalized dominant
mode. The mean value increases from around 1.4ms in DAx up to around
2ms in SHAxw. (b): The dynamo effect (1 − F )/Θ decreases with the
increase of the normalized dominant mode. . . . . . . . . . . . . . . . . . 73

4.12 An example of rotation is presented. (a), The contour of helical flux at
Thomson scattering angle. (b), the contour of helical flux after rotation.
(c), The corresponding helical flux along equatorial plane before (red)
and after (blue) rotation. The vertical lines represent the location of the
thermal gradients obtained from TeGrA. . . . . . . . . . . . . . . . . . . 75



List of Figures 161

4.13 Thermal properties after rotation. (a), the minimum thermal gradients
versus the normalized dominant mode. (b), The maximum thermal gra-
dient width ∆rmax

Foot (empty symbols) and the top width of the thermal
structure ∆rTop (solid symbols) versus the normalized dominant mode. . 76

5.1 A sketch of particle diffusivity D11 is presented as a function of the col-
lisionality ν∗. This figure shows only the low collisionality region, i.e.,
ν∗ ⩽ 1. There are three separated regions divided according to different
collisionality regions: ν,

√
ν and 1/ν. This figure is valid for tokamaks

with broken toroidal symmetry and stellarators who do not posses the
toroidal symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 A schematic diagram of a magnetic island. The constant Ψ contour is
shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Cross section of the vacuum flux surfaces in two magnetic configurations
of the TJ-II Heliac and corresponding ι profiles. The resonance ι = 8/5
is located in ρ = 0.56 in configuration labeled 96_47_63 (left), while it
shifts to ρ = 0.76 in configuration 100_44_64 (right). The circled crosses
indicate the section of the central conductors, which are protected from
the plasma by the hard core. This figure is from Reference [65]. . . . . . 95

6.2 Magnetic field strength |B| in tokamaks (dashed line) and stellarators
(solid line) along field line is presented. There are many local magnetic
mirrors in stellarators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3 Using TJ-II parameters, the combined function(in red) could well repro-
duce the two separated functions in ν(dashed black line) and 1/ν(dashed
blue line) regimes. The thick gray vertical line represents the critical ν∗
which indicates the end of ν regime. The red vertical dashed line is the
electron collisionality and the blue dashed one is the ion collisionality. . . 99

6.4 Comparison between equation 6.3(black, solid) and equation 6.6(red,
solid). The dashed green line represents the

√
ν. It is clear to see that

the green line and black line has a common point which also belongs to
the gray vertical line which is the end of ν regime. The vertical red and
blue dashed lines are the collisionality for electrons and ions, respectively. 99



162 List of Figures

6.5 Comparison between Equation 6.6 multiplied by the geometry factor G =
1000 (colored lines with |Er| = 2300V /m) and the TJ-II data, which is
the black background figure from Ref [106]. The solid black lines are
for electrons and the dashed ones are for ions. From top to bottom the
lines are generated with the conditions eΦ/T = 0, 1, 2, 5, 10. The thick
solid and dashed black lines are corresponding curves to the equivalent
tokamak. The red and blue lines represents electrons and ions, respectively.102

6.6 Radial electric field Er scan in a typical TJ-II plasma. The upper graph
is the scan on electrons and the lower one is on the ions. The red thick
vertical dashed line in the upper graph is the electron collisionality and
the blue thick vertical dashed line in the lower graph is the ion collision-
ality. The thin vertical lines represent the value of νeff/ωb with different
electric field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.7 The value of function Γe−Γi is plotted as a function of the radial electric
field Er, applying three different poloidal mode number, being m=2, 3,
5. The zero value of such function is the possible solution of the radial
electric field. This plot is generated using the plasma parameter listed in
Table 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.8 The solution for electric field under steady state assumption. The plasma
parameters used in this calculation are presented in Table 6.1 with elec-
tron temperature modified to 350 eV. The contour line with Er = 0 is the
solution for ambipolar conditions. With ion temperature below 105 eV,
single positive electric field appears. As the ion temperature increases,
three electric field solutions, one negative and two positive, appear. The
middle solution is unstable [105]. And finally, when the ion temperature
increases above 250 eV, single negative ambipolar electric field appears. . 108

6.9 The solution for electric field under steady state assumption. The plasma
parameters used in this calculation are presented in Table 6.1. With
a fixed electron temperature, the solution of ambipolar electric field is
positive in low ratio of Ti/Te < 0.3 and negative in high ratio of Ti/Te >
0.3. When the ratio between ion and electron temperature equals 0.3, the
ambipolar electric field equals zero, which is shown as the vertical line at
Ti/Te. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



List of Figures 163

6.10 The solution for electric field under steady state assumption. The plasma
parameters used are presented in Table 6.1 with 150% plasma density. At
all ion temperatures, the ambipolar electric field only has one solution,
as indicated by the 0 contour line. When the ion temperature is below
100 eV, the ambipolar electric field is positive and above this value, it is
negative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.11 The parameters of ECRH plasma in TJ-II plotted as a function of the
normalized flux surface label ρ. The blue solid line represents the electron
density and the dashed blue line represents the ion density. The red solid
line represents the electron temperature and the dashed one represents the
ion temperature. This parameters are used in the following calculations
in ASTRA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.12 Electric field profiles with scan of resonance positions in tokamak param-
eters. Many different island locations have been applied in ASTRA with
Shaing’s model, represented by many light blue lines. Four positions are
marked at normalized flux surface labels ρ = 0.48, 0.65, 0.82 and 0.94,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.13 The ratio between ion temperature and electron temperature Ti/Te is
plotted as a function of the normalized radius, which is the black line.
The two dashed red lines indicates the location of radius where Ti/Te = 0.3.114

6.14 Electric field profiles obtained from Kovrizhnykh’s model, together with
Shaing’s model are presented as a function of the normalized flux surface
label. The smooth line represents the background of neoclassical trans-
port, i.e., the profile generated only by Kovrizhnykh’s model. The three
’bumps’ are the results when Shaing’s model is applied. In the inner lo-
cations, the electric field is positive with enhancement or decrease of the
background electric field. In the outer region, however, the electric field
is negative and it shows an enhancement of the background electric field. 115

6.15 Electric field profiles obtained from Beidler’s model, together with Shaing’s
model are presented as a function of the normalized flux surface label.
The smooth line represents the background of neoclassical transport. The
three ’bumps’ are the results with Shaing’s model. In this case all three
resonant positions shows a positive electric contribution from Shaing’s
model and only the edge one shows an enhancement respect to the back-
ground electric field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



164 List of Figures

6.16 Two simulations are performed with different neoclassical models together
with Shaing’s formula in NBI plasma obtained in TJ-II. The left graph
is obtained using both Kovrizhnykh’s model and Shaing’s formula. The
right one is obtained using both Beidler’s model and Shaing’s formula.
The smooth line represents the background radial electric field and the
’bumps’ are the extra contribution from Shaing’s theory. Clearly, the
background radial electric field profile is always negative and the con-
tribution from Shaing’s theory is always positive, with respect to the
background radial electric field profiles. . . . . . . . . . . . . . . . . . . . 117


	Introduction
	Toroidal Magnetic Confinement
	Energy Issue and Thermal Nuclear Fusion
	Toroidal Magnetic Configurations
	Ideal MHD
	Resistive MHD
	Equilibrium in RFPs: the Dynamo Mechanism
	Experimental Devices
	Summary

	Three Dimensional Transport Induced by the Presence of Magnetic Islands
	Neoclassical Transport
	Stochastic Transport
	Three Dimensional Transport due to the Presence of Magnetic Islands


	Thermal Properties and Transport Study on Three Sub-states in QSH
	Quasi-Single Helicity and Multiple Domain Scheme
	Multiple Helicity and Quasi-Single Helicity
	Three Sub-States in QSH state
	Multiple Domain Scheme and Multiple Axes Solver
	Electron Temperature Profile Remapping
	Benchmark with ASTRA
	Summary

	Thermal Properties of Three sub-states in QSH state
	Transport and Thermal Properties of QSH State
	Thermal Gradient Influenced by Stochasticity within Three Sub-states
	Energy confinement time
	Thermal Gradient in new Toroidal Angle
	Summary


	Radial Electric Field in Vicinity of Magnetic Island in TJ-II
	Enhanced Radial Transport due to Magnetic Islands in Tokamaks
	Symmetry Breaking Effect: Enhanced Radial Transport
	Radial Electric Field in Vicinity of Magnetic Island in Tokamaks
	Summary

	Enhanced Radial Electric Field due to Magnetic Islands in TJ-II Stellarator
	Radial Electric Field and Magnetic Islands in TJ-II
	Particle Fluxes in Low Collisionality Regimes:  and 1/
	Particle Flux in  Regime and the Complete Particle Flux Equation
	Discussions on the Complete Particle Flux Equation
	Simulation Results Using ASTRA
	Summary and Discussions


	Conclusion and Future Perspective
	Summary, Conclusion and Future Perspective
	Summary
	Conclusions and Future Perspective


	Appendices
	Flux Surface Average
	Magnetic Field Strength in Tokamaks
	Non-Ambipolar FLux and Toroidal Viscosity


	Acknowledgement
	Acknowledgement

	References
	Bibliography
	List of Figures


