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Abstract

Thanks to the advances in bioinformatics and high-throughput methodologies of the

last decades, a large unprecedented amount of biological data coming from various ex-

periments in metabolomics, genomics and proteomics is available. This has lead the

researchers to conduct more and more comprehensive molecular profiling of biological

samples through different multiple aspects of genomic activities, thus introducing new

challenges in the developments of statistical tools to integrate and model multi-omics

data. The main research objective of this thesis is to develop a statistical framework for

modelling the interactions between genes when their activity is measured on different

domains; to do so, our approach relies on the concept of multilayer network, and how

structures of this type can be combined with graphical models for mixed data, i.e., data

comprising variables of different nature (e.g., continuous, categorical, skewed, to name a

few). We further develop an algorithm for learning the structure of the undirected mul-

tilayer networks underlying the proposed models, showing its promising results through

empirical analyses on cancer data, which was downloaded from the public TCGA con-

sortium.
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Sommario

Grazie ai progressi negli ultimi decenni raggiunti dalla bioinformatica e dalle metodolo-

gie high-throughput, una quantità senza precedenti di dati biologici provenienti dai vari

esperimenti di metabolomica, genomica e proteomica è disponibile alla comunità scien-

tifica. Ciò ha permesso ai ricercatori di condurre una profilazione molecolare sempre

più completa di vari campioni biologici, poiché è diventato possibile misurare i diversi

aspetti che compongono le attività genomiche. Questo ha fatto s̀ı che nascessero nuove

sfide negli sviluppi di strumenti statistici per integrare e modellare dati multi-omici. Il

principale obiettivo di ricerca di questa tesi è quello di sviluppare un quadro statistico

per inferire le interazioni tra geni quando la loro attività è misurata su domini diversi;

per fare ciò, il nostro approccio si basa sul concetto di multilayer network e su come

strutture di questo tipo possano essere combinate con modelli grafici per dati misti,

vale a dire dati che comprendono variabili di diversa natura (ad esempio, variabili con-

tinue, categoriali, skewed, per nominarne alcune). Nella tesi viene inoltre sviluppato

un algoritmo per l’apprendimento della struttura di multilayer network non orientate

che sono alla base dei modelli proposti, mostrandone i promettenti risultati attraverso

analisi empiriche su dati oncologici, scaricabili dal sito pubblico del consorzio TCGA.



Individuals are not stable things, they are fleeting.
Chromosomes too are shuffled into oblivion, like hands of
cards soon after they are dealt. But the cards themselves
survive the shuffling. The cards are the genes. The genes

are not destroyed by crossing-over, they merely change
partners and march on. Of course they march on. That is
their business. They are the replicators and we are their

survival machines. When we have served our purpose we are
cast aside. But genes are denizens of geological time: genes

are forever.

Richard Dawkins, The Selfish Gene
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Introduction

Overview

Thanks to the advances in technology, bioinformatics and high-throughput method-

ologies of the last decades, a large unprecedented amount of biological data coming

from various experiments in metabolomics, genomics and proteomics is available. This

has lead the researchers to conduct more and more comprehensive molecular profiling

to study biological samples through different multiple aspects of genomic activities, –

as DNA methylation, gene expression and co-expression, copy number variations and

microRNA to name a few – thus introducing new challenges in the developments of

statistical tools to integrate and model multi-omics data.

Normally, data analysis of genes and their activity is conducted at a single-level man-

ner, in the sense that joint analysis of omics data recorded from different sources or of

different types is not considered. But, generally speaking, investigating only single parts

of a more complex and interconnected reality does not deliver fair, accurate or efficient

results. This is why examining a (not only) biological phenomenon from multiple angles

and using multiple types of data can provide important additional mechanistic insight,

both in understanding its real processes and in comprehending how other events, de-

pendent on it, can develop: some key examples are the spreading of a disease or how a

cancer cell can gone haywire.

All those biological phenomena that take place inside the cell involve complex interac-

tion between genes. When the analysis of genomic activity is conducted at a single-level

manner, these dependencies are commonly represented in the form of a graph, or net-

work, and have to be inferred from experimental data: a widely used tool in this case

is the family of graphical models, whose strength relies in representing complex multi-

variate distributions by the adjacency structure of a graph. In this context, learning a

graphical model from the data is equivalent, statistically speaking, to infer on the pa-

rameters of the multivariate distribution defined on the set of variables – the genes – at

hand. Notice that, since we are in a single-level type of analysis, the genes must have all

1



2 Overview

the same domain: if we collected gene expression levels, we are assuming a multivariate

Gaussian distributions, while, if we collected gene counts in a micro-array format, we

must assume a multivariate distribution able to respect this counting nature.

But when the analysis of genomic activity operates in a multi-level manner, the

situation becomes much more complex.

A first problem we meet is that trying to integrate all the different aspects in a single

graph is not visually, and conceptually, the best of solutions, because the graph risks

becoming too cramped and packed. A graph-like object capable of keeping track of

multiple levels at once, usually seen in social and psychological studies, is a multilayer

network. As far as we know, multilayer networks are up to now used as the algebraic

structures underlying another type of statistical models called random graph models,

whose key feature is to determine the probability that a particular property of the

underlying network is likely to arise: for example, the most famous model is the Erdös-

Rényi one, where all graph with a fixed number of edges have all the same probability

to occur.

A second problem is the nature itself of the data collected: when we are dealing

with data that detects different characteristics of the same genes, it is easy for these

features to have different domains: DNA methylation is usually found in the form of

count data, gene expression levels are usually continuous, copy number variations are

interpreted as categorical variables, and so on. Up to now in a parametric framework,

there are only two types of models that take into account the heterogeneous nature

of the variables: the conditional Gaussian graphical models of Lauritzen (1996) and

the mixed exponential Markov random fields of Yang et al. (2014b). The first model

consists of Gaussian and categorical variables and it is defined in an exact manner, in the

sense that it is not derived as an approximation of another distribution and it does not

involve any type of penalization in its structural learning, but its number of parameters

grows exponentially with the number of variables. On the other side, mixed exponential

Markov random fields are such that each variable, with respect to the others, can be

derived from different densities belonging to the exponential family of distributions by

using a conditional modelling approach, so they are not restricted to Gaussian and

categorical data, but they are usually approximations, since the computation of the

normalising constant for these distributions is often not exact, and structural learning

involves lasso penalization.

In this thesis, under some modelling constraints, we combine the above-mentioned

approaches in defining our graphical model for heterogeneous data, and we tackle its

structure learning on undirected multilayer networks. To the best of our knowledge,
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this is the first attempt at combining these different objects in an unique framework.

The outline of the thesis is as follows. In Chapter 1, we briefly review some key con-

cepts of graph theory and multilayer networks, we resume the notion and properties of

conditional independence between random variables and Markov properties of a graph

and we adapt them to random vectors and multilayer networks. Chapter 2 covers the

state-of-the-art of graphical models for heterogeneous data, with a particular attention

to conditional Gaussian models; Chapter 3 presents our proposal in the context of undi-

rected heterogeneous graphical models, connecting it to the models discussed in Chapter

2. In Chapter 4 we address the structural learning techniques present in literature for

heterogeneous graphical models and we present our approach, whose aim is to learn the

structure of complex and heterogeneous data on multilayer networks. In Chapter 5 we

apply our approach to a real data set of different genomic activities recorded in ovarian

cancer cells. Chapter 6 contains main conclusions drawn from this project up to date

and possible directions for future research.

Main contributions of the thesis

Main contributions of the thesis can be summarized as follows.

1. Definition of intra-layer and inter-layer separators as generalization of the concept

of separator for multilayer networks.

2. Definition of Markov properties for random vectors on multilayer networks.

3. Definition of an heterogeneous graphical model, where heterogeneous is related

to the mixed nature of the data, whose underlying structure corresponds to a

multilayer network and able to represent the key feature of the models proposed

by Lauritzen (1996) and Cheng et al. (2017).

4. Definition of a supervised learning algorithm of undirected heterogeneous multi-

layer network. The core of the algorithm resumes the approach of Yang et al.

(2014b) for a single-level graph, where the neighbourhood of each node is esti-

mated in turn by solving a lasso penalized regression problem and the resulting

local structures stitched together to form the global graph. To face possible in-

accurate inferences when dealing with models of high dimensions, we substitute

penalized estimation with a likelihood ratio testing procedure on the parameters

of the local regressions following the lines of the PC algorithm (Spirtes et al., 2000)

adapted to a multilayer structure.



4 Main contributions of the thesis

5. Application of the novel approach on real data from ovarian cancer cells collections.



Chapter 1

Graphs, conditional independences

and Markov properties

In this Chapter, we review and extend some of the mathematical backbones and

probabilistic concepts essential for the understanding and the implementation of the

models that will be exploited later on in this work. Since our main goal is the integration

of different sources of information, we need a formal mathematical structure able to

accommodate the problem. Graphs are exactly the ingredient that we necessitate; in

particular, graphs such as multilayer or multilevel networks can offer a way to represent

clearly and efficiently the complexity of the integration of different sources of data.

Probabilistic graphical models are an elegant framework linking the logical structure

pictured by graphs to probability distributions. The two elements playing a key role in

allowing such link to be established are conditional independences and Markov proper-

ties. This is the reason why graphs, conditional independences and Markov properties

are the focus of this chapter.

It is worth noting that, in what follows, we do not make any distinction between

a graph and a network. Albert-László Barabási, in one of his latest books (Barabási,

2016), affirms that, although in the scientific literature the terms network and graph

are used interchangeably, there is a subtle distinction between the two terminologies.

Usually, the term network is associated to real systems, like the WWW (a network of

web documents linked by URLs) or society (a network of individuals linked by family,

friendship or professional ties), whilst the term graph is associated to the mathematical

representation of networks. Yet, this distinction is not structural in nature, because in

their essence the two objects are the same: both are built by objects (called nodes and

vertices) connected by other objects (links, edges). As the distinction is more at an

interpretation level, we use the two terms indistinctly.

5



6 Section 1.1 - Review on Graph theory

Let us go in detail on all the notions we spoke of so far.

1.1 Review on Graph theory

A graph, or network, is a mathematical object defined as an ordered pair G = (V,E),

where V is a finite set of vertices or nodes, and E is the set of edges, or links, that

connect unordered pair of not necessarily distinct vertices of G, so that E ⊆ V × V .

The pair of vertices defining an edge are called endpoints of the edge, while the edge

connecting a pair of vertices is said to join the vertices. The order of G is the number

of vertices that compose it, and it is denoted as v(G) =| V |, while the size of G is the

number of its edges, and it is denoted as e(G) =| E |, where | · | is the mathematical

operator for cardinality.

If the pair of vertices defining an edge is not ordered, that edge is called undirected,

and it is usually denoted as {u, v} ∈ E, or u ∼ v, u, v ∈ V , whereas it is graphically

represented by a line; the vertices u and v are said to be adjacent or neighbours, and

the set of neighbours of a vertex v in a graph G is written as ne (v). If all edges in E

are undirected, then G is an undirected graph. Moreover, if the graph is made in such

a way that every vertex is never connected with itself and, for each edge, there exists

only one edge connecting the same pair of vertices, then the graph is called simple (i.e.,

no loops and no parallel edges). From now on, we focus on simple undirected graphs,

since they will be the building blocks of more complex structures.

If we restrict the attention to A ⊆ V , a subset of the vertex set, this subset will

induce a subgraph GA = (A,EA), where the edge set EA = E∩ (A×A) is obtained from

G by keeping edges in E that have both endpoints in A. In this case, ne (A) can be

defined as the set of neighbours of vertices in A that are not themselves elements of A,

ne (A) = ∪v∈Ane (v) \ A.

Related to the concept of neighbourhood is the property of closure of A, defined as

cl (A) = A ∪ ne (A), that is, the set of all vertices that are either in A or near A.

Given u, v ∈ V , a walk is a sequence W := w0e1w1 . . . wn−1enwn, with w0 = u and

wn = v, whose terms are alternately vertices and edges of G not necessarily distinct,

such that wi−1 and wi are the endpoints of ei, i = 1, . . . , n: in other words, a sequence

of edges and vertices where each edge’s endpoints are the two vertices adjacent to it;

for simplicity, in general a walk is expressed only by the vertices it passes through, i.e.,

W := w0, w1, . . . , wn−1, wn. A path from u to v is a walk where all vertices are distinct,

except possibly the first and last. The shortest path from u to v is the path from u
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to v having minimal length. The subscript n represents the length of the walk or path

(equivalently, the number of edges along it); furthermore, we say that u and v connect

and denote it with u ⇋ v. A graph is connected if, for every partition of its vertex set

into two non-empty sets A and B, there is at least one edge with one endpoint in A

and the other endpoint in B (or, there is at least a path or walk between vertices in A

and vertices in B); if that is not the case, the graph is disconnected. A subset S ⊆ V is

called uv-separator if all paths from u to v intersect S. Given A,B, S ⊆ V , the subset

S separates A from B if it is an uv-separator for all u ∈ A and v ∈ B.

It is possible to find the notions explained so far in any book on graph theory, al-

though we have relied on recent literature (Bondy and Murty, 2008). These concepts are

also illustrated through an example in Figure 1.1. Panel (a) shows a simple undirected

and connected graph G = (V,E), with V = {1, 2, 3, 4, 5, 6, 7} and edge set

E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {4, 5}, {4, 6}, {6, 7}, {5, 7}}.

The order and size of G are v(G) = 7 and e(G) = 8, respectively. The set of neighbours

of, for example, vertex 3 is ne (3) = {1, 2, 4}. Panel (b) shows the simple undirected

and connected subgraph of G, GA = (A,EA), induced by A = {1, 2, 3, 4} ⊂ V , where

EA = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}. The neighbourhood of A is ne (A) = {5, 6}, and its

closure is cl (A) = {1, 2, 3, 4, 5, 6} = V \ {7}. Possible walks from, for example, 3 to 6

are W1 : 3, 4, 5, 7, 6, W2 : 3, 4, 6 or W3 : 3, 4, 5, 4, 6; W2 is the shortest path from 3 to

6. A possible separating set S for G could be S = {3, 4}, since its deletion entails a

partition of G into two disconnected sets.

1

2 3

4 5

6 7

(a)

1

2 3

4

(b)

Figure 1.1: (a) A simple undirected and connected graph G = (V,E) and (b) the
subgraph of G induced by A = {1, 2, 3, 4}.

It will be useful to introduce the definition of marked graphs proposed in Lauritzen

(1996): their main characteristic is that the vertices are partitioned into groups, dif-

ferentiating nodes representing qualitative variables from the ones corresponding to

quantitative variables. If we use ∆ to represent the former set of vertices and Γ to

represent the latter, than we can decompose V as V = ∆ ∪ Γ, with ∆ ∩ Γ = ∅. They
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are correspondingly pictured by dots (black coloured nodes) if the vertices belong to ∆

(dots for d iscrete variables), and by circles (white coloured nodes) if the vertices belong

to Γ (circles for continuous variables). These types of graphs we will be helpful to visu-

ally reproduce the models we will infer, since we will model qualitative and quantitative

variables at the same time.

1.2 Multilayer networks

1.2.1 Notation and terminology

The key ingredients in these structures are the presence of layers and aspects in

addition to vertices and edges. By layers, we intend a combinations of features of the

nodes, e.g., a task, or activity, or category: for example, they can represent different

types of connections involved in social networks, or various air companies connecting

airports around the globe. Aspects instead help coordinate relationships between differ-

ent layers, e.g., time or locations. In the most general definition of multilayer networks

given by Kivelä et al. (2014), each node can belong to any subset of the layers, in turn

included in aspects, and edges can involve any pairwise connection between the possi-

ble combinations of nodes and layers: hence, a node u in layer α of aspect a can be

connected to node v in layer β of aspect b.

Formally speaking, let V be the set of vertices and d the number of aspects; define a

sequence L = {La}da=1 of sets of elementary layers (layers whose combination give rise

to layers containing information from different aspects) such that a set of elementary

layers La exists for each aspect a. As explained in Kivelä et al. (2014), it is possible to

construct a sequence of layers by assembling a set of all of the combinations of elementary

layers using the Cartesian product of L1 × · · · × Ld. Moreover, for each choice of node

and layer, define VM ⊆ V × L1 × · · · × Ld as the subset containing only the node-layer

combinations in which a node is present in the corresponding layer. For example, the

node-layer (u, α1, . . . , αd) represents node u on layer α = (α1, . . . , αd) (it is abbreviated

sometimes as (u,α)). A pair of node-layers directly connected by an edge are said to be

adjacent. Since the definition of multilayer network so far used is the most general one,

it requires the occurrence of all possible edges between any pair of node-layers, so the

edge set EM is defined as a set of pairs of possible combinations of nodes and elementary

layers, i.e., EM ⊆ VM ×VM . Putting everything together, a multilayer network is then a

quadruplet M = (VM , EM , V,L), where VM , EM , V , L are the quantities defined above.
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graphGM is undirected. Similarly, ifGM is a simple graph, thenM is a simple multilayer

network. From now on, we will consider only simple undirected multilayer networks,

because they will be the basic structures on which we will build our models.

Furthermore, it is typical to distinguish between edges that cross layers and edges

inside a single layer: the latter are called intra-layer edges and are defined as the

set EA = {((u,α), (v,β)) ∈ EM : α = β}, while the former are called inter-layer

edges, and are defined as the complementary set of EA in EM , i.e., EC = EM \ EA =

{((u,α), (v,β)) ∈ EM : α 6= β}. Moreover, define as coupling edges the subset EC̃ ⊆ EC

containing those edges for which the two nodes represent the same entity in different

layers, that is EC̃ = {((u,α), (v,β)) ∈ EC : u = v}. To these different types of

edges correspond different types of graphs (or subgraphs of GM): we obtain an intra-

layer graph GA = (VM , EA), an inter-layer graph GC = (VM , EC) and a coupling graph

GC̃ = (VM , EC̃).

Since a generic multilayer network M can be interpreted as a graph GM = (VM , EM)

whose node labels are the tags of the node-layer tuples of M , the concepts of neigh-

bourhood, walk and path for M are the same as the ones we saw in Section 1.1. Indeed,

for the particular use we make of it, different copies of the same node in different lay-

ers are considered to be a set of distinct objects, because they will represent different

measurements of the same quantity. This means that passing from a layer to another

is considered a step inside a walk, and each step is defined as occurring between a pair

of node-layer tuples of M . Also the concept of marked graph is easily transferred to

the case of multilayer networks: indeed, marked graphs are a particular class of node-

coloured graphs, i.e., graphs whose nodes are labelled by colors. In particular, a legal

colouring means no adjacent nodes have the same color, while an illegal colouring does

not impose such a restriction. Since there is no such constraint on the distributions of

colours on the nodes of a marked graph (two adjacent vertices can be both discrete,

hence having the same colour), the latter can therefore be thought of as node-coloured

graph where the colouring is illegal and the colour used are two (black for qualitative

variables and white for quantitative ones). In turn, (illegal) node-coloured graphs can

be interpreted as multilayer network, having d = 1 aspects and considering each layer as

one of possible colours provided by the vertices of the graph: for marked graphs, then

the corresponding multilayer networks have two layers, one for qualitative variables (the

“black” layer) and one for quantitative variables (the “white” layer).

Figure 1.3 shows an example of a marked graph interpreted as a multilayer network.

Panel (a) shows a simple undirected marked graph Gmarked. The multilayer network

M corresponding to Gmarked is shown in panel (b). The color of nodes of Gmarked are
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(a) there exists at least one layer α whose intra-layer graph Gα = (Vα, Eα) is dis-

connected and such that there is no inter-layer edge that connects the different

partitions of Gα;

(b) there exists at least one isolated layer α in M , i.e., a layer whose vertices are not

endpoints of any inter-layer edge in EM .

Proof. If M is disconnected, then also its representation as a graph, GM = (VM , EM),

is disconnected. But disconnectedness happens if and only if there exist two nodes of

VM , let us call them (u,α) and (v,β), such that no path in GM has those nodes as

endpoints. Hence, we consider two cases: (i) (u,α) and (v,β) belong to the same layer

(i.e., α = β), and (ii) (u,α) and (v,β) belong to two different layers. In situation (i),

the two nodes can be written as (u,α) and (v,α); but then no path exists between

them if there is no sequence of intra-layer edges in Eα ⊆ EA and inter-layer edges in EC

that connects them, implying that the intra-layer graph Gα = (Vα, Eα), Vα ⊆ VM , is

disconnected and no inter-layer edge connects its different partitions; this is indeed the

condition (a). For situation (ii), let us make the further assumption that all intra-layer

graphs are connected: then, no path exists between (u,α) and (v,β) if there are no

inter-layer edges that touch the layer α, β or any layer in between; this means that

there is a layer whose vertices are endpoints of only intra-layer edges and not inter-layer

edges, which is the situation described in point (b).

The cases covered in the above given proposition can be visualized, for a multilayer

network M with d = 1 aspects, in Table 1.1. In particular, it is visualized also a special

case of condition (a), which is when at least one of the endpoints of the path of interest

is an isolated node-layer tuple, i.e., a node-layer tuple with no edges incident on it.

Such characterization of disconnection opens to a definition of separator set slightly

more articulated than the one we saw before. Given a multilayer networkM = (VM , EM ,

V,L), the most general definition of separator for two node-layer tuples is obtained by

avoiding any type of discrimination between the types of edges in EM .

Definition 1.2. Let M = (VM , EM , V,L) be a multilayer network and S ⊆ VM . Then

S is a uαvβ-separator if all paths from the node-layer (u,α) ∈ VM to the node-layer

(v,β) ∈ VM intersect S.

Definition 1.3. Let M = (VM , EM , V,L) be a multilayer network and A,B, S ⊆ VM .

Then S is amulti-layer separator of A fromB if S is a uαvβ-separator from all (u,α) ∈ A
to all (v,β) ∈ B.

If we take into account the fact that paths can run along intra-layer as inter-layer

edges, we can furthermore specify the definition of S as a multilayer separator
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because the only way not to interrupt any path passing through that layer is to arrive

and exit from it with inter-layer edges.

Equivalently, if S is an inter-layer separator and it is cut out fromM , condition (b) of

Proposition 1 comes to be, disconnecting the multilayer network in disjoint partitions.

Examples of different separators in multilayer networks can be visualized in Fig-

ure 1.4. Panel (a) contains the original multilayer network. In panel (b), a generic

multilayer-separator S is highlighted in a purple colour, composed by seven node-layer

couples, of which three lying on layer A ((2, A), (3, A), (4, A)), and the other four on layer

B ((1, B), (2, B), (3, B), (4, B)). Panel (c) shows an intra-layer separator, highlighted in

light green, defined as the set S = {(2, A), (3, A)}. Panel (d) shows the inter-layer

separator S = {(1, B), (2, B), (3, B), (4, B)}, highlighted in light pink. In panels (b),

(c), and (d), the edges directly involved in the path precluded by the separator are also

coloured, purple, light green and light pink, respectively.

1.3 Conditional independence

Let X, Y, Z be random variables with a joint distribution P . Then, X is said to

be conditionally independent of Y given Z under P , written X ⊥⊥ Y | Z, if, for any

measurable set A in the sample space of X there exists a version of the conditional

probability P (A | Y, Z) which is a function of Z alone (Lauritzen, 1996). In particular,

if X, Y and Z are discrete random variables, X ⊥⊥ Y | Z implies

P (X = x, Y = y | Z = z) = P (X = x | Z = z)P (Y = y | Z = z), (1.1)

if and only if P (Z = z) > 0 for all possible values z. When X, Y and Z admit a joint

density with respect to a product measure µ, then X ⊥⊥ Y | Z implies

fXY |Z(x, y | z) = fX|Z(x | z)fY |Z(y | z), (1.2)

holding almost surely with respect to P . If all densities are continuous, then (1.2) must

hold for all z such that fZ(z) > 0. Notice also that, if all densities are continuous, and

for all possible values of z,

fXY |Z(x, y | z) = fX|Z(x | z)fY |Z(y | z)⇔ fXY Z(x, y, z)fZ(z) = fXZ(x, z)fY Z(y, z).

The definition of conditional independence between random vectors, i.e., vectors of
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random variables, is easily derived using the conditional cumulative distribution func-

tion: let X = (X1, . . . , Xn)
T , Y = (Y1, . . . , Ym)

T and Z = (Z1, . . . , Zp)
T be three

random vectors with a joint distribution (density) P . Then X is conditionally inde-

pendent of Y given Z under P , written X ⊥⊥ Y | Z, if and only if they are indepen-

dent in their conditional cumulative distribution given Z for all their possible values

x = (x1, . . . , xn)
T , y = (y1, . . . , ym)

T and z = (z1, . . . , zp)
T ,

FXY |Z(x,y | z) = FX|Z(x | z)FY |Z(y | z),

with

FXY |Z(x,y | z) = P (X1 ≤ x1, . . . , Xn ≤ xn, Y1 ≤ y1, . . . Ym ≤ ym | Z1 = z1, . . . , Zp = zp),

FX|Z(x | z) = P (X1 ≤ x1, . . . , Xn ≤ xn | Z1 = z1, . . . , Zp = zp),

FY |Z(y | z) = P (Y1 ≤ y1, . . . Ym ≤ ym | Z1 = z1, . . . , Zp = zp).

In what follows, for the purpose of simplicity, we will limit ourselves to the consideration

of random variables, and not of random vectors.

It is useful to recap some elementary properties of conditional independence for

random variables. In particular, the relation X ⊥⊥ Y | Z enjoys the following properties,

whose proofs are given in Appendix A. Let h be an arbitrary measurable function on

the sample space of X; then,

(P1) if X ⊥⊥ Y | Z, also Y ⊥⊥ X | Z (symmetry);

(P2) if X ⊥⊥ Y | Z and U = h(X), also U ⊥⊥ Y | Z;

(P3) if X ⊥⊥ Y | Z and U = h(X), also X ⊥⊥ Y | (Z,U);

(P4) if X ⊥⊥ Y | Z and X ⊥⊥ W | (Y, Z), also X ⊥⊥ (W,Y ) | Z.

Another property of the conditional independence relation worth considering is the

following:

(P5) If X ⊥⊥ Y | Z, X ⊥⊥ Z | Y , and there is no non-trivial logical relationship between

Y and Z, then X ⊥⊥ (Y, Z).

This condition is always true when the joint distribution (density) of all variables with

respect to a product measure µ is positive and continuous (see Lauritzen (1996) for

further proof).

Core ideas expressed by properties (P1) to (P4) can be used to define a new math-

ematical structure able to capture conditional independence or, in a more general way
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of saying things, the irrelevance of certain events in interpreting others. This structure

is called semi -graphoid and was introduced by Pearl in 1988 (Pearl, 1988). In this alge-

braic framework, X, Y and Z are not random variables, but arbitrary disjoint subsets

of a finite set, and U = h(X) is replaced by the notation U ⊆ X. If we suppose that the

corresponding algebraic version of the condition (P5) holds also in this more abstract

context, then the structure is called graphoid. A remarkable example for our application

of this latter structure is given by the concept of a separator in a graph: indeed, let

A,B, S be disjoint subsets of the vertex set V of a simple undirected graph G = (V,E),

with E defined as in the previous section, and define

A
G

⊥ B | S ⇔ S separates A from B in G.

Then, the corresponding properties (P1) – (P5) in terms of Graph Theory become the

following:

(P1) If A
G

⊥ B | S, then B
G

⊥ A | S.

(P2) If A
G

⊥ B | S and U ⊆ A, U
G

⊥ B | S.

(P3) If A
G

⊥ B | S and U ⊆ A, A
G

⊥ B | S ∪ U .

(P4) If A
G

⊥ B | S and A
G

⊥ D | S ∪B, whatever D ⊆ V , then A
G

⊥ B ∪D | S.

(P5) If A
G

⊥ B | S and A
G

⊥ S | B, then A
G

⊥ B ∪ S.

It is easy to see that (P1) – (P5) are valid also for a multilayer network M because of

the correspondence between M itself and its representation as graph GM = (VM , EM),

so that the concepts of multi-, intra- and inter-layer separator are nothing else than

particular cases of a general separator S ⊆ VM in GM .

1.4 Markov properties

In this last section, we combine the probabilistic notion of conditional independence

with the notion of separation in a (multilayer) graph, this being the last necessary step

to do before switching to the inferential models. From now on, the nodes of (multilayer)

graphs always represent random variables (vectors) and the edges the type of stochastic

dependence between them.
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1.4.1 Standard definitions

Let V be the vertex set of a simple undirected graph G = (V,E), with V = {1, . . . , p}.
Suppose to have a collections of random variables X1, . . . , Xp, taking values in the set of

probability spaces X = {X1, . . . ,Xp}, which can be real-finite dimensional vector spaces

or finite and discrete sets. Here, Xv represents the random variable associated to node

v, v ∈ V . For A ⊆ V , let XA = ×j∈AXj denote the probability spaces of the random

variables with indexes in A, and xA = {xj : j ∈ A} and XA = {Xj : j ∈ A} the

elements of XA and the random variables, respectively. Then, a probability measure P

on X is said to obey

(P) the pairwise Markov property (pairwise MPs), relative to G, if, for any pair (u, v)

of non-adjacent vertices,

Xu ⊥⊥ Xv |XV \{u,v};

(L) the local MPs, relative to G, if, for any vertex u ∈ V ,

Xu ⊥⊥XV \cl(u) |Xne(u);

(G) the global MPs, relative to G, if, for any triple (A,B, S) of disjoint subsets of V

such that A
G

⊥ B | S,
XA ⊥⊥XB |XS.

As Lauritzen (1996) shows in his book, all these MPs are related to each other: in the

simplest situation, i.e., in case of undirected graph G and for any probability distribution

(density) on X , it holds that (G)⇒ (L)⇒ (P), being a direct consequence of properties

(P1) – (P4) for conditional independence. So, (G)⇒ (L)⇒ (P) holds also for any semi-

graphoid in G. Suppose that also (P5) is valid, that in this context can be written

as

(P5) if A,B,C,D are all disjoint subsets of V , A ⊥⊥ B | C ∪ D and A ⊥⊥ C | B ∪ D,

then A ⊥⊥ B ∪ C | D.

Then, as it was proved by by Pearl and Paz (1987), also the reverse implication is true,

meaning that (P) ⇒ (L) ⇒ (G). In particular, this is true if P has a positive and

continuous density with respect to a product measure µ, and therefore to any graphoid

in G.

As conditional independence is strictly linked to the factorization of P , so are the

Markov properties. A probability measure P on X is said to factorize according to G
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if, for all complete subsets A ⊆ V , there exists non-negative functions ψA that depend

on x only through xA and there exists a product measure µ = ×j∈V µj on X such that

P has density fX(x) with respect to µ. If P factorises according to G, then P has

property (F) and the set of such probability measures is written as MF (G). Then, for

any undirected graph G and for any probability distribution (density) on X , it is true

that (F) ⇒ (G) ⇒ (L) ⇒ (P). To obtain the opposite direction of the implication, we

have to invoke the Hammersley-Clifford theorem:

Theorem 1.6. A probability distribution P with positive and continuous density fX(x)

with respect to a product measure µ satisfies the pairwise MP with respect to an undi-

rected graph G if and only if it factorizes according to G.

The proof can be found in Lauritzen (1996). In other words, this theorem presents

the necessary and sufficient conditions under which a strictly positive distribution (den-

sity) function can be represented as undirected graph, linking the concepts of adjacency

and connectivity of Graph Theory with the conditional independence property on Prob-

ability Theory.

1.4.2 Extension to multilayer networks

But how do MPs translate into the world of multilayer networks? Once again, it is

very useful to go back to the representation of M = (VM , EM , V,L) via graph GM =

(VM , EM), because all the properties discussed so far can be applied – with related

consequences and advantages – as for a generic undirected graph G. Although it is a

trivial and intuitive passage, for our knowledge it was never attempted in literature.

For this conversion to be done, it is necessary to work with node-layer tuples (which

are, actually, the nodes of GM), instead of nodes. Indeed, we can restate the previous

results starting from a collection of random vectors X = {Xα, . . . ,Xβ}, with Xα =

{X(u,α)}(u,α)∈VM
, arbitrary α. Each of these vectors takes values in the set of probability

spaces X , which can be a Cartesian product of real-finite dimensional vector spaces or

finite and discrete sets. If A ⊆ V , we use the notation XA to indicate the probability

spaces of the random variables vectors with indexes in A, while we denote as xA and

XA the elements of XA and the random vectors, respectively. Moreover, let V be

the vertex set of a simple undirected multilayer network M = (VM , EM , V,L), with

VM = {(u,α) : u ∈ V and α ∈ L}. Then, a probability measure P on X is said to obey
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(P) the pairwise Markov property (pairwise MPs), relative to M , if, for any pair

((u,α), (v,β)) of non-adjacent node-layer tuples,

X(u,α) ⊥⊥ X(v,β) |XVM\{((u,α),(v,β))};

(L) the local MPs, relative to M , if, for any node-layer tuple (u,α) ∈ VM ,

X(u,α) ⊥⊥XVM\cl((u,α)) |Xne((u,α));

(G) the global MPs, relative to M , if, for any triple (A,B, S) of disjoint subsets of VM

such that S is a multilayer-separator of A and B,

XA ⊥⊥XB |XS.

Markov properties for the case of multilayer networks follow immediately by what was al-

ready proved in Lauritzen (1996), simply by replacing G with GM and updating the node

labels of GM with the labels of the node-layer tuples of M . Consequently, the sequence

of implications (P)⇔ (L)⇔ (G) combined with the Hammersley-Clifford theorem hold

also supposing an underlying undirected multilayer network structure, meaning that the

latter can be used to represent a strictly positive distribution (density).



Chapter 2

Background in probabilistic

graphical models for heterogeneous

data

In this chapter, we will explore the major statistical and graphical models proposed

in the literature to incorporate heterogeneous data, i.e., data with different domains

(e.g., variables coming from different sources or with different behaviours). After a

general and concise review on the literature up to date, we will direct our attention

on the conditional Gaussian models of Lauritzen and Wermuth (1989), being them the

backbone structure of our model, which will be presented in the next chapter.

Since we will be working with undirected and simple multilayer networks, we will

focus only on probabilistic graphical models on undirected (multilayer) graphs, called

simply undirected graphical models (GMs) or Markov random fields (MRFs).

2.1 Literature review

Despite the increasingly massive presence of data of different nature, in reality there

are few probabilistic graphical models able to manage and represent them.

As stated in the extensive review on graphical models for heterogeneous data of Dim-

itrova and Kocarev (2018), a first approach to simultaneously model variables with vari-

ous domains was to interpret them as derivatives of latent Gaussian MRFs (MRFs whose

underlying distribution is Gaussian). Various approaches were proposed along this line.

Rue et al. (2009) proposed the use of integrated nested Laplace approximation (INLA)

techniques to infer the conditional independence between the converted variables; Do-

bra and Lenkoski (2011) employed the Gaussian copula. From a Bayesian perspective,

21
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Bhadra et al. (2018) made use of Gaussian scale mixtures to model not-normal contin-

uous data, or mixed continuous and discrete variable as well. Other approaches rely on

non-parametric statistics, like penalty algorithms, or rank-based correlation estimators

(Liu et al. 2009; Liu et al. 2012; Xue and Zou 2012; Fan et al. 2016).

All the above mentioned approaches show two major drawbacks. Generally speaking,

acting on the original domain of the variables almost always causes loss of information.

More specifically, all these works have clearly extended the use of Gaussian graphical

models to continuous data, but they are not explicitly appropriate for treating binary

variables and, therefore, cannot handle variables with heterogeneous domains in a proper

way.

A pioneering class of parametric models able to handle not homogeneous data was

presented thirty years ago by Steffen Lauritzen and Nanny Wermuth (Lauritzen and

Wermuth, 1989) and later deeply discussed in Lauritzen (1996), with the name of con-

ditional Gaussian graphical models. Such models, that will be discussed in the next sec-

tion, can deal with Gaussian and categorical variables. One of their major drawbacks,

is that the number of parameters grows in an exponential manner when increasing the

number of variables. Hence, this family is not particularly suitable in high-dimensional

contexts, such as, for example, the multi-omics ones. Further developments and gen-

eralizations were proposed to solve this issue: at first, the conditional Gaussian model

was expanded in a hierarchical interaction model in Edwards (1990) and Edwards et al.

(2010) – higher order interactions between variables are only possible if all lower order

sub-interactions are included in the model –; more recently, a series of works expanded

the range of algorithms to estimate the structure of the underlying graph of these mod-

els, as presented in the papers of Lee and Hastie (2015), Fellinghauer et al. (2013) and

Cheng et al. (2017).

Another approach is offered by mixed exponential MRFs introduced by Yang et al.

(2014b). This approach looks more general with respect to conditional Gaussian graph-

ical models approach. Indeed, such models are based on the theory introduced by

Wainwright and Jordan (2008) and built on deriving an approximation of the distri-

bution of the graph structure through variational approximation techniques for which

exact calculations are possible. The principal advantage of these mixed exponential

MRFs is the idea that each node can be (conditionally) distributed as a member from a

different exponential family distribution. Other works in this direction were presented

in Chen et al. (2015), where the focus is on pairwise graphical models (i.e., graphical

models containing at most interaction effects of order 2), Tansey et al. (2015), that

expand the work of Yang et al. (2014b) in a vector-space framework, and Haslbeck and
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Waldorp (2015), contributing with a structure estimation approach based on generalized

covariance matrices able to maintain all variables on their proper domain.

2.2 The main instigator: conditional Gaussian GMs

In this section, we review the main results on conditional Gaussian models. See

Lauritzen and Wermuth (1989) and Lauritzen (1996) for an extensive treatment.

Let G = (V,E) be a marked graph, with V = ∆ ∪ Γ as defined in Chapter 1,

Section 1.1. Let the order of G be v(G) =| V |= p + q, where p =| Γ | and q =| ∆ |.
A typical element of the joint state space is denoted as x = (z∆,yΓ), where z∆ =

{zi}i∈∆ are categorical values and yΓ = {yγ}γ∈Γ are real values. Let X = (Z∆,YΓ) be

the corresponding vector of qualitative and quantitative random variables, respectively.

Denote the complete state space as X = Z∆ × YΓ ⊆ Z∆ × ❘p. Then X follows a

conditional Gaussian (CG) distribution (Lauritzen and Wermuth, 1989), with strictly

positive joint density (w.r.t. product of counting measures onZ∆ and Lebesgue measure

on YΓ), if

fX(x; g, h,Ω) = fZ∆,YΓ
(z∆,yΓ; g, h,Ω)

= exp

{

g(z∆) + h(z∆)
TyΓ −

1

2
yT
Γ Ω(z∆)yΓ

}

, (2.1)

where g is a real-valued function of z∆, h is a p-vector function depending on z∆ taking

values in ❘p, and Ω(z∆) =
[
ωξγ(z∆)

]
is a p× p matrix function depending on z∆ taking

values in the set of positive definite symmetric matrices. The name conditional Gaussian

emphasizes the fact that the conditional random vector YΓ | Z∆ = z∆ is distributed

as a p-variate Gaussian random variable with (conditional) expected value equal to

Ω(z∆)
−1h(z∆), and (conditional) covariance matrix Ω(z∆)

−1. Indeed, on writing

1. Ω(z∆)
−1 = Σ(z∆),

2. h(z∆)
T = µ(z∆)

T Ω(z∆),

3. g(z∆) = log p(z∆) +
p

2π
log(2π)− 1

2
log (| Ω(z∆) |)−

1

2
µ(z∆)

T Ω(z∆)µ(z∆),

where (and if and only if) p(z∆) = Pr(Z∆ = z∆) > 0, we have

YΓ | Z∆ = z∆ ∼ Np (µ(z∆),Σ(z∆)) .
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Expanding 2.1, yields

log fX(x; g, h,Ω) = g(z∆) +
∑

γ∈Γ

∑

ξ∈Γ
µξ(z∆)ω

ξγ(z∆)yγ −
1

2

∑

γ∈Γ

∑

ξ∈Γ
yγyξ ω

ξγ(z∆) (2.2)

It is possible (Lauritzen and Wermuth, 1989) to reparameterize the above given expan-

sion in terms of interaction effects, making interactions terms relative to an arbitrary

but fixed value z∗∆. One obtains

1. g(z∆) =
∑

d⊆∆ λd(z∆);

2. h(z∆) =
∑

d⊆∆ ηd(z∆);

3. Ω(z∆) =
∑

d⊆∆ Φd(z∆);

where functions indexed by d only depend on z∆ through zd, so that

log fX(x; g, h,Ω) =
∑

d⊆∆

λd(zd) +
∑

d⊆∆

ηd(zd)
TyΓ −

1

2

∑

d⊆∆

yT
ΓΦd(zd)yΓ (2.3)

This parameterization is related to the Markov properties of a CG distribution.

Indeed Lauritzen and Wermuth (1989) give a theorem providing conditions for the

distribution (2.2) to be Markov with respect to a graph G = (V,E) with V = ∆ ∪ Γ.

We report here the theorem, taken from the original article.

Theorem 2.1. Let the q + p random vector X = (Z∆,YΓ) follow a CG distribution as

in (2.3). Then X is a MRF (equivalently, it satisfies Markov properties with respect to

a graph G = (V,E), with V = ∆ ∪ Γ), if and only if

• λd(zd) = 0 if d is not complete in G, and

• ηγd (zd)=0 (the γ-th element of mixed linear interactions ηd(zd) is zero) if d ∪ {γ}
is not complete in G, and

• φγξ
d (zd) = 0 (the (γ,ξ)-th element of mixed quadratic interactions Phid(zd) is

zero) if d ∪ {γ, ξ} is not complete in G.

The previous theorem imposes the factorization condition on the interaction functions

λd, ηd, and Φd, in that interaction terms only involve variables that are neighbours.

To complete this overview, it is helpful to consider what happens to a CG density

when we marginalise or condition upon it. Let rewrite ∆ and Γ as a union of disjoint

sets. In detail, let B ⊆ V and A = V \ B, such that ∆ = ∆A ∪ ∆B, ∆A ∩ ∆B = ∅,
and, consequently, Γ = ΓA ∪ ΓB, ΓA ∩ ΓB = ∅. Denote as Z∆ = (Z∆A

,Z∆B
) and
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YΓ = (YΓA
,YΓB

) the corresponding random variables, and z∆ = (z∆A
, z∆B

) and yΓ =

(yΓA
,yΓB

) their observed values. Lauritzen (1996) provides in a sequence of propositions

some restrictions on marginalization and conditioning on CG distributions. We report

them, adapting the original notation to our.

Proposition 6.6 (Lauritzen (1996)). Let fX(x; g, h,Ω) be a CG distribution and X =

(Z∆A
,Z∆B

,YΓA
,YΓB

) as previously specified. Then, for all values of (z∆A
,yΓA

), the

conditional density of (Z∆B
,YΓB

) given (Z∆A
,YΓA

) = (z∆A
,yΓA

) is a CG distribution,

or CG regression. Its canonical characteristics (gB|A, hB|A,ΩB|A) are

gB|A(z∆B
) = g(z∆) + h(z∆)

T
AyΓA

− 1

2
yT
ΓA
Ω(z∆)AyΓA

− lnκ(z∆A
,yΓA

)

hB|A(z∆B
) = h(z∆)B − Ω(z∆)BAyΓA

ΩB|A(z∆B
) = Ω(z∆)B,

where κ(z∆A
,yΓA

) is a normalizing constant

κ(z∆A
,yΓA

) = (2π)
|B∩Γ|

2

∑

z∆B
∈{0,1}|B∩∆|

{

exp

{

g(z∆) + h(z∆)
T
AyΓA

− 1

2
yT
ΓA

Ω(z∆)AyΓA

}

×

× [det(Ω(z∆)B)]
− 1

2 exp

{
1

2
hB|A(z∆B

)TΩ(z∆)
−1
B hB|A(z∆B

)

}}

Generally speaking, Proposition 6.6 affirms that the act of conditioning on any sub-

set of variables preserves the CG distribution. This is not true if the operation is a

marginalisation on any subsets of variables in X. Indeed, there are only two cases in

which the marginal of a CG distribution remains a CG distribution: when B is either a

subset of Γ (Proposition 6.1), or a subset of ∆ which has not influence on the continuous

counterpart (Proposition 6.2).

Proposition 6.1 (Lauritzen (1996)). If fX(x; g, h,Ω) is a CG distribution and B ⊆ Γ,

implying A = V \ B (i.e., A ⊆ ∆ or A ⊆ ∆ ∪ Γ \ B}), then the marginal of XA =

(Z∆,YΓA
) is a CG density with canonical characteristics (gA, hA,ΩA) given as

gA(z∆) = g(z∆) +
1

2

{
| B | ln(2π)− ln det(Ω(z∆)B) + h(z∆)

T
B [Ω(z∆)B]

−1 h(z∆)B
}

hA(z∆) = h(z∆)A − Ω(z∆)AB [Ω(z∆)B]
−1 h(z∆)B

ΩA(z∆) = Ω(z∆)A − Ω(z∆)AB [Ω(z∆)B]
−1 Ω(z∆)BA.

Proposition 6.2 (Lauritzen (1996)). If fX(x; g, h,Ω) is a CG distribution and B is

such that B ⊆ ∆ and B ⊥⊥ Γ | ∆\B (i.e., A ⊆ Γ or A ⊆ Γ∪∆\B}), then the marginal

of XA = (Z∆A
,YΓ) is a CG density with canonical characteristics (gA,hA,ΩA) not
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depending on the levels of z∆B
:

gA(z∆A
) = ln

∑

j∈∆A

exp g(zj), hA(z∆A
) = h(z∆), ΩA(z∆A

) = Ω(z∆).

For any other types of subsetsA andB of V that do not satisfy the conditions imposed

in Proposition 6.1 and Proposition 6.2, the CG distribution structure for X is not

preserved. These assumptions will be particularly useful in the next chapters, especially

in the determination of the distributions participating in the conditional independence

tests, which are necessary to infer the multilayer graph-like structure of the data.



Chapter 3

Multilayer Conditional Gaussian

Graphical Models

In this chapter, we present the model specification at the core of our analyses and the

rationale behind it. We start by introducing our point of view in Section 3.1, then we

formally specify the notation and the models in Section 3.2. We tackle the problem of

exponential growth of parameters by putting some constraints on the interaction effects,

following the work of Cheng et al. (2017), and, by exploiting the Markov properties on

multilayer networks, we will derive the relevant information for performing structure

learning.

3.1 Rationale

In the wide world of integration of different sources of omics data, one of the main up-

to-date questions is reconstructing the relations of highly connected systems in presence

of distinct measurements of the same genetic activity for a given set of genes. Indeed,

for the same p genes associated to a specific biological task, nowadays we can record

their expression levels, i.e. continuous variables, their type and number of mutations,

i.e., categorical variables, their RNA transcripts, i.e., counts, and many other types

of biometric information, and miscellaneous aspects of the biological tasks that they

perform can potentially be explored.

All models so far used in the vast literature of modelling interactions among entities

have a major drawback: they do not model dependency among measurements of different

nature. In the infant literature on models for heterogeneous data, variables with the

same domain are usually modelled together, but different domains are not necessarily

connected. This implies that, for example, the RNA-transcripts and the expression levels

27
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Figure 3.1: Interpretation of distinct measurements on the same p genes for a specific
activity; panel (a) represents our approach, while panel (b) shows what it is assumed
in literature.

of the same gene may not necessarily interact. In the multilayer network language, this

translates into a multilayer network with d = 1 aspects, p vertices andK layers. Here, K

is the number of different domains and each layer contains p homogeneous variables (e.g.,

a layer for RNA-transcripts, a layer for mutations, etc.) A 2-D simplified representation

of a multilayer network of this kind, with K = 2, can be seen in panel (b) of Figure 3.1

(the black and white colours of the nodes symbolise their different nature).

From a biological point of view, as all features are recorded during the same genetic

activity, they are likely to be implicitly connected and should not be analysed as being

disconnected. This is why we reverse the paradigm usually found in the literature and

treat each gene as a layer containing all measurements, of various nature, related to

it. Within each layer, all measurements are allowed to be connected. In the multilayer

network language, this translates into a multilayer network of d = 1 aspects, p layers

(one for each gene), and K vertices (the features). We assume that all layers share the

same set of features, somehow connected among them. Such connections might change

from layer to layer, but, in the first instance, we assume that the intra-layer graph

remains the same in each layer. In the applications that we tackled, this implied to

impose a complete intra-layer graph, but by no means completeness of the intra-layer

graph is a necessary condition for what follows. See panel (a) of Figure 3.1 for a 2-D

simplified representation of the basic structure of our model (again, the black and white

colours of the nodes symbolise their different nature).

By itself, this change of perspective does not entail big differences in the joint distri-

bution of the random variables represented by the node-layer couples in the multilayer

network, but it will bring dissimilar results when operations such as conditioning or

marginalization will be carried out, as explained in a more formal manner in the next

section.
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3.2 Model specification

3.2.1 Data format

We assume to have a p-dimensional random vector whose elements are, themselves,

K-dimensional random vectors of features or attributes. Such object can be portrayed

as a p×K random matrix ❨ of the form

❨ =












Y
(1)
1 · · · Y

(k)
1 · · · Y

(K)
1

...
. . .

...
...

...

Y
(1)
j · · · Y

(k)
j · · · Y

(K)
j

...
...

...
. . .

...

Y
(1)
p · · · Y

(k)
p · · · Y

(K)
p












in which each entry corresponds to a random variable Y
(k)
j with values in Y(k)

j , j =

1, . . . , p; k = 1, . . . , K.

There are in fact two ways of looking at ❨: row by row or column by column (see

(3.1)). Each row j, j = 1, . . . , p, is a random vector Y T
j = (Y

(1)
j , . . . , Y

(K)
j )T with values

in Yj =×K

k=1
Y(k)

j . We do not impose any constraint on the family of distributions for

variables in Y T
j , so that it could incorporate variables belonging to different families:

continuous, discrete, categorical, and so on. It is worth noting that the sample space

Yj contains the same ordered tuples for each j, j = 1, . . . , p. Similarly, each column

k, k = 1, . . . , K, is a vector Y (k) = (Y
(k)
1 , . . . , Y

(k)
p )T with values in Y

(k) =×p

j=1
Y(k)

j .

Now Y (k) contains variables belonging to the same family of distributions, thus having

the same domain. On the other side, the sample space Y(k) potentially changes with k,

according to the family to which variables Y
(k)
j belong.

❨ =












Y T
1
...

Y T
j

...

Y T
p












=
[

Y (1) · · · Y (k) · · · Y (K)
]

. (3.1)

A simplified representation of the random matrix ❨ is the form of “stacked” vector,

i.e., ❨ is re-arranged as a p×K-variate random vector by unfolding by row or by column
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the matrix itself:

❨ =
[

Y
(1)
1 , . . . , Y

(K)
1 , . . . , Y (1)

p , . . . , Y (K)
p

]T

=
[

Y
(1)
1 , . . . , Y (1)

p , . . . , Y
(K)
1 , . . . , Y (K)

p

]T

.

Definition of graphical models on matrices like ❨ is challenging. In standard settings,

as we explained in the Chapter 1, each random variable corresponds to a node of the

graph G = (V,E) underlying the statistical model, such that the vertex set V contains

the indices of the random variables. In our setting, however, whether we consider p

vectors Yj, or K vectors Y (k), nodes are multidimensional vectors, “hiding”, so to say,

more random variables. That is why a more useful way to visualize this new setting

is imagining ❨ as a multilayer network with d = 1 aspects: both rows and columns

of ❨ can be interpreted as layers, meaning that the single random variables which are

elements of ❨ are now identified by node-layer couples and not as nodes any more.

Following notation introduced in Chapter 1 and denoting the multilayer network on ❨

as M = (VM , EM , V,L), we can have, depending on whether we are reading ❨ by row

or by column, respectively,

• V = {1, . . . , K} or V = {1, . . . , p},

• L = {1, . . . , p} or L = {1, . . . , K},

• VM = {(j, k) : j ∈ V and k ∈ L} or VM = {(k, j) : k ∈ V and j ∈ L} and

• EM ⊆ VM × VM such that EM = EA ∪ EC , EA ∩ EC = ∅, with EA the set of

intra-layer edges and EC the set of inter-layer edges.

In other words, the double perspective on matrix ❨ translates into a double perspec-

tive on M. When we interpret the matrix as ❨ =
[
Y T

1 , . . . ,Y
T
j , . . . ,Y

T
p

]T
, we are fac-

ing p layers (p genes) containing the same set of K interconnected node-layer couples

(K measurements), and we are supposing that inter-layer edges connect (possible) dif-

ferent node-layer couples, i.e., EC = {((u,α), (v,β)) : u, v ∈ V,α 6= β,α,β ∈ L},
with V = {1, . . . , K} and L = {1, . . . , p}. On the contrary, when we read ❨ as
[
Y (1), . . . ,Y (k), . . . ,Y (K)

]T
, we are using state-of-art models, where M is formed by

K internally homogeneous layers, in the sense that the related random variables in the

arbitrary Y (k) have all the same domain and such that each of them is containing p node-

layer couples, possible different intra-layer edges in each of them, and inter-layer edges

of the form EC = {((j, k), (j, h)) : j ∈ V, h, k ∈ L and k 6= h}, with V = {1, . . . , p} and
L = {1, . . . , K}. Table 3.1 includes a graphical representation of what we described so

far.
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The random vector ❨ = (Y(1),Y(2)) might therefore also be written as ❨ = (Z∆,YΓ) .

Similarly, the two sample spaces corresponding to Y
(1) and Y

(2) will be denoted as Z∆

and YΓ, respectively. Typical observed values of ❨ will be denoted as ② = (z∆,yΓ),

where z∆ are the observed values of Z∆, and yΓ are the observed values of YΓ.

It is reasonable to assume for the vector ❨ a joint CG distribution (Lauritzen and

Wermuth, 1989), as described in Chapter 2, Section 2.2

f❨(②; g, h,Ω) = fZ∆,YΓ
(z∆,yΓ; g, h,Ω) = exp

{

g(z∆) + h(z∆)
TyΓ −

1

2
yT
Γ Ω(z∆)yΓ

}

,

or, equivalently

log f❨(②; g, h,Ω) =
∑

d⊆∆

λd(zd) +
∑

d⊆∆

ηd(zd)
TyΓ −

1

2

∑

d⊆∆

yT
ΓΦd(zd)yΓ.

As the number of interaction parameters scales exponentially with the number of

categorical variables, thus with the number of p genes we are trying to model, the

full mixed model is very complex and cannot be easily estimated from data without

some additional assumptions. In what follows, therefore, we will limit ourselves to a

simplified version of the CG distribution, in which the number of parameters is greatly

reduced, and adopt the constraints also proposed in Cheng et al. (2017). Therefore, (i)

we impose a maximum order of interaction effects (e.g., interactions like ZiZjZk are not

considered), and (ii) we consider λd(z∆), ηd(z∆) and Φd(z∆) as linear functions of λ, η

and Φ, i.e.,

g(z∆) =
∑

d⊆∆
|d|≤2

λd(z∆) = λ0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj;

h(z∆) =
∑

d⊆∆
|d|≤1

ηd(z∆) = η0 +
∑

i∈∆
ηizi =







η10 +
∑

i∈∆ η
1
i zi

...

ηp0 +
∑

i∈∆ η
p
i zi






;

Ω(z∆) =
∑

d⊆∆
|d|≤1

Φd(z∆) = Φ0 +
∑

i∈∆
Φizi =







φ11
0 +

∑

i∈∆ φ
11
i zi · · · φ1p

0 +
∑

i∈∆ φ
1p
i zi

...
. . .

...

φp1
0 +

∑

i∈∆ φ
p1
i zi · · · φpp

0 +
∑

i∈∆ φ
pp
i zi







=










φ11
0 φ12

0 +
∑

i∈∆ φ
12
i zi · · · φ1p

0 +
∑

i∈∆ φ
1p
i zi

...
. . .

...
...

...
...

. . .
...

φp1
0 +

∑

i∈∆ φ
p1
i zi · · · φpp−1

0 +
∑

i∈∆ φ
pp−1
i zi φpp

0










.
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In this specification, φγγ
i = 0 for all i ∈ ∆ and γ ∈ Γ, and λ0 is the normalizing constant

(see also Cheng et al. (2017))

λ−1
0 = (2π)

p
2

∑

z∆∈{0,1}q

1
√

det(Ω(z∆))
×

× exp







∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
1

2
h(z∆)

T (Ω(z∆))
−1h(z∆)







.

Bearing in mind that Ω(z∆), being a concentration matrix, it is symmetric, it follows

that

φγξ
0 +

∑

i∈∆
φγξ
i zi = φξγ

0 +
∑

i∈∆
φξγ
i zi ⇔

(

φγξ
0 − φξγ

0

)

+
∑

i∈∆

(

φγξ
i − φξγ

i

)

zi = 0

for all γ, ξ ∈ Γ, γ 6= ξ. But this is equivalent to

φγξ
0 = φξγ

0 ∧ φγξ
i = φξγ

i

for all i ∈ ∆, γ, ξ ∈ Γ, and γ 6= ξ.

Substituting in the expression of the CG density, we obtain

log f❨(②; g, h,Ω) = g(z∆) + h(z∆)
TyΓ −

1

2
yT
Γ Ω(z∆)yΓ

=
∑

d⊆∆
|d|≤2

λd(zd) +
∑

d⊆∆
|d|≤1

ηd(zd)
TyΓ −

1

2

∑

d⊆∆
|d|≤1

yT
ΓΦd(zd)yΓ

= λ0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
∑

γ∈Γ

(

ηγ0 +
∑

i∈∆
ηγi zi

)

yγ

−1

2

∑

γ∈Γ
φγγ
0 y

2
γ −

∑

γ,ξ∈Γ
γ>ξ

(

φγξ
0 +

∑

i∈∆
φγξ
i zi

)

yγyξ (3.2)

where {λi; i = 1, . . . q} are the main effects of the discrete variables, {λij; i = 1, . . . q, j =

1, . . . p} represent interaction parameters between pairs of discrete variables, {ηγ; γ =

1, . . . p} are the main effects of continuous variables, {ηγi ; γ = 1, . . . p, i = 1, . . . q}
are the mixed linear interactions between one discrete and one continuous variables,

{φγξ; γ, ξ = 1, . . . p} are the pure quadratic interactions between pairs of continuous

variables and {φγξ
i ; γ, ξ = 1, . . . p, i = 1, . . . q} are the mixed quadratic interactions be-

tween pairs of continuous variables and a discrete variable. This model specification
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allows for heteroschedasticity of the conditional Gaussian distributions, a feature that

seems particularly suitable in the omics settings.

As stated in Cheng et al. (2017), this specification brings a consistent reduction in

the number of parameters, that drop from an order of O(2q+pp2) of the unconstrained

specification to an order of O(max(q2, qp2)); furthermore, forcing a maximum order

of the interactions to two does not preclude any structure for the multilayer graph,

provided that higher-order interactions, if any, imply the presence of corresponding

pairwise interactions, a situation which is most common in applications.

By an application of Theorem 2.1 (see Chapter 2, Section 2.2), the following condi-

tional independences hold (see also Cheng et al. (2017)):

• Zi ⊥⊥ Zj | ❨ \ {Zi, Zj} iff λij = 0

• Zi ⊥⊥ Yγ | ❨ \ {Zi, Yγ} iff ηγi = 0 and φγξ
i = 0 ∀ξ 6= γ

• Yγ ⊥⊥ Yξ | ❨ \ {Yγ, Yξ} iff φγξ = 0 and φγξ
i = 0 ∀i ∈ ∆.

However, taking into account our multilayer set-up, and our assumptions about the

nature and the structure of the layers, the conditional independences of core interest for

us are those of type,

(Zi, Yγ) ⊥⊥ (Zk, Yµ) | ❨ \ {Zi, Zk, Yγ, Yµ}. (3.3)

Therefore, the crucial conditions in the development of structure learning algorithms are

those involving the parameters that make such conditional independences to be true.

Denote with

(λ,η,Φ) =

(

λ0, {λi}i∈∆, {λij}i,j∈∆
i>j

, {ηγ0}γ∈Γ, {ηγi }i∈∆
γ∈Γ

, {φγξ
0 }γ,ξ∈Γ, {φγξ

i } i∈∆
γ,ξ∈Γ

)

.

To exploit such conditions, let B = {i, γ} and A = V \ {i, γ}. From Chapter 2, Section

2.2, the conditional distribution

f❨B |❨A
(②B | ②A; gB|A, hB|A,ΩB|A) = fZi,Yγ |❨\{Zi,Yγ}(zi, yγ | ②\{zi, yγ}; gi,γ|V \{i,γ}, hi,γ|V \{i,γ},Ωi,γ|V \{i,γ})

represents a CG regression, with canonical characteristics expressed in terms of (λ,η,Φ)

as follows (see Appendix B for details):

ΩZi,Yγ |❨\{Zi,Yγ}(zi) = φγγ
0 ,

hZi,Yγ |❨\{Zi,Yγ}(zi) = ηγ0 +
∑

j∈∆
ηγj zj −

∑

µ∈Γ
γ>µ

(

φγµ
0 +

∑

j∈∆
φγµ
j zj

)

yµ,
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gZi,Yγ |❨\{Zi,Yγ}(zi) = λizi + zi
∑

k∈∆
i>k

λikzk + zi
∑

µ∈Γ
µ 6=γ

ηµi yµ − zi
∑

µ,ξ∈Γ
µ>ξ
µ,ξ 6=γ

φµξ
i yµyξ + λ0 − λ̃0,

with λ̃0 appropriately defined.

On writing

ln fZi,Yγ |❨\{Zi,Yγ}(zi, yγ | ② \ {zi, yγ};λ,η,Φ) ∝ λizi + zi
∑

k∈∆
i>k

λikzk + zi
∑

µ∈Γ
µ 6=γ

ηµi yµ +

−zi
∑

µ,ξ∈Γ
µ>ξ
µ,ξ 6=γ

φµξ
i yµyξ + yγ




η

γ
0 +

∑

j∈∆
ηγj zj −

∑

µ∈Γ
γ>µ

(

φγµ
0 +

∑

j∈∆
φγµ
j zj

)

yµ




− 1

2
φγγ
0 y

2
γ,

then we can isolate the couple (zk, yµ) with respect to the other variables in the various

summations, that is

ln fZi,Yγ |❨\{Zi,Yγ}(zi, yγ | ② \ {zi, yγ};λ,η,Φ) ∝ λizi + λikzizk + zi
∑

j∈∆\{i,k}
i>j

λijzj+

+ η
µ
i ziyµ + zi

∑

ξ∈Γ\{µ,γ}
η
ξ
i yξ − zi

∑

ξ∈Γ\{µ,γ}
µ>ξ

φ
µξ
i yµyξ − zi

∑

ζ,ξ∈Γ\{µ,γ}
ζ>ξ

φ
ζξ
i yζyξ + η

γ
0yγ + η

γ
kzkyγ+

+ yγ
∑

j∈∆\{k}
η
γ
j zj − φ

γµ
0 yγyµ − yγ

∑

ξ∈Γ\{µ,γ}
γ>ξ

φ
γξ
0 yξ −

∑

j∈∆
φ
γµ
j zjyγyµ − yγ

∑

ξ∈Γ\{µ,γ}
µ>ξ

φ
γξ
k zkyξ+

− yγ
∑

ξ∈Γ\{µ,γ}
µ>ξ

∑

j∈∆\{k}
φ
γξ
j zjyξ −

1

2
φ
γγ
0 y2γ .

It is then easy to state the conditions that guarantee the conditional independence of

our interest to hold: for the discrete interactions, λik = 0; for continuous interactions,

φγµ
0 = 0 and φγµ

i = 0 for all i ∈ ∆; for “mixed” interactions, ηµi = 0, ηγk = 0, φµξ
i = 0

for all ξ ∈ Γ \ {γ, µ} and φγξ
k = 0 for all ξ ∈ Γ \ {γ, µ}. Those are indeed similar to

the conditions described in the paper of Cheng et al. (2017), meaning that the Markov

properties stating the conditional independence conditions for bivariate conditional dis-

tributions can be expressed by means of Markov properties for conditional independence

conditions for univariate conditional distributions, that must be simultaneously satisfied.

Equivalently, to check if

(Zi, Yγ) ⊥⊥ (Zk, Yµ) | ❨ \ {Zi, Zk, Yγ, Yµ},
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the following requirements on the parameters of univariate conditional distributions

must hold:

Zi ⊥⊥ Zk | ❨ \ {Zi, Zk} ⇔ λik = 0,

Zi ⊥⊥ Yµ | ❨ \ {Zi, Yµ} ⇔ ηµi = 0 and φµξ
i = 0 ∀ξ 6= µ,

Zk ⊥⊥ Yγ | ❨ \ {Zk, Yγ} ⇔ ηγk = 0 and φγξ
k = 0 ∀ξ 6= γ,

Yγ ⊥⊥ Yµ | ❨ \ {Yγ, Yµ} ⇔ φγµ
0 = 0 and φγµ

i = 0 ∀i ∈ ∆.

Those conclusions on the parameters of the bivariate conditional distributions will be

essential in the next Chapter, because they represent the batteries of structure learning

tests necessary to infer the multilayer graph underlying the CG model.



Chapter 4

Structure learning of undirected

multilayer graphs

In this chapter we will talk about structural learning algorithms for undirected and

simple multilayer networks. In particular, since a multilayer network can be seen as a re-

labelled graph, as described in Chapter 1, we can adopt algorithms designed for graphs

to our framework without loss of generality. Moreover, although structural learning is

mostly associated with causal discovery, and we will use methods initially designed for

that, in our algorithm we will not search or impose any type of directionality in the

inferred graphs. Indeed, many structural learning algorithms deal with directed acyclic

graphs, but their first step always requires to infer the undirected skeleton of the graphs:

we will stop at this step to derive our structure.

In detail, the Chapter will be organised as follows: in Section 4.1 we will analyse the

techniques for structural learning available in the literature for heterogeneous graphical

models and their pros and cons, whilst in Section 4.2 we will present our approach. As

a formal proof of consistency of the algorithm that we propose is outside the scope of

this thesis, consistency of our proposal will be empirically explored in Section 4.3.

4.1 Literature review

There are essentially two classical families of methods for estimating (possibly sparse)

graphical models: constraint-based (Spirtes et al., 2000) and score-based (Chickering,

2002) methods. In a nutshell, constraint-based algorithms identify the (causal) structure

by using conditional independence tests (under the assumption of faithfulness). Score-

based approaches, instead, adopt a network score to measure the goodness of fit of the

37
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network to the data – possibly applying a sparsity penalty to avoid over-fitting – and

try to maximize such score.

The best established algorithms are developed for graphs defined of variables be-

longing to the same family of distributions. The challenges and difficulties rising from

handling mixed types of data concern not only the definition of a joint distribution and

related properties, as we saw in Chapter 2, but also the development of appropriate

learning algorithms: constraint-based techniques must use independence tests suitable

to ascertain the independence of a mixed set of variables, and score-based methods

require an appropriate score function.

In the last eight years, few groups have developed algorithms to learn undirected

graphs over heterogeneous variables (Tur and Castelo, 2011; Cheng et al., 2017; Felling-

hauer et al., 2013; Lee and Hastie, 2015; Chen et al., 2015; Yang et al., 2014a). The

approach of Tur and Castelo starts from a joint CG distribution and tries to estimate

the precision matrix, since the latter is explicitly related to the adjacency matrix of the

underlying graph; in particular, for every pair of available random variables, a linear

measure of association over all marginal distributions of size lesser than the sample size

is computed. But their algorithm, since it is calibrated for cases in which the number of

variables is far greater than the sample size, has some limitations: discrete random vari-

ables are supposed marginally independent, thus their associations are not considered,

and it does not take into account heteroscedasticity in the data.

Other proposals depend on node-wise regression models, i.e., local regressions built

around the neighbourhood of a node and derived from a variety of distributions of

continuous and discrete variables; in particular, of densities belonging to the exponential

family of distributions, as in Cheng et al. (2017), Chen et al. (2015), (Yang et al., 2014b)

or Fellinghauer et al. (2013). Those models are called elementary block directed Markov

random fields (EBDMRFs); the adjective “directed” is related to the orientation of

edges between some blocks of nodes (the graph is not completely undirected, but only

partially undirected). The parameters of these local regressions are directly related to

the presence and absence of edges in a graph. In order to ensure sparsity in the inferred

structure, the Authors use either a lasso penalty (Cheng et al., 2017; Chen et al., 2015;

Yang et al., 2014b) or local rankings for each regression, where “local” means that it is

possible to rank the importance of predictors for every regression (Fellinghauer et al.,

2013).

One of the most popular methods for learning undirected graphical models is the one

proposed by Lee and Hastie (Lee and Hastie, 2015): the Authors implements a special

case of CG distributions, imposing a common covariance matrix (i.e., discrete random
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variables do not have an impact on the covariance structure of the continuous random

variables), an additive form for the mean of the distribution and a marginal distribution

of the discrete random variables that factorizes as a pairwise discrete Markov random

field. Its popularity stands in its computation and simplicity. Indeed, its computation

is based on the pseudo-likelihood approach of Besag (1975), which is a computationally

efficient and consistent estimator for a joint distribution, determined by products of

all conditional distributions of the variables of interest; moreover, the conditional dis-

tributions of the model proposed by Lee and Hastie are two widely adopted and well

understood models: a multiclass logistic regression and a Gaussian linear regression.

Also, in this methodology, the conditional independence structure is captured by the

conditional distributions via the regression coefficient of a variable on all others, as in

the models of Cheng et al. (2017), Chen et al. (2015), and (Yang et al., 2014b). The

Authors maximize the pseudo-likelihood subject to a weighted penalization on the num-

ber of edges to obtain a sparse graphical model on mixed types of data, where the type

of penalization is adapted to the type of parameters that are tested in the model (i.e.,

norm of degree 1 for scalar parameters, degree 2 for vectors of parameters and Frobenius

norm for matrices of parameters).

All methods discussed so far are constraint-based. As stated in Sedgewick et al.

(2017), adapting score-based methods to mixed data is an open problem, because there

is the need to find a suitable score, factorizable and computationally efficient. This is

why we decided to work within a constraint-based methodology, without searching to

deepen and develop methods for score-based algorithms.

4.2 The PC-CGRM algorithm

We propose a new algorithm, called PC-CGRM, designed by exploiting three exist-

ing algorithms, i.e., the model parameterization of Cheng et al. (2017), the EBDMRF

algorithm (Yang et al., 2014b), and the PC algorithm (Spirtes et al., 2000). Briefly,

PC-CGRM combines the local approach of Cheng et al. (2017) and Yang et al. (2014b),

i.e., it assumes, as EBDMRF does, that the distribution of each node variable, condi-

tionally to neighbour node variables, belongs to an exponential family; in particular,

each node conditional distribution can be expressed as a multinomial regression and a

Gaussian linear regression model with the parameters specified as in Cheng et al. (2017).

Then, the neighbourhood of each node is estimated in turn by a testing procedure on

the parameters of the local regressions, following the lines of the PC algorithm. But let

us be more specific.
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As said at the beginning of the chapter, we will work with the graph-representation of

an undirected (and simple) multilayer network. We start from the complete graph GM =

(VM , EM), where VM ⊆ ∆×Γ by definition in Chapter 1, Section 1.2. We are considering

the problem of learning an undirected (possibly sparse) graphical structure under model

specification (3.2), which implies that each node-layer conditional distribution follows a

CG distribution of the form,

fZi,Yγ |❨\{Zi,Yγ}(zi, yγ | ② \ {zi, yγ};λ,η,Φ) ∝ exp







λizi + zi
∑

k∈∆
i>k

λikzk + zi
∑

µ∈Γ
µ 6=γ

ηµi yµ+

−zi
∑

µ,ξ∈Γ
µ>ξ
µ,ξ 6=γ

φµξ
i yµyξ + yγ




η

γ
0 +

∑

j∈∆
ηγj zj −

∑

µ∈Γ
γ>µ

(

φγµ
0 +

∑

j∈∆
φγµ
j zj

)

yµ




− 1

2
φγγ
0 y

2
γ







.

(4.1)

Structure learning can be performed by mean of a series of conditional independence

tests. Starting from a complete graph, for each node-layer couple (i, γ), for each node-

layer couple (k, µ) ∈ VM \ {(i, γ)} and for any set of indexes S ⊆ VM \ {(i, γ), (k, µ)},
the following null hypotheses

H0 : (Zi, Yγ) ⊥⊥ (Zk, Yµ) | ❨S,

i.e.,

H0 : (Zi, Yγ) ⊥⊥ (Zk, Yµ) | ❨ \ {Zi, Zk, Yγ, Yµ}.

can be tested to identify the missing edges, corresponding to non rejections of the null

hypotheses. Log-likelihood ratio tests can be employed to this aim. Sample estimates

(λ̂, η̂, Φ̂) can be obtained within a maximum likelihood approach and test statistics can

be built by exploiting the asymptotic behaviour of these estimators.

By what was seen at the end of Chapter 3, Section 3.2.2, these null hypotheses can

be expressed by a series of simultaneous conditions on the parameters modelling the

discrete interactions between (Zi, Yγ) and (Zk, Yµ), the mixed interactions between the

two couples of random variables and the purely continuous interactions between (Zi, Yγ)
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and (Zk, Yµ), i.e.,

H0 :







λik = 0

{ηµi = 0, φµξ
i = 0 ∀ξ 6= µ}

{ηγk = 0, φγξ
k = 0 ∀ξ 6= γ}

{φγµ
0 = 0, φγµ

i = 0 ∀i ∈ ∆}

, (4.2)

which can be tested by mean of an appropriate series of univariate conditional regres-

sions.

Although we are dealing with models which are more tractable than the ones origi-

nally specified by Lauritzen (1996), the inference might be problematic when the number

of random variables grows large. To face this problem, we borrow the solution offered

by the PC algorithm, which relies on regulating the number of variables that can be

part of the conditional sets. The cardinality of S (i.e., the set of conditional variables)

is regulated to remedy the problem of unstable estimations: either its dimension is be-

tween 0 and (p+ q)−4 (i.e., the total number of variable minus the four not included in

S), or it has an upper bound m, m≪ (p+ q)− 4, representing the maximum number of

neighbours that one node-layer tuple is allowed to have. Furthermore, by the rationale

of our model (see Chapter 3, Section 3.1), if the node-layer couples considered belong

to the same layer, i.e., we are testing the presence of an edge between (i, γ) and (j, γ)

given S ((Zi, Yγ) ⊥⊥ (Zj, Yγ) | ❨S, with S ⊆ VM \{(i, γ), (j, γ)}), their connection is fixed

(indeed, they represent different measurements on the same gene).

In detail, let K = VM \ {(i, γ)}, such that ❨K = ❨ \ {Zi, Yγ} and ②K = ② \ {zi, yγ}.
Moreover, assume that

(Zi, Yγ) | ❨K = ②K ∼ CGR
(
gi,γ|K, hi,γ|K,Ωi,γ|K

)
, ∀i, γ ∈ V, (4.3)

is a CG regression (CGR) distribution with
(
gi,γ|K, hi,γ|K,Ωi,γ|K

)
characterized as in

Chapter 3, Section 3.2.2:

ΩZi,Yγ |❨K
(zi) = φγγ

0 ,

hZi,Yγ |❨K
(zi) = ηγ0 +

∑

j∈∆
ηγj zj −

∑

µ∈Γ
γ>µ

(

φγµ
0 +

∑

j∈∆
φγµ
j zj

)

yµ,

gZi,Yγ |❨K
(zi) = λizi + zi

∑

k∈∆
i>k

λikzk + zi
∑

µ∈Γ
µ 6=γ

ηµi yµ − zi
∑

µ,ξ∈Γ
µ>ξ
µ,ξ 6=γ

φµξ
i yµyξ + λ0 − λ̃0,
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with λ̃0 appropriately defined. Similarly, it is possible to define the generic node-layer

conditional distribution under H0 as

(Zi, Yγ) | ❨S = ②S ∼ CGR
(
gi,γ|S, hi,γ|S,Ωi,γ|S

)
, ∀i, γ ∈ V, (4.4)

where S ⊆ VM \ {(i, γ), (k, µ)} and the canonical characteristics of (4.4) can again be

expressed as

ΩZi,Yγ |❨S
(zi) = φγγ

0 ,

hZi,Yγ |❨S
(zi) = ηγ0 +

∑

j∈∆\{i,k}
i>j

ηγj zj −
∑

ξ∈Γ\{γ,µ}
γ>ξ






φγξ
0 +

∑

j∈∆\{i,k}
i>j

φγξ
j zj






yξ,

gZi,Yγ |❨S
(zi) = λizi + zi

∑

j∈∆\{i,k}
i>j

λijzj + zi
∑

ξ∈Γ\{µ,γ}
ηξi yξ − zi

∑

ζ,ξ∈Γ\{µ,γ}
ζ>ξ

φζξ
i yζyξ + λ0 − ˜̃λ0,

with ˜̃λ0 defined in an appropriate way.

Define as

ℓ(0) = ln f(Zi,Yγ)|❨S

(

(zi, yγ) | ②S; ĝi,γ|S, ĥi,γ|S, Ω̂i,γ|S

)

the maximised log-likelihood under H0 of
(
gi,γ|S, hi,γ|S,Ωi,γ|S

)
reparameterized in terms

of interaction terms (λ,η,Φ). For convenience, denote as θi,γ|K =
(
λi,γ|K,ηi,γ|K,Φi,γ|K

)
,

where
(
λi,γ|K,ηi,γ|K,Φi,γ|K

)
is the parametrization in terms of interaction terms (λ,η,Φ)

of the canonical characteristics
(
gi,γ|K, hi,γ|K,Ωi,γ|K

)
, and writes as ℓ(θi,γ|K) the global

maximised log-likelihood of θi,γ|K,

ℓ(θi,γ|K) = ln f(Zi,Yγ)|❨K

(

(zi, yγ) | ②K; ĝi,γ|K, ĥi,γ|K, Ω̂i,γ|K

)

.

A log-likelihood ratio test statistic for the hypothesis (4.2) can be obtained from stan-

dard asymptotic theory, giving

W (θi,γ|K) = −2
[
ℓ(θi,γ|K)− ℓ(0)

] d→ χ2
ν ,

where ν = dim(Θ) − dim(Θ0), Θ is the unrestricted parameter space of interest for

the model under verification, and Θ0 is the restricted parameter space under the null

hypothesis.

By the conditional independence equivalences found in Chapter 3, Section 3.2.2, it

is also possible to interpret the null hypothesis formulated in (4.2) as an intersection of
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(null) sub-hypotheses, one for each univariate conditional regression that decomposes

the bivariate conditional regression (4.1). Equivalently, since under the specification of

the model in use,

(Zi, Yγ) ⊥⊥ (Zk, Yµ) | ❨ \ {Zi, Zk, Yγ, Yµ} ⇔







Zi ⊥⊥ Zk | ❨ \ {Zi, Zk}
Zi ⊥⊥ Yµ | ❨ \ {Zi, Yµ}
Zk ⊥⊥ Yγ | ❨ \ {Zk, Yγ}
Yγ ⊥⊥ Yµ | ❨ \ {Yγ, Yµ}

, (4.5)

then the global null hypothesis (4.2) can be re-postulated as an intersection of the follow-

ing four null sub-hypothesis, one for each condition on the right side of the equivalence

in (4.5):

1H0 :λik = 0, (4.6)

2H0 :η
µ
i = 0 and {φµξ

i = 0 ∀ξ 6= µ, ξ ∈ Γ}, (4.7)

3H0 :η
γ
k = 0 and {φγξ

k = 0 ∀ξ 6= γ, ξ ∈ Γ}, (4.8)

4H0 :φ
γµ
0 = 0 and {φγµ

i = 0 ∀i ∈ ∆}, (4.9)

and

H0 : 1H0 ∩ 2H0 ∩ 3H0 ∩ 4H0.

For the tests (4.6) – (4.9), particular cases of CG regressions (see also Cheng et al.

(2017) and Appendix B) are implied: when we tests for 4H0, the univariate conditional

distributions of Yγ | ❨ \ {Yγ} = ② \ {yγ} and Yµ | ❨ \ {Yµ} = ② \ {yµ} are linear

Gaussian regressions; when we test for 1H0, the univariate conditional distributions of

Zi | ❨ \ {Zi} = ② \ {zi} and Zk | ❨ \ {Zk} = ② \ {zk} are logistic regressions. When we

are testing 2H0 or 3H0, depending on which variable we are interested, we have either a

Gaussian linear regression or a logistic one.

In this latter characterization of the null hypothesis, it is explicit to see that we are

in front of a multiple testing procedure. To avoid the problems deriving from not taking

into account this structure of the testing procedure, we use a false discovery rate (FDR)

approach to control the expected proportion of rejected null hypotheses that are false

(Benjamini and Hochberg, 1995).

However, the conditional independence tests are prone to mistake. Incorrectly delet-

ing or retaining an edge would result in different neighbourhoods of other node-layer

couples, as the graph GM is updated dynamically. Therefore, the resulting graph is

dependent on the order in which the conditional independence tests are executed. To
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bypass this issue, we employ the solution in Colombo and Maathuis (2014): the Authors

modified the PC algorithm in such a way that it does not depend on the order of the

variables, calling it PC-stable. To remove the order-dependence, the neighbours of all

node-layer couples are searched for and kept unchanged at each particular cardinality c

of the set K. As a result, an edge deletion at one level does not impact on the condi-

tioning set of the other node-layer couples, from which it follows that the output does

not depend on the ordering of the random variables.

The pseudo-code for the algorithm can be written as in Algorithm 1, where

adj(GM , (i, γ)) = {(k, µ) ∈ VM : ((i, γ), (k, µ)) ∈ EM}

denotes the set of all node-layer couples that are adjacent to (i, γ) on the graph GM .

Algorithm 1 The PC-CGRM algorithm.

1: Input: n independent realizations of the random vector ❨; an ordering order(VM)
of the variables, with VM ⊆ ∆ × Γ set of indexes of variables in ❨ (and a stopping
level m).

2: Output: An estimated undirected (simple) graph ĜM .
3: Form the complete undirected graph G̃M on the vertex set VM .
4: Keep fixed edges on the same layer γ: ((i, γ), (k, γ)) ∈ EM .
5: c← −1; ĜM ← G̃M .
6: repeat
7: c← c+ 1
8: for all vertices (i, γ) ∈ VM , do
9: let K(i,γ) = adj(ĜM , (i, γ)).

10: end for
11: repeat
12: select a (new) ordered pair of nodes (i, γ) and (k, µ) that are adjacent in ĜM

such that | K(i,γ) \ {(k, µ)} |≥ c, using order(VM).
13: repeat
14: choose a (new) set S ⊆ K(i,γ) \ {(k, µ)}, with | S |= c, using order(VM).
15: if H0 : θi,γ|K = 0 not rejected after FDR correction, then

16: delete edge ((i, γ), (k, µ)) from ĜM .
17: end if
18: until edge ((i, γ), (k, µ)) is deleted or all S ⊆ K(i,γ) \ {(k, µ)}, with | S |= c,

have been considered.
19: until all ordered pair of adjacent couples (i, γ) and (k, µ) such that | K(i,γ) \
{(k, µ)} |≥ c and S ⊆ K(i,γ)\{(k, µ)}, with | S |= c, have been tested for conditional
independence.

20: until c ← m or, for each ordered pair of adjacent node-layer couples (i, γ), (k, µ):
| adj(ĜM , (i, γ)) \ {(k, µ)} |< c

We note that the pseudo-code is almost identical to Algorithm 4.1 in Colombo and

Maathuis (2014). Indeed, the differences lie in line 4 of the above pseudo-code (it is not
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present in the original PC-stable algorithm), where we specified the fixed edges related

to the same layer, and in the statistical procedure used to test the hypothesis at line 15.

4.3 Simulation studies

In this section, we provide the results obtained in two different simulation studies,

aimed at empirically evaluate consistency of PC-CGRM.

To generate synthetic data coming from a CG distribution, defined as in equation

(3.2), we followed this procedure. Given the true structure GM , we set all parameters

corresponding to absent edges to 0. For the non-zero parameters, we set the parameters

of both discrete and linear interaction effects corresponding to the intra-layer edges to

1 or -1 with equal probability, while the parameters of the quadratic interaction effects

corresponding to intra-layer edges are set to 0. The non-zero off-diagonal elements of Φ0

and Φi (for all dummy indices i) are defined in such a way that Ω(z∆) = Φ0+
∑

i∈∆ Φizi

is symmetric positive definite for all possible values of z∆. We compute the marginal

discrete probabilities for the possible values of z∆ and then, for each z∆, we generate

the (conditional) continuous component yΓ from a multivariate Gaussian distribution

with mean vector µ(z∆) and variance-covariance matrix Σ(z∆) as defined in points 1.

and 2. in Section 2.2.

To measure the ability of PC-CGRM to reconstruct the true graph, the following

table has been created at each replication of the simulations,

GM

Edge present Edge absent

ĜM

Edge present True positive (TP) False positive (FP)
Edge absent False negative (FN) True negative (TN)

where ĜM denotes the inferred multilayer network. From the table, three measures have

been computed i.e., the true positives (TP) , the positive predictive value (PPV) and

the sensitivity, where

PPV =
TP

TP + FP
, Sensitivity =

TP

TP + FN
.

The overall goodness of the structure learning has been evaluated on the basis of

the number of true positive (TP), the positive predictive value (PPV) and sensitivity

curves across different combinations of neighbourhood size (m) and nominal significance

level for the conditional independence test (α), computed as an average over the values

obtained in each of the B replications of the simulations.
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of significance causes the algorithm to find fewer edges, but those it finds are actual

edges of the graph from which we are generating the data, as supported by the PPV

panels of Figure 4.3, Figure 4.4 and Figure 4.5. This means that the only cases of

misspecification of presence/absence of an edge are false negatives: indeed, from the

sensitivity curves in the third panel of Figure 4.3, Figure 4.4 and Figure 4.5, the PC-

CGRM algorithm tends to miss true edges at smaller values of sample size and smaller

values of α, unconditionally from m.

Running times of the PC-CGRM algorithm for this scenario are reported in Table 4.1,

Table 4.2, Table 4.3 and Table 4.4, one for each chosen sample size. All the times are in

seconds. The column “User” displays the CPU time spent by the current process (i.e.,

PC-CGRM algorithm), the column “System” is the CPU time spent by the operating

system (calculation server SGI1) on behalf of the current process, and “Elapsed” is the

wall clock time taken to execute the algorithm, plus some benchmarking code wrapping

it (that’s why it is higher than the user time). At most, the algorithm spends almost

839 seconds (∼14 minutes) to compute 100 inferred multilayer networks (see Table 4.3,

case m = 2 and α = 0.001), while the minimum runtime of the routine is 88 seconds

(∼1 minute and 46 seconds; see Table 4.1, case m = 1 and α = 0.01).

Scenario 2. In this scenario, we considered a multilayer network with p = 20

layers, with a structure resembling that of some networks estimated during the real

data analysis. The multilayer view for the second setting is not reported due to the

difficulties given by the high number of layers; instead, we visualize it through its layer

connections in Figure 4.2, similarly as the graph in panel (B) of Figure 4.1.

We generated B=500 datasets of sizes n = 200, 500, 1000 and 2000. The results are

summarized in Figure 4.6 for neighbourhood size m = 1, Figure 4.7 for neighbourhood

sizem = 2 and Figure 4.8 for neighbourhood sizem = 5; as before, the different coloured

curves represent the three indices of goodness of fit for the four nominal significance levels

α = 0.001, 0.01, 0.05 and 0.1.

The situation is similar to what we saw for the first scenario. As the sample size

grows, the algorithm converges to the true multilayer graph. This is confirmed by

the increasing curves of TP and PPV values, the first and second panel of Figure 4.6,

respectively. At the same level of sample size, smaller nominal levels of significance α

cause the algorithm to find fewer edges, although these differences tends to decrease

when the sample size is large. Higher values of α increase the number of false positives,

1Calculation server SGI, model UV3000 (Department of Statistical Sciences, University of Padova),
8 CPU Intel R©Xeon R©E5-4650 v3 at 2.10 GHz, with 12 physical cores per CPU for a total of 192 logical
CPU units; home space for a single user is 4 Gb at most.
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Gene 1 Gene 12 Gene 14
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Gene 19

Gene 20
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Gene 13 Gene 10 Gene 11

Gene 9Gene 8

Gene 7 Gene 5 Gene 6

Gene 4Gene 3

Figure 4.2: Compacted visualization of the multilayer network for p = 20 layers.

as it is shown in the PPV curves panel, although the number of false positives remains

less than 20% of all edges inferred by the algorithm. The number of false negatives

tends to zero the higher the sample size is, as the sensitivity panels show; however,

increasing the neighbourhood size from m = 1 to m = 2 with a fixed small level of

significance α and a fixed sample size n leads to an higher number of false positives:

this is clearly visible from the sensitivity curves in Figure 4.6 and Figure 4.7 for n = 2000

and α = 0.001 (grey curves). There are no evident differences, instead, when comparing

Figure 4.7 and Figure 4.8.

In this scenario, due to an increased number of replications B and higher number

of variables p = 20, the runtime of the PC-CGRM algorithm increases: the lowest

running time is approximately 815 seconds (∼14 minutes; see Table 4.6, case m = 2 and

α = 0.001 – notice that, in the previous scenario, 14 minutes were the longest runtime),

while the highest is 6225 seconds (∼2 hours and 13 minutes; see Table 4.7, case m = 5

and α = 0.1).
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Figure 4.3: TP (first panel), PPV (second panel) and sensitivity (third panel) curves
for the first scenario in case m = 1.
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Figure 4.4: TP (first panel), PPV (second panel) and sensitivity (third panel) curves
for the first scenario in case m = 2.
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Figure 4.5: TP (first panel), PPV (second panel) and sensitivity (third panel) curves
for the first scenario in case m = 5.
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Figure 4.6: TP (first panel), PPV (second panel) and sensitivity (third panel) curves
for the second scenario in case m = 1.
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Figure 4.7: TP (first panel), PPV (second panel) and sensitivity (third panel) curves
for the second scenario in case m = 2.
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Figure 4.8: TP (first panel), PPV (second panel) and sensitivity (third panel) curves
for the second scenario in case m = 5.
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Sample size n m level α level User System Elapsed

n = 100

m = 1

α = 0.001 99.206 0.671 154.769
α = 0.01 87.691 0.539 141.43
α = 0.05 89.322 0.59 140.063
α = 0.1 89.15 0.567 148.985

m = 2

α = 0.001 124.624 0.829 205.865
α = 0.01 127.641 0.758 216.626
α = 0.05 130.259 0.745 220.967
α = 0.1 439.459 1.706 661.343

m = 5

α = 0.001 252.214 1.317 407.466
α = 0.01 258.955 1.225 412.475
α = 0.05 258.604 1.278 388.874
α = 0.1 260.298 1.293 395.615

Table 4.1: Runtime of PC-CGRM for the first scenario with sample size n = 100.

Sample size n m level α level User System Elapsed

n = 200

m = 1

α = 0.001 674.177 1.660 1262.110
α = 0.01 692.942 1.620 1308.248
α = 0.05 717.681 1.542 1497.368
α = 0.1 634.865 1.580 1234.836

m = 2

α = 0.001 709.454 2.029 1297.795
α = 0.01 603.329 1.807 983.119
α = 0.05 606.608 2.24 986.811
α = 0.1 578.744 2.009 907.084

m = 5

α = 0.001 249.117 1.38 409.091
α = 0.01 259.259 1.251 420.166
α = 0.05 695.887 2.701 990.223
α = 0.1 725.258 2.583 1030.912

Table 4.2: Runtime of PC-CGRM for the first scenario with sample size n = 200.

Sample size n m level α level User System Elapsed

n = 500

m = 1

α = 0.001 530.648 1.689 1043.932
α = 0.01 348.340 1.556 654.363
α = 0.05 335.631 1.364 622.568
α = 0.1 380.450 1.864 758.051

m = 2

α = 0.001 838.519 2.474 1604.554
α = 0.01 352.747 1.283 620.384
α = 0.05 283.402 1.45 495.616
α = 0.1 293.467 1.587 496.425

m = 5

α = 0.001 257.487 1.418 447.896
α = 0.01 265.877 1.301 452.003
α = 0.05 265.576 1.412 416.932
α = 0.1 267.649 1.388 435.486

Table 4.3: Runtime of PC-CGRM for the first scenario with sample size n = 500.
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Sample size n m level α level User System Elapsed

n = 1000

m = 1

α = 0.001 691.994 1.899 1374.859
α = 0.01 720.625 1.796 1449.787
α = 0.05 467.813 1.497 975.132
α = 0.1 410.406 1.421 828.006

m = 2

α = 0.001 857.192 2.258 1620.118
α = 0.01 793.357 1.95 1477.179
α = 0.05 711.085 2.221 1287.723
α = 0.1 619.946 2.415 1044.749

m = 5

α = 0.001 360.687 1.521 649.935
α = 0.01 378.477 1.484 636.127
α = 0.05 376.537 1.468 626.616
α = 0.1 370.461 1.406 593.43

Table 4.4: Runtime of PC-CGRM for the first scenario with sample size n = 1000.

Sample size n m level α level User System Elapsed

n = 200

m = 1

α = 0.001 1210.121 8.613 6139.524
α = 0.01 1584.453 8.908 8923.999
α = 0.05 1461.194 9.203 10172.78
α = 0.1 1354.268 8.193 11582.809

m = 2

α = 0.001 1930.088 10.156 8236.267
α = 0.01 2157.803 10.785 10208.798
α = 0.05 2193.696 13.18 12167.233
α = 0.1 2467.654 15.045 16632.3

m = 5

α = 0.001 3738.357 17.791 10548.293
α = 0.01 3800.856 19.514 11642.281
α = 0.05 3612.652 18.33 12960.912
α = 0.1 3589.931 18.808 15342.041

Table 4.5: Runtime of PC-CGRM for the second scenario with sample size n = 200.

Sample size n m level α level User System Elapsed

n = 500

m = 1

α = 0.001 814.879 8.558 6209.553
α = 0.01 966.509 8.159 7118.472
α = 0.05 1103.067 8.258 9580.179
α = 0.1 587.374 7.17 7767.304

m = 2

α = 0.001 2275.297 11.772 12569.532
α = 0.01 2241.991 13.09 12732.5
α = 0.05 2180.011 12.908 14671.809
α = 0.1 1967.251 15.712 16460.93

m = 5

α = 0.001 3802.763 25.622 13942.087
α = 0.01 4470.317 29.161 16204.63
α = 0.05 4534.307 29.615 19274.855
α = 0.1 5506.27 35.397 26239.631

Table 4.6: Runtime of PC-CGRM for the second scenario with sample size n = 500.
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Sample size n m level α level User System Elapsed

n = 1000

m = 1

α = 0.001 956.961 9.976 9489.524
α = 0.01 885.907 8.329 9407.603
α = 0.05 1056.963 10.422 13048.994
α = 0.1 1285.6 11.623 17899.866

m = 2

α = 0.001 2019.06 15.375 15512.391
α = 0.01 2745.872 18.136 19604.643
α = 0.05 2612.64 18.265 22269.231
α = 0.1 2188.466 15.401 25081.264

m = 5

α = 0.001 6107.822 36.237 24596.756
α = 0.01 4423.099 32.382 19876.933
α = 0.05 5841.274 37.712 28037.871
α = 0.1 6224.754 36.665 36167.65

Table 4.7: Runtime of PC-CGRM for the second scenario with sample size n = 1000.

Sample size n m level α level User System Elapsed

n = 2000

m = 1

α = 0.001 1607.649 12.082 19226.876
α = 0.01 1896.3 14.692 21833.858
α = 0.05 1708.984 15.031 25368.721
α = 0.1 2476.122 16.199 38923.027

m = 2

α = 0.001 2563.887 19.889 27034.149
α = 0.01 3117.381 23.32 30791.561
α = 0.05 3164.782 24.56 36937.39
α = 0.1 2758.219 23.165 42565.881

m = 5

α = 0.001 5374.867 43.549 32497.898
α = 0.01 4587.224 36.183 30255.56
α = 0.05 5882.468 39.684 40860.518
α = 0.1 6030.108 49.928 51738.957

Table 4.8: Runtime of PC-CGRM for the second scenario with sample size n = 2000.



Chapter 5

Application to Omics data

In this Chapter, we will apply our approach to a real case study in which different

genomic activities are recorded in ovarian cancer cells. The Chapter is organised in a

first section, Section 5.1, that illustrates the data at hand, followed by Section 5.2, where

we will present our results, with emphasis on some pathways which result influential in

ovarian cancer.

5.1 Ovarian cancer data

5.1.1 Why ovarian cancer

The ovaries are two small intra-abdominal organs that, during a woman’s reproduc-

tive age, cyclically produce the egg cell or ova. Over the years, the ovary gradually de-

creases its activity until it becomes dormant, determining the advent of the menopause.

Ovarian cancer originates usually around this time from the surface of this organ, and

can be either benign or malignant. As stated in an informative website page of the

European Institute of Oncology (IEO) (Istituto Europeo di Oncologia, 2019), the latter

type of cancer can metastasise (i.e., cancer cells move from the area where they formed)

to other parts of the female body. Between all malignant ovarian tumours, epithelial

ovarian carcinoma accounts for 90% of them: this is due to its intrinsic complexity,

since it is not a single disease, but combines different diseases with different biological

behaviour. From the IEO’s website again, we report

Ovarian cancer is the leading cause of death from gynaecological cancer and it

is fifth most common cancer in the female population in developed countries.

55
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Each year, it is estimated that 65,000 cases are diagnosed in Europe, includ-

ing almost 5,000 in Italy. Despite the relatively low incidence of ovarian

cancer, it is burdened by high mortality.

About 5%-10% of women diagnosed with ovarian cancer present a genetic mutation

(BRCA1, BRCA2, Lynch syndrome) of hereditary/family nature, which increases the

risk of this and other types of cancer. Furthermore, several specific genes involved in

ovarian carcinogenesis have been identified in the literature, including the p53 tumor

suppressor gene and ERBB2 and PIK3CA oncogenes (Wenham et al., 2002; Katabuchi

and Okamura, 2003; Shih and Kurman, 2004; Desai et al., 2014).

The danger of such form of carcinoma is the reason we decided to apply our method-

ology on data related to it.

5.1.2 Preprocessing

Our study uses the data from the ovarian (OV) project available at the Cancer

Genome Atlas (TCGA) website. TCGA is the main public database for cancer genomics

since 2006, when the National Cancer Institute and the National Human Genome Re-

search Institute (both part of the National Institutes of Health, U.S. Department of

Health and Human Services) combined their efforts to persecute a better understanding

of the molecular basis of cancer through the application of genome analysis technologies.

Nowadays, it has more than 20000 primary cancer cases (i.e., first-time cases of that

disease) and 33 macro-types of tumours, for a total of over 2.5 petabytes of genomic,

epigenomic, transcriptomic, and proteomic data.

The original OV dataset contains different measurements of genetic activity inside

the cells, as expression, methylation status, somatic mutations and copy number vari-

ation profiles, for a total of 20801 genes recorded. By expression, it is intended the

levels at which a particular set of genes is expressed within a cell, tissue or organism.

DNA methylation is a process by which methyl groups (i.e., a chemical compound com-

posed by one carbon atom bonded to three hydrogen atoms) are added to the DNA

molecule, changing the latter activity without altering its genomic sequence; in the case

the methylation occurs in a gene promoter, it usually represses gene transcription. So-

matic mutations are alterations in DNA that occurs after conception in any of the cells

of the body except the germ cells (sperm and egg). Copy number variations correspond

to a structural process where parts of the genome are duplicated or deleted, which differs

between individuals in the human population.

In this thesis, we focused on gene expression levels (GELs) and copy number varia-

tions (CNVs). The latter classifies the severity of deletions or additions of DNA material
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as “-2”, “-1”, “0”, “+1”, “+2”. As data on GELs and CNVs were not simultaneously

available for all 608 patients and for all 20K genes, only genes and patients were retained

for which both measurements were available along with the related SYMBOL identifier,

resulting in a total of 217 patients and 15587 genes.

A portion of the (huge) table showing the frequency distribution of CNV per gene

can be seen in Table 5.1. For each gene, the table shows how patients are distributed

over the five classes representing severity of deletions or additions.

Gene ID “-2” “-1” “0” “+1” “+2” Patients

ACAP3 1 83 89 84 10 267
ACTRT2 1 83 89 84 10 267
PRDM16 2 82 89 84 10 267
ARHGEF16 0 84 89 83 11 267
TP53BP1 7 161 85 13 1 267
BRCA2 4 153 73 31 6 267
BRCA1 7 202 40 17 1 267
CSMD1 30 147 58 29 3 267
MYC 0 10 41 94 122 267

Table 5.1: Frequency distribution of CNVs in the 267 available patients for 9 out of
15587 genes

The distribution of the frequencies of the five CNV classes over all genes can be

explored in Figure 5.1. It is evident that extreme categories “-2” and “+2” are much

rarer than the others. The same information can be deduced by Table 5.2.

Class Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Genes

“-2” 0 0 1 6.6 2 30 3.24 15587
“-1” 1 44 93 100.6 133 232 57.68 15587
“0” 13 74 95 90.4 113 157 28.24 15587
“+1” 4 40 61 73.0 97 163 36.94 15587
“+2” 0 3 7 29.4 15 122 14.42 15587

Table 5.2: Summary indices for each category of CNV values.

On only 5958 genes (38.22% of all genes) the distribution of CNV satisfied the con-

dition of having a frequency count larger than 4 in each class (minimum sample size in

each class to obtain stable estimates). This aspect is particularly relevant for following

analyses, because estimates are sensitive to sample size. To avoid limiting the analysis to

consideration of only 5958 genes, we considered the solution to collapse one or both the

extreme classes “-2” and “+2” into the adjacent category. As a first step, we collapsed

the classes “-2” and “-1”, being “-2” the least represented category. As a result, 9612
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REACTOME pathway
Annotated Available

genes genes

Ca2+ pathway 55 29
Binding and Uptake of Ligands by Scavenger Receptors 40 22
Constitutive Signaling by AKT1 E17K in Cancer 23 14
Cobalamin (Cbl, vitamin B12) transport and metabolism 20 13
Nucleobase catabolism 28 13
AKT phosphorylates targets in the cytosol 14 11
Interleukin-35 Signalling 12 9
Purine catabolism 16 7
DSCAM interactions 10 5
Erythrocytes take up carbon dioxide and release oxygen 12 4

Table 5.3: Number of annotated and available genes for each REACTOME pathway
resulting from MOSClip.

These two steps allowed us to set up the two case studies on 267 patients that will

be considered in the following Section, one with 29 genes (layers), called Ca2+, and one

with 22 genes (layers), called Binding and Uptake of Ligands by Scavenger Receptors.

For these two case studies, we will now present the main results obtained running PC-

CGRM for performing structure learning.

5.2 Results

For each of the two cases of interest, we estimated twenty possible graphical models,

corresponding to different choices for parameters m and α, where m determines the

dimension of the neighbourhood of a node-layer couple, and α is the nominal level of

the tests made by PC-CGRM (not to be confused with the symbol denoting a layer, i.e.,

α, - see Chapter 4). We set m = 1, 2, 3, 4, 5 (i.e., a node-layer couple (i, γ) cannot have

more than 5 neighbours, where by neighbours we intend node-layer couples adjacent

to (i, γ) belonging to layers different from γ), which seemed sensible in a biological

pathway of only 29 or 22 layers, while for α we set 0.001, 0.01, 0.05, 0.1. In the following,

we will report some of resulting estimated models; the complete display can be found

in Appendix C.

The edges are coloured in three possible colours, symbolising the nature of the esti-

mated inter-layer edges, as we already discussed in Chapter 4, Section 4.3. In particular,

we remember that two layers are connected by: (i) a black edge, when a complete graph

is estimated over the nodes in the layers; (ii) a blue edge, when both an entire layer is

connected with only the discrete variable of the other layer, CNV in our case; (iii) a
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dark orange edge when an entire layer is connected with only the continuous variable of

the other layer, GEL in our case. We colour only these cases because we are interested

in what type of relation entire layers and single node-layer couples share.

Figure 5.2 shows the estimated multilayer network for the first case study of interest,

Ca2+, when m = 1 (panel (a)) and m = 5 (panel (b)), with a nominal level of 0.001. It

is evident that a greater value of the cardinality implies a larger sparsity in the graph, as

it was expected from the model, once the nominal level is fixed. Obviously, incrementing

α will reduce the sparsity (Appendix C for details).

From a biological point of view, interpretation of these results deserves care. Indeed,

we are considering only 29 of the original 55 genes belonging to the pathway. Hence, one

should not expect to find what it is represented in the original pathway. Nevertheless,

it is worth highlighting that some of the connections that are known to be influential

in ovarian cancer, such as the WNT / FZD-4 (Sugimura and Li, 2010; Ricken et al.,

2002), appear in the inferred multilayer networks. Furthermore, when amplifications /

deletions (or other aberrant events) happen between WNT and FZD-4, an increase of

intracellular abundance of Ca2+ follows, which in turn affects a wide range of cellular

processes, including gene expression (Huang et al., 2016). This type of process between

WNT and FZD-4 is well captured by the color of the edge connecting the two layers in

Figure 5.2: indeed, its blue colour shows a connection between abnormalities in a gene

and other types of events in the other gene. Similar conclusions can be drawn for other

families of genes, as AGO and NLK ones (Di Leva and Croce, 2013; Zhang et al., 2011).

Similar considerations can be done for the second case study, Binding and Uptake

of Ligands by Scavenger Receptors. Figure 5.3 shows the inferred multilayer network in

the previously considered setting.

At a biological level, most of the genes displayed in both panels of Figure 5.3 play

a role in scavenging aberrant molecules which participate in pathological process, the

ovarian cancer being one (PrabhuDas et al., 2017; Li et al., 2019; Hyter et al., 2018).

Unfortunately, eighteen genes in the original pathway are missing, hence spurious con-

nections could happen, like the one between APOB and COLEC11 (not present in the

original pathway). On second thought, other connections are preserved, like COL4A1

with COL4A2 (their position in the genome is close) or MARCO with CD163. The

latter couple is related to inflammatory responses when pathogens threaten normal cell

activities (Novakowski et al., 2016): although MARCO does not directly cause an inflam-

matory response, it does help other receptors in initiating it, resulting in up-regulated

values for CD163 gene; this process is synthesized in both multilayer graphs in Figure 5.3

by the dark orange color of the edge connecting these two genes.
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Figure 5.2: Inferred undirected multilayer graph for Ca2+ pathway with cardinality
m = 1 (panel (a)) in comparison with cardinality m = 5 (panel (b)); the nominal
level in both cases is α = 0.001.
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Figure 5.3: Inferred undirected multilayer graph for Binding and Uptake of Ligands
by Scavenger Receptors pathway, with cardinality m = 1 (panel (a)) in comparison
with cardinality m = 5 (panel (b)); the nominal level in both cases is α = 0.001.
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Conclusions

The problem of learning the structure of a multilayer network from a set of given

heterogeneous data is a recent research area in graphical modelling. While most of

the effort is devoted in models able to respect Markov properties between edges (i.e.,

random graph modelling theory), very few works attempted to develop models able to

include Markov properties between node-layer tuples, due mainly to the difficulties in

implementing a joint distributions of variables with different domains. Moreover, in case

of multidimensional measurements on the same entity, as often happens with multi-omics

data, the state-of-the-art modelling does not take into account the implicit dependencies

between these measurements. Here, we tackled such problem when continuous and

categorical data are available. Our first results, presented in this thesis, show promise.

Many open problems await future research, and we mention some of them here.

Firstly, the proposed algorithm could be extended to other type of distributions,

as, for example, all the members of the exponential family (e.g., binomial, Poisson or

exponential distribution). The same algorithm could be indeed customized making use

of the exponential family assumption in the conditional distributions of a node-layer

tuple given the remaining variables. This type of approach would follow the footsteps

of the EBDMRFs of Yang et al. (2014b), and would be interesting to obtain statistical

results to guarantee consistency of the estimators in this wider setting. At a practical

level, developing such a method would allow to explore in a more complete manner the

relations between expressions, somatic mutations, methylation status, RNA-seq arrays

and other types of biological data, in order to be able to (hopefully) advance in cancer

research.

Secondly, when we treat categorical data, we suppose implicitly to have enough

sample size in each class to obtain consistent maximum likelihood estimators for the

interaction parameters of the model proposed. From a biological point of view, that
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could be a potential limitation, especially in cancer studies, since some forms of cancers

are due to rare somatic mutations in the genome (Marx, 2016; Gkolfinopoulos and

Mountzios, 2018; Brown et al., 2019; Scholl and Fröhsling, 2019).

Thirdly, in this thesis, we considered structure learning only for undirected mul-

tilayer networks. Since there could be a causality dependence between the different

measurements (e.g., copy number variation profiles can alter the expression of a gene,

but the vice versa is not biologically feasible), it would be of interest to take into account

the topological ordering of the variables, expanding to directed multilayer networks or

partially directed multilayer networks.

Another possible development is to take into account missing data, in particular

missing information on some measurements on genes. In this thesis project, we assumed

to possess for each gene all possible measurements of interest, but this assumption is

unlikely to be true. Structure learning in presence of missing data is an unexplored

topic with an enormous potential in the omics setting we are considering.

It would be of interest also to configure other simulation experiments apart from the

ones presented in Section 4.3 to check the model’s ability to infer the desired multilayer

structure, possibly combined with a formal analysis on the consistency of the algorithm.

Moreover, we did not discuss in a deep manner run-time complexity of our algorithm.

Clearly, further work should be developed to explore these issues.

On a technical note, all computing routines for the PC-CGRM were implemented in

the R statistical software (R Core Team, 2018); in particular, of importance was the

use of the routines “multinom” (in the “nnet” library) and “glm” for computing the

node-layer conditional distributions, while the function “qgraph” of the homonymous

library was used to display the network structures (Venables and Ripley, 2002; Epskamp

et al., 2012). At a software level, it could be of interest to develop an R library targeted

to practitioners and researchers of this field.
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Properties of conditional

independence

In what follows, we prove implications (P1), (P2), (P3) and (P4).

Proof. We will prove them point by point.

(P1) Statement : if X ⊥⊥ Y | Z, also Y ⊥⊥ X | Z (symmetry).

By hypothesis, X ⊥⊥ Y | Z. Then, since the product between two functions is a

symmetric operator,

fXY |Z(x, y | z) = fX|Z(x | z)fY |Z(y | z)
= fY |Z(y | z)fX|Z(x | z)
= fY X|Z(y, x | z),

which is equivalent to saying Y ⊥⊥ X | Z.

(P2) Statement : if X ⊥⊥ Y | Z and U = h(X), also U ⊥⊥ Y | Z.
Starting from the conditional distribution of U, Y given Z, we have

fUY |Z(u, y | z) = fh(X)Y |Z(h(x), y | z);

by the property of inversion for transformations of random variables,

fh(X)Y |Z(h(x), y | z) = fXY |Z(h
−1(u), y | z) | d

du
h−1(u) | .

By hypothesis, X ⊥⊥ Y | Z, so

fXY |Z(h
−1(u), y | z) | d

du
h−1(u) | = fX|Z(h

−1(u) | z)fY |Z(y | z) |
d

du
h−1(u) |

= fX|Z(h
−1(u) | z) | d

du
h−1(u) | fY |Z(y | z)
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= fU |Z(u | z)fY |Z(y | z).

Putting all together, we have that

fUY |Z(u, y | z) = fU |Z(u | z)fY |Z(y | z)

or, equivalently, U ⊥⊥ Y | Z.

(P3) Statement : if X ⊥⊥ Y | Z and U = h(X), also X ⊥⊥ Y | (Z,U).
By (P2), since X ⊥⊥ Y | Z and U = h(X), we know that U ⊥⊥ Y | Z, meaning

that X,U ⊥⊥ Y | Z. By (P1), it is possible to write Y ⊥⊥ X,U | Z. Then

fXY UZ(x, y, u, z) = fXY U |Z(x, y, u | z)fZ(z) = fXU |Z(x, u | z)fY |Z(y | z)fZ(z);

But

fXU |Z(x, u | z) =
fXUZ(x, u, z)

fZ(z)
=
fX|UZ(x | u, z)fUZ(u, z)

fZ(z)
,

so

fXY UZ(x, y, u, z) =
fX|UZ(x | u, z)fUZ(u, z)

fZ(z)
fY |Z(y | z)fZ(z)

= fX|UZ(x | u, z)fUZ(u, z)fY |Z(y | z),

which is equivalent to

fXY |UZ(x, y | u, z) = fX|UZ(x | u, z)fY |Z(y | z).

We only need to prove that fY |Z(y | z) = fY |UZ(y | u, z). But

fY |Z(y | z) =
fY Z(y, z)

fZ(z)

fUZ(u, z)

fZ(z)

fZ(z)

fUZ(u, z)

= fY |Z(y | z)fU |Z(u | z)
fZ(z)

fUZ(u, z)

= fUY |Z(u, y | z)
fZ(z)

fUZ(u, z)

=
fUY Z(u, y, z)

fZ(z)

fZ(z)

fUZ(u, z)

=
fUY Z(u, y, z)

fUZ(u, z)
= fY |UZ(y | u, z).
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(P4) Statement : if X ⊥⊥ Y | Z and X ⊥⊥ W | (Y, Z), also X ⊥⊥ (W,Y ) | Z.
By hypotheses,

fXY ZW (x, y, z, w) = fXW |Y Z(x, w | y, z)fY Z(y, z)

= fX|Y Z(x | y, z)fW |Y Z(w | y, z)fY Z(y, z)

=
fXY |Z(x, y | z)fZ(z)

fY Z(y, z)
fW |Y Z(w | y, z)fY Z(y, z)

= fXY |Z(x, y | z)fW |Y Z(w | y, z)fZ(z)
= fX|Z(x | z)fY |Z(y | z)fW |Y Z(w | y, z)fZ(z)

= fX|Z(x | z)fY |Z(y | z)
fWY |Z(w, y | z)fZ(z)

fY Z(y, z)
fZ(z)

= fX|Z(x | z)fY |Z(y | z)
fWY |Z(w, y | z)
fY |Z(y | z)

fZ(z)

= fX|Z(x | z)fWY |Z(w, y | z)fZ(z),

which is equivalent to

fXYW |Z(x, y, w | z) = fX|Z(x | z)fWY |Z(w, y | z),

hence X ⊥⊥ (W,Y ) | Z.
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Conditioning and marginalizing on

CG distributions

We start from ❨ random vector, following a CG-distribution reparameterized as in

Chapter 3:

ln f❨(②; g, h,Ω) = λ0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
∑

γ∈Γ

(

ηγ0 +
∑

i∈∆
ηγi zi

)

yγ+

− 1

2

∑

γ∈Γ
φγγ
0 y

2
γ −

∑

γ,ξ∈Γ
γ>ξ

(

φγξ
0 +

∑

i∈∆
φγξ
i zi

)

yγyξ,

where ∆ = {1, . . . , q}, Γ = {1, . . . , p}, V = ∆ ∪ Γ, VM = ∆ × Γ, and the parameters

have the same meaning as in Section 3.2.2 n Chapter 3. Denote with

(λ,η,Φ) =

(

λ0, {λi}i∈∆, {λij}i,j∈∆
i>j

, {ηγ0}γ∈Γ, {ηγi }i∈∆
γ∈Γ

, {φγξ
0 }γ,ξ∈Γ, {φγξ

i } i∈∆
γ,ξ∈Γ

)

.

We compute now the following log-conditional distributions:

(a) Univariate conditional logistic regression: ln fZi|❨\Zi
(zi | ② \ zi;λ,η,Φ);

(b) Univariate conditional linear regression: ln fYγ |❨\Yγ
(yγ | ② \ yγ;λ,η,Φ);

(c) Bivariate CG-regression: ln fZi,Yγ |❨\{Zi,Yγ}(zi, yγ | ② \ {zi, yγ};λ,η,Φ).

Case (a): Univariate conditional logistic regression

By definition of conditional probability, we have

ln fZi|❨\Zi
(zi | ② \ zi;λ,η,Φ) = ln f❨(②;λ,η,Φ)

︸ ︷︷ ︸

Part (1)

− ln f❨\Zi
(② \ zi;λ,η,Φ)

︸ ︷︷ ︸

Part (2)

. (B.1)
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We can rewrite Part (1) of equation (B.1) isolating all the terms related to Zi:

ln f❨(②;λ,η,Φ) = λ0 + λizi +
∑

j∈∆
j 6=i

λjzj +
∑

k∈∆
i>k

λikzizk +
∑

j,k∈∆
j>k
j,k 6=i

λjkzjzk +

+
∑

γ∈Γ
ηγ0yγ +

∑

γ∈Γ
ηγi ziyγ +

∑

γ∈Γ

∑

j∈∆
j 6=i

ηγj zjyγ +

−1

2

∑

γ,ξ∈Γ
φγξ
0 yγyξ −

1

2

∑

γ,ξ∈Γ
γ 6=ξ

φγξ
i ziyγyξ −

1

2

∑

γ,ξ∈Γ
γ 6=ξ

∑

j∈∆
j 6=i

φγξ
j zjyγyξ.

Instead, Part (2) can be computed using Proposition 6.2 of Lauritzen (1996), reported

in Chapter 2, Section 2.2, since the hypothesis of the proposition are satisfied. Indeed,

the joint density of ❨ is a CG distribution by construction; moreover, if we call B = {i}
(where i ∈ ∆ corresponds to the index of the variable Zi), and A the set of indices

of all the other variables in ❨ which are not Zi, then the condition B ⊥⊥ Γ | ∆ \
B is satisfied, meaning that f❨\Zi

(② \ zi; g❨\Zi
, h❨\Zi

,Ω❨\Zi
) is itself a CG distribution,

where its canonical characteristics depend on z∆ only through z∆\{i} (see the proof of

Proposition 6.2 in Lauritzen (1996) for further details). The canonical characteristics

can be rewritten in the parametrization (λ,η,Φ) as defined in Chapter 3, Section 3.2,

where now the different summations depend only on the elements in ∆ \ {i}, obtaining:

ln f❨\Zi
(② \ zi;λ,η,Φ) = λ̃0 +

∑

j∈∆
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
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where λ̃0 is the normalizing constant when Zi is not considered inside the set of vari-

ables. Notice that this can be proved also directly summarizing out Zi from the joint

distribution of ❨:

f❨\Zi
(② \ zi;λ,η,Φ) =

∑

zi∈{0,1}
f❨(②;λ,η,Φ)

=
∑

zi∈{0,1}
exp




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2

∑

γ,ξ∈Γ
φ
γξ
0 yγyξ −

∑

γ,ξ∈Γ
γ>ξ

∑

j∈∆
j 6=i

φ
γξ
j zjyγyξ







×

×







1 + exp







λi +
∑

k∈∆
i>k

λikzk +
∑

γ∈Γ
η
γ
i yγ −

∑

γ,ξ∈Γ
γ>ξ

φ
γξ
i yγyξ













.

If we define as

λ̃0 = λ0 + ln






1 + exp







λi +
∑

k∈∆
i>k

λikzk +
∑

γ∈Γ
ηγi yγ −

∑

γ,ξ∈Γ
γ>ξ

φγξ
i yγyξ












,

then

f❨\Zi
(② \ zi;λ,η,Φ) =

= exp







λ̃0 +
∑

j∈∆
j 6=i

λjzj +
∑

j,k∈∆
j>k
j,k 6=i

λjkzjzk +
∑

γ∈Γ






η
γ
0 +

∑

j∈∆
j 6=i

η
γ
j zj







yγ −
1

2

∑

γ,ξ∈Γ
φ
γξ
0 yγyξ −

∑

γ,ξ∈Γ
γ>ξ

∑

j∈∆
j 6=i

φ
γξ
j zjyγyξ







,

so that indeed we obtain the same quantity as before when we apply the logarithm:

ln f❨\Zi
(② \ zi;λ,η,Φ) =

= λ̃0 +
∑

j∈∆
j 6=i

λjzj +
∑

j,k∈∆
j>k
j,k 6=i

λjkzjzk +
∑

γ∈Γ






ηγ0 +

∑

j∈∆
j 6=i

ηγj zj






yγ −

1

2

∑

γ,ξ∈Γ
φγξ
0 yγyξ −

∑

γ,ξ∈Γ
γ>ξ

∑

j∈∆
j 6=i

φγξ
j zjyγyξ
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= λ̃0 +
∑

j∈∆
j 6=i

λjzj +
∑

j,k∈∆
j>k
j,k 6=i

λjkzjzk +
∑

γ∈Γ






ηγ0 +

∑

j∈∆
j 6=i

ηγj zj






yγ −

1

2

∑

γ,ξ∈Γ
φγξ
0 yγyξ −

1

2

∑

γ,ξ∈Γ
γ 6=ξ

∑

j∈∆
j 6=i

φγξ
j zjyγyξ.

Then (B.1) can be computed as

ln fZi|❨\Zi
(zi | ② \ zi;λ,η,Φ) = ln f❨(②;λ,η,Φ)− ln f❨\Zi

(② \ zi;λ,η,Φ)

= λ0 − λ̃0 + λizi +
∑

k∈∆
i>k

λikzizk +
∑

γ∈Γ
ηγi ziyγ −

1

2

∑

γ,ξ∈Γ
γ 6=ξ

φγξ
i ziyγyξ

∝ λizi +
∑

k∈∆
i>k

λikzizk +
∑

γ∈Γ
ηγi ziyγ −

1

2

∑

γ,ξ∈Γ
γ 6=ξ

φγξ
i ziyγyξ,

so that

fZi|❨\Zi
(zi | ② \ zi;λ,η,Φ) ∝ exp







λizi +
∑

k∈∆
i>k

λikzizk +
∑

γ∈Γ
ηγi ziyγ −

1

2

∑

γ,ξ∈Γ
γ 6=ξ

φγξ
i ziyγyξ







.

In particular, since zi ∈ {0, 1},

fZi|❨\Zi
(zi = 0 | ② \ zi;λ,η,Φ) ∝ exp







λi · 0 +
∑

k∈∆
i>k

λik · 0 · zk +
∑

γ∈Γ
ηγi · 0 · yγ −

1

2

∑

γ,ξ∈Γ
γ 6=ξ

φγξ
i · 0 · yγyξ







= 1,

and

fZi|❨\Zi
(zi = 1 | ② \ zi;λ,η,Φ) ∝ exp







λi +
∑

k∈∆
i>k

λikzk +
∑

γ∈Γ
ηγi yγ −

1

2

∑

γ,ξ∈Γ
γ 6=ξ

φγξ
i yγyξ







.

Computing the conditional log-odds, we find that they are linear in parameters:

ln
fZi|❨\Zi

(zi = 1 | ② \ zi;λ,η,Φ)

fZi|❨\Zi
(zi = 0 | ② \ zi;λ,η,Φ)

= ln fZi|❨\Zi
(zi = 1 | ② \ zi;λ,η,Φ)− ln fZi|❨\Zi

(zi = 0 | ② \ zi;λ,η,Φ)

∝ ln exp







λi +
∑

k∈∆
i>k

λikzk +
∑

γ∈Γ

η
γ
i yγ −

1

2

∑

γ,ξ∈Γ

γ 6=ξ

φ
γξ
i yγyξ







− ln 1
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= λi +
∑

k∈∆
i>k

λikzk +
∑

γ∈Γ

η
γ
i yγ −

1

2

∑

γ,ξ∈Γ

γ 6=ξ

φ
γξ
i yγyξ.

Hence, maximizing this conditional log-likelihood function can be done via fitting a

logistic regression having Zi as response, and Z∆\{i}, YΓ and Y T
Γ YΓ as predictors.

Case (b): Univariate conditional linear regression

By definition of conditional probability, we have

ln fYγ |❨\Yγ
(yγ | ② \ yγ;λ,η,Φ) = ln f❨(②;λ,η,Φ)

︸ ︷︷ ︸

Part (1)

− ln f❨\Yγ
(② \ yγ;λ,η,Φ)

︸ ︷︷ ︸

Part (2)

. (B.2)

We can rewrite Part (1) of the above equation isolating all the terms related to Yγ:

ln f❨(②;λ,η,Φ) = λ0+
∑

i∈∆
λizi+

∑

i,j∈∆
i>j

λijzizj+η
γ
0yγ+

∑

µ∈Γ
µ 6=γ

η
µ
0 yµ+

∑

i∈∆
η
γ
i ziyγ+

∑

µ∈Γ
µ 6=γ

∑

i∈∆
η
µ
i ziyµ+

− 1

2






φ
γγ
0 y2γ +

∑

ξ∈Γ
ξ 6=γ

φ
γξ
0 yγyξ +

∑

µ,ξ∈Γ
µ,ξ 6=γ

φ
µξ
0 yµyξ +

∑

ξ∈Γ
ξ 6=γ

∑

i∈∆
φ
γξ
i ziyγyξ +

∑

µ,ξ∈Γ
µ 6=ξ 6=γ

∑

i∈∆
φ
µξ
i ziyµyξ






.

Instead, Part (2) can be computed using Proposition 6.1 of Lauritzen (1996), reported

in Chapter 2, Section 2.2. Indeed, the joint density of ❨ is a CG distribution by con-

struction; let us call B = {γ} (where γ ∈ Γ corresponds to the index of the variable Yγ),

and A the set of indices of all the other variables in ❨ which are not Yγ. Since B ⊆ Γ, all

the hypotheses of the Proposition 6.1 are satisfied, i.e., f❨\Yγ
(② \ yγ; g❨\Yγ

, h❨\Yγ
,Ω❨\Yγ

)

is itself a CG distribution.

We do not replace the quantities defining (gA, hA,ΩA) with the corresponding values

of (λ,η,Φ) as we did in the discrete case, because it is easier to compute the marginal

of ❨ \ Yγ with directly integrating out Yγ from the joint distribution of ❨:

f❨\Yγ
(② \ yγ ;λ,η,Φ) =

∫ +∞

−∞
f❨(②;λ,η,Φ)∂yγ

= exp







λ0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj







×

×
∫ +∞

−∞
exp







∑

µ∈Γ

(

η
µ
0 +

∑

i∈∆
η
µ
i zi

)

yµ −
1

2

∑

ξ,µ∈Γ

(

φ
ξµ
0 +

∑

i∈∆
φ
ξµ
i zi

)

yξyµ






∂yγ
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= exp







λ0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
∑

µ∈Γ
µ 6=γ

(

η
µ
0 +

∑

i∈∆
η
µ
i zi

)

yµ −
1

2

∑

µ,ξ∈Γ
µ,ξ 6=γ

(

φ
ξµ
0 +

∑

i∈∆
φ
ξµ
i zi

)

yξyµ







×

×
∫ +∞

−∞
exp







(

η
γ
0 +

∑

i∈∆
η
γ
i zi

)

yγ −
1

2
φ
γγ
0 y2γ −

∑

ξ∈Γ
ξ 6=γ

(

φ
γξ
0 +

∑

i∈∆
φ
γξ
i zi

)

yξyγ







∂yγ

= exp







λ0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
∑

µ∈Γ
µ 6=γ

(

η
µ
0 +

∑

i∈∆
η
µ
i zi

)

yµ −
1

2

∑

µ,ξ∈Γ
µ,ξ 6=γ

(

φ
ξµ
0 +

∑

i∈∆
φ
ξµ
i zi

)

yξyµ







×

×
∫ +∞

−∞
exp












η
γ
0 +

∑

i∈∆
η
γ
i zi −

∑

ξ∈Γ
ξ 6=γ

(

φ
γξ
0 +

∑

i∈∆
φ
γξ
i zi

)

yξ







yγ −
1

2
φ
γγ
0 y2γ







∂yγ

= exp







λ0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
∑

µ∈Γ
µ 6=γ

(

η
µ
0 +

∑

i∈∆
η
µ
i zi

)

yµ −
1

2

∑

µ,ξ∈Γ
µ,ξ 6=γ

(

φ
ξµ
0 +

∑

i∈∆
φ
ξµ
i zi

)

yξyµ







×

×
∫ +∞

−∞
exp







−1

2
φ
γγ
0






y2γ −

2

φ
γγ
0






η
γ
0 +

∑

i∈∆
η
γ
i zi −

∑

ξ∈Γ
ξ 6=γ

(

φ
γξ
0 +

∑

i∈∆
φ
γξ
i zi

)

yξ







yγ













∂yγ .

Now denote with

κ =






ηγ0 +

∑

i∈∆
ηγi zi −

∑

ξ∈Γ
ξ 6=γ

(

φγξ
0 +

∑

i∈∆
φγξ
i zi

)

yξ






/φγγ

0 ;

then

f❨\Yγ
(② \ yγ;λ,η,Φ) =

= exp







λ0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
∑

µ∈Γ
µ 6=γ

(

ηµ0 +
∑

i∈∆
ηµi zi

)

yµ −
1

2

∑

µ,ξ∈Γ
µ,ξ 6=γ

(

φξµ
0 +

∑

i∈∆
φξµ
i zi

)

yξyµ







×

× exp

{
1

2
φγγ
0 κ

2

}

×
∫ +∞

−∞
exp

{

−1

2
φγγ
0

[
y2γ − 2κy + κ2

]
}

∂yγ

= exp







λ0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
∑

µ∈Γ
µ 6=γ

(

ηµ0 +
∑

i∈∆
ηµi zi

)

yµ −
1

2

∑

µ,ξ∈Γ
µ,ξ 6=γ

(

φξµ
0 +

∑

i∈∆
φξµ
i zi

)

yξyµ







×
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× exp

{
1

2
φγγ
0 κ

2

}

×
√
2π

φγγ
0

.

Let

λ̃0 = λ0 +
1

2
φγγ
0 κ

2 +
1

2
ln(2π)− lnφγγ

0 ,

so that

f❨\Yγ
(② \ yγ;λ,η,Φ) = exp







λ̃0 +
∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
∑

µ∈Γ
µ 6=γ

(

ηµ0 +
∑

i∈∆
ηµi zi

)

yµ+

−1

2

∑

µ,ξ∈Γ
µ,ξ 6=γ

(

φξµ
0 +

∑

i∈∆
φξµ
i zi

)

yξyµ







and

ln f❨\Yγ
(② \ yγ;λ,η,Φ) = λ̃0 +

∑

i∈∆
λizi +

∑

i,j∈∆
i>j

λijzizj +
∑

µ∈Γ
µ 6=γ

(

ηµ0 +
∑

i∈∆
ηµi zi

)

yµ +

−1

2

∑

µ,ξ∈Γ
µ,ξ 6=γ

(

φξµ
0 +

∑

i∈∆
φξµ
i zi

)

yξyµ.

Then (B.2) can be computed as

ln fYγ |❨\Yγ
(yγ | ② \ yγ;λ,η,Φ) = ln f❨(②;λ,η,Φ)− ln f❨\Yγ

(② \ yγ;λ,η,Φ)

= λ0 − λ̃0 + ηγ0yγ +
∑

i∈∆
ηγi ziyγ −

1

2






φγγ
0 y

2
γ +

∑

ξ∈Γ
ξ 6=γ

φγξ
0 yγyξ +

∑

ξ∈Γ
ξ 6=γ

∑

i∈∆
φγξ
i ziyγyξ







= λ0 − λ̃0 +






ηγ0 +

∑

i∈∆
ηγi zi −

1

2

∑

ξ∈Γ
ξ 6=γ

(

φγξ
0 +

∑

i∈∆
φγξ
i zi

)

yξ






yγ −

1

2
φγγ
0 y

2
γ

= λ0 − λ̃0 +






ηγ0 +

∑

i∈∆
ηγi zi −

∑

ξ∈Γ
γ>ξ

(

φγξ
0 +

∑

i∈∆
φγξ
i zi

)

yξ






yγ −

1

2
φγγ
0 y

2
γ

∝






ηγ0 +

∑

i∈∆
ηγi zi −

∑

ξ∈Γ
γ>ξ

(

φγξ
0 +

∑

i∈∆
φγξ
i zi

)

yξ






yγ −

1

2
φγγ
0 y

2
γ,
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which is the kernel of a Gaussian distribution with conditional mean

E (Yγ | ❨ \ Yγ) = ηγ0 +
∑

i∈∆
ηγi zi −

∑

ξ∈Γ
γ>ξ

(

φγξ
0 +

∑

i∈∆
φγξ
i zi

)

yξ

and conditional variance (not depending from any categorical variable)

Var (Yγ | ❨ \ Yγ) = 1/φγγ
0 .

Hence, maximizing this conditional log-likelihood function can be done via fitting a lin-

ear regression having Yγ as response, and Z∆, YΓ\{γ} and their interactions as predictors.

Case (c): Bivariate CG-regression

By theory (Chapter 2, Section 3.2), we suppose that f❨(②; g, h,Ω) is a CG distribution.

If we let B = {i, γ} and A = V \ {i, γ}, then, by Proposition 6.6, we can deduce that

f❨B |❨A
(②B | ②A; gB|A, hB|A,ΩB|A) = fZi,Yγ |❨\{Zi,Yγ}(zi, yγ | ②\{zi, yγ}; gi,γ|V \{i,γ}, hi,γ|V \{i,γ},Ωi,γ|V \{i,γ})

is a CG regression. The next step is to compute its reparameterization in (λ,η,Φ). By

definition of conditional probability, we have

ln fZi,Yγ |❨\{Zi,Yγ}(zi, yγ | ②\{zi, yγ};λ,η,Φ) = ln f❨(②;λ,η,Φ)
︸ ︷︷ ︸

Part (1)

− ln f❨\{Zi,Yγ}(② \ {zi, yγ};λ,η,Φ)
︸ ︷︷ ︸

Part (2)

.

(B.3)

We can rewrite Part (1) of the above equation isolating all the terms related to the

couple (Zi, Yγ):

ln f❨(②;λ,η,Φ) = λ0 + λizi +
∑

j∈∆
j 6=i

λjzj +
∑

k∈∆
i>k

λikzizk +
∑

j,k∈∆
j>k,
j,k 6=i

λjkzjzk + ηγ0yγ + ηγi ziyγ+

+
∑

j∈∆
j 6=i

ηγj zjyγ +
∑

µ∈Γ
µ 6=γ

ηµ0 yµ +
∑

µ∈Γ
µ 6=γ

ηµi ziyµ +
∑

µ∈Γ
µ 6=γ

∑

j∈∆
j 6=i

ηµj zjyµ −
1

2






φγγ
0 y

2
γ +

∑

µ∈Γ
µ 6=γ

φµµ
0 y2µ + yγ

∑

µ∈Γ
µ 6=γ

φγµ
0 yµ+

+yγzi
∑

µ∈Γ
µ 6=γ

φγµ
i yµ + yγ

∑

µ∈Γ
µ 6=γ

∑

j∈∆
j 6=i

φγµ
j zjyµ +

∑

µ,ξ∈Γ
µ 6=ξ 6=γ

φµξ
0 yµyξ + zi

∑

µ,ξ∈Γ
µ 6=ξ 6=γ

φµξ
i yµyξ +

∑

µ,ξ∈Γ
µ 6=ξ 6=γ

∑

j∈∆
j 6=i

φµξ
j zjyµyξ






.
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Now, to compute Part (2) of (B.3), we have to compute the following:

f❨\{Zi,Yγ}(② \ {zi, yγ};λ,η,Φ) =

∫ +∞

−∞




∑

zi∈{0,1}
f❨(②;λ,η,Φ)



 ∂yγ.

In particular,

∑

zi∈{0,1}
f❨(②;λ,η,Φ) =

= exp







λ0 +
∑

j∈∆
j 6=i

λjzj +
∑

j,k∈∆
j>k
j,k 6=i

λjkzjzk + ηγ0yγ +
∑

j∈∆
j 6=i

ηγj zjyγ +
∑

µ∈Γ
µ 6=γ

ηµ0 yµ +
∑

µ∈Γ
µ 6=γ

∑

j∈∆
j 6=i

ηµj zjyµ+

−1

2
φγγ
0 y

2
γ −

1

2

∑

µ∈Γ
µ 6=γ

φµµ
0 y2µ −

1

2






yγ
∑

µ∈Γ
µ 6=γ






φγµ
0 +

∑

j∈∆
j 6=i

φγµ
j zj






yµ +

∑

µ,ξ∈Γ
µ 6=ξ 6=γ






φµξ
0 +

∑

j∈∆
j 6=i

φµξ
j zj






yµyξ













×

×
∑

zi=0,1

exp







λizi +
∑

k∈∆
i>k

λikzizk + zi






ηγi yγ +

∑

µ∈Γ
µ 6=γ

ηµi yµ






− 1

2
zi






yγ
∑

µ∈Γ
µ 6=γ

φγµ
i yµ +

∑

µ,ξ∈Γ
µ 6=ξ 6=γ

φµξ
i yµyξ













= exp







λ0 +
∑

j∈∆
j 6=i

λjzj +
∑

j,k∈∆
j>k
j,k 6=i

λjkzjzk + ηγ0yγ +
∑

j∈∆
j 6=i

ηγj zjyγ +
∑

µ∈Γ
µ 6=γ

ηµ0 yµ +
∑

µ∈Γ
µ 6=γ

∑

j∈∆
j 6=i

ηµj zjyµ+

−1

2
φγγ
0 y

2
γ −

1

2

∑

µ∈Γ
µ 6=γ

φµµ
0 y2µ −

1

2






yγ
∑

µ∈Γ
µ 6=γ






φγµ
0 +

∑

j∈∆
j 6=i

φγµ
j zj






yµ +

∑

µ,ξ∈Γ
µ 6=ξ 6=γ






φµξ
0 +

∑

j∈∆
j 6=i

φµξ
j zj






yµyξ













×

×







1 + exp







λi +
∑

k∈∆
i>k

λikzk + ηγi yγ +
∑

µ∈Γ
µ 6=γ

ηµi yµ −
1

2






yγ
∑

µ∈Γ
µ 6=γ

φγµ
i yµ +

∑

µ,ξ∈Γ
µ 6=ξ 6=γ

φµξ
i yµyξ



















.

This result is of the form

exp{A(yγ)} (1 + exp{B(yγ)}) = exp{A(yγ)}+ exp{(A+B)(yγ)},
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where A and B are additive functions, so that by the linearity properties of the integrals

we obtain

∫

❘

exp{A(yγ)} (1 + exp{B(yγ)}) ∂yγ =

∫

❘

exp{A(yγ)}∂yγ +
∫

❘

exp{(A+B)(yγ)}∂yγ.

The first integral on the right side of the last equation corresponds to

∫

❘

exp{A(yγ)}∂yγ =

∫

❘

exp























λ0 +
∑

j∈∆

j 6=i

λjzj +
∑

j,k∈∆

j>k
j,k 6=i

λjkzjzk + η
γ
0
yγ +

∑

j∈∆

j 6=i

η
γ
j zjyγ +

∑

µ∈Γ

µ6=γ

η
µ
0
yµ +

∑

µ∈Γ

µ6=γ

∑

j∈∆

j 6=i

η
µ
j zjyµ+

−1

2
φ
γγ
0

y2γ − 1

2

∑

µ∈Γ

µ6=γ

φ
µµ
0

y2µ − 1

2









yγ
∑

µ∈Γ

µ6=γ









φ
γµ
0

+
∑

j∈∆

j 6=i

φ
γµ
j zj









yµ +
∑

µ,ξ∈Γ

µ6=ξ 6=γ









φ
µξ
0

+
∑

j∈∆

j 6=i

φ
µξ
j zj









yµyξ























∂yγ

= exp























λ0 +
∑

j∈∆

j 6=i

λjzj +
∑

j,k∈∆

j>k
j,k 6=i

λjkzjzk +
∑

µ∈Γ

µ6=γ

η
µ
0
yµ +

∑

µ∈Γ

µ 6=γ

∑

j∈∆

j 6=i

η
µ
j zjyµ − 1

2

∑

µ∈Γ

µ6=γ

φ
µµ
0

y2µ − 1

2

∑

µ,ξ∈Γ

µ6=ξ 6=γ









φ
µξ
0

+
∑

j∈∆

j 6=i

φ
µξ
j zj









yµyξ























×

×
∫

❘

exp















η
γ
0
yγ + yγ

∑

j∈∆

j 6=i

η
γ
j zj − 1

2
φ
γγ
0

y2γ − 1

2
yγ

∑

µ∈Γ

µ6=γ









φ
γµ
0

+
∑

j∈∆

j 6=i

φ
γµ
j zj









yµ















∂yγ

= exp























λ0 +
∑

j∈∆

j 6=i

λjzj +
∑

j,k∈∆

j>k
j,k 6=i

λjkzjzk +
∑

µ∈Γ

µ6=γ

η
µ
0
yµ +

∑

µ∈Γ

µ 6=γ

∑

j∈∆

j 6=i

η
µ
j zjyµ − 1

2

∑

µ∈Γ

µ6=γ

φ
µµ
0

y2µ − 1

2

∑

µ,ξ∈Γ

µ6=ξ 6=γ









φ
µξ
0

+
∑

j∈∆

j 6=i

φ
µξ
j zj









yµyξ























×

×
∫

❘

exp















−1

2
φ
γγ
0









y2γ − 2

φ
γγ
0

yγ









η
γ
0
+

∑

j∈∆

j 6=i

η
γ
j zj − 1

2

∑

µ∈Γ

µ6=γ









φ
γµ
0

+
∑

j∈∆

j 6=i

φ
γµ
j zj









yµ































∂yγ

= exp























λ0 +
∑

j∈∆

j 6=i

λjzj +
∑

j,k∈∆

j>k
j,k 6=i

λjkzjzk +
∑

µ∈Γ

µ6=γ

η
µ
0
yµ +

∑

µ∈Γ

µ 6=γ

∑

j∈∆

j 6=i

η
µ
j zjyµ − 1

2

∑

µ∈Γ

µ6=γ

φ
µµ
0

y2µ − 1

2

∑

µ,ξ∈Γ

µ6=ξ 6=γ









φ
µξ
0

+
∑

j∈∆

j 6=i

φ
µξ
j zj









yµyξ























×

×
√
2π

φ
γγ
0

exp















1

2φγγ
0









η
γ
0
+

∑

j∈∆

j 6=i

η
γ
j zj − 1

2

∑

µ∈Γ

µ6=γ









φ
γµ
0

+
∑

j∈∆

j 6=i

φ
γµ
j zj









yµ









2














because of similar counts to the ones we saw in the continuous case. With similar

computations we obtain also the second integral on the right side of the previously seen

equation:

∫

❘

exp{(A+B)(yγ)}∂yγ =

∫

❘

exp







λ0 +
∑

j∈∆

j 6=i

λjzj +
∑

j,k∈∆

j>k
j,k 6=i

λjkzjzk + η
γ
0
yγ +

∑

j∈∆

j 6=i

η
γ
j zjyγ +

∑

µ∈Γ

µ 6=γ

η
µ
0
yµ +

∑

µ∈Γ

µ 6=γ

∑

j∈∆

j 6=i

η
µ
j zjyµ
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−1

2
φ
γγ
0
y2γ −

1

2

∑

µ∈Γ

µ 6=γ

φ
µµ
0

y2µ −
1

2






yγ
∑

µ∈Γ

µ 6=γ






φ
γµ
0

+
∑

j∈∆

j 6=i

φ
γµ
j zj







yµ +
∑

µ,ξ∈Γ

µ 6=ξ 6=γ






φ
µξ
0

+
∑

j∈∆

j 6=i

φ
µξ
j zj







yµyξ






+

+λi +
∑

k∈∆
i>k

λikzk + η
γ
i yγ +

∑

µ∈Γ

µ 6=γ

η
µ
i yµ −

1

2






yγ
∑

µ∈Γ

µ 6=γ

φ
γµ
i yµ +

∑

µ,ξ∈Γ

µ 6=ξ 6=γ

φ
µξ
i yµyξ













∂yγ

= exp







λ0 +
∑

j∈∆

j 6=i

λjzj +
∑

j,k∈∆

j>k
j,k 6=i

λjkzjzk +
∑

µ∈Γ

µ 6=γ

η
µ
0
yµ +

∑

µ∈Γ

µ 6=γ

∑

j∈∆

j 6=i

η
µ
j zjyµ −

1

2

∑

µ∈Γ

µ 6=γ

φ
µµ
0

y2µ+

−1

2

∑

µ,ξ∈Γ

µ 6=ξ 6=γ






φ
µξ
0

+
∑

j∈∆

j 6=i

φ
µξ
j zj







yµyξ + λi +
∑

k∈∆
i>k

λikzk +
∑

µ∈Γ

µ 6=γ

η
µ
i yµ −

1

2

∑

µ,ξ∈Γ

µ 6=ξ 6=γ

φ
µξ
i yµyξ







×

×
∫

❘

exp







η
γ
0
yγ + yγ

∑

j∈∆

j 6=i

η
γ
j zj −

1

2
φ
γγ
0
y2γ −

1

2
yγ
∑

µ∈Γ

µ 6=γ






φ
γµ
0

+
∑

j∈∆

j 6=i

φ
γµ
j zj







yµ + η
γ
i yγ −

1

2
yγ
∑

µ∈Γ

µ 6=γ

φ
γµ
i yµ







∂yγ

= exp







λ0 +
∑

j∈∆

j 6=i

λjzj +
∑

j,k∈∆

j>k
j,k 6=i

λjkzjzk +
∑

µ∈Γ

µ 6=γ

η
µ
0
yµ +

∑

µ∈Γ

µ 6=γ

∑

j∈∆

j 6=i

η
µ
j zjyµ −

1

2

∑

µ∈Γ

µ 6=γ

φ
µµ
0

y2µ+

−1

2

∑

µ,ξ∈Γ

µ 6=ξ 6=γ






φ
µξ
0

+
∑

j∈∆

j 6=i

φ
µξ
j zj







yµyξ + λi +
∑

k∈∆
i>k

λikzk +
∑

µ∈Γ

µ 6=γ

η
µ
i yµ −

1

2

∑

µ,ξ∈Γ

µ 6=ξ 6=γ

φ
µξ
i yµyξ







×

×
√
2π

φ
γγ
0

exp







1

2φγγ
0






η
γ
0
+
∑

j∈∆

j 6=i

η
γ
j zj −

1

2

∑

µ∈Γ

µ 6=γ






φ
γµ
0

+
∑

j∈∆

j 6=i

φ
γµ
j zj







yµ + η
γ
i −

1

2

∑

µ∈Γ

µ 6=γ

φ
γµ
i yµ







2





.

Summing up these two results we obtain

f❨\{Zi,Yγ}(② \ {zi, yγ};λ,η,Φ) =

∫

❘

exp{A(yγ)}∂yγ +

∫

❘

exp{(A+B)(yγ)}∂yγ

= exp























λ0 +
∑

j∈∆

j 6=i

λjzj +
∑

j,k∈∆

j>k
j,k 6=i

λjkzjzk +
∑

µ∈Γ

µ6=γ

η
µ
0
yµ +

∑

µ∈Γ

µ 6=γ

∑

j∈∆

j 6=i

η
µ
j zjyµ − 1

2

∑

µ∈Γ
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φ
µµ
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−1

2

∑

µ,ξ∈Γ

µ6=ξ 6=γ









φ
µξ
0

+
∑

j∈∆
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φ
µξ
j zj









yµyξ















×
√
2π

φ
γγ
0

exp















1
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0









η
γ
0
+

∑

j∈∆
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η
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j zj − 1

2

∑

µ∈Γ

µ6=γ









φ
γµ
0

+
∑

j∈∆

j 6=i

φ
γµ
j zj









yµ









2














+

+ exp























λ0 +
∑

j∈∆

j 6=i

λjzj +
∑

j,k∈∆

j>k
j,k 6=i

λjkzjzk +
∑
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η
µ
0
yµ +

∑

µ∈Γ

µ6=γ

∑

j∈∆
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η
µ
j zjyµ − 1

2

∑

µ∈Γ
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φ
µµ
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y2µ+
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−1

2
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µ,ξ∈Γ

µ6=ξ 6=γ


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µξ
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+
∑

j∈∆

j 6=i

φ
µξ
j zj






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we can simplify the exponentials above, leading to
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Now it’s possible to compute the formula of the conditional distribution (B.3):
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which is indeed the reparameterization required:
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Output of PC-CGRM on real data

We display all twenty graphical configurations we computed, according by maximum

cardinality of the neighbourhood of a node-layer couple and the nominal level required

by the PC-CGRM algorithm. Values of these tuning parameters are in Chapter 5,

Section 5.2.

Ca2+ pathway

AGO1

AGO2

AGO3

AGO4 CALM1

CALM2

CAMK2A

FZD4

FZD5

FZD6

GNB1

GNB2

GNB3

GNG12

GNG3

GNGT1

GNGT2

NFATC1

NLK

PDE6A

PDE6B

PDE6G

PLCB1
PLCB3

PPP3CB

TCF7L2

TNRC6C

WNT11

CNV GEL Complete

Figure C.1: Estimated undirected multilayer network with m = 1 and α = 0.001.
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Figure C.2: Estimated undirected multilayer network with m = 2 and α = 0.001.
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Figure C.3: Estimated undirected multilayer network with m = 3 and α = 0.001.
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Figure C.4: Estimated undirected multilayer network with m = 4 and α = 0.001.
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Figure C.5: Estimated undirected multilayer network with m = 5 and α = 0.001.
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Figure C.6: Estimated undirected multilayer network with m = 1 and α = 0.01.
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Figure C.7: Estimated undirected multilayer network with m = 2 and α = 0.01.
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Figure C.8: Estimated undirected multilayer network with m = 3 and α = 0.01.
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Figure C.9: Estimated undirected multilayer network with m = 4 and α = 0.01.
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Figure C.10: Estimated undirected multilayer network with m = 5 and α = 0.01.
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Figure C.11: Estimated undirected multilayer network with m = 1 and α = 0.05.
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Figure C.12: Estimated undirected multilayer network with m = 2 and α = 0.05.
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Figure C.13: Estimated undirected multilayer network with m = 3 and α = 0.05.



Appendix C 89

AGO1

AGO2

AGO3

AGO4

CALM1

CALM2

CAMK2A

FZD4

FZD5

FZD6

GNB1

GNB2

GNB3

GNG12

GNG3

GNG4

GNGT1

GNGT2

NFATC1

NLK

PDE6A

PDE6B

PDE6G

PLCB1

PLCB3

PPP3CB

TCF7L2

TNRC6C

WNT11

CNV GEL Complete

Figure C.14: Estimated undirected multilayer network with m = 4 and α = 0.05.
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Figure C.15: Estimated undirected multilayer network with m = 5 and α = 0.05.
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Figure C.16: Estimated undirected multilayer network with m = 1 and α = 0.1.
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Figure C.17: Estimated undirected multilayer network with m = 2 and α = 0.1.
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Figure C.18: Estimated undirected multilayer network with m = 3 and α = 0.1.
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Figure C.19: Estimated undirected multilayer network with m = 4 and α = 0.1.
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Figure C.20: Estimated undirected multilayer network with m = 5 and α = 0.1.
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Figure C.21: Estimated undirected multilayer network with m = 1 and α = 0.001.
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Figure C.22: Estimated undirected multilayer network with m = 2 and α = 0.001.
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Figure C.23: Estimated undirected multilayer network with m = 3 and α = 0.001.
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Figure C.24: Estimated undirected multilayer network with m = 4 and α = 0.001.

AMBP

APOA1

APOB

APOE

CALR

CD163

COL1A1

COL1A2

COL3A1

COL4A1

COL4A2

COLEC11

COLEC12

FTH1

HYOU1

JCHAIN

MARCO

MASP1

SCARB1

SCARF1

SPARC

CNV GEL Complete

Figure C.25: Estimated undirected multilayer network with m = 5 and α = 0.001.



96 Bibliography

AMBP

APOA1

APOB

APOE

CALR

CD163

COL1A1

COL1A2

COL3A1

COL4A1

COL4A2

COLEC11

COLEC12

FTH1

HSP90AA1

HYOU1

JCHAIN

MARCO

MASP1

SCARB1

SCARF1

SPARC

CNV GEL Complete

Figure C.26: Estimated undirected multilayer network with m = 1 and α = 0.01.
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Figure C.27: Estimated undirected multilayer network with m = 2 and α = 0.01.
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Figure C.28: Estimated undirected multilayer network with m = 3 and α = 0.01.
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Figure C.29: Estimated undirected multilayer network with m = 4 and α = 0.01.
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Figure C.30: Estimated undirected multilayer network with m = 5 and α = 0.01.
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Figure C.31: Estimated undirected multilayer network with m = 1 and α = 0.05.
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Figure C.32: Estimated undirected multilayer network with m = 2 and α = 0.05.
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Figure C.33: Estimated undirected multilayer network with m = 3 and α = 0.05.
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Figure C.34: Estimated undirected multilayer network with m = 4 and α = 0.05.
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Figure C.35: Estimated undirected multilayer network with m = 5 and α = 0.05.
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Figure C.36: Estimated undirected multilayer network with m = 1 and α = 0.1.
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Figure C.37: Estimated undirected multilayer network with m = 2 and α = 0.1.
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Figure C.38: Estimated undirected multilayer network with m = 3 and α = 0.1.
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Figure C.39: Estimated undirected multilayer network with m = 4 and α = 0.1.
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Figure C.40: Estimated undirected multilayer network with m = 5 and α = 0.1.
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