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1.2 Energy density versus scale factor for different energy components of
a flat universe. Shown are non-relativistic matter, radiation, and a cos-
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1.3 Evolution of the scale factor of the universe with cosmic time. When
the universe was very young, radiation was the dominant component,
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vi List of Figures

3.2 Top: initial critical spherical overdensity, linearly extrapolated to the
present time in term of the matter density parameter. Bottom: virial
overdensity versus matter density parameter for a flatΛCDM universe
(see Eke et al. (1996) for more details). In the bottom panel we notice
that that for an closed universe with Ωm = 0.3 at the present time the
virial overdensity is of the order of 324 ρ̄. . . . . . . . . . . . . . . . . . . 38

3.3 Left: unconditional random walks that up-cross a constant barrier,
representing the spherical collapse overdensity at the present time.
Right: distribution of the fraction of walks that up-cross the barrier.
The histogram is a result of 104 random walks, the solid line is the
mass function of collapsed object expressed in term of ν= δ2

sc /S. . . . 40

3.4 Random walks associated with the three probability (a), (b) and (c).
See the main text for more details. . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Left: unconditional random walks absorbed by the ellipsoidal col-
lapse barrier (Sheth et al., 2001) (q = 0.707, β = 0.5, γ = 0.6) with
δsc = δsc (z = 0). Right: fraction of walks that up-cross the ellipsoidal
collapse barrier. The histogram is a result of 104 random walks realiza-
tion, the solid line is the ellipsoidal collapse mass function expressed
in term of ν= δ2

sc /S (eq. 3.28). . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Unconditional probability of first crossing distribution of a square-
root barrier. The histogram has been obtained generating 104 ran-
dom walks and computing the mass variance s at which they cross
the square-root barrier (eq. 3.30) for the first time. The solid line is
the exact solution (eq. 3.44) while the dashed is the Sheth and Tormen
(2002) equation using the parameterγ, β and q for the square-root case. 46

4.1 GIF simulation: dark matter distribution in the simulation box at four
different redshifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 High resolution dark matter particles distribution in haloes at four dif-
ferent redshifts in a resimulated group of clusters (filament) (z = 2 up-
per left, z = 1 upper right, z = 0.5 lower left and z = 0 lower right. The
high resolution region is resolved with five million of not-interacting
particles in a region of 60 Mpc of a side. . . . . . . . . . . . . . . . . . . . 54

4.3 Left: particles distribution in GIF2 simulation at redshift z = 0. Right:
corresponding particles in virialized haloes as identified with the SO
criteria. The plots have been done using the publicly available code
Visivo (http://visivo.cineca.it) (Becciani et al., 2006). . . . . . . . . . . . 56

4.4 Mass fraction in dark matter haloes (SO), in the cosmological simu-
lations GIF and GIF2, in term of redshift. Left: the minimum masses
considered are haloes with at lest 10 particles. Taking into account
that GIF2 has a mass resolution that is a factor of 10 smaller than GIF,
this translate in a larger mass fraction in identified haloes. However
when we cut the resolution at the GIF halo mass (right) the mass frac-
tion in haloes in the two simulations match each other. . . . . . . . . . 56



List of Figures vii

4.5 Mass function of dark matter haloes at five different redshifts in GIF
(solid point type) and GIF2 (open point type) simulations. The dif-
ferent points type refer respectively to z = 4 (hexagons), z = 2 (pen-
tagons), z = 1 (triangles), z = 0.5 (squares) and z = 0 (circles). The
solid line shows the spherical collapse prediction for the mass func-
tion of collapsed dark matter haloes, equation (3.24. . . . . . . . . . . . 57

4.6 Unconditional mass function of dark matter haloes. The solid lines
represents the Press & Schechter prediction for the dark matter haloes
population (eq. 3.24), the dotted curve is the Sheth & Tormen general-
ization of the spherical collapse prediction (eq. 4.3), the dashed lines
is the Jenkins et al. fit (eq. 4.4). . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 Left: cumulative distribution of the “first jump” between the main

progenitor and the most contributing halo as defined by the two algo-
rithms, see the main text for more details. The considered redshifts
at which the two algorithm are compared refer to the GIF2 simula-
tion snapshots. The various line types refer to different present-day
halo masses. In the figure ntot represents the total number of haloes
in each considered bin. The six vertical lines are the average forma-
tion redshift, along the main progenitor, for each of the six mass bin
considered. Right: median mass growth history of different present-
day haloes. The color type is the same as in the left panel, solid and
dashed curves refer to the two algorithm that define the main branch
of the tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 An example of a random walk and the three barrier shapes we con-
sider hereafter. Here δ0 refers to the critical value associated with
spherical collapse overdensity at redshift z0. The jagged line is a sam-
ple Brownian walk absorbed by the barrier associated with ellipsoidal
collapse (solid curve). Short-dashed curves show the square-root bar-
riers which we will also use to approximate the ellipsoidal collapse
barrier, and horizontal dotted lines show the constant barrier associ-
ated with spherical collapse. The upper set of barriers are associated
with collapse at an earlier time. . . . . . . . . . . . . . . . . . . . . . . . . 63

4.9 Schematic representation of progenitor haloes at redshift z of an M0-
halo. From the left, the first two represent haloes that contribute more
than 50% of their mass to M0. The other two instead represent haloes
that give only a small fraction to M0; the dots, on the right, symbolize
the dust particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 Total mass in progenitors and field that will end up in the final halo.
The plot has been done considering the sample of present-day haloes
as described in the text, and dividing them in six mass bin. . . . . . . . 65



viii List of Figures

4.11 Conditional mass function at redshift z1 = 3 of a sample of present day
dark matter haloes in GIF2 simulation. The haloes has been divided in
six mass bin as shown in the panels. The spherical and ellipsoidal col-
lapse (Sheth and Tormen, 2002) prediction are shown for comparison.
In the figure is also shown the square root conditional mass function
(γ= 1/2, β= 0.5 and q = 0.55). Considering that the equation (4.9) in-
volve the parabolic cylinder function, its derivative and primitive that
are very difficult to compute, we use the Sheth and Tormen (2002) ap-
proximate solution with the appropriate value of the parameters that
define the barrier (Mahmood and Rajesh, 2005). . . . . . . . . . . . . . 66

4.12 As in Figure 4.11 with z1 = 2. . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.13 As in Figure 4.11 with z1 = 1.46. . . . . . . . . . . . . . . . . . . . . . . . . 68

4.14 As in Figure 4.11 with z1 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.15 As in Figure 4.11 with z1 = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.16 As in Figure 4.11 with z1 = 0.2. . . . . . . . . . . . . . . . . . . . . . . . . 69

4.17 As in Figure 4.11 with z1 = 0.06. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Spherical collapse formation redshift distribution for four different
scale-free power spectrum. From bottom to top at the peak n = −2,
n =−1, n = 0 and n = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Cumulative distribution of dark halo formation times for haloes iden-
tified at z = 0. From top to bottom, panels show results for haloes with
masses in the range log10M/h−1M⊙ : 11.5− 12, 12 − 12.5, 12.5− 13,
13 − 13.5, 13.5 − 14 and > 14. Symbols show the measurements in
GIF2; dotted curve shows the prediction associated the constant bar-
rier spherical collapse model; dot-dashed curve shows the analytical
fit equation (5.8) with q = 0.707. Short-dashed and solid curves show
the predictions associated with the square-root and ellipsoidal col-
lapse based models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Same as previous figure, but now for haloes identified at z = 0.5. As
before, the spherical model predicts lower formation redshifts than
observed. Whereas the ellipsoidal collapse based expressions predict
the median formation redshift reasonably well, they predict a broader
range of redshifts than are observed. . . . . . . . . . . . . . . . . . . . . 77

5.4 Median formation redshift for haloes identified at z = 0 as a function
of halo mass. Points with (Poisson) error bars show our measurements
in the GIF2 simulation. Smooth curves show the median formation
times associated with three different models of halo formation: spher-
ical collapse (dotted), ellipsoidal collapse (solid) and the square-root
barrier approximation (short-dashed). Dot-dashed curve shows the
prediction of equation (5.12) with q = 0.707. . . . . . . . . . . . . . . . . 78

5.5 Same as previous Figure, but for haloes identified at z = 0.5 in the GIF2
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



List of Figures ix

6.1 Ellipsoidal (solid curve) and spherical (dotted curve) conditional mass
function computed for a present-day dark matter halo with mass 1012M⊙/h

and for five different redshifts. . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 Total number of progenitors in a given mass bin, as a function of red-
shifts, for a present day halo with mass M = 1012 M⊙/h. For each mass
bin we show the prediction for spherical (dotted curves) and ellip-
soidal (solid curves) collapse models. . . . . . . . . . . . . . . . . . . . . 91

6.3 Differential distribution of subhaloes in a 1012 M⊙/h dark matter halo.
The distribution has a slope approximately equal to 1 and has been
normalized considering that 10% of the total mass is in subhaloes with
mass from 107 to 1010 M⊙/h. . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Progenitor mass function integrated over all redshifts. In the top panel
we show the distribution for all the masses, while in the bottom panel
we consider only progenitors in the first and last subhalo mass decades.
93

6.5 Subhalo contribution to the γ-ray flux for the two different models for
the concentration parameters described in the text. MW smooth and
clumpy contributions are shown separately, together with their sum.
In the small box, zoomed at small angles from the Galactic Center only
the sum is shown, and it is compared with the values obtained in Pieri
et al. (2007). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6 Number of photons above 3 GeV, in 1 year in a solid angle of 10−5sr.
The annihilation signal models Br e f ,0 (dashed) and Br e f ,z (dotted) are
shown together with the EGRET diffuse expected Galactic and extra-
galactic background (solid), as a function of the angle of view ψ from
the Galactic Center. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.7 Sensitivity curves for a GLAST-like experiment, for the Br e f ,0 (solid)
and the Br e f ,z (dotted) models described in the text. A zoom at small
angles is provided in the superimposed frame. . . . . . . . . . . . . . . 101

7.1 Mass function of identified dark matter haloes at three snapshots in
GIF2 simulation. The open points refer to the mass function obtained
using a SO algorithm while the filled triangle to the FOF method used
by Gao et al. (2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



x List of Figures

7.2 Mass functions of accreted satellites (unevolved subhalo mass func-
tions). In the panels the various data points and line types refer to
different present-day host halo masses. In the figures the the bounds
of the mass bins are expressed in unit of log(M⊙/h). The solid lines
represent the fitting function to the distributions: equation (7.3) (see
the main text for more details). Note that we only consider subhaloes
that at z = 0 contribute at least 50% of their mass. This ensures that at
z = 0 their center of mass lies within the virial radius of the host. Top:
Unevolved subhalo mass function accreted before the formation red-
shift z f of the host halo (defined as the earliest redshift when the mass
of the main progenitor exceeds half the final mass). Center: Same as
above, but only counting satellites accreted after z f . Bottom: Same as
above, but now counting satellites accreted at any redshift. . . . . . . . 106

7.3 Formation mass distribution measured in GIF2 simulation for differ-
ent final halo mass bins for 1/2 ≤ µ ≤ 1. The various line type his-
tograms show the result of different final parent halo masses. Consid-
ering that the distribution does not depend on M0, we plot all the halo
more massive than 1011.5 M⊙/h with filled circles. The corresponding
error bars assume Poisson counts. For µ ≤ 1/2 the mass distribution
just before the formation is shown. See the main text for more details. 107

7.4 Cumulative distribution of the median mass fraction accreted in satel-
lites by the main branch for different present day masses. In the left
panel: the distribution is plotted in term of redshift, while in the right
the redshift has been rescaled to the corresponding formation one.
The error bars are the quartiles of the distributions. . . . . . . . . . . . 110

7.5 Mass accreted in satellites (unevolved Subhalo Mass Function) by the
main branch of the tree at all redshifts. In each panel we show the
results following the tree from different observation redshifts z0 and
parent halo masses (see Table 7.2 for more details). The solid lines
represent the fitting function: equation (7.3). . . . . . . . . . . . . . . . 111

7.6 Mass accreted in satellites (as in Figure 7.5), before the formation red-
shift. The solid line in each panel is the equation (7.3) with the nor-
malization factor equal to N0,b . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.7 As Figure 7.5 but considering the satellites accreted after the forma-
tion of the host halo. The solid line is the equation (7.3) with the nor-
malization factor equal to N0,a . . . . . . . . . . . . . . . . . . . . . . . . 113

7.8 As Figure 7.3 but considering different observation redshifts z0 as shown
in the four panels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.9 Schematic representation of the merging-history-tree of an halo. Solid
light gray circles connected on the parent halo represent the main
branch of the tree. Solid dark gray circles indicate satellites. Solid
black circles indicate leaves progenitors. See the main text for expla-
nation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Figures xi

7.10 Subhalo population. Top: all particles composing the most massive
halo found at z = 0 in the GIF2 simulation; the virial mass for this halo
is Mv = 1.8×1015 M⊙/h, resolved by more than one million particles.
Middle left: all particles in the present-day halo belonging to satellite
progenitors, middle right corresponding dust particles. Lower left:
particles bound to subhaloes at redshift z = 0. Lower right: particles
bound to the main halo but not to subhaloes. . . . . . . . . . . . . . . . 116

7.11 Subhaloes mass function of the self-bound particles of the haloes ac-
creted by the main branch of the merger-history-tree of an halo,for
GIF2 simulation. In the plot it has been considered all satellites with
a distance from the center of the host halo less then the virial radius.
We also plot the unevolved distribution: equation (7.3). In the bottom
panel we show the residuals of the present day subhalo mass function
respect to the unevolved fitting function. . . . . . . . . . . . . . . . . . . 117

7.12 Subhalo mass function at four different observation redshifts, com-
puted considering all satellites accreted at all redshift z > z0. As did for
the other plots, different final host mass progenitor haloes have been
considered and correspond to different data points and line types. In
each panel is also shown the unevolved subhalo mass function: equa-
tion (7.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.13 Unevolved subhalo mass function for the resimulated haloes. We no-
tice that the function is independent on mass and well described by
the same function fitting the GIF2 data (Figure 7.2). Haloes are split in
three mass bins. In the figure the bounds of the bin are expressed in
unit of log(M⊙/h). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.14 Subhalo mass loss rate. Each panel refers to a different bin in host halo
virial mass at the redshift when the mass loss rate is computed. The
filled circles represent the median of points and the hatched region
the quartiles. The thick solid line is the least square fit to the median
distribution for each panel. The thin dashed line is the average least
squares for the different host halo masses. . . . . . . . . . . . . . . . . . 120

7.15 Dependence of the fit parameters of the Figure 7.14 on the host halo
virial mass. The top panel shows the time scale of the mass loss rate
τ = 10−b . The average and the least square fit of the data points have
been computed on the plane (b, Mv ). In the central panel we show
the dependence of parameter ζ = a − 1 on Mv . In the bottom panel
we show the spread of the first and third quartiles around the median,
averaged over the six panels of Figure 7.14 (see the main text for a de-
tailed explanation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.16 Subhalo mass loss rate. Each panel refers to a different bin in the red-
shift at which the mass loss rate is computed. Symbols and lines are
as in Figure 7.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



xii List of Figures

7.17 Time scale of the mass loss rate and ζ in term of the redshift at which
the subhaloes are experiencing mass loss (Figure 7.16. The average
and the least squares fit of the top panel were computed on the plane
(b, z). The bottom panel shows the average first and third quartile for
the median distribution in each panel of the Figure 7.16, constructed
as previously described in the main text. . . . . . . . . . . . . . . . . . . 124

7.18 Time scale of the mass loss rate and ζ versus host mass, for six fixed
redshift bins – represented by different data points. The horizontal
lines, with various line type, show the average b = − log(τ) and ζ for
each redshift bin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.19 The dotted histogram show the mass accreted by the main branch in
the Monte Carlo merger tree with the overplotted equation (7.3). The
solid lines represent the subhaloes mass function obtained evolving
the mass accreted by the main progenitors of different present day
M0-halo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.1 GIF2 Cosmological N-Body simulation. Upper left: particle distribu-
tion in the simulation box at z = 0, the side of the cube is L =110 Mpc/h

. Upper right: particles in the virial radius of the most massive halo.
Lower left: particles in survivors within the virial radius of the host
halo. Lower left: the dust particles in the halo. . . . . . . . . . . . . . . . 133

8.2 Survivor mass function of dark matter haloes at z = 0. We consider all
the substructures with more than 10 self-bound particles, having also
their center of mass inside the host halo. . . . . . . . . . . . . . . . . . . 134

8.3 Comparison of three methods that identify clumps in dark matter haloes.
To be consistent with Gao et al. (2004) we rescale the mass of dark
matter haloes such that their enclosed density is 200 the critical one
and considering all clumps within the corresponding radius R200. The
asterisks connected with solid lines represent the mass function ob-
tained with SUBFIND. The open circles refer to the survivor mass func-
tion and the filled triangles to the subhalo mass function (Chapter 7).
The dashed and the dotted-dashed lines are the best fit (by eye) to the
SUBFIND mass function of the massive haloes for Gao et al. (2004)
and De Lucia et al. (2004). . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.4 Survivor mass function per unit mass of the parent halo. Left: the dif-
ferential substructure abundance normalized to the total mass of the
parent haloes 〈Mv dn/dmsb〉, in term of 1010 M⊙/h. The various data
points and line types refer to different parent halo host masses. Right:
the dependence on the host halo mass of the value of distributions
corresponding to the minimum survivor mass plotted in the left panel. 137



List of Figures xiii

8.5 Cumulative virial mass fraction in substructures. The data points show
the mass fraction of haloes, for the seven different mass bins consid-
ered, in survivors more massive than msb. We considered all substruc-
tures within the virial radius of the host halo and resolved with at least
10 dark matter particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.6 Average virial mass fraction in substructures in term of the host halo
mass. Open circles show the results for haloes more massive than
1011.5 M⊙/h in GIF2 simulation, error bars are the r.m.s. of the average
of the distributions. The filled triangles refer to haloes with formation
redshift larger than the median of the corresponding mass bin, while
open diamonds to haloes with a formation redshift smaller than the
median. The dashed lines represent the least squares fit to the three
different data points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.7 Halo occupation statistic of present day haloes in the GIF2 simulation.
Top left panel show the first moment: average number of survivors in-
habiting an M0-halo. The solid line is the least squares fit to the open
circles (eq. 8.8). Top right the deviation of the distribution from Pois-
sonian statistic, equation (8.7). The horizontal solid line is the aver-
age value obtained mediating open circles along the y-axis. The two
figures in the bottom show the second and the third order moments.
Dotted lines represent the fit to the survivors distribution while the
solid line are equations 8.10 and 8.11 for the second and third order
moment expressed in therm of α and the first order moment. In the
four panels, filled squares refer to the number of substructures + host.
See the main text for more details. . . . . . . . . . . . . . . . . . . . . . . 142

9.1 Conditional mass function of an M∗-present-day halo. The different
data points correspond to five different redshifts at which the progen-
itors have been computed with a single time-step. The solid curves
that fit the data points are the spherical collapse conditional mass
function at each of the correspondent redshift (eq. 4.6). . . . . . . . . . 148

9.2 Formation redshift distribution for a present-day M∗-halo and white-
noise power spectrum. The histogram is the realisation of 103 merger
tree, the solid line is the spherical collapse prediction of Lacey and
Cole (1993) (eq. 5.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150



xiv List of Figures

9.3 Mass variance for different power spectrum. For ΛCDM power spec-
trum the mass variance has been computed chosing a power spec-
trum with primordial spectral index n = 1, and a transfer function
obtained from CMBFAST (Seljak and Zaldarriaga, 1996) for a concor-
dance ΛCDM universe (Ωm , ΩΛ, h = 0.3, 0.7, 0.7) with σ8 = 0.772, ex-
tended down to a mass M = 106M⊙/h. We have integrated this power
spectrum using a top-hat filter in real space. To obtain the mass vari-
ance until the typical Jeans neutralino mass we linearly extrapolate
the log(m)-s relation to M = 10−6M⊙/h. The three scale-free power
spectrum as been normalized to have the same mass variance for an
halo with mass 1012 M⊙/h. . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9.4 Single-step conditional mass function at six different redshifts for a
present day Milky-Way size dark matter halo and considering aΛCDM
power spectrum. The mass resolution of the partition algorithm is
10−6 M⊙, corresponging to the typical neutralino Jeans-mass. For the
cases ζ = NINT(m̃/µ) and ζ = INT(m̃/µ) the conditional mass func-
tion have been shifted respectively of a factor of ten up and down re-
spect to the original distribution. The solid curves represent the cor-
responding spherical collapse conditional mass functions. . . . . . . . 152

9.5 Mass function accreted by the Milky-Way halo. The merger history
tree has been performed generating progenitor haloes until a mass
resolution of 10−6 M⊙. The main progenitor halo has been followed in
redshift until its mass does not drop below the mass resolution. . . . . 154

9.6 Satellite mass function in term of the universal variable ν= δsc /σ(m).
The histogram show the result of 104 realization of the Monte Carlo
tree. The dotted line is a gaussian distribution with zero mean and
one variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.7 Unevolved and evolved subhalo mass function accreted by a present-
day Milky-Way size halo between z = 2 and z = 2.8. The evolved distri-
bution has been obtained from the accreted one using equation (7.18). 156

A.1 Ratio between the virial radius and the radius enclosing 200 times the
background density, versus the universal variable ν. In each panel the
ratio refers to different simulation redshifts. The open circles repre-
sent the median of the distribution, while the shaded region encloses
the second and the third quartile. The filled triangles instead repre-
sent the average of the distribution, and the error bars are the root
mean squares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.2 Ratio between the virial radius and the radius enclosing 200 times the
critical density, versus ν. In each panel the ratio refers to different
redshift. The data points and error bars are the same as Figure A.1. . . 162

A.3 Dependence on redshift of the ratio between R200,b and Rv . The points
refer to simulation data for different value of ν, while the solid line
represents the best fit to the data point: equation (A.1). . . . . . . . . . 164



List of Figures xv

A.4 As in the previous figure, but considering the radius that enclose 200
times the critical density of the universe. The solid line is equation (A.2).
164

C.1 Top panel: particle distributions in the most massive halo at redshift
z = 0 in the GIF2 simulation. Bottom left: self-bound particles in
subhaloes identified using the Tormen et al. (2004) algorithm. We re-
call that the halo has 1070564 particles within its virial radius (Mv =
1.85×1015 M⊙/h); 265607 of these are in self-bound groups. Bottom
right: dust particles, i.e. particles that belong to the halo without be-
ing bound to any subhalo. . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C.2 Subhalo mass function in present-day haloes with M ≥ 1011.5 M⊙/h,
from the GIF2 simulation. We only considered haloes with main pro-
genitor mass Mv (z) < 1.1Mv (z = 0), (see Table 7.1 for the correspond-
ing number of haloes in each considered mass bin). For each satellite
the self-bound mass has been computed considering all its particles
within the comoving virial radius Rc,v . The various data points and
line types refer to different present day mass host halo masses. The
solid curve indicates the unevolved subhalo mass function fit: equa-
tion (7.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

C.3 Left: self-bound particles in subhaloes. The self-bound mass of each
satellite was computed considering all the particles inside the subhalo
tidal radius, and taking as center of the system the position of the most
bound particle. Right: dust particles of the host halo. . . . . . . . . . . 170

C.4 Subhalo mass function in the GIF2 simulation. The self-bound mass
of each subhalo has been computed considering all the satellite par-
ticles inside the subhalo tidal radius and taking as center the position
of the most bound particle. The line and point types are as in Figure
C.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.5 Ratio between the self-bound masses assigned to subhaloes by the
different algorithms. The top panel shows the ratio between mc−Rti d

and mc−Rc,v versus mc−Rc,v , as shown in the label. The other two
panels show the ratio of mbp−Rti d over mc−Rc,v and mbp−Rti d over
mc−Rti d , from top to bottom. The open circles represent the me-
dian of the distribution and the shaded region enclose the first and
the third quartile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

C.6 Halo occupation distribution: average number of subhaloes versus
host halo mass. The different data points and line types refer to the
three definitions of subhaloes described in this Appendix and in Chap-
ter 7. In the figure "‘mc"’ refers to subhaloes with centers computed
using the moving center method, while "‘mbp"’ refers to centers de-
fined using the position of the most bound particle. Rti d and Rc,v de-
note the radius of the sphere initially used to identify candidate sub-
halo particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



xvi List of Figures

C.7 Average mass fraction in subhaloes. The data points and line types are
the same as in Figure C.6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



List of Tables

2.1 Evolution of the density perturbation δ+ in term of redshift for a mat-
ter dominated universe and the three different geometries. x = |Ω(z)−1−
1|, θ =

p
x/(1−x), while η= 0 for 0 < θ <π and η=π for π< θ < 2π. . . 30

4.1 Summarized properties of cosmological N-Body simulations and res-
imulated galaxy clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.1 Number of haloes considered in each logarithmic mass bin for the dif-
ferent simulations. For GIF & GIF2 we considered all the halo with
more than 200 particles in their virial radius at redshift zero and whose
main progenitor at any redshift has virial mass not exceeding the final
value by more than ten percent. For the resimulated haloes we follow
the merger tree and the satellites populations for all the haloes with
more than 40000 at the present time. . . . . . . . . . . . . . . . . . . . . 105

7.2 Number of haloes considered in each mass bins for different observa-
tion redshift z0 in GIF2 simulations. In the sample we considered all
the haloes that at z0 have at least 200 particles. . . . . . . . . . . . . . . 110





ABSTRACT

In order to understand galaxy formation models it is necessary to have a rea-
sonably clear idea of dark matter clustering. This because, in the standard cos-
mological scenario, galaxies are thought to reside in larger dark matter haloes,
extending beyond the galaxy observable radius. Haloes form as consequence of
gravitational instability of dark matter density perturbations, and collapse at a
density about two hundred times that of the surrounding environment. Cluster-
ing happens at all masses at any time.

Until now no direct observations of the existence of these dark matter haloes
have been done; however, their presence may be indirectly tested by their grav-
itational influence. For example, galaxies in groups have a velocity dispersion
much higher than that caused only by visible matter. Astronomers thus assumed
the existence of large amounts of dark matter, an hypothesis later found con-
sistent with other independent observations like gravitational lensing, galaxy
clustering on very large scales and anisotropies in the cosmic microwave back-
ground radiation.

In particle physics, supersymmetry predicts the existence of a particle named
neutralino (Jungman et al., 1996; Bertone et al., 2005), today regarded as the
most likely candidate for the dark matter. This particle is heavy and slow-moving
(mass ≈ 100 Gev), so that dark matter density fluctuations can collapse for any
mass larger than 10−6 M⊙ (Hofmann et al., 2001; Green et al., 2004, 2005). This
places a mass cut-off on the smallest dark matter haloes that can collapse. Neu-
tralino can also annihilate with its anti-particle, generatingγ-ray photons (Berg-
ström, 2000; Bertone et al., 2005), with annihilation rates growing as the square
of the density. Due to this process, it is expected that futureγ-ray telescopes (like
GLAST, Morselli (1997)) should be able to detect some excess in the γ-ray back-
ground signal from the center of the Milky-Way halo and from its satellites. This
would be the first time of an in-”direct” detection of dark matter.

In this PhD dissertation we study the evolution of dark matter haloes, using
two complementary approaches: numerical simulations and analytical model-
ing (through the extended Press & Schechter formalism). The work is organized
as follows. In the first three chapters we describe and review some properties of
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the early universe and the theory underlying models of dark matter clustering.
We discuss how density perturbations evolve and form dark matter haloes inside
which baryons can shock and cool, eventually form stars and galaxies. We also
show how the number density of haloes can be estimated at any redshift using
the excursion set approach, both for the spherical and ellipsoidal collapse mod-
els. These model mass functions are compared with those from numerical sim-
ulations in Chapter 4. We show that the ellipsoidal collapse model (Sheth et al.,
2001; Sheth and Tormen, 2002) perfectly reproduces the global mass function
in N-Body simulations, while, on the other hand, the spherical collapse model
(Press and Schechter, 1974; Lacey and Cole, 1993; Bond et al., 1991) overpredicts
the aboundace of small masses and underpredicts that of large ones.

Dark matter clustering is hierarchical, i.e. small systems collapse first (at
higher redshift), and subsequently merge together forming larger haloes. In this
scenario, if we define a formation time as the earliest redshift when an halo as-
sembles half of its present-day mass, small haloes form first and large ones form
later. The top of the hierarchical pyramid is occupied by galaxy clusters, which
represent the largest virialized structures in the universe.

Another important quantity describing dark matter clustering is any condi-
tional mass function. One example is the probability that an halo observed at
redshift z1, will be part of a larger halo at z0 < z1. This distribution is also called
progenitor mass function; theoretical predictions and N-Body simulations are
compared at the end of Chapter 4. There we show that, also in this case, the
ellipsoidal collapse prediction well reproduces the distribution found in numer-
ical simulations at most redshifts.

In Chapter 5 we will discuss how it is possible to estimate the formation time
distribution from the conditional mass function, and present a new formula,
based on the ellipsoidal collapse, that better fits the formation redshift distri-
bution measured in N-Body simulations.

The progenitors accreted along the merging history tree of a halo can survive
today in their host system, and constitute the so-called substructure population
(Ghigna et al., 1998; Tormen et al., 2004; Gao et al., 2004; De Lucia et al., 2004;
van den Bosch et al., 2005). In Chapter 6 we discuss how it is possible to ana-
lytically estimate this population using the conditional mass function, assuming
no tidal stripping and merging among substructures. By extrapolating the power
spectrum of density perturbations down to the typical neutralino Jeans mass, we
estimate the substructure population in a Milky-Way size halo, both for a spher-
ical and ellipsoidal collapse model. Modeling the neutralino annihilation rate,
we then estimate the γ-ray emission from this population and its detectability
with a GLAST-like telescope.

In Chapter 7 we study the growth of the main progenitor halo, and the mass
it accretes along its merging history tree using numerical simulations. The mass
function of accreted haloes, called “unevolved subhalo mass function”, turns out
to be independent of the final host halo mass, both before and after its forma-
tion redshift. The accreted haloes, called satellites, are then followed snapshot
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by snapshot in order to compute their mass loss rate. This allow us to interpret
the present-day subhalo population in term of the mass loss from the accreted
satellites. Since smaller hosts form earlier than larger ones, the former will ac-
crete satellites at earlier times; these satellites will therefore spend a longer time
inside the host halo and lose a larger fraction of their initial mass. This translates
the (mass-independent) unevolved subhalo population in a present-day sub-
halo distribution that depends on the host halo mass: at fixed subhalo-to-host
halo mass: msb/M0, more massive hosts contain more subhaloes than smaller
hosts do.

Subhaloes defined in this way may contain other subhaloes within them-
selves (Diemand et al., 2007b; Li and Helmi, 2007), which were accreted when
they were still isolated systems. In Chapter 8 we show how subhaloes within
subhaloes can be identified following all branches of the merging history tree of
an host halo. We also compare our definition of substructures with that of other
authors (Gao et al., 2004), finding very good agreement.

In the last chapter of this dissertation, we show how the merging history tree
of a halo can be followed using Monte Carlo realizations. The partition code,
on which the tree is based, is very fast, time step independent, and provides re-
sults in excellent agreement with the spherical collapse conditional mass func-
tion down to any required mass resolution (Sheth and Lemson, 1999). The tree
has been run following the main branch and resolving all satellites down to the
typical neutralino Jeans mass, in order to study the Milky-Way subhalo popula-
tion.





SOMMARIO

Al fine di comprendere i modelli di formazione delle galassie, è necessario avere
le idee chiare circa il clustering della materia oscura. Questo perchè, il mod-
ello cosmologico standard prevede che le galassie risiedano in aloni di materia
oscura che si estendono ben oltre il loro raggio osservabile. Gli aloni si formano
come conseguenza di instabilitá gravitazionale del campo di fluttuazioni di den-
sitá della materia oscura, e collassano quando queste raggiungono una densitá
di almeno duecento volte quella dell’ambiente circostante. Il clustering avviene
su tutte le masse e a tutti i tempi.

Fino ad oggi la materia oscura non é mai stata osservata direttamente; tut-
tavia, la sua presenza viene indirettamente avvertita attraverso la sua influenza
gravitazionale. Per esempio, le galassie, che risiedono in gruppi, hanno una dis-
persione di velocitá molto più elevata di quella dovuta alla sola materia visibile.
Gli astronomi hanno perciò ipotizzato l’esistenza di una grande quantità di ma-
teria oscura, successivamente consistente con altre indipendenti osservazioni
come il lensing gravitazionale, il clustering delle galassie su grande scale e le
anisotropie del fondo cosmico delle microonde.

Nel campo della fisica delle particelle, la teoria supersimmetrica predice l’e-
sistenza di una particella chiamata neutralino (Jungman et al., 1996; Bertone
et al., 2005), questa viene vista oggi come il candidato più probabile a comporre
la materia oscura. Questa particella è pesante (massa ≈ 100 GeV) ed ha una
bassa velocitá tipica; queste proprietà fanno si che solo le fluttuazioni di mate-
ria oscura maggiori di 10−6 M⊙ (Hofmann et al., 2001; Green et al., 2004, 2005)
possano collassare, ponendo un cut-off in massa per il più piccolo alone che
può formarsi nell’universo. Il neutralino, annichilendo con la sua antiparticela,
genera fotoni con frequenze tipiche nei raggi γ (Bergström, 2000; Bertone et al.,
2005). Il tasso di annichilazione risulta proporzionale alla radice quadrata della
densità. Questo processo causerebbe un eccesso del fondo di fotoni γ in cor-
rispondenza del centro della Via Lattea e dei suoi satelliti, che ci si aspetta di
poter osservare con i prossimi telescopi-γ, come ad esempio GLAST (Morselli,
1997). Questa sarebbe la prima in-”diretta” osservazione della materia oscura.

In questo lavoro di tesi studiamo l’evoluzione degli aloni di materia oscura
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usando due approcci complementari: simulazioni numeriche e modelli analitici
(usando il formalismo esteso di Press & Schechter). La tesi è organizzata come di
seguito. Nei primi tre capitoli descriviamo e rivediamo alcune proprietà dell’u-
niverso primordiale, e la teoria del clustering della materia oscura. Discutiamo
come evolvono le perturbazioni di densità e come si formano gli aloni di mate-
ria oscura in cui i barioni possono subire shock e raffreddarsi, ed eventualmente
formare stelle e galassie. Mostriamo anche come si può stimare la densità nu-
merica degli aloni ad ogni redshift usando l’approccio dell’excursion set, sia per
il modello del collasso sferico che per quello ellissoidale. Nel Capitolo 4, queste
funzioni di massa teoriche vengono confrontate con i risultati di simulazioni nu-
meriche. In questo capitolo si mostra che il modello del collasso ellissoidale
(Sheth et al., 2001; Sheth and Tormen, 2002) riproduce perfettamente la fun-
zione di massa globale delle simulazioni, metre, d’altra parte, il collasso sferico
(Press and Schechter, 1974; Lacey and Cole, 1993) sovrapredice l’abbondanza
degli aloni di piccola massa e sottopredice quella dei sistemi grandi.

Il clustering della materia oscura è gerarchico, cioé gli aloni piccoli collas-
sano prima, ad alto redshift, e successivamente si uniscono formando quelli più
grandi. In questo scenario, definendo redshift di formazione come il redshift
più alto al quale un alone assembla metà della sua massa al tempo presente, gli
aloni piccoli si formano prima di quelli grandi. Il posto più alto di questa pi-
ramide gerarchica è occupata degli ammassi di galassie, che rappresentano le
più grandi strutture virializzate dell’universo.

Un’altra importante quantità che descrive il clustering della materia oscura è
la funzione di massa condizionale. Un esempio è rappresentato dalla probabil-
ità che ha un alone, osservato a redshift z1, di far parte di un alone più grande a
z0 < z1. Questa distribuzione è anche chiamata funzione di massa dei progen-
itori; la predizione teorica e le simulazioni N-Body vengo confrontate alla fine
del Capitolo 4, dove si mostra che, anche in questo caso, il collasso ellissoidale è
ingrado di riprodurre molto bene le simulazioni numeriche a diversi redshifts.

Nel capitolo 5 mostriamo come è possibile stimare la distribuzione dei tempi
di formazione dalla funzione di massa condizionale, e presentiamo una nuova
formula, basata sul collasso ellissoidale che meglio fitta la distribuzione dei red-
shifts di formazione misurata nelle simulazioni N-Body.

I progenitori eccresciuti lungo il merging history tree di un alone possono so-
pravvivere oggi nel sistama ospite, constituendo la cosiddetta popolazione delle
sottostrutture (Ghigna et al., 1998; Tormen et al., 2004; Gao et al., 2004; De Lucia
et al., 2004; van den Bosch et al., 2005). Nel capitolo 6 discutiamo come è pos-
sibile stimare analiticamente questa popolazione usando la funzione di massa
condizionale, non assumendo, per semplicità, tidal stripping e merging tra le
sottostrutture. Interpolando lo spettro delle perturbazioni di densità fino alla
tipica massa di Jeans del neutralino, stimiamo la popolazione delle sottostrut-
ture in un alone di dimensione della Via Lattea, sia per il collasso sferico che per
quello ellissoidale. Modellando il tesso di annichilazione dei neutralini, misuri-
amo l’emissione γ da questa poplazione e la sua possibilità di essere osservata
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con un telescopio come GLAST.
Nel Capitolo 7 studiamo la crescita del progenitore principale e la massa che

esso accresce lungo il merging history tree, usando simulazioni numeriche. La
funzione di massa degli aloni accresciuti, chiamata “funzione di massa dei sub-
aloni non evoluta”, risulta essere indipendente dalla massa dell’alone ospite, an-
che prima e dopo la sua formazione. Gli aloni accresciuti, chiamati satelliti, ve-
gono poi seguiti snapshot per snapshot al fine di stimare il loro tasso di perdita
di massa. Questo ci permette quindi di interpretare la popolazione presente di
subaloni in termini della massa persa dai satelliti accresiuti. Giacché i piccoli
aloni ospiti si formano prima di quelli grandi, i primi accresceranno satelliti a
epoche più remote; questi satelliti spendendo un lungo tempo nell’alone ospite
perderanno una frazione maggiore della loro massa iniziale. Questo traduce la
funzione di massa non evoluta dei subaloni (indipendente dalla massa) in una
distribuzione di subaloni al tempo presente che dipende dalla massa dell’alone
ospite: a rapporto di massa subalone/massa alone ospite fissato: msb/M0, aloni
più massicci contengono più sottostrutture di quelli piccoli.

I subaloni come definti sopra tuttavia possono contenere altri subaloni al
loro interno (Diemand et al., 2007b; Li and Helmi, 2007), accresiuti quando er-
ano ancora sistemi isolati. Nel Capitolo 8 mostriamo come i subaloni nei sub-
aloni posso essere identificati seguendo tutti i rami del merger tree di un alone
ospite. Paragonando, poi, la nostra definizione di sottostrutture con quella di
altri autori (Gao et al., 2004), troviamo un buon accordo.

Nall’ultimo capitolo di questa tesi, mostriamo come sviluppare un merger
tree di un alone usando delle realizzazioni Monte Carlo. Il codice di partizione,
su cui il tree è basato, risulta essere molto veloce e indipendente dal time-step,
generando risultati in eccellente accordo con la funzione di massa condizionale
del collasso sferico fino a qualsivoglia risoluzione in massa (Sheth and Lemson,
1999). Il tree è stato generato seguendo il ramo principale e risolvendo tutti i
satelliti fino alla tipica massa di Jeans del neutralino, allo scopo di studiare la
popolazione dei subaloni della Via Lattea.





INTRODUCTION

The attempts to understand the origin of the universe and formation of cosmic
structures by applying the laws of physics lead to difficulties which have no par-
allel in the study of systems on more moderate scales - atoms, molecules and
solids. The universe is one, and is evolving in time. Different epochs in its history
are unique and have occurred only once. Within this framework, the standard
rules of science, like repeatability, statistical stability and predictability, cannot
be applied to study the entire universe. Considering that the speed of light is
finite we can observe the universe, at the same time, in different fase of its evo-
lution: the more distant we watch, the younger are the cosmic structures that
we can see. This peculiarity suggest cosmologists that starting from the present
configuration of the universe and using the laws of physics it is possible to re-
produce its past and predict its future.

Progress in this direction is limited by the fact that our knowledge of the phys-
ical processes at energy scales above 100 GeV lacks direct experiments. Despite
this, current observations of the cosmic microwave background radiation, high
redshift supernovae and large scale structures suggest that nearly 95% of the
matter in the universe is of a type which never seen in the laboratories, most
of which exerts negative pressure.

The standard paradigm of cosmic structure formation is based on the idea
that at sufficiently early times the universe was very homogeneous, isotropic
and fairly featureless (Cosmological Principle) - except for small fluctuation in
the stress-energy tensor. The Cosmological Principle has a very important role
in the cosmological scenario of structures formation; above all it is a good ap-
proximation to the universe at early times and on large scales today, and helps
us building up theoretical models with a small number of free parameters. Ho-
mogeneity is the property of being identical everywhere in space, while isotropy
is the property of looking the same in every direction.

Starting from this, the results will depend only on a small number of parame-
ters, describing: the composition of the universe, its current expansion rate and
the initial spectrum of density perturbations. Varying these allows to construct
a set of evolutionary models for the universe which can then be compared with
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observations in order to estimate the value for the parameters.
In this PhD dissertation we follow two main approaches in the study of cos-

mic structure formation: the extended Press & Schechter theory and numerical
N-Body simulations. Using these tools we construct merger tree of dark matter
haloes in order to compute and describe their formation and creation times. We
study also the conditional and unconditional mass function of virialized haloes
and discuss theoretical models able to describe these.

Some of progenitor haloes accreted by the main trunk of the tree can survive
at the present-time in the host halo constituting the so called subhalo popula-
tion. We study the subhalo mass function, both in extendend Press & Schechter
formalim and in numerical simulations, discussing how it depends on host halo
mass and on environment.



The Universe:
from Smooth to Clumpy





CHAPTER

1
Cosmological Background

1.1 Robertson-Walker Metric & Friedmann’s Equations

Starting from the idea of the Cosmological Principle it is possible to construct
models of the Universe in which this principle holds. Consider the Universe as
a continuous fluid and assign to each fluid element three spatial coordinates
xα(α = 1,2,3). Any point in space-time can be labeled by the coordinates xα,
corresponding to the fluid element which is passing through the point, and a
time parameter which we take to be the proper time t measured by a clock mov-
ing with the fluid element. The coordinates xα are called comoving coordinates.
The geometrical properties of space-time are described by a metric, and the
most general space-time metric describing a universe in which the Cosmolog-
ical Principle is obeyed has the form:

ds2 = (cdt )2 −a(t )2
[

dr 2

1−kr 2
+ r 2 (

dθ2 + sin2θdφ2)
]

, (1.1)

where (r,θ,φ) are the spherical comoving coordinates, t is the proper time, a(t )
is the cosmic scale factor or expansion factor and k is curvature parameter, a con-
stant which can be rescaled to take the value 1, 0 or −1. This metric is called
Robertson-Walker Metric.

Considering a uniform and isotropic distribution of matter, it is possible to
define a universal time, such that at any instant the three-dimensional spatial
metric is

dl 2 = γαβdxαdxβ (α,β= 1,2,3) , (1.2)

so that the space-time metric can be written as:

ds2 = (cdt )2 −dl 2 = (cdt )2 −γαβdxαdxβ . (1.3)

For three-dimensional flat, positively curved and negatively curved spaces one



14 Cosmological Background

has, respectively:

dl 2 = a2 (

dr 2 + r 2dΩ2) ; (1.4)

dl 2 = a2 (

dχ2 + sin2χdΩ2)= a2
(

dr 2

1− r 2
+ r 2dΩ2

)

; (1.5)

dl 2 = a2 (

dχ2 + sinh2χdΩ2)= a2
(

dr 2

1+ r 2
+ r 2dΩ2

)

, (1.6)

where dΩ2 = dθ2 + sin2θdφ2; 06 χ6 π in (1.5) and 06 χ6∞ in (1.6). The val-
ues of k = 1,0,−1 in equation (1.1) correspond to an hypersphere, the Euclidean
space and a space of constant negative curvature, respectively.

The only force of nature effective on large scales is gravity, so the most im-
portant part of a physical description of the Universe is a theory of gravity. The
best candidate to describe the universe and its time evolution as whole is given
by Einstein’s equations1:

Ri j −
1

2
gi j R =

8πG

c4
Ti j (i , j = 0,1,2,3) , (1.7)

where Ri j and R are the Ricci tensor and scalar, respectively, Ti j is the energy-

momentum tensor and gi j is the metric tensor. These equations relate the ge-
ometrical properties of space-time with the energy-momentum tensor describ-
ing the content of the universe. In particular, for a homogeneous and isotropic
perfect fluid with rest-mass energy density ρc2 and pressure p, the solutions of
Einstein’s equations (Λ= 0) are Friedmann’s equations:

ä =−
4

3
πG

(

ρ+3
p

c2

)

a , (1.8)

ȧ2 +kc2 =
8

3
πGρa2 , (1.9)

where the dots represent the derivative respect to cosmological proper time t .
Defining the critical density as:

ρc =
3

8πG

(

ȧ

a

)2

, (1.10)

from equation (1.9) it is possible to write the space curvature as:

k

a2
=

1

c2

(

ȧ

a2

)2 (

ρ

ρc
−1

)

. (1.11)

From this equation we see that:

• space is positively curved (k = 1, open universe) if Ω(t ) ≡
ρ

ρc
> 1, where

Ω(t ) is called density parameter;

1Initially Einstein’s equations did not include the cosmological constant, Λ, which was added later to
allow for a static universe.
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Figure 1.1: Examples of curved spaces in two dimensions. From top to bottom we show
a property of the curved space: the sum of the internal angles of a triangle. This sum is
less than 180o if space has negative curvature (open universe), it is equal to 180o if space
is Euclidean (flat universe) and is bigger than 180o if space has positive curvature (closed
universe).

• space is Euclidean (k = 0, flat universe) if Ω(t ) = 1;

• space is negatively curved (k =−1, open universe) if Ω(t ) < 1.

In Figure 1.1 we show three examples of curved spaces in two dimensions. The
triangle drawn in each case has sum of internal angles less, equal or more than
180o for an open, flat or close universe. Space curvature can be measured by two
further properties: (i) global versus local parallelism and (ii) the parallel trans-
port of a vector. (i) Two locally parallel lines will also be globally parallel in a
flat space, while they will converge or diverge in a positively or negatively curved
space. (ii) Take a vector and transport it along a closed path, while keeping it
parallel to its initial direction. In a flat space, the transported vector will coin-
cide with the initial one, while in a positively or negatively curved space the two
vectors will differ in direction by an amount depending on the curvature.
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It is important to remember that the density parameter receives contribu-
tions from all matter and energy components in the universe: baryons, dark
matter, radiation, neutrinos, etc. The ratio H0 = (ȧ/a)0 - called Hubble constant
- is the rate of expansion of the universe at the present-time.

If a particular kind of energy density is described by an equation of state of
the form p = wρc2, where ρ is the pressure and w is a constant, then the condi-
tion for adiabatic expansion d(ρa3) =−ρda3, can be integrated to give:

ρ

ρ0
=

(

a

a0

)−3(1+w)

. (1.12)

1.2 Content of the Universe

Our knowledge of the observed universe have greatly improved over the last
few years, especially thanks to studies of cosmic microwave background (CMB)
anisotropies and to observations of high redshift objects. A concise summary of
the main findings is the following:

1. matter-energy in the universe give Ω0 =
∑

i Ωi ≃ 0.98−1.08. This value can
be derived from the angular anisotropy spectrum of the cosmic microwave
background radiation (Netterfield et al., 2002; Smoot et al., 1992; Bennett
et al., 1996, 2003; Spergel et al., 2003, 2007). These observations favor a flat
universe: k = 0.

2. CMB anisotropies, large scale structures observations and studies of galac-
tic dynamics (Abell, 1958; White and Rees, 1978; Abell et al., 1989; Dressler,
1980; Navarro et al., 1996; Davis et al., 1985) suggest that the universe is
populated by a non-luminous component of matter - called Dark Matter -
made of weakly interacting particles which cluster at all scales above some
critical mass, which is negligible for most cosmological applications. Such
dark matter has non relativistic velocity at all epochs of interest, and con-
tributes to the energy budget of the universe for about ΩDM ≃ 0.20−0.35.
Its equation of state has wDM = 0, giving ρDM (t ) ∝ a−3.

3. Observations of primordial deuterium produced during the big bang nu-
cleosynthesis, as well as CMB anisotropies, indicate that the total density of
baryons is about Ωb ≃ (0.024±0.0012)h−2 (Applegate et al., 1987; Songaila
et al., 1994; Copi et al., 1995) - where h is the Hubble constant in term of
100 km s−1Mpc−1. This, combined with the previous item, tells that most
of the matter in the universe is non-baryonic.

4. Combining the previous points together one sees that Ω0−ΩDM −Ωb ≃ 0.7,
so there must be one more component to the energy density of the universe
contributing about 70% of the critical density. Here again CMB observa-
tions, combined with high redshift supernovae, suggest that the missing
component has an equation of state with negative pressure. The simplest
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Figure 1.2: Energy density versus scale factor for different energy components of a flat
universe. Shown are non-relativistic matter, radiation, and a cosmological constant in
units of the critical density today. Even though matter and cosmological constant dom-
inate today, at early times the radiation density was the largest.

and more accepted choice for the Dark Energy is the cosmological constant,
a fluid with equation of state pDE = −ρDE (wDE = −1), which gives ρDE =
constant.

5. The universe also contains radiation, contributing by ΩRh2 = 2.56× 10−5

today, most of which comes from the CMB. Its equation of state is pR =
(1/3)ρR , implying ρR ∝ a−4. Since for thermal radiationρR ∝T 4, it follows
that T ∝ a−1. While this component is negligible today, it was dominant at
very high redshifts, when the universe was younger, smaller and hotter.

For a flat ΛCDM universe with Ω0 = Ωb +ΩDM +ΩR +ΩDE ≈ Ωm +ΩΛ, using
the Friedmann’s equations and the energy density conservation in an expanding
universe we can identify three distinct phases in the evolution of the universe.
At high redshift the universe is radiation-dominated and a(t ) ∝ t 1/2, T ∝ t−1/2.
Since radiation density decreases faster than matter density, at some later time
teq the two densities are comparable, and for t > teq matter will dominate the
expansion, giving a ∝ t 2/3. Finally, at some even later times Dark Energy, whose
density is constant in time, will dominate over the rest, forcing the universe to
expand in an accelerated way. For a concordance universe with ΩDE ≈ 0.7, the
accelerated phase starts at zDE ≈ 0.67.



18 Cosmological Background

Figure 1.3: Evolution of the scale factor of the universe with cosmic time. When the
universe was very young, radiation was the dominant component, and the scale fac-
tor increased as t 1/2. At later times, when matter come to dominate, this dependence
switched to t 2/3. The vertical axis shows the corresponding temperature, today approx-
imately equal to 3 K.

1.3 Cosmological Constant: the ΛCDM Universe

When Einstein first proposed his equations, the universe was thought to be static.
The only way to allow for a static solution in Friedmann’s equation is to add a cos-

mological constant term Λgi j on the left hand-side of Einstein’s equations (1.7),
an addition that does not change their covariant character. Einstein’s static so-
lution results by assuming a closed universe (Ω > 1) which is prevented from
recollapsing by some non-gravitational force provided by a positive Λ.

Nowadays the cosmological constant is interpreted differently, by placing it
instead on the right hand-side of Einstein’s equations: this corresponds to mod-
ifying the energy-momentum tensor into:

T̃i j = Ti j +
Λc4

8πG
gi j =−p̃gi j + (p̃ + ρ̃c2)UiU j , (1.13)

where the effective pressure p̃ and density ρ̃ are related to the corresponding
quantities for a perfect fluid by

p̃ = p −
Λc4

8πG
, ρ̃ = ρ+

Λc2

8πG
, (1.14)

Einstein’s equations (and so Friedmann’s ones) become:

Ri j −
1

2
gi j R =

8πG

c4
T̃i j ,

ä =−
4π

3
G

(

ρ̃+3
p̃

c2

)

a ,

ȧ2 +kc2 =
8πG

3
ρ̃a2 .

From equation (1.14) we can see that |Λ|1/2 has the dimensions of a length.
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Today the cosmological constant is interpreted in terms of Dark Energy (DE),
an unknown source of energy contributing by 70% to the critical density of the
universe.

1.4 Evolution of Density Parameter and Hubble Constant

The recent CMB experiments, large scale structures observations and high red-
shift supernovae surveys, combined together, place stringent constraints on the
values of many cosmological parameters. Our universe is well described by a flat
spatial metric, is dominated by a cosmological constant and is seeded with an
approximately scale-invariant primordial spectrum of Gaussian density fluctua-
tion. The best fit parameters from the WMAP 3-year data release (Spergel et al.,
2007) give: Ωm = 0.24, ΩΛ = 0.76, Ωb = 0.042, h = H0/100 kms−1Mpc−1 = 0.73,
n = 0.95 - spectral index of the matter power spectrum at inflation - andσ8 = 0.75
- the root-mean-square amplitude of mass fluctuations in a sphere of radius
8 h/Mpc. According to this basic model, the cosmological constant is unclus-
tered.

In this cosmology, according to Friedmann’s equations, the expansion pa-
rameter H evolve in terms of redshift z = 1/a(t )−1 as:

H(z) =
1

a

da

dt
= H0

[

Ωm(1+ z)3 +ΩΛ

]1/2
, (1.15)

which gives for the density parameters of the matter and cosmological constant:

ΩΛ(z) =
ΩΛ

ΩΛ+Ωm(1+ z)3
, (1.16)

Ωm(z) =
Ωm(1+ z)3

ΩΛ+Ωm(1+ z)3
, (1.17)

where H0, ΩΛ andΩm refer to the present-day quantities. The age of the universe
today is:

t0 =
∫∞

0

dζ

(1+ζ)H(ζ)
=

2

3H0
p
ΩΛ

ln

[
p
ΩΛ+1
p
Ωm

]

≈ 13.7 Gyr . (1.18)

Consider now the situation of an observer located in the origin of a reference
frame within an expanding universe. This will receive informations from any
point of the space able to send him a light “message”. However the photons have
to reach the observer in a finite time compared to the age of the universe. The
set of points that can communicate with O in this way must be inside a sphere,
centered upon the origin, with proper radius

RH (t ) = a(t )
∫t

0

cdt ′

a(t ′)
, (1.19)

From small time t the integral diverges because a(t ) goes to zero, in this case the
observer can receive informations from the whole universe. When t grow, the
integral assume a finite value and O can reach informations only from points
that are inside a sphere with finite radius called particles horizon.
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Figure 1.4: Evolution of the density parameters for cosmological constant and matter in
term of redshift as in the equations (1.16) and (1.17).

1.5 Recombination and Decoupling

Since in the past the universe was denser and hotter, there have been times when
the time-scale of scattering between matter and radiation was lower that the ex-
pansion time. In this phase photons and matter scattered together maintaining
equilibrium conditions.

Before the universe cooled to temperatures of order 1 eV photons were tightly
coupled to electrons via Compton scattering, electrons and protons via Coulomb
forces. One could naively think that at this energy neutral hydrogen (with bind-
ing energy ǫ0 = 13.6 eV) could start to form. However, the high photon-to-baryon
ratio forced any new hydrogen atom to instantaneously re-ionize. In other words,
even when the mean temperature of the universe is smaller than the hydrogen
binding energy, the exponential tail of the black-body radiation still contains
enough photons to keep the universe ionized.

In order to understand the evolution of the different components of the uni-
verse at early time, let define three different, but physically closely related, mo-
ments. The recombination epoch when the baryons component goes from being
totally ionized to neutral (ni ons = nn,atoms ). The decoupling time when the rate
at which the photons scatter from electrons becomes smaller than the Hubble
time: the universe becomes transparent and the radiation is free to move inside
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it. The last scattering when the photons underwent their last scattering from
electrons.

To avoid complications for the following calculations, let us assume that the
epoch of recombination the baryon component is entirely made by hydrogen:
neutral (H) or ionized (proton - p). The neutrality of the universe tell that the
number density of free electron ne has to be equal to that of free protons np , the
equilibrium is guarantee be the reaction

e−+p⇆H+γ .

At equilibrium the fraction of free electrons, in term of the temperature is given
by the Saha equation:

X 2
e

1−Xe
=

1

ne +np

[

(

mekB T

2π~2

)3/2

e−[me+mp−mH]c2/(kB T )

]

, (1.20)

where ǫ0 = (me+mp−mH)c2 and Xe = X ≡ ne/nb = np /nb where nb is the baryon
density. Solving this quadratic equation, considering positive root, and defining
the moment of recombination when X = 1/2 we have

kTr ec = 0.323 eV,

and so Tr ec = 3740 K at redshift zr ec = 1370.
When a reaction is in statistical equilibrium at temperature T the number

density nx of particles with mass mx is given by the Maxwell-Boltzmann’s equa-
tion. To estimate the evolution of the ionized fraction we need to integrate this
equation, which gives:

dXe

dt
=

{

(1−Xe)β−Xe nbα
(2)} , (1.21)

where β is the ionization rate and α(2) the recombination rate at states higher
than the ground one.

Since the number density of free electrons drops rapidly during the recombi-

nation, the decoupling comes soon after it. The rate of photons scattering, when
the hydrogen is partially ionized, is given by:

Γ(z) = ne(z)σec = X (z)(1+ z)3nb,0σec . (1.22)

using the redshift evolution of the cosmological parameters in ΛCDM universe,
the value of free electron fraction after the recombination and setting the rate of
photon scattering equal the Hubble constant zdec = 1130. At redshift lower that
this the temperature of intergalactic gas fall adiabatically faster than that of the
radiation.

After this time the baryon matter become free to move through the radiation
field to form the first generation of gravitationally bound systems. The decou-
pled photons can still be observed today as a uniform and homogeneous black-
body that embed the whole universe: CMB, Cosmic Microwave Background ra-
diation.
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A particle specie decouple with the other particles, or in particular with the
photons, if the their scattering time scale is higher than the expansion time. In
the early phase of the universe, not only the baryons, but also dark matter par-
ticles were coupled with the radiation field, through the reaction of annihila-
tion with anti-dark matter particles. This produce two high energy photons still
in equilibrium with the radiation field. As temperature drop below dark matter
particle rest frame energy, photons and dark matter particles decouple, and the
latter freeze-out.

If these particles have kept scattering with the radiation, their abundance
would have been reduced at the present-day under non-observability limits, in
the whole universe, because of the appearance of of the typical Boltzmann sup-
pression factor exp

{

−mX c2/(kB T )
}

in the equation that describe their number
density evolution.

Let define aX D the time at which the dark matter specie X decouple with the
remaining matter and radiation. The dark matter particle X with mass mX will
become non-relativistic when the temperature of the universe is equal to its rest
frame energy:

kT ≈ mX c2 . (1.23)

Considering that T is a decreasing monotonic function of the time, the more
massive is the particle mass the sooner it will become non-relativistic.

Hence the contribution of these particles to the ΩDM is determined by two
parameters: the mass mX and the temperature at which the particles X decou-
ples, which fixes the number of surviving particles. Different analysis and stud-
ies about galaxy clustering and large scale structures prefer a dark matter that is
non-relativistic: so that decouple from the radiation and remaining matter when
its mean velocity is less than c: CDM particles. The most accepted candidate for
this kind of matter is neutralino that has a mass approximately equal to 100 GeV
(Mori et al., 1993; Berezinsky et al., 1996; Baer and Brhlik, 1998).

In the pure cold dark matter model, almost all of energy density ΩDM is pro-
vided by CDM particles alone. However, some researchers claim that this model
of only CDM can not correctly reproduce the power spectrum of density pertur-
bation at all scales. However it is clear that CDM was needed anyway in order
to obtain a successful scheme for large-scale structure formation. These consid-
erations together gave origin to a model of flat universe realized with the total
energy density mostly provided by two different matter components, CDM and
HDM in a convenient fraction: ΩDE =ΩHDM +ΩCDM . These models, which have
been called mixed DM, succeeded in fitting the entire power spectrum quite
well. The problem now is that a little amount of HDM has a dramatic effect on
CDM particles, because their free-streaming, to wash out any inhomogeneities
in their spatial distribution which will become galaxies. Therefore their presence
slows the growth rates of the density inhomogeneities which will lead to galaxies.
For this reason this model with HDM has been rejected.

Another route which has been followed in the attempt to go beyond the pure
CDM proposal is the possibility of having some form of warm DM (Avila-Reese
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et al., 2001; Viel et al., 2005). As will be underlined in the next chapters, this
model has been considered also by different researcher to reduce the power of
the matter power spectrum on small scales and so the number of substructures
in simulated dark matter haloes (Colín et al., 2000; Götz and Sommer-Larsen,
2002). From this side the debate is still opened.





CHAPTER

2
Structure Formation: Growth of
Density Perturbations

After hydrogen recombination, neutral atoms start to form, and baryons become
dynamically decoupled from radiation. As we shall see, dark matter density per-
turbations can grow already after the equivalence epoch zeq , so that at recombi-

nation there exist dark matter fluctuations of order ≃ 10−3 times the mean den-
sity. From now on, baryons are free to follow the gravitational pull of these dark
matter linear perturbations. The amplitude of these fluctuations at all scales
is an important constraint for galaxy-formation models, because it determines
the times when cosmic structures will collapse and form, giving rise to various
observational patterns like filaments, sheets and voids on different scales (Shen
et al., 2006; Hahn et al., 2007).

2.1 Density perturbations in a Static Universe

Let us begin our study of density perturbation with the toy model of Newtonian
perturbations in a static universe. This universe can be represented by a perfect
fluid characterized by random fluctuations in density, velocity, pressure, entropy
and gravitational potential around some mean values. The evolution of these
fluctuations is calculated by considering the contrasting influence of self-gravity
and random fluid velocities. Large enough overdense regions are gravitation-
ally amplified and eventually grow into cosmic structures, depleting adjacent
regions.

The time evolution of density, velocity, pressure, entropy and gravitational
potential of a given volume element of a perfect fluid is described by the follow-
ing equations:

1. Continuity equation:
dρ

dt
=−ρ~∇·~v . (2.1)

2. Euler’s equation:
d~v

dt
=−

1

ρ
~∇p −~∇Φ . (2.2)
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3. Poisson’s equation:

∇2
Φ= 4πGρ . (2.3)

4. Equation of state:
p = p(ρ,S) = p(ρ) , (2.4)

where the third equality holds for adiabatic systems: dS/dt = 0.

This system of equations admits a simple unperturbed solution of a static, ho-

mogeneous and isotropic universe: ρ(t ) = ρ̄, ~v(t ) = 0, p(t ) = p̄, φ(t ) = φ̄.
Let us define the local density ρ(~r , t ) at spatial coordinate~r at some cosmic

time t . The fractional departure at~r from the spatial mean density ρ̄(t ) is repre-
sented by the dimensionless density contrast:

δ(~r , t ) =
ρ(~r , t )− ρ̄(t )

ρ̄(t )
, (2.5)

in linear approximation holds δ(~r , t ) ≪ 1. Let us perturb the fields around the
static solutions considering:

ρ(~r , t ) = ρ̄(t )+δρ(~r , t ) ,

p(~r , t ) = p̄(t )+δp(~r , t ) ,

~v(~r , t ) = δ~v(~r , t ) ,

φ(~r , t ) = φ̄(t )+δφ(~r , t ) .

Substituting these in the fluid equations, replacing pressure for density using the
state equation, and subtracting the unperturbed solutions we obtain:







































∂δρ

∂t
=−ρ̄~∇δ~c

∂δ~v

δt
=−

v 2
s

ρ̄
~∇δρ−~∇δφ

∇2δφ= 4πGδρ.

(2.6)

This system of equations admits plane wave solutions of type:

f (~r , t ) = fk exp(i~k ·~r + iωt ) . (2.7)

where k = 2π/λ is the wave number and fk the amplitude. The (2.6) is in real
space a system of linear differential equations in the variables δ(~r , t ), δ~v(~r , t )
and δΦ.

Performing a Fourier decomposition, in the linear regime, ensures that waves
of different frequencies evolve independently on each other,and so can be treated
separately. A general perturbation is so given by a sum of plane waves of all fre-
quencies, appropriately weighted.
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It can be shown that the system of differential equations becomes in Fourier
space a system of algebraic equations. The variables will be ω and k. Performing
some algebraic calculations, these, in Fourier space, gives the following disper-

sion relation:
ω2 = k2v 2

s +4πGρ̄ , (2.8)

where vs is the sound velocity in the fluid defined by

vs =

√

∂p

∂ρ

∣

∣

∣

∣

S

. (2.9)

The value of k for which ω2 = 0 define the Jeans wave length λJ ≡ 2π/kJ :

kJ =

√

4πGρ̄

v 2
s

,

λJ = vs

√

π

Gρ̄
, (2.10)

which allow us to write ω as:

ω2 = k2v 2
s

[

1−
(

λ

λJ

)2]

. (2.11)

Depending on the wave length value we can discriminate two cases:

• for λ<λJ , ω is real and equal to:

ω=±kvs

√

1−
(

λ

λJ

)2

,

and the density perturbationδρ is a couple of plane wave with fase velocity
cs :

cs =±vs

√

1−
(

λ

λJ

)2

, (2.12)

from the equation we see that when λ→ 0 the wave becomes a pure sonar
wave, when if λ→λJ the wave is stationary;

• for λ>λJ , ω is imaginary and equal to:

ω=±i

√

4πGρ̄

[

1−
(

λ

λJ

)2]

,

in this case the wave is stationary and can be written as:

δρ(~r , t ) = δρk e±|ω|t ei~k·~r . (2.13)
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This last case described is called gravitational instability: a stationary wave with
an amplitude that increase (or decrease) with time in an exponential way. The
characteristic time of the instability is defined by

τ=
1

ω
= 1/

√

4πGρ̄

[

1−
(

λ

λJ

)2]

, (2.14)

that for λ ≫ λJ approach to the free-fall time. For λ → λJ , for the balance be-
tween pressure and gravity, τ→+∞.

2.2 Density perturbations in an Expanding Universe

In principle, the evolution of density perturbations at all epochs and scales in
an expanding universe requires solving the full set of Einstein’s equations for a
mixture of perturbed perfect fluids. However, we can still use the far simpler
Newtonian approach if we restrict our attention to matter fluctuations, at epochs
when the universe is matter dominated and at scales smaller than the particle
horizon.

Let us define ~r and ~x as the physical and comoving coordinates in an ex-
panding universe, respectively. If a represents the scale factor, then~r = a~x. The
physical velocity is:

~u =
d~r

dt
= ȧ~x +a~̇x = H~r +~v . (2.15)

We see that this velocity is naturally split in two terms:

• H~r : Hubble term or recession velocity, due to the expansion of the universe;

• ~v : peculiar velocity, due to the gravitational attraction of the surrounding
matter.

In the comoving reference frame the Hubble term is by definition zero.
For a matter-dominated expanding universe the system of equations (2.6),

written in the comoving reference frame, becomes:

∂δ

∂t
+
ρ̄

a
~∇~v +3Hδ= 0 , (2.16)

∂

∂t
~v +H~v =−

v 2
s

a
~∇δ−

1

a
~∇φ , (2.17)

1

a2
∇2φ= 4πGρ̄δ . (2.18)

These equations in Fourier space become respectively:

δ̇k +
i~k~vk

a
= 0 , (2.19)

~̇vk +
ȧ

a
~̇vk =−

i~k

a
(v 2

s δk +φk ) , (2.20)

φk =−
4πGρ̄δk a2

k2
. (2.21)



2.2 Density perturbations in an Expanding Universe 29

Before we continue, notice that the velocity field ~vk can be split in two com-
ponents: ~v|| and ~v⊥, the first parallel to the wavevector ~k (longitudinal or irro-
tational term) and the second perpendicular to ~k (with null divergence). The
component of Euler’s equation perpendicular to~k gives immediately ~v⊥ ∝ a−1.
This tells us that vorticity motions are decoupled from δ and decay. Combining
together equations (2.19), (2.21) and the longitudinal part of (2.20) we obtain our
final equation:

δ̈k +2
ȧ

a
δ̇k +δk

[

k2v 2
s

a2
−4πGρ̄

]

= 0 . (2.22)

In order to solve this second-order differential equation we need to explicitly
write the time dependence of a(t ) and ρ̄(t ).

Evolution of perturbations after the matter-radiation equivalence

Let us first consider the case of a closed matter universe after the equivalence.
The evolution of scale factor and background density is given, respectively, by
the following equations:

ρ̄ =
1

6Gπt 2
, (2.23)

a(t ) = a0

[

3H0t

2

]2/3

. (2.24)

Substituting these in equation (2.22) and looking for solutions of type δk (t ) ∝ tα

we obtain the following dispersion equation:

3α2 +α+2

(

k2v 2
s

4πGρ̄
−1

)

= 0 . (2.25)

As done in the previous section, we can define the Jeans scale by setting the dis-
criminant of the equation to zero, that is:

kJ (t ) =
5

vs

√

πGρ̄

6
, and λJ (t ) ≡

1

kJ (t )
. (2.26)

For λ< λJ the solutions are imaginaries and correspond to progressive acoustic
waves. For λ>λJ the solutions are real:

δ±(~x, t ) = δk (t )±exp(i~k ·~r ) ∝ exp(i~k ·~r )t

[

−1±5
p

1−(λJ /λ)2

6

]

. (2.27)

In particular, when λ≫λJ we obtain:

δ±(~x, t ) ∝ exp(i~k ·~r )t
−1±5

6 . (2.28)

Notice that one solution is decaying with time, while the other, more interesting
for us, is growing. The growing solution is the one relevant for structure forma-
tion:

δ+(~x, t ) ∝ t 2/3 ∝ a . (2.29)
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The above solution holds for Einstein-de Sitter universes. Solutions for matter-
dominated universes of any geometry can be obtained by the following method.
If we restrict our study to scales much larger than the Jeans scale, we can use the
Hubble parameter H(t ) to study the evolution of density perturbations. From
Friedmann’s equations, and considering that ˙̄ρ =−3H ρ̄, we have:

Ḧ +2H Ḣ −4πGρ̄H = 0 . (2.30)

A comparison of this equation with (2.22), show that the Hubble parameter evolves
as density perturbations, that is H(t ) ∝ δk (t ). However, since H(t ) decreases in
all cases except for exponential expansion, the Hubble constant must behave as
the decaying solution: H(t ) ∝ δ−(t ). We can find the growing solution by us-
ing the following property of differential equations: considering the two linearly
independent solutions δ− and δ+ of equation (2.30, the following relation holds:

δ−δ̇+−δ+δ̇− ∝
1

a2
, (2.31)

The growing solution will thus be given by:

δ+(t ) = H(t )
∫

dt

a2H2(t )
; (2.32)

changing variable from time t to redshift z, and substituting the time evolution
of the Hubble parameter, we get:

δ+(z) =
(1+ z)

p
1+Ωm z

(H0a0)2

∫∞

z

dz

(1+ z)2(1+Ωm z)3/2
, (2.33)

where Ωm is the present-day matter density parameter. In Table 2.1 we summa-
rize the solution of this equation for flat, open and close universes.

Ωm = 1 t 2/3

Ωm < 1 1+
3

x
+

3
p

1+x

x3/2
ln[

p
1+x −

p
x]

Ωm > 1 −1+
3

x
−

3
p

1+x

x3/2
[arctan(θ)−η]

Table 2.1: Evolution of the density perturbation δ+ in term of redshift for a matter domi-
nated universe and the three different geometries. x = |Ω(z)−1−1|, θ =

p
x/(1−x), while

η= 0 for 0 < θ <π and η=π for π< θ< 2π.
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Evolution of perturbations before the equivalence

Let us first consider the case of a radiation-dominated universe. As we have
shown in the previous chapter, this is a good approximation for our universe
at t < teq . General Relativity calculations show that equation (2.22) becomes, for
a relativistic fluid:

δ̈k +2
ȧ

a
δ̇k +

δk

3

(

k2c2

a2
−32πGρ̄

)

= 0 , (2.34)

where we took vs = c/
p

3 for the sound velocity. As in the previous section, we
need to explicitly write the time evolution of a(t ) and ρ̄(t ):

ρ̄(t ) =
3

32πGt 2
(2.35)

a(t ) ∝ t 1/2 . (2.36)

Substituting these in equation (2.34) we can write:

δ̈k +
δ̇k

t
+δk

(

k2c2

3
−

1

t 2

)

= 0 . (2.37)

This equation admits power-law solutions: δ∝ tα; by replacing these in equa-
tion (2.34) and defining λJ = 2πvs t = 2ct πp

3
, we obtain a dispersion equation

whose solutions have discriminant

α2 = 1−
(

λJ

λ

)2

.

Gravitational instability requires α2 > 0. However, for t < teq , the particle hori-
zon RH (t ) = 2ct , so it turns out that λJ > RH : in a radiation-dominated universe
the Jeans scale for radiation perturbations is larger than the particle horizon.
This means that there cannot be gravitational instability within the horizon. We
can physically understand this result noticing that the sound velocity of photons
is of the order of the speed of light: for the acoustic waves propagating with a
such speed, pressure is extremely efficient in erasing density perturbations. Be-
fore the equivalence, the universe is well described by an unperturbed distribu-
tion of matter: δ= 〈δR〉 ≈= 0 where sound waves propagate at speed c

p
3.

Let us now consider the Newtonian evolution of fluctuations for a compo-
nent which is not dominant. The appropriate equation is similar to (2.22), where
now the gravitational potential term takes into account all sources of gravity; on
the other hand, the kinetic term will contain the sound velocity of the compo-
nent X we want to study. The generalization of the previous evolution equation
will therefore be:

δ̈k,X +2
ȧ

a
δ̇k,X +k2v 2

s δk,X −
∑

i

Ai ρ̄iδk,i = 0 . (2.38)

Let us specialize this equation to the evolution of dark matter fluctuations during
the radiation era (X = DM). Above the Jeans scale we can neglect the pressure
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term; moreover, the results previously obtained for radiation tells us that 〈δR〉 ≈
0; finally, since baryons are coupled to radiation, 〈δB 〉 ≈ 0. Our equation thus
reduces to:

δ̈k,DM +2
ȧ

a
δ̇k,DM −4πGρ̄DMδk,DM = 0 (2.39)

Using Friedmann’s equations, we can rewrite this as:

δ′′k +
(2+3x)

2x(1+x)
δ′k −

3

2x(1+x)
δk = 0 , (2.40)

where x = a/aeq and ′ indicates the derivative respect to this variable.
It is possible to show (Mezsaros, 1974) that this equation has a growing solu-

tion of the form:

δk,DM+ = 1+
3

2
x = 1+

3

2

a

aeq
. (2.41)

This shows that dark matter perturbations, from their entry in the cosmological
horizon, will grow at most by a factor 5/2. This stagnation (or Mezsaros) effect is
responsible for the shape of the spectrum of matter density fluctuations at small
scales.

Evolution of baryonic perturbations after decoupling

We have seen that in the universe before decoupling no baryon perturbation can
grow, and that the structure formation process is driven by dark matter density
perturbations that start growing after the equivalence. From present-day obser-
vations we know that galaxies are systems composed by both dark matter and
baryons. We study the evolution of the baryon perturbations by considering
equation (2.38) at t > tdec , with X = b (for baryons):

δ̈k,b =+2
ȧ

a
δ̇k,b −4πGρk,DM = 0 , (2.42)

where the gravitational potential term is dominated by dark matter fluctuations.
Assuming for simplicity an Einstein-de Sitter universe (an excellent approxima-
tion at high redshifts), and proceeding as done before, we can arrive at the solu-
tion:

δb(a) = δDM

(

1−
adec

a

)

. (2.43)

This shows that, after decoupling, baryon fluctuations undergo an accelerated
growth due to the gravitational attraction of dark matter perturbations. For this
reason, baryon perturbations soon become as large as the dark matter ones.



CHAPTER

3
Excursion Set Theory: Mass
Function of Dark Matter Haloes

As discussed in the previous chapter, in the standard hierarchical cold dark mat-
ter (CDM) paradigm, galaxy formation begins with the gravitational collapse of
dark matter overdense regions. Once their enclosed density will exceed some
critical value they will collapse forming dark matter haloes as we will see in the
following chapter. The average density of dark matter haloes out-weighs that
of baryonic matter by roughly six to one. Bound in the potential wells of dark
matter haloes, baryons proceed to cool, condense, and form galaxies (White
and Rees, 1978). Understanding the fundamental properties and abundances of
these dark matter haloes is the first, necessary step in understanding the prop-
erties of galaxies along the cosmic time.

3.1 Random Fields

Let consider the density fluctuation field δ(~x):

δ(~x) =
ρ(~x)− ρ̄

ρ̄
, (3.1)

where we remember that ρ̄ represent the mean mass density of the universe and
~x the comoving spatial coordinate. Statistically the density field δ(~x) is stochas-
tic, homogeneous and isotropic. This means that the joint probability distribu-
tion of the density contrast, in a given set of points of the space, is given by a mul-
tivariate Gaussian distribution. This has the property that the joint probability
density of a finite number of points is invariant under translation, rotation and
reflection1. The universe we observe is so a statistical realization of the stochas-
tic density field δ(~x). The Fourier transform of the density contrast is given by
the following equation:

δ(~k) =
∫

d~x δ(~x)ei~k·~x , (3.2)

1The ergodicity of a Gaussian field also gives that the temporal mean of the field in a region, is equal to
the spatial mean, at a given time, computed in different regions.
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and the inverse transform by:

δ(~x) =
1

(2π)3

∫

d~kδ(~k)e−i~k·~x . (3.3)

It is interesting remember that δ(~k) has dimensions of volume and that for a
field with real variable δ(~x): δ(−~k) = δ∗(~k). In terms of Fourier coefficients, it is
possible to define the two-point correlation function ξ(~r ) ≡ 〈δ(~x)δ(~x+~r )〉, where
the average taken over all space gives:

ξ(~r ) =
1

(2π)6

∫

dk3
∫

dk ′3〈δ(~k)δ(~k ′)〉ei~k·(~x+~r )ei~k′·~x , (3.4)

and the Power Spectrum of density fluctuations will be:

P (k) =
1

(2π)3δ(3)
D

(~k −~k ′)
〈δ(~k)δ(~k ′)〉 , (3.5)

where δ(3)
D

represents the 3-dim Dirac Delta function. Substituting this definition
in equation (3.4), and considering that the two-point function depends only on
the amplitude~r , we can write:

ξ(r ) =
1

(2π)3

∫

P (k)ei~k·~r d3k , (3.6)

which shows that the power spectrum of the density perturbation is the Fourier
transform of the two-point correlation function, and that for the isotropy condi-
tion does not depends on the direction.

Considering the definition of the 3-dim Dirac Delta

δ(3)
D

(0) =
V∞

(2π)3

where V∞ represents the volume of a large cut-off scale L ≡V 1/3, it follows that:

〈|δ(~k)|2〉 = P (k)V∞ , (3.7)

from which we have that the power spectrum has dimensions of volume, while
the correlation function 〈δ2(~x)〉 is simply the mass variance of the considered
region: σ≡ 〈δ2(~x)〉.

In the observable universe a quantity of physical interest is the density fluc-
tuations field smoothed on a given scale:

δ(~x,R) ≡
∫

d3x′W (|~x′−~x|,R)δ(~x′) , (3.8)

where W (x,R) represents the window function that weights the density field on
a scale R . In Fourier space the smoothed field is the product between the Fourier



3.1 Random Fields 35

transform of the density field and that of the window function W (~k,R). The mass
variance of a region of universe with mass M , with linear size R , is given by:

S(M) =σ2
M =

1

(2π)3V

∫

d3k〈|δ(k)|2〉W 2(k,R) . (3.9)

From the previous equation we see that the definition of collapsed region and
mass variance depend on the window function considered. The most common
window functions used in literature are:

- the top-hat in real space

W (x,R) =
3

4πR3







1 (x ≤ R)

0 (x > R)

the window volume is simply the volume of a sphere with radius R and the
Fourier transform is given by

W (k,R)=
3[sin(kR)−kR cos(kR)]

(kR)3
,

the sharp transition of the function in real space leads to power on all scale
in Fourier space;

- the top-hat in Fourier space

W (k,R)=







1 (k ≤ R−1)

0 (k > R−1)

and in the real space

W (x,R) =
1

2π2R3

3[sin(xR−1)−xR−1 cos(xR−1)]

(xR−1)3
.

Contrarily to the previous case, this function has the disadvantage to not
have a well-defined volume in the real space;

- the Gaussian window in real space

W (x,R) =
1

(2π)3/2R3
e−x2/2R2

(3.10)

and in the Fourier space

W (k,R) = e−k2R2/2 , (3.11)

from which we see that the volume of the Gaussian window function is
equal to V = (2π)3/2R3.
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Figure 3.1: Mass variance of virialized regions in term of their mass. For the ΛCDM
power spectrum the mass variance has been computed using a top-hat window function
in the real space. The primordial power spectrum considered has a spectral index n = 1
and has been evolved with a transfer function computed using CMBFAST. For the scale
free power spectrum P(k)∼ kn with n =−2,−1,0 the mass variance has been normalized
the have the same value of M∗.

The initial perturbed density field and its power spectrum evolve with the
cosmic time because of the growth of the cosmological horizon. Larger RH causally
connect regions of universe on larger scale, on which the physical processes can
take place. It is possible to show that for CDM cosmology, the power spectrum
at some redshift z f i n can be written in term of the the initial one at zi n as follow:

P f i n(k) = knT 2(k)

[

D(z f i n)

D(zi n)

]2

, (3.12)

where D(z) is the linear growth factor of density perturbations and T (k) is the
transfer function defined as:

T (k) ≡
δ(k, z f i n)

δ(k, zi n)

D(zi n)

D(z f i n)
. (3.13)

In Figure 3.1 we plot the mass variance versus the mass of virialized regions.
The solid curve corresponds to a ΛCDM power spectrum where we considered
a primordial power spectrum with n = 1. The transfer function has been calcu-
lated with CMBAST (Seljak and Zaldarriaga, 1996) for a flat ΛCDM universe with:
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Ωm = 0.3, Ωbh2 = 0.0196, σ8 = 0.9 λ = 0.7 and h = 0.7. CMBFAST is a code for
computing cosmic microwave background anisotropy, polarization and matter
power spectra, it has been tested over a wide range of cosmological parameters
and many publications are available in literature. In the figure we shown also
the mass variance for tree scale free power spectrum P (k) ∼ kn with n =−2,−1,0.
The correspondent mass variances have been normalized to have the same value
of M∗, defined as σ2

M∗ ≡ δ2
sc (0) where δsc (0) is the spherical collapse overden-

sity at the present time, z = 0, that will be introduced in the next section. The
mass variance has been computed considering a top-hat window function in
real space. The use of this function is related to the fact that we will define in nu-
merical simulations (see the next chapter) dark matter haloes as spherical and
overdense regions.

3.2 Mass Function of Dark Matter Haloes: The Spherical
Collapse Model

In the previous chapter we have seen that in an expanding universe the dark
matter density perturbations grow with cosmic time, depending on the geome-
try of the universe. As they become enough large they stop growing and collapse
forming virialized regions that we will call dark matter haloes. The collapse of
dark matter haloes can be elegantly and easily described considering a spherical
model.

Let consider an initial region with comoving Lagrangian size R0 and initial
densityδi , let suppose that the initial fluctuations are Gaussian distributed around
the mean and that the root mean square is such that |δi | ≪ 1. The mass within
the region R0 is defined by:

M0 =
4

3
πR3

0ρ̄(1+δi ) ≈
4

3
πR3

0 ρ̄ .

As the universe expand the Lagrangian dimension of the region changes. In the
case of an Einstein-de Sitter universe, the evolution of the dimensions of the col-
lapsing region can be easily calculated, and is expressed by the following para-
metric equation:

R(z)

R0
≡

1

(1+δ(z))1/3
=

(1+ z)

(5/3)|δ0|
(1−cosθ)

2
, (3.14)

1

1+ z
=

(

3

4

)2/3 (θ− sinθ)2/3

(5/3)|δ0|
R(z)

R0
=

2

62/3

(1−cosθ)

(θ− sinθ)2/3
,

where δ0 represents the initial overdensity extrapolated to the present time using
linear theory.

Assuming spherical symmetry, from equation (3.14) we notice that the col-
lapse of a region is characterized by tree different fases, these are:
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Figure 3.2: Top: initial critical spherical overdensity, linearly extrapolated to the present
time in term of the matter density parameter. Bottom: virial overdensity versus matter
density parameter for a flat ΛCDM universe (see Eke et al. (1996) for more details). In
the bottom panel we notice that that for an closed universe with Ωm = 0.3 at the present
time the virial overdensity is of the order of 324 ρ̄.

• θ = 0 at start,

• θ =π at turnaround,
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• θ= 2π at collapse.

The equation (3.14) shows that at turnaround the average density within the re-
gion is about 5.55 times that of the background universe. We notice also that
collapse formally we expect Rc = 0. However in practice the region does not col-
lapse to a vanishingly small size. The virial density can be estimated assuming
that at the virialization Rv = Rta /2, so the object is eight times denser than it was
at turnaround. Because the universe from turnaround to collapse expands of a
factor (1+ zta )/(1+ zc) = 22/3, the virialized object is ∆v = (9π2/16)×8×4= 18π2

times the density of the background, in an Einstein-de Sitter universe.
From the equation (3.14) can also be estimated the overdensity that must

have a region to collapse at redshift z, that is:

δsc (z)

(1+ z)
=

3

5

(

3π

2

)2/3

. (3.15)

The previous equations show a very important result for the spherical collapse
model: the relation between the actual density δ and that provided by the linear
theory δsc,0 is the same for all R0. This, because of the mass is proportional to
R3

0 , implies that the critical overdensity for collapse δsc is the same for all ob-
jects, whatever their mass. Eke et al. (1996), performing the same calculations
considering a flat ΛCDM universe, computed that the virial overdensity of viri-
alized objects. The model shows that at the present time the virial overdensity
of dark matter haloes is of the order of 324 times the mean background den-
sity (see Figure 3.2). In Figure 3.2 we show the behaviour of the spherical col-
lapse overdensity and virial overdensity in term of the matter density parameter
and closed universe from the model of Eke et al. (1996). We notice that when
Ωm = 0.3, δsc,0 = 1.676.

The fraction of smoothed density perturbations, on a scale R , bigger than the
critical value δsc (z) at a redshift z, gives the mass function of virialized dark mat-
ter haloes. The number of collapsed objects can be studied in the excursion set
approach. In this, the density perturbation field can be represented by a sample
of random walks in the plane (s = σ2

M , δ) that start from the origin of the refer-
ence frame. The mass fraction in virialized haloes will thus be represented by the
trajectories that cross for the first time the critical overdensity δsc (z), when z is
fixed, (see Bond et al. (1991)).

Excursion Set: Mass Function of Virialized Haloes

Let us now show how the virialized dark matter halo mass function can be esti-
mated using the excursion set approach. As said, the density field is represented
by Brownian walks in the plane (s,δ), starting from (0,0). In the left panel of
Figure 3.3 we shown a sample of random walks.

The Brownian motion of a trajectory is mathematically described by the fol-
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Figure 3.3: Left: unconditional random walks that up-cross a constant barrier, repre-
senting the spherical collapse overdensity at the present time. Right: distribution of the
fraction of walks that up-cross the barrier. The histogram is a result of 104 random walks,
the solid line is the mass function of collapsed object expressed in term of ν= δ2

sc /S.

lowing diffusion equation:

∂Q(s,δ)

∂s
=

1

2

∂2Q(s,δ)

∂δ2
, (3.16)

where Q(s,δ) represents the probability distribution that a trajectory in s has
value δ. For Brownian walks the solution of the diffusion equation, and so com-
pute what is the distribution in S for walks that have δ= δsc , is a Gaussian func-
tion of the form:

Q(S,δsc ) =
1

p
2πS

exp

(

−
δ2

sc

2S

)

. (3.17)

This kind of approach proposes to re-formulate the Press and Schechter (1974)
model using Brownian walks in the plane (s,δ) (Bond et al., 1991): trajectories
that, starting from the origin, up-cross for the first timeδ= δsc (z), at the abscissa
S, correspond to virialized dark matter haloes of mass M , where S .

Computing the mass function means count, at a fixed cosmic time z, the frac-
tion of trajectories that go over δsc . It is necessary to remember that given the
power spectrum, s does not correspond only to a mass m, but also to a scale k.
Fixing the redshift z, in a given s̃ we could have three different kinds of trajecto-
ries:

• (a) those that have crossed δsc and that are still over the barrier;

• (b) those that are under δsc but have crossed the barrier at S < s f ;

• (c) those that have been always under the barrier.
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Figure 3.4: Random walks associated with the three probability (a), (b) and (c). See the
main text for more details.

As first step, let compute the fraction of trajectories that are still under the bar-
rier, case (c): to all trajectories that are under the barrier we have to subtract
that oh kind (b). Considering that for a given walk of kind (b) there is another
one, virtual-kind (reflecting barrier: Chandrasekhar (1943)), that starting from
(0,2δsc ) intersect the barrier at the same point (see Figure 3.4, for a schematic
representation of the three kind of barriers), satisfying always the equation (3.16),
the probability associated with walks (b)-kind is:

Qb(δ, s,δsc )dδ=
1

p
2πs

exp

[

−
(δ−2δsc )2

2s

]

dδ . (3.18)

The probability for (c)-kind walks will so be:

Qc (δ, s,δsc )dδ = [Q(δ, s,δsc )−Qb(δ, s,δsc )]dδ

=
1

p
2πs

{

exp

(

−
δ2

2s

)

−exp

[

−
(δ−2δsc )2

2s

]}

dδ . (3.19)

From this equation we can write the cumulative fraction of trajectories that have
never crossed the barrier δsc as:

Pc (s,δsc ) =
∫δsc

−∞
Qc (δ, s,δsc )dδ . (3.20)

The complementary of this will represent the walks that have intersected the bar-
rier (that cosmologically represents the fraction of elements in collapsed objects
with mass variance less than s), that is

Pa,b(s,δ) = 1−Pc (s,δsc ) = P (< s) , (3.21)
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and the differential distribution:

p(s,δsc ) =
∂P (< s)

∂s
=−

∂

∂s

∫δsc

−∞
Qc (δ, s,δsc )dδ , (3.22)

that, considering the diffusion equation (3.16) for (c)-kind trajectories, becomes

p(s,δsc ) = −
1

2

∂Qc

∂δ

∣

∣

∣

∣

δsc

−∞

=
δscp

2πs3/2
exp

(

−
δ2

sc

2s

)

. (3.23)

In order to show the consistency of this argumentation we show on the right
panel of Figure 3.3 the fraction of walks that cross the value δsc,0. The distribu-
tion has been plotted in term of the rescaled variable ν= δ2

sc /s, considering 104

random walk realizations. The solid line is the equation (3.23) expressed in term
of power spectrum independent variable ν, that is:

ν f (ν) =
√

ν

2π
exp

(

−
ν

2

)

. (3.24)

This equation has been formulated for the first time by Press and Schechter
(1974) studying the formation of “self gravitating” masses and their evolution
during the cosmic time in order to form galaxies and clusters of galaxies at the
present time. The mass function can so be written in term of m as follow:

m2 n(m, z)

ρ̄
= ν f (ν)

dln(ν)

dln(m)
. (3.25)

3.3 The Ellipsoidal Collapse Model

4.3 The spherical collapse model allows to predict the shape and evolution of the
mass function of dark matter haloes assuming the initial fluctuations small and
Gaussian. However, as we will show in the next chapter, when this mass function
is compared to the results of N-Body simulations it underpredicts the abun-
dance of large mass virialized objects and overpredicts the small ones (Sheth
et al., 2001; Sheth and Tormen, 2002). Sheth et al. (2001) showed that these dis-
crepancies can be interpreted considering that the dark matter haloes do not col-
lapse spherically, depending on the surrounding tidal field and initial overden-
sity, ellipsoidally. In Gaussian random fields, the distribution of these quantities
depends on the size of considered region. Since the mass of a region is related
to its initial size, there is a relation between the density threshold value required
for collapse and the mass of the final object (Sheth et al., 2001). In excursion set
approach the shape of the barrier that random walks have to cross in order to
generate virialized object, is not constant but depends on mass. Let B(s,δsc ) a
general shape for this kind of barrier where s = s(m) and δsc (z). Inverting the
relation between δsc and z, we see δsc can be used as time variable.
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The gravitational collapse of homogeneous ellipsoids has been studied by
Icke (1973); White and Silk (1979); Barrow and Silk (1981); Lemson (1993); Eisen-
stein and Loeb (1995). Sheth et al. (2001), considering the evolution of the initial
shear field (Bond and Myers, 1996) and defining the virialization of a dark matter
halo, in the ellipsoidal collapse model, when the third axis collapses. They de-
termined the evolution of an ellipsoidal perturbation in term of the eigenvalues
of the deformation tensor: the initial ellipticity e , prolateness p and the density
contrast δsc (which, as we said, is interpreted as a time variable).

On average in a Gaussian field, p = 0, so the associated overdensity will de-
pend on e and z: B(e, z). Relating the ellipticity e to the mass m of the collapsing
object, the shape of the barrier can be written as:

B(m, z) = δsc (z)

{

1+β

[

s(m)

δ2
sc (z)

]γ}

. (3.26)

Notice that the power spectrum enters only in the relation between s and m,
whereas the effects of cosmology enter in the relation between δsc and z.

The equation (3.26) is extremely useful because it allows one to include the
effects of ellipsoidal collapse into the Bond et al. (1991) excursion set model in a
straightforward manner. The distribution of first crossing of this barrier, by in-
dependent random walks, gives an estimate of the mass function of dark matter
haloes associated with ellipsoidal collapse.

In order to compare dark matter halo mass function in N-Body simulations
and that associated with the barrier in equation (3.26) it is necessary to introduce
a calibration factor q that depends on how haloes are identified in numerical
simulations. Thus, more generally the ellipsoidal collapse barrier can be written
as:

B(s,δsc ) =
p

qδsc

[

1+β

(

s

qδ2
sc

)γ]

, (3.27)

where β = 0.5 and γ = 0.7 have been estimated studying the collapse of ellip-
soids in numerical simulations by Sheth et al. (2001), while q = 0.707 is the nor-
malization factor to the dark matter halo mass function of N-Body simulations.
For general value of β and γ, the barrier 3.27 does not admit an exact solution.
However Sheth and Tormen (2002), following the approach of Sheth (1998) that
computed the probability of first crossing of a linear barrier, suggested an ap-
proximated equation for the probability of first crossing an ellipsoidal collapse
barrier (eq. 3.27, which works rather well for a wide range of moving barrier
shape B(s,δsc ), that is:

fB (s,δsc )ds =
|T (s)|

p
2πs3/2

exp

[

−
B 2(s,δsc )

2s

]

ds , (3.28)

where T (s) denotes the sum of the first six terms in the Taylor series expansion
of the barrier:

T (s)=
5

∑

n=0

(−s)n

n!

∂nB(s,δsc )

∂sn
. (3.29)
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Figure 3.5: Left: unconditional random walks absorbed by the ellipsoidal collapse bar-
rier (Sheth et al., 2001) (q = 0.707, β= 0.5, γ= 0.6) with δsc = δsc (z = 0). Right: fraction of
walks that up-cross the ellipsoidal collapse barrier. The histogram is a result of 104 ran-
dom walks realization, the solid line is the ellipsoidal collapse mass function expressed
in term of ν= δ2

sc /S (eq. 3.28).

In Figure 3.5 we plot a sample of uncorrelated walks absorbed by the ellip-
soidal barrier. On the left panel the histogram shows the fraction of walks that
cross the barrier over a sample of 104 realizations. The solid line is the approxi-
mated solution to the ellipsoidal collapse barrier proposed by Sheth and Tormen
(2002), in perfect agreement with the numerical realizations.

Square-root Barrier: Exact Solutions

As said, the probability of first crossing distribution a moving barrier for general
β and γ does not admit exact solutions. However there is a particular case for
which an exact solution can be computed, the square-root case:

B(s,δsc ) =
p

qδsc

(

1+β

p
s

p
qδsc

)

. (3.30)

For simplicity, we set q = 1 hereafter (it can always be reintroduced at the end),
and by virtue of γ= 1/2, the coefficient of sγ is z-independent:

B(s, z) = δsc (z)+β
p

s . (3.31)

The exact solution presented here was first envisaged by Breiman (1967) and
then implemented by Mahmood and Rajesh (2005), for dark matter haloes.

To compute the solution of first crossing distribution, we need to solve Q(δ,S),
that is the density of walks at (S,δ). We know that this quantity obeys the diffu-
sion equation (eq. 3.16).
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The problem to solve is to compute the distribution in walks that emanating
from (0,0) are later absorbed by B(s,δsc ) between S and S+dS. By absorption we
mean that Q(S,δ) obeys Dirichlet boundary conditions on the barrier:

Q(S,δ= δsc +β
p

S) = 0 . (3.32)

Since Q(S,δ) is a normalizable distribution, we expect it and its derivatives to go
to zero at infinity. Finally, since when S = 0 all walks are for certain at δ = 0 and
nowhere else, the following boundary condition must hold:

Q(S = 0,δ) = δD (δ= 0) . (3.33)

Solving equation (3.16) subjected to the boundary conditions in (3.32) and (3.33)
allow to compute the fraction of walks absorbed by the barrier:

f (S)dS =−dS
∂

∂S

∫B(S)

−∞
Q(S,δ)dδ . (3.34)

When a problem involving diffusion and barriers is encountered, it’s convenient
to work in terms of the distance to the barrier, let us define x = B(S)−δ (shifted
barrier case). In these coordinates, equation (3.34) becomes:

f (S)dS =−dS
∂

∂S

∫+∞

0
Q(S,δ)dδ , (3.35)

while the diffusion equation:

∂Q(S, x)

∂S
+

β

2
p

S

∂Q(S, x)

∂x
=

1

2

∂2Q(S, x)

∂x2
. (3.36)

The boundary condition on the barrier gives

Q(S, x = 0) = 0 , (3.37)

while at the origin:
Q(S = 0, x) = δD (x −δsc ) . (3.38)

Q(S, x) and its derivatives are null at infinity here too.
Making some changes of variable, it is possible to show that the diffusion

equation, considering a square-root barrier can be written as:

D ′′(ζ)+
(

λ+
1

2
−
ζ2

4

)

D(ζ) = 0 . (3.39)

This is the Webber differential equation, whose solutions are the parabolic cylin-
der functions Dλ(ζ). Two properties that will prove to be useful are:

• orthogonality:
∫+∞

−β
Dλ(ζ)Dλ′(ζ)dζ≡ δλλ′ Iλ(−β) , (3.40)
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Figure 3.6: Unconditional probability of first crossing distribution of a square-root bar-
rier. The histogram has been obtained generating 104 random walks and computing the
mass variance s at which they cross the square-root barrier (eq. 3.30) for the first time.
The solid line is the exact solution (eq. 3.44) while the dashed is the Sheth and Tormen
(2002) equation using the parameter γ, β and q for the square-root case.

• asymptotic limit:

lim
ζ→∞

Dλ(ζ) = ζλe−ζ
2/4

[

1+O

(

1

ζ

)]

. (3.41)

The solution to the diffusion equation can be written as a sum of the eigenfunc-
tions:

Q(S,ζ) =
∑

{λ}

AλΘλ(S)Dλ(ζ)e−ζ
2/4 . (3.42)

where the eigenvalues {λ} and the Aλ coefficients are fixed by the boundary con-
ditions.

The boundary condition on the barrier given by (3.37) fixes the eigenvalues:

Dλ(−β) = 0 . (3.43)

Using the properties of the parabolic cylinder function, the unconditional cross-
ing distribution is given by

fsr (s,δsc )ds =
e−β

2/4

2

∑

{λ}

(

δ2
sc

s

)

λ
2 D ′

λ
(−β)

Iλ(−β)

ds

s
, (3.44)
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where D ′
λ

(ξ) is the derivative of the parabolic cylinder function and

Iλ(ξ) =
∫∞

ξ
D2

λ(ζ)dζ .

It can be shown that this reduce to the constant barrier counterparts as β goes to
zero. Mahmood and Rajesh (2005) comparing the this first crossing distribution
with N-Body simulations found the best fit for the normalization factor q ≈ 0.55.
The three parameter to use in the equation (3.27) that define a square-root bar-
rier normalized to N-Body mass function are so γ= 1/2, β= 0.5 and q = 0.55.





CHAPTER

4
Cosmological N -Body
Simulations & Re-simulations

The non-linearity of the equations of the density perturbations require numeri-
cal calculations to follow their evolution during the cosmic time. In the last half
century cosmologists, or more in general astrophysicists, have developed differ-
ent computational technique to reproduce the evolution of the structures in the
universe. Even that these techniques require a lot of computational resources,
they are able to reproduce quite well the large scale structures and dynamic of
the observed galaxies in the universe. Considering the universe as a fluid of
uncollisional particles (dark matter) and evolving them with Newtonian grav-
ity in an expanding metric, at the present time Springel et al. (2005) were able to
perform the largest cosmological N-Body simulations containing over 10 billion
particles on a cube of 500 Mpc/h on a side: Millennium Simulation.

Using the same approach in 2001 J. Stadel (Stadel, J. 2001, PhD thesis, U.
Washington) performed a N-Body simulation of the Milky-Way halo. This simu-
lation has been resimulated at much higher force and mass resolution by J. Die-
mand resolving the Milky-Way dark matter halo with 234 million particles (Die-
mand et al., 2007a).

In this thesis we analyze two cosmological N-Body simulations and a sam-
ple of 17 resimulated galaxy clusters in order to study the dark matter halo con-
ditional and unconditional mass function and substructures population, as we
will discuss in the following chapters.

In this chapter we review some properties of N-Body simulations and will
present the post-processing of the considered numerical simulations.

4.1 N -Body Methods

Following the evolution of a number of particles under the gravity is the main
problem of the N-Body simulations. However it is important to take into account
that the larger is the number of particles, the longer is the computational time
need to compute forces and velocities. Reduce computational time without lose
information of the particles is the main purpose in writing a N-Body code.

We will briefly describe some methods developed to compute force, position
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and velocity of each particle in the simulated region.

PP: Particle-Particle

The Particle-Particle method is the simplest. The method consists in accumu-
lating forces by finding the force ~Fi j of particle j on particle i , using the Newton
equation:

~Fi j =
mi m j G

d 2
i j

~ui j ,

where di j = ri j +ǫ, with ri j the distance between the two particles and ǫ the grav-
itational softening introduced to avoid an infinite force when ri j goes to zero.
The total gravitational force on particle i will be:

~Fi =
N
∑

j 6=i

mi m j G

(ri j +ǫ)2
~ui j . (4.1)

Afterward it is necessary integrate the equations of motion and update the time
counter. The procedure is after repeated at the next time-step.

This approach allow to compute the force accurately, however the computa-
tional time is very expensive and of the order of O(N (N −1)).

PM: Particle-Mesh

In this method the space containing N particles is represented by a cubic box
with L on a side. On this it is defined a mesh for example with M knots, on which
is spread the held mass M according to the equation:

ρ(xi j k ) = mp M3
N
∑

l

Π(δ~xl ) , (4.2)

where δ~xl is the distance of the particle l from the grid point (i , j ,k) and Π is
an interpolation function. From the Poisson Equation it is possible to compute
the force field and, interpolating the force on the grid, find forces on particles.
Like the PP method, the forces have to be integrated to get particle positions and
velocities. The procedure is thus repeated updating the time counter.

The main advantage of the PM methods is the speed. The number of com-
putations is of order O(N +Ng log(Ng )) where Ng is the number of grid points.
The slowest step is in solving the potential equation, usually with the help of a
Poisson solver, which often relies on a fast Fourier transform. Other numerical
methods may be used to solve the potential (Poisson’s) equation too, such as a
finite element method or a finite volume method.

The PM method is basically unacceptable for studying close encounters be-
tween systems because the algorithm, in effect, treats particles as being fuzzy.
This method is good for simulations where we want a "softening" of the inverse
square law force. In general, the mesh spacing should be smaller than the wave-
lengths of importance in the physical system. Another disadvantage of using the
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mesh-based methods are that they have difficulties handling non-uniform par-
ticle distributions. This means that the PM methods offer limited resolution. To
overcome this problem, some researchers have developed PM algorithms which
employ meshes of finer griding in selected subregions of the system. These finer
meshes permit a more accurate modeling of regions of higher density. If one
wishes to further refine the grid due to large dynamical changes in the system,
then one can apply moving grids or adaptive grids.

P3M: Particle-Particle/Particle-Mesh

The P3M method has been developed to solve the major shortcoming of the
PM method: low resolution forces computed for particles near each other. This
method supplements the inter-particle forces with a direct sum over pairs sep-
arated by less than about 3 times the grid spacing. The inter-particle forces
are split into a rapidly-varying short-range part and a slowly-varying long-range
part. The PP method is used to find the total short-range contribution to the
force on each particle and the PM method is used to find the total slowly-varying
force contributions.

In this method the computational time is of order O(N +Ng ). This allow to
use P3M in cosmological simulations and also when forces can be readily split
between short-range and long-range.

The disadvantage of the P3M algorithm is that it can be dominated by the
direct summation part. A solution to this problem has been proposed by Couch-
man (1991) developing an Adaptive P3M algorithm allowing spatially adaptive
mesh refinements in regions of high particles density.

TC: Tree-Code

In this method, called also hierarchical tree, the particles are assembled in groups
in hierarchical structures (trees and cells). The first step is to build up the trees
and compute the distance among the cells. The multiple moments are so com-
puted for each group until the desired order.

Generally the force is estimated considering a concept as the P3M algorithm:

F = Fexternal +Fnearest neighbor+Ffar field .

The gravitational force acting on a single particle is computed considering the
hierarchical element with which it interacts. In detail for nearby particles the
method used to compute the force is similar to the PP approach.

Tree Codes are gridless, have no preferred geometry and can incorporate ei-
ther vacuum or periodic boundary conditions. In addition, they waste no time
simulating regions devoid of matter. Hence, Tree-Codes are particularly effective
for modeling collisions between galaxies. Forces on all particles are obtained
with O(N log(N )) operations. The down side is that tree codes require a large
amount of auxiliary storage.
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4.2 Numerical Simulations

In this section we will describe the numerical simulations used in this thesis. All
runs assume ΛCDM universe and it has been followed only the evolution of the
dark matter component.

GIF Simulations

These simulations have been performed by Kauffmann et al. (1999) in a joint
project between astrophysicists from Germany and Israel. The runs were started
at the Computer Centre of the Max-Planck Society in Garching (128 processors)
and finished a the Edinburgh Parallel Computer Centre (256 processors).

The primary goal has been to study the structures formation in a cosmolog-
ical context using semi-analytical galaxy formation models. However different
other researches have been performed on these simulations: gravitational lens-
ing by clusters (Bartelmann et al., 1998) and studies about conditional and un-
conditional mass function of dark matter haloes (Sheth and Tormen, 1999, 2002).

The code used for GIF simulations is called HYDRA. This is a parallel adaptive
particle-particle particle-mesh (AP3M) algorithm written by Couchman et al.

(1995); Pearce and Couchman (1997).
The project is characterized by a set of four simulations with N = 2563 parti-

cles and with different cosmological parameters (for more details see Kauffmann
et al. (1999)). Among the whole sample we used only the ΛCDM run. This simu-
lation has a box size of 141 Mpc/h ans an individual dark matter particle mass
mp = 1.4 × 1010 M⊙/h. The cosmological parameters adopted are: Ωm = 0.3,
ΩΛ = 0.7, h = 0.7, σ8 = 0.9, baryon fraction fb = 0.15 and a gravitational soft-
ening (Plummer equivalent) ǫ = 30 kpc/h. Figure 4.1 we show the dark matter
particle distribution in four different redshifts for the ΛCDM GIF simulation. As
we can see while at high redshift the dark matter distribution is smooth and the
typical mass for collapse is small, at the present time the distribution is more
clumpy and number of large mass halo bigger.

Figure 4.1: GIF simulation: dark matter distribution in the simulation box at four differ-
ent redshifts.
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GIF2 Simulation

The GIF2 is a cosmological simulation of a flatΛCDM universe in a periodic cube
of side 110 h−1Mpc. The total number of particles considered is 4003, with an
individual mass of mp = 1.73×109 M⊙/h. This is a factor of 8 better than the mass
resolution of GIF simulation described in the previous section. This simulation
has been performed and described for the first time by Gao et al. (2004).

The cosmological parameters adopted are: Ωm = 0.3, λ = 0.7, σ8 = 0.9 and
h = 0.7. The initial fluctuation power spectrum index has been chosen to be
n = 1, and the transfer function has been produced using CMBFAST (Seljak and
Zaldarriaga, 1996) for Ωbh2 = 0.0196. The initial condition were produced by
perturbing an initially uniform state represented by a “glass” distribution of par-
ticles. This particle distribution has been generated with the method devel-
oped by White (1993) which involves evolution from a Poisson distribution with
the sign of Newton’s constant changed when calculating peculiar gravitational
forces. Fluctuations are imposed using the algorithm described in Efstathiou
et al. (1985). Based on the Zel’Dovich (1970) approximation, a Gaussian random
field has been set up by perturbing the particle positions and by assigning them
velocities according to the growing mode solution of linear theory.

In order to save computational time, the simulation has been performed in
two steps:

• from high redshift until z = 2.2 the simulation has been run with SHMEM
(parallel version of HYDRA Couchman et al. (1995)). At these times the
particle distributions are lightly clustered and thus the P3M-based gravity
solver is quite efficient;

• from z = 2.2 to z = 0 the simulation has been completed with a tree-based
parallel code, GADGET Springel et al. (2001), which has better performance
in the heavily clustered regime.

However the two codes adopt different force-softening schemes, so it is nec-
essary to match the force shape at the time of switch from one code the the
other. Experimentation showed that ǫHYDRA = 1.06ǫGADGET, produces an excel-
lent match of two force laws. To take into account this difference from z = 49
to z = 2.2 the simulation has been performed with a gravitational softening ǫ =
7 kpc/h in comoving units, while from z = 2.2 to z = 0 ǫ= 6.604 kpc/h using GAD-
GET.

The numerical data for GIF and GIF2 simulation are publicly available at:
http://www.mpa-garching.mpg.de/Virgo.

Re-simulation of Galaxy Clusters

This sample is composed by 48 dark matter haloes, extracted from ten high-
resolution N-body resimulations of 17 galaxy clusters. Halo masses are in the
range 5.1×1013−2.3×1015 M⊙/h at redshift z = 0; mass resolution is 1.3×109 M⊙/h;
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Figure 4.2: High resolution dark matter particles distribution in haloes at four different
redshifts in a resimulated group of clusters (filament) (z = 2 upper left, z = 1 upper right,
z = 0.5 lower left and z = 0 lower right. The high resolution region is resolved with five
million of not-interacting particles in a region of 60 Mpc of a side.

the gravitational softening (Plummer equivalent) in each resimulation is ǫ = 5
kpc/h.

The resimulated systems were extracted from a cosmological N-Body simu-
lation containing 5123 particles in a cube 479 Mpc/h on a side, assuming a flat
ΛCDM model with Ω0 = 0.3, h = 0.7, σ8 = 0.9 and Ωb = 0.04 (Yoshida et al., 2001),
in agreement with recent measurements of cosmic shear on large scale structure
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(Van Waerbeke et al., 2001; Refregier et al., 2002). The lower value of σ8, mass
variance on a scale of 8 Mpc/h as best fit of the 3-year WMAP (Spergel et al.,
2007) data has the effect of delay the structures formation (Wang et al., 2007).

simulation n. of particles particle mass [M⊙/h] box size [Mpc/h]

GIF 2563 1.40×1010 141
GIF2 4003 1.73×109 110

g1 4937886 1.30×109 61.73
g1542 328162 1.30×109 31.15
g3344 293209 1.30×109 29.51

g51 2219034 1.30×109 49.70
g6212 280343 1.30×109 28.41
g676 314518 1.30×109 31.30

g696 (filament) 16959053 1.30×109 91.47
g72 4379049 1.30×109 61.53
g8 5602561 1.30×109 61.81

g914 387014 1.30×109 35.10

Table 4.1: Summarized properties of cosmological N -Body simulations and resimulated
galaxy clusters.

In order to resimulate the selected haloes with higher mass and force resolu-
tion, new initial conditions were generated using the Zoomed Initial Condition
technique (ZIC, Tormen et al. (1997)): halo Lagrangian regions were populated
with a larger number of less massive particles, and additional small-scale power
was appropriately added. The new initial conditions were evolved using a non
public version of GADGET2 (Springel, 2005) (TreePM algorithm) from redshift
z = 60 to the present time. We will study these resimulations using 88 output
times equally spaced between z = 10 and z = 0. In Table 4.1 we summarize the
properties of the simulations.

4.3 Post-processing

Halo Finder and Universal Mass Function

We adopt the spherical overdensity (SO) (Lacey and Cole, 1994) criterion to iden-
tify haloes at each simulation output time (also called "‘snapshot"’). For each
snapshot we estimate the local dark matter density at the position of each parti-
cle by calculating the distance to the tenth closest neighbour. We assign to each
particle a local density ρi ,DM ∝ d 3

i ,10, sort particles in density and take as centre
of the first halo the position of the densest particle. We then grow a sphere of
matter around this centre, and stop when the mean density within the sphere
first falls below the virial value appropriate for the cosmological model at that
redshift. For the definition of virial density we adopted the model of Eke et al.

(1996). As discussed in Section 3.2 the spherical collapse model for ΛCDM uni-
verse predict haloes at redshift z = 0 to be dense at least 324 times the back-
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Figure 4.3: Left: particles distribution in GIF2 simulation at redshift z = 0. Right: cor-
responding particles in virialized haloes as identified with the SO criteria. The plots
have been done using the publicly available code Visivo (http://visivo.cineca.it) (Becciani
et al., 2006).

ground density. At this point we assign all particles within the sphere to the

Figure 4.4: Mass fraction in dark matter haloes (SO), in the cosmological simulations GIF
and GIF2, in term of redshift. Left: the minimum masses considered are haloes with at
lest 10 particles. Taking into account that GIF2 has a mass resolution that is a factor of
10 smaller than GIF, this translate in a larger mass fraction in identified haloes. However
when we cut the resolution at the GIF halo mass (right) the mass fraction in haloes in
the two simulations match each other.

newly formed halo, and remove them from the global list. We take the centre of
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the next halo at the position of the densest particle among the remaining ones,
and grow a second sphere. We continue in this manner until all particles are
screened. we include in the haloes catalogue only groups with at least 10 parti-
cles within the virial radius; particles not ending up in any halo are considered
as "‘field"’ or "‘dust"’ particles. In Figure 4.3 we show the particles distribution in
GIF2 simulation at the present (left panel). The right panel of the figure show the
corresponding dark matter particles distribution in virialized haloes identified
with SO criterium. In Figure 4.4 we show the dark matter mass fraction, in GIF

Figure 4.5: Mass function of dark matter haloes at five different redshifts in GIF (solid
point type) and GIF2 (open point type) simulations. The different points type refer re-
spectively to z = 4 (hexagons), z = 2 (pentagons), z = 1 (triangles), z = 0.5 (squares) and
z = 0 (circles). The solid line shows the spherical collapse prediction for the mass func-
tion of collapsed dark matter haloes, equation (3.24.

and GIF2 simulations, in identified haloes in term of redshift. We see that the
dark matter particles, with cosmic time, cluster forming larger and larger col-
lapsed regions. On the left the the minimum halo mass considered correspond
to the halo finder resolution, i.e. 10 particles. We see that GIF2 has a larger mass
fraction in virialized haloes than GIF, because its mass resolution is a factor of 8
smaller. However cutting the resolution at the same mass (right panel) the two
fraction in term of redshift match each other. In the figure we notice also that, at
the present, roughly half of dark matter particles belong to virialized object more
massive than 1011 M⊙/h.
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The adopted definition of dark matter haloes, as individual groups of parti-
cles with enclosed density equal to the critical virial value, has been chosen to
make a more direct comparison with the Press & Schechter and extended Press
& Schechter theory of hierarchical clustering (Press and Schechter, 1974; Bond
et al., 1991; Lacey and Cole, 1993), as we will show in the next sections and chap-
ters.

However other different definitions has been adopted in literature to define
the edge of the haloes: 200 times the mean background or the critical density of
the universe. We will show in Appendix A as it is possible to rescale the radius of
the dark matter haloes, when identified as 200 times the critical or background
density respect to the spherical collapse definition, making use of some interest-
ing fitting functions.

In literature it has been proposed also another approach to identify haloes in
numerical simulations. The method consist in linking together groups of parti-
cles with a distance less than b times the mean inter-particles separation. This
not ensure haloes to be spherical overdense regions as in the case of spherical
overdensity, and is called friends-of-friends (FOF) (Davis et al., 1985). Haloes
identified in this way result in groups of particles bounded by a surface of ap-
proximately constant density: ρ/ρ̄ ≈ 3/(2πb3). The advantage of this algorithm
is that it is faster than SO. Many authors using it (Frenk et al., 1988; Efstathiou
et al., 1988) in N-Body simulations found good agreement with the theoretical
prediction and SO method when b = 0.2. The FOF algorithm picks out most
of the groups that can be identified by eye, however occasionally it can join to-
gether two or more distinct density centers that are linked by a tenuous bridge of
particles. To solve this problem many authors, after identified groups with FOF
technique, use a SO method to compute the virial overdensity assuming spheri-
cal symmetry.

In Figure 4.5 we show the mass function of dark matter haloes in GIF and
GIF2 simulations at different redshifts. As previously described haloes have been
identified with the SO algorithm at each simulation snapshot. The solid curve is
the theoretical prediction of the mass function computed by Press and Schechter
(1974); Lacey and Cole (1993) (eq. 3.24) expressed in term of the redshift inde-
pendent variable ν. In the figure we notice that the spherical collapse model
underpredicts the abundance of large masses and overpredicts that of the small
ones respect to measurements in N-Body simulations.

Sheth and Tormen (1999) proposed for the first time a modification of the
Press & Schechter global mass function. Their equation has been parametrized
in term of ν in order to fit the halo mass function in GIF simulations, and is:

ν f (ν) = A

(

1+
1

ν′p

)(

ν′

2

)1/2 e−ν
′/2

p
π

(4.3)

where ν′ = aν, with a = 0.707, ν= δ2
c /s, p = 0.3 and A ≈ 0.322 obtained normal-

izing the distribution. The original Press & Schechter formula can be obtained
with a = 1, p = 0 and A = 1/2. The fit has been tested on different redshift halo
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catalogues of the SCDM, OCDM and ΛCDM runs of the GIF simulations.

Figure 4.6: Unconditional mass function of dark matter haloes. The solid lines repre-
sents the Press & Schechter prediction for the dark matter haloes population (eq. 3.24),
the dotted curve is the Sheth & Tormen generalization of the spherical collapse predic-
tion (eq. 4.3), the dashed lines is the Jenkins et al. fit (eq. 4.4).

Another fitting function to the simulations data has been also proposed by Jenk-
ins et al. (2001). They combined data from a number of N-body simulations and
predicted the abundance of dark haloes in cold dark matter (CDM) universes
over more than four orders of magnitude in mass. They showed that for a range
of CDM cosmologies and for a suitable halo definition (both FOF and SO), the
mass function in numerical simulations is almost independent of epoch, of cos-
mological parameters and of the initial power spectrum also when expressed in
term of σ=

p
s. The proposed mass function has the following expression:

f (σ) = 0.315 exp(−| lnσ−1 +0.61|3.8) , (4.4)

over the range −1.2 ≤ lnσ−1 ≤ 1.05.
These two formula proposed do not have any physical justifications in order

to take into account discrepancies between PS formula and N-Body simulations,
but are only fits to the numerical data. Sheth et al. (2001) analyzing the collapse
of dark matter haloes in N-Body simulations showed that the discrepancy be-
tween theory and simulations can be reduced substantially if bound structures
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are assumed to form from an ellipsoidal, rather than a spherical, collapse. In the
original, standard, spherical model, a region collapses if the initial density within
it exceeds a threshold value, δsc (z). This value is independent of the initial size of
the region, and since the mass of the collapsed object is related to its initial size,
this means that δsc (z) is independent of final mass. As we showed in Section ,
in the ellipsoidal model, the collapse of a region depends on the surrounding
shear field, as well as on its initial overdensity. These will require small haloes to
be more strong to virialize. The mass function can be expressed considering the
probability of first crossing a moving barrier equation (3.28) (Sheth and Tormen,
2002) or equation (3.44) (Mahmood and Rajesh, 2005) for the square-root case.
As shown by Sheth and Tormen (2002) the approximated solution of the proba-
bility of first crossing a moving barrier (with γ= 0.6, β= 0.5 and q = 0.707) does
a very good job in reproducing the N-Body simulation mass functions.

Merger Tree

We build the merging-history-tree for all haloes in simulations (or resimulations)
using the halo catalogues at all snapshots, separated by redshift intervals dzi , as
follow. Starting from an halo at z = 0, we define its progenitors at the previous
output z = dz1, to be all haloes contributing with at least 50% of their particles
to the initial system. Among them we call main progenitor (MPH) at z = dz1 the
progenitor halo providing the largest mass contribution to the halo at z = 0. We
repeat the procedure, starting now at z = dz1 and considering the progenitors at
z = dz1 +dz2 of the dz1-main progenitor halo, and so on backward in redshift.
In this merging-history-tree we term satellites all progenitors which, at any time,
merge directly on the MPH, contributing with at least with 50% of their particles
to the initial system at z = 0.

The hierarchical growth of the haloes can be followed considering also an-
other definition for the main brunch: the most contributing progenitor to the
present-day system. Instead of following the progenitors of an halo along ad-
joining snapshots, we considered at any redshift z > 0 all the halo that contribute
at least with 50% of their particles to the present-day halo. Among them we call
most contributing progenitor (MCH) (that correspond to the most massive one)
the halo which donate the largest number of particles to the present-day system.
When the MPH has a mass greater than half the initial halo mass, then it is guar-
anteed to be the most contributing progenitor. For lower masses, and so higher
redshift, this is not the case and, in principle, the main trunk progenitor could
be much less massive than the most contributing progenitor at any given epoch.
Furthermore, the identity of the main branch can depend on the time resolution
with which the tree is stored. However, if we generate Monte Carlo trees at the
same time-steps as in the simulation, then the difference between Monte Carlo
and N-body results for the main trunk progenitors is very similar to that for the
most contributing progenitor. However in simulations the dynamical processes
are not linear: in the mean the dark matter haloes grow hierarchically in time,
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Figure 4.7: Left: cumulative distribution of the “first jump” between the main progenitor

and the most contributing halo as defined by the two algorithms, see the main text for
more details. The considered redshifts at which the two algorithm are compared refer
to the GIF2 simulation snapshots. The various line types refer to different present-day
halo masses. In the figure nt ot represents the total number of haloes in each considered
bin. The six vertical lines are the average formation redshift, along the main progenitor,
for each of the six mass bin considered. Right: median mass growth history of different
present-day haloes. The color type is the same as in the left panel, solid and dashed
curves refer to the two algorithm that define the main branch of the tree.

but in same cases can happen that a halo merge with a more massive one and
after go out of this: in numerical simulations hierarchical growth is not guaran-
tee for all systems. Following the growth along adjoining snapshots the mass of
the MPH, at a given redshift z > 0, for example, could also become bigger that
the final one Cole et al. (2008).

Other researchers however use different definitions to follow the merger tree
of dark matter haloes. For example the Munich group (Springel et al., 2005; Cro-
ton et al., 2006; De Lucia et al., 2006) use as their basic unit of the tree not the
haloes but the substructures within haloes (that they identify with SUBFIND
Springel et al. (2001)) linking them between time-steps. The Durham group
(Bower et al., 2006; Harker et al., 2006), to the other hand, primarily link the
haloes between time-steps and after make use of the substructure catalogue to
track informations about prematurely e/or temporarily linked haloes (for exam-
ple the cases in which the main progenitor of an halo do not grow between two
time steps: Mv (z2) ≥ Mv (z1) with z2 > z1).

Let us define “first jump” as the earliest snapshot where the most contribut-
ing progenitor and the main progenitor halo definitions do not identify the same
system along the tree. In the left panel of Figure 4.7 we plot the cumulative dis-
tribution of “first jump”. The results are shown considering present day haloes
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in GIF2 simulation and binning them in six mass intervals (see the label of the
figure). In Figure 4.7 is also shown the average formation redshift (vertical lines)
Lacey and Cole (1993) for each mass bin, defined as the earliest redshift where
the mass of the main progenitor halo become half of its present-day value. As
we can see less than 10% of all the haloes in each bin has a first jump before the
average formation redshift: the main progenitor is univocally defined for mass
bigger than 1/2×M0. In the right panel of Figure 4.7 we show the median mass of
the main progenitor and of the most contributing halo versus redshift. The color
type are the same as in the left panel. We see that starting from the present until
the formation the two definition agree, while the higher is the redshift the bigger
is the median mass of the MCH respect to the MPH, as also found by Cole et al.

(2008) using a mergertree based on halo catalogue in Millennium Simulation.

4.4 Conditional Mass Function

Present day dark matter haloes assemble hierarchically with time, so at each red-
shift z > 0 they are divided in a sample of progenitors. The progenitor mass func-
tion (called also conditional mass function) gives the mass function of haloes at
a redshift z that will end up at redshift z0 = 0 in an M0-halo:

f (m, z|M0, z0)dm = f (s,δsc,1|S,δsc,0)ds .

where s represents the corresponding mass variance of an m-halo, given by the
equation (3.9) once the power spectrum is defined, δsc,1 and δsc,0 represent the
spherical collapse overdensity corresponding respectively at redshift z and z0.
The mean number of progenitors at redshift z will thus be:

N (m, z|M0, z0)dm =
M0

m
f (s,δsc,1|S,δsc,0)ds . (4.5)

The mathematical equation for the progenitor mass function can be esti-
mated using the excursion set approach as done for the global mass function(called
also unconditional) in the previous chapter. The fraction of m-progenitors at
redshift z that will end up in an M0-halo at the present time can be can be
obtained considering the conditional probability of first crossing of barrier. In
this case the Brownian and uncorrelated walks start from (S, δ0) (see Bond et al.

(1991); Lacey and Cole (1993); Sheth and Tormen (2002) for the theoretical dis-
cussion).

Remembering that in spherical collapse model, the barrier is independent
of the mass, the conditional probability of first crossing can be easily obtained
from equation (3.23) changing variables as following:

s → (s −S) ,

δsc → (δsc,1 −δsc,0) ;

which gives:

f (s,δsc,1|S,δsc,0)ds =
1

p
2π

(δsc,1 −δsc,0)

(s −S)3/2
exp

[

(δsc,1 −δsc,0)2

2(s −S)

]

ds . (4.6)
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However, as discussed for the unconditional mass function, when the analytical
spherical collapse prediction is compared to N-Body simulations the agreement
is not satisfying. The mass function that better fits the numerical simulations is
the ellipsoidal prediction. Sheth and Tormen (2002) showed that an approximate
solution for the conditional probability of first crossing distribution of a moving
barrier can be written as:

fB (s,δsc,1|S,δsc,0)ds =
|T (s|S)|

p
2π(s −S)

exp

{

−
[B(s,δsc,1)−B(S,δsc,0)]2

2(s −S)

}

ds

s −S
, (4.7)

with

T (s|S)=
5

∑

n=0

(S − s)n

n!

∂n[B(s,δsc,1)−B(S,δsc,0)]

∂sn
; (4.8)

where B(s,δ) is given by equation (3.27). As we will see this equation reproduce
simulation data better than the spherical collapse mass function.

Figure 4.8: An example of a random walk and the three barrier shapes we consider here-
after. Here δ0 refers to the critical value associated with spherical collapse overdensity
at redshift z0. The jagged line is a sample Brownian walk absorbed by the barrier asso-
ciated with ellipsoidal collapse (solid curve). Short-dashed curves show the square-root
barriers which we will also use to approximate the ellipsoidal collapse barrier, and hor-
izontal dotted lines show the constant barrier associated with spherical collapse. The
upper set of barriers are associated with collapse at an earlier time.
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In the case of a square-root barrier, the conditional probability of first cross-
ing has an exact solution too. This can be obtained performing the same calcu-
lations done in section 3.3 for the unconditional case. The conditional fraction
of walks that cross a square-root barrier is thus given by:

fsr (s,δsc,1|S,δsc,0)ds =
1

2
exp

[

w 2
β
−β2

4

]

∑

λ

(

S

s

)λ/2

Dλ(wβ)
D ′

λ
(−β)

Iλ(−β)

ds

s
, (4.9)

where we have defined the following conventional variable:

wβ =
p

q(δsc,1 −δsc,0)
p

S
−β .

In Figure 4.8 we show a conditional walk absorbed by the ellipsoidal collapse
barrier. In the figure are also shown the constant and the square-root barrier
normalized to have the same initial overdensity for the S-halo.

Comparison with N -Body Simulations: Assembly History of Dark Matter
Haloes

In this section we show some comparisons between the theoretical predictions
of the conditional mass function (spherical, ellipsoidal and square-root barrier
case) and the results of GIF2 N-Body simulation.

In the numerical simulation, the sample of present-day haloes is made by all
systems with mass M0 > 1011.5M⊙/h (that correspond to virialized group with
more or less at least 200 dark matter particles). From the sample we removed all
haloes which main progenitor at any redshift exceed the present-day mass value,
in order to neglect non conventional history-tree. The progenitors mass function
at six different redshifts as been estimated for 5611 with log(M0/h−1M⊙) in the
range 11.5−12, 2431 in the range 12−12.5, 892 in the range 12.5−13, 341 in the
range 13−13.5, 92 in the range 13.5−14 and 29 in the range > 14.

At each redshift z the progenitors have been defined to be all haloes that con-
tribute at least with 50% of their particles to the final M0-halo. It is interesting
also take into account the fact that, in numerical simulations, not all the par-
ticles of each progenitor will end up in the final halo, and that the mass of the
M0-halo is made by some particles that came from haloes that contribute with
less than 50% of their mass and by some particles that come from the field (see
Figure 4.9 where we show a schematic representation of the progenitors of an
halo).

In order to take into account these situations the virial mass of each progen-
itor halo mi at redshift z has been normalized not by M0 but M0,z , that is:

M0,z =
∑

i

mi +
∑

j

f j m̃ j +field mass (4.10)

where f j is the contributing mass fraction from the haloes m̃ j that give less then
50% of their particles to the initial mass M0, and mi are the progenitors.
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Figure 4.9: Schematic representation of progenitor haloes at redshift z of an M0-halo.
From the left, the first two represent haloes that contribute more than 50% of their mass
to M0. The other two instead represent haloes that give only a small fraction to M0; the
dots, on the right, symbolize the dust particles.

Figure 4.10: Total mass in progenitors and field that will end up in the final halo. The
plot has been done considering the sample of present-day haloes as described in the
text, and dividing them in six mass bin.
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Figure 4.11: Conditional mass function at redshift z1 = 3 of a sample of present day dark
matter haloes in GIF2 simulation. The haloes has been divided in six mass bin as shown
in the panels. The spherical and ellipsoidal collapse (Sheth and Tormen, 2002) predic-
tion are shown for comparison. In the figure is also shown the square root conditional
mass function (γ = 1/2, β = 0.5 and q = 0.55). Considering that the equation (4.9) in-
volve the parabolic cylinder function, its derivative and primitive that are very difficult
to compute, we use the Sheth and Tormen (2002) approximate solution with the appro-
priate value of the parameters that define the barrier (Mahmood and Rajesh, 2005).
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Figure 4.12: As in Figure 4.11 with z1 = 2.

In Figure 4.10 we show the total mass in progenitors and field that will end up
in a present-day halo. The haloes are those considered in the six different mass
bins as described before. As shown by Tormen (1998) the progenitors halo mass
fraction has a distribution that grow with the cosmic time with a peak around
z ≈ 0.25. In the figure we notice also that the value of the maximum increase
with the final halo mass.

In the Figures 4.11, 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17 we show the condi-
tional mass function in GIF2 simulation considering different final redshifts. In
each figure the various panels refer to different present day halo masses as de-
scribed before. In figure we also show the theoretical prediction for the spherical
(dotted line) (Lacey and Cole, 1993) and ellipsoidal (solid line) (Sheth and Tor-
men, 2002) collapse compared to GIF2 simulation. The dashed line represents
the approximate solution (Sheth and Tormen (2002) equation) to the probability
of first crossing distribution of a square-root barrier. We chose to use the ap-
proximate solution for the square root barrier because easier to plot considering
that the exact solution involve the use of the parabolic cylinder function and its
eigenvalues. As can be seen in figures at high redshifts the agreement between
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Figure 4.13: As in Figure 4.11 with z1 = 1.46.

Figure 4.14: As in Figure 4.11 with z1 = 1.
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Figure 4.15: As in Figure 4.11 with z1 = 0.5.

Figure 4.16: As in Figure 4.11 with z1 = 0.2.
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Figure 4.17: As in Figure 4.11 with z1 = 0.06.

N-Body simulation and ellipsoidal collapse prediction is satisfying. However at
large mass the scatter and the discrepancy is larger because of the few number
of progenitors. At small redshift too the Sheth and Tormen (2002) conditional
mass function describe the N-Body results quite well as can be seen in Figure
4.17 where progenitors in the lowest redshift before z = 0 have been considered.



CHAPTER

5
An Improved Model for the
Formation Times of Dark Matter
Haloes

Large samples of galaxy clusters selected in the optical (Miller et al., 2005; McKay
et al., 2005) and other bands (ACT, SPT) will soon be available. These cluster
catalogs will be used to constrain cosmological parameters. The tightness of
such constraints depends on the accuracy with which the masses of the clusters
can be determined from observed properties. These properties are expected to
depend on the formation histories of the clusters. Models of cluster formation
identify clusters with massive dark matter haloes, so understanding cluster for-
mation requires an understanding of dark halo formation.

There is also some interest in using the distribution of galaxy velocity disper-
sions (Sheth et al., 2003) to constrain cosmological parameters (Newman and
Davis, 2002). The velocity dispersion of a galaxy is expected to be related to the
concentration of the halo which surrounds it, and this concentration is expected
to be influenced by the formation history of the halo (Tormen, 1998; Bullock
et al., 2001; Wechsler et al., 2002). Hence, this program also benefits from un-
derstanding the formation histories of dark matter haloes.

In hierarchical models, the formation histories of dark matter haloes are ex-
pected to depend strongly on halo mass – massive haloes are expected to have
formed more recently (Press and Schechter, 1974). But quantifying this tendency
requires a more precise definition of what one means by the ‘formation time’.
Lacey and Cole (1993) provided a simple definition – it is the earliest time when
a single progenitor halo contains half the final mass. For this definition, they
showed how to estimate the distribution of halo formation times. Sheth and
Tormen (2004) provide associated expressions for the joint distribution of for-
mation time and the mass at formation. This estimate depends on the distribu-
tion of progenitor masses at earlier times, and Lacey & Cole used the assump-
tion that haloes form from a spherical collapse to estimate this conditional mass
function. However, a model based on ellipsoidal collapse provides a more ac-
curate description of the abundances of dark haloes (Sheth et al., 2001) and of
their progenitors (Sheth and Tormen, 2002) (see also section 4.4 of the Chapter
4). Hence, one expects to find that the ellipsoidal collapse model also provides a
better description of halo formation.
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In the following section we reviews Lacey & Cole’s argument and their defini-
tion of formation time.

Hereafter we will use z, t and δsc at the same way, referring to a time variable.
It is also important to remember that while z and δsc , from the present-time, are
increasing variable t is a decreasing one.

5.1 Distribution of Formation Times

Following Lacey and Cole (1993), we will define the formation time of a halo as
the earliest time that at least half of its mass has been assembled into a single
progenitor.

Relation to the Progenitor Mass Function

Consider an ensemble of haloes of mass M at time T , and let N (m, t |M ,T ) de-
note the average number of progenitors of these haloes that have mass m < M at
time t < T . Since a halo can have at most one progenitor of mass m > M/2, the
fraction of haloes which have a progenitor of mass m > M/2 at time t is

∫M

M/2
dm N (m, t |M ,T ).

But, because they have a progenitor of mass m > M/2, these haloes are also the
ones which formed at some tf < t . Hence,

P (< tf) =
∫tf

0
dt p(t |M ,T ) =

∫M

M/2
dm N (m, tf|M ,T ), (5.1)

where p(t |M ,T ) denotes the probability that a halo of mass M at T formed at
time t . Differentiating with respect to tf yields

p(tf|M ,T ) =
d

dtf

∫M

M/2
dm N (m, tf|M ,T ) (5.2)

=
∫M

M/2
dm

dN (m, tf|M ,T )

dtf
. (5.3)

Evidently, the formation time distribution is closely related to the distribution of
progenitor masses and its evolution. Different estimates of the progenitor mass
function will result in different formation time distributions.

In what follows, we will estimate the distribution of halo formation times
using equation (5.2) and analytically for a white-noise power spectrum, where
s(M) ∝ 1/M . Thinking along the lines of equation (5.3) instead shows how p(tf|M ,T )
can be related to quantities which arise naturally in binary merger models of hi-
erarchical clustering.
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Spherical Collapse Dark Matter Haloes Formation Time

Lacey and Cole (1993) used the equation (4.6) to estimate N (m, t |M ,T ) , which
was derived from a model in which haloes form from a spherical collapse (Gunn
and Gott, 1972; Press and Schechter, 1974). Considering a white-noise power
spectrum, P (k) ∼ kn with n = 0, the number of progenitors halo can be written
as:

N (m, tf|M , t )dm =
s

S
f (s,δf|M ,δsc,0)ds , (5.4)

where δsc,0 = δsc (T ) and δf = δsc (tf). The cumulative distribution of formation
time, defining ∆δ= (δf −δsc,0) can be written as:

P (< tf) =
1

p
2π

∫S

2S

s

S

∆δ

(s −S)3/2
exp

[

∆δ2

2(s −S)

]

ds ; (5.5)

and computing the integral

1
p

2πS
exp

(

−
∆δ2

2S

){

2
p

S∆δ−exp

(

∆δ2

2S

)p
2π(S −∆δ2)erf

(

∆δ

2S

)}

. (5.6)

Defining

ω= q
δf −δsc,0p

s(M/2)− s(M)
, (5.7)

where in the spherical collapse case q = 1, we can write 1:

P (>ω) =
√

2

π
ωe−ω

2/2 + (1−ω2)erfc
( ω
p

2

)

. (5.8)

and for the differential distribution of formation redshift, taking the derivative of
the previous expression:

p(ω) = 2ωerfc(ω/
p

2) . (5.9)

Let us remember that hereδsc(t ) = δsc (z) is the overdensity required for spher-
ical collapse at z, and s(M) is the variance in the linear fluctuation field when
smoothed with a top-hat filter of scale R = (3M/4πρ̄)1/3, where ρ̄ is the comov-
ing density of the background. In hierarchical models, s(M) is a monotonically
decreasing function of mass M . In essence, ω is simply a scaled time variable: in
an Einstein de-Sitter background cosmology ω∝ (zf−z0), where the constant of
proportionality depends on the final mass M .

Strictly speaking, this expression is valid for a white-noise power spectrum
(S(M) ∝ M−1), but it has been found to provide a reasonable approximation for
more general power spectra as well (see Figure 5.1 where has been plotted the
formation redshift distribution for four scale-free power spectrum, from bottom
to top at the peak n =−2, n =−1, n = 0 and n = 1). For the withe-noise distribu-
tion, the median value of ω is 0.974 considering the cumulative distribution as
in the equation (5.8).

1Remember that erf(x) = 1−erfc(x).



74 An Improved Model for the Formation Times of Dark Matter Haloes

Figure 5.1: Spherical collapse formation redshift distribution for four different scale-free
power spectrum. From bottom to top at the peak n =−2, n =−1, n = 0 and n = 1.

However, recent work has shown that the spherical collapse model predicts
fewer massive haloes and more intermediate mass haloes than are seen in simu-
lations of hierarchical gravitational clustering (Sheth and Tormen, 1999). Models
in which haloes form from an ellipsoidal collapse may be more accurate (Sheth
et al., 2001). These models also provide a better description of the progenitor
mass function (Sheth and Tormen, 2002).

In what follows, we will show the effects of substituting the ellipsoidal col-
lapse based expressions for N (m, t |M ,T ) in equation (5.1). We will also show
that simply taking values of q smaller than one will make equation (5.8) a good
fit to the formation redshift associated to the ellipsoidal collapse.

Progenitor Mass Functions in the Excursion Set Approach

We will use two approximations for the progenitor mass function. Both forms are
derived from casting the ellipsoidal collapse model in the same language used
for the spherical model – the excursion set formalism of Bond et al. (1991). In
this formalism, as said in the previous chapters, halo abundances at a given time
are associated with the first crossing distribution by Brownian motion random
walks, of a barrier whose height decreases with time, and may in addition de-
pend on how many steps the walk has taken. Hereafter we will use δsc,0 and δsc,1

to indicate the overdensity associated with the spherical collapse model respec-
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tively at redshift z0 and z1.
In the excursion set approach, the shape of the barrier, B(S), depends on the

collapse model. If the barrier is crossed on scale S(M), then this indicates that
the mass element on which the sphere is centered will be part of a collapsed
object of mass M . Bond et al. used the fraction of walks which cross B(S) at
S(M) as an estimate of the fraction of mass in haloes of mass M : the parent halo
mass function. Similarly, the fraction f (s|S) of walks which start from some scale
S(M) and height B(S) and first cross the barrier B(s) at some s > S, can be used
to provide an estimate of the progenitor mass function of M haloes:

N (m|M)dm =
(

M

m

)

f (s|S)ds (5.10)

(note that m < M because s > S). Thus, in the excursion set approach, the shape
of N (m|M) depends on how the shape of the barrier changes with mass – it is
in this way that the collapse model affects the parent halo and progenitor mass
functions.

The barrier shape is particularly simple for the spherical model: B = δsc is the
same constant for all values of S. For the ellipsoidal collapse we will refer to the
equation (3.27) using the value of the parameters as determined by Sheth et al.

(2001).
It is known that for general γ, exact analytic solutions to the first crossing

distribution of a moving barrier are not available. For this reason, we have stud-
ied two analytic approximations which result from addressing the first crossing
problem in two different ways. The first approach uses an analytic approxima-
tion to the first crossing distribution which Sheth and Tormen (2002) showed
was reasonably accurate.

Our second approach is to substitute the ellipsoidal collapse barrier, as showed
at the end of the previous chapter, for one which is similar, but for which an ex-
act analytic expression for the first crossing distribution is available. Specifically,
when γ= 1/2, then the barrier height increases with the square-root of S, and the
first crossing distribution can be written as a sum of parabolic cylinder functions
(Breiman 1966). In this approach, we approximate the progenitor mass function
using an expression which would be exact for a square-root barrier, bearing in
mind that the square-root barrier is an approximation to the ellipsoidal collapse
dynamics. For this barrier shape, we set β= 0.5 and q = 0.55 since these choices
result in parent halo and progenitor mass functions which best fit the simula-
tions; Figure 4.8 illustrates the similarity of the barrier shapes. We have also
shown in the Figure 4.11, 4.12, 4.13, 4.14, 4.15, 4.16 and 4.17 of the Chapter 4,
that both these approximations provide substantially better descriptions of the
simulations than does the expression which is based on spherical collapse. We
will show that this is true also for the formation redshift distribution.
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Figure 5.2: Cumulative distribution of dark halo formation times for haloes identified
at z = 0. From top to bottom, panels show results for haloes with masses in the range
log10M/h−1M⊙ : 11.5− 12, 12− 12.5, 12.5− 13, 13− 13.5, 13.5− 14 and > 14. Symbols
show the measurements in GIF2; dotted curve shows the prediction associated the con-
stant barrier spherical collapse model; dot-dashed curve shows the analytical fit equa-
tion (5.8) with q = 0.707. Short-dashed and solid curves show the predictions associated
with the square-root and ellipsoidal collapse based models.

5.2 Comparison with N -Body Simulations

We use the data from GIF2 simulation to make a comparison with the analyti-
cal prediction of the formation redshift distribution. The simulation has been
described in the section 4.2 of the Chapter 4 and we recall that the row data are
publicly available at: http://www.mpa-garching.mpg.de/Virgo.

The GIF2 simulation followed the evolution of 4003 particles in a periodic
cube 110 h−1 Mpc on a side. At each simulation snapshot the haloes have been
unidentified with the SO criteria and their story has been followed backward in
time as described in the section 4.3 of the Chapter 4. The results presented here
take into account all the haloes more massive than 1011.5 h−1M⊙ (i.e., containing
more than 180 particles) at z = 0 with the condition that their main progenitor at



5.2 Comparison with N -Body Simulations 77

Figure 5.3: Same as previous figure, but now for haloes identified at z = 0.5. As before,
the spherical model predicts lower formation redshifts than observed. Whereas the el-
lipsoidal collapse based expressions predict the median formation redshift reasonably
well, they predict a broader range of redshifts than are observed.

any time z > 0 has to be smaller than the present-day mass.

Cumulative Distribution of Formation Times

Figure 5.2 shows the cumulative distribution of dark halo formation redshifts
(i.e., equation 5.1) for haloes identified at z = 0. In general the analytical expres-
sions obtained from the two different approximate solutions to the ellipsoidal
collapse barrier problem – the Sheth and Tormen (2002) approximation for the
first crossing distribution of the ellipsoidal collapse barrier, or the exact expres-
sion for the first crossing distribution of the square root barrier – are compli-
cated. However, we have found that the predictions of the two ellipsoidal based
models are quite well approximated by the expression for the spherical model
with n = 0, equation (5.8), by simply changing the value of q .

Different panels show results for the mass bins described above. The points
show measurements in the GIF2 simulation,and the four curves show the forma-
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Figure 5.4: Median formation redshift for haloes identified at z = 0 as a function of halo
mass. Points with (Poisson) error bars show our measurements in the GIF2 simulation.
Smooth curves show the median formation times associated with three different mod-
els of halo formation: spherical collapse (dotted), ellipsoidal collapse (solid) and the
square-root barrier approximation (short-dashed). Dot-dashed curve shows the predic-
tion of equation (5.12) with q = 0.707.

tion time distributions associated with theΛCDM spherical collapse (dotted), el-
lipsoidal collapse (solid), square-root barrier approximation (dashed) and with
equation (5.8) using q = 0.707 (dot-dashed).

Again, the spherical collapse model severely underestimates the redshifts of
halo formation. The two ellipsoidal collapse based estimates fare better, in the
sense that they predict median formation redshifts which are closer to those seen
in the simulation.

However, both ellipsoidal based estimates clearly predict a wider range of for-
mation redshifts than is seen in the simulation – at fixed mass, the distribution
of halo formation redshifts is narrower than predicted. This remains true for the
formation time distribution of haloes identified at z = 0.5 shown in Figure 5.3.

Mass-Dependence of Median Formation Time

Figure 5.4 shows the median formation redshift of haloes identified at z = 0 as a
function of halo mass. Points show our measurements in the GIF2 simulation.
The simulation shows that massive haloes formed more recently: the median
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Figure 5.5: Same as previous Figure, but for haloes identified at z = 0.5 in the GIF2 sim-
ulation.

formation redshift decreases with halo mass.
Smooth curves show the formation time distributions associated with three

different models of halo formation: ΛCDM spherical collapse (dotted), ellip-
soidal collapse (solid) and the square-root approximation (short-dashed). In all
cases, the model predictions for the median formation redshift were obtained by
finding that z̄ f at which

∫M

M/2
dm N (m, zf|M , z) =

1

2
. (5.11)

The Figure shows that haloes less massive than 1014h−1M⊙ clearly form at higher
redshifts than predicted by the spherical collapse model (dotted line). Both our
estimates of the ellipsoidal collapse prediction are in substantially better agree-
ment with the simulations. The prediction associated to equation (5.8) is given
implicitly by inserting the median rescaled formation redshift ω̄ = 0.974 into
equation (5.7), providing:

δsc (z̄f|M , z0) = δsc (z0)+
0.974
p

q

√

S(M/2)−S(M). (5.12)

The choice q = 0.707 is shown by the dot-dashed line in the Figures; setting q =
0.6 yields even better agreement with the simulations.
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Fitting functions, accurate to a few percent, for δsc (z) and S(m) are available
in the literature. For instance,

δsc (z) ≈ D+(z)
3

20
(12π)2/3

Ω
0.0055
m (5.13)

Navarro et al. (1997), where Ωm is the ratio of the background to the critical den-
sity at z, and

D+(z) =
5

2
Ωm

[

Ω
4/7
m −ΩΛ+

(

1+
1

2
Ωm

)(

1+
1

70
ΩΛ

)]−1
(5.14)

Carroll et al. (1992), and, for a CDM power spectrum,

S(m)= A
(

1+2.208m̄p −0.7668m̄2p +0.7949m̄3p
)−4/(9p)

(5.15)

Taruya and Suto (2000), where A is the normalization factor of the linear theory
power spectrum at z = 0 (so it depends on σ8), m̄ = m(hΓ)2/1012M⊙, where Γ is
the parameter which describes the shape of the power spectrum (typically Γ ≈
Ωh), and p = 0.0873.

5.3 Discussion

Lacey and Cole (1993) defined the formation time of an object as the earliest
time when at least half its mass was assembled into a single progenitor. We
clarified the relation between this definition of formation time, and a quantity
which arises in binary merger models of clustering (see Appendix B). We have
shown that insertion of spherical collapse based expressions in Lacey & Cole’s
(1993) formalism for halo formation underestimates the redshifts of halo for-
mation; this is consistent with previous work Lin et al. (2003). Ellipsoidal col-
lapse based expressions are a marked improvement: although they result in for-
mation redshift distributions which are broader than seen in simulations (Fig-
ures 5.2 and 5.3), they predict the median formation redshift quite well (Fig-
ure 5.4 and 5.5).

The fact that our predicted formation time distributions are broader than
those seen in the simulation can be traced back to the fact that the low redshift
progenitor mass functions from the excursion set approach are not in partic-
ularly good agreement with the simulations. This is similar to the findings of
Sheth and Tormen (2002), who noted that some of the discrepancy was almost
certainly due to the idealization that the steps in the excursion set walks are un-
correlated. Recent work has shown that there is some correlation between halo
formation and environment (Sheth and Tormen, 2004; Gao et al., 2005; Harker
et al., 2006; Wechsler et al., 2006) – this almost certainly indicates that a model
with uncorrelated steps will be unable to provide a better description of the sim-
ulations. Nevertheless, the fact that the median formation redshifts are quite
well reproduced by our model does represent progress.
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Although the exact expressions associated with our models are complicated,
we was able to find a useful fitting formula for the median formation redshift,
equation (5.12), which we hope will be useful in studies which relate the forma-
tion times of haloes to observable quantities.





Substructure Population in Dark
Matter Haloes





CHAPTER

6
Analytical Approach to Subhalo
Population in Dark Matter
Haloes

The present-day description of the universe includes the presence of a large
amount of cold dark matter (CDM) whose nature and distribution is unknown.
This Dark Matter (DM) provides about 26% of the energy budget of the universe.

The amount and properties of CDM is well constrained by astrophysical ob-
servations such as the anisotropies in the Cosmic Microwave Background, large
scale structure and distant type I A supernovae (Spergel et al., 2003; Astier et al.,
2006; Tegmark et al., 2006). On the other hand, two main open questions arise.
The first concerns the particle physics nature of the CDM. Weakly interacting
massive particles (WIMPs) are attractive candidates since their relic abundance
can fit the observed one (Dimopoulos, 1990). Stable neutralinos in supersym-
metric extensions of the standard model (SUSY) (Jungman et al., 1996; Bertone
et al., 2005) or Kaluza-Klein particles (KKP) in theories with a TeV−1 size uni-
versal extra dimension (Appelquist et al., 2001; Servant and Tait, 2003) are the
most commonly studied particles. Since these particles have never been ob-
served, there is a large uncertainty on the prediction of their effects which has
to be taken into account. The other open question regards the distribution of
DM inside the haloes. Numerical N-body simulations (Navarro et al., 1997; Die-
mand et al., 2004; Navarro et al., 2004), whose scale resolution is about ∼ 0.1kpc,
allow solely an extrapolation of the very inner slope of the DM profile and do not
take into account interactions with the baryons which fall in the DM potential
well or the presence of inner cores (Berezinsky et al., 2003) or the controverse
effect of the presence of a black hole at the centre of the halo (Ullio et al., 2001;
Bertone and Merritt, 2005; Merritt et al., 2002). Experimental data on DM dis-
tribution in the haloes of galaxies and clusters are not conclusive too (see, i.g.,
the discussion in Fornengo et al. (2004)). In the hierarchical formation scheme
of the CDM scenario, large systems are the result of the merging and accretion of
smaller haloes (subhaloes), whose dense central cores would survive the merg-
ing event and continue to orbit within the parent halo, as shown by high resolu-
tion N-body simulations (Moore et al., 1999; Ghigna et al., 2000; Blasi and Sheth,
2000). CDM models are characterized by an excess of power on small scales. The
arising divergence of the linear density contrast at large wavenumbers has been
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proved to be damped by collisional processes and free streaming, respectively
before and after kinetic decoupling, leading to exponential damping of the linear
CDM density contrast and to the existence of a typical scale (Jeans scale) for the
first haloes corresponding to a Jeans mass about 10−6 M⊙ (Hofmann et al., 2001;
Green et al., 2004, 2005). Numerical simulations have indeed reproduced hierar-
chical clustering in CDM cosmologies with a mass resolution sufficient to resolve
the Jeans mass (Diemand et al., 2005) with particle mass mp = 1.2× 10−10 M⊙
and force resolution of ǫ = 0.01 pc; however such a high resolution run could
be evolved only to z = 26, in a very small spatial patch, and producing haloes of
mass [10−6,10−4] M⊙.

Among the simulations evolved on larger scales and to redshift z = 0, present
milestones are the Millennium Simulation (Springel et al., 2005) and the Via
Lactea Simulation (Diemand et al., 2007a). The first is a cosmological N-Body
run with over 10 billion particles in a cubic region 500 Mpc/h on a side (particle
mass mp = 1.23×109M⊙; force resolution ǫ= 7 kpc); the second was done to ob-
tain a simulated Milky Way with the highest possible mass resolution (particle
mass mp = 2.09×103M⊙; force resolution ǫ= 90 pc). However a simulation with
the mass and force resolution similar to that of (Diemand et al., 2005), evolved to
redshift zero over a region containing a mass comparable to that of our Galaxy
would require about 1020 particles and a time resolution of a few years. Such
requirements are way beyond the computational capabilities of present-day su-
percomputers: applying Moore’s law and starting from present day state-of-the-
art, a run like this could be performed in roughly 50 years from now.

A reasonable alternative is to study the clustering properties of Milky Way-
like systems through an analytical approach. We use the fact that the proba-
bility that a halo of mass m at redshift z will be part of a larger halo of mass
M at the present time is described by the progenitor conditional mass function
f (m, z|M , z0 = 0), according to the so-called extended Press & Schechter the-
ory. Using the progenitor mass function, we can calculate analytically, at red-
shift zero, the distribution of subhaloes in mass, formation epoch and rarity of
the peak of the density field at the formation epoch. That is done for a Milky
Way-size system, assuming both a spherical and an ellipsoidal collapse model.

Numerical simulations described in Diemand et al. (2005) show that the dis-
tribution of material originating from the earliest branches of the merger tree
within the present day haloes depends on the σ-peaks of the primordial density
fluctuation field it belonged to. We extend their numerical results by performing
an analytical estimate of the density peaks distribution as a function of the halo
mass traced back to the smallest scale haloes, thus avoiding the limitation im-
posed by numerical simulations. In this way we obtain a realistic estimate of the
distribution and mass function of the whole population of subhaloes.

Such an analytical estimate can provide a powerful tool to take into account
the effect of early high-density peaks in present day haloes.

This is particularly important in the framework of dark matter indirect detec-
tion, since a high σ-peak halo translates into a higher concentration and thus a
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higher value for the density squared which has to be integrated along the line of
sight to obtain a prediction for particle fluxes coming from dark matter annihi-
lation.

Given some model for the hierarchical formation of our Galaxy, and for the
internal structure of subhaloes, DM may be in fact indirectly detected using an-
nihilation rates predicted from particle physics (Bergström, 2000; Bertone et al.,
2005) through the observation of high density point-source or extended regions
inside our Galaxy. If we restrict ourselves to γ-ray observations, these can be ob-
tained using either atmospheric Cerenkov telescopes (Weekes et al., 1997; Aharo-
nian et al., 1997; Baixeras, 2003) or satellite-borne detectors like GLAST (Morselli,
1997). The detectability of DM substructures with GLAST has been widely dis-
cussed in the literature (see, e.g. Pieri et al. (2007) and references therein). The
small mass haloes have been found to give the main contribution to an unre-
solved γ-ray foreground arising from DM annihilation, while their detection as
resolved objects has been proved to be very unlike. Indeed the unresolved sub-
halo foreground is prominent above the MW smooth foreground far from the
Galactic Center, where the overall flux is still too low to be detected.

In this work we apply the analytical derivation of the subhalo population
properties, such as the σ-peak distribution, on the indirect detection of γ-rays.
We thus study the possibility that high σ-peak material could arise the fore-
ground level above the detectability threshold of a GLAST-like large field of view
satellite.

As in Pieri et al. (2007), we use different models for the virial concentration of
subhaloes.

6.1 Extended Press & Schechter theory: from Progenitors to
Subhaloes

In the hierarchical picture of galaxy formation, structures up to protogalactic
scale grow as a consequence of repeated merging events. Smaller systems col-
lapse at high redshifts, when the universe is denser, and subsequently assemble
to form bigger and bigger haloes (Lacey and Cole, 1993). This merging history is
often represented by the so called ”merger tree”.

Smaller systems accreted onto a larger halo along its merging-history-tree
and still surviving at a later time are called ”substructures” or ”subhaloes” (Ghigna
et al., 1998; Tormen et al., 2004; Gao et al., 2004; De Lucia et al., 2004; van den
Bosch et al., 2005). In what follows we will discuss an analytical approach to de-
rive the mass function of subhaloes. We will use the simplifying assumption that
no tidal stripping nor merging events among substructures happen. In this ap-
proach the mass of each subhalo remains constant in time, and equals the origi-
nal virial mass (Eke et al., 1996) of the progenitor halo at the considered redshift.
A similar study was carried out by Sheth (2003), who calculated the subhalo mass
function using the creation rate of the progenitors of a present day dark matter
halo; our approach is different: we derive the subhalo mass function from the
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entire population of progenitors (as shown by eq. 6.3), in order to allow a direct
comparison with the N-Body results of Diemand et al. (2005).

Conditional Mass Function

Let us consider a halo with virial mass M at some final redshift z0. According to
the hierarchical picture of galaxy formation, going backward in time the halo will
be splitted in smaller and smaller systems, called ”progenitors”. Mass conserva-
tion tells us that the sum of all masses of progenitor haloes at any given redshift
equals the mass of the halo at z0. Let us define the conditional mass function
f (m, z|M , z0)dm as the fraction of mass belonging to haloes with mass between
m and m+dm at redshift z, which are progenitors of a halo of mass M (a M-halo)
at a later redshift z0.

Assuming the spherical collapse model (Press and Schechter, 1974), we can
express m and z as a function of the new variables s and δsc and write the con-
ditional mass function, as in equation 4.6, that is:

f (s,δsc |S,δsc,0)ds =
δsc −δsc,0p

2π(s −S)
exp

{

−
(δsc −δsc,0)2

2(s −S)

} ds

s −S
, (6.1)

where s = σ2(m) is the square of the mass variance of a m-halo, and δsc is
the spherical collapse overdensity at redshift z. S and δsc,0 are the mass variance
of an M-halo and the spherical collapse overdensity at the present time, respec-
tively. To compute the mass variance we have chosen a power spectrum with
primordial spectral index n = 1, and a transfer function obtained from CMB-
FAST (Seljak and Zaldarriaga, 1996) for a concordance ΛCDM universe (Ωm , ΩΛ,
h = 0.3, 0.7, 0.7) with σ8 = 0.772, extended down to a mass M = 106M⊙/h.

We have integrated this power spectrum using a top-hat filter in real space.
To obtain the mass variance until the typical Jeans neutralino mass we linearly
extrapolate the log(m)-s relation to M = 10−6M⊙/h.

Over the last ten years N-Body simulations have shown that the collapse of
dark matter haloes is actually not well described by an isolated spherical model;
the influence of surrounding proto-haloes can be reproduced using an ellip-
soidal model (Sheth et al., 2001; Sheth and Tormen, 2002), as discussed also in
Section 4.4.

In the excursion set approach, the progenitor mass function of a halo is de-
scribed by the conditional probability of first upcrossing distribution. Such a
probability is well fitted by a random walk in the plane (s, δ), starting from (S,
δsc,0) (Bond et al., 1991). Assuming a moving barrier, as in equation (3.27) – with
q = 0.707, β = 0.5 and γ = 0.6 – an approximate solution for the diffusion equa-
tion is as follows:

f (s,δsc |S,δsc,0)ds =
|T (s,δsc |S,δsc,0)|

p
2π(s −S)

× (6.2)

exp
{

−
[B(s,δsc )−B(S,δsc,0)]2

2(s −S)

} ds

s −S
,
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Figure 6.1: Ellipsoidal (solid curve) and spherical (dotted curve) conditional mass func-
tion computed for a present-day dark matter halo with mass 1012M⊙/h and for five dif-
ferent redshifts.

with T (s|S):

T (s,δsc |S,δsc,0) =
5

∑

n=0

(S − s)n

n!

∂n[B(s,δsc )−B(S,δsc,0)]

∂sn
.

In Figure 6.1 we show the conditional mass function at five different redshifts
for a halo with present-day mass M = 1012M⊙/h, both for the spherical (dotted
curves) and ellipsoidal (solid) collapse prediction. It can be observed that the
halo is splitted in smaller and smaller progenitors at higher redshifts; discrepan-
cies between the two models depend both on mass and on redshift.

Comparing the two prediction at fixed redshift, one can note that the spher-
ical model predicts more progenitors at intermediate mass, and fewer at both
very small and very large masses, compared to the ellipsoidal model (Sheth and
Tormen, 2002). In other words, the two predictions cross each others in two
points, although these crossings do not necessarily fall in the range of masses
plotted in the figure.

A direct consequence of this is that massive progenitors exist at higher red-
shifts in the ellipsoidal collapse, and the distribution of formation redshifts (de-
fined as the earliest epoch when a halo assembles half of its final mass in one
system) is consequently shifted to earlier epochs (Giocoli et al., 2007).
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From f (s,δsc |S,δsc,0)ds we can write the total number of progenitors at any
given redshift as:

N (m,δsc |M ,δsc,0)dm =
M(S)

m(s)
f (s,δsc |S,δsc,0)ds . (6.3)

Considering a scale free power spectrum P (k) ∝ kn , the mass variance scales
as s(m) ∝ m−(n+3)/3, and the number of progenitors can be explicitly written in
terms of s:

N (m,δsc |M ,δsc,0)dm =
( s

S

)(n+3)/3
f (s,δsc |S,δsc,0)ds . (6.4)

Number of Progenitors

Integrating eq. (6.3) over mass we obtain the total number of progenitors in the
given mass interval, as a function of redshifts:

dN (z,∆m) =
∫m f

mi

N (m,δsc |M ,δsc,0)dm =N(z)
∣

∣

∣

m f

mi

, (6.5)

where mi and m f represent the bounds of the interval. For a white-noise power
spectrum (scale free with n = 0) and a spherical collapse mass function, a prim-
itive of this integral can be written as:

N(z) =
1

S
p

2π

{

e
−

(δsc −δsc,0)2

2(s −S) (6.6)

[

2
p

s −S(δsc −δsc,0)−e

(δsc −δsc,0)2

2(s −S)

p
2π[S − (δsc −δsc,0)2]erf

(δsc −δsc,0p
2(s −S)

)]

}

.

In Figure 6.2 we show the total number of progenitors in five different mass
decades, for a halo with mass M = 1012M⊙/h at z0, as a function of redshifts.
We have assumed a concordance ΛCDM power spectrum and have integrated
eq. (6.3) numerically. The solid lines represent the prediction for the ellipsoidal
collapse model while the solid ones refer to the ellipsoidal model. From top
to bottom the curves represent the following mass bins: [h 10−6,10−5], [10−1,1],
[102,103], [106,107] and [109,1010], all but the first expressed in term of M⊙/h.

It can be observed that the spherical collapse, for a fixed mass bin, underpre-
dicts the number of haloes at high redshifts compared to the ellipsoidal model.
We will see in the next sections that if we consider the variableν(z,m)= δsc (z)/σ(m),
for any given mass this will result in the inequality νec (m) > νsc (m).

6.2 Unevolved Subhalo Mass Function

The progenitors mass function, integrated over δsc , gives the total number of
progenitors of mass between m and m +dm that a halo of final mass M has had
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Figure 6.2: Total number of progenitors in a given mass bin, as a function of redshifts, for
a present day halo with mass M = 1012 M⊙/h. For each mass bin we show the prediction
for spherical (dotted curves) and ellipsoidal (solid curves) collapse models.

at all times:
dN (m)

dm
=

∫∞

δsc ,0

M

m
f (s,δsc |S,δsc,0)dδsc ; (6.7)

in the case of the spherical collapse this integral results in:

dN (m)

dln(m)
=

M
p

2π

|ds/dm|
p

s −S
∝ m−α , (6.8)

with α≈ 1 for a LCDM power spectrum. Since the same system may be a progen-
itor of the same final halo at more than one redshift, integrating the progenitor
mass function overcounts the total number of progenitors. The result of this in-
tegration must then be properly re-normalized by imposing the constrain com-
ing from (Diemand et al., 2005) that roughly 10% of the total Milky Way mass
(M = 1012M⊙/h) is in systems with mass ranging from 107 to 1010 M⊙/h:

∫10−2

10−5

m

M
dn = 0.1 (6.9)

In Figure 6.3 we plot the differential mass distribution of subhaloes in a 1012 M⊙/h

(Milky Way-like) dark matter halo. The distribution has a power law behaviour
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Figure 6.3: Differential distribution of subhaloes in a 1012 M⊙/h dark matter halo. The
distribution has a slope approximately equal to 1 and has been normalized considering
that 10% of the total mass is in subhaloes with mass from 107 to 1010 M⊙/h.

approximately described by the relation:

dN (m)

dm
= Am−γ , (6.10)

with γ ≈ 2 for both the spherical and the ellipsoidal collapse model, respec-
tively1. Once fixed the normalization factor, we find that the differential distri-
bution of the subhaloes is independent on the mass of the progenitor halo, M ,
considering all the progenitors with mass from 10−6 M⊙ to m/M = 0.01.

Progenitor σ-peaks in the Host Halo

Using high resolution N-Body simulations, Diemand et al. (2005) studied the
spatial distribution - at z = 0 - of matter belonging to high redshift progeni-
tors of a given system. They found that this distribution mainly depends on the
rareness of the density peak corresponding to the progenitor, expressed in terms
of ν = δsc /σ(M , z), and is largely independent on the particular value of z and
M : matter from high ν progenitors ends up at smaller distances from the center
of the final system.

1A least-squares fit on the points gives γsc =−1.9972±0.0001 and γec =−1.9937±0.0003.
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Figure 6.4: Progenitor mass function integrated over all redshifts. In the top panel we
show the distribution for all the masses, while in the bottom panel we consider only
progenitors in the first and last subhalo mass decades.
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We can understand this in term of the revised secondary infall (Quinn and
Zurek, 1988; Zaroubi et al., 1996): the formation of haloes in N-Body simula-
tions preserves ranking of particle binding energy, that is, particles in the cores
of progenitor haloes will end up in the core of the final system. Equally, parti-
cles from progenitors accreted at earlier times, hence possessing more negative
initial binding energies, will likely have a more negative final energy, and so be
more centrally concentrated than average matter.

At fixed redshift (hence at fixed δsc ), higher mass progenitors have a larger ν,
are more self-bound than smaller mass ones, and thus end up closer to the cen-
ter of the final system. Analogously, for a fixed progenitor mass, higher redshift
progenitors have a larger δsc , hence a larger ν; since at higher redshift the uni-
verse is denser, they also are more self-bound than lower redshift siblings, and
so end up closer to the center of final system.

In Figure 6.4 we plot the subhalo mass function in terms of ν. To compute
the factor ν for each progenitor we integrated the total number of progenitors in
a given mass bin (eq. 6.5), at all redshifts. In the top panel we consider all the
progenitors at all redshifts, with mass in the full range h10−6 to 1010 M⊙/h; in the
bottom panel we show the similar distribution only for the smallest and larger
decade of the progenitors mass.

6.3 γ-ray Flux from Galactic Substructures

Modeling the Galactic Halo and its Substructures

We model the distribution of DM in our Galaxy after Diemand et al. (2005).
For the smooth component of the Milky Way we use the best fit to the high reso-
lution numerical experiments of Diemand et al. (2005):

ρχ(r ) =
ρs

(

r
rs

)γ [

1+
(

r
rs

)α](β−γ)/α
(6.11)

with (γ,β,α) = (1.2,3,1). The scale radius rs and density ρs , are constrained
by the virial properties of the halo. Following Diemand et al. (2005) we adopt
rs = 26kpc, while ρs has to be normalized to the virial mass of the smooth DM
halo. We include a physical cutoff rcut = 10−8kpc which represents the distance
at which the self-annihilation rate equals the dynamical time of spike formation.

We shape the spatial distribution of subhaloes according to the fact that it
traces the mass distribution of the parent halo from Rv down to a minimum ra-
dius rmi n(M) where tidal effects become important. We use eq. (6.11) together
with the fact that the dependence from the initial conditions when the haloes ac-
creted onto the present-day Milky Way halo is set through the parameter ν(M).
We then use the parametrization obtained in Diemand et al. (2005):

rs −→ rν = fνrs

fν = exp(ν/2)
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β−→βν = 3+0.26ν1.6 (6.12)

This parametrization reflects the fact that material accreted in areas with high
density fluctuations is more concentrated toward the centre of the galaxy, and
has a steeper outer slope. We also use the mass function derived in Sec. 6.1 to
model the number density of subhaloes per unit mass at a distance r from the
GC, for a given ν(M):

ρsh(M ,r,ν) =
AM−2θ(r − rmi n(M))

(

r
rν(M)

)γ [

1+
(

r
rν(M)

)α](βν−γ)/α
, (6.13)

in units of M−1
⊙ kpc−3. The mass dependence in rν depends reflects the mass

dependence of the virial parameter rs = Rv /cv . The effect of tidal disruption is
taken into account through the step function θ(r − rmi n(M)), where rmi n(M) is
estimated following the Roche criterion. A is a normalization factor obtained by
imposing that 10% of the MW mass is distributed in subhaloes with masses in
the range 107 −1010M⊙ (Diemand et al., 2005) as in Sec.6.1.

As a result about 50% of the Milky Way mass is contained within ∼ 2× 1016

subhaloes in the mass range [10−6,1010]M⊙. The solar neighborhood density is
∼ 280pc−3, mainly constituted by haloes with mass of 10−6M⊙. The halo closest
to the Earth is expected to be located ∼ 9.5×10−2pc away.

The remaining 50% of the Milky Way mass is assumed to be smoothly dis-
tributed, and we use this half mass value to normalize ρs in eq. (6.11).

Few constraints exist on the density profile of each subhalo. Numerical sim-
ulations (Diemand et al., 2005, 2006, 2007b) suggest they were formed with a
NFW profile, which is described by eq. (6.11) with (γ,β,α) = (1,3,2). Even if sub-
haloes probably underwent tidal stripping and consequent mass loss after merg-
ing, their higher central density should prevent the inner regions from being af-
fected. Pieri et al. (2007) explored different possibilities for the concentration
parameter cv = Rv /rs , where Rv is defined as the radius at which the mean halo
density is 200 times the critical density. Following their guidelines, we use two
models for the concentration cv: we assume that the inner structure of subhaloes
is either fixed at the time they merge onto the parent halo (z-labeled model) or
that it evolves with redshift until the present time (0 model). In model Br e f ,0

the NFW concentration is computed at z = 0 according to Bullock et al. (2001)
(hence the prefix B), and extrapolated to low masses. In model Br e f ,z , the val-
ues of cv (M , z) are obtained from those at z = 0 using the evolutionary relation
cv (M , z) = cv (M , z = 0)/(1+z), where the merging redshift z is determined by the
knowledge of the value of ν assigned to each progenitor. Therefore, subhaloes
are much denser in model Br e f ,z than in model Br e f ,0.

The values cv thus found refer to progenitors formed from average density
fluctuations (ν = 1σ peaks of the fluctuation density field). However, haloes
with equal mass at redshift z1 may have assembled at different previous epochs;
specifically, if we call zi > z1 the redshift of mass assembly for progenitors ob-
served at redshift z1, the amplitude of the initial density fluctuations producing
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the progenitors is an increasing function of zi . Therefore, their concentration
c(M , z) is also an increasing function of the peak amplitudeν. To account for this
effect, we use the relation cv (M ,ν) = ν(M)cv (M ,ν = 1), which has been tested
against simulations by Diemand et al. (2005).

Modeling the γ-ray Flux from Dark Matter Annihilation

We model the photon flux from neutralino annihilation in the population of
galactic subhaloes following Pieri et al. (2007). Given a direction of observation
defined by the angle–of–view ψ from the Galactic Center, and a detector with
angular resolution θ, the γ-ray flux can be parametrized as:

dΦγ

dEγ
(Eγ,ψ,θ) =

dΦ
PP

dEγ
(Eγ)×Φ

cosmo(ψ,θ) (6.14)

The particle physics dependence in eq. (6.14) is given by the annihilation spec-
trum and DM properties and is embedded in the term:

dΦ
PP

dEγ
(Eγ) =

1

4π

σannv

2m2
χ

·
∑

f

d N
f
γ

dEγ
B f . (6.15)

mχ is the DM particle mass, σannv is the self–annihilation cross–section times

the relative velocity of the two annihilating particles, and d N
f
γ /dEγ is the differ-

ential photon spectrum for a given final state f with branching ratio B f , which
we take from Fornengo et al. (2004).

The line–of–sight integral defined as:

Φ
cosmo(ψ,∆Ω) =

∫

M
d M

∫

ν
dν

∫∫

∆Ω

dθdφ

∫

l.o.s
dλ

∫

c
dc

[ρsh (M ,R(R⊙,λ,ψ,θ,φ),ν)×P (ν(M))×P (c(M))×

×Φcosmo
hal o (M ,r (λ,λ′,ψ,θ′,φ′),ν,c)× J (x, y, z|λ,θ,φ)] (6.16)

accounts for the influence of cosmology in the flux computation. ∆Ω is the
solid angle defined by the angular resolution of the instrument, J (x, y, z|λ,∆Ω)

is the Jacobian determinant, R =
√

λ2 +R⊙
2 −2λR⊙C , is the galactocentric dis-

tance and r is the radial distance inside the single subhalo. R⊙ is the distance
of the Sun from the galactic center and C = cos(θ)cos(ψ)− cos(φ)sin(θ)sin(ψ).
P (ν(M)) is the probability distribution function for the peak rarity ν(M) calcu-
lated using the extended Press-Schechter formalism. P (c(M)) is the lognormal
probability distribution for c centered on cv (M) as it is computed in our models.
While P (ν(M) is determined by the merging history of each subhalo, P (c(M)) de-
scribes the scatter in concentration for haloes of equal mass (Bullock et al., 2001;
Neto et al., 2007); therefore the two probabilities may be assumed independent.
The single halo contribution to the total flux is given by

Φ
cosmo
hal o (M ,r,ν,c) =

∫∫

∆Ω

dφ′dθ′
∫

l.o.s
dλ′
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[

ρ2
χ(M ,r (λ,λ′,ψ,θ′φ′),ν,c)

λ2
J (x, y, z|λ′,θ′φ′)

]

. (6.17)

This equation is also used to derive the contribution of the smooth component
of the MW itself.

Eq. (6.16) gives the average subhalo contribution to the Galactic annihilation
flux within ∆Ω along the direction ψ.

This contribution is shown in Fig. 6.5, together with the MW smooth halo
component obtained with eq. (6.17), for the two models considered in this anal-
ysis, for ∆Ω = 10−5sr, corresponding to an experimental angular resolution of
0.1◦. The sum of the MW smooth and clumpy diffuse contributions is shown as
well. We define this sum as our ”annihilation signal”, which will be multiplied by
eq. (6.15) to obtain the predicted γ-ray diffuse flux from neutralino annihilation
in our Galaxy. In the small box we show a zoom at small angles of the annihila-
tion signal and we superimpose the signal obtained in Pieri et al. (2007) for two
similar models (we refer to their paper for the detailed explanation of models).
Our models give a higher flux at the Galactic Center, where the signal is domi-
nated by the MW smooth contribution. This is due to the different MW profile
adopted. Yet, we find one order of magnitude of enhancement at the GC in the
subdominant subhalo contribution as well, due to the presence of P (ν(M)) in
our determination of flux. Since more concentrated haloes are closer to the GC
in our approach, the enhancement is greater close to the GC: indeed, at the anti-
center it goes down to a factor 2.

We have used the P (ν(M)) for the ellipsoidal collapse in eq. (6.16). We have
checked that using the corresponding probability function for the spherical col-
lapse does not change the result on Φ

cosmo . This is due to the fact that the main
difference between the two models resides at small values of ν. A small ν gives
low concentration parameter and its contribution to eq. (6.17) is then depressed
with respect to that of a haloes with a higher ν.

Normalization to EGRET Data

In order to make predictions on detectability, we impose the best value of ΦPP

compatible with the available experimental limits. As in Pieri et al. (2007), we
first assume the optimistic model where mχ = 40 GeV , σannv = 3×10−26 cm3 s−1

and the branching ratio is 100% in bb̄. We then integrate eq. (6.15) above 3 GeV.
This choice of parameters gives a value ofΦPP = 2.6×10−9cm4kpc−1GeV−2 sec−1 sr−1.
We then compute the expected number of photons above 3 GeV in 1 year for
a solid angle of 10−5sr corresponding to the angular resolution of a GLAST-like
satellite. The result for the Br e f ,0 (dashed curve) and Br e f ,z(dotted) models is
shown in Fig. 6.6.

We compare the obtained number of events with the EGRET data for the dif-
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Figure 6.5: Subhalo contribution to the γ-ray flux for the two different models for the
concentration parameters described in the text. MW smooth and clumpy contributions
are shown separately, together with their sum. In the small box, zoomed at small an-
gles from the Galactic Center only the sum is shown, and it is compared with the values
obtained in Pieri et al. (2007).

fuse Galactic component parametrized according to Bergström et al. (1998)

dφ
gal−γ
diffuse

dΩdE
= N0(l ,b) 10−6 E−2.7

γ

γ

cm2 sec srGeV
, (6.18)

and with the diffuse extragalactic γ emission, as extrapolated from EGRET data
at lower energies (Sreekumar et al., 1998):

dφ
extra−γ
diffuse

dΩdE
= 1.38×10−6E−2.1 γ

cm2 sec srGeV
. (6.19)

The normalization factor N0 in eq. (6.18) depends only on the interstellar mat-
ter distribution. The resulting number of photons above 3 GeV in 1 year for
∆Ω = 10−5sr, computed along l = 0 where its value is minimum, is shown in
Fig. 6.6 (solid curve).
We find an excess of annihilation signal photons toward the Galactic centre in
both models. Yet, the angular resolution of EGRET corresponding to∆Ω= 10−3sr
does not allow to reconstruct a spiky source as it is ours. We have checked that,
if we compute the number of annihilation signal photons toward ψ= 0 smeared
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Figure 6.6: Number of photons above 3 GeV, in 1 year in a solid angle of 10−5sr. The
annihilation signal models Bre f ,0 (dashed) and Bre f ,z (dotted) are shown together with
the EGRET diffuse expected Galactic and extragalactic background (solid), as a function
of the angle of view ψ from the Galactic Center.

in a cone of view of 1◦, it is below the number of EGRET detected photons for the
same angular resolution.
Yet, the Br e f ,z model exceeds the extragalactic diffuse measured background too,
which is dominant above ψ = 40◦. Since the extragalactic background is not
due to any point source, we safely expect that it will scale with the solid an-
gle. The number of annihilation signal photons produced in the Br e f ,z model
should then be less or at most comparable with the number of measured back-
ground photons. We make the optimistic assumption that the two numbers are
comparable at ψ= 40◦ where the discrepancy is larger, and we thus fix Φ

PP
Bre f ,z

=
2.0×10−9cm4kpc−1GeV−2 sec−1 sr−1 for the Br e f ,zmodel, correctly normalized to
EGRET data, while we keep Φ

PP
Bre f ,0

= 2.6×10−9cm4kpc−1GeV−2 sec−1 sr−1 for the

Br e f ,0 model.

6.4 Prospects for Detection

In this section we study the sensitivity of a GLAST-like apparatus for 1 year of
effective data taking.
We define the experimental sensitivity σ as the ratio of the number nγ of annihi-
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lation signal photons and the fluctuation of background events nbkg:

σ ≡
nγ

p
nbkg

(6.20)

=
√

Tδǫ∆Ω

∫

Aeff
γ (E ,θi )[dφ

signal
γ /dE dΩ]dE dΩ

√

∫
∑

bkg Aeff
bkg(E ,θi )[dφbkg /dE dΩ]dE dΩ

where Tδ = 1 year is the effective observation time and φbkg is the background
flux given by eqs. 6.18 and 6.19, computed along l = 0, that we assume to be com-
posed by astrophysical photons only. The quantity ǫ∆Ω is the fraction of signal
events within the optimal solid angle ∆Ω corresponding to the angular resolu-
tion of the instrument and it is optimistically set to 1. Aeff is the effective de-
tection area defined as the detection efficiency times the geometrical detection
area. We use Aeff = 104cm2, independent from the energy E and the incidence
angle θi . Finally we assume an angular resolution of 0.1◦ and an energy thresh-
old of 3 GeV.

The resulting sensitivity curves as a function of the angle of view ψ are shown
in Fig.6.7 for the Br e f ,0 (solid curve) and Br e f ,z (dotted) annihilation signal mod-
els. In the small box a zoom at GC is shown. An almost 2 σ around 10◦ is found
for the Br e f ,z model. The same model would be detected at about 30 σ at the
Galactic Centre. As far as the Br e f ,0 model is concerned, it would show up with
∼ 40σ effect toward the GC, that would rapidly fall down 1 σ after 0.5◦. A 5 σ

detection at the Galactic Center would be possible for both models with a value
of ΦPP even 6 times lower. In case of a striking excess detection along the GC,
a milder excess a larger angles could be a hint for the discrimination about the
models, though no discovery could be claimed.

Pieri et al. (2007) studied the detectability of resolved haloes which would
shine above the Galactic foreground, finding in their best case scenario that only
a tenth of large mass haloes would be detected, with a mass slope of -2 for the
halo mass function.

Repeating their analysis is beyond the goal of this work. Yet we note that
the effect of including the P (ν(M)) factor in eq. (6.16) with respect to the con-
centration models in Pieri et al. (2007) leads to an enhancement of the Galactic
foreground. We thus expect that including P (ν(M)) will be compensated by the
increased foreground and we do not expect a dramatic change in the number of
detectable haloes.
As a further test, we have computed the sensitivity of a GLAST-like experiment
for a Br e f ,zhalo once ΦPP has been normalized to the EGRET data. We chose
the closer M = 10−6M⊙ halo, located at 9.5 × 10−2pc from the sun. We chose
ν = 2.4 given from the probability of finding 1 halo with such a value in a 1
pc3 sphere around the sun. We conservatively considered only the astrophys-
ical background in eq. (6.21), while the annihilation signal foreground should
be considered too. Even in these very optimistic hypothesis, we found that the
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Figure 6.7: Sensitivity curves for a GLAST-like experiment, for the Bre f ,0 (solid) and the
Bre f ,z (dotted) models described in the text. A zoom at small angles is provided in the
superimposed frame.

source would produce a 5 σ effect only furtherly multiplying by a factor of 4 the
concentration parameter. This could be achieved using the lognormal probabil-
ity P (c(M)) but with a ridiculously small probability.
We conclude that the effect of introducing the P (ν(M)) can only be observed in
a global enhancement of the diffuse Galactic annihilation foreground.

6.5 Discussion

In this work we have, for the first time, derived an analytical description of the
mass function and distribution of rareness of density peaks in the subhalo pop-
ulation of our Galaxy, applying the extended Press & Schechter formalism. To
make the calculation possible, tidal interactions and close encounters between
subhaloes have been neglected. Very small (micro solar mass) subhaloes are ex-
tremely concentrated, therefore, at least for them, our approximation is a rea-
sonable one.

The obtained results are valid over the whole range of subhalo masses [10−6,1010]M⊙
and thus confirm and extend the results of the N-body simulations, whose reso-
lution is still far too low in order to simulate coherently this mass range.

Making use of the results of Diemand et al. (2005) on the distribution of dif-
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ferent σ-peak material inside our Galaxy, we have been able to shape and model
the total expected annihilationγ-ray foreground, statistically taking into account
the merging history of each progenitor.

We have used the best case particle physics scenario to derive predictions for
the detectability of such a signal with a GLAST-like experiment. We have shown
how both the merging history and the intrinsic properties of the halo formation
can contribute to an enhancement of the expected flux, by arising the inner con-
centration of subhaloes. Yet the real concentration of the single subhalo today
remains an open question. We use two models which result in very different
inner densities inside the haloes. In the first model we assume that the inner
shells of the subhaloes remain frozen at the moment they enter the parent halo
and thus compute the concentration parameter at the merging epoch, as it is de-
rived in our calculations. Alternatively we assume that the subhaloes continue
to evolve with redshift, and thus compute the halo properties today. We use the
Bullock et al. (2001) model for the concentration parameter at z = 0, extrapo-
lated at low masses. We refer to Pieri et al. (2007) for the effect of using different
models.

Our results on detectability show that a detection would be possible and im-
pressive toward the GC for both models. This detection would be mainly due
to the spike in the MW halo at the GC. Unfortunately, a reliable modeling of the
astrophysical background coming from the GC and of the effect of the central
Super Massive Black Hole on the inner DM density profile are still poorly known.

A 2-σ effect would show up as well, around ∼ 10◦ from the GC, only for the
Br e f ,zmodel. Though no discovery could be claimed for, this could be a signif-
icant hint for the existence of such a population of subhaloes, and it would be
propulsive for successive studies with upcoming experimental technologies.

A final note on the methodology. In the present work we derived the final
subhalo mass function starting from all progenitor haloes at any redshift. We
did so in order to directly compare our analytical results to the results obtained
by Diemand et al. (2005) using N-Body simulations. However, the subhalo popu-
lation should indeed be derived starting from the population of ”satellite haloes”
directly accreted by the proto-halo (also called main progenitor) at all previous
times (Tormen, 1997), since only a fraction of progenitors at redshift z merge di-
rectly with the main halo progenitor. Unfortunately, the mass function of satel-
lite haloes cannot be obtained analytically: it requires Monte Carlo simulations
of the merging history tree of halo formation (Somerville and Kolatt, 1999; van
den Bosch, 2002; van den Bosch et al., 2005). We are currently working on this
issue (Giocoli, Pieri, Sheth & Tormen, in prep.), and it will be interesting to com-
pare the results obtained using the two methods.



CHAPTER

7
Subhaloes Mass Function and
Average Mass-Loss Rate

Understanding structure formation is a fundamental topic in modern cosmol-
ogy. In the current ΛCDM concordance cosmology, the matter density of the
Universe is dominated by cold dark matter (CDM), whose gravitational evolu-
tion gives rise to a population of virialized dark matter haloes spanning a wide
range of masses. Numerical simulations of structure formation in a CDM uni-
verse predict that these dark matter haloes contain a population of subhaloes,
which are the remnants of haloes accreted by the host, and which are eroded by
the combined effects of gravitational heating and tidal stripping in the potential
well of the main halo. In previous simulations, haloes falling into clusters usually
evaporated quickly, and the clusters exhibited little sign of substructures (Frenk
et al., 1996). In now appear that sufficient numerical force and mass resolution
is enough to resolve this “overmerging” problem.

Understanding the evolution of the subhalo mass function, as function of
cosmology, redshift, and host halo mass, is of paramount importance, with nu-
merous applications. For one, subhaloes are believed to host satellite galaxies,
which can thus be used as luminous tracers of the subhalo population. In partic-
ular, linking the observed abundances of satellite galaxies to the expected abun-
dance of subhaloes, provides useful insights into the physics of galaxy formation
(e.g., Moore et al., 1999; Bullock et al., 2000; Somerville, 2002; Kravtsov et al.,
2004; Vale and Ostriker, 2006). Studies along these lines indicate that galaxy for-
mation becomes extremely inefficient in low mass haloes, and suggest that there
may well be a large population of low mass subhaloes with no optical counter-
part (e.g., Moore et al., 1999; Stoehr et al., 2002; Kravtsov et al., 2004). In principle,
though, these truly ‘dark’ subhaloes may potentially be detected via γ-ray emis-
sion due to dark matter annihilation in their central cores (Stoehr et al., 2003;
Bertone, 2006; Koushiappas, 2006; Pieri et al., 2007; Diemand et al., 2007a), or via
their impact on the flux-ratio statistics of multiply-lensed quasars (e.g., Metcalf
and Madau, 2001; Dalal and Kochanek, 2002). Alternatively, these techniques
may be used to constrain the abundance of subhaloes, which in turn has im-
plications for cosmological parameters and/or the nature of dark matter. The
evolution of the subhalo mass function is also of importance for the survival
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probability of disk galaxies (e.g., Toth and Ostriker, 1992; Benson et al., 2004;
Stewart et al., 2007) and even has implications for direct detection experiments
of dark matter (e.g., Goerdt et al., 2007) Finally, understanding the rate at which
dark matter subhaloes loose mass has important implications for their dynam-
ical friction times, and thus for the merger rates of galaxies (e.g., Benson et al.,
2002; Zentner and Bullock, 2003; Taylor and Babul, 2004).

Despite significant progress in the last years, there are still numerous issues
that are insufficiently understood. What is the mass function of haloes accreted
onto the main progenitor of a present day host halo? How do the orbits and
masses of subhaloes evolve as they are subjected to dynamical friction, tidal
forces and close encounters with other subhaloes? How does this depend on the
properties of the host halo? In this work we address these questions using high-
resolution numerical simulations. We trace back the evolution of self-bound
substructures identified in present-day host haloes up to the point where they
are first accreted by the main progenitor of the host halo. Using this method we
are able to link the present-day population of subhaloes to the merging history
of the host system. We will show that larger systems, forming at lower redshifts
and so accreting their satellites more recently, contain at the end more subhaloes
than smaller hosts (see also Gao et al., 2004; van den Bosch et al., 2005).

7.1 The Simulations

The simulation used for this work are two cosmological N-Body simulations GIF,
GIF2 and a sample of resimulated Galaxy Clusters. These simulations have been
described in the section 4.2 of the Chapter 4. At each simulation snapshot has
been run the halo finder and all the groups with more than ten particles has been
stored. From redshift z = 0 we also followed the growth of all dark matter haloes
with M0 ≥ 1011.5M⊙/h as described in section 4.3 of the same chapter. The GIF2
simulation has been performed by Gao et al. (2004). In their work they used a
FOF algorithm, with a linking length b = 0.2 the mean interparticles separation.
In Figure 7.1 we show the mass function of the haloes as identified at three dif-
ferent snapshot in the simulation. We are also plotting (with filled triangle) the
data of the FOF mass function as obtained by Gao et al. (2004) at redshift z = 0.
The solid line is the Press and Schechter (1974) prediction (eq. 3.24) at the three
considered redshifts, while the dashed line is the Sheth and Tormen (1999) (eq.
4.3). To convert these distribution in term of the universal variable ν in a mass
function we took into account that:

M2 n(M , z)

ρ̄
= ν f (ν)

dlog(M)

dlog(ν)
. (7.1)

From the figure it is also interesting notice that at small masses the FOF algo-
rithm link together more groups of particles than the SO. To solve this problem
usually the people use to compute the density of each group of particles remov-
ing from the original list those that do not exceed for example the critical virial
overdensity (at redshift z = 0 for a ΛCDM universe is 324ρ̄).
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Figure 7.1: Mass function of identified dark matter haloes at three snapshots in GIF2
simulation. The open points refer to the mass function obtained using a SO algorithm
while the filled triangle to the FOF method used by Gao et al. (2004)

11.5-12 12-12.5 12.5-13 13-13.5 13.5-14 14-14.5 > 14.5

Resim. - - - - 21 17 10
GIF - - 2693 971 290 99 16
GIF2 8305 3349 1186 461 127 35 4

Table 7.1: Number of haloes considered in each logarithmic mass bin for the different
simulations. For GIF & GIF2 we considered all the halo with more than 200 particles in
their virial radius at redshift zero and whose main progenitor at any redshift has virial
mass not exceeding the final value by more than ten percent. For the resimulated haloes
we follow the merger tree and the satellites populations for all the haloes with more than
40000 at the present time.

In the following analysis we only consider haloes at redshift z = 0 whose main
progenitor at any redshift has virial mass not exceeding the final value by more
than ten percent. This eliminates pathological merging histories, involving en-
counters either unbound or still undergoing.
For all simulations we split the halo samples at z = 0 in mass bins of amplitude
dlog(M) = 0.5, with a minimum mass roughly corresponding to 200 particles
within the virial radius for GIF and GIF2, and to 40000 particles for the resimula-
tions. The actual mass bins for each run are listed in Table 7.1.
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Figure 7.2: Mass functions of accreted satellites (unevolved subhalo mass functions).
In the panels the various data points and line types refer to different present-day host
halo masses. In the figures the the bounds of the mass bins are expressed in unit of
log(M⊙/h). The solid lines represent the fitting function to the distributions: equation
(7.3) (see the main text for more details). Note that we only consider subhaloes that at
z = 0 contribute at least 50% of their mass. This ensures that at z = 0 their center of mass
lies within the virial radius of the host. Top: Unevolved subhalo mass function accreted
before the formation redshift z f of the host halo (defined as the earliest redshift when
the mass of the main progenitor exceeds half the final mass). Center: Same as above,
but only counting satellites accreted after z f . Bottom: Same as above, but now counting
satellites accreted at any redshift.

7.2 Merger Tree: Mass Accreted by the Main Branch

Starting from each halo at z = 0, we read its merging history tree backward in
time and note down all its satellites, i.e. all haloes directly accreted by the main
halo progenitor at any output time. In order to remove subhaloes that at z = 0
reside outside the host due to their elongated orbits (and so do not contribute to
the subhalo population) we only consider satellites which donate at least at least
50% of their mass to the final halo. Let n(mv /M0, z) be the number of satellites
of virial mass mv , accreted at redshift z by a host halo with mass M0 at redshift
zero. Integrating this expression over some redshift interval we obtain the total
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number of satellites of mass mv accreted in that interval.

N

(

mv

M0

)

=
∫z2

z1

n

(

mv

M0
,ζ

)

dζ (7.2)

which we will term unevolved subhalo mass function.
In Figure 7.2 we plot the unevolved subhalo mass function for different red-

shift intervals, as measured in the GIF (left) and GIF2 (right) simulations. The
data points refer to different mass bins for the parent haloes at redshift z = 0. As
stated above, we only considered satellites yielding at least 50% of their mass to
the final (z = 0) host. In each panel we overplot the Schechter-like fitting for-
mula:

dN

dln(mv /M0)
= N0x−αe−6.283x3

, x =
∣

∣

∣

mv

αM0

∣

∣

∣ (7.3)

with α and N0 slope and normalization respectively; in all panels the slope is
α= 0.8, while the normalization is N0 = 0.21 for satellites accreted at all redshifts.

Figure 7.3: Formation mass distribution measured in GIF2 simulation for different final
halo mass bins for 1/2 ≤µ≤ 1. The various line type histograms show the result of differ-
ent final parent halo masses. Considering that the distribution does not depend on M0,
we plot all the halo more massive than 1011.5 M⊙/h with filled circles. The correspond-
ing error bars assume Poisson counts. For µ ≤ 1/2 the mass distribution just before the
formation is shown. See the main text for more details.

In order to compute the normalization of the distributions of the satellites
mass function before and after the formation redshift z f of the host halo (defined
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as the earliest redshift when the mass of the main progenitor exceeds half of the
final halo mass) we need to compute the distribution of main progenitor mass
at formation redshift.
If M0 is the host halo mass at the present time, for the mass conservation, the
sum of the mass of all progenitors at the previous snapshot (let us call z1 the
corresponding redshift) has to give:

∑

i

mi (z1) = M0 . (7.4)

If among mi (z1) we define M0(z1) the mass of the main progenitor at that red-
shift has also be true that:

M0 =
∑

i 6=0
m(z1)+M0(z1) =

∑

i 6=0
m(z1)+

∑

j

m j (z2) , (7.5)

where m j (z2) represent the progenitors of M0(z1) at redshift z2 > z1, and m j 6=0(z1)
the satellites accreted by M0 at z1. Following the equations of the mass conser-
vation until the formation redshift we can so write:

M0 =
∑

i 6=0
mi (z1)+

∑

j 6=0
m j (z2)+

∑

k 6=0

mk (z3)+ ...+µM0 , (7.6)

where each term represents the mass in satellites accreted by the main branch at
the corresponding redshift and µM0 the mass of the host halo at the formation
redshift z f . If the mass at the formation were M0/2 we would have half of the
total mass accreted in satellites before z f and half after. In reality, due to the fi-
nite size of accreted haloes, the average formation mass M(z f ) = µM0 is slightly
larger than 0.5M0.
Sheth and Tormen (2004) show that, for the spherical collapse case and assum-
ing a white noise power spectrum, the mass at formation has a distribution given
by the equation:

p(µ)dµ=
2

π

√

1−µ

2µ−1

dµ

µ2
. (7.7)

with 1/2≤µ≤ 1. The mean value of the distribution will be:

µ̄ST 04 =
∫1

1/2
µp(µ)dµ= 0.586±0.005 . (7.8)

They argue that this distribution is slightly power spectrum dependent, how-
ever the agreement with the formation mass in the GIF numerical simulation is
good. Here, combining haloes from GIF and GIF2, we find a mean formation
mass µ̄G I F+G I F 2M0 = (0.572±0.001)M0, in excellent agreement with the predic-
tion of Sheth and Tormen (2004). In Figure 7.3, forµ≥ 1/2 we show the formation
redshift mass distribution measured in GIF2 simulation for different final mass
bins (histograms with different line type). The data points represent all consid-
ered haloes (Table 7.1) with mass bigger than 1011.5 M⊙/h (error bars were esti-
mated assuming Poisson counts), the solid line is the equation (7.7). From the
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figure it is possible to see that the formation redshift mass distribution is also
independent on the final mass of the parent halo. In the figure, for µ ≤ 1/2 is
shown the mass distribution just before the formation, the solid line represents
the equation:

q(µ)dµ=
dµ/µ2

π(1−µ)

(√

µ

1−2µ
−

√

1−2µ

)

, (7.9)

with 1/4 ≤µ≤ 1/2, see Sheth and Tormen (2004) for more details.
The normalizations of the unevolved subhaloes mass function accreted before

N0,b and after N0,a the formation redshift are therefore:

N0,b = µ̄N0 = 0.572N0 , (7.10)

N0,a = (1− µ̄)N0 = 0.428N0 . (7.11)

The fitting formula agrees very well with all data at all redshift, provided the cor-
rect normalization is used. This indicates that the shape of the unevolved sub-
halo mass function is indeed universal, as found by (van den Bosch et al., 2005).

To further clarify this asymmetry in the mass accreted in satellites by the
main halo progenitor before and after the formation redshift, let us define:

P (> z) =
1

Ntot ,0

∫z

∞
dz

∫1

0
d

mv

M0
N

(

mv

M0
,ζ

)

. (7.12)

as the fraction of mass accreted by the main halo progenitor before redshift z

in satellites of any mass. This in Figure 7.4 we plot the median and the quartiles
error bar of the median cumulative distribution of the mass accreted by the main
branch of different present day haloes in term of redshift and rescaled redshift
(to the formation). This figure can be interpreted as complementary to the mass
growth history of the main halo progenitor (van den Bosch, 2002; Wechsler et al.,
2002). Small haloes formed at higher redshift, accrete their satellites before that
in the large ones (see left panel of Figure 7.4). From the right panel of the figure
can be seen that when z/z f = 1 the cumulative distributions of the mass accreted
is bigger than 1/2, so most of the mass is accreted by the main branch before its
formation (something like 57% of the total as shown before). From the same
figure it is also interesting to note that the accretion in term of redshift after the
formation, z/z f ≤ 1, is independent on the final halo mass (except for the most
massive bin in GIF2 where we have only 4 haloes), while depends on it for z/z f >
1.

Different Observation Redshifts z0

In this section we will analyze the mass accreted by the main branch of the tree,
and the formation mass distribution, following the haloes in GIF2 simulation
from different initial redshifts: z0 = 0 (repeated for comparison), z0 = 0.5, z0 = 1
and z0 = 2. At each initial redshift (hereafter also observation redshift) we con-
sidered all the haloes bigger than 1011.5 M⊙/h and divided them in 7 mass bins.
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Figure 7.4: Cumulative distribution of the median mass fraction accreted in satellites
by the main branch for different present day masses. In the left panel: the distribution
is plotted in term of redshift, while in the right the redshift has been rescaled to the
corresponding formation one. The error bars are the quartiles of the distributions.

We followed their tree along the main progenitor and considered only haloes
whose main progenitor at any redshift has virial mass not exceeding the final
value by more than ten percent (see Table 7.2 for the mass bins for each run).

11.5-12 12-12.5 12.5-13 13-13.5 13.5-14 14-14.5 > 14.5

GIF2 (z0 = 0) 8305 3349 1186 461 127 35 4
GIF2 (z0 = 0.5) 9347 3544 1244 394 94 21 2
GIF2 (z0 = 1) 9574 3455 1095 279 57 2 1
GIF2 (z0 = 2) 8465 2461 593 98 5 2 0

Table 7.2: Number of haloes considered in each mass bins for different observation red-
shift z0 in GIF2 simulations. In the sample we considered all the haloes that at z0 have
at least 200 particles.

In Figure 7.5 we show the mass accreted in satellites by the main branch of the
tree at all redshifts. Each panel refers to different observation redshift considered
from which we started to follow the tree of the haloes. The data points refer
to different final parent halo masses at z0, the solid line is the fitting function
(eq. 7.3). From the figure we can argue that the haloes, independently on the
considered redshift and mass, have a mass function accreted in satellites that is
universal and well described by the fitting function proposed in the last section.

In the Figure 7.6 and 7.7 we show the mass function accreted in satellites on
the main branch of the tree before and after the formation of the parent halo.
Starting to follow the haloes from z0, we define the formation time as the red-
shift at which for the first time the main progenitor become bigger than half of
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Figure 7.5: Mass accreted in satellites (unevolved Subhalo Mass Function) by the main
branch of the tree at all redshifts. In each panel we show the results following the tree
from different observation redshifts z0 and parent halo masses (see Table 7.2 for more
details). The solid lines represent the fitting function: equation (7.3).

its corresponding value at z0. The solid lines in each panel of the figures are the
equation (7.3) with the appropriate normalization factor N0,a (after) or N0,b (be-
fore the formation). The normalizations of the two distributions are expected,
even for the halo observed from z0 > 0, considering that the mass of the main
progenitor at the formation is always well described by the Sheth and Tormen
(2004) equation as can be seen in Figure 7.8.

7.3 Subhalo Mass Function

The evolved subhalo mass function at any redshift z is built from all the satellite
haloes accreted on the main progenitors at all redshifts larger than z, and com-
puting for each satellite the self-bound mass msb(z). Operationally, we perform
the following steps:

• given a satellite halo, we identify its merging redshift, zm , defined as the
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Figure 7.6: Mass accreted in satellites (as in Figure 7.5), before the formation redshift.
The solid line in each panel is the equation (7.3) with the normalization factor equal to
N0,b.

latest redshift when the satellite was still an isolated halo, just before it was
accreted by the main progenitor;

• we calculate the position of its center using the "moving center method"’
(Tormen et al., 1997), i.e. by repeated calculation of its center of mass using
smaller and smaller radii to identify the subhalo densest core1;

• we compute the subhalo tidal radius - as in Tormen et al. (1998);

• we evaluate the binding energy of each subhalo particle by summing its po-
tential energy (calculated using all particles inside the tidal radius) and its
kinetic energy (using its residual velocity with respect to the average value
inside the tidal radius);

• we remove all particles with positive binding energy, and iterate the previ-
ous steps until the self-bound subhalo mass converges.

1In Appendix C we show the different tests done in developing the subhalo-finder code.
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Figure 7.7: As Figure 7.5 but considering the satellites accreted after the formation of the
host halo. The solid line is the equation (7.3) with the normalization factor equal to N0,a .

With these data in hand, we can follow the time evolution of the self bound
mass of each subhalo, snapshot by snapshot, from the merging redshift zm to
the present time z = 0. In the following section we will use this information -
gathered from the resimulated haloes - to estimate the subhalo mass-loss rates
at all redshifts.

In Figure 7.9 we show a schematic representation of the merging-history-tree
of a halo. Time runs upward, and the final halo is on top. Light gray circles in-
dicate the main progenitor at each time, and so define the tree "‘main branch"’.
Dark gray circles indicate satellite haloes, i.e. progenitor haloes accreted directly
by the main branch of the tree. Black circles are "‘leaves"’ progenitors, that is,
progenitor with mass of the order of the resolution of the tree, with no progenitor
haloes themselves. Leaves may also be satellites (as in the figure). On the other
hand, progenitors which are not leaves may host themselves subhaloes. While
a study of the evolution of subhaloes within subhaloes is beyond the purpose of
this chapter, we will address this issue in the next chapter.
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Figure 7.8: As Figure 7.3 but considering different observation redshifts z0 as shown in
the four panels.

As an example, in Figure 7.10 we show the subhalo population of the most
massive halo found at z = 0 in the GIF2 cosmological run. In the top panel we
show all particles inside the halo virial radius Rv . In the bottom left panel parti-
cles bound to subhaloes found inside Rv at z = 0. In the bottom right panel field
particles, i.e. particles bound to the main halo but not to any subhalo.

In Figure 7.11 we plot the subhalo mass function for GIF2 haloes at redshift
z = 0, split according to the final halo mass. We considered all self-bound sub-
haloes with at least 10 particles, and removed all subhaloes found at distances
d > 0.05Rv , where subhalo definition is harder, and where few if any subhaloes
are supposed to survive.

Gao et al. (2004) show that the mass function of subhaloes is not universal,
but depends on the host halo mass M0. The Monte Carlo model presented in
van den Bosch et al. (2005) was able to reproduce this trend, and explained it in
terms of halo formation redshift as follows. Small systems on average form at
higher redshift than massive systems. Therefore, they also accrete their satellites
at higher redshifts, when the universe is more dense, and dynamical effects (in-
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Figure 7.9: Schematic representation of the merging-history-tree of an halo. Solid light
gray circles connected on the parent halo represent the main branch of the tree. Solid
dark gray circles indicate satellites. Solid black circles indicate leaves progenitors. See
the main text for explanation.

cluding tidal stripping, gravitational heating, close encounters etc.) have faster
rates. Moreover, such satellites end up spending more time in the potential well
of the host halo, lose more mass and are more likely to be completely destroyed.

The same idea is true if we observe an halo at redshift z0 > 0 and, follow-
ing the growth of its main progenitor halo compute, the self-bound particles in
subhaloes. In Figure 7.12 we show the subhalo mass function at four different
observation redshifts from which we started to follow the tree of the halo more
massive than 1011.5 M⊙/h. As done previously, we consider only the haloes which
main progenitor never exceed 10% of its final mass at any z > z0.

In the next sections we will show that the subhalo population of our resimu-
lated haloes agrees with this picture: global mass loss rates are higher at higher
redshift. We will also find that mass loss rates turn out to be independent on the
mass ratio mv (z)/Mv (z) between satellite and main progenitor. While the first
result may be expected, and indeed is a dynamical prediction in van den Bosch
et al. (2005), the second is less obvious, and in fact van den Bosch et al. (2005)
left it as a free parameter.
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Figure 7.10: Subhalo population. Top: all particles composing the most massive halo
found at z = 0 in the GIF2 simulation; the virial mass for this halo is Mv = 1.8×1015 M⊙/h,
resolved by more than one million particles. Middle left: all particles in the present-
day halo belonging to satellite progenitors, middle right corresponding dust particles.
Lower left: particles bound to subhaloes at redshift z = 0. Lower right: particles bound
to the main halo but not to subhaloes.
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Figure 7.11: Subhaloes mass function of the self-bound particles of the haloes accreted
by the main branch of the merger-history-tree of an halo,for GIF2 simulation. In the plot
it has been considered all satellites with a distance from the center of the host halo less
then the virial radius. We also plot the unevolved distribution: equation (7.3). In the
bottom panel we show the residuals of the present day subhalo mass function respect to
the unevolved fitting function.

7.4 Subhalo Mass-Loss Rates

In this section we estimate the subhalo mass loss rate, modeling it as a function
of (i) the instantaneous satellite to host mass ratio: msb(z)/Mv (z), (ii) the mass of
the host halo at redshift zero: M0, and (iii) the cosmic time through the redshift
z. For this purpose we will use the subhalo population identified in the resim-
ulations, as haloes in this sample have better force, mass and especially time
resolution (88 snapshots between redshift ten and zero) than the cosmological
GIF2 run. Since mass loss rates mostly depend on the local environment inside
the host halo, the resimulated sample will provide correct rates even if the haloes
themselves do not necessarily represent a fair sample for the given cosmological
model.

In Figure 7.13 we show the unevolved subhalo mass function for satellites
identified in the merger trees of the set of resimulated haloes; host haloes are
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Figure 7.12: Subhalo mass function at four different observation redshifts, computed
considering all satellites accreted at all redshift z > z0. As did for the other plots, different
final host mass progenitor haloes have been considered and correspond to different data
points and line types. In each panel is also shown the unevolved subhalo mass function:
equation (7.3).

split in three mass bins, according to Table 7.1. As for the GIF2 simulation, the
unevolved subhalo mass function obtained from the resimulations is well fit by
eq. 7.3.

After a satellite enters the virial radius of the host, various dynamical effects,
including dynamical friction, tidal stripping, and close encounters with other
subhaloes, cause the subhaloes to loose mass, and may eventually result in their
complete disruption (e.g., Choi et al., 2007). The (average) mass loss rate of dark
matter subhaloes is the direct link between the unevolved and evolved subhalo
mass functions, and also is a fundamental ingredient for semi-analytical models
of galaxy formation, as it sets the rate at which satellite galaxies merge with the
central galaxy in a halo, it determines the evolution of the mass-to-light ratios of
satellite galaxies, and it regulates the importance of stellar streams in the haloes
of central galaxies.
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Figure 7.13: Unevolved subhalo mass function for the resimulated haloes. We notice that
the function is independent on mass and well described by the same function fitting the
GIF2 data (Figure 7.2). Haloes are split in three mass bins. In the figure the bounds of
the bin are expressed in unit of log(M⊙/h).

In this section we measure the mass loss rate experienced by each satellite.
In addition, using statistical averaging, we determine the average mass loss rate
of satellites as a function of the parameters listed at the beginning of this sec-
tion. We define the average mass loss rate between two successive snapshots at
redshift, z1 and z2, as

d

dt

(

msb

Mv

)

(z) =

msb(z2)

Mv (z2)
−

msb(z1)

Mv (z1)
t (z2)− t (z1)

, z1 < z < z2 . (7.13)

where the values of msb(z) and Mv (z) are obtained by linear interpolation of the
values at z1 and z2. In Figure 7.14 we plot the subhalo mass loss rate as a function
of the ratio msb(z)/Mv (z); each panel refers to a different bin for the mass Mv (z)
of the host halo.

The green points and band in each panel indicate the median and quartiles
of the distribution. The thick magenta line represents a least squares fit to the
median values in each panel; the fit is limited to the region where the median
exhibits a linear behavior: we excluded by hand median values for msb/Mv close
to one, which correspond to major mergers and cannot be described by a simple
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Figure 7.14: Subhalo mass loss rate. Each panel refers to a different bin in host halo virial
mass at the redshift when the mass loss rate is computed. The filled circles represent the
median of points and the hatched region the quartiles. The thick solid line is the least
square fit to the median distribution for each panel. The thin dashed line is the average
least squares for the different host halo masses.



7.4 Subhalo Mass-Loss Rates 121

mass loss model. The thin dashed black line, identical in all panels, shows the
global least square fit obtained using the data from all panels.

The data show a clear linear relation between msb/Mv and its time derivative,
so we can write our model as:

log

∣

∣

∣

∣

d(msb/Mv )

dt

∣

∣

∣

∣

= a log(msb/Mv )+b . (7.14)

Exponentiating this relation, and expanding the derivative on the LHS, we ob-
tain:

∣

∣

∣

∣

ṁsb

Mv
−

Ṁv

Mv

msb

Mv

∣

∣

∣

∣

= 10b

(

msb

Mv

)a

. (7.15)

Due to the large number of snapshots in the resimulations, the time separation
between two subsequent snapshots is always short: dt ≈ 0.1 Gyr. This is small
enough to assume a constant mass for the host halo: Ṁv = 0. By doing so, we
obtain an expression for the specific mass loss rate

ṁsb

msb

=−
1

τ

(

msb

Mv

)ζ

, (7.16)

where the free parameters τ(z, Mv ) = 10−b and ζ(z, Mv ) = a−1 might in principle
depend both on cosmic time (or, equivalently, redshift z) and on the virial mass
Mv (z) of the host halo at that time. The negative sign arises from the mass loss
of the satellites. Note that this specific mass loss rate is identical to that used by
van den Bosch et al. (2005).

Figure 7.15 shows how the time scale of the mass loss rate, τ = 10−b , and
ζ = a −1, as measured from the data shown in Figure 7.14, depend on the virial
mass, Mv , of the instantaneous host halo. Error bars reflect the usual uncertainty
on the coefficients obtained from the least square fitting. The slope is found to
be independent of the mass of the host halo, with a best fit value of a = 1.07±0.03
(ζ= 0.07±0.03). This implies that the specific mass loss rate is almost indepen-
dent of the instantaneous mass ratio msb/Mv . On the other hand, the zero point,
b, is found to be larger for less massive haloes.

In order to show the typical spread of points in each panel of Fig. 7.14 around
each median, in the bottom panel of Figure 7.15 we show the average (over the
six panels of Figure 7.14) of the differences between each quartile and the me-
dian itself. We see that on average fifty percent of the points lay roughly within
a distance log y =±0.3 from the median; that is, typical mass losses deviate from
their median value by less than a factor of two.

In Figure 7.16 we plot the subhalo mass loss rate versus the ratio msb(z)/Mv (z),
now binned according to the redshift at which the mass loss rate is calculated.
Medians, quartiles and lines are as in Figure 7.14. The time scale τ and ζ for the
six panels are shown in Figure 7.17, plotted versus the mean redshift of each of
the six bins; in the bottom panel the average quartile distribution for each fit (as
explained above) is shown. The red solid curve superimposed to the trend in
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Figure 7.15: Dependence of the fit parameters of the Figure 7.14 on the host halo virial
mass. The top panel shows the time scale of the mass loss rate τ = 10−b . The average
and the least square fit of the data points have been computed on the plane (b, Mv ). In
the central panel we show the dependence of parameter ζ= a −1 on Mv . In the bottom
panel we show the spread of the first and third quartiles around the median, averaged
over the six panels of Figure 7.14 (see the main text for a detailed explanation).

zero point is the equation

τ(z) = τ0

[

∆v (z)

∆0

]−1/2 [

H(z)

H0

]−1

, (7.17)

with H(z) the Hubble constant at redshift z, and with τ0 = 2.0 Gyr.
This equation was proposed by van den Bosch et al. (2005) and describes the

redshift dependence of mass loss rates obtained under the assumption that τ
is proportional to the dynamical time tdyn ∝ ρ−1/2

v (z), taking into account that,
according to the spherical collapse model, the average density within the virial
radius, ρv is independent of halo mass at fixed redshift. This means that we can
write τ(Mv , z) = τ(z). The red line in Figure 7.17 shows that indeed this provides
a good description of the measured mass loss rates.

Note, though, that Figure 7.15 suggests that the average mass loss rates also
depend on host halo mass. In order to reconcile this with the claim that the zero-
point is independent of Mv , recall that, on average, more massive haloes assem-
ble (and thus accrete their satellites) earlier than less massive haloes. Therefore,
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Figure 7.16: Subhalo mass loss rate. Each panel refers to a different bin in the redshift at
which the mass loss rate is computed. Symbols and lines are as in Figure 7.14.

the different panels of Figure 7.14 actually refer to different average redshifts,
with larger Mv corresponding to a lower average redshift. Consequently, the ‘ap-
parent’ mass dependence evident in the upper panel of Figure 7.15 is merely a
reflection of the redshift dependence described by equation (7.17). To demon-
strate this we now split the data points of each panel of Figure 7.16 in differ-
ent subsets, according to the mass of the host halo. Figure 7.18 shows the aver-
age slopes and zero points obtained for these subsets using least-squares fitting.
This clearly shows that the characteristic time scale for mass loss (given by the
zero point) is independent of the host mass Mv (z) at fixed redshift, in accord
with equation (7.17).

Thus, to good approximation, the average mass loss rate of dark matter sub-
haloes depends only on the density of the host halo, and thus on redshift (or cos-
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Figure 7.17: Time scale of the mass loss rate and ζ in term of the redshift at which the
subhaloes are experiencing mass loss (Figure 7.16. The average and the least squares fit
of the top panel were computed on the plane (b, z). The bottom panel shows the aver-
age first and third quartile for the median distribution in each panel of the Figure 7.16,
constructed as previously described in the main text.

mic time), but not on the mass of the host halo. Furthermore, since the best-fit
value of ζ is close to zero, to good approximation subhalo masses decay expo-
nentially2 according to

msb(t ) = mv exp

[

−
t − tm

τ(z)

]

, (7.18)

where mv is the mass of the satellite at the time of accretion, tm , and τ(z) is given
by equation (7.17) with τ0 = 2.0 Gyr.

7.5 Monte Carlo Simulations

In this section we compare our results to those of van den Bosch et al. (2005),
and we use their Monte Carlo method to check the self-consistency of the re-
sults presented above, i.e., we check whether the (universal) unevolved subhalo
mass function, combined with the satellite accretion times and the average mass

2this follows from a simple integration of equation (7.16) with ζ= 0
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Figure 7.18: Time scale of the mass loss rate and ζ versus host mass, for six fixed redshift
bins – represented by different data points. The horizontal lines, with various line type,
show the average b =− log(τ) and ζ for each redshift bin.

loss rates, can reproduce the evolved subhalo mass functions presented in Sec-
tion 7.3.

The Monte-Carlo method of van den Bosch et al. (2005) starts by construct-
ing EPS merger trees using the method described in van den Bosch (2002) (see
also Somerville and Kolatt, 1999). These merger trees are then used to register
the accretion times and masses of satellites merging onto the main progenitor.
Starting from these inputs, van den Bosch et al. (2005) then proceeded as fol-
lows. In between two time-steps, they evolve the masses of the subhaloes using
equations 7.16 and 7.17. The two free parameters, τ0 and ζ were tuned to repro-
duce the subhalo mass function of massive, cluster sized haloes obtained from
numerical simulations by Gao et al. (2004), De Lucia et al. (2004) and Tormen
et al. (2004). This resulted in τ0 = 0.13 Gyr and ζ = 0.36, which differs substan-
tially from the results obtained here: τ0 = 2.0 Gyr and ζ = 0.06. The reason for
this discrepancy owes to the use of EPS merger trees, as opposed to merger trees
extracted from numerical simulations. In fact, the unevolved subhalo mass func-
tion obtained by van den Bosch et al. (2005) differs significantly from that shown
in Figures 7.2 and 7.13, in that it is significantly higher, and with a different slope
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Figure 7.19: The dotted histogram show the mass accreted by the main branch in the
Monte Carlo merger tree with the overplotted equation (7.3). The solid lines represent
the subhaloes mass function obtained evolving the mass accreted by the main progeni-
tors of different present day M0-halo.

at the low mass end3. Consequently, in order to reproduce the subhalo mass
functions obtained from numerical simulations, van den Bosch et al. (2005) had
to adopt higher mass loss rates (i.e., a lower value for τ0, and a different mass
dependence (i.e., a different value for ζ).

The fact that EPS merger trees predict an unevolved subhalo mass function
that differs significantly from that obtained in numerical simulations, should not
come entirely as a surprise. After all, the construction of EPS merger trees relies
on the spherical collapse model (see Lacey and Cole, 1993; Somerville and Kolatt,
1999). However, in reality, the collapse of dark matter haloes is influenced by the
surrounding tidal force field, making the collapse ellipsoidal, rather than spher-
ical (e.g., Sheth and Tormen, 1999; Sheth et al., 2001; Sheth and Tormen, 2002).
As shown by Sheth and Tormen (2002), the conditional and unconditional mass
functions are different under ellipsoidal collapse conditions than under spheri-
cal collapse conditions, which has important consequences for the accuracy of
the EPS merger trees. For instance, the halo formation times predicted by EPS
are systematically offset from those obtained from numerical simulations (Lacey

3It is noteworthy, though, that the EPS formalism predicts that the unevolved subhalo mass function is
universal, i.e., independent of the host mass, in good agreement with the simulation results presented here.
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and Cole, 1993; Somerville et al., 2000; van den Bosch, 2002; Wechsler et al., 2002;
Giocoli et al., 2007), while the average mass of the main progenitor is typically
overestimated (Somerville et al., 2000).

To perform the self-consistency check mentioned above, we therefore use
the same Monte-Carlo method as van den Bosch et al. (2005), but we randomly
remove satellite-branches from the merger tree with a probability

Preject =
nsim(mv /M0)

nEPS(mv /M0)
(7.19)

where nsim and nEPS are the unevolved subhalo mass functions obtained from
the simulations and from the EPS merger trees, respectively. This ensures that
the Monte Carlo method uses an effective, unevolved subhalo mass function that
is identical to that of equation (7.3).

As in van den Bosch et al. (2005) we evolve the masses of the subhaloes us-
ing equations 7.16 and 7.17 with τ0 = 2.0 Gyr and ζ= 0.06, which are the best-fit
values obtained in Section 7.4. The resulting evolved subhalo mass functions,
for five different masses of the present-day host halo, are shown in Figure 7.19,
together with the unevolved subhalo mass function obtained using the rejection
scheme outlined above (and which is independent of the host halo mass). Each
evolved subhalo mass function is the average obtained from 2000 merger tree
realizations (see van den Bosch et al., 2005, for details). A comparison with the
evolved subhalo mass functions obtained from our numerical simulations, and
shown in Figure 7.19, shows good agreement. This indicates that the evolved
subhalo mass functions are self-consistent with the (universal) unevolved sub-
halo mass function and the simple form for the average mass loss rate obtained
in this work.

7.6 Discussion

In this work we have studied the mass loss rate of dark matter subhaloes using
a set of high resolution N-body simulation of structure formation. Haloes were
followed backward in time along the main branch of their merging history tree.
At each snapshot the satellites accreted by the main branch were identified. We
showed that the mass function of accreted satellites (unevolved subhalo mass
function) is universal, that is, it does not depend on the present day host halo
mass M0, and we presented a fitting function for this distribution.

We then followed each accreted satellite forward in time, snapshot by snap-
shot, computing its self-bound mass and its mass loss rate. We found that the ex-
pression for the mass loss rate proposed by van den Bosch et al. (2005) is consis-
tent with N-body simulations, and excellent agreement is obtained if the value
with τ0 = 2.0 Gyr is taken. In addition, we find that the average mass loss rate is
virtually independent of the instantaneous mass ratio msb/Mv between the sub-
halo and its host halo. This differs substantially from the best-fit mass loss rate
parameters obtained by van den Bosch et al. (2005) using EPS merger trees. In
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particular, van den Bosch et al. (2005) obtained τ0 = 0.13 Gyr, and a significant
dependence on msb/Mv . The reason for this discrepancy is that the unevolved
subhalo mass function of EPS merger trees is too high, so that a higher mass loss
rate was inferred to be consistent with the evolved subhalo mass functions in
numerical simulations.

With an unevolved subhalo mass function that is universal, and an average
mass loss rate that is virtually independent of msb/Mv , it becomes straightfor-
ward to understand why less massive haloes have evolved subhalo mass func-
tions with a lower normalization. This simply owes to the fact that less massive
haloes assemble earlier, which implies that they accrete their satellites earlier. At
earlier times the mass loss rate is higher, because the dynamical times of dark
matter haloes are shorter. In addition, a subhalo that is accreted earlier is sub-
jected to mass loss for a longer period. Both these effects contribute to the fact
that less massive haloes have less substructure.

The present description does not consider the possible presence of subhaloes
within subhaloes, accreted along the tree of each present day subhalo. In the fol-
lowing chapter we will investigate this issue in detail, comparing the populations
of subhaloes found using different techniques.



CHAPTER

8
Subhaloes within Subhaloes

In this Chapter we describe an algorithm developed to identify the subhaloes
within subhaloes in dark matter haloes extracted from numerical simulations.
Code and results presented in the previous chapter take into account only the
self-bound particles of satellite haloes. However we have to notice that a large
fraction of satellites at merging time with the main progenitor, host subhaloes
accreted when they where isolated systems. These satellites of satellites can still
be isolated groups of self-bound particles in the host halo at z = 0 (Diemand
et al., 2007b; Li and Helmi, 2007). The idea beyond this algorithm is to follow
all branches of the tree of a present-day host halo until the “leafs” satellites, and
compute their self-bound particles at z = 0. We term “leaf” a satellite of a satellite
which does not have progenitors surviving at the present time.

Hereafter the notation subhalo will be used referring to a clump identified by
previous algorithm (Cap. 7) – self-bound particles of a satellite halo. To the other
hand, we will term substructure, or survivor, a subhalo within subhalo – self-
bound group of particles of a “leaf” satellite (see Section 8.1 for the description of
the algorithm). Considering what are the ideas beyond galaxy formation models
(Kauffmann et al., 1999; De Lucia et al., 2004), it is natural that, between the two
algorithms, substructures can be more directly related to galaxies hosted in dark
matter haloes. However the correlation between galaxies and substructures is
still an open debate.

In the standard scenario of structure formations galaxies form at high redshift
in dark matter haloes where baryons can shock, cool and eventually form stars.
The gas condensation, through dissipative cooling, stabilized galaxies against
the disruption caused by the merging of the dark haloes along the cosmic time.
However additional processes, for example feedback, are needed to make small
galaxies more diffuse so that they would be less successful at surviving the merg-
ing process, thus avoiding the production of more faint galaxies than are ob-
served. However other mechanisms, as reionization of the universe, can play the
role of preventing galaxy formation in small haloes. The reionization of cosmic
hydrogen results in heating of the inter galactic medium (IGM) to ∼ 104K, which
drastically increases the minimum virial temperature of new galaxies to a value
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as high as Tv ≈ 105K. In this way, star formation is prevented in haloes with virial
mass smaller than 108 M⊙/h. The WMAP measurement (Spergel et al., 2007) and
the observed drop of star formation rate indicate a reionization redshift z ∼ 6
(Grebel and Gallagher, 2004).

The first small collapsed haloes, at high redshift, will merge together form-
ing bigger and bigger systems at the present time. The galaxy clusters are at the
top of this hierarchy and represent the biggest virialized structures in the uni-
verse. They typically host thousand of galaxies within their dark matter poten-
tial well. The evolution of individual dark matter haloes and the formation of
galactic structure inside them is strongly dependent on the nonlinear dynamics
of gravitational collapse, the stochastic process of merging, and the subsequent
evolution of the merged substructures.

Recent N-Body simulations have opened a new debate in theΛCDM cosmol-
ogy predicting a number of substructures that is much larger than the observed
number of satellite galaxies. For example, they compare results from numerical
simulations of galaxy size haloes with the Milky-Way halo population, finding a
mismatch in the number of satellites of more than one or two order of magni-
tude (Moore et al., 1999; Ghigna et al., 2000; Kravtsov et al., 2004). This excess
structure may be also implicated in several other problems, including the small
disk size produced in hydrodynamic simulations (Navarro and Steinmetz, 2000),
and the question of disk survival against heating in minor mergers (Toth and
Ostriker, 1992; Kauffmann and White, 1993; Moore et al., 1999). Different ar-
guments have been proposed to solve this “missing satellites” problem: (i) low
star formation efficiency in small haloes due to some feedback mechanisms, (ii)
warm dark matter or also (iii) suppression of small scale fluctuation in the dark
matter power spectrum.

To better understand the ΛCDM cosmological model we first need to estab-
lish a proper understanding of the build-up and evolution of the population of
dark matter substructures. We will present a study about this in this chapter.

8.1 The Simulation and Substructure Finder Algorithm

The simulation used for this work is the GIF2 simulation (see Chapter 4 for more
details about its numerical and cosmological parameters). This has a high mass
and force resolution able to resolve systems down to the minimum mass of 1.73×
1010 M⊙/h – corresponding to groups with at least 10 dark matter particles.

In the previous chapter we have shown how present-day subhalo popula-
tion can be identified following the growth of the main progenitor halo along
the main trunk of its merging history tree. From Figure 7.10 we notice that a
large fraction of subhaloes host clumps of particles within them, and that some
clumps, among the dust particles, have not been identified by the algorithm. All
these missed clumps and the subhaloes within subhaloes are probably groups of
particles belonging to satellite haloes of subhaloes accreted when the latter iso-
lated. If we take a look to Figure 7.9, where we show a schematic representation
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of the merging history tree, we can see that satellites, before merge on the main
progenitor halo have a hierarchical growth accreting mass in haloes. A fraction
of these can survive at the present time in the host system as individual clumps.
The unidentified clumps among the dust particles in Figure 7.10, probably rep-
resent situations in which a subhalo split in two or more pieces, belonging to its
satellites.

At this point, some question spontaneously arise: (i) how will change the sub-
halo mass function considering also subhaloes within subhaloes? (ii) can we
compare our algorithms with other substructure finders? (iii) the definition of
substructure is universal or does it depend on the algorithm adopted? We will
try to answer to these questions in the following pages of this chapter.

Description of the Algorithm

To work, the algorithm need the following input files, that come from the post-
processing of the simulation:

• halo catalogue at each simulation snapshot;

• merger tree, density profile and subhalo catalogue of present-day haloes,
or of haloes at the observation redshift z0 where we want to compute the
substructure catalogue.

In order to identify the substructures in a given host halo at z = z0 (in this
chapter we will consider only the case where z0 = 0) we proceed in the following
way:

1. for a given present-day halo, we read its subhalo catalogue;

2. for each subhalo in the catalogue, we read the informations about its pro-
genitors at z = zi +dz – where zi represent the identification time of the
satellite1 and dz the redshift step in the simulation;

3. for each progenitor, we traced at redshift z = z0 its particles, computing
those that are self-bound in the tidal radius, the center is computed with
the moving center method;

4. if at least two progenitors (the main and a satellite of it) have self-bound
particles at redshift z = 0, we substitute the subhalo in the catalogue with
the new ones; we compute also their orbital parameters and recall that the
new systems will now have an identification redshift larger than the merg-
ing time: zi > zm ,

5. we proceed in this way until all subhaloes for each host halo are scanned;

6. we call each subhalo not split in clumps “leaf” satellite of the tree.

1We recall that for subhaloes identification zi and merging redshift with the main progenitor zm cor-
respond. However for substructures the two definitions do not coincide.
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In this way we identified subhaloes within subhaloes at the first order, we

call these subhaloes1th
. However each subhalo1th

may also contain within itself
other subhaloes accreted along its branch (see Figure 7.9). To identify subhaloes
of order bigger than the first we repeat the previous items for each self-bound

group in the catalogue, skipping the “leafs”. For each subhalo1th
we go at its

identification redshift zi and read the informations about its progenitors at z =
zi +dz. We then compute their self-bound particles, at the present time. If at

least two of them (the main and a satellite) survive, we substitute the subahlo1th

with the new self-bound groups. We term these subhaloes2th
. We proceed in

this way repeating the items above until the nth order. At the end we expect
that all systems in the catalogue are “leaf” satellite haloes, i.e. no of them have
more than one progenitor with self-bound particles at the present time. The
mass resolution of the algorithm has been set equal to 10 self-bound particles –
for GIF2 simulation this correspond to a self-bound mass of 1.73×1010 M⊙/h.

In upper left panel of Figure 8.1 we show the particle distribution in the sim-
ulation box of the GIF2 at redshift z = 0. The upper right plot shows particle in
the virial radius of the most massive halo and in the lower left the self-bound
particles in survivors. The lower right show the correspondent dust particles,
i.e. particles that do not belong to any survivor. Comparing the dust particles
from subhaloes (lower right panel of Figure 7.10) and those from survivors (lower
right panel of Figure 8.1) we see that in this last case the particle distribution is
smoother and more free of clumps: it seems that all identifiable groups by eye
have been captured by the algorithm.

In Figure 8.2 we plot the mass function of substructures in the dark matter
haloes (that we will call also survivor mass function SuMF), at redshift z = 0. We
considered substructures with at least 10 dark matter particles within the virial
radius and more distant than 0.05×Rv where identify clump is harder. The var-
ious data points and line types refer to different host halo masses. As expected
by the hierarchical clustering model, more massive systems host more substruc-
tures than small ones at fixed msb/M0. This trend is a result of the fact that large
haloes are still accreting mass in haloes at present times. Their substructures,
spending less time in the potential well of the host, have more possibility to sur-
vive intacts until z = 0. To the other hand, in small systems satellite haloes have
been accreted at high redshifts and spending long time in the potential well of
the host loose a large fraction of their initial mass. In the figure, we consider all
host haloes at z = 0 with at least Mv = 1011.5 M⊙/h whose main progenitor halo
at any redshift never exceed 1.1× M0. Comparing this figure with the subhalo
mass function (Figure 7.11) we notice that the survivor mass function, at least
for the most massive haloes, is steeper. This trend is expected because more
massive subhaloes have been split in smaller and smaller clumps. The survivor
catalogue, for each halo, is so poor of large self-bound groups and rich of small
ones, when compared to the subhalo mass function. However for host haloes in
the two smallest mass bins, the SHMF and SuMF do not differ, this because for
the mass resolution of the simulation, their subhaloes are already “leaf” satel-
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Figure 8.1: GIF2 Cosmological N -Body simulation. Upper left: particle distribution in
the simulation box at z = 0, the side of the cube is L = 110Mpc/h . Upper right: particles
in the virial radius of the most massive halo. Lower left: particles in survivors within the
virial radius of the host halo. Lower left: the dust particles in the halo.

lites.

Comparison Between Survivors and SUBFIND

The identification of substructures within dark matter haloes is a challenging
technical problem, and several algorithms to find “haloes within haloes” have
been proposed. Let us now describe some methods developed to identify sub-
structures in numerical simulations.

In hierarchical friends-of-friends (HFOF) algorithms (Gottlöber et al., 1999;
Klypin et al., 1999), the linking length of plain FOF is reduced in a sequence of
discrete steps, thus selecting groups of higher and higher overdensity and even-
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Figure 8.2: Survivor mass function of dark matter haloes at z = 0. We consider all the
substructures with more than 10 self-bound particles, having also their center of mass
inside the host halo.

tually capturing true substructures. However a more physical definition need
to be adopted. Different authors have been required the substructures (or the
subhaloes) to be locally overdense and self-bound.

Group-finding techniques, that use some criterion of selfboundedness, in-
clude the bound density maximum (BDM) algorithm (Klypin et al., 1999), where
the bound subset of particles is evaluated iteratively in spheres around a lo-
cal density maximum. Another approach is followed in DENMAX (Gelb and
Bertschinger, 1994) and SKID (Ghigna et al., 1998), where particles are moved
along the local gradient in density toward a local density maximum. Particles
ending up in the ’same’ maximum are then linked together as a group using FOF.
Eisenstein and Hut (1998) developed HOP where group search is done in the set
of original particle positions, just as FOF does. In HOP, one first obtains an es-
timate of the local density for each particle, and then attaches it to its densest
neighbor. In this way a set of disjoint particle groups are formed.

Springel et al. (2001) developed another algorithm to identify substructures
in dark matter haloes, its name is SUBFIND. Starting from a FoF group they com-
puted, using an SPH-fashion technique, the density position of all particles. Any
locally overdense region is considered within this field to be a substructure can-
didate. The region of isodensity contour that traverse a saddle point are com-
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puting imagining lowering a global density threshold slowly within the density
field. SUBFIND tries to identify all locally overdense regions by imitating such a
lowering of a global density threshold.

All these algorithms give a substructure mass function, in numerical simu-
lations of ΛCDM universe, that have a power low trend dN/dmsb ∝ mα

sb
with

the slope α ranging from −1.7 to −2 Moore et al. (1999); Ghigna et al. (1998); De
Lucia et al. (2004); Gao et al. (2004).

Recently Gao et al. (2004) have studied the substructure populations ofΛCDM
dark haloes in the GIF2 simulation. At each snapshot of the simulation they
identified the haloes with a FoF algorithm, truncating their radius at 200 times
the critical density of the universe (we will use M200 referring to this definition
of mass), and identifying substructures in haloes using SUBFIND. At this point
we have the possibility to compare our algorithms with SUBFIND. However we
need to rescale the halo definition in order to reproduce the mass function of
Gao et al. (2004) (upper left panel of their Figure 5). We recall that our haloes are
97 times denser than the critical density at z = 0. To compute M200 we read the
density profile of each halo and interpolate it at 200×ρc .

In Figure 8.3 we plot the survivor (open circles - dashed lines) and subhalo
(filled triangles - dotted lines) mass function, considering different host halo
masses. In this figure the mass of each clump has been rescaled respect to M200

and the systems considered are all these inside R200 (corresponding radius of
M200) and with at least 10 self-bound particles. The asterisks connected with
solid lines represent the result of SUBFIND (Gao et al., 2004). The dashed and
the dotted-dashed straight lines are the best fit (by eye) to the SUBFIND mass
function for haloes in the range 7×1013 M⊙/h ≤ M200 ≤ 1.8×1015 M⊙/h, found
by Gao et al. (2004); De Lucia et al. (2004) respectively. These are represented by
the following equations:

De Lucia et al. 2004
dn

dln(msb/M200)
= 0.016

(

msb

M200

)−0.94

; (8.1)

Gao et al. 2004
dn

dln(msb/M200)
= 0.017

(

msb

M200

)−0.91

. (8.2)

In Figure 8.3 we notice that for the four mass bins considered, the survivor
mass function reproduce the same trend of SUBFIND. We notice also, as said
before, that survivors have few large mass clumps compared to the subhaloes,
and the opposite is true for the small mass clumps. The survivor mass function is
steeper than the subhalo distribution. At this point we can say that our definition
of substructure is more similar to the definition of SUBFIND and that we need
to have care when we refer to substructures in general: their definition depend
on the algorithm used to identify them.

In the left panel of Figure 8.4 we plot the survivor mass function per unit of
host halo mass (expressed in term of 1010 M⊙/h). The different data points and
line types are the same of Figure 8.2 and refer to different host halo masses. The
mean number of survivors for each mass bin has been normalized to the corre-
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Figure 8.3: Comparison of three methods that identify clumps in dark matter haloes.
To be consistent with Gao et al. (2004) we rescale the mass of dark matter haloes such
that their enclosed density is 200 the critical one and considering all clumps within the
corresponding radius R200. The asterisks connected with solid lines represent the mass
function obtained with SUBFIND. The open circles refer to the survivor mass function
and the filled triangles to the subhalo mass function (Chapter 7). The dashed and the
dotted-dashed lines are the best fit (by eye) to the SUBFIND mass function of the mas-
sive haloes for Gao et al. (2004) and De Lucia et al. (2004).

sponding host halo virial mass per unit of 1010 M⊙/h. In the right panel we plot
the value of the distributions at the survivor mass resolution versus the mean
host halo virial mass in each bin. From the figure we can see that, as argued by
Gao et al. (2004), the substructure mass function per unit of host halo mass is
universal down to 1013 M⊙/h and well fitted, ignoring the high-mass cut off, by:

dN

dmsb

= 10βmα
sb , (8.3)



8.2 Mass Fraction in Substructures and HOD 137

Figure 8.4: Survivor mass function per unit mass of the parent halo. Left: the dif-
ferential substructure abundance normalized to the total mass of the parent haloes
〈Mv dn/dmsb〉, in term of 1010 M⊙/h. The various data points and line types refer to
different parent halo host masses. Right: the dependence on the host halo mass of the
value of distributions corresponding to the minimum survivor mass plotted in the left
panel.

with α=−1.8 and β=−4.4. We recall that the value obtained by Gao et al. (2004)
are α=−1.9 and β=−3.2. The difference between the correspondent fit param-
eters obtained by us and by Gao et al. (2004) is due to the different definition of
the host halo mass we adopted.

An immediate consequence of the universality of this relation, for large host
halo masses, is a shift with parent halo mass in the abundance of substructures
as a function of the corresponding scaled mass mn = msb/M0. For small masses
this shift is

∆ log f (mn : M0) = 0.1∆ log M0 , (8.4)

where f (mn : M0) is the mean abundance of substructures by normalized mass
dN/dmn in host haloes of mass M0. In Figure 8.4 we notice also that for mass
smaller than 1013 M⊙/h the survivor mass function per unit of host halo mass is
not universal, the normalization factor β is larger for smaller host haloes.

8.2 Mass Fraction in Substructures and HOD

The total mass fraction in substructures is an interesting quantity but one for
which there is little agreement in the numbers reported in literature. Most au-
thors estimate a mass fraction between 5% and 20% (Gao et al., 2004; De Lucia
et al., 2004; Stoehr et al., 2002; Ghigna et al., 1998), however Moore et al. (1999)
argue that the true mass fraction might approach unity if substructures could
be identified down to extremely small masses. Diemand et al. (2007a), perform-
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ing the highest resolution simulation to data of Galactic CDM substructures, fol-
lowed the formation of a Milky Way-size halo, using 243 million particles. They
estimated a mass fraction equal to 5.3% but also argue that because of the sig-
nificant contribution from the smallest resolved clumps, this fraction could not
have converged yet.

Figure 8.5: Cumulative virial mass fraction in substructures. The data points show the
mass fraction of haloes, for the seven different mass bins considered, in survivors more
massive than msb . We considered all substructures within the virial radius of the host
halo and resolved with at least 10 dark matter particles.

In Figure 8.5 we show the cumulative mass fraction of the host halo in sub-
structures more massive than msb , for haloes in the seven mass bins considered.
These curves show a clear trend: the substructure mass fraction seems to con-
verge to well defined value as the mass resolution is reduced. The asymptotic
value is larger for more massive haloes, reflecting the trend in hierarchical clus-
tering that once the ratio msb/M0 is fixed, more massive haloes host more sub-
structures than small ones.

In Figure 8.6 we show the average mass fraction in substructures in term of
the host halo mass. The open circles show the result for haloes in GIF2 simula-
tion more massive than 1011.5 M⊙/h. Clearly more massive haloes have a large
mass fraction in substructures than the small ones. For a Milky Way-size halo,
the mass fraction, in substructures more massive than 1.73×1010 M⊙/h, is of the
order of the 5%. For each of the seven mass bins we also divide the haloes in
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two sample: those with a formation redshift smaller than the median (open dia-
monds in the figure) and those with z f larger (filled triangles), these two groups
are also expected living in different environments. Those with z f > z̄ f have been
assembled before, accreted progenitors at early times and live, probably, now
in an underdense region2 of the universe. To the other hand, host haloes with
z f ≤ z̄ f live in an overdense region and are still accreting progenitor haloes. In
the first case substructures, spending more time in the potential well of the host
halo, will retain at the present time only a small fraction of the original virial
mass. In Figure 8.6 we can see that once the host halo mass is fixed, systems with
a formation redshift larger than the median have a mass fraction in substruc-
tures that is smaller than the average relation. The opposite is true for parent
haloes with z f ≤ z̄ f . The three dashed lines in figure represent the least squares
fit to the three different data points.

Figure 8.6: Average virial mass fraction in substructures in term of the host halo mass.
Open circles show the results for haloes more massive than 1011.5 M⊙/h in GIF2 simula-
tion, error bars are the r.m.s. of the average of the distributions. The filled triangles refer
to haloes with formation redshift larger than the median of the corresponding mass bin,
while open diamonds to haloes with a formation redshift smaller than the median. The
dashed lines represent the least squares fit to the three different data points.

These considerations are also very important to understand the properties
of central galaxies and of the intergalactic light, that characterize dark matter

2The mean density of the region is smaller than the mean background density of the universe ρ̄.
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haloes. In the hierarchical picture, host galaxies are expected to form accreting
new galaxies along the cosmic time. After entering in an host halo, the stars and
gas in satellite galaxies can be deposited onto the central galaxy, stay bound as
a satellite galaxy or be scattered into the intergalactic light (Conroy et al., 2007).
Hydrodynamical simulations have found that approximately 85% of the stars in
the intergalactic light a z = 0 were deposited at z < 1 (Willman et al., 2004; Mu-
rante et al., 2007; Krick et al., 2006) and less than 30% of the intergalactic light
was built up by tidal stripping of satellite galaxies. The majority of the inter-
galactic light is thus built during violent merging events with the central galaxy
and/or the complete disruption of satellites. In this picture we expect that two
haloes of the same mass living in two different region of the universe will have
different observables. The older halo will probably have a red central galaxy and
more rich of intergalactic light. To the other hand, the younger, that is still ac-
creting systems, is expected to be more poor of intergalactic light, because the
satellites spent less time within its potential well.

Another interesting quantity that describes dark matter substructure cluster-
ing is the number of substructures that inhabit a halo of mass M0: substructures
Halo Occupation Distribution. This quantity can be predicted studying the clus-
tering of dark matter, power spectrum, bispectrum, and higher order moments
of the mass density field as showed by Scoccimarro et al. (2001). The mean num-
ber density of substructures can be written as:

n̄sur v =
∫

n(M)〈Nsur v (M)〉dM , (8.5)

where n(M) is the mass function of dark matter haloes and 〈Nsur v (M)〉 indicates
the mean number of substructures in an M-halo. Knowledge of the number of
substructures per halo moments 〈N n

sur v (M)〉 as function of halo mass gives a
complete description of the dark matter clustering within haloes. The number
of substructures hosted by a dark matter halo represents an upper limit to the
number of galaxies that can inhabit an halo.

Semi-analytical methods of galaxy formation (Kauffmann et al., 1999; Sheth
and Diaferio, 2001) predict an abundance of galaxy per dark matter halo mass
that scale as a power-law. The slope of the distribution depends on the color of
the galaxies as follow:

〈Ng al 〉 = 〈NB〉+〈NR〉
〈NB 〉 = 0.7 (M/MB )αB 〈NR〉 = (M/MR )αR , (8.6)

whereαB = 0 for 1011 M⊙/h ≤ M ≤ MB , αB = 0.8 for M > MB , MB = 4×1012 M⊙/h,
αR = 0.9 and MR = 2.5× 1012 M⊙/h. The physical basis for this relation is that
for large masses, the gas cooling time becomes larger than the Hubble time, so
galaxy formation is suppressed in large-mass haloes; the number of galaxy per
halo mass increases less rapidly than the mass. In small-mass haloes, however,
effects such as supernova winds can blow away the gas from haloes, also sup-
pressing galaxy formation producing also the cutoff at small masses.
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In Figure 8.7 we show the substructure halo occupation statistic. In the up-
per left panel the average number of substructures per dark matter halo mass
is represented (open circles). In the upper right we show the function α(M) that
quantifies deviations from Poisson statistics of the distribution, and correlate the
first and second moment obeying at the equation:

α(M) ≡
〈Nsur v (Nsur v −1)〉1/2

〈Nsur v 〉
. (8.7)

The two panels on the bottom shown the second and the third order factorial
moment of the halo occupation statistic.

Hierarchical clustering model predict that galaxies form in dark matter haloes
where gas can shock, cool and eventually form stars. The center of dark matter
haloes is, in this contest, expected inhabited by a peculiar galaxy while substruc-
ture population could host the satellite galaxies. The upper limit to the number
of galaxy that can be hosted by a dark matter halo is so represented by the total
number of substructures + 1 (host central galaxy). In the four panels the filled
circles refers to this statistic.

In the upper left panel of Figure 8.7 the solid line is the equation

〈Nsur v 〉 f = 0.014

(

M0

M0,mi n

)0.97

, (8.8)

that represents the least squares fit to the survivors occupation distribution. In
the equation M0,mi n = 1.73×1010 M⊙/h is the minimum mass considered by the
halo finder corresponding to systems with at least 10 particles. In the upper right
the average value of the anisotropy parameter

ᾱ(M) = 1.07±0.01 , (8.9)

is represented by the solid horizontal line. The dotted lines in the lower panels
show the least squares fit to the open circle data points. The solid line in the
lower left panel is the equation:

〈Nsur v (Nsur v −1)〉 f = ᾱ2〈Nsur v 〉2
f (8.10)

where 〈Nsur v 〉 f and ᾱ are the fit to first moment and the average anisotropy pa-
rameter. Also the higher order factorial moments are completely determined
once the first two moments have been specified, they obey to the equation:

〈Nsur v (Nsur v −1)...(Nsur v − j )〉 =α2(2α2 −1)...( jα2 − j +1)〈Nsur v 〉 j+1 . (8.11)

In the lower right panel of Figure 8.7 the solid line has been obtained from the
previous equation considering j = 2 and using the fit to first order moment 〈Nsur v〉 f

and α= ᾱ. In the case of a Poissonian distribution the equations for the high or-
der moment become:

〈Nsur v (Nsur v −1)...(Nsur v − j )〉 = 〈Nsur v 〉 j+1
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Figure 8.7: Halo occupation statistic of present day haloes in the GIF2 simulation. Top
left panel show the first moment: average number of survivors inhabiting an M0-halo.
The solid line is the least squares fit to the open circles (eq. 8.8). Top right the deviation
of the distribution from Poissonian statistic, equation (8.7). The horizontal solid line is
the average value obtained mediating open circles along the y-axis. The two figures in
the bottom show the second and the third order moments. Dotted lines represent the
fit to the survivors distribution while the solid line are equations 8.10 and 8.11 for the
second and third order moment expressed in therm of α and the first order moment. In
the four panels, filled squares refer to the number of substructures + host. See the main
text for more details.

The redshift evolution of the first order moment, of the halo occupation dis-
tribution, can be computed once the conditional mass function is known. Let us
consider 〈Nsur v (mv , z)〉 as the number of survivors that populate and mv -halo
at redshift z > 0. The first moment of the halo occupation distribution at the
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present time will be:

〈Nsur v (M0)〉 =
∫M0

0
〈Nsur v (mv , z)〉N (mv , z|M0)dmv , (8.12)

where N (mv , z|M0) = (M0/mv ) f (mv , z|M0) and f (mv , z|M0) the conditional mass
function of a present day M0-halo at redshift z > 0. In the case of 〈Nsur v (mv , z)〉∝
mv the equation become:

〈Nsur v (M0)〉∝
∫M0

0
mv

M0

mv
f (mv , z|M0)dmv ∝ M0 (8.13)

because for definition
∫M0

0 f (mv , z|M0)dmv = 1. This means that in the special
case of 〈Nsur v (mv , z)〉 ∝ mv the mean number of substructures for a given host
halo mass is constant with the redshift.

8.3 Discussion

In this chapter we have presented how subhaloes within subhaloes, in present-
day dark matter haloes can be identified following all branches of the merging
history tree. As showed by Gao et al. (2004), the substructures mass function is
not universal but depends on the host halo mass M0, more massive haloes at
fixed msb/M0 host more substructures that small ones. We have also shown that
the mass fraction in survivors in large haloes is higher than in small systems.
The scatter of this distribution at a fixed M0 depends on the formation time of
the host, the fraction is higher for smaller formation redshifts.

Comparing survivor catalogues with the SUBFIND ones, computed in the
same numerical simulation, we showed that the agreement between the two al-
gorithms is satisfying. However, we notice that the substructure mass function
per unit volume is universal down to M∗, as found by Gao et al. (2004), but the
normalization increase for small host masses.

In this chapter, we have also studied the halo occupation distribution and
high order moments of the survivor population, finding the first moment with
slope approximately equal to one. This theoretically predict no evolution with
redshift for the average number of substructures that inhabit an halo of a given
mass. The anisotropy parameter from a Gaussian distribution α is also approxi-
mately equal to one.

As future work, it will be very interesting test the evolution of the first mo-
ment of the HOD with redshift using the substructure catalogue at other snap-
shots of the numerical simulation. This will help us to better understand the
redshift evolution of the HOD and see if its slope really does not depend on z.





CHAPTER

9
Monte Carlo Merger Tree with
Micro-Solar Mass resolution

Along the different chapters of this dissertation we have enphasized that in the
standard models of galaxy formation, including the Cold Dark Matter (CDM),
haloes are assembled hierarchically through merging and accretion of many smaller
objects, formed in a similar way at higher redshift. These structures provide the
environment in which galaxies build up and evolve. Thus understanding the as-
sembly histories of dark matter haloes is the first step towards the knowledge of
the more complex process of galaxy formations.

In order to study the framework of structure formations two different ap-
proaches are feasible. The first one is with the use of N-body simulations, which
are known to have some drawbacks. First of all they are computationally expen-
sive and not possible to implement on standard computers. Moreover they have
a limited mass resolution which is given by thr particle mass. The second way
is the analytic approach which allows a detailed study of the merging history
of haloes over a range of masses that is in principle unlimited (see Chapter 6).
This method has its roots in the Press-Schecter formalism (Press and Schechter,
1974). We have shown that, in the spherical collapse model, haloes collapse on a
certain scale once the smoothed density contrast on this scale exceeds the criti-
cal value δsc (z). The nonlinearities introduced by these virialized objects do not
affect the collapse of overdense regions on larger scales. This simple assump-
tion leads to the derivation of the global mass function of dark matter haloes
(as discussed in Section 3.2) that is more or less in agreement whith that found
in N-body simulation (Lacey and Cole, 1993; Somerville et al., 2000; Sheth and
Tormen, 1999, 2002).

An extension of this theory was made by several authors (Lacey and Cole,
1993; Bond et al., 1991; Bower, 1991) with the aim of computing the conditional
mass function, i.e. the probability that given a halo of mass M0 at redshift z0

it belongs to a halo of mass M1 at an earlier redshift z1. This extended Press-
Schechter formalism can be also exploited to derive merger rates, halo formation
times, mass growth histories, as we have shown in Section 4.4.

In this chapter we will discuss how it is possibile to construct a Monte Carlo
merger tree with micro-solar mass resolution, using the extended Press & Schechter
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formalism. We will show that the algorithm generate a conditional mass function
that is in perfect agreement with the spherical collapse model at any redshift and
considering any present-day mass we want.

The simplest algorithm for a merger tree is through a binary tree. In this
scene each halo is splitted in two haloes at an earlier epoch. Subsequently each
halo is divided in other two pieces until all halo masses fall below an arbitrary
chosen and desired mass resolution R (Lacey and Cole, 1993; Cole and Kaiser,
1988; Cole, 1991; Kauffmann and White, 1993). However, Somerville and Kolatt
(1999) showed the failure of using a binary merger tree. In this way the first halo
which is chosen from the Press & Schetchter distribution follow the correct prob-
ability, but the second one is chosen only in order to conserve mass and does not
follow the theoretical model as expected. This leads to conditional mass func-
tion and formation redshift distribution in disagreement with the extended Press
& Schechter predictions. To solve this problem they developed an new algorithm
able to reproduce quite good the conditional mass function, however using a
grid of time-step fine tuned.

To the other hand, Sheth and Lemson (1999) using the results found by Sheth
(1996), realised that, for white-noise initial conditions, mutually disconnected
regions are mutually independent. In this case it is possibile to split an halo,
in a very elegant way, in progenitors whose mass function is in perfect agree-
ment with the theoretical model of the spherical collapse. The great advantage
of their method is that they are able to obtain arbitrary high mass resolution for
any given time-step, generating progenitors in a very fast way.

In this chapter we describe as Sheth and Lemson (1999) method can be gen-
eralized to a ΛCDM power spectrum. The tree will be extended down to micro-
solar mass resolution in order to study the subhalo population of a present-day
halo, until the typical neutralino Jeans’ mass.

Using random walks, instead of extracting number from a given distribution
(that is Gaussian for the spherical collapse model), it is possible to extend the sh-
perical collapse procedure to the ellipsoidal collapse (Giocoli, Sheth & Tormen,
in preparation) considering a moving barrier as in equation 3.26.

9.1 Poissonian Initial Conditions: Partition Algorithm

Let us consider a discrete Possonian distribution of identical particles. Epstein
(1983); Sheth (1995) showed that the probability that a clump has N particles is
given by the following equation:

η(N ,b) =
(Nb)N−1e−Nb

N !
, (9.1)

knwon as Borel distribution (Borel 1942), where N ≥ 1 and 0 ≤ b < 1. We will see,
along the different equations of this chapter, that the variable b can related to
the Press & Schetchter overdensity threshold δsc in the continuous case by the
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relation:

b = 1/(1+δsc ) .

We know that the average number of particles in a Borel clump is given by 〈N〉 =
1/(1− b), while the probability that a randomly chosen particle is in a such a
clump by (1−b)Nη(N ,b). In the limit of a large number of particles and small
δsc , the Stirling’s approximation for the factorial term implies that

(1−b)Nη(N ,b) =
δsc

(1+δsc )

(

N

1+δsc

)N−1 e−N/(1+δsc )

(N −1)!

→
δscp
2πN

exp

(

−
Nδ2

sc

2

)

. (9.2)

This equation is precisely that wich obtains for a Gaussian density field consider-
ing white noise initial condition. In this contest the Poissonian distribution can
be thought as the discrete analogue of the white noise Gaussian power spectrum
as studied by Bond et al. (1991); Lacey and Cole (1993, 1994).

Starting from the same initial condition and considerations, it is possibile to
write the conditional probability that a particle, belonging at the time b0 to a
clump made of N particles, is in an n-clump at b1 < b0, that is:

f (n,b1|N ,b0) = N

(

1−
b1

b0

)

(

N

n

)

nn

N N

(

b1

b0

)n−1 [

N −n
b1

b0

]N−n−1

(9.3)

where 1 ≤ n ≤ N and 0 ≤ b1/b0 ≤ 1.
However, for a complete description of the merging history tree of an N-

clump at b0 we need to know what is the probability that at b1 this is divided
in a sample of n j j -clumps with k subfamilies (so n1 + ...+nN = k). We recall

that conserving the number of particles it holds
∑k

j=1 j n j = N . The Poissinian
Galton-Watson branching process gives for this probability the following equa-
tion:

p(n1, ...,nk ,b1|N ,b0) =
[N (b1 −b0)]n−1e−N(b1−b0)

η(N ,b0)

k
∏

j=1

η( j ,b1)n j

n j !
, (9.4)

where η(l ,b) is the Borel distribution with time parameter b. Since b0 can be
related to a density, the volume of the N-clump can be written as:

VN ,0 =
N

n̄(1+δsc,0)
, (9.5)

where n̄ denotes the average density of the universe. In this contest equation (9.4)
can be seen as the probability that a region with N particles, at average den-
sity n̄(1+δsc,0), has k subregions each with average density n̄(1+δsc,1), where
δsc,1 ≥ δsc,0. Let consider now at the time b1 an n-subclump of the N-clump,
in the Appendix A of the paper of Sheth and Lemson (1999) it is shown that if
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Vn,1 = n/n̄(1+δsc,1) is its associated volume, the remaining group of particles
N −n will obey to the following equation:

N −n

VN ,0 −Vn,1
≡ n̄(1+δ′sc ) =

n̄

b′ , (9.6)

where b′ = 1/(1 + δ′sc) is density of the remaining volume, that represents the
unknown quantity.

In the continuous limit, when N → M (with S the corresponding mass vari-
ance) and b → δsc , the equations (9.1) and (9.4) give the equations (3.23) and
(4.6).

Figure 9.1: Conditional mass function of an M∗-present-day halo. The different data
points correspond to five different redshifts at which the progenitors have been com-
puted with a single time-step. The solid curves that fit the data points are the spherical
collapse conditional mass function at each of the correspondent redshift (eq. 4.6).

Let us consider, as first case, a white-noise power spectrum, where M ∼ 1/S,
and suppose we want to split an M0-halo, that lives at the present time δsc,0, in
progenitor haloes at time δsc,1. We have seen in Chapter 4 that the spherical
collapse conditional mass function written in term of ν= (δsc,1−δsc,0)/

p
s −S0 is

a Gaussian distribution with mean ν̄= 0 and σ= 1. To generate a progenitor, we
draw a random number ν̃1 from this ditribution. The associated mass variance
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s̃1 of this first progenitor halo can be computed solving the equation:

ν̃1 =
δsc,1 −δsc,Rp

s̃1 −SR

, (9.7)

where initially R = M0 (SR ∼ 1/R) and δsc,R = δsc,0. The mass of the halo will thus
be m̃1 ∼ 1/s̃1. Considering that for white-noise power spectrum disconnected
volume are mutually independent, the overdensity of the remaining mass R =
M0 −m̃1 will be given by:

δsc,R = δsc,1 −
(δsc,1 −δsc,0)

R/M0
. (9.8)

To generate the second halo we draw another number from the Gaussian dis-
tribution, we compute the mass variance from the equation (9.7), and after the
corresponding mass. The remaining mass will new be R = M0−m̃1−m̃2, with the
corresponding overdensity given always by the equation (9.8). We can proceed
in this way until the mass resolution R is as small as desired.

In Figure 9.1 we show the progenitor mass function at five different redshifts
obtained using the algorith described above. For each final time-step we run
104 Monte Carlo realisations. The progenitors have been computed with a single
time-step and it has been considered an M0-present-day halo, with M0 = M∗ =
1013 M⊙/h. The mass resolution has been set equal R = 0.0001×M0. The solid
curves, in perfect agreement with data points, are the spherical collpase predic-
tions for the considered redshifts (eq. 4.6). Among the progenitor haloes we term
main progenitor the most massive one.

To check the full consistency of the method we generate a merging-history-
tree of a present-day halo until high redshift. However we followed only the main
progenitor halo. In Figure 9.2 we show the formation redshift distribution, con-
sidering 103 realisation of the tree. The formation redshift has been rescaled in
term of the universal formation time variable w f = (δsc, f −δsc,0)/

p
S0. We know

that for spherical collapse model the distribution in w f is independent of the ini-
tial mass. In the figure the solid curve is the prediction of Lacey and Cole (1993),
equation (5.9), which perfectly fits the distribution of the Monte Carlo tree.

9.2 Gaussian Initial Conditions for a ΛCDM Power Spectrum

In order to generate Monte Carlo realisations of the merging-history-tree of present-
day haloes, considering aΛCDM power spectrum, we need to do some modifica-
tions to the algorithm previously described. The assumption that disconnected
volumes are mutually independet is wrong when the initial conditions differ
from white-noise. Despite this, we notice that, when expressed as functions of
the variance rather than the mass, all excursion set quantities are independent
of power spectrum. Also, each chosen mass m̃, can be treated not as a progeni-
tor having a mass m̃ but as region of volume ṽ containing a mass m̃, populated
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Figure 9.2: Formation redshift distribution for a present-day M∗-halo and white-noise
power spectrum. The histogram is the realisation of 103 merger tree, the solid line is the
spherical collapse prediction of Lacey and Cole (1993) (eq. 5.9).

by ζ objects having all the same mass µ. Thus with ζ= m̃/µ. The number of ob-
ject is obtained by requiring that the objects have the same mass variance that
is s(µ) = 1/m̃. For a scale-free power spectrum P ∼ kn (α= n +3/3) ζ= m(α−1)/α,
and for n = 0 we have ζ = 1, the region ṽ contains exactly one halo, as we want.
For n 6= 0 and general power spectrum ζ is neither unity nor even integer. How-
ever, as we will see in the next section, this approach generates progenitor mass
functions wich are in perfect agreement with the theoretical prediction for every
power spectrum, redshift and initial mass. We recall that the general (or in our
case the ΛCDM) and the white-noise power spectrum has to be such that:

Swn(M0) = S(M0) , (9.9)

where M0 is the initial mass to be splitted.

Partition of a Milky-Way size halo with micro-solar mass resolution

In this section we will discuss how generate a sample of progenitors, for a present-
day dark matter halo, at any redshift and with any mass resolution we want. We
recall that if we consider the case of a ΛCDM power spectrum (ΩΛ = 0.7, Ωm =
0.3 and σ8 = 0.772) the correspondent white-noise spectrum has to obey the
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Figure 9.3: Mass variance for different power spectrum. For ΛCDM power spectrum the
mass variance has been computed chosing a power spectrum with primordial spectral
index n = 1, and a transfer function obtained from CMBFAST (Seljak and Zaldarriaga,
1996) for a concordance ΛCDM universe (Ωm , ΩΛ, h = 0.3, 0.7, 0.7) with σ8 = 0.772, ex-
tended down to a mass M = 106M⊙/h. We have integrated this power spectrum using
a top-hat filter in real space. To obtain the mass variance until the typical Jeans neu-
tralino mass we linearly extrapolate the log(m)-s relation to M = 10−6M⊙/h. The three
scale-free power spectrum as been normalized to have the same mass variance for an
halo with mass 1012 M⊙/h.

equation (9.9). In this contest when we choose a mass resolution R , in theΛCDM
case, the correspondent mass resolution in the white-noise partition is such that
Swn(Rwn) = S(R), with generally Rwn > R (as can been seen in Figure 9.3).

Let us consider the case of a present-day Milky-Way size halo, M0 = 1012 M⊙/h,
and suppose we want to generate a sample of progenitors at different redshifts
until R = 10−6 M⊙. This mass corresponds in the white-noise power spectrum to
Rwn = 2.15× 1010 M⊙/h (see Figure 9.3). To generate progenitors at redshift z1

(where δsc,1 is the correspondent critical overdensity) we run the code consider-
ing a white-noise power spectrum. We extract a random number from the Gaus-
sian distribution (zero mean and one variance) and compute the mass variance
of the first halo using the equation (9.7). This mass variance will correspond to
a mass m̃ for the case n = 0 and to a mass µ in the ΛCDM cosmology, where the
number of µ-progenitors is ζ= m̃/µ. Generally this number is neither unity nor



152 Monte Carlo Merger Tree with Micro-Solar Mass resolution

Figure 9.4: Single-step conditional mass function at six different redshifts for a present
day Milky-Way size dark matter halo and considering a ΛCDM power spectrum. The
mass resolution of the partition algorithm is 10−6 M⊙, corresponging to the typical neu-
tralino Jeans-mass. For the cases ζ= NINT(m̃/µ) and ζ= INT(m̃/µ) the conditional mass
function have been shifted respectively of a factor of ten up and down respect to the
original distribution. The solid curves represent the corresponding spherical collapse
conditional mass functions.

even integer, but we can consider two cases: the frist where ζ= NINT(m̃/µ) and
the second where ζ = INT(m̃/µ). These cases not have any theoretical justifica-
tion but prevent us to have a non-integer number of progenitors. To generate
the second progenitor halo, we compute the overdensity of the remaining mass
M0−m̃ from the equation (9.8), we draw a random number ν̃ from the Gaussian
distribution and from the (9.7) we estimate the mass variance. Finally, we com-
pute the ΛCDM mass and the correpsonded number of progenitors. Thus the
remaining mass will be R = R −m̃. We proceed in this way until the mass resolu-
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tion is as small as desired. The most massive progenitor, in the poissonian tree
at each redshift, is defined to be the main progenitor halo.

In Figure 9.4 we show the conditional mass function of a M0 = 1012 M⊙/h halo
at six different redshifts, considering a ΛCDM power spectrum. The conditional
mass function in the cases ζ = NINT(m̃/µ) and ζ = INT(m̃/µ) has been shifted
respectively of a factor of ten up and down respect to the original distribution.
At all redshifts the progenitor haloes have been obtained with a single-step real-
ization. In the figure the solid curves are the spherical collapse predictions, and
as we can see, they are in perfect agreement with the partition code in all cases
and final redshift considered.

Unevolved subhalo population

In Chapter 6 we have studied the substructure population of a present-day halo
considering the progenitor mass functions at any redshift z > 0. We assumed
that all progenitors will survive at the present in the host halo, without loose
mass. The analytical distribution of the progenitor mass function has been ex-
trapolated down to 10−6 M⊙ to study the γ-ray emission from micro-solar sub-
structures that populate the Milky-Way halo. The γ-ray emission is due to dark
matter particle and anti-particle annihilation. The rate of annihilation, and thus
the γ-ray emission, depends on local density. Considering that substructures
are dense clumps of dark matter, it is expected an enhancement of the γ-ray
background signal in correspondence of these. Each considered progenitor has
an associeted concentration parameter that, as shown by Diemand et al. (2005),
is related to their ν = δsc (z)/σ(m), where z is the correspondent redshift of the
considered m-progenitor. However, in this discussion we did not consider that
progenitor haloes merge with the host system, along the cosmic time. For this
reason it would be more correct use for z and m the accretion redshift and mass
before the satellite merges with the main progenitor halo. This kind of approach
and modelling can not be done analycally and require a Monte Carlo merger his-
tory tree.

To compute the satellite mass function (that we termed also unevolved sub-
halo mass function), we run the Monte Carlo code, described above, generat-
ing merging history trees of a present-day M0-halo always following the main
trunk: (i) we generate a sample of progenitors at redshift z1 = z0 +dz; (ii) among
them we identify the main progenitor halo; (iii) starting from this we re-run the
partition code computing its progentiros at redshift z2 = z1 +dz. We go on in
this way down to redshift zi = z0 + i ×dz until the mass of the main progenitor
halo, in the ΛCDM tree, does not drop below the mass reslution R = 10−6 M⊙.
In Figure 9.5 we plot the satellite mass function, at all redshifts, computed with
the algorithm described above, considering the case ζ = NINT(m̃/µ). As can be
seen, the distribution has a power low trend dN/dln(m)∝ m−α, where the slope
α=−0.93, while at high satellite masses the distribution is truncated with an ex-
ponential cut off. The slope of the distribution is in agreement with the value ob-
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tained by van den Bosch et al. (2005) for the unevolved subhalo mass function.
However, they used a different tecnique to generate the Monte Carlo merger tree
(Somerville and Kolatt, 1999). This tecnique is time-step dependent and not able
to reproduce the theoretical prediction of the conditional mass function down to
micro-solar masses.

Figure 9.5: Mass function accreted by the Milky-Way halo. The merger history tree has
been performed generating progenitor haloes until a mass resolution of 10−6 M⊙. The
main progenitor halo has been followed in redshift until its mass does not drop below
the mass resolution.

Using an N-Body simulation Diemand et al. (2005) showed that the present-
day subhalo population preserves memory of the initial conditions. The high
density peacks are found to be more centrally concentrated and move on more
radial orbits than the overall mass distribution. This correlation has been inter-
preted and parametrized by the author using the variable ν = δsc (z)/

p
s. Thus,

have a prediction for the satellites distribution in term of ν = δsc (z)/
p

s is im-
portant both because ν is related to the own subhalo concentration, from which
depends their γ-ray emission, and because the spatial distribution in the host
halo can be parametrized in term of this variable (see eq. (1) in Diemand et al.

(2005). In Figure 9.6 we plot the satellite mass function in term of the universal
variableν. In the figure the histogram is the result of 104 Monte Carlo realisations
of the tree (as in Figure 9.5), while the dashed curve is a Gaussian distribution.
From the figure we can see that the rescaled satellite mass function follow the
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Gaussian distribution until ν≈ 2 after which it has a cut-off.

Figure 9.6: Satellite mass function in term of the universal variable ν = δsc /σ(m). The
histogram show the result of 104 realization of the Monte Carlo tree. The dotted line is a
gaussian distribution with zero mean and one variance.

Draco accretion mass

The algorithm described above can be easly used to constrain and study some
properties of the observed satellite galaxies. For example, let us consider the case
of a satellite of the Milky-Way, Draco, and suppose that we what to compute its
virial mass at merging time. This estimate is useful to construct a Monte Carlo
merger tree of a Draco-size halo, starting from its accretion (or also merging)
time on the Galaxy-halo, and estimate the subhaloes wihin the satellite galaxy.

To compute the original virial mass of the Draco we need to know its present-
day mass and its accretion redshift on the Milky-Way. Using deep wide-field mul-
ticolor CCD photometry from the Sloan Digital Sky Survey, considering a King
(1966) spherical model of equivalent size as a reference and adopting a line-of-
sight velocity dispersion of either 10.7 km/s or 8.5 km/s (Armandroff et al., 1995),
Odenkirchen et al. (2001) derived estimates of the total mass of Draco within the
tidal radius of 3.5± 0.7× 107M⊙ and 2.2± 0.5× 107 M⊙, respectively. Consider-
ing all stars within Rti d they also determined the total luminosity of the Draco
dwarf galaxy as a (L/L⊙)i = 2.4±0.5105. This tell us that Draco is a dark matter-
dominated galaxy with a very high mass-to-light ratio. To the other hand, Łokas
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et al. (2005) studing the distribution of dark matter in Draco, by modelling the
moments of the line-of-sight velocity distribution of stars, from velocity data of
Wilkinson et al. (2004), obtained a best-fitting total mass equal to 7×107 M⊙. The
mass-to-light ratio (in V-band) found was 300 M⊙/L⊙ and almost constant with
radius. For the merging time we do not have any direct observable that can be
useful to estimate it. However, from its initial position and velocity the merg-
ing time of Draco on the Milky-Way can be estimate considering the one-to-one
correspondence between virial radius and accretion time implied by the spheri-
cal secondary indall model. Hayashi et al. (2003) showed that an uperr limit for
Draco merging redshift is zm . 2.8.

Figure 9.7: Unevolved and evolved subhalo mass function accreted by a present-day
Milky-Way size halo between z = 2 and z = 2.8. The evolved distribution has been ob-
tained from the accreted one using equation (7.18).

From these estimate, in order to compute Draco virial mass, we proceed in
the followin way. We run our Monte Carlo merger tree considering a present-
day Milky-Way size halo M0 = 1012 M⊙/h, and following the main progenitor
halo. We noted down all masses larger than 3× 107 M⊙ accreted from z = 2 to
z = 2.8. This redshift interval correspong roughly to a time interval of 1Gyr from
the upper limit of the accretion time. The solid histogram in Figure 9.7 show
the mass function of these accreted systems. Each satellite halo once in the
virial radius of the host loose mass due to gravitational heating and tidal strip-
ping. In order to model this effect, we use the result from Section 7.4. Eeach
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accreted halo will retain at the present time a fraction of its original virial mass
that depends on the time spend in the potential well of the host, given by equa-
tion (7.18). In Figure 9.7 the dotted histogram shows the evolved accreted mass
function, which considering that the fractional mass loss rate is independent
on the subhalo mass stays constat to the unevolved distribution. At this point
to estimate the mass of Draco at merging time we compute the average of ac-
creted masses that at present-time range between 3×107 M⊙ and 7×107 M⊙, that
is: mv,D = 4.838± 0.002× 109 M⊙. This means that a satellite galaxy, that spent
around 11Gyr in the potential well of the host halo retain roughly 0.01% of its
initial mass.

9.3 Discussion

In this chapter we have discussed how to build up a Monte Carlo merger tree
with micro-solar mass resolution, whose mass function perfectly reproduce the
spherical collapse prediction for any power spectrum, initial mass and final red-
shift. We have showed that following the poissonian tree not only the conditional
mass function is in agreement with the theoretical prediction, but also the for-
mation redshift distribution agree with the model.

We generalized the Sheth and Lemson (1999) algorithm to the case of aΛCDM
power spectrum finding a conditional mass function in perfect agreement with
the theoretical prediction of the spherical collapse model. We considered a present-
day halo M0 = 1012 M⊙/h, corresponding to the Milky-Way halo. The tree has
been run with a mass resolution R = 10−6 M⊙, in order to estimate the subhalo
population down to this mass. The idea of this tree is related to study the γ-ray
emission from the subhalo population of the Milky-Way halo, extending the ap-
proach presented in Chapter 6 (Giocoli, Pieri, Sheth & Tormen in preparation).

Including the recipe of the mass loss rate in our Monte Carlo tree, we give
an estimate of the Draco virial mass at merging time with Milky-Way. We notice
that the satellite galaxy, spending more than 11Gyr in the virial radius of the host
halo, loose roughly 99% of its mass until the present.
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APPENDIX

A
On Rescaling the Virial Radius of
DM Haloes

In this first appendix we will present some fitting functions useful to rescale dif-
ferent definitions of the virial radius of dark matter haloes.

Following the spherical collapse model, a dark matter halo is assumed to viri-
alize when its mean density reaches the predicted virial value (e.g. Eke et al.

(1996)). For a concordance ΛCDM universe, with Ωm = 0.3 at the present time,
the critical overdensity a z = 0 is ρv = 324ρ̄, with ρ̄ the mean background density
of the universe. At higher redshifts Ωm grows approaching unity, as can be seen
in Figure 3.2, so that the virial overdensity approaches 178 ρ̄, as in an Einstein-de
Sitter universe.

However, in the literature other definitions have also been used. The Santa
Cruz Theoretical Cosmological Group defines dark matter haloes in numerical
simulations as groups of particles at 200 times the mean background density of
the universe. On the other shore of the Atlantic Ocean, researchers of the Virgo
Consortium use 200 times the critical density: ρc = ρ̄/Ωm . Using different defi-
nitions often makes it hard to compare results obtained from different groups or
simulations. It is interesting to notice that for an Einstein-de Sitter universe (or
at high redshift in the case of a ΛCDM universe) the two definition are identical.

In order to compare these two definitions to that of the spherical collapse
model, we considered haloes identified at different redshifts in the GIF2 sim-
ulation. These systems, as described in Section 4.3, have been identified us-
ing the SO criterion, and their virial radius and mass were defined according to
the spherical collapse model (Eke et al., 1996). For each redshift we consider all
haloes with mass at least Mv = 1011.5 M⊙/h, and compute their density profiles
out to 3 Rv . Since ρc = ρ̄/Ωm , all radii R200,c , Rv and R200b are always smaller than
3Rv .

In Figure A.1 we plot the ratio R200,b /Rv versusν= δ2
sc /S, at four different red-

shifts. Open circles represent the median of the distribution, while gray bands
enclose the second and third quartiles. Filled triangles show the average, error
bars its r.m.s.. Similarly, in Figure A.2 we show the ratio R200,c /Rv versus ν. In all
cases R200,b and R200,c were computed by appropriate interpolation of the den-
sity profile of each halo.
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Figure A.1: Ratio between the virial radius and the radius enclosing 200 times the back-
ground density, versus the universal variable ν. In each panel the ratio refers to different
simulation redshifts. The open circles represent the median of the distribution, while
the shaded region encloses the second and the third quartile. The filled triangles instead
represent the average of the distribution, and the error bars are the root mean squares.

Figure A.2: Ratio between the virial radius and the radius enclosing 200 times the critical
density, versus ν. In each panel the ratio refers to different redshift. The data points and
error bars are the same as Figure A.1.
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In Figure A.3 we plot the redshift dependence of the ratio R200,b /Rv . Different
data points refer to the GIF2 simulation for various value of ν= δsc (z)2/S, where
δsc (z) is the critical spherical collapse density for a halo collapsing at redshift z

(see Eke et al. (1996)) and S the mass variance (eq. 3.9). In order to fit the data
points we assume that the ratio between the two radii is independent of the halo
mass at any given redshift, as can be seen in Figure A.1. The average value of the
ratio R200,b/Rv is well fitted by the relation:

R200,b

Rv
= a

[

∆v (z)

∆v,0

]−4/9

, (A.1)

where ∆v (z) = ρv (z)/ρ̄ represents the virial density contrast and a = 1.23.
We now proceeded in the same way as before, considering the ratio R200,c /Rv .

In Figure A.4 we plot the simulation data points and the best fit to the average ν

at different redshifts. The solid line is the equation:

R200,c

Rv
= b

[

∆v (z)

∆v,0

]2/5

, (A.2)

where b = 0.74.
Doing the ratio of these two last equations we can write:

R200,b

R200,c
= c

(

∆v (z)

∆v,0

)−38/45

, (A.3)

where c = a/b. We know that the two definitions R200,c and R200,b agree at high
redshifts, where Ωm(z →∞) ≈ 1 for ΛCDM universe, so we have:

1 = c

(

∆v (z →∞)

∆v,0

)−38/45

, (A.4)

that gives the relation between a and b considering that∆v (z →∞)/∆v,0 ≈ 1.828.
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Figure A.3: Dependence on redshift of the ratio between R200,b and Rv . The points refer
to simulation data for different value of ν, while the solid line represents the best fit to
the data point: equation (A.1).

Figure A.4: As in the previous figure, but considering the radius that enclose 200 times
the critical density of the universe. The solid line is equation (A.2).



APPENDIX

B
On the Difference Between Halo
Formation and Creation

The main text deals with halo formation has defined by Lacey and Cole (1993).
It is worth mentioning that there is another context in which the term ‘halo for-
mation’ arises—this is when the halo population is modeled as arising from a
binary coagulation process of the type first described by Smoluchowski (1916).
In this description, the time derivative of the halo mass function is thought of as
the difference of two terms: one represents an increase in the number of haloes
of mass m from the merger of two less massive objects, and the other is the de-
crease in the number of m-haloes which results as m-haloes themselves merge
with other haloes, creating more massive haloes as a result:

dn(m, t )

dt
=C (m, t )−D(m, t ) (B.1)

The gain term, the first on the right hand side above, is sometimes called the
halo formation (Sheth and Pitman, 1997) or creation (Percival and Miller, 1999;
Sheth, 2003) term. In what follows, we will use the word ‘creation’ to mean this
term, and ‘formation’ to mean the quantity studied by Lacey & Cole.

Halo formation and creation are very different quantities, as we show be-
low. Nevertheless, they are sometimes used interchangeably in the literature
(e.g. Verde et al. (2001)). Here we show explicitly how to compute the Lacey-Cole
formation time distribution from the Smoluchowski-type creation and destruc-
tion terms, with the primary aim of insuring that the error of confusing one for
the other is not repeated.

In the Lacey-Cole picture, the formation time distribution of M-haloes iden-
tified at T is given by equation (5.2). In this case, one first integrates over the
conditional mass function, and then takes a time derivative. Here, we will in-
stead take the time derivative inside the integral over mass and compute it before
integrating over mass, as suggested by equation (5.3). In this case, the integrand
has the form of a time derivative which plays a central role in the Smoluchowski
picture. In particular, we can write

dN (m, t |M ,T )

dt
=C (m, t |M ,T )−D(m, t |M ,T ), (B.2)
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where C and D are now the creation and destruction terms associated with the
progenitor mass function, evaluated explicitly in Sheth (2003).

This simple step shows explicitly that p(t |M ,T ) can be written in terms of
Smoluchowski-like quantities:

p(t |M ,T ) =
∫M

M/2
dm C (m, t |M ,T )−

∫M

M/2
dm D(m, t |M ,T ). (B.3)

A little thought shows why this works out so easily. Simply integrating the halo
creation rate C (m, t |M ,T ) over the range M/2 ≤ m ≤ M overestimates halo for-
mation, since some of haloes created at t , with mass 3M/4 ≤ m ≤ M say, may
actually have been may created by binary mergers in which one of the haloes
had a mass in the range M/2 ≤ m ≤ 3M/4. Such creations should not be counted
toward halo formation, since formation refers to the earliest time that m ex-
ceeds M/2. However, it is precisely this double-counting which the second term,
the integral of D(m, t |M ,T ) over the range M/2 ≤ m ≤ M , removes. Note in
particular that, whereas the formation time distribution p(t |M ,T ) is related to
Smoluchowski-type quantities, it is not the same as C (m, t ). For completeness,
note that

C (m, t )=
∫∞

m
dM n(M ,T )C (m, t |M ,T ), (B.4)

where n(M ,T ) denotes the number density of haloes of mass M at time T .
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C
On Different Definitions of
Subhaloes

In this appendix we will show the results of different tests performed while devel-
oping our subhalo-finder code. The idea of the algorithm described in Chapter 7
is a further development of the method described in Tormen et al. (2004). In this
paper the authors follow the growth of haloes through the repeated accretion
of satellite haloes, defined as progenitors directly donating at least 50% of their
particles to the main progenitor halo 1 In order to calculate the satellite prop-
erties after its merging time zm , it is necessary to consider the subset of satel-
lite particles which are still self bound at each z < zm . The authors identify the
satellite center using the so called moving-center method (Tormen et al., 1997).
Starting from it they make a list of all satellite particles inside the satellite virial
radius, assuming that all particles outside this radius are physically unbound to
the satellite. Next they remove from this list all unbound particles. These two
steps are repeated until the self-bound mass converges to some value.

Our first step has been to test this code on the GIF2 simulation. In order to
reduce computational time, we did not follow the satellites along all the sim-
ulation snapshots with z < zm . Instead, we computed self-bound masses and
orbital properties only at the desired redshift of observation z0. As described in
Section 7.1, we considered all haloes with final mass M ≥ 1011.5 M⊙/h, whose
main progenitor at any redshift has virial mass not exceeding the final value by
more than ten percent. Following the growth of each main progenitor halo we
recorded all its satellites and noted down the index of the their particles. At the
end, for each satellite we repeated the same procedures done by Tormen et al.

(2004) at redshift z0 by computing its self-bound mass.
In Figure C.1 we show the subhaloes identified in the most massive halo in

GIF2 simulation using the algorithm described. In the top panel we show the
distribution of particles within the corresponding host virial radius. The two
panels on the bottom show the self-bound particles in subhaloes (left) and the
halo particles not bound to any subhalo (right).

In Figure C.2 we show the subhalo mass function obtained using the Tormen

1However a check need to be done on the satellite particles: each accreted halo is considered as a
“novel” satellite if it does not share more than 30% of its particles with any previous satellite.
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Figure C.1: Top panel: particle distributions in the most massive halo at redshift z = 0 in
the GIF2 simulation. Bottom left: self-bound particles in subhaloes identified using the
Tormen et al. (2004) algorithm. We recall that the halo has 1070564 particles within its
virial radius (Mv = 1.85×1015 M⊙/h); 265607 of these are in self-bound groups. Bottom
right: dust particles, i.e. particles that belong to the halo without being bound to any
subhalo.

et al. (2004) algorithm. The various data points and line types refer to differ-
ent present day host halo masses. The figure shows that, at fixed msb/M0, more
massive haloes have more subhaloes than less massive ones, as expected from
the hierarchical clustering model. However, the differences in normalization are
smaller than expected (Gao et al., 2004; De Lucia et al., 2004; van den Bosch et al.,
2005). Hereafter we will use the notation “mc - Rc,v ” to refer to this algorithm,
where “mc” stays for moving center.
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We also notice that the mass fraction in subhaloes is rather high: for example,
for cluster size haloes we found a mass fraction of the order of 0.3M0, while the
value usually reported in the literature ranges between 5% and 20% (Gao et al.,
2004; De Lucia et al., 2004; Ghigna et al., 1998).

Figure C.2: Subhalo mass function in present-day haloes with M ≥ 1011.5 M⊙/h, from
the GIF2 simulation. We only considered haloes with main progenitor mass Mv (z) <
1.1Mv (z = 0), (see Table 7.1 for the corresponding number of haloes in each considered
mass bin). For each satellite the self-bound mass has been computed considering all
its particles within the comoving virial radius Rc ,v . The various data points and line
types refer to different present day mass host halo masses. The solid curve indicates the
unevolved subhalo mass function fit: equation (7.3).

A first possible explanation of the discrepancies between our results and those
by Gao et al. (2004); De Lucia et al. (2004); Ghigna et al. (1998) is the fact that
probably our algorithm includes too many particles in the self-bound mass of
each satellite. Our method does not consider the fact that particles outside the
tidal radius Rti d are likely to be unbound. In general, Rc,v > Rti d , so the self-
bound mass computed considering particles within Rc,v is an upper limit to the
true subhalo mass. As we showed in Chapter 7, the algorithm we used computes
the satellite mass using only the particles within Rti d .
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Tidal radius

The tidal radius of a subhalo is defined as the distance from the center where
the differential tidal force of the host equals the gravitational attraction of the
subhalo, that is:

dFti d (R) =
∂F

∂R
dR =

Gmsb

R2
t

. (C.1)

Assuming the subhalo mass and tidal radius are much smaller than the host
mass and orbital distance, respectively, i.e. msb ≪ M0, Rti d = dR ≪ R , we readily
obtain:

Rti d = R

[

msb

(2−∂M/∂R)M(< R))

]1/3

. (C.2)

Therefore the tidal radius is such that the mean density of the subhalo within
Rti d is of the order of the mean density of the main halo within R . This definition
captures the essence of the natural definition of Rti d , defined as the distance of
the center of mass of the subhalo from the saddle point of the potential of the
total system.

Satellite particles beyond the tidal radius will be stripped away and heated
at the local virial temperature of the host. Tidal radii will become smaller and
smaller as subhaloes move closer and closer to the host halo center, where den-
sity is higher.

Center defined by the most bound particle

Figure C.3: Left: self-bound particles in subhaloes. The self-bound mass of each satellite
was computed considering all the particles inside the subhalo tidal radius, and taking as
center of the system the position of the most bound particle. Right: dust particles of the
host halo.
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Figure C.4: Subhalo mass function in the GIF2 simulation. The self-bound mass of each
subhalo has been computed considering all the satellite particles inside the subhalo
tidal radius and taking as center the position of the most bound particle. The line and
point types are as in Figure C.2.

The particle distribution of a subhalo may be very irregular, due to the dy-
namical effects just described. In particular, if the subhalo had itself substruc-
tures, we can easily observe a scatter of diffused particles, together with a few
small knots. In such cases, the moving center may fail to define an appropriate
center for the subhalo, meaning that it will not correctly identify the center of
the largest knot of particles. When this is the case, the self-bound subhalo mass
will be probably incorrectly computed.

It is thus interesting trying another common definition for the center of a
bound structure, which uses the position of the most self-bound particle. We
should stress the fact that, for most haloes, the moving center actually coincides
with high accuracy with such position. It is only in special cases like those of
subhaloes that the two algorithms may lead to different results. We will now con-
struct the subhalo mass function using this new center definitions, and compare
it to our previous results.

In order to construct the subhalo catalogues we proceeded in the following
way: (i) we identify all particles composing a satellite at its merging redshift zm ;
(ii) we track these particles down to redshift z = 0, and calculate the center of
their distribution using the moving-center method; (iii) we compute the total



172 On Different Definitions of Subhaloes

Figure C.5: Ratio between the self-bound masses assigned to subhaloes by the different
algorithms. The top panel shows the ratio between mc−Rt i d and mc−Rc ,v versus mc−
Rc ,v , as shown in the label. The other two panels show the ratio of mbp−Rt i d over mc−
Rc ,v and mbp−Rt i d over mc−Rt i d , from top to bottom. The open circles represent the
median of the distribution and the shaded region enclose the first and the third quartile.

energy Ei for each particle as the sum of its kinetic Ei ,k and potential Ei ,p ener-
gies, and select the most bound particle as that with most negative total energy;
kinetic energies are calculated using the velocities in the reference frame defined
by the center of mass; (iv) we estimate the tidal radius of the satellite picking as
center the position of the most bound particle, and remove all particles with pos-
itive total energy residing within Rti d . Step (iv) is repeated until the self-bound
mass converges to within 10%. Hereafter the notation “mbp - Rti d ” will be used
to refer to these subhaloes, where “mbp” stands "‘for most bound particle"’.

On the left panel of Figure C.3 we show the particle distribution in subhaloes
identified using the method described above. On the right panel we show the
dust particles of the host halo: the fact that we can observe a lot of small clumps
means that the method is not really working as we would like. In order to under-
stand what is happening, we now compare in more detail the self-bound sub-
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Figure C.6: Halo occupation distribution: average number of subhaloes versus host halo
mass. The different data points and line types refer to the three definitions of subhaloes
described in this Appendix and in Chapter 7. In the figure "‘mc"’ refers to subhaloes
with centers computed using the moving center method, while "‘mbp"’ refers to centers
defined using the position of the most bound particle. Rt i d and Rc ,v denote the radius
of the sphere initially used to identify candidate subhalo particles.

halo masses obtained using the different methods outlined so far. We will refer
to these masses and methods as "‘one"’ (moving center and virial radius); "‘two"’
(moving center and tidal radius); and "‘three"’ (center on most bound particle,
and tidal radius).

In Figure C.5 we show the ratio of the self-bound mass of each satellite (de-
fined using all combination of definitions) versus the subhalo mass. In all pan-
els in the figure, open circles show the median of the distribution (using only
subhaloes with self-bound mass different from zero), and the shaded region en-
closes the first and third quartile. In the top and middle panel we show the ratios
m2/m1 and m3/m1 versus m1. In the bottom panel we plot the ratio m3/m2 ver-
sus m2. We notice that, independently of the center definition, m2 and m3 are
very similar, and both are on average 20% smaller than m1. Besides the differ-
ence in mass, the figure shows that many subhaloes identified with method 1
are missed in the other two methods (red points in the lower-left part of the first
two panels), and that some subhaloes are missed in method 3 which are present
in method 2 (red points in the bottom panel). Therefore, the population of sub-
haloes in the three methods differ at small masses both in number and in mass.
On the other hand, massive subhaloes are identified consistently in all methods
(no red points on the right of the panels), but their mass is larger in method one.

Since method one and two only differ in terms of the searching radius, this
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Figure C.7: Average mass fraction in subhaloes. The data points and line types are the
same as in Figure C.6.

result tells us that in many cases the subhalo particles have been physically di-
luted and are outside the tidal radius, but their velocity has not yet increased to
the virial value of the host halo, and so they are still bound to the substructure
when included in the search. For small subhaloes this is so extreme that m2 and
m3 may be zero, while m1 is not.

In Figure C.6 we plot the first moment of the halo occupation distribution,
that is the mean number of subhaloes for a given host halo mass. Various data
points and line types refer to the three definitions as indicated in the label. As
expected, since this statistics is dominated by small systems, method one iden-
tifies more subhaloes compared to the other two algorithms.

Finally, in Figure C.7 we show the mean mass fraction in subhaloes, for a
given host halo mass. Since this is dominated by large systems, the trend is that
expected from Figure C.5: on average, the total mass fraction in subhaloes is 5%
larger for method one compared to the other two methods.
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nessy, R. B. Hindsley, Ž. Ivezić, E. K. Kinney, S. J. Kleinman, D. Long, R. H. Lup-
ton, E. H. Neilsen, A. Nitta, S. A. Snedden, and D. G. York 2001. New Insights on
the Draco Dwarf Spheroidal Galaxy from the Sloan Digital Sky Survey: A Larger
Radius and No Tidal Tails. Aj 122, 2538–2553.

Pearce, F. R., and H. M. P. Couchman 1997. Hydra: a parallel adaptive grid code.
New Astronomy 2, 411–427.

Percival, W., and L. Miller 1999. Cosmological evolution and hierarchical galaxy
formation. MNRAS 309, 823–832.

Pieri, L., G. Bertone, and E. Branchini 2007. Dark Matter Annihilation in Sub-
structures Revised. ArXiv e-prints 706, –.

Press, W. H., and P. Schechter 1974. Formation of Galaxies and Clusters of Galax-
ies by Self-Similar Gravitational Condensation. ApJ 187, 425–438.

Quinn, P. J., and W. H. Zurek 1988. The angular momentum distribution in galac-
tic halos. ApJ 331, 1–18.

Refregier, A., J. Rhodes, and E. J. Groth 2002. Cosmic Shear and Power Spectrum
Normalization with the Hubble Space Telescope. ApJL 572, L131–L134.

Scoccimarro, R., R. K. Sheth, L. Hui, and B. Jain 2001. How Many Galaxies Fit in
a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering.
ApJ 546, 20–34.



184 BIBLIOGRAPHY

Seljak, U., and M. Zaldarriaga 1996. A Line-of-Sight Integration Approach to Cos-
mic Microwave Background Anisotropies. ApJ 469, 437–+.

Servant, G., and T. M. P. Tait 2003. Is the lightest Kaluza-Klein particle a viable
dark matter candidate? Nuclear Physics B 650, 391–419.

Shen, J., T. Abel, H. J. Mo, and R. K. Sheth 2006. An Excursion Set Model of the
Cosmic Web: The Abundance of Sheets, Filaments, and Halos. ApJ 645, 783–
791.

Sheth, R. K. 1995. Merging and Hierarchical Clustering from an Initially Poisson
Distribution. MNRAS 276, 796–+.

Sheth, R. K. 1996. Galton-Watson branching processes and the growth of gravi-
tational clustering. MNRAS 281, 1277–+.

Sheth, R. K. 1998. An excursion set model for the distribution of dark matter and
dark matter haloes. MNRAS 300, 1057–1070.

Sheth, R. K. 2003. Substructure in dark matter haloes: towards a model of the
abundance and spatial distribution of subclumps. MNRAS 345, 1200–1204.

Sheth, R. K., M. Bernardi, P. L. Schechter, S. Burles, D. J. Eisenstein, D. P.
Finkbeiner, J. Frieman, R. H. Lupton, D. J. Schlegel, M. Subbarao, K. Shi-
masaku, N. A. Bahcall, J. Brinkmann, and Ž. Ivezić 2003. The Velocity Dis-
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