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Riassunto

Negli studi osservazionali che hanno come obiettivo l’analisi dell’HIV e dell’AIDS,

i pazienti sono seguiti attivamente dalla loro entrata nello studio fino al verifi-

carsi di un evento (quali l’AIDS, la morte, o la conclusione dello studio stesso) e

sono soggetti a frequenti visite nelle quali vengono rilevati dati clinici, biologici e

riguardanti la tipologia di trattamento ai quali sono sottoposti. I dati raccolti si

riferiscono alla misurazione dei biomarcatori della progressione della malattia, delle

terapie assunte e dello stato di salute generale dei pazienti. L’analisi statistica dei

dati provenienti da tali studi si scontra con la necessità di affrontare molteplici

problemi causati dalla natura longitudinale e di sopravvivenza dei dati. Infatti, a

causa della natura osservazionale dei dati, le visite cliniche avvengono ad intervalli

irregolari di tempo, in tempi diversi ed in numero diverso per ogni partecipante allo

studio. Inoltre, le misurazioni dei biomarcatori possono essere soggette ad errori

di misurazione e/o assumere valori anomali determinati da particolari condizioni

fisiologiche contingenti. Infine, a causa della complessità del processo sottostante la

progressione della malattia, particolare attenzione deve essere rivolta ai tempi in cui

si verificano gli eventi di carattere clinico, quali l’insorgenza di malattie associate

all’AIDS e la morte, la cui occorrenza dipende non solo dal tempo trascorso dalla

seroconversione, ma anche da ulteriori fattori quali l’età e la somministrazione di

nuove terapie. Un altro importante aspetto da non trascurare riguarda la censura

informativa. Infatti, in aggiunta alla censura non informativa determinata dalla

conclusione dello studio, forme di censura dipendente potrebbero essere dovute allo

stato di salute del paziente, situazione che si verifica, ad esempio, quando i pazienti

più malati sono portati ad abbandonare lo studio.

L’obiettivo di questo lavoro consiste nell’analisi di dati epidemiologici relativi ai

pazienti che hanno contratto l’HIV. I dati oggetto di studio provengono da un

progetto organizzato dalla CASCADE (Concerted Action on SeroConversion to
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AIDS and Death in Europe) e rappresentano uno dei più grandi studi multicen-

trici sull’AIDS, risultato di una collaborazione che rappresenta 22 coorti in Europa,

Australia e Canada. A differenza di altri studi in questo campo, la data di sero-

conversione è nota per tutti i partecipanti. Inoltre, i due principali biomarcatori

della progressione della malattia, i CD4 e la carica virale, sono registrati longi-

tudinalmente dall’entrata fino all’ uscita del paziente dallo studio e con essi tutti

gli eventi associati all’AIDS. Grazie alla completezza ed all’ affidabilità dei dati a

disposizione, è stato possibile proporre modelli alternativi per la modellizzazione

congiunta dei dati longitudinali, il CD4 e la carica virale, e degli eventi caratteriz-

zanti la storia del paziente. Per una maggiore semplicità, l’analisi è ristretta ad un

gruppo di 1090 uomini che hanno contratto l’HIV tramite rapporti omosessuali.

La domanda d’interesse alla quale si è voluto rispondere, trae origine da un dibattito

recente sul tempo ottimale in cui somministrare la terapia HAART (highly active

antiretroviral therapy) ad individui infetti da HIV. Dall’introduzione dell’HAART

nel 1995, lo scenario della ricerca sull’HIV è stato profondamente alterato. Questo

trattamento ha, infatti, portato ad una sostanziale riduzione della mortalità e della

progressione della malattia, sopprimendo la carica virale ed aumentando i CD4. Il

dibattito nasce dal fatto che, mentre è risaputo che la terapia deve essere sommini-

strata ai pazienti in cui i CD4 raggiungono un valore minore di 200 cellule/mm3, ci

sono ancora opinioni discordanti sui vantaggi dovuti al deferire la somministrazione

della terapia fino a quando i CD4 raggiungono un valore minore o uguale a 350

cellule/mm3 piuttosto che le originalmente raccomandate 500.

Questa tesi propone un metodo atto a modellare congiuntamente i dati longitudinali

ed i rischi competitivi. Modellando il processo longitudinale dei due biomarcatori

attraverso un modello bivariato ad effetti causali, si è analizzata la loro dipendenza

attraverso gli effetti casuali e sono stati risolti i problemi causati dalle irregolarità

e dagli errori di misurazione. Inoltre, considerando la censura informativa come un

rischio competitivo dipendente ed utilizzando un modello a rischi proporzionali, si

potuto ottenere stime non distorte del processo longitudinale. Allo stesso tempo,

attraverso i parametri che specificano l’associazione tra il processo longitudinale e

quello di sopravvivenza, è stato possibile modellare e valutare l’effetto dei biomarca-

tori, corretto per ulteriori variabili dette di “confondimento”, sui rischi competitivi.

La caratteristica principale della modellizzazione congiunta è che i parametri che

descrivono il processo longitudinale e quelli che descrivono quello di sopravvivenza,

espresso in funzione del processo longitudinale, sono stati stimati simultaneamente,

utilizzando cos̀ı in maniera più efficiente i dati.



Abstract

The statistical analysis of observational data arising from HIV/AIDS research is

generally faced with complexities that arise from both the longitudinal and sur-

vival features of the data. In this field patients are actively followed up from entry

into the study till either an AIDS-related illness or death, with frequent follow-up

visits where several clinical, biological and treatment data are collected. Thus the

available information includes records on biomarkers of the progression of disease,

changing treatments, and disease/survival status. Because of the observational na-

ture of the data, the follow-up visits occur at irregular time intervals, usually at

varying time points and in unequal numbers for different study participants. In ad-

dition, the “true” level of each of these biomarkers may be measured with error be-

cause of laboratory and/or physiological variations. Further, because of the complex

process underlying this disease, time to several event types, such as AIDS-related

events, besides time to death, are of interest, with their occurrence depending not

only on the time elapsed since initial seroconversion, but also on concomitant or

intervening factors such as aging and initiation of various treatments. One other

important issue that affects these data, possibly more than any other type of sur-

vival data, is informative censoring: beside the naturally occurring censoring of the

follow-up due to the study closure, other sources of censoring occur via withdrawal

from the study, due for example to poor health. In summary, in this field data have

both a longitudinal and a survival component. The longitudinal data consist of ir-

regularly and possibly poorly measures of important biomarkers, while the survival

data involve multiple end-points, multiple time-scale and are likely to be affected

by informative censoring which, if ignored, leads to biased results.

We have the opportunity to analyse epidemiological data on HIV patients aris-

ing from one of the largest AIDS multicentre studies, the CASCADE (Concerted

Action on SeroConversion to AIDS and Death in Europe) Study, a collaboration
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representing 22 cohorts based in Europe, Australia and Canada. Unlike other stu-

dies in this field, the date of seroconversion of all participants is reliably estimated.

In addition both their CD4 cell counts and RNA viral load are recorded longitudi-

nally from entry into the study till the end of their follow-up (due to censoring or

death), and all AIDS-related events are carefully recorded. We can therefore take

advantage of the quality of these data to explore alternative models for the joint

distribution of the longitudinal data on CD4 cell count and RNA viral load and on

the event/survival data. For simplicity we will focus our analyses on the subgroup

of all 1090 homosexual men who are part of CASCADE. Our aim is motivated

by the current debate regarding the optimal timing of initiation of highly active

antiretroviral therapy (HAART) in chronically HIV-infected individuals. This is an

important clinical question because the landscape of HIV research has been pro-

foundly altered since the introduction of HAART in 1995. This treatment led to a

substantial reduction in mortality and disease progression to AIDS by suppressing

HIV viral load and increasing CD4 cell counts. There is a shift in opinion toward

deferring HAART initiation until CD4 cell counts fall below 350 cell/µl, rather

than the originally recommended 500 cell/µl, while there is general agreement that

HAART should definitely be prescribed to patients whose CD4 cell counts are less

than 200µl.

This thesis proposes a methodology for modelling the joint variation over time of

the two biomarkers and of the survival processes of a set of competing events.

Modelling two longitudinal response processes as a bivariate linear mixed effects

model, with knots at relevant times, will account for the dependence between two

biomarkers by random effects while overcoming the problem of irregularly measured

data and of the possible measurement errors. Furthermore modelling the informa-

tive withdrawals from the study as dependent competing risks, by estimating the

so called cumulative incidence functions whithin a proportional hazards model, will

allow for an unbiased estimate of the markers’ processes. At the same time the

parameters that specify the association between the markers processes and the sur-

vival processes will allow to model the effect of the biomarkers, adjusted for other

covariates, on the competing events. The essential feature of joint modelling is that

the parameters which describe the longitudinal response processes and those which

describe the failure risks, as a function of the longitudinal processes, are estimated

simultaneously, making a more efficient use of data.
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Aims and outlines
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Introduction

1.1 Motivating example

In many epidemiologic studies, a cohort of subjects is followed over time to inve-

stigate the relationship between one or more explanatory variables and the risk of

developing a disease. When it is possible to identify a disease marker, firstly it is of

interest to monitor its progression and its dependence on the other variables, then

to understand how the marker’s pattern is related to the disease risk (Jewell and

Kalbfleisch, 1996). Such setting gives raise to several challenges, which derive from

both the longitudinal and the survival features of data.

Observational studies in HIV/AIDS1 research constitute a typical example of this

type of setting: immunologic and virologic markers are measured repeatedly over

time on each patient, and the patients are actively followed up from entry into

the study till either development of an opportunistic infection associated with HIV

disease or death, depending on the survival endpoint of interest. In this case, im-

munologic and virologic markers might be used as time-varying predictor variables,

or as markers.

The most common indicator used to evaluate the immunological status of an HIV

patient is the CD4+lymphocyte count, which measures the number of CD4 cells in

each cubic millimetre of blood. A normal count in a healthy, HIV-negative adult can

vary but is usually between 500 and 1500 cells/mm3. CD4 cells are a type of lym-

phocyte that co-ordinate the immune system’s response to certain micro-organisms

such as viruses, the higher the CD4+ cell count is, the lower the risk of infection

is. Viral load is a measure of the severity of a viral infection, and is measured by

estimating the amount of virus in the blood plasma, for example, reported as the

number of RNA “copies” in a millilitre of blood. The test can detect 50 copies at

1 HIV: human immunodeficiency virus; AIDS: acquired immunodeficiency syndrome
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the lower end, 104 at the upper end. A high viral load, i.e. greater than 100000

copies, indicates a higher risk of disease progression of HIV patient, while a low vi-

ral load, i.e. less than 10000 copies, indicates that in the near future risk of disease

progression is relatively low.

The field of HIV research has been profoundly altered since the introduction of

HAART2 in 1995. HAART is defined as three or more antiretroviral drugs con-

taining at least two nucleoside reverse transcriptase inhibitors (NRTIs) plus a pro-

tease inhibitor (PI), a nonnucleoside reverse transcriptase inhibitor (NNRTI), or

abacavir (ABC). This treatment has led to a substantial reduction in mortality

and disease progression to AIDS by suppressing viral load and increasing CD4

cell count. Yet, a debate regarding the optimal timing of initiation of HAART in

chronically HIV-infected individuals is in progress (Phillips et al., 2001; Pomer-

antz, 2001, Lepri et al., 2001; Grant et al., 2003). There is a shift in opinion toward

deferring HAART initiation until CD4 cell count falls below 350 cell/µl (Carpen-

ter et al., 2000), rather than the originally recommended 500 cell/µl (Pomerantz,

1995; Opravil et al., 2002), while there is general agreement that HAART should

definitely be prescribed to patients whose CD4 cell count is lower than 200µl. The

main arguments for starting HAART early is to reduce the risk of opportunistic

infections, with the consequent improvement in quality of life, and to preserve HIV-

specific cellular response, which seems to be better if the therapy is started when

the CD4 cell count is high (Ledergerber et al., 1999a; Ledergerber et al., 1999b).

In contrast, while the short- and medium-term side-effects of HAART are known,

the long-term toxicity is not, and therefore the benefits of delayed treatment would

include instead avoiding the side-effects of lifelong treatment with antiretroviral

drugs and minimizing the development of viral drug resistance (Molla et al., 1996;

Miller et al., 1999).

The clinical question our method wants to dress is inspired by this debate. We

analyse data on HIV patients arising from one of the largest AIDS multicentre

studies, the CASCADE3 Study, and compare the disease progression, expressed by

biomarkers’ pattern and the event histories, of three groups of individuals defined

according to CD4 cell count at HAART initiation, lower than 200 cell/µl, included

between 200 and 350 cell/µl, and higher than 350 cell/µl, respectively. Specifically,

we are interested in investigating the different elapsed times between seroconver-

sion and HAART initiation, the biomarkers’ pattern, and the risk of failure from

AIDS, the interruption of therapy or of changing therapy in terms of the biomarkers

pattern and of other covariates, for each group.

2 HAART: highly active antiretroviral therapy
3 Concerted Action on SeroConversion to AIDS and Death in Europe
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1.2 Statistical issues

Randomized clinical trials could be designed to determine the optimal stage of HIV

infection to initiate therapy. One such trial would randomize patients whose CD4

cells count is between 350-500/µl to either immediate or deferred treatment arms

and monitor the disease progression. The principal strength of such a trial would

be to minimize the effect of subjective factors related to treatment decisions. Yet

the comparability could be compromised because of the lengthy follow-up, during

which therapies are likely to change, and overall the differences in AIDS risk might

be due to treatment choices and not to the timing of treatment. On the other hand

observational studies need to account for the lack of randomization in treatment

assignment and for the lead time, which is the additional survival time required by

those who start therapy at later stage in order to progress from the early stage to

time of initiation therapy. For example, a person initiating HAART with a CD4

cell count of 200 cells/µl is likely to develop AIDS more quickly than a person

initiating HAART with a value of 350µl cells. However the time it took the first

individual to reach a level of 200 starting from 350µl cells has to be considered. Dif-

ferent approaches to account for lead time have been proposed (Grant et al., 2003;

Cole et al., 2004). The basic idea consists of selecting a common time-scale for the

patients classified according to their CD4 counts at initiation of therapy. Since in

CASCADE the date of seroconversion of all participants is reliably estimated, un-

like other studies in this field, we can deal with the “lead time bias”, by choosing

the time since seroconversion as the time-scale for survival analysis and by taking

to account the elapsed time between seroconversion and HAART initiation when

modelling the biomarkers’ pattern and the failure risks. Performing the analysis on

time since seroconversion also allows to control the potential confounding effect of

CD4 levels at start of treatment on the effect of the treatment itself. In figure 1.1

the different time-scales, which could be used to analyse these data, time since sero-

conversion and time since HAART initiation are compared. It is visible the loss of

information in the second case, as the disease duration before treatment initiation

is ignored.

In CASCADE both CD4 cell count and viral load are recorded longitudinally from

entry into the study till the end of the patients’ follow-up. CD4 cell count are mea-

sured by flow cytometry. For viral load quantification, the Amplicor HIV-1 Monitor

Tests or Quantiplex HIV-1 RNA assays are the most often used. Before HIV RNA

assays were developed in mid-1990s, CD4 cell count served as primary biomarker

of progression of HIV. Later the combination of these two markers was shown to

be more predictive to clinical outcomes. In general, it is believed that the virologic

response, measured by viral load, and immunological response, measured by CD4
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Fig. 1.1. Plots of follow-up of five individuals, depending on time-scale: time since sero-
conversion and time since HAART initiation, respectively. Time of seroconversion (starting
value), time of entry into the study (square), time of HAART initiation (triangle), time
of loss to follow-up (empty point), time of exit from the study (full point).

cell counts, are negatively correlated during the submission to therapy and their

relationship is not costant over the time. However the response of the two biomar-

kers to therapy is not clear yet, i.e. when a patient starts a successfull treatment

regimen, the viral load tends to drop drastically, while the CD4 cell count may

take longer to respond or may not respond at all. The decrease in HIV-RNA viral

load and the corresponding increase of CD4 cells count, because of recovering of

the immune system, are not always observable. Hence there is considerable interest

in monitoring these biomarkers’ development and their correlation over time since

seroconversion, and in understanding how these markers, together with other co-

variates, may influence the incidence rates of all the events of clinical interest.

Because of the observational nature of the data, the biomarkers are measured at

irregular time intervals, usually at varying time points and in unequal numbers for

different study participants, as shown in figure 1.2. These markers may be prone

to measurement error and high within patient variability due to biological fluctua-

tions (Hoover et al., 1992). Because of difficulty and high cost of assays to quantify

the viral load, the viral load measures are less numerous and more variable than

CD4 cell counts. Furthermore, viral load measures could be left censored, mainly

after therapy initiation, when the biomarker undergoes a drastic fall, since most

of the assays that exist to quantify the viral load in blood are characterized by a

low quantification limit. Modelling the biomarkers’ pattern provides estimates for
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Fig. 1.2. Longitudinal measurements of CD4 cell count and viral load (rhombus) over
the time since seroconversion. CD4 cell count pattern (solid line) and viral load pattern
(broken line). The time scale is the time since seroconversion: time of entry (square), time
of HAART initiation (triangle), time of loss to follow-up (empty point).

time points where markers are not observed, overcoming the problem of missing

data and delayed entries, and allows to estimate their trend without error. Further-

more immunological and virological markers’ estimates can be used as time-varying

predictor variables in an appropriate survival model. Yet models that do not take

to account when dropouts occur because of the disease process itself (when they

are informative) produce biased estimates of biomarkers’ trend. The occurrence of

events that cause the end of follow-up could lead to non-ignorable missingness of the

biomarkers data, producing overoptimistic estimates if the subjects who leave the

study are in poor health or underoptimistic estimates if they are healthy (Touloumi

et al., 2002). To include the information held by these dropouts, the extensions to

joint modelling of all the processes is required in order to obtain unbiased estimates

of unmeasured biomarkers.

Individual characteristics, treatment history and development of opportunistic in-

fections, are carefully recorded for each patient too. The AIDS diagnosis was as-

certained through clinical follow-up and through matching with AIDS registries

by the original cohort investigators. Only some of the cohorts collected data on

AIDS-defining diseases subsequent to the first event, so events after the first are

not considered here. The follow-up is artificially censored at the first major mo-

dification or at the interruption of the therapy, since the consequent biomarkers’

trend may move away from average trend and could be difficult to capture. The
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modification and the interruption of the therapy are defined as the change of PI,

NNRTI, or ABC, and the suspension of all drugs for more than one week, respec-

tively. Therefore the dropout process can be defined by two different types of event,

the naturally occurring censoring of the follow-up due to the study closure or loss

to follow-up for noninformative reasons, and the informative withdrawal from the

study, i.e. due to the modification and the interruption of therapy. Hence the as-

sumption of independent censoring is unrealistic. Dealing with dependent censoring

as competing event for the development of an opportunistic infection allows to ob-

tain unbiased estimates of both the probability of failing from the event of interest

and the probability of leaving the study for some cause, when the cause of infor-

mative censoring is recognizable.

Furthermore, since after the introduction of HAART, clinical events, such as AIDS

or death, have become more rare, researchers’ interest is turning towards under-

standing the possible correlations between biomarkers and further events, such as

the suspension and modification of the therapy. What leads an individual to change

or interrupt his/her therapy? Is there a common cause underpinning these deci-

sions? Is it possible to identify a particular trend in biomarkers before interruption

or change of the therapy? Thus, the need to extend the standard longitudinal models

to include competing risks is required in order to deal with the problems genera-

ted by dependent censoring and by the interest in modelling the time to multiple

endpoints.

1.3 Background and thesis structure

The thesis is organized in two parts, the first focuses on methodological aspects, the

second deals with the analyses of the CASCADE data. The last section is set apart

for the conclusions and plans for the further research. Since the interest in joint

modelling originates from the application, the first part is developed as function of

the second.

In the literature, several approaches have been proposed to model CD4 cell count,

first separately, then jointly with viral load to understand the natural history of

these two biomarkers and their correlation. We will review only some of the models,

introduced in the literature since 1980s, restriciting our attention to those which

are extensions of the linear mixed effects model (Laird and Ware, 1982). Overall

those models can be mainly split into two groups: the first one extends the linear

mixed effects model by adding a stochastic process, that depends on the individuals,

while the second one models the fixed and random effects using nonparametric func-

tions. Diggle (1988) extends the linear mixed effects model by including a stochastic
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process term, namely a Brownian motion, dependent on the ith subject, allowing

for high variability in the data. DeGruttola et al. (1991) model CD4 cell count by

a linear mixed effects model and address the problem of unknown seroconversion

date by using an external estimate of the infection time distribution calculated by

Bacchetti and Moss (1989). Lange et al. (1992) conduct a fully Bayesian analysis of

progression of HIV infection using CD4 cell count within a high-dimensional hierar-

chical model. Their approach allows for individual piecewise linear growth curves

with random unobserved change points, unbalanced and incomplete data, several

covariates, and unobserved infection times. Galai et al. (1993) express the ran-

dom effects by a stochastic model with damped exponential correlations, including

as special cases a first-order autoregressive process and constant autocorrelation.

Zeger and Diggle (1994) propose a model with fixed effects, a stationary Gaussian

process, and a smooth trend function, estimated by locally adaptive kernel smooth-

ing methods. Taylor et al. (1994) use a model that combines the random effects

model with a stochastic process allowing correlation between measurements. The

stochastic process is the integrated Ornstein-Uhlenbeck (OU) process, which in-

cludes Brownian motion and a random effects model as special limiting cases, and

it is an underlying continuous-time autoregressive order process for the derivatives

of the observations. The motivation for this stochastic process is that the slope of

CD4 cell count for an individual can vary, either rapidly or slowly over the time.

Kiuchi et al. (1995) suggest a piecewise linear growth curve with one random change

point for each individual, representing the hypothesized rapid decline of CD4 cell

count at time just prior to AIDS diagnosis. Shi et al. (1995) modifies the linear

mixed effects model, by modelling both the fixed and random effects by cubic B-

splines. By using the splines, the adaptation to data may be better but obviously

the model’s interpretation might be more difficult than by using piecewise linear

models.

Sy et al. (1997) propose a generalization of the model for univariate longitudinal

data (Taylor et al., 1994) to multivariate repeated measures. The model incorpo-

rates random effects, correlated stochastic processes, and measurements errors. The

stochastic process is the multivariate integrated Ornstein-Uhlenbeck (OU) process.

This model allows to investigate the relationship between two disease progression

markers by the correlation between the random effects and their serial correlation.

Liang et al. (2003) study the complicated nonlinear relationship between virologic

and immunologic responses by a mixed-effects varying coefficient model with mea-

surement error in covariates. They express the viral load as a function of CD4 cell

count and by regression spline method make inference on the parameters. Liang

and Zou (2007) propose to model the relation between the two biomarkers by a
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semiparametric mixed-effects model. They use the regression spline techniques for

inference on model’s parameters.

Because of the complexity arising when dealing with joint models in presence of

competing events, we will focus on the linear mixed effects models, with the plan

to include a stochastic process in the near future. Hence, in the first part of chapter

2 we will introduce the notation and the features of the univariate and bivariate

linear mixed effects model. In the second part of the chapter we will describe the

survival models in a competing risks framework. In particular, we will provide a

definition of competing risks, underlining their pecularities, and we will introduce

the extension of the Cox proportional hazards model (Cox and Oakes, 1984) to

competing risks (Kalbfleisch and Prentice, 2002) and the Fine & Gray approach

(Fine and Gray, 1999) which models the cumulative incidence curves, as opposed

to the hazards function.

Having defined these two aspects separately, we will deal with their joint model-

ling. At the beginning of chapter 3 we will give a brief review of joint modelling

from a methodological perspective, highlighting the main approaches proposed in

the literature. In particular, we will focus on the model proposed by Elashoff et al.

(2007), who extend the joint modelling of longitudinal and survival data to compe-

ting risks framework. They adopt a linear mixed effects model for the longitudinal

measurements and a mixture model (Larson and Dinse, 1985a; Ng and McLachlan,

2003) for the competing risks survival data, and obtain estimates by implementing

the EM-based algorithm on the scleroderma lung clinical trial. Then they evaluate

if the treatment is effective on at least one of the two endpoints, namely if the

treatment can improve %FVC (forced vital capacity) level of a patient or decreases

the risk of treatment failure or death. In contrast, motivated by the application, we

will propose the joint modelling of a linear mixed effects model and of a Cox pro-

portional hazards model extended to competing risks, fitted by both a frequentist

and a Bayesian approach. Specifically, we will describe the steps of the EM-based

algorithm and the full conditional distributions of all unknown parameters, after

choosing appropriate priors. In order to understand the difference between separate

and joint modelling, which sometimes may be tenous also in the results, we need

to hightlight the underlying methodological process.

In chapter 4 we will describe the whole dataset and the selection criteria of the

patient, who will be included in the analysis. After an explorative data analysis, we

will model the CD4 cell count pattern over time since seroconversion and time to

three competing events, as a function of CD4 cell count, first separately then jointly

for three separate groups of patients. Those gropus are defines by their CD4 cell

count at the HAART initiation. Thereafter we will extend the analysis, by mod-
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elling the correlation of CD4 cell count and viral load, and the processes leading

to each competing events as a function of both biomarkers. Several models have

been applied to data provided by the CASCADE collaboration, in particular we

cite three papers, in which the joint modelling has been used to answer the question

of interest. Pantazis and Touloumi (2005) extend the “joint multivariate random

effects” model (Touloumi et al., 1999) to model repeated measures of the two bio-

markers simultaneously in presence of informative dropouts due to progression of

disease or death and allowing for nonlinear trends. Thiebaut et al. (2005) investi-

gate the influence of HIV mode of transmission on virological and immunological

response to HAART, by combining a bivariate mixed model for the markers with

a lognormal survival model of time-to-dropout using a full parametric approach

and implementing an EM-based algorithm. By modelling the survival process, the

longitudinal analysis is adjusted for informative dropouts, specifically for exit from

the study of patients because of clinical progression, discontinuation of treatment

or any potential informative reason that is associated with the latent evolution of

the marker. The analyses are developed on time since HAART initiation. Thiebaut

et al. (2006) study the determinants of immunological and virological response to

HAART in HIV patients. For each marker the evolution over time from HAART

initiation is studied using a linear mixed effects model. The effects of each poten-

tial determinants, i.e. age, gender, year of HAART initiation, elapsed time between

seroconversion and HAART initiation, are evaluated on the biomarkers’ pattern.

The relationship between the two markers is expressed by the covariance matrix

of random effects. All analyses are adjusted for potential informative dropout from

artificial censoring of follow-up using a joint model for the evolution of markers and

the time of censoring. In all three approaches, the aim is to model the biomarkers’

pattern, adjusting for informative drop-outs, without a specific interest to model

the survival process. On the contrary, we will be mainly interested in modeling time

to three competing events, as a function of the biomarkers’ patterns. We will ad-

dress the analysis according to a Bayesian approach, with the aim of implementing

an EM algorithm, therefore adopting a frequentist approach, subsequently.

“Although the joint modelling has been proposed several times in the literature,

its extension and application change every time according to data and aim of the

study”.
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Methodology





2

Models and notation

2.1 Longitudinal models

A longitudinal study is defined as a study in which the response for each experi-

mental unit in the study is observed on two or more occasions. In a longitudinal

study the main goals to pursue are to characterize patterns subject responses over

time, and to investigate the effects of important covariates on these patterns. In

order to make it correctly, the analysis of longitudinal data should take into ac-

count firstly, the within subject correlation, secondly the measurements taken at

unequal time intervals and finally the missing observations. Since the set of ob-

servations on each subject tends to be intercorrelated, these correlations must be

modelled. Some of the most commonly used within-subject correlation matrices

are the independence matrix, when the repeated observations are uncorrelated, the

unstructured matrix, when the correlations within any two responses are unknown

and need to be estimated, the exchangeable matrix, when the correlation between

any two responses of the ith individual is the same, and the autoregressive matrix,

when the repeated observations are correlated by an autoregressive process. When

each subject is scheduled to be measured at the same set of times, then resulting

data is referred as equally-spaced or balanced data, while when subjects are ob-

served at different sets of times and/or there are missing data, then resulting data

is referred as a unequally spaced or unbalanced data set. It is very rare to find

balanced data sets in longitudinal studies so it is necessary to use some alternative

techniques which can handle unbalanced data and missing data.

Diggle et al. (2002) review statistical methods for the analysis of discrete and con-

tinuous longitudinal data, dealing with different approaches, marginal, transition

and random effects models. When a population is of primary interest, fitting mar-

ginal models is the most appropriate. In these models, the population-averaged

response is modelled as a function of the covariates. The regression coefficients are
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interpreted for the population rather than for individuals, so these are known as

“population-averaged” models (PA). When the time dependence is central, models

for the conditional distribution of yij given yij−1, yij−2, . . . may be more appro-

priate, indicating by yij the measurement at time tj for ith individual. These are

also known as conditional or transition models. The first-order, second-order, third

order or higher order autoregressive models belong to this class. Random mixed

effects models are more appropriate for the study of an individual’s growth. These

models are also known as “subject-specific” models (SS).

Let yij be the response variable and xij be the vector of explanatory variables

observed at time tij for the subject i, i = 1, . . . ,m and j = 1, . . . , ni. The number

and the time of measurements may be different for each individual. We denote the

mean and the variance of the response variable by E(yij) = µij and V ar(yij) = vij ,

respectively. Let yi the vector of measurements with mean E(yi) = µi and ni × ni

variance-covariance matrix Ri for ith individual. Indicating the complete vector of

measurements by y = (y
′

1,y
′

2, . . . ,y
′

m), of dimension N =
∑m

i=1 ni × 1, the mean

of y is E(y) = µ and the variance matrix V ar(y) = V .

Under the general model linear, it is assumed that y has a multivariate normal

distribution

y ∼ MV N(µ,V )

and µ is specified as a linear model given by

µ = Xα

where X is the N × p design matrix and α is a p× 1 vector of unknown regression

coefficients. The specification of V can include three different sources of random

variation: random effects, serial correlations and measurement errors. In this case

the model is given by

y = Xα + Zθ + W (t) + ǫ

where θ,W (t) and ǫ represent random effects, serial correlations, and measurements

errors, respectively. Z is a N × q design matrix with usually q ≤ p. Together

θ,W (t) and ǫ have zero mean and specify the variance V . For example, by assuming

that the ni responses on ith individual are indipendent and θi ∼ MV N(0, Σ),

ǫi ∼ N(0, σ2
ǫ Ini

), and W (t) an independent stationary Gaussian processes with

mean zero, variance σ2
w and correlation function ρ(u) to parameterize furtherly, the

covariance matrix can be written as

Vi = ZiΣZ
′

i + σ2
wHi + σ2

ǫ Ii

where Hi is the ni × ni simmetric matrix with (j, k)th element hij = ρ(|tij − tik|),

and Ini
the ni × ni identity matrix.
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According to the specification of Vi, different linear models are considered.

Several estimation methods have been proposed for this model in its general for-

mulation. Laird and Ware (1982), Diggle et al. (2002) suggest maximum likelihood

(ML) and restricted maximum likelihood (REML) with the remark that REML is

usually better than ML. Goldstein (1986) suggest iterative generalized linear model

(IGLS) and restricted IGLS (RIGLS) for more general multilevel structure. Bates

and Pinheiro (1998) propose EM estimation followed by Newton-Rhapson or quasi-

Newton optimization of the loglikelihood or the log-restricted-likelihood. Zeger and

Karim (1991) formulate a Bayesian method using Gibbs sampling.

For a more general longitudinal model with non-Gaussian outcome, Zeger and Liang

(1986) propose an extension of the generalized linear model (GLM). Like the ordi-

nary GLM ((McCullagh and Nelder, 1989), the model can handle a wide range of

discrete and continuous outcome distributions such as binomial, Poisson, gamma

and normal. In this model the mean of yi is modelled by

µi = h(Xiα).

By an iterative procedure, a consistent estimator of α is obtained, by solving the

generalized estimating equation. This approach is an example of the population

averaged model (PA) (Zeger et al., 1988)

Generalized linear mixed model (GLMM) is an extension of GLM by including

random effects, or more general multilevel or hierarchical structure in the model.

This approach models the mean of yi conditional on random effects, that is

E(yi|θ) = h(Xiα + Ziθi).

This model is also known as subject specific model (SS) (Zeger et al., 1988).

Specifically in the next two sections we will introduce the linear mixed effects model

(Laird and Ware, 1982), by an univariate and bivariate approach respectively.

2.1.1 Univariate linear mixed effects model

Laird and Ware (1982) defined a family of models that include both growth models

and repeated-measure models as special cases. Both models belong to class of two-

stage models, the first one explains the within-subject variation by the natural

development (Potthoff and Roy, 1964; Rao, 1965; Fearn, 1975; Ware, 1983), while

the second one typically assumes constant individual effects over the time (Hayes,

1973). By using the same therminology adopted above, the model is given by

yi = Xiα + Ziθi + ǫi (2.1)
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where α denotes a p × 1 vector of unknown fixed effects, Xi is a known ni × p

design matrix linking α to set of longitudinal measurements yi, θi denotes a q × 1

vector of unobservable random effects, with q ≤ p, zi is a known ni × q design

matrix linking θi to yi, ǫi is a within-individual residuals vector. Furthermore ǫi

are assumed to be indipendent and normally distributed with mean 0 and ni × ni

positive-defined covariance matrix Σǫ. Σǫ depends on subject i by its dimensional-

ity but not by the parameters which form it. At the first stage the parameters α

and θi are considered fixed-effects. At the second stage only the parameters α are

treated as fixed-effect, while the parameters θi are normally distributed with mean

0 and q × q variance-covariance matrix Σ. The θi are distributed indipendently of

each other and of the within-subjects residuals ǫi.

Marginally the vector yi is normally distributed with mean xiα and variance-

covariance matrix Σǫ + ZiΣZ
′

i. Under this model Xiα + Ziθi can be thought of

as the true value of repsonse variable over time and the correlation between the

repeated meaurements on an individual arises from an individual’s deviation from

overall effect. When Σǫ = σ2
ǫ Ini

, where Ini
denotes the ni × ni identity matrix,

the ni responses of ith individual are independent, conditional on α and θi. Ordi-

nary iterative methods for maximising likelihoods, such as newthon Raphson, the

Fisher scoring and the EM algorithm, are used to obtain maximum likelihood or

restricted maximum likelihod estimates for unknown parameters (Dempster et al.,

1977; Dempster et al., 1981; Harville, 1977; Laird, 1982).

2.1.2 Bivariate linear mixed effects model

Many situations arise in which two or more response variables are observed on

each individual, simultaneously or not. If the correlation between the two variables

was high, the effect of covariates on response variables patterns could be estimated

more efficiently compared to that estimated separately for each response variable.

A simultaneous modelling approach for bivariate response repeated-measures data

requires a generalization of usual mixed effects models for a single response vari-

able. A possible approach to model the dependence between the two variables is

by the random effects. Let {y1
ij : j = 1, . . . , n1

i } and {y2
ij : j = 1, . . . , n2

i } be

two sets of longitudinal quantitative measurements at times {t1i1, t
1
i2, . . . , t

1
in1

i

} and

{t2i1, t
2
i2, . . . , t

2
in2

i

} respectively for ith individual, i = 1, . . . ,m. Hence the bivariate

mixed effects models for the vector (y
′

i,y
′′

i ) is given by
(

y1
i

y2
i

)
=

(
X1

i 0
0 X2

i

)
+

(
α1

α2

)
+

(
Z1

i 0
0 Z2

i

)
+

(
θ1

i

θ2
i

)
+

(
ǫ1

i

ǫ2
i

)
(2.2)

where αk denote a pk × 1 vector of unknown fixed effects, Xk
i be a known nk

i × pk

design matrix respectively linking αk to set of longitudinal measurements yk
i , θk

i



2.2 Survival models 21

denote a qk×1 vector of unobservable random effects, with qk ≤ pk, Zk
i be a known

nk
i ×qk design matrix linking θk

i to yk
i , and finally ǫk

i be a within-individual residu-

als vector, k = 1, 2. Let θi be the vector (θ1
i ,θ

2
i ), and ǫi be the vector (ǫ1

i , ǫ
2
i ). Hence

ǫi ∼ N(0, Σǫ) θi ∼ N(0, Σ)

where

Σǫ =

(
Σǫ1 0
0 Σǫ2

)
Σ =

(
Σ1 Σ12

Σ21 Σ2

)
.

Σǫ1 and Σǫ2 are a n1
i ×n1

i and n2
i ×n2

i covariance matrices for y1
i and y2

i respectively.

The covariance matrix of random effects Σ is partitioned in four sub-matrices, Σ1

being the covariance matrix including variance and covariance of random effects

of the first response variable, Σ2 being the covariance matrix including variance

and covariance of random effects of the second response variable, and Σ12 = Σ21

being the matrix of covariance between random effects of each response variable.

The correlation between the two response variables is taken in account by Σ12.

2.2 Survival models

Survival data arise when the aim is to study the time elapsed from some particular

starting point to the occurrence of an event. In clinical studies the starting point

of the observation is usually a medical interventation or the beginning of a treat-

ment study. In epidemiological studies the starting point may be the birth or the

beginning of an exposure to some risk factor. The terminal event may be death or a

prespecified event of interest. Survival analysis is useful whenever the researcher is

interested not only in the frequency of occurrence of a certain type of event, but also

in the time process underlying such occurrence (Cox and Oakes, 1984; Fleming and

Arrington, 1991; Andersen et al., 1993; Marubini and Valsecchi, 2004; Kalbfleisch

and Prentice, 2002).

Let the non-negative random variable T denote the time until the occurrence of the

event of interest. Primary interest in survival analysis lies in estimation and testing

regarding the distribution of T . The probability distribution of T can be speci-

fied in many ways, three of which are particurarly useful in survival applications,

the survivor function, the probability density function, and the hazard function,

respectively given by

S(t) = P (T > t)

f(t) = lim
∆t→0

P (t ≤ T < t + ∆t)
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λ(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T > t)

∆t
=

f(t)

S(t)
= −

d

dt
logS(t)

A distinctive characteristic of survival data is that the event of interest may not be

observed on every esperimental unit. This feature is known as censoring. Censoring

can arise because of time limits and other restrinctions depending on the nature

of the study. In clinical and epidemiological studies, censoring can be “produced”

by different causes, such as predeterminate duration of the study or causes that

seldom can be determinate. In the first case for example, ethical, scientific and

economic reasons could suggest that the study continues until a prespecified time

point and then the time to event of interest is known precisely only on those subjects

who present the event before that time point. For the remaining subjects it is

only known that the time to the event is greater than the observation time. In

the second case, some subjects may be unwilling or unable, for some reasons, to

continue partecipating in the study and providing follow-up information. These

subiects are called “dropouts”. In both cases, those incomplete data are considered

right censored.

Let C denote the censoring time. Then (T,C) are latent data, while (U,∆) are

observed data, where U = min(T,C), ∆ = I(T ≤ C) and I(·) is the indicator

function. While the distribution funcion S(t) can be consistently estimated when the

data are uncensored, neither λ(t) nor S(t) is identificable or consistently estimable

if one observes (U,∆) (Fleming and Lin, 2000). Observing (U,∆) rather than T for

all partecipants only allows one to consistently estimate

λ†(t) = lim
∆t→0

P (t ≤ T < t + ∆t|T ≥ t, C > t)

∆t

Therefore, in most survival applications, a key assumption is made regarding the

following equality

λ(t) = λ†(t)

for all t such that P (U > t) > 0. A sufficient condition for the validity of this

assumption is the indipendence of T and C. The class of censoring mechanisms,

which satisfies this condition, is called “independent censoring”. For example, the

first-type censoring (predeterminate duration of the study) or second-type censo-

ring (the study continues until the dth smallest failure time occurs, at which time

all surviving items are censored) are independent censoring. What it requires is

that, at time t, study items cannot be censored because they appear to be at

unusually high or low risk of failure. In such setting λ(t) << λ†(t) and then we

would overstimate the true S(t). The methods introduced in the next sections are

based on the assumption of independent censoring.
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2.2.1 Competing risks

A competing risk is an event whose occurrence either precludes the occurrence of

another events under examination or alters the probability of occurrence of these

other events (Crowder, 2001; Putter et al., 2007). In the first case, for example in

mortality studies, competing risks analysis tackles the problem of how an increase

or decrease of one cause of death impacts on the risks of dying from other causes.

Analyses of this kind allow the evaluation of whether an excess in the probability

of dying from one cause, for example stroke, can be partially attributed to the

deficit from other causes, such as infarction. In the second case, for example in

cancer studies, competing risks usually include relapse of the cancer and death in

remission. Here the interplay between the competing risks of relapse and death in

remission gives the complete story about the efficacy of the treatment. In this set-

ting the time to the first failure of any type would appear to be the most clinically

relevant endpoint to the patient, i.e. disease-free survival defined as the time to

disease recurrence or death.

Suppose an individual is exposed to K types of events which cannot occur simul-

taneously. Under the competing risks framework only the first of these event is

considered. Assuming the terminology adopted by Tai et al. (2001), we define the

following quantities:

L ∈ 1, 2, . . . ,K the type of the first event

Tl the time to event of type l, l ∈ (1, . . . ,K)

λ∗
l (t) = lim∆t→0

P (t≤Tl<t+∆t|Tl>t)
∆t the hazard function for event-type l

Sl(t) = P (Tl > t) the survivor function for event-type l

fl(t) = lim∆t→0+
P (t≤Tl<t+∆t)

∆t the unconditional probability function of Tl

Il(t) = P (T ≤ t ∧ L = l) the cumulative incidence function for event-type l

T = min (T1, T2, . . . , TK) the time to first event

S(t) = P (T > t) the event-free survivor function

λl(t) = lim∆t→0
Pr(t≤Tl<t+∆t|T>t)

∆t the hazard function for event type l, conditional

on no other event having occurred.

The potential survival time Tl are contrasted with the observed survival time T .

The latent failure time approach focuses on the joint distribution of the times to
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K different events, as described by the joint survival function, P (T1 > t1, T2 >

t2, . . . , TK > tk). Without additional assumptions, the joint survival function is not

identifiable from the observed data (?). Hence the marginal probabilities, Sl(t), are

not identifiable too, unless the times to competing events are independent.

Since in a competing risks framework we are interested in the first event that oc-

curs in every individual, we focus on the hazard function for failure type l, λl(t).

However, this measure, being an instantaneous risk function, does not quantify the

cumulative probability of developing a specific event or, for example in a clinical

trial, the ultimate benefit of a treatment to the patient (it could happen that ha-

zard functions for two treatments cross and in this case one is not able to say which

treatment leads to the smaller chance of event of interest). A good alternative is

the cumulative incidence curve, which estimates the marginal cumulative proba-

bility of a particular event occurring as first one. This curve has a straighforward

interpretation. In the first example it is, for each event type and at any given time,

the cumulative probability of dying for stroke and the cumulative probability of

dying for infarction, respectively . In the second example it is, respectively for each

event type and at any given time, the cumulative probability of relapse of cancer

as first event and the cumulative probability of death in remission as first event.

Note that, the marginal cumulative probability of relapse will be low if the marginal

cumulative probability of death in remission is high and viceversa, since the sum

of these quantities can not exceed 1. Hence it is advisable to consider all marginal

probability curves simultaneously in order to interpret them appropriately.

In competing risks framework different approaches have been proposed, parametric

and non-parametric, some of them proper to estimate the hazard function (Cox,

1972; Gaynor et al., 1993; Lunn and McNeil, 1995), other the cumulative incidence

curves (Fine, 2001; Klein and Andersen, 2005, Jeong and Fine, 2006).

Kalbfleisch and Prentice (2002) propose an estimate of λl(t), Sl(t) and Il(t), ob-

tained by maximizing the likelihood function in a competing risks framework. It is

not based on any strong assumption, as the independence of competing risks, other

than the usual independent and non informative censoring mechanism.

Suppose n subjects under study give rise to data (ti, δi, li,wi), i = 1, . . . ,m, where

δi = 0 if the ith subject is censored, δi = 1 if the ith is failed, ti is the censoring time

(δi = 0) or the failure time (δi = 1), li is the type of failure and wi is the row vector

of s covariates associated with the ith individual. The reasonable adopted conven-

tion is that censored times follow failures in case that recorded times coincide. The

likelihood function is proportional to

n∏

i=1

[
fli(ti;wi)

δiS(ti;wi)
1−δi

]
=
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=
n∏

i=1

[
λli(ti;wi)

δiS(ti;wi)
]

=
n∏

i=1

{
λli(ti;wi)

δi

K∏

l=1

exp
[
−

∫ ti

0

λl(u;wi)du
]}

Upon rearragement the likelihood factor for the lth failure type is precisely that

which would be obtained by regarding all failures of type different from l as cen-

sored at the individual’s failure time. The “non-parametric” estimation technique

of Kaplan-Meier (Kaplan and Meier, 1958) can be generalized to include compe-

ting risks. Let t1 < t2 < . . . < tr denote the r failure times for failures of type l,

l = 1, . . . ,K and suppose failure type l occurs with multiplicity dlj at time tj . The

contribute to likelihood of failures type l is given by:

r∏

j=1

{[
Sl(t

−
j ) − Sl(tj)

] K∏

q=1:q 6=l

Sq(t
−
j )

}dlj ∏

w

Sl(tjw)

where tjw denote the censored times between tj and the next failure time, the

probability of failure at tj is
[
Sl(tj)

− − Sl(tj)
]
, where Sl(t

−
j ) = limx→0 Sl(tj − x),

and Sl(tj) is the contribution to the likelihood of a survival time censored at tj so

that the observed censoring time tj suggests only that the unobserved failure time

is greater than tj . The maximum likelihood estimates Ŝl(t) is a generalization of

the usual concept used in the parametric models.

The likelihood function is given by the product of single components for each failure

type. It follows that the “non-parametric” maximum likelihood estimator of Sl(t)

is given by

Ŝl(t) =
∏

j:tj≤t

(nj − dlj

nj

)

where dlj is the number of failure type l at tj and nj is the number of subjects under

study at risk just prior to tj . The corresponding estimator of the lth cause-specific

hazard function is

λ̂l(tj) =
dlj

nj

and the estimator of the cause-specific cumulative hazard function, also known as

Nelson-Aalen estimator,

Ĥl(t) =
∑

j:tj≤t

dlj

nj

Note that under assumption of independence between competing risks

Ŝ(t) =
k∏

l=1

Ŝl(t)

is the overall Kaplan-Meier survivor function estimator. The cause-specific cumu-

lative incidence function for failure of type l is estimated by
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Îl(tj) =
∑

j:tj≤t

Ŝ(tj−1)λ̂l(tj)

where Ŝ(tj−1) is the Kaplan-Maier estimate of the event-free survival function,

that is, considering failure of any kind. This definition implies that the cumulative

incidence is a function of the hazards of all the competing events and not solely of

the hazard of the event to which it refers (Coviello and Boggess, 2004). Indeed the

incidence rates are computed by weighting the hazard of first failure, λ̂l(tj), with

the event-free survival estimates in the preceding time. This method does not make

any assumption about independence of competing risks and lets a subjects “fail”

only once. The sum of all cumulative incidences, given by

Î(t) =

K∑

l=1

Îl(t) = 1 − Ŝ(t)

equals the complement of the overall Kaplan-Meier estimate of survival considering

failures of any kind.

2.2.2 Cox proportional hazards model

One of the most used model for identifying differences in survival due to treatment

and prognostic factors in clinical trials and for studying the effect of exposure

allowing for confounders in cohort studies is the proportional hazards model (Cox,

1972). By extending the Cox model to the competing risks, the cause-specific hazard

function for a failure of type l, is given by

λl(tj ;w) = λ0l(tj)exp(wφl)

l = 1, . . . , k where λ0l(tj) is the arbitrary unspecified baseline hazard function for Tl

and φl is the vector of unknown parameters. Both the underlying hazard λ0l(tj) ≥ 0

and the vector of regression coefficients are specific to each of the K failure types.

The hazard depends on both time and covariates, but through two separate factors:

the first, λ0l(t), is a function of time and the failure type, it is left arbitrary but is

assumed to be the same for all subjects; the second is a quantity which depends on

the failure type and the individual covariates through the vector φl of regression

coefficients. The proportional hazards model is not a fully non-parametric model

since it does not specify the form of the baseline hazard function, λ0l(t), but it does,

however, specify the hazard ratio for two indviduals with covariate vectors w1,w2

and for this reason it is defined as a semiparametric model. In fact the hazard ratio

for failure type l is given by

λl(t;w1)

λl(t;w2)
=

λ0l(t)exp(w1α)

λ0l(t)exp(w2α)
= exp[(w1 − w2)α]
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Hence this model is a proportional hazard regression model for each failure type,

since it assumes that the failure rates of any two individuals are proportional, given

that the ratio does not depend on time. The second assumption underlying this

model, is that the vector of covariates w acts in a multiplicative way on the hazard

function or, equivalently, in an additive way on the logarithm of the hazard function.

Let tl1, tl2, . . . , tlrl
denote the rl times of failure of type l event, l = 1, . . . ,K, and

wlj the regression vector for individual that fails at tlj . The partial likelihood for

φl, l = 1, . . . ,K is given by:

L(φ1, . . . ,φK) =

K∏

l=1

rl∏

j=1

exp(wljφl)∑
i∈R(tlj)

exp(wiφl)

Upon rearragement the likelihood factors into a separate components for each failure

type l = 1, . . . ,K. Hence, estimation of φl’s can be conducted by applying standard

asymptotic likelihood techniques individually for j factors. The likelihood factor for

the lth failure type is precisely that which would be obtained by regarding all failures

of type different from l as censored at the individual’s failure time. The estimates

of the underlying hazard λ̂0l(tj) is computed by assuming it to be zero except at

times at which a failure of type l occurs, in that case:

λ̂0l(tj) =
dlj∑

i∈R(tj)
exp(wiφ̂l)

where R(tj) is the set of individuals at risk just prior to tj and dlj is the number

of failure of type l at time tj . Once obtained the maximum likelihood estimators

φ̂1, φ̂2, . . . , φ̂K and the estimator λ̂∗
0l(tj), it is possible to estimate the functions

Sl(t;w), and the corresponding estimator of the cumulative incidence function

Îl(t;w) =
∑

j:tj≤t

Ŝ(tj−1;w)λ̂l(tj ;w)

l = 1, . . . ,K, where Ŝ(tj−1;w) is the Kaplan-Meier estimate of the overall survival

function and λ̂l(tj ;w) = dlj/nj is the estimate of the hazard of l failure type.

The proportional hazards model requires that, for any two covariates sets w1,w2,

λl(t;w1) ∝ λl(t;w2), l = 1, . . . ,K. Although this relation is descriptive of many

situations, there are important factors, whose different levels produce hazards func-

tion, which differ from proportionality. Suppose there is a factor that occurs on q

levels and for which the assumption of proportionality is violated. The hazard func-

tion for a failure type l in the jth stratum of this factor is given by

λlj(t;w) = λ0lj(t)exp(wφl)
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j = 1, . . . , q, where φl and w are invariant for every j and λ0l1, λ0l2, . . . , λ0lq are

allowed to be arbitrary and completely unrelated. The likelihood is given by

L(φl) =

q∏

j=1

Lj(φl)

where Lj(φl) is the marginal likelihood of φl arising from the jth stratum alone.

Once an estimates of β is obtained it is possible to give estimates of the survivor

functions in each of the q strata separately. This provides a graphical check of

the appropriateness of a proportional hazards modelling for these factors used in

defining strata.

Both model, the proportional hazards model and the proportional hazards model

stratified, can be extended in order to include time-varying covariates.

2.2.3 Cumulative incidence curve

The standard analysis for competing risks data involves modeling and analyzing the

effect of factors on tha cause-specific hazard function λl(t) for each l = 1, . . . ,K.

Yet, the cause-specific hazard function does not have direct interpretation in terms

of survival probabilities for a particular failure type. Indeed the effect of a factor

on the cause-specific hazard for a particular failure type could be quite different

from its effect on the corresponding cumulative incidence function (Gray, 1988). It

is important consider this second aspect too. In the previous section we have seen

that it is possible to predict the incidence cumulative function for an individual with

certain covariates by combining the estimates of the cause-specific hazard functions

from the partial likelihood approach. However these procedures do not allow to

directly assess the effect of a covariate on the cumulative incidence function. Hence,

Fine and Gray (1999) propose a semiparametric model for the cumulative incidence

function for event of interest, l = 1 conditional on the covariates, I1(t;w) = P (T ≤

t, L = 1|w). Assume that for some unknown increasing function g(·),

g[I1(t;w)] = λ0(t) + wφ1

where λ0(t) is an unspecified, invertible and monotone increasing function and φ1

is a s× 1 parameter vector. For two individuals with two covariate vectors w1,w2,

the cumulative incidence functions satisfy a vertical shift model after trasformation,

g[I1(t;w)]−g[I1(t;w)] = (w1−w2)φ1 for each t. On the scale of g(·) the regression

coefficients are a measure of distance from the baseline marginal probability fuction,

g−1[λ0(t)], for which the covariates are identically 0. Assume

g(u) = log[−log(1 − u)]
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and consider the subdistribution hazard, as defined (Gray, 1988)

λ
′

1(t;w) = lim∆t→0
P (t < T ≤ T + ∆t, L = 1|T > t ∪ (T ≤ t ∩ L 6= 1),w)

∆t
=

= lim∆t→0
1

∆t

P (t < T ≤ T + ∆t, L = 1)

P (T > t ∪ (T ≤ t ∩ L 6= 1),w)
=

= lim∆t→0
1

∆t

P (t < T ≤ T + ∆t, L = 1

1 − P ((T > t ∩ L = 1),w)
=

=
d

dt

( I1(t;w)

1 − I1(t;w)

)
= −

d

dt

(
− log[1 − I1(t;w)]

)

In the previous sections we have considered the hazard function so defined

λ1(t;w) = lim∆t→0
P (t < T ≤ t + ∆t, L = 1|T > t,w)

∆t
=

=
d

dt

(I1(t;w)

S(t)

)
=

d

dt

( I1(t;w)

1 −
∑k

l=1 Il(t;w)

)

One can think of λ
′

1(t;w) as the hazard function for the improper variable T ∗ =

I(L = 1) × T + [1 − I(L = 1)] × ∞ and T ∗ has distribution function equal to

I1(t;w) for t < ∞ and P (T ∗ = 1|w) = P (T < ∞, L 6= 1|w) = 1 − I1(∞;w)

for t = ∞. Although the risk set associated with the subditribution hazard λ
′

1 is

innatural, since in reality those individuals who have already failed from causes

other than L = 1 prior to time t are not at “risk” at t, it is important to consider

the possible dependence between failure types. Indeed considering the proportional

hazard model λl(t;w) = λ0(t)exp(wφl), φl represents the effect of covariate vector

on hazard l. The cause-specific hazard for each failure type at any timepoint, t,

is the instantaneous risk of developing that failure as first event, conditional on

being alive and event-free just prior to t. This conditioning means that the cause-

specific hazard can not be truly specific to the event of interest because factors

which directly influence other failure types can have an indirect effect on the event

of interest. Since, in the cause-specific model, individuals who fail for a different

failure type first are censored at this time, the estimates φl can be interpreted as

the effect of factors on a specific event in the absence of all other events only by

assuming that events occurr independently of each other. In that case we could

obtain the equality between cause-specific hazard and subdistribution hazard. Yet

the independence is an unverificable and unrealistic assumption making the cause-

specific model difficult to interpret. Under a proportional hazards specification with

λ
′

1(t;w) = λ
′

01(t)exp(wφ1) where λ
′

01 is a completely unspecified, non-negative

function we obtain
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log[1 − I1(t;w)] = −

∫ t

0

λ
′

1(u;w)du = −

∫ t

0

λ
′

01(u)exp(wφ1)du

log[−log(1 − I1(t;w))] = log
[ ∫ t

0

λ
′

01(u)exp(wφ1)du
]

= wφ1log
[ ∫ t

0

λ
′

01(u)du
]

Thus the regression coefficient and baseline hazard from the Cox model has a

straightforward interpretation that does not depend on the probabilitic structure of

the subdistribution hazard. The cumulative incidence function for failure 1 is given

by

I1(t;w) = 1 − exp
(
−

∫ t

0

λ
′

01(u)exp(wφ1)du
)

The main advantage of the subdistribution methodology is that through simple

testing, model selection and prediction procedures it is possible to see the direct

effect of each covariate on the cumulative incidence curves. Using the partial like-

lihood principle and weighting techniques, Fine and Gray derive estimation and

inference procedures for the finite-dimensional regession parameters under a va-

riety of censoring scenario (complete data without censoring, censoring complete

data and incomplete data). They give an uniformly consistent estimator for the

predicted cumulative incidence for an individual with certain covariates and confi-

dence intervals and bands can be obtained analitically or with an easy-to-implement

simulation technique.

As an example in the real context, we consider the survival times of 506 patients

with prostate cancer who are randomly allocated to a treatment with diethylstilbe-

strol (Lunn and McNeil, 1995). We estimate the effect of treatment on the hazard

to fail from cancer, cardio-vascular disease and by other causes respectively, by the

proportional hazards models. Furthermore we evaluate the effect of therapy on the

cumulative incidence functions directly, by the Fine & Gray model. The results are

reported in table 2.1.

Table 2.1. Estimated effect of therapy on hazard to fail from competing events
and on the their cumulative incidence functions

Effect of treatment Proportional hazards Fine & Gray

Cancer -0.391 (-0.760, -0.761) -0.412 (-0.732, -0.092)
CDV 0.169 (-0.162, 0.502) 0.269 (-0.063, 0.601)
Other -0.456 (-0.970,0.063) -0.407 (-0.923, 0.109)

Finally we represent the complement of Kaplan Meier function, the nonparametric

cumulative incidence functions and the cumulative incidence functions estimated

by Fine & Gray model for three competing risks, cancer, cardiovascular disease
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Fig. 2.1. Complement of Kaplan-Meier function (points), nonparametric cumulative in-
cidence function (broken line), Fine & Gray cumulative incidence function (solid line) for
treated (thick line) and not treated (thin line) patients.

and other diseases respectively, in figure 2.1. It is clear that the complement of

the Kaplan-Meier overestimates the true failure probability (Arriagada et al., 1992;

Gooley et al., 1999). The complement of Kaplan-Meier function, given by

Îl(t) = 1 − Ŝl(t)

is interpreted as the cumulative probability of failure by time t for event-type l

only if the risk of failure for other causes could be removed. This is a predictive

probability for an hypothetical setting (Pepe and Mori, 1993). Furthermore, since

an individual can experience more than one event-type, this method is no longer

valid in a framework of competing risks, in which is considered only the first failure

of every subject. So the global cumulative incidence function given by
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Î(t) =
∑

l

Îl(t)

may exceed the total probability of failure, P (T ≤ t).



3

Joint modelling of longitudinal and survival data

3.1 Overview of joint modelling of longitudinal and survival

data

The most studies in the medical-epidemiological field are characterized by both

covariates which vary with time and the time to event of interest, i.e. death or a

disease. Usually the covariates are measured intermittently, at varying time points

and in unequal numbers for different study participants, and may be prone to

measurements error because of laboratory and/or physiological variations. At the

same time these measurements may be important predictors of survival. Tsiatis

et al. (1995) propose an approach developed in two stages dealing with survival

as a function of the longitudinal covariate’s measurements, where in the first stage

the covariate is modelled by growth curve model with random effects, and in the

second stage the modelled value is simply plugged into the partial likelihood for

the Cox’s model with time-dependent covariates, and the partial likelihood is then

maximized. This approach is computationally straightforward, it allows for an easy

analysis of the data with existing software packages and it reduces the bias in

a model with time-dependent covariates measured with error. Yet, since the two-

stages model does not use the information provided by survival process in modelling

the longitudinal one, the data are not used so efficiently as they could be, and mainly

the informative loss to follow-up could generate biased covariate’s estimate if it is

not considered. Hence the need to model the longitudinal and the survival process

jointly. Estimating the parameters that describe the covariate process and those

that describe the time-to-event as a function of covariate process simultaneously

allows to use not only the observed covariates to predict the survival but also

the survival information to model the true covariate process over the time. A joint

model is comprised of two linked submodels, one for the “true” longitudinal process

Yi(t) and one for the failure time Ti, where i denotes the ith individual, along with
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additional specifications and assumptions that allow a full representation of the

joint distribution of the observed data (Yi(t), Ti,∆i). The longitudinal and disease

process are assumed to be independent across subject i. The joint likelihood can

be expressed as the product of two density functions f(T |Y )f(Y ) or f(Y |T )f(T ),

according to aim of the study (Hogan and Laird, 1997). If the primary outcome of

interest is the time to event and the longitudinal measurements may be predictive

of survival, the first model is used, otherwise if the main objective is to characterize

changes over time in the longitudinal data process accounting for loss to follow-up

by the survival process (Wu and Carroll, 1988), the second model is used. Several

methods have been proposed to model the longitudinal and survival data jointly,

by both frequentist and Bayesian approaches. We will discuss some of them, first

by a frequentist point of view, then by a Bayesian one.

DeGruttola and Tu (1994) jointly model disease progression and failure times using

a longitudinal data model given by a random effects model

yi = xiα + ziθi + ǫi

and a survival model, given by

ti = w
′

iξ + λ
′

θi + ri

where yi is a ni × 1 vector of repeated measurements on the ith subject, xi and

zi are known design matrices, α is a p × 1 vector of unknown fixed effects, θi is a

q × 1 vector of unobservable random effects, and ǫi is a within-individual residuals

vector. The ǫi are assumed to be indipendent and normally distributed with mean

0 and ni×ni variance-covariance matrix σ2
ǫ Ini

, where In denotes the n×n identity

matrix. The random effects θi are assumed to be normally distributed with mean

0 and q × q variance-covariance matrix Σ. The θi are distributed indipendently of

each other and of the within-subjects residuals ǫi. ti is the survival time or some

monotonic transformation of survival time such as the log of survival time, ξ is a

k×1 vector of unknown parameters, wi is a k×1 design matrix linking ti to ξ, and

finally λ is a q × 1 vector of unknown parameters linking θi to ti. ri are assumed

to be indipendent and normally distributed with mean 0 and variance-covariance

matrix σ2
r . The longitudinal marker and survival times are assumed independent

conditional to random effects. In order to get the estimates for unknown parameters

they developed an EM algorithm (Dempster et al., 1977), a technique which iterates

between solving for the expected values of functions of the unobserved data given

the observed data and the maximum likelihood estimates of the parameters until

convergence. Yet the dependence between longitudinal and survival process is not

clear, since it is expressed by the random effects alone, and not by a parameter
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linking the two processes directly.

Wulfsohn and Tsiatis (1997) model the marker’s process by a liner growth curve

model with random intercept and slope, given by

yij = θ0i + θ1itij + ǫij

where ǫij is normally distributed with mean 0 and variance σ2
ǫ , cov(ǫij , ǫij′ ) = 0 for

j 6= j
′

, the error is independent of the intercept and slope, and θ0i, θ1i are distributed

as a bivariate normal with mean (θ0, θ1) and variance-covariance structure Σ. The

survival model is given by a proportional hazards model

λ(t) = λ0(t)exp{φ(θ0i + θ1it)}

where λ0(t) is the baseline hazard function at time t. Now the failure’s hazard is

function of “true” marker’s value at each time t. Maximum likelihood estimates of

all parameters are obtained by an implemented EM algorithm.

Henderson et al. (2000) propose to model the joint distribution of the measurements

and the events for ith subject by a latent zero-mean bivariate Gaussian process

Wi(t) = {W1i(t),W2i(t)}, which is realized indipendently in each individual. Hence,

the joint model consists of two linked submodels:

1. measurement model for the longitudinal process, given by a random effects

model:

yij = µ1i(tij) + W1i(tij) + ǫij

where µ1i(t) = x1i(t)α1 is the mean response, x1i(t) and α1 represent possibly

time-dependent explanatory variables and their regression coefficients respec-

tively, and ǫij ∼ N(0, σ2
ǫ ) is the process of mutually independent measurement

errors

2. intensity model for the survival process, given by a semiparametric proportional

hazards model:

λi(t) = λ0(t)exp{x2i(t)α2 + W2i(t)}

where λ0(t) is the baseline hazard function at time t, x2i(t) and α2 are possibly

time-dependent explanatory variables and their regression coefficients respec-

tively, including or not elements in common with x1i(t).

Association between the longitudinal and survival process can arise in two ways:

through common explanatory variables or through stochastic dependence between

W1i and W2i. Hence, the longitudinal and survival process are conditionally inde-

pendent, given W1,W2, and Z. They discuss special cases of this model class and

extend the EM algorithm described by Wulfsohn and Tsiatis (1997). Yet, likewise
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the model proposed by DeGruttola and Tu (1994), the dependence between the

longitudinal and survival process is not expressed directly.

Song et al. (2002) consider the model of Wulfsohn and Tsiatis (1997), but relaxing

the assumption of normality for the random effects, while requiring that θi have den-

sity belonging to a class of smooth densities studied by Gallant and Nichka (1987).

The densities in this class are sufficiently differentiable to rule out behaviour such

as jumps or oscillations and may be skewed, multimodal, and fat- or thin-tailed

relative to the normal density, which is also belonging to this class (Zhang and

Davidian, 2001).

Several Bayesian approaches have been developed too. Using those methods can

be advantageous because, although computationally intensive, they make possible

to fit the model without any asymptotic approximation, accomodate a variety of

other expanded models, and their computational implementation is typically easier.

Furthermore, with noninformative priors it is possible to mimic a corresponding

likelihood analysis, where the likelihood is restandardized and interpreted as prob-

ability distribution on the parameters.

Faucett and Thomas (1996) propose the same random effects and proportional ha-

zards models as Wulfsohn and Tsiatis (1997) by a Bayesian approach. In order to

approximate likelihood methods, they use uninformative priors on all the parame-

ters and they estimate the joint posterior distribution of all unknown parameters

using Gibbs Sampling. Specifically they use flat priors for θ0, θ1, and γ, |Σ|−3/2 for

Σ, 1/σ2
ǫ for σ2

ǫ , and 1/λ0j for piecewise costant baseline hazard function λ0j .

Berzuini and Larizza (1996) merge time series and failure time modeling within

the theory of hierarchical models introduced by Lindley and Smith (1972). They

consider time series data generated by a latent autoregressive stochastic process,

allowing for smooth random fluctuations of each subject specific response around a

linear trend. Then they extend the model to failure time data, by casting these data

into the form of counts of failures for each subject in a sequence of time intervals.

The relationships between the longitudinal and survival process are modeled by

allowing the parameters that underlie each subject’s time series to act as regressors

in a Poisson regression model for the failure counts. They use Markov chain Monte

Carlo methods for computing inferences in Bayesian analysis.

Wang and Taylor (2001) use a longitudinal model that incorporates a mean

structure dependent on covariates, a random intercept, an integrated Ornstein-

Uhlenbeck (IOU) stochastic process, and measurement error. By the parameters

defining the IOU process it is possible to control the amount of smoothess of a per-

son’s path without imposing specific deterministic shapes on the path. A feature

of this model is that the IOU process represents a family of covariance structures
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with a random effects model and Brownian motion as special cases. The regression

model for the event time data is a proportional hazards model that includes the

longitudinal covariate as a time-dependent variable and other covariates. They used

Bayesian techniques to fit the model.

Guo and Carlin (2004) develop the same model as Henderson et al. (2000) by

a Bayesian approach, implemented via Markov chain Monte Carlo methods. They

apply their method to a clinical trial and they compare the results to those obtained

from readily available alternatives in SAS as well as Bayesian analogues of these

traditional separate likelihood methods. The joint Bayesian approach appears to

offer significantly improved and enhanced estimation of the parameters of interest,

as well as simpler coding and comparable runtimes.

3.2 Extension to competing risks

The previous works have primarily focused on a single failure type with a non-

informative censoring for the survival process. From a part, highlighting the sur-

vival process, we may be interested in modeling the time to occurrence of first

failure, when several failure types are possible, from the other, we could deal with

dependent censoring as competing event in order to model the longitudinal process

correctly, when disease-related dropouts are evident. In both cases it is required the

extension to a competing risks framework.

Elashoff et al. (2007) consider joint modelling of repeated measurements and com-

peting risks failure time data to allow for more than one distinct failure type in

the survival endpoint. They used a linear mixed effects model for longitudinal mea-

surements and a mixture model for the survival process, similar to that of Larson

and Dinse (1985b) and Ng and McLachlan (2003), but with the random effects.

The mixture model for competing risks enables one to evaluate the effects of some

factors on both the marginal probabilities of occurrence of the risks and the condi-

tional cause-specific hazards, defined by a logistic and a proportional hazards model

respectively, as follows:

P (L = l) =
exp(φ0l + x

′

iφ1l + wli)

1 +
∑k−1

l=1 exp(φ0l + x
′

iφ1l + wli)
, l = 1, . . . , k − 1

lim∆t→0
1

∆t
P (t < T ≤ t + δt|T > t, L = l) = λ0lexp(x

′′

i (t)γl + vli), l = 1, . . . , k

where x
′

i and x
′′

i are two vectors of covariates, which may have factors in common,

wil and vil are random effects for the lth risk, and λ0l is an unspecified baseline
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hazard function for risk l. The longitudinal measurements are independent of the

competing risks, conditional on all the covariates and random effects. An EM-

based algorithm is derived to obtain the parameter estimates. Since the estimation

procedure is very complicated due to two-step mixture model for competing risks,

additional hidden variables are needed to simplify the algorithm.

Hence we model jointly the longitudinal and survival process extended to a compe-

ting risks setting, by a linear mixed effects model and a semiparametric proportional

hazards model respectively, first by a classical approach and then by a Bayesian

one.

3.2.1 Notation

Let {yij : j = 1, . . . , ni} the set of longitudinal quantitative measurements for the

subject i = 1 . . . , m. We suppose yij to be the biomarker of disease’s progression

measured at time tj for the ith subject. The number and the time of measurements

of the biomarker may be different for each individual. A linear mixed effects model

is assumed for longitudinal response process

{
yi = ui + ǫi

ui = xiα + ziθi
(3.1)

where yi is a ni × 1 vector of repeated measurements on the ith subject, xi and

zi are known design matrices, α is a p × 1 vector of unknown fixed effects, θi is a

q × 1 vector of unobservable random effects, and ǫi is a within-individual residuals

vector. The ǫi are assumed to be indipendent and normally distributed with mean

0 and ni×ni variance-covariance matrix σ2
ǫ Ini

, where In denotes the n×n identity

matrix. It implies that the ni responses on subject i are independent, conditional

on fixed effects αi and the random effects θi. The random effects θi are assumed to

be normally distributed with mean 0 and q × q variance-covariance matrix Σ. The

θi are distributed indipendently of each other and of the within-subjects residuals

ǫi. Under this model xiα + ziθi can be thought of as the true values of marker

over time and the correlation between the repeated meaurements on an individual

arises from an individual’s deviation from overall effect. Marginally, the vector yi

is normally distributed with mean xiα and variance-covariance matrix Σǫ +ziΣz
′

i.

The competing event time data for subject i is denoted by (ti, δi, li), where δi = 0

if the subject is censored, δi = 1 if the subject is failed, ti is the censoring time

(δi = 0) or the failure time (δi = 1), and li is the failure type. A proportional

hazards model is assumed for the lth event time

λl(t) = λ0l(t)exp
{

wi(t)φl + ui(t)γl

}
(3.2)
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where λ0l(t) represents the baseline hazard, ui(t) is the true value of the biomarker,

and wi(t) denotes the vector of further covariates, which could include some or all

of the xi covariates. We assume that censoring, covariate errors, and timing of

measurements are noninformative.

The longitudinal process and the survival process for lth failure type are linked

by the parameter γl. In absence of association between the two processes the joint

analysis should recover the same results as would be obtained from separate analysis

for each component, and then γl should be equals to 0. Furthermore, since the joint

model allows to evaluate the effect of each factor on both longitudinal and survival

processes simultaneously, it is feasible to assess whether the effect of a factor on

the competing event time is due only to its effect on the biomarker.

3.2.2 EM-based algorithm

In order to evaluate the effect of biomarker on survival outcome, it is needed to de-

fine the joint likelihood as the product of the likelihood of the longitudinal process

multiplied by the likelihood of time to competing events conditional on the longitu-

dinal process. The observed data for each individual is (yi,xi(t),zi(t), ti, δi,wi(t))

and the vector containing the unknown parameters is Ω = {α, Σ,Σǫ, λ0l(t), γl,φl},

l = 1, . . . , k. The random effects θi are not observable. The joint likelihood function

for Ω, conditional on the observed data is given by:

L(Ω|t, δ, y) ∝

m∏

i=1

f(ti, δi,yi|Ω) =

m∏

i=1

∫ ∞

−∞

f(ti, δi|yi,Ω,θi)f(yi|Ω,θi)f(θi|Ω)dθi

=
m∏

i=1

[ ∫ +∞

−∞

{ ni∏

j=1

f(yij |α,θi, σ
2
ǫ )

}
f(ti, δi|λ0l,φl, γl,α,θi, )f(θi|Σ)dθi

]

=
m∏

i=1

[ ∫ ∞

−∞

{
λ0li(ti)exp{wi(t)φli + ui(t)γli

}δi

×

×exp
{
−

∫ ti

0

k∑

l=1

[λ0l(u)exp{wi(t)φl + ui(t)γl}]
}
×

×
1

σni
ǫ

exp
[
−

1

σ2
ǫ

ni∑

j=1

(yij − uij)
2
]
× |Σ|−1/2exp

(
−

1

2
θi

′

Σ−1θi

)
dθi

]
(3.3)

Since maximizing is difficult in the presence of integration, we can use the EM-

based algorithm, which involves iterations between an E-step and an M-step. In

order to maximize the conditional likelihood, the functions of θi are replaced by

their expectations given the observed data until the convergence. For simplicity we
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suppose that the vectors α and φl have only one component, hence the development

to more components is obvious. The conditional expectation of the complete log-

likelihood can be splitted in three pieces.

The conditional expectation of survival component is:

Ei

{
log

[ m∏

i=1

λli(ti)
δiexp

(
−

∫ ti

0

k∑

l=1

λl(u)du
)]}

By using the Cox model’s properties, upon rearrangement of likelihood, the factor

for failure l is:

Ei

{
log

[ ∏

i:Li=l

λl(ti)exp
(
−

m∑

i=1

∫ ti

0

λl(v)dv
)]}

= Ei

{ ∑

i:Li=l

log(λl(ti))+

−
m∑

i=1

∫ ti

0

λl(v)dv
}

= Ei

{ ∑

i:Li=l

[
log

(
λ0l(ti)

)
+ wi(t)φl + ui(t)γl

]
+

−
m∑

i=1

[ ∫ ti

0

λ0l(v)exp{wi(t)φl + ui(t)γl}dv
]}

=
∑

i:Li=l

log
(
λ0l(ti)

)
+

∑

i:Li=l

(
wi(t)φl + γl

(
xiα + Ei

[
ziθi

]))

−

m∑

i=1

∫ ti

0

λ0l(v)Ei

[
exp{wi(t)φl + ui(t)γl}

]
dv

}

Differentiating with respect to λ0l(v), we get:

m∑

i=1

{I(Li = l, ti = v)

λ0l(v)
− Ei

[
exp{wi(t)φl + ui(t)γl}

]
I(ti >= v)

}

Hence:

λ̂0l(v) =
m∑

i=1

I(Li = l, ti = v)
∑

j∈R(v) Ej

[
exp{wj(t)φl + uj(t)γl}

]

where the baseline hazard is calculated at each of the failure times and R(v) is the

set of subjects at risk at time v.

Differentiating with respect to φl gives:

m∑

i=1

{
I(Li = l)wi(t) −

∫ ti

0

λ0l(v)Ei

[
wi(t)exp{wi(t)φl + ui(t)γl}

]
I(ti >= v)dv

}
,

differentiating with respect to γl gives:

m∑

i=1

{
I(Li = l)(Ei[ui(t)])+
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−

∫ ti

0

λ0l(v)Ei

[
ui(t)exp{wi(t)φl + ui(t)γl}

]
I(ti >= v)dv

}

Since λ0l(v) is a function of coefficients φl, and γl, there is not a closed-form solution

to those equations. These parameters can be calculated conditional on the most

updated values of other parameters, by using the Newton-Raphson algorithm in

each iteration (Tjalling, 1995).

The conditional expectation of longitudinal component is:

E
[
log

m∏

i=1

ni∏

j=1

f(yij)
]

= E
m∑

i=1

ni∑

j=1

[
−

1

2
logσ2

ǫ −
1

2σ2
ǫ

(yij − xiα + ziθi)
2
]

=

= −
1

2

m∑

i=1

nilogσ2
ǫ −

1

2σ2
ǫ

m∑

i=1

ni∑

j=1

Ei(yij − xiα + ziθi)
2

Differentiating with respect to σ2
ǫ gives:

d

dσ2
ǫ

= −
1

2σ2
ǫ

m∑

i=1

ni +
1

2σ4
ǫ

m∑

i=1

ni∑

j=1

Ei(yij − xiα + ziθi)
2

then

σ̂2
ǫ =

m∑

i=1

ni∑

j=1

Ei(yij − xiα + ziθi)
2

∑m
i=1 ni

Differentiating with respect to α gives:

d

dα
=

1

σ2
ǫ

m∑

i=1

ni∑

j=1

xi[yij − xiα − Ei(ziθi)]

then

α̂ =
m∑

i=1

ni∑

1

xi[yij − Ei(ziθi)]∑m
i=1 nix2

i

The conditional expectation of stochastic process is:

E
{

log

m∏

i=1

f(θ|Ω)
}

= E
{

log

m∏

i=1

1√
2π|Σ|

exp
(
−

1

2
θ

′

Σ−1θ
)}

=

= −
m

2
log(|Σ|) −

1

2

m∑

i=1

Ei[(θi)
′

Σ−1(θi)]

Differentiating with respect to Σ gives:

Σ̂ =
m∑

i=1

Ei(θiθ
′

i)

m
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The maximum likelihood estimate for θ is

θ̂ =
m∑

i=1

Ei(θi)/m

In the expectation step of the (m+1)th iteration, we calculate E[h(θi)|ti, δi, xi,zi, wi, Γ̂ ]

where Γ̂ denotes the set of parameters estimated in the maximization step, that is

Γ̂ = {α, θ, Σ, σ2
ǫ , λ0l, γl, φl}, l = 1 . . . , k.

The conditional density of θi, given the observed data and the current parameters’

estimate is equal to

f(θi|ti, δi,xi,zi,wi, Γ̂ ) =
f(θi, ti, δi, l|xi,zi,wi, Γ̂ )

f(ti, δi, l|xi,zi,wi, Γ̂ )
=

=
f(ti, δi, l|θi, λ̂0l, φ̂l, γ̂l)f(θi|xi, zi, α̂, θ̂, Σ̂, σ̂2

ǫ )
∫ ∞

−∞
f(ti, δi, l|θi, λ̂0l, φ̂l, γ̂l)f(θi|xi, zi, α̂, θ̂, Σ̂, σ̂2

ǫ )dθi

Hence E[h(θi)|ti, δi,xi,zi,wi, Γ̂ ] is given by

∫ ∞

−∞
h(θi)f(ti, δi, l|θi, λ̂0l, φ̂l, γ̂l)f(θi|xi, zi, α̂, θ̂, Σ̂, σ̂2

ǫ )dθi
∫ ∞

−∞
f(ti, δi, l|θi, λ̂0l, φ̂l, γ̂l)f(θi|xi, zi, α̂, θ̂, Σ̂, σ̂2

ǫ )dθi

The density f(ti, δi, l|θi, λ̂0l, φ̂l, γ̂l) has been defined in model 3.3 and the density

f(θi|xi, zi, α̂, θ̂, Σ̂, σ̂2
ǫ ) is a multivariate normal. The expectation of any function of

θi can be calculated by using numerical integration (Press et al., 1992).

By this procedure it is clear the difference between the two-stages and the joint

model, because we use the information given by survival and longitudinal process

simultaneously, by estimating the parameters defining the survival process as func-

tion of those defining the longitudinal process and viceversa.

3.2.3 Bayesian approach

One of the most used models for semiparametric survival analysis is the piecewise

constant hazard model, that is

λ0l(t) = λjl tj−1 ≤ t < tj , j = 1, . . . , J

where tj−1, tj , j = 0, . . . , J define the intervals for λ0l(t). The more intervals there

are, the more smoothing the baseline hazard function is, but the more parameters

to estimate there are. The choice of the endpoints of those intervals is not based

on the time of biomarker meaurements nor on the event time, it could be based on

the quantiles of the observed time-to-events, in a such way that the intervals are
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equally spaced or have an equal number of events. This semiparametric model is

also known as piecewise exponential model, is quite general and can accomodate

variuos shapes of the baseline hazard over the intervals. Now we can rewrite subject

i’s contribution to the joint likelihood function as

f(yi, ti, δi, li) = λ0li(ti)
δiexp

{
δi

(
wi(t)φli + ui(t)γli

)
+

−

k∑

l=1

J∑

j=1

(I(ti > tj−1)λ0lj

∫ min(tj ,ti)

tj−1

exp{wi(t)φl + ui(t)γl}du
}
×

×
1

(2πσ2
ǫ )mi/2

exp
(
−

1

2σ2
ǫ

ni∑

j=1

{yij − uij}
2
)

In order to make possible a fair comparison of the classical and Bayesian analysis, we

select vague prior distributions, that is we use proper priors, but with hyperparame-

ter values chosen so that the priors will have a minimal impact on data. Specifically,

in the longitudinal submodel we use multivariate normal priors for the fixed effects

vector α and an inverse gamma priors for the error variance σ2
ǫ , both having very

low precision. In the survival submodel we use the conjugate prior for underlying

hazard, λjl ∼ Gamma(p0jl, q0jl) for j = 1, . . . , J , where Gamma(p0jl, q0jl) denotes

the gamma distribution with shape parameter p0jl and scale parameter q0jl. Here

p0jl, q0jl are prior parameters which can be elicited by the prior mean and variance

of λjl. We take vague normal priors for φl and γl. Finally for the parameters com-

mon to both models, Σ, we select a inverse Wishart, because it allows for a good

identifiability of the main effects, providing some shrinkage of the random effects

towards 0 (Carlin and Luis, 2000).

Let [·] and [·|·] be the marginal and conditional density respectively. The likelihood

multiplied by the priors for the longitudinal model is given by

m∏

i=1

([ ni∏

j=1

(
yij |α,θi, σ

2
ǫ , Σ

)])[
α

][
θi|Σ

][
σ2

ǫ

][
Σ

]

The likelihood multiplied by the priors for the survival model in presence of com-

peting risks is given by

m∏

i=1

([
ti, δi|λ0l,φl, γl

])[
λ0l

][
φl

][
γl

]

l = 1, . . . , k. The joint posterior distribution of all parameters is proportional to the

product of the likelihood defined above. In order to obtain the posterior marginal

distributions for the parameters, Markov chain Monte Carlo (MCMC) methods

are used. The procedure consists of iterating through the parameters, either in
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blocks or singly, and drawing from the appropriate full conditional distributions

of each parameter, given the current assigment of all other parameters and data.

When sampling from the full conditional distribution is not feasible, we use the

Metropolis Hastings Sampling (Hastings, 1970). By using Bayes’ rule, the posterior

distribution of the random effects θi at the (m + 1)th iteration is proportional to

[θi|α
(m), Σ(m), σ2(m)

ǫ , λ
(m)
0l (t),φ

(m)
l , γ

(m)
l , {yij}, ti, δi]

∝ [{yij}|θi,α
(m), Σ(m), σ2(m)

ǫ ] × [θi|α
(m), Σ(m), σ2(m)

ǫ ]×

×[ti, δi|θi,α
(m), λ

(m)
0l (t), φ

(m)
l , γ

(m)
l ]

l = 1, . . . , k and for i = 1, . . . ,m.

The first term is a normal distribution proportional to

N
(
xiα + ziθi, σ

2
ǫ Ini

)

The second term is a normal distribution proportional to

N
(
(z

′

i(σ
2
ǫ Ini

)−1zi + Σ)−1z
′

i(σ
2
ǫ Ini

)−1(yi − xiα), (z
′

i(σ
2
ǫ Ini

)−1zi + Σ−1)−1
)

The third term is the full likelihood of the survival parameters

{
λ0li(ti)exp{wi(t)φli+ui(t)γli

}δi

exp
{
−

∫ ti

0

k∑

l=1

[
λ0l(v)exp{wi(v)φl+ui(v)γl}

]
dv

}

To obtain the posterior distribution of the fixed effects at the (m + 1)th Gibbs

iteration, given by

[α|θi
(m), Σ(m), σ2(m)

ǫ , λ
(m)
0l (t),φ

(m)
l , γ

(m)
l , {yij}, ti, δi] ∝

[{yij}|θi,α
(m), Σ(m), σ2(m)

ǫ ] × [α|θ
(m)
i , Σ(m), σ2(m)

ǫ ]×

×[ti, δi|θi,α
(m), λ

(m)
0l (t),φ

(m)
l , γ

(m)
l ]

l = 1, . . . , k, it is needed to redefine only the second term of the posterior distribu-

tion of the random effects, being a normal distribution

N
(( m∑

i=1

x
′

i(σ
2
ǫ Ini

)−1xi

)−1( m∑

i=1

x
′

i(σ
2
ǫ Ini

)−1(yi − ziθi)
)
,
( m∑

i=1

x
′

i(σ
2
ǫ Ini

)−1xi

)−1
)

For parameters Σ, σ2
ǫ , λ0l, φl, γl, l = 1, . . . , k, each of their conditional distributions

is a product of a standard distribution obtained from the likelihood and the prior.

Let Σ ∼ IW (s, S) with degrees of freedom s ≥ q and q×q covariance matrix, hence

the conditional distribution of Σ is
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[Σ|·] ∝ [{yij}|θi,α
(m), Σ(m), σ2(m)

ǫ ]× [θi|α, Σ, σ2
ǫ ]× [Σ] ∝ IW

(
s+q, S +

n∑

i=1

θiθ
′

i

)
.

Let σ2
ǫ ∼ IG(p, q), hence the conditional distribution of σ2

ǫ is

[σ2
ǫ |·] ∝ [{yij}|θi,α, Σ, σ2

ǫ ] × [σ2
ǫ ] ∝

∝ IG
(∑m

i=1 ni

2
− 1 + q,

∑m
i=1

∑ni

j=1(yij − (xiα − ziθi))
2

2
+ p

)
.

Let λ0jl ∼ Gamma(p0jl, q0jl), then the conditional distribution of λ0jl is

[λ0jl|·] ∝ [ti, δi|θi,α, λ0jl,φl, γl] × [λ0jl] ∝

∝ G
(
dl,k + 1 + p0jl,

∑

i:ti≥tj

∫ tj

tj−1

exp{wi(v)φl + ui(v)γl}dv+

∑

i:ti∈(tj−1,tj),di=l

∫ ti

tj−1

exp{wi(v)φl + ui(v)γl}dv + q0jl

)

The posterior distribution of parameters φl and γl is respectively given by

[φl|·] ∝ [ti, δi|θi,α, λ0kl,φl, γl] × [φl],

[γl|·] ∝ [ti, δi|θi,α, λ0kl,φl, γl] × [γl]

Both distributions are proportional to

{
λ0li(ti)exp{wi(t)φl + ui(t)γl

}δi

exp
{
−

∫ ti

0

k∑

l=1

[
λ0l(u)exp{wi(t)φl + ui(t)γl}

]}

By assuming a normal prior for φl and γl, we use Metropolis Hasting Sampling to

draw a sample from this distribution.
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Application
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The CASCADE Study

4.1 Description of the data

The aim of this work is to develop an appropriate methodology to data arising from

one of the largest AIDS multicentre studies, the CASCADE (Concerted Action on

SeroConversion to AIDS and Death in Europe) Study, a collaboration represent-

ing 22 cohorts based in Europe, Australia and Canada. Unlike other studies in this

field, the date of seroconversion of all participants is reliably estimated, the majority

(81%) being the midpoint between the first positive and last negative antibody test

dates with a maximum 3-year interval between test dates, the minority (19%) on

the basis of laboratory evidence or seroconversion illnesses. In addition both their

CD4 cell count and RNA viral load are recorded longitudinally from entry into the

study till the end of their follow-up, and treatment history and AIDS-related events

are carefully recorded. People aged under 15 years at seroconversion are excluded

from all analyses as the definition of AIDS differs in children. Subjects with an

AIDS diagnosis prior to entry, subjects who have received ART 1 before starting

HAART or without at least two measurements of CD4 cell count and HIV RNA

viral load during the study are excluded from the analysis. Since the progression of

disease differs in individuals with different modality of infection, the study includes

only homosexual men who are seroconverted since 1984 to 2005.

As introduced in chapter 1, the goal of this study is the evaluation of the risk to

get AIDS in presence of competing events, that is, the interruption and the modi-

fication of therapy, for each group defined according to CD4 cell count at HAART

initiation, lower than 200 cell/µl, included between 200 and 350 cell/µl, and higher

than 350 cell/µl. In order to make it, first we need to estimate the CD4 cell count

and viral load patterns over time since seroconversion, then to estimate the effect

1 active antiretroviral therapy
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of such patterns on time to competing events, adjusted for other covariates.

By the end of follow-up, 23 (2.11%) has developed AIDS, 279 (25.60%) has in-

terrupted the treatment for at least one week, and 338 (31.01%) has changed the

therapy. After identifying the possible causes of dependent censoring, such as the

sospension and the modification of therapy, and considering them as competing

events for AIDS, we assume an independent censoring meachanism for the with-

drawals from the study for unknown reasons. We report the different times of se-

roconversion, HAART initiation, and exit from the study and the observed events

for each group, in table 4.1 and 4.2 respectively.

Table 4.1. Characteristics according to CD4 at HAART initiation

Age at seroconversion median(IQR)

<200 31 (25-36)
[200-350[ 32 (27-39)
≥ 350 32 (27-39)

Seroconversion year median(IQR)

< 200 1996 (1993-2000)
[200-350[ 1998 (1994-2001)
≥ 350 1998 (1996-2001)

HAART year median(IQR):

< 200 2001 (1998-2003)
[200-350[ 2001 (1999-2004)
≥ 350 2000 (1998-2002)

Elapsed years between SC and HAART median(IQR):

< 200 4.33 (1.28-7.13)
[200-350[ 2.78 (1.20-5.78)
≥ 350 0.94 (0.19-2.76)

The larger the elapsed time between seroconversion and the initiation of therapy is,

the lower the CD4 cell count is, and the higher the probability to get AIDS and to

change therapy is. 5.97% of patients whose CD4 cell count is lower than 200 cell/µl

at HAART initiation gets AIDS versus 1.96% and 1.20% of those whose CD4 cell

count is included between 200 and 350 cell/µl and higher than 350 cell/µl, respec-

tively. Contrary, 33.46% of patients whose CD4 cell count is higher than 350 cell/µl

interrupts the treatment versus 19.07% and 13.43% of those whose CD4 cell count

is included in [200,350) cell/µl and lower than 200 cell/µl, respectively. Finally

34.33% of patients whose CD4 cell count is lower than 200 cell/µl changes therapy

versus 29.58% and 31.26% of those whose CD4 cell count is included between 200

and 350 cell/µl and higher than 350 cell/µl, respectively.

The data include a total of 15377 CD4 cell count and 9927 viral load measurements
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Table 4.2. Failures of 1090 individuals

Failure Number (%)

<200 134 (12.29)

Censored 62 (46.27)
AIDS 8 (5.97)
Interruption of therapy 18 (13.43)
Change of therapy 46 (34.33)

[200-350[ 409 (37.52)

Censored 202 (43.39)
AIDS 8 (1.96)
Interruption of HAART 78 (19.07)
Change of therapy 121 (29.58)

≥ 350 547 (50.18)

Censored 186 (34.00)
AIDS 7 (1.28)
Interruption of HAART 183 (33.46)
Change of therapy 171 (31.26)

taken on patients. On average, 14 (range, 2-67) CD4 cell count measurements per

subject are available with median interval of 92 days between any two successive

CD4 cell count measurements. On average, 9 (range, 2-41) RNA viral load measure-

ments per subject are available with median interval of 92 days between any two

successive RNA viral load measurements. The CD4 cell count at seroconversion is

known for 77% of individuals, while the viral load is unknown. CD4 cell count and

viral load at the initiation of HAART, when unknown, are estimated by the mean

of biomarkers’ measurements recorded in the last six months before submission to

therapy. 12.29% of patients starts HAART when CD4 cell count is lower than 200

cell/µl, 37.52% when CD4 cell count is included in [200, 350) cell/µl, finally 50.18%

when CD4 cell count is higher than 350 cell/µl, as reported in table 4.3.

We transform the CD4 cell count and RNA viral load to a square-root and log10

scale respectively, in order to normalize the data. We show the plots of CD4 cell

count and viral load measurements in figure 4.1 and 4.2. Obviously, the measure-

ments number of both biomarkers decreases over the time, because of loss to follow-

up for the occurrence of some competing risks or “natural” censoring, and reaso-

nably the viral load values are more variable than CD4 cell count values.

4.2 Longitudinal and survival models

Since the clinical question our method wants to dress is at which stage it is better

to start the therapy, that is, when CD4 cell count is included between 200 and 350

cell/µl rather than when it is higher than 350 cell/µl, or viceversa, by considering
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Table 4.3. CD4 cell count and viral load

CD4 at seroconversion

<200 37 (3.39)
[200-350[ 152 (13.94)
≥ 350 645 (59.17)
Unknown 256 (23.49)

CD4 at HAART

<200 134 (12.29)
[200-350[ 409 (37.52)
≥ 350 547 (50.18)

RNA viral load at HAART

<10000 606 (55.60)
≥ 10000 484 (44.90)
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Fig. 4.1. Longitudinal measurements of CD4 cell count on the time since seroconversion

also the elapsed time between seroconversion and HAART initiation, we will fit the

CD4 cell count pattern over time since seroconversion and we will compare the risks

of failure for each group. We will proceed by steps: first we will model the CD4 cell

count and the competing events separately, then by fitting the longitudinal data by

an appropriate model we will include the fitted values in the survival model, and

finally we will model the longitudinal and survival processes jointly. The last step

will consist of inclusion of viral load in the analysis. We will distinguish two groups

of patients, those whose viral load is lower than 10000 copies/mL and those whose
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Fig. 4.2. Longitudinal measurements of HIV-RNA on the time since seroconversion

viral load is higher than 10000 copies/mL at HAART initiation. For an exploratory

analysis, similarly to CD4 cell count, first we will model it separately, then jointly

to CD4 cell count. Finally we will evaluate the effect of CD4 cell count and viral

load on competing events by first including the fitted biomarkers’ values in the

survival model and then by modelling the processes jointly. However, because of

computational complexity, due to large dimension of dataset, to unbalanced data,

and to presence of multiple time-scales, before modelling the data jointly by a

Bayesian approach, we will make a first analysis in order to select an appropriate

class of models for the longitudinal and the survival data respectively, by traditional

methods, i.e. by comparing AIC (Akaike Information Criterion) (Akaike, 1974)

of several longitudinal models and by testing the proportionality assumption for

survival data by Schoenfeld residuals.

4.2.1 Univariate longitudinal model and competing risks

The presence of multiple time-scales does not allow to represent significantly the

biomarker pattern in a single plot because we observe at the same time patients

without any therapy but also those just submitted to HAART but with different

treatment histories. Hence it is needed to stratify by elapsed time between serocon-

version and HAART initiation in order to visualize the presence of some trends. By
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using the deciles of distribution of variable “elapsed time between seroconversion

and HAART initiation” as stratification criteria, we represent the box-plots of CD4

cell count for each interval of time equal to two months and a smoothing function,

which uses locally-weighted polynomial regression, remarking the interval of time

the individuals start the treatment. Specifically, we show CD4 cell count pattern of

individuals who start treatment between 94 and 122 months after seroconversion in

figure 4.3. Similar plots are obtained for each strata. Approximately the biomarker
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Fig. 4.3. CD4 cell count pattern of individuals, who start therapy between 94 and 122
months after seroconversion

decreases after seroconversion, reaching its minimum value before the HAART ini-

tiation, it increases rapidly in the first months after submission to therapy, and

then it tends to stabilize.

We proceed by making a further stratification based on groups defined by different

CD4 cell count at the HAART initiation in order to make a comparison between

them. After choosing arbitrarily an interval of time of HAART initiation, we repre-

sent the CD4 cell count pattern by a smoothing function, for the individuals whose

CD4 cell count is lower than 200 cell/µl, those whose CD4 cell count is included

between 200 and 350 cell/µl, finally those whose CD4 cell count is higher than 350

cell/µl at HAART initiation, in figure 4.4.
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Fig. 4.4. CD4 cell count pattern represented for the groups of patients, who starts ther-
apy in an interval of time included between 32 and 44 months after seroconversion and
characterized by different CD4 cell count at HAART initiation, <200, [200, 350), ≥350
respectively.

At the first stage the therapy seems to increase the CD4 cell count almost as its

level at seroconversion, then its effect attenuates after first months, mainly for the

patients whose CD4 cell count is included between 200 and 350 cell/µl at the ini-

tiation of HAART. Obviously this result also depends on interval of time chosen to

represent the different trends.

We use a piecewise linear mixed effects model with a first slope representing the

CD4 cell count pattern before the submission to therapy, a second slope repre-

senting the short term response of CD4 cell count to therapy and a third slope

representing the long term response. Being {y
′

ij : j = 1, . . . , n
′

i} the CD4 cell count

measurements at times {tij : j = 1, . . . , n
′

i}, the model is given by:

y
′

ij = u
′

ij + ǫ
′

ij (4.1)

u′
ij = α1 + α2I1 + α3I2 + (α4 + α5I1 + α6I2)tij + (α7 + α8I1 + α9I2)(tij − ti1) ∗

I(tij − ti1 > 0) + (α10 + α11I1 + α12I2)(tij − ti2)I(tij − ti2 > 0)

+θ1i + θ2itij + θ3i(tij − ti1)I(tij − ti1 > 0) + θ4i(tij − ti2)I(tij − ti2 > 0)

where I1 = 1 if CD4 is included in [200, 350) cell/µl at therapy initiation otherwise

0, I2 = 1 if CD4 is higher than 350 cell/µl otherwise 0, ti1 is the time of start

of therapy dependent on ith subject, and ti2 is the time when the slope changes

because of therapeutic effect’s decrease, dependent on ith subject. We estimate this
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time by adapting the model 4.1 with different values of ti2 and comparing the AIC

values obtained. Results suggest to fix ti2 to three months after therapy initiation.

α is a 12 × 1 vector of unknown fixed effects, θi is a 4 × 1 vector of unobservable

random effects, and ǫi is a within-individual residuals vector. The ǫi are assumed

to be normally distributed with mean 0 and n
′

i × n
′

i variance-covariance matrix

σ2
ǫ In

′

i
, where In′ denotes the n

′

× n
′

identity matrix. The random effects θi are

assumed to be normally distributed with mean 0 and 4× 4 unstructured variance-

covariance matrix Σ. The θi are distributed indipendently of each other and of the

within-subjects residuals ǫij . Besides the model 4.1, specific submodels have been

considered, in particular a quadratic term has been included, random effects have

been excluded, several covariance structures have been applied, and splines have

been adapted. In terms of a large likelihood, a small number of parameters, and

a clear interpretation of the model, the best model is the model 4.1. By selecting

three subjects randomly, we show the individual deviation from overall effect, due

to the inclusion of random effects, in figure 4.5.
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Fig. 4.5. Predicted individual (solid line) and mean (broken line) CD4 cell count pattern
over time since seroconversion for three individuals selected randomly, whose CD4 cell
count is lower than 200 cell/µl, is included in [200, 350) cell/µl, and is higher than 350
cell/µl at HAART inititiation, respectively.

We report the coefficients estimates, obtained by restricted maximum likelihood and

Bayesian approach, in table 4.4. To allow for a fair comparison between classical

and Bayesian analyses we use proper prior distributions but with hyperparameters

values chosen so that the priors have a minimal impact on data. Specifically, we
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take multivariate normal for the main effects vector α, an inverse gamma prior for

the error variance σ2
ǫ , and an inverse Wishart for Σ, all having very low precision.

We monitor the MCMC convergence by three parallel MCMC sampling chains of

150000 iterations each, following a 50000-iteration “burn-in” period.

In the classical approach the RMLE reachs convergence only introducing in the

Table 4.4. Coefficients’ estimates (CI(95%)) in piecewise linear mixed effects
model

Classical Bayesian

α1 22.169 (21.279, 23.058) 22.280 (21.360, 23.200)

α2 0.596 (-0.427, 1.619) 0.756 (-0.340, 1.820)

α3 2.573 (1.579, 3.567) 2.502 (1.490, 3.532)

α4 -0.309 (-0.346, -0.272) -0.419 (-0.510, -0.327)

α5 0.069 (0.026, 0.112) 0.077 (-0.032, 0.191)

α6 0.175 (0.130, 0.220) 0.212 (0.101, 0.326)

α7 1.364 (1.137, 1.591) 1.842 (1.491, 2.191)

α8 0.404 (0.147, 0.661) 0.215 (-0.186, 0.623)

α9 0.119 (-0.142, 0.380) -0.171 (-0.567, 0.229)

α10 -0.797 (-1.032, -0.562) -1.162 (-1.540, -0.787)

α11 -0.529 (-0.794, -0.264) -0.349 (-0.770, 0.078)

α12 -0.438 (-0.706, -0.170) -0.171 (-0.606, 0.251)

model θ1i, θ2i, θ3i but not θ4i. The difference between results obtained by classical

and Bayesian approach may be due to random effects θ4i, which takes off signi-

ficativity to α11, α12. On equal terms of elapsed time between seroconversion and

start of treament, the CD4 cell count pattern does not differ significantly before

starting therapy in individuals whose CD4 cell count is included between 200 and

350 cell/µl and those whose CD4 cell count is lower than 200 cell/µl at HAART

initiation. At seroconversion both groups have lower CD4 cell count than that of

individuals whose CD4 cell count is higher than 350 cell/µl at therapy initiation,

and the CD4 cell count decrease in an unit of time is almost double in the first two

groups compared to the third one. The therapeutic effect is clearly positive, also

if after three months it attenuates, but it is not significantly different in the three

groups. Consistently with the results, the covariance matrix of random effects is

given by





23.370 −0.431 −1.855 2.309
−0.431 0.219 −0.117 0.016
−1.855 −0.117 2.216 −2.051
2.309 0.016 −2.051 2.363
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We represent the box-plots of the last CD4 cell count measurement for competing

events, AIDS, interruption of therapy, and change of therapy respectively in figure

4.6. Obviously the individuals who get AIDS have a lower CD4 cell count than those
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Fig. 4.6. Box-plot of last CD4 cell count measurement of individuals who get AIDS,
interrupt the therapy, and change the therapy, respectively.

who “fail” from competing events. It is interesting to observe that the patients who

interrupt the therapy have a lightly higher CD4 cell count than those who change

the therapy. It is reasonable because the treatment interruption could be used as a

strategy for boosting immune response to HIV or reducing long-term toxicity when

the patient’s immunological status is high enough, while a change to second-line

therapy gets necessary if the first-line treatment fails, and then the CD4 cell count

has not reached a satisfactory level. Yet, a complete analysis over the time since

seroconversion is required to evaluate the effect of the biomarker pattern on the

probability of failing from a competing event.

The non-parametric cumulative incidence curves are shown in figure 4.7.

The lower the CD4 cell count is at HAART initiation, the higher the probability

to get AIDS is, and the lower the probability to interrupt the therapy is. The

probability to change the therapy does not seem to be different between the groups.

Since grafically the proportionality hypothesis is satisfied for each “failure”, we



4.2 Longitudinal and survival models 59

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

AIDS

Time since seroconversion

C
um

ul
at

iv
e 

in
ci

de
nc

e 
cu

rv
es

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Interruption of therapy

Time since seroconversion
0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Change of therapy

Time since seroconversion

Fig. 4.7. Comparison between non-parametric cumulative incidence curves for individ-
uals, whose CD4 cell count is lower than 200 cell/µl (solid line), those whose CD4 cell
count is included in [200, 350) cell/µl (broken line), and those whose CD4 cell count is
higher than 350 cell/µl (dotted line) at the therapy initiation.

model the hazard to fail from three different competing events by a proportional

hazards model, given by

λl(t) = λ0l(t)exp(φ1lw1 + φ2lw2 + φ3lw3 + φ4lw4) (4.2)

where l = 1, 2, 3 indicates the competing event, AIDS, interruption of therapy, and

change of therapy respectively, and w1 = 1 if CD4 cell count at HAART initiation

is included between 200 and 350 cell/µl, otherwise 0, w2 = 1 if it is higher than

350 cell/µl, w3 is the age at seroconversion, considered as continuos variable, and

w4 = 1 if the seroconversion year is after 1995, otherwise 0. The effect of the CD4

cell count at HAART initiation on the hazard functions is adjusted for age at sero-

conversion and seroconversion year. Since our dataset includes only men, who has

got HIV by homosexual relationships, no more not hidden-variables can be possible

confounders, other than viral load. We report the results in the table 4.5.

These results are in agreement with those obtained previously in a non-parametric

setting. The CD4 cell count at HAART initiation significantly affects the hazard to

fail from AIDS for both groups, on the hazard to interrupt the therapy only for the

subjects whose CD4 cell count is higher than 350 cell/µl, while it does not affect

significantly the hazard to change therapy. We check the proportionality assump-

tion by Schoenfeld residuals and, besides model 4.2, we consider and compare by

Wald tests models including iteractions between the variables w1, w2 and w3.

Now, we extend the analysis, treating CD4 cell count as continuos variable, and
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Table 4.5. Coefficients estimates by Cox proportional hazards model

Estimate 95% Conf. Interval p-value

φ11 -1.17 (-2.15,-0.19) 0.019

φ21 -1.60 (-2.55,-0.65) 0.001

φ31 0.00 (-0.05,0.05) 0.981

φ41 0.20 (-0.58,0.98) 0.622

φ12 0.31 (-0.20,0.82) 0.235

φ22 0.80 (-0.32,1.29) 0.001

φ32 0.00 (-0.02,0.00) 0.329

φ42 0.60 (0.30,0.89) 0.000

φ13 -0.17 (-0.50,0.17) 0.314

φ23 -0.07 (-0.40, 0.25) 0.663

φ33 0.00 (-0.01,0.01) 0.914

φ43 -0.01 (-0.24,0.21) 0.901

evaluating the effect of its pattern on the three competing events. We will compare

two approaches: the two-stages model and the joint model. The first one consists

of modeling first the longitudinal data, and then including the fitted values in an

appropriate survival model. The second one estimates the parameters of longitudi-

nal and survival models jointly. The longitudinal model is given by the piecewise

linear mixed effects model, defined in 4.1. The survival process is modelled by a

Cox proportional hazards model, given by

λl(t) = λ0l(t)exp{(γl + γ1lI1 + γ2lI2)u
′

(t) + φ1lw1 + φ2lw2} (4.3)

where I1 = 1 if CD4 cell count at HAART initiation is included between 200 and 350

cell/µl, otherwise 0, I2 = 1 if CD4 cell count is higher than 350 cell/µl, otherwise

0, u
′

(t) is the biomarker value at time t, w1 is the age at seroconversion, and

w2 is the indicator variable, whose value is 1 if the time of seroconversion is after

1995, otherwise 0. The parameters γl, γ1l, γ2l, which specify the association between

the marker and the survival process, allow to model the effect of the biomarker,

adjusted for other covariates, on the competing events. We compare the parameters’

estimates obtained for the longitudinal model in table 4.6.

The two models estimate the individual CD4 cell count pattern similarly, while

they differ in estimating the population mean, as shown in figure 4.8. In figure 4.9,

we represent the mean CD4 cell count pattern for each group.

Ignoring informative drop-outs for longitudinal process may lead to overoptimistic

statements on marker trend, when patients in poorer health are more likely to leave

the study, or may lead to underoptimistic statements, when patients in better health

are more likely to leave the study. In accordance to this last statement, CD4 cell
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Table 4.6. Coefficients estimates (CI(95%)) by piecewise linear mixed effects
model

Two-Stages Joint

α1 22.280 (21.360, 23.200) 22.390 (21.750, 23.070)

α2 0.756 (-0.340, 1.820) 0.542 (-0.334, 1.408)

α3 2.502 (1.490, 3.532) 2.403 (1.564, 3.098)

α4 -0.419 (-0.510, -0.327) -0.449 (-0.482, -0.408)

α5 0.077 (-0.032, 0.191) 0.107 (0.034, 0.168)

α6 0.212 (0.101, 0.326) 0.253 (0.195, 0.305)

α7 1.842 (1.491, 2.191) 1.847 (1.783, 1.939)

α8 0.215 (-0.186, 0.623) 0.289 (0.113, 0.466)

α9 -0.171 (-0.567, 0.229) -0.247 (-0.396, -0.124)

α10 -1.162 (-1.540, -0.787) -1.144 (-1.229, -1.048)

α11 -0.349 (-0.770, 0.078) -0.434 (-0.589, -0.221)

α12 -0.171 (-0.606, 0.251) -0.081 (-0.188, 0.057)
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Fig. 4.8. By fitting the two-stages model (thin lines) and the joint model (thick lines),
predicted individual (solid line) and mean (dash line) CD4 cell count pattern over time
since seroconversion, for three individuals selected randomly, whose CD4 cell count is
lower than 200 cell/µl, is included in [200, 350) cell/µl, and is higher than 350 cell/µl at
HAART initiation, respectively.

count is lightly overestimated for individuals whose CD4 cell count is lower than

200 cell/µl at HAART initiation, while it is underestimated for those whose CD4

cell count is higher than 350 cell/µl. Similarly to model 4.1, the covariance matrix

of random effects is given
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Fig. 4.9. By fitting the two-stages model (thin lines) and the joint model (thick lines),
predicted mean CD4 cell count pattern over time since seroconversion, for three individuals
selected randomly, whose CD4 cell count is lower than 200 cell/µl (solid line), is included
in [200, 350) cell/µl (broken line), and is higher than 350 cell/µl (dotted line) at HAART
initiation, respectively.





22.880 −0.407 −1.835 2.259
−0.407 0.219 −0.119 0.020
−1.835 −0.119 2.173 −2.005
2.259 0.020 −2.005 2.312





In figure 4.10, observed CD4 cell count versus predicted CD4 cell count, and the

residuals are represented.

In order to fit the survival model, we take normal priors for the parameters γl,

γ1l, γ2l, φ1l, and φ2l, l = 1, . . . , 3, and gamma priors for piecewise constant baseline

hazards, λ0l(t) = λjl, tj−1 ≤ t < tj , defined over some partitioning of the time

scale into intervals not necessarily related to the times of covariate measurement.

Our choice is based on the deciles of the observed time to each competing events.

Yet the estimates do not change, varying the intervals of time. The coefficients’

estimates are reported in table 4.7.

The coefficients’ estimates, obtained by fitting two-stages and joint models, are very

similar. The age at seroconversion does not seem to have a significant effect on the

competing events. On the contrary, the individuals, whose date of seroconversion
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Fig. 4.10. First plot: observed CD4 cell count versus predicted CD4 cell count by joint
modelling of CD4 cell count and survival data. Second plot: predicted CD4 cell count
versus residuals.

Table 4.7. Coefficients’ estimates (CI(95%)) by semiparametric proportional
hazards model

Two-stages Joint

φ11 0.003 (-0.045, 0.043) 0.003 (-0.046, 0.004)

φ21 1.293 (0.302, 2.445) 1.309 (0.306, 2.371)

γ1 -0.117 (-0.245, 0.010) -0.127 (-0.259, 0.004)

γ11 -0.017 (-0.072, 0.049) -0.015 (-0.077, 0.052)

γ21 -0.005 (-0.068, 0.064) -0.002 (-0.067, 0.071)

φ12 -0.002 (-0.016, 0.011) -0.002 (-0.017, 0.011)

φ22 1.524 (1.179, 1.905) 1.513 (1.169, 1.873)

γ2 0.093 (0.059, 0.128) 0.103 (0.061, 0.139)

γ12 0.009 (-0.014, 0.033) 0.008 (-0.015, 0.034)

γ22 0.021 (-0.0002, 0.044) 0.019 (-0.003, 0.046)

φ13 0.007 (-0.005, 0.020) 0.007 (-0.005, 0.019)

φ23 1.106 (0.809, 1.389) 1.106 (0.822, 1.390)

γ3 0.059 (0.025, 0.094) 0.067 (0.035, 0.099)

γ13 -0.007 (-0.024, 0.012) -0.008 (-0.025, 0.010)

γ23 -0.0005 (-0.019, 0.018) -0.003 (-0.019, 0.015)

falls after 1995, have an higher probability of getting AIDS, of interrupting and

changing therapy, than those whose date of seroconversion is before 1995. This

result could be due to choice to performe the analysis over time since seroconversion.

It might be that the individuals, who have seroconverted before 1995 and who have
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started HAART as first therapy after 1995, are in better health than those who

have seroconverted after 1995 and who have started the therapy immediately. The

higher the CD4 cell count is, the lower the risk to fail from AIDS and the higher

the probability to change the therapy and mainly to interrupt the therapy is. The

failure hazards are not significantly different for the groups defined by a different

CD4 cell count at HAART initiation.

Furthermore, we have fitted two further models, respectively given by

λl(t) = λ0l(t)exp{(γl + γ1lI1 + γ2lI2)u
′

(t)} (4.4)

λl(t) = λ0l(t)exp{(γl + γ1lI1 + γ2lI2)u
′

(t) + φ1lw1} (4.5)

We have compared the models 4.2, 4.3, 4.4, by using the Deviance Information Crite-

rion (DIC)(Spiegelhalter et al., 2002). Thinking of β and y as the entire set of model

parameters and data, DIC = E[D(β|y)] + {E[D(β|y)]−D(E[β|y])} = D̄(β) + pD,

where D̄(β) = Eβ|y[−2logf(y|β)] + 2logh(y), and pD is the effective number of pa-

rameters. f(y|β) is the likelihood function and h(y) is some standardizing function

of data alone. The fit of a model is summarized in the first term by the posterior

expectation of the deviance function, E[D(β|y)], while the complexity of the model

si captured in the second term by the effective number of parameters pD. We report

the DIC of three fitted models in table 4.8. DIC1 is the component of DIC for the

Table 4.8. Deviance Information Criterion

Model DIC1 DIC2 DIC3 DIC4 Dbar pD DIC

cd4 449.16 3640.96 4346.94 74502.90 80202.70 2737.32 82940.00

cd4+age 450.42 3642.15 4341.34 74481.10 80168.00 2747.02 82915.00

cd4+age+calendar 445.74 3556.59 4281.54 74487.60 80021.80 2749.72 82771.50

longitudinal submodel, DIC2, DIC3, DIC4 the components for the survival sub-

model respectively for the risk 1,2, and 3. The DIC is the sum of three components.

Based on DIC, the best model for survival process is the model 4.2.

We represent the hazard functions for three “average” subject in figure 4.11. By

“average” subject, it is meant an individual, whose CD4 cell count pattern repre-

sents the population mean pattern over time since seroconversion and whose time

of HAART initiation is the mean time of HAART initiation of the subjects under

study and failed from the same cause. The three subjects have a different CD4

cell count at HAART initiation, < 200, [200, 350), and ≥ 350, while equal age at

seroconversion and time of seroconversion. The variables effect on hazard function
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Fig. 4.11. Estimated hazard functions of three “mean” subjects, whose CD4 cell count
is lower than 200 cell/µl (solid line), is included between 200 and 350 cell/µl (broken
line), and is higher than 350 cell/µl (dotted line) at HAART initiation. The functions
represent the istantaneous risk to fail from AIDS, to interrupt the therapy, and to change
the therapy at time t, respectively.

could be different from that on cumulative incidence function, quantity of inter-

est in a competing risks setting. Although we are not able to estimate it directly

by fitting the Cox model, we can calculate the probability to fail from a compet-

ing risk, as first event, and represent it for a “mean” subject, as shown in figure

4.12. The estimated cumulative incidence curves by two-stages and joint models

are very similar, due to similarity of hazard functions. The individuals whose CD4

cell count is lower than 200 cell/µl have an higher probability to fail from AIDS

and a lower probability to interrupt the therapy than the individuals whose CD4

cell count at HAART initiation is included between 200 and 350 cell/µl and those

whose CD4 cell count is higher than 350 cell/µl. The individuals whose CD4 cell

count is included between 200 and 350 cell/µl at HAART initiation have an higher

probability to fail from AIDS and a lower probability to interrupt the therapy than

those whose CD4 cell count is higher than 350 cell/µl. The probability to change

therapy does not seem to differ between groups. Hence the CD4 cell count is an

important predictor for the time to competing events. By adjusting the analysis

for time since seroconversion, CD4 cell count pattern and age at seroconversion,

we have evaluated the risk to fail from competing risks for three groups defined

according to CD4 cell count at HAART initiation, and it seems better to start the

therapy when the biomarker value is higher than 350 cell/µl.
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Fig. 4.12. Estimated cumulative incidence functions of three “mean” subjects, whose
CD4 cell count is lower than 200 cell/µl (solid line), is included between 200 and 350
cell/µl (broken line), and is higher than 350 cell/µl (dotted line) at HAART initiation.
The functions represent the risk to fail from AIDS, to interrupt the therapy, and to change
the therapy, as first event, within time t, respectively.

4.2.2 Bivariate longitudinal model and competing risk

Likewise to CD4 cell count analysis, by using the deciles of distribution of variable

“elapsed time between seroconversion and HAART” as stratification criteria, we

represent the box-plots of viral load for each interval of time equal to two months

and a smoothing function, which uses locally-weighted polynomial regression, re-

marking the interval of time the individuals start the treatment. We show the viral

load pattern of individuals who start treatment between 94 and 122 months after

seroconversion in figure 4.13. Analogue plots are obtained for each strata. Approx-

imately the biomarker increases after seroconversion, reaching its maximum value

before the initiation of HAART, it decreases very rapidly in the first months after

submission to therapy, and then it tends to stabilize. After choosing an interval of

time for start of treatment arbitrarily, we represent the plots of viral load for the

individuals whose viral load is lower than 10000 copies/mL, and those whose viral

load is higher than 10000 copies/mL at HAART initiation, as shown in figure 4.14.

The higher the viral load is at seroconversion, the higher it is at HAART initiation,

and the more effective the therapy seems to be. Generally the two groups show a

similar viral load pattern. We indicate by {y
′′

ij : j = 1, . . . , n
′′

i } the viral load mea-

surements at times {tij : j = 1, . . . , n
′′

i }. Since our aim is to model the viral load

and CD4 cell count and their relation by evaluating the change points, we fit the
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Fig. 4.13. Viral load pattern of individuals, who start therapy between 94 and 122 months
after seroconversion
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Fig. 4.14. Viral load pattern of each group, who started therapy between 76 and 94
months after seroconversion and characterized by different viral load at HAART initiation,
<10000, ≥10000 respectively.

two biomarkers’ pattern by a bivariate piecewise linear mixed effects model, given

by
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{
y

′

ij = u
′

ij + ǫ
′

ij

y
′′

ij = u
′′

ij + ǫ
′′

ij

(4.6)

where u
′

ij is defined in model 4.1, and u
′′

ij is defined as

u
′′

ij = α
′

1 + α
′

2I3 + (α
′

3 + α
′

4I3)tij + (α
′

5 + α
′

6I3)(tij − t1)I(tij − t1 > 0)

+(α
′

7 + α
′

8I3)(tij − t2)I(tij − t2 > 0) + θ5i + θ6itij + θ7i(tij − t1)

I(tij − t1 > 0) + θ8i(tij − t2)I(tij − t2 > 0).

I3 is an indicator variable, having value 1 if viral load is higher than 10000

copies/mL at the therapy initiation, 0 otherwise, ti1 is the time of HAART initia-

tion dependent on ith subject, and ti2 is the time when the slope changes because

of therapeutic effect’s decrease, dependent on ith subject. Equally to model 4.1,

we fix ti2 as the time after three months since HAART initiation, to evaluate the

changes in viral load pattern parallely to those of CD4 cell count. α
′

is a 8×1 vector

of unknown fixed effects, θi is a 8 × 1 vector of unobservable random effects, and

ǫ
′′

i is a within-individual residuals vector. The random effects θi are assumed to be

normally distributed with mean 0 and 8× 8 variance-covariance matrix Σ. The θi

are distributed indipendently of each other and of the within-subjects residuals ǫ
′

ij

and ǫ
′′

ij . The ǫ
′′

i
are assumed to be indipendent and normally distributed with mean

0 and n
′′

i × n
′′

i variance-covariance matrix σ2
ǫ′′

In
′′

i
, where In′′ denotes the n

′′

× n
′′

identity matrix. It is known that the viral load and CD4 cell count are negatively

correlated, yet their relationship may not be costant in the time and may depend

on the subject. We model the dependence between the viral load and CD4 cell

count by the covariance matrix the individual effects θi, Σ. We take multivariate

normal priors for the main effects vector α and α
′

, an inverse gamma priors for the

error variance σ2
ǫ′

and σ2
ǫ′′

, and an inverse Wishart for the common parameter Σ,

all having very low precision. We monitor the MCMC convergence by three parallel

MCMC sampling chains of 80000 iterations each, following a 30000-iteration “burn-

in” period. By selecting two subjects randomly, we show the individual deviation

from overall effect, due to the inclusion of random effects, in figure 4.15.

The viral load pattern of two subjects differs mainly in the period before HAART

initiation, when the viral load of the first individual is almost constant from sero-

conversion to initiation of the therapy, while is increasing for the second individual.

The coefficients’ estimates obtained by fitting univariate and bivariate models for

CD4 cell count and viral load is reported in table 4.9. By univariate models we mean

the models 4.1 and 4.4 for CD4 cell count and viral load respectively, omitting the

dependence between the two biomarkers expressed by Σ.

In figure 4.16 and 4.17 the CD4 cell count and viral load patterns are represented,
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Fig. 4.15. Predicted individual (solid line) and mean (dash line) viral load pattern over
the time since seroconversion for two individuals selected randomly, whose viral load is
lower than 10000 copies/mL, and is higher than 10000 copies/mL respectively.

for both models.
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Fig. 4.16. Comparison between the mean CD4 cell count pattern over the time since
seroconversion estimated by longitudinal univariate (thin line) and bivariate (thick line)
models respectively, when CD4 cell count is lower than 200 cell/µl (solid line), is included
between 200 and 350 cell/µl (broken line), and is higher than 350 cell/µl (dotted line)
respectively.

The mean CD4 cell count pattern does not differ between the two models, while

the estimated mean viral load by bivariate model is lower than that estimated by
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Table 4.9. Coefficients’ estimates (CI(95%)) of longitudinal univariate and
bivariate models

Bayesian univariate Bayesian bivariate

α1 22.280 (21.360, 23.200) 22.020 (21.110, 22.950)

α2 0.756 (-0.340, 1.820) 0.844 (-0.214, 1.872)

α3 2.502 (1.490, 3.532) 2.745 (1.763, 3.716)

α4 -0.419 (-0.510, -0.327) -0.423 (-0.505, -0.334)

α5 0.077 (-0.032, 0.191) 0.083 (-0.021, 0.183)

α6 0.212 (0.101, 0.326) 0.203 (0.101, 0.298)

α7 1.842 (1.491, 2.191) 1.881 (1.523, 2.230)

α8 0.215 (-0.186, 0.623) 0.211 (-0.193, 0.624)

α9 -0.171 (-0.567, 0.229) -0.090 (-0.495, 0.320)

α10 -1.162 (-1.540, -0.787) -1.198 (-1.569, -0.829)

α11 -0.349 (-0.770, 0.078) -0.352 (-0.783, 0.078)

α12 -0.171 (-0.606, 0.251) -0.243 (-0.672, 0.182)

α
′

1 4.385 (4.268, 4.502) 4.416 (4.297, 4.540)

α
′

2 0.589 (0.414, 0.760) 0.536 (0.372, 0.698)

α
′

3 -0.021 (-0.044, -0.001) -0.032 (-0.071, 0.002)

α
′

4 0.025 (-0.021, 0.068) -0.015 (-0.027, 0.053)

α
′

5 -1.264 (-1.322, -1.204) -1.275 (-1.338, -1.212)

α
′

6 -0.258 (-0.350, -0.171) -0.242 (-0.332, -0.153)

α
′

7 1.296 (1.232, 1.360) 1.315 (1.254, 1.377)

α
′

8 0.208 (0.110, 0.2089) 0.193 (0.102, 0.286)

univariate model. The figure 4.17 suggests that the therapy has more effect on the

patients, whose viral load is higher than 10000 copies/mL than those, whose viral

load is lower than 10000 copies/mL at HAART initiation. This result may be due

to heterogeneity inside the group of individuals, whose viral load is higher than

10000 copies/mL. It would be correct to create more groups, defined according to

viral load at HAART initiation, i.e. <10000, [10000,100000), and ≥ 10000. Fur-

thermore the bivariate model allows to estimate the correlation matrix between the

individual slopes of each marker, given by





−0.952 0.814 −0.059 −0.350
0.693 −0.610 0.219 0.098
0.757 −0.651 −0.307 0.581
−0.794 0.679 0.273 −0.576





As expected, CD4 cell count and viral load are negatively correlated: ρ = −0.952,

std=0.26 for the intercept, ρ = −0.610, std=0.01 for the first slope, ρ = −0.307,

std=0.04 for the third slope, and ρ = −0.576, std=0.05 for the last slope.
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Fig. 4.17. Comparison between the mean (broken line) viral load pattern over the time
since seroconversion estimated by longitudinal univariate (thin line) and bivariate (thick
line) models respectively, when viral load is lower than 10000 copies/mL (solid line), and
is higher than 10000 copies/mL (dotted line) respectively.

In order to evaluate the joint variation over time of the two biomarkers and of

competing events we model jointly the longitudinal and survival process. Therefore,

we modify the model 4.2, by including both biomarkers, CD4 cell count and viral

load as follows

λl(t) = λ0l(t)exp{(γl + γ1lI1 + γ2lI2)u
′

(t) + (βl + β1lI3)u
′′

(t) + φ1lw1 + φ2lw2}

where λ0l(t) is the baseline hazard function at time t for failure l and I3 = 1

if viral load is higher than 10000 copies/mL, otherwise 0. We take normal priors

for the parameters γl, γ1l, γ2l, βl, β1l, φ1l, φ2l, and gamma priors for piecewise

costant baseline hazards λ0l(t), all having very low precision. We report the results

obtained by fitting the two biomarkers pattern by separate univariate models, two-

stages model, and finally joint model, in table 4.10, and we compare the population

mean CD4 cell count and viral load pattern in figure 4.18 and 4.19 respectively.

The CD4 cell count pattern is similar to that obtained by fitting models 4.1 and

4.2 jointly, consistently to similarity of CD4 cell pattern by fitting univariate (4.1)

and bivariate models (4.5). Without considering informative dropouts, viral load

pattern is overestimated or underestimated, depending on the health status of the

subject, who leaves the study. In figure 4.20, observed versus predicted CD4 cell

count, and residuals are represented. Analogue plots are shown in figure 4.21 for the

viral load. Now we focus on survival analysis, comparing the coefficients’ estimates

obtained by two-stages and joint model in table 4.11. For clarity, we represent

only the cumulative incidence curves for the three competing events, obtained by
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Table 4.10. Coefficients’ estimates (CI(95%)) of separate, two-stages, and joint
models for longitudinal data

Separate Two-stages Joint

α1 22.280 (21.360, 23.200) 22.020 (21.110, 22.950) 22.010 (21.040, 23.050)

α2 0.756 (-0.340, 1.820) 0.844 (-0.214, 1.872) 0.820 (-0.346, 1.857)

α3 2.502 (1.490, 3.532) 2.745 (1.763, 3.716) 2.788 (1.654, 3.938)

α4 -0.419 (-0.510, -0.327) -0.423 (-0.505, -0.334) -0.420 (-0.502,-0.338)

α5 0.077 (-0.032, 0.191) 0.083 (-0.021, 0.183) 0.080 (-0.011,0.168)

α6 0.212 (0.101, 0.326) 0.203 (0.101, 0.298) 0.205 (0.107, 0.303)

α7 1.842 (1.491, 2.191) 1.881 (1.523, 2.230) 1.869 ( 1.729, 2.007)

α8 0.215 (-0.186, 0.623) 0.211 (-0.193, 0.624) 0.246 (-0.014, 0.473)

α9 -0.171 (-0.567, 0.229) -0.090 (-0.495, 0.320) -0.080 (-0.348, 0.270)

α10 -1.162 (-1.540, -0.787) -1.198 (-1.569, -0.829) -1.215 (-1.337, -0.998)

α11 -0.349 (-0.770, 0.078) -0.352 (-0.783, 0.078) -0.355 (-0.586, -0.073)

α12 -0.171 (-0.606, 0.251) -0.243 (-0.672, 0.182) -0.180 (-0.592, 0.231)

α
′

1 4.385 (4.268, 4.502) 4.416 (4.297, 4.540) 4.359 (4.227, 4.475)

α
′

2 0.589 (0.414, 0.760) 0.536 (0.372, 0.698) 0.521 (0.340, 0.702)

α
′

3 -0.021 (-0.044, -0.001) -0.032 (-0.071, 0.002) -0.028 (-0.039, -0.007)

α
′

4 0.025 (-0.021, 0.068) -0.015 (-0.027, 0.053) 0.012 (-0.032, 0.050)

α
′

5 -1.264 (-1.322, -1.204) -1.275 (-1.338, -1.212) -1.212 (-1.254, -1.177)

α
′

6 -0.258 (-0.350, -0.171) -0.242 (-0.332, -0.153) -0.373 (-0.439, -0.313)

α
′

7 1.296 (1.232, 1.360) 1.315 (1.254, 1.377) 1.260 ( 1.216, 1.303)

α
′

8 0.208 (0.110, 0.289) 0.193 (0.102, 0.286) 0.322 (0.262, 0.384)

fitting the joint model, and compare the individuals with different CD4 cell count

and viral load at HAART initiation, in figure 4.22. The viral load is an important

predictor of the probability of getting AIDS, while it is less important in determining

the interruption and the modification of the therapy. Adjusting the analysis for

viral load does not lead to coefficients’ estimates for CD4 cell count very different

from those obtained by modelling jointly the models 4.1 and 4.2, yet it allows for

differentiating the cumulative incidence curves according to viral load at HAART

initiation. By comparing the figures 4.12 and 4.22, one can note that the probability

of failing from AIDS is a “mean” of the same probabilities of patients whose viral

load is lower and higher than 10000 copies/mL at initiation of therapy, respectively.

For the six groups, defined according CD4 cell count and viral load at HAART

initiation, it is visible the unequal elapsed time between seroconversion and start of

treatment. If we had considered the time since HAART initiation as time-scale, we

would have observed all cumulative incidence curves relocated at time of HAART

initiation of the patients whose CD4 cell count is lower than 200 cell/µl (between 50
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Fig. 4.18. Mean CD4 cell count estimated by a bivariate linear mixed effects model (thin
line) and by a joint model to viral load and competing events (thick line), for subjects
whose CD4 cell count is lower than 200 cell/µl (solid lines), is included between 200 and
350 cell/µl (broken lines), and is higher than 350 cell/µl (dotted line).
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Fig. 4.19. Mean viral load estimated by a bivariate linear mixed effects model (thin line)
and by a joint model to CD4 cell count and competing events (thick line), for subjects
whose viral load is lower than 10000 copies/mL (solid lines), and is higher than 10000
copies/mL (broken line).

and 100 months after seroconversion), the distance between the curves would have

been bigger, and the estimate would have been biased. Furthermore it is evident

how the cumulative incidence curves compensate each other, i.e. individuals, whose

CD4 cell count and viral load are lower than 200 cell/µl and higher than 10000

copies/mL (in bad health) at HAART initiation, have an higher probability of
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Fig. 4.20. First plot: observed CD4 cell count versus predicted CD4 cell count by joint
modelling of CD4 cell count, viral load and survival data. Second plot: predicted CD4 cell
count versus residuals.
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Fig. 4.21. First plot: observed viral load versus predicted viral load by joint modelling
of CD4 cell count, viral load and survival data. Second plot: predicted viral load versus
residuals.

getting AIDS and at the same time a lower probability of changing therapy than

individuals, whose CD4 cell count and viral load are both lower than 200 cell/µl

and 10000 copies/mL, respectively. Briefly it summarizes the main characteristic of

cumulative incidence function in a competing risks setting.

For simplicity, some important aspects have been omitted in modelling the viral

load pattern, i.e. the left censoring because of quantification limit of assay used to
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Table 4.11. Coefficients’ estimates (CI(95%)) by semiparametric proportional
hazards model

Two-stages Joint

φ1 -0.004 (-0.055, 0.042) 0.000 (-0.049, 0.044)

φ2 -0.008 (-0.023, 0.006) -0.005 (-0.019, 0.009)

φ3 0.000 (-0.014, 0.012) 0.006 (-0.007, 0.019)

φ1 1.045 (0.000, 2.181) 1.225 (0.168, 2.338)

φ2 1.019 (0.653, 1.392) 1.135 (0.739, 1.530)

φ3 0.511 (0.205, 0.845) 0.666 (0.328, 0.985)

γ1 -0.130 (-0.269, -0.004) -0.146 (-0.283, -0.016)

γ11 -0.015 (-0.074, 0.055) -0.004 (-0.067, 0.073)

γ21 0.000 (-0.065, 0.076) 0.019 (-0.051, 0.096)

γ2 0.052 (0.011, 0.091) 0.082 (0.041, 0.123)

γ12 0.008 (-0.017, 0.036) 0.002 (-0.026, 0.028)

γ22 0.021 (-0.003, 0.051) 0.011 (-0.017, 0.037)

γ3 0.013 (-0.021, 0.046) 0.039 (0.003, 0.070)

γ13 -0.005 (-0.022, 0.012) -0.010 (-0.028, 0.010)

γ23 0.002 (-0.016, 0.020) -0.004 (-0.022, 0.017)

β1 -0.510 (-1.035, -0.092) -0.425 (-0.938, 0.050)

β11 0.488 (0.174, 0.880) 0.461 (0.112, 0.852)

β2 -0.581 (-0.703, -0.452) -0.800 (-0.938, -0.660)

β21 0.049 (-0.050, 0.154) 0.219 (0.110, 0.332)

β3 -0.618 (-0.740, -0.502) -0.792 (-0.926, -0.669)

β31 -0.008 (-0.102, 0.081) 0.218 (0.13, 0.324)

measure it, how it appears in figure 4.21. It would be appropriate to repeat the

previous analysis extended to viral load, also considering those features.
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Fig. 4.22. Comparison of cumulative incidence curves of the three competing events, for
the groups defined according their CD4 cell count and viral at HAART initiation: CD4<

200 (solid line), CD4 in [200, 350) (broken line), CD4 ≥ 350 (dotted line); RNA< 10000
(thick line), RNA≥ 10000 (thin line).



5

Conclusions

5.1 Discussion

Motivated by an observational study on HIV data, provided by CASCADE, we

have presented an extension of joint modelling of longitudinal and survival data to

competing risks framework. The most medical-epidemiological studies are charac-

terized by both repeated measurements over time and multiple events, that cause

the patient’s exit from the study, i.e. death and recurrence of a disease. The re-

sponse outcomes of longitudinal process may be important predictors to survival

process, so as the survival process may be informative for the longitudinal process.

Very often the measurements are taken on at irregular times, in unequal number

for each patient, and may be prone to measurement error. Hence we need to model

the longitudinal process in order to evaluate its tie with the survival process. At

the same time, the survival process may auto-select a part of the starting sample

over time, by the occurrence of certain events, generating informative dropouts for

the longitudinal process. For istance the patients, who are in poorer health, will

have an higher probability of leaving the study than those in good health, and the

estimate of longitudinal process will be based only on a share of sample, resul-

ting in such a way biased. The joint modelling of longitudinal and survival data

allows to adjust the longitudinal analysis for informative dropouts and to utilize

the “true” response outcomes to predict the time to occurrence of event of interest.

Furthermore, it makes a more efficient use of the data, because both longitudinal

and survival informations are used at the same time to obtain the parameters’ es-

timates of the underlying model. When the aim is to study the time elapsed from

some particular starting point to the occurrence of an event in presence of several

possible events, the extension to competing risks framework is required. A compe-

ting event is an event whose occurrence either precludes the occurrence of another

events under examination or alters the probability of occurrence of these other
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events. Performing the survival analysis by classical method, i.e. by Kaplan-Meier

curves, would produce biased results in presence of competing events.

Several approaches have been proposed to model jointly repeated measurements and

the time to an event, by both classical and Bayesian methods (Faucett and Thomas,

1996; Wulfsohn and Tsiatis, 1997; Henderson et al., 2000; Wang and Taylor, 2001;

Guo and Carlin, 2004; Berzuini and Allemani, 2004). We have moved from these

methods to model jointly longitudinal data and time to competing events. Specifi-

cally, we have modelled the longitudinal process by a linear mixed effects model and

the time to competing risks by a proportional hazards model. We have explained

how to develop the EM algorithm, by exploiting a property of partial likelihood

of Cox model, and how to deduce the full conditional distributions, by a Bayesian

approach.

We have applied our methodology to an observational study regarding progression

of HIV to AIDS. Given increasing concern regarding the challenges of maintai-

ning HAART regimens, determining the optimal time when to initiate the therapy

is of clinical interest. By using data collected by CASCADE, we have evaluated

the probability of getting AIDS, of interrupting and of changing therapy for the

men, who has got HIV by homosexual relations and whose CD4 cell count is lower

than 200 cell/µl, is included between 200 and 350 cell/µl, and finally is higher than

350 cell/µl at HAART initiation, respectively. Considering the interruption and the

change of therapy as competing events allows to solve out the problem of dependent

censoring for the occurrence of AIDS, and then to estimate its probability correctly.

Since the time of seroconversion is reliably estimated and data on CD4 cell count

and viral load are collected, we model the two biomarkers over time since serocon-

version, and we control the survival analysis for bias due to markers pattern before

HAART initiation. As shown by previous studies, CD4 cell count and viral laod are

negatively correlated, and the individuals, whose CD4 cell count is lower than 200

cell/µl at HAART initiation have an higher probability of getting AIDS, while a

lower probability of interrupting the therapy. By a comparison of the three groups

of patients, it appears that those whose CD4 cell count is included between 200 and

350 cell/µl at HAART initiation has an higher probability of getting AIDS, and

a lower probability of interrupting the therapy, than those whose CD4 cell count

is higher than 350 cell/µl. As expected, the patients who start the therapy when

the CD4 cell count is lower than 200 cell/µl, have an higher probability of getting

AIDS. Therefore the risk of AIDS differs between those delaying treatment until

their CD4 cell count is 200-349 cell/µl and those who initiate therapy with CD4

cell count ≥ 350 cell/µl.

Furthermore, in performing the analysis, we compare the results obtained by first
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modelling the longitudinal data and then substituting the fitted values in survival

model and by joint modelling. Although the cumulative incidence curves estimated

by the two approaches are similar, some differences are visible in the longitudinal

analysis. CD4 cell count and viral load are overestimated or underestimated by the

first approach, since informative dropouts are not considered.

Actually we have used a particular specification of a joint model that is appropriate

to the dataset that we have analyzed. Yet, the approach is generalizable to many

different situations, characterized by both longitudinal and survival processes in the

presence of competing events, such as cancer studies where the effect of an allocated

therapy on the patient’s antibody levels against tumor cells is modelled jointly with

a competing events survival process.

5.2 Further research

Because of complexity of data, we have neglected some important aspects, that we

will deal with in the near future.

We have not taken into account the quantification limit of the assays used to quan-

tify viral load. After the HAART initiation a lot of patients experience a drastic fall

of viral load below assays quantification limit. Approaches, like imputation of half

the limit of the assay threshold may lead to biased estimation of model parameters

and their standard errors (Jacqmin-Gadda et al., 2000). When one or more markers

present left-censored values, the likelihood needs to be modified. For ith subject,

let y0
i = (y0

i1, y
0
i2, . . . , y

0
ini0

) the vector of observed response variable, yc
i the vector

of censored outcomes and ci the nc
i vector of measurement thresholds. Then the

contribution of yi to the conditional likelihood is given by

f(yi)P (yc
i < ci) =

( ni0∏

j=1

f(y0
ij)

)( nic∏

j=1

F (cij)
)

where f(yic) and F (yic) are the probability density function and the cumulative

distribution function of yic, respectively. Furthermore it would be appropriate to

introduce an indicator variable of the assay type used to measure viral load in the

longitudinal model for viral load.

We have considered two categories of patients, as regards to their viral load at

HAART initiation, <10000 and ≥10000 copies/mL, that is the value corresponding

the median of viral load at the initiation of therapy. Yet, in order to have more

homogeneous groups, it would be better to split the champion in three groups,

< 10000, in (10000, 100000], and ≥100000 copies/mL. Since we are interested in

expanding the method to competing risks framework, the problem is that we need
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to observe the competing events in each category, and mainly for AIDS it is not

always possible if the groups are too many.

Although our choice to model the longitudinal process by a piecewise linear mixed

effects model is motivated by the search of simplicity in the interpretation of the

parameters, it could fail fitting some shapes of biomarkers’ pattern. Hence for exam-

ple, the interest in modelling the longitudinal process by a model, that incorporates

a mean structure dependent on covariates, a random intercept, a measurement er-

ror and an integrated Ornstein-Uhlenbeck stochastic process (Wang and Taylor,

2001). By including the IOU process, the longitudinal component of the model pro-

vides a more flexible and plausible structure for individual’s marker pattern than

do the standard random effects model. Indeed its parameters control the amount

of smoothness of a person’s path without imposing any particular shapes on the

path, and it alloes for random effects and Brownian motion as special cases.

It would be also interesting to evaluate if modelling of autocorrelations through

use of time series models for the errors, such as an autoregressive process of order

one (AR(1)), in addition to the inclusion of random effects terms may be more

appropriate and may lead to a more proper representation of correlation structure.

Generalizations of the AR(1) model to other time series models, such as higher

order AR model, may also be worth of consideration.

A further aspect to develop, is the modelling of the survival component by the Fine

& Gray model (Fine and Gray, 1999). Indeed it would allow to estimate the effect

of covariates of interest on the cumulative incidence functions directly, and not only

on the hazards function of the competing events.

Finally, in order to make a comparison between the results, obtained by the fre-

quentist and the Bayesian approaches, the development of the EM-based algorithm,

described in chapter 3, is required.
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