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A mia madre



”Allora ho mirato tutta l’opera di Dio
e ho visto che l’uomo non può arrivare a scoprire
tutto ciò che si fa sotto il sole
anche se l’uomo si affatica a cercarne la spiegazione,
non può scoprirla
ed anche se il saggio pretende di saperla,
non può tuttavia conoscerla”.

Qo 8:17

”Distruggerò la saspienza dei sapienti
ed annullerò l’intelligenza degli intelligenti.
Non ha forse Dio dimostrato stolta
la sapienza di questo mondo?
Se qualcuno tra voi
si crede un sapiente in questo mondo,
si faccia stolto per diventare sapiente;
poiché la sapienza di questo mondo
è stoltezza davanti a Dio”.

1 Cor 1:19, 3:18



Riassunto

La misura effettuata in questa tesi concerne l’estrazione della percentuale di eventi in cui un quark pesante viene
prodotto nel contesto di collisioni elettrone-protone profondamente anelastiche. L’insieme di dati analizzato, cor-
rispondente a circa 130 pb−1, è stato raccolto dal rivelatore ZEUS, situato in uno dei punti di interazione del collisore
HERA ad Amburgo, durante l’anno 2005.
Le percentuali misurate sono direttamente collegate alla struttura del protone, descrivibile tramite il formalismo delle
funzioni di struttura, ed in particolare di F2. L’identificazione di eventi in cui si produce un quark pesante è avvenuta
tramite il metodo del parametro d’impatto: la correlazione tra vita media degli adroni prodotti nell’adronizzazione
dei quark pesanti e proprietà geometriche delle relative tracce consente infatti di distinguere la produzione di sapori
pesanti dal fondo da quark leggeri.
L’utilizzo di questo metodo ”topologico” ha previsto un massiccio impiego del rivelatore di Micro Vertice al sili-
cio dell’esperimento ZEUS. Quest’essenziale componente del sistema di tracciameno del rivelatore ha costituito la
principale miglioria realizzata nella seconda parte del periodo di presa dati dell’esperimento. Per il raggiungimento
dell’obbiettivo fisico dell’analisi si ha fatto profondo affidamento sulle sue prestazioni e sulla sua affidabilità; pertanto
una parte consistente del lavoro è stata rappresentata da studi di fattibilità, raffinamenti e successive ottimizzazioni.



Abstract

The estimation of the fraction of events in which an heavy quark is produced in the deeply inelastic electron–proton
collisions is the measurement performed in the present analysis. The analysed data sample corresponds to about
130 pb−1 collected during the years 2004-2005 by the ZEUS detector, located in one of the interaction points of the
HERA collider in Hamburg.
The measured percentages are directly related to the proton structure, formally encoded by the contribution of the
heavy quarks to the structure functions F2.
The tagging of the events in which an heavy quark is produced is achieved by means of the Impact Parameter method.
The correlation between the lifetime of the hadrons and the geometrical properties of the relative tracks makes possible
to pick out the heavy flavours production form the background.
This kind of ’topological’ method makes an extensive use of the silicon Micro Vertex Detector (MVD). This essential
component of the tracking suite of the ZEUS detector has been the major upgrade realized in the second half of the
ZEUS experiment data taking period. The achievement of the physical goal has strongly leaned on its performance
and reliability, so a considerable part of the work consisted in feasibility, refinement and optimization studies.





Introduction

Experimental results in the field of High Energy Physics are currently interpreted in the framework of the Standard
Model of particle physics (SM). This theory predicts matter to be made up of elementary constituents: quarks and
leptons. Six kinds of quarks are present being different in virtue of the quantum number called avour. From the
lightest to the heaviest they are called: up, down, strange, charm, beauty (or bottom) and top. Six leptons exist as well,
three being electrically charged, the electron (e), muon (µ) and tau (τ ) and three being neutral (neutrinos: ν e νµ ντ ).

The formalism of the SM provides a unified description of the electromagnetic and weak forces. The strong forces
are described by the part of the theory called Quantum CromoDynamics (QCD ). Each interaction is mediated by
specific particles called vector bosons, the massless photon and the massive W and Z 0 for the electro–weak force and
the gluon for the strong force. QCD describes how quarks are bound together to form hadrons. The quarks are not
detected as free particles but they are always bound with an antiquark to form mesons (as the pion or kaon) or with
two other quarks to form baryons (as the proton and the neutron). The quark masses range from few MeV for the up
quark to hundreds of GeV for the top quark. These values are not predicted by the SM.

All the particles needed by the SM have been detected by the experiments except the so called Higgs boson which
is responsible for the generation of the mass. The search for this particle as well as other particles appearing in
extensions of the SM is the main motivation for the collider with the highest centre–of–mass energy ever realized, the
Large Hadron Collider at CERN in Geneva.

Ordinary matter is essentially composed by protons, neutrons and electrons. Protons and neutrons are built by up and
down quarks. The charm, beauty and top quarks are generally called heavy quarks, since their mass is larger than the
energy scale at which the quarks are confined into hadrons, Λ ∼ 250 MeV. In nature at present, heavy quarks are only
produced in high energy collisions, e.g. in the interactions induced by cosmic rays, and their existence is ephemeral.
Hadrons containing heavy quarks are not stable. They decay very rapidly to lighter hadrons and leptons in about 10 −12

s. Therefore, to study their properties they are produced in a controlled environment in which their decay products can
be detected, e.g. particle accelerators and detectors.

Generally speaking, heavy quark production in deep inelastic scattering (i.e. at high virtualities of the exchanged
photon) is calculable in QCD and provides information on the gluonic content of the proton which is complementary
to that obtained from other measurements (as from the measurements of the scaling violation of the proton structure
function). In addition, the scale of the hard scattering may be large relative to the mass of the heavy quark, thus
allowing to study whether and when to treat the heavy quark as a massless parton.

Nowadays, heavy quarks are produced in several experiments of high energy physics. Production and decay properties
of the heavy quarks are extremely interesting. Decays of both c and b-hadrons are used to measure the violation of CP
symmetry, a combination of two symmetry transformations: the charge conjugation (C) which transforms a particle
in its antiparticle and the parity (P ) which is equivalent to reflection in space. Indeed two ”factories” of B mesons,
PEP II at SLAC (USA) and KEK B at KeK (Japan), have confirmed CP violation in the B system.

Heavy quark production also provides an excellent ground to test the predictions of QCD. This interesting aspect of
heavy flavour physics is faced by this thesis: testing the different behaviour of beauty or charmed hadrons is the main
way in order to get information about the reliability of the perturbative QCD calculations, on threshold effects and
on highr order corrections. It is generally believed that the mass of the beauty quark, being around three times larger
than that of the charm quark, allows perturbative QCD predictions to be more reliable. Due to a phenomenon called
“asymptotic freeedom” the strong force becomes, in a certain sense, “less strong” in the presence of a large energy
scale (the beauty quark mass in our case) and thus the mathematical approach used in the calculations is on a firmer
ground.
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In the last years the study of b-quark production has been an intriguing topic since several experiments at proton-
antiproton (pp̄) colliders (like UA1, CDF and D0) have measured production rates higher than those predicted by
the most precise QCD calculations available. Similar measurements are also performed in γγ processes at electron-
positron (e+e−) colliders (as LEP) and at the HERA electron-proton (ep) collider. Also in these very different en-
vironments QCD seems to be underestimating beauty production. As we will discuss in this dissertation, the correct
description in terms of QCD of the b-quark production rate is still on its way towards a complete clarification.

The purpose of this dissertation is to perform an original measurement of beauty and charm quark production in ep
collisions at HERA.

HERA (Hadron Electron Ring Anlage) was the first and so far only ep collider ever built. At the centre–of–mass energy
available at HERA,

√
s = 318 GeV, the cross section for beauty production is much higher than at the previous fixed–

target experiments, having centre–of–mass energies two orders of magnitude lower: there, beauty production could
not be observed. Heavy quarks production in ep interactions proceeds through two main processes: deep inelastic
scattering, where the virtuality of the exchanged photon goes from some GeV 2 to the kinematic limit of 105 GeV 2 ,
and photoproduction processes, in which the exchanged particle is an almost real photon, whose virtuality has a mean
value of ∼ 10−3 GeV2.

The data sample used for this analysis corresponds to an integrated luminosity of 130 pb−1 collected by the ZEUS
experiment in a period between the end of year 2004 and year 2005.

***

This dissertation has the following structure.
In Chapter1 we give an introduction to the theoretical background of the ep collisions, with particular emphasis on
the theory of the heavy quark production in the contest of QCD and phenomenological model for the hadronisation.
An overview of the main experimental results on heavy quark production at HERA will be also reported.

In Chapter 2 the HERA collider and the ZEUS detector are presented, with particular attention to the detector com-
ponents directly involved in this analysis: the inner tracking devices, the Calorimeter and the LUMI monitor, together
with an illustration of the event generator structure and the detector simulation.

In Chapter 3 the physics goal of this analysis is presented and the measurement technique are illustrated. The physical
observables and the experimental tools to deal with are here described in details.

Chapter 4 illustrates the analysed data sample, in terms of data or Monte Carlo events. A brief description of the
Monte Carlo event generators used in this work is also reported, highlighting features and settings for each of them.
The selection criteria and the reconstruction methods for DIS events are then illustrated and motivated. Particular
emphasis is put on the track quality requirements, since they play a fundamental role in the performed measurements.
Finally, the agreement between data and Monte Carlo predictions is presented with some control distributions.

To the physical results is dedicated the whole Chapter 5. The fit techinque, its implementation, sensitivity and stability
are described, then the main results of the analysis are reported together with the values obtained. The measured
quantities are directly compared with an analogous result obtained with the D ∗ mesons, previously published by the
ZEUS Collaboration. The different sources of systematic errors are also discussed.

Then, in Chapter 6, one finally summarizes what has been done and some conclusions are drawn.
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Chapter 1

Theory

In this chapter the theoretical framework for this analysis will be described. Starting with a short introduction into
the Standard Modelof particle physics the properties of electron proton scattering, in particular the deep inelastic
scattering, will be characterized. An overview of QCD, the theory of strong interactions, will follow. The production
of heavy quarks and its relevance as a precise test of QCD is outlined. Finally the experimental results concerning
heavy flavour measurements will be reported

1.1 The Standard Model

The Standard Model (SM) [1, 2] of particle physics is a theory to describe the elementary particles and their interac-
tions. In the SM, all matter is made out of two kinds of elementary particles: leptons and quarks and their anti-particles,
spin-1/2 fermions. They are grouped into three generations. The leptons are: electron with electron-neutrino, muon
with muon-neutrino and tau with tau-neutrino. The quarks are similarly ordered into up (u) and down (d), strange (s)
and charm (c) and beauty (b) and top (t) (see Tab. 1.1).

Generations Interactions
el.magn. weak strong

Leptons
(

e
νe

) (
µ
νµ

) (
τ
ντ

)
−1
no

yes
yes

no
no

Quarks
(

u
d

) (
c
s

) (
t
b

)
+2/3
−1/3

yes
yes

yes
yes

Table 1.1: The fundamental particles in the Standard Modeland their interactions.

These particles interact by three fundamental interactions, described by exchanges of (virtual) gauge vector bosons
(see Tab. 1.3). Gravitation is not incorporated into the Standard Model.
The group structure of the Standard Model is

SU(3)C × SU(2)L × U(1)Y , (1.1)

where U(n) denotes the group of all unitary n × n matrices and SU(n) is the group of all unitary n × n matrices
with determinant 1. The weak and electromagnetic interaction are unified in the gauge group SU(2) L × U(1)Y .
The masses of the exchange bosons of the weak interaction are described by a process called spontaneous symmetry
breaking. The masses are [3]: MW = 80.43 GeV and MZ0 = 91.19 GeV1. All charged particles can exchange
virtual photons, the mediators of electromagnetism, described by quantum electrodynamics (QED). The strong force
is described by quantum chromodynamics (QCD) as a SU(3)C gauge group. The charge of the strong force, denoted
as color, is carried by the massless gluons. Each quark has a color state assigned, a linear combination of three colors

1in this thesis the convention c = 1 and = 1 is used, unless stated explicitely otherwise
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particle mass/ MeV
quarks u 1.5 to 4

d 4 to 8
s 80 to 130
c 1150 to 1350
b 4100 to 4400
t 174300± 5100

leptons e 0.51100
µ 105.66
τ 1777.0
νe < 0.003
νµ < 0.19
ντ < 18.2

bosons γ < 6·10−20

g 0
W± 80425± 38
Z0 91188± 2

Table 1.2: Masses of Standard Model particles.

and anti-colors. Bare quarks are not seen experimentally, all particles observed are colorless doublets (quark and
anti-quark) or triplets (three quarks). The doublets are called mesons, the triplets denoted as baryons 2. If one of the
quarks or gluons carrying color is, in a hard interaction, kicked out of the meson or baryon, quark anti-quark pairs are
produced in order to keep the resulting particles colorless. Leptons do not carry any color and are not directly affected
by the strong interaction. The weak interaction affects all quarks and leptons.

Interaction boson QEM related group typical coupling
strong 8 g 0 SU(3)C 1

el.magn. γ 0 SU(2)L × U(1)Y 10−2

weak
{

Z0

W±
0
1 SU(2)L × U(1)Y 10−6

Table 1.3: The fundamental interactions in the Standard Model. The strength of the interactions is given by their
couplings at very low energies E % mp.

1.2 Kinematics of ep-scattering

In the Standard Model the interaction between particles like electrons and protons can be described by the exchange
of a vector boson. In the case that the exchanged boson is a photon (γ) or a Z 0 the interaction is called neutral current
scattering (NC); if the boson is a W ± the reaction is called charged current scattering (CC) (Figure 1.1).

The four-momenta of the incoming and outgoing electron are denoted k and k ′ respectively, the momentum of the
proton is denoted P . The exchanged boson has the four-momentum q, given by

q = k − k′. (1.2)
The scattering is described by the following variables:

Q2 = −q2 (1.3)
s = (k + P )2 (1.4)

y =
P ·q
P ·k , 0 ≤ y ≤ 1 (1.5)

x =
Q2

2P ·q , 0 ≤ x ≤ 1 (1.6)

2also states of five quarks, called pentaquarks may have been observed [4].



Figure 1.1: Electron–proton scattering in Neutral Current (NC) (Left) and Charged Current (CC) (Right) processes.
The four-vectors of the particles are indicated in parentheses.

with Q2 as the virtuality of the exchanged boson. s is the total center-of-mass energy squared, the inelasticity y
describes the relative energy transfer from the lepton to the hadronic system in the proton rest frame. x is called
Bjørken scaling variable. In the Quark Parton Model (see Sec. 1.3.2) x can be interpreted as the fraction of the proton
momentum carried by the interacting parton. In the case the proton and electron masses are neglected Equation 1.4
and 1.5 can be simplified to:

s = (k + P )2 ≈ 2k·P (1.7)

y =
P ·q
P ·k ≈ 2P ·q

s
(1.8)

(1.9)

and the boson virtuality Q2 can be expressed as the product of x, y and s:

Q2 = sxy. (1.10)

The center-of-mass energy
√

s is fixed at HERA to a value of 318 GeV by the beam energies. Thus only two of the four
variables are independent. The variable W , the invariant mass of the hadronic system recoiling against the scattered
lepton, can be expressed as

W 2 = (P + q)2 = P 2 + q2 + 2P ·q ≈ −Q2 + ys. (1.11)

Scattering processes are experimentally divided into two regions of phase space. Events with a virtuality of the
exchanged photon Q2 ≈ 0, i.e. quasi-real photons, are classified as photoproduction (PHP) events. Events of Q 2

above a few GeV2 and W 2 ( m2
P (with the proton mass mP ) are referred to as deep inelastic scattering (DIS).

1.3 Deep Inelastic Scattering

This thesis focuses on heavy flavour production in neutral current deep inelastic scattering (NC DIS). The term deep
refers to Q2 ( m2

P , whereas inelastic means W 2 ( m2
P . The process can be seen as the probing of an object (the

proton) with very short wavelength (of the photon) to detect very small details (quarks and gluons) of the object. The
Q2 range at HERA up to about 40000 GeV2 is equivalent to a resolution of 1/1000 of the proton radius, applying
λ ≈ !c/

√
Q2 = 10−18 m.



1.3.1 InclusiveDIS cross section

The inclusive cross section for NC DIS can be expressed as a function depending on Q 2 and x [5]:

d2σNC

dxdQ2
=

2πα2
em

xQ4

[
F̃2(1 + (1 − y)2) + xF̃3(1 − (1 − y)2) + y2F̃L

]
(1.12)

F̃2(x, Q2), F̃3(x, Q2) and F̃L(x, Q2) are generalized Structure Functions, which include coupling constants, prop-
agator terms and Structure Functions for exchange of γ, Z 0 and γZ0 interference terms respectively. For CC DIS
similar equations can be derived. The Structure Functions F i are functions of the variables x and Q2 describing the
distribution of electrical charge within the proton. The unpolarized cross sections for NC and CC DIS, differentiated
in x and y are [3]:

d2σNC

dxdy
=

4πα2
em

xyQ4

[(
1 − y − x2y2M2

Q2

)
FNC

2 + y2xFNC
1 ∓

(
y − y2

2

)
xFNC

3

]
(1.13)

d2σCC

dxdy
=

4πα2
em

xyQ4
(1 ± λ2)

1
2

(
GF M2

W

4παem

Q2

Q2 + M2
W

)2

[(
1 − y − x2y2M2

Q2

)
FCC

2 + y2xFCC
1 ∓

(
y − y2

2

)
xFCC

3

]
(1.14)

where αem is the fine structure constant and GF the Fermi constant. The charged current Structure Functions F CC
1 ,

FCC
2 and F CC

3 are the result of W ± exchange. The neutral current Structure Functions F NC
1 , F NC

2 and F NC
3 are

determined by photon and Z 0 exchange and by their interference. The Z 0 exchange, or W ± for CC, is suppressed
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Figure 1.2: Left: (x,Q2) plane covered by HERA in comparison to xed target experiments. The coverage of x and
Q2 is extended by about two orders of magnitude. Right: Neutral Current and Charged Current cross sections as a
function of Q2 from the ZEUS and H1 collaborations [6].

relative to the γ exchange for Q2 lower than the squared mass of the exchanged boson:

σ(Z0, W±)
σ(γ)

∼
(

Q2

Q2 + M2
Z0,W±

)2

(1.15)



with MZ0 and MW± as the mass of the Z0 and W± respectively. In this Q2 regime the photon mediated NC DIS
process dominates, the term xF̃3 in Equation 1.12 becomes negligible and F̃2 can be reduced to the electromagnetic
Structure Function F em

2 . Without the small contribution of longitudinal polarized photons, included in the term y 2F̃L,
the cross section becomes:

d2σNC

dxdQ2
=

2πα2

xQ4

[
F2(x, Q2)(1 + (1 − y)2)

]
. (1.16)

1.3.2 Quark Parton Model

A simple model, useful to understand many aspects of deep inelastic scattering, is the Quark Parton Model. In 1969
two models, the Quark Model [7] and the Parton Model [8] were developed to describe the proton. In the Parton
Model the constituents of the proton are quasi-free point-like partons. The momentum of the proton p is carried by
the partons: pi = ξi ·p, where ξi (0 ≤ ξi ≤ 1) is the fraction of total proton momentum carried by parton i. In this
model the DIS cross section is the incoherent sum of elastic scattering processes of the electron off the partons:

d2σ

dxdQ2
=

∑

i=partons

e2
i ·fi(x, Q2)

(
d2σi

dxdQ2

)
. (1.17)

where ei is the charge of parton i and fi(x, Q2) is the probability of probing parton i carrying a momentum fraction
between x and x+dx in the proton. A prediction of this model is the independence of the proton structure of Q 2. This
effect is called scale invariance and was predicted by Bjorken [9]. Only three partons are constituents of the proton in
the Parton Model, even at higher momentum transfer no new substructure of the proton becomes visible. In the high
Q2 limit (Q2 → ∞) but x finite, referred as innite momentum frame, the partons can be considered massless and all
transverse momenta are negligible. In the proton infinite momentum frame, the interactions between partons can be
ignored, due to the Lorenz time dilatation. The other partons do not participate in the hard interaction and are called
spectator partons. In this model the Structure Functions F1,2, are functions of x (the Bjørken scaling variable) but
not of Q2. In this frame x can be interpreted as the longitudinal momentum fraction of the proton ξ carried by the
interacting parton.

The identification of quarks as the partons of the Parton Model, led to the Quark Parton Model (QPM). In the QPM
F1,2 can be expressed as a sum of quark and anti-quark densities. They are related to each other by the Callan-Gross
relation [10]

F2 = 2xF1. (1.18)

This equation was experimentally confirmed at SLAC [11] and it proved that the charged partons of the proton are spin
1/2 particles (for spin 0 the prediction 2xF1/F2 = 0 leads to an inconsistency with the data).

The Structure Functions are not yet calculable from first principles but have to be measured in experiments. The QPM
predicts the independence of the Structure Functions from the virtuality of the photon Q 2 at high energies and that
F1,2 depends only on the scaling variable x. Later the violation of this prediction was found (see Fig. 1.7). Only about
half the momentum of the proton is carried by the valence quarks. Valence quarks are the three quarks (uud) in the
proton, mentioned earlier. For x % 0.1 the Structure Functions increase for increasing values of Q 2. This behavior
was later explained by quantum chromodynamics (QCD).

1.3.3 Quantum Chromodynamics

In the theory of QCD the quarks can not be treated as free particles, but they exchange gluons. QCD is a renormalizable
non-Abelian gauge theory, describing the strong interaction as exchange of gluons. The gluons and the quarks couple
via color charges. Each quark or anti-quark holds one of the three colors or anti-colors respectively. The symmetry
of QCD is therefore SU(3). 8 independent linear combinations of color-anti-color exist, represented by 8 different
gluons.

Perturbative QCD (pQCD) offers a method to calculate cross sections as power series in the coupling constant of the
strong interaction αs. The 0-th order are QPM-like processes. Higher orders include gluon and quark loops, called
virtual corrections (see Fig. 1.3).



Figure 1.3: One-loop corrections to the gluon propagator.

To calculate cross sections, integration over the full phase space of virtual and real quarks and gluons is needed. This
integration introduces divergencies caused by infinite momenta of the virtual particle loops, referred to as ultraviolet
divergencies. The soft or collinear emission of massless gluons, causes infrared divergencies.

To remove these divergencies,first a procedure called dimensional regularization introduces additional dimensions ε to
the integration. In a second stage, a procedure called renormalization replaces divergent integrals by finite expressions.
This procedure introduces a new mass µ, the renormalization scale. All measurable quantities of the final state particles
have to be independent of the choice of the arbitrary scale µ. Thus an effective coupling ”constant” α s(µ) depends on
the scale µ [3]:

µ
∂αs(µ)
∂µ

= 2β(αs). (1.19)

The β-function is a perturbative expansion in αs, covering the dependency of αs on the scale µ2:

β(αs) = − β0

4π
α2

s −
β1

8π2
α3

s − . . . (1.20)

with

β0 = 11 − 2
3
nf ,

β1 = 51 − 19
3

nf .

nf is the number of quark flavors with a mass lighter than the scale µ. The solution of Eq. 1.19 in the first order of α s

is:
αs(µ) =

12π
(33 − 2nf ) ln(µ2/Λnf

QCD)
. (1.21)

Λnf

QCD is the scale of QCD and represents the energy at which αs becomes large and perturbative QCD is not longer
valid.
Figure 1.4 shows the dependence of αs on the scale µ. The rise of αs for small values of µ corresponds to soft
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Figure 1.4: Running of αs with the scale µ measured at HERA. The data are compared with QCD predictions (shaded
band) [12].



interactions and large distances. At large scales µ → ∞ the value of αs vanishes and the quarks are quasi-free. In
this region of asymptotic freedom, perturbative QCD is applicable. The region of soft interactions has to be treated in
a different approach.

1.3.4 Factorization

Factorization is the separation of the ep-scattering process into two parts. One part is the hard process, the interaction
of high energy particles, the second is the long range part of low energy processes. The hard process is calculable
by pQCD. The low energy part is not covered by pQCD. The Structure Function F 2 can be expressed as the convo-
lution of a perturbative part, the coefcient functions (C i

2) and the non-perturbative parton density functions (PDFs)
fi(ξ, µf , µ). The PDFshave to be measured experimentally, while the coefficient functions are calculable. The fac-
torization introduces a scale µf defining the boundary between the perturbative and the non-perturbative regime. The
fi(ξ, µf , µ) are the probabilities of finding a parton i with a proton momentum fraction ξ (see Fig. 1.5):

F2 =
∑

i=parton

∫ 1

x
Ci

2

(
x

ξ
,
Q2

µ2
,
µ2

f

µ2
,αs(µ)

)
fi(ξ, µf , µ)dξ. (1.22)

The evolution of the PDFsin µ is described by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equations [14, ?] or
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DGLAP equations. They have the form:

dfqi(x, Q2)
d ln(Q2)

=
αs(Q2)

2π

∫ 1

x

dξ

ξ

[
Pqq(x/ξ)fqi (ξ, Q

2) + Pqg(x/ξ)fg(ξ, Q2)
]

(1.23)

dfg(x, Q2)
d ln(Q2)

=
αs(Q2)

2π

∫ 1

x

∑

i

dξ

ξ

[
Pgq(x/ξ)fqi(ξ, Q

2) + Pgg(x/ξ)fg(ξ, Q2)
]

(1.24)

The functions Pba(x/ξ) are the DGLAP splitting functions. They describe the probability of a parton a to emit a
gluon or quark and become parton b carrying a fraction z = x/ξ of the momentum of parton a:

Pqq(z) =
4
3

[
1 + z2

1 − z

]
(1.25)



Pgg(z) = 6
[
1 − z

z
+

z

1 − z
+ z (1 − z)

]
(1.26)

Pqq̄(z) =
1
2
(z2 + (1 − z)2) (1.27)

The emission of soft gluons causes problems, because Pqq and Pgg diverge for z → 1. An upper but-off zmax solves
this issue. Although pQCD can predict the evolution of the PDFsfrom the scale µ 0 to any other scale, a measurement
at a particular µ0 is required to derive values at other scales µ.

As mentioned before, the Structure Functions can be expressed as a power series in α s. The series contain terms
of lnµ2 and ln(1/x). The leading lnµ2 term emerges from the evolution along the chain of partons, emitted from
the quark before entering the hard interaction with the photon (see Fig. 1.6). By construction, the chain is strongly
ordered in transverse momenta, i.e. µ2 ( k2

t,n ( k2
t,n−1 ( ... where kt denotes the transverse momentum of the

parton in the nth position in the ladder. The leading-order (LO) sums up all α s lnµ2 terms. The next-to-leading order
(NLO) sums up terms of αs(αs lnµ2)n−1. This is important, if the construction of a strongly k t ordered ladder is not
an appropriate approach. Problems with this method emerge at very low values of x, due to the ln(1/x) terms.

A different approach is followed by the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [16]. The ln(1/x) terms are
important in particular in the low x regime. The BFKL equation sums up α s(ln(1/x))n, coming from strong ordering
in x at leading order (LO).

The attempt of a unification of the DGLAP evolution, based on Q 2 ordering, and the BFKL evolution, based on
ordering in x, led to the development of the Ciafaloni-Catani-Fiorani-Marchesini [17] (CCFM) evolution equations.

However so far the measurements show no significant evidence of deviations from the DGLAP equations. Figure 1.7
shows inclusive HERA F2 data in excellent agreement with with DGLAP-based NLO QCD fits.

1.4 Heavy quark production

The production of heavy quarks, like the charm or the beauty quark, can not easily be explained in the naı̈ve picture of
the QPM. The mass of the proton is lower than the mass of the heavy quark (m c ≈ 1.35 GeV and mb ≈ 4.4 GeV3 [3])
and no heavy quarks on their mass shell can be constituents of the proton. The lowest order process of heavy quark
production is the boson-gluon-fusion (BGF) (see Fig. 1.8).

This process (γ∗g) can produce a pair of quark and anti-quark if the center-of-mass (CMS) energy squared ŝ of the
photon-gluon system exceeds the squared mass of the qq̄-pair:

ŝ = (γ∗g)2 = (q + ξP )2 > (2mq,heavy)2, (1.28)

with the mass of the heavy quark mq,heavy and the four-vectors γ and ξP of the photon and gluon respectively. The
high quark mass sets a hard scale for the process and a reliable description by pQCD calculations should be possible,
e.g. demonstrated by the low value of the running coupling α s at a scale corresponding to heavy flavour mass (see
Fig. 1.4). Thus the heavy quark production is an excellent test of pQCD. Furthermore heavy flavor measurements
provide insights into the gluon contribution of the proton, due to the dominating photon-gluon production process.
Two kinematic regions can be distinguished for heavy quark production. In the region of Q 2 ≤ (2mq,heavy)2, BGF
is the lowest order production process of a quark, anti-quark pair of mass 2m q,heavy . For high Q2 ( (2mq,heavy)2
the splitting of a gluon into a virtual qq̄-pair can be reinterpreted to occur inside the proton and the QPM picture is
applicable for the production mechanism. In Figure 1.9 ep-scattering processes up to order α s are symbolized by
Feynman diagrams. The leading order processes in ep-scattering are QPM-like events. In addition virtual corrections
to this process have to be taken into account. The next process shown is BGF, the dominant process of heavy quark
production at low to medium Q2. The radiation of a gluon before or after the scattering is called QCD Compton-
scattering (QCDC).

3estimated in the MSscheme



Figure 1.6: Diagram of the kt-ladder. A quark from the proton interact with a virtual photon from the electron after
radiating n partons (dashed lines). Each parton is characterized by a longitudinal momentum fraction x i and a
transverse momentum kt,i. Strong ordering corresponds to Q2 ( k2

t,n ( k2
t,n−1 ( ... ( k2

t,1.

1.4.1 BGF cross sections

The cross section of the production of a heavy qq̄-pair in BGF can be calculated [18]:

σ̂BGF =
πe2

bααs

ŝ

[
(2 + 2ω − ω2) ln

1 + χ
1 − χ − 2χ(1 + χ)

]
, (1.29)

where eb denotes the electromagnetic charge of the beauty quark, ω and χ are defined as

ω =
4m2

b

ŝ
, χ =

√
1 − ω. (1.30)

In the same way the charm cross section can be calculated using the charm mass and charge respectively. The produc-
tion of charm is favored with respect to beauty production due to the different charge and mass of b and c quarks. At
the energy of the HERA collider, the beauty quark is mainly produced near the mass threshold. In this kinematic region
the cross section of beauty quark production is about two orders of magnitude lower than the charm cross section.

1.4.2 Resolved photon process

For low Q2, the exchanged photon is quasi-real and the probability to fluctuate into a quark, anti-quark pair is signif-
icant. The processes where a part of the hadronic structure of the photon interacts with a gluon from the proton are
referred to as resolved processes (see Fig. 1.10). The strict definition of resolved processes is only possible at LO
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Figure 1.8: Boson-gluon-fusion. At low Q2 the lowest order mechanism to produce heavy quarks in ep-scattering
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Figure 1.9: Feynman diagrams of processes contributing to F2 up to O(ααs). The diagrams in the upper line are the
QPM diagram and virtual corrections. The BGF contribution is shown in the lower left while QCDC graphs are shown
on the lower right.

QCD. At NLO, the definition depends on the technical implementation (see also Fig. 1.14). The point-like process
(Fig. 1.10, left) is suppressed by the high mass of the heavy quark, whereas adron-like events contribute significantly
to the cross section of heavy quarks production in PHP. In DIS, hadron-like events are suppressed due to the high
virtuality of the exchanged photon.

1.4.3 Next-to-Leading order processes

Perturbative QCD calculations of heavy quark production are available also in next-to-leading order (NLO). The NLO
contributions to the cross section are found to be significant. Feynman graphs of real corrections, emission of gluons,
are given in Figure 1.11. In Figure 1.12 virtual corrections, contributing to the interference term with LO, are shown.
Two conceptually different calculation approaches can be distinguished

massive scheme : In the massive scheme, only light quarks and gluons are considered as active initial state partons.
In the perturbative expansion of the hard scattering cross section σ̂ all terms up to O(α 2

s) are taken into account
(fixed order approach). This method is reliably applicable in the phase space region where the transverse mo-
mentum pt of the heavy quark is less than or similar to its mass. This scheme is thus particularly relevant for
the low Q2 region.



Figure 1.10: Gluon-gluon-fusion in resolved processes. Resolved hadron-like event (left) and point-like (right) in
heavy quark production.

massless scheme : For pt ( mq (or Q2 ( m2
b), large terms proportional to ln(p2

t /m2
q), accounting for collinear

gluon emission from a heavy quark and gluon or photon splitting into a heavy qq̄-pair, might spoil the con-
vergence of the perturbation series. In so called resummed calculations, these contributions are included also
beyondO(α2

s). Technically, this can be achieved by absorbing the heavy quark associated collinear singularities
into fragmentation functions and PDFs. As this requires to set the quark mass to zero, this approach is denoted
massless scheme. In contrast to the massive scheme, where the heavy flavors can only be produced dynamically
in the hard subprocess, the massless approach treats the heavy quarks as intrinsic photon and proton constituents,
which can appear in the final state through heavy quark excitation processes.

Figure 1.11: Real NLO QCD contributions to heavy quark production

1.5 Hadronization

As a consequence of the color confinement in QCD, the colored partons have to form colorless hadrons. The transfor-
mation of strongly interacting particles to hadrons is referred to as hadronization or fragmentation. The usual approach
is to use event generators to model this process explicitly. The fixed order hard subprocess is calculated using QCD.
The radiation of additional partons before and after the hard subprocess is perturbatively calculable (see Fig. 1.13).

The production of hadrons from these parton showers has to be treated in a non-perturbative step using phe-
nomenological hadronization models. Both stages are described in the following sections.



Figure 1.12: Virtual NLO QCD contributions to heavy quark production
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Figure 1.13: Elements of the hadronization process as they are simulated in some Monte Carlo generators. The matrix
element (ME), the parton showering (PS) and the hadronization are sketched.

1.5.1 Parton shower

The parton shower (PS) approach models the evolution equation as a sequence of particle branchings a → bc. The
probability that one of these branchings occurs depends on the corresponding splitting function and the virtuality of the
initial and final state partons. The parton shower algorithm starts from a parton of the proton and models the radiation
of space-like parton showers until the parton reaches the hard subprocess. The Q 2 of radiated partons is ordered, going
towards lower values. Any parton with positive virtuality can be the starting point of a time-like shower. Showers
before the photon vertex and after the vertex are separated, neglecting any interference. The branching sequence is
stopped when the virtuality of the outgoing partons reaches a cut-off value. Usually this cut-off is chosen to be 1 GeV 2.
Below this value pQCD becomes unreliable.



A distinct assignment of a process to LO plus parton shower or NLO is not always possible. As shown in Figure 1.14,
the LO plus PS model simulates higher order processes, for instance NLO, in the parton showering.
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Figure 1.14: LO, NLO and PS in heavy quark production. A part of the parton shower applied to initial and nal
state partons in LO plus PS is part of the hard scatter in NLO [19].

1.5.2 Hadronization models

The hadronization models are phenomenological models to describe the formation of hadrons from partons. The two
main hadronization models used in event generators are the independent fragmentation and the string model.

Independent fragmentation: The partons from the parton cascade fragment in this model independently. Each par-
ton i transforms to a hadron h carrying a fraction of the longitudinal momentum z of the parton, characterized by
fragmentation functions Dh

i (z). The transverse momentum of the hadrons is assumed to be distributed Gaussian
around the parton momentum. The additional quarks and anti-quarks needed to form the hadron are produced
as qq̄-pairs until the available energy is spent (see Fig. 1.15, left).

String fragmentation: In the string model the color dipoles of qq̄-pairs form color strings. As the partons get sep-
arated, the string is pulled apart until the energy stored in the string is sufficient to produce a quark/anti-quark
pair (see Fig. 1.15, right). The energy in the string rises proportional to the distance of the qq̄-pair. This process
goes on until the string energy is too low to form additional particles. The string fragments are combined into
hadrons using fragmentation functions Dh

i (z).

A widely used fragmentation function is the Peterson fragmentation [20]:

Dh
q (z) ∝ 1/z

(1 − 1/z − ε/(1 − z)2)
. (1.31)

ε has to be determined by measurements, while the value of ε depends on the treatment of parton showering. For
beauty quark production ε has been extracted from a fit of B mesons in e +e− collisions [21] to be ε = 0.0033. For
charm fragmentation the ε is significantly higher at ε = 0.040. Thus the fragmentation function for charm peaks at
lower values of z, i.e. the fragmentation of beauty quarks is harder (see Fig. 1.16).

The Lund string model, used by MC involved in this analysis, combines the string fragmentation with the Lund
fragmentation function [22].
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Figure 1.16: Shapes of the Peterson fragmentation functions for charm (dotted line) and beauty (solid line) quarks.
The beauty fragmentation function peaks at higher values of z.

1.5.3 Jets

According to the hadronization, each strongly interacting final state parton from the hard subprocess results in a group
of outgoing hadrons. In high-energy processes, where the momentum of the original parton is sufficiently high, these
hadrons form a collimated flow of particles, called jet. Each jet is usually geometrical well separated from the other
final state particles.

A strict correspondence of partons to jets is in general spoiled by higher order QCD processes and fragmentation con-
necting also particles originating from different partons. Nevertheless the jet topology is expected to reflect important
properties of the underlying partonic process. In order to exploit this feature using observables based on jets, it is
necessary to have a well defined procedure to group final state particles into jets. Furthermore, a rule has to be given
to construct a jet momentum from the corresponding set of particle momenta, called recombination scheme.

Jets are not considered fundamental QCD objects and the jet structure depends on the reconstruction method used. To
be able to compare jet observables with pQCD predictions, some theoretical aspects have to be considered. Results
based on jet variables should be collinear and infrared safe, i.e. safe against collinear radiation or emittance of
soft partons. The jet topology should be closely correlated to the partonic final state and hadronization corrections,
connecting observables on hadron level with the corresponding parton level quantities, are preferred to be small.
The coefficient functions C i

2, introduced by factorization (see Sec. 1.3.4), depend on Bjørken x and the momentum
fraction ξ of the parton involved in the hard interaction only via the ratio x/ξ. Thus they are calculable at parton level
without reference to the incoming hadron momentum. The jet algorithm should not destroy this dependency.

The algorithm used in this analysis, the kt-algorithm [23] meets these requirements. The jet algorithm is Lorentz
invariant, so it is possible to use not only the laboratory frame but the Breit frame to combine particles to jets.



1.6 The charm and beauty structure functions

The structure functions more frequently studied (F2 and xF3) are inclusive objects and thus contain contributions from
both valence and sea quarks. The H1 and ZEUS detectors have the ability to provide identification of a particular quark
flavour opening so the possibility of studying the contribution of that flavour to F 2. This is particularly important in the
case of heavy flavours, as they are likely produced in the hard scattering and not in the subsequent hadronisation of the
struck parton. In other words very precise theoretical predictions can be done as explained in the previous theoretical
sections. Due to the fact that at order αs heavy quark production in DIS occurs through boson-gluon fusion process,
this process involves the gluon density xg directly so it gives an experimental handle on this quantity.

1.6.1 Charm production: tagging methods

The main method used for charm tagging is the identification of the D ∗ mesons using the decay channel D∗+ → D0π+
s

with the subsequent decay D0 → K−π+, where πs refers to the low momentum π in the decay. The decay particles of
the D∗ meson are reconstructed in the central detector, usually without particle identification. In Fig. 1.17 it is shown
a distribution of the mass difference ∆M = M(Kππs) − M(Kπ) from the ZEUS Collaboration. A clear signal is
seen around the nominal value M(D∗) − M(D0). In order to mantain under control the combinatorial background,
various cuts are made on the pt of the tracks and on the energy of the event. Of course also other charmed hadrons
were identified and analyzed, such as D+, Ds,Λc, but with less statistics. Finally, the sistematic use of the vertex
detectors, first implemented in H1 and now also in ZEUS, is changing dramatically the perspective of the physical
analysis in the charm sector as it already happened in the beauty one.

Figure 1.17: The distribution of the mass difference, ∆M = M(Kππs) − M(Kπ), for D∗ candidates. The D∗±

candidates (dots) are shown compared to the wrong charge combinations (histogram). The shaded region shows the
signal region. The number of D∗ mesons is determined by subtracting the wrong charge background.

1.7 Beauty production: tagging methods

The H1 and ZEUS Collaborations have presented measurements in which the events containing beauty are identified
in the following manners: using high pT leptons (mainly muons) from semileptonic b-decays, or using the impact
parameters of all tracks coming from secondary decay vertices (inclusive lifetime tag analysis), or finally using double
tagged events (D∗ + µ, µµ).



In the first method, the transverse momentum prel
T of the muon with respect to the axis of the associated jets exhibits a

much harder spectrum for muons from b-decays than for the other sources. Sometime, in order to enhance the signal
to noise ratio also the signed impact parameter δ of the muon track with respect to the primary event vertex is used,
this quantity reflects the lifetime of the particle from which the muon decays. The relative contributions from b, c and
light quarks are determined by a fit to the prel

T distribution or to a combined fit to the prel
T and δ distributions using the

shapes of Monte Carlo b, c and light quarks distributions as templates.

In the second method, the track selection requires full silicon vertex detector information. From the measured impact
parameter δ a lifetime significance S = δ/σδ is calculated. Two independent distributions are constructed. S 1 is
the significance distribution of tracks in events with exactly one selected tracks. S 2 contains the significances of the
tracks with the second highest significance for events with two or more selected tracks. Events in which the tracks
with the first and second highest absolute significance have different signs are removed from the S 2 distribution. The
subtracted significance distributions are obtained by bin-wise subtraction of the numbers of entries on the negative
side from those on the positive side. The subtraction method substantially reduces the systematic uncertainties due
to track and vertex resolutions. The relative contributions from b, c and light quarks are determined from a fit to the
subtracted S1 and S2 distributions and the total number of events, using the shapes of Monte Carlo b, c and light quarks
distributions as templates.

In the third method, doubled tagged events, events are selected containing at least one reconstructed D ∗ and at least
one muon, D∗ + µ, or two muons in the final state (µµ). In order to suppress the various types of backgrounds the
charge and angle correlations of the D∗ with respect to the muon and of the two muons are exploited. These double
tagged measurements extend to significantly lower centre-of mass energies of the b b̄ system than measurements based
on leptons and/or jets with high transverse momentum. Furthermore, these double tagged events permit to test higher
order QCD effects. For instance, in the photon-gluon rest frame the angle between the heavy quarks is 180 o at leading
order, but at NLO it can differ significantly from this value due to hard gluon radiation.

1.7.1 The heavy flavor structure functions

F cc̄
2 is calculated from the measured charm cross sections as follows:

• The cross section for cc̄ is calculated from the D∗ cross section [24] (extrapolated to the full phase space) using:

σ(ep → ecc̄X) =
1
2
σ(ep → eD∗X)

P (c → D∗)
(1.32)

where P (c → D∗) is the probability that a charm quark will produce a D ∗ meson (about 25%). As said in the
sections 1.6.1 and 1.7, the advent of the micro-vertex detectors has permitted to distinguish events containing
heavy quarks from light quark events by the long lifetimes of c and b flavoured hadrons, which lead to displace-
ments of tracks from the primary vertex. Furthermore the results can be obtained in kinematic regions where
there is little extrapolation needed to the full phase space and so the model dependent uncertainty due to the
extrapolation is small. These measurements were done by the H1 Collaboration [25].

• Finally F cc̄
2 is related to ep → ecc̄X cross-section by:

d2σ(cc̄)
dxdQ2

=
2πα2

Q4x
((1 + (1 − y)2)F cc̄

2 − y2F cc̄
L ), (1.33)

where the small contribution from F cc̄
L is calculated from QCD, while xF3 is neglected due to the fact that the

measurements are made at small Q2.

In Fig. 1.18 (plot on the left) all the data about F cc̄
2 are shown as function of x at Q2 values between 2 and 500

GeV2. The various data sets, obtained with different techniques, are in good agreement between them. The structure
function F cc̄

2 shows a rise with decreasing x at constant values of Q2. The rise becomes steeper at higher Q2. The
data are compared to calculations using the recent ZEUS NLO fit [26], in which the parton densities in the proton
are parameterized by performing fits to inclusive DIS measurements from ZEUS and fixed-target experiments. The
prediction describes the data well for all Q2 and x except for the lowest Q2, where some difference is observed. In
Fig. 1.18 (plot on the right) the ratio F cc̄

2 /F2 is shown as function of x at fixed values of Q2. The charm contribution
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Figure 1.18: On the left plot, the measured F cc̄
2 at Q2 values between 2 and 500 GeV2 as a function of x is shown while

on the right plot the measured ratio F cc̄
2 /F2 . Data from the H1 and ZEUS experiments using different charm tagging

are shown. The data are shown with statistical uncertainties (inner bars) and statistical and systematic uncertainties
added in quadrature (outer bars). The curves represent the ZEUS NLO t.

to F2 rises from 10% to 30% as Q2 increases and x decreases. The strong rise of F cc̄
2 at low values of x is similar

to that of the gluon density and thus supports the hypothesis that charm production is dominated by the boson-gluon
fusion mechanism.

Using the help of the micro-vertex detector it was possible to measure the structure function F bb̄
2 [25] in a similar

manner to those depicted for the F cc̄
2 . The measurement of the b cross section (and so of F bb̄

2 ) is particularly challenging
since b events comprise only a small fraction (typically < 5%) of the total cross section. In Fig. 1.19 the measured
F bb̄

2 (by the H1 Collaboration) is shown as function of Q2. The measurement shows positive scaling violations which
increase with decreasing of x. The data are compared with the variable flavour number scheme QCD predictions from
MRST [27] and CTEQ [28] at NLO and a recent calculation at NNLO [29]. The predictions are found to describe the
data reasonably well. The beauty contribution to F2, in the present kinematic range, increases rapidly with Q2 from
0.4% at Q2 = 12 GeV2 to 1.5% at Q2 = 60 GeV2.
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Chapter 2

HERA and the ZEUS detector

In this chapter the HERA accelerator and the ZEUS detector are described briefly, giving particular emphasis on the
parts of the detector used in the analysis described in this thesis. A detailed description of the ZEUS detector can be
found in [30].

2.1 The HERA collider

Figure 2.1: The Hamburg Volkspark showing the DESY site. The location of the HERA and PETRA rings are shown.
Also illustrated are the locations of the two colliding-beam experiments, ZEUS and H1, together with the single-beam
experiments HERMES and HERA-B.

The HERA (Hadron Elektron Ring Anlage) collider is a unique particle accelerator for the study of high-energy
electron-proton (ep) collisions [31]. It is located at the DESY (Deutsches Electronen SYnchrotron) laboratory in
Hamburg, Germany, and has been in operation since 1992. The HERA ring is located 15-30 m under ground level and
has a circumference of 6.3 km. Fig 2.1 shows an aerial view of the tunnel area in Hamburg and the position of the
different experiment halls (the ring has 4 linear sections linked at their extremities by 4 arcs of 779 m radius.)
The HERA machine collides electrons and positrons, accelerated to an energy of 27.5 GeV, with 820 (920) GeV pro-
tons (the energy of the proton beam was changed at the beginning of 1998 from 820 to 920 GeV). The resulting
centre-of-mass energy is 300 (318) GeV, more than an order of magnitude higher than previous fixed-target lepton-
nucleon experiments, allowing a new and wider kinematic region in x and Q 2 to be explored.

33



Running period 1993-1997 1998-2000 2003-2004
Luminosity 1.6 · 1031 cm−2 s−1 1.6 · 1031 cm−2 s−1 7.0 · 1031 cm−2 s−1

Center-of-mass energy 300 GeV 318 GeV 318 GeV
lepton proton lepton proton lepton proton

Energy (actual) 27.5 GeV 820 GeV 27.5 GeV 920 GeV 27.5 GeV 920 GeV
Max number of bunches 210 210 210 210 180 180
Beam current 58 163 58 163 58 140
Particles per bunch 3.65 · 1010 1011 3.65 · 1010 1011 4.18 · 1010 1011

Beam width (σx) 0.286 mm 0.280 mm 0.286 mm 0.280 mm 0.118 mm 0.118 mm
Beam height (σy ) 0.060 mm 0.058 mm 0.060 mm 0.058 mm 0.032 mm 0.032 mm

Table 2.1: HERA design parameters.

Four experiments are located in four experimental halls placed along the HERA ring (Fig. 2.1). The two beams are
brought into collision every 96 ns at zero crossing angle at two interaction points, one in the North Hall where the
H1 experiment is located, the other in the South Hall where the ZEUS experiment is placed. In the East Hall the
Hermes experiment studies the spin structure of the nucleon using the collisions of longitudinally polarized leptons on
an internally polarized gas target (H, 2D or 3He). The HERA-B experiment, located in the West Hall was used until
2003 to collide the proton beam halo with a wire target to study B-meson production.

Built between 1984 and 1990, the HERA collider started operation in 1992 in its initial configuration with 820
GeVprotons and 26.7 GeVelectrons. In 1994 it was realized that the electron beam current was limited by posi-
tively ionized dust particles in the beam pipe through the pumps, reducing the lifetime of the beam. For this reason
HERA switched to positrons in July 1994, achieving a more stable lepton beam and a significant increase in the inte-
grated luminosity of the collected data. During the 1997-98 shutdown period, new pumps were installed in the lepton
beam to improve the electron beam lifetime, and during 1998 and part of 1999 HERA was run again with electrons.
In 1998 the energy of the proton beam was raised from 820 to 920 GeV. After the switch back to positron-proton
collisions in 1999, the total delivered luminosity up to 2000 was 94.95 pb−1.

Although a lot of interesting measurements have already been performed at HERA, the desire was expressed by the
experiments for an increase in the luminosity. The motivations for this increase were studied in a one-year workshop
held between 1995 and 1996, when it was concluded that having ∼ 1fb −1 of integrated luminosity would open up the
possibility of new interesting measurements [32].
During the shutdown 2000/2001, the HERA collider was upgraded to achieve a five times higher specific luminosity
at the collision point [33]. In addition spin rotators were included to rotate the spin of the leptons such that the lepton
beam is longitudinally polarized at all interaction regions. A further longer shutdown was necessary in the middle
of 2003 to solve severe background problems [34]. Since October 2003, HERA provided stable beam operations and
delivered a total luminosity of 290 pb−1.
A summary of HERA design parameters during the running periods 1993-1997 and 1998-2000 and 2003-2004 [35, 36]
can be found in Table 2.1.

2.1.1 The HERA injection system

HERA provides two different injection systems for the beams, shown in Fig. 2.2.
The proton acceleration chain starts with negative hydrogen ions (H −) accelerated in a LINAC to 50 MeV. The elec-
trons are then stripped off the H− ions to obtain protons, which are injected into the proton synchrotron DESY III and
accelerated up to 7.5 GeVin 11 bunches with a temporal gap of 96 ns, the same as the main HERA ring; these bunches
are then transferred to PETRA, where they are accelerated to 40 GeV. Finally they are injected into the HERA proton
storage ring, and the injection stops when the ring contains 210 bunches. Through the radiofrequency generated in
resonant cavities, the proton beam is then accelerated up to 920 GeV.
Pre-acceleration of the electrons (positrons) starts in two cascaded linear accelerators, LINAC I and LINAC II, where
the leptons are accelerated up to 250 and 450 MeV respectively. The leptons are then injected into DESY II, acceler-
ated to 7.5 GeVand then transferred to PETRA II, where they reach an energy of 14 GeVin bunches separated by 96
ns gaps. They are then injected into HERA where they reach the nominal lepton beam energy of 27.5 GeV, again until
the main ring is filled with 210 bunches. Some of these bunches are kept empty (pilot bunches) in order to study the
background conditions. When either the lepton or the proton bunch is empty, the beam related background, originating
from the interaction of the lepton or the proton beam with the residual gas in the beam pipe, can be studied, whereas
when both the bunches are empty the non-beam-related background, such as cosmic ray rates, can be estimated.



Figure 2.2: HERA injection system.

2.2 The HERA luminosity upgrade

HERA started delivering data in June 1992. Since then the luminosity has continously increased, as shown in Fig. 2.3.

The data collected so far were used to explore the proton structure and to test more and more precisely QCD theory;
nevertheless the physics studied so far was predominantly low-Q 2 physics relative to the electroweak scale Q2 =
m2

W . HERA was built to also explore this energetic region since phenomena such as the electron polarization and the
possibility to have at disposal data with either electron and positron collisions becomes relevant only in the electroweak
regime. With the luminosity upgrade new and important tests will be carried out to study the electroweak and strong
interactions. Moreover, new phenomena which go beyond the standard model will be investigated; luminosity of
the order of an inverse femtobarn will allow the search for particle states in an unexplored kinematic region above
200 GeV. The F2 structure function will be more precisely measured, allowing the extraction of a gluonic density with
a precision of 1%, which will allow more efficient testing of the validity of the QCD evolution equations over a large
range in x and Q2. Moreover the HERA capability to use both electron and positron beams will allow the determination
of F3, and hence the distribution of the valence quarks inside the proton. Studies of diffraction will significantly
improve with the larger statistics available. Jet studies will be performed at high ET allowing αs measurements at
different scales. Also important is the possibility of obtaining more precise measurements of the cross sections which
can be calculated through QCD, providing a good test for this theory.
At HERA the luminosity is effectively defined as:

L =
Ie · Np · γp

4πeεN
√
β∗xpβ

∗
yp

(2.1)

where Ie represents the total leptonic current (only considering the colliding bunches), N p is the number of protons
in each bunch, εN is the normalized emittance of the proton beam, γp is the Lorentz factor for the protons, e is the
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Figure 2.3: Integrated luminosity provided by HERA, upper plots, and collected by ZEUS, lower plots, during
theHERA I phase, 1992 - 2000, left hand side, and HERA II, right hand side.

elementary charge, while β∗
xp and β∗yp are the horizontal and vertical beta functions at the interaction point.

Increasing the intensities of the beams to substantially improve the luminosity would have required a huge finan-
cial cost (the currents of the leptonic beam could only have been incremented increasing in an almost proportional
way the power of the radiofrequency cavity). Rather the luminosity was increased by making the interaction cross-
section smaller by reducing the beta functions at the interaction point. These functions are limited by chromatic
effects and limitations on the “opening” of the low beta quadrupoles. In order to increase the luminosity up to
∼ 7.4 · 10−31cm−2sec−1 new superconducting magnets [37] close to the interaction point (inside the calorimeter
volume), absorption system for the synchrotron radiation and for the vacuum were installed in the interaction region.
During the break, planned in order to upgrade the accelerator, the Micro Vertex Detector (MVD) was positioned inside
the cavity between the beam pipe and the inner wall of the Central Tracking Detector (CTD).



2.3 The ZEUS detector

ZEUS is a multi-purpose, magnetic detector designed to study electron/positron-proton collisions.
It measures 12 × 10 × 19 m3, weighs 3600 tonnes and it is quasi-hermetic covering most of the 4π solid angle, with
the exception of the small region around the beam pipe.
As a result of the asymmetric beam energies, most of the final state particles are boosted in the proton beam direction.
Consequently, the sub-detectors of ZEUS are coaxial but asymmetric with respect to the interaction point. The detector
can measure energies from a few tens of MeV to hundreds of GeVin the forward region. For low momentum particles
the tracking in the magnetic field is very precise, (resolution: σ(PT )/PT ∼ PT ), while high energy particles are well
measured by the calorimetric system (resolution: σ(E)/E ∼

√
E/E).

Particle identification is needed in a wide momentum range to achieve the physics goals. In Neutral Current (NC) DIS
events the scattered lepton has to be identified and measured with high precision and the identification of electrons,
positrons and muons is also needed in order to study the semi-leptonic decay of heavy quarks and exotic processes
involving leptons.
In Charged Current (CC) DIS processes a hermetic detector is needed in order to reconstruct the missing transverse
momentum carried by the outgoing neutrino. In these kinds of events, and also in untagged photoproduction events,
the precise reconstruction of the final state is important in order to determine the event kinematics.
The ZEUS coordinate system is a right-handed, cartesian system with the origin defined as the nominal Interaction
Point (IP) 1. The positive z-axis points in the direction of the proton beam and is often referred to as the “forward”
region. The x-axis points from the IP towards the centre of HERA ring and the y-axis lies at 90 ◦ to the other two axes
and points approximately vertically upwards. Since the proton-beam axis has a slight tilt, the y-axis does not precisely
coincide with the vertical. The actual IP varies from event to event, and the run average and proton tilt varies on a
fill-by-fill basis. However, the nominal IP is close to the geometric centre of the detector.

Polar angles are defined with respect to the proton-beam direction in the forward region (θ = 0) and the leptonic-beam
is therefore at θ = π. The azimuthal angles φ are measured with respect to the x-axis.

The pseudorapidity variable is often used in event analysis; this quantity is an approximation at high energies of the
particle rapidity given by y = log E+Pz

E−Pz
, and is defined by η = − log(tan θ2 ), where θ is the polar angle. The ZEUS

coordinate system is illustrated in Fig. 2.4.

y

x
HERA centrez

r

e

p

Figure 2.4: ZEUS coordinate system.

A brief outline of the various detector components is given below and a more detailed decription of the sub-detectors
relevant to the present analysis will be given later in this chapter. A complete description of ZEUS and its components

1x = y = 0, defined in ZEUS by the geometrical centre of the central tracking detector, and z = 0 defines the nominal interaction point [38]



can be found in [30]. The two projection views of the detector in the x − y and z − y planes (Figs. 2.5 and 2.6)
help to understand how the different components are placed in the different angular regions. At the centre of ZEUS,
surrounding the beam pipe, lie the inner charged particle tracking detectors. The main tracking device is the CTD
(Central Tracking Detector) placed in a solenoidal magnetic field (B=1.43 T) generated by a thin superconducting
solenoid. In 2001, a silicon-strip Micro Vertex Detector (MVD) replaced the Vertex Detector (VXD) which was part
of the initial configuration and removed during the 1995-1996 shutdown.
The CTD is supplemented in the forward direction by three sets of planar drift chambers (FTD) with interleaved
Transition Radiation Detectors (TRD) (labelled FDET in Fig. 2.7).

In 2001 the TRD system was replaced by a Straw Tube Tracker (STT) consisting of two modules built of straw tube
layers filling the gaps between the three FTD chambers. The rear direction is supplemented by one planar drift cham-
ber consisting of three layers (RTD). Although technically part of the calorimeter, the Small Rear Tracking Detector
(SRTD) provides improved position resolution for particles and is particularly useful for the identification of the scat-
tered lepton in the rear direction not intercepted by the rear part of the calorimeter. Together, the tracking detectors
offer an angular acceptance of 10◦ < θ < 160◦ for charged particles.

The tracking system is surrounded by a compensating high resolution uranium-scintillator sampling calorimeter which
is used as the main device for energy measurements; it is divided into three sections: the Forward (FCAL), Barrel
(BCAL) and Rear (RCAL) CALorimeters. The iron yoke, which provides the return path for the solenoidal magnetic
field flux, is equipped with a set of proportional tubes and serves as a calorimeter (BAC) for the detection of shower
tails not completetly “contained” by UCAL; this device acts also as a tracking device for muon detection.
Dedicated muon identification detectors are located inside (FMUI, BMUI and RMUI) and outside the iron yoke
(FMUO, BMUO and RMUO); for the inner muon chambers the iron of the yoke is magnetized with a toroidal field
(with strength B - 1.7 T) in order to analyse the muon momentum.

Other detectors are located several metres away from the main detector along the beam pipe. The VETO wall is located
in the rear direction at about z=-7.5 m from the interaction point. It consists of an iron wall supporting scintillator
hodoscopes and is used to reject background from beam gas interactions. The LUMI detector is made of two small
lead-scintillators calorimeters at z=-35 m and z=-(104-107) m and detects electrons and photons from bremsstrahlung
events for the luminosity measurement.

2.4 The Central Tracking Detector (CTD)

The Central Tracking Detector (CTD) [39] is a cylindrical wire drift chamber used to measure the direction and
momentum of the charged particles and to estimate the energy loss dE/dx which provides information for particle
identification. The inner radius of the chamber is 18.2 cm, the outer is 79.4 cm, and its active region covers the
longitudinal interval from z=-100 cm and z=104 cm, resulting in a polar angle coverage of 15 ◦ < θ < 164◦. The
chamber is flushed with a gas mixture of argon (Ar), carbon dioxide (CO 2) and ethane (C2H6) in the proportion
90:8:2. An alcohol/H2O mixture (77 /23 %) is injected into the gas mixture, maintained close to the atmospheric
pressure.
The CTD consists of 72 radial layers of sense wires, divided in groups of eight groups of nine superlayers (SL). A
group of eight radial sense wires with associated field wires in one superlayer makes up a cell . The sense wires are
30 µm thick while the field wires have differing diameters. A total of 4608 sense wires and 19584 field wires are
contained in the CTD.
The CTD is designed to operate in a magnetic field to allow the momentum measurement of charged particles. The
field wires are tilted at 45◦ with respect to the radial direction in order to obtain a radial drift under the influence of
the electric and magnetic fields. One octant of the CTD is shown in Fig. 2.8.

A charged particle traversing the CTD produces ionisation of the gas in the chamber. Electrons from the ionization
drift towards the positive sense wires, whilst the positive ions are repelled and drift towards the negative field wires.
The drift velocity of the electrons is approximately constant and equal to 50 µm/ns. An avalanche effect occurs close
to the wire giving an amplification factor on the electrons of ∼ 10 4 so that a measurable pulse is induced on the sense
wires.
The superlayers are numbered 1 to 9 from the innermost to the outermost SL. Odd-numbered (axial) SLs have wires



Figure 2.5: ZEUS longitudinal section (z − y).

Figure 2.6: ZEUS transversal section (x − y).



Figure 2.7: Planar drift chambers (left) and straw tubes (right) constituting the Forward Tracking Detector (FDET).

Figure 2.8: Transverse cross section of one octant of the CTD. The sense wires are indicated with dots.

parallel to the z direction, while wires in even-numbered (stereo) SLs are at a small stereo angle of ±5 ◦ to achieve a
better resolution in z. The achieved resolution is ∼ 100 − 120µm in the r − φ plane and 1.4 mm in the z coordinate.
The three inner axial superlayers (SL1, SL3, SL5) are additionally instrumented with the z-by-timing system. This
estimates the z-position of a hit by measuring the difference in arrival time of the pulses on the sense wires at each
end of the detector. Although the resolution achieved (∼ 3 cm) is much cruder than that obtained using the full axial
and stereo wire information, it is a relatively fast method and used predominantly for trigger and track seed-finding.
As already mentioned, the CTD is contained within a superconducting solenoid which provides a magnetic field of
1.43 T. This field causes charged particles to travel in a circular path of radius, R, given by:

R = PT /QB (S.I. units) (2.2)

where Q is the charge of the particle (Coulombs), B is the strength of the magneticfield (Tesla) and P T is the transverse
momentum (kg m s−1). This allows an accurate determination of the PT of the charged particle. The resolution on



the transverse momentum PT , for tracks fitted to the interaction vertex and passing at least three CTD superlayers, and
with PT > 150 MeV, is given by [40]:

σ(PT )/PT = 0.0058PT ⊕ 0.0065 ⊕ 0.0014/PT (2.3)

where PT is expressed in GeV. The error includes the hit position resolution (first term) and the multiple scattering
before and inside the volume of the chamber (second and third terms), where the symbol ⊕ indicates the quadratic
sum.
Since the installation of the MVD in 2001, the resolution has changed and the influence of new detector components
on the resolution of the tracking system is still under investigation. It is expected that the influence from multiple
scattering is larger (more material) but that the hit resolution is better compared to the resolution quoted above due
to the inclusion of MVD hits. Latest results including the MVD in the global track reconstruction parametrize the
momentum resolution in an a way analogue to the
CTD–only resolution [41]:

σ(PT )/PT = 0.0026PT ⊕ 0.0104 ⊕ 0.0019/PT (2.4)

2.5 The ZEUS Microvertex Detector (MVD)

During the 2000-2001 shutdown, planned for the luminosity upgrade, a silicon microvertex detector (MVD) was
installed in ZEUS.
The MVD, placed between the beam pipe and the inner volume of the CTD, provides an improvement in the global
precision of the tracking system and allows the identification of events with secondary vertices originating from the
decay of particles with long lifetime (cτ ! 100µm). This device helps the study of hadron decays containing heavy
quarks such as charm and beauty, or tau leptons thanks to an improvement in the track resolution with the possibility
to resolve secondary vertices.
The main analysis topics which can be substantially improved through the use of the MVD are [51]:

• Charm and beauty in photoproduction. Measuring the rate of events containing charm (and beauty) in direct
photoproduction, it is possible to study the gluon content of the proton.

• Charm and beauty in Deep Inelastic Scattering. The measurement of the proton structure function F charm
2 will

cover a kinematic range beyond the one accessible so far from ZEUS using D ∗ meson tagging. This analysis is
currently characterized by a low efficiency, around 1%, with 30% purity and hence very limited statistics. The
introduction of the MVD will allow charm tagging with an efficiency between 10% and 30% and with a purity
greater than 30%. The proton structure function F b

2 will be extracted.

• New physics. The possibility to identify tracks originating from secondary vertices and the tracking resolution
improvement will allow a better reconstruction of the events containing electrons with very high Q 2 which are
scattered in the forward region.

The technical requirements which were taken into account during the design of the MVD are:

• angular coverage around the interaction point between 10 ◦ < θ < 160◦;

• measurement of three points for each track in two independent projections;

• 20 µm intrinsic hit resolution;

• separation of two tracks up to 200 µm;

The main limitations are due to the small amount of space available between the CTD and the beam pipe. The following
description summarizes the main characteristics of the MVD, in its two components covering the central (BMVD) and
forward (FMVD) region (see Fig. 2.9).



Figure 2.9: Longitudinal MVD section. There are 3 layers in the barrel region and the 4 wheels in the forward section.

2.5.1 Barrel and forward micro vertex detector

The barrel section of the MVD is 64 cm long (see Fig. 2.9) and is sub-structured in three layers to allow high efficiency
in the pattern recognition and to make an estimate of the track momentum in the trigger phase.
The first layer of silicon detectors follows the elliptical path around and along the beam pipe and it is placed at a
variable radius between 3 and 5 cm from the CTD axis (see Fig. 2.10).
The beam pipe is not centred with respect to the CTD axis and the nominal interaction point is shifted towards the

Figure 2.10: BMVD section: 3 superlayers around beam pipe are shown.

centre of HERA (along the x axis) by about 4 mm in order to accommodate the primary synchrotron radiation spread



inside the beam-pipe volume. The second and third layer are placed along a circular path at r ∼ 8.6 cm and r ∼ 12.3
cm. On average a track crosses 2.8 layers. The resolution on the impact parameter, based on Monte Carlo studies, is
shown in Fig. 2.11. These resolution studies are for tracks perpendicular to the beam pipe (η = 0) which cross all

Figure 2.11: Impact parameter resolution on tracks at η = 0 as a function of the momentum. The measurements are
for tracks crossing 3 layers of half modules [52].

three layers, as a function of track momentum.

The BMVD is equipped with 600 silicon strips sensors mounted on 30 carbon fibre structures called ladders (Fig.
2.12); two layers of sensors are placed parallel and perpendicular to the beam line in order to measure r−φ and r− z
coordinates. Each layer is made of two single-sided silicon strip planes (320 µm thickness) with p + strips implanted

Figure 2.12: Half modules and ladders mounted on the support.

in a n-type bulk. The strip pitch is 20 µm; every 6 th strip has an AC coupling with a read out line made by an
aluminium strip through a dielectric material (SiO2 − SiN4 ). Two sensors are glued together, electrically connected
with a copper path excavated in a Upilex foil of 50µm of thickness (see fig. 2.12). From the figure it can be seen
that the sensor is connected to the readout device; the resulting surface covered by the two sensors and by the readout
system is called a “half-module” and is 6.15 cm × 6.15 cm.



The FMVD consists of 4 planes called wheels, each of them is made of two layers of 14 silicon sensors with the
same technical characteristics of the barrel sensors but with a trapezoidal shape (Fig. 2.13). This device allows the

Figure 2.13: FMVD 4 wheels.

acceptance to extend in pseudorapidity up to η = 2.6, a region where tracking information has yet to be used in
ZEUS. Each wheel has inner and outer sensors. They are mounted back to back. An inner and outer wheel sensor
form a sector. The crossing angle between the strips in the inner and outer sensor is ∼ 13 ◦ (180◦/14). Inside a layer
of sensors the adjacent sensors are slightly overlapped in order to minimize the dead regions. The four wheels are
positioned at z=32, 45, 47 and 75 cm; the first wheel is linked to the structure supporting the BMVD. A more detailed
description can be found in [53].

2.5.2 Readout electronics

The MVD silicon sensors are read by the analog chip HELIX3.0 [54] (see fig. 2.14); the chip integrates 128 channels
with a charge-sensitive preamplifier followed by a shaper which produces a Gaussian signal with a time peak of 50−70
ns. The signals are sampled in an analog pipeline where up to 136 event measurements can be stored while the GFLT
is producing a trigger decision. The HELIX outgoing signal is transferred with an analog connection to the ADC
boards, which perform a first cluster reconstruction. The signal is then transferred to the MVD second level trigger
processor and to the ZEUS event builder.

2.5.3 Preliminary test results

The MVD design was exposed to a detailed test-beam programme; half-modules were exposed to a 2-6 GeVelectron
test beam at the DESY II accelerator (see fig. 2.15). The charge produced by a particle crossing the device was
collected by three reference sensor pairs which gave the coordinates in the x − y plane perpendicular to the beam
which defines the z axis direction. The reference sensors were strip sensors with a readout pitch of 50 µm and an
intermediate strip. The system could be moved sideways and rotated in order to select tracks with a specific incidence
angle.
Strips collecting the highest charge above a certain threshold were selected in order to find cluster candidates. The
threshold was set to 5σ, where σ is the squared average noise of each strip. The impact position reconstruction was
calculated using three different algorithms:

• Eta Algorithm: it is based on the assumption that most of the charge is collected by the two strips closest to the
impact position. If Qleft (Qright) is the charge collected on the left (right) side of the impact position, P is the
readout pitch and xleft (xright) is the position on the left (right) strip, the xeta can be defined as:

xeta = P · f(η) + xleft (2.5)



Figure 2.14: Schematic view of the analog HELIX chip.

Figure 2.15: Schematic view of the device used with the test beam.

with:
η =

Qright

Qright + Qleft
, f(η) =

1
N

∫ η

0

dN

dη′
dη′. (2.6)

• Double Centroid Algorithm: it reconstructs the impact position using the strip collecting the highest charge and
the two nearest strips. Once the gravity centre C left (Cright) between the central and the left (right) strip is
calculated, the hit position will be:

xDC =
Cleft/dr + Cright/dl

dr + dl
, where dl =

Cleft

Cright
= 1/dr. (2.7)



• Head-Tail Algorithm: for large incidence angles, the charge generated by a particle is spread over many strips.
In this case, the charge collected by the central strip of the cluster does not contain precise information about
the position. The head-tail algorithm uses the information from the external strips on both sides to solve this
problem. The head (tail) strip is that with the lowest (highest) identification number (integer number defining
the strip position inside a sensor) which collects a charge three times higher than the noise level.
The hit position will be given by:

xHT =
xh + xt

2
+

Qt + Qh

2QAV
· P (2.8)

where xh(xt) is the head (tail) strip position and Q the charge. QAV is the average pulse height for each strip
inside the cluster.

Figure 2.16 shows the instrinsic resolution as a function of the incident angle, measured with the three different
algorithms. The intrinsic spatial resolution reaches 13µm for tracks perpendicular to the sensor surface.
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Figure 2.16: Intrinsic resolution as a function of the incident angle, measured with the three different algorithms [57].

2.5.4 Radiation monitor

The main radiation sources in the MVD area are the synchrotron radiation and the radiation caused by beam losses.
The MVD is expected to be operative for at least 5 years. During this period, the foreseen integrated radiation dose is
∼ 0.5 kGy. The MVD detector and all the readout electronics were designed to work without a change in the signal-
noise ratio, up to an integrated dose of 3 kGy. In order to keep the radiation dose under control, a radiation monitoring
system (RadMon) generates warning signals when there is high radiation and generates a dump signal to the electron
kicker. This RadMon is also used to calculate the time integrated total dose.



2.6 The Uranium-scintillator Calorimeter (UCAL)

The ZEUS calorimeter (UCAL) [44] is a high-resolution compensating calorimeter. It completely surrounds the track-
ing devices and the solenoid, and covers 99.7% of the 4π solid angle. It consists of 3.3 mm thick depleted uranium
plates (98.1% U238, 1.7 % Nb, 0.2 % U235) as absorbers alternated with 2.6 mm thick organic scintillators (SCSN-38
polystyrene) as active material.
The hadronic showers contain both hadronic and electromagnetic components whose proportions can fluctuate enor-
mously (see Fig. 2.17). In order to take into account this phenomenon and therefore optimize the energy detection of

muonhadron electron

Figure 2.17: Production of showers inside ZEUS calorimeter.

both shower components, the uranium calorimeter was designed to be compensating, so as to obtain the same mean
detector response from hadronic and electromagnetic showers of the same energy (e/h=1). Therefore the UCAL has
different layers of depleted uranium and scintillator with thickness of 3.3 mm and 2.6 mm (Fig. 2.18).
Under test beam conditions [45], the electromagnetic resolution achieved is:

σE

E
=

18%√
E

⊕ 2% (2.9)

whilst the hadronic resolution is:
σE

E
=

35%√
E

⊕ 1% (2.10)

where E is the particle energy measured in GeV.

The UCAL is divided into three regions: the forward (FCAL), barrel (BCAL) and rear (RCAL) calorimeter. Since
most of the final state particles in a lepton-proton interaction at HERA are boosted to the forward (proton) direction,
the three parts are of different thickness, the thickest being the FCAL (∼ 7λ), then the BCAL (∼ 5λ) and finally the
RCAL (∼ 4λ), where λ is the interaction length.
Each part of the calorimeter is divided into modules. The 23 FCAL modules and the 23 RCAL modules are rect-
angular, whereas the 32 BCAL modules which surround the cylindrical CTD are wedge-shaped covering 11.25 ◦ in
azimuth. An FCAL module is shown in Fig 2.18. Each module consists of so called towers of 20 × 20cm 2 which
are subdivided longitudinally into one electromagnetic (EMC) and two (one in RCAL) hadronic (HAC) sections. The
EMC sections are further transversely divided into four cells (only two in RCAL).
The FCAL EMC section per tower consists of the first 25 uranium-scintillator layers and has a depth of 25 X 0, where



Figure 2.18: Section of an FCAL module.

X0 is the radiation length. Each of the two HAC sections per FCAL tower is 3.1 λ deep and consists of 160 uranium-
scintillator layers.
The BCAL EMC section is made of the first 21 uranium-scintillator layers, the two HAC sections of 98 layers. The
resulting depth is 21 X0 for the electromagnetic section and 2.0 λ for each hadronic section.
The RCAL towers consist of one EMC and only one HAC section. Therefore its depth is 26 X 0 for the EMC part and
3.1 λ for the HAC part.
Light produced in the scintillators is read out by 2 mm thick wavelength shifter (WLS) bars at both sides of the mod-
ule, and brought to one of the 11386 photomultiplier tubes (PMT) where it is converted into an electrical signal. The
summed information per cell is used for energy and time measurements. The UCAL provides accurate timing infor-
mation, with a resolution of the order of 1 ns for particles with an energy deposit greater than 1 GeV. This information
can be used to determine the timing of the particle with respect to the bunch-crossing time, and it is very useful for
trigger purposes in order to reject background events, as will be illustrated later in the trigger section.
Calibration of the PMTs and the electronics is mainly performed using the natural radioactivity of the depleted ura-
nium which produces a constant signal in the PMTs. The signal can be used to intercalibrate geometrically identical
regions and to transport the absolute calibration scale determined in test beam measurement. In addition, laser, LED
and test pulses are also used for the calibration. The achieved accuracy is better than 1%.



2.7 The luminosity measurement

The luminosity measurement at ZEUS is done by studying the production rate of photons through the Bethe-Heitler
process [47]:

e + p → e′ + p + γ, (2.11)
where the photon is emitted from the electron at very small angles with respect to the ingoing lepton direction (negative
z). The cross section for this process at the leading order (LO) is expressed as:

dσ

dk
= 4αer

2
e

E′

kE

(
E

E′ +
E′

E
− 2

3

) (
ln

4EpEE′

Mmk
− 1

2

)
(2.12)

where E and Ep are the energies of the lepton and proton beams respectively, E ′ is the outgoing electron energy, k
is the photon energy, M and m are the proton and electron masses while r 2

e represents the classical electron radius.
Higher-order corrections in the above cross section calculation are less that 0.5%.

The luminosity monitor consists of a photon and a lepton calorimeter [48], located along the beam pipe at z= -(104 -
107) m and z= -35 m, respectively (Fig. 2.19)

Figure 2.19: The layout of the ZEUS Luminosity Monitor. The nominal interaction point is located at (0,0).

To protect the photon calorimeter against synchrotron radiation, it has been shielded by a carbon-lead filter. The
resulting calorimeter resolution, (with E in GeV), is:

σE

E
=

0.25√
E

. (2.13)

The bremsstrahlung event rate is determined by counting the number of photons above a fixed energy threshold, and
not by the simultaneous identification of the lepton and the photon, because of the dependence of the lepton calorimeter
acceptance on the beam position and angle. The luminosity is then extracted using:

L =
Rep

(
Eγ > Eth

γ

)

σacc
ep

(
Eγ > Eth

γ

) , (2.14)

where σacc
ep

(
Eγ > Eth

γ

)
is the cross section corrected for the detector acceptance, Rep

(
Eγ > Eth

γ

)
is the photon rate

and Eth
γ is the photon threshold.



2.8 Background

The background event rate at ZEUS can be much higher than the ep interaction rate, especially in the machine startup
phases, depending on the beam-pipe vacuum conditions. The main background sources which have to be removed are:

• gas interactions inside the beam pipe: when the beam particles interact with the residual gas inside the beam
pipe. If this interaction happens near the detector, the interaction products can be detected by ZEUS.

• halo muons: the hadronic interactions of the beam protons can subsequently produce muons through pion or
kaon decays; these muons go into the halo beam and are therefore called halo muons.

• cosmic muons: these are muons coming from the cosmic showers generated in the atmosphere which can be
detected by ZEUS.

The background is dramatically reduced by the trigger, which is tuned to reduce it. The background coming from the
interaction of the particles with the beam gas is limited through the VETOWALL device, an iron wall 87 cm thick
and 800×907cm2 placed at z=-7.5m from the interaction point. It is instrumented with two scintillator hodoscopes,
one for each side of the wall, which can identify the beam-gas-interaction events. A 95 × 95 cm 2 gap window is left
uncovered around the beam-pipe.
The trigger system, described in the next chapter, takes into account the information coming from the calorimeter,
SRTD (a hodoscopic scintillator placed around the beam pipe in front of the RCAL) and C5 (a HERA collimator
equipped with scintillator counters placed behind the RCAL at 1.2 m from the nominal interaction point in the electron
beam direction).
The temporal information from the ZEUS calorimeter is calibrated in order to have no temporal gap for the particle in
the interaction region. The timing difference between the FCAL and RCAL measurements can be used to reject the
beam gas events, since the products from the beam gas interactions hit the RCAL ∼ 10 ns before hitting the FCAL.
The calorimeter temporal resolution, for energy E greater than few GeV, is better then 1 ns. The same method is used
to tag the cosmic muons, studying the temporal difference between the upper and lower side of BCAL.

2.9 The ZEUS trigger system

The bunch crossing frequency at ZEUS is ∼ 10 MHz, corresponding to a time gap of 96ns between two consecutive
collisions. The rate is dominated by the interaction of the proton beam with the residual gas which contributes about
10 − 100 kHz, depending upon the vacuum levels in the beam-pipe up to 100 m upstream of ZEUS. This frequency
has to be reduced at a level compatible with the offline data storage without losing interesting physics events (few
Hz).
The approach adopted for the ZEUS data acquisition is a three level trigger system with increasing complexity of the
decision making algorithm and decreasing throughput rate (Fig. 2.20).

• first level trigger (FLT); is a hardware based trigger which uses programmable logic to make a quick rejection of
background events. The FLT reduces the input rate of 100kHz to an output rate of 1kHz. As it is not possible
to take a decision within the bunch crossing time, the data are pipelined until the trigger decision is taken.
Individual component decisions use a subset of the total data, and are made within 1.0-2.5 µs. The global first
level trigger (GFLT) calculations take up to 20 bunch crossings and the FLT delivers the abort/accept decision
after 4.4 µs.
Typical criteria used by the FLT in taking the trigger decision are the approximate “crude” event vertex position,
the transverse energy of the event, and energy sums in sections of the calorimeter. The FLT has a good efficiency
for ep physics (∼ 100%), but still has a very low purity (∼ 1%).

• second level trigger (SLT); the SLT is a parallel processor utilising a network of transputers. It reduces the FLT
output rate of ∼ 1 kHz to an output rate of ∼ 100 Hz. As in the FLT, the outputs of the component SLT
decisions are passed to the global SLT (GSLT) where the event decision is made. The GSLT makes its decision
after 5.2-6.8 ms. The decision is based upon limited charged particle tracking, vertex determination, calorimeter



timing and E − Pz and scattered electron tagging.
Data from an event accepted by the SLT trigger is sent directly from the component to the event builder (EVB).
The EVB stores the data from the components until the third level trigger (TLT) is ready to process it, and
combines the data from different components into one consistent record: the event. One event is stored in a
single record of the ADAMO [49] database tables.

• third level trigger (TLT); is a software trigger which is sent asynchronously with the bunch crossing on a
dedicated PC farm. At this stage an approximate version of the event reconstruction software is run, including
tracks and interaction vertex reconstruction. The TLT has been designed to cope with an input rate of 100Hz
from the SLT at design luminosity. The output rate is reduced to about 5Hz.
After the decision to accept the event, the TLT sends the data via optical link to the DESY computer centre,
where the events are written onto disk to be available for further offline reconstruction and data analysis.

Figure 2.20: ZEUS trigger chain



2.10 Physics simulation

The use of simulation programs is important in physics analysis. A better understanding of the data and the detector
behaviour can be achieved by simulating the detector response to physics events. Moreover, the theoretical models
implemented in the simulations can be tested by comparisons to real data.
The simulation of physics events at HERA is done in two main steps. First, the ep scattering process is simulated
using an event generator. This programme, following the prescriptions of the theoretical models implemented in it,
provides a complete list of the four-momenta of the final state particles. In the second step, all the detector and the
trigger systems are simulated, in order to determine their response to the particles produced in the physical process.
These simulations are based on Monte Carlo (MC) techniques, which are an essential tool in understanding the com-
plexity of high energy physics processes and of particle detectors.

2.10.1 General structure of an event generator

The factorization theorem for hard processes [58] is the main theoretical justification for the approach adopted by QCD
Monte Carlo event generators. Following the prescriptions of the theorem, an ep scattering process, characterized by
a hard scale, can be factorized into the following separate stages (Fig. 2.21):

Figure 2.21: General structure of the leading-order plus parton-shower PYTHIA MC generator.

• hard sub-process: it is the interaction between a parton, extracted from the proton, and the photon, or a photon
constituent in resolved photon events. This process can be calculated in a fixed order perturbative expansion if
it involves a hard scale µ (µ ( ΛQCD);

• initial and nal state radiation: in processes involving charged and coloured objects, the topology of an event
can be strongly influenced by the emission of gluons and photons in the initial or final state. These perturbative
corrections are usually modelled by the so called parton shower method: the radiation is simulated by an
arbitrary number of branchings of one parton into two, like e → eγ, q → qg, q → qγ, g → qq̄. The kernel
Pa→bc(z) of a branching gives the probability distribution of the energy sharing, with daughter b taking a
fraction z and daughter c the remainder (1-z) of the initial energy E a. The two daughters may branch in turn,
producing other partons, and so on. Via initial state radiation a parton, having low space-like virtuality, radiates



time-like partons, increasing its space-like virtual mass. On the other hand, in nal state radiation an outgoing
virtual parton with large time-like mass generates a shower of partons of lower virtuality. The shower evolution
is stopped at some fixed scale µ0, typically of the order of 1 GeV;

• hadronization: the process in which colourless hadrons are formed starting from coloured partons, involving the
phenomenological inputs described in 1.5.2.

• beam remnant: the interacting partons carry only a fraction of the initial beam energy, the rest is taken by the
beam remnant. If the shower initiator is coloured, so is the beam remnant, which is therefore connected to the
rest of the event and has to be fragmented and reconstructed coherently.

2.10.2 The detector simulation

All the event generators supported in ZEUS, like RAPGAP and DJANGOH (see Sect. 4.2.1) are gathered in a software
programme called AMADEUS , see Fig. 2.22. The user can choose the event generator, which gives as output all the
four-momenta of the particles produced in the hard scattering process and all the relevant kinematic variables.
The data produced by an event generator are the input to the ZEUS detector and the trigger simulation programme,
MOZART [62]. MOZART is based on the GEANT [63] package, whose kernel contains a description of all the
detector components, including the material they are made of, their shapes and positions. The programme traces the
particles through the whole detector, simulating its response and taking into account physics processes such as energy
loss, multiple scattering and particle decays in flight.
The events then pass through the CZAR [49] package, that simulates the trigger logic as implemented in the data
taking.
As a final step, the generated sample is processed by the ZEUS reconstruction programme, ZEPHYR. This programme
reconstructs the event variables, like particle momenta and energies, treating the data and the Monte Carlo in the same
way. All the information coming from the different detectors making up ZEUS are taken as inputs by ZEPHYR.
ZEUS data are organized using the ADAMO [49] management system and used for the data storage in memory or
on external media and for their documentation. Access to the data by users is done with the EAZE programme. The
ZEVIS event display generates bi-dimensional graphical representations of the real or simulated events.
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Figure 2.22: A schematic diagram of ZEUS data and Monte Carlo reconstruction chain.



Chapter 3

Analysis overview

3.1 Physics goal

The present analysis is devoted to measure the heavy quarks contribution to the structure function F 2, that is to extract
the quantities F bb̄

2 , F cc̄
2 , in e−p deep inelastic scattering events at HERA.

In order to select events with an high contents of heavy quarks, the presence of at least two jets in each event has been
required.
The probed kinematic range is 22 < Q2 < 1000 GeV2, 0.02 < y < 0.7; the reasons for such a choice will be
illustrated in the following.

In order to get more accurate measurements, one prefers to extract the ratio between the heavy quarks contribution
over the inclusive structure function F2, that is the ratios F bb̄

2 /F2, F cc̄
2 /F2; in such a way most part of the systematic

errors cancels in the ratio.
The estraction of the differential b and c cross section as a function of x and Q 2 has also been performed. But in this
case the relevance of the missing estimation of the systematic errors could be sizable.

In this thesis, the so-called Impact Parameter (IP) method will be used. Method and measurement are alternative to
those already exploited, e.g. D mesons reconstruction and jet plus p rel

t for the charm and beauty estimation respec-
tively.

3.2 Measurement strategy

In order to measure the structure functions F bb̄
2 , F cc̄

2 , one should count the events in which an heavy quarks has been
produced in the hard scattering. The key point is hence to discriminate tracks coming form a beauty or a charmed
hadrons from tracks coming from light hadrons, only by means of topological features of the events.
The advantages of this approach are obvious: one can avoid complicate kinematical reconstructions of decaying
hadrons, access a large phase space region and avoid hard selection cuts.
On the other hand, high performances of the tracking devices and good knowledge of the tracking tools become aspects
more important with respect to the standard analysis; furthermore, having to deal with high precisions measurements
of the track (the order of - 100µm), this techninque acquires a stronger dependence on the event reconstruction and
on the reliability of the detector simulation.

3.2.1 Definition of Impact Parameter

The Impact Parameter (IP) is a geometrical quantity that could be defined for each well reconstructed track and is the
main tool of the present measurement. So first of all, let us illustrate what the impact parameter is, with the help of the
Fig. 3.1. The “distance of closest approach” (DCA) is defined as the point of the reconstructed track helix closest to
the interaction point. For each track, the impact parmeter is basically the distance of closest approach (DCA) projected
into the transverse plane, that is the plane orthogonal to the beams direction.
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Figure 3.1: Schematic representation of the quantities outlined in the text: the distance of closest approach, the beam
spot and the impact parameter.

3.2.2 Lifetime signature: the impact parameter method

The main quantity to distinguish heavy quarks from background is the relative long lifetime of heavy flavoured
hadrons. The lifetime can be translated to a measurable quantity using the decay length of the boosted hadron:

l = cτβγ, (3.1)

where τ is the lifetime in the particle rest frame and βγ = |3p|/m denotes the boost of the particle relative to the
laboratory frame. The probability that a hadron with characteristic decay length l traverses at least a laboratory
distance L between its production and decay is:

P (L) ∝ exp(−L/l). (3.2)

For experimental reasons the measurement of the impact parameter could reach the precision needed only in a plane
perpendicular to the beam axis. The longitudinal size of the crossing particle buches is much much larger than the
transverse sections, so along the beam directions the interaction point is reconstructed with a precision of the order of
several centimeters. Therefore, only the rφ− projection

Lt = L sinθ, (3.3)

where θ denotes the polar angle of the decaying hadron, is relevant here.
The impact parameter of a particle coming from the hadron decay is the closest distance in the rφ plane, between
the decay particle’s trajectory and the production point of the decaying hadron and is given by

δ = Lt sinα. (3.4)

Here α is the angle in the rφ-plane between the hadron direction and the direction of the decay particle.
The difference in lifetime for charm and beauty-flavoured hadrons leads to significantly different δ spectra, the large δ
region beeing dominated by the heavy quarks. This is shown in Fig. 3.2, that compares the normalized IP distributions
for beauty, charm and light quarks as predicted by the MC.

In principle is hence possible to distinguish the heavy hadrons from background profiting of the correlation between
their lifetime and the IP of the track of their decay products: the longer the heavy hadron’s lifetime, the larger is the
track’s IP.
One has, of course, to isolate the real signal from long lived particles not containing heavy quarks, as e.g. the Kaons.
This can be achieved selecting tracks whit IPs in a suitable range. This important requirement, as well as other
requirements, will be discussed in the section 4.4.2. In contrast to an explicit decay length analysis, no knowledge of
the hadron decay vertex is required and, therefore, a reconstruction of secondary event vertices is not necessary.



Figure 3.2: Normalized distributions of the impact parameter for tracks originating from charm decays (blue line),
beauty decays (red line) and light quarks (dark line), as predicted by DJANGOH MC.

3.2.3 The signed IP: the jet-track association

It is possible to further improve the discriminating power of the IP defining a signed impact parameter (sIP). This can
be done using the jet to which the charged particle belongs. In each event, the jets are searched and reconstructed by
dedicated software algorithms that will be illustrated in the following (Sec. 3.4.3). If jets are present in the event, one
can set a procedure in order to state if a track could be associated to a jet. Then the IP sign is set as positive if the
intercept of the track with the jet in the rφ-projection is downstream of the primary vertex, negative otherwise (see
Fig. 3.3). A positive sign means that the particle crosses the jet, while a negative sign means the track crosses the
interaction point with a direction opposite to the jet one.

Experimentally, the procedure is as follows :

1. first of all one computes for each track the the distance between the track and the reference jet in the rφ plane:

∆Rtrack−Jet :=
√

(∆η)2 + (∆φ)2

where ∆η = ηjet − ηtrack, ∆φ = φjet − φtrack;

2. all the tracks with ∆R < 1 are associated to the reference jet;

3. then one computes the scalar product Ûtrack−Jet between the versor of the track’s DCA, n̂track, and the direc-
tion defined by the jet axis n̂Jet, both projected in the transverse plan:

Ûtrack−jet := n̂track · n̂jet

4. finally the sign of the IP is defined as the sign of the scalar product just computed:

sIP = sign(Ûtrk−Jet) · |IP |



In this analyisis it has been chosen to perform the association procedure only with the most energetic jet in the event.
This because the jet coming from the hadronisation of the heavy quarks is expected to be more energetic and more
collimated with respect to the jets coming from radiated gluons or light quarks.

Tracks originating from long living hadrons are expected to produce impact parameter distribution tending towards
positive values: the hadron boost set the decay products to have their direction similar to the jet direction. On the other
hand, track from light quarks are expected to deliver signed impact parameters distributed symmetrically around zero.
The width of the distribution is related to the detector sensitivity and reflects the finite resolutions for tracks and vertex
reconstruction.

Figure 3.3: Sketch of the impact parameter, δ for a generic track. If the track intercepts the jet axis downstream the
reference point, the impact parameter has positive sign, negative otherwise.

3.3 Smearing the Impact parameters

The extraction of the b and c fractions using the impact parameter technique relies on the Monte Carlo description of
the track parameters. Unfortunately the available MC does not provide a good description of these variables. This
disagreement has clearly come out in different analyses carried out by various ZEUS Collaboration members. Fig. 3.4
shows the poor description of the signed IP distribution obtained when using a PYTHIA photoproduction Monte Carlo
sample compared with the 2004 data in a previous analysis of ZEUS Collaboration concerning beauty exctraction in
di–jet events with the IP plus prel

t technique [112]. On the left side of Fig. 3.6 similar disagreement is evident for the
IP distribution predicted by the ARIADNE MC compared with the 2005 DIS events subject of this analysis.
In general the data impact parameter distribution is significantly wider than that in the MC. There are several reasons
for this disagreement:

• the dead material is not simulated accurately enough in the Monte Carlo;

• the intrinsic hit and track resolutions implemented in the Monte Carlo simulation do not correctly reflect the real
tracking detector resolution;

• the current implemented alignment of the Micro Vertex Detector has still to be improved.

In order to improve this status, background studies have been performed [112]: a refined reweighting has been tuned
on an inclusive sample of light flavour MC to be compared with the 2004 data.

3.3.1 Double convolution fit

The resolution of the tracking system can be expressed as:

σ(pT )/pT = apT ⊕ b ⊕ c/pT (3.5)
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Figure 3.4: The MC impact parameter distributions (histograms) compared with 2004 data (black crosses), in different
PT bins (the PT range considered is 0.5 < PT < 5 GeV, the PT bin size is 0.5 GeV).

where the first term is related to the intrinsic track and hit resolution, whilst the second and third terms are related to the
multiple scattering. It is therefore useful to analyze the impact parameter spectrum in different p T bins. The multiple
scattering is particularly expected to be the phenomenon less under control or worse simulated. In order to determine
the correct smearing to apply to the MC, different functional forms (e.g. Gaussian, double Gaussian, Breit-Wigner,
convolution of Gaussian with exponential) were tested to fit the negative side of the signed IP distribution in the data
(the total distribution is slightly asymmetric towards positive values due to physics processes like K decays). The best
fit to the data is found to be a double convolution of MC with a Gaussian and a Breit-Wigner: if F in the original IP
distribution in the fitted range, the functional form of the new distribution is obtained as:

Ffit(x) =
∫

dy

∫
dzF (z)B(y − z)G(x − y) (3.6)

where B indicates the Breit-Wigner function and G is the Gaussian function. In order to determine the precise values
for the widths of the two distributions, different combinations of the σ of the Gaussian and the Γ of the Breit-Wigner
distributions were tested in order to find the minima. The χ2 of the fit for each pT bin is found to be approximately
constant as a function of the Gaussian σ, whilst it shows a strong dependence on the Breit-Wigner Γ. The minima
were determined considering two-dimensional distributions; the χ 2 of the fit was plotted as a function of the Gaussian
σ keeping the Γ of the Breit-Wigner at its minimum; the Gaussian width was determined by fitting the local minimum
area with a parabolic fit. The same procedure was adopted to extract the minimum of the χ 2 as a function of the Γ of



the Breit-Wigner.

The distributions of the above minima as a function of pT , have been fitted using a combination of an exponential
and constant function in the case of the Breit-Wigner and with an exponential term for the Gaussian; the result can be
written as:

ΓBW (PT ) = exp(a + b · PT ) + c (3.7)

σGauss(PT ) = exp(d + f · PT ) (3.8)

where the Breit-Wigner parameters are a = 1.9791, b = −0.83335 and c = 0.001 cm, whilst the Gaussian fit param-
eters are d = 0.0037817 cm, 0.00039859 cm. These values are used to correct the impact parameter measurements as
follows:

IPsmeared = IPoriginal + smeBW + smeGauss (3.9)

where:
smeBW = NBW

RAN (NUNI
RAN ) × (exp(a + b · pT ) + c) × const. (3.10)

and
smeGauss = exp(d + f · pT ) × NGAUSS

RAN (3.11)

In Eq. 3.10 N BW
RAN is a random number generated with ΓBW equals to 1, whilst NUNI

RAN is a uniformly generated
random number from 0 to 1. In Eq. 3.11, N GAUSS

RAN is a random number generated according to a Gaussian distribution
with σGauss equals 1.

Figure 3.5: Absolute value of the corrections applied to the impact parameters by the smearing procedure (left) and
scatter–plot of the entity of the smearing correction to the IP in percentage versus the transverse momentum of the
relative track.

For about half of the selected tracks, the absolute value of the corrections applied to the impact parameters by the
smearing correction is below 100µm as can be seen in Fig. 3.5. The same figure also shows the transverse momentum
of the track as a function of the percentages of the smearing correction with respect to the IP of the relative track. The
randomization of the smearing parameters ensures an indipendent sampling of the applied corrections.

Although the IP smearing applied on the trial sample is effective, as can be seen on the right side of Fig 3.6, in the
present contest the improvement is not so stunning. Even if the agreement is largely improved after the smearing, the
χ2 per degrees of freedom between the data and MC remains large (> 5). Probably a new tuning on an inclusive DIS
sample would provide better results.



Figure 3.6: Inclusive MC impact parameter distributions (hatched histograms) compared with 2005 data (black dots)
analysed in the present work, without smearing on the left side, and after the smearing, on the right side. The smearing
procedure illustrated in the text The inclusive MC is built with the method explained in 4.2 and plotted after the whole
selection of 4.3; beauty (red), charm (hatched green) and light quark (blue) components are shown separately.

3.4 Physical observables

The computation of the signed impact parameter requires three ingredients: a well reconstructed track, the knowledge
of the spatial point in which the interaction occurred and a jet.
All of them play a fundamental role in this analysis, so in the following sections the software and hardware devices
related to their measurements will be reviewed.

3.4.1 Tracks

The development of the package used in ZEUS for the reconstruction of tracks and vertices inside the detector begun
in 1990 and is still undergoing developments because of the different configurations of the ZEUS tracking system. All
reconstructed tracks use mostly hits from the CTD although information coming from other tracking devices (MVD,
SRTD, RTD and FTD1) are taken into account.
The reconstruction of the tracks and vertices can be summarised in three basic steps:

• pattern recognition

• track fit

• vertex finding

which will be discussed in some detail in this chapter.

3.4.1.1 Pattern recognition

Due to the axial magnetic field around the interaction region, the particle trajectory is to first approximation a cylin-
drical helix with axis along Z . In the pattern recognition phase in order to describe the helix in 3 dimensions the
following parameters are used (see Fig. 3.7):



• two parameters in the XY plane: (a1, a2)

• two parameters in the sZ plane: (p1, p2), where s is the path length. For a 2D s path along the circumference,
Z = p1 + sp2, where p1 = z at (x0, y0) and p2 = cot θ; (x0, y0) is reference point for the trajectory in the XY
plan, corresponding to the outer hit.

Figure 3.7: Parametrization used in Pattern Recognition in VCTRAK. The reference point for the trajectory is (x 0, y0);
(a1, a2) are the two t parameters in the XY plane.

This method of track parametrization is faster than the 5-parameter fit used in the final track reconstruction; the speed
of the execution is important in this phase because this algorithm is also implemented at the third level trigger where
it is necessary to process a huge quantity of information (all possible hit combinations) in a limited amount of time.
Pattern recognition begins at the outer point of the tracking detectors and goes inward, i.e. it starts in the outer
SuperLayer (SL9) of the CTD and follows inward through the MVD module layers. Of all track segments found, only
track segments with at least 4 hits are kept.

3.4.1.2 Track fit

In the region around the interaction point the magnetic field generated by the solenoid is almost parallel to the CTD
axis leading to a parametrization like the one sketched in Fig. 3.8;

at this stage the helix is described by 5 parameters calculated with respect to a reference point (X ref , Yref ):

1. φH , azimuthal angle of the helix tangent at the distance of closest approach to the straight line x = y = 0;

2. Q/R, where Q indicates the track charge (sign) and R the local curvature radius;

3. QDH , distance of closest approach to the straight line x = y = 0;

4. ZH , z coordinate of the track at the distance of closest approach to the straight line x = y = 0;

5. cot θH , where θH is the polar angle of the track.



Figure 3.8: VCTRAK parametrization used in the track t.

The coordinates of the point of closest approach to the reference point can be written as:





XH = Xref + QDH sinφH

YH = Yref − QDH cosφH

ZH

(3.12)

The path length of a generic trajectory in the XY plane is given by:

s(φ) = −QR(φ− φH) . (3.13)

The coordinates at a generic point of the helix can be parameterized as:





X = XH + QR(− sinφ+ sinφH)
Y = YH + QR(+ cosφ− cosφH)
Z = ZH + s(φ) cotφ .

(3.14)

The three-momentum components are given by:

(px, py, pz) = (p cosφ sin θ, p sin θ sinφ, p cos θ) . (3.15)

3.4.1.3 Vertex finding

The track parameters obtained in the fit phase are the starting point for the vertex finding. The goal of the pattern
recognition phase for the vertices is to find the primary vertex. Each vertex is defined by the trajectories of the tracks



“forced” to its position. A detailed description of this process can be found in [91]. The tracking package can be run
in two modes:

A) “primary vertex only” mode which does not reconstruct secondary vertices.

B) “multi-vertex” mode which finds a primary vertex compatible with the existence of secondary vertices. The
execution time is obviously longer but there are some advantages:

• many events in which the primary vertex is not revealed in the A) mode now can be reconstructed (usually
they are events with a low multiplicity of primary tracks and many secondary tracks);

• the primary vertex is identified in a “cleaner” way because tracks contaminating the primary vertex recon-
struction now are associated to secondary vertices.

3.4.1.4 MVD information

At the end of 2002 a new version of the tracking software including the MVD hits became available; the improvements
with respect to the old version which used only CTD information are the following:

• track finding efficiency: using the MVD already in the pattern recognition stage, an efficiency improvement of
∼ 3% can be obtained, from 93.5 % using CTD only information to ∼ 97% including also the MVD information;

• trajectory precision: MC studies have shown that the precision in the trajectory determination is significantly
improved;

• vertex finding: the primary vertex resolution is improved as well as the efficiency in the identification of sec-
ondary vertices.

3.4.2 The reference point

The impact parameter is defined with respect to the interaction point. But there are two choices in locating the
interaction point experimentally: one can naively consider the primary vertex (PV) as the point where the interaction
occurred, as determined by the reconstruction packages of the global tracking, on an event-by-event basis. In such
a way there is strong dependence on the analysed event, and the error on its determination could vary a lot. But if
the primary vertex spread in the transverse plane (XY ) is smaller than its reconstruction resolution, the accuracy on
its position determination can be improved by replacing its value on an event-by-event basis with its average over
many events, technically named beam spot (BS). In order to achieve the best resolution for the x and y coordinates,
an average vertex position is then determined run-by-run, and a beam spot is calculated averaging the primary vertex
positions for all the events in a run. Some quality cuts are applied to the tracks participating in the fit as well as
adequate background reduction cuts:

• existance of the primary vertex

• RCAL time - FCAL time > -8 ns. This cut reduces proton beam-gas events and proton beam halo muons;

• CAL ET > 5 GeV and CAL PT < 5 GeV. This cut reduces proton beam-gas events. Here ET is the transverse
energy in the calorimeter, whilst PT is the sum of the momentum vectors of all CAL deposits projected onto the
xy plane;

• E − pZ > 10 GeV

• At least four tracks fitted to the primary vertex;



The advantage in using an averaged position of the PV as interaction point is obvious, being the precision with which
it is known much higher. Considering the BS as the interaction point, the total error could be greatly limited, and its
dependence on the reconstruction tools or on peculiar features of the event becomes smaller.

The beam position in x and y, determined from an average of 2000 reconstructed event, provides quite a precise
and unbiased estimation of the event vertex in the transverse plane: the transverse width of the HERA beams at the
interaction point has been estimated to be about σx - 110 µm and σy - 30 µm. These are the dimensions of the
beam spot width taken into account.
The statistical contribution coming form its determination over the sample in which it is computed is about one order
of magnitude lower.

All runs within the same HERA fill are treated as a single run. The last few events at the end of a fill are added to the
previous interval and the distributions are re-fitted.
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Figure 3.9: Distribution of the primary vertex coordinates in an example run (∼5000 events taken during the 2004
were selected after applying the background rejection and quality cuts). A Gaussian t was used to extract the mean
beam spot values, restricting the t range to ±2σ.

For each run the beam spot position is determined applying a Gaussian fit to the primary vertex coordinate distributions
(see Fig. 3.9). Different fitting ranges have been tested (±2σ, ±4 bins from the mean, free fit range), obtaining
differences in the mean positions of the order of few µm, meaning that the systematic effects from the chosen fit
procedure are of the same order of the statistical uncertainties.

3.4.2.1 Time and z dependence of the BS

The beam spot is not always in the same position, as shown in Fig. 3.10 where the HERA and H1 measurements are
reported. The vertical and horizontal positions of the beams vary significantly. The beam orbits can change between
the fills due to the fact that the focussing superconducting magnets before the interaction point [37] move, being
subject to magnetic forces. Also temperature effects can occur in the magnetic bridges leading to a shift up to 1 mm.
The orbits can drift inside each fill as well; the reasons are again temperature effects induced by the magnet bridges
and also luminosity, background and polarization tuning.



Figure 3.10: HERA (grey) and H1 (black) vertical (top) and horizontal (bottom) beam position measurements (in mm)
as a function of time (months). The periodic structure of the plot reects the different machine lls.

3.4.2.2 Time dependence

The average position of the primary vertex described in section 3.4.2 can drift during a fill (see Fig. 3.10). In
order to quantify this effect, a study [112] has been performed on the 2004 data, limiting the study to large statistics
consecutive runs inside the same fill. In Fig. 3.11 the primary vertex coordinates are plotted as a function of the Run
Number (time-dependent); the observed variation inside each run was of the order of ∼ ±20 µm for both the x and
y coordinates. These variations have been found to be small compared to the sigmas of the beam spot coordinates
distributions (see Fig. 3.9), so no corrections are applied for this effect.

3.4.2.3 Z dependence

The beam and detector axes are not parallel along the longitudinal direction, producing a dependence of the primary
vertex X ,Y positions on the Z coordinate.
In Fig. 3.12 this effect is shown for a particular run taken during the year 2004: the variations can reach ∼ ±200 µm.
Therefore this effect is not negligible and a correction is needed on the beam spot coordinates. A fit is then performed
on the x vs z and y vs z distributions with a straight line. Then the obtained tilt-parameters m x,y, Figs. 3.13 and 3.14,
are used to correct for the primary vertex position The new coordinate positions are written as:

Xcorr
BS = XBS + mx,y · (ZPV − ZBS) (3.16)

Y corr
BS = YBS + mx,y · (ZPV − ZBS) (3.17)



1.86

1.865

1.87

1.875

0 10000 20000 30000 40000 50000 60000 70000 80000

0.155
0.1575

0.16
0.1625
0.165

0 10000 20000 30000 40000 50000 60000 70000 80000

Event Nr

x  v
tx

  (
cm

)

Event Nr

y  v
tx

  (
cm

)

Event Nr

z  v
tx

  (
cm

)

-10
-5
0
5

10

0 10000 20000 30000 40000 50000 60000 70000 80000

Figure 3.11: Distribution on the vertex position in x (top, left), y (top, right) and z (bottom) in bins of approximately
500 events for one single 2004 run. Each of the measurements (triangles) corresponds to 200 events. The variation
observed in x and y is of the order of ∼ ±20 µm.

3.4.2.4 DAF Vertexing

A further refinement of the vertex position measurement is possible implementing the Deterministic Annealing Filter
(DAF) procedure [68]. The main issue is to replace hard χ 2 cuts of the track fit by a smooth weight function, which is
sharpened by iteratively tuning its parametrisation.
The potential benefit is a more robust determination of primary vertex. This technique is already adopted by other
experiments experiments. In the present analysis the DAF vertexing has been adopted, setting it in the beam spot
constrained mode.

The impact parameter used in this analysis will be always referred to the beam spot, corrected for the beam tilt. In
order to refer the tracks to this reference point, all the tracks undergone the procedure to re–computing the coordinates
of their helix.

3.4.3 Jet algorithm

The features of the jets in a hadronic final state are related to those of the partons from which they originate. However,
jets are complex objects, and they are not uniquely defined in QCD: their definition relies on the algorithms used
to reconstruct them. In the Snowmass workshop in 1990 [95] some criteria were fixed to be satisfied by every jet
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Figure 3.13: Fit parameters for the x coordinate. On the left the off-set, on the right the slope coming from a linear t.

reconstruction algorithm. In particular, two requirements have to be fulfilled, in order to define an infrared and
collinear -safe algorithm, reconstructing jets in the proper way:

• the results must be independent of the fact that one parton can split into two partons moving collinearly, or,
from the experimental point of view, that a particle can release energy in two adjacent calorimeter cells. This
dependence in fact causes collinear divergences in the theoretical calculations, which disappear if no distinction
is made between two particles having energy E1 + E2 = E and one single particle of energy E, moving in
the same direction. From the experimental point of view, this means that the results are independent from the
detector granularity ;

• the results must be independent of the emission of very low energy particles; this fact causes infrared divergences
in the theoretical calculations, removed by integration. In experiments these small energy deposits are related to
the noise of the detector, removed by using appropriate thresholds or corrected by suitable algorithms.
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Jet algorithms for the analysis of photoproduction processes have to fulfill two further requirements: they have to treat
the proton and, if present, the photon remnant in a proper way, that means, the remnants have to be separated from the
jets and not influence their search. Moreover, in photoproduction processes in general the laboratory frame is different
from the frame of physical interest (i.e. the γp centre-of-mass frame). Nevertheless, in DIS as well as in photoptoduc-
tion processes, the frame are Lorentz boosted along the beam direction with respect to the laboratory frame. Therefore
the jet algorithm has to be independent of this kind of transformation: this can be done by reconstructing jets using
their transverse energy in a pseudorapidity-azimuth plane (η − φ).

In ZEUS jet reconstruction is performed through cone and clustering algorithms. The clustering approach has the
advantages of unambiguously assigning objects, i.e. the treatment of overlapping jets is clear, and the assignment of
hadrons to jets can be done using the same procedure both in theoretical calculations and in experiments. This is the
reason why here a clustering algorithm has been used to reconstruct jets, namely the k T algorithm [96].
The resolution variable used by the kT algorithm to identify the jets is the relative transverse momentum, kT , between
particles. The use of this variable follows from the fact that, with the present understanding of perturbative QCD, the
jets are not sprays of hadrons confined in cones of fixed angle. Soft hadrons produced coherently by the fragmentation
of hard partons should be assigned to the jet of the hard parton nearest in angle, independently of the actual value of
its angular distance [97, 98]. This means that the jets have an effective radius depending on the hardness of the jet
itself and on the colour flow of the hard subprocess.
The clustering procedure of the kT algorithm is performed using the following iterative procedure:

1. the final state is described through a set of four-momentum objects p i. The initial pi can be the single particle
four-momenta or the energy deposits inside the calorimeter (which can be improved using the information
reconstructed by the tracking devices). The masses of these objects m i =

√
p2

i << | 3pTi|, where 3pTi is
the transverse momentum of the ith-object. The algorithm recursively groups pairs of objects to form new
objects, merging objects with almost parallel momenta. A parameter R characterises the measurement of the
“distance” between two candidate objects to be merged. Every i th-object is characterised by its pseudorapidity
ηi = − log(tan θi2 ), its azimuthal position φi and transverse energy E i

T .

2. For each object it is possible to define:
di = E2

T,i , (3.18)
which measures the distance from the beam-axis and for each pair:

dij =
min

(
E2

Ti, E
2
Tj

)
[(ηi − ηj)2 + (φi − φj)2]

R2
(3.19)

where R = 1 is assumed in this thesis.



3. The quantity:
dmin = min(di, dij) (3.20)

is determined.

4. If dmin = dij , the i and j objects are recombined into a new object. The recombination scheme used in this
thesis, known as “E-scheme”, combines the 4-momenta of i and j like:

Pk = Pi + Pj (3.21)

and produces massive jets taking into account the masses of the tracks, assuming them to be pions.

5. If dmin = di, the ith-object is removed from the list and is added to the final jet list.

6. Re-start from step 2.

This procedure is re-iterated until all the starting objects are processed.

3.4.3.1 Reconstruction of the hadronic system

The measurement of particles energy is fundamental for the reconstruction of the event properties. The energy resolu-
tion of the CAL (see Eqs. 2.9, 2.10) goes like σ(E)/E ∼ a/

√
E⊕ b improving as the particle energy increases, whilst

the resolution of the tracking system behaves like σ(PT )/PT ∼ a ·PT ⊕ b⊕ c/PT leading to better energy estimation
for lower energy particles (see Fig. 3.15).
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Figure 3.15: Resolution from single particle MC simulation. The track transverse momentum resolution in the CTD
(open markers) and the CAL energy resolution (full markers) are shown [94].

The relationship between the CTD and BCAL resolution for electrons and charged hadrons as implemented in the
MC is shown in Fig. 3.16 a) and 3.16 b), respectively, as a function of the polar angle. The angular range cho-
sen lies within the BCAL and away from its edges. The BCAL energy resolution for electrons, in the energy
range shown, is σ(Ee) ≈ 0.193E1/2

e [99], where Ee is the electron’s energy in GeV and the relationship assumes
1 X0 of dead material. The equivalent formula for the hadronic energy resolution is σ(E h) ≈ 0.35E1/2

h , where
Eh is the hadron’s energy in GeV. The CTD energy resolution for both electrons and charged hadrons is given by
σ(E) ≈ 0.0058E2 sin θ ⊕ 0.0065 ⊕ 0.0014/ sinθ, where E is the charged particle’s energy in GeV and θ, its polar
angle. The poorest CTD resolution corresponds to θ ≈ π/2, where the energy of electrons O(10 GeV) and hadrons
O(15 GeV), or higher, begins to be better resolved by the BCAL.



To benefit from the most accurate energy determination in both energy ranges, the track reconstruction and the CAL
energy measurement are combined into energy flow objects (EFOs) [94]. The tracking information is mainly used
below 10-15 GeV and the calorimetry energy measurement above to form four-vectors representing the oriented en-
ergy deposit of particles traversing the detector.
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Figure 3.16: The relative resolution of the CTD and BCAL for reconstructing the energy of (a) an electron, E e and (b)
a charged hadron, Eh, as a function of Ee and Eh and polar angle, θe and θh, for electrons and hadrons, respectively.
The contours show the rate at which one reconstruction improves the other [99].

3.4.3.2 Reconstruction of Energy Flow Objects (EFOs)

The use of EFOs is justified by the fact that the hadronic energy has both a charged particle and a neutral particle
component. Both are measured by the calorimeter, but a large fraction of the charged particles are also measured by
the tracking detectors. The use of the EFOs rather than the usual energy deposits in the calorimeter is also driven by the
design of the ZEUS calorimeter (see Chapter, which is divided in three parts, the forward (FCAL), barrel (BCAL) and
rear (RCAL) calorimeter. This spatial separation is a serious complication for a local clustering algorithm in handling
the energy deposits of a single particle which is not confined within a single part of UCAL, since the energy will be
split in two or more clusters.
Because of these complications, the EFO clustering algorithm is done in two steps [94]:

• the first stage of the clustering procedure is performed in each calorimeter layer separately. Each cell with
sufficient energy is considered a candidate to be connected with one of its neighbours. The connection is made
with the nearest neighbour with the highest energy or with the highest energy cell next to the neighbour. This
procedure is repeated for each cell and produces a unique assignment of a cell to a so-called cell island (see
Fig. 3.17).

• The second stage of the clustering procedure collects the cell islands belonging to a shower of a single particle
or a jet of particles into a so-called cone island . The matching of cell islands starts from the outermost hadronic
layer of the calorimeter and proceeds inwards. The angular separation between cell islands of different layers is
calculated in θ − φ space and translated to a probability according to a distribution determined by a single pion
MC. Links with high probability are accepted provided that the probability is larger than a threshold. Once the
linking procedure has been completed, the cone islands are generated by combining all calorimeter cells which
point to the same cone island in the electromagnetic layer.
The cone island centre is calculated as the energy weighted mean of the cell centres which have been corrected
for the imbalance of the two photomultiplier measurements per cell. The energy weight is determined loga-
rithmically rather than linearly to cope with the observed systematic bias due to the varying cell projectivity
resulting from the CAL geometry.

For the track reconstruction (see Sec. 3.4.1), vertex fitted tracks with hits in at least 4 superlayers are selected in
the transverse momentum range 0.1< P track

T < 20 GeV. If the track has hits in more than 7 superlayers, the upper



Figure 3.17: A schematic diagram showing how cell-islands are formed.

transverse momentum cut is raised to P track
T < 25 GeV. The tracks are extrapolated to the inner CAL surface taking

into account the magnetic field geometry and further into the CAL by a linear approximation using the track momen-
tum vector at the CAL surface.

The matching of a track to a cone island uses the distance-of-closest-approach (DCA) method. A match is assigned

Figure 3.18: Reconstruction of EFOs by a match between CAL cells clustered into cone islands (HAC cell 1 and EMC
cell 2 and 3 are joined to form a cone island) and tracks. The different match categories of a charged particle (track
is matched to cone island 4), neutral particle (no track is matched to cone island 5) and unmatched track are shown.

between the extrapolated track and the cone island centre (see. Fig. 3.18) if the distance is closer than the cone island
radius or a minimal radius of rmin = 20 cm optimized using MC simulations to maximize the track-island matching
efficiency for single particle CAL clusters:

DCA ≤ max(rmin, risland) . (3.22)

The set of associated track-islands, the EFOs, are then processed according to the following criteria:



• good tracks not associated to any calorimetric object are counted as charged particles, and the CTD information
is used. The particle is assumed to be a pion;

• calorimeter objects not associated with any track are counted as neutral particles and the calorimeter information
is chosen;

• for calorimeter objects associated with more than three tracks the calorimetric information is chosen.

In the case of one-to-one track-island matching, the track information is used instead of that from the UCAL if these
two requirements are fulfilled: the energy deposit in the calorimeter has to be due to the associated track alone, and the
momentum resolution of the track has to be better than the energy resolution of the corresponding calorimetric object
(see Fig. 3.15), i.e. if both the following requests are satisfied:

• the track momentum exceeds the energy measurement in the CAL within the resolution on the measured ratio
Ecal/p:

Ecal/p < 1.0 + 1.2 · σ(Ecal/p) , (3.23)

where σ(Ecal/p) = σ(Ecal/p2)σ(p) ⊕ (1/p)σ(Ecal).

• That:
σ(p)/p < σ(Ecal)/Ecal , (3.24)

where σ(p) and σ(Ecal) are the resolutions of the momentum from the tracking and the energy in the CAL
respectively.

Since muons are minimum ionising particles (MIPs) and lose their energy predominantly by ionisation, the measured
energy in the CAL is not proportional to the momentum. Therefore, EFOs having the properties of a muon are treaated
differently and the tracking information is favoured over the energy measurement if

• Ecal < 5 GeV;

• Ecal/p < 0.25;

• PT < 30 GeV.

The more complicated 1-to-2, 1-to-3, 2-to-1 and 2-to-2 track-island matches are treated similarly to the 1-to-1 match,
substituting the UCAL energy and the CTD momentum with the sum of the energies of the islands and the sum of the
momenta of the tracks respectively.
Finally, in the case where a single track is matched to two or more islands, and the energy of the UCAL is favoured,
the more precise angular information of the track is used.

Comparisons between data and MC simulations have shown discrepancies in the reconstruction of EFOs using calorime-
teric islands [114, 115]. The main reasons are:

Energy loss in inactive material: Energy losses due to dead material are generally difficult to fully implement into
the MC simulation. A detailed dead material map is available and has been used to write correction algorithms. The
material constituting the beam pipe, the tracking devices and the solenoid correspond to a number of radiation lengths
varying from 1 to 3 in the central part of the detector and the energy loss of the particles, especially of those having low
momenta, can be significant in such a thickness. Since energy losses due to the presence of dead material are difficult
to include with sufficient precision in the detector simulation, the correction is done offline, and it is parametrized as
a function of the energy and of the polar angle of the particles.

Calorimeter geometry: The zones of the cracks between the calorimeter sectors are not well simulated and correc-
tions are introduced offline.

Energy overestimation of low momentum hadrons: Protons and pions with momenta below ∼ 1 GeV lose energy
mainly through ionisation without hadronic interactions. In this case, the CAL is no longer compensating (e/h ∼ 0.6).
This effect causes an overestimation of the energy of low-momentum hadrons which has to be corrected.





Chapter 4

Data and MC sample

4.1 Data sample

The impact parameter for heavy hadrons is in the order of tens to hundreds of micrometers. To resolve these distances,
high precision track measurements are required. Only in the HERA II period this resolution can be achieved, provided
by the MVD.

The data sample here analysed covers data taken in the 2005, during the HERA II period. It corresponds to an integrated
luminosity taken by ZEUS of about 126 pb−1.

4.2 Monte Carlo

In this section, the Monte Carlo samples generated and used for the simulation of the data analysed in this study are
presented.

4.2.1 DJANGOH and RAPGAP

The Monte Carlo program used in this analysis to generate the heavy quarks content of the ep-scattering events in the
DIS regime is the RAPGAP [82] event generator. It is used to generate either beauty and charm events.
The background, constituted by events from light flavors, is simulated using DJANGOH [73], an interface between
HERACLES [74, 75] and ARIADNE [86].

The HERACLES program, used by RAPGAP and DJANGOH, simulates ep-scattering in DIS regime, includingfirst order
radiative corrections. The hard scattering between the parton and the photon is simulated according to the Standard
Model cross sections and the proton PDFs. The parameterization of the PDF is chosen according to the CTEQ5 [66]
set of proton PDFs.

RAPGAP is used for QCD corrections in order to simulate the complete ep-scattering process. The first order QCD
processes are simulated using exact matrix elements. These processes are the BGF and processes with a radiated gluon
(see Ch. 1, Fig. 1.9). For higher order corrections, QCD parton showers, based on the leading log DGLAP [15]
splitting functions are used. They can occur before and after the hard subprocess.

For the fragmentation, RAPGAP uses the Lund-string model, as it is implemented in JETSET/ Pythia [85] (see Fig.
4.1).

ARIADNE uses the color dipole model (CDM). In this model, gluon emissions from a qq̄ pair is treated as radiation
from the color dipole between the quark and the anti-quark. This model incorporates BGF as an extra process, while
QCDC is included in the color dipole radiation.
Like RAPGAP, also ARIADNE uses the Lund-string model for hadronization.

75



Figure 4.1: RAPGAP implementation of BGF. Shown are the color strings and the proton remnant in Boson-gluon-
fusion of O(aemas). The proton remnant is the valence quark and valence diquark [82].

The DJANGOH MC generator provides the simulation of the whole inclusive DIS event; that means with beauty and
charm components also therein. But, due to a more accurate treatment of the matrix elements in the cross–sections
calculations, RAPGAP is expected to be more reliable DJANGOH in reproducing the heavy quarks behaviours. So, to
build a proper inclusive sample of DIS events, the heavy quarks component supplied by the DJANGOH MC has been
replaced by the events simulated with RAPGAP.
The differences are not relevant for light quarks, that are hence simulated with DJANGOH.

The evaluation of the right amount of heavy quarks from RAPGAP to be added to the light quarks from DJANGOH
has been computed according to the values of the cross–sections for the corresponding processes, and then summed to
obtain the inclusive MC. The relative percentages are kept so that the total amount of the MC events should correspond
to a luminosity proportional to one of the analysed data. It’s worth to stress that if the MC cross–sections where correct,
the total cross–section of the inclusive MC sample built in such a way would reproduce exactly the real DIS cross–
section, without any normalization.
However, the inclusive MC sample arranged in the way just explained is not expected to reproduce the correct number
of events measured in the data, since it is well known that the MC cross–sections of the heavy quark production 1 are
wrong by some factor2. The MC sample is expected to reproduce the shapes of the differential distributions for the
main kinematical and topological variables of the data, whereas to reproduce properly the amount of the events too,
the normalization is usually taken from the comparison to the data. So in order to check that the main distributions are
well reproduced by the inclusive MC, all the distributions are normalized to the data.

An overview of MC used in this analysis is given in Table 4.1; it can be seen that the amount of light quarks has been
chosen to be roughly 4.2 times the luminosity of the data. The charm part alone is about the same, whereas the beauty
sample is well above.
The different trigger configurations set during the data taking periods are assigned to four configurations of the MC
detector simulation. The luminosity of the different MC configurations is generated accordingly to the corresponding
data luminosity, and the proportion are kept for each MC.

Process cross–section MC generator Luminosity Cuts
ep → bb̄X 0.908 nb RAPGAP 2077.0 pb−1 Q2 > 1 GeV2

ep → cc̄X 21.36 nb RAPGAP 303.3 pb−1 Q2 > 8 GeV2

ep → cc̄X 11.55 nb RAPGAP 280.4 pb−1 Q2 > 16 GeV2

inclusive DIS 83.3 nb ARIADNE 531.8 pb−1 Q2 > 20 GeV2

Table 4.1: MC samples used in this analysis.

1The inclusive MC cross section are expected to be more accurate, as the HERA I analyses showed.
2The beauty cross–section for example is expected to be wrong by a factor about two. At the end of this analysis an evaluation of the errors of

the MC cross–sections, both for charm and beauty, will be obtained. directly from the fit output.



4.3 Data selection

4.3.1 Online requirements

The trigger chain used to select DIS events is described in detail in this section. The detector simulation takes into
account the simulation of the trigger system, therefore the same trigger preselection is also applied to data and MC
samples. The online pre–selection applied to the examined data is represented by the events flagged by the third level
slot SPP02, that requires:

• CAL: 30 < E − pz < 100 GeV.

• Electron energy Eel > 4 GeV

• Box Cut 12 × 12 cm

• SLT SPP01

The SLT slot SPP01 requires in turn basically absence of veto signals, correct timing of the event and a minimum
energy deposit in the CAL.

The efficiency of this trigger channel has been check with beauty and charm MC. For the latter, in the selected Q 2

range (see 4.4.1), the efficiency is costantly around 90%, and 93% for the former. After the whole kinematic selection,
the overall efficiency for this trigger branch is above 99% on both the heavy flavour MC samples. In Fig. 4.2 the
ratio between the accepted events over the total after the whole kinematic seletion is shown for beauty and charm as a
function of Q2.

4.3.2 Electron finder

In DIS events the electron is scattered at a sizeable angle in contrast to photoproduction events where the scattered
electron escapes undetected inside the beam pipe. Therefore, to select DIS events, events with a reconstructed electron
in the final state are kept. An appropriate software package for the electron finding called SINISTRA [103] is used
in this thesis to analyse energy deposits in the electromagnetic and hadronic parts of the CAL; it also distinguishes
between electromagnetic and hadronic clusters. The algorithm proceeds in two steps: first, it takes as input the
energies of the calorimeter cells, and, using a neural network, gives as output the probability for each cluster to be
electromagnetic or hadronic. Then, the second part of the algorithm selects the scattered electron from the list of the
candidates.
SINISTRA gives as output the lepton candidate having the highest probability to be the scattered electron. For this
candidate the probability, Probel, the energy deposited in the calorimeter, Eel, and the inelasticity, yel, are given as
output by the algorithm.

Filtering the data to be analysed, the following pre-seection has been applied on the electron candidate:

• Probel > 0.97

• Eel > 9 GeV

• xel > 0.00007

• yJB
el > 0.01

• yEL
el < 0.9



Figure 4.2: Ratio of the accepted event from SPP02 over the total after the whole kinematic selection for beauty (up)
and charm (down) MC.

4.4 Reconstruction method

In order to obtain the main kinematic variables y and Q 2, different reconstruction methods are possible. Since the
detector performs measurements of several observable quantities, that is energies, angles or momenta. Such a redun-
dancy traslates in different ways to derive the kinetic variables. Without too many details, one can essentially make use
of the leptonic variables “Electron” method, of the hadronic variables, “Jacquet–Blondet” method, or combinations
of them, as for “Σ” and “Double Angle”(DA)” methods (see e.g. [87]). In Figs. 4.3, 4.4 the correlation between the
generated and the corresponding reconstructed quantities is shown for the y and Q 2 variables for the Double Angle,
with and without CAL energy correction, the Electron and the “eΣ” methods, together with the so–called bias for the
same variables, that is the difference between the generated and the reconstructed values over the generated ones.
Beside the effective resolution achievable using MC events with the different methods, our choice was driven by the
knowedge that the energy scale of the calorimeter is not perfectly set: to get rid of this issue, the Double Angle method
has been chosen to reconstruct the y and Q2 variables in the present analysis. Their definitions are as follows:

Q2
DA =

4 E2
el cos2 θel

2

sin2 θel
2 + sin θel

2 cos θel
2 tan θel

2

(4.1)

yDA = 1 −
sin θel

2

sin θel
2 + cos θel

2 tan θel
2

(4.2)

where θel is the azimuthal angle of the scattered electron and Eel its initial energy.



Figure 4.3: LEFT: correlation between the generated and the reconstructed Q 2 for the methods Double Angle, with
and without CAL energy correction (up) the electron (down left) and the ”eΣ” (down right); RIGHT: bias of the
corresponding reconstruction methods.

4.4.1 DIS selection

Let’s now illustrate the offline requirements applied to select DIS events. Most of them are standar cuts, well tested
within the Colaboration. Each data and MC event is required to fulfill the following features:

• At least one electron candidate with the aformentioned characteristics;

Figure 4.4: LEFT: correlation between the generated and the reconstructed y for the methods Double Angle, with
and without CAL energy correction (up) the electron (down left) and the ”eΣ” (down right); RIGHT: bias of the
corresponding reconstruction methods.



• xe− > 10−4;

• 22 < Q2 < 1000 GeV2

the lower cut was dictated by the availability of a suitable inclusive DIS MC sample, the higher one to constrain
the background contamination;

• Electron energy in the CAL greater than 10 GeV, to ensure the electron being well identified;

• yJB > 0.02 and yel < 0.7 3

these limits are set to avoid phase space regions with high systematic errors: due to the hadronix flux and to
mis–identified electrons, in the low y region, and photoproduction background not under control, at high y
values;

• coordinated of the reconstructed primary vertex within ±30 cm from the nominal interaction point position, to
suppress cosmic and background events as collisions with the beam gas;

• Electron x and y position far enough from the beam pipe, to ensure it was well reconstructed:
|Xel| > 12 cm and |Yel| > 7 cm;

• net longitudinal energy of the event correctly balanced, to suppress photoproduction background:
40 < [E − pz(e−)]Zufo < 60 GeV;

• Events accepted by the SPP02 TLT slot.

Beside that, two further requirements are asked for each event:

• at least two tracks of “good quality”, see below;

• at least two jets with transverse energy greater than 4 GeV, one of them with energy greater than 5 GeV.

The former requirement is imposed by the choice of the observables quantities fitted to extract the signal (see Ch. 5),
the latter being devoted to limit the contamination of events without heavy flavour production.

The electron is sistematically removed from the sample of tracks clustered in the jets and processed in the analysis.

4.4.2 Track quality requirements

In order to achieve a good resolution on the measured impact parameters, only tracks with the following characteristics
are retained:

• at least three crossed CTD superlayers: nSL ≥ 3;

• reference point of helix not out of place: |ZH | < 30 cm;

• at least four MVD hits: nMV D hits ≥ 4;

• minimum transverse momentum: pT > 500 MeV;

• small error on the impact parameter4: σIP < 1mm;

In addiction to the aformentioned cuts, each track is required to fulfill another important request, that is:

• IP smaller than one millimiter: IP< 1mm.



Figure 4.5: Invariant mass peacks for K 0(left) and Λ (right) candidates. The different avours components as pre-
dicted by the MC are also shown: beauty in full red, charm in hatched green and light quark in blue. The procedure
to select the tracks used to compute the invariant mass is explained in the text.

Figure 4.6: IP absolute values for tracks coming form K 0 and Λ candidates (blue and red histograms respectively)
decay compared to the IP of the generic track (black histogram) selected in the same sample.

Without this cut, the signed impact parameter distributions would be greatly dominated by long lived particles not
containing heavy flavours, but giving large positive IP values anyway, such as Kaons or Lambdas; this requirement is
hence devote to reject them.

In order to verify that the impact parameters of the tracks coming from the light long living particle decay such as
Kaons and Lambdas are effetively large, a cross check has been performed.

3In these cases, the JB method has been used to get rid of those background events at low y having large deposit of energy in the FCAL,
contaminated by the proton remnant and/or escaping though the beam pipe, whereas the cut at high yel permits to reject fake electron events,
peaking at y ! 0. As metioned before, to scan the y value in various bins, the DA method has been adopted.

4the error of the impact parameter receives contributions form the position of the track’s DCA and from the beam spot width.



Particles as Kaons or Lambdas are expected to have large lifetime5, so the secondary vertex of their decay are usually
well reconstructed. Furthermore, they are expected to decay meanly through decay modes producing two tracks with
opposite charge. Therefore, the invariant mass of the track pairs fitted to a secondary vertex has been computed for
those secondary verticies having only two tracks with opposite sign fitted to them. For the Λ candidates the masses of
the tracks was assigned setting the proton mass to the one with highest momentum and the pion mass to the other one;
for the K0 candidates, the pion mass was assumed for both the tracks.
The invariant mass distributions built with this criteria show evident peaks in the mass regions of K 0 and Λ, as can be
seen in Fig. 4.5.
Then the normalized distribution of the impact parameters of those tracks having an invariant mass within one sigma
from the nominal values of the K 0 and Λ masses has been compared with the impact parameters of the generic tracks
coming from the secondary verticies selected in the same way. Fig. 4.6 shows clearly that the impact parameters of
tracks coming from K 0 and Λ candidates, the blue and red histogram respectively, are much larger than the other ones,
represented by the dark histogram.

A small fraction of heavy hadrons could be thrown away with this cut: the B s mesons for example are expected to
live enough to deliver tracks with IP larger than one millimiter indeed. But their production rate is so small in our
kinematical regime that their contribution is completly negligible.

Figure 4.7: Data and MC distributions for the main kinematic variables: Q 2, on the left, and y, on the right, both
reconstructed with the Double Angle method. The different avours components as predicted by the MC are also
shown: beauty in full red, charm in hatched green and light quark in blue.

4.5 Control distributions

In this section the control distributions concerning the main variables related to this analysis are shown. The inclusive
DIS MC, built taking the beauty and charm events from RAPGAP and the light quark contribution from DJANGOH
is normalized to the corresponding data distribution and compared with it. The different flavour components are
explicitly shown in each histogram: the red filled histograms represent the beauty fraction, the green hatched area is
the charm component, the blue histogram is the light quark fraction, black line in the sum of the three, that is the
inclusive MC, where the data are represented by black dots.

Fig 4.7 shows the main kinematic variables Q2 and y, reconstructed with the Double Angle method.
The overall multiplicities of the jets and of the tracks after the quality selection are shown in Fig. 4.8
Other quantity related to the jets are shown in the histograms of Figs. 4.9 and 4.10: transverse momentum and energy,

5cτ(K0) ! 2.7 cm, cτ (Λ0) ! 7.9 cm.



polar and azimuthal angle for all the reconstructed jets with transverse energy greater than 4 GeV, and for the most
energetic jet respectively.
The quantities involved in the track–jets association procedure are shown in Fig. 4.11: the difference in polar and
azimuthal angle between the most energetic jet and the track direction, and the quadratic sum of the two quantities
before the association, that is their distance in the r − φ plane.

Figure 4.8: Tracks and jets multiplicity in the examined data and MC samples. The tracks multiplicity reported here is
obtained after the quality selection. In full red the beauty component, in hatched green the charm, the blue histograms
are light quarks and the black is the total. The data are represented by black dots.

Turning on quantities more related to the tracking, histograms of Fig. 4.12 represents an overview of the multiplicity
of the MVD hits for tracks fulfilling the good quality requirements; the total number of the hits is shown together with
the number of the polar and azimuthal hits separately.
In Fig. 4.13 the distributions for the polar and azimuthal angles of the selected tracks are shown, whereas Fig. 4.14
shows their transverse momentum.



Figure 4.9: Energetic and angular distributions for the jet with the highest transverse energy: transverse momentum
(upper left), transverse energy (upper right), azimuthal (lower left) and polar (lower right) angles. In full red the
beauty component, in hatched green the charm, the blue histograms are light quarks and the black is the total. The
data are represented by black dots.

The overall agreement between data and MC is satisfactory. However, sizable discrepancies are present in some ditri-
butions; in particular the Monte Carlo is not precise in predict the shape of the pseudorapidity, either for tracks and for
jets; it predicts more events with large track multiplicity and the φ distribution of the real tracks is more irregular with
respect to the MC predictions.
But above all, the discrepancy more relevant in the present analysis is about the impact parameter distributions, present
even despite of the smearing, as it has already been shown in Section 3.3.
The discrepancy observed in the jet distributions are related to the energy scale not perfectly set, whereas the not
satisfactoty agreement between data and MC predictions in the tracking related quantities is rooted in a limited com-
prehension of the MVD performances. They come basically from misalignements of the detector, bad description of
the dead material and misunderstanding of multiple scattering effects. This behaviour will limit the quality of our fit
and further refinemets are definitely needed on this side.
It is worth to mention that the 2005 data is the subsample of the HERA II data in the worst situation from the point of
view of the overall reconstruction quality [111], so there is place for better agreement in analysing the remaining part
of the HERA II data.



Figure 4.10: Overall energetic and angular distributions for the jets in the selected data and MC samples: transverse
momentum (upper left), transverse energy (upper right), azimuthal (lower left) and polar (lower right) angles. In full
red the beauty component, in hatched green the charm, the blue histograms are light quarks and the black is the total.
The data are represented by black dots.



Figure 4.11: Distributions of the quantities involved in the jet–track association procedure. UPPER PLOTS: Differ-
ence in the polar angle, on the left, and azimuthal angles, on the right, between the track and direction of the most
energetic; LOWER PLOT: Distance in the η − φ plane between each the track and the direction of the most energetic
jet in the event. In full red the beauty component, in hatched green the charm, the blue histograms are light quarks
and the black is the total. The data are represented by black dots.



Figure 4.12: Multiplicity of MVD hits for the selected tracks: the total number, upper plot, polar, lower left and
azimuthal hits, lower right plot. In full red the beauty component, in hatched green the charm, the blue histograms are
light quarks and the black is the total. The data are represented by black dots.



Figure 4.13: Distributions of the azimuthal (left) and polar angles (right) of the tracks after the good quality selection.
In full red the beauty component, in hatched green the charm, the blue histograms are light quarks and the black is
the total. The data are trepresented by black dots.



Figure 4.14: Transverse momentum of the tracks passing the good quality selection.In full red the beauty component,
in hatched green the charm, the blue histograms are light quarks and the black is the total. The data are represented
by black dots.





Chapter 5

Fit procedure and results

In this section the tecnique adopted to perform the measurements and the results obtained are presented.
First of all, the distributions of the observables used to extract the physical quantities are presented and motivated.
Then the fit method is illustrated in detail together with the manipulations needed in order to derive the physical
quantities. The goodness of the fit, the overall result and other technical aspects will be discussed, and finally the
values obtained for all the measured quantities will be reported and commented.

5.1 Casting the observables for the fit

As alredy explained in the Section 3.2, the distribution of the signed impact parameter, sIP, is an observable quantity
candidate to be sensitive to the flavour contents in each event.

To reduce the light quarks background, represented by events with a impact parameters simmetrically distributed, the
negative part of the distributions is mirrored and subtracted from the positive part. With this expedient, only the excess
in the positive side of the impact parameters distributions is left; this excess is proportional to the beauty and charm
content. Therefore, all the IP distributions entering in the fit will undergo this treatment of mirroring the negative part
and subtracting it to the positive side. This procedure appears to be convenient in order to enrich the distributions
in signal and to reduce the sensitivity of the fit from the unknown light quark component. But it is very expensive
in terms of statistics: after the subtraction the distributions to be fitted have much less events and the errors become
bigger, being the statistical error of the subtracted bins added in quadrature. A large amount of the MC sample has
been analysed keeping in mind these considerations.

It is worth to highlight that the IP method has never been applied in the ZEUS Collaboration without coupling it with
other handles, this method has still to be firmly assessed. The limitated reliability of the detector simulation packages
and of the reconstruction tools makes its application challenging, and the present analysis consitutes a pacer for further
refinements.

In Section 3.3 it has been pointed out that, even with the implementation of a refined re-weighting procedure, the MC
impact parameter poorly reproduces the data. This is one of the reasons why the sIP distribution alone has not enough
discriminating power to permit the measurement of the beauty and charm fractions without other informations.

Since the tracks from heavy quarks, once long living light particles are removed, are expected to have the largest impact
parameters, in each event the IP of all the tracks are ordered with respect to their absolute values. In such a way one
obtains the distribution of the largest impact parameter, the second largest IP and so on. These two distribution, IP 1

and IP2, are hence expected to have a sensitivity to the heavy quarks content larger than the overall disribution.
In order to get ditributions with a discriminating power even larger, one can distinguish events according to the number
of good tracks associated to the most energetic jet. The first IP distribution is then defined collecting the IP when there
is just one track associated to the jet, and is simply the IP of that track. On the other hand, the second largest IP
distribution is built when there is more than one track associated to the jet and is the IP of the second highest IP in
absolute value.
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Figure 5.1: Distribution of the signed IP for the track with the highest (left) and the second highest (right) absolute
value of the impact parameter. The data are represented by black dots, whereas the inclusive MC is the dark histogram.
The falvour components are also shown separatly: red for beauty, hatched green for charm and blue for light quarks.

Furthermore, another specification is applied on the second IP distribution, IP 2: only events in which the first and
second highest absolute IP have the same sign are selected for the IP 2 distribution. The reasons is that for heavy
quarks, at least two tracks are usually produced with high IP, whereas for light quarks the chances for two tracks to
deliver large IP values are small. The first and second IP distributions of data and MC are shown in Fig. 5.1, where
beauty, charm and light quarks components predicted by the inclusive MC are shown separatly: red for beauty, hatched
green for light and blue for light quarks.
The IP2 distribution is seen to be more rich in signal and have more discriminating power.
IP1 and IP2 so defined will be fitted to extract the beauty and charm content. Then, in order to constrain the content
of light quarks, the distribution of the IP of all the tracks retained by the global selection, shown in Fig. 5.2, will be
fitted together with the IP1 and IP2 distributions.
Considerable discrepancies between data and MC are observed in the low values of the IP spectra. The contribution
to the overall χ2 of this region is sizable since the statistical error is smaller than in the other bins, beacuse of the large
number of events. Those regions, dominated by the light quark, are featured by an angle α between the directions of
the IP and the jet axis close to 90◦; Fig. 5.3 shows as for those tracks, the IP distribution has the tail toward higher
values larger than the others. The assignement of the sign to the IP is hence strongly subject to finite resolution and
misreconstruction effects. Because of this, the first two bins are removed from the distributions of all the IPs. This
corresponds to retain tracks with an IP larger than 200µm .

Finally, to further enhance the sensitivity to the heavy quarks signal, a fourth distribution is fitted simultaneously to the
three just mentioned. Since the tracks coming from the heavy quarks hadronisation are expected to be quite energetic,
the invariant mass of the two tracks with the highest IP is a distribution candidate to carry informations, throughout
its shape, about the flavour of the relative tracks This quantity, illustrated in Fig. 5.4 for data and MC is with the same
color code as before, has been computed for each event, assuming them to be pions. The width of the bins was set
accordingly to the estimated resolution.



Figure 5.2: Distribution of the signed IP for all the tracks fullling the whole selection. The data are represented by
black dots, the inclusive MC is the dark histogram. The falvour components are also shown separatly: red for beauty,
hatched green for charm and blue for light quarks.



Figure 5.3: Three dimentional representation of the correlation of the IP absolute value and the angle between the IP
direction and the jet axis.

Summarizing, to extract the heavy quarks content in the selected events, the following distributions are built:

• the highest IP absolute value, when just one track is associated to the more energetic jet: IP 1;

• the second highest IP absolute value, when two or more tracks are associated to the more energetic jet and when
IP1 and IP2 have same sign: IP2;

• the IP of all the track passing the selection criteria in all the event: IPTOT ;

• the invariant mass of the first and second highest IP absolute value, assuming the pions mass for both the tracks:
M(IP1,IP2).

Then, the negative part of the IP distributions are mirrored and subtracted to the positive one; after this step, all the
distributions are fitted simultaneously.
Each of the four distributions is obtained in different bins of y and Q 2, set to be equal to the binning chosen to compare
directly the pubblished ZEUS results about F cc̄

2 /F2 [24].

5.2 Fit procedure

Each of the three components constituting the inclusive Monte Carlo, beauty, charm and light quarks, has been scaled
by a factor given by the ratio between the luminosity of the analyzed data sample, L D, and the MC luminosity Li,
provided by the total number of the processed events N i divided by the nominal MC cross–section:

p0
i =

LD

Li
=
σiLD

Ni
(5.1)

where the index i marks the flavours component b, c and lq and σ i is the relative cross–section. Then the inclusive MC
is built as the sum of the three components:

MCINCL = p0
b · MCbeauty + p0

c · MCcharm + p0
lq · MClight (5.2)

If the MC cross–sections (and the detector simulation) were correct, the MC distributions so obtained would have the
same number of events of the data distributions.



Figure 5.4: Invariant mass of the two tracks with the highest IP, assuming them to be pions. The data are the black
dots, the inclusive MC is the dark histogram, red the beauty component, hatched green the charm and blue the light
quarks.



p0
b,c,lq are the weights from which the fit starts its computation; then the three weights of 5.1 are let free to vary

indipendently. For each combinations of the parameters, the total χ 2 is computed as the sum of the χ2 of the fitted
distribution:

χ2
Tot = χ2

IP1
+ χ2

IP2
+ χ2

IPT OT
+ χ2

M(IP1,IP2)
(5.3)

On a single distribution, the χ2 is computed as:

∑

i

(NData
i − pb N b

i − pc N c
i − plq N lq

i )2

σ2(NData
i ) + (pb σ(N b

i ))2 + (pc σ(pc N c
i ))2 + (plq σ(plq N lq

i ))2
(5.4)

where i runs over the bins and Ni is the number of events in that bin. If the entries in a bin are less than 10, the
poissonian error is accounted for.

Setting the range of the parameter to probe would require the knowledge of their approximated values, but they are
unknown. For this reason the fit is performed iteratively: one starts varying the weight by an amount corresponding
to ±100% around the values taken from the nominal value of the MC cross–sections. Once a minimum is found,
one performs another fit shrinking the scanned region of the parameter around the previous minimum increasing the
resolution, that is decreasing the step made by the single parameters.

It is worth to mention that this procedure appears to be convergent, and after at most three iteration, no significative
gain is observed on the minimum χ2 values.
Nevertheless, these values remains quite high, because of the poor description of the IP distributions of the data by the
MC. The goodness of the fit changes a lot depending on the y and Q 2 range: the reduced χ2, that is the χ2 divided
by the number of degrees of freedom, varies form 79/71 to 304/71, and on averages is about two. The higher values
are obtained performing the fit on the region at low y and/or high Q 2. At low y values the events are mostly along
the beam axis and this could lead to difficulties with the observables chosen to perform the signal extraction. Some
examples of the agreement between data and MC with the heavy quarks fractions obtained from the fit are shown in
Figs. 5.5-5.8, where the results on the medium y and Q 2 bins are reported: data (black dots) are compared with the
inclusive MC (full light blue), with the different flavour components shown separatly: beauty in red, charm in hatched
green and light quarks in blue.



Figure 5.5: Agreement between data (black dots) and inclusive MC (full light blue) for the tted distributions
IP1, IP2, IPTOT and M(IP1, IP2) after the t’s tuning. The amount of the different avour components, beauty
in red, charm in hatched green and light quarks in blue, are the fractions obtained from the t and providing the
minimum of the χ2. The histograms shown here are relative to the bin with 0.14 < y < 0.28, 44 < Q2 < 90 GeV2.

5.3 F bb̄
2 /F2 and F cc̄

2 /F2 extraction

If the MC admixture obtained mixing the three flavours components with the weights p̂ b,c,lq provided by the fit really
reproduces the data, for a given histogram one can write:

p̂bNb + p̂cNc + p̂lqNlq = ND

= σDIS LDAIncl

= LD(σbAb + σcAc + σlqAlq) (5.5)

where Nb,c,lq are the number of the beauty, charm and light quarks MC events of the given histogram and N D those of
the data, Ab,c,lq are the acceptancies for beauty, charm and light quarks MC events and A Incl the overall acceptance,
σb,c,lq are the true production cross–sections for beauty, charm and light quarks and L D is the luminosity of the
analysed data sample.
For a given Q2 and y interval, the acceptance A is defined as the ratio of the events reconstructed in that bin over the
generated ones:

A =
N rec

Ngen
(5.6)

and it can be computed for each MC flavour as well as for the inclusive MC.
So comparing 5.5 term to term, e.g. for the beauty production cross-section one can derive the expression:

σb = p̂b
Nb

LDAb
(5.7)



an analogous expression holds for the charm cross-section.
The number of data and MC events Nb,c,lq and ND must be obtained after the same selection. It appears convenient
to choose the DIS selection as the step after which to count the number of events entering in the expression 5.7. After
having translate the y bins in the corresponding intervals in x, the differential cross-sections as a function of x and
Q2 in a given interval, d2σb/dxdQ2 and d2σc/dxdQ2, could be easily derived from 5.7 dividing by the bin widths
∆x, ∆Q2. In the analysed kinematic range one can safely neglet the contribution of the structure functions F L and
xF3 to the production cross-section. Then, assuming the radiative corrections to be small, the beauty and charm
contributions to the structure function F2 are directly proportional to the beauty and charm production cross-section:

F bb
2 = k

d2σb

dx dQ2
(5.8)

F cc
2 = k

d2σc

dx dQ2
(5.9)

where k = x Q4/2πα2[1 + (1 − y)2].

On the other hand, the inclusive cross-section is:

σDIS =
ND

LDAIncl
(5.10)

and, as before:

F2 = k
d2σDIS

dx dQ2
(5.11)

Figure 5.6: Agreement between data (black dots) and inclusive MC (full light blue) for the tted distributions
IP1, IP2, IPTOT and M(IP1, IP2) after the t’s tuning. The amount of the different avour components, beauty
in red, charm in hatched green and light quarks in blue, are the fractions obtained from the t and providing the
minimum of the χ2. The histograms shown here are relative to the bin with 0.14 < y < 0.28, 90 < Q2 < 200 GeV2.



Figure 5.7: Agreement between data (black dots) and inclusive MC (full light blue) for the tted distributions
IP1, IP2, IPTOT and M(IP1, IP2) after the t’s tuning. The amount of the different avour components, beauty
in red, charm in hatched green and light quarks in blue, are the fractions obtained from the t and providing the
minimum of the χ2. The histograms shown here are relative to the bin with 0.28 < y < 0.7, 44 < Q2 < 90 GeV2.

Then, after some simple algebra one gets: one gets:

F bb
2

F2
= p̂b

Nb

ND

AIncl

Ab

F cc
2

F2
= p̂b

Nc

ND

AIncl

Ac
(5.12)

These are the expressions used to derive the charm and beauty contributions to the structure function F 2.

The numerical values obtained in each y and Q2 interval are reported in Tab. 5.1; the errors reported is the quadratic
sum of the statistical errors on number of data and MC events N b or Nc and ND, and the error on the MC parameters,
p̂b or p̂c, coming from the fit. These ones are evaluated quoting the minimum and maximun values of the measured
ratios F cc

2 /F2 testing all the parameters provinding a total χ2 between the χ2
min and χ2

min + 1; the same has been
done for F bb

2 /F2. The acceptance correction appearing in 5.12 can be found in Tab. 5.2.

The measuremets of F cc
2 /F2 obtained in this analysis have been compared with the published results from ZEUS [24]

obtained with the D∗ mesons; the comparison is shown in Fig. 5.9.
The firts observation to be made is that our points are extremely more precise with respect to the published ZEUS
results. This reflects the larger data sample analysed, but expecially the much higher efficiency of our essentially
inclusive measurement. Furthermore, the present measurement is not plagued by any extrapolation procedure. On the
other hand, we quoted only the error coming from the fit procedure plus the statistical one, (see Sec. 5.5 for a brief
discussion about the systematic errors). Keeping in mind what was said and that the determinantions coming from the



D∗ analysis are affected by a statistical error obviously larger and a systematic error coming from the extrapolation to
the full D∗ phase space, the agreement between the two analysis is good.
The values found at high x for 22 < Q2 < 44 GeV2 appear quite shifted with respect to the expectation; some effects
not yet understood could be present; but it is worth to highlight that the behaviour of the fit in the low y bins is slightly
unstable, due to small statistics and peculiar event topology.
In the high Q2 bins the results found by this analysis are well below the values extracted with the D ∗; but those
measurements are affetced by large statistical errors and, as can be seen in [24], they are quite above the NLO
predictions.

The mesaured values of F bb
2 /F2 in the different y and Q2 bins are report in Fig. 5.10. The error bars, representing the

error coming from the fit procedure added in quadrature to the statistical error on the number of data and MC events,
are bigger than in the case of the F cc

2 /F2. The fitted distributions are largely dominated by the charm contribution, and
the beauty fractions are seen to be small; therefore the fit is not so sensitive to the shape of the beauty IP distributions.
Nevertheless the measurements are upstanding and the prcedure seems able to provide results comparable with other
achievements.

5.4 Other informations from the fit

Once the three parameters p̂b, p̂c and p̂lq have been obtained from the fit, is straightforward to derive the percentages
of events coming from beauty and charm in each bin. They are reported in Tab. 5.3.

Figure 5.8: Agreement between data (black dots) and inclusive MC (full light blue) for the tted distributions
IP1, IP2, IPTOT and M(IP1, IP2) after the t’s tuning. The amount of the different avour components, beauty
in red, charm in hatched green and light quarks in blue, are the fractions obtained from the t and providing the
minimum of the χ2. The histograms shown here are relative to the bin with 0.28 < y < 0.7, 90 < Q2 < 200 GeV2.



Figure 5.9: Comparisons of the measured F cc
2 /F2 values a function of x (black squares) with the analogue results

obtained by the ZEUS Collaboration with the D∗ mesons (red dots). The central Q2 values of the bins are reported on
the top of each plot. The statistical error and error from the t procedure are taken into account for the ratios extracted
in this analysis, whereas for the D∗ mesons result the systemacic errors (outer bars) are added to the statistical ones
(inner bars).

Depending on x and Q2 of the analysed bin, the percentage of events with beauty production varies from below one
per mille to 1.7%, whereas charm production occurs from 16 to 42% of the cases. The overall percentages of heavy
quarks component in the whole kinematic range exploited, that is 0.02 < y < 0.7, 22 < Q 2 < 1000 GeV2, are:
1.6+0.3

−0.6% for beauty, 32.23+0.02
−0.01% for charm. Considering the differencies in the analysed phase space, these values

are comparable with what found by the H1 Collaboration in [24].

The nominal values of the heavy quarks cross–sections, reported in Tab. 4.1, enter in the determination of the bare
parameters p0

b,c,lq from which the tuning procedure of the fit starts. So, the fit procedure can be thought as a variation
on the heavy quarks cross-sections, and as a direct search for the their true value. The ratio between the MC weights
providing the minimum of the χ2 and their initial values p0

b,c constitutes an indication of how much the values of the



heavy quarks MC cross–sections are wrong. The fit output indicates that the beauty MC underestimates the production
cross–section by a factor of about two. This appears to be consistent with other findings (see e.g. [113]).

5.5 Sources of systematic errors

The quantities extracted in this analysis and the method just illustrated appear to be scarcely affected by systematic
errors, since most of them cancel in the ratio. In particular, all the contributions related to the requirements of the DIS
selection are expected to be totally equivalent in the numerator and the denominator of 5.12, and hence vanishing.
Nevertheless, sources of systematic errors potentially large are anyway present in our measurement. In particular, the
relevance of the performances of the MVD in the extraction of the physical quantities induces to consider them as the
largest sources of systematic errors.
In the following we are going to briefly discuss the aspects of the present analysis believed to be affected by systematic
uncertainties. Further elaborations of this study will have to investigate quantitatively all these aspects:

• the impact parameter resolution. This is expected to be the major source of systematic errors since the fit
sensitivity strongly depends on it;

Figure 5.10: Measured values of the ratio F bb
2 /F2 as a function of x. The central Q2 values of the bins are reported

on the top of each plot. the error bars represent the error coming form the t procedure added in quadrature with the
statistical error on the number of data and MC events.



• parameters of the smearing procedure; their variations are obviously related to the fit performances;

• the request IP> 1mm, to reject long living light particles. Since this cut sets the length of the tails in the fitted
distributions, variations could produce sizable changing in the results;

• removal of the first two bins from the mirrored sIP distributions. This is a critical aspect of the analysis, and
dedicated studies would be needed. The central part of the signed IP distribution is a region affected by large
uncertainties, either from the experimental (larger sensitivity to the IP resolution in the assignment of the sign
to the IP) and theoretical side (large contribution of light quarks, hard to model in the MC simulation);

• jet–related quantities:

1. dependence on the jet finding settings and on the jet axis determination;
2. jet energy scale and cut on the minimum ET ;
3. jet–track association procedure: minimum distance in the η − φ plane to which the association is set.

Furthermore, the jet–track association could be performed on each jet and not only with the most energetic
one

Q2 bin ( GeV2) y bin F bb̄
2 /F2 ∆stat F cc̄

2 /F2 ∆stat

22, 44 0.70, 0.35 0.0020 +0.0004
−0.0007 0.320 +0.007

−0.008

0.35, 0.22 0.0024 +0.0016
−0.0016 0.256 +0.019

−0.019

0.22, 0.08 0.0013 +0.0011
−0.0005 0.237 +0.0004

−0.029

0.08, 0.02 0.0038 +0.028
−0.0028 0.372 +0.035

−0.035

44, 90 0.70, 0.28 0.0079 +0.0021
−0.0018 0.283 +0.015

−0.015

0.28, 0.14 0.0037 +0.0008
−0.0023 0.212 +0.013

−0.006

0.14, 0.02 0.0089 +0.0012
−0.0002 0.166 +0.004

−0.0004

90, 200 0.70, 0.28 0.0069 +0.0032
−0.0016 0.256 +0.008

−0.016

0.28, 0.14 0.0032 +0.0016
−0.0036 0.229 +0.020

−0.007

0.14, 0.02 0.0061 +0.0011
−0.0055 0.130 +0.006

−0.013

200, 1000 0.70, 0.23 0.0103 +0.0013
−0.0026 0.194 +0.015

−0.007

0.23, 0.02 0.0007 +0.0007
−0.0005 0.0727 +0.0004

−0.0004

Table 5.1: Extracted values of structure functions ratios F bb̄
2 /F2 and F cc̄

2 /F2 for the corresponding intervals in y and
Q2. The error on the determinations reported is the sum of the error coming from the t procedure added in quadrature
with the statistical error on the number of data and MC events.

Q2
centr xcentr ABeauty ACharm AIncl

30 0.00060 0.999 0.995 0.843
0.00100 1.289 1.250 1.065
0.00150 1.411 1.336 1.159
0.00600 1.359 1.519 1.597

60 0.00150 1.128 1.128 0.975
0.00300 1.313 1.284 1.127
0.01200 1.402 1.490 1.538

130 0.00300 1.120 1.111 0.962
0.00600 1.318 1.320 1.157
0.03000 1.378 1.477 1.559

500 0.01200 1.182 1.168 1.015
0.03000 1.399 1.455 1.416

Table 5.2: Values of the acceptancies for the different MC species, obtained as the ration of the number of reconstructed
events over the generated ones in a given intervals of y and Q2. The corresponding central values of y and Q2 are
also reported.



Q2
centr xcentr Beauty (%) Charm (%)
30 0.00060 0.25+0.10

−0.05 42.0+0.2
−0.4

0.00100 0.3+0.2
−0.2 33.1+2.5

−2.4

0.00150 0.17+0.07
−0.15 31.29+3.00

−0.02

0.00600 0.3+0.2
−0.2 36.7+4.0

−4.0

60 0.00150 1.1+0.2
−0.3 39.0+1.7

−2.2

0.00300 0.5+.03
−0.1 30.2+1.1

−2.0

0.01200 0.84+0.8
−1.1 18.7+0.2

−1.9

130 0.00300 1.0+0.2
−0.5 38.4+2.6

−1.3

0.00600 0.5+0.6
−0.2 36.3+1.2

−3.2

0.03000 0.7+0.8
−0.1 15.7+1.9

−0.9

500 0.01200 1.7+0.4
−0.2 31.1+1.3

−2.6

0.03000 0.08+0.06
−0.07 8.65+0.01

−0.01

Table 5.3: Percentages of beauty and charm quarks, as predicted by the MC admixture providing the best t in the
different x and Q2 bins. The bin centering procedure is as in [24].



Chapter 6

Conclusions and outlook

In this analysis, the measurement of the structure functions ratios F cc̄
2 and F bb̄

2 over F2 has been carried out, differen-
tially in x and Q2, in the kinematic range 22 < Q2 < 1000 GeV2, 0.02 < y < 0.7. The analysis has been performed
on the data sample collected by the ZEUS experiment during the year 2005 and corresponds to about 130 pb −1.

The result has been achieved fitting simultaneously four distributions, all related to the geometrical properties of the
tracks coming from the heavy quark decay. Taking advantage of the correlation between the heavy hadrons lifetime
and the impact parameter of the track of their decay products, it has been possible to build distributions greatly en-
riched in signal, over which a simultaneous χ2 fit has been performed. The extracted values of F cc̄

2 /F2 have been
compared with the result obtained by ZEUS from the D ∗ meson analysis and found to be well compatible.

Since the MC distribution of the impact parameter badly reproduces the data, the MC sample used in the analysis un-
derwent a refined reweighting procedure. In spite of that, and even if the regions of the impact parameter distributions
where a large discrepancy between data and MC was present have been identified and discarded from the analysis, the
goodness of fit remains not satisfactory, and further improvements appear needed on this side.
This aspect, together with the sources of systematic errors, has to be elaborated further before this result can be
finalized.

The technique adopted, exploited in the ZEUS Collaboration for the first time in the contest of an almost inclusive
analysis, appears to be very promising, showing that the achieved results are superior to what obtained with althernative
strategies. The impact parameter method fully exploits the tracking performances of the ZEUS Micro Vertex Detector
and shows all its potential, paving the way for further achievements.

Once performed on the whole HERA II data sample and with the MVD systematics fully understood, this analysis is
candidate to become the best way to obtain precise measurements on the structure functions F bb

2 and F cc
2 , fundamental

quantities for future experiments as the LHC.
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