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Summary

Goal of the thesis is the analysis of a real dataset concerning a biological

problem that obtained an increasing interest in recent years. Commercial

stocks of fish are not sufficient anymore to satisfy the global demand. Hence,

fishermen are beginning to catch species living in the deep. As little is known

about these species, there is an actual risk of extinction of these species.

As it is typically difficult and expensive to gather the ages of fish, in order

to implement stock management policies, it is necessary to build up reliable

growth models to infer ages from length data. The lengths, if we don’t observe

the ages, come from a mixture distribution, in which the components are the

different cohorts.

As MCMC methods are not always satisfactory for the analysis of mixture

models, to estimate the parameters of the model and the number of cohorts

that form the sample, it is employed a Population Monte Carlo algorithm for

mixtures generalized to the case of unknown number of components.
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Riassunto

Scopo della tesi è l’analisi di un dataset reale che riguarda un problema

biologico che sta ottenendo un crescente interesse negli ultimi anni. Gli

stock commerciali di pesca non sono più sufficienti per soddisfare la domanda

globale. Quindi la pesca si effettua sempre di più in profondità, a scapito

di specie delle quali sappiamo poco, e questo comporta un grave rischio di

estinzione di queste specie.

Dato che è generalmente difficile rilevare le età dei pesci, per implementare

politiche di stock management, è necessario creare un modello di crescita

tramite il quale si possano inferire le età a partire dai dati sulle lunghezze

dei pesci. Tali lunghezze, se non osserviamo le età, provengono da una dis-

tribuzione mistura, in cui le componenti sono le singole coorti.

Dato che i metodi MCMC non sono sempre adeguati per l’analisi di mod-

elli mistura, per stimare i parametri e il numero di coorti presenti nel campi-

one viene utilizzato un algoritmo di tipo Population Monte Carlo per misture

esteso al caso in cui il numero di componenti è incognito.
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Chapter 1

Introduction

The thesis is motivated by the analysis of a real dataset concerning a biolog-

ical problem. It turns out that data come from a particular mixture model.

The analysis of mixture models are challenging, and MCMC methods are

not always satisfactory. Hence we employ Population Monte Carlo (PMC)

methods to estimate the model in a variable dimension setting. A simulated

dataset will be used to make comparisons between the proposed method

and the Reversible Jump, the most important and widely used method to

estimate variable dimension models.

The remaining part of the chapter will illustrate the datasets that will

be used; in the second chapter, the mixture model is introduced, reviewing

its main features and methods that are commonly used to estimate it. The

third chapter reviews the main concepts and results on the Population Monte

Carlo (PMC) method. This method will be used in the fourth chapter to

propose an algorithm that works in a variable dimension setting and can be

useful for the problem at hand. The last chapter proposes another PMC

algorithm which is tailored for mixture models in a fixed dimension setting.

Many statistical packages offer effective support to estimate this kind of

models, even in the most complicated specifications. The following elabo-

11



12 CHAPTER 1. INTRODUCTION

rations are obtained using the package R (see R Development Core Team,

2006).

1.1 Datasets

1.1.1 Fish dataset

The sample contains the lengths and the ages of 1242 individuals of Atlantic

Herring (Clupea harengus harengus, Linnaeus, 1758). In fishery, it is typi-

cally difficult and expensive to gather the ages of fish. In order to implement

stock management policies, it is necessary to build up reliable growth models

to infer ages from length data.

Many species of fish spawn in a particular period of the year and growth is

very quick at little ages.Hence, younger cohorts are often clearly distringuish-

able from the rest of the data. Unfortunately, the growth process slows down

at older ages, although fish continue to grow for all their lifetime. This cause

a great difficulty in distinguish observations from the older cohorts.

Fig. 1.1.1 shows a typical situation: in the left panel, the distributions

of lengths are separated by age. The curve represents the von Bertalanffy

(1938) growth curve, that is the conditional mean length at age t:

E(y | t, L∞, k, t0) = L∞(1− exp{−k(t− t0)}), (1.1)

where t is the age. The other three parameters are biologically meaningful:

L∞ is an “asymptotic” length, that is the mean length of an infinitely old

cohort, k controls the speed of growth and depends on the catabolysm and

anabolysm of the organisms, finally t0 can be seen as the time at conception.

The right panel is the mixture density arising when age is not observed.

The VB growth equation is almost universally used in fisheries, as it is

a good model for the mean length of the cohorts; however, it says nothing
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Figure 1.1: Distribution of the observations: separated by age (left panel) and the
mixture deriving when age is a latent variable (right panel).

about the distribution of the lengths about their means. Actually, very little

is known about these distributions: only recently it is in doubt that the

variance of lengths is monotonically growing with age, and nothing is known

about higher-order moments.

The most intuitive approach to this kind of problem is to impose a par-

ticular parametric specification to the cohorts, but often these specifications

are not enough flexible to fit the features of the different component distri-

butions. More recent works (Lv & Pitchford, 2007) try to build a individual

model of growth to obtain the distribution of the different cohorts. This

approach is promising, but still suffers from different problems. In particu-

lar, the authors simply transpose widely known financial models to fishery,

even if the growth process behave differently from share pricing processes;

besides the resulting models are quite difficult to estimate. Baldi et al. (to

be submitted) try to overtake both problems.
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Here we will simply assume that the different cohorts are normally dis-

tributed around their means; however, we can apply this method even with a

more realistic and complex model. However, in this case the dataset is com-

plete, allowing us to make comparisons with complete maximum likelihood

estimates.

1.1.2 Simulated dataset

The simulated dataset is represented by n = 150 points from a mixture of

Normals with the following parameters:

Component

I II III

ω 0.3 0.5 0.2

µ 0 5 10

σ2 1 1 1

The component means are well-separated in order to put in evidence

the differences between the estimate of the distribution of the number of

components using a PMC and a Reversible Jump.

1.1.3 Galaxy dataset

This dataset collects the velocities in km/sec of 82 galaxies from 6 well-

separated conic sections of a survey of the Corona Borealis region. Multi-

modality in such surveys givess evidence that galaxies form superclusters,

which are surrounded by voids. Many authors used this dataset, includ-

ing Roeder (1990), which also gives a thorough description of the dataset,

Venables & Ripley (1994) and Richardson & Green (1997). The different

estimates of the number of components in this mixture are in sharp contrast,

ranging from three (Roeder & Wasserman, 1997) up to seven (Escobar &

West, 1995).



Chapter 2

Mixture models

2.1 Historical notes

From their beginnings, mixture models represent a flexible way to describe

non-standard densities. In his seminal paper, Pearson (1893) analyzed a

dataset on crabs. As it wasn’t possible to use neither a normal distribution,

neither the Pearson system of curves, he splitted the distribution mixture of

two components. At the time there was no method to estimate that model,

so he proposed to equate the first five moments to the respective sample

counterparts.

Neyman (1939) discusses the very frequent situation in which usual distribu-

tion functions fail to describe real phenomena, making a particular mention

to bacteriology and entomology. So he tried to deduce a family of distri-

butions that could give a reasonably good fit of the kind of data he had in

mind. Even if these distributions seemed to have a quite specialized field

of application, Feller (1943) noticed that these distributions are intimately

related with the results that various authors obtained working on totally dif-

ferent topics, as telephone traffic, risk theory, engineering problems and so

on. He noticed that in all these cases, the population seems to be formed

15



16 CHAPTER 2. MIXTURE MODELS

by non-homogeneous groups, in the sense that the phenomenon of interest is

homogeneous inside each group while is heterogeneous between the groups.

Nowadays, mixture models find application in different areas such as cluster

analysis, outlier detection, density estimation. Even considering only the

most relevant works, it seems impossible to fulfill a complete list. However,

the most comprehensive references are Titterington et al. (1985), McLachlan

& Peel (2000), Lindsay (1995). A particular mention can be given to a special

issue of the journal Computational Statistics and Data Analysis (2003).

2.2 Formal definitions

In what follows, the probability distribution of a random variable is character-

ized by its probability density function, which is defined wrt an appropriate

measure which is, depending on the context, either the Lebesgue measure, a

counting measure, or a combination of the two.

Mixture models can arise in different ways: following the missing data

approach, we can consider a population made up of c subgroups mixed at

random in proportions equal to ω = {ω1, . . . , ωc}. Interest of the research is

in the random feature Y , which has the same distribution for all the units

that belong to any single group, but has different distributions for each group.

Conditionally on the group indicator variable Z, the distribution of Y is

fZ(y | θZ); it is generally assumed that the distributions of the different

subgroups belong to the same parametric family, so that fZ(y | θZ) = f(y |
θZ). The joint density of (Y, Z) would be given by f(y, z) = f(z)f(y | z) =

ωzf(y | θz). The latent structure arises as the allocation variable is not

available; hence, the mixture density is given by

f(y | ϑ) =
c∑

j=1

ωjf(y | θj),
c∑

j=1

ωj = 1 (2.1)

where ϑ = (ω,θ). One of the c component weights ω is determined as
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the other c − 1 are known, so a generic j?th weight must be replaced with

1−
∑

l 6=j? ωl.

It is also possible to go through the inverse argument: if Y follows the

model (2.1), by a demarginalization argument, it is always possible to create

a r.v. Z such that

(Yi | Zi = j) ∼ f(y | θj) Zi ∼M(1;ω1 . . . , ωc)

Hence, even if the missing data approach is not always inherent to the struc-

ture of data, we can always make use of it as a device to ease the estimation.

The model admits many extensions as multivariate mixtures, presence of co-

variates and Markov switching models. In the thesis only univariate normal

mixtures are examined.

Fig. 2.1 shows some different densities obtained varying the parameters

of a normal mixture model. It is evident that the model is very flexible, and

this flexibility, given a suitable number of components, can be exploited to

approximate any unknown distribution, regardless of its features like skew-

ness, kurtosis or even multimodality. The cost of this flexibility is a particular

complexity, that can be easily understood at the first glimpse to the likeli-

hood function.

2.3 Likelihood

Having n i.i.d. observations y = (y1, . . . , yn) from the mixture distribution

(2.1), if we knew the allocation vector z = (z1, . . . , zn), inference would be

based on the complete-data likelihood

L(ϑ | y, z) ∝
n∏

i=1

f(yi | zi,ϑ)f(zi | ϑ) =
c∏

j=1

(
ω

nj

j

∏
i:zi=j

f(yi | θj)

)
, (2.2)

where nj =
∑n

i=1 I(zi = j). Hence, it is possible to estimate each component

parameter vector separately both in a ML and, using independent priors,
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Figure 2.1: Densities of a two component normal mixture obtained varying the com-
ponent parameters µ and σ2. Blue curves are component densities, curves in black are
mixture densities.

also in a Bayesian perspective. However, also in this simple case problems

could arise: mixture models belong to ill-posed problems, in the sense that

small changes in the data can induce large changes in the results. In fact,

even for large n, there is a positive probability that no observation comes
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from a generic j?-eth component. In this case, if ωj? is among the free pa-

rameters, then the mode of the likelihood function will lie on the boundary

of the parametric space, and its ML estimate will be ω̂j? = 0. If ωj? is not

among the free parameters, the ML estimator will lie in a non-identifiability

set corresponding to a mixture with c− 1 components. The problem of iden-

tifiability of mixture density functions has been extensively studied, among

others, by Teicher (1960; 1961; 1963). In both cases, the likelihood function

is nonregular, and standard asymptotic theory is not valid.

Taking in account that the allocations are not observed, the likelihood

function takes the form

L(ϑ | y) ∝
n∏

i=1

(
c∑

j=1

ωjf(yi | θj)

)
. (2.3)

The pointwise computation of this function requires the evaluation of cn

terms. This highligths the first difficulty that one has to tackle when us-

ing a mixture models: as the factorization (2.2) is not valid in this case,

any analytical solution via ML or Bayes estimators is precluded, and the

computational burden required to estimate the model is generally very high.

2.4 Features of mixture models

Mixture models are characterised by many interesting features ; here we

will review only the ones that will be useful for the following elaborations,

referring to the cited books for more detailed studies.
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2.4.1 Moments

Moments of mixture distributions can be easily found. If we consider a

function h(Y ) of Y , the expectation E(h(Y ) | ϑ) is given by

E(h(Y ) | ϑ) =

∫
Y
h(y)f(y | ϑ)dy =

=
c∑

j=1

ωj

∫
Y
h(y)f(y | θj)dy =

c∑
j=1

ωjE(h(Y ) | θj)

provided that E(h(Y ) | θj) exists for all j. Substituting h(Y ) = Y or h(Y ) =

(Y − µ)2 we can simply find the expectation and the variance:

E(Y | ϑ) = µ =
c∑

j=1

ωjµj Var(Y | ϑ) =
c∑

j=1

ωj(µ
2
j + σ2

j )− µ2.

For the higher-order moments we have

E(Y m | ϑ) =
c∑

j=1

ωjE(Y m | θ).

In particular, for higher order moments around the mean we can use h(Y ) =

(Y − µ)m and the binomial formula:

E((Y − µ)m | ϑ) =
c∑

j=1

ωjE((Y − µj + µj − µ)m) | θ) =

=
c∑

j=1

m∑
n=0

(
m

n

)
ωj(µj − µ)m−n E((Y − µj)

n | θ)

2.4.2 Identifiability and label switching

The estimation theory relies for several aspects on the concept of identifia-

bility. A parametric family of distributions F indexed by a parameter ψ ∈ Ψ

over a sample space Y is said to be identifiable if

ψ1, ψ2 ∈ Ψ and f(y | ψ1) = f(y | ψ2) for almost all y ∈ Y ⇒ ψ1 = ψ2
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If the family of distributions is not identifiable, any subset U(ψ) of Ψ defined

as

U(ψ) = {ψ? ∈ Ψ : f(y | ψ?) = f(y | ψ), for almost all y ∈ Y}

and which contains more than one point is called a non-identifiability set

(see, for example, Rothenberg, 1971).

It can be noted that the mixture likelihood (2.3) is invariant wrt permu-

tations of the component labels: if ϑ? can be obtained by permuting the

indices of the component labels of ϑ

f(y | ϑ) =
c∑

j=1

ωjf(y | θj) =
c∑

j=1

ω?
j f(y | θ?

j) = f(y | ϑ?)

for almost all y ∈ Y and for every permutation of the labels {1, . . . , c}.
Although identifiability is generally not of particular concern in Bayesian

statistics, this particular feature endowes that the likelihood has up to c!

equivalent and symmetric modes, each corresponding to one of the possible

ways to label the components. If exchangeable priors are used, the posterior

will inherit this feature, which represents a further hamper to the explo-

ration of the posterior distribution by means of the usual strategies. In fact,

while ML methods search for one of the local modes of the likelihood, pos-

terior samplers should be able to explore all the different and eventually

well-separated modes.

Label switching is another feature which is related with the identifiability.

Given the structure of the posterior, all the posterior marginal distributions

(and therefore the posterior expectations) will be identical for each group

of parameters (weights, means and variances in the normal mixture case).

In particular, it can happen that posterior expectations are in a region of

low probability. Hence, alternative estimators to posterior expectations or a

different prior modeling is required to solve this problem.

These methods are reviewed in Jasra et al. (2005). They can be divided

in three groups: identifiability constraints, reordering constraints and loss



22 CHAPTER 2. MIXTURE MODELS

0 1 2 3 4 5 6

0
1

2
3

4
5

6

µµ1

µµ 2

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

σσ1

σσ 2

0 2 4 6

0
2

4
6

µµ1

µµ 2

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

σσ1

σσ 2

0 2 4 6

0
2

4
6

µµ1

µµ 2

0.5 1.0 1.5 2.0 2.5 3.0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

σσ1

σσ 2

Figure 2.2: Upper panels: posterior density of the means (at the right) and variances (at
the left) for the model (2.4), both conditional to the real value of the other parameters.
Lower panels: sampling representation of the posterior means (left panels) and variances
(right panels). In the second row, points are coloured according to the identifiability
constraint µ1 < µ2; in the third row, points are coloured according to the constraint on
variances: σ1 < σ2.



2.4. FEATURES OF MIXTURE MODELS 23

MCMC[burn.in:T, 3]

0 2 4 6

0
1

2
3

4
5

6

µµ1

µµ 2

Figure 2.3: Sampling representation of the posterior means of the model (2.4). It can
be noticed that the marginal distributions are identical.

functions.

The first method has been commonly used: for example, Richardson & Green

(1997) and Mengersen & Robert (1996) use an ordering on the means such

that µ1 < µ2 < . . . < µc, with the aim to single out only one mode, avoiding

the problems of identifiability and exploration. The ordering can be imposed
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even on weights or variances. The identifiability constraints are equivalent,

in a Bayesian framework, to a truncation of the priors over the region that

don’t satisfy the constraint.

Unfortunately, this constraint not only can fail in its goal to separate one

mode from all the others, but can make even more difficult the exploration of

the parameter space and the following inference. The truncation of the space

don’t necessarily respect the topology of the prior and of the likelihood: it is

possible that the truncated space contains more than one mode, eventually

relegating them at the boundary of the constrained space.

As an example, the upper panels of Fig. 2.2 shows the posterior density of

the means and variances for a sample from a two components normal mixture

model in which the priors are exchangeable:

f(y | ϑ) =
2∑

j=1

ωjφ(y | θj) (2.4)

π(ϑ) = π(ω)
2∏

j=1

π(θj)

Here, ω1 = 0.5, µ = (1, 3) and σ2 = (1, 1). In this model, the components

have different means but equal weights and variances. Lower panels show

some draws from the posterior, obtained with an unconstrained sampler, but

coloured according to two different identifiability constraint. In the second

row, an identifiability constraint is applied on the means: in this case, the

constraint successfully separates the two modes. The third row shows that

the constraint on variances cannot separate the modes and no unique la-

belling is induced by this constraint. In real applications, these constraints

must be selected carefully if components have no physical meaning.

It is possible to impose constraints ex-post, only after that the simulation

is terminated. Obiously, these constraints doesn’t ease the exploration, but

their goal is to obtain meaningful estimates. There exist many different



2.4. FEATURES OF MIXTURE MODELS 25

relabelling schemes, but they lead to widely different estimates (see Celeux

et al., 2000), mostly because they impose an innatural ordering based on one

of the parameters. A schemes that is based on all the parameters can be

found in Marin et al. (2005). Denoting with ϑ? the MAP estimate obtained

with a posterior sample of size N and with

ζ(ϑ) = {ωζ(1), . . . , ωζ(1),θζ(1), . . . ,θζ(1)}

a permutation of the parameter vector ϑ, for any permutation ζ ∈ S of the

labels {1, . . . , c}, the simulated vectors of parameters are relabelled following

the permutation that minimizes their distance from the pivot ϑ?.

An alternative can be found on estimators based in loss function which

are insensitive to the particular labelling. Defining a permutation invariant

loss function L : A×Θ → [0,∞) such that L(a,ϑ) = L(a, ζ(ϑ)), the idea is

to minimize the posterior expected loss

E(L(a,ϑ) | y) =

∫
Θ

L(a,ϑ)π(ϑ | y)dϑ

≈ 1

T

T∑
t=1

L(a,ϑ(t)).

where ϑ(t), t = 1, . . . , T represent an MCMC sample. This minimization

must be performed by means of stochastic optimization methods. The draw-

backs of this method are given by the computational cost and by the re-

stricted class of loss functions that can be used.

2.4.3 Prior distributions

The choice of prior distributions is a paramount in modelling mixtures. The

main problem is due to the fact that using improper priors will lead to an

improper posterior. Intuitively, improper priors bring no information in the
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model; if no one of the allocation variables z assume the value j, neither the

likelihood will say anything about the parameters of the j-eth component.

More formally, if we use independent priors

π(ϑ) = π(ω)
c∏

j=1

π(µj)π(σ2
j)

and they are improper ∫
Θj

π(ϑj)dϑj = ∞.

then the posterior will be improper, in fact the integral∫
Θ

π(ϑ | y)dϑ ∝
∫

Θ

∑
Z

L(ϑ | y, z)
c∏

j=1

π(ϑ)dϑ

contains (c − 1)! elements in which no observation is allocated to the j-eth

component. Only imposing a structure between components it is possible to

use improper priors (see Mengersen & Robert, 1996).

Many kinds of prior distributions have been proposed in literature: be-

sides the independent priors, the most important are:

• conjugate priors (Diebolt & Robert, 1994):

p(ϑ) = π(ω)
c∏

j=1

π(σ2
j )π(µj | σ2

j ) (2.5)

where ω ∼ D(δ, . . . , δ), µj | σ2
j ∼ N (ξ, σ2

j/λ), σ−2
j ∼ Γ(α, β), with α,

β, δ, ξ and λ are fixed hyperparameters;

• Hierarchical priors (Richardson & Green, 1997):

π(ϑ, β) = π(ω)π(β)
c∏

j=1

π(µj)π(σ2
j | β)

where ω ∼ D(δ, . . . , δ), µj ∼ N (ξ, κ−1), σ−2
j ∼ Γ(α, β) and β ∼ Γ(g, h),

with δ, ξ, κ, α, g and h are fixed hyperparameters.
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2.5 Estimating a mixture model

Despite its simple specification, estimating a mixture model is quite an hard

task. In the following, only methods based on the likelihood are reviewed,

even if many other method have been employed. For example, Pearson (1893)

used the method of moments, while in fisheries graphical methods such as

that of Bhattacharya (1967) are widely used. Maximum likelihood estimation

of mixtures is usually performed using an EM or SEM algorithm, while there

is a plethora of different algorithms working in a Bayesian context. Celeux

et al. (2000) collects many of these algorithms.

2.5.1 EM algorithm

It is difficult to maximize the likelihood (2.3). In fact, ∂L(ϑ | y)/∂ω is a

polynomial of degree (n− 1) and, even if there is at most one real root, the

estimate ω̂ML may not satisfy the constraint ωj > 0, ∀j = 1, . . . , c. Even

numerical methods such as that of Newton–Raphson or the gradient method

can find difficulties, especially when the components are not well-separated

and the sample size is small. Besides, the likelihood of a mixture of location-

scale distributions is generally unbounded, hence a global maximizer doesn’t

exists. In fact, if we suppose a normal mixture and we set µj? equal to

any observation yl, then L(ϑ | y) →∞ as σj? → 0 (see Kiefer & Wolfowitz,

1956). As a consequence, ML estimators are local, and not global, optimizers.

The most important and widely used method, the EM algorithm, has

been introduced by Dempster et al. in 1977. In this paper, the method is

used for general latent variable models, but a reference to mixture models

was already given.

The EM (Expectation - Maximization) algorithm is a deterministic opti-

misation procedure based on the missing data representation of the mixture.
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The log of the complete-data likelihood (2.2) can be written as

logL(ϑ | y, z) =
n∑

i=1

c∑
j=1

Dij log(ωj f(yi | θj))

where Dij = 1 iff zi = j, else Dij = 0. Starting from an arbitrary value ϑ(0),

the EM algorithm iterates between two steps:

• the E-step, where the expectation of logL(ϑ | y, z), conditional on the

current vector of parameters, is computed

• the M-step, in which parameters that maximize the expected complete-

data log likelihood function are determined to obtain an update ϑ(t).

Under mild regularity conditions, the EM converges to a local maximum

of the likelihood function; it may, however, fail to converge to the “right”

mode of the likelihood remaining trapped in a spurious one. For any mixture

model, at the m-th iteration, the E-step leads to the estimate for Dij

D
(m)
ij =

ω̂
(m−1)
j p(yi | θ̂(m−1)

j )∑c
j=1 ω̂

(m−1)
j p(yi | θ̂(m−1)

j )

and the M-step to the estimates

ω
(m)
j =

nj

n
nj =

n∑
i=1

D̂
(m)
ij .

The estimator of the component parameters θj will depend on the distribution

family underlying the mixture; for normal mixtures

µ
(m)
j =

1

nj

n∑
i=1

D̂
(m)
ij yi

(σ2
j )

(m) =
1

nj

n∑
i=1

D̂
(m)
ij (yi − µ

(m)
j )2.
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2.5.2 SEM algorithm

The SEM (Stochastic EM, Celeux & Diebolt, 1985) algorithm is a stochastic

version of EM incorporating an S step between the E and M steps a restora-

tion of the allocation variables z, by drawing them at random from their

current predictive distribution f(z | ϑ(t−1),y).

SEM algorithm doesn’t converge pointwise. It generates a Markov chain

whose stationary distribution is more or less concentrated around the ML

parameter estimator. Also in this case, the natural parameter estimate is

the parameter vector leading to the maximum value of the likelihood.

2.6 The Bayesian approach

In this section, the most important algorithms used to explore the posterior

density of mixture models will be reviewed. More details can be found in

Robert & Casella (2004) and in Celeux et al. (2000).

2.6.1 Gibbs sampler with data augmentation

In 1987, Tanner & Wong proposed an iterative algorithm that can be useful

where the parameter space can be augmented in such a way that it is easy to

generate values from the augmented space given the parameters. Hence, also

in the Bayesian approach, it turns out that the missing data approach can be

a useful device to simplify the estimation algorithms. In its most standard

form, used for example by Diebolt & Robert (1994), starting from an arbi-

trary value of (ϑ(0), z(0)), the method consists in iterating the simulations of

ϑ and z from the respective full conditional distributions. A pseudo code for

normal mixture model is as follows:
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At t = 0

choose an arbitrary point of (ϑ(0), z(0))

For t = 1, . . . , T

(a) update ω(t) ∼ D(δ?, . . . , δ?)

(b) update (σ−2
j )(t) ∼ Γ(α?, β?), j = 1, . . . , c

(c) update µ
(t)
j ∼ N (ξ?, (κ−1)?), j = 1, . . . , c

For i = 1, . . . , n

(d) update z
(t)
i , where P(z

(t)
i = j) ∝ 1√

2π(σ2
j )(t)

exp

{
− (yi−µ

(t)
j )2

2(σ2
j )(t)

}

The specification of the updated hyperparameters α?, β?, δ?, κ? and ξ?

depend on the prior distributions.

This sampler can have difficulties in reaching convergence: the local

modes can represent almost trapping states for the chain, and it could take

a great amount of iterations to escape from each of them. If only few ob-

servations are allocated in the j?-eth component, the probabilities that an

observation will enter in that component, as the probability that an obser-

vation allocated in j? can escape, become small. In Robert & Casella (2004)

and Guihenneuc-Jouyaux et al. (1998) can be found the descriptions of var-

ious convergence diagnostics.

2.6.2 Permutation sampler

Not only the complete exploration of the posterior is required for the con-

vergence of the MCMC method, poor estimates can be obtained in case of

an unbalanced label switching. It is in fact required to the Markov chain to
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stay an approximately equal amount of iteration in each mode. In this sense,

the label switching is essential for the convergence of the chain. Frühwirth-

Schnatter (2001) propose to force the Gibbs sampler chain to jump from

mode to mode. Essentially, at the end of each iteration, a random permuta-

tion of the labels is drawn. This permutation is applied to the component

parameters and to the allocation vector. A pseudo-code is as follows:

At t = 0

choose an arbitrary point of (ϑ(0), z(0))

For t = 1, . . . , T

perform steps (a) to (d) of the Gibbs sampler

sample a permutation ζ ∼ U(1, . . . , c!) and apply it to ϑ(t) and z(t)

2.7 Model selection

The most relevant source of uncertainty in the mixture model specification

is in assuming a particular number of components. If there is no reason to

assume a particular number c of components, we have to estimate it from

the data. In this chapter the model choice will be treated as the choice of

the number of components between the alternative models M1, . . . ,Mcmax .

In a Bayesian perspective, model uncertainty is usually dealt with Bayes

factors. For istance, the evidence of model 1 against model 2 is given by the

logarithm of the quantity

B12 =
f(y | M1)

f(y | M1)
=

∫
Θ1
f(ϑ | M1)f(y | ϑ,M1)dϑ∫

Θ2
f(ϑ | M2)f(y | ϑ,M2)dϑ

.
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Many tecniques have been proposed in order to estimate the marginal likeli-

hoods appearing in this ratio, and in particular the bridge sampling (Meng

& Wong, 1996) and the Chib’s (1995) approximation to the posterior density

ratio. However, all these methods find difficulties with mixture models due

to the features of the posterior distribution.

It is also possible to tackle this problem in a trans-dimensional setting,

considering simultaneously all the different competing models. If we de-

note with ϑ(c) a parameter belonging to Θc, the parameter space of the

model with c components, the model is specified by a sampling distribution

f(y | ϑ(c),Mc), a prior distribution on the parameters π(ϑ(c) | Mc) and a

prior distribution for the number of components π(Mc). The posterior den-

sities that arise are obviously quite difficult to explore, and the most popular

algorithm used for this purpose is the Reversible Jump (RJ, Green, 1995), a

trans-dimensional MCMC method.

Theorically, the two approaches are equivalent, as both of them try to

estimate (at least implicitly) the posterior distribution of the indices of the

competing models.

2.7.1 Reversible Jump

Richardson & Green (1997) describe the Reversible Jump for mixture models.

RJ is an extension of the Metropolis–Hastings algorithm, in the sense that

it allows the chain to make moves between couples of models (Mi,ϑ(i)) and

(Mj,ϑ(j)). It creates a chain that moves around Θ =
⋃cmax

c=1 (Mc × Θc), the

whole parameter space formed by the union of the parameter spaces of the

single submodels. The RJ sweeps around these moves:

At t = 0

choose an arbitrary point (m(0),ϑ(0), z(0))

For t = 1, . . . , T
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(1) update ϑ(t), z(t) and the eventual random hyperparameters as in

the steps (a) - (d) of the Gibbs sampler

(2) split / merge move

(3) birth / death move

The dimension preserving moves are performed using full conditional distri-

butions. For dimension chaging moves, to mantain the detailed balance con-

dition, a bijection is created between the two spaces (ϑ(i),ui) and (ϑ(j),uj),

where ui and uj are sets of artificial variables created to match the dimension

of the two spaces.

Split and birth moves require the choice of a matching function ϑ(c+1) =

gc,c+1(ϑ(c),uc) and of a proposal density qc,c+1(u) to propose moves from the

model Mc to Mc+1. This proposal must form a reversible pair with the

proposal for a merge (or a death, respectively) move (ϑ(c), u) = g−1
c,c+1ϑ(c+1).

The main advantage of the RJ is that it has less “local” moves than a

MCMC running in a fixed dimension setting, leading to better estimates of

the single sub-models. In fact, allowing the chain to jump between models,

it can visit all the modes of the model with j? components by jumping in

adjacent models and then returning back to a different region of the j?-eth

parameter space. The main disadvantage is the difficulty in choosing the the

proposal densities q and of the matching function g, and these choices are

fundamental for the efficiency of the algorithm. Besides, in the particular

case of mixture models it is questionable if a RJ, as any MCMC method, can

really find convergence (see Celeux et al., 2000).
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Chapter 3

Population Monte Carlo

algorithms

In recent years, we assist to a growing interest in adaptive sampling schemes.

This is due to the fact that many MCMC algorithms often require a fine

tuning of several parameters of the proposal distribution, as we have seen

with the RJ. Hence, one possible solution is to construct algorithms that

automatically learn about the optimal values of these parameters. It is not

a simple matter to design an adaptive MCMC algorithm, as adaptivity is in

contrast with the Markovianity of the chain. There are many solutions to

this problem, but the simpler is to stop adapting while the chain is stil in

the burn-in period1.

Population Monte Carlo (PMC) algorithms (Cappé et al., 2004) are es-

sentially iterated sampling importance resampling algorithms (Rubin, 1987).

They are not based on convergence arguments, hence adaptivity is easily ob-

tained by changing the proposal distributions over iterations on the basis of

1A simple but effective example that illustrates the perils of näıve use of adap-

tive MCMC algorithms can be found in the website of Prof. Rosenthal: http://www.

probability.ca/jeff/java/adapt.html.

35
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past performances of the sampler. This will not jeopardize the (approximate)

unbiasedness of the method, as PMC is based on the importance sampling

identity. Moreover, there is no need of a burn-in period or of a stopping rule.

This kind of algorithms offer a greater freedom in choosing the proposal dis-

tributions, being also possible to draw from the experience gained in the

MCMC setting.

3.1 Importance Sampling algorithms

Suppose we want to estimate the quantity I:

I =

∫
Θ

h(θ)π(θ)dθ.

where π is a normalized posterior distribution. The quantity I can repre-

sent any feature of the posterior distribution, as its mean, its variance or a

quantile. Let’s also suppose that the integral is analytically intractable; if

we could obtain a sample θ(1), . . . , θ(N) from π, we would simply estimate I

as

Î =
1

N

N∑
i=1

h(θ(i))

but generally π is complicated and difficult to sample from. We can however

rewrite this quantity, using the importance sampling identity, as

I =

∫
Θ

h(θ)
π(θ)

q(θ)
q(θ)dθ (3.1)

as long as π � q. The distribution q will be called “proposal density”. Its

specification is somehow arbitrary, in the sense that one can choose it between

those distribution which satisfy the requirements that will be specified below

and that are simple to sample from, even if the properties of the sampler will

strongly depend on this choice. The idea is to obtain a sample from q and
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estimate I as

ÎN =
1

N

N∑
i=1

ρ(θ(i))h(θ(i)), (3.2)

where ρi = ρ(θ(i)) = π(θ(i))/q(θ(i)) is called importance weight. In this way,

importance sampling assigns more weight to those particles θ(i) for which

π(θ(i)) > q(θ(i)) and less weight to those particles for which π(θ(i)) < q(θ(i))

in order to estimate I correctly. Under weak assumptions, by the strong law

of large numbers,

ÎN → π(h).

Besides, if we suppose that the variances Var(ρ(θ(i))h(θ(i))) exist, we have

Var(Î) =
1

N

N∑
i=1

Var(ρ(θ(i))h(θ(i)))

In most cases, π is not normalized; in this case, we will estimate I as

ÎIS
N =

∑N
i=1 ρ(θ

(i))h(θ(i))∑N
i=1 ρ(θ

(i))
,

Under the following assumptions (see Geweke, 1989), the law of large num-

bers still holds:

1: π is proportional to a proper probability density function π̄ defined on

Θ;

2: {θ(i)}∞i=1 is a sequence of i.i.d. random particles, the common distribu-

tion having a probability density function q;

3: The support of q includes Θ;

4: π(h) exists and is finite.

but the decomposition of the variance holds only approximately. In this case,

if we suppose that the quantities

E(ρ(θ)) = c−1

∫
Θ

π(θ)2

q(θ)
dθ
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and

E(I2ρ(θ)) = c−1

∫
Θ

I2π(θ)2/q(θ)dθ

are finite and denoting with

σ2 = E((ÎIS
N − I)2ρ(θ)) = c−1

∫
Θ

(ÎIS
N − I)2ρ(θ)π(θ)dθ

σ̂2
N =

∑N
i=1((h(θ

(i))− ÎIS
N )2ρ(θ(i))2)(∑N

i=1 ρ(θ
(i))
)2

then

N1/2(ÎIS
N − I) → N (0, σ2) (3.3)

Nσ̂2
N → σ2 (3.4)

where c is the normalization constant of π.

IS-based algorithms are simple and effective, but they are strongly af-

fected by the choice of the proposal density. A good proposal leads to excel-

lent results in a reasonable time. Unfortunately we have only a little guidance

in the choice of q, and even seemengly reasonable choices can result in a bad

behaviour of the sampler and the failure of the convergence of Î to its cor-

rect value. Rubinstein (1981) stated that the minimum of σ2 can be reached

choosing the importance function

q(θ) ∝ |h(θ)|π(θ).

This theorem gives an optimal proposal distribution, in the sense that the

estimator has zero variance. Unfortunately, this result is of little practical in-

terest, as its normalization constant is similar to the quantity we are trying to

estimate. It, however, highlights the need to tailor the proposal distribution

on the features of the target distribution.
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Figure 3.1: Requirements of the proposal density: the upper panel shows a proposal
density (in blue) which doesn’t adequately overlap with the posterior distribution (in
black), the lower panel shows a proposal with tails lighter than those of the posterior. The
diameter of the cirles are proportional to the importance weights.

However, the expression of σ2 suggests that it is adversely affected by

large values of Var(h(θ)) and of importance weights. While the first can-

not be modified, the latter aspect can be controlled with a good choice of

the proposal distribution: it should concentrate its mass on the important

part(s) of the target density and it should have tails heavier than those of

the target. These requirements are in contrast, as the heavier are the tails

of a distribution, the less it can be concentrated. The first requirement can

be illustrated by the upper panel of Fig. 3.1: while the proposal is a normal

distribution, the posterior is a truncated normal; the support of q includes

Θ, but only the tails of the proposal “cover” the the support of the poste-
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rior, with negative consequences on the efficiency of the algorithm. Particles

generated below the truncation of the posterior will get a null importance

weight and will not enter in the calculation of I.

At the same time, unimportant parts of the posterior should not be ne-

glected. First of all, the identity (3.1) requires that π must be absolutely

continouous wrt q. In fact, if Θ could be expressed as the union of Θ1 and

Θ2, where the first represents the support common to π and q and the second

represents the support only of π, the estimate ÎIS
N would converge to

∫
Θ1

h(θ)π(θ)dθ

which is different from I. Besides, results (3.3) and (3.4) hold only if I and

σ2 are finite. In particular, σ2 < ∞ implies that the proposal has tails that

decay more slowly than π. In fact, if this requirement is not satisfied, as in

the lower panel of fig. 3.1, the ratio π/q is unbounded, hence particles repre-

senting extreme values for q will obtain extremely high importance weigths.

Whenever these extreme values are generated, the estimate of I may oscillate

rather than converge to the correct value.

As an example, in Yuan & Druzdzel (2005) it is shown the path of the

variance of the estimator in the a case in which both the proposal and the

posterior distributions are normals with different means (µq and µπ) and

variances (σ2
q and σ2

π), for different choices of the parameters of the proposal.

This pattern highlights that, in this case, the variance of the estimator de-

pends crucially on the ratio σq/σπ: in fact, as this ratio decreases under a

certain threshold, which depends also on µq − µπ, there is a sudden groeth

of this variance.
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3.2 Population Monte Carlo algorithms

In real applications it is often difficult to obtain good proposal distributions,

and the difficulty increases with the number of parameters. Due to this prob-

lem, more automatical recipes, as MCMC algorithms, have been preferred to

IS. Only recently, adaptive methods received an increasing interest.

While MCMC methods hardly can reach an adaptive perspective, PMC

algorithms iterate the Importance Sampling step in order to exploit the past

performance of the sampler to find increasingly better proposal distributions.

It is important to stress that it is possible to use different proposals for each

particle and for each iteration mantaining the approximative unbiasedness of

the resulting estimators (see Cappé et al., 2004).

This kind of algorithms can be affected by the degeneracy phenomenon,

that happens when a few particles have large importance weights, with neg-

ative consequences on the variance of the estimates. To eliminate irrelevant

particles and alleviate the degeneracy phenomenon, as in the SIR algorithm

of Rubin (1987), at the end of each iteration particles are multinomially re-

sampled, with weights equal to ρ. A PMC pseudo-code could be as follows:

At t = 0

choose arbitrary values of θ(1:N,0)

For t = 1, . . . , T

for i = 1 . . . , N

sample θ̃(i,t) ∼ qit(θ)

compute ρ̄(i,t) = π(θ̃(i,t))/q(θ̃(i,t))

normalize ρ(1:N,t) to sum up to 1

generate (J (i,t))1≤i≤N
iid∼ M(1, ρ̄(1:N,t))

compute intermediate estimates IPMC
t
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set θ(1:N,t) = θ̃(J,t)

At the end of each iteration, we can compute intermediate estimates

ÎPMC
t =

N∑
i=1

h(θ(i,t))ρ(i,t);

after resampling, irrelevant particles have been removed from the sample.

At the next iteration, it is possible to modify proposal densities using the

informations about the entire history of the sampler, and simulate the par-

ticles θ(i,t+1) from different proposal distributions qit. After T iterations, an

asymptotically unbiased estimator for I is given by

ÎPMC =
1

T

T∑
t=1

IPMC
t .

3.3 An algorithm for mixture models

In Celeux et al. (2006) the authors propose a PMC algorithm for missing

data models. The steps can summarized as follows:

At t = 0

choose arbitrary values of (ϑ(1:N,0), z(1:N,0))

For t = 1, . . . , T

for i = 1 . . . , N

generate z̃(i,t) ∼ k(z | ϑ(i,t−1),y)

generate ϑ̃
(i,t) ∼ π(ϑ | z(i,t),y)

compute ρ̄(i,t) = π(ϑ̃
(i,t)

, z̃i,t)/k(z̃ | ϑ(i,t−1),y)π(ϑ̃ | z(i,t),y)

normalize ρ(1:N,t) to sum up to 1

compute intermediate estimates IPMC
t
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generate (J (i,t))1≤i≤N
iid∼ M(1, ρ̄(1:N,t))

set θ(1:N,t) = θ̃(J,t)

Here the proposals are represented by the full conditional distributions.

Even if the competition between particles guarantees a better performance

than the Gibbs sampler, the algorithm can suffer from the degeneacy phe-

nomenon due to the completion of the parameter space. In the same work

it is proposed to use an idea similar to the Rao-Blackwellization (Gelfand

& Smith, 1990): the additional randomness introduced by the generation of

missing data can be eliminated by considering the marginal proposal density

of ϑ(i,t) given ϑ(i,t−1): ∫
Z
π(ϑ | z,y)k(z | ϑ(i,t−1))dz.

Instead of approximate this integral simulating an entire vector of missing

data for each iteration, it is possible to use a pre-simulated set of z and

correct for their sampling distribution. This approximation can be used

twice in the computation of the importance weights. This method reduces

the degeneracy phenomenon, at the cost of an higher computational burden.
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Chapter 4

A trans-dimensional algorithm

The algorithm is essentially an extension to the variable dimension case of

the Alg. 1 described in Celeux et al. (2006).

Also in this case, the possibility to jump between models opens different

problems. The main difficulty here is not to mantain the detailed balance

condition, but the absolute continuity of the target distribution wrt the pro-

posal distribution. This means that each particle, from one iteration to the

next, should be able to jump from any other point of any parameter subspace

Θj to any point of the whole parametric space Θ. Hence, we have to propose

jumping moves that allow for jumps between any couple of models. Hence,

we cannot restrict to consider only jumps between adjacent models, as in the

MCMC case.

A particular issue is in determination of the probabilities p(ci → cj) to

jump between models. When there are seveal competing models, it is not

possible to exploit the adaptativity to learn about the entire matrix of prob-

abilities to jump between each couple of models, as it would require a very

large number of particles. The natural alternative is to apply a probability

distribution which is centered on the current model and which has probabili-

ties that decrease with the “distance” between the current and the proposed
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model. These probabilities, however, cannot decrease in a very fast way

(such as at a geometric rate), as the tails of the proposal distribution of c

should be thicker than the tails of the posterior ditribution of the number of

components. In the application, p(ci → cj) gives probability p to remain in

the current model and divides the remaining probability mass over the other

(cmax − 1) models.

4.1 A pseudo-code

At t = 0

generate N particles (c(1:N,0),ϑ(1:N,0), z(1:N,0)) from the prior distribu-

tions;

for t = 1, . . . , T

for i = 1 . . . , N

choose c̃(i,t) ∼M(1, p(c(i,t−1), ·))

if c̃(i,t) = c(i,t−1) (1)

update ϑ(i,t) and z(i,t) from the respective full conditional dis-

tributions

compute ρ̄(i,t) = π(c(i,t),ϑ(i,t), z(i,t))/(p(c(i,t−1) → c(i,t))q(ϑ(i,t))k(z(i,t))

normalize the importance weights: (ρ(i,t))1<i<N = (ρ̄(i,t))1<i<N/
∑

i ρ̄
(1:N,t)

compute intermediate estimates IPMC
t

generate (J i,t)1≤i≤N
iid∼ M(1, (ρ(i,t))1≤i≤N)

set (c(i,t),ϑ(i,t), z(i,t)) = (c̃(Ji,t), ϑ̃
(Ji,t)

, z̃(Ji,t))
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In these steps, q and k are given by the full conditional distributions.

While in a Gibbs sampler the parameters could be updated in any sequence,

even following a random sequence, in this algorithm the sequence is fixed in

order to reduce the computational effort and to avoid the use of arbitrary

constants.

When required, the dimension changing moves can be exploited before

the step (1). The only move to reduce the number of components is similar

to the merge move of the RJ. If c̃(i,t) < c(i,t−1) we have to merge d = c̃(i,t) −
c(i,t−1) components. We can choose which components to merge generating

an auxiliary variable u ∼ U(1, c̃(i,t)) distribution, and imposing to merge the

components {u, . . . , u+ d}, that is a group of adjacent components. It is, in

fact, important to note that the density of jumping moves is given by

p(c(i,t−1) → c̃(i,t))
∑
U

q(ϑ̃
(i,t)

? | u)k(z(i,t) | u)f(u),

where U denotes all the possible groupings of d different components. The

choice to merge only adjacent components reduces the number of elements

in U to d.

In a manner which is similar to the RJ merge move, the old component

parameters will be replaced by

ω? =
u+d∑
j=u

ω
(i,t−1)
j w?µ? =

u+d∑
j=u

ω
(i,t−1)
j µ

(i,t−1)
j

ω?(µ
2
? + σ2

?) =
∑u+d

j=u ω
(i,t−1)
j ((µ

(i,t−1)
j )2 + (σ

(i,t−1)
j )2)

These parameters values can be updated as follows:

µu ∼ N (µ?, σ
2
?)

σ2
u ∼ Γ(c̃i,tσ2

?, c̃
i,t).
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The remaining parameters will be updated in the following steps.

To increase the number of components we propose d further weight equal

to 1/c̃(i,t). So we generate d variates u from a multinomial distribution on

1, . . . , c(i,t−1) with probabilities equal to ω(i,t−1); the new means and variances

will be sampled as:

µ̃
(i,t)
1:d ∼ N (µ(i,t−1)

u1:ud
), (σ2)(i,t−1)

u1:ud
)

σ̃
(i,t)
1:d ∼ Γ(c̃(i,t)σ(i,t−1)

u1:ud
, c̃(i,t)).

In particular, it turns out that the new means are generated from the sam-

pling density f(y | ω(i,t−1), µ(i,t−1), (σ2)(i,t−1)) of the mixture represented by

the particle ϑ(i,t−1).

4.1.1 An empirical comparison with the Reversible Jump

The simulated dataset will be used in the following section to make a com-

parison with the RJ. This dataset presents three distinct modes, as we are

interested mainly in the estimation of the posterior distribution of the num-

ber of components rather than the estimates of the other parameters of the

model. Comparisons with the Reversible Jump are made using Nmix, an ex-

ecutable written by prof. Green to carry out the same analysis1. Using the

described PMC method with cmax = 5, N = 10000, T = 20, p = 0.3, at the

20th iteration the estimates, given c = 3, the estimated mixture parameters

are:
Component

I II III

ω̂ 0.293 0.516 0.191

µ̂ 0.062 5.016 9.945

σ̂2 0.845 0.890 1.409

1Nmix is available at the website http://www.stats.bris.ac.uk/~peter/Nmix/

http://www.stats.bris.ac.uk/~peter/Nmix/
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Figure 4.1: Upper panel: density estimate and generating density of the simulated
dataset. Lower panel: empirical and estimated cdf.

As expected, given that the components are well-separated, these results

are quite good. However, also the posterior on the number of components

gives a relevant probability mass to the real model and decreases quickly in

both senses:

c 1 2 3 4 5

π(c | y) 6e-13 2e-11 0.863 0.130 0.007

The model underlying the Reversible Jump is slightly different, so conse-

quences must be taken with caution. In particular, Nmix uses an identifi-

ability constraint on the means. Running 100000 iterations after a burn-in
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period of other 100000 iterations, Nmix gives, conditional on c = 3, similar

estimates for the parameters:

Component

I II III

ω̂ 0.284 0.513 0.203

µ̂ 0.021 4.902 9.915

σ̂2 0.898 0.940 1.263

The most evident difference is in the estimate of the posterior distribution

of c: while the MAP estimate is again the real model (c = 3), there is a long

right tail that gives a significative probabilities to larger models.

c 1 2 3 4 5

π(c | y) 0.000000 0.000000 0.360435 0.293335 0.172575

c 6 7 8 9 10

π(c | y) 0.088910 0.043120 0.021045 0.009670 0.004865

c 11 12 13 14 15

π(c | y) 0.002855 0.001705 0.000820 0.000335 0.000245

The difference is mainly due to the fact that the chain visits often points on

the space {Θ, z} representing mixtures with empty components. The follow-

ing table summarizes the empty components in the last 10000 iterations:

N. of empty components 0 1 2 3 4 5

N. of iterations 8626 1168 173 26 6 1

The large number of iterations passed in such points can be seen as a clue that

the chain, after 200000 iteration, is still far from reaching convergence. It is

worthwhile to note that, while PMC visits points with empty components,

it never resamples such points.
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Figure 4.2: Histogram of the lengths, density estimation with PMC and CML conditional
on c = 6, the real number of cohorts.

4.2 Results with the fish dataset

Fig. (4.2) shows the histogram of the lengths of fish: this is a typical situa-

tion in which, while younger cohorts are clearly distinguishable, the rest of

the data form a single bunch. The estimation of a mixture model, even in a

fixed dimension setting, would be really difficult without the help of the von

Bertalanffy growth equation (1.1), as this equation allows to shrink informa-

tion from the different cohorts. The superimposed density estimations are

obtained using a slightly modified version of the algorithm described above

and the complete maximum likelihood (CML) estimates. The latter are ob-

tained using also the ages of fish to estimate the same model, condtional on

c = 6, in a ML setting.
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Even if more realistic models are available, here it is assumed that the

lengths follow a normal mixture model:

{
yi | zi,ϑ, c ∼ N (V Bzi

, τzi
)

p(zi = j | ϑ) = ωj

where V Bj is the mean length for a cohort of age j according to the Von

Bertalanffy growth equation. The vector ϑ contains all the parameters of

the model, including L∞, k and t0.
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Figure 4.3: Left panel: histograms of lengths divided per age, with the PMC and the
CML estimate of the Von Bertalanffy groth equation; dots represent sample means. Right
panel: histogram of data.

Many studies have been carried on this species, and it is possible to make
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use of the available information2 to elicit subjective prior distributions:

L∞ ∼ N (300, 202) τ ∼ Γ(2, 200)

k ∼ Γ(2, 4) ω ∼ D(c, . . . , 1)

t0 ∼ N (−1, 42) c ∼ U(4, 6)

The following results are obtained with a modification of the preceding al-

gorithm: here we have three parameters that replace the vector of means.

These parameters are updated using a D-kernel proposals (see Douc et al.,

2007), while the others follow the preceding pseudo-code.

Conditional on cmax = 6, the real number of cohorts in the dataset, we

obtain the following results:

CML PMC CML PMC CML PMC

L∞ 285.660 292.805 ω1 0.074 0.078 σ1 6.101 6.214

k 0.622 0.568 ω2 0.160 0.162 σ2 17.042 17.150

t0 -0.534 -0.583 ω3 0.297 0.320 σ3 11.222 9.759

ω4 0.205 0.238 σ4 12.844 10.102

ω5 0.242 0.136 σ5 12.465 9.759

ω6 0.023 0.067 σ6 14.408 9.017

Fig. 4.3 represents the lengths divided per age. Not surprisingly, the CML

estimate of the VB curve is close to all the empirical means. Also the PMC

estimate is satisfactory, even for older cohorts. The major drawback in using

this model can be seen in the estimation of the number of components: the

MAP estimate is five, while the real number of cohorts is six.

c 4 5 6

Pr(c | y) 6.36462e-11 0.8208362 0.1791638

2The website http://www.fishbase.org/PopDyn/PopGrowthList.cfm?ID=

24&GenusName=Clupea&SpeciesName=harengus+harengus&fc=43 collects the estimates

of the von Bertalanffy parameters obtained in several studies.

http://www.fishbase.org/PopDyn/PopGrowthList.cfm?ID=24&GenusName=Clupea&SpeciesName=harengus+harengus&fc=43
http://www.fishbase.org/PopDyn/PopGrowthList.cfm?ID=24&GenusName=Clupea&SpeciesName=harengus+harengus&fc=43
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Chapter 5

A tailored sampler

In the previous chapter, the von Bertalanffy growth curve represents a con-

straint on the means of the components of the mixture. In case no such

constraints exist, one can make a better use of the possibilities of a PMC

sampler. We indeed know that, in this case, the mixture posterior presents

c! symmetric and equivalent modes. A tailored sampler can therefore be

characterized by a proposal distribution with the same feature: denoting

with ϑ? = (ω,µ,σ2) a MAP estimate, it is possible to sample an auxiliary

variable ζ ∼ U(ζ1, . . . , ζc!) representing one of the possible permutations of

the labels; given ζ, a particle can be sampled, in the non-augmented space,

from a distribution centered on ζ(ϑ?), the point obtained by permuting the

labels of the MAP estimate.

All the parameters can be updated with a single multivariate distribution on

ψ = (ω,µ, logσ2). As suggested in Geweke (1989), a scale parameter V for

this proposal can be obtained as the opposite of the inverse of the hessian of

the likelihood calculated in ψ?. It is also possible to calculate the hessian of

the posterior distribution, but in this case the computational burden would

be higher. Given V , the matrices relative to all the other permutations of

ψ? can be obtained with a simple rearrangement of the indices of the lines

55
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of V .

In order to compute the matrix V only once per iteration, all the particles,

given ζ, can be sampled from a t(ν, ζ(ψ?), ζ(V )) distribution. In this case,

the only arbitrary parameter is given by the number of degrees of freedom.

At the end of each iteration, it is eventually possible to update the MAP

estimate, improving the location and the scale of the proposal distribution.

The algorithm is particularly fast and simple to implement. Besides, the

explicit sampling of the index of the permutation used for each particle, al-

lows the use of these indexes to solve the label switching problem, easily

obtaining meaningful estimates: taking as reference one permutation ζ?, an-

other permutation ζi to the labels of all the particles is performed, such that

ζi(ζ
(i,t)) = ζ?.

For t = 1, . . . , T

for i = 1 . . . , N

sample ζ(i,t) ∼ U(ζ1, . . . , ζc!)

sample ψ(i,t) | ζ(i,t) ∼ t(ν, ζ(i,t)(ψ?), ζ(i,t)(V ))

compute ρ̄ = π(ψ(i,t))/
∑c!

l=1 ft(ψ
(i,t) | ν, ζ(i,t)(ψ?), ζ(i,t)(V ))

normalize the importance weights ρ

if any π(ψ(i,t)) > π(ψ?) update ψ? and V .

Importance weights are computed only to obtain the estimates of interest:

particles are never resampled, as each particle is drawn independently from

their past values given the MAP estimate of the previous iteration. However,

we can resample them in order to draw the marginal sampling representation

of the posterior for couples of parameters as in Fig. 5.3. With this repre-

sentation, we could perform the mode hunting, an informal method given by
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Frühwirth-Schnatter (2001) for diagnosing purposes. If the mixture is not

overfitting, then c(c− 1) clusters will be clearly visible.

5.1 Galaxy dataset

As an application of this sampler, we used the Galaxy dataset. We used

data-dependent conjugate priors as in (2.5).
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Figure 5.1: Histogram of the galaxy data and density estimates.

Fig. 5.1 shows the density estimation with c = 3 and c = 4. Fig.

5.2 shows the estimates of the marginal likelihood for models M3 and M4:

the stability of this method is remarkable, as shown by the absence of the

degeneracy phenomenon. However, increasing of the number of components,

the situation gets quickly worse.

In Cappé et al. (2003), the authors find that a Gibbs sampler could not
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Figure 5.2: Estimates of the marginal likelihood over iterations.

visit all the modes of the posterior; hence, to accelerate the convergence of

the sampler, they renounced to the completion of the space. Also in this case

we don’t use the augmentation: this choice makes harder the computation of

the posterior density appearing in the numerator of the importance weights,

but this disadvantage is offset by the efficient generation of particles and the

computation of the relative proposal densities. As a result, the computational

burden is not very high, at least for models with a moderate number of

components.

In Fig. (5.3) we see the means generated by the proposals for the model

c = 4 and the resampled means. The sampling representation denotes that

all the modes have been adequately visited: in the right panel there are

clearly c(c− 1) = 12 modes, higlighting that this model is not overfitting.
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Figure 5.3: Left panel: sampled means for the model c = 4. Right panel: means after
resampling.
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Cappé, O., Guillin, A., Marin, J. M. & Robert, C. P. (2004). Popu-

lation Monte Carlo. J. Comput. Graph. Statist. 13, 907–929.
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