
Facoltà di Ingegneria
Dipartimento di Ingegneria dell’Informazione

Scuola di Dottorato di Ricerca in Ingegneria dell’Informazione – XXII Ciclo
Indirizzo: Scienza e Tecnologia dell’Informazione e della Comunicazione

Applications of Control
Theory to Computer Systems

Optimization

Direttore della Scuola
Ch.mo Prof. Matteo Bertocco

Supervisore
Ch.mo Prof. Gianfranco Bilardi

Dottorando
Francesco Versaci

Abstract

Computer systems complexity is growing rapidly, thus making the efficient
use of their resources an increasingly challenging task. In many cases the
optimization of the management in such systems has been developed with
ad-hoc techniques and heuristics.

In this thesis, a more general and flexible approach is explored to resource
management, based on the powerful framework of stochastic optimal control.
This approach requires a careful modeling of the system of interest as a
dynamical system with appropriate cost functions and stochastic descriptions
of the inputs that are imposed by the external environment. Then, the
question of an optimal management policy that minimizes the expected cost
becomes mathematically well posed and can be systematically investigated.
Two cases studies illustrating the approach are developed, as summarized
below.

In Chapters 1–5, the classical replacement problem for memory hierar-
chies is cast within the framework of optimal control theory. Memory ref-
erences are assumed to comply with the Least Recently Used Stack Model
(LRUSM); arbitrary stack-distance distributions are considered.

An optimal policy is derived to minimize the miss rate for an infinite trace
(a control over an infinite horizon). We call it a K-L policy where K(C)
and L(C) are parameters, whose value is a function of the buffer (cache)
size C, determined by the stack-distance distribution. Then, the concept of
Least Profit Rate (LPR) policy is introduced and it is shown that, for the
LRUSM model, LPR is an optimal policy over an infinite horizon which, in
steady state, coincides with the K-L policy. The LPR satisfies the inclusion
property whereby the content of a given buffer is also contained in all larger
buffers. This property is known to enable the efficient computation of the
number of misses for a given address trace, simultaneously for all buffer sizes.
Furthermore, the LPR formulation leads to a linear time computation of the
values K(C) and L(C) for all relevant values of C, improving on the cubic
bound that naturally arises within the K-L derivation. Furthermore, the
properties of LPR are exploited to derive an efficient algorithm to optimally
partition a buffer concurrently accessed by multiple processes. Finally, the
miss rate of LPR is compared with that of OPT, the well-known optimal
off-line policy, to investigate the difference between an exact and a statistical
knowledge of the future of the trace.

Obtaining a closed form characterization of the optimal replacement pol-
icy over a finite horizon has proved to be rather more difficult than over the
infinite horizon. The problem has been solved for monotone stack-distance
distributions. Separate arguments establish the optimality of the Least Re-

Applications of Control Theory to Computer Systems Optimization

cently Used (LRU) policy for all nonincreasing distributions and of the Most
Recently Used (MRU) policy for all nondecreasing distributions. Interest-
ingly, LRU and MRU are special cases of LPR, within the LRUSM model,
for nonincreasing and non decreasing distributions, respectively. The results
have been obtained by introducing a significant variant of the standard Bell-
man’s equation, potentially useful for other control problems.

In Chapters 6–7 it is studied the problem of processors allocation for the
Galois System, a tool for automatically parallelizing, by means of speculative
execution, algorithms that present data amorphous parallelism. The Galois
System is modeled using graph-theoretic concepts and the optimization goal
is identified in trying to maximize the parallelism, while keeping a constant
conflict ratio. This is linked to a function for which we analytically derive
some properties that are then used to design an algorithm that controls the
number of processors in a quick and stable way. For this purpose an extension
to the well known Turán’s theorem is developed.

4

Sommario

La complessità dei sistemi informatici sta crescendo rapidamente, rendendo
l’uso efficiente delle loro risorse un compito sempre piú proibitivo. In molti
casi la gestione ottimizzata di questi sistemi è stata sviluppata con tecniche
ad-hoc ed euristiche.

In questa tesi viene esplorato un approccio piú generale e flessibile alla
gestione delle risorse, fondato sul potente quadro teorico del controllo ottimo
stocastico. Questo approccio richiede un’attenta modellizzazione del sistema
di interesse come sistema dinamico, con appropriate funzioni di costo e descri-
zioni stocastiche degli ingressi imposti dall’ambiente esterno. A questo punto
la ricerca di una politica di gestione ottima che minimizzi il costo aspettato è
matematicamente ben posta e può essere risolta sistematicamente. Vengono
sviluppati due casi di studio, come riassunto di seguito.

Nei Capitoli 1–5 il classico problema di sostituzione (replacement) per le
gerarchie di memoria viene formulato nel quadro della teoria del controllo
ottimo. Si assume che i riferimenti di memoria rispettino il Least Recently
Used Stack Model (LRUSM) e vengono considerate distribuzioni arbitrarie
sullo stack.

Una politica ottima per minimizzare il tasso di miss (accessi fuori dal
buffer) per una traccia di lunghezza infinita viene derivata e chiamata K-L,
dove K(C) ed L(C) sono parametri il cui valore è un funzione, determinata
dalla distribuzione di accessi allo stack, della taglia C del buffer. In seguito
viene introdotto il concetto di politica a tasso di profitto minimo (Least Pro-
fit Rate – LPR) e si dimostra che, nell’LRUSM, LPR è una politica ottima
su orizzonte infinito che, allo stato stazionario, coincide con la politica K-L.
LPR soddisfa la proprietà di inclusione: i contenuti di buffer di dimensione
minore sono inclusi in quelli maggiori. Questa proprietà consente di calcolare
efficientemente il numero di miss per una data traccia in contemporanea per
tutte le taglie del buffer. Inoltre le proprietà della LPR vengono sfruttate
per derivare un efficiente algoritmo di partizionamento per buffer condivisi
concorrentemente fra piú processi. Infine il tasso di miss di LPR viene con-
frontato con quello di OPT, la nota politica ottima off-line, per indagare la
differenza fra una conoscenza esatta e una statistica del futuro della traccia.

Ottenere una forma chiusa per la politica di sostituzione su orizzonte
finito si è dimostrato un problema ben piú difficile che su orizzonte infinito,
ed è stato risolto nel caso di distribuzioni di accesso monotone. Argomenti
diversi dimostrano rispettivamente l’ottimalità della politica Least Recently
Used (LRU) per distribuzioni non crescenti e quella di Most Recently Used
(MRU) per distribuzioni non decrescenti. I risultati sono stati ottenuti grazie
all’introduzione di una significativa variante dell’usuale equazione di Bellman,

Applications of Control Theory to Computer Systems Optimization

potenzialmente utile in altri problemi di controllo.
Nei Capitolo 6–7 viene studiato il problema dell’allocazione dei proces-

sori nel sistema Galois, uno strumento per la parallelizzazione automatica,
per mezzo di esecuzione ottimistica (speculative execution), di algoritmi che
presentino un cosiddetto parallelismo amorfo sui dati (data amorphous pa-
rallelism). Il sistema Galois viene modellizzato tramite concetti di teoria dei
grafi e l’obiettivo dell’ottimizzazione è identificato nella massimizzazione del
parallelismo col vincolo di mantenere basso il tasso di conflitti. Questo viene
collegato ad una funzione, per cui vengono analiticamente derivate alcune
proprietà che sono poi usate nella progettazione di un algoritmo capace di
controllare il numero di processori in maniera stabile e veloce. A tal fine
viene sviluppata un’estensione del noto teorema di Turán.

6

Acknowledgments

First of all I want to thank my advisor Gianfranco Bilardi for the challenging
and interesting topics he suggested for investigation during my PhD. The
border between computer science theory and metaphysics can be subtle, and
I like his way of doing theoretical research with deep roots in applications.

I wish to express my gratitude to Prof. Augusto Ferrante who has kindly
provided valuable expert advise on optimal control theory at many critical
junctures of this research.

The topics covered in Chapters 6 and 7 have been developed in the Fall
semester of 2008, which I spent as a visiting research assistant at the Univer-
sity of Texas at Austin. I am indebted to Prof. Keshav Pingali and his group
for the opportunity to participate to the Galois project, so rich of stimulating
research questions.

Contents

1 Introduction to Replacement Policies for the Memory Hier-
archy 11

2 Optimal Control Formulation of Replacement 17
2.1 LRU Stack Model . 17
2.2 The Control Problem . 19

3 Optimal Replacement for the Infinite Horizon 21
3.1 The Bellman Equation . 21
3.2 Buffer of Capacity C = 2 . 24
3.3 Arbitrary Buffer Capacity – K-L Policy 27

3.3.1 The Model . 29
3.3.2 The Reduced Optimization Problem 31

3.4 The Least Profit Rate Replacement policy 36
3.5 Buffer Partitioning . 41

4 On-line vs. Off-line Optimality in Page Replacement 45
4.1 Uniform distribution miss-rate ratio 47
4.2 Worst-Case Miss-Rate Ratio 47

5 Optimal Replacement for Finite Horizon 51
5.1 Non-Increasing Access Distribution 52
5.2 Non-Decreasing Access Distribution 54

6 An Introduction to the Galois System 57
6.1 Preliminaries . 57
6.2 Optimization Goal . 59

9

Applications of Control Theory to Computer Systems Optimization

7 Controlling Parallelism in the Galois System 61
7.1 Exploiting Parallelism . 61

7.1.1 Analysis of the Worst-Case Performance 63
7.2 Controlling m . 64

7.2.1 The Control Algorithm 65

8 Conclusions and Future Work 69

10

CHAPTER 1

Introduction to Replacement Policies
for the Memory Hierarchy

Historically, the storage of most computer systems is organized as a hierarchy
of levels, for technological and economical reasons [23]. Furthermore, funda-
mental physical constraints on information density and signal speed imply
that the memory of large systems is inherently hierarchical [10]. The hier-
archy of typical state-of-the-art servers includes the register file, three levels
of cache memory, main memory, and magnetic disks. A further level, im-
plemented as a solid-state disk, will soon become common between memory
and magnetic disk. Memory hierarchies have been investigated extensively
from several perspectives, e.g., hardware organization [16, 36, 23], operating
systems [40], compiler optimization [2, 46], models of computation [39], and
algorithm design [1].

A central aspect in the management of any memory hierarchy is the
decision of which data to keep in which level. It is customary to focus on
a hierarchy with two levels (see Fig. 1.1), respectively called here the buffer
and the backing storage, as in [32], the extension to multiple levels being
generally straightforward. We assume that a sequential computing engine
generates a sequence of access requests a1, a2 . . . , at, . . . for items stored in
the hierarchy; throughout, we assume that items are equally sized blocks of
data. For example, the buffer could model a cache memory and the backing
storage could model the main memory, the items being cache lines. In another
example, the buffer could model the main memory and the backing storage
the disk, the items being virtual pages. A request for an item that is in the

11

Applications of Control Theory to Computer Systems Optimization

Generator

Buffer Store
B

Backing Store

at

Figure 1.1: Two-level memory hierarchy.

buffer is called a hit and requires no data movement within the hierarchy. A
request for an item that is not in the buffer is called a miss; to satisfy it, the
requested item must be brought in the buffer, typically at a non negligible
cost. If the buffer is full, then some item must be evicted from it to make
room for the requested item. One is interested in criteria to select the items
to be replaced so as to minimize subsequent misses. A replacement policy is
a set of rules that define which item has to be evicted from the buffer upon
a miss.

Belady [7] first investigated the idea of an optimal replacement policy,
that minimizes the number of misses, for any given access sequence, buffer
capacity, and initial buffer content. He proposed the MIN policy and claimed
its optimality. Subsequently, Mattson, Gecsei, Sluts, and Traiger [32], defined
and established the optimality of what they called OPT policy: Upon a
miss, if the buffer contains items that will not be accessed in the future
then evict (any) one of them, else evict the (unique) item whose next access
is farthest in the future. MIN and OPT are closely related and generally
regarded as the same policy (although they do differ in subtle ways). The
main drawback of MIN and OPT is that, in practical situations, the sequence
of items to be accessed is not known in advance, but rather unfolds with
the computation, thus demanding on-line replacement decisions. Indeed,
dozens of on-line replacement policies have been proposed in the literature
and several have been implemented in various systems. To assess the quality
of a given replacement policy, most studies resort to a methodology from one
of the following classes.

Experimental. The number of misses is obtained for “benchmark” ad-
dress traces, either by simulation or by measurement with hardware perfor-
mance counters. The results can be compared among different on-line policies
and/or against the performance of OPT, which provides a lower bound to
the number of misses [36].

Probabilistic. The expected number of misses is derived or estimated

12

Chap. 1: Introduction to Replacement Policies for the Memory Hierarchy

analytically for some policies, for specific stochastic distributions of accesses
[17, 15].

Competitive ratio. Worst-case upper bounds are derived for the ratio
between the number of misses of the target policy and that of OPT. When
the buffer capacity C is the same for both policies, the competitive ratio of
any on-line policy is at least C. More interestingly, when the on-line policy is
given a larger buffer than OPT by some factor α > 1, then the competitive
ratio of some significant policies, such as Least Recently Used (LRU) and
First In First Out (FIFO), can be bounded just in terms of α, as shown by
Sleator and Tarjan [41].

It is natural to ask whether there is a universally “best” on-line policy,
performing at least as well of any other policy on any input trace. The answer
is negative since, given any two different replacement policies A and B, one
can easily construct a trace for which A incurs fewer misses than B. However,
if we view the trace as a stochastic process, then we can meaningfully explore
the existence of optimal on-line policies, defined as those that minimize the
expected number of misses. In general, the class of optimal policies will
depend upon the statistical properties of the trace.

In the next chapters, we show that, under suitable statistical assumptions
on the trace, it is possible as well as fruitful to cast miss minimization as
a problem of optimal control theory. To this end, we briefly review the
optimal control framework, slightly adapting the terminology and notation
of Bertsekas [9]. We are given a dynamical system described by a state-
transition equation of the form

xt+1 = f(xt, ut, wt), (1.1)

where xt is the state at time t, while both ut and wt are inputs, with crucially
different roles. Input ut, called the control, can be chosen by whoever operates
the system. In contrast input wt, historically called the disturbance (although
for us it will be the workload we are interested in processing), is determined
by the environment and modeled as a stochastic process. At each step t, a
cost is incurred, given by some function g(xt, ut, wt). Informally, the objective
of optimal control is to find a control policy to determine the control as a
function ut = µt(xt) of the state and so as to minimize the total cost

Ew

[∑
t∈I

g(xt, ut, wt)

]
, (1.2)

where I is a time interval of interest. A key premise of most optimal control
theory is the assumption of past-independent disturbances (PID) stating that,

13

Applications of Control Theory to Computer Systems Optimization

given the current state xt, the current disturbance wt is statistically indepen-
dent of past disturbances {wτ : τ < t}. The PID assumption leads to a class
of equations for the optimal control policy, such as the Bellman equation
or the Hamilton-Jacobi-Bellman equation. The assumption also enables the
exploitation of dynamic programming techniques, for the computation of the
optimal control policy.

In order to formulate miss minimization as an optimal control problem we
need to identify a suitable dynamical system and its cost function. Intuitively,
we recognize that the disturbance has to model the address trace, since the
latter is dictated to the memory manager by the environment (specifically,
by the processes under execution). The control has to encode the replace-
ment decisions, which are under the discretion of the memory manager. The
cost per step can naturally be taken to be one if a miss is incurred and
zero otherwise. A natural choice for the state would be the content of the
buffer. However, the PID assumption essentially requires that the address
trace a1, a2, . . . , at, . . . be a sequence of mutually independent random vari-
ables, a scenario known as the Independent Reference Model (IRM) [17].
While often considered in the literature for its mathematical simplicity, the
IRM does not capture the cornerstone property that memory hierarchies re-
lay upon: the temporal locality of references. Intuitively, temporal locality
means that recently referenced items are more likely to be accessed than other
items, clearly implying dependence in the address trace. The outlined obsta-
cle can be circumvented if the trace can be generated by a suitable dynamical
system driven by a sequence of independent random variables. Then, such
variables can be taken as the disturbance of a system whose state includes
both the buffer content and the state of the trace generator. We shall show
how this avenue is actually viable for the LRU-Stack Model (LRUSM) of the
trace [35, 42], which has been widely considered in the literature, due to its
ability to capture temporal locality. A different generalization of the IRM
model is the Markov Reference Model (MRM), already suggested by [32],
where the address trace a1, a2, . . . , at, . . . is a finite Markov chain. A wealth
of results are obtained by Karlin, Phillips, and Raghavan [26] for MRM, in-
cluding the Commute Algorithm, a remarkable policy computable from the
transition probabilities of the chain in polynomial time, whose expected miss
rate is within a constant factor of optimum. We underscore that MRM and
LRUSM are substantially different models; except in very specialized cases,
the LRUSM trace is not directly a Markov process but rather a function
of a Markov process whose states are exponentially many in the number of
accessed items.

In Chapter 2, we develop the optimal control formulation of the replace-
ment problem for the LRU-Stack Model, under which the address trace is

14

Chap. 1: Introduction to Replacement Policies for the Memory Hierarchy

statistically characterized by the probability s(j) of accessing the j-th most
recently referenced item. We modify the standard assumption that the con-
trol is a function only of the state and allow it to depend on the disturbance
as well: ut = µt(xt, wt). This modification is necessary since eviction de-
cisions are actually taken with full knowledge of the current access. The
Bellman equation has to be modified accordingly. Throughout, we assume
that the items being referenced belong to a finite universe of size V (the
virtual space).

In Chapter 3, we investigate optimal policies over an infinite time in-
terval. Two notions of optimality known in the control theory literature are
considered: bias optimality and gain optimality. Bias optimality is a stronger
property, but also rather difficult to deal with. We derive bias-optimal policy
for a buffer of capacity C = 2, to illustrate the approach and the difficulty
of the problem. We then derive gain-optimal policies, which minimize the
miss rate, for arbitrary buffer capacity. These policies turn out to specified
by two parameters, denoted as K and L, hence called K-L policies. They
include, as special cases, LRU (K = C − 1, L = C) and Most Recently Used
(MRU) (K = 1, L = V). For a given stack-distribution s(·), K and L are
functions of C. We develop an algorithm that computes K and L for every
C in time O(V), by linking the problem to that of planar convex hull and
adapting Graham’s scan. We also show that, for any distribution s(·), the
gain-optimal policy satisfies the highly desirable inclusion property [32], that
is, the content of a buffer is always included in any larger buffer. We conclude
this chapter by showing how to optimally partition a buffer between several
processes executing concurrently.

In Chapter 4, we show that the ratio χ between the expected miss rate
of the optimal on-line policy and that of OPT is at most 2 log (2V/(V − C)).
As an interesting corollary, when the buffer capacity C is a fixed fraction of
the size of the virtual space V , we have χ = O(1). This indicates that the
worst-case competitive ratio, approximately C, is a rather pessimistic metric
in this case, as previously observed experimentally [7, 49].

In Chapter 5, we focus on optimization over a finite interval, or horizon in
the terminology of control theory. Technically, the optimal control problem
is considerably harder. As an indication, even if the system dynamics, its
cost function, and the statistics of the disturbance are all time invariant,
the optimal control policy is in general time-dependent. In this context, we
establish two interesting results. For any monotonically non increasing stack
distribution s(·) which is LRU is an optimal policy for any finite horizon,
whereas MRU is optimal if the stack distribution is non decreasing. Despite
the symmetry of the results the concepts used in the proofs are quite different.
The standard approach based on (some variant of) the Bellman-Hamilton-

15

Applications of Control Theory to Computer Systems Optimization

Jacobi equation, which requires “guessing” the optimal cost as a function
of the initial state, does not seem applicable, as we have not succeeded in
finding a closed form for such function. We have circumvented this obstacle
by establishing an inductive invariant on the relative values of the cost for
select pairs of states. This approach may have applicability to other optimal-
control problems.

16

CHAPTER 2

Optimal Control Formulation of
Replacement

In this chapter, we define a dynamical system whose optimal control cor-
responds to the minimization of the number of misses when the reference
trace is a stochastic process defined by the LRU Stack Model, reviewed in
the following section.

2.1 LRU Stack Model

Mattson et al. [32] made the far reaching observation that a number of re-
placement policies of interest, including LRU, MRU, and OPT, satisfy the
following property.

Definition 2.1.1. Given a replacement policy µ defined for all buffer capac-
ities, let Bµ

t (C) be the content of the buffer of capacity C at time t, after
processing references a1, . . . , at−1.

We say that the inclusion property holds at time t if, for any C > 1,
Bµ
t (C − 1) ⊆ Bµ

t (C), with equality holding whenever the bigger buffer is not
full (|Bµ

t (C)| < C).
We say that µ is a stack policy if it satisfies the inclusion property at

all times for all address traces, assuming that inclusion holds for the initial
buffers Bµ

1 (C), with 1 ≤ C ≤ V .

The optimal on-line policies developed in the next chapter are stack poli-
cies.

17

Applications of Control Theory to Computer Systems Optimization

Λt Λt+1

Λt(1) Λt+1(1)

Λt(2) Λt+1(2)

...
...

Λt(dt − 1) Λt+1(dt − 1)

Λt(dt) Λt+1(dt)

Λt(dt + 1) Λt+1(dt + 1)

...
...

Λt(V) Λt+1(V)

at

...

...

Figure 2.1: LRU stack update.

For a stack policy, the content of the buffers of all capacities can be
compactly represented by an array Λt whose first C components yield the
buffer of size C as

Bµ
t (C) = [Λt(1), . . . ,Λt(C)] . (2.1)

Array Λ is referred to as the stack of the policy. The stack depth of an access
at is defined as its position in the policy stack at time t, so that

at = Λt(dt). (2.2)

A key observation [32] is that, upon an access of depth d, a buffer incurs a
miss if and only if C < d. Thus, computing the stack depth is an efficient
way to simultaneously track the performance of all buffer sizes.

Of particular interest here is the LRU stack, where the items are ordered
according to the time of their most recent access; in particular, Λt+1(1) = at.
Upon an access at depth dt, the LRU stack is updated by a downward,
unit cyclic shift of its prefix of length dt, as illustrated in Fig. 2.1. The
LRU stack has inspired an attractive stochastic model for the address trace
[35, 42], where the address depths d1, d2, . . . are independent and identically
distributed random variables, specified by the distribution

st(j)
∆
= P[at = Λt−1(j)], j = 1, . . . , V, (2.3)

or equivalently by the cumulative sum

S(j)
∆
=

j∑
i=1

s(i), j = 1, . . . , V. (2.4)

18

Chap. 2: Optimal Control Formulation of Replacement

For example, the case where s(j) decreases with j captures a strict form of
temporal locality, where the probability of accessing an item strictly decreases
with the time elapsed from its most recent reference. It is a simple exercise
to see that the actual trace a1, a2, . . . can be uniquely recovered from the
stack-depth sequence d1, d2, . . ., given the initial stack Λ1.

2.2 The Control Problem

We are now ready to cast the replacement problem in the framework of opti-
mal control theory that we have outlined in the introduction. Informally, the
state of our dynamical system will model both the LRU stack (summarizing
the relevant history of the input trace) and the buffer content (summarizing
the relevant history of the replacement policy). Some reflection will convince
us that the identity of the items is immaterial and that their only relevant
property is whether or not they currently reside in the buffer. Therefore, we
can condense the state information in a Boolean vector xt ∈ {0, 1}V such
that

xt(j)
∆
=

{
1 Λt(j) is in the buffer,
0 otherwise.

(2.5)

With the above choice of state, we take the “disturbance” input of the system
to be the sequence of stack depths, i.e., we let wt = dt ∈ {1, . . . , V }. We
let the control input ut ∈ {0, 1, . . . , V } encode the eviction decisions with 0
denoting no eviction (the only admissible control in case of a hit) and j > 0
denoting the eviction of the item that is in position j of the LRU stack (which
is an admissible control only when a miss occurs and the j-th item of the
LRU stack is in the buffer, i.e., xt(j) = 1).

We let f be the state transition function of the vector x under the LRUSM
and g the instant cost function:

xt+1 = f (xt, ut, wt) ;

g(xt, wt)
∆
=

{
1 if a miss occurred,
0 otherwise.

(2.6)

Finally, we assume that a policy can set the control ut with knowledge of
both the state and the disturbance, that is, the item being accessed: ut =
µt(xt, wt). Many results in the control theory literature are stated under the
assumption that the value of the disturbance is not available to the policy;
however, analogous results usually hold for our model, with similar proofs.

19

Applications of Control Theory to Computer Systems Optimization

Consider a policy π = (µ1, µ2, . . . , µτ) applied to our system during the
time interval [1, τ], so that, for t in this interval, we have

xt+1 = f (xt, µt (xt, wt) , wt) . (2.7)

We define the cost of π, starting from state x1, with time horizon τ as

Jπτ (x1)
∆
= Ew

[
τ∑
t=1

g (xt, wt)

]
, (2.8)

where the xt’s are subject to Eq. 2.7 and the expected value averages over
disturbances. For our system, this is the expected number of misses in τ
steps. The optimal cost is

J∗τ (x1)
∆
= min

π
Jπτ (x1) . (2.9)

The optimal cost satisfies the following dynamic-programming recurrence
(analogous to Eq. 1.6 in Vol. 1 of [9])

J∗τ (x1) = Ew

[
min

u∈U(x1,w)

{
g(x1, w) + J∗τ−1 (f (x1, u, w))

}]
, (2.10)

where U(x1, w) denotes the set of controls admissible when the state is x1

and the disturbance is w. It is often convenient to work with a vector ~J∗

whose components are the values J∗τ (x), in some conventionally chosen order
of the states, and to rewrite Eq. 2.10 in compact form as

~J∗τ = T ~J∗τ−1, (2.11)

with T being the optimal-cost update operator.
Often, the temporal horizon of interest in applications is long and not

known a priori. Thus, it becomes attractive to consider policies that are
optimal over an infinite horizon; an added benefit is that such policies are
provably stationary, under very mild conditions. Usually, the cost defined in
Eq. 2.8 diverges as τ →∞, thus alternate definitions of optimality are con-
sidered in the literature [9, 29, 5, 12]. We base our study of the replacement
problem on gain and bias optimality.

Gain Optimality refers to a policy µ∗ that achieves the lowest average
cost, i.e. µ∗ = arg minµ limτ→∞ Jµτ (x)/τ , which can be shown to be
independent of x.

Bias Optimality refers to a policy µ∗ that is as good as any other policies
for τ long enough, i.e., ∀x limτ→∞ Jµτ (x)− Jµ∗τ (x) ≥ 0.

We focus on infinite horizon problems in Chapters 3 and 4, and on finite
horizon in Chap. 5.

20

CHAPTER 3

Optimal Replacement for the Infinite
Horizon

We begin by deriving a bias-optimal policy for a buffer capacity C = 2. In
spite of the apparent simplicity of the problem, the solution is non trivial and
illustrates the difficulty of the general case. Further evidence of this difficulty
is that, for arbitrary buffer capacity, bias-optimal policies do not satisfy the
inclusion property. We then turn our attention to gain optimality, deriving
optimal policies, with the inclusion property, for arbitrary stack-depth distri-
butions. As an interesting application, we discuss how to optimally partition
a buffer time shared by different processes.

3.1 The Bellman Equation

The Bellman equation is a classical result that characterizes bias-optimal
control policies for a dynamical system in infinite horizon as solutions of a
fixed point equation (see [9]). We show below that the equation holds in our
model as well:

Theorem 3.1.1. Let ∆ be a dynamical system whose control ut can be chosen
with knowledge of the disturbance wt. If

∃λ∃~h : λ~1 + ~h = T~h, (3.1)

then λ is the optimal average cost of ∆ and ~h is the vector of the differential

21

Applications of Control Theory to Computer Systems Optimization

costs of the states, i.e.

∀x, y ∈ X lim
τ→+∞

J∗τ (x)− J∗τ (y) = h(x)− h(y). (3.2)

To prove this theorem we need more notations and some lemmas:

Definition 3.1.2. A system is said to be of type 1 (the standard model) if
we are allowed to choose its control u at time t only as a function of the state
at the same time:

ut = µ (xt) ∈ U (xt) (3.3)

where
U : X →P(U) (3.4)

and
µ ∈ P : X → U (3.5)

Definition 3.1.3. A system is said to be of type 2 (our model) if we are
allowed to choose its control u at time t as a function of the state and the
disturbance at the same time:

ut = µ (xt, wt) ∈ U (xt, wt) (3.6)

where
U : X ×W →P(U) (3.7)

and
µ ∈ P : X ×W → U (3.8)

Definition 3.1.4. A system ∆ = (X,W,U, g, f, U(·, ·)) of type 2 is said to
be equivalent to a system ∆′ = (X ′,W ′, U ′, g′, f ′, U ′(·)) of type 1 if and only
if X = X ′, W = W ′, g = g′ and

∀x ∈ X ∀w ∈ W
∃u ∈ U(x,w) : f(x, u, w) = y

⇐⇒ ∃u′ ∈ U ′(x) : f ′(x, u′, w) = y

(3.9)

Remark 3.1.5. Given an initial state x1 and a realization of wt for both
systems, and a sequence of controls ut for system ∆ is always possible to
find u′t such that the state trajectories xt (and hence the costs) of the two
equivalent systems are the same.

Lemma 3.1.6. ∀∆ of type 2 ∃∆′ of type 1 s.t. ∆ and ∆′ are equivalent.

22

Chap. 3: Optimal Replacement for the Infinite Horizon

Proof. Let

U ′ ∆
= P ∀x ∈ X U ′(x)

∆
= P

f ′ (x, u′, w)
∆
= f (x, u′(x,w), w)

(3.10)

Then ∀x ∈ X ∀w ∈ W

• Let y = f (x, u, w). ∀u ∈ U(x,w) if we set u′ = µ : µ(x,w) = u we
have

f ′ (x, u′, w) = f (x, µ(x,w), w)

= f (x, u, w) = y
(3.11)

• Let y = f ′ (x, u′, w). ∀u′ = µ ∈ U ′(x) = P if we set u = µ(x) we have

f (x, u, w) = f (x, µ(x,w), w)

= f (x, u′(x,w), w) = f ′ (x, u′, w) = y
(3.12)

Optimal cost update equations. Let wt be a random variable with
values in W , i.i.d. for different t’s. Furthermore let wt be stationary and
independent of xt and ut. Let ∆ be a system of type 2 and ∆′ an equivalent
system of type 1. Then the cost update equation for ∆ can be written as:

∀x ∈ X J∗τ (x) = Ew

[
min

u∈U(x,w)

{
g(x,w) + J∗τ−1 (f (x, u, w))

}]
(3.13)

~J∗τ = T ~J∗τ−1 (3.14)

whereas the same equation for ∆′ is:

∀x ∈ X J∗τ (x) = min
u′∈U ′(x)

{
Ew

[
g(x,w) + J∗τ−1 (f ′ (x, u′, w))

]}
(3.15)

~J∗τ = T′ ~J∗τ−1 (3.16)

Remark 3.1.7. Since equivalent systems can reproduce each other’s state
evolution, their optimal costs are the same, in particular

T ~J∗τ−1 = T′ ~J∗τ−1 (3.17)

We recall the classical Bellman equation theorem:

23

Applications of Control Theory to Computer Systems Optimization

Theorem 3.1.8 (Standard Bellman equation). Given a dynamical system
∆′ of type 1, if ∃λ and ∃~h such that

λ~1 + ~h = T~h (3.18)

then λ is the optimal average cost of ∆ and ~h are the differential costs of the
states, i.e.

∀x, y ∈ X lim
τ→+∞

J∗τ (x)− J∗τ (y) = h(x)− h(y) (3.19)

We are now ready to prove our version of the Bellman equation for a
system ∆ of type 2:

Proof of Thm. 3.1.1. Consider a system ∆′ equivalent to ∆. Applying Thm. 3.1.8
we have that, if we can solve Bellman equation for ∆′ then we have found its
optimal average cost and differential costs vector. Since the two systems are
equivalent this would mean that they are also the costs of ∆. Hence we have

∃λ∃~h : λ~1 + ~h = T′~h ⇒ λ and ~h costs for ∆ (3.20)

but since T′~h = T~h we finally have

∃λ∃~h : λ~1 + ~h = T~h ⇒ λ and ~h costs for ∆ (3.21)

3.2 Buffer of Capacity C = 2

When C = 2, the state of our dynamical system can be identified by the
unique index j ∈ {2, . . . , V } such that the buffer contains the items in posi-
tions 1 and j of the LRU stack. The Bellman equation becomes

h(j) = 1− s(j) + h(2)− λ
+ S(j − 1) min {0, h(j)− h(2)}
+ (1− S(j)) min {0, h(j + 1)− h(2)} .

(3.22)

The h(j)’s are defined up to an additive constant, so we can set h(2) = 0 to
simplify the equation:

h(j) = 1− s(j)− λ
+ S(j − 1) min {0, h(j)}
+ (1− S(j)) min {0, h(j + 1)} .

(3.23)

24

Chap. 3: Optimal Replacement for the Infinite Horizon

The solutions will satisfy

h(j) = h(j)− h(2) = lim
τ→+∞

J∗τ (j)− J∗τ (2). (3.24)

We now “guess” the rather complex form of the solutions, in terms of the
auxiliary functions

β(j)
∆
= max

l≥1
s̄(j, j + l − 1).

Φ(j)
∆
=
{
l ≥ 1 : ∀k ∈ {0, . . . , l − 1}

s̄(j + k, j + l − 1) ≥ β(2)
}
∪ {0

}
φ(j)

∆
= max Φ(j)

S+(j)
∆
= s̄(j, j + φ(j)− 1)φ(j)

ρ(j)
∆
=

{
s̄(j, j + φ(j)− 1)− β(2) φ(j) 6= 0

β(j)− β(2) φ(j) = 0

(3.25)

where Φ(j) is the subsequence of items that are visited when applying the
policy induced using β as a priority, φ(j) the length of this subsequence and
S+(j) its area.

Theorem 3.2.1. Bellman equation (3.23) is solved using the following λ and
h(j):

λ = 1− β(2)

h(j) = β(2)− s(j)− S(j − 1)

1− S(j − 1)
φ(j)ρ(j)

− φ(j + 1)ρ(j + 1)

=
S(j − 1)

1− S(j − 1)

[
φ(j)β(2)− S+(j)

]
+ β(2) [1 + φ(j + 1)]− [s(j) + S+(j + 1)

]
(3.26)

Proof. Let ψ be

ψ(j)
∆
=

1

1− S(j − 1)
(3.27)

then

h(j) =


−ψ(j)ρ(j)φ(j)

for ρ(j) > 0 (⇒ φ(j) > 0)

β(2)− s(j)− φ(j + 1)ρ(j + 1)

for ρ(j) < 0 (⇒ φ(j) = 0)

(3.28)

25

Applications of Control Theory to Computer Systems Optimization

This implies
min {0, h(j)} = −ψ(j)ρ(j)φ(j) (3.29)

Using this term we can see that the chosen λ and h(j) satisfies Eq. (3.23).

The solution to the Bellman equation is likely to be quite more complex
for arbitrary buffer capacity C, since the number of states grows as

(
V−1
C−1

)
.

We also show next that bias-optimal policies are not stack policies, hence
they can not be compactly specified in terms of priorities.

Theorem 3.2.2. The bias-optimal policy, both over finite and infinite hori-
zon, is not necessarily a stack policy.

Proof. We will exhibit a counterexample of a distribution s that induces a
unique bias-optimal policy, not induced by a priority (and hence not a stack
policy). More in detail we first obtain by dynamic programming (executed
by a computer program) the finite horizon optimal policies for two different
buffer sizes C1 and C2 (being C1 < C2). Starting with buffers that satisfy the
inclusion (B0(C1) ⊆ B0(C2)) we show that, exists a temporal horizon τ and
state positions j1 and j2 such that, when in a state with both positions filled,
for C = C1 the optimal policy evicts at j1, whereas for C = C2 it evicts at
j2.

We then give evidence that the result is valid for all large enough temporal
horizons, implying that the bias-optimal policy in infinite horizon does not
have the inclusion property.

Consider the following s distribution, with V = 8 and β = 1
16
.

s(j): β 3β 3β 0 4β 0 0 5β

j ∈ [1, V] 1 2 3 4 5 6 7 8

We are given an initial LRU stack Λ0 and we consider the following initial
buffers B0(2) and B0(3), satisfying the inclusion property B0(2) ⊂ B0(3):

B0(2) = [Λ0(1),Λ0(4)] (3.30)
B0(3) = [Λ0(1),Λ0(4),Λ0(7)] (3.31)

If an access arrives at x0 = Λ0(8) a miss occurs in both buffers, and hence
an eviction is needed. The possible policies for C = 2 are

• µ2(1): Evict Λ0(1)

• µ2(4): Evict Λ0(4)

26

Chap. 3: Optimal Replacement for the Infinite Horizon

whereas for C = 3 they are

• µ3(1): Evict Λ0(1)

• µ3(4): Evict Λ0(4)

• µ3(7): Evict Λ0(7)

(Λ0(8) has just been accessed and cannot be evicted). We consider a time
horizon of 5 steps and obtain, by the computer execution of the dynamic
programming algorithm, the expected number of misses of these possible
policies, summarized as follows:

M2(1) = 2.893 M2(4) = 3.000 (3.32)
M3(1) = 1.952 M3(4) = 1.939 M3(7) = 2.143 (3.33)

Note that there are no identical costs, and hence the optimal policies are
unique (no other policy achieves the same miss rate). In particular for C = 2
the optimal policy prefers to evict Λ0(1) rather than Λ0(4), whereas for C = 2
it evicts Λ0(4) rather than Λ0(1) or Λ0(7). The resultant buffers do not have
anymore the inclusion property and therefore the optimal policy is not a
stack one.

We have computed the costs of the different choices for the time horizons
from 2 to 20 (see Fig. 3.1): from the data obtained we can see that the costs
tend differences to an asymptote, giving evidence that even the bias-optimal
policy in infinite horizon are not in general stack policies.

3.3 Arbitrary Buffer Capacity – K-L Policy

Fortunately, gain-optimality is more amenable to a systematic analysis. Gain
optimal policies turn out to be stack policies, easy to describe and to imple-
ment.

Relaxing the capacity constraint We will actually obtain them in a
more general contest, i.e. after relaxing the buffer capacity constraint to
equal C on average, rather than at each step. Typically the buffer capacity
is considered to be fixed and, when the buffer is full, an eviction is required
every time a miss occurs, otherwise no evictions are performed. In the more
general relaxed model we target an average buffer use and can do evictions
(even many at once) when we want to, without the need for a miss to have
occurred (similarly we can skip evictions when misses occur). This model

27

Applications of Control Theory to Computer Systems Optimization

5 10 15 20
τ

−0.1

0

0.1

0.2

0.3

C
os

t
d
iff

er
en

ce

2

M2(4)−M2(1)

M3(1)−M3(4)

M3(7)−M3(4)

Figure 3.1: The difference in the expected misses for the possible policies
at t = 1 as a function of the temporal horizon τ . The optimal policy limit
(bias-optimal in infinite horizon) appears to be not a stack policy.

has applications when the buffer capacity is larger than the used one, e.g.
when a buffer is shared by many processes and its portions are assigned by
a scheduler or when we have to pay for the buffer use and we are interested
in limiting the total cost spent by a process.

In what follows we will prove that the optimal policy for the usual on-
demand model (eviction made only when misses occur) is optimal even in
the broader contest obtained relaxing the fixed capacity constraint.

Outline of the Optimal Policies Given a buffer capacity C the first
optimal policy that we obtain, called K-L policy, is characterized by two
parameters K and L that represent positions in the LRU stack. A K-L
starting with an empty buffer will evict in positions L + 1 (preferably) or
(otherwise) at K + 1. The steady state will have the items in the top K
positions always in the buffer, all the items at positions deeper than L outside
the buffer and C −K over the L−K remaining items between K and L in
the buffer. This policy generalizes both LRU (obtained for K = C − 1 and
L = C) and MRU (K = 1 and L = V).

In the next section we define a new stack policy, called Least Profit Rate
(LPR), based on the intuitive notion of profit (defined in Sec. 3.4). We
will see that this policy, when we fix C, converges at steady state to the
corresponding K-L policy, and is thus optimal. The LPR stack policy sheds
new light on the functions K(C) and L(C), that describes how K and L vary

28

Chap. 3: Optimal Replacement for the Infinite Horizon

as a function of the buffer capacity. We will see that an access distribution s
induces a segmentation σi of {1, . . . , V } and this segmentation describes the
couples K(C) and L(C) for all possible C values as:

KC = σi < C ≤ σi+1 = LC (3.34)

We will develop an algorithm that computes the complete segmentation in
linear time, whereas a straightforward computation that does not exploit the
stack policy characterization takes cubic time.

3.3.1 The Model

Let pint (j) be the probability for item Λt−1(j) to be in the buffer B when at is
referenced and before updating the LRU stack. The hit probability at time
t can be written as

Phit
t =

V∑
j=1

pint (j)s(j) (3.35)

The hit rate from time 1 to time τ , using the stationarity of s, can be written
as

P̄
hit
τ =

1

τ

τ∑
t=1

Phit
t =

1

τ

τ∑
t=1

V∑
j=1

s(j)pint (j)

=
V∑
j=1

s(j)

(
1

τ

τ∑
t=1

pint (j)

)
=

V∑
j=1

s(j)p̄inτ (j)

(3.36)

where

p̄inτ (j)
∆
=

1

τ

τ∑
t=1

pint (j) (3.37)

Remark 3.3.1. An optimal policy for item eviction must maximize the hit
rate P̄

hit
τ .

Let us define two events:

• INt(j): the item in position j in the LRU stack is in the buffer at time
t

• EVt(j): the item in position j in the LRU stack at time t has just been
evicted

29

Applications of Control Theory to Computer Systems Optimization

Think to the state update as divided in two parts: the stack rotation followed
by the eviction. Let t− be the time after the LRU stack update and before
the eviction. Note that EVt(j) is a subset of INt−(j), so the following relation
holds:

P[INt(j)] = P[INt−(j) ∩ EVt(j)]

= P[INt−(j)]− P[EVt(j)],
(3.38)

where
P[INt−(j)] = S(j − 1) P[INt−1(j)|dt−1 < j]

+ (1− S(j − 1)) P[INt−1(j − 1)|dt−1 ≥ j]

= S(j − 1) P[INt−1(j)]

+ (1− S(j − 1)) P[INt−1(j − 1)].

(3.39)

Finally, we obtain this fundamental relation

pint (j) = S(j − 1)pint−1(j)

+ (1− S(j − 1)) pint−1(j − 1)− pevt (j).
(3.40)

Theorem 3.3.2. If ∀j pin1 (j) = 0 (buffer initially empty) then ∀τ p̄inτ (j) is
monotonic non increasing with j.

Proof. To lighten the following formulas, let S ∆
= S(j − 1). If we sum the

fundamental recurrence over t we obtain:
τ∑
t=1

pint (j) = pin1 (j) + S
τ−1∑
t=1

pint (j)

+ (1− S)
τ−1∑
t=1

pint (j − 1) +
τ∑
t=2

pevt (j)

=S
τ∑
t=1

pint (j) + pin1 (j)− Spinτ (j)

+
τ∑
t=2

pevt (j) + (1− S)
τ∑
t=2

pint (j − 1)

+ (1− S)pin1 (j − 1)− (1− S)pinτ (j − 1)

(3.41)

τ∑
t=1

pint (j) =
τ∑
t=2

pint (j − 1) +
1

1− Sp
in
1 (j)

− S

1− Sp
in
τ (j) + pin1 (j − 1)

− pinτ (j − 1)− 1

1− S
τ∑
t=2

pevt (j)

(3.42)

30

Chap. 3: Optimal Replacement for the Infinite Horizon

If pin1 (j) = pin1 (j − 1) = 0 we have

τ∑
t=1

pint (j) =
τ∑
t=1

pint (j − 1)− η (3.43)

with η ≥ 0, so p̄inτ (j) ≤ p̄inτ (j − 1).

Theorem 3.3.3. When τ increases p̄inτ (j) tends to a monotonic non increas-
ing function of j, regardless of the initial pin1 state.

Proof. For large τ we have:

p̄inτ (j) ' p̄inτ (j − 1)− 1

1− S(j − 1)
p̄evτ (j) (3.44)

Corollary 3.3.4. If we never evict an item at position j in the LRU stack,
then p̄inτ (j) ' p̄inτ (j − 1) for large values of τ .

3.3.2 The Reduced Optimization Problem

To solve the infinite horizon problem we need to maximize the average hit
rate under the constraints that the average buffer occupation is equal to C,
for the non increasing p̄in ∆

= limτ→∞ p̄inτ , i.e.

maximize
V∑
j=1

s(j)p̄in(j) s.t.
V∑
j=1

p̄in(j) = C (3.45)

This problem is equivalent to the one addressed in [47, 48] for fixed mem-
ory buffer using the stationary pin instead of p̄in.

Theorem 3.3.5. For a given distribution s there is always an optimal p̄in
that maximizes the hit rate having the following form (see Fig. 3.5):

j 7→ p̄in(j) =


1 j ≤ K
C−K
L−K K < j ≤ L

0 j > L

where 1 ≤ K < C and C ≤ L ≤ V .

31

Applications of Control Theory to Computer Systems Optimization

j

p

1

1
0

a b c

p0

p1

p2

p3

Figure 3.2: General p function shape.

Lemma 3.3.6. Let s and p be functions from natural to real numbers

s : N→ R p : N→ R+

with p monotonic non-increasing such as

∞∑
j=1

p(j) = A

Let Ψp be

Ψp =
∞∑
j=1

s(j)p(j)

Then Ψp is maximized for p defined as a step of length λ for some λ:

arg max
p′

Ψp′ = p(j) =

{
A
λ

j ≤ λ

0 j > λ
(3.46)

Proof (reductio ad absurdum). If the optimal p had another shape then it
would have several steps (p is monotonic) and not just one, as shown in
Fig. 3.2. We consider now these extra steps and show that removing one of
them yields to an improved or unchanged Ψp, hence proving that exists an
optimal p function which does not have more than one step.

In maximizing the sum
∑∞

j=1 p(j)s(j), we focus now on the addenda (see
Fig. 3.2)

ψp =
c−1∑
j=a

p(j)s(j) = S1p1 + S2p2

32

Chap. 3: Optimal Replacement for the Infinite Horizon

where

S1 =
b−1∑
j=a

s(j) = s̄1(b− a)

S2 =
c−1∑
j=b

s(j) = s̄2(c− b)

ψp can then be rewritten as:

ψp = p1(b− a)s̄1 + p2(c− b)s̄2

We now want to vary p1 and p2 values, keeping constant the area B below
function p (B ∆

= p1(b− a) + p2(c− b)) without altering p monotonicity. It is
therefore convenient to write ψp using a convex combination of 0 and B as

ψp(α) = αBs̄1 + (1− α)Bs̄2

=
αB

b− aS1 +
(1− α)B

c− b S2

= p′1(α)S1 + p′2(α)S2

with the monotonicity constraints

p′1(α) ∈
[

B

c− a, p0

]
p′2(α) ∈

[
p3,

B

c− a
]

ψp is monotonic in α:
dψp
dα

= B(s̄1 − s̄2)

for S1 6= S2. To see how is convenient to change p′1 and p′2 we need to analyze
the following cases in detail:

• s̄1 < s̄2: ψp decreases with α, so it has its maximum for the lowest value
of p′1(α), i.e. p′1 = p′2 = B

c−a , thus erasing the step in b (see Fig. 3.3)

• s̄1 > s̄2: ψp increases with α and has its maximum for the highest p′1
and the lowest p′2. If (b − a)(p0 − p1) > (c − b)(p2 − p3) we reach the
maximum for p′1 = p0 (Fig. 3.3) erasing the step in a, otherwise we
have the maximum for p′2 = p3 (Fig. 3.4), erasing the step in c.

• s̄1 = s̄2: ψp is constant, so we can increase α and eliminate one of the
steps in a or c

33

Applications of Control Theory to Computer Systems Optimization

j

p

1

1
0

a b c

p0

p′
1 = p′

2

p3

j

p

1

1
0

a b c

p0 = p′
1

p′
2

p3

Figure 3.3: Removing an extra step to increase Ψp. In the first case (step in
b) we have s̄1 < s̄2, in the second one (step in a) s̄1 > s̄2.

j

p

1

1
0

a b c

p0

p1

p2

p3

j

p

1

1
0

a b c

p0

p′
1

p′
2 = p3

Figure 3.4: Step elimination in c when (b− a)(p0 − p1) > (c− b)(p2 − p3).

In all these cases we obtain an improved or unchanged function removing a
step, therefore iterating this process we obtain the one-step function (3.46).

Definition 3.3.7. Let s̄ be the moving average of s:

s̄(j)
∆
=

j∑
i=1

s(i)

j

Definition 3.3.8. Let s̄(i, j) be the average of s between i and j:

s̄(i, j) =

j∑
k=i

s(i)

j − i+ 1

Lemma 3.3.9. Let s be a function from natural to real numbers s : N→ R
and let Ψ have the optimal form shown in Lemma 3.4

Ψ(n) =
A

n

n∑
i=1

s(i)

with A ∈ R+, then λ is a point of maximum for Ψ if and only if is a point
of maximum for s̄

34

Chap. 3: Optimal Replacement for the Infinite Horizon

p̄in

j
0
1 K L

1

C V

Figure 3.5: Optimal p̄in function shape.

Proof.

Ψ(n) = A

n∑
i=1

s(i)

n
= As̄(n)

Proof of Thm. 3.3.5. We want to maximize

P̄
hit
T = s(1) +

V∑
j=2

s(j)p̄inT (j) = s(1) + Ψp,T

with
V∑
j=2

p̄inT (j) = C − 1

If we restrict s to values j > 1 we are in the hypotheses of Lemma 3.3.6, with
the further hypothesis that we want p̄in(j) ≤ 1. The best p̄in function for
j > 1 would be a step of height (C − 1)/(λ− 1), with λ maximizing s̄(2, λ)
(because of Lemma 3.3.9).

Since we have the additional hypothesis p̄in(j) ≤ 1 we can accept λ only
if λ ≥ C, yielding K = 1 and L = λ.

If λ < C we cannot have a single step of width C − 1 for j > 1. Using
considerations similar to the one developed in the proof of Lemma 3.3.6 we
can remove most steps to obtain a better hit rate, but we may be unable to
do it if S̄1 > S̄2 and P1 = 1, because of the impossibility of further increasing
P1. In this case we would end up with a double step, the first of height one,
ending in K < C and a second one, lower, ending in L, for some L > C.

Theorem 3.3.10. Given an optimal p̄in function with parameters K and L
we can construct a replacement policy that generates p̄in, starting from an
empty buffer, using the following eviction rules:

• evict Λ(L+ 1) whenever in buffer;

35

Applications of Control Theory to Computer Systems Optimization

• otherwise evict Λ(K + 1) (which is always in buffer after the rotation).

Proof. We have the following regions:

1. p̄in(j) = 1 for 1 ≤ j ≤ K because of Corollary 3.3.4, provided that
p̄in(1) = 1 and that we never evict for j ≤ K

2. p̄in(j) = p̄in(j − 1) for K + 1 < j ≤ L, because of Corollary 3.3.4
provided that we never evict for K + 1 < j ≤ L

3. p̄in(j) = 0 for j > L because

• At the beginning the items after L were unbuffered (since the
buffer is initially empty)

• If there are no items in the buffer after position L, every time
that a buffered item moves to position L + 1 it is because a miss
occurred, so we can evict Λ(L+1) if buffered, still keeping positions
after L unbuffered.

3.4 The Least Profit Rate Replacement policy

The above K-L policy definition present some problems:

1. It is completely defined only for states that have an item in positions
K or L in the LRU stack

2. We do not have an efficient way of computing the parameters K and
L as a function of C, since the straightforward algorithm for doing it
is O(V 2)

Furthermore we do not know any strong properties of the K-L policy. E.g., it
would be very useful if it could be regarded as a stack policy, as defined in [32].
We recall that a policy is a stack one if and only if it has the inclusion property
for its buffers, as in Definition 2.1.1. The eviction choice in a stack policy can
be seen as induced by a priority list (in general time-dependent) and hence a
way of proving the inclusion property is by exhibiting an appropriate priority
that can be used to choose which item is to be replaced. Stack policies (which
include, e.g., OPT, LRU and LFU) can be described compactly by their
priorities and have the useful property that their miss rate is computable at
the same time for all buffer capacities.

36

Chap. 3: Optimal Replacement for the Infinite Horizon

Least Profit Rate Policy Below, we introduce the concepts of profit and
of profit rate for an item z, at a given time t. We assume that the address
trace is a stochastic process where the current reference xt is a random func-
tion of an underlying markovian observable state. Consider now a rule ρ to
determine, for any underlying state, whether z is kept in the buffer or evicted
upon reaching that state. Let then t+∆, with ∆ > 0, be the earliest time af-
ter t such that z is either referenced or evicted at time t+∆. We call ρ-profit
of z the probability πρ that z is referenced at time t+ ∆, which is a measure
of how useful it would be to keep z in the buffer under the rule. Clearly,
Eρ[∆] is a measure of the storage investment made on z to ripe that profit.
Therefore, the quantity πρ/Eρ[∆] is a measure of profit per unit time, under
rule ρ. Finally, we call profit rate of z, denoted ξ(z), the maximum profit
rate achievable for z, as a function of ρ. (It ought to be clear that profits and
profit rates depend upon the current underlying state of the trace, although
this dependence has not been reflected in the notation, for simplicity).

The Least Profit Rate (LPR) eviction policy is based on evicting, upon a
miss, a page in the buffer with minimum profit rate. Profit rates can then
be viewed as priorities hence, assuming that ties are resolved consistently for
all buffer sizes, LPR is a priority policy and satisfies the inclusion property.
Intuitively, LPR is a reasonable heuristics, but in general is not necessarily
an optimal policy. However, for the LRUSM, the LPR policy is optimal, as
shown in this section. Furthermore, an analytical expression can be derived
for profit rates. Profit rates also lead to an efficient computation of the
parameters K(C) and L(C) of an optimal policy for all buffer capacities C.
To compute the LPR priorities in the LRUSM we first need a lemma.

Lemma 3.4.1. The expected time spent by an item in each position of the
LRU stack is the same.

Given a cached item at position i in the LRU stack, if we choose to keep
it in the buffer until it goes past position j then the average probability of
being hit that it will experience is given by the average value of s between
i and j, because of Lemma 3.4.1. This profit function has a maximum for
some value of j that will define our LPR policy, as shown below.

Definition 3.4.2. The LPR policy evicts the item i in the buffer such that

i∗ ∆
= arg min

i
max
j
s̄(i, j) (3.47)

Proof of Lemma 3.4.1. Let tji be the expected time spent by an item in posi-
tion j ≥ i conditioned to the fact the item surely arrives in position i without

37

Applications of Control Theory to Computer Systems Optimization

getting accessed. We have that

tjj = 1 + S(j − 1)tjj ⇒ tjj =
1

1− S(j − 1)

The probability that an item, starting from position j does not arrive in
position j + 1 is the sum, for k ≥ 0, of the probabilities that first arrive k
accesses above j and then j is accessed. So the probability for an item in
position j to arrive in position j + 1 is

P j
j+1 = 1− s(j)

+∞∑
k=0

[S(j − 1)]k =
1− S(j)

1− S(j − 1)

and hence the time spent in position j + 1 is

tjj+1 = P j
j+1t

j+1
j+1 =

1− S(j)

1− S(j − 1)

1

1− S(j)
= tjj

Furthermore
tjj+k = P j

j+1P
j+1
j+2 · · ·P j+k−1

j+k tj+kj+k = tjj

As a special case, if we know that an item starts from position 1 (in which
is going to spend exactly 1 time step) then is going to spend on average
tj

∆
= t1j = 1 in each position on the LRU stack in its lifetime.

After introducing two lemmas we are now able to prove that the K-L
policies are induced by the LPR stack policy and we devise a linear algorithm
that, given s, can compute K(C) and L(C) for all buffer capacities C.

Lemma 3.4.3. Let s be a function from natural to positive real numbers:
s : N→ R+ and let s̄ be its moving average. Let λ be the point of maximum
for s̄. Then for each q ≤ λ we have

s̄(λ) ≤ s̄(q, λ)

Proof. We can rewrite s̄(λ) as

s̄(λ) =
λ∑
j=1

s(j)

λ
=
q − 1

λ

q−1∑
j=1

s(j)

q − 1

+
λ− q + 1

λ

λ∑
j=q

s(j)

λ− q + 1
=

=
q − 1

λ
s̄(q) +

λ− q + 1

λ
s̄(q, λ)

38

Chap. 3: Optimal Replacement for the Infinite Horizon

Being s̄(λ) a convex combination of s̄(q) and s̄(q, λ) the following inequality
holds:

min {s̄(q), s̄(q, λ)} ≤ s̄(λ) ≤ max {s̄(q), s̄(q, λ)}
Since for hypothesis we have s̄(λ) ≥ s̄(q) we must have

s̄(q) ≤ s̄(λ) ≤ s̄(q, λ)

Lemma 3.4.4. Let s be a function from natural to positive real numbers:
s : N → R+, let s̄ be its moving average and s̄(q, j) be the average of s
between q and j. Let λ be the point of maximum for s̄. Then for each r > λ
we have

s̄(λ+ 1, r) ≤ s̄(λ)

Proof. We have the following convex combination:

s̄(r) =
λ

r
s̄(λ) +

r − λ
r

s̄(λ+ 1, r)

with s̄(λ) ≥ s̄(r) so we must have

s̄(λ+ 1, r) ≤ s̄(r) ≤ s̄(λ)

Theorem 3.4.5. K(C) and L(C) can be computed using the Θ(V 2) Algo-
rithm 1.

Algorithm 1: Computing K and L – Quadratic algorithm.
σ ← 1;1

repeat2

K ← σ;3

σ ← arg max
j>K

s̄(K + 1, j);
4

until σ ≥ C ;5

L = σ;6

Proof. Let K and L be the parameters as computed by Algorithm 1. We
now consider an alternative two-point eviction policy with parameters q and
Lq instead of K and L. We want to prove that the hit rate is improved or
not altered moving q and Lq to K and L.

39

Applications of Control Theory to Computer Systems Optimization

We first note that an optimal q should not be chosen smaller than K.
Let σ1 = 1, σ2, . . . , σn−1 = K, σn = L be the sequence of σ’s computed by
Algorithm 1 with σh−1 ≤ q < σh ≤ σn−1. Because of Lemmas 3.4.3 and 3.4.4,
we have that

∀Lq > σh

s̄(q + 1, σh) ≥ s̄(σh−1 + 1, σh) ≥ s̄(σh + 1, Lq)

hence, as shown in the proof of Lemma 3.3.6, moving q to σh would not
decrease the hit rate, proving that we can restrict on values of q not smaller
than K.

Let q ≥ K. First of all we note that Phit can be rewritten as:

Phit = s̄(q)q + s̄(q + 1, Lq)(C − q)
so we can choose the Lq which maximizes l 7→ s̄(q + 1, l) to obtain the best
hit rate given q. Since q = K would bring Lq = L we can now focus on
q > K. Because of Lemmas 3.4.3 and 3.4.4, we have that

∀Lq > L

s̄(q + 1, L) ≥ s̄(K + 1, L) ≥ s̄(L+ 1, Lq)

therefore an optimal Lq cannot be bigger than L: Lq ≤ L. We then have two
possible cases:

• s̄(K + 1, q) > s̄(q + 1, Lq): because of Lemma 3.4.3 we have

s̄(Lq + 1, L) > s̄(K + 1, q) > s̄(q + 1, Lq)

hence we could move the step from Lq to L without worsen the hit rate.
But at this point, since

s̄(K + 1, q) < s̄(q + 1, L)

we can remove the step in q ending with q = K and Lq = L.

• s̄(K + 1, q) < s̄(q + 1, Lq): we can improve (or not alter) the hit rate
removing the step in q, thus obtaining q′ = K and hence Lq′ = L.

Theorem 3.4.6. The K-L replacement policy is induced by the rule: evict
the item in position

i∗ ∆
= arg min

i
max
j
s̄(i, j)

40

Chap. 3: Optimal Replacement for the Infinite Horizon

Proof. Starting with an empty buffer we evict the first time when the top C
position of the LRU stack are filled. The position i∗ = arg mini maxj s̄(i, j)
is exactly K + 1 (as can be seen applying Lemmas 3.4.3 and 3.4.4). The
following position l that has maxj s̄(l, j) < maxj s̄(i

∗, j) is L + 1, so each
time an item reaches that position is evicted (it can reach it only after a
miss, since the positions after L are not in the buffer).

If the buffer is not initially empty we can however prove this theorem
introducing a common hypothesis in control theory for a system. If ∀j s(j) 6=
0, then the state with the top C positions in the buffer is recurrent under
any policy (i.e. the system is unichain [9]) and we can still apply the previous
arguments.

Corollary 3.4.7. K(C) and L(C) can be computed for all buffer sizes C
using the Θ(V) Algorithm 2, which is adapted from [30] and is a specialization
of the Graham scan [21, 8].

Algorithm 2: Computing K and L as functions of C – Linear algo-
rithm. KC = σk < C ≤ σk+1 = LC for some k.
ν[1]← 1; w[1]← s(1); d[1]← 1;1

w[V + 1]← 0; d[V + 1]← 1;2

for j ← V downto 2 do3

ν[j]← j; w[j]← s[j]; d[j]← 1;4

n← ν[j] + 1;5

while w[j]/d[j] ≤ w[n]/d[n] do6

ν[j]← ν[n];7

w[j]← w[j] + w[n];8

d[j]← d[j] + d[n];9

n← ν[j] + 1;10

j ← 1; k ← 1;11

while j ≤ V do12

print “σk = ν[j]”;13

j ← ν[j] + 1; k ← k + 1;14

3.5 Buffer Partitioning

An interesting application of the LPR policy arises when we want to partition
a buffer of capacity C among n independent processes. We assume that the

41

Applications of Control Theory to Computer Systems Optimization

i-th process accesses a private address space size Vi, according to the LRUSM
with stack-depth distribution si. At each step the i-th process has probability
ψi (

∑n
i=1 ψi = 1) to be the one to run. We want to determine the capacity

Ci to devote to process i (with
∑n

i=1Ci = C) so as to minimize the global
miss rate over an infinite temporal horizon, under the hypothesis that each
process is using the optimal LPR policy for its distribution si.

Let Mi(Ci) be the expected miss rate for process i as a function of the
buffer capacity Ci. We want to find a partition [C∗i]i such that the overall
miss rate is minimized over the possible partitions:

[C∗i]i = arg min
[Ci]i

∑
i

ψi Mi(Ci).

It has been proved [43, 45, 18] that, if all functions

γi(Ci) = Mi(Ci − 1)−Mi(Ci),

called marginal gains, are non increasing (and hence the miss rates are con-
vex), then the optimal partition can be found by a simple, efficient greedy
algorithm. It turns out that the miss rate of the optimal LPR policy is convex
(which is not necessarily true for LRU). In fact, a relatively straightforward
analysis shows that the marginal gains of the optimal policy are constant
within every segment of the partition of s obtained by Alg. 2 (specifically,
if Ci is in the segment [σk + 1, σk+1], then γi(Ci) = s̄i (σk + 1, σk+1)) and
decrease from segment to segment.

Based on these properties and on the linearity of our preprocessing algo-
rithm (Alg. 2), the optimal buffer partition can be computed in linear time
by the very simple algorithm Alg. 3.

42

Chap. 3: Optimal Replacement for the Infinite Horizon

Algorithm 3: Optimal partitioning. σik represents the last item slot
of the k-th chunk of the LRU stack partition of the i-th process. At
the end the vector p contains the number of slots to allocate to each
process.
∀i k[i]← 1, p[i]← 1;1

R← C − n;2

while R 6= 0 do3

i∗ ← arg maxi s̄
(
σik[i] + 1, σik[i]+1

)
;4

l← σi
∗
k[i∗]+1 − σi

∗
k[i∗];5

∆← min {l, R};6

p[i∗]← p[i∗] + ∆;7

R← R−∆;8

k[i∗]← k[i∗] + 1;9

43

CHAPTER 4

On-line vs. Off-line Optimality in Page
Replacement

Intuitively, the optimal on-line policy of the preceding chapter makes the best
possible use of the statistical knowledge of the future address trace. How does
the performance so achieved compare with that of a policy like OPT, which
makes the best use of the complete knowledge of the future trace? To explore
this question we study the ratio χ between the miss rates of LPR and OPT:

χ
∆
= max

s
χ(s) (4.1)

where χ(s)
∆
=
MLPR(s)

MOPT(s)
, (4.2)

a kind of average competitive ratio. In this chapter we will derive a result of
the form χ ≤ f(V,C).

DeterminingMOPT for a given stack-depth distribution s(·) appears to be
difficult, but we can derive a useful lower bound, that we prove after giving
some definitions.

LOPT
G (s)

∆
= G

(
C+G−1∑
g=0

1

1− S(g)

)−1

LOPT(s)
∆
= max

G∈{1,...,V−C}
LOPT
G (s)

(4.3)

Theorem 4.0.1. Under the LRUSM, the miss rate of OPT is bounded from
below as

MOPT(s) ≥ LOPT(s) (4.4)

45

Applications of Control Theory to Computer Systems Optimization

Proof. Let φj be the random variable, with support the positive integers,
describing the time steps needed to access a stack position at depth lower
than j. We can see that φj is a geometric random variable, with parameter
pj = 1− S(j), P[φj = k] = (1− pj)k−1p and expected value 1/p.

The time steps needed to observe C + G distinct items are described by
the random variable τ , defined as

τ
∆
=

C+G−1∑
j=0

φj (4.5)

whose expected value is, by linearity,

E[τ] =
C+G−1∑
j=0

1

1− S(j)
(4.6)

Let us consider a sequence of q intervals with C + G distinct items, of
i.i.d. lengths τi. Since each interval with C + G references to distinct items
contains at least G misses, the miss rate for any policy (including OPT) is
bounded by

M(s) ≥ lim
q→∞

E
[

qG∑q
i=1 τi

]
∀G (4.7)

which can be rewritten as

M(s) ≥ G lim
q→∞

E
[

q∑q
i=1 τi

]
= G lim

q→∞
E
[

1

τ̄q

]
where τ̄q

∆
=

q∑
i=1

τi
q

(4.8)

Since τ̄q converges in distribution to the delta peaked at E[τ] (large number
law) and in its support x ∈ Z : x ≥ C + G the function 1/x is continuous
and bounded we obtain [31]

M(s) ≥G lim
q→∞

E
[

1

τ̄q

]
= GE

[
1

limq→∞ τ̄q

]
=

G

E[τ]
(4.9)

Corollary 4.0.2.

χ(s)
∆
=
MLPR(s)

MOPT(s)
≤ MLPR(s)

LOPT(s)
. (4.10)

46

Chap. 4: On-line vs. Off-line Optimality in Page Replacement

4.1 Uniform distribution miss-rate ratio

We now derive χ(su) when su(j) = 1/V is the constant access distribution
function, i.e. the distribution that accesses uniformly at random all the items.
We will prove later that χ = χ(su), i.e. the value we obtain is the largest
possible for all distributions. Eq. (4.3), with G = V−C

2
, yields

LOPT(su) ' V − C
2V log

(
2V
V−C

) , (4.11)

whereas, straightforwardly,

MLPR(su) =
V − C
V

, (4.12)

whence, using Eq. 4.11,

χ(su) ≤ MLPR(su)

LOPT(su)
' 2 log

(
2V

V − C
)
. (4.13)

Remark 4.1.1. Actually the value G∗ = arg maxG L
OPT
G (su) is not V−C

2
.

Approximating the harmonic functions with logarithms we can write, for G 6=
V − C:

LOPT
G (su) =

G

V log
(

V
V−C−G

) (4.14)

We can find G∗ setting the derivative of LOPT
G (su) to zero: let µ = C

V
, β =

1− µ and γ∗ = G∗
V
, then γ∗ is the unique zero for γ ∈ [0, β[of the following

function

f(γ) = (γ − β) + exp

(
γ

γ − β
)

(4.15)

A rough approximation (see Fig.4.1) is given by

γ∗ ' 3

2
(
√
µ− µ) (4.16)

4.2 Worst-Case Miss-Rate Ratio

The next theorem, preceded by a lemma, states that, given a distribution s,
we can obtain a nearly uniform distribution s′ that induces the same online
optimal policy K-L with the same miss-rate, but a lower LOPT. We then
show that the χ obtained with this kind of functions is the same obtained by
the uniform one su shown in Eq. (4.13), which is thus optimal.

47

Applications of Control Theory to Computer Systems Optimization

0 0.2 0.4 0.6 0.8 1
C
V

0

0.1

0.2

0.3

0.4

G∗
V

G∗

approx. G∗

Figure 4.1: Uniform distribution. G∗ and its approximation.

Lemma 4.2.1. If ∀j S1(j) ≥ S2(j) then LOPT(s1) ≤ LOPT(s2)

Proof. From the definition we can see that LOPT is decreasing in
∑C+G−1

g=0
1

1−S(g)
,

and hence decreasing in S.

Theorem 4.2.2. Let s be an LRU stack access distribution, LPR the associ-
ated optimal online policy. Let sσ,η be the following distribution, parametrized
by σ and η in [0, 1]:

sσ,η(j) =


σ j = 1

η j ∈ {2, . . . , L+ d}
1− S ′(L+ d) j = L+ d+ 1

0 j > L+ d+ 1

(4.17)

where
d

∆
=

⌊
1− S ′(L)

η

⌋
(4.18)

Let X(s) be the set of distribution that have the same K and L parameters
of s with the same miss-rate and let s′ be the distribution in X that has the
lowest miss-rate:

s′ ∆
= arg min

x∈X
LOPT(x) (4.19)

Then s′ is a sσ,η distribution for some suitable parameters σ and η.

Proof. Given s we can obtain a distribution s′ decreasing OPT’s lower bound
setting

η
∆
= s̄(K + 1, L) σ

∆
= S(K)− (K − 1)η (4.20)

48

Chap. 4: On-line vs. Off-line Optimality in Page Replacement

which has ∀j S ′(j) ≥ S(j) and hence, because of Lemma 4.2.1, has a smaller
LOPT.

Corollary 4.2.3.

χ ≤ 2 log

(
2V

V − C
)

(4.21)

Proof. Thanks to the similarity between sσ,η and su, if we repeat the analysis
in Section 4.1 we obtain the same bound.

The following corollary agrees with many results observed in simulations
on real traces [7, 49].

Corollary 4.2.4. If C ≤ βV , for some β < 1, then χ = O(1),

Theorem 4.2.5. The bound given in Eq. 4.13 is existentially tight, since for
C = V − 1, we have

MLPR =
1

V
MOPT ' 1

V HV

χ ' HV (4.22)

where HV is the V -th harmonic number (HV =
∑V

i=1
1
i

= log V + γ + Θ
(

1
V

)
,

with γ ' 0.577 being the Euler-Mascheroni constant).

Proof. LetN be the time between two consecutive misses using OPT’s policy.
We have a miss if and only if in the last N references there are V distinct
items, and this happens on average every V HV steps, so the expected value
of N is E[N] = V HV . Since N is sharply concentrated around its expected
value [34], i.e.

P [N > V HV +cV] ' 1− e−e−|c| (4.23)

we obtain E[1/N] ' 1/E[N] and the thesis follows.

49

CHAPTER 5

Optimal Replacement for Finite Horizon

From a practical perspective, when dealing with sufficiently long address
traces, a policy that is optimal over an infinite horizon will likely achieve
near optimal performance. For shorter traces, transient effects may play a
significant role, whence the interest in understanding the structure of opti-
mal policies over a finite horizon. In principle, the optimal policy can be
computed by a dynamic-programming algorithm based on Eq. 2.10, but the
exponential number of states makes this approach of rather limited applica-
bility. An alternate route, which has been successfully followed for several
optimal control problems, is to guess a closed form characterization of a pol-
icy π and its corresponding optimal cost function Jπτ (·). Under very mild
conditions, if the guess satisfies Eq. 2.10, then π is an optimal policy. We
have been unable to take this route; the obstacle lies in finding a tractable
form for the optimal cost. Ultimately, we have circumvented this obstacle for
monotone stack-depth distributions, by realizing that what is really needed
to make an optimal choice between two states is not the absolute value of
their costs, but rather their relative value. And even the latter is only needed
when the two states are both candidate next states in the same step. The
results are stated next.

Theorem 5.0.6. Let s be non increasing, with s(j) ≥ s(j + 1) for j ∈
{1, V−1}. Then, for any finite horizon τ ≥ 1, LRU is an optimal replacement
policy.

Theorem 5.0.7. Let s be non decreasing, with s(j) ≤ s(j+1) for j ∈ {1, V −
1}. Then, for any finite horizon τ ≥ 1, MRU is an optimal replacement
policy.

51

Applications of Control Theory to Computer Systems Optimization

Thus, for monotone stack-depth distributions, the finite-horizon optimal
policy is time invariant, hence it is also optimal over an infinite horizon. This
property does not hold for arbitrary distributions.

In spite of the symmetry between the statements of the above two the-
orems, their proofs, given in the following two sections, require significantly
different ideas.

5.1 Non-Increasing Access Distribution

Definition 5.1.1. Let Rd(x) denotes the state resulting by applying a right
cyclic-shift to the prefix of length d of x (strictly speaking, if x(d) = 0 then
Rd(x) is a pseudo-state, as it is not in the admissible state set). The Least
Recently Used (LRU) policy is defined (for a miss, x(d) = 0) by

LRU(x, d) = max{j : y(j) = 1}
where y = Rd(x).

(5.1)

In other words, the item evicted is the one in the deepest position of the
(resulting) stack, among those that are in the buffer.

Definition 5.1.2. Two states y and z are said to form a critical pair if their
structure is related as follows:

y = 1π1ι0σ,

z = 1π0ι1σ.
(5.2)

for any π, ι and for any σ ∈ 0∗.

Remark 5.1.3. A critical pair represents a choice between what would the
LRU policy do (obtaining y) and what would a different eviction policy do
(obtaining z), when choosing the item to evict after the stack rotation.

Remark 5.1.4. Given a critical pair as in the definition above we write
y <c z to remark that in the last stack position in which y and z differ y has
a zero and z has a one. We similarly define the operator ≤c as:

y ≤c z ⇔ y = z ∨ y <c z (5.3)

Lemma 5.1.5. The evolution of a critical pair under LRU preserves its
criticality and order, i.e.:

∀y ∀z : y <c z ∀w fLRU(y, w) ≤c fLRU(z, w) (5.4)

52

Chap. 5: Optimal Replacement for Finite Horizon

Proof. We can divide the w access in four cases:

Hit for both y and z The two stacks rotate and they are still a critical
pair with y <c z

Miss for both y and z The two evictions in the last filled positions make
the states equal if ι ∈ 0∗, otherwise they yield y <c z

Hit for y and miss for z The eviction in z yields y = z

Miss for y and hit for z The eviction in y brings y = z if ι ∈ 0∗ and
y <c z otherwise

Theorem 5.1.6. Let s be monotonic non decreasing, then LRU is the optimal
eviction policy for every time horizon τ . Furthermore:

∀τ ∀y ∀z : y ≤c z J∗τ (y) ≤ J∗τ (z) (5.5)

Proof (by induction on τ). Base case. For τ = 1 we have

∀x J∗1 (x) = Ew [g(x,w)]
∆
= ḡ(x) , (5.6)

from which, using s monotonicity, follows

∀y ∀z : y ≤c z J∗1 (y) ≤ J∗1 (z) . (5.7)

Induction. We assume now the previous inductive hypothesis for all
t < τ , obtaining

∀x J∗τ (x) = ḡ(x) + Ew

[
min
u
J∗τ−1 (f(x,w, u))

]
= ḡ(x) + Ew

[
J∗τ−1

(
fLRU(x,w)

)]
.

(5.8)

Since ḡ(y) ≤ ḡ(z) and since, by the inductive hypothesis and Lemma 5.1.5,

J∗τ−1

(
fLRU(y, w)

) ≤ J∗τ−1

(
fLRU(z, w)

)
(5.9)

we finally obtain J∗τ (y) ≤ J∗τ (z) and the induction is completed.

Proof of Thm. 5.0.6. Follows directly from Thm. 5.1.6

53

Applications of Control Theory to Computer Systems Optimization

5.2 Non-Decreasing Access Distribution

First we note that we can decompose the miss rate in a very useful manner:
imagine to put an observer in every out-of-buffer item, with the observer
following the item going down the LRU stack during the system evolution;
when an out-of-buffer item is accessed the observer moves to the item evicted
by the replacement policy. Thus the set Ω of the observers remains the same
during the evolution and does not depend on the time t.

Let dt be the access depth at time t, let ω be an observer and lµt (ω, x1, dt′<t)
be the stack depth of the ω observer at time t. We are interested in the event
the item observed by ω is accessed at time t (i.e. dt = lµt (ω, x1, dt′<t)). We
can decompose the misses in τ steps using observers ω ∈ Ω as:

Γµτ (x1) =
τ∑
t=1

PMISS(t)

=
τ∑
t=1

∑
ω∈Ω

P[dt = lµt (ω, x1, dt′<t)]

=
∑
ω∈Ω

τ∑
t=1

P[dt = lµt (ω, x1, dt′<t)]

(5.10)

Let ωj be the observer which is at depth j at time zero. Under MRU the
evolution of an observer ωj does not depend on x1 but only on the initial po-
sition of the observed item (i.e. lMRU

t (ωj, x1, dt′<t) = lMRU
t (ωj, dt′<t) = lt(ωj)

for brevity), hence the contribution observers gives to the cost of different
initial states depends only on their initial positions. E.g. if we have two states
x1 and x2 which differ for only two observers ωi and ωj we can write their
costs as:

Γ1 =
∑

ω∈Ω\{ωi}

τ∑
t=1

P[dt = lt(ω)] +
τ∑
t=1

P[dt = lt(ωi)]

Γ2 =
∑

ω∈Ω\{ωj}

τ∑
t=1

P[dt = lt(ω)] +
τ∑
t=1

P[dt = lt(ωj)]

(5.11)

where the first term is equal in both the costs, because it is due to observers
which start in the same position for both states, and thus:

Γ1 − Γ2 =
τ∑
t=1

P[dt = lt(ωi)]−
τ∑
t=1

P[dt = lt(ωj)] (5.12)

54

Chap. 5: Optimal Replacement for Finite Horizon

i.e. the difference in the costs depends only in the items observed by the
different observers.

Let us define γτ (i) as

γτ (i) =
τ∑
t=1

P[dt = lt(ωi)] (5.13)

i.e. the contribution to the total cost due to items observed by ωi, the observer
that at time zero is in position i (not in the buffer). As noted before this
contribution under MRU does not depend on the initial state (given that i
is not in the buffer).

We now just need to prove that γτ (i) ≤ γτ (j) if i < j and we do it by
induction in the following lemma:

Theorem 5.2.1. Let s be non decreasing:

∀j ∈ {1, V − 1} s(j) ≤ s(j + 1) (5.14)

and MRU the policy we apply. If

∀t ≤ τ ∀i ∀j : i < j

γt(2) ≤ γt(i) ≤ γt(j) ≤ 1 + γt(2)
(5.15)

then
∀i ∀j : i < j

γτ+1(2) ≤ γτ+1(i) ≤ γτ+1(j) ≤ 1 + γτ+1(2)
(5.16)

Proof. Base case. For t = 1 we have

∀k γt(k) = s(k)

and hence
γt(2) ≤ γt(i) ≤ γt(j)

Furthermore we have that

γt(k) = s(k) ≤ 1 ≤ 1 + γt(2)

Induction.

γτ+1(i) = s(i)(1 + γτ (2))

+ S(i− 1)γτ (i) + (1− S(i))γτ (i+ 1)

≤ s(i)(1 + γτ (2)) + (1− s(i))γτ (i+ 1)

≤ s(i)(1 + γτ (2)) + (1− s(i))γτ (j)
= s(i)(1 + γτ (2)) + s(j)γτ (j)

+ (1− s(i)− s(j))γτ (j)

55

Applications of Control Theory to Computer Systems Optimization

γτ+1(j) = s(j)(1 + γτ (2))

+ S(j − 1)γτ (j) + (1− S(j))γτ (j + 1)

≥ s(j)(1 + γτ (2)) + (1− s(j))γτ (j)
= s(j)(1 + γτ (2)) + s(i)γτ (j)

+ (1− s(i)− s(j))γτ (j)

⇒ γτ (i) ≤ γτ (j)

Finally under MRU we have

γτ+1(k) = s(k)(1 + γτ (2))

+ S(k − 1)γτ (k) + (1− S(k))γτ (k + 1)

≥ min {1 + γτ (2), γτ (k), γτ (k + 1)}
= γτ (k)

and

γτ+1(k) = s(k)(1 + γτ (2))

+ S(k − 1)γτ (k) + (1− S(k))γτ (k + 1)

≤ max {1 + γτ (2), γτ (k), γτ (k + 1)}
= 1 + γτ (2)

and therefore
γτ+1(k) ≤ 1 + γτ+1(2)

Proof of Thm. 5.0.7. Follows directly from Thm. 5.2.1

56

CHAPTER 6

An Introduction to the Galois System

6.1 Preliminaries

The advent of on-chip multiprocessors has made parallel programming a
mainstream concern. Unfortunately writing correct and efficient parallel pro-
grams is a challenging task, not solvable by the average programmer. Hence,
in recent years, many projects [25, 20, 4, 38] have been started to try to
automate parallel programming for some classes of algorithms, mostly fo-
cusing regular problems, such as the DFT [19, 37] or linear algebra routines
[11]. Actually the automation is even more difficult when the algorithms
present irregular data access, typical, e.g., of algorithms on graphs or other
pointer-based data structures.

A typical property that many irregular applications exhibit is amorphous
data parallelism [33], in which data accesses can be organized in worklists,
which dynamically evolve during the program execution. Examples of algo-
rithms within this category are:

• Survey propagation [13] – A powerful heuristic for NP-complete prob-
lems

• Boruvka’s algorithm [14] – Minimum spanning tree algorithm

• Delauney triangulation and refinement [22] – Mesh generation algo-
rithms

• Agglomerative clustering [44] – Clustering algorithm used in data-mining

57

Applications of Control Theory to Computer Systems Optimization

(i) (ii) (iii)

Figure 6.1: Optimistic parallelization in the Galois System. (i) Nodes rep-
resent possible computations, edges conflicts between them. (ii) m nodes are
chosen at random and run concurrently. (iii) At runtime the conflicts are de-
tected, some nodes abort and their execution is rolled back, leaving a maximal
independent set in the subgraph induced by the initial nodes choice.

• Barnes-Hut [6] – Computational kernel for n-body interactions simu-
lations

Galois The Galois Project [28], developed at the University of Texas at
Austin, aims to provide automatic optimization tools for amorphous data
parallel problems by means of optimistic parallelization: the tasks in the
worklists are executed speculatively in parallel and, whenever at runtime a
conflict is detected the execution is rolled-back.

The Model For our purposes we can model the Galois System as working
on a dynamic graph Gt = (Vt, Et), where the nodes represent computations
we want to do, but we have no initial knowledge of the edges, which represent
conflicts between computations (see Fig. 6.1). At time step t the system
picks mt nodes (the active nodes) and tries and process them concurrently.
When it processes a node it figures out if it has some connections with other
executed nodes and, if a neighbor node happens to have been processed before
it, aborts, otherwise the node is considered processed, is removed from the
graph and some operations may be performed in the neighborhood, such as
adding new nodes with edges or altering the neighbors.

We are interested in building a control system that can help the Galois
System to choose, for each temporal step t, an mt which guarantees as high
parallelism as possible with few conflicts, hence achieving a good use of the
processors time.

Remark 6.1.1. Note that if we naïvely try to minimize the total execution

58

Chap. 6: An Introduction to the Galois System

time the system is forced to use always all the available processors, whereas
if we try to minimize the time wasted from aborted processes the system uses
only one processor.

6.2 Optimization Goal

Let t be the time step, nt
∆
= |Vt|, mt the number of processors chosen to be

run at time step t, πm the permutation of the mt nodes as they try to commit
in the Galois System (i.e., if i < j and πm(i) and πm(j) conflict, then πm(i)
commits and πm(j) aborts), kt(πm) the number of aborted processes due to
conflicts and rt(πm) ∈ [0, 1) the ratio of conflicting processors observed at
time t (i.e. rt(πm)

∆
= kt(πm)/mt). We define r̄t(m) to be the expected r we

obtain when the system is run with m processors:

r̄t(m)
∆
= Eπm [rt(πm)]

where the expectation is computed uniformly over the possible prefixes of
length m of the nodes permutations.

We can now precisely formulate the control problem in the following way:
given r(τ < t) choose mt = µt where r̄t(µt) ' ρ.

Remark 6.2.1. If we want to dynamically control the number of processors,
ρ must be chosen different from zero, otherwise the system converges to use
one single processor, thus not being able to identify available parallelism. A
value of ρ = 20÷30% is often reasonable, together with the constraint mt ≥ 2.

In the following we suppose that the properties of Gt are varying slowly
compared to the convergence ofmt toward µt under the algorithms we develop
(hypothesis that is verified in the benchmark applications shown in [27]), so
we can consider Gt = G and µt = µ. An important property of r̄ is given by
the following theorem.

Theorem 6.2.2. If the processors are chosen uniformly at random then
r̄t(m) is non-decreasing in m.

To prove Thm. 6.2.2 we first need a lemma:

Lemma 6.2.3. Let k̄(m)
∆
= Eπm [k(πm)]. Then k̄ is a non-decreasing convex

function, i.e. ∆k̄(m) ≥ 0 and ∆2
k̄
(m) ≥ 0.

59

Applications of Control Theory to Computer Systems Optimization

Proof. Let k̃(πm, i) be the expected number of conflicting nodes running r =
m+i nodes concurrently, the firstm of which are πm and the last i are chosen
uniformly at random among the remaining ones. We have

k̃(πm, 1) = k(πm) + P [(m+ 1)-th conflicts] (6.1)

which brings
k̄(m+ 1) = Eπm

[
k̃(πm, 1)

]
= k̄(m) + η (6.2)

with η = k̄(m+ 1)− k̄(m) = ∆k̄(m) ≥ 0. Now consider

k̃(πm, 2) = k(πm) + P [(m+ 1)-th conflicts] + P [(m+ 2)-th conflicts] (6.3)

If the (m+1)-th node does not add any edge, then we have P [(m+ 1)-th conflicts] =
P [(m+ 2)-th conflicts], but since it may add some edges the probability of
conflicting the second time is in general larger and thus ∆2

k̄
(m) ≥ 0.

Proof of Thm. 6.2.2. Since r̄(m) = k̄(m)/m, its finite difference can be writ-
ten as

∆r̄(m) =
m∆k̄(m)− k̄(m)

m(m+ 1)
(6.4)

Because of Lemma 6.2.3 and being k̄(1) = 0 we have

k̄(m+ 1) ≤ m∆k̄(m) (6.5)

which finally brings

∆r̄(m) ≥ ∆k̄(m)

m(m+ 1)
≥ 0 (6.6)

60

CHAPTER 7

Controlling Parallelism in the Galois
System

7.1 Exploiting Parallelism

A measure of the available parallelism for a given conflict graph has been
identified by the Galois group computing at each temporal step a maximal
independent set, processing the nodes in this set, applying changes required
by the used algorithm to the graph, and then iterating the process [27].

The expected size of a maximal set gives a reasonable and computable
esteem of the available parallelism. Furthermore we can obtain a lower bound
of it once we know (or can estimate) the sparsity of the graph G. In fact the
average degree of the computations/conflicts graph is linked to the expected
size of a maximal independent set of the graph by the following theorem, in
the variant shown in [3]:

Theorem 7.1.1. (Turán, stronger formulation). Let G = (V,E) be a graph,
n = |V | and let d be the average degree of G. Then the expected size of a
maximal independent set, obtained from a random permutation, is at least
s = n/(d+ 1).

Remark 7.1.2. The above bound is existentially tight: let Kn
d be the graph

made up of s = n/(d + 1) cliques of size d + 1, then the average degree is
d and the size of every maximal (and maximum) independent set is exactly
s. Furthermore, every other graph with the same number of nodes and edges
has a smaller average maximal independent set.

61

Applications of Control Theory to Computer Systems Optimization

The properties of the graph Kn
d has suggested us to formulate the follow-

ing extension of Turán’s theorem, that allows, when given a target conflict
ratio ρ, to compute a lower bound for the parallelism the Galois System can
exploit:

Theorem 7.1.3. The worst case for the Galois System among the graphs
with the same number of nodes and edges is obtained for the graph Kn

d

(for which we can analytically approximate the performance, as shown in
Sec. 7.1.1). In graph-theoretic language we want to prove that the average
maximal independent set size of the subgraph induced by a uniformly random
choice of nodes is minimum for the graph Kn

d .

To prove it we first need the following lemma.

Lemma 7.1.4. The function ηj(x)
∆
=
∏j

i=1(n − i − x) is convex for x ∈
[0, n− j]
Proof. We prove by induction on j that

ηj(x) ≥ 0 η′j(x) ≤ 0 η′′j (x) ≥ 0 (7.1)

Base case Let η0(x) = 1. The properties above are easily verified.

Induction Since ηj(x) = ηj−1(x)(n− j − x), we obtain

η′j(x) = −ηj−1(x) + (n− j − x)η′j−1(x) (7.2)

which is non-positive by inductive hypotheses. Similarly

η′′j (x) = −2η′j−1(x) + (n− j − x)η′′j−1(x) (7.3)

is non-negative.

Proof of Thm. 7.1.3. Consider a random permutation π of the nodes of a
generic graph G that has the same number of nodes and edges of Kn

d . We
assume the prefix of lengthm of π (i.e. π(1), . . . , π(m)) forms the active nodes
and focus on the following independent set IS in the subgraph induced: a
node v is in IS(G, π) if and only if it is in the first m positions of π and it has
no neighbors preceding it. Let b(G) be the expected size of IS(G, π) averaged
over all possible π’s (chosen uniformly):

b(G)
∆
= Eπ [# IS(G, π)] (7.4)

62

Chap. 7: Controlling Parallelism in the Galois System

Since for construction b is a lower bound for the average maximal induced in-
dependent set AMIS(G) which gives Galois’ performance (b(G) ≤ AMIS(G))
whereas b(Kn

d) = AMIS(Kn
d), we just need to prove that b(Kn

d) ≤ b(G).
Given a generic node v of degree dv and a random permutation π, its

probability to be in IS(G, π) is

P [v ∈ IS(G, π)] =
1

n

m∑
j=1

j∏
i=1

n− i− dv
n− i (7.5)

By the linearity of the expectation we can write b as

b(G) =
1

n

vn∑
v=v1

m∑
j=1

j∏
i=1

n− i− dv
n− i = Ev

[
m∑
j=1

j∏
i=1

n− i− dv
n− i

]
(7.6)

b(Kn
d) =

m∑
j=1

j∏
i=1

n− i− d
n− i =

m∑
j=1

j∏
i=1

n− i− Ev[dv]

n− i (7.7)

To prove that AMIS(G) ≥ AMIS(Kn
d) is thus enough showing that

∀j Ev

[
j∏
i=1

(n− i− dv)
]
≥

j∏
i=1

(n− i− Ev[dv]) (7.8)

which can be done applying Jensen’s inequality [24], since in Lemma 7.1.4
we have proved the convexity of ηj(x)

∆
=
∏j

i=1(n− i− x).

7.1.1 Analysis of the Worst-Case Performance

Theorem 7.1.5. Let d be the average degree of G = (V,E), n = |V | and
s = n/(d+1) (for simplicity we suppose s ∈ N). The conflict ratio is bounded
by

r̄(m) ≤ 1− s1− e−m
s

m
(7.9)

Proof. We can study the performance of the Galois System for the graph
Kn
d reducing it to a balls and bins problem [34]: with some approximations

we can imagine that we are throwing m balls (the processors) uniformly
at random in s = n/(d + 1) bins (the connected/conflicting components)
and we are interested in the quantity of bins that have at least one ball
(working processors). In the real case the probability of accessing a connected
component decreases with the number of past accesses, hence what we are
going to obtain here is an upper bound of the conflict ratio which is more
accurate when m is small.

63

Applications of Control Theory to Computer Systems Optimization

We know that the distribution of balls in each bin is a binomial, good
approximated by the Poisson distribution as m and s increase. Let λ = m/s,
then the probability for a bin to be hit is

P [bin i is hit] = 1−
(

1− 1

s

)m
' 1− e−λ

Let Xi be a random variable that is 1 when bin i is hit and 0 otherwise.
We have that E[Xi] = 1 − e−λ and, by the linearity of the expectation, the
average number of bins hit is

E

[∑
i

Xi

]
=
∑
i

E[Xi] = s
(
1− e−λ)

Which brings as a bound for the conflict ratio

r̄(m) ≤ m− s (1− e−λ)
m

= 1− 1− e−λ
λ

Example. Applying Thm. 7.1.5 we are sure that using s/2 processors we
will have at most a conflict ratio of r̄ = 21.3%.

7.2 Controlling m

In Fig. 7.1 we can see some r̄ plots of the worst case approximation, together
with curves obtained from simulations, for some random graphs in which
the edges have been chosen uniformly at random until reaching the desired
average degree d (a class of graph more likely to represent the graphs Galois
deals with in many applications). It is clear from the plots that the r̄ function
is almost linear in m for the values we are interested in and hence we can try
end exploit this characteristic to obtain a choice of mt that quickly converges
to µ.

Recurrence A:
mA
t+1 =

ρ

rt
mt

Another interesting recurrence, which has a slower convergence but it is
less susceptible to noise (the variance that makes rt realizations different from
r̄t), is the following:

64

Chap. 7: Controlling Parallelism in the Galois System

0

0, 2

0, 4

0, 6

0, 8

1

r̄(
m

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
m

n = 2000, d = 4

n = 2000, d = 16

n = 2000, d = 32

Figure 7.1: A plot of r̄(m) for some random conflicts-graphs (edges chosen
uniformly at random until average degree d is reached) along with the worst
case bound. Note that for r̄ < 30% the functions are well approximated by
straight lines.

Recurrence B:
mB
t+1 = (1− rt + ρ)mt

7.2.1 The Control Algorithm

A first problem with these recurrences is that rt has a big variance, espe-
cially when m is small, so to avoid continually oscillating values it is better
to apply the changes every T steps, using the averaged values obtained in
these intervals to reduce the variance. To further reduce oscillations we can
decide to apply a change only if the observed rt is sufficiently different from
ρ (e.g. more than 6%), thus avoiding small variations in the steady state,
which interfere with locality exploitation because of the data moving from
one processor to another.

A second problem that must be considered is that for small values of m
the variance is much bigger, so it is better to tune separately this case using
different parameters.

The hybrid algorithm proposed (see Algorithm 4 and Fig. 7.2) uses Recur-
rence A if the difference between r and ρ is big, Recurrence B if it is smaller
and it does not change m if the difference is negligible. All the decisions are
made using values averaged for T steps. In this way we can exploit the quick
convergence of Recurrence A and use Recurrence B for a finer tuning of the
control.

65

Applications of Control Theory to Computer Systems Optimization

Algorithm 4: Pseudo-code of the proposed hybrid control algorithm
// Tunable parameters
m0 = 2; mmax = 1024; mmin = 2;1

T = 4; rmin = 3% α0 = 25%; α1 = 6%;2

// Variables
m← m0;3

r ← 0;4

t← 0;5

// Main loop
while nodes to elaborate 6= 0 do6

t← t+ 1;7

if m > mmax then m← mmax;8

else if m < mmin then m← mmin;9

Launch Galois with m nodes;10

r ← r + new conflict ratio;11

if (t mod T) = T − 1 then12

r ← r/T ;13

α←
∣∣∣∣1− r

ρ

∣∣∣∣;14

if α > α0 then15

if r < rmin then r ← rmin;16

m←
⌈ρ
r
m
⌉
;17

else if α > α1 then18

m← d(1− r + ρ)me;19

20

66

Chap. 7: Controlling Parallelism in the Galois System

n = 2000, d = 16

n = 2000, d = 4

0

100

200

300

mt

0 20 40 60 80 100
t

Rec. B

Hybrid

Rec. B

Hybrid

Figure 7.2: Comparison between two realizations of the hybrid algorithm and
one the only uses Recurrence B, for two different random graphs. The hybrid
version has different parameters for m greater or smaller than 20. ρ was chosen
to be 20%. The proposed algorithm proves to be both quick in convergence
and stable.

67

CHAPTER 8

Conclusions and Future Work

This thesis shows that (optimal) control theory offers a well-established, rig-
orous framework to study the computer systems optimization problems, as
seen in the two case studies on page replacement and processor allocation.
We conjecture that many other problems of resource management in comput-
ing systems with dynamic resources and workload are amenable to the same
approach. However, even if successfully cast in control terms, these prob-
lems will generally require novel ideas to be solved, because the underlying
dynamical systems are significantly different from those that have classically
received the most attention, such the almost thoroughly investigated linear
systems with quadratic cost. Investigating how to control computing sys-
tems with rich combinatorial structure is likely to open new perspectives for
control theory as well as for computer science.

Focusing on the replacement problem, a number of interesting and chal-
lenging issue remain open, such as finding bias-optimal policies for arbitrary
buffer size and arbitrary stack-depth distributions. It is well known that not
all real workloads are accurately described by the LRU Stack Model: optimal
policies under different models deserve to be explored. Within the LRUSM,
we have considered policy design assuming a known stack-depth distribution:
what performance guarantees can be achieved if the distribution is not known
a priori is yet another intriguing question.

As for the Galois System a useful variation of the way we have modeled
it is obtained if we assign different execution time to successful and aborted
processes (as happens in some applications) and try to maximize the paral-
lelism achieving a target conflict time ratio. Under this new model the linear

69

approximation used in the control algorithm could be not realistic, and some
stronger properties of r̄ may be required to obtain fast convergence. Another
effect that could be taken in account in the modeling is that rolling-back a
process often requires some computation time and then, keeping a low, con-
stant conflict ratio has the positive side effect of speeding up the application
execution, besides avoiding CPU time wasting. The control mechanism is
now in implementation phase by the Galois group at the University of Texas
at Austin, and so the model will soon benefit from interactions with the
system developers.

Bibliography

[1] Aggarwal, A., Alpern, B., Chandra, A. K., and Snir, M. A
model for hierarchical memory. In STOC (1987), ACM, pp. 305–314.

[2] Allen, R., and Kennedy, K. Optimizing compilers for modern ar-
chitectures: a dependence-based approach. Morgan Kaufmann, 2002.

[3] Alon, N., and Spencer, J. The probabilistic method. Wiley-
Interscience, 2000.

[4] An, P., Jula, A., Rus, S., Saunders, S., Smith, T. G., Tanase,
G., Thomas, N., Amato, N. M., and Rauchwerger, L. Stapl:
An adaptive, generic parallel C++ library. In LCPC (2001), H. G.
Dietz, Ed., vol. 2624 of Lecture Notes in Computer Science, Springer,
pp. 193–208.

[5] Arapostathis, A., Borkar, V. S., Fernández-Gaucherand, E.,
Ghosh, M. K., and Marcus, S. I. Discrete-time controlled markov
processes with average cost criterion: a survey. SIAM J. Control and
Optimization 31, 2 (March 1993), 282–344.

[6] Barnes, J., and Hut, P. A hierarchical 0 (N log iV) force-calculation
algorithm. Nature 324 (1986), 4.

[7] Belady, L. A. A study of replacement algorithms for virtual-storage
computer. IBM Systems Journal 5, 2 (1966), 78–101.

[8] Bernholt, T., Eisenbrand, F., and Hofmeister, T. A geometric
framework for solving subsequence problems in computational biology
efficiently. In SCG ’07: Proceedings of the twenty-third annual sympo-
sium on Computational geometry (New York, NY, USA, 2007), ACM,
pp. 310–318.

71

[9] Bertsekas, D. P. Dynamic Programming and Optimal Control.
Athena Scientific, 2000.

[10] Bilardi, G., and Preparata, F. P. Horizons of parallel computa-
tion. J. Parallel Distrib. Comput. 27, 2 (1995), 172–182.

[11] Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Dem-
mel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry,
G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.
ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1997.

[12] Blackwell, D. Discrete dynamic programming. The Annals of Math-
ematical Statistics (1962), 719–726.

[13] Braunstein, A., Mézard, M., and Zecchina, R. Survey propaga-
tion: An algorithm for satisfiability. Random Struct. Algorithms 27, 2
(2005), 201–226.

[14] Eppstein, D. Spanning trees and spanners. In Handbook of Computa-
tional Geometry, J. Sack and J. Urrutia, Eds. Elsevier, 2000, pp. 425–
461.

[15] Fernández, E. B., Lang, T., and Wood, C. Effect of replacement
algorithms on a paged buffer database system. IBM J. Res. Dev. 22, 2
(1978), 185–196.

[16] Fotheringham, J. Dynamic storage allocation in the atlas computer,
including an automatic use of a backing store. Commun. ACM 4, 10
(1961), 435–436.

[17] Franaszek, P. A., and Wagner, T. J. Some distribution-free as-
pects of paging algorithm performance. J. ACM 21, 1 (1974), 31–39.

[18] Frederickson, G. N., and Johnson, D. B. The complexity of
selection and ranking in x+y and matrices with sorted columns. J.
Comput. Syst. Sci. 24, 2 (1982), 197–208.

[19] Frigo, M., and Johnson, S. G. The design and implementation of
FFTW3. Proceedings of the IEEE 93, 2 (2005), 216–231. Special issue
on “Program Generation, Optimization, and Platform Adaptation”.

[20] Frigo, M., Leiserson, C. E., and Randall, K. H. The implemen-
tation of the Cilk-5 multithreaded language. In PLDI (1998), pp. 212–
223.

[21] Graham, R. L. An efficient algorithm for determining the convex hull
of a finite planar set. Information Processing Letters 1, 4 (1972), 132–
133.

[22] Guibas, L. J., Knuth, D. E., and Sharir, M. Randomized incre-
mental construction of delaunay and voronoi diagrams. Algorithmica 7,
4 (1992), 381–413.

[23] Hennessy, J. L., and Patterson, D. A. Computer architecture: a
quantitative approach. Morgan Kaufmann, 2006.

[24] Jensen, J. Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta Mathematica 30, 1 (1906), 175–193.

[25] Kalé, L. V., and Krishnan, S. Charm++: A portable concurrent
object oriented system based on C++. In OOPSLA (1993), pp. 91–108.

[26] Karlin, A. R., Phillips, S. J., and Raghavan, P. Markov paging.
SIAM J. Comput. 30, 3 (2000), 906–922.

[27] Kulkarni, M., Burtscher, M., Cascaval, C., and Pingali, K.
Lonestar: A suite of parallel irregular programs. In ISPASS (2009),
IEEE, pp. 65–76.

[28] Kulkarni, M., Pingali, K., Walter, B., Ramanarayanan, G.,
Bala, K., and Chew, L. P. Optimistic parallelism requires abstrac-
tions. Commun. ACM 52, 9 (2009), 89–97.

[29] Lewis, M. E., and Puterman, M. L. Bias optimality. In Handbook of
Markov Decision Processes: Methods and Applications, E. A. Feinberg
and A. Shwartz, Eds. Springer, 2002, pp. 89–111 (Chap. 3).

[30] Lin, Y.-L., Jiang, T., and Chao, K.-M. Efficient algorithms for
locating the length-constrained heaviest segments with applications to
biomolecular sequence analysis. J. Comput. Syst. Sci. 65, 3 (2002), 570–
586.

[31] Loève, M. Probability Theory. Springer-Verlag, New York, 1977.

[32] Mattson, R. L., Gecsei, J., Slutz, D. R., and Traiger, I. L.
Evaluation techniques for storage hierarchies. IBM Systems Journal 9,
2 (1970), 78–117.

[33] Méndez-Lojo, M., Nguyen, D., Prountzos, D., Sui, X., Has-
saan, M. A., Kulkarni, M., Burtscher, M., and Pingali, K.
Structure-driven optimizations for amorphous data-parallel programs.
In PPOPP (2010), R. Govindarajan, D. A. Padua, and M. W. Hall,
Eds., ACM, pp. 3–14.

[34] Mitzenmacher, M., and Upfal, E. Probability and computing: Ran-
domized algorithms and probabilistic analysis. Cambridge University
Press, 2005.

[35] Oden, P. H., and Shedler, G. S. A model of memory contention in
a paging machine. Commun. ACM 15, 8 (1972), 761–771.

[36] Przybylski, S. A. Cache and memory hierarchy design: a
performance-directed approach. Morgan Kaufmann, 1990.

[37] Püschel, M., Moura, J., Johnson, J., Padua, D., Veloso, M.,
Singer, B., Xiong, J., Franchetti, F., Gacic, A., Voronenko,
Y., Chen, K., Johnson, R., and Rizzolo, N. Spiral: Code gen-
eration for dsp transforms. Proceedings of the IEEE 93, 2 (Feb. 2005),
232–275.

[38] Reinders, J. Intel threading building blocks. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, 2007.

[39] Savage, J. E. Models of computation: Exploring the power of comput-
ing. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,
1997.

[40] Silberschatz, A., Galvin, P. B., and Gagne, G. Operating System
Principles. Wiley India Pvt. Ltd., 2005.

[41] Sleator, D. D., and Tarjan, R. E. Amortized efficiency of list
update and paging rules. Commun. ACM 28, 2 (1985), 202–208.

[42] Spirn, J. R., and Denning, P. J. Experiments with program locality.
In AFIPS ’72 (Fall, part I) (New York, NY, USA, 1972), ACM, pp. 611–
621.

[43] Stone, H. S., Turek, J., and Wolf, J. L. Optimal partitioning of
cache memory. IEEE Trans. Comput. 41, 9 (1992), 1054–1068.

[44] Tan, P.-N., Steinbach, M., and Kumar, V. Introduction to Data
Mining. Addison-Wesley, 2005.

[45] Thiébaut, D., Stone, H. S., and Wolf, J. L. Improving disk
cache hit-ratios through cache partitioning. IEEE Trans. Comput. 41,
6 (1992), 665–676.

[46] Wolfe, M. J., Shanklin, C., and Ortega, L. High performance
compilers for parallel computing. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 1995.

[47] Wood, C., Fernández, E. B., and Lang, T. Minimization of de-
mand paging for the LRU stack model of program behavior. IBM Los
Angeles Scientific Center Reports G320, 2689 (July 1977).

[48] Wood, C., Fernández, E. B., and Lang, T. Minimization of de-
mand paging for the LRU stack model of program behavior. Inf. Process.
Lett. 16, 2 (February 1983), 99–104.

[49] Young, N. E. The k-server dual and loose competitiveness for paging.
Algorithmica 11, 6 (1994), 525–541.

	Introduction to Replacement Policies for the Memory Hierarchy
	Optimal Control Formulation of Replacement
	LRU Stack Model
	The Control Problem

	Optimal Replacement for the Infinite Horizon
	The Bellman Equation
	Buffer of Capacity C=2
	Arbitrary Buffer Capacity -- `39`42`"613A``45`47`"603AK-L Policy
	The Model
	The Reduced Optimization Problem

	The Least Profit Rate Replacement policy
	Buffer Partitioning

	On-line vs. Off-line Optimality in Page Replacement
	Uniform distribution miss-rate ratio
	Worst-Case Miss-Rate Ratio

	Optimal Replacement for Finite Horizon
	Non-Increasing Access Distribution
	Non-Decreasing Access Distribution

	An Introduction to the Galois System
	Preliminaries
	Optimization Goal

	Controlling Parallelism in the Galois System
	Exploiting Parallelism
	Analysis of the Worst-Case Performance

	Controlling m
	The Control Algorithm

	Conclusions and Future Work

