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Abstract

In this thesis we present a detailed investigation of the interplay between 3D
organization of the chromatin and epigenomic spreading in Eukaryotic nuclei,
via polymer physics models.

We begin with a review of the biology behind epigenetic processes, and of
some basic physical models that have been proposed to describe them. We
also examine the model presented in [1], and study in details its equilibrium
and non-equilibrium dynamics via extensive molecular dynamic simulations. At
equilibrium we confirm the existence of a first-order phase transition between
a swollen and epigenetically disordered phase, and a compact ordered one. At
non-equilibrium we prove the existence of two novel phases [2] where the polymer
is organized in a compact-disordered or swollen-ordered fashion.

We extend the model by inserting “genomic bookmarking” [2], that is tran-
scription factors permanently bound to the DNA and which enhance the positive
feedback loop in the epigenetic machinerie. We also develop a more realistic,
biologically inspired, model which successfully reproduces the distribution of
epigenetic marks in a Drosophila chromosome.

We next discuss the model proposed in [1] and its relation with magnetic
polymer models on a lattice [3]. We find a Landau-Ginzburg-like expression for
the free-energy of a dense magnetic polymer in the mean-field approximation. The
new free-energy, and ad hoc Montecarlo simulations, confirm the presence of a first-
order phase transition between a swollen-disordered phase and a compact-ordered
one at equilibrium. We also study the non-equilibrium kinetic of the mean-field
model by employing a set of opportunely modified “Model A” equations.

At last, we develop a phenomenological mean-field model for a melt of
chromatin fibers in a closed system akin to the Eukaryotic nuclei [4]. The
phenomenological free-energy will depend on a conserved density field and a non-
conserved magnetisation field. The equilibrium phases will be hence investigated
analytically via a common-tangent construction construction, and include both
uniform and demixed phases undergoing phase separation. The dynamics of the
equilibrium phases is then studied via a set of “Model C” equations in order
to estimate the critical coarsening exponents. Finally, we insert in the kinetic
equations some non-equilibrium terms akin to a first-order reaction which arrest
the phase separation.
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Introduction

Would it save you a lot of time if I just gave up and
went mad now?

Douglas Adams, The Hitchhiker’s Guide to the
Galaxy

The term epigenetics usually refers to the study of stable and inheritable changes
in the phenotype of an organism due to modifications in the gene expression, rather
then in the genome itself [5]. Processes of this kind are actually quite common in
the biology of higher organisms like eukaryotes. Let us think, for example, of a
multicellular organism who presents a variety of tissues. Two cells from different
tissues will have the same genome, but at the same time they are highly specialized
and their function and form will be completely different from one another. This is
not, by far, the only example of epigenetic, as modifications in phenotype are usually
observed as a method to react to external stimuli, like what is observed in general in
the polyphenism of insects [6], or in the temperature-dependence of the sex of some
species of fishes and reptiles [7], or even with stressful situations in humans [8]. From
a microscopic point of view, changes in gene-expression are thought to arise through
a series of biochemical modifications, called epigenetic marks, of nucleosomes [9, 10]
which compose a molecular pattern sometimes called histone or epigenetic marks. On
the other hand, changes in gene-expression are also observed to be correlated with
changes in the 3-dimensional structure of the whole chromatin complex [11]. However,
while this correlations are known, the exact mechanism regulating the interaction
between these three players (gene expression, histone modifications, and chromatin
structure) is not fully understood, and has been one of the most studied problems in
biology in the last years.

In this context, polymer-physics based models, with a statistical physic approach
have been proven useful to uncover some of the fundamental mechanisms that shape
chromatin organization, aiding a more insightful understanding on how genome
architecture and biological processes are intertwined. Indeed, while biophysical models
tend to oversimplify the dynamics by omitting various biological components, even
basic homopolymer physics has proven quite effective at explaining some key features
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of nuclear architecture in a variety of organisms [12], while heteropolymer models
have been employed in order to discuss finer details of the spatial organization [13].

While the correlation between 3-dimensional structure of chromatin and histone
code is clear, and well documented [11, 14, 15], most physical models for the study
epigenetics focus either on finding the chromatin architecture given a fixed epigenetic
landscape [13], or on studying effective models for the spreading of epigenetic marks
[16, 17]. Recently, a new model, proposed by Michieletto et al. [1], has the objective
to reconcile these two aspects of epigenomic dynamics. Here, the chromatin is modeled
as a semi-flexible heteropolymer whose beads can assume different colors, representing
each a particular epigenetic mark. Differently from the “static landscapes” model, the
“color” of the beads can change, and spread, in analogy with the positive-feedback loop
between two classes of enzymes “readers” and “writers” which interact and influence
directly the dynamics of the epigenetic landscape in the chromatin.

In this work, we will thoroughly examine the nature of the coupling between
these two aspects, by developing a biophysical model to study, and reproduce, the
formation of stable, robust, epigenetic landscapes. The analysis will be based on
some extensions of the model proposed by Michieletto et al., which will be thoroughly
studied both at equilibrium [1] and at non-equilibrium level [2]. The analysis has
been performed mainly by employing extensive molecular dynamic simulations using
the software LAMMPS [18]. We will show the existence of a variety of stable steady
phases for long-time dynamics, which all correspond to actual structures observed in
vivo in chromatin. Notably at equilibrium we will prove the existence of a first-order
phase transition between a swollen, epigenetically disordered configuration, and a
compact, epigenetically ordered one, which is important because proves that the model
allows for a bistable epigenetic switch that can retain memory of its state. The model
will be then extended to include a completely new biophysical mechanism, called
genomic bookmarking [2], in order to explain how to reconcile the de novo formation
of inheritable, yet plastic, epigenetic domains, in the face of the rapid turnover of
the underlying histone marks due to cell mitosis. Interestingly, we will challenge
the problem of studying the epigenomic spreading on a Drosophila chromosome by
employing this new extended model; the results based on simulations are in good
agreement with the experimental observations in vivo of the chromosome.

Since the model can be written in terms of an effective Hamiltonian, it is possible
to write down a free-energy which will be studied in the mean-field limit. By using
a Ginzburg-Landau description [3] in analogy with previously studied models of
magnetic polymer on a cubic lattice [19]. The mean-field theory will also be tested
by ad-hoc Montecarlo simulations, and later extended to describe out-of-equilibrium
properties by using “Model A” kinetic equations [20]. With this approach we can
prove again the existence of a first-order phase transition at equilibrium, while at the
same time reproducing almost faithfully the non-equilibrium diagram found in [2].
Finally, we examine the structure of the whole Eukaryotic nucleus, by considering a
phenomenological Landau-Ginzburg-like free-energy for the case of many chromatin
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fibers in a non-dilute close system [4]. By inserting non-equilibrium “switching”
terms in the kinetic equations of the system (“Model C” dynamics [20]), we can see
the presence of arrested (and tunable) phase separation of epigenomic domains, in
qualitative agreement with what observed in experiments.

This thesis is organized as follows:

Chapter 1 We give a brief review of epigenetics (see section 1.1), with a particular
emphasis on chromatin structure, and the biochemistry involved in epigenetic
marks. We then introduce some models that have been previously employed
to discuss chromatin structure in presence of a fixed epigenetic landscape
(see section 1.2). The opposite case is also considered, namely we present 0-
dimensional (“mean-field”) and 1-dimensional models for epigenomic spreading
(see section 1.3) where the underlying chromatin structure is neglected. Finally,
we present the model proposed by Michieletto et al. in [1], which explicitly
couples 3-dimensional chromatin organization with epigenomic spreading (see
section 1.4). Here, chromatin is modeled as a semi-flexible polymer chain whose
beads can bear different epigenetic marks represented by colors. The interaction
among the beads is modeled via a Potts-like interaction (see section 1.4.1). The
dynamics is the result of two contributions: “Langevin dynamics” which deals
with the spatial dynamics of the polymer chain, and a “recolouring dynamics”
which deals with epigenomic spreading and evolves via a Metropolis-Hastings-
like algorithm. The equilibrium dynamics presented in section 1.4.3, has already
been discussed in [1], but we re-derived all the results by performing independent
molecular dynamic simulations. Notably, our results confirm the presence of a
first-order phase transition between a swollen-disordered phase transition and a
compact-ordered one, by employing the method of Binder cumulants. Finally,
we also derive the non-equilibrium long-time dynamics of the model presented
in [2] (see section 1.4.4). In this case, we show the presence of two novel phases,
not observed at equilibrium, where polymer organizes in a compact-disordered
or swollen-ordered fashion, and we discuss the nature of the possible phase
transitions between all these phases.

Chapter 2 We present a possible extension for our core model by introducing a novel
biophysical mechanism called “genomic bookmarking”. Here we suppose the
existence of some transcriptional factors, called “bookmarkers”, which remain
bound to chromatin during mitosis, and have a role in guiding epigenomic
spreading. All the results presented in this chapter have also been discussed in
[2]. Here, we study the formation of epigenetic domains by varying the spatial
configurations of genomic bookmarkers on the chain (see section 2.1.1). We
prove that if a local minimum bookmarker density is present, coherent epigenetic
domains can form and that they are stable for long times (see section 2.1.2),
as experimentally observed in actual in vivo in chromatin. In section 2.2 we
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present further extensions of the model. First, we discuss the dynamics in
presence of asymmetric interactions between the various epigenetic marks (see
section 2.2.1). Second, we introduce a random process in the model to simulate
cell replication, by excising part of the bookmarked genome. We find that, even
with the excision process, our epigenetic domains remain stable during several
cell cycles. Notice that this proves that genomic bookmarking processes are
good candidate to explain the de-novo formation of epigenetic domains after
mitosis. Finally, we present the results of molecular dynamic simulations in the
context of a Drosophila chromosome. The results of these simulations are in
good agreement with experimental findings.

Chapter 3 By referring to the model first presented in section 1.4, we develop here
a Landau-Ginzburg mean-field theory in analogy with magnetic polymers. The
main results of this chapter have been discussed in [3]. We consider a discrete
model by mapping the polymer chain into an interacting self-avoiding walk
(ISAW, see section 3.1) on a (hyper-)cubic lattice; with this we developed a
C++ software where we were able to to compare our mean-field results with
direct Montecarlo simulations (see section 3.2). In order to derive the mean-field
equations, we take several preliminary steps. First, we study the dynamics of a
Potts-like system with non-interacting inert states on a lattice (see section 3.3),
and we discuss what kind of field-theory one has to choose in order to observe
a phase transition. We also observe that, when a phase transition is present,
its order depends not only on the number of interacting states as in the classic
Potts model, but also on the number of non-interaction inert states. Second, we
present a Landau-Ginzburg theory for a dense homopolymer on a lattice (see
section 3.4), and show that our model correctly predicts a continuous phase
transition between a swollen and a compact phase, as in the classic Flory θ-
collapse. Finally, the full mean-field theory for magnetic polymers with Potts-like
interactions (see section 3.5) is discussed. We show that in agreement with
what observed in section 1.4.3, the system presents a first-order phase transition
between a swollen-disordered phase and a compact-ordered one; these results
are qualitatively, and quantitatively, in agreement with Montecarlo simulations.
As a last step, we have examined the “Model A” dynamics of our model, in order
to study the relaxation to equilibrium dynamics of the fields (see section 3.6).
Thanks to these kinetic equations, we develop a non-equilibrium mean-field
kinetic model and study its steady states to derive a non-equilibrium phase
diagram. Notably, for high density polymers, the phase diagram we find from
these equations is qualitatively identical to what found in section 1.4.4.

Chapter 4 While in the previous chapters we have discussed the behaviour of
isolated chromatin fibers in dilute solutions, here we will develop a mean-field
theory in order to examine our model when considering the whole nucleus
of an Eukaryotic cell, i.e. a close system with finite volume where several
fibers are present. Results of the mean-field theory can all be found in [4] and
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they are compared with molecular dynamics simulations [2]. We introduce a
new phenomenological free-energy density (see section 4.1) as a function of the
conserved field density and of the non-conserved magnetisation. We can study the
equilibrium phases of this phenomenological model (see section 4.2) by employing
the so-called “common tangent construction”. This analysis show the existence
of three different phases: one with uniform density and incoherent epigenetic
magnetisation; another with uniform density but coherent magnetisation, and
finally one characterised by phase separation where the nucleus organizes in
high-density clusters with coherent epigenetic mark. We study the dynamics of
the phase separation process by employing a set of “Model C” equations (see
section 4.3), and find the respective coarsening exponents. Finally, we extend
the kinetic equations to include a first-order reaction (see section 4.4) between
an “active” component of the chromatin which participates to the recolouring
dynamics, and an “inactive” component which does not. With this extension
the model displays an interesting arrested phase separation where the system
organizes in high-density clusters of steady size, in qualitative agreement with
what is observed experimentally in cell nuclei.
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Chapter 1

The Physics of Epigenetics

“What is the secret of life” I asked.
“I forget,” said Sandra.
“Protein,” the bartender declared. “They found out
something about protein.”
“Yeah,” said Sandra, “that’s it.”

Kurt Vonnegaut, Cat’s Cradle

A common misconception among non-biologists is that the birth, the life, and
death of a human, or any other living creature, is solely governed by its DNA. However,
we don’t need to look too far away to understand the limits of this kind of thinking.
Take for example two cells from two different tissues in the human body: they will
have completely different shapes, appearances, and functions, but still, the same exact
DNA sequence can be found in their nuclei. The reason for this is simple: while the
genome in itself is the same, different cells have different genes expressed. The changes
in organisms caused by the modification of gene expression rather than modifications
of the genetic code are studied by that branch of biology called epigenetics.

In this chapter, we will give a brief introduction to the biology of epigenetics,
as well as a more concise and precise definition of the term. After this biological
parenthesis, we will examine the possibility of developing simple physical models to
reproduce and explain, the main features observed in this kind of phenomena.

1.1 The Biological Picture

In this section, we will give a small review of the biological mechanisms behind
epigenetics. While this is enough to understand the biological background employed
in the rest of this work, it is not by any means exhaustive. For a more in-depth
analysis see for example [21].
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1.1 The Biological Picture

Figure 1.1: Pictorial depiction of the so-called “Waddington’s epigenetic landscape”.(A)
The landscape represent by which the totipotent embryonic cell, represented by the marble
at the top, differentiate while rolling down one of the possible epigenetic pathways; the
end point at the end of the hill represent the possible cell fates, i.e. the different tissues
present in an organism.(B) The landscape is determine by “hidden” interactions between
the cell and the genome, here represented via some wires that shape the surface of the
hill. Picture adapted from [23].

1.1.1 What is Epigenetics? Definition of the Term

While the study of epigenetics has exploded in the last decades, its basic concepts
have been studied as long as a century. Indeed, the term “epigenetics” was first coined
by Conrad Waddington [22] in 1942, and the origin of the word itself comes from
Waddington’s study of epigenesis, i.e. the process by which multicellular organisms
develop from a single cell through a sequence cells differentiation. In the context
of Waddington’s studies, then, epigenetics is the study of how the genome guides
the organism toward its development [23]. The ideas of Waddington are captured
by the famous “Waddington’s epigenetic landscape” (see fig. 1.1), where an initially
totipotent embryonic cell, represented by a marble, rolls down a hill whose surface is
shaped by the genome. While rolling, multiple “epigenetic pathways” are available,
but eventually the cell will stop at one of the points at the base of the hill. These
final stops of the marble represent the eventual cell fates, that is, tissue types.

The definition given by Waddington, however, is not the only one we can find in
literature. A second definition was given by Nanney [24]. Indeed, while Waddington’s
epigenetic has a broad wide meaning, Nanney refers with the term to the existence of
a non-genetic mechanism at the cellular level, which regulates the gene expression.

Given the existence in literature of various, non-equivalent definitions of epigenetics,
no solid consensus of its precise meaning exists [25]. In recent years, a new precise
definition has been proposed: “An epigenetic trait is a stably heritable phenotype
resulting from changes in a chromosome without alterations in the DNA sequence”
[5]. As this definition allows an operational treatment of the epigenetic subject, we
choose to adopt it from now on.
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CHAPTER 1. THE PHYSICS OF EPIGENETICS

1.1.2 Chromatin

Before we delve into the intricacies of the epigenetics processes, let us spend a few
words on the substrate where they take place: the chromatin.

One of the main roles of DNA in the cell life, is the long-term preservation of the
instructions needed to the cell, such as the instructions to build proteins and RNA. In
the cell nucleus of eukaryotes, DNA is not a “naked molecule”, but rather it is found
in precise organized 3-d structure thanks to the help of some architectural proteins.
The complex of DNA and these proteins it is called chromatin fiber, while the whole
3-dimensional structure is called chromosome.

The role of chromatin is an important one: left alone the multiple DNA molecules
would tangle and could be easily damaged. Chromatin structure, instead, reinforces
and packages DNA into denser configurations. Moreover, chromatin has an important
role during mitosis (or meiosis) as it helps with the segregation of the chromosomes.

If we examine the microscopic structure of chromatin, we observe that it is formed
by bead-like structures called nucleosomes. Each nucleosome complex is composed by
a string of DNA wrapped around eight structural proteins, called histones, and it is
linked to the next bead by a substring of DNA called linker DNA (see fig. 1.2). It is
important to note that the nucleosomes are not electrically neutral, as the histones
and DNA are both electrically charged and are the source of electrostatic fields in the
nucleus [26] which contribute strongly to the folding of the chromatin [27].

It is important to point out that chromatin’s role is not only structural, but it
is an important character in gene expression. Indeed, if we examine the nucleus
of some unicellular, eukaryote, organism (e.g. yeast), we will note that that it is
almost homogeneously filled by the chromatin. On the other hand, in the nucleus
of multicellular organisms, coexistence of regions with various density of chromatin
is observed. This difference is due to the fact that while the genome in yeast is
almost always all actively transcribing proteins, in a cell of a tissue of a multicellular
organism some part of the genome have to be silenced as they must produce only a
certain subset of all the possible proteins. Indeed, the density of chromatin is strongly
correlated with the transcription activities of the genome in that area: denser and
less accessible areas (called euchromatin) are silenced; less dense and more accessible
areas (called heterochromatin) are, instead, actively transcribing.

Finally, in the last years, thanks to the development of new techniques for the
study of chromosome conformations (e.g. Hi-c [29]), there has been a leap in the
understanding of finer details of chromatin conformation. One of the most interesting
finding is that chromatin organizes in smaller self-interacting regions (see fig. 1.3)
called TADs (topologically-associated domains) [30, 31]. TADs can be thought as
architectural chromatin units that define regulatory landscapes. As we already
pointed out, chromatin organization is strictly correlated to gene expressions, and
therefore TADs seem to play a central role in it. Indeed, it seems that TAD boundaries
correspond to those of replication domains [32], and genes tend expressed (or repressed
together) during cell differentiation when they are located in the same TAD.
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1.1 The Biological Picture

Figure 1.2: Scheme of nucleosome organizations. There are five types of histones: H1,
H2A, H2B, H3, H4; the histones H2A,H2B, H3, H4 are called core histones. DNA wraps
around eight core histones (two per type) and it is kept in this position by an H1 histone;
the complex histone-DNA is often called NCP (nucleosome core particle). An NCP is
linked to another one by a strand of DNA called linker DNA. The complex NCP-linker
DNA is called nucleosome. Core histones, share the feature of having a long “tails” to
which epigenetic markers can attach. Adapted from [28].

Figure 1.3: Pictorial Scheme of TADs organization in chromatin. You can observe the
sequence of distinct sequence of domains of different shape and form. Namely they
can be, for example, compact (highlighted in blue) and associated to silenced genome
(heterochromatin), or swollen (highlighted in red) and associated to actively transcribing
genome (euchromatin).

1.1.3 Epigenetics

As we briefly discussed in the introduction of this chapter, during the epigenesis a
cell pass from being totipotent to having a specialized, and in some way restricted,
function compatible with its fate. Therefore, the development and the determination
of the cell type involves restrictions in its potency and result from a different gene
expression. The main way to regulate gene expression, is via gene silencing, i.e.
preventing certain genes from being over-expressed. General understanding is that
gene silencing is achieved through chromatin condensation (heterochromatinization).
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CHAPTER 1. THE PHYSICS OF EPIGENETICS

These kind of processes are well studied in the case of the eukaryote cell, but are not
well known in the prokaryote case (see for example [33]); from now on we will discuss
only about the epigenetic dynamics of the eukaryote cell.

One of the most important mechanisms, found both in prokaryotes and eukary-
otes, that plays a fundamental role in heterochromatinization is the so-called DNA-
methylation, that is the process that adds a methyl group to certain bases of the
DNA. Methylated DNA can regulate gene expression by preventing the binding of
transcriptional proteins to the gene, while at the same time it may be bound with
a certain class of architectural protein called MBD. MBD proteins, itself, recruit
chromatin-remodeling proteins that can modify histones, and therefore forming a
bundle of compact, inactive, chromatin.

Histone Modifications

A different class of epigenetic processes who do not affect directly the DNA molecule,
is called “histone modifications”. The core histones present a long ’tail’ on one end of
their amino acid structure, where several molecules, called epigenetic marking can
attach as a form of post-translational modification (see fig. 1.2), including methylation,
acetilation, phosphorylation, sumoylation, ubiquitylation, and ADP-ribosylation [34].
As several epigenetic markings can bind to an histone tail at the same time, a huge
number of combinations is possible. However, not all of these combinations seem to
be possible, and only a few of them seem to be relevant. For example, these relevant
combinations can even be reduced to 5 classes in the case of Drosophila, the so called
“five colors of chromatin” [35], while in humans it has been estimated that over 50
different chromatin states occur [36].

To deal with the great complexity of chromatin modifications, organisms have
developed a wide variety of “helper” molecules (proteins, enzymes) to regulate them.
Oversimplifying the problem, we can generally group these enzymes in three big
groups “writers”, “erasers”, and “readers”. Writers are enzymes that have evolved to
modify specific amino-acids of the histones, or nucleotide bases of the DNA molecule.
“Erasers” are the enzymes involved in removing such modifications. Finally, “readers”
are proteins that bind specific chromatin modifications, providing the ability to the
cell to sense the chromatin state of a given locus.

Multiple possible modifications can occur in nucleosomes; we will focus on two of
the most common ones: histone methylation, and histone acetilation. Methylation
and acetilation of chromatin components can serve a variety of functions, with both
positive and negative effects on transcription, combining to ensure the desired gene
expression pattern for any particular cell. For example, methylation of promoters
with H3K9me3 on the histone H3K9 occurs at inactive genes [37], while H4K20me3
(on histone H4K20) has been linked to constitutive heterochromatin, e.g. actively
transcribing genome [38]. Unlike other modifications, methylation does not change the
overall charge, although it does alter the hydrophobic character and size of the modified
residue. On the other hand, acetilation of histones results in the neutralization of its
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positive charge, and leads to a decrease in association with the negatively charged
DNA backbone. This reduces chromatin compaction, rendering the modified locus
more accessible to transcription factors and thereby increasing gene expression [39].

Dynamics of Post-Translational Modifications

An interesting biophysical mechanism proposed in the last years, deals with the
spreading of epigenomic modifications of the nucleosomes [40]. Here, the epigenetic
modifications are not a static feature of the nucleosome, but rather they are dynamical,
and self-propagating. For example, in yeast, the spreading of silencing marks is
observed via the formation of Sir-complexes [41]. The idea is that a histone bearing
the mark H4K16ac (acetilation on histone H4) attract a protein Sir2p or Sir3p
(readers); when bound the Sir proteins attract enzymes (writers) that deacetylate the
neighbouring nucleosome, and thereby increasing the affinity for those nucleosome
to recruit additional Sir complexes. Notably, more example of similar mechanisms
have been observed on other readers relative to other nucleosome modifications: these
include SU(VAR) [42], and MLL [43]. Interestingly, this positive feedback loop is
self-reinforcing, and it is a candidate to explain how nucleosome modifications quickly
reassert upon mitosis in the daughter cells. For this reason, the postulate of the
existence of an “epigenomic spreading” based on a readers-writers positive-feedback
loop, is usually employed as a fundamental starting point of most biophysical models.

Finally, we introduce here a last key-component of the gene-expression mechanism,
and which seem to play a fundamental role in epigenetic spreading. Transcription
factors (TFs) are proteins possessing domains that can bind directly to to the DNA
molecule, more specifically to certain regions called “promoters” or “enhancers” of
a specific gene. TFs can be both “activators” and boost the expression of a gene
when bound to the promoter region, or can be “repressor” and silence it. Indeed,
they possess a domain that interacts directly with some transcription factors, and
consequently regulates the amount of messenger RNA (mRNA) produced by the gene.
Now, notice that the dynamics of epigenomic spreading just discussed, cannot be
completely random, but rather be guided from an external factor in order to achieve
the desired gene expression. The role of guide, in this context, seem to be assume from
transcription factors themselves. Indeed, recent studies show that the epigenomic
configuration can be somehow predicted from knowing the TFs density profile [44]
(see also chapter 2).

1.2 Modeling Chromatin as a Polymer

After the brief introduction to the biology of the epigenetic problem, we start by
discussing the possibility of studying epigenetics in terms of physical processes. One
approach offered by statistical physics is to consider an ensemble of configurations
of the chromatin found in different experiments [45]. Statistical properties of such
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an ensemble can tell us important information about the principles governing DNA
packaging. The general aim will be to develop a simple physical model which reproduce
an ensemble of configurations resembling the ones found in the experiments.

The possibility of studying the dynamics of the chromatin via simple polymer
models has been widely investigated [46]. Indeed, this approach has the great perk of
being simple enough to be studied via analytic, or numerical approaches, and, yet
powerful enough to correctly estimate the chromatin structure at large scales, without
regard of its fine structure [47].

As we discussed in the precious section, chromatin can be visualized as a succession
of nucleosomes complex. So the first great temptation one can have is to disregard
the peculiarities of each single nucleosome (DNA bases, epigenetic marks attached to
the histone tails, etc.), and to consider the chromatin as a homopolymer.This is not
generally true. Indeed, as we already noted, in the nucleus of multicellular organisms we
observe the coexistence of regions with higher chromatin density and regions with lower
chromatin density, which means that at least two “types” of chromatin fiber must be
considered at the same time (euchromatin and heterochromatin). Nonetheless, in some
unicellular organisms, e.g. yeast, chromatin is observed to (almost) homogeneously
occupy all the space in the nucleus and its dynamics can be explained with a simple
homopolymer model.

Regardless of the choice of model, some physical parameters must be extracted
from direct experiments. At physiological salt concentrations, the chromatin structure
has a diameter of ∼ 10 nm, with a linear density of around 0.5− 0.6 nucleosomes per
nm of chromatin fiber, corresponding to approximately 110 bp (base pairs) per nm

[48].
Unfortunately, the stiffness of the polymer or its persistence length Lp is hardly

accessible by experiments. Depending on the experimental procedure different results
have been measured, ranging from Lp = 30 nm to Lp = 200 nm [49][50]. As modeliza-
tion goes by, however, one must consider the steric interactions between nucleosomes
and possible occupancy of linkers by other DNA-binding proteins. This fact leads the
fiber to be less flexible, and suggests that Lp consists of about five or six nucleosomes
[51]. This also mean that each “bead” of our polymer will not be a single nucleosome,
but it will be big enough to represent a few neighboring nucleosomes.

1.2.1 Chromatin as a Homopolymer

In the simple case of yeast, chromosomes are shorter than in multicellular organisms,
and attached to the centrosome. Moreover, the whole genome is actively transcribing
most of the time, with the exceptions of the regions that govern the cell sexual
behavior, activated only during mitosis, and of the chromosome extremities, called
telomeres. As the chromosomes are almost completely composed of euchromatin, they
can be found in swollen coil configurations, and occupy most of the cell nucleus.

Fluorescent microscopy techniques have been used to study the dynamical be-
haviour of chromosomal loci, with a special interest to their mean square displacement.
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Analysis have proved that the loci show anomalous diffusion [52] compatible with a
Rouse Model [53], where the polymer dynamics is almost completely dominated by
elastic interactions between first-neighbours beads [46].

Thanks to this study, we can conclude that the highly transcribed DNA in the
nucleolus, yeast chromosomes behave as a polymer brush, and are essentially organized
by simple physical principles [54].

1.2.2 Block-Copolymer model for Chromatin

Most of the model that consider chromatin as an homopolymer, cannot take in account
the great variety of chromatin organization observed in more complex organisms.
Namely, they fail to describe the coexistence of euchromatin and heterochromatin,
each characterised by a different spatial density. In order to correctly depict the
chromatin picture, one must delve in biology and introduce epigenomic in the model.

In this section, we introduce a new model proposed by [13] where the chromatin
folding is driven by effective epigenomic dependent interactions between chromatin
loci. Namely, rather than considering chromatin as a homopolymer, here chromatin is
a heteropolymer where each polymer bead type correspond to a different epigenetic
mark. Moreover, given that usually that epigenetic marks organize in domains of
various sizes, we can simplify the model and restrict the analysis to block copolymers,
that is heteropolymers composed by successive blocks of different monomers.

We model the chromatin fiber as an interacting self-avoiding bead and spring
chain, where each bead represents a certain portion of the genome (usually composed
of more nucleosomes). Beads are characterised by an epigenetic mark that here is
represented by their color (see fig. 1.4), and do interact with each other. In addition
to the standard excluded volume interaction modeled via Lennard-Jones potentials,
we consider a short-range attractive interaction Emn between the monomer m and n.
Generally, the interaction depends on all the possible combinations of states the two
monomers can have; here, however, we consider only two type of interactions:

1) non-specific interactions Uns which are effective interactions deriving from the
compaction effects due to confinement into the nucleus;

2) specific interactions Us between monomers having the same epigenetic mark.

Hence Emn = Uns + δmnUs, where δmn = 1 if the monomers m and n have the same
epigenetic state, δmn = 0 otherwise.

This modelization is motivated by many experimental evidence suggesting effective
interactions between loci of identical chromatin state. Indeed, it has been shown
that Polycomb group or HP1 proteins may create physical bridges between distant
heterochromatin regions. Note, however, that for simplicity we are assuming that all
these kind of processes give rise to the same interaction strength Us.

The model has been studied both using numerical simulations and analytical tools
thanks to Gaussian approximations in the Fokker-Planck equation [55], varying the
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Figure 1.4: (a) Block copolymer model: the chromatin is modeled as a self- avoiding
bead-spring chain where each monomer represents a portion of DNA and different colors
represent different epigenetic states. The model integrates non-specific and specific short-
range interactions to account respectively for the effective compaction of the chain and
for epigenomically related affinities between monomers. (b) Phase diagram of the model,
with snapshots of polymers in a configuration characteristic of the corresponding region
(see text for details). Adapted from [13].

values of Us and Uns [13, 56]. For simplicity a block copolymer with an alternation of
active (A) and inactive (B) epigenetic domains of the same size is considered. The
resulting phase diagram (see fig. 1.4) prove the existence of four different equilibrium
phases. For weak compaction Uns and specificity Us, the system is in a coil phase
with swollen chain conformation. If we increase Uns, but keep the specifity low, the
coil will collapse in a globule with no evident presence of epigenetic domains. On
the other hand, if we keep both strong Uns and Us the system will present “micro
phase separation” (MPS) and organize in a globule where all monomers of the same
epigenetic state are densely packed into two distinct 3-dimensional domains. Finally
between the coil region, and the MPS region, a multistability region lies at high Us
and low Uns; here multiple possible configurations are stable and are generally half
way between the coil and the MPS configurations.

In the multistability region found in the phase diagram lies the main strength of
the model. Here, indeed, one observes that epigenomic domains fold into topologi-
cally associated domains and interact transiently with each other. The specifity of
interactions depends greatly on the properties of the domain itself; for example, small
domains like most of the epigenomically active domains, show fast and short-lived
interaction, while bigger domains may form long-lived metastable interactions. Direct
comparison with experimental Hi-C maps of Drosophila suggest that biological sit-
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uations are consistent with multistability. This implies that in the cell, chromatin
organization is being dynamically and stochastically remodeled while conserving local
key features of its topology.

1.3 Epigenomic-Spreading Models

In the previous section, we discussed some physical models which given an epigenetic
landscape as an input, they return, as an output, the 3-dimensional configuration of
the chromatin. These model clearly describe only half of the picture, as they treat
epigenetic markings as stable. This assumption is generally false (see section 1.1.3)
and it can be regarded as a valid approximation only when chromatin is, indeed,
stationary.

As already discussed, gene expression, regulated by epigenetic modifications to
the chromatin, undergoes dramatic changes during the cell lifetime, especially during
its development. In fact, gene expression is stably propagated during the cell division
(mitosis) and, sometimes, even during meiosis. We conclude that, in eukaryotes,
cell replication involves both the synthesis of DNA, and chromatin assembly. At
the same time when the DNA molecule is replicated, also the nucleosomes of the
mother-cell chromatin will be distributed among the two daughter cells. Finally, as
the daughter cells only will present half of the epigenetic markings of the mother,
they will need to spread in order to reproduce faithfully the original nucleosome
organization Unfortunately, the detailed mechanisms which regulate these kind of
processes is not still clear [57].

In the next section we will discuss, some mathematical, and physical, models
that try to understand and reproduce the dynamics of epigenetic spreading. Such
models must present three important features in order to really illustrate the biological
picture:

1) The model must present multistability. Indeed,while generally only an epige-
nomic configuration is observed during in a single cell life, looking at different
cells of different tissues, they will obviously have different epigenomic organi-
zations. In the simplest models, patterns of epigenetic marks allow to switch
between several states that have a well-defined functional characterization.

2) The stationary states of the model must be stable against perturbations. Al-
though some drastic events (like mitosis) may change gene expression, it generally
remains the same for all the cell life and resists against thermal, biochemical
and mechanical perturbations.

3) The model must reproduce in some way the heritability of the epigenome through
different cell generations.
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1.3.1 Zero-Dimensional Models

As a first step, we introduce the so-called zero-dimensional models where the nucleo-
some are imagined to be localized in a single point and therefore there is no concept
of nucleosome distance or 3-d organization. In these models the identity of each
nucleosome is lost, and the only variables that are relevant are the relative abundances
nk = Nk/N of the epigenetic state k, where Nk is the number of nucleosomes in the
statek, and N is the total number of nucleosomes. Note, however, that in treating
these variables we must not forget that the total number of nucleosomes is conserved
and therefore we have the constraint:∑

k

nk = 1 . (1.1)

In this context, the spreading of epigenetic information is described by the time
evolution of the densities nk, while the mitosis can be modeled by an instantaneous
process in which all the epigenetic species are diluted (e.g. halved) between the two
daughter cells. Time evolution is described by a set of differential equations similar to
the ones employed to describe chemical reactions; the time evolution of the abundance
of the epigenomic specie j is therefore:

d

dt
nj =

∑
j 6=k

K(jk)nk −
∑
j 6=k

K(kj)nj , (1.2)

where K(jk) is is the rate of transition of nucleosomes from the state k to the state j.
The kinetic parameters K are not generally constants, but rather depend on some
other dynamical parameter, or on the abundances themselves. Note that

∑
j

d
dtnj = 0

and therefore equations (1.2) respect the constraint given by (1.1).
The properties of this class of models depend greatly on the number of epigenetic

states, and on the parameterization of the chemical rates K.

Two-State Model.

We examine here the simplest possible epigenetic model that obeys equations in
the form (1.2) [58]. In this model only two states are possible; the nucleosome can
either be in a modified state M or in an “anti-modified” one A which means that the
nucleosome has no epigenetic marking, or rather has a different one than M .

The epigenetic dynamics is vastly simplified, and it is inspired by the well known
Voter model. Namely, we assume here that each nucleosome has a certain probability
1− α of spontaneously changing their epigenetic state (from M to U or vice versa),
and that with a probability α two nucleosomes with the same mark will recruit a
third and change its state to be the same as theirs. All this can be easily modeled
employing ad hoc values for the kinetic constants:

K(MA) = αn2
M + (1− α)

K(AM) = αn2
A + (1− α)

. (1.3)
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Figure 1.5: Steady states of differential equation (1.4); stable states are indicated via a
red solid line, while unstable states are represented via a dotted black line. Note that at
F = 4 the system has a bifurcation typical of bistable system, and indicating the presence
of a second-order phase transition.

Now employing the constraint (1.1)(nM +nA = 1) and substituting in (1.2), we obtain
the differential equation:

d

dt
nM = α (2nM − 1)

[
n2
M − nM +

1

F

]
, (1.4)

where F = α
1−α is the ratio of recruitment.

The analysis of the stationary point is easily done by setting equation (1.4) to zero
and solving for nm (see also fig. 1.5). Results show that only one stationary point
nM = 1/2 exist if F ≤ 4, while three are present if F > 4 which are nM = 1/2 and

nM = 1
2 ± 1

2

√
F−4
F . Stability of the stationary point is deducted studying the sign of

the derivative of the second term in (1.4). This study reveals that:

i. if F ≤ 4, then the only stable stationary point is nM = 1
2 , which indicates that

the system do not show any form of coherence as half chromatin will be in a
modified state M , and the other half in the anti-modified state A.

ii. if F > 4, instead, the incoherent state nM = 1
2 is unstable, while the system

present bistability in the stationary points nM = 1
2 ± 1

2

√
F−4
F . Note that in

these states, we can observe an epigenetic order as one of the two states (M or
A) will prevail on the other.

We conclude that, while this model is extremely simple, it reproduces the mul-
tistability required by a proper modelization of the epigenetic processes. Could we
have developed a simpler model? The answer is no, because if we choose a simpler
form of the kinetic parameters (1.3) suppressing the cooperativity quadratic term, we
will have a class of models that do not show our desired bistability.
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Three-State Models.

We now engage a slightly more complex class of models, where histones can be found
in three states, namely: Modified histones M , anti-modified histones A, unmarked
histones U [16].

In the previous two-state model, a single histone could “transform” directly its
state into the other. However, if we have a modified histone, in order to become
anti-modified, as a first step it has to lose all of its marks and become unmarked.
With this assumption in mind, we will assume that the reaction A�M is impossible,
and therefore K(AM) = K(MA) = 0. Moreover, we assume that the recruitment of
modifying enzymes by surrounding modified or anti-modified nucleosomes occurs at a
rate εXnX , and that random transitions between states occur at a rate γX .

Here, we briefly discuss the version of this model proposed by [59], where we
assume that:

K(MU) = K(UA) = εMnM + γ

K(AU) = K(UM) = εAnA + γ
. (1.5)

Recalling that nA + nM + nU = 1 from (1.1), we will have the following differential
equations:

d

dt
nA = (γ + εAnA) (1− nA − nM )− (γ + εMnM )nA

d

dt
nM = (γ + εMnM ) (1− nA − nM )− (γ + εAnA)nM

. (1.6)

As a first step we examine the case of symmetric dynamics, where no epigenetic mark
is favoured and εA = εM ≡ ε. In this symmetric case the model present a clear analogy
with a mean-field three-states Ising model, where each nucleosome mark correspond
to a spin state S; namely the M and A marks correspond with the “active spins”
S = ±1, while the unmarked histone can be identified with a null spin S = 0. In this
context ε will correspond to the spin coupling constant, while γ will be associated to
the thermal noise of the system. We can also introduce in our system an epigenetic
magnetisation defined as m = nM − nA.

If the analogy with the Ising model holds true, we expect to find a continuous
phase transition in the epigenetic magnetisation m. This is indeed what we observe;
namely, using the same method as in the previous section we observe the presence of
three fixed points of the dynamics:

(i) m = 0 is always a fixed point, but it is stable only if ε ≤ 3γ.

(ii) m = ±(γ/ε)
√

(ε/γ + 1)(ε/γ − 3) are stable fixed points of the dynamics if
ε > 3γ.

We find that this system undergoes a second order phase transition from an epigenet-
ically disordered state with null magnetisation, to an ordered one characterised by
bistability.
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Figure 1.6: (A-B) Magnetisation as a function of εA keeping εM fixed. In (A) the
system pass continuously from the active to the inactive region, while in (B), when εM is
big enough, we observe the presence of a cusp catastrophe where the system bistable and
alternates between the active, and inactive region. (C) Phase Diagram of the model as
a function of εA and εM . Adapted from [13].

Even more interesting results can be found in the case where εA 6= εM (see
fig. 1.6). For every pair of parameters (εA/γ, εM/γ), the dynamical system is either
monostable or bistable (with an unstable fixed point). . Depending on the relative
asymmetry between εA and εM , the single (stable) fixed point of the monostable
region corresponds to a modified or anti-modified epigenetic state. Bistability, with
the coexistence of an active and an inactive coherent activity, is observed only for
strong recruitment and small asymmetry. Interestingly, in the bistability region the
system becomes ultrasensitive and weak asymmetries lead to important changes in
the epigenetic state; this is the so-called cusp catastrophe [60] and it is typical of
dynamical systems with asymmetry.

To understand the implications of this model, we note that differentiated cells
exhibit a robust phenotype within the population and in time. The analysis of the
dynamical models suggest that this is the case also in this model, as long the dynamical
variables are well off in the monostability region and therefore stable against small
perturbations in the recruitment rates εA, εM . At the same time, however, when
modifications of the environment are important, cells and organisms can adapt by
changing drastically their gene expression (e.g plant vernalization [61]), which is
exactly the behaviour predicted by the system via the cusp catastrophe when strong
asymmetries arise.

1.3.2 1-Dimensional Models of Epigenetic Spreading

The study of simple zero-dimensional (mean-field) models is often very useful as they
can highlight the basic features of a complex dynamical system. However, if we want
to understand the details of the spatial configurations showed by the dynamics, this
kind of models are clearly not sufficient. In the case of epigenetics, active/silenced
nucleosomes are observed to organize in “patches” with coherent epigenetic states, and
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therefore a precise description of this spatial dynamics it is necessary. In this context,
we introduce a model proposed in [17] which extend the ideas of the zero-dimensional
models into a 1-dimensional model which allows large chromatin regions to exist stably
and heritable in distinct expression states.

We recall that one of the most important feature we require from our epigenomic
model is multistability; that is the ability for a dynamical system to have multiple
stable stationary states under the same environmental conditions. One of the main
lessons that we take from the study of zero-dimensional models is that in order
to achieve the bistability typical of an epigenetic system, we need special, ad hoc,
mechanisms. First requirement we make in order to have bistability is the existence
of some positive feedback loop, that is a process that interacts in a cyclic way and
that intensify the effects of a small disturbances which result in the increase in the
magnitude of the perturbation. A positive feedback alone, however, is not sufficient
to ensure bistability. A bistable system must also possess some type of non-linearity
within the circuit, such that when a perturbation occur the intensity increases greatly
and one epigenetic mark is vastly advantaged over the other (“ultrasensitivity”) [62].

In practice, ultrasensitivity can be induced in the model, introducing a cooperation
process between nucleosomes with the same mark. Cooperation can be either direct,
e.g. two nucleosomes cooperating to recruit a third one [58], or indirect where each
modified nucleosome catalyzes one of two separate modification reactions to fully
convert a third nucleosome [16] (see section 1.3.1). More specifically, the cooperation
between the nucleosome must act non-locally, inducing modifications of the marks
of nucleosomes located far away on the DNA backbone. Thanks to this long-range
interaction, any nucleosome is able to “sense” the majority nucleosome type within
the patch, while on the other hand this would not be possible employing only short
range interactions.

The Model

We assume that nucleosomes can have only two epigenetic states: active (A) or
silenced (S). The system is treated as a string of N nucleosomes, and its evolution
over time occurs through stochastic iteration of individual modification reactions. At
each time-step, each reaction will be made with a chosen fixed probability. These
probabilities allow adjustment of the strength of each reaction. In the model three
kind of reactions are possible:

1) Recruitment reactions which ensure the existence of a positive feedback loop.
The recruitment process depend strongly on the other nucleosomes present in
the system. In the model cooperation is added assuming that two separate
nucleosomes of the same state are required to recruit the enzymes needed to
convert another nucleosome. Note, however, while some experiments suggest
the existence of such a mechanism for the conversion A→S [63], no evidence has
been found in the opposite case S→A.
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Figure 1.7: Comparison of 1-dimensional epigenetic spreading when only local interactions
(LL) are present, or only global interactions are present (GG). We employ N = 30;
λ1 = λ2 = 0.37; α1 = α2 = 0.04; tR = 103. (a-b) Kymographs showing the space–time
plots of an epigenomic region; blue represent silenced states, red are active states. (c)
Histogram of the number silenced nucleosomes during the dynamics. Note that the GG
dynamics show strong bistability between a state where all nucleosomes are active, and a
state where all nucleosomes are silenced, while in the LL dynamics several intermediate
cases are observed.

2) Noise which is reproduced in the model via random reaction that transform an
active state in a silenced one, or vice versa

3) DNA replication is simulated by giving to each nucleosome a probability 0.5 of
transforming into the active state A. This is to reproduce that each daughter
strand will receive only half of the parent nucleosome marks.

At each time-step of the dynamics the recruitment process will be attempted with
probability λ1 for the reaction S → A, and probability λ2 for the reaction A → S.
In the same way, noise reactions happen with probabilities α1 for S → A and α2 for
S → A. DNA replication happen every tR timesteps.

The last detail that remains to be discussed is how recruitment is modeled. Among
the various possible modelization of the process, we consider only local recruitment
(LL) and global recruitment (GG), for more details see [17]. In local recruitment, two
adjacent nucleosomes of the same mark will recruit a third adjacent nucleosome. In
global recruitment, instead, two nucleosome k1 and k2 are selected such that their
reciprocal distance |k1 − k2| belong to a random exponential distribution with rate
γ; if they have the same mark they will recruit a third nucleosome chosen again via
the exponential distribution. In fig. 1.7 we compare the dynamics of two nucleosome
systems, one with only local interactions, the other only with global interactions.
As already discussed, no bistability can be observed if only local interactions are
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employed, but if we introduce even a weak global interactions we observe that the
system show avoidance of intermediate states, typical of bistable systems.

1.4 A Chromatin Folding Model for Epigenomic
Spreading

In this section we will introduce a model first presented in [1], and that will be the
foundation for every other model we will discuss from now on this thesis. The need for
this model arises from what we discussed in the previous sections. Models presented
in section 1.2, for example, focus in understanding the structure and organization of
chromatin in the nucleus, but they do so by starting from a fixed, or an ensemble of
epigenetic landscape, but they do not attempt to explain the underlying mechanisms
regulating the dynamic of epigenomic itself. Models in section 1.3.1, instead, do
the exact opposite by disregarding completely the concept of spatial organization
and develop mean-field models to explain the spreading of epigenetic marks in the
chromatin [16, 58]. Note, also, that the 1-dimensional model proposed by [17] tries to
explain the existence of spatial structures in the epigenetic landscape. However, this
model lacks a complete discussion of the 3-dimensional chromatin folding, while at
the same time it introduces a long-range interaction between nucleosomes that cannot
be sufficiently justified at this level.

All the models examined until now are therefore “lacking” as they do not challenge
the well-established intimate relationship between chromatin architecture and gene
expression (see section 1.1). For example, regions of the genome with repressive epige-
netic modifications are usually correlated with more compact chromatin configurations
(heterochromatin) [9, 17], or, on the other hand, regions actively transcribing usually
present in more loose configurations (euchromatin) [64].

In light of this, we discuss here a polymer model with epigenetic switches, inspired
by magnetic polymer models (see for example [19]), and that directly couples the 3D
dynamics of chromatin folding to the 1D dynamics of epigenetics spreading.

In order to develop this model, we look at the details of epigenetic spreading
in the cell. As already discussed, the main players in this process are the so-called
“readers” and “writers” (see also section 1.1). “Writers” are the enzymes that are
responsible for the establishment and propagation of a single specific epigenetic mark.
“Readers”, instead, are multivalent proteins that identify and bind to the epigenetic
modifications made by the writers, bridging chromatin segments bearing the same
histone marks. There is evidence that readers of a given mark recruit writers of that
same mark [65, 66]. For example, regions actively transcribed by RNA-polymerase
are found to be rich in active epigenetic marks; in this case the RNA-polymerase act
as a reader protein that seem to recruit writers enzyme of the classes Set1 and Set2
[67]. Note that the writer-reader mechanism, as described, creates a positive-feedback
loop (see fig. 1.8) which can lead, at least in principle, to a bistable dynamic system
that can sustain epigenetic memory [17, 68] during successive cell generations (see
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Figure 1.8: Representation of the epigenetic-spreading process induced by the readers-
writers positive feedback loop. In this model, the chromatin polymer present only two
possible histone modification identified by their color. (a)“Readers”, here represented
by shaded spheres, bind to specific histone modifications and bridge between similarly
marked segments (distinguished here via their “color”). Histone-modifying enzymes, or
writers (solid squares), are assumed here to be chaperoned by the bridge proteins. The
positive-feedback mechanism and competition between different epigenetic marks results
in a regulated spreading of the modifications (b), which, in turn, drives the overall folding
of the polymer (c). Adapted from [1].

section 1.3.2).
While the model could be in principle studied with any number of epigenetic states,

we initially focus to the simplest case of only two epigenetic states that symmetrically
compete with each other (e.g., corresponding to “active” or “inactive” chromatin). The
model predicts a phase transition between a swollen, epigenetically disordered phase,
and a collapsed epigenetically coherent one with bistability. Interestingly, even in this
simple situation, the model is different from the previous ones (see section 1.3) because
the phase transition seem to be of the first order, rather than a continuous one. Indeed,
the first-order nature of the phase transition arises thanks to the strong coupling
between a 3-dimensional dynamics (chromatin folding) and a 1-dimensional dynamics
(epigenetic spreading). In this fact lies one of the main strengths of the model: first
order phase transitions are characterized by hysteresis cycles when quenching, and
therefore the model permit a bistable epigenetic switch that retains memory.

1.4.1 The Model

In this section we will discuss the details of the model proposed in [1]. As already
discussed, the model studies at the same the 3-dimensional chromatin architecture,
and the dynamic of the epigenetic landscape. For this reason, we will generally
consider two concurring dynamics:

(i) Langevin dynamics, which reproduces the spatial dynamics of the chromatin
fiber;
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(ii) Recolouring dynamics, which involve epigenetic marks and their spreading along
the chromatin backbone.

Chromatin fiber is modelled by using a semi-flexible bead and spring chain of
N beads of size σ. As already discussed in section 1.2, beads do not represent a
single nucleosome, but rather a few neighboring ones; namely, we consider σ ≈ 30 nm,
corresponding to approximately 15 nucleosomes [69]. Generalizing the work of [13],
we consider the chromatin to be a copolymer, but not necessarily a block-copolymer.
For simplicity, we assume that beads can be found in two possible epigenetic states:
active (A) or silenced (S), or they can present no clear epigenetic state and are left
unmarked (U). The beads interact with each other via a classical hard-core steric
interact, or, if they have the same epigenetic mark, they can experience a short-range
attractive interaction in order to mimic the “reader-writer” architecture we discussed
in the precious section.

Finally, the epigenetic landscape itself can evolve and greatly influence the spatial
dynamics of the polymer. Epigenetic states of the beads, usually represented by
colours, evolve using a Potts-like dynamics that induces cooperative recruitment, and
therefore, possibly, a bistable system.

The Langevin Dynamics

Langevin dynamics deals with the time evolution of the spatial configurations of the
chromatin fiber. The chain is composed of N beads of size σ and epigenetic marks
{qi}i=1...N . Its time evolution is described by a set of 3N Langevin equations (hence
the name “Langevin” dynamics) derived from an Hamiltonian HL at a temperature T ,
in the form:

mr̈i = −γṙi − ∂riHL ({ r } , { q }) +
√

2kBTξi(t) , (1.7)

where m is the beads mass; γ is a friction coefficient; ξi is a classic Gaussian white
noise such that 〈ξi(t)〉 = 0, and 〈ξi(t)ξj(t′)〉 = δijδ(t− t′) for all values of i, j and for
every time t, t′.

The Hamiltonian of the chromatin fiber HL is modeled as a classic Hamiltonian of
a bead-spring chain, to which we add a flexibility term, and a bead-bead interaction
term:

HL = K + UKP ({ r }) + UHARM ({ r }) + Utot
LJ ({ r } , { q }) , (1.8)

where K is the kinetic energy of the beads of our chain, UKP is a Kratky-Porod
potential modeling the bending rigidity of the chain, UHARM is an harmonic potential
ensuring the connectivity of the chain and, finally, Utot

LJ is a repulsive/attractive
interaction mediated by the epigenetic marks.
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Bead-Bead Interaction. The interaction potential Utot
LJ can be decomposed as a

sum of two-body potentials:

βUtot
LJ ({ r } , { q }) =

1

2
β

N∑
i=1

N∑
j=1

ULJ(‖ri − rj‖ ; qi, qj) ,

where β = 1
kBT

and ULJ is a two-particles potential. In this model we consider ULJ to
be a truncated and shifted Lennard-Jones potential (see fig. 1.9) which reads:

βULJ(x; qi, qj) =
4

N
ε(qi, qj)

kBT

[(σ
x

)12
−
(σ
x

)6
− U0(xc)

]
H [x− xc(qi, qj)] , (1.9)

where H is the Heaviside step function, ε(q1, q2) is a free parameter that regu-
late the interaction strength, and U0 is an auxiliary function which ensures that
ULJ(xc; q1, q2) ≡ 0. The cutoff value xc is what actually models the interaction
between the various epigenetic marks; we set:

(a) xc(q1, q2) = 21/6σ, if q1 6= q2 or q1 = q2 = U , modeling only steric interaction
between beads with different epigenetic marks, or with an unmarked bead;

(b) xc(q1 = 1, q2 = 1) = xc(q1 = 2, q2 = 2) = 1.8σ, modeling the effective attractive
interaction between beads with the same epigenetic marks mediated by the
“readers” enzymes.

The interaction strength ε(q1, q2) is:

ε(q1, q2)

kBT
=

{
αL ≡

εL
kBT

if q1 = q2 = {1, 2}
1 otherwise

, (1.10)

where αL is a convenient, dimensionless, unit for the inverse of the temperature. Note
the presence of the numerical constant N in (1.9). This constants is introduced for
convenience as it ensures that the minimum of the attractive interaction is −εL; it is
easy to find that the numerical value of the constant is N = 4

[
1
4 + 1.8−12 − 1.8−6

]
≈

0.8858.
Finally, we want to point out a fundamental feature of this interaction. While the

interaction itself is a short-range one, thanks to the mobility of the chain (see fig. 1.9)
we can in principle have non-local, long ranged interactions as two beads far away on
the backbone, can meet thanks to the polymer folding. As already pointed out many
times, the presence of local and non-local interactions is a key-role to the birth of a
bistable system, as we will discuss more in details in later sections.

Stiffness Term. In order to model the stiffness of a polymer, generally a three-
body potential is introduced in the Hamiltonian. Several potentials are employed
in literature, our choice lies in the so-called The Kratky-Porod potential [70] which
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Figure 1.9: Bead-bead interaction is modeled via Lennard-Jones potential. (a) The
truncated and shifted Lennard-Jones potential (1.9) with cutoff xc = 21/6σ model the
steric interactions between beads with different epigenetic mark; the cutoff xc = 1.8σ

instead present an attractive component which mimic the reader-writer dynamics for beads
with the same mark. (b) While the interaction is short-ranged, the chromatin folding
permits the interaction between beads far away on the chromatin backbone.

favour polymers to follow always the same direction in space. Kratky-Porod potential
UKP can be written in the form:

βUKP =
`k
2σ

N−2∑
i=1

(1− cos(θi)) , (1.11)

where θi is the angle between the vector ri+1 − ri and the vector ri+2 − ri+1, while
parameter 1

2`K is usually identified with the persistence length of the chain `P .
Experiments that try to measure the persistence length of the chromatin fiber find
a wide range of possible values `P ≈ 40 − 200 nm [47, 71], as it seems to depend
greatly on the transcribing activity (heterochromatin or euchromatin), and even the
concentration of the various architectural proteins. For simplicity, we choose to adopt
the value `P = 3σ ≈ 90 nm.

Connectivity Term. The connectivity a of a polymer chain is usually ensured
by a connectivity term in the Hamiltonian. Here, we choose to employ the classic
Harmonic potential UHARM which reads:

βUHARM =
1

2
βkh

N−1∑
i=1

(‖ri − ri+1‖ − r0)2 , (1.12)

where r0 = 21/6σ is the average distance between the beads, and βkh represent the
connectivity strength and is set to βkh = 200αL.
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Mapping to Physical Units. Finally, we inquire the typical time-scales of the
Langevin Dynamics. One can define the Brownian time τBr as the average time
required for a bead to diffuse its own size. Disregarding all the interactions, one can
estimate the Brownian time as:

τBr ≈
σ2

D
,

where D is the diffusion coefficient that can be found using the Einstein relations
D = kBT/γ, where γ is the friction coefficient present in the Langevin equations (1.7).
If we approximate the bead to a sphere, the friction coefficient γ can be expressed
with the Stokes’ law γ = 6πησ, where η is the solution viscosity. Thanks to [69] we
infer that viscosity is in the range η ∼ 100− 200 cP. Employing this numerical values,
we can find the typical times at the standard temperature T = 300 K:

τBr =
6πησ3

kBTL
≈ 6− 12 ms .

From now on, we will take the value τBr = 10 ms as a reference.

Recolouring Dynamics

After the discussion about the spatial dynamics of the chromatin fiber, let us discuss
how the epigenetic landscape evolve. Recolouring dynamics deals with the creation
and propagation of epigenetic marks. At a fixed spatial configuration {ri}i=1...N , we
define an epigenetic configurational energy HR as follows:

HR =
1

2

N∑
i=1

N∑
j=1

Uepi (dij , qi, qj) , (1.13)

where Uepi express the strength of the “epigenetic interaction” between two beads with
reciprocal distance dij = ‖ri − rj‖ and marks qi, qj . To understand what form the
epigenetic interaction must assume, we recall that our main role is to reproduce the
positive feedback loop observed in chromatin thanks to the reader-writer dynamics.
The feedback loop is observed only nearby nucleosomes with the same epigenetic mark;
therefore, we conclude that Uepi = 0 if the qi 6= qj , or at least one of the two beads is
still unmarked. On the other hand, as we want a positive feedback loop we must favour
the interaction between beads with the same mark and that are not “too far away”,
hence Uepi < 0 if dij is smaller than a certain threshold dR, and qi = qj = {A,S}. For
simplicity, we exploit an epigenetic interaction similar to the attractive Lennard-Jones
potential in (1.9):

βUepi(dij ; qi, qj) =
4

N αR

[(
σ

dij

)12

−
(
σ

dij

)6

− U0(xc)

]
(1.14)

with dij < dR ≡ 1.8σ, and qi = qj = {A,S}. The variable αR controls the interaction
strength, and in general it is different (αR 6= αL) from the interaction strength
introduced in (1.9).
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It is important to understand why, in principle, Uepi and ULJ are two different
functions. They express the interaction strength relative to two different processes.
ULJ control the dynamical constraints on the physical movement of the bead, due
to the formation of reader-writer complexes where readers act like bridging proteins.
The epigenetic interaction Uepi, instead, measure how likely it is for a certain bead to
lose/transform its epigenetic mark due to the recruitment of other beads and/or the
action of an eraser enzyme (see section 1.1).

Another peculiar feature is the similarity between the epigenetic energy HR (1.13)
and the Hamiltonian of a Potts-like system with short range interactions between first
neighbours. This analogy is quite strong and will be employed later (see chapter 3)
to develop a mean-field version of this model. However, it is important to note
that in a classic 1-dimensional spin system with short range interactions, due to the
Mermin-Wagner theorem [72], no phase transition is possible. However, here, thanks
to the chromatin folding effective long-range interactions between beads are indeed
possible, and, in principle, phase transition could arise.

Finally, the recolouring dynamics is implemented using a Metropolis-Hastings
algorithm with Hamiltonian HR at temperature T . Note that this implementation, in
general, permits direct recruitment A→ S where active beads can become silenced, or
vice versa, without first becoming unmarked. While this is unusual, it can be explained
via some sort of cooperation between erasers and writers enzymes, making the effective
time where the nucleosome is left unmarked small and negligible. Furthermore, while
the Langevin dynamics can be implemented at continuous time, recolouring dynamics
is inherently discrete. This means, that we must introduce a typical recolouring time
τR that regulate the dynamics speed. We choose τR = 103τB, as the recolouring
dynamics is much slower than the Langevin one, as it involves several chemical
reactions needed to modify the epigenetic marks. In practice, Basically, the dynamics
work as follow: (i) the chromatin fiber is created with some initial configuration; (ii)
we implement the Langevin dynamics solving equations (1.7) for a time τR; (iii) we
implement the recolouring dynamics using the Metropolis Hastings algorithm; (iv) we
repeat the process from step (ii).

Detailed Balance.

As just discussed, the epigenetic potential Uepi and ULJ , are in principle different
as they model two different processes and therefore αL 6= αR. Now, note that
the Langevin dynamics is implemented via Langevin equations derived from the
Hamiltonian (1.8), and is therefore an equilibrium process. At the same time, we
implement the recolouring dynamics via a Metropolis-Hastings algorithm that, again,
reproduce equilibrium dynamics. Therefore, if Uepi ≡ ULJ or αR = αL, we have that
the complete process (Langevin+recolouring) minimizes the same action potential,
and, therefore, in this case we are clearly dealing with an equilibrium model. What
happens, instead, in the general case? Can the equilibrium still be recovered?

One of the main features of an equilibrium system is that the principle of the
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detailed balance holds, that is at equilibrium the average rate of every process is equal
to the average rate of its reverse process [73]. It is difficult to verify directly the detailed
balance, however we can employ an equivalent principle, called Kolmogorov’s criterion
[74], that claims that detailed balance is respected if and only if the probability for
every possible cycle to happen is equal to the probability for the reversed cycle. Given
this, we study the following cycle where two beads of the chromatin are manipulated
in various ways:

A. beads in contact,
same color

B. beads far away,
same color

C. beads far away,
different color

D. beads in contact,
different color

If the detailed balance holds, then the Kolmogorov’s criterion claims that the proba-
bility of the loop p(A→ B → C → D → A) is equal to the probability of the inverse
loop p(A→ D → C → B → A).

To compute the probability of the forward loop A→ B → C → D → A we use a
Metropolis-like algorithm:

1. The move A→ B is energetically disadvantageous, the move is therefore accepted
with probability p(A→ B) = exp[−αL].

2. In the move B → C there is neither loss nor gain of energy, therefore it is
accepted with probability p(B → C) = 1.

3. In the move C → D there is neither loss nor gain of energy, therefore it is
accepted with probability p(C → D) = 1.

4. The move D → A is energetically favorable, therefore it is accepted with
probability p(D → A) = 1.

We conclude that the probability of the forward loop is p(A→ B → C → D → A) =

exp[−αL].
The probability of the backward loop A→ D → C → B → A is computed in the

same way:

1. The move A → D is energetically disadvantageous, the move is therefore
accepted with probability p(A→ D) = exp[−αR].

2. In the move D → C there is neither loss nor gain of energy, therefore it is
accepted with probability p(D → C) = 1.

3. In the move C → B there is neither loss nor gain of energy, therefore it is
accepted with probability p(C → B) = 1.

4. The move B → A is energetically favorable, therefore it is accepted with
probability p(B → A) = 1.
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We conclude that the probability of the backward loop is p(A → D → C → B →
A) = exp[−αR].

The detailed balance is henceforth respected if and only if αL = αR. This means
only if the two interactions (Uepi and ULJ are identical, the dynamic will sample from
an equilibrium distribution. In all the other cases, instead such consideration will not
be possible as we will be in an out-of-equilibrium regime.

1.4.2 Simulation Details

The dynamics is studied by employing extensive numerical simulations. Langevin
dynamics is evolved thanks to the integration of equations (1.7) using a velocity-Verlet
scheme within the LAMMPS engine [18] in Brownian dynamics mode (NVT ensemble).
The polymer has been enclosed in a large cubic box with side L with periodic boundary
conditions at border; the size of the box L is chosen to be L = 103σ. Note that if we
suppose that each monomer occupy a spherical volume 4

3π
(
σ
2

)3, if we have N = 104

monomers, then the chain will occupy only the 0.5% of the total volume of the box.
In our numerical simulation the value of N is typically in the range N ≈ 100− 1000,
therefore the system will evolve in a dilute regime where interactions between different
chains can be neglected.

The initial configuration of the polymer is typically that of an ideal 3-dimensional
random walk of N steps in which each monomer assumes a random epigenetic mark
q = {A,S, U}. Such a configuration is not viable, as it is likely that monomer overlaps.
To solve this problem we do a preemptive “warm-up” run to equilibrate our chain.
Initially we do evolve the system dynamics for 105τBr timesteps in which the only
interaction is an increasingly stronger steric soft-core repulsion between every pair of
beads, while their colour is left unchanged. The soft-core potential Usoft reads:

Usoft(dij) = A

[
1 + cos

(
πdij
dC

)]
H [dC − dij ] , (1.15)

where dij is the reciprocal distance between two beads; A is the maximum interaction
strength; dC is the cutoff that we set d = 21/6σ; H is the Heaviside step function.

Following the equilibration run, we have removed overlaps between monomers,
and finally have a good ensemble of initial configurations for the simulation of the
actual model. The main run typically consists of 106τBr timesteps, in which N

recolouring moves are attempted every τR = 103τBr timesteps. Each recolouring
move is accepted or rejected employing a Metropolis-Hastings algorithm where the
acceptance probability is given by:

p(q → q′) = exp

[
−∆HR

kBT

]
, (1.16)

where ∆HR is the variation of epigenetic energy (1.13) after the recolouring.
Finally, note that typically the chain size is N = 100 to speed up the simulation

times, and for each set of interaction strength (αL, αR) we perform 100 independent
numerical simulations in order to have a good sampling.
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1.4.3 Equilibrium Dynamics

As a first step in the study of the model, we focus on the equilibrium regime where the
two interaction strengths αL and αR are identical. This is the simplest case we could
study as it permits direct comparison with well-studied models, like spin models, or
even coil-globule transition at θ-point typical of homopolymers.

In order to study the dynamics, we introduce two state-variables to monitor both
the chromatin folding, and the dynamics of the epigenetic landscape. The folding of
the polymer is studied via the radius of gyration Rg, which is a measure of the polymer
average extension [75]. The epigenetic state, is, instead, studied in analogy to a spin
system where the activated states have spin +1, silenced states −1, and unmarked
have spin 0. Thanks to this analogy, we define the “epigenetic magnetisation” m as
follows:

m =
1

N

N∑
i=1

[δqi,A − δqi,S ] , (1.17)

where m = 1 if the chromatin is completely active, m = −1 if it is completely silenced,
m = 0 if no global epigenetic order is present.

First thing to notice is that, while the model permits each bead to assume three
states (activated, silence, or unmarked), the unmarked state seem to be marginal in
the dynamics. Indeed, in the ordered phases of the model, we find that the unmarked
state rapidly disappears from the polymer at the advantage of the self-attractive ones,
thus the model is effectively a two-state model. One way to “adjust” this, is to force
the passage from the unmarked state during the recolouring, however [1] shows that
while the dynamics displays some interesting features, at the equilibrium there are no
substantial differences from our model.

We study the dynamics of a polymer composed of N = 1000 beads, by varying the
interaction strength α in the model. We observe the existence of two fundamentally
different equilibrium phases:

1. Swollen-Disordered (SD) phase (see fig. 1.10A) , observed at low values of
α < αc ≈ 0.95 (weak interaction, high temperatures), where the chain is
observed in an open state (high Rg), without any apparent epigenetic order
(|m| ≈ 0).

2. Compact-Ordered (CO) phase (see fig. 1.10B), observed at high values of α > αc
(strong interaction, low temperatures). The chain collapses fairly quickly into a
single globule (low Rg), and clusters of colors emerge. Clusters with different
epigenetic state compete, and the system ultimately evolves into a single compact,
epigenetically coherent, domain (|m| ≈ 1).

Note that because the interactions between the two states are equal, the selection of
which epigenetic mark dominates in the compact-ordered phase is via a Z2 symmetry
breaking, which suggests the existence of a phase transition between the swollen-
disordered and compact-ordered states.

32



CHAPTER 1. THE PHYSICS OF EPIGENETICS

Figure 1.10: Time evolution of a polymer composed of N = 1000 beads at the equilibrium
regime. On the bottom part of each figure, a kymograph illustrate the evolution of the
epigenetic landscape, while on the top some snapshots show the spatial configurations
in some moment of the dynamics. (A) Polymer in the swollen-disordered phase with
α = 0.5. No coherent epigenetic domains, and no ordered spatial structure, arise during
the dynamics. (B) Polymer in the compact-ordered phase with α = 2.1. The system start
from a swollen-disordered configuration, but quickly organizes in two compact globules of
different epigenetic mark. These two marks compete, but eventually the activated state
(red marks) prevail.
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Figure 1.11: Numerical evidences of the presence of a first order phase transition between
a SD phase, and a CO one. (A) The plots show the joint probability P (m,Rg) for
a chain of N = 100 beads, obtained from 200 independent numerical simulations. At
α = 0.95 the system show one maximum at high Rg and |m| ≈ 0 (SD); at α = 1.225 two
symmetric maximum are present at low Rg and m ≈ ±1 (CO); at α = 1.05 three maxima
are present, showing coexistence of the two phases. (B) Plot of the Binder cumulant
as a function of α obtained from the same simulations as in (A). When α < 1.025 the
Binder cumulant is B ≈ 0 typical of a disordered magnetic configuration; when α > 1.07

we have B ≈ 2
3 , compatible with the presence of a Z2 symmetry; when α = 1.025, 1.05

we have B < 0 typical of first order transitions near the critical point. (C) Adapted
from [1]. Plot of the radius of gyration of a chain of N = 2000 beads, as a function of
the interaction strength α which we slowly increase from α = 0.8 (below the transition)
to α = 1.1 (above the transition) in 106τBr. From there, we decrease α gradually back
to α = 0.8 in the same amount of time (blue curve). The two curves, averaged over 5
different runs, show the presence of hysteresis typical of first-order transitions.
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In order to study the existence, or the nature, of the phase transition we do
some more thorough simulations with smaller chains (N = 100) at a wider range
of interaction strength α ∈ [0.9, 1.3]. For each value of α, we do 200 independent
simulation runs, in order to have a good sampling of the model. First, we note that
the critical value αc, previously estimated at αc ≈ 0.95, here is slightly higher and
have α?c ≈ 1.02, but this was expected due to finite-size effects [76]. Thanks to the
sampling, we can construct the joint probability P (m,Rg) (see fig. 1.11A), and study
the distributions typical of the two phases. Namely, for the swollen-disordered phase,
we expect a single maximum at large Rg and small m, while for the compact-ordered
we observe the presence of two (Z2 symmetry) maxima corresponding at small Rg and
|m| ≈ 1. At the critical point (α ≈ α?c), three maxima are clearly visible, suggesting
the presence of phase coexistence between SD and CO. The coexistence, and therefore
the metastability, of two phases nearby the critical point, it is a hallmark of a first-order
phase transition

Further proofs on the nature of the phase transition come from the study of the
so called Binder cumulant [77] B for the epigenetic magnetisation, which reads:

B(α) = 1− 〈m4〉
3 〈m2〉2

, (1.18)

where with 〈−〉 we mean the average taken over the simulation sample at a fixed
interaction α value. In a magnetic spin system with Z2 symmetry, we observe that if
there is a phase transition is of the first order at αc, then in the disordered phase we
have B(α < αc) = 0; in the ordered phase B(α > αc) = 2

3 ; finally in the neighborhood
of α ≈ αc, the Binder cumulant will diverge and B(α→ αc) = −∞. In fig. 1.11B we
plotted the values of B(α) in our simulations; we observe that nearby α?c , the value of
B is sharply negative, suggesting, again that our phase transition is of the first order.

Finally, [1] also verifies the presence of a first order phase transition, thanks
to existence of an hysteresis curve (see fig. 1.11C). Here, we take an equilibrated
chain below the transition point and slowly decrease the temperature (or increase
interaction) until it reaches the compact-ordered phase, and then do the opposite
process. By plotting the values of the radius of gyration as a function of the strength α
we note that during the cooling, and the heating process, the model has two different
trajectories, creating a hysteresis loop, typical, again, of a first order phase transition.

The existence of a first order phase transition in the model is striking as it greatly
differs from the basic models we have used as building blocks. First, we have modeled
the epigenetic landscape on the template of an a two-states Potts-like model which,
as already discussed, do not show phase transition at 1D, and show a continuous
transition at higher dimensionality. Second, we would be tempted to do comparison
with the classic homopolymer in a solvent model; however, while this basic model show
a transition between a swollen and a compact phase at the θ-point, the transition is
still continuous. The cooperation between folding, and magnetic-like interaction, give
birth to a novel and interesting phenomenology [19, 78]. The existence of a first-order-
like transition in this model provides, also, a marked difference with the previous ones,
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which considered the epigenetic landscape as a 1-dimensional system (see section 1.3)
where interactions acted mostly thanks to ad-hoc long-range interactions. These
models usually shows a continuous phase transition; first-order phase transition can
be obtained, but only in mean-field approximations (zero-dimensional models) where
all nucleosomes interact with all nucleosomes.

Finally, we point out that, thanks to the presence of a first order phase transition,
the model appears to be a good framework where to study real biological applications.
Indeed, it naturally shows the properties we required from a good model describing
the epigenetic landscape (see section 1.3). First, the model is strongly stable against
perturbations, indeed the first-order transition implies the presence of hysteresis,
that itself indicates the presence of “memory” in the system: when a nucleosome is
switched on (or off) will rarely change its activation state. Second, as there is Z2

symmetry, the system is bistable in the ordered phase. All this strongly suggests that
the features characterizing the epigenetic switches, may be in fact inherited from an
effective first-order-like transition driven by the coupling between epigenetic dynamics
and chromatin folding.

1.4.4 Out-Of-Equilibrium Dynamics

In this section we will discuss the dynamics of the model, when the epigenetic
interaction αR, and the Lennard-Jones interaction αL are different, and the model
is therefore in an out-of-equilibrium regime. The dynamics is again studied using
extensive numerical simulations [2] of the system and exploring the phenomenology
when αL 6= αR, with a certain regard to the cases where αL � αL, or αL � αR.
While in the equilibrium regime, only a swollen-disordered phase, and compact-
ordered phase are possible, here at least two other phases (swollen-ordered and
compact-disordered) are possible. These two new possibilities not only have a certain
biological relevance, but also prove that the plasticity of the model to reproduce
various epigenetic landscapes.

As a first step, we study the dynamics of a chain composed of N = 100 beads by
varying the values of αL and αR in the range αL, αR ∈ [0, 4]. For each pair of values
(αL, αR) we usually compute only 16 independent runs, as we are only interested in
the final steady state of the dynamics, and generally do not compute statistic on
it. This is not the case, however, for points nearby the equilibrium line αL = αR,
where we do several simulations in order to verify the presence (or not) of coexistence
between the phases, as observed in the previous section.

Results of the analysis (see fig. 1.12) show that, depending on the values of
(αL, αR), the chain can display four different phases at the steady state:

1. The Swollen-Disordered (S.D.) phase, already observed at the equilibrium regime,
arise when the epigenetic and attractive interactions are both weak. Here the
system presents in an open configuration characterised by high radius of gyration,
and no apparent epigenetic order.

36



CHAPTER 1. THE PHYSICS OF EPIGENETICS

Figure 1.12: The phase diagram of the model in the out-of-equilibrium regime, in the
space (αL, αR) for a chain with N = 100 beads. We can observe four different phases: (1)
swollen-disordered (S.D.); (2) compact-disordered (C.D.); (3) swollen-ordered (S.O.); (4)
compact-ordered (C.O.). Each dot correspond correspond to a set of parameters examined
via an actual numerical simulation; grey dots represent set of parameters where coexistence
between C.O. and S.D. is observed. Dashed lines are qualitative borders delimitating the
phases, while the solid one stand for a possible first-order-like phase transition. On the
right side, snapshots illustrative of each of the four phases are shown.

2. The Compact-Ordered (C.O.) phase, already observed at the equilibrium regime,
arise when the epigenetic and attractive interactions are both strong. Here the
system presents in a strongly compact configuration characterised by low-radius
of gyration, and highly epigenetic ordered, usually display only one big domain
characterised by a single epigenetic mark. Notably, this kind of configuration is
typically observed in the inactive copy of the X chromosome in female mammals,
which is entirely transcriptionally silent, and inherited in the cell division [9].

3. The Compact-Disordered (C.D.) phase arise when there is weak epigenetic
interaction (low αR), and strong attractive interaction (high αL). The system is
found in a compact configuration characterised by small radius of gyration, but
no epigenetic order. Note, however, that the typical radius of gyration found in
this phase is bigger than what observed in the C.O. phase. What we observe is
reminiscent of the so-called black chromatin [79] found in Drosophila, where no
coherent epigenetic mark is observed, but still tends to localise in 3D, possibly
due to the linker histone H1.

4. The Swollen-Ordered (S.O.) phase arise when there is a strong epigenetic
interaction (high αR), and weak attractive interaction (low αL). The system is
found in an open configuration characterised by an high gyration radius, while the
epigenetic landscape show local epigenetic order. Here, the landscape is organized
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in various domains of coherent epigenetic mark, which can be found both in open
configurations or in small globuli. If the epigenetic interaction is strong enough,
all the domains will fuse into a single domain of coherent epigenetic mark, found
in a swollen configuration. Notably, this kind of configuration resemble what is
observed when the chromatin is actively transcribing (euchromatin) [9].

The existence, and characterisation, of phase transitions between the domains
depicted in the phase diagram, is still object of debate. First, note that, nearby the
equilibrium line, we still observe phase coexistence suggesting the permanence of a
first-order-like phase transition between S.D. and C.O phase. However, when we stray
away from the equilibrium the coexistence seems to cease to exist, indicating a possible
continuous phase transition. As we will discuss in a moment, in the other cases some
heuristic reasoning suggest the presence of either a continuous phase transition, or no
phase transition at all. Let us now discuss the main properties, of the novel phases
found in the out-of-equilibrium regime.

Swollen-Ordered Phase

Here, we discuss the main features of the phenomenology of the Swollen-Ordered
phase. This phase is observed at small attractive interactions strength (αL . 0.62)
and high epigenetic interaction (αR & 2.4). The chain present in an open swollen
configuration, but still display local epigenetic order.

Let us consider a chain in the S.D. phase at low αL value which slowly quenches
into the S.O. region increasing only the value of αR. If the value of αL is small enough,
one could suppose that the each bead can interact only with its first neighbours on
the chromatin backbone, if this is true the chain dynamics should be similar to what
happens in the 1D Ising model, and therefore there should be no phase transition
between S.D. and S.O. On the other hand, however, thanks to chromatin folding
sporadic interactions with distant beads are possible, and indeed, if αL & 0.3 we
observe the formation of localized, but still swollen, spatial structures (see fig. 1.13A).
Given this, we can not determine if a phase transition occurs, or not, and further
studies are necessary.

Second, we consider the model in the case of no-attractive interaction (αL → 0),
and strong epigenetic interaction. Note that if αL → 0, not only we don’t have
attractive interactions among beads of the same mark, but also in the Hamiltonian
(1.8) the terms regarding connectivity strength would vanish. The result would be a
weakly connected polymer, similar to a really diluted gas where beads would never
interact; therefore regardless of the value of αR the system will always be in the
S.D. phase if αL → 0. Let us start from a chain in these conditions, and slowly
increase the value of αL. As αL increase, the average distance between the beads
will decrease, and they can start interacting again. Because we kept the value of αR
high, they will quickly form locally ordered epigenetic domains, while still retaining a
completely swollen configuration (see fig. 1.13B). If we still increase the attraction
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Figure 1.13: Model Dynamics in the S.O. phase for a polymer with N = 1000 (A)
Snapshot of a polymer at the steady state with different values of αL, and αR = 3.0. At
αL = 0.25 the polymer is completely swollen, while still showing local epigenetic order;
αL = 0.6 the system show TAD-like formations (highlighted by some circles); at αL = 0.65

we are in the C.O. region and the TAD-like structures now are found in compact regions.
(B) Kymograph (on the left) for a polymer at αL = 0.25 and αR = 3.0 show the existence
of metastable, locally ordered regions. On the right a contact map averaged over the
last 105τBr steps of the dynamics: the upper half is color-coded to separately show the
probability of red-red, blue-blue contacts. (C) Same as (B), but this time at αL = 0.6;
this time the contact map clearly show the existence of TAD-like structures highlighted by
some arrows.
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strength, we will note that the system starts to form spatial structure similar to the
TADs (topologically associating domains) observed in chromatin [80], where beads of
the same mark seem to aggregate, without necessarily forming compact domains (see
fig. 1.13C). The local density of TADs increase as αL increases, until they reach a
point where the swollen configuration becomes unfavorable, and they will collapse in
globule in the C.O. phase. Note, however, that while the analogy between the S.O.
structures, and the TADs is striking, there is a fundamental difference between the
two: TADs are stable, while our architectures are metastable and will change in time.
This issue will be treated more in detail, and somehow solved, in the next chapter.

Compact-Disordered Phase

Finally, we discuss briefly here then phenomenology of the compact-disordered phase,
observed at high attractive interactions (αL & 1.9), and weak epigenetic interaction
(αR . 0.3). The system here present in a semi-compact configuration, as its radius of
gyration is still bigger than the typical one found in the C.O. phase, and disordered
epigenetic landscape.

As a first step, we study the system in the limit of αR → 0, where there is no
epigenetic interaction, and the landscape is subject to completely random recolouring
every τR steps. Studying the graphic of the radius of gyration as a function of αL (see
fig. 1.14) we observe that the system pass continuously from a swollen configuration
with high Rg at α . 2, to a compact configuration at α & 2 with low Rg. Therefore,
it is tempting to claim that there is a second-order-like phase transition between S.D.
and C.D. when αR → 0. Indeed, the dynamics of this system is reminiscent of what
happens in the case of randomly colored heteropolymers in a solvent [81, 82]. Here,
the polymer undergoes a second-order phase transition between a coil-regime and a
globule-regime, similar to the θ-transition observed in homopolymer. Note however
that while in the classic case the heteropolymer structure is kept fixed, in our model is
inherently out-of-equilibrium as the epigenetic landscape is continuously recoloured in
a random fashion. We thus conclude that the phase transition appear to be continuous,
but due to the out-of-equilibrium nature of the model, further verification are needed.

Finally, we examine here the possible phase transition between the compact-
disordered phase, and the compact-ordered one. In the limit of high interaction
strength αL, a chain organizes quickly in a solid, compact configuration. In this
limit the typical time to reach a stable, spatial, configuration are much faster than
the typical recolouring time τR, and the reciprocal distances between the beads are
somehow frozen. Hence, each bead will, in average, interact always with the same
beads, and the system will behave like a 3D spin system with two-state Potts-like
dynamics, that is characterised by a second order phase transition [83] (see also
chapter 3). Thanks to this heuristic, we conclude that even in the case of C.D. to
C.O., the model will undergo a second order phase transition.
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Figure 1.14: Possible continuous phase transition of a chain of N = 100 beads in the
limit of random recolouring (αR → 0). (A) Radius of gyration as a function of the
attractive interaction strength αL; note that the system pass continuously from a swollen
configuration with Rg ≈ 10, to a compact configuration with Rg ≈ 2.5. (B) Joint
probabilities P (m,Rg) at various values of αL show no coexistence suggesting, again, a
second-order phase transition.

Figure 1.15: Possible continuous phase transition from the C.D. to C.O. when keeping αL
to a very high value (αL = 4) and varying αR. Initially we have that the system is found
in a compact-disordered configuration (low Rg ≈ 2, and m ≈ 0; near the transition point
the system show bifurcation at αR = 0.3, and finally is in a compact-ordered (|m| ≈ 1

configuration αR = 0.5.
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Chapter 2

Epigenetic Bookmarking

“Is that vodka?” Margarita asked weakly.
The cat jumped up in his seat with indignation.
“I beg pardon, my queen," he rasped, "Would I ever
allow myself to offer vodka to a lady? This is pure
alcohol!”

Mikhail Bulgakov, The Master and Margarita

In chapter 1 we introduced and discussed a model [1] to describe the dynamics of
chromatin folding, and at the same time, to reproduce the main features of epigenetic
marks spreading on the chromatin backbone. While the model, indeed, reproduce the
main properties we expect from a model of epigenetic dynamics(e.g. multistability,
stability against perturbations, and memory), it fails to reproduce the richness of
epigenetic landscapes observed in real cells. Indeed, the dynamics always tend to
favour the formation of big coherent epigenetic domains, while real chromatin fibers
in living cell show complex architectures characterised by a multitude of different
epigenetic marks. In this chapter, we propose an extension to the model of section 1.4
to deal with this problem thanks to the introduction of a new class of biophysical
mechanisms that can establish and maintain robust yet plastic epigenetic domains
via the so-called genomic-bookmarking mechanism [2]. We also extend the model
to include a greater number of “colors” and prove that genomic-bookmarking alone
explain the distribution of marks found by experiments on a Drosophila chromosome.

First, let us recall the main features of of the model discussed in chapter 1 that we
later extend to include genome bookmarking. Here, the chromatin fiber is described by
a semi-flexible polymer chain whose beads represent group of neighbouring nucleosomes.
Each bead can have a different colour representing one of the possible combinations
of epigenetic modifications applied to the nucleosomes. To simplify the system, we
chose to adopt a three-state model where beads can either be “blue” e.g. methylated
(silenced genome), “red” e.g. acethylated (actively transcribing genome), or “gray”
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e.g. no modification is present on the nucleosomes. Beads interact with each-other
via a short-range interaction which is attractive for beads with the same epigenetic
mark, and steric otherwise. The time evolution of the spatial positions of the polymer
beads is defined by a set of Langevin equations (1.7), while the “recolouring dynamics”,
entrusted with the role to regulate epigenetic spreading, is defined by the spin-like
Hamiltonian (1.13) and evolved thanks to a Metropolis-Hastings algorithm.

Results of numerical simulations show that at the equilibrium regime, the model
undergoes a first order phase transition from a swollen-disordered to a compact-
ordered phase (see section 1.4.3), where the system is found in densely compact
globule characterised from a single epigenetic domain. While this situation resemble
what observed in inactivated X chromosome of mammalian females, it is of difficult
generalisation to other biological observations. At the out-of-equilibrium regime
(see section 1.4.4) the system show more interesting configurations, namely in the
so-called swollen-ordered phase where TAD-like structures appear. Unfortunately,
this structures are metastable and tend to be short-lived, while the opposite situation
is found in cells.

In order to extend the model, we will employ three assumptions on the biophysical
mechanisms involved in gene expression; all three assumptions are still object of debate
in biology, but have consistent literature backing them up. First, as in the basic
model, we assume the existence of a positive-feedback because of the “reader-writer”
interaction. This is based on the observation that certain readers, binding to the
chromatin, recruit writers of a specific mark, and, again, nucleosome of the new
“written” mark will recruit reader proteins, ans so on. For instance, it is observed
that HP1 (a reader binding to heterochromatin) recruits SUV39h1, a writer for the
epigenetic mark H3K9me3 (methylation of histone H3, associated to gene silencing)
[84]. Another example is that the Polycomb-Repressive-Complex PRC2 (a reader)
contains the enhancer-of-zeste EZH2 (a writer) that spreads the epigenetic mark
H3K27me3 also associated with gene silencing [85, 86].

Our second assumptions, regards the existence of genomic-bookmarking (GMB)
mechanisms. The hypothesis, and the studies, on GBM come from the crucial property
of epigenetic memory during mitosis. Indeed, it is not clear how, after mitosis, the new
daughter cells faithfully reproduce the transcription program of their mother. One of
the hypothesis, is that a mechanism concerning the inheritability of DNA-methylation,
and the propagation of histone modifications can re-establish gene transcription after
mitosis [87]. However, observations suggest that these two mechanism alone are not
sufficient to maintain transcription profile in the cell life. For this reason, it has been
suggested that some transcription factors, called GMB factors, can bind to mitotic
DNA in their cognant site and remain dynamically associated with chromatin through
mitosis. Example of GMB factors are Sox2 in mouse embryonic stem cells [88], or
Polycomb-Group-Proteins (PGP) bound to Polycomb-Response-Elements (PRE) in
Drosophila [89, 90].

Finally, the last assumption is that the recruitment of read-write machineries is
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coupled to specific genomic-bookmarking binding. This means, that GMB actively
participate to the positive-feedback loop relative to a certain, and precise, epigenetic
mark, and reinforcing it. These three assumptions allow our model to reconcile short-
term turnover of post-translational modifications with long-term epigenetic memory
and plasticity.

2.1 A Polymer Model for Genomic Bookmarking

In this section we will try to understand the main features of the model described in
section 1.4, when genomic bookmarking is considered too. As in the previous chapter,
we model the chromatin fiber via a semi-flexible heteropolymer chain composed of N
beads. As already pointed out, we consider a three states model with interacting states
A, B and unmarked, non-interacting, state U. In addition to this, we consider the
possibility that a bookmarking transcription factor, which can either be an activator
or a repressor [9], is bound to one bead with either an A or B mark; in this case
we will indicate these particular beads with the states A? or B? respectively. The
study of this model will be, again, carried out by employing numerical integration
by velocity-Verlet scheme of equations (1.7), and a Metropolis-Hasting algorithm
on Hamiltonian (1.13); the simulations have been performed thanks to the LAMMPS
software [18].

We now discuss more in details how genomic-bookmarking has been introduced in
the model. A complete model of how bookmarks guide the re-formation of the previous
epigenetic pattern, and therefore of a coherent gene expression, after mitosis remains
unknown [91]. Here, as already pointed out, we assume that the configurations and
the cognate states of genomic-bookmarking factors depend on the particular tissue
the cell depends on. Furthermore, we assume they remain dynamically associated to
chromatin during mitosis [88, 89], and that when re-entering in the inter-phase of the
cell life, they can recruit appropriate read/write machineries and help by rebooting
the previous genomic expression.

In practice, in our polymer model, we account for bookmarking by assuming that
beads with mark A? and B? can not change their mark (colour), and therefore they
do not participate to the recolouring dynamics. This simple trick ensures that in
the neighborhood of the bookmarked bead its colour is favoured by the recolouring
dynamics, as highlighted by the Hamiltonian (1.13). Notice also that, in the basic
model (see section 1.4), the choice of which mark dominates the local spreading is
decided via Z2 symmetry breaking. Here, instead, by choosing a particular mark for
our bookmarked beads, we locally break the symmetry and favor that mark over the
others.
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Figure 2.1: Pictorial illustration of the three bookmark configurations we employ in
our numerical simulations: clustered, mixed, and random configurations; bookmarks are
indicated in orange for the A? mark, in cyan for the B? mark.

2.1.1 Phenomenology

A complete study of the dynamics of the polymer model with genomic-bookmarking
is much more complicated than in the basic case. Here other than the two interaction
strengths αL (attractive interaction), and αR (“epigenetic” interaction), we have two
more degrees of freedom: the number M of genomic-bookmarks on a chain of size
N , and the positional configuration of such bookmarks. For this reason, we will limit
our study here to give a qualitative understanding of what happens when certain
bookmark configurations are employed.

The considerations about the equilibrium regime made in section 1.4.1 are still
valid here; namely, if we have the same attractive interaction αL and epigenetic
interaction αR (αL = αR), we are at the equilibrium, otherwise (αL 6= αR) we are in
an out-of-equilibrium regime. Indeed, using a “normal”, non-bookmarked, bead, one
can repeat exactly the same procedure to prove that detailed balance holds true if
and only if αL = αR. On the other hand, a bookmarked bead participates only to
the Langevin dynamics, and therefore, obeying equations (1.7) we are sure that its
dynamics will be of equilibrium, as long the others will be themselves at equilibrium.

In order to qualitatively understand how the dynamics is influenced by the
introduction of bookmarks, we set some numerical simulations of chains composed
of N = 1000 beads and with bookmark density φ ≡M/N = 0.1. Qualitatively, the
dynamics of this model at the extremes of the phase diagram that is really small
(or big) values of the interactions αL, αR won’t differ from the basic model, and we
will still observe phases similar to the one found in fig. 1.12. For this reason, rather
than studying minutely the dynamics for every possible values of (αL, αR), we will
focus on some limited regions of the phase diagram. Namely, we are interested in the
qualitative differences with the basic model at the equilibrium dynamics, and nearby
the critical point (αL = αR ≈ 0.95), in order to examine the dynamics of the new
epigenetic domains. At the same time, we are notably interested in verifying that
employing GMB mechanisms, the TADs observed in the swollen-ordered phase in the
basic model will become stable, and retain long-term epigenetic memory.

Finally, we have to decide which bookmark positional organization will be employed.
As there are infinite possibilities, we restrict the modelization to three cases (see also
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fig. 2.1):

(i) Clustered configuration: bookmarked beads are equally spaced along the fibre;
their mark alternates after every nc > 1 consecutive bookmarks between A? and
B?. Note that nc defines the cluster size.

(ii) Mixed configuration: similarly to the clustered configuration bookmarks are
equally spaced along the fibre, but now their mark is alternated every other
bookmark (nc = 1).

(iii) Random configuration: the position and mark of each bookmarked bead is taken
from a random uniform distribution, while still keeping the constraint φ = 0.1.

These configuration are studied by simulating the system at various interaction
strengths αR and αL, both at the equilibrium and the out-of-equilibrium regime.
Results are shown in fig. 2.2, fig. 2.3, 2.4, and fig. 2.5. We want to examine the stability,
and structure, of epigenomic domain that forms during the dynamics. Stability of the
epigenomic domains is investigated by looking at the kymographs of the chains during
their evolution. Chromatin architecture can be studied both looking at the snapshots
of the dynamics, and constructing the so-called “contact maps” of the dynamics. A
contact map, usually, shows the probability P (i, j) for the i-th monomer, and the
j-th monomer to be at a distance rij = ‖ri − rj‖ shorter than a certain cutoff σcut.
In our figures we plot two versions of the same contact map: on the lower side, in
shades of grey, we have the contact probability P (i, j) with cutoff σcut = 8σ; on the
upper side, instead, we plot the value of P̃ (i, j) defined as :

P̃ (i, j) =


P (i, j) if qi = qj = A

−P (i, j) if qi = qj = B

0 otherwise

. (2.1)

This version of the contact map helps us to keep track of the various, topological,
genetic domains. Positive values of P̃ are represented in red, while negative in blue,
in accordance with our color convention. Contact maps are numerically estimated by
considering the last 105τBr of the dynamics.

Clustered Configuration

The first bookmark configuration we consider is the clustered one. Namely, we study
for completeness two cases: the case of small clusters nc = 10, and big clusters,
nc = 50. Results can be found at fig. 2.2 and fig. 2.3. The system has been studied, in
both cases, at equilibrium when αL = αR = 0.98, corresponding in the unbookmarked
case to the compact-ordered (CO) phase; when αL = αR = 0.92, corresponding to the
swollen-disordered (SD) phase; and at out-of-equilibrium when αL = 0.6 and αR = 3,
corresponding to the swollen-ordered phase.

At αL = αR = 0.98, in both the case of nc = 10 and nc = 50, the system organizes
itself in two compact globuli where red and blue domains separately coalesce in 3D
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(macro-phase-separation), to give a checker-board appearance of the contact map,
reminiscent of the pattern formed by A/B compartments in Hi-C maps [29]. The
two globuli appear to be stable over long periods of time, in open contrast to what
observed in the unbookmarked model (section 1.4.3). Finally, while this formation is
reminiscent of TADs, we want to point out that the density contact-map show the
existence of contacts, even if limited, between the two compartments, making the
power of the analogy limited.

At αL = αR = 0.92, we had that the unbookmarked system would lie in the swollen-
disordered phase. Here instead, in the case of nc = 50, we find that the presence of
bookmarks alter completely the dynamics and lead, eventually, to the formation of of
two globuli and is, instead, akin to the CO phase, as observed in the previous case.
When nc = 10, instead, the system is indeed in an open configuration, but creates
small globuli with coherent epigenetic mark. Unfortunately these architectures are
rather noisy and unstable, and therefore not akin to TADs.

Finally, in the out-of-equilibrium regime, when αL = 0.6, αR = 3, we have, this
time, the formation of stable, coherent, independent, architectures akin to TADs. In
the nc = 10 these architectures present in great number, and both in globular and
open configurations. In the nc = 50, instead, two globuli again form, but this time
they are less “compact” (as shown by the compact map), and are separated by along
strand of chromatin.

Mixed Configuration

The second bookmark configuration we consider is the “mixed” one, always keeping a
bookmark ratio φ = 0.1; this configuration correspond to a clustered one with nc = 1.
We test this configuration at the same conditions and same values of αR, αL of the
clustered configuration. Results are shown in fig. 2.4.

Contrary to what observed in the clustered case, the mixing configuration seem to
be disruptive to the formation of coherent epigenetic domains. At the equilibrium we
observe a behaviour similar to what observed in the unbookmarked model: at αL =

αR = 0.98 the system organizes in a single compact epigenetic domain characterised by
a single color chosen via Z2 symmetry breaking; at αL = αR = 0.92 the system seems
to be in a swollen-disordered phase. Out-of-equilibrium dynamics (αL = 0.6, αR = 3)
show the formation of short-lived epigenetic domains, and the contact map do not
seem to indicate the formation of underlining architectures. Compare this result to
what observed in the unbookmarked case in the swollen-ordered phase: the presence
of a mixed bookmark configuration upsets the formation of TAD-like structures.

The study of this configuration strongly suggests that the formation of long-
lived, stable, epigenetic domains is strictly correlated with the configuration of the
bookmarked beads. Namely, as the differences observed between the clustered and
the mixed configurations point out, a single isolated bookmark is not enough to
sustain an epigenetic domain (see next section for further discussions), while a “cluster”
of successive, cooperating bookmarked beads of the same mark, can lead to the
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construction of architectures akin to TADs.

Random Configuration

The last typology of configuration we consider is the “random” one, with φ = 0.1,
where the position and the “color” of the bookmarked is chosen via a uniform random
distribution. The configurations are studied at the same conditions and the same
values of αR, αL as in the previous cases. Results relative to a specific random
configuration are show in fig. 2.5; in other random configurations studied the results
were qualitatively similar.

At αL = αR = 0.98, similarly to what observed in the mixed configuration, the
system coalesces in a single compact globuli characterised by a single epigenetic domain.
Notice however, that the choice of the determinant epigenetic mark is not chosen here
by a symmetry breaking (a random distribution is inherently non-symmetric), but
rather from possible local (or global) in balances caused by the bookmark distribution.
At αL = αR = 0.92 short-lived epigenetic domains arise, and the system present in a
swollen-configuration. Finally, in the out-of-equilibrium regime (αL = 0.6, αR = 3),
long-lived epigenetic domains akin to TADs form.

Note that this last, out-of-equilibrium, result is in open contrast with what found
in equilibrium simulations with fixed epigenomic landscape [13, 92]. Notice also that
these results are not in contrast with the considerations made in the mixed case.
Indeed, random configurations permit the existence of consecutive bookmarked beads
with the same mark, in fact they are rather common. More interestingly, the study
of this ensemble of configurations tells us that there is no need for the location of
bookmarks to follow strict rules for they to form stable architectures, but rather
they have large degrees of freedom. This is important, as the effective bookmark
configurations one could observe in vivo in a cell surely follow some kind of logic,
but at a first glance they would probably look as a mid-case between the clustered
configuration and the random one. However, thanks to this study, we are able to
guarantee that even in a “more biological” configuration, the model is able to sustain
the creation of stable, epigenetically coherent, domains.
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Figure 2.2: Results of numerical analyses for the bookmarked model in the clustering
(nc = 10) configuration. Results are shown both at equilibrium (αL = αR) and out-of
equilibrium regime. Beside of kymographs colored dots are positioned: orange dots show
the position of “red bookmarks”, while cyan dots show the position of the “blue” ones.
In the snapshots bookmark are highlighted using the same color pattern. In particular
note that: if αL = αR = 0.98 we observe the formation of two stable globules akin to
the CO phase of the previous chapter; if αL = αR = 0.92 as observed in the kymograph,
all tentative of forming an ordered epigenetic phase are metastable and the configuration
is akin to the SD phase; if αL = 0.6, and αR = 3, as observed in the kymograph and
contact map, the system form stable epigenetically ordered formation akin to TADs well
visible in the snapshot.
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Figure 2.3: Results of numerical analyses for the bookmarked model in the clustering
(nc = 50) configuration. Results are shown both at equilibrium (αL = αR) and out-of
equilibrium regime. Color conventions are the same as in fig. 2.2. In particular note that:
if αL = αR = 0.98 we observe the formation of two stable globules akin to the CO phase
of the previous chapter; if αL = αR = 0.92, both kymograph and contact map, suggest
that if simulations time were longer we would have observed the same situation as in
αL = αR = 0.98. Finally, in the out-of-equilibrium case (αL = 0.6, αR = 3) we again
observe the formation of two compact globuli, but this time the density contact map (in
grey) suggest that there are no contact between the two. This situation is akin to what
observed in two repressed, consecutive, TADs.
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Figure 2.4: Results of numerical analyses for the bookmarked model in the mixed
configuration. Results are shown both at equilibrium (αL = αR) and out-of equilibrium
regime. Color conventions are the same as in fig. 2.2. In particular note that: if
αL = αR = 0.98 we the system organizes in a single globule (CO phase) whose colour
is decided by Z2 symmetry breaking; if αL = αR = 0.92, no spatial or epigenetic order
is observed (SD phase). Finally, in the out-of-equilibrium case (αL = 0.6, αR = 3)
small ordered epigenetic domains appear, however they are short-lived and, therefore, not
comparable to TADs.
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Figure 2.5: Results of numerical analyses for the bookmarked model in a random
configuration. Results are shown both at equilibrium (αL = αR) and out-of equilibrium
regime. Color conventions are the same as in fig. 2.2. In particular note that: if
αL = αR = 0.98 we the system organizes in a single globule (CO phase) whose colour is
decided by Z2 symmetry breaking; if αL = αR = 0.92, no spatial or epigenetic order is
observed (SD phase). Finally, in the out-of-equilibrium case (αL = 0.6, αR = 3) ordered
and stable epigenetic, akin to TADs, appear.
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2.1.2 Critical Bookmarking Density

In the previous section we noted that the mixed bookmarking configuration show that
the equilibrium behaviour similar to what observed in unbookmarked chains, failing
to create a number of stable and coherent epigenetic domains of different marks. This,
together with the observations regarding other configurations, leads to the conclusion
that a minimum local bookmarking density φ is required in order to coadiuvate the
formation of TAD-like structures.

To address this question, we employ some numerical simulations over a chain of
size L = 1000 where we systematically vary the bookmarking density. As bookmarking
configuration, we choose the clustered one from the previous section, as we verified
it is the most efficient when creating (or maintaining) epigenetic domains. Here, φ
varies from phi = 0 (unbookmarked) to φ = 0.1; in order to simplify the analysis we
focus on the case where each epigenetic domain has a size of 100 beads, i.e. we choose
nc = 100φ. Notice that a domain of size 100 beads correspond to around 3× 105 DNA
bases (as seen in section 1.4), which is in the range of typical domains found with
Hi-C techniques [29, 93]. To facilitate, again, the analysis we set our simulation at
the equilibrium when αL = αR = 0.98 which corresponds to a compact-ordered phase;
indeed, as we observed in the previous section, the eventual epigenetic domains are
much more distinguishable in this phase of the dynamics. Finally, as initial conditions
for our simulation we set a typical equilibrium configuration of the nc = 10 clustered
configuration at the same strength values (see fig. 2.2) where the system is already
organized in two separate globuli, in order to monitor better the behaviour of the
epigenetic domains when some bookmarks are being eliminated. Notice, however, that
we have equilibrium conditions, and therefore the final steady state of the dynamics
do not depend on the actual initial configurations.

In order to monitor the dynamics, we define here a new order parameter: the
“fidelity” χ which measures how well the epigenetic domains are maintained. First,
let us define P (i) as the probability for the i-th monomer of a chain to be “red”; we
compare this probability with the ideal result Π(i) that is the result we would have if
the domains were perfectly maintainers and can be defined as:

Π(i) =
1

2

[
sgn

(
sin

(
πi

nd

))
+ 1

]
=

{
1 if i in red domain
0 otherwise

, (2.2)

where nd is the number of beads in a domain (nd = 100 in our case). Defined the two
probabilities P (i) and Π(i), we define their “average distance” ∆2 as:

∆2 =
1

L

L∑
i=1

(P (i)−Π(i))2 . (2.3)

The fidelity parameter χ is then defined as χ = 1 −∆2; notice that χ ≈ 1 only if
P (i) ≈ Π(i) i.e. there is ideal block formation, while χ ≈ 1

2 if the domain coalesces
into a single domain as in the unbookmarked case.
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Figure 2.6: (A) Fidelity χ = 1−∆2 as a function of the bookmarking density φ. Note
the abrupt jump from a single-globule “phase” (χ ≈ 0.5) to a two-globuli phase (χ ≈ 1 at
φc = 0.04. To estimate the parameter, we employ numerical simulation of chains with
L = 100 at αL = αR = 0.98; as initial configuration of the dynamics we employed the last
configuration found in fig. 2.2 when αL = αR = 0.98. We employed a clustered bookmark
configuration with nc = 100φ. Parameter ∆ is estimated via equation (2.3) and P (i) is
estimated by considering the last 105 steps of the dynamics. (B-C) Kymographs of the
dynamics when φ = 0.03 and φ = 0.04. In first case we observe that the initial epigenetic
domains slowly shrink in size until they disappear and the dynamic is overcome by a single
mark; in the second case, we observe that the system, although noisy, can mmaintain the
epigenetic domains for a long time.

Results are shown in fig. 2.6. We observe that there the fidelity χ show a behaviour
similar to a phase transition, with critical density φc ≈ 0.04. For low density φ < φc,
a single mark takes over the dynamics and a single compact-globuli is formed. For
higher densities (φ ≥ φc), instead, we have a high fidelity χ ≈ 1, and the chains
remain organized in two globuli of different epigenomic marks.

The estimated critical bookmark density value φc ≈ 0.04 is quite realistic, since
it corresponds to about 1 or 10 nucleosomes in about 400, as not all nucleosomes
coarse-grained in a “bookmark bead” need to be bookmarked. Therefore, we argue
that, crucially, not all the genome must have this critical density of bookmarks, but
only regions required to robustly develop a specific domain of coherent histone marks
in a given cell-line. Indeed, notice that a similar behaviour was observed in the random
configuration (see fig. 2.5) when we considered an out of equilibrium dynamics: not
all the genome organized in TAD-like structures, but only small regions with higher
density of coherent bookmark beads.
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2.2 Towards a more Realistic Model

In this section we expand our model to describe more realistic, and biologically relevant,
scenarios. Namely, we will try and reproduce the main features of the epigenetic
landscape found in vivo in Drosophila cells. To do so, we have to carry out several
modification to the model, comprehensive of relative interaction strengths among the
various states, and the number of states itself, while at the same time introducing new
out-of-equilibrium features. Results will show that our model predicts a “ChIP-seq”,
which maps global binding sites for the transcription factors on the DNA, compatible
with the one found in vivo.

2.2.1 Asymmetric Interactions among Epigenomic Marks

In chapter 1 and the previous sections, we have studied the dynamics of epigenomic
spreading when two competing marks A and B are present, without giving them a
particular biological identity. Also, we always assumed that the two marks behave
exactly in the same way: this feature was actually important for our preliminary
studies as it permits us to study both the dynamics of the spreading in presence of
competition, and the presence of phase transitions due to Z2 symmetry breaking in
the “epigenomic magnetisation”.

Let us now consider an “asymmetric ,model” where the blue-blue interaction, and
red-red interaction, are different. In fact, generally, the reader-writer machinerie that
starts the positive feedback loop is unique for each epigenetic mark, and therefore,
generally, different proteins have different binding energies. Now, in order to construct
a more realistic model, we choose to study the dynamics of two common marks, from
now on: red marks will encode Polycomb repression; blue marks encode constitutive
heterochromatin.

We suppose that blue-blue interaction is larger than the red-red one; in this
case at the equilibrium the thermodynamic symmetry of the system is broken and
the blue mark eventually takes over all non- bookmarked regions. However, if
there are bookmarks for the red mark, they will locally favour the red state, and
stable red domains may form (see fig. 2.7A). We test this hypothesis via some
numerical simulations of a chain of L = 1000 beads were we set αblue

L = 1.05αred
L

and αblue
R = 1.05αred

R ; we insert nB = 10 bookmarks in a central region of the chain
of size 100 beads such that the local bookmark density is φ = 0.1. We study the
system when αred

L = 0.6, αred
R = 3, because, as we have noticed in the previous section,

when this parameters are employed, there are more possibilities of observing TAD-like
behaviours. Starting from a swollen and, epigenetically disordered fibre, where red,
blue and grey beads are equal in number, we observe that blue marks quickly invade
all the non-bookmarked regions and convert red beads into blue ones, mimicking what
observed during the heterochromatin spreading [84], but the central segment, aided
by the presence of red bookmarks, remains stable and red.

56



CHAPTER 2. EPIGENETIC BOOKMARKING

Figure 2.7: (A) Snapshot of a typical configuration, and kymograph of the dynamics of
a chain with L = 1000 beads with asymmetric dynamics where αblue

L /αred
L = αblue

R /αred
R =

1.05, and αred
L = 0.6, αred

R = 3.0. nb = 10 bookmarks (orange beads) are positioned in
the middle of the chain such that we have a local density φ = 0.1. Kymograph shows
that the favored blue mark spreads into all non-bookmarked areas, while at the same time
the central red-bookmarked area remains stable. (B) On the left: exemplification of a
conservative cell replication process: the epigenetic landscape is modified by a random
process where each non-bookmarked bead has 1/2 probability of becoming grey. On the
right a typical kymograph of this dynamics: replication process happen every 105τBr;
dynamical parameters are the same in A; we employed the last configuration of A as the
initial configuration of this run. Notice that while the replication process introduces a
strong noise to the process, the central, bookmarked, red-domain remain stable. (C)
Same as B, but here we also introduce excision of bookmarks; at each replication step, we
remove about half of the bookmarks (number of bookmarks nb is above the kymograph
in the grey panel). Notice that the red domain remains stable for a long time, even when
the bookmark density drops below the critical value φc ≈ 0.04 (see section 2.1.2).
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2.2.2 Cell Replication Process

The second thing we have to do to proceed in the direction of a more realistic,
biological, model is to test whether or not, the epigenetic patterns established via
genomic-bookmarking are stable against strong perturbations. This is important,
because during mitosis, not all the epigenetic marks of the mother cells are kept in
the daughter cells, resulting, at the beginning of the daughter cell life, in a vastly
different epigenetic landscape.

We introduce in the model a new random process every 105τBr time-steps where
each bead has 1/2 probability of being recoloured into a grey bead. This is to mimic
what happens during a semi-conservative replication, while however keeping the spatial
architecture unchanged [94]. We study the dynamics of this new process in the same
asymmetric conditions as in section 2.2.1, but we start our numerical simulations from
a stable configuration as in fig. 2.7A. Results (see fig. 2.7B) show that our model is
robust against extensive perturbations, and that already-established patterns formed
via genomic-bookmarking remains stable against various rounds of cell replication.
Importantly, the combination of epigenetic memory we observed in section 1.4, and
genomic-bookmarking allows the cell to propagate after mitosis both “global” and
“local” epigenetic patterns.

Another observation coming from the biology is that, even with a low density
of transcription factors, epigenetic memory do not vanishes immediately, but rather
deteriorates gradually. Indeed, let us consider some experiments [95], where the role
of some transcription factors akin to bookmarks, called Polycomb-response-elements
(PREs), in epigenetic memory was investigated. In this experiment, the Polycomb-
mediated gene repression was perturbed by artificially inserting or deleting a certain
quantity of PREs. PREs are correlated with the presence of regions of the genome
marked with H3K27me3; excision of these factors result in a slow, gradual, decreasing
of the region dominated by H3K27me3. We observed a similar phenomenon in fig. 2.6:
even when the bookmark density was below the critical value φc ≈ 0.04 (e.g. φ = 0.03),
the red domains persisted for a long time until, eventually, they fade away.

Let us now test this claim in the asymmetric case, and in the presence of a
replication process. Namely, in fig. 2.7C we show the results of a simulation where
to each replication we accompanied by the random excision of about half of the
bookmarks. At each cell cycle, we dilute the number of bookmarks, until, at some
point, they can no longer sustain the local red states, and the region is consequently
“invaded” by the favored blue mark. However, just as in the symmetric equilibrium
case of fig. 2.6, the local epigenetic memory of the red domain seems to persist even
when the bookmark ratio is lower than the critical value, in accordance with the
experimental results.

Finally, we want to remark that the basic results of these two sections show that
our model, while simplistic, is a useful stepping stone for a more complex, realistic,
biological model, as we will see in the next section, where we will deal with the
modeling of the chromosome of a Drosophila‘.
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2.2.3 Modelling of a Drosophila Chromosome

After we studied how our model deals with asymmetric interactions, and verified that
gives realistic results when replication/excision processes are introduced in the system,
we are finally ready to challenge a more difficult, realistic, scenario. Namely, we will
perform some numerical simulations to produce the spreading of certain epigenetic
marks on the right arm of chromosome 3 of a Drosophila S2 cell. We are particularly
interested in studying the competition of the two repressed states found in these
chromosomes: one mediated by Polycomb proteins, the other representing the classic
heterochromatin.

Possible Epigenetic States

As a first step, we must set the parameters of our simulations, most important of all
is the number of “states” a bead can adopt; we base our assumptions on the numerical
analysis of [96]. Here, thanks to chromatin immunoprecipitation (ChIP) techniques
[97], which is a procedure used to determine whether a given protein binds to or
is localized to a specific DNA sequence in vivo, they study the localization of 18
different histone modifications. Thanks to a machine-learning approach, they reduce
this 18-states model, to have only 9 “essential” states (generally a combination of the
original 18 modifications) and proceed to study their features always while keeping
the other states hidden (Hidden Markov Model). Not all the states are present in all
the chromosomes, namely state 5 and state 8 are associated only to certain ones and
notably to the X chromosome. We will therefore consider:

State 1. It is associated to active promoters and enhancers; we will represent this
state via red beads.

States 2-3-4. All of these states are found in corrispondence of actively transcribing
regions; as we are not interested in the details of their dynamics we will consider
these states as a single “transcribed” state represented in green.

State 6. It is associated with Polycomb repressed regions rich in the H3K27me3
mark; they are represented in purple.

State 7. Heterochromatin (HET) rich in the H3K9me3 mark; represented in blue.

State 9. Nucleosomes in this state do not appear in ChIP sequencing and are generally
silent during transcription; regions rich with this kind of genes are called gene
deserts and constitute around 25% of the whole genome. We represent this state
in grey.

To these 5 states found in [96], we add an unmarked state (represented in white), and
we complete the model by adding the bonding sites (represented in orange) of the
PSC/PRE transcription factors which act as bookmarks for the Polycomb-mediated
marks.

59



2.2 Towards a more Realistic Model

Figure 2.8: Pictorial illustration of the spatial positioning of the non-recolouring states.
The location of PSC/PRE (bookmarks, in orange) are mapped onto beads using ChIP-Seq
data from [89]. The other states position (gene deserts in grey, transcribed genes in
green, promoters in red) are taken from [96], The remaining beads (∼ 20%) are initially
unmarked (white). When we start the recolouring machine, coupled with the 3D dynamics,
the unmarked beads will eventually recolour and become either heterochromatin (blue) or
Polycomb (purple).

Aim, and Initialization, of the Model

After we have decided how many, and what, states the beads of our chain can have,
we must clarify our intent in order to set our numerical simulations. We want to verify
that the tools we have developed by studying genomic-bookmarking can be applied
in realistic situations. Notably, these tools are better applied to repressive states,
as repressed regions tend to appear in compact configurations in vivo, compatibly
with our results. For this reason, we choose to focus our study on the dynamics of
the two repressed states: Polycomb-mediated (state 6), and HET (heterochromatin,
state 7). Namely, as initial configuration of our chain we will fix the position of all
the other states (states 1-2-3-4-9), and of the bookmarked beads mediated by PSC.
The remaining chromatin fiber (about 20% of the total) will be left unmarked in
white (see fig. 2.8). During our simulations the unmarked states will be recoloured in
blue (heterochromatin) or purple (Polycomb) using the same recolouring dynamics we
have always employed in the previous sections, while all the other states will remain
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fixed. At the end of our simulations, we will compare the distribution (represented
by a ChIP-sequence in silico) of Polycomb-mediated mark H3K27me3, with actual
experimental results.

Finally we have to model the interactions among the various states (see table 2.1).
Namely, unmarked states experience steric interactions with the others; Polycomb
and heterochromatin have asymmetric interaction and HET is slightly favored, but, at
the same time, we increase the affinity with between Polycomb and their bookmarks
PSC. We further introduce a strong interaction between promoters, and an interaction
between promoter beads and transcribed genes to favour formation of loops observed
in transcribed area of the genome [98]. Finally, an attractive interaction between gene
desert beads is considered, in order to mimic their compaction by H1 linker histone
[99].

Table 2.1: Values of the interaction strengths α (see (1.7) and (1.13)) between the
various states a bead can assume.

Results

We consider a chain of L = 9037 beads, colour with initial Configuration for the states
1-2-3-4-9 taken from [96], while we map the position of PSC via ChIP-sequence in
[89]. The remaining chromatin is left unmarked.

We evolve the system to the steady state, and we estimate the ChIP-sequence
for the H3K27me3 mark as the probability of finding a Polycomb mark at a certain
genomic position. Bookmarked beads are accounted in this computation only if they
are in the neighborhood of a non-bookmarked bead with such a mark. Thanks to
an ensemble of independent simulation, we are able to provide an “in silico” ChIP-
sequence track for Polycomb marks which can be compared with in vivo ChIP-sequence
data [96] (see fig. 2.9B). We compute the Pearson correlation coefficient ρ to compare
the results of our model with the experimental results. Notably, we obtain ρ = 0.46,
which is to be compared against a ρ? = 0.006 we would obtain with a random data-set,
and conclude that the two ChIP-sequences are in excellent agreement.

Notice from fig. 2.9C that not all bookmarked segments (in orange) are populated
by Polycomb marks (in purple). What we observe, instead, is that the spreading
of the Polycomb marks require an appropriate 3D structure. A single bookmark,
as observed in section 2.2.2 and section 2.1.2, is not sufficient to create a coherent
epigenetic domain, but rather it needs a “favorable” epigenetic landscape and contacts
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Figure 2.9: (A) Comparison between in silico (purple) and in vivo (grey) ChIP-sequences
of the Polycomb-mediated mark H3K27me3. On the top, small orange arrows indicate
the PRE/PSC (bookmarks) positions. Results show great agreement between the two
sequences. (B) Snapshots of the dynamics. Notice that presence of various bookmarks
favor the formation of H3K27me3 domains (indicated by the big purple arrow), while
a single bookmark, if not coadiuvated by the surrounding epigenetic landscape (see big
orange arrow) is not enough to guarantee the formation of coherent domains.

with other bookmarks. Again, this is consistent with 3D chromatin conformation
being crucial for the spreading and establishment of epigenetic patterns.
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2.3 Discussion

In this chapter we have discussed a possible extension to the simple model presented in
section 1.4 to reproduce the local epigenetic order observed in real in vivo chromosomes.
The first model predicted that a single epigenetic mark eventually spreads on all the
chromatin, but in real chromosomes distinct stable epigenetic domains, characterised
by different marks, coexist at the same time. We show that this feature can be
reproduced by introducing genomic bookmarking in our model.

Bookmarkers are transcription factors which recruit the reader/writers machinerie
of a specific epigenetic marks, and that we suppose permanently bound to DNA. In
the model, bookmarkers-bound chromatin is modeled by a bead bearing a specific
mark that does not partecipate to the recolouring dynamics, hence enhancing the
probability of spreading its mark on the other non-bookmarked beads.

Our results strongly suggest that a critical density of bookmarks of a certain mark,
can form stable epigenetic domains of that same mark by spreading on its neghbouring
beads. Its dynamics is stopped either by thermal noise, or by the competition with
other bookmarks of different mark. Notably, our model does not require other external
factors to reproduce boundaries between the domains, as the spreading results to be
self-regulated by the bookmarks configuration.

Epigenetic spreading is also regulated when we have a single type of bookmark, but
the other epigenetic marks are thermodynamically favored. This is in accordance with
experimental observations where heterochromatin spreads on large domains, until it
reaches actively transcribing areas. We have also shown that the bookmarked domains
are robust against large perturbations of the system, e.g. what observed during mitosis.
The domains result to be stable for several cell cycles even if we suppose that during
mitosis a number of bookmarks is excised, and remain stable whenever the bookmark
density remains above a certain critical value. Notably, this means that the model
permits the formation of de novo epigenetic domains, in response to external stimuli,
by removing bookmarks, or inserting newly activated ones.

Finally, we have tested our model in a realistic problem, by recreating the dis-
tribution of the H3K27me3 mark on a Drosophila chromosome, by starting from
the position of PSC proteins which act as Polycomb bookmarks. The results of the
simulations are in great agreement with experimental data. Our simulations show
also that not all bookmarks end up in H3K27me3 domains, but rather it depends on
the 3D organization of the chromatin, in agreement with recent experiments.

While the model satisfyingly reproduces realistic epigenetic landscapes, it still has
room for improvement. For example, we have shown that the model can simulate
the dynamics of repressive states, but it is not probably suited for the study of
actively transcribing chromatin. In [2], D. Michieletto shows that active marks may
be better modelled as resulting from a co-transcriptional positive feedback loop, where
promoters are interpreted as bookmarks for active marks. With this new extension, it
is possible in theory to simulate even more complex realistic scenarios. For example, it
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would be interesting to employ the model to estimate the transcription rate of specific
genes by measuring in the simulations for what fraction of the dynamics the beads,
corresponding to those genes, bear the active mark and are spatially located nearby a
promoter. Results of this kind of simulations would allow a direct comparison with
RNA-seq experiments, and, possibly, to a fine tuning of all the parameters employed
in our model.

Our model predicts the epigenetic landscape on the chromatin given the distribution
of the bookmarks, but does not say anything about the dynamics of the bookmarks
themselves. Indeed, it is not clear how starting from a stem cell, several cell lineages
are established: how do bookmarking transcription factors know the whereabouts of
their cognate site? It is possible that, due to morphological and/or environmental
cues, the production of specific boookmarking factors is triggered and interact with a
pre-existing bookmark pattern. However, all this, probably, masks the presence of
new biophysical mechanisms which necessitate more discussion both on the biological
and physical front.
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Chapter 3

Mean-Field Theory of
Magnetic Polymers

You don’t have to test everything to destruction just to
see if you made it right.

Neil Gaiman, Terry Pratchett, Good Omens: The
Nice and Accurate Prophecies of Agnes Nutter,
Witch

In chapter 1 (section 1.4) we have introduce a novel model to study the coupling
of chromatin folding with epigenomic spreading in the nucleus of eukaryotes. There,
we model the chromatin fiber as a semi-flexible, spring-and-beads, polymer. To each
bead of the chain we assign a “colour” which represents the epigenetic states of the
nucleosome. The spatial dynamic of the chain obeys a set of Langevin equations (1.7),
while the “recoloring” dynamics is described by a Potts-like Hamiltonian eq. (1.13).
Thus far (chapter 1 and chapter 2), we analyzed this model by employing a set of
numerical simulations of the system. While this method is powerful and it allows a
in-depth qualitative, and quantitative, study of the system, it gives no certain answer
regarding certain fundamental questions in statistical mechanics. For example, we
have observed that at the equilibrium (section 1.4.3) there is a transition between a
swollen-disordered phase to a compact-ordered one; while we have strong evidences
that there is indeed a phase transtion, and it is of the first order, numerical simulations
alone cannot be conclusive.

In this chapter, we focus on field-theoretic approaches to study analytical and
numerically solvable models of magnetic polymers following the work of [3]. Namely,
we will map the chromatin model developed in chapter 1 into a lattice model, where
we can develop a mean-field Landau-Ginzburg-like theory at equilibrium. Analytical
results of our polymer models, will be compared with equivalent Montecarlo simulations
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Figure 3.1: Pictorial compariosn of a classic random walm (on the left) and a self-avoiding
random walk (on the right) on a square 2D lattice. Differently from a non-constrained
random walk, in the self-avoiding walk (SAW) the path cannot pass two times from the
same node.

in order to infer the effectiveness, and the limits, of a mean-field approach to this
kind of problems. Furthermore, we derive the kinetics equations for the equilibrium
[100], and generalize them to include out-of-equilibrium dynamics.

In order to derive the mean-field equations for our core model (see section 1.4), we
will proceed as follows: first, we will study the dynamics of a classic magnetic system
on a lattice with interaction (3.3); econd, we will study a Ginzubrg-Landau theory
for the equilibrium of an interacting homopolymer; finally, we will “merge” these two
approaches and develop a complete mean-field theory for the model. Notably, within
the first two approaches we will show the existence of a second-order phase transition
akin to what is observed respectively in the Ising model and the coil-globule collapse of
the Flory-theory. In the last model, instead, a first-order phase transition is observed
confirming the numerical results of section 1.4.3.

3.1 Basics of the Model

A theoretical approach to the study of the dynamics of polymer is quite difficult since
several dynamicle variables (position and velocity of each beads) and model-dependent
parameter (beads-beads interaction; connectivity term, flexibility terms) must be
considered at the same time. For this reason, if one is uniquely interested in the
equilibrium steady states of the system, it is useful to consider a more simplified,
models. Lattice polymer models, for example, have been studied since the very
beginnings of polymer physics [101], and have been shown to be fruitful to describe
conformational phase transitions in these systems.

As a first attempt to the construction of a lattice polymer model, one can map
a polymer made by N monomers into a N − 1 steps random walk on a lattice. The
random walk will define a path onto the lattice and describe the spatial configuration
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of the polymer, whose vertices are placed on the sites of the lattice crossed by the path.
The main drawback of this model is that a random walk cross itself several times,
violating the physical constraint of excluded volume. A useful, and more realistic,
extension is the so-called self-avoiding walk (SAW, see fig. 3.1), that is a path on a
lattice that never cross itself. Mapping polymers into self-avoiding walks has been
proven useful many times during history, as the critical behaviour of SAWs belong to
the same universality class as the one of “standard” polymers [102]. For this reasosn,
results for SAWs at the termodynamic limit, most of the time agrees qualitatively and
quantitatively with what observed with real polymers [103, 104].

We want to develop a Landau-Ginzburg mean field theory for the equilibrium
dynamics of the polymer model described in section 1.4. Let us now highlights the
main points of the model. First we must deal with the spatial dynamics: the dynamics
of a semi-flexible chain which, as already pointed out, can be treated by mapping the
polymer spatial configuration into a SAW on a cubic lattice. Second, we must consider
the beads-beads interactions present in the model. Namely, each beads can be in
three different states represented by the colors red, blue and grey, and interacting one
to another via short ranged (nearest neighbours) interactions. Red and blue beads are
“active” states, that is they interact with each other with an interaction akin to the
classic Potts model, e.g. beads of the same color attract each other, but they do not
interact with other colors. Grey beads are instead “inert” states and do not interact
with any other beads. The Hamiltonian of the model on a N -steps SAW γ can be
written as:

Hγ =
1

2

N∑
i,j=1

∆γ
i,jI(i, j) , (3.1)

where ri is the position of the i-th monomer on the lattice, ∆γ is the contact matrix
of the SAW γ, such that:

∆γ
a,b =

{
1 if monomers a and b are nearest neighbours
0 otherwise ,

(3.2)

and I is the interaction between the two monomers:

I(i, j) =

{
−ε if qi = qj = red or blue
0 if qi 6= qj or qi = qj = grey .

(3.3)

Since the solution of the full problem is long and requires many intermediate steps,
for clarity we choose to separate it into smaller “sub-problems”. First, we will study
the system with interaction (3.3), but by considering a SAW who completely fills
the lattice (also called Hamiltonian path), where we can replace the contact matrix
∆γ in (3.1) with the contact matrix of the lattice ∆. Second, we will consider an
Hamiltonian of the kind of (3.1), but with an easier interaction where I(i, j) = −ε
always, that is the polymer is effectively an homopolymer. Finally, once these two
problems are solved it will be easier to merge them together, and find the desired
mean-field theory associated to the full problem.
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3.2 Montecarlo Simulations of Self-Avoiding
Walks

Before considering the field-theoretical approach, let us describe the Montecarlo
method we have employed to performthe simulations of the model.

Given the nature of the system, our method will be composed of two distinct
parts, one that deals with the evolution of the magnetic states, and the other which
deals with the conformational changes of the polymers. While the first part is
straight-forward and can be implemented as done in standard spin-lattice models via
a Metropolis-Hastings method, the second is more tricky and must be approached
with caution.

The catalogue of methods one can employ to study the configurations of self-
avoiding walks is quite vast [105]. However, since we are dealing with interacting
SAWs with the additional degree of freedom given by the magnetic interaction, it is
convenient to adopt a method in the class of dynamic methods. Namely, let Hγ [S] be
the energy of SAW with spatial configuration γ, and spin configuration S, then we
define the partition function at temperature T as:

Z =
∑
{γ}

∑
{S}

exp [−βHγ [S]] , (3.4)

where β = 1/(kBT ), and the sums are over every possible SAW and spin configuration.
We start our simulation from a random SAW and, by using an appropriate stochastic,
Markovian, process, we evolve this chain until it has reached the equilibrium distribu-
tion described by the partition function (3.4). This stochastic process can be achieved
by using a Metropolis-Hastings algorithm using Hamiltonian Hγ , and by attempting
“moves” which evolve the spatial configuration of the SAW.

In our simulations we choose to employ a combination of local moves, and pivot
moves, in order to guarantee the ergodicity of the process [105]. They consist in:

Local Moves A local move (see fig. 3.2A) is one that alters the configuration of a
few consecutive beads at the same time. In our algorithm, whenever we propose
a local move, we choose a random consecutive segment of 4 beads, and replace
its configuration with another chosen randomly which preserves the end points
of the segment. The move is then accepted only if the new configuration does
not overlap with the pre-existing remaining chain.

Pivot Moves A pivot move (see fig. 3.2B) is a “non-local move”, as it changes the
configuration of a great number of beads at the same time. In the case of
pivot moves, we choose randomly a site along the chain as a pivot point, and
apply randomly one of the possible symmetries of the lattice (e.g. rotations
and reflections), on all the sites following our pivot point. As before, the new
configuration is accepted only if there are no overlapping with the remaining
chain.
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Figure 3.2: Pictorial illustration of local and pivot moves on a 2D square lattice. (A)
When performing a local move we choose randomly 4 consecutive sites of the SAW. We
keep the first and the last sites fixed, while we move the other two to obtain another SAW
configuration. (B) We perform a pivot move by choosing randomly a site of the SAW
(the pivot), and performing on all the following sites one geometric transformation. On
the top figure we perform a reflection with respect to the y axis; on the bottom one we
perform a 90 degree clockwise rotation.

We are finally ready to fully characterize our algorithm. We start our simulations
from a random N -step SAW, with random magnetic configuration. On this chain
we attempt 1 pivot move, and N − 1 local moves. We evaluate the difference in
energy ∆H betweent the H before the N moves, and the one after; we accept (all)
the configurational moves with probability p = min(1, exp[−β∆H]). After this, we
perform N spin-flipping moves and accept/reject them following the usual Metropolis-
Hastings algorithm for spin models. The union of the N configurational moves and the
N spin moves composes a single Montecarlo step. In order to achieve the equilibrium
distribution, we perform 102N Montecarlo steps.

To speed-up the convergence of the algorithm, we employ the Multiple Markov
Chain strategy [106, 107]. Namely. we run the Markov chains to simultaneously find
the equilibrium distributions for a set of different temperatures T = {T1, T2, . . . , Tk}.
For each of these simulations, we perform in parallel a Montecarlo step, as just
described. Then an adjacent pair, Ti, Ti+1 among the T values is chosen, and a “swap
move” is attempted, where the chain configuration at temperature Ti with energy Hi

is swapped with the one at temperature Ti+1 with energy Hi+1. This swapping move
is accepted with probability p:

p = min
(

1, e(βi+1−βi)(Hi+1−Hi)
)

, (3.5)

where βj = 1/(kBTj). The whole swapping process is also a Markov chain. Therefore,
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the complete process (Montecarlo steps+swap strategy) is itself ergodic and has a
unique limit in the so-called multi-canonical ensemble [108] which is actually the
producr distribution of the separate canonical ensembles at temperature T1, T2, . . . , Tk.
The main advantage of this kind of strategy is that it leads to an algorithm where
metastable states can be overcome [109], as the chains in these states can be swapped
away at other higher temperatures. Thanks to this the times needed to reach
equilibrium for our Montecarlo simulations becomes noticeably shorter, and, at the
same time, we are simulating the dynamics at a wide array of temperatures.

3.3 Lattice-Wide Mean-Field Models

In this section we will develop a mean-field theory for a magnetic spin-model with
nearest neighbours interaction described by (3.3). While this model is similar to the
classic Potts model, it is interesting to examine in detail, as the presence of an inert
state forces us to use a quite different approach to the one commonly employed.

For the remainder of this section, we will always use the convention of employing
a d-dimensional hypercubic lattice with M sites and coordination number z = 2d.

3.3.1 The Potts Model

Before we delve in the details of our model, let us review what the approach to the
standard ν-states Potts model [83]. We recall that the Hamiltonian, in this case, can
be written as:

HPotts = − ε
2

M∑
i,j=1

∆ijδqi,qj , (3.6)

where ∆ is the contact matrix of the lattice, δ is the Kronecker delta, and qi is the
“color” qi = {1, . . . , ν} of the i-th site. The problem, here, is that it is quite difficult
to treat a system whose elements can have a multitude of values with a mean-field
approach. The main strategy that has been employed is to restrict the study to only a
certain direction in the state-space. Namely, we choose a “privileged” color, e.g. q = 1,
and study its abundance, while constraining the other ν − 1 colors to have always the
same abundance. More in details, we introduce a two-state model where we map the
colors q into the spins S which take the values:

S(q) =

{
1 if q = 1

− 1
ν−1 otherwise .

(3.7)

The delta interaction in (3.6) must be replaced with a novel interaction IPotts(Si, Sj).
Indeed, while the cases involving the privileged spin S = 1 remain the same, the
interaction IPotts(− 1

ν−1 ,− 1
ν−1) must actually take into account that the spin S =

− 1
ν−1 is a mixture of colors and therefore must be averaged over all the possible
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underlying interactions, that is:

IPotts(− 1
ν−1 ,− 1

ν−1) = 〈I(q, q)〉q 6=1 = − ε

ν − 1
, (3.8)

which is easily computed by using that in the state S = − 1
ν−1 all the states q 6= 1 are

equally probable. The interaction can be explicitly written in terms of the spin values:

IPotts(Si, Sj) = −ε(ν − 1)SiSj + 1

ν
, (3.9)

and used to compute a partition function at temperature T :

ZPotts =
∑
{S}

exp

α∑
i,j

∆i,j
(ν − 1)SiSj + 1

ν

 , (3.10)

where we are summing over all possible spin configurations {S} and α = ε
kBT

. Notice
that in the sum over all the spin configurations the spins S = − 1

ν−1 must be counted
ν − 1 times in order to count for the various color states they are representing.

Finally, we want to discuss the equilibrium state of the Potts model along the
restriction where all the states q 6= 1 are equally abundant. It is easy to see from
Hamiltonian (3.6) that at the equilibrium two possible ordered states are possible:

1. the system is “completely coherent”, as all the sites present the state q = 1;

2. the system is in a “mixed” configuration, divided in ν − 1 coherent domains of
q 6= 1, all equal in size.

Notice that the difference in energy between the two states is an interface term, and
therefore vanishes as we go into the thermodynamic limit M →∞, and therefore the
two equilibrium states are equally probable. This suggests the presence of a symmetry
breaking when varying the temperature T as the system will have to “choose” one of
the two equivalent equilibrium states. This kind of behaviour is typical of systems
which presents a phase transition at some critical temperature Tc. This is confirmed
by a study of the partition function (3.10), which can be done using a mean-field
approach via an Hubbard-Stratonovich transform; this procedure gives the classic
results expected from a Potts model [83].

3.3.2 Inserting inert states

We now consider an ν state Potts model and add µ inert states, such that in total
we have ν + µ states. As a first step, we will try to redo the reasoning employed
in the standard Potts model in this more complex case. We will proceed as before:
let us consider a two state spin-model where S = 1 correspond to states with q = 1

and S = − 1
ν+µ−1 correspond to all the other states. The main difference with the
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previous model stands in the expression for the interaction between spins I?Potts which
this time will read:

I?Potts(− 1
ν+µ−1 ,− 1

ν+µ−1) = 〈I?(q, q)〉q 6=1 = −ε ν − 1

(µ+ ν − 1)2
, (3.11)

as only ν − 1 states are interacting this time. As before, we can write this interaction
explicitly in the spins S as follows:

I?Potts(Si, Sj) = −ε ς

(ν + µ)2

(
Si +

µ

ς

)(
Sj +

µ

ς

)
− εν − 1

ς
, (3.12)

where ς is a parameter which reads:

ς = (ν + µ)2 − ν − 2µ .

Using this new interaction one can build a mean-field theory, just like in the
standard Potts case. However, in this case, we have a problem, and the theory is not
useful to study the critical properties of the model. Let us look at the equilibrium
states of this model along the restriction where all the states q 6= 1 are equally
abundant. The states will be the same as in the previous case, however, the “mixed
case” will present inert states and therefore is characterised by a smaller energy of the
“completely” coherent case. This means, that when we vary the temperature T , this
time, we do not have symmetry breaking and, therefore, no phase transition can be
observed.

Mean-Field Theory

Let us, nevertheless, try to develop a mean-field theory from interaction (3.12), and
discuss the equilibrium results. As a first step, to ease the notation, we introduce the
parameters a, b, c,Q:

a =
ς

(ν + µ)2
, b =

µ

ς
, c =

ν − 1

ς
, Q = ν + µ− 1 .

With this choice of parameters, we can write the partition function for the model at
temperature T :

Z =
∑
{S}

exp

βε
2
a
∑
i,j

(Si + b)∆ij(Sj + b)

 , (3.13)

where
∑
{S} sums over all possible spin configurations and counts each spin state with

value S = − 1
Q multiple (Q) times. Notice, also, that we have neglected the constant

term
∑

i,j c∆ij .
A mean-field theory can be easily obtained from a partition function in the form

(3.13) by taking an Hubbard-Stratonovich transform [110] in the field φ:

Z ∼
∫
RM

exp

−∑
i,j

1

2βε

1

a
φi∆

−1
ij φj

∑
{S}

exp

[∑
i

φi(Si + b)

]
dφ , (3.14)
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where we have disregarded the constant term
√

(det∆)/(2π)M , and we define dφ =

dφ1 dφ2 · · ·dφM . As a first step, we perform the summation over the spin configura-
tions, an obtain:

exp

[∑
i

φi(Si + b)

]
=
∏
i

(
eφi(1+b) +Qe

φi

(
− 1
Q

+b
))

,

therefore mapping (3.14) into:

Z ∼
∫
RM

exp

−∑
i,j

1

2βε

1

a
φi∆

−1
ij φj +

∑
i

log

(
eφi(1+b) +Qe

φi

(
− 1
Q

+b
))dφ .

(3.15)
On this new expression of Z we perform both a saddle-point approximation, and
employ a mean-field hypothesis. Namely, we assume that the integral in (3.15) can be
approximated by the maximum value of its integrand (saddle-point approximation),
and that in this maximum we have φi ≡ φ for all i (mean-field hypothesis). Using
this procedure, (3.15) simplifies and can be approximated to:

Z ∼ exp

[
−M
a

φ2

2αz
+M log

(
eφ(1+b) +Qe

φ
(
− 1
Q

+b
))]

, (3.16)

where α = βε, and we have employed that
∑

i,j ∆−1
ij = M

z [110]. We are finally ready
to compute the mean-field expression for the free-energy per site f = −kBT

M logZ:

1

kBT
f =

1

a

φ2

2αz
− log

(
eφ(1+b) +Qe

φ
(
− 1
Q

+b
))

. (3.17)

Physical Relevance of the Field φ

Before looking at the properties of free-energy (3.17), let us discuss the physical
meaning of the field φ. To do so, we add in the partition function (3.13) a new linear
term due to a fictitious external field h:

Zext =
∑
{S}

exp

βε
2
a
∑
i,j

(Si + b)∆ij(Sj + b) + βh
∑
i

Si

 . (3.18)

Notice, that we can find the order parameter magnetisation m = 1
M 〈
∑

i Si〉 in the
ensemble defined by Z, by taking a first derivative of Zext in the external field h:

m =
1

β

(
∂

∂h
logZext

∣∣∣∣
h=0

.

By employing the same methodology as before, we compute (3.18) in the mean-field
approximation and obtain:

Zext ∼ exp

[
−M
a

φ2

2αz
+M log

(
eφ(1+b)+βh +Qe

φ
(
− 1
Q

+b
)
−β h

Q

)]
. (3.19)
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Figure 3.3: Plots of magnetization m at the equilibrium as a function of α. Plots
obtained by numerically minimizing free-energy (3.17) and by inserting the φ value found
in (3.20). Results show that phase transition occurs only when m = 0, while in the other
cases we observe only that the magnetisation grows, as α grows. Notice that in accordance
with the classic Potts model, we find a continuous phase transition for ν = 2, µ = 0, and
a first-order for ν = 3, µ = 0 [83].

Therefore, we can find an expression for the magnetisation in the mean-field limit:

m =
eφ(1+b) − eφ

(
− 1
Q

+b
)

eφ(1+b) +Qe
φ
(
− 1
Q

+b
) , (3.20)

which indicates that the field φ describes the average magnetisation of the system,
and, more precisely, the abundance of the privileged spin S = 1 .

Equilibrium properties of the model

To study the properties of free energy (3.17), we expand it around φ = 0. One can
notice the presence of a linear term in φ

1

kBT
f ∼ − log(Q+ 1)− bφ+ o(φ2)

which mimics the effect of an external magnetic field of intensity b. This term precludes
the model from displaying a phase transition whenever we have b > 0. Notice, also,
that b = 0 if and only if there are no inert states (µ = 0), and the standard Potts
model is recovered, confirming our previous discussion (see fig. 3.3).

3.3.3 Two-Fields approach

Here, we discuss an alternative approach to the one presented in the previous section,
that preserve the critical properties of the system even when inert states are present.
Let us consider a model with ν active states, and µ inert ones. As in the previous
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approach, we restrict the phase space to consider only states where one color q = 1 is
privileged, while the other ν − 1 active color have always the same abundance. Notice
the difference with the previous case: here we explicitly separate active states from
inert ones in two states, while before we integrated all the other ν + µ− 1 states into
a single state. With this assumption, we can map a model with ν + µ colors, into a
three-states spin model where: the spin S = 1 represents the privileged color q = 1;
the spin S = −1/(ν − 1) represent all the other ν − 1 active spins; the spin S = 0

represents all the µ inert states.

Mean-Field Model

As a first step, we are particularly interested in the case of ν = 2, µ = 1 case, as it
corresponds to our original interaction described in Hamiltonian (3.1). Namely, the
three colors are described by the three spin values S = {−1, 0,+1}. With this choice,
it is easy to see that interaction (3.3) can be written as:

I(Si, Sj) = − ε
2

[
S2
i S

2
j + SiSj

]
. (3.21)

Using this interaction we can explicitly write down a partition function for the model:

Z =
∑
{S}

exp

βε
2

∑
i,j

S2
i ∆ijS

2
j +

βε

2

∑
i,j

Si∆ijSj

 , (3.22)

where we are summing over every possible spin configuration {S}. A field study of
this system is possible by taking two successive Hubbard-Stratonovich transforms on
the terms Si∆ijSj and S2

i ∆ijS
2
j by introducing the respectively the fields φ and ψ:

Z ∼
∫
R2M

exp

−∑
i,j

1

2βε

(
ψi∆

−1
i,j ψj + φi∆

−1
i,j φj

)∑
{S}

exp

[∑
i

(
Siφi + S2

i ψi
)]

dφ dψ

(3.23)
where we have disregarded the constant multiplicative term (det∆)/(2π)M , and we
define dφ = dφ1 dφ2 · · ·dφM , and dψ = dψ1 dψ2 · · ·dψM . As a first step, we notice
that we can perform easily the summation over every spin configuration:

∑
{S}

exp

[∑
i

(
Siφi + S2

i ψi
)]

=
∏
i

(
eφi+ψi + e−φi+ψi + 1

)
, (3.24)

which maps equation (3.23) into:

Z ∼
∫
R2M

exp

−∑
i,j

1

2βε

(
ψi∆

−1
i,j ψj + φi∆

−1
i,j φj

)
+
∑
i

log
(

2eψi coshφi + 1
)dφ dψ

(3.25)
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We now, finally, introduce the mean-field hypotheses via a saddle-point approximation.
Namely, we suppose that the value of Z can be well approximated by the maximum
of the distribution defined by the exponential in (3.25) (saddle-point approximation),
and that in this maximum we have that ψi ≡ ψ and φi ≡ φ for all i (mean-field
hypothesis). Within this framework, the partition function reads:

Z ∼ exp

[
−M φ2

2αz
−M ψ2

2αz
+M log

(
2eψ coshφ+ 1

)]
, (3.26)

where α = βε, and we have used the relation
∑

i,j ∆−1
i,j = M/z. We finally estimate

the free-energy per site f = −kBT
M logZ:

βf =
φ2 + ψ2

2αz
− log(2eψ coshφ+ 1) . (3.27)

Physical Relevance of the Fields φ, ψ.

Before looking in details at the equilibrium properties of the model, let us discuss
the physical relevance of the two fields φ and ψ. First, we include in the partition
function (3.22) two new terms to account for fictitious external fields h and w, one
acting on the active spins, and the other on the inert spins:

Zext =
∑
{S}

exp

βε
2

∑
i,j

S2
i ∆ijS

2
j +

βε

2

∑
i,j

Si∆ijSj −
∑
i

βhSi −
∑
i

βw(1− S2
i )

 .

(3.28)
Notice that we can obtain an estimate for the average value of the “magnetisation”
m = 1

M 〈
∑

i Si〉, and of the inert-states density % = 1
M 〈
∑

i(1− S2
i )〉, in the ensemble

defined by (3.22), simply using the relations:

m = − 1

Mβ

(
∂Zext

∂h

∣∣∣∣
h,w=0

% = − 1

Mβ

(
∂Zext

∂w

∣∣∣∣
h,w=0

. (3.29)

We can follow the same procedure used on Z, to estimate a mean-field approximation
for the partition function Zext (3.28); we obtain:

Zext ∼ exp

[
−M φ2

2αz
−M ψ2

2αz
+M log

(
2eψ cosh(φ− βh) + e−βw

)]
. (3.30)

By employing the relations (3.29), one obtains the following estimates for mag-
netisation m and inert density %:

% =

〈
1

2eψ cosh(φ) + 1

〉
m =

〈
2eψ sinh(φ)

2eψ cosh(φ) + 1

〉
.

(3.31)

76



CHAPTER 3. MEAN-FIELD THEORY OF MAGNETIC POLYMERS

0 1 αc 2 3
α [z−1]
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1/2

1 |m|
%

Figure 3.4: Equilibrium phases of the model described by partition function (3.22). For
each value of α the order parameters m and % have been found by first numerically
minimizing free-energy (3.27), and then substituting the so-found field values in (3.31).
We observe a second-order phase transition between a magnetically disordered state
characterised bym = 0, to an ordered state with |m| > 0 at the critical inverse temperature
αcz = 1

2e
−1 + 1.

We conclude that the field φ is intimately related to the magnetisation, as the sign
of φ and m will be the same; the field ψ, instead, helps φ in regulating the total
abundance of the inert states. Notice, indeed, that when φ = ψ = 0 we have % = 1

3

and m = 0 indicating a disordered system where all the three states (2 active and
one inert) are equally probable. On the other hand when ψ and φ are large, % will
quickly decrease, while at the same time the magnetisation will increase, suggesting
the presence of an ordered state where the density of inert states is negligible.

Equilibrium properties of the model

We are finally ready to study the equilibrium phases described by the free-energy
(3.27) by minimizing f in the two fields φ and ψ. By studying the equations ∂f

∂φ = 0

and ∂f
∂ψ = 0, we find that the equilibrium value of ψ depends only on φ by the following

relation:

ψeq [φeq] =
φeq

tanh (φeq)
.
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By substituting in (3.27), and expanding in series around φeq ∼ 0, one obtains:

f [φeq] ≈ − log(3) +B[α]φ2 + C[α]φ4 +O(φ6) , (3.32)

where B[α] and C[α] are:

B[α] =
5

6αz
− 5e

3(1 + 2e)
C[α] =

1

30αz
+

76e− 87

180(1 + 2e)2
.

By minimizing this expression, we obtain an approximation for the equilibrium
value of φeq as a function of α:

φeq ≈

0 if αz ≤ 1+2e
2e

±
√
− B[α]

2C[α] if αz > 1+2e
2e .

(3.33)

This show the presence of second-order phase transition between a disordered state at
high temperature (α ≤ αc) and an ordered one at smaller temperatures (α > αc), with
critical inverse temperature αc = 1+2e

2e z−1. Numerical minimizations of free energy
(3.27) confirm the presence of a continuous phase transition (see fig. 3.4), akin to what
observed in the classic 2-states Potts model. Interestingly, while the magnetisation
remains always m = 0 in the incoherent state α < αc, the inert-states density % starts
at value 1/3 when α = 0, and is always decreasing when α increases. This suggests
that the three states (two actives and one inert) are equally probable only when α = 0,
but whenever α > 0 the active states will always be favored, even when no magnetic
coherence arises.

3.3.4 Generalization of the Two-Fields approach

In this section, we will briefly discuss a generalization for interaction (3.21) to include
the case where ν ≥ 2 active states are present, and a generic number µ ≥ 0 of inert
states is introduced. We use an approach similar to what discussed in section 3.3.1
where we studied the classic Potts model. Namely, first we choose a privileged active
color (e.g. q = 1) to which we associate the spin state S = 1; the other ν − 1 active
states will be all mapped into a single spin value S = − 1

ν−1 and assumed equiprobable;
finally the µ inert states are all mapped in the spin state S = 0. By following the
approach described by (3.8), we can write a new form for the interaction I for the
case of a Potts model with µ inert states as:

I(Si, Sj) = −εa(S2
i − bSi)(S2

j − bSi)− εcSiSj , (3.34)

where a, b, c are numerical parameters which depend exclusively on the number of
active states ν:

a =
(ν − 1)2

ν
, b =

ν − 2

ν − 1
, c =

ν − 1

ν
. (3.35)

78



CHAPTER 3. MEAN-FIELD THEORY OF MAGNETIC POLYMERS

Mean-Field Model

We proceed as before; as a first step we write down the expression for the partition
function at temperature β = 1/(kBT ):

Z =
∑
{S}

exp

∑
i,j

βεa

2
(S2
i − bSi)∆i,j(S

2
j − bSj) +

∑
i,j

βεc

2
Si∆i,jSj

 , (3.36)

where we are summing over any spin configuration, but counting ν − 1 times the
spin-state S = − 1

ν−1 , and m times the spin-state S = 0. We now perform the usual
Hubbard-Stratonovich transforms in the fields φ and ψ:

Z ∼
∫
R2M

exp

−∑
i,j

1

2βε

(
1

a
ψi∆

−1
i,j ψj +

1

c
φi∆

−1
i,j φj

)×
×
∑
{S}

exp

[∑
i

(
Siφi + (S2

i − bSi)ψi
)]

dφ dψ .

(3.37)

The summation over all the spin configuration can now be easily computed, and reads:

∑
{S}

exp

[∑
i

(
Siφi + (S2

i − bSi)ψi
)]

=
∏
i

(
eφi+

1
ν−1

ψi + (n− 1)e
−φi+ψi
ν−1 +m

)
,

(3.38)
where we have used that b = ν−2

ν−1 .
The procedure for finding a mean-field free-energy is identical to the one discussed

in the previous section. In this case we obtain that the free-energy per site f =

− 1
M kBT logZ takes the form:

1

kBT
f =

ν

(ν − 1)2

ψ2

2αz
+

ν

ν − 1

φ2

2αz
− log

(
eφ+ 1

ν−1
ψ + (ν − 1)e

−φ+ψ
ν−1 + µ

)
. (3.39)

Physical Relevance of the Fields φ, ψ.

By following the same procedure of the previous section, we can map the two fields φ
and ψ into: the magnetisation m, and the inert-states density %. We find that:

m =
2e

1
ν−1

ψ sinhφ

eφ+ 1
ν−1

ψ + (ν − 1)e
−φ+ψ
ν−1 + µ

,

% =
µ

eφ+ 1
ν−1

ψ + (ν − 1)e
−φ+ψ
ν−1 + µ

.
(3.40)

Notice that when we are in the classic Potts model with no inert states (µ = 0),
equations (3.40) shows correctly that % = 0 for every value of the fields.
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Equilibrium Properties of the System.

The equilibrium properties of the model are obtained by minimizing f (3.39) in the
two fields φ and ψ. As in the previous section, we find that at the equilibrium the
field ψ depends only on φ by the following relation:

ψeq [φeq] = (ν − 1)
φeq

tanh (φeq)
.

Now we insert this estimation of ψ in (3.39), and expanding it in series:

f ∼ A[α;µ, ν]φ2 +B[α;µ, ν]φ3 + C[α;µ, ν]φ4 +O(φ5) , (3.41)

where:

A[α;µ, ν] = − ν

3αz
+

ν

ν − 1

1

2αz
− eν(2ν + 1)

6(ν − 1)(µ+ eν)

B[α;m,n] = − eν(ν − 2)

6(ν − 1)2(µ+ eν)

C[α;m,n] =
ν

30αz
+
eν
[
−3µ(4ν3 + 13ν2 − 43ν + 31) + eν(8ν3 − 39ν2 + 114ν − 98)

]
30(ν − 1)3(µ+ eν)2

.

(3.42)

An analytic study of this kind of expansion is in general quite difficult, but some
considerations can still be made. First, notice that the cubic term in φ (B[α; ν, µ]) is
always negative and non-null whenever we have ν > 2, which is typical of systems
showing first-order phase transition. Indeed, just like in the classic Potts model,
numerical minimizations of free-energy (3.39) show that whenever we have more than
two active states (ν ≥ 3), we have always a first-order phase transition (see fig. 3.5A)
from a magnetically incoherent state (|m| = 0) to a magnetically coherent one with
(|m| > 0) for every value of µ.

The last case we have to examine is the case ν = 2, that is when we have only two
active states. It is easy to prove from (3.39) that f(−φ, ψ) = f(φ, ψ) for every value
of ψ. This indicates that expansion in series of f will have only even powers of φ. For
this very reason, a general study of the phase transition in φ for an arbitrary value of
µ is difficult. Nevertheless, from the expansion (3.41), it turns out that C[α; ν, µ] ≥ 0

always if µ ≤ 2, while it can become negative otherwise, indicating, again, a possible
first-order phase transition for ν = 2, µ > 2. Notably, numerical minimizations suggest
that this argument is only partially right: we observe that if ν = 2, µ ≤ 3 the phase
transition is of the second order, while if ν = 2, µ ≥ 4 the phase transition seems
always to be of the first order (see fig. 3.5B). By comparison with the classic Potts
model: we have shown that the order of the phase transition depends not only on the
number of active states, but also on the possible presence of noisy inert states.

80
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Figure 3.5: Order parameters µ and % (see (3.40)) as a function of α at equilibrium.
(A) If ν ≥ 3 we have a first-order phase transition between an incoherent µ = 0 phase
and an ordered one |µ| > 0, for whatever arbitrary value of µ. (B) If ν = 2 we can have
both a continuous phase transition if µ ≤ 3, or a first order one if µ ≥ 4. Notice also
that in both situations we have that the inert density % decreases monotonously with α
increasing, with its maximum value at α = 0 coinciding with %(0) = µ

ν+µ .

3.4 Landau-Ginzburg Model for an Homopolymer

In this section we present a Landau-Ginzburg theory to study the equilibrium prop-
erties of interacting homopolymers, modeled as an ISAW on a lattice. This kind of
models have been widely studied as they are the simpler way to construct a mean
field theory to describe the coil-globule collapse observed in polymers in solutions
[101, 111]. However, a complete formulation of the problem via a Landau-Ginzburg-
like free-energy is missing. Indeed, one can satisfyingly describe the problem only
in the limit of the so-called “Hamiltonian paths”, that is self-avoiding walks that
completely fill the lattice. Nearby this limit, we can write down a free-energy which
qualitatively (but not quantitatively) describe correctly the coil-globule transition.
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In order to find an expression for the mean-field free energy we divide the analysis
in two parts. First we study the system in absence of any interaction, i.e. we study
the so-called “enumeration” of SAW in a lattice, via an heuristic argument that can
be rigorously proved in the case of Hamiltonian paths [112]. Second, in the limit of
Hamiltonian paths, we introduce an interaction between the monomers and study the
coil-globule transition.

3.4.1 Enumeration of Self-Avoiding Walks

Let us consider an N step self-avoiding walk on a lattice with M sites. We are
interested in estimating the number of such walks ZSAW in the thermodynamic limit:

N → +∞ and M → +∞ with 0 ≤ ρ ≡ N

M
≤ 1 , (3.43)

where we will call ρ ≡ N/M the packing density of the SAW. An exact answer to this
problem is actually still an open problem both in mathematics and physics, and only
estimates in certain limits are possible.

Here we present an easy heuristic method which, despite this, gives a surprisingly
good first approximation for ZSAW in terms of the density ρ on a lattice with M sites
and coordination number z. We write the partition function ZSAW as follows [113]:

ZSAW ∼
M !

(M −N)!

( z
M

)N−1
. (3.44)

Let us examine the various terms in this expression. First, the term M !/(M −N)!

is the number of ways in which we can sequentially (the order counts) pick N sites
on a lattice of M sites. However, without any restriction, the N sites picked are
generally far away from each other and do not describe a walk; for this reason we
correct this number by inserting the factor

(
z
M

)N−1 because only the first bead has
actually M possible choices, while the remaining ones must be chosen among the z
first neighbours.

We are interested in an expression for a free-energy in the thermodynamic limit
(3.43). We define the free-energy per monomer at the temperature T :

fSAW = −kBT
N

logZSAW . (3.45)

Using that M = N/ρ and the Stirling approximation for the factorials, it is easy to
prove that in the thermodynamical limit:

1

kBT
fSAW = − log

(z
e

)
+

1− ρ
ρ

log(1− ρ) . (3.46)

While the procedure is heuristic, the result is the same as in more rigorous mean-field
studies [112], in the limit of Hamiltonian paths, e.g. ρ → 1. Namely, these works
suggest that the result is correct within an approximation of order 1

z .

82



CHAPTER 3. MEAN-FIELD THEORY OF MAGNETIC POLYMERS

3.4.2 Mean-Field Theory of an Interacting SAW

Thanks to these results, we can develop a mean-field theory for an interacting self-
avoiding walk, in order to model the behaviour of homopolymers in a solution. As a
first step, we write an expression for the energy of an homopolymer modeled by an
N -steps ISAW γ on a lattice composed of M sites with coordination number z:

HISAW = − ε
2

N∑
i=1

nc(i; γ) , (3.47)

where nc(i; γ) is the number of nearest-neighbours of the i-th monomer of γ occupied
by other monomers. Given, this Hamiltonian, we can write the partition function at
temperature T :

ZISAW =
∑
{γ}

exp

[
βε

2

N∑
i=1

nc(i; γ)

]
, (3.48)

where we are summing on every possible SAW γ, and β = 1/(kBT ).
An exact expression for (3.48) is not known. However in the limit of large

packing density ρ ≡ N/M (ρ → 1), it is possible to study the free-energy density
fISAW = −kBTZISAW by doing a series expansion in z−1 [114]. Here, we present a
possible derivation of the first terms of this serie via some mean-field arguments.

Let us consider the function nc(i; γ) which gives us the number of “contacts”
of the i-th monomer with the other monomers on the SAW. Our first mean-field
approximation is to disregard the dipendence from the particular monomer, and we
assume that nc(i; γ) = ñγ ∀i ∈ γ. Second, we assume ρ ∼ 1, that is the polymer
occupies most of the lattice; win this way we can assume that all the polymers γ have
about the same average number of contacts nγ . With this approximation, we are
saying that the value of nγ uniquely depends on the geometric properties of the lattice
(M , z) and the size of the polymer N ; more specifically we assume nγ ≡ nc(ρ; z).
With this assumption (3.48) can be approximated as:

ZISAW = exp

[
βε

2
nc(ρ; z)

]
ZSAW , (3.49)

where we have used that ZSAW =
∑
{γ} 1. Finally, we must estimate the average

number of contacts nc(ρ; z) as a function of the density. Again, a general form is not
easy to find, but trivially nc(1; z) = z, therefore, if we have ρ ∼ 1 we can approximate
this function to:

nc(ρ; z) = ρz . (3.50)

Notice that while this approximation works in the Hamiltonian path limit, in the
opposite case ρ → 0, we would have that nc(ρ; z) → 0 which is not true, as we
expect that nc(ρ, z)→ 2 to ensure the connectivity the chain. Nevertheless, when we
have dense walks this crude approximation is actually confirmed by more rigorous
approaches [114].
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Figure 3.6: Plots of the equilibrium value of the density ρ as a function of the temperature
parameter α. The plot has been obtained via numerical minimization of free-energy (3.51).
The plot shows the existence of continuous-phase transition between a swollen phase
(ρ = 0) and a globular phase where ρ > 0 at α = 1/z, in qualitative accordance with the
classic Flory theory.

Using (3.50), (3.49) and (3.46), we are able to write an expression for the free-
energy fISAW = −kBT

N logZISAW:

1

kBT
fISAW =

1− ρ
ρ

log(1− ρ)− 1

2
αzρ , (3.51)

where α = βε and we have disregarded the constant term in (3.46).
We are now ready to study the equilibrium dynamics of an interacting self-avoiding

walk described by (3.51). To have a qualitative understanding of the model, we expand
fISAW in series of ρ:

1

kBT
fISAW ∼ −1 +

1

2
(1− αz)ρ+

1

6
ρ2 +O

(
ρ3
)

. (3.52)

At the equilibrium, the system will assume the value of ρ, which minimize the free
energy fISAW. One can then estimate the equilibrium density ρeq(α) as:

ρeq(α) ≈
{

0 if α ≤ z−1

1
24(αz − 1) if α > z−1 .

(3.53)

This result suggests the presence of a second-order phase transition at α = 1 from
a swollen state characterised bey ρ = 0 to a more dense phase with ρ > 0. Numerical
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CHAPTER 3. MEAN-FIELD THEORY OF MAGNETIC POLYMERS

Figure 3.7: Results of Montecarlo simulation of chains with Hamiltonian (3.47). (A)
Plots of radius of gyration Rg and reduced heat capacity C as a function of the temperature
parameter α, obtained via simulations of chains with N = 500. Results show a second-
order phase transition between a swollen phase (high Rg) and a compact one (low
Rg) at the inverse temperature αc ≈ 0.37 located thanks to the peak in the plot of
C. (B) We estimated the critical inverse temperature αc for chains of length N =

100, 200, 300, 400, 500 and plotted as a function of N−1/ν with ν = 2 [115]. Interpolation
of the results gives us an estimate of the critical temperature at the thermodynamic limit
α? ≈ 0.298.

minimizations of (3.51) confirm the presence of second-order phase transition at
αc = 1/z (see fig. 3.6). We have shown that our mean-field estimation for the free
energy of an homopolymer is consistent with what classically found in the study of
polymer solutions, as it shows the existence of a continuous phase transition in the
coil-globule collapse.

Finally, we want to verify how good are our predictions, by comparing the mean-
field result with the ones we obtain by employing Montecarlo simulations. We perform
the simulations by following the procedure described in section 3.2, and considering
chains of increasing size in the range N = 100− 500, on a cubic lattice (z = 6). Due
to some technicalities, it is difficult to measure directly the parameter ρ; therefore,
as a measure of the state of the system, we employ the radius of gyration Rg of the
chain. Finally, we define the “reduced” heat capacity C as :

C = 〈(HISAW − 〈HISAW〉)2〉 , (3.54)

that is the variance of the chain energies at equilibrium. Heat capacity C diverges
in the thermodynamic limit [110] as α approaches its critical value αc. Using this
property, we can estimate the value of αc for each chain length N (see fig. 3.7A) , and
interpolate a critical value α? by using finite-size scaling analysis: αc = α? + kN−1/ν ,
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where ν is the cross-over exponent and in mean-field has been estimated to be ν = 2

[107, 115] (see fig. 3.7B).
Using this procedure we obtain α?c ≈ 0.30± 0.02, that is compatible with the value

found in [107]. Notice, however, that the Montecarlo result does not agree with the
mean-field result that in a cubic lattice is αc = 1/6. This is probably due to a bad
estimate of the average number of contacts nc(ρ; z) made in (3.50).

3.5 A Mean-Field Model for Magnetic Polymers

In this section we develop a mean-field theory for a polymer, modeled as SAW on
a lattice, with magnetic bead-bead interactions. As in section 3.3, we will develop
the theory for a generic Potts-like model with ν active interacting states, and µ

magnetically inert states, by focusing on the ν = 2, µ = 1 model corresponding to the
one studied in the previous chapters (see section 1.4 and chapter 2) via molecular
dynamics simulations.

As discussed in the previous sections, when dealing with a magnetic system with
several states q = {1, 2, . . . , ν + µ} it is convenient to choose a privileged state (e.g.
q = 1), while forcing the other states to have be equally probable. There are two
main ways to do this:

1. (One-field approach) We map the privileged state q = 1 into the spin S = 1; we
suppose all the other states (both active and inert) be equally probable and are
mapped into the spin state S = − 1

ν+µ−1 (see section 3.3.2).

2. (Two-fields approach) We map the privileged state q = 1 into the spin S = 1;
we suppose that the active states are equally probable and mapped into the
spin state S = − 1

ν−1 ; the µ inert states are all mapped into the null spin S = 0

(see section 3.3.3 and section 3.3.4).

We have shown that the first approach is not effective when describing the criticality
of a model with inert states (µ ≥ 1). However, when dealing with self-avoiding walks,
we will show that qualitatively all the main properties of the model can be explained
by employing only the average magnetisation of the chain.

For these reasons, we will still first study the ν = 2, µ = 1 model using the first
(one-field) approach, and we will show that the results are compatible with what
obtained with the two-field one. Finally, we will generalize the two-field approach to
study the interaction in the general case of ν ≥ 2, µ ≥ 0 states.

3.5.1 One-Field Approach

We present here, a first method to study the dynamics of magnetic polymer at
equilibrium when we have ν = 2 interacting states, and µ = 1 inert states [3]. The
energy of a chain modeled by an N -step SAW on a lattice of M sites is the same as
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in (3.1), and for a particular configuration γ ∈ SAW it reads:

Hγ =
1

2

∑
i,j

∆γ
i,jI(Si, Sj) , (3.55)

where we recall that ∆γ
i,j is the contact matrix of the SAW γ (3.2), and I is the

magnetic interactions between spins. The particular form of I depends on the approach
chosen; as a first step we use the “one-field approach” where we map a privileged state
in the spin S = 1, while the other two are mapped in the spin S = −1

2 . Following
(3.12), in the case of ν = 2, µ = 1, the magnetic interaction I reads:

I(Si, Sj) = −5

9
ε

(
Si +

1

5

)(
Sj +

1

5

)
− 1

5
ε . (3.56)

Hence a general form for the partition function of the model at temperature T is:

Z =
∑
{γ}

∑
{S}

exp

βε
2

∑
i,j

(
5

9
(Si + 1

5)∆γ
i,j(Sj + 1

5) +
1

5
∆γ
i,j

) , (3.57)

where the sums are over every possible SAW γ, and every possible spin configuration
{S}. Interestingly, while the constant term in (3.12) is usually discarded in lattice-wide
models, here it is relevant as it is multiplied by the contact matrix ∆γ .

As a first step, we treat the magnetic component of partition function (3.57), by
performing an Hubbard-Stratonovich transformation in the field φ, and summing over
every possible spin configuration {S}. Similarly to (3.15), we obtain:

Z ∼
∑
{γ}

∫
RN

exp

∑
i,j

(
− 9

10

1

α
φi

(
∆γ
ij

)−1
φj +

1

5
α∆γ

ij

)
+
∑
i

log
(
e

6
5
φi + 2e−

3
10
φi
) ,

(3.58)
where α = βε. Let us disregard for now the sum over self-avoiding walks configurations,
and consider only the magnetic terms. As done in the previous sections, we employ
both saddle-point, and mean-field, approximations to obtain an estimate for the
magnetic component of Z:

Zγmagnetic ∼ exp

− 9

10
φ2
∑
i,j

(
∆γ
ij

)−1
+M log

(
e

6
5
φ + 2e−

3
10
φ
) , (3.59)

which is in similar in form to what studied before, but presents the peculiar term∑
i,j

(
∆γ
ij

)−1
. This term, generally, depends on the particular choice of SAW γ and

it is difficult to estimate. However, we know that if we have an Hamiltonian path
(i.e. a SAW where N = M), then the result of this sum is the same as the one we
find for lattice contact matrix

∑
i,j ∆−1

ij = M/z. This results gives us an insight on
the physical interpretation of our summation term: we can estimate it as M over the
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Figure 3.8: Density ρ and magnetisation m as a function of α at equilibrium described
by free energy (3.60); magnetisation has been computed via formula (3.20). Notice that
at αc ≈ 3.95 we observe that both order parameters display a finite jump indicating a
first order phase transitions between a swollen-disordered phase and a compact-ordered
one. The insets report snapshots from molecular dynamics simulations as described in
section 1.4.3 and are representative of the swollen-disordered and compact-ordered phase.

average number of contacts that each monomer has. As discussed in section 3.4.2,
if we consider SAW with high density ρ ∼ 1 (we recall that ρ = N/M), then we can
approximate the average number of contacts as ρz, and therefore:

∑
i,j

(
∆γ
ij

)−1
≈ M

ρz
.

Finally, only the term
∑
{γ} exp

[
1
5α∆γ

ij

]
in (3.57) remains to be discussed. Notice,

however, that this term describes the partition function of an interacting SAW whose
monomers interact via an attractive interaction of intensity −1

5ε. This is exactly the
situation we have studied in section 3.4.2; using (3.51), and in the limit of ρ ∼ 1, we
have:

1

kBT
log

∑
{γ}

exp

[
1

5
α∆γ

ij

] ∼ −N 1− ρ
ρ

log(1− ρ) +
N

10
αρz .

We are now ready to write an estimate of the mean-field free-energy per monomer
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Figure 3.9: (A) Reduced free energy f?(ρ;α) as a function of ρ for various values of α.
f? has been found by numerically solving equation (3.61) to find the function φ?(ρ;α)

and using it in the free energy (3.60). Notably we observe that increasing the value of
α a minima far away from ρ = 0 is created, inducing a first-order phase transition at
α ≈ 3.95. (B) Contour plots of free-energy (3.60) as a function of the two fields φ and ρ
shows that for α < αc ≈ 3.95 the system is found at low φ and ρ values (swollen chain,
incoherent magnetisation), while if α > αc the system present high density and big values
of φ suggesting a compact chain with coherent magnetisation.

f = −kBT
N logZ as:

1

kBT
f =

1− ρ
ρ

log(1− ρ)− 1

10
αρz +

9

10

φ2

αz
− log

(
e

6
5
φ + 2e−

3
10
φ
)

. (3.60)

The equilibrium phases of this free-energy can be estimated by minimizing it in terms
of the two fields ρ and φ. Namely, by imposing ∂f

∂φ = 0, one obtains:

9φ

5αρz
−

6
5e

6
5
φ − 3

5e
− 3

10
φ

e
6
5
φ + 2e−

3
10
φ

= 0 . (3.61)
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It would be tempting here to use this expression for ρ as a function of φ at equilibrium
and substitute in (3.60), to do a series analysis as we did in the previous sections.
However, due to the boundary constraints on ρ (0 ≤ ρ ≤ 1), this kind analysis can be
tricky, and for this reason we decided to do the opposite: numerically compute from
(3.5.1) the value of φ as a function of ρ, and substitute it in the free energy to obtain
the reduced free energy f?(ρ;α) at the equilibrium. By plotting this reduced free
energy (see fig. 3.9), we observe that it has always a minimum in ρ = 0. On the other
hand, for high values of α (α & 3.4) a new global minimum at higher density is formed,
suggesting a first-order phase transition between a swollen phase (low ρ) to a compact
phase (high ρ) at α = αc ≈ 3.95. Furthermore, if we numerically minimize the free
energy (see fig. 3.8), and employ the definition of magnetisation found in (3.20), we
observe that there is a first-order phase transition between a swollen-disordered phase,
and a compact ordered one, confirming our results obtained by molecular dynamic
simulations in section 1.4.3.

3.5.2 Two-Fields Approach

We now briefly present a mean-field theory for a magnetic polymer with a generic
number ν ≥ 2 of interacting states, and generic number µ ≥ 0 of inert states. To do
so, we will follow what we called the “two-fields approach” (see section 3.3.4). By
considering an interaction of the form (3.34); the partition function will read:

Z =
∑
{γ}

∑
{S}

exp

βε
2

∑
i,j

(
a(S2

i − bSi)∆γ
ij(S

2
j + bSj) + cSi∆

γ
i,jSj

) , (3.62)

where a, b, c are parameters which depend only on the number of active states ν as
in (3.35). As in the previous cases, we perform two successive Hubbard-Stratonovich
transformations to introduce the fields φi and ψi:

Z ∼
∑
γ

∫
R2N

exp

 1

2α

∑
i,j

(
1

a
ψi

(
∆γ
ij

)−1
ψj +

1

c
φi

(
∆γ
ij

)−1
φj

)
+

−
∑
i

log

(
e
ψi
ν−1 (eφi + (ν − 1)e−

φi
ν−1 ) + µ

)]
dφ dψ .

(3.63)

By proceeding as in the previous section, we obtain a mean-field expression of the
free-energy f(φ, ψ, ρ;α) as:

1

kBT
f =

1− ρ
ρ

log(1− ρ) +
ν

(ν − 1)2

ψ2

2αρz
+

ν

ν − 1

φ2

2αρz
+

− log
(
e

ψ
ν−1

(
eφ + (ν − 1)e−

φ
ν−1

)
+ µ

)
.

(3.64)

As a first step, let us study the model when ν = 2 and µ = 1 in order to further
verify the correctness discussed in the “one-field” approach of the previous section. In
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Figure 3.10: Results of the minimization of the free energy (3.65) as a function of α;
the order parameters magnetisation m, and inert states density are found by employing
equations (3.40). We observe a first-order phase transition between a swollen-disordered
state (|m| = ρ = 0), to a compact ordered phase (ρ > 0, |m| > 0), with critical inverse
temperature αc ≈ 3.95z−1.

this particular case, free-energy (3.64) reads:

1

kBT
f =

1− ρ
ρ

log(1− ρ) +
ψ2

αρz
+

φ2

αρz
− log

(
2eψ cosh(φ) + 1

)
. (3.65)

By numerically minimizing this free energy we obtain the plots shown in fig. 3.10.
We observe, again, the presence of a first-order phase transition at αc ≈ 3.95z−1, in
good agreement with what observed in the “one-field approach”, suggesting its validity.

Comparison with Montecarlo Simulations

As a final step, we compare our results with what observed Montecarlo simulations of
the model. A complete Montecarlo experiment of the system must evolve not only the
spatial configuration of an ISAW, but also its spin configuration. In order to consider
these two processes, for a chain of length N , we define a single “Montecarlo step” as
composed by the two following sub-steps [107]:

1) a configurational Montecarlo step, where we modify the spatial configuration of
our SAW, by following the procedure described in section 3.2;
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Figure 3.11: Results of Montecarlo simulations for a chain of length N = 500, whose
beads can have three states q = {1, 2, 3} with interaction (3.3). (A-B) The plots of
radius of gyration Rg and magnetisation m as a function of α = βε show the presence of
a phase transition between a swollen-disordered phase (high Rg, |m| ≈ 0), to a compact-
ordered phase (small Rg, |m| > 0. (C) The critical temperature parameter αc ≈ 0.75

between the two phases can be estimated via the peak of the reduced heat capacity,
defined as the variance of the energy at equilibrium. (D) The Binder cumulant of the
magnetisation (3.66) sharply becomes negative nearby the critical point α ≈ αc, before
becoming positive again and reaching the value 2

3 . This behaviour indicates that the phase
transition is of the first order.

2) N independent color flips, where we randomly change the color of a single site,
and accept the change using the usual Metropolis-Hastings criterion [20].

Each of these Montecarlo steps is then repeated for a number of times (about 103×N),
until the system reach a steady state.

We simulate the ν = 2, µ = 1 model for chains of length N in the range N =

50−500. The Montecarlo approach, together with the molecular dynamics simulations
presented in section 1.4.3 confirm the presence of a first order phase transition. Namely,
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CHAPTER 3. MEAN-FIELD THEORY OF MAGNETIC POLYMERS

to examine the order of the phase transition, we estimate the Binder cumulant B(m):

B(m) = 1− 〈m4〉
3 〈m2〉2

, (3.66)

whose properties have already been discussed in chapter 1; we observe that as α
approaches the critical value αc, the Binder cumulant becomes sharply negative, as
expected in first-order phase transitions. Finally, as done in section 3.4.2, we evaluate
an effective critical value αc(N) for each finite size chain size N by estimating the
position of the peak of the reduced heat capacity C(α). From these estimates we can
extrapolate a value for the critical inverse temperature at the thermodynamic limits
α?, by interpolating the law αc(N) = α?+bN−1/2. We find the value α? ≈ 0.63±0.01,
to be compared with the mean-field value αmf

c = 3.95z−1, which in the cubic lattice
yield αmf

c = 0.658, quite close to the Montecarlo estimate.

Generic Number of States, and Limits of the Mean-Field Model

After having examined in details the case ν = 2, µ = 1, let us now discuss what
happens if we consider an arbitrary number of active states ν ≥ 2, and inert states
µ ≥ 0. Given the difficulties we find in minimizing analytically the free-energy (3.64),
we rely mostly on numerical minimization.

In the case of a two-states classic Potts model (ν = 2, µ = 0), we observe a peculiar
behavior in the mean-field dynamics. Namely, we observe that by varying the value
of α, the system undergoes two different phase transitions. One at αz ≈ 2 that
is a continuous phase transition from a swollen-disordered phase (|m| = 0, ρ = 0)
to a compact-disordered (|m| = 0, ρ > 0) configuration with a continuous-phase
transition akin to the classic θ-point transition of the Flory model. A second, first
order, phase transition is observed at αz ≈ 3.1 between the compact-disordered phase
and a compact-ordered one (|m| > 0, ρ > 0). In all the other cases (ν ≥ 2, µ > 0) we
always observe only a first-order phase transition between the swollen-disordered and
compact-ordered phases, much similar qualitatively to the one displayed in fig. 3.10.

In order to verify the correctness of the mean-field previsions at ν = 2, µ = 0,
we performed both some Montecarlo studies with chain of length N = 500, and
molecular dynamics simulations akin to the ones discussed in section 1.4. In both
these analysis, we can only find, as always, a first-order phase transition between the
swollen-disordered and compact-ordered phase, with no trace of compact-disordered
configurations. We conclude that, in this case, the mean-field model approximation
fails to describe properly the equilibrium properties of the system. Indeed, all the
hypothesis we made to compute free-energy (3.65) were based on the assumption that
the SAW density ρ is close to ρ ∼ 1. This means that our free-energy is not suitable
to study small density phases as exemplified by the ν = 2, µ = 0 case. Notably, one of
the possible corrections one could do is on the estimate of the number of contacts
(3.50), which indeed is well justified if ρ ∼ 1, but loses all meaning when ρ ∼ 0 where
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we have nc(0) = 0, against the very definition of SAW which ensures that the number
of contacts must always be nc ≥ 2.

3.6 Out-Of-Equilibrium Dynamical Equations

In the previous section, we have developed a mean-field theory to determine the
equilibrium phase at various temperatures, displayed by a magnetic polymers. The
equilibrium phases are characterized by the introduction of some mean-field variables:
the chain density ρ, and the fields φ and ψ (only in the “two-fields approach”). In this
section, we are interested in characterizing the dynamics of these variables, rather
than their equilibrium value, and, possibly, try to extend the mean-field theory out
of equilibrium, in order to discuss the results of molecular dynamics presented in
section 1.4.4.

Before we present our dynamical model, we must decide which set of mean-field
variables we are going to consider. We can either use the free-energy (3.60) found
with the “one-field approach” with mean-field variables (φ, ρ), or the free-energy (3.65)
found with the “two-fields approach” and variables (φ, ψ, ρ). We have shown in the
previous section that the two free-energies are equivalent when studying the dynamics
of magnetic SAWs, therefore for simplicity we consider the one obtained by “one-field
approach” as there are only two fields to treat.

The dynamics will be described by a set of “model A” equations [20], which are
found in analogy with Hamiltonian mechanics. Namely, we assume to have a spatially
extended domain V characterized by free energy density as in (3.60), and that the
dynamics of its fields φ(x) and ρ(x) is determined by a functional Hamiltonian H in
the form:

H [ρ, φ] =

∫
V

[
f(ρ, φ;α) + κφ (∇φ)2 + κρ (∇ρ)2

]
dx , (3.67)

where κφ, κρ are surface-tension like coefficients which quantify the rates of diffusion
of our fields φ and ρ. The dynamics of the fields, will be, therefore determined by the
Hamilton-like equations: 

1

Γφ

∂φ

∂t
= −δH

δφ

1

Γρ

∂ρ

∂t
= −δH

δρ
,

(3.68)

where Γφ,Γρ are mobility-like coefficients with a role much similar to the one mass
have in the dynamics of particles in classic Hamiltonian systems. Using the expression
for free energy found in (3.60), equations (3.68) reads:

∂φ

∂t
= Γφ

(
−9

5

φ

αρz
− 3

e
3
2φ + 2

+
6

5
+ κφ∇2φ

)
∂ρ

∂t
= Γρ

(
9

10

φ2

αρ2z
+
αz

10
+

log(1− ρ)

ρ2
+

1

ρ
+ κρ∇2ρ

)
.

(3.69)
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Before studying these equations, let us examine how we introduced the out-of-
equilibrium dynamics in section 1.4.4. We assumed that during the Langevin dynamics
associated to the field ρ, and the recoloring dynamics associated with the field φ,
evolve generally thanks to interactions with different intensities. We try to mimic this
procedure, by introducing two independent quantities αφ = βεφ and αR = βεR which
will substitute α in equations (3.69):

∂φ

∂t
= Γφ

(
−9

5

φ

αφρz
− 3

e
3
2φ + 2

+
6

5
+ κφ∇2φ

)
∂ρ

∂t
= Γρ

(
9

10

φ2

αρρ2z
+
αρz

10
+

log(1− ρ)

ρ2
+

1

ρ
+ κρ∇2ρ

)
.

(3.70)

We have decoupled the effective inverse temperature α into two parameters αφ, αρ,
which separately affect the dynamics of the polymer (αρ) or of the epigenetic field
(αφ). Notice that, if we try to apply definition (3.68) to this last set of equations, we
obtain that a corresponding Hamiltonian H exists if and only if αφ = αρ; therefore,
we conclude that in the case of αφ 6= αρ the dynamics equations (3.70) do not describe
the dynamics of an equilibrium system.

We study equations (3.70) by numerically integrating them over a 50× 50 grid, by
employing a mid-step method with time-step ∆t = 0.01. The choice of the mobility
and surface tension coefficients Γφ/ρ, κφ/ρ affects only details of the kinetics of the
system, but not the qualitative properties of the steady-state for long times. We set
their values to Γφ = 10−1, Γρ = 10−3, and κφ = κρ = 2. We tested the system by
employing several initial conditions of the fields φ and ρ, and found out that if we
set ρ ∼ 1 than for certain values of the parameters (αφ, αρ), the system flows to local
minima. To prevent this, we employ random initial conditions broadly distributed
where the average value of the density is ρ̄ = 0.6.

By using this procedure, we look at the long-time steady states for the system
in terms of the fields ρ and φ, and varying the values of the interaction parameters
(αρ, αφ). The results allow to draw a non-equilibrium phase diagram of our system
shown in fig. 3.12C.

Coherently with the results of the previous section, we observe that along the
equilibrium line αφ = αρ, the system goes from a swollen disordered phase (ρ = 0,
φ = 0), to a compact-ordered one (ρ > 0, φ > 0). Outside the equilibrium line, not
only we still observe the two phases, but also a third phase for large αρ and small
αφ appears. This phase is characterized by a compact configuration (ρ > 0) and null
magnetization (φ = 0), and it is therefore reminiscent of the compact-disordered phase
observed in the out-of-equilibrium phase diagram found with molecular dynamics (see
section 1.4.4).

Notably, in chapter 1 we also observed a fourth, swollen-ordered phase (ρ = 0,
φ > 0) in correspondence of the region with small αρ and large αφ. In this context,
instead, we find that this region of parameter values is still dominated by the compact-
ordered phase. This should not surprise us since in our calculation we always employed
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Figure 3.12: (A-B) Steady states of the field φ and density ρ as a function of αφ, αρ.
Results are obtained by integrating equations (3.70) on a 50× 50 grid with Γφ = 10−1,
Γρ = 10−3, and κφ = κρ = 2. (C) By comparing the two plots for φ and ρ we are able
to draw a qualitative phase diagrams for our dynamics, which shows the existence of three
distinct phases: compact-ordered, compact-disordered and swollen-disordered. The red
circle denotes the first-order transition observed at in equilibrium. Insets show snapshots
of representative configurations from molecular dynamics of the magnetic polymer as in
(1.4.4).

the hypothesis of ρ ∼ 1, and therefore should be not very accurate at low-densities.
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Swollen-Disordered to Compact-Disordered Phase Transition

Let us briefly examine the phase transition between the swollen-disordered and
compact-disordered phases, which is observed by keeping αφ small, and varying the
parameter αρ. In order to simplify the argument, we study equations (3.70) in the
limit of αφ � 1. In this limit, the dynamics of the field φ is dominated by the linear
term in(3.70):

∂φ

∂t
∼ − 9Γφ

5αφzρ
φ ,

which, if ρ > 0, it implies that φ(t) ∼ exp[− 9Γφ
5αφzρ

t]. This means that φ reaches
exponentially fast the φ = 0 whenever ρ > 0, and αφ � 1. On the other hand, if
ρ = 0, the only possibility for equations (3.70) not to diverge is that φ = 0 too. We
conclude that if αφ � 1, then we can safely assume that φ ≡ 0 during the whole
dynamics. In this case, we have to deal only with the dynamics of the field ρ which
will read:

∂ρ

∂t
= Γρ

(
αρz

10
+

log(1− ρ)

ρ2
+

1

ρ
+ κρ∇2ρ

)
, (3.71)

Notice that this expression is the “model A” equation for a field theory described by
free-energy (3.51) with α = 1

5αρ, which describes a self-interacting homopolymer. We
conclude therefore that in the limit αφ � 1 the system shows a coil-globule transition
akin to what observed for homopolymers, suggesting that the non-equilibrium phase
transition we observe is continuous.

Compact-Disordered to Compact-Ordered Phase Transition

Finally, we examine the compact disordered to compact-ordered phase transition when
αρ � 1. In this limit, the most relevant term for the dynamics of the field ρ is the
term:

∂ρ

∂t
∼ Γρ

αρz

10
,

which indicates that in the first instants of the dynamics the density grows almost
linearly, until it reaches a value ρ ≈ 1. In this limit, the dynamics of the magnetization
field φ, will read:

∂φ

∂t
= Γφ

(
−9

5

φ

αφz
− 3

e
3
2φ + 2

+
6

5
+ κφ∇2φ

)
. (3.72)

Notice that this equation is what we would obtain if we studied the “model A” equations
of the ν = 2, µ = 1 model as presented in section 3.3.2. This indicates that, in the
one-field approach considered, no phase transition will be detected by only using the
dynamics described in (3.72). However, if we would have used a two-field approach,
we could have found a second-order phase transitions between the compact-disordered
phase, and the compact-ordered one.
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3.7 Discussion

In this chapter we have proposed a field theoretical approach to study the dynamics of
magnetic inspired models of epigenetic systems. Our approach has shown successfully
that the model studied in section 1.4 can be mapped into an interacting SAW
with magnetic-like interactions between its vertices. Namely, we have established
via analytical means that there exist a first-order phase transition between the
swollen epigenetically disordered phase, and the compact epigenetically coherent one,
confirming the results of molecular dynamics simulations presented in the previous
chapters.

While our main objective was to study the dynamics of magnetic polymers, we
also developed a complete theory for spin-lattice models with Potts-like interactions
in the presence of inert states. Notably, we extended the classic Potts theory, by
noticing that the number of magnetically inert states can dramatically influence the
dynamics, and changes the order of transition.

The methodology we have described in this chapter, being simple enough it can
be applied to a broader set of models. For example, we have only studied the case
where interacting states interact all identically via a Potts-like interaction. It would
be interesting to explore the possibility of modeling asymmetric models which perhaps
show non-null interaction between different states. Another fascinating possibility
would be to expand the mean-field theory in order to embrace an approximation
of higher order, perhaps via an RPA approach [116]. In this context, it would be
interesting to study the formation of localized domains by inserting the genomic
bookmarking described in chapter 2.

In summary the results presented in this chapter show that a field theory ap-
proach to a complex model, like the magnetic polymer ones, can identify the general
mechanisms involved in the interaction between epigenomic spreading, and chromatin
3D organization. Moreover, thanks to our strategy, we can push our system out-of-
equilibrium to study via analytic means the properties of the model. Such results,
would be almost impossible to derive via a far-from-equilibrium system without an
underlying effective free-energy.
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Chapter 4

Epigenomic Phase Separation
in the Cell Nucleus

Never trust the sound of rain upon a river rushing
through your ears

Porcupine Tree, Arriving Somewhere but not here

In the previous chapters, we have investigated the behaviour of the model proposed
in section 1.4 in several ways, ranging from numerical simulations (chapter 1 and
chapter 2) to mean-field techniques (chapter 3). Namely, we have studied the dynamics
of epigenetic patterns, using a Potts-like model coupled with the chromatin dynamics
in order to fully understand the intimate relationship between gene expression, and
chromatin architecture. We have found that the model, even in the most basic form,
suggest the existence of a first-order-like phase transition between an epigenetically
disordered phase, and an ordered one, granting therefore the existence of an “epigenetic
memory”.

In this chapter, we aim to expand the model to study chromatin organization
and epigenetic spreading at the scale of cell nucleus, always inspired by analogies
with mahnetic polymer models. Namely, we extend the mean-field theory presented
in chapter 3 to include in the discussion the presence of several chromatin fibers in
non-dilute environment, by studying a new Landau-Ginzburg field theory [20] where
the dynamics of epigenetic marks is linked to that of genome folding within the nucleus.
Our theory considers, as in the previous chapters, a 1D chain of Potts-like spins which
is allowed to fluctuate in 3D, but the study will be handled via classic field-theory
techniques, along with some numerical simulations.

Similarly to what observed in chapter 1, at the equilibrium regime we already
capture some features seen in vivo in cells, such as segregation of different epigenetic
marks, but we fail to explain the experimentally observed coexistence of diverse
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epigenetic and genomic domains in eukaryotic nuclei [21]. For this reason, we modify
the model to consider non-equilibrium processes, due to generic energy-consuming
biochemical and biophysical processes in the nucleus. We discover that a simple
first-order reaction leads to arrested, and tunable, phase separation of epigenomic
domains, in qualitative agreement with experiments [117].

4.1 Construction of a Coarse-Grained Model

In chapter 3 we introduced techniques to study the equilibrium dynamics of a 3D
self-avoiding chain with epigenomic spreading via mean-field techniques. Here, we try
to expand the study to the case of a multitude N of such chains contained in a limited
volume V . Namely, we will “construct”, via phenomenological considerations, a new
free energy density f in the magnetization and density fields. The analysis of this
phenomenological free-energy will be mostly conducted via field theory techniques.
However, it is useful to employ,at the same time, numerical simulations of the molecular
dynamics (here called “Brownian Dynamics”) described by the model, in order to
verify that the phenomenological model is indeed qualitatively correct.

Brownian Dynamics

Here, we briefly describe the numerical simulations employed when studying the
dynamics of a melt of polymer. As already discussed in section 1.4.2, chromosomes
are modelled using semi-flexible bead-spring chains. Each bead is marked with an
epigenetic state q = {A,B,U}, and the dynamics of the chains are described by
a set of Langevin equations (1.7) derived by the Hamiltonian (1.8) with attractive
interaction εL. After evolving the dynamics of a N -beads long chain for a certain
time τR, we evolve the color of the beads using N Metropolis moves at temperature
T and Hamiltonian (1.13) and considering epigenomic interaction strength εR (in
general εL 6= εR, see section 1.4.4). This process is repeated several times, until
the system achieves a steady state. The molecular dynamics simulations are run
at constant-temperature (NVT ensemble) employing the LAMMPS engine [18] with a
Velocity-Verlet scheme.

To model the whole nucleus dynamics, we perform simulations of a melt of annealed
polymers at different monomer densities ρ = N/V and different values of interaction
strengths αR = αL (equilibrium regime). Usually, we consider N = 50 polymers with
256 beads each, and the range of parameters employed are ρ = 0.1− 0.8σ−3 (with σ
defining the beads size), and αL = 0.75− 1.1.

Phenomenological Field Model

Here we will develop a field-theoretical approach to describe a solution of polymers
with epigenomic interactions. In order to derive a consistent field theory, one possible
way is to: (i) derive an Edwards-like Hamiltonian [118] from the original one (1.8);
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(ii) account for the presence of a melt of polymers [119]; (iii) introduce a Potts-like
interaction and recolouring dynamics. While such a procedure is in theory possible,
it is of difficult application. Thus, we decided to follow a simpler way: rather than
deriving, an exact form for the free-energy density f , we introduce some ansatzs and
employ a phenomenological form for f .

We describe the system by two fields n(x, t) and m(x, t); they are respectivelt the
density and “magnetization” fields. The former records the local genomic density at a
given spatio temporal location, the latter the local abundance of a given epigenetic
state. These fields should be interpreted as local averages over a volume element
centred in x, large enough to smooth out microscopic fluctuations of the chromatin
structure, but much smaller than the typical nucleus size. The equilibrium properties
are described by the following free-energy density f :

βf [m(x), n(x)] = am(x)2 + bm(x)4 + cn(x)2 + dn(x)3 − χm(x)2n(x) , (4.1)

where β = 1
kBT

is the inverse of the temperature. The phenomenological parameters
of the uncoupled system are constant and set to be a > 0, b > 0, c > 0, d > 0.
The parameter χ > 0, governing the coupling between the epigenetic profile and the
chromatin organization, is temperature dependent; more specifically χ(T ) decreases
as the temperature increase and χ(T ) → 0 as T → +∞. Finally, we consider the
system contained in a fixed volume V ; therefore the local density n obeys the following
constraint:

n0 ≡
1

V

∫
V
n(x, t) dx = constant ∀t , (4.2)

where n0 is the average (and constant) density of the system.
In writing equation (4.1) we have employed only two ansatzs so far:

(1) the free-energy f must respect the Z2 symmetry observed in section 1.4 [1] of
the magnetization field (symmetry between the epigenetic marks A/B);

(2) as the magnetization vanishes (m → 0) the Potts-like interaction are non-
existent; therefore the model must describe the behaviour of the density field
via a standard virial expansion for non-ideal gases [20]. Namely, when m = 0

the ground state of the system must be a nucleus homogeneously filled by DNA.

Finally, we choose a minimal coupling term, χm2n to model the feedback between
chromatin folding (n > 0) and epigenetic ordering (m2 > 0). In this context, χ can
be thought of as parametrising the self-attraction of equal epigenetic marks, which is
mediated by the usual reader-writer machinerie (see section 1.1).

Free-energy (4.1) is in apparent disagreement with the single-chain mean-field
energy we have found in the previous chapter (see section 3.5), as in the latter the
interaction term between the two fields is inversely proportionaly to the density fields.
However, notice that the single-chain model is valid only in the limit of strongly
diluted system where n0 � 1. Indeed, the coupling term χm2n becomes ininfluent
and therefore other, different, terms should be taken into consideration in this limit.
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Figure 4.1: Countour plots of the free energy f (4.1), with a = b = c = d = 1, when
no constraint (4.2) is considered. At χ = 3.5 the only minimum is at m = n = 0,
but increasing the interaction stremgth to χ = 3.8 two other metastable minima (with
m2 > 0 and n > 0 appear and we have phase coexistence typical of a first-order phase
transition. Finally at higher temperatures (χ = 4) the null phase m = n = 0 is now
become metastable in favour of the ordered phases.

On the other hand, we will prove in section 4.2.3 that even without doing so, the model
described by (4.1) correctly describes qualitatively the behaviour of the single-chain
system when taking the limit n0 → 0.

4.2 Equilibrium of the Coarse-Grained Model

In this section we will study the behaviour of a model described by the free-energy
density (4.1) (with a = b = c = d = 1) at the equilibrium. As a first step, let us
ignore the constraint given by a finite volume (4.2); doing this we are considering the
system in a dilute regime similar to what studied in chapter 3. In this case one can
disregard the locality of the free-energy density f and therefore the equilibrium phases
are easily found by solving the system of equations ∂f

∂m = 0 and ∂f
∂n = 0, and studying

the stability of the steady states found while varying the value of the interaction
strength χ.

While the procedure itself is quite simple, explicit results are difficult to present
here as they involve solutions of fourth-order polynomial equations. Nevertheless,
exact calculations (made thanks to the Mathematica software) show the existence of a
first order phase transition at χc ≈ 3.8 (see fig. 4.1) from a “swollen-disordered” phase
characterised by m = n = 0, and a “compact-ordered” phase with m2 > 0 and n > 0,
compatibly with what found in section 1.4 and chapter 3. Note that this result does
not (qualitatively) depend on the values of the phenomenological constants a, b, c, d.

Let us now consider the finite volume constraint (4.2). In this case, we can
not disregard the fact that f is a local density, and thus we must define the total
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free-energy functional F as a function of the magnetization m and density n fields:

F [m,n] =

∫
V
f [m(x), n(x)] dx . (4.3)

Generally, the equilibrium properties of the system are found by minimizing this
functional. Here, however, we have a constraint on the density field n, and thus we
have to resort to employ Lagrange multipliers techniques. Namely, we must minimize
the functional:

G[m,n] = F [m,n]− µ
∫
V

[n(x, t)− n0] dx ,

where µ is a Lagrange multiplier. Minimization of this functional is done by solving
the equations δG

δm = 0 and δG
δn = 0, which is reduced to the set of equations:

δf

δm
[m(x), n(x)] = 0

δf

δn
[m(x), n(x)] = µ

1

V

∫
V
n(x) dx = n0

, (4.4)

where with δf
δ− we denote the functional derivative of the free-energy density f with

respect to either the field m or n. Note that from these equation we can infer the
physical meaning of the Lagrange multiplier µ as the chemical potential.

The first equation of (4.4) gives us the equilibrium values m? of the non-conserved
field m as a function of the conserved field n and the interaction parameter χ. This
equation is easily solved and reads:

m? [n(x, t);χ] =


0 if n(x, t) ≤ a

χ

±
√
χn(x, t)− a√

2b
if n(x, t) >

a

χ
.

(4.5)

Thanks to these solutions, we can restrict the problem to consider only the conserved
density field. For this purpose, we define the effective free-energy density f? ≡
f? [n(x, t)] ≡ f [m?(x, t), n(x, t)]; this new quantity reads:

f?[n(x);χ] =


cn2 + dn3 if n(x) ≤ a

χ

−a
2

4b
+
aχ

2b
n+

(
c− χ2

4b

)
n2 + dn3 otherwise .

(4.6)

This procedure simplifies Eqs. (4.4) which become:
δf?

δn
[n(x)] = µ

1

V

∫
V
n(x) dx = n0

. (4.7)
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Notice that this equation is always satisfied by the trivial uniform solution n(x) ≡
n0 ∀x, and chemical potential µ = f?[n0;χ].

4.2.1 Common-Tangent Construction

To look for non trivial solutions we first notice that the expression for f? in (4.6)
does not contain derivatives of n, hence the first of Eqs. (4.7) consist of a polynomial
equation to be solved at fixed x. In other words, for each value of µ, the field function
n(x, t) can assume only a finite number of values {n1, n2, . . . , nk}. In turn, these
entail the coexistence of different phases (as they are characterised by different values
of n).

Coexistence is achieved when two phases in the system, n(x) = n− and n(x) = n+

are characterised by the same pressure P = f?−n δf?δn and chemical potentials µ. These
conditions can be represented graphically by the common tangent construction [20] (see
fig. 4.2, which states that the tangents of the function f?(n) at points (n−, f(n−;T ))

and (n+, f(n+;T )) must have the same slope µ and the same intercept P . The
decomposition of the average concentration n0 into a mixture of n− and n+ with
n− ≤ n0 ≤ n+ occurs through the so-called “binodal” decomposition [20]. Namely, for
each value of χ we must solve the system of equations:

∂f

∂n

∣∣∣∣
n−

=
∂f

∂n

∣∣∣∣
n+

f(n−)− n−
∂f

∂n

∣∣∣∣
n−

= f(n+)− n+
∂f

∂n

∣∣∣∣
n+

. (4.8)

As we noted, in general there could exist three (or more) phases n1, n2, n3 that
satisfy at the same time the common tangent construction (4.8), i.e. such that
µ(n1) = µ(n2) = µ(n3) and P (n1) = P (n2) = P (n3). However, in the specific case of
a free-energy in the form (4.6) this is impossible. Indeed, given a generic third order
polynomial function g(x) = a+ bx+ cx2 + dx3 there are no two points x1 and x2 such
that the common tangent construction is satisfied. In (4.6) we are “lucky” because the
function f? is defined piece-wise, and therefore we have a hope to find two densities
n− < a/χ and n+ > a/χ that respect the construction.

Finally, if the domain of the free energy present boundaries, e.g. is a given interval,
one can have some particular situations at its border. In our case, the domain is,
in fact, limited by the physical assumption that the density field is always positive
n(x) ≥ 0. Indeed, the slope of the tangent µ ≡ δf/δm is not well defined when
the density n(x, t) = 0; in this case we assume that the tangent slope can take any
arbitrary, and when we apply the common-tangent construction one must only assume
that the tangent from n− ≡ 0 and n+ has only the same intercept (pressure), with no
constraint on µ.
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Figure 4.2: Pictorial illustration of the common tangent technique.(A) Given a free
energy f (in blue) we find two points n−, n+ such that the tangent (in orange) to the
graph of f is the same. (B) If we define the system for n >= 0, in the point n = 0 the
tangent is not well defined; therefore we just need to find another point n+ such that the
tangent to f passes from the origin.

4.2.2 Phase Diagram Construction

After we developed the method to investigate the behaviour at equilibrium of the
system, let us apply it to our system. First, as we already noticed, we know that
the homogenous solution n(x) ≡ n0 is always a solution of equations (4.7). Thus, if
for some value of (χ, n0) we find a demixed solution thanks to the common tangent
construction, we need some method to discern which of the two situations is the stable
one found at the equilibrium.

The main method we employ is to find the so called spinodal region in which the
homogeneous solution n(x) = n0 is unstable; to verify the stability of this solution
we just have to check the second derivative of f and impose δ2f?

δn2

∣∣∣
n(x)=n0

< 0. This

inequality is quickly solved and its solution reads:

a

χ
< n0 <

χ2 − 4bc

12bd
. (4.9)

Inside this region of values the homogeneous solution is linearly unstable and the
system spontaneously demixes into low density (n−) and high density (n+) phases.
Beware, however, that if the homogeneous solution is not unstable, it does not mean
it is stable, as it could be metastable. To check for metastability we simply compare
the free-energies given by equation (4.3). Namely, if we have a demixed configuration
(n−, n+) to be compared with the homogeneous solution we must check the inequality:

αf (m∗(n+), n+;χ) + (1− α)f (m∗(n−), n−;χ) ≶ f (m∗(n0), n0;χ) ,

where α is the fraction of the system in the n+ phase such that:

αn+ + (1− α)n− = n0 , (4.10)
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Figure 4.3: Equilibrium phase diagram associated to the free energy Eq. (4.1) and
obtained using the common tangent construction. The three phases are: (UD) uniform
density (n = n0) and epigenetically disordered (m2 = 0); (UO) uniform density (n = n0)
and epigenetically ordered (m2 > 0); (DO) demixed and epigenetically ordered (n = n+,
m2 > 0 and n = n−,m2 = 0). A fourth partially-demixed ordered (PDO) phase is
characterised by weaker variations in density (n− > 0) and denoted by a white shading
within the DO phase. The dotted line marks the critical value of the coupling χc(n0), the
solid lines identify the boundaries of the coexistence region (binodals) and the dashed lines
mark the spinodal region where the uniform solution is linearly unstable [20, 120]. Insets
report representative snapshots from Brownian Dynamics simulations of dense solution of
annealed copolymers.

which reads: α = n0−n−
n+−n−

.
By applying this procedure to our free energy for every value of (χ, n0) we can

finally obtain an equilibrium phase diagram of our model. Notice that the qualitative
features of our phase diagram do not depend on the values of the phenomenological
constants a, b, c, d in (4.1); for this reason, from now on we will focus on the case
a = b = c = d = 1. The phase diagram as a function of the coupling interaction
χ and average density n0 is reported in fig. 4.3; the binodal lines n−(χ) and n+(χ)

are drawn with thick black lines and denote the solutions to the common-tangent
construction for a given χ. We find that the equilibrium system is characterised by
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the presence of three possible phases:

1. Uniform Disordered (UD) Phase: the genome organizes spatially as a uniform
(n(x) ≡ n0) and epigenetically incoherent (m(x) = 0) colouring phase.

2. Uniform Ordered (UO) Phase: the genome is spatially uniform (n(x) ≡ n0),
but the epigenetic marks are all coherently coloured (m(x)2 6= 0).

3. Demixed Ordered (DO) Phase: The genome is characterised by local aggregation
into high density clusters (n(x) > n0), each characterised by coherent colouring
(m(x)2 > 0). In low density zones (n(x) < n0), epigenetic marks are incoherent
(m(x)2 = 0).

Notice that that the binodal line n−(χ) in fig. 4.3 has an angular point at χ ≈ 3.8;
this suggest the Demixed-Ordered phase is actually divided in two “sub-phases”:

3.1 PDO (Partial Demixed Ordered) phase: genome organizes in domains of typical
densities n+ and n−, with n+ > a

χ > n− > 0; colouring is coherent only in the
domains where n(x) = n+.

3.2 actual DO phase: genome organizes in droplets of typical density n+ > 0,
dispersed in a phase with n− = 0; in this case there is colouring order (m(x)2 6= 0)
in the domains where n(x) > 0.

4.2.3 Nature of the Phase Transitions

In this section, we will discuss about the existence, and order, of the phase transition
between our four phases. For our convenience, we will divide the discussion in three
parts: (1) transition between uniform phases (UD ↔ UO); (2) transitions between
uniform and demixed phases (UD ↔ PDO, UO ↔ PDO, UO ↔ DO); (3) transition
between demixed phases (PDO ↔ DO). Namely, we will prove that all of these
transitions, with a little doubt on PDO ↔ DO, are continuous phase transitions (see
fig. 4.4), in opposition with the first-order phase transition we found in the dilute
regime in chapter 1 or chapter 3.

Transition between Uniform Phases

In a equilibrium uniform phase with average genomic density n0, the magnetization
will be itself homogeneous and assume the value given by (4.5). Let us study the
quench from the Uniform-Disorderd phase to the Uniform-Ordered one. We can
do this quenching by changing both the value of the coupling χ and density n0; in
whichever way we choose to do this we will have a transition when n0χ = a. It is
easy to verify from (4.1) that the order parameter m is continuous along the critical
line n0 = a/χ, but its gradient

(
∂m
∂n0

, ∂m∂χ

)
is not. This proves that the UD ↔ UO

transition is continuous (see fig. 4.4A).
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4.2 Equilibrium of the Coarse-Grained Model

Figure 4.4: Order parameterM (4.11) as a function of the coupling χ at fixed average
density n0. Thanks to the phase diagram fig. 4.3 we highlight regions of the plot with
different colors depending on the phase the system is in. Plots indicate that, when passing
from a phase to another, the average magnetization is continuous, but, at the critical
point, its derivative is not. This suggest a second-order phase transition between the
various phases.

Transition between Demixed and Uniform Phases

In order to investigate the possible phase transition between the other phase, we
introduce a new order parameter M defined as the average magnetization of the
system. Namely, we define:

M(χ, n0) =
1

V

∫
M
|m[x]| dx . (4.11)

Notice that the parameterM takes simple form in both the uniform, and demixed
phases:

M(χ, n0) =

{
m?[χ, n0] in the uniform phases

α |m?[χ, n+]| in the demixed phases
, (4.12)

where m? is the equilibrium magnetization (4.5), and α is the ratio of the system
with active chromatin (4.10). Note that when we pass from the Uniform-Disordered
phase to a Demixed one, we cross the binodal (see fig. 4.3) in the n−(χ) branch, when
this happens the system undergoes a phase transition at the critical point Pc. In Pc
we have that n− → n0, and thus α→ 0. This implies that the average magnetization
M → 0 as we approach the critical point; on the other hand in the UD phase we
always haveM = 0, and therefore the order parameterM is continuous during the
transition. The other possible case is when we pass from the Uniform-Ordered phase
to a demixed one. In this case, we have that nearby the critical point n+ → n0 and
therefore α→ 1; by using a similar procedure as before, it is easy to prove that even
in this caseM is continuous during the transition.

Let us now show that the first derivative of the average magnetizationM is not
continuous at the critical points, and, therefore, that there is a continuous phase
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transition between the uniform phases and the demixed ones. Let us derive (4.12)
over χ:

∂M
∂χ

=


∂m?

∂χ

∣∣∣∣
n0

in the uniform phases

∂α

∂χ
m?[χ, n+] + α

∂m?

∂χ

∣∣∣∣
n+

in the demixed phases
, (4.13)

where for convenience we have assumed m? > 0. Notice that the “uniform” term and
demixed term, in the usual α→ 1 and n+ → n0, or α→ 0 and m? → 0 limits, are the
same if and only if ∂α∂χm

?[χ, n+] = 0. However |m?[χ, n+]| > 0 always as n+ > a
χ (see

section 4.2.1); on the other hand if we take the derivative over χ of equation (4.10),
we obtain:

∂α

∂χ
=

1

n+ − n−

[
α
∂n+

∂χ
+ (1− α)

∂n−
∂χ

]
, (4.14)

and the term in the parenthesis is never zero as ∂n+

∂χ > 0 always as seen in fig. 4.3.
This shows that the derivatives ofM are never the same when passing from whatever
uniform phase to whatever demixed one, and proves the existence of a second-order
phase transition (see fig. 4.4).

Transition between Demixed phases

Finally, we examine the transition between the Partial-Demixed-Ordered phase (PDO)
and the actual Demixed-Ordered phase (DO). As in the previous case, we employ the
order parameterM: from (4.13) we have that both in PDO and DO, the derivative
ofM is

∂M
∂χ

=
∂α

∂χ
m?[χ, n+] + α

∂m?

∂χ

∣∣∣∣
n+

.

Notice that nearby the critical line, the second term of the derivative is the same in
the two phases, and therefore the eventual difference must be in the first one. From
(4.14) we see that the derivative of alpha depend itself on the term ∂n−

∂χ . From fig. 4.3
and from extensive studies employing the Mathematica software, it seems that the
derivative ∂n−

∂χ is discontinuous at χ ≈ 3.8. This implies, again, that even ∂M
∂χ is

discontinuous and that the phase transition is of the second order (see fig. 4.4B).

Comparison with the Single-Chain Model

In this small section, we will discuss how our findings in the coarse-grained model are
compatible with the phenomelogy of the single-chain model discussed in section 1.4
and section 3.5.

First, from the phase diagram shown in fig. 4.3, we see that if we keep n0 = 0 while
varying the value of χ, the system will pass directly from a uniform-disordered phase
to a demixed-order one, without passing from the intermediate partially demixed
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one. Notice that this is exactly what is observed in the single-chain model where the
system passes from a swollen (here uniform) disordered phase to a compact (here
demixed) ordered one.

The only apparent discrepance from the two models is regarding the order of the
transition. In the study of the single-chain model, we have shown the existence of a
first-order phase transition between the swollen-disordered and the compact-ordered
phases at equilibrium. In the coarse grained model, instead, we have proven that the
uniform to demixed transition is continuous when n0 > 0. Let us now show here that
in the limit of n0 → 0 the transition ceases to be continuous, and become of the first
order. The average magnetisationM (4.11) naturally tends to 0 as n0 → 0, and it
is therefore not a good order parameter in this regime. To solve this problem, we
notice that we can estimate the total magnetisation M of the system by averaging
M =M/n0. If we do so, employing equation (4.12), we have that:

M(χ) =

0 in the uniform phases
α

n0
|m?[χ, n+]| in the demixed phases

, (4.15)

where we have used that m?[χ, n0] = 0 if n0 � 1. Now, since we are in the limit of
n0 � 1, we skip completely the PDO phase, and always have that in the demixed
phase n− ≡ 0, and therefore α = n0

n+(χ) . We conclude that in the limit of n0 → 0 we
can write the total magnetisation as:

M(χ) =


0 in the uniform phases

1

n+(χ)

√
χn+(χ)− a

2b
> 0 in the demixed phases

. (4.16)

This shows that M display a jump discontinuity when we are in a strongly dilute
system (n0 → 0), compatibly with what observed in the single-chain model.

4.3 “Model C” and Dynamical Scaling

In recent years techniques employing chromosome contrast captures techniques, like
Hi-c, permits us to study the details of chromatin (and epigenetic landscape) dynamics
in the mammalian nuclei. For this reason, here we try to study the main properties
of our model, when we incorporate the dynamics. Namely, the dynamics will be
described by a set of “model C” equations [20], which will be integrated and studied
their time dependence after quenching from Uniform-Disordered Phase to all the other
possible phases.

Model C Equations

In order to develop a dynamical, equilibrium, theory, we proceed in analogy with
Hamiltonian mechanics. Namely, we define a “finite-temperature” HamiltonianH[m,n]
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[20] which essentially is a free energy (4.1) to which we add two diffusive terms:

H[m,n] =

∫
V

[
f(m,n) + κm ‖∇m‖2 + κn ‖∇n‖2

]
, (4.17)

where the coefficients κm, κn regulates the diffusion strength. The Hamilton equations
relative to an Hamiltonian H with a non-conserved field (e.g. magnetization m) and
a conserved-field (e.g. density n) read:

1

Γm

∂m

∂t
=−δH

δm
1

Γn

∂n

∂t
=∇2 δH

δn

, (4.18)

where Γm, and Γn are two variables that regulate the speed of the dynamics and
have a role akin to the one of the mass in the classic Hamiltonian theory. For an
Hamiltonian (4.17), these equations will read:

∂m

∂t
=−Γm

δf

δm
+Dm∇2m

∂n

∂t
= Γn∇2 δf

δn
−Dn∇4n

, (4.19)

where for our convenience we have defined Dm ≡ Γmκm and Dn ≡ Γnκn, and have
employed the identity δ

δm ‖∇m‖
2 = −∇2m. These are the so-called “Model C”-

equations which deal with the dynamics of two coupled fields when one is conserved
(density n) and the other is not (magnetization m). Model C equations are to be
compared with the so-called “Model A” equation which deals only with a non-conserved
field (first equation of (4.19)), and with “Model B” equation which deals only with a
conserved field (second equation of (4.19)). By using the explicit form of free energy
density in (4.1), equations (4.19) become:

∂m

∂t
= Γm

(
2χmn− 2am− 4bm3

)
+Dm∇2m

∂n

∂t
= Γn∇2

(
2cρ+ 3dρ2 − χm2

)
−Dn∇4n

. (4.20)

As one can imagine, an explicit solution for these equation cannot be found analytically.
For this reason, we integrated numerically these equations, using a C++ software, by
discretizing the problem on a 2D M ×M grid, with periodic boundary conditions
at borders, and employing a mid-point method for the time evolution. The initial
conditions of the fields m and n are generally compatible with the Uniform-Disordered
phase. Notice, however, that a perfectly uniform solution do not permits diffusion
in equations (4.20) and we would not observe the dynamics; therefore, at the initial
conditions, we add a small Gaussian noise with variance 10−2n0.
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Figure 4.5: A Snapshots following the quench Q1 from Uniform Disordered (UD) to
Uniform Ordered (UO) (χ = 0→ 1; n0 = 2). B Snapshots following the quench Q4 from
Uniform Disordered (UD) to Demixed Ordered (DO) (χ = 0 → 6) at n0 = 0.2). Top
rows show the evolution through numerical integration of equations (4.20) on a 512× 512

grid. Bottom rows show the evolution through Brownian-Dynamics simulations (UD→
UO, ρ = 0.8σ−3, αL = αR = 1; UD→DO, ρ = 0.1σ−3, αL = αR = 0.9)

The numerical solutions of equations (4.20) helps us monitoring the time evolution
of the density and magnetization fields during several possible quenching trajectories
in the phase space. We quench from a typical configuration observed in the UD phase
at χ = 0 (homogeneous density n(x) = n0 and null magnetization m(x) = 0) and go
to one of the ordered phase. Namely, we focused our study on four representative
quenches:

1. Q1: UD → UO (χ = 0→ 1; n0 = 2);

2. Q2: UD →PDO (χ = 0→ 3.5; n0 = 0.5);

3. Q3: UD → DO with large average density (χ = 0→ 6; n0 = 2);

4. Q4: UD → DO with small average density (χ = 0→ 6; n0 = 0.2).
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Qualitative study of the solutions of (4.20) in these conditions show (see fig. 4.5) that
the system reorganize quickly both in the fields n and m. Namely, in the quench
Q1 where we remain in a uniform phase, we observe that n(x) remains uniform for
the whole dynamics, while m(x) coalesces in several clusters of different (opposite)
magnetization. Eventually one of the two epigenetic marks will win and the system will
present as a single colored domain, whose color is chosen by a Z2 symmetry breaking.
In the other cases, we quench into a demixed phase. Here, the system undergoes a
phase separation between the two densities (n−, n+); namely, we observe the formation
of high density clusters (density n+) forming in a system with “background” density
n−. Each high-density cluster presents coherent magnetization, but different clusters
may have different magnetization sign. However, the dynamics show that, eventually,
all the clusters will coalesce into a single big circular high-density domain characterized
by a single magnetization sign chosen, again, via Z2 symmetry breaking.

Typical Domain Length Scale

A standard way to investigate the coarsening observed in the quench dynamics, is
to study the time dependence of typical size L of cluster-like structure. The typical
domain length L, relative to a field (e.g. m) has been computed by introducing the
so-called spherically-averaged structure factor S [121, 122]. Let us go step by step.
The procedure is identical for the two fields, but we will focus on the magnetization
field m as it shows coarsening both in the uniform and in the demixed phases. First,
let us define m̃(k, t) as the Fourier transform of the magnetization field m; we define
the spherically averaged structure factor as:

S(k, t) = 〈m̃(k, t) m̃(−k, t)〉k

=
1

2π

∫ 2π

0
m̃(k, φ, t) m̃(k, π + φ, t) dφ

, (4.21)

where k, φ are the polar coordinates of the vector k, and with 〈−〉k denoting an
average over a shell in k space at fixed norm k. Once computed the structure factor S,
the average domain length of the domain is defined as the inverse of the first moment
of the probability distribution proportional to S. Namely, the typical size L reads:

L(t) = 2π

∫ +∞
0 S(k, t) dk∫ +∞

0 kS(k, t) dk
. (4.22)

The length-scale L(t) has been computed for each time for each quench; the Fourier
transforms m̃ and ñ have been computed using an FFT (Fast Fourier Transform)
algorithm.

We are interested in how the typical domain size L evolves during time in our
quenches (see fig. 4.6). It is known that the dynamics of L tends asymptotically to
have the form L(t) ∼ tγ [20]; we try here to estimate the value of γ for each quench.
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Figure 4.6: Evolution of typical epigenetic domain size L following a quench from the
uniform disordered phase. The growth displays a power law that is compatible with Model
A dynamics (α = 1/2) when the density field remains uniform (quench Q1), but it is
significantly slowed down when both fields are re-organized (α = 1/4). In the inset we
schematically show the paths of the quenches in the phase diagram. Here we evolved
Eqs. (4.20) with fixed a = b = c = d = 1 and Γm = Γn = κm = κn = 1 in a grid of
size 512× 512. The trajectories L(t) displayed in the plot are obtained by averaging the
trajectories of 16 independent runs for each quench.

The quench into the uniform-ordered state Q1 follows a different scaling with respect
to all the others. In Q1 the density field n remains uniform, while the magnetization
forms clusters with typical domain size L scaling as L ∼ tγ with γ ≈ 0.46, compatible
with the coarsening speed showed by model A dynamics γA = 1

2 . In all the other
quenches the reorganization of both epigenetic and density fields leads to a slower
coarsing rates that yields a smaller growth exponent γ ≈ 0.23− 0.3. Our results show
a slower growth than the one expected from a “model B” dynamics (γB = 1

3). However
the slowing down of the dynamics in Model C is a well known phenomenon [123], and
it is probably due to the interplay between the two fields.

Biological Relevance of the Equilibrium Model

Let us now look at the possible implications of our findings in biological contexts.
Our theory suggests that certain perturbations can trigger nuclear, macroscopic phase
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separation driven by the epigenetics landscape. This is achieved either by moving
the system into the spinodal region, or by overcoming the metastability of the UO
phase outside this region. While compactification of large genomic regions is indeed
observed for example in the inactivation of the X chromosome in female mammalian
[124], the model (as seen in the quenches Q2, Q3 or Q4) predicts an uncontrolled
spreading of a single epigenetic mark to the whole nucleus. This situation, is actually
never observed in real biological situations, meaning that the model is not complete,
and perhaps, that the reader-writer machinerie cannot be described at the equilibrium,
and that it has inherently out-of-equilibrium features.

4.4 Epigenetic Switching

As noticed in the previous section, an equilibrium dynamics lead to the indefinite
coarsening of coherent domains both in magnetization and in density. This is not what
is observed in realistic biological situations where coarsening is observed, but is not
indefinite and chromatin agglomerates are characterized by a certain typical size: this
class of phenomenon where coarsening is at a certain point blocked is called “arrested
phase-separation”. Given these reasons, we need to modify the model in order to
take into account this observation. A typical strategy in this kind of situation is to
stray away from equilibrium dynamics, and introduce out-of-equilibrium mechanisms.
Example of these kind of mechanisms have been widely studied in order to examine
the organization of chromatin [125], centrosomes [126] and chromosomes in general
[127]. Some of these model, indeed, predict the presence of arrested phase separation,
for example by affecting the local chromatin state and its accessibility to proteins
[128], by preventing the deposition of histones with a given epigenetic mark [129].

Inspired by these works, we introduced a similar mechanism in our model that we
will call “epigenetic switching”. Namely, we propose that chromatin can dynamically
convert itself from an “active state” which actively participate to the epigenomic
spreading, and an “inactive state” which is magnetically neutral and do not participate
to the recoloring dynamics. On the biological point of view, we may see the epigenetic
switching as a way to simplify the role of ATP in re-modeling the chromatin; in
this optic the inactive chromatin represent that parts of the genome that can not
be accessed by proteins, or are poor in nucleosomes. Regarding equation (4.20), we
are assuming that the local chromatin density field n(x) is actually divided in two
components na(x), that is the local density of the active component, and ni(x), the
density of the inactive one. We model the “switching” between an active and an
inactive state via a simple first-order chemical reaction, which has been known to
induce arrested phase separation (see for example [130]). Due to these considerations
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equations (4.20) are mapped into their out-of-equilibrium counterpart:

∂m

∂t
= Γm

(
2χmna − 2am− 4bm3

)
+ κm∇2m

∂na
∂t

= Γn∇2
(
2cna + 3dn2

a − χm2
)
− κn∇4na + σani − σina

∂ni
∂t

= Γn∇2
(
2cni + 3dn2

i

)
− κn∇4ni − σani + σina

, (4.23)

where the amplitudes of σa/i describe the rates at which the density fields (na, ni) are
activated/inactivated, i.e. the rates at which chromatin re-modeling factors act on
the genome. Notice, that, apart from the chemical reaction term, the equation for the
active field na are similar in form to the one for n in (4.20); on the other hand the
dynamic of the inactive density ni is merely diffusive to reflect its passive and inert
behavior.

Figure 4.7: (A) Pictorial illustration of the switching scheme. Any part of the genome
can become at any time inactive (in black), but when reactivating it is forced to be in the
unmarked (gray). state. (B) Snapshot from a Brownian-Dynamics simulation performed
using the methods described in section 4.1, but inserting also the possibility for a bead to
become inactive (represented in black) and do not participate to the recoloring. Beads
can become inactive or become active with the same switching rate κS [σa = σi]. We set
monomer density ρ = 0.8σ−3, α = 0.9, and κS = 10−4τ−1

B . The arrows denote a possible
loop arising in steady state of the simulations.

Notice also that, given the presence of a first-order reaction between the two, the
density fields na and ni are not singularly conserved. However, in order to be coherent
with the conditions of the equilibrium model, a total conservation law is needed, and
in this case it takes the form

1

V

∫
V

[ni(x; t) + na(x; t)] dx = n0 ≡ constant ∀t . (4.24)
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Indeed, these constraints are surely respected in equations (4.23), as we find that:

∂

∂t
(na + ni) = ∇ ·K , (4.25)

where:

K = Γn∇
[
2c(na + ni) + 3d(n2

a + n2
i )− χm2

]
− κn∇

[
∇2(na + ni)

]
. (4.26)

As long as we assume “normal” boundary conditions at the border of the volume V
(e.g. reflecting or periodic), we will always have that

∫
V ∇·K = 0; thus from equation

(4.25) we obtain that ∂
∂t(na + ni) = 0 and that the total density is conserved.

We want to point out that, given the scheme described by equations (4.23), we
have that the system is inherently out of equilibrium when σi 6= 0, σa 6= 0. There are
several ways to infer this. First, note that when an active bead is inactivated it loses
its magnetization. On the other hand, when a bead is activated, it will always have
m = 0 because its dynamics was decoupled from m (see fig. 4.7A). This breaks the
time-reversal symmetry and, therefore, the detailed balance is not respected, putting
the system out-of-equilibrium. Another way to see this is to notice that the reaction
amplitudes σa, σi are constants and do not depend on any of the density fields.

Arrested Phase Separation and Typical Cluster Size

We are finally ready to study, and integrate, equations (4.23). Results show that,
as imagined, the addition of a chemical reaction between the active and inactive
state indeed induces an arrested phase separation (see fig. 4.8). We note there is
comparatively much less density variations with respect to equilibrium, as the inactive
component ni tend to occupy uniformly all the space surrounding the magnetically
active clusters. Furthermore, For large σa/σi, chromatin droplets interactions start
being relevant: we observe that clusters with the same magnetization form “super-
beads” which come together forming branched aggregates (see fig. 4.8C), as this
configuration minimizes interfaces in the fields m and ni.

We also examine the dependence of the average cluster size L as a function of
the reaction rates. To simplify the analysis, we study the case where σ ≡ σi = σa,
and study how L varies as a function of σ. By studying the numerical solutions of
equations (4.23), we infer that L ∼ σ−1/4, in agreement with the observations of [131].

Out-of-Equilibrium Phase Diagram

Here, we study the steady states of the dynamics of equations (4.23) by fixing the the
values of n0 and χ, but varying the values of the reaction rates σa/i. The equations
are studied via numeric integration on a 100×100 grid, and employing the parameters
Γm/n = κm/n = 1.

Results are presented in fig. 4.9 and show that varying the value of the reaction
rates can push a system which at equilibrium (σa = σi = 0) would show a certain
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Figure 4.8: (A) Size of a typical cluster L as a function of time for various values
of σ ≡ σi = σa; notice that if σ = 0 we are at the equilibrium regime and coarsening
continues indefinitely, however if σ > 0 the size L reaches a stable, finite, value which
depend on the σ value. L is obtained by integrating equations (4.23) on a 256 × 256

grid and by applying the method described by equations (4.22), and averaging over 16
independent runs. We set a = b = c = d = 1, and χ = 6, n0 = 0.5. (B) Average cluster
size L at the steady state as a function of σ. The plot (in log-log) shows that L decreases
as σ increases following the power-law L ∼ σ−1/4. Results have been found by averaging
over 16 independent runs and with the values varying σ in the range σ = 0.1− 15. (C)
Time-dependent snapshots obtained evolving (4.23) at σa = σi = 0.1 with χ = 6 and
n0 = 1. (D) Steady state configurations obtained with same parameters except for the
switching rates, which are given in the figure.

118



CHAPTER 4. EPIGENOMIC PHASE SEPARATION IN THE CELL NUCLEUS

Figure 4.9: Non-equilibrium phase diagrams obtained by integrating numerically equations
(4.23) on a 2-dimensional grid of side L = 100 × 100, with a = b = c = d = 1,
Γm = Γn = 1, κm = κn = 1. All the figures are obtained at fixed values of χ and
n0 .The thick solid line is found via equation (4.28) as an heuristic way to separate the
ordered phases (UO, DO) from the disordered one (UD). Notably, this approximation works
completely fine in the first two plots, but files in the last one. The dashed line, and the
thin solid line, are instead qualitative lines drawn on behalf of the numerical integrations
which are meant to separate one phase from the other. In the figures, different colors
highlight different phases (orange for UD, blue for DO, green for UO).

phase, to other regions of the phase diagram. Notably, we note that states that
systems an ordered phase at equilibrium, can be driven to the uniform disordered
phases, or another ordered one, simply by varying the value of σa/i. An heuristic
reason for this can be found by looking at the steady state of equations (4.23). In
this limit, one can found an easy expression for the average active density:

〈na〉 =
1

V

∫
V
nadx ≈

σan0

σi + σa
, (4.27)

where we have used that
∫
V ∇2na = 0, and that

∫
V (na + ni) = n0V . In section 4.2,

we had shown that at the equilibrium an ordered state (both demixed and uniform)
can arise only if we have an active local density na > a/χ. Using this last relation,
and equation (4.27), one can conclude that the ordered phases (uniform or demixed)
are strongly favored if

σi <
(

1− n0χ

a

)
σa , (4.28)

in very good quantitative agreement with the observations from the numerical evolution
of the system (see fig. 4.9).

4.5 Discussion

In this chapter, we have proposed a Landau-Ginzburg mean-field theory to describe
the coupling between spatial dynamics and epigenetic landscape within the cell nucleus.
Namely, we discuss, in light of phenomenological observations, free-energy density in
the conserved density field ρ, and non-conserved field magnetization.
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We discuss the equilibrium dynamics of the model by using the “common-tangent
construction”, and find its equilibrium phases as a function of the average density n0

and the temperature-dependent coupling parameter χ. We find that the system can
either organizes in three different phases: (i) Uniform-Disordered (UD) phase charac-
terized by uniform density and no epigenetic order; (ii) Uniform-Ordered (UO) phase
characterized by uniform density an local epigenetic order; (iii) Demixed-Ordered (DO)
phase where the system show phase separation and organizes in epigenetically ordered,
high-density clusters similar to chromatin agglomerates observed in experiments.

We study the kinetics of our equilibrium model, by using a set of “Model C”
equations which describe the approach to equilibrium of the density and magnetization
fields. We find that quenching from the UD phase to the DO one, the high-density
clusters formed by the system grow indefinitely, until a single epigenetic mark spreads
and overtakes the others. The coarsening dynamics of these domains is in good
agreement with classic results of Model C kinetics. Unfortunately, these results are
not realistic as in cell nuclei several epigenetic domains, of different marks, can coexist
at the same time.

We extend the model by considering a first-order reaction which converts a
“magnetizable” chromatin state that can be epigenetically marked into an “inert” state
that cannot be modified, and vice versa. The resulting kinetic equations describe a
non-equilibrium system which shows arrested phase separation, where the unlimited
spreading of epigenetic marks is blocked, and stable epigenetic domains coexist. We
study the typical cluster size as a function of the reaction rates, and find that that
our results are in good agreement with what observed in similar models.

It would be interesting to refine the model by specializing the non-equilibrium
terms introduced, or implementing new higher order reactions, to describe certain
biological process like RNA production, phosphorylation, or ATP-controlled switching.
Furthermore, the predictions of a more refined model could be tested by in vivo
experiments by controlling the rates of post-translational modification of certain
protein complexes that are known to remodel chromatin.
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Conclusions

“Begin at the beginning,” the King said, very gravely,
“and go on till you come to the end: then stop.”

Lewis Carrol, Alice in Wonderland

The arguments presented in this thesis represents a great part of my work during
my Ph.D. studies and concerns the use of statistical mechanics techniques for the and
modeling of interacting heteropolymers and magnetic polymers. We briefly present
here the main results of this thesis.

In chapter 1 we have first reviewed the basic biology principles behind epigenetics.
Then we have discussed basic physical models which deals either with the 3D orga-
nization of chromatin given a fixed epigenetic landscape, or eith the spreading of
epigenetic marks. Finally, we have presented the starting minimal mode which couples
the 3D chromatin dynamics with epigenomic spreading. Here, chromatin is modeled
as a semi-flexible polymer whose beads bear a “color” representing a specific epigenetic
mark and which interact among each other via a Potts-like interaction. At equilibrium
we have shown the existence of a first-order phase transition between a swollen-
disordered phase and a compact-ordered one, compatibly with the robustness and
memory showed by epigenetic domains. When we drive the system out-of-equilibrium
two novel phases characterised by swollen-ordered and compact-ordered configurations
arise; all the possible phase transitions of the non-equilibrium phase diagram drawn
are discussed.

In chapter 2 we have extended the model of the previous chapter to include “genomic
bookmarking”. We have shown that, depending on the bookmarkers configurations,
several coherent, robust, epigenetic domains of different marks can form and coexist
at the same time. We have also inserted in the model a novel random process that
mimics the mitosis process and verify that the epigenetic domains are robust against
large perturbations, and even resist to the excission of bookmarkers for several cell
cycles. Finally, by using some experimental data, we have challenged the problem of
simulating a chromosome of a Drosophila stem cell, finding results in great agreement

121



4.5 Discussion

with experimental observations.
The model as constructed works well with repressive epigenetic marks, but it would

be interesting to extend it to consider also actively transcribing genome, perhaps
by employing a co-transcriptional model. In this context, one could use the model
to estimate the rate of expression of certain genes with what found in RNA-seq
experiments.

In chapter 3 we have developed a mean-field theory of the original model, in analogy
of magnetic polymer models on a lattice. First, we have studied the equilibrium
phases of a spin-lattice model with Potts-like interaction where however “inert”, non-
interacting states are pesent. Notably, by generalizing the classic Potts result, we
have shown that the equilibrium properties of the model depends not only on the
number of active states, but also on the number of inert ones. Second, we have
discussed mean-field theory for an homopolymer and found a Flory-like continuous
phase transition. By developing a general theory of dense magnetic polymers we show
that there is a discontinuous phase transition between a swollen-disordered phase and
a compact-ordered one, in agreement with what observed in simulations presented in
chapter 1. Finally, we have developed a “Model A” kinetic theory of the model, and
we have discussed its non-equilibrium extension. By studying the steady states of the
non-equilibrium model we have proven the existence of a compact-disordered phase
akin again to what observed numerically in chapter 1.

The mean field-theory has been developed for high-density polymers, and therefore
an extension for low-density phases is needed. Furthermore, a possible interesting
extension of the model consist in considering higher order approximations to describe
phenomena localized in space. In this context, it would be interesting to model the
genomic bookmarking as an external non homogeneous magnetic field localized on
certain sites of the chain.

In chapter 4 we have developed qa field-theoretical model, describing the dynamics
of several chromatin fibers in a dense closed system (the eukaryotic nucleus) with
epigenetic interactions. We have first found a phenomenological expression for a free-
energy density in the density conserved field, and the magnetization non-conserved
field. We have studied the equilibrium of this model by employing the common-tangent
construction and have shown that in certain conditions the system is in a demixed
phases, where it organizes in high-density clusters characterised by coherent epigenetic
marks. We have also discussed the kinetics of this model by employing a set of “Model
C” equations and shown that the high-density clusters grow indefinitely in contrast
to all experimental observations. Finally, we have modified the model by inserting
non-equilibrium terms that induce a first-order reaction between an “active” state of
the chromatin which actively partecipate to the epigenetic dynamics, and an “inert”
state of the chromatin which does not. Notably, these terms induce an arrested phase
separation where the clusters have a stable size at the steady state and coexist with
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other clusters of different epigenetic marks.
This model has great potentials as it can be easily refined to include more

specific biological non-equilibrium terms, due for example to RNA production, and
its predictions could be in principle verified by experiments.

The main results presented in this work have been published in the following peer-
reviewed papers:

• D. Michieletto, M. Chiang, D. Colì, A. Papantonis, E. Orlandini, P. R. Cook,
and D. Marenduzzo, “Shaping epigenetic memory via genomic bookmarking,”
Nucleic Acids Research, vol. 46, pp. 83–93, nov 2017

• D. Colì, E. Orlandini, D. Michieletto, and D. Marenduzzo, “Magnetic polymer
models for epigenetics-driven chromosome folding,” Phys. Rev. E, vol. 100,
p. 052410, Nov 2019

• D. Michieletto, D. Colì, D. Marenduzzo, and E. Orlandini, “Nonequilibrium
theory of epigenomic microphase separation in the cell nucleus,” Phys. Rev.
Lett., vol. 123, p. 228101, Nov 2019
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