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Introduction iii

Introduction

As the radius of knowledge expands,

the circumference of ignorance increases

(japanese saying)

The intricate interplay of the biochemical processes supporting life in cells

represents a reservoir of fascinating puzzles for the modern physical research.

Recently, biological phenomena of increasingly complexity are becoming sub-

ject of theoretical investigations, we can cite, for example, the operation of

biomolecular machines [1] or the networks of molecule interactions responsi-

ble for gene regulation or signal transduction [2, 3]. Despite these advance-

ments, however, a classical problem of this field, namely protein folding, rep-

resents so far a controversial matter.

Proteins are linear polymeric chains that adopt a unique three-dimensional

structure, the native state, which allows them to carry out specific biological

functions [4]. Given the suitable conditions, the folding in the native state is

a spontaneous and reversible process for most of the small globular proteins.

This result was obtained in the Anfinsen’s experiments in the 1970s [5], and it

provides the basis for a physical approach to the problem: protein folding, in

the case of small globular proteins, is a thermodynamic process driven by the

minimisation of the free energy of the system composed by the protein and by

the aqueous solution in which the protein is immersed.
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Somehow the information to fold is contained in the quantum-chemical

Hamiltonian of the protein atoms interacting among themselves and with the

surrounding water molecules. Given the huge number of degrees of freedom

of the system, however, many efforts must be devoted to simplify the problem

introducing intra-protein and protein-solvent effective interactions in order to

describe the system at a mesoscopic scale [6]. The folding transition is a coop-

erative phenomenon, involving many weak interactions, which suggests that

no single degree of freedom on its own might have any special importance for

folding. This collective character indicates that a coarse grained approach, ori-

ented to an identification of the average properties of the protein behaviour,

may be appropriate to reach a more comprehensive view of the process.

At the mesoscopic scales described by semi-empirical classical interactions,

however, the protein molecule still appears a complicated system. Many con-

flicting constraints, both geometric and energetic, have to be satisfiedwhen the

protein folds into its compact conformation: the different chemical characters

of the side chains, and their different affinities with water solution, the steric

hindrances of atoms with different Van der Waals radii and the propensity to

form peptide hydrogen bonds. In this intricate scenario, it is quite astonishing

that, instead of presenting the frustrate behaviour typical of disordered sys-

tems [7], the protein molecule reaches its unique equilibrium state on the time

scale of the order of 10−1s or even 10−3s for the small globular proteins [8].

The spontaneity of the process, which follows from the thermodynamic hy-

pothesis, suggests that the fundamental physics underlying it may be simpler

than the molecule complexity would lead us to expect. The emerging simplic-

ity of the protein behaviour is reflected also in the regularity of the native state

conformations. The protein three-dimensional structures consist of a compact

arrangement of α-helices and β-sheets, the so called secondary strucutres char-

acterised by highly ordered geometries. These protein building-blocks tran-

scend the chemical details of the sequence, being the product of factors com-

mon to all the proteins: the peptide hydrogen [9] bond and the steric hindrance

[10]. Even the overall conformation of native states is not so strictly bound to

the amino acid sequence specificity: the correspondence between sequences

and folds is indeed many-to-one [11]. For small single-domain proteins, a
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limited menu of native state topologies exists [12]; their conformations were

preserved by evolution, which seems to prove that they satisfy an optimality

principle [13].

In an attempt to explain these issues the principle of minimal frustrations

was invoked [14]. It was hypothesised that the amino acid sequences were se-

lected by evolution, among all the possible combination of the twenty types

of amino acids, in order to allow a fast and reproducible folding. Each native

fold is the product of its own sequence, well fitting all the sequence physico-

chemical features. This idea is able to justify the net difference between pro-

teins and randomheteropolymerswhich are characterised by a glassy behaviour.

It stresses, nevertheless, the central role of the amino acid sequence in deter-

mining the protein conformation, and the peculiarity of each protein with re-

spect to others. Therefore this view is unable to explain the origin of the gen-

eral structural and thermodynamic features characterising the whole class of

globular proteins.

More recently a different perspective has emerged [15], many experimen-

tal facts and theoretical considerations have shifted the focus from the amino

acid sequence to the topology of the protein conformations. Not only large

mutations in the sequence can leave the native state topology unchanged; but

also many aspects of the folding kinetics, such as the folding rate and the dis-

tribution of structures in the transition states ensemble, result to be strongly

correlated with the native state topology and, at the same time, quite insen-

sitive to large-scale sequence changes, provided that the latter do not prevent

the structure stability.

In this context the tube-like model was proposed few years ago [16, 17]. De-

spite its extreme simplicity it has been able to give important insights regard-

ing the connection between the complex heterogeneity of the chemical details

and the universal character of many protein aspects. The concept of thick-

ness of a biopolymer has revealed itself to be the correct ingredient in order to

capture the intrinsic anisotropy of the protein chain enhanced by the steric hin-

drance of the backbone atoms. The early analysis on the model showed that

a thick homopolymer, self-interacting with a mere square-wall attraction is ca-

pable to reproduce the basic motifs of the protein conformations, the α-helices
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and the β-sheets [18, 19]. A refined version of the model presents metastable

state conformations, consisting in protein-like arrangements of secondary mo-

tifs; this results were reached with the only addition of an interaction mimick-

ing the formation of peptide hydrogen bonds, without involving, also in this

case, any sequence specificity.

The main analysis and results on the tube-like model are reviewed in this

thesis. The ideas which have stimulated this research line and the subsequent

developments will be extensively discussed in this work. An innovative sce-

nario is suggested by these results: protein native conformations may be se-

lected by their ability of optimising the energetic and geometric constraints

shared by all proteins. Common requirements, such as steric hindrance of the

backbone atoms, optimisation of peptide hydrogen bond formation, predeter-

mine a collection of few conformations, amongwhich each sequence choose its

proper native state [20]. This could explain the relative small number of native

state topologies (compared with the number of compact featureless confor-

mations), the fact that the latter are formed by few recurrent motifs and the

compatibility of each topology with many different sequences.

The tube-like model has demonstrated the ability to capture the general

geometric and energetic features of proteins, and it has encouraged further

developments. A factor strongly affecting protein behaviour was missing in

the early versions of the model: the explicit interaction between the protein

molecule and the solvent. The most recent works were thus devoted to fill this

gap [21, 22], and they represent the main subject of this thesis.

The importance of considering explicit solvent for the folding of globu-

lar proteins is crucial. As a consequence of the dipolar nature of the water

molecule the intra-molecule interactions result greatly diminishedwith respect

to the case in which the solvent is not present. Moreover a crucial push to-

wards a compact conformation arises just because of the interaction between

the aqueous solution and the protein residues: many of them try to hide from

the water owing to their non-polar character. This results in a global phe-

nomenon, namely the hydrophobic effect, that was recognised since many

decades as one of the most important driving forces of folding [23, 24]. In

order to address the average behaviour determined by this complex process,
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an effective interaction was introduced in the tube-polymer [21] that is simply

proportional to the area of the tube regions hidden from the solvent particles.

Beside this effect, another physical process has been recently individuated

as having a central role in the folding process [25, 26]. The tendency of solvent

molecules to maximise their translational entropy gives rise to the so called de-

pletion forces, which are responsible in colloidal systems of entropically driven

phase transitions [27, 28], as revealed by experiments conducted early in the

last century. The mechanism is very simple: in a situation in which macro-

molecules are immersed in a solvent of smaller particles, the former are in-

duced to diminish their volume occupation in order to increase the free volume

available to the latter, and hence their entropy; this drive the macromolecules

to aggregate determining a phenomenon called flocculation. An elegant expla-

nation of the process was given by the fundamental contribution by Asakura

and Oosawa [29, 30] that still represents the paradigm for the theoretical in-

vestigations on this phenomenon. The depletion forces are omnipresent in

living systems, and recently their relevance for biological processes was recog-

nised in many works. In particular it was suggested that this forces could lead

the protein to collapse in a compact configuration, and even that secondary

structure motifs could be selected since they have the ability of minimising the

volume occupation of the polymer. In order to explore this possibility we have

adapted the Asakura-Oosawa paradigm to the case of a tube-like polymer in a

solution of hard spheres [22]. The results of this theoretical and computational

analysis will be exhaustively illustrated.

Plan of the thesis:

The plan of this thesis is as follows: in chapter 1 we introduce the main prop-

erties of globular proteins. Particular regard is then given to the most crucial

advances in the understanding of protein folding, in the past half century. A

review of the tube-like polymer model is the subject of chapter 2: the main

studies of the model conducted in the last years are illustrated, from the start-

ing ideas to the more sophisticate developments. In particular, the last part of
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the chapter is devoted to the treatment of the effective interaction introduced

for the tube-polymer in order to model the hydrophobic effect. Chapter 3 is

entirely addressed to the depletion interaction. After an introduction of the

Asakura-Oosawa paradigm, we discuss in detail the theoretical analysis de-

veloped in order to adapt it to the tube-polymer case. We conclude the chapter

discussing the numerical simulation done in order to find the conformations

minimising the effective potential so introduced.

Finally in the conclusions of this thesis we discuss the future perspectives

of these initial theoretical works on the protein-solvent interaction in the con-

text of the tube-like polymer. Investigation in this directions are conducted by

other research groups by means of a morphometric approach [31, 32, 33, 34].

The method has demonstrated a high efficacy in extracting quantitative infor-

mations from the shape of complex patterns, and therefore is suitable to anal-

yse the connection between the solvation free energy of a protein immersed in

solution and its three-dimensional conformation. A possible merging between

this method and the tube-like polymer is considered.



1

Chapter 1

A physical approach to protein

folding

The ability of cellular subunits to accomplish highly specific functions deter-

mine the astonishing efficiency of the biological machinery. The cellular envi-

ronment is crowded of macromolecules completely different in shape, size and

chemical character; such a diversity enable them to interact with each other in

a very selected manner, despite the extremely high concentration.

Most of the macromolecules operating inside the organisms are proteins: a

common chemical nature underlies their heterogeneity [4, 35]. All of them con-

sist of long polymers composed by twenty different types of monomer units

called amino acids, but they differ each other by the three-dimensional confor-

mation in which they fold after the biosynthesis and in which they are biolog-

ically active. According to the sequence of amino acids proper of each protein,

this conformation varies and hence the functions the protein is able to perform.

The protein folding represents a process of a fundamental importance: if the

protein fails to reach its proper conformation it becomes inevitably unable to

carry out its biological functions; many serious diseases indeed are caused by

proteins misfolding. The remarkable rapidity and reproducibility of this pro-

cess still present many elements which are not yet completely understood. It

is commonly recognised that the folding of the protein chain is a thermodynam-

ically driven process [5], and that the biologically active protein conformation

represents the energetic balance of various kinds of interactions between pro-
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tein groups, and between these groups and the surrounding medium. If on the

one hand this justifies a physical approach on the other one the high complex-

ity of the system seems to prevent any possibility of solution to the problem,

from a microscopical point of view.

Despite the high complexity of the protein molecule and the importance of

the chemical details, proteins share common aspects [9, 10], that result very im-

portant in determining their three-dimensional structure. Regular motifs, he-

lices and sheets, form the building-blocks of all the protein three-dimensional

structures: such recurrent motifs, called secondary structures, are the prod-

uct of factors independent of amino acid specificity. It suggests that a deep

comprehension of the matter can be reached only distinguishing the property

peculiar of each protein and responsible of its functional specificity from the

features proper of the overall class of proteinmolecules. A coarse grained view

proper of statistical mechanics can be very useful for this purposes: very sim-

plified model can be able to enlighten the main mechanism driving the protein

behaviour.

In this chapter we want to give a rapid introduction to proteins, briefly

describing their biological role, their chemical composition and their confor-

mational properties. We are mainly interested on the general characteristics

that make the proteins a roughly homogeneous class of molecules. In the last

section we will face the protein folding problem, dealing with both the known

facts and the open issues related to it. Finally we will give a rapid introduction

to the theoretical approaches to the matter, analysing the role that a simplified

model can have in this framework.

1.1 Introduction to proteins

Proteins are long heteropolymers able to fold into three-dimensional confor-

mations, called native state, properly designed by evolution to perform highly

specific biological functions [4].

During the protein biosynthesis the amino acids are assembled together in

a specific sequence according to the rule of the genetic code. The final product
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of this process, the polypeptide chain, immersed in the cellular environment,

undergoes a folding process reaching the protein proper native state. The func-

tions each protein is able to carry out are determined by the three-dimensional

conformation of the native state. For this reason protein biosynthesis and pro-

tein folding represent the processes by which the information encoded in DNA

reach its full expression and hence their deep understanding represents an im-

portant challenge of the modern research.

In order to face the complexity of the protein macromolecule several levels

of organisation are distinguished [4, 35]. The primary structure is the chemical

sequence of amino acids along the polypeptide chain. The secondary structures

represent the local ordered motifs occurring in most of proteins, the compact

packing of which determines the unique three-dimensional native conforma-

tion, the tertiary structure. Finally, large proteins are composed by domains,

small globular regions separated by a few amino acids. The arrangement of

one respect to another is called the quaternary structure. In the following sec-

tions we will illustrate each of these levels in detail.

Even though proteins are a relatively homogeneous class ofmolecules, their

native state can be completely different as regards shape and size and are able

to carry out an enormous variety of biological functions. Most natural pro-

teins are soluble in the physiological, almost aqueous, solution; they assume

roughly spherical shapes, and thus are usually referred to as globular pro-

teins. Example of globular proteins are enzymes, proteins for transmitting sig-

nal and regulating biological processes (i.e. hormones, insulin), immunoglob-

ulin and hemoglobin (in Fig. 1.1). Fibrous proteins otherwise are insoluble

and form aggregates with regular and extended conformations. They play

structural roles, such as collagen (in Fig. 1.6), the best example, that is the

main constituent of higher animal frameworks: bones, tendons, skins, carti-

lage, and membrane supporting tissues. A third class is represented by mem-

brane proteins, associated to the impermeable lipidic bilayers forming the cel-

lular membranes: the hydrophobic environment of membranes surrounding

them, determine their strong difference respect to other classes of proteins. Fi-

nally a peculiar class of proteins was recently discovered [36], the intrinsically

unstructured proteins, that are characterised by their lack of stable tertiary
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structure as isolated subunits. The flexibility, that derives by their disordered

character, enhances the ability to bind to their molecular targets. Many of them

undergo transitions to more ordered states upon binding to their targets.

(a) (b)

Figure 1.1: Structure of hemoglobin, the protein responsible of the oxygen transport in the

red blood cells, as resolved by X-ray diffraction data. In Fig. a the all atom representation

is shown. In Fig. b we report a cartoon representation pointing out the regular secondary

motifs compounding the native conformation. Though more schematic, the second view give

us more informations about the protein structure. Hemoglobin is a globular protein with a

diameter of approximately 6 nm, it is composed by 4 chains (two chains with 141 amino acids,

and two with 146) folded in distinct domains and assembled together in a determined qua-

ternary structure. Each domain is associated with an heme group (visible in both the pictures)

responsible of the oxygen binding.

The three-dimensional structure of globular proteins can be resolved exper-

imentally using NMR spectroscopy, taking advantage of their solubility, or X-

ray diffraction. The other two classes of proteins are otherwise very hard to be

characterised experimentally; many aspects related to their three-dimensional

structures and their folding process are hence rather obscure. For this rea-

son globular proteins represent the paradigm for the biophysical studies about

protein conformation and folding kinetics, and they represented the point of

reference for our studies.

The folding of globular proteins occurs in the cytoplasm, essentially an

aqueous environment. It is a fundamental result of Anson and Anfinsen [5,

37, 38] the reversibility of protein unfolding: they proved in vitro that, after
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Figure 1.2: At top, collagen fibers in scanning electron microscope image are shown. At bot-

tom a much higher-magnification image from transmission electronic microscope shows the

characteristic banding pattern of individual collagen fibril that make up the larger anatomic

fiber. A collagen molecule, the fibril subunit, is approximately 300 nm long and 1.5 nm in di-

ameter and it is made up of three polypeptide strands, each possessing the conformation of a

left-handed helix.

inducing an unfolding by altering the physiological conditions (pH, temper-

ature, pressure), the protein is able to re-fold in its correct native state once

physiological conditions are restored. This fact shows that the protein folding

is a thermodynamically driven process with the unique native structure of each

protein representing the thermodynamic ground state of the system composed

by the protein molecule and solvent molecules, taking into account the various

types of interactions affecting them. This behaviour is typical of small proteins.

The large multidomain ones represent an exception since they need the aid of

molecular chaperones in order to fold correctly ‘in vivo’ and avoid improper ag-

gregation of the ‘wrong’ domains [39].
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1.2 Chemistry of proteins

In this section and in the following ones we are going to describe the protein

macromolecule according to all its levels of organisation. We start illustrating

the chemical properties of the amino acid subunits and how they are linked to-

gether in the polypeptide chain. The macromolecule chemistry determines the

physical interactions affecting the system and leading the polypeptide chain to

adopt its compact conformation in aqueous solvent.

1.2.1 Aminoacids: the building-blocks of proteins

By a chemical point of view proteins are really complex macromolecules since

they are composed by 20 different types of monomers, the amino acids. The

generic chemical structure of amino acids is

H2N CH CO2H

R

where H2N is the amino group and CO2H is the acidic group. The twenty

amino acids differ only in the chemical structure of the side chain R, that is

bonded to the central carbon atom, the α-carbon. The only exception is repre-

sented by proline, whose side chain is bonded also to the nitrogen atom to form

an imino group:

HN CH CO2H
BB ��

H2C CH2

, l
C
H2

The chemical composition of side chains varies in a considerableway. Glycin,

the lightest side chain, consists of only a hydrogen atom, whereas tryptophan,

the heaviest, contains both a carbon aromatic ring and an indole ring, with

one nitrogen atom. Some side chains moreover may be partially charged at

physiological Ph. The atoms occurring more frequently in the side chains are

hydrogen, oxygen, nitrogen, and carbon, but a sulfur atom is also present in
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two side chains, methionine and cysteine. Except for glycin, the central α-

carbon atom is asymmetric. In all known natural proteins, the α-carbons have

the same chirality, being all left-handed.

1.2.2 Peptide bond and polypeptide chain

The chemical binding of amino acids produces the peptide bond, with release of

a water molecule as illustrated below.

H2N CH CO2H

R1

+ H2N CH CO2H

R2

?

H2N CH C

R1 O

NH CH CO2H

R2

+ H2O

By the effect of this process the polypeptide chain is formed: it has the shape

of a long chain, the backbone, composed by the repetition of the three atoms N,

Cα, C’, with the side chains branching outward. It is characterised by a number

of amino acid residues (the remaining parts of amino acids after peptide bond

formation) ranging from approximately 50, for small globular proteins, to 3000,

for complex multi-domain proteins. The residue sequence along the chain, the

primary structure, determines the chemical character of each protein.

The peptide bond is determined by covalent interactions, the same interac-

tions that hold the atoms of a single amino acid together. Typical energies of

the covalent interactions range from 50 kCal/mole to 150 kCal/mole, implying

that at room temperature (KBT ≃ 0.6 kCal/mole) the corresponding degrees

of freedom are frozen at their minimum energy value. In particular the length

of covalent bond and the valence angles between two covalent bonds are very

rigid, and their values are fixed by the laws of chemistry. They are called ‘hard’

degrees of freedom in contrast with the ‘soft’ degrees of freedom represented

by the torsion angles along the backbone chain and the side chains that can

easily fluctuate at room temperature. The torsion angles, or dihedral angles,

are the rotation angles about covalent bonds of one portion of the chain with

respect to the other, and are responsible for the conformational flexibility of
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Figure 1.3: Schematic representation of the polypeptide chain, in which the three torsional

angles φ, ψ, and ω are shown.

both the polypeptide backbone and the side chains. Rotation about the N–Cα

bond of the peptide backbone is denoted by φ, rotation about the Cα–C’ bond

by ψ, and that about the peptide bond C’–N by ω, the three angles are shown

in Fig. 1.3. Specification of φ, ψ, and ω, for all residues of the polypeptide chain

completely determines the backbone conformation.

The peptide bond have partial double-bonded character, due to resonance

between a single-bonded and a double-bonded isomer. Rotation about the

peptide bond is thus restricted, and the atoms of the polypeptide backbone

between two successive α-carbons have a strong tendency to be coplanar, as

shown below.

C N
�

Cα

@
H

@@
O

�
Cα

trans

-� C N
�

H

@
Cα

@@
O

�
Cα

cis

Two planar conformations are possible for the peptide bond, but the trans form

is highly energetically favoured, because in the cis form the side chains of

neighbouring residues are in too close proximity. In the trans conformation,

the distance between corresponding Cα atoms of adjacent residues is fixed to
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the value of 3.80 Å.When the residue following the peptide bond is proline, the

double-bond character is lost, and there are small deviations from planarity of

either the trans and the cis form, which in turn are almost equally energetically

favoured.

1.2.3 Interactions in proteins

The complex three-dimensional conformation of the polypeptide chain, the

tertiary structure, is the result of the delicate interplay of interactions between

atoms which are far apart along the polypeptide chain but may come into

close spatial contact, and between atoms and the solvent molecules. At a mi-

croscopic level all the physical interactions affecting the system are Coulomb

electrostatic and can be described by the quantum-mechanical laws. The intro-

duction of semi-empirical classical interactions nevertheless is necessary both

to reduce calculation costs and to have a clearer view of the different mecha-

nisms driving the protein behaviour.

The analysis of the different kind of mesoscopic interactions affecting the

system is complicated by the strong diversity of amino acids chemical char-

acter. As we have seen in previous section the chemical structure of proteins

is the product of covalent interactions, that are characterised by high energy

scales compared with the thermal fluctuations at room temperature. With the

exception of the sulfur bridges, forming between the sulfur atoms of the cysteine

residues, all the interactions between amino acids far apart along the polypep-

tide chain are non-covalent. The typical energy scale of non-covalent interac-

tions ranges from 1 to 5 kCal/mole. The associated degrees of freedom are

thermally excited at room temperature, and are thus responsible for the fold-

ing and all the observed thermodynamic properties of proteins. Non-covalent

interactions between different atoms of the protein-solvent system are usually

divided into electrostatic forces, Van derWaals interaction, and hydrogen bond

interactions.

Electrostatic interactions between ionised or partially charged atoms may

be described according to the Coulomb’s law for point charges in a homoge-

neous dielectric medium. A molecule need not to have a net charge to par-
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ticipate in electrostatic interactions, since atoms with different electronegativ-

ities cause the electron density to be localised, and are thus assigned a partial

charge. A correct description at the microscopic level should take into account

that charges are not point-like at short distances, and the solvent is an inhomo-

geneous dielectric medium at the molecular level.

Van der Waals interactions between pairs of atoms are often represented

by an energy potential as a function of their distance r, which is usually taken

in the Lennard-Jones form:

E (r) =
Cn

rn
− C6

r6
(n > 6) , (1.1)

where Cn and C6 are constant. The most common potential has n = 12, since

12 = 2 · 6 makes it computationally efficient. The repulsive energy in the first

term of Eq. 1.1, due to overlapping electronic orbitals, rises so steeply, that it

is common practice to model individual atoms as hard impenetrable spheres,

characterised by the Van der Waals radius. The excluded volume of the hard

spheres of all the polypeptide chain atoms determines the steric constraints that

play a crucial role in selecting the protein possible conformations. Typical val-

ues of Van der Waals radii are 1.55 Å for nitrogen, and 1.75 Å for carbon, the

two species occurring in the polypeptide backbone. If the two atoms are co-

valently bonded, the inter-atomic distance is shorter, since covalent bonding

implies sharing of electron orbitals. The Van der Waals radius of a given atom

depends also on the way the atom is covalently bonded to other atoms. The at-

tractive part of the potential, determined by the transient induced polarisation

effect, is short-range and weak. The optimal distance for the interaction of two

atoms, corresponding to the minimum of the potential 1.1, is usually 0.3-0.5 Å

greater than the sum of their Van der Waals radii.

The hydrogen bond plays an important role in protein structural stability,

since is responsible for the energetic stabilisation of secondary structure pat-

terns [9, 50] that will be described in detail in the next section. It occurs when

two electronegative atoms compete for the same hydrogen atom. The hydro-

gen atom is formally bonded covalently to one of the atoms, the donor, but

it also interacts favourably with the other, the acceptor. In the most common

configuration the three bonded atoms are collinear. Responsible of secondary
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structure stabilisation are the peptide hydrogen bonds, involving the carboxilic

C=O and amino N–H groups of the polypeptide backbone; the H · · · O dis-

tance in this case is most often 1.9-2.0 Å. The interaction responsible for the

formation of hydrogen bonds can be introduced explicitly by means of dif-

ferent potentials mimicking how the strength of the interaction varies with

departures from linearity. It is now quite accepted, however, that hydrogen

bonds are just a result of the combination of Coulomb and dipolar Van der

Waals interactions.

It is important to remember that the interactions listed above are strongly

affected by the protein surrounding. In the case of globular protein, folding

and biological activities occur in aqueous environment and the water solution

has a great influence in these processes. Water is a dipolar molecule, and thus

has strong interactions with charged or dipolar groups, or hydrogen bond ac-

ceptors and donors, so that the forces occurring among such groups in vacuum

are greatly diminished. Moreover the dipolar character of water molecule is re-

sponsible for the hydrophobic effect, an effective interaction considered one

of the most important driving force leading to the folding of polypeptide chain

in a compact conformation. The interactions with water are not so favourable

for non-polar side chains of some amino acids, basically because they can not

participate in the hydrogen bonding, which appears to be very important in

liquid water [40]. As a consequence they tend to bury themselves inside the

globule, in order to get shielded from contact with water molecules. Owing

to their behaviour these amino acids are called hydrophobic in contrast with

the hydrophilic ones, characterised by polar side chains. This effect does not

determine a strict rule: by looking at structures of real proteins, there is a sub-

stantial probability, ∼ 35%, to find a hydrophobic residue on the surface of a

protein, or to find a hydrophilic one buried inside [41]. It rather represents the

mechanism determining a overall protein collapse. Such important interaction

is the main ingredient of simplified models [41, 42, 43, 44, 45, 46], and will be

the subject of section 2.3 where a recent contribute by our group to this topic

will be discussed.
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1.3 Regularity of the protein conformation

In response to the high variety characterising the protein chemistry the three

dimensional conformation of the native state is quite complex and diversified.

In comparison with the simple double-helix of DNA molecule, the myoglobin

structure, the first protein native structure experimentally observed, appeared

to its discoverer completely lacking in order at the first time. Nevertheless

a subsequent and more careful analysis pointed out the presence of recurrent

conformations characterised by regular motifs such as helices and sheets. They

are called secondary structures and represent the basic constituents of all the

native conformations. Each of them is characterised by a definite geometry

which we are going to describe in the following. At the moment we want to

point out the general character of these structures: they represent the product

of factors that are independent by the amino acid sequence specificity.

Two historical works explained secondary structure origin starting from

different basis. Pauling and Corey [9, 47, 48, 49, 50] predicted the geometry of

helices and sheets, studying the conformations optimising peptide hydrogen

bond formation. The independent work of Ramachadran [10], on the other

hand, analysed the steric constraints due to the backbone atoms, obtaining the

so called Ramachandran Plot.

We want to briefly introduce the Ramachandran idea. Remembering sec-

tion 1.2.2, it seems natural to consider, in a simplified description of the polypep-

tide chain, all the hard degrees of freedom, corresponding to covalent interac-

tions, as frozen, and take into account only the soft degrees of freedom, that

are ω, φ and ψ, corresponding to non-covalent interactions. A part from pro-

line exception, ω is fixed, whereas φ and ψ, that may in principle assume all

possible values, are limited by the steric constraints. Ramachandran studied

the values of (φ, ψ) consistent with such constraints. Being ω fixed, the chain’s

backbone is essentially made of rigid planar peptide units. This fact suggested

him to study the mathematical problem of rotation of two rigid planes contain-

ing interacting hard spheres that must avoid bumping against each other. The

results are represented in the Ramachadran Plot (shown in Fig. 1.4) and are in

agreement with the experimental observations. It is remarkable that with the
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Figure 1.4: Ramachandran plot showing allowed values of the torsion angles φ and ψ for

all the residues with the exception of proline (region in red). Additional conformations are

accessible to glycine (region in yellow) because it has a very small side chain. The typical

values of the torsion angles corresponding to the different secondary structures are shown.The

values corresponding to the collagen triple helix are not indicated in the figure, they belong to

the red region on the top left of the diagram.

exception of glycine, which can occupy a pretty large region of the conforma-

tional space (φ, ψ) because of its smallest side chain (only a hydrogen atom),

all the other amino acids behaves more or less in the same manner.

The secondary motifs, helices and sheets, leave their own specific signature

in the Ramachandran plot. Each motif is characterised by ordered local geom-

etry which results in repeating values of the torsion angles. In figure 1.4, are

indicated the different regions of the Ramachandran plot corresponding to the

types of secondary structures that we are going to describe in the remainder

of this section: collagen triple helix, right-handed α-helices and parallel and

antiparallel β-sheets. Left-handed α-helices are observed only rarely, since the

side chains are very close to the backbone.



14 A physical approach to protein folding

1.3.1 The secondary structures

The right-handed α-helix is the best known and most easily recognised of

the secondary structures (see figure 1.5a). The backbone carbonyl oxygen of

each residue forms a nearly straight hydrogen-bond with the backbone amino

group of the fourth subsequent residues along the chain. This results in the α-

helix having 3.6 residues per turn. The side chains project outward and do not

interfere with the helical backbone. Among secondary structures, conforma-

tions similar to α-helix are found: they include the 310-helix (i+3 → i hydrogen

bonding) and the π-helix (i + 5 → i hydrogen bonding). These alternative he-

lices are relatively rare.

The secondmost regular and identifiable secondary structure is the β-sheet

(see figure 1.5b). The basic unit is the β-strand, a planar zig-zag conformation

with the side chains alternatively projected in opposite directions. A single

β-strand is not stable, because no interactions are present among intra-strand

atoms. The β-strand conformation is stabilised only when two or more strands

are assembled into a β-sheet, a planar structure where hydrogen bonds are

formed between the peptide groups of adjacent β-strands. The side chains

are perpendicular to the plane of the sheet. While side chains from adjacent

residues of the same strand do not interact with each other, side chains from

neighbouring residues of adjacent strands are projected into the same side, and

thus interact significantly. Adjacent β-strands can be either parallel or antipar-

allel, and the resulting geometry varies slightly. In antiparallel arrangement,

all hydrogen bonds are parallel to each other, whereas in parallel arrangement

they are oriented in two different alternating directions.

As discussed in the first section fibrous protein conformations are not well

characterised experimentally. Their regular, extended conformations repre-

sent a level of complexity somewhat intermediate between pure secondary

structures and the tertiary structures of globular proteins. One of the best un-

derstood related conformation is collagen triple helix (see figure 1.6). There

exist only a few distinct types of collagen polypeptide chains. They are all

characterised by the repetition of glycin every three residues of their amino

acid sequence. Three different chains are coiled together, each with a slightly
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(a)

(b)

Figure 1.5: Schematic representation of secondary structures. Fig. a: Different α-helix views.

The α-helix has 3.6 residues per turn, corresponding to a pitch of approximately 5.4 Å. Its

length can vary from 4 − 5 to ∼ 40 residues. The left of the figure represent the idealised

diagram of the backbone path, showing the side chains pointing outward. In the middle a

schematic diagram with the positions of all backbone atoms is reported. Dashed lines repre-

sent hydrogen bonds. In the right of the figure two different top views. Fig. b: representation

of a mixed β-sheet, with the central strand aligned parallel with the upper one and antiparallel

with the lower one, as pointed out by the yellow arrows. The dashed lines show the hydro-

gen bonds, having two different patterns between parallel and antiparallel arrangements. A

strand length typically varies from 5 to 10 residues.

twisted, left-handed helical conformation. The three helices are wound around

each other to form a right-handed super-helix, and are stabilised by hydrogen

bonds that form between peptide groups of different chains according to a reg-

ular pattern. The geometry of collagen helix, apart the slight twisting, is differ-



16 A physical approach to protein folding

ent from the α-helix. It has opposite handedness, different torsion angles, and

3.0 residues per turn.

1.3.2 Tertiary and quaternary structure

Figure 1.6:

Schematic repre-

sentation of the

collagen triple

helix.

The tertiary structure represents the overall three-dimensional

conformation of the polypeptide chain. It is formed by the as-

sembly of secondary structures connected together by loop re-

gions, segments of the polypeptide chain with irregular shape

and varying length. The resulting packing is usually much

tighter in the interior of the protein producing a solid-like core

and a fluid-like surface [103].

Many large proteins consist of several structural domains

and hence they are called multidomain proteins. The way dif-

ferent domains are arranged within the same multidomain

protein defines the quaternary structure. A domain is a stable

and independent unit in the protein structure, that in many

cases folds separately. Its length can not exceed 500 residues

with an average of approximately 100 residues [52]. In mul-

tidomain proteins, each domain may fulfil its own function in-

dependently, or in a concerted manner with its neighbours.

The subdivision in domains presents many advantages. In

comparison with a unique large domain protein, the structure

is more stable and the folding times are accelerated, each do-

main being able to individually fold. The domain formation

appears to be the optimal solution for a large protein to bury its

hydrophobic residues while keeping the hydrophilic residues

at the surface [53]. Finally, the subdivision in domain increases

the protein flexibility [54].

Two domains are said to have a common fold if they have the same ma-

jor secondary structures in the same arrangement with the same topological

connections [55]. One fold may appear in a variety of different proteins [11].

For instance, many enzyme catalysing completely unrelated reactions, have
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the same α/β-barrel conformation (see Fig. 1.7c). Indeed it seems that the evo-

lutionary mechanism has created more and more complex protein structures

simply by assembling the pre-existent conformations: in fact many domain

folds in eukaryotic multidomain proteins can be found as independent pro-

teins in prokaryotes.

The Structural Classification of Proteins (SCOP) database [55, 56] is a largely

manual classification of protein structural domains based on similarities of

their three-dimensional structures. According to SCOP classification, domains

are usually divided in four many categories based on the secondary structural

content. The all-α domains (Fig. 1.7a) have a core built exclusively from α-

helices. The all-β domains (Fig. 1.7b) are formed of antiparallel β-sheets, usu-

ally two sheets packed against each other. The α/β domains (the class includ-

ing the α/β-barrel shown in Fig. 1.7c) are made from a combination of β−α−β
motifs that predominantly form a parallel β-sheet surrounded by α-helices. Fi-

nally the α+β domains are a mixture of all-α and all-β motifs. A different data

base of domain classification, CATH Protein Structure Classification [57], is a

semi-automatic classification and shares many broad features with SCOP.

Molecular evolution gives rise to families of related proteins with similar

sequences and structures. However, sequence similarities can be extremely

low between proteins that share the same structure. There are currently about

45000 experimentally determined protein structures deposited within the Pro-

tein Data Bank (PDB) [58]. However this set contains a lot of identical or very

similar structures [12]. Some fold families are highly populated and are re-

ferred to as super-folds [59]. The most populated is the α/β-barrel domain.

Some proteins are composed by different polypeptide chains that fold sep-

arately in their three-dimensional structure and then aggregate with each other

forming an agglomerate; this is another example of protein quaternary struc-

ture. An example of quaternary structure is represented by hemoglobin shown

in Fig. 1.1.
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(a) (b)

(c)

Figure 1.7: Three examples of very populated domains each of them respectively belonging

to the first three categories according to the SCOP classification. Fig a: a helix bundle domain,

belonging to the all-α class. Fig. b: a β-barrel, example of all-β domains. Fig c: a α/β-barrel,

belonging to the α/β category. In order to point out the conformation regularity, the secondary

structure are represented by ribbons.

1.4 The challenge of protein folding

The unique three-dimensional structure in which the protein is biologically

active is the result of the folding process occurring after (or in some cases dur-

ing) the biosynthesis. Although many works in the last decades have enlight-

ened important aspects of this process, it remains not completely understood
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at present. However, its deep comprehension is of fundamental importance,

not only because it would be an actual step-forward in our basic knowledge,

but also for its practical utility. Each protein carries out a menu of functions

according to its native state conformation, hence the knowledge of the latter is

very useful to understand the role of the protein inside the cell. The experimen-

tal determination of the three dimensional structure is often very difficult and

expensive; on the other hand, the amino acid sequence can be determined in a

quite simpler manner, and the number of proteins whose sequence is known

is extremely large, ∼ 107 [60]. For this reason many efforts are devoted to the

development of techniques which predict the three-dimensional conformation

based solely on the knowledge of the primary structure.

In order to reproduce the folding process and to predict the native state con-

formation, methods borrowed from distinct areas of research, are employed,

according to the actual goal. To predict the three-dimensional conformation

associated to a known sequence, bio-informatics techniques are the most ef-

fective: a powerful method is sequence alignment, a way of arranging the pri-

mary sequences of different proteins (usually the unannotated protein taken

together with annotated ones) to identify regions of similarity that may be a

sign of functional, structural, or evolutionary relationships. Despite the ef-

ficacy of these semi-automatic methods, however, other studies of practical

interest, such as prediction of folding routes (i.e. intermediate structures along

folding) and identification of key residues (i.e. residues involved in binding),

require a deep comprehension of the folding mechanism. The physical ap-

proach can be very powerful for these theoretical investigations.

In this section we want to introduce same known facts and some open is-

sues regarding the folding process. We want also to give a brief overview of

the physical approaches to the matter.

1.4.1 Thermodynamics of the protein folding transition

The amino acid sequence of each protein contains the information that speci-

fies the native structure. As discussed in section 1.1, the Anfinsen experiments

showed that small proteins are able to correctly fold spontaneously in vitro;
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larger multidomain ones need otherwise the action of other proteins called

chaperones. However what happens in vivo is not so clear. The process of fold-

ing often begins co-translationally, so that one extremity of the protein chain

begins to fold while the other portion of the protein is still being synthesised by

the ribosome. Moreover the cellular environment is very crowded with other

proteins and macromolecules: as shown by recent experiments [61, 62], such a

crowding seems to have only a slight influence on folding; the matter however

is a current subject of debate.

Despite this open issues, many facts about the folding of small single-domain

proteins are well established. The physical properties of most of them in the

folded native conformation do not change, or change very little, when the en-

vironment is altered by changes in temperature, pH, or pressure, until a thresh-

old is overcome. When this point is reached the protein denaturation occurs, a

sudden complete unfolding of the protein, invariably associated with a loss of

biological functions. The unfolding transition is a two-state cooperative phe-

nomenon (see Fig. 1.8), with only the native fully folded and the denatured

fully unfolded states present. Partially unfolded structures are unstable rela-

tive to both states. With abuse of language, being far from the thermodynamic

limit, the folding transition is called first order.

As a consequence of the two-state character of folding, a solution of pro-

teins can be well described as a chemical equilibrium of two different com-

pounds, the native state proteins (N ) and the completely unfolded ones (U ).

The equilibrium constant Keq = [N ]/[U ] gives us the difference in free energy

∆GU−N upon the folding conformational change: ∆GU−N = −kT lnKeq, where

k represents the Boltzmann constant and T the absolute temperature. This has

allowed to estimate ∆GU−N , for many proteins obtaining values ranging be-

tween −5 to −15 Kcal/mol. It is a surprisingly small value in comparison to

the typical energies of hydrogen bonds and other non covalent interactions

(∼ 1 − 5 Kcal/mol). A rough explanation of this fact, can be obtained ob-

serving that every scale energies involved in folding are large, but the various

contributions have opposite signs and are comparable in magnitude and so

they cancel each other. It is shown by many works in literature [63, 64, 65] that

upon folding the net difference in energy due to hydrogen bonds formation is
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Figure 1.8: (a) Sketch of the free energy associated to the protein folding of small globular

proteins as a function of the reaction coordinate – abstract one-dimensional coordinate which

represents progress along a reaction pathway. The folding transition is a typical two-state

process, since the free energy presents only two energy minima separated by a single energetic

barrier. The minima correspond to the completely unfolded state and the natively folded

one. (b) Schematic plot of the folded protein fraction. This characteristic plot represents the

signature of a highly cooperative phenomenon. Each of the interactions affecting the protein

molecule (electrostatic, Van derWaals, hydrogen bond) is weak nd contributes very little to the

stability of the protein structure, yet the very large number of these interactions act together

cooperatively to impart high stability to the protein fold.

almost zero: if the protein native state has a large energy gain by forming intra-

molecule hydrogen bonds, it has on the other hand a comparable energy loss

because it is unable to form hydrogen bonds with water molecules. Actually

whether the peptide hydrogen bonds stabilise or otherwise opposes folding is

currently controversial [66]. In a so fine tuned system a small effect can make

the difference.

Since the beginning the kinetics of folding has represented another fasci-

nating puzzle. The time scales of the single-step folding process of small pro-

teins range from 10−3s to 10−1s [8]. A paradox, pointing out how these time

scales are short, was formulated by Levinthal [67]. Assuming for simplicity

that each amino acid can choose only between three different configurations

per torsional angle, then a chain of 100 residues has to explore 9100 ∼ 1095 con-

formations in order to find its equilibrium state. The bond rotation speed can

not be less than 10−13s, implying that the universe would end before the chain

could encounter the native conformation via an unguided search. It is then
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clear that the folding can not occur through a random sampling of the confor-

mational space, evidence that determined the effort spent understanding the

folding pathways towards the native state [68], that means to identify for each

protein the intermediates that define and direct the folding.

Figure 1.9: Sketch of the rugged funnel energy landscape. In order to give an explanation

to the rapidity and reproducibility of folding, Bringelson and Wolynes hypothesised that the

energy profile among the conformational space has the shape of a rugged funnel.

In the late 1980′s an alternative viewpoint emerged [14, 69, 70, 71]; accord-

ing to it what is most important for understanding the folding process is a

global overview of the protein’s energy surface, the energy landscape. There

is no single pathway but a multiplicity of folding routes, since globally the

energy landscape resembles a funnel driving the protein throughout folding.

The folding landscape is necessarily rugged because the polypeptide chains
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sample many conformations during their motion and can make inappropri-

ate contacts between residues. Nevertheless because native contacts and local

conformation energies are more stabilising than their non-native competitors,

there is a smooth overall slope of the energy landscape towards the native

state. This intuition leads to the idea of rugged funnel energy landscape shown in

Fig. 1.9.

In order to understand the connection between amino acid sequence and

folding kinetics, several studies involved concepts borrowed by the statistical

mechanics of disordered systems. The paradigm of this branch of statistical

mechanics is represented by the spin glass model1 [72, 7], in which the concept

of disorder was introduced for describing more realistic systems, such as im-

pure materials. According to the main idea of the model, the high complexity

of such systems can be conveniently described including a stochastic disorder

in the Hamiltonian, and treating the energy in a first approximation as a ran-

dom variable. A feature typical of disordered systems is their frustration: for

the presence of conflicting forces and geometric impositions, the system can

not satisfy all the constraints (geometric and energetic) at the same time. As a

consequence of this fact a unique ground state does not exist, and the system

behaviour is governed by the rugged energy landscape, that is characterised by a

huge number of minima with roughly the same energy, separated by high bar-

riers. A modest change in the system configuration gives rise to a large change

in energy, and low energy states exist that have very different configurations

but are close in energy.

Given the high complexity of the proteinmolecule, determined by the amino

acid heterogeneity and the complex chemistry of the protein backbone, a treat-

ment of the protein chain as a disordered system looks like quite reasonable.

The random heteropolymer model was then introduced [14]. Nevertheless, this

framework can not be completely adapted to the case of protein molecules.

In a situation as the one depicted by the rugged energy landscape, the fold-

ing kinetics would be slow and unreliable, getting easily trapped in one of the

many non-native compact conformations representing an energy minimum.

1A spin glass is a magnetic system where ferromagnetic and anti ferromagnetic bonds are

randomly distributed.
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To overcome this tangle, Bringelson and Wolynes proposed that protein-like

sequences were selected by evolution according to a principle of minimal frus-

tration. The protein amino acid sequences are not random, as supported by the

fact that the number of sequences found in nature is extremely small compared

with the possible combinations of the twenty amino acids2. Therefore mini-

mally frustrated folded structures are the product of well-designed sequences,

which are eligible to promote rapid and reproducible folding and avoid glassy

behaviour. Given a sequence of amino acids, with all the attendant details of

the side chains and the surrounding water, one obtains a funnel-like landscape

(Fig. 1.9) with the minimum corresponding to its native state structure.

The aforementioned considerations stress the importance of the primary

structure in determining the energy landscape and hence the native confor-

mation. Nevertheless the tie between the amino acid sequence and the native

state shape is not so strict. It is proved by experiments [73, 74, 75] that, in some

cases, even a mutation of the 60% of amino acid sequence can leave both the

native state and the folding kinetics unchanged. However, in other cases a

change in a single amino acid can alter completely the protein shape and func-

tionality: usually the most important amino acids to stabilise the structure are

the ones of the protein hydrophobic core. Moreover, as observed in the previ-

ous section, the correspondence between sequences and native state topologies

is many-to-one [11]. If the protein sequences are very few compared with the

possible combination of the twenty amino acids, the different topologies are

even less. Two different proteins can accomplish different functions, though

they are characterised by the same conformation, simply by having different

amino acids in the surface: for instance two enzymes with equal shape and

different amino acids in the active site catalyse completely different reactions.

2If we consider, for instance, a polypeptide chain with 250 residues we have 20250 ∼ 10325

possible sequences, that is a very large number compared with the number of sequences found

in nature [60].
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1.4.2 Theoretical approaches to the protein folding

The Anfinsen experiments provided a firm ground for a physical approach to

the theoretical investigations on protein folding process. The native configura-

tion is the thermodynamic equilibrium state of the solvent-protein system, for

this reason molecular dynamics simulations represent the most suitable tool

in order to study its properties. Nevertheless, at present days a fully ab initio

quantummolecular dynamics method is too much computationally expensive

to be employed even in the case of small proteins. For this reason a careful

analysis become necessary in order to simplify the system reducing the huge

number of degrees of freedom associated to it. In section 1.2.3 we have de-

scribed the most important mesoscopic interactions affecting the system in a

classical semi-empirical view proper of most molecular dynamic methods, but

both the choice of the potential expressions and the tuning of parameters could

result very complicated.

Chemical details are important in order to understand how a given pro-

tein perform its proper function. But if our aim is to study general properties

of the overall class of protein molecules, a coarse grained approach proper of

statistical mechanics is often very useful. The polypeptide chain can then be

represented as a self avoiding walk on a lattice or as the so called “string and

bead” model, a freely jointed chain out of lattice with an hard core interac-

tion responsible for the self avoidance. Each amino acid is then reduced to

its Cα atom, neglecting the side chains and other backbone atoms. However

the attractive interactions between monomers can, according to the simplifi-

cation degree that the model wants to reach, take into account the amino acid

specificity by means of effective potentials. The HP model [76, 77], for in-

stance, considers only a distinction between hydrophobic (H) and polar (P )

amino acids: the energy term VH,H , representing the interaction between two

hydrophobic residues, is negative, while the other two terms, VH,P and VP,P ,

are larger. In this manner the strong attraction imposed between hydropho-

bic residues expresses their tendency to bury themselves into the protein core,

taking into account the solvent effect in the simplest possible way, without

considering it explicitly.
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By means of these simplified models many obscure aspects have been in-

vestigated: first above all the origin of the remarkable regularity of secondary

structures. The many-to-one correspondence between sequences and folds,

moreover, raises the issue of the role of sequence in selecting native state con-

formations. Energetic considerations, such as intra-backbone hydrogen bond

formation, of course cover an important role in selecting native conformations.

In the usual string and bead polymer model, nevertheless, the number of low

energy structures is huge compared with the number of folds, and low energy

does not necessarily imply thermodynamic stability. For this reason, in the lat-

ter approach, the requirement of minimum energy alone could not explain the

presence of both highly symmetrical protein-like structures and few distinctly

shaped folds.

A first work trying to explain the secondary structure presence without in-

voking any chemical and energetic detail is due to Chan and Dill. On the basis

of exhaustive enumerations in lattice models, they proposed that compactness

by itself, a purely geometrical requirement, is sufficient to drive secondary

structure formation [78, 79]. Nevertheless, this revealed itself as an artifact of

lattice structural order [80, 63, 81], since a generic compact polypeptide chain

in the continuum space was shown to account for only a small secondary struc-

ture content [82].

More recent works suggested a selection mechanism based on high des-

ignability for native conformations [45, 83, 85, 84]. In lattice models, a small

number of highly designable structures emerge with a number of sequences

successfully folding into them much larger than the average. The structure

having this property should be particularly stable against mutation and more

thermodynamically stable than other structures, thus yielding more efficient

folding. An idea emerging in this works, and upheld also by successive stud-

ies [86, 87], is that among all possible energetically favoured configurations the

protein backbone will attain those that are optimal, under the action of evolu-

tionary pressure favouring geometrical accessibility.

As proved by recent experiments, the topology of a protein native state ap-

pears to determine the major features of its folding energy landscape [15]. The

folding rate and the distribution of structures in the transition states ensemble,
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results to be determined by the native state topology, while, at the same time,

they are only weakly affected by sequence mutations that leave the topology

unchanged.

Purely geometrical considerations seem to be important in order to under-

stand the special properties of protein native state conformations. The tube-like

polymer model that will be the subject of the following chapter, is the devel-

opment of the aforementioned intuitions and enlightens the importance of the

intrinsic symmetry of the polypeptide chain in selecting the regular protein-

like motifs.



28 A physical approach to protein folding



29

Chapter 2

The tube-like polymer model

In this chapter we want to introduce the very simplified model of the tube-

like polymer; its aim is to give some insight into the open issues concerning

the high regularity and reproducibility of protein conformations. As previ-

ously discussed in section 1.4.2, many indications suggest that pure geometri-

cal criterions should play a crucial role in selecting the protein-like structures.

According to the main idea, underlined in previous works [86, 87], the large

basin of attraction towards the native state can be a consequence of distinctive

qualities not just of the amino acid sequences, but rather of the native state

conformations themselves: the funnel formation in the energy landscape may

be determined by the property of the protein structures of being easily geo-

metrically accessible.

The importance of geometrical requirement in determining the equilibrium

conformations of a system is evident in crystal lattices. The exigency of ideal

packing and periodicity determines a priori the menu of all possible lattice

conformations: the Russian mathematician Fyodorov first catalogued the 230

space groups corresponding to the discrete symmetry operations including

translation, reflection and rotation; the different space groups determine all

the possible molecule arrangements in a crystal, independently of the kind of

forces acting between the molecules. This gives us a natural explanation of the

high regularity of crystals and of the many-to-one correspondence between

chemical compounds and lattice structures: the lattice conformations are pre-

determined by symmetry principles and any chemical compound has only to
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pick out among the possible structures the most favourable depending on the

specific interactions.

Following intuition one may suppose, hazarding a comparison between

protein native states and crystal structures, that in order to satisfy the require-

ments common to all proteins, few conformations are selected among all pos-

sible compact structures. A limited number of peculiar conformations could

be able to respond to the energetic and geometrical exigency of proteins back-

bone, warranting a fast and reproducible folding. This could be the origin of

the ubiquity of secondary structures in proteins.

In order to clarify these ideas we can try to reformulate the concept of ‘ge-

ometric accessibility’, that is rather vague and difficult to deal with in the con-

tinuum space. We can observe that it should be connected with the free vol-

ume available around the conformation such that the protein backbone can be

moved within it without the native state topology is drastically changed.

Wishing to address this issue within a simplified model we need a mathe-

matical tool to catch this property. For this purpose we can borrow the notion

of thickness introduced in the context of knot theory [88, 89, 90]. The thickness

associated with a smooth curve is the radius of the larger tube allowed with

uniform circular radius and smooth surface, which can be inflated around the

curve. Therefore to put our ideas in a concrete form we identify then the avail-

able free volume around a polypeptide chain conformation with the volume of

the tube inflated around the corresponding curve. This allows us to study the

variational principle of finding the ideal shape of a curve subject to compaction,

that is the curve conformation associated with the maximum thickness un-

der some defined compactness constraint. This problem has the equivalent

formulation of finding the most compact shape of an impenetrable tube with

fixed thickness. In such a way it becomes a problem of optimal packing, a

generalisation of the simpler (but not really trivial at all) issue of finding the

closed packing of identical impenetrable spheres, whose solution, the FCC

lattice, was conjectured almost four centuries ago by Kepler, and has reached

the mathematical demonstration only few years ago [91, 92, 93].

The results of this basic model, that we are going to analyse in this chapter,

are remarkable: an impenetrable tube subject to compaction leads, without any
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additional ingredient, to a limitedmenu ofmarginally compactmotifs [17], char-

acterised by high regular shape. In this set helices and double helices emerge

with conformational parameters very closed to the respective ones of helices of

proteins and double helix of DNA [16, 94]. This supports our hypothesis that

a simple geometric optimisation underlies the selection of elementary motifs

shape in proteins and biomolecules in general.

A determinant role in this framework is covered by the intrinsic symme-

try of the polypeptide chain. The fact that it is modelled as a tube instead

of a chain of spheres represents the main feature of this model. As men-

tioned in section 1.4.2, studies conducted on ‘string and bead’ models have

demonstrated that compaction by itself is unable to reproduce regular con-

formations like secondary structures. This is because the spheres, the ‘string

and bead’ model building blocks, does not represent the suitable object to

address the uniaxial symmetry of the amino acid chain. In the same man-

ner as crystals, whose macroscopic regularity reflects the symmetry of the

building blocks compounding it, helices and sheets, the motifs of protein con-

formations, are the macroscopic expression of the intrinsic anisotropy of the

polypeptide chain.

In order to give an overview of the studies conducted in these few years

on the tube-like polymer model we will start introducing its basic ingredient,

the thickness, whose mathematical formulation [90], both for smooth curves

and for discrete chains, will be the subject of section 2.1. In the same section

we will illustrate also the analysis on the ideal shape of a curve subject to com-

pactness constraint [16, 95] (different compactness constraints were tested and

their different results will be discussed) and we will describe in detail the first

remarkable result: the ideal helix, having the good property of representing the

tube helical conformation without ‘holes’, was obtained as the ideal shape of a

tube with local compaction constraints; its importance stems from the fact that

its pitch to radius ratio is very closed to the α-helix one. Following the first en-

couraging results, the tube-like polymer model was formulated [17, 96, 19], and

will be mentioned in section 2.2. The ground state conformations of a discrete

chain subject to the thickness constraint, and with self-attracting monomers,

were examined. Tuning the parameters of the system the marginally com-
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pact ‘phase’ emerges in between the two typical phases of polymers, compact

and swollen. The peculiar features characterising this phase make it the ideal

setting for describing biopolymer conformational properties. The idea of pre-

sculpted energy landscape is suggested by these results [20]. It is able to gather

all the intuitions given in this paragraph: instead of each sequence shaping its

own free energy landscape, the overarching principles of geometry and sym-

metry determine the menu of possible folds that sequences can choose from.

Finally a significant development of the model will be the object of section 2.3

[21]. A simple attractive interaction is introduced that is able to catch the pro-

tein tendency to collapse induced by the hydrophobic effect. This is simply

proportional to the area of the buried tube regions, hidden from solvent parti-

cles. We argue that the thickness, on one hand, represents the suitable tool for

catching the steric constraints of the polypeptide chain, while the buried area,

on the other hand, represents an efficacious and physically motivated way in

order to describe a self-interacting polymer.

2.1 Optimal packing of a thick tube

The notion of thickness was first introduced in the mathematical context of

knot theory with the purpose of studying the problem of the ideal shape of a

knot, formulated by Katritch et al. [89, 97]. Given a closed curve in the three-

dimensional space, we can think to enclose it with a tube having a uniform

circular radius. Inflating the tube a limit is reached when the tube can not

grow anymore, since it either ceases to be smooth, due to local bending of

the chain, or exhibits self-intersections, due to the proximity of two different

portions of the chain. The tube radius associated to this extremal limit defines

the thickness of the closed curve. Finding the ideal shape of a knot simply

means to seek the curve with maximum thickness among the class of closed

curves with fixed length associated to a given knot topology.

This is actually a problem of optimisation of volume occupation. Indeed

reversing the perspective it is equivalent to looking for the shape that a tube

with fixed thickness would take when tied in a given knot in the most com-
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pact manner, that means in this case to use the minimum tube length possible.

Similarly two equivalent formulations can be pointed out also for the simpler

analogous issue: the problem of closest packing of an identical hard spheres

set can be alternatively formulated as the determination of the arrangement of

a set of points in a given volume that results in the minimum distance between

any pair of points, d = mini<j |xi − xj|, being as large as possible [98]. Notice

that in this case we are interested in the bulk optimal arrangement, neglecting

the boundary effects.

Our aim is to generalise the notion of ideal shape of a knot, to the class of

open curves: we replace the restriction of being closed and hence with fixed

topology with an explicit compaction constraint, for instance a confinement in

a finite volume. Therefore among the class of open curves with fixed length

and a defined compaction constraint, we search for the ones maximising their

thickness. Purpose of these preliminary studies is the search of a first confir-

mation of the intuitions illustrated in the beginning of this chapter: the sec-

ondary structures can be selected by an optimisation of volume occupation re-

quirement, and therefore they could just represent the ideal shapes of a chain,

among all the energetically favoured, hence compact, conformations.

In this section we will introduce the analysis done on the ideal shape of a

compact curve, describing the simulation carried out by Maritan, Trovato et

al. [16, 95]. To face this problem a mathematical formulation of thickness is

necessary and will be the subject of the first subsection. We will proceed along

the general guidelines provided by Gonzalez and Maddocks [90], introducing

the notion, immediately related to the thickness, of global radius of curvature,

an extension of the local radius of curvature concept. First defined for smooth

curves, it can be easily adapted to the case of discrete chains, providing thus a

natural tool for numerical implementation.

2.1.1 Global radius of curvature

In mathematical language, a curve Γ is a continuous three-dimensional vec-

tor function R (s) of a real variable s with 0 ≤ s ≤ L. We will assume Γ

to be smooth and ‘simple’: the first condition implies that the function R (s)
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is continuously differentiable to any order and the tangent vector R′ (s) is

nonzero for all s, while the second one means that it has no self-intersections,

R (s1) = R (s2) ⇔ s1 = s2. We do not impose the condition of closure, hence in

general we will have R (L) 6= R (0).

A smooth solid tube of constant radius δ centred on Γ may be defined, for

sufficiently small δ, as the union, over all points x ∈ Γ, of all the circular disks

of radius δ centred at x and contained in the normal plane to Γ at x. For non-

straight curves, the thickness of the curve, ∆ [Γ], is the critical radius above

which the tube either ceases to be smooth or exhibits self-contacts. It is simple

to show [99] that the tube becomes locally singular when its radius δ becomes

equal to the local radius of curvature RLC (x) of Γ at some point x1. On the

other hand, the occurrence of self-contacts between different portions of the

tube is a non-local effect. It can be demonstrated [99] that it happens when two

non-adjacent points on Γ of closest approach have a distance less then 2δ. A

couple of points, x and y, of closest approach are defined by having the vector

x− y orthogonal to the tangent vectors to Γ at both x and y. Indicating with Ω

the set of all pairs of points of closest approach the tube thickness can then be

formalised as

∆ [Γ] = min

{

min
x∈Γ

RLC (x) ,
1

2
min
x,y∈Ω

|x − y|
}

. (2.1)

In words, the thickness is either the minimum local radius of curvature or half

of the minimum distance of closest approach, whichever is smaller. The notion

of global radius of curvature [90] which we are going to introduce allows to

capture simultaneously both possibilities.

Any three non-collinear points x, y, and z in three-dimensional space de-

termine a unique circle. The radius of this circle defines thus a scalar function

associated to each tern of points, r (x,y, z). We call it circumradius, and we can

easily calculate it using the formula

r (x,y, z) =
|x − y| |x − z| |y − z|

4A (x,y, z)
, (2.2)

1The local radius of curvature is simply the radius of the circle which locally best approxi-

mates the curve.
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where A (x,y, z) is the area of the triangle with vertices x, y, z. When the

points x, y, and z are distinct but collinear the circumcircle degenerates into a

straight line, and we assigne a value of infinity to the corresponding circum-

radius r (x,y, z). Consider now a tern of points belonging to Γ, x = R (s1),

y = R (s2) and z = R (s3). By definition, in the double limit s2, s3 → s1, the

circumradius associated to that tern become the local radius of curvature

lim
s1,s2→s3

r (x,y, z) ≡ r (x,x,x) = RLC (x) . (2.3)

Following [90], we can then generalise the concept of local radius of curvature,

introducing the notion of the global radius of curvature RGC (x) at each point :

∀x ∈ Γ, RGC (x) ≡ min
y,z∈Γ

r (x,y, z) . (2.4)

It immediately follows from definition that global radius is bounded by local

radius:

RGC (x) ≤ RLC (x) ∀ x ∈ Γ . (2.5)

Indeed, in the case of smooth and simple curves, it can be proved [90] that the

optimality condition associated with the minimization in Eq. 2.4 implies that

the global radius RGC (x) may be either the local radius of curvature RLC (x),

or the strictly smaller radius of a circle containing x and another distinct point

y at which the circle is tangent. Thus, to determine RGC (x), one need consider

only the minimization in Eq. 2.5 with the restriction y = z. In the trivial case

of a straight line, the global radius is infinite for all points.

It is a quite remarkable result of Gonzalez andMaddocks the proof that, for

any smooth simple curve Γ, the minimum global radius of curvature over all

points x ∈ Γ is exactly its thickness ∆ [Γ]:

∆ [Γ] = min
x∈Γ

RGC (x) . (2.6)

We will not go in depth with the demonstration of Eq. 2.6, that can be found

in [90]. We want to highlight both the conceptual and the practical importance

of such a reformulation of the thickness notion. The connection between thick-

ness and global radius of curvature allows to characterise thickness in a vary

simple way, by taking into account at the same time both local and non-local
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effects, which are instead explicitely distinguished in Eq. 2.1. The definition of

thickness as the minimum value of the circumradius function over all triplets

of points is also more apt to numerical implementation, since in computer sim-

ulation one is naturally dealing with discrete chains.

2.1.2 Ideal shape of a chain subject to global constraints

The fundamental tool of global radius of curvature allows us to face the opti-

misation problem of ideal shape of a compact curve. It can be formalised in

this way: let R denote the set of all simple, smooth curves Γ with fixed length

L > 0 satisfying a given compactness constraint, the ideal shapes Γ∗ in R is

then the curve satisfying the condition:

∆ [Γ∗] = sup
Γ∈R

∆ [Γ] . (2.7)

Note that Eq. 2.7 immediately yields the trivial result, in agreement with in-

tuition, that the optimal shape in the absence of any compactness condition is

the straight line, which has infinite thickness.

The existence of an ideal smooth shape Γ∗ achieving the supremum in Eq.

2.7 has not been demonstrated yet, even in the simpler case of closed curves

with fixed knotted topology. In this latter case it is possible to derive a neces-

sary condition, implied by Eq. 2.7, that any smooth ideal shape must satisfy

[90]. A smooth closed curve can be ideal only if its global radius of curvature

function is constant and minimal on every curved segment of the curve. The

proof given in [90] can not be easily generalized to the case of a generic com-

pactness constraint. Nevertheless, this property was found to be numerically

verified.

we have found this property to be verified in all our simulations.

Before describing the simulations we need to generalise the notions just in-

troduced to the case of a discrete curve. A discrete curve ΓN is an ordered

set of distinct points {x0, . . . ,xN} in three-dimensional space. To any discrete

curve ΓN one can associate a continuous, piecewise linear curve Γ by connect-

ing x0 to x1 with a straight line and so on. For simplicity we will consider the

particular case in which all the bond distances between successive points are
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fixed to the same value, b, such that the chain has a length L = b(N + 1). Ex-

tensions of definitions introduced in the previous section are straightforward

[90]. The local radius of curvature is simply the radius of the circle containing

three consecutive points:

RLC (xi) ≡ r (xi−1,xi,xi+1) . (2.8)

For a discrete curve is well defined also the non-local radius of curvature:

RNLC (xi) ≡ min
0≤j<k≤N

j 6=i6=k
k−j+|k−i|+|j−i|>4

r (xi,xj,xk) , (2.9)

a quantity being able to keep track of purely non-local effects measuring the

proximity of different portions of the chain. Therefore the global radius of

curvature simply combines both the quantities: at each point xi of ΓN it is

defined as

RGC (xi) ≡ min
0≤j<k≤N

j 6=i6=k

r (xi,xj,xk) . (2.10)

Also in this case the quantity RGC (xi) can be put in relation to the thickness,

∆ [ΓN ], the last being the radius of the smallest circle containing three distinct

points of ΓN :

∆ [ΓN ] ≡ min
0≤i≤N

RGC (xi) . (2.11)

The functional ∆ [ΓN ], defined among the set of all discrete curves with

fixed b, N and a given compaction constraint, can easily optimised numeri-

cally, using the simulated annealingmethod [100]. This method was extensively

employed in many analysis carried out in this thesis, and it is described in

appendix A. When dealing with discrete curves a pairwise self-avoidance

constraint need to be imposed in order to avoid trapping in self-intersecting

structures or convergence to pathological optimal shapes. Therefore the curves

have then to satisfy the condition |xi − xj| ≥ R0 for all pairs of different non-

consecutive beads, where R0 was chosen slightly greater then b.

In the first simulations [95, 16] global compactness was imposed in two dif-

ferent ways obtaining the same results: in the first case the whole chain was

confined in a cube with side l, while in the second case the gyration radius of
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the chain was enforced to be less than a fixed value,G. The gyration radius RG

of a discrete chain in a conformation ΓN is the quadratic mean bead distance

from the chain center of mass:

R2
G [ΓN ] =

1

N + 1

N
∑

i=0

(xi − xcm)2 , xcm =
1

N + 1

N
∑

i=0

xi ; (2.12)

it is usually employed in polymer physics as a typical characteristic length of

the chain.

(a) G = 6.0, ∆ = 6.42 (b) G = 4.5, ∆ = 3.82 (c) G = 3.0, ∆ = 1.93

(d) l = 22.0, ∆ = 6.11 (e) l = 9.5, ∆ = 2.3 (f) l = 8.1, ∆ = 1.75

Figure 2.1: Examples of optimal conformations. The chains are made up of N = 30 equally

spaced points, the spacing between neighbouring points, b, is defined to be 1 unit. In the top

row the optimal shapes obtained by constraining the string with a radius of gyration less than

G are shown. The optimal shapes displayed in the bottom row otherwise were obtained by

confining the string within a cube of side l.

The results obtained from simulations can be summarised as follow: if the

chain has enough space (large values of G or l) its optimal conformation is, as

expected, a straight line; for very low values of G (l), on the other hand, the

conformations maximising the thickness are disordered globules completely
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lacking in regularity. The optimal shapes obtained, varying the parameters l

and G in the intermediate regime, are shown in Fig. 2.1. For both the meth-

ods, few very regular conformations appear, helices and saddles, that are close

competitors for optimality.

2.1.3 Ideal shape of chain subject to local constraints:

the ideal helix

The optimal conformations obtained with global constraints resulted strongly

affected by boundary effects: they depend on the value of the ratio of the chain

length over the typical length controlling the size of the chain. This change-

able scenario is somewhat unsatisfactory, and the existence of a single regular

best packing chain conformation, the bulk conformation, would be much more

appealing. To overcome this problem, studies were carried out on the ideal

shape of a chain in the limit of infinite length, enforcing the compactness lo-

cally. Specifically, in the simulations, the compactness was imposed [95] on

each set of j consecutive beads, either forcing it to stay in a finite volume (i.e.

a cube of side lj), or fixing an upper limit, Gj , to its gyration radius.

For both the methods, by varying the parameters (j, lj , Gj) within a broad

range of values, we find always the same optimal configuration, that is the ideal

helix, as shown in figure 2.2. It is an extremely regular helix since it is charac-

terised by a degeneracy of local and non-local radius of curvature, which result

along all the curve equal within 0.1%2. The geometrical meaning of this feature

can be understood when thinking about the tube swelling uniformly around

the curve. This equality implies that the tube at the same time ceases to be

smooth and exhibits self-contacts: indeed there is no free space left either be-

tween consecutive turns of the helix or in the plane perpendicular to the helix

axis. Optimality requires local and non-local effects to be on the same footing,

being in this way the occupation of three-dimensional space optimised, as was

our aim.

A particular value of the pitch to radius ratio, c, characterises the helix hav-

2The same degeneracy characterises also optimal shape with global compactness condition.

But in this case the equality is only within a 1% of precision.



40 The tube-like polymer model

ing this property: simple analytic calculations, done for the continuous curve,

yield the value c ≡ c∗ = 2.512 . . . . This is a special critical value separating

two different regimes: if c > c∗, the tube would stop swelling because of lo-

cal singularities, leaving free space between consecutive turns; if c < c∗, the

tube would stop swelling due to self-intersections between consecutive turns,

leaving free space along the axis of the helix.

Figure 2.2: Optimal helix with local constraints; N = 66, j = 6, Gj = 1.0. (A) Bare skeleton

of the optimal helix connecting the discrete beads. (B), (C) Side and top views of the same

helix inflated to its thickness.

The ideal helix represents a remarkable result: the helical conformation ex-

hibits translational invariance along the chain, expressing in this way the nat-

ural symmetry of the system; no boudary effects influence the conformaion,

it represents then a bulk-like solution to the best packing problem for chains

[16]. Moreover, the structures of naturally occurring proteins taken from the

Protein Data Bank were analysed, finding that the two different kinds of he-

lical motifs, the α-helix and the collagen helix, appearing most frequently in

protein structures, share the same peculiar geometry as optimal best-packing

helices.
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Figure 2.3: (a) Analysis of the first α-helix of bacteriorhodopsin (pdb code 1c3w): in the top

the values of the local and non-local radii of curvature as a function of sequence position, in

the bottom the respective values of f . (b) Plot of f for a single collagen helix (pdb code 1aq5):

we considered the residues 14-41; the same plot for each of the three collagen helices would

simply superimpose.

In figure 2.3, we plot the function f (xi) defined as

f (xi) ≡
RNLC (xi)

RLC (xi)
, (2.13)

for the discrete chains formed by the backbone Cα atoms of the helical seg-

ment of two different protein structures in Protein Data Bank: the first α-helix

of bacteriorhodopsin (a remarkable α-helix), and a single collagen helix of the

protein 1aq5, present in the chicken cartilage matrix tissue. Despite the two

helices are characterised by a rather different geometry, e.g. a different num-

ber of residues per turn (3.0 instead of 3.6), both of them have the ratio f (xi)

oscillating closely around the optimal unity value. This hints that, despite the

complex atomic chemistry associated with the hydrogen bonds and the co-

valent bonds along the backbone, helices in proteins satisfy optimal packing

constraints [16]. This result implies that the backbone sites in protein helices

have an associated free volume distributed more uniformly than in any other
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conformationwith the same density. This is consistent with the observationwe

put forward, that secondary structures in natural proteins have a much larger

configurational entropy than other compact conformations [86].

2.2 The thickness as an ingredient of a biopolymer

model

The global radius of curvature provides us an effective tool to describe poly-

mers with non-zero thickness. Starting by the worm-like chain model, where

the polymer is reduced to a continuous chain, we can catch the impenetrable

tube of radius ∆ inflated around the curve simply imposing a three-body hard

core potential among all the terns of points, (x,y, z, ), belonging to the chain:

V3 (x,y, z) =

{

+∞ for r (x,y, z) < ∆

0 otherwise
, (2.14)

where r(x,y, z) is the circumradius function. The thickness is then the natu-

ral generalisation to lines of the hard-core potential catching the spherical ex-

cluded volume surrounding point particles, when interacting each other with

a strong repulsion.

When polymers are modelled with continuous curves, a difficulty arises

trying to describe their self-interaction through the standard pairwise poten-

tial. The latter involves a two-points distance that is unable to distinguish

whether two neighbouring points are adjacent along the chain or otherwise

belonging to distant curve regions approaching each other because of a curve

bending. The standard hard-core repulsive interaction imposed among the

curve points would necessarily lead to singular contributions to the Hamilto-

nian of the system, hence the energy would be infinity for all the chain confor-

mations. In order to impose a self-avoidance upon a curve without improper

singular terms, the Dirac delta function can be employed, adding to the Hamil-

tonian a potential energy

E (Γ) =

∫ L

0

∫ L

0

δ (R(s1) − R(s2)) dΓs1
dΓs2

, (2.15)
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where Γ is a chain conformation and dΓs is the element of arc length at po-

sition s along the curve. But this model does not capture effects of non-zero

thickness. The three-body hard core potential defined by the global radius of

curvature, on the contrary, is free of singularities and at the same time provides

an intrinsic length scale appropriate for modelling the thickness of a physical

system. It is indeed able to capture in the proper way both the local and non-

local effects: we must remember that when the three points of expression 2.14

become coincident it does not arise any singularity, we recover instead the lo-

cal curvature radius of the curve.

To sum up, a two-body function is the proper tool tomodel the hard core re-

pulsion of point particles, zero-dimensional objects. Likewise the self-avoidance

of a thick line, a one-dimensional object, requires a three-body function. This

analogy hints at an empirical rule, that is in fact followed by the two-dimensional

counterpart too: as described in reference [102], a self-avoiding surface, S, can
effectively be described using a four-point potential, involving the radius of

the unique sphere passing to one point x ∈ S and tangent to S in an another

point y3.

Despite its good mathematical properties, one should observe that thick-

ness is not a priori necessary to describe the polypeptide chain, because of the

discreteness of the latter. Being it a collection of atoms bound together, a string

and bead model, which does not involve any singularity problem, should be

adequate to catch its geometrical features. It is a fact nevertheless that the

preliminary results obtained studying the ideal shape of a compact curve are

remarkable: a tube, when subject to compaction, behaves in a qualitatively

different way compared to a chain of spheres, and the peculiar aspects of the

former in respect to the latter seem to be the missing ingredients in order to

properly describe the polypeptide chain.

To further investigate this point, we can study a very basic model [18, 19,

96], the tube-like polymer model. Given a chain with a fixed thickness, we impose

an attractive interaction between the different parts of the chain, and we seek

for the conformations of minimum energy. In this way the issue of finding

3It is a particular four-point function since the tangent plane to S at x may be constructed

through a limit of three points.
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the ideal shape of a knot is reversed: instead of maximising the thickness of a

chain subject to compaction we seek for the most compact conformation of a

chain subject to a thickness constraint. We have observed in previous section

that the two problem are in principle equivalent. Anyway, as we are going to

see, we will be able in this manner to highlight the peculiar features carried by

the thickness, when this ingredient is added to the standard string and bead

model.

2.2.1 Compact conformations of a tube-like polymer

Consider a polymer modelled as the discrete chain described in the previous

section: a set of N points tethered together with fixed bond distance, b. Let

choose for the self-interaction of the chain the Hamiltonian

H (Γ) =
∑

0≤j<i−1≤N

V2 (xi,xj) +
∑

0≤i<j<k≤N

V3 (xi,xj,xk) . (2.16)

where V3 is the three-body hard core potential aforementioned, while V2 is

simply a square-wall potential,

V2 (xi,xj) =















+∞ for |xi − xj| ≤ 2R0

−ǫ for 2R0 < |xi − xj| ≤ R1

0 otherwise

. (2.17)

Remember that in the case of a discrete chain, as mentioned in section 2.1.2, a

pairwise hard-core potential must be added to the thickness constraint, in or-

der to avoid trapping in pathological structures. For simplicity we can choose

ǫ = 1, in this case the energy of a polymer configuration is proportional to

the number of contacts, that is the number of monomer pairs that are in a dis-

tance closer than R1. With this simplified Hamiltonian the minimum energy

conformations of the chain varying the ratio ∆/R1 can be studied. Careful

numerical simulations, through the simulated annealing method, have been

done [18] for short chains (several values of N between 10 and 20 were tested

obtaining the same behaviour), and the results are summarised in Fig. 2.4.

Large values of thickness, with respect to R1, prevent the tube to form con-

tacts, so the chain is in a swollen configuration. For small values of ∆/R1 on
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the other hand, the chain collapses in very compact conformation, forming

many contacts. This regime is characterised by a large number of minimum

energy conformations, feature typical of a purely string and bead model. In-

deed if ∆/R1 << 1, the thickness effects are negligible and we recover the

behaviour of a chain of spheres interacting only with the second term of the

2.16: a disordered liquid-like phase is reached when freezing such a polymer

at low temperatures [103], preceding a solid-like phase, that presents a crys-

talline order. For ∆/R1 ≃ 1 finally the thickness strongly affect the system

determining a peculiar character. We find in this regime a few number of very

regular ground state conformations: helices, saddles and planar hairpins. The

large degeneracy of the compact regime is strongly reduced and the confor-

mations are characterised by a few number of contacts, hence we shall refer to

this ‘phase’ as marginally compact.

Thickness selects in the marginally compact phase conformations with re-

markable geometrical features. Both helices and planar hairpin, obtained in

the simulations, catch the microscopic symmetry of the basic element com-

pounding the system, the tube-like chain. The anisotropy of the latter indeed

determines in its compact state the breakdown of the discrete translational and

rotational invariance typical of the best-packed conformations of a spheres set,

arousing rather uniaxial and biaxial arrangements.

In the following subsection we will give a detailed comparison between the

conformations obtained by the tube-like polymer model and the motifs form-

ing the building block of proteins. The similarity is strong, and this is quite

surprising because the model neglects any sequence specificity. This indicates

that the intrinsic anisotropy of the polypeptide chain covers a fundamental role

in selecting protein conformations. Indeed we can have a confirmation of this

idea observing that many chemical properties of this polymer enhance its lo-

cal uniaxial symmetry. The partial double-bounded nature of the peptide bond

is responsible of the high local bending rigidity of the chain. Moreover since

the Van der Waals radius is reduced when two atoms are covalently bound

together, when modelling the polypeptide chain with a string of spheres, we

should impose that each of them overlaps with its neighbours. The tube is the

simplest geometry well fitting the shape of this object.
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Figure 2.4: Sketch of the different regimes, their characteristics and the associated ground

state structures, found for short tubes in the (∆, R1) plane. It summarises the results obtained

in the simulations described in ref. [18]. The value ofR0 has been set to 0.55 where b represents

the unit of length.

The effective thickness of the polypeptide chain is determined not only by

local rigidity but also by non-local effects. As already mentioned, in order to

accommodate side chains enough free space has to be left around the backbone

when reaching the compact conformation. Besides, the attractive interaction

between distant segments of the chain approaching each other , is optimised

when the two segments lie side by side4, which strongly reminds the behaviour

4It is a feature of thick chains in general (see references [96, 19]). Anyway the requirement

of parallelism is particularly strong in the case of peptide hydrogen bond. Quite rigid geomet-

rical constraints characterise this interaction as they can be observed through an analysis on

the PDB [20].
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Figure 2.5: Comparison between building blocks of biomolecules (in the top row) and

ground state structures associated with the marginally compact phase of a short tube (bot-

tom). The Hamiltonian of the system is given by expression 2.16, where b = 1 and R0 = 0.55.

For the results shown here ∆ ranges over the values corresponding to the marginally com-

pact phase (the dashed region in Fig. 2.4), while R1 is fixed to 1.6. The structure (A1) is an

α-helix of a naturally occurring protein, while (A2) and (A3) are the helices obtained in the

calculations for ∆ ≃ 0.8: (A2) has a regular contact map whereas (A3) is a distorted helix in

which the distance between successive atoms along the helical axis is not constant but has pe-

riod 2. Helices analogous to (A3) occur, e.g., in the HMG protein NHP6a [104] with pdb code

1CG7. The structure (B1) is a helix of strands found experimentally in Zinc metalloprotease

[106] (pdb code: 1KAP), whereas (B2) shows the corresponding structure (∆ ≃ 0.88) obtained

in computer simulations. The structure (C1) shows the “kissing” hairpins of RNA [105] and

(C2) the corresponding conformation obtained in simulations with ∆ ≃ 0.95. Finally (D1) and

(D2) are two instances of quasi-planar hairpins. The former is found in many experimental

structures while the second is a typical conformation found in simulations when ∆ > 0.98.

The sheet-like structure (D3) is obtained for a longer tube.

of a tube upon compaction.

Thework of Ramachandran has demonstrated that the excluded volume ef-



48 The tube-like polymer model

Figure 2.6: (a) Idealised sketch of the conformations found through numerical simulations

with three-distinct chains [21]. The interaction among the monomers is given by the three-

bodies potential V3 of Eq. 2.14 and the square-wall potential V2 of Eq. 2.17 acting between

non-consecutive beads. We have fixed as usual b = 1, R0 = 0.55 and R1 = 1.6. The tubes

was placed inside a hard-wall spherical box of radius 9.0; we have verified that the walls of

the box do not influence the conformations shown. Two planar arrangements were found

for ∆ ≃ 1.10, both of them forming the same number of contacts. These two conformations

satisfy the property of ideal conformation, having the local radius of curvature equal of the

non-local one. The appearance of planar zigzagging structures is a distinctive feature of the

discrete nature of the chain. In the continuum limit the three chains are unable to aggregate

in the case ∆ > R1/2, because two points belonging to different chains can not come closer

than 2∆. Discrete chains otherwise, through these planar motifs are able to form contacts

despite the large value of the thickness. It is possible to demonstrate analytically [18] that

the perfect planarity is required in order to reach the best packed arrangement in the limit

∆ ≃ 1.2124. (b) Schematic representation of a parallel β-sheets. The resemblance between

model and experiments is stronger, when identifying the interaction centres in the right with

both the N −H and C −O bonds in the left, instead of the Cα atoms as usual.
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fects due to the backbone atoms are able by themselves to provide a rationale

for to the ubiquity of helices and sheets in protein native states. The rotational

angles allowed, as we have stressed in section 1.3, are independent by the spe-

cific amino acid (with the exception of glycine and proline), which determines

the general character of these important constraints. We can argue that, in or-

der to construct a simplified model for the polypeptide chain, the thickness

represents the key ingredient eligible to catch the steric effects in the proper

manner.

2.2.2 Secondary motifs of the marginally compact phase

Slight changes were tested in the tube-like model described in the previous

section [95]. Simulations were performed varying, for instance, the attractive

potential in the Hamiltonian 2.16 (i.e. replacing the square-wall potential with

a Lennard-Jones interaction), or considering longer chains. Anyway the tube

behaviour has resulted strongly resistant to these variations. In particular the

existence of the marginally compact phase seems to represent a peculiar char-

acteristic of the thickness: it presents the same features and include more or

less the same conformations for most of the model versions considered.

Let us now enter in details with the comparison between the conforma-

tions found in the marginally compact phase and the elementary motifs in

biomolecules. A close similarity was found between the tube-like polymer

ground states and the secondary structures in proteins; other marginally com-

pact conformations moreover bear a qualitative resemblance to experimental

structures of RNA and DNA.

A summary of the results obtained by the simulations, described in pre-

vious section, and the respective biopolymers motifs, is reported in Fig. 2.5.

Increasing the value of ∆/R1 first helices and then planar hairpins appear. In

the middle other conformation occur such as saddles, irregular helix and helix

made up of strands.

The helix depicted in Fig. 2.5 (A1), is the ideal helix described in section

2.1.3. As already mentioned it has the same pitch to radius ratio of the α-helix,

and thus represents the structure that mostly fits the experimental observa-
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Figure 2.7: Distribution of the local thickness of the native structures of 30 proteins [96].

Reducing the polypeptide chain to a discrete chain of Cα atoms the global radius of curvature

was computed for each monomer. The peaked distribution shows that it is a good approxima-

tion to consider a protein as a tube of uniform thickness of around 0.27 nm.

tions. The planar hairpin represents a noteworthy result too. Its strong sim-

ilarity with the β-hairpin 5 has encouraged simulations with longer chains in

order to seek for planar conformations able to reproduce β-sheets. The result is

reported in Fig. 2.5 (D3), but extensively studies were done on a system com-

posed with more short chains, since a long chain is more difficult to handle

with numerical simulations6. In Fig. 2.6 we report the conformations obtained

with three distinct chains: the tendency to form planar structures is strong in

that particular range of parameters which is a remarkable result. These struc-

tures nevertheless can not be completely superimposed with β-sheets. The Cα

atoms form in β-sheets a zigzag across the plane of the strands, whilst the pla-

nar structures of our tube, are characterised by a zigzag lying on the plane.

The resemblance nevertheless is stressed by the fact that two different types of

planar conformations were found. Each of them is characterised by a peculiar

5The β-hairpin consists of two strands that are adjacent in primary structure oriented in an

antiparallel arrangement and linked by a short loop of two to five amino acids
6As described in appendix A a typical difficulty of the simulated annealing method is to

explore extensively all the conformational space of the systemwithout being trapped in locally

stable states which does not represent the real ground state. The longer the chain the bigger

this problem.
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pattern of contacts that can be related respectively with the two arrangements

in β-sheets, parallel and antiparallel.

Figure 2.8: An all atoms representation of a segment of protein backbone (thin coloured

lines) together with its corresponding backbone ’tube’. The tube is not inflated up to its maxi-

mum thickness for convenience of visualisation.

The ability of the tube-like polymer model to remind bio-molecules mo-

tifs is not restricted to proteins. The comparison between the saddle and the

“kissing hairpin” of RNA is shown in Fig. 2.5 (C1) and (C2). Moreover, in our

simulations, a double helix was frequently recovered as the ground state too.

It presents the same property of optimal volume occupation of the single helix,

being its local and non-local radius equal and minimum in each point of the

chain. Analytical studies on the ideal double-helix continuous analogous have

yielded the value of 2π for its pitch to radius ratio, which is within 4% of the

value in the double-helix of DNA.
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In order to have a physical estimation of the typical length scales in pro-

teins, the thickness of the polypeptide chain was measured [96]. Many pro-

tein structures in the PDB were analysed, and the global radius of curvature

defined by Eq. 2.11 was computed for each Cα atom, giving us the local thick-

ness of the polymer. The histogram in Fig. 2.7 summarises the results and

show that the protein backbone can be view as a tube with roughly uniform

thickness of around 2.7 Å. A picture of this tube is reported in Fig. 2.8: the

tube surrounds all the backbone atoms and also many side chains. Then eval-

uating the range of attraction between interacting residues, we can compare

the experimental quantities with the parameters values corresponding to the

marginally compact phase. We take as the physical counterpart of the square-

wall potential, the peptide hydrogen bond, because it is the most important

short range attraction affecting the protein. The typical distance between the

Cα atoms of two residues involved in this interaction gives us a range of 6

Å. This demonstrates that the model matches the experiments not only in the

qualitative resemblance among the respective motifs but also in the magnitude

of physical quantities involved.

2.2.3 Pre-sculpted energy landscape of the protein folding pro-

cess

In the marginally compact phase many conformations forming the building

blocks of biomolecules naturally emerge as a product of a very basic model

that does not include any sequence specificity. In the previous subsection we

have analysed in detail the geometrical features of the tube-polymer ground

states and we have compared them with experimental structures stored in the

PDB. The good match found, anyway, is not the only virtue of the model: new

insights in the comprehension of the protein folding issue can be obtained by

a careful analysis of these results.

A remarkable aspect of this model is the strong reduction of degeneracy in

the marginally compact phase with respect to the compact one. The thickness

in this particular regime, near the edge of compactness, selects a few number

of ground state conformations whose peculiar geometrical properties reflect
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the main features of biopolymers motifs. This suggests that symmetry and

geometry determine the limited menu of folded conformations that a protein

can choose for its native state structure.

SCULPTED
by sequence

CHOSEN
by sequence

PRESCULPTED
by geometry and symmetry

Homopolymer (marginally compact)

Folding funnel

Homopolymer (maximally compact)

(a)

(b)

(c)

Figure 2.9: Simplified one dimensional sketches of energy landscape. (a) Rugged energy

landscape for a string and bead homopolymer chain. (b) Pre-Sculpted energy landscape for

a homopolymer chain in the marginally compact phase. The number of minima is greatly re-

duced and the width of their basin increased by the introduction of geometrical constraints.

(c) Funnel energy landscape for a protein sequence. As folding proceeds from the top to the

bottom of the funnel, its width, a measure of the entropy of the chain, decreases cooperatively

with the energy gain. Such a distinctive feature, crucial for fast and reproducible folding,

is proper of protein-like sequence according to the idea of Bryngelson and Wolynes. In the

present view otherwise, funnel-like properties already result from considerations of geome-

try and symmetry in the marginally compact phase (b), making the role of the sequence the

stabilisation of one of the pre-sculpted funnels.

This idea culminates in an innovative hypothesis [17, 20] able to give an

explanation of the rapidity and high reproducibility characterising the folding

process. Let us try for a while to describe the protein behaviour through a

string and bead model. At low temperatures a string and bead homopolymer

presents many distinct maximally compact ground state conformations with

roughly the same energy, separated by high energy barriers7. Recalling section

7the degeneracy of ground state energies would be exact in the case of both lattice models
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1.4.1, this situation can be depicted with a rugged energy landscape (Fig. 2.9a).

The role played by sequence heterogeneity should then be to break the degen-

eracy of maximally compact conformations, leading to a unique ground state

which, of course, depends on the amino acid sequence. Nevertheless, we have

already observed (sect. 1.4.1) that for a typical random sequence, the energy

landscape is still very rugged and it is virtually the same as in Fig.2.9a. Bryn-

gelson andWolynes [14] suggested that there is a principle of minimal frustra-

tion at work for well-designed sequences in which there is a nice fit between

a given sequence and its native state structure carving out a funnel-like land-

scape [69, 70, 71] which promotes rapid folding and avoids the glassy behavior

(Fig. 2.9c). In this scenario each protein is characterized by its own landscape.

The protein sequence is all-important and the protein folding problem, besides

becoming tremendously complex, needs to be attacked on a protein-by-protein

basis.

In contrast, the tube-polymer model show a deep underlying unity in the

proteins behaviour. Indeed the high reduction in degeneracy observed in our

simulations hints that the gross features of the protein energy landscape could

result from the amino acid unspecific common properties share by all proteins.

We can imagine that the energy landscape of a homopolymer is pre-sculpted by

general considerations of geometry and symmetry, and presents the profile

sketched in Fig. 2.9b. It presents broad minima corresponding to putative

native structures each of them characterised by a funnel-like behaviour. In this

framework the role of the amino acid sequence is to favour the appropriate

native state structure over the menu of predetermined ground states leading

to an energy landscape conducive to rapid and reproducible folding of that

particular protein.

The idea of pre-sculpted energy landscape is very appealing, as it enlight-

ens the relation between primary structures and native state conformations. In

particular a convincing explanation of the many-to-one character of this corre-

spondence is given: among a menu of conformations predetermined by com-

mon geometrical requirements, each sequence selects the most suitable con-

and off-lattice models with discontinuous square-well potentials
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formation for itself. It is hence recovered the parallelism with crystalline struc-

tures that has represented the starting hint of these studies.

e
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Figure 2.10: Overview of the minimum energy conformations obtained with numerical sim-

ulations of the refined model described in [17, 20]. The different conformations are obtained

varying the parameters of the Hamiltonian. Most of them have their own counterpart in super-

secondary structures of proteins. We refer the reader to [17, 20], for the model details.

A slightly more sophisticate model was developed in order to investigate

this idea [20]. More ingredients were added to the basic tube-like model in or-

der to make it a little bit more realistic, without renouncing anyway to its ho-

mopolymeric behaviour. The square-wall pairwise interaction is still present,

whose role is to mimic the overall tendency towards compaction induced by

the hydrophobic effect. A further short-range attraction is then considered;

it has the peculiar property of having the interaction strength dependent on

the orientation of the bond direction with respect to the two chain segments

involved in the binding. This rule wants to catch the peculiar features of hy-

drogen bond. Moreover the thickness constraint was enhanced, stressing the
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importance of local bending rigidity over the non-local effect. For the details

of the model we refer to [17, 20], here we want to briefly outline the main re-

sult: through numerical simulations, many conformations were found as local

minima of the energy function, in the case of long polymers (N > 20). They

are very akin to super-secondary structures8 since they are combinations of

helices and sheets. Notice that with the basic version of the model only sec-

ondary structure motifs can be reproduced, while, enriching the homopolymer

Hamiltonian with few ingredients, large portions of the protein structures are

naturally obtained. The key point is that all the conformations found have

comparable energy in the homopolymer case. But an amino acid sequence

can be ‘designed’ in order to select each of these local minima as the ground

state of the system, enhancing it in comparison with the others. In the present

model only a distinction between amino acid hydrophobic and polar was con-

sidered according to the HP polymer, described in section 1.4.2. In summary,

the simple geometrical and energetic ingredients of the model (i.e. hydrogen

bond, steric constraints and a hydrophobic character assigned to the whole

polymer) pre-sculpt the energy landscape, selecting through general principles

a reduced number of structures. Well designed sequences are, in this frame-

work, responsible of the stabilisation of the chosen pre-sculpted funnels.

2.3 Computation of the buried surface: a model for

the hydrophobic effect

The extensive analysis done on the tube-polymer model have persuaded us

that the thickness is the suitable tool in order to catch the steric hindrance of the

protein backbone, in a qualitative simplified model. In this section we turn our

attention to another mechanism that plays a crucial role in the folding process,

the hydrophobic effect. Our purpose is to give a satisfactory modelling of this

interaction in order to include its effects in our model [21, 22].

8The super-secondary structure represents a level of organization intermediate between

secondary and tertiary structure. Super-secondary structure elements are combinations, re-

curring in many protein native states, of few secondary motifs.
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The importance of hydrophobic effect in driving protein folding was the-

orised first by Kauzmann in the 1950s [23]. The details of the mechanism are

still undisclosed, owing to the complexity of the water by itself. In principle,

the non solubility of non-polar residues in aqueous solution determines their

tendency to aggregate with each other, leading the protein to a rapid collapse.

The behaviour of non-polar solutes in water is however quite peculiar. In fact,

it is quite accepted [108, 109] that the origin of hydrophobic effect is essentially

entropic. Water molecules prefer to form hydrogen bonds between themselves

rather than ‘waste’ hydrogen bonds by pointing donor and acceptor groups

towards the non-polar side chains. This determines the formation of an or-

dered cage of water molecules surrounding the non-polar side chains, which,

with respect to bulk water, results in an enthalpy gain on one hand, but in an

entropy loss on the other: at room temperature the latter overwhelms the for-

mer. The change of this delicate balance on decreasing the temperature gives

rise to a decreasing of the hydrophobic interaction strength [24, 107], which is

believed to be responsible for the cold denaturation transition which is observed

for some proteins [108].

The complexity of this process requires detailed studies to be fully under-

stood, since the peculiar geometry of water molecules has to be taken into

account. Anyway, our focus is not the mechanism by itself rather its effects on

the whole protein. It is a fact that, as already mentioned in section 1.2.3, the

hydrophobic interaction does not determine a strict rule being high [41] the

probability of finding a non-polar side chain on the protein surface and vice

versa. Moreover, according to very recent works [110], the protein backbone

should have an effectively hydrophobic character, because it prefers to form

peptide hydrogen bonds instead of peptide-water ones9. For this reason, in

the first instance, we can simplify the hydrophobic effect to an overall propen-

sity of the protein molecule to bury as much surface as possible.

As a second step, we could consider a more refined version of the model.

The side chains of amino acids stick out in a direction approximately opposite

9Whether the intra-chain hydrogen bond formation is responsible of the protein stability

or on the contrary opposes it, has represented a matter of controversy during the half-past

century and still remain not completely understood [66].
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to the bending direction of the protein backbone [111] yielding an effectively

mixed hydrophobic tube. In other words, certain parts of the hydrophobic back-

bone, determined by the instantaneous chain conformation, are already pro-

tected from the solvent by the side chains (we can consider them hydrophilic

for simplicity) whereas the rest of the backbone needs to shield itself from the

solvent by means of the compaction process.

In the following subsections we will illustrate the mathematical formalism

for describing the surface of a tube centred on a continuous curve. Then, we

will model the water as a collection of hard spheres, and we will introduce a

formal rule for discerning if a portion of the tube surface can be touched by one

sphere. The effective interaction describing both the uniformly hydrophobic

tube and the mixed hydrophobic one, will descend then straightforwardly. We

will conclude this section with the results of numerical simulations.

2.3.1 Mathematical description of the tube surface

In this section we briefly recall the basic mathematical expressions from dif-

ferential geometry and local theory of curves [112], in order to describe the

surface of a tube inflated around a continuous curve.

Let define a curve Γ, described by the arclength parameterization R(s).

In dealing with such curved objects, it proves convenient to introduce suit-

able curvilinear coordinates to perform the calculations in a more efficient

way; this is achieved by introducing a particular Frenet frame of unit vec-

tors {T̂(s), N̂(s), B̂(s)} for the tangent, normal and binormal respectively, as

follows

T̂ (s) = R′ (s) (2.18)

N̂ (s) =
T̂′ (s)

|T̂′ (s) |
B̂ (s) = T̂ (s) × N̂ (s) ,

where the prime denotes the derivative with respect to the argument. In this



2.3. Computation of the buried surface: a model for the hydrophobic effect 59

unit frame the Frenet-Serret equations are satisfied

∂T̂ (s)

∂s
= κ (s) N̂ (s) (2.19)

∂N̂ (s)

∂s
= −κ (s) T̂ (s) + τ (s) B̂ (s)

∂B̂ (s)

∂s
= −τ (s) N̂ (s) ,

which automatically define the curvature κ(s) and the torsion τ(s) from the

first and the last equations of 2.19. Note that it is conventional to choose κ(s)

as positive by absorbing the sign in the direction of the normal vector N̂(s).

Let us now impose the thickness constraint to the curve. Each tern of points

belonging to the curve is hence subject to the potential energy given by Eq.

2.14. A generic point on the surface can then be described by the expression

r∆(s, θ) = R(s) + ∆
(

N̂(s) cos θ + B̂(s) sin θ
)

, (2.20)

where θ is an azimuthal angle running from 0 to 2π. To compute the area

of portions of the tube surface we can then integrate in the new coordinates

(s, θ). The surface element is given by J(s, θ) dsdθ, where J is the Jacobian of

the transformations r (s, θ)

J2 ≡
∣

∣

∣

∣

∣

(∂sr∆)2 ∂sr∆∂θr∆

∂θr∆∂sr∆ (∂θr∆)2

∣

∣

∣

∣

∣

. (2.21)

The calculation of J2 descend directly from the relations 2.19, obtaining

J2(s, θ) = ∆2(1 − ∆κ(s) cos θ)2. (2.22)

We remind that the thickness constraint determines a boundary on the local

curvature radius, that from now on will be simply indicated by Rc(s): Rc(s) ≡
1/κ(s) ≥ ∆, ∀s, that implies 1 − ∆κ(s) cos θ ≥ 0, and

J (s, θ) = ∆(1 − ∆κ(s) cos θ). (2.23)

The total area of the tube can then be computed by the integral

Σ (Γ) =

∫ L

0

∫ 2π

0

J(s, θ) ds dθ, (2.24)

which give us the trivial result 2π∆L.
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2.3.2 Conformations adopted by a hydrophobic polymer

Having set up the mathematical apparatus, our aim is to compute the area

of the buried portions of the tube, which can not be reached by the solvent,

or vice versa the contact surface, composed by the tube regions that can be

touched by the solvent particles. We model the solvent particles as spheres

of radius ǫ. Then a point r∆(s, θ) on the tube surface can not be touched by

the spherical particles if is satisfied the following inequality, which involves

the point r∆+ǫ(s, θ) on the surface of the tube with thickness ∆ + ǫ, having the

same centreline. The relation is

Bǫ(s, θ) ≡ min
s′

|r∆+ǫ(s, θ) − R(s′)| < ∆ + ǫ. (2.25)

We can now introduce the Heaviside function

ϑ (x) =

{

1 if x > 0

0 if x < 0
, (2.26)

which helps us to write an expression for the buried area:

ΣB(Γ) = ∆

∫ L

0

∫ 2π

0

(1 − ∆κ(s) cos θ) · ϑ [∆ + ǫ−Bǫ(s, θ)] ds dθ. (2.27)

The mixed hydrophobic tube can be represented with two types of surface

regions, each characterised by a different degree of hydrophobicity. Locally,

the inner side of the tube, approximately in the direction of the normal vector,

is taken to be hydrophobic, and the outer side hydrophilic. The following ex-

pression gives the effective interaction, which can describe both the completely

hydrophobic and the mixed hydrophobic tube upon varying the parameter c,

VH.E.(Γ) = −∆

∫ L

0

∫ 2π

0

(1 − ∆κ(s) cos θ) · {ϑ [∆ + ǫ−Bǫ(s, θ)] − (2.28)

−c ϑ [θ1 − |π − θ|] · (1 − ϑ [∆ + ǫ−Bǫ])} dθ ds

where θ1 defines half the angular width of a region centred around θ = π and

c is a measure of the coupling between this region and the solvent. The region

is hydrophilic when c > 1, while c = 0 corresponds to the case of uniformly

hydrophobic tube.
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The effective interaction described by Eq. 2.28 is more physically motivated

than the simple square-wall potential considered in section 2.2, it moreover

provides us a well defined energy function for a self-attracting curve, since it

is free of singularity in the continuum limit. For this reason it represents an

actual step-forward in our coarse grained modellisation of biopolymers.

Simulations, on short tubes subject to the potential energy 2.28, have been

performed in order to study their minimum energy conformations. Once again

the simulated annealing method (appendix A) is the most suitable tool for our

purposes, but Monte Carlo at constant temperature has been also utilised in

some cases. We considered a discretised representation withN segments sepa-

rated by a distance b = ∆/2. The continuum limit is obtainedwhen b << ∆; we

have verified that our results are substantially the same on reducing the value

of b down to ∆/3. Also multiple chains systems were simulated; in this case,

the tubes are placed inside a hard-wall cubic box of side 40∆ and we have ver-

ified that the walls of the box do not influence the conformations shown. The

results are summarised in Fig. 2.11. The conformations (a-e) were obtained

minimising the potential energy 2.28, with a single uniformly hydrophobic

tube (c = 0) of various lengths and for different solvent molecule radius ǫ; the

parameters values are reported in the caption of the figure. The conformations

(f-h) have been obtainedwithmultiple hydrophobic tubes (c = 0), usingMonte

Carlo simulations at constant temperature. Finally the conformations shown

in figures 2.11 (i-l) represent the minimum energy states of a multiple chains

system with a mixed hydrophobicity potential (c = 5). Two different solvent

radius ǫ, of respectively 0.1∆ and 0.2∆, were chosen.

The hydrophobic interaction, that in this coarse grained model is simply

an energy gain proportional to the area of both the hydrophobic buried re-

gions and the hydrophilic exposed ones (if c > 1), selects conformations akin

to biomolecules motifs: indeed secondary structures of proteins and double

helix of DNA were found. Therefore we should conclude that the solvent ra-

dius in this range of values tunes the system in themarginally compact regime.

It is noteworthy that, also in the continuum limit, structures really close to β-

sheets are obtained by the effect of a mixed hydrophobic interaction. Notice

that the planar conformations shown in Fig. 2.11 presents a zigzag crossing
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Figure 2.11: Results of simulation with one or more tubes subject to the effective energy

described by Eq. 2.28. The conformations are obtained using Metropolis Monte Carlo simu-

lations by annealing or by long simulations at constant temperature. (a-e) Conformations of

single hydrophobic tubes (c = 0): a) N = 20 and ǫ = 0.1∆, b) N = 20 and ǫ = 0.2∆, c) N = 30

and ǫ = 0.1∆, d) N = 40 and ǫ = 0.1∆, e) N = 50 and ǫ = 0.2∆. (f-h) Optimal conformations

of multiple hydrophobic tubes (c = 0) of length N = 20 and for ǫ = 0.1∆ obtained in long

simulations at constant temperatures: f) two tubes at a low temperature, g) three tubes at a

low temperature, h) four tubes at an intermediate temperature. (i-l) Conformations of mixed

hydrophobicity tubes (c = 5); ǫ = ∆/2 for all cases. i) A single helix of length N = 30 and

θ1 = 15o obtained by slow annealing (one obtains the same conformation for θ1 = 30o or 45o).

j) A stack of 4 helices of length N = 15 and θ1 = 45o obtained by slow annealing. k-l) Two

views of a planar sheet arrangement of 5 chains of length N = 15 and θ1 = 30o obtained in a

constant temperature simulation.

perpendicularly the sheet plane like as β-sheets when only the Cα atoms are

considered.
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Chapter 3

Depletion interaction for a tube-like

polymer in a solvent

The interaction between a polymer and the physiological solution that sur-

rounds it, is the result of different physical processes. In the previous chapter

we have studied an attractive potential able to model in a very simple way

the hydrophobic effect for a tube-like polymer immersed in a solvent of hard

spheres. But despite the importance of the hydrophobic effect other forces can

play a crucial role in determining the strong tendency towards compaction that

affects protein folding.

In this chapter wewant to analyse a purely entropic effect that characterises

the crowded systems such as microemulsion and colloidal solutions: the ten-

dency to maximise the entropy is the origin of depletion forces that cause order-

ing phase transitions, transitions from an apparently less ordered to an appar-

ently more ordered state, such as flocculation and other agglomeration phe-

nomena. The suggestion by recent works [25, 113] that a similar effect can

determine a collapse phase transition for a single polymer in solution, justifies

our interest in this mechanism.

The existence of ordering transitions has been known for a long time [27, 28,

114]. Possibly the first example was discussed by Onsager [115] who showed

that a fluid of thin hard rods, of lengths much bigger that their diameters, un-

dergoes an isotropic-nematic transition from a disordered (isotropic) to a more

ordered (nematic) state, upon compression. This is because the loss in ori-
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entational entropy is overwhelmed by the gain in translational entropy. The

flocculation in colloidal solution is a similar effect. In the experimental stud-

ies of colloidal systems, where macromolecules are dispersed in a solution of

non-absorbing polymers, it was observed experimentally that a small change

in polymers concentration induces an effective attraction between the colloidal

particles leading to a phase transition. This fact was explained by the two in-

dependent works of Asakura and Oosawa [29, 30], and Vrij [116]. They con-

sidered a system composed by two large spherical particles immersed in a so-

lution of small ones. In this simple picture it is easy to show how the tendency

of the solvent to maximise its entropy induces a short range attraction between

the large spheres, since in this manner they decrease their excluded volume.

Essentially all applications of the entropically driven phase transitions car-

ried out in the past were on the effective interactions between degrees of free-

dom of large bodies mediated by the presence of small ones. However it was

recently proposed [25] that a similar mechanism could drive effective inter-

actions between different parts of a single polymer thus favouring the tran-

sition from an extended to a compact configuration. Adapting the Asakura-

Oosawa scenario to the case of a tube-polymer, Snir and Kamien in their papers

[25, 113], inspired by the results of Maritan et al. [16, 17], suggested that the

tubemight spontaneously bend and twist to form a helical configuration, in or-

der to minimise its excluded volume. This could explain the ubiquity of helix

formation in nature since virtually all biological activities occur into an envi-

ronment crowded by colloidal almost spherical particles. While it is undeni-

able the appeal of this simple scenario, in the passage from spheres to tubes an

important issue should be addressed. The Asakura-Oosawa-Vrij mechanism

favours the increase of the solvent entropy and not the total entropy. While in

the case of spheres the difference is irrelevant, as spheres haven’t inner degrees

of freedom, the same mechanism applied to the tube would lead to a collapsed

phase of the tube, thus yielding a corresponding reduction of the entropy of

the polymer. Therefore, in order to drive the tube into a compact configuration

by pure entropic forces, the reduction in the tube entropy should not exceed

the gain in solvent entropy.

In this chapter after a brief introduction to the Asakura-Oosawa-Vrij model
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(section 3.1) we shall study its generalisation [22] to the case of a tube-polymer

immersed in a solution of spherical particles. We provide an analytical formula

to compute the excluded volume of a tube in every configuration. In section 3.2

we will introduce this formula illustrating with simple examples same issues

arising from it. The section 3.3 will focus on the analysis of a tube in a helical

configuration: computing the tube excluded volume as a function of the helix

pitch to radius ratio for different solvent diameters we looked for the ‘optimal

helix’, able to minimise its excluded volume. The results we obtained are in

complete agreement with those reported in previous works [25, 117]. To con-

clude this study we performed numerical simulations in order to find, without

any a priori assumption, which is the configuration of a tube that minimises its

excluded volume. The simulated annealing is again the most suitable method

for our purposes. We will report the results in section 3.4.

3.1 The Asakura-Oosawa-Vrij model

Experiments early in the last century showed that colloidal systems composed

of dispersions of macromolecules and non-absorbing polymers exhibit inter-

esting agglomeration phenomena. A series of experiments, performed mainly

by groups in Utrecht, Bristol and Edinburgh in the 1980s and early 1990s [118,

119, 120], confirmed that adding sufficient non-absorbing polymers to a sus-

pension of colloids can cause phase separation into two fluid phases, one rich

in colloid and the other poor.

It is well established that certain colloidal suspensions behaves as hard

spheres. This limit can be reached experimentally, for example, by dress-

ing particles in layers that reduce the Van der Waals attractive force and the

coulombic interactions that otherwise would affect the system. Polymers too

can be approximated to hard spheres, because when they are immersed in a

good solvent they are in a swollen configuration, and they interact essentially

as inert impenetrable objects, whose shape can considered, in first approxima-

tion, spherical given their small dimensions with respect to the colloids.

In the absence of attracting interactions the origin of these aggregation phe-
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nomena is then quite mysterious and indeed it wasn’t understood until the pa-

per of Asakura and Oosawa and the independent studies of Vrij [29, 30, 116].

Their paradigm is a simple system composed of a mixture of large and small

hard spheres. As a first approximation they assume that polymers are ideal,

meaning that they behaves as small hard-spheres when interactingwith a large

hard-sphere but penetrable when interacting with a small one. The interaction

potential of the system is then given by

H(R1...RNL
, r1...rNs

) = HL(R1...RNL
) + HL,s(R1...RNL

, r1...rNs
) (3.1)

=
∑

a<b

VL(Ra,Rb) +
∑

a,i

Vs,L(Ra, ri),

where, as a consequence of the ideal polymer condition, the solvent-solvent

interaction, Vs(ri, rj), is simply identically zero, and the otherinteraction po-

tentials are

VL(Ra,Rb) =

{

+∞ for |Ra − Rb| < dL

0 otherwise

Vs,L(Ra, ri) =

{

+∞ for |Ra − ri| < 1
2
(dL + ds)

0 otherwise
,

(3.2)

here N is the particles number and d their diameter, the subscripts s and L

refer respectively to small and large spheres.

(a) (b)

Figure 3.1: Representation of the depletion effect. When the two large spheres are distant

(Fig. a) they are subject to an isotropic pressure. If, otherwise, the two spheres are close to-

gether (Fig. b), the depletion between them produces a net pressure pushing the large spheres

one toward the other.
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Asakura, Oosawa and Vrij proved that in this extremely simple system an

effective attractive interaction between the large particle can be induced. An

intuitive picture can explain the origin of this attraction and is shown in Fig.

3.1. When the separation between two large particles is sufficiently large the

distribution of small particles around each big particle is uniform with spheri-

cal symmetry. Otherwise, when the two colloids are close one to the other the

density of small particle in the space between them decreases, this reduction

is referred to as depletion. The difference in density produces an unbalanced

osmotic pressure pushing the large spheres one toward the other.

Another explanation of the phenomenon arises from purely entropic con-

sideration. The excluded volume to the centres of small particles due to the

presence of a colloid is a sphere of diameter dL + ds. If two colloids a and b

come one close to the other their excluded volumes overlap increasing the free

volume for the polymers and hence their entropy. Given R = |Ra − Rb|, the
difference in free energy ∆F (R) = F (R) − F (R → ∞) is a simple function of

the total excluded volume, Vexc(R), and is easily computed in this framework

(see e.g. [121]). Starting with the canonical partition function of the system

ZNs
(T, V ) =

∫

V

drNs

Ns!Λ3Ns
s

dR1 dR2

2Λ6
L

e−β(HL+HL,s), (3.3)

(where Λ is the thermal de Broglie wavelength) and assuming the condition

ds << dL is satisfied, we can integrate out the microscopic degrees of freedom

associated to the small spheres, obtaining

ZNs
(T, V ) =

∫

V

dR1 dR2

2Λ6
L

e−β(HL+F (R)), (3.4)

with

e−βF (R) =
1

Ns!

(

V − Vexc(R)

Λ3
s

)Ns

. (3.5)

This gives us, after few approximations

∆F (R) = −NskT
Vexc,∞ − Vexc(R)

V − Vexc,∞

, (3.6)

where Vexc,∞ = π
3
(dL+ds)

3, is twice the excluded region of one sphere. The idea

is illustrated in Fig. 3.2: when the colloids come close each other, the excluded
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Figure 3.2: Schematic picture of the Asakura Oosawa model. The volume forbidden to

the small sphere centres (coiled polymer) due to the colloid presence is a sphere of diameter

dL + ds, see the two shaded regions in Fig. a. When the two large spheres come close one to

the other the overlap of the two excluded volumes (the lens region in Fig. b) increases the free

volume for the small particle.

volume has decreased by an amount Vexc,∞ − Vexc(R), and hence the available

volume to small particles has increased by the same amount, thus leading to

an increase of the polymer entropy which is measured by F (R) − F (R → ∞).

This gives rise to an effective attractive potential,W (R) = ∆F (R), between the
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two spheres which to the leading order reads

W (R) = nSkT (Vexc(R) − Vexc,∞) = −nSkTVOv(R), (3.7)

where nS = NS/V ≈ NS/(V − Vexc,∞), and VOv(R) is the overlap volume, the

volume of the lens region in Fig. 3.2. As we are going to see, the relation

VOv(R) = Vexc,∞ − Vexc(R), that is trivial in this case, does not hold anymore in

the case of a self-interacting polymer. The depth of the potential wall and its

range are, in this simple approximation, regulated respectively by the concen-

tration and the size of polymers.

More detailed studies followed these simple calculations. In order to un-

derstand how this interaction affects a system composed by more than two

colloids, the partition function in Eq. 3.3 can be evaluated using the cluster

expansion [122]. We obtain then a many-body attractive potential with the

two-body term of Eq. 3.7 representing the first order approximation.

3.2 AnAsakura-Oosawamodel for a tube-like poly-

mer

The effects of crowding on protein folding, and on biological processes in gen-

eral, represent a current subject of study. In particular it was recently proposed

[62, 123] that depletion forces could affect protein folding andmany other phe-

nomena occurring inside the cell, such as amyloid formation, stability of actin

and genome looping. In these works the role of crowding agents is covered

by macromolecules such as proteins, whose diameter is of the order of 10 − 20

Å. However the importance of depletion interaction on a finer scale too, was

recently recognised [25, 26]. The tendency of water to gain translational en-

tropy gives rise to a force, which, beside the highly specific interactions of

steric and chemical nature, is omnipresent in biological systems. This entropic

effect could play an important role in driving the protein to fold in its native

conformation. In particular, it was suggested [25, 26] that as a consequence

of this phenomenon secondary structures emerge, being, among the compact

conformations, the ones eligible to maximising solvent translational entropy.
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In order to exclusively investigate this entropic effect we will model the

solvent molecules as hard spheres, we will neglect all the soft interaction (e.g.

electrostatic and Van der Waals interactions), and we will study the simplest

approximation represented by the Asakura-Oosawa-Vrij scenario, following

in this way the suggestion of Snir and Kamien [25, 113]. In place of large

spheres we will consider a single tube-like polymer and we will investigate

the possibility of secondary structures formation in this framework. Actually

the Asakura-Oosawa model represents a very rough approximation and more

refined techniques (such as integral equation theory) were employed in order

to study this effect [26]. However it is quite astonishing the ability of this basic

model to account for secondary motifs formation, as it will be shown by the

numerical analysis we are going to illustrate.

Originally the Asakura-Oosawamodel involved an effective interaction be-

tween distinct large bodies mediated by the presence of small ones. Therefore

the innovation of Snir and Kamien idea consists in considering the effective

interactions among different parts of a single body (a polymer in this case)

thereby inducing a conformational change. Hence the competition between

the two entropic components, due to the solvent and to the polymer inner de-

grees of freedom, have to be taken into account in order to study the equilib-

rium configuration. Anyway, the generalisation of the Asakura-Oosawa pic-

ture to the tube-polymer case is quite straightforward, despite this non trivial

issue. Consider a solvent of hard spheres with radius ǫ and an impenetrable-

tube polymer with thickness ∆ and length L, if the tube is in a straight config-

uration the region forbidden to the small spheres centres is a tube of thickness

∆+ǫ, so the excluded volume is Vexc,S = π(∆+ǫ)2L – see Fig. 3.3 for a schematic

representation. When otherwise the tube is in a compact configuration differ-

ent parts of the excluded region may overlap, so that in such a case the total

excluded volume decreases determining an increase in the solvent entropy.

This phenomenon produces an effective self-attraction between different parts

of the polymer, that could drive the polymer towards a compact configuration.

Consider a curve, Γ, with arclength parametrisation R(s). Reminding sec-

tion 2.2, it represents the centreline of an impenetrable tube when it is subject
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to the HamiltonianHT (Γ):

HT (Γ) =

∫ L

0

∫ L

0

∫ L

0

V3 [R(s1),R(s2),R(s3)] dΓs1
dΓs2

dΓs3
, (3.8)

where dΓs is the element of arc length, and V3(x,y, z), is the three-bodies hard

core potential given in Eq. 2.14. Recalling Eq. 3.7 the depletion self-interaction,

has then the expression,

W (Γ) = nSkT (Vexc (Γ) − Vexc,S) . (3.9)

Notice that the balance between this attractive interaction and the polymer

entropy is regulated by the partition function

Z(T, ns) ∝
∑

{Γ}

e−βHT (Γ)−nS(Vexc(Γ)−Vexc,S), (3.10)

where we can see again that the strength of the tendency towards compaction

is determined by the solvent density.

A first step of the analysis is the search of the tube optimal conformations,

able to minimise its excluded volume. Snir and Kamien in their paper studied

only helical conformations, computing numerically their excluded volume as

a function of the helix pitch to radius ratio. In this manner they determined

the optimal helix, as a function of the spheres radius. The assumption that the

helix, compared with all possible compact conformations of a tube, is the con-

figuration of minimum excluded volume, is reasonable and motivated by the

studies of the ideal packing of a tube reported in chapter 2. It necessitates nev-

ertheless a confirmation, i.e. the minimisation with any a priori assumption of

the functional given in Eq. 3.9. A general formula to compute Vexc (Γ) is our

fundamental contribution to the topic [22], and will be the subject of this sec-

tion. It presents, with respect to the Asakura-Oosawa case, innovative aspects

that we are going to illustrate by means of some examples.

It has to be reminded that, in the present case, the competition between

depletion effects and polymer entropy or other polymer self-interactions will

be neglected.
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Figure 3.3: Sketch of an impenetrable tube immersed in a solvent of hard spheres. The

excluded volume to the small spheres centres is a ‘soft’ tube of thickness ∆ + ǫ, where ∆ is the

tube thickness and ǫ the solvent radius.

3.2.1 Computation of the excluded volume

Consider an impenetrable tube with thickness ∆, centreline Γ, and parameteri-

sationR(s). The excluded region to the spheres centres determined by its pres-

ence is a tube with the same centreline and thickness ∆ǫ = ∆+ ǫ, characterised

by the fact that the external layer large ǫ is ‘soft’: it is able to compenetrate with

the other parts of the tube. A point r inside this region can be identified by the

transformation of coordinates

r (s, θ, ρ) = R(s) + ρ
[

cos θ N̂(s) + sin θ B̂(s)
]

, (3.11)

defined in the domainD = [0, L]×[0, 2π]×[0,∆ǫ]. It represents the analogous of

Eq. 2.20, with the only difference of the coordinate ρ, the radial distance from

the centreline, that in the buried area computations was fixed to ∆. Volume

calculations in the new set of coordinates, requires the Jacobian of r (s, θ, ρ),

that results

J (s, θ, ρ) = ρ|1 − κ (s) ρ cos θ| = ρ |χ (s, θ, ρ)| , (3.12)
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where k(s) is the curvature of Γ. We have renamed the argument of the above

absolute value since it will play an important role in our discussion.

If the tube configuration is such that there is no overlapping among differ-

ent parts of the excluded region (in the following we will call swollen all such

conformations), its volume can be computed simply by the integral

Vexc,S(Γ) =

∫

D

ρ |χ (s, θ, ρ)| dρ dθ ds. (3.13)

that yields π∆2
ǫL independently of the swollen configuration we are consid-

ering: since a centreline region with k(s) > ∆−1
ǫ produces an overlap, swollen

configurations have to satisfy the condition k(s) < ∆−1
ǫ for every s, that implies

χ (s, ρ, θ) > 0 in all the domain, the integration becomes then elementary.

The expression 3.13 is not correct anymore when the tube is in a compact

configuration and hence there are some overlapping parts of the excluded re-

gion, since in this case the coordinate transformation, r(s, θ, ρ), is not a bijective

map. To see how we can compute the volume in this case we argue as follows.

Take a point r(s, θ, ρ) belonging to the overlap region. This means that it be-

longs tomore than one circular section associated to different points of the tube

axis. It implies that integrating in all the domain D, we add many times to the

total amount the same volume element. In order to correct this overcounting it

is sufficient to include in Eq. 3.13 the correct weight for each r(s, θ, ρ). Defining

n(s, θ, ρ) to be the number of sections r(s, θ, ρ) belong to, then this function pro-

vides the weight we are looking for. Noting that n(s, θ, ρ) ≥ 1 since at the very

least the point belongs to one section, the excluded volume of this compact

phase is then given by

Vexc,C =

∫

D

ρ |χ(s, θ, ρ)| 1

n(s, θ, ρ)
dρ dθ ds. (3.14)

In the absence of overlap, n(s, θ, ρ) ≡ 1 and χ(s, θ, ρ) > 0 in all D and Eq. 3.14

reduces to the swollen result.

Let us now explain how to evaluate themultiplicity of intersections, n(s, θ, ρ).

The point r(s, θ, ρ) belongs to the tube section centred in a given centreline

point R(s′) if the distance vector ds,θ,ρ(s
′) = r(s, θ, ρ) − R(s′) is perpendicular

to T̂(s′) and has magnitude ds,θ,ρ(s
′) less than ∆ǫ. Note that the first condition
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is equivalent to the extremalisation requirement ∂ds,θ,ρ(s
′)/∂s′ = 0. Hence we

can define n(s, θ, ρ) as the number of s′ ∈ [0, L] that satisfies the two conditions

∂ds,θ,ρ (s′)

∂s′
= 0 ds,θ,ρ (s′) ≤ ∆ǫ. (3.15)

Following this mathematical recipe the excluded volume computation of a

tube in every configuration is possible. With the exception of same simple

cases, nevertheless, this formula is very difficult to handle in analytical com-

putations, but it is rather suitable for numerical implementation.

In order to better compare the expression for the depletion interaction among

a tube polymer (Eq. 3.9), with the Asakura-Oosawa case, it is convenient to

rewrite Eq. 3.14 in a more transparent way, by introducing also in this case the

overlap volume, Vov(Γ), defined as the volume of the soft tube parts in which

the excluded region overlaps with itself, that is parts such that n(s, θ, ρ) > 1.

Let us therefore evaluate the difference in excluded volume between compact

and swollen configuration

Vexc,C(Γ) − Vexc,S =

∫

D

ρ|χ(ρ, θ, s)| 1

n (s, ρ, θ)
dρ dθ ds−

−
∫

D

ρχ(ρ, θ, s) dρ dθ ds. (3.16)

We recover now the Heaviside function, ϑ(x), defined by Eq. 2.26, and we

observe that the following identity is satisfied

|x| − x = 2 |x|ϑ (−x) . (3.17)

This helps us to rewrite

Vexc,C(Γ) − Vexc,S = −
∫

D

ρ|χ(ρ, θ, s)|n (ρ, θ, s) − 1

n (ρ, θ, s)
dρ dθ ds+

+2

∫

D

ρ|χ (ρ, θ, s) |ϑ [−χ (ρ, θ, s)] , (3.18)

obtaining a meaningful rearrangement of Eq. 3.16: the first term of second

side, indeed, represents the overlap volume, while the second integral yields a

contribution associated with highly curved regions of the centreline, i.e. with
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k(s) > ∆−1
ǫ . Hence defining

VOv =

∫

D

ρ|χ(ρ, θ, s)|n (ρ, θ, s) − 1

n (ρ, θ, s)
dρ dθ ds (3.19)

Vχ<0 =

∫

D

ρ|χ (ρ, θ, s) |ϑ [−χ (ρ, θ, s)] , (3.20)

we can summarise

∆V (Γ) = Vexc,C(Γ) − Vexc,S = −Vov + 2Vχ<0. (3.21)

Therefore we have found that the difference between the excluded volumes

in the swollen and in the compact phase, is not simply equal to VOv as in the

Asakura-Oosawa case. This difference stems by the fact that whilst the two

spheres are rigid, the polymer undergoes a conformational change upon fold-

ing. As a consequence of this fact a compact conformation is not always advan-

tageous with respect to the swollen one: the overlap decreases the excluded

volume, but on the other hand the regions with high curvature increases it. In

the following subsections we will illustrate this effect with two examples. We

have studied two simple cases in which ∆V (Γ) can be analytically evaluated,

in order to clarify the issues just discussed.

3.2.2 The coil-torus transition

Whereas the mathematical origin of the term Vχ<0 is clear, its physical meaning

of the quantity may result rather obscure. In order to better understand this

point we now address a simple example where all calculations can be carried

out analytically.

Consider a toroidal tube of thickness ∆ and radius R = L/2π, whose cen-

treline lies in the {êx, êy} plane. Its parametric equation reads

R(s) = R cos
( s

R

)

êx +R sin
( s

R

)

êy, (3.22)

where the condition R > ∆ have to be satisfied. The Frenet unit vectors are

T̂ (s) = − sin
( s

R

)

êx + cos
( s

R

)

êy (3.23)

N̂ (s) = − cos
( s

R

)

êx − sin
( s

R

)

êy

B̂ (s) ≡ êz



76 Depletion interaction for a tube-like polymer in a solvent

Because of the toroidal symmetry, is then easy to see that both the curvature

and the torsion, appearing in the Frenet-Serret equations 2.19, are independent

of s and are

κ(s) =
1

Rc(s)
≡ 1

R
τ (s) ≡ 0 (3.24)

We now insert this torus in a solution containing particles of radius ǫ and com-

pute the volume of the excluded region, that is the region of space forbidden

to the centre of the solvent spheres, generated by this ‘compact’ configura-

tion. Clearly no changes will occur in the excluded volume compared with

the swollen results as long as R > ∆ǫ. The opposite situation, R < ∆ǫ, is de-

picted in Fig. 3.4b. We see that the excluded volume produced by the torus

(the dashed region in figure) is the solid generated by a rotation around the z

axis of the part of the circle with radius ∆ǫ contained in the right-half plane,

and hence its calculation can be directly done using the Guldinus theorem1.

An even simpler method consists in using the parameterisation {s, θ, ρ} intro-

duced in the previous paragraph. The translational invariance along s simplify

the integration since the integrand is a function only of (θ, ρ). Hence, upon

defining θc = arcsin
√

1 −R2/∆2
ǫ the angular coordinate of the yellow sphere

centre (see Fig. 3.4b), we have

Vexc,C = 2πR

∫ 2π−θc

θc

dθ

∫ ∆ǫ

0

dρ ρ

∣

∣

∣

∣

1 − ρ cos θ

R

∣

∣

∣

∣

+ (3.25)

+2πR

∫ θc

−θc

dθ

∫ ρz(θ)

0

dρ ρ

∣

∣

∣

∣

1 − ρ cos θ

R

∣

∣

∣

∣

where ρz(θ) = R/ cos θ is the radial distance, at an angle θ, of the z axis. As it

is easy to see, both absolute values in 3.25 can be removed and the calculation

is straightforward. We then obtain for the difference ∆V = Vexc,C − Vexc,S =

Vexc,C − 2π2R∆2
ǫ , expressed in function of η = R/∆ǫ,

∆V =
4

3
π∆3

ǫ Φ(η), (3.26)

1The Guldinus theorem (also knows as the Pappus’s centroid theorem) states that the vol-

ume of a solid of revolution, generated by rotating a plane figure F about an external axis, is

equal to the product of the area of F and the distance travelled by its geometric centroid.
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with

Φ(η) ≡
(

1 +
1

2
η2

)

√

1 − η2 − 3

2
η arcsin

√

1 − η2. (3.27)

A rapid analysis of the function Φ(η) show that is always positive in the region

∆/∆ǫ ≤ η ≤ 1. We can conclude that a tube bent in a toroidal configuration,

tight enough to overlap in its interior, increases its excluded volume, meaning

that the swollen configuration is entropically more favourable compared with

the compact one! To understand this counterintuitive result let’s compute sep-

arately the overlap volume, VOv and the Vχ<0 term.

(a) (b)

Figure 3.4: Fig. a: Picture of a tight torus. Fig. b: Schematic representation of a torus section

in a plane passing through the torus axis of symmetry (the z axis in the picture). The excluded

region is dashed and the lens of overlap stands out. With respect to the section in the left, the

inner boundary of the overlap region is the left arc delimiting the lens, characterised by the

radial distance ρmin(θ) given in Eq. 3.28. The outer boundary has simply ρ(θ) ≡ ∆ǫ.

In order to compute VOv, we note that, again in view of the toroidal sym-

metry, the overlap region is given by rotation of the lens area shown in Fig.

3.4b. This intuitive picture can be confirmed by the evaluation of the func-

tion n(s, θ, ρ): it results identically 2 for any (s, θ, ρ) belonging to the domain

DOv = [0, 2πR]×[−θc, θc]×[ρmin(θ),∆ǫ], while we have n(s, ρ, θ) ≡ 1 in the com-

plementary set2. The radial distance ρmin(θ) represents the inner boundary of

2The points of the excluded region belonging to z axis represent an exception since they be-
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the lens and is given by the expression

ρmin(θ) = 2R cos θ −
√

∆2
ǫ − 4R2 sin2 θ. (3.28)

Indeed, as plotted in Fig. 3.5, the overlap conditions 3.15 in the domainDOv, al-

ways yield two solutions (one maximum and one minimum) corresponding to

the two aforementioned sections. The overlap volume can be readily obtained

from

VOv = 2πR

∫ +θc

−θc

dθ

∫ ∆ǫ

ρmin(θ)

dρ
1

2
ρ

∣

∣

∣

∣

1 − ρ cos θ

R

∣

∣

∣

∣

. (3.29)

Let’s now evaluate the term Vχ<0. The condition χ(θ, ρ) = 1 − ρ cos θ/R < 0

become ρ > R/ cos θ, thus the integration domain is simply [−θc, θc]×[ρz(θ),∆ǫ],

obtaining the integral

Vχ<0 = 2πR

∫ θc

−θc

dθ

∫ ∆ǫ

ρz(θ)

dρ ρ

∣

∣

∣

∣

1 − ρ cos θ

R

∣

∣

∣

∣

. (3.30)

A direct calculation then confirms what can be deduced by the picture

VOv = Vχ<0 =
4

3
π∆3

ǫ Φ(η) ⇒ (3.31)

∆V = −VOv + 2Vχ<0 =
4

3
π∆3

ǫ Φ(η),

where we remark that Φ(η) is always positive. This result stems from the fact

that the calculation of volume based on Eqns. 3.19 and 3.20, always yield in-

flated or deflated volume elements depending onwhether the normal unit vec-

tor ρ̂ = cos θ N̂(s) + sin θ B̂(s) is pointing inside or outside the curve3. In the

absence of overlap, the two effects balance against each other yielding the ob-

ject volume as a overall result. In the case of the torus, however, the geometry

of the system prevents the solvent particles to fit inside the torus, thus yielding

an unbalanced inflated volume outside which is responsible of the result 3.26.

long to infinite sections. We neglect this pathology because they form a region of null volume.
3The unit vector ρ̂ points inside (outside) the curvature if its scalar product with the princi-

pal normal vector N̂ is positive (negative).



3.2. An Asakura-Oosawa model for a tube-like polymer 79

Figure 3.5: Plot of ds,θ,ρ(s
′) computed numerically for a point with (s, θ, ρ) = (7.5, 0, 1.95)

inside a torus characterised by R = 1.8 and ∆ = 1.5 and ǫ = 0.5. The function ds,θ,ρ(s
′)

is however easy to calculate analytically and a trivial derivation shows that it presents two

extrema in correspondence of s and s+ π.

3.2.3 The coil-parabolic transition for a tube

In the previous example we have seen how a particular shape of the tube (a

torus) was yielding a result which contrasted with the picture based on the

Asakura-Oosawa-Vrij scenario, and we have clarified the origin of this pecu-

liar effect. On the other hand, one might truthfully expect that there exist ge-

ometries, other than a helix, where a mechanism akin to the one suggested by

Snir and Kamien [25] applies: the tube spontaneously deform and bend, com-

patibly with the hard core excluded volume, because in doing so the excluded

volume is reduced.

In this second example we illustrate the case of a parabolic-shaped tube as

depicted in Fig. 3.6. An analytical calculation for this system proves to be hard

for the most general configuration. On the other hand, it is very simple the

same calculation of the two-dimensional counterpart. Is is an instructive exer-

cise to analyse the two different contributes VOv and Vχ<0: we will show that

in this case their balance make the tube bending entropically advantageous.

We put the tube centreline in the {êx, êy} plane, and we express it through
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(a) (b)

Figure 3.6: The parabolic tube analysed in this section. (a) Three dimensional picture of the

tube. (b) Schematic representation of the two dimensional problem. The red region represents

the section of the parabolic tube in the {êx, êy} plane, its centreline being the simplest parabola

y = ax2. The black line that surround the tube both in the top and in the bottom represents

the boundary of the excluded region to the centre of the solvent particle in yellow. Since the

parabola is tight enough, the excluded region overlaps: the overlap region is the small triangle

crossing the y axis.

the relation

R (λ) = λêx + aλ2êy (3.32)

since it is more handy than the arclength parameterisation. Here the value of

a gives a measure of the tightness of the parabola. The Frenet unit vectors

defined in Eq. 2.19 are

ˆT (λ) =
êx + 2aλêy

s′ (λ)
(3.33)

ˆN (λ) =
−2aλêx + êy

s′ (λ)

ˆB (λ) = êz
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Figure 3.7: Bundle of normal lines to the parabola. The evolute represents the boundary

between the region in which the normals do not intersect each other, and region in which each

point is the intersection of three distinct normals.

where we have introduced the derivative

s
′

(λ) =
√

1 + 4a2λ2 (3.34)

Likewise, we can compute the curvature and torsion from 2.19 and find after

few manipulations

κ (λ) ≡ 1

Rc (λ)
=

2a

s′3 (λ)
(3.35)

τ (λ) = 0

These equations imply that the relation a < 1/(2∆) have to be satisfied so that

Rc(λ) > ∆, ∀λ, and the tube does not compenetrate. A point belonging to the

two-dimensional region of excluded volume produced by the tube can be then

identified by

r (λ, ρ) = R (λ) + ρN̂ (λ) (3.36)

with −∆ǫ ≤ ρ ≤ ∆ǫ
4. We will be interested in configurations verifying the

condition 1/(2∆ǫ) < a corresponding to a non-vanishing overlap of the vol-

ume.

4It is equivalent to take 0 ≤ ρ ≤ ∆ǫ and θ varying between 0 and π, the angular values

corresponding to the {êx, êy} plane.
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Figure 3.8: Representation of the overlap region. The evolute (the red line) delimits the

region of overlap. The azure region is characterised by n(λ, ρ) = 3 and χ(λ, ρ) < 0, while the

blue region is characterised by n(λ, ρ) = 2. Hence according to Eq. 3.21 we have Aexc,C −
Aexc,S = −A2.

In order to make contact with previous analysis, as described in Eq. 3.15,

consider a fixed point r(λ, ρ), with cartesian coordinate (xr, yr), and its distance

dλ,ρ(λ
′) = r(λ, ρ) − R(λ′), that is

dλ,ρ (λ′) = (xr − λ′) êx +
(

yr − aλ′2
)

êy (3.37)

Upon imposing that the scalar product dλ,ρ(λ
′) � T(λ′) vanishes one obtains a

cubic equation

(xr − λ′) + 2aλ′
(

yr − aλ′2
)

= 0. (3.38)
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Depending on the values of (xr, yr), i.e. the regions of the {êx, êy} plane r(λ, ρ)

belong to, this equation can have one, two or three solutions. The condition

for this equation to have exactly two real roots is given by the system
{

Ψ (xr, yr, λ
′) = (xr − λ′) + 2aλ′ (yr − aλ′2) = 0

∂λ′Ψ (xr, yr, λ
′) = 1 − 2ayr + 6a2λ′2 = 0

(3.39)

that, by definition, gives the evolute of the parabola 5. This is the curve sepa-

rating regions of the plane with only one normal to the parabola axis (below

the evolute) and regions with three normals (above the evolute) as depicted

in Fig. 3.7. We now have all necessary tools to compute AOv and Aχ<0, the

two-dimensional analogue of Eqns. 3.19 and 3.20. The Fig. 3.8 illustrates the

situation. Below the evolute n(λ, ρ) = 1, while over the evolute two regions are

distinguishable: the azure region is characterised by n(λ, ρ) = 3 while the blue

ones has n(λ, ρ) = 2 – indeed there are three λ′ in this last region so that dλ,ρ(λ
′)

is normal to the parabola, but only two of them satisfy the second condition of

3.15, dλ,ρ(λ
′) < ∆ǫ. Hence being A3 and A2 the areas of the regions with n(λ, ρ)

equal to 3 and 2 respectively and remembering that n(λ, ρ) − 1 represents the

multiplicity of overlap we have

AOv = 2A3 + A2, (3.40)

where A3 and A2 are easy to integrate.

The value of Aχ<0 can be determined noting that in the region above the

parabola the expression of χ(ρ, λ) results 1 − ρ/Rc(λ), meaning that Aχ<0 in-

cludes points with ρ > Rc(λ). Hence the boundary of this region is given

again by the evolute (see footnote 5) implying that, remembering the trivial

constraint ρ < ∆ǫ, the region with χ(ρ, λ) < 0 coincides with the azure area.

This leads to Aχ<0 = A3, and hence

Aexc,C − Aexc,S = −Aov + 2Aχ<0 = −A2 (3.41)

which is a negative quantity as expected.

5 The evolute of a curve Γ ∈ R
2 is the locus of the curvature centres of Γ. Being R(λ)

the parametrisation of Γ, the evolute has the property of being the envelope of the family

Ψ(x, y, λ) of normals to Γ, that means satisfying the two condition of Eq. 3.39: Ψ(x, y, λ) = 0

and ∂λΨ(x, y, λ) = 0.
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3.3 The coil-helix transition for a tube

In the previous section we have introduced a method to compute the excluded

volume produced by a tube. We have moreover presented two simple exam-

ples with the only aim of clarifying the issues related to it. Once tested the

formula, we are ready to face the physical problem of adapting the Asakura-

Oosawa scenario to the case of a single polymer embedded in solution. Ne-

glecting the contribution to the equilibrium configuration of the system given

by the polymer conformational entropy we start with studying the configu-

rations minimising the depletion interaction. This means finding the optimal

conformation of the tube-polymer, able to minimise the excluded volume.

This optimisation problem was tackled in the most general case by means

of the simulated annealing method, and will be the subject of the following

section. In this section we assume instead that the helix is the optimal con-

formation of a tube. This idea has a strong appeal since it is able to explain

the ubiquity of this conformation in biomolecules. The assumption is however

motivated by the property of maximal packing, illustrated in chapter 2, char-

acterising helices and the magic helix in particular. Therefore we will analyse

in detail this conformation in order to find which is the helix that minimise its

excluded volume.

In the first part of this section the mathematical apparatus necessary for

the helix description is introduced. In the second part we report our results,

summarised in the plot of the optimal helix pitch to radius ratio in function of

the solvent radius. The results obtained are in perfect agreement with the Snir

and Kamien ones.

3.3.1 mathematical apparatus for the helix description

Given a helical tube of radius ∆ and length L, its axis can be described in

cartesian coordinates {êx, êy, êz} in parametric form using an angle 0 ≤ t ≤
2πn, n being the number of turns of the helix, by a vector

R (t) = R cos t êx +R sin t êy +
P

2π
t êz (3.42)
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where R and P are the radius and the pitch of the helix, respectively. The

Frenet frame unit vectors are readily obtained from Eq. 2.19

T̂ (t) =
2π

Λ

[

−R sin t êx +R cos t êy +
P

2π
êz

]

(3.43)

N̂ (t) = − cos t êx − sin t êy

B̂ (t) =
2π

Λ

[

P

2π
sin t êx −

P

2π
cos t êy +R êz

]

where we have introduced the quantity

Λ =
√
P 2 + 4π2R2. (3.44)

The curvature and torsion are

κ(t) ≡ 4π2R

Λ2
(3.45)

τ(t) ≡ 2πP

Λ2
,

note that they are both independent of t. Finally the length per unit of turn is

simply

L

n
= Λ (3.46)

The requirement for the helix to satisfy self-avoidance and have non-vanishing

overlap of the excluded volume leads [25] to a range of possible values in the

(R,P ) plane as depicted in Fig.3.9. Note that the two boundary curves,Rc = ∆

and d = 2∆, d being the minimum distance between successive turns, intersect

at a point (R∗, P ∗) such that the ratio c∗ = P ∗/R∗, corresponds to the magic

helix value 2.512 . . . , fully analysed in chapter 2. Imposing the same condi-

tions with regard to the helix representing the forbidden region, i.e. Rc = ∆ǫ

and d = 2∆ǫ, we obtain the boundary over which no overlap occurs and the

excluded volume is simply the swollen one, π∆2
ǫL. So the light grey region

shown in Fig. 3.9 highlights the range of values we are interested in.

3.3.2 Excluded and overlap volumes of a helix

We seek now the optimal helix pitch to radius ratio in varying the solvent size

ǫ. This topic was already discussed in Ref. [25] but, as will be elaborated
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Figure 3.9: Diagram of the different regimes according to the (R,P ) values. The dark grey

region corresponds to values not consistent with the thickness constraint, while the light gray

region represents helices with an overlapping excluded region. The gray straight line has

equation P = c∗R.

below, our reanalysis will uncover some nuances which were missing in their

discussion.

We start with studying the ‘bulk’ helix, whose length approaches infinity,

in order to neglect boundary effects. This requirement simplify our calcula-

tions since we can take advantage of the helix screw symmetry, and compute

only the overlap between a helix section and the whole curve, obtaining in this

manner an excluded volume per unit length.

We know from Eq. 3.21 that in order to minimise the excluded volume we

have to maximise the overlap avoiding, as much as possible, to make turns

with Rc < ∆ǫ. For a fixed radius R the maximum overlap is obtained when

successive turn are lying one on the top of the other. On varying R and, simul-

taneously, taking the pitch such that the last condition is satisfied (this means

to choose the parameters (R,P ) along the black curve of Fig. 3.9), we compute

the excluded volume numerically, implementing our method summarised in

Eq. 3.14 and 3.15 after a fine discretisation of the variables s, θ and ρ. We sum

the contributions given by each element of volume centred in r(θk, ρn) after
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computing the integer function n(θk, ρn), where the coordinate along the curve

disappears for the translational invariance just mentioned. After finding R(ǫ),

associated to the optimal helix for a given ǫ, we have plotted the corresponding

value of c(ǫ). The plot is reported in Fig. 3.10: we can see that for small ǫ, the

resulting c(ǫ) corresponds to the magic value 2.512 . . ., while after the critical

threshold ǫ ∼= 0.08, there is a quite sharp transition to a regime in which c(ǫ)

decreases almost linearly. These results are identical to those obtained by Snir

and Kamien [25].

Figure 3.10: Plot of the pitch to radius ratios corresponding to the helices minimising the

excluded volume (red circles) and maximising the overlap (blue square). The magic helix min-

imises the excluded volume for small ǫ/∆, then after a threshold value the optimal c decreases

almost linearly. For the case of overlap volume instead the curve remains close to c∗ for larger

values of ǫ/∆.

In view of Eq. 3.21 we expect ∆V = Vexc,C − Vexc,S and Vov not to coincide,
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the difference being, in fact, given by −2Vχ<0. To evaluate in this case the

contribution due to this last term, we have plotted the two quantity ∆V and

VOv as a function of c as depicted in Fig. 3.11 for two different values of ǫ/∆.

Fluctuations appearing in the plots are due to the numerical discretisations.

As expected we find ∆V < 0 for every values of c, so the excluded volume

of the helix is, in any case, smaller than the corresponding straight tube one,

independently of the ratio ǫ/∆. This last quantity influences however the ∆V

trend. When ǫ/∆ = 0.04 (Fig. 3.11a) it has a minimum in correspondence of c∗

and an increase of R leads to an increase of ∆V . In the case ǫ/∆ = 0.16, on the

other hand, the helix minimising the excluded volume is no longer the ideal

helix and ∆V decreases with R until it reaches a minimum. In both cases the

difference between ∆V and VOv is greater for smallR (i.e. larger c) because this

is the regime where the effect of Vχ<0 is more effective.

(a) (b)

Figure 3.11: Plot of the ∆V (c) and VOv(c) for ǫ/∆ equal to 0.04 (Fig. a) and 0.16 (Fig. b).

The importance of the Vχ<0 term is highlighted in Fig. 3.10 too, where be-

side the plot of c(ǫ) corresponding to minimum ∆V the same calculation rel-

ative to the overlap volume only is reported. We note how the optimal value

of c remains closer to c∗ for higher ǫ/∆ with respect to the previous case. The

helix is forced to unwind itself in order to decrease its curvature and reduce

the contribution of Vχ<0, losing in this way overlap volume.

It is quite unexpected otherwise that the magic helix does not maximise

the overlap volume for every ǫ/∆. To clarify this point, we have checked the

θ dependence of the overlap volume Vov. This is reported in Ref. 3.12, for
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the case of ǫ/∆ = 0.18, where the contributions Vov(|θ| < θ0) and Vov(θ0)δθ0

are displayed as a function of θ0 for both the magic helix c∗ and the value c

maximising Vov. The behaviour of Vov(θ0)δθ0 shows us that for small θ0, that is

in the proximity of the helix axis, the contribute to the overlap is quite small,

while for θ0 ≈ π
2
becomes the dominant contribution, corresponding to the

overlap between two successive turns lying one at the top of the other. This

latter increases as R increases (i.e. c decreases) tending to its maximum value

for R → ∞, in a configuration that approximately corresponds to two torus on

the top of one other. So, for ǫ not too small, it is advantageous for the helix to

gain overlap with successive turns reducing a bit the central one.

Figure 3.12: Plot of Vov(|θ| < θ0) and Vov(θ0)δθ0 for ǫ/∆ = 0.18, in the two cases c = c∗,

and c ∼= 2.36 corresponding to the optimal helix. δθ0 has been set equal to the discretisation

amplitude θk+1 − θk.

To conclude our analysis of the bulk helix, it is instructive to study how

regions of different multiplicity n(ρ, θ) are distributed in the section of the tube

with radius ∆ǫ. This is done in Figure 3.13 where we have pinned down re-

gions with three (in orange), two (in yellow), and one (in blank) sections (these

are in fact the only possible values obtained) for a given ǫ and c. We can note

how the regions with θ near π
2
and 3π

2
are characterised by having n = 2, as one
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could expect on intuitive basis, while the region with θ near zero, in the inner

side of the helix has n = 3.

Figure 3.13: A section of the soft tube with thickness ∆ǫ forming the excluded region. The

black circle corresponds to hard core tube. The regions of overlap with relative multiplicity

are highlight with different colour: the yellow and orange regions corresponds to n = 2 and

n = 3 respectively.

Ourmethod allows us also to study finite size polymer without the approx-

imation of translational invariance. Therefore we were able to study the role

played by the finiteness of the chain in a helical conformation. In Fig. 3.14 the

same plot of Fig. 3.10 is shown for helices of different length compared with

the infinite helix: c(ǫ) corresponds to helix minimising the overall excluded

volume. We can see that the finite size indeed affects the optimal conforma-

tion. For the smallest length tested (L = 10∆) the optimal helix remains close

to c∗ for a large range of values, whereas this range decreases (approaching to

the infinity case) with the increasing of the helix length.
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Figure 3.14: Plot of pitch to radius ratio of the optimal helix for different length L. The

fluctuations in the plot are due to the numerical discretisations.

3.4 The optimal conformation of a tube-like poly-

mer

In this section we want to conclude our investigations on the depletion effect

for a tube-polymer in a solution, facing the problem of finding the optimal

conformation of a finite length tube among the menu of all possible compact

conformations. For this purpose we performed numerical simulations using

the simulating annealing method, described in appendix A. The discretisation

chosen for these computations is quite coarse: the tube centreline is described

as a chain of N points with fixed bond length, b = ∆/2; while the azimuthal

angle and the radial distance are described by 200 points spanning the respec-

tive intervals [0, 2π] and [∆ − ǫ,∆ + ǫ], the last one being the range of value

that can be affected by an overlap or that can be characterised by χ < 06. Pre-

liminary analysis shows that such a discretisation does not affect the polymer

behaviour in the case of large sphere radius, since a finer discretisation leads

to the same results. Otherwise the structures obtained for small values of ǫ, as

6In truth far by the continuum limit (i.e. ǫ << ∆, as we will see) overlapping regions can

be found also for ρ < ∆−ǫ. Therefor we have taken care, in this case, to check also the interval

[0,∆ − ǫ].
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we will be explained, are clearly affected by the finite bond length. This allows

us to study the role played by a discrete versus continuum descriptions of the

tube, that, we recall, wants to model an intrinsically discrete object such as the

polypeptide chain.

ǫ/∆ L = 10∆ L = 20∆

0.005 0.049 0.053

0.025 0.061 0.067

0.050 0.079 0.098

0.100 0.12 0.18

0.200 0.24 0.39

0.500 0.77 1.3

Table 3.1: Values of ∆V/(L∆2) related to the optimal structures, for the tested values of ǫ/∆

and L/∆.

We have considered two different polymer lengths, L = 10∆ and L = 20∆

and several values of ǫ/∆ for each: 0.005, 0.025, 0.05, 0.10, 0.20 and 0.50. The

results are summarised in Fig. 3.15, where the optimal structures obtained on

varying the parameters are shown; the values of ∆V = Vexc,S − Vexc reached

are instead reported in Tab. 3.1. In Fig. 3.15a the conformations with L =

10∆ are displayed. We can see that two different ‘phases’ emerge on varying

ǫ: at small values of the parameter, a planar phase, in which the ground state

has a typical planar hairpin structure, is found; the large ǫ regime, otherwise,

is characterised by a helicoidal phase in which helices and saddles dominate.

The two different regimes are separated by a crossover region characterised by

the coexistence of all these structures. The crucial role played by the discrete

nature of the polymer appears clearly for small ǫ, since the planar hairpin is

able to reach an high overlap volume thanks to the special zigzag typical of

this conformation.

A more complex scenario, shown in Fig. 3.15b, characterise the results with

L = 20∆. The helicoidal phase in this case consists in a more varied collection

of structures: double helices, saddles and irregular helices, with turns of differ-
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Figure 3.15: Conformations adopted by tubes of length (a) L = 10∆ and (b) L = 20∆ subject

to the excluded volume prescriptions for promoting compaction. The values of ǫ/∆ are 0.005,

0.025, 0.05, 0.10, 0.20 and 0.50. The resulting conformations for the shorter tube are either

saddles or helices for ǫ/∆ & 0.20, while for smaller ǫ, after a crossover phase, the hairpin

becomes the ground state – the planarity of the structure is highlighted. For the longer tube,

the planar phase consist of β-sheet-like structures and the helicoidal phase is characterised by

double helices, saddles and irregular helices. All these conformations are akin to those found

in Ref. [17, 18].
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ent lengths. Notice how by increasing the length the planar hairpin evolves in

a β-sheet-like conformation. For both lengths our simulations suggest, in the

crossover region, the existence of an energy barrier between the two classes of

conformations, hairpin versus helix or saddle.

We can then conclude our analysis on the effect of the depletion interaction

of a tube-polymer. Our results show that the depletion interaction in the same

manner as the buried area, discussed in section 2.3, leads to structures similar

to secondary motifs. The fact that both interactions lead to the same motifs

confirm how these geometries have a common and fundamental origin which

transcends the details of the model.
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Chapter 4

Conclusion and perspective: the

Hadwiger theorem

In the introduction on protein folding given in this thesis, the various classi-

cal semi-empirical interactions promoting the folding process have been intro-

duced. Despite their importance, recognised since many decades, the role of

each of them in the complex interplay governing the protein behaviour is, at

the present time, not completely clear yet and still represents matter of dis-

cussion [24, 26, 66]. In particular the fact that interactions within the protein

chain are so strongly influenced by the aqueous solvent, further complicates

the attempt of identifying the principal driving forces of folding. For this rea-

son also a simplifiedmodel should include an appropriate description of water

surrounding the protein in order to reach a full comprehension of the delicate

balance of the different mechanisms involved.

The solvent effects on the protein molecule have been the central focus of

this thesis. Our aim was to provide a very basic model eligible to investigate,

beside the peculiar properties of the polypeptide chain (i.e. steric hidrance,

ability to form peptide hydrogen bonds), aspects proper of the protein-solvent

interaction, following the conviction that both protein and solvent must be

modelled at the same level.

In the previous chapters we have discussed two very basic interactions for

a tube-like polymer, each of them introduced to capture a particular solvent ef-

fect. In chapter 2, we have analysed an energy function proportional to the area
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of the buried regions of the tube surface, in order to model the hydrophobic

effect. In chapter 3, on the other hand a depletion interaction was illustrated:

the tendency of water molecules to maximise their translational entropy, was

captured with an effective interaction proportional to the excluded volume

produced by compact conformations of the tube.

Both the hydrophobic effect and depletion forces, can be efficaciously de-

scribed with geometrical measures. Both of them have entropic origins and

contribute to the solvation free energy of aqueous solution. The latter is de-

fined as the difference between the free energy of the solvent in which the so-

lute is immersed, and the free energy of the pure solvent, the solute being the

protein with a prescribed configuration. It represents the proper function in or-

der to analyse the connection between solvent and the protein molecule. But,

despite its importance relatively little is known about the effective way of cal-

culating this free energy difference. In order to obtain an accurate evaluation of

it, each water molecule should be taken into account explicitly, like molecular

dynamic simulations do in many cases. These calculations, nevertheless, are

limited to small solute molecules and infeasible for large polyatomicmolecules

like proteins.

We want to conclude this thesis with a brief sketch of an alternative ap-

proach that has emerged recently [32, 33]. A morphometric method [31, 124]

was applied in order to calculate the solvation free energy of a protein in a

given structure, having specified the solvent-solvent and solvent-molecule in-

teractions [34, 125]. Through this method the thermodynamic properties of the

system are investigated from a geometric point of view: the starting assump-

tion is that the free energy of the solvent can be efficaciously expressed, on

a mesoscopic scale, as a simple linear combination of four fundamental geo-

metrical measures. For its extreme simplicity and the importance given to the

geometric characterisation of the system, the method seems to represent the

natural extension of our studies. Indeed, as we are going to describe, the two

self interactions (excluded volume and buried area) introduced in this thesis

on physical ground, become in this framework simply two terms of the same

functional. For these reasons an application of the morphometric method to

the tube-polymer case is an immediate follow-up of the work illustrated in
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this thesis.

In the following sections we will outline the main ideas underling the mor-

phometric method, and we will discuss its possible applications to the case of

a tube-like polymer.

4.1 The morphometric approach

In the presence of complex spatial structures, the exigency of characterising the

morphology of the system arises, by reducing the spatial information to a finite

number of relevant terms. Many systems considered by statistical physics, are

characterised by complex patterns which exhibit an enormous amount of in-

formations that need to be codified. We can cite, for example, a porous media1

in which the percolation behaviour (an important quantity for practical pur-

poses) is related to the morphology of its stochastic spatial structure. Complex

fluids, such as microemulsions2 and large scale distributions of the galaxies in

the universe are some of many other examples of such systems.

The mathematical theory of integral geometry, developed some decades ago

[31, 124, 128], provides a systematic formalisation of a class of measures called

Minkowski functionals. The good properties of these functionals make them

suitable morphological measures, i.e. measures eligible to carry quantitative

informations on the shape of spatial homogeneous domains; they represent

also the basis for the formulation of the geometric probability, powerful theory

for investigations on complex systems. We do not want to go in depth with

the treatment of this mathematical theory, since a complete introduction to the

subject would require a whole thesis by itself. We then refer the reader to

[32, 124] for the details, and here we will limit ourselves to define the basic

concepts, focusing our attention to the physical application we are interested

in.

1A solidmaterial characterised by pores of different shape and size distributed in its interior

is called porous media. Generally one observe a threshold in the volume density of the pores,

the percolation threshold, above which the system supports water flow.
2Microemulsions are water-oil emulsions stabilised by amphiphilic molecules which de-

crease the surface tension between oil and water.
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Define P the class of all subsets of R
n that are convex or that can be writ-

ten as finite unions of convex sets. The term Minkowski functional indicates

each geometrical measure defined on P , that is characterised by the following

properties:

i. Additivity Given two distinct domains A and B of P , the measure of

the union,M(A∪B), have to satisfy the additivity relation: M(A∪B) =

M(A) + M(B) −M(A ∩B).

ii. Motion invariance Let g a transformation belonging to the group of mo-

tions (i.e. rotations and translations), the action of g on A being denoted

by gA, then the invarianceM(gA) = M(A) must be satisfied.

iii. Continuity For every sequence of sets An → A for n → ∞, we require

that M(An) → M(A); this condition is required only for An and A being

convex sets.

The importance of this class of measures stems from their good quality

of completeness. The property is known as Hadwiger theorem [31, 128] and

states that each Minkowski functional in R
n can be written as a linear combi-

nation of n+1 Minkowski functionals, Mν , ν = 0, . . . n, where Mν has dimen-

sionality n − ν, i.e. it is identically zero on d-dimensional sets, embedded in

R
n, with d < n − ν. The definition of these fundamental functionals starts by

setting the measureMn to be the Euler characteristic. This is the simplest pos-

sible functional, since it is defined to be 1 for each non-empty convex domain,

0 for the void set and its value for each finite union of convex set is computed

through the additivity relation. It can be proved that this definition is equiva-

lent to the one given in algebraic topology3. Each Mν can then be constructed

starting from Mn by means of the Haar measure [32, 124]. Without going in

depth with the details, we immediately report the result of practical interest.

Given a domain, A ⊆ R
3, bounded by a smooth surface, the four fundamen-

tal Minkowski functionals become simply the volume V (A), the surface Σ(A),

3The Euler characteristic, χ, is a topological invariant. Given a set A in the three-

dimensional space, χ(A) can be computed through the useful relation: χ(A) = ncc − nt + nc,

where ncc is the number of connected components of A, nt is the number of handles and nc is

the number of cavities.
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the integrated mean curvature, C(A) =
∫

∂A
1
2
(κ1 + κ2) dΣ , and the integrated

Gaussian curvature4,X(A) =
∫

∂A
κ1κ2 dΣ , where κ1 and κ2 are the local prin-

cipal curvatures5 of the surface ∂A. When the domain has edges and corners

the last two functional are not defined anymore, in this case we can consider

the sequence An of smooth domains approximating A, and compute the limits

M1(A) = limn→∞C(An) and M0(A) = limn→∞X(An).

To summarise, the Hadwiger theorem asserts that each measure defined on

P in R
3, and satisfying the three aforementioned properties, can be written as

a linear combination of the four basic measures listed above. These property

of completeness is of crucial importance, since it gets the Minkowski function-

als handy tools for an effective characterisation of systems in many fields of

statistical physics.

Applications of integral geometry to various problems, such as porous me-

dia or microemulsions can be found in Ref. [32, 126, 127]. Here we focus our

attention on an application of integral geometry to thermodynamics that has

been the subject of recent theoretical investigations [33, 34, 117, 125]. Under

some restrictions a thermodynamic function can be expressed in a simple and

efficacious manner by means of morphological measures. Consider the case

of a fluid confined in a box. In the thermodynamic limit the free energy of

the fluid is an extensive quantity, thus it is simply proportional to the volume

of the system. This fundamental ansatz, however, does not holds anymore

when finite size effects are important: for a fluid bounded by a container its

free energy depends on the shape of the container in a potentially complicated

manner. The integral geometry provides a very powerful method for describ-

ing such a system: the free energy of the fluid, indeed, can be expressed in an

4We note that, as demonstrated by the Gauss Bonnet Theorem of differential geometry, the

Gaussian curvature of an orientable compact surface ∂A is simply equal to 2πχ(∂A). Since the

general relation [128] χ(∂A) = (1 − (−1)n)χ(A) is satisfied, we recover the former assertion

that Mn is (unless a multiplicative factor) the Euler characteristic.
5Consider the bundle of normal planes to ∂A in a given point x; the intersection between

the planes and the surface defines a bundle of curves in R
3, the normal curves at x. It is possible

to demonstrate that the functional, which associates to each normal curve its curvature κ at x,

has a maximum and a minimum: these are the two local principal curvatures, κ1 and κ2. For

a complete treatment of the subject we refer to [112, 129].



100 Conclusion and perspective: the Hadwiger theorem

easy and, at the same time, accurate manner by means of the Minkowski func-

tionals. It was verified by means of numerical simulations with a thorough

comparison with other methods, such as 3D integral-equation theory and den-

sity functional theory, that the free energy, µ, of a fluid immersed in a container

S is given by the linear combination

µ(S) = −pV (S) + σΣ(S) + κC(S) + κ̄X(S). (4.1)

After computing once and for all the coefficients, p, σ, κ and κ̄, for example

in the case in which S has a simple geometry, the free energy of the fluid in

contact with a complexly shaped wall can be immediately evaluated comput-

ing only the four elementary functionals. The coefficients, indeed, depend on

the fluid-fluid and fluid-wall interactions and are given by physical quantities,

since they are respectively the pressure, the surface tension, and the bending

rigidities.

It is important to remark that the Hadwiger theorem does not hold if the

free energy does not satisfy the three fundamental properties of Minkowski

functionals. This happens in the case of critical phenomena, or if long ranged

interactions are considered or if wetting or drying phenomena occur at the

wall, since intrinsic lengths in such systems have a macroscopic size. Despite

these restrictions, however, the theory has allowed rapid and accurate compu-

tations of the thermodynamic quantities of a confined fluid [33].

Encouraged by this results a biological application was considered [34, 117,

125]. The framework just introduced can straightforwardly be adapted to

the case of a protein immersed in solution, simply considering the protein

molecule, in a given configuration, as part of the solvent wall. The solvation

free energy can then obtained by Eq. 4.1: after fixing the solvent-solvent and

solvent-protein interaction potentials the coefficients can be computed for the

case of a simple geometry and then, for each protein configuration, the sol-

vation free energy descends immediately by the evaluation of the four basic

functionals. Notice that this requires the relaxation of the condition that the

morphological domain is composed by a finite union of convex sets; accurate

numerical simulations have shown that this does not invalidate the reliability

of the method.



4.2. Solvent effects for a tube-like polymer 101

In Ref. [34, 125], a protein was represented as the union of the Van der

Waals spheres of its atoms. Then a menu of compact conformations obtained

with all-atom molecular dynamic simulations was compared with the real na-

tive state of the protein, computing for each structure the solvation free energy

with the morphological method. The results obtained show that the native

state minimises the solvation free energy of the system, which confirm the

importance of this quantity in determining the stability of the protein confor-

mation and, at the same time, reinforces the usefulness of the morphometric

approach.

4.2 Solvent effects for a tube-like polymer

In order to model in a simplified way two important effects arising from the

interaction between the protein molecule and the solvent, the hydrophobic ef-

fect and the depletion interaction, two different effective potentials were intro-

duced for the tube-like polymer case, respectively proportional to the excluded

volume and to the buried area of the tube. A method was provided in order to

compute each of the two potentials for a tube in every configuration, when it

is immersed in a solution of hard spheres. Within the morphological approach

we find that the two measures, defined for different purposes, can be com-

bined in the same framework, because they turn out to be connected with the

first two terms of the morphological formulation of the solvation free energy.

An adaption of the morphometric approach to the case of a tube-like poly-

mer, was considered first in Ref. [117]. The helical configuration was the sub-

ject of that work: the solvation free energy was evaluated in varying the helical

parameters in order to find the more stable structure. On the other hand the

mathematical recipes illustrated in this thesis for the excluded volume and the

buried area allow a more general treatment of the subject since a tube in every

configuration can be considered. A merging between the tube-polymer model

and the morphometric approach becomes the natural following-up of the line

of research described in this thesis.

Consider an impenetrable tube folded in a compact conformation and im-
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mersed in a sea of hard spheres, representing the aqueous solution. The tube

can be seen as the impenetrable wall confining the hard spheres. Therefore, in

order to evaluate the solvation free energy through Eq. 4.1, the four measures

we need to compute are the excluded volume Vexc(Γ) to the sphere centres due

to the tube presence, the surface of this excluded region Σexp(Γ), that we will

call exposed surface, and the integrated mean and Gaussian curvature on this

surface, C(Γ) and X(Γ). The first measure is exactly the functional introduced

in the previous chapter. The second one, on the other hand, is akin to the con-

tact surface, the complementary of the buried area; it has the only difference

that instead of the surface of the tube, we now consider the surface of the ex-

cluded region, the ‘soft’ tube with thickness ∆ǫ ≡ ∆ + ǫ, where ǫ is the sphere

radius and ∆ the tube thickness (see 3.2.1). The criterion expressed with Eq.

2.25 in order to distinguish if a region of the tube is buried holds also in this

case; it can be demonstrated moreover that, in analogy with the excluded vol-

ume, this criterion can be formulated by means of the multiplicity function6

n(s, θ, ρ) defined by the conditions 3.15. We remind the expression of the vol-

ume element of the tube, dV = ρ|1 − κ (s) ρ cos θ| dρ dθ ds, and the domain of

integrationD = [0, L]×[0, 2π]×[0,∆ǫ]. Then the excluded volume and exposed

surface can be written as

Vexc(Γ) =

∫

D

dV
1

n (s, θ, ρ)
(4.2)

Σexp(Γ) =

∫

D

dV δ(ρ− ∆ǫ)ϑ

[

3

2
− n(s, θ,∆ǫ)

]

.

The computation of the last two terms of Eq. 4.1 is less immediate. The

evaluation of C(Γ) andX(Γ) in the smooth regions of the surface is straightfor-

ward [129]; nevertheless the computation of the contributions given by edges

and corners which arises when the soft tube overlap is not trivial at all. There-

fore, in order to apply the theorem to a tube-like polymer, the evaluation

of these curvature terms is required and represents at the present a work in

progress. This will allow us to study the equilibrium configurations of the sys-

6It is possible to show that the equivalence between the condition 2.25 and the ones ex-

pressed by means of the multiplicity function is exact when two hemispheres are attached to

both the ends of the tube.
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tem as a function of the thermodynamic parameters entering Eq 4.1. Beside

this analytical effort, however, we are employing numerical simulation in or-

der to study the thermodynamics at finite temperature of the system affected

only by the first two terms of the solvation free energy.

The morphometric approach provides a very simplified way to model the

solvent effects. The method is eligible to be employed both in an all-atom and

in coarse grained representations of the protein molecule. For this reason we

retain that it could represent an important ingredient for the tube-like polymer

model.
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Appendix A

Simulated annealing

The basic idea of simulated annealing is to search for the minimum of a cost

function depending on a large number of variables in the same way as a physi-

cal system with a large number of degrees of freedom reaches the ground state

of minimum internal energy in the limit of low temperature. One may think,

for example, of crystalline solids which are formed by several atoms. In prac-

tical contexts, low temperature is not a sufficient condition for finding ground

states of matter. Experiments that determine the low-temperature state of a

material are done by careful annealing, first melting the substance, then low-

ering the temperature slowly, and spending a long time at temperatures in the

vicinity of the freezing point. If this is not done carefully, the resulting crystal

will have many defects, or the substance may form a glass, with no crystalline

order and only metastable locally optimal structures.

Coming back to the original optimization problem, onemay apply the same

scheme by using the cost function in place of the internal energy and then in-

troducing a fictitious temperature, which is simply a control parameter in the

same unit as the cost function. The simulated annealing procedure consists

in carrying out numerical simulation by gradually decreasing the temperature

from high values to lower ones, until the system has frozen in some configu-

ration and no further changes occur. For the procedure to succeed in finding

the correct globally optimal state, it is crucial that the system be in thermo-

dynamic equilibrium along all the cooling route [100]. This ensures that the

system eventually escapes any possible trapping in local minima. Of course,
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this is strictly true only for an exceedingly slow cooling rate, and designing

cooling schedules to minimize the time needed to reach a ‘good’ solution is a

non-trivial task. Moreover, when the exact solution is not known ‘a priori’, one

can never be sure that the obtained numerical solution is the optimal one.

A natural and efficient way to simulate systems in thermodynamic equilib-

rium at a given temperature is bymeans ofMonte Carlo stochastic dynamics in

the configuration space [130, 131]. The standard Metropolis algorithm [132] al-

lows one to generate a stochastic process which samples randomly the config-

uration space with a probability proportional to the correct Boltzmann weight

at the desired temperature. The basic step consists in proposing an updating

of the current system configuration, based on some predetermined set of pos-

sible moves, and to accept it or not according to the Metropolis rejection test.

That is, if the proposed move lowers the cost function, accept it, and if it raises

the cost function, accept it only with a probability p (∆E) = exp [−∆E/T ],

where ∆E is the resulting change in the cost function E, and T the fictitious

temperature. By repeating this procedure many times, the desired Boltzmann

distribution gets to be sampled by the generated stochastic process. Again, in

practice this may be true only for unfeasibly long times, and a crucial issue is

to devise efficient moves to be used in the updating process. Moreover, the

correct Boltzmann distribution is recovered only if the set of employed moves

is ergodic, that is if each configuration can eventually be reached from each

other configuration. In the following section we will describe the mostly used

moves in our simulations.

The fictitious temperature T of the simulated annealing procedure has to

be decreased according to an efficient cooling schedule. We used a rather com-

mon recipe, based on monitoring the acceptance rate along the cooling route,

that is the fraction of the acceptedmoves over the tried ones. The cooling shed-

ule depends on two different factors; the rate at which temperature is lowered,

and the number of moves which are tried at a given temperature. Both param-

eters can be varied during the annealing procedure. At high temperatures one

expects an acceptance rate very close to unity, since nearly every move is likely

to be accepted. On the other hand, at low temperature, that is after the system

has frozen in some configuration, the acceptance rate is practically zero. The
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crucial temperature values corresponds to the often sharp crossover region,

where the acceptance rate starts decreasing from unity and then drops to zero,

meaning that the system is doing the crucial steps in order to reach the opti-

mal configuration. The cooling rate has then to be slowed, and the maximum

number of tried moves increased, correspondingly.

We note that the optimal chain conformations are usually obtained in dif-

ferent simulated annealing runs starting from random unrelated initial con-

figurations. Nevertheless, since we are dealing with numerical simulations, it

cannot be taken for granted that we hit on locally, rather than globally, optimal

shapes.

A.1 Monte Carlo moves

In all the simulations described during this thesis, the configuration space

we want to sample is the set R of discrete chains {x0, . . . ,xN} in the contin-

uum three-dimensional space, having a fixed constant distance b between con-

secutive beads, and a hard-core repulsion at a distance R0 between different

non-consecutive beads. Chain configurations can be expressed equivalently in

terms of the angles θ2, θ3φ3, . . . , θN , φN , with

cos (θi) =
ui · ui−1

|ui| |ui−1|
, (A.1)

φi =
π

2
− sgn {(vi ∧ vi−1) · ui−1} arccos

[

vi · vi−1

|vi| |vi−1|

]

, (A.2)

where ui = xi − xi−1, and vi = ui ∧ ui−1. The angles θi are the angles between

consecutive bonds along the chain, that is the valence angles, whereas φi are

basically the torsion angles between successive planes formed by pairs of con-

secutive bonds, which are usually plotted in the Ramachandran plot (see section

1.3). The above correspondence between angles and coordinates becomes one-

to-one, when fixing x0 = (0, 0, 0), x1 = (0, 0, b), x2 · êj = 0, which amounts

to define ‘reduced’ chain configurations by exploiting symmetries; translation

of the first and the second bead, and rotation of the rest of chain around the

segment connecting the first two beads (êj = (0, 1, 0)).



108 Simulated annealing

In the simulations described in this thesis, three different moves was usu-

ally employed, one of them involving coordinate representation and the other

three involving angle representation. All kinds of moves do not violate the

constraint of fixed constant distance b between consecutive beads along the

chain, but we have to check whether the proposed updated configuration sat-

isfies other constraints which we want to enforce, such as compactness, end-

to-end distance or self-avoidance. When the trial configuration violates any of

these constraints, it is rejected before submitting it to the Metropolis test. We

now list the moves which we used and discuss their local/global character,

with respect to the number of beads involved in the move, as is customarily in

polymer physics [130, 131].

• Crankshaft move

Select randomly two beads i, j (i < j), such that j − i ≤ nc + 2, with nc ≪ n (in

most cases we have used nc = 5). Then, rotate beads i+ 1, . . . , j− 1 of an angle

∆φc around the axis xj −xi. The angle ∆φc is chosen randomly with a uniform

probability distribution in the interval [−∆φm/2,∆φm/2]. This is a local move,

since only nc beads are involved, and it has to be carried out in coordinate rep-

resentation.

• Reptation move

This kind of move is also known as slithering-snake move. It consists in delet-

ing a bead from one end of the chain and appending a new bead at the other

end. Which of the two ends the bead is removed from is chosen randomly each

time the move is tried. The orientation in which the new bead is appended is

also chosen randomly. In the angle representation introduced above reptation

amounts, in one case, to reshuffle angles, θi = θi+1 for 2 ≤ i ≤ N − 1, and

φi = φi+1 for 3 ≤ i ≤ N − 1, and to assign a new value to θN and φN . In

the other case, θi = θi−1 for 3 ≤ i ≤ N , and φi = φi−1 for 4 ≤ i ≤ N − 1,

and a new value is assigned to θ2 and φ3. In both cases, new values for angles

are picked up randomly with a uniform probability distribution in the interval

[0, θe] ([0, 2π]) for θ (φ) angles. Reptation is a bilocal move, since it alters two

disjoint small groups of consecutive beads of the chain.
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• Pivot move

Select randomly one bead i, with 1 ≤ i ≤ N − 1 as the pivot point, and then

rotate the part of the chain subsequent to the pivot point while keeping fixed

the rest of the chain, using the pivot point as the origin. In the angle rep-

resentation, this is simply carried out by updating or θi+1, or φi+1 (if i = 1

only θ2 is updated). Which angle is to be updated is again chosen randomly.

The updating rule is θi+1 = θi+1 + ∆θp (φi+1 = φi+1 + ∆φp), where ∆θp (∆φp)

is selected randomly with a uniform probability distribution in the interval

[−∆θm/2,∆θm/2] ([−∆φm/2,∆φm/2]). Pivot moves are global ones, since they

involve a rearrangement of a macroscopic portion of the chain.

Quite often in our simulations a multiple chains system was considered.

In this case at each step one chain is randomly selected and one of the moves

listed above is performed. In order tomake the sampling of the conformational

space more efficient a further move, consisting in rigidly translating one chain

in respect to the others, can be employed. In this case the translation vector is

randomly chosen.

To conclude, we note that the efficiency of Monte Carlo dynamics may de-

pend crucially on tuning the different control parameters which we have intro-

duced, nc, ∆φm, ∆θm, θe, possibly considering them as non-constant functions

of the simulated annealing temperature. Efficiency also depends on the rela-

tive frequency of the different kinds of moves which we use.
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