




Abstract

Internet of Things (IoT) systems have been massively infiltrating our everyday’s life for

various applications. One of the main constraints inhibiting the further development

of these applications is the limited autonomy of present day batteries. Moreover,

energy sustainability is a crucial requirement for systems employed in critical mission

applications. A widely used approach to increase the autonomy of IoT systems is the

use of renewable sources of energy such as solar, wind, heat, and others to power the

devices. For instance, one of the most widespread solutions for wireless sensor nodes

is the use of solar panels, which can provide reasonable power input. Their efficiency

is determined by the panel’s material that defines the conversion efficiency [1].

Renewable sources of energy are too erratic to provide complete system reliability

unless over-dimensioned. In reality, energy supply is often limited, which causes the

need for adaption of the node operational strategy to ensure the functional reliability

of the system. However, the unreliable nature of renewable energy causes several

challenges, which we address in this work. In particular, this thesis investigates the

effect of battery imperfections caused by inner diffusion processes in the battery on the

energy harvesting wireless device operation and effective energy-balancing strategies

for different scenarios and system types.

We propose 1) the transmission strategy, that takes into account the battery prop-

erties (leakage, charge recovery, deep discharge, etc.), and reduces the data losses and

discharge events; 2) adaptive sampling algorithms, that balances the erratic energy

arrivals, validated on the industrial data-logger powered by a solar panel; and 3) en-

ergy cooperation in Wireless Sensor Network (WSN) and Smart City (SC) contexts.

We also focus on critical-mission IoT systems, where the freshness of delivered pack-

ets to the monitoring node by the information sources (communication nodes) is the

important parameter to be tracked. In this context, we set the objective of age of

information minimization taking into account the battery constraints, asymmetry in

reliability of information sources, and stability of energy arrivals, that is, the Energy
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Harvesting (EH) rate.

This array of strategies covers a wide range of applications, scenarios, and require-

ments. For instance, they can be applied to a smart city represented as a large system

of interconnected smart services, or a WSN employed for critical mission applications.

We demonstrated that the knowledge of battery and environmental characteristics, and

the asymmetric properties of a system is beneficial for designing transmission/sensing

strategies.
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Chapter 1

Introduction

1.1 Motivation and research objectives

Future communication technologies are deemed to reach a pervasive penetration in

many technological scenarios of everyday’s life. One major downside of this achieve-

ment is an unprecedented increase in worldwide energy consumption: it is estimated

that power demands of the Information and Communication Technology (ICT) ecosys-

tem are approaching one tenth of the electricity generation on the planet [3].

In spite of their limited energy requirements for individual tasks, their intensive

usage makes tablets and smartphones more energy-hungry on a long time scale than

domestic electric appliances like the refrigerator; furthermore, the latter is generally

shared in each household, while the formers are individually owned. These estimates

can become even more worrisome if embodied energy is also included [4].

Nowadays, technologies related to the IoT are extremely successful and ubiqui-

tous; their advantages are observed in the areas of: logistics, agriculture, marketing,

transportation, healthcare, manufacturing [5].

In this thesis, we mainly focus on power management in WSNs of communicating

sensors with the ability to collect, buffer, and transmit information. In such a system,

interconnected nodes transmit useful measurement information and control instructions

via distributed processes [6], in other words, use wireless communication to perform

distributed sensing tasks (Fig. 1.1). Distributed data sensing enables data collection in

a more efficient way, improving delivery even if one of the nodes fails to deliver a data

packet. Scalability, fault-tolerance and energy efficiency are three main requirements

for designing efficient WSN [7].

One of the main limitations putting the brakes on further developments of appli-

cations for wireless networks is the limited autonomy of present-day batteries [8]. In
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harvesting devices are proposed, often with a focus on designing power management

policies that balance energy consumption and provide extensive sustainability for WSN

systems.

If the battery gets depleted, the wireless device will stop operating and will not be

able to transmit data anymore. This situation often occurs when adopting an aggressive

strategy of battery usage, i.e., when data packets are transmitted with extremely high

service rate [8]. Another situation is observed if packets arrive faster than the device

can transmit them (such as in a burst transmission), so the device inserts them into

the queue [14]. This could lead to an event where the device data buffer is full and

due to the finite maximum queue size, no more data packets could be buffered and

there is no other choice rather than to reject excess packets; opposite to the previous

event, this happens when the service rate is relatively low. Such situation could be

observed in transport layer operations, e.g., due to a badly managed Transmission

Control Protocol (TCP) queue. In addition, the more congested the data queue, or

in other words, the longer the line of waiting packets to be dispatched, the higher

the queueing delay [15]. Based on the aforementioned reasons, the development of an

efficient operation strategy should take into account both reduction of data losses and

also reduction of the battery inactivity time.

The overall objective of this thesis is to develop efficient power managements, that

increase the energy sustainability of various EH communication systems. We high-

lighted the following aspects to be taken into account for designing energy strategies:

• Battery is not an ideal source of energy. Charge/discharge processes depend

on factors such as the environment temperature and/or depth of charge-and-

discharge cycles. Therefore, the battery management should take into account

the battery non-idealities.

• The transmitting nodes in the network may have different energy characteristics

(size of energy buffer, energy harvesting capabilities) that affect the overall system

performance. To develop an efficient energy management, we should take into

consideration the system asymmetries.

• Energy cooperation may be one of the techniques capable to handle the dif-

ferences in energy arrivals of different nodes. In this case, objects that are not

advantageously located will be powered by a node with better energy capabilities.

• The efficient adaptive sampling strategy adopted in an energy harvesting sensor
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node is required to provide a failsafe operation under unstable environmental

conditions, and be implementable in the existing hardware. For the sustainable

management, the sampling strategies should be adapted for the unstable energy

arrivals.

• Apart from energy outages prevention, another objective for sustainable manage-

ment of some IoT systems is minimization of the Age of Information (AoI). Status

updates must be acquired sparingly depending on the level of energy available in

the battery.

The outlined aspects are taken into consideration for developing sustainable man-

agement and define the thesis contribution.

1.2 Thesis Contributions

The contributions of this thesis are as follows. Chapter 2 is dedicated to the energy

sustainability of a single EH-device.

• Section 2.2 studies the effect of battery non-idealities on the performance of an

EH wireless device, representing the single device as a double queue system. In

particular, Subsection 2.2.1 highlights some battery non-ideal effects, especially

the so-called “charge recovery,” can have a dramatic impact on the operation

policy of autonomous devices. To do so, we construct a Markov model, where

we introduce a bi-dimensional battery value, including the apparent energy level,

which is what available at the electrodes to power the device, and the actual

energy level stored in the battery. We show that this non-ideality leads to con-

siderably different estimates of undesirable events such as battery outages, and

may cause a general underutilization of the devices if not properly accounted for.

In Subsection 2.2.2 we propose a simplified self-control management of a non-ideal

battery expressed by restrictions, which could be used for an efficient operational

strategy of the EH-device. We performed some simulation and observed that we

can diminish the number of variables in the model to predict possible unwanted

events such as apparent discharge events and data losses. The results of this

section are the subject of the following published papers:

Badia L., Feltre E., Gindullina E., “A Markov model accounting for charge re-

covery in energy harvesting devices”, in Proceedings of the 2017 IEEE Wireless
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Communications and Networking Conference Workshops (WCNCW), San Fran-

cisco, USA, 2017.

Gindullina E., Badia L., “Towards self-control of service rate for battery man-

agement in energy harvesting devices”, in Proceedings of the 2017 IEEE Inter-

national Conference on Communications Workshops (ICC Workshops), Paris,

France, 2017.

• In Section 2.3 we propose the Adaptive Sampling Algorithm (ASA) that takes

the advantages of data-driven approach and balances the erratic energy arrivals.

The proposed algorithm is simple enough to be implemented in low complexity

hardware. To validate the performance of the proposed schemes, we simulated

the operation of the industrial data-logger powered with a solar panel located in

Barcelona, Spain. We observed that with prior knowledge of the environmental

characteristics it is reasonable to set threshold based rules and sampling rate

limits that significantly increase the performance of the existing data-driven ap-

proach without increasing the complexity of the algorithm. The results of this

section are the subject of the following published paper:

Gindullina E., Badia L., Vilajosana X., “Energy Modeling and Adaptive Sam-

pling Algorithms for Energy Harvesting Powered Nodes with Sampling Rate Lim-

itations”, in Wiley Transactions on Emerging Telecommunications Technologies,

2019.

Chapter 3 is dedicated to energy sustainability of communication systems consisting

of multiple devices. To investigate these scenarios, firstly, we studied the effect of the

system energy asymmetry on the overall performance (Section 3.2), and considered the

energy cooperation as a mean to handle the asymmetry properties (Section 3.3).

• Section 3.2 considers the system consisting of two asymmetric sensors. We inves-

tigate the asymmetry by means of game theory. In particular, we focused on the

asymmetry in energy capabilities of both sensors. It was observed that the sys-

tem performs significantly better and in a more balanced way if the asymmetric

properties of the system are taken into account. The results of this Section are

the subject of the following published paper:

E. Gindullina, L. Badia, “Asymmetry in Energy-Harvesting Wireless Sensor

5



Network Operation Modeled via Bayesian Games”, IEEE 18th International Sym-

posium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM),

2017.

• Section 3.3 focuses on the energy cooperation among SC objects. In particular,

we consider the design of energy typologies among wireless communication nodes

(Subsection 3.3.2) and the effect of the energy cooperation on the performance

in the SC scenario (Subsection 3.3.3). In Subsection 3.3.2, we adopt a global

optimization perspective. More specifically, we consider an SC scenario where

the IoT network is represented by a set of wireless nodes, with some information

sinks collecting data from the other nodes. These sink nodes are supposed to

handle all incoming information [16]. In Subsection 3.3.3, we consider energy

cooperation in an IoT scenario, which is a possible solution to provide the key

issue of energy sustainability. We assume the presence of interconnecting EH-IoT

Gateways (GW), collecting and aggregating data from field sensing devices. The

proposed solution transfers energy from energy rich GWs to energy scarce ones,

i.e., those which are not connected to the power grid. To identify the optimal

energy transfer/allocation scheme, we formulate a convex optimization problem

that finds the optimal solution for heterogeneous smart systems. With this energy

allocation technique, the GWs are unlikely to run out of energy during operation

and the gap between energy offer and demand among interconnected GWs is

kept to a minimum. The results of this section are the subject of the following

published papers:

E. Gindullina, L. Badia, “An optimization framework for energy topologies

in smart cities”, IEEE Wireless Communications and Networking Conference

(WCNC), 2018.

A. Gambin, E. Gindullina, L. Badia, and M. Rossi “Energy Cooperation for

Sustainable IoT Services within Smart Cities”, IEEE Wireless Communications

and Networking Conference (WCNC), 2018.

Chapter 4 investigates the systems, where the AoI is a crucial parameter, for instance,

for critical-mission systems (automation, intelligent transportation and smart cities).

• Section 4.3 investigates the optimal policy of an EH-IoT monitoring system, that

with the given energy budget minimizes the average AoI of a system with a
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backup information source. For this problem, we formulate the scheduling of

status updates from the two sources (primary and backup) as a Markov deci-

sion process and obtain a policy that decides which source to query or update

from. We compared the performance of the optimal policy with the so-called

aggressive policy, which tries to query the most expensive source it can afford,

and demonstrated that the gain from the optimal policy increases as the backup

source characteristics become worse (i.e., decreasing reliability or increasing cost)

or the energy harvesting rate decreases. We have also shown that employing a

backup source of information is justified when the reliability of the backup source

is relatively high and the cost of the information requesting is relatively low. The

results of this chapter are the subject of the following published paper:

E.Gindullina, L. Badia and D. Gündüz, “Average Age-of-Information with a

Backup Information Source”, in Proceedings of the IEEE International Sympo-

sium on Personal, Indoor and Mobile Radio Communications (PIMRC), Istanbul,

Turkey, 2019.

• Section 4.4 extends the Section 4.3, and considers an EH-IoT monitoring system,

that with the given energy budget minimizes the average AoI of a system with

multiple information sources. We investigate AoI-optimal policies, and what

is the sufficient amount of monitoring devices in the system for an up-to-date

information.

Chapter 5 draws the conclusions and possible future research directions in designing

the sustainable management systems for energy harvesting communication systems.

1.3 Manuscript Outline

The outline of this thesis is demonstrated in Fig. 1.2. The aspects of the sustainable

management for a single EH-device case is considered in Chapter 2. As part of this

chapter, Section 2.2 explores battery imperfections that affect the device performance.

While Section 2.3.2 studies the adaptive sampling techniques in order to balance the

energy consumption and energy arrivals of an EH-device.

Chapter 3 consider the sustainable management in SC scenarios. Under this chap-

ter, we study the energy asymmetry in WSN (Section 3.2), and investigate the benefits

of energy cooperation as a way to handle asymmetry in energy harvesting capabili-
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Figure 1.2: Thesis outline

ties and energy consumption (Section 3.3). In Chapters 2 and 3 the energy balancing

is the main objective, while the objective outlined in Chapter 4 is the minimization

of average AoI in a system with two and more information sources (Sections 4.3 and

4.4, respectively). Finally, Chapter 5 draws the conclusions and outlines the possible

research directions.
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Chapter 2

Energy sustainability of a single

EH-device

Energy harvesting is an important feature that can be implemented in mobile devices

to provide them with extended autonomy, yet it poses several challenges in terms of

optimal battery usage. Energy is harvested and stored in a device battery. The battery

performance is defined by the battery properties as well as by its operation policy.

First, we dedicate the Section 2.2 to the effect of battery imperfections to the

operation of EH-device. In the Subsection 2.2.1, we consider the operation of an

EH-device powered by a rechargeable battery, taking non-idealities into account. We

analyse the effect of battery non-idealities to the EH-device performance, in particular,

the effect of charge recovery to the battery outage.

In the Subsection 2.2.2, for a single device case, we proposed the simplified self-

control transmission management of a battery expressed by restrictions. We rely on

the double-queue model which includes the battery imperfections and bi-dimensional

battery value. We demonstrated, that just tracking a few parameters, such as real and

apparent energy levels, and the status of the data buffer can improve the performance

of an energy-harvesting device in terms of energy sustainability.

Another perspective of battery management of an energy-harvesting device is adap-

tive sampling algorithms. In the Section 2.3, we consider the different sampling strate-

gies implemented in a practical wireless EH-device powered by a rechargeable battery,

as a way to adapt and balance an energy consumption to the EH-pattern.
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that batteries are subject to non-idealities. An example is leakage [17], causing the

battery level to decrease even in the absence of transmissions. An even more compli-

cated phenomenon is the so-called charge recovery effect [18, 19], according to which

the battery level apparently raises when no energy is drained. It is important to de-

velop the smart battery management, taking into account the battery non-idealities,

and adapting the transmissions based on the battery behaviour, energy arrivals and

consumption. Therefore, in this thesis, we investigate the more realistic battery model,

and effect of battery non-idealities on the EH performance.

Within the second challenge, we developed a policy that adapts the energy consump-

tion of a wireless sensor device to a harvesting pattern and build an energy-sustainable

system is to adjust its sampling rate. The sampling frequency or sampling rate is the

average number of samples collected in one second. Sampling rate significantly affects

the energy consumption of a sensing device. If a device goes out of charge, then it fails

to deliver a data packet. This might be even more significant if data-driven sampling

approaches are adopted. This happens, for example, when a sample is gathered if the

difference in data values are high enough, and/or a packet failed delivery, so that a gap

is present in the collected data.

However, the erratic nature of the ambient energy requires to adopt a sampling

strategy that, on one hand, tailors the sampling rate to the underlying energy arrival

process, while on the other hand being implementable on simple hardware. Therefore,

we seek a strategy that takes advantage of data-driven approaches, is readily imple-

mentable to the state-of-the-art devices, and balances volatile energy arrivals. The

study is based on the more generic model, where the device has an unit data-queue,

and transmissions occur followed by sensing event. The model also takes into account

the battery non-idealities.

2.2 Battery non-ideal effects

2.2.1 A Markov model accounting for charge recovery in EH-

devices

The contribution of this Section is to explore a more realistic battery model, where these

non-idealities are included. We implement a discrete-time finite-state Markov chain,

and investigate the battery behaviour as a function of the characterizing parameters,

especially the probabilities of deep discharge and battery recovery. To do so, we extend
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the standard representation considering the lengths of the data and the energy queue

into a triple of values, in which the energy level is split into the real and the apparent

one. This duality is key for charge recovery, which is actually just an increase of the

apparent battery level. The model is solved and results are discussed, in particular for

the probability of energy outage, i.e., that the battery cannot power the device anymore.

Actually, we need distinguish between the real and apparent outage; such a difference

implies that the occurrence of the outage event can be severely overestimated, and we

quantitatively show how the parameters of charge recovery effect impact on this.

The rest of this section is organized as follows. In Subsection 2.2.1.1 we discuss

analytical models proposed in the literature for mobile batteries and their non-ideal

effects. In Subsection 2.2.1.2 we outline our contribution of a Markov model where

the battery recovery effect is taken into account by expanding the state of the double

queue into a triple of values. The model solution is discussed in Subsection 2.2.1.3,

while Subsection 2.2.1.4 presents numerical results, showing that neglecting battery

recovery effects can lead to overestimating of the apparent outage probability (and

conversely, the battery is almost never depleted for real).

2.2.1.1 Background on battery non-idealities

Batteries employed for mobile devices usually include multiple cells, each containing

two electrodes separated by an electrolyte, referred to as the active materials. The

electrolyte participates in the electrochemical reaction leading to charging and dis-

charging of the battery [20]. The cell is discharged when it is connected to an external

circuit and an oxide-reduction reaction transfers charge bearers among the electrodes,

thus converting chemical into electrical energy. This process goes on until the battery

reaches a cutoff voltage, i.e., the one at which it can be considered as disconnected.

Alternatively, the discharge can be reversed by supplying the battery with electrical

energy that is converted back into chemical energy stored by the active materials.

Yet, this entire process is far from ideal, depending on factors such as the environ-

ment temperature and/or the depth of charge-and-discharge cycles. For these reason,

a battery can hardly be treated as an ideal source if certain conditions are not met.

For example, [21] describes several non-idealities, such as the variation of the internal

resistance depending on the external temperature. Also, capacity fading effects may

take place, causing a degradation of the maximum amount of energy that can be stored

in the battery, primarily depending on how many charge/discharge cycles have been

performed, as well as their depth [22]. Even when the battery is inactive, inner electro-
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chemical processes still take place, which can cause a constant leakage [23]. All these

aspects are heavily influenced by the kind of battery, its weariness, and environmental

conditions (such as the external temperature); a detailed analysis of the impact that

these limitations is available in [24].

Here, we focus instead on a previously overlooked aspect, the charge recovery effect

[25,26], which corresponds to the rise in the apparent energy level of a battery that is not

discharged for a while. The reason is as follows. When the cells are fully charged, active

materials have maximum concentration in the entire cell; when a discharging current

is generated, those close to the cathode are consumed by electrochemical reactions,

and replaced by other active materials moving towards the electrode according to a

diffusion mechanism. If the current intensity is above a limiting value, this mechanism

is not able to compensate the consumption of active materials around the electrode,

which lowers the voltage. Especially, if the cutoff voltage is reached, electrochemical

reactions halt and the battery is seen as discharged, even though some charge is still

present in the cell. Now that the active materials are no longer drained, though, they

diffuse across the cell and their concentration around the electrode increases. A charge

recovery effect can be observed as causing a slow gradual rise of the apparent energy

level. The extent of the recovery depends on the duration and the depth of the previous

discharge, even though, according to [19], a long and intense discharge impulse increases

the inner temperature of the battery, which in turn decreases the recovery effect. This

means that if the battery is being constantly discharged, no recovery is possible and

the device is no longer powered quite early, so that only a fraction of the battery charge

is actually used, in some cases even less than 30% [25].

A better idea is to cyclically alternate discharge intervals with inactive periods,

during which charge recovery is exploited. Setting a duty cycle involves a tradeoff

between intense battery usage for a limited period of time, and extended operation time

by exploitation of the recovery effect, at the price of not always using the battery, even

when needed [18]. Also, note that the recovery effect cannot be exploited indefinitely,

since when a new equilibrium of the active materials is reached, the recovery ceases to

bring any benefit.

2.2.1.2 Markov model setup

We formulate a Markov model for energy harvesting devices including the non-idealities

such as leakage and charge recovery effects. We refer to a system consisting of a generic

wireless transceiver, e.g., a sensor node, transmitting data packets, and the battery
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powering it, which in turn can be recharged by some energy harvesting mechanism.

As per existing analytical studies [22], the entire system is framed as a double queue

with simultaneous service. The general idea is to consider a data queue, describing

arrival, buffering, and transmission of traffic, and an energy queue that includes energy

generation, storage, and consumption. For the ease of modelling, both data and energy

are discretized into identical atomic units, so that the queues can be seen as having

customers arriving and being served one at a time. The clients of the data queue are

data packets, all assumed to be of identical size, while we label the one of the energy

queue as energy quanta, as discussed in [8]. A quantum is taken as the precise amount

of energy that the transceiver requires to transmit one data packet. This in turn means

that both queues have joint service of clients, i.e., a data packet can be transmitted

only if an energy quantum is spent.

For the sake of simplicity, in line with existing contributions, we consider a discrete

time, and packet and energy quantum generations according to independent homo-

geneous Bernoulli processes of rate λ and η, respectively. This means that, at every

time slot, each queue can receive either one new client with probability λ (or η), or

nothing with probability 1−λ (or 1−η). We remark that these assumptions are not

critical for the realism of the model, since the time discretization can be made ar-

bitrarily small. Including correlation in client arrivals at both queues may deserve

further investigations, since it is reasonable to assume that in reality data and energy

generation processes have memory (in some cases even considerably so). However, we

already studied correlation of arrivals in similar scenarios [22,27] and therefore we ex-

pect the same conclusions to apply here. To keep this analysis simpler, we leave these

considerations for future investigations.

This system can be studied with stochastic analysis, characterizing its state as a

pair of integers (i.e., the lengths of the both queues). The novelty of the present section

is to consider the system state as a triple of values, so as to keep into account charge

recovery effects. Our system state (q, e, a) consists of:

• the number of packets in the data queue, q

• the true number of quanta in the energy queue, e

• and finally, the apparent energy level, denoted as a.

We set values Q and E as the maximum ranges for these non-negative variables.

Specifically, Q is the maximum queue length, which relates to the data buffer size,

14



so that 0 ≤ q ≤ Q. Instead, E is the maximum value for both the true and the

apparent energy levels, e and a. We also set the additional constraint that the apparent

energy level cannot exceed the true level, so that 0 ≤ a ≤ e ≤ E. These state

variables evolve over a discrete time (for notational simplicity, we omit the temporal

reference). We assume that data and energy arrivals, as well as transmissions, take

place simultaneously within the time slot. This means that a packet or a quantum of

energy arriving at time instant t cannot be immediately exploited but are available for

transmission or use from time t+ 1 onwards.

In some contributions [8], the service rate µ of these queues follows from an operation

policy keeping into account the state of the device; in principle, we could denote it as

µ(q, a).1 This policy can be optimized to pursue an objective, such as maximizing

battery lifetime [22]. For the sake of simplicity, we consider instead a constant value

of µ, where the only limitations to service are given by not having either packets to

transmit or energy quanta to spend, or both. The higher µ, the more intense the

battery usage; thus, µ→ 1 corresponds to what in [8] is referred to as an “aggressive”

operation policy.

Importantly, the choice of a fixed µ, instead of an optimized one, is not restrictive

for what concerns the conclusion that we will draw later. Indeed, as will be clear from

the results, our main message is that most of the outages are apparent, and there is still

energy in the battery that is not exploited when the device stops operating. We expect

that this conclusion is even more relevant when the discharge rate µ is optimized, since

in that case the optimization is in reality based on the apparent value, and not the

real one, as assumed by [8]. The main implication of our analysis will therefore still be

true; this could be an interesting subject to explore as a future work.

Another deviation from classic queueing models, which are generally framing the

energy queue as a birth-and-death process, is that our battery non-ideality implies that

the discharge can sometimes seem to be stronger than one energy quantum. Indeed,

an uneven distribution of the active materials leads to an apparent discharge that is

heavier than normal. A packet transmission corresponds to the consumption of one

energy quantum, therefore we should decrease both e and a by one unit. However,

similar to [25], we consider that, whenever a packet is transmitted, a deep discharge

event may happen, corresponding to decreasing the true energy level by 1, same as the

normal case, whereas the apparent level decreases by 2. This way, a can be at times

lower than e; we model it by defining a deep discharge probability α, i.e., whenever a

1We can adapt to the observable values q and a, but not to e that is hidden.
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packet is transmitted, a deep discharge happens with conditional probability α, whereas

a normal discharge (both e and a decrease by 1) takes place otherwise.

Some limitations are introduced for the sake of realism. First, discharges (either

normal or deep) can only happen when a > 0. Moreover, the gap between a and e

cannot be too high; to discard situations where the distributions of active materials in

the cell would be unrealistically uneven, e.g., a very high e and a very low a, we set

a maximum gap ∆, such that [e −∆]+ ≤ a ≤ e, where [x]+ = max(x, 0). Thus, deep

discharge can only happen if e− a < ∆.

We also consider leakage and especially charge recovery. The former is represented

through parameter γ, i.e., the probability of decreasing the energy levels (both apparent

and true) by 1 during a time slot, due to internal chemical degradation of the active

materials. Conversely, we describe recovery effects through the probability β that, if

a<e, the apparent energy level is increased by 1. Similarly to what assumed for the

deep discharge, we have to account for the physical nature of the battery, as discussed

in Section 2.2.1.1; especially, if e=E, which means that the battery is fully charged, the

distribution of active material will reach a steady state quite soon. This comes from the

fact that the intensity of charge recovery depends on a number of internal reactions [28],

and bigger amount of active materials causes its faster distribution. For the same

reason, in the literature the diffusion coefficient is considered as a function of the state

of charge of a battery [29]. Therefore, to accelerate the recovery process if a<e=E

we assume that charge recovery of one energy quantum happens with probability 1−γ

(instead of β). This forces a fully charged battery to recover quickly to the apparent

level of maximum charge a=E with probability 1−γ (i.e., if no leakage happens in

the meantime with probability γ). In other words, we exclude the situation of non

transition from one energy state to another if no transmission happens.

Finally, for physical coherency, we assume that leakage and recovery cannot happen

in the same time slot, thus β + γ ≤ 1. For the sake of simplicity, we consider that all

these events (deep discharge, charge recovery, leakage) as well as arrivals and services,

are independent of each other and identically distributed over time. The investigation

of more complex scenarios involving some correlation (e.g., a dependence on an external

parameter) is left for future work.

Taking all the constraints into account, we see that the model must include the

combination of all choices for q (that has Q+ 1 possible values from 0 to Q), and the

pair (a, e) that instead has [(E + 1)(E + 2) − ∆(∆ + 1)]/2 values. Thus, the total
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Table 2.1: Transitions of the Markov chain from (q, e, a), with a>0

No Packet Arrival, No Service

→ new state probability explanation

(q, e, a) (1−λ)(1−η)(1−µ)(1−β−γ) no energy variation

(q, e,max(e, a+1)) β(1−λ)(1−η)(1−µ) charge recovery

(q, [e−1]+, [a−1]+) γ(1−λ)(1−η)(1−µ) leakage

(q,max(e+1, E),max(a+1, E)) η(1−λ)(1−µ) energy arrival

Packet Arrival, No Service

→ new state probability explanation

(min(q+1, Q), e, a) λ(1−η)(1−µ)(1−β−γ) no energy variation

(min(q+1, Q), e,min(a+1, e)) λβ(1−η)(1−µ) charge recovery

(min(q+1, Q), [e−1]+, [a−1]+) λγ(1−η)(1−µ) leakage

(min(q+1, Q),min(e+1, E),min(a+1, E)) λη(1−µ) energy arrival

No Packet Arrival, Service

→ new state probability explanation

([q−1]+, [e−1]+, [a−1]+) µ(1−λ)(1−η)(1−α) normal discharge

([q−1]+, [e−1]+, [max(a−2, e−∆−1)]+) µ(1−λ)(1−η)α deep discharge

([q−1]+, e, a) µ(1−λ)η energy arrival

Packet Arrival, Service

→ new state probability explanation

(q, [e−1]+, [a−1]+) µλ(1−η)(1−α) normal discharge

(q, [e−1]+, [max(a−2, e−∆−1)]+) µλ(1−η)α deep discharge

(q, e, a) µλη energy arrival

number N of states in the Markov chain is

N = (Q+ 1)
E2 + 3E −∆2 −∆+ 2

2
. (2.1)

The Markov chain evolves through changes of its state variables q, e, and a. This can

be represented via balance equations that ultimately lead to a steady-state solution of

the system. It is straightforward to prove that the resulting chain is positive recurrent.1

For the sake of readability, instead of just giving the balance equations, we detail a

step-wise derivation of the individual transitions. The next section presents such a

constructive derivation of the transition matrix T.

1Data stability λ < µ and energy stability η < µ can be imposed. However, Geo/G/1/K queues

are blocking systems and admit a steady-state even if those conditions are not met. Yet, in that case

the stochastic analysis will have little utility (e.g., energy outages never happen).
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2.2.1.3 Markov model solution

Some preliminary remarks help writing down the chain. Observe that the data queue

has three options about what can happen in a time slot: (i) a data packet arrives, and

none is served, then q increases by one, if q < Q (otherwise, the packet is discarded

and q is still equal to Q); (ii) a data packet is served (if q > 0), and none arrives, then

q decreases by 1; (iii) or q is left unchanged, since either nothing arrives to the queue

nor packets are served, or a simultaneous service an arrival take place. Note that we

do not exclude the case of simultaneous arrival and departure from the queue, even

though this event has smaller probability to happen.

Analogously, we can derive the same transitions for the true energy level, only

replacing data arrivals with the generation of an energy quantum from the harvesting

mechanism. In addition, e is also subject to the consequences of leakage, so we assume

that when there is no transmission in a specific slot, still e can decrease by 1 with

probability γ.

Finally, the apparent energy level a can instead increase by one because of two

events: either an energy quantum is harvested from the environment (and none is

consumed in the same time slot) or, if a<e, a charge recovery event can happen. The

probability of this event is β, unless e=E, in which case we assumed that charge is

recovered with probability 1−γ. Conversely, a can also decrease because of a packet

transmission that is not combined with an energy arrival in the battery. When this

happens, the discharge is deep with probability α, meaning that the apparent energy

level is decremented by 2. Otherwise, with probability 1−α, the discharge is normal

and a just decreases by 1. Incidentally, this kind of transition breaks the quasi-birth-

and-death model of similar investigations [27], but it is still manageable. Note that

leakage affects a in the same way as it does for e. The cases where either an energy

quantum arrives but at the same time another one is spent, or nothing arrives and no

quantum is spent, still lead to a transition where a is unchanged.

Thus, we can consider the transitions reported by Table 2.1 and collect them to

derive matrix T. However, the table must be properly read in that, whenever to

destination states are the same (as happens on border cases, e.g., q=0 or a=e, the

corresponding transition probabilities must be summed. The table has to be adapted

for the case a = 0; in this case, no service is allowed, therefore one should look only at

the first two parts (“no service”) and also remove any term (1−µ) from the probability,

since the event of no service happens with probability 1. As a final remark, note that

leakage is still possible when a = 0 but it only affects the true energy level.
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The transitions reported by the table can be collected into an N × N transition

matrix T, with the generic element tij of T being the transition probability from the

ith state to the jth, according to a given exhaustive labelling of the triples (q, e, a). We

are actually interested in finding the steady-state probabilities of the Markov chain,

which represent the probabilities of finding the system in a given state in stationary

conditions. These values can be represented by the 1 × N row vector π, which is the

solution of the fixed point condition π = πT, combined with a normalization condition

π1
T = 1, where 1 is an all-one row vector. The last condition is required because the

columns of T are not linearly independent, yet we can exploit the fact that π is a

vector of state probabilities.

Vector π can be used to derive several metrics of interest. The steady-state prob-

abilities of certain events (thereafter simply referred to as their “probabilities”) can be

computed by considering the π-terms of the corresponding states. It may be useful to

focus on the energy outage events [8], describing that the device is no longer powered.

Energy outage is a generally undesirable event that can be partly avoided by means of

clever transmission policy design. However, two aspects of our expanded model are in

special relationship with that event.

Outage is of special interest for our analysis, as opposed to other undesirable events

such as energy overflow (i.e., the true level of the battery exceeding E, which means

that energy is wasted). This is because our model involves leakage effects and deep

discharges that can drain the battery even more. Also importantly, we considered two

separate energy levels, therefore we expect that multiple definitions of outage coexist.

In the next section, we will consider a practical evaluation case and discuss this point

even further.

2.2.1.4 Numerical results

We show quantitative evaluations resulting from the application of the model previously

outlined. The device parameters are set as follows. The maximum data queue and

energy queue lengths are Q = 20, E = 20, with a maximum gap ∆ = 6 between the

apparent and the true energy levels. This results in 4368 states, as per (2.1). The

leakage rate is γ = 0.1, while α and β are kept variable to evaluate their impacts.

Arrival rates to the queue are set as λ = 0.5 for the data packets and η = 0.6 for the

energy quanta, while the service rate of both queues is set to µ = 0.7. Notice that our

choices imply stability of all the involved queues; however, µ is still sufficiently far from

an aggressive battery usage that would drain the harvested energy quite soon, thereby
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Figure 2.2: Apparent outage probability

for our scenario.
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Figure 2.3: Real outage probability for

our scenario.

causing frequent outages. We tried other scenarios and the result were always found

to be in agreement with those shown here.

We evaluate the probabilities of the following events. The real outage event is

defined as [e = 0] and happens when the device is truly out of charge. If the apparent

level a reaches 0, we are just in apparent outage; note that this does not necessarily

implies that the battery is without charge; actually, if a = 0 but e > 0, it is possible

to “recover” some charge thanks to the recovery effect, even in the absence of energy

arrivals. Thus, we finally evaluate the correct discharge notice as [e = 0|a = 0]. All of

the metrics are plotted versus the charge recovery parameter β (which must be between

0 and 1 − γ = 0.9) and for various choices of the deep discharge probability α. This

means that for low values of α and/or high values of β the charge recovery effect more

frequently keeps e and a around the same value. Conversely, the larger α and the lower

β, the higher the average gap between the two levels.

Fig. 2.2 shows the probability of apparent outage. For high values of β, the curves

have a floor to a lower bound. This value is not zero: for our specific numerical choices,

it is equal to 7.8 · 10−4. However, low values of β can lead to a much higher apparent

outage probability as high as 4.3 · 10−3, more than five times higher. Moreover, the

bound is actually loose if α is high, which means that even a high recovery probabil-

ity cannot catch up the frequent deep discharges and therefore the apparent outage

probability does not decrease significantly.

Fig. 2.3 shows the real outage probability. It may surprise that the curves increase

in β and are actually very close to 0 for β→0. This counterintuitive behaviour can

be explained by observing that the device stops operating at the apparent outage, and

not at the real outage event. As previously shown, this occurs more frequently when

α is high and β is low, in which cases the real outage event is very rare. However, the
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Figure 2.5: Probability of packet drop for

our scenario.

results also show that, among the considered cases, the highest real outage probability

is equal to 5.5 · 10−4 for α = 0.2 and β = 0.9. Thus, even when they are most frequent,

real outages do not occur nearly as often as the apparent ones.

Such a comparison between apparent and real outage is summarized by Fig. 2.4. It

is highlighted that the curves approach only for low α and high β. At the right-most

end of the curve, α = 0.2 still leads to more than 25% of difference. This gap can grow

up to one order of magnitude, as if the case, for example, when α = 0.8 and β = 0.3.

Fig. 2.5 shows the probability of the packet drop when no packet arrival is observed

(transition from q to q − 1 state). It seems logical, that higher probability of charge

recovery leads to lower meaning of apparent outage which increases the probability

of data packet drop, because a data packet cannot be transmitted if the battery is

depleted (a=0).

Finally, Fig. 2.6 shows the probability of correct discharge notice. This is the condi-

tional probability that the battery is truly without any charge when the apparent level

is 0. Yet, the figure shows that this is not very likely. Even in the best considered case,

there is a 30% of false alarm when the battery is recognized as apparently discharged.

Also, if α > 0.5 the probability of correct discharge notice is less than 30% even in the

best case of a very high recovery probability β.

2.2.2 Self-control of service rate for battery management

In this subsection, we introduce the following contributions. First, we perform simula-

tions of a Markov model introduced in the subsection 2.2.1, and designed to keep into

account energy harvesting, but also some non-idealities of the battery management.

This is done to analyse the evolution of system parameters, and to identify the key
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Figure 2.6: Probability of correct discharge notice.

variables required to predict possible undesirable events, such as apparent discharges

and data losses.

Based on these observations, as a second contribution, we formulate some possible

criteria, where tracking just a limited number of parameters, we are able to obtain a

sufficiently effective self-control management, where the number of undesirable events is

significantly reduced. We believe that this can be a first step in direction of developing

policies for self-tuning control of energy harvesting WSN. Indeed, as a further evolution

of the present work, we conjecture that autonomic policies can be thought and derived

so as to allow efficient management without any prior knowledge on the device itself

and/or the energy harvesting and the data arrival processes.

The rest of this Section is organized as following. In Subsection 2.2.2.1, we dis-

cuss models of battery and device operation proposed in the literature, and battery

imperfections considered in previous papers and possible objectives of an efficient op-

erational strategy. The numerical results of simulations are described in Subsection

2.2.2.2. Here is proposed the simplified self-management of a battery expressed by

restrictions, which are integrated into the model; moreover, we evaluate the efficiency

of the proposed management strategy.

2.2.2.1 Background on battery-efficient operation policies

Many recent papers challenged the task of identifying battery-efficient operation poli-

cies for energy harvesting devices in the IoT.

In [30], authors considered a network of nodes exchanging information over a shared

channel. In order to optimize the battery work duration (i.e., to reduce battery degra-
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dation state), a random channel access scheme is proposed based on an aging-aware

Binary Exponential Backoff algorithm, whose objective is to avoid excessive charges

and discharges of the battery. A similar idea is used in [23], in which a double-threshold

policy is considered as an optimal strategy; storage and retrieval of energy happens in

connection with these thresholds. In particular, the authors developed a water-filling

algorithm, which is based on the double-threshold structure. In [31], it is proved that

the threshold structure of the policy while using the Markov decision process approach

is optimal. In addition, the optimal strategy is formulated with maximization of chan-

nel gain as the objective function. A dynamic approach is considered, where energy

storage losses are included in the model. The effect of different management policies

on battery degradation using a Markov degradation model are also analysed in [22].

The aforementioned works describe the offline models of battery operation, meaning

that model parameters are known, such as energy arrival records, past history, system

status. In [32], [33], and [34] the situation of the online optimization of the policy is

considered, whenever information about the device is unknown or partially unknown

(statistical knowledge of the environment is required).The idea of incomplete available

information regarding system parameters for development of the self-control battery

management system is something that can be studied and discussed further.

The operational policies can follow different purposes, so the objective function can

take different forms:

• minimization of transmitting completion time for a given number of data packets

(in offline settings) [14]

• minimization of battery health degradation [30]

• maximization of channel usage [31]

• minimization of energy overflow [23]

• maximization of the battery lifetime [22]

• maximization of the network sum rate [34]

For the development of the optimal policy, different operating battery models are

considered. State of the art articles usually focus on battery operation considering

different kinds of imperfections and their combinations. As the model gets more re-

alistic, a better operation strategy can be developed. We considered the operation

policies, which are based on the battery models with imperfections. For example,
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in [35] authors presented the policy optimization problem, which optimizes the quality

of the service and battery lifetime taking into account the degradation of the battery.

The linear programming optimization algorithm can be applied for this formulation.

In [36] similar optimization problem is formulated for hybrid electric vehicles, based

on dynamic programming theory. Authors of [37] showed the effect of real battery

constraints on the throughput optimization problem and a comparison between the

ideal and real model. It was shown that ignoring real battery effects could even lead

to zero throughput. The effect of leakage was considered in [24] and the optimization

framework was proposed in order to optimize the amount of data transmitted within

a given transmission deadline. In [38], it is highlighted that the leakage can lead to

10-20% of energy loss, thus, throughput optimization was proposed, subject to energy

stochastic constraints, and a dynamic-programming type algorithm was offered as well.

In this work, we want to avoid similar optimization formulations, which requires lots

of computational effort to be solved, instead we devise a simple policy with limited

number of required parameters. We will take into consideration such imperfections as

the battery leakage, deep discharge, and charge recovery. This means that our energy

queuing model for the battery involves events where the battery is discharged even

when data is not sent (leakage), or it gets discharged more than it should (deep dis-

charge). This leads to an apparent energy level which is lower than the actual one [39],

but on the other hand a charge recovery effect may be present, leading the apparent

energy level to raise towards the actual one when the battery is not used.

Within this setup, we focus on undesired events such as battery outage, correspond-

ing to depletion of the energy queue, and data overflow, i.e., an excess in the data queue

implies that some packets to be discarded. This happens when the service rate is too

high or too low, respectively. However, the exact definition of “high” or “low” strongly

depends on the entire system parameters of data and energy queues, also including

non-idealities such as the leakage rate, that are impervious to estimate. Our goal will

be to identify which essential parameters can be employed to set rules to regulate the

service rate, so as to avoid the aforementioned undesirable events, still keeping the

management simple.

2.2.2.2 Simulation and numerical results

We manage the simulations to analyse the behaviour of model parameters and possi-

bility to reduce the number of variables needed to predict possible negative events. We

consider a model for an energy harvesting device (wireless transmitter, sensor node),
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Table 2.2: Simulation parameters and results

Parameters Low stress High stress

Packet arrival rate λ 0.5 0.5

Energy arrival rate η 0.6 0.6

Max queue size Q 10 10

Max battery size E 10 10

Deep discharge rate α 0.4 0.5

Charge recovery rate β 0.1 0.1

Max gap of apparent/true energy level ∆ 6 6

Leakage rate γ 0.1 0.1

Service rate µ 0.4 0.7

Results

Apparent discharge freq. 0.5% 3.1%

Data loss event 2.5% 0.0%

which transmits data packets and is powered by a battery, recharged by a harvesting

mechanism. In this work, we use the model proposed and discussed in detail in [39].

To evaluate the effectiveness of the proposed conditions, we will consider the battery

outage frequency (apparent and full) and data loss event frequency, which happens

when at time t we observe q = Q and a new packet is to arrive to the data queue in

the next time slot.

We consider different values of the service rate µ, specifically leading to: a Low

stress situation for the battery, where µ < η, and a High stress case, where µ > η,

which we expect may cause several apparent discharges in the battery. This serves

to see how the service rate influences the frequency of the apparent discharge event.

Specifically, the parameters are chosen as η = 0.5 and thus µ = 0.4 (for Low stress)

and µ = 0.7 (for High stress). Table I reports the simulation parameters and also

summarizes the most relevant results. For the following instance, data was generated

randomly with the respect to the parameters in Table I and time horizon t = 1000.

Most notably, Table 2.2 reports that for the battery under low stress (µ = 0.4),

the event of data loss is more frequent than the apparent discharge. We observe the

opposite situation if the battery is highly stressed, i.e, for µ = 0.7, in which the data

loss event does not happen at all.

We better analyse the results by showing the full evolutions of two sample simula-

tions in Figs. 2.7 - 2.8, showing the cases of low and high battery stress, respectively.

In the former case, it is visible from Fig. 2.7 that a lower service rate leads to a higher
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Figure 2.7: Apparent discharge and data

loss event for µ=0.4
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Figure 2.8: Apparent discharge and data

loss event for µ=0.7
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Figure 2.9: Changes of data loss and ap-

parent discharge frequency for µ = 0.1 –

1.0.

❾

❾❿➀

❾❿➁

❾❿➂

❾❿➃

➄

➄❿➀

❾ ➄❾❾ ➀❾❾ ➅❾❾ ➁❾❾ ➆❾❾ ➂❾❾ ➇❾❾ ➃❾❾ ➈❾❾ ➄❾❾❾

➉
➊
➋➌

➍➎➏➐

➑➒➓➔→→➣↔➒↕➙➛➜

➑➒➓➔→→➣➝➒↕➞➛➜

↔➟➟↔➠➐➜➡ ➢➎➤➥➦↔➠➧➐ ➐➨➐➜➡

Figure 2.10: Comparison of condition

(2.2) with apparent discharge events, for

n = 25, in the High stress scenario (µ =

0.7).

probability of data loss event. Conversely, Fig. 2.8 shows how higher service rate leads

to apparent outages and minimization of the data loss events. Furthermore, we can

plot the occurrences of these two events in a more generalized setup, where µ is varied

from 0.1 to 1; the result is reported in Fig. 2.9, which confirms what observed before.

Thus, we can identify that there is a connection between the data buffer occupancy

(i.e., the q/Q ratio) and the apparent discharge and data loss events.

Now, considering a scenario where µ can be regulated by the device, and recalling

that q = Q is the condition triggering a data loss event, it is clear that keeping q/Q as

relatively close to 1 may increase the frequency of data losses. However, increasing the

rate so as to keep q/Q low also incurs a likely situation where apparent battery outages

appear. More in general, the relationship between µ and q/Q may be descriptive of
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this tradeoff. On one hand, the value of q/Q has to be minimized, which is possible by

increasing the value of service rate µ. On the other hand, high values for µ is responsible

for a fast battery discharging and increasing of apparent/full discharge probability. So

the aim is to find optimal relationship between q/Q and µ.

However, we remark that q/Q can change in a time slot when packets leave the

data queue, which would imply an energy consumption, but also when packets arrive,

that has nothing to do with the energy level. Conversely, the energy level changes

also because of deep discharges, leakage, or charge recovery effects, and none of these

phenomenons is reflected by a change of q. Thus, the current value of q/Q cannot

exactly predict that the apparent/full discharge event is about to happen, also the

previous states of the battery needs to be taken into account. For this reason, instead

of just the local value of q and a, we propose to consider a moving average value of

q/Q and a/E for n steps. Therefore, we seek to establish a condition that takes form:

n∑

i=1

q

nQ
−

n∑

i=1

a

nE
< 0 (2.2)

This condition can be better observed in Fig. 2.10, where we plot, for an instance

of the system under the High stress case (µ = 0.7) the time evolution of the two terms

involved in (2.2) and we also highlight, in red, the occurrence of the apparent discharge

event. For this specific evaluation, we chose n = 25. As we can see from Fig. 2.10,

apparent discharge events occur only when (2.2) is violated.

To describe the data loss, we obviously involve again the value of q/Q, but we want

to derive a connection to the battery level as well. We denote with ǫ the data loss

probability. From empirical observations, we found out that the following relationship

is often closely achieved, which establishes an exponential behavior of the data loss

probability versus the ratio q/Q but also linear in the apparent energy level:

ǫ =
a

E · e1−
q

Q

(2.3)

The initial assumption is that the probability of data packet transmitting is equal

to the relative energy level of the battery. But while our goal is not to let the buffer to

get full (q = Q), we adjust ǫ by 1/e1−
q

Q . Higher value of q/Q, performs less correction

(decrease) of ǫ.

Let us consider changing of the ǫ value for the case of Low Stress of the battery
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Figure 2.11: Data loss parameter values

(µ = 0.4)
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Figure 2.12: Apparent discharge event

(µ = 0.7)

(µ = 0.4). In this case, ǫ takes the maximum value of 1 exactly wherever there are

data loss events. This is plotted in Fig. 2.11, where data loss events are highlighted in

red.

Now, we extend these conditions to an active control of the data packet transmis-

sions. In particular, we employ these remarks about the aforementioned connections

to establish some preliminary checks in the decisions to be made by the wireless device

on whether to transmit a packet or not. We add two more conditions to the model,

reflecting (2.2) and (2.3), that is, a packet can be transmitted only if (q/Q)−(a/E) < 0

(condition 1) and a(E · e1−
q

Q )−1 < 1 (condition 2). If both conditions are met, then

we allow data packets to be sent (the actual decision on whether to transmit a packet

is made depending on the service rate and the state of the system). If condition 1 is

violated (that is, the energy level is estimated to be low) and condition 2 is not, then

the data packet is held and cannot be transmitted. If the opposite happens, i.e., the

energy level is sufficient but conversely there is an abundance of data in the queue and

the buffer risks an overflow, we force packet transmission, i.e., we transmit with service

rate 1. Note that this heuristic rule is anyway not almighty, since if both conditions

are violated, it means that we estimate that both energy outage and data overflow are

about to occur, but there is nothing that can be done, since any data sent to avoid

overflow will probably be lost because of low battery.

To examine conditions 2.2 and 2.3 we integrate these inequalities into the simulation

models for the example considered above. The results of the simulations are presented

on Fig. 2.12, where we consider a case of High stress for the battery (µ = 0.7). The

figure shows that integrating restrictions 2.2 and 2.3 reduces the number of apparent

discharge events. For the previous example, when µ = 0.7, integrating these conditions
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reduces the number of apparent discharge events by 77.4%. Also, we verified that,

similarly to this case, when µ = 0.8 we have a reduction of 75.6% of the apparent

outage events, when µ = 0.9 this reduction is of 73.1%, which means that this result

is pretty consistent also for other values of µ.

2.3 Energy modeling and adaptive sampling algorithms

for energy harvesting powered nodes

This section explores the implementation of different sampling strategies for a practical

energy harvesting wireless device (sensor node) powered by a rechargeable battery. We

look for a realistic yet effective sampling strategy that prevents packet delivery failures,

which is simple enough to be implemented in low complexity hardware. Finally, the

proposed methods are compared based on energy consumption over a year and amount

of packet delivery failures, thus showing how some modifications of available strategies

achieve satisfactory performance in this sense.

This work investigates possible extensions to improve the performance of the Data-

Driven Adaptive Sampling Algorithm (DDASA) [2] in terms of energy awareness, taking

advantage of other ideas presented in the literature. We complement the algorithm

with sampling rate limitations, regarded as constraints to the adaptive sampling policy,

which are realistically present in industrial applications.

The proposed algorithms aim at balancing the performance of the sensor device

considering energy harvesting capabilities as well as its current battery status. We

compared based on energy consumption over a year and amount of packet delivery

failures the proposed solutions with DDASA and a strategy with constant sampling

rate and energy arrivals.

To perform a realistic assessment of the resulting performance, we tried to realisti-

cally simulate all operational aspects, including an accurate model of the environment,

energy harvesting, and battery behaviour, so as to derive a correct quantification of

the State of Charge (SoC) as well as the energy consumption of the device. As we

found out, most of the evaluations in the literature do not take all these aspects into

account. For instance, most of the SoC models do not consider battery deterioration

due to continuous usage or environmental factors.

Therefore, we considered an extension of those models to a practical setup to derive

a realistic SoC estimation. For our validation, we used a LoadSensing commercial data-
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logger (further - LS) [40] powered by the commercial solar panel SOLEM 10/150/100

TD. We forecast the operation of the industrial data-logger for a period of one year

and compared the performance under different sampling rate strategies.

The Section is organized as follows. The state of the art and background infor-

mation in adaptive sampling for wireless sensing devices is given in Section 2.3.1. In

Subsection 2.3.2, we introduce our sampling policies dealing with sampling rate limi-

tations. In the following section, we present the simulator system model (Subsection

2.3.3). In particular, the solar irradiation model is discussed in subsection 2.3.3.1, the

Photovoltaic (PV) power output model is presented in Subsection 2.3.3.2, the improve-

ments of SoC estimation is demonstrated in Subsection 2.3.3.3. Numerical results are

discussed in Subsection 2.3.4.

2.3.1 Background in adaptive sampling for sensing devices

According to [41], energy management in WSN is defined as a set of instructions to

efficiently handle power consumption and energy provision in a constrained sensor node.

In the literature, papers dealing with energy management try to either enhance their

provisioning, or minimize the energy consumption.

For the latter goal, i.e., to reduce (or adapt) the energy consumption, duty-cycling,

data-driven and mobility based approaches are considered. Duty cycles is one of the

most effective way to improve the network energy sustainability. In [42], the authors

propose to adjust the nodes duty cycles, or, in other words, the wake/sleep phases. The

volatility of the energy arrivals is accounted by energy prediction. The authors of [43]

proposed a method to reduce the energy consumption by adjusting the sensing duty

cycles according to the available energy levels. Mobility based approaches consider the

mobile nodes in the network [41,44].

Finally, data-driven approaches are based on spatial correlation of data, and aim

to reduce the amount of the sampled data keeping the sensing accuracy within an ac-

ceptable range. These approaches are subdivided on data prediction schemes and data

acquisition approaches. Data acquisition schemes try to reduce the energy consump-

tion in the node sensing subsystems, and can be implemented using three different

approaches [41]: hierarchical sensing, adaptive sampling, and model-based active sens-

ing. In hierarchical sensing, multiple sensors are installed on the sensor nodes and

observe the same event with a different resolution and power consumption. Hierarchi-

cal sensing can be divided into two types:
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• triggered sensing - when more accurate and power-consuming sensors are acti-

vated after the low-resolution sensors to detect some activity within the sensed

area;

• multi-scale sensing - identifies areas within a region that require more accurate

monitoring.

Adaptive sampling techniques provide online sampling frequencies for sensing nodes

and change the sampling rate by evaluating correlations between the sensed data and

the available energy [45]. If the subsequent samples do not differ very much, then it

is possible to reduce the sampling rate based on this temporal correlation. Another

possibility to decrease the overall energy consumption by adapting the sampling rate

frequency is to apply harvesting aware optimization of the power consumption using

the known remaining battery level and forecast harvested energy.

Model-based active sensing is a forecasting model of the sensing phenomena based

on an initial set of sampled data. As underlined in [46], some sensors may even consume

significantly more energy than the transmission component. The authors propose a

general approach that leverages two complementary mechanisms at the sensor level: 1)

duty cycling (i.e., the sensor board is switched off between two consecutive samples)

and 2) adaptive sampling (i.e., the optimal sampling frequency is estimated on-line).

The proposed ASA in [46] is tested on a snow-monitoring applications sensor. It is

demonstrated that ASA performs 79% more efficiently in terms of energy consumption

in comparison with the constant sampling rate. Nevertheless, the algorithm has room

for enhancement regarding the residual energy level.

Srbinovski et al. [47] introduce the Energy Aware Adaptive Sampling Algorithm

(EASA), that modifies the ASA algorithm by taking into account the current energy

level of a sensor. That is, ASA is combined with an energy aware function, assuming

that each node in the network is able to monitor its own energy level. The sampling

rate of EASA is consecutively decreased under certain energy level without limitation

since the sampling rate of EASA is proportional to the remaining energy of nodes.

EASA is evaluated on two testbeds powered by two sources of energy - wind and solar,

and is demonstrated that EASA outperforms ASA.

Other energy-aware adaptive sampling algorithms are proposed in [48]: Resuscitation

Adaptive Sampling Algorithm (RASA) and Compensation Adaptive Sampling Algo-

rithm (CASA). The purpose of RASA is to set low sampling rate and guarantee self-

sustainability when energy state of sensors is extremely low. Sensor nodes in CASA can
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be recharged by saving the consumption energy when the harvesting quality is good.

The algorithms are compared with ASA and demonstrated a better performance in

terms of energy consumption.

An optimal scheduling sensing policy for an energy harvesting system equipped

with a finite battery is considered in [49]. The objective is to select the sensing epochs

such that the long-term average sensing performance is optimized. Finding the optimal

solution can be a computationally intensive task and requires a device to have sufficient

computational capabilities.

The data-driven approach is adopted to develop ASA for power management in au-

tomated monitoring of the quality of water. Data-driven adaptive sampling algorithm

(DDASA) is proposed in [2]. DDASA can save 30.66% of energy for three months

in comparison with the fixed rate strategy. DDASA changes the sampling frequency

based on the nature of the sampled ratio compared with ASA. A sigmoid function

is proposed to dynamically set the sampling frequency. DDASA is tested on a de-

vice, powered by a non-rechargeable battery, thus, it does not take into account the

harvesting capabilities as well as battery level.

From the described algorithms only CASA takes into account energy harvesting

potential of a sensing device, even though the benefits of using a data-driven approach

such as including the data accuracy in the optimization are not incorporated. There-

fore, one of the objective of this work is to adjust the data driven approach to calculate

the sampling rate of a battery and harvester equipped device. Yet, we integrate sam-

pling rate limitations as a mechanism to adapt to the industrial requirements.

In the literature, further adaptive sampling algorithms for more specific applica-

tions in WSN are proposed. In particular, in [50] optimality criteria for mobile robotic

WSN is suggested to the most informative location of interest. The adaptive sam-

pling strategy for mobile sensors in the environment monitoring context was proposed

in [51], where the sequential Bayesian prediction algorithm minimizes the prediction

error variance. An adaptive sampling system for sensor network is considered in [52],

that is, the analog method for signal dependent ADC clocking. Another adaptive sam-

pling algorithm was proposed in [53] for target tracking in underwater WSNs, that

simultaneously balance the energy consumption and maximizes the energy efficiency.

All of these proposals are specific to their applications and leverage some further as-

pects of their scenarios. Even though we considered a definite use case related to the

geotechnical industry, our proposal is instead more general and we believe that we can

extend our same rationale to all these contributions to improve their results.
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2.3.2 Adaptive sampling algorithms with sampling rate limita-

tions

Adaptive sampling algorithms estimate at runtime the expedient sampling frequencies

for sensor devices.

Sampling algorithms can be extended by including sensing frequency limitations.

This is motivated by the industrial requirement of guaranteeing a certain amount of

data per unit of time. In particular, it might be desirable to limit the minimum sensing

frequency, while maximum sampling rate can be as high as possible. In this case, the

maximum frequency can be only bound by a duration of a cycle, in which a sensor

performs warming up, measurement and transmissions:

Fmax[Hz] =
1

twarm + tmeas + ttrans
, (2.4)

where twarm, tmeas and ttrans are the time required for warming up of the sensor, taking

a measurement and transmitting the measurement, respectively.

In this section, we propose 4 methods taking into account energy harvesting capa-

bilities and battery level information, in order to improve the DDASA performance.

Differently from DDASA, the proposed methods include sampling rate limitations,

energy capabilities as well as the capability to sectorize the battery level and apply

different rules to the different sectors.

Sampling rate limits Fmax and Fmin serve as boundaries for the proposed adaptive

sampling algorithms.

The original DDASA changes the sampling frequency based on the nature of sam-

pled data (Algorithm 1). Specifically, DDASA updates the sampling frequency based

on the sigmoid function y(D) (0 < y(D) < 2), where D is calculated as a difference

between two measurements xi and xi+1 over the average value of the N recent data.

D rises if the environment suddenly changes (Fig. 2.13).

The sigmoid function represents a deterministic growth pattern. The simple way

to represent the sigmoid function is [54]:

w =
wmax

1 + e−k(t−tm)
, (2.5)

where w is the weight to be calculated, wmax is the maximum value of w, tm is the

period of time when the maximum value of w was observed, and k defines the curvature

of the pattern.

Our first proposal is Threshold-Based Adaptive Sampling Algorithm (T-ASA),

which is based on the energy level and harvesting rate thresholds, and corrects the
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Figure 2.13: Revised sigmoid function [2]

sampling rate when the energy level or energy arrival rate go beyond a threshold.

T-ASA utilizes the mechanisms proposed in [47] and [48]. Based on their approach, we

propose the mapping between different battery and energy arrival levels (thresholds)

and equations that adjust the sampling rate. This method considers four states:

1. High energy arrivals (H/Hmax > k) and high battery level (Ebatt > Eth): fnew =

fcurr;

2. High energy arrivals (H/Hmax > k) and low battery level (Ebatt < Eth): fnew =

fcurr · (
Eth−Ebatt

100
)m;

3. Low energy arrivals (H/Hmax < k) and high battery level (Ebatt > Eth): fnew =

fcurr · (1 +
H

Hmax
) ·N ;

4. Low energy arrivals (H/Hmax < k) and low battery level ((Ebatt < Eth): fnew =

fcurr · (
Eth−Ebatt

100
)m · (1 + H

Hmax
) ·N ,

Parameter k is an energy arrivals threshold, m and N denote the parameters of

the algorithm, H and Hmax are current solar radiation and maximum possible solar

energy arrival, correspondingly, Ebatt and Eth are the current battery level (%) and

battery threshold (%). Coefficient (Eth − Ebatt)/100 ∈ [0, 1] represents the deviation

of the energy level from its threshold. The parameter m adjusts the granularity of

the algorithm. Higher values of m decrease the value of the sampling frequency more

significant. In other words, m is adjusted depending on the strength of the required

intervention. Coefficient (1 + H/Hmax) ∈ [1, 2] increases the value of the sampling
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Algorithm 1 DDASA

1: Initialize a constant sampling rate denoted as fconst, sample a number of N for

later use;

2: Predetermine a threshold according to the characteristics of the monitored param-

eters;

3: Define D = |Xi+1 −Xi|/
1
N

∑i

i−N+1 Xi;

4: Define fcurr = fconst, where fcurr is the current sampling frequency;

5: for i = N ; i++ do

6: Sample Xi+1 based on fcurr (or f ′
curr);

7: D = |Xi+1 −Xi|/
1
N

∑i

i−N+1 Xi;

8: y(D) = 2
1+e−(D−t) ;

9: fnew = fcurr · y(D), where fnew denotes the new (updated) sampling frequency.;

10: f ′
curr = fnew;

11: S(i+ 1) = Xi+1;

12: end for

13: return S;

frequency in the case of more frequent energy arrivals. Parameter N ∈ (0, 1] similarly

with m defines the granularity of the method.

The second method, analogously to T-ASA, uses fmax and thresholds. However,

instead of correcting the current sampling rate as done in the previous method, the

calculation is based on the sampling rate limit fmax and current energy capabilities.

The method is defined as Limits-Based Adaptive Sampling Algorithm (L-ASA):

1. High energy arrivals (H/Hmax > k) and high battery level (Ebatt > Eth): fnew =

fmax;

2. High energy arrivals (H/Hmax > k) and low battery level (Ebatt < Eth): fnew =

fmax · (
Eth−Ebatt

100
)m;

3. Low energy arrivals (H/Hmax < k) and high battery level (Ebatt > Eth): fnew =

fmax · (1 +
H

Hmax
) ·N ;

4. Low energy arrivals (H/Hmax < k) and low battery level ((Ebatt < Eth): fnew =

fmax · (
Eth−Ebatt

100
)m · (1 + H

Hmax
) ·N ,

In the third method called Limits- and Thresholds-Based DDASA (L-DDASA), we

propose to adjust the sampling rate to its limits if the following conditions are satisfied:
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1. High battery level (Ebatt > Eup
th ): fnew = fmax;

2. Low battery level (Ebatt > Elow
th ): fnew = fmin

If Elow
th < Ebatt < Eup

th then sampling rate is determined by DDASA. To take into

account the harvesting capabilities of a sensor node, we introduce the calculation of

derivatives, that determines the period of time when the energy arrivals have a tendency

to grow or decrease over time.

3. if df

dt
> 0: fnew = fcurr ∗ α, where α (0 < α ≤ 1) is a coefficient increasing the

sampling frequency;

4. if df

dt
< 0: fnew = fcurr ∗ β, where β (0 < β ≤ 1) is a coefficient decreasing the

sampling frequency.

Finally, Energy Aware DDASA (EA-DDASA) is based on the calculation of the

sigmoid function presented in DDASA. In contrast with DDASA, we include the

calculation of the sigmoid function not only for collected data, but also for energy

arrivals and battery level:

y(D) =
2

1 + e−(D−t)

x(SoC) =
2

1 + e−(SoC−k)

z(H) =
2

1 + e−(k− H
Hmax

)

fnew = fcurr · y(D) · x(SoC) · z(H)

(2.6)

All three components in (2.6) are combined to define the value of sampling rate,

so that, for instance, low values of battery level can be compensated by high energy

arrivals.

In order to validate the proposed methods, we simulate the operation of an indus-

trial sensor node powered by a solar panel. Simulations are based on the system model

presented in the following section.

2.3.3 Energy model

To test the proposed adaptive sampling algorithms we introduce the energy model for

the energy-harvesting wireless sensor, specifically, for a tiltmeter powered by a solar

panel.
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To analyze the sustainability of the solar-powered sensor device with integrated

adaptive sampling algorithm, we first describe our model for the node SoC. This can

be divided into four stages:

1. Model of the solar irradiation taking into account meteorological conditions, lo-

cation, reflection, solar panel inclination, soiling effects, etc.

2. Model of the power output based on the inner characteristics of the solar panel,

such as cell temperature, area, losses, solar radiation on the tilted surface etc.

3. The actual load model based on the battery effects, such as battery degradation

and duty cycling

4. The energy consumption model based on the expenditure for one sensing cycle

and the adopted adaptive sampling algorithm

2.3.3.1 Solar irradiation modelling

Solar irradiation represents the amount of solar power (or instantaneous energy) per

unit area [W/m2]. Few parameters that determine the solar irradiation on the surface of

Earth are discussed in [55]: the Earth’s geometry and location (declination, latitude,

solar hour angle); terrain (elevation, surface inclination and orientation, shadows);

atmospheric attenuation (scattering, absorption) by gases, solid and liquid particles

and clouds.

Different combinations of these parameters are included in the solar irradiation

models. Global solar energy models are considered in [56], divided into two compo-

nents: extraterrestrial and global solar energy, i.e. above or below the atmosphere,

respectively. Global energy models may be further categorized into computation of

direct beams and diffuse solar energy. These parameters are usually measured, but the

installation of measurement devices is costly. Therefore, prediction models are widely

used to measure the global solar radiation [56].

The following groups of solar irradiation models can be outlined: linear and non-

linear. Linear models give the correlation between solar energy on a horizontal surface

and some meteorological variables, such as shining hours, ambient temperature and

relative humidity. Due to the model simplicity, linear models are more commonly

used. Diffuse solar energy models describe the relationship between the average daily

diffuse and global solar radiations incident on a horizontal surface and the sky clearness

index.
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Other more sophisticated types of models are based on the Artificial Neural Net-

works (ANN). The commonly used input variables in ANN-based models are the

sunshine ratio, ambient temperature, and relative humidity to predict global solar en-

ergy at different locations, but also following inputs can be used: latitude, longitude,

altitude, month, time, wind speed, relative humidity, and rainfall. The results of the

study showed that the ANN-based models are more accurate in predicting the diffuse

radiation compared to the linear regression models, but are much more demanding in

terms of data and complexity.

In [57], the astronomical solar model is presented, which is used to translate the

instantaneous solar radiation (Isun) into effective radiation. The effective (or available)

solar radiation (Ieff = Isun ·cosΘ) is dependent on factors such as: location, inclination

of a solar module, time of the year and hour of the day, where Θ is the angle between

the sunlight and the normal to the solar module surface.

In [58], a clear-sky radiation model is introduced. The total radiation GT is di-

vided on 3 components: beam (GbT ),diffuse (GdT ), and reflection (GrT ), which can be

calculated as:

GbT = Gonτbcosθs (2.7)

GdT = Goncosθzτd

(
1 + cosβ

2

)
(2.8)

GrT = ρGoncosθzτr

(
1 + cosβ

2

)
(2.9)

where Gon is the solar radiation outside of the atmosphere, τb, τd and τr are the at-

mospheric transmittance for a beam, diffuse and reflected solar radiation, respectively.

θz, θs, β and ρ are the solar zenith angle (rad), the incident angle on the surface, the

inclination angle of the surface (deg) and the average reflection on the ground.

The clear-sky model is suitable for meteorological conditions without clouds, mist

or haze, but in comparison with the astronomical model, it includes the diffusion and

reflection components.

Astronomical and clear-sky models do not include atmospheric attenuation and are

not as accurate as ANN models. However, these models do not require meteorological

data and solar radiation measurements, therefore the model is easily applicable and

can be adapted to any location. Clear-sky solar radiation model is a wider model that

includes parameters such as diffusion and reflection solar energy. Therefore, this model

can be used as a foundation to compute the solar radiation in a particular location for

a solar panel with known inclination angle and direction.

We test and compare astronomical and clear-sky models to obtain an input solar
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Figure 2.14: Comparison of average daily irradiation.

radiation. These models do not demand the real data sheets, although the knowledge

of the reflection characteristics of the location and ground are needed. We set the

reflection parameters that correspond to the concrete surroundings since we consider

the urban scenario.

The models were implemented and compared with real data, provided by IREC

(Institut de Recerca en Energia de Catalunya) for Barcelona, Spain, and with the

database of NASA for a tilted solar panel: 0◦ (Fig.2.14(a)) , 37◦ (Fig.2.14(b)) and

90◦ (Fig.2.14(c)). For this purpose we aggregate hourly data over one year, obtained

as an output of these two models. The incident solar power data for the input of an

astronomical model was derived from [59].

For the performance evaluation of the models, we consider the mean square error

E of the average daily irradiation y. That is, if yi is a data point and ŷi is its estimate,
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Table 2.3: Error values

Astronomical model Clear sky model

Data source 0° 37° 90° 0° 37° 90°

IREC 6.421 7.654 2.462 0.738 0.871 1.507

NASA 12.064 - 2.196 3.839 - 2.005

we compute E as:

E =
N∑

i=1

(yi − ŷ)2, (2.10)

A comparison of the results for two models is presented in Table 2.3. Clear-sky

model showed higher accuracy in comparison with the astronomical model.

2.3.3.2 PV power output modelling

In general, the power output depends on the active area of the solar panel and the

technology [60]:

E = Apv · r ·GT · PR, (2.11)

where A is the total solar panel area (m2), r is a solar panel yield of efficiency (%),

GT is an annual average solar radiation on a tilted panel (shading is not included)

that depends to solar position, cloud cover, atmospheric transmittance, and power

orientation; moreover, PR is a performance ratio, i.e. a corrective coefficient for losses

(in the range between 0.5 and 0.9, with a default value of 0.75), and finally r is the

effective power, derived from Standard Test Conditions (STC), that corresponds to

1000 W/m2, at a cell temperature of 25 °C, wind speed 1 m/s, AM = 1.5.

Alternatively, solar power output depends to global solar irradiation, area of the

solar panel, efficiency of the solar panel, average losses, and temperature, as per [61]:

Ppv = η · Apv ·GT · [1− 0.005(Tc − 25)], (2.12)

where η is the photoelectric conversion efficiency (%), Tc is the panel operation tem-

perature (°C). Temperature of the cell can be obtained from the following equation:

Tair[i] + 0.035 ∗GT [i], where Tair is an hourly temperature [62].

In practice, a correct definition of GT is required to obtain a proper estimate of

the AC power output. Alternative power output formula does not take into account

the temperature, which leads to ignoring the effect of the temperature raising on the

effectiveness of the solar panel.
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Figure 2.15: SoC estimation model

One of the main correction factors for the solar panel output model is power losses.

In particular, the main parameter derived from the clear-sky model is a global solar

radiation [W/m2]. The value of this parameter significantly changes according to the

meteorological factors, shading etc., and moreover, other losses occur in the solar panel

itself. In general, other loss parameters can be included, for example: annual losses due

to the soil, inverter losses, Direct Current (DC) cable losses, Alternating Current (AC)

cable losses, shading, losses at weak radiation, losses due to the dust, snow, and so

on [63].

2.3.3.3 SoC modelling

SoC can be defined as a rate of available capacity (in Ah) against its nominal capac-

ity [64]. In the literature, we can find common methods to estimate SoC, however

these methods are just general representation and lack many details, as they usually

do not consider a realistic battery behavior, but rather define SoC based on energy

consumption, arrivals of energy, and battery capacity.

In addition, complex calculations and high computational cost are other concerns

that make the estimation process very difficult. Exhaustive classification of SoC estima-

tion methods are presented in [65] and [66]. Few general SoC definitions are presented

below.

SoC can be defined as a relation between current capacity (Q(t)) and nominal

capacity(Qn): SoC(t) = Q(t)
Qn

[66].

The most common way to estimate SoC is current integration: SoC = 1 −

∫
idt

Cn

,
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where i is a battery current and Cn is a nominal capacity.

Another common way to define SoC is through Coulomb efficiency: SoC = 1 −∫
ηidt

Cn

, where i is a positive/negative current, η is Coulomb efficiency, i.e. the ratio of

the energy required for charging to the discharging energy needed to regain the original

capacity. This method requires the knowledge of initial SoC and precise measurements

of the battery current. Coulomb method is not precise and does not include duty cycle

and temperature. Apart from it, additional equipment is necessary for SoC calculation.

Another general model for defining SoC of a battery was presented in [67]:

SoCt =
St−1 +∆St

Smax

(2.13)

∆St = ∆Ct −∆Dt −∆Lt, (2.14)

where ∆Ct is the charging energy, ∆Dt is a demand parameter and ∆Lt is energy

losses.

Demand ∆Dt is defined as:

∆Dt = ∆tPe,t = ∆t · It · Udc,t, (2.15)

where Pe,t is the electric power consumption, It is the discharging current, Udc,t is a

voltage output of the battery.

Smax is defined as follows:

Smax = C · Un = ∆Pc,t · t, (2.16)

where Un is the nominal voltage, Pc,t is the charging power at time t.

Due to the non-linear time-varying characteristics and electrochemical reactions,

battery SoC cannot be defined directly. Furthermore, the performance of the battery

is highly affected by aging, temperature variation, charge-discharge cycle, which make

the task of accurately estimating the SoC very challenging. We consider an SoC model

based on the reasoning above, but we should also include additional parameters such as

battery age and temperature coefficient. The general scheme of the model is reported

in Fig. 2.15.

The current SoC depends on the SoC on the previous time interval, capacity, and

nominal voltage of the energy storage, degradation of the battery, and energy charges

and consumption of the device.
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Figure 2.16: Example of tiltmeter installation for Courtesy of Sixense Oceania 1

2.3.4 Numerical results

In this section, we report the numerical experiments we conducted to compare different

sampling strategies: constant sampling rate, DDASA with and without limits and

methods, presented in Subsection 2.3.2.

All algorithms were tested on the tiltmeter data extracted from LS, that is a part of

the Auckland City Rail Link Extension project [68]. Tiltmeters can be used to measure

the surfaces’ inclination of construction objects. An example of LS tiltmeter installation

is presented in Fig. 2.16. Replacing the batteries in such objects is problematic and

not economically profitable. Powering of tiltmeters by solar panels can be considered

as a valid solution for the outdoor construction objects (bridges, buildings etc.).

2.3.4.1 LS description and energy consumption

LS is a wireless data logger powered by batteries. It performs periodic sensing and

sends the measures via radio transmission to a gateway or concentrator. It has multiple

possible configurations, which affect the battery life drastically. LS can be configured

to employ different duty cycles of measurements, from one measure every 30 seconds to

one measure per day. The product is designed for the geotechnical industry and usually

installed at locations that are difficult to reach, therefore where battery replacement to

be avoided. In order to create an accurate estimation model of the battery discharge,

it is necessary to outline the application scenario. We consider worst case energy

consumption scenario, determined by:

1. warming up - 3 seconds (60 mA, 12 V)

1This figure is provided by Worldsensing SL

43



0 1000 2000 3000 4000 5000 6000 7000 8000
Time [ms]

0

25

50

75

100

125

150

175

200

225

250

275

Cu
rre

nt
 [m

A]

BEGIN END
8.86 sec, 40 mA average

900ms, 120 mA

2 sec, 15 mA

Figure 2.17: Radio consumption profile of LS device 1

2. measurement - 3 seconds (60 mA, 12 V)

3. transmission - 3 pulses (900 ms, 120 mA, 3.6 V each) and time between pulses

(2s, 15 mA, 3.6 V)

4. background consumption between cycles is 30 µAh, 3.6 V.

After a measure is taken, it is sent by radio. The system has about 5 minutes to

send the radio message. The message transmission has also multiple variables but for

the sake of simplification we consider the worst case.

When LS performs a complete cycle once per hour, then the hourly consumption

is about 2.844 W. The radio transmission consumption is presented in Fig. 2.17.

2.3.4.2 Solar panel characteristics

We obtain the power output for the solar panel SOLEM 10/150/100 TD with size 138.8

mm × 90 mm oriented on the south with inclination 37°. The theoretical efficiency

of the amorphous silicon PV module is 12.7%, plus average losses due to the shading,

dust, wiring etc. are included with a loss coefficient of 0.75, see Fig. 2.18.

The temperature dataset for solar panel power output estimation (Fig. 2.19) is

extracted for Barcelona, Spain for 01.01.2017 - 31.12.2017 from [59].

1This figure is provided by Worldsensing SL
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Figure 2.18: Theoretical power output of

solar panel SOLEM 10/150/100 (south,
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2.3.4.3 Battery characteristics

The battery present in the simulator is an LG18650B4 with nominal capacity of 2600

mAh and nominal voltage of 3.6 V.

The coefficient of aging was obtained from data, provided by IREC. The capacity

of the battery depends on the number of cycles performed: after 300 cycles the battery

loses capacity from 2600 to about 2500 mAh. In addition, battery capacity depends

on the air temperature and varies from 59% of total capacity if the air temperature is

below −20 °C to 104 % if the temperature exceeds 40 °C.

2.3.4.4 Evaluation of simulation results

The proposed algorithms are aimed to balance irregular energy arrivals. In line with

this, we set the benchmark case, that corresponds to the ideal scenario of regular energy

arrivals. To do so, we average the energy arrival profile presented in Fig. 2.20(a) over

time.

We compare the performance of DDASA and all other proposed algorithms with

the sensor performance under ideal conditions. Simulation settings are presented in

Table 2.4. The duration of a time slot is one hour.

The failure rate is chosen as a comparison performance metric. A device fails when

the battery does not have enough energy to transmit a data packet. If the significant

gain in decreasing of failure rate by adapting the algorithm is achieved, then we will

have simple and effective lightweight solution, which can be implemented on the real

sensor devices.
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hour with a dataset obtained under DDASA (here initial tiltmeter data and sampled

data respectively)

powered by a solar panel over a whole year.

The sampling rate during data collection phase (or transition phase) is adjusted to 1

hour, which is the duration of a time slot. All device failures of the proposed strategies

(T-ASA, L-ASA, L-DDASA, EA-DDASA) are accounted for this transition period. If

we compare the similar throughput results presented in Table 2.4, then EA-DDASA

provides the closest performance results to the ideal conditions case. The failure rate

is 0 during all months except January, that includes the transition phase 2.22(a).

EA-DDASA demonstrates balanced energy consumption 2.22(b): during winter it

consumes less energy, while during summer months it consumes more energy, except

July, that can be explained by the power output pattern, shown in Fig. 2.18. DDASA

energy consumption is guided by data variations and therefore the energy consump-

tion is unbalanced, and during some winter months we observe much higher energy

consumption, than during summer months, which causes the device to operate on the

edge of its capabilities.

In general, the choice of the algorithm can be dictated by different circumstances.

In particular, if the environmental conditions have a stable pattern over the span of

the year (i.e., energy provision has little volatility), then L-ASA can be adopted, since

it provides a higher throughput, but the average SoC is lower, comparing to other

proposed algorithms. If the environmental characteristics are highly unstable, then
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Table 2.5: Comparison of algorithms

Algorithm Throughput,

[packets]

Failure rate

(with/

without

transition

phase)

Total

energy

consump-

tion,

[W]

Average

SoC,

%

Constant energy arrivals, sam-

pling rate (24h)

364 0.00 1036 99.5

Constant energy arrivals,

sampling rate (9h)

970 0.00 2759 98.1

Constant energy arrivals,

sampling rate (6h)

1028 0.05 2919 5.8

Realistic energy arrivals, sam-

pling rate (24h)

364 0.00 1036 98.5

Realistic energy arrivals, sam-

pling rate (6h)

938 0.06 2668 5.3

DDASA 1336 0.58/0.56 7603 3.0

DDASA with limits 951 0.04/0.02 5414 5.6

T-ASA 407 0.02/0.00 2319 92.8

L-ASA 945 0.02/0.00 5379 19.9

LT-DDASA 709 0.02/0.00 4037 75.7

EA-DDASA 915 0.02/0.00 5209 68.9

T-ASA can be implemented, that provides the highest average SoC. The most balanced

methods are L-DDASA and EA-DDASA. In addition, if the Li-ion battery is attached

to the device, then the recommended energy level holds. For some batteries chemistry,

it is preferable to keep the average battery level low to preserve the battery life [69]. As

the battery level stays around 100 % SoC, the battery degrades faster, since Keeping

charging the battery leads to micro-charges and discharges, thus negatively affecting

the battery’s life. Therefore, the average SoC may be also worth considering.

In order to improve robustness of the proposed schemes, the energy arrivals learning

models can be implemented, that will exclude the usage of the predefined environmen-

tal characteristic evaluations. This method is more effective, but at the same time

computationally heavy and requires to install additional hardware, that measures the

solar radiation information (pyranometers). This will lead to the overall cost increase

of a sampling device.
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Figure 2.22: Comparison of DDASA, ideal conditions strategy and EA-DDASA.

2.4 Conclusions

Firstly, we developed a stochastic model for battery-powered energy harvesting mobile

devices, based on a discrete-time finite-state Markov chain. We keep into account the

data queue and the energy level of the device; the latter is mapped through variables a

and e, representing the apparent and true state of the battery, respectively. This way,

we can represent non-idealities such as leakage and more importantly charge recovery,

which is generally overlooked in most investigations.

We apply the model to sample evaluations, capturing energy outage under two

definitions, i.e., depending on whether a is zero, or e is. The main conclusion is that

charge recovery severely affects the performance, as the apparent outage probability

can be significantly larger than that of real outage. Conversely, the probability that

e actually reaches 0 is lowered by the early operational stop caused by reaching an

apparent level a equal to 0, which can lead to heavy underutilization of the device. The

key parameters in determining the extent of this phenomenon are the probabilities of

deep discharge and recovery, which should be kept low and high, respectively.

For simplicity, we considered constant parameters in the Markov chain. The main

point of our contribution is proven in spite of this simplifying assumptions, although

future work may relax this assumption and investigate exponential or multi-step [25]

discharging. We can also include a dependence on the energy level in the leakage

probability. Finally, we can merge the present contribution with the investigations

of [22] about correlation in data and energy arrivals, or those of [8] where the service
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rate depends on the energy level, to optimize the battery usage under an overall more

realistic model.

We demonstrate the effect of battery operation policy and evaluate the occurrence

of undesired events which could cause negative consequences, for example, battery

inactivity. We based on a model which deals with the data queue and the energy queue

of the device as well as battery imperfections such as leakage, charge recovery and deep

discharge. By inspecting the simulation results we found that certain parameters are

significant for prediction of such events as apparent discharge and data loss. Based on

these parameters, we propose a simplified self-control management for a battery, which

is to verify the conditions in the model decision making process for battery-powered

energy harvesting mobile devices. The purpose of the self-control management is to

reduce both the data losses that happen when the data buffer is full, and the apparent

outage of the device. The restrictions integrated in the strategy can be easily rewritten

to take into account full outage of the device. The effectiveness of the proposed scheme

was numerically proved.

Finally, we propose energy aware strategies applied to the data driven adaptive

sampling approach, that balance the energy consumption and decrease the number

of packet delivery failures. To validate the performance of the proposed schemes, we

simulated the operation of the industrial data-logger powered with a solar panel located

in Barcelona, Spain.

We observed that with prior knowledge of the environmental characteristics it is

reasonable to set threshold based rules and sampling rate limits that significantly in-

crease the performance of the existing data-driven approach without increasing the

complexity of the algorithm.

Improving sensor operation strategies is needed to provide the full autonomy of

a device with energy harvesting capabilities, which is a key to design successful and

self-sustainable IoT systems.
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Chapter 3

Energy sustainability of systems with

multiple EH-devices

To investigate the multi-device case, we study the asymmetry in energy-harvesting

WSNs (Section 3.2), and proposed energy cooperation as a mean of overcoming sys-

tems heterogeneity (Section 3.3). We introduce the concept of energy topology with

integrated energy cooperation, and analysed the efficiency of energy cooperation (Sec-

tion 3.3.2). The application of energy cooperation in SC is considered in Section 3.3.3.

3.1 Introduction

IoT systems play a significant role in forming SC, that are expected to be home to

most of the future society and can be defined as [70]: “well defined geographical areas,

where technologies such as ICT, logistics, energy production, and so on, interact to cre-

ate benefits to the citizens in terms of well being, easier and faster access to services,

inclusion/participation, environmental quality, and intelligent development”. The inte-

gration of ICT within SCs, in particular, IoT technologies, makes it possible to build

smart decision making systems based on real-time awareness, bringing together people,

processes and knowledge. All the smart system components have to be intelligently

interconnected [71].

IoT technologies are becoming a major driver for the industry and affect our ev-

eryday life through a number of services. For example, a 2009 survey conducted in

Republic of Korea has counted 228 types of smart services, classified in many categories

including, among others: administration, transportation, medical care, environment,

crime and disaster prevention, education, tourism, sport, and work production [72].

Public Protection and Disaster Relief (PPDR) is key service encompassing critical ap-
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plications handling direct threats to life, individual or public health and safety, prop-

erty, and environment [73]. Often, these applications are highly dependable: service

outages have severe effects and should be avoided. This means that energy provision-

ing is key for the design of smart services. Yet, at the same time it is predicted that

50 billion IoT devices will be interconnected by 2020 [74]; thus, the reduction of their

energy footprint is also important.

Interconnected objects such household or office equipments [75], vehicles [76, 77],

human wearable sensors [78], and any other devices belonging to the IoT, in a SC can

be powered by external energy sources, i.e., either the power grid or renewable sources;

energy consumption represents a dynamic process that requires real-time energy man-

agement.

At the same time, paradigm for network intelligence dictates that smart manage-

ment also involves optimal cooperation schemes among nodes [79, 80]. While this has

been mostly applied to data communications, the emergence of converging network

schemes likely suggest that ICT will interlink independent systems at many levels. As

a result, "system-to-system" topology creates the possibilities for new Smart Cities’

scenarios. Cooperation capabilities in these contexts will help building new business

models, as linking smart cities objects in an optimal way will result in the increase of

individual and collective profit as well as sustainability.

IoT technologies enable network optimization by introducing a holistic perspective

where the network is considered as a multi-agent cooperative system. As a consequence,

we can seek to optimize the energy flows between smart city objects or, generally

speaking, energy management in a smart city, which can be considered as including

both wireless connected nodes and the power grid as an integral part of it, all included

in a common distribution space of information and energy. The outlined distributed

system can be considered as a system-of-system topology in which both information

and energy flows exist, and they mutually aid each other, so that the power connections

supports data communication links, and conversely data communication also carries

out the task of optimizing the energy topology.

However, energy management in large complex networks such as a SC requires

high computational capabilities for real-time optimization of energy flows, storage,

distribution, and consumption [81]. To manage energy flows and cooperation between

IoT nodes, an algorithm defining the optimal nodes to cooperate is needed. Usually,

this is handled by considering energy-aware clustering algorithms that try optimizing

the energy topology or decrease the number of links in the network [82]. This is because
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one of the issues limiting the overall network performance is the power limitation of

a communication node. To avoid a node failure, energy efficient clustering algorithms

were expansively studied in the literature, mainly focusing on the energy awareness

rather than energy cooperation. As an initial step for designing a clustering algorithm

with energy cooperation capabilities or with embedded energy topology, the study of

a scenario with a single cluster (one sink node) is needed.

3.2 Study of asymmetry in EH-WSN

We consider the management of an EH-WSN, inspired by game theory so as to obtain a

distributed multi-agent operation. In particular, we focus on asymmetries in the nodes

energetic capabilities, and how do they impact on the resulting performance. We frame

the problem as a repeated Bayesian game with asymmetric players and incomplete

information, where also the private information available at each node is asymmetric.

We find out that instead of a proportionally fair resource utilization, such a situation

ends up in an even more unbalanced situation, which leads to an inefficient management

where certain nodes are utilized beyond their fair share. Future research directions are

identified so as to recover information about asymmetries from the strategic gameplay

of the sensors and thus enable a better management.

The Section is organized as follows. The background in game theory approach

for WSN is provided in the Subsection 3.2.1. The system model is introduced in the

Subsection 3.2.2. Finally, the numerical results are demonstrated in the Subsection

3.2.3.

3.2.1 Background in game theory approach for WSNs

Nowadays, this still presents several challenges related to the design of efficient policies

for WSN [83], [84], since nodes are usually programmed to carry out tasks without

coordination. Depending on the rules set and making a decision on which sensor is

associable to a certain task, there may still be inefficiencies. No node can be active

to provide service, or multiple nodes are simultaneously active, which represents an

energetic wastage. This is further complicated by the lack of information about the

energy levels of the nodes. If a node is delegated to a task, but due to high battery

stress it gets depleted, that task will be unsolved even though another sensor could

have carried it out.
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One possible solution is to approach the problem from the standpoint of game

theory, so as to model multi-agent interactions with different objectives [85]. Relevant

to this paper, [86] applies a game theoretical approach for battery-powered WSN in

which the battery state of a sensor is private information; it computes a Bayesian Nash

equilibrium that is found and compared with the perfect-information game. In [87]

game-theoretic approach is applied to analyse multi-channel and multi-access schemes.

Authors prove the Pareto-optimality of the Nash equilibrium of the system and offer

an online-learning algorithm for the multi-channel and multi access system.

Authors of [88] consider the WSN as Bayesian for warning notifications to avoid

energy overuse in bottleneck nodes in a clustered solar-powered network. All these

papers consider a symmetric case, e.g., with identical battery storage.

In general, game theory is used for distributed optimization under the assumption

that nodes are all rational but they are also assumed to be identical and perfectly

coordinated, so that the functioning conditions are equivalent for all of them. In

reality, there may be several differences in environmental conditions for EH of each

sensor; for example, sensors can be equipped by solar panels with different orientations,

or they can significantly differ in their circuitry or battery type. Past activity history

of each sensor, and private information about the surrounding environment, also affect

the ability of the sensor to operate. Each sensor performs differently in managing

and transmitting data, and battery stress can change considerably. Another cause of

asymmetry can be that a sensor may or may not have complete information about the

energy level performance of other players.

Specifically, we study a case of non-identical EH sensors that perform some tasks

(transmissions of packets with variable size) assigned to a common service available

to all of them, but distributively managed as a participatory activity. We formulate

the analysis as a repeated Bayesian game with asymmetric players. We consider the

operation of the WSN by discussing the implications of asymmetries in the nodes’

characteristics for EH (such as a battery capacity), and also we investigate the effect

of having some information as private. One sensor updates its belief based only on the

history of the game, while the other makes its decisions taking into consideration the

information about the capacity and the energy state of the other player.

The ideal management of such a network would be to still exploit the nodes pro-

portionally to their capabilities. However, since the management is distributed and the

nodes do not have full awareness of the entire network, this principle may cease to be

applicable. Thus, we use the model of the Bayesian game with asymmetric players as a
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eil - level of energy of sensor l ∈ {j, k} at round i

emax
l - capacity of sensor l’s battery, with l ∈ {j, k}

el - average energy level of sensor l ∈ {j, k}

eiq - amount of energy required to transmit data at round i

ail - energy arrival at node l ∈ {j, k}, at round i.

In the repeated Bayesian game players care about the future consequences of their

current behaviour. Every stage a sensor has to decide whether to spend energy or store

it. In the former case, the level of energy in stage i+ 1 will be:

ei+1
j = max(0, eij − eiq + aij) (3.1)

If the sensor makes the decision to store energy, then the energy level of its battery

will be corrected only by an amount of the arrival energy and will be:

ei+1
j = min(eij + aij, e

max
j ) (3.2)

In a single-device system, sensor transmits only if the energy state of the battery is

greater than a threshold, or in other words, sensor j transmits, only if eij ≥ eth, where

eth is a given energy threshold [86]. If µj is a probability that the energy level of sensor

j is greater than its threshold in the i round, or in other words, a probability, that the

sensor has enough energy to transmit, then any µ̃j > µj will allow the transmission:




µj = 1 ej ≥ eth

µj = 0 ej < eth

(3.3)

If we consider the situation with several sensors in the WSN, the performance

analysis is to be distributed, and each sensor has to transmit less data in total, than

in a single-device system. It can be proven that in this case the threshold is corrected

by the probability that another sensor also transmits the data packet. Let µk be a

probability that the energy level of sensor k is greater than its threshold in the i round,

then:




µj = 1 ej ≥

eth
1−µk

µj = 0 ej <
eth

1−µk

(3.4)

We now consider that information about the opponent’s energy level and the ca-

pacity of the battery is not symmetric. We denote the information about the current

energy level eij and the capacity of the battery emax
j of sensor j as a common knowledge.
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The information about the energy levels of the sensor k (eik, e
max
k ) is private. There-

fore, sensor k is able to make decisions guided by the rules of the rational behaviour,

taking into consideration energy levels of both sensors. In particular, the probability

that sensor k should increase its transmission rate if the energy level of sensor j may

not be enough for transmitting an incoming data (ej ≥ eth) packet, and monotonically

increase if the value of the threshold increases over the energy level of sensor j in the

i−1 round. In addition, the higher energy level of the sensor k, then the higher proba-

bility that sensor k will transmit the data packet in the next round only if the battery

has enough resources or eq > ei−1
k . Based on this, we bring the following

Proposition 1. The strategy of sensor k in the i stage is:

µi
k = min([eq > ei−1

j ] ·
eq

ei−1
j

+ [eq > ei−1
k ] ·

ei−1
k

emax
k

, 1) (3.5)

where threshold eq is calculated by using the statistical information about the data

packets sent in the t = (0, ..., i− 1).

In comparison with sensor k, sensor j operates based only on the information about

its own energy level and the history of the game. Similarly with [89], we denote

the history of sensor k’ actions as hi
k = (ak(t0), ..., ak(ti−1)), where aj(ti) ∈ Ai =

{transmit, not transmit} is an action of sensor j. We identify the system of belief

updates for sensor j about the distribution probability of sensor k, i.e., sensor j updates

its belief about the energy state is under or below its threshold of the sensor k by using

Bayes rule from round i to i + 1. Let µj(θk|h
i) be belief of sensor j about the energy

level of sensor k at round i, where θk = eik ≥ ethk , then the posterior distribution will

take form:

µi
j(θk|h

i
k) =

µi
k(θ|h

i
k)P (ak(ti)|h

i
k)∑

µi
k(θk|h

i
k)P (ak(ti)|θk|hi

k)
(3.6)

where P (ak(ti)|e
i
k > ethk |aj(ti), h

i
k) is the probability that the action will be observed

in the i round. From this equation we see that to update the belief, the whole history

hi
k of sensor k has to be taken into account to calculate the probability a given action

ak(ti) is played.

In our game, both sensors choose an action simultaneously at the beginning of each

game. And sensor k make strategic decision expressed in equation 3.5, and sensor j

every round updates beliefs using the Bayes’ rule, as per equation 3.6. The performance

of such a system will be presented in the next section.
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Table 3.1: Simulation parameters

Parameters Values

Capacity of Sj 0..20

Capacity of Sk 20

Energy consumption in i round eq 1..5

Arrival amount of energy in i round aij, a
i
k 1..4

Energy arrival rate α, β 0.6

3.2.3 Simulation and numerical results

We consider a two - sensor WSN, described by parameters previously outlined. Sensors

have different battery capacities and the system has a single data queue that represents

the source for tasks to be performed by nodes. Each round a data packet arrives to be

transmitted with random energy consumption eiq.

We compare 2 scenarios of belief update and how they affect the fairness of the game.

Firstly, scenario 1 : when two sensors transmit randomly with probability µj = 0.5

and µk = 0.5 respectively, at each round i. We do not update beliefs about the

energy level of the opponent player. In scenario 2 we introduce the belief update rule

about sensor k and the behaviour rule of sensor k with respect to the energy levels of

both sensors, proposed in the previous section. We vary the value of emax
j to reveal

dependence between chosen strategy and fairness of the game. We expect that in the

ideal situation the sensor with bigger capacity transmits more data amount, or by other

words, to observe the directly proportional relationship between balance in throughput

and capacity of a sensor’s battery if the strategy is good enough.

Note that throughput depends on three components: amount of lost data, total

energy consumption for data transmitted by sensor k and j. Fig.3.2 demonstrates

three scenarios:

– ideal scenario, when no data loss is observed and each sensor transmits data

according to its capacity of the battery, for example if emax
j /emax

k = 0.5, then k and j

transmit 2/3 and 1/3 of total data amount respectively.

– scenario 1, in which each sensor transmits data randomly.

– scenario 2, in which one sensor transmits data according energy state and capacity

information of the opponent sensor, obtaining each time slot, and the opponent sensor

transmits data updating its belief about energy state of the first sensor by accumulating

the history hi
k of its transmission.

If sensors transmits data randomly with µk = µj = 0.5, when both sensors decide
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Figure 3.2: Numerical Results

to transmit the data packet or to drop it, we obtain an asymmetry reflected in the

results (Fig. 3.2: data losses curves). Moreover, scenario 2 demonstrates significantly

smaller amount of data losses in comparison with the scenario 1.

Furthermore, from Fig. 3.2 we can notice, that in both scenarios if emax
k /emax

j ≥

0.5, performance and data losses of both sensors are equalized. Both scenarios do

not provide the balanced performance, but scenario 1 is slightly more rational, when

emax
k /emax

j < 0.5, because sensor k takes into consideration in its strategy the capacity

of sensor j. In particular, if emax
k /emax

j = 0.1, then in scenario 1 40 % of total data

amount will be lost, 40 % is transmitted by the sensor with the higher capacity and

20% is transmitted by the sensor with the lower capacity. In scenario 2, 10 % of data

will be lost, 80 % will be sent by a sensor with the battery with higher capacity and 10

% with the lower capacity. Note that in the ideal situation it should be equal to 0 %,

95 % and 5 % respectively. Thus, the results found prove that the knowledge about the

asymmetric property of the system makes its performance more balanced and robust.

3.3 Energy cooperation

In this section, we investigate the possibility of integrating energy cooperation in IoT

SC scenario. To do so, we design the optimal energy topology in a communication

system, and analyse the effect of energy cooperation integration into the system with

interconnected smart services.

The Section is organized as follows. In the Subsection 3.3.1 we discuss models pro-

posed in the literature for energy cooperation features among communication nodes.
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The concept of energy topology based on energy cooperation is studied in the Subsec-

tion 3.3.2. Finally, the case with interconnected cooperating GWs is considered in the

Subsection 3.3.3.

3.3.1 Background on energy cooperation

Energy cooperation between wireless communication nodes was considered in [90],

where energy sources and relay nodes have EH capabilities and exploit them in an

attempt to maximize the end-to-end throughput. A few works have investigated en-

ergy cooperation among Base Station (BS)s. The authors of [91] propose an energy

allocation scheme for EH-BSs. A convex formulation is posed and the obtained en-

ergy allocation policies are compared against an assignment problem solved through

the Hungarian method. A similar scenario was considered in [92], where the set of

BSs send out the harvested energy through a common aggregator and the solution for

the optimal power allocation and energy transfer are obtained for a weighted-sum-rate

maximization problem. A framework with two EH-BSs that have limited storage was

studied in [93]. Two cases were considered: (i) the energy arrival profile is known in

advance; or (ii) energy arrival statistics is not available. Online, offline, and hybrid

algorithms were compared for both cases.

Lots of researches have been performed in investigating the energy cooperation

capabilities in Smart Grids, in particular including: optimal scheduling among smart

objects, optimizing both power expenditure and operation time [94]; optimal selection

and sizing of a smart building system [95]; scheduling for optimal energy consumption

to balance the load among residential subscribers [96]; analysis of the optimal power

flow for distributed systems, in particular for the electrical network [97]; cooperative

architecture for optimal voltage regulation [98]; optimal control of power exchange in

a network of microgrid based on the energy consumption information [99].

These papers are aimed to study the Smart Grid without considering the commu-

nication topology and energy consumption of a system. Conversely, we consider the

power consumption of a communication node to be also dependent on communication

parameters, such as the distance from a sink node and the size of the transmitted data

packets.

The efficient energy cooperation schemes that include both communication and

energy cooperation usually are considered in wireless power transfer scenarios. In

particular, in [100] authors introduced three techniques for multi-hop wireless energy

transfer: store and forward, direct flow and hybrid technique. In [101], the authors
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consider a non-cooperative scheme, where information/energy are transported via di-

rect links, then an optimization problem is formulated to minimize the transmitted

power under outage probability and harvesting constraints.

In contrast with these outlined techniques, we focus on the energy links designing,

which can be established not only with the near located nodes, but with any node

of a network. It caused by possibilities to have cooperation between any IoT device

that can belongs to different SC objects. Moreover, while in wireless power transfer

scenarios the communication links and energy links are simultaneous, in our analysis,

the energy and communication links are separated and not simultaneous.

3.3.2 Energy topologies in SCs

The definition of “energy topologies” based on energetic cooperation (exploitation and

exchange) between interconnected objects is an important feature that can be imple-

mented in SC. Based on the presence of EH devices, it is aimed at providing system-

wide sustainability by allowing exchange of stored and supplied energy in a similar

fashion to communication of data.

Our representation of a SC involves a network of nodes in which each element is

capable of energy transmission to another node in need, meaning that each node has

a possibility to manage the energy flows.

Designing the energy topology of connected IoT devices means establishment of

energy links (edges) in an optimal way on top of the communication topology (Fig. 3.3).

The system represents a biplex network, in which the two layer are the communication

and energy networks. The number of optimal connected neighbouring nodes defines

the energy topology of the system. The advantages of multiplex systems in SC, that

includes the energy cooperation between objects was shown in [102]. Authors claim

that considering a single type of static links is an oversimplification which can lead to

inability to solve certain problems.

The power imbalance could be reduced when the effective interaction between the

power supply and the demand is established. This was argued, for example, in [103],

where an energy demand management solution was proposed to mitigate the imbalances

between buildings. Authors proposed a scheme to analyse the energy potential of

buildings and possibilities for cooperation, taking into account charging/discharging

rate of buildings.

In this section, we investigate the possibility of integrating energy cooperation

within the design of the energy topology, or, in other words, by establishing energy
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Figure 3.3: Topology scheme

links between objects, in particular wireless smart nodes powered by harvesting re-

newable energy sources. To do so, we construct an optimization model, where it is

guaranteed that wireless nodes during operation will not be depleted and the optimal

energy transfer does not exceed the energy demands of other communication nodes.

We analyse how the system conditions can affect the energy topology, in particular,

EH capabilities, energy levels, and energy thresholds. We also identify some theoretical

limits for the system to guarantee complete sustainability, that is, nodes do not go out

of charge. Also we demonstrated the effectiveness of the model comparing it with the

system operation without applied optimization.

The rest of this section is organized as follows. In Subsection 3.3.2.1 we outline

our proposed optimization model for a WSN scenario with a single sink node. The

numerical results are discussed in Subsection 3.3.2.2 that shows the effectiveness of the

proposed model and the behavior dependency from different parameters.

3.3.2.1 System model

We consider a system consisting of N communication nodes and a sink node, whose

energy levels are denoted as ei, i ∈ {1...N}. V:=1,..,N is a vertex set of a complete

graph G = (V,A), where A is a set of edges (i, j) that represent the bidirectional energy

link between communication nodes i and j. Node i can receive energy from other nodes

as well as forward energy.

To provide a mathematical model to the problem, for each arc a ∈ A we introduce
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a boolean variable:

la :=




1 if and only if the energy link between nodes i and j is established,

0 otherwise

(3.7)

The total number of possible bidirectional energy links varies in the following limits:

0 6 L 6
(N − 1)N

2
(3.8)

where L =
∑N

i,j=1 lij is total number of links, lij = {0, 1} is a link between nodes i and

j, equals to 1 if the link is set.

Here is considered and applied the energy consumption of a communication node

caused by communication exchanges between nodes. As done by [104], [105], we take

into account that energy consumption of a connection between a transmitter and re-

ceiver depends on the distance between them. Increasing the distance from a sink

node will cause a higher energy consumption E for communication, according to the

following relationship:

E = a · k + b · k · dn (3.9)

where k is the information unit size (packet) expressed in bits, and d is the distance

between sink node and communication node. Parameters a and b are energy consump-

tion parameters of the transmitter electronics and transmitter amplifier, respectively.

In [106], the following parameters are suggested: a = 50, b = 0.1 and n = 2. We do not

consider the energy consumption of a sink node, as the aim of this work to investigate

the energy cooperation between communication nodes only.

The aim is to calculate the amount of energy links needed to provide sustainability

taking into account the energy consumption, energy arrival profile and a current energy

level of each object. In relevance with it, the optimization problem can be formulated

as follows:

N∑

i=1

N∑

j=1

wijlij → min (3.10)

such that

lii = 0 for i = 1, .., N (3.11)
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lij = lij for i, j = 1, .., N (3.12)

ei − (a · k + b · k · dni ) + fi +
N∑

j=1

lij · e
ij
tr > 0 for i, j = 1, .., N (3.13)

ei − (a · k + b · k · d)i + fi +
N∑

j=1

lij · e
ij
tr 6 c for i, j = 1, .., N (3.14)

N∑

i=1

li,j 6 α 6 N − 1 for j = 1, .., N (3.15)

N∑

j=1

li,j 6 α 6 N − 1 for i = 1, .., N (3.16)

where wij is a weight of an energy link. A larger distance between energy arrival

profiles and the communication consumptions results in a larger value wij. Value of

wij is normalized:

wij =

∣∣∣∣∣
eijn + f ij

n − (a · k + b · k · dnij)

(eijn + f ij
n − (a · k + b · k · dnij))max

∣∣∣∣∣ (3.17)

where f ij
n and dijn are differences in energy arrival profiles and distances to the sink

node between communication nodes i and j:

eijn = ei − ej (3.18)

f ij
n = fi − fj (3.19)

dijn = di − dj (3.20)

Constraints (3.11) and (3.12) are imposed to respect the requirements of the absence

of energy links of a node with itself and symmetry of energy links: if energy can flow

from object i to j, then automatically the energy can flow in opposite direction from j

to i and the bidirectional link is established.

Constraints (3.13) and (3.14) provide the sustainability of a system after optimiza-

tion, in particular, desirable energy levels range for each node. The first three terms

represent the initial energy level of a node corrected by transmitting energy consump-

tion and energy arrived to a node (fi - energy arrival profile). The last term represents
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the energy transferred to the node i from all nodes j. The energy level has to be larger

than 0 and do not exceed the battery capacity c, by this we guarantee that battery will

not be out of charge and the transferring energy will not exceed demand of the node.

The transferred energy from node j to node i depend to conditions:

• the node j has enough energy to transmit;

• the node j has to have more energy than node i:

• the energy level of node j has to be higher than a threshold.




etr = eth − ei if ej > ei and eth < ej

etr = 0 otherwise
(3.21)

Objective function enforces to create energy links between nodes that have bigger

energy potential differences. If nodes have similar energy arrival profile and consump-

tion, then the cost of established energy link will not be justified as not much energy

cooperation will be performed.

Another possible constraint arise if a node has to have a limited amount of energy

links. In this case, the number of links are limited by constraints (3.15) and (3.16),

where α is a maximum amount of allowed links, should not exceed N−1. Nevertheless,

in this section we do not investigate the situation in which a communication object has

such a limitation.

3.3.2.2 Numerical results

Numerical results were conducted with the aim to investigate the behaviour of an opti-

mization model solution for different types of systems: different distance distribution,

non-homogeneity in energy arrivals and in energy levels. As the second part of re-

sults we show the effectiveness of the optimization in comparison if no optimization is

applied to the system.

Optimization is performed using the CPLEX solver ver. 12.6.1. We assume that all

communication nodes have similar battery capacities.

As the first step, the matrices are defined: (di) ∈ R
1xn, (fi) ∈ R

1xn, (dijn ) ∈ R
nxn,

(f ij
n ) ∈ R

1xn , (wij) ∈ R
nxn, (eijtr) ∈ R

nxn, (ei) ∈ R
1xn, eth = conts, c = conts and

k = conts.

Matrices (di), (fi) and (ei) are random in ranges (0, 15), (0, 20) and (0, 200) respec-

tively, unless we vary their meanings in order to investigate these properties.
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Table 3.2: Simulation parameters

Parameters Values

Number of communication nodes (N) 50

Number of transmitted bits (k) 1

Communication parameter a 50

Communication parameter b 0.1

Communication parameter n 2

Battery capacity (c) 200
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Figure 3.5: Optimal amount energy links

vs. energy level distribution

Optimization parameters are presented in Table 3.2. Parameters a, b and n are

chosen similarly with [106]. We consider the simple case transmission of 1 bit (k = 1).

In the first optimization setup, we check the dependence of optimal amount energy

links and distance distribution (Figure 3.4). First, we set up an uniform distribution

in the range from (0, 5) till (0, 20). In this case, the distance range increasing leads

to increase of the energy consumption, therefore, a larger number of energy links is

needed to provide sustainability of the system.

In the second experiment, we shifted the distance distribution from (2, 5) to (10, 20).

By this, we guarantee that all communication nodes have a higher energy consumption,

therefore the optimal amount of energy links is higher than in the first case. The

optimal solution will not be obtained in case of distance increasing to dij > 20. Even

with strengthen of the energy topology some communication nodes will be depleted.

In particular, for range [0, 21] the solution is 13 links obtained by feasible relaxed

sum of infeasibilities.

Furthermore, we examine the dependency of the energy levels of the communication

nodes and the optimal energy topology design (Figure 3.5). The energy level is varied
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vs. energy arrival profile
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Figure 3.7: Optimal amount energy links

vs. energy threshold

in range from (0, 70) till (0, 200), where the highest value is the maximum capacity

of the battery. The increase in the energy levels of the communication nodes tends

to decrease the demand of energy links. If the energy level range is less than an

energy threshold, then no optimization is performed as no energy transmission is done,

according to equation (3.21).

Then the energy distribution was shifted from (35, 70) to (100, 200). This provides

on average a higher initial charge of the system and higher energy independence of

communication nodes. Due to it, in comparison with the first case, the optimal amount

of required energy links is halved; for ei > 120 no energy topology is required.

Energy harvesting capabilities of communication nodes in the model are defined

by an energy arrival profile. It is an important feature of a communication node that

defines the sustainability of a node. To examine this feature, we vary the energy

profile of each node in range from (0, 5) till (0, 70), as is shown in Figure 3.6. Notably,

increasing the average EH capability of a system will decrease the need for providing

additional energy topology links. In case fi > 70, a near-optimal solution is obtained,

in which the transmitted energy from one communication node to another is higher

than a real demand of a node, i.e., the capacity constraints (3.14) are violated.

Shifted distribution from (2, 5) till (35, 70) provides a higher energy capabilities of a

system in general and lower optimal amount of energy links. In both cases, for fi = 70

the solution is near-optimal in the plot.

Finally, the dependency of optimal energy topology and energy threshold was stud-

ied. Here, a simple case is considered in which all batteries have similar capacity and,

therefore, similar energy threshold, defined as a ratio from the battery capacity. For

threshold in range from eth = c/10 till eth = c/5, the increase of ratio leads in decreasing
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Figure 3.9: Amount of depleted commu-

nication nodes with/without optimiza-

tion

the optimal amount of energy links. However, the solution is always near optimal, low

values of energy threshold are accompanied by violation of outage constraints (3.13).

The same tendency is observed for eth > c/10, but in this case the optimal solution

is obtained and after optimization no communication nodes is completely depleted.

The optimization model was tested on systems of different size, i.e., the number of

communication nodes was changed (N 6 1000). From Figure 3.8 we can see that the

optimal amount of energy links and the system size has a linear behaviour. In case of

big size systems with high value of N , a clustering algorithm would need to be applied,

to obtain a nearly-optimal solution restricted to a cluster with tractable size.

Simulations were conducted without any optimization on top as comparison terms,

in order to analyse the effectiveness of proposed model. For each amount of communi-

cation nodes we simulate 100 instances, in which distances are in range (0, 15), initial

energy level is in range (0, 200) and energy arrival profile is in range (0, 20). The dis-

tribution of depleted communication nodes are shown in Fig. 3.9. With increase of

system size the amount of depleted objects and variance is increasing. For N = 100

the amount of depleted nodes is around 10− 30% of total object’s amount.

The optimization model was applied to the same simulated instances. In this case,

the number of depleted nodes did not increase of more than 1 node per instance.

In particular, for N = 20, 30, 40, 100 only in one instance out of 100 one node was

depleted. For N = 60, 70, 90 in two instances one communication node was depleted.

For N = 80 in three instances one communication node was out of charge; here, due

to the absence of an optimal solution, the near-optimal one was proposed. Applying
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optimization framework to the system significantly increase the sustainability of the

system.

3.3.3 Energy cooperation for sustainable IoT services within

SCs

In this subsection, we consider smart services to be interconnected among each other,

exploring an energy cooperation scheme to increase the energy sustainability and there-

fore reliability of IoT scenarios. Specifically, smart services are represented as GWs

that collect and process data from IoT sensors and objects. GWs are sink nodes that

can be thought of as routers in residential scenarios. Examples may be smartphones

that collect and aggregate data from wearable biomedical sensors, SC GWs collect-

ing pollution, traffic, or parking data from cameras or road-side sensing units [107].

Therefore, the power sources for IoT GWs are diverse and depend on the GW’s type

and/or the considered application. The GW energy consumption is related to its data

collection task and the transmission of the aggregated data to the base station via,

e.g., Time Division Multiple Access (TDMA) scheduling [108]. Hence, the overall GW

energy consumption depends on the amount of served IoT devices and their through-

put. Typically, GWs are connected to the electrical grid and equipped with a backup

battery to provide resilience to power network outages. In this work, we additionally

consider that GWs have EH capabilities. EH allows increasing the energy sustainability

of a system, but, at the same time it is a volatile energy supply due to its intermittent

nature. For instance, solar energy arrival is not homogeneous over a day and depends

on the solar panel size, deployment site, and orientation. Other works have also studied

this feature; for example, the solar GW CerfCube for habitant monitoring presented

in [109], consumes about 2.5W and is equipped with a solar panel that provides 60-

100W but only during sunny days; thus, also a rechargeable battery is added. The

authors of [110] propose an aquatic environmental monitoring framework where GWs

and sensors are powered by solar panels. The proposed design was successfully inte-

grated at Moreton Bay, Brisbane (Australia) to monitor a segment of the Australian

Coral Reef.

The main contribution of this subsection is the integration of these aforementioned

topics and technologies in a single optimization framework to come up with a SC

scenario that intelligently provides services, but at the same time is aware of its carbon

footprint and tries to reduce it as much as possible.
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The combination of energy cooperation with EH and IoT systems is the scenario

that is considered in this work, and is sketched in Fig. 3.10. IoT smart services are

represented by GWs. Some of them are only powered by solar panels (for instance,

applications in rural areas), termed offgrid. Others are also connected to the electrical

grid, i.e., ongrid (for example, GWs located in buildings). The energy arrival profile

for the solar energy is derived from [57]. Moreover, GWs are equipped with a backup

battery that allows energy storage and prevents the system from sudden operation

stops due to power grid outages.

All the GWs are connected to a central node called the energy router, which deter-

mines the energy allocation among GWs and implement the needed energy transfers.

This nomenclature is taken from [91]. Through the interconnected grid, energy is

exchanged from high battery level GWs to the almost depleted ones. The IoT GW

load is generated randomly in a range that includes different available communication

technologies that are suitable for IoT applications. Hence, an energy allocation opti-

mization problem is formulated, with the objective of prolonging the life-time and the

energy sustainability of the system.

Numerical results are provided to demonstrate the effectiveness of the proposed

energy cooperation policy. In particular, we investigate the impact of key parameters

on the system sustainability, including the number of GWs that are connected to the

energy router, the amount of data traffic generated by the field sensor nodes, and the

fraction of GWs connected to the power grid. We compare the energy cooperation

scenario with the case where no energy cooperation scheme is used, and compare the

average battery level for both scenarios.

This section is organized as follows. In Subsection 3.3.3.1, we outline our pro-

posed system model. The formulation of the energy allocation problem is presented

in Subsection 3.3.3.2. Numerical results are discussed in Subsection 3.3.3.3 that shows

the effectiveness of the energy cooperation scheme and the behavior dependency from

different parameters.

3.3.3.1 System Model

We consider a system of N GWs (set N ) with EH capabilities serving n associated

IoT devices. GWs are divided into two sets: connected to the power grid (set Nongrid)

and only depending upon harvested solar energy (set Noffgrid). Time t is slotted, i.e.,

t = 1, 2, . . . , with the slot duration implicitly assumed to be equal to one hour. The

GW energy consumption is modeled following [111]. The model takes into account the
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Figure 3.10: Energy framework for interconnected smart services.

energy consumption for receiving k bits of data and aggregating m messages:

ERX(k) = Eelec · k , (3.22)

Em(m, k) = m · k · EDA , (3.23)

where Eelec and EDA are the energy for the activation of the data receiving circuit

board and the energy required for the aggregation of a single message of unit length,

respectively. Hence, the total power consumption of a GW i ∈ N , Econ
i , amounts to

the sum of communication and aggregation terms, that is,

Econ
i = n · ERX(k) + Em(m, k) , (3.24)

where the energy consumption is eventually connected to the number of sensing nodes

n that are associated to the GW, and the individual data rate of each sensor node.

The energy transfer among GWs is performed following the same technique used

in [91]. Energy losses are considered and depend on the distance ℓ between source and

destination GWs, the resistivity of the wire connecting them (denoted as ρ, measured

in Ω mm2/m) and its cross sectional area (A, mm2) [112]:

R =
ρl

A
. (3.25)
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In the considered scenario, the connection among GWs is established via the en-

ergy router through a star topology. Different topologies shall be explored in future

work. For the numerical results, the distances between the energy router and GWs are

uniformly distributed at random, on a square area. Therefore, energy links between

GWs have also random length.

Solar EH is accomplished with a reference model inspired by a real-world device, i.e.,

Panasonic N235B PV technology, in which each solar module has a size of 0.44m2 and

is equipped with 25 solar cells. The SolarStat tool was used to obtain the energy arrival

profile p(t) across an entire day considering the city of Los Angeles as the deployment

site [57]. This energy profile is reshaped for each GW, taking into account different

installation environmental conditions for the solar panels, in particular attenuations

that may occur due to nearby buildings or trees. This variability in the EH model is

taken into account as follows. Ah
i (t) is the amount of harvested energy in time slot t for

GW i [91]: it depends on the energy profile p(t) (equal for all GWs) and r(0, s), which

is sampled from a uniform probability distribution function in the open interval (0, s),

where s represents the correlation among the harvested energy profiles across GWs:

Ah
i (t) = r(0, s)p(t) . (3.26)

The energy level of a GW battery changes at each time slot t due to energy arrivals

(EH process), the energy obtained from the power grid, the GW energy consumption

(reception and aggregation of data) and the amount of transferred energy among GWs.

Specifically, the battery level of GW i ∈ N evolves according to the following update

equation:

Ei(t+ 1) = Ei(t)− Econ
i (t) + Etr

i (t) + Ah
i (t) + Ag

i (t) (3.27)

where Ei(t) is the amount of energy at time slot t, Econ
i (t) is the energy consumption

calculated according to equation (3.24) in that time slot, Etr
i (t) is the amount of energy

to be transferred or received to/from other GWs (if a GW is an energy provider, then

Etr
i (t) < 0, otherwise, the GW is an energy consumer and Etr

i (t) > 0). Values Ah
i (t)

and Ag
i (t) represent the amount of energy harvested and obtained from the power grid,

respectively. For GWs i ∈ Noffgrid, which are not connected to the power grid, we have

Ag
i (t) = 0, if i ∈ Nongrid then Ag

i (t) > 0. The battery has a finite capacity Cmax and two

predefined thresholds: upper and lower, denoted by Cup
th and C low

th , respectively. These

thresholds are used to define the behaviour of a GW in terms of the amount of energy

that it is allowed to transfer or receive. Specifically, in each time slot t, GWs can

precisely define their roles in the energy cooperation scheme depending on the energy
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battery level and these energy thresholds. Hence, the behaviour of GW i ∈ N is set in

the following way [91]:




Ei(t) ≥ Cup

th GW i is an energy provider

Ei(t) < C low
th GW i is an energy consumer .

(3.28)

If a GW i ∈ Nongrid is an energy provider, the amount of energy that it can transfer

in time slot t is calculated as the difference between its current battery level and the

upper threshold, i.e., Ei(t) − Eup
th . Instead, if a GW j ∈ Noffgrid is identified as an

energy consumer, then the amount of demanded energy is obtained as the difference

between the lower threshold and its current battery level: E low
th − Ei(t).

3.3.3.2 Optimization Problem

To increase the sustainability of the system under study, we formulate an optimization

problem, whose solution consists of an energy allocation policy that transfers energy

from energy providers to energy consumers. The sets of energy providers and consumers

are denoted here as Nprov = {1, .., P} and Ncons = {1, .., C}, respectively. The available

energy to transfer from providers to consumers is captured by matrix B = [bij], where

element bij represents the amount of energy available from provider i to consumer j. If

i is an energy provider, element bij accounts for the energy that this node can transfer,

namely, Ei(t)− Cup
th , which is corrected by a coefficient kij depending on the distance

between i and j, which takes into account energy losses. Vector d = [dj] represents the

energy demand of energy consumers.

We now write an objective function that aims at reducing the imbalance between

energy demand and supply, so that energy is allocated (and used) as efficiently as

possible across the whole system. As we shall see shortly, a well balanced energy

allocation also reduces the overall energy that is purchased from the power grid. The

optimization problem is formulated as follows:

min
X

C∑

j=1

(
P∑

i=1

xijbij − dj

)2

(3.29a)

subject to: 0 ≤ xij ≤ 1, ∀i ∈ Nprov, ∀j ∈ Ncons, (3.29b)

C∑

j=1

xij ≤ 1, ∀i ∈ Nprov, (3.29c)

where xij ∈ [0, 1] are the decision variables, which represent the fraction of the available

energy bij that is allocated from provider i ∈ Nprov to consumer j ∈ Ncons, in matrix
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notation X = [xij]. The first constraint represents the fact that xij is a fraction of the

available energy bij, and the second one means that the total amount of energy that a

certain provider i transfers to consumers j cannot exceed the total amount of available

energy at this provider.

The optimal solution of the problem X
∗ = [x∗

ij] returns the optimal energy alloca-

tion between providers and consumers, meaning that any provider i can transfer energy

to more than one consumer j at a time, and any consumer j can receive energy from

multiple providers i. Due to the convex nature of the formulation, the problem can

be solved using standard methods, the Matlab toolbox CVX [113] has been used to this

purpose.

3.3.3.3 Numerical results

In this section, we numerically evaluate the proposed energy trading model. Simula-

tions are performed as follows: every time slot t, GWs energy battery levels are updated

following equation (3.27); then, every GW decides upon its energy role using equation

(3.28) and, after that, matrices B and D are calculated. Finally, the solution X
∗ of

the optimization problem in equation (3.29) is found and the energy transfer among

GWs is performed thanks to the energy router, see Fig. 3.10. The numerical results

that follow show a performance comparison between two scenarios: system with and

without energy cooperation.

For the simulations, the sensor node data rate is picked randomly in the range

[1 kb/s – 1Mb/s]. This rather wide range of data rates is selected to mimic the

diversity of technologies that are expected to coexist in future smart cities. A few

technologies that may be amenable for the provisioning of smart services are: SigFox

(< 0.1 kb/s) [114], LoRa - 0.3 − 50 kb/s [115], Z-Wave - 9.6/40/100 kb/s [116], NFC

- 106, 212, 424 kb/s [117], ZigBee - 250 kb/s [118], Bluetooth - 1 Mb/s [119]. GWs are

randomly distributed within an area of 1 km× 1 km and each GW is equipped with a

Li-Ion battery with capacity in the range [24.4 – 57.7]Wh. The remaining simulation

parameters are listed in Table 3.3.

To quantify the effectiveness of our energy cooperation model, we define the sustain-

ability ratio metric, representing the number of depleted GWs over the total number of

GWs in the system; the goal is to minimize this metric, reducing as much as possible

the number of GWs that run out of energy. The results in Fig. 3.11 are obtained using

|Nongrid| = 10, a random number of sensor nodes per GW in the range [1000 – 10000]

(see Table 3.3) and a data rate in the range [1 kb/s – 1Mb/s]. The figure plots the
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Table 3.3: Simulation parameters

Parameters Values

Number of deployed GWs N 20

Number of sensor nodes per GW [1000, 10000]

Energy per received bit Eelec 5 nJ/bit

Energy to aggregate m messages EDA 5 pJ/bit

Number of aggregated messages m 10

Cable resistivity ρ 0.023Ωmm2/m

Cable cross-section A 10mm2

EH correlation coefficient s 2

Energy battery capacity Cmax [24.4-57.7]Wh

Upper threshold Cup
th 70%

Lower threshold C low
th 30%

dynamical changes of the sustainability ratio values for the system over a day with and

without energy cooperation. When no energy cooperation is accounted for (termed

“Without EC” in the figure) the sustainability ratio is relatively high (i.e., up to 50%

of the GWs run out of battery). When our optimization is used (“With EC”), no GW

runs out of energy across the entire day and this is due to two reasons: 1) energy rich

GWs transfer some of their excess energy to energy poor ones and 2) ongrid GWs assist

those that are offgrid, by transferring energy towards them whenever the energy that

can be harvested from the environment is insufficient.

The same simulation settings are used in Fig. 3.12, where the average GW battery

level is plotted across a full day for the two cases: with and without energy cooperation.

Without energy cooperation, the average battery level is higher from 6:00 pm to 9:00

am. In fact, during such hours the harvested energy from the sun is negligible and

the application of energy transfer among GWs reduces the battery level of all of them.

This does not happen without EC, where ongrid GWs maintain a high battery level

that on average is better than using EC during this time period.

The next figures show the role of some of the system parameters. First, we explore

the impact of the number of GWs that are connected to the energy router. The
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Figure 3.11: Sustainability ratio across an

entire day.
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Figure 3.12: Average GW battery level

across an entire day.
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Figure 3.13: Sustainability ratio perfor-

mance varying the number of GWs N .
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Figure 3.14: Sustainability ratio evalua-

tion increasing the number of ongrid GWs.

results in Fig. 3.13 are obtained using |Nongrid| = 10, a random number of sensor

nodes per GW in the range [1000 – 10000], and a throughput in the range [1 kb/s –

1Mb/s]. As expected, an increase in the number N of GWs deployed in the system,

without a corresponding increase in the number of ongrid ones, when EC is not applied

leads to a worse performance, i.e., the number of depleted GWs gets higher and the

sustainability ratio correspondingly increases. Nevertheless, the system becomes fully

energy sustainable applying EC even when N is equal to 200. The average battery

energy level in the system with EC is however smaller than without EC, due to the

energy losses in the energy transfer process.

In Fig. 3.14, we plot the sustainability ratio as a function of the number of GWs that

are connected to the grid. Results are obtained using the same settings as for Fig. 3.12.

As expected, increasing the number of ongrid GWs provides a gradual decrease of the
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Figure 3.15: Sustainability ratio varying sensor nodes throughput.

sustainability ratio when there is no EC. But increasing the ongrid GWs is especially

beneficial when EC is applied. In that case, as the number of ongrid GWs gets larger

than five, no energy GWs run out of energy any longer.

Finally, we study how the number of depleted GWs depends on the sensor nodes

data rate, which is spanning over the [0.1 kb/s – 10Gb/s]. In this case, we also explore

considerably higher data rate values as our aim is to identify the full extent of the

benefits provided by EC. The remaining parameters are N = 20, |Nongrid| = 10 and a

random number of sensor nodes per GW in the range [1000 – 10000] is considered. The

results are presented in Fig. 3.15 and show that for the case without EC and a data rate

smaller than 10 kb/s the sustainability ratio is zero, therefore no energy cooperation

is needed for these values. However, in the range [10 kb/s – 10Mb/s], EC performs

better providing a gain of about 25%. If the data rate is higher than 10Mb/s, then the

system cannot be energy sustainable, and all GWs will be depleted, no matter whether

EC is used.

3.4 Conclusions

We consider a wireless sensor network consisting of two asymmetric sensors, powered

by batteries with different capacities. We investigate the role of asymmetries by means

of game theory. We focus on an unbalanced scenario, where, for example, one sensor

knows the asymmetric property of the system by knowing the energy state and the

77



capacity of the second sensor, whereas the other one does not know. We assume that

the ideal scenario for such a system is transmitting data by each sensor proportionally

to their battery capacities.

We study the interaction between sensors as an instance of a Bayesian game, iter-

atively updated to better estimate the prior. We obtained that if both sensors do not

take into account the asymmetric property of the system at all, then the system is less

balanced. The same happens if one sensor knows about the asymmetry and exploits it

in its strategy. In addition, we demonstrated that these strategies are not effective and

ignore the asymmetric property of EH-WSN if the relation between sensor’s capacities

is more than 0.5.

Further, we propose the energy cooperation scheme in SCs, in which the energy

flows from nodes with higher energy level, less energy consumption and with more EH

capabilities to the nodes that have lower energy arrival profile, more distant from a sink

node and more exploited. For this purpose, an energy topology is designed, in which

energy links are established among communication nodes. The priority is given to nodes

with higher energy potential differences. As every link establishment is associated with

costs, the energy topology has to be optimized such that no communication node is

depleted, and energy transmission does not exceed the demand of the interacting node.

Based on the proposed optimization model, we analyse the dependency of optimal

energy topology of a system from such factors as distance distribution of communication

nodes, EH capabilities of the nodes, and distribution of energy arrival profiles of each

node, selected energy threshold and energy level distributions. All these factors define

the optimal amount of energy links. We demonstrated that in the generated scenarios,

the system will have up to 30% of depleted nodes and embedded optimization scenario

helps to decrease the amount to almost 0.

Also, the energy arrival profile was formed for each communication node randomly,

with independent and identical distribution for all the nodes. The realistic energy ar-

rival profiles have to be integrated based on the chosen source of renewable energy, pos-

sibly including some correlation. Another possibility is to consider alternative energy

exchange models, based not only on the energy thresholds but on more diverse parame-

ters of each communication nodes. In relevance with energy consumption model, more

diverse data size has to be considered and other energy consumption models should be

applied and compared.

As an extension, we consider a SC scenario represented as a set of interconnected

IoT GWs that offer smart services by collecting and aggregating data from IoT sensing
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devices. GWs are endowed with EH capabilities, which in this study means that they

are equipped with a solar panel and an energy storage (rechargeable battery). Energy

cooperation is accounted for providing energy sustainability to the system through

the transfer of energy from GWs with a high battery level to those whose battery is

about to deplete. For this scenario, an optimal energy allocation was found, solving

a convex problem with the goal to reduce the imbalance between available energy

in GW batteries and energy demand in the system. We analyse the effectiveness of

the proposed energy allocation strategy, comparing it against the case where energy

cooperation is not allowed, and also checking the impact of several system parameters,

such as number of GWs that are connected to the energy router, the number of ongrid

GWs and the data rate of sensor nodes. Numerical results show that, with energy

cooperation, the system is fully energy sustainable for many system configurations,

showing a substantial improvement against a scenario where cooperation is not allowed.
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Chapter 4

Energy management for EH

IoT-systems deployed for critical

operations

In this chapter, we consider a special case, where the main performance metric of an

energy-harvesting IoT-system is AoI. AoI is a crucial parameter for the critical opera-

tion systems (automation, intelligent transportation and smart cities). We investigate

the optimal policy of an energy-harvesting IoT monitoring system, that with the given

energy budget minimizes the average AoI of a system with a backup information source.

We also extend this work to the case with multiple heterogeneous information sources.

4.1 Introduction

IoT is increasingly being deployed for critical operations such as factory and process

automation, intelligent transportation and smart cities [120]. Differently from other

networks that are generally characterized in terms of throughput and delay, a key

performance indicator for such applications is the AoI, which quantifies the freshness of

the destination’s knowledge about the status of the system being monitored [121,122].

For instance, in a smart driving systems, timely collecting of a traffic information and

other indicators by sensors mounted in a vehicle, is essential regarding the safety of all

road users. Another example can be a factory automation, where the real-time control

of some production parameters also requires timely delivery of status updates [123].

In this chapter, we focus on the EH communication systems. On one hand, the

strategy employed in such systems has to provide the timely delivery of status updates,

and on another hand, to balance the erratic energy arrivals from ambient sources
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of energy. We consider instead an IoT system that can exploit multiple sources of

information, each providing a different energy-age trade-off. For example, an IoT

device may exploit multiple sensors with different reliabilities and costs. Alternatively,

we may think of a terminal that can update the system status through either a cellular

technology, which guarantees reliability and high coverage, but is very expensive in

terms of energy, or a low-range energy-aware technology.

One might guess, that increasing the number of information sources, that monitors

the same underlying process of interest might be a solution to increase the robustness

of EH systems regardless the prompt deliveries of status updates. In this chapter, we

argue this statement by analysing the additional gain in reduction of average AoI by

adding more information sources in the system as well as how the quality of these

sources affects the system performance.

The chapter is organized as follows. The background in AoI is given in Section

4.2. The case with two information sources is studied in Section 4.3, and with multiple

sources in Section 4.4. The chapter is concluded in Section 4.5, where possible further

developments are also outlined.

4.2 Background in age-of-information

A growing number of papers investigate the evolution and control of AoI in energy-

harvesting systems [124–128]. The scenario of reference involves a device making op-

timal decisions about acquiring status updates depending on the energy cost and the

available battery level.

Multiple papers study the average AoI minimization with a single Energy Har-

vesting Source [125, 127, 129–138]. Very few papers are focused on average AoI with

multiple information sources. In [139, 140], authors considered a system, where inde-

pendent sources send status updates through a shared first come first serve M/M/1

queue to a monitor, and found the region of feasible average status ages for two and

multiple sources. Similarly, in [141] a system with n sources was considered to provide

status updates to multiple servers via a common queue. The authors formulated an

AoI minimization problem and proposed online scheduling policies. Another system

was considered in [142], where a single source node transmits status updates of two-

type to multiple receivers. Authors determined the optimal stopping thresholds to

individually and jointly optimize the average age of two types updates at the receiver

nodes. Authors in [143] proposed a multi-objective formulation for scheduling transi-
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tions in a system with multiple information sources that monitor different processes.

The objective is to balance the AoI of these different processes. Similarly, in [144] the

AoI minimization problem was also formulated for a system with multiple information

sources that monitor different processes, and a monitoring node that communicates

with the information sources through orthogonal channels. The authors proposed the

policy that converts the scheduling problem into a bipartite matching problem between

the set of channels and set of sensors.

In this work, we consider another types of multi-source systems, where the status

updates are generated by request of an energy-harvesting monitoring node from mul-

tiple heterogeneous information sources, that monitor the same underlying process.

Each source provides different energy-cost trade-off, which can provide status updates

through various technologies with different quality (freshness and/or reliability) and en-

ergy cost. Monitoring node optimizes the resulting AoI over time within a constrained

energy budget, based on the assumption about the reliability of information sources.

One of the possible framework for such a system is crowdsensing in which AoI can play

an important role in choosing a source to be updated from. In the crowdsensing system,

a crowdsource and smartphone users, that are exploited to provide sensing services, are

connected via cloud [145]. In this framework, a crowdsourcer sends the sensing task

description to the group of smartphone users, and receives from them sensing plans,

based on which the crowdsourcer performs a user selection.

We analyse different sets of heterogeneous information sources, and how the differ-

ent combinations of costs and reliabilities affect the resulting average AoI. Also, we

analyse if the increase in size of the information source set affects the overall perfor-

mance regarding the average AoI.

4.3 Average age-of-information with a backup infor-

mation source

We investigate policies to minimize the average AoI in a monitoring system that col-

lects data from two sources of information denoted as primary and backup sources,

respectively (Fig. 4.1). We assume that each source offers a different trade-off between

the AoI and the energy cost. The monitoring node is equipped with a finite size battery

and harvests ambient energy. For this setup, we formulate the scheduling of status up-

dates from the two sources as a Markov Decision Process (MDP), and obtain a policy
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slots with a unit slot length of arbitrary duration. At each time slot, the monitoring

node can receive a status update from only one of the sources. The status update from

the chosen source becomes available to the monitoring node at the beginning of the

time slot.

The monitoring node consumes different amounts of energy to receive a status

update from the two sources. We assume that the status updates provided by the two

sensors are of age either α or β, referred to as fresh and stale, respectively, with α<β.

For the sake simplicity, we consider only two possible age values α and β, which can

model, for example, useful and useless data packets. We assume that source i can

provide a fresh status update at each time slot with probability γi, i = 1, 2, and a

stale packet with probability 1− γi, such that γ1>γ2 for primary and backup sources,

respectively. The AoI at the monitoring node increases by 1 if no new update is

received.

The energy costs of requesting a status update from source i is denoted by ci,

i = 1, 2, where we assume c1>c2. Here c1, c2 ∈ Z
+ correspond to integer multiples of a

unit of energy.

Battery level b(t) is updated at each time slot depending on the energy harvested

in the previous time slot and the energy cost of receiving a data packet from one of

the sources:

b(t) = min{b(t− 1)−
2∑

i=1

ci · ✶(a(t) = ai) + e(t), B}, (4.1)

where e(t) ∈ {0, ē} denotes the harvested energy available to be used in time slot t, B

is the battery capacity, and ✶(x) is an indicator function: ✶(x) = 1 when x holds, and

✶(x) = 0 otherwise. We assume {e(t)}∞t=1 is an independent and identically distributed

(i.i.d.) binary random process with P (e(t) = ē) = λ.

The monitoring node makes a decision at the beginning of each time slot whether

to request a new status update or not, and if so, which source to request it from. We

seek the policy that minimizes the average AoI at the monitoring node by optimally

choosing the action to take at each time slot, accounting for the battery level and the

current age of information. We first formulate the problem as an MDP.

4.3.1.1 System model and problem formulation

An MDP consists of a tuple <S,A, P,R> of state space S, action space A, proba-

bility transition function P , and a reward or cost function R. In our problem, finite
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space of actions A includes requesting an update from either of the two sources (pri-

mary/backup) and remaining idle. We set A = {a0, a1, a2}, where a0 corresponds to

remaining idle, a1 updating from the primary source, and a2 updating from the backup

source.

Action ai is not allowed if b(t)<ci. This can be incorporated into the framework

with the same action space by imposing very high energy costs for action ai when

b(t) < ci, i = 1, 2.

Let δ(t) ∈ {1, 2, ..., δmax} denote the AoI at the monitoring node at time slot t,

where δmax is the maximum age in the system. Equivalently, we assume that having

a status information of age δmax, or any δ > δmax have the same utility. Depending

on action a(t), δ(t) can take one of the following values {δ(t − 1) + 1, α, β} . The

system state is described by the pair of variables s(t) = (b(t), δ(t)). Note that we have

a finite state space of dimension (δmax + 1)(B + 1). We set β as the maximum AoI,

i.e., β = δmax, beyond which increase in age becomes irrelevant. Accordingly, receiving

a stale status update is equivalent to not receiving a useful update.

P denotes the transition probabilities of the MDP, where P (s′|s, a) = Pr(s(t+1) =

s′|s(t) = s, a(t) = a); that is, the probability that taking action a at state s will lead

to a transition to state s′ in the following time slot. The transition probabilities for

our problem are given as follows for ai ∈ {a1, a2}:





P ((min{b+ē−ci, B},min{α, δ+1})|(b, δ), ai) = λγi

P ((min{b+ē−ci, B},min{β, δ+1})|(b, δ), ai) = λ(1−γi)

P ((b−ci,min{α, δ+1})|(b, δ), ai) = (1−λ)γi

P ((b−ci,min{β, δ+1})|(b, δ), ai) = (1−λ)(1−γi)

(4.2)

Note that, if the received status update is older than the currently available one,

then the monitoring node drops the new packet and keeps the previous status update.

We can conclude that if δt<α, then the optimal action is to remain idle, i.e., at = a0.

When the node remains idle, i.e., at = a0, the transition probabilities are given as

follows:





P ((b, δ + 1)|(b, δ), a0) = 1− λ b<B

P ((min{b+ ē, B}, δ + 1)|(b, δ), a0) = λ b<B

P ((B, δ + 1)|(B, δ), a0) = 1

(4.3)

The policy π defines an action a(t) at each time slot depending on the current state.
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The infinite-horizon time average AoI, when policy π is employed, starting from initial

state s0, is defined as [146]:

V π(s0) = lim sup
T→∞

1

T
❊

[
T∑

t=0

δπ(t)|s(0) = s0

]
. (4.4)

A policy is optimal if it minimizes the average AoI - V π(s0). The optimal infinite-

horizon average AoI for a starting state s0 is found by solving:

V (s0) = min
π

V π(s0). (4.5)

To solve this optimization problem, we can use the offline dynamic programming

approach adopting the Relative Value Iteration (RVI) algorithm described in [147]. In

the offline approach we model the state transition function based on the statistical prior

knowledge of the information sources’ reliability and environmental characteristics. The

RVI differs from Value Iteration (VI) by the value function of some state V (s∗) in each

update. In this case, the Bellman equation is defined as:

V n(s) = min
a∈A

(
δ(s, a)− V n−1(s∗) +

∑

s′∈S

P (s′|s, a)V n−1(s′)
)
, (4.6)

where V n is the value function, and s∗ is a fixed state chosen arbitrarily.

The optimal stationary deterministic policy, obtained by Algorithm 2, specifies the

decision rule that maps the current energy level and AoI to actions taken with prob-

ability one. In Algorithm 2, sp(V n − V n−1)<ǫ stands for the stopping criteria, where

sp(V ) = maxs∈S V (s)−mins∈S V (s). We run the RVI algorithm until the stopping cri-

teria holds. At that moment the policy π achieves an average-cost AoI that is within

ǫ · 100% of optimal.

4.3.2 Numerical results

In this section, we analyse the optimal policies for different settings, in particular, we

consider the cost ratios between the primary and backup information sources, reliability

of the sources, and the parameters of the EH process (λ, ē). We study the structure of

the optimal policy, and try to identify the added value in average AoI from employing

an extra information source in the system.
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Algorithm 2 Relative Value Iteration Algorithm

set v0(s) = 0, ∀s ∈ S

set n = 1, ǫ>0

repeat

n← n+ 1

for all s ∈ S do

vn(s) = min
a∈A

∑

s′∈S

P (s′|s, a)
[
δ(s′|s, a) + V n−1(s′)

]

V n(s) = vn(s)− vn(s0)

where s0 is a fixed state chosen arbitrary

end for

until sp(V n − V n−1)<ǫ

return argminV (s)

Table 4.1: Default parameters.

Parameters Values

Battery capacity, B 20

Maximum age in the system, δmax 30

AoI states, [α, β] [1, 20]

Amount of harvested energy per time slot, {0, ē} {0, 3}

Reliability of the primary source, γ1 0.9

4.3.2.1 Simulation parameters

System parameters that remain constant for all the numerical simulations are presented

in Table 4.1. The efficiency of the optimal policy is verified via simulations run over

T = 5000 time slots, and compared with a so-called aggressive policy [148]. The

aggressive policy (Algorithm 3) tries to always receive a status update whenever it has

sufficient energy in its battery, and goes for the expensive source whenever it can afford

it.

Denoting by δ̄mT the time-average AoI over T time slots at the m-th run of the

simulations, we consider the mean AoI δ̄T = 1
M

∑M

m=1 δ̄
m
T and its standard deviation:

st ,

√∑M

m=1(δ̄
m
T − δ̄T )2

M − 1
, (4.7)

over M = 1000 runs of the simulations for each settings.
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Algorithm 3 Aggressive Policy

set b(0) = 0, δ(0) = 0

for t = 1 : T do

if b(t)≥c1 then

b(t) = min{b(t− 1) + e(t)− c1, B}

if p≤γ1 then

δ(t)=α

else

δ(t)={β:δ(t−1)≥β; δ(t−1)+1:δ(t−1)<β}

end if

else if c2 ≤ b(t)<c1 then

b(t) = min{b(t− 1) + e(t)− c2, B}

if p≤γ2 then

δ(t)=α

else

δ(t)={β:δ(t−1)≥β; δ(t−1)+1:δ(t−1)<β}

end if

else

δ(t) = δ(t−1)+1,

b(t) = min{b(t−1)+e(t), B}

end if

end for

4.3.2.2 Cost Ratio

The relative value of an information source can be measured by the portion of the

states, in which the monitoring node chooses to exploit this source. To demonstrate

this, we vary the cost ratio among the sources, c2/c1, and study the optimal policy

obtained through RVI. We see in Fig. 4.2 that, when the cost ratio increases, the

number of states at which the backup source is utilized shrinks, and the monitoring

node opts to remain idle in most of the states. The disappearance of the backup source

from the optimal action set is more rapid, if it is characterized by low reliability, γ2

(see Figs. 4.2(a) - 4.2(c), 4.2(g) - 4.2(i)).

The relation between the average AoI and cost ratio is shown in Figs. 4.3 - 4.4.

Predictably, the optimal average AoI grows when the cost ratio increases, but it sat-

urates at a certain value, beyond which the backup source is not utilized at all. On
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��

���������
������
�������

(a) Cost ratio = 0.0, λ = 0.2,

γ2 = 0.2

��� ��� ��� 	�� ���� ���� ���� �	�� ����

������������

�

�

��

��

��

��

��

�
��

γ1�����
��γ2��������c1�������c2������λ��������ē����
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γ2 = 0.2
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(c) Cost ratio = 0.8, λ = 0.2,

γ2 = 0.2

��� ��� ��� ��� ���� ���� ���� ���� ����

������������

�

�

��

��

��

��

��

�
��

γ1�����
��γ2�����	��c1�������c2������λ��������ē����

���������
������
�������

(d) Cost ratio = 0.0, λ = 0.2,

γ2 = 0.8
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���������
������

(e) Cost ratio = 0.4, λ = 0.2,

γ2 = 0.8
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(f) Cost ratio = 0.8, λ = 0.2,

γ2 = 0.8
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(g) Cost ratio = 0.0, λ = 0.8,

γ2 = 0.2
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(h) Cost ratio = 0.4, λ = 0.8,

γ2 = 0.2
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(i) Cost ratio = 0.8, λ = 0.8,

γ2 = 0.2
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(j) Cost ratio = 0.0, λ = 0.8,

γ2 = 0.8
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(k) Cost ratio = 0.4, λ = 0.8,

γ2 = 0.8
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Figure 4.2: Illustration of the optimal policy for different energy cost ratios c2/c1.

the other hand, the average AoI increases quite rapidly at low values of the cost ratio.

Moreover, for low values of λ, i.e., low energy generation rate, the saturation of the
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(c) λ = 0.8, cost ratio = 0.8,

γ2 = 0.2

��� ��� ��� 	�� ���� ���� ���� �	�� ����

������������

�

�

��

��

��

��

��

�
��

γ1�����
��γ2��������c1�������c2������λ��������ē����
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(d) λ = 0.2, cost ratio = 0.4,

γ2 = 0.2
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Figure 4.6: Illustration of the optimal policy for different EH rates λ.

4.3.2.3 Energy harvesting

Another important parameter that impacts the optimal solution is the EH rate, λ.

With increasing λ the monitoring node has tendency to request an update rather

than staying idle (see Fig. 4.6). Furthermore, increasing EH capabilities enables the

monitoring node to request updates more often from the primary information source,

and reduces the utility of the backup source, which gradually disappears from the

optimal solution.

Some system configurations are characterized by having a ‘pocket’ region, e.g., see

Fig. 4.6(e) and 4.6(f). This situation is observed when the reliability of the backup

source is quite low and the EH rate is sufficiently high. In this case, the energy buffer

can recover in a short amount of time, which enables the monitoring node to request

an update from a primary source, instead of an extremely unreliable backup source.

The dependence of the average AoI on λ is demonstrated in Fig. 4.7. As expected,

the increase in the EH rate leads to a decrease in the achievable AoI.
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4.3.2.4 Reliability of information sources

In Fig. 4.2 we can also observe the evolution of the optimal solution as the reliability

of the backup source, γ2, increases. The increase in γ2 leads to an increase in the

number of states in which the backup source is queried. In other words, the utility of

the backup source also increases.

The dependence of average AoI on γ2 is shown in Fig. 4.8. As expected, the increase

in the EH rate decreases the achievable average AoI. However, if c2/c1 is high, then

the increase in γ2 does not severely affect the average AoI. As the backup source has a

high cost, then the primary source prevails in the optimal solution, and the reliability

of the backup source does not affect the average AoI significantly. If both the cost

ratio and the EH rate are low, then the backup source becomes more preferable as its

reliability increases. Therefore, in this case we observe a significant drop in average

AoI (see Fig. 4.8).

4.3.2.5 Efficiency evaluation

Finally, in Fig. 4.9 we compare the performance of the optimal and aggressive policies

in terms of the average AoI. The convergence time for both policies are similar, and

does not exceed 200 time slots.

We observe that the gap between the average AoI achieved by the aggressive and

optimal policies gets higher as the EH rate increases (Fig. 4.7), i.e., if the energy arrivals

to the system are relatively stable, then the aggressive policy can be as effective as the

optimal one. Similarly, there is no gain in average AoI if c2/c1 = 0. c2/c1 does not

significantly influence the relative performance of the optimal policy over the aggressive

one, since the gap remains relatively constant as a function of c2/c1 (Fig. 4.3 - 4.4).

Generally speaking, since the backup source is less expensive but also less reliable than

the primary one, the optimal policy tends to preserve energy when convenient in order

to use the primary source, while the aggressive policy would always use the backup

source whenever possible. Thus, the gap between the two policies shrinks as the backup

source improves its reliability. However, if c2/c1 increases, the gap remains larger.

4.3.2.6 Discussion

We observe that the structure of the optimal solution varies depending on the charac-

teristics of the environment and system parameters. In particular, we consider the EH

rate as an environmental characteristic; the reliability of the information sources and
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Figure 4.9: Average AoI vs. time for the aggressive and optimal policies.

the scheduling of actions to be taken (update from one of the sources or remain idle) at

a time slot based on current energy level and AoI of an available packet at the monitor-

ing node. We analyse the structure of the optimal solution for different cost/reliability

combinations, and compared the performance of the optimal policy with the aggressive

strategy.

The rest of this section is organized as follows. In Subsection 4.4.1, the system model

description, problem formulation and solution approaches are introduced. Numerical

results are presented in Subsection 4.4.2, providing a performance comparison between

the proposed solution and the aggressive policy.

4.4.1 System model and problem formulation

In this subsection, we focus on a communication system formed by a single energy-

harvesting monitoring node and n heterogeneous information sources, where each

source can take samples of the current status of the process of interest (Fig. 4.10).

The monitoring node can query these information sources to receive updates on the

status of the underlying process. These information sources may, for example, model

sensors with different technologies measuring the same process. Time is divided into

time slots of equal length, and we consider a finite session of T time slots. We assume

that the monitoring node can request a status update from only one of the sources in

each time slot. A received status update becomes available at the beginning of the

next time slot. We highlight two important dynamics at the monitoring node: energy

fluctuations and the AoI about the process of interest. The objective is to minimize
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The aforementioned dependencies do not carry any “physical meaning”, and were

chosen in order to investigate the impact of cost values on the average AoI. We expect,

that the fluctuations in cost values in the same range will not impact the results.

4.4.1.2 Age-of-information

The status updates provided by the information sources need not be fresh, i.e., with

zero age. Due to various factors, such as the sensing technology or the processing of

the measurements, we assume that the status updates provided by the sources may

have different ages when they arrive at the monitoring node. To reflect it, we assume

that the source nodes provide the status update to the monitoring node having ages in

the interval [α, β] (α<β), where α is the most fresh status update while β is the most

stale one.

The probability to receive a status update of age j from a source i, where j ∈ [α, β]

and i = 1, 2, ..., n, is denoted by γi,j. The probabilities to receive a status update in the

considered age interval [α, β] correspond to a geometric distribution as in Fig. 4.11.

The distribution depends to the value of the parameter p. The geometric distribution

provides the probability that the first success requires k independent trials, each trial

is with success probability p. In this case, the probability that the kth trial is the first

success is:

Pr(X = k) = (1− p)kp, k = 1, 2, 3, .... (4.8)

The distribution parameter differs for all information sources, and, therefore, de-

noted as pi, i = 1, 2, ..., n. In the introduced problem setup, the parameter pi reflects the

success probability to receive a fresh status update of age α from a source i: pi = γi,j,

where j = α. We assume that sources with a higher value of success probability to

deliver a fresh status update have a higher energy cost. We consider following values

of pi ∈ [pmin
i , pmax

i ] (Fig. 4.11):

1. Sublinear pi ≈ c2i

2. Linear pi ≈ ci

3. Superlinear pi ≈ log2 ci

Sublinear, linear and superlinear cases correspond to low, medium and high average

sources reliability in the system, respectively. The introduced cases investigate the
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Figure 4.11: Geometric distribution of status updates’ ages, with p = γi

impact of values of reliabilities on the average AoI, and serve to justify the obtained

results for various combinations of average values of costs and reliabilities.

4.4.1.3 MDP formulation

We aim to determine the policy that minimizes the average AoI at the monitoring

node. To achieve this, the monitoring node optimally chooses the action to take at

each time slot, that includes either to request an update from one of the information

sources at the beginning of each time slot, or to stay idle. This choice is made taking

into account the battery level and the age of the most recent status update available at

the monitoring node. We will show that this problem can be formulated as an MDP,

consisting of a tuple <S,A, P,R>.

The action taken by the monitoring node at time t is denoted by a(t), which takes

values from the finite action space A = {a0, a1, a2, ..., an}, where ai corresponds to

querying source i for a status update, i = 1, ..., n, and a0 to remain idle.

The system state is described by the pair of variables s(t) = (b(t), δ(t)). Let δ(t) ∈

{1, 2, ..., δmax} denote the AoI at the monitoring node at time slot t, where δmax is the

maximum age in the system. Equivalently, we assume that having a status information

of age δmax or any δ > δmax have the same utility. Depending on the decision a(t), δ(t)

is updated as {δ(t − 1) + 1, j}, j ∈ {α, α + 1, ..., β}. The energy level in the battery

e(t) evolves according to Eq. (4.1).

The transition probabilities for our problem are given as in Eq. (4.9) for ai ∈
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Figure 4.12: Dependency of a source’s cost and reliability

{a1, a2, ..., an}, j ∈ {α, α + 1, ..., β}.



P
[
s(t+ 1) = (min{b+ē−ci, B},min{j, δ+1, δmax})|s(t) = (b, δ), a(t) = ai

]
= λ(γi,j +

∑β

j=α γi,j[j == δ + 1])

P
[
s(t+ 1) = (b−ci,min{j, δ+1, δmax}})|s(t) = (b, δ), a(t) = ai

]
= (1−λ)(γi,j +

∑β

j=α γi,j[j == δ + 1])
(4.9)

Note that, if the received status update is older than the currently available one,

then the monitoring node drops the new update and keeps the fresher one.

When the node remains idle, i.e., a(t) = a0, the transition probabilities takes the

form as in Eq. (4.10):





P
[
s(t+ 1) = (b,min{δ + 1, δmax})|s(t) = (b, δ), a(t) = a0

]
= 1− λ b<B

P
[
s(t+ 1) = (min{b+ ē, B},min{δ + 1, δmax})|s(t) = (b, δ), a(t) = a0

]
= λ b<B

P
[
s(t+ 1) = (B,min{δ + 1, δmax})|s(t) = (B, δ), a(t) = a0

]
= 1

(4.10)

The values of the reward function depend on the action chosen at the monitoring
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node, and the age of a packet arrived to the monitoring node:

R(s(t+ 1)|s(t), a(t) = ai) =




j, j ∈ {α, α + 1, ..., β}, ai : i 6= 0 ∧ j < δ + 1

δ + 1, ai : i = 0 ∨ i 6= 0 ∧ j ≥ δ + 1
(4.11)

The problem is framed as a first-order Markovian dynamics (history independence),

where the next state only depends on current state s(t) and current action a(t):

Pr(s(t+ 1)|a(t), s(t), a(t− 1), s(t− 1), .., s(0)) = Pr(S(t+ 1)|a(t), s(t)) (4.12)

Similarly, the first-order Markovian reward process is applied, such that the reward

is specified by a deterministic function R(s):

Pr(R(t) = R(s(t))|a(t), s(t)) = 1 (4.13)

We find the optimal policy is optimal that minimizes the infinite-horizon average

AoI - V π(s). To solve this optimization problem, we use the offline dynamic pro-

gramming approach adopting the value iteration (VI) algorithm described in Section

4.3. The optimal stationary deterministic policy, obtained by Algorithm 2, specifies

the decision rules that maps the current energy level and AoI to actions taken with

probability one.

4.4.2 Numerical results

In this section, we analyse the optimal policies for different settings, in particular, we

consider the cost distribution of information sources, the source reliability distribution,

and the parameters of the EH processes (λ, ē). We study the added value in average

AoI of employing on extra information source in the system.

4.4.2.1 Simulation parameters

System parameters that remain constant for all the setups are presented in Table 4.1.

The efficiency of the optimal policy is verified via simulations run over T = 5000

time slots, and compared with a so-called aggressive policy. The aggressive policy

(Algorithm 4) tries to always receive a status update wherever it has sufficient energy

in its battery, and goes for the expensive source wherever it can afford it.

Simulated results for the optimal and aggressive policies are averaged over M =

1000 simulations. To demonstrate the results we plot the mean AoI at time slot t (δ̄t).

Default parameters for presented results are obtained for parameters as in Table 4.2.
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Algorithm 4 Aggressive Policy

set b(0) = 0, δ(0) = 0

for t = 1 : T do

for i ∈ A\{a0} do

if b(t)≥ci then ⊲ check for the availability of energy for updating from a

source i

b(t) = min{b(t− 1) + e(t)− ci, B}

j = α ⊲ counter for range of possible AoI values, j ∈ [α, β]

while j < β do

if p ∈ [γj
i , γ

j+1
i ] then ⊲ see Fig. 4.11

if δ(t−1)<j then ⊲ comparing of AoI of available packet at the

destination node and nearly received packet

δ(t) = δ(t−1)+1

else

δ(t) = j

end if

end if

break

j+ = 1

end while

end if

end for

if b(t)<min(C\{c0}) then

b(t) = min{b(t− 1) + e(t), B}

δ(t) = δ(t− 1) + 1

end if

end for

4.4.2.2 Markov model solution

The optimal solutions for different values of EH rate and cost/reliability combinations

a re presented in Fig. 4.13 - 4.15. If λ = 0.2, then the destination node requests

a status update only from the cheapest sources, denoted in Fig. 4.13 as sources 6-

8. If the reliability is sublinear, then the destination node only exploits the cheapest

source 8 for all cost combinations. The most desirable combination is when the cost

is sublinear (meaning that the average cost level of all sources is lower than for other
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Table 4.2: Default parameters

Parameters Values

Battery capacity, B 20

AoI states, [α, β] [1, 20]

Amount of harvested energy per a time slot, {0, ē} {0, 3}

Amount of devices in the system, n 8

Cost range, [cmin, cmax] [1, 16]

Reliability range, [γmin
i , γmax

i ] [0.1, 0.9]
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Figure 4.13: Illustration of the optimal policy for different energy cost/ reliability

combinations for λ = 0.2.
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combinations), and the reliability is superlinear (when the average reliability level is

higher in the system comparing with other combinations). In this case the device more

widely exploits other sources that are following the cheapest one (Fig. 4.13(g)). We

also would like to compare the solutions for two combinations, when the average cost

is higher (bad case) or superlinear and average reliability is higher or superlinear (good

case) (Fig 4.13(a)) and vice versa (Fig 4.13(i)). In the former case, the destination

node requests two cheapest information sources 7, 8 for an update, while in the latter

case, the destination node goes for the cheapest source 8. Therefore, the structure

changing of the optimal solution is more sensitive to the change of the average level of

reliability.

With the increase of EH rate, more sources are composed in the optimal solution.

For instance, in Fig. 4.14(a) there are three sources in the optimal solution, while

in Fig. 4.15(a) - four sources. With the decrease of average cost level and/or the

increase in average level of reliability, the same sources are requested for an update at

lower battery levels and exploiting more resources in the solution. Similar results are

observed for various values of ē.

The dependency of average AoI and EH rate for different cost/reliability combina-

tions is demonstrated in Figs. 4.16(a) - 4.16(c). In addition, the comparison with the

aggressive strategy is presented. For all three combinations of cost, the optimal average

AoI does not significantly differs, as well as for different average values of reliability.

This statement does not hold itself for average AoI obtained by adopting the aggres-

sive strategy in the destination node. With the decrease of average cost level, the gaps

between optimal solutions for different reliability combinations will increase. In other

words, with the decrease average cost of the information sources, values of the optimal

average AoI become more sensitive to source reliability values. With the increase of

EH rate, the performance of optimal and aggressive strategies almost equalizes. For

all cost combinations the reliability dependency is superlinear. But with the decrease

of average level of the sources’ reliabilities, the gap in performance between optimal

and aggressive strategies always increases for high values of EH rate. In other words,

if the reliability of sources is high enough, same as the EH characteristics, then the

aggressive strategy performs as well as the optimal one for any costs combinations.

4.4.2.3 Size of a network

Further, we analyse how the size of the system affects the performance regarding to the

average AoI for different values of EH rate, λ and energy arrival units ē. The analysis is
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Figure 4.14: Illustration of the optimal policy for different energy cost/ reliability

combinations for λ = 0.6.

performed for the linear dependency between number of devices and its costs same as

the linear dependency between receiving cost and sources’ highest possible reliabilities.

With the increase of the number of information sources, the optimal average AoI

has a tendency to decrease, the curves saturates, when number of sources n = 8, but

the biggest gain in performance is obtained when the system is of size n = 4. If the

EH rate is low (λ = 0.2 in the Fig. 4.17), then the increase in number of devices does

not provide any gain for the system performance, but with the increase of EH rate, the

gain increases with the increase of system size from n = 2 to n = 4. Similar statement
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Figure 4.15: Illustration of the optimal policy for different energy cost/ reliability

combinations for λ = 0.8.

holds when we vary the values of energy arrivals, ē.

If the destination node exploits the aggressive strategy, then we observe the contro-

versial behaviour: with increase of the system size, the performance is worsening, or, by

other words, the average AoI at the destination node grows. Moreover, lower is the EH

rate, higher the growth of the average AoI, or more inefficient is the aggressive policy

with growth of the system size. Similarly, for various values of energy arrival units ē,

with the system’s increase, the aggressive policy becomes more inefficient and average

AoI grows. If the EH rate is low, then the optimal policy requests a status update
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and demonstrated that the gain from the optimal policy increases as the EH rate

decreases or the backup source characteristics become worse (i.e., decreasing reliability

or increasing cost).

We have shown that employing an alternative source of information is justified when

the energy cost of requesting from the backup source is relatively low and its reliability

is high.

Most importantly, we demonstrated, that the further increase of system size does

not improve system performance, and optimal average AoI saturates in some point

(n = 8) for all values of EH rates and energy arrival units. Increase of system size in

case of adoption of aggressive strategy leads to increase of average AoI and also not

beneficial.
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Chapter 5

Summary and Future Directions

The limited life span of rechargeable batteries for IoT devices is one of the major lim-

itations to be confronted. Nowadays, the only feasible solution for prolonging battery

life a network of interconnected IoT devices is to harvest energy from surroundings

ambient sources. Incorporating energy-harvesting in IoT deliver many challenges and

aspects to be considered, such as:

• availability of ambient sources, that depends on the physical placement and mo-

bility of IoT devices

• design aspects such as determining the suitable energy source for the given ap-

plication, harvester type and energy storage.

• energy management, to handle the erratic energy arrivals as well as optimiz-

ing the device performance so as to manage the trade-offs between performance

characteristics (throughput, AoI, coverage, etc.) and energy.

This thesis focused on the development of sustainable energy management for

energy-harvesting communication systems, mainly considering the IoT scenarios. The

obtained results demonstrated the capability of smart management to deal with am-

bient sources of energy that are characterized of unstable energy arrivals randomly

distributed over time.

Chapter 2 studied non-ideal batteries, in particular charge recovery effect, and how

these aspects affect the battery outage probabilities. To do so, we constructed a Makrov

model of non-ideal battery with bi-dimensional energy levels. We discovered that charge

recovery severely affects the performance, as the apparent outage probability can be

significantly larger than that of real outage. We developed a simplified self-control

management for non-ideal battery, that decreases the number of apparent outage and

data losses events.
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For future work, it is possible to consider the situation where some information is

unknown or hidden (imperfect state of charge knowledge). Another possibility for the

future work is to generalize the regulation of the µ parameter of Self-turning Control

Systems (STC). STC systems are based on the derivation of the parameters to adapt

and achieve an optimal state of a change of parameters in situation of unsteady external

conditions, which is possible to realize by parameter value estimation based on recorded

statistical information. These considerations may shed new light on the possibility to

design a fully autonomic sensor device that is not only capable of energy harvesting,

but also to exploit it at its fullest to reach a true energy independence, which would

be key to guarantee successful and durable IoT applications.

Finally, within this chapter, we explored the implementation of different sampling

strategies for the practical EH data-logger, that prevents packet delivery failures and

simple enough to be implemented on the low complexity hardware. The proposed

strategies balances the unstable energy arrivals, and improves the performance of state-

of-the-art DDASA.

Chapter 3 is focused on multi-device scenarios. We studied the system with non-

homogeneous (asymmetric) sensors in terms of energy harvesting capabilities and size of

energy buffers. We examined the system performance for the three scenarios: random

transmissions; transmissions that are proportional to energetic capabilities (bench-

mark); transmissions based on the knowledge of one node about asymmetric property

of the system, framed as a Bayesian game with incomplete information. We found

out, that the latter scenario is the most energy balanced, and the performance in this

scenario is close to the benchmark performance.

For the future work, it is useful to consider asymmetries not only in the battery

capacity, but also in energy arrival rates, leakage rate and other parameters. Another

possibility is to develop appropriate rules of interaction between asymmetric sensors

in EH-WSNs with the proportion of performance close to the ideal scenario, meaning

that each sensor transmits data proportionally with its battery capacity.

Further, we considered the energy cooperation as a way to overpass system energy

asymmetries. In particular, we proposed to design an energy topology, that connects

the communication nodes with energy links. The optimization problem is formulated

in a way such that no communication node is depleted. Integration of energy topology

with embedded energy cooperation significantly decreases the amount of depleted node

in a system from 30% of depleted nodes to almost 0%. Similar result were obtained

for the SC scenario, where the interconnected smart services represented by GWs are
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interconnected via Smart Grid.

To extend the present results to more general cases, we remark that we focused on a

single cluster case, with just one cluster head/sink. As future work, clustering schemes

could be considered with embedded energy cooperation capabilities of EH multi-hop

wireless networks. The assumption about homogeneity of a system has to be relaxed,

therefore in the clustering scheme batteries capacities and energy thresholds have to

be individual for each node.

Chapter 4 instead is focused on the systems, where the main performance metric

is AoI. We considered a system with an EH monitoring node that can request status

updates from two or more heterogeneous information sources. The objective is mini-

mization of average AoI. The problem was formulated as an MDP. We analyzed the

optimal solution depending on values of reliabilities of information sources, energy costs

of requests and EH rate. The main conclusion is that an increase of the system size

does not improve the performance in terms of decreasing of average AoI. For the future

work, we propose to design learning algorithms, where the environmental parameters

and information sources characteristics are considered as unknown parameters to be

learned through automated procedures.
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